NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 4378 PRELIMINARY HEAT-TRANSFER STUDIES ON TWO BODIES OF REVOLUTION AT ANGLE OF ATTACK AT A MACH NUMBER OF 3.12 By Norman Sands and John R. Jack Lewis Flight Propulsion Laboratory Cleveland, Ohio Washington September 1958 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## TECHNICAL NOTE 4378 # PRELIMINARY HEAT-TRANSFER STUDIES ON TWO BODIES OF REVOLUTION AT ANGLE OF ATTACK AT A MACH NUMBER OF 3.12 By Norman Sands and John R. Jack #### SUMMARY Local rates of heat transfer were obtained for a cone-cylinder model and a parabolic-nosed-cylinder model at a Mach number of 3.12 and angles of attack up to 18°. Data were obtained for cooled surfaces at unit Reynolds numbers of 0.36 and 0.65 million per inch based on free-stream conditions. Zero angle of attack data are included for comparison. For similar type boundary layers heat-transfer coefficients at angle of attack were always higher than those at zero angle of attack at corresponding geometric locations. On the windward side Stanton numbers increased steadily with angle of attack; however, no systematic variation of Stanton numbers with angle of attack was found on the sheltered side. The parabolic forebody showed the following advantages over the conical forebody: (a) it increased the extent of laminar boundary layer on the windward side of the model, and (b) it reduced the Stanton numbers on corresponding geometric locations of the two models (when the models possessed similar type boundary layers), except on the leeward side where no definite advantage was evident due to forebody geometry. Heat-transfer coefficients along the most windward and most leeward generators were approximately equal near the tip of the models at all test configurations. Toward the aft part of the models, however, the ratio of Stanton numbers along the most leeward to those along the most windward generators at equivalent distances from the tip was between 2 and 3 at 3° angle of attack, and gradually decreased to a ratio of approximately 1/2 at 18° angle of attack. Within the range and accuracy of the investigation, the unit Reynolds number did not have a significant effect on the values of the Stanton numbers along the most leeward generator of both models. # 490 #### INTRODUCTION The problems associated with aerodynamic heating of an axisymmetric body at zero angle of attack have been extensively studied, both theoretically and experimentally. The problems involved, however, increase in complexity when the body is subjected to some angle of attack with respect to the undisturbed free stream. Few theoretical attempts to solve the problem of a cone at angle of attack under heat-transfer conditions have been made up to the present time. The flow analyses available are limited to conditions that reduce the range of their applicability. Reference 1 is limited to isothermal wall conditions and only applies to the most windward generator, provided the boundary layer there is laminar. The same limitations of laminar boundary layer and isothermal wall conditions are required for the application of the theory of reference 2; it can be used to find the heat transfer along any generator of a cone, but is restricted to small angles of attack. In order to contribute to the experimental approach of these problems, the Lewis laboratory initiated in 1954 a series of tests designed to isolate and establish the effects of specific parameters on heat-transfer characteristics at angle of attack. All tests were conducted in the same wind-tunnel facility (see APPARATUS AND PROCEDURE) with the same bodies of revolution (see fig. 1). In the early stages of this program, studies were made to find the effect of heat transfer and pressure gradient on the location of transition at zero angle of attack (ref. 3). In another report (ref. 4) heat-transfer data were presented for the two models of figure 1 at zero angle of attack. Reference 5 dealt with the effects of extreme cooling of these models on boundary-layer transition. The objective of previous tests at angle of attack was to find what effect it had on recovery factors (ref. 6). This paper presents the effects of angle of attack on heat-transfer characteristics on a cone cylinder and parabolic-nosed cylinder (fig. 1). Included for comparison are the heat-transfer data on these models at zero angle of attack. Limitations on data accuracy due to testing techniques and an estimate of the maximum errors introduced by radiation and condition effects are included in the text. #### APPARATUS AND PROCEDURE The investigation was conducted in the Lewis 1- by 1-foot supersonic wind tunnel, which operates at a Mach number of 3.12. Tests were made at two values of the unit Reynolds number, namely, 0.36 and 0.65 million per inch. The tunnel stagnation dew point was about -35° F at all times. Further details concerning this facility may be found in reference 3. The dimensions and thermocouple locations of the models used to obtain the heat-transfer data are shown in figure 1. Both models were constructed from a nickel alloy with a wall thickness of approximately 1/16 inch. The cone cylinder was made of monel, whereas the parabolic-nosed cylinder was fabricated from "K" monel. The maximum surface roughness on each was less than 16 microinches. Each model was instrumented with calibrated copper-constantan thermocouples of 30-gage wire. Axial temperature distributions for both models were determined from three rows of 15 thermocouples each, located on three axial planes (generators) at 45 meridional degrees apart. The test models were first cooled to 120° R by enclosing them in a set of shoes, figure 2(a), and by passing liquid nitrogen into the shoes and over the model surface. The nitrogen was then exhausted through the base of the shoes. Photographs of the conecylinder model with shoes along the tunnel wall and in place are given in figures 2(a) and (b), respectively. The shoes could be operated while the tunnel was running. For any given test, the shoes were placed over the model after the desired tunnel conditions had