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Preface 
The fourth Summer Program of the Center for Turbulence Research was held 

during the four-week period July 13 to August 7, 1992. As in the past summer pro-
grams, direct numerical simulation databases were used to study turbulence physics 
and modeling issues. Twenty-seven participants from seven countries were selected 
based on their research proposals. They joined twenty-three local participants from 
Stanford and NASA-Ames Research Center who devoted virtually all of their time 
during the Program to this activity. 

The Program included a special emphasis on the physics of small scale turbulence 
which was, in part, motivated by the recent advances in subgrid scale modeling for 
large eddy simulations. A relatively large effort was also devoted to turbulent re-
acting flows. Direct numerical simulation of turbulent reacting flows has been an 
integral part of CTR's summer and core programs. A panel of experts (Thierry 
Poinsot, Stephen B. Pope, and Forman A. Williams) were invited to discuss appli-
cation of these simulations (which due to computer limitations are performed with 
limited ranges of parameters) to turbulence combustion. A summary of the panel's 
deliberations was prepared by James Hill and is included in this report. 

As part of the program, four review tutorials were given on Vortical States, Vor-

tex Filaments, and Turbulence (Philip G. Saffman), PDF Modeling (Stephen B. 
Pope), Energy Transfer Mechanism (Shigeo Kida), and Experimental Studies of 
Local Isotropy in high Reynolds Number Flows (Seyed G. Saddoughi). 

The databases consisted of a turbulent mixing layer, turbulent channel flow with 
passive scalar, forced homogeneous isotropic turbulence, compressible homogeneous 
turbulence, compressible free-shear flows, and reacting flows. Additional calcula-
tions were made when time series of the flow fields were needed. In particular, very 
large simulations of forced isotropic turbulence with 512 degrees of freedom were 
made on the massively parallel Intel/Delta computer at Caltech. 

This report contains twenty-four papers that resulted from the 1992 Summer 
Program. The papers are divided into four groups and are preceded by an overview 
written by each group coordinator. Early reporting of some of the projects occurred 
at the Forty-Fifth Meeting of the Fluid Dynamics Division of the American Physical 
Society in Tallahassee, Florida, November 22-24, 1992. Fifteen abstracts based on 
the work accomplished during the Summer Program were presented at this meeting. 

We are grateful to Ms. Debra Spinks for the compilation of this report and her 
invaluable assistance in the organization of the Summer Program. 

Parviz Mom 
William C. Reynolds 
John Kim



Center for Turbulence Research	 3 
Proceedings of the Summer Program 1992 

I. Small turbulence scales group 

Inclusion of the study of small scales in the 1992 Summer program was, in part, 
motivated by the recent resurgence of interest in large eddy simulation of turbulent 
flows which in turn was brought about by the development of the dynamic subgrid 
scale model during the 1990 Summer Program. In contrast to the 1990 Program 
where several models were developed and tested, this year's studies mostly focused 
on fundamental questions about the small scales. The eight papers in this group 
can be divided into three parts: structure and kinematic properties of small scales 
(Lundgren; Jimenez et al.; Soria ci al.; Antonia & Kim), nature of energy cascade 
and interaction among scales (Meneveau, Lund & Chasnov; Kida ci al.), and pa-
rameterization and predictability (Meneveau, Lund & Mom; Shtilman & Chasnov). 

Lundgren revisited his earlier theory in which he had shown that a model of small 
scale turbulence consisting of randomly orientated axially strained spiral vortices 
generates Kolmogorov's k 5/3 spectrum. A numerical formulation of his model 
provided some flexibility for experimentation with parameters of the model that 
was not possible in his earlier analytical work. For example, he showed that the 
results are insensitive to the time dependence of the strain rate imposed on the 
vortices. Lundgren also gained new insight into his original model by noting that, 
in the inviscid limit, it gives a self similar enstrophy spectrum which is the key for 
obtaining the Kolmogorov energy spectrum. 

Jimenez, Wray, Saffman & Rogallo conducted a comprehensive study of the cel-
ebrated tube-like intense vortical structures in homogeneous turbulence at several 
Reynolds numbers. The diameter of the tubes scale with the Kolmogorov scale and 
their lengths with the integral scale. Since these structures, also known as "worms", 
have been observed only in forced isotropic turbulence calculations, there was some 
concern that they may be artifacts of the forcing. Jimenez ci al. present evidence 
that the worms are robust and occur without forcing. The worms apparently form 
from the roll-up of vortex sheets in the regions where two large scale structures 
come in contact. They occupy a smaller fraction of the flow volume with increasing 
Reynolds number and are not significant contributors to the flow dynamics. The 
worms are the primary contributors to the intense events manifested in the tails of 
the probability distributions of functions of velocity gradients. The tails get longer 
with increasing Reynolds number with no apparent sign of convergence, a result 
which supports multifractal models of turbulence. 

Soria ci al., in a continuation of their study during the 1990 Summer Program, 
investigated the topology of the dissipating motions in turbulent mixing layers. 
Three incompressible mixing layers with different initial conditions were considered. 
The objective was to study the effect of initial conditions and Reynolds number on 
flow scaling and the topology of dissipating motions. Interesting observations were 
made on the evolutionary changes of structures in different flow regimes, but the 
underlying mechanisms remain for future investigations. 

PRECEDtNG PAGE BLANK NOT FLMW
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The concept of local isotropy in turbulent flows with mean strain or shear has 
been contested in some recent studies. Antonia & Kim investigated this issue using 
fully developed turbulent channel data at relatively low Reynolds numbers. They 
demonstrated that the isotropic relation for temperature derivatives and vorticity 
(both of which have significant contributions from small scales) is approximately 
satisfied as the channel centerline is approached. It was found that the criterion 
for local isotropy suggested by Corrsin (and Uberoi) is too restrictive although the 
parameter involved, which is the ratio of the Kolmogorov time scale to the time 
scale of mean shear, is appropriate. As long as this parameter is less than about 
0.1, local isotropy is satisfied independent of Reynolds number. 

The nature of interactions among different scales of turbulence has been a central 
one to turbulence research due to its fundamental role in the cascade of energy 
from large to small scales. Kida ci al. studied the locality of the interactions 
using quasi-normal theories and data from highly resolved numerical simulations of 
forced isotropic turbulence. Whereas in the inertial range local triad interactions 
are dominant, in the dissipation range nonlocal triad interactions are dominant. 
Moreover, the nonlocality of the interaction was related to the form of the energy 
spectrum in the far-dissipation range. 

The locality of the energy cascade was also studied by Meneveau, Lund & Chasnov 
in both physical and Fourier spaces. A novel Lagrangian space-time analysis of 
isotropic turbulence data provided evidence that fluid elements in a given energy 
band are better correlated with smaller eddies of nearly the same energy content at 
a later time than with eddies of the same spatial scale. This of course, supports the 
classical energy cascade phenomenology that large eddies break into smaller eddies 
as they decay. 

The practical problem of parameterization of subgrid scale stresses in terms of the 
large scale data was considered by Meneveau, Lund & Moin using the projection 
pursuit algorithm. This is a powerful regression technique for many-dimensional 
parameter spaces which was originally developed to analyze experimental data in 
particle physics. The objective was to identify large-scale flow quantities that could 
be used in the modeling of subgrid-scale stresses. For isotropic turbulence, the 
search algorithm led to the strain rate tensor which is used in eddy viscosity mod-
els. For homogeneous shear flow and channel flow, more complex relationships in 
terms of other tensors were identified which resulted in some improvement of the 
correlation between the model and modeled terms. Overall, the improvements were 
not as high as expected, and it's unclear whether the new models will impact future 
large eddy simulations. 

Shtilman & Chasnov performed a detailed study of the statistical predictability 
of LES calculations. They found good agreement between several statistics of an 
LES field and the corresponding statistics of a filtered DNS field in forced isotropic 
turbulence. These results are encouraging, providing evidence for the accuracy of 
large eddy simulations.

Parviz Mom 

:
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A small-scale turbulence model 

By T. S. Lundgren' 

A model for the small-scale structure of turbulence is reformulated in such a way 
that it may be conveniently computed. The model is an ensemble of randomly ori-
ented structured two dimensional vortices stretched by an axially symmetric strain 
flow. The energy spectrum of the resulting flow may be expressed as a time integral 
involving only the enstrophy spectrum of the time evolving two-dimensional cross 
section flow, which may be obtained numerically. Examples are given in which a 
k 5/3 spectrum is obtained by this method without using large wavenumber asymp- 
totic analysis. The k 5/3 inertial range spectrum is 'shown to be related to the 
existence of a self-similar enstrophy preserving range in the two-dimensional en-
strophy spectrum. The results are insensitive to time dependence of the strain-rate, 
including even intermittent on-or-off strains. 

1. Introduction 
One of the issues in turbulence theory is to understand what kinds of elemen-

tary flow structures are responsible for the part of the turbulent energy spectrum 
described by Kolmogorov's celebrated k 5/3 law. A number of years ago, Lund-
gren (1982) proposed a model of the small scale structure of turbulence which gives 
this spectrum. The model was put together as an ensemble of randomly oriented 
vortices with spiral structure, each vortex being subjected to an axially symmetric 
irrotational straining field. The strain was made constant and axially symmetric 
for analytical reasons and this should be thought of as a representation of much 
more complicated strains. The idea was to model the most important property of 
turbulence, namely the mixing property which causes fluid particles to rapidly sepa-
rate, stretching vortex blobs into elongated tubes. This model generalizes an earlier 
model by Townsend (1951) which assumed randomly oriented Burgers vortices and 
gave a k' spectrum. 

Differential rotation in the vortices (the inner part has higher angular velocity 
therefore winds faster) causes the vortex layers in the spiral to tighten, and the axial 
straining decreases the cross section of the structure. These mechanisms cause a 
cascade to smaller scales which differs from the traditional concept of a cascade 
through eddies of different sizes induced by instabilities. 

Many turbulent flows have distinct two dimensional vortices, and often flow vi-
sualization by laser-induced-fluorescence or smoke shows vortex cross sections with 
some spiral structure. Such structures may be seen in sections 4 and 6 of Van 

1 Department of Aerospace Engineering and Mechanics, University of Minnesota
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Dyke's (1982) book. Schwarz (1990) identified intermittently occurring layered vor-
tex sheets (apparently spirals) in oscillating grid turbulence by flow visualization 
with small suspended crystalline platelets. On the other hand, the numerically 
simulated periodic box turbulence of Vincent and Meneguzzi (1991) contains very 
pronounced two-dimensional vortices in which very little internal structure can be 
seen. (However, there is some spiral structure in their figure 15.) Perhaps the 
Reynolds number is too small in this kind of flow. 

A number of authors have made further studies based on the original paper by 
Lundgren. In particular, Lundgren (1985) applied the model to the calculation 
of the scalar spectrum of the product of a fast chemical reaction. Gilbert (1988) 
used similar ideas for the study of two-dimensional turbulence. Buntine and Pullin 
(1988) and Pullin and Buntine (1989) used the model as a basis for computations 
of spectra produced by the merger of vortices. Pullin and Saffman (1992) used it 
to calculate vorticity and velocity derivative moments for homogeneous isotropic 
turbulence. Recently, Gilbert (1992) has produced a qualitative cascade argument 
based on the model to explain the Kolmogorov spectrum. 

In section 2, the model is reformulated in such a way that the two-dimensional 
part of the model, the spiral flow or some more general two-dimensional vortical 
flow, may be conveniently carried out numerically. 

In section 3 numerical computations of two-dimensional flows are used to generate 
three-dimensional energy spectra. 

2. Reformulation of the spiral vortex model 
It will be useful to separate the strictly two-dimensional part of the model, the 

flow in the cross section of the vortex, from the straining part of the model which 
is performed by a transformation. The 1982 paper will be referred to as L and 
equations from that paper will be referred to by L:( ). It was shown in L that 
if a two-dimensional flow with vorticity given by W2 ( X , y, t) is placed in an axially 
symmetric strain flow with velocity components (—.5ax, —.5ay, az) where the strain-
rate a may be a function of time, then the vorticity in the resulting three-dimensional 
flow (which has the same initial vorticity as the two-dimensional flow) is given by 

Y, t) = S(t) w2 (s(t)112x, S(t) 112 y, T(i))	 (2.1) 

where

S(t) = exp 
(10 

a(tI )dtl)	 ( 2.2) 

is the amount the flow is stretched and 

	

T(t) 
= j 

S(t')dt'	 (2.3) 

is a strained time. The energy spectrum of an ensemble of strained vortices of all 
ages, accounting for the greater length of the older vortices, may be deduced from 
L:(58), L:(75) and L:(76) and expressed, in a new form, by 

E(k) =	
j 

S(T)' 12 F2 (S(T)_1/2k, T) dT	 (2.4)
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where C = 27r2 10 N/L3 is a constant. The function F2 is the enstrophy spectrum 
(the vorticity power spectrum) of the strictly two-dimensional flow. This is defined 
by

p2w 
F2 (k,t) = kJ lw2(k COS 9k,k sin 9k,t)d9k	 (2.5) 

0 

where

	

= (2)2 Jf exp [—i(kx + ky)] w2 (x, y, t)dxdy	 (2.6) 

and represents the enstrophy in a circular shell in wavenumber space, divided by 
the width of the shell. The integration variable in Eq.(2.4) is the strained time 
and the stretching function S must be expressed as a function of this strained 
time. When the strain-rate is constant, the usual case considered, S = exp(at) and 
T (exp(at) - 1)/a and hence

S=1+aT	 (2.7) 

is the appropriate function. In appendix A, it is shown by example that, even when 
the strain-rate is variable and quite different from constant, the stretching function 
is roughly a linear function of the strained time and the energy spectrum computed 
from Eq.(2.4) is insensitive to these modest deviations from linearity. 

In Eq.(2.4), the function F2 is all that is needed from the two-dimensional flow, 
and it may be specified numerically or analytically. The time integral represents the 
effect of stretching. The finite time cut-off on the integral is to prevent the vortices 
from being stretched indefinitely. It was assumed in L that they ultimately coalesce 
into shorter vortices and renew the spiral structure. 

In L an analytical spiral vortex solution was developed. An approximate solution 
of the two-dimensional Navier-Stokes equation was given in the form of a Fourier 
series in the cylindrical angle variable 9, 

(r, 9, t) =	 t) exp(in9)	 (2.8) 

	

1 2 ()2 
t 1	 (2.9) 

	

w(r,t) = f(r)exp [_in(r)t -	
d	

] 

where the functions f are arbitrary and the angular velocity (r) is related to the 
average vorticity wo by

rwo =

	

	 r2cl(r).	 (2.10)
dr 

The function l(r) must be monotone decreasing - the property which gives differ-
ential rotation. If the functions f, are all the same (independent of n) the solution 
looks like a spiraling vortex sheet in the inviscid limit. The approximations in 
Eq.(2.8) require that t must be large, i.e., the error becomes small as t - co. 
However, it will be seen numerically that it is quite good even for fairly small t.
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By using this analytical solution, the enstrophy function F2 may be expressed as 
a series of integrals which involve Bessel functions. These may be evaluated by the 
method of stationary phase, which requires both k and I to be large, an asymptotic 
result which may be written 

F2 = F'G(k/i)exp(-2vk2t/3) 	 (2.11) 

where
00

In G(k/i) =	 n11(r)n'	
(2.12) 

with
k + nQ'(r)t = 0.	 (2.13) 

The last equation results from the method of stationary phase. One is supposed 
to solve this for rn and substitute it into Eq.(2.12). Note that rn is a function 
of k/i, hence the form of the argument of the function G. In writing this result, 
the contribution from the n = 0 term has been omitted. This term has a different 
functional dependence and was shown in L to contribute little at high wavenumber. 
Equation (2.11) does not appear in L but may be deduced from L:(66) and L:(64) 
(with S 1 and P 1). 

It is the functional form of Eq.(2.11) which is important. First note that the 
functions fn are assumed to be of limited extent so that the spiral is restricted to 
a halo around a central vortex. Then the function F2 looks like a localized hump 
when plotted versus wavenumber (this will be clear when some computations are 
seen). If the viscous factor can be neglected, the area under the hump stays constant 
because

jt'G(k/t)dk constant.	 (2.14) 

The similarity form of the function shows that the top of the hump moves to higher 
wavenumber with constant speed, while the width broadens and the peak decreases 
in such a way that the area stays constant. This is an enstrophy preserving temporal 
cascade. The physics is clear: as the spiral turns tighten due to differential rotation, 
the enstrophy shifts to higher wavenumber while being conserved. 

The function F2 given by Eq.(2.11) is only part of the enstrophy spectrum. There 
is an additional large part at low wave number (the n = 0 term which was omitted). 
If viscosity is neglected, the total enstrophy is preserved, i.e., f wdA = f Fdk 
constant. What has been shown here is that the spiral solution has scale separation 
of the enstrophy spectrum into two distinct peaks, and the enstrophy of each of 
these parts is independently preserved. 

The energy spectrum expression given by Eq.(2.4) could also have been cast in 
terms of the two-dimensional energy spectrum, E2 say. For the spiral solution, E2 
also has scale separation into a large low wavenumber peak and a secondary smaller 
(much smaller because of the k 2 factor) high wave number peak with a similarity 
structure. While the total energy is conserved (in the absence of viscosity), the
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energy in the separate peaks is not. The energy in the high wavenumber peak 
decreases like t 2 , giving up this energy to the low wavenumber peak. 

This enstrophy preserving similarity form is responsible for the k 5/3 part of the 
three-dimensional energy spectrum. When Eq.(2.11) is substituted into Eq.(2.4), 
the result

E(k) = Ak 5/3 exp(-2vk 2 /3a)	 (2.15) 

is obtained if one takes the upper limit to be infinite and approximates Eq.(2.7) 
by S aT, i.e., most of the contribution to the integral comes from large values 
of S. Equation (2.15) results from a simple change of the integration variable to 
T/k2/3 and doesn't depend at all on the specific form of C. This generalizes the 
model since there could be other kinds of flows with scale-separated self-similar 
conservative enstrophy spectra, although none are presently known. 

The following qualitative derivation of the functional form of the enstrophy spec-
trum was motivated by a discussion with Javier Jimenez. Assume that the enstrophy 
spectrum has a self-similar form t"G(k1t0 ), then it is easy to see that conserva-
tion of enstrophy implies a = P. One may argue that in a fairly steady shear flow 
the length of an element of a vortex sheet increases linearly with t; its thickness, 
therefore, decreases like r 1 . The largest wavenumber in a system of such vortex 
sheets behaves like the reciprocal of the thickness. Therefore, k t and a = = 1, 
as desired. 

It can also be noted that if there is no axial straining, so that S 	 1, Eq.(2.4)
and Eq.(2.11) (without the viscous part) gives 

E(k)	 k 2 .	 (2.16) 

This was also noted by Gilbert (1988) and is consistent with Townsend's (1951) 
observation that a k 2 spectrum results from random arrays of vortex sheets. The 
conclusion to be drawn is that the axial straining gives the extra 013. 

The integration in Eq.(2.4) may be understood as follows. Imagine a K, T plane 
with S 112F2 (K, T) plotted in a third dimension. This function looks like a ridge 
centered along a ray from the origin of the K, T plane, decreasing in height and 
spreading for increasing T. The argument K = 5' /2 k required in Eq.(2.4) is a 
curve in the K, T plane starting from K = k at T = 0 and moving to smaller K for 
larger T. The integrand in Eq.(2.4) is the height of the ridge seen as one traverses 
this curve. In order to get k 5/3 for a band of k-values, the integration must extend 
through the ridge into the small values on the far side, for all k-values in this band. 

3. Computations 
The formula expressed by Eq.(2.4) makes it possible to test some of the ana-

lytical limitations of the spiral vortex model, since the two-dimensional enstrophy 
spectrum may be computed from numerical solutions of the two-dimensional Navier-
Stokes equations rather than depending entirely on asymptotic methods. Further, 
one can use more general two-dimensional solutions. Buntine and Pullin (1988) 
and Pullin and Buntine (1989) used numerical analysis in a similar context. Their
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approach was somewhat different than that described here. They expanded the 
two-dimensional vorticity in a Fourier series, as in Eq.(2.8), and solved numerically 
for the coefficients w(r, t). These functions were then used to evaluate the Bessel 
function integrals required for L:(60), and finally the energy spectrum was obtained 
through the appropriate time integration. The advantage of the present approach is 
flexibility. Having identified the required physical quantity as the two-dimensional 
enstrophy spectrum, it may be computed by any method and processed through 
Eq.(2.4) without further reference to the detailed analytical expansions of Lund-
gren (1982). 

In the computations reported below, a pseudo-spectral method was employed in 
a vorticity/streamfunction formulation in a square region with periodic boundary 
conditions. Aliasing errors were removed by the 2/3 rule and most of the compu-
tations were done with 2402 resolution. The computations were performed at the 
Center for Turbulence Research at NASA Ames Research Center on a Cray YMP. 

The characteristic length in the flows was taken such that the sides of the box 
have dimensionless length equal 27r units; this makes the wavenumbers be integers. 
The actual unit of length was related to some measure of the initial radius of the 
vorticity distribution, thus the vortex is quite a bit smaller than the box. The 
characteristic velocity was selected such that the dimensionless circulation of the 
vortex was unity. This makes the Reynolds number of the flows be r/v where 1' is 
the dimensional circulation of the vortex. The Reynolds number would be about 
an order of magnitude smaller if an average swirling velocity at unit radius were 
used for the characteristic velocity. The dimensionless turn around time is about 
40 units. 

The enstrophy spectrum, given by Eq.(2.5), was approximated by summing all 
values of the squared magnitudes of the discrete Fourier coefficients with x, y wave-
numbers in a cylindrical shell of unit wavelength in wave space. This value is then 
assigned to a wavenumber which is the midradius of the shell. 

Two series of computations were done with the spiral vortex solution. In the 
first, the two-dimensional enstrophy spectrum was computed from the analytical 
spiral solution by a fast Fourier transform algorithm. The second computes the 
enstrophy spectrum from a numerical solution of the spectral equations with the 
spiral solution as an initial condition. Comparison thus tests the integrity of the 
spiral solution. 

The spiral solution was taken in the form of a two-sided rollup with two halo 
spirals of amplitude f, with 1800 separation, plus an additional central core. The 
specific functions used here are expressed as 

W2 (r, 0, t) Loo (r) + 21(r) E cos [2n(0 - Q(r)t)] exp (-4n2 c1'(r)2 zit 3 13), (3.1) 

wo( r) = r	 + 21(r ),	 (3.2) 

h(r/a)2 exp [_(r/a)2] 
f(r) - - r	

2(1 + h)7ra2	
'	 (3.3)
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where r is the circulation of the vortex, a is a radial dimension and ii is a constant. 
If 0 < Ii < 1, Z(r) will be monotone decreasing. In dimensionless form r = 1, a = 1, 
ii is the reciprocal of the Reynolds number and in these computations h 1/2 
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FIGURE 1.5. t200, tspira1=250. See caption below. 

FIGURE 1.1-1.5. Analytical spiral solution at selected times. tspjraI is the time 
in Eq.(3.1), t is for comparison with figures (2.1)—(2.5) which have the same initial 
condition. r/v = 25,000. (a) vorticity contours. (b) vorticity along a horizontal 
cut through the middle of (a). (c) Enstrophy spectrum versus wavenumber. 
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FIGURE 1.6.	 0"3 times the three-dimensional energy spectrum calculated by 
using Eq.(2.4) with the analytical spiral solution.
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The first series, displayed in figures 1.1-1.6, is computed from the analytical 
solution with nv = 25,000. The required discrete Fourier series were computed by 
means of Temperton's fast Fourier transform algorithms. The figures labeled (a) are 
vorticity contours at 5 times starting with the partially wound state corresponding 
to a dimensionless time tspiral = 50; the figures labeled (b) show the vorticity along 
a horizontal cut through the middle of the contour figures. The figures labeled (c) 
are of the enstrophy spectrum. There is a huge peak at low wavenumber which 
is off scale in these figures. Enstrophy similarity, which was found asymptotically,
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FIGURE 2.1-2.5. Computed spiral solution at selected times. T/ii = 25,000. 
(a) vorticity contours. (b) vorticity along a horizontal cut through the middle of 
(a). (c) Enstrophy spectrum versus wavenumber. 
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FIGURE 2.6. k5 "3 times the three-dimensional energy spectrum calculated by 
using Eq.(2.4) with solution computed using the analytical spiral solution as initial 
condition.
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is not perfect but is qualitatively recognizable. As time increases, one can see the 
number of turns in the spiral increase due to differential rotation and the peak in 
the enstrophy spectrum move outward to larger wavenumber as the spatial scale in 
the spiral decreases. 

Figure 1.6 shows the three-dimensional energy spectrum computed from Eq.(2.4). 
The integration was carried out from T = 0 to T = 250 with a coarse integration 
time interval of AT = 5, which was adequate here. (In computations where the 
Navier-Stokes equations were solved numerically, AT was taken the same as the 
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FIGURE 3.1-3.6. Computed spiral solution at selected times. F/ti = 100,000. 
(a) vorticity contours. (b) vorticity along a horizontal cut through the middle of 
(a). (c) Enstrophy spectrum versus wavenumber. 

updating time step, namely A T = .05.) The strain-rate was taken to be unity. The 
low wavenumber end of the spectrum was suppressed by cutting off the integration 
when S(T)' /2 k is less than 5, thus avoiding the large low wavenumber enstrophy 
peak. The result iii figure 1.6 has a wavenumber range from about 60 to 120 where 
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FIGURE 3.7. k5/3 times the three dimensional energy spectrum calculated by 
using Eq.(2.4) with the solution depicted in figures 3.1- 3.6. 

the spectrum is approximately k 5/3 . Note that since 2' 1	 1.26, one should be 
able to tell the difference between k 5/3 and k 2 on this figure. 

The second series of computations, seen in figures 2.1-2.6, are presented in the 
same format as the first series. The Navier-Stokes equations were solved numerically 
with initial conditions the same as the initial frame of the first series. Here the object 
is to show that the analytical spiral solution is a good approximation to the Navier-
Stokes equations even though time (tp irai) is not large enough at the beginning for 
the spiral to have many turns. Comparing the two series of computations, one can 
see that the results are quite close but not identical. In particular the enstrophy 
spectrum of the second series is smoother and more compact. The energy spectrum 
is very similar but perhaps slightly tipped toward k2. 

A third series of computations has been carried out with quite different initial 
conditions with the objective of producing a spiral solution without actually start-
ing with one. The vorticity distribution at the initial time is shown in figure 3.1. 
One large vortex, with radius 1.5, almost uniform vorticity and circulation .6 is 
surrounded by 10 smaller vortices with centers 2 units from the center of the large 
vortex. Each of these smaller vortices have radii .3 units and circulation .04 so 
that the total circulation of the configuration is unity. The Reynolds number was 
r/v = 100,000. The smaller vortices get sheared into bands of vorticity which 
continue to tighten in the differential rotation of the combined vorticity. The re-
sult is a multilayered spiral vortex with a decent enstrophy cascade. Similarity is 
approximately satisfied; comparing the enstrophy spectrum at t = 50 with that at 
t 100, the amplitude is almost half and the peaks have moved approximately to 
twice the wavenumbers as required by similarity. However, comparison of t = 100 
with t = 200 is not quite as satisfactory. 

The energy spectrum in figure 3.7 has a short k 5/3 range from about k = 36 to 
k = 72 and then falls off faster. The viscous factor in Eq(2.15), which is about .9 
when k = 120, is not small enough to account for all of the observed decrease.
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4. Conclusions 
The original 1982 spiral vortex model was reformulated in a form where the effect 

of the two-dimensional flow in the vortex cross section was more clearly separated 
from the axial stretching. While this was done in order to be able to use compu-
tational methods more effectively, the new formulation has allowed greater insight 
into the workings of the model. It was shown in section 1 that, in the inviscid limit, 
the analytical spiral vortex solution gives an asymptotic time-dependent enstrophy 
spectrum in a self-similar form which conserves enstrophy. It is this self-similar 
form which leads to the k 5/3 energy spectrum. 

Computations with flows which develop spiral structure showed, qualitatively cor-
rect, but imperfect, self-similar enstrophy spectra. The resulting three-dimensional 
energy spectra nevertheless showed short ranges with the k 513 power law. These 
results seem quite rugged and verify results which were previously obtained asymp-
totically. 

The integral which processes the computed two-dimensional enstrophy spectrum 
to produce the three-dimensional energy spectrum requires integrations over a very 
long times, of the order of 6 turn-around-times, during which the vortex is stretched 
by a factor of about 250. The result from appendix A, which shows that the strain 
may be applied intermittently, make this seem more reasonable. 
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Appendix A. Insensitivity to time dependent strain-rate 
The strain-rate which a real vortex feels is generated by the presence of other 

nearby vortices and is unlikely to be constant for very long; therefore, it is important 
to see if the results are sensitive to time dependence of the strain-rate function. 

Equation (2.4) calls for the stretching function S to be expressed as a function of 
the strained time T. When the strain-rate a(t) is constant this leads to the simple 
linear relationship given by Eq.(2.7). When the strain-rate is not constant, S and 
T are defined by

5(i) = exp (j a(i')dt')	 (Al) 

	

T(i) 
= j 

S(i')di'	 (A2) 

and it is not simple to relate them analytically, though it is clear that since S is 
positive, T is a strictly increasing function of time which can be inverted in principle. 
It is easy to get the relationship numerically in special cases. As an example, the 
strain-rate function

a(i) = 1 + .5sin(27rt)	 (.43)
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FIGURE 4. Time dependent strain-rate. (a),(b) generated with sinusoidal strain-
rate, a(t) = 1 +.5 sin(27rt); (c),(d) generated with on-off strain-rate of same period, 
a(t) = 1 + (_l)t(2 

has average value unity and periodic variations of ±50%. During each successive 
period, the stretch increases by a factor e. These functions have been computed (by 
solving the pair of differential equations dS/dt = aS, dT/dt = 5) and presented as 
S vs. T in figure 4a. The relationship is roughly linear. This function was used in 
Eq.(2.4) to compute the energy spectrum using the analytical spiral solution with 
the same set-up as for the "series one" computations. The resulting energy spectrum 
in figure 4b is almost identical with that in figure 1.6 which had constant strain-rate. 
Therefore, it appears that the spectral results are insensitive to moderate variations 
in strain-rate. 

A more extreme intermittent case was tried in which there are alternating periods 
of positive strain-rate and zero strain-rate. The function used was 

a(t) = 1 + (_1)Iflt(2t)	 (44) 

where the function "int" truncates the decimal part of a number. This strain-rate 
function has the same period as Eq.(A3) and the same average value. Alternating 
half-periods have a = 2 or a = 0. The S vs. T result in figure 4c is still very roughly 
linear, and the energy spectrum still has the same range of k5/3.
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As one increases the frequency of the strain-rate function, the relationship be-
tween S and T will become more nearly linear and will have little effect on the 
spectral result. Lower frequencies could have an effect. In the extreme case of very 
long on and off periods, one would get either k 5/3 or k 2 , depending on which 
period comes first.
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homogeneous isotropic turbulence 
By J. Jiménez' , A. A. Wray2 , P. G. Saffman3 AND R. S. Rogallo2 

The structure of the intense vorticity regions is studied in numerically simulated 
homogeneous, isotropic, equilibrium turbulent flow fields at four different Reynolds 
numbers in the range ReA = 36-171. In accordance with previous investigators, 
this vorticity is found to be organized in coherent, cylindrical or ribbon-like, vor-
tices ("worms"). A statistical study suggests that they are just especially intense 
features of the background, 0(w'), vorticity. Their radii scale with the Kolmogorov 
microscale and their lengths with the integral scale of the flow. An interesting obser-
vation is that the Reynolds number based on the circulation of the intense vortices, 
-y /i', increases monotonically with Rex, raising the question of the stability of the 
structures in the limit of Rep. - oc. One and two-dimensional statistics of vortic-
ity and strain are presented; they are non-gaussian, and the behavior of their tails 
depends strongly on the Reynolds number. There is no evidence of convergence to 
a limiting distribution in our range of Re,, even though the energy spectra and 
the energy dissipation rate show good asymptotic properties in the higher Reynolds 
number cases. Evidence is presented to show that worms are natural features of the 
flow and that they do not depend on the particular forcing scheme. 

1. Introduction 
It is generally agreed that homogeneous isotropic turbulence is approximately 

described by the Kolmogorov (1941) cascade theory. In particular, the k 5/3 energy 
spectrum and the almost universal scaling of the dissipation range in Kolmogorov 
variables stand as two of the most successful predictions in fluid mechanics. It 
has also been known for a long time that this description is incomplete. It was 
first shown by Batchelor & Townsend (1949) that the statistics of the velocity 
derivatives are incompatible with an uncorrelated random behavior of the velocity 
field at scales comparable to the Kolmogorov dissipation limit. This intermittent 
behavior becomes more pronounced as the Reynolds number increases, and flatness 
factors '-. 50 have been reported in the atmospheric boundary layer (Van Atta & 
Antonia, 1980), suggesting that any theory based on uncorrelated gaussian fields 
might be seriously deficient in the limit Re -' oc. It has to be stressed that, even 
in these cases, the energy spectrum remains self similar and agrees reasonably well 
with Kolmogorov's predictions. Energy, and even energy transfer, are large scale or 

I Center for Turbulence Research 
2 NASA Ames Research Center 
3 California Institute of Technology, Pasadena
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inertial range phenomena and do not seem to be strongly affected by intermittency, 
while the higher moments are associated with rare, intense, small scale events which 
do not influence the low order statistics. 

It is not a priori clear whether this state of affairs will persist for large Re. 
Moreover, since experiments at much higher Reynolds numbers than those presently 
available from geophysical flows cannot be expected in the near future, some sort 
of theoretical understanding of the intermittent small scales is clearly desirable. In 
this paper we present new data from numerical isotropic homogeneous turbulence at 
several Reynolds numbers. Even if numerical constraints restrict our experiments to 
Re < 200, it may be expected that the exceptional level of detail that can be derived 
from numerical simulations might help in the theoretical study of the phenomena. 

It was discovered recently that strong coherent elongated vortices ("worms") are 
present among the small scales of many turbulent flows (Siggia, 1981, Kerr, 1985, 
Hosokawa & Yamamoto, 1990, She ci al., 1990, Ruesch & Maxey, 1991, Vincent & 
Meneguzzi, 1991, Douady ci al., 1991), and this discovery generated considerable 
excitement in the turbulence community. One reason for this interest is that, being 
strong and therefore presumably decoupled from the influence of other flow compo-
nents, the behavior of the worms should be relatively easy to understand. Should 
these vortices be found to form an important part of the turbulence phenomenon, 
their relative simplicity would give us a tool for the analysis of at least some part of 
the flow. Failing that, if it could be shown that they are nothing but extreme cases 
of a more general population of weaker vorticity structures, it might still be true 
that their study contains some clues as to the behavior of those background vor-
tices, which in turn would constitute an important part of the flow. Even if none of 
these possibilities turns out to be true, the strong vortices are still relatively simple 
objects submerged in a turbulent flow, and they may be used as probes for the flow 
structure. 

We will show below that, of these three possibilities, the second seems to be the 
correct one. In terms of integrated quantities, the strong structures constitute a 
negligible part of homogeneous isotropic turbulent flows, although they are made 
conspicuous in flow visualizations by their local high intensities. Moreover, their 
statistical properties are generally similar to those of the background vorticity, and 
they seem to be just especially intense realizations of the latter. On the other hand, 
since they are easy to identify and relatively few in number for any given simulation, 
their behavior can he studied easily and can be extrapolated to a description of the 
behavior of the background. 

2. The numerical experiments 

Our observations are made on direct numerical simulations of isotropic homoge-
neous turbulence in triply periodic boxes at four different Reynolds numbers ranging 
from Rc A = 36 to 170. It is surprising that we are able to find similarity laws span-
ning the whole range of Reynolds numbers, and that even the lowest RC A flow seems 
to be essentially turbulent. This gives us some confidence that our observations may 
represent asymptotic trends for high Reynolds number turbulence.
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Line Re,, N L L/) Lit1 eL/u13 w'T t/T -Sk 

Chaindot 35.8 64 2.02 2.59 31 1.08 10.0 12.8 0.496 
Dotted 62.8 128 1.87 3.54 56 0.83 13.0 5.3 0.503 
Dashed 94.5 256 1.31 4.21 80 0.66 16.2 7.6 0.518 
Solid 171.5 256 1.62 7.50 193 0.65 29.0 5.9 0.500

TABLE 1. Numerical and flow parameters for the four basic cases analyzed in this 
paper. uT is the total run time in eddy turnover units, and Sk is the skewness 
coefficient. Line types are used consistently in later figures. 

The numerical method is fully spectral, using primitive variables u, p, with 
dealiasing achieved by a spherical mask and phase shifting (Canuto et al., 1987). 
The resolution N, given in Table 1, reflects the number of real Fourier modes in 
each direction before dealiasing. The time stepping procedure is a second order 
Runge-Kutta for the nonlinear terms and an analytic integrating factor for the 
viscous ones. The time step is automatically controlled to satisfy the numerical 
stability condition. Unless stated otherwise, all experiments are forced to achieve a 
statistically stationary steady state. Forcing is achieved by introducing a negative 
viscosity coefficient for all the modes with wave numbers k = k < 2. The Fourier 
expansion functions are exp(ikx,), k, = 0, 1,. .. , K = N12, so that the length of 
the box side is always 2ir. The magnitude of the negative viscosity is adjusted every 
few time steps so as to keep constant the product Kt1, where 71 = (v 3/f)1/4 is the 
Kolmogorov scale. The instantaneous energy dissipation rate, e, is computed in 
terms of the three dimensional energy spectrum E(k), as 

= VW 12 = 21/f k2E(k)dk. 

Other scales used in this paper are the r.m.s. velocity, defined by 

U 
12_ I E(k)dk, 

the integral scale, 	
ir

 I'k-'E(k)dk, 

and the Taylor microscale, defined by )2 15uu 12 /e. The microscale Reynolds 
number is defined as Re,, = u')i/v, and the large eddy turnover time as T = L/u' 
(Batchelor, 1953). 

Table 1 summarizes the characteristics of the different runs. Each of them was 
continued sufficiently long for the instantaneous spectra and other integral charac-
teristics to become statistically steady. This typically took a few large eddy times, 
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FIGURE 1. Three dimensional energy spectra for the four different Rep, used in 
this paper. Left: €2/30/3E(k), to enhance inertial range. Right: c2/3rr5/3E(k), 
to display the dissipation range. For symbols see table 1. 
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FIGURE 2. Isotropy coefficient for different Reynolds numbers, defined in eq. (1) 
in text. Symbols as in table 1. 

which may not be long enough to guarantee absolute statistical steadiness for the 
large scales, but which should be enough for the small scales to reach equilibrium. 
The quantities in table 1 and the spectra in the following pages are averages over 
whole flow fields and over periods of time that vary between 0.25 and 6 large eddy 
turnover times. The shorter averaging times correspond to the highest Reynolds 
numbers. The histograms presented later in the paper are spatial statistics, further 
averaged over 3 to 5 different moments in time. The variation between the averaged 
spectra and their instantaneous values was smaller that 1%, but larger deviations 
were observed in the extreme tails of the histograms. 

Note that the dimensionless energy dissipation fL/U,3 decays slowly with Re A but 
stabilizes around 0.65 in the last two cases. This is consistent with the behavior ob-
served by Sreenivasan (1984) in a compilation of data from grid turbulence, in which 
the dissipation stabilizes above approximately Re > 60. His asymptotic value of 
the dissipation, EL/u 13 1, is different from ours, but this is not too surprising since
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the integral scale is dominated by the large eddies, which are presumably different 
in the two cases. 

The statistics of the small scale intense regions are sensitive to the numerical 
resolution. After some experimentation, it was found that Krj = 1 was the absolute 
minimum needed for convergence of the velocity gradients histograms, and that 
Kij = 2 was very desirable. We tried to maintain this latter resolution uniformly, 
but it was not possible to do so for the highest Reynolds number case during the 
time limits of the summer school. In the experiments presented here, this case is 
only resolved to Ki1 = 1. 

Three dimensional, shell averaged, energy spectra for the three cases are presented 
in figure 1. The two cases with the highest RCA show a short "inertial" range with 
a power decay close to k 5/3 . No such interval is present at the lowest RCA , but 
the collapse of the dissipation range is satisfactory. Figure 2 displays an isotropy 
coefficient, defined by

E11(k1) - k10E11(k1)10k1 

2E22(k1) 

where E11 and E22 are the longitudinal and transverse one dimensional spectra. 
This quantity should become equal to 1.0 for an isotropic field (Batchelor, 1953), 
and it does so approximately for the small scales in the two high Re,, cases, suggest-
ing that the they have attained equilibrium. The two cases with lower Reynolds 
numbers do not satisfy isotropy, and this is true as much for individual realiza-
tions as for averages over fairly long times, although the direction of the deviation 
is different for different realizations. This lack of isotropy is probably due to the 
relatively low number of structures contained in such low Reynolds number flows. 

In summary, the flows used in this paper seem to be typical of experimental 
approximations to homogeneous isotropic turbulence. It is particularly important 
to note that the two highest Reynolds numbers display a short k 5/3 inertial range 
and appear to have reached the asymptotic regime in which energy dissipation 
becomes independent of the Reynolds number. 

3. Worms 
Implicit in the Kolmogorov (1941) model for the turbulent cascade is the idea 

that the small scales of turbulence are fully controlled by the viscosity v and by 
the energy dissipation rate e = ziw 12 . This and the dimensional arguments of the 
original theory imply that the velocity gradients should reach some asymptotic 
statistical distribution as Re - oo, whose single scale should be w'. Evidence 
that this is not so has accumulated over the years, starting with the measurements 
of higher statistical moments mentioned earlier and more recently in the form of 
increasingly non-gaussian histograms obtained from numerical experiments at in-
creasing Reynolds number (Siggia, 1981, She et al., 1990, Vincent and Meneguzzi, 
1991, Ruetsch & Maxey, 1991). We will concentrate here on the statistics of the 
quantities appearing directly in the vorticity equation,

(1) 

dwI2/2 

dt	
= wISQ + uw 1 V 2w 1 ,	 (2)
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FIGURE 3. One dimensional histograms of the volume fraction occupied by points 
above a certain threshold. (a) Vorticity, (b) Strain, (c) Stretching. (d) Fraction of 
total enstrophy associated with points above a given vorticity magnitude. Lines as 
in table 1. Open circles are from (Ruetsch & Maxey, 1991) at Rep. = 62. 

where IwI = (w,w,) 112 is the vorticity magnitude, and S, = (Ou/Ox + au/Ox)/2 
is the rate of strain tensor. In particular, we will be interested in the statistics for 
k'I I s I = (s,$)1I2, and

= wisijwj 
1w12 

The square of the total rate of strain, Is I, is proportional to the local dissipation, but 
it does not appear explicitly in equation (2). It is probably more a consequence of 
the events that lead to turbulence than their cause. The quantity a is the part of the 
strain which is aligned to the local vorticity, and it is the one doing the stretching 
of the vortex lines in equation (2). Its mean value is related to the skewness of the 
velocity derivatives. 

One dimensional histograms for the volume fraction occupied by values of these 
three variables above a given threshold are given in figure 3. They are all far from 
gaussian, except perhaps for the lowest Reynolds number, and show few signs of 
converging to a limit distribution for large Rc A . Note, however, that the variable 
tails involve only relatively small fractions of the total volume. The figure also 
contains a histogram for the fraction of the total enstrophy contributed by points 
with a vorticity magnitude above a given threshold. Even if the decay of this 
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FIGURE 4. Vortex lines for homogeneous isotropic turbulence, RC A = 209. Length 
of z-axis lOOij. Left: Only 0.2w' < iwi <w'; Right: Only jwj > w'; Vortex lines 
are the same in both sets. 

histogram is slower than that of the volume fraction, most of the enstrophy is still 
contained in a relatively "weak" background where jwj O(w'). In fact, for the 
Reynolds numbers of our simulations, the contribution of the intense tails to the 
integrated value of any of the low order statistics of the flow is only a few percent, 
although they would clearly dominate sufficiently high order moments. Similar 
results were obtained by Ruetsch and Maxey (1991) at RC A 60 (see fig. 3). 

The conclusion from these histograms is that most of the volume in the flow is 
occupied by relatively "weak" vorticity with strong vortices filling only a small frac-
tion of the space. The structures of the weak and strong vorticities are also very 
different. Figure 4 shows a collection of vortex lines passing through randomly cho-
sen points on the middle plane of a subset of a high RC A simulation and continuing 
until they leave the cube. The vortex lines are exactly the same in both cases, but 
in the left hand side of the figure they are only displayed where 0.2w' < IWI < w', 

while in the right hand side they are displayed where j wj '^> w'. While there is little 
apparent structure in the low intensity component of the flow, the strong vorticity 
tends to be organized in tubes or ribbons, which are the "worms" reported in pre-
vious experiments. It is remarkable that this seems to be true even at a threshold, 
w', which is much lower that the one used in most previous reports, and which still 
contains most of the total enstrophy. 

For the rest of the paper, we will arbitrarily define weak vorticity as that having
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FIGURE 5. Intense vorticity isosurfaces, w l/w' > 2.5, at two different Reynolds 
numbers. Resolution is similar in both subsets, with the length of each axis 10077. 
Left: ReA = 63, integral scale L = 56i. Right: Rc, = 95, L = 807. Thresholds are 
chosen so that worms contain about 1% of total flow volume. 

w < w 1 , intense vorticity, or worms, as that above a threshold covering 1% of 
the total volume, and background vorticity as that above w' but weaker than the 
intense threshold. This definition of worms results in pictures roughly comparable 
to those of previous experimenters and is about as low as the threshold can be 
taken before the visual complication becomes overwhelming. Figure 4 shows that 
the organization in coherent structures is still present at the background level. At 
the Reynolds number of the figure, the vorticity above w' fills 25% of the volume 
and accounts for 80% of the total enstrophy, while intense vorticity fills 1% of the 
volume and accounts for 15% of the enstrophy. 

The length of the horizontal (z) axis in figure 4 is one eighth of that of the 
whole cube and one half of the integral scale of the flow. Some ribbons are seen to 
span the whole subset, although not with uniform intensity, and they may appear 
disconnected in plots of the high enstrophy worms. Long intense worms, comparable 
to the integral scale, are found occasionally. 

The shape of the regions of highest vorticity (1%) is displayed in figure 5 at two 
different Reynolds numbers. In agreement with previous reports, they are shown 
to be either cylindrical vortices or ribbons of various widths. Although no real 
statistical analysis was made, the impression from different fields is that sheets 
and ribbons are predominant at low Reynolds numbers, while cylindrical vortices 
dominate at high RC A. This is apparent in figure 5 and is consistent with the 
idea that the worms are the result of stretching by strains which are generally not 
axisymmetric.
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If a generic strain is applied to a weak vorticity blob, the vorticity component 
along the most extensional eigenvector is amplified most, but the other two principal 
strains remain active and try to stretch or compress the vortex unequally along the 
two equatorial axes. As the axial vorticity becomes stronger, it dominates the local 
flow and its rotation tends to make the vortex axisymmetric. The result is a vortex 
of elliptical cross section whose eccentricity becomes smaller as the ratio of the axial 
vorticity to the driving strain becomes larger. It will be shown later that the strain 
is generally 0(w'), while it is clear from figure 3 that vortices in higher Reynolds 
number flows attain larger vorticities. This, together with the previous argument, 
explains their more circular cross sections. 

The spatial distribution of the worms is not uniform, although this is difficult 
to see in graphical representations of large subsets. Figure 6 displays a thin slab 
across a complete flow field. The worms are seen to lie on the borders of large 
scale velocity eddies, the energy containing scales, which are themselves relatively 
free from vorticity. This is even clearer in figure 7, which represents the mid-plane 
of the slab in the previous one. The light colored regions in this figure mark the 
background vorticity, J wJ > w'. The darker regions are the worms, which are seen 
to be embedded in the background of which they constitute the local maxima. The 
large eddies themselves are mostly free even from background vorticity. 

4. Truncated fields 
Even if the results in the previous section suggest that, at least at these Reynolds 

numbers, the worms contribute relatively little to the turbulent statistics, it is 
conceivable that they may be important indirectly in some other respect. There is 
also the possibility that the worms themselves may be spurious effects of the forcing 
method and that they would not be present in "natural", decaying turbulence. 

To clarify these points, we have carried out a series of experiments in which the 
worms are artificially removed from a flow and in which both the properties of the 
truncated field and those of the isolated worms are studied independently. Consider 
• flow field given by a velocity u(x) and a vorticity w = rot u. We wish to generate 
• new field u>, associated just with the worms, by eliminating the vorticity at 
points where its magnitude is smaller than a given threshold, IWI Q. This field 
cannot be constructed by just zeroing the vorticity of the original flow at the desired 
points. The resulting vortex lines would not be closed, and no velocity could be 
constructed. Consider the naively truncated field 

W. = w if Iwi > 1,	 w0 = 0 otherwise.	 (3) 

This field is generally not solenoidal, div w0 0. We define the worms as the field 
= w0 + A such that divw> = 0 and such that the extra enstrophy f i z i 2 dx 

is as small as possible. Note that vorticity of this field is not strictly zero outside 
the worms, but that the construction guarantees that the undesired residual is a 
minimum. It follows from straightforward variational analysis that L = — V\, 
where the scalar A satisfies VA = divw0.



30	 J. Jimnez, A. A. Wray, P. G. Saffman & R. S. Rogallo 

'
r	 ., 

• 	

".. .—S' 1%I/. 

-(	
-'. '•I' \ :; '-'-.s	 - \ \ #1 

c•	 ----N:-i: 't'	 '1.. g - .-

I t	 / 

4I: • ' 
• •.JI!IJ 11	 • 

'''''--1/'LL Pl \\- .i •. 
': // :--(/	 ; \ "	 • \5s__, 

'3_1cf )	
.1. 

7PP - 

FIGURE 6. Intense vorticity regions iwl > 2.7w', and velocity field, Re A = 209. 
Size of the display domain, (8002 x 50)i, periodic in the two long directions. Velocity 
vectors correspond to points in the mid plane. 

FIGURE 7. Background vorticity iwi > w' (light gray), at center plane in figure 6, 
in relation to darker intense regions, wi > 2.7w'. Vectors are velocity.
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FIGURE 8. Effect of the truncation threshold on the worm fields truncated to 
lwI > fl as described in text. (a) Simple solid line: volume fraction above vorticity 
threshold in original field. Dashed: enstrophy above threshold. Dashed with circles: 
Enstrophy of truncated field, as fraction of original. Solid with triangles: Kinetic 
energy of truncated field. (b) Enstrophy spectra. Threshold in order of decreasing 
enstrophy at low wave numbers: 1/w': 0., 1., 1.41, 2.45, 2.83. ReA = 209. 

Note that the new field is nothing but the solenoidal projection of w0 and that a 
velocity can be computed from it. 

The effect of this truncation is shown in figure 8a, which displays both the enstro-
phy and kinetic energy of the truncated worm fields as a function of the threshold 
as well as the volume and enstrophy associated to regions of the original field whose 
vorticity is above that threshold. It is seen that the effect of the projection is to 
decrease only slightly the enstrophy contained in the worms. A visual check of 
the corresponding enstrophy isosurfaces confirms that the intense regions in the 
truncated field correspond to those of the original one but that the vorticity in the 
background has been mostly eliminated. The energy of the truncated flow is al-
ways small, roughly proportional to the volume occupied by the worms themselves. 
There seems to be no appreciable local enhancement of the kinetic energy because 
of the presence of the worms. This is confirmed by inspection of the velocity fields 
in figures 6 and 7. 

Similar experiments on the truncated background fields, resulting from the re-
moval of the vorticity above a given threshold, reveal a complementary effect. The 
effect of removing the worms is small, both on the enstrophy and on the energy, 
and it only becomes appreciable when the truncation threshold is made comparable 
to w'. 

In addition, no particular part of the energy spectrum seems to be especially 
associated with the worms. Figure 8b displays enstrophy spectra, 20E(k), for the 
high vorticity component at different truncation thresholds, each of them normalized 
by its own Kolmogorov scaling. The spectrum of the original field is consistent with 
an inertial range, E(k) - k 5/3 , while that of the high intensity worms is close 
to E(k) - k', but the effect is gradual, proportional to the removal of the total 
kinetic energy. The latter spectrum was shown by Townsend (1951) to be that of a 
random array of vortex tubes of uniform radii and is, therefore, consistent with the
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FIGURE 9. Time evolution of the histograms of volume fraction above a given 
vorticity threshold, during decay of a flow field initially truncated to jwj < 1.5w'. 
Re = 96. Decay time, left to right: u't/L = 0, 0.019, 0.037, 0.056, 0.073, 0.158. 
All normalizations refer to the initial field before truncation. 

general structure of the worms. 
Since the integral of the dissipation is proportional to that of the enstrophy, the 

effect of removing the worms, which contain only a small percentage of the latter, is 
not expected to have a large effect on the decay of the kinetic energy of a turbulent 
field. This was tested directly by comparing the evolution of the decay of identical 
initial conditions with and without the worms removed. An equilibrium field was 
generated (Re,, = 96), and the forcing was removed to initiate a decay. The same 
initial conditions were truncated to j wj < 2.5w' and left to decay. The behavior 
of the energy in both cases was almost identical when normalized with the initial 
enstrophy of each field. The enstrophy of the truncated field decayed initially faster 
but, after a short transient during which it decayed by about 7%, it also behaved 
similarly to that of the equilibrium initial condition. The difference in the total 
enstrophy of the initial fields at this truncation level was 20%. 

A more severe truncation was applied to check whether the presence of the worms 
could be somehow associated with the forcing scheme. The same flow field as in the 
previous experiment was truncated to jwj < 1.5w' and left to decay. Figure 9 shows 
the time evolution of the volume fraction histograms. It is clear that, after a short 
time, the worms reappear even in the absence of forcing. This was checked directly 
by visualization. 

It follows from these experiments that the worms are a natural product of the 
evolution of turbulent flows, both forced and decaying, and that their importance in 
the dynamics of turbulence is only proportional to the magnitude of their integrated 
quantities with respect to those of the whole flow. They do not seem to play any 
special role besides that which corresponds to the energy and enstrophy that they 
contain. At the Reynolds numbers of our experiments, both are small fractions of 
the total. 

An interesting observation is that the skewness coefficient of the truncated worm
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fields, those formed only by the high intensity regions, was always negative and 
roughly of the same order as that of the full turbulent field (Sk = — .5 to —1.0). 
The high intensity regions are still straining each other, and they would be capable 
of generating new enstrophy, although the relatively low kinetic energy that they 
contain means that the Reynolds number of the truncated flow is low and that the 
viscous diffusion would dominate before any appreciable evolution is possible. 

5. The dynamics of worm formation 

Even if the worms do not seem to have a special function in the overall dynamics 
of turbulent flows, the process by which, they are formed is interesting in itself. 
Moreover, since they appear to be part of the general 0(w') background vorticity, 
we may look at them as particular cases of the evolution of that component, which 
is responsible for most of the turbulent dissipation. Finally, since they do not scale 
correctly in Kolmogorov variables (i.e. the histograms do not scale with w'), their 
generation mechanisms might point to some deficiency in the standard cascade 
theory, especially as Re. —+ oo. 

Qualitatively, it is clear that strong vortex regions have to be formed by straining 
of weaker vorticity. No other mechanism is available, away from no-slip walls, for 
the production of enstrophy. Strain itself is generated by the vorticity, and the pro-
cess may become nonlinear. It has been realized for some time that nonlinear self 
interaction of vorticity can, in principle, lead to a singularity of the inviscid equa-
tions in finite time and that it may therefore be invoked to explain the generation 
of vorticity of almost any magnitude. 

Some orders of magnitude might be relevant at this point. If we apply a strain a 
to a viscous fluid, the smallest flow features that we may expect to generate are of 
the order of the Burgers' radius, 6 = ( v/a)112. There are two "natural" straining 
scales in turbulence: the strain generated by the large eddies, l/T = u 1 /L, and 
the inverse of the Kolmogorov time scale, which is equal to the r.m.s. vorticity 

= (€/z,)112. The Burgers' radius for the former is the Taylor microscaie A, while 
that for the latter is the Kolmogorov 71. Moreover, if we think of a cylindrical 
equilibrium Burgers' vortex generated by a strain a, its peak vorticity would be 
Wmax - Rea, where Re, = 7/v is a vortex Reynolds number based on its total 
circulation. If we assume, e.g. on stability grounds, that Re, cannot be larger than 
a given limit independent of the applied strain, the peak vorticity should never be 
more that a fixed multiple of the strain. 

We have evidence in the histograms in figure 3 that some component of the 
turbulent flow contains peak vorticities that increase with Reynolds number faster 
that '. From the previous discussion, this implies either that there exist stretching 
motions which are stronger than w' or that there exist vortices whose Re, grows 
larger as Re A increases. The first possibility implies that we should find structures 
whose transverse scale is smaller than il and that this discrepancy should increase 
with increasing Re A . This contradicts the relatively good collapse of the energy 
spectra in the dissipation range, expressed in Kolmogorov variables, although some 
weak effect can not be ruled out from the experiments. The second possibility raises
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Rep,	 11L	 R/q	 Re-y/Re/2	 N 

35.8 3.16 4.22 21.1 26 
62.8 2.60 4.16 17.0 32 
94.5 3.15 4.16 18.1 14 
171.5 2.88 4.61 21.1 15

TABLE 2. Average worm parameters as identified by the tracking algorithm defined 
in the text. N is the number of worms in each sample, £ their average length, and 
R their radius. 

R177	 Re,/Re'/2 

FIGURE 10. Probability density functions for worm radii and circulations at four 
different Reynolds numbers. Symbols as in table 1. Normalization has been chosen 
so as to optimize collapse. 

the question of how such high Reynolds number vortices remain stable long enough 
to form. 

To answer this question, we undertook a statistical investigation of the dimensions 
and circulation of the intense vorticity structures. Most of the previous investigators 
who have treated this subject give their radii as a few Kolmogorov scales and their 
lengths as being of the order of the integral scale. A survey including some new 
measurements of radii and intensity is contained in Jiménez (1991). It was concluded 
that, for the available flow fields, the average radius was approximately 3-5j, and 
Re 150-400. It was noted, however, that most of the data had ReA 100 
and that no reliable scaling trend could be deduced. We believe that the present 
investigation is the first one in which enough data sets with uniform resolution and 
overall quality have been collected over a wide enough range of Reynolds numbers 
to allow for some scaling information. 

An automatic tracking algorithm, described in detail in the appendix, was imple-
mented and applied uniformly to all the data fields. Briefly, a point in the worm 
axis is identified as a vorticity maximum, and the axis is followed until either its 
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FIGURE 11. Radial vorticity distribution for different cross sections along a typical 
worm. ReA = 62.8. 

peak vorticity falls below w' or until the worm closes into itself or intersects a pre-
viously known one. At each point in the axis, the vorticity in a normal plane is 
averaged azimuthally, and the resulting radial distribution is fitted to a gaussian. 
The local radius of the worm is defined as the l/e radius of the gaussian, and the 
circulation as that of the fitted distribution. It was, unfortunately, impractical to 
continue this process until no more worms could be found, and the samples used 
here represent what could be achieved in a fixed amount of computer time (3 hours). 
A rough estimate of the total volume of the worms in the sample compared to the 
volume occupied by vorticity above w' suggests that the sample contains most of 
the worms in the lowest Reynolds number case, but only about 1% of them in the 
highest one. •Average values of worm length, radius, and circulation are given in 
table 2. A comparison with the range of scales in table 1 is enough to show that the 
normalizations chosen here are fairly robust, at least in this range of RC A , and that 
other choices would lead to significant trends. In particular, the worms radii scale 
with 77 and their lengths with the integral scale L, and their circulation increases as 
Re 1 /2 

The trends of the radii and circulations are consistent with those observed in 
Jiménez (1991) for the intense longitudinal vortices in the wall region of a turbulent 
channel. It was shown there on the basis of rather limited data that the radii of the 
vortices scale well in wall units, within a range of Reynolds numbers Re,. = 100-
200. The circulations, however, do not remain constant, and increase by almost a 
factor of two in the same range. Since wall units are the near wall equivalent of 
Kolmogorov scaling, those trends are equivalent to the ones observed here. In the 
same spirit, the recently established tendency of turbulent fluctuations to increase 
with Re, beyond their dependence in wall units (Wei & Willmarth, 1989) can be 
considered as related to the failure of Kolmogorov scaling in figure 3. 

Actual probability density distributions of radii and circulations are given in figure 
10 and a sample of azimuthally averaged vorticity profiles across a typical worm is 
given in figure 11, showing that the gaussian model is at least reasonable. This
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FIGURE 12. Distribution of normalized radii and circulations along worm axes as 
function of arc length IL Each figure contains four worms chosen at random. (a) 
ReA = 35.8, (b) 62.8, (c) 94.5, (d) 171.5.
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FIGURE 13. Portrait of a worm interaction, identified by a local maximum of the 
stretching term a. RC A = 94.5. Length of axes, approximately 407. (a) Intense 
vorticity isosurfaces, J wj = 2.8w'. (b) Vorticity vectors within the surfaces in (a). 
Vector lengths are proportional to vorticity. (c) Stretching and vorticity magnitude 
in the horizontal plane outlined in (a). Isolines are a at 0.2w' increments; negative 
contours, dashed; zero contour not shown. Light gray, w' < 1wI <2.8w'. Dark grey, 
wi > 2.8w'. (d) Same as (c), but isolines are strain magnitude Isl > w' at 0.2w' 
intervals. 

model is consistent with that of an axially stretched equilibrium Burgers' vortex. 
The distributions of radii and circulation along the length of a few typical worms is 
given in figure 12 for the four different Reynolds numbers. It is difficult to extract 
general trends from this figure and the number of actual coherent worms in each 
field is not enough to allow for rigorous statistics, but the most striking feature 
in these traces is the increase in complication as the Reynolds number increases.



38	 J. Jimdnez, A. A. Wray, P. C. Saffman & R. S. Rogallo 

Since we know from the previous analysis that an increase in Rep, implies an increase 
in the Reynolds number of the vortices themselves, this is not surprising. It just 
means that, as their Reynolds number increases, the worms themselves are becoming 
turbulent, and it is an interesting question whether at high enough RC A they would 
retain enough coherence to be identified as separate objects. This question can not 
be answered directly here, but some analysis is possible on the type of complexity 
which is being added by increasing the Reynolds number. It is clear from figure 12 
that the circulation traces are noisier that those of the radii. Part of the noise is 
doubtlessly due to detection problems, but the difference between the two sets of 
measurements is probably true. Since the circulation of a coherent vortex, defined 
as a fixed set of vortex lines, is constant along its length, the peaks in the circulation 
traces can be interpreted as interactions with other vortices, and it is the number 
of interactions that appears to increase with ReA. 

Interactions between adjacent worms are indeed common in the flow fields and 
can often be found by looking for "active" spots in which either the vorticity or the 
stretching are especially large (see figure 13). Interactions between strong vortices 
and weaker vorticity are still more common, and they do not usually result in the 
destruction of the stronger partner. 

The question of what is the origin of the stretching that generates the worms has 
still not been addressed. Figures 14 and 15 show two dimensional joint probability 
density functions for vorticity magnitude and strain. Figure 14a compares total 
strain IsI = (S1S) 112 with vorticity magnitude. It is clear from the figure that 
there is a correlation between these quantities, even if a rather weak one. Strong 
vorticity coexists with strong strain either because strong vortices generate high 
strains or because they are generated by them. That alternative is addressed in 
figure 14b, which compares vorticity magnitude with the stretching term a. This 
histogram shows that the highest stretching rates are not associated with regions 
of high enstrophy, but with the background vorticity 0(w'). In fact, the stretching 
associated with the highest enstrophy regions is fairly low and seems to scale well 
with w', with little evidence of self stretching by the strongest structures. This 
apparent lack of correspondence between the behavior of the total strain and of 
the stretching component is also clear in figure 15, which compares both quanti-
ties. Although there is clearly a correspondence between strong strain and large 
stretching in the sense that strong stretching or compression is associated more 
often with strong strains than with weak ones, the correspondence is only moder-
ate, and the distribution of the ratio a/Is I is broad, peaking at low values rather 
than near the extremes. This ratio can be shown to be kinematically limited to the 
interval ±(2/3)h/2, which accounts for the sharp lateral cutoffs in the histograms 
in figure 15, but, within those limits, a and Isl are only weakly correlated. Strong 
strain does not necessarily mean strong compression or stretching, and the direction 
of the principal axis of the strain tensor seems to be relatively independent of the 
local vorticity direction. This is also seen in figures 13c-d, in which the total strain 
and the stretching terms are plotted independently. The total strain (fig. 13d) is 
relatively well correlated with the presence of strong vorticity, but the stretching
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FIGURE 14. Joint probability density functions of strain magnitude and stretching 
versus vorticity magnitude. All values are normalized with w'. Density contours 
are logarithmic and sDaced by a factor of 10. Lines as in table 1. 
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FIGURE 15.	 (a) Joint probability density functions of stretching versus strain 
magnitude. (b) Univariate probability density function of a/Isl. 

is much more randomly distributed, and both strong compressions and extensions 
are present close to each other. Plots of a over larger sections of the flow field 
reveal a spotty distribution with a tendency to concentrate on the periphery of 
background (or intense) vorticity but not on its interior. Apparently, once vorticity 
gets stretched to a high enough amplitude, it decouples from the original strain field 

b)
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and loses its orientation relative to it. 
All this is consistent with the result obtained by previous investigators that there 

is little preferential alignment of the vorticity with the strongest strain axis at low 
vorticity magnitudes and that the alignment is to the intermediate (weakest) strain 
eigenvector in the intense regions (Ashurt et al., 1987). 

It is interesting to note that there seems to be a fairly good collapse of the 
distribution of a/Is I for different Re A and that this distribution is tilted both in 
figures 15 and 14b towards positive values of a. This asymmetry corresponds to 
the negative skewness of the velocity derivatives in the flow field and is what makes 
possible the net amplification of vorticity. 

One of the most striking features of these probability distributions is the sim-
ilarity of their shape at different levels. The probability distributions, scaled on 
w', collapse closely near the origin, corresponding to the good collapse of the one 
dimensional histograms in that range. Even away from that point where the higher 
Reynolds number cases display much stronger tails, the shape of the distributions 
are very similar for the high and for the low Reynolds flows. The outer, low prob-
ability isolines of the low Reynolds number distributions coincide almost exactly 
with the inner, high probability ones at high RC A . This suggest again that, what-
ever mechanism is responsible for the generation of high enstrophy or of high strain 
regions, it is independent of Reynolds number and that the only difference is that 
it becomes more common as the Reynolds number increases. The correspondence 
of inner and outer contours also suggests that the dynamics of the intense regions 
is not fundamentally different from that of the 0(w') background. 

6. Discussion and conclusions 
We have presented results on the structure of the intense vorticity regions in 

numerical turbulent flow fields at four different Reynolds numbers ranging from 
Re,, = 36 to 171. Numerical resolution in terms of tj and running time in large 
eddy turnover units were kept as constant as possible. The fields themselves are in 
statistical equilibrium with a suitable forcing, and the two higher Reynolds numbers 
are already in the "asymptotic" range in which dissipation becomes independent of 
Rex. In this sense, we are dealing with true turbulent flows. These last two fields 
also exhibit an inertial k 5/3 spectral range that, in the highest Reynolds number 
case, spans almost a decade. The collapse of all the spectra in the dissipation range 
when expressed in Kolmogorov units is excellent, although there is a suggestion of 
a weak trend to slightly fuller spectra at higher Reynolds numbers (Fig. 1). The 
energy spectra in this range are exponential with an algebraic prefactor. 

We give univariate histograms for several quantities related to the velocity gradi-
ents, especially for those related to the terms of the vorticity production equation. 
They are not gaussian, and they do not collapse in Kolmogorov units (w'). There is 
a strong trend to longer tails of intense events at higher Reynolds numbers, which 
show no signs of converging to an asymptotic distribution within our experimental 
range. 

We have confirmed in accordance with previous investigators that the physical



On worms	 41 

structure of these intense events is that of long coherent vortices of more or less ellip-
tical cross section ("worms"). Although we lack adequate statistical confirmation, 
the eccentricity of the cross section appears to decrease as the Reynolds number 
increases. We have offered an explanation in terms of the relative strength of the 
strain and vorticity in those regions. 

By means of an automatic tracking algorithm, we have computed the scaling laws 
for the kinematic properties of the worms. Their radii scale with the Kolmogorov 
microscale and their lengths with the integral scale of the flow, and their circulations 
increase with the Reynolds number as Re.,= 'y/v Re/2 . With respect to this 
latter scaling, the data might be consistent with a slightly higher or lower exponent, 
but they are not consistent with the obvious guess that Re y should remain constant. 

We have tried to clarify the dynamics of worm formation by means of joint prob-
ability densities of strain and vorticity. As expected, high enstrophy and high strain 
are associated with one another, although rather loosely, but, surprisingly, strong 
vorticity is not associated with high values of the stretching term, a = wSw/Il 2 . In 
fact, the stretching of the high intensity worms is low and seems to scale well with the 
background vorticity w'. Since the Burgers' length for a strain w' is (v/')' /2 = 
this is consistent with the scaling of the radius quoted above but strongly sug-
gests that self stretching is not an important factor in the evolution of the intense 
vorticity. 

An interesting observation is that the shapes of the probability isolines in the tails 
of the joint distributions are essentially similar to those in their central parts and 
that they are quite independent of the Reynolds number. This, together with the 
previous observation on the lack of self stretching, suggests that the worms are only 
particularly intense realizations of the background vorticity field, IL ' > w'. This 
background component is responsible for most of the turbulent dissipation (80%) 
but fills a much smaller percentage of the volume (25%). We have presented some 
indications that it is concentrated in large scale, turbulent, vortex sheets separating 
the energy containing eddies at the integral scales. The worms are imbedded within 
this background (Figs. 6-7). 

We have also shown by removing the worms artificially from an equilibrium tur-
bulent field and studying its further development that worms are not especially 
important in the overall dynamics of turbulence and that they are only responsible 
for a fraction of the kinetic energy proportional to the volume that they occupy and 
for a fraction of the dissipation proportional to their integrated enstrophy. Both 
are small numbers at the Reynolds numbers of our simulations but could become 
bigger in the limit Re >> 1. We have also shown that worms are not artifacts of 
forced turbulence. If they are removed from a decaying field, they reappear within 
a small fraction of a turnover time. 

The lack of convergence of the probability distributions appears to support the 
multifractal models of turbulence in which cascades of increasing intensities are 
concentrated on increasingly small regions of space. The way in which this local 
concentration is implemented is, however, somewhat surprising, although consistent 
with previous indications from the near wall region of turbulent channels. Instead
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of having vortices of fixed circulation being stretched more at higher Reynolds 
numbers, our data imply increasingly stronger vortices being stretched by a fixed 
amount. 

The question of how these vortices are formed will not be addressed here and will 
be the subject of coming publications. The purpose of this paper is to present a 
data base that can be used to constrain any such future model. It may still be of 
some interest to discuss briefly the nature of some of these constraints. There are 
three basic problems: how the large vorticities are generated, why Re increases 
with RcA , and how a small scale structure can maintain a length of the order of the 
macroscale. 

The first question presents no qualitative difficulty, although its quantitative an-
swer lies at the heart of turbulence theory. High vorticity is generated by stretching, 
and stretching is generated by the integrated effect of the rest of the vorticity in the 
flow. We have seen that the highest vorticity has transverse dimensions of the order 
of ,j. This is already implicit in Kolmogorov theory and implies that the prevailing 
rate of strain is 0(w'). Since we know from the histograms in figure 3 that the 
predominant vorticity is also O('), this implies that the Reynolds number of a 
typical dissipative eddy, Re..,, is 0(1) and independent of RcA . This is in agreement 
with intuitive stability arguments. 

A relatively small percentage of dissipative eddies (at our Rc A ) seems to be 
strained while maintaining a much larger Re..,. Large Reynolds number vortex 
sheets are subject to inviscid instabilities and will quickly roll into individual vor-
tices, but columnar vortices are linearly stable, although they are subject to inertial 
waves and will probably break up if perturbed hard enough. There is little doubt 
that a sufficiently high Reynolds number vortex will eventually become internally 
turbulent, but it may survive long enough to be observed in rare situations. We 
have seen in figure 12 that worms become "noisier" as Re A increases, in general 
agreement with this argument. Note also that the evidence suggests that the strong 
vortices are subject to rates of strain that are much weaker than their own vorticity. 
Under those circumstances, they would behave as essentially unstrained and they 
could only be appreciably perturbed by self, or mutual, interaction. 

It might even be possible to shed some light on the scaling law Re., Re/ 2 . The 
relation that comes to mind is

1/2 
U	 Re, 

which implies that the velocity increment across an intense worm is of the same 
order as the characteristic velocity of the energy containing eddies. A simple model 
is that of large eddies straining vorticity at the interfaces in which they meet (see 
figures 6 and 7). On most occasions, the vortex sheets generated in that way become 
unstable and break into smaller eddies that strain each other into the 0(w') vorticity 
background. Occasionally, however, a small part of the vortex sheet survives the 
instability and is strained to thickness ij while still retaining across itself the full 
velocity difference W. The eventual roll-up of this sheet generates worms. 

Note that this model does not predict the conditions for the formation of worms, 
but that it singles out the observed scaling law as an upper limit for Re.,, since
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strong intermittency of the velocity itself is not observed. Note also that it suggests 
that the initial stretching takes the form of sheets since the velocity increment across 
a stretched sheet is maintained while that of a cylindrical vortex increases in inverse 
proportion to its diameter. 

Finally, the problem of the long lengths of the worms is harder. It is inconceivable 
that a rate of strain 0(w') remains coherent over a region of space of size 0(L). Since 
we know that velocities are only 0(u'), the largest possible coherence length for a 
strain S is u'/w' .-s A. This suggests that worms are not formed in a single stage, 
but that they grow or coalesce along their lifetimes. Several possible mechanisms 
come to mind, but they are beyond the scope of this paper. 
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Appendix I: Data processing for vortex radii and circulations. 
In order to elucidate the geometric structure of the worms, an algorithmic def-

inition is needed for the set of points in space which will be taken to constitute a 
single worm. Such definitions necessarily contain some degree of arbitrariness, and 
the one used here is certainly no more than one among many possibilities. 

We are interested in the strong vortical regions, and we take maxima of enstrophy 
as starting points. We define a worm axis and core starting with: 

(1) Find the point of maximum enstrophy not yet included in any worm core. 
This is the first worm-axis point of a new worm. 

From that point one could reasonably proceed along the vortex line through the 
point to define a worm centerline. However, an elongated region of high enstro-
phy, which we take intuitively as a worm, does not have vorticity perfectly aligned 
along its axis, nor does a given vortex line necessarily remain within it over its en-
tire length. Therefore, to increase the chances of staying within the high-vorticity 
structure, the worm-core definition is taken as: 

(2) Follow the local vorticity vector from the current worm-axis point until it 
intersects the next grid plane, then choose as worm-core points the four grid points 
in this plane which surround the point of intersection. The new worm-axis point is 
the one with the maximum enstrophy. 

This is done in both directions from the first worm-axis point until: 
(3) The worm is taken to end when the new maximum enstrophy is below the 

global mean value, w'2 , or when the worm axis intersects its own or another worm's 
core.
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From the set of worm-axis points we compile radial distributions of axial vorticity 
in the next two steps: 

(4) Define the radial plane around a given worm-axis point as that set of points 
for which the given axis point is the closest point on the worm axis. 

(5) Average the component of vorticity parallel to the worm axis (at the given 
axis point) over these radial-plane points. The averaging is done into radial bins of 
width ix. 

With the distributions of axial vorticity as a function of distance from and position 
along the axis, we can compute approximations to the worm radius and circulation 
as functions of axial position. The radial distribution is fitted to a gaussian shape, 
with the measured value of wo the axial vorticity at the axis. The l/e radius, R, of 
the distribution is estimated from the distance rq at which the vorticity falls to a 
fraction q of its value at the axis: 

R = rq/(—ln(q))4. 

This estimation is repeated for several q E (0.25 - 0.75), and the average of the 
different estimations is taken as the final radius. The circulation y at this section 
is then approximated by integrating the gaussian, assuming axisymmetry: 

= worR2 

We have found this procedure to give clearer results than computing the circulation 
directly from the radial distribution. The latter is hampered by the difficulty of 
doing the circulation integral over a quite noisy distribution containing vorticity 
from other worms and the background. 

Steps (1)-(5) are repeated to obtain a database containing a few tens of worms. 
Statistics of radius and circulation are collected over this database.
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On the local nature of the energy cascade 
By C. Meneveau', T. S. Lund' AND J. Chasnov2 

The local nature of the energy cascade in space and time is studied using direct 
numerical simulation of decaying and forced isotropic turbulence. To examine the 
concept that large scales evolve into smaller ones, we compute the Lagrangian corre-
lation coefficient between local kinetic energy at different scales. This correlation is 
found to peak at a Lagrangian time-delay that increases with scale separation. The 
results show that, on average, the flow of energy to smaller scales is predominantly 
local in physical space and that the view of eddies decaying into smaller ones while 
transferring their kinetic energy appears to be, on average, quite realistic. To ex-
amine the spectral characteristics of the cascade under unsteady conditions, a pulse 
of large-scale energy is added to the large-eddy simulation of forced isotropic tur-
bulence. As time progresses, the evolution of this pulse through bands of increasing 
wavenumbers is studied. 

1. Introduction 
The theoretical framework underlying most turbulence modeling hypotheses is 

the Kolmogorov phenomenology, in which the cascade of energy from large to small 
scales occupies the central stage. It is postulated that the rate at which energy is 
dissipated is dictated by the large-scales and that the transfer of energy is mainly 
local in wave-number space. The —5/3 decay exponent in the inertial range, its 
extent, isotropy of small-scales, and so on, follow directly from these assumptions. 
This spatially averaged view is of importance for modeling at the Reynolds averaged 
level and is consistent with the 1941 version of Kolmogorov's theory. In the realm 
of sub-grid scale modeling for Large Eddy Simulations (LES), a slightly stronger 
version of the Kolmogorov phenomenology is at work. Spatial features of the energy 
cascade have to be taken into account, and the equilibrium between the local energy 
flux (or subgrid-scale energy production) and rate of dissipation is used to derive 
the popular Smagorinsky model. A spatially local version of the energy cascade is 
also invoked in models for small-scale intermittency (Kolmogorov, 1962; Meneveau 
& Sreenivasan 1991). In spite of the wide use of these ideas, the hypothesis that 
kinetic energy originally associated with some large-scale structure gets transferred 
to smaller flow structures that have evolved from the bigger one has never been 
directly tested. The purpose of the present work is to perform such an explicit test 
using direct numerical simulations. Several issues complicate this task. To properly 
account for the time needed for the energy transfer between scales as well as to 
take sweeping by the large scales properly into consideration, the flow structures 
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have to be followed in time in a Lagrangian fashion. Also, proper statistical means 
have to be employed to ensure that the observed trends are robust. The calculation 
methods and results are presented in section 2. 

The Kolmogorov phenomenology can also be used to make predictions about 
how the cascade should react to overall unsteadiness at the large scales. In a recent 
article, Lumley (1992) used the Kolmogorov phenomenology to predict that an 
energy pulse at largest scales will tend to 'propagate' along the spectrum, only to 
'arrive' at small scales at some later time. This hypothesis is tested using simulations 
of forced isotropic turbulence. The results of these tests are reported in section 3. 
Conclusions are presented in Section 4. 

