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FSI PROGRAM

1. Flow/Structural Interaction (FSI) Program

1.1 Starting The Flow/Structural Interaction Program (FSI)

The Flow Structural Interaction Program is started by double-clicking on the Flow Structural
Interaction Icon. This opens a startup window to introduce the program. Clicking on the
"Continue" button in the lower right corner or pressing a key enables the main menu bar and
closes the startup window.

1.2 Flow/Structural Interaction Program Menu Description

The Main menu bar for the Flow Structural Interaction program appears at program startup.
In this section of the manual, first level menu options are in large type on the left. Sub menu
items are indented and printed in smaller type. For example, the "About FSI" window is available
under the main "Apple" menu heading. An arrowhead beside a selection indicates there are
further sub menu selections available in a hierarchical menu.

Apple

These options allow interaction with the Macintosh System software through the Apple Menu
Items or Desk Accessories (DA's) under the Multifinder and System 7 operating systems and
offer help with the FSI program.

About FSl - This option opens a window which tells about the FSI program.

Help - This option opens a help window for information concerning operation of the FSI
program. ( Help is not available yet ).

System DA's - This option allows operation of the Desk Accessories ( DA's ) available
under the "Apple" menu. The DA's available vary according to user preferences for
the particular machine. No DA's tested have been found dysfunctional with the FSI
program.

File
Options available under this heading are the standard Macintosh file options.

New - (not functional)

Open - This option opens a standard "Open File" window in which new values from a
file, containing fluid and/or structural parameters, may be read and incorporated in the
appropriate parameter window(s) for subsequent analysis. For example, to read
saved values for an entire case containing both fluid and structural parameters, click
the cursor in the Display Window and choose the "Open" menu option, or to read a
case containing only fluid parameters, click the cursor in the Fluid Window and choose
the "Open" menu option.

Close - This option closes the window which is currently in use. Clicking on the close
box in the upper left hand comer of the window produces the same result.

Save/Save As... - This option opens a standard "Save file" window through which current
fluid and/or structural parameters from the active parameter window(s) are saved. For
example, to save values for an entire case containing both fluid and structural
parameters, click the cursor in the Display Window and choose the "Save As..." menu
option, or to save a case containing only fluid parameters, click the cursor in the Fluid
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Window and choose the "Save As..." menu option. The "Save" option has the same
result as the "Save As..." option.

Revert to Saved - This option closes the current window and does not save any of the
work done since the last save command. - (not functional)

Page Setup... - This option opens a standard "Page Setup" window.

Print... - This option opens a standard "Print" window. The printer accessed must be
chosen through the "Chooser" DA available under the "Apple" menu. If the "Display"
window is active, "Display" text is printed. If the "Graph" window is active, the graph is
printed.

Analysis - Analyzes current fluid and structural data and displays results in the Display
Window.

Export - (not functional)

Quit - This option closes all open windows and quits the FSI program.

Edit
These options are the standard Macintosh "Edit"options.

Structures
This option opens the "Geometry" and/or "Material" parameter windows and allows definition

of the structural parameters.

Geometry - This option opens a window for definition of a particular geometry. The
standard geometries available are listed below and are accessed in a hierarchical
menu under the "Geometry" sub menu. Choosing one of these standard geometries
loads parameters particular to the selected geometry. The "Geometry" window is
opened to allow inspection and/or modification of the parameters.

Airfoil
Backstep
Beam
Cavity
Cylinder
Frontstep
Generic
Jet
Jet-Edge
Miscellaneous
Nozzle
ORB_ET_SSME
Pipe
Plate
Sphere
SSME
Valve
Define Geometry

Selection of the "Define Geometry" option allows operator input of parameters.
Selection of the geometry "Airfoil" opens the data file "Airfoil" and loads geometric
parameters. If a particular set of parameters are being used often, modifying the
"Airfoil"file to reflect the often used parameters will allow that data to be loaded upon
selection of "Airfoil"from the menu.
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Material - This option opens the "Material" window for definition of a structural materials.

Fluids
These options open the "Fluid" and "Flow" parameter windows and allow definition of fluid

parameters.

Fluid Parameters - This option opens the "Fluid" window for definition of fluid
parameters.

Flow Parameters - This option opens the "Flow" window for definition of flow
parameters. Common flow parameters include flow velocity, angle-of-attack, and yaw
angle.

GASP - This option opens the "Gas Properties" window for computation of gas/fluid
parameters to be inserted into the appropriate Fluid Parameters text selection boxes.
The properties are calculated using the NASA/COSMIC "GASP" program. Ten gases
under varying conditions are available through this option.

Interactions
This option opens the "Structural" and/or "Fluid Interaction" windows which allow definition of

factors effecting flow/structural interaction.

Structural Factors - This option opens a window for definition of flow/structural
parameters where the effect is dominated by structural characteristics. For example,
Greenspon factor for added mass for partially submerged plates are referenced here.

Fluid Factors - This option opens a window for definition of particular flow/structural
parameters where the effect is dominated by fluid characteristics. For example, the
vortex correlation length factor is referenced here.

Graphics
This option opens the "Settings" and "Graph" windows for displaying results from calculations.

Settings - This option opens a window for definition of graphics options. Graphics
options include x, y, and z ranges. 3D graphs are not functional.

Graph - This option opens the "Graphics" window for graphic display of data using
options chosen under "Settings'.

Windows
These options open the selected window or bring the selected window to the foreground. The

following windows are included:

Geometry Window
Materlal Wlndow
Fluld Window
Flow Window
Structural Interaction Window
Flow Interaction Window
Display Wlndow
Reference Window
Graphics Window
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1.3 Flow Structural Interaction Program Window Description

Windows are the basic input and output devices. Parameters defining a particular analysis
are entered through specific windows. This section of the handbook describes each window and
its expected input and output.

The "Startup" window, Figure 1-1, displays the title of the handbook and the authors. The
main purpose of the "Startup" window is to inform the user that the program has started. To exit
the startup window, press any key or click the continue button located in the lower right-hand
corner.

Flow/Structural Interaction in

Oense Subsonic Fluids:An
Interactive Xandbook

Continue

Figure 1-1 Startup Window

The names of the programmers and authors of the FSI code and where you may get in touch
with them in case of difficulty are included in the 'About" window, Figure 1-2.

il-_,_ About FSI

AboutFSl

I Continue 1

Figure1-2 AboutFSI Window
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The "Geometry" window, Figure 1-3, is for input and review of structural parameters.
Physical dimensions, the structural damping factor zeta, and the mode shape factor for the
selected structure may be modified by editing their input boxes. End constraints are selected by
holding down the mouse button in the appropriate constraint input box to access available options
in a pop-up menu. Predefined geometries may be read from a file by clicking the cursor in the
Geometry text box choosing the "Open" menu option. Geometry parameters may be saved by
clicking the cursor in this window and choosing the "Save/Save As..." menu option.

Geomelrt

Geometry: [l;)late

Dimensions: @Two_Dimensional OThree-Dimensional

Height ( eters) : 7.112000e-03

n_ 4.064000e-03Width (meters) :

Depth (meters) : 5.689600e-02

8endlng End Constraints:[ Free-Free J

Torsion End Constralnts: I Free-Free ]

Zeta: Ilooooooo.oo
Shape Factor:. I 1.000000e+00

Figure 1-3 Geometry Window

The "Material" window, Figure 1-4, is for input and review of material parameters. Density,
Young's modulus, shear modulus, Poisson's ratio, and temperature for the selected material may
be modified by editing their input boxes. Predefined materials may be read from or saved to a
file as in other input windows.

[] Materials

Material:

Density (kg/cublc meter):

Young's Modulus (Pascal):

Shear Modulus ( Pascal ):

Poisson's Ratio:

Temperature °K:

0 000000e+00 I

IO.O00000e+O0 I

O.O00000e÷O0 ]

I 0.000000e+00 J

I 0.000000e÷O0 J

Figure 1-4 Material Window

The "Fluid" window, Figure 1-5, is for input and review of fluid parameters. Temperature,
density, pressure, and kinematic viscosity for the selected fluid may be modified by editing their
input boxes. Predefined fluids may be read from or saved to a file as in other input windows.

1.5



FS! PROGRAM

_] fluid
Fluid Worksheet

Fluid: _otoluene

Temperature (°K):

Density (kg/cubic meter):

Pressure (N/square meter):

Kinematic Viscosity (square
meter/see):

IO.O00000e+O0 J

Ioooooooe+oo I
[o.oooooo .oo]

[oooooooe.oo I

Figure 1-5 Fluid Window

The "Flow Parameters" window, Figure 1-6, is for input and review of flow parameters. Flow
velocity and angle of attack may be modified by editing their input boxes. Predefined flow
parameters may be read from or saved to a file by clicking the cursor in the Angle of Attack text
box.

[__J Flow Pdtdmetet lJll[itlOLL,

Flew Parameters Werlksheet

Flow Velocity j O.O00000e+O0 J
Angle ef Attack (radlans): IO.O00000e+O0 J

Figure 1-6 Flow Parameter Window

The "Structural Interaction" window, Figure 1-7, is for input and review of structural interaction

parameters.. Greenspon factor (Greenspon, J. E., "Vibrations of Cross-stiffened and Sandwich
Plates with Application to Underwater Sound Radiators," J. Acoustic Soc. Am., 33,1485-1497,
1961) may be modified by editing the input box. Predefined structural interaction parameters may
be read from or saved to a file as in other input windows.
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[] Structural Interaction

Structural Interaction Worksheet

Greenspon Factors: [ 9,000000e-O I

Figure 1-7 Structural Interaction Window

The "Flow Interaction" window, Figure 1-8, is for input and review of flow interaction
parameters. Vortex correlation length may be modified by editing the input box. Predefined flow
interaction parameters may be read from or saved to a file as in other input windows.

fl0w Inlerd(tion

Vortex Correlation Lengthfactor:, IO.O00000e+O0 J

Figure 1-8 Flow Interaction Window

Analysis is presented in the "Display" window, Figure 1-9. Predefined cases, including all
parameters, may be read from a file by clicking the cursor in this window and choosing the
"Open" menu option. Cases may be saved by clicking the cursor in this window and choosing the
•Save/Save As..." menu option.
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The results shown in the "Display" window include all input parameters describing the
particular case, calculated structural and flow values, and deduced results such as whether lock-
in will occur for the case analyzed.

|1 Displa_

FluidSITud:ureInteracLionAnalysisR'ogr'am

StructuralFr_luer_ analysis
Free-Free BendingEndCons_ir/3
1ST BendingFrequency,1.110064e,04HZ
2NDBendingFrequency• 3.059932e,04HZ
3RDBendingFrequency= 5.998692e+04t-G[

Geometry:plal:e
Height- 7.112000e..03[m] ',k"K_=4.064000e.-03[in]

• 5.689600e..02[m]
Zeal= 1.000000e+00 Sha_oerad_r_ endconslrairt=

1.000000e+00

Fluid: Ak_2

Figure 1-9 Display Window

The Graphics windows present graphic data derived from the analysis of a particular case.
Options for range and type of graph are input in the "Grset" window, Figure 1-10.

[] E,lSet

Graphics Set Up Worksheet

@ Two_Dimensional 0 Three_Dimensional

x_axis varlable:[ time J

y_axis uarlable: I displacementJ

z-axls variable: l time I

x Minimum:l I X Maximum: I

v Minimum:I I ''Iqaxlmum"I
I I

Figure 1-10 Grset Window
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The "Graphics" window, Figure 1-11, displays the x-y graph set from the "Settings" window.

Hode Shapes

1st B_di_lllo4e lMIl_dl_lll_e IrdbMi_llt_le V_tel_eq_na/ 9umofb_41_lrr_les

2.300000e: _C... : .... : .... : .... : .... I .... I .... I .... o .... I ....

1.84000Oe+ pO

1.380000e+ _0

4.600000e=

 ,2oooo.
- 1,3800001 i*00

- 1.8400001 :_00

-2.300000_! 00' ' ; .... : .... : .... : .... : .... : .... : .... : .... : .... •

O.O00000o'_O0 3.789118e-03 7,57023_-03 1,136735e-02 IS156471-02 I 894559a-02
1.894559o-03 5.68367",_-03 9.4727941-03 1,326191e-02 1.70510_-02

Figure 1-11 Graphics Window

The "Reference" window, Figure 1-12, provides a literature search by geometry type and

keywords. The geometries available for review are listed in a pop-up menu. Up to three search
strings may be entered in the "Search" input boxes. To execute the search, press <enter> on the
numeric keypad while the cursor is in one of the "Search" input boxes. The title and author of the
first article meeting the search criteria will be displayed in the "Author" and "Title" boxes. A
synopsis of the article is displayed in the "Display" window, Figure 1-13. To continue searching
with the same criteria, simply press enter again.

Referen[e

Reference Worksheet

Llteralura Search:

Geometry: I Airfoil I

Author:.

Title:

Search:

AndJellc,H.andK.Popp

"Stability Effects in a Normal Triangular

Cylinder Array'.

pOpd

Figure 1-12 Reference Window
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|[-_ , Oispla_

FluidSITuctureIrteractionAnalysisProgram

>Review:Lo_ey
>Ac_r:. Brown,S.J.

>TitJe:"ASurveyofSLudiesInto_ Hy_edynamicResponseof
Fluid-CoLpledCrcularCylinders'.
>Publication:JournalofPressureVesselTechnology,vol.104,pp.2-19,
February1982.
>Fluid:Liquids.
>FlowParameters:Nocompressiblerluidsconsidered.
>Geome_: Varietyof coaxialcylinders.
>Material_: H/A
>Resub: Moststudiesintofluid-sltucturebehaviorof coaxialcylindem
haveutilizedciasstcaltechniques;however,as theboundaryvalue

Figure 1-13 Sample Output from the Reference Search in the "Display" Window
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BASIC PRINCIPLES

2. Basic Principles

2.1 Categories of Flow/Structural Interaction

Structures in a fluid flow will generally induce fluctuating components. These fluctuating or

flow-induced oscillations are important aspects of the flow pattern which may in turn excite natural

modes of the structure. Such feedback loops in the fluid-structure system are highly nonlinear

and under certain conditions may dominate the motion of the fluid-structure system. For each

vibrational mode, data usually include the amplitudes of deflection, velocity and acceleration.

These responses are linear and translational for bending modes and angular for torsional modes.

When each vibrational mode is independent, the system may be described by studying each

mode separately. In general however, systems have two or more degrees-of-freedom and the

response can be analyzed only by solving a system of simultaneous differential equations.

As strongly emphasized by Naudascher 1, the engineer is advised to carry out a detailed

preliminary investigation in which all sources providing hydrodynamic loading are identified and

their effect assessed. Sarpkaya 2, Davenport and Novak 3 , D. Rockwell and E. Naudascher note

several classes of fluctuating hydrodynamic forces. Naudascher develops a very workable

scheme for distinguishing the sources of hydrodynamic loading and we use the terminology and

classifications developed by Naudascher. The reader is referred to his monograph for a more

detailed and illuminating treatment. There are four broad categories of fluctuating fluid forces, as

shown in Figure 2-1. These categories are fluctuations from: 1) extraneously induced excitations

(EIE), 2) instability induced excitations (liE), 3) movement induced excitations (MIE), and 4)

excitations due to fluid oscillators (EFO).

CyhndrlcQI

structure

E
o

Control

gate

I

Elements leading to fluctuating hydrodynamic forces

EXTRANEOUSLY INSTABILITY

INDUCED INDUCED

EXS!TATION EXC:TATION

rE_E) :tiE)

It,

(e)

l_i

If)

MOVEMENT

INDUCED

EXCITATION

(MIE)

EXC ITAIION DUE

TO FLUID

OSCILLATORS

IEFC)

(el

I!

Figure 2-1 Categories of Flow/Structural Interaction

1 E. Naudascher, "Hydrodynamic Forces", IAHR Monograph, Balkema/Rolterdam/Brooldield/1991.
2 T. Sarpkaya," Vortex-induced Oscillations:A Selective Review" Jour. of Appl. Mech., 46, June 1979.
3 Harris, Cyril M. "Shock and Vibration Handbook" / Section: Davenport.A.G., and M. Novak, "Vibration at
Structures Induced by Wind" McGraw-Hill, 1988
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EIE type fluctuations are caused by fluctuating velocities or pressures which are independent
of flow instabilities originating from the structure and independent of any structural motion except
for added mass effects. These EIE fluctuations are developed from motion induced into or
inherent in the flow such as turbulence, buffeting from upstream structures, gravitational

influence, flow impulses due to machines, two-phase or multi-phase flow, and oscillations or gusts
in the flow pattern. Some examples of this type fluctuation are shown in Figure 2-2.

IMPULSIVE PERIODIC CHAOTIC/RAN DOM

..... ; : , kX\X3
GU_

Figure 2-2

V_qVWO Am_UE_OF_TT_

Extraneously Induced Excitations (EIE)•

.,_:: _ .." :
; ...'. ".. @• aoe _ • • •

#-. :.;...

AIR BUBBLES

liE type fluctuations are flow instabilities caused as a result of interaction of the flow with the
structure. Typical liE fluctuation generators are vortex shedding, impinging shear layers,
cavitation and interface instabilities, bi-stable flow instabilities,and swirling flow instabilities.Some
examples of this type fluctuation are shown in Figure 2-3.

MIE type fluctuations are a direct result of motion by the structure• A moving body in a fluid
induces unsteady flow around the body and hence fluid-dynamic forces on the body are
generated• These forces may be described in terms of components in-phase and out-of-phase
with the body displacement, and act as added mass and damping type forces. These forces may
become a source for the excitation of the structural oscillationsthemselves, that is these sources
may become self-exciting. Naudascher develops three main categories for MIE fluctuations: 1)

single mode, negligible coupling, where body movement causes a change in the hydrodynamic
force such that energy is transferred from the flow to the moving body causing it to oscillate, 2)
fluid coupling involving discharge variations, where there is a pulsation of the flow rate due to
body oscillation, and 3) mode coupling and multi-body coupling, where excitation is induced from
one mode .generating fluid dynamic forces which transfer energy to the body in other modes.
Flapping, galloping, flutter, rotating stall, and gap flow switching are examples of this type of
fluctuation. Some examples of this type fluctuation are shown in Figures 2-4 and 2-5.

EFO type fluctuations are a result of the fluid itself being induced to oscillate. There are two

main categories of fluid oscillators: 1) discrete fluid oscillators, such as the U-tube, surge tank,
and the Helmholtz resonator, where a discrete mass of fluid oscillates like a solid body, and 2)
distributed fluid oscillators producing the standing waves, where the oscillatingfluid is treated as a
continuum. Some examples of this type fluctuation are shown in Figure 2-6.
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Emergency gate dosure
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Channel with boy pipe system
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Flow divider with,n : jet

Figure 2-3 Instability Induced Excitations (liE)

(c)

Body
speed

Strut ;n cross flow

Ib) _

Le,=.= gcte

(Transverse galloping)

TrQsn rack in incident flow (woke brenthing)

(c)

Strut

( Torsional galloping]

It)

Blade in jet

Figure 2-4 Motion Induced Excitations (MIE)
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{g)

Guide vane

I Stall flutter)

_> ,v _'_v
Stationary ! / _, !/ |

l ' 1 |

Tandem cylinders Row of cylinders

(Gap-flow switching )

lj) lkl

Rigid barge Flexib|e barge
(Criss-cross vibration) (FLutter)

Cantilevered pipe

(F|apping vibration)

Figure 2-5 Motion Induced Excitations (MIE) (continued).
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-'_ten: :lly, _ -.,_, • _ ,

tonk wlt_ gape I Surge t=nk I Open ¢lt_m_ll w_lll'_ d=vidt_ or

Figure 2-6 Excitationsdue to Fluid Oscillators (EFO)
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Critical Onset Flow Conditions

Flow characteristics may change as the flow condition changes. There are several critical

flow parameters. For example, in the case of laminar to turbulent transition, the critical Reynolds
number in a pipe is around 2300. When a pipe flow operates above this Reynolds number,
turbulent flow takes place. In the case of flow/structural interaction, critical onset flow conditions

are initiated by flow instabilities. When these instabilities couple with structural vibrations, the
structure becomes a system of forced vibrations. In cases where the flow induced oscillation

frequencies (such as those associated with vortex shedding) match with or approach the
structure's natural frequencies, unacceptable resonant flow-induced vibrations may occur. Flow
separation and vortex shedding usually exist for structural elements in which the flow path is
altered. For instance, bluff bodies, bellows, bends, expansions and engine parts cause flow
oscillations in certain critical Reynolds number ranges.

Not all flow instabilities are due to change of flow directions. There are several types of
classical instabilities, for instance those due to gravitational, inertia, and surface tension effects.
When there is a high density fluid existing on top of a low density fluid, gravitational instabilities
may occur. The free surface instability due to the acceleration of a liquid container and the
Taylor-Goertler vortex formation in a viscous fluid between concentric rotating cylinders are
examples of inertia instabilities. Surface tension may induce flow instabilities as shown by
Rayleigh instability in a circular liquid jet. Benard's cells are related to surface tension
nonuniformity induced by temperature difference.

From an energy point of view, a state is unstable if a small perturbation causes the release of
energy from the system and is capable of doing work. For instance, a sphere on a peak in a
gravitational field is unstable, because movement of the sphere may cause the release of its
potential energy. The equilibrium of a high density fluid on top of a low density fluid is unstable
for similar reasons. The flow between concentric rotating cylinders is unstable when the specific
angular momentum in an inner fluid particle is greater than that on the outer one. In this case, a
position exchange of these fluid particles would release the kinetic energy of the system which
may result in the formation of ring vortices.

Resonance and Lock-in Dynamic Characteristics

Lock-in is a resonance phenomenon which is one of the most important dynamic
characteristics in flow/structural interaction. When flow-induced dynamic loads match frequency

with or approach natural frequency components of the structure, the structure may vibrate as a
forced vibration at the resonance state. Flow/structural lock-in is a self-sustained phenomenon in
which the frequency of flow-induced forces and the frequency of the vibrating structure both settle

to a frequency close to the natural frequency of the structure. If the structure is adequately
damped and-flexible, lock-in may not cause damage to the structure.

The lock-in may cause little change in the structural properties or natural frequencies and the
flow-induced loads no longer excite the structure mode. This type of lock-in is termed unsteady.
If the flow-induced loads, fed back from the structural motion, do not respond in-phase with the
motion of the structure, lock-in may be self-limited or self-destructive, and the motion does not
increase any more or the motion diminishes.
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Vibrations maintained by an exciting force are said to be forced vibrations. Analogous to the
flow/structural type of resonance is the resonant RLC (resistance-inductance-capacitance)
electrical circuit. The differential equation for forced vibration of a mass-damper-spring system,

Figure 2-7, and the similar differential equation of an RLC electrical circuit can be expressed in
the following:

Forced Vibration RLC Circuit

_ + 2 n_,+ py = A sin0ot + 2 nQ + pQ =Asir_t

where

y = displacement
m = mass

_ c
2m

c = damping coefficient
p = natural frequency of the system

= _/-Wm
k = spring constant
A = F/m = forcing amplitude
F = amplitude of the exciting force

Q = electrical charge
L = inductance

n- R
2L

R = resistance

p = 1/_-C
C = capacitance
A=E/L

E = amplitude of the exciting voltage

Here the equivalence is apparent by viewing the analogy between displacement and
electrical charge in addition to the other system parameters. The complete solution of the system
is in form of

y or Q =e'nt[clsin y-p2-n2 t +C2cos _t]+ 3/(p2.o2i + 4n2o_2 sin(o t-S)

Note that the term with e"nt is a transient term which damps out with increasing time. The

remaining forcing term is the steady-state term. When the forcing frequency o) is equal to the
natural frequency p, the amplitude of the steady-state term is a maximum. This state of maximum

amplitude is called resonance, which means the forcing frequency matches the natural frequency
of the system, either in a mechanical or an electrical system described in the foregoing.

U
p t
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, \ / /
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Figure 2-7 Vibration of a Spring-Supported Damped Model.
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2.2 Geometric and Structural Parameters

Natural frequencies are the rate of energy exchange from the cyclic transfer between kinetic
and potential energy within a structure. Only natural modes of the structure are considered in
vibrational analyses in a vacuum. With the addition of a fluid to the system, energy transfer
between the fluid and structure results in new characteristics. One such example is added mass.
The acceleration of an immersed structure entrains fluid and the virtual mass of the structure is

increased. This results in decreasing the frequency of structural vibration. The basic elements of
the structural system characterized in this chapter are the structure or geometry, the non
dimensional parameters related to geometry, and the fluid added mass.

Dimensionless and Reduced Variables

As noted in Blevins1, geometry is the most important characteristic in determining the fluid

forces acting on the structural model. Linear measurements are frequently normalized or reduced
according to a fixed length ( usually the diameter or maximum structural model width ) which is
characteristic of the model being analyzed. This characteristic /ength is used in other non-
dimensional parameters. Frequently, as in the case of a cylinder, the diameter is used for the
characteristic length and length measurements are reduced by this quantity, e.g. the width of the
wake is measured in cylinder diameters. The diameter at the orifice of a jet is another example of
a characteristic length used to reduce geometric measurements. Several reduced or non
dimensionalized parameters of systems are listed below. Since most characteristic lengths are
determined by the diameter of the model, the term, D, is employed for the characteristic length.

For a particular frequency and mode of vibration, the length of the path traveled by the
structure during one cycle is U/f where U is the free stream velocity and ,f is the frequency of
vibration. The reduced velocity, or dimensionless time, Vr, is this path length per cycle divided

by the characteristic model length. The inverse of the reduced velocity is the non dimensional
frequency, or Strouhal number.

Reduced velocity = U
.fD (2.2.1)

The displacement of the structure during one cycle of vibration may also be reduced by the
characteristic length chosen for the model. The length of the path of the model during one cycle is

2Ay, where Ay is the amplitude of vibration. The amplitude normalized by the characteristic
length, the reduced ampfitude, is then defined by,

Reduced Amplitude = A.y_y
D (2.2.2)

The mass ratio, employs reduction by a characteristic area ( or volume, depending on the
units of density ) of the model to provide a measure of the buoyancy effects and inertia of the
model relative to that of the fluid. The mass ratio is the relationship of the mass of the structural

model to the fluid which is displaced. As the ratio of fluid density to structural density increases

the possibilityfor flow induced vibration also increases.

1 Blevins,R.D., "Flow-Induced Vibration",R. KriegerPub., Malabar,Rodda, 1986, p5-8.
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.assRatio= or=/ /,orvo,omes
pfD2 _pfD3J

(2.2.3)

The displacement of a lightly damped system versus time is shown in Figure 2-8. The
reduced damping, 8r, of the system is the product of the mass ratio withthe damping factor of the

system. The damping factor, 2_, of a structure is defined as the natural logarithm of the
amplitudes of any two successive cycles of a lightly damped structure in free decay. This is also
equated with the ratio of the energy dissipated per cycle to 4_ times the total energy of the
structure.

Reduced Damping =
p D2 (2.2.4)
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Figure 2-8. Vibration of a Lightly Damped System.

If the energy input to the structural model is greater than the energy expended in damping,
then the flow-induced vibrations will increase. Thus, lower reduced damping implies greater
amplitude of structural response and consequently greater range of fluid flow velocities over
which lock-in occurs2. For lightly damped structures in dense fluids the reduced velocity is on the
order 3.0 and lock-in may persist over a :!:10% variation above and below the velocity which
causes resonance.

Structural Modes and Amplitudes

Each natural frequency of a linear structure can be associated with a mode shape that
characterizes the form of free vibrations of that structure. Formulas for the mode shapes of
simple structures are usually found by solving the linear equations of motion goveming the
system. For each degree-of-freedom of motion for a structurethere is a corresponding vibrational
mode. Mode shapes for natural frequencies of many simple geometries under different boundary

2Harris,C.M. "Handbookof ShockandVibration',p29.9.
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constraints have been cataloged by Blevins 3. The cataloged geometries include cross-sections,
plates, shells, pipes, and three-dimensional bodies.

The geometric shape is the determining factor for analysis of structural vibrations. In this
manual the mode shapes for a particular geometry are found detailed in the chapter analyzing
that shape.

Added Mass

When a body immersed in a fluid moves, it induces motion in the surrounding fluid. Added
mass (hydrodynamic mass, ma) physically represents the mass of fluid that is accelerated due to

body motion 4 and is usually defined as the mass of fluid added to that of the structure in
calculating the total kinetic energy of the structure. Alternately, added mass has been defined as
fluid entrained or displaced by movement of the body. Each fluid element will be accelerated to
some extent as a body moves in the fluid, with fluid elements adjacent to the body being
accelerated more than distant fluid elements. The virtual mass, m, of a body is defined as the
sum of the structural mass, ms, and the fluid added mass. Also used in this manner is the

effective mass or apparent mass, which refers to the portion of the mass involved in the specific
mode of energy transfer under investigation, e.g. calculations involving mass using the projection
of the virtual mass along an axis is the apparent mass of the system along the axis. In a vacuum,
virtual mass is due entirely to the structural mass. As the density of the fluid increases, effects of
the added mass may become a significant design parameter. The natural frequency of vibration
of a structure will decrease with increased virtual mass. For a structure with a constant mass

immersed in a fluid, observed frequencies are lower than the natural frequencies of that structure
in a vacuum. This phenomenon is due to the fluid added mass.

Mechanics Approach to Added Mass

There are two basic approaches assessing added mass, one approach from mechanics, the
other from fluids. The mechanics viewpoint begins from the equation of motion. Consider a
structure of two-dimensional cross section oscillating in a quiescent fluid. If the structural
oscillation is harmonic with amplitude Xo and circular frequency (o, then the displacement, X,

velocity, V, and acceleration, A, of the vibration can be given by,

X = Xo sin (cot)
V = Vo cos (cot),
A = - ao sin (cot),

VO= (0X O

ao= c_'2Xo

The structural motion induces an oscillating fluid force, F, applied to the surface of the
structure in the form of,

F = a sin (cot) + b cos (cot)

The first term is in phase with acceleration and the second with velocity, and one writes,

F = -maA-CaV = - ma Ao sin (cot) - Ca Vo cos (cot)

3 Blevins,R.D., "Formulas forNaturalFrequencyandMode Shape",R. KreigerPub. Co., 1987.
4 Newman,J.N., "MarineHydrodynamics',MIT Press,England,1977, 103-155.
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where ma = a/Ao and Ca= -b/Vo. For a simple spring-supported symmetric structure in a still

fluid, the equation of motion is

F=mA+CV+kX=-MaA-CaV or,

(ms + ma) A + (C + Ca) V + k X = 0

This equation is equivalent to the free vibration of a body with effective mass (ms + ma) and
effective damping (C + Ca). Thus, the effect of the fluid on the vibration of a symmetric structure

is to increase the mass and damping.

According to Newtonian mechanics, the work done by an external force, F, in the direction of
motion of the structure, produces work equal to the rate of increase of the total kinetic energy, T,
and therefore

Ftotal =mass x acceleration =(m s + ma) dU =l_dT , and
dt U dt

dr = (ms+ ma)U dU
dt dt

from which we derive, by integrating the time element through, the energy equation used in either
the velocity or velocity potential form as in the fluids viewpoint,

[
Tf=JJ-1 f U2dS

2 pJs

In potential flow, the added mass coefficients are dependent only on the geometry of the
surface of the structure. However, with a vibrating body, when the wavelength is on the order of

the diameter of the body, i.e., the non dimensional amplitude, --AY,is 0.1 or greater, the effects of
D

amplitude and frequency on added mass are no longer negligible. In general, added mass
decreases as frequency increases. Comparison of experimental and theoretical results suggests
that potential flow predictions are within 10% of the experimentally measured added mass values,

given that the Mach number of the oscillation is small, Ay-- < 0.1, and the Vibrational Reynolds
D

number is large.

Two-Dimensional Sections

The added mass of a two-dimensional section with two perpendicular axes of symmetry is
completely specified by the added masses along each of the axes and the added moment of
inertia for rotation about the intersection of the axes.

In general, added mass is a tensor quantity. For asymmetric sections, the fluid force of
added mass in the X-direction may induce added mass in Y-direction. In fact, there may also be
a coupling effect form translation and/or rotation. The fluid force due to the added mass may be
written in matrix form, as:
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Fy = Axy Ayy Ay_

F= Axt A_ An

where Fx, Fy = added fluid force per unit length acting in the x and y direction, respectively, F,¢=
fluid moment per unit length of rotation about the point x = y = 0, IAI = matrix of added masses
and added moment of inertia per unit length (potential flow requires this matrix to be symmetric
for vibration in a still fluid), X, Y = mutually perpendicular displacements, T = angle of rotation

about the point x = y = 0.

The total of the inertia forces is the sum of inertia forces associated with added mass and the

inertia forces associated with the general structural mass:

{F} = -([M]. [A])

where (F} is the total vector inertia force, {)_} is the vector acceleration of the structure, and [M]
and [A] are the mass matrix and added mass matrix, respectively.

Strip Theory_

The added masses of slender bodies can be approximated using strip theory. The basic
assumptions of strip theory are that (1) the flow of a narrow local section (strip) over a three-
dimensional body is locally two-dimensional and (2) the interaction between adjacent strips is
negligible. The added mass of a slender body can be found by summing the added masses of
individual two-dimensional strips, ma,i multiplied by the length of the strip, such as (see Figure 2-
9):

N

ma = _, ma,i Axi,
I=1

Figure 2-9. Illustrationof Strip Theory Models
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Multiple Freauency Vibration

When a vibrating system has more than one vibrational mode, the values of added mass and
added moment of inertia are approximately the same provided that each mode is valid by itself.

Modal frequency data can be used to provide semi-empirical calculations for the added mass of
the fluid. The fluid added mass is related to the structural mass and the frequencies in air and in

the fluid medium by :

ma = mf(_-_-_-)2-1]+ mair(_) 2,

where ms = structural mass of object, ma = added mass of object due to fluid forces, mai r =
added mass of object in air, fair = frequency of object in air, f = frequency of object in fluid flow.

By measuring the structural frequencies in both air and fluid and knowing the structural mass,
the added mass of the fluid can be determined from the above equation for each of the structural

modes.

The added mass of many structures is comparable to the mass of fluid displaced by the
structure. For many geometrically simple structures, Blevins5 and Chung and Chen 6 present

formulas, tables and charts as aids in determining added mass. Chen also has two computer
programs available for estimating added mass: AMASS for a group of circular cylinders and
AMASS-FEM for structures of irregular and complex geometries.

50p. Cit. Blevins(4), p. 31.
6 Chen, $.S. and H. Chung"DesignGuide for CalculatingHydrodynamicMass Part h CircularCylindrical
Structures; ComponentsTechnologyDivision,ArgonneNationalLaborator/, Argonne,Illinois,June 1976,
DocumentNo. ANL-CT-76-45.
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2.3 Fluid Parameters

A structure moving in a fluid encounters forces not experienced by the same structure moving
in a vacuum. A boundary layer develops at the structural surface, wakes form and interact with
the motion of the structure, and the structure experiences resistance to motion from viscous
effects of the fluid. Parameters useful in characterizing fluid response and flow are listed below.

Dimensionless and Reduced Variables

The Mach numberof a flow is the ratio of the fluid velocity to the speed of sound in the fluid.
Mach number is a measure of the tendency of a fluid to compress as it nears a structure.

Mach number = U
C

The ratio of inertial forces to viscous forces in a fluid is called the Reynolds number. The

inertial force is determined by the product of the characteristic length of the structure, D, with the
fluid velocity, U, and the fluid inertial force is defined by the kinematic viscosity of the fluid, v. This
dimensionless ratio is employed as a measure of boundary layer thickness, transition from
laminar to turbulent flow and flow separation from bluff bodies.

Reynolds number = Re = UD
v

When heat transfer becomes important, additional nondimensional parameters need be
considered for heat and mass transfer effects including

Prandtl number = Pr - v _p.Cp
a k

Grashof number = G = g _ (AT)0L3
v2

u2
Eckert number = E -

Cp(A'r)0

Nusselt number = Nu - h L
k

In dense subsonic fluid-structural interaction analysis, Reynolds number is a particularly

important nondimensional flow parameters.

Added Mass

Fluid Dynamic AoDroach to Added Mass

The term hydrodynamic mass originates from the fluids viewpoint which begins with the
equations for the hydrodynamic mass of a structure vibrating in a fluid as derived from kinetic
energy equations of the fluid surrounding the structure. For a structure of volume, Vs, and mass
per unit thickness, Ps, fluid of volume, Vf, and mass density, pf, and fluid velocity U, the total

kinetic energy of the fluid and the structure is given by the simplified equation
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Total Kinetic Energy = T =_ (V s p s+ Vf p f)U2

The effect of the added mass and moment of inertia of the fluid was addressed in depth by
Milne-Thompson 1. He assumes a potential function for the fluid of the following form,
$ = u q_+ (o Z, specifying the angular velocity of the body, (o, as well as the linear velocity of the

body, u. For a point r, the velocity is given by u + o) ® r. Boundary conditions at the surface of

the body must be satisfied, and therefore if I1 is a unit outward normal at r, the following
condition must be satisfied,

_ a_..$= n(u .= ® r).
an

where q_ and :X are vectors whose components along the Cartesian axes are solutions of

Laplace's Equation whose gradient tends to zero at infinity and which satisfy the boundary
conditions,

a_ a_
-_-K= n and-_-K=r® n.

The total kinetic energy of the fluid is then obtained from,

Tt =IS _2Pf '-a---d$S=an IS J-1p f (u (p+°) X)(n[u +°) ®r])dS'2

where S refers to the surface of the structure. Noting that Tf is a homogeneous quadratic function

of the vectors u and 00,the following relation holds,

aTf aTf
u _-+ o) _- = 2 Tf. Then

au pf n $ dS and similarly aTf _ I--= _-]S pf (r® n)$dS.

The action of the liquid pressures resulting from the motion of the structure is then
represented by the force, Ff, and couple, Lf, as

_ d laTf I aTf
ef- dt _-]'= o_-"u-

•, = LpT'I-f°®aT'l-{,,®aT'ldt _ao)l _ _-_/ _-u/

The flow potential may be expressed in coordinates fixed relative to the structure, as

1 Milne-Thompson,LM., "TheoreticalHydrodynamics(5th Edition)',MacmillanCo., 1968, p.545-554.
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= U(t) _(x',y',z'),

where U(t) is the flow velocity relative to the body, x' ,y', and z' are the coordinates that are fixed
to the body. In this way, an added mass tensor, mk,i, may be defined for each component in the

above equations,

r

= J P !¢i a(b__j_kdSmk,i
Js an

This allows expression of the equations in component form depending only on the body

velocity and acceleration components, such as;

Fj = -LJimj,i-_-j,k,I (ok ml,i and,

Lj =-t.) i mj,i-Ej,k,I Ui (Ok ml,i-¢j,k,I Ui Uk ml,i.

where Ej,k,I is the alternating tensor for cross products, i.e. Cj,k,I = 1 if the indices are in cyclic
order and _.j,k,I = -1 if the indices are acyclic, and the indices k and i range over the entire six

degrees of freedom in translation and rotation. When the body is not symmetric, there is coupling
between motions in the three coordinate directions. For example, if a body is not symmetric
about the X-axis, acceleration in the X-direction generally induces added mass force in the Y

direction and a moment as well.

If the motion is steady and the structure does not rotate, the action of the structure on the

fluid reduces to zero net force and a remaining couple term -(u ® aTf/au! which would tend to

rotate the structure, the D'Alembert paradox,. This couple term will vanish only if the vector

product vanishes, i.e. the vectors u and aTf are parallel. The directions satisfying this relation for
au

a body are called the directions of permanent translation. A body without rotation, set in motion
along one of these directions will continue to move in that direction without rotation.

Relation of Drift Volume to Added Mass

Darwin 2 investigated the trajectories of an infinitely thin plane of particles, orthogonal to the
direction of motion of a body. As a body moves through a fluid, it induces motion in nearby

particles of the fluid. The drift, _, of a particle in the fluid, as illustrated in Figure 2-10, is defined
as the total displacement of the fluid particle in the direction of movement of the body.

Assuming that the body moves along the x-axis, drift is the total displacement along the x-axis.

2 C. Darwin,Proc. Camb. Phil.Soc., 49, (1953), p.342-354.
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m

The drift volume, D, is defined as the volume enclosed between the initial and final position

of the infinitely thin plane. Darwin equates this drift volume to the volume corresponding to the

added mass in the case of a body moving in an unbounded fluid.

where the integrator q represents the set of streamlines of the flow about the body.

i'1
0 I I

I "l

! I

I "t

I / x\
, / \ / _

Figure 2.-10. Broken line on left is upper half of wall of dye before passage of cylinder, that on

right after passage; 'a' is cylinder's radius. Firm lines show three trajectories.