been reached. The model was then precooled by passing liquid nitrogen through the retraction struts. After a uniform wall temperature of 120°R was obtained, the shoes were snapped back against the tunnel walls by means of air cylinders (fig. 2(b)). Heat-transfer data were obtained by utilizing the transient technique described in detail in reference 3. Transient temperature distributions were obtained from data recorded on multichannel oscillographs. The flow over a body of revolution at angle of attack is essentially symmetric about a plane containing the most windward and most leeward generators. The greatest deviation from symmetry about this plane would be anticipated in the separated flow region of the sheltered side. Because of the essentially symmetrical flow, only half of the parabolicnosed-cylinder model located entirely on one side of the plane of symmetry was investigated. Data at a given angle of attack were obtained in two installments. The parabolic-nosed-cylinder model was first mounted in the tunnel at an angle of attack α with its three rows of thermocouples occupying the 0° (most windward), 45°, and 90° generator locations. Later the model was placed in a -a position without rotation about its own axis; in this position the same three rows of thermocouples occupied the 180° (most leeward), 135°, and 90° generator locations, respectively. Thus, for each angle, data on the 90° generator of the parabolic-nosedcylinder model were obtained twice. This duplication was intended to show the degree of repeatability of the test results. As seen from part (b) of tables II to V, the two sets of Stanton numbers obtained along this generator were within ±15 percent of their mean value for all test configurations. With the cone-cylinder model data were obtained not only for the 0° , 45° , 90° , 135° , and 180° generator locations as with the parabolic-nosed cylinder model, but also along the 225° generator location on the other side of the plane of symmetry. This was accomplished by first obtaining data along the 0° , 45° , and 90° generator locations as previously described for the $+\alpha$ position. In placing the model at a $-\alpha$ position, it was also rotated 45° about its own axis so that the 0° , 45° , and 90° generator locations now occupied the 225° , 180° , and 135° positions, respectively. This modification was made in order to compare the heat-transfer results in regions symmetrically located about the plane of symmetry of the flow, when the flow is locally separated. The maximum deviation of Stanton numbers along the 135° and 225° generators was ± 19 percent of their mean value (see part (a) of tables II to V). This is probably due to a combination of experimental inaccuracies and asymmetry of the flow on the sheltered side (see, e.g., ref. 6). #### DATA REDUCTION The general equation describing the transient heat-transfer process for a nonisothermal cone at angle of attack having a thin wall is $$q_{\text{measured}} = q_{\text{convection}} + q_{\text{conduction}} + q_{\text{radiation}} + q_{\text{conductions to}}$$ in skin + q conductions to inside of model or more explicitly, in conical coordinates, $$\rho_b c_{p,b} \tau \frac{\partial T_w}{\partial t} = h(T_{ad} - T_w) + k_b \tau \left(\frac{\partial^2 T_w}{\partial x^2} + \frac{1}{x} \frac{\partial T_w}{\partial x} + \frac{1}{x^2 \sin^2 \phi} \frac{\partial^2 T_w}{\partial \theta^2} \right) +$$ where $$T_{W} \equiv T_{W}(x, \theta, t)$$ (All symbols are defined in the appendix). When the heat-transfer rates by radiation and conduction are small compared with those by convection, equation (1) gives the following expression for the local heat-transfer
coefficient $$h = \frac{\rho_b c_{p,b\tau} \frac{\partial T_w}{\partial t}}{T_{ad} - T_w}$$ (2) Experimental values of h were determined by equation (2), and corresponding values of Stanton numbers based on properties of the undisturbed air ahead of the shock were computed from $$St_{o} = \frac{h}{\rho_{o}^{c} p_{,o}^{u} o}$$ (3) Wall temperatures were computed for 15 seconds after the models were exposed to the main stream (by retracting the shoes). The exact choice of 15 seconds was somewhat arbitrary, but was made because of large temperature potentials $(T_{ad} - T_{w})$ and large rates of change of temperature with time $(\partial T_{tr}/\partial t)$ that existed at approximately 15 seconds, which would contribute to greater accuracy in reducing the data. Wall temperatures as $t \rightarrow \infty$ (when thermal equilibrium was reached) were used in lieu of adiabatic wall temperatures (Tad) derived from a knowledge of the freestream conditions and the recovery factor. The substitution of $T_{t,\to\infty}$ Tad was made because of inaccurate knowledge of the numerical values of the recovery factors in the transitional phase between laminar to turbulent boundary layers, and, especially in regions of crossflow separation. Some of the experimental equilibrium wall temperatures obtained in this way might be as much as 140 F too high in regions where laminar boundary layer existed at 15 seconds and then became turbulent upon reaching equilibrium conditions. In such regions the actual values of the Stanton numbers might be up to 7 percent higher than the values listed in tables I to V since the laminar boundary-layer regions that existed at 15 seconds had an average temperature potential (Tad - Tw) of about 200° F. An additional effect of substituting $T_{t\to\infty}$ for T_{ad} was that heat conduction within the model material (see below) caused the equilibrium temperatures to differ somewhat from their corresponding true adiabatic temperatures, thus introducing an added error in the computations. In regions where the boundary layer remained either laminar or turbulent during the entire duration of the test, the maximum difference between $T_{t\to\infty}$ and T_{ad} was 8° F, which, for the average temperature potential $(T_{ad}-T_w)$ of 200° F, amounted to a maximum Stanton number error of ± 4 percent. Time rates of change of temperature were found by using five data points: T_{15} (the temperature at 15 sec), $T_{15\pm\delta}$, and $T_{15\pm2\delta}$ where δ is a time increment. A quadratic curve was then fitted through these points by the method of least squares, and a slope of this curve evaluated at T_{15} . The following are the estimated uncertainties of the basic quantities: | Wall thickness, τ, percent |