2. Spatial structure of the energy cascade 
Let the local kinetic energy of the flow-field composed of scales smaller than r', 

at location x and time t be denoted by er'(x,t). As defined more precisely below, 
the effect of advection by scales larger than r' is excluded from e ' (x, t). Let us 
assume that at a certain instant and position this local energy is larger than the 
corresponding spatial average. The question we wish to address is how such a pulse 
will evolve in time if the underlying turbulent structure is followed as it is advected 
through space. The simplistic view of the energy cascade as consisting of large 
eddies breaking down to form smaller ones would suggest that if we follow a fluid 
element initially located at (x, t) in a Lagrangian fashion, this pulse should become 
associated with local kinetic energy at decreasing scales as time progresses. In other 
words, we would expect that after following a fluid element with excess energy at 
scale r' for some time, we would find an excess of energy not at scale r', but at some 
smaller scale, say r = r'/2. To quantify such an effect statistically, it is useful to 
compute the correlation coefficient between local kinetic energies at different scales. 

Several alternative definitions for the local kinetic energy will be used. The first 
is the trace of the subgrid-scale stress tensor (minus the Leonard term), 

Cr'(X,t) UUi.	 (1) 

The hat represents low-pass spatial filtering at scale r'; 

ä(x,i) fa(x't)Grs(x - x')d3 x', 	 (2) rt 

where GrI is a filter of characteristic scale r'. Cr' (x, t) as defined according to Eq. 
(1) is the total kinetic energy minus the resolvable portion of the large scale kinetic 
energy. Decomposing the original velocity Uk into Uk =	 + u shows that this 

definition also includes cross-terms of the form uiZj. We shall also consider the 
kinetic energy of the small scales only, defined as 

=	 (3) 

Notice that these definitions of local kinetic energy differ from the local wavelet 
spectrum (Meneveau, 1991) in the sense that they include the energy of all scales 

2
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smaller than the characteristic scale r' rather than just that of a particular spectral 
band. 

The spatial filtering to be used can be of several forms. First, a spectral cut-off 
filter is considered, i.e.

G,.(k) = 1 if Iki <	 (4) 

and zero otherwise. Gr'(k) is the Fourier transform of Gr'(x - x'). We shall also 
consider Gaussian filter,

3 

Gr'(X - x') = ( J'\ exp 6(x - x')2l 

7rr)	 r 	
(5) 

and top-hat filter,

Gr'(XX') = 1 - f XX1 	 .	 (6) 
r' i 

At instant to, we compute the local energy at scale r', at some position x0 . At 
later times, the local kinetic energy at a smaller scale r < r' is computed at position 
displaced from x0 along the trajectory of a particle moving with velocity ü; 

x=xo+j ü(x,t)dt, (7) 

where tilde now represents filtering at a smaller scale r. This posterior and smaller-
scale local kinetic energy is defined either as

(8) 

or as in Eq. (3), by replacing the filtering at scale r' (hat) by filtering at scale 
(tilde). 

Finally, the correlation coefficient between the two local kinetic energies depend-
ing on the Lagrangian time delay t and the scale ratio b = r'/r is defined as 

p(b,t) =
<ebr(xo,io)er(x,to + t) > - < ebr(XO, to)>< er(x,to + 1) >

(9)_____ 
\/aeb,.ae, 

Here o, 2 
br and a 2 are the variances of the local kinetic energies at scale br and r, 

respectively. Figure 1 illustrates the variables to be computed. 
The correlation coefficient p(b, t) will be used as a measure of how fluctuations of 

local energy propagate between different scales of motion as the underlying turbu-
lent structures evolve in space and time. It can be measured for different definitions 
of local energy as well as different types of filters. 

The next section describes the direct numerical simulations from which p(b, t) is 

measured.
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r=br 

FIGURE 1. Sketch of local energy at 'large' scale r' = by , and at 'smaller' scale r 
after following a fluid particle for some time t. 

2.1 Description of flow fields 

Both forced and decaying isotropic turbulent fields were considered. They were 
generated with a pseudo-spectral code (Rogallo, 1981) on a 128 cubed mesh. The 
initial phases for the complex velocity field were chosen randomly but in such a way 
that the divergence-free condition was satisfied (see Rogallo, 1981 for more details 
on the initial conditions). Forcing was achieved by adding an anti-diffusion term 
(negative diffusion coefficient) to the Navier-stokes equations. The diffusion coeffi-
cient was wavenumber dependent and non-zero only for modes within wavenumber 
shells less than 3. The value of the coefficient for low wavenumbers was chosen 
so that the maximum wavenumber, scaled in Kolmogorov units, was unity (i.e. 
kmaz/i = 1). To generate realistic steady-state turbulence, the flow was evolved 
for approximately 2 large scale eddy turn-over times. The Reynolds number, RA, 
settled at 95.8, while the velocity derivative skewness settled at —0.486. The en-
ergy spectrum is shown in Figure 2, where the vertical lines indicate the cut-off 
wavenumber at scale r (4 mesh spacings) and the maximum value of r', equal to 
2.6r. Note the tail-up in the energy spectrum at high wavenumbers. This results 
from the desire to achieve maximal Reynolds number for the given resolution. The 
dissipation range is not fully resolved, and, as a result, energy piles up there. It 
is generally believed (Rogallo, 1992) that the tail-up at high wavenumber will not 
adversely affect the data in the central portion of the spectrum used here. To gen-
erate data for the Lagraugian test, the simulation was run for approximately an 
additional 2 small scale eddy turnover times. In order to follow the evolution in 
time with sufficient accuracy, the entire velocity field was stored at 14 intermediate 
times, each separated by roughly 1/6th of the turn-over time associated with scales 
of size r (as estimated by (SS1)_hI2).
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For the decaying turbulence, the energy spectrum was initialized according to 

E(k) =	
(t)4 

exp (_j).
	 (10) 

This spectrum has its energy peak at wavenumber 8. In order to develop realistic 
turbulence from the random phase initial condition, the flow was allowed to evolve 
freely for 1.4 small scale eddy turnover times (based on quantities derived from the 
end of the initial run; Tg,, =where A0 and u'0 are the Taylor microscale and the U1 

0 rms turbulence intensity, respectively). Over this period of time, the total turbulent 
kinetic energy decayed by 20%. The Taylor microscale Reynolds number (u'A/v) 
was 56.1. The 3-D radial energy spectrum at the end of this initial run is plotted 
in Kolmogorov units in Figure 3. Also shown are the experimental data of Comte-
Bellot and Corrsin (1971), as well as two additional spectra for the later times t6 
and t 13 discussed below. The simulation spectra collapse reasonably well with the 
experimental data for wavenumbers beyond the energy peak (where the universal 
scaling is expected to hold). As in the forced simulation, there is a noticeable energy 
pile-up at the highest wavenumbers. 
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FIGURE 2. 3-D radial energy spectrum for the forced isotropic turbulence. 

Data for the Lagrangian test was generated by evolving the flow approximately 
an additional two small scale eddy turn-over times, with 13 velocity fields saved at 
intervals of 1/6 of a turn-over time. Over this period of time, the kinetic energy 
decayed an additional 43%. The velocity derivative skewness changed from —0.382 
to —0.302 in progressing from to to t 13 , while RA changed from 56.1 to 35.2. The 
vertical lines in Figure 3 correspond to the cut-off wavenumber of the scale r (4 
mesh spacings in physical space) and the maximum r' = 2.6r considered.
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FIGURE 3.	 3-D radial energy spectrum for the decaying isotropic turbulence, 
plotted in Kolmogorov units. 

2.2 Calculations and results 
The filtered velocity ii was computed at scale r and sampled on a 32 3 mesh for 

each time to to t 13 . Also computed were the local energies ebr and e r at every point 
of the coarse 32 3 mesh. For each grid-point on this mesh, Eq. (7) was integrated 
numerically using Euler's method with time increment At = t,,.. 1 - t, and using 
multilinear interpolation to find the velocity between grid points. The local energy 
at t = 0 (to = 0, say) of the larger scales (up to br) is computed for positions 
x0 corresponding to each grid point, and the final energy at scale r is obtained by 
multilinear interpolation of the field e r at the end-points of the Lagrangian tracking, 
at all times 1 1 to t 13 . This calculation was repeated for different ratios b = r'/r 
between the larger scale and smaller-scale energies, in a range 1 < b < 2.6, where r 
is kept fixed and r' is increased. 

First, we consider spectral cut-off filtering and the definition of local kinetic en-
ergy as the trace of the subgrid-scale tensor, according to Eq. (1). The results 
corresponding to the forced field are shown in Figure 4, and the results pertaining 
to the decaying field are shown in Figure 5. The time delay t has been normalized 
with the characteristic time-scale corresponding to the lower cut-off scale r at t13: 

151	 /<	 (11). 

The upper curve corresponds to b = 1 and represents the Lagrangian autocorre-
lation function of the local kinetic energy. It exhibits the expected overall decorre-
lation time of the order of a few turn-over time scales of structures of size r. 

The curves for b> 1, on the other hand, do not peak at t = 0, but at some later 
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FIGURE 4. Correlation between local energies at different scales, as a function of 
Lagrangian time-delay. The flow is forced isotropic turbulence. The local energies 
are computed as the trace of the subgrid-scale stress tensor, using cut-off filtering. 
Different curves are for different scale separation; from top to bottom curve (at 
t=O): b=1.O,

0.1 0.25 0.50
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FIGURE 5. Same as Figure 4, but for the decaying isotropic turbulence simulation. 

time. This time (Tb) max is an increasing function of the scale-ratio b. It implies 
that to exhibit maximum correlation between energy occurring at different scales 
some time must be allowed to pass. Pulses of higher local energy tend, on the 
average, to correlate better with pulses at smaller scales only after allowing the 
cascade to proceed for some time. As the ratio between scales becomes larger, this
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time increases. 
To verify that the approximate integration scheme to compute the Lagrangian 

path is sufficiently accurate for present purposes, the calculation is repeated using 
an even coarser resolution in time. This can be done by using every second field 
at t0 , i 2 , t4 ... t 12 . The symbols in Figure 6 show the resulting correlation (for the 
forced flow, for b = 1, b = 1.4 and b = 2) as compared to the lines corresponding 
to the higher temporal resolution employing all fields to, t i , t2 ,.. etc. Only minor 
variations (less that 0.015 in the correlation coefficient) are visible, and we conclude 
that the procedure is sufficiently accurate. 

-o

0.1

.00 O.L25 OtO 0.75 100 I
ISI 

FIGURE 6. Test of sensitivity of results on accuracy of time integration, for the 
forced isotropic flow using the trace of the subgrid-scale tensor. Different solid 
curves are, from top to bottom: b = 1, 1.4, 2.0. The circles are obtained from a 
time-step that is twice as large, i.e. using every second of the stored fields only. 

Next, we consider the second possible definition of local kinetic energy in terms 
of the product of small-scale velocities (Eq. (3)). Figure 7 shows the resulting 
correlations for the forced isotropic flow-field. The overall trend is the same as 
before, but the time at which the curves peak is slightly reduced. 

The importance of different types of filtering is now quantified. Figures 8 and 9 
show the correlation as a function of Lagrangian time for the Gaussian and top-hat 
filters. The local energy is now defined again according to Eq. (1). It is clear that 
considerable differences are present in terms of the peak time-delay as well as the 
magnitude of the correlation. Nevertheless, the basic trend of a time-delay that 
increases with scale separation is robust. 

Finally, as an illustration of how the cascade of energy is associated with de-
creasing length-scales when following a fluid particle, we plot b' as a function of 
the peak time-delay (Tô)max in Figure 10. It contains all results pertaining to the 
cut-off filtering and the mean trend through the results pertaining to the Gaussian
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FIGURE 7. Same as Figure 4 but using Eq. to define local energy, and cut-off 
filtering applied to the forced isotropic flow. 
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FIGURE 8. Same as Figure 4, but using a Gaussian filter. 

and top-hat filter calculations. It can be seen that the data is consistent with a 
reduction in scale by a factor of 2, in a time that is of the order of 151-'. 

Considerable scatter about this mean behavior is seen to exist. The largest vari-
ability is due to the filter type: The decrease in length-scale is considerably faster 
for the Gaussian or top-hai filter as compared to the spectral cut-off filter. The re-
sults for b > 2.5 are physically not very meaningful since the large-scale br already 
approaches the peak in the energy spectrum.
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FIGURE 9. Same as Figure 4, but using a top-hat filter. 
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FIGURE 10. Plot of 11b as a function of the corresponding time delay at which the 
two-point energy. correlation peaks. It can be viewed as a decrease in length-scale 
of eddies as a function of time. Symbols are for the cut-off filtering. a : decaying 
flow, local energy according to Eq. (1); o: decaying flow, local energy according 
to Eq. (3); 0 : forced flow, local energy according to Eq. (1); a : forced flow, local 
energy according to Eq. (3); : mean trend through symbols; ---- mean 
trend through all results corresponding to Gaussian and top-hat filtering. 

3. Spectral evolution of sharp pulse of energy 
In this section, we consider the temporal evolution of a sharp pulse of kinetic 
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energy originally present at low wavenumbers in the spectrum. To attain high 
Reynolds numbers, a large-eddy simulation was employed to study this case. We 
consider a high Reynolds number forced 128 LES using the subgrid-scale model 
described in Chasnov (1991). The method of forcing entails adjusting the energy 
of each Fourier mode in the first wavenumber shell 1 <= k < 2 to a fixed value. 
The component distribution of the energy and the Fourier phases in the first shell 
evolve according to the Navier-Stokes equations. A long-time evolution of this 
forced flow together with the subgrid scale model results in an approximate k513 
energy spectrum over the entire range of computational wavenumbers. The spectral 
subgrid-scale model used here contains both an eddy-viscosity and a stochastic 
backscatter term, that effects most strongly the evolution of modes closest to the 
cut-off wavenumber. 

Starting from this fully-developed statistically-stationary inertial subrange, we 
have doubled the energy in the first band of wavenumbers at an initial time t = 0 
by a simple rescaling of the Fourier amplitudes and followed the cascade of this 
energy to higher wavenumbers as a function of time. Figure 11 shows the results 
of this calculation. We plot the time-evolution of the energy in logarithmic bands 
of wavenumbers from the initial instant of time. The flh band plotted represents 
the energy in the Fourier modes with wavenumbers between 21 <= k < 2's. 
The energies are normalized by their values at t = 0. A plot of the energy in the 
first band would be a horizontal line at a value of two, and we expect that, for 
large-times, a statistically asymptotic state would develop where all the normalized 
energies approach a value of two. 
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FIGURE 11. Time-evolution of the energy in logarithmic wavenumber bands after 
a pulse of energy was added to the first band. Band n represents the energy in 
wavenumbers 2t1 <= k < 2" normalized to its value at t = 0. Band 1 would be 
represented by a horizontal line at a value of 2.
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There is evidently a large amount of statistical fluctuation in the data so that we 
limit ourselves to qualitative observations based on this single realization. A large 
eddy-turnover time based on the length of the computational box and the initial 
root-mean-square velocity may be computed and corresponds to approximately t = 
3. The initial pulse of energy is, therefore, seen to become distributed more-or-
less evenly among all the wavenumber bands on the order of a large-eddy turnover 
time. Furthermore, the cascade appears to proceed in a manner such that most 
of the energy is passed locally in wavespace (for 1 <= t <= 2, the normalized 
energy level of the bands are ordered consecutively), but some of the energy is 
passed to all higher wavenumber bands (the normalized energy levels do not rise 
in a delayed step-like fashion, but rather begin to rise early on). Also, the time 
difference between consecutive peaks in Figure 11 is seen to decrease for the bands 
corresponding to larger wavenumbers, implying shorter turn-over times-cales for the 
smaller scales of motion. 

These results are in qualitative agreement with the scenario described in Lumley 
(1992), where at each step in the energy cascade most of the energy is passed to the 
next higher wavenumber band while a diminishing fraction of the energy is passed 
to all other higher-wavenumber bands. 

4. Summary and conclusions 

First, it was shown that 'pulses' of kinetic energy of flow-structures at a particular 
scale will propagate to smaller scale structures as fluid particles are followed in 
time. This effect leads to a peak in the correlation between local energy at different 
scales occurring after a time delay. It was also shown that the time needed for a 
length-scale reduction factor of b = 2 is of the order of the 'characteristic' time 
scale in the energy cascade. Although these important qualitative results were very 
robust, quantitatively they were strongly dependent on filter type and on the precise 
definition used to compute the local energy density. Also, the increase in correlation 
after a Lagrangian time-delay was typically not very large. This is to be expected 
since the 'forward' flow of energy to smaller scales is itself a weak effect, coming 
from the difference between local forward flux and backscatter. 

Secondly, unsteadiness in the large-scales of the flow were studied from the spec-
tral point of view. A pulse of energy added at low wavenumbers in a high Reynolds 
number forced isotropic turbulence was observed to propagate to higher wavenum-
bers such that the energy levels increased faster in wavenumber bands closest to the 
initial pulse and slower in wavenumber bands farther away. The energy of the ini-
tial pulse was seen to be more-or-less evenly distributed among all the wavenumber 
bands in a time on the order of one large-eddy turnover time. 
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Search for subgrid scale parameterization 
by projection pursuit regression 
By C. Meneveau', T. S. Lund2 AND P. Mom2 

The dependence of subgrid-scale stresses on variables of the resolved field is stud-
ied using direct numerical simulations of isotropic turbulence, homogeneous shear 
flow, and channel flow. The projection pursuit algorithm, a promising new regres-
sion tool for high-dimensional data, is used to systematically search through a large 
collection of resolved variables, such as components of the strain rate, vorticity, 
velocity gradients at neighboring grid points, etc. For the case of isotropic tur-
bulence, the search algorithm recovers the linear dependence on the rate of strain 
(which is necessary to transfer energy to subgrid scales) but is unable to determine 
any other more complex relationship. For shear flows, however, new systematic 
relations beyond eddy viscosity are found. For the homogeneous shear flow, the 
results suggest that products of the mean rotation rate tensor with both the fluc-
tuating strain rate and fluctuating rotation rate tensors are important quantities 
in parameterizing the subgrid-scale stresses. A model incorporating these terms 
is proposed. When evaluated with direct numerical simulation data, this model 
significantly increases the correlation between the modeled and exact stresses, as 
compared with the Smagorinsky model. In the case of channel flow, the stresses are 
found to correlate with products of the fluctuating strain and rotation rate tensors. 
The mean rates of rotation or strain do not appear to be important in this case, 
and the model determined for homogeneous shear flow does not perform well when 
tested with channel flow data. Many questions remain about the physical mecha-
nisms underlying these findings, about possible Reynolds number dependence, and, 
given the low level of correlations, about their impact on modeling. Neverthe-
less, demonstration of the existence of causal relations between sgs stresses and 
large-scale characteristics of turbulent shear flows, in addition to those necessary 
for energy transfer, provides important insight into the relation between scales in 
turbulent flows. 

1. Introduction 
Of central importance to the numerical simulation of the large scales in turbu-

lent flows is the proper parameterization of the subgrid-scale (sgs) stress deviator, 
defined as

(uTiiic -ükük)t51,	 (1) 

1 Johns Hopkins University 
2 Center for Turbulence Research 
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as a function of the resolved velocity field ü 1 . Here () represents spatial filtering at 
a particular scale r. The most widely used model is Smagorinsky's (1963): 

= —2 C r2 F2^ij Sij ,	 (2) 

where

2 Ox, Ox
	 (3) 

is the strain rate of the resolved motion. The model constant C. can be prescribed 
or can be determined dynamically based on information provided by the resolved 
field, as in the recently developed dynamic model (Germano et al., 1991). 

Although the Smagorinsky model has been in use for nearly thirty years, for 
roughly half that period it has been known that the model provides only a very 
crude estimate for the stresses. This fact was first demonstrated by Clark et al. 
(1979), where direct numerical simulation (DNS) data for homogeneous isotropic 
turbulence was used to evaluate model predictions. Clark et al. found a correlation 
coefficient of approximately 0.2 when comparing predictions of the Smagorinsky 
model with the exact stresses. McMillan et al (1979) found that the correlation 
coefficient was even lower in homogeneous shear flow, being of order 0.1. Later, 
Piomelli et al. (1988) found similar results in turbulent channel flow. 

When contemplating these extremely low correlation coefficients, it may seem 
striking that the Smagorinsky model works at all. Of course, the resolution of this 
paradox is that, by construction, the Smagorinsky model insures that there will 
be a net drain of energy from the large scales to the subgrid-scale motions. This 
is the primary objective of a subgrid-scale model, and as long as this requirement 
is met, reasonable results may be expected. On the other hand, the Smagorinsky 
model provides poor predictions of the individual elements of the stress tensor. It is 
natural to expect that superior results could be obtained with a model that yields a 
more accurate prediction of the stress tensor. The objective of this work is to seek 
out potentially more accurate models. 

The Smagorinsky model relates the subgrid-scale stress with only the resolved 
strain rate. It is reasonable to expect that the stresses might also depend on other 
resolved quantities such as the vorticity. If simple models based on a limited number 
of such quantities are postulated, conventional least-squares fitting techniques can 
be used to test the modeling hypothesis. Such a test was performed by Lund and 
Novikov (1992), where the stresses were assumed to depend on the anti-symmetric 
as well as the symmetric part of the velocity gradient tensor (rotation rate and 
strain rate tensors, respectively). It was shown that the stress tensor could be 
expanded in a series formed from products of these two tensors. Tests of this 
expansion in isotropic turbulence revealed that inclusion of rotation rate did not 
significantly improve the model prediction. The results of Lund and Novikov thus 
suggest that it is necessary to search for other quantities on which the stresses could 
depend. Velocity gradients taken at neighboring points or perhaps gradients filtered 
at different (larger) scales are possible candidates which would not violate Galilean 
invariance.
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Unfortunately, as the list of possible independent variables increases, the task of 
finding statistically meaningful relations from the DNS data becomes unmanage-
able. In principal, if a multidimensional scatter-plot of;, as a function of several 
independent variables is generated, a high-dimensional cloud of points would be 
obtained. This may (or may not) exhibit some clustering around a most probable 
behavior. If such a hypersurface exists about which the data appears preferentially 
clustered, it would constitute a clear basis for modeling. However, finding such a 
surface from the DNS data represents a difficult problem of regression in a high-
dimensional space of variables. Parametric regression, such as least-square error 
fitting to some assumed functional form, is quite difficult because there is little 
indication as to what such a function should be. Finding the surface by dividing 
the high-dimensional space into small hypercubes and performing local smoothing 
of the data is impractical because even large amounts of data become extremely 
sparse in a high-dimensional setting (curse of dimensionality). 

Although the challenges in performing a high-dimensional regression are apparent, 
recent advances in statistical science allow such problems to be tackled. An elegant 
method that circumvents many problems inherent to high-dimensional regression 
was proposed by Friedman & Stuetzle in 1981. Known as the Projection Pursuit 
Regression algorithm, this method was originally developed to analyze experimental 
data in particle physics involving a large number of variables. The algorithm consists 
of a numerical optimization routine that finds one dimensional projections of the 
original independent variables for which the best correlations with the dependent 
variable can be obtained. The dependent variable can then be written as a sum 
of empirically determined functions of the projections. We shall use the projection 
pursuit regression algorithm to investigate relationships between the subgrid-scale 
stresses and quantities in the resolved field. 

In section 2, we briefly summarize the projection pursuit method, present an 
illustrative example, and comment on both its strengths and weaknesses. Section 3 
describes applications to isotropic turbulence, both decaying and forced. Section 4 
presents applications to homogeneous turbulent shear flow and section 5 to channel 
flow simulations. The results obtained from these anisotropic flows suggest possible 
modeling strategies that are explored at the end of sections 4 and 5. Section 6 
summarizes this work and presents the conclusions. 

2. Review of projection pursuit regression 

The problem is to find the 'best' relation between a 'response' y and a set of 
predictor variables x 1 , X2,...Xn. In our problem, y will be identified with each of 
the elements of the sgs stress tensor, and the x,'s will be the elements of resolved 
rate of strain, vorticity, etc., i.e. all the variables that the stresses are assumed to 
depend upon. When performing tests with DNS data, there will be a large number 
of realizations (essentially at every grid-point) of the 'response variable' r (y) and 
of the 'predictor variables' strain rate, vorticity, etc (x i , i = 1,2...n). 

Friedman & Stuetzle (1981) summarize the inherent problems of traditional meth-
ods, such as parametric regression and regression based on local smoothing. With
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the former, one has to assume a particular functional form and determine unknown 
coefficients or parameters by some method such as least-square error fitting. Since 
we do not wish to impose such relationships a priori, this is not a method of choice. 
Local smoothing consists of fitting a hypersurface in a small hypercube of data and 
repeating this in each cube. The regression surface is then the union of all these 
local fits. In high-dimensional settings, this is practically impossible. Consider the 
following example (Friedman & Stuetzle, 1981). Let x E R'°, i.e. n 10. If the 
width of the cube used for the local smoothing spans 10% of the range of each 
variable, each cube will contain typically only a fraction equal to 0.110 of the data, 
which is too sparse. On the other hand, if one requires each hypercube to contain 
10 % of the data, then the window has to span 0.101 80% of the range of the 
predictor variables, which is too large. 

Projection pursuit regression (ppreg henceforth) circumvents these difficulties by 
projecting the high-dimensional data onto a single variable z = a 1 x 1 + a2 x2 + 

+ anXn. Local smoothing is then performed to obtain an empirically determined 
function 1(z) that follows the main trend of the data as a function of z. The 
smoothing algorithm is described in Friedman & Stuetzle (1981) and consists of 
several passes over the data (y as a function of z) to adjust the bandwidth of 
the smoothing to the local conditions. The variance a =< (y - 1(z))2 > - 
(y - 1(z)) > 2 of the data around 1(z) is computed. The core of the algorithm 
is a numerical optimization procedure in which the coefficients a i are selected so 
as to minimize the variance o. Let the &s thus found be denoted by a1), and 
let	 and f( ' ) ( z ( ' ) ) be the corresponding univariate projection and the empirical 
function giving a good fit for y as a function of 	 The procedure is repeated 
for the residues, defined as y - f(1)(z(1)), and a new projection and a smooth 
empirical function f(2)(z(2)) are found. This procedure is repeated until the variance 
stops to decrease appreciably by adding new projections. Finally, the model consists 
of the sum

M 

I/mod
(m) (m)	 (m) 

=	 1 (	 Xi+(2 x2+..+ax).	 (4) 
M=1 

For the case that the response variable is a linear combination of x (i.e. y = 
/31 x 1 + ppreg reduces to the usual n-dimensional linear least-square error 
fit (where the &s are the coefficients and (1) is a linear function). In general 
however, the functions 1(m) need not be linear. The fundamental advantage of 
this procedure is illustrated in the following example. If y is the product of x's, 
say y = x 1 x2 , then this can be represented as a sum of two univariate functions 
according to y = 1(z(') )2 - i(z(2) )2 , where z' = x 1 + x2 and z(1) = xi - x2 . The 
ppreg algorithm is thus able to find some nonlinear relations without stipulating 
them a priori. 

As an illustrative example, we consider 1000 realizations of a ten-dimensional 
random vector x where each x 1 is normally distributed with zero mean and unit 
variance. Then y is prescribed as follows:
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Y =X3X4 +tanh(z6 + XT) +e,	 (5) 

where is another Gaussian random variable with zero mean and variance of 0.1. 
However, is not included in the list of predictor variables x i and, therefore, repre-
sents extraneous noise. Projection pursuit is applied to this artificially generated set 
of data. The projections found by ppreg are, successively: c4' = 0.69, 41) = 0.72; 

= 0.66, 2) = 0.74; and a 3 = —0.67, t4 = —0.73; other a's are negligible. 
The empirical functions (solid lines) resemble the tanh function in the first projec-
tion, parabolas in the latter two. The projected data are shown in Figures 1(a) 
to (c). If we least-square error fit a tanh profile through Figure 1(a), we obtain 
Yi	 1.ltanh[1.3(0.69x 6 + 0.72x 7 )]. The scatter plot in Figure 1(b) is then y - 	 vs 
the second projection = 0.66x 3 + 0.74x4 . Parabolic fits through Figures 1(b) 
and 1(c) give Y2 = 0.4(0.66x3 +0.74x4 )2 and y3 = —0.4(-0.67x3 +0.73x4 )2 . (These 
fits are not exactly equal to the empirical smoothing functions constructed by the 
algorithm, this being the reason why the scatter plot of Figure 1(c) fails below the 
smooth.) The final model then consists of yj + Y2 + y3 which is plotted with the 
original y in Figure 1(d). 

The residual noise is mainly due to the non-deterministic dependence of y with 
respect to . The initial correlation coefficient between y and e.g. x 4 was 0.012, 
while the correlation coefficient between y and the model, Ymod, is now p = 0.96. 
Finding such a non-trivial dependence from few data points in a 10-dimensional 
space is quite remarkable. 

Although impressive in the above example, ppreg is not fool-proof. For cases 
when y depends on the xe's in ways that cannot be written as sums of functions 
of linear combinations of x 1 's (such as divisions), ppreg is usually unable to find 
good projections. Therefore, while the method works remarkably well for an entire 
family of non-trivial relations, it cannot be considered entirely general. 

In addition to application to sgs modeling to be reported in the following pages, 
we believe that the ppreg method should be applicable to a host of other prob-
lems where large amounts of data need to be analyzed and functional dependencies 
established (Reynolds-stress modeling, reacting flows, control, etc.). 

3. Isotropic turbulence 
In this section, ppreg is used to search for possible functional dependence between 

the residual stresses and a host of resolved variables in homogeneous isotropic tur-
bulence. Both decaying and forced isotropic turbulent fields are considered. 

3.1 Flow-fields and calculations 
Both the forced and decaying isotropic turbulent fields were generated on a 128 

mesh with the pseudo-spectral code of Rogallo (1981). For the decaying turbulence, 
the energy spectrum was initialized according to 

E(k) = 1 ()exp (_2
. 32 2
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FIGURE 1. Illustrative application of ppreg to a test case. (a) Response y as 
a function of first projection z( I ) = 0.69x6 + 0.72x 7 (symbols) and mean trend 
f" ) (z ( ' ) ) found by local smoothing (solid line). (b) Second projection of y - y, 
where y has been found by fitting a tanh profile through Figure 1(a). Solid line: 
f(2) (z (2) ) found by the algorithm. (c) Third projection and f(3'(z(3)). (d) Response 
variable y as a function of the sum of empirically determined fits in (a), (b) and (c). 

This spectrum has its energy peak at wavenumber 8. The initial phases for the com-
plex velocity field were chosen randomly but in such a way that the divergence-free 
condition was satisfied (see Rogallo, 1981 for more details on the initial conditions). 

In order to develop realistic turbulence from the random phase initial condition, 
the flow was allowed to evolve freely for 2.9 small scale eddy turnover times, Tt0 

(based on quantities derived from the end of the initial run; r 0 =where \o and 
I	 U10 

are the Taylor microscale and the rms turbulence intensity, respectively). Over 
this period of time, the total turbulent kinetic energy decayed by 34%. The Taylor 
microscale Reynolds number (u'A/v) was 45.3, and the velocity derivative skewness 
was —0.32. The 3-D radial energy spectrum at the end of the run is plotted in 
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FIGURE 2. 3-D radial energy spectrum for the decaying isotropic turbulence, 
plotted in Kolmogorov units. The experimental data were taken from Comte-Bellot 
and Corrsin (1971). The vertical line indicates the scale at which the velocity field 
was filtered to obtain the synthetic large eddy field. 

Kolmogorov units in Figure 2. Also shown are the experimental data of Comte-
Bellot and Corrsin (1971) at somewhat higher Reynolds number. Agreement with 
the experimental data between 0.06 < ki1 < 0.4 indicates that realistic turbulence 
has been achieved. The tail-up in the simulated spectrum at high wavenumbers 
indicates some lack of resolution. It is generally believed (Rogallo, 1992) that this 
will not adversely affect the data in the central portion of the spectrum used here. 
The vertical line in Figure 2 indicates the scale at which the DNS data was filtered 
in order to generate the synthetic large eddy field. This scale corresponds to four 
grid spacings. 

For the forced simulation, energy was added to the large scales by including an 
anti-diffusion term (negative diffusion coefficient) in the Navier-stokes equations. 
The diffusion coefficient was wavenumber dependent and non-zero only for modes 
within wavenumber shells less than 3. The value of the coefficient for low wavenum-
bers was chosen such that the maximum wavenumber, scaled in Kolmogorov units, 
was unity (i.e. kmax/?i = 1). To generate realistic statistically stationary turbu-
lence, the flow was evolved from the random phase initial conditions for approxi-
mately 2 large scale eddy turn-over times. The Reynolds number, RA, settled at 
95.8, while the velocity derivative skewness settled at —0.486. The energy spec-
trum is shown in Figure 3, where again the vertical line indicates the scale used to 
generate the large eddy field.	 - 

The sgs stresses r, and resolved rates of strain S, and vorticity .Zk were computed 
using a spectral cut-off filter with scale r corresponding to 4 grid points. The data 
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FIGURE 3. 3-D radial energy spectrum for the forced isotropic turbulence. The 
vertical line indicates the scale at which the velocity field was filtered to obtain the 
synthetic large eddy field. 

was sampled on every 8th grid point, producing a total of 163 realizations. Also 
computed at each 163 point were resolved variables at a scale twice as large as r, 
S, and . The invariants of the tensors were computed as follows: 

II/.mnnm,	 (6) 

III = (.mn.nppm),	 (7) 

	

II! = si;;;-;,	 (8) 

and a similar list of invariants for the larger scale rates-of-strain and vorticity. 
The search procedure consisted of considering separately each element of the 

tensor r as the response variable. Each element of r, in turn, was assumed to 
depend on all 24 of the predictor variables mentioned above (each element of the 
tensors plus all invariants). The search is thus a high dimensional one indeed. 

It is important to note that when performing independent searches for each ele-
ment of r, the resulting model expressions are not expected to be tensorially correct. 
This weakness stems from the fact that the projection pursuit regression operates 
most effectively on scalar data. The findings of projection pursuit are still quite 
valuable, however, since they may be used to guide the construction of tensorially 
correct models. Such a procedure will be followed here. 
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3.2 Results 
We begin with the decaying field and consider first the normal stress element 

r11 . To limit the scope of the search, we initially restrict the predictor variables to 
quantities filtered at scale r. Furthermore, since S = 0, we eliminate 533 from the 
search, reducing the list to 11 variables. 

The main result is the following. The ppreg algorithm finds only one projection 
(in which the variance of the data around a mean trend is reduced), namely that 
corresponding to S11 . The coefficient a corresponding to 511 is close to unity, while 
all others are less than 0.1. The same is true for all other tensor elements, i.e. the 
only causal dependence appears to be between corresponding elements of rij and 

,.,. The smoothed dependence is approximately linear, but the variance about it is 
still very large. The correlation coefficient between each element of the stress and 
rate-of-strain tensors is, averaging over all 6 elements, about p = 0.26. Notice that 
the Smagorinsky model requires the product between each rate-of-strain element 
and the second invariant II. Given the discussion in section 2, this could have 
been detected by the present approach by yielding pairs of projections with similar 
I l's for both Mz. and S, and canceling parabolic dependences. However, such 
projections were found to produce more variance than the ones corresponding to 
constant eddy viscosity. This was checked a posteriori by computing the correlation 
coefficient between each element rij and the corresponding term - The 
correlation was marginally smaller than for S, alone, about p = 0.25 on average. 

The same procedure was repeated for the forced isotropic flow, and the same 
observations were made. The correlation between ;, and S,, was even lower (about 
0.12 instead of 0.26), but this was again the only causal dependence captured by 
the algorithm. All other projections did not reduce the variance in any fashion, and 
correlations with —IIS,, were again smaller than with S, alone. 

Inclusion of the velocity gradients filtered at a larger scale yielded projections 
that include a weak linear dependence on these gradients but again in terms of the 
same tensor elements only. In other words, for r11 the 'best' (and only) projection 
is onto S11 + 0.2S11 . Nevertheless, this leaves the correlation virtually unchanged 
since and S11 are themselves correlated. Similar results were obtained for other 
tensor elements. 

We also considered the possibility that the sgs stresses depend not only on the 
resolved velocity gradients at the point in question, but at the 26 closest neighboring
grid-points as well. To do this, the 6 elements of S, at each point S1 , (x + i. r, y +

z + icr); i, i,,, i = —1,0, 1, as well as 3 vorticity components at each of these 
points was considered. The dimensionality of the space of these predictor variables 
is 243. It appears unrealistic to expect ppreg to perform adequately in such extreme 
circumstances. In order to at least explore this direction, we considered rii (x, y, z)
and investigated how it depends on the first element of the rate-of-strain tensor at all 
27 neighboring points on the coarse grid, i.e. the predictor variables were 5 11 (x +
ixr,y + ir,z + icr), j Z j , j Z = — 1,0,1. The projection pursuit projected again
most strongly on 511 (x, y, z) (a = 0.8), while the a's corresponding to neighboring
points were below 0.25. Inclusion of these weak dependencies left the correlation
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coefficient virtually unchanged. Since this test is incomplete (one should include all 
243 elements in the test) the conclusion that the neighboring velocity gradient does 
not affect the sgs stresses is somewhat premature. Nevertheless, the partial results 
obtained here give no indication of any substantial influence. 

3.3 The model of Bardina ci at. 

The only model which has been reported to yield high correlations when tested 
with DNS data is the model of Bardina ci at. (1983). The correlation between 
r1, and B, = i,t2, - can be as high as 0.7 to 0.8 when the filter used in 
creating the synthetic large eddy field from the DNS data is Gaussian. In spite of 
this, experience shows that when the model is implemented in actual simulations, 
it dissipates almost no energy, and a Smagorinsky term has to be added (giving 
the mixed model, Bardina ci at. 1983). This is puzzling since a high correlation 
implies at least some alignment between the modeled stress and rate of strain tensor 
required for dissipation. This issue is addressed below. 

Using a Gaussian filter on the decaying isotropic data, we reproduced the quoted 
correlation of 0.8. We found this result to be misleading, however, since the Gaus-
sian filter produces a 'large-scale' field that contains considerable contributions from 
the 'small scales', as viewed from a spectral analysis. This 'small scale' information 
is, of course, not available in an actual large eddy simulation if a spectral method is 
used. The model of Bardina ci at. can be viewed as a procedure for extracting the 
'small scale' component of the synthetic large eddy velocity field generated from the 
DNS data. While this procedure yields impressive correlations in tests with DNS 
data, lack of the 'small scale' component in an actual large eddy simulation field 
results in a model that may yield a very poor estimate for the real . stresses. The 
near lack of dissipation is probably symptomatic of this. 

This hypothesis was tested by experimenting with different filters. We feel that 
the cut-off filter is the most appropriate for generating the synthetic large eddy 
field since it completely eliminates the 'small scale' information that will never be 
present in a spectral large eddy simulation. We have repeated the tests of the model 
of Bardina ci at. using a cut-off filter to determine tZ. The second filtering, ti, was 
chosen either to be Gaussian or a second cutoff at a scale twice as large as r. Using 
this scheme, the model of Bardina ci at. is written as 

	

B=ü—,	 (9) 23

As expected, the correlation between the sgs stress and the Bardina model dropped 
to nearly zero when the cut-off filter was used to generate zig . This was true inde-
pendent of the second filter type (i2,). As a consistency check, we found that when 
B, was included in the projection pursuit as predictor variable, no dependence on 
this tensor was found. 

4. Homogeneous sheared turbulence 
In this section, we search for correlations between sgs stresses and resolved vari-

ables in homogeneous shear flow. The data was generated by Rogers (1987) on a
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128 3 mesh using a variant of the Rogallo code. We considered three different re-
alizations, corresponding to times 10, 12, and 14, in units of the inverse imposed 
mean shear, S =< du i /dx2 >. The mean velocity is in the x 1 direction and the 
mean rotation in the Z3 direction. Cutoff filtering was performed on a scale r = 4 
grid-points, and every eighth grid point was sampled, as in section 3. The list of 
predictor variables was again S 11 , 522, 512, 523, 513, Wi, L&)2, W3, II, III and 
IIj = 1w I . Ppreg was repeated 6 times for each element of the sgs stress tensor. 

4.1 Results 
In contrast to the tests performed in isotropic turbulence, ppreg was able to 

find several interesting projections in the case of homogeneous shear flow. Table 
1 shows the individual tensor elements and the linear combination of predictor 
variables z = ai X, that dominate the projections (chosen as those whose a > 
0.15). The functional dependence on each projection (f vs z) was found to be fairly 
linear. The correlation coefficients between and IIS (Smagorinsky model) 
are contrasted in the same table with those between rii and the dominant elements 
of the linear combinations found. On average, there is about a 100% improvement 
above the Smagorinsky model. 

Stress z, (best projection) P[,, P[r,1 ,xl 

Ti 1 —O.39S11+O.41S22+O.73S12+O.28S13+O.1W.l2+O.15il3 0.23 0.36 

T22 —0.21Si 1 —0.28S22 -0.89S1 2-0.17S13 0.14 0.23 

733 0.76S11 —0.2S22+0.24S12-0.23313-0.157.12-0.44'3 0.07 0.29 

T12 —0.66S1 —0.2922 —0.7S12 0.13 0.21 

T23 0.25S,, —0.69S23 —O.62S, 3 +O.23c.'2 0.06 0.27 

T13 0.15S12-0.2S23-0.56S13+0.68,+0.29'2-0.173 0.21 0.34

TABLE 1. Results of projection pursuit for homogeneous shear flow. 

It can be appreciated that causal relations exist that are significantly different 
from the Smagorinsky model. The coefficients showed only minor variations for the 
other two times considered (St=10 and St=14). This robustness suggests that there 
is a physical mechanism by which the large-scale field consistently influences the sgs 
stresses, in addition to what is required energy transfer (i.e. alignment between ri., 

and Si.,). Since the relations tabulated above cannot by themselves provide an 
adequate relation between tensors, it could be that dependence on other quantities 
has been omitted. The next section explores the dependence on other quantities 
that may provide possible mechanisms for the observed degree of causality. 
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4.2 Dependence on mean shear and modeling 
An important consideration when developing a model for the sgs stress is that the 

resulting model be in the form of a frame invariant tensor. Clearly, the individual 
terms found in the previous subsection are not invariant under rotations of the 
coordinate system. A tensorial relation must be found that is consistent with the 
findings of ppreg on each tensor element. We attempt to find such a tensorial 
relation in this section. To do this, we first observe that 512 and ti's are important 
contributors in the model for r11 . These tensor elements of S, and R, = - 
also correspond to the only non-zero elements in the mean strain-rate and mean 
rotation tensors. This fact suggests that tensor products of the mean strain rate 
and mean rotation with the fluctuating strain rate and fluctuating rotation would 
reproduce some of the dependence found by ppreg for r 1 j. Analogous reasoning 
holds for most of the other elements of r. 

To proceed further, we define the mean strain and rotation rate tensors as 

/ 0	 0' 

2 0 O	 (10) E * 2 \ 

0 0 0) 

/ 0	 0' 2	 \ 

	

Q -( S 0 ol	 (11) 
0 0 0) 

and postulate a model of the following form: 

-rij = — 2c i r2 IIS + 

c2r2 (S,kEk, + E,kkj)* + c3r2 (ñ,k1k + 1ik.fkj)* +	 ( 12)

c4 r2 (s k cl k - IikSkj) + c5r2 (R1kEk - 

where () indicates trace-free part (note that some of the terms are naturally trace-
free). The first (Smagorinsky) term is also present in the ppreg results and thus is 
included here. To see more clearly how this model reproduces some of the trends 
of Table 1, note, for instance, that the [11] element of the product between 5,, and 
Ejj is linear in 512 and that between Rij and ci,, will be linear in w3. Again, similar 
correspondences can be found for other elements of r. 

Since Eq. (12) is linear in the coefficients c, these can be determined by the usual 
least-squares technique. This procedure is easily derived as follows. Write Eq. (12) 
symbolically as

Ti, = c(m) tj ,	 (13) 

where (Mk)12 is the kth trace-free model tensor in Eq (12). When the DNS data is 
used, the above expression can be compared with the exact trace-free part of the 
subgrid-scale stress, The error in representing the stress via Eq. (13) is 
given by
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e 1 = (r:) - Ck(Tflk),j . 	 (14) 

Assuming the ck to be constant in space, the global square error is minimized with 
respect to the ck by enforcing the following condition 

a 
- < e 13 e1 >= 0,	 (15)
OCk  

where <> indicates an average over space. This operation leads to the following 
matrix equation for the Ck 

ck =< (m1)1(mk), >'< (m,)(r) , j >	 ( 16) 

Note that this procedure is rather general and does not require that all five terms 
in Eq (12) be included. Any subset of the five terms can used as a basis and 
corresponding coefficients solved for via Eq. (16). This feature will be used to 
determine which combinations of the five terms are most effective in maximizing 
the correlation between the modeled and exact subgrid-scale stresses. 

The quality of the fit is measured in terms of the tensorial correlation coefficient 

<(r)j,M1j > (17) 
/< (r )j(r )j >< M11 M, >' 

where M13 = Ck(Mk)ij is the composite model tensor. 
The procedure developed above was applied to the homogeneous shear flow data 

base. Correlation coefficients were determined for all possible combinations of one 
to five model components. Figure 4 shows the results of this study where the high-
est correlation coefficient obtained for a given number of model tensors is plotted 
against the number of tensors used. 

The correlation increases as more model tensors are included. The increment 
in improved correlation, however, deceases as more terms are added. In fact, the 
correlation coefficient when just three terms are used is nearly identical to that 
when all five terms are included. This fact suggests that at least two of the terms in 
Eq. (12) are not particularly useful. The relative importance of the various terms 
are summarized in Table 2, where the optimal combinations of terms that give rise 
to the correlations in Figure 4 are listed. 

Note that when only one term is used, the optimal choice is not the Smagorinsky 
model (term 1), but rather term 4, r2 (SkQk - fllkSkj). For reference, the cor-
relation produced by the Smagorinsky model alone is shown as the square symbol 
in Figure 4. The Smagorinsky model is seen to be only slightly inferior to term 4. 
When two or more terms are included, the Smagorinsky model is always present. 
Terms 2 and 5 enter the list in the last two positions and do not significantly im-
prove the correlation. It is interesting to note that both of these terms contain the 
mean shear. It is also interesting that terms 3 and 4 are proportional to the mean 
rotation, and it is these terms that are most effective in increasing the correlation. 
This point will be discussed further in the following section.
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FIGURE 4. Correlation coefficient between the exact homogeneous shear flow sgs 
stress and subsets of the terms in the model of Eq. (12). For a given number of 
model tensors, the correlation coefficient plotted is the highest one obtained when 
all possible combinations of the five terms was considered. 

Number of terms Best combination 

1 4 

2 1,4 

3 1,3,4 

4 1,2,3,4 

5 1,2,3,4,5

TABLE 2. Optimal subsets of the model terms in Eq. (12) applied to homoge-
neous shear flow. 

When terms 1, 3, and 4 are used, there is slightly more than a 50% improvement 
over the Smagorinsky model. This compares with roughly 100% improvement for 
the tensorially incorrect model listed in Table 1. This discrepancy is due to the fact 
that not all of the terms contained in Table 1 can be reproduced by the model of 
Eq. (12). Nevertheless, a simple tensorially correct model was found that captures 
some of the trends found by projection pursuit. 

The coefficients of terms 1, 3, and 4 are 8.52 x iO, —3.03 x 10_2, and 4.16 x 102 
respectively.
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5. Channel flow 
In this section we consider DNS of channel flow. The data were generated with a 

pseudo-spectral code as detailed in Kim et al. (1987). The Reynolds number based 
on the wall friction velocity was 395, and 256 x 193 x 192 grid points were used. 
The data was cutoff filtered in the streamwise and spanwise directions only, with 
a filter size of four grid cells. All results presented here were generated on a single 
plane of data at Y = 0.126 ( y = 49.8 ) where h is the channel half width. 

5.1 Results 
As a starting point, the correlation between the exact stresses and the Smagorin-

sky model was investigated. Individual correlation coefficients were computed for 
each of the tensor elements, and these were found to be very low (p 0.07 on 
average). This trend is shown in Figure 5 in the form of a scatter plot of 7-12 
-S12-

• •: 

r:4 ••• 

rn _M _9fl fl 7n £fl An Rn IflA 1fl 

- Si2 

FIGURE 5. Scatter plot of sgs stress r12 as a function of rate-of-strain element 912 
in DNS of channel flow, at y/h = 0.126. 

No causal dependence appears to exist between the two variables. The ppreg 
algorithm was then applied to the data using all elements of S,, Cok and the invari-
ants as 11 predictor variables. A sequence of several projections was found for each 
element of r. This list of projections was reduced to a single one for each element 
of r, by retaining the one that reduced the variance most strongly in each case. 
These optimal projections are listed in Table 3. 
As opposed to the results for homogeneous shear flow, the functional form between 
r, and these projections was found to be non-linear. As an illustration, a scatter 
plot between r12 and the projection z12 = 0.77S23 + 0.39913 -, is shown in 
Figure 6. The main trend of r12 as a function of z12 appears to be quadratic.
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Stress z, (best projection) E,j P[r, ,z2] 

7,1 -0.8513 + 0.51 2 0.12 0.44 

T22 -0.4522 - 0•8611E 0.10 0.21 

T33 0.45523 + 0.855i3 + 0.17W2 0.02 0.36 

r12 0.77523 + 0.39S13 - 0.3Z', 0.10 0.34 

733 -0.51S	 - 0.43522 + 0.35S12+ 
0.47523 - 0.29513 - 0.17(, - W2 + W3) 0.05 0.27 

73 1 0.82Sf , + 0.4822 - 0.23'2 0.05 0.31 

TABLE 3. Results of projection pursuit for channel flow. 
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FIGURE 6. Scatter plot of sgs stress r12 as a function of best projection onto 
elements of filtered velocity gradient tensor, found by ppreg. Same data as in 
Figure 5. 

Similar behavior was found for all other tensor elements, the trend being strongest 
for the [11], [33], [12], and [13] components. To quantify the causality between the 
stresses and the corresponding z's, the correlation coefficients between individual 
elements of r and the corresponding z2 were computed. Since each of the observed 
quadratic trends had a minimum close to the origin, it is sufficient to consider the 
single term z2 . These correlation coefficients appear in the last column of Table 
3. Notice that when compared with the correlation produced by the Smagorinsky 
model, more than a four-fold increase is detected. This trend can also be observed 
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by comparing Figure 5 to Figure 6. 

5.2 Modeling 
As in section 4.2, the expressions in Table 3 are by themselves not valid relations 

between tensors. Unlike the linear relationship found in shear flow, the elements of 
r depend quadratically on the projections in channel flow. For example, the model 
for 7-12 is (0.77523 + 0.39S13 - 0.3Z)2 . The tensor model found for homogeneous 
shear flow may not be of much use in this case since it is not able to produce the 
non-linear products that result from squaring the projection. The quadratic non-
linearities suggest that it may be possible to model the stresses in terms of various 
tensor products of the strain and rotation rates. Such a model is 

= - 2ci r2 IIS + 

c2r2 (SkSkJ ) + c3r2(f1jkikj)* +	 ( 18) 

c4r(SIkRk, RIkSk 1 ) + c5r2 (.k5k,RI - R1kSktS,j)1II, 

where Q* again indicates trace-free part. This model was studied by Lund and 
Novikov (1992) and represents the most general relation between the subgrid-scale 
stress and the strain and rotation rate tensors. 

The least-squares fitting procedure was applied to the above model as well as the 
model of Eq. (12). The resulting correlation coefficients are shown in Figure 7. 

0.28 

0.24 

:	 0.20 

0.16 

0.12 
0 
()

0.08 

0.04
2	 3	 4 

Number of model tensors 

FIGURE 7. Correlation coefficients for the terms in the models of Eqs (12) and 
(18) applied to channel flow data. 

As expected, the model developed for shear flow (Eq. (12)) does not offer much 
improvement here. The non-linear model of Eq (18), on the other hand, considerably
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Number of terms Best combination 

1 4 

2 3,4 

3 1,3,4 

4 1,3,4,5 

5 1,2,3,4,5

TABLE 4. Optimal subsets of the model terms in Eq. (18) applied to channel 
flow. 

increases the correlation relative to the Smagorinsky model. As in the shear flow 
case, only two or three terms contribute significantly to the increase in correlation 
coefficient. The ranking of terms in Eq. (18) is summarized in Table 4. 

As in the shear flow, the Smagorinsky model does not produce the highest corre-
lation when used in isolation. In fact, it produces the lowest correlation of any single 
term, while term 4, the best one, produces a correlation coefficient that is roughly 
2.7 times higher! Furthermore, the Smagorinsky model does not enter the list until 
three or more terms are included and adds little to the correlation at that point. 
When three terms are included, the correlation coefficient is about 3.2 times higher 
than that provided by the Smagorinsky model. This compares with an average of 
improvement of a factor of 4.4 obtained by the projection pursuit algorithm. Thus 
the model of Eq. (18) incorporates quite well the findings of projection pursuit into 
a tensorially correct model. 

As in the shear flow, the rotation rate enters as an important parameter. In both 
the shear and channel flow, the best single term is the product of strain and rotation 
rate (actually, it is the mean rotation in the shear flow and the local rotation in 
the channel flow). The observed strong dependence on this term is perhaps not 
too surprising since it is representative of vortex stretching. Although there is a 
connection with vortex stretching, the strain, rotation product does not remove 
energy from the large scales (i.e. (Skfk , - RIkSk)S = 0). Thus, by itself, this 
term would not be a useful model, and a term that has a non-zero projection on 
the strain rate (such as the Smagorinsky model) must be added. 

The coefficients of terms 1, 3, and 4 are 1.13x 10, -1.38x 10-2, and -8.71 x iO 
respectively. 

The above collection of predictor variables is by no means exhaustive. Examples 
of other dependencies that could have been included are the mean velocity gradients 
Eij and Qij and the distance from the wall \, (a vector). 

6. Summary and conclusions 

A novel regression algorithm has been used to explore DNS data in an effort 
to determine improved models that parameterize the sgs stresses for large eddy 
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simulation. In addition to the rate of strain, several other variables have been 
considered. These include rotation, velocity gradients filtered at larger scales, and 
velocity gradients at neighboring points as well as the invariants of the strain and 
rotation rate tensors. DNS data from isotropic turbulence, homogeneous shear flow, 
and turbulent channel flow have been considered. 

For isotropic turbulence, no statistically robust relations were found other than 
the small correlation between the stress and rate-of-strain tensor required for energy 
transfer. This finding may imply that, other than the weak relation between the 
stress and rate of strain, the large-scale velocity gradients in isotropic flow do not 
dictate the behavior of the small scales giving rise to the sgs stresses. Given that 
the ppreg algorithm is not guaranteed to find all existing trends, we can not state 
this conclusion with absolute certainty. Nevertheless, it is very likely that for the 
Reynolds number range considered, there is no strong, simple connection between 
large scale velocity gradients and sgs stresses in isotropic turbulence. 

Entirely different behavior was observed in turbulent shear flows. Individual 
components of the stress tensor were found to depend on several elements of the 
fluctuating strain and rotation rate tensors. The dependence was found to be linear 
in the case of homogeneous shear flow and quadratic in the case of channel flow. 
In the case of homogeneous shear flow, the observed dependence was used to guide 
the construction of a model that involved tensor products of the mean strain and 
rotation rate with their fluctuating counterparts. This model was shown to produce 
a correlation between modeled and exact stresses that was 50% higher than that 
given by the Smagorinsky model. The proposed model for homogeneous shear 
flow did not carry over to channel flow, and only marginal improvement over the 
Smagorinsky model was observed. The results of projection pursuit were again used 
to guide the construction of a model for channel flow. This model was considerably 
more successful, yielding more than a 200% improvement over the Smagorinsky 
model. Whereas the shear flow model did not extend well to channel flow, the 
channel flow model did perform reasonably well in shear flow, yielding correlations 
that were roughly 90% of those achieved with the shear flow model. 

One interesting finding of this work is that mean strain and rotation rates enter 
in the parameterization of the subgrid-scale stresses, at least in the case of homoge-
neous shear flow. This is at variance with the view that at large Reynolds numbers 
the small scales should be nearly isotropic and unaligned with the large-scale mo-
tions (Kolmogorov, 1941). Indeed, recent experimental measurements of Saddoughi 
(1992) confirm small-scale isotropy at high Re. Of course, the low Reynolds num-
ber data used here does not provide a sufficient range of scales to realize small 
scale isotropy, and, consequently, the subgrid scales have some residual alignment 
with the mean gradients. It is thus conceivable that the observed dependence on 
the mean quantities would disappear if the Reynolds number and hence the scale 
separation were increased. 

On the other hand, it is not clear that traditional measures of isotropy (spectra, 
structure functions etc.) have a direct connection with the behavior of the sgs 
stresses. Alternately, the observed dependence on the mean quantities could also
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be present in a slightly different form at higher Reynolds number. In this view, the 
shear and rotation produced by large scales of size, say, 1w (where r is the filter size 
and b> 2) may take on the role of mean shear and rotation as far as the small 
scales are concerned. We did not find such trends in the isotropic flow using b = 2, 
but it is possible that such a trend requires large separation (b>> 2) and higher 
Re. Unfortunately, this issue cannot be addressed using DNS data at low Reynolds 
numbers. 
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Triad interactions in the dissipation range 

By S. Kida1 , R. H. Kraichnan 2 , R. S. Rogallo3 , F. WalefFe4 , and Y. Zhou4 

Nonlocality of the triad interactions in the dissipation range of developed turbu-
lence is investigated by numerical simulation and the quasi-normal theories. It is 
found that the energy transfer is dominated by nonlocal triad interactions over the 
wavenumber range 0.1 < k/kd <4, where kd is the Kolmogorov wavenumber. The 
nonlocality of the interaction has a close relation with the power of an algebraic 
prefactor of the exponential decay of the energy spectrum in the far-dissipation 
range. 

1. Introduction 
The triad interaction is the fundamental coupling among the various Fourier 

components of a turbulent velocity field and transfers energy predominantly from 
lower to higher wavenumbers. Properties of the triad interactions were studied by 
Kraichnan (1971) and have recently been analyzed numerically using data from 
numerical simulations (Domaradzki 1988; Yeung & Brasseur 1991; Domaradzki & 
Rogallo 1990; Ohkitani & Kida 1992) and by an analysis of interactions among 
helical waves (Waleffe 1992). 

In the inertial range where the energy spectrum obeys the Kolmogorov —5/3 

power form,
E(k) = Ce213 k 513 ,	 (1.1) 

where € is the energy dissipation rate and CK is the Kolmogorov constant (Kol-
mogorov 1941), the interaction is local in the sense that triad interactions of scale 
disparity (see (3.4) for definition) greater than 10 (100) contribute only 15% (1%) 
of the energy flux (Kraichnan 1971; Ohkitani & Kida 1992). Although the locality, 
of the triad interaction is very weak, it is compatible with Kolmogorov's (1941) 

concept of local energy cascade. 
The nature of triad interactions in the dissipation range is expected to be different 

from that in the inertial range because the energy spectrum decreases very rapidly 
(exponentially) in the dissipation range. In this paper, we investigate the interac-
tions by analyzing numerical turbulence and by its comparison with the prediction 
of the quasi-normal closure theories. 

I Kyoto University - RIMS 
2 Santa Fe, NM 
3 NASA Ames Research Center 
4 Center for Turbulence Research 
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2. Fundamentals 
We consider the energy dynamics of the motion of an incompressible viscous fluid 

in an infinite domain. The equation of motion is written in the Fourier representa-
tion as

= -P,k,(k) >	 (p)i(q) - vk2 ii, (k) + j(k)	 (2.1) 
p+q+k=O 

with the continuity equation
k,ii,(k)=O,	 (2.2) 

where i(k) is the x3 (j = 1, 2,3) component of the Fourier coefficient of velocity 
at wavevector k,

Pjkl(k) = 
kk (, - kjk	 ( -

k,kk)	
(2.3) 

is a third order tensor, v is the kinematic viscosity, and 4(k) is the external forcing. 
Here the time argument t is omitted for brevity, the asterisk denotes the complex 
conjugate, and repeated subscripts are summed over 1 to 3. 

The energy spectral density at wavevector k, 

E(k) =Iii(k)I 2	 (2.4) 

evolves according to

E(k) = T(k) - 2vk2 E(k) + Re {i;(k)J,(k) 	 (2.5) 

which is derived by multiplying (2.1) by 	 and taking the real part. 
The first term on the r.h.s. of (2.5) represents the rate of energy transfer to the 

Fourier mode k through the nonlinear interactions with all the other modes, the 
second the energy dissipation by the viscosity, and the third the energy input by 
the external force. 

The energy transfer function T(k) is written as 

T(k) = E T(kp,q),	 (2.6) 

where
T(klp, q) = -"IM {PJk,(k)iJ(k)i(p)i,(q)} k+p-4-q	 (2.7) 

is the triad energy transfer due to the interaction among three wavevectors k, p, 
and q that constitute a triangle (k + p + q = 0). Through a triad interaction, 
energy is exchanged among the three modes involved, with the total energy being 
conserved. That is, the following detailed balance of energy holds; 

T(kp, q) + T(pjq, k) + T(qk, p) = 0	 (2.8)
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Consequently, the sum of the energy transfer function over all the wavevectors 
vanishes,

	

T(k) =	 T(kp, q) =0.	 (2.9) 
k	 k,p,q 

Since the flow field is statistically isotropic, it is convenient to average each term in 
(2.5) over spherical cells in the wavevector space. We introduce the band-averaged 
energy spectrum

	

E(k)ik =	 E(k'),	 (2.10) 
k-1,&k<Ik'I<k+k 

the band-averaged energy transfer function 

	

=	 E	 T(k'),	 (2.11) 

	

k—	 .! 

and the band-averaged forcing spectrum 

=	 Re ji!j*(k')f_ j (k') I 	 (2.12) 
k—k<Ik'I<k+k 

The energy spectrum equation (2.5) is then written for the band-averaged quantities 
as	

E(k) = t(k) - 2uk 2 E(k) + E(k).	 (2.13) 

The triad energy transfer function T(klp, q) is also averaged over a spherical cell 
as

	

=	 T(k'p',q').	 (2.14) 
k-4Ak<Ik'I<k+4Ak 
p—k<Ip'I<p+4Ak 

The energy transfer function is then written as 

i'(k) = (Zk)2 E i'(klp, q).	 (2.15) 
PIq 

The detailed balance of energy (2.8) and the conservation of total energy by all the 
triad interactions'(2.9) are written respectively as 

	

I'(kp,q)+I'(pq,k)+T(qIk,p) = 0	 (2.16) 

and
=0.	 (2.17)
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FIGURE 1. Energy Spectrum in the dissipation range. The decay with wavenumber 
is essentially exponential. 

3. Numerical Simulation 

The equations of motion (2.1) and (2.2) are solved numerically in a periodic cube 
with an instability forcing, 

f(k) = Ci(k)	 for Iki <k0 .	 (3.1) 

The constant C is chosen to force the flow field to equilibrium with a specified 
range of forced scales k0 = 3 and a specified range of resolved scales, in Kolmogorov 
units, kmax/kd = 4. The Fourier-spectral method (Rogallo 1981) is employed for 
the spatial resolution, and time is advanced with a second-order Runge-Kutta pro-
cedure. The alias errors arising in the nonlinear terms is removed by a combination 
of coordinate shifting and spectral truncation. The computational mesh (in physi-
cal space) is 256. The initial flow field is taken after over five large-scale turnover 
times from forced turbulence created at a lower resolution (128) at about the same 
Reynolds number (RA 65). The 2563 field was then advanced until an equilibrium 
between transfer, and dissipation was achieved at the higher wavenumbers. We will 
study that transfer here in some detail. The Kolmogorov dissipation wavenumber, 

kd = ( z'3 /e)'"4	 (3.2) 

is about 30, so that the maximum resolved wavenumber kmax = 121 retained in the 
simulation is about four times the Kolmogorov wavenumber. 

8.1 Energy 3pecirlzln 

The energy spectrum at the final time of the simulation is shown in a semi-
logarithmic plot in' figure 1. The nearly straight line indicates that the energy 
spectrum decays essentially exponentially with wavenumber. In order to examine
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FIGURE 2.	 Logarithmic derivative of the energy spectrum function. 
For E(k)	 A(k/kd )°exp[—/3k/kd] the slope of the curve gives —/3 and the in-
tersection on the vertical axis gives a. 	 , simulation data; -- - - , least-square
fit over .5 < k/k j :5 3 gives a = —1.6, ,6 = 5.2. 

the shape of the spectrum more precisely, we compare it with an exponential form 
with an algebraic prefactor 

E(k) = A(k/kd)exp[—/3k/kd].	 (3.3) 

In figure 2, we plot the logarithmic derivative of the energy spectrum. If the spec-
trum has the form (3.3), the slope of the line and its intersection with the verti-
cal axis give the values of /3 and a, respectively. Since this is an instantaneous 
spectrum, the fluctuations are quite large. Nevertheless, the least squares fit over 
0.5 < k/kd < 3 gives a = —1.6 and /3 5.2, which are consistent with those 
observed before in numerical simulations by other researchers (Kida & Murakami 
1987; Kida et al. 1990; Kerr 1990; Sanada 1992). More recently however, Chen 
(1992 private communication) has simulated the dissipation range at RA	 15 to
much higher k/kd. He finds a = 2.16 and /3 = 7.35 by a least-square fit over the 
range 5.2 < k/kd 10.4. The data from the present simulations do not coincide 
with Chen's for k/kd < 4, suggesting that the results are sensitive to Reynolds 
number. There may also be some effect due to the method of forcing. Incidentally, 
the exponential shape of the energy spectrum in the far-dissipation range has also 
been observed in experiments (Sreenivasan 1985). 

There is a theoretical prediction of the power in the algebraic correction. The 
quasi-normal theories of turbulence (Kraichnan 1959; Tatsumi 1980; Lesieur 1987), 
which will be discussed in some detail in the next section, predict a = 3 in the 
far-dissipation range. This value of a is quite different from those observed in the 
numerical simulations. But it should be remembered that the dissipation range is 
restricted to k/kd < 2 - 3 in the simulations mentioned above so that it is not 
clear whether this discrepancy results from a failure of the quasi-normal theories
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FIGURE 3. The energy-spectrum balance: - - - -, transfer i'(k); - -, dissipation 
2vk2E(k); , departure from equilibrium IT(k) - 2vk2E(k)I. The equilibrium 
between transfer and dissipation is apparent over most of the wavenumber range. 

or from the low wavenumbers considered. As a matter of fact, there is a numerical 
suggestion that the spectrum may be consistent with positive values of a less than 
3 over the wavenumber range 4 < k/kj < 10 for a low Reynolds number (RA 15) 
flow (Domaradzki 1992 private communication). 

In order to see the dominant terms of (2.13), we plot T(k) and 2uk2E(k) in 
figure 3. Recall that the forcing term F(k) in (2.13) is restricted to low wavenum-
bers (k/kd < 0.1). We see that both 2vk2 E(k) and T(k) vary exponentially with 
wavenumber and that they are in equilibrium. Their difference is less than their 
magnitude by more than two orders of magnitude over most of the wavenumber 
range (k/kd > 1, say).

3.2 Triad energy transfer 

The triad energy transfer function l'(kIp, q) is most efficiently calculated by an 
alias-free spectral method applied to filtered fields (Domaradzki & Rogallo 1990). 
In figure 4, we plot T(kIp,q) for k/kd = 2 and k/kd = 3. The finest band-width 
is employed, i.e. Lk = 1. The solid and broken curves denote the positive and 
negative values, respectively. We recognize the following characteristics in T(kjp, q). 
First, there are strong dipoles at the corners q p k and p q k of the 
boundary. The signs of the dipoles are positive (negative) on the smaller (larger) side 
of wavenumber p/k or q1 k. Second, the most significant part of T(klp, q) is localized 
near the boundary p + q = k, and the thickness of this part decreases as k/kd 
increases. The magnitude of T(klp, q) decreases exponentially with wavenumber 
away from this boundary. The value of T(klp, q) in the blank region is too low to 
draw clear curves. 

The first characteristic was also observed in the inertial range (Kida & Ohkitani 
1992) and represents the energy transferred to larger wavenumbers by nonlocal inter-
actions. The second characteristic, on the other hand, is peculiar to the dissipation
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FIGURE 4. The triad energy transfer function t(klp, q) for the numerical tur-
bulence. (a) k/kd = 2, (b) k/kd = 3 The solid and broken curves represent the 
positive and negative parts, respectively. The contour levels are logarithmic, rather 
than linear, and are separated by a factor of 4.
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FIGURE 5. The triad energy transfer function t(kp, q) for the numerical tur-
bulence. (a) k/kd = 2, (b) k/kd = 3. The solid and broken curves represent the 
positive and negative parts, respectively. The contour levels are logarithmic, rather 
than linear, and are separated by a factor of 4. 

range. This arises from the rapid (exponential) decay of the energy spectrum with 
wavenumber in the dissipation range in contrast with the slow (algebraic) decay in 
the inertial range. 

Similarity in the contours evidently is not obtained over the whole domain of 
T(klp, q) plotted in figure 4. Since, however, the dipole parts are very similar 
in figures 4(a) and (b), we enlarge the corner region and replot the contours in 
figures 5(a) and (b), respectively, with wavenumbers normalized by the Kolmogorov 
wavenumber kd instead of k. This scaling of the wavenumber is suggested by the 
closure theory (see (4.12)). 

The close resemblance of figures 5(a) and (b) implies that the shape of the dipoles 
of T(klp, q) is similar near the corners if the wavenumber is scaled by the Kolmogorov 
wavenumber.
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FIGURE 6. The (p/k, q/k) domain of integration for T(klp, q). The measure of 
scale disparity is .s = max(k, p, q) / min(k, p, q). (a) s < 2, (b) s > 2. 

3.3 Nonlocality of triad interaction 

The triad energy transfer function P(klp, q) represents the energy exchange among 
three wavenumbers with magnitudes k, p, and q. In order to express the scale 
locality of the triad interaction, we introduce the scale disparity parameter (Zhou 
1992), the ratio of the maximum to the minimum of the triad wavenumbers, 

= 
max(k,p,q)	

(34)min(k,p,q) 

It follows by definition that s > 1. This scale disparity parameter measures the scale 
locality of the triad interaction. If a is smaller, the interaction is more local, and 
vice versa. In figure 6, we indicate the (k, p, q) domains for relatively local (a 2) 
and relatively non-local (a > 2) triad interactions. 

Let us denote by T(kIs)i.k the contribution to the energy transfer from triad 
interactions with scale disparity parameter between a - and s + Then, 
we have

T(kls) = (Lk ) 2	 T(klp,q).	 (3.5) 
PIq 

81S< :.;? <+* 

In figure 7, we plot i'(kls), obtained by summing up the terms in the r.h.s. of 
(3.5) numerically for k/kd = 2 and k/kd = 3. It is seen that T(ks) may have a 
scale similarity with skd/k. 

4. Closure Theory 
In the quasi-normal closure theories (see Tatsumi 1980; Lesieur 1987), the energy 

transfer term in the energy spectrum equation (2.13) is expressed in terms of the
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FIGURE 7. The scale disparity of energy transfer t(kIs):	 , k/k j = 2; - - - - 
k/kd = 3. (a) local scaling: s, (b) non-local scaling .s lcd/k. 

energy spectrum function under the assumption that the fourth-order cumulants of 
the velocity are negligible: 

T(klp, q) = 8kpq Q2 ((Bkpq + Bkqp) 
E(p)E(q) 

p2 q2 
E(k)E(q) - 

B 
E(k)E(p) \ 

- Bkpq k2q2	
kqp k2p2 ),	

(4.1) 

where

	

Bkpg = (k2 - q2 )(p2 - q2 ) + k2p2
	

(4.2) 

and
Q2 =2k2p2 +2k2 q2 +2p2 q2 —k4 —p4 —q4 .	 (4.3) 

Here 9kpq, the relaxation time of the triple moments of velocity, takes different forms 
in the various theories. In the far-dissipation range (k, p, q>> kd), however, it has 
the common expression

°kpq = v(k2 + +q2)	
(4.4) 

In the far-dissipation range of statistically stationary turbulence, the first two 
terms balance in (2.13),

T(k) = 2vk2 E(k).	 (4.5) 

In this section, we omit the hat () because we are considering the continuous limit 
(infinite size of the periodic cube). The summation in (2.15) of the energy transfer 
function converts into the integral 

T(k) = IJ T(klp, q)dpdq,	 (4.6) 

where the integration is carried out under the condition that the three wavenumbers 
k, p, and q constitute a triangle.
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FIGURE 8. The triad energy transfer function T(klp, q) for the quasi-normal closure 
theory with E(k) x (k/kd) l.6exp[-4.9k/kd]. (a) k/kd = 2 and (b) k/kd = 3. The 
solid and broken curves represent the positive and negative parts, respectively. The 
contour levels are logarithmic, rather than linear, and are separated by a factor of 
4.

By substituting (4.6) with (4.1)-(4.4) and (3.3) into (4.5) and taking the leading 
terms in the limit of large wavenumber k >> kd, we obtain a = 3 (Tatsumi 1980). 
This value of a is not consistent with the results of the numerical simulation as 
mentioned in section 3. The reason for this discrepancy is not known at present. 
As will be discussed in the next section, other values are consistent with the theory 
if the relaxation time Okpq is suitably modified (see (5.1)). We therefore proceed 
to examine the behavior of the triad energy transfer function expressed as (4.1) for 
the spectrum (3.3) with a = —1.6. 

In figure 8, we show the contours of T(klp, q) expressed by (4.1) with the spectrum 
(3.3) with a = —1.6 and 6 = 4.9 for both k/kd = 2 and k/kd = 3. Contrary to 
the simulation data (figure 4), we can see contour lines at very low levels clearly. 
The same characteristics of T(kjp, q) observed in figure 4 are also observed here. 
That is, (i) there are strong dipoles at the corners of the boundary of the triangle 
condition, (ii) T(klp, q) is positive where either p or q is less than k and negative 
otherwise, (iii) the magnitude of T(kp, q) decreases rapidly as point (p, q) moves 
away from the boundary p + q = k, and (iv) it decreases more rapidly as k/kd 
increases. Moreover, the shape of the contours in figures 4 and 8 is very similar. 
The agreement is better for positive contours than for negative ones. 

The difference in the shape of the contours can be seen more clearly in figure 
9, which is an enlargement of figure 8 near q p k. As will be discussed in 
the next subsection, the slight difference in the shape of contours seems to be the 
main reason for the discrepancy in the behavior of T(kls) between the numerical 
simulation and the closure theory. 

It should be mentioned here that the influence of the forcing term may not be
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FIGURE 9. The triad energy transfer function T(klp, q) for the quasi-normal closure 
theory with E(k) X (k/kd ) 16exp[-4.9k/kd]. (a) k/kd = 2 and (b) k/kd = 3. The 
solid and broken curves represent the positive and negative parts, respectively. The 
contour levels are logarithmic, rather than linear, and are separated by a factor of 
4. 

negligibly small. Since the fluid is forced at wavenumbers less than 3, the contours 
at q/kd < 0.1 are directly affected by the forcing term. 

So far, we have examined only the case of a = -1.6. In order to see the depen-
dence of T(klp, q) on the value of a, we plot in figure 10 the contours of T(klp, q) for 
various values of a ranging from 3 to -2. It is seen that the domains of the positive 
and negative parts are insensitive to the value of a, but the shape of the contours 
other than the zero level changes depending on the value of a. For a large value of 
a, the positive and negative peaks of T(klp, q) are far from the corners. They move 
toward the corner as a decreases. For a > 0, the peaks are away from the corner, 
but for a <0, a positive and a negative peak merge into a dipole at the corner (see 
(4.12)). As will be shown in the next subsection, the dominant interactions in the 
energy transfer are local for a> 1 and nonlocal for a < 1. 

4.1 Scale Disparity of Energy Transfer 

Let T(k Is)ds be the contribution to the energy transfer to Fourier modes at 
wavenumber k due to triad interactions for which the scale disparity parameter lies 
between .s and s + ds. The contribution from all the triad interactions of scale 
disparity less than s is then written as 

jT(kls')ds' = J	 J	 T(kp,q)dpdq.	 (4.7) 

mftx(k.p,g) 

The derivative of (4.7) gives the scale disparity of energy transfer 

	

T(kls)	 _ J	 I	 T(kp,q)dpdq.	 (4.8) 
ds

m%x(.p,g 
min(k,p,q) _ 

The integration of T(kls) over all s gives the energy transfer T(k), i.e. 

T(k) = f T(kls)ds.	 (4.9)
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FIGURE 10. The triad energy transfer function T(klp, q) at k/kd = 1 given by the 
quasi-normal closure theory for E(k) x (k/kd)exp[-4.9k/kd], —2 < o 3
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The integral (4.7) is written explicitly for s < 2 as (see figure 6) 

j.S
 111

k 	 .p ak	 j.p

)
T(kls')ds' = 2 	 dp /dq + fdp / dq T(kp,q) (4.lOa) 

8	 Jk/a 	 Jp/s  

and for s > 2 as 

/ T(kls')ds' f If/2 
(a—i)k/a	 ' 

=2 	 dp/ 
Jk—p

I 'k 
dq+ 	 dp 

s-1)k/a f /s
P

dq 

fsk/(8-1) 
+ dpf

psk
 dq+ Idp/
/s	 k/(a—i)

 p

Jp—k
dq

I
T(kp,q)(4.lOb)

Differentiating (4.10a) and (4.10b) with respect to s we obtain 

T(kls) = 2{ 
Jkl 

T(klp, k/s)dp + k 
j 

T(klsk, q)dq 

+ - j8' p .T(kIp,p1s)dpj
	 (s 2)	 (4.11a) 

k
A 

= 2 — 
1k	

T(klp,k/s)dp+ kJ	 T(klsk,q)dq 
S	 (s-1)k/s	 (s-1)k 

+ f	 pT(kp,p/s)dp	 (s _> 2) 	 (4.11b) £ 	 I 
By substituting the expression (4.1) for T(klp, q) from the quasi-normal closure 

theory with the energy spectrum (3.3) into (4.11a) and (4.11b), we can calculate 
T(kls) explicitly. The scale disparity transfer function behaves differently depending 
on the values of a and k/kd. In figure 11(a), we plot T(kjs) for k/kd = 1, 2, and 
3 with a = 3. The interaction is localized around s = 2. The peak of the scale 
disparity parameter moves little as k/kd increases. In figure 11(b), we plot T(kls) 

for k/kd 1, 2, and 3 with a = —1.5. The interaction becomes more nonlocal as 
k/kd increases, and the peak of the scale disparity parameter moves linearly with 
k/kd for large k/kd. 

In order to examine the wavenumber dependence of the transfer function, we 
replot it in figure 11(c) against .skd /k for k/kd = 2, 3, and oo (see below for k/kd = 
co). The scale disparity of the energy transfer seems to approach a universal form 
for large values of k/kd. The approach is faster for large values of s. 

As demonstrated in figure 10, the triad energy transfer function T(klp, q) for 
small a (see below (4.12) for the critical value) has a double peak at the corners 
q <<p Ic and p << q k. This peak becomes steeper for larger values of k/kd 
because of the exponential decay of the energy spectrum. This enables us to make 
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FIGURE 11. The scale disparity of energy transfer T(kjs) in the quasi-normal 
closure theory with E(k) cx (k/kd )°exp[-4.9k/kd]. (a) a = 3, (b,c) a 
---, k/kg = 1; ---- , k/k, = 2; -S-, k/kd = 3;	 , k/kj = 00. 

a local analysis around the corner to estimate the asymptotic behavior of T(kjs) 
for large values of k/lcd . The triad energy transfer function (4.1) with the energy 
spectrum (3.3) behaves around q <<p k as 

T(kp,q) =	
(_) a

	 (1) - q —3(q2 — (p — k )2)e— P qlkd (e k,)Th - 
TV Td	 kd

(4.12) 
The energy transfer function T(k) is calculated by integrating T(klp, q) with respect 
to p and q over the whole range. When a < 1, the integral is localized at the corners 
q <<p k and p q k so that the asymptotic expression (4.12) can be used. 
The result is

00 j11q

T(kT(k)=2j
—q 	

p,q)dp 

- 2A2kd (
	

2-2	 (k )' - v$°' (a - 2)(a - 1) -	
F(a +1)	 e_kd	 (4.13)

3)	 kd
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for —2 <a < 1,where r is the Gamma function. Note that the integral is localized 
at the corners and converges only when —2 < a < 1. 