Numbers mark times of passage to these points in units in which cylinder moves distance a.
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2.4 Extraneously Induced Excitations (EIE)

These types of instabilities are caused by fluctuating velocities or pressures which are
independent of any flow instabilities originating from the structure or structural motion. These
fluctuations also include any source of fluctuations which has been introduced into the flow before
introduction into the control volume being investigated. Categories include buffeting and

oscillating flow, turbulence induced oscillations, and two-phase flows instabilities. Cavitation may
be included as caused by a two-phase ( fluid-gas ) fluctuation for certain flow regimes; however,
cavitation is a result of the interaction of a sudden depressurization in the flow and in that context

is mainly covered in the section on lie fluctuations.

Buffeting

Excitation due to buffeting is the most common cause of fluctuation in fluid-structural

systems. Buffeting is commonly considered as the motion of a structure due to unsteady fluid
loading; however, buffeting may also be viewed as the fluid loading on the structure causing the
structural motion. It is in this respect that we view buffeting in this report. As such, we consider

buffeting as a process which may occur in the absence of structural motion. Buffeting may be
impulsive, periodic, chaotic or random in nature. Impulsive buffeting may also be characterized
by excitations which involve a single, well-defined wavelength and uniformity of amplitude and
phase such as the effects of randomly gusting flow, two-phase interactions such as large pockets
of gas bubbling across a body through a liquid. Periodic buffeting is characterized by multiple,
well-defined wavelengths and uniformity of amplitude and phase. Such excitation may be the
result of: wake interactions on the downstream body, such as vortex shedding which is highly

periodic; induced periodic flow on the body, such as created by mechanical means, or flow
disturbances induced by a variable angle-of-attack, such as flow from one body impinging on
another only at certain angles-of-attack. Turbulence buffeting is characterized by multiple, random
wavelengths and a nonuniformity of amplitude and phase. Buffeting which is chaotic or random in

nature is usually referred to as turbulence buffeting.

Turbulence Induced Vibrations

In flow separation, free shear layers are formed between the main flow and zones of
separation, Figure 2-11. The free shear layers are inherently unstable and they tend to roll up
and form turbulent eddies which merge and finally dissipate. The degree of intermixing of these
turbulent eddies gives the turbulent flow its random character. These turbulent eddies are
characterized by a reduction in mean pressure and intense pressure fluctuations. In a turbulent
flow, energy is transmitted to the structure from the fluctuating pressures due to the turbulent
eddies impinging on or passing near the surface of the structure. Even though the fluctuating
hydrodynamic forces due to turbulence induced vibrations are essentially random, the response
of the structure to these forces is usually pedodic and all zones which come into contact with free

shear layers and the turbulence caused by separation should be examined.

Schlichting 1, describes the origin and growth of a turbulent boundary layer on a flat plate,
Figure 2-12. Such turbulence generation goes through the following stages: (1) Stable laminar
flow following the leading edge, (2) Unstable, laminar flow with two-dimensional Tollmien-
Schlichting waves, (3) Development of unstable, laminar, three-dimensional waves and vortex
formation, (4) Bursts of turbulence in places of very high local vorticity, (5) Formation of turbulent

1Schlichting,H., "Boundary LayerTheory",McGraw-HillBookCo., 1979.
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spots in places when the turbulent velocity fluctuations are large,

turbulent spots into a fully developed turbulent boundary layer.

F{ow d=ret'tton

---

I
(d) • = 12617mse¢ _d=

and (6) Coalescence of

i -1.9 to • 1.9 iJboz

: t_ to: r_$
•- 55 to • 92
=92 to*-13
tl$ tO*- 167
•. lG.'/to : 2OJ.
:_& to'- 21.

" : 13/.17 mse¢

Figure 2.-11. Separation Regions in a Shear Layer.
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Figure 2-12 Turbulent Boundary Layer at a Wall

Effect of Surface Roughness on Turbulence

The height of a protuberance which causes transition in a laminar boundary layer is called the

critical height or critical roughness 2. In the case of a turbulent boundary layer roughness has no

effect on the flow if all protuberances are contained within the laminar sublayer. Roughness

20p. Cit, Schlichting (14).
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affects the resistance offered by the wall, moving the transition point upstream toward the
protuberance and possibly affecting the drag on the body. The critical value of roughness, kcrit, is

given by the dimensionless roughness Reynolds number

kcritV* - ReRough
V

where v. = _ = frictional velocity, 'to is the shearing stress at the wall in the laminar
• r

boundary layer, and v is the kinematic viscosity.

The effect of surface roughness on flow-induced vibrations was investigated by Sarpkaya
(Reference 2). Sand roughened circular cylinders were forced to oscillate in the transverse
direction in the uniform flow with amplitude ratios from 0.25 up to 1.0 and reduced velocities in the

range 3 to 8. The Reynolds number ranged from about 20,000 to 50,000, and the roughness

Reynolds number from about 200 to 512. Vortex lock-in was observed in the neighborhood of the
Strouhal frequency.

Substantial differences were noted between the out-of-phase component of the force for a

rough cylinder and that of a smooth cylinder. The difference was largest at perfect
synchronization and increased with increasing roughness Reynolds number, Re k. The in-phase

component of the force for a rough cylinder was nearly identical with that for a smooth cylinder.
At perfect synchronization, the in-phase component was nearly equal to unity and the out-of-
phase component at Re k = 200 was about 20% larger than that of a smooth cylinder; at Rek =
400 was about 35% larger; and at Rek = 512 was about 50 % larger. Here Re k = U ks / v and ks

= mean roughness height.

Two-Phase Flow Induced Vibrations

In this type of fluctuation, the fluctuating load on the structure is induced by regions of
differing density ( gas/liquid, liquid/liquid, solid/liquid, solid/gas ), separated by a phase transition
boundary, which are carried along in the flow. In case of air bubbles in a water flow, the
intermittent trapping and release of air with the fluid flow is termed blow-out and against the flow
is termed blow-back. NaudascheP3 included an example of air-water interface accelerated
toward a conduit gate. The interface produced a water-hammer type of pressure peak of up to
twice the static pressure level. The blow-out process is inherent to pressurized conduits of two-
phase flow, and the release of the gas before it reaches the control structure would alleviate the
impact force.

3E. Naudascher,"Hydrodynamic Forces', IAHRMonograph,Balkema/Rotterdam/Brookfield/1991.
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2.5 Instability Induced Excitations (liE)

Vortex Induced Vibrations

As a fluid particle flows toward the leading edge of a bluff body, the fluid pressure rises from
the free stream value toward the stagnation pressure. This high fluid pressure impels the
developing boundary layers along both sides of the bluff body. Unless the fluid is at very low

Reynolds number conditions, the pressure force is not sufficient to force the boundary layer
around the back side of the bluff body. Near the widest section of the body, the boundary layers

separate from each side of the body surface and form two free shear layers that trail aft and
bound the wake flow. Since the inner portion of the shear layers moves more slowly than the

outer portion, the layers tend to roll up into discrete vortices. Any structure with a sufficientlybluff
trailing edge sheds vortices. In subsonic flow, periodic forces on the structure are generated as
the vortices are alternately shed from each side of the trailing edge. This class of induced motion
is termed vortex-induced vibration. Naudascher and Wang I summarized three types of vortex

shedding mechanisms, namely, i) leading-edge vortex shedding, ii) impinging leading-edge
vortices, and iii) trailing-edge vortex shedding for rectangular sections as shown in Figure 2-13.

In practical applications, regions of possible transverse vibration and galloping as indicated inthe
reference figure should be avoided.

Cavitation

When a subcooled fluid is not far from its saturated state or the pressure fluctuation in the

flow is adequately strong, the liquidchanges phase and becomes vapor, cavitates, at locationsof
low pressure. This cavitation usually takes place at a solid surface where the flow is separated.
Due to pressure fluctuation, the vapor phase often collapses back to liquid and subsequently
evaporates again in a frequency comparable to that of the pressure fluctuation. Cavitation often
occurs in dense fluids subjected to high frequencies and affects the flow/structural interaction
through the density fluctuations inherent in the phase change.
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Figure 2-13. (a) Flow Map of Reduced Velocity Versus Aspect Ratio
of Rectangular Section, (b) Modes of Vortex Formation.

1Naudascher,E. andWang, Y., "Row-inducedVibrationsof PrismaticBodiesandGddsof Prisms,"Journal
of Fluidsand Structures,Vol. 7, 341-373, 1993
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Galloping

(MIE)

BASIC PRINCIPLES

Galloping is a flow-induced vibration on bluff structures. The classical example of galloping is
the vibration of ice-coated power lines. Moderate wind velocities can cause power lines of low

structural damping to witness large amplitude oscillations. In a galloping vibration, the
aerodynamic force is usually small compared with the weight of the massive structure, and the
change in the natural frequency of the structure is usually small.

The fundamental assumption of galloping analysis is that the fluid force is quasi-steady, i.e.,
the fluid force on the structure is determined solely by the instantaneous relative velocity and the

angle-of-attack of the flow to the structure.

Condition for Transverse Galloping

The typical equation of motion for a transverse deflection of a structure can be written as

+ 2_ coy +(02 y = pU2D C_ (2.6.1)
2m

where the transverse force coefficient, Cy is a function of angle-of-attack, _ = _ •
U

Cy=Cyo+ _ Cy y (2.6.2)
U_

The equation of motion is therefore after combining terms for _,:

(; 4m(0pu +=2Y=P2mU (2.6.3)+ 2

The system damping can be a negative number when

;,=;- p U De3Cy < 0 (2.6.4)
4m(0 c3_

This is possible for a structure has a positive angular rate of transverse force coefficient:

Cy > 0 (2.6.5)

and when the incident velocity U is greater than a threshold/critical onset velocity:

Ucr = 4m(or v (2.6.6)

pU

When this occurs the total damping force would be in phase with the structure velocity rather than
retard against the motion. Typical transverse force coefficients versus angle-of-attack for several
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cross-sections are show in Figure 2-14 [Figure 4-4 of Blevins1 ]. The 'long' rectangle and square
which have positive angular rates of transverse force coefficient would gallop while the 'tall'
rectangle and the semi-circle with fiat face forward would not gallop according to the foregoing
equation of motion.

When galloping occurs the nondimensional amplitude increases as flow velocity increases further
from the critical onset velocity as shown in Figure 2-15 [Figure 4-6 of Blevins].
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Figure 2-14. Aerodynamic Force Coefficients Re = 33,000 to 66,000.
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Figure 2-15. Experimental Data and Response of a Square Section for Re = 4,000 to 20,000.

1Blevins,R. D., Row-InducedVibration.secondedition,Van NostrandReinhold,1990.
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2.7 Extraneous Fluid Oscillators (EFO)

Fluid oscillators which are self-sustained by feedback processes generated by instability in
the fluid flow are known as aerodynamic whistles. The frequency of oscillations of these whistles
is governed by the periodicity of the feedback cycle. Chanaud 1, in an article written for Scientific
American magazine, categorized aerodynamic whistles into three classes. Class I whistles are
those whose feedback consists primarily of hydrodynamic oscillations. Examples of these

whistles are the aeolian tone generators, such as aeolian harps, telephone wires, and circular

cylinders in a flow. Sound from these particular whistles is generated from the instability created
by vortices formed and released into a flow. Class II whistles exhibit feedback from acoustic
waves generated by the whistle and fed directly back to the region of instability. Examples of this
type of whistle are the edge-tone, hole-tone, and ring-tone, where sound is generated from flow
interaction with an edge and fed back upstream destabilizing the jet. Class III whistles have
acoustic feedback which is reflected back to the region of instability by some ancillary structure.

These whistles generate sound by resonance effects from a structure. The organ pipe tones are
the best known examples of this phenomena. These whistles exhibit the ability to jump from one
well-defined frequency to another well-defined frequency with a hysteretic effect occurring at the

frequency jumps. This is usually due to a change either between flow impingement and
separation distance or a change in flow velocity2 as shown in Figure 2-16.
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Figure 2-16. Frequency Jumps with a) Varying Free-Stream Velocity and

b) Varying Impingement Length

Class I Whistles

Aeolian tone generators are essentially long thin objects in a fluid flow. At certain velocities,
unsteady fluid flow around the object creates a pattern of alternate vortex shedding from opposing
sides of the object, with each vortex influencing the formation and growth of the succeeding
vortex. The vortices formed in this manner develop a wake flow pattem downstream of the object
known as the Karman Vortex Street. The oscillations produced in the wake by these vortices

generate a sound pressure field with a maximum amplitude at right angles to the vortex street.
The frequencies developed by the aeolian tone generators are directly related to the speed of the
fluid and the characteristic length, usually the diameter, of the object. The relationship between

object characteristic length, L, fluid velocity, U, and frequency, f, may be described for this class

1 Chanaud, R. C., "Aerodynamic Whistles," Scientific American, pp. 40-46, June 1970.

2Knisely, C. and D. Rockwell," Serf-Sustained Low-Frequency Components in an Impinging Shear Layer,"
Joumal of Fluid Mechanics 116, pp. 157-186, 1982.
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of whistle by the Strouhal number, S, associated with the oscillations such as shown in Figure 2-
17.
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Figure 2-17. Class I Whistle: Normalized Pressure Contours of a Cylinder in a Crossflow

Class II Whistles

Class II whistles are typified by the edge-tone and cavity acoustic generator phenomena.
The acoustic feedback plays an important role in sustaining synchronous hydrodynamic shear
layer oscillations causing these tones.

The typical edge-tone configuration is a jet issuing from a slit and impinging against a sharp
edge. The hydrodynamic/acoustic feedback mechanism operating in this whistle is illustrated in
Figure 2-18, from Ziada 3. The jet velocity, U, the orifice width, d, the distance form the orifice to

the wedge, h, and the wedge angle, 0¢,are the defining parameters of this system. At the jet
orifice, a shear layer defining the jet is developed. From the instability of this shear layer at the
corners of the jet orifice, vortices are generated and released to be convected downstream. With
certain edge-tone configurations, depending on the flow velocity and wedge distance from the
orifice, the developed jet instability causes alternate vortex shedding at the comers of the jet
orifice. Vortex formation may also develop in the shear layer of the jet away from the orifice at
higher frequency stages. Downstream, the altemating impingement of the vortices on the wedge
creates a flow/structural system acting as an acoustic dipole. This acoustic energy propagates
back upstrea,m to organize and enhance flow instability at the jet orifice, further strengthening the
alternate vortex shedding pattern developing at the orifice. As the vortex shedding frequency
matches phase with the acoustic frequency of the wedge dipole, an audible edge-tone develops.
This vortex-acoustic interaction is the basic mechanism of the edge-tone phenomenon. The

closed-loop feedback cycle of regular vortex shedding and jet disturbances generated by acoustic

3 Ziada, S., and E.T. Buhlmann," FlowImpingement as an ExcitationSourceinControlValves,"Joumalof
Fluidsand Structures3, pp. 529-549, 1989.
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feedback controls the edge-tone phenomenon. A formula developed by G.B. Brown4 for edge-

tone frequencies for flow through a 1.0 mm jet orifice, and developing several stages, k, using the
jet velocity U(cm/sec) and the distance of the wedge to the jet orifice, h (cm), is given by:

o
with stages k=l, 2.3, 3.8, 5.4

(2.7.1)

Figure 2-18. Class II Whistle: The Edge-tone Phenomena

These jet flow oscillations occur at predictable frequencies for a particular range of jet
velocities and edge distances from the jet orifice. The frequency is limited by the acoustic and
vortex transport (convection) times and the process of vortex formation. Results of a numerical
analysis 5 given in Figure 2-19 confirmed Brown's experimental data. Interference and disruption
of the in-phase vortex-acoustic interaction can very effectively eliminate edge-tones.

Unsteady flow over an open cavity for which the aspect ratio is such that the separated shear
layer reattaches on the cavity back wall, will usually produce large, unsteady fluctuations of the
pressures located in and near the cavity. Consequently, structures near the cavity are affected by
these oscillations. The determining factor for these oscillations is the length-to-depth ratio (L/D
ratio) for the cavity and the mean flow speed across the cavity opening.

In shallow cavities, where the L/D ratio is much greater than 1.0, flow over the front and rear
cavity walls are essentially independent of one another and each may be studied separately. The
fluid flow separates from the leading edge of the cavity and reattaches at some point along the
cavity opening. In this separated region the developed pressure is somewhat lower than the free-
stream pressure, due primarily to an increase in the speed of the fluid as it enters the cavity. As

4Brown, G.B., "The VortexMotion Causing Edge Tones',Proc.PhysicalSociety(London),vol.49,pp.493-
507, 1937.

5 Dougherty,N. S., Uu, B. L. andO'Farrell,J. M., "Numerical Simulationof the Edge TonePhenomenon,"
NASAContractReport4581, Februrary1994.
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the fluid reaches the rear wall of the cavity, the flow is retarded and an increase in local pressure

occurs until the boundary layer again separates forming a high pressure region just ahead of the

rear wall. The boundary layer then reattaches downstream of the cavity. As the length-to-depth

ratio of the cavity is decreased, the attachment and separation points at the leading edge and

trailing edge move closer together until reverse flow develops between the high pressure

separation ahead of the rear wall and the low pressure region behind the front wall, a large

captive eddy then forms within the cavity.
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Figure 2-19. Frequency Variation in Edge-tone Phenomena

Cavity flow oscillations are attributable to fluctuations in the cavity shear layer generated by

upstream propagation of acoustic disturbances occurring at the downstream cavity edge, thus the

cavity source is of the same type as a Class II aerodynamic whistle. The observed oscillatory

pressure is dependent upon Mach number and Reynolds number based upon the cavity length.

The oscillations generated by the cavity are illustrated in Figures 2-20 and 2-21. The pressure

oscillation frequency of the cavity, due to the vortex shedding generated by unsteady flow, may

be approximated by using an equation developed by Rossiter6:

fn- U(n- )c n=1,2,3,4,5.....
(2.7.2)

where fn is the observed frequency, n is the mode of cavity oscillations, U is the freestream

velocity, L is the length of the cavity, M is the Mach number, K is the fraction of freestream

velocity obtained by vortices (disturbances) in the cavity, and C,is a phase constant relating the

acoustic and vortex generated oscillations from the cavity. For most cases, values of K fall in the

range of 0.57 to 0.61 and values for _, fall in the range of 0.21 to 0.25. The mode of cavity

oscillations, also called the wavenumber, is determined by the number of vortices simultaneously

observed in the shear layer formed between the cavity and the freestream flow during one vortex

shedding cycle. The vortex shedding cycle is determined by the process requiring a single vortex

to progress from the point of flow separation at the leading edge of the cavity to the point of

impingement on the trailing edge of the cavity.

6Rossiter, J. E., • Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and
Transonic Speeds', Royal Aircraft Establishment Technical Report No. 64037, October 1964.
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Class III Whistles

Class III whistles require a resonant or reflecting structure to perpetuate the acoustic
feedback. The frequency of the tone is governed principally by the resonant modes of the
reflecting geometry and not the speed of the flow. The flow speed can be varied over a wide
range without affecting the pitch of the whistle. When the speed of the flow increases to a point
where the first resonance of the reflecting structure is no longer amplifying the oscillations, the
frequency jumps from the first frequency stage to a second stage.

I
Figure 2.7.5 Acoustic Field Generated

by Flow Over a Cavity at Mach 0.6
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Figure 2.7.6 Strouhal frequencies of Cavity
Modes Approach Constant Values at High

Mach Numbers

Resonators

The Helmholtz resonator (side-branch resonator, volume resonator) is typified by the
structure in Figure 2.7.7. The resonance frequencies are determined by the dimensions of the
opening shown leading into the resonator, the cross sectional area and the length of the duct, and
the inner volume of the resonator.

The equation for the resonant frequency of the Helmholtz resonator is given in the following
formula7:

_c Af _ ,_/-A- (2.7.3)
V-vI

where A is the cross sectional area of the duct leading to the resonator, I is an adjusted length of
the duct leading to the inner volume of the resonator, V is the volume of the resonator, and c is
the speed of sound.
The adjusted length of the duct, I, is approximated by:

I= I + 0.8 _ (2.7.4)
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I = I + 0.8 VA (2.7.4)

where A is the cross sectional area of the duct and I is the length of the duct. If there are several

branches of the duct leading into the resonator volume, the area A in equation 2.7.4 should
reflect the number of branches as in:

I = I + 0.8 _ (2.7.5)

where n is the number of branches of the duct leading into the resonator.

v

Figure 2-22. Schematic of Helmholtz Resonator

"Ooen-Ooen" (Closed-Closeo3 _ _ Resonators

Organ pipe resonators are the most common acoustic resonators. Longitudinal organ pipe
modes play a role in amplyfing the acoustic pressure oscillations in the ducts. The organ pipe is a
simple example of sound being generated by • vibrating fluid in a chamber or pipe where the
axial wave motion of these vibrations creates a resonant condition. When both ends of a pipe are

open or closed, standing waves form in the pipe and the fluid resonates at the natural frequencies
based on a wavelength corresponding to twice the length of the pipe, i.e. the length of travel of a
pressure wave from one end of the pipe to the other and back.

The standing wave frequencies observed from the "open-open" organ pipe acoustic source
are given by:

fn =nc n=1,2,3,4,5 ....
2t

"Open-Open or Closed-Closed"
Organ Pipe (2.7.6)

where f is the observed frequency, n is the mode, c is the speed of sound for the fluid, and !

is the length of the pipe.
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"Open-Closed" _ _ Resonators

In an open-open pipe, Figure 2-23, the first longitudinal mode or fundamental frequency has

antinodes at each end with a displacement node in the center or half the length of the pipe. The

fundamental acoustic frequency of the open-closed pipe is one-half that of the open-open pipe for

equal pipe lengths and harmonics increase in frequency at a rate half that of the open-open

system as illustrated in Figure 2-24.

The basic formula for the open-closed "organ pipe" acoustic frequencies are given by:

fn _2(n-1) c n=1,2,3,4,5 ....
4!

"Open-Closed"

Organ Pipe (2.7.7)

where f is the observed frequency, n is the mode, c is the speed of sound for the fluid, and 1 is

the length of the pipe.

t
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Figure 2-23. "Open-Open" Organ Pipe Resonance
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Figure 2-24. "Open-Closed" Organ Pipe Resonance

Resonation in PiPes

Complex piping systems with multiple side-branches are prone to flow-induced acoustic
resonances. Resonances of deep cavities and side branches are self-sustaining oscillations due
to the coupling between the resonant acoustic field and the oscillations of the unstable shear
layer spanning the mouth of the cavity. Resonances occur at frequencies corresponding to
acoustic modes in the piping systems and can be estimated from the equation8

fn :(2n" 1) c n=1,2,3 .....
(2.7.8)

where L is the branch length, I is the distance between branches, and c is the speed of sound in
the media. Typical side-branches in piping systems which illustrate lengths used in Equation
2.7.8 are shown in Figure 2-25.

8Ziada,S., and E.T. Buhlmann,• MultipleSide.Branchesas ToneGenerators,"Intemational Conferenceon
Flow-InduceVibrations,Brighton,U.K. May 1991. (Submitted:J. FluidsandStructures)
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Figure 2-25.
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Ziada noted that pulsation amplitudes up to 900% of the dynamic head occur in the main pipe.

The acoustic coupling between branches is much stronger than a single branch.

Hole-tones, Rina-tones. and Plate-tones

Hole-tones, ring-tones, and plate-tones were the subject of a study by Chanaud and Powell 9.

Hole-tones result from impingement of a jet onto a plate with a hole, as shown in Figure 2-26 and

plate-tones from impingement of the jet onto a plate without the hole. Ring-tones result from the

impingement onto an annular object which is the limit of a short cylindrical tube and a small

diameter hole-tone plate. These tones were found to be generated where the jet was unstable to

applied disturbances and were very responsive to acoustic reflections.

The minimum normalized edge distance, the distance from orifice to the edge of the plate

divided by the jet orifice width, for generation of tones as a function of Reynolds number is

compared for edge-tones, hole-tones, and ring-tones in Figure 2-27. Chanaud and Powell also

determined that the jet itself is predominantly pressure sensitive and that hole-tones and ring-

tones were generated in the region of instability of the jet, Figure 2-28.
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Figure 2-26. Cross-Sectional View of the Hole-Tone System

9Chanaud, R.C., and A. Powell," Some Experiments Condeming the Hole and Ring Tone," Journal of the
Acoustical Society of America, Volume 37, number 5, May 1965.
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3. Geometric Analysis

Geometric analysis and flowcharacterization are performed together in making an assessment
of potentials for flow-structural interaction. Unsteady fluid loads are either motion-independent or
motion-induced as broken down in Figure 3-1. Motion-independent loads may be periodic or
random, whereas motion-induced loads are primarily periodic. Periodic fluid forces include those
resulting from vortex shedding. Random fluid oscillations include turbulence and acoustics.

i Bar,=:Flow Fluid Loads Random

Umtlao_/ Mo_on-_lduc=d I
1_000702.02

Figure 3-1. Characteristics of the Flow and its Interaction with Structure.

In some cases, the fluid forces are altered by the structural response, and motion-dependent
fluid loads must be considered. These are cases of flow/structural interaction. Motion-induced
unsteady fluid loads occur in the closed-loop feedback response of an elastic structure, Figure 3-
2.

(a) Functional Diagram

--_ Elastic structuro

_._ Motion-induced Iunsteady flu<l loads

_._ Motion-independent J
unsteady fluid loads

(driving tom=s)

Forced response

I t
(b) Generic Mathematic Model

Elastic Structure Unsteady Fluid Loads

_ 4

q - generellzad coordinate _ _k_..
Motion-Induced

w. = natural frequency '_ Motion-lrclependent
r, . damp=0r=lo
M = mass

Figure 3-2. A Hydroelastic Forced OscillationModel for Fluid/Structural Interaction.

Flow-structural interaction problems occur in specific regimes of reduced velocity. Quick
estimates of Strouhal numbers at critical Reynolds numbers are made possible by handbook
reference to basic geometry classifications and to fluid added mass as outlined in Figure 3-3. In
many cases it is possible to quickly categorize the actual geometry in some design problem or
some problem of high cycle fatigue in an operating system as being close to one of these basic
fundamental geometries and thereby obtain the needed estimates.

These key words are used in organizing the material that has been collected and included in
this handbook and in searching the vast literature available on flow/structural interaction at
subsonic speeds where fluid density may be sufficiently high to drive significant structural
responses and hence be a concern in fluid systems design.
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Figure 3-3. Key Words Based on Geometry Categorize Problem Types
and Bring Out the Important Physics.

Structures in a fluid flow generally induce fluctuations in the flow field. These fluctuations or
flow-induced oscillations may in rum excite natural modes of the structure. Such feedback loops
in the fluid-structure system are sometimes nonlinear and under certain conditions may dominate
the motion of the fluid-structure system. For each vibration mode, data required include the
amplitudes of deflection, velocity and acceleration. These responses are translational for bending
modes and angular for torsional modes. When each vibration mode is independent, the system
may be described by studying each mode separately. In general however, systems have two or
more degrees-of-freedom and the response can be analyzed only by solving a system of
simultaneousdifferential equations.

Naudascher 1 provided an outline to identify hydrodynamic loads. Fluctuating hydrodynamic
forces fall into this categories. These categories are fluctuations from: 1) extraneously induced

movement _c_
excitations (EIE), 2) instability induced excitations (liE), 3) induced excitations E),
and 4) excitations due to fluid oscillators (EFO). A variety of flow-structural elements2,3, 4 s as
vanes and struts at certain flow velocities are prone to flow-induced transverse, in-line, and
torsional vibrations which are due to trailing-edge vortex shedding as well as leading-edge vortex
shedding. A variety of internal flow elements are excited to vibrate from within the flow.

Dimensionless and reduced variables are first introduced. These include reduced velocity,
Strouhal number, reduced amplitude, mass ratio, and reduced damping. If the energy input to the
structuralmodel is greater than the energy expended in damping, then the flow-induced vibrations
will increase. Thus, lower reduced damping implies greater amplitude of structural response and
consequently larger range of fluid flow velocities over which lock-in occurs. For lightly damped
structuresin dense fluids the reduced velocity is on the order of 5 and lock-in may persist over a
20% variation above and below the velocity which causes resonance.

1E. Naudaacher,"HydrodynamicForces', IAHRMonograph,Balkema/Rotterdam/Brookfield/1991.
2Satpkaya,T., • Vortex-inducedOscillations:A SelectiveRevieW"Jour.of Appl.Mech.,46, June 1979.
3Davenpod.A.Q.,andM. Novak,"Vibrationof StructuresInducedbyWind" inHarris,Cydl M. Sh_k and
VibrationHandbook.McGraw-Hill,1988.
4Rockwell,D. andNaudaacher,E., "Review- Self.SustainingOscilationsof FlowPastCavity,"J. Fluid
Engineering,Transactionsof ASME, vol.100, pp. 152-165,June1978.
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Structural Modes and Amplitudes

Each natural mode of a linear structure is associated with a mode shape and natural
frequency that characterize the form of free vibrations of that structure. The mode shapes of
simple structures can be found by solving the linear equations of motion governing the system.
For each degree-of-freedom of motion for a structure there is a corresponding vibration mode.
Mode shapes for various simple geometries under different boundary constraints have been
cataloged by Blevins 5. The cataloged geometries include cross-sections, plates, shells, pipes,
and various three-dimensional bodies.

Added Mass

Since each fluid element will be accelerated to some extent as a body moves in the fluid, fluid
elements adjacent to the body are accelerated more than distant fluid elements. The effective
mass of a body is defined as the sum of the structural mass and the fluid added mass. It refers to
the portion of the mass involved in the specific mode of energy transfer along the direction of
motion. For a structure with a constant mass immersed in a fluid, observed frequencies are lower
than the natural frequencies of that structure in a vacuum. As the density of the fluid increases,
effects of the added mass become significant.

The added mass of a structure is comparable to the mass of fluid displaced by the structure.
For many geometrically simple structures, Blevina6 and Chen and Chung7 present formulas,
tables and charts as aids in determining added mass. Chen and Chung also have two computer
programs available for estimating added mass: AMASS for a group of circular cylinders and
AMASS-FEM for structures of irregular and complex geometries. Relevant material on added
mass including equations of motion, added mass tensor, simplified strip theory, and the effect on
frequency reduction are also assembled in the handbook.

Vortex-Induced Vibration and Lock-In

Washizu et al8 investigated transverse vibrations of rectangular sections with wind-tunnel
measurements. There were two types of aeroelastic instabilities which are vortex-induced
vibration and transverse galloping. The base-to-height aspect ratio, c/d, is the key parameter
which determines the type of instability. For rectangular sections with c/d > 3, transverse
galloping motions would not occur and the heaving is due to the vortex shedding only. For
rectangular sections with c/d < 2.5, both vibration modes can happen.

Based on their data of vibrating rectangular sections, they found two ranges of vortex
shedding frequencies. In the case of c/d = 2, the Strouhal number ranges are 0.066 < S < 0.091
and 0.143 < S < 0.294. These rather wide ranges of Strouhal numbers are probably due to the
range of vibration amplitudes and the range of system damping in the experiments. Their
reduced damping had a range from 3 to 60.

When vortex shedding frequency falls in a range (-+10%) containing a structural vibration
mode, the structural vibration and vortex shedding would synchronize at a frequency and the
nondimensional structural vibration amplitude, Ay, may go as high as in a range of 0.1 or greater.
This synchronization is referred as the flow-structure lock-in phenomenon. Although lock-in is
usually self-limited due to phase shifting between the displacement and liftcoefficient, amplitudes

5Blevins,R.D., FormulasforNaturalFreouencyandMode ShaDe.R. KreigerPub.Co., 1987.
6Blevins,R. D., Flow-InducedVibration.secondedition,Van NostrandReinhold,1990.
7Chen, S.S. endChung,H. "Design Guide forCalculatingHydrodynamicMass Part h CircularCylindrical
Structures',ComponentsTechnologyDivision,ArgonneNationalLaboratory,Argonne,Illinois,June 1976,
DocumentNo.ANL-CT-76-45.
8Washizu,K.et al., "AeroelasticInstabilityof RectangularCylindersin a HeavingMode,"J. Soundand
Vibration,59, 195-210, 1978.
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on the order of 0.1 can be unacceptably high vibrations. Corless9 and Berger and Plaschko 10
treated vortex-induced and galloping responses using the method of multiple time scales with
considerable success in predicting amplitudes of transverse displacement and lift coefficient as
well as the phase angle of experimental data.

In the case of c/d = 4, the two ranges of Strouhal numbers are 0.095 < S < 0.147 and 0.2 < S
< 0.294. Thus, the aspect ratio c/d indeed affects the flow pattern. In terms of reduced velocity,
the above Strouhal number ranges correspond to 15 > Vr > 11 and 7 • Vr • 3.4 for c/d = 2; and
10.5 • Vr > 7 and 5 • Vr • 3.4 for c/d =4.

The vibration amplitudes (normalized by height) for vortex induced vibration are generally less
than 0.1. From the above reduced velocities, the vortex-induced lock-in phenomenon would not
occur at high flow velocities, because the reduced velocities for vortex-induced vibrations are
generally under -15. Also, the amplitudes are limited (usually less than -0.1) for the
experimental range of the system damping used by Washizu et al8.

Galloping Responses

Galloping arises when the rate of change in an aerodynamic force coefficient produces a
negative damping which exceeds the dissipative damping. When galloping occurs, the total
damping force would more or less in-phase with the structure velocity, and unacceptable high
vibration amplitudes are usually the result. According to data of Washizu et al, the transverse
galloping response was found having amplitudes greater than 0.1 and tends to be unbound. In
the range of system damping considered, the transverse galloping took place at high flow
velocities, Vr • 15. The higher the system damping, the higher the onset critical galloping velocity
necessary to trigger the galloping response. As aforementioned, transverse galloping would
occur for c/d =2, but not for c/d --4.

For rectangular sections with c/d = 2 and flow velocity around Vr = 15, the flow vibration
continues from vortex-induced vibration (Vr < 15) to transverse galloping (Vr • 15) in the case of
low damping. Vortex shedding may initiate galloping; however, the flow velocity must be greater
than the onset velocity to sustain the galloping. From their data, the vortex-induced vibration can
probably be alleviated with high system damping, however, high system damping can only delay
the galloping response to a higher onset flow velocity. Whether there can be galloping or not is
basically geometry-dependent as indicated in the above cases for rectangular sections.

System Damping for Galloping Estimation

Flow-induced vibrations due to vortex shedding and turbulence do not always lead to
galloping as long as the total damping does not become negative. In fact, for certain structure
geometries such as circular cylinders, galloping will not occur. In order to predict the structural
dynamic response, one needs the knowledge of system mass, system damping, structure natural
frequencies, extemal excitation forces, and cross-sectional geometry.

Bearman et al 11 investigated experimentally flow-induced vibration of square sections for
Reynolds number range of 104 to 3 x 104 and three levels of turbulence of 0.0%, 6.5% and
10.5%. In a square section, since the derivative of transverse force coefficient with respect to
angle-of-attack, A1 - o_C_ qx, is positive; galloping response is possible and the estimate of the
onset critical flow velocity is the primary objective. According to their data, the parameter A1 has
values of 5.4, 3.9 and 3.4, respectively, for the turbulence levels given above. Based on the
reference formulation, the critical galloping velocity can be written as

9Corless,R. M. andParkinson,G. V., "Mathema/P..a/Modelingof the CombinedEffectsof Vortex.Induced
Vibrationand Galloping.Part It, J. Ruidsand Structures,7, 825-848, 1993.
10Berger,E. and Plaschko,P., "HopfBifurcationsand Hysteresisin Flow.Indited Vibrationsof Cylinder&"
J. Fluidsand Structures,7, 849-866, 1993.
11Bearman,P. W., Gartshore,I. S., Maull, D.J., andParkinson,G. V., "Experimentson Flow.Induced
Vibrationof a Square.SectionC)4/nder,"J. of Ruidsand Structures,1, 19-34, 1987.
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Uo- 29 (3.0.1)
n A1

where

Uo - Vo _ critical reduced velocity of galloping
o_.h

2

n = --_ = mass parameter
2m

(on = circular frequency of the nth bending mode

= system damping ratio

h = size of the square section

m = mass per unit length including fluid added mass

Vo = critical galloping velocity

System damping is due to structure-related and fluid-related damping contributions. In the

reference experimental range, system damping is between 9 x 10 -4 to 6 x 10 "3. In most beam

and plate cases, system damping can be written as the sum of structural material damping, end-
constraint damping, fluid viscous damping and acoustic damping

13- 13s +J3ec+ Cop D2 V +J3ac (3.0.2)

_'_--ms 4 m (_nD

where the structural material damping can be estimated as a Zener damping constant 12

_s = O)/O)R (3.0.3)

1+ 2

and the Zener relaxation frequency is given by

Ps Cp h 2

(3.0.4)

and k, Ps, Cp = thermal conductivity, density and specific heat of the material when the fluid and
the structure may not be in thermal equilibrium.

End-constraint damping is estimated as follows. Heat-exchanger tubing in air which is a
typical clamped structure element, has a damping factor in the range of 0.002 to 0.008 as
compiled by Blevins 6. This includes material damping (-0.001) and clamping damping. For

steel-like, clamped structures, an end-constraint damping of 0.001 is deemed a good
conservative estimate.

12Crawley, E. F. and Van Schoor, M. C., "Material Damping in Aluminum and Metal Matnx Composites,"
MIT Industry Liason Program Report, June 5, 1987.
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The acoustic radiation damping can be a major item for flat plates, high frequencies, or dense
fluids. As given by Blevins6, the acoustic damping for a rectangular section where the thickness
to acoustic wave length ratio is small (ie., a/Z < 0.2) is given by

p,a2*b=,/I (3.o.s)
16Ps h X

where a, b, and h are the width, base and thickness of the rectangular element. The wave length
relates to the speed of sound by

X = 2_3_.¢. (3.0.6)
O)n

Effect of Turbulence on Galloping

Lindner 13 presented a concise article on the effect of turbulence on the galloping of a
rectangular section. Galloping oscillations are self-excited aeroelastic oscillations which occur
perpendicular to the direction of the incident flow. They are, for example, observed on ice-coated
cables, masts and pylons. Analytical solutions to this phenomenon have been known for some
time. Since in nature, wind is subjected to turbulence, the influence on galloping oscillation is
rather important. The y-component of the equation of motion for laminar flow is given by

m_ + d_/+ c y = F =P-u=,bIcy (3.0.7)2

where m, d, c are system mass, damping and spring constant; and b, and I are height and length
of the section. The transverse force coefficient Cy as a function of incident angle was given in the
reference. The coefficient increases with the incident angle up to 12° , then decreases linearly
between 12° and 16°. The turbulent flow velocity vector is then presented in the form of

(3.0.8)

-- m

where the u' and v' represent the rms turbulent fluctuations of the flow velocity. Consequently
the equation of motion for turbulent flow is written as

(3.0.9)

where the instantaneous incidence angle is given by

$* =tan "1_ (3.0.10)
U. + U°

External Flow/Structural Elements (Bluff Bodies)

Idealized external flow exists for a body or structural element in an infinite fluid medium. An
aircraft in free flight is an example. A body immersed in an internal flow passage sees wall
constraint effects that change the local velocity and pressure about the body depending upon its

13Undner, H., "Influence of Turbulence on Galloping Oscillations of a Rectangular Cylinder," ZAMM • Z.
angew. Math. Mech. 70 (1990) 4, pp. 74-77, 1990.
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cross-sectional area relative to that of the flow passage. In a wind tunnel at subsonic flow speeds
or in a water tunnel when the body is very much smaller than the wind tunnel test section, the
external flow conditions about the body nearly simulate those in free flight. Added mass and
added moment of inertia effects are characterized for idealized external flow. They are provided
in Table 3-1 for six of the basic geometries treated inthis handbook.

Added mass and added moment of inertia can be estimated from these simple formulas for
these body shapes. They increase linearly with increases fluid density. One fluid of particular
interest for example, is LO2 because of its high density and operation often under high pressure
giving potentially high dynamic loads in rocket engine flow passages. Hydrogen-rich turbine
gases in the 4,500 psi operating range also possess sufficient energy to drive structural elements
to fracture or fatigue. Water, liquid nitrogen, and steam as well as any number of high-density or
high-pressure fluids found in chemical processing industries possess sufficient energy to be of
concern for hydrodynamic flow-structural interactions. Frequencies of structural response in a
vacuum or even in air shift dramatically downward due to added mass and added moment of
inertia effects in dense subsonic fluids.

Table 3-1. Formulas for Added Mass and Moment of Inertia

GEOMETRY

1. Circular cylinder of r,=diusa

2 Square =ec_n of =de a.

3 Ellipticalseclion _ major radius ,=.

4. Flat plale of height 2a

5. Sph_e of r,=d*usa.

6. CuDe ol =_de,=.

Q
ADDED

MASS

p x,=:'b

1.Stpza2b

pl,=2b

px,=tb

2/3 pxll $

0.7p ,=3

ADDED MOMENT

OF INERTIA

0,234 pza4b

Note: b is the body length dimension for I through 4.
I!.1$V000¢_404
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RECTANGULAR SECTIONS

3.1 Rectangular Sections, Plates and Vanes

A rectangular section is a beam with a rectangular cross-section of base width, w and height,
h. A square section is a rectangular section with equal base and height, w = h. A flat plate is a
rectangular section with height-to-base ratio, h/w, of -0.2 or smaller. A flat vane is a flat plate
usually with a rounded leading edge and/or a shaped trailing edge. Since a square section is a
special case of a rectangular section, we shall discuss square sections with rectangular sections

in the following. Flow/structural interaction problems concerning these geometries are discussed
in this section.