 | |
· ±1 | |---|------|--|----------| | Slope $\partial T_{w}/\partial t$, percent |
 | |
. ±3 | | Specific heat of model wall material, cp,b, percent |
 | |
. ±3 | | Model wall temperature, R |
 | | +2 | | Model equilibrium wall temperature, OR |
 | |
· ±2 | | Tunnel total temperature, OR |
 | |
· ±2 | | Tunnel total pressure, percent |
 | |
±0.3 | The errors introduced in neglecting the radiation and axial conduction terms in equation (1) were investigated in reference 4 for a cone at zero angle of attack and were less than 2 percent of the total heat absorbed. With the model at angle of attack the errors due to radiation and axial conduction are essentially the same as those for zero angle of attack. An additional source of error is, however, involved at angle of attack, namely, peripheral heat conduction within the model material. The peripheral heat conduction for a thin-walled cone at angle of attack is given by (see eq. (1)) $$q_{\text{peripheral}} = k_{\text{b}}\tau \frac{1}{x^2 \sin^2 \varphi} \frac{\partial^2 T_{\text{w}}}{\partial \theta^2}$$ (4) where $$T_{W} \equiv T_{W}(x, \theta, t)$$ In order to estimate the error involved by neglecting this term in evalu- ating the convective heat-transfer coefficient (eq. (2)), it is necessary to compare the amount of heat conducted along the periphery of the cone (eq. (4)) with the measured amount of heat influx ($q_{measured}$, eq. (1)). However, not enough peripheral temperature-distribution data were available to determine $\partial^2T_w/\partial\theta^2$ with reasonable accuracy. An alternative approach was, therefore, taken to estimate this effect by comparing Stanton numbers obtained at t = 15 seconds (when conduction was present) with those obtained at t ~ 0 second (when the wall temperature was essentially uniform so that conduction was very small). This comparison was made only for the most windward generator of the conical forebody and is discussed in detail in RESULTS AND DISCUSSION. Unfortunately, it was not possible to analyze all the data for the zero time condition where conduction errors would automatically be eliminated. The existence of transition reversal (ref. 7) for some test conditions prevented the evaluation of all heat-transfer data at these very early times. #### RESULTS AND DISCUSSION Wall temperatures at 15 seconds (T_w) , equilibrium temperatures (T_{ad}) , and Stanton numbers for both models are listed in tables I to V. Zero angle of attack data are listed in tables I(a) and (b) for unit Reynolds numbers of 0.36 and 0.65 million per inch, respectively. For the models at angle of attack the data are tabulated along generators. Tables II(a), III(a), IV(a), and V(a) list the data for the cone-cylinder model at 3°, 7°, 12°, and 18° angle of attack for both values of the unit Reynolds number, respectively. Corresponding data for the parabolic-nosed-cylinder model are given in tables II(b), III(b), IV(b), and V(b). The discussion of the test results will, of course, pertain to the wall-to-free-stream temperature ratios for which the data were reduced. ## Comparison with Theory Experimental data along the most windward generator of the conical forebody are compared in figure 3 with the theories of references 1 and 2. As shown in figure 3, the data agree within 30 percent with the theory described in reference 1 at all angles of attack and within about the same percentage with the theory of reference 2 for 30 angle of attack. The difference between theory and experiment as seen in figure 3 is probably the result of a combination of the following contributing factors. Peripheral conduction: In order to evaluate the effect of peripheral conduction, Stanton numbers were evaluated at t \sim 0 (when conduction was quite small) and compared with corresponding Stanton numbers at t = 15 seconds (when large peripheral conductions probably existed). This was done along the most windward generator (where peripheral conduction would be largest) of the conical forebody at a unit Reynolds number of 0.36×10^6 per inch, and is shown in figure 4. This plot shows that peripheral conduction lowered the Stanton numbers by as much as 10 to 35 percent, but did not alter the general trend of increased Stanton number with angle of attack (compare figs. 4(e) and (f)). Nonisothermal conditions: Experimental data were compared with isothermal theories when in reality definite temperature gradients existed both axially and circumferentially. Although no method is presently available to modify the isothermal theories to fit the present situation, there is strong evidence that the nonisothermal condition might substantially alter the theoretical isothermal heat-transfer coefficients (see ref. 8). Uncertainties in application of theory: Within the range of "large angles of attack" (up to 80) the theory developed in reference 1 solves the problem of a yawed circular cone. For "very large angles of attack" (from 120 up) a yawed infinite circular cylinder was substituted to approximate the cone at angle of attack. There would, therefore, be some doubt of the validity of the theoretical lines at 120 and 180 angle of attack in figure 3. Also, the theory of reference 2 is only valid in the limiting case of "vanishing" angles of attack. There is then a doubt whether 30 is small enough to be considered "vanishing", thereby affecting a meaningful comparison between the theory of reference 2 and the present experimental data (fig. 3(b)). In fact, since references 1 and 2 solve the same set of equations for the most windward generator of a cone at angle of attack, the difference between the two theoretical lines shown in figure 3(b) can only be attributed to the fact that in reference 2 only the first order term in angle of attack was retained. whereas both the first and