Substituting (4.12) into (4.11b), we obtain 

"ks
e __ - ) T(kls) 

= 2u/3° 
A2kd 

2 (\kd, 

X	 (2a2(1 - a) - e 11" + 2a2 (1 + a)e2I') ,(4.14) 

where
a = kd	 (4.15) 

Note that we consider here the case k/kd>> 1 so that s>> 1 for a finite value of a. 

The asymptotic form (4.14) of T(kls) for large values of k/kd is drawn for a = —1.5 
and f3 = 4.9 in figure 11(c). 

5. Discussion 
The triad interaction in the dissipation range has been investigated by analysis of 

numerical turbulence data and the quasi-normal closure theory of turbulence. The 
results of the numerical simulation suggest that the motion at the Kolmogorov dis-
sipation scale couples directly with the smaller scales and that the triad interaction 
is nonlocal in scale, at least in the wavenumber range 0.1 <k/lcd <4 investigated 
here. The closure theory, on the other hand, suggests that the locality of the triad 
interaction depends crucially on the power a of an algebraic prefactor of the expo-
nential decay of the energy spectrum at large wavenumbers. It is local or nonlocal 
for a > 1 or a < 1, respectively. 

In the EDQNM and related quasi-normal closure theories, the triad energy trans-
fer function is expressed by (4.1). The form of the relaxation time Okpq differs from 
theory to theory but has the common asymptotic form (4.4) in the far-dissipation 
range where a balance between energy transfer and dissipation requires a = 3 in-
stead of the value a —1.6 found in the numerical simulation. 

It is interesting, however, to note that if the relaxation time is assumed to be 
independent of the wavenumber in the far dissipation range, say equal to the Kol-
mogorov time scale

9kpq0(7=,	 (5.1) 
z'kd 

then any value of a (including a 	 —1.6) is compatible with the energy balance 
equation (4.4). As shown below, however, this is not the case in the EDQNM theory. 

In the EDQNM theory, the relaxation time takes the form 

1 
9kpq = u(k2 +p2 

±q2)±z(k)+z(p)+p(q)'	 (5.2) 

where 1z(k) = A(f r2E(r)dr)h/2 is the eddy damping rate and A is an adjustable 
constant which may be related to the Kolmogorov constant CK as A = 0.154CK32
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(André & Lesieur 1977). Note that ..\ = 0.37 for CK = 1.8. The first term in the 
denominator in (5.2) represents viscous damping and the second the relaxation by 
straining motions of comparable and larger scales. The relaxation time has the 
following asymptotic forms for small and large wavenumbers for CK = 1.8: 

2.3 
9kpq =

k2/3 +p2/3 +q213 
1

v(k2 +p2 +q2)

(k,p,q4zkd)	 (5.3a) 

(k,p,q>>kd)	 (5.3b) 

The integrals in (5.2) tend to the energy dissipation for large wavenumber, 

e/2zi =
or 

r2 E(r)dr.	 (5.4) 

The peak of the integrand lies around r = 0.15kd, and the majority of the integrand 
is covered in the wavenumber domain r <0.5kd (see Kida & Murakami 1987). The 
two effects are comparable at wavenumber 

k,p,q	 )t'2/2'/'k,j	 0.5kj.	 (5.5) 

Around these wavenumbers the relaxation time is written as 

9kpq
1	 1 

v(k2 +p2 +q2)+0.78(e/v)'/2 = v(k 2 +p2 +q2 +0.78kd2)	
(5.6) 

We may conclude from (5.3) and (5.6) that there is no region of constant Okpq in 
the EDQNM theory. 

It is possible that the value of —1.6 observed in wavenumber range 0.1 < 
k/ku <4 is simply a tangent and that it approaches 3 in the limit of large wavenum-
bers. If so, the transfer may be dominated there by local triad interactions. 
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A study of the fine scale motions of 

incompressible time-developing mixing layers 

By J. Soria', M. S. Chong 2 , R. Sondergaard3,
A. E. Perry4 AND B. J. Cantwell3 

This work is an extension of a project conducted at the previous CTR summer 
program and was reported by Chen et al. (1990). In that program, the geometry 
and topology of the dissipating motions in a variety of shear flows was examined. All 
data was produced by direct numerical simulations (DNS). The partial derivatives 
of the velocity field were determined at every grid point in the flow and various 
invariants and related quantities were computed from the velocity gradient tensor. 
Motions characterized by high rates of kinetic energy dissipation and high enstrophy 
were of particular interest. Scatter diagrams of the invariants were mapped out and 
interesting and unexpected patterns were seen. Each type of shear layer produced 
its own characteristic scatter plot. 

In the present project, attention is focused on the incompressible plane mixing 
layer, and the scatter diagrams are replaced with more useful joint probability 
density contours. Comparison of the topology of the dissipating motions of flows 
at different Reynolds numbers are made. Also, plane mixing layers at the same 
Reynolds number but with different initial conditions are compared. 

1. Method of approach 
The velocity gradient tensor may be broken up into a symmetric and an antisym-

metric part A 3 = Ou,/Ox	 S + W, where 5, = (au/&j + Ou/Ox,)12 and 
(Ou t /Oxj - Ou/Ox 1 )/2 are the rate-of-strain and rate-of-rotation tensors, 

respectively. The eigenvalues of Aii satisfy the characteristic equation 

3 +PA2 +Q+R=0	 (1)

where the matrix invariants are: 

	

P = -(A11 + A22 + A33 ) = .-trace[A] -S	 (2) 

1 C.S.I.R.O., Highett, Australia. 
2 Dept. of Mechanical Engineering, University of Melbourne, Australia. 
3 Department of Aeronautics and Astronautics, Stanford University 
4 Currently GALCIT, California Institute of Technology. 
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- A11 A l2	 A11 A 13	 A22 A23 

21	 22	 31	 33	 32 a33 

= [P2 - trace[A2]]	 (3) 

= '[p2 - ss - 

and
All Al2 A13 

R = - A21 A22 A23 = - det[A] 
A31 A32 a33 

+ 3PQ - trace[A3J)	
(4) 

= (_p3 + 3PQ - SSkSk - 3W,W,kSk2). 

It can be shown that, in the P - Q - R space of matrix invariants, the surface 
which divides characteristic equations with three real solutions for the eigenvalues 
from characteristic equations with one real and two complex solutions is 

27R2 + (4P3 - 18PQ)R + (4Q3 - P2 Q2 ) = 0.	 (5) 

A detailed discussion of the properties of this surface is given in Chong, Perry & 
Cantwell (1990) along with a guide to the various possible elementary flow patterns 
which can occur in different domains. 

Much of the discussion in this report concerns the symmetric part of the velocity 
gradient tensor, the second invariant of which is proportional to the negative of the 
kinetic energy dissipation. The invariants of the rate-of-strain tensor, Ps, Qs and 
R5 , are generated by setting the components of W, to zero in the above relations. 
The flows considered are, with one exception, incompressible hence P = Ps 0. 
Thus the local geometry of the flow is completely described by the second and third 
invariants (Q, R) and (Qs, Rs). The second invariant of the rate-of-rotation tensor, 
Q w, is non-zero and is proportional to the enstrophy. The first and third invariants 
of the rate-of-rotation tensor are identically zero. 

The method for classifying the flow structure was first developed at the 1990 
CTR summer program by Chen et al. (1990) and is described as follows: 

(i) Evaluate the nine partial derivatives of the velocity gradient tensor at every point 
in the computed field. 

(ii) Evaluate Q, R, Qs, R5 and Qw at every point. 

(iii) Create scatter plots of the results in the space of invariants, Q versus R, Qs 
versus R5 , and —Qs versus Qw. 

Figure 1 illustrates the various flow topologies which can occur in the plane P = 0. 
The intersection of this plane with the surface (5) is given by 

R =	 ( _Q)3/2	 (6)



T 

Fine scale motions of incompressible time-developing mixing layers	 103 

R= ± 

C 

FIGURE 1. Three-dimensional topologies in the Q - R (P = 0) plane. 

which divides real solutions from complex solutions as indicated. 
For the case P = 0, the second invariant is 

Q=	 - SIJ SIIJ ]	 (7) 

where the indices have been switched to indicate explicitly that Q is formed from 
the difference of two terms, each of which is a positive sum of squares. The local 
topology has complex or real eigenvalues depending on whether the (Q, R) pair 
evaluated at a given point in the flow lies above or below (6). 

The mechanical dissipation of kinetic energy due to viscous friction is 

= 2uS,,S,, = —4vQs .	 (8)
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(a)
	

(b) 

(c)	 (d) 

FIGURE 2. Scatter plots of (a) Q vs. R, (b) Q vs. R,, (c) -Q, vs. Q for hipairex 
at tU/o = 29.8, and (d) Q. vs. Q, for a compressible mixing layer computed by 
Chen (1991) at tU/o = 72.0. 

Large negative values of Qs correspond to large rates of dissipation of kinetic energy. 
Large negative values of Q indicate regions where the strain is both large and 
strongly dominant over the enstrophy. Large positive values of Q indicate the 
reverse. 

2. Results 

We will consider in this paper the incompressible (P = 0) plane mixing layers 
computed by Rogers and Moser at NASA Ames. Three direct numerical simulations 
(DNS) are considered, namely, hipairex, mega, and Al. The cases hzpairex and mega 
were initiated from laminar error function profiles, and ibi was initiated with two 
turbulent boundary layer realizations with equal and opposite free stream velocities 
placed on opposite sides of a dividing plate which was dissolved at time t = 0. The 
initial turbulent boundary layers were DNS computations of Spalart (1988).
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FIGURE 3.	 Planar x-z average Q,, vs. cross-stream direction y for hipairex at 
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0	 20	 40	 60	 80
time 

FIGURE 5. Vorticity thickness Reynolds number R5 vs. non-dimensional time for 
the incompressible mixing layers.

Table I 

hipairex mega ibi 

LW=U2 —U1 2 2 2 
Initial vorticity thickness, bo 1 1 1.4 
Viscosity, v 1/250 1/250 1/500 
Initial Re = /.U5o/2v 250 250 700

All cases were computed as time developing layers and Table I shows the prop-
erties of the layers. Details of the hipairex results have been reported by Moser & 
Rogers (1990) and Rogers & Moser (1992). Unless otherwise stated, all results are 
normalized by half the velocity difference across the layer, U, and the initial vortic-
ity thickness 8. Figures 2(a), 2(b) and 2(c) show scatter diagrams taken from Chen 
et al. (1990). These diagrams are made up of the entire data set for a given time. 
Figure 2(a) shows that most of the high gradient motions belong to the topology of 
stable focus stretching. Figure 2(c) is most informative. Data which falls on the line 
of 45° through the origin represents high dissipation accompanied by high enstro-
phy. It can be shown that such points come from vortex sheets where most of the 
rate-of-strain is dominated by the velocity gradient within the sheet. Data which 
lies along the horizontal axis represents high enstrophy with little dissipation as 
would occur in solid body rotation in vortex tubes. As a matter of interest, Figure 
2(d) shows a plot from a compressible mixing layer computation by Chen (1990), 
and, according to the figure, the data could be described as primarily sheet-like. 
The reason for this is a mystery at this stage. 
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FIGURE 6. Q vs R for hipairex. tU/5 = (a) 19.3, (b) 22.3, (c) 25.3, (d) 29.8.
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FIGURE 7. Q8 vs R3 for hipairex. tU/6 = ( a) 19.3, (b) 22.3, (c) 25.3, (d) 29.8. 

Classical arguments, based on the idea that dissipation of turbulent kinetic energy 
scales with production, lead to the following estimates: 

e = 2ziSS =	 (9) tj 3j	 (9y 

where the S, are fluctuating non-normalized strain rates. Results from experiment 
show that for fully developed shear layers 

—!J/(LU)2	
_UV. 

.012 = (10) 
4U2 

From (9) and (10) it can be shown that 

= 2vS' S' - .096U3 /t 	 (11) ii ii -
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- 
-	 .	 (d)

> v.•_

FIGURE 8. -Q vs Q for hipairex. tU/5 = ( a) 19.3, (b) 22.3, (c) 25.3, (d) 29.8. 

For time tU1150 = 29.8 in hipairex where the vorticity thickness has increased by a 
factor of 6.5 over the initial thickness, the Reynolds number R6 based on the current 
vorticity thickness, b, and the velocity difference across the layer is 3000. Hence 

St
: s:	 .096 

---R 
()2 

= 1.704.	 (12)bo



R 

110 J. Soria, M. S. Chong, R. Sondergaard, A. E. Perry, & B. J. Cantwell 

0	 0 

0	 0 

FIGURE 9. Q vs R for mega. tU/ = (a) 21.0, (b) 25.0, (c) 35.0, (d) 49.0. 

One would expect the average value of this quantity at the midplane of the mixing 
layer to be of this order. 

Mean profiles of —Qs at various times are shown in Figure 3 and are half the value 
indicated by (12) which is indicative of the production of kinetic energy. This ratio of 
about 2 for production to dissipation is in agreement with the fully developed value 
obtained from experiments by Bradshaw & Ferriss (1967). An order of magnitude 
analysis similar to (12) reported by Chen et al. (1990) giving the value of 18.2 was 
in error due to incorrect normalization of the variables. 

Figure 4 shows the weighted probability density function of —Qs over the entire 
volume of the mixing layer, and most of the contribution comes from —Qs between 
0 and 3. Although the far flung values of —Qs on the scatter diagram tend to 
follow interesting patterns, they contribute only of order 10% to the total energy 
dissipation. For this reason, it was felt that scatter diagrams should be replaced 
by joint probability density diagrams with contours corresponding to the logarithm 
of the probability density function so that possible ridges could be seen in regions 
which are highly darkened in the scatter plots.
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FIGURE 10. Q. vs R. for mega. tU/6 = (a) 21.0, (b) 25.0, (c) 35.0, (d) 49.0. 

From (11) and (12) it can be seen that Qs normalized by the current vorticity 
thickness scales with R5 , and, therefore, it seems likely that Rs should scale with 
R'2 . This would imply that the data should follow a curve 

IR.I	 (IQ3I)	 (13) 

This relationship is what one might expect purely on dimensional grounds, but 
there is no rigorous proof. It is interesting to note that such a curve on the Qs 
versus Rs plot represents a rate of strain geometry where the principal rates of 
strain a, /3 and -y are in a constant ratio to one another. For the data set hipairex, 

points of high dissipation follow closely the curve corresponding to the ratio of 
a:#: - = 3 : 1 : —4, which was observed by Ashurst et al. (1987) in studies of 
forced isotropic turbulence. In addition, as noted by Sondergaard et al. (1991), the 
vorticity vector tends to align itself with the second principle rate of strain 0. It 
should be noted that while other data sets analyzed by Sondergaard et al. (1991) 
show the same vorticity alignment, the 3:1: —4 ratio of rates of strain is not always 
observed. 

The result depicted in 2(b) is that motions characterized by very high rates of 
dissipation (large negative Qs) clearly show a preference for the right half plane of 
Figure 2(b) corresponding to a local topology of the rate of strain tensor which is
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Ow 

FIGURE 11. -Q8 vs Q w for mega. iU/5 = (a) 21.0, (b) 25.0, (c) 35.0, (d) 49.0. 

of the type saddle-saddle-unstable node (cf. Figure 1). From Figure 2(a), it can be 
seen that the velocity gradient tensor admits all possible incompressible topologies 
although there is, nevertheless, a great deal of structure in Figure 2(a). Not only 
is the basic scaling (12) observed, but it appears that, with a modest amount of 
scatter, the fine scale motions follow a relation of the form 

3 .	 (13) 

The positive quantity K is expected to be a function of the Reynolds number with 
an upper limit of K = 2/19 corresponding to locally axisymmetric flow (cf. Figure 
1). 

3. Comparison with high Reynolds number flows 
Figure 5 shows a plot of Reynolds number based on current vorticity thickness 

for the three cases mentioned earlier. Figures 6, 7, and 8 show the invariant plots
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FIGURE 12. Q vs R for tbl. tU/ *5 = (a) 0.0, (b) 26.25, (c) 47.5, (d) 76.25. 

for hipairex in contour plot form for the joint probability density distributions. 
Figures 9, 10, and 11 show the results for mega. These results are similar to the 
scatter diagrams given in Figure 2 but are corrected for nonuniform grid spacing. 
More structural features are apparent, and an interesting feature in Figures 6 to 8 
is that velocity gradients tend to increase with time and at the latest time show 
a decrease. In fully developed turbulent plane mixing layers, if dissipation scales 
with production, then according to the Kolmogorov scaling, the velocity gradients 
should decrease with time. According to this reasoning, hipairex is under-developed 
for most if not all of the times shown. It is unclear whether, at the latest time, the 
gradients are beginning to decrease because the flow is reaching a fully developed 
state or because of constraining by the grid. Figures 9, 10, and 11 show the results 
for mega, and there appears less pronounced sheet-like structures but more tube-like 
patterns for the higher Reynolds numbers. 

Figures 12, 13, and 14 show similar results for ibi. which started out as two



114 J. Soria, M. S. Chong, R. Sondergcard, A. E. Perry, & B. J. Cantwell 

as	 as 

as	 as 

FIGURE 13. Q3 vs R for ibi. tU/5 = (a) 0.0, (b) 26.25, (c) 47.5, (d) 76.25. 

turbulent boundary layers and then developed to a much higher Reynolds number 
than hipairez. Figure 12 is most interesting. It shows that all data points for 
the turbulent boundary layer cluster near the origin of the Q versus R plot and 
suddenly explode to much higher gradients in the plane mixing layer. These pictures 
graphically illustrate how much greater velocity gradients become when the wall 
constraint of a turbulent boundary layer is removed. It should be noted that near the 
wall, the Q and R of a turbulent boundary layer are small even when the gradients 
aren't. A better measure of the relative magnitudes of the velocity gradients can 
be inferred from figure 14. Again, the gradients tend to grow and then diminish 
at late times. The Qs versus Rs plot shows that the strain rates tend to follow a 
different curve, closer to the real-imaginary dividing surface (6). Hence, this aspect 
of the fine scale motion appears to be Reynolds number dependent. The plots in 
Figure 14 show that the turbulent boundary layer structures at t' = 0 are sheet-like, 
but, in contrast to hipairex, there are no preferred structures revealed by the Qs 
versus Qw plot for later times (cf. Figure 8). As with hipairex the Q versus R plot
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FIGURE 14. -Q vs Q for tbl. tU/5 = (a) 0.0, (b) 26.25, (c) 47.5. (ci) 76.25.
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FIGURE 15. Vortex lines for ibi at tU/b = 0.0.
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FIGURE 16. Vortex lines for tbl at tU/6 = 76.3. 

FIGURE 17. Streamlines for tbl at tU16 = 76.3. 

shows that most of the gradients belong to the topology of stable focus stretching. 
The highly organized patterns seen in Chen et al. (1990) for hipairex are replaced 

by most complex structures in Al. Vortex lines for ibi are shown in Figures 15 and 
16. Shown in Figure 15 is the initial turbulent boundary layer, and the attached 
eddies which lean approximately 45° to the mean flow direction are apparent. In 
Figure 16 are shown vortex lines of the plane mixing layer after some development. 
Although no clear spanwise rollups are apparent from this vorticity plot, Figure 17 

shows instantaneous streamline patterns which indicate possible large scale spanwise 
roll-ups. 

4. Comparison of two initial conditions at the same Reynolds number 
From Figure 5, it can be seen that there is an overlap of Reynolds numbers for 

mega and tbl. In fact, they both share a Reynolds number of 5000 as indicated in the
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FIGURE 18.	 Rescaled Q vs. R plots for (a) mega at tU/5 = 49.0. (b) ibi at 
tU/ = 61.0.

Rs 

(a)  

cm 

(b) ;K	 Rs 

FIGURE 19.	 Rescaled Q, vs. R5 plots for (a) mega at tU/t = 49.0. (b) tbl at 
tU/ = 61.0.
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FIGURE 20. Rescaled -Q, vs. Q,,, plots for (a) mega at tU/6 = 49.0, (b) ibi at 
tU16 = 61.0. 

figure. Figures 18(a) and (b) show Q versus 1? plots of ibi and mega, each scaled with 
the current vorticity thickness and appropriate velocity U. The joint probability 
density contours have been rescaled to account for the different population density 
of points. Figures 19 (a) and (b) show the corresponding —Qs versus Qw plots for 
comparison. Although the shape of the plots are roughly the same, there appears 
to be a major difference in the scaling, indicating that the velocity gradients in tbl 

are considerably lower than in mega for the same Reynolds number. The reasons 
for this difference need to be pursued in future work. 

5. Conclusions 
In all flow cases considered here, motions with the highest dissipation of ki-

netic energy per unit volume were of the topological classification stable focus with 
stretching as found from Q - R plots. 

In the case designated as hipairex, the flow was initiated from a laminar layer with 
an error function profile and the maximum Reynolds number R6 to which the flow 
evolved was 3000. Here, the highly dissipative motions were usually accompanied 
by a high enstrophy indicating a vortex sheet-like structure. From Qs versus Rs 
plots, the rate of stain tensor for dissipating points had a topology of unstable node 
saddle-saddle with the rate of strains being of a given ratio and with the vorticity
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vector tending to align with the intermediate strain 3. 
In the case of tbl, which was initiated from two turbulent boundary layers placed 

back to back, the highest local Reynolds number considered was R6 = 9000. Here, 
the -Qs versus Qw plots indicated no preferred structure for the highly dissipating 
motions although the Q - R plots indicated a strong preference for stable focus 
stretching. Also, the Qs versus Rs plots showed that the highly dissipating motions 
tend toward a: /3 : 7 = 1 : 1 : -2. No vorticity alignment checks were made, but it is 
expected that the vorticity vectors will tend to align with the /3 axis (cf. Sondergaard 
et al., 1991). 

Comparison of two flows at the same local Reynolds number but with two entirely 
different initial conditions was made using flow cases designated mega and tbl. Plots 
of Q versus R and -Qs versus Qw when nondimensionalized appropriately show 
essentially the same topological structure and scaling from R5 5000 even though 
mega was initiated from a laminar error function profile layer and tbl from turbulent 
boundary layers. Although the shape of the plots are roughly the same, there 
appears to be a major difference in the scaling, indicating that the velocity gradients 
in tbl are considerably lower than in mega for the same Reynolds number. The 
reasons for this difference need to be pursued in future work. 
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Isotropy of small scale turbulence 

By R. A. Antonia' AND J. Kim2 

The degree to which local isotropy is satisfied has been examined using direct 
numerical simulations for a fully developed channel flow. Attention is mainly given 
to the high wavenumber part of vorticity and temperature derivative spectra. The 
ratio of these spectra and their isotropic values depends on the particular quantity 
considered, the departure from isotropy being more pronounced for the temperature 
derivative than for the vorticity. When the Kolmogorov-normalized wavenumber is 
sufficiently large, isotropy is satisfied provided the (Kolmogorov-normalized) mean 
strain rate is sufficiently small. This result appears to be independent of the quantity 
considered and of the Reynolds number. 

1. Introduction 
The concept of local isotropy has been of central importance to the theory of 

turbulence and continues to attract significant attention in turbulence, as can be 
gleaned, for example, from the compendium of papers in the A. N. Kolmogorov 
commemorative issue of the Proceedings of the Royal Society (1991). The concept 
implies that the small scales become statistically independent from the large scales 
or, perhaps more pertinently, from any orientation effects or bias introduced by 
the mean shear. This implication and related questions, for example, "is local 
isotropy achievable only at large Reynolds numbers?" or "do departures from local 
isotropy persist irrespectively of the Reynolds number?", are issues which continue 
to preoccupy, perhaps fascinate, turbulence researchers. 

Before the previous questions can be adequately addressed, there is first the need 
to decide how best to measure "local isotropy". This is not a straightforward task 
given that there is a plethora of tests which can be applied (e.g. Monin and Yaglom, 
1975; Mestayer, 1982) and that different tests may have different levels of sensitivity 
(e.g. Antonia et al., 1986). Not unrelated to these difficulties is the issue of whether 
the word "local" is interpreted to signify "in physical space", as originally intended 
by Kolmogorov (1941) or whether it is given a spectral interpretation. If the first of 
these interpretations is adopted, the available evidence, which includes atmospheric 
data at quite large turbulence Reynolds numbers, appears to point fairly unam-
biguously to a departure from local isotropy (e.g. Antonia et al., 1986; Sreenivasan, 
1991). This departure appears to be especially emphasized in statistics, e.g. mean 
squared values and skewnesses of spatial derivatives of the temperature fluctuation 
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(e.g. Sreenivasan et al., 1979; Sreenivasan and Tavoularis, 1980). The second in-
terpretation allows the focus to be on high wavenumbers or small scales (e.g. Van 
Atta, 1991; Antonia ci at., 1986); with the caveat that there must be non-local 
interactions between small and large wavenumbers (e.g. Domaradzky and Rogallo, 
1991; Brasseur, 1991). This arguably provides a better framework for testing local 
isotropy than seems possible under the first interpretation. It is worth underlin-
ing that while the practical applications which follow from the first interpretation 
of the concept are well known, the spectral interpretation is not without practical 
significance. For example, the measurement of spatial velocity and temperature 
derivatives with parallel hot wires requires their separation to be selected appropri-
ately. This is not straightforward and the analysis (Wyngaard, 1969) which provides 
a possible correction for the spectral attenuation of the derivative spectrum relies 
on local isotropy. 

Regardless of which interpretation is chosen, it is important to select turbulence 
quantities which are representative of the small scale structure when testing for local 
isotropy. In this context, velocity and temperature fluctuations could be less effec-
tive than their derivatives. Direct numerical simulations (DNS) can provide more 
reliable data for spatial derivatives than measurements. DNS data in a turbulent 
channel flow have been used (Antonia ci at., 1991; Antonia and Kim, 1992) to test 
for local isotropy using both the physical space and spectral interpretations of the 
concept. The first paper (Antonia et at., 1991) showed that mean squared velocity 
derivative values approximately satisfied isotropy only as the channel centerline is 
approached, a result which appears consistent with Durbin and Speziale's (1991) 
conclusion that the dissipation rate tensor cannot be isotropic when the mean strain 
rate is not zero. The second paper (Antonia and Kim, 1992) focused mainly on the 
high wavenumber part of velocity and pressure spectra; the results adequately sup-
ported local isotropy in a flow region characterized by relatively small mean strain 
rates. There was no attempt, however, to quantify the dependence on the mean 
strain rate. The present investigation extends the previous work in two important 
ways. It focuses on quantities (the three spatial temperature derivatives and the 
three components of the vorticity vector) which may have stronger contributions 
from the small scale structure than simply velocity and scalar fluctuations. It also 
attempts to relate the degree of local isotropy to the mean strain rate. 

In this paper, u, 0, and wi denote the velocity, temperature, and vorticity fluc-
tuations, respectively, the subscript i (i= 1, 2, 3) denoting the streamwise (i = 1), 
wall-normal (i = 2), and spanwise (i = 3) directions. 

2 Distributions of O . and w 

Isotropy requires that the three components of 9, where 9 ,	 1991Ox, and
are equal. Figure 1 shows that this is approximately satisfied as the centerline of the 
channel is approached. The presentation in Figure 1 clearly hhlights the strong 
anisotropy which exists in the wall region. Note that 02 and L02 clearly dominate
near the wall. There is also reasonable similarity in the shapes of the component
distributions of 0 and those of except for the near-wall increase of w, the mean
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FIGURE 1.	 Distributions across the channel of the mean square values of the 
temperature derivatives and vorticity components. (a) 9; (b) u. 

square longitudinal vorticity. The transport equation for 9,. was first written by 
Corrsin (1953) who compared it with the transport equation for ; while the two 
equations can be cast in similar forms, Corrsin noted that there are apparently 
significant differences (due mainly to the solenoidal nature of w, viz. V w, 0 or 

0 and the lamellar nature of 9 , , viz. V x 0,, 0). 
Figure 1 also underlines the significant Reynolds number dependence in the wall 

region of almost all the quantities that are plotted. Apart from w, which is virtually 
unaffected, the remaining quantities are increased as h+ increases. In the sublayer, 

the major increases are exhibited by 
42 (15%), 

42 (32%) and	 (92%). The 

increases in and w 2 reflect the increased stretching of the streamwise and 
spanwise vortices; speculatively, this stretching may increase the frequency (and 
amplitude) of excursions of hot fluid away from the wall and cold fluid towards the
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wall, thus accounting for the increase in 
An effective method of assessing the departure from isotropy of 92. or is to 

examine invariant maps (Lumley and Newman, 1977; Lee and Reynolds, 1985) of 
the anisotropy tensors corresponding to these quantities, the information displayed 
on these maps being independent of the choice of co-ordinate axes. The temperature 
dissipation anisotropy tensor which corresponds to 02. may be defined as 

OO	 1 
t ij = c	 -	 (1) 

where =aO,iO,i is the average temperature dissipation (o is the thermal diffusiv-
ity). The second and third variants of t, are given by 

	

II =t ij tji	 (2) 

III = tjjtjktk (3) 

and all the states that characterize t ij are identifiable on a plot of —II vs III, as 
shown in Figure 2a. Similarly, the vorticity anisotropy tensor may be defined as 

vii
Wiwi

	

 -- -	 (4)

and its second and third invariants are given by expressions analogous to (2) and 
(3). The AIM for vij was presented in Figure 7c of Antonia et al. (1991). It is 
reproduced in Figure 2b to allow comparison with the AIM (anisotropy invariant 
map) of Figure 2a. 

At the wall, the only component of Ze is a62 so that the top right cusp of 
the AIM, with co-ordinates (2/27, 1/3), represents the one-component state of t,. 
As 4 increases through the sublayer, the data points lie very close to the upper 
boundary of the AIM which represents the two-component state of t,, (Figure 1 
shows that T2 remains small by comparison to 02 and 02 ). In the buffer region, 
the invariants Ht and liIi approach the left "axisymmetric" boundary (A —1) 
of the AIM. In the outer part of the channel, the trend is towards the isotropic state 
(lie = III = 0). 

Figures 2a and 2b indicate a close similarity between the invariants of t ij and v ij 
in the buffer and outer regions of the channel. In particular, along the left axisym-
metric boundary, which Lee and Reynolds (1985) describe as disk-like turbulence, 
two components are nearly equal (9	 02,	 w) while the third (6 or w)
is somewhat smaller than the other two. There are, however, marked differences 
between Figure 2a and Figure 2b in the near-wall region, reflecting the different 
boundary conditions for t 2 , and v. At the wall, the one-component t 1 , state cor-
responds to the two-component v 2 state. The rod-like behavior of vorticity (right 
axisymmetric boundary in Figure 2b) appears to correspond to a two-component 
state for the temperature dissipation.
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3 Spectra of wi and 9, 
The comparison between the high wavenumber part of vorticity spectra and the 

corresponding isotropic calculation is a useful way of assessing the degree of isotropy 
of the small scale structure.' Since vorticity is, like velocity, solenoidal 
0, u, ,1 0), isotropic relations between two-point vorticity correlations are the 
same as the corresponding relations between two-point velocity correlations. Using 
Batchelor's (1953) notation,

(5) 
2 Or 

where g and f are the lateral and longitudinal correlations respectively and r is 
the magnitude of the separation between the two points, the Fourier transform of 
(5) obviously applies to both velocity and vorticity fields. It is convenient here to 

O•4

O•3

O2

0•1

n 

O4 

0•3 

O2 
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consider spectra in terms of k3 , the wavenumber in the spanwise direction. The 
isotropic relations for either the vorticity or velocity spectra may be written as 
follows	 / 

1	 d,3 
0-2 (k3 =	 -	 6) 

c 1 (k3 ) = 4 2 (k3 ) = (0. .—k3 dci3\ 
---- j .	 (7)
dk3 j 

The spectra of w, w2 and w2 are shown in Figure 3 for two flow locations (data for 
h+ = 392 only are presented). The asterisk denotes normalization by Kolmogorov 
scales, (length 71 = v / r' / ' and velocity u, = zi114h14). At the channel centerline, 
ç and 012 are virtually identical at all k, as required by the first equality in (6). 
They are also in close agreement with the calculation given by the right side of (6). 
By contrast to Figure 3a, the results at x = 15 (Figure 3b) show that, except at 
the crossing point, is significantly different from q. The latter distribution 
seems to asymptote towards the isotropic calculation,. Eq. (6), at sufficiently large 
values of k. 

It is possible that the logarithmic scale on the ordinate of Figure 3 may mask 
small departures from isotropy. To overcome this difficulty, the ratio of the DNS 
spectral density to that obtained from Eq. (6) has been calculated at several x+ 2 
values and plotted using a linear scale in Figure 4. Note there is a significant region 
of the channel for which the ratio may be assumed to be close to 1. In the case 
of w 1 , this approximation has an uncertainty of about ±20% when 4 74. For 
W2, the approximation is satisfied to about ±5% for 4 15. The sharp increase 
in the ratio at the largest values of k is spurious and can be ignored. In order 
to ascertain whether the spectral ratio used in Figure 4 is sensitive to departures 
from isotropy, the ratio was computed, using DNS data for isotropic turbulence 
(Rogallo, private communication). The results in Figure 5 [shown for 0 12 and 
q ; the isotropic calculations are based on 4 1 (k 1 ) and 0. 1 (k1 )} suggest that the 
sensitivity is adequate (better than ±10%; the waviness in Figure 5 is a result of 
fitting to. the w, and u 1 spectra and is therefore artificial). 

The isotropic relation between the temperature derivative spectra is given by (e.g. 
Van Atta, 1977; Browne ci al., 1983) 

=	
= j k'co

3 (k)dk .	 ( 8) 

The comparison between 1 (kfl and the isotropic calculation, based on Eq. (8), 
is shown in Figure 6. The good agreement, almost independently of k, at the 
centerline (Figure 6a) contrasts with the total lack of agreement at 4 = 15. The 
ratio q /(o, ), plotted in Figure 7, suggests that, in the wall region of the flow, 
the anisotropy of the temperature derivative field is more pronounced than that of 
the vorticity field (Figure 4). This increased anisotropy may be associated with the 
mean temperature gradient 7,2 , where T is the mean temperature. For example, 
T,2 appears explicitly in the transport equation for the skewness of 9 1 . Sreenivasan
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FIGURE 3. Vorticity spectra at two locations in the flow (h	 392). (a) 4 392 
(x2 h); (b) 4 = 15. 

and Tavoularis (1980) noted that this skewness is non-zero only when U 1 ,2 and T,2 

are both non-zero. 

4 Dependence on the mean strain rate 
Figures 5 and 7 suggest that the departure from isotropy may depend on the mag-

nitude of the mean strain rate U 1 ,2 ( S). It is fairly common to normalize S by a 
time scale (q 2 /2) characteristic of the turbulence, e.g. Mom (1990) and Lee ci al. 

(1990). Durbin and Speziale (1991) showed that the dissipation rate tensor deviates 
from isotropy if Sq2 1 is not zero. A disadvantage of using S^q2 li is that it is zero at 
the wall where S is largest. There are other possibilities for non-dimensionalizing 

S. Uberoi (1957) used S1u ,2
1 '2 , with u 2 "2 representing a velocity gradient char-

acteristic of the turbulence, for characterizing the anisotropy. Another possibility is 
to normalize S by the Kolmogorov time scale (zi/)112; the ratio S/(/ii) 112 will be
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denoted by 5*• Corrsin (1957,1958) argued that the necessary condition for local 
isotropy to be a good approximation at a given wavenumber is that (v/)' /2 , which 
may be identified with a time scale characteristic of the transfer of energy to higher 
wavenumbers, should be small compared with the inverse of the mean rate of strain, 
viz.

	

(TV),	
1 

or
(9)' 

The distribution of S* is shown in Figure 8 together with S1u 2 2 and Sq2 /2 (the 
corresponding distributions at h+ = 180 are almost the same as those at h+ 400 
in the wall region; at the wall S* is 2.6 at h = 180 and 2.3 at h = 400). Not 



Isotropy of small scale turbulence	 131 

1•5 

1-2- 

0•9 

O•6 

O•3 

0
0

- U2/(U2)IUO 

0•2	 04	 0•6	 0•8	 1•0 
1. ft1 

FIGURE 5. Wavenumber dependence of the ratios of spectra of u 2 and w2 and 
the corresponding isotropic spectra for a direct numerical simulation of isotropic 
turbulence. 

unexpectedly, 5* and S1u 2 1 "2 follow each other closely, the former being slightly 

smaller than the latter in magnitude. 5* or S/u 2
1/2

 is clearly better behaved than 

S(q2 /2), which increases from zero at the wall to a relatively large maximum near 
= 10. 

The ratios of vorticity or temperature derivative spectra and the corresponding 
isotropic spectra are shown in Figure 9 in terms of 5*, for values of k in the 
range 0.1 to 0.7. One can identify a value of 5*, 5 say, for each of the three 
quantities in Figure 9 below which the ratio can be assumed to be approximately 
1 (independently of k). The magnitude of is about 0.3 for w 1 while it is 
almost 1 for w2. It is only 0.1 for 9 , ; in this case, the departure from isotropy is 
more evident than for vorticity, especially at smaller values of k. It would appear 
that while Corrsin's inequality (9) has general validity, significant relaxation of this 
criterion is possible when the interest centers on specific quantities. For example, 
it seems that S* <	 0.2 may be sufficient for the small scale vorticity to be 
isotropic. 

A comment about the possible effect of Reynolds number seems a propos here. 
The evidence we have gathered here and in a previous paper (Antonia et al., 1991) 
strongly suggests that provided 5 the magnitude of the Reynolds number 
should have little effect on the degree of isotropy that can be achieved at sufficiently 
large wavenumbers. The magnitude of the Reynolds number is, of course, important 
in determining the extent of the flow region in which 5* S is satisfied. This 
can be illustrated by reference to the logarithmic region for which energy equilib-
rium ( = —iijiiS) is a reasonable approximation. At sufficiently high Reynolds 
numbers, S	 Ui/K (ic is the von Kármán constant, U, is the friction velocity), 
—üjii	 U,. and S*	 (x)' /2 . For S*	 0.2, this suggests that the region
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FIGURE 6. Temperature derivative spectra at two locations in the flow (h+ = 392). 
(a) 4 = 392; (b) 4 = 15. 

4 60 should satisfy local isotropy; obviously, the physical extent of this region 
should increase with Reynolds number. 

Corrsin (1957,1958) argued that a necessary condition for local isotropy is given 
by the inequality

1	 S 
>>	 ,	 (10) 

U2 

where the right side can be identified with a wavenumber, k say, corresponding 
to the turbulent energy production. The present data suggest that in the region 
where local isotropy is approximately satisfied, k 0.1, suggesting that (10), like 
inequality (9), are unnecessarily restrictive and may be relaxed significantly. 

5 Conclusions 
Invariant maps of vorticity and temperature derivative anisotropy tensors in a
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fully developed turbulent channel flow indicate a similar approach towards isotropy 
as the channel centerline is approached. In the wall region, the nature of the 
anisotropy is different for these two quantities. 

For sufficiently large wavenumbers, vorticity and temperature derivative spectra 
appear to satisfy isotropy provided the mean strain rates (suitably normalized) is 
sufficiently small. As far as we can ascertain, this conclusion appears to be indepen-
dent of the Reynolds number. Using the Kolmogorov time scale to normalize the 
strain rate, the value of S* at which the departure from isotropy is first observed
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depends on the quantity under consideration. This value appears to be apprecia-
bly larger for the vorticity than for the temperature derivative. For given values 
of 5* and of the Kolmogorov normalized wavenumber, the temperature derivative 
spectrum exhibits a significantly larger degree of anisotropy than the vorticity spec-
trum. It is possible that the additional influence of the mean temperature gradient 
is reflected in the stronger anisotropy of the temperature derivatives, but further 
work would be needed to verify this possibility. 
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LES versus DNS : a comparative study 

By L. Shtilman1 AND J. R. Chasnov2 

We have performed Direct Numerical Simulations (DNS) and Large Eddy Sim-
ulations (LES) of forced isotropic turbulence at moderate Reynolds numbers. The 
subgrid scale model used in the LES is based on an eddy viscosity which adjusts 
instantaneously the energy spectrum of the LES to that of the DNS. The statistics 
of the large scales of the DNS (filtered DNS field or fDNS) are compared to that 
of the LES. We present results for the transfer spectra, the skewness and flatness 
factors of the velocity components, the PDF's of the angle between the vorticity 
and the eigenvectors of the rate of strain, and that between the vorticity and the 
vorticity stretching tensor. The above LES statistics are found to be in good agree-
ment with those measured in the fDNS field. We further observe that in all the 
numerical measurements, the trend was for the LES field to be more gaussian than 
the fDNS field. Future research on this point is planned. 

1. Introduction 
Direct Numerical Simulation (DNS) of turbulent flows has become an indispens-

able tool in turbulence research. The importance of DNS was universally recognized 
when researchers started to obtain new qualitative results. While a DNS can repro-
duce basic turbulence constants or statistics determined previously from laboratory 
experiments, it is also able to provide statistical information difficult to obtain by 
experimental measurements. Among effects observed in the DNS prior to labora-
tory experiments are alignments of vorticity and velocity vectors (Pelz ci al., 1985), 
alignments of vorticity vector and the eigenvectors of the rate of strain (Ashurst ci 
al., 1987), and reduction of nonlinearity (Kraichnan & Panda, 1989). All of these 
effects are not present in gaussian fields. Some of the above observations can be 
qualitatively predicted in the framework of the DIA or the EDQNM closure approx-
imations (see, for instance, Chen ci al., 1987). Others, such as the spottiness of the 
vorticity field that was observed in the DNS, have not yet been demonstrated by 
closures. Nevertheless, the DNS (with all its advantages) is still limited to relatively 
low Reynolds numbers. Attainment of a high Reynolds number simulation requires 
use of a subgrid scale model to represent the effects of the unresolved small-scale 
turbulence on the explicitly simulated large-scale flow. 

The most important assumption in this Large Eddy Simulation (LES) approach 
is that the subgrid scale model may be parameterized in terms of the resolved 
large-scales and a relatively small set of additional parameters. The basis for such 
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an assumption is the experimental evidence supporting the 1941 phenomenology of 
Kolmogorov that the low-order statistics of the small scales are self-similar in a high 
Reynolds number turbulence. The task of modeling is to find a subgrid scale model 
which can represent the effects of a strongly nongaussian, intermittent small scale 
field of turbulence on a large scale field. For homogeneous and isotropic turbulence, 
Kraichnan (1976) introduced an effective eddy viscosity ve(k l km, 1) acting at time 
t on scales of wavenumber k due to the effects of scales with wavenumbers greater 
than km. In this model, the eddy viscosity is derived from the turbulence energy 
equation. Clearly, one should construct e (kIkm , t) (from analytical theories or 
the DNS) in such a way that, at a minimum, the low order statistics of the flow 
field (e.g., the energy spectrum) is preserved. The major role played by a well-
chosen eddy-viscosity is to "adjust" the spectrum to the value it is supposed to 
have from analytical or DNS considerations. Strict eddy-viscosity models, however, 
suffer from a lack of phase information and an eddy-viscosity model combined with 
a random gaussian force has been shown to somewhat better reproduce the inertial 
range energy spectrum (Chasnov, 1991). However, it is not clear if such eddy-
viscosity subgrid models or their refinements are capable of reproducing higher-order 
statistical moments of the large scales. Ideally, an LES field should be statistically 
the same as the large-scales of a fully-resolved DNS, not withstanding the inaccuracy 
in the representation of the small scales by a subgrid scale model. 

2. The numerical experiment 
Let us consider a DNS with resolution N3 . One can filter (in k-space) the field 

resulting from this simulation. Then we obtain an M3 field (M << N). Simulta-
neously we will perform an LES with resolution M3 . We will use the same initial 
conditions and the same Reynolds number. Does the LES field remain the same as 
the filtered DNS field after a long time of evolution? To answer this question, we 
define a correlation coefficient for the filtered DNS and LES fields: 

<U . U"> 

< U2 >< u'2 >
	 (1) 

In the context of unpredictability studies using closure theories (Leith & Kraichnan, 
1972), it was demonstrated that two turbulent fields which are identical in the 
large-scales but differ in the small scales at high Reynolds numbers will become 
decorrelated after a time on the order of a large-eddy turnover time. The implication 
is that an LES can not hope to follow a single realization of a turbulent flow. 
Although this may have some practical importance to problems such as weather 
prediction, most engineering applications only require an LES to obtain the correct 
statistics of the large scales. The more important question we will therefore address 
is: are the filtered DNS field and the LES field still statistically the same after 
a sufficiently long time evolution after which the fields themselves are completely 
different? We will check that commonly accepted effects associated with the non-
gaussian nature of turbulence fields, such as the above mentioned alignments, are 
observed in an LES and are quantitatively similar to those measured in the filtered 
DNS field.
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FIGURE 1. Final energy spectrum of the DNS and the LES. 

Toward this end, we performed simulations of forced isotropic, homogeneous tur-
bulence with Re 70 and a resolution of 128. A fully-developed field was used 
as the initial conditions for the DNS and LES comparison. Starting with this field, 
we have time-evolved a 128 3 DNS and a 32 3 LES. Our subgrid scale model for the 
LES consists of adjusting the shell-averaged spectrum of the LES to the value ob-
tained from the DNS by a simple rescaling of the Fourier amplitudes within each 
shell without phase modification. Instead of the 128 3 DNS field, we therefore have 
a 32 3 LES field plus the energy spectrum of the truncated DNS (averaged in shells 
of unit thickness), which consists of 15 real numbers. Thus the LES preserves the 
instantaneous spectrum of the DNS, which is better than all existing subgrid scale 
models. Although such an LES is not realistic in practice since one needs to perform 
a fully-resolved DNS concurrently, the failure of this LES could very well imply the 
failing of the approach itself. 

3. Results 
In figure 1, we present the final energy spectrum for the DNS and the LES. The 

plot demonstrates that all the scales of the DNS are fully-resolved. The DNS has 
a maximum Kolmogorov wavenumber of 2 while the LES and the fDNS have a 
maximum Kolmogorov wavenumber of 0.5. 

In figure 2, we present the time-evolution of the correlation coefficient i (eq. (1)). 
This plot demonstrates the impossibility of an LES to follow a particular realization 
of the DNS field. Indeed, after approximately two large-eddy turnover times, the 
filtered DNS field and the LES field are completely decorrelated. Clearly, this result 
should not discourage us since even two DNS fields having slightly different initial 
conditions will diverge exponentially with time. Our real goal is to check whether 
the LES field has the same statistics as the filtered DNS field. 

Some statistics of turbulent fields (e.g., the PDF of vorticity and dissipation) are



5 

0 

-5

140	 L. Shiilman& J. R. Chasnov 

1.0 

0.8 

0.6 

0.4 

0.2 

0
0

t 

FIGURE 2. Time-evolution of the correlation coefficient t7(t), defined in eq. (1), 
between the LES and the fDNS fields. Time t is in units of a large-eddy turnover 
time.
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FIGURE 3. Energy transfer spectrum 

close to those for gaussian fields (Shtilman ci al., 1992 ) while some statistics (e.g., 
helicity fluctuations) require statistical averaging over realizations for accuracy. We 
exclude results related to these quantities in the present study. In figure 3, we 
present a comparison between the energy transfer spectrum for the LES and the 
±DNS. We note that the spectrum preservation in the LES does not necessarily imply 
that the fDNS and the LES have the same transfer spectrum in the large-scales. 
The energy equation for isotropic turbulence is 

OE(k) = T(k) - 2zik2E(k),
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Statistic	 DNS	 fDNS	 LES	 Gaussian 

S3	 -0.54	 -0.44	 -0.37	 0 
S4	 4.62	 3.74	 3.69	 3 
S5	 -8.52	 -5.01	 -4.18	 0 

Table 1. Derivative skewness, flatness and hyperfiatness from the DNS, the filtered 
DNS, and the LES. The values for a gaussian field are shown for comparison. 

where the transfer term T(k) is defined as the shell integral of 

T(k) = Re[A(k) 

where )(k) is the Fourier transform of the Lamb vector, A(x) = (v x w)(x) and the 
asterisk denotes complex conjugate. Clearly T(k) depends on the absolute value 
of v(k) and on its phase. While the mean-square Fourier amplitude in a shell is 
adjusted to its DNS value, the individual Fourier phases are determined by solution 
of the Navier-Stokes equations. Nevertheless, from figure 3 we learn that the transfer 
term of LES has values close to those of fDNS. 

In Table 1, we present high-order derivative statistics of the flow fields - the 
skewness S3 flatness 54 and hyperfiatness S5 where 

au i n	 OiL 
Sn <(—) >/<(	 > 

3i=1,3	
oxi 

It is seen from Table 1 that the fDNS and the LES values are both more gaussian 
than those values obtained from the full DNS, as one would expect for high-order 
statistics. We also note that the LES values are more gaussian than their fDNS 
counterparts, although we do not yet know if this is only a statistical fluctuation 
or if it is a shortcoming of LES. Additional numerical experiments which directly 
address this question are planned for the future. 

In figure 4, the PDF of the cosine of the angle between w and the eigenvectors 
of the rate of strain S, is presented. The results for the LES and the fDNS are 
seen to be in good agreement. These PDF's are flat for a gaussian field and most 
authors relate this alignment to the tube-like nature of the vorticity field. A detailed 
examination of this plot demonstrates again that the LES field has a tendency to 
be more gaussian than the fDNS field. 

Another quantity we consider is the statistics of the angle between the vorticity 
and the vorticity stretching vector

W = w1S3. 

It was shown in laboratory experiments (Dracos ci al., 1991) and numerical exper-
iments (Shtilman ci al., 1992) that W, has a strong tendency to be aligned with



3 

2 

0
0

142	 L. Shtilman& J. R. Chasnov 

cos 9 

FIGURE 4. PDF of cosine of the angle between w and the eigenvectors of the rate 
of strain tensor S. 
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FIGURE 5. PDF of the cosine of the angle between w and the vorticity stretching 
vector W = 

vorticity. This alignment reflects the total positive production of enstrophy. In 
figure 5, we present the PDF of the cosine of the angle between W and W. While 
the LES and fDNS curves are in reasonable agreement, we again note the tendency 
of the LES curve to be more gaussian than the fDNS curve. 

4. Conclusions 

We have compared the statistics of the large scales of the DNS field with the LES 
field for forced isotropic turbulence at moderate Reynolds numbers. The subgrid
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scale model used is based on an eddy viscosity which adjusts the instantaneous 
shell-averaged energy spectrum of the LES to that of the DNS at each time-step. 
After a couple of large-eddy turnover times, the LES field is uncorrelated with 
the fDNS field. Several statistical parameters of the large scales of the fDNS were 
compared to that of the LES. Among them were the transfer spectrum, skewness and 
flatness factors of velocity components, and PDF's of the angle between vorticity 
and eigenvectors of the rate of strain and that between the vorticity and vorticity 
stretching tensor. The overall agreement between the LES and the fDNS statistics 
was quite good, although we did observe a tendency for the LES field to be slightly 
more Gaussian than the fDNS field. Nevertheless, the preliminary results presented 
here point to the promising future of LES. 

We thank R. Rogallo for use of his numerical codes and for many helpful discus-
sions. LS would also like to thank E. Levich' for discussions and the CTR for its 
hospitality during the Summer program. 
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H. Turbulence physics group 

Numerical simulation of turbulence has proven to be a powerful tool in studying 
the physics of turbulence. There are three papers in this group, each illustrating 
how numerical simulations are being used for this purpose. Lopez and Bulbeck 
analyzed an existing database to investigate vortex breakdown in a mixing layer. 
Orlandi, Homsy, and Azaiez reported preliminary results from modeling the effect 
of viscoelasticity on flow structures. The last paper by Reuss and Cheng was an 
attempt to develop new experimental techniques for characterizing vortices in a 
complex flow by exploring different approaches in a much simpler flow situation. 
Some highlights as well as critiques of these reports are given below: 

Lopez and Bulbeck studied vortex breakdown in a time-developing plane mixing 
layer by analyzing the database obtained by Moser and Rogers. Vortex break-
down in large-scale flows has been observed frequently, from which much of our 
knowledge of vortex breakdown is derived. There exists some evidence that such 
breakdown may also occur in smaller scales over a wide range of flows and that vor-
tex breakdown may play a role in characterizing a length scale for vortical structures 
in turbulent flows. The objective of this paper was to investigate whether vortex 
breakdown occurs in the rib vortices in the plane mixing layer, where a previous 
study indicated a rapid change in the local topology. If vortex breakdown were 
found here, they postulated that it would also exist in other turbulent flows. Using 
the criteria developed by Brown and Lopez for breakdown of an isolated vortex, 
i.e., the sudden acceleration of the axial flow and the helix angle of the velocity 
vector being larger than that of the vorticity vector, they found evidence that the 
rib vortex downstream of the mid-braid plane began vortex breakdown. There 
was no evidence, however, of sudden core expansion or intense mixing, phenomena 
nominally associated with large-scale vortex breakdown flows. There were some dis-
cussions during the final presentation of the Summer Program as to whether what 
they observed here in the temporally developing mixing layer could be regarded as 
a true vortex breakdown. 

Orlandi et at. performed numerical simulations of a two-dimensional mixing layer 
and the interaction of vortex dipole with a wall in order to investigate the effect of 
viscoelastic fluids on flow structures. Three different viscoelastic models were used 
to account for the viscoelasticity. For some models, however, they could not obtain a 
converged solution. In the case of mixing layer, they found that the viscoelasticity 
enhanced the formation of small scales, which produced intense gradients in the 
braid region of the mixing layer. These intense gradients led to a faster and more 
intense roll-up of the layer. This is contrary to the linear stability analysis by 
Azaiez and Homsy, who showed that viscoelasticity reduced the instability of the 
flow. The second part of the paper concerned with the effect of viscoelasticity on 
vortex dipole impinging on a wall, a model of streamwise vortices in a turbulent 
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boundary layer. They considered both free-slip and no-slip walls but found that 
the effect of the viscoelasticity for both cases was small. The results presented in 
this paper appear to be preliminary and they should be interpreted as such. As the 
authors pointed out, further numerical studies as well as experimental verifications 
are deemed necessary to validate the present result. 

Reuss and Cheng explored different methods for characterizing vortex structures 
by examining a turbulent flow field obtained from a simulation of turbulent channel. 
The senior author has been conducting experiments to investigate vortex structures 
that influence flame wrinkling in reciprocating internal combustion engine, and the 
objective of this project was to develop an experimentally suitable technique for 
identifying the turbulence properties associated with these structures. They ap-
plied two-dimensional spatial filtering to the instantaneous flow field to separate 
different scales present in the flow field. As expected, they were able to identify 
vortical structures which were not apparent from the unfiltered field, but the results 
were highly dependent on the filter size used. They proceeded to use a conditional-
averaging procedure in which the detection was based on the local peak vorticity. 
They presented results obtained from this procedure as representative of the coher-
ent parts of the flow field. It should be pointed, however, that these results might 
also depend on the threshold value used for the detection and, to a lesser extent, 
on how the alignment for the averaging process was conducted. I might add that 
in the past other investigators have used an iterative procedure using a correlation 
technique to minimize this problem.

John Kim 

-
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Behavior of streamwise rib vortices 
in a three-dimensional mixing layer 

By J. M. Lopez' AND C. J. Bulbeck' 

The structure and behavior of a streamwise rib vortex in a direct numerical sim-
ulation of a time-developing three-dimensional incompressible plane mixing layer 
is examined. Where the rib vortex is being stretched, the vorticity vector is pri-
marily directed in the vortex axial direction and the radial and azimuthal velocity 
distribution is similar to that of a Burger's vortex. In the region where the vortex 
stretching is negative, there is a change in the local topology of the vortex. The 
axial flow is decelerated and a negative azimuthal component of vorticity is induced. 
These features are characteristic of vortex breakdown. The temporal evolution of 
the rib vortex is similar to the evolution of an axisymmetric vortex in the early 
stages of vortex breakdown. The effect of vortex breakdown on other parts of the 
flow is, however, not as significant as the interaction between the rib vortex and 
other vortices. 

1. Introduction 
In the main, the term vortex breakdown has been associated with large scale flows. 

In aeronautics, vortices generated by swept leading edges and the trailing vortices 
generated at wing tips are observed to undergo vortex breakdown. In such flows, 
vortex breakdown is characterized by the sudden deceleration of the axial flow, with 
an associated sudden expansion of the core. Downstream, the flow is unsteady and 
seemingly disorganized. With the exception of a few idealized flows designed to 
study vortex breakdown in isolation, our knowledge of vortex breakdown is based 
solely on such large scale flows. 

Recently, there have been suggestions that vortex breakdown occurs naturally 
over a much wider range of flows and scales than has previously been expected. 
One example is the breakdown of the side vortices associated with a jet in cross-flow 
(Kelso 1991). Orszag (1991) has suggested that vortex breakdown may be present 
in the results of computations of homogeneous isotropic turbulence reported by 
She, Jackson and Orszag (1990). He observed that coherent structures in homoge-
neous isotropic turbulence (which are tube-like vortical structures recently referred 
to by the term 'worms') have characteristic flow features suggestive of vortex break-
down. He observed that the tangent of the helix angle (ratio of azimuthal to axial 
component) of the velocity vector is larger than that of the vorticity vector. This 
represents one of the necessary conditions for vortex breakdown developed by Brown 
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FIGURE 1. Diagram of the structures in a plane mixing layer. 

and Lopez (1990) on the basis of steady, axisymmetric swirling flow theory. Chen e 
al. (1990) have also suggested that vortex breakdown may occur within the three-
dimensional plane mixing layer flow computed by Moser and Rogers (1992). It is 
this latter suggestion that is the subject of investigation in this study. 

The flow computed by Moser and Rogers (1992) is a three-dimensional, incom-
pressible plane mixing layer formed between two streams moving at differing veloc-
ities. In such a plane mixing layer, spanwise vortices, called 'rollers', are generated 
by the Kelvin-Helmholtz instability of the layer. These rollers undergo 'pairing' 
whereby neighboring rollers co-rotate and amalgamate. Three-dimensional insta-
bility of the mixing layer also gives rise to counter-rotating 'rib' vortices which exist 
in the region between the rollers (the 'braid' region) and extend from the bottom 
of one roller to the top of the next (Figure 1). The vorticity in the rib vortices 
is predominantly perpendicular to that of the rollers. An observed change in the 
character of the local topology along a rib vortex, from stable focus/stretching to 
unstable focus/contracting, was taken by Chen ci al. (1990) as evidence for vortex 
breakdown. We wish to determine whether the phenomenon of vortex breakdown 
is indeed responsible for the observed change in local topology. 

The approach used in the present study to identify vortex breakdown is to project 
flow field quantities in the vicinity of the rib vortex onto a locally cylindrical polar 
co-ordinate system. The cylindrical polar co-ordinate system is constructed such 
that the axial direction corresponds to the axis of the rib vortex. Local topology (ex-
plained in detail in section 2), axial velocity, azimuthal vorticity, and enstrophy are 
all examined in this co-ordinate system. Comparisons are made with axisymmet-
nc vortex breakdown in confined swirling flows as computed by Brown and Lopez 
(1990). Vortex-vortex interactions are also investigated to determine whether they
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or the vortex breakdown are responsible for the observed spiralling of the rib vortex 
core. 

The motivation behind the present research is twofold. Firstly, vortex breakdown 
can make a significant contribution to mixing. If it occurs in a flow such as the plane 
mixing layer, which is undergoing a transition to turbulence, mixing associated 
with vortex breakdown may provide a mechanism for transition. Secondly, if vortex 
breakdown can occur in a coherent structure in the mixing layer flow, it may also 
be occurring in coherent structures in other flows, such as in the worms found in 
homogenous isotropic turbulence. 

2. Global and local classifications of flow field topologies 
Complex flow fields can be interpreted by classifying their topology. This can 

either be done globally or locally. In the global approach, developed by Perry 
and Fairlie (1974) and extended by Chong, Perry, and Cantwell (1990), the critical 
points of the flow field are identified. The critical points in a flow field are those 
points where all three velocity components are simultaneously zero relative to a 
global observer. A local Taylor series expansion of the velocity field with respect 
to space co-ordinates is made at each of these critical points, and the invariants 
of the resulting 3 x 3 Jacobian matrix, the velocity gradient tensor A, are used to 
completely classify the topology of this critical point. 

In the local approach, the co-ordinate system translates without rotation while 
following the fluid particle. That is, each point in the flow field is considered to be 
a critical point since the velocity of each point is zero relative to a local observer. 
The topology of each point in the flow is then classified, as in the global approach, 
by considering the local velocity gradient tensor at each point in the flow. Due to 
the Galilean invariant nature of the velocity gradient tensor and hence any property 
based on this tensor, the local topological classification of each fluid flow point is 
independent of the observer. This local classification of the flow field was first used 
by Chen et al. (1990) and is the approach used in this study. 

The velocity gradient tensor can be decomposed into its symmetric and antisym-
metric parts, i.e. 

where
S,, (! + 

axj 

is the rate-of-strain tensor and

wij = ( Ou ' - 

is the rotation tensor. A11 , S, and W5, are all tensors of second order. 
For a second order tensor, A, where )' i, \2, and 1\3 are the eigenvalues and e1, 

e2 , and e3 are the eigenvectors, then 

(A - )J)e = 0,
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and the corresponding characteristic equation 

det[A - Al] = 0, 

may be written as
A3+PA2+QA-3-R=o. 

The invariants P, Q, and R are
P= 

Q = (P2 - S,,S - W121V31)/2,

R = (—P3 + 3PQ - SS,kSk - 3W)WkSk1)13. 

For an incompressible flow as is being considered here, P = 0, and the topology of 
the flow is completely classified by Q and R. 

The characteristic equation A3 + QA + R = 0 can have (i) all real distinct roots, 
(ii) all real roots with at least two equal, or (iii) one real root and a conjugate pair of 
complex roots. The curve 27R2 + 4Q3 = 0 separates the regions of real and complex 
roots. Chong, Perry and Cantwell (1990) define regions where the velocity gradient 
tensor has complex eigenvalues as vortex cores, i.e. regions where Q > —3(R/2)2/3 
are vortical in nature. The eigenvalues of the velocity gradient tensor determine the 
local kinematics of the flow, and these are determined by the invariants Q and R. 
If Q> —3(R/2)2/3, then a conjugate pair of complex eigenvalues result, and hence 
the trajectories will be spiralling locally. Whether the spirals are stable or unstable 
is determined by the sign of the real eigenvalue, which in turn is determined by the 
sign of R. If R > 0, then the spiral is unstable, and to conserve mass, the local 
topology is of the unstable focus/contracting (UFC) type. For R < 0, it is of the 
stable focus/stretching (SFS) type. For the degenerate case of R = 0, the trajectory 
is a closed loop rather than a spiral. For Q < — 3(R/2)2/3, the local flow is strain 
dominated, and for R < 0, the topology is of the stable node/saddle/saddle (SNSS) 
type, and for R> 0, it is of the unstable node/saddle/saddle (UNSS) type. 

3. Determination of the rib vortex axis 
The following discussion centers on the flow case 'HIGH 1P' of Moser and Rogers 

(1992) in which the initial conditions of the calculation involved a high-strength 
three-dimensional perturbation. The structure of the vortex was determined at 
non-dimensional time t = 28.5, after a pairing of the main rollers had occurred. 
Chen et at. (1990) have suggested that vortex breakdown may be occurring at this 
time based on their observation of a subsequent change in the local topology along 
the vortex core. 

In order to describe the structure of the vortex, its associated velocity and vortic-
ity fields, a co-ordinate system that is peculiar to the vortex is required rather than 
one using the co-ordinate system in which the governing equations are cast. A local 
cylindrical polar co-ordinate system is chosen where the axial direction is tangent 
to the axis of the vortex. A difficulty arises in defining the axis of the vortex. Here,
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FIGURE 2. Location of the vortex axis projected onto x-y and x-z planes at time 
t = 28.5. 

a distinction is made between the 'centerline' and the 'axis' of the vortex. If the 
modal decomposition of the azimuthal components of the vortex velocity and vor-
ticity fields are dominated by even modes, then the centerline and the axis coincide. 
If, however, the odd modes dominate, then the centerline spirals around the vortex 
axis. 

There has been much controversy over what constitutes the centerline of a vor-
tex (e.g. Yates and Chapman 1992). In regions where the vortex is predominantly 
axisymmetric, its centerline can be reasonably approximated by either the loci of 
enstrophy local maxima, or a vortex line extending from a point of maximum en-
strophy in the vortex core. The vortex core is taken to be the region enclosed by 
the maxima of the azimuthal component of velocity. The axis of the vortex has 
been determined by both methods and the location of the axis projected onto x - y 
and x - z planes are given for t = 28.5 in Figure 2. There is very little difference in 
the determined axis from either method for x < 8. 

The structure of the rib vortex at t = 28.5 can be described in terms of three 
distinct regions. Region I extends from the mid-braid plane to the axial loca-
tion where the local topology changes from stable focus/stretching to unstable fo-
cus/contracting. The mid-braid plane is the z  y plane mid way between two 
spanwise rollers (see Figure 1), and in the time-developing calculations of Moser 
and Rogers (1992), this plane is a symmetry plane. Region II extends downstream 
from the point of topology change. The structure of the vortex in regions I and II
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FIGURE 3. Spanwise Z, and vertical Y, locations of the vortex axis in terms of 
distance along the axis at times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5. 

is dominated by the axisymmetric azimuthal mode. The rib vortex then evolves to 
a stage where it is no longer dominated by the axisymmetric mode. This region is 
denoted as region III. Region III does not appear at the earlier times considered 
since the centerline does not spiral about the axis at these times. 

4. Temporal and spatial evolution of the streamwise rib vortex 

The development of the rib vortex was investigated by analyzing the flow field 
at three non-dimensional times, t = 22.3, t = 25.3, and t = 28.5 (where the first 
pairing occurs at t = 23.4). At each time, the vortex axis was determined by the 
techniques outlined in section 3. The vortex axes are shown in Figure 3. The 
parameter s is the distance along the vortex axis from the mid-braid plane. Local 
cylindrical polar co-ordinates were determined at each of the three times. At any 
point on the vortex axis, the axial direction ax is defined as being tangent to the 
vortex axis, positive downstream. The radial direction r is defined in terms of the 
axial direction ax and the vertical direction y by r = ax x y. Figure 4 illustrates 
the local cylindrical polar co-ordinate system. 

The distribution of azimuthal velocity across the vortex core at a streamwise 
location downstream of the mid-braid plane but upstream of the topology change
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FIGURE 4. Local cylindrical polar co-ordinate system defined along the axis of 
the vortex. 

(s = 1.0) at time t = 28.5 is shown in Figure 5. The point s = 1.0 lies in region I. 
Also shown is the azimuthal velocity for a Burger's vortex given by 

vg(r)
r (1—exp(—cry)) 
- 
27r	 V27 

where 'y = r' /2, r = 2.2 and a = 18. Both r and cw have been fitted to the data from 
the mixing layer calculation. Despite the highly three- dimensional nature of the 
fiowfield, in region I the azimuthal velocity of the rib vortex is nearly axisymmetric 
and well described by the equation for a Burger's vortex. 

Figure 6 shows the variation in the velocity gradient tensor invariants, Q and R, 

along the vortex axis as well as the vortex stretching, w1 S,w,, at the three times 
considered. The instantaneous exponential stretching rate for a vortex element is 
given by

= 

where w is the vorticity vector. In the inviscid limit (Dresseihaus and Tabor 1991),
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FIGURE 5. Radial distribution of azimuthal velocity at axial location s = 1.0 and 
azimuthal locations 9 = 0 and 9 = ir, denoted by o and compared with a Burger's 
vortex azimuthal velocity distribution for r = 2.2 and a = 18. 

this may be expressed as

ij 

where Z' is the unit vector in the direction of w. A related term, wI S,w) is referred 
to as 'vortex stretching'. A vortex intensifies if it is being stretched, i.e. w,Sw3 
is positive. The imposed axial strain will cause a decrease in the cross-sectional 
area of the vortex, and to conserve angular momentum, the angular velocity, and 
hence vorticity, will increase. There is a strong negative correlation between the 
vortex stretching and the third invariant R, i.e. when one is positive, the other is 
negative. Since the second invariant is positive in the vortex core region, positive 
vortex stretching corresponds to a local topology of the stable focus/stretching type 
and negative vortex stretching to the unstable focus/contracting type. 

Figure 7 shows the radial variation of the local topology along the vortex axis at 
9 = 0 and ir at the three different times. The light regions correspond to a stable fo-
cus/stretching type topology and the dark regions to an unstable focus/contracting 
type topology. Along the centerline, the local topology changes from stable fo-
cus/stretching to unstable focus/contracting, and this denotes the boundary be-
tween regions I and H. This boundary moves downstream at a non-dimensional 
speed 0.37.
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FIGURE 6. Variation of the vortex stretching term, w i Sijwj , and the second and 
third invariants of the velocity gradient tensor, Q and R, with distance along the 
vortex axis s, at times (a) i = 22.3, (b) t = 25.3, and (c) t = 28.5.
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FIGURE 7. Local topology in the vortex core region of the streamwise rib vortex 
at times (a) I = 22.3, (b) I = 25.3 and (c) I	 28.5. 
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FIGURE 8. Axial velocity in the vortex core region of the streamwise rib vortex at 
times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5. 

Figure 8 shows contours of axial velocity. It may be seen that deceleration of the 
axial flow is associated with the topology change. Furthermore, the axial velocity 
in the region of the topology change is approximately equal to, or perhaps a little 
greater than, the speed at which the boundary between regions I and II moves 
downstream, indicating that the boundary is advected downstream by the local 
velocity.
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FIGURE 9. Azimuthal vorticity in the vortex core region of the streamwise rib 
vortex at times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5. 

S 

FIGURE 10. Enstrophy in the vortex core region of the streamwise rib vortex at 
times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5. 

In Figure 9, the distribution of the azimuthal component of vorticity is shown. 
In region I, for all three times, the azimuthal vorticity is nearly zero. The vorticity 
vector is almost entirely directed in the axial direction. Just upstream of region 
II, a negative component of azimuthal vorticity appears. It has a local extremum 
off the axis. This negative component of azimuthal vorticity off the axis induces 
a retardation of the axial flow. This scenario is entirely consistent with the early
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FIGURE 11. Axial distribution of the tangents of the helix angles of velocity and 
vorticity at the radius of maximum azimuthal velocity at time t = 28.5. 

stages in the evolution of an axisymmetric vortex beginning to undergo vortex 
breakdown. 

Figure 10 shows contours of enstrophy. The maximum enstrophy is at the center 
of the vortex and has diminished to about half its maximum value at the topol-
ogy change. Where the azimuthal vorticity is at its maximum, the enstrophy has 
decreased to approximately one fifth of its maximum value. 

The ratio of the tangents of the helix angles of the velocity and vorticity vectors 
in region I at the edge of the vortex core is much larger than one (see Figure 
11). This indicates that the strearnwise rib vortex, which is nearly axisymmetric 
in region I, has a structure which satisfies a necessary condition for an inviscid, 
axisymmetric vortex to undergo vortex breakdown. The primarily axially directed 
vorticity vector is locally turned into the negative azimuthal direction, and the 
corresponding induced velocity results in a deceleration of the axial flow as detailed 
in Brown and Lopez (1990). The temporal and spatial developments, particularly 
of azimuthal vorticity, are similar to those found by Brown and Lopez (1990) for 
an isolated axisymmetric vortex in the early stages of vortex breakdown. Contours 
of the azimuthal vorticity from that study are presented in Figure 12. Initially, the 
azimuthal vorticity close to the axis is positive with little axial variation. The inflow 
profile is time independent. Slow radial diffusion, due to the finite Reynolds number 
of this flow, results in a slight broadening of the vortex core and a slight slowing of 
the axial flow. Off the axis, the initially axially directed vorticity vector has been
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FIGURE 12. Azimuthal vorticity contours for an isolated axisymmetric vortex (re-
produced from Brown and Lopez 1990). 

turned into the negative azimuthal direction. This is enhanced locally by the non-
linear feed-back mechanism detailed in Brown and Lopez (1990). By time t = 80, a 
local concentration of negative azimuthal vorticity has developed. This is advected 
downstream by the mean axial flow at the same time as it is growing in intensity 
through the non-linear process. By time t = 240, the negative azimuthal vorticity 
is large enough to induce a reversed axial flow and begins to propagate upstream 
under its own induced velocity. The major difference between the evolution of the 
rib vortex and the isolated axisymmetric vortex is the lack of a significant positive 
azimuthal component of vorticity in the rib vortex. Nevertheless, in both cases, the 
ratio of helix angles is greater than one, the region of negative azimuthal vorticity 
initially travels downstream, and there is an associated deceleration of the axial 
flow, underlining the similarities between the two cases. 

5. Vortex-vortex interactions in region III 
It is clear from the discussion in the previous section that the rib vortex, at the 

times considered, is in the early stages of axisymmetric vortex breakdown. However, 
the most striking aspect of the structural development of the rib vortex is not
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(b) 

FIGURE 13. Counter rotating streamwise rib vortices visualized by an enstrophy 
isosurface of level 3.2: (a) perspective view looking downstream, (b) view from top, 
and (c) view looking upstream.
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directly associated with the vortex breakdown process occurring in regions I and II. 
At the latest time considered, t = 28.5, the vortex has developed a very distinctive 
spiral in region III. Figure 13 gives three views of the structure as visualized by an 
isosurface of the enstrophy. Shown are a pair of counter rotating rib vortices and 
some concentrated vortical flow between them. 

Due to the spanwise periodicity in the flow, the rib vortices are present as an 
array of vortices with alternating senses of rotation across the mixing layer. This 
arrangement results in their drawing vortical fluid from within the spanwise roller 
region to between the rib vortices, whose induced velocity in the plane between them 
is directed vertically outward from the spanwise roller region. Bernal and Roshko 
(1986) have demonstrated this effect visually using spanwise laser-light sheets illu-
minating fluorescent dye which has been introduced into the flow. The observed 
mushroom-like structures indicate the locations of the rib vortices. 

At time t = 22.3, the rib vortex pairs have not yet drawn much vortical fluid out 
between them. By t = 25.3, the vortical flow between the rib vortex pair has begun 
to collapse into a vortex loop, following the scenario depicted by Corcos (1988). The 
enstrophy associated with this vortex loop is diffuse and of elliptic cross section. 
By t = 28.5, the vortex loop has been stretched by the induced velocity from the 
streamwise rib vortex pair. In the neighborhood of the rib pair, the vortex loop 
has been stretched and intensified into a vortex pair, which is connected by a loop. 
Three different views of these vortices are given in Figure 14, where vortex lines 
passing through the center of the vortices have been used as well as an isosurface of 
enstrophy. These figures clearly show the spiralling of the rib vortex pair. Note that 
the sense of the spiral is opposite to that of the sense of rotation of the vortex. The 
spiralling of the rib vortex pair occurs at the axial location closest to the intensified 
vortex loop, suggesting that the spiralling is due to a vortex-vortex interaction 
between the rib vortex and a leg of the vortex loop. 

The ratio of enstrophy in the rib vortices to that in the spanwise rollers needed 
for the rib vortices to draw up vortical flow and intensify it by vortex stretching 
into a counter-rotating pair between a pair of streamwise rib vortices remains to be 
determined. 

6. Conclusions 
From this study of the streamwise rib vortices in a three- dimensional plane mix-

ing layer, it is evident that these vortices evolve from an essentially axisymmetric 
state, well-described as a Burger's vortex. The vorticity vector, initially aligned 
with the axial direction, is susceptible to being turned into the negative azimuthal 
direction by the swirling flow. Brown and Lopez (1990) have shown that this in-
viscid process is possible when the tangent of the helix angle of the velocity vector 
is larger than that of the vorticity vector, as is the case for the rib vortices investi-
gated. This structure is typical of the rib vortex downstream of the mid-braid plane 
and upstream of the topology change. Evidence has been found that it begins to 
undergo vortex breakdown. This is indicated by the change in the local topology, 
the development of a negative azimuthal component of vorticity, a deceleration of
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(c) 

FIGURE 14. Counter rotating streamwise rib vortex pair and intensified vortex 
loop visualized by an enstrophy isosurface of level 3.2 and vortex lines: (a) view 
looking upstream, (b) spanwise view, and (c) top view.
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the axial flow along the vortex axis, and a departure from axial symmetry down-
stream of the topology change. This provides a natural division of the structure 
of the rib vortex into two distinct regions on the vortex axis: where the topology 
is stable focus/stretching and where it is unstable focus/contracting. At the later 
times considered, there is a third structurally distinct region downstream of the 
two described above. In this region, the spiralling of the vortex core is due to a 
vortex-vortex interaction between the streamwise rib vortex and the vortical flow 
in the main spanwise roller region which has been drawn up and stretched by two 
counter- rotating adjacent rib vortices. 

Although vortex breakdown is beginning to take place at the times considered, 
it does not appear to be having much effect on the rest of the flow. There is no 
sudden core expansion, recirculation zone, or intense mixing, phenomena normally 
associated with large-scale vortex breakdown flows. Certainly the vortex-vortex 
interaction dominates the flowfield in region III. However, vortex breakdown in 
small-scale flows may play a role in defining a length scale for vortical structures. 
In the rib vortex, the region in which the enstrophy is largest compared with the 
mean flow is bounded by the topology change, a change which can be attributed 
to vortex breakdown in the rib vortex. In small scale flows, viscous dissipation and 
interactions with other similar structures have previously been regarded as the two 
mechanisms whereby a finite length is imposed on a vortex. Vortex breakdown, 
essentially an inviscid phenomenon, should be considered the third. 

It would be interesting to follow the evolution of this flow further in time to 
determine whether the vortex breakdown develops further into a well defined recir-
culation zone or if a further pairing of the main rollers occurs before this eventuates. 

Acknowledgements 
We would like to thank Mike Rogers, Bob Moser, Julio Soria, Brian Cantwell 

and Rolf Sondergaard for discussions during the 1992 CTR Summer Program and 
Bruce Fairlie for his comments.

REFERENCES 

BERNAL, L. P. & RosHKo, A. 1986 Streamwise vortex structure in plane mixing 
layers. J. Fluid Mech. 170, 499-525. 

BROWN, G. L. & LOPEZ, J. M. 1990 Axisymmetric vortex breakdown. Part 2. 
Physical Mechanisms. J. Fluid Mech. 221, 553-576. 

CHEN, J. H., CHONG, M. S., S0RIA, J., SONDERGAARD, R., PERRY, A. E., 
ROGERS, M., MOSER, R. & CANTWELL, B. J. 1990 A study of the topol-
ogy of dissipating motions in direct numerical simulations of time-developing 
compressible and incompressible mixing layers. Proceedings of the Center for 

Turbulence Research Summer Program 1990. Stanford Univ./NASA Ames. 

CHONG, M. S., PERRY, A. E. & CANTWELL, B. J. 1990 A general classification 
of three-dimensional flow fields. Phys. Fluids A. 2, 765-777.



164	 J. M. Lopez and C. J. Bulbeck 

CoRcos, G. M. 1988 The role of cartoons in turbulence. In Perspectives in Fluid 
Mechanics (ed. D. E. Coles) Lecture Notes in Physics, vol. 320, PP. 48-65. 
(Springer). 

DRESSELHAUS, E. & TABOR, M. 1991 The kinematics of stretching and alignment 
of material elements in general flow fields. J. Fluid Mech. 236, 415-444. 

JIMENEZ, J. 1992 Kinematic alignment effects in turbulent flows. Phys. Fluids A. 
4,652-654. 