Bearman and Luo I experimentally investigated the aerodynamic instability of a square-
section under forced vibration. The data base included a) lift and drag coefficients as functions of

the reduced velocity; b) critical reduced velocities as functions of vibration amplitude for both
minimum lift and onset of asymptotical lift; c) phase angle versus reduced velocity at various

amplitudes; d) power spectral densities of lift fluctuations for different reduced velocities; and e) a
flow map for flow regimes of multiple lock-in range, fluctuating lift recovery range and small-
incidence-quasi-steady range. The range of applicability is for Reynolds numbers (based on the

side length of the square) between 10,000 and 80,000.

Bending Modes, Added Mass and Structural Frequencies

Added mass can be calculated for slender bodies using a potential flow approximation by

strip theory. In this theory, the body is considered as a union of two-dimensional cross-sections
in its axial direction. For instance, the added mass for a circular cross-section of radius, r, is the
fluid mass displaced by the cross-section. When summed over the length, L, of the cylinder, the
added mass is p n r2 L. In the case of a thin slender beam of height, h, side width, w, and axial

length, L, the added mass inthe beam normal direction is

Ma = (xp (_ w2/4) L (3.1.1)

where the hydrodynamic mass coefficient, a, is 1 under strip theory (valid for h << w << L). In
practice when the aspect ratio, L/w, is on the order of one, three-dimensional end effects become
significant, this coefficient would deviate from unity. And, the plate may vibrate in modes higher
than the first mode so that parts of the plate move upward while other parts move downward, the
retarding effect of the surrounding fluid on the plate is hence reduced and a < 1.

Cited by Blevins2 , Greenspon has proposed correlations for rectangular plates with one side
exposed to fluid and presented results for all-side clamped (CCCC), all-side simply supported
(SSSS) and two-side clamped two-side simply supported (CSCS) cases. For the SSSS case, the
factor even greater than 1 (when L/w = 1) indicates some 'focusing' effect due to the 'hinged' end
constraints.- When there are clamped edges the ocfactor is lower than the all-edge simply
supported case by a factor of -2.7. In these cases with one-sided fluid (for instance a flat wall of
a water tank), the effect of the aspect ratio, L/w, on the added mass is the opposite to those for
two-side submerged plates. Since structural frequencies can be substantially reduced by added
mass, accurate estimate of structural frequencies relies on the proper selection of the added

1Bearman,P. W. andLuo,S. C., • Investigationof the AerodynamicInstability ofa Square-SectionCylinder
By ForcedOscilla_off,J. FluidsandStructures,2, 161-176, 1988.
2Blevins,R. D., FormulasforNaturalFreouencyand ModeShaDe.Van NostrandReinhold,New York, 1987.
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mass correlations. We may call this coefficient an added mass factor to indicate the deviation

from strip theory result. This factor can be considered to be a product of several multipliers:

a = w h Lw Md (3.1.2)

The first multiplier, wh, is due to width-to-height ratio, w/h, the second multiplier, Lw, is due to
aspect ratio, L/w, and the third multiplier, Md, is due to end constraints or mode shapes. The

multiplier wh was deduced from data of Wendel (1950) cited by Blevins2.

w/ll 0.10, 0.20 0.50 1.00 2.00 5.00 10.0 100.0 1000.0
Wh 2.23 1.98 1.70 1.51 1.36 1.21 1.14 1.07 1.00

Meyerhoff 3 and Chung and Chen 4 obtained added mass for a thin plate from potential flow
theory. The multiplier Lw, which approaches to unity when L >> w, can be written as

Lw= IJw [I-0.425 IJw ] (3.1.3)_1+ (L/w)2 1+(L/w)2

Lindholm et al5 'obtained added mass expressions for cantilevered plates for several modes.

Let (i) be the mode index along the plate, and (j) be the mode index transverse the plate. One
may deduce from their results the mode shape multipliers, Md. For the translational modes (i=1,

j=l), (i=2, j=l) and (i=3, j=l), the multipliers are unity; for the rotational modes (i=l,j=2) and
(i=2,j=2), the multipliers are 0.375; while for the warping mode (i=1 ,j=3), the multiplier is 0.3212.

A general closed-form solution does not exist for vibration of a rectangular plate with various
elementary boundary conditions on each of the four edges. However, it has been found that each
of the mode shapes can be well approximated by the product of two beam modes in the

separable form of the variables. Consequently, the mode shape multiplier can be obtained either
exactly or with a numerical integration method.

Md = (3.1.4)

This equation for thin plates may not be valid for rectangular beams. For instance, if one of
the beam modes has both free ends, this multiplier is zero which may not be valid for a beam.
For the first bending mode of a rectangular beam Md = 1 is recommended. Consequently, the
added mass per unit length is ma = Ma/L, the structure mass is ms = Ps h w and the effective
mass for transverse vibration is m = ma + ms. The area moment of inertia of a rectangular
section for transverse vibration is given by I = w h3/12. With these parameters known, the

bending mode frequencies are calculated by an equation for uniform beams. For non-uniform
beams, averaged E, I and m along the beam length need be obtained so to estimate the bending

3Meyerhoff,W. K., "AddedMass of ThinRectangularPlatesCalculatedfromPotentialTheory,"J. ShipRes.
14, 100-111 (1970).
4Chung,H. and Chen,S. S., "HydrodynamicMas&"ArgonneNationalLaboratory.
5Lindholm,U. S., Kana, D. D. andAbramson,H. N., "Elastic Vibrationof CantileverPlatein Water,"J. Ship
Res., 9, 11-22 (1965).
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frequencies with Equation 3.1.5. The deviation in structural frequency which results from using

an added mass based on strip theory without a correction factor can be estimated with the

following equation:

f_ ms

fst 1 + a m---t'
ms (3.1.5)

where m a and fst are fluid added mass and estimated frequency based on strip theory, m s is the

structure mass and f is the more realistic structural frequency. The frequency ratio can reach a

factor of the square root of 2 if the strip theory added mass is as much as the structure mass

while the realistic added mass coefficient is zero (a = 0) rather than 1. We conclude this

discussion by citing a set of experimentally determined frequencies by Reed et al 6 to show how

the added mass reduces structure frequencies. The measured straight vane first bending

frequency in air (low added mass) is 1085 Hz while in water (high added mass) is 369 Hz. These

indicate nearly a three times influence. The present methodology and computer code have

confirmed these measured data in both bending and torsion for Reed's experiment.

Vortex Shedding Strouhal Number

Knisely 7 investigated vibration characteristics for rectangular and square sections. The

primary conclusion of this experimental study is that the Strouhal number of the vortex shedding

frequency changes rapidly when angle of attack increases from 0 to about 15 degrees and level

off between 15 to 75 degrees, then decreases from 75 to 90 degrees. Effects of other key

parameters (namely, comer roundness, side ratio, turbulence intensity, fluid density and Reynolds

number) were evaluated.

Okajima, Mizota, and Tanida 8 investigated flow around rectangular cylinders. The primary

summary of the paper is given in the following:

a) Flow oscillation around a rectangular section with height H and base B was studied.

b) Strouhal number, S, versus Reynolds number, Re, in the range of -100 < Re < -4.2 x 104

and 1.5 < H/B < 6.0 was measured.

c) Jumps in S were found in the above flow region.

d) The jumps are attributable to flow reattachment.

Typical data are summarized as follows:

w/h =1.5

Re 200 300 400 500 550 600 650 700 3000 6000

S .161 .175 .173 .160 .103 .117 .108 .06 .052 .055

6Reed, D., Nesman, T. and Howard, P., "Vortex Shedding Experiment with Flat and Curved Bluff Plates in
Water," ASME Symposium, Chicago, Illinois, December 1989.
7Knisely, C. W., "Strouhal Numbers of Rectangular Cylinders at Incidence: A Review and New Data," J.
Fluids and Structures, 4, 371-393, 1990.

8Okajima, A., Mizota, T. and Tanida, Y., "Observation of Flow Around Rectangular Cylinders," pp. 381-386
in Yang, W. J. (editor), Proceedings of the Third International Symposium on Flow Visualization, September
6-9, 1983, Hemisphere Publishing Corporation.
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There are jumps between 500 < Re < 650 as indicated in the table. At higher Reynolds number
range (700 < Re < 6000), the Strouhal number can be approximated by 0.11.

w/h = 2.0
Re 40 400 500 2000 95000
S .161 .15 .09 .1 .08

There are jumps between 400 < Re < 600 as indicated in the table. At higher Reynolds number
range (700 < Re < 95000), the Strouhal number can be approximated by 0.09.

w/h : 3.0
Re 70. 450 650 4000 6000 100000

S .110 .175 .160 .150 .060 .058

There are jumps between 650 < Re < 4000 as indicated in the table. At higher Reynolds number
range (4000 < Re < 100000), the Strouhal number can be approximated by 0.15.

In the Reynolds number range of -6000 < Re < -42000, S changes with w/h as follows:

w/h .01 2.6 3.0 6.0 9.0
S .144 .060 .151 .085 .156

There are jumps near w/h = 2.6 and 6.0.

Effect of Reynolds number

Additional data and comparison are summarized in the following. The effect of Reynolds

number is given for the typical rectangular plate with base-to-height ratio of 3.0:

Re 70. 450 650 4000 6000 100000
S 0.110 0.175 0.160 0.155 0.151 0.150

There are jumps between 650 < Re < 4000. There the Strouhal number may drop as low as
0.058. One may refer to Okajima et al8 for more details.

Effect of Base-to-Height Ratio

The effect of base-to-height ratio, w/h, is given for typical Reynolds number range of (0.6 x
104 to 4.2 x 104) as follows by Okajima et alS:

w/h =0.01 1.00 2.60 3.00 6.00 6.10 10.0
S = 0.14 0.12 0.06 0.15 0.08 0.13 0.16

and Kinsely (1990).

w/h =0.04 0.25 0.50 0.80 1.25 2.00 4.00 5.00
S= 0.147 0.153 0.140 0.136 0.113 0.120 0.070 0.124
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The jumps at w/h = 2.60 and at 4.00 are different between these data. However, their general
agreement is good, that is, the Strouhal number is in a range of 0.1 to 0.15 for most cases of
rectangular sections.

Effect of Angle-of-Attack

The effect of the angle-of-attack, I_,for Re = 18000 to 47000 and w/h = 3.2 to 17.0 is given in
Knisely7. Typical values are

= 0.00 6.50 13.0 30.0 45.0
S =0.124 0.140 0.180 0.172 0.170

Effect of Trailing Plate

Arai and Tani 9 investigated the effect of trailing plate to a square section. The experimental
apparatus is shown in Figure 3-4 where the Hb is the base dimension of the square, D is the gap
distance between the square and the trailing plate, and Hs is the length of the trailing plate. The
vortex shedding frequency of the square without the trailing plate is termed as fi. The frequency
ratio of the frequencies with and without the trailing plate is therefore, f/fi. Apparently, the
frequency ratio is a function of Reynolds number, and the geometrical ratios, D/Hb and Hs/Hb.
Typical data are summarized in Figure 3-5. The trailing plate may reduce the frequency of lift
coefficient by as much as -80% as implied by the figure.

U=
BODY

PLATE

'_'Hb'_ O -": Hs "_'_

Figure 3-4. Cross-Section of the Trailing Plate

Galloping and Turbulence

The vortex-induced oscillation and hydrodynamic galloping response of rectangular rigid
sections (h/w = 2), mounted elastically and restricting oscillations only to a plane normal to the
incident water flow, was studied both experimentally and analytically by Bokian and Geoola 1°.

Wake observations of stationary sections indicated that in the range of Reynolds number tested,
the Strouhal number was roughly constant and insensitive to turbulence characteristics. The
Strouhal number was estimated to be 0.137 for a sharp-edged section; and 0.169 and 0.183 for

round-edged sections with r/h = 0.141 and 0.187, respectively. The still water added mass of
sharp-edged sections was found to be considerably higher than the value predicted through the
application of the potential flow theory.

9Arai,N. and Tani,T., "ActiveControlof VortexSheddingFrequencyby a SplitterPlate,"International
CongressonRecentDevelopmentsinAir-and Structure-BorneSoundendVibration,AubumUniversity,
USA, March6-8, 1990.
10Bokaian,A. R. and Geoola,F., "HydroelasticInstabilitiesof Square Cylinders,'J.Soundand Vibration,
92(1), 117-141, 1984.
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As opposed to vortex resonance, turbulence was found to have profound effects on galloping
vibrations. The variation of the lateral force coefficient withthe angle of flow attack, as well as the

dynamic tests, revealed that the tendency for galloping instability increased with an increase in
turbulence intensity.
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Figure 3-5. Effects of gap width on vortex shedding frequency

Equivalent Circular Cylinder

In certain ranges of Reynolds numbers If the data for a rectangular section are lacking and
the data for circular cylinders are available, one may use data for circular cylinders to estimate the
vibrational parameters for the rectangular section by usingthe concept of hydraulicdlamater

Oh - 4 NP - 4(flow area)/wetted perimeter

That is, the rectangular section is treated as an equivalent circular cylinder of diameter Dh.

Aerodynamic Forces on a Flat Plato Gliding on a Freestream

Theoretical aerodynamic load coefficients are available only for simple geometdas and
idealized flow conditions. One set of cases is given in the following for a flat plate gliding on a
freestream (free-free end conditions, unclamped). With the aid of numedcal methods, the
theoretical formulation becomes more tractable. A Runge-Kutta code was developed to calculate
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a three-degree-freedom motion of a two-dimensional flat plate section that is gliding on an air
stream at standard density as an example. The motion state of the plate includes the falling
distance, transverse displacement, and rotation angle. Added mass effects for dense fluids and
end constraint effects may be estimated using the methods described above.

Force coefficients for flat plate are further addressed herein based on a theoretical
formulation. Milne-Thornson (1968) gives a derivation of the Rayleigh's formula for the thrust
force, T, on a thin plate exerted by the flow:

T =p U2h _ sin_ (3.1.6)
4 + _ sinl3

where

p = fluid density
U = freestream flow velocity

h = plate height
13= angle-of-attack (AOA)

The lift, L, and drag, D, on the plate are components of the thrust force and given by

L = T cosl3 (3.1.7a,b)
D = T sin

The flow configuration is shown in Figure 3-6. Equation (3.1.6) and Equation (3.1.7a) yield

the relation of liftversus attack angle:

L = P--u2h _ sin 2_ (3.1.8)
2 4 + x sin

The liftcoefficient is therefore

CL= x sin 213 (3.1.9)
4 + xsinl3

In terms of the angle-of-attack, the relation is shown in Figure 3-7 that the lift has a maximum
at an angle approximately equal to 50° . The rate of change of the lift coefficient with respect to
the angle-of-attack is also shown in the figure. The drag and drag coefficient can be obtain

similarly

D =p U2h x sin2 I_ (3.1.10)
4+xsinl3

Co = 2 x sin2 13 (3.1.11)
4 + x sin13

The evaluation of the moment coefficient is made in the following. The derivative of the

velocity potential on the wind-side surface of the plate can be expressed as
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dw=. 2hU(; .a)
d z (4 + _ sinp)

o(,

(3.1.12)

where

_= 2 hi1 +a¢;, +'(I-a')(l- _)]
dr_ 4+msin_

(3.1.13)

Here z = x + i y and _ is a transformed coordinate defined by Equation (3.1.13). The
equations (3.1.12) and (3.1.13) are reduced forms and only valid for the surface of the plate. On
the plate, the range of _ is from -1 to 1. The frontal pressure in excess to the back pressure
which is the freestream pressure for the gliding plate is given by

op (3.1.14)

Thus the pressure coefficient is

Cp- p p- - I1 "(-_1
l__pU2
2

(3.1.15)

The moment coefficient is then evaluated as

CM
lp U2h2 U Jhdr,
2

(3.1.16)

The pressure coefficient along the plate is given in Figure 3-8 for several attack-angles. The
lift, drag and moment coefficients are given in Figure 3-9 as functions of the attack-angle, 6.
Since the lift, drag and moment change as 13does, the motion status of the plate would change as
the plate gliding in the freestream.
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V surface

Y

T

dividing free
U streamline surface

Figure 3-6. Two-Dimensional Flat Plate Gliding on a Freestream at an Angle-of-Attack.

Figure 3-7.
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Lift Coefficient Versus Angle-of-Attack for Two-Dimensional Flow Past a Plate.
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Figure 3-9. Lift, Drag and Moment Coefficients as Functions of Angle-of-Attack for Two-
Dimensional Flat Plate Section.
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Development of Rectangular Section Code

In more general cases, the theoretical approach described in the foregoing may not be
applicable, a Fortran program called RECTANGLE has been developed to provide an analysis.
The program calculates the first three mode bending frequencies and estimates the fundamental
mode vibration amplitudes of displacement, velocity and acceleration for a rectangle beam or
vane in a fluid flow. It also calculates the first three mode torsional frequencies.

Inputs required by the code and sample values for the acrylic straight vane used by Reed et
al6 are given as follows: a) Height h = 0.005588 m, b) Width w = 0.06096 m, c) Length L = 0.1016
m, d) Fluid density p = 997.4 kg/m3 for water, e) Structure density Ps = 1190.2 kg/m3 for acrylic,

f) Young's modulus E = 4.8x109 Pa for acrylic, g) Flow velocity = 8 nVs as a typical case, h) Flow
kinematic viscosity = 9.83x10 "7 m2/s. Flow is in x-direction, transverse is y- and span-wise is z-

direction. Height is the dimension in y-direction, width is in x- and length is in z-direction.

Vortex Shedding Frequency and Structural Response

Vortex shedding Strouhal number is a function of Reynolds number. Reed et al6 found that
the Strouhal number in the test condition is approximately 0.20. For a wider range of flow
conditions including cases with non-zero yaw angle, we suggest the following equivalent cylinder
method to determine the vortex shedding Strouhal number for the beam or plate: a) Find cross-
flow velocity Vn = V sin ¢xas in the cylinder case. At a yaw angle, (zo, the frontal dimension of a
plate is Df = w sin o_o + h cos ¢Xo;b) Find the Reynolds number, Re = Vn Df/v; c) Find the
Strouhal number based on circular cylinder correlations with the above Re and Dr. Flow-

structural lock-in is assumed whenever the vortex shedding frequency is within :P..20%of a

structure frequency.

Using above S, equivalent diameter, reduced mass and reduced damping; the transverse
vibration amplitude can be estimated with the equations given by Blevins11, p. 71, for the proper
end constraint. In addition, Blevins11, p. 118, discusses the onset condition for galloping motion
of a square section. Parameters used are U = Vr/(2 8r), a1=2.7, a3=-31, and A' =1- U aI . If A' >

0, galloping would not happen, otherwise the vibration amplitude is given by

Ay/D = A 8p/x (3.1.17)

where A =((1 - U al) 4 U/3/a3)1/2. Washizu et a112 indicated that galloping occurs in

rectangular sections with w/h < 3. When w/h • 3, galloping would not occur. Therefore, the flat
vane in the present study would not have galloping motion.

11Blevins,R. D., Flow-Induced Vibration.p. 56, secondedition,Van NostrandReinhold,1990.
12Washizu,K. et al., "AeroelasticInstabilityof RectangularCylindersin a HeavingMode,"J. Soundand
Vibration,59, 195-210, 1978.
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Added Moment of Inertia and Torsional Modes

The added moment of inertia of a plate can be written as Ia = p _ w4 Mdm Whm/128, where
the multiplier Whm (a function of width to height ratio, w/h) can be deduced from Wendel (1950)

as cited by Blevins6,

w/h 0.10 0.20 0.5 1.0 2.0 5.0 10. 100 1000
Whm 11760 750 9.2 1.87 1.2 1.2 1.09 1.05 1.00

with the present w/h the added moment of inertia multiplier Whm = 1.09. Lindholm et al5 obtained

added mass expressions for cantilevered plates for several modes. One may deduce from their
results that the mode shape multipliers, Mdm, for the rotational modes (i=1 ,j=2) and (i=2,j=2), the

multiplier are 0.375. For torsional mode of a rectangular beam we recommend using this value.
Parameters needed in torsional vibration analysis include shear modulus, G, and torsional
constant, Tc, of the cross-section. Torsional constant for rectangle is given by Roark and
Young13

Tc =(1/3-0.21023 (h/w-(h/w)5/12)) w h3 (3.1.18)

The polar area moment of inertia is the sum of that of the structure and added moment of
inertia

Ip= h w (w2+h2)/12 + la/Ps (3.1.19)

A length factor, Lf, is used. For full beam (or shaft) length, its value is 1. For half beam

length, its value is 0.5. For first torsional mode frequency, a fixed-fixed full length beam is the
same as a fixed-free beam of half length. Torsional mode eigenvalues are given: a) either free-
free or fixed-fixed, Zn = n _; b) fixed-free, _,n = (2 n -1)rJ2; c) slack-free, _.n = [(2 - Sc)*n+(Sc - 1)(2

n -1)/2]_. Here a slack boundary condition is a condition between a fixed condition and a free
condition with a slackness coefficient, Sc, of value between 1 and 2. The torsional mode

frequency is given by

fr= Zn (Tc G/Ps/Ip)l/2/(2 x L Lf) (3.1.20)

where n is the modal index from 1, 2 and on.

Application to Rectangular Vane

An option of the RECTANGLE code is developed to deduce the amplitude of the lift
coefficient from experimental data of rms acceleration, Grins. In the reference data Grms is a
function of reduced velocity, Vr. By assuming that the first bending mode is the dominant

vibration mode and the transverse vibration is induced by the oscillatory lift force, the maximum
lift coefficient (at the mid span of the vane) amplitude is deduced and plotted in Figure 3-10.
Another option is also implemented which utilizes the above experimentally deduced CLe

amplitude to predict the rms acceleration. As expected a good agreement is achieved. Since the

13Roark,R. J. andYoung,W. C., FormulasforStressandStrain(5th ed.), p. 290, McGraw-Hill,New York,
1975.
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CLe curve is based on a slightly modified Grms (Vr from 5.6 to 6.0) data, the prediction curve
(dash line) does not follow exactly as the experimental data shown. However, this modified CLe

curve offers slightly larger and more conservative prediction in the lock-in regime and therefore is
deemed appropriate.

4.000 , , ,

Grms (SYMBOL) rel. exp. data
Reed et al (1989)

(DASH LINE) model prediction

3.000
CL (SOLID LINE) :,

,!
'0
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Vr

Figure 3-10. Model Predictionof Grins and CL Amplitude for Rectangular Vane.

In frequency simulation the following procedure is used: a) Determine a value of Young's
modulus so that the bending frequency in air is 1085 Hz. The determined value of 4.565x109 Pa
is indeed in the range for a lucite-acrylic material; b) Since air is very low density in comparison to
acrylic, the added mass and added moment of inertia are negligible. The slackness factor is
determined to have a good prediction inthe torsional frequency, 161g Hz, in air;,c) Calculation for
water flow is then made. Without a mode shape factor, the predicted bending frequency inwater
is around 360 Hz. By the input of the factor Mdm = 0.9, better prediction is obtained as shown in

Table 3-2; d) The predicted torsional frequency in water is 826 Hz which is only 2% lower than the
experimental data by usingthe same slackness factor of 1.459 and the mode shape factor of 0.9

as in the air flow prediction.

Table 3-2. Model Prediction of Reference Experimental Data

MODE MEDIUM EXP. FREQ, Hz
(Reed et al)

1st Bending air 1085
water 380

Calculated Freq., Hz
(Present Method)
1085
377

I st Torsion air 1619
water 840

1619
826
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Application to a Discharge Pipeline Rectangular Flowmetar

A typical example in the study of flow/structural interaction and to understand better liquid
rocket engine flow conditions follows. An analysis on a LO2 turbopump discharge rectangular
flowmeter proposed for the Space Shuttle Main Engine (SSME) is presented herein. The way the
proposed flowmeter works is that a strain gage measures the vortex shedding frequency, and a
calibration of velocity based on the measured frequency gives the volumetric flowrate.

p.ssumDtions

1. Structural modes for the vortex shedding vane transverse vibrations are considered.
However, other structure modes such as shell and pipe modes are not included in the present
study.

2. Parameters and methods used in the analysis lead to the conclusion. The conclusion may
not be applicable to cases when the parametric values are much different from what being used
herein.

3. Possibility of cavitation and its effect are not considered.

Sam01e Parameters

The sample dimensions are shown in Figure 3-11 with length, L = 2.24", height, h = 0.28" and
base width, w = 0.16". The fluid is liquid oxygen with average flow parameters assumed: flow
velocity, Umax = 92 ft/s, temperature, T = 196 °R, fluid density, pf = 70.15 Ibrn/ft3, and dynamic

viscosity, p.= 0.45 Ibm/hr/ft. The material of the flowmeter is the A26 steel, for which the fol:owing
properties are assumed: Young's modulus, E = 30.5x106 psi, structure density, Ps = 0.287

IbnYin3, and Poisson's ratio, v = 0.29.

The Reynolds number based on height is obtained: Re = pf Uma x h/It = 1,?.047x106. Liu et al

(1992) summarized several correlations for the estimate of fluid added mass due to rectangular
structures. The width-to-helght ratio is obtained: w/h = 0.57143. Therefore, the width-to-height-
ratio multiplier,wh, described in the reference can be calculated as 1.6729. The length-to-width
ratio is obtained: L/w = 14, therefore the length-to-width-ratio multiplier, Lw, is calculated to be

0.96733 from the reference. The mode shape multiplier for the both ends fixed is also given in
the same reference:

I 0.69034, n = 1
Md = {-2Z_-_.[1- (-1)"]12= 0, n=2

0.13232, n = 3

(3.1-21)

where o n and Zn are eigenvalues associated to the end constraints. Consequently, the
added mass factor is calculated as
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1.1171,n=1 }
o_= WhLwMd= O, n = 2

0.21413, n = 3

(3.1-22)

The structure mass, fluid added mass and effective mass for the first three bending modes

are given in the following:

ms=Ps w h = 0.15429 Ibrn/fl (3.1-23)

2{ 0.010942 }ma = czI_ _w4 = 0.0 Ibm/ft

0.0020974

(3.1-24)

m =ms +rna t

5.1356e-3

4.7955e-3

4.8607e-3

slug/ft (3.1-25)

As effective mass is obtained, the transverse bending frequencies can be calculated as
follows. One needs also the area moment of inertia:

I _w h3 4- 2.9269e-4 in (3.1-26)
12

2 /,,22,n.,}_ _.n 1_-- 32028.,n=2

fn-2---_L2 , m -_ Hz62370., n = 3

(3.1-27)

If a Strouhal number of 0.13 is used, the vortex shedding frequency is 512.57 Hz. Since this
frequency is very much smaller than the above structure bending frequencies, flow-structure lock-
in would not occur and the design should be adequate for the intended purpose.

Galloping

By using a galloping analysis for a square section cited by Blevins(1990), a preliminary estimate
of galloping is made in the following for the first bending mode. First the nondimensional
parameters are given:

Reduced velocity, Vr = U/fy/D_= 0.35119 for n =1 (the first bending mode)
Reduced mess, mr = m/p/D2 = 4.3263 for n = 1

D 2
Ub=_U__ P = Vr = 0.2178, if _y = 0.01483

fyD4m(2x_y) 8mrx_y
(3.1-28)

Since Ub < 0.37, no galloping is possible at 92 ft/sec; and the onset flow velocity would be 156
ft/sec. When velocity exceeds the onset flow velocity the nondimensional vibration amplitude can
be calculated by

Ab--._14 (1-Uba,)3 _ (3.1-29)
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where al = 2.7 and a3 = -31.0 for typical square sections and improved values should be used if
available. The diameter, D is identified with h, the flow velocity, U = Umax, the transverse

frequency, fy = fl, and fluid density, p = pf. Since

Ab = Ay pD 2 (3.1-30)
D 4mr_y

one may calculate the nondimensional transverse amplitude as

Ay _ 4 m r_yAb

D p D=
(3.1-31)

Lift, Drag and Strouhal Number

The range of values of drag and liftcoefficients and Strouhal number for rectangular sections
including square sections can be found in the literature. Some of the relevant data are collected
in Table 3-3. Schewe's 14 Reynolds number range for the square section is one of the highest in
the table.

Strouhal Number Dependency on Comer Roundness

Strouhal number dependency on comer roundness can be found in the literature. Some of

the relevant data are given in Table 3-4. From the table, the larger the corner roundness the
higher the Strouhal number. At a roundness ratio of r/w = 0.5, the square section becomes a
circular cylinder.

Table 3-3. CD, CL and Strouhal Number for Rectangular and Square Sections

Reference w/h Re CDrms CLrms S

Knisely7 0.5 5000-3x105 2.4 0.65-1.0 0.135-0.14
Obasaju 15 1.0 104-1.25x105 2.17 -- 0.121-0.127
Bearman-Trueman16

0.571 2x104-7x104 2.75 -- 0.13

Courchesne.Laneville 17
0.571 2x104-105 2.42 ....

@10% turbulence
Bearman-Luo 1 1.0 9x104 -- 1.35 --

Schewe 14 1.0 105-4x106 2.05-2.2 0.4CDrms 0.121

14Schewe' G., "ForceMeasurementsinAerodynamicsUsingPiezo-ElectricMulticomponentForce
Transducers,"In Proceedingsof 11th IntematlonalCongresson InstrumentationinAerospaceSimulaUon
Facilities,StanfordUniversity,pp.263-268,Aug.26-28, 1985.
15Obasaju,E. D., "AnInvestigationof the Effectsof Incidenceon the RowArounda SquareSection
lC_ender,"Dept. of AeronauticS,ImpedalCollege, London.

arman, P. W. andTrueman,D. M., "AnInvestigationof the FlowAroundRectangularCylinders,"
AeronauticQuarterly,Vol. 23, 229-237, 1972.
17Courchesne' j. and Laneville,A., "AnExperimentalEvaluationof Drag CoefficientforRectangular
CylindersExposedto Grid Turbulence,"J. Ruids Engineering,Vol. 104, 523-528, 1982.
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Table 3-4. Strouhal Number Dependency on Corner Roundness

Reference

Bokaian_Geoola10

(1984)

Knisely 7

Re w/h r/w= 0.0 0.164 0.20 0.318 0.34 0.5

1000~2X104 1.0 S= 0.125 0.14 -- 0.156 -- 0.21

5000~3x105 0.5 S= 0.138 -- 0.192 ......

1.0 S= 0.132 -- 0.142 -- 0.16 0.21

U

w = 0.16"

h = 0.28"

ID = 2.3"

Figure 3-11. Pump Discharge Line Flowmeter Dimensions Used in the Example.

Natural Frequencies of Flat Plate

Leissa18 presented exact solution of natural frequencies of rectangular plates. Three basic
boundary conditions considered are Free (F), Simply-supported (S), and Clamped (C). Numerical

18Leissa,A. W., "The Free Vibrationof RectangularPlates," J. SoundVibration,31,257-293, 1973.
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data of the first six modes for all 21 combinations of these three basic boundary conditions on the

four edges of the plates were presented for the eigenvalues, _.ij2 in the frequency formula:

f,j= Eh3 ]'/22_a 2 12y(1-v 2)

i=1,2,3 .... j= 1,2,3...

(3.1-32)

where fij = natural frequencies,
a, b = plate dimensions as shown in the sketch,

Y

b

a x

v = Poisson's ratio,

7 = mass per unit area,
E = Young's modulus,
h = plate thickness, and

Zij2= eigenvalues which are functions of plate aspect ratio, a/b, and edge constraints.

For additional modes, the natural frequencies can be estimated with Rayleigh's energy
technique. The natural frequencies of isotropic, thin, rectangular plates can be approximated with
the formula as given by Dickinson19 :

1/2

f_=/t[G4+G_42J1J2+2v_HIH2"JIJ2)][2La4 b 4 a2b 2

i=1,2,3 .... j-- 1, 2, 3...

I_ h3 1112

127(1-v2)J

(3.1-33)

where G1, G2, H1, H2, J1, J2 = mode parameters, functions of plate constraints.

19Dickinson, S. M., "The Buckling and Frequency of Rexural Vibration of Rectangular, Isotropic and

Orthotropic Plates Using Rayleigh's Method," J. Sound Vibration, 61, 1-8, 1978.
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By comparison the above formulas, the approximate method is to use the following
expression to evaluate the eigenvalues:

_._ =(_a + -4
La b a2b 2

(3.1-34)

A FORTRAN code (isotrop) is prepared to calculate the natural frequencies, Equation (3.1-

33). The first of the input data as given is Poisson's ratio. One may then enter as many sets of
boundary condition, mode, and aspect ratio as desired. For instance, the set of {3, 1, 1, 1, 3, 1}
indicates that the x direction boundary condition is Clamped-Free = 3, the mode index = 1 and the

aspect ratio a/b = 1, the y direction boundary condition is Free-Free = 1, and the mode index = 3.
The last number, 1, should always be entered as 1. The code then calculates for each set of
input the natural frequencies. As expected the approximate method generally agrees well with
the exact solution of partial differential equation.

Experimental Data Reference

Grinsted 20 obtained considerable experimental data on a cantilevered rectangular plate.

Frequencies and mode patterns of the mild steel plate having length a = 5.12 inches, width b =
2.76 inches, and thickness h = 0.053 inches are shown here in Figure 3-12. The modal

frequencies were compared with the computer code prediction. The material properties used in
the present calculation are given in Table 3-5.

Table 3-5. Properties for the Cantilevered Steel Plate

Length, L = a
Width, b
Thickness, h
Young's modulus, E
Density, p
Poisson's ratio, v

Mass per unit area, y
Length-to-width ratio, a/b

5.12 inches
2.76 inches
0.053 inches

27 X 106 psi
0.287 Ib/in3

0.3
4.7277x10 -4 slu_n 2

1.86

The model of a marine propeller blade investigated by Grinsted20 is also considered here to
show that an equivalent rectangular plate method can be used to estimate the natural frequencies
of a nearly rectangular plate. Grinsted experimentally determined the frequencies and mode
shapes of a mild steel, flat, oval-shaped, cantilevered plate designed to simulate a marine
propeller blade. The dimensions of the model propeller is cited by Leissa 18 as shown here in
Figure 3-13. The properties and dimensions used in the present study is given in Table 3-6.

20Grinsted,B., "Nodal PatternAnalysis,"Proc.Inst.Mech. Eng.,ser. A, vol. 166, pp. 309-326, 1952.
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Table 3-6. Properties for the Model Propeller Plate

Length, L = a
Maximum Width, b
Thickness, h
Young's modulus, E

Density, p
Poisson's ratio, v
Mass per unit area, y
Area, A =.x a b/4

Equivalent width, w = A/a
Length-to-width ratio, a/b

5.17 inches
3.38 inches
0.0535 inches

27 X 106 psi for mild steel
0.287 Ib/in3

0.3
4.7723x10 -4 slug_n2
13.725 sq. in.
2.65 in.

1.9505

0/0 (:vl 0/2 ¢63 0/4 0/5 O'6
64 405 1,120 2,233 3,736 ]),573 7,750

I

112

__, /',../,._

VO III 112 1/3 IR 1/5 1/6 l i

2/0 2/i" 2/2 2/3 2/4 2/5 _. j

BlaB. " x

". ggNmm.<-I. O=_" .i¢o0_¢= I [==,,_
4/0 4/I 4/2 0/3d_211 Mll+3K)Zrrt4/4 el i_ ;i._l-m,Z

Ir_r_ fVl ¢1_ I 2 3 4 5 6
Numlx_r¢r NodolLines.n

Figure 3-12. Rectangular Plate Data of Reference Experiment
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Figure 3-13 Reference Model Propeller Data.

The present approach for plates which are not exactly rectangular is first to find an equivalent
rectangular plate of the same length and area. Then find its modal frequencies using Equation

(3.1-33) to estimate the frequencies.
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The original frequency data of Grinsted20 are given in Figure 3-14. Using the plate properties
given in Table 3-5, one may calculate frequencies using Equation (3.1-33) as shown in
parentheses of the figure. The mode indices m/n in the figures and the mode indices ij in the
equation are related by

m = j- 1, n = i- 1 (3.1-35)

0/0 64.0 0/1 405 0/2 1120 0/3 2233 0/4 3736 0/5 5573 016 7750

(65.3) (409) (1145) (2244) (3709) (5541) (7738)

1/0 260 1/1 880 1/2 1676 1/3 2804 1/4 4335 1/5 6146 1/6 8300

(311 ) (901) (1689) (2807) (4278) (611 O) (8307)

2/0 1606 2/1 2170 2/2 3160 2/3 4426 2/4 6009 2/5 7859

(1556) (2234) (3180) (4437) (6004) (7901)

3/0 4235 3/1 4773 3/2 5739 3/3 7069 3/4 8800

(4041) (4687) (5683) (7041) (8722)

4/0 4/1 4/2 0/3 + 2/1 1/4+3/0 2/7 + 4/4
8238 8685 9651 2278 2115 4335 12640 12590

(7810) (8412) (9389) (2244) (2234) (4278) (12733)(12497)

Figure 3-14. Computer Code Prediction of Reference Experimental Frequencies.
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Note that the order of the indices is transposed. The comparison is generally very good.
However, the comparisons for the modes 1/0, 2/0, 3/0 and 410are merely fair.

Using the plate properties for the model propeller given in Table 3-6, one may likewise
calculate the frequencies using Equation (3.1-33). The results are given in parentheses of Figure
3-15 together with the original experimental data. The mode indices m/n in the figures and the
mode indices i,j are related by equation (3.1-35). Again note that the order of the indices is
transposed. The comparison is not as good as in the rectangular plate. However, the
comparisons for the modes 0/1, 0/2, 0/3, 115,0/6, 2/2 are relatively good.

249 1/0 415 0/1 889 111 1135 0/2+2/0 1365 2/0-0/2

(323) (405) (929) (1133) (1691)

1819 1/2 2155 2/1+0/3 2202 0/3 2418 2/1,0/3 3009 1/3

(1719) (2371) (2221) (2371) (2831)

3343 3/0 3416 2/2+0/4 3804 2/2-0/4 4470 1/4+3/1 4760 3/1
(44 13) (3325) (3672) (4290) (5056)

@G0@0
5558 2/3+0/5 6098 1/5-3/2 4934 2/3-015 6245 4/0 6517 3/2-1/5

(5485) (6053) (4587) (8539) (6053)

- _ _ I t

7542 0/6+4/1 7987 4/1 8594 1/6+3/3 9744 0/7+4/2 10000 5/0

0'661) (9t37) (e281) 002o0) (14051)

Figure 3-15. Estimated Oval Plate Frequencies Using Rectangular Plate Approximation.
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3.2 Cylinders

Circular Cylinder Geometry and Flow Phenomena

Fundamental relationships of flow interaction with cylinders are discussed in this section.
The basic structural modes considered for cylinders in this book are derived from formulas for a

slender elastic beam. The cylinders are assumed to be uniform with rotation and translation
treated as uncoupled. Each section develops formulas for a special case of cylinder geometry.
The important cylinder
geometric, flow and fluid
parameters for analysis are
illustrated in Figure 3-16.