second order terms were retained in the theory of reference 1. The data in figure 3(b) should therefore compare more appropriately with the theory of reference 1 than with that of reference 2 although neither theory can be employed as a direct comparison with experimental data because of the peripheral conduction and nonisothermal conditions mentioned before. ## Effect of Angle of Attack The effect of angle of attack on the heat-transfer coefficient along the most windward generator at a unit Reynolds number of 0.36 million per inch is shown in figure 5. Stanton numbers for both the cone-cylinder model, figure 5(a), and the parabolic-nosed-cylinder model, figure 5(b), increased with angle of attack. The abrupt increase in Stanton number at the aft part of the cone-cylinder model at 18° angle of attack, figure 5(a), is believed to be due to transition from laminar to turbulent boundary-layer flow. Similar trends were obtained at the higher unit Reynolds number except for transition which appeared at both the 12° and 18° angle-of-attack configurations. At 12° attitude transition along the most windward generator of the cone-cylinder model was located at about 4 inches from the tip (see fig. 9(a)), whereas at
18° angle-of-attack transition had moved upstream to about $2\frac{1}{2}$ inches from the tip (fig. 9(b)). It should be noticed that the transition locations shown in figures 5(a), 9(a) and (b) are associated with the wall-to-free-stream temperature ratios given in tables IV and V and also that transition would probably be located elsewhere for different temperature ratios. NACA TN 4378 9 A typical effect of angle of attack on heat-transfer coefficient along the most leeward generator is shown in figure 6. Contrary to the gradual increase in Stanton number with angle of attack observed along the most windward generators (fig. 5), heat-transfer coefficients along the most leeward generators (where the crossflow component was probably separated) appear to have no orderly pattern. Comparison of the data along the most leeward generator with corresponding data at zero angle of attack shows that the Stanton numbers at angle of attack are always higher than at zero angle of attack for corresponding test conditions and distances from the tip of the models, as seen in figure 6 for the particular cases shown. The latter effect applies also along all other generators for all test configurations. Perhaps the most striking effect of angle of attack on the leeward side is the relatively high value of the heat-transfer coefficients near the aft part of the model at fairly small angles of attack as compared with those at zero angle of attack. This is readily seen by comparing the zero and the 3° angle-of-attack curves in figure 5 with those in figure 6. This effect is further illustrated in figure 7 where the Stanton numbers along the most windward and most leeward generators of the parabolic-nosed-cylinder model are shown at several angles of attack; also included for comparison in figure 7 are the data for the model at zero angle of attack. At the aft part of the model, ratios of Stanton numbers along the most leeward to those along the most windward generator were of the order of 2 to 3 at 3° angle of attack (see fig. 7(a)). This ratio decreased with increased angle of attack, figures 7(b) and (c), to a value of about 1/2 at 18° angle of attack, figure 7(d). Results similar to those shown in figure 7 were also obtained for the cone-cylinder model. In contrast to the large range of variation with angle of attack of Stanton number ratios along the aft part of the most leeward and most windward generators, heat-transfer coefficients along these generators were approximately equal near the tip of the models at all test configurations. # Effect of Forebody Geometry From a heat-transfer point of view, the parabolic forebody had two advantages over the conical forebody. For corresponding unit Reynolds numbers, angles of attack, and geometric location, Stanton numbers on the parabolic forebody were generally lower than those on the conical forebody, except on the leeward side where no definite advantage due to forebody geometry could be established. A typical case illustrating the reduction in Stanton number due to forebody geometry is illustrated in figure 8 for the models at 120 angle of attack and unit Reynolds number of 0.36 million per inch. 4904 The favorable pressure gradient associated with the parabolic fore-body delayed the start of transition to turbulent flow on the windward side of the parabolic-nosed-cylinder model as compared with that on the cone-cylinder model. This is illustrated in figure 9 for the most windward generator (which is also a streamline of the flow) where the beginning of transition is recognized from the start of the rise in Stanton number with increased distance along the generator. ## Effect of Crossflow Separation An additional observation can be made concerning heat-transfer coefficients along the most leeward generators of the two models. In figure 10 Stanton numbers along the most leeward generators of the two models at 18° angle of attack were plotted against distance from the tip of the models for both values of unit Reynolds number. As shown in figure 10, Stanton numbers at the two values of the unit Reynolds number are nearly equal in magnitude and appear to fluctuate randomly about their average value. Similar plots made for the smaller angles of attack exhibited the same general trend. This would suggest that within the range and accuracy of the experiments the unit Reynolds number did not have a significant effect on the values of the Stanton numbers along the most leeward generators. It is believed that the insensitivity of the Stanton numbers to the free-stream unit Reynolds number is due to crossflow separation. #### SUMMARY OF RESULTS The following results were obtained from an investigation of the convective heat-transfer properties of two bodies of revolution at angles of attack up to 18° at a Mach number of 3.12. - l. Experimental laminar heat-transfer coefficients obtained along the most windward generators of the conical forebody were within 30 percent of the theoretical values of references 1 and 2. This difference was attributed to a combination of the following factors: (a) peripheral conduction in the model material, (b) differences in the nonisothermal data of the experiment with isothermal theories, (c) possible invalidity of the theories in the range of present test conditions, and (d) accuracy in collection and reduction of data. - 2. For similar type boundary layers Stanton numbers at angle of attack were always higher than those of corresponding geometric location and test conditions at zero angle of attack. 