KELSO, R. 1992 PhD Thesis, University of Melbourne, Australia. 
MOSER, R. & ROGERS, M. 1992 The three-dimensional evolution of a plane 

mixing layer: pairing and transition to turbulence. J. Fluid Mech., submitted 
for publication. 

ORSZAG, S. A. 1991 Otto Laporte lecture, 44 h meeting APSDFD, Scottsdale AZ. 
PERRY, A. E. & FAIRLIE, B. D. 1974 Critical points in flow patterns. Adv. 

Geophys.. 18, 299-315. 

SHE, Z.-S., JACKSON, E. & ORSZAG, S. A. 1990 Intermittent vortex structures 
in homogeneous isotropic turbulence. Nature. 344, 226-228. 

YATES, L. A. & CHAPMAN, C. T. 1992 Streamlines, vorticity lines, and vortices 
around three-dimensional bodies. AIAA Journal. 30, 1819-1826.



9H5353  
Center for Turbulence Research 	

-	
165 

Proceedings of the Summer Program 1992	

47 
Direct simulation of polymer drag reduction 

in free shear flows and vortex dipoles 

By P. Orlandi' G.M. Homsy2 and J. Azaiez2 

One of the most efficient techniques for drag reduction is the injection of polymers 
near a wall which can achieve a reduction in drag up to 80%. Several experimental 
observations tend to indicate that polymers modify the turbulence structures within 
the buffer layer and show that the changes consist of a weakening of the strength of 
the streamwise vortices. In this paper, we investigate the effects of viscoelasticity on 
two different types of flows: the vortex dipole impinging walls to model streamwise 
vortices in a turbulent boundary layer and the mixing layer that represents free 
shear flows. For this purpose, we examined three different rheological models: the 
Oldroyd-B model, the Jeffrey's corotational model, and the FENE-P model. 

1 Introduction 
Evidence of drag reduction both by passive and active control has been observed 

experimentally, but a clear explanation of the mechanisms responsible for this re-
duction has not been given, mainly because the experimental observations cannot 
describe all the details of the flow. In the literature, there is a large number of pa-
pers devoted to the experimental study of the wall layer structures in drag reducing 
flows. This literature is summarized in the review article of Tiederman (1989). The 
main conclusion that we can draw from these papers is that drag reduction is due 
to modifications of the wall layer structures, particularly in the buffer region, the 
most active region in wall bounded flows. From flow visualizations, Oldaker and 
Tiederman (1977) concluded that the polymer solution inhibits the formation of low 
speed streaks and that, when these are formed, their spacing in wall coordinates 
increases with polymer concentration. 

In the last decade, direct simulations of wall bounded flows have been a very 
useful tool for a deeper understanding of turbulence structures and their role in 
wall friction. Free shear flows of viscoelastic fluids on the other hand, have not 
received as much attention as bounded flows did, and to our knowledge, only few 
and inconclusive experiments have been conducted. 

Due to the lack of a universal constitutive equation that describes most common 
viscoelastic behaviors, numerical studies of non-Newtonian fluids have been limited 
to special types of polymeric solutions in simple flows. In spite of these limitations, 
many results showing important effects of viscoelasticity for different types of flows 
have been reported (Tiederman(1989)). In a previous paper (Orlandi 1991), a 

1 Università di Roma, "La Sapienza" 
2 Stanford University
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heuristic relation between the polymer stresses and the flow properties in a channel 
flow was used to investigate how the flow structures change in a situation where 
drag reduction was achieved. The model was not tensorial invariant and was not 
related to the molecular structure of the polymers. 

In this paper, we wish to initiate a systematic study of the effects of polymers 
on the flow structures using rheological models based on transport equations for 
the stresses of the polymers. In particular, we studied the case of vortex dipole 
in the presence of walls. A vortex dipole models the streamwise vortices in the 
buffer region of a turbulent channel, which are responsible for turbulence produc-
tion and turbulent drag. This was shown numerically in a quasi two-dimensional 
simulation by Orlandi and Jimenez (1991). We have also examined the case of the 
roll-up of a two-dimensional mixing layer. Our interest in the mixing layer problem 
was motivated by the results of linear stability analysis reported by Azaiez and 
Homsy (1992). This analysis shows that, in a special limit of the elasticity number, 
viscoelasticity reduces the instability of the flow. 

We considered three viscoelastic models: the Jeffrey's corotational model, the 
Oldroyd-B model, and the FENE-P model which describes the rheological proper-
ties of dilute polymeric solutions. The flows governed by these rheological models 
are characterized by three dimensionless numbers: The Reynolds number, Re, the 
Weissenberg number, We, a dimensionless measure of the elasticity of the fluid and 
the coefficient K = 'iS  

'is + 'ip, 
a ratio of the solvent viscosity 'is and the polymeric 

contribution to the shear viscosity, 'ip. In the case of the FENE-P model, a third 
parameter, b, related to the nature of the spring used to model the macromolecule, 
is introduced. 

The first interesting physical aspect that comes out of the study of these three 
models is that the formation of small scales is enhanced and that these small scales 
are rapidly dissipated. This unexpected phenomenon needs an experimental confir-
mation, and we hope that in the near future two-dimensional experiments will be 
performed in order to both understand in details the behavior of dilute polymeric 
solutions and validate the results of our two-dimensional viscoelastic simulations. 

While for the mixing layer we obtained results in a quite large range of the 
Weissenberg number, only results at small Weissenberg numbers could be obtained 
for dipoles impinging walls because of the special flow topology: with the FENE-P 
model, the polymeric stresses reached very large values at the stagnation point, and 
the calculations were diverging for We of order 1. At smaller values of We, the 
calculations did not differ from the Newtonian case because the flow stresses were 
able to overcome any possible polymeric effect. 

2 Physical and numerical model 

We used a vorticity-streamfunction formulation for the Cauchy's momentum 
equation. This equation is closed through evolution equations relating the stress 
tensor to the shear rate tensor. In all the subsequent analysis, the stress tensor is 
written as the sum of two stresses.
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r11 = i7(Ky + (1 - K)a,,)	 (1)

We fixed K = 0.5. 
The first term in Eq.(1) reflects the contribution of the Newtonian solvent and 

is proportional to the shear rate tensor y, the second one represents the polymeric 
contribution and is proportional to the tensor a. The tensor a satisfies different 
evolution equations corresponding to the various rheological models we are exam-
ining. 

Eq.(1) leads to the following vorticity equation 

0a12 0a12 Oall—a22 

Ot Re Re - - ôxiôx (2) 

where the nonlinear terms have been expressed as a Jacobian. The streamfunction 
is evaluated from the Poisson's equation V 2 1' = -. 

In the case of the mixing layer, we imposed periodic conditions in the streamwise 
direction. In the transverse direction, free slip conditions are imposed in the finite 
difference code while periodic conditions are imposed for the spectral code. In the 
case of the spectral code, the domain was made large enough in the transverse 
direction to ensure that all functions go to zero at the periphery of the domain. 
Non-slip conditions are imposed at the wall for the vortex dipole. 

The stresses are governed by a set of partial differential equations which constitute 
the rheological model. We have considered several models: the first one is the 
Jeffrey's corotational model which is obtained by formulating the equations of state 
in a frame translating with the fluid and rotating with the local angular velocity of 
the fluid. The equation describing this model is: 

aij + We!L = i,ij	 (3)
bt 

where We =	 is the Weissenberg number. 

D1zjD0;L+ 
Dt	

"Jik0kj + wjkaik 

is the Jaumann derivative. 
The rheological equation for the Oldroyd-B model is: 

a 3 + We j 3 = iij	 (5) 

The upper convective derivative

	

	 is related to the Jaumann derivative through
bt 

the relation:

baij	 Da 1	 1	 . = _! + (a ik ykj + 7ik akj)	 (6)



168
	

P. Orlandi 

N

00	 00	 20	 40	 60

t 

FIGURE 1. Time evolution of the polymeric stresses at We = 5.	 Oldroyd;
... Jeffreys; ---- FENE-P 

To the contrary of what is observed for the Jeffrey's model, the Oldroyd-B model 
has a very large dependence on the Weissenberg number 'as will be discussed in 
the next paragraph. We found that at certain values of We, the stresses grow 
indefinitely in time and the growth rate is flow dependent. 

The Oldroyd-B model gives a steady state elongational viscosity that goes to 
infinity at a finite elongational rate. This unlikely behavior results because the 
Hookean dumbbell model permits infinite extension. In order to avoid this unreal-
istic behavior, a Warner law is used instead of the Hook law leading to the FENE-P 
model. This model is described by Mackay and Petrie (1989) and the rheological 
equation is:

a,Z + We —— = 7ij + Dt D1nZ (I + a 1 We)	 (7) 

where Z = 1 +	 + 
We

ajj ), n = 2 for a two dimensional flow. In order to 
b	

D1Z 
facilitate the numerical solution of Eq.(7), 	 was derived from the transport 
equation for as,. 

The set of governing equations have been discretized by a finite difference scheme 
second order accurate in space and in time. The main characteristics of the numer-
ical method is that it discretizes J(w, ) by the Arakawa scheme which conserves 
energy, enstrophy, and skew symmetry in the inviscid limit. The polymer contribu-
tion to the stresses have been located at different grid positions with a and a 22 at 
the center of the cell and a 12 at the same location of w and 0. This choice allows a 
very compact formulation of the right hand side of Eq. (2) and leads to the solution 
without imposing boundary conditions for a ll and a22 . On the other hand, a 12 has 
been taken equal to zero both on free-slip and no-slip walls. The stream function 
has been solved directly by using the Fourier transform in the periodic direction. 
Numerical simulations have been performed on the CRAY YMP84 at NASA Ames 
and the CPU required for 1000 time steps on a 128 x 128 grid was 150 seconds.
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FIGURE 2. Time evolution of the polymeric stresses at b = 5.	 We = 5; 
We = 20; ... We = 50 

3 Results

1 Mixing layer 

The mixing layer simulations have been performed in order to study the effects of 
viscoelasticity on the vorticity field. Numerical simulation using a pseudospectral 
method were performed in order to compare with the finite difference results. The 
good comparison between finite difference and pseudospectral simulations will be 
presented elsewhere. 

The initial base state is given by a hyperbolic tangent velocity profile on which 
we superposed a cos perturbation on the stream function with the maximum at the 
centerline y = 0. The most unstable wave number, a = 0.44, has been used in all 
the simulations. The extension of the domain in the streamwise direction is set to 
27r 

b with 5 the momentum thickness of the mixing layer. The vertical extension has 

been heuristically fixed equal to 8. The Reynolds number is defined as Re = 

where uO = ( U1 - U2 )/2. U1 and U2 are the free-stream velocities. 
The growth of the maximum value of( a 11 - a22) and of a12 obtained for the three 

viscoelastic models are shown in Fig. 1. At We = 5, the stresses are smaller for the 
Jeffrey's corotational model than for the other two models; as a consequence, the 
vorticity field does not differ appreciably from the Newtonian case. In the case of 
the Oldroyd-B model, the stresses grew rapidly due to the unrealistic characteristic 
of this model that allows the macromolecules to extend infinitely. 

We suspected that the divergence of the codes for the Oldroyd-B model at high 
We to result from some numerical instability. By refining the mesh and varying 
the time step for both the finite difference and the pseudospectral codes, we found 
that, at the same values of We, the solution was always diverging at the same point 
in time. We have shown that the divergence was caused by the change of sign of 
the eigenvalues of the system of nonlinear equations. The change of sign occurred 
at certain values of We, and this value is flow dependent. 

In the case of the FENE-P model, the dependence of the flow on the Weissenberg 
number and on the parameter b has been studied by performing different simulations
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FIGURE 3. Time evolution of the polymeric stresses at We = 20.	 b = 1; 
---- b = 5; ... b = 10 

for the mixing layer at Re 100. Fig. 2 shows how the polymeric contribution to 
the stresses depend on We at b = 5. The simulations at We = 5 and We = 20 
were performed on a 128 x 128 grid. With this grid, at We = 50, the high values of 
the stresses produced wiggles in the vorticity field at i 40; these wiggles partially 
persisted with a grid twice finer and disappeared with a 384 x 384 grid. Fig. 2 also 
shows that the effect of the Weissenberg number on a 12 are large at later times and 
that large variations of the maximum value of( a ll - a22 ) occur at low rather than 
at high We values. Fig. 2 shows also that by increasing the Weissenberg number 
from We = 20 to We = 50, the variations are less important than those obtained 
by taking the We from 1 to 20. 

Fig. 3 shows the dependence on the parameter b. We notice that the maxima are 
more dependent on b than on We and that the maximum values are higher than 
those observed in Fig. 2. This behavior is consistent with the fact that for very 
large values of b the Oldroyd-B model is recovered. 

A clear picture of the evolution of the flow is obtained from the analysis of the 
vorticity and of the stress field . Vorticity contour plots at three different times 
and for three different We values are presented in Fig. 4. We remark that at low 
We, the flow does not differ from the Newtonian case while at higher We, more 
noticeable changes appear in the structure of the mixing layer. Very interesting is 
the occurrence of intense gradients in the braids. These gradients are convected in 
the roll-up region and persist for a longer time, producing a faster and more intense 
roll-up as shown at We = 50. 

all - a22 is the other quantity contributing to the modification of the vorticity 
field and can be measured experimentally. Fig. 5 shows a large increase of its 
maximum value when We goes from We 1 to We = 20. On the other hand, 
when the Weissenberg number increases from We = 20 to We = 50, the value 
does not change significantly, then we can expect minor changes in the vorticity 
field. From Fig. 4 and Fig. 5 we can draw a first conclusion that the effect of the 
Weissenberg number is to concentrate the modifications by polymers at small scales. 
From contour plots of vorticity and a ll - a22 , not reported in this paper, we have 
observed that by increasing b, high peak values are produced and are localized in
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t=15	 t=30	 t=45 

FIGURE 4. Vorticity contour plots. b=5. 

wider regions, and thus weaker effects on the mixing layer roll-up are observed. 
At this stage of the work and without having any experimental observations with 

which to compare our results, we do not wish to go into a deeper analysis of the flow 
to understand the mechanisms responsible for this rapid transfer of energy from the 
large scales to the smaller scales. We think that the results we obtained will be of 
more interest if they can be checked through experimental studies. The comparison 
between numerical and experimental predictions will help in understanding the 
physics behind the effects of viscoelasticity on the structure of the flow. 

2 Vortex dipole impinging walls 

This two-dimensional flow has been considered because it represents the stream-
wise vortices in a turbulent boundary layer, which are responsible of turbulent 
drag and turbulence production. In the present two-dimensional simulation, we 
have introduced a Lamb dipole rather than a single vortical structure because the 
dipole moves towards the wall by self-induction while a single vortex must be ad-
vected towards the wall by an external field. As a first case, we have considered 
the interaction with a free-slip wall to investigate the distributions of the polymeric 
contribution to the stresses generated at the moment of the impact. We expect that, 
at the stagnation point, a large increase of the polymeric stresses is obtained since 
this is a point where strong elongations of the polymers molecule occur. This large 
increase of the polymers stresses is the cause of the difficulty to perform simulations 
at high Weissenberg numbers.
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t = 15	 t = 30

	

îiI 
FIGURE 5. a ll - a22 contour plots. b=5. 

The simulations were performed on a 192 x 192 grid points in a domain extending 
in the horizontal and in the vertical directions 4 dipoles radii. Solutions with the 

Uda FENE-P model were obtained only for We <3 and b < 1 at Re -- = 50 (Ud 

is the translation velocity of the dipole, a is the dipole radius). The simulations 
were performed both with free-slip and no-slip walls. In the case of the dipole 
impinging a free-slip wall, the vorticity field, at the moment of the impact, is shown 
in Fig. 6. Similarly to what has been observed in the mixing layer, this figure 
shows that all - a22 increases more than a 12 ; the maximum values are reached in 
the region of maximum normal stress and low vorticity. Although large polymeric 
stresses are obtained, the dipole does not change their shape appreciably, and this 
could be a consequence of the fact that dipolar structures are very stable to large 
perturbations. 

When the dipole impinges a non-slip wall, Fig. 7 shows that the vorticity field 
does not depend strongly on the Weissenberg number. There is, however, a slight 
decrease of the magnitude of the vorticity level as compared to the Newtonian case, 
but this decrease is not sufficient to change the type of vortex rebound. We did not 
perform a systematic study of the We effects. 

4 Conclusion 
This preliminary study testing different viscoelastic models allowed us to predict 

the effects of the introduction of polymers on the flow structure. By comparing
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(a)	 (b)	 (c) 

FIGURE 6. Contour plots of (a) vorticity, (b) all - a22 and (c) a12 for dipole 
impinging a free-slip wall at Re = 50, We = 2 and b = .4. 

(a)	 (b)	 (c) 

FIGURE 7. Vorticity Contour plots (a) newtonian, (b) We = .5, b = 1. and (c) 

We = 3., b = 1. for dipole impinging a non-slip wall at Re = 50. 

the solutions obtained by the finite difference scheme and those obtained by a 
pseudospectral method, we have shown that the solutions did not diverge in time 
for numerical reasons. Two-dimensional simulations revealed that the cause of the 
exponential growth in the Oldroyd-B model at certain We is caused by a change in 
the sign of the eigenvalues of the a ll stress equation. 

Using the FENE-P model, we were able to conduct numerical simulations at rea-
sonably high Weissenberg numbers. In the case of the mixing layer, we noticed some 
changes in the structures of the roll-up. This is an interesting phenomenon since, 
in a space developing mixing layer just after the splitter plate, the initial instability 
could influence the growth of the mixing layer. The present simulations show the 
large potential in using polymers for the control and possibly the modification of 
the structures of the mixing layer. We hope to pursue this study by examining the 
effects of polymers on vortex stretching and streamwise vortices in the mixing layer. 
In the case of the vortex dipole, the changes on the vorticity field are negligible. 

We believe that the results reported in this study should be pursued by more 
detailed simulations and by experimental studies that will help in understanding 
the mechanisms responsible for the changes observed in the case of the mixing layer 
with the FENE-P model. We hope that the present study will stimulate more 
interest in non- Newtonian flows among both theoreticians and experimentalists. 
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Estimation of the vortex length scale and 
intensity from two-dimensional samples 

By D. L. Reuss' AND W. P. Cheng,2 

A method is proposed for estimating flow features that influence flame wrinkling 
in reciprocating internal combustion engines, where traditional statistical measures 
of turbulence are suspect. Candidate methods were tested in a computed chan-
nel flow where traditional turbulence measures are valid and performance can be 
rationally evaluated. 

Two concepts are tested. First, spatial filtering is applied to the two-dimensional 
velocity distribution and found to reveal structures corresponding to the vorticity 
field. Decreasing the spatial-frequency cutoff of the filter locally changes the char-
acter and size of the flow structures that are revealed by the filter. Second, vortex 
length scale and intensity is estimated by computing the ensemble-average velocity 
distribution conditionally sampled on the vorticity peaks. The resulting condition-
ally sampled "average vortex" has a peak velocity less than half the rms velocity 
and a size approximately equal to the two-point-correlation integral-length scale. 

1. Introduction 
The existence of turbulence is central to the operation of reciprocating internal-

combustion (RIC) engines. In particular, turbulence controls the burning rates 
(and thus the efficiency and engine speed range) in homogeneous charge engines by 
controlling flame wrinkling and in stratified charge engines by controlling mixing 
rates. However, considerable controversy exists concerning the definition and mea-
surement of the turbulence properties in RIC engines. The purpose of this work 
is to explore new ways of estimating the turbulence properties that affect flame 
wrinkling in a way that will overcome the problems of defining turbulence. 

1.1 Turbulent flow in RIG engines 

The flow field in the engine cylinder is first formed during the intake stroke as the 
air enters the engine cylinder through the annular gap between the inlet volume and 
the cylinder head. The flow is driven by the piston moving from top to bottom dead 
center. This forms very large scale motions (on the order of the cylinder diameter) 
often referred to as the "mean" flow. A strong swirling flow (similar to a single 
tornado filling the cylinder) is an example of the simplest mean flow that can be 
formed. The flow is then compressed as the piston moves up. Measurements and 
computations both suggest that the turbulent kinetic energy generated by the valve 
jets has largely decayed by top dead center, TDC. The turbulent kinetic energy that 

1 General Motors Research & Environmental Staff, Warren, Ml
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remains near TDC (when combustion begins) is generated mostly by the breakdown 
of the large-scale mean-flow structures. As the engine cycle continues, the flow is 
further distorted during combustion by the expansion of hot product gases and by 
the piston motion during the expansion stroke. Finally, the burnt gases are expelled 
through the exhaust valve by the piston motion during the exhaust stroke. 

The problem in defining RIC engine turbulence is rooted in what will be referred 
to here as "traditional turbulence theory", in particular, the traditional Eulerian 
point of view where the turbulent velocity, u(t), is measured at a fixed point as a 
function of time. The Reynolds decomposition is invoked, 

u=ii+u',	 (1) 

where i is the steady (or at least slowly varying) mean and u' is the fluctuating 
component. For the Reynolds decomposition to be valid, it is implicit that the 
temporal (and spatial) variations in ii occur over times (and distances) that are 
large compared to those associated with variations in u'. Further, the traditional 
flow is statistically stationary so that temporal averaging can be performed where 
local homogeneity exists and spatial averaging can be performed where directional 
homogeneity exists. 

Extending these traditional concepts to RIC engines is difficult at best (Arcouma-
nis & Whitelaw 1987, le Coz 1992, Fansler & French 1988, Fransler 1993, Fraser 
& Bracco 1988, Glover 1986, Rask 1981 & 1984). The velocity distribution of the 
largest structures associated with the "mean flow" is not steady, and the structures' 
spatial scales change due to dissipation and volume changes forced by the piston. 
Thus, simple temporal averaging cannot be used. Instead, the Eulerian velocity is 
conditionally sampled at each crank-angle during the engine cycle (eg. at each 720 
degrees of a four-stroke- cycle engine or 360 degrees in a two-stroke-cycle engine) 
and ensemble averaged over many cycles. The fluctuations about this mean that 
would traditionally be viewed as turbulence are not statistically stationary during 
the cycle, and there is no clear separation of the spatial and temporal scales of the 
ensemble mean velocity and turbulence. There is no local or directional homogene-
ity for temporal or spatial averaging. 

Further complicating the interpretation of RIC engine turbulence is the fact that 
cyclic variability in the mean flow contributes to measured fluctuations about the 
ensemble-mean velocity. Consider the swirling flow example above, but with no 
small scale random fluctuations normally associated with turbulence (ie. a laminar 
tornado). Let the center of the swirl (the point of zero velocity) randomly precess 
about the geometric center of the engine cylinder. Here the cyclic variability would 
be the phase variation in the position of the swirl center from cycle to cycle. That is, 
a fixed velocity probe might be precisely at the swirl center at a specific crank angle 
during one cycle and thus measure zero velocity, yet be near but outside the swirl 
center at the same crank angle during the next cycle and thus measure some finite 
velocity. By ensemble averaging many cycles at the same position and crank angle, 
a fluctuating velocity component is measured about the ensemble mean velocity. 
Whereas cyclic variability of the swirling flow would be expected to convect the flame
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to different positions on different cycles, it would not contribute to flame wrinkling 
to control the burning rate as turbulence does. Further, this fluctuating velocity 
does not correspond to the traditional concepts of fluctuations that contribute to 
the dissipation of turbulent kinetic energy. In reality, the flow actually does contain 
small-scale random turbulent structures and thus the measured velocity fluctuation 
in eqn. 1, u', is a sum of both the cyclic variability and the turbulence fluctuation. 
Consequently, estimates of the turbulence intensity, and thus kinetic energy, using 
u' will be overestimated, and turbulence length-scale estimates using two-point 
correlations will be incorrect. 

In an attempt to separate the cyclic variability of the mean flow from the tur-
bulence (Fansler & French 1988, Fraser & Bracco 1988), the instantaneous velocity 
has been separated as follows,

u=(u)+u'	 (2) 

=(u)+it+u"	 (3) 

u=(U)+u"	 (4) 

where (u) is the ensemble mean, u' is the fluctuation about (u), ü is the cyclic fluc-
tuation, u" is the turbulence fluctuation, and (U) is the cycle resolved mean. In 
practice, ü and u" are the low- and high-pass filtered components of u', respec-
tively, where an engine-speed-dependent cutoff frequency between 100 and 500 Hz 
is typically assigned (Rask 1981 & 1984). 

The content of the cyclic fluctuations and turbulence fluctuations is dependent on 
this cutoff frequency and is technically incorrect if, as expected, the energy spectra 
(temporal and spatial scales) of ii and u" overlap. 

In summary, the problem defining turbulence in RIC engines is that it has an 
unsteady mean with cycle-to-cycle variability, the temporal and spatial scales of 
the mean flow and turbulence fluctuations overlap, and in general the flow is inho-
mogeneous and anisotropic in all directions. Although velocity measurements have 
been used to illustrate the problem, the question of separating cyclic variability 
from turbulence is equally important in CFD modeling of in-cylinder combustion 
since single time- and length-scale models (usually k - e model) are currently used 
in practical engineering calculations. 

1.2 A nontraditional approach 

The previous discussion has centered on temporal measurements made at a single 
position in space, as this has been the only measure available in RIC engines using 
either hot-wire or laser Doppler anemometry. However, it is now possible to measure 
two-dimensional velocities over an extended region at one instant in time using 
particle image velocimetry, PIV (Reuss, et al. 1989, and Reuss, et al. 1990). Two-
dimensional spatial filtering techniques have been applied to this data to reveal 
velocity structures on the order of the turbulent integral-length scale that were not 
apparent in the instantaneous data. Further, vorticity and strain-rate distributions 
computed from the measured instantaneous-velocity gradients (not filtered) show a 
strong correspondence to the velocity structures revealed by spatial filtering. These
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results stimulated the notion that spatial filtering of the velocity distribution or the 
use of the vorticity and strain-rate distributions might offer a means to separate the 
turbulence velocity fluctuations (expected to affect flame wrinkling and turbulence 
dissipation) from the cyclic fluctuations and ensemble-mean velocities. 

The use of the filtered-velocity, vorticity, or strain-rate distributions to define 
turbulence tacitly assumes that the turbulence is made up of coherent structures. 
The concept of coherent structures in turbulence is not new (Hussain 1986). The 
existence and topological mapping of the coherent structures in three-dimensional 
direct numerical-simulations of turbulent flows has been under study for some time 
(Hunt, ci at. 1988, Adrian & Moin 1988, Chong, ci at. 1990, Chen, ci at. 1990, 
and Kim & Hussain 1992). Topological mapping is an important tool to help 
understand the physical mechanisms that produce turbulent dissipation, mixing, 
and flame wrinkling. However, engineering calculations and measurements in the 
foreseeable future will require that the turbulence be characterized by statistical 
sampling of the velocity. The concept that turbulent flow is made up of coherent 
structures rather than totally random velocity fluctuations does not conflict with 
the traditional view. Sampling at one point as a function of time involves sampling 
of the coherent structures as they randomly pass by the sampling point. Thus, 
the existence of temporal and spatial correlations in turbulent measurements is 
consistent with the existence of coherent structures. 

The ultimate goal is to explore a means for sampling the coherent structures 
that will provide a measure of the turbulence properties that contribute to flame 
wrinkling and turbulence dissipation and will also provide a rational separation of 
the mean flow and turbulence in FtIC engines. As a first step, this study focuses 
on vortices or "eddy zones" as labeled by Hunt ci at. (1988). In particular, an 
attempt is made to quantify the scale and intensity of the velocity associated with an 
"average vortex" by conditionally sampling the instantaneous velocity distribution 
at the position of each local maximum in the vorticity distribution. This approach 
is justified because the vorticity computed from the instantaneous flow reveals all 
vortices (rotational flow regions) found in the high-pass filtered velocity, and, even 
in the RIC engine flows (Reuss, ci at. 1989, and Reuss, ci at. 1990), the mean 
flow vorticity is negligible compared to the vorticity associated with the turbulent 
structures. Therefore, the conditional sampling is a filter-independent means to 
identify the position of the vortex structures. Both scale and intensity of the velocity 
associated with the average vortex are quantified (rather than the vorticity alone) 
because: one, it is the velocity that is required for closure in most engineering 
models, and two, the scale and the energy spectrum of the velocity is known to 
peak at low wave numbers while the energy spectrum of the vorticity is expected 
to follow that of the dissipation and therefore peak at high wave numbers (see 
discussions in Reuss, ci at. 1989, and Tennekes & Lumley 1972). 

It is recognized that vortex structures are by no means the only structures as in-
dicated in the topological mappings of Hunt ci at. (1988) and Chong et al. (1990). 
Further, it is recognized that the strain rate is associated with the turbulence dis-
sipation and flame stretching. However, vortices are dominant structures in both
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FIGURE 1. Schematic defining the channel coordinates and flow direction. 

free shear and near wall flows (Chong, ci al. 1990 and Smith, ci at. 1991), strongly 
correlated with the dissipation (Chen, ci at. 1990), and believed to be important in 
flame wrinkling and quenching (Poinsot, et at. 1990 & Rutland 1989). Both filtering 
and conditional sampling are used to separate the vortex velocity from the instan-
taneous velocity in a two-dimensional sample of a computed, three-dimensional, 
steady channel flow. First, the high-pass-filtered velocity distributions with differ-
ent cutoff frequencies are compared to reveal the content of different spatial scales. 
The filtered velocity distributions are compared with the vorticity distribution to 
reveal the correspondence between the two. Second, the instantaneous velocity is 
conditionally sampled on the peaks in the vorticity distribution and ensemble aver-
aged to yield the vorticity and velocity of the "average vortex". The strategy here is 
to test these two methods in a fully resolved flow where traditional measures are also 
valid before applying them to RIC engine data. A description of and justification 
for these two methods is given in Sections 3 and 4. 

2. The computed channel flow 
The flow geometry and coordinate direction of the computed channel flow are 

illustrated in Fig. 1. The channel flow is similar to that described by Kim, et.al . 
(1987) but with a high Reynolds number, Re) = 7860 , where Re) c is based on 
the channel half-width, 5 , and the centerline velocity Uc and Re),. = 395 is based 
on 5 and the wall shear velocity, U,. = [ii(du/dy) wa11 1 1I'2 . The computational mesh 
spacing is	 10 and L z+	 over the domain 0<x<7r and 0<z*<27r 

respectively. In the y direction (normal to the wall), a nonuniform mesh is used 

Here superscript + indicates nondimensionalization by wall shear units, and superscript * by 

the channel thickness, eg. 	 = xu,./v) = x*Re), and x = xIS.
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where = [(j - 1)7r/(N - 1)], j = 1 ... 193, over the domain —l<y<l (y* = 0 at 
the center). The governing equations and spectral solution method are detailed in 
Kim, et al. (1987). 

The velocity was sampled in the x - z plane (parallel to the wall) at the center of 
the channel for the last computational-time step. Thus the turbulence is expected 
to be statistically homogeneous in both directions. All three velocity components 
and nine gradient tensor components are available at each mesh point. However, 
only the in-plane velocities, u and w, and out of plane vorticity, w were used 
since these will be the only components available when ultimately applied to PIV 
measurements. Strain rates were not considered. 

A summary of the statistical properties of this flow are given in Table 1. The first 
column gives results from statistics taken over many realizations of this flow, while 
the second column gives statistics computed for the particular x - z plane used in 
this study, which is the last realization from the calculation. The integral-length 
scales were found from the two-point-correlation functions by choosing the x or 
f separation at the e point in the correlation function. It should be noted that 
the longitudinal-correlation function in the z direction (used to determine )) 
asymptotically approaches approximately 0.13 rather than zero as it should. This 
indicates that a residual mean (or at least a very large-scale) velocity must exist in 
the z direction, which also appeared in W for this realization. There also appears 
to be a discrepancy in the value of Wrms computed in this final realization and that 
averaged over many realizations. 

3. Turbulence structures from spatial filtering 
Spatial filtering of the two-dimensional, instantaneous-velocity distribution is a 

means to separate large and small scale structures, ie. 

u(x, z) = u,(x, z) + U h(X , z)	 (5) 

where uj and uh are the low- and high-pass filtered velocity distributions corre-
sponding to the large and small scale structures, respectively. This decomposition 
has been used for analysis of computed (Hunt, et al. 1988) and experimental data 
(Reuss, et al. 1989, and Reuss, et al. 1990). Further, Germano (1992) recently 
treated the filtered Navier-Stokes equations rigorously, relating the filtered velocity 
to the interpretation of Large Eddy Simulations results. 

3.1 Computing the filtered-velocity distribution 

In this study, uj was computed from u and uh was then determined from eqn. 5. 
ug can be computed in a manner analogous to temporal signal processing by taking 
the two-dimensional, spatial Fourier transform of u, setting to zero all Fourier com-
ponents above a desired spatial-frequency cutoff, and inverse transforming back to 
the real- space domain (Reuss, et al., 1989). However, here the low-pass filtering was 
performed in the real-space domain by computing the two-dimensional local-average 
velocity at each mesh point as in Reuss, et al. (1990). This is accomplished by con-
volution of the instantaneous velocity distribution with an axisymmetric Gaussian 
kernel,
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Table 1. Statistical properties of the channel flow for the centerline z - z plane 
using many realizations or the last realization, which was studied here. 

Averaging	 Plane(s) 
Label	 Many	 Last 

	

Velocity	 20.004	 19.76 

Urms	 0.805	 0.809 

-	 0.098 

Wrms	 0.671	 0.595 

	

Vorticity	 0	 -	 1.E,-13 

Urms	 -	 10.9 

	

Integral-	 0.34	 - 

	

Length	 0.21	 - 

Scale*	 0.18	 - 

0.24	 - 

* Determined as the l/e point of the one-dimensional, two-point, spatial autocor-
relation.

g(x, z) = exp[—(x 2 + z2 )/2A2 ]	 (6) 

where A sets the cutoff frequency of the filter by adjusting the radius, dj, at which 
w(x, z) = e - 2. The kernel was evaluated to values of x and f that were twice 
that of the diameter of dj. The spatial frequency content of the low-pass filtered 
velocity is, therefore, a Gaussian-weighted, local average. This local averaging is 
equivalent to a windowed Fourier transform filter using the Fourier transform pair 
of the Gaussian kernel (itself Gaussian) 

G(k1 ,k) = (27rA2)1/2exp[-7r2A2(k 2 + k)/4]	 (7) 

for the spatial-frequency cutoff, where k1 and k are the spatial frequencies in the 
x and z directions, respectively. Local averaging is considerably simpler than the 
Fourier transform method for flame studies (its ultimate use) where the position
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of the unburned gas boundary is arbitrary, discontinuous, and multivalued in both 
directions (Reuss, et al. 1990). 

The use of the spatial average also suggests a more physical interpretation of the 
high-pass-filtered velocity. In particular, in the limit of a very large filter, d1 -4 00, 

the low-pass velocity is the spatial-mean velocity, which should be equal to the 
temporal mean for the x - z plane. Thus the high-pass velocity is the velocity 
measured by an observer moving at the mean velocity at every point in the flow. 
As d 1 is decreased the velocity of the observer varies from the mean and approaches 
the instantaneous value at each point. Thus, in the limit dj - 0, the observer is 
moving at the instantaneous velocity at each point and the high-pass velocity is 
zero everywhere.

8.2 Filtered-velocity results 

The instantaneous and high-pass-filtered velocities for d1 0.74 are shown in 
Figs. 2a and 2c for a sub-region of the x - z plane at the center of the channel. The 
vector scale numbers indicate the magnitude of the vector scale used in each plot 
relative to those in of the instantaneous velocity distribution plot (Fig. 2a); e.g, 
a vector in Fig. 2b has a magnitude 0.3 times that of a vector of equal length in 
Fig. 2a. Comparison of these two figures demonstrates the ability of the filtering to 
reveal structures in the flow that one would normally associate with turbulence. In 
particular, "eddy zones" (vortices) and "streaming zones" (directed flows between 
the vortices as defined by Hunt et.al 1988) are readily apparent, and the size of 
these structures is on the order of the integral length scales listed in Table 1. Also 
shown in these figures is the vorticity distribution computed from the instantaneous 
velocity-gradient distribution. The red and blue patches indicate regions of positive 
vorticity (counter-clockwise rotation) and negative vorticity (clockwise rotation), 
respectively. As in the previous studies (Reuss, ci al. 1989, and Reuss, et al. 1990) 
there is a direct correspondence between the velocity vortex in the high-pass-filtered 
velocity distributions and the regions of high vorticity, both in sign and position. 

The existence of flow structures observable in the high-pass- filtered velocity dis-
tributions for d1 > 0.74 was not as sensitive to the filter cutoff frequency as for 
the RIC engine data in Reuss, ci al. (1989). This can be seen by comparing 
Fig. 2b, which was derived by subtracting the mean velocity (d j - oo), from the 
instantaneous velocity, and Fig. 2c where d j = 0.74. Although there are differ-
ences in the magnitude (note the vector scales used for each plot) and direction of 
the velocity vectors, the same flow structures are revealed. This is expected be-
cause in the channel flow there are no mean-velocity gradients in the x - z plane 
as in the RIC engine of Reuss, et al. (1989) and hence, the scales of the mean 
flow and turbulence in this channel flow are widely separated. However, for higher 
frequency-cutoff filters, d 1 < 0.74, new structures did appear while the old struc-
tures remained (albeit with altered velocity vectors). Note the two regions around 
(x, z) =(3.1, 1.55) and (x, z) = (3.2, 1.15) in Figs. 2c and 2d. For d 1 = 0. 74, these 
two regions of the flow structures appear as streaming zones, whereas for d1 = 0.1 
smaller-scale less-intense vortices appeared. These smaller vortices cannot be dis-
regarded as unimportant, since the peak vorticity in these two regions is —16 and
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FIGURE 2 A AND B. Composite of the vorticity contours and velocity distributions 
for a subregion of the x - z plane at y = 0. The white areas of the contours 
indicate regions of near zero vorticity. (a) Instantaneous velocity, (b) Mean velocity 
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+12, respectively. This is on the order of Wrms = 10.9 and vortices with this level 
of vorticity did appear with the dj = 0.74 filter in other regions of the x - z plane. 
Thus, the filter cutoff can be adjusted to reveal vortices of different scales, but can 
miss some if applied at too low a cutoff frequency. 

8.3 Discussion of the filtered-velocity results 

The results of the previous section have two important implications about the 
usefulness of filtering. First the results demonstrated that filtering would in fact 
isolate vortices in the velocity distribution and on different scales, thus revealing 
in this channel flow the same types of flow structures observed in direct-numerical 
simulations of homogeneous stationary turbulence (Hunt, et al. 1988). It is tempt-
ing to contrive a method to quantify the scale and intensity of the vortices using the 
high-pass-filtered velocity distributions. However, even here where the mean and 
turbulence scales are clearly separated, both the existence of the vortex structures 
and the magnitude and direction of the associated vectors are dependent on the 
cutoff frequency. In particular, if the cutoff frequency is too low (d 1 large), small 
scale structures may be missed. If the cutoff frequency is increased (d j decreased) 
to assure that the smallest scale structures are revealed, the magnitude of the ve-
locity vectors (and, therefore, any measure of the turbulence intensity) will be too 
low. Consequently, any quantitative measure of the scale and intensity based on 
the filtered velocity would be dependent on the choice of the filter cutoff frequency 
and does not offer a viable solution to the problems of the RIC engine. The second 
important finding is that the patches of vorticity, computed from the unfiltered 
(instantaneous) velocity distribution, identified all vortices (in the original contour 
plots) even though some did not appear in the filtered velocity distribution until a 
sufficiently high frequency cutoff was used. This suggests that the vorticity could 
provide a filter-independent detector of the existence of a vortex. 

4. The velocity scale and intensity of the average vortex 
To quantify the scale and intensity of the vortices, the instantaneous velocity 

distribution of the entire x - z plane was conditionally sampled at the (x, z) location 
of the peak vorticity within each vorticity patch in the x - z plane. A vorticity 
patch was defined as a local region with vorticity of like sign (eg. the blue and 
red patches in Fig. 2), and the (x, z) position selected at the peak vorticity within 
that patch. In some cases two peaks existed within each patch, in which case both 
were identified, eg. (3.05,1.55) and (3.35,1.55). Vortex detection by the vorticity 
peak is, in principle, a variation of the method of Hunt, ci al. (1988) where "eddy 
zones" were defined by two criteria: one, the irrotational straining is small compared 
to the vorticity, and two, simultaneously the (local) pressure tends to a minimum 
somewhere in the zone. Their approach was not used here since it requires both 
the three-dimensional deformation tensor and the pressure distribution, which are 
not available from measurements. Although the simpler approach used here is less 
formal, it is not necessarily less rigorous or less valid for identification of vortices. 
The velocity distribution in Fig. 4 of Hunt, ci al. (1988) shows regions of rotating 
flow structures that were not detected as eddy zones by the above criterion, as well 
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as the converse. By contrast, all regions with vorticity above 10 percent of the rms 
value were detected regardless of the dissipation or pressure fields, and there was 
excellent agreement between the vorticity patches and the rotating structures in the 
velocity field. 

The position of the peak vorticity within each vorticity patch was found manually 
with the aid of an interactive image processor. The dots in Fig. 3a indicate the 
positions of the vorticity peaks in the subregion. The instantaneous velocity distri-
bution was conditionally sampled at these positions as follows. A square window 
was centered at each vorticity peak position, Wp (i,j) and overlaid on the x, z mesh 
as depicted in Fig. 3a. The size of the window (x = = 1.6) was chosen to be 
large compared to the integral length scale. The u+ ,and w+ , values at each point 
of the window grid, (k, 1), were stored. This was repeated at all N = 597 vorticity 
peak positions. The velocities at each grid location within each of the windows were 
then ensemble averaged by summing over all N windows (Fig. 3b) as 

(u(k,l))	 [(u(k,l)Ik =1= 0 • © ±wp(i,j)]	 (8) 

where the vertical bar signifies the conditional average and Wp indicates conditioning 
on plus and minus vorticity. Thus two ensemble averages were computed resulting in 
both an average-positive and an average-negative vortex. The quantities (w+(k , 1)) 
and (w(k, 1)) were averaged in a like manner. Near the edges of the x - z plane 
the window overlaps the boundary. In these regions the value of N at each Ic, 1 
mesh point outside the boundary is decreased to be consistent with the number of 
samples at each point. 

4.2 Conditional-sampling results and discussion 

The velocity distribution of the positive and negative, conditionally sampled, 
ensemble-averaged windows are shown in Fig. 4a and b. (u+(0 , 0)) has been sub-
tracted at each point so that the observer is moving at the same velocity as the 
center of the average vortex. The strong positive (and negative, respectively) ro-
tation about the center of the ensemble-average windows is immediately apparent. 
The velocity magnitudes, u and w+, along the x and z axes are plotted in Figs. 
5a and 6a for the positive ensemble-averaged window. Only the values for the av-
erage positive vortex are presented here as the average negative vortex plots are 
approximately equal but opposite in sign. Again, the rotation is apparent in the 
lateral velocity components u+(0, z*) and w+(x* , 0). The peak lateral velocities of 
the average vortex were small, 0.3, compared to the statistical fluctuation value 
Wrms = 0.6. The ensemble-average vorticity along the axes is shown in Figs. 5b, and 
6b as well. The peak values of the average-positive and average-negative vortices 
were (wy) = +18 and the mean average vorticity, 

b 
(w) =	 w(x,0)dx t	 (9)
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FIGURE 5. (a) The velocity, u+(x*,0) and w+(x* , 0) , and (b) vorticity, w(x*,0), 

along the x t axis for the average positive vortex in Fig. 4a. 

was approximately 7.9, where a and b were the zero crossings of the center vorticity 
peak. These values bracket the traditional statistical rms of the vorticity over the 
x - z plane, Wrms = 10.9. 

It was surprising that there was so much structured flow outside the immediate 
vicinity of the center vortex. In particular, on average there are streaming regions 
(Hunt, et al.) outside the center vortex with velocities as large as 1/3 the peak 
velocity in the vortex. In general, the streaming regions adjacent to the center vor-
tex are directed with its rotation; however, the vorticity in the streaming regions 
is relatively small (cf. Figs. Sb and 6b). The existence of streaming flows outside 
the center vortex may be reasonable since this is observed in the composites of the 
vorticity and high-pass filtered distributions (cf. Fig. 2). In particular, observation 
of any given vortex structure reveals that it is surrounded by neighboring (adjacent) 
vortices, separated by a distance approximately equal to the size of the vorticity 
patches, with streaming flows between them. If one assumes that over many con-
ditionally sampled vortex peaks the neighboring vortices are randomly distributed 
azimuthally, then the neighboring vortex structures would be expected to average
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FIGURE 6. (a) The velocity, u+(0 , z*) and w+(0, z*) , and (b) vorticity, w(O,z*), 
along the z axis for the average positive vortex in Fig. 4a. 

to zero with a large enough sample while average-steaming regions might remain. 
However, it is still surprising that the streaming regions exist at distances from the 
center vortex that are large compared to the size of the center vortex. 

Most surprising was the fact that the center positive (negative) vortex is paired 
with an adjacent negative (positive) vortex in the positive (negative) z direction. 
The peak tangential velocity of the negative (positive) paired vortex (ie. u at 
f +0.3 in Fig. 6a) is about 1/3 that of the peak tangential velocity of the center 
vortex, and the peak vorticity is about 1/7 (cf. Fig. 6b). The existence of this pair 
is surprising because the z direction should be statistically homogeneous, and it is 
not obvious why vortex pairs would preferentially couple with the positive vortex to 
the —z side of the negative vortex. The existence of the structure and in particular 
the paired vortex outside the center vortex may be: one, an indication that the 
sample size was too small, or two, another manifestation of the flow properties in 
the f direction that resulted in the unexpected statistical properties discussed in 
Section 2. 

The spatial scale of the vorticity associated with the average vortex is expected
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to be smaller than that of the velocity as noted earlier, and this is clearly true of 
the average vortex since the spatial extent of the vorticity is approximately 1/2 
the spatial extent of the velocity distributions in Figs. 5 and 6. To quantitatively 
compare the scale of the average-vortex velocity distribution with two point corre-
lation is difficult as there is no rigorous means available. However, the lateral and 
longitudinal length scales in the x and z directions are indicated on the top and 
bottom Figs. 5a and 6a. There are no well defined structures in the longitudinal 
velocities, u+ (x*, 0) and w+ (0, z t ). The spatial extent of the lateral velocity com-
ponents, u+(0, z) and w+(x*, 0), is on the order of the longitudinal and lateral-
integral-length scales, Luu)z and Lww)x. However, neither the differences between 
the lateral- and longitudinal-integral-length scales nor the anisotropy of the length 
scales between the x and z directions is obvious in the conditionally sampled data. 

5. Conclusions 

The spatial filtering and conditional sampling of the instantaneous velocity dis-
tribution were used to identify and quantify the vorticity structures in a computed 
channel flow. The spatial filtering revealed the vortices in the velocity distribution 
but required the application of different filter-cutoff frequencies to identify vortices 
of all scales. By contrast, conditional sampling the instantaneous, two- dimensional, 
velocity distribution at the vorticity-peak positions is a means to separate the vor-
ticity structures associated with turbulence in a way that is independent of the cut-
off frequency associated with filtering. The properties of the average-positive and 
average-negative vortices studied here are on the order of the traditional single-
point time-averaged measures but do not provide an alternative for quantifying 
those values. 

The average-positive and average-negative vorticity distributions are equal and 
opposite in value and are, therefore, consistent with the traditional- statistical-
mean value of zero. However, the peak-average-vorticity, (w,,) = ±18, and mean 
average vorticity, () = 7.9, differ from but bracket the traditional statistical value, 
Wrms = 10.9. A rigorous derivation of the correspondence between the traditional 
and conditionally-sampled values might resolve this difference. The peak velocity 
associated with the average vorticity was half the traditional rms velocity fluctu-
ation. The spatial extent of the velocity distributions were on the order of the 
traditional lateral-length scales and somewhat smaller than the streamwise longitu-
dinal length scales. This suggests that the vorticity structures are within the size 
of the structures sampled in two-point correlations but are themselves insufficient 
to explain either the full extent of the scale or the anisotropy measured by the two-
point correlations. Larger structures must coexist and/or structures outside but 
adjacent to the average vortex must contribute to the two point correlations. 
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III. Compressible flow and modeling 

A long-term objective of the CTR is to advance the state of turbulence modeling, 
particularly for compressible flows. The six papers in this section provide several 
important new ideas towards this end. 

Cambon, Coleman, and Mansour used the DNS database for. one-dimensional 
axial compression to guide the development of a rapid distortion theory (RDT) for 
compressible flows subjected to compressions. They showed that the controlling 
parameter for compressibility effects is the ratio of the distortion time scale to the 
acoustic time scale. In the case where the acoustic time scale is slow compared to 
the distortion time scale, "pressure released RDT" applies, in which the pressure 
fluctuations can be neglected. In this regime, the growth rate of the turbulent 
kinetic energy can be higher than the rate when the flow is nearly incompressible. 
This is different from the homogeneous shear case where compressibility effects are 
found to reduce the energy growth rate. Finally, they used the RDT and DNS 
results to suggest improvements in turbulence models for compressible flows. 

Blaisdell and Zeman used Blaisdell's DNS for homogeneous turbulence to make 
further examinations of Zeman's model for the extra rate of turbulent energy dissi-
pation due to turbulent dilatations arising from regions containing eddy shocklets. 
They show how acoustic waves can be focused in the turbulence to form such shock-
lets and that the Zeman model works well for turbulent Mach numbers less than 0.3. 
Their work raises unanswered questions about the model at higher Mach numbers, 
suggesting need for further study. 

Vandromme and Zeman explored the applicability to boundary layer flows of 
a model for the pressure dilatational term developed by Zeman and Coleman by 
reference to DNS for rapid axial compressions. The flow considered was a supersonic 
compression corner flow with an extended separated region, where a considerable 
improvement over standard k-€ modeling was obtained. 

Papamoschou and Lele studied the pressure field induced by a small isolated 
vortex in a compressible shear layer using DNS in a convected frame tied to the dis-
turbance vortex. The idea was to examine the zone of influence of the disturbance 
with increasing convective Mach number M. They showed that this influence ex-
tends to the edges of the shear layer, although the zone of influence in the streamwise 
direction is strongly reduced with increasing M. 

Kevlahan, Mahesh, and Lee used DNS to study the interaction of a weak shock 
front with strong isotropic turbulence. This included solving the equation for a 
propagating surface (the shock wave) and comparisons of the results with the DNS 
predictions. For 2D turbulence, the agreement was very good. In 3D turbulence, 
the alignment of the vorticity vector with the intermediate eigenvector of the strain-
rate tensor, found in other DNS, occurred upstream of the shock and was strongly 
intensified by the shock. In addition, they found a more significant tendency for 
velocity to align with vorticity than has been observed in incompressible DNS. 
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Durbin and Yang studied a proposed transport equation for the eddy viscosity 
in wall bounded flows. The relatively simple model, which does not incorporate 
wail-proximity damping functions, is intended for use in complex turbulent flows. 

Comparisons with DNS and experiments for various boundary layer flows show 
good agreement. The model eliminates several of the problems of standard k-f 
models and shows considerable promise for use in generalized practical engineering 
calculations. 

Together these six contributions include a number of important new ideas that 
their authors and others at Stanford and NASA/Ames are working to include in 
operational turbulence models. Thus, these contributions will be extremely helpful 
in CTR's development of improved turbulence models for compressible flows. 

W. C. Reynolds
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Rapid distortion analysis and direct 
simulation of compressible homogeneous 

turbulence at finite Mach number 

By C. Cambon,' G. N. Coleman  AND N. N. Mansour3 

The effect of rapid mean compression on compressible turbulence at a range of 
turbulent Mach numbers is investigated. Rapid distortion theory (RDT) and direct 
numerical simulation results for the case of axial (one-dimensional) compression are 
used to illustrate the existence of two distinct rapid compression regimes. These 
regimes are set by the relationships between the timescales of the mean distortion, 
the turbulence, and the speed of sound. A general RDT formulation is developed 
and is proposed as a means of improving turbulence models for compressible flows. 

1. Introduction 
This paper focuses upon the behavior of homogeneous compressible turbulence 

under the influence of rapid axial (one-dimensional) mean compression. The mo-
tivation for this study is a need to cast light upon the physics of compressible 
turbulent flows and to improve compressible turbulence models. Our approach is 
to use both direct numerical simulations (DNS) and rapid distortion theory (RDT). 
The RDT developed in this paper is for general (those that preserve homogeneity) 
mean deformations; the resulting insight is then used to suggest improvements to 
compressible turbulence models that are applied to rapidly compressed flows. 

Earlier RDT studies of homogeneous compressible turbulence have been limited 
to either isotropic compressions (Blaisdell 1992, private communication) or the van-
ishing turbulent Mach number limit (Durbin & Zeman 1992, hereafter referred to 
as DZ); the present investigation, therefore, attempts a more general treatment in 
that non-isotropic compressions and finite Mach numbers are considered. Some of 
our main conclusions confirm and extend those found in the recent study of shock-
turbulence interactions by Jacquin & Cambon (1992). 

An overview of our findings follows. The RDT analysis predicts that the crucial 
parameter for turbulence subjected to rapid compression is the ratio of the mean 
deformation rate, D, to the inverse sonic timescale L/a, where L is a turbulent 
lengthscale and a is the sound speed. This parameter, DL/a, hereinafter denoted 
as Lm (after DZ), is equivalent to the product of the inverse of the turbulent 
timescale, the deformation rate, and the turbulent Mach number, M; it defines for 
the dilatational part of the velocity field two distinct limits: the "pseudo-acoustical" 

1 CNRS, Ecole Centrale de Lyon 
2 Center for Turbulence Research 
3 NASA Ames Research Center
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(nearly solenoidal) regime given by Lm 1 (that studied by DZ) and the so-called 
"pressure-released" regime with Lm >> 1. The term "pressure-released" is chosen 
because when Am is large, the sonic and turbulent timescales are both much larger 
than D 1 and, therefore, correlations involving the fluctuating pressure and velocity 
fields are negligible during a rapid distortion. The behavior of the solenoidal velocity 
field, according to the RDT analysis, is unaffected by the dilatational field when the 
mean flow is irrotational, and is thus independent of Am for axial compressions. Its 
history is, therefore, identical to that predicted for compression of purely solenoidal 
turbulence. In the following, we confirm these RDT predictions by comparison with 
DNS results. 

The DNS results also show that for moderate values of A m, all the double-velocity 
correlations involving the dilatational part of the turbulent velocity field remain 
weak with respect to the pure-solenoidal correlations and are in this sense similar 
to the pure solenoidal case, even for moderate compressibility. Only the Im>> 1 
case is characterized by a strong amplification of the dilatational correlations. 

The moderate Am results are at first glance in conflict with recent studies of 
axially compressed turbulence (e.g., DZ, Zeman & Coleman 1992) which find un-
expectedly large pressure-dilatation correlations in the nearly solenoidal flow. This 
led us to investigate the behavior of the pressure field, which has two roles for a 
rapid compression. On one hand, it modifies the production term in the turbulent 
kinetic energy equation by changing the Reynolds stress anisotropy through the 
classic pressure-strain rate correlation (via 11 11 for an axial compression in the xi 
direction). On the other hand, the pressure is directly involved in the kinetic energy 
equation through the pressure-dilatation term, H = 11/2. The magnitude of 1111 
is found to be larger than that of H in all cases considered in this paper for a wide 
range of Mach numbers and large (but finite) compression speeds. 

Both the pressure variance and pressure-dilatation correlation from the DNS are 
found to increase with Mach number (and, therefore, with Am at a fixed mean 
distortion-to-turbulent timescale ratio) with respect to their initial values. How-
ever, when H is compared to the production term in the turbulent kinetic energy 
transport equation, it is much smaller and has, in fact, less relative importance 
with increasing M. This reduced relative importance of the pressure field with 
increasing compressibility is a key result of this paper and is the basis of much of 
what follows. Between the Am -, 0 and /.m - oo extremes (where the pressure-
dilatation correlation is identically zero), H must reach a maximum; from the DNS 
results, it appears that this maximum occurs near the Am -* 0 limit at a small but 
finite value. 

In the next section, the RDT analysis is developed for compressible homogeneous 
turbulence; in §3, the theory is applied to the case of axial compression, and sep-
arate analytic expressions for the relevant dilatational and solenoidal correlations 
for both the Lm 1 and /m>> 1 extremes are presented and compared to DNS 
results. The findings suggest that it would be appropriate for turbulence models 
to "interpolate" between the two extremes in order to accurately capture the M 
dependence during a rapid axial compression. We propose two methods for doing so
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in §4, which deals with the role of, and closures for, the pressure-strain rate correla-
tion. Section 5 considers the implications of this study for isotropically compressed 
and sheared flows, and §6 contains a recap of the main results and our conclusions. 

2. A rapid distortion analysis for compressible homogeneous turbulence 

2.1. General considerations 

Blaisdell et al. (1991, hereafter referred to as BMR) observed that the "intrin-
sic compressibility" (the non-zero divergence) of the turbulent field often tends to 
reduce the amplification of turbulent kinetic energy produced by a mean veloc-
ity gradient, such as a bulk compression or mean shear, with respect to the pure 
solenoidal case. This effect depends on at least three different timescales and on 
the initial turbulent field. These are the mean distortion timescale, 

TD' = (U,1 U,)' 12	 (1) 

(where U,,, is the mean velocity gradient), the "turbulent decay" or "turn-over" 
time,

= q/L	 (2) 

(where 92 /2 is the turbulent kinetic energy and L is a lengthscale of the energy 
containing eddies), and the timescale linked to the sonic speed, 

= alL.	 (3) 

The compression speed, r = r /TD, is the only relevant parameter for model-
ing homogeneous incompressible turbulence (at least for large Reynolds number). 
However, when intrinsic compressibility is considered, the ratio of the two latter 
timescales, which amounts to a turbulent Mach number M = Ta/Tt, must also be 
accounted for. The magnitude of the reduction of the kinetic energy amplification 
mentioned above is, therefore, not necessarily universal, given the multi-timescale 
and initial-value nature of the problem. In fact, RDT studies of inhomogeneous 
flows even go so far as to predict an increase with Mt of the kinetic energy amplifi-
cation for turbulence under rapid (but finite) compression; these studies by Debiève 
et al. (1982, hereafter referred to as DGG) and Jacquin & Cambon (1992) are dis-
cussed in a following subsection, where the general RDT equations are presented 
and the reasons for the apparent growth rate versus Mt discrepancy are given. 
This analysis is based on an extended Craya-Herring decomposition (Cambon 1982, 
1990; Cambon et al. 1985), which is shown to facilitate a separate investigation of 
the solenoidal and dilatational histories and provides a useful comparison to other 
approaches (e.g., BMR and DZ). 

Some of the earlier RDT studies have apparently over-estimated the role of the 
pressure-dilatation term, attempting to force an increased damping due to com-
pressibility of the kinetic energy growth rate. We hope to clarify the situation here 
by separately considering various terms in one-point closure equations and thus use 
RDT as a tool for improving a model's representation of those terms. While the 
RDT is not a model in and of itself, by improving the accuracy of crucial terms, we 
expect that it will in turn also improve the overall accuracy of the model.
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2.2. Definitions and background 
To investigate the influence of the mean flow upon the turbulence, it is conve-

nient to use a coordinate system x, that deforms with the mean deformation. We 
accordingly define the Lagrangian displacement tensor F,, (Eringen 1967) via 

dx, =	 dt + -dx, = U1 dt + F,,dX,,	 (4) 

where x,(X, t) is the position at time t of a fluid particle moving with the mean flow, 
which has the position X, at the initial time t 0. Representing the substantial 
time derivative by a superimposed dot, one has 

Ox, =	
with F 1 (X,t = 0,0) =	 (5a) 

where

+ U - 8(--	 (5b) 
Oxi 

is the substantial derivative; we shall also have occasion to use the symbol D( )/pt 
to denote the substantial derivative. Unless stated otherwise, the dependent vari-
ables are assumed to be decomposed into Reynolds averaged and fluctuating com-
ponents, as U, + u,, where capital letters, overbars, and angle-brackets are all used 
interchangeably to denote Reynolds- (ensemble) averaged quantities, and either low-
ercase or primed variables are used to denote fluctuating quantities. Note that F 
is a function of the stationary coordinate X, the time t, and is parameterized by 
the time (in units of t) at which the tensor is orthonormal (hence the third argu-
ment in (5a)). For flows under mean compression, the determinant of F has special 
significance since it is equal to the volumetric ratio J. 

When the mean velocity field is irrotational, the analyses proposed (over a hun-
dred years ago!) by Cauchy, Weber, or Kelvin for the total (mean plus fluctuating) 
vorticity can be used to give solutions for the fluctuating vorticity (w = eljkuk,j) 
and velocity fields:

=	 (6) 

u,(x,t) = F'(X,t,0)u(X,0) + O,j.	 (7) 

These solutions, which ultimately derive from the linearized Euler equations, remain 
approximately valid for moderately inhomogeneous flows (recall the spatial depen-
dence of F). Eq. (6) is the classic solution of the linearized Helmholtz equation when 
the mean vorticity-fluctuating velocity term is zero (that is, for an irrotational mean 
flow). When this term is not zero, simple solutions in physical space are not possi-
ble. Eq. (7) (also valid only for irrotational mean flows), an expression which has 
been extensively used by Goldstein (1978), contains the scalar potential 0, which 
is directly connected to the fluctuating pressure and can be calculated once certain 
assumptions are made (e.g., that the fluctuating velocity field is solenoidal or that
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the dilatational field is nearly acoustic). The term 4) is not the scalar potential 
arising from the Helmholtz decomposition (which we will denote W in the following) 
because the "F,ç" term in (7) contains contributions from both the solenoidal and 
dilatational velocity field. 

DGG's RDT solution of the Lagrangian transport equation for the Reynolds stress 
tensor for the case of shock wave-turbulence interaction reads 

(uu)(t) = F (t t)(umun)(tF ) 1j' (i , t),	 (8) mi' 

where t - and t refer to positions upstream and downstream of the shock, respec-
tively, following a mean streamline through the shock. The shock is considered as a 
pure discontinuity of the mean streamwise velocity. In other words, it is an exter-
nal streamwise compression of infinite rate, and the associated tensor F does not 
depend on the history of the velocity gradient, but is completely characterized by 
the mean density jump or mean volumetric ratio J = Det(F), with F1, = J616,1 

through the shock. The ratio J is linked to the upstream Mach number M0 via

(9) 
(y+1)M 

where -y is the ratio of specific heats, and use has been made of the classic Rankine-
Hugoniot relations for the mean (frozen) field. A comparison of equations (7) and 
(8) shows that this approach ignores the effect of pressure (which is mediated by 4) in 
(7)); the response of the pressure fluctuations with a finite characteristic time even 
for the so-called "rapid" term is neglected compared to an infinite compression 
rate). Another idealization in the analysis of DCC, also pointed out by Lee ci 

al. (1992), is that the distortion (curvature and unsteadiness) of the shock surface 
by the impinging turbulent structure is ignored. The latter issue, initially addressed 
by Ribner(1953), is not considered by the present paper. We investigate instead 
the role of the pressure field in a simpler homogeneous framework by explicitly 
defining and formalizing the range of validity of the "pressure released" regime that 
is implicit in the Debiève analysis. This paper has much in common with the recent 
analysis of the shock wave flow performed by Jacquin & Cambon (1992), in which 
the pressure-released limit was first explicitly advocated. 

Equation (7) shows that an irrotational deformation of a purely solenoidal velocity 
field is given by

u,(x, t) = u:(x, t) = (F,-i 1 (X, I, 0)u, (X, 0)) 8 ,	 ( 10) 

where to maintain u, , = 0 we have, 

= - (F_1(x,t,o)u,(X,O))d	 (11) 

(where the s and d superscripts (and later subscripts) are understood to respectively 
refer to the solenoidal and dilatational contributions). The latter equation is an 
integral form of the Poisson equation for the fluctuating pressure, 

= - (F'uj)..	 (12)



204	 C. Cambon, G. N. Coleman & N. N. Mans our 

For the solenoidal case, the pressure "kills off" the dilatational contribution, re-
sulting in the lower limit of the kinetic energy growth rate caused by the mean 
compression. Conversely, in the pressure-released regime, the t4 contribution in 
Eq. (11) is no longer "removed" by the pressure, producing an extra contribution 
to the solenoidal energy, which is unaffected by the dilatation field and again grows 
in accordance with Eq. (10); in other words, the compressibility leads to an increase 
in the kinetic energy growth rate. 

From this point hence, the RDT analysis will be continued under the assumption 
of flow homogeneity and make use of a spectral formalism; the Fourier wave-space 
proves to be invaluable for obtaining tractable RDT solutions. Beginning with 
Eq. (6), we shall use the Fourier space to extract the solenoidal velocity from the 
vorticity, as was done by Batchelor & Proudman (1954). Instead of solving a Poisson 
equation in physical space, we use a simple geometric wave-space projection to 
invoke the Helmholtz decomposition. 

2.3. The mean flow 

Before turning to the turbulent fields, however, we restrict the types of mean 
deformations that are admitted by this analysis to those that preserve the homo-
geneity of the flow. In incompressible turbulence, the constraint of maintaining 
homogeneous statistical properties leads to two conditions: the mean velocity gra-
dientU1, must be uniform in space, and the mean flow must be a particular solution 
of the Navier-Stokes equations. The last condition amounts to an irrotational mean 
acceleration,

Vxr=o,	 (13) 

or that
Ui,j + 

is symmetric, where

r i = (U, , , +	 = F(t,0)X1 .	 (14) 

Compressibility introduces a new condition. The linearization of the momentum 
equation displays two acceleration terms. The first one is the product of mean den-
sity and the fluctuating acceleration and leads to the same constraint mentioned 
above. The second term is the product of density fluctuation p' by the mean acceler-
ation r and is typically nonhomogeneous (as can be seen by the spatial dependence 
in (14)). This term can be removed, and homogeneity preserved, by neglecting the 
density fluctuation with respect to the mean density. Such an approximation (which 
is consistent with "compressed" turbulence at low Mach number) will be not used 
in this paper. Instead, we admit only mean flows without convective acceleration. 
From eqs. (5) and (14) we see that this requires 

Fij 	 = '5 + A,, t,	 (15a) 

or	
U1,(t)	 = Au ( :j + Ali t) -' .	 (15b)
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Eq. (15) is valid for an arbitrary constant (not necessarily symmetric) matrix A for 
arbitrary times, provided that the determinant of F, J, remains positive. Special 
cases of (15) have been given previously, for example, for pure strain and shear 
(BMR). A good approximation for the mean pressure P as a function of J can be 
derived from the isentropic relations. (While the isentropic relations are not strictly 
valid when M1 is nonzero, DNS of finite Mt turbulence under mean compression 
have shown that the deviation from the isentropic prediction is relatively small: 
for example, in Case C1DV discussed below - a rapid axial compression for initial 
M1 = 0.3 - the mean pressure at J = (0)/ = 1/5 is within 6 percent of the 
isentropic value.)

2.4. The fluctuating flow 

The linearized Euler equations (with p1r1 = 0) in the deforming coordinate system 
are	

(16) 

with 7i = (t) =7i(0)/J(t) (recall that the dot superscript denotes a substantial 

derivative, see Eq. (5)). The linearized equations for the fluctuating pressure p and 
entropy s read (see DZ)

Ip\ = -Ut,i

(17) 

where P = 75RT. An investigation of the coupling between solenoidal and di-
latational contributions to the fluctuating velocity field is conveniently done by 
transforming the variables in (the deformed coordinate) x into (three-dimensional) 
Fourier space, which we indicate either by a caret symbol or the notation "F( )." 
The classic Helmholtz decomposition is given first in physical and then in spectral 
space as follows:

v(x, t) = e,jb1 , 3 +	 ( 18) 

(k, t) = (&, -	 ' ) 5, +	 (19) 

for any vector field v. The two terms on the right-hand sides correspond to V8 

and vd , which are defined in physical space by the vector O i and the scalar po-
tential V. The corresponding spectral space decomposition into and is given 
by the projection operators in (19), which separate the (single-component) dilata-
tional contribution parallel to the wavevector k from the (two-component) solenoidal 
contribution in the plane normal to k. Equations (16) and (17) are easily Fourier-
transformed; only the advection term requires particular caution: 

= .(u 1, g + U ,ix i u 1 ,j ) , 

so
-.	 - 
u = u, , - Uljiii - Uj,:k.j-j--
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The first and the last terms in the right-hand side of the latter equation are collec-
tively treated as a derivative along characteristic curves, which plays the same role 
as the mean trajectories in physical space. This derivative will, therefore, also be 
represented by a superimposed dot so that 

k1 +	 = 0, with solution kt' - F'(i 3 O)K.	 (20) - Is 

The analogy with physical space is complete, since 

.i i - Uijxj =O, with solution x	 F13 (t,0)X,.	 (21) 

The initial k value, K, plays the same role in wave space as the Lagrangian coordi-
nate X does in physical space. Pure kinematic distortion by advection in physical 
and spectral space are linked by a wave conservation law 

exp(ik,x,) = exp(iK1X,), 

where i2 = — 1. Accordingly, one has

	

= iii -	 (22) 

and equation (16) becomes

iI - U,,1, + UuI = —ik 1 .	 (23) 

In the latter equation, the projection operators in (19) can be used to separate 
solenoidal and dilatational contributions. We prefer to use a slightly different 
method by specifying a special frame for the solenoidal mode, according to an 
extended Craya-Herring decomposition (Cambon 1990). An orthonormal frame of 
reference (e(1),	 e(3)) attached to the wavevector is used with the last vector 
being parallel to k ( e 3) = k,/k, where k is the wavevector modulus). In this local 
frame, the Fourier transform of the velocity fluctuation reads 

ii i (k, t) = (p—( ' ) (k, t)e1)(k) +P-(2) (k, t)e 2 (k) + W--(3) (k, t)e 3 (k).	 (24) 

The two first terms give exactly iii , and the latter gives iZ4, with a minimal number 
of components and conservation of all the tensorial properties (invariants) due to the 
orthonormal properties of the local frame. Classic descriptions in terms of vorticity 
and divergence are easily recovered as

2 (1) 

	

= ik('e 2 -	 ) e• )	 (25a) 

and
= ik 3 .	 (25b)
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In order to remove the uncertainty regarding the azimuthal position of the solenoidal 
coordinates with respect to the (e( ' ) , e(2) ) plane is defined by choosing a fixed 
spherical coordinate polar axis n, after Herring (1974). (Craya(1958) implicitly 
used n = 6 3 and addressed only covariance matrices of the velocity field and thus 
limited the generality of his approach.) We set 

kxn 

	

e( 1 ) =	 and e(2) = e 3 x eW.	 (26) 
1k x 

Striking simplifications can be made by choosing the polar axis according to the 
symmetries of the mean flow (if any) or the statistical properties of the fluctuating 
field, retaining the full generality of the method. The equations in the local frame 
can be made nearly independent of the choice of n by using the "helical modes" 
(e 2 - ie', e 2 + 1 2 ) (which are also eigenmodes of the plane rotation matrix 
around k and of the "curl" operator) as the basis set (see Greenspan 1968, Cambon 
& Jacquin 1989, Waleffe 1992). Substituting (24) into (23) leads to the linear system 
of equations for the three components of i1i in the local Craya-Herring frame, with: 

(a) -
	 +	 + ma3 3 = 0	 (27) 

- U1,103)+ m33 P + m3 ° + ik = 0.	 (28)
P 

Greek indices (indicating solenoidal space) take only the value 1 or 2, whereas the 
Latin indices range from 1 to 3 (and as in physical space, the Einstein summation 
convention is assumed). Calculation of the matrix m 1, is straightforward; remem-
bering to account for the rotation due to the time derivative of the local frame at 
fixed K using eqs. (20) and (26), the elements are 

( L )

	

(or)	 (fi) 
PICO = e,	 - êe = e 1 U1,2 e, - CY3RE,	 (29a) 

(or)Tr	 (3)	 .(or) (3)	 (or) 
m03 = e, ui , jC - e, e• = e, (U1, - ) 	 (29b) 

	

(3)(or)	 .(3) (or)	 2e3U	 (or) 

	

m3or = e 3 U ,2e - e 3 e =	 ,	 (29c) 

(3)	 (3) 
M33 = e 3 	 .	 (29d) 

The rotation term RE is e 2 Uj ,je' if the polar axis is chosen as one of the eigen-
vectors of the mean gradient matrix; its general expression is available in Cambon 
et al. (1985). The last equation relevant to our study is that which governs the 
pressure:

() - U,,, (_?) = —= —ik (3 .	 (30) 
-rP

Without mean distortion, eqs. (28) and (30) correspond to a pure acoustic regime, 
where energy is exchanged between dilatational velocity and pressure at a frequency



208	 C. Cambon, G. N. Coleman & N. N. Mansour 

ak. (The sonic speed a is easily reintroduced using the isentropic relation a2 = 
7RT = 7P/.) On the other hand, the (exact) balance between the two last terms 
in Eq. (28) is the equivalent in physical space of the Poisson equation for p in the 
pure solenoidal flow. The solenoidal contribution to velocity is seen to be completely 
uncoupled from the dilatational field if mQ3 is zero. This is valid for any irrotational 
compressing mean flow, but not for pure shear, as has been stressed by BMR. 
Finally, we note that the coupling of the solenoidal and dilatational fields is mediated 
by m3a. This term is zero for spherical compression but must be considered for 
any anisotropic straining process (except for very specific wavevectors given by the 
particular deformation). An investigation of the timescales in (28) introduces the 
parameter Ra(k) (TD) 1 /ak, for which Lm is an averaged approximation in 
physical space. For very low values of this parameter, the incompressible limit is 
recovered, the dilatational mode p(3) tends to zero, and the sonic speed a approaches 
infinity; both k/ (which tends to the solenoidal solution to the Poisson equation) 
and its time derivative (which from (30) is observed to be proportional to a2(3)) 
tend to finite non-zero values without inconsistency. At moderate Ra(k), a pseudo-
acoustic regime is recovered, which deviates from the pure incompressible (u, ,2 = 0, 

= P8) case since the time variation of the m 3a term in (28) can be neglected 
and a WKB approximation can be used to predict the oscillating behavior of d 
(Sabel'nikov 1975 and DZ). (This oscillating behavior will be revisited in §5.) For 
large values of Ra(k), the pressure term in Eq. (28) can be neglected compared 
to the other terms, and the "pressure released" regime is obtained. We note that 
use of the solenoidal Poisson equation to approximate the total pressure variance 
(i.e. setting p = P8) and then using (30) to estimate the pressure-dilatation term, 
a method followed by DZ, can lead to some inconsistencies. If p = p8 holds, the 
dilatational mode is directly given by a simplification of (28) (equating the first 
three terms to zero), and the solution is 

(3) (k, t) - j__. 
K 

3) (K, 0).	 (31) -	 "° 

The potential inconsistency is that this solution for q is not necessarily the same 
as that found from Eq. (30). In (31), the dilatational part of the kinetic energy 
depends only upon its initial value; for a mean compression, q(t) = 
where 1(J) depends on the type of compression. In contrast, the DZ method 
amounts to connecting both P and (3) to the initial value of the solenoidal modes, 

0), so that the dilatational part of the kinetic energy depends only on the 
solenoidal initial data: q(t) = 1Dz(J(t))(m)4 q(0) (where FDZ(J) 1(J) and 
again depends upon the compression type). 

An approach which avoids this ambiguity and allows the classification of other 
relevant limits is available by introducing integrating factors into (28) and (30) so 
that

Y = J'--- and z =	 (32)
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FIGURE 1. Solenoidal and pressure-release regimes. 

satisfy the simpler equations:

	

D(/a2) + k2y j j3	 (33)
V2 

	

D(i/k2) + 
a 2 z = a2 za ,	 (34) 

Vt 

where z' = J'p3/pa2 = i(J_1/ka2 )m34 0) . The left-hand sides of both (33) and 
(34) are linked only to the dynamics of the solenoidal field and thus decoupled from 
the dilatational and pressure terms for irrotational mean deformations. 

We are now in a position to distinguish the different regimes implied by equations 
(33) and (34): 

I. The incompressible limit, with a 2 -i oo, which corresponds to a vanishing value 
of all the time-derivatives in both equations; hence, z8 and y -, 0, and z = 
(i.e. p = Ps) and y = 0 are consistent limits in this case. 

II. The acoustic regime, recovered when k2 y >> iZ. 
III. The regime studied by Durbin & Zeman, where the pressure-dilatation correlation 

is given by the solenoidal pressure variance, which corresponds to k2 y = ii' in 
(33) and z = z8 in (34); these equalities hold only if the time-derivative of the 
solenoidal term (right-hand side of (33)) is much larger than the time-derivative 
of the dilatational term (first term on the left-hand side of (33)). 

IV. The pressure-released limit, corresponding to k2 y	 iz7a in (33), which leads to 
the condition 

(with L a lengthscale of the energy containing turbulence) required for the pres-
sure-released regime to be valid. We mention in passing that if one assumes that 
the ratio A of the dilatational to solenoidal kinetic energy is proportional to M, 

the above inequality suggests that an alternative to Lm as the parameter that 
defines the pressure-released regime is the quantity AmM"2 = rM 2 . In spite 
of this, the DNS results presented below indicate that the pressure-released limit 
seems to be adequately parameterized by Am alone.
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Complete solutions of the system of linear equations (28) and (30) are required for 
intermediate values of R0(k). The method described in Cambon (1982) of extending 
the Townsend (1976) approach can also be used for the general (homogeneous) case; 
an overview of the scheme follows, which we plan to follow in future work. A linear 
transfer function g, which generates the general solution of the system of equations 
as

(k, t) = gij (e(3) ,K/Ko,Ra(Ko),aoKot) '(K,o), 

is computed by solving (numerically in general) (20), (27), (28), and (30) for a 
set of arbitrary simple initial data () = & i, = i2, etc.... ). (For convenience, 
the subscript can be taken to vary from 1 to 4 in order to represent the pressure 
fluctuation with (4) = p/a.) All the relevant one-point correlations can then be 
obtained by integrating over spectral space products of linear transfer functions and 
initial spectra. The initial spectra such as

= E(")(K) 
fi(K - P) 

47rK2 

can be generated by invoking isotropy and assuming acoustic equilibrium (Sarkar 
ci al. 1989) and certain relationships between the dilatational spectra (Bataille, ci 
al. 1992). Note that the delta function ö amounts to a factor önm(A(0)/27) 3 if 
discrete Fourier modes (P = n, K = m) are chosen using periodic boxes of size A, 
as is done in DNS. For both the continuous and discrete case, the mean compression 
must be taken into account when computing correlations and integrating over wave 
space, using either 

or A3 (t)/A3 (0) = J and d3 k = dk1 dk2 dk3 = J 1 d3 K. For the solenoidal field 
certain results can be obtained analytically, as is demonstrated below for the case 
of axial compression, since g 'j depends only on the orientation of the wave vec-
tor, and not on the modulus; integrations over wave space needed to derive the 
velocity correlations can thus be separated into the product of two one-dimensional 
integrals, one of which defines (independently of initial spectra shape) the initial 
kinetic energy. Evaluation of the non-solenoidal correlations is not as straightfor-
ward since the components of the linear transfer matrix that involve the dilatation 
depend on both the direction = k 1 /k of the wavevector k (as for the solenoidal 
case) and on its modulus. Accordingly, amplification coefficients like the functions 
F and FDZ mentioned above in general require numerical integration. This com-
plication is a symptom of the wave number dependence of the sonic timescale in 
spectral space (a(0)K)', symbolically shown in Figure la; since the deformation 
scale D' is the same for all wave numbers, above a critical value K*, the sonic 
is the shorter of the two timescales. For a given energy spectrum with peak at K0 
so that Am is characterized by R0 (Ko), the rapid distortion behavior depends on 
K/Ko. The largest structures (K < K0 ) will, therefore, naturally tend toward the 
pressure-released extreme and the smallest (K > K0 ) toward the solenoidal limit.