• Geometric Parameters
Radius
Length
End-Constraints
Shape Factors

• Material Parameters

Density
Damping

| End Constraints

Angle-of-atlack

@
I!:'We" i

vo._x.....
Correlation__ ,.be )

Young's Modulus

• Fluid Parameters

Density
Temperature
Pressure

Damping
Kinematic Viscosity

":_ _!:ii_:_i,i__ _::_: _ _iii'__i:7 _i:_i

Wall

• Flow Properties
Velocity
Angle of Attack

• Interaction Parameters
Added Mass
Added Moment

of Inertia
Greenspon Factor
Vortex Correlation

length

_i;ii:i :i:i:i::::i:i:: ii;i;iiii:;;iiiii:;i;iiiii;il;;_i_iliiiii:iii i_i;;iiii;ii;ii!ii!i;!;;iii:ii iiii ;!i!::;!:i:ki i:i:!:i::_:::::::::::::::::::::::::::::::::::;:!:!:_ii!_i:_:_:!i_:_i<i;:;T:_i!_;;_!::;::;:;::

_iiiiiii!_iiiii!iiiiii!ii_i!!_!_:i_i:_!_iiiiiiiiiii i_::ii i_iiiii!iiiii!ilil!iii_iiiii_
.6".:::ii::iiiii_!ii;ii;ii_____ _ii::::!ii::ii_i:2:::;:?::::!i_ :i?i_:._::::

Figure 3-16 Right Circular Cylinder Geometric and Flow Parameters.
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Cylinder Nomenclature

Ay = transverse deflection amplitude
Az = in-line deflection amplitude
CD = drag coefficient
CDo = drag coefficient for a stationary structure

CL = lift coefficient
D = diameter
E = Young's modulus
f = frequency
fn = n-th mode natural frequency
fs = vortex shedding frequency
Ira0 = Imaginary part of a complex number
la = area moment of inertia
10,In = Modified Bessel functions of the first kind
J = joint acceptance
Jn= Special Bessel functions of the first kind
K0, Kn = Modified Bessel Functions of the second kind
k = spring constant in a spring-mounted cylinder
L = beam/rod length
Lc = vortex correlation length
m = effective mass per unit beam length
ma = added mass per unit length
ms = structural material mass per unit length
mij - element of hydrodynamic mass matrix (per unit length)

maij = element of hydrodynamic mass matrix (per unit area)
Md = mode shape factor
mr = structural reduced mass
P = non-dimensional cycle power
r = radius of cylinder
R = log10 (Re) ,R = radius of cylinder
Re = Reynolds number based on diameter
Real() = Real part of a complex number
S = Strouhal number = f D/U
T(t) = temporal part of transverse deflection
t = time
U = cross flow velocity
V -- flow velocity
Vr = reduced velocity
wr = wake response parameter
X(x) = mode shape, i.e., spatial part of transverse deflection, Y(x, t)
x = axial distance
Y(x, t) = transverse deflection
y = transverse deflection
z = in-line deflection
a = angle-of-attack
a = hydrodynamic mass coefficient
13= fundamental frequency
Sr = reduced damping = 4zmr_n/(pD2)

= correction factor for the organ pipe
$ = phase angle
¥ = shape factor
Zn = eigenvalues for the n-th bending mode
I_= fluid viscosity
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v = fluid kinematic viscosity
pf = fluid density
Ps = structural density
c n = mode shape coefficient of the n-th beam vibration mode
(on = circular frequency of the n-th beam vibration mode, rad/s
(os = circular vortex shedding frequency, rad/s

= circular frequency of beam transverse vibration, rad/s
r_= damping ratio
_t = total or system damping ratio
_f = fluid damping ratio
_s = structural damping (including material damping) ratio

Method of Analysis

Determination of flow structural lock-in conditions requires information concerning the
structural geometry, the structural material, the fluid properties, and the ambient conditions of the
fluid flow and structure. The parameters supplying this information, primary variables in this
analysis, are: the cylinder radius, the cylinder length, cylinder end-constraints, cylinder shape
factors, structural density, structural damping, Young's Modulus, fluid density, fluid damping, fluid
kinematic viscosity, fluid velocity, and the angle-of-attack.

The method of analysis for circular cylinders, as used in the Flow Structural Interaction
program developed for the Macintosh, is as follows:

1) Determine structural mass, added mass, effective mass, the area moment of inertia and
the added moment of inertia,

2) Determine velocity of fluid perpendicular to cylinder longitudinal axis, the crossflow
velocity, Reynolds number, Strouhal number and vortex shedding frequency,

3) Determine structural bending modes for the specific material and boundary conditions with
added mass effects, and check for lock-in,

4) Determine system damping, reduced velocity, mass ratio ( reduced mass)
5) Estimate cylinder transverse and in-line displacement using lift and drag coefficients

and the reduced velocity

Vortex Shedding and Flow Regimes

The most important effect produced by cross flow on a cylinder is vortex shedding. Cross
flow impinging on a circular cylinder develops boundary layers on the sides of the cylinder. These
separated boundary layers form free shear layers in the fluid flowing away from the cylinder and
roll up forming vortices in the cylinder wake. These vortices are formed at regular intervals and
the frequency of formation and separation gives rise to lift and drag forces on the cylinder. When
these flow-induced forces are coincident with, or near, the structural frequencies, lock-in
conditions may occur and the amplitude of cylinder oscillation in the flow increases and may
become great enough to cause structural damage. Figure 3-17, from Lienhard 1, illustrates the
observed flow regimes for the circular cylinder.

The array of vortices shed from the cylinder, travel in a predictable wake pattem known as
the Karman vortex street, illustrated in Figure 3-16. Dougherty et al2 performed time-dependent
Navier-Stokes simulations of the flow over a cylinder. Examination of these simulations yields
quantitative information on the vortex shedding phenomena in the flow region near the cylinder.
The vortex convection speed in the wake, Figure 3-18, which is usually approximated as 0.6 to

1 Lienhard, J.H., " Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders,"
WashingtonStateUniversity,Collegeof Engineering,ResearchDivisionBulletin300, 1966.
2 Dougherty,N., J. Holt, B.W. llu and J.M. O'Farrell, "Time.Accurate Navier-Stokes Computations of
UnsteadyRows: The Karman VortexStreet', AIAA27th AerospaceSciencesMeetingJanuary9-12, Reno,
Nevada, PaperNo. AIAA-89-0144.
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0.7 freestream speed, is more accurately defined. The stagnation point motion, Figure 3-19, and
separation point motion, Figure 3-20, and development of the shedding cycle, Figure 3-21, are
illustrated in this paper.

Re < | REGIME OF UNSEFARATE0 FLOW

ST011 • Re < q A FIXED PAIR OF FOPPL

VORTICES ill WAKE

441 • Re < NANDN _ Re < 150
TWO REGIMES IN WHICH VORTEX
STREET IS LAMINAR

150 • Pal < 300 TRANSITION RANGE TO TURSU-
LENCE IN VORTEX

300 • Re _ 3XtS S VORTEX STREET IS FULLY

TURBULENT

]Xt0 I _ Re < ).SxTo i

LAMINAR NOUNOARY LAYER HAS UNDERGONE
TURBULENT TRANSITION AND WAKE IS
NARROWER AND 0ISORGANIZ(0

3| X 10s • Re

RE-ESTABLISHMENT OF TURBU-
LENT VORTEX STREET
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u

Figure _. a7. Flow Regimes for the Circular Cylinder
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Figure 3-18. Computed Vortex Convection Speed
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Figure 3-19. Stagnation Point Motion
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Figure 3-20. Separation Point Motion
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Figure 3-21. Vortex Shedding Cycle Development
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There are repeatable vortex/wake fundamental synchronization pattems which were studied
by Williamson and Roshko. 3 The relevant parameters for investigating these patterns are the
Amplitude ratio, A/D, and Wavelength ratio, Z/D, where _. = UTe with Te being the period of
cylinder oscillation in the transverse direction. Figures 3-22 to 3-24 illustrate the vortex shedding
patterns. In these figures, S indicates a single vortex shed, P indicates a vortex pair, and P+S
means a pattern where in each cycle a vortex pair and a single vortex are shed.

11tl WAIQ! Of A_l O_&ATIN0 C_NOml
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Figure 3-22. Regions of Fundamental Vortex
Synchronization Pattems
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Figure 3-23. Patterns of Fundamental Vortex
Synchronization

Figure 3-24.
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Detail of Lock-in Region for Fundamental Vortex Synchronization

3 Williamson,C.J.K.,and A. Roshko," The Wake ofan OscillatingCylinder,"Journalof Ruidsand
Structures,2, pp. 355-381, 1988.
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Effective Structural Mass

For a uniform circular cylinder composed of homogeneous material, the structural mass per
unit length is the product of the cross sectional area and the density of the material. The effective
mass, m, used in calculation of the structural frequencies of the cylinder in a fluid medium must
include the added mass of the entrained fluid, ma. The effective mass, is then:

m = ms + ma
m = pm_R2+ pptR2Cm (3.2.1)

where Cm is the hydrodynamic mass coefficient, ms is the structural mass per unit length, ma

is the added (hydrodynamic) mass per unit length, Pm is the density of the cylinder material, pf is
the density of the fluid and R is the radius of the cylinder. The hydrodynamic mass coefficient for

a single circular cylinder may be approximated as unity over a large range of Reynolds numbers.
For more complicated cylinder systems more extensive calculations are necessary. Techniques
presented here for calculating hydrodynamic mass for circular cylinders are those enumerated for
various circular cylinder configurations from the excellent presentation by Chen and Chung 4. In
the following, formulas for Bessel functions referenced are found in the most mathematical texts.
While different end conditions contribute to the added mass formulas, only the rigid body or

simply supported configuration is calculated here. Chen remarks that the hydrodynamic mass is
a function of the vibration amplitude and frequency, and fluid damping is a function of the first and
second powers of the cylinder velocity. The added mass effects experienced from the free-free
(rigid body) end condition are taken to be representative of most
end conditions.

Single Circular Cylinder in a Cross Flow

The hydrodynamic mass of a single circular cylinder in an
infinite fluid was computed as a function of the vibrational Reynolds
number, B. From Figure 3-25, it may be seen that for values of the
vibrational Reynolds number which are above 100.0, the values of
Cm are near 1.0 and the normally used value for the added mass of

a singular circular cylinder approaches p_R2.

Cm = Real(H)

where, H = 1 +4K1(o.), _ =V-_', and B = LR2 .
ocKo(a) v

Single Circular Cylinder near a Wall

Chen gives the hydrodynamic mass for a vibrating
cylinder near a wall which is parallel to the axis of the
cylinder in the following formula for the hydrodynamic
mass coefficient:

(3.2.2)

4 Chen,S.S. and H. Chung"DesignGuideforCalculatingHydrodynamicMass Part I: CircularCylindrical
Structures',ComponentsTechnologyDivision,ArgonneNationalLaboratory,Argonne,Illinois,June 1976,
DocumentNo. ANL-CT-76-45.
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Cm = 1 + 4sinh2(a)_..,_
k-+sinh(ka)

(3.2.3)

wherea +)= , R is the radius of the cylinder, and LG is the distance from

the cylinder surface to the wall. The relationship of the hydrodynamic mass coefficient to the
reduced distance from the wall, LG/R, is shown in Figure 3-26.

'_ .._U._
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Figure 3-25. Hydrodynamic Mass Coefficient vs. Vibrational Reynolds Number
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Figure 3-26. Hydrodynamic Mass Coefficient vs. Reduced Distance to Wall
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Therearetwodegreesof freedom, motion in the x-
direction and motion in the y-direction, for the two parallel
cylinders problem. The motions in the two directions are
uncoupled. The x-direction (in-plane motion) matrix is
given by:

1
Emi_=p_.(R_2__)_,= R_=_l
and for the motion in the y-direction (out-of-plane),

The variables Vl 1, v12, and v22 are obtained from:

v11=1+
p4"2p2(R_l + R2 ) +( R22"R_I)2 k 6-k(a+aO

p2R2 sinh(ka)

CYUNDERS

G

(3.2.4)

v22=1+
p4-2p2(F:_l + R22) +( R22"R_I )2

_' k (_-k(a+a2),

p21F_I sinh(ka)

_2{ p4"2p2(FI_l+F_2)+(R_2-R_I)2

_ 2RtR2 1-_
vI2=[p(RI+R2) R_IR2_

T_, kcoth(ka)e'2ka ,
k=l

2 1/2

a= kn/p2 "F_I"R'_2+I( p2 "R_I"1:_2/ 11 /,

/ _,_ L_2_1R_jj /

_P"' L_ 2pR1 ] J /

{ [( -,,,o,a2=2kn p2"R'_I"R_2+ p2"I_l+R_2/-1/ _,and

2pR2 2pR2 J J /
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p=R1 + R2+ LG.

Values of Vl I and v12 are presented in Figures 3-27 and 3-28; and v22 may be obtained
from Figure 3-27 by exchanging subscripts I and 2.

I.C

Oe o._r o.s e 4? s eo O.r O.Z G$ e Z $

G/ue Stll'e

Figure 3-27. Vl 1 vs. Reduced Distance Figure 3-28. v12 vs. Reduced Distance

Crossflow Velocity and Reynolds Number

Many derived quantities, such as vortex shedding frequency or drag coefficient, are based
directly on experimental data obtained at a particular Reynolds number. Reynolds number, Re, is
calculated from the primary variables: flow velocity, kinematic viscosity, angle-of-attack, and
cylinder diameter by:

Re =UD
v (3.2.5)

where U is component of the flow velocity perpendicular to the cylinder axis, i.e. the crossflow
velocity U = V cos(a) where o¢is the angle-of-attack and V is the freestream flow velocity, D is the
diameter of the cylinder and v is the kinematic viscosity of the fluid.

Strouhel Number and Vortex Shedding Frequency

The frequency of vortex shedding is usually expressed in non-dimensional form, the Strouhal
number, S. Figure 3-29 shows the experimentally obtained relationship between Reynolds
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number and Strouhal number. From the data of Morkovin 5 and Lienhard 6, the Strouhal number

can be evaluated using the geometric mean of an estimated upper and lower bound curve:

S = 1/Sup SIo (3.2.6)

where

SIo = -0.42021 + 0.49398 Re - 0.12605 Re2 + 0.010189 Re3,
= 0.12983 + 0.008758 Re

if 40<Re <105,
if 105 < Re < 4.5x107

and,

Sup = -0.51351 + 0.6201 Re - 0.16988 Re`?. + 0.014924 Re3,

= 257.91 - 175.84 Re + 44.536 Re`?.- 4.9621 Re3 + 0.20533 Re4

= 122.71 - 49.679 Re + 1.7095 Re2 - 0.30149 Re3,

if 40 <Re<105,

if 105 < Re _; 107,
if 107 < Re <;4.5x107.

Experimental data bounds are curve-fit with log10 of the Reynolds number, Figure 3-29.

These curves have been expanded to an extremely high range of Re = 4.5x107 which was based

on vortex shedding data obtained from the Space Shuttle Solid Rocket Motor 7 during reentry.

The dashed region indicates where laminar/turbulent boundary layer transition occurs on the
cylinder. The vortex shedding frequency, fs, may be obtained from the Strouhal number by the

following relationship:

fs =SU (3.2.7)
D

where S is the Strouhal number, U is the component of the flow velocity perpendicular to the
cylinder axis and D the diameter of the cylinder.
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Figure 3-29. Strouhal Number vs. Reynolds number

Structural Modes and Amplitudes

Structural bending frequencies for the circular cylinder are approximated using equations for
a slender beam. These bending frequencies are functions of the beam boundary conditions,

5 Morovkin, M.V. " Flow Around a Circular Cylinder," Symposium on Fully Separated Flows, ASME
Proceedings, Engineering Division Conference, Philadelphia, May 1964.
6 Lienhard, J.H., op. cit. 3.2-(1).
7 RSRM data from Marshall Space Flight Center, Flight Database.
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namely, 1) clamped-clamped, 2) free-free, 3)clamped-free, 4) clamped-pinned, 5) free-pinned, 6)
pinned-pinned, 7) Free-Sliding, 8) Clamped-Sliding, 9) Sliding-Pinned, or 10) Sliding-Sliding. The
eigenvalues and modal frequencies are given in the formulation by Chang and Craig8:

f' = _.2 {E_._IKI1/2 (3.2.8)
2_L 2 _ m !

where the eigenvalues, _.i of free-free boundary conditions are 4.73, 7.8532, 10.996, 14.137,
17.279 for the first five modes and (2 i +1)¢/2 for higher modes, E is Young's Modulus, and la is
area moment of inertia for the structure. Eigenvalues and mode shapes for several beam mode
conditions are given in Table 3-7. The area moment of inertia for the cylinder is:

la=_R4 (3.2.9)
4

In Table 3-7, each end-condition listed and derived parameters is listed. For each mode n,
eigenvalues kn, mode shape function, yn(X) and multiplier an, and the associated mode shape
factor, Md, used in displacement magnitude calculations are presented.

For the spring mounted end-condition, ;Ln and an are not defined. Here k is the spring
constant and ms the mass of the structure.

Vortex Correlation Length and Joint Acceptance

As the free stream flow velocity varies over the cylinder length, spanwise coherent cells of
vortex shedding develop in three-dimensional flows and the vortex shedding frequency varies
discretely in laddedike steps along the cylinder span with each step (Griffin9; Ramberg 10; Rooney
and Peltzer 11). The length of these spanwise coherent cells, the vortex correlation length, can be
correlated with several physical parameters observed in Koopman's 12 strobe-light photography
cylinder flow visualizations. Vortex filaments were noted to roll up starting from one end of the
cylinder and their separation points travel to the opposing end, so that vortex filaments appear
tilted by an angle, 0, from the cylinder axis, Figure 3-30. The vortex correlation length, Lc, may
be estimated using:

Lc = bUcot(0) (3.2.10)
2fs

where bU is the vortex transport velocity, a fraction of the freestream velocity perpendicular to the
cylinder axis (the fraction b is usually between 0.4 to 0.8), fs is the vortex shedding frequency and
e is the tilt angle of a filament.

The vortex correlation length is used to obtain a weighting factor for the cylinder length
involving a ratio of vortex correlation length to cylinder length. This ratio, the joint acceptance, J,
accounts for the effect of vortex correlation on the flow lift force and can be approximated by:

J = (__) ½ (3.2.11)

8 Changand Craig, 1969.
9 Griffin,O.M., "VortexSheddingfromBluffBodiesina ShearFlow:A Review', Transactionsof theASME
vol. 107, September1985, pp. 298-306.
10 Remberg,1983.
11 Rooneyand Peltzer,1981.
12 Koopman,G.H., "The VortexWakesof VibratingCylindersat LowReynoldsNumbers',Joumal of Ruid
Mechanics(1967), vol.28,part3, pp. 501-512.
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Table 3-7. Eigenvalues and Mode Shapes for Several Beam Boundary Conditions.

n= 1 2 3 4 5 n

I, Clamped-Clamped

),.n= 4.73004 7.0532 10.9956 14.1372 17.2788 (2n*1)x/2

On= 0.982502 1.00078 0.999966 I. I. I.

Xn(x) = coehZ,nx/L - cos_Lnx/L - o n(elnh),_lx/L - ein).nx/L)

Md - 2 on [1 - (-I)n]/).n

2. Free-Free

),.n= 4.73004 7.8532 10.9956 14,1372 17.2788 (2n+l)x/2

on - 0.982502 1.00078 0.999966 I. 1. 1.

Xn(X) " coeh;Lnx/L + coe;l,nx/L - a n(elnhZnx/L + eln_nx/L)

Md " O.

3. Clamped-Free

)m= 1.8751 4.69409 7.85476 10.9955 14.1372 (2n-I)_12

On= 0.734096 1.01847 0.999224 1,00003 0.999999 1,0000

Xn(x) • coeh)-nx/L - coa;Lnx/L - a n(alnhknxlL - eln),.nx/L)

Md = 2an/_ n

4, Clamped-Pinned

)m • 3.9266 7.06858 10.2102 13.3510 16.4934 (4n+l)K14

On. 1.00078 1. 1. 1. I. I.

Xn(X) " cosh),_x/L - coe)mxlL - a n(slnhJLnxlL - sinJLnxlL)

5. Free-Pinned

_- 3.9266 7.06858 10.2102 13.3518 16.4934 (4n+l)x/4

on- 1.00070 1. 1. 1. 1. 1.

Xn(X) " coeh).nxlL + coe_nxlL - a n(slnh_nx/L + eln_LnxlL)

Md=[(-1)n _n_--_+l- _n-l_Zn
6. Pinned-Pinned

an= O.

_n(X) " aln_x/L

M d =[1 -(-1in ]/Z n
7, Free-Sliding

),.n= 2.36502 5.4970 8.63938 11.791 14,9226 (4n-I)x/4

an= 0,982502 0.999966 I. I. I, I,

Xn(x) • coeh).nx/L + coa).nx/L - a n(elnh).nx/L + sln).nx/L)

Md =[(-,)n _n,_/-_-_+I. _ ]/Z n
0, Clamped-Sliding

_n • 2,36502 5.4978 0,63938 11,701 14.9226 (4n-I)_14

On= 0.902502 0.999966 I. I, I, I.

Xn(X) " comh).nx/L - coe).nx/L - a n(alnh)mx/L - ein).nx/L)

Md=[(-1) n+l _n'V/-_--_+l-'_n-l+ 2on]/_n
9, Sliding-Pinned

ZI._, (2n-I)K/2

On- O.

Xn(X_ = cae_x/L

Md - (-I)n+I/[(2n-I)x/2]

10. Sliding-Sliding 11.Spr|ng-mounted Rigid Deoo

;Ln- nx 2ff n- (klfl) I12

an- O.

Xn(x) = coe_.nx/L Xn(x) • 1.

Md " 0 Md = 1,
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Figure 3-30. Determination of Vortex Correlation Length

System Damping

The structural viscous damping factor, _, is characterized by:

_ ener_ly dissipated per cycle (3.2.12)
4x x total energy of the structure

For a linear, viscously damped structure, the logarithmic decrement is a method of measuring
the amount of damping of free oscillations:

= YnI (3.2.13)

t,Yn+l ]

where Yn and YrH-1are successive cycles of a lightly damped structure, as illustrated in Figure 3-
31; and _ may also be obtained using the resonant frequency, fn, and f+ and f', where f+ and f-
are two frequencies on either side of the resonant frequency such that the amplitude is 0.707
times the amplitude of the resonant frequency.

2_ -f* "f" (3.2.14)
fn

i

-,_9T
. Y = Aye IPII(WDT _ 411

_hr' "I= (YI_"I)

TIi rr)

Figure 3-31. Free Decay of a One-Dimensional, Viscously Damped Structure
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When the drag coefficient of a cylinder is available and the structure is assumed to vibrate in
a single mode, the fluid damping ratios can be estimated as:

_fluid,transverse =
2_2/ m ]_2(onR/

and,

=CD/4pfR211 ij I (3.2.16)
_fluid,imline

_2 _ m /_2o)nR/

For small amplitude approximations, the total damping of a cylinder in a flow is given as the
sum of structural damping and the luid damping,

4 _ m /_2(onR/

where t0 is the component of structural damping measured in a vacuum and (On is the resonant
frequency.

Cylinder Displacement

Several models have been developed to estimate cylinder displacement amplitude. These
models estimate a maximum displacement amplitude, Ay, which normally occurs under lock-in
conditions, normalized by the diameter of the cylinder. Reduced damping, 8r, and reduced mess,
mr, are useful non-dimensional parameters in displacement amplitude estimation of vortex
shedding from bluff bodies.

Reduced mass (mass ratio), a measure of the effective mass, m, to the displaced fluid mess,
is determined by:

mr - m (3.2.18)
pfD2

where pf is the fluid density and D is the diameter of the cylinder. Figure 3-32 illustrates the effect
of increasing mass ratio on cylinder displacement, using the wake oscillator model. From this
model, the peak resonant cylinder amplitude may be expressed using the reduced damping
parameter, 5r. Using the reduced mass and the structural damping ratio, ks, the reduced
damping, is determined by:

8r = 4 x m_i (3.2.19)

A structural mode shape factor for displacement, ¥, is employed in the following models. At a
spanwise point x, along the structure, the displacement of the structure, according to the wake
oscillator model, is given by:

y(x,t) --Ay _x) cOs_st) (3.2.20)

where ¥(x) is the mode shape, as found in Table 3-7, at a point x, and (Os the vortex shedding
frequency. The mode shape factor is determined using Ymax, the maximum value of the mode
shape, ¥, in the following:
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_2(x)dx

7 =_rna

V4(x)dx

(3.2.21)

Models developed for the transverse non-dimensional displacement, Ay, are given below,
D

where S is the Strouhal number and 7 is the structural mode shape factor.

Wake oscillator model, Blevins13,

Ay = 0.07"y " (1.9*_r) S (3.2.22)D (1"9*5r) S2 _03* 0.72

Griffin and Ramberg model 14,

Ay = 1.29 ¥
D [, (3.2.23)

Sarpkaya model15,

Ay_
D (3.2.24)

Blevins and Burton Correlation (Harmonic) model 16, using the lift coefficient along the cylinder
span, CL(X):

Ay = x to' CL(x)_x)dx

D

(2xS fSr Iok¥2(x)d x

(3.2.25)

Using the joint acceptance and the mode shape from Table 3-7, this model takes the simple
form:

Ay _ Md j GL

D 4 = $26r (3.2.26)

13 Blevins,R.D.,"RowInducedVibrat/on',Van NostrandReinholdCompanyNewYork1977.
14 Griffin,O.M. and S.E. Ramberg," TheEffect=ofSynchronizedCylinderVibrationson VortexFormation
and Strength,Velocity Ructuations,and Mean Row,"PaperE-3, Symposiumon FlowInducedVibrations,
Karlsruhe,Gen'nany,August,1972.
15 Sarpkaya,T., "Vortex.InducedOsciilatior_',Journalof AppliedMechanic=,June 1979, vol.46, pp.241.
16 Blevins,R.D.and T.E. Burton,"Ruid ForcesInducedby VortexShedding,"J. Ruld Eng.,96, 1976.

3.2.16



CYUNDERS

In the following equations derived from the Correlation model, a, b, and c are empirically
determined constants. Here the vortex shedding is well correlated, i.e. the vortex correlation
length is approximately equal to the beam length. These empirical constants for the Correlation
model have been experimentally determined in the following cases: a = 0.35, b = 0.60 and c =
-0.93.

Ay- 4_s2_r" b z_ (4_S25r" b)2"4ac
spring-mounted rigid cylinder

D 2c

(3.2.27)

Ay 4"S2'r "3_b "'_ (4_S26r "3_-b)2"2ac
= pivoted rod

D c

AY = 4"S2'r'4_-b "'_ (4"S2'r'4_'b)2"_ a c sine mode

D 4 c
3

I0

--THEORY

O RIGID CYLINDER EXPERIMENTS

& PIVOTED ROD EXPERIMENTS

O CABLE EXPERIMENTS

I,.17

1

STRUCTURAL ELEMENT "t C_

...o,oD ,--,
STms onCAnLL I..S -_ "*'_.

1.1SE _ O ASIMPLE SUPPORT IEAM

CANTILEVER UJUd, 1ST MODE 1.lOS

CANTILEVER UAM, ZND MODE 1.4H

CANTILEVER HAM. )RO MODE I.S3Y O
I.II , , i s ! l , , , ! , , , ,

OJIt 0.1 I 10

l_z._
,= _=Z

Figure 3-32. Normalized Peak Amplitude vs Reduced Damping Factor

Reduced Velocity end General Amplitude Estimation

(3.2.28)

(3.2.29)

The reduced velocity, Mr, is defined by:

Vr =_U__
fnD (3.2.30)

where U is the crossflow velocity, D is the diameter of the cylinder and f is the frequency of
oscillation. As shown in Figure 3-33, the frequency of oscillation applies to the structural
movement in the fluid. This same logic can be applied to oscillation of the flow with a stationary
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structure, using f to be oscillation of the flow. The reduced velocity may also be applied to the
structural vibration due to natural structural frequencies in steady flow. Experimental data given

by Simmons and Cleary 17, indicated lock-in ranges for 5.3 < Vr < 6.5 in air and 4.2 < Vr < 7.8 in
water.

transverse displacement amplitude,-_--n,may be estimated under non-The non-dimensional
Ii/

lock-in conditions, using a correlation dependent on reduced velocity. The non-dimensional
correlation factor, _)r, may be derived from the Simmons and Cleary data and employed to
estimate transverse displacement amplitudes out of the lock-in range.

Curve-fits for _)r from the data of Simmons and Cleary have been obtained for both air flows
and water flows.
For air flows:

13r = -97.923 + 60.899 Vr - 12.608 V2 + 0.87088V 3

= -220.26 + 75.850 Vr - 6.5 Vr2

= -245.85 + 82.399 Vr - 6.875Vr2

= 18.085 - 4.9707Vr - 0.34343Vr2

and, for water flows:

Vr<5.6

5.6<Vr _5.9

5.9<Vr _6.3

6.3<Vr_7.3

(3.2.31)

1.)r = 29.750 -18.862Vr +39.25V 2 - 0.26333V 3

=-32.088 + 14.623Vr - 2.102V'_r +0.09733V 3

Vr < 5.6

6.3 < Vr <:7.3

(3.2.32)

This factor may be used to multiply with lock-in amplitudes obtained in the previous section to
estimate amplitudes for non-lock-in conditions:

(3.2.33)

Lift Coefficient Estimation

The resultant force acting on a body, perpendicular to the direction of the initial velocity is
referred to as lift, L. The dimensionless coefficient for lift is the lift coefficient, CL. The lift
coefficient is related to the liftby:

CL = I.

l pf U2A
(3.2.34)

where A is a characteristic area.

Simmons and Cleary 18 presented an method of obtaining the lift coefficient, C L, based on

the power, P, transmitted between fluid and structure in one vibration cycle:

CL= 2 P

D

where the non-dimensional cycle power is curve-fit from their data by:

(3.2.35)

17 SimmonsandClean/, 1979.
18 SimmonsandCleary, 1979.
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IVr/(. l'''o'
P = 52.057 _6-/I D ]

(3.2.36)

Figure 3-33 compiles experimental data relating the lift coefficient and Reynolds number.
When the non-dimensional displacement approaches a value of 1.22, the maximum observed
vibration amplitude, the lift vanishes. The lift coefficient given by Blevins19 as a function of
Reynolds number is bounded by the curve-fit in the following formula where: R=logl0(Re), and

CL = 0.24

= -36.179 + 21.068R - 3.883R 2

= -245.85 + 82.399 Vr - 6.875Vr2

1.6 < R < 3.6

+ 0.22977R 3 3.6 < R < 5.7 (3.2.37)
5.7<R<8

Blevins and Burton20 presented correlations for the liftcoefficient, C L, for a cylinder in steady
flow, Table 3-8, the coefficients a,b,c are as before in the previous section on displacement: a =
0.35, b = 0.60, c = -0.93.

Table 3-8. Lift Coefficient for Three Mode Shapes Using the Correlation Model

Mode

rigid cylinder 1

pivoted rod x
L

sine mode

_(x) CL CL

Ay<< 1 Ay
D D

I._ << L L_ >>L

D

8r --, 0

_3L/

a+ I:_-- +D _r_'--12,

3-6- -5-

1 (3.2.37a)

1.4 (3.2.37b)

1.2 (3.2.37c)

:
1- / '_ .,=_,._, C4n_wvaeve=evn4_ Cun,="I- __.:_---.,= ........ s'_,._,_,- -0-

oo, , , ,
5.10= 10` 2.10" S,10" I0 s "_=10" _ _=1(_ _ 10= s S=tO=) 10_ 2-10 = S,t0_ 10"2.10=

Iteyttol4& Numlim6", UDN

Figure 3-33. Lift Coefficient vs Reynolds Number

19 Blevins,R.D.op.cit.3.2-(12).
20 Blevins,R.D. andT.E. Burton,op. cit.3.2-(15).
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In addition there is data relating the liftcoefficient to the reduced velocity, and estimates for
the liftcoefficient can be made using the data from Sarpkaya 21, Figure 3-34.

2.S

I I
tO 20 30 40

Um/ID

Figure 3-34. Lift Coefficient vs Reduced Velocity

Drag Coefficient Estimation

The resultant force acting on a body, parallel to the direction of the initial velocity is referred to
as drag, D. The dimensionless coefficient for drag is the drag coefficient, CD. The drag
coefficient is related to the drag by:

CD= D

l pf U2A
(3.2.38)

where A is a characteristic area.

In-line structural bending frequencies for the circular cylinder are postulated to be the same
as those for transverse bending frequencies. However, the .in-line flow oscillations are twice that
of the vortex shedding frequency. It takes two vortices, one from each side of the cylinder, to
complete a lift cycle, however, each vortex being shed creates a fluctuation parallel to the flow
direction. Dougherty et a122 have duplicated this phenomena with time-accurate CFD analysis.

Drag coefficient data cited by Schlichting23 for the circular cylinder as function of Reynolds
number, Figure 3-35, is cuwe-flt by the following equation where,

C
C = IOgl0(CD) and

=1.0 -0.71612R +0.12755R 2 + 0.065666R 3
--0.68601 - 0.19911R - 0.0098063R 2
=7.4712 -6.0134R +1.5768R 2 -0.13415R 3
=-31.417 +21.336R -4.805R 2 +0.35965R 3
=-64.033 +24.744R - 2.3844R 2
=708.26 - 124.94R
=-53.619 + 25.788R - 4.1964R 2 +0.22923R 3

R = IOgl0(Re)
-1.000 < R < 1.000
1.000 < R < 3.000
0.000 < R < 4.301

4.301 < R < 5.041
5.041 < R < 5.672
5.672 < R < 5.673
5.673 < R < 7.073"

(3.2.39)

21 Sarpkaya,T., "Force8on Cylinder=andSpheresina SinusoidallyOscillatingRuid" J. Appl.Mech.,42,
32-37(197s).
22 Dougherty,N.S., oi:).cir.3.2-(2).
23 Schlichting,H.,'BoundaryLayerTheory',McGraw-Hill,1975.
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Stationary cylinder data given by Rodrigues 24, and Dougherty et a125 indicate that the
oscillating portion of the drag coefficient is approximately one-tenth or smaller than that of the lift
coefficient. A lower bound for the drag coefficient may be estimated by employing CD = 0.1 CL.

Dahm26 provides another estimate for the drag coefficient CD = 0.064.
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Figure 3-35. Drag Coefficient vs Reynolds Number

In addition there is data relating the drag coefficient to the reduced velocity, and estimates for
the drag coefficient can be made using the data from Sarpkaya 27, Figure 3-36.

20

!,S

C0 1.0 Inn

5 i 7 II IlO t5 20 30 40 SO tOO 150 200

U,l(f0)

Figure 3-36. In-line Drag Coefficient vs Reduced Velocity in Oscillating Flow

Drag amplification due to vibration can be deduced from a wake response parameter
presented by Skop28 •

24 Roddgues,1984.

25 Dougherty, N.S., op. cir. 3.2-(2).

26 Dahm, W.K., "Composite Model of a Random Forcing Function for the Excitation of Long Pipes by a

Crossflow', Internal NASA Communication, George C. Marshall Space Flight Center, Structures and

Dynamics Laboratory, Document No. ED31-79-15, August 1979.

27 Sarpkaya, op. cit. 3.2-(20).

28 Skop, 1977.
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1+_
Co %=__0

CO0 Vr S

(3.2.40)

At lock-in, Vr S ,=1 and drag values calculated using the wake response parameter compare

well with correlations given in Blevins29. This equation is an estimate of drag amplification when
there is transverse vibration.

Wall Effect on Drag Forces for Zero Mean Oscillatory Flow

The flow around a cylinder next to a wall is substantially affected. Figure 3-37 shows the
drag coefficient for a cylinder in a zero mean oscillatory flow versus the reduced velocity from
experiments conducted by Sarpkaya 30.

'1" P.. - .-I-
I /,,'%.__

<o Ill! _'.. "--_ "oI !!i _-."_.._'"_ _ -'_---

I ___.:--_i;;;

0 0 i 10 1S 20 2S 30 3S

t0

Figure 3-37. Drag Coefficient vs Reduced Velocity

Turbulence-Induced Vibrations

Structural response to turbulent flow is the induced structural vibration resulting from
fluctuating surface pressures encountered in the flow. The approach taken to account for
turbulence-induced vibration is based on a time-averaged mean square response of the structure.

For a sinusoidal structural mode shape:

the mean square resonant response, _ij, for the jth mode in the i direction, is given by:

= xSFIi(_.J)_ 2(x)

2o)pm2_l

(3.2.41)

(3.2.42)

where

29 Blevins,op. cit.3.2-(12).
30 Sarpkaya,T.," Forceson CylindersNeara PlaneBoundaryina Sinusoida#yOscillatingFluid,"J. Fluids
Eng.,98, pp. 499-505, 1976.

3.2.22



CYUNDERS

S FU(o)j) - Sp(mj)A2Ji_(°_J)
2

oL4_j(x)dx

_tisthe totaldamping, A = _OL, and

• (u
Io _j(x)dx=,lo sin?-(J_X_dx=L_L/2

(3.2.43)

(3.2.44)

The turbulence spectra Sp((O) can be found from Figure 3-38 and the Joint Acceptance Jj(m)

can be obtained from Figures 3-39 and 3-40. The convection velocity Uc, used in Figures 3-38 to

3-40 is approximated at 70% of the freestream velocity. The correlation length Lc may also be

approximated using the convection velocity divided by the frequency of the turbulence:

Lc = U---C- (3.2.45)
f_

q
Z

'el*
Z

%
-J

e_

\

d" 1.#11

l tl I_

Id/U

Figure 3-38, Mean-Square Spectra vs Inverse Reduced Velocity 34

Turbulence-induced vibrations usually have smaller amplitudes (approximately one-tenth) in
comparison to vortex induced vibrations at flow-structural lock-in conditions. The contribution of
turbulence-induced vibration can be added to that of the vortex-induced vibration. Blevins 32

summarized the turbulence induced vibration of a frontal row tube in a tube bundle. As a first

order approximation, the methodology is adapted to estimate the turbulence-induced vibration on
a bluff body.

Yrms/D = (1/16/_3/2) (1/mr/_1/2) Vr3/2 j 4>1/2 (3.2.46)

31 Wambsganss, M.W., and S.S. Chen," Tentative Design Guide for Calculating the Vibration Response of
Flexible Cylindflcal Elements in Axial Flow" Argonne National laboratory Report ANL-ETD-71-07, 1971.
32 Blevins, op. cit. 3.2-(12).
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where J = joint acceptance and the dimensionless auto spectral density of lateral force, ¢,

d> = 3.0 x10 -6 Vr3-5 0.33 < Vr < 5.0

= 4.0 x10 -4 Vr0.5 5.0 < Vr < 100.0
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Figure 3-39.
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Joint Acceptance for Simply Supported Rod33

(3.2.47)

j,.

Reduced Axial Distance

Figure 3-40. Reduced Axial Distance vs X 34

33 Chen,S.S. and M.W. Wambsganss,• Parallel.Flow.InducedVibrationof FuelRods,"Nucl.Eng. Design,
18, pp.253-278, 1972.
34 Chen,op. cir.3.2-(31).
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Methods of Supressing Cylinder Vortex Shedding

An excellent presentation on methods of supressing vortex shedding over the circular cylinder
is given by Zdravkovich 35. Zdravkovich classifies means of supressing vortex shedding into
three main categories: 1) surface protrusions, which affect separation lines and/or separated
shear layers, 2) shrouds, which affect the entrainment layers, and 3) nearwake stabilizers, which
prevent interaction of entrainment layers.

In the section on strakes, Zdravkovich noted that the effectiveness of strakes decreases with
the intensity of turbulence of the freestream and with increasing reduced velocity for a model
having the same damping.

Numerical Example

Consider a clamped-free acrylic rod of length 1.0 m with diameter 13.8 mm submerged in
water and vibrating in the first bending mode under the action of oscillating lift force induced by a
flow velocity of 0.19732m/s perpendicular to the cylinder axis. Determine the cylinder
displacement:

The following parameters are given:

Length of cylinder L
Diameter of cylinder D
Young's Modulus E
Area moment of Inertia I

Kinetic viscosity I_f

Structural matedal density Ps

Fluid density pf
Crossflow velocity U

Structural damping in vacuum r.,0

=l.0m
= 2 R = 0.0138 m
= 4.8 x 109 Pa
= x a4/4 =1.7803 x 10 -9 m4

= 9.8044x10 -4 kg/m-s

= 1190.2 kg/m3

= 997.4 kg/m3
= 0.19732m/s

= 0.001

The rest of the parameters are calculated as:

Cylinder area
Structural mass
Effective Structural mass
First eigenvalue

First mode

A = x R2 = 1.4957 x 10-4 m2
ms = 0.17802 kg/m
m = 0.3272 kg/m
_,1 = 1.8751

Reynolds number Re = 2770.1
Strouhal Number S = 0.2

The drag and lift coefficients are obtained from the CD and CL vs Reynolds number curves
Figures 3-33 and 3-34.

CD = 0.9652 CL = 0.24

The total damping of a cylinder in the lift direction is given as the sum of the effective structural
damping and the fluid damping. For the first mode

35 Zdravkovich,M.M., " Review and Classificationof VariousAerodynamicand HydrodynamicMeans for
SuppressingVortexShedding,"Journalof Wind Engineeringand IndustdalAerodynamics,7, pp. 145-189,
1989.
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1/_s 4 I m /_2(onR ]
= 0.00073761 + 0.31858(0.58052)(0.79577) = 0.14791

The reduced damping, mode shape factor, joint acceptance, and non-dimensional vibration
amplitude are then:

8r = 4 _ m_ = 3.2018
Md = 2 al/_.1 = 0.78299 from Table 3-7 and
J = (Lc/L)1/2 = (4 D/L) 1/2 = 0.23495

Ay = Md J CL =0.78299 x 0.23495 x 0.24 = 0.027433

D 4 p $26r 4 x 0.22x 3.2018

The maximum deflection amplitude at the free end of the clamped-free beam may be obtained by
determining the maximum deflection point for the particular mode shape and multiplying the
quantity Ay by this deflection value. For the clamped-free beam the maximum deflection is at the
free end of the beam where the nondimensional deflection amplitude for the first mode is about
1.446. The expected maximum displacement for the cylinder is then 0.03967 m.