3. Along the most windward generators Stanton numbers increased steadily with increased angle of attack, whereas no orderly variation of Stanton number with angle of attack was found along the most leeward generator. - 4. Heat-transfer coefficients along the most windward and most leeward generators were approximately equal near the tip of the models at all test configurations. Towards the aft part of the models, Stanton numbers along the most leeward generators at 3° angle of attack were about 2 to 3 times larger than those at equivalent distances from the tip along the most windward generators. This ratio of Stanton numbers along the most leeward and most windward generators decreased with increased angle of attack, reaching a value of approximately 1/2 at 18° angle of attack. - 5. The parabolic forebody tended to reduce the heat-transfer coefficients on the windward side and to increase the span of laminar boundary layer in comparison with the conical forebody. - 6. The unit Reynolds number had an insignificant effect on the heat-transfer coefficients along the most leeward generator. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, July 25, 1958 # 490 #### APPENDIX - SYMBOLS - c_p specific heat at constant pressure, Btu/(lb)(OR) - h local heat-transfer coefficient, Btu/(sec)(sq ft)(OR) - k thermal conductivity, Btu/(ft)(sec)(OR) - q heat-transfer rate, Btu/(sq ft)(sec) - Re Reynolds number, Re = $\frac{u_0}{v_0}$ x - r distance of surface to centerline of model (fig. 1(b)) - St dimensionless heat-transfer coefficient defined by eq. (3), Stanton number - T temperature, OR - t time, sec - u velocity, ft/sec - x axial distance measured from the tip of the model, ft - α angle of attack - θ peripheral angle (for the most windward generator $\theta = 0^{\circ}$) - v kinematic viscosity, (sq ft)/sec - ρ density, lb/(cu ft) - τ wall thickness, ft - φ cone half angle # Subscripts: - ad adiabatic - b model material - o free stream ahead of shock - t free-stream total condition - w conditions at the wall #### REFERENCES - 1. Reshotko, Eli: Laminar Boundary Layer with Heat Transfer on a Cone at Angle of Attack in a Supersonic Stream. NACA TN 4152, 1957. - 2. Fiebig, Martin: Laminar Boundary Layer on a Spinning Circular Cone in Supersonic Flow at a Small Angle of Attack. TN 56-532, Graduate School Aero. Eng., Cornell Univ., June 1956. (Contract AF-18(600)-1523.) - 3. Jack, John R., and Diaconis, N. S.: Variation of Boundary-Layer Transition with Heat Transfer on Two Bodies of Revolution at a Mach Number of 3.12. NACA TN 3562, 1955. - 4. Jack, John R., and Diaconis, N. S.: Heat-Transfer Measurements on Two Bodies of Revolution at a Mach Number of 3.12. NACA TN 3776, 1956. - 5. Jack, John R., Wisniewski, Richard J., and Diaconis, N. S.: Effects of Extreme Surface Cooling on Boundary-Layer Transition. NACA TN 4094, 1957. - 6. Raney, D. J.: Measurements of the Cross Flow Around an Inclined Body at a Mach Number of 1.91. Tech. Note Aero. 2357, British RAE, Jan. 1955. - 7. Jack, John R., and Moskowitz, Barry: Experimental Investigation of Temperature Recovery Factors on a 10° Cone at Angle of Attack at a Mach Number of 3.12. NACA TN 3256, 1954. - 8. Eckert, E. R. G., Hartnett, J. P., and Birkebak, Roland: Simplified Equations for Calculating Local and Total Heat Flux to Nonisothermal Surfaces. Jour. Aero. Sci., vol. 24, no. 7, July 1957, pp. 549-551. 4904 TABLE I. - AXIAL TEMPERATURE AND STANTON NUMBER DISTRIBUTIONS AT ZERO ANGLE OF ATTACK. (a) Cone-cylinder model. (b) Parabolic-nosed-cylinder model. | x,
in. | Tw, | Tad, | Stanton
number | |---|--|---|---| | $T_{t} = 515$ | ° R; u ₀ / | 0 = 0.366 | 10^6 in. -1 | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
13.62
14.75
16 | 229
212
199
189
184
173
182
180
176
176
170
168
170
168 | 459
458
461
462
468
465
471
471
469
471
469
470
468 |
0.00104
.00085
.00072
.00058
.00046
.00041
.00040
.00039
.00036
.00029
.00022
.00021 | | $T_t = 524$ | ° R; u ₀ / | 0.646 | <10 ⁶ in1 | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
13.62
14.75 | 252
235
218
206
192
196
204
202
198
209
197
203
209 | 473
477
481
480
482
480
481
480
480
480
480
481
483 | 0.00082
.00063
.00053
.00042
.00036
.00035
.00033
.00030 | | x,
in. | Tw, | Tad' | Stanton | |--|--|--|---| | $T_{t} = 52$ | 24° R; u ₀ /1 | 0 = 0.360 | 0x10 ⁶ in1 | | 1
1.5
2
3
4
5
6
7
8
9
10
11
12.5
14
16 | 285
256
238
216
208
195
189
183
178
170
170
166
171
174 | 473
471
469
470
468
470
468
470
471
474
479
485
480
479 | 0.00175
.00115
.00090
.00071
.00063
.00049
.00041
.00038
.00023
.00028
.00023
.00022
.00023
.00022 | | $T_t = 52$ | 3° R; u ₀ /v | 0 = 0.649 | 9×10 ⁶ in1 | | 1
1.5
2
3
4
5
6
7
8
9
10
11
12.5
14
16 | 316
285
265
240
233
221
216
212
213
212
219
221
237
266 | 478
476
476
474
478
476
483
485
485
485
485
486
484
482 | 0.00130
.00089
.00072
.00054
.00036
.00032
.00028
.00025
.00022
.00022
.00027
.00037 | TABLE II. - AXIAL TEMPERATURE AND STANTON NUMBER DISTRIBUTIONS AT AN ANGLE OF ATTACK OF 30. | x,
in. | | θ = | 00 | | θ = | 45° | | θ = | 90° | | $\theta = 1$ | 135° | | $\theta = 1$ | 180° | | $\theta = 2$ | 25° | |---|---|---|---|--|---|---|--|---|---|---|--|---|---|--|---|--|---|---| | III. | Tw, | Tad' | Stanton
number | T _w , | Tad, | Stanton
number | Tw, | Tad' | Stanton | Tw, | Tad, | Stanton
number | Tw, | Tad, | Stanton
number | Tw, | Tad, | Stantor | | | | | $T_{t} = 507^{\circ}$ | R; u ₀ / | v ₀ = 0. | 354×10 ⁶ 11 | n1 | | | | | T _t = 521° | R; u ₀ / | 0 = 0. | 366×10 ⁶ 1 | 11 | | | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