FIGURE 2. Contours of turbulent Mach number (a) before and (b) after axial 
compression (Case C1DW). 

When K0 falls well below K*, the entire flow is within the pressure-released regime, 
and Am>> 1; when K0 >> K* , the Lm - 0 limit is valid (see Figure ib). 

In the next section, the analysis is applied to the special case of axial compression, 
and DNS results are used to verify the relevance of Lm as a critical parameter. 

3. RDT and DNS of axially compressed flow 
Both the RDT and DNS impose upon isotropic compressible turbulence the axial 

deformation that satisfies the homogeneity condition (15) so that the single nonzero 
mean velocity gradient component is 

= 1 + Dot = D
0J' and F11 = J.	 (35) 

For D0 D(0) <0, this straining can be maintained for a finite time for as long as 
the flow volume is nonzero. Here we consider mean density ratios (equal to J') 

that vary from 1 to 5; see Figure 2. Before describing the various DNS runs, which 
is done in §3.2, in the next subsection we specify the RDT correlations relevant to 
one point modeling of the axial compression. 

3.1. Rapid distortion analysis for axial compression 

For the case of axial compression, the Craya-Herring-Cambon coordinates given 
in §2 reduce to e 3 = cos 9, e 2) = - sin 9, where 9 = (k, n) if the polar axis is chosen 
along the compression direction so that e' = 0 (see Cainbon & Jacquin (1989) for 
other axisymmetric RDT applications). The RDT solutions for the solenoidal field 
are then

t) = J'(K, 0) and 02) (k, t) = _ 2 )(K , 0),	 (36)
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with k1 = K1 J 1 , k2 = K2 , k3 = K3 , cos9 = k 1 /k = J'/(l + C22 )' 12 , k2 = 
1 + C22 , C2 = J' - 1 and e = K1 /K. The double correlations are calculated 
using

= ((i)*(i)) and	 = _(2) sin9 + 3) cos 9.	 (37) 

Assuming isotropic initial data, both the solenoidal and pressure-released analytical 
RDT predictions can be obtained by integrating either over or directly in physical 
space, with the results being unaffected by the initial spectral shape. The axial 
compression correlations are tabulated below, using as super- or subscripts "s" and 
"p", respectively, to denote the solenoidal and pressure-released limiting cases. 

Turbulent kinetic energy:
q(t)  -

Aa(J),	 (38a)
q(0) - 

q2 (t) - 
q2(0) - A(J).	 (38b) 

Compression-direction Reynold stress component: 

(uu)(t) 
q(0) = B

8 (J),	 (39a) 

(uiui)(t) 
q2(0) = B(J).	 (39b) 

Compression-direction solenoidal-dilatational cross-correlation: 

(uu')(t) = 0,	 (40a) 

(uu)(t) 
q(0) = C(J).	 (40b) 

Structure dimensionality tensor (Reynolds 1990; see also (47) and (48)): 

D 1 (t)
= D3 (J) = B3 (J),	 (41a) q, (0) 

D11(t)
= D(J).	 (41b)

q2 (0) 

Compression-direction component of the pressure-strain rate correlation: 

= DE8 (J),	 (42a)
q,2 (0) 

liii = E(J) = 0.	 (42b)
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The pressure-dilatation term Ii is identically zero for both limits. In terms of the 
inverse compression ratio J with C2	 - 1, we have for the J < 1 case: 

Al = 
(

+ 
J_2 tan C)	 (43a) 

2+J2 
A,,	 (43b) 

J-2 / 	 C2 - 1 tan' C)	 (43c) B8=  	 C 

B,, 
=

(43d) 

2 tan' C\ 
C,, = !:; (_i +	 C ) - B

8	 (43e) 

_____	 + J-2\ J-2 /	 tan'C 
DP 

 

=	 - C ) 

(2	
(431) 

1 
E	

1 (C2 +3+  (C2 - 3)J-2 tan 7' C\	
(43g) 

2C4	 C 

The solenoidal amplification functions turn out to be nearly linear in J 1, whereas 
the pressure-released expressions are nearly parabolic. The quantities A8 and B3, 
previously derived by Ribuer( 1953), and the new expressions D. and E3 are almost 
the same as those found for incompressible axisymmetric strain (of arbitrary his-
tory), with, for example, the Reynolds stress tensor R j = (uu) = J2/3R(J),tj 
where R' is the RDT solution for the trace-free part of the mean deformation. 
Functions A,, and B,, are obtained by simply ignoring the pressure terms during 
the integration of the equations for the one-point correlations in the rapid axial 
compression limit, which are:

42 =-DRii +H,	 (44) 

All = -2DR11 + ll,	 (45)

where R13 = (uuj), and II 11/2 = (pu,)/. 
For moderate compressibility, we find from the DNS results that the role of 1111, 

which reduces the anisotropy (b11 = R11 /q2 - 1/3) in (44) and, therefore, indirectly 
reduces the production term in the kinetic energy equation, is more important 
than the direct role of H. For future reference, we now put forth some useful results 
concerning the anisotropy tensor b, = (u,u,)/q2 - and a recommended general 
decomposition for the Reynolds stress:

	

2	 ^beç1)'\	 (46)
 ( 3 	 33 R1, = q	 1 0-) 10')) + (ut4) + (u'u) + d (Lj

 3	 Ii	 I)
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where the solenoidal deviator b! 
2 

is split into a part reflecting the directional depen-
dence (superscript e) and the "polarization" (subscript z) (Cambon ci al. 1992). 
This decomposition can be recovered using the "structure tensors" introduced by 
Reynolds(1990) (see also BMR) via 

13 = 	 = J2 , 2 e 8 (k,t)d3 k = q82 (Lj - 2b7 3))	 (47a) 

- I 
e(k,t)3 =

+	 - bz(8)"	 (47b) c; = (tI',,b,,1) -
	 k2	

q82 (Lij 	 ii I 

= (,i,j) = J2iLed(k,t)d3k = q (Lij + be( 

	

ii ).
	

(48) 
k2 

To show the equivalence of the two approaches we first note that the tensors in 
(47) and (48) are formally defined using the vector O i or scalar cp potential func-
tions according to the Helmholtz decomposition (18) in physical space. The three-
dimensional spectra are then defined (the second equality in (47) and (48)), with e8, 
ed and e being associated with respectively I (iI*i2) = (* ( a)) (d*d) 

(((3)*(3)), and (ww). Finally, the directional-polarization anisotropy tensors 
are specified (the third equality) so that the two approaches are reconciled. 

In the notation of Reynolds (1990), D,, reflects the "dimensionality" of the 
solenoidal field, which is close to the directional anisotropy, whereas C is asso-
ciated with the "componentality" of the turbulence. Only the dimensionality, or 
directional anisotropy, is needed for the dilatational velocity field since = 

(uu1) 
(BMR). This reflects the single-component character of u, in contrast to the two-
component structure of the solenoidal field. We finally note that the above tensors 
are not all independent; for example, Q. can be derived from the other tensors 
using (46)—(48), or equivalently the equation found by Reynolds (1992): 

(uu) + D + C: = 

It is hoped that the above general expressions will be useful in future attempts 
to model compressible flows. For the present, however, we narrow our approach as 
we use DNS results to test a few aspects of the rapid distortion analysis. 

3.2. Comparison to DNS of rapid axial compression 

The DNS results were obtained using a pseudo-spectral method to solve the 
compressible Navier-Stokes equations over a homogeneous domain in coordinates 
that move with the mean deformation (Rogallo 1981, BMR, Coleman & Mansour 
1991). As mentioned previously, the mean density ratio, J 1 = (t)1(0) varies 
from 1 to 5 during the compression. The runs use for initial conditions compress-
ible isotropic turbulence at various turbulent Mach numbers that have evolved from 
velocity fields, with finite dilatational components, that are in near acoustic equilib-
rium; these initial fields are generated by running the code with no mean straining 
until they develop realistic triple-velocity correlations and dilatational energy for
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FIGURE 3. Turbulent kinetic energy histories: -, lower, Eq. (38a); -, 
upper, Eq. (38b); ........, DNS with initial Am ranging from 0.3 (lower) to from 
3.0-8.0 (upper); ----, DNS Cases: lower, C1DJ (Mg,tm)g=o = (0.03,0.3); upper, 
C1DV (0.1,7); middle, C1DW (0.3, 1). 

the given M. (Note that BMR have found that compressible isotropic turbulence 
strongly depends upon all the initial conditions for the dilatational field, not just 
M, which implies that had we begun the precomputation with, for example, a 
purely solenoidal field, the levels of dilatational energy in the developed flow might 
be significantly different than those found here.) The initial turbulent Mach num-
ber for the runs varies from 0.03 to 0.44, the initial nondimensional compression 
speed r = D1q2 1e ranges from 50 to 800 (and DI1(isw)112 from 2 to 88),and the 
initial values of Lm = MD/ (,w)' /2 fall between 0.26 and 7. A ratio of constant 
specific heats -y = 5/3 and temperature dependent viscosity p = 710.72 is assumed. 
All the runs used 96 3 grid points and were generated on the Intel Hypercube/i860 
at the NASA Ames Numerical Aerodynamic Simulation program. 

Results for the total (solenoidal and dilatational) turbulent kinetic energy will first 
be presented. In Figure 3, the DNS histories for (pujuj)/ are plotted against the 
mean density ratio J 1 = (t)/(0). (Because it is convenient in the code to solve 
for momentum rather than velocity, all of the DNS results presented approximate 
velocity correlations by using density weighted averages. We find for our purposes
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FIGURE 4.	 Solenoidal turbulent kinetic energy histories: -, C1DJ (M1, 
= (0.03,0.3); ----, C1DV (0.1,7); ........, C1DW (0.3,1); --, Eq. (38a). 

that the uncertainty introduced by comparing the DNS Favre averages to the RDT 
Reynolds averages is unimportant.) These curves strongly support the validity of 
the RDT analysis presented above in that all the DNS results lie between the lower 
solenoidal ("A 3 ") and upper pressure-releases ("A,,") RDT limits and that rate of 
energy amplification scales almost monotonically with the initial value of Am, which 
varies from 0.3 for the lower (dotted) curve to from 3 to 8 for the upper (dotted) 
curves. Three runs will be examined further, those represented by the dashed curves 
in Figure 3. Cases C1DJ, C1DV, and C1DW have initial Mt equal to 0.03, 0.1, and 
0.3, respectively, but the compression rates are such that the corresponding order 
for Lm is 0.3, 7, and 1. At the end of the compression the (Me, Lm) values for 
C1DJ, C1DV, and C1DW are respectively (0.03, 13), (0.2, 79), and (0.4,6). 

Figure 4 confirms that Eq. (38a) is an excellent approximation for q for the 
three cases considered and that the solenoidal field is, in fact, unaffected by the 
dilatational field, as predicted by the RDT. Both contributions to the kinetic energy 
are shown in Figure 5. We see that the dilatational energy is most important at the 
end of the compression, when the pressure-released regime dominates. The initial 
values of the dilatational-to-solenoidal energy ratio )o for the various runs is also 
apparent.
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FIGURE 5. Solenoidal and dilatational turbulent kinetic energy histories: •, 
solenoidal; 0, dilatational; -, C1DJ (Mg,Lm)j=o = (0.03,0.3); __, C1DV 
(0.1,7); ........, C1DW (0.3,1). 

These results suggest the following model for the Mach number dependence of 
the kinetic energy behavior during a rapid axial compression: 

q(t) = A3(J)q(0)	 (49a) 

q(t) =A,,(J)q(0) + (A+ (J) - A(J)) q(0),	 (49b) 

where the "interpolation functions" A,,4 and A are assumed to vary monotonically 
with Am, increasing from zero to maxima of A,, and A, respectively. Similar agree-
ment with DNS data is found for the other correlations given in (43). The results 
for (uu) and (ui4) are presented on Figure 6, where the DNS and RDT histories 
closely correspond. The slight overamplification of the DNS result compared to 
the analytical (uu)/q = BS /A9 ratio becomes more pronounced with increasing 
Am. For the dilatational curves in Figure 6, (uu)/q, we find the expected trend 
with Am, since they are closest to the analytical pressure-released expression (the 
"chain-dash" curve) when Am is largest. An analog to (49) is therefore proposed 
as a model for the dilatational Reynolds stress: 

(u4) - B,,(J)Ao + B(J) - B(J) 

q	 - A,,(J)Ao+A(J)—A(J)'	
(50)
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FIGURE 6. Histories of the anisotropy of solenoidal and dilatational turbulent ki-
netic energy: •, solenoidal; 0, dilatational; -, C1DJ (Me, m) t=o = (0.03,0.3); 
----, C1DV (0.1,7); ........, C1DW (0.3,1); -.-, Eqs. (38a), (39a); ---, Eqs. 
(38a, b), (39a, b), using A0 = 0.22 from Run C1DV. 

where A 0 is the initial ratio of the dilatational to solenoidal kinetic energy (which 
in practice might be neglected). The curves in Figure 6 suggest that the ratio 
(B - B)/(B - B3 ) is smaller than the same ratio of "A" functions. 

Another anisotropy measure is investigated in Figure 7, where the structure ten- 
sors are presented. Recall that D 1 = (u'u). The fact that D3 = B. in (41a) 
confirms that = —tb, and = b j is a good approximation for ax- 
isymmetric strain, as suggested by studies of non-isotropic initial data under rapid 
rotation (Reynolds 1990, Cambon et al. 1992, Mansour et al. 1991). Rapid rotation 
was shown to damp and, therefore, to reveal the initial anisotropy of as 
the asymptotic limit reached after several revolution times. In axisymmetric tur-
bulence, D11 /q2 can be interpreted as an angular coefficient cos' a, as implied by 
the integrands in (47) and (48), which reveals the conical structure of the spec-
tral region that contains energy (around the symmetry axis). For example, a value 
of 1/3 for this coefficient suggests no angular dependence (directional isotropy), 
whereas a value between 0 and 1/3 suggests a relative concentration of spectral 
energy in the plane normal to the symmetry axis. Unfortunately, the situation is
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FIGURE 7. Structure tensor histories: •, solenoidal; 0, dilatational; -, 
C1DJ (Mj,m)jo = (0.03,0.3); ----, C1DV (0.1,7); ........, C1DW (0.3,1); -•-, 
Eqs. (38a), (41a); ---, Eqs. (38a, b), (39a, b), using ) o = 0.22 from Run C1DV. 

more complex in the presence of a mean distortion, which causes a variation in di-
rection of the time-dependent wavevector; in the pressure-released case, the angular 
distribution of spectral energy is unchanged with respect to (isotropic) initial data, 
but the wavevector tends to be aligned with the symmetry (compression) direction 
(see (36)) so that cos2 a increases and tends to 1. On the other hand, in the pure 
solenoidal limit, the relative concentration of spectral energy in the plane normal to 
the compression direction opposes the tendency induced by the wavevector motion 
so that a slower (as compared to the pressure-released case), but still positive, net 
increase of the anisotropy is obtained. Note that the solenoidal ratio of D li /q 
given by the DNS is found to be slightly lower than the RDT analytical prediction. 

The cross-correlation (uu')/(uu) is plotted in Figure 8 and compared to the 
RDT expression C(J)/B,(J) from (39a) and (40b). The results suggest that for 
modeling purposes it might be advantageous to use an effective "saturated" vol-
umetric ratio J in place of J and define C, an interpolating function for the 
cross-correlation, according to

C(J)C(J)	 (51a) 
Bt (J) - B8(J+)'
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FIGURE 8. Histories of the compression-direction component of the dilatational-
solenoidal Reynolds stress correlation: -, C1DJ (Mj,Am)j=o = (0.03,0.3); 
----, C1DV (0.1,7); ........, C1DW (0.3,1); -S-, Eqs. (39a), (40b). 

and use the model

(u7u) = C(J)q(0).	 (51b) 

The parameter J would tend toward the actual J in the pressure-released limit 
and approach unity in the solenoidal limit. The role of pressure will be discussed 
further in §4; for now, we observe in Figures 9 and 10 the dramatic increase of 
both pressure variance and pressure-dilatation terms caused by the compression. 
The amplification increases with the initial turbulent Mach number, which at first 
seems to conflict with the idea of a pressure released limit. The paradox disappears, 
however, if the pressure-dilatation term is no longer nondimensionalised by initial 
values (as is done in Figures 9 and 10), but rather scaled by a term proportional 
to the kinetic energy production. DNS results for fl/Dq2 are presented on Fig. 
11. The magnitude of this term is found to decrease with increasing Am for the 
three cases considered. This implies a non-monotonic variation with Lm for this 
term (since it is identically zero in the solenoidal limit) with a maximum reached 
at low compressibility. It can be noticed that increasing values of fl/Dq2 are found 
at large J' for the intermediate Am case (C1DW), which we expect cannot be 
explained by RDT. This illustrates that the requirements for a compression to be
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FIGURE 9. Pressure variance histories: -, C1DJ (Mg,zm)j=o	 (0.03,0.3); 
----, C1DV (0.1,7); ........, C1DW (0.3,1). 

rapid enough for RDT to be valid are more difficult to meet when the flow is intrin-
sically compressible, a fact also stressed by Zeman & Coleman (1992). The term 
ll 1 /Dq2 linked to the compression-direction component of the pressure-strain rate 
correlations is shown in Figure 12. The solenoidal RDT expression, E3(J)1A9(J), 
from (38a) and (42a) is plotted and is found to give an upper limit to the DNS 
curves. These results suggest a monotonic decrease of ll 1 /Dq2 with increasing 

Am. Moreover, comparisons of the order of magnitude for both terms on Figures 
11 and 12 (noting the different scales of the two plots) show that the compression-
direction component of the pressure-strain rate is dominant compared to its trace 
(pressure-dilatation term) in all cases. This confirms that the reduction of amplifi-
cation of turbulent kinetic energy with respect to the pressure-released case (where 
only the "production" effects are present) is mainly due to IT, through reduction 
of anisotropy, as in the pure solenoidal case. 

4. Towards a pressure-strain rate model 

Equations for II II and 11, valid for the rapid mean compression case, can be 
derived from eqs. (44) and (45), using eqs. (49) and (50) to model q2 and (uiui).
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FIGURE 10. Pressure-dilatation correlation histories: -, C1DJ (Me, m)go = 
(0.03,0.3); ----, C1DV (0.1,7); ........, C1DW (0.3,1). 

The result is
1-f - T_2d,T20 

	

11 11 - J	 ILfl 

= j_2 (J (B. + B - B)q(0) + J2Bpq(0)) 

= DE3q(0) + j-2 (J2(B - Br)) q(0),	 (52) 

and
(.!(A. + A+ - A:) + D(B, + Bp+ — B:) 2(0) fl=

= ( ! (A+ - A) + D(B	 Br)) q(0).	 (53) 

To obtain the above, the relations 

J_2 (J2B) = E3; (j2 Bp)= 0; A, + DB8 = 0; A,, + DB = 0, (54) 

have also been used.
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FIGURE 11.	 Rescaled pressure-dilatation correlation histories: -, C1DJ
(M,Lm) t=o = (0.03,0.3); ----, C1DV (0.1,7); ........, C1DW (0.3,1). 

4.1 Proposals for Second-Order Modeling 

Two simple ideas for constructing the Eq. (52) and (53) "interpolation" functions 
(denoted by a superscript "+") are proposed: 

1. Using two functions of Am, passing monotonically from from 0 to 1 so that 
- A? = f1 (A - A3 ) and B - B? = f2 (B - B8 ); if the time-variation of 

the interpolation functions is neglected, this leads to the model 

= ll(1 —12)	 (55a) 

II = (12 - f1 )D(B - B3 )q(Q).	 (55b) 

Note that 12 > Ii is consistent with the sign of H found in the DNS results and 
with the interpretation of dilatational energy histories in Figure 5. 

2. Using a "saturated" volumetric ratio J+ instead of the actual J in the evaluation 
of the interpolation functions with + superscripts, so that A(J) = A(J+). The 
equation for J would be 

j+=
	 - Cj+ . (J - 1),	 (55c)
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FIGURE 12. Histories of correlation of pressure and compression-direction velocity 
gradient: -, C1DJ (Mt ,Am)g=o = (0-03,0.3); ----, C1DV (0.1,7); ........, C1DW 
(0.3,1); -.-, Eqs. (38a) and (42a). 

where Cj+ is a modeling constant. The sonic timescale-damping term would 
allow J to saturate close to unity as the regime of the flow approaches the 
solenoidal limit.

4.2 Testing a Second-Order Model 

From our analysis of the three DNS cases, we find that they are in the regime 
where the production and the rapid redistribution terms are dominant. The contri-
bution of the pressure-dilatation is about 10% of the production in the worst case. 
This leads us in our attempt to model the DNS results to adopt the first proposal 
of the previous subsection, and consider a linear (in b,) model for the solenoidal 
rapid part (see Shih et al. , 1990) of the redistribution term, taking 1 - 12 (see 
Eq. (55a)) to be an exponential function of A m. The mean and Reynolds-stress 
equations reduce to: 

= —Ut, , U 
= 1	 =	 - 1)TU,,, 

Rij,i —RkUJ, k - RkU1,k + 'I, exp(—Lm/Cm),
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FIGURE 13. Reynolds stress history, compression-direction component: -, 
C1DJ (Mg,Lm)o = (0.03,0.3); ----, C1DV (0.1,7); ........, C1DW (0.3,1); •, 

Eq. (55d); no symbols, DNS. 

with
4,	 4	 48a - 60	 .	 2 c.* I. 

=	 +	 5ikuki + Ojk uki - 3"mn'mn0*J 

+ 60 _l6a (kbk + kj bki ),	 (55d) 

where Am jSjMtq21e and we have set a = 2.523 (to be consistent with the 
model of Launder et al. (1975)), and Ca,. 40. The quantity Q, = (U1 ,, - U,,1)/2 

is the mean rotation tensor. 
The development of the axial component of the Reynolds stress, R11 , as predicted 

by the above model for the three cases considered is shown in figure 13. We find 
that this simple model, where the effects of the redistributive term diminish when 
Mt increases, compares well with the DNS data. The development of the turbulent 
kinetic energy (see Fig. 14) is also well reproduced, indicating that the effects of 
the pressure-dilatation are, in fact, weak compared to the production term. No 
attempt was made to optimize the constant Cm since the pressure-dilatation term 
was neglected. This term does play a role in the development of the flow, and Cm 
should be optimized in conjunction with a model for the pressure dilatation term.
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FIGURE 14. Turbulent kinetic energy history: -, C1DJ (Me, i.m)o = (0.03, 
0.3); ----, C1DV (0.1,7); ........, C1DW (0.3,1); ., Eq. (55d); no symbols, DNS. 

5. Spherical compression and pure shear revisited 

5.1. Isotropic spherical compression 

In the presence of a mean spherical compression, with 

Ujj = Dbii, D =Do = Do j-113 F, J"3 S, and k 2 = K1 J 113 , (56) 1-I- Do t 

the coupling term m3a in (27) and (28) has zero value. The evolution of the 
solenoidal kinetic energy is then easily found to be given by the amplification coef-
ficient j213 For the dilatational field, eqs. (33) and (34) remain of interest now 
with their right-hand sides equal to zero (since m). Even in the absence 
of the right-hand sides, a WKB analysis of the equations would not in general be 
appropriate because the timescale variation of a2 and k2 is not necessarily small 
with respect to the expected frequency ak of the oscillating system (depending on 
the value of m). Blaisdell (1992, private communication) has recently found a 
solution free of WKB assumptions; its validity is restricted to values of y close to 
5/3, but a general analytical solution is possible (work in progress). If y = 5/3, 
k 2 and a2 have the same j213 time dependence, so simple solutions in terms of 
exp(±ia(0)k(t)t), where k(t) varies as in (56), can be obtained for y and z. The
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history of q can then be derived from the initial (uncompressed) dilatational field. 
Assuming that acoustic equilibrium holds for the initial conditions, one can write 

q(t) = J 2 "3q(0),	 (57) 

which is the same variation found for the solenoidal energy. The acoustic equilibrium 
assumption is realistic but perhaps not necessary; the initial balance between kinetic 
dilatational energy and potential (pressure) energy allows oscillating terms to be 
dropped, but the same final result could also be reached after a certain elapsed time 
because of the damping behavior of integrals such as 

JF(K)exp2ia(OKJ3tdK, 

where F is defined by the initial energy spectra and is nonzero only for flows out of 
acoustic equilibrium. (This behavior is similar to that found for the case of rapid 
rotation.) 

The above considerations show that an oscillating regime, more general than 
the pure acoustic one, is not inconsistent with the pressure-released limit and that 
the latter can be used to derive the same relationship (57) found via the acoustic 
equilibrium assumption. We thus find that the spherically compressed flow lends 
support to the general approach advocated in this paper. 

5.2. Pure plane shear 

The case of shear flow is particularly interesting because all the coupling terms, 
most notably Ma3 and m3 ,,, are present. The crucial parameter in the absence of 
compression (J = 1) is the shear S = dUi /dx2 . Under this deformation, eqs. (27), 
(33) and (34) become

k3 k2 	 \ 
+	 = s (k? + k)1/2) Y	

(58a) 

V 

Vt 
(k;;(2)) = -s (
	

k1 

(k? +	k)1/2) k
2 y	 (58b) 

+ak2y+S2yS2 V (
ki(k+kW\ V(St)	

kc2,	 (59) 

with
Ui ,) = S5i1 6j2, k 1 = K1 , k2 = K2 - K1 St and k3 = K3. 

Here the polar axis is chosen to be in the gradient direction (n 1 &5 2 ). The two 
solenoidal 1) and (2) components are very close to the set (w2, V2 U2) used in 
linear stability analyses for decoupling, for example, the Orr-Sommerfeld equations 
for parallel flows (cf. Waleffe 1990). Even in the pure solenoidal case (where y = 

= 0), the present approach appears to be more tractable than are classic RDT 
approaches (Townsend 1976). Unlike for a purely irrotational mean deformation,
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the presence of the new coupling terms (mediated by m13 = —Sk2 k3 /kk13 , m23 = 
Sk3 1k13 in the above equations) makes the solenoidal field no longer independent 
of the dilatational component. In addition, this coupling introduces the new term 
S2 (k/k2 )y in Eq. (59). The pressure-released approximation amounts to neglecting 
ak2 y compared both to this new term and to the solenoidal right-hand side in (59). 
The rm>> 1 regime then implies that (in physical space), 

U 1 = u j (0) - Stu 2(0), u2 = u 2 (0) and u3 = u3(0), 

and leads to quadratic amplification, with respect to St, of the kinetic energy (which 
is more rapid than the nearly linear amplification obtained by numerically integrat-
ing the solenoidal RDT solution for (1)*(1) + (2)*((2)) over k-space). Note 
that the inviscid solenoidal RDT solution for the vertical velocity component is 
given by D(V2 u2 )/Vt = 0 in physical space (corresponding to Eq. (58) with y = 0) 
so that a rapid decay of u2 is found. On the other hand, u2 is conserved in the 
pressure-released inviscid RDT limit. 

6. Recap and conclusions 
The objective of this analysis has been to develop a rapid distortion theory for 

homogeneous compressible turbulence at finite Mach number and then use that 
theory to explore some issues related to one-point compressible turbulence models. 
We have applied the analysis to the case of axial compression and found that DNS 
results confirm the RDT prediction of two distinct flow regimes, one for vanish-
ingly small turbulent Mach number and the other for flows with negligible sonic 
and turbulent timescale variations compared to the mean distortion. The latter is 
referred to as the pressure-released regime (since the fluctuating pressure field can 
be neglected in the RDT for this limit) and is defined by large values of the product 
of M1 and the ratio of the turbulent to mean deformation timescales. For large 
values of this parameter, we find that the intrinsic compressibility of the turbulence 
is responsible for an increase in the growth rate of kinetic energy with increasing 

an effect exactly opposite to that usually attributed to the compressibility. It 
would seem that the reduction in kinetic energy growth rate due to compressibility 
observed in previous compressible homogeneous DNS studies can be attributed to 
"slow" terms with nonlinear and dissipative origin, such as the "extra" dilatational 
dissipation associated by Zeman (1990) with eddy "shocklets." In the future, we 
plan to perform systematic comparisons between compressible RDT (from numeri-
cal solutions obtained by the method presented in §2.4) and existing DNS to allow 
an accurate differentiation between the "rapid" and "slow" terms, which are found 
to have opposite trends with respect to the effect of compressibility on the kinetic 
energy growth rate. 

For the axial compression, analytic expressions for the correlations associated 
with one-point closures for both the solenoidal and pressure-released limits have 
been given. These expressions have been used to propose methods of interpolating 
between the two limiting RDT cases in models for the pressure-strain rate correla-
tion, ll, and thus account for finite Mach number effects.
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All the DNS results were obtained using the facilities of the Numerical Aerody-
namic Simulation program. This work was partially supported by the Laboratoire 
de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon. 
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Investigation of the dilatational dissijatioñ 

in compressible homogeneous shear flow 

By G. A. Blaisdell' AND 0. Zeman2 

The dilatational dissipation rate within compressible homogeneous turbulent 
shear flow is studied using data from direct numerical simulations. It is found that 
the dilatational dissipation rate is mainly associated with large scale acoustic waves. 
Eddy shocklets are observed; however, they have little contribution to the average 
dissipation rate. A mechanism for the generation of eddy shocklets is shown to be 
the focusing of acoustic waves. Turbulence models for the dilatational dissipation 
rate are compared with data from the simulations. It is found that the formulation of 
Zeman (1990) used by Viegas & Rubesin (1991) to calculate a compressible mixing 
layer agrees well with the numerical simulation results for turbulent Mach numbers 
less than 0.3. However, it is also found that, for the Mach number range occurring 
in mixing layers, the model does not accurately represent the theory upon which it 
is based. 

1. Introduction 
Compressibility effects on turbulence are important in several applications in-

cluding hypersonic and supersonic boundary layers, scramjet and ramjet engines, 
and internal combustion engines. The accurate and reliable prediction of such flows 
requires improvements be made to current turbulence models. Our goal is to bet-
ter understand compressible turbulence and to make improvements to turbulence 
models for compressible flows. The approach used is to examine results from direct 
numerical simulations (DNS) of compressible homogeneous turbulent shear flow. 

Direct numerical simulations of compressible homogeneous turbulent shear flow 
by Blaisdell et al. (1991) and Sarkar et al. (1991a) have shown that the growth rate 
of turbulent kinetic energy is reduced compared to the incompressible case. The 
reduction in the growth rate has been attributed to two additional compressibility 
terms occurring in the turbulent kinetic energy equation - the dilatational dissipa-
tion rate and the pressure-dilatation correlation. The dilatational dissipation rate 
is an additional dissipation due to the divergence of the velocity, while the pressure-
dilatation correlation represents a reversible transfer of energy between internal and 
kinetic energy. Turbulence models for both of these terms have been proposed by 
Zeman (1990, 1991) and by Sarkar el al. (1991b, 1992). In the current investigation 
only the dilatational dissipation rate is considered. 

1 Purdue University 
2 Center for Turbulence Research
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The basis for the models of Zeman (1990) and Sarkar ci al. (1991b) are very 
different. Sarkar's model is based on the idea of acoustic equilibrium while Zeman's 
model is based on the existence of eddy shocklets. The direct numerical simulations 
of Blaisdell ci al. show the existence of eddy shocklets, which are regions of strong 
local dilatational dissipation rate. In spite of this, Sarkar's model was found to 
agree better with the DNS data than Zeman's model. However, a comparison by 
Viegas and Rubesin (1991) of the two models applied to a compressible mixing 
layer showed that Zeman's model performed better in predicting the reduction in 
growth rate with increasing convective Mach number. Therefore, we seem to have 
contradictory evidence on the relative merits of the two models. It will be shown 
that the reason for the differences in the comparisons is that the model formulations 
considered are different. 

The objectives of the present work are to shed some light on the apparent dis-
crepancy in the relative performance of the two turbulence models and to better 
understand the dilatational dissipation in compressible homogeneous shear flow. 
We begin by examining the formulation of Zeman's model. 

2. Model formulations for the dilatational dissipation rate 
In both the models of Zeman (1990) and Sarkar ci al. (1991), the dissipation rate 

in a compressible flow is written as 

E = E + Ed = e 8 (1 + Ed/E8)	 (1) 

where e is the solenoidal dissipation rate and 6d is the dilatational dissipation rate. 
For homogeneous turbulence the solenoidal dissipation rate is given by e 3 = 
where w is the fluctuating vorticity. This is the same as the dissipation rate in an 
incompressible flow. The dilatational dissipation rate is Ed = (4/3)1d'd' where d' = 
0u/0x 2 is the divergence of velocity (also called the dilatation). Both Zeman and 
Sarkar ci al. have suggested modeling e in the same manner that the dissipation is 
modeled in incompressible flows while accounting for compressibility effects through 
the ratio Ed/E8. This strategy is supported by examination of the turbulent kinetic 
energy budget in the simulations of Blaisdell et al. (1991). 

The model of Sarkar et al. is based on the idea of acoustic equilibrium between 
kinetic and internal energy and assumes a certain variation of the pressure variance 
with turbulent Mach number. The model is 

CdIE. = cM	 (2) 

where MT = q/a is the turbulent Mach number, q =	 is the turbulent 

velocity scale using the Favre fluctuating velocity, and a = 	 is the speed of
sound based on the Favre averaged temperature. The model constant c = 1.0. 

The model of Zeman (1990) is based on the existence of eddy shocklets and is 
formulated in terms of the probability density function (PDF) of the fluctuating
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Mach number. An expression for the dilatational dissipation is given in equation 
(7) of Zeman (1990) which is then put in the form 

= cF(Mfl .	 (3) 

Zeman uses a turbulent Mach number, M, which is based on sonic conditions. 
The sonic temperature is given by T* = To[2/( + 1)] where T0 is the stagnation 
temperature. Zeman argues that To can be replaced by the Favre averaged static 
temperature, T. Then the turbulent Mach number used by Zeman can be related 
to that used by Sarkar et al. by 

	

M*	 q - iT q -

	

+	 (4) 

	

T	 /RT* V 2 

For the case of a diatomic gas, y = 1.4 and M = 1.10MT . (Throughout the current 
paper use is made of MT and M as well as Mrms. These are referred to as the 
turbulent Mach number, the turbulent Mach number based on sonic conditions, and 
the rms Mach number respectively. Data from the DNS show that MT and Mrma 
differ by less than 1% and, therefore, can be used interchangeably.) 

In determining F(M), the form of the PDF varies depending on the flow con-
sidered. A form appropriate for homogeneous turbulence is given in equation (5) of 
Zeman (1991). This is the form used in the comparison of Blaisdell ci al. (1991). 
The comparison of Ed/Cs IS shown in figure 1. The DNS results are indicated by 
the symbols. For a given initial rms Mach number, ed/Es develops to become inde-
pendent of its initial value, and the asymptotic values are the ones that should be 
compared to the model. The model results are shown by the dotted curve. In com-
parison to the DNS results, the model predicts too fast an increase with turbulent 
Mach number, and it underpredicts the values at low M. The model of Sarkar ci 

al. (1991b) is also shown in figure 1. It matches the DNS data fairly well. On the 
basis of this comparison, one would conclude that Sarkar's model is better. 

For compressible mixing layers, Zeman (1990) uses a PDF parameterized by the 
kurtosis of the fluctuating Mach number, K, as shown in equation (6) of that 
paper. Different values of K give different relations for F(Mfl, as shown in figure 
2 of Zeman (1990). Rather than choose a particular value of K for performing 
calculations, Zeman (1990) offers a curve fit as follows 

- exp{—[(M - 0. 1)/0 . 6] 2 } , if M > 0.1;	 (5) F(Mfl= to,
	 if Mt* :50.1. 

This is the form used by Zeman (1990) and by Viegas & Rubesin (1991) to calculate 
the compressible mixing layer. It was found to give good results for the reduction in 
the growth rate with convective Mach number. Even though this formulation was 
developed for the mixing layer, it is interesting to compare it with the homogeneous 
shear flow DNS data. This is also shown in figure 1. The above formula fits the
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FIGURE 1. Dissipation ratio, ed/e,, as a function of Mrms. DNS data, symbols; 
model of Sarkar ci al. ,	 ; theoretical formulation of Zeman (1991), 
approximate relation of Zeman (1990) given by equation (5), 

DNS data very well, especially at lower values of Mrms. This result is surprising in 
light of the previous comparison made with the DNS data. 

In order to clarify the situation we need to examine the theory developed by 
Zeman (1990, 1991) more closely. There are some acknowledged errors in the form 
of the PDFs given in Zeman (1990, 1991), and so the development of the theory 
will be outlined and appropriate corrections made. 

Based on scaling arguments, Zeman arrives at equation (5) of Zeman (1990) which 
can be rewritten as

- (q3	 1 ((m2_1)\3 

M	 I	 (6) 

This relation gives the contribution to the dilatational dissipation rate from an eddy 
shocklet structure where m = //a is the instantaneous Mach number on the 
upstream side of the shock. The Mach number used by Zeman is based on the speed 
of sound at sonic conditions, a* fryRT* . The average dilatational dissipation is 
obtained from a distribution of eddy shocklet structures, and, therefore, one needs 
to integrate this expression with the PDF of m. 

Zeman has proposed two forms of the PDF depending on the flow. For homoge-
neous turbulence, in which case the velocity fluctuations are nearly Gaussian, the 
proposed PDF is given in equation (5) of Zeman (1991). Results using this PDF 
are shown in figure 1, and, as discussed above, they do not agree with the DNS 
data. In order to check whether the disagreement is due to differences between 
the actual PDF and the model PDF, the PDF of the fluctuating Mach number 
was taken directly from the simulations. However, the results did not agree with 
those of the DNS. This suggests that the basic theory does not apply to the flow
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conditions considered in the DNS. 
For inhomogeneous flows, such as mixing layers, in which the PDF of the veloc-

ity fluctuations are non-Gaussian, Zeman (1990) suggests using a Gram-Charlier 
expansion in which the kurtosis, K, appears as a parameter. The PDF given in 
equation (6) of Zeman (1990) contains a typographical error. It is also missing a 
factor of a and is, therefore, unnormalized. The normalized PDF, put in terms of 
the Mach number, is 

p(m*,K) = /a {i + (K —3) 136 (*\2 + (M*)4]( m*
4! 	

L	
a )	 a 	

exp	 (7) 

where the variance a = M11* - 
Zeman obtains the average dilatational dissipation rate by integrating the expres-

sion in equation (6) with the PDF of ins. This formulation, given in equation (7) of 
Zeman (1990), has a factor of 1/M 4 which is correct for the unnormalized PDF. 
If the PDF is normalized, then the dilatational dissipation rate is given by 

q3 1 1	 (M*2_1 
EdO([j	 7fl$ 

)3P(m*)dm*] .	 (8) 
L	 —3

Relating q3 /L to e gives the form shown in equation (3) where F(M) is the term 
in the brackets in equation (8) above. 

Zeman (1990) used the non-Gaussian PDF given in equation (7) to produce 
F(M;) for a range of values of the kurtosis K. These results are shown in figure 
2 of Zeman (1990). The curve fit given in equation (5) is supposed to correspond 
roughly to the theoretical predictions with K between 6 and 8. Comparing values 
of F(M) from equation (5) with those from the figure, this seems to be the case for 
most of the range of M; however, for values of M <0.5 there are some significant 
differences. Differences in this range are important because the calculations of a 
compressible mixing layer done by Zeman (1990) show that M is limited to values 
less than 0.5. 

In order to make a detailed comparison, the function F(M) calculated using 
the PDF from equation (7) is shown in figure 2(a) for values of K = 4, 6, 8, 10, 
along with the model given by equation (5). The curves shown in figure 2(a) do 
not exactly match those in figure 2 of Zeman (1990). The curves in figure 2(a) are 
somewhat lower than the corresponding curves from Zeman (1990), but the shapes 
of the curves are the same. The differences in the curves seem to be greater for 
higher values of K. The reason for the differences may be the approximations used 
to evaluate the integral in equation (8). It is believed that the curves in the current 
paper are accurate. 

The model curve shown in figure 2(a) has the same basic S-shape as the theoretical 
curves, and it lies between the curves for K = 6 and K = 8 for a large range of 
Mach numbers; but, in the range M <0.5, the model curve deviates significantly 
from the theoretical curves. This is shown in detail in figure 2(b). The model gives
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FIGURE 2. Dissipation function F(M) for various values of K, (a) for a wide range 
of Mach numbers, (b) for M <0.5. K = 4, ; K = 6, ---- ; K = 8, --; 
K = 10, ........; approximate relation from equation (5), --- 

much higher values for F(M) than what the theory predicts. The differences are 
especially great at lower values of M. The implication of the comparison shown in 
figure 2(b) is that, in the range of Mach numbers where the model is used, the model 
does not represent the theory upon which it is based. This does not mean that the 
model is not useful - it has been used to give the correct decrease in mixing layer 
thickness with increasing convective Mach number. However, the model must be 
viewed correctly as an empirical fit rather than having a fundamental theoretical 
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basis. The eddy shocklet dissipation theory developed by Zeman (1990) may still 
be valid under flow conditions different than those discussed here. 

Returning to the comparison done by Viegas & Rubesin, one can understand the 
relative performance of the models of Zeman and Sarkar et al. in the compressible 
mixing layer by comparing the values predicted for ed/e8. From figure 4 of Ze-
man (1990), compressibility effects become important for convective Mach numbers 
above 0.5, and, from figure 5 of that paper, this corresponds to M > 0.3. From 
figure 1 of the current paper, Zeman's model gives a greater value of ed/e3 than 
Sarkar's model in the range 0.25 < Mrma <0.75. So, in the range of Mach num-
bers where compressibility effects are important, Zeman's model predicts a higher 
dissipation rate than Sarkar's model. Therefore, while Zeman's model gives the 
correct growth rate, Sarkar's model predicts too large a growth rate. However, 
it should be pointed out that the comparison of Viegas & Rubesin only included 
as extra compressibility terms the dilatational dissipation rate and neglected the 
pressure-dilatation and the inhomogeneous term arising from the pressure-velocity 
correlation. Also, the mixing layer may have compressibility effects that reduce the 
production rate. These additional effects have been lumped into the evaluation of 
the dilatational dissipation rate models. 

Let us now examine how the DNS data fits into the evaluation of the models. From 
figure 1, Zeman's model agrees very well with the DNS data at the lower values of 
Mrma, while Sarkar's model overpredicts the dissipation rate in this range. The 
differences in the models for low turbulent Mach numbers are not significant for the 
mixing layer; however, there may be other flows, such as boundary layers, where 
these differences are important. For Mrms > 0.3, there are large differences between 
the DNS data and the models. The value of Ed/C8 from the DNS becomes roughly 
constant at 0.09 for Mrms > 0.3. This trend is not predicted by either model. Since 
Zeman's model agrees with the experimental results on mixing layers, there are 
most likely physical differences in the mechanism of the dilatational dissipation rate 
between mixing layers and homogeneous shear flow. The dilatational dissipation 
within homogeneous turbulent shear flow is examined in more detail in the next 
section. 

3. Cause of the dilatational dissipation in homogeneous shear flow 

In Blaisdell et al. (1992), flow fields from DNS of compressible homogeneous tur-
bulence were examined in order to see the effects of compressibility. Eddy shocklets 
were found, which are regions of high local dilatational dissipation rate. However, 
these structures do not necessarily contribute significantly to the average dilata-
tional dissipation rate because they are also highly intermittent. Nonetheless, it 
was believed that eddy shocklets are important to the dynamics of the dilatational 
dissipation rate. Also, a mechanism for the generation of eddy shocklets was sug-
gested in which streamwise vortical structures cause high speed and low speed fluid 
to come into contact, creating a compression that leads to the shock. In the current 
work, the question of the importance of eddy shocklets to the dilatational dissipa-
tion rate is reexamined, and, by using flow visualization of the temporal evolution of
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FIGURE 3. Weighted PDF of the dilatation for simulation scb192 at St = 12. 

the turbulence, a different mechanism for the generation of eddy shocklets is shown 
to occur. 

The nature of the dilatational dissipation rate can best be found by identifying 
the regions of the flow that contribute the most to the dilatational dissipation rate 
and seeing how these regions evolve in time. In Blaisdell ci al. (1992), the flow 
field from simulation scb192 was examined at the nondimensional time Si = 12. In 
the current study, we consider the time evolution of the turbulence using flow fields 
from the same simulation for times between Si = 11 and 12. 

In order to determine which regions of the flow contribute most significantly to 
the dilatational dissipation rate, use is made of a weighted PDF of the dilatation 
formed by Blaisdell ci al. which is defined by 

£° d' 2'd' (d') dd'
	 (9) 

where Pd'(d') is the PDF of the dilatation. Figure 3 shows P1 (d') for simulation 
scbl92 at St 12. The integral of P(d') gives the fraction of the dilatational 
dissipation due to a specific range of values of the dilatation. More of the dilatational 
dissipation rate comes from negative values of the dilatation, which correspond to 
compression zones, than from positive values, which correspond to expansion zones. 
This is consistent with the negative skewness of the dilatation and the fact that 
the second law of thermodynamics precludes expansion shocks. There are two peak 
values of 2(d'), one negative at d' = —0.93 and one positive at d' = 0.56. We will 
examine the regions where the negative peak values occur since they are associated 
with compression zones and will give us insight into the formation of eddy shocklets.
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FIGURE 4. Contours of divergence of velocity in an x-y plane for simulation scb192 
at St = 12. The highlighted contour corresponds to the negative peak in P. 

...-- •-::::---- 

door

 - - 

FIGURE 5. The highlighted contour of divergence of velocity at St = 11.01 (dark) 
and St = 11.26 (light). 

Figure 4 shows contours of the dilatation in an x-y plane for simulation scb192 
at St = 12. The mean velocity is in the x direction, and the mean velocity gradient 
is in the y direction. The contour with the peak value of P(d') for negative d' is 

highlighted. The view shown is chosen so that the strongest eddy shocklet (measured 
by the most negative dilatation) occurs in the center of the frame. The highlighted 
contour occurs on the periphery of the eddy shocklet but also throughout the rest 
of the flow field. The regions which contribute most significantly to the dilatational 
dissipation rate are long and thin and lie at a small positive angle to the direction 
of the mean flow.
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Considerable insight is gained by observing the temporal evolution of these re-
gions. Figure 5 shows the same highlighted contour at two different times, St = 
11.01 and St = 11.26. For this view, the effect of the mean velocity was removed 
so that any motion observed occurs relative to the mean flow. It is apparent that 
the regions which contribute to the dilatation propagate as waves. Thus it appears 
that these regions are associated with large scale acoustic waves. 

Next consider the dilatation in a spanwise, z-y plane. Figure 6 shows the spanwise 
plane at St = 12 which cuts through the strongest part of the eddy shocklet shown 
in figure 4. The same contour of the dilatation is highlighted. The regions that 
contribute to the dilatational dissipation rate are for the most part broad and thin. 
This view together with those shown in figures 4 and 5 gives the impression that 
these regions are portions of plane waves. 

Again, it is useful to observe the temporal evolution of the regions that contribute 
the most to the dilatational dissipation rate. Figure 7 shows a sequence of the 
highlighted d' contour superposed on contours of streamwise vorticity for times 
between St = 11 and 12. The highlighted contours propagate as plane waves as 
shown before. 

In figure 6, the eddy shocklet occurs about three quarters of the way across the 
plane (in z) and half way up (in y) at the base of the V-shaped highlighted contour. 
It is fairly narrow in the spanwise direction. The formation of the eddy shocklet can 
be observed by following the highlighted contour in figure 7(a) which lies somewhat 
below the location of that pointed out in figure 6 and which extends about a third 
of the way across the computational domain. As the contour propagates upward, it 
is distorted. It is believed that this distortion is due mainly to the vortical part of 
the turbulence, which is the reason for including contours of streamwise vorticity in 
figure 7. Shaded contours show positive streamwise vorticity, while dashed contours 
show negative streamwise vorticity. The particular contour of interest gets distorted 
as it passes what appears to be a pair of counter rotating streamwise vortices. Once 
the contour is distorted, it becomes focused and forms a cusp which is where the 
eddy shocklet occurs. Thus, the eddy shocklet is formed by a focused acoustic wave. 

We have seen that the dilatational dissipation within homogeneous shear flow is 
associated mainly with large scale acoustic waves. Eddy shocklets do form, but, 
because they are highly intermittent, they do not contribute significantly to the 
dissipation. 

The view shown in figure 4 with the highlighted contours lying at a shallow angle 
suggests that the regions which contribute the most to the dilatational dissipation 
may be due to the kinematic tilting of acoustic waves by the mean velocity field. 
Tilted acoustic waves would have increased dissipation compared to that of simple 
acoustic waves. This mechanism could be investigated by flow visualization, but 
this was not done. 

The possible tilting of acoustic waves points out one of the differences between 
homogeneous flows and inhomogeneous flows such as mixing layers. In homogeneous 
shear flow, the shear continually acts on the turbulence, and any acoustic waves will 
feel the effect of the shear as long as they exist. In a mixing layer, acoustic waves
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FIGURE 6. Contours of divergence of velocity in a z-y plane in simulation scb192 
at St = 12. The highlighted contour corresponds to the negative peak in P. 
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FIGURE 7. Sequence of views showing the highlighted contours of divergence of 
velocity superposed on contours of streamwise vorticity (shaded contours, positive 

; dashed contours, negative wa). (a) St = 11.01, (b) St = 11.26, (c) St = 11.50, 
(d) St = 11.75, (e) St = 12.



242	 G. A. Blaisdell 8 0. Zeman 

,	 (1s

: '—-

-	 -.	

cia 

 . .-

- - 

(b) 11.26	 -	 I	 I 

. 
..>	 ..	

_ 

-

b 
— 

-	 . 

-	 '.. 

- 

(c) St = 11.50 

FIGURE 7. (continued).



Investigation of the dilatational dissipation 	 243 

* 

, 
— 

At -, 

.	 - - 

(d) St = 11.75 

.	 \., 

:3	 c'ut.i1 
)	 . 

ell

-4-

•'	
,ç;	 ' 

=; (; 
#,	 ? 

a _ 

(e) St 12 

FIGURE 7. (continued).

OG1NAL PAGE Is 
OF POOR QUALITY



244	 C. A. Blaisdell & 0. Zeman 

have the chance to propagate to the freestreains. The mean shear in a mixing layer 
will act on acoustic waves, but the interaction will only be significant if the time scale 
of the mean shear is small compared to time scale for an acoustic wave to propagate 
out of the layer. The propagation of acoustic waves to the freestream represents a 
loss of turbulent kinetic energy which is separate from the dilatational dissipation. 
Perhaps compressible turbulence models should be formulated to account for the 
separate mechanisms. 

4. Conclusions 

The dilatational dissipation within compressible homogeneous turbulent shear 
flow has been investigated using data and flow visualizations from direct numerical 
simulations. It is found that the dilatational dissipation rate is associated with large 
scale acoustic waves. Eddy shocklets, which are regions of large local dilatational 
dissipation, are observed; however, they occur too infrequently to contribute signif-
icantly to the average dilatational dissipation rate. A mechanism for the formation 
of eddy shocklets is shown to be the focusing of large scale acoustic waves. 

The turbulence models for the dilatational dissipation rate of Zeman (1990, 1991) 
and Sarkar et al. (1991) were investigated. The model of Sarkar et al. agrees well 
with the DNS data for values of the turbulent Mach number less than 0.3. Some 
confusion arose concerning the formulation of Zeman's model. It was found that 
an approximate relation used for the case of mixing layers does not accurately 
represent the theory upon which the model is based. The theoretical formulation 
does not agree with the DNS data, while the approximate relation shows very good 
agreement for turbulent Mach numbers less than 0.3. For turbulent Mach numbers 
above 0.3, there are large differences between the DNS data and the models. Since 
Zeman's model was developed for a mixing layer and works well for that case, the 
differences between the DNS data and the models may be due to the differences 
in the physical nature of compressible homogeneous shear flow and a compressible 
mixing layer.
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layer to a compression corner 
By D. Vandromme' AND 0. Zeman2 

On the basis of direct numerical simulations of rapidly compressed turbulence, 
Zeman and Coleman (1991) have developed a model to represent rapid directional 
compression contribution to the pressure dilatation term in the turbulent kinetic 
energy equation. The model has been implemented in the CFD code for simulation 
of supersonic compression corner flow with an extended separated region. The 
computational results have shown a significant improvement with respect to the 
baseline solution given by the standard k - c turbulence model which does not 
contain any compressibility corrections. 

1. Introduction 
One of the critical problems in the field of compressible fluid dynamics is the 

response of turbulence to compressibility effects. Pioneering works in this area of 
research appeared in early 70's; the contribution of Wilcox & Alber (1972), Oh 
(1974), and Rubesin (1976) attempted to elucidate the modeling problem of the 
supersonic mixing layer by solving a transport equation for the turbulent kinetic 
energy. Later, Vandromme (1983) made an extension in the framework of a two-
equation turbulence model by including compressibility effects in the dissipation 
equation. A detailed review of other extensions of incompressible models to high 
speed flows is in Vandromme (1991). 

In recent years, progress has been made in understanding the compressibility 
effect on turbulence thanks principally to advances in direct numerical simulations 
(DNS) of 3D compressible turbulence (Feireiesen et al. 1981, Blaisdell ci al. 1991, 
Coleman & Mansour 1991, Lee 1991, Erlebacher ci al. 1990). New theory models 
have been developed for the terms in the Reynolds stress equations, containing 
explicit compressibility effects: dilatation dissipation e d x v(u, ,3 )2 and the pressure-
dilatation correlation II (Zeman, 1990, 1991a,b; Sarkar ci al. 1991; Taulbee and 
VanOsdol 1991; Zeman and Coleman 1991; Durbin and Zeman 1992). In spite of 
the theoretical progress, the treatment of turbulence in supersonic flow codes is still 
inadequate. The principal reason for this is the lack of experiments to validate the 
variety of new modeling assumptions; furthermore, the new model are often fairly 
complex and difficult to implement in the compressible flow codes. 

The present work is primarily concerned with the testing of novel modeling ideas 
which concern the effect of the so-called rapid compression (or volume deformation) 
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on turbulence dynamics in a flow configuration of practical interest: a supersonic 
turbulent boundary layer (TBL) subjected to distortion through a compression 
corner. The qualifier rapid signifies that the rate of compression given by the mean 
flow divergence V U is rapid with respect to the large eddy turnover time scale 
r x k/c (see the following section for notation); i.e., VUr>> 1. The condition of 
rapid compression is satisfied when turbulence passes through a shock or sequence of 
shocks near the corner. An engineering example of turbulence compression is a flow 
within the combustion chamber of a piston engine. However, here the condition 
of rapid compression is not satisfied since in the piston engine V . Ur 1. The 
combustion chamber flow problem has been addressed from a modeling point of 
view by various investigators, and their work has led mainly to modification of 
the (solenoidal) dissipation equation to account for the compression effect on the 
turbulence scales (see e.g. Reynolds, 1980, Morel & Mansour, 1982). 

The process of the rapid compression of (homogeneous) turbulence has been sim-
ulated by a DNS method developed by Coleman and Mansour (1991). Here, the 
turbulence could be subjected to both spherical (isotropic) or one-dimensional (11)) 
compression with the initial value of VUr as high as 50 and initial M = 0.05-0.44. 
Thanks to these DNS results, Zeman (1991) and Zeman and Coleman (1991) were 
able to identify the directional rapid compression effect on the pressure dilatation 
term j5i: when turbulence was subjected to spherical compression remained 
virtually zero (w.r.t. e); however, during 1D rapid compression, pu j,j grew very 
large and negative, causing a significant drain on the turbulent kinetic energy k. 
Surprisingly, this process was more effective for initially low M1 (= 0.05). By 
now, physical and theoretical understanding of this phenomena has been achieved 
through the rapid distortion theory (Durbin and Zeman, 1992), and a realistic model 
for the rapid compression contribution to ü • j has been developed by Zeman and 
Coleman (1991). 

The report is organized as follows: the turbulence modeling equations and the 
corresponding model expressions are described in the next section; Section 3 de-
scribes the main features of the numerical method which has been used for the 
solution of the Reynolds averaged Navier-Stokes (RANS) equations, including the 
new modeling ideas, when applied to the supersonic boundary layer submitted to a 
sudden compression along a 24-degree wedge (Section 4). In section 5, the results 
obtained for that specific test case are discussed. 

2. Turbulence model 
Considering a generic form of the classical two equation turbulence (k - e) model, 

the transport equation can be written as: 

Dok - Diffusion = _vv!	 -, (+ 2v 
()2)
ax^

V . 
Production	 Destruction	 Compressibility 

fa2)2 2,6-' —Diffusion= _C i vv2. —C 2 c+2j 1 iL D
Production	 Destruction
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with all source terms in the RHS. The source terms include the low turbulent 
Reynolds number treatment proposed by Jones & Launder (1972). Subscripts Ia 
and no stand here for tangential and normal components with respect to the solid 
wall. 

The various options in order to account for compressibility effects concern either 
the e or the k equation. The first correction, which is supported by DNS results 
of 1D or spherical strain, has been suggested by Reynolds (1980) based on the 
behavior of decaying isotropic turbulence submitted to a mean strain. Thus the 
various contributions to the production of dissipation can be subjected to different 
constants. That yields that, in c-equation:

OiOt	 e2	 Oi 
Production = CE1 j 2vtS fi -	 - C1ki50 

in which the C 1 constants take the following values (Reynolds, 1980): 

C 1 = 1.45;	 C1 = 1.45;	 C"1 = 3.50 

The compressibility contributions in the turbulent kinetic energy equation are 
detailed in the following. They are the dilatational contribution to the dissipation, 
a proper model for the density-velocity correlations, and the pressure-dilatation 
term. 

2.1. Dilatation dissipation parameterization 
The first idea is based on the assumption that, for sufficiently high turbulent 

Mach number values, shocklets exist, at least statistically, and can be responsible 
for an extra amount of dissipation induced by the bulk deformation in the flow. 
Zeman (1990) proposed a model for this extra dissipation based on the splitting 
between the solenoidal and dilatational parts of the strain tensor, which can be 
written as:

'Ed €3 F(Mj,K)	 (1) 

in which M =	 is the rms (turbulent) Mach number, F(M,K) is an
integral functional of the pdf p(rng, K) of fluctuating Mach number m 1 = 
and K = m/(m)2 is the kurtosis of the me-distribution, which characterizes the 
departure from Gaussianity (intermittency) of mt. 

For the purpose of numerical computation, the function F is approximated as 

F(M,K)=Cd(1—exp{—( M1—M0)2}) 	 (2)
am 

F(M) = 0, if M 15 M0 

where the quantities Cd, M 0 , and am are functions of K. For values of Mt lower 
than the threshold of 0.2, the function F(M, K) is set to zero, which is consistent 
with the results of DNS (Lee et al. 1991). 

In adiabatic turbulent boundary layers, Mt appears to be below this threshold 
level for M <5. However, this is not so in hypersonic TBL's with wall cooling or 
in the vicinity of a separation bubble in compression corner flow.
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2.2. Pressure-dilatation correlation	 p8 

In TBL flows, two important contributions to p8 have been identified and mod-
eled: the density-gradient and rapid-compression contributions. 

Relying on the balance of the transport equation for the pressure fluctuations 
and assuming that the gradient flux law is valid for the transport of density fluctu-
ations in the framework of a thin layer approximation, Zeman (1993) suggested the 
following model for the mean density gradient contribution: 

()p = .fp(Mg)rka2(0X2 1 )2	 (3)  P 

Here, r = k/c8 is a (vortical) turbulent time scale, and the function f, -+ M,2 as 
M -i 0. The above contribution is positive and reflects the process of conversion 
of the potential (pressure) to kinetic energies. Although this contribution is indis-
pensable in the mode equations for preservation of the proper (Van-Driest) scaling 
in the constant stress layer, it has not been used in the present validation tests. 

A model for the rapid compression contribution to jil has been first proposed 
by Zeman (1991b) and Zeman and Coleman (1991) in the form: 

()1/2 
()R =	 j5M;2 

kr{(S)2 + Cd2 b1kSSj}	 (4) 

The model reflects the sensitivity to the directionality of compression strain and is 
bilinear in the (trace-free) strain rate tensor S, = (U1, +U - fi1j V .U); b1 is the 
anisotropy tensor associated with the Reynolds stresses, and p2 is the fluctuation 
pressure variance. The above expression yields results agreeing with the DNS data 
for both 1D and 3D rapid compression; however, it requires an addi 

tional equation for p2 (for details see Zeman and Coleman (1991)). In the present 
k-c model, because bij and p2 are not accessible at this level of closure, we set 
(j1/2 

- 2	 1 and used a simpler version pM

()R = CdipkT(S 1) 2 .	 ( 5) 

As discussed in the previous section, the rapid compression contribution to pO is 
expected to be very important in shock/ turbulence interactions. 

3. Numerical method 
The numerical method is a predictorcorrector scheme developed initially by Mac-

Cormack. To the basic explicit version, various improvement have been added in 
order to make the code more accurate and robust as well as more efficient. These 
improvements, which have been described in MacCormack (1985) and Vandromme 
(1991), are mainly: 
• Finite volume discretization 
• Flux vector splitting
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• Implicit approximation 
• Line Gauss-Seidel relaxation 
• Energy coupling with the turbulence 
• Implicit treatment of the source terms 

Performance of this code is remarkable. Although it allows the treatment of com-
plex geometries, large values for the integration time step can be used (which would 
correspond to a CFL number above 106 for the Euler equations). Furthermore, 
special treatment of the source terms of the turbulence equations in the implicit 
part eliminates the stiffness of the equations during the transient preceding the 
convergence to steady state. 
The set of RANS equations, completed with a two equation turbulence model, takes 
the following form:

OU OF OG_H 
Ot+Ox+Oy 

in which the vectors U, F, G and H are defined as:

Pu •1 
1 p '	 [ I PU	

I 

1ikj	 I	 ük--(jt±	 I 
J 

/51	 1	 101 
+'ry,	 0 

0 
G =	 H = 0 

I	 IHkI o8y	 I 
J	

LHEJ
a ay 

Define the jacobian matrices as: 

OF	 OG	 c_OH 
19U	 19U

A_—
	

;	 B_,	
OU 

This implicit approximation can be solved either by a factorate approximation 
method or by a relaxation scheme: 

OA.	 OB• 
(I + t— + i— - zt.C)6U"' = 

Ox	 Oy 

=At OU"1	
= 

at	 '	 Ot 

in which the source terms can be imbedded on the diagonal terms or a separate 
factorization can be performed for the sources. Inversion of the implicit source
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FIGURE 1. Flow Sketch. 

operator is based on the knowledge of the analytical or the numerical form of the 
jacobian matrices. The standard solution procedure is to run line Gauss-Seidel in 
the streamwise direction (usually a backward-forward sweep), whereas the cross-
wise lines are solved in a direct mode with a classical block- tridiagonal algorithm. 
When using the relaxation scheme, after application of the flux vector splitting, the 
resulting implicit approximation has one of the following form: 

a1,1 6U,' 1 +	 +c.  IJ 2+1,j +	 +	 = f j8U + HrIj+

in a backward sweep, or 

a , 6U 1 1 + b , 6U' + c6U 1 + d , 6U 1 + e,j 5U,' 1 = f1 ,,5U + H' 

in a forward sweep. H," is the explicit source terms, and the b ,, coefficient con-
tribute also to the implicit source treatment. 

Independently, the sign of the sources is used to discriminate between stable and 
unstable implicit approximations (Vandromme, 1991). For stable cases, unlimited 
time step values can be used; nevertheless, experience shows that the turbulence 
equations (especially the dissipation equation) never do reach a "machine-zero" type 
of convergence. 

4. Flow description 

The main flow features are described with the sketch in Figure 1. A supersonic 
equilibrium boundary layer experiences a sudden deviation of 24 degrees. That 
deviation causes an oblique shock wave which induces a strong flow separation in
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FIGURE 2. Isomach lines (basic solution). 
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FIGURE 3. Wall pressure. (solid line = basic solution, symbols = experiments) 
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r IGURE 4. Isomach tines (with compressibility correction). 
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FIGURE 5. Wall pressure (solid line = with compressibility correction, symbols = 
experiments).
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FIGURE 6. TKE profiles (basic solution). 

FIGURE 7. TKE profiles (with compressibility correction).
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the wedge region. The separation point is at the foot of the shock, upstream of the 
wedge. The slight curvature of the streamlines above the separation bubble induces 
a weak expansion fan. Then, at the reattachment, the Mach lines focus again on 
the main shock and change its slope in the inviscid region. The flow conditions are 
as follows: 

Mac, = 2.84	 C1 = 11.510-4	 P = 6.9 10 'Pa	 Tt 270K 
S = 2.6 102m	 5* 6.4 10 3 m	 9 = 1.3 10 3 m	 Re = 1.78 106 

Experiments have been conducted at Princeton Gas Dynamics Laboratory (Settles 
et al. 1976, 1979). Similar flows have been studied with different ramp angles. i.e. 
80 , 160, and 200. In this work, only the 24° has been considered because of the 
importance of the separated region related to the turbulence field. 

A striking feature of this type of separated flow is the strong dependence of the 
separated region on the incoming turbulence within the boundary layer and on the 
changes occurring across the shock wave. In order to validate the changes due to 
the proposed compressibility corrections, all calculations have been made first with 
a basic model (which is the classical Jones-Launder k - e model), and then the code 
was rerun with the compressibility corrections in (1) and (5) added to the basic 
model. 

5. Results 

The following results have been obtained during the course of the summer pro-
gram. The basic solution is shown in Figures 2, 3, and 6. Figure 2 shows the 
distribution of isomach lines in the interaction region, and Figure 3 shows the wall 
pressure distribution compared to the experimental values (symbols). Figure 6 de-
picts profiles of turbulent kinetic energy (TKE) at successive streamwise locations 
beginning with an unperturbed boundary layer just upstream of the separation zone. 
Figures 4, 5, and 7 show the effect of inclusion of the compressibility contributions 
in (1), (2), and (5) in the code. 

Comparing Figures 4 and 5 with the corresponding basic solution in Figures 2 and 
3, it is evident that the compressibility corrections visibly improve the prediction 
of the extent of the separation zone. Comparing Figures 6 and 7, we observe that 
the compressibility corrections cause a marked reduction of overall TKE levels. 

6. Conclusions 

The principal purpose of this project was to test the effect of compressibility cor-
rections on computations of compression corner flow. These corrections consisted 
of i) a dilatation dissipation model representing additional dissipation of TKE 
due to eddy shocklets, and ii) a model for rapid compression contribution to the 
pressure dilation term. 
The suggested models have been implemented in a compressible R.A.N.S. solver, 
and computations with and without the compressibility corrections have been 
performed.
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• A significant improvement has been gained in the prediction of a supersonic 
boundary layer interaction with an extended separation zone. The principal con-
tributor of the improvement was the rapid compression term which becomes a 
large TKE sink in the vicinity of the shock regions. As expected, the dilatation 
dissipation effect was insignificant for this test case with the free stream Mach 
number M <3. Dilation dissipation (due to shocklets) does become significant 
in hypersonic boundary layers with wall cooling (Zeman 1993). 

• Overall, the new compressibility corrections are expected to play a much more 
dominant role in higher Mach number flows, for which further validation work is 
desired.
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Vortex-induced disturbance field 

in a compressible shear layer 

By D. Papamoschou' AND S. K. Lele2 

The disturbance field induced by a small isolated vortex in a compressible shear 
layer is studied using direct simulation in a convected frame. The convective Mach 
number, M, is varied from 0.1 to 1.25. The vorticity perturbation is rapidly sheared 
by the mean velocity gradient. The resulting disturbance pressure field is observed 
to decrease both in magnitude and extent with increasing M, becoming a narrow 
transverse zone for M > 0.8. A similar trend is seen for the perturbation velocity 
magnitude and for the Reynolds shear stress. By varying the vortex size, we verified 
that the decrease in perturbation levels is due to the mean-flow Mach number and 
not the Mach number across the vortex. At high M, the vortex still communicates 
with the edges of the shear layer, although communication in the mean-flow direc-
tion is strongly inhibited. The growth rate of perturbation kinetic energy declines 
with M primarily due to the reduction in shear stress. For M ^: 0.6, the pres-
sure dilatation also contributes to the decrease of growth rates. Calculation of the 
perturbation field induced by a vortex doublet revealed the same trends as in the 
single-vortex case, illustrating the insensitivity of the Mach-number effect to the 
specific form of initial conditions. 

1. Introduction 
It is well known that the Mach number has a powerful effect to suppress the in-

stability and growth of free shear flows. Landau' first showed that the vortex sheet 
becomes stable when the relative Mach number exceeds a critical value (vr2 for the 
equal-density case). Early linear analyses (Lin 1953, Gropengiesser 1970, Blumen ci 
at. 1975) and single-stream experiments (Sirieix & Solignac 1966) discovered that 
the growth rates of compressible, finite-thickness shear layers decrease sharply with 
increasing Mach number. Recent linear analyses (Ragab & Wu 1988, Zhuang et 
at. 1990), computations (Sandham & Reynolds 1989, Lele 1989), and two-stream 
experiments (Chinzei ci at. 1986, Papamoschou & Roshko 1988, Samimy & Elliott 
1990, Goebel & Dutton 1991) covering a larger range of conditions confirmed the 
above trends. The experiments, in particular, showed that at high Mach numbers 
the turbulent shear-layer growth rate decreases to as little as one fifth of the in-
compressible value. The perturbation levels of velocity decline in a similar fashion 
(Samimy & Elliott, Goebel & Dutton). Despite these recent gains in the field of 
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compressible turbulence, the fundamental physical reason for the stabilizing effect 
of Mach number remains elusive. 

While compressible shear flows typically contain density gradients, density effects 
alone are not responsible for the large reduction in growth rates. Brown & Roshko 
(1974) showed that the growth rate of the subsonic, variable-density shear layer 
changed only by about 50% when the density ratio was varied by a factor of 50. 
There is, therefore, a large effect associated with the Mach number itself. An 
exclusive property of Mach number is the ability to cut off communication between 
parts of the flow, a well-known phenomenon in supersonic flow. 

Morkovin (1987) stresses that upstream and cross-flow communication is essential 
for instabilities at supersonic and hypersonic speeds. His point is primarily based 
on Mack's (1984) linear stability analysis, where it is shown that the most unstable 
waves are those whose phase speed is subsonic relative to the free-stream velocity. 
Morkovin suggests the existence of zones of influence, defined by Mach cones, out-
side which a disturbance is not felt. The concept of reduced communication at high 
Mach number has been incorporated into recent turbulence models. Breidenthal's 
(1990) sonic-eddy model is based on the assumption that turbulent eddies whose 
rotational Mach number is greater than unity do not participate in fluid entrain-
ment, while those with rotational Mach number of unity or less engulf fluid like 
incompressible eddies. The mixing-length model of Kim (1991) for a supersonic 
shear layer assumes that disturbances do not penetrate outside a region bounded 
by relative sonic velocities. 

Morkovin's concept and the models by Breidenthal and by Kim, while conceptu-
ally useful, do not explain the fact that stabilization starts at low subsonic values of 
the Mach number and is practically complete when the velocity difference between 
the center and the edge of the shear layer becomes sonic (see references above). 
Furthermore, the fact that the relative velocity is supersonic does not prove that 
information will not propagate outside the region bounded by the sonic velocity. 
To address the problem in a more quantitative, although still idealized fashion, Pa-
pamoschou (1991) used ray theory to study the acoustic field of a monopole placed 
inside a shear layer. It was shown that the influence of the monopole diminishes 
with increasing Mach number but that a low level of communication still exists 
at supersonic relative speeds. Still, the connection between communication and 
instability remained a speculative one. 

In this study, we explore the link between acoustic field and disturbance mo-
tion by direct numerical simulation of a simple instability problem: the impulse 
response of a shear layer to a localized vorticity perturbation and the change of 
that response with increasing Mach number. Specifically, we examine the unsteady 
process by which the shearing of a single vortex, placed in the center of the shear 
layer, produces velocity, pressure and density fluctuations in the surrounding flow 
field. Since vortical interactions among eddies are an essential ingredient of turbu-
lence, our simplified problem may serve as a building block for understanding the 
effect of Mach number on the more complex vortical interactions in realistic shear 
flows.
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2. Initial conditions 
The computation is two dimensional, inviscid and temporal, with periodic bound-

ary conditions in the mean-flow direction and non-reflecting boundary conditions in 
the y-direction. At time t = 0, the flow field consists of the shear layer, described by 
a hyperbolic-tangent velocity profile U(y), with velocity difference AU and vorticity 

thickness ö, = 0.1, and an Oseen vortex (Fig.1). 
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The Oseen vortex is a solution to the flow with zero shear and has a tangential 
velocity

ye = !— [i _e_( 2 / L2 1, 	 (1) 

where r is the circulation, L is the vortex size, and a = 1.256431 is chosen such 
that V9 = V9,max at r = L. The corresponding pressure distribution, derived by the 
radial momentum equation under the assumption of homentropic flow, is 
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with Ei(x) the exponential-integral function and oo denoting the unperturbed con-
ditions. 

The circulation of the Oseen vortex is fixed here at r = 0.01LUL. Unless other-
wise stated, the size of the vortex is L = 0.1ö,. The speed of sound a is constant 
throughout the flow field. The convective Mach number is 

AU 
M-
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with i.W the velocity difference across the layer. To increase M, the velocity 
difference remains constant and the speed of sound decreases. The Mc range covered 
here is. from 0.1 to 1.25. 

For finite shear, the Oseen vortex is no longer a solution to the flow field. As 
a result, the flow tries to adjust to the new condition by generating an acoustic 
wave which propagates in all directions and becomes distorted by the mean Mach 
number gradient. Behind the acoustic wave, a disturbance field is established whose 
pattern evolves slowly with time. The disturbance velocity field is u = (u, v) and 
the pressure perturbation is p. 

The computation is advanced in increments of acoustic time I whose non dimen-
sional version is 10 = ta/fi. The corresponding shearing time is 

t8 = is = t f • = 2t0M 
a 

where S = U/8, is the maximum shear. At fixed 1 8 , a particle at the edge of the 
shear layer has traveled the same distance, hence the flow has been sheared by the 
same amount, regardless of the value of M. Comparisons among the flow fields at 
various Me's will be made at fixed shearing time. 

3. Computational Details 
The computations were carried out in a domain of size 2 in the mean-flow direction 

(x) and of size 0.5 in the transverse direction (y). The disturbance vortex was placed 
at the center of the domain which was discretized by a non-uniform mesh in both 
directions. In the computations reported in this paper, the mesh contained 200 
points in x (with a maximum mesh stretching of 3.2) and 50 points in y (with 
a maximum mesh stretching of 3.2). Near the vortex the mesh size was 0.0026 in 
both x and y. Spatial derivatives were evaluated using the sixth-order compact finite 
differences (Lele 1989, 1992), and third-order compact storage Runge-Kutta scheme 
was used for time advancement. Periodic boundary conditions in x and "non-
reflecting" boundary conditions in y were employed. To make the initial conditions 
compatible with the periodicity in x, the method of images was used (with two 
images taken outside each x-boundary). To suppress the spurious generation of 
26 error waves in regions of mesh stretching, compact filtering scheme designed to 
remove only the near 26 waves (Lele 1992) was applied to the fields being integrated 
every 20 time steps. It was verified that the applied filtering produced no significant 
change in the well-resolved physical disturbances. 

4. Results and Discussion 
We first present the time evolution of several quantities at M = 0.4. Fig. 2 

shows the vorticity deformation due to the mean velocity gradient. At late times, 
vorticity is concentrated in a narrow, almost horizontal layer. Even though only the 
evolution at M = 0.4 is presented, the vortex shearing seen in Fig. 2 is practically 
the same for the full range of M 's covered here. The corresponding evolution in 
kinematic Reynolds shear stress —uv is depicted in Fig. 3. At t 5 = 0, the round
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FIGURE 2. Iso-contours of disturbance vorticity wL/LU for M = 0.4. Contour 
levels: Minimum=-0.075; Maximum=-0.005; Increment =0. 005. x-increment=0.02; 
y-increment=0.01. 

vortex has equal amounts of positive and negative shear stress. As time progresses, 
the negative part vanishes while the positive part occupies a larger part of the flow 
field. The time development of the divergence is seen in Fig. 4, where the expanding 
wavefront is evident. As mentioned earlier, the wavefront arises from the reaction 
of the flow to the initial conditions. Partial reflection of the wave front from the 
upper and lower boundaries is due to numerical error associated with the boundary 
conditions. 

We now present the Mach number effect on the disturbance field at fixed t 9 . Fig.
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FIGURE 3. Iso-contours of Reynolds shear stress —UV/(AU)2 for M = 0.4. Con-
tour levels:Maximum=26E-5;Minimum-26E.5; Increment=3E-5. x-increment=O. 1; 
y-increment=0.05. 

5 depicts the magnitude of the pressure perturbation at four different Me's. The 
extent and magnitude of the field decrease rapidly with increasing Mach number. 
At M = 1.25, the pressure field is reduced to a narrow transverse zone. The same 
trend is seen for the disturbance-velocity magnitude, shown in Fig. 6, and for the 
shear stress, shown in Fig. 7. Comparison of Figs. 5 and 7 shows that the decline
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FIGURE 4. Iso-contours of divergence V . u L/L\U for M = 0.4. Contour 
levels: Maximum=0.025; Minimum=-0.017; Increment=0.004. x-increment=0.2; 
y-increment=0.05. 

in magnitude and extent of the p and —uv fields is very similar. 
The pressure pattern seen in Fig. 5 reveals some very noteworthy effects of 

compressibility on the vortex influence. Evidently, at high M, the influence of 
the vortex does not propagate in x but stays confined within a narrow, transverse 
region. Interestingly, the vortex still communicates to edges of the shear layer, even 
when the relative velocity is supersonic. This implies that the turbulence models 
mentioned in the Introduction, which assume that all interactions occur within the a 
layer bounded by sonic velocities (Breidenthal 1990, Kim 1991), are overly idealized. 
The lack of communication in the x-direction may explain the lack of vortex pairing 
and shear-layer roll up at high M. 

We now examine the source term for the transverse component of the kinetic 
energy v2 , namely -.-vOp/Oy. Note that generation of v 2 does not involve the 
mean shear, thus is directly related to the pressure field. Fig 8 shows the source
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FIGURE 5. Iso-contours of pressure disturbance magnitude Ipj /(p c,&) at ts = 
4.2. Contour levels: Maximumz=0.032; Minimum=0.002; Increment =0.002. x-
increment=0.2; y-increment=0.05. 

term dramatically decreasing with increasing M, practically vanishing at M = 0.8. 
At M = 1.25, the radiative nature of the flow, coupled with boundary-condition 
errors, make this term reappear in roughly-equal negative and positive amounts, so 
its integrated contribution is near-zero. The decline of —vOp/Oy, and the resulting 
reduction in J vJ, are the direct result of the reorientation of the pressure field due 
to the Mach number. Since Jul and JvJ are of the same order, the shear stress —uv 
is also reduced, as seen in Fig. 7. The lower —uv, in turn, causes a decrease in 
the growth rate of the overall fluctuation kinetic energy, which will be shown later.
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FIGURE 6. Iso-contours of disturbance velocity magnitude IuI/U at t 8 = 

4.2. Contour levels: Maximum=0.028; Minimum=0.002; Increment =0. 002. x-
increment=0.2; y-increment=0.05. 

The same mechanism has been observed to reduce the kinetic-energy growth rate 
in compressible homogeneous sheared turbulence (Blaisdell et al. 1991). 