Rotating Cylinder - No Vortex Shedding

Tokumaru and Dimotakis36 investigated the mean lift coefficient of a circular cylinder executing
rotary motions in a uniform flow. The rotary motions included steady rotation and rotary
oscillations with a net rotation rate. A rotating cylinder moving in a uniform stream experiences a
transverse force known as the Magnus force. Badr et a137observed that there was no periodic
vortex shedding from a circular cylinder that was rotating with a surface velocity greater than two
or three times the freestream velocity. The mean lift coefficient can be written as

CL= La =Fa (3.2.48)
p U2 U

where p = fluid density, L = lift per unit span, U = freestream velocity, a = radius, and F = mean
circulation. Their experimental study was performed in a 20" x 20" free surface water tunnel. A
1"D Plexiglas cylinder with 18.7" length was supported 10" above the bottom of the water
channel, between 0.5" thick fairings placed flush to the sidewalls of the channel. Power was
transmitted from a DC motor to the cylinder with timing belts. The angular motion of the cylinder
was given non-dimensionally,

=Qo+ Q1 sin(2xft) (3.2.49)

where _4 =0a/U and 0 = angular velocity, f = forcing frequency, Qo and Qlare amplitudes of the
steady and harmonic components of the cylinder motion. The normalized forcing frequency is the
forcing Strouhal Number

S =2al (3.2.50)
U

36Tokumaru,P. T. and Dimotak_,P. E., "The Liftof a CylinderExecutingRotaryMob_'_ ina Uniform
Row," J. Ruid Mech.,vol.255, pp. 1-10, 1993.
37Badr,H. M., Coutanceau,M., Dennis,S. C. R. and Menard,C., "UnsteadyRow Pasta Rota_ngCircular
Cylinderat Reynoldsnumbers103and 104,- J. Ruid Mech.,vol.220, pp. 459484, 1990.
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They used the virtual vortex method to estimate lift coefficient. Instead of an infinite domain, the
channel flow was considered as an infinite series of spatially periodic image vortices located

above and below the cylinder (see Figure 3-41). Therefore, the transverse velocity along x-axis is
given by

v(x,y=0)=-[" csch(_ -)2h

(3.2.51)

where h = channel height and Xo = streamwise position of the virtual vortex. In terms of CU one
has

v(x,y = O) = _L CLcSCh (x_-'_)U 2h

l

(3.2.52)

Figure 3-41.

]

Diagram of Pedodic Image Vortices. Only the Image Vortices
Immediately Above and Below Are Pictured
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Figure 3-42. CL Based on Data Fit and Data of Reid (1924) and Prandtl (1925)
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For large x distances, one may approximate x - Xo ~ x. For steady rotation, _1 = 0, they tested
in the range of 0.5 < Qo < 10 at Re = 3800. The deduced lift coefficient is given in Figure 342 in
comparison to data of Reid (1924) and data of Prandtl (1925). They addressed the cylinder end
effect from the data comparison that the higher the aspect ratio the higher the CL. They argued
that due to unsteady effect the lift coefficient can exceed the 4_ limit of the maximum CL
proposed by Prandtl. They also addressed the Reynolds number effect at low values and that
their CL values remained positive even when _0 < 0.5.

They then investigated the forced oscillations with the forcing Strouhal Number of S = 0.7 and Re
= 6800. They found that under forced oscillations, CL values were higher for 0.0 < _o < 2.5 and
lower for 2.5 < Qo < 4.5 in comparison to the corresponding steady rotations. The results further
indicated that for _o > 4.5, the effect of forced oscillationdiminished as shown in the reference
Figure 3-43. Their flow visualization revealed that for Q0 < 2.5, forced oscillation of the cylinder
help close the wake, creating a flow that was closer to potential flow and better span-wise
correlated. In contrast, for 2.5 < Qo < 4.5, where the wake would normally close with steady
rotation alone, oscillations tended to 'diverge' the wake flow.
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Figure 3-43. Comparison of CL vs. _0 Data for S = 0.7 at Re = 6.8 x 103
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3.3 Tube Arrays

Consider a pipe, one among several in an array of tubes or pipes, exposed to a fluid cross
flow. A fluid force, brought about by the asymmetry of the flow field, might be exerted on the pipe
with sufficient magnitude to displace the pipe from its equilibrium position. If the ratio of fluid force
to pipe support damping is sufficientlylarge, then the pipe may vibrate with a large amplitude.

Flow-induced vibration introduces a displacement mechanism distinctlydifferent from that for
vortex-induced vibration because no inherent, unsteady component of the flow is required for

vibration. The force on the pipe is generated by the interaction of the flow field on the rest of the

array, resulting in vibrations that are either whirling (pipes vibrating in oval orbits), jet switching
(vibration due to coupling and uncoupling of fluid jets behind the array), or vibration from the
interaction of a pipe with the wake of another pipe upstream. In closely spaced pipe arrays, the
vortex shedding frequency degenerates into broad-band turbulence which buffets the pipes.
Whirling instability ordinarily arises at flow velocities beyond vortex-induced resonance. Jet
switching produces an instabilityat high, reduced velocities.

Vibration due to Whirling

Consider the two-dimensional structural model for the pipe array illustrated in Figure 3-44.

The terms, xj and yj, represent the displacement components of the jth pipe from its equilibrium
position in the row. The terms, kJxand kJy,are the stiffnesses of the spring supports parallel and
normal to the free stream flow. The tern_s, _Jxand r_Jyare the coefficients of viscous damping of

each pipe parallel and normal to the free stream due to structural and fluid mechanisms.

U U

I'='YJ"_1 1

_t_ ' \kJ
j-1 j x j+l

Figure 3-44. Structural Model for Array of Pipes1

1 Blevins,R.D., " Flow-InducedVibration,"KreigerPublishingCo.,pp. 88-117, 1977.
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Oscillatory fluid forces on the pipes can arise due to several reasons. First of all, fluid forces

can arise from periodic vortex shedding. However, such vortex shedding generally does not
produce large amplitude pipe vibrations in pipe arrays where the pipe-to-pipe spacing is 1.5 pipe
diameters or less. This is because the proximity of the pipes cause the regular vortex shedding to
degenerate into broad band turbulence. Another example is fluid forces caused by jet switching
of a wake.

Jets issuing from sufficiently close-spaced pipes can couple. Changes in pipe position can
cause the jet pairs to switch and produce pipe oscillation. Jet switching has been observed for
reduced velocities, U/fD, of order 100, where U is the free stream velocity between the pipes, f is
the natural frequency of the pipes, and D is the outside tube diameter. The jet switch mechanism
may not be operative for U/fD <75 owing to the time required for the switch2.

Fluid forces can also be caused by asymmetry of the flow pattem as one pipe is displaced
from its equiUbrium position. If a pipe is slightly displaced in a regular pipe army, then the steady
fluid force on the pipe will change since the flow pattern changes. Since the flow pattern through
a pipe array is a function of the positions of the pipes relative to each other, it is reasonable to
assume that the change in fluid force on one displaced pipe is a function of its displacement
relative to the displacements of the other pipes. Furthermore, if the pipe displacements are small
it is reasonable to assume that the pipe in a regular pipe array will primarily interact with its two

nearest neighboring pipes. Thus, the change in steady fluid force per unit length on a pipe, say
the jth pipe, in the x and y directions (Fix,y), can be written as a function of j pipe displacements

(xj,yj) relative to the displacements of the neighboring j+l and j-1 pipes, i.e.

FJx,y=p U2 g x,y(Xj+l -xj, xj "xj-1, Yj*I "Yj,Yj"Yj-I)/4 (3.3.1)

where p is the fluid density, and U is the free stream velocity at the minimum cross section
between the pipes. The symmetry of the pipe geometry requires that the fluid force have certain
symmetries for small displacements about the equilibrium position of (x,y)=(0,0). Therefore,

°_gx'Y =-(n'l ) °_gx'Y =Kx,y (3.3.2)
o (xj-xj-1)x=y=o o (xj.1-Xj)x=y=o

_gx,y =+ c3gx'Y =Kx, y (3.3.3)
 )(yj-yj.dx=y=o  (YI.I -yj)x=y=o

The plus and minus signs are used for the y and x components, respectively, in Equation 3.3.2,
and for the x and y components, respectively, in Equation 3.3.3.

There are also fluid forces which depend on pipe velocity and acceleration. Such forces can
be considered to be the sum of added mass and inertial coupling. The added mass effect can be

easily incorporated in the analysis by increasing the pipe mess by the added mess of entrained
fluid. The coupling between pipes arises from the fluid forces generated by the relative
acceleration between vibrating pipes. The importance of inertial coupling increases with the ratio
of the mess of fluid displaced by a pipe to the mass of the pipe.

2 Roberts,B.W.," LowFrequency,AeroelasticVibrationsina Cascadeof CircularCylinders,"Mechanical
EngineeringScienceMonographNo.4, September1966.
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If there is sufficient smoothness in the variation of fluid force with pipe displacement, then
only the linear terms in Equations 3.3.2 and 3.3.3 are required in the stability analysis. The
linearized equations of motion for one pipe in an infinite pipe row are developed by expanding the
fluid force on the jth tube, Equation 3.3.1, in a Taylor series about the equilibrium position using

Equations 3.3.2 and 3.3.3,

Fj = p U2 (Kx(xj-xj-1) - Kx(xj.l -xj) +Cx(Yj-Y j-l) +Cx(Yj+l -Yj) )/4 (3.3.4)

Fj = p U2 (Ky(xj -xj-1) + Ky(Xj, l -xj) +Cy(yj -Yj-t) "Cy(yj+l -yj) )/4 (3.3.5)

and applying these forces to elastically mounted pipes. The linear equation describing the pipe

motion parallel to the free stream is,

m_rj, ;_nl_JoJj_(j,kJxxj=p U2 _x(-Xj, l -Xj.l* 2xj), Cx(Yj+I -Yj-1) )/z (3.3.6)

The linear equation describing the pipe motion normal to the free stream is,

+ AJx =pU2r- -Yj.l -Yj-I+2yj)+Ky(xj+l )/, (3.3.7)

where _x and (oJyare the circular natural frequencies, _ and _y are the sum of the structural and
fluid damping factors, and m is the mass per unit length of the tube including the entrained mass
of the fluid. Note that

r12 (3.3.8)m= +
4

where mo is the mass per unit length of the pipe and CI is the inertia coefficient of the pipe
bundle.

Equations 3.3.6 and 3.3.7, which describe a single pipe in a row, cannot be solved
independent of the motion of neighboring pipes. The fluid force couples the motion of the
neighboring pipes and induces vibration in the x and y coordinates. Although these equations of
motion are developed for a pipe row, they apply to a pipe array if (a) the pipe arrays are regular
and symmetric, as is ordinarily the case with in-line and staggered pipe arrays, and (b) each pipe
interacts principally with only two of the nearest pipes.

Wake-Induced Vibration

This mechanism for generating vibration is caused by velocity gradients in the wake of an
upstream pipe which imposes sufficient force on a downstream pipe to induce vibration. Consider
an elastically mounted pipe in the wake of another pipe as illustrated in Figure 3-45. Lift and drag
forces, Fy and Fx respectively, on the elastically mounted pipe adse from mean flow plus velocity
and pressure gradients in the wake, i.e.

Fx =2j- p U2 Cx (3.3.9)
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Fy =21p U2

and the coefficients of fluid force in the x and y direction are defined as

Cx = _DCOS (x - CLsin ¢x)Ur2el
U2

Cy = _CLCOS(x+ CDsin (x)Ur2el
U2

!.

l -a _,
UIoc - x }i: _ Fx

I FoI
I

X0 _ :

(3.3.10)

(3.3.11)

(3.3.12)

Fiqure 3-45. Wake Interaction Structural Model3

where CL and CD are th_ _d drag coefficients. The angle of attack of the flow to the pipe is,

(3.3.13)

and the relative velocity is,

U2reI =_2 + ( U-i) 2 (3.3.14)

where Uloc Is the local fluid velocity in the wake. The liftand drag coefficients are functions of the
position of the elastically mounted pipe relative to the wake of the upstream pipe.

For small disturbances, Equations 3.3.11 through 3.3.14 can be expanded in terms of small
displacements of the pipe, x and y, from its nominal position,xo and YO,

X =xo + _ (3.3.15)

3 Blevins,R.D., op. cit.(2).
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Y =Y0 + Y

Therefore, one obtains

Cy = CL + (xCD + O(x 2)

Cx = CD -(7.CL+ 05 2)

CD =CD(X0,Y0) +_CDx + _C___y+ O(x2,y2)
ax

CL = CL(x0,Y0) +_)CLx + _C__y+ O(x2,y2)
o_x _y

+o0 )
Uloc

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

Ur2el= U2- 21._). O_y2) (3.3.22)

For stability analysis, only linear terms are retained. The equations of motion are obtained by

substituting Equations 3.3.17 through 3.3.22 into the force equations, Equations 3.3.9 and 3.3.10,
and applying these forces to the elastically mounted pipe:

o

A free stream inclined with respect to the pipe axis would introduce additional terms 4. Fluid

fomes couple the x and y motions of the pipe through displacement and velocity. The coupling
produces an elliptical orbit when the flow velocity exceeds the critical velocity. It is possible to
obtain some limited solutions if all velocity-type terms in 8x/6t and 6y/6t are neglected 5. However,
solutions of the following form can be generally assumed,

x = x (expxt)

y = ,£ (expM)

where x. y. and _, are constants.

(3.3.25)

(3.3.26)

These equations are substituted into Equations 3.3.23 and

3.3.24, and conditions are sought such that ;L has only negative real roots and all perturbations
diminish in time. This generally requires numerical solution of the roots of a fourth-order stability

polynomial for

4 Simpson,A., "Determinationof theNaturalFrequenciesof Multi-ConductorOverheadTransmission
L/nes,"J. SoundendV'd:)ration20, pp. 417-449, 1972.
5 Simpson,A.," On the Fiutterofa SmoothCylinderina Wake,"AeronauticalQuarterly22, pp.25-41,
1971.
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Since CL and CD are functions of the location of the pipe in the wake, it is possible to map out
regions in the wake where the pipe in the wake cannot be unstable. For example, if the pipe in
the wake is located directly behind the forward pipe (y0=0), then the symmetry of the flow implies
that

CL = _SCL/Sy= 8CD/Sy = 8CL/_X = 0 (3.3.27)

and no instability is possible. If the pipe is located outside the wake of the forward pipe, then

CL = _T>CL/SX= _3L/Sy = _SCD/Sx= 6CD/Sy = 0 (3.3.28)

and no instability due to wake interaction is possible. For flows with high Reynolds numbers, the
lateral width of the wake is proportional to _ 6

Jet-SwitchingVibration

Consider the pipe army illustrated in Figure 3-46. The fluid jets shown form in the wake of a
closely spaced pipe row or army. If the pipe-to-pipe spacing is less than about T/D=2.2, then the
jets pair up. By sufficiently displacing pipes upstream and downstream, the jet pairs could be
switched. Since the drag force on a pipe can significantlychange as the jets switch, jet switching
can input energy into the pipe. Jet switching is not expected to affect pipe arrays or pipe arrays

with very irregular exits.

Figure 3-46. Illustrationof Jet-Switching Vibration7

6 Timoshenko,S., andD.H. Young,• VibrationProblemsIn Enoineedrm_,"D. Van Nostrand,NewYork,pp.
425, 1954.
7 Roberts,B.W., op. cit.(3).
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Tube Bundle Experimental Data

Data review and compilation for onset critical flow velocities also include those for tube
arrays. Andjelic et al8 presented flow-induced lock-in data in a triangular tube array. Their
measurements were carried out on one or several flexibly mounted tubes in an otherwise fixed
tube bundle. A closed-circuit wind tunnel with a 1.5 m diameter by 2.1 m test section was used
for the tests. The tube bundle was comprised of eighteen 80 mm by 800 mm aluminum cylinders
in the multi-row normal triangular array having a pitch-to-diameter ratio of 1.25. The transverse
tube spacing, t is 100 ram. The mass-damping parameter can be varied over a range of 10 < 5r <
80. Where _r = P.5 / p d2, I_ = tube mass per unit length = 2.75 kg/m, 8 = logarithmic decrement
measured at no flow condition, and p -- fluid density. The tube mid-point motions for two test
conditions: a) the reduced gap velocity, Vr, is 13 and _r = 9.96, and b) Vr = 13.75 and 8r -- 13.53
were given. The transverse displacement had an amplitude of 5 mm and the in-line displacement
amplitude was 0.4 mm in the latter and approximately one-fifths in the former condition. The lift-
induced deflections are greater than the drag-induced deflections by a factor of 5 to 10 times.
The reduced gap velocity is defined by Vr = U / (fl d), where U is the mean gap velocity =

P UJ(P- 1_,P is the pitch of the tube bundle, dis the diameter of each tube, fl is the first natural
d _d /
tube vibration frequency at no flow condition = 9.85 + 0.1 Hz, and U==is the undisturbed upstream
velocity. Average reduced amplitude as a function of Vr for the one iso-viscoelastically mounted
tube case was considered for 8r = 10.14. The flow-structural lock-in phenomenon took place in
the range of of -10 < Vr < 17. Hysterisis effect was found. By plotting Vrcrit versus _r, the
instability flow map was given. According to their results, the instability region had a critical
reduced gap velocity from 12 to 24 when reduced damping was less than 14.

They measured the tube mid-point motions of nine linear iso-viscoelastically mounted tubes
at two flow conditions: a) Vr = 17.25 and 8r -- 29, and b) Vr = 20.65 and 8r -- 43. Only six of the
eighteen vibration loops have greater lift-induced deflections, therefore the drag-induced
deflections in tube arrays can be on the same order of magnitude. Also, the damping can be
used as a means to reduce the vibration amplitude. For this tube bundle test they recommended
the use of A = 35, B = 0.375, and 13= 1.7 in the empirical curve:

(3.3.29)

In addition they used a least-squares analysis to find the the curve-fit:

V, = 3.43 &o.44 (3.3.30)

which fits a set of 38 experimental data very well.

8Andjelic,M., Austen_ann,R. andPopp,K., "MultipleStabilityBoundarle=of Tubesin a NormalTdangular
CylinderArray,"Instituteof Mechanics,Universityof Hannover,Germany,1988.
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3.4 Other Bluff Bodies

Trailing Edges of Vanes and Struts

Vanes and struts immersed in a freestream flow, flat rectangular or curved, elliptic or

approximating an airfoil shape may be designed with bluff trailing edges for ease of manufacture

or added structural strength. A disadvantage can result in the installation under flow conditions

conducive to vortex shedding due to the particular trailing edge design instead. Some data on

vortex shedding amplitude collected by Donalson, Heskestad and Olberts, and Ippen (cited by

O'Connor and Jones 1) given in Table 3-9 show that 60 ° symmetric trailing edge beveling

increases vortex shedding amplitude by as much as 360 percent over a straight rectangular

trailing edge. The reference is a rectangular edge being 100 percent. As seen in the table,

reductions in bevel angle down to 30 ° and asymmetric bevel cuts can reduce vortex shedding

amplitude as much as two orders of magnitude. For example, a cylindrical trailing edge

(reference unmodified geometry) can be improved, if the thin trailing edge section is allowable, by

an asymmetric 30 ° bevel for example (reference geometry selected).

Table 3-9. Effect of Vane or Strut Trailing Edge Shape on Vortex Shedding Amplitude
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1O'Connor, G. M. and Jones, J. H., "Row-Induced Vibraions of the SSME LOX Inlet Tee Vanes," AIAA-88-
3132, AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference, Boston, Mass., July 11-13, 1988.
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H-Shaped Sections

One of the well-studied bluff body shapes is the H-shaped section. Since the spectacular
crash of the original Tacoma bridge in 1940, the aerodynamic and aeroelastic behavior of an H-
shaped section has attracted many engineering analyses, including high frequency flow/structural
interaction studies. It is of particular interest here because of coupled motions. In the case of
flow past a rigid bluff body, the shedding of Karman vortices is usually referred as the low-
frequency mode, while the shear layer instability yields the high-frequency mode. There is
another instability due to the impingement of the separated shear layer (from the leading edge) on
the trailing edge of a bluff body which may generate sub- and super-harmonics of the vortex
shedding frequency. The H-shaped sections are also prone to this "impinging shear layer
instability'.

A Reference Test

Shewe 2 conducted an experimental study on an H-section which has the same width-to-
height ratio as that of the original Tacoma bridge. The geometrical details of the H-shaped cross-
section of the wind tunnel model and the coordinate system used were given in the reference
Figure 3-47. The definitions of the aerodynamic drag, Fx, lift, Fz, and moment, M, in relation to
the coordinate system and angle-of-attack, a, are denoted in the figure. The section has a width
of B -- 0.055 m, a height of H -- 0.11 m and thus a ratio of B/H = 5 corresponding to the original
Tacoma bridge. The model's length L = 0.6 m yielding an aspect ratio of L/B = 10.9. The
thickness of the test model is d = 0.003 m. The ends of the test model were clamped to a
multicomponent piezo-balance of high stiffness and sensitivity. The natural frequency and
damping of the first bending mode were found to be fB = 103 Hz and 8B -- 0.0018. The natural
frequency and damping of the first torsion mode were found to be fT = 401 Hz and 8"1"= 0.0005.

(o)

ueo

(b)

Figure 3-47. (a) Dimension of the H-shaped section;
(b) definition of the coordinate system (Fx: drag; Fz: lift; M: moment).

The technical data from the wind tunnel test are as follows:

Maximum flow speed

Size of the square test section
Pressure range
Reynolds number range
Contraction ratio
Electrical power

u= = 38 m/s
0.6 x 0.6 m2
1 < p < 100 bar
104 < Re < 107
K= 5.6
N = 470 kW

2Shewe, G., "NonlinearFlow-InducedResonancesof an H-ShapedSection,"J. of FluidsandStructure,3,
327-348, 1989.
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The Reynolds number is based on a length of 0.06 m which is one-tenth of the side of the test
section. The turbulence intensity of the freestream increases slightly with increasing Reynolds
number but is less than 0.4%.

Impinging Shear Layer Instability

Schewe 3 substantiated the impinging shear layer instability by introducing the force
measurements in the flow around a square section at a -10° angle-of-attack as shown in Figure 3-
48. The power spectra of the lift and drag fluctuations reveal the existence of the sub- and
superharmonics including peaks at 112and 3/2 times the vortex shedding frequency.

60 .....

Lift

, , i__.._ . °=_,0 o!

' ' s 2f,
0 _f" , _t,

' A ' , 34

-,,o i
I °t

Drog

| I I I I I I I I

0 IO0 200

Frequency, f (Hz)

Figure 3-48. Example for the occurrence of sub- and super-harmonics in the flow
around a square cylinder at angle of Incidence (z = -10 °

Reference Test Results - Strouhal Number and Force Coefficients

Nakamura and Nakashima 4 measured the Strouhal number of both frequency modes for
wide range of width-to-height ratios (2 < B/H < 8). They found that for the high-frequency mode,
the Strouhal number based on width B (SB = f B_=) is nearly a constant with a value of 0.6
approximately. For small values of B/H there are two frequency modes, and after a transition at
about B/H = 4, the two modes collapse to one frequency. In other words, for B/H > 4 including
the Tacoma profile, both the Karman vortex shedding mechanism and the vortical motion in the
shear layers are probably synchronized and oscillate with the same frequency. Consequently,
these coupled fluid oscillators produce many secondary peaks in addition to the fundamental
frequency.

Shewe (1989) measured the Strouhal number S for the H-shaped section (B/H = 5), which is
a weak function of Reynolds number. That is, S = 0.113 at Re = 2 x 105 and S = 0.11 at Re = 2 x
106. There is a 3% decrease in a ten-fold increase of Reynolds number. Here the Strouhal
number is based on height. Likewise, the lift and drag coefficients are also weak functions of
Reynolds number. Therefore, as an approximation one may consider that they are mainly
functions of angle-of-attack. The Strouhal number based on width would be from 0.565 to 0.55

3Schewe, G., "Die auf Sturnpfe Profi/e bei Grotsen Reynolds-Zahlen Wirken," DFVLR-Mitt. 84-19,

Untersuchung der Aerodynamischen Krafte, Gottingen, 1984.

4Nakamura, J. and Nakashima, M., "Vortex Excitation of Prisms with Elongated Rectangular, H and T
Cross-Sections," J. of Fluid Mechanics, 163, 149-169, 1986.
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which agrees to the finding of Nakamura and Nakashima (1986). The steady moment, lift and
drag coefficients as functions of angle-of-attack are given in the reference Figure 3-49 for Re = 8
x 105. For numerical purpose of galloping analysis, the curve-fits are provided herein, where (x is
the angle of attack (AOA):

CM = 1.0048e-4 - 8.5408e-3 a + 2.1425e-3 a2 + 4.8097e-4 a3 + 2.2083e-5 a4 if a < 0
= -1.0048e-4 - 8.5408e-3 a - 2.1425e-3 a2 + 4.8097e-4 a3 - 2.2083e-5 a4

CL = -1.0166e-3 + 0.14795 a + 1.4603e-2 a2 - 1.8611e-4 a 3 - 6.5505e-5 a4
= 1.0166e-3 + 0.14795 a - 1.4603e-2 a2 - 1.861 le-4 a3 + 6.5505e-5 a4 if a _>0

ifa_>0
ifa<0

CD = 1.2395 - 1.3475e-2 lal + 9.9891 e-3 a2 + 3.4838e-4 lal 3

where a in degrees. The drag coefficient is CD = 1.24 at a = 0° and increases up to 2.0 at a =
10°. The lift and moment coefficients are highly nonlinear. The slope of the lift curve is positive

with a value of °_CI- Ia = 0 = 6.9 rad"1 indicating that the H-section is aerodynamically stable in

bending. However, the negative value _CM la = 0 =" 0.77 rad"1 indicates that the H-section is
_a

galloping unstable in torsion.

In fact, there are two basic mechanisms which can lead to flow-induced vibration of a bluff
body. The first is a vortex resonance excitation which occurs when the dominant frequency of
vortex shedding coincides with a natural frequency of the structure. The second mechanism is
that of the galloping instability which appears as a self-excited oscillation in a natural mode of the
structure above a certain critical flow speed.

Lock-in Phenomena

The vortex shedding frequency was recorded by Schewe (1989) with varying wind-tunnel flow
speed as shown in the reference Figure 3-50. The vortex shedding frequency is normalized by
the first bending mode frequency of 103 Hz. In general the vortex shedding frequency is
proportional to the flow velocity and leads to. 3trouhal number of S = fv H/U = 0.115. The figure
also includes the aeroelastic response of th, lift coefficient which is the rms values of the lift
fluctuations based on width B. The lift coefficient at resonance is substantially greater than the
"stationary" structure values as shown in the reference Figure 3-49 (b). This is because at
resonance the structure vibrations induce elastic and inertia forces in addition to the aerodynamic
Ioadings.

In addition to the fundamental resonance when the vortex shedding frequency locks in with
the first bending mode of the structure, there are several superharmonic resonances at u=/ucB =
0.5, 0.3, etc. Where UcB is the critical velocity at which the vortex shedding frequency is equal to
the first bending mode frequency. This is due to the impinging shear layer phenomenon
associated with the H-shaped section. The lock-in at the first bending mode is significant in that
the vortex shedding frequency synchronizes with the first bending frequency in a range of flow
velocities in the vicinity of UcB (= 9.8 m/s) and shows a plateau.

Torsional Vibration and Galloping

Figure 3-51 (a) shows the response curve of torsional resonances. The normalized rms
values of the fluctuating moment were taken with the corresponding rms lift. The estimated
critical flow speed for the first torsional mode is UcT = 40 m/s which is higher than the maximum
flow speed of the wind tunnel. In the testing range, several superharmonic resonances in torsion
were found as shown in the figure. Among them the second (or 1/2) order superharmonic
resonance happens at a flow velocity of -25 m/s.
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Figure 3-49. Steady moment and force coefficients depending on

the angle of incidence (Re = 8.1 x 105).

A value of 0.23 Hz was estimated for the frequency of the torsional oscillation which

ultimately led to the collapse of the original Tacoma bridge. With this frequency the main
resonance in torsion would occur at a critical flow speed of UcT = 5.2 m/s, which was

approximately one-fourth of the wind speed at which the catastrophic oscillations were observed.
The condition was probably fulfilled for a subharmonic resonance of the one-fourth order. Due to
the galloping instability of the H-section, it is believed that the torsional vibration caused the
destructive oscillations of the old Tacoma bridge.

Strouhal Number for Several Bluff Bodies

Blevins (1986 and 1990) compiled Strouhal number data for several bluff body shapes in

Figure 3-52. The length scale used in the Strouhal number is defined as the maximum width of
the section normal to the freestream, in the table there are five Strouhal number data associated

with H-sections. They are in the same range of the square section Strouhal numbers. Two of
them have values of 0.12 which are comparable to those reported by Schewe (1989) and

Nakamura and Nakashima (1986). When the angle-of-attack is 90 ° instead of 0 °, the Strouhal
number falls in the range of 0.137 to 0.145 as shown in the table. In the figure, Strouhal number
versus Reynolds number for ten bluff body shapes are given. These shapes include a sharp-
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edge plate, a tapered plate, a tail-flattened and a head-flattened circular cylinders, a round-edged
plate, a forward and a backward triangular sections, a square section, a wavy wall and a sphere.
The tail-flattened circular cylinder and the round-edged plate have Strouhal numbers close to that
of a circular cylinder• The forward triangular section has a higher Strouhal number (-0.17) than
that (-0•14) of the backward triangular section. Apparently, it is because the backward triangular
section is bluffer to the flow than the forward one.
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Airfoils and Turbomachinery Blades

3.5 Airfoils and Turbomachinery Blades

In comparison to bluff bodies, streamlined structural elements experience less flow-induced
vibrations. However, flow induced vibrations often occur under off-design conditions. In the case
of airfoil, it may develop unacceptable vibrations in the following cases: a) when the flow field is
highly irregular or rotational, b) when the flow angle-of-attack is large enough for substantial flow
separation or stall, or c) when icing takes place that the shape becomes blunt and bluff. On icing,
Nark (1983) addressed the degraded lift and increased drag. Guffond et al (1989) included the
blunt leading edges due to icing for several air velocities.

Airfoils

Brown and Stewartson (Brown,S. N. and Stewartson,K., "Trailing-EdgeStall,"J. FluidMech. vol. 42,
part 3, pp. 561-584, 1970) studied the trailing edge stall of an airfoil. The condition for separation
was found to be

1

a" ~I-C_-I_ for incompressible flow
_Rel

a ° -(C'I_ {Twl"_4(1-IV_ 7 for subsonic compressible flow
_Re/ _'_.]

1

a for supersonic compressible flow

where a* is the critical angle of incidence, Re is the Reynolds number based on the chord length
of the airfoil, C is the Chapman's constant for viscosity.

Blake (Blake, W. K., "Excitationof Platesand Hydrofoilsby Tf:ailingEdge Rows,"J. Vibration,Acoustic,
Stress,and Reliabilityin Design,vol. 106, pp. 351-363, July1984) investigated vortex shedding and its
induced vibration of lifting surfaces on which the boundary layers are turbulent. When the
boundary layer becomes turbulent on an airfoil with sharp trailing edge on which flow separation
cannot occur, no tones exist. On the other hand, blunt trailing edges generate additional
excitation which overshadows the excitation provided by the boundary layer. Figure 3-53 shows
an example of trailing edge sound radiated from a NACA 0012 airfoil. The airfoil with a sharp
trailing edge has a completely broadband sound spectrum which is associated with the
broadband surface pressures. When the edge is made blunt as shown, the spectrum of sound
and surface pressures were enhanced considerably over a frequency band which extended over
the 2500 Hz to 4000 Hz range.

Blake (1984) analyzed a beveled airfoil. Figure 3-54 shows the cross-section at its trailing
edge and the distribution of the surface pressures and the local maxima of fluctuating velocity
magnitude associated with the developing vortex street. Also shown are the loci of velocity
maxima which are generated at various stations in the wake. These loci denote the paths Yu and
Yl, the outer boundaries of the vortex curves as illustrated. The point where the separation Yu - Yl
is minimum coincides with the absolute maximum in velocity intensity and is taken to denote the
formation length If of the first vortex behind the trailing edge. The pressure generated by the

vortex street decay as x"1/2, as shown in the upper part of the figure.
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Blake (1984) presented another example of increase of vibration levels with velocity and the
behavior of lock-in as shown in reference Figure 3-55 for simple hydrofoils with two trailing edges.
The maximum acceleration occurs at a reduced frequency, ¢=_syf/Us= 1.1 to 1.2 as shown in the

figure. Apparently, the beveled trailing edge reduced the vibration level substantially.
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Figure 3-55. Flow-Induced Vibration of the 2,0 Mode of a Cantilever Hydrofoil
with Blunt and Beveled Edges.

Turbomachinery

There are several types of flow-induced vibrations associated with turbomachines which
utilize in most cases streamlined flow elements such as vanes, buckets and blades. Naudascher
(Naudascher, E., HydrodynamicForces,A.A. Balkema]Rotterdam/Brookfield,1991) presented a rather
complete review in hydrodynamic forces. One of the sections discusses excitation forces in
turbomachinery. Hartog (1985) addressed the 113.3 Hz penstock vibration of a hydraulicturbine,
Figure 3-56 of the reference. The stream of water entering from the penstock splits into 18 partial
streams due to the nl = 18 stationary guiding vanes. The water streams then flow through n2 =
17 buckets of the runner into a vertical draft tube. Consequently, each partial stream is subjected
to n2 impuises during one revolution. Here the speed of rotation of the turbine, NT, is 400160 in
revolutions per second. The frequency of the impulses is therefore

f2 = NT n2 = 113.3 Hz

As shown in the figure all the impulses are transmitted back to section AA of the penstock
with the speed of sound. Two of the impulse paths are shown in the figure. Assuming that
stream a experiences maximum impulse when vane 1 and bucket 1 line up, then the maximum
impulse in stream b has happened 1/(17 x 18) -th revolution earlier, i.e., when vane 2 and bucket
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2 line up. By coincidence, this time lead matches exactly to the longer path of transmission.
Consequently, all impulses arrive at the penstock in phase with one another which add up and
create a strong source of pressure pulsations. To eliminate the pulsations, the 17-bucket runner
was replaced by a 16-bucket one. With the original design, the impulses due to buckets 1 and 9
arrived in section AA in phase. With the new design, the opposing buckets 1 and 9 yield out-of-
phase impulses at section AA, thus canceling their contribution to the vibration source. It is
noteworthy that in this case the number of runner bucket n2 = 16 and the speed of turbine NT =
400/60 rps are perfect matches. At off-design turbine speed, n2 = 16 would no longer be optimal
either.

Guide vanes Spiral case

\ x
Runner with/

, ,i!

Penstock

Figure 3-56. Horizontal Section of a Typical Francis Turbine (after Den Hartog, 1985)

Another source of turbine vibration is the forces on the runner blades due to the impinging
wakes from the stationary vanes just ahead. The frequency of excitation is fl = NT nl where nl
is the number of stationary vanes. It is advisable to avoid resonance between fl and one of the
natural frequencies of the runner blades and other turbine parts.
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3.6 Other Streamlined Bodies

Struts and vanes are basically streamlined bodies that may be placed in the flow passages to
obtain added strength for the structural assembly or guide the flow around turns or to straighten
the flow ahead of or behind pumps and turbines. Struts and vanes may have elliptical shapes,
may be straight or curved, or have effective camber like and airfoil. In general, they require at
least two-degree-of-freedom analysis of coupled modes as does a turbine blade.

Instabilities and Onset Critical Flow Velocities of Vanes

Blevins (1990) included a detailed stability analysis example for airfoils and vanes.
Formulations for critical onset flow velocities due to transverse and pitching moment vibrations
were given. A FORTRAN program for a vane or turbine blade type of structure element is
developed based on the reference theory and included in the handbook. The FORTRAN code is
capable to calculate structural parameters for any typically given cross-sectional shapes. Flow
onset velocities for plunge galloping and divergence are estimated. The inputs of the program
include the geometrical shape of the vane profile and structure and fluid properties of the
flow/structural system. Typical inputs are shown in Table 3-10. The data required are for vane
length, chord, and aspect ratio; structural and fluid densities, Young's modulus and Poisson's
ratio, bending and torsional mode frequency multipliers, and optional damping coefficients.

The corresponding outputs for the inputs of Table 3-10 are given in Table 3-11. As shown in
the table, the code calculates polar area moment of inertia, torsional constant, effective mass
including added mass, polar moment of inertia including added moment of inertia and relevant
parameters with numerical integration over the cross-sectional area. Other parameters include
effective bending and torsional spring constants, natural (circular) frequencies and four flow onset
critical velocities for torsional divergence, torsional flutter, torsional galloping and plunge
galloping. The bending mode plunge galloping is an instability for a damped structure when the
rate of transverse force coefficient, acy/a(x, is greater than zero and when the total damping
becomes negative above a threshold flow velocity. For the vane shape in consideration, _Cy/aC(
- -(3CL/a(x< 0, this bending mode galloping would not occur. The other three onset velocities
which are related to torsional instabilities are greater than 76 ft/sec. The vane profile is shown in
Figure 3-57. The effect of fluid density on a steel cantilevered vane is shown in Figure 3-58. The
effect of fluid density on a fixed-fixed acrylic vane is shown in Figure 3-59 for torsional
divergence.

Table 3-10. Inputs of the Vane Code

Length, in (m)
Chord, in (m)
Aspect ratio
Ps, Ib/ft3 (kg/m3)

pf, Ib/ft3 (kg/m 3)
E, psi (Pa)
Poisson ratio
Bending mode
Torsional mode
Bending structural damping
Torsional structural damping
Constraint

12.(0.3046)
4.(0.1016)
2O

482,76(7733.)

75. (1201.)

30.e6 (2.07el 1)
0.3
I st
1st
0.02
0.002
clamped-free

3.6.1



OTHER STREAMLINED BODIES

f

-1

0

m

mmmmm

i

i

I

._..m.m,+...._

mmmmmmmmmmmmm

2

x,ln

m

3 4

Figure 3-57. Sample Vane Profile

Table 3-11. Outputs of the Vane Code

Note:

Ip,ft4(m4)

Tc, ft4 (m 4)

mt, slug/ft(kg/m)

ma, slug/ft (kg/m)

Jt, slug -ft2/ft (kg-m)

Ja, slug -ft2/ft (kg-m)

ky, Ib/ft 2 (Pa)

kq, lb(N)
COy,l/sec
(Oq, 1/sec
Ud, ft/sec* (m/sec)
Up, ft/sect (m/sec)
Ucr, ft/sec** (m/sec)
Upl, ft/sec:l: (m/sec)

2.49e-5 (2.15e-7)

2.57e-7 (2.22e-9)

0.262 (12.5)

0.203 (9.72)

1.08e-3 (4.80e-3)

7.06e-4 (3.14e-3)

1152. (55160.)

3576. (15910.)
116.8

1679.

97.4 (29.7)
76.8 (23.4)
92.8 (26.3)
not applicable

° Here torsional divergence is an instability when the lift-induced angular deformation and inertia
exceed the torsional spring moment of the structure.
1"Here the torsional plunge mode is also called flutter was dealt with by Pines (1958).

**For angle of attack up to 8° of an airfoil or vane, _)CM/'_o¢> 0, torsional galloping for damped

structure would not occur. However, the positive value of _)CI_ may induce a torsional

divergence which is comparable to the lift-induce torsional divergence mentioned above.
:1:Bending mode plunge galloping is an instability for a damped structure when the rate of

transverse force coefficient, o'_3y/'do¢,is greater than zero and when the total damping becomes

negative above a threshold flow vo!ocity. Since _3y[&X ~ -_L/'_x < 0, galloping would not occur
in this case.
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Vane Parameters Needed for Estimation of Onset Flow Velocities

Basic parameters needed for the estimation of the critical onset flow velocities are included
in the following:

a) Structural geometric parameters include structural span length, L, chord length, c = x2 - Xl and
chord thickness, t.

,
xl t _y yl(x) _! x2

c

b) Structure material properties include Young's modulus, E, Poisson's ratio, v, density, Ps, and

Shear modulus, G - E
2(I+v)"

c)Flowpropertiesincludedensity,pf,viscosity,11,and flowvelocity,U.

d)Additionalrelevantparametersincludebendingmode fluidadded mass,ma = _ c',area
'H"

moment ofinertiawithrespecttox-and y-axis:

fo foIx= y2dy dx, ly= x2dydx ,
1 J yl(x) 1 J yl(x)

IxX'?" f y2(x)structure mass, ms =p, dy dx = Ps A,
1 J yl(x)

effective mass, me = ms +ma,

center of mass locations:

i o,., i o,,,Xcm= _ x dy dx, Ycrn=-P-z y dy dx,
ms 1 .,y1(,,) ms 1 .,y1<x)

area moment of inertia with respect to center of mass:

Ixc=Ix - h/2, lyc=ly - Ax_m,and

aerodynamic force center location, Xac=c
4

Elastic center (Xec,Yec) is the axis where shear stress is zero and for homogeneous material, one
has
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I,'2 Iy2<"'_(x-Xec)2+(y .y_)2dy dx = 0
1 Jyl(x)

C

ixx2 f y2(x) 2 2
Polar moment of inertia is given: Js =ps (x2 + y2)dy dx- ms(Xcm+ ycm).