13.62
14.75 | 240
227
215
207
201
199
200
195
196
191
186
185
185 | 461
461
463
462
464
465
464
466
467
468 | 0.00140
.00111
.00100
.00087
.00067
.00062
.00059
.00057
.00045
.00034
.00034 | 226
225
213
200
186
194
191
175
184
182
179
182
184
180 | 462
464
4664
4664
4667
4664
467
4667
466 | 0.00125
.00114
.00110
.00092
.00067
.00064
.00054
.00048
.00040
.00035
.00035
.00037 | 240
222
209
202
188
192
191
193
192
183
186
188 | 460
462
462
466
466
467
469
467
468
471
468 | 0.00114
.00098
.00092
.00084
.00069
.00067
.00060
.00057
.00048
.00042
.00038
.00045
.00054 | 242
216
210
206
192
204
210
215
224
224
219
224
231 | 472
470
473
474
478
475
479
478
477
478
482
483
 | 0.00113
.00101
.00105
.00089
.00062
.00080
.00085
.00080
.00066
.00070
.00071
.00078 | 225
218
220
219
207
229
242
246
224
242
243
240
243
248
243 | 472
474
478
475
476
476
480
478
475
480
481
481
482
480 | 0.00112
.00103
.00103
.00098
.00083
.00110
.00105
.00084
.00080
.00080
.00081
.00094 | 241
224
217
218
217
222
227
235
236
227
231
234
239
239 | 473
475
477
480
478
477
477
476
477
476
478
478
478 | 0.00121
.00104
.00099
.00096
.00085
.00104
.00103
.00112
.00102
.00080
.00083
.00082 | | | | | T _t = 523° | R; u ₀ / | v ₀ = 0. | 649×10 ⁶ 1r | n1 | | | | | T _t = 521° | R; u ₀ / | v ₀ = 0. | 647×10 ⁶ 11 | n1 | | | | 2
3
4
5
6
7
8
9
0
0.62 | 286
267
249
237
228
224
223
221
218
208
207 | 470
473
474
476
475
478
480
481
480
478
480 | 0.00107
.00086
.00066
.00058
.00054
.00051
.00047
.00044
.00035 | 266
263
246
230
210
213
223
216
198
210
207 | 476
475
480
476
480
477
483
479
478
473
476 | 0.00108
.00100
.00090
.00073
.00054
.00053
.00048
.00035
.00034 | 282
261
246
235
214
227
230
235
249
248
241 | 468
471
475
475
477
476
477
476
477
476
475
476
475 | 0.00108
.00097
.00090
.00082
.00068
.00085
.00096
.00115
.00085 | 284
266
254
252
235
259
276
285
296
291
284 | 477
473
476
478
483
478
482
479
481
477
478 | 0.00100
.00103
.00097
.00089
.00087
.00091
.00095
.00100
.00098
.00075 | 261
275
272
269
253
271
296
292
261
288
286 | 474
476
482
477
479
476
482
479
473
475
279 | 0.00109
.00106
.00105
.00094
.00084
.00091
.00110
.00109
.00081
.00075 | 284
276
272
278
278
285
291
292
291
278
277 | 476
477
481
483
480
480
479
479
477
478
478 | 0.00104
.00089
.00091
.00092
.00096
.00106
.00103
.00103
.00102 | | (b) Parabolic-nosed-cylinder model | (b) | Parabolic-nosed-cylinder | model | |------------------------------------|-----|--------------------------|-------| |------------------------------------|-----|--------------------------|-------| | x,
in. | | θ = | 00 | | θ = | 45° | | θ = | 900 | | θ = | 90° | | θ = 1 | 35° | | θ = 1 | .80° | |---|--|--|--|---|---|--|---|--|---|--|--|---|---|---|--|--|---|--| | 2111 | Tw, | Tad, | Stanton | Tw, | Tad' | Stanton
number | Tw, | Tad, | Stanton
number | Tw, | Tad' | Stanton | Tw, | Tad, | Stanton | Tw, | Tad, | Stanton |
| | | | $T_{t} = 508^{\circ}$ | R; u ₀ / | v ₀ = 0. | 366×10 ⁶ 1r | 11 | | | | 11-15 | T _t = 520° | R; u ₀ / | v ₀ = 0.3 | 366×10 ⁶ 11 | 11 | Tale 1 | 18. 11. | | 1.5
23
4
5
6
7
8
9
10
11
12.5
14
16 | 268
250
233
224

207
202
193
187
183
189 | 461
459
460
461

461
459
459
461
462 | .00133
.00110
.00084
.00083
.00062
.00049
.00044
.00041 | 260
244
222
217
204
204
193
190
187
184
184 | 457
459
455
460
457
463
460
461
462
464
465
 | .00135
.00103
.00088
.00075
.00060
.00054
.00045
.00040
.00035
.00035
.00038 | 283
253
241
218
210
197
192
186
181
177
173
172
174 | 459
457
459
460
465
466
467
467
466
467
466
467 | 0.00180
.00130
.00112
.00091
.00075
.00060
.00042
.00044
.00034
.00034
.00033
.00035 | 290
260
245
221
215
205
196
190
185
182
175
175
175
175 | 471
471
472
472
476
476
477
477
477
478
481
483 | 0.00180
.00126
.00108
.00074
.00054
.00048
.00040
.00031
.00031
.00033
.00037 | 250
233
206

188
191
183
180
182
188
191

218 | 471
475
472
477
476
481
479
477
485
479
480 | .00112
.00106
.00065
.00055
.00059
.00047
.00050
.00051
.00054 | 254
228
212
217
222
225
231

232
229
239 | 473
472
476
479
479
480
479
478
478
479
480 | .00153
.00094
.00078
.00093
.00088
.00086
.00086 | | | 991 | | T _t = 510° | R; u ₀ / | v ₀ = 0. | 648×10 ⁶ 1r | 11 | | | | | T _t = 523° | R; u ₀ / | v ₀ = 0. | 649×10 ⁶ 1 | n1 | 170 | | | 1.5
23
4
5
6
7
8
9
10
11
12.5
14
16 | 295
275
255
245
227
222
215
209
204
209 | 465
462
463
465
468
469
468
470
468
470 | .00110
.00081
.00064
.00060
.00044
.00036
.00033
.00030
.00030 | 289
271
245
238
225
226
215
213
207
205
204 | 462
465
462
467
466
470
466
466
466
466 | .00101
.00078
.00057
.00052
.00045
.00039
.00036
.00032
.00030
.00026 | 313
281
267
244
234
222
215
210
209
217
223
235
248
 | 461
462
465
466
471
467
469
469
469
469
469 | 0.00145
.00106
.00092
.00071
.00059
.00050
.00049
-00083
.00092
.00096 | 324
291
278
252
245
235
229
223
220
221
219
226
248 | 483
481
484
487
491
486
487
488
487
486
486
486 | 0.00135
.00095
.00079
.00068
.00063
.00059
.00055
.00056
.00064
.00071
.00083 | 287
271
252
264
279
282
276
278
277
278
279
292 | -80
483
483
490
483
486
485
485
485
484
485 | .00103
.00091
.00084
.00119
.00118
.00105
.00092
.00082
.00076 | 290
280
287
301
309
306
301
297
289
294 | 485
484
487
492
487
485
485
485 | .00108
.00098
.00092
.00104
.00100
.00094 | TABLE III. - AXIAL TEMPERATURE AND STANTON NUMBER DISTRIBUTIONS AT AN ANGLE OF ATTACK OF 7° . (a) Cone-cylinder model. | x,
in. | | θ = | 00 | | θ = | 45° | | θ = | 90° | | θ = | 135° | | θ =] | 1800 | | θ = 2 | 225° | |---|--|---|---|---|--|---|---|---|---|---|---|---|---|--|---|--|---|---| | 2 | Tw, | Tad, | Stanton
number | T _W , | Tad, | Stanton
number | T _w , o _R | Tad, | Stanton
number | Tw, | Tad, | Stanton
number | Tw, | Tad, | Stanton
number | T _W , | Tad, | Stantor | | | | | T _t = 506° | R; u ₀ / | ν ₀ = 0. | .363×10 ⁶ 1 | n1 | | | | | $T_{t} = 518^{\circ}$ | R; u ₀ / | $v_0 = 0$ | .370×10 ⁶ 1 | n1 | | | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
13.62
14.75 | 261
247
235
227
221
219
217
216
208
199
198
204
203 | 461
463
462
461
462
461
462
461
460
463 | 0.00166
.00121
.00116
.00100
.00095
.00082
.00072
.00073
.00068
.00063
.00052
.00045
.00047 | 240
238