To verify that the observed trends are due to the mean-flow Mach number and 
not due to the Mach number ML = MC L/&J across the vortex, we varied ML by 
changing the vortex size, keeping the circulation fixed, and compared the resulting 
disturbance fields. Fig. 9 offers two such comparisons: at M = 0.4, ML changed 
from 0.04 to 0.08, while at M 0.8, ML changed from 0.08 to 0.04. If ML were 
the critical parameter, one would expect similarity between the fields at ML = 0.04 

and between the fields at ML = 0.08. This is clearly not the case, and, even though 
details near the vortex core change with size, the overall extent and magnitude of 
the fields depend only on M. 

A quantity of great interest in any instability problem is the fluctuation kinetic 
energy k = I u. u and its generation terms. For our inviscid, two-dimensional flow,
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FIGURE 7. Iso-contours of Reynolds shear stress —UV/(AU)2 at t = 4.2. Contour 
levels: Maximum=33E-5; Minimum=-5E-5; Increment=2E-5. Negative values are 
denoted by dotted lines. x-increment=0.2; y-increment=0.05. 

the instantaneous k is described by 

Ok	 Ok	 dU 
' +U— —uv---+pV.u—V.(pu)—V.(ku)	 (3) 

The terms on the right-hand side are called production due to shear stress, pressure 
dilatation, pressure transport, and kinetic-energy transport. We examine the time 
evolution of the quantities in Eq. 3, integrated in space over our computational 
domain.
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M = 0.40 

FIGURE 8. Iso-contours of (vOp1ôy)1pooLU 3 at t 3 = 4.2. Contour levels: Maxi-
rnum=0.0026; Minimum=-0.0022; Increment =0. 0002. Negative values are denoted 
by dotted lines. x-increment=0.2; y-increment0.05. 

The growth of the disturbance kinetic energy versus time for different Me's is 

seen in Fig. 10(a). As expected, the higher Me's produce significantly lower growth 
rates. At early times, the growth rate of the M = 1.25 case slightly exceeds that of 
the M 0.8 case. This is probably due to the longer presence of the wavefront in 
the computational domain at M = 1.25. Recall that Mc is increased by lowering 
the speed of sound, thus the wavefront and its velocity perturbation take longer time 
to propagate outwards at high M. By late times, however, the M = 1.25 growth 
rate is seen to saturate and decline below the M = 0.8 curve. Figure 10(b) shows
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FIGURE 9. Iso-contours of Reynolds shear stress —UV/(AU)2 at t 3 = 4.2 for 
variable initial vortex size L. Contour levels: Maximum=26E-5; Minimum=-26E-5; 
Increment =3E-5. Negative values are denoted by dotted lines. x-increment=O. 1; 
y-increment=0.05. 

the production due to shear stress, which also declines rapidly with increasing M. 
The pressure dilatation term, seen in Fig 10(c), is much lower than the production 
term for M = 0.1 and 0.4, but becomes comparable at the higher Me's. Thus, the 
decline in growth rates, most of which occurs at subsonic M, is primarily due to
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FIGURE 10. Evolution of spatially-integrated quantities versus t 3 for variable M: 
(a) perturbation kinetic energy; (b) production due to shear stress; (c) pressure 
dilatation. o M = 0.1; L M = 0.4; + M = 0.8; x M = 1.25. 

the reduction in shear stress. The pressure dilatation term becomes significant at 
high-subsonic and supersonic Mc and makes the overall generation of kinetic energy 
even smaller. The pressure transport and kinetic-energy transport terms were found 
to be negligible compared to the previous two terms. 

To test the sensitivity of the Mach-number effect on initial conditions, we replaced 
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FIGURE 11. Iso-contours of dipole disturbance vorticity WLIAU for M = 0.4. 
Contour levels: Minimum=-0.07; Maximum=0.07; Increment=0.01. Negative val-
ues are denoted by dotted lines. x-increment=0.02; y-increment=0.01. 

the single vortex by a vortex dipole. The dipole vortices have the same circulation 
and size as the previous single vortex, and are separated by a distance 4L. The 
shearing of the dipole versus t is shown in Fig. 11. At late times, the positive 
vorticity is stretched a little more than the negative one, probably because of the 
interaction between the two vorticity regions. The Reynolds shear stress versus M 
is depicted in Fig. 12, where its magnitude and extent are seen to shrink rapidly with 
increasing M, as in the single-vortex case. Additionally, we reversed the circulation 
of the single vortex, producing a counter-clockwise motion. The magnitude and 
extent of perturbation fields remained identical to those of the clockwise vortex.



Vortex-induced disturbance field 	 273 

M = 0.10 

ITJ 
M = 0.40 

M = 0.80

x 

FIGURE 12. Iso-contours of dipole Reynolds shear stress —UV/(AU) 2 at t = 4.2. 

Contour levels: Maximum=21E-5; Minimum=-5E-5; Increment2E-5. Negative 
values are denoted by dotted lines. x-incrementO. 1 ;y-incrementO.O5. 

Evidently, the precise form of the initial condition does not affect the stabilizing 
influence of the mean-flow Mach number. 

To illustrate the robustness of the high-Me features observed here, we make qual-
itative comparisons among pressure fields at M = 1.25 generated by three different
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(d) 

FIGURE 13. Qualitative comparison of M = 1.25 pressure disturbance fields. Di-
rect simulation:(a) vortex monopole; (b) vortex dipole; (c) acoustic monopole. Geo-
metric acoustics theory:(d) acoustic monopole. x-increment=0.2; y-increment=0.05. 

initial conditions. In Fig. 13, the pressure-disturbance fields for (a) a single vor-
tex, (b) a vortex dipole, and (c) an acoustic monopole are displayed. The acoustic 
monopole has an initial-pressure field same as in the single Oseen vortex, but the 
vorticity is now zero. All three features look very similar, which once again shows 
their dominance by the mean-flow Mach number and their independence from de-
tails of the initial condition. Fig. 13(d) depicts the field of an acoustic monopole, 
computed by the simple energy-invariance method of geometric acoustics (for details
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see Ref. 19). Even though geometric-acoustics theory is only applicable to high-
frequency sources, the calculated pressure field resembles very much those computed 
by direct numerical simulation. 

5. Conclusions 
The disturbance field generated by the shearing of a vortex placed in the cen-

ter of a compressible shear layer has been studied by means of direct numerical 
simulation. The magnitude and extent of the induced pressure and velocity fields 
diminish rapidly with increasing convective Mach number M, with most of the de-
crease occurring at subsonic values of M. At M > 0.8, the influence of the vortex 
is reduced to a zone of narrow streamwise extent. The vortex still communicates to 
the edges of the shear layer, although communication in the mean-flow direction is 
practically cut off. Perturbation kinetic-energy growth rates decrease with increas-
ing M, primarily due to reduction of the Reynolds shear stress. Pressure dilatation 
contributes to the decline in growth rates for M > 0.6. The trends observed here 
are insensitive to the specific form of the initial disturbance and are a result of the 
mean-flow Mach number.
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Evolution of the shock front and turbulence 

structures in the shock/ turbulence interaction 
By N. Keviahan', K. Mahesh 2 AND S. Lee  

The interaction of a weak shock front with isotropic turbulence has been inves-
tigated using Direct Numerical Simulation (DNS). Two problems were considered: 
the ability of the field equation (the equation for a propagating surface) to model 
the shock and a quantitative study of the evolution of turbulence structure using 
the database generated by Lee ci al. (1992). 

Field equation model predictions for front shape have been compared with DNS 
results; good agreement is found for shock wave interaction with 2D turbulence and 
for a single steady vorticity wave. In the interaction of 3D isotropic turbulence with 
a normal shock, strong alignment of vorticity with the intermediate elgenvector of 
the rate of strain tensor (S j = S, - 113 i Skk) is seen to develop upstream of 
the shock and to be further amplified on passage through the shock. Vorticity 
tends to align at 900 to the largest eigenvector, but there is no preferred alignment 
with the smallest elgenvector. Upstream of the shock, the alignments continue to 
develop even after the velocity derivative skewness saturates. There is a significant 
tendency, which increases with time throughout the computational domain, for 
velocity to align with vorticity. The alignment between velocity and vorticity is 
strongest in eddy regions and weakest in convergence regions. 

1. Introduction 
The subject of this investigation is the interaction of a weak shock (mean up-

stream Mach number, M, = 1.05 - 1.20) with relatively strong turbulence ( M1 = 
0.07 - 0.40 where Mi is the fluctuation Mach number defined as q/?; q is a velocity 
scale of the turbulence and Z is the mean sound speed). The interaction of shock 
waves with turbulence has been studied analytically (using the Linear Interaction 
Analysis) by many authors (eg. Ribner 1954, McKenzie & Westphal 1968, Anyiwo 
& Bushnell 1982). Experimental investigations have recently been carried out by 
Jacquin ci al. (1991), Honkan & Andreopoulos (1990) and Hesselink & Sturte-
vant (1988). Numerical simulations of the shock turbulence interaction have been 
performed by Rotman (1991) and Lee ci al.(1992). 

We study shock/ turbulence interaction as simulated by Lee ci al. (1992). In the 
simulation the reference frame is fixed with respect to the mean shock position; 
the mean flow approaches the shock supersonically (M, > 1) and exits subson-
ically. Shock wave structure is resolved by the Navier-Stokes equations without 
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using shock-fitting or shock-capturing techniques. Inflow turbulence is generated 
with a prescribed energy spectrum (E(k) oc k4 exp(—k2 )) and is then allowed to 
evolve naturally as the flow approaches the shock front. The turbulence should 
be fully developed by the time it reaches the shock wave, and this is verified by 
making sure that the velocity derivative skewness stabilizes well upstream of the 
shock. Pressure and density are kept constant in the inflow plane. The simulation 
uses a 193 x 64 x 64 grid and the Reynolds number based on the Taylor microscale, 
Re A , is 16.7.0. The study is divided into two parts: the effect of the turbulence 
on the shock (shock front evolution), and the effect of the shock on the turbulence 
(turbulence structure evolution). 

In the first part of this study we test a new model for shock front/ turbulence 
interaction based on a field equation approach where the front is treated as a sur-
face which propagates normal to itself and is distorted by the turbulent velocity 
field. This model not only gives the instantaneous position and shape of the front, 
but can also be used to close the Rankine-Hugoniot equations for a curved front. 
Once the Rankine-Hugoniot equations have been closed, the turbulence quantities 
downstream of the shock can be calculated. In the weak shock/relatively strong 
turbulence regime considered here, the shock may become significantly distorted 
(however, it will still remain identifiable). Because of this strong deformation, the 
evolution of the shock front will not be well predicted by linear theories such as 
the Linear Interaction Analysis (LIA) which assume that the shock merely copies 
the shape of the distorting velocity field but at a different amplitude. The field 
equation, being nonlinear, can be used in such cases of large shock front distortion. 
The field equation approach has the advantages of simplicity and ease of numerical 
implementation. One important practical application of the field equation approach 
would be its inclusion in DNS to avoid having to numerically resolve the shock wave 
structure. Removing this restriction would greatly increase the maximum Mach 
number that can be reached using DNS. The field equation model is validated by 
comparing the shape and position of the shock front predicted by the field equation 
with two-dimensional DNS results under the same conditions. The field equation 
model is described in more detail in §2 below. 

The second part of this investigation is a quantitative study of turbulence struc-
ture evolution. In this part, we analyze turbulence structure in planes (parallel to 
the mean shock) upstream and downstream of the shock. We are interested both in 
general aspects of turbulence structure and its development and in the effect of the 
rapid compression on the turbulence structure as it passes through the shock. To 
characterize turbulence structure we consider three dynamically important prop-
erties of the flow: (i) the angle between the vorticity and the shock normal, (ii) 
the angle between the vorticity and the eigenvectors of the strain rate tensor, (iii) 
the angle between the velocity and vorticity vectors. The flow is also divided into 
four classes of structure (eddies, shear, convergence, and streaming) based on local 
values of the rate of strain and rate of rotation tensors. Since we are interested in 
turbulence evolution, in all cases the instantaneous mean (computed by averaging 
over homogeneous directions) is subtracted before any analysis is performed.
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2. Modeling shock front evolution 

2.1. The field equation model 

In this section we describe the validation of the field equation model applied to 
shock/turbulence interaction by comparison with DNS. 

The field or G-equation model has been introduced by Kerstein et al. (1988) 
as a model for the propagation of a zero-thickness, constant-density premixed 
flame through a homogeneous turbulent flow. In this model a continuous scalar 
G(x,y,t) = x - g(z,y,t) is convected by the flow with the surface G(x,y,t) = 0 
corresponding to the position of the physical flame front. The flame propagates at 
a speed UF normal to itself and is at the same time advected by the turbulent flow 
(u) as described by equation (1) below. 

	

+uVG=upIVGI	 (1) 

In general, UF will be a function of the shape of the front, the local straining, and 
the history of the distortion (in the case of the flame front UF is modeled as a 
function of local strain and curvature—the flame stretch). 

The aim of this study is to determine whether the field equation model can 
be usefully applied to the propagation of a shock front through a turbulent flow. 
Initially, we take the simplest two-dimensional form of the model where UF is taken 
as a constant: the laminar propagation speed of the front. If it is assumed that 
the front does not curl over on itself (as is assumed in the usual derivation of 
the Rankine-Hugoniot conditions for a curved front), then equation (1) for the 
propagation of the front may be re-written in terms of g(y, t) as 

ag (2) 

where u and v are, respectively, the x- and y-components of the turbulent velocity 
field (in a frame fixed in the mean shock, the mean shock speed must be subtracted 
from u), and the initial condition is that g(y, 0) = 0. Once equation (2) has been 
solved, g(y, t) and gy(y, t) may be substituted into the Rankine-Hugoniot equations 
for a curved shock,

	

gg[p] + g[PV] - [pU]	 (3a) 

	

gg[pU] + g[pUV = [pU 2	 + P]	 (3b) 

9t [PV] + g[pV 2 + P] = [pUV]	 (3c) 

gg[pE] + g[V(pE + P)] = [U(pE + F)] (3d) 

to obtain the changes of turbulence quantities downstream of the shock front. In 
equations (3a-d), [1 indicates the difference of the quantity in the brackets across 
the front and E is the internal energy (= P/(y - 1) + (U2 + V2 )/2 for an ideal 
gas). Equations 3(a-d) represent, respectively, conservation of mass, x—momentum,
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y—momentum, and total energy across the shock front. The above conditions can 
be combined to give a further condition: the tangential component of velocity is 
continuous across the front. Equations (3a-d) can be solved for the turbulence 
(fluctuating) quantities u2 , V2, P2 , and P2 downstream of the shock in terms of 
g(y,t) and g(y,t) and the upstream quantities: 

U 2 ={g('y+1)u i vj +g[2v—(7+1)u +( 7+1)u 1 g —2'yPi/pi]+ 

gy[(7 3)u i v i + 4vi gt] + ( 1 - 7)u + (7 - 3)u j gg - 27P1 /pi + 2gfl/ 
{(i' + 1)[gvj + (1 + g )(g - u 1 ) + gyv1 ]}	 (4a) 

V2 =vi + gy (u i - u2 )	 (4b) 

P2 P1 + pj [u - gyu i vi - 9ju 1 + u2 (9y v 1 + gg - u i )]	 (4c) 
pi (gy vi +gg — u -	 i)	

4d P2 
[gu i +gyvi +gg —u2 (l +g)] 

Note that equations (4a-d) are exact solutions for the downstream quantities; no 
approximations or additional assumptions have been made in their derivation. 

So we see that the field equation model for shock front evolution (2) provides 
a nonlinear closure to the Rankine- Hugoniot equations for a curved shock (3a-d) 
which allows us to obtain the changes in turbulence quantities across the shock 
(equations 4a-d). Because the closure is nonlinear and because we have made 
no linearizing assumptions in solving the Rankine-Hugoniot equations, this field 
equation/Rankine-Hugoniot model will be able to treat large deformations of the 
shock front and to predict nonlinear amplifications effects of turbulence quantities 
across the front. LIA theory cannot be applied in the case of large deformation 
and will not be able to predict any nonlinear amplification. Shock dynamics theory 
is mathematically complicated and awkward to use in the case of fully developed 
turbulence. 

The assumption of constant UF is in a sense equivalent to the geometrical acous-
tics limit of shock dynamics. In both cases, the rays of an initially curved front 
in a uniform flow (eg. in the shock focusing experiments of Sturtevant & Kulka-
my (1976)) will eventually cross, leading to a cusp-shaped front. The field equa-
tion (2) for the propagation of the front is not, however, the same as the eikonal 
equation for geometrical acoustics: g = c'g'. That the field equation model is a 
better physical model than the eikonal equation for geometrical acoustics can be 
seen by working out the second order perturbation solution to the exact Rankine-
Hugoniot equations (3a-d) for the evolution of the shock front. 

The Rankine- Hugoniotequations for a curved front may be closed to second order 
by assuming that the flow downstream of the front is isentropic. The assumption 
of isentropy is very good for weak shocks: changes in entropy are of third order in 
the pressure jump across the shock. This leads to the following relation between 
pressure and density fluctuations: 

P -	 (i + j(Y - i)),	 (5)
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where upper case indicates mean quantities and lower case indicates fluctuating 
quantities. Combining equations (3a-d) with equation (5) closes the Rankine-
Hugoniot equations to second order. Performing a perturbation expansion to second 
order in the 0(e) quantities u, v, P, p, gg, and gy on finds the following second-order 
solution for the evolution of the shock front: 

g + gg(Fi - 2u i ) = F1 u 1 - u + F2gv i + F3g (6) 

where the F1 's are coefficients that depend on mean flow quantities. From equa-
tion (5), letting g = egii + E2 g2t + 0(€), gy = egiy + e2 g2 y + 0(e3 ), ui = Cul, 

V 1 = w1 the first-order solution is

git = Ui,
	 (7) 

and the second-order solution is

F32 F2 
92t =ygi1, + y i vi .	 (8) 

Now, a similar second-order perturbation expansion for the field equation (2) yields 
the following solutions:

git = UI
	 (9) 

and,

92 = u Fg, - glyvi.	 (10) 

Thus, we see that the field equation gives essentially the same behavior as the 
solution of the full Rankine-Hugoniot equations, at least to second order. Note that 
the Rankine-Hugoniot equations do not have a closed-form analytical solution. 

Nonlinear shock dynamics theory allows the shock propagation velocity to vary 
in proportion to the inverse square root of ray tube areas. This leads to higher 
propagation speeds in concave regions and lower speeds in convex regions of the 
front, thus reducing the tendency to form cusp. The assumption of constant UF 

should be good until the constant uF equation predicts cusp formation. In practice, 
when the front is distorted by a turbulent flow it will never distort to the extent 
of forming cusps, so the assumption of constant UF is well justified. In the case of 
very weak shocks/strong turbulence, some variation of up (perhaps a dependence 
on shock curvature) should be included in the model. 

2.2. Validating the field equation model 

The field equation model is validated by comparing its predictions of front evolu-
tion with DNS. Since our interest is in nearly incompressible turbulence interacting 
with the shock, we consider the interaction of vorticity waves with the shock. Three 
cases are considered in order of increasing complexity (see Figure 1). First, the in-
teraction of a shock with a single steady vorticity wave (one sine wave u = A sin ky 
at normal incidence to the shock), next, the interaction of a shock with a single
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)	 . ) 

K	 K	 m c 
Shock	 Shock	 Shock 

(a)	 (b)	 (c) 

FIGURE 1. The three cases considered. (a) Steady, single mode, u = Asin ky, (b) 
unsteady, single mode, u A sin ky cos wi. Tturb /rshock 1, (c) unsteady, many 
modes, 'full turbulence'. Tturb/ Tshock >> 1 

unsteady mode, and finally, the interaction of a shock with 2D turbulence (many 
unsteady modes at various angles of incidence). 

In the second case, the time for the shock to pass through the 'turbulence' is of 
the same order as the time-scale of the 'turbulence', while in the third case, the 
time for the shock to pass through an eddy is much less than the turnover time of 
the eddy. 

In the first case, the prediction of the field equation is calculated from its third-
order perturbation expansion solution:

123 
r cos2 

1	 (11) 
r sin 

15 e 
 niicosii+O(e4). 

Where non-dimensional quantities e = u/up, q = ky, r = uptk, 4 = kg. Note that 
a secularity in time appears in (11): the perturbation expansion will break down 
when

	

Tc = _I/2	 (12) 

or,
tc = ( k2uu)-' I2 .	 ( 13) 

This is the time one expects the front to form CUSPS (places where the curvature 
becomes infinite). The simple version of the field equation with constant up is valid 
until t.
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FIGURE 2. Comparison of front shape in DNS with field equation prediction. 
Comparison is made just before cusp formation (the worst time of agreement). 

DNS, - - - - Field equation 

For the second case, the field equation is solved numerically using a Fourier 
spectral method; for the third case, the field equation with a viscous term eV 2 G for 
numerical stability is incorporated into the code of Lee et al. (1992). In all three 
cases, the position of the shock in the DNS is found from the pressure half-rise 
point. 

In the first case, the agreement between the field equation and DNS was very 
good until the time predicted by the field equation for cusp formation. Both the 
curvature and front shape agreed well (see Figure 2). After the 'cusp' formed the 
DNS showed the formation of two secondary shocks which increased in strength 
and extent over time, while the original shock decreased in strength (see Figure 3). 
The post-cusp multi-shock DNS results are similar to what was seen in the shock-
focusing experiments of Sturtevant & Kulkarny (1976). 

The agreement in the second case is very poor: both the shape and magnitude 
of the distortion predicted by the field equation do not match the DNS results. 
We believe this discrepancy is due to the larger deviation of UF from its assumed 
constant value in this case. 

In the case of 2D turbulence (M1 = 1.2, M = 0.07), the agreement of the field 
equation prediction with DNS is very good, even over periods as long as three eddy 
turnover times (rgurb. = )t/u'). The correlation between the displacement and slope 
of the field equation predictions and DNS is always over 80%, and mostly above 90% 
(see Figure 4). The RMS error of the field equation predictions for displacement and 
slope are also relatively low: generally less than 50% (see Figure 4). The fact that 
the field equation model works well in the case of turbulence and the steady vorticity 
wave, but not for the unsteady wave, indicates that the shock sees the turbulence as



284	 N. Keviahan, K. Mahe3h & S. Lee 

t = 0.00	 t = 3.02	 t = 5.59	 t=9.62 

FIGURE 3. Evolution of front shape in DNS. Quantity plotted is dilatation. Note 
the cusp-like shape at t=5.59 and the formation of strong secondary shocks by 
t=9.62

t /rt=1.O
	

t/rg=3.O 

FIGURE 4. Comparison between instantaneous shock position in DNS and field 
equation prediction over time. The dark line is the DNS prediction.
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FIGURE 5A. Correlation between DNS and field equation of instantaneous shock 
position in 2D shock/ turbulence interaction 	 Displacement, --- - Slope 
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FIGURE 5B. RMS error in the field equation prediction of instantaneous shock 

	

position in 2D shock/turbulence interaction 	 Displacement, - - - - Slope 

frozen. Hence, the case of turbulence corresponds to the steady case (the turbulence 
time scale is about 1/100 the shock passage time ) and the agreement of the field 
equation model with DNS is good. Note that presence of multiple modes at various 
angles of incidence does not seem to affect the validity of the field equation model. 
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FIGURE 6. Schematic of the way the SS3*, - —Qij Qji plane is divided into four 
characteristic structures. 

3. Evolution of turbulence structure 
In this section, we use the database of Lee ci al. (1992) to study the evolution 

of turbulence structure in 3D isotropic turbulence/normal shock interaction. The 
results presented correspond to case C for which M1 = 1.2, M = 0.095, and 
Re = 11.9 upstream of the shock. The following three quantities were investigated: 
(i) the angle between the vorticity vector (w) and the shock-normal, (ii) the angle 
between w and the eigenvectors of the trace-free strain rate tensor defined as, 

S^. = 1 ( aui + auj) 1 f9Uk 

"2 Ox	 - 3 6ij_,	 (14) 

and (iii) the angle between the velocity and vorticity vectors. 
The angle between w and the eigenvectors of the rate of strain is indicative of the 

type of turbulence structure. Recent DNS of homogeneous, isotropic turbulence (eg. 
Ashurst ci al. 1987, Vincent & Meneguzzi 1991) show that the vorticity vector aligns 
with the intermediate eigenvector of the strain rate tensor. The angle between the 
velocity and vorticity gives the balance between helicity density (their dot product, 
believed to be related to coherent large scale structures) and the nonlinear transfer 
of energy between scales (a function of their cross product). Some DNS (eg. Pelz 
ci al. 1985 and She ci al. 1991) show a tendency for the velocity and vorticity to 
align (a reduction in nonlinearity), while others (eg. Rogers & Moin 1987) see little 
preferential alignment. 

We also compute the ratio of eigenvalues of Sj (c : /3: y) and the relative numbers 
of 'cigar' (a/37 > 0) and 'pancake' (c/3y < 0) regions (see Kevlahan (1992). In 
addition, we classify the flow (see Figure 6) into four structures (convergence, shear, 
eddy, and streaming) based on (S j S,*) and the (—lj,l,,) (where Q ij is the rotation
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FIGURE 7. PDF of the angle between vorticity and the shock normal upstream 
of the shock (plane 72), just downstream of the shock (plane 111), far downstream 
(plane 174). The PDFs have been normalized by dividing by the sine of the angle 
and scaled so that 1.0 corresponds to a flat distribution. Note the persistence of 
the alignment far downstream where the flow is essentially incompressible. 

rate tensor). Structures are further classified as incompressible, compressed, or 
expanded based on the value of S k /(S*2 + Q2 ) (if greater than 5% the region is 
classified as compressible) and Skk (less than zero, compressed; greater than zero, 
expanded). 

According to this structural classification, convergence regions are places of high 
irrotational straining, shear regions are places of approximately equal rotational and 
irrotational straining, eddies are regions of high rotational straining, and stream 
regions are places where both the rotational and irrotational strains are small but 
the kinetic energy is large. 

The quantities described above are calculated in planes parallel to the mean shock 
and averaged over ten realizations and homogeneous directions. The instantaneous 
means over the plane are subtracted from each quantity before they are analyzed. 
This eliminates the mean flow distortion and allows us to concentrate on the be-
havior of the turbulence itself. The PDFs of angles are normalized by the sine of 
the angle so that vectors isotropically distributed will lead to a flat distribution (if 
vectors are distributed isotropically over a sphere then the number of vectors at any 
angle to the 'north pole' is proportional to the sine of the angle).
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FIGURE 8. PDFs of the angle between the vorticity vector and the three eigen-
vectors of the rate of strain tensor upstream and downstream of the shock. Note 
the amplification of the alignments by the shock. The PDFs have been normalized 
by dividing by the sine of the angle and scaled so that 1.0 corresponds to a flat 
distribution. (a) Angle with largest eigenvector, (b) angle with middle eigenvector, 
(c) angle with smallest eigenvector. 
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8.1. Turbulence structure results 

The eigenvalues of S, are in the ratio 4 : 1 : —5 and are unchanged up and 
downstream of the shock except in the vicinity of the shock itself where the middle 
eigenvalue increases leading to the ratio 2: 1: —3. These results are similar to the 
ratio 3: 1: —4 found by Chen ci al. (1990) for isotropic incompressible flows. The 
flow is divided into pancake and cigar regions in the ratio 3: 1 both upstream and 
downstream of the shock. The flow is composed of 27% convergence, 39% shear, 
23% eddies, and 4% streams (7% undefined). This distribution is.constant up and 
downstream of the shock. In the vicinity of the shock, the distribution changes 
to 33% convergence, 26% shear, 11% eddies, and 8% streams (22% undefined). In 
the vicinity of the shock, 82% of structures are compressible, and of these half are 
expanded and half are compressed. Eddies and shear regions are primarily expanded 
structures, while convergence regions are primarily compressed. 

The vorticity vector preferentially aligns parallel to shock surface downstream of 
the shock with a probability 1.7 times as much as in a flat distribution (see Figure 7). 
This is a well known effect of the compression in the shock normal direction which 
amplifies the vorticity parallel to the shock and leaves vorticity normal to the shock 
unchanged. 

Upstream of the shock where the turbulence is isotropic, we observe a very strong 
tendency for w to align with 6 (the middle eigenvector of Sr,) and to align at 90° 
to j (the largest eigenvector of Sri) (see Figure 8). Alignment of the vorticity with 
C2 and at 900 to is 2.5 times more likely than in a flat distribution. The PDF of 
the angle between w and 6 is approximately flat. These alignments saturate before 
the turbulence interacts with the shock. The alignments are further amplified on 
passage through the shock, which is consistent with the Rapid Distortion Analysis 
of Kevlahan (1992). An interesting point regarding the flow upstream of the shock 
is that this alignment continues to develop after the velocity derivative skewness has 
saturated. This may suggest that skewness saturation may not be the best indicator 
that the turbulence is fully developed (evidently some structural evolution continues 
even after the skewness has stabilized). 

We observe a significant tendency for the velocity and vorticity vectors to align 
(see Figure 9). This tendency increases as the flow moves through the computational 
domain. Alignment (or anti-alignment) far downstream is about 1.35 times as likely 
as in flat distribution. This alignment is strongest in eddy regions (1.48 times 
as likely) and weakest in convergence regions (about 1.05 times as likely). This 
indicates that the primary cause of the increase in helicity density (or decrease in 
nonlinearity) is vortical rather than irrotational straining. There also seems to be 
a tendency towards asymmetry upstream of the shock (eddies tend to antialign), 
although this may not be significant. These results are somewhat stronger than 
those of Rogers & Mom (1987) who find at most only a 20% deviation from a flat 
distribution. This discrepancy may be due to the differences in the flows (ours is 
slightly compressible and theirs is incompressible) or because our Reynolds number 
is relatively low (about 25) and they find that the reduction in nonlinearity decreases 
as Reynolds number increases.
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4. Conclusions 
Field equation model predictions for front shape have been compared with DNS 

results, and agreement is very good for 2D turbulence (Mf' = 1.20, M = 0.07) and 
for a single steady vorticity wave. The field equation approach shows promise as a 
way of modeling the shock/turbulence interaction. 

The eigenvalues of in the developed turbulence are in the ratio 4 : 1 : —5, 

except in the vicinity of the shock where they are in the ratio 2: 1 : —3. The ratio 
of pancake to cigar type straining regions is in the ratio 3: 1. 

In the vicinity of the shock, 82% of structures are compressible and of these half 
are expanded and half are compressed. Eddies and shear regions are primarily ex-

panded structures, while convergence regions are primarily compressed downstream 
of the shock. 

Strong alignment of vorticity with the intermediate eigenvector of the trace-free 
strain rate tensor is seen upstream of the shock and further amplifies on passage 
through the shock. Vorticity tends to align at 90° to the largest eigenvector, but 
there is no preferred alignment with the smallest eigenvector. The alignments con-
tinue to develop upstream even after the skewness saturates. This suggests that 
skewness may not be' the best indicator of fully developed isotropic turbulence. 

It is interesting to note that our results on the alignment of vorticity with 2 

and the ratio of the eigenvalues are sometimes thought to be the result of turbulent 
structures such as long vortex tubes (eg. Jiménez 1992), and yet our Reynolds 
number is too low for these tubes to have formed. 

There is a significant tendency for velocity to align with vorticity. This tendency 
continues to increase with time throughout the computational domain. The align-
ment between velocity and vorticity is strongest in eddy regions and weakest in 
convergence regions.
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A transport equation for eddy viscosity 

By P. A. Durbin' AND Z. Yang  

A transport equation for eddy viscosity is proposed for wall bounded turbulent 
flows. The proposed model reduces to a quasi-homogeneous form far from surfaces. 
Near to a surface, the nonhomogeneous effect of the wall is modeled by an elliptic 
relaxation model. All the model terms are expressed in local variables and are coor-
dinate independent; the model is intended to be used in complex flows. Turbulent 
channel flow and turbulent boundary layer flows with/without pressure gradient are 
calculated using the present model. Comparisons between model calculations and 
direct numerical simulation or experimental data show good agreement. 

1. Introduction 
Algebraic turbulence models (Baldwin-Lomax 1978, Cebeci-Smith 1974) have 

been used extensively in calculations of aerodynamic flows. These algebraic models 
are easy to implement numerically and give accurate predictions for simple flows, 
such as that over an airfoil with an attached boundary layer; however, they are 
inadequate when used for more complex flows, such as that over an airfoil with 
separation. In addition, these models contain nonlocal parameters in their formu-
lations. The interpretation of these parameters becomes ambiguous in complex 
geometries. Higher order turbulence models have been proposed to overcome defi-
ciencies of these algebraic models, the most popular among these being the k - 

model. The empirical constants in the k - € model have been optimized in a variety 
of simple shear flows, giving what is commonly referred to as the Standard k - 

model (Launder and Spalding 1974, Rodi 1980). 
The Standard k - e model was devised for turbulence far away from boundaries. 

For near wall turbulence, the model either has been used in conjunction with wall 
functions or has been modified by damping functions and other near wall terms to 
give the so called near wall version of the k - e model. This fixed up model can be 
integrated down to the wall. 

In the wall function approach, one assumes the existence of a universal wall layer, 
which is not valid in many complex flows. In the damping function approach, the 
results depend on the damping functions used—a wide variety of which have been 
proposed. These damping functions themselves must be assumed to be of a universal 
form. 

It is also found that for near wall flows the k - model is numerically stiff: it 
requires many grid points near the wall to get a grid independent solution. This 

1 Center for Turbulence Research 
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numerical stiffness makes the model rather unappealing for aerodynamic computa-
tions. The numerical stiffness of the k - e model is partly due to the rapid variation 
of € (and to a less extend k) near the wall. 

The eddy viscosity, ii, varies much more gradually near the wall. This observation 
suggests that an equation for the eddy viscosity might be less stiff; this was one 
motivation for the work of Baldwin and Barth (1990) and Spalart and Allmaras 
(1992). In these papers, a transport equation for eddy viscosity of the type originally 
proposed by Nee and Kovasznay (1968) was formulated and solved in conjunction 
with the mean field equations. Wall effects were introduced in these models by 
damping functions, in which the distance to the wall y enters as an parameter. 
This wall distance y is not a local property; its definition may be ambiguous for 
flows in complex geometry—corner flow for example. Also, the damping functions 
are assumed to be universal, which does not seem valid in flows with strong adverse 
pressure gradients and separation. 

Modeling of near wall turbulence is very important for engineering calculation 
because the near wall portion of the boundary layer contributes substantially to 
the total momentum and heat transfer. In the near wall region, the turbulence is 
strongly inhomogeneous and strongly anisotropic. Recently, Durbin (1991) intro-
duced the method of elliptic relaxation to model the blocking effect of the wall on the 
turbulence. In this method, the behavior of the near wall turbulence is given by the 
solution of an (elliptic) differential equation rather than by prescribed algebraic ex-
pressions. Geometric information enters through the boundary conditions enforced 
at the wall. Thus, it is hoped that this formulation can handle flows in complex 
geometry. This approach also has the appeal that it is coordinate independent. 

In the present work, we propose a new transport model for the eddy viscosity. Far 
away from the wall, the model is based on the quasi-homogeneous approximation; 
near the surface, the wall effect is introduced via an elliptic relaxation equation. The 
structure of the paper is as follows: the proposed model is presented in section 2; in 
section 3, we show calculations of turbulent channel flow and turbulent boundary 
layer flows with and without pressure gradient; section 4 concludes the paper. 

2. The proposed model

2.1 The eddy viscosity 

In the framework of the eddy viscosity model, the unknown Reynolds stress 
in the mean momentum equation is assumed to be related to the mean velocity field 
by

–.7ñ7 = 2zigS,, -	 (1) 
where Sij is the strain rate of the mean field and v i is the eddy viscosity. The last 
term in (1), containing the turbulent kinetic energy k, can be absorbed into the 
mean pressure. Thus, only the eddy viscosity needs to be modeled. 

We propose that the general form of a transport equation for the eddy viscosity 
be

pi=v. [(+)v] +	 (2)
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where the turbulent self transport is assumed to be analogous to the laminar dif-
fusion and 4' is a source term representing the combined effect of production and 
dissipation of Zig. Our objective is to propose a model for 4' which is valid for both 
near wall and free shear layers. The justification for using a scalar eddy viscos-
ity, as in (1), is that our attention is on thin shear layers, in which transport is 
predominantly transverse to the shear. 

2.2 Model for flow away from the wall 

Far from the solid surface, the inhomogeneity of a turbulence field is relatively 
weak. The model for 4' could then be found by expanding about the homogeneous 
state. This quasi-homogeneous case is considered first. 

For homogeneous shear flow, if v1 is much larger than v, the only variables that can 
enter the problem are the eddy viscosity Vg and the shear rate S. (The shear rate S 
will be defined here via the rate of strain tensor of the mean field: S = 2(S,S,)112.) 

From dimensional reasoning, we have 

4' = 4'(S,z'g) = c i Svg	 (3) 

where c1 is a model constant. Experimental results for homogeneous shear flow give 
c	 0.12. 

In general, the flow is not homogeneous. Flow inhomogerieity can be represented 
by lVgI and by JVSJ, which are measures of the inhomogeneity of the turbulence 
field and of the mean field, respectively. If the inhomogeneity is weak, expansion 
about the homogeneous state suggests the form

v2 
4) = c 1 Svg - c2I Vz'g1 2 -C3-,	 (4) 

where the length scale L is given by

("SI) 2
 

=	
.	 (5) 

Other terms, such as IVvgl&i/L might be considered; (4) is analogous to the forms 
selected by Baldwin and Barth (1990) and Spalart and Almaras (1992). The model 
(4) allows inhomogeneities in both the turbulent field and the mean field to con-
tribute to 'dissipation' of the eddy viscosity. 

2.3 Model for near wall turbulence 

Eq (4) is based on an expansion near the homogeneous state. The expansion 
is valid only for weak inhomogeneity. In the near wall region the flow changes 
very rapidly to adjust to the boundary condition at the wall; thus, the flow field 
is strongly inhomogeneous, and the expansion about the homogeneous state is not 
expected to be valid. (Direct application of equation (2) with 4' given by equation 
(4) to turbulent channel flow at Re = 395 leads to a value of the skin friction 
coefficient too high by about 30%.) In the present work, this strong inhomogeneity
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is modeled by the elliptic relaxation model first proposed by Durbin (1991) for 
Reynolds stress closures. 

In the Reynolds stress transport equation, the velocity-pressure gradient correla-
tion term is a good candidate for this type of relaxation because pressure is elliptic in 
nature. In the transport equation for the eddy viscosity, the pressure term does not 
appear explicitly; which term should be operated on by elliptic relaxation is ques-
tionable. An examination of the transport equation for —lilY/S in simple shear flows 
reveals that there are two origins for the elliptic, relaxation: the velocity-pressure 
gradient correlation and the representation of v2 in terms of lilY. The combination 
of these two effects suggests, in the case of the eddy viscosity transport model, that 
we write c1 = c11 - c12 and introduce the elliptic relaxation such that the transport 
equation appears as

= V . [ (ii + ) v] + Pp - Cl2SVt Dt	 01 	 L2 -C3	 (6)

where P, is the quantity subject to relaxation. It is governed by the elliptic equation 

LV2PP - P,, = — ( CI iSv - c2I Vvg I 2 ) .	 (7) 

In (7), L is the blocking length scale and is given by 

(LI , 21/\L =cmax . c , ) . 	 (8) 

The first term in the 'max' function represents the turbulent length scale, which 
is appropriate away from the wall; the second term is chosen very close to the wall, 
where the appropriate length is the Kolmogorov scale. The switching from one 
length scale to the other is controlled by the value of cj and the total length scale 
is controlled by c,.

2.4 Modification near S = 0 

Equations (5) and (8) give expressions for the length scales. These estimates 
break down when S = 0. S = 0 can occur at the edge of a boundary layer or inside 
a turbulent field, for example at the centerline of channel flow. A revision to the 
length scale formulation is needed to accommodate these cases. The singularity will 
be removed by the following modification:

 2 
L2 -

	 (,VV,,  
ivsi) 

2 +

	 s ) 
2	 ''t 2V)] L = min[Lcp max	 c, 	 .	 (10) 

Over most of the flow field, the first term on the right hand sides of (9) and (10) 
is much larger than the second term. The modification only affects the region near 
S=0.
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In the course of developing and testing the model during the summer program, 
another modification to L was inadvertently introduced: in the outermost portion 
of boundary layers, L became constant. The algorithm was to make L be in-
dependent of y when Ov/Oy < 0. i'g decreases when y/ög is greater than 0.9. 
In future work, this restriction will be removed; it is an effective way to avoid the 
difficulty of specifying L in the free-stream, but its applicability is restricted to 
attached boundary layers.

2.5 Boundary conditions 

Equations (6) and (7), together with the length scales given by (9) and (10), 
are the eddy viscosity model we are proposing for wall bounded turbulent flows. 
They form a fourth order system of equations, and, consequently, four boundary 
conditions are needed. These conditions are as follows: On a solid surface 

	

l/t = . vvt=0,	 (11) 

where ñ is the surface normal; at a symmetry plane, the center line of a channel for 
example,

(12) 

where the prime denotes the derivative normal to the symmetry plane; at the 
freestream edge of a boundary layer or shear layer 

i1 =Pv = 0.	 (13) 

The prime in (13) represents differentiation normal to the edge of the boundary 
layer. In some situations, (13) might be replaced by a condition prescribing prop-
erties of free-stream turbulence if it is present. 

2.6 Model constants 

There are seven empirical constants in the present model. They are o, c1 , c12, 

C2, C3, ci,, ci. c11 and C12 are related by 

CU - C12 = Cl. 

0.12 was determined by experiments on homogeneous shear flow. 
Another relation among the constants is found by requiring that the model give 

the right behavior in the logarithmic region of a boundary layer. This imposes the 
constraint

1	 Cl	 C3

1+K4 

where ic is the Von Kármán constant; we take ic = 0.41. 
The constant a in the turbulent diffusion term should be about 1 and the value 

of ci,, which marks the switching from the Kolmogorov length scale to the turbulent 
length scale, should be about 3.5. All the other constants are chosen by comparing 
with direct numerical simulation data for turbulent channel flow at Re,. = 395 and



298	 P. A. Durbin & Z. Yang 

with experimental data for a zero pressure gradient, flat plate boundary. The values 
of the constants selected in this study are 

a = 1.3, c11 = 0.4, c12 = 0.28, c2 = 1.3, c3 = 0.2, c, = 3.5, cj = 1.6.	 (14) 

The constants listed above represent a preliminary choice: they are subject to 
adjustment in the course of further model development. 

3. Results and discussions 

Turbulent channel flows at different Reynolds numbers and turbulent boundary 
layers with and without pressure gradient were calculated using the present model. 
An implicit finite difference scheme was used to solve the momentum equation and 
the turbulence equations. For the present cases, the equations are parabolic and 
a marching scheme was used. The finite difference equations for v 1 and P were 
solved as a coupled, block tridiagonal system. Variable grid spacing was used, with 
densest spacing near the wall. The total number of grid points was set to 105, which 
is large enough for the results to be grid independent. 

Two dimensional, fully developed channel flow is attractive for model testing be-
cause it is statistically steady and nonhomogeneous in only one direction. Solutions 
can be found very efficiently, yet the effects of the wall on turbulent shear flow 
are still present. Computations were carried out for 2D fully developed turbulent 
channel flows at Re,. = 180 and Re,. = 395, for which DNS data are available 
(J. Kim, private communication). Figure 1 shows profiles of the mean velocity at 
these two Reynolds numbers along with DNS data. Both the dependent variable 
and the independent variables are represented in wall units. The predictions are in 
reasonable agreement with the data. 

The second example calculated is the turbulent boundary layer with zero pressure 
gradient. The zero pressure gradient boundary layer on a flat plate has a self-similar 
profile (in the outer portion of the boundary layer, when scaled on outer variables). 
Thus, arbitrary profiles could be used as the initial conditions, and the solution 
should develop into its similarity form. Figure 2 shows velocity profiles scaled 
by the free stream velocity and the boundary layer thickness at Reg = 3195 and 
Reg = 5473, respectively. The experimental data is from Coles and Hirst (1968). 
It is found that indeed the velocity develops into a similarity profile, which serves 
as a good check for the present model. Figure 3 contains a conventional log-linear 
plot of the mean velocity profile. The agreement with the data is excellent except 
in the viscous sublayer, where the model profile is a bit low. 

From an engineering point of view, the skin friction is of great interest. The skin 
friction coefficient as a function of Reg is shown in figure 4, along with experimental 
data (Coles and Hirst 1968). It is seen that the model gives a good prediction 
of C1. The growth of the boundary layer in this range of Reynolds number is 
illustrated by figure 5, which shows displacement thickness as a function of Reg. 8 
is normalized by the boundary layer thickness at Reg = 1000. The model gives a 
slight overprediction of the boundary layer growth rate.
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FIGURE 1. Mean velocity profiles in channel flow. •, Re,. = 395; x, Re,. = 180. 
The lower Reynolds number profile is offset 5 units for clarity. 

Next we calculate the development of a turbulent boundary layer in a pressure 
gradient. The test case chosen is the Samuel and Joubert (1974) experiment on 
a boundary layer developing into an increasingly adverse pressure gradient. This 
boundary layer is not self-similar. During the 1981-82 Stanford Conference on 
Complex Turbulent Flows, it was found that this flow is very difficult to predict; 
since then, it has become a standard test case for turbulence models. 

The initial condition for the computation was set in the following manner: We 
assume that the turbulent boundary layer develops under zero pressure gradient 
up to a point, x, say, at which the pressure gradient (which is known from the 
experiment) is applied. The position x 3 is determined so that at the first point 
of the working section of wind tunnel, where the experimental data begin, the 
predicted values of Reg and C1 agree with those of the experiment. 

The predicted development of the boundary layer is shown in figure 6 along with 
the experimental data. The variation of the skin friction coefficient with x and 
the growth of the boundary layer thickness are predicted very well. The velocity 
profiles at x 1.87m and x = 2.55m are shown in figure 7. The agreement with 
the experimental data is again found to be reasonable.
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FIGURE 2.	 Similarity form of mean velocity profiles in zero pressure gradient 
boundary layer. •(-), Rea = 3195; x(--- ),  Ree = 5473. 

FIGURE 3.	 Log-linear plot of mean velocity profile in zero pressure gradient 
boundary layer.
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FIGURE 4. Skin friction coefficient versus momentum thickness Reynolds number 
for zero pressure gradient boundary layer. 
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FIGURE 5. Boundary layer thickness versus Reynolds number for zero pressure 
gradient boundary layer. 

4. Conclusions 
We have presented a transport equation for eddy viscosity for wall bounded flows. 

Away from the wall, the proposed model reduces to a quasi-homogeneous model. 
The near wall effect is represented by an elliptic relaxation equation. Since geomet-
rical information comes through the location where the boundary conditions are 
enforced while the model itself is free from the boundary information, the proposed
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FIGURE 6. Skin friction coefficient and displacement thickness in the Samuel and 
Joubert boundary layer. 

1

4 - model:x-1.87m

	

4	 model: x..2.55m 
•	 expenment: x - 1.87m 

	

1.01 	 x	 experiment: x - 2.55m 

t	 0.6
X. 

x .-

S 

0	 0.2	 0.4	 0.6	 0.8	 1.0
U/U% 

FIGURE 7. Mean velocity profiles at x = 1.87m and 2.55m in the Samuel and 
Joubert boundary layer.
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model has the potential to handle flows in complex geometry. All the quantities 
used in the model are local properties and are coordinate independent; the model 
is also Galilean invariant. 

Channel flow at two Reynolds numbers and flat plate turbulent boundary layers 
with zero and adverse pressure gradients were calculated using the present model. 
The comparison with the DNS and experimental data were found to be quite promis-
ing. 
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Proceedings of the Summer Program 1992 

IV. The combustion group 

The combustion group conducted six projects. Three projects were related to 
premixed and three to non-premixed combustion. The invited participants were: 
Mr. M. Baum (Ecole Centrale Paris), Dr. J. H. Chen (Sandia National Labora-
tories); Prof. R. 0. Fox (Kansas State University), Dr. D. C. Haworth (General 
Motors Research Laboratories), Prof. J. C. Hill (Iowa State University), Prof. S. 
Mahalingam (University of Colorado), Dr. T. Poinsot (Institut de Mécanique des 
Fluides de Toulouse), Prof. I. K. Purl (University of Illinois). The local partici-
pants were: Dr. R. D. Moser and Dr. M. M. Rogers from NASA Ames Research 
Center, and Dr. F. Gao, Dr. A. Trouvé, and Dr. L. Vervisch from the Center for 
Turbulence Research. 

The broad scientific objectives of this group were similar to those of the CTR 
1990 Summer Program: understanding of fundamental phenomena controlling tur-
bulent combustion and application to modeling. However, the tools used in 1992 
have covered a wider range: 2D or 3D, variable or constant density, simple or com-
plex chemistry formulations for Direct Numerical Simulation (DNS) of turbulent 
combustion have been used. Recent progress in numerical analysis and code de-
velopment have allowed us to use tools which were well adapted to the physical 
problems considered by each group. 

The first three projects were aimed at increasing our understanding of turbulent 
premixed flames. 

Poinsot & Haworth studied the interaction between a turbulent flame and a cold 
wall. Flame quenching distances as well as wall heat fluxes were measured from 
2D simulations. The characteristics of flamelets reaching the wall (curvature, flame 
speed, quenching times) were used to build a 'law-of-the-wall' model for turbulent 
combustion. A simplified version of this model was derived and may be implemented 
in any flamelet model for turbulent premixed combustion. 

A new 3D variable-density code was used by Trouvé & Poinsot to investigate 
the modeling of the evolution equation for the flame surface density. This analysis 
shows the limits of present flamelet models and suggests how the exact evolution 
equation for reactive surfaces may be closed to provide a suitable model. The effect 
of the Lewis number was evidenced and its influence on source or consumption 
terms for the flame surface density was demonstrated. 

The first objective of the work by Baum, et al. was to prove the feasibility 
of DNS with complex chemistry and the potential of this approach for pollution 
studies. A second goal was to check whether the DNS results previously obtained 
with single-step chemistry are modified by accounting for more realistic chemical 
schemes. The project was based on a new 2D code where a DNS technique was 
coupled to CHEMKIN and TRANSPORT, the SANDIA packages for reacting flows 
with complex chemistry. Using this tool, it was possible to investigate the structure 
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of H2-02 turbulent flames with the Warnatz scheme (9 species - 19 reactions). This 
project also provides the first analysis of the effects of stretch and curvature on 
flames with realistic chemistry. 

The first project of Chen et al. was related to the effects of finite rate chemistry 
and differential diffusion on the structure of turbulent non-premixed flames. 3D 
variable-density simulations were performed over a range of conditions correspond -
ing to fast and slow chemistry. This project provided new insights on the validity 
of the flamelet assumption as well as on the effects of transient regimes and small 
scales on the inner structure of the flame zone. 

Chen et al. investigated one of the classical assumptions used to model turbulent 
non-premixed flames, i.e. single-step chemistry. Single-step and two-step chemical 
schemes were compared using 2D variable-density simulations of a non-premixed 
flame in isotropic turbulent flow. An important result was that extinction lim-
its appear to be quite different: while single-step chemistry lead to multiple local 
extinctions, two-step chemistry feature more robust flames which do not quench. 

DNS of a single-step chemical reaction with non-premixed reactants in forced 
isotropic turbulence were used by Fox et al. to obtain joint pdf's and other statistical 
information to parameterize and test a Fokker-Planck turbulent mixing model. The 
simulations were performed using a constant density, 3D spectral code developed 
by Moser and Rogers. Physical features as well as various statistics of the reacting 
scalars and their gradients were examined and compared to the model. 

This Summer Program has brought many new and original results. The activity 
on non-premixed combustion was more intense than during previous programs and 
opened new perspectives for modeling for those flames. The demonstration that 
DNS of reacting flows was possible while taking into account complex chemistry or 
the presence of walls also opens new fields of investigations. 

Modeling was one of our first objectives in this work. A fundamental aspect of the 
1992 work is the impact and the power of DNS to answer certain critical questions 
for turbulent combustion models. We believe that DNS of reacting flows is now 
reaching a point where individual terms in combustion models may be estimated 
from DNS (as done by Trouvé & Poinsot) and that this possibility will change the 
way we construct models in the next few years.

Thierry J. Poinsot
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DNS and modeling of the interaction 

between turbulent premixed flames and walls 

By T. J. Poinsot' AND D. C. Haworth' 

The interaction between turbulent premixed flames and walls is studied using 
a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of 
wall distance on the local and global flame structure are investigated. Quenching 
distances and maximum wall heat fluxes during quenching are computed in laminar 
cases and are found to be comparable to experimental and analytical results. For 
turbulent cases, it is shown that quenching distances and maximum heat fluxes 
remain of the same order as for laminar flames. Based on simulation results, a 
'law-of-the-wall' model is derived to describe the interaction between a turbulent 
premixed flame and a wall. This model is constructed to provide reasonable behavior 
of flame surface density near a wall under the assumption that flame-wall interaction 
takes place at scales smaller than the computational mesh. It can be implemented in 
conjunction with any of several recent flamelet models based on a modeled surface 
density equation, with no additional constraints on mesh size or time step. 

1. Introduction 
The understanding and modeling of turbulent phenomena that occur near walls 

is a formidable task. Even in the absence of chemical reaction, building 'law-of-
the-wall' models or low-Reynolds-number models is an ongoing research subject 
and no satisfactory practical solution is yet available for general use in engineering 
codes. The situation is even more difficult when a flame is present. Combustion 
is strongly influenced by the presence of walls which may cause flame fronts to 
quench, for example. Moreover, the flame has a significant effect on the flow in 
the vicinity of the wall as well as on the heat flux to the wall. For these reasons, 
modeling of flame-wall interactions in turbulent situations is an important issue. 
Still, few experimental or modeling results have been reported, and most present 
models for turbulent premixed combustion do not use any specific corrections for 
near-wall effects. At best this may result in errors in the prediction of the reaction 
rate and of the wall heat fluxes and temperatures. In some cases, the absence of 
any reasonable approximation of the wall effects leads to numerical difficulties and 
to the use of ad-hoc numerical corrections to obtain solutions. These corrections 
are based on pragmatic rather than on physical grounds. Our objective here is to 
explore the flame-wall interaction mechanisms at a fundamental level using direct 
numerical simulations (DNS). The understanding thus obtained provides a sound 

1 C. N. R. S., institut de Mecanique des Fluides de Toulouse, France 
2 General Motors Research & Environmental Staff, Warren, MI
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basis for a model which can be viewed as a law-of-the-wall approach for turbulent 
premixed combustion. 

2. Flame-wall interaction in laminar flows 

Before considering turbulent cases, it is useful to consider results obtained on wall 
quenching of laminar flames (Jarosinski 1986, Huang et al. 1986). For these flows, 
two important quantities have been introduced: the minimum distance between the 
flame and the wall 5cj and the maximum heat flux 4q through the wall during 
the interaction with the flame. Most authors normalize the wall distance y by a 
characteristic flame thickness d = Ai/(pi cPs?) and define the local Peclet number 
to be Pe = y/d (Here a subscript '1' refers to reference properties in the fresh 
gases). Therefore, the quenching distance is often expressed by its Peclet number 
PQ: P Q = Sq/d (Huang et al. 1986, Vosen et al. 1984, Lu et al. 1990). The wall 
heat flux may be normalized by the laminar reference 'flame power' (heat release) 
to yield 0 = Q /(p l Ys/.H) where p' and Y designate the fresh-gas density and 
fuel mass fraction, 4 is the unstretched laminar flame speed, and LH is the heat 
of reaction (Y,H = c(T2 - T1 ) if T1 is the temperature of the fresh gases and 
T2 is the adiabatic flame temperature). These two quantities may be correlated in 
laminar flows. If one assumes that at quenching, the wall heat flux is due to 
heat conduction in the gas layer of thickness b Q , one can write

(1) 

where A is the gas thermal conductivity and T is the wall temperature. From 
Eq. (1), we obtain a relation which is expected to hold when the wall heat transfer 
is dominated by diffusion:

T2-T, 1 
T2TiPeq	

(2) 

Three typical situations have been studied in the past (Figure 1): 

1. Head-on quenching 
When a flame front reaches a cold wall (T = T1 ) at a normal angle, head-on 
quenching (HOQ) occurs (Figure la). This case has been studied numerically and 
experimentally (Huang et al. 1986, Jarosinski 1986, Vosen et al. 1984). Results 
suggest that quenching occurs for Peclet numbers of the order of three. Heat flux 
measurements indicate values of 0 of the order of 0.34, which is consistent with the 
value predicted by Eq. (2) with P Q 3. In terms of simple physics, this result 
suggests that a flame stops propagating towards the wall when the heat losses to 
the wall are equal to about one-third of the nominal flame power. The fact that 
is almost constant for different fuels (Huang ci al. 1986) suggests that the problem 
is thermally controlled and that simple chemistry may be used to compute this 
phenomenon.
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ci Tube quenching

FIGURE 1. Configurations for flame-wall interaction studies in laminar flows. 

2. Side-wall quenching 
When a flame propagates parallel to a wall, the situation is different. Only localized 
quenching of the flame near the wall occurs (Figure lb). This situation has been 
studied theoretically by Von Karman & Millan (1953) and Makhviladze & Melikov 
(1991), and experimentally by Lu ci al. (1990) and Clendening ci al. (1981). Peclet 
numbers in this case are of the order of seven suggesting values for 0 of about 0.16 
(Eq. (2)). Asymptotic theories of non-adiabatic flames also may be used to predict 
the quenching distance (Williams 1985): these predict the same order of magnitude 
for PQ. 

3. Tube quenching 
Total flame quenching may occur in a tube if its diameter is sufficiently small 
(Lewis & Von Elbe 1987, Jarosinski 1986, Fairchild ci al. 1984) (Figure ic). This 
phenomenon is exploited, for example, in the design of flame arrestors: these are 
ensembles of tubes with diameters smaller than the quenching distance so that a 
flame cannot propagate through them. Peclet numbers in this case are based on 
the tube diameter and are of the order of 50 (Aly & Hermance 1981). We will not 
consider this configuration here since in most practical situations, the dimensions 
of the system (e.g., the size of the combustor chamber) are too large to induce total 
quenching.
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3. Numerical method and configuration 
To study numerically how a laminar or a turbulent flame interacts with a cold wall 

we have utilized a DNS code developed at Stanford (Poinsot ci al. 1991, Poinsot 
& Lele 1992). Since this code has been described elsewhere, we will recall only 
its principal features here. We consider a compressible viscous reacting flow. The 
chemical reaction is represented by a single-step mechanism, R (reactants) -i 
P (products) where the reaction rate wR is expressed as, 

W	
(_La)

R = BPYR exp.
	

(3) 

This can be interpreted as a binary reaction where one of the reactants (YR ) is 
always deficient. Following Williams (1985) we cast this expression in the form, 

 __  
W	

-/3(1-0) R = APYReXPG-
 a(1 - 00- 	 (4) 

Here 0 is the reduced temperature 0 = (T - T1 )/(T2 - T1 ), and T2 is the adiabatic 
flame temperature. The activation temperature is 1'0 and the coefficients A, a, and 
/3 are, respectively, the reduced pre-exponential factor, the temperature factor, and 
the reduced activation energy, 

A = Bexp(-/3/a), a = (T2 - T1 )/T2, and 3 = aT/T2 .	 ( 5) 

Fluid properties follow the equations, 

p = pi (pTi /pj T), L = 

Le = )/pDcp = constant, Pr =	 = constant,	 (6) 
where ji, A, and D are molecular diffusivities of momentum, internal energy, and 
species, respectively, and b is a constant. Using these assumptions and a Cartesian 
frame of reference, the conservation equations for compressible flows are solved using 
a high-order finite difference scheme (Lele 1992). 

The calculations are initialized with reactants on one side of the computational 
domain and products on the other; these are separated by a laminar premixed 
flame. The wall is located on the reactant side of the domain (Figure la). All 
velocity components are zero on the wall and the wall temperature is imposed. For 
all the cases shown here, the wall temperature is equal to the fresh gas temperature, 
T1 . On lateral boundaries, periodic conditions are enforced. On the right-hand side 
of the domain, non-reflecting boundary conditions are used (Poinsot & Lele 1992). 

The initial velocity field (turbulence spectrum) and spatial distribution of reac-
tant mass fraction are specified at t = 0: the system is then allowed to evolve in 
time. The initially planar flame is convected and strained by the turbulence while 
the combustion influences the fluid mechanics through dilatation and temperature-
dependent properties (Eq. (6)). After some time (typically 5 to 20 flame times in 
these computations), the flame reaches the wall and begins to interact with it.
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4. Diagnostics 
In the present case, we are especially interested in the effect of the wall on the 

flame structure. Postprocessing of the two-dimensional computed fields (snapshots 
at fixed times) begins by defining a flame front as an isocontour of temperature 
T. Once the flame front has been located, the local normal and local flame cur-
vature are readily computed; curvature is taken to be positive for flame elements 
that are concave towards the products and conversely for elements concave towards 
reactants. One-dimensional cuts normal to the flame are taken: it is these pro-
files that define the local 'structure' of the turbulent flame. We compare the local 
turbulent flame profiles with the steady one-dimensional laminar flame profile for 
the same chemistry and fluid properties. Of particular interest is the distribution 
along the flame of the normalized local flame speed ('flamelet speed') s,, defined 
by s,, = f tb dn / so, , that is, the integral of the reaction rate profile in a direction 
locally normal to the flame. 

The fixed chemical parameters used for this study are summarized in Table I. The 
flame speed and thickness are normalized respectively by the sound speed c and by 
the reference length d = Ai/(picps?) . The flame thermal thickness bo is based on 

aT 
the maximum temperature gradient: 8 = (T2 - Ti)/Max(). 

Table I. Fixed parameters for DNS of flame-wall interaction. 

A b Pr Le 4/c ?/d 

0.75 8.00 146. 0.76 0.75 1.0 0.016 3.8

5. DNS of the interaction between a laminar flame and a wall 
To check the accuracy of the model, laminar runs were performed first. Figure 

2 presents time variations of the flame distance to the wall as well as the flame 
power plsncp(T2 - T1 ) and the normalized wall heat flux 4 . There time has been 
normalized by the flame time i p = ',°/o and y is the distance from the wall. The 
values obtained from DNS for this case are PeQ = 3.4 and q = 0.36. These values 
are in good agreement with experimental data (Lu ci al. 1990, Vosen ci al. 1984) 
and with the simple model given by Eq. (2). Although total quenching occurs at 
PQ = 3.4, the flame senses the presence of the wall before this time: the flame 
speed s,, begins to decrease when the wall distance is less than a distance '5T given 

by Pe = 6T/d 8. Therefore, two zones are necessary to describe the nar-wall 
region: 

(1) The 'quenching' zone stretches from the wall to a local Peclet number y/d of 

about 3.5 (0 < y <&). In this zone, no reaction ever takes place. 
(ii) The 'influence' zone goes from the wall to a Peclet number y/d of about 8 

(0 < y < 5T). Any flame entering the influence region will start sensing the wall 
and will eventually get quenched. The time t Q needed for the flame to quench after 
it enters the influence zone is of the order of two flame times, t = 21 p = 2801$. 
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FIGURE 2. Numerical results-for a laminar flame-wall interaction. 

6. DNS of the interaction between a turbulent flame and a wall 

The interaction between the wall and a turbulent flame front is characterized by 
three effects: 

(i) A local thermal effect, by which heat losses to the wall affect the flame structure 
and result in local quenching. 

(ii) A geometrical effect which limits the spatial extent of the flame brush and 
reduces the flame-brush size in the vicinity of the wall. 

(iii) A laminarization effect which is an indirect effect of the wall on the flame. The 
wall affects the structure of the turbulence and leads to laminarization immediately 
adjacent to the wall. This induces a strong decrease of the turbulent stretch and 
thereby a decrease of the flame area. 
Preferential species diffusion is beyond the scope of the present simple-chemistry 
investigation. 

The structure of turbulence near the wall is clearly an important issue in the 
latter two questions. The configuration studied here corresponds to the 'shear-free' 
boundary layer in which turbulence with no mean shear interacts with a wall. This
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may be realized experimentally in a wind tunnel, for example, using walls that move 
at the mean flow speed. The shear-free boundary layer has been studied experi-
mentally by Thomas & Hancock (1977) and Uzkan & Reynolds (1967), theoretically 
by Hunt & Graham (1978), and numerically by Biringen & Reynolds (1981). The 
flow structure can be summarized as follows. Starting from initially isotropic homo-
geneous turbulence, the, wall induces a perturbation zone whose thickness increases 
with time. In this zone, viscous effects are important, and the turbulence is damped. 
Moreover, by imposing zero normal velocities, the wall increases velocity perturba-
tions in planes parallel to the wall (at sufficiently high Reynolds numbers). The 
role of this near-wall turbulence structure on flame evolution is difficult to quantify 
in the present simulations. We will concentrate instead on the thermal effects. 

The parameters for the simulations reported here are summarized in Table II. 
There u' is the rms turbulence velocity, L i is the length scale of the most energetic 
vortices in the initial turbulence spectrum, and 1 is the turbulence integral scale 
based on two-point velocity correlations. The initial turbulence field was chosen 
to produce small-scale turbulence near the wall and to impose zero velocity fluc-
tuations at the wall. More sophisticated (three-dimensional) approaches will be 
necessary to produce more general results. 

Table II. Initial conditions for DNS of turbulent flame-wall interaction. 

Case u'/$ l/ Re1 = u'l/v RC L = u'L/v 

2D3 6.25 8.9 2.85 90 280 

2D4 6.25 4.5 1.43 45 140 

2D6 6.25 1.9 0.64 19 60

Figures 3 and 4 present snapshots at one instant in time of reaction rate and 
vorticity fields during the interaction between the turbulent flame and the wall. 
Time has been normalized by the flame time tp = 601s7, and the maximum value 
of the vorticity modulus is normalized by the characteristic flame strain s? /8°. The 
structure of the vorticity field is affected both by the flame (viscosity in the burnt 
gases dissipates vorticity rapidly) and by the wall (the normal velocity component 
close to the wall goes to zero while the parallel component increases). Vortex pairs 
appear to play a dominant role. In Figures 3 and 4, for example, one vortex pair 
attracts a part of the flame front towards the wall while another pair pushes a 
different part of the flame away from the wall (sequence t/tF = 4.4 to t/tp = 6.6). 
This is confirmed by Figure 5 which presents the time evolution of the minimum 
and maximum wall distances in terms of Peclet numbers. When the first flame 
element touches the wall at time t/tF 6, the most distant element is moving 
away from the flame front. This ejection of flame elements away from the flame 
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Vw1jcjy	 Reaction rate 

FIGURE 3. Vorticity and reaction rate contours for a turbulent flame-wall in-
teraction (Case 2D4). Solid lines denote clockwise vorticity, dashed lines denote 
counterclockwise. 

front may induce local counter-gradient turbulent diffusion of flame surface density 
which might be important in modeling. 

As far as the thermal effect is concerned, results obtained during this simulation 
and during other simulations of the same type lead to a simple result (Figure 6): the 
maximum local heat flux to the wall corresponds within 10 percent to the laminar 
heat flux ( = 0.36), and the quenching distance & is equal to the value obtained in 
laminar cases (P Q = 3.4). Although the initial conditions used for these simulations 
lead to large velocity perturbations near the wall, the heat flux to the wall appears 
to be controlled mainly by heat diffusion, and the local instantaneous maximum
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FIGURE 4. Vorticity and reaction rate contours for a turbulent flame-wall inter-
action (Case 2D4, continued). 

heat flux obtained during quenching is the same as for the laminar cases. 
Figure 7 presents a scatter plot of normalized flamelet speed s, versus distance 

to the wall. This plot exhibits different behaviors for different flame elements 
('flamelets') as they approach the wall. No flame elements approach closer than 
the laminar quenching distance fiq to the wall, and the minimum Peclet number 
is equal to about 3.5. Branch 1 corresponds to flames reaching the wall at normal 
angles (head-on quenching): these follow the curve (solid line) predicted by the lam-
inar HOQ computation (Section 5), quenching at a Peclet of close to 3.5. Branch 
2 corresponds to flarnelets which disappear at Peclet numbers of about 7. Exam-
ination of DNS fields for these points suggest that these flamelets are propagating
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FIGURE 5. Maximum and minimum (over all computational cells adjacent to the 
wall) flame-wall distances for Case 2D4. 
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FIGURE 6. Minimum, maximum, and mean (over all computational cells adjacent 
to the wall) wall heat fluxes for Case 2D4. 

parallel to the wall and not towards the wall, thus corresponding to the side-wall 
quenching situations described in Section 2. Branch 3 corresponds to flamelets 
which burn faster (accelerate) as they approach the wall, but subsequently quench 
on reaching a Peclet of about 3.5. At this point, no explanation for Branch 3 is 
proposed. The number of flamelets following Branch 2 is small compared to the 
other branches: most flamelets reach the wall at a normal angle. This is confirmed
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FIGURE 7. Flamelet consumption rate s versus wall distance at time t/tF = 4 

(Case 2D6). 

by the distributions of flame curvature presented in Figure 8. While the flame is 
still far from the wall (t/tF = 0.5), the mean curvature conditioned on distance 
to the wall is almost symmetrical about zero. As the flame brush approaches the 
wall (t/tF = 4), flamelets flatten and curvature diminishes. Furthermore, positive 
values of curvature are clipped more strongly than negative values indicating that 
flamelets are predominantly concave towards the fresh gases and that most of them 
will reach the wall at close to a normal incidence angle. 

The distance at which flamelets begin to sense the presence of the wall (i.e., 
where their local flamelet speed begins to drop) is given by a Peclet number of the 
order of 10 (Figure 7), close to that found for the laminar simulations. Although 
the existence of the three different branches suggests a more complex pattern than 
simple head-on quenching, it appears that an influence zone may be defined for 
turbulent cases whose thickness (in Peclet number) is something close to 10. 

It appears that both the quenching zone thickness (c?) and the influence zone 
thicknesses ('5T) have similar values for turbulent and laminar premixed flames. This 
has some important consequences. Consider, for example, a reacting boundary 
layer. Invoking the usual normalizations, we denote by a superscript + a wall-

units-scaled value: y+ = yur/v, where Ur is the friction velocity and ii is the 
kinematic viscosity. The edge of the quenching zone is located at = 

(PQ/Pr)(uT/s?). For most practical situations, u,. (1 to 5 m/s) is of the order of 
the flame speed s (0.3 to 1.5 m/s) so that is of the order of 1 to 10. That means 
that the quenching zone is located inside the viscous layer. Flamelets travelling 
from the free stream towards the wall first encounter laminar flow in the viscous
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region and only later are quenched. This result will be used in the modeling of the 
flame-wall interaction (Section 7). 

iwaili	
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FIGURE 8. Mean curvature (conditioned on wail distance) for a flame far from the 
wall (t/tF = 0.5) and a flame reaching the wall (t/tp = 4) (Case 2D6). 

7. A law-of-the-wall for turbulent premixed combustion 

From the previous results, it is possible to construct law-of-the-wall models for 
premixed turbulent flames which we will designate here as 'FIST' models (Flame 
Interacting with surface and Turbulence). This model will be derived in the frame-
work of flamelet models: the dependent variable which will be modeled is the flame 
surface density (surface-to-volume ratio) E as defined by Pope (1988). Implemen-
tation is discussed in the context of a finite-volume method, although the concept 
may be applied to other numerical approaches. 

We consider a generic flamelet model in which the flame surface density E evolves 
according to,

OE Ot7E O2 
=—+S-D-D.	 (7) X i	 Ox 

This equation includes transport, turbulent diffusion (F), and source (S) and con-
sumption terms (D, DQ ). With the exception of the DQ term which represents 
thermal quenching due to the wall, several recent flamelet models can be cast into 
this form (Cant et al. 1990, Candel et al. 1988, Boudier 1992, Cheng & Diringer 
1991). The development of the present FIST model is independent of the exact
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FIGURE 9. Principle of the FIST model (law-of-the-wall model for premixed 
turbulent combustion). 

form of the S and D terms. The assumptions which will be used are the following 
(see Figure 9): 

- We will consider a situation where a law-of-the-wall approach is used to de-
scribe near-wall turbulence since this is the case for most practical codes based on 
Reynolds-averaged mean equations. 

- The computational cell size adjacent to the wall Ay is larger than the quenching 
zone and larger than the zone over which the wall modifies the free-stream turbu-
lence structure (typically, in the case of a turbulent boundary layer, the first grid 
point is located at a y larger than 200). 

- Outside the quenching zone (y > i5T), no thermal quenching occurs as shown 
by DNS (see Section 6) so that DQ = 0. 

- Inside the quenching zone (0 < y < £T), we need to estimate the characteristic 
time tQ at which flainelets are quenched. For laminar cases, tQ is of the order of 
two flame times as evidenced by DNS for laminar flames (see Section 5). Despite 
the existence of the three branches shown in Section 6, we will assume that all 
flamelets entering the influence zone in the turbulent case are quenched on a time
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scale tQ = 2tF. Therefore, DQ may be written as DQ = EQ /tQ where EQ is 
the mean flame surface density in the quenching layer. This thermal quenching 
effect is supposed to be stronger than the usual consumption terms (due to mutual 
annihilation) in the E equation so that D may be set to zero. Since there is no 
turbulence inside the quenching layer (see Section 6) we will also assume that there 
are no source terms in this zone (S = 0). 

- Inside an 'inhibition zone' which extends from y = 0 to y+ =we assume that 
turbulence is affected strongly enough by the wall to reduce the flame stretch to zero. 
This assumption is not based on the present DNS but rather on the observation that 
turbulence must be strongly damped in this zone, therefore reducing the turbulent 
stretch. 

- In the rest of the first computational cell (y <y+ </.y+), the normal form in 
of the flamelet model is used. 

- Finally, for the sake of clarity, we will consider a situation where the flow is 
homogeneous in planes parallel to the wall (i.e., E is a function of y only), and we 
will also neglect mean velocities normal to the wall. These last assumptions allow 
mean convective terms (-) to be neglected in the finite-volume expression of 
Eq. (7). This assumption is not restrictive, and is invoked only for convenience in 
writing the resulting modeled equations. 

Under the previous assumptions, the equations of a FIST model may be derived 
by integrating Eq. (7) in two zones: the influence zone and the rest of the first 
computational cell. The mean flame surface densities in the influence zone and in 
the first computational cell, respectively, will be defined by: EQ = f Edy, and 
El =	

ftv 
Edy. 

In the quencing zone, terms S and D are small compared to the thermal quench- 
ing effect. When Eq. (7) is integrated between y = 0 and y = 5T with this assump-
tion, the following conservation equation for E Q is obtained: 

& tQ 
(8) 

Integrating Eq. (7) between y = T and y = Ay provides an evolution equation for 
the average flame surface density E 1 in this zone: 

0E 1	 1 
Ot - LJ-5T	

)Q,fl(	 ) - D.	 (9)
AY 

Equations (8) and (9) form a closed set which provides the flame surface density 
in the quenching region (E Q ) and in the first computational cell (E 1 ). These two 
equations state that there is a sink mechanism for flame surface in the first com-
putational cell: flamelets diffuse towards the quenching zone (.F(y = öT) term in 
Eq. (9)) and later get quenched in this zone on the time scale tQ. 

8. An equilibrium formulation for FIST models 
Although Eqs. (8) and (9) may be solved under this form in finite-volume codes, 

it is interesting to propose a simpler model 'Equilibrium FIST' in which the flame
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surface density in the quenching region Eq may be eliminated. In the Equilibrium 
FIST model, four additional assumptions are invoked: 

- The turbulent diffusion term Fj is written as = 	 where lig is a turbulent 
diffusion coefficient and Scis a turbulent Schmidt numfer.' 

- The flame surface-density profile inside the quenching zone is supposed to 
exhibit strong spatial variations compared to the profile outside this zone. Then 
the diffusion term F(y = 6T) may be estimated by F(y = 5T) = EE1 

where E is a model constant of order unity. 
- The quenching zone is assumed to be in equilibrium, i.e., diffusion balances 

dissipation in Eq. (8). This allows us to derive an explicit expression for the flame 
surface density in the quenched region as a function of the flame surface density in 
the first cell E1:

EQ = E1_
aq where aq = ELt tQ

	 (10)SC b2 a + 1 

The parameter aq is proportional to the turbulent diffusivity lig normalized by the 
quenching time and distance.t 

- The size of the first cell is supposed to be sufficiently large compared to the 
quenching distance (/.y >> 6') to neglect iT in the RHS of Eq. (9). 

Under these assumptions, the Equilibrium FIST model provides the following 
conservation equation for the flame surface density E 1 near a wall: 

- 1	 _.L_aq 
El-+S(1-)-D.	 (11). 

at	 Ey-	
= Iy) LyaQ+ltq 

Wall corrections appear here only as an additional diffusion term towards the wall 
(second term on right-hand side of Eq. (11)) and as a correction of the turbulent 
stretch S(1 - y , /iy) . All other terms may be estimated by classical finite-volume 
methods. In this model, some constants may be set directly from the present DNS 
results: the influence distance is given by '5T = Pd = P	 where the Peclet 

number should be of order 10 (Sections 5 and 6), and the quenching time scale iq is 

given by tQ = 2tF = 2l°F/s? (Section 5). The parameter y, t has not been estimated 
from the present DNS results but might be determined by using a three-dimensional 
boundary-layer code. Reasonable estimates for this quantity are of the order of 50. 
The turbulent diffusivity lig appearing in the above formula may be estimated using 
standard expressions for this quantity near walls. Further improvements of the 
model may be based on an expression for Vj which would take into account the 
counter-gradient diffusion of E mentioned in Section 6. 

The simplicity of this formulation allows it to be used in conventional Reynolds-
averaged multidimensional flow codes without additional constraints on time step 

f By using an eddy-viscosity concept near the wall (lig = Ku'15T), aq may be interpreted as 

a ratio between turbulence velocity near the wall and a characteristic quenching velocity (aQ = 
r,E u' 
£t 

SC *5T/tQ
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or grid size. Although the approach simplifies the actual physics of flame-wall 
interaction, it represents a significant improvement over approaches which fail to 
account explicitly for the influence of the wall on the turbulent flame. The Equi-
librium FIST model accounts for turbulent diffusion of flamelets towards the wall 
and quenching on a time scale which is given by DNS. It also accounts in a crude 
way for the laminarization effect of the wall up to a distance given by y. 

9. Conclusions 
Calculations of premixed laminar and turbulent flames interacting with isother-

mal walls have been reported. Quantitative results have been presented illustrating 
the influence of distance from the wall on the local and global flame structure. 
For laminar cases, the computed minimum distance between wall and flame (the 
'quenching distance') and the maximum wall heat flux during quenching have been 
found to be comparable with available experimental and analytical results. For tur-
bulent cases, it has been shown that quenching distances and maximum heat flux 
remain of the same order as for laminar flames. Correlations between wall distance 
and flame structure suggest that thermal effects are important only very close to the 
wall and that the wall acts as a strong sink term for flame surface density. Based on 
these DNS results, a model has been proposed to take into account the interaction 
between the turbulent flame and the wall. The equilibrium version of this model 
may be implemented in conventional finite-volume codes together with flamelet 
models based on modeled surface density equations. Further tests are necessary to 
assess its performance. 