1 Jyl(x)

Polar area moment of inertia, Ip=_, torsional constant, Tc = (y2(x) -yl (x))3 dx,
ps 1

fluid added polar moment of inertia, Ja = _--_--I_ 4, and effective polar moment of inertia,
128
Je= Js + Ja

are also needed.

Continuing CFD efforts by Liu et al (1994) have produced new methods utilizing a moving
grid that rotates as well as translates to deal with coupled flow/structural interactions of struts and
vanes involving torsion or plunging as well as bending. Multidiscipling interactions are utilized in
these methods to iterate between the structural mass and stiffness effects, including the effects of
end conditions, and the fluid flow effects. Both the transverse and the angular motions of a vane
are derived from center section two-dimensional flow calculations to simulate the vane's response
under negative system damping characteristics approximating lock-in.

Liu (1994) applied these methods to a case of LO2 flow past a straight elliptical vane shape.
The LO2 flow case parameters are shown in Table 3-12. Computed flow streamlines are
presented in Figure 3-60. Liu's computations show vortex shedding and exponential growth in
vane oscillations as soon as the vane, initially fixed, is permitted to move. The computations
indicate growth in oscillation amplitude to a maximum limit cycle value. The first few cycles of
computed vane motion are detailed in Figure 3-61.

Table 3-12. Elliptical Cylinder LO2 Flow Case Parameters

Strut size 5.994 mm x 1.499 mm 0.236" x 0.059"
Strut mass 0.0881 kg/m 0.00184 slug/ft
Strut moment of inertia 1.617e-7 kg-m 3.635e-8 slug-ft
Bending natural freq. 2000. Hz
Torsion natural freq. 4000. Hz
Structure damping ratio 0.01
Total damping ratio 0.04
Flow pressure 22.06 MPa 3200 psia

temperature 102.8 K 185.0 °R
velocity 29.74 m/s 97.56 ft/sec
density 11301 kg/m3 70.58 Ib/ft3
viscosity 1.856e-4 kg/m-s 1.247e-5 Ib/ft-s

Reynolds number based
on chord length 1.086e6

Speed of sound 914.7 rn/s 3001. ft/sec
Mach number 0.03251
Specific heat ratio 1.759
Dynamic pressure 0.5 MPa 72.49 psi
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Figure 3-60. CFD Density and Particle Traces Past the Elliptic Vane
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INTERNAL PIPE FLOW

3.7 Internal Flow in Pipes

Internal flow through a pipe decreases the pipe's natural frequency, with such a decrease
generally associated with increasing fluid velocity. The pipe may become susceptible to
resonance or fatigue failure if its natural frequency falls below certain limits. Indeed, if the fluid
velocity is great enough, the pipe can become unstable. Even for pipes secured at both ends,
sufficiently high, steady internal flow velocities can impose pressures on the pipe walls leading to
the pipe being deflected or buckled, causing subsequent pipe rupture.

Equations of Motion

Note the span of pipe, illustrated in Figure 3-62. The pipe has a length L and an internal
cross-sectional area A. Through the pipe flows a fluid of density p, pressure p, and constant
velocity v. The internal fluid motion, promotes a transverse deflection Y of the pipe, the amount of
deflection being a function of time t and location x along the pipe. The fluid is accelerated through
the deflected section of the pipe because of the change in curvature and lateral vibration of the
pipe. Fluid accelerations are opposed by the vertical component of fluid pressure on a given fluid
element and the pressure force F per unit length applied on the element by the pipe walls. This is
illustrated in Figure 3-63. A balance of forces on the element, shown in the y direction for small
deformations, yields

F -pA_2Y = pA (_- + V-_x)2Y (3.7.1)o_x2

Figure 3-62. A Fluid-Conveying Pipe with Pinned Ends I

The pressure gradient in the fluid along the pipe is opposed by the shear stress of fluid
friction against the pipe internal walls. With a constant flow velocity,

A°_-_p+ qS = 0 (3.7.2)
_)x

1 Blevins,R.D., " Flow-InducedVibration." KreigerPublishingCo., pp.88-117, 1977.
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Figure 3-63. Forces and Moments Acting on Elements of (a) The Fluid and (b) The Pipe

where S is the pipe inner perimeter and q is the shear stress on the pipe internal surfaces. Using
Figure 3-63, the derived equations of motion for the pipe element are

_2v
+ qS - _ = 0 (3.7.3)

olx o_x2

and for small deformations,

g---_Q+ "1_2Y- F = n_ (3.7.4)
_)x _)x2 _2

where Q and T are the transverse shear force and longitudinal tension in the pipe, respectively,
and m is the mass per unit length of the empty pipe.

Noting that Q is related to the bending moment of the pipe M and the pipe deformation by

_3v
Q =-c3.__MM= -E_---L (3.7.5)

olx _)x3

One can therefore neglect the third term on the left-hand side of Equation 3.7.3 for small
deformation analysis. Combining Equations 3.7.1, 3.7.4, and 3.7.5 yields

EI°_4Y + fpA T)°_2Y_x_- - _--_+pA (_ V_-x)2Y+ m_'Y =0_-+ o--_- (3.7.6)

where q is eliminated by combining Equations 3.7.2 and 3.7.3 to give

_)(pA- T)= 0
_x (3.7.7)

The implication is that (pA-T) is independent of position along the length of the pipe, where at
x=L, p =T=0, leading to
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pA- T = 0 (3.7.8)

for all x.

The substitution of Equation 3.7.8 into Equation 3.7.6 yields the equation of motion for free
vibration of a fluid-conveying pipe, i.e.

E I_)4Y+p Av2_Y + 2p A vB2Y +M (32Y-=0 (3.7.9)

ax 4 ax 2 o_x_ _2

where M = m + pA.

Boundary conditions associated with the pipe span fixed at both ends as shown in Figure 3-
62 are

Y(0,t) = Y(L,t) = 0

(3.7.10)
°_2Y(0,t) _2y (L,t) = 0

and the boundary conditions for a cantilever pipe, secured at x=0 and free at x=L, are

o_Y(0,t) = 0
Y(0,t) =_-

°_3Y(L,t) = °_2Y(L,t) 0 (3.7.11)
ax3 ax_

Pipe Fixed at Both Ends

The boundary conditions associated with the fixed-ended pipe span can be satisfied by a set
of sinusoidal mode shapes

sin(D_) ; n = 1,2,3 .... (3.7.12)_n(X) =

The solution must contain spatially symmetric and antisymmetri¢ terms, with the coefficients
of these terms being interdependent, implying that the equation of motion can be expressed as

Yi(x,t)= _._ ansin(D_)sinlc0it) + 2_. ansin(D--_) c°s((°it) ;,=1,2,3 .... (3.7.13)
n - ,5... n - S....

where (oi is the natural frequency of the i vibration mode. Substitution into Equation 3.7.9 and
term manipulation yields a set of equations that can be placed in the matrix form

[[K] -(o_M[ I _/_} = 0 13.7.14)

where

13.7.15)

3.7.3



INTERNAL PIPE FLOW

and [ I ] is the identity matrix. The stiffness matrix, [ K ], has entries krs, where

EIr4 (L)4 - pAv2r2(L)2 r=s

L _---_s2] r_s, r+s = odd

0 r_s, r+s = even

(3.7.16)

By setting the determinant of the coefficient matrix in Equation 3.7.14 equal to zero and
considering only the first two natural modes in the system, one obtains

[1-(v-_-)2 (_----_JN)2 -/co' 12]+256 (v--y-12(pAI(CO'12=0 (3.7.17,

where coNand Vc are the fundamental natural frequency of the pipe in the absence of fluid flow,
and the critical velocity of flow for static buckling of the pipe, respectively, defined as

and

vc= -(EII°'s (3.7.191
L _pA/

Cantilever Pipe

The deflection of a cantilever pipe, as shown in Figure 3-64, is assumed to be of the form

Y(x,t) = I:(_'(x]L) ek°t] (3.7.20)

where, R denotes the real part and i the imaginary part. If cois real then,

(3.7.21)ei_ = cos(cot)+ i sin(ot)

and, if cois imaginary

ei_t = e-a,_t (3.7.22)

Since co has generally both constituents present, the vibrations are contained by an
exponentially growing or decaying envelope.

The mode shapes of the cantilever pipe can be approximated by a series comprising of those
mode shapes present in the absence of fluid flow, where

_l'(x/L) = _ ar_r(x/L) (3.7.23)
r=l

where,
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_Jr(x/L) = cosh L_x/L - cos I._rx/L - Gr ( sinh L;krx/L - sin I.Xrx/L ) (3.7.24)

Substitution of Equation 3.7.23 into Equation 3.7.9 provides the equation of motion for the
cantilever pipe, where

r=_l[_;''- "Q2_r + V2_I/; +2'_0"5V"_l/rl ar= 0 (3.7.25)

and

M

M=pA+m

(3.7.26)

L i1=

Figure 3-64. Schematic diagram of a cantilevered beam 2

The derivatives of Y are with respect to x/L. This set of equations determines the natural

frequencies and mode shapes of the pipe. Expressing the derivatives of the mode shapes as
series in terms of the cantilever modes yields

+'r=,T_,b Vs
S=I

_; = _. Crs_s (3.7.27)
s=l

• " _r4_• r = r

where

2 Blevins, R.D., op. cit.(1).
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brs = 4

__..S_I2+ (.1) r+s
_.rl

4(_.rOr -Zsa$) r _: s_

('1) r+s '(_--&/2 [ (3.7.28)

Crs = ZrGr(2 -_.rO'r) r = s [

/

and substitution into Equation 3.7.25 yields

r___l[(;L 4- _2) _l/r + V2_ Crs_s +2i_0"5V_ brsYsJ ar=0 (3.7.29)

Multiplying though by Ys, integrating over the pipe span, and introducing the condition of

orthogonality, yields in matrix form,

[[K]-.Q2[ I _ {aJ = 0 (3.7.30)

where the entries of the stiffness matrix [ K ] are

krs = + + 2_30"5Vnbrs
(3.7.31)

V2crs + 21_0"5V_ brs ; r _ s

and nontdvial solutions exist only if the determinant of the coefficient matrix is zero, i.e.

[K]-_2[I] = 0 (3.7.32)

The dimensionless frequency (o can have real and imaginary parts,

= _R + iO.I (3.7.33)

and generally, the vibrations of the cantilever pipe are either amplified or reduced with time,
depending on the sign of o)1(a negative value promotes decay, a positive value promotes growth).

Curved Pipes

Vibration in curved pipes can take place in either symmetric or asymmetric modes, in the
plane of the curved pipe or outside of the plane of curvature. The analysis of curved pipes is
considerabl_/ more complicated than that of straight pipes due to the geometric coupling
introduced by the pipe curvature. It is possible, however, to determine the appropriate equations
of motion using variational calculus and applying matrix techniques to solve the linearized
equations for the onset of instability.
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Pipe Whip

Consider the rupture of a pipe in a high pressure fluid system, with the contents spewing into
surroundings. The potential impulsive reaction on the curved pipe can cause the pipe to violently
whip about. This is the phenomenon of pipe whip.

The following analysis assumes:
1) the fluid forces primarily act normal to the pipe axis,
2) the pipe is uniform and possesses orthogonal modes, and
3) the deformations remain small, so that pipe response is linear.

Consider the fluid momentum equation, using the control volume in Figure 3-65,

.,,.,, os.4o oo.L. (3.7.34)

where F is the vector fluid reaction force on the pipe, n is the outward normal unit vector from the
control surface S, __is the enclosed volume, S' is the portion of S in contact with the fluid, p is the

pressure of the fluid, andt_ is the vector fluid velocity relative to S. Upon control volume
depressudzation to the atmosphere, Equation 3.7.34 reduces to

(3.7.35)

where v is the fluid velocity component which is normal to the undeformed pipe axis and relative
to the pipe which is bending away from the fluid jet at velocity Y(I,t)/t at the point of rupture x=l,
and A is the inner cross-sectional area of the pipe. Generally, the velocity of the fluid jet
substantially exceeds the velocity of the pipe response, allowing the approximation

Fy = pAv2 (3.7.36)

Therefore, the equation of motion, Equation 3.7.9, for a uniform pipe responding to the
instantaneous creation of a jet at x=l is

Ela4Y(x't) + M_)2Y(x't) - / 0

o_X4 _2 _, pAv2
t<0 orx_l_
x=l and t_>0

(3.7.37)

where the second and third terms of Equation 3.7.9 can be neglected.

Using modal expansion techniques, a solution

N

Y(x,t) =_ yj(t)_j(x) (3.7.38)
j=l

is assumed, where Yj(x) are mode shapes associated with the free vibrations of the pipe. With
the mode sh,_pesconforming with the geometric boundary conditions of the pipe, and assumed to
be orthogonal over the pipe span, i.e.
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S\ aY

__L._ v-_-

I

Figure 3-65. A Ruptured Cantilevered Pipe3

" (3.7.39)_j(x/L)¥k(X/L)d(x/L) = 0, if j ¢ k

then Equation 3.7.38 can be substituted into Equation 3.7.37, and multiplying through by Yk(x)(k
being an arbitrary integer), yields a series of linear ordinary differential equations

_j(t) + 0opyj(t)=

0 t<O

pAv2¥j(I)

M,-Io" _j (x/L)d(x]l-)

t:>O, j= 1,2,3 .....N

(3.7.40)

These equations describe the response of the individual nodes, where wj is the natural
frequency of vibration (rad/sec) associated with the free vibrations of the pipe in the j mode. If the
pipe is motionless at the instant of rupture, the initial conditions are

yj(0) =yj(0) = 0 j = 1,2,3 .....N (3.7.41)

Duhamel's integral provides a transient solution to Equation 3.7.40 and the initialconditionsof
Equation 3.7.41. The result is

PAy2 ) (1- cos((ojt))yj(t)-- (°pMLIoL _(x/L)d(x/L)

j = 1,2,3 ..... N

(3.7.42)

This solution oscillates about the steady displacement which would be obtained if the fluid
force was statically applied and the dynamic response was neglected. The cycles persist with
time because damping has been neglected. The amplitude of the modal responses, yj(t), are
inversely proportional to the square of the modal natural frequencies (oj. Since the modal natural

3 Blevins,R.D., op. cit.(1).

3.7.8



INTERNAL PIPE FLOW

frequencies increase with mode number, the response is generally dominated by the first few
modes,

Structural damping can be incorporated in the analysis by adding the damping term, 2_yj(t),

where _j is the damping factor of the j mode, to the left-hand side of Equation 3.7.40. The
transient solution then becomes,

={ PAv2 / / 1. _ cosCY/_ro_jt .,))
j = 1,2,3 ..... N

(3.7.43)

i/2where tan $ = r_/ (1 ._2) Solutions are shown in Figure 3-66.

Figure 3-66. Displacement as a Function of Time and Damping 4

The fluid velocity through a pipe rupture varies with time. The fluid is at operational velocity
at the moment of rupture. Afterwards, the fluid responds to the pressure difference by quickly

accelerating to a maximum velocity. Finally, the velocity gradually decays as the system blows
down and the system pressure is relieved.

If the fluid velocity is approximately exponential in time, then

v./o ,<o}
voe'Kt t :>0 (3.7.44)

and, using Duharnel's integral, closed-form solutions can be found for the undamped response of
the ruptured pipe. Substitution of Equation 3.7.44 into Equation 3.7.40 yields the solution,

4 Blevins, R.D., op. cir.(l).
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,L

_(x/L)d(x/L)

(sin(o_jt)_2K(1-e'2Ktcos(=jt)). ooje-2Ktsin(o_jt)]

- cos(o)jt)[o)j(1-e'2Ktcos((ojt)) - 2Ke'2Ktsin((ojt)l ) (3.7.45)

With bending in the pipe, a moment is induced of

N _'¥j(X)
M= E_----_-ax2 (x,t)= E_ yj(t) _x2

(3.7.46)

In many cases, the bending pipe exceeds the maximum moment which can be elastically
borne by the pipe. The pipe yields plastically. The dynamic analysis of yielded pipes can be
made by either using models of rigid pipe segments connected by plastic hinges, or using a finite
element, elastic-plastic pipe model.

3.7.10



FITTINGS AND BENDS

3.8 Fittings and Bends

Disconnects, couplings, fittings, fixed joints, and seals are used in liquid-propellant rocket
propulsion systems to contain and control the flow of the liquid propellants. NASA SP-8119
("Liquid Rocket Discounts, Couplings, Fittings, Fixed Joints, and Seals," NASA Space Vehicle
Design Criteria, Chemical Propulsion, NASA SP-8119, September 1976) is a monograph which
treats the design of these components for use in booster and other space propulsion systems.
Particular emphasis is placed on the high pressure (up to 10,000 psia), extreme temperatures

(-423 o to 2300 OF), and considerable vibration levels. Some welding problems and corrective
measures were discussed in the reference report and reviewed herein.

Fittings

Fixed joints are nonseparable connections of fluid system components. Since it is impractical
to make line assemblies in one piece and the insertion of components such as valves and filters
is required, fixed joints are necessary design elements. Welding is one of the common methods
for jointing tubular components in a propellant system. The types of welded joints currently being
used are illustrated in Figure 3-67. Butt-welded joints were used on large lines (> 1 inch) on the
Satum V F-1 engine. The combination fillet/sleeve weld Figure 3-67 (d) was used for line sizes of
1-in diameter or less. The welding methods include inert-gas tungsten-arc, inert-gas metal arc,

and electron-beam welding.

(a) Butt Weld (b) Fillet Weld

(c) Sleeve Weld (d) Combination Fillet/Sleeve

V/J'/.,/./_

//I///I//////l_

i/vcf ///.,_#///A

(e) Sleeve Weld with Separate Sleeve (f) Combination Fillet/Sleeve (eliminate
crevices)

Figure 3-67. Types of Welded Joints Used in Fluid Systems

In-service failure with the F-1 tube sleeve-weld configuration developed in the form of fatigue
cracks in the heat-affected zone of the weld. Cause was considered to be the high vibration

environment, Fatigue failure has also been attributed to partial-penetration welds. Addition of
fillet weld to the joint for increased fatigue strength and vibration damping clamps on the tubing to
reduce amplitudes resolved this problem. While the use of good welding techniques in joining
pipe sections makes for good joints without flow perturbations, abrupt flow contractions or
expansions as in Figures 3-68 and 3-69 can cause flow separation and introduce pressure loss
and flow unsteadiness. Loss coefficients are available in the standard pipe design references for

abrupt contractions and expansions.
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V'//////////i//////li//////////_//////F/////

/'///////',_,"

_MI#/////I/#IM#/I/##/H_W//W#Mk
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Figure 3-68. Abrupt Contraction Figure 3-69. Abrupt Expansion

Bends

Frictional flow effects become important in pipe bends or elbows causing frictional pressure
loss and adding turbulence to the overall flow. The scale of the turbulence is illustrated in the

counter-rotating eddies indicated in Figure 3-70 and introduces high frequency oscillations to the
flow.

-;-I--
\,

_'_/////1111t1111/!

Pipe Bend

I
Axis of curvature

_+_, of bend
Diamei_ parallel to I

axis or curvature I

Direction of
¢entnfupl

Secondary Row body force

Sect ion A-A

Figure 3-70. Secondary Flow in a Pipe Elbow

Straight elbows and tees, Figures 3-71, introduce losses and turbulence. Vaned elbows

reduce the losses and the vibration due to turbulence. Loss coefficients for well-designed vaned
elbows are on the order of 20 percent of those for standard elbows. Tees have either flow
"through the run" where there is a side branch or "flow through the branch" parting left and right in
opposite directions down the run.

, ":'--I
/////J'////J//////////_ 7111////////I/'/t I I

1 i

/_..(,_f _-- Flow I I /Branch

',,,"...... ;'_:

Run

Figure 3-71. Vaned Elbows and Tees

Methods for dealing with dynamically coupled fluid-pipe or duct systems containing general
pipe intersections, area or direction changes, long-radius bends, hydraulic losses, and hydraulic
impedances are available.
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Pipe Systems

Piping systems function under time-varying conditions, imposed by pump and valve
operations, in the delivery of pressurized liquids. The analysis of the liquid's unsteady behavior
was traditionally based upon solutions to the equations of motion and continuity, without
considering any motion in the pipe. Transients propagate at the acoustic velocity, or wave
speed, of the liquid. The diameter, wall thickness, and elastic modulus of the pipe are used in
calculating the wave speed, after which the liquid is assumed to be flowing through a straight,
rigid pipe. However, there is reason for concem that the transient behavior of liquids in piping
systems that are neither rigid nor straight may differ from that predicted by a traditional rigid pipe
analysis. Experimentation has shown that, in some systems, the elasticity of the pipes can
amplify transient pressure in the liquid to a significant degree.

The dynamic forces exerted by the liquid on pipe fittings, where the flow direction or area
changes (e.g., elbows, tees, valves), can set the pipe in motion and result in a feedback between
the liquid and the pipe, causing alteration of the liquid transient. The amplitude and velocity of
motion are functions of the restraint provided by the attached piping and supports. Therefore, a
coupled liquid-pipe transient analysis must include these structural parameters.

There are two primary mechanisms which account for the dynamic interaction between the
contained liquid and the piping. These are, 1) strain-related or Poisson coupling effects, which
occur axially along pipe reaches; and 2) pressure-resultant effects, where coupling occurs only at
fittings.

The strain-related, or Poisson coupling, results from the transformation of circumferential

strain, E0, (caused by internal pressure) into axial strain, £x, where

Ex = 1.)EG (3.8.1)

and 13is the Poisson ratio. The pipe wall is treated as an elastic membrane to'include the axial

stresses and axial inertia of the pipe. During sudden valve closure, for instance, a tension wave
is found to propagate in the pipe wall at a wave speed near that of the pipe material. Hence, a
"precursor" wave travels ahead of the main pressure wave in the fluid. The axial tension is a
Poisson effect in response to pipe dilation caused by the pressure transient. There is an
increase in liquid pressure due to the tension wave, but the increase is small and a second-order
Poisson effect.

At fittingswhere the pipe area or direction changes, the pressure resultant acts as a localized
force on the pipe. Pipe motion can significantly alter pressure, and effects of support and piping
stiffness contribute to the interaction.

One such set of methods applied to a liquid oxygen (LO2) feed line in a rocket test stand was
presented by Saxon 1 for NASA's testing of the Space Shuttle Main Engine. Structural analysis of
piping systems, especially dynamic analysis, have typically considered the duct and fluid
separately. Coupling the two, however, forms a new dynamic system with characteristics not
necessarily described by superposition of the duct and fluid component characteristics.

Example Problem - POGO Pulsing

The coupled structural-fluid dynamic analysis of Saxon 1 was performed using finite line
element methods in a study to determine the piston stroke requirements for POGO pulsing the

1Saxon,J. B., "ModelingDynamicallyCoupledFluidDuctSystemswithFiniteLineElements,"NASACR-
193909, February 1993.
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Space Shuttle Engine in a different test stand than the one normally used. This analysis was
done for the Technology Test Bed (TTB) at MSFC. The problem was to predict the POGO
pulsing effect on the facility feed line at 1 to 50 Hz and to identify all of the coupled system modes
up to 200 Hz. Coupled modes at 14.3 and 34.9 Hz were found to be particularly sensitive in
Saxon's analysis.

Structural analyses of piping systems are usually accomplished with finite line element
models to which estimated fluid loads are applied. Under transient conditions, however, dynamic
coupling occurs between the pipe and the contained fluid such that the two can no longer be
considered separately. Saxon's (1993) methods allow simultaneous analysis of the structure and
contained fluid column by representing both as overlaying strings of line elements. This requires
the fluid to be treated as one dimensional; an assumption considered adequate from the
structural analyst's perspective. The key is in maintaining the correct force transfer between the
duct and fluid elements. The following exposition includes treatment of forces transferred at
general intersections or direction/area changes, forces transferred at long radius bends, forces
due to losses, and terminal hydraulic impedances. Secondary friction flow effects (at higher
frequencies) are ignored here.

Dynamic Approach

In the presence of both steady-state and transient dynamics, it is desirable to consider the
two separately and superimpose their results for a complete solution. In this method, the steady-
state dynamics are analyzed with a quasi-static approach for which the Finite Element Analysis
(FEA) representation of the fluid column assumes static equilibrium, but is understood to
represent some steady-state dynamic condition. Forces transferred by the quasi-static model
accurately mirror those of the true steady-state dynamic condition except that head losses are
usually ignored. If a loss is considered significant, then the steady-state analysis should include
forces applied by the analyst to the fluidcolumn and/or structure as a correction.

The underlying assumption of the transient analysis is that transient dynamic loads produce
the same response whether applied to a quasi-static system or to a genuinely steady-state
dynamic system. Under transient loads, velocities and loads experienced by the FEA
representation of the fluid are understood to add vectorially to the corresponding steady-state
values. Forces due to losses are generally a function of velocity squared, and therefore should
have a transient component as well. Transient velocities are assumed to be small compared to
steady-state velocity.

By analyzing steady-state and transients separately, a quantifiable error is introduced in the
rate at which pressure perturbances are propagated up and downstream. Pressure wave
propagation is a superposition of acoustic and steady-state velocities. Error due to the absence
of a steady-state velocity is small, since acoustic velocities usually greatly exceed flow velocities.

Modeling a Fluid Column and Coupled Straight Pipe

Treatment of the contained fluid column is one dimensional and can be represented by
structural rod elements (structural members that carry only tension/compression). Properties of
the rod elements are based on properties of the fluid column they represent. Mass density of the
rod equals density of the fluid, and cross-sectional area of the rod equals the cross-sectional area
of fluid column. Young's Modulus of the rod corresponds to Effective Bulk Modulus, Be, of the
fluid, which is calculated from Bulk Modulus, B, corrected for radial stiffness of the pipe as shown
below.

Be = (BEt)/(2BR + Et) (3.8.2)
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where E = Young's Modulus of pipe
t = pipe wall thickness
R = nominal radius of pipe

For duct cross-sections more complex than cylindrical pipe, such as bellows, Be may be
calculated by methods given by Kiefling2 Using these fluid/structural analogies, the axial stress in
the rod is taken to equal the total pressure, static plus dynamic, in the fluid column.

The validity of this approach can be confirmed by a simple model of a fluid column
constrained in all but the axial direction along its length and completely constrained at one end.
FEA modal analysis should match hand calculated open-closed organ pipe frequencies.

For convenient coupling of the fluid to the pipe, it is beneficial to adopt certain conventions in
defining the two coincident strings of line elements which represent the duct structure and the
fluid column. Each node pair should be coupled such that they move independently in the
direction corresponding to flow, but are otherwise rigidlyjoined. This is illustrated schematically in
Figure 3-72, and may be accomplished with either Multi-Point-Constraint (MPC) equations or zero
length springs.

ROD ELEMENTS
REPRESENT
FLUID COLUMN

_X-- STRUCTURAL BEAM ELEMENTS

REPRESENT PIPE

/-- FLUID NODE

_-- STRUCTURAL NODE

Figure 3-72. FEA of Straight Duct and Coupled Fluid Column

Coupling at Direction/Area Changes

At any point where the duct contains a bend, an intersection, or a change in flow area,
additional considerations must be applied in order to correctly account for the transfer of forces
between the fluid column and the duct structure at that location.

Figure 3-73 illustrates a pipe intersection involving all the features under consideration.
(Planar geometry is not necessary, but is used here for clarity.) Mass continuity between the
three fluid columns and force transfer between the fluid and the duct can be imposed with a single
MPC equation involving the Z translations of each fluid node and the translational degrees of
freedom of the intersection's structural node. The equation is derived by treating the
intersection's structural node as if it were another incoming fluid branch odented and sized such
that all the Pressure-Area forces acting on the intersection added vectodally to zero.

A generalized approach, as applied to Figure 3-73, proceeds as follows. Each of the three
branches entering the intersection should be modeled as described previously, and each branch
should have its own fluid node at the point of intersection. For convenience, direct the Z axes of
the intersection's three fluid nodes into the intersection. Let the vectors Ai equal the flow area
of branch i times the unit Z vector of branch i's fluid node at the intersection. Each Ai should be

expressed in the reference frame defining the nodal displacements of the

2Ktefling,L., "Pressure-Volume Propertiesof MetallicBellows,"NASA TM-100365, MarshallSpace Flight
Center,ED-22, Huntsville,Alabama,May 1989.
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intersection's structural node. Now define a vector As according to

3
As + T(Ai) = 0

i=1

(3.8.3)

Having defined As, the MPC equation enforcing mass continuity and force balance is
3

(Asx'Xs) + (Asy'Ys) + (Asz°Zs) + T-.(Ai°Zi)= 0
i=1

(3.8.4)

"___f_ INCOMING FLUID NODES_

_'_ AT INTERSECTION /

/

ASX

Figure 3-73. Duct Intersection and Area Change Example

Equations 3.8.3 and 3.8.4 are applicable to any number of incoming branches. If applied to
one branch, a capped end is defined. If applied to two branches, an elbow is defined. For soma
analysis software, it may be necessary to enforce these constraints with large stiffness values
rather than an MPC equation. In effect, the stiffness equations form the intersection element
defined below for n branches intersecting at a point. Here, K1 is an arbitrary multiplier large
enough to make the fluid at the point of intersection relatively incompressible.

Fzl
Fz2
Fz3
Fxs
Fxs

= K1

AI°A1 AI°A2 AI°A3 Al'Asx Al_Asy
A2"A2 A2°A3 A2°Asx A2 Asy

A3*A3 A3"Asx A3°Asy
symm. Asx°Asx Asx*Asy

Asy*Asy

Zl
Z2
Z3
Xs
Ys

(3.8.5)
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Long Radius Elbows

In some cases, the radius of a bend is not negligible compared to the total length of duct

being modeled. Figure 3-74 shows such a bend, encompassing an angle e, as modeled with n
fluid/structural node pairs spaced evenly between the end points of the bend. As with straight
pipe, the fluid and structural nodes should move independently in the direction tangent to the
direction of flow, but be rigidly coupled perpendicular to flow as illustrated. This arrangement
accurately models the forces transferred, however, the stresses in the rod elements will exceed
the total pressure in the fluid. This can be corrected by adjusting the properties of the rods so as
to maintain correct axial stiffness and achieve correct stresses. The basic properties of the rods
in the bend, e.g. A, E, and p, should be adjusted to A', E', and p' according to

A'=Nsin(e/(n+l)) (3.8.6)

E'=E.sin(e/(n+l)) (3.8.7)

p'=posin(e/(n+l)) (3.8.8)

PIPE
NODES

A, E, rho

A', E', rho'

PIPE /---A', E', rho'
ELEMENTS

I _ FLUID NODE

PIPE NODE

FLUID ELEMENT

WITH A,E, rho

Figure 3-74. FEA of Curved Duct and Coupled Fluid Column
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Losses

In addition to force transfer between fluid and duct at direction/area changes, head losses
may play a significant role in how forces are distributed throughout the system. Steady-state
losses must be accounted for. This is accomplished with equal and opposite forces applied to the
fluid column in the upstream direction, and to the structure in the downstream direction. The
magnitude of the loss, where steady-state velocity is a given quantity, must be determined as
shown below, where C is obtained from reference data.

FLoss=A'C-p.(Vss) 2 (3.8.9)

Figure 3-75 illustrates an elbow under steady-state conditions with an assumed loss. The
mass and force balance equations would make pressure in the fluid column the same both up-
and downstream of the elbow. The additionally applied forces for loss allow the fluid column
downstream to see a reduced pressure while maintaining mass continuity.

I

J FLOW

_[_A _-- ELBOWCONTROL VOLUME

J • I"-- %ss (ss) --

Figure 3-75. FEA of Elbow with Losses Considered

In the p.resence of transients, the total velocity, Vss+Vt, should produce a force of loss equal
to the sum of the steady-state loss, Fss, and a transient component of loss, Ft, as shown below.

FLoss = Fss + Ft=A,C,p.(Vss+Vt) 2 (3.8.10)

Assuming that the loss vadable C does not appreciably change between velocities Vss and
Vss+Vt, substituting equation 3.8.9 into 3.8.10 and solving for Ft gives

Ft = A°C'p°(2"Vss'VI+Vt 2) (3,8.11 )
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If a further assumption is made that Vt 2 is insignificant compared with 2.Vss.Vt, the transient
force of loss can be estimated as

Ft = (2A'C'p°Vss)°Vt (3.8.12)

which is a linear damping term. As long as C is constant, the above estimation is 90% accurate
for Vt < (.2oVss). The damper implied above should be affixed at the point of loss between the
structural node and the downstream fluid node as seen in Figure 3-75. The damper increases the
force of loss for a transient velocity that increases flow velocity magnitude and decreases the
rome of loss for a transient velocity that decreases flow velocity magnitude. The above treatment
does not account for the fact that much of the loss represented by published values of C accounts
for irreversible losses several diameters downstream of the elbow, thus reducing the static
pressure in the fluid without causing an equal and opposite load on the duct. None-the-less, the
above method does provide an estimate of force distribution due to transient losses.

Terminal Hydraulic Impedances

The duct terminates at the inlet to a rocket engine or an accumulator device which provided a
quantifiable impedance to flow. The hydraulic impedance is expressed as compliance,
resistance, and inertance, for which the mechanical equivalents are stiffness, resistance, and
mass, respectively. For the steady state analysis, the terminal end of the fluid column can be
fixed, thereby precluding the need to account for the impedance. In the transient analysis,
however, the fluid column must terminate at a spring/mass/damper system, as shown in Figure 3-
76, with K, M, and D defined in terms of compliance, mass, and resistance as follows:

K = F.AJCompliance

M = F.A2.1nertance
D = F.A2.Resistance

(3.8.13)

(3.8.14)
(3.8.15)

where F is weight of density of fluid

K 0

t FLUIDCOLUMN

TERMINAL
IMPEDANCE

Figure 3-76. Mass-Spring-Damper System to Model Terminal Hydraulic Impedance

These impedance terms are frequency dependent. The example feedline is shown in Figure 3-77.
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BELLOWS
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SNUBBER COLUMN---,
1

FLOWMETER --_

LOCATION

PULSER TEE_

HINGED
BELLOWS

SUPPOR'I'

PIPE_
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ENGINE
INLET

fv- UNIVERSAL
BELLOWS

Flgures 3-77. Schematic of TTB Liquid Oxygen Feedllne

At both elbows and the pulser tee, stiffness matrices representing general area/direction changes
were applied. Losses at valves, flowmeters, etc. were modeled with linear dampers, the damping
values based partially on pressure data recorded during operation. The terminal hydraulic
compliance of the engine was modeled with a spring, with no frequency dependence in the
frequency range of interest. The applied loads, including those to account for losses, are shown
in Figure 3-78.
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LOSSES,T
41.2 Ibf EACH

TANK PRESSURE, 6319 Ibf

/
-- LOSS AT VALVE, 118 Ibf

ADDITIONAL LOADS:

1) ACCELERATION OF GRAVITY

2) THERMAL CONTRACTION
BETWEEN 70°F AND -320°F

FORCE APPLIED TO

_-- LOSS AT FLOWMETER, FLUID COLUMN

252 Ibf :
-.4.... FORCE APPLIED TO

STRUCTURE

LOSS AT TEE, 184 Ibf

7

m LOSS AT FRANTZ SCREEN, 30.1 Ibf

Figure 3-78. Loss Loads Applied to Feedline Model
for Quasi-static Analysis of Steady-state Conditions

The results of three modal analyses, shown in Table 3-13, demonstrate the inadequacy of

analyzing the fluid and structural system separately. The first set of modes considers the fluid
acoustics only, as if the duct were perfectly rigid (except for radial expansion accounted for by
equation 3.8.2). The second set of modes considers duct flexibility, but treats the fluid only as
added mass. The last set of modes, which accounts for the fluid-duct coupling, is clearly more

than the simple superposition of the first two cases.

Modes from the coupled system were used in two transient analyses simulating the start-up
of POGO pulser operation at 15 Hz and 35 Hz. Both analyses were driven by enforcing
sinusoidal displacement of the piston node. Figures 3-79 and 3-80 show response of the system
presented as nodal displacement of a point in the fluid column near the engine inlet, and
displacement of a node on the duct near the downstream elbow. In both cases, the larger motion
is that of the structure. The transient response to 15 Hz POGO pulsing quickly settles to a

steady-state containing higher frequency components. Response to 35 Hz POGO pulsing
exhibits resonance with the coupled system mode at 34.9 Hz, amplifying the input signal.

The fact that 35 Hz was a critical system frequency would have remained unknown since it
shows up in neither of the first two columns of Table 3-13.
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A

0.5
o 0.4
C
_" 0,3
c 0.2

E o.1
0

-0.1
O.
o_ -0.2
C_ -0.3

•m .o.4
-0.5

O

Z 0

Fluid

Acoustic Modes, Rigid

Duct (Hz)
1.8

29.6

59.1

Table 3-13. Comparison of Modal Results

Duct Structural Modes, Coupled
"Frozen" Fluid (Hz) Fluid-Duct

System Modes (Hz)
1.8

6.9 6.1

14.3
32.4 22.1

26.6

66.1 32.2

77.4 34.9

88.5 62.5
92.6 71.8

97.6 84.8

118.0 89.8

124.2 93.6

133.6 98.3

147.6

142.2 118.6

130.9

177.0 143.8

181.1 145.7

192.9 162.7

205.2 179.4

191.5

Response to 15 Hz POGO Pulsing

0.S 1 1.5

13me (see)

I fluid response sb_Jcturll response J

Figgre 3-79. Transient Feedline Response to POGO Pulsing Start-up at 15 Hz
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The undeformed and deformed mode shape 7 at 34.9 Hz depicted by the coupled fluid

structure FEA of the feedline are shown in Figure 3-81.

_" 1.5

o.s

_ 0

_. -(1.5

"D -1.5
o
Z

Response to 35 Hz POGO Pulsing

.,,,lii

? ..........].................1
_,,AililiAilliJAilAilIAnAlaJAiAAAAAlillilllAiAlililnAi

"'"ilVllllYilViVlVlliVlilliVllVllliVllVi!!i!!lt!!t
.......... 1,,.,,,, • |,,

0.5 1 1.5 2

Time (sec)

Fluid Response Structural Response

Figure 3-80. Transient Feedline Response to POGO Pulsing Start up at 35 Hz

(a) Undeformed Feedline Model (b) Mode 7 of Feedline Model

Figure 3-81. Undeformed and Deformed Feedline Mode Shape
Depicted by the FEA at 34.9 Hz
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3.9 Bellows and Liners

Bellows and Flexible Hoses

The number of convolutes is a key parameter of a bellows. Certain flexible hoses resemble
bellows in that they have convolutes. Relevant bellows nomenclature is given in Figure 3-82.

D
m

1

Crown

- ----_ D i

___[.o 8

Figure 3-82. Bellows Parameters

a = convolute width

Pm = material density

8 = internal convolute gap
D i = inside diameter

D o = outside diameter

h = mean disc height.

Np = number of plies

t = convolute thickness per ply
_. = convolute pitch

pf = fluid density

a = mean forming radius
D m = mean bellows diameter

E = Young's modulus

N c = number of convolutes

L = bellows length

and mode parameters:

Sou = upper limit Strouhal number

Soc = critical Strouhal number

Sol = lower limit Strouhal number
N = mode number

k = elemental spring rate
fo = reference frequency

__L[k/l
-2 _ _m_

fN = modal frequency = fo BN

K a = overall bellow spring rate
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m = total mass including added mass
BN = dimensionless frequency number

= _/[2 + 2 cos (._ (2Nc "N))]

and lock-in range parameters:

Viow = excitation velocity lower limit = f(n) a/Sou

V° = critical velocity = f(n) a/Soc

Vup = excitation velocity upper limit = f(n) o / Sol

Empirical formulas for functional relationships among the key parameters were given in the
reference report. It recommended a flow test to measure the overall bellows spring rate Ka for
any new practical applications. It also suggested further analytic work to address multi-phase
flows, overall static loads and conditions other than flow-induced vibrations.

The propellant feedlines in the Space Shuttle Main Engines contain bellows located
throughout the feedline network. Basic geometry pertaining to bellows is shown in Figure 3-82.
The figure shows that each convolute of the bellows presents a bluff shape to the flow, much like
that of a cylinder. Vortex shedding from the individual convolute occurs at a Strouhal number of
approximately 0.22. The resulting vibrations can be severe if the vortex shedding frequency locks
in with a longitudinal natural frequency of the bellows. The problem is very similar to vortex
shedding from a cylinder except that shed vortices from each convolute may be reinforced or
canceled by vortices from adjacent, or nearby convolutes depending on convolute width and
pitch.