225
212
197
204
206
206
185
200
200
200
203
202
200 | 462
462
463
460
464
460
468
461
466
466
466
466
466 | 0.00150
.00125
.00125
.00105
.00077
.00078
.00073
.00054
.00046
.00041
.00049
.00045 | 256
233
217
208
188
193
194
192
191
191
177
181 | 459
457
459
463
459
462
466
466
465
467
470

468 | 0.00147
.00130
.00117
.00097
.00073
.00073
.00073
.00055
.00039
.00036
.00043 | 258
236
221
213
197
207
212
215
216
215
204
201
206 | 472
470
470
472
475
473
478
477
480
477
479
482
482 | 0.00140
.00133
.00120
.00100
.00074
.00080
.00081
.00088
.00068
.00068
.00061
.00062
.00071 | 243
244
235
228
218
231
251
252
224
240
243
238
243
254
253 | 471
473
476
472
475
474
481
479
476
479
479
479
479
479 | 0.00151
.00128
.00114
.00095
.00076
.00095
.00122
.00106
.00078
.00078
.00080
.00079
.00079 | 260
242
231
227
218
223
228
230
228
216
217
219
218
224 | 471
471
473
475
474
475
477
479
478
481
479
480
480 | 0.00157
.00123
.00107
.00108
.00091
.00098
.00090
.00097
.00094
.00085
.00063
.00073
.00070 | | | | | T _t = 516 ⁰ | R; 40/ | $v_0 = 0.$ | 661×10 ⁶ 1 | n1 | | | | | $T_{t} = 521^{\circ}$ | R; u ₀ / | v ₀ = 0. | 646×10 ⁶ 11 | n1 | | | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
13.62
14.75 | 299
281
265
254
248
245
242
240
235
228
225
227
233
229 | 467
468
470
470
471
471
473
475
476
478
478
473
474 | 0.00130
.00111
.00096
.00082
.00069
.00060
.00053
.00054
.00052
.00048
.00038
.00036 | 280
278
261
242
223
230
241
235
213
225
225
227
227
231
224 | 472
470
473
471
474
473
479
476
475
470
475
470
472
467 | 0.00111
.00108
.00107
.00080
.00064
.00057
.00060
.00055
.00043
.00041
.00040
.00044 | 295
270
248
238
218
232
239
248
266
266
248
249
253 | 464
465
469
470
474
472
474
473
473
477
471
473
476 | 0.00115
.00105
.00108
.00084
.00069
.00085
.00086
.00093
.00110
.00082
.00074
.00080
.00084 | 298
272
256
252
234
261
277
280
289
284
272
267
272 | 478
473
477
479
484
275
484
482
484
480
481
486
486 | 0.00117
.00099
.00102
.00099
.00081
.00103
.00101
.00096
.00090
.00066
.00055
.00067 | 278
284
278
274
255
275
301
298
262
285
286
280
288
299 | 474
477
482
479
481
480
487
483
479
482
483
484
484 | 0.00105
.00115
.00115
.00105
.00080
.00094
.00118
.00119
.00083
.00076
.00071
.00066
.00085
.00085 | 299
263
274
272
270
278
285
289
283
269
263
264
268
265 | 474
475
479
482
482
485
485
483
483
483
483 |
0.00133
.00103
.00107
.00107
.00101
.00098
.00096
.00095
.00090
.00088
.00068
.00068 | (b) Parabolic-nosed-cylinder model. | x,
in. | | θ = | 00 | | θ = | 45° | | θ = | 90° | | θ = | 900 | | θ = : | 135 ⁰ | | θ = | 180° | |--|--|--|--|---|--|--|---|---|---|--|---|---|--|--|--|--|--|--| | III. | Tw, | Tad, | Stanton | o _R , | Tad' | Stanton
number | T _w , | Tad' | Stanton | T _w , | Tad, | Stanton
number | Tw, | Tad, | Stanton
number | T _w , | Tad, | Stanton | | | | | $T_{t} = 504^{\circ}$ | R; u ₀ / | $v_0 = 0.$ | 365×10 ⁶ 1 | n1 | - | | | | $T_{t} = 518^{\circ}$ | R; u ₀ / | $v_0 = 0$. | .367×10 ⁶ 1 | n1 | | | | 1
1.5
2
3
4
5
6
7
8
9
10
11
12.5
14 | 277
259
247
240

224
218
210
204
200
200 | 462
458
460
461
460
458
457
459 | .00145
.00123
.00105
.00097
.00079
.00071
.00063
.00060
.00057 | 266
252
232
226
218
216
206
200
198
197
195 | 455
458
458
456
460
457
459
462
464 | .00145
.00118
.00094
.00078
.00068
.00064
.00054
.00047
.00041
.00053 | 282
253
240
220
215
201
196
187
186
182
177
175
176 | 460
460
460
460
462
464
465
4667
4667
4667 | 0.00190
.00145
.00105
.00090
.00083
.00058
.00051
.00044
.00041
.00041 | 292
260
247
225
219
208
201
195
190
188
181
186 | 471
470
471
470
474
469
473
472
474
474
474
478
481 | 0.00190
.00135
.00115
.00085
.00078
.00073
.00060
.00050
.00043
.00040
.00040
.00040 | 250
229
205
203
198
201
204
200
200
201
202
219 | 469
473
470
472
473
479
478
478
481
481 | .00120
.00094
.00074
.00070
.00094
.00090
.00082
.00068
.00073
.00068 | 247
219
212
221
232
236
239
239
234
241 | 473
470
474
478
479
480
478
478
479
481 | .00134
.00111
.00086
.00086
.00095
.00098
.00082 | | | | | $T_t = 509^{\circ}$ | R; u ₀ / | $v_0 = 0.$ | 647×10 ⁶ 1 | n1 | | | | | $T_{t} = 522^{\circ}$ | R; u ₀ / | 0 = 0. | 649×10 ⁶ 11 | n1 | | | | 11.5 | 309
292
275
266

250
244
234
230
223
227 | 466
463
465
466
467
467
466
468
469
471 | .00120
.00099
.00083
.00076
.00054
.00054
.00042
.00035
.00037 | 301
285
263
257
243
246
234
227
221
220
217 | 461
465
463
469
467
471
469
468
468
468 | .00120
.00093
.00078
.00078
.00057
.00054
.00049
.00044
.00042
.00039
.00040 | 320
290
278
258
258
255
254
266
251
244
240
248
253 | 462
461
464
467
472
468
470
469
471
470
468
470
471
 | 0.00151
.00111
.00095
.00085
.00088
.00094
.00091
.00085
.00089
.00087
.00080 | 332
300
289
266
261
256
254
252
251
246
251
254 | 484
482
485
481
487
488
487
488
486
488
487 | 0.00150
.00110
.00100
.00089
.00082
.00075
.00089
.00091
.00089
.00079
.00084 | 294
277
272
283
287
294
285
282
281
277
275 | 482
487
486
488
486
487
487
487
487
487 | .00115
.00097
.00124
.00094
.00100
.00087
.00086
.00074
.00068
.00067 | 300
286
294
302
303
298
292

283
275
284 | 486
487
488
489
488
486
486
486 | .0011
.0010
.0010
.0010
.0009
.0008
.0007 | TABLE IV. - AXIAL TEMPERATURE AND STANTON NUMBER DISTRIBUTION AT AN ANGLE OF ATTACK OF 12°. (a) Cone-cylinder model. | х, | | θ = | 00 | | θ = | 45° | | θ = | 90° | | θ = | 135° | | θ = | 180° | | θ = | 225° | |--|---|--|---|---|---|---|---|---|---|---|---|---|---|---|---|--|---|---| | in. | Tw, | Tad, | Stanton
number | T _W , o _R | Tad' | Stanton
number | Tw, | Tad, | Stanton
number | Tw, | Tad, | Stanton | Tw, | Tad, | Stanton
number | Tw, | Tad, | Stanton | | | | | $T_{t} = 506^{\circ}$ | R; u ₀ / | $v_0 = 0$. | 363×10 ⁶ 1 | n1 | | | | | T _t = 516° | R; u ₀ / | v ₀ = 0. | 369×10 ⁶ 1 | n1 | | | | 2
3
4
4
5
6
7
8
9
10
10.62
11.5
12.5
13.65
14.75 | 273
255
245
239
234
230
232
229
225
215
214
215
221 | 456
458
459
459
457
460
462
458
461
456
456
459 | 0.00177
.00151
.00130
.00124
.00112
.00102
.00100
.00093
.00089
.00065
.00064
.00066 | 255
251
236
227
219
220
220
220
198
209
207
201
207
212
207 | 464
460
462
460
461
459
464
460
453
457
454
454
454 | 0.00161
.00128
.00131
.00134
.00099
.00090
.00100
.00078
.00059
.00057
.00053
.00057
.00059
.00059 | 263