An important extension of the FIST model would be the development of a model 
for wall heat flux. Such a model could be based on the knowledge of the flame 
surface density in the quenching zone and on the correlations between wall heat 
flux and flame position. This issue will be addressed in future work. 
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The evolution equation for the flame surface 

density in turbulent premixed combustion 

By A. Trouvé' AND T. Poinsot2 

One central ingredient in flamelet models for turbulent premixed combustion is 
the flame surface density. This quantity conveys most of the effects of the turbulence 
on the rate of energy release and is obtained via a modeled transport equation, called 
the E-equation. Past theoretical work has produced a rigorous approach that leads 
to an exact, but unclosed, formulation for the turbulent E-equation (Section 1.2). 
In this exact E-equation, it appears that the dynamical properties of the flame 
surface density are determined by a single parameter, namely the turbulent flame 
stretch. Unfortunately, the flame surface density and the turbulent flame stretch 
are not available from experiments and, in the absence of experimental data, little 
is known on the validity of the closure assumptions used in current flamelet models. 
Direct Numerical Simulation (DNS) is the obvious, complementary approach to 
get basic information on these fundamental quantities. In the present work, three-
dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate 
the different terms appearing in the E-equation (Section 2.1). A new methodology is 
proposed to provide the source and sink terms for the flame surface density, resolved 
both temporally and spatially throughout the turbulent flame brush (Section 2.2). 
Using this methodology, the effects of the Lewis number on the rate of production 
of flame surface area are described in great detail and meaningful comparisons with 
flamelet models can be performed (Section 3). The analysis reveals in particular 
the tendency of the models to overpredict flame surface dissipation as well as their 
inability to reproduce variations due to thermo-diffusive phenomena. Thanks to the 
detailed information produced by a DNS-based analysis, this type of comparison 
not only underscores the shortcomings of current models but also suggests ways to 
improve them. 

1. Introduction 

1.1. The flamelet approach for turbulent premixed combustion 

Premixed turbulent combustion is the propagation of a chemical reaction zone 
through a turbulent, molecularly mixed region of fuel and oxidizer. The turbulent 
flame is characterized by the topology of the region in which reaction occurs: front, 
pockets, or large volumes. Depending on the relative values of various chemical 
and turbulence scales, dimensional analysis reveals a range of premixed combustion 
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modes progressing from flaxnelets to distributed reaction zones to well-stirred reac-
tors (Barrère 1974, Bray 1980, Borghi 1985, Peters 1986, Williams 1985, Poinsot et 
al. 1990). These modes correspond to different topologies of the reaction zone and 
require different approaches for both understanding and modeling. 

Experimental as well as theoretical evidence suggests that many technologically 
important flows occur in the flamelet burning mode. Flamelet combustion corre-
sponds to chemical reaction occurring at fast time scales and short length scales 
relative to the turbulence. In this situation, the flame is confined to relatively thin 
layers within the turbulent flow field. 

In the flamelet regime, it is convenient to describe the flame-flow interactions in 
terms of two basic ingredients: a flame speed that characterizes the flame structure 
and the flame front surface area. For instance, the mean reaction rate may be 
written as the product of the mean fuel consumption rate per unit flame surface 
area times the flame surface density: 

	

(c R) = (pYR,5 (Sc)s) (E'),	 (1) 

where R is the mass of fuel consumed per unit time and per unit volume; Pu 
and YR, are respectively the density and the fuel mass fraction in the unburnt 
gas; Sc is the local integral of the reaction rate along the flame normal direction, 
Sc f ,.?Rdn, and characterizes the local combustion intensity; and E' is the flame 
surface area per unit volume. The flame surface density is defined as the expected 
value for E': E = (E'). 

In Eq.(1), the flamelet speed, (Sc)s, accounts for local variations of the reaction 
rate along the flame surface. Laminar flame theory indicates that the local flame 
structure is modified by flow divergence, usually characterized by the hydrodynamic 
strain rate acting in the flame tangent plane as well as by flame front curvature. 
Under certain conditions, these variations can become critical and lead to partial 
or total quenching of the flame. Recent studies, however, using Direct Numerical 
Simulations (DNS) suggest that quenching is a rather unlikely event for turbulent 
premixed flames (Poinsot et al. 1990). In addition, although the local combustion 
intensity may exhibit large variations along the turbulent flame front, particularly 
for non-unity Lewis number flames, DNS suggest that these variations always tend 
to cancel in the mean (Haworth & Poinsot 1992, Rutland & Trouvé 1991). In the 
simulations, the mean fuel consumption speed, Sc, defined as the area-weighted, 
space-averaged value of Sc integrated along the turbulent flame surface, remain 
within 10% to 30% from the one-dimensional, laminar flame speed value, SL.t 

Thus, it appears that in the absence of quenching, the mean fuel consumption 
speed, Sc, is only weakly sensitive to the flow field and the principle effect of 
turbulence is for the fluctuating velocity field to wrinkle the flame and greatly 
increase its surface area. This phenomenon accounts for most of the increase in the 

f Note that 5c is a space-averaged quantity and should not be confused with ( Sc)s which is 
an area-weighted ensemble-average as defined in section 1.2 and, therefore, depends on location 
within the turbulent flame brush (see Figure 7)
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overall burning rate due to the turbulence and is represented in Eq.(1) through the 
flame surface density, E. 

1.2. The evolution equation for the flame surface density, E 

In current flamelet models, the flame surface density, E, is obtained via a modeled 
transport equation. This equation was first postulated by Marble & Broadwell 
(1977) based on phenomenological grounds. A more rigorous approach was later 
proposed by Pope (1988) and Candel & Poiñsot (1990) who derive an exact balance 
equation for the flame surface-to-volume ratio, E': 

or
+ V.XE' = (VA - nn: Vi) E',	 (2) 

where X is the displacement speed of the flame surface, given by the sum of the fluid 
velocity and the flame propagation speed in the normal direction: X = u + wn; n is 
the unit vector normal to the flame surface; and where we use tensorial notations: 
(nu : VX) = 

The right-hand side of Eq.(2) can also be expressed in terms of flame stretch. 
The flame stretch, k, is defined as the rate of change of a Lagrangian flame surface 
element, 6A:

k 
d(5A) =

 2(6A) + iV(oA)	 (3) 

A more useful expression for k is in terms of strain rate, flame curvature, and flame 
propagation speed (see for example Candel & Poinsot 1990): 

k=aT+2wkm,	 (4) 

where a' is the rate of strain acting in the flame tangent plane: aT = V.u—nn: Vu; 
and km is the flame surface curvature, as given by the divergence of the flame normal 
direction: 2km = V.n. In Eq.(4), positive curvature is chosen convex towards the 
reactants. 

Using Eq.(4), the balance equation for the flame surface-to-volume ratio can be 
re-written as:

Ot +V.*E' = k  E'
	

(5) 

When ensemble-averaged, this equation yields an exact balance equation for the 
flame surface density (Pope 1988, Cant ci al. 1990): 

+ V.(X)E (k) s E,	 (6) 

where the flame surface mean of any quantity Q is given by: (Q)s = (QE')/(E') 

(QE')/E. Note that surface means are different from standard means; in partic-
ular, the surface mean of a quantity Q is different from the ensemble mean of Q 
conditioned on being at the flame location (see section 2.2).
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Eq.(6) can be cast in various forms. For modeling purposes, it is useful to split the 
velocity vector into a mean component and a turbulent fluctuation: u = (U) + u'. 
We can then re-write Eq.(6) as follows: 

eE
+ V.(U)E + V.(u')gE + v. (wn)sE = (aT)s E + (AT)S E + 2(wkm) E, (7) 

where we use the following notations: 

(aT)s = (V.u' - nn: 
(AT)S = V(U) - (nn) 5 : V(U) 

The three convective terms on the left-hand side of Eq.(7) are transport terms 
that correspond respectively to convection by the mean flow, turbulent diffusion, 
and flame propagation. The terms on the right-hand side of the equation are the 
source and sink terms for the flame surface density: (aT)s is the turbulent strain 
rate acting in the flame tangent plane, (AT)S is the strain rate due to the mean 
flow field, and 2(wk .. )s is a term that accounts for the combined effects of flame 
curvature and flame propagation. 

The principle effect of turbulence is to increase the flame surface area, and (aT) s 
is without ambiguity a source term in the equation for E. The effect of the mean 
flow field as measured by (AT)S is problem dependent; depending on the flow 
configuration, its sign can be positive or negative. We now focus attention on the 
last term in Eq.(7), referred to as the propagation term. 

In many situations, flame propagation effects merely counteract the wrinkling 
due to the turbulence and the propagation term, 2(Wkm), is, therefore, expected 
to be negative. Consequently, this term is usually described as a sink term in 
flamelet models. There are some situations, however, where this description is 
clearly incorrect. Since the propagation term includes some of the effects associated 
with intrinsic flame instabilitiest, this term must depend on the flame properties, 
thereby allowing for situations where its sign is positive and where the net effect 
corresponds to a production of flame surface. 

The exact importance of laminar flame instabilities for turbulent combustion is 
an open subject. Recent evidence, however, both experimental (Abdel-Gayed et al. 
1984, Wu et al. 1990, Goix & Sheperd 1992) and numerical (Ashurst et al. 1987, 
Haworth & Poinsot 1992, Rutland & Trouvé 1991), suggests that the role of the 
Lewis number has been underestimated in the past. For instance, current fiamelet 
models fail to account for the effects of the Lewis number on the rate of production 
of flame surface. The objective of the present study is to determine how present 
formulations might be improved to incorporate such effects. The approach is to 
analyze the source and sink terms in the equation for the flame surface density, 
with particular emphasis on how the Lewis number can affect their balance. This 
is accomplished using DNS, as described in the next section. 

t Using the terminology introduced to describe laminar flame instabilities, the propagation term 
represents the thermo-diffusive mechanism, while the strain term represents the hydrodynamic 
mechanism. These two instability mechanisms are coupled together and both account for Lewis 
number effects (Clavin 1985, Williams 1985)
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2. Direct Numerical Simulation of turbulent premixed flames 

2.1. Numerical method and configuration 

We use DNS to analyze the different terms appearing in the equation for the 
flame surface density. The simulations are performed using a three-dimensional, 
compressible Navier-Stokes solver that fully resolves the turbulent flow field. Spa-
tial derivatives are computed with a modified Padé scheme that is sixth-order accu-
rate (Lele 1990). Solutions are advanced in time using a third-order Runge-Kutta 
method (Wray 1990). Boundary conditions are specified using the NSCBC method 
(Poinsot & Lele 1992). Because of the otherwise prohibitive computational cost, 
simulations are limited to simple but finite-rate reaction schemes. In this work, the 
chemistry model is a single step, irreversible chemical reaction where the reaction 
rate depends exponentially on temperature (Arrhenius kinetics): 

I T\ 
W	

0 

	

R = BPYR 
exp (---)'	

(8) 

where T. is the activation temperature and B is a constant that depends on the 
flame speed. This formulation corresponds to a binary reaction in which one of the 
reactants, YR, is strongly deficient as, for example, in fuel-lean combustion. Also, it 
is worth emphasizing that the simulations are not limited by the constant density 
assumption, and heat release effects are fully accounted for. 

Following Williams (1985), we re-write the reaction rate as: 

G
	 \

WR = APYReXP-a(1-
0))'

(9) 

where 0 is the reduced temperature, 0 = (T - T )/(Tb - Ta); T is the temperature 
of the fresh reactants; Tb is the adiabatic flame temperature; and the coefficients 
A, a, and 3 are, respectively, the reduced pre-exponential factor, the heat release 
factor, and the reduced activation energy: 

A = Bexp(—/9/a), a = (Tb - Tu)/Tb, and /3 aTa/Tb	 (10) 

In the following, we use a = 0.75 and /3 = 8. 
Another important feature of the simulations is that transport coefficients are 

temperature dependent. These coefficients satisfy the following relations: 

	

iu(TIT , Le = VpDc = constant, Pr =	 = constant,	 (11) 

where p, A, and D are the molecular diffusivities of, respectively, momentum, in-
ternal energy, and species mass, b is a constant, and Le and Pr are respectively the 
Lewis number and the Prandtl number. We use b = 0.76, Pr = 0.75. Simulations 
have been performed for different Lewis numbers, Le = 0.8, 1.0, and 1.2. 

The selected computational configuration corresponds to a premixed flame em-
bedded in three-dimensional, decaying, isotropic turbulent flow. The left- and right-
hand sides of the computational domain are inflow and outflow boundaries while
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periodic boundary conditions are applied at lateral walls. The calculations are ini-
tialized with fresh reactants on one side of the domain and burnt products on the 
other side; the two are separated by a plane laminar flame. Isotropic turbulence 
is initially located in the flow of fresh reactants, its velocity field being specified 
according to a model spectrum. The turbulence is characterized by a Kolmogorov 
length scale smaller than the thermal thickness of the laminar flame, 'Pc/ fiT 0.1 
where bT = (Tb - Tu)/(dT/dx)maz, and a turbulence intensity that is much higher 
than the laminar flame speed, u'/SL = 10. The initial turbulent Reynolds number, 
based on the Taylor microscale, is 50. The initial turbulent Reynolds number, based 
on the integral length scale, is 70. The grid resolution is 129. 

The simulations describe the wrinkling of the flame zone due to turbulent motions 
as well as the combustion feedback due to dilatation and temperature-dependent 
transport properties. Note that the turbulence is decaying in time, and conditions 
are non-stationary.

2.2. Diagnostics 
All terms appearing in Eq.(7) may be obtained from the simulations. We now 

briefly describe how. The velocity vector and the velocity gradient tensor are readily 
obtained from the resolved flow field. To define flame-based quantities, we make use 
of concepts based on a thin flame picture. First, a progress variable, c, is introduced 
that is used to indicate location within the reaction zone, c = 1 - YR, where YR 
is the normalized fuel mass fraction. The progress variable varies monotonically 
through the flame from 0 in the reactants to 1 in the products. Constant progress 
variable surfaces may conveniently be used to define the flame front location: we 
use the surface c = cf = 0.8. In addition, at any location on this surface, the local 
gradient of c defines the normal direction to the flame front: 

Vc 
n	

IVcI 

	

=--,	 (12) 

where n points into the fresh reactants. 
The propagation speed of the flame surface, w, is obtained from an expression 

analog to the well-known field equation (also called the G-equation). Let us first 
consider a point on the flame surface, c = c1 . The velocity, X, at which this point 
must move to remain on the surface is given by: 

Oc
+ X.Vc = 0,	 (13) 

which, using Eq.(12), implies that:

X. 1 O
	

(14) n=1—,  

and which yields the following expression for the flame propagation speed:

(15)
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where quantities are estimated at the surface c = cj . Since in the simulations 
we solve for a conservation equation for the fuel mass fraction, YR, and since by 
definition c = 1 - YR, the expression above can be readily obtained from the DNS 
data base. 

The flame surface density, E, is a more subtle quantity. It includes both geomet-
rical and statistical information. Following Pope (1990), the flame surface density 
is computed as the product of the expected value for the magnitude of the gradient 
of c, conditioned on being on the flame surface, times 'the probability of being on 
that surface:

= IVcI (c - cj), and E = (E') = ( I VcI I c = cj) p(cj),	 (16) 

where p(cj ) is the probability of c = cj. 
We now turn to the averaging problem. In the simulations, the flame brush 

propagates along the x direction, and the problem remains homogeneous in the 
y - z planes. Therefore, averaged quantities depend on x and time t only, and 
ensemble-averaging can be performed in the y - z planes: 

! 
(Q)(x,t) 

= 

1 
LLJ 

Q(x,y,z,t)dydz,	 (17) 

where L and L are the y and z dimensions of the computation domain. The 
accuracy of this expression depends on the size of the computational domain with 
respect to the turbulent length scales. In the simulations, the integral length scale 
of the turbulent flow field grows as the kinetic energy decays; this growth, how-
ever, is rather slow, and it was determined that the integral length scale remains 
at least 8 times smaller than L and L. Typically, in every y - z plane within the 
turbulent flame brush, the statistical sample consists of approximately 10 fully inde-
pendent flame events, and, although we recognize that the statistics are somewhat 
undersampled, reasonable accuracy is expected when estimating the first moments. 

Conditional means are computed by integrating along the c = cj contour: 

(Q	
-	 Q dl 	

(18) c = cj)(x,t) -
	 dl 

Surface means are then obtained using the following relations: 

s(x, = (QE') - (QI Vc I I c = cf) - f 
(Q)	 t)	

=1 QI Vc I dl
(19) 

(E') - ( I VcI I C = cj) - f= 1 IVcI dl  

Clearly, surface means differ from conditional means. 
The relations above provide a methodology to estimate the different means needed 

in our analysis. As shown in Eq.(16), the flame surface density, E, also requires
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FIGURE 1. A test case for flame stretch: the problem of a cylindrical, freely-
expanding, premixed laminar flame: a) temperature contours; b) flame stretch: 
solid line based on Eq.(4); symbols based on Eq.(22). 

an estimate of the probability p(cj ). Simple geometrical considerations lead to the 
following relation:

p(cf) = 1 J	 dl	
,	 (20) 

LL c=c 

and finally, Eqs.(16), (18) and (20) yield the following expression for E: 

E - 1 [	 dl	 IVcI dl	
(21) 

- LYLZJC..CJ	 )2+()2 fc=cf dl 

Before applying these diagnostics to the turbulent flame simulations, we check 
the accuracy of our estimates for flame stretch and flame propagation speed using 
a model laminar flame problem as described in the next section. 

2.8. Validation of DNS-based estimates for flame stretch 

As seen in Eqs.(5) and (6), the flame stretch, k, is the single relevant parameter 
that determines the growth rate of flame surface area. Since this growth rate is 
locally exponential, it is important to obtain accurate estimates for k. In our analy-
sis, the flame stretch is obtained using Eq.(4). The overall accuracy of our analysis 
thus depends on our ability to predict correctly strain rate, flame curvature, and 
flame propagation speed. To check the accuracy of our estimates, we performed 
simulations of a cylindrical, premixed laminar flame expanding freely into an ini-
tially quiescent medium (Figure la). In this model problem, the flame stretch can 
be directly measured from the growth of the flame radius: 

k — --L 
rj di'	 (22) 

where rj designates the radius of the flame contour, c = cf . Results based on this 
expression are compared with our DNS-based estimates in Figure lb. The very
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FIGURE 2. DNS of turbulent premixed flames in isotropic flow. Snapshots of the 
flame surface after 3.5 turbulent eddy turn-over time: a) Le = 0.8; b) Le = 1.2. 

The flow is from top-left (reactants) to bottom-right (products). 

good agreement seen in Figure lb demonstrates that the flame stretch as well as 
the flame propagation speed can be accurately monitored with our diagnostics. 

3. Results and discussion 
As described in the previous section, the present study uses three-dimensional, 

direct numerical simulations of turbulent premixed flames in isotropic flow. Three 
different cases have been studied that correspond to turbulent flames characterized 
by the same laminar thermal thickness, 5T, the same laminar flame speed, SL, 
embedded in the same initial turbulent flow field, but with different Lewis number, 
Le = 0.8, 1.0 and 1.2 (Figure 2). 

8.1. The overall effect of the Lewis number 

Figure 3 shows that the three cases exhibit large differences in the time history 
of the total reaction rate (space-averaged over the computational domain). After 4 
turbulent eddy turn-over time, t = 4T, the Le = 0.8 flame burns more than twice as
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FIGURE 3. Lewis number effects on the overall combustion intensity. The total 
reaction rate is made non-dimensional by its initial value corresponding to a strain-
free, plane laminar flame. Time is made non-dimensional by the initial, turbulent 
eddy turn-over time, r. 

14 2.01	 Lewis 0.8 
Lewis 1.0 

Lewis 1.2 

time 

FIGURE 4. Lewis number effects on the relative increase of total flame surface 
area. Time is made non-dimensional by the turbulent eddy turn-over time, r. 

— t =O.5 T...................................... 
.... 
.... 

tk 0.0

x location 

FIGURE 5. Time evolution of the flame surface density, E, through the turbulent 
flame brush (reactants on the left; products on the right). Le = 0.8. E and x are 
made non-dimensional by the laminar thermal thickness, 8T. Time is measured in 
units of the turbulent eddy turn-over time, r.
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much as the Le = 1.2 flame. In agreement with the findings from previous studies 
(Ashurst et al. 1987, Haworth & Poinsot 1992, Rutland & Trouvé 1991), the mean 
fuel consumption speed, Sc, irrespective of the value of the Lewis number, is found 
to be only a weak function of the turbulence: at all times, departures of Sc from 

the laminar value, SL, remain within 20%. Thus, the principal effect of the Lewis 
number is to promote or inhibit the production of flame surface area. 

The drastic effect of the Lewis number on flame surface production is displayed 
in Figure 4. For Le = 1.0 and Le = 1.2, the flame surface area initially increases, 
reaches a maximum, and then decreases in time. The increase occurs as the turbu-
lence wrinkles the initially flat flame surface. The flame then adapts to its turbulent 
environment, and, as the turbulence decays, the flame surface becomes smoother 
and relaxes to its initial state. The Le = 0.8 flame exhibits a strikingly different 
behavior: the flame surface area keeps increasing in time without saturation. Al-
though saturation might be expected at later times, our simulations are limited by 
the size of the computational domain and this subsequent phase cannot be observed. 
In any case, the simulations indicate that saturation will not occur on a time scale 
characteristic of the turbulence, and, in that sense, the flame can be said to be 
unstable. 

The differences between the Le = 0.8 and Le = 1.2 flames are in fact so pro-
nounced that they can easily be observed by comparing instantaneous snapshots of 
the flame surface (Figure 2). For instance, for Le = 0.8, fingers of burnt products 
are seen to propagate at a fast rate into the fresh reactants (Figure 2a). We believe 
this "fingering" is an important ingredient of the flame instability process. The 
"fingering" is not observed in the Le = 1.0 or Le = 1.2 flames (Figure 2b). 

3.2. The source and sink terms in the equation for E 

The effectsof the Lewis number are now further studied by analyzing the structure 
of the terms appearing on the right-hand side of the equation for the flame surface 
density, E. As described in section 2.2, the analysis takes advantage of the fact that 
the problem is statistically one-dimensional and provides the source and sink terms 
for E as a function of time t and position x within the turbulent flame brush. 

Figure 5 compares several E-profiles through the turbulent flame brush taken at 
different instants in the simulations. The Lewis number is 0.8. At t = 0, E is a 
delta function located at x = 0. As time evolves, the turbulent flame brush gets 
thicker and propagates deeper into the reactants. Accordingly, the E-profile spreads 
out and shifts towards negative values of x. In the simulations, this shift is rather 
weak but can clearly be seen at the latest times (t = 6r in Figure 5). Note that 
the integral of E through the flame brush gives the relative increase of total flame 
surface area:

JE(x,t)dx=

	

	 (23) 
LYLz 

where Sv(t) is the flame surface area within the computational domain of size V. 

The main advantage of the present analysis is to distinguish between the leading 
edge and the rear edge of the turbulent flame brush. The geometry as well as the 
dynamics of the flame differ quite significantly from one end of the reaction zone
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mean progress variable, <c> 

FIGURE 6. Variations of the mean flame curvature, (km), through the turbulent 
flame brush. Le = 0.8, t = 4 r. Flame curvature is made non-dimensional by the 
laminar thermal thickness, bT. 

0.2	 0.4	 0.6	 0.8
	

1.0 
mean progress variable, <C> 

FIGURE 7. Variations of the mean fuel consumption speed, (Sc)s, through the 
turbulent flame brush. Le = 0.8, t = 4 r. Sc is made non-dimensional by the 
laminar flame speed, 8L• 

0.0	 0.2	 0.4	 0.6	 0.8	 1.0 
mean progress variable, <C> 

FIGURE 8. Variations of the mean flame propagation speed, (w)s, through the 
turbulent flame brush. Le = 0.8, t = 4 r. w is made non-dimensional by its value 
corresponding to a strain-free, plane laminar flame, w = sL p(c = 0)/p(c = cj).
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to the other as shown in Figures 6 to 12. For convenience, in Figures 6 to 12, 
x-location within the turbulent flame brush is indicated by the local mean progress 
variable, (c). 

Figure 6 shows an instantaneous plot of the spatial variations of the mean flame 
curvature, (km ) s, through the turbulent flame. The mean curvature goes from 
positive at the leading edge to negative at the rear edge of the turbulent flame. Since 
in non-unity Lewis number flames, the local combustion intensity, as measured by 
the reactant comsumption speed Sc, depends strongly on the flame curvature, and 
since the dependence is quasi-linear (Haworth & Poinsot 1992, Rutland & Trouvé 
1991), it might be inferred from Figure 6 that the statistical distribution of Sc is 
non-homogeneous as well. Figure 7 shows that this is indeed the case. For Le < 1, 

(Sc) s is a decreasing function of the mean progress variable, (c): the combustion 
intensity is higher at the leading edge than at the rear edge of the turbulent flame. 
For Le > 1, the trends are opposite: the combustion intensity is lower at the leading 
edge, close to (c) = 0, than at the rear edge, close to (c) = 1. For Le = 1, (Sc)s 
remains approximately constant and equal to the laminar flame speed, 8L• 

In the flamelet regime, a flame element can be characterized by two speeds: Sc, 
which is a chemical rate, and w, which is a kinematic quantity and gives the velocity 
of the flame front with respect to the flow field (Eq.(15)). For a strain-free, plane 
laminar flame these two speeds are the same and equal to .SL. As pointed out by 
Poinsot et al. (1992), in the context of highly stretched flames, Sc and w can be 
significantly different. Figure 8 shows the variations of the mean flame propagation 
speed, (w) s, through the turbulent flame. (w) s is an increasing function of the mean 
progress variable, (c). Comparison of Figures 7 and 8 indicate that, for Le 0.8, 
the leading edge of the turbulent flame burns faster but propagates more slowly 
than the rear. edge of the flame, which burns more slowly but propagates faster into 
the reactants. 

It is worth emphasizing that the dynamical properties of the turbulent flame are 
not completely described by the knowledge of the distribution of the propagation 
speed, w, along the flame. To determine whether the flame surface will actually 
grow or contract, some information about the hydrodynamic flow field has to be 
included.f In other words, one needs to solve for the E-equation. 

We now turn to the terms appearing on the right-hand side of the equation 
for E. While the strain term, (aT)s, remains approximately constant through 
the turbulent flame (Figure 9), the propagation term, 2(wkm), exhibits strong 
variations and decreases from positive values on the unburnt side, close to (c) = 0, 
to negative values on the burnt side, close to (c) = 1 (Figure 10). The net effect on 
the surface growth rate is given by the flame stretch, (k)s = (aT)s + 2 (Wkm). 

Figures 9 and 10 indicate that both contributions to stretch have the same order of 
magnitude. 

This is best seen in the context of laminar flame instabilities, where the classical linear theory 
shows that the stability problem is not solved at the level of determining the Markstein length but 
also requires solving for a dispersion relation, which includes hydrodynamic effects (Clavin 1985, 

Williams 1985)
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0.0	 0.2	 0.4	 0.6	 0.8	 1.0 
mean progress variable, <C> 

FIGURE 9. Variations of the mean strain rate, (aT)s, through the turbulent flame 
brush. Le = 0.8, t = 4 r. Strain rate is made non-dimensional by the characteristic 
flame time, 5T/SL.

0.0	 0.2	 0.4	 0.6	 0.8	 1.0 
mean progress variable, <c> 

FIGURE 10. Variations of the mean propagation term, 2(wkm), through the 
turbulent flame brush. Le = 0.8, t = 4 T. Wkm is made non-dimensional by the 
characteristic flame time, 6T/SL. 

........ 

0.0	 0.2	 0.4	 0.6	 0.8	 1.0 
mean progress variable, <c> 

FIGURE 11. Variations of the mean flame stretch, (k), through the turbulent 
flame brush. Le = 0.8, t = 4 T. k is made non-dimensional by the characteristic 
flame time, T/SL.
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0.0	 0.2	 0.4	 0.6	 0.8	 1.0 
mean progress variable, <c> 

FIGURE 12. Lewis number effects on the variations of the mean flame stretch, 
(k), through, the turbulent flame brush, and comparison with flamelet models. 
t = 4 T. k is made non-dimensional by the laminar flame time, 6T/SL-

Figure 11 presents the mean flame stretch profile through the turbulent reaction 
zone. At the leading edge, strain rate and flame propagation effects are locally 
cumulative and the overall balance is strongly positive. The leading edge of the 
turbulent flame is a region of strong production of flame surface area. On the 
contrary, the propagation term takes large negative values on the burnt side. In 
that region, strain rate and flame propagation effects are locally opposite, and the 
overall balance is negative. The rear edge of the turbulent flame thus appears as a 
region where flame surface area gets strongly dissipated. 

Figure 11 spatially resolves the balance between production and dissipation of 
flame surface area. The net effect is given by defining a mean stretch, k, space-
averaged throughout the flame brush: 

- d SV(t))= I(k)sEdx	 (24) 
dt k=(LL	 J 

gives the instantaneous rate of change of the flame surface area in the compu-
tational domain. If k is positive, the flame surface grows; if negative, the flame 
surface contracts. The next section further discusses the effect of the Lewis number 
on the spatially-resolved flame stretch profile, as well as the resulting impact on the 
net mean flame stretch, k, and presents some comparison with flamelet models. 

3.3. Comparison of DNS results with flamelet models 

Figure 12 compares the mean flame stretch profiles, (k)s, plotted for different 
Lewis numbers. In all cases, stretch takes large negative values on the burnt side, 
close to (c) = 1. The effect of the Lewis number is not visible in that region. On 
the contrary, at the leading edge of the flame, there are large differences between
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the different Lewis number cases. This suggests that the turbulent flame is most 
sensitive to Lewis number effects on the unburnt side, whereas it remains unaffected 
on the burnt side. Using Eq. (24), we can quantify the overall differences previously 
observed in Figure 4; we find (in units of the laminar flame time): k = 2.6 for 
Le = 0.8, and the flame surface area is quickly growing; k 0.0 for Le = 1.0 and 
Le = 1.2, and the flame surface area remains roughly constant. 

Also plotted in Figure 12 is a comparison with flamelet models. Many current 
flamelet models use a transport equation for the flame surface density. Different for-
mulations of this equation have been proposed in the literature (Marble & Broadwell 
1977, Candel et al. 1990, Cant et al. 1990, Borghi 1990). For the sake of compari-
son, we use a closure assumption similar to the one proposed in the Coherent Flame 
Model by Marble & Broadwell (1977) and Candel et al. (1990). In this formulation, 
the turbulent flame stretch is written as: 

e	 E 

	

k= - — sL -- -,	 (25) kt	 (AR) 

where kt is the turbulent kinetic energy and e its dissipation; (YR ) is the ensemble-
averaged fuel mass fraction. The first term on the right-hand side of Eq.(25) rep-
resents straining due to the flow motions and is assumed to scale with the integral 
time scale of the turbulence; the second term is a disparition term associated with 
flame propagation and is assumed to scale with the laminar flame speed, SL, and 
the flame surface density, E. 

Figure 12 shows that this model is indeed able to reproduce qualitatively the 
spatial structure of the balance between production and dissipation of E, going 
from production at the leading edge of the turbulent flame to dissipation at the 
rear edge. However, the 1/(YR) behavior of the disparition term leads to numerical 
difficulties on the burnt side of the flame. The model, therefore, overpredicts the 
dissipation of E, near (c) = 1, and gives a negative mean flame stretch, k = —3.6, 
in strong disagreement with the values reported above. In addition, the disparition 
term in Eq.(25) is always and everywhere negative and cannot account for the 
possible transition to unstable flame conditions as observed in the simulations. 

4. Conclusion 

Flamelet models constitute one of the most common approach for turbulent pre-
mixed combustion. In these models, the flame surface density is a central ingredient 
that conveys most of the effects of the turbulence on the rate of energy release. The 
flame surface density is usually obtained via a modeled transport equation, called 
the E-equation, first postulated by Marble & Broadwell (1977). Recent theoretical 
work, based on conservation equations for surfaces and volumes in a turbulent flow 
field, has produced a more rigorous approach that leads to an exact, but unclosed, 
formulation for the turbulent E-equation (Pope 1988, Candel & Poinsot 1990). In 
this exact E-equation, it appears that the dynamical properties of the flame sur-
face density are determined by a single parameter, namely the turbulent flame 
stretch. Unfortunately, the flame surface density and the turbulent flame stretch
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are extremely difficult to measure and are simply. not available from experiments. 
Therefore, little is known on the validity of the closure assumptions used in current 
formulations of flamelet models. 

Direct Numerical Simulation (DNS) is the obvious, complementary approach to 
get basic information on these fundamental quantities. In the present work, three-
dimensional DNS of premixed flames propagating in isotropic turbulent flow have 
been used to estimate the different terms appearing in the E-equation. A new 
methodology has been proposed to provide the source and sink terms for the flame 
surface density, estimated as a function of time and position within the turbulent 
flame brush. Using this methodology, the effects of the Lewis number on the rate 
of production of flame surface area are described in great detail. Principal findings 
are that: (1) the balance between production and dissipation of flame surface area 
is strongly non-homogeneous: the leading edge of the turbulent flame is a region 
of production of flame surface area, whereas the rear edge is a region where flame 
surface gets strongly dissipated; (2) the turbulent flame is most sensitive to Lewis 
number effects at the leading edge, whereas it remains unaffected on the burnt side. 
These results suggest that most of the important dynamical features of turbulent 
flames take place at the leading edge of the reaction zone. 

Detailed comparisons with flamelet models were also performed. The analysis re-
veals the tendency of the models to overpredict flame surface dissipation as well as 
their inability to reproduce variations due to thermo-diffusive phenomena. Thanks 
to the detailed information produced by a DNS-based analysis, this type of compar-
ison not only underscores the shortcomings of current models but also suggests ways 
to improve them. Future work will focus on the development of a new formulation 
of the E-equation that would incorporate thermo-diffusive mechanisms. 
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Numerical simulations of turbulent premixed 
H2/02 /N2 flames with complex chemistry 

By M. Baum,' T. J. Poinsot,2 AND D. C. Haworth3 

Premixed stoichiometric H2 /02 /N2 flames propagating in two-dimensional tur-
bulence have been studied using direct numerical simulation (simulations in which 
all fluid and thermochemical scales are fully resolved) including realistic chemical 
kinetics and molecular transport. Results are compared with earlier zero-chemistry 
(flame sheet) and one-step chemistry simulations. Consistent with the simpler mod-
els, the turbulent flame with realistic chemistry aligns preferentially with extensive 
strain rates in the tangent plane and flame curvature probability density functions 
are close to symmetric with near-zero means. By contrast to simple-chemistry re-
sults with non-unity Lewis numbers (ratio of thermal to species diffusivity), local 
flame structure does not correlate with curvature but rather with tangential strain 
rate. Turbulent straining results in substantial thinning of the flame relative to the 
steady unstrained laminar case. Heat release and H 2 02 contours remain thin and 
connected ('flamelet-like') while species including H-atom and OH are more dif-
fuse. Peak OH concentration occurs well behind the peak heat-release zone. This 
work suggests the feasibility of incorporating realistic chemistry into full turbulence 
simulations to address issues such as pollutant formation in hydrocarbon-air flames. 

1. Introduction 
Turbulent premixed combustion in practical devices is a complex phenomenon 

combining chemical kinetics, molecular transport, and hydrodynamic turbulence in 
difficult geometric configurations. Increasing regulative and competitive pressures 
demand improved physical understanding and predictive modeling capability for 
combustion phenomena including ignition, quenching, and pollutant formation. For 
example, many governments impose limits on emissions of oxides of nitrogen, carbon 
monoxide, and unburned hydrocarbons from gasoline-fueled spark-ignited automo-
tive engines. Pending regulations in the United States seek further reductions in the 
allowable levels of these pollutants and provide for species differentiation in hydro-
carbon emissions to account for the relative propensity of different components to 
promote ozone formation in the atmosphere. Many aspects of chemical kinetics (e.g. 
aromatic hydrocarbon chemistry, Westbrook 1991) are poorly understood even at a 
fundamental level and emissions models for engineering applications remain largely 
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empirical. Thus complex chemical kinetics in turbulent premixed combustion is a 
crucial topic for research and modeling. 

Both experimental and numerical investigations of chemical kinetics influences in 
turbulent premixed combustion are complicated by the strong coupling of hydrody-
namics with thermochemistry and by resolution requirements: hydrodynamic and 
thermochemical spatial and temporal scales span many orders of magnitude in pre-
mixed flames at high Reynolds and Damköhler numbers (the latter being the ratio 
of a characteristic flow time scale to chemical time scales). Thus direct numerical 
simulation (DNS) of practical turbulent premixed flames is impracticable at present 
and will remain so for the foreseeable future. (Here and in the following, 'DNS' is 
taken to mean simulations in which all scales of motion are fully resolved both 
spatially and temporally so that no turbulence modeling - explicit spatial or tem-
poral filtering - is employed.) Idealized model problems are amenable to numerical 
analysis, and carefully designed numerical simulations are well suited to isolating 
specific phenomena and extracting fundamental physical understanding. However, 
one must remain wary in extrapolating results from idealized model problems to 
practical combustion systems. 

Numerical combustion studies have tended to proceed along one of two parallel 
paths. Either detailed chemical kinetics models have been implemented in simple 
flow configurations (one-dimensional laminar, e.g. Warnatz 1981, Drake & Blint 
1988; axisymmetric laminar, e.g. Smooke et al. 1990), or turbulence simulations 
have been performed with embedded simple-chemistry models (zero-chemistry or 
flame sheet, e.g. Kerstein et al. 1988, Girimaji & Pope 1992; zero-heat-release one-
step Arrhenius, e.g. Rutland et al. 1990; one-step Arrhenius with heat release, e.g. 
Haworth & Poinsot 1992). The detailed chemistry scheme for methane-air oxidation 
employed by Xu & Smooke (1991) includes 26 species and 45 reactions. Solving 
the resulting stiff system of convection/diffusion/reaction equations for a laminar 
axisymmetric Bunsen burner flame requires on the order of 100 CPU hours using 
state-of-the-art numerical algorithms on a high-end workstation ( 26 Mflops). 
This is the same order of computational resources as that required for DNS of 
nonreacing homogeneous isotropic turbulence at a Taylor-scale Reynolds number 
of Re,. 90 (Pope 1991). 

The present research represents an attempt to bridge the two numerical ap-
proaches by coupling complex chemistry and full turbulence simulations. Here 
11 2-02 chemistry (inert N 2 diluent) has been modeled using a nine-species, 19-
reactant scheme (Miller et al. 1982) including detailed molecular transport in two-
dimensional isotropic turbulence. Specific goals are threefold. First, we wish to 
explore the feasibility of . complex-chemistry DNS for future application to more 
complex thermochemical systems (e.g. hydrocarbon fuels). Ignition, quenching, 
and pollutant formation issues are of practical interest in such systems. Second, we 
will compare results obtained using the present detailed-chemistry scheme to those 
obtained earlier using simpler zero- and one-step chemistry models. In particular 
we are interested in statistics of strain rate, curvature, and local burning rate along 
the flame front and the robustness of fiamelet models with realistic kinetics. Finally,
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we will compare the local structure of the turbulent premixed flame with detailed 
kinetics to that of an unstrained laminar flame having the same thermochemical 
properties. Questions of interest include possible shifts in radicals relative to lam-
inar profiles and which radical species might best be suited to marking the region 
of peak heat release in experiments. 

2. Background: DNS of turbulent premixed combustion 
DNS has proved to be a valuable tool in addressing fundamental physical ques-

tions and in the construction of models for turbulent premixed combustion. The 
past several years have seen DNS applied to a hierarchy of premixed systems of in-
creasing complexity. Results of these simulations generally have been interpreted in 
the framework of the flamelet regime of combustion wherein a thin laminar-like reac-
tion zone separates unburnt gas from hot burnt products. (In propagating-interface 
type models, this structure is imposed.) Roughly speaking, flamelet combustion cor-
responds to conditions where the largest chemical scales are small compared with 
the smallest hydrodynamic scales: however, it has proven to be a worthwhile frame-
work in which to interpret results even in cases where turbulence microscales are 
smaller than the flame thickness (Haworth & Poinsot 1992). Moreover, flamelet 
models are widely used as combustion 'submodels' in Reynolds-averaged computa-
tions of premixed turbulent combustion in engineering applications (e.g. El Tahry 
1990, Boudier et al. 1992). 

2.1. Propagating-interface (zero-chemistry) models 

An studies of the kinematics of a propagating surface in turbulent flow have 
resulted in relationships that provide a basis for flamelet models and for interpreting 
numerical simulation results. For example, the roles of hydrodynamic straining 
and flame curvature in modifying the area A of a propagating surface element are 
expressed in the relationship (Pope 1988, Candel & Poinsot 1990), 

1 d Sd (1) 

Here at is the hydrodynamic strain rate in the plane tangent to the surface, 8d is 
the speed of advance of the propagating surface relative to the fresh gas, and R is 
the radius of curvature (R < 0 for surface elements propagating towards the center 
of curvature, e.g. concave towards reactants for the premixed flame). This relation-
ship motivates attempts to isolate strain-rate from curvature effects in turbulent 
premixed combustion, even though the two are not completely independent (Pope 
1988, Haworth & Poinsot 1992). 

Numerical simulations (DNS) incorporating propagating surface models have pro-
ceeded via a variety of front-tracking algorithms (reviewed in Oran & Boris 1987), 
field-equation approaches (Kerstein et al. 1988, Ashurst et al. 1988), and statistical 
ensembles of infinitesimal surface elements (Girimaji & Pope 1992). These zero-
chemistry flame-sheet models have contributed significantly to our understanding 
of flame topology and have provided quantitative information on statistical cor-
relations that is useful in the construction and calibration of models of turbulent
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premixed combustion in the flamelet regime (e.g. Bray & Cant 1991). The influence 
of chemical kinetics effects in such models generally is felt only through the propa-
gation speed, whose dependence on thermochemical and/or turbulence parameters 
must be prescribed.

2.2. Simple -chemistrymodels 

Studies of the dynamic interactions between fluid flow and finite-rate chemistry 
in flamelet or non-flamelet regimes require that the flame structure be resolved. 
However, the addition of chemical length and time scales that are of the order of or 
smaller than the smallest turbulence scales implies that, for a given spatial and tem-
poral resolution, a smaller range of hydrodynamic scales can be simulated compared 
to computations in which the flame has no internal structure. Two-dimensional 
vortex methods have been used to study interactions between turbulent fluid flow 
and finite-rate chemistry by a number of authors including Ashurst & Barr (1983), 
Ghoniem & Krishnan (1988), and Ashurst ci al. (1987). Three-dimensional simula-
tions including finite-rate chemistry (constant density, zero heat release, single-step 
Arrhenius chemistry) have been reported by Rutland ci al. (1990): results included 
distributions of local burning rate over a range of Damköhler numbers. Further 
three-dimensional constant-density simulations been published by El Tahry ci al. 
(1991) Rutland & Trouvé (1990) (a study of Lewis number effects) and by Cant ci 
al. (1990) (a study of statistics relevant to the Bray-Moss-Libby model of turbulent 
premixed combustion). 

The present work follows a number of two-dimensional simulations with variable 
fluid properties and heat release (Poinsot 1991; Poinsot ci al. 1990, 1991, 1992; 
Meneveau & Poinsot 1990, Haworth & Poinsot 1992, Poinsot & Haworth 1992). 
Contributions of these studies include a characterization of the scales of turbulent 
motion that influence flame structure (Poinsot ci al. 1990, 1991), investigations 
of flame quenching (Poinsot ci al. 1991, Meneveau & Poinsot 1990), identifica-
tion of Lewis number effects (Haworth & Poinsot 1992), a study of ignition and 
early flame-kernel growth (Poinsot 1991), and a model for flame-wall interactions 
(Poinsot & Haworth 1992). Compared to three-dimensional constant-property sim-
ulations, two-dimensional variable-density simulations allow a wider dynamic range 
of scales and full two-way fluid-chemistry coupling. Values of relevant dimension-
less parameters in the present study are given in Section 3. 

However, the dynamics of two-dimensional turbulence are not identical to those of 
three-dimensional turbulence (Batchelor 1953, Herring ci al. 1974, Lesicur 1987). 
In particular, the vortex-stretching mechanism for the cascade of energy to pro-
gressively smaller scales of motion is absent in two dimensions and the smallest 
scales of motion do not follow the usual Kolmogorov scaling. Thus the statistics of 
small-scale quantities especially are expected to differ between two-dimensional and 
three-dimensional simulations. Partial justification for the appropriateness of two-
dimensional studies of premixed flame structure can be found in three-dimensional 
results: the topology of a propagating surface in three-dimensional turbulence has 
been found to be primarily two-dimensional, particularly those surface elements 
having the highest curvatures (Ashurst 1990, Cant ci al. 1990, Girimaji & Pope
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1992). That is, a flame tends to be locally cylindrical rather than spherical in 
shape. Further a posteriori justification can be found in the two-dimensional results 
themselves, where many features in common with the three-dimensional findings 
have been noted (Haworth & Poinsot 1992). Common results include: preferential 
alignment of the flame with extensive strain rates in the tangent plane; scaling of 
flame-area-averaged mean tangential strain rate with turbulence micro-timescales; 
and nearly symmetric pdf's of flame curvature having near-zero mean. 

The present work follows most immediately the study of nonunity Lewis number 
effects (Le = ratio of thermal to species diffusivity) in two-dimensional turbulent 
premixed combustion reported by Haworth & Poinsot (1992). In addition to the 
results already discussed, it was found that for Le = 1, the local burning velocity of 
the turbulent flame is everywhere nearly identical to that of an undisturbed laminar 
flame; for nonunity Lewis numbers, the local burning velocity differs from that of 
the laminar flame and correlates strongly with the local flame curvature; curvature 
effects cancel out in the mean to leave the mean extensive tangential strain rate as 
the principal influence on the mean burning velocity of the turbulent flame; and 
thermodiffusive effects result in more flame area for Le < 1 than for Le> 1. It was 
further argued that these molecular transport effects should remain important at 
higher Reynolds numbers and for complex chemistry, provided that a single global 
deficient-reactant-based Lewis number can be defined. Here the simulations are 
extended from one-step chemistry with simple transport to realistic chemistry and 
transport, permitting a direct assessment of the second claim. We continue to adopt 
a flamelet viewpoint for diagnostics and analysis. 

3. Problem definition 

3.1. Governing equations and numerical methods 

The set of equations solved is the compressible multi-species reacting flow equa-
tions comprising conservation of mass, linear momentum, energy, and N3 species 
mass fractions. In Cartesian tensor notation (no sum on Greek indices),
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Here u i is the jth component of the fluid velocity, e 1 is the total energy density per 
unit mass, and Ya, a = 1,. . . , N3 , is the mass fraction of species a. The fluid mass 
density is p, p is the thermodynamic pressure, and rii and qj are, respectively, the
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viscous stress tensor and the heat flux vector. The molar chemical production rate 
of species a is th while W0 is its molecular weight. The variable V, is the diffusion 
velocity for species a. 

The set of governing equations is closed with the ideal gas equation of state and 
constitutive relations,

p=pRT,	 (6) 
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In these equations, and are, respectively, the mean viscosity and thermal conduc-
tivity. The formation enthalpy of species a at the reference temperature To is 
and ha is the enthalpy of species a. (Here the reference state is T0 =298.15 K.) 

Species molecular transport is modeled using Fick's law. An effective species 
diffusivity Da is computed as follows:

(1—Y0) 
N. 

E Xfl/Da$ 
fl=1 ,$:Oa 

where Dc,,6 are the binary diffusion coefficients and Xa is the mole fraction of species 
a. Diffusion coefficients are related to the diffusion velocity Va, by, 

Vaj =	 Xa,j .	 (13) 
Xa 

The diffusion velocities resulting from Eqs. (12) and (13) do not, in general, satisfy 
conservation of mass. A correction velocity V, is added such that the net diffusive 
flux is equal to zero,

Da (12) 

N,

YaVajO.	 (14)
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FIGURE 1.	 Schematic of computational domain: a premixed flame separates 
unburnt reactants from burnt products. 

Finally, we have,

N,

(15) Vcrj = V0, +	
=Pax.,j +

N. 

3=1 

Species production rates are given by the Arrhenius law with (forward) rate 
constants kfQ of the form,

afci - - ' T°exp(-Eo 0 /RoT) ,	 (16)

where R0 is the universal gas constant. Hydrogen-oxygen kinetics has been mod-
eled using the nine-species, 19-reaction scheme devised by Miller et al. (1982). 
Coefficients for this scheme are summarized in Table I. Fluid properties, molecular 
transport coefficients, and reaction source terms are computed using CHEMKIN 
and TRANSPORT (Kee et al. 1980, Kee et al. 1983). 

Using these assumptions and a Cartesian frame of reference, the conservation 
equations are solved using a high-order finite-difference scheme (Lele 1992). The 
calculations are initialized with reactants on one side of the computational domain 
and products on the other; these are separated by a laminar premixed flame (Figure 
1). The initial laminar profiles are themselves steady one-dimensional solutions to 
Eqs. (2)-(16). On lateral boundaries, periodic conditions are enforced while non-
reflecting boundary conditions are used on inflow/outflow boundaries (Poinsot & 
Lele 1992). Isotropic two-dimensional turbulence is prescribed with a turbulence 
spectrum that is the same as that used in earlier studies (e.g. Haworth & Poinsot 
1992). Two parameters suffice to define the initial energy spectrum: the rms turbu-
lence velocity u, = u'(t = 0) and the peak energy wavelength L 1 . These and other 
relevant parameters are summarized in Table II.
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Table I. Reaction mechanism rate coefficients in the form k1 = ATexp(-Eo/RoT) 
(Eq. 16) (Miller et al. 1982). Units are moles, cubic centimeters, seconds, degrees 
K, and calories/mole. Species: H 2 02 OH 0 H H2 0 H02 H2 02 N2. 

Reaction A /3 E0 

R1 H2 + 02	 2 OH 1.7 x 10 13 0. 47780 
R2 H2 + OH	 H2 O + H 1.17 x 109 1.3 3626 

H + 02	 OH + 0 5.13 x 1016 -0.816 16507 
R4 0 + H2 	 OH + H 1.8 x 10 10 1.0 8826 
R5 H +02 + M -_ H02 + Ma 2.1 x 1018 -1.0 0 
R6 H + 2 02	 H02 + 02 6.7 x iO' -1.42 0 
R7 H + 02 + N2 -_ H02 + N2 6.7 x io' -1.42 0 

OH + H02 -_ H2 0 +02 5 x 1013 0. 1000 
R9 H + H02	 2 OH 2.5 x 1014 0. 1900 
R10 0 + H02	 02+ OH 4.8 x 10' 0. 1000 
R11 20H-_0+H20 6x108 1.3 0 
R12 H2 + M	 H + H + Mb 2.23 x 10 12 0.5 92600 

02 + M	 0 + 0 + M 1.85 x 10 11 0.5 95560 
H + OH + M	 H2 O + M C 7.5 x 1023 -2.6 0 

R15 H02 + H	 H2 + 02 2.5 x 1013 0. 700 
R16 2 H02	 H2 02 + 02 2 x 1012 0. 0 
R17 H202 + M	 OH + OH + M 1.3 x 1017 0. 45500 
R18 H202 + H	 H2 + H02 1.6 x 1012 0. 3800 
R19 H202 + OH -_ H 2 O + H02 1.0 x 1013 0. 1800

a Third-body efficiencies: k(H2 ) = 3.3k(Ar), k(H2 0) = 21.0k(Ar). 
b Third-body efficiencies: k(H2 ) = 3.0k(Ar), k(H) = 2.0k(Ar), k(H2 0) = 6.0k(Ar). 
C Third-body efficiencies: k(H2 0) = 20.0k(Ar). 

In Table II, a subscript 'u' refers to properties in the unburnt reactants. Key 
parameters are: the rms turbulence intensity u', the turbulence integral length 
scale 1 based on two-point velocity correlations and timescale r = i/u', and flame or 
chemical scales S,° (the unstrained laminar flame speed), 5i (TbTu)/(dT/dXImaz) 
(the laminar flame thickness), and rj = Si lsol . The fuel mass equivalence ratio is cf 
There are n x x n computational grid points in the Lbox x Lb0x square computational 
domain. 

The turbulence Reynolds numbers and ratio of rms turbulence intensity to lami-
nar flame speed of Table II imply a regime of combustion where turbulence is intense 
compared to the laminar flame speed, and flames are thinner than the turbulence 
integral scale but are thicker than turbulence microscales. Turbulence and flame 
timescales are of the same order. 



	

H2/02 /N2 flame	 353 

Table II. Initial parameters for two-dimensional simulations. 

Case 4) T	 p	 so? 	 8,	 ReL I Re1 u'/s? L/6, 1/81 r/r1 L b.. fix 

	

= UpL i = I	 = fly 

	

[K] [kPa] [mIs] [cm]	 [-1	 [-1	 [-1 [-1 [-1 [-1 [cm] 1-1 

	

1 1.0 800 101 19.5 0.044 2000	 650 2.1 6.3 2.0 0.48 2.00 487 

2 1.0 800 101 19.5 0.044 4000 1300 4.2 12.7 4.0 0.95 1.24 301 

3.2. Diagnostics 
Postprocessing of the two-dimensional computed fields (snapshots at fixed times) 

begins by defining a flame front as an isocontour of reactant mass fraction or tem-
perature. Here we have used Y02 = 0.22, corresponding to the position of peak 
heat release in the laminar flame (Figure 2). Once the flame front has been located, 
the local normal and local curvature are readily computed. Curvatures concave 
towards the hot products are taken to be positive. One-dimensional cuts normal 
to the flame are taken: it is these profiles that define the local 'structure' of the 
turbulent flame. We compare the local turbulent flame profiles with the steady 
unstrained one-dimensional laminar flame profile for the same chemistry and fluid 
properties. Of particular interest is the distribution along the flame of the normal-
ized local flame speed ('flamelet speed') s, defined as the integral of the heat-release 
profile in a direction locally normal to the flame. The local heat-release rate WQ is 
defined by,

N. 

WQ__EWQLhfc,,	
(17) 

and the normalized flamelet speed is then, 

Sn =jWQ dfl/SnO .	 ( 18) 

A normalized flame length C and turbulent flame speed 4 are defined as, 

	

C	 Ljiome/Lfiameo , 	 (19) 

	

4	 /	 = (s,,)C .	 (20) 

In Eqs. (18)-(20), the subscript '0' denotes the value for the unstrained planar 
laminar flame; overbars denote volume (area) averages while angled brackets are 
reserved for flame-area-weighted means (length-weighted in two spatial dimen-
sions). A check of self-consistency is to verify the equality between 4 calculated 
in the two ways given in Eq. (20): they are found to agree to within a few percent 
in all cases.
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FIGURE 2. Normalized (by their maxiumum value) steady unstrained laminar 
flame profiles: a)-c) complex chemistry (Tables I and II); d) one-step chemistry 
tb = ApYexp(	 ))' e = (T - Tu)/(Tb - Ta), a = 0.75, /3 = 8.0, A = 146
(Haworth & Poinsot 1992). 

4. Results

4.1. Laminar profiles 

Profiles of the steady one-dimensional laminar solution are displayed in Fig-
ure 2a-c, where each quantity has been normalized by its maximum value. Cor-
responding profiles for the one-step Arrhenius scheme used in Haworth & Poinsot 
(1992) are shown in Figure 2d. The abscissa is in units of the laminar flame thick-
ness 5,, which is of the order of the heat-release zone thickness. A striking difference 
between the simple- and complex-chemistry temperature and species profiles is the 
extended tails into the burnt gas for the complex chemistry case. One might an-
ticipate difficulty in maintaining this structure in turbulent flames: even in cases 
where all turbulence scales are larger than 5,, turbulence may still be able to modify 
the laminar flame structure on the burnt side. Other noteworthy features of these 
profiles include the significant 'leakage' of fuel and oxidizer into the products, high
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FIGURE 3. Computed fields at one instant of time. Case 1, time t/71 = 1.24: 

a) vorticity contours with flame isocontour in magenta; b) temperature; c) heat 
release; d) H 2 02 mass fraction; e) H mass fraction; f) OH mass fraction. Contour 
color scale ranges from blue (mm) to red (max). In a), the full computational box 
is shown while b)-f) depict only the subdomain indicated by the black outline in 
a).
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OH concentrations in the burnt gas, and locations of peak radical concentrations 
relative to peak heat release. The high product temperature (2840 K) is responsible 
for the high equilibrium H 2 , 02, and OH concentrations on the burnt side. Peak OH 
concentration occurs well behind the peak heat-release zone, while H- and 0-atom, 
H2 02, and H02 peak closer to the location of peak heat release. 

4.2. Turbulent flame contours 

Examples of computed fields at one instant of time for Case 1 at i/rj = 1.24 
are given in Figure 3 (unburnt gases are on the left, burnt products are on the 
right). The initially planar flame has been severely distorted by the turbulence by 
this time, even to the extent of tearing off pockets of fresh gas which are carried 
into the product side. Eventually these pockets of fresh gas are consumed for 
these adiabatic flames. Nevertheless, the structure of the underlying laminar flame 
remains readily recognizable. Heat release contours (Fig 3c) suggest a thin flamelet-
like structure albeit with some islands of fresh gas burning enveloped by the hot 
products. Some radicals including H 2 02 (Figure 3d) show similar behavior to the 
heat release: profiles remain thin and appear to mark the region of maximum heat 
release. On the other hand, H-atom levels (Figure 3e), while peaking close to the 
maximum heat-release zone, show a long diffuse tail on the burnt side, presumably 
a consequence of the high H diffusivity. Gradients in OH mass fraction are steep 
through the region of maximum heat release (Figure 3f) but peak OH occurs well 
behind the flame front and isocontours of high OH concentration do not remain 
connected on the burnt side. Most of these features might be anticipated from 
Figure 2a-c. Thus in the present case, OH does not serve as a good marker of the 
region of maximum heat release in the flame. 

An example of the influence of turbulence parameters on flame structure is given 
in Figure 4. There the isocontour used to define the flame at one instant of time is 
plotted for Cases 1 and 2 at equal flame times t/rj = 0.36 and at equal turbulence 
times i/To 0.8 (ro = r(i = 0)). The smaller integral scale of Case 1 yields a more 
highly wrinkled flame that, as illustrated in Figure 3, even shows pockets in the 
burnt gas at later times. Case 2, by contrast, yields a flame with large-scale folding 
versus fine-scale wrinkling. 

4.3. Statistics of flame curvature, strain rate, and flamelet speed 

Statistics of tangential strain rate, flame curvature, and local flamelet speed are 
presented in Figs. 5-9. Probability density functions (pdf's) of flame tangential 
strain rate and flame curvature are given in Figs. 5 and 6, respectively. Figure 5 
confirms the findings of several earlier studies using zero- and single-step chemistry 
models: the turbulent flame aligns preferentially with extensive strain rates in the 
tangent plane (Ashurst 1990, Girimaji & Pope 1992, El Tahry et al. 1991, Cant 
et al. 1990, Rutland et al. 1990). Figure 6 also is reminiscent of results found 
using simpler models (Haworth & Poinsot 1992) and experiments (Lee et at. 1991): 
curvature pdf's are close to symmetric with near-zero mean curvature. While some 
skewing of the pdf's towards negative curvatures might be expected at low u'/4 
(Rutland & Trouvé 1990, Becker et at. 1990), no such skewing is evident here. The 
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a)	 t/rF= 0.36	 b)	 '/70=0.8 

FIGURE 4. Isocontours Y02 = 0.22 for Cases 1 and 2 in a 1.24 cm x 1.24 cm 
region: a) t/rj = 0.36; b) t/ro 0.8. 

more highly wrinkled nature of the Case 1 flame is manifested in the broader tails 
(higher rms) of the curvature pdf for Case 1 versus Case 2. 

Scatter plots of local flamelet speed s,, versus local tangential strain rate and 
local flame curvature are given in Figs. 7 and 8, respectively. Each point in these 
two figures corresponds to a point sampled uniformly along the isocontour defining 
the turbulent flame. While no correlation of local burning velocity with curvature 
is evident, the decrease in .s, with increasing tangential strain rate is surprisingly 
strong. In fact, this correlation develops over time in the computations: at time 
t = 0, the normalized flamelet speed s, is everywhere equal to unity. The flame-
area-averaged normalized mean flamelet speed (s e ) decreases with time (Figure 9). 
Figure 9b, for example, portrays the evolution from the initial delta function pdf of 
flamelet speed at time t = 0 for Case 2: both the mean value (Sn) and the value of 
s,2 at which the pdf peaks decrease with time as the flame develops (Table III). 

No statistically steady state is achieved in the duration of the present compu-
tations. While the mean consumption rate per unit area of flame (s e ) (Eq. 18) 
is significantly smaller than unity, the increase in flame area r* ( Eq. 19) more 
than compensates to yield normalized turbulent flame speeds 4 (Eq. 20) that are 
greater than unity, as expected. The evolution of these global quantities with time 
is summarized in Table III. 

Peak heat-release rates (not shown) remain within ±5% of the laminar value in 
all cases, suggesting that this reduction of local consumption rate (sn ) is primarily 
a flame thickness effect. These results are unexpected in view of the findings in Ha-
worth & Poinsot (1992) for simple chemistry. There it was found that, for nonunity 
Lewis numbers, curvature dominated the local flame structure, and a correlation 
between local burning velocity and local tangential strain rate was evident only for 
Le = 1. In no case was the straining sufficiently high to yield the extremely low val-
ues of (s e ) found here. While the fuel-based (11 2 ) Lewis number in the present case 
is clearly less than unity, no single global deficient-reactant-based Lewis number 
can be unambiguously defined for 4 = 1 (Chelliah & Williams 1987). Arguments by
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FIGURE 5.	 Pdf of normalized tangential strain rate, Case 1, i/rj = 0.36: 
mean=1.816, rms=1.394. 
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FIGURE 6. Pdf's of normalized flame curvature, i/To 0.8. Case 1: mean=0.0056, 
rms=0.82; Case 2: mean=0.0043, rms=0.35. 

Joulin & Mitani (1981) suggest an equivalent Lewis number of somewhat less than 
unity for the present thermochemistry: however, the decreasing flamelet speed with 
increasing tangential strain rate of Figure 7 suggests that, if anything, the effective 
Lewis number may be greater than or equal to unity here.
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FIGURE 7. Scatter plots of normalized flamelet speed s, (Eq. 18) versus normalized 
tangential strain rate at t/ro 0.8: a) Case 1; b) Case 2. 

Table III. Evolution with time of normalized flamelet speed (s e ) (Eq. 18), normal-
ized flame area £0 (Eq. 18), and normalized turbulent flame speed 4 (Eq. 20) for 
Case 2.

t/ro (sn) £ 4 

0.0 1.00 1.00 1.00 

0.23 0.96 1.10 1.06 

0.36 0.91 1.24 1.13 

0.80 0.75 1.86 1.40 

4.4. Local flame structure 

Profiles of heat-release rate and OH mass fraction along the local flame normal 
are overlaid on the corresponding laminar profiles in Figure 10 for Case 2 at two 
instants of time. The turbulent profiles have been uniformly sampled along the 
turbulent flame front; only nine or ten turbulent profiles are shown, for clarity. 
At the earlier time (t/To = 0.23), local turbulent profiles collapse neatly onto the 
steady unstrained laminar contours. At later times (t/7o 0.80), the collapse 
remains reasonable on the fresh-gas side while the turbulent profiles generally are 
shifted inwards towards the peak heat-release zone on the burnt-gas side. This 
appears to be a consequence of the net extensive tangential strain rates thinning 
the flame in the turbulent flow and reducing the local flamelet speed while peak 
heat release rate remains relatively unchanged.
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FIGURE 8. Scatter plots of normalized flamelet speed s,, (Eq. 18) versus normalized 
flame curvature at hr0 0.8: a) Case 1;.b) Case 2. 

S (-)	 S (-) 

FIGURE 9. Pdf's of normalized flamelet speed s, (Eq. 18): a) Case 1; b) Case 2. 

5. Discussion 
Predictive models of turbulent premixed combustion for engineering applications 

remain at an early stage of development. Key physical processes including ignition 
and early flame kernel development, complex hydrocarbon-air reaction kinetics, 
turbulence-chemistry interactions, and flame-wall interaction remain poorly un-
derstood even at a fundamental level. Direct numerical simulation has played an 
increasingly important role in recent years both in contributing to fundamental un-
derstanding and in providing guidance for modeling. Fundamental contributions 
of DNS include elucidation of flame topology and structure (Kerstein ci at. 1988, 
Ashurst ci at. 1988, Rutland & Trouve 1990, Ashurst 1990, Cant et at. 1990, 
Rutland ci at. 1990, El Tahry ci at. 1991, Girimaji & Pope 1992), a characteri-
zation of the scales of turbulent motion that influence flame structure (Poinsot ci 
at. 1990, 1991), flame quenching (Poinsot ci at. 1991, Meneveau & Poinsot 1990), 
and thermodiffusive (Lewis number) effects (Rutland & Trouvé 1990, Haworth & 
Poinsot 1992). Moreover, DNS results have been used to construct and to cali-
brate models for premixed flame propagation (Bray & Cant 1992), ignition and
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FIGURE 10. Unnormalized laminar and turbulent flame profiles for Case 2: a) 
heat-release rate, t/ro= 0.23; b) heat-release rate, t/ro= 0.80; c) OH mass fraction, 
t/ro= 0.23; d) OH mass fraction, t/ro= 0.80. 

early flame-kernel growth (Poinsot 1991), and flame-wall interactions (Poinsot & 
Haworth 1992). These models can be incorporated into multidimensional Reynolds-
averaged modeling approaches for engineering devices (e.g. Boudier et al. 1992). 

The present simulations represent a first attempt to incorporate realistic chemical 
kinetics and transport into full turbulence simulations. Principle results are: 1) 
Realistic chemical kinetics and transport have been implemented successfully into 
full turbulence simulations. 2) Consistent with the simpler models, the complex-
chemistry turbulent flame aligns preferentially with extensive strain rates in the 
tangent plane and flame curvature pdf's are close to symmetric with near-zero 
means. 3) By contrast to simple chemistry results with non-unity Lewis numbers, 
local flame structure does not correlate with local flame curvature but rather with 
local tangential strain rate. Turbulent straining results in substantial thinning of the 
flame relative to the steady unstrained laminar case. Peak heat-release rate remains 
close to the laminar value, but integrated heat release along the local flame normal 
is substantially lower in the turbulent flame. 4) Heat release and H 2 02 contours 
remain thin and connected ('flamelet-like') while species including H-atom and OH 
are more diffuse. In particular, peak OH concentration occurs well behind the peak 
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heat-release zone. 
The strong correlation of s,, with strain rate rather than with curvature (Figures 

7 and 8) for the present computations suggests an effective Lewis number that is 
greater than or equal to unity. However, no amount of straining of the simple-
chemistry flames in Haworth & Poinsot (1992) resulted in the extreme thinning and 
decrease in (s n ) than has been observed here. For the present stoichiometric reac-
tants, definition of a single deficient-reactant-based Lewis number is problematic 
(Joulin & Mitani 1981, Chelliah & Williams 1987). Computations with fuel-lean 
reactants may help to shed light on these results. 

Present turbulence Reynolds numbers and the normalized turbulence intensity 
u'/4 (Table II) are typical of values found, for example, in reciprocating internal 
combustion (IC) engines at low engine speeds. The computed flames remain thick 
compared to the 1161 30 typical of propane-air mixtures under standard IC-
engine operating conditions (stoichiometric, p = 5 atm, T = 600 K, undiluted). 
However, 1151 can be as low as three for high T, low p, or high exhaust-gas dilution 
engine cases (Mantzaras ci al. 1988; Bunt, 1988, 1990). The present choice of 
initial turbulence spectrum (Haworth & Poinsot 1992) results in too little energy 
at low wavenumbers compared with classic equilibrium turbulence: thus there is 
little dissipation in the hot post-flame gas in spite of the high temperature-induced 
viscosity there. Computations with a more realistic initial spectrum are planned. 

The high adiabatic flame temperature (2840 K) for the present thermochemistry 
results in significant equilibrium levels of fuel and oxidizer in the burnt gas and in 
high equilibrium radical concentrations of OH, H-atom, and 0-atom (Figure 2). 
Thus it is not surprising that OH serves as a poor marker of the heat-release zone 
for this flame. The H2 02 radical serves better in this regard computationally, but 
may be a poor choice in practice: peak H2 02 mass fraction in the present case 
is 0.000094 versus 0.0348 for OH. Moreover, the reaction-rate constants involving 
H2 02 in Table I are not well established. Nonstoichiometric and cooler reactants 
would result in lower temperatures and narrower OH radical profiles. In these 
cases, OH may better serve as a marker of the reaction zone consistent with the 
experimental observations of Becker ci at. (1990), for example. 

Further hydrogen-air work thus will include modifications to the initial turbulence 
spectrum, fuel-lean cases, runs to later times lI7- 1 , and additional postprocessing to 
look at relative shifts in species mass fraction profiles relative to the steady laminar 
flame. Additional chemistry for NO, production and extensions to pollutant forma-
tion in hydrocarbon-air systems are anticipated subjects for future investigations. 
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N4-14766 Effect of finite-rate chemistry and unequal 

Schmidt numbers on turbulent non-premixed 
flames modeled with single-step chemistry 

By J. H. Chen', S. Mahalingam2 , I. K. Purl3 AND L. Vervisch4 

The interaction between a quasi-laminar flame and a turbulent flowfleld is inves-
tigated through direct numerical simulations (DNS) of reacting flow in two- and 
three-dimensional domains. Effects due to finite-rate chemistry are studied using 
• single-step global reaction A (fuel) +B (oxidizer) - P (product), and by varying 
• global Damköhler number, as a result of which the turbulence-chemistry inter-
action in the flame is found to generate a wide variety of conditions, ranging from 
near-equilibrium to near-extinction. Differential diffusion effects are studied by 
changing the Schmidt number of one reactive species to one-half. It is observed 
that laminar flamelet response is followed within the turbulent flowfield, except in 
regions where transient effects seem to dominate. 

1. Introduction 
Due to the presence of kinetically influenced source terms in the species and 

energy equations, modeling of turbulent reacting flows is a complex and arduous 
task (Williams, 1985; Borghi, 1988). Classical approaches to turbulent combustion 
have generally sought to decouple the chemical kinetics from the fluid dynamics, 
such as in models involving the laminar flamelet concept (Williams, 1985; Peters, 
1986), or the probability density function (pdf) approach which usually involves the 
hypothesis that mixing is unaffected by reactive processes (Kollmann, 1990). 

The use of direct numerical simulations in investigations involving non-premixed 
flames, for a variety of circumstances that include extinction, is intrinsically attrac-
tive, since data is simultaneously available for the species concentrations, tempera-
ture, and flow dynamics. From this data, the determination of relevant quantities, 
both scalars and vectors, such as mixture fraction, scalar dissipation rate, reaction 
rate, strain rate, flame curvature, and stretch is straightforward and corresponds 
to a single-time/multiple-point experimental measurement of the same. As has 
been demonstrated for premixed flames (see Trouvé, 1991, Poinsot et al, 1991), 
DNS results are expected to provide an insight into the flow processes as well as an 
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aid in the development of appropriate models of flame phenomena associated with 
turbulent non-premixed flames. 

In this study, the source terms due to chemistry in the governing equations are 
retained by simplifying the chemical kinetics to an overall global step. The rate 
of this global step is varied in order to investigate conditions that extend from 
strong (near equilibrium) chemistry to weak (near extinction) chemistry. Modeling 
chemistry in the form of a single-step global reaction has served as a strong tool 
in the analytical investigation of laminar reacting flows (cf. Williams, 1985) and 
is expected to retain that purpose in the investigation of turbulent non-premixed 
flames through direct numerical simulation. Through the global step, it is assumed 
that fuel and oxidizer, i.e., species A and B, meet in stoichiometric proportion to 
form a single product, namely P. The species A, B, and P are assumed to have equal 
diffusivities in one set of simulations; in another set, in order to investigate effects 
due to differential diffusion, A is assumed to diffuse two times faster than B and P. 

2. Model problem 

The model problem involves a quasi-laminar flame interacting with decaying ho-
mogeneous and isotropic turbulence in a "rectangle" (2-D) or "box" (3-D) contain-
ing fuel and oxidizer on either side. At an initial time, the reaction zone is laminar 
although it is surrounded by a specified turbulent flow field. As time progresses the 
flame becomes unsteady and assumes turbulent characteristics. Boundary condi-
tions stipulated at the boundaries that lie latitudinally to the flame, i.e., across it, 
are periodic while those that lie longitudinally, i.e., parallel to the flame, are non-
reflecting (Poinsot, Lele 1991). Therefore, depending on the scale of the problem, 
the simulated "rectangle" or "box" represents instantaneous measurements in a 
flowfield corresponding to similar flow conditions that are represented by equivalent 
values of the local Reynolds, Damköhler, and Schmidt numbers. For instance, in 
the present simulations the Reynolds number based on the Taylor length scale, Ret, 
has an initial value of fifty, the Damköhler number, Da, is assigned several values 
ranging from slow to fast chemistry, and the Schmidt number, Sc, for a select reac-
tive species is assumed to be either unity or one-half. Studies of hydrogen-argon jet 
flames (Dibble et al., 1986; Magre & Dibble, 1988) indicate that the Reynolds num-
ber based on the velocity profile half-width increases from fifty to eighty along the 
jet axis. We recognize that this analogy is somewhat imprecise, since the velocity 
and length scales that are involved differ, but are hampered by the unavailabil-
ity of simultaneously obtained data, the precise facet that makes direct numerical 
simulations attractive. 

3. Methodology 

A compressible direct simulation code developed by Trouvé (1991) is utilized in 
this investigation. The code is able to simulate a reacting flow, including effects 
due to variations in density and viscosity. Various aspects of the methodology that 
are specific to this study are described below.
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3.1 Chemistry 

The chemical reaction is represented by a single-step global mechanism, i.e., 

A (fuel) + B (oxidizer) - P (product).	 (1)

The reaction rate is in the familiar Arrhenius form, namely 

I Ta\ 
tb = KpYAPYB exp (--;-)	 (2) 

which can be transformed such that (Williams, 1985), 
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In the above equations, the symbol 0 is a reduced temperature, such that 0 = 
(T - To )/(Tj - T0 ), Tj is the adiabatic flame temperature and T. the ambient tem-
perature; T. denotes the activation temperature; K is a pre-exponential factor; a 
and /3 respectively denote a temperature factor and the dimensionless activation en-
ergy; and K = K exp(-/9/a). In the present study, databases have been generated 
for the case : /3 = 8, a = 0.8; these values are close to the overall characteristics of 
methane air combustion.

3.2 Conservation equations 

The equation of state is assumed to hold true in the flowfleld, and without loss 
of generality, the fuel, oxidizer, and product are assumed to be of equal molecular 
weight. The dynamic viscosity p is assumed to be a function of temperature, such 
that p = po(T/To )a , the exponent a being assigned a value of 0.76. The thermal 
conductivity A and mass diffusivities VA, DB that appear below are related to the 
dynamic viscosity through the Prandtl and Schmidt numbers, the subscripts A and 
B corresponding to the relevant species. The value of the Prandtl number is unity 
in the present simulations. 

In a Cartesian frame of reference, the conservation equations are of the form:

(4) 
N (3X 

OUj t3UjUj- OP Or,, 
--- +	

- -	
+	

,	
(5)

Oxi  

_______ O(ur
1 ) 0 / OT\ 

o, 
+y_(A)+Qtb	 (6) 

_5F	 09xi 

OPYA OPYAUI = 0	 OYA\ 
A1W.	 (7) 

Ot + 0	 0x,	 Ox,) 

OPYB OpYu, = L (pV OYB 
B1W.	 (8) 

at + Ox,	 0x,\	 OXjJ



370	 J. H. Chen, S. Mahalingam, I. K. Pun & L. Vervisch 

where
3 

pE=p>Jt4+ p	 (9) 
k=1	

7-1 

and
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In the above equations, the symbol p denotes the mass density, E the total energy, 
p the pressure, and Q the heat release per unit mass of fuel. The remaining symbols 
are associated with the usual quantities. The specific heat ratio, y, is assumed to 
have a value of 1.4. The equations are made dimensionless by a reference length, 
L0 , the speed of sound, and reference values for the fuel and oxidizer mass fractions. 
In the manner discussed above, the temperature is converted into an appropriate 
reduced temperature. The equations are solved using a high-order finite difference 
scheme (Lele, 1989). 

3.3. Turbulence and flame parameters studied 

Through interaction with the turbulence, the initial laminar flame is strained by 
the vorticity, and both reactants and product are convected by it. The heat release 
interacts with the flow field within and outside the high reaction rate zone through 
effects that are due to dilatation and through variations of viscosity and diffusivities 
with temperature. Databases were generated for two-and three-dimensional flames 
for several conditions. 

The initial turbulent kinetic energy spectrum function is given by: 

E(k) = Co 
0

( ) 4 exp [_2 (k)2]
	

(11) 

where k is the wavenumber, k0 is the wavenumber corresponding to the most en-
ergetic eddies, and u 0 is the rms velocity. A spatial filter is used to reduce the 
velocity fluctuations within the initial laminar flame, thereby allowing the flame to 
be distorted by the turbulence prior to undergoing extinction. The initial Taylor 
Reynolds number based on the cold fluid viscosity is fifty. The ratio of the initial 
reaction zone thickness, 5 k,, to the Kolmogorov scale is the order of ten. 

The initial global Damköhler number defined as: 

_._	 .	 1	 (12) Da= — 	 wdx 
0 [fir, L1 

is a ratio of the eddy turnover time to a characteristic chemical reaction time based 
on the heat release. The databases have been investigated for a time equal to 1.6 
eddy turnover times.
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8.4. Initial conditions 

Initially, fuel and oxidizer exist on either side of a domain separated by a laminar 
non-premixed flame. The initial turbulence spectrum and velocity field are specified 
in the domain, after which the governing equations are advanced in time. The initial 
distribution of reactant and product concentration in the laminar flame is obtained 
from a one-dimensional computation, the result of which is displayed in Figure 1(a). 
The velocity profile across the flame is presented in Figure 1(b). Note that velocity 
increases monotonically across the flame. Effects due to dilatation are apparent in 
the reaction zone which can be identified from the species concentration profiles of 
Figure 1(a). The initial laminar flame obeys the conservation equations, and the 
physical properties of this flame are well known. As a check, the growth of the 
laminar flame is investigated with respect to time. The thickness of the flame, .5p, 
is determined to grow in proportion to the square root of time, 1, a result that is 
presented in Figure 1(c). 

4. Results and discussion 
In order to analyze various characteristics of the flame-turbulence interaction, 

we describe the reacting flowfield globally, as well as specifically, in terms of the 
flame topology. In addition, field statistics are obtained in a manner relevant to 
model construction and validation. At this juncture, additional descriptions are 
introduced, namely for the mixture fraction and the scalar dissipation. The mixture 
fraction, Z, is given in the form

Z=(1+YA-YB)	 (13) 

The fuel and oxidizer vanish at the stoichiometric surface when fast chemistry 
prevails, such that at this location Z = Z.j = 0.5 in the simulations. The mix-
ture fraction is a conserved scalar when each of the species involved in the reacting 
flow has equal mass diffusivities and is, obviously, not conserved when the Schmidt 
number of any one of the species is changed as is done in some of the simulations. 
However, in order to make global comparisons between differing situations involving 
a variety of length and time scales, investigators have generally found it instruc-
tive to examine the global description of non-premixed flames with respect to the 
mixture fraction, even for those cases when this quantity is not conserved. 

The scalar dissipation rate, x is related to the gradient of the mixture fraction 
and is given as:

x=2DIVZI2.	 (14) 

4.1. Global description 

Postprocessing of the databases indicates that a global description of the two-and 
three-dimensional flames is essentially similar. Therefore, for sake of brevity, only 
the two-dimensional results are discussed in this subsection. Flames corresponding 
to high enough Damköhler numbers, i.e., greater than of order unity, burn vig-
orously, such that an equilibrium based description of the chemistry is adequate,
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FIGURE 1(A). Species concentration profiles across the flame for a representative 
condition (1—D simulation, Da = 1). 
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FIGURE 1(c). The growth of the laminar flame thickness with time for a repre-
sentative condition (1-D simulation, Da = 1). 

0
0	 0.2	 0.4	 0.6	 0.8	 1.0 

Mixture Fraction 

FIGURE 2(A). Distribution of the reactive species A (fuel) mass concentration 
with respect to the mixture fraction Z (2-D simulation, Da = 1).
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whereas flames established at Da of 0(1) are close to extinction at conditions far 
from chemical equilibrium. 