The dynamics of bellows are characterized by the number of structural modes equaling the
number of convolutes with individual convolutes moving in-phase or out-of-phase with one
another. The frequency of these modes are strongly affected by the fluid trapped in the
convolutions. The cited reference presents analysis procedures for avoiding flow-induced
vibrations of flexible lines (bellows and flexhoses). These involve using the prescribed methods
for calculating a frequency range that including all the longitudinal modes. A bellows bulging (i.e.,
convolute bending mode) frequency is also included. Using a Strouhal number of 0.1 (minimum)
and 0.3 (maximum) provides limits of flow velocity where resonance may occur.

Premature failures were observed in flexible lines, namely, metal bellows and flexhoses due
to the occurrence of flow-induced vibrations. This is attributed to a resonance caused by the
coupling of vortex shedding from the convolutes with the natural frequencies of the flexible line.
MSFC Design Reference Standards I present a comprehensive design analysis for these bellows
and flexhoses either to prevent resonance from occurring or to predict the expected life of this
flexible lines under flow-induced vibration loads.

The analytical methods include predicting the excitation flow range, frequency, and the
corresponding stress resulting from flow-induced vibration loads. This then leads to prediction of
the expected life of the bellows or flexhose, with a final objective of achieving a theoretically
infinite life for flow-induced vibrations. The analytical method in this reference was developed for
metal bellows and flexhoses manufactured with formed annular convolutes, as shown in Figure 3-
82. These are the most commonly used type in propellant systems. The analytical model was
developed by Tygielski, et al.2 The equations in the reference were empirically derived from
extensive testing and are the basis. The computer program of the analytical method for bellows
is documented in the reference and is named as BELFIV (version 3.3).

1Assessmentof FlexibleLinesforFlowInducedVibration,NASA/MSFC,RevisionE, Dec. 19, 1991.
2Tygielski,P.J., Smyly,H.M. andGerlach,C. R., "BellowsRow-inducedVibrations,"NASA/MSFCTechnical
Memorandum,NASATM-82556, October1983.
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Sample problems are presented in the MSFC Design Reference Standards and summarized
in the following:

a) Bellows: a.1) Liquid Medium Example
a.2) Gaseous Medium Example

b) Flexhose Example Problem

The input parameters needed in the bellows include
a.3.1) title of the case
a.3.2) flag to calculate the overall spring rate or to input its value instead
a.3.3) flag to set for the liquid medium
a.3.4) number of bellows
a.3.5) number of convolutes counted from the outside
a.3.6) number of plys
a.3.7) inside convolute width
a.3.8) inside convolute pitch
a.3.9) mean inside convolute height
a.3.10) ply thickness
a.3.11) bellows inside diameter
a.3.12) bellows outside diameter
a.3.13) Young's modulus
a.3.14) density of the material
a.3.15) optional bellows overall spdng rate
a.3.16) length from the termination of the elbow to first convolute divided by the inside diameter of
the pipe just before the bellows, zero if no elbow upstream

If the medium is a liquid, there are three more parameters needed
a.3.17) liquid pressure
a.3.18) liquidtemperature
a.3.19) liquiddensity

If the medium is a gas, there are eight more parameters needed
a.3.17) gas pressure
a.3.18) gas temperature
a.3.19) gas pressure at reference state
a.3.20) gas temperature at reference state
a.3.21) gas density at reference state
a.3.22) gas compressibility factor
a.3.23) gas compressibility factor at reference state
a.3.24) specific heat ratio for the gas

The outputs for the bellows include
a.4.1) overall spring rate
a.4.2) elbow factor
a.4.3) flow-induced stress versus longitudinal mode number
a.4.4) mode frequency versus longitudinal mode number
a.4.5) lower, critical, and upper excitation flow velocities versus longitudinal mode number
a.4.6) flow-induced stress for convolute bending mode
a.4.7) mode frequency for convolute bending mode
a.4.8) lower, critical, and upper excitation flow velocities for convolute bending mode

If the medium is a gas additional outputs include
a.4.9) First radial acoustic mode frequency
a.4.10) First radial acoustic mode velocity
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Bellows Numerical Example

A sample numerical example is included as follows:

Given: H20 flowing through a 3 inch 321 stainless bellows at 68 °F and at 35 psig with an elbow
4 inches from the first convolute.

Find: Assess the fatigue life from flow-induced vibration loads for the first longitudinal mode N = 1
and the longitudinal mode of N = Nc.

The input parameters and step-by-step calculations are given in the following.

Di = Inside diameter of the bellows = 3 in
Do -- Outside diameter of the bellows = 3.69 in
Dm = mean diameter of the bellows = (Di + Do)/2 = 3.345 in
E = Young's modulus of the material = 29.e6 psi
t = ply thickness = 0.007 in
h = mean inside convolute height = 0.325 in
Np = Number of plys = 3
_,= Inside convolute pitch = 0.148 in
Nc = Number of convolute counted from the outside = 16
Ka = overall bellows spring rate = Dm E (Np_c) (t/h)3 = 181.735 Ibf/in
k = Elemental spring rate of one-half of a convolution = 2 Nc Ka = 5815.52 (12) Ibf/ft
o = inside convolute width = 0.095 in

Pm = density of bellows material = 0.286 Ibf/in3

a = Mean convolute radius = (_ - t Np)/2 = 0.037 in
mm = Elemental metal mass = _ Pm t Np Dm [_ a + h - 2 a]/g = 7.2e-4 slug
pf = fluid density = 62.4/1728 Ib/in3

mfl = type 1 fluid added mass = _ pf Dm h (2a - t Np)/(2g) = 1.02e-4 slug
K1 = type 1 added mass factor = 1
K2 = type 2 added mass factor = 0.68
N = mode number = 1,2 ..... 2Nc -1
,3= Inside convolute gap = _,- a = 0.053 in
mr2 = type 2 added mass = pf Dm h3/(g _) = 2.43e-3 slug
mf = total elemental fluid added mass = K1 mfl + K2 mf2 (N/Nc) = 2.05e-4 slug for N = 1
m = total elemental mass = mm + mf = 9.25 e-4 slug
BN = frequency factor = {211 + cos(_(2Nc - N)/(2Nc))]} 1/2
B1 = 0.0981

fo = reference frequency =_-_- Vmk_ = 1382.4 Hz

f(N) = modal frequency of mode N = fo BN
f(1) = 135.61 Hz
SGu = upper Strouhal number = 0.3
Soc = critical Strouhal number = 0.2
Sot = lower Strouhal number -- 0.1

Vlow(N) = lower limit velocity for mode N =f(N) a
SGu

V*(N) = critical velocity for mode N = f(N) o
SGc

Vup(N ) = upper limitvelocity for mode N = f(N) o
Sal
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Vlow(1) = 3.58 fps
V*(1) = 5.37 fps
Vup(1) = 10.74 fps

Parameters for N = Nc:
mf = K1 mfl + K2 mf2 (N/Nc) = 1.75e-3 slug
m = mm + mf = 2.47e-3 slug
BN = 1.414
fo = 845.97 Hz
fc = Critical frequency = fo BN = 1196.4 Hz

Vc = Critical velocity at N = Nc =fcG= 47.36 fps
S(_c

V' = Normalized velocity parameter = V*Nc = 0.113

SSR = Specific spring rate = KaN_ = 289.762 Ibf/in 2
DmNp

Empirical coefficients: C1 = 0.13, C2 = 0.462, C3 = 1, C4 = 10, C5 = 0.06, C6 = 1.25, C7 = 5.5.

CNP = Damping modifier coefficient = 1 for Np = 1

= 1 - for Np • 1
1 + C7V '2

CNP = 0.659

C* = Force and damping coefficient = 0.4 for the convolute bending mode

_ C1 + C3 Isin (_ V')I + C5 all else

C 2 -I- V '2 04 + V '2

C* = 0.369

pfV .2

PD = Free stream dynamic pressure == 2g

C* tPD
DD = Dynamic pressure factor = =

V' SSR 5

EE = Spring rate factor = 1 +0.1 140012- = 1.191
_SSR I

= 0.194 psi

= 2.89e-4

D = Inside pipe diameter = 3 in

L = Distance from elbow termination to the first bellows convolute = 4 in

CE = Elbow factor = 1 for no elbow present

=I+4.7
2+ L

D
CE = 2.41

FIS = Flow-induced stress = EE DD E CNP CE / Np
= 5284 psi for longitudinal mode N = 1

For longitudinal mode of N = Nc the following can be calculated by noting that V' = I and Vc =
47.36 fps:
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CNP = 1 - 1.25 (0.095/0.325) = 0.9438
1 +5.5

C _.,..
0.13 (0.095/0.325)

0.462 + 1
+ 0 + 0.06 = 0.1489

pD = (62.4/1728,47.362_1_ / 2) = 15.1
2(32.174)

DD = C* tP 0 = 1.025e-3
SSR 8

FIS = EE DD E CNP CE / Np
= 26873 psi for longitudinal mode N = Nc

UF = Uncertainty factor due to the estimation of overall spring rate = 2

FISC = Corrected (or conservative) flow-induced stress = UF FIS

FISC = 10568 psi for longitudinal mode N = 1
FISC = 53746 psi for longitudinal mode N = Nc

SEL = Endurance limit = 26500 psi for 321 stainless steel at 68 °F

Since SEL > FISC for longitudinal mode N = 1, the bellows has infinite life for that mode.

However, since SEL < FISC for longitudinal mode N -- Nc, the bellows should be redesigned if
operated to a velocity capable of exciting the longitudinal mode of N = Nc.

Liners

Most of the liners can be approximated as a cylindrical shell. Guiggiani 3 carried out

experimental studies on the dynamics and stability of thin cylindrical shells fluid-coupled by
means of a narrow water-filled annulus with a concentric outer rigid cylinder. Eleven aluminum
shells, with radius 277.5 mm, thickness 0.8 mm and height 268 mm were tested. The axis of the

shell and the cylinder is in the vertical direction. The shell-water system was excited by assigning
to the outer cylinder a hodzontal harmonic rigid-body motion with small amplitude. An unexpected
dynamic instability, with nonstationary large vibrations of the shell and exponential amplification of
the dynamic pressure in the liquid can occur. Such instability was observed whenever the
frequency of excitation in the test range 10 to 46 Hz, provided that the amplitude of the excitation

reaches a threshold value. This low-frequency example is illustrative of high-frequency liner
responses that can occur in smaller or stiffer structures as well.

A heavy bottom was integrally machined with each of the thin shells. This arrangement
resulted in shell models with a boundary condition at the lower edge that approximated the
clamped-edge case. The standard deviation of the shell thickness is in the range of 0.014 to
0.054 mm. The Young's modulus and Poisson's ratio were E = 68 GPa, and n = 0.3, respectively.

3Guiggiani,M., •Dynamic Instabilityin Ruid-CoupledCoaxialCylindricalShellsUnderHarmonicExcitation',
Journalof Ruidsand Structures,(1989) 3, pp. 211-228.
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The proportional stress of the material was found to be 18 to 25 MPa, while the yield stress was
30 to 40 MPa. The annulus region between the shell and the cylinder has a nominal thickness of
7 mm. The scatter was in the range of -0.5 to +0.4 mm. The water level was generally set 15
mm below the shell upper edge. To avoid water leakage, a soft rubber seal was used. The seal
is rather flexible and the boundary condition at the upper edge is deemed free boundary. The

shaped seal, further, allowed the pressurization of the gap.

The vessel rigid body movement was monitored and recorded, having a frequency f and an
amplitude x. The response of the shell - the wall radial vibration - was monitored by seven

displacement transducers located 15 mm below the shell upper edge at 0, 7.5, 15, 22.5, 30, 45
and 180 °. With 0" defined to be opposite to the center of the hydraulic actuator. The dynamic

pressure in the liquid was detected at the mid level at 0, 30, 60, 90 and 180°.

The static buckling pressure was about 0.02 MPa, and was associated to a buckling mode
with circumferential mode number n = 9. Static tests were performed to obtain reference values

for the dynamic ones.

A clear superharmonic resonance of order three was detected when exciting the system in
the range 10 to 20 Hz and low amplitude (Xrms = 0.03 to 0.07 mm). The response was mainly

with a frequency of exactly three times that of the excitation. The amplitude of vibration reached
its maximum value when f was about 15 Hz.

A kind of dynamic instabilityof the shell-liquid system was observed, whenever the frequency
of excitation in the range 10 to 45 Hz. It was associated to a sudden (exponential in time)
amplification of the shell vibration and of the dynamic pressure in the liquid annulus.

The onset of the instability was shown to be strictly related to certain combinations of the
excitation amplitude Xrms and frequency f of. Plotting the critical values of the frequency and

amplitude, a linear relationship was always obtained as a region of unstable dynamic vibration:

Xrms> 0.1514 - 0.00292 f

where Xrms in mm and f in Hz. Beyond this straight line, no stable dynamic behavior appeared to

be possible. The amplification of the shell vibration induced by the instability was particularly
violent in the low frequency range (<25 Hz). In these cases it often resulted in local permanent

buckling of the shell.

The boundary between the stable and unstable regions in the f-Xrms plane was nearly

unaffected by the superimposition of any static pressure (up to 0.015 MPa) in the annulus. The
amplitude of the dynamic pressure (at mid-level and in the 0" direction) at the onset of the
instability was always much lower than the static buckling pressure. This was an experimental

study and an analytical model for this type of system is probably wanting.

Mode Shapes and Frequencies

Typical Shell modes Of a cantilevered liner are shown in Figure 3-83. The vibration mode
shapes and frequencies are cited by Blevins (1987) for several reference theories and sources.
An estimation procedure is included in the following. Figure 3-84 (a) shows the coordinate
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system. The axial deformation is denoted by u in the axial direction, the circumferential

deformation v in the shell tangential direction and the radial deformation w in the radial direction.

The length of the shell is denoted by L, the radius by R and the thickness by h. The nodal

patterns and indices i and j are shown in the reference Figure 3-84 (b).

Nolo-r-mmonurnl_rluo
mquenc=dinline.

let ,_=1 Mode

Figure 3-83.

Sheat,k=de

Typical Shell Modes of a Cantilevered Liner

The simplified general solution is given by

u = --.-_-Rd _J cos i8 cosco t
•= d xI

A

v = --_ 9j sin ie cos m t
I

wherei=2,3,4 .... ;j=1,2,3 ....

w = ASj cos i9 cosa) t

The mode shape _)j is the beam mode shape for appropriate boundary conditions. The mode

shape factors, e¢1 and e¢2 are given in the reference Table 3-14. For instance, for the free-free

boundary conditions the mode shape factors are
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N i
n o

a)

CIRCUMI:E R|NTIA/, NODAL PATT[RN

_o

D-1 i-2 i'3

AXIAL NODAL PATTERN

MO0,1/. A,_R_NG E_EN1

Figure 3-84. a) Coordinate System, Shell Element, Midsurface Deformations (u, v, w), and
stress resultants (N, M, Q). The stresses (_xx, G60 and Gx0 are parallel to Nx, NO, and Nx0,

respectively; u is the axial deformation, v is the circumferential deformation, and w is the radial
deformation, b) Nodal Patterns for a Simply Supported Cylinder Without Axial Constraints.

Table 3-14. Formulas for Parameters cx1 and cx2

I_u_dar'_' To_'_,J 1a (a) ronm },l (*)

Condt¢lonl for e I for ¢=2
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¢xl = _(GjZi - 2)

a2 = _JjJ(_j_ * 6)

and oj and Zj are eigen-function parameter and eigenvalue of the beam. The natural frequencies
are then obtained by

_J E
f'J=2--__/.(1 .v2)

where the frequency parameters are given by Sharma 4 as

.4

k_ = (a,,a2_33,2 a,2al_za-a,,_a- a._.a_3-a._a_2)|

(a,,a22 -a_2)(_2c¢2+i2 +i4)

where i = 2, 3, 4 .... ; j = 1, 2, 3 ..... The parameters are given by

a,,=_. (1.10(1-v)1 (x2

a12= _, i_j ¢xl- 1 (1 -v)i J3I o_

a,3 = _, _ta., + k 13f-pt2+ 1(1 -,) ,2o¢21

a..=.. (1.3_(1-_)_o=

2

a==l+k[,t+ ('2-1)2+2,'2_m +2 (1 -,)'2_1(x2]

and

_j=Xl R, 2k= h-
L 12 R2

Thus, an estimate of the liner shell frequencies can be made.

4(Sharma, C. B., •SimpleLinearFormulaforCritical FrequenciesforCantileveredCylindricalShells,• J.
SoundVib. 55, 467-471, 1977.
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3.10 Valves and Gates

Catastrophic failure of valves and gates are a relatively rare occurrence. Most common valve

problems are associated with acoustics generated during valve oscillation and excessive wear of

valve trim. Weaver 1, in a well written exposition on valve vibration, investigates valves operating

at small openings and proposes three categories of mechanisms for valve motion due to fluid

interaction. These categories are:

1) Jet flow - inertia mechanism,

2) Turbulence, and

3) Acoustic resonance.

Jet Flow - Inertia Induced Vibrations

The jet flow - inertia induced valve vibrations require a high velocity coherent flow through the

valve orifice. Valve movement induces pulses in the fluid flow and subsequent force changes on

the valve surface. The motion of the valve structural surface Js perpetuated by the hysteresis Jn

the fluid inertia. The motion is not simple harmonic. However, as Weaver states, when the inertia

of the fluid is small, the oscillations are more nearly simple harmonic. The opening time for the

oscillating valve is dominated by the elastic valve restraint and the closing time is dominated by

the fluid forces acting on the valve. Increasing the valve restraint stiffness can result in a

decrease in vibration frequency since the opening time will be reduced yet the closing time can be

significantly increased because of the relative increase in the elastic restraining force as

compared with the dynamic fluid closing force.

The static plug valve characteristics, Figure 3-85, where the flow tends to close the valve,

illustrate valve oscillation at small openings. The static closing force for the valve is given by,

p AH Av (3.10.1)

where p is the fluid density, A v is the effective cross-sectional area of the valve, and AH is the

hydrostatic head across the valve. For a given valve restraining stiffness, k, there is an initial zero

load valve opening, x0, such that the restraining force balances the static fluid closing force, i.e.

k x0 = p _H Av (3.10.2)

For combinations of k and x0 below this equilibrium position, the valve will be held closed

against the seat and values above will not permit closure under static conditions. Under dynamic

conditions in the region above the static characteristic, the fluid inertia along with the reduction of

fluid flow creates sufficient dynamic head to close the valve. When the fluid comes to rest, the

dynamic head reduces and the valve opens. In the region below the static characteristic, the

static head ls sufficient to hold the valve closed. However, the sudden valve closure causes

pressure waves which tend to unseat the valve long enough to re-establish flow around the open
valve.

1Weaver, D.S. " Flow Induced Vibrations in Valves Operating at Small Openings ", Practical ExJDedence
with Flow-Induced Vibrations. Editors E. Naudascher and D. Rockwell, Spdnger-Vedag, 1980, p.305-316.
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Figure 3-85. Static Plug Valve Characteristics

The effect of fluid inertia is to delay re-establishing the flow while the valve is opening and to
maintain the flow while the valve is closing. Weaver and Ziada 2 have developed a theoretical
model for vibrations in valves operating a small openings where the flow tends to close the valve.

Kolkman 3 has modeled vibration due to flow phenomena for gates and seals operating a small
openings. Assuming the fluid discharge varies linearly with valve displacement, Kolkman's

equations produce conservative estimates of the stabilitythreshold for valves given that the mass
of fluid in the pipe is large as compared to the effective mass of the valve.

Turbulence Induced Vibrations

Pressure fluctuations due to turbulence buffeting as well as direct flow impingement on
internal valve components may cause damaging mechanical vibrations. These vibrations are

induced by broadband random pressure or impinging velocity fluctuations. The greatest energy
levels are in the lower frequency range. Lateral plug motion between the valve guide and the
sealing surfaces is the most common result of turbulence buffeting. This motion has the effect of
re-establishing the fluid flow to perpetuate the oscillatory behavior of the valve. Lateral motion

can be excited at the plug first bending mode4 or higher frequencies, where the first bending
mode can be approximated using

mn = 0.159'_/--_"

Flow instabilities, predominantly axial, involve pneumatical cylinder and controller hunting,
also, usually in the adverse pressure gradient portion of plug travel (see Figure 3-86).

2Weaver, D.S. and S. Ziada, "A Theoretical Mode/for Self-Excited Vibrations in Hydraulic Valves and
Seals', ASME PVP Conference, San Francisco, Ca. June, 1979.

3Kolkman,P.A., "FlowInducedGate Vibrations",Ph.D. Dissertation,DelftUniversityof Technology
Publication164, 1976.

411ling,H., "Plug Vibrational Tendencies of Top Guided Throttling Control Valves," Second
International Conference on Developments in Valves and Actuators for Fluid Control, Paper D1,
Manchester, England, March 28-30, 1988.
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Acoustically-Induced Vibrations

The main problem with acoustically-induced vibrations involves coupling of flow induced

oscillations with natural frequency of acoustic resonators in the system. Vortex shedding from the

valve is a common generator of acoustic oscillations as is the oscillation produced by the flow

over a cavity and flow impingement on a surface or edge. When fundamental pipe modes

coincide with pipe bending modes a resonant condition occurs and the magnitude of frequency

amplification can be dangerous. The section of the basic principles describing EFO oscillations

details this type of acoustic generators and resonators (see p. 2.7.1).

Valve Whistling

Ziada 5 investigated the whistling of a thermostatic radiator valve. Thermostatic radiator

valves can produce unpleasant whistling sounds (1 to 6 kHz). While it was normally sufficient to

change the setting of a valve in order to stop the whistling, this same adjustment in another

building could result in re-initiation whistling. The damping in the hydraulic system was small and

it was possible to vary the acoustic frequency in the water by changing the piping length. It was

shown that the whistling sounds are caused by the excitation of an acoustic resonance in the

hydraulic system, and its feedback to the vortex shedding in the valve.

An essential step to avoid the whistling is to decrease the coupling between the vortex

shedding and the acoustic resonance oscillation. The loudness of the sounds can be decreased

5 Ziada, S., U. Bolleter, and E. Zahnd, "On the Whistlingof Thermostatic Radiator Valves', Sulzer Technical
Review 4/1983.
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by rounding off the edges of the valve disk and valve body. Denticulation of the valve disk in the

form of radial grooves brings about a further reduction of the whistling. The roundness of the

seal also aids in curing oscillations at small valve strokes. Placing a plate immediately in front of
the valve seat may also have a positive vibration reduction effect since the orifice then induces

greater and coarser turbulence and coherent waves after the valve are precluded.

Gate Vibration

Gate valves, Figure 3-87, are usually used either fully open or fully closed but experience

transient loading conditions during opening or closing. Martin and Naudascher 6 investigated gate
flow instability for a high gate with an extended lip. As the gate is lowered, the ratio between the

opening and the gate width is changing as well as the ratio between the actual opening, and the
extended lip of the gate. Fluctuations occur when the flow around the gate experiences
intermittent separation. At certain combinations the gate displays pressure fluctuations resulting
from intermittent separation that may be detrimental to the gate integrity.

Figure 3-87. Typical Gate Valve.

Campb.ell7 investigated exciting forces on hydraulic structures and gates. Hydraulic model

studies of a mass on an elastic suspension, Figure 3-88, have been found useful in a study of
exciting forces. Model tests displaying a vortex trail from a partially open flat bottom gate have
produced vibrations and/or resonance when the forcing frequency is approximately 99% of the
natural frequency of the plate. The Strouhal number for a flat plate normal to the flow was found
to be approximately 1/7.

6 Martin and Naudascher

7Campbell,F. B. et al "VibrationProblemsin HydraulicStructures,"Vol. 127, PartI Paper No. 3282, ASCE
Transactions,1962
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Various lip extensions from the downstream edge were tested. The flat bottom gate and the
lip extension schemes are shown in Figure 3-88 (a) and (b). Typical oscillograms translated in
terms of vertical displacement from the accelerometer records are shown in the reference Figure
3-88 (d) and (e). A fairly regular motion of 8 Hz may be seen in Figure 3-88 (d), whereas no such
regularity is shown for the case of a lip extension. No tendency for vibration was found for the 45 °
gate lip and consequently, the 45°-lip gate became standard. In addition, the reservoir-gate
conduit usually has an organ pipe mode of open-close ends. Let L be the distance between the
intake from the reservoir and the gate, and a be the speed of sound, then the natural frequency of
this mode is a/(4 L).

i vvvvvvl-,
-I( d_

_-r'" IMAGE f/,) LIP EXTENSION
-lr--

, :s'LJ; ,.,ST..0..D.5"L,P Y,2v -v Vw ,

I i 17' _. t L0W DOWNPULL o ECONOMICAL HOIST

,_ t _ 2 VORTEX TRAIL FROM DOWNSTREAM EDGE

(a) Flat Bottom Gate Vortex Trail (b) Standard 45° Lip
Figure 3-88. Gate Valve Flow Modeling

Strouhal number data

Strouhal number data presented in the reference higher than the foregoing value of 1/7 may
not be applicable to completely submerged flow paths. Strouhal number data in the range of O.12
to 1/7 exist in the reference, but much higher values also documented in the reference. No detail
description in the flow velocity used in the Strouhal number (= f b/Vo) was found. Here b is the
gate opening and Vo is the flow velocity. Flow velocity with or without flow blockage corrections
at the gate can yield completely different data ranges.

Valve Struts

Figure 3-89 shows valves with 4 vanes (or struts) and with 6 vanes (or struts). The vibration
mode of the 4-vane valve vibrates in a fundamental mode, while the 6-vane valve vibrates in a
secondary mode of higher frequency, and the frequency ratio is 2.82. In the case of valve plates,
the amplitude associated to the secondary mode is much smaller. HowelloBunger recommended
that the 5-vaned valve plate can produce even higher frequency modes and help in maintaining
the intact welding seams on the valve plate.

Q
I,,) FOUR VANE VALVE

0
U@ SiX VANE VALVE

Figure 3-89. HowelI-Bunger Valve Vibration.
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3.11 Surge Tanks and Sloshing

Surge Tanks

Surface wave effects may exist in a system where a surge tank is used. The surge tank is to

suppress undesirable pressure wave fluctuations, however, the surface wave effects demand
analysis. Ziada and Rockwell investigated subharmonic oscillations of a mixing layer-wedge
system associated with free surface effects. An unstable mixing layer, in conjunction with free
surface wave effects could give rise to well-defined subharmonic oscillations of the vortex

shedding frequency provided certain streamwise phase conditions are satisfied. The
investigation dealt with the interaction between a mixing layer impinging on a wedge and a
traveling free surface wave. They first showed that there existed highly coherent oscillations in
the absence of free surface effects. They then found that the simultaneous existence of a free
surface wave and unstable oscillations of the mixing layer impinging on the wedge can lead to a
five-fold increase in force induced at the impingement.

Their experimental test section consisting of a splitter plate producing streams having
velocities U1 and U2, a 30 ° wedge and a strain gage system for force measurement. The flow
conditions were U1 = 18.35 cm/s, U1/U2 = 2.85, momentum thickness, 8 = el + O2 (el = 0.62
mm, e2 = 0.68 mm), Re = (U1 - U2) 0/v = 157, wedge submerged depth, hl/01 = 103, tunnel
depth, h2/el = 365, and 15 < L/0 < 150. In the experiments, all the parameters were held

constant, except the impingement length L/0, which was varied to allow transition between Case
A (self-sustained oscillation) and Case B (with surface wave effects).

They found that the expression of Lamb (1932) for propagation speed of surface wave can be
used to calculate the frequency of the surface wave,

Csw= ,_/g _w tanh 2/t h

f_ Csw
_,sw

Since _.sw = 2 L, h = hl = 6.39 cm, L = 18.4 cm, the calculated frequency is 1.84 Hz which is

within 7% of the measured. By varying L, the measured frequency also agreed well to the
calculated when surface wave effects dominate

In the self-sustained oscillation (Case A), the vortex-wedge interaction has the fundamental

frequency of vortex formation (b). In the surface wave affected oscillation (Case B), there are
pairs of vortices impinging on the wedge, the interaction is at the subharmonic (b/2) of vortex
formation same as the surface wave frequency. Case B oscillations exist at larger impingement
distance, belong to stage V and have higher instability and larger force amplitudes than the Case
A oscillations which belong to stage III and IV.

Fluid Container Sloshing

Mclver (1989) investigated sloshing frequencies of fluid containers. In the paper the two-
dimensional sloshing of a fluid in a horizontal circular cylindrical container and the three-
dimensional sloshing of a fluid in a spherical container are considered. The linearized theory of
water waves is used to determine the frequencies of free oscillations under gravity of an arbitrary
amount of fluid in such tanks. Special coordinate systems are used and the problems are
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formulated in terms of integral equations which are solved numerically for the eigenvalues. The
sloshing frequencies were presented for a range of fill-depths of the containers.

The natural frequencies of oscillation of fluid in a partially filled container are important design
parameters. For instances, the sloshing of fuel i.n the tanks of an aircraft or space vehicle could
seriously affect the performance of the control systems and so it is desirable to avoid external
excitation at the natural oscillation frequencies of the fluid. Mathematically, the fluid system may

be dealt with as follows. The velocity potential (_ for the small time-harmonic irrotational motion of
an inviscid, incompressible fluid must satisfy Laplace's equation in the fluid domain, having zero
normal derivative at the solid walls of the container and satisfy the linearized free-surface
condition

Here z is a coordinate measured vertically downwards with origin at the mean level of the free
surface and the frequency parameter

K -(02
g

where

CO= circular frequency of the oscillatior_
g = gravitational acceleration

For a cylindrical container the Cartesian coordinates (x, z) can be replaced by bipolar
coordinates (c¢,6) by the transformation

x + i z = a tanh-_-_Y-,
2

•o < (x< _, _ <6_</¢

The transformed Laplace's equation within the fluid region is

a2_-+ a2--__ = 0 (_oo<_<oo,0<6<Po)
a 2 a 62

and the zero flow condition at the solid wall is

a =o (p=Po)
ap

Note that on the solid wall

6 = _o= cos'l(1 -cd-)

where d = depth of the liquid level
c = inner radius of the cylindrical tank

and the free surface condition yields

a__.+ x_ =o (13=o)
o_6 l+coshoc
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where _. = K a = eigenvalue of the problem
a = half width of the free surface

The possible modes of oscillation are either symmetric or antisymmetric about a = 0. Solution
of the above Laplace's equation can be written in integral form for
both symmetric and antisymmetric modes. By applying Fourier cosine and sine transforms with
respect to a, one may determine the eigenvalues I for the existence of nontdvial solutions. One
should refer to the paper for further detail in the math manipulation. In the paper, numerical
solution is then described and the results are given in a tabular form for the first four modes. For
the first modes, values are included in the following:

Eigenvalues K c for cylindrical container (given as K a for d/c = 2)

d/c Antisymmetric Symmetric

0.2 K c = 1.04385 2.92908
0.4 1.09698 2.89054
0.6 1.16268 2.88924
0.8 1.24606 2.93246

1.0 1.35573 3.03310
1.2 1.50751 3.21640
1.4 1.73463 3.53751
1.6 1.12372 4.14328

1.8 3.02140 5.62694
2.0 K a = 2.00612 3.45333

Note that as d/c approaches 2, K a is finite but K itself becomes unbound. Numerical
examples are given here for a half-filled 1 ft radius tank. From above table, d/c = 1, c = 1 ft, and

K c = 1.35573 for antisymmetric mode and K c = 3.03310 for symmetric mode. Since K = e,-2/g, f
= 0#(2 _) = 1.051 Hz for antisymmetric mode and = 1.572 Hz for symmetric mode.

Similar theoretical and numerical approaches were presented for the spherical tank in the
paper. Numerical results are given in a tabular form for the first four modes and four azimuthal
wave numbers. As an example, results for the fundamental mode are included here in the
following table for the azimuthal wave number m = 0 and m = 1:

Eigenvalues K c for spherical container (given as K a for d/c = 2)

d/c m=0 m=l

0.2 Kc = 3.82612 1.07232
0.4 3.70804 1.15826
0.6 3.65014 1.26251
0.8 3.65836 1.39239
1.0 3.74517 1.56016
1.2 3.39812 1.78818
1.4 4.30102 2.12320
1.6 5.00753 2.68635
1.8 6.76418 3.95930
2.0 K a = 4.12130 2.75475

Note that as d/c approaches 2, K a is finite but K itself becomes unbounded. Numerical
examples are given for a half-filled 1 ft radius tank. From above tables, d/c = 1, c = 1 ft, and K c

=3.74517ifm=0, Kc=l.56016if m= 1. SinceK=(o2/g,f=(ol(2_)= 1.747Hzfor m=0
mode, = 1.128 Hz for m =1 mode.
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Compressor Surge

Williams and Huang(1989) studied the stabilization of compressor surge. The paper
describes the stabilization of compressor surge by an active method. It is known that surge
follows when small disturbances grow in an unstable compression system, and that small growth
can be modeled through a linear stability analysis. An active element was introduced to counter
any tendency to instabilityand the control law goveming the active stabilizer was determined from

linear theory. The authors followed the suggestion put forward by Epstein et al. (1986). The
theory was verified in an experiment on a compressor system whose plenum volume was
controlled. Suppression of the flow instabilitywas achieved by switching on the controller and the
compressor was made to operate stably on a part of its characteristics beyond the nature stall
line. Furthermore the controlled compressor was much more resilient to external disturbances
than in the nature case. The controller was even effective on deep surge.

The paper showed a schematic illustration of the compressor system denoted inlet, rotor
blades, plenum and outlet. There were equations of motion for the plenum pressure, the inlet and

outlet ducts. These equations dealt with inertia terms, flow resistance in the compressor duct,
pressure rise due to compressor, pressure drop across the outlet throttle, and the pressure
difference between the plenum and the ambient. They found an empirical curve-fit for the mean
pressure rise as a function of mass flow rate:

U 2mean pressure rise = fl(Q=)= .Lp .
2

0.045 tan" [120(_1 - 0.052)] + 1.18.0.85 _1-7.2 _1 .4.7

where the nondimensional mass flow rate

and
pA_U

Q== mean mass flow rate

p = mean air density
A== cross-sectional area of inlet duct

U = speed of the compressor blade tip

They found the Helmholtz resonance frequency for their system to be 37 Hz by measuring
the system response to a pressure impulse. This frequency can also be calculated by

=.=a(VZo) 

provided that the inertia of the flow in the throttle is negligible, where

(oH= 2 nf_ = circular frequency of Helmholtz resonance
a = speed of sound = 340 m/s
V = plenum volume = 5.5 x 10.3 m3

Zc = compressor parameter

-- compressor length to diameter ratio = 3.9 x 103 m-1
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They showed that the equations of motion have solution of the form, exp (s t) with the
characteristic equation

where

with

s3 + a2s2 + al s+ao=0

_o=(_.Br.,-B _,')

al = l + X+B XT' (I.t - B W')

a2 = B _.T'*(p. - B _F')

Xt = inertia parameter for the throttle duct

= length to diameter ratio of the outlet duct

T((_2) = f2(Q2)

LpU z
2

Q2= mass flow rate at outlet duct

f_(Q2)= pressure drop at the outlet duct

¥ = fi(Qi.____))= pressure rise at compressor inlet
.LpU 2
2

_= a__qL
_H Xc
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Gc(QI - Qi) = an experimentally determined term prescribing

the flow resistance in the compressor duct

The Routh-Hurwitz stability criterion gives necessary and sufficient conditions for the real
parts of all roots to be negative as

a0>0, a2>0, a la2>a0

These constraints define the stable range of the compression system. By substituting the
measured values and the functions into these criteria, the linear instability point at which these
criteria will just be broken and the compression system will surge can be predicted. They also
define the throttle characteristic corresponding to the instability point as the surge boundary.
They then carried out experiments to measure the surge onset point and compared the measured
result with the above predicted. Reasonable agreement was found. In a numerical simulation
and some experimental measurement, they found that the surge frequencies are somewhat lower
than the Helmholtz resonance frequency.

They introduced a controller consisting of an externally induced control force and a surface
A3 which is part of a mass-spring system responding to the unsteady pressure fluctuation in the

plenum: its displacement produces a volumetric change in the plenum. The mass in the plenum
is thus changed accordingly. The displacement was found to be approximately proportional to the

driving force. The control force was generated by a feedback system which processed the signal
detected by a pressure sensor located in the plenum.

Results indicated that active stabilization of compressor surge has been achieved in their

experiments; the controller was able to alter the system damping and the resonance frequency.
The results showed that the compression system can be effectively stabilized by switching on the
controller before or even after surge occurs. Their experiments indicated that the linear controller
is effective even in this nonlinear aerodynamic case, and they believe that the stability and the
performance of compression systems generally could be greatly improved through active control
techniques of this type.

Greitzer (1981) made a rather complete review on the stall phenomena in turbomachines.
Concerning axial compressors, large vibrating stresses in the compressor blades may be induced
at lower-than-design flowrates by what is called rotating stall. When that occurs, one or more
'stall cells' (i.e., regions of separated flow) travel around the compressor annulus in the direction
of the compressor with a speed close to one-half of the compressor speed, Figure 3-90. Causes
of this off-design phenomenon is discussed by Naudascher (1991).

In centrifugal pumps and compressors, Jansen (1964) classifies the rotating stall into three
types: a) rotating stall associated with large incidence angles in the impeller; b) rotating stall in
radial-vaned diffusers; and c) rotating stall in vaneless pumps or diffusers associated with a
decrease in radial velocity component that causes the angle between velocity vector and radius to
exceed a limiting value. In summary, knowledge of flow-induced vibration can be very important
for successful design of turbomachinery.
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Figure 3-90. Illustrationof Rotating Compressor Stall.

Piping systems containing compressors and surge tanks are generally designed with
frequency response characteristics built into guard against fluid oscillations at particular critical
frequencies. Anti-slosh baffles are used to effectively to prevent sloshing in partially filled liquid
containers. Compressor surge characteristics can be especially sensitive to the compressor inlet
mean flow distribution and to the turbulence generated due to any inlet flow distortion present.
For a more detailed treatment of compressor surge phenomena, the reader is referred to the

literature on aircraft engine and engine-inlet compatibility.
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4. Avoidance and Corrective Measures

This discussion is organized according to geometric and flow element modifications which
alter the character of the flow/structural system.

Evidence of High Cycle Fatigue Cracking

Flow interaction with the structure under high operating pressures and performance margins
have led to some cases of high cycle fatigue cracking. Specific examples are the 4 kHz SSME
LO2 injector tee splitter vane "buzz" that was eliminated by scalloping the leading edge and
beveling the trailing edge of the vane; shields added to some of the SSME LO2 injector posts;
filling the SSME Main Oxidizer Valve (MOV) cavity eliminating a 7200 Hz anomaly, and the
Apollo/Saturn AS-502 S-II engine augmented spark igniter LH2 fuel line rupture that resulted in
the redesign to eliminate the bellow-type flexhoses in the original design.

4.1 Avoidance

Fatigue Reliability of Structures

Madsen 1 investigated fatigue reliability of structures. The use of lighter structures under
dynamic loads increases the necessity of fatigue analysis. Prediction of fatigue life is encumbered
with uncertainty in the loading process, uncertainty of the process parameters and uncertainty of
the math models.

Madsen discussed the fatigue strength of tubular joints used in offshore structures. The
number of stress cycles, N, under constant amplitude loading with stress range, S, necessary to
cause failure is usually expressed by the S-N curve

N=KS "3, S>So

= K1 S"5, S<So (4.1.1)

where So is the stress level below which the fatigue takes place at a lower rate. The coefficients K
and K1 are empirical coefficients of the joints. Typical data of N and S are given in Figure 4-1. A
conservative basic design would assume structure failure after 107 stress cycles for a stress level
of 50 N/mm2 and after 105 cycles for 240 N/mm2.

By assuming an exponential function for the stress range distribution, Madsen obtained an
expression for a damage indicator, which has an initial value of 0 and monotonically increases to 1
at failure. A limit state function is then defined by incorporating a random variable to the damage
indicator. The failure probability can be estimated based on this limit state function. Furthermore,
a reliabilityindex, 13,is introduced as a measure to the failure probability, P.