In Figure 2(a), we present the variation of the reactive species A (fuel) mass 
fraction with respect to the mixture fraction. The lower bound on the species con-
centration profile corresponds to those locations in the flame that experience "full" 
burning and the upper bound to those locations that are influenced by extinction 
and, hence, close to undergoing only mixing. The species distribution that lies be-
tween these two limits is due to turbulence-induced mixing, influencing both the 
fully burning and extinguished locations, and is, therefore, a transient response. We 
note that in the equilibrium (or fast-chemistry) limit, the reactive species would 
reach a negligible concentration at Z = Z8 , whereas in Figure 2, this location is 
shifted to the reactant B side, i.e., Z 0.39, due to finite-rate chemistry effects. 

The dissipation rate of the reactive species, XA, described in the form: 

XA = 2D1 VYA 1 2 ,	 (15) 

is a quantity that represents the magnitude of the gradient of A. This dissipation rate 
is presented in Figure 2(b). Two regions are immediately evident, corresponding 
to the results of Figure 2(a), related to pure mixing (frozen flow) and fully burning 
situations. In the fully burning case, the dissipation rate is negligible for Z <0.39 
(Figure 2(c)), whereas for the situation corresponding to extinction (frozen flow), 
a finite bound appears in the Figure 2(b). Clearly, penetration of the species A 
(fuel) has taken place in the oxidizer side, thereby creating, at the very least, a 
partially premixed situation. Whether and under what conditions this premixing 
causes local re-ignition will be the focus of a subsequent study. 

The global temperature profile of the Da = 0(1) flames is similarly distributed 
between the limits corresponding to fully burning and pure mixing situations. For 
flames corresponding to Da > 0(1), the maximum value of the reaction rate in-
variably occurs at the location of the peak temperature. However, as is clear from 
Figure 3, this situation is altered for the Da = 0(1) flames. We recall that the 
first-order reaction rate (cf. Equation (1)) simultaneously depends on the local fuel 
and oxidizer mass fractions and the local temperature. Due to turbulence-induced 
convection of species and local extinction, which causes penetration and premixing 
of the reactive species, a high reaction rate can exist at lower temperature locations 
where there is sufficient fuel and oxidizer concentration to sustain the chemical 
reaction. Therefore, in the presence of extinction, high values of the local instan-
taneous reaction rate are distributed over a range of temperatures below the peak 
temperature that is found in the flame. For cases corresponding to Da = 0(1), 
the smearing of the reaction rate in the domain is caused by higher levels of local 
vorticity. 

Flames established at a low (0(1)) Damköhler number, i.e., those experiencing 
local extinction, also possess thicker reaction zones in both physical and mixture 
fraction space than those corresponding to higher Da values. In Figure 4(a), we 
present the reaction rate profile for a flame with Da of 0(1). The effect of extinction 
is apparent in the results presented in this figure since, at the stoichiometric location,
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FIGURE 2(B). Distribution of the reactive species A (fuel) dissipation rate with 
respect to the mixture fraction Z (2-D simulation, Da = 1). 
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FIGURE 2(c). Distribution of the reactive species A (fuel) dissipation rate with 
respect to the mixture fraction Z (2-D simulation, Da = 10).
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FIGURE 4(8).	 Distribution of the reaction rate ?.1 with respect to the mixture 
fraction Z (3-D simulation, Da = 2.5, SCA = 0.5). 
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FIGURE 5(A). Distribution of the scalar dissipation rate, X, with respect to the 
mixture fraction Z (2-D simulation, Da = 1).
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there is both high and negligible reaction rate. Though the reaction rate reaches 
a maximum at the stoichiometric surface, Za g, the reaction zone falls in a broad 
band around that location, spanning Z 0.3 - 0.7. In contrast, the reaction zone 
corresponding to Da = 10, results for which are not displayed for sake of brevity, is 
thinner in both physical and Z- space (spanning Z 0.42 - 0.58), with no evidence 
of local extinction, as is to be expected. 

When the Schmidt number of the reactive species A (fuel) is decreased to a value 
of 0.5, the location of the peak reaction rate moves towards the "B-side" of the 
reaction zone since species A (fuel) diffuses faster than species B. Results for this 
situation are presented in Figure 4(b). We note that, for this case, the reaction zone 
is skewed and is broader on the "B-side". This is to be expected since reactant A, 
upon leakage through the reaction zone, will penetrate farther into for SCB > SCA. 
Conversely, the reaction zone on the "A-side" is thinner due to the inability of the 
species B to diffuse farther into A, after leaking through the reaction zone. The 
leakage of either reactant through the surface locating the maximum reaction rate is 
due to effects attributable to finite-rate chemistry. We note that when the Schmidt 
number of either reactant is different from unity, the mixture fraction is no longer 
a conserved scalar. 

In accord with laminar fiamelet theory, the scalar dissipation rate increases with 
the reaction rate and is somewhat symmetrically distributed about the stoichiomet-
nc surface. Results for x are presented in Figure 5(a). The peak scalar dissipation 
rate in Figure 5(a) occurs on the oxidizer side, a phenomenon attributable to the 
slightly larger vorticity on that side (specified as part of the initial conditions) that 
causes more mixing and consequently larger gradients on that side. The x profile 
lies within an envelope that appears to mark the response of a typical laminar-like 
fiamelet. For instance, the inverse of the scalar dissipation rate after being appro-
priately normalized is indicative of a local Damköhler number (Peters, 1986). The 
instantaneous Peak reaction rate associated with a laminar fiamelet increases mono-
tonically as this quantity is decreased, until abrupt extinction occurs (Williams, 
1985). However, the classical hypothesis used in non-premixed fiamelet modeling 
(Peters, 1986, Warnartz and Rogg, 1986) that Z and x are uncorrelated, appears 
to be invalid, when the combustion occurs in the fiamelet regime. 

In Figure 5(b), we present the effect of Schmidt number on the scalar dissipation 
rate. The scalar dissipation rate is skewed away from the species that has a higher 
diffusivity. The higher diffusivity of species A smooths its spatial gradients and, as 
discussed above, simultaneously moves the reaction zone into the "B-side". The 
results of Figure 5(b) suggest a means to lower the local value of the instantaneous 
scalar dissipation rate by systematically involving differential diffusion effects. This 
has been identified as a topic of further investigation by this group. 

4.2. Flame topology 

The reaction zone is observed to undergo local extinction as the Daniköhler nuni-
ber is reduced due to an increase in the local scalar dissipation rate or due to 
vorticity-induced strain. The flame surface becomes interrupted, as is apparent
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FIGURE 5(B). Distribution of the scalar dissipation rate x with respect to the 
mixture fraction Z (3-D simulation, Do = 2.5, SCA = 0.5). 

FIGURE 6. Distribution of the maximum reaction rate th in the turbulent flowfield 
(Y-Z plane, 3-D simulation, Da = 1).
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Y
	

Y 

FIGURE 7(A) AND 7(B). On the left, distribution of the reaction rate; on the right, 
distribution of the scalar dissipation rate, at a specified z-location in the turbulent 
flowfield (3-D simulation, Da = 1) 

from Figure 6. In this flame, "holes" occur where frozen flow, i.e., pure mixing, ex-
ists. In accord with laminar flamelet theory, the extinguished locations correspond 
to a high rate of the instantaneous scalar dissipation rate. This situation is clear in 
Figures 7(a) and 7(b), in which a flame is cut in the z-direction (corresponding to 
Figure 6) at a specified location and contours of the reaction and scalar dissipation 
rates are presented. 

Extinction may also occur due to "flame-shortening" effects. This occurs when 
the product is not convected away at a rapid enough rate such that the reactive 
species are not present in a high enough concentration to sustain the chemical reac-
tion. While we have observed the effect of flame-shortening in the two-dimensional 
databases, these effects are absent in the three-dimensional simulations, indicating 
the importance of including convection in a direction normal to (i.e. across) the 
reaction zone. 

The flame presented in Figure 6 includes locations that are fully-burning and 
those that are close to extinction. We locate the stoichiometric surface and assume 
this to be the location of the peak reaction zone for the case corresponding to equal 
Schmidt numbers for all of the species (cf. Figure 4(a)). At this location, the scalar 
dissipation rate and the tangential strain rate are found to be well correlated as 
is apparent from Figure 8. Therefore, vorticity effects imply increasing tangential 
strain but also increased mixing and, consequently, larger gradients and dissipa-
tion rates. The extinguished locations in the flame presented in Figure 6 are a 
consequence of high local tangential strain rates.
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If the Schmidt number of all of the species is assigned a value of unity, the curva-
ture of the three-dimensional flame is found to be symmetric, i.e, the stoichiometric 
surface exhibits both positive and negative curvature in an arbitrary reference frame. 
However, when the Schmidt number of the species A is changed to one-half, the 
probability of negative curvature along the stoichiometric surface increases. This 
result is presented in Figure 9. Negative curvature in this instance corresponds to 
flames that are curved into the B side. This observation is correlated with the figure 
4(b), where the reaction zone is found to be broader on the B side. 

A quantity of importance in mixing theories is the correlation coefficient between 
strain rate and scalar dissipation rate defined as: 

0 = 
(VZ.e.VZ) 

(e: e) (VZ.VZ) 

where e is the rate of strain tensor. Gibson's (1968) theory for constant density flows 
predicts a value of -0.5 independent of Prandtl number (in this study, the Schmidt 
number is the appropriate quantity). Kerr (1985), Leonard, and Hill (1991) and 
Nomura and Elghobashi (1992) report values of this quantity in the range -0.4 to 
-0.5. Our simulations give a value of -0.6 when evaluated at the flame surface for 
Da = 1. The larger correlation is likely to be a result of dilatation associated with 
heat release in our computations. In Figure 10, the pdf of the magnitude of the 
cosine of the angle between the mixture fraction gradient and the principal strain 
rate directions at the flame surface is plotted. It is clear that the most probable 
alignment (Gamma) is one in which the scalar gradient is aligned with the most 
compressive strain rate direction. This picture is consistent with the computed 
correlation coefficient.

4.8. Field Structure 

In order to compare the field structure of the simulated flames with that of 
laminar flamelets, we locate the stoichiometric surface and postprocess the data in 
order to interpolate the maximum reaction rate normal to this surface. The value 
of the peak reaction rate so obtained is presented with respect to the inverse of the 
scalar dissipation rate in Figure 11; the plotted values are made nondimensional 
using the reference values of the initial laminar flame. It is apparent that, for a 
given value of the maximum reaction rate, there exists a maximum value of the 
scalar dissipation rate (or a minimum value of 1/(/Xiam). Chemical reaction at 
that rate is not sustained if the corresponding maximum scalar dissipation rate 
is exceeded, and must increase. This dynamic situation continues until a critical 
value of the scalar dissipation rate is reached at which extinction occurs. The lower 
bound on that curve is a trace corresponding to the response of a typical laminar 
flamelet. However, as is obvious from Figure 11, the reaction rate-scalar dissipation 
response in the 3-D turbulent flame need not follow the typical laminar flamelet 
trace, thereby indicating circumstances under which the classical flamelet approach 
is inadequate. 

The flamelet approach assumes that the length scales involved with the strain 
rate are much smaller than the small scales in the turbulent flow such that the
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FIGURE 10. Pdf of the magnitude of the cosine of the angle between the scalar 
gradient and the principal strain directions (3-D simulation, Da = 1). 

flame is strained by vorticity and convection in the outer flow. This circumstance 
holds true for the present simulations, in which it is apparent that vorticity does 
not penetrate the flame except at locations where extinction is observed. A contour 
map of the vorticity field is presented in Figure 12. In the high temperature region 
(where the reaction zone is located), the dynamic viscosity increases, which has 
the effect of locally damping the turbulence. If turbulence levels are high enough 
and the vorticity is not sufficiently decreased, extinction occurs (cf. Figure 7(a),(b) 
and 8). We speculate that deviation from the bounds indicated by laminar flamelet 
theory is due to a transient response involving finite rate chemistry, i.e., the peak 
value of the reaction rate lags changes to the local instantaneous scalar dissipation 
rate. The reason for this lag is due to the reaction rate being influenced not only 
by the local temperature but also by the local fuel and oxidizer mass fractions. 
The influence of extinction on the distribution of the reactive species is clear from 
Figures 2(a)-2(c). The effect of turbulence on the flame appears to be such that 
enhanced mixing convects more fuel (or oxidizer) to the reaction zone than in a 
purely diffusive situation or one corresponding to a typical laminar flamelet, thereby 
enhancing the local instantaneous reaction rate. The local temperature does not 
fall dramatically since the reactive species that is convected to the reaction zone 
comes from locations that are already hot (or at least warm). In Figure 13, the 
reactive species mass concentration at the reaction zone is presented for the case 
corresponding to Figure 11. The lower bound in this distribution is to be interpreted 
as that corresponding to the response of a laminar flamelet. It is obvious that higher
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FIGURE 11. Distribution of the maximum reaction rate th mass concentration with 
respect to the inverse scalar dissipation rate l /(X/Xtam) (3-1) simulation, Da = 1). 

X 

FIGURE 12. Distribution of the vorticity field in the turbulent flame (X-Y plane, 
3-D simulation, Da = 1).
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concentrations of reactive species are to be found than is proposed by flamelet 
theory. A systematic study of the seemingly transient effect induced by turbulent 
mixing has been identified as another topic of further investigation by this group. 

0.3 

1/ (X / XIam) 

FIGURE 13. Distribution of the reactive species A mass concentration with respect 
to the inverse scalar dissipation rate 1/ (X/Xlam) (3—D simulation, Da = 1). 

5. Conclusions and perspectives 
Direct numerical simulations databases obtained using a compressible, variable 

property code have been investigated in order to study turbulent non-premixed 
flames established in two- and three-dimensional configurations. The flame is as-
sumed to react fuel and oxidizer to form product through a global single-step re-
action. A laminar flame is established at an initial time after which it is allowed to 
interact with a turbulent flowfield. From the databases that were thus created, the 
global description, flame topology, and field statistics are computed. The effects 
due to unequal species diffusivities is examined by changing the Schmidt number of 
one reactant. 

The flames are found to extinguish when the scalar dissipation rate in the reaction 
zone exceeds a critical value. This rate, in turn, is well correlated with the tangential 
strain rate experienced by the flame. Flames that experience local extinction along 
the flame surface are found to exhibit global characteristics that are intermediate 
between those pertaining to frozen flow and fully burning situations. The reaction 
zones of such flames are thicker in both physical and mixture fraction space. It is 
determined that the scalar dissipation rate profile can be skewed with respect to the 
stoichiometric surface by effects stemming from unequal vorticity on the two sides
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of the flame and, also, due to effects of unequal diffusivity. Differential diffusion 
also skews the curvature of the flame surface such that the flames are curved into 
the species that diffuses at a slower rate. 

The response of the quasi-laminar flame is bounded by the characteristics typical 
of a laminar flamelet although significant deviation from this behavior is also ob-
served. In particular, convection of reactants into the reaction zone suggests that 
the reaction rate may lag the change in scalar dissipation rate (or tangential strain 
rate) at the stoichiometric surface. 

Several topics which require further investigation have been identified during this 
study. These include a study of the effects due to differential diffusion, the role 
of reignition in locally extinguished flames, and the deviation of the behavior of 
quasi-laminar flames from a flamelet-like behavior due to transient turbulence-
related effects. 
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Structure of turbulent non-premixed 

flames modeled with two-step chemistry 
By J. H. Chen', S. Mahalingam 2 , I. K. Pun 3 AND L. Vervisch4 

Direct numerical simulations of turbulent diffusion flames modeled with finite-
rate, two-step chemistry, A + B -' I, A + I -+ P, were carried out. A detailed 
analysis of the turbulent flame structure reveals the complex nature of the penetra-
tion of various reactive species across two reaction zones in mixture fraction space. 
Due to this two-zone structure, these flames were found to be robust, resisting ex-
tinction over the parameter ranges investigated. As in single-step computations, 
mixture fraction dissipation rate and the mixture fraction were found to be statisti-
cally correlated. Simulations involving unequal molecular diffusivities suggest that 
the small scale mixing process and, hence, the turbulent flame structure is sensitive 
to the Schmidt number. 

1. Introduction 
The development of turbulent combustion models that accurately reflect key phys-

ical phenomena is essential for many engineering applications. Modern laser-based 
diagnostics applied to simplified laboratory flows are providing valuable data that 
is essential for any model development. However, since chemical reactions in flames 
proceed by a series of elementary steps, it is extremely difficult to isolate the role 
played by individual species and individual reaction steps on turbulent flame struc-
ture. Thus the task of studying the two-way coupling between turbulence and 
combustion becomes formidable. Recently, direct numerical simulations (DNS) of 
turbulent non-premixed flames with simplified chemistry have proven to be useful 
in studying various aspects of the problem. 

DNS of turbulent diffusion flames including complex geometry and full chemistry 
is neither feasible with present-day computers, nor is it desirable since the objectives 
of DNS are usually to study specific aspects of the full problem. It is in this spirit 
that we studied the influence of turbulence on the structure of non-premixed flames 
in which chemistry is modeled through the following two- step mechanism: 

A+B-I ; A+I-'P.	 (1) 

The stoichiometric coefficients are chosen. so that the global step is identical to 
the one step mechanism discussed by Chen ci al (1992). The mechanism and the 
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parameters were chosen to model stepi as a radical production step in which the 
intermediate I is produced followed by a radical consumption step in which the 
intermediate I is consumed to form the product P. Step2 proceeds with a small 
activation energy and a large enthalpy of reaction compared with stepi. Usually, 
the intermediate radical species I diffuses at a faster rate compared with the other 
species. Only Fickian diffusion is modeled. Such reaction mechanisms have been 
studied using large activation energy (for both steps) asymptotics by Margolis and 
Matkowsky (1982). They point out that the case wherein the radical species con-
centration has a non-zero peak is typical of multi-step flames. The selected reaction 
mechanism may also be used to model practical flames (such as hydrocarbon oxida-
tion) using global parameters. Altering the molecular diffusivity of the intermediate 
species can lead to modifications to flame structure and a change in flame temper-
ature. This latter effect could be significant in accurately predicting thermal NOx 
formation in practical combustors (Law and Chung, 1984). Experimental mea-
surements by Kerstein ci al (1989) in nonreacting flows suggest that effects due 
to differential diffusion are not insignificant, and, hence, it is important to include 
them in models of chemically reacting flows. In reacting flows with significant heat 
release, these effects are likely to be amplified because of significant decrease in local 
Reynolds numbers due to an increase in kinematic viscosity with temperature. 

The goal of this work is thus to obtain a good understanding of turbulent non-
premixed flames modeled by a two-step mechanism, to identify the role of the 
intermediate species on flame structure, and to understand the significance of dif-
ferential diffusion on flame structure. 

2. Model problem 
The problem studied is the interaction of turbulence with an initially unstrained 

laminar diffusion flame. Computations to date have been performed over a two-
dimensional square domain with 129 x 129 equi-spaced grid points. A laminar 
diffusion flame in which species A and B are present on either side of the flame 
(located at approximately x = 0) is initialized. Non-reflecting boundary conditions 
in x and periodic boundary conditions in y are imposed. The full compressible form 
of the equations of continuity, Navier-Stokes, energy, and species are solved using 
higher-order finite differencing schemes. The code used was developed by Trouvé 
(1991) for 3D premixed flames and subsequently modified for non-premixed flames. 
The treatment of boundary conditions and the differencing scheme is based on the 
methodology of Poinsot and Lele (1991). Fluid viscosity varies with temperature 
according to a power law with an exponent of 0.76. 

2.1 Governing equations and parameters 

The governing equations and non-dimensionalization are discussed by Chen et 
al (1992). In this subsection, the evolution equations of various species and the 
parameters associated with the two-step chemistry model are discussed. 

The generalized chemical scheme is given by: 

iiA, A + VBB -' vj I ; l/A,A + vj2 I -+ iipP,	 (2)
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where the v's are the stoichiometric coefficients. 
We define the following mass ratios: 

WBVB	 - Wjvj,	 - Wjz'12 	 Wpvp 
rAB =	 ,	

- ,	
r412	 ' r4p 

= WA VA2' 
(3) 

- WA A 1	 WAVA	 WAVA.  

where WA, W8 , WI, and Wp are the molecular weights of species A, B, I, and P 

respectively. 
In terms of mass, the overall reaction is given by 

1A+rB—(1+r)B ,	
W WBVB 

4[v+v L'	
(4) 

A2 aq2 

Let qi and q2 be the energy released per unit mass of species A consumed in 
stepi and step2 respectively, and let 6 = q /qi. Then from the definition of the 
adiabatic flame temperature, one can show that the following equality, expressing 
global energy conservation, has to be satisfied: 

qi [e + ö(i -	
=	

[1 + ] c(Tj - T0 )	 (5) 
i/A 1 + VA2 

where T1 is the adiabatic flame temperature, YA,O is the mass fraction of species 
A in the unmixed A stream, c3, is the specific heat, T0 is the temperature of the 
unmixed A and B streams, and 0 is the overall equivalence ratio defined as: 

YA,O (6) 
s B4O 

where YB4O is the mass fraction of species B in the unmixed B stream. Continuity 
and Navier-Stokes equations are given in Chen et al (1992) and are not repeated 
here. The energy and species equations are: 

OpE O(pE+p)u1 - O(ur,) 	
0 (AO')+q.tbA^+q2tbA,, + 	 o	 - Ox, +

	 (7) 

OpYA OPYAUI - 0

axi (	

0YA"	 (8) 
01 +
	 -	 PDA--1—WAI—WA2, 

axi

OPYB OPYBUI - 0 

(PVB OYB'	 (9) 
axi

+ 	 - r-. T_ —rARwA,, 

__ 
O^It
—— 
O 

+ 
pYj OpYju = 0 

- pD-1 +rAI,wA, —rAI2wA2, 	 (10)
axiaxi

OpYp OpYpu 1 — 0 1 OYp\ 

Ot + 0	 —	
+rApwA2,	 (11)
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where

	

PUkUk	 P pE= 
2	 (12) 

In the above equations, p denotes the fluid density, E denotes the total (internal 
plus kinetic) energy per unit mass, and y is the specific heat ratio taken to be 1.4. 
The thermal conductivity ) and the molecular diffusivities DA, V8, VI, and D 
are related to the dynamic viscosity ,u through the Prandtl and species Schmidt 
numbers. The other symbols have the usual meaning as in the standard literature. 
The reaction rate terms tbA, and tbA 2 are given by the Arrhenius expressions: 

WA, = B1PYAPYB exp(_ L), and WA 2 = B2PYAPYI exp (-), (13) 

or alternatively in the form:

	

G
WA1 = B1PYAPYB eXP 	 (14) - a(1 - r) 

and

G

i3(1—r) \
) ,W A2 = B2PYAPYI eXP - 	

(15) 
(1 - r) 

where Ta, and T02 are the activation temperatures associated with stepi and step2, 
r is a nondimensional temperature defined as 'r = (T - To)/(T1 - To) as given 
by Williams (1985), B 1 = B1 exp(-0 1 /c) and B 2 = B2 exp(_132 /a) are the pre-
exponential factors, and a is a temperature factor defined as c = (T1 - To)/T1. 

In the simulations reported here, the following values were chosen for the stoichio-
metric coefficients: VA, = VA 2 =1/2, ZIB = Vj, = V12 = vp = 1, so that the overall 
scheme corresponds to the one-step model used by Chen et al (1992). Values for 
other constants are: a = 0.8, 13i = 8, fl2 = 2, 6 = 5, consistent with the discussion 
in Section 1. The value of the Prandtl number is unity. The Schmidt numbers are 
SCA = SCB = Scp = 1. The Schmidt number of the intermediate species Sc, = 1 
unless otherwise noted. 

2.2 Initial conditions and turbulence field 

The generation of initial conditions corresponding to profiles associated with a 
one-dimensional, unstrained laminar diffusion flame was achieved by the following 
procedure: the flowfield is initialized with the solution to the one-step chemistry 
problem discussed by Chen et al (1992). The second reaction is turned "off" by 
setting B2 = 0, and the product profile for the one-step model is used as the 
profile for species I. The equations are time-advanced, and, simultaneously, the 
pre-exponential coefficient B2 is increased until the desired value is reached. Care 
is taken to ensure that the flame does not extinguish during this process. Once the 
pressure waves exit the domain, the flowfield is saved (after any required rescaling), 
and, from this point forward, the turbulence is allowed to interact with the flame.
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FIGURE 1. Species concentration profiles across the initial 1D laminar flame for a 
representative condition (Da = 1). 

For details on the turbulence characteristics and definition of the global Damköhler 
number, Chen et al (1992) may be consulted. A plot of the species profiles of 
the laminar flame is presented in Figure 1. It is clear that the concentration of 
the intermediate is significant. Its peak value is a measure of the extent of phys- 
ical separation between reaction zones associated with the production (stepi) and 
consumption (step2) of the intermediate species. 

3. Results and discussion 
A quantity that is often used in descriptions of non—premixed flames is the mixture 

fraction, defined for our choice of stoichiometric coefficients, molecular weight,s and 
unmixed stream concentrations as: 

2YA - - 2YB +2
4 

such that in the unmixed A stream, Z = 1, and in the unmixed B stream, Z = 0. 
When all the molecular diffusion coefficients are equal, Z is a conserved scalar. 
In the limit of infinitely fast chemistry, at the flame YA = 1 B = Y1 = 0, giving 
Z 1 = 1/2, whereas if the second step is relatively slow compared to the first step, 
at the flame YA = YB = 0, Y1 = 1, giving Z 2 = 1/4. Thus these two limits of 
Z identify the locations of the reaction zones under these limiting cases. Finite 
rate chemistry will tend to cause a deviation from these two stoichiometric surface 
locations. Note that Z is not a conserved scalar when the diffusivities of the various 

z= (16)



394	 J. H. Chen, S. Mahalingam, I. K. Pun 4 L. Vervi.ch 

1.0 

0.9 

0.8 

:: 
CD 
CL

0.5 CD

0.2 

0.1 

0
0	 0.2	 0.4	 0.6	 0.8	 1.0 

Mixture Fraction 

FIGURE 2(A). Distribution of species A mass fraction YA, versus mixture fraction 
Z (Da = 1). 

species are not equal. In Figure 2(a), the mass fraction YA is plotted as a function 
of Z. It is clear that most of the data points lie close to the equilibrium line, 
represented by the lower boundary of the data points. The penetration of species A 
into the B regime is due to finite rate kinetics. The scatter in these data points is 
due to unsteady effects associated with the turbulence field. The variations of YB 
and Y1 and the reduced temperature T are shown in Figures 2(b)-(d). These results 
are consistent with Figure 2(a). It is apparent from Figure 2(d) that no significant 
drop in temperature is seen, suggesting that extinction is not seen for the conditions 
of the present simulation. 

Reaction rate profiles associated with stepsl an(l 2, respectively, are presented in 
Figures 3(a)-(h). Several features may be readily observed. It is clear that reaction 
rates for steps 1 and 2 peak for Z 0.45 and Z 0.58, respectively. Since the 
mass fraction of species I is significant where reaction 1 occurs, it is apparent from 
the definition of Z that the shift would be towards lower values of Z. Reaction 
2 occurs on the A side of the flame, where A is in excess, thus shifting the peak 
towards larger values of Z. For the parameters chosen, we have two reaction zones 
that are not completely segregated in mixture fraction (and physical) space. It is 
clear from these plots and the plot of reduced temperature (Figure 2(d)) that no 
extinction has occurred in either step. This is a significant observation since the 
global Damköhler number is comparable to the case for single--step chemistry for 
which extinction was observed (see Chen ci al, 1992). An increase in the number 
of radical-like species and segregation of reaction zones apparently makes the flame
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FIGURE 2(B). Distribution of species B mass fraction YB, versus mixture fraction 
(Da - 1).
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FIGURE 2(c).	 Distribution of intermediate species I mass fraction Y1 , versus 
mixture fraction (Da = 1).
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FIGURE 2(D).	 Distribution of reduced temperature r versus mixture fraction 
(Da = 1). 

less sensitive to extinction either by strain or flame shortening. 
A quantity that may be used to characterize reaction-diffusion zones is the scalar 

dissipation rate of the appropriate scalar, defined for species A as: 

	

XA = 2DAVYA VYA	 (17) 

In Figures 4(a)-(c), the scalar dissipation rates of scalars A, B, and the interme-
diate species I are plotted as functions of mixture fraction. Results for species A 
are very similar to that for species A in the single step case (compare with Figure 
2(b) in Chen et al, 1992), with the peak occurring at a mixture fraction of approx-
imately 0.7. Note, however, that there are no data points corresponding to frozen 
flow in the present case. This is consistent with the fact that no extinction was 
observed for the conditions simulated. Penetration of species A into the B side 
is apparent, but this is solely due to finite-rate kinetics. The scatter in the data 
points is due to unsteady effects. Results for species B complement those for A. 
Results for species I are interesting. If the second reaction were suppressed, it is 
clear that one would see a minimum in XI for Z = 0.5, with two symmetric peaks 
on either side, corresponding to locations where the molecular diffusion of species 
I would be highest. Note that since I is consumed by A in step2, the peak on the 
A side is enhanced, relative to the peak on the B side, with the minimum shifted 
to approximately Z = 0.4. This location corresponds to generation of species I by 
step 1.
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FIGURE 3(A).	 Distribution of reaction rate for step 1 versus mixture fraction 
(Da = 1). 
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FIGURE 3(B).	 Distribution of reaction rate for step 2 versus mixture fraction 
(Da = 1).
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FIGURE 4(c). 	 Distribution of dissipation rate of intermediate species I versus
mixture fraction (Da = 1). 

In Figure 5(a), the distribution of the scalar dissipation rate of the intermediate 
as a function of the mixture fraction for Scj = 0.5 is shown. It is clear that the 
rapidly diffusing intermediate species penetrates further into the A side (compare 
with Figure 4(c)). Instantaneous contour plots of xi in physical space for Scj = 1 
and Scj = 0.5, shown in Figures 5(b)-(c), reveals that the dissipation zone is larger 
when the species diffusion coefficient is larger (ie., Sc, lower). This result suggests 
that small scale mixing is sensitive to the molecular diffusion coefficient of the 
intermediate species even though turbulent diffusion is the more active process. It 
is clear that three dimensional results need to be examined before one can draw 
definitive conclusions. 

In Figure 6, the mixture fraction dissipation rate x defined as: 

x=2VVZ•VZ,	 (18) 

is plotted as a function of mixture fraction. 
This picture is qualitatively similar to the results for single step chemistry pre-

sented by Chen et al (1992), with the exception that no extinction is observed in the 
present case. It is clear that a correlation exists between x and Z contrary to the 
assumptions made in laminar fiamelet theories (Peters, 1986, Warnatz and Rogg, 
1986). 

4. Conclusions 
From the first study of non-premixed flames modeled by a two-step reaction
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FIGURE 5(A).	 Distribution of dissipation rate of intermediate species I versus 
mixture fraction (Scj = 0.5, Da = 1). 
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FIGURE 5(B). Intermediate species dissipation rate contours (Scj = 1.0, Da = 1).
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mechanism in a compressible, turbulent flow, two-dimensional databases were gen-
erated. Finite values of the intermediate species mass fraction arise as a result of 
a slight segregation of the reaction zones associated with the two steps. A con-
sequence of the segregated reaction zones is that the flame is less susceptible to 
extinction compared to flames modeled with a single-step, having an equivalent 
overall reaction step. It was demonstrated that the assumption of statistical in-
dependence between the mixture fraction and its dissipation rate is a poor one, 
invalidating an important assumption made in flamelet models. It is expected that 
these results would hold for three-dimensional simulations currently in progress. 
Preliminary results from simulations in which the intermediate species diffuses at 
twice the rate compared to the other species suggest that the small scale mixing 
process and, hence, the turbulent flame structure is significantly influenced. Fur-
ther examinations of the flame structure and flame response to turbulence are being 
carried out. 
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Stochastic modeling of turbulent reacting flows 

By R. 0. Fox', J. C. Hill', F. Gao3 , R. D. Moser 4 , AND M. M. Rogers4 

Direct numerical simulations of a single-step irreversible chemical reaction with 
non-premixed reactants in forced isotropic turbulence at R,, = 63, Da = 4.0, and 
Sc = 0.7 were made using 128 3 Fourier modes to obtain joint pdfs and other statis-
tical information to parameterize and test a Fokker-Planck turbulent mixing model. 
Preliminary results indicate that the modeled gradient stretching term for an inert 
scalar is independent of the initial conditions of the scalar field. The conditional 
pdf of scalar gradient magnitudes is found to be a function of the scalar until the re-
action is largely completed. Alignment of concentration gradients with local strain 
rate and other features of the flow were also investigated. 

1. Introduction 
Modern treatments of the, theory of chemically reacting turbulent flows are often 

based on the probability density function (pdf) method, since in the pdf equations 
for the concentrations of the chemical species, the chemical reaction terms are closed 
in the statistical sense (O'Brien 1980, Pope, 1985). However, the mixing terms 
involving molecular diffusion are not closed, so statistical models are needed for 
these terms. The shortcomings of the commonly used coalescence-dispersion models 
and LMSE closures have been well-documented (Kosiy & Givi, 1987, Leonard & 
Hill, 1991), and more recent closures such as the mapping closure (Chen et al. 
1989, Pope 1991, Gao 1991) and the linear-eddy model (Kerstein 1991) are being 
investigated. 

In the present study, the Fokker-Planck (FP) closure is applied to the joint scalar-
scalar gradient pdf for a two-species, single-step, irreversible chemical reaction 

	

A + B -+ Products	 (1) 

of non-premixed reactants in forced, homogeneous isotropic turbulence. The mass 
conservation equation for the concentration of reactant A (4A) is 

194A	 00A = D_
O2A 

- SA,	 (2) 
Ot	 3xOx 

1 Kansas State University 
2 Iowa State University 
3 Center for Turbulence Research 
4 NASA Ames Research Center
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where SA = —kOAOB in the work described here (a similar equation described the 
concentration of species B). In the current development, it is assumed that the 
scalar diffusivity D is the same for both reactants and the product of reaction and 
that all physical properties are constant, including the finite reaction rate constant, 
k. The joint pdf's of the reactant concentrations and their gradients are used in the 
model discussed here to avoid problems common with closures based on pdfs of the 
reactant concentrations alone. 

The joint pdf equation for the scalars çI'A and çbB and their gradients OA and 1,bB 
may be written 

0P(4A, B) =	
[SAP] - —p 

&
0- 

B 
. [S8P] 

—Di- [(7,bk'A,B)P] — D -  [(IA,B)P]	 (3)a02 	 B 

02 
- 2D00 	 [(tI'AiibBiIQA,c'B)P1 

0P(q A , OB, OA, ,bB) 0	 0 
= - T[SAP] -

('98 

o r OSA
 [2^0-AOAiPl 

- 
°Ai

[SBPJ 

o 
[ "SB V'BiP] 

- O /'Bi OOB 

- Molecular mixing terms	 (4) 

- 0bA 

- 0bB 

where P( ) is the probability density function of its arguments and the arguments 
to P on the right hand side of each equation are the same as those appearing on the 
left, SA and SB are the reaction source terms (both equal to —kO A OB in this work), 
d, = Ou i/&j is the velocity derivative tensor, and the summation convention 
applies to repeated indices. Clearly, the reaction terms in the above equations 
are closed. In the traditional scalar pdf formulation involving only concentrations 

, the three mixing terms in (3) must be modeled. In the joint pdf formulation 
studied here, the modeling is postponed to the gradient pdf equation (4), wherein 
the three molecular mixing terms (not shown) must be modeled as well as the 
scalar gradient magnification terms, the last two terms in (4). In the development 
to follow, the FP model studied here is further simplified by considering only a 
passive progress variable qf ' rather than both reactant concentrations and by treating 
the diffusion/reaction zones between the two reactants as locally one-dimensional. 
Among other things, this allows us to consider the magnitude of the scalar gradient 

'I rather than the full gradient vector. 
In this work, we compare the results of stochastic simulations with results from 

direct numerical simulations (DNS) and sample the DNS results to evaluate various



Stochastic modeling of turbulent reacting flows	 405 

quantities that appear in the pdf equations. Also, the computed fields were probed 
for physical insights suggested from previous simulations at lower Reynolds number 
(Leonard et al. 1988 and Leonard & Hill 1988, 1990, 1992). 

2. Approach

2.1. Direct numerical simulations 

To provide data to check the FP model, a direct numerical simulation of station-
ary, isotropic turbulence with chemically reacting scalars was carried out using the 
Rogallo (1981) method with 128 Fourier modes and low-wavenumber negative vis-
cosity to provide the forcing. The turbulence was allowed to evolve until it reached 
statistical equilibrium, at which time scalar fields for the reactant concentrations 
were initialized and the simulations were continued. Two sets of reacting scalar 
initial conditions were used in the simulation. Case I was begun from "blob" initial 
conditions in which the two reactants are segregated into three-dimensional "blobs" 
with thin diffusion zones between them. The distribution of blobs was determined 
from a passive scalar field using a method similar to that used by Eswaran & Pope 
(1988). However, in this case, we follow Leonard & Hill (1991) and use a passive 
scalar field that has evolved with the turbulence so that the initial blobs are corre-
lated with the velocity field. Case II uses 'slab' conditions, in which the reactants 
A and B are segregated into "slabs" with two planar (x-z planes) diffusion zones 
between them in the periodic domain. In both cases, the overall (average) reac-
tant concentrations were in stoichiometric proportions. The Damköhler number 
or dimensionless reaction rate coefficient was set at Da	 kAoq2 /e = 4.0 where 
q2 (uu,) and e is the dissipation rate of the turbulent kinetic energy 2zi(e1,e1j) 

(eij is the strain rate tensor). The Schmidt number Sc was 0.7 for all species. 
The simulations were carried out until te/q2 = 0.968. Figure 1 shows the reaction 
zones in the plane z = 0 at time te/q2 = 0.968 for the two cases, showing the nearly 
isotropic scalar field for the blob conditions and remnants of the initial dual reaction 
zones in the slab case. 

Comprehensive diagnostics of the simulated fields were generated, including 
marginal, joint, and conditional pdf's of the concentrations of the reactants and 
the conserved scalar 0 = OA - B, the magnitudes of their gradients, velocity field 
properties such as the vorticity and dissipation, and various correlations. 

2.2. Gradient alignment analysis 

An analysis of the alignment of the reactant concentration gradients was carried 
out to provide theoretical support for stochastic models and closures that assume 
one-dimensionality or alignment of scalar gradients in non-premixed systems (this 
includes fiamelet models, conditional moment closures, and the linear eddy model 
as well as the model developed here). The approach taken was to use (2) to ob-
tain an expression for the evolution of the cosine of the angle ILAB between scalar 
gradient vectors OA and OB, where IL AB = For cases in which 
D1z/Dt = 0, a linear stability analysis was performed to determine the stability of 
this state. General results were obtained for arbitrary reaction rate functions S(4),
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x 

FIGURE 1. Scalar &4cB (reaction rate over k) in an x-y plane at tc/q2 = 0.968 
for (a) blob initial conditions and (b) slab initial conditions. Contour increments 
are (a) 0.05 and (b) 0.1. Shaded areas indicate large values of the gradient 
amplification rate	 >
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FIGURE 2. PDF of the cosine of the angle between I,bA and ibB at te/q2 = 0.497 
for the blob case (F L AB = AiBI/(IAIIbBI)). 

including reversible reactions and the temperature-dependent kinetics. In addition, 
the alignment of reactant gradients with temperature gradient, the reaction product 
gradient, and the conserved scalar (OA - q5B) gradient was considered. The results 
pertinent to this study are summarized here: 

1. If FLAB(t = 0) = —1 (gradients initially aligned and opposed in the non-premixed 
system) then /AAB(t) remains equal to —1 (aligned), independent of the reaction 
rate and of the presence of products of reaction (in the reversible case) including 
temperature, independent of the diffusivities DA and DB (which may differ), and 
independent of the strain rate e,, except as noted below. 

2. A stability analysis of the case described in (1) above shows that in nonisothermal 
systems, the reactant concentration gradients can become misaligned, depending 
on the Zeldovich number and on the direction of the temperature gradient with 
respect to OA-

3.

 

If /IAB( 0) 0 —1 (gradients initially misaligned) then the irreversible reaction (1) 
tends to align the gradients of OA and 4'B-

4. As the reaction rate constant k in (2) becomes large, the reactants become seg-
regated such that j = —1 on the reaction surface and undefined elsewhere. 

5. The alignment of a reacting and non-reacting scalar, say qt and 4, is preserved 
as in (1) above and is not influenced by the reaction rate even if gradients are 
initially misaligned. 
Thus, in the simple non-prernixed reaction case considered here, the initial scalar 

gradients are aligned (zAB = — 1), and remain aligned for all time. This theoretical 
result was confirmed in the direct numerical simulations by examining the pdf of 
lAB, which is approximately a delta functions at —1 (see figure 2). 

2.3 Fokker-Planck closure 

A Fokker-Planck (FP) molecular mixing closure was developed by Fox (1992a) to 
describe the evolution of the joint scalar, scalar gradient pdf in a system of reacting
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one-dimensional, random-sized lainellae. Numerical (Fox, 1992b) and theoretical 
(Sokolov and Blumen, 1991a, 1991b) studies of diffusion in such systems have shown 
that the joint pdf evolves to a bivariate independent Gaussian pdf. However, if 
the scalar and scalar gradient are initially correlated, the correlation diminishes at 
a rate on the order of the scalar dissipation rate suggesting that the scalar and 
scalar gradient cannot be treated as independent random variables. Fox (1992b) 
has shown that the FP closure captures the form of the joint pdf and the decay 
rate of the correlation function for diffusion in random-sized lamellae in the absence 
of turbulent stretching, and suggested a modification to the closure to include the 
effect of the latter. In the following subsections, the application and extension of 
this model to the reacting system under consideration is presented. 

2.3.1 A single inert scalar 

In the following derivation for an inert scalar, the diffusion is assumed to be locally 
one-dimensional, so that only the magnitude of the scalar gradient is relevant. In 
§2.3.2, the alignment results of §2.2 will allow this treatment to be extended to the 
reacting multiple scalar case. For a scalar 0 and its gradient 0, the modified FP 
closure can be expressed in terms of a pair of stochastic differential equations: 

dq =	 ')dt + KB(q, t4')dW,(t),	 (5) 

dip = K 2 A(q5,)dt + G .,.w* tI,dt + KB,/')dW,,t,(t), 	 (6) 

where As,,, B,, A,1,, and B,1, are functions determined as in Fox (1992a), C.w*tI, 
is the gradient stretching term suggested by Fox (1992b), w is the turbulence 
relaxation rate defined by Pope & Chen (1990) (sec (9) below), and 

= D (I'2 )/( 2 ) = 6D/ A.	 (7) 

The turbulence relaxation rate, w, is a random variable defined in terms of the 
(random) pseudo-dissipation rate,

t)
ôu, 0u2 e*(x, = ii- 
oxj'	

(8) 

and the (nonrandom) turbulent kinetic energy, q2 )/2 = (uu)/2, as 

w*(x t) = 2e*(x , t)/q2(t). (9) 

Pope and Chen (1990) have proposed a stochastic differential equation for w whose 
coefficients are independent of 5 and 0, and which yields a limiting log-normal pdf 
for w . The gradient stretching constant, Ca,., is assumed to be independent of the 
initial conditions. 

The FP model can be used to derive equations for the moments of the scalar 
and its gradient. In particular for an inert scalar in isotropic turbulence, the exact 
equations for the variance of the scalar is 

d(2) - 
- —2D( 2 ),	 (10) 

di 
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and, from the model, the scalar gradient variance is 

d( V,2 )
	

(,2)2 

di	 (2) +2C.(w*tb2),	 (11) 

where C, is a parameter in the definition of the functions A, and Bp in (6). In 
the absence of turbulence (w* = 0), the above equations are closed and constitute a 
two-equation model for the scalar energy and its dissipation rate. For this case, Fox 
(1992b) has found that Cp = 3 gives a good fit to the random-sized lamellae data 
and is required by the limiting form of ( 02 )/(02 ) predicted by theory (Sokolov and 
Blumen, 1991a). Note that if w and & are uncorrelated, or if w is nonrandom as is 
often assumed in pdf modeling studies, then (w*02 ) (w*)(02 ) and the equations 
are again closed. In particular, if (w*) is time-independent, the long-time asymptotic 
behavior of the variances (characterized by constant (02)/(2)) can be determined 
as	

d(2)	
_i(w*)(2).	 (12) 

Note that the scalar rms decreases exponentially in the limit of large i and the rate 
is independent of D. Other molecular mixing closures for the scalar pdf, such as 
the LMSE model (Pope, 1985) usually take 

d( 2 ) - _C(*)( 2 )	 (13) 
di - 

with Co= 2.0. 
The FP closure discussed above extends standard scalar mixing models in two 

ways: (1) it models the scalar dissipation rate instead of assuming that A O is con-
stant, and (2) it treats the turbulence relaxation rate as a random variable so that, 
for example, regions in the flow with large will be correlated with regions of 
large scalar gradient and hence with increased mixing and reaction. Direct numeri-
cal simulations indicate that these qualitative features are characteristic of turbulent 
reacting flows (see Leonard and Hill, 1991 and §3). 

2.8.2 Multiple reacting scalars 

In the FP closure, multiple reactive scalars are handled by first considering an 
inert scalar 0 with gradient t, which are governed by the stochastic differential 
equations (5) and (6). Let q and 0, a = 1, ..., N, denote reactive scalars and 
their gradients, respectively, all with the same molecular diffusivity as 0, and with 
linearly dependent initial values; that is y, z, t = 0) = a,, O(x, y, z, 0) + b, and 
0Q (x,y,z,0) = acz/.'(x,y,z,O). As discussed by Pope (1985), the molecular mixing 
model to be developed below must be linear in the scalars , so in the absence of 
source terms

= F(,0)	 + Gt (q5,i/')l'aj - (F(,i/)) -	 (14)
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where F and G, are functions to be determined. Using the same arguments, it can be 
shown that a similar linearity property must hold for ba. Moreover, when the source 
term is zero, (x,y,z,t) = aa4(x,y,z,t) + b0 and l'(x,y,z,t) = a(x,y,z,t) 
for all t. The scalars thus remain correlated for all time, implying that the same 
two Wiener processes (Wo and We,) that appear in (5) and (6) must also appear 
in the equations for	 and	 (Fox, 1992a). Equivalently, the multiple reactive
scalar model can be formulated in terms of dçi and dib as follows. 

Assume that a local one-to-one differentiable mapping exists between 0 and 
namely	 =	 t). Differentiation then leads to an expression for the time-



derivative of cIa:

—--=Db 2

	

02	 (15) 

Given 0 and çb, (15) is closed; however, it cannot be conveniently solved using Monte 
Carlo methods. 

It is interesting that the conditional moment closure (CMC) (Bilger 1991) employs 
a similar mapping equation: 

Ot	
D(b2	

o2 

	

- =	 I )	 + Scr(II,...,4'N),	 (16) 

where D( 2 I) is the conditional scalar dissipation rate of the inert scalar given q. 
The CMC mapping equation is closed given qfi and results in a joint pdf for q and q 
with a 1-dimensional support (it falls on a curve in (qf, 4)-space). However, in the 
current formulation, the support will, in general, be 2-dimensional since each value 
of 1' will result in a separate curve in (q, çj)-space. Mell et al. (1992) have solved 
the CMC mapping equation numerically for the reaction A + B - P with D(t,b2Ic) 
and the pdf of 0 taken directly from DNS, and found good agreement with the joint 
pdf of 0 and OA computed from the DNS data (the curve computed by CMC falls 
near the maximum of the joint pdf found by DNS). In addition, they found that the 
CMC results are insensitive to the functional form used for D(02 5), which suggests 
that the source term may dominate the diffusion term in the mapping equation. We 
therefore hope that the crude model used for this term below will be adequate. 

In order to apply a Monte Carlo method, dç is written in terms of its partial 
derivatives:

d&	 + =d 2 dt,	 (17) 

or substituting (15) 

d, =	 + Db2()dt + S(g5, ..., q' jv)dt.	 (18) 

In (18) the diffusion term (premultiplied by D) is zero if the source term is zero or 
linear. Also, if the source term is such that 4 is time invariant (e.g., an infinitely 
fast bimolecular reaction) the sum of the diffusion and source terms is zero. Oth-
erwise it must be closed in terms of the 0, , q and 0, and the closure must be
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linear in Oc, and 0. as discussed above. The simplest closure hypothesis is to as-
sume that this term is independent of the modeled variables, leading to the simplest 
model of the form (14): 

dcta =	 d— (.?_dçi) + S(cbl,...,qN)dt. 	 (19) 
00	 ao 

The terms involving O/Ocb are closed in terms of /' (see below). 
To obtain a similar expression for di/'01 , note that our assumed form for 0,, implies 

that
oa oa  

'—	
(20)

The total derivative of 0aj is thus 

dbas =	 t/'d4+	 +	 Oi dt.	 (21) C902	 00	 &00 

The time derivative term can be evaluated by differentiating (15) with respect to 
x i to obtain

02 1	 ___	 O2O,2 \'OSaOfl 
i5j._90	 803 =	

0q52	
(22) 

which when substituted into (21) yields 

00&d+ 

+D2dt+DoO:2a	

(23) 
_ dt + 	 7tidt  

Terms involving more than one derivative of 4D. are not closed with respect to 
and	 The first term is modeled as zero, which is exact if Si is zero or linear and
the diffusion terms are modeled as in (19) yielding

OS, 0c1 
dt,bQ, =	 d&, - (	 d) + ,	 ---	 dt	 (24)a4loo

The functional form of i,b, in (20) implies that all the scalar gradients are aligned 
with the gradient of the inert scalar 0, in agreement with the analysis in §2.2. 
Therefore, it is not necessary to treat ik,, and t' as vectors. Without loss of generality 
we can let ik,, = 0,, i V i 1J0J (the projection of	 onto the 1' direction) and b = 
This is also consistent with the one-dimensional nature of the FP model for the 
inert scalar (equations (5) and (6)). It is also clear that O1Oq5 = t//'. With 
these simplifications the final model equations for the evolution of 	 and t' are 

ao. 04) (25)
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FIGURE 3. Evolution of the model constants (a) C,p and (b) C.,. in the direct 
numerical simulation for blob initial conditions and ---- slab initial condi-
tions.

O	 1OT	 'cIrO'	
(26) 

which in the absence of source terms are linear as required. 
Since the marginal pdfs of 0 and	 are both symmetric about zero, the expected 

value of ?I' obtained from (26) should be zero for all time. The FP closure for 
is similar to the LMSE closure since, in the absence of source terms, Oln 0/Ot = 
Oln I0I/Ot. But since Oln /Ot is not constant, the two closures are not identical; 
in particular, with the FP closure the joint pdf of 0 and V, evolves to a bivariate 
Gaussian (Fox, 1992a). 

The FP closure can be extended to scalars with nonequal molecular diffusivities 
by including a separate inert scalar with the same molecular diffusivity as each 
corresponding reactive scalar. The stochastic differential equations for the new 
inert scalars have the same form as Eqs. (5) and (6) except with 0 modified to 
include the correct molecular diffusivity. The same Wiener processes (WO and W,1,) 
must appear in each pair of stochastic differential equations as discussed by Fox 
(1992a).

2.4 Evaluation of model constants 

The FP closure has two "universal" constants C 1, and Cu* whose values can 
be determined using DNS data. The exact equations for an inert scalar and the 
magnitude of its gradient in a three-dimensional flow are 

DO 
= DV 2 ,	 (27) 

Dt 

Db 2 	 _____ 
= 2D&z ôô 	 (28) 

where eij is the strain rate tensor. By comparing the expected value of (28) with 
(11) derived from the FP model, the model constants can be evaluated as 

C -  u
P,02)'	 (29)
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FIGURE 4. Evolution of D(C,,,-1)(,,fr2)2 evaluated from DNS for Ca,. (tI)(4) 
slab initial conditions. 

and
('V20)(02) - 

CtP=	 (,2)2

blob and 

(30) 

The model constants, evaluated from the direct numerical simulations using (29) 
and (30), are shown as functions of time in figure 3. It is clear from figure 3a that 
the gradient mixing constant, C, depends strongly on initial conditions. For the 
anisotropic slab initial conditions, C, decreases steadily with time after an initial 
jump. On the other hand, for the isotropic blob initial conditions, C, 6.7 for 
all time. This difference is most likely due the difference in integral length scales 
of the scalar fields in the two cases. Integral length scale effects have not yet been 
incorporated into the FP closure, but have been shown to have a significant effect 
on the scalar dissipation rate (Eswaran and Pope, 1988; Eswaran and O'Brien, 
1989; Kosly, 1989; Jiang and O'Brien, 1991). For the slab case, scalar integral 
length scales are initially infinite in two directions and decrease as the turbulent 
advection creates a more isotropic field. For the blob case, the integral length 
scale is approximately constant for all time. In contrast, the gradient stretching 
constant, Cu,., shown in figure 3b appears to be independent of initial conditions 
and approximately equal to 4.7 for all time. 

An expression relating C, 1, and C.,. can be found from the limiting value of 
= 6( 2 )/(,2 ) . From Eqs. (10) and (11) for the FP model, the following relation 

is found for
d\2 

-	
(w2) 2 

	

12D(C 1, - 1) - 2C.,. 
(i12) 

A 4,.	 (31)
dt - 

For statistically stationary w*, (31) has a single stable limiting solution: 

-	 - D(C4, -1)(02)	
(32) 

(2) - C.(w*b2)
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Thus, if the model has asymptotic behavior consistent with the DNS, we should 
find that

D(C-1)(&2)2
-41	 (33) C. (w4/i)(42) 

for large I. The left side of (33) is plotted as a function of time in figure 4 for both 
the slab and blob cases. For both cases this quantity does indeed approach 1. 

Mantel and Borghi (1991) have proposed a two-equation model for scalar en-
ergy, scalar dissipation similar in form to (10) and (11) but with (*)(&2) in place 
of (w*I, 2 ). In their model, the coefficients are defined in terms of a turbulence 
Reynolds number Re 1 = (q2/2)lt /v so that, for large Re 1 , C 1, = f30 jR/2, and 
C,. = co/12, with ao = 0.9 and /3 = 1.25 found by DNS (Borghi ci al., 1992). 
For Re1 = 194 of the present DNS simulations, these expressions yield C 1, = 8.7 
and Ca,. = 6.3. These estimates are both 30% larger than the values given above, 
implying that the ratio C,1,/C. is similar. Since C,p = 3 in the limit where Re 1 = 0 
(Fox, 1992b), the Reynolds number dependence embodied in these large-Re 1 rela-
tions may not be valid for these relatively low Reynolds number DNS computations. 
(Although the Re 1 values for the DNS runs used to determine ao and 6o have not 
yet appeared in the literature (Borghi et al., 1992), they must be small due to the 
limitations of DNS.) This fact may explain some of the discrepancies between the 
two sets of values for the model constants. 

2.5 Application to the single-step reaction 

The FP closure described above has been used to generate joint pdfs of the 
reactant concentrations and their gradients for the 2-component, single-step reaction 
scheme (1) using a Monte Carlo simulation. For this reaction (25) and (26) yield: 

dqA = 
OA 

dO - ( LA dO) - kq5Al5Bdt, 	 (34) 

d4B = 
OB 

dO - (dqf) - kqAct.Bdt, 	 (35) 

d,bA = O
A
 dO - (d) - kcbA,bBdt - kqBbAdt, 	 (36) 

and

dbB = kd ,b - (d,b) - kqAibBdt - kcbB,bAdt.	 (37) 

The Monte Carlo algorithm uses fractional time-stepping to split the mixing and 
reaction steps into separate processes (Pope, 1985; Fox, 1992a). The expected 
values appearing in (34)-(37) are computed during the mixing step so that the 
mean values of the scalars and scalar gradients are constant during mixing. A 
constant turbulence relaxation rate, w = (w) was used in (6). The resulting joint 
pdf's are compared to the DNS results below.
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FIGURE 5. Conditional PDF of ln(I'I) given 0 (P(ln(I'I) 10)) for the direct nu-
merical simulation with (a, b) slab initial conditions and (c, d) blob initial conditions 
at (a,c) t€/q2 = 0.497 and (b,d) te/q2 = 0.968. At these times rms/rms(t 0) 

is (a) 0.846,(b) 0.645,(c) O.426, and (d) 0.172. 

3. Results

8.1 Statistics of the inert scalar field 

The DNS data have been used to compute a wide range of statistics involving the 
inert and reactive scalars and the magnitudes of their gradients. The marginal pdf 
P() for the inert scalar is nearly identical in shape, at a given rms value, to those 
reported in previous DNS studies. The marginal pdf of the log of the magnitude 
of the inert scalar gradient, P(ln ), approaches a nearly Gaussian form, but with 
a slightly longer negative tail, in agreement with the DNS results of Eswaran and 
Pope (1988).
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FIGURE 6. PDF of V 2 4 for the DNS with blob initial conditions at t€/q2 = 0.968. 

Of greater interest is the joint pdf of the inert or conserved scalar, çb, and its 
gradient, ,b, which has been the subject of both theory (Bilger, 1976; Fox, 1992a, 
1992b; Gao and O'Brien, 1991; Meyers and O'Brien, 1981; Valiño and Dopazo, 1991) 
and experiments (Anselmet and Antonia, 1985). In most reactive mixing closures 
(e.g., the fiamelet model), 0 and ,b are assumed to be independent so that the joint 
pdf is separable, P(,';t) = P(q;t)P(;t). In order to check for independence 
using the DNS data, the conditional pdf of 0 given 0, defined by P(010; t) = 
P(q,;t)/P(;t), has been computed. Note that if 0 and 0 are independent, 
then P(5; t) = P('; t) and will thus be independent of g. Examples of the 
computed conditional pdf are shown in figure 5. From figure 5a (cbrms/cbrms(t = 
0) = 0.846) it can be seen that near the start of the molecular mixing process, 
the scalar and scalar gradient are correlated. The correlation decays slowly so 
that in figure 5b (qrms/qrms(0) = 0.645) the conditional pdf continues to show a 
important 0-dependence. Not until the molecular mixing process is farther along 
(çrms/c5rms(0) = 0.172) as shown in figure 5d does the conditional pdf appear to be 
independent of 0. 

Another interesting pdf is that of the Laplacian of 0 shown in figure 6 on a log-
linear plot for *rms/rms(0) = 0.172. As is clear from the form of the pdf, it is 
non-Gaussian with nearly exponential tails over 4 decades. 

3.2 Statistics for inert scalar mixing 

Statistics involving the scalar or scalar gradient and various turbulence quanti-
ties have been computed using the DNS data. For example, the scalar gradient-
turbulence relaxation rate correlation function, defined by 

(w*,2) 

(w*)( 2 ) - 

was found to be approximately time independent with values of 0.06 for the blob 
case and 0.15 for the slab case, indicating that w and ,/i 2 have a slight tendency 
to be simultaneously larger than their mean value. This tendency can be seen 

(38)



Stochastic modeling of turbulent reacting flows 	 417 

-4	 -Z	 U	 h	 14 

ln(w*) 

FIGURE 7. Conditional pdf of ln(II) given ln(*) for the DNS with slab initial 
conditions at te/q2 = 0.968.
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FIGURE 8.	 Conditional pdf of 0 given ln(w*) for the DNS with blob initial 
conditions at tc/q2 = 0.968. 

more clearly by examining the conditional pdf of ln(Ii/'j) given ln(w*) shown in 
figure 7 (slab case with 4rms/rms(0) = 0.645). From this figure it can be seen 
that the conditional pdf has a nearly constant shape but shifts upward as ln(w*) 

increases. This behavior is consistent with the FP closure (6) wherein w appears 
as a stretching (positive) term in the drift coefficient. 

Similar conclusions can be drawn from the conditional pdf of 0 given ln(w) shown 
in figure 8 for the blob case at qrms/rms(0) = 0.172. There it can be seen that 
larger values of ln(w*) lead to smaller conditional variances for 4. This is consistent 
with the model equations in that large ln(w t ) leads to large gradients and hence
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FIGURE 9. Conditional expectation of qAcfi (reaction rate over k) given en-
strophy (w2 ) and ---- dissipation (e2 ) for (a) slab initial conditions and (b) blob 
initial conditions at te/q2 = 0.968. 

faster scalar dissipation. 
Finally, as noted by Pope and Chen (1990), the DNS simulations confirm that 

the log of the pseudo-dissipation rate of the turbulence, Inc* is more nearly Gaus-
sian than is the log of the true turbulence dissipation rate, Inc. For example, the 
skewness and flatness of In  are —0.06 and 3.05, respectively, compared to —0.29 
and 3.24 for Inc at te/q2 = 0.968 

3.3 Statistics of reacting scalars 

Some statistical quantities evaluated in previous simulations in decaying turbu-
lence at lower Reynolds numbers (Leonard ci al. 1988, Leonard & Hill 1988, 1990, 
1992) and in a similar study for a non-reacting system (Nomura & Elgobashi 1992) 
were examined in order to determine the extent to which the present system exhibits 
the same physical behavior. For example, pdf's of the cosine between the directions 
of the reactant scalar gradients and the eigenvectors of the strain rate tensor, and 
plots of the eigenvectors superposed on reaction rate contours, show that there is 
considerable tendency for the most compressive eigenvector to align with the scalar 
gradients and to lie across the reaction zone. Furthermore, there is a similar but 
less pronounced tendency for the intermediate strain rate eigenvector to lie tangent 
to the reaction zones and isoscalar surfaces. 

Figures 9 and 10 show the effect of certain kinematic quantities on the reaction 
rate, and vice versa, at 1=0.92. In figure 9, for reaction rate conditioned on levels of 
strain and enstrophy, (cbAcB I e2 ) and (cbAcbB Iw 2 12) where e2 =e 2 e, it is seen that 
strain has a marked effect on reaction rate, but the effect of vorticity is considerably 
less. The converse plot, figure 10 for strain and enstrophy conditioned on reaction 
rate, confirms the previous observation of Leonard & Hill (1990) that conditional 
averages of e 2 and w2 12 are near their volume averages and each other, except for 
the regions of most intense reaction rate where the straining is very high and the 
enstrophy is appreciably less than the volume averaged value. 

Regions where the gradient amplification term, 	 is greater than
are shaded in figure lb. Clearly the largest values of this term 

are associated with peak values in the reaction rate, supporting earlier claims by
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FIGURE 10. Conditional expectation of enstrophy (Lo 2 ),and ---- dissipation 
(e2 ) given 4Ac6B (reaction rate over k) for (a) slab initial conditions and (b) blob 
initial conditions at te/q2 = 0.968. 

Leonard & Hill (1990, 1992) and underlining the importance of the modeled gradient 
amplification term in the FP model. Although not shown, the gradient amplifica-
tion term seldom takes on negative values and since 1I.'A and t,bB tend to be aligned 
and opposing in the reaction zone, the compressive part of e ij must dominate this 
term as expected. 

Finally, various scalar gradient-strain rate correlation coefficients important in 
mixing studies were evaluated. One such quantity, ap-
proaches the value -0.45 for the slab case and -0.40 for the blob case; the same 
values are obtained for the conserved or inertscalar 0 in these two cases. These 
values differ somewhat from the values -0.56 and -0.45 (-0.52 and -0.43 for the 
nonreacting scalars) found in decaying turbulence by Leonard & Hill (1990) and 
the value -0.5 found by Kerr (1985) for a nonreacting scalar in forced turbulence. 

The joint pdf of the reacting scalars, OA and OB have also been computed using 
the DNS data and can be compared to the joint pdf found from the FP closure. For 
example, the joint pdf at çbrms/cbrms(0) = 0.426 is shown in figure 11 and that found 
using the PP closure for the same value of 0rms/crms(0) in figure 12a. It can be seen 
that, despite the closure approximations needed to derive (19) and (24), the general 
shape of the pdf predicted by the FP closure corresponds closely to that found by 
DNS. In particular, the width of the curved region of significant probability is about 
the same in the DNS and the model. t 

The comparisons between the pdfs of the modeled and DNS gradients (figures 
11(b-d) and 12(b-d)) are not nearly as good, though the modeled gradients do have 
the correct order of magnitude. The strange bimodal structure of the gradient-
gradient pdf (figure 12d) is presumably caused by one of the modeling assumptions 
used to derive equation (24). 

This can also be compared to the CMC model which predicts no scatter about the curve (Riley, 

1992).
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FIGURE 11. Joint pdf's of reactant concentrations and gradients from the DNS 
for blob initial conditions at te/q 2 = 0.497. 

4. Conclusions 

Direct numerical simulations of a single-step chemical reaction between non-
premixed reactants in forced isotropic turbulence were made for both "slab" and 
"blob" initial scalar reactant configurations. As found in previous simulations at 
lower Reynolds number, the amplification of concentration gradients in the reaction 
zone by the strain field was seen to be an important feature of these flows, in that 
regions of large local reaction rate are coincident with regions of large values of the 
gradient amplification factor. 

An analysis of the alignment of various scalar gradients with each other pro-
vides some justification for treating the mixing process as locally one-dimensional 
as assumed in the Fokker-Planck model studied here and other closures. 

Comparisons were made between predictions of the FP closure and results of
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FIGURE 12. Joint pdf's of reactant concentrations and gradients from the FP 
model for the same conditions as in figure 11. 

turbulence simulations. The closure's treatment of gradient stretching as a bilinear 
term in the model equation is generally supported by the DNS data. For example, 
the gradient stretching constant was found to be independent of initial conditions, 
and the DNS results for the joint pdf of the scalar gradient and the turbulence 
relaxation rate were found to be consistent with the model. Likewise, the closure's 
prediction for the joint pdf of the reactive scalars is very similar in shape to the DNS 
result. However, it was also found that for the non-isotropic initial scalar field the 
gradient mixing constant appearing in the closure is not constant as assumed, and 
that the closure's prediction for the form of the joint reactive scalar gradient pdf 
differs significantly from the DNS result. The former can most likely be accounted 
for in the closure by incorporating scalar integral length scale information, and the 
latter by modifying the closure assumptions used in deriving (24) from (23). In any
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case, since it can be easily incorporated into existing Monte-Carlo simulation codes 
(Pope, 1985), the formulation of the FP closure in terms of a stochastic process 
offers a significant computational advantage over other closures that require the 
solution of a reaction-diffusion equation. 
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Panel discussion on computational combustion 
By J. C. Hill' 

A moderated panel discussion was held to gather opinions on the status of com-
putational methods for turbulent combustion and to assess the role and usefulness 
of direct numerical simulations in fundamental studies of turbulent combustion and 
in the development of engineering predictive models. Panelists were F. A. Williams, 
S. B. Pope, and T. Poinsot. It is clear that computational models are in need of 
considerable work for combusting flows and that DNS can be useful in their de-
velopment, in which canonical or simple problems are computed fully to validate a 
model or answer questions about the pertinent physics of the problem. 

1. Introduction 
An increasing portion of the research projects at the first four CTR summer 

programs deals with reacting flows -two of 30 in 1987, one of 23 in 1988, five of 
25 in 1990, and six of 23 in 1992 (Moin et al. 1987, 1988, 1990, 1992). Several 
of the studies involve direct numerical simulations of 2-D and 3-D reacting flows, 
some with Arrhenius kinetics and others for isothermal systems, some with volume 
generation from heat release (compressible codes) and others for isochoric motions, 
some with simple reaction kinetics and others for systems with complex chemistry. 
Most of the studies are motivated by questions dealing with turbulent combustion, 
although some do not deal with the combustion problem per .se but with simpler 
problems in order to answer specific questions about reacting flows. 

In support of these studies, a panel discussion was held to review the status of 
computational models for turbulent combustion. (See Table 1 for an outline of 
available types of computer models, noting those for which production codes are 
available.') A particular focus of the panel was to determine to what extent direct 
simulations are useful in support of these models or for investigating the fundamen-
tal physics of these flows. Indeed, there is a variety of degrees of refinement for 
DNS of turbulent combustion (constant /variable density, infinitely fast/finite rate 
chemistry, single step/complex chemistry). Due to resolutions requirements, the 
more elaborate the approach is, the more restricted the simulations are in terms 

1 Iowa State University 
2 Table 1 was prepared by D. C. Haworth with the assistance of the following members of the 
reacting flows research group: M. Baum, J. H. Chen, R. 0. Fox, F. Gao, J. C. Hill, S. Mahalingam, 
T. Poinsot, I. K. Pun, D. Reuss, A. Trouvé, and L. Vervisch. The designation 'production code' 
indicates that computer models of that type are in common use by the gas turbine industry, IC 
engine companies, and parts of the chemical and petroleum processing industries in the opinions 
of the above group.
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of Reynolds and Daniköhler numbers. So it is useful to ask whether the best com-
promise might be found and, in particular, whether including more physics in the 
simulations does not result in tractable problems with characteristics far from the 
range of Reynolds and Daxnköhler numbers of interest. Consequently, it was felt 
desirable to step back and reflect on the situation. 

The panel, moderated by W. C. Reynolds, consisted of the following members: F. 
A. Williams (University of California at San Diego), S. B. Pope (Cornell University), 
and T. Poinsot (CNRS, Institut de Mécanique des Fluides, Toulouse). The panelists 
delivered brief position statements (summarized in Section 2) and then responded 
to general questions in the discussion period (summarized in Section 3). 

Table 1. Types of turbulent combustion models.' Listed in increasing order of 
complexity. "Production" codes are in use for models marked with an 
asterisks. 

Turbulence 
Models

Combustion Models 

Premixed	 Diffusion	 Premixed/diffusion 

Arrhenius5 Equilibrium* 

One- £ EBU5 EBU5 

point, EBU/AErhenius5 EBU/Arrhenius5 

time- or ASM Simplified pdf Simplified pdr 

ensemble- RSM Flamelet* Flamelet* Flamelet* 

average pdf Full pdf Full pdf Full pdf 

Spatial LES Arrhenius Equilibrium 

filter RVM 0—equation Arrhenius

Notations: £ denotes algebraic length models, ASM = algebraic stress model, RSM = Reynolds 
stress model, EBU = eddy breakup model, LES = large eddy simulation (with subgrid model), 
RVM = random vortex methods, Simplified pdf = assumed pdf methods, Equilibrium = fast 
chemistry assumption. Arrhenius models are usually based on mean concentrations and neglect 
turbulent fluctuations. There are various versions of EBU and flamelet models. The last column 
refers to situations such as in IC engines where flames are partially premixed and where both 
types of flames exist. 

2. Position statements of the panelists 
This section presents the basic ideas contained in the position statements of the 

panelists, as interpreted by J. C. Hill. 
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2.1 Models for computing turbulent combusting flows 

(F. A. Williams, University of California at San Diego) 
To provide some framework for discussion, F. A. Williams presented the follow-

ing classification of the wide variety of computational models available for turbulent 
combusting flows (Liñ.n and Williams 1993): (1) 0-dimensional models (no turbu-
lence), (2) moment methods including algebraic closures, k-e(-g) models (KIVA, 
SPEED, FIRE, etc.), full second order models, (3) presumed pdf approximations 
using moments including BML and G-•equation for premixed flames and mixture 
fraction for diffusion flames, (4) pdf evolution methods including C/D and LMSE 
closures, (5) extended perturbation methods including RNG and moment modeling 
of the G-equation, fractals, etc., (6) field methods not based on the conservation 
equations (age theories in CSTR's for example), and (7) DNS. There are a number 
of models in (1)-(6) that have resulted in production codes (cf Table 1), which have 
met with varying degrees of success; however, in category (7), only LES is possible 
for any practical problem, but it does not yet exist for combustion. 

One of the overriding factors in selecting a model is the range of Da and Re in the 
problem at hand (See Fig. 2 in Williams 1985, which classifies the regimes). Other 
parameters are less important. Most models are for low to moderate Re L , and (7) is 
currently only possible at low FteL. No models seem to apply in the broken flamelet 
regime (high Re L , moderate Da). To illustrate the difficulty of validating a model, 
experimental (laboratory) data for turbulent flame speed can vary over nearly an 
order of magnitude, and this is reflected by the more than half dozen commonly 
used expressions for the turbulent burning velocity S. Some theoretical estimates 
of S t are clearly incorrect, and perhaps DNS can be of help, although extrapolation 
to high ReL will be difficult. 

2.2 Role of numerical simulation in the study of turbulent combustion 

(S. B. Pope, Cornell University) 
S. B. Pope makes the point that DNS of turbulent combustion cannot be done in 

the engineering context. For example, for a simple hydrocarbon-air reaction with 50 
chemical species and 200 reactions with time scales differing by as much as a factor of 
lO b , variable temperature and physical properties, and with the complex geometry 
of the combustor, DNS is not practicable with computer technology available now or 
in the near future. The way to proceed, however, is to use DNS to study phenomena 
in isolation by simplifying the problem until tractable, taking care to preserve the 
desired physics, and then using the results to develop statistical models which can be 
applied to practical problems, i.e. apply DNS to a model problem that contains an 
essence of the desired problem and which contains sufficient physics for the results 
to be useful (Pope 1990). 

Examples were shown from S. B. Pope's own studies of the use of DNS in constant. 
density, forced isotropic turbulence. These include the evaluation of the Reynolds 
number dependence of Lagrangian statistics of the velocity and acceleration fields



428	 J. C. Hill 

for a stochastic model suitable for engineering purposes (Yeung & Pope 1989), the 
evaluation of pdf's of mixture fraction (inert scalar field) in order to parameterize 
a mapping closure of mixing (Eswaran & Pope 1988, Pope 1991), and studies of 
the motion and curvature of material surfaces and stoichiometric surfaces (Pope ci 
al. 1989, Yeung ci al. 1990, Girimaji & Pope 1992) to determine characteristics 
needed for flamelet models; in the latter studies it was shown that curvatures become 
unbounded and that cusps form in finite times. 

In summary, statistical models can be applied to practical problems and DNS 
cannot, but models applied to simple problems accessible to DNS are useful for 
testing their foundations. However, one needs to be careful of extrapolating Re-
and Da- dependence. 

2.8 Direct numerical .simulations: one of the tools to study turbulent combustion 

(T. Poinsot, CNRS, Institut de Mécanique des Fluides de Toulouse) 
T. Poinsot presented several examples of the use of DNS to study turbulent 

premixed combustion. Applied to the flamelet approach, there is a three-fold com-
putational problem: (1) the validity of the fiamelet assumption has to be tested, 
then when this assumption is valid, it is necessary to compute (2) the flame surface 
density E and (3) the burning velocity or consumption rate per unit flame surface 
area, S. DNS computations have been made for 2-D and 3-D constant density 
and variable density flows, simple chemistry with Arrhenius kinetics and complex 
chemistry (including variable density in 2-D) (Rutland & Ferziger 1989, Cant et al 
1990, Poinsot ci al. 1991, Mahalingam 1989, Haworth & Poinsot 1992); in terms 
of the parameters U' /Uflame and lt/Lflame, DNS with chemistry is approaching the 
range of these parameters of practical interest, at least for some simple problems 
(Haworth & Poinsot 1992). [Note: The latter point, particularly with regard to 
the IC modeling study mentioned in the next paragraph, was debated by the other 
panelists during the discussion period.] 

Several features of the flamelet model have been examined by DNS; for example, 
it has been found that the flamelet structure is controlled not only by strain rate as 
assumed in the library approach, but also by flame curvature. In addition, strong 
effects of thermo-diffusive instabilities (Lewis number effects) on the flame surface 
evolution were found. Vortex-flame interaction studies have also been made to study 
quenching phenomena, and the results give further support to the flamelet model 
(Poinsot ci al. 1991). DNS has been used in models of premixed flames (Meneveau 
& Poinsot 1991, Boudier ci al. 1992, Bray & Cant 1991, Nicolleau ci al. 1991) and 
has also inspired or followed new experiments on flame-vortex interactions, on the 
effect of Lewis number in turbulent jet flames, on flame speeds in curved flames, 
and on optical diagnostics (Roberts & Driscoll 1991, Poinsot et al. 1991, Wu et al. 
1991). DNS has also been used to develop a new model implemented in KIVA to 
predict ignition in spark-ignited engines and to accurately describe such important 
effects as flame behavior at the wall, combustion efficiency, and equivalence ratio 
(Boudier et al. 1992).
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In summary, it was shown that DNS is useful in building models of turbulent 
combusting flows and is also useful in improving our understanding of combustion. 
Future work is needed on the theory, especially for non-premixed flames, and for the 
DNS of complex chemistry in 2-D, simple chemistry in 3-D, and for more efficient 
parallel codes. 

3. Discussion 
In addition to some technical issues not reported here, the following principle 

points were raised in response to the presentations of the panelists: 
• The following simplifications are common for DNS of reacting flows: (a) cold 

flows (constant T and p, 3-D Navier-Stokes, i.e., the passive scalar problem) 
vs. flows with variable temperature; (b) incompressible (either constant T or 
with Arrhenius rate but with constant ,,) vs. compressible (Arrhenius kinetics 
with heat release; i.e., couple hydrodynamics, energy, and reaction); (c) 2-D vs. 
3-D simulations; (d) equilibrium vs. finite rate chemistry; simple (single-step) 
kinetics vs. complex chemistry, model vs. 'real' chemistry; (e) Fickian diffusion 
vs. multicomponent diffusion; (f) decaying vs. forced turbulence; (g) premixed or 
nonpremixed vs. partially mixed systems. It is apparent that such simplifications 
are necessary to make some problems tractable, and that the simplification made 
depends on the problem, with care taken that the essential physical properties 
are preserved. For example, if interested in mixing terms, isothermal simulations 
might be acceptable, if interested in complex chemistry with widely different 
reaction rate constants, 2-D simulations might prove sufficient, etc. In general, 
it was thought best to do the simpler simulations first (e.g., 2-D without full 
chemistry) and then add complications, but within the context of a model or the 
physics being examined. Care must be taken with the simplifications, however; for 
example, the reverse energy cascade in 2-D may have some unexpected influence 
on flame surface density. 

• A good problem to attack by DNS would be to do the fluid mechanics for the 
broken-flamelet regime in the case of non-premixed combustion. Also, it was 
clear from the discussion that there is no universal agreement on the mechanism 
of flamelet extinction. 

• The next generation of machines (T-flop) may be able to shift the focus in DNS 
away from the archetypal simple problems to more practical problems, but as 
suggested above, doing the simpler problems first increases understanding. 

• The prospects for LES and SCM in a reacting environment are not very good 
because of domination by small scales at high Da, although the LEM of Kerstein 
(1991) may be useful. [However, its successes are mixed.] The concept of LES 
that tracks the flame was suggested by analogy with the RVM and with adaptive 
grid methods. [Note: This has been suggested by others (random surface model) 
but still requires a model of the reaction zone and thus DNS coupled with flamelet 
or other models as appropriate.] 	 - 

• All of the discussion centered on single-phase systems (conventional flames) since 
features of computational models in that area are amenable to testing by labo-
ratory experiments and to some extent by DNS. A future challenge for DNS and
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for theories with the same level of rigor as used in some of the models discussed 
here or studied in this workshop are flows with particulates (soot and ash forma-
tion, condensation reactions, spray combustion), radiation, wet combustion, and 
complex geometries with recirculation or backmixing. 

4. Conclusions 
In summary, F. Williams gave an overview of the regimes of applicability of 

the different types of combustion models, pointing out their shortcomings and the 
limitations of DNS for practical problems as well as the overriding importance of Da 
and Re in considering models for practical problems. S. B. Pope presented the case 
that one cannot do DNS for practical combustion systems but can learn something 
from simple canonical problems used for model building. T. Poinsot pointed out 
the difficulties with length and time scales in turbulent combustion but claims that 
DNS in premixed systems can be used for some practical combustion problems and 
has been used to validate the flamelet model. 

Although the panel members were not in complete agreement, it is clear that 
there is a need for additional work on computational models and that DNS even
simplified canonical problems—can be useful for model development and validation 
and also for answering specific questions about the physics that are not accessible 
in the laboratory. 
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