13=. _-1 (p) (4.1.2)

An approximate curve-fit can be deduced to approximate the functional relationship

Iogl0P = -0.301 - 0.338 13- 0.152 _2.0.007 133, 0 < 13< 5 (4.1.3)

1Madsen,H. O., "Fatigue Reliabilityof Manne Structures,"in Sobczyk,K. (Editor),StochasticApproachto
Fatigue:Experiments,Modeling& ReliabilityEstimation,CISM Coursesand LecturesNo. 334, International
Centerfor MechanicalSciences,Springer-Verlag, 1993
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By knowing the time rate of stress cycle for a given stress level, one may estimate the failure
probability and reliability index, 13,versus time and then the expected life time of the structure.
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Figure 4-1. T-Curve and Fatigue Test Results

According to the reference, in a linear elastic fracture mechanics approach the increase in
crack size, a, with respect to number of stress cycles, N, is related to the range of the stress
intensity factor, &K,

da = C ""-(_m (4.1.4)
dN

where C and m are material constants of the structure. The stress intensity factor is usually taken
in the form as

K = o Y(a) _ (4.1.5)

where o is the far-field stress from the crack site and Y(a) is the geometry function. In case of a
through-thickness crack, the crack size is a scalar and the differential equation is written as

da =C(&o)mdN, a(0)=ao
Y(a)VEd

(4.1.6)

where ao is the initial crack size. Experimental data exist for crack growth under constant

amplitude loading on the edges of the specimen. Figure 4-2 shows experimental results for 64
center cracked specimens made of 2024-T3 aluminum. The initial half crack length of each
specimen was ao = 9 mm and the width of the panel was 2b = 152.4 mm. The geometry function
can be approximated by

Y(a) = 1 , ifa/t) < 0.7 (4.1.7)
Ycos (= a/o)
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Figure 4-3 shows the crack length as a function of N obtained by solving Equation (4.1.6) with
fixed values of C, m and ao. Although the experimental curves resemble the model curve, they
are all different, irregular and intermingling. In the experiments the only non-deterministic factor in
Equation (4.1.6) is the material constant, C. An attempt was made to randomize C to better
simulate the experimental data by writing

C = C1/C2(a) (4.1.8)

where C1 is a random variable describing random variations between mean values in different
specimens, while C2(a) is a positive random process describing variations from the mean value
along the crack path within each specimen. The mean value of C2(a) is one and the process was
assumed to be homogeneous. The type of the process is suggested as log normal. The
equation can then be numerically integrated and the results resemble the experimental data in
that a) sample curves of a versus N are irregular and not very smooth but tend to cluster in a
statisticaltrend, b) sample curves of a versus N become more smooth for larger values of a, and c)
sample curves of a versus N intermingle in particularfor smaller values of a. For additional details
one should refer to Madsen (1993).

When crack size versus number of stress cycles under a given stress level is known, one may
further estimate reliability index 13versus number of stress cycles and the life time of the structure
as outlined in the reference.

Fracture detection, monitoring, and control are highly developed specialties in rocket engines
and propellant feed systems as well as nuclear, marine, and chemical industrial applications.
Beyond the above example of probability based methods in marine structures, the reader is
referred to detailed practices in the particular discipline area of interest and emphasis is placed
here on avoidance of these conditions that lead to the various modes of flow/structural interaction
described in this handbook.

Avoidance is taken into account in the design process in selecting geometric shapes,
materials, and strength achieved through component thickness and manufacturing hardening
processes. Avoidance is also taken into account in staying outside critical Reynolds number -
reduced frequency ranges. ==_
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4.2 Corrective Measures

The propellant feedlines in the Space Shuttle Main Propulsion System and Engines contain
bellows located throughout the feedline network. Each convolute of the bellows presents a bluff
shape to the flow, much like that of a cylinder. Vortex shedding from the individual convolute
occurs at a Strouhal number of approximately 0.22. All Shuttle bellows have been checked and
cleared for flow-induced vibrations. Resulting vibrations can be severe if the vortex shedding
frequency locks in with a longitudinal natural frequency of the bellows and has occurred in the
post on other vehicle systems, notably the Saturn V. The problem is very similar to vortex
shedding from a cylinder except that shed vortices from each convolute may be reinforced or
canceled by vortices from adjacent, or nearby convolutes depending on convolute width and
pitch.

The dynamics of bellows are characterized by the number of structural modes equaling the
number of convolutes with individual convolutes moving in-phase or out-of-phase with one
another. The frequency of these modes are strongly affected by the fluid trapped in the
convolutions. The cited reference presents analysis procedures for avoiding flow-induced
vibrations of flexible lines (bellows and flexhoses). These involve using the prescribed methods
for calculating a frequency range that including all the longitudinal modes. A bellows bulging, or
convolute bending mode frequency is also included. Use of a Strouhal number of 0.1 (minimum)
and 0.3 (maximum) provides limits of flow velocity where bellows resonance may occur.

Bellows Elimination- the Apollo/Saturn S-II Stage Engine Shutdown Occurrence

A flow-induced flow problem in the augmented spark igniter (ASI) fuel line of one engine in
the AS-502 S-II Stage resulted in a premature shutdown early in the Apollo/Satum program, April
4, 19682 . It was caused by flow-induced bellows resonance in the upper flex hose. Post-flight
evaluation of the telemetered data led to the conclusion that the ASI LH2 line in S-II engine
number 2 failed and ultimately caused shutdown of the engine 3. The LH2 flow rate through the
1.27 cm original ASI fuel line flexible hose produced flow-induced vibrations of the bellows when
flow rate was as high as 0.5 kg/s and the flow velocitywas 61 m/s or higher.

Flow-induced high cycle, low amplitude vibration fatigue failures of the upper NAS-260035
flexible bellows sections, Figure 4-4, were observed in a number of ground tests that followed
only when the flexible link was placed in a dry-vacuum environmental test chamber. Ground tests
in open air found that liquefaction of air on the outside of the bellows (caused by the cold
condition of LH2 flowing through the bellows) had resulted in both fluid damping of the
oscillations and changing of the flow/structural, the coupling of the assembly for engine sea level
static firing. This was a significant event in the accumulation of knowledge about conditions for
bellows fatigue to learn that extemal environment factors - liquidair and the frost trapped between
the outer braid of the hose and between bellows convolutes - drastically changed the flexhose
operating environment.

This was an important discovery for earth-to-orbit propulsion technology which fortunately did
not compromise the mission, as the AS-502 orbit was successfully achieved. Numerous tests to
verify a "fix" for the ASI fuel line to operate in the space environment. Options tested in this
important case are shown in Figure 4-4. They were: 1) an upper ASI fuel line with a single bellows,
single-braid overlap flexhose, 2) an upper ASI fuel line with a triple bellows, double-braid overlap
flexhose, and the two lower flexhoses eliminated, and 3) an all "hard-line" ASI fuel line with all
three flexhoses eliminated. The measurements made were ASI fuel line temperatures,

2. SaturnVLaunchVehicleFlightEvaluationReport. AS-502 Apollo6 Mission,"MPR-SAT-FE-68-3,June25,
t968.

3"j-2 EngineAS-502 (Apollo6) FlightReportS-II and S-IVBStages,"R-7450-2,Volumes2 and3, June17,
1968, Volume4, September13, 1968.
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pressures, strains and accelerations. In this case the final fix was that no flexhose was needed,
and all three flexhoses were eliminated from the design.
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Phenolic Clamp '_-" :

(1oThrust Chamber__ .1W___ allCorrosiOnLowcrResistant15.88mrnASibybYFue12.290.89unemmm

Main Fuel Valve (Ref.)

PhenolicClamps
' 'v 'I _ (to ThrustChamber)

(a) Final "Fix" (No Fiexhoses)

Figure 4-4.
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The ASI Fuel Line Bellows Were Removed From the J-2 Engine After Apollo 6
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Addition of Flow Shields-Stiffeners to Injector LO2 Posts

An example of successful prevention was the fix of the LO2 posts in the SSME injector,

Figure 4-5. An addition of a test-verified shield stopped the vortex-induced vibrations of the LO2
posts. The shield apparently increased the stiffness of the posts as well as changed the flow field
so that vortex shedding no longer excess the structure natural frequencies. This is a hot turbine
exhaust gas flow mixture which is hydrogen - rich and is mixed in the fuel injector coaxial elements
with pure GH2 from the fuel feed system.

BEFORE

=11

..j

LO2 Flow

/-- LO2 Posts

Hot Gas
Flow

AFTER

LO2 Flow

Figure 4-5. The LO2 Post Fix in the SSME Injector

Reduce Vortex Shedding Effects - the LO2 Inlet Tee Vanes 4 kHz Phenomenon

G. M. O'Conner and J. H. Jones 4 reported on the SSME flow-induced vibration problem with

the LO2 inlet tee zones in the main combustion chamber inlet splitter tee/diffuser. Jones et al 5

40'Cor _r, G. M. and Jones, J. H., "Flow.Induced Vibrations of the SSME LOX Inlet Tee Vanes," AIAA-88-
3132,, _./ASME/SAE/SAEE 24th Joint Propulsion Conference, Boston, Mass., July 11-13, 1988.

5jones, J. H, Guest, S. H., Nesman, T. E., Matienzo, J. J. and Reed, D. K., "Acoustic, Overpressure and
Unsteady Flow Phenomena Associated with the Saturn�Space Shuttle Systems: A Review of Selected
Issues," presented at the Symposium on Acoustic and Dynamic Environment of Space Transportation
Systems, Chatillon, France, Februrary 1994.
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presented a fix certification history in concise form from which a case history is exerted here. This

problem was known as the "4KHz phenomenon".

In October of 1985, on SSME test 750-262, a routine hot fire test, a very high amplitude

vibration response was observed on engine 2025 (P/H 4003) on several of the gimbal bearing
accelerometer measurements. This was an anomalous frequency and not associated with any

synchronous components of the SSME turbopumps. A power spectral density plot (PSD) as
measured during 109-percent operation of the engine, is shown in Figure 4-6. This represents a
very severe response at this location on the SSME. During subsequent testing, the source of
this excitation was quickly located to the LO2 inlet/tee section and main injector region of the

SSME (see Figures 4-7 and 4-8). The LO2 flow conditions at the inlet to this LO2 tee are shown

in Table 4-1. This region is an integral part of a larger section referred to as the powerhead (P/H),
which consists of the LO2 and fuel preburner chamber as well as the main combustion chamber

which houses the main injector.

Test 7500262 Gim. Br. Lng. 8+140
1.0E+003 .........

4,025.0 662.05
4,412.5 2.09
2,012.5 1.59
4,075.0 1.29
3,687.5 0.91
3,562.5 0.87
4,312.5 0.81
3,737.5 0.76
4,262.5 0.76
3,850.0 0.74

BW = 1-2.5
AVGS = 8.0
COMP = 97.35

(3-10)

1.0E-002

109%
g

N

3:

0 Frequency (Hz) 5,000

Figure 4-6. SSME 4,000 Hz Phenomenon Gimbal Bearing Accelerometer - Engine No. 2025
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Figure 4-7. SSME Main Injector Assembly
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Figure 4-8. SSME 4,000 Hz Phenomenon Orientation of LOX Inlet/Tee

- Splitter Vanes and Gimbal Bearing

4.1.8



CORRECTIVEM EASURES

Table 4-1. SSME 4,000 Hz Phenomenon Flow Conditions at L02 Inlet Tee

Parameter

p, density (IbsAn3) =

P, pressure (Ibs/in2)

V, velocity (ft/sec) =

q, dynamic pressure (Ibs/in?-)=

C, speed of sound (ft/sec)

R, Reynolds No., Based on Vane Chord (-)

W, mass flow rate (Ibs/sec)

M, roach number (-)

109°/oPWL

0.0405

4400

181.0

247.0

3100

22x 106

850

0.0584

A 4,000 Hz investigation team consisting of members from Rocketdyne and MSFC was
formed to resolve this issue. Extensive efforts were required on the part of all members of both
groups to reach a solution to this problem.

A review of all previous test data from all engine tests was made to determine if evidence of
this phenomenon occurred previously. This was an extensive survey, revealing that additional
engines (powerheads) had exhibited similar effects. The engine hardware was also reviewed and
no evidence of any damage could be found. Only the engines which had been tested at power
levels (PWL's) of 100 percent or greater, and not all of those, had the 4,000 Hz. There was a large
variability in the amplitude of the response from engine to engine, with engine 2025 having by far
the largest response. The 4,000 Hz characteristics were generally very repeatable within a given
set of engine hardware. Although the frequency varied slightly from engine to engine, it was
always in the range of 4,000 Hz.

Also in support of this problem study, a wide variety of different activities was initiated at both
Rocketdyne and MSFC to investigate this phenomena. This included structural modeling of the
tee/vane (Figure 4-9), evaluation of the added mass effect, and the effect of vane cracking,
vibration tests in ambient and cryogenic conditions, CFD modeling of the internal flow (Figure 4-
10), water flow testing and LN2 flow testing of actual hardware, two dimensional water table
testing, water flow tests with plastic vanes and additional dynamic measurements on hot firing
tests (acceleration and strain). CFD modeling was done for fully separated flow at 23 deg (z, and
attached flow at 0 deg (z. The attached flow case was the dangerous condition producing vortex
shedding lock-in. This was simplified modeling of fixed (not moving) vane geometry. The view
that began to emerge from this activity was that this phenomenon was related to vortex shedding
from the LOX inlet tee's splitter vanes' bluff trailing edge, interacting with the vane's structural
mode. A key piece of information, uncovered during the review of past data, was that on one unit,
engine (2116), the frequency began to decrease with increasing test time. This decrease was
progressive over the course of 15 tests. This frequency change would track and be consistent
from test to test. From the finite element structural modeling studies of the LOX tee splittervane,
it was known that the vane's first torsional mode was at 4,000 Hz. The most plausible cause of the
frequency shift was that the vane had begun to crack and the crack began to propagate during
these series of tests, causing a gradual decrease in frequency of this vane mode. This was
predicted by analysis.
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In order to inspect for cracking of the vane, the elbow at the inlet had to be removed (see
Figure 4-8). This was done and a crack was found in one vane near the outer shell of the tee. This
was the first direct evidence that the LOX splitter tee vane was a part of, or participating in, this
phenomena. Only one other engine showed any frequency decrease similar to this, i.e., on
Engine 0005B, both vanes were cracked and two slightly different frequencies changes
(decreases) were observed in the data. This was the only hardware damage associated with the
phenomenon.

These results clearly indicate that the phenomenon is characteristic of fluid/structural
interaction, and that at the onset-velocity, significant increases in the response can be expected.
As the lock-in occurred the response became periodic.

The 4,000 Hz fix that was developed consisted of two hardware changes. One change was to
asymmetrically bevel the trailing edge of the vanes and the other was to cut back (scallop) the
leading edge of the vanes. The bevel was designed to eliminate the vortex shedding from the
trailing edge and thereby eliminate the source of excitation. The scalloping of the leading edge of
the vane shifted the frequency of the torsional mode to a higher frequency, totally out of the
operation flow/PWL range of the SSME. Both of these changes were im )lemented and
constitute the 4,000 Hz fix (see Figure 4-11 ).

1.00 R R

R Trailing

Leading

"__ _01:: 0 T_e287R ,eftUndel°rmedvsne

o 0;"

| Relnforced pad I

..--4

\ 13.soio

= oL •

Operational fn _ 4000 H=

a) Detail of LO2 Inlet Tee Showing Basic Dimension (b) 4-kHz Modal Shape for Inlet Tee Vane

Figure 4-9. Structural Modeling of the LO2 Inlet Tee Vane
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Dougherty et al CFD

Random Buffeting
Condition

SEPARATED

Vortex-Shedding Lock-in
Condition

ATrACHED

Figure 4-10. CFD Modeling of the L02 Inlet Tee Vane
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•"_ I_- 0.400"

Trailing Edge Leading Edge
Bevel Scallop

Figure 4-11. SSME 4,000 Hz Vane Modification Geometry

Probability density analysis of the raw data was also performed. These results indicated that
the 4,000 Hz signal was discrete or periodic in nature. This is indicative of conditions at "lock-in".

The amplitude of response at 4,000 Hz is plotted for the hot-fire units as well as the water-flow unit
that exhibited this phenomenon (see Figure 4-12). These results are shown as a function of
reduce velocity, i.e.,

Reduced velocity = U
JD
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Figure 4-12. SSME 4,000 Hz Phenomenon

All of this work, including the fix certification, was performed during the downtime after
Challenger. A 4,000 Hz flight monitoring system was also incorporated and flown on STS-26 in
September 1988. This flight monitoring system consists of two accelerometers mounted on the
gimbal bearing which is still on flight systems today. In addition to monitoring for 4,000 Hz, these
measurements are also being used to monitor for "pop" in the LO2 and fuel preburners and in the
main combustion chamber of the SSME.

It was desired to test these fixes on non-flight or non-development hardware before it was
actually tried on existing hot fire units (engines). The SSME program wanted to preserve as many
flight/development powerheads as possible.

During the LN2 tests that were conducted at MSFC, the full-scale hardware did not show any
evidence of the 4,000 Hz phenomena. This was due in part to the fact that the LN2 flow velocity
could not be increased enough to initiate the excitation. However, on the water flow tests at
MSFC, the hardware exhibited the 4,000 Hz response; consequently, the fix was implemented
first and then the leading edge scallop was implemented on this test series. The trailing edge
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bevel was implemented first and then the leading edge scallop was implemented on the following
test.

The 4,000 Hz fix was then implemented on engine 2025. This is the unit that first raised the
issue of 4,000 Hz and it had the highest vibration response. The result of the fix is seen in Figure
4-13, which shows data from a strain gauge measurement at the base of the tee. Strain
measurements were added during the course of this investigation. Figure 4-13a (upper portion)
shows the strong vane response and Figure 4-13b shows the effect of the fix; no response is
seen at 3970 Hz. The new vane frequency has been shifted approximately 685 Hz higher by
analysis.

Test 7500264K5 MCC OX Inlet SG 2AC S+22.1 104%

1.0E 3 , . : . _ } _ 1,000

F i i I*

3,970.0 24320095.0 61.686 100
470.0 34.326

80.0 17.126 i

1,880.0 9.691
60.0 9.172

110.0 6.337
130.0 4.116
260.0 4.068

500.0
Frequency (Hz)

5,000.0

NAVGS = 5
BW = 5.00
COMP = 69.506
SYNC = 13.377

(a) Without Vane Modification: Engine No. 2025

95.0
457.5
82.5
57.5
75.0

115.0
65.0

207.5
177.5
267.5

Test
1.0E 3

260.869
69.096
25.211
16.607
13.958
8.750
5.181
4.684
4.261
4.227

1.0E -2

0.0 500.0

7500317 LOX INJ IN T 2B AC S+ 22.4 104%
............................................ .,... 1,000

.,, ;,..,, , _ .,J

Frequency (Hz)

NAVGS = 5
100 BW = 2.50

COMP = 54.813
10 SYNC = 14.288

r_• 1.0

_ 0.1
0.01

5,000.0

(b) With Vane Modification: Engine No. 0212

Figure 4-13. SSME 4,000 Hz Phenomenon Hot Firing with and without Fix
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This engine modification had to go through a flight certification test series (two test cycles of
5,000 seconds each). This certification was performed on engine 2025 (renumbered Engine

0212) and was successful. All new powerheads that are built will have this modification and all
units that did not exhibit this phenomenon will have this modification implemented when they are

recycled for rework. These vane modifications have been implemented by Rocketdyne.

Eliminate Cavity Noise - the Main Oxidizer Valve (MOV) Buzz Phenomenon

The phenomenon discussed next is acoustical in nature and has resulted in high vibration
levels of the MOV and eventually led to failure of the MOV. The main oxidizer valve is located
about 1 foot upstream of the LOX inlet tee and main injector. The MOV (Figure 4-14) is a ball-valve
type of construction and it operates in the fully open position at main stage conditions.

Press-Fit Sleeve FMOF Thick Sleeve

r_/_ M0V/HPOPDuct

_ 0.343

_Seev_

_(1'82 ,==--0.368(0.145)
0239

(o.o )T"j.  17st- ---o.=3 ,L ,,.,lOJ.

Detail A Detail A

_-Note:All Dimensions are in II _ Press-Fit

I Centimeters, I I in Inches I \ SleeveFMOF ThickSleeve

A

-f T
_ 8.89 Dia.

(3.5)

(3.85)
ExitFlange

(Nominal Dimensions Associated with Main Oxidizer Valve)

Figure 4-14. Geometry of SSME Main Oxidizer Valve Showing Gap at Inlet Flange

6.35Dia.

= 25243
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Flow
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This phenomena was first observed during hot fire testing in February 1979. The source of
these vibrations was then isolated to the MOV on subsequent testing. The frequency of these
vibrations/oscillation was 7,200 Hz, as measured in the LOX environment. At the inlet to the

MOV, a discrete pressure oscillation of 130 psi was measured on SSME test 750-013. This
resulted in severe vibrations of the valve that caused fretting of the mating surfaces in the LOX
environment and resulted in degradation of the seals and subsequent LOX leakage and hardware
damage. A number of different types of fixes were investigated. The final fix was completely
successful as seen in Figure 4-15.
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Figure 4-15. Comparison of SSME Hot Firing - MOV AX ACC with/without Shim Fix

To develop a better understanding of this phenomenon, it was decided to perform laboratory
type tests in LN 2 with the MOV and its associated high pressure LOX discharge ducting. These

tests were conducted in a flowdown-type test mode at MSFC. During the course of this testing, it
became obvious that the characteristics of the phenomena closely resembled that of an edge
tone/organ pipe mechanism. This mechanism was then exciting the acoustic modes of the valve.
This characteristic was discovered during slow ramp-testing. The LN2 flow was swept from zero to

full-scale flow velocities (100-percent PWL at that time). During this ramp-up, lower frequency
acoustic modes of the valve were observed to initiate and then drop out until the velocity reached
the 100 percent PWL condition where the mode of interest was initiated. This is illustrated in

Figure 4-16 by the "solid" horizontal bars. The frequency of this mode was 6,800 Hz in LN 2. This
is consistent with the speed of sound difference between LN2 and LO2.

Early fix attempts involved improving the structural integrity of the valve by using various types
of damped-sleeve, thick-sleeve and/or press-fit-sleeve configurations. These fixes, however, did

not address the source of the excitation. Once the edge tone mechanism layer instability was
identified. It became evident what was required was to remove the excitation mechanism.

Eventually the gap was located as shown in Figure 4-14. The MOV is a convergent/divergent
valve configuration. A gap was present between the duct-flange at the entrance to the valve and
the MOV sleeve itself. This was discovered during review of the fit-up drawings of the valve/duct
flange and this gap is shown in Detail A" of Figure 4-14.
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The Rossiter model, similar to the model discussed earlier, was used to describe this

phenomenon. The vortex shedding frequencies from this model were computed and are plotted
as the shaded region of Figure 4-16 When this excitation frequency is near one of the valve's

longitudinal acoustic modes, then discrete acoustic tones are generated. This is indicated by the
"dashed" horizontal lines indicated in Figure 4-16. Acouslic modes higher than the 6,800 Hz,
(7,200 Hz in LOX), were evident in these LN2 tests and were also observed in LOX during hot-fire

testing. The frequency matchings at about 6,800 Hz for 158 ft/sec velocity occurs at N 75 and
J22 with :7.= 0.25.

Velocity of Sound - 2,774 ft/sec for V- 158 f'dsec

14,000-

12,000-

10,000-
!

e.ooo-

M.

=1 6,ooo-
m

4,000-

2,000 -

RossiterVortex Frequency
Equation

HPOP/Flange Gap Cavity
Tangential Frequencies

MOV LongitudinalDuct
Mode Frequencies

LN2 Experimental Results
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Figure 4-16. SSME Main Oxidizer Valve "Buzz" Phenomenon
- Comparison of Predicted Excitation with MOV Acoustic Modes

A shim (washer) was designed to fill or plug the gap, i.e., fill the opening. Addition of the shim
constituted the fix. The shim used in the LN2 tests was successful. This shim configuration was

next tested on actual hot-fire engine MOV configuration in June, 1979. SSME Test 902-160 was
conducted without the shim, and Test 902-161 was with the shim. As can be seen on Test 160

(no fix), the tone was eliminated. This mechanism was a shear layer instability, interacting with a
downstream edge causing acoustic excitation, which in turn excited the second tangential mode
of the gap and the fifth longitudinal acoustic mode of the valve. This fix (or configuration change)
has been incorporated into MOV duct flange fit-up geometry for all engines. This example shows
that acoustics inherent to internal flow geometries with wave propagations and reflections in all
directions characteristic of low subsonic flows can cause very strong structural excitations and can

be eliminated altogether by an appropriate fix.
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Reduce the Turbulence Intensity

Internal turbulence intensities can be as high as 40 percent of the mean characteristic flow
velocity inside ducts containing rotating turbomachinery elements (pump or turbine blades),
valves, bends, struts, and vanes. The above-cited Earth-to-orbit rocket system component case
histories are well-documented cases of motion-induced flow/structural interaction that required
specific, critical actions to guarantee successful system operation. Each had its own peculiar
structural lock-in or acoustic resonance amplification to discrete high-frequency responses of the
structural components at specific frequencies. Each had its own associated destructive potential
for structural fatigue. Each involved a structural change as it was not possible to adjust the flow
and avoid the interaction flow regime. Without specific example, turbulence intensities
approaching 40 percent carry potentials for very strong random buffeting of structural elements
such as duct liners and strutsor vanes that might be immersed in the flow. As a rule of thumb, the
magnitude of the random buffeting forces caused by the turbulence scales directly with the local
mean characteristic dynamic pressure, q, in the flow (proportional to density and to the mean
velocity squared). These are the motion-independent random forces that can occur on structural
elements in the flow.

Dense fluids at high subsonic velocities, e.g. LO2 or gases at high pressure, are capable of
driving large structural dynamic responses due to turbulent buffeting. Internal flow systems
always have an inherent velocity profile across the duct. The location of the local maximum in the
velocity profile is a likely location for highest turbulent buffeting of an object should 1) it be placed
at that location in the flow and 2) there be a source of turbulence sufficiently close upstream. This
turbulence can be introduced by bends, struts, vanes, sudden enlargements or sudden
contractions upstream that introduce velocity shear profiles and wakes behind them. Convection
of that turbulence downstream provides the mechanism for buffeting a structural component
downstream. Generally, the spectrum of the turbulence downstream will be found to be
broadband random with a frequency range dependent upon the shape and dimensions of the
source of the turbulence.

Structural dynamics analysts treat turbulent buffeting response predictions with a random
pressure-area loading across the frequency range of interest. Narrow-band random structural
responses occur at the natural frequencies and mode shapes characteristic of the structural
component being buffeted. While the amplitudes involved may not be nearly so large as in cases
of motion-induced discrete-frequency lock-in, destructive fatigue potentials can exist. All sides of
an immersed object may be exposed to the buffeting. An extreme case might be a turning vane
and a turbulence scale on the order of the vane's chord length where the flow completely
separates and alternately reattaches from the lee side of the vane as in Figure 4-10a. Here, the
analyst may apply the unsteady loading as a differential force acting across the complete planform
of the vane. Whether or not fatigue will occur depends upon the S-N curve for the particular
structure and the existence of turbulence in the flow sufficient to cause the fatigue stresses.

Reducing the turbulence levels in the design is possible taking into account knowledge of
the types of shear flows and wakes that can be introduced, allowing sufficient distance
downstream for placing objects where possible after any turbulence generated will have
dissipated, and reducing the local q in the flow by smoothing out, or at least somehow altering, the
local mean velocity profile. If the local velocity can be reduced a factor of 2, for example, then the
dynamic loading might be reduced a factor of 4, which might be sufficient to preclude fatigue. The
fluid dynamics analyst therefore using knowledge of the flow physics often has the opportunity to
reduce the turbulence intensity and preclude the potential for fatigue.
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Units

Consistency for a set of units is essential for correct expression of formulas. A consistent
set of units is one in which Newton's Second Law, force equals mass times acceleration, is
identically satisfied without introduction of scaling factors.

1 unit force = 1 unit mass x 1 unit acceleration.

The SI system of units is used exclusively throughout this handbook. The resulting
Second Law is, in terms of the Sl units:

1 newton = 1 kilogram x 1 meter/second/second.

The following abbreviations for the SI system of units are used throughout the handbook.
The preferred unit is in bold with the symbol (SI).

B_sic Units

Length Temverature
centimeter cm degrees Kelvin °K
meter m (SI) degrees Celsius °C
kilometer km

(Sl)

degree deg
*radlan rad (SI)

Mass Time
kilogram kg (SI) second
gram g

D_rived Units

Force FrQquency

newton N kg.m/sec2 hertz
pascal Pa N/m2
decibel db

dyne dyn g.cnYsec2

sec (Sl)

Hz cycles/sec

° Radian measure is defined as a ratio of two lengths and is a dimensionless quantity.

A-1





The following format order is used for definitions in
this glossary:
Defined Quantity { symbol } < units > (1) primary
definition (Optional information), (2) secondary
definition (Optional information). Then, related
material and formulas if any.

Acceleration < rr'Jsec2> {1) The vector quantity

specifying the time rate of change of the velocity.
Added mass { ma } < kg> (1) The mass of fluid that
is accelerated due to motion of a body in a fluid, (2)
The mass of fluid added to that of the structure in
calculating the total kinetic energy of the structure,
(3) The mass of fluid displaced or entrained by
movement of a body in the fluid.

Angular momentum { I¢o} < kg-m/sec> Product of
the moment of inertia and the angular velocity of a
body.
Anti-node A point, line, or surface in a standing
wave or on a structure where amplitude or
deflection is at a maximum during vibration in a
given mode.
Beam A structure whose cross-sectional properties
and deflection vary only along its axis.
Buffeting (1) The structural response to the
aerodynamic excitation produced by separated
flows 1, (2) Transient vibrations of structures due to
aerodynamic impulses produced by wakes of
structures in the flow2, (3) Forces felt by a structure
due to fluctuations in the flow impinging on that
structure.
Bulk modulus of elasticity { B ) The ratio of the
tensile or compressive stress to the relative change
in volume.
Cable A uniform, massive one-dimensional
structure which can bear only tensile loads parallel
to its own axis. Cables will stretch in response to
tensile loading.
Cable modulus The rate of change in the
longitudinal stress in a cable for a small unit
longitudinal strain.
Cavitation A phenomenon of a submerged solid
surface in a fluid, in which vapor bubbles emerge
and subsequently collapse at a high rate due to
large fluctuations in flow velocity and pressure. It
usually occurs where the fluid pressure decreases
significantly due to locally high flow velocity.
Center of gravity The mid point of a body which
satisfies: the sum of gravitational force multiplied by
distance from this point over each element of a
body is zero. (for uniform gravitational acceleration
it is the center of mess).
Centrold The geometric center of a plane area.
Chain A uniform, massive one-dimensional
structure which can bear only tensile loads parallel
to its own axis. Chains do not stretch in response to
tensile loading.

Circular frequency { o) } < rad/sec > The
trequency of periodic phenomena times 2x.
Clamped boundary A geometric boundary
condition allowing neither displacement nor rotation
along a given boundary.

GLOSSARY

Compressibility A measure of the change of
volume of a liquid or gas under the action of
external forces.
Damping The ability of a medium/structure to
absorb vibrational energy. Damping can be
generated within the material of the structure
(material damping), by the fluid surrounding the
structure ( fluid damping ), or by the impact and
scraping at joints ( structural damping ).
DeformaUon The displacement of a structure from
its equilibrium position.
Density { p } < kg/m3 > The mass per unit volume
of a material.

Displacement < m > A change either in
translational distance or rotational angle.

Drag { D } < N > Ruid force component on a body
in the direction of the incident flow.
Drift (1) A motion of a body or a fluid element in a

fluid medium. (2) { P,} <m> The drift of a particle in
the fluid is defined as the total displacement of the
fluid particle in the direction of movement of the
body.
Drift volume { D } <m3> (1) Volume traveled or
traced by a drift motion. (2) Drift volume is defined
as the volume enclosed between the initial and final
position of an infinitely thin plane which has been
perturbed by passage of a body through that plane.
Elastic deformation Deformations which change
lineady with the change of applied load.
Effective mass { m } <kg> The sum of structural
mass and fluid added mass.
Flutter Structural fluctuation or vibration due to
fluctuational aerodynamic forces.
Free boundary A boundary of a structure along
which no restraints are applied.
Galloping Structural fluctuation or vibration due to
fluctuational aerodynamic forces which generate
negative fluid damping.
Incompressible For fluid in which compressibility
is low, usually for low Mach number (< 0.3) flows.
inertia (1) Ability or property of matter/body which
resists change in motion of the body. (2) For linear
motion, it is mass of the body.
Invlscid An adjective same as nonviscous which
describes idealized fluid with no viscosity.
Isotropic A term applied to a material whose
properties are unchanged by rotation of the axis of
measurement. Only two elastic constants, the

modulus of elasticity, E, and Poisson's ratio, v, are
required to completely specify the elastic behavior
of an isotropic material.
Joint acceptance { J ) < dimensionless > A
weighting factor which is a function of or equals to
the ratio of the vortex correlation length to cylinder
length.
Kinematic viscosity { v } < m2/sec > Dynamic (or

absolute) viscosity divided by fluid density.

Lift { D } < N > Fluid force component on a body
transverse to the direction of the incident flow.

Malls < kg > An inherent property of matter which
is reluctant to the acceleration of the body.

Glossary.1



GLOSSARY

Membrane A thin elastic sheet which can support
only tensile loads along its surface.
Mode shape A function defined over a structure
which describes the relative displacement of any
point on the structure as the structure vibrates in a
single mode. A mode shape is associated with each
natural frequency of a structure.
Modulus of elasticity { E } The rate of change of
normal stress for a unit normal strain of a given
material. Some materials have a directional

modulus of elasticity. ( Young's Modulus ).
Moment of inertia < kg-m2 • The sum of the
products obtained by multiplying each element of
mass within a body by the square of its distance
from a given point.
Momentum < kg-m/sec > Product of mass and
velocity of the mass.
Natural frequency The frequency at which a
linear elastic structure will tend to vibrate once it
has been set in motion. The lowest natural

frequency is called the fundamental natural
frequency.
Neutral axis The axis of zero (shear) stress in the
cross section of a structure.

Newton { N } < kg-m/sec 2 > Basic unit of force in SI
system. The force required to accelerate one
kilogram to one meter per second in one second.
Node Point on a structure which does not deflect

dudng vibration in a given mode.
Orthotropic A term applied to a thin lamina if the
material properties of the lamina possess two
mutually perpendicular planes of symmetry. Four
material constants are required to specify the
elastic behavior of an orthotropic lamina.
Pinned boundary A boundary condition such that
the structure is free to rotate but not displace at that
boundary.
Plate A thin fiat two-dimensional elastic structure.
A plate without bending rigidity is a membrane.
Point mass A relatively concentrated mass in
space which is assumed to have zero moment of
inertia for rotation about its center of mass.
Polsson's ratio The ratio of the lateral shdnkage (
expansion ) to the longitudinal expansion (
shrinkage ) of a bar of a given material which has
been placed under a uniform longitudinal tensile (
compressive ) load. Some materials have a
directional Poisson's ratio.
Reduced frequency A nondimensional frequency
is also usually called Strouhal number (q.v.,
Strouhal number).
Rotating stall A condition occurring in a turbines
where one or more regions of separated flow, stall
cells, travel ai'ound the compressor annulus in the
direction of the compressor with a speed usually
close to half of the compressor rotation speed.
There is little flow through the stall cell and the
periodicity of the passage of the cell over a turbine
blade produces oscillations which may coincide with
natural frequencies of the turbine blade.
Shear A force or stress acts on a surface
tangentially.
Shear coefficient <dimensionless> A quantity,
defined as the ratio of the average shear strain over

a beam cross section to the shear strain at the
centroid.
Shear layer A fluid flow generated by two or more
streams at different velocities and/or other
properties.
Shear modulus The rate of change in the shear
stress of a material with a unit shear strain. Some
materials have a directional shear modulus.
Shell A thin elastic structure whose geometry is
approximates a curved surface. A shell without
rigidity in bending is a membrane.
Sliding boundary A boundary condition such that
a structure is free to displace in a given direction
along a boundary but rotation is prevented.
Spring constant:

Linear The change in load on a linear
elastic structure required to produce a unit
increment of deflection.

The change in moment (torque)
on a linear elastic structure required to
produce a unit increment of rotation.

Stall A status of a lift-generating structure in which
sudden drop of lift occurs due to flow separation at
large angle-of-attack or other flow instability.
Stiffness The material strength or ability which
resists translational or rotational strain under loads.

String A thin (long) structure which can only bear
tension along its axis.
Strut A supporting structure to a (main) structure to
enhance stiffness or to increase damping for
reduction of vibration.
Strouhal number ( S } <dimensionless• The
nondimensional frequency of vibration, frequently of
vortex shedding from a bluff body in a flow.
Strouhal number is the frequency of vibration times
the characteristic length divided by the freestream
velocity.

s=fl-
U

Supercavltatlon A cavitation due to increase of
flow velocity in a duct flow such as in a liquid flow in
a nozzle due to acceleration of the flow near or
behind the throat.

Velocity {_!__ , X } < m/sac> The rate of change of

position with respect to time.
Vibrational Reynolds number { S } <
dimensionless > The Vibrational Reynolds number
is defined as the product of the angular velocity and
the square of the radius of the body divided by the
kinematic viscosity.

s=m_a 
V

Virtual mass { m } < kg • The sum of the structural
mass, ms, and the fluid added mass, ma. (same as
effective mass)
Viscosity The ability of a fluid to resist shearing
deformation. The viscosity of a Newtonian fluid is
defined as the ratio between the shear stress
applied to a fluid and the shearing strain that
results.

Vortex correlation length A length which
measures the two-dimensionality of the vortex
sheet over a (long) structure which has a
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characteristic diameter, D. It is usually in the range
of 3 to 10 times of D. The larger this length, the
less the spanwise variation.
Wake The flow separation region in the lee side of
a structure which is a measure of the bluffness of
the structure.

1Mabey, D.G., "Some Remarks on Butfeting of
Wings, Wind Tunnel Models", Royal Aircraft Est.,
Report RAE-TM-STRUCT-980 BR78530.

2Bisplinghoff, R.L., H. Ashley and R.L. Halfman •
Aeroelasticity", Addison-Weseley, 1955.
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A
Acoustic resonance 2.7.5,3.10.3
Added mass

added mass 2.2.3,3.2.7
pipe arrays 3.3.2
single circular cylinder 3.2.6
two parallel cylinders 3.2.9

B
Beam

boundary conditions 3.2.13

C
CFD 2.7.2,3.2.5,3.6.6,4.1.11
Cavitation 3.5.1
Cantilever Pipe 3.7.1
Cylinder

area moment of inertia 3.2.12
displacement 3.2.16
lateral force auto spectral density 3.2.24
vibrating cylinder 3.2.12
rigid cylinder 3.2.19

Correlation model 3.2.17
Correlation length 3.2.12
Crossflow velocity 3.2.11
Curved pipes 3.7.6

D
Damping

free decay 3.2.14
fluid damping 3.2.15
fluid damping ratio 3.2.15
logarithmic decrement 3.2.14
structural damping 3.2.14

Denticulation (valve disk) 3.10.4
Drag

drag 3.3.3
drag coefficient 3.2.20, 3.3.5

Duhamel's integral 3.7.9
Dynamic head 3.10.1

E
Effective mass 3.2.7
EFO oscillations 2.7.1,3.10.3
Equation of motion

external pipe motion 3.3.3
fluid-conveying pipe 3.7.3, 3.7.5

G
Gates 3.10.1
Griffin and Ramberg model 3.2.16

H
Harmonic oscillator model 3.2.16
Hydrodynamic mass coefficient 3.2.7

I
In-line structural bending frequencies 3.2.20
Inertial coupling 3.3.2

INDEX

J
Jet flow - inertia mechanism 3.10.1
Jet switching 3.3.1, 3.3.6
Joint acceptance 3.2.12, 3.2.23, 3.2.26

K
Karman vortex street 3.2.4
Kolkman's equations (valves) 3.10.2

L
Lift

tube arrays 3.3.4
coefficient 3.1.7,3.2.18, 3.3.5

Lock-in 2.1.5,3.1.13,3.4.4
amplitudes 3.2.17

M
Mass

mass ratio 3.2.15
reduced mass 3.2.15
structural mass 3.2.7

Mode shape
mode shape factor 3.2.13,3.2.26
mode shape factor for displacement 3.2.26
mode shape function 3.2.13
cantilever pipe 3.7.4

O
Orifice 3.10.1

P
Pipes 3.3.1, 3.7.1
Pipe whip 3.7.7
Pipe fixed at both ends 3.7.3
Power

non-dimensional cycle power 3.2.18

R
Reduced mass 3.2.15
Reduced velocity 3.2.17, 3.2.21
Resonant frequency 2.7.5,3.2.15
Restraining force (valves) 3.10.1
Reynolds number 3.2.10
Ruptured pipe 3.7.9

cantilevered pipe 3.7.8

S
Sarpkaya model, 3.2.16
Separation point 3.2.4
Spring constant 2.1.6
Static closing force (valve) 3.10.1
Stagnation point 3.2.4
Strouhal number 3.2.10,3.9.1
Structure

bending frequencies 3.2.11
damping 3.2.14

T
Thermostatic radiator valve 3.10.3
Transverse

bending frequencies 3.2.17
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spectra3.2.23

V
Valves 3.10.1
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Vortex

convection speed 3.2.4
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filaments 3.2.12
shedding 3.2.3
tilt angle of a filament 3.2.12
transport velocity 3.2.12

W
Wake 3.2.5,3.3.6

wake oscillator model 3.2.16
wake response parameter 3.2.21

Wall effect 3.2.7,3.2.22,3.2.27
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