239
220
210
189
194
193
193
189
180
181
189 | 452
456
459
456
456
458
457
459
458
455
461

462 | 0.00175
.00150
.00127
.00098
.00074
.00068
.00060
.00053
.00042
.00040
.00042
.00048 | 272
245
227
217
200
209
214
215
216
213
218
219
 | 469
466
466
467
471
467
470
473
471
469
474
475
 | 0.00161
.00141
.00125
.00113
.00084
.00075
.00081
.00083
.00071
.00061
.00062
.00061 | 251
249
227
216
206
213
223
220
202
218
219
219
228
233
227 | 470
470
472
467
469
468
473
470
469
467
471
472
473
473
470 | 0.00170
.00145
 | 272
248
230
225
217
215
215
222
221
208
215
222
225
224 | 468
469
471
468
470
474
473
472
471
471 | 0.00155
.00132
.00119
.00101
.00086
.00083
.00080
.00071
.00060
.00073
.00057 | | | | | T _t = 506° | R; u ₀ / | $v_0 = 0$. | 643×10 ⁶ 1 | n1 | | | | | $T_{t} = 522^{\circ}$ | R; u ₀ / | $v_0 = 0$ | 646×10 ⁶ 1 | n1 | | | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
13.62
14.75 |
305
295
325
348
349
350
355
354
349
333
337
344
338 | 459
461
462
464
463
468
470
467
468
466
470
468 | 0.00145
.00109
.00086
.00092
.00120
.00148
.00160
.00165
.00168
.00125
.00123
.00128 | 279
287
298
315
299
312
334
331
290
320
318
311
317
324
315 | 462
460
464
460
465
470
468
466
463
466
464
466
462 | 0.00135
.00112
.00113
.00100
.00115
.00128
.00131
.00132
.00109
.00128
.00116
.00118 | 299
278
272
287
287
280
286
284
279
266
261
261
258 | 458
456
459
465
465
466
467
464
463
466
467
464
463 | 0.00138
.00122
.00131
.00110
.00095
.00112
.00101
.00079
.00078
.00078 | 306
276
253
249
231
251
260
264
271
261
249
251
261
 | 476
472
474
475
482
481
486
481
486
481
485
485

483 | 0.00135
.00110
.00099
.00089
.00076
.00080
.00084
.00054
.00053
.00058
.00064 | 280
282
261
251
255
246
266
259
231
253
251
259
286
306
301 | 474
478
475
479
480
486
482
478
479
479
480
485
481 | 0.00125
.00112
.00094
.00085
.00073
.00067
.00086
.00076
.00060
.00065
.00063
.00068
.00074
.00085 | 307
281
264
261
258
260
265
264
261
247
251
256
264
265 | 475
476
476
480
481
485
486
483
482
483
482 | 0.00140
.00102
.00095
.00089
.00089
.00089
.00088
.00081
.00074
.00059
.00060 | (b) Parabolic-nosed-cylinder model. | x, | | θ = | 00 | | θ = | 45° | | θ = | 90° | | θ = | 90° | | θ = 1 | .35° | | θ = 1 | 180° | |---|--|---|--|---|--|--|---|---|---|---|---|---|--|--|--|--|--|--| | in. | T _W , | Tad, | Stanton | Tw, | Tad' | Stanton | Tw, | Tad' | Stanton | Tw, | Tad, | Stanton
number | Tw, | Tad' | Stanton
number | Tw, | Tad, | Stanton | | | | | T _t = 514° | R; u ₀ / | v ₀ = 0. | 367×10 ⁶ 1 | n1 | | | | | $T_{t} = 520^{\circ}$ | R; u ₀ / | v ₀ = 0. | 362×10 ⁶ 1 | n1 | | | | 1.5
2
3
4
5
6
7
8
9
10
11
11
12.5
14 | 300
283
266
260
247
240
230
226
214
220 | 470
467
468
468
466
464
464
464
464 | .00175
.00145
.00124
.00117
.00102
.00089
.00078
.00074
.00068 | 288
272
247
243
232
229
219
215
213
210
207 | 467
467
463
463
463
467
462
462
464
465 | .00180
.00140
.00121
.00108
.00086
.00092
.00076
.00070
.00050
.00052 | 307
275
259
234
224
210
201
197
193
187
183
185
185
 | 468
467
466
467
462
463
463
463
463
466
 | 0.00221
.00159
.00139
.00108
.00091
.00071
.00070
.00061
.00048
.00042
.00045
.00048 | 306
275
261
236
227
214
207
201
196
192
188
188
187 | 475
472
474
472
475
469
470
469
471
470
469
471
472 | 0.00225
.00156
.00130
.00106
.00090
.00074
.00072
.00061
.00052
.00047
.00046
.00050 | 265
246
222
207
209
202
201
202
203
207
 | 472
474
470
478
470
474
471
473
471
473
471
473 | .00145
.00115
.00091
.00073
.00070
.00060
.00058
.00052
.00057
.00054 | 270
246
242
253
257
256
255

256
250
260 | 476
472
474
476
475
476
476
477
477
477 | .00148
.00118
.00084
.00090
.00097
.00094
.00090 | | | | | $T_t = 509^{\circ}$ | R; u ₀ / | 'vo = 0. | 646×10 ⁶ 1 | n1 | | | | | $T_{t} = 522^{\circ}$ | R; u ₀ / | v ₀ = 0. | .650×10 ⁶ 1 | n1 | | | | 1.5
2
3
4
5
6
7
8
9
10
11
11
12.5 | 325
303
287
280
265
261
248
251
244
248 | 4652
4664
4666
4666
4668
4669
469 | .00141
.00115
.00094
.00083
.00069
.00062
.00055
.00054
.00049
.00048 | 315
297
272
269
256
256
244
239
233
228
225 | 463
466
463
469
466
471
469
467
467
467 | .00127
.00108
.00088
.00080
.00064
.00060
.00052
.00048
.00045 | 334
302
289
266
258
258
249
247
248
240
225
218
217 | 464
461
463
465
473
467
469
469
468
469
472 | 0.00170
.00130
.00114
.00100
.00087
.00090
.00085
.00078
.00071
.00063
.00057 | 354
320
309
284
280
279
286
293
296
292
282
279
281 | 490
488
490
492
496
493
493
493
493
490
490 | 0.00172
.00128
.00117
.00100
.00098
.00101
.00101
.00088
.00081
.00077
.00075 | 295
283
285
285
277
272
265
260
261
271 | 488
490
493
493
494
496
492
493
493
493
491 | .00130
.00114
.00099
.00096
.00086
.00082
.00075
.00067
.00058
.00065 | 320
306
310
316
318
312
311

309
306
321 | 491
492
496
497
496
496
493

494
494 | .00131
.00108
.00100
.00101
.00092
.00090
.00090 | | 16 | | | | 231 | 400 | .00047 | 235 | 470 | | 289 | 488 | | | | | | | | TABLE V. - AXIAL TEMPERATURE AND STANTON NUMBER DISTRIBUTIONS AT AN ANGLE OF ATTACK OF 180. (a) Cone-cylinder model. | x,
in. | | θ = | 00 | | θ = | 45° | | θ = | = 90° | | θ = | 135° | | θ = | 180° | | θ = | 225° | |---|---|---|---|--|--|---|---|---|---|---|---|---|---|---|---|--|---|---| | | o _R , | Tad, | Stanton
number | o _R , | Tad' | Stanton | o _R , | Tad, | Stanton
number | T _W , | Tad' | Stanton
number | Tw, | Tad' | Stanton
number | Tw, | Tad, | Stanton | | | | | $T_{t} = 505^{\circ}$ | R; u ₀ / | v ₀ = 0. | 365×10 ⁶ 1 | n1 | | | | | T _t = 515° | R; u ₀ / | /v ₀ = 0. | .367×10 ⁶ 1 | n1 | | | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
13.62
14.75 | 282
268
260
261
258
257
261
257
248
249
248
257
336 |
455
456
456
458
458
460
463
464
459
463
467
461
472 | 0.00198
.00161
.00145
.00136
.00130
.00120
.00116
.00105
.00085
.00078
.00076
.00087 | 258
257
245
239
226
229
246
241
216
235
234
230
236
299
427 | 462
452
460
458
461
457
462
459
460
454
454
455
462
465 | 0.00184
.00162
.00153
.00140
.00117
.00100
.00105
.00102
.00074
.00078
.00077
.00067
.00190 | 274
249
229
219
198
207
209
207
210
206
196
195
202 | 451
453
455
452
454
454
455
456
456
456
451
451
451 | 0.00177
.00155
.00135
.00138
.00075
.00081
.00087
.00068
.00054
.00050
.00050
.00046
.00049 | 279
246
224
213
197
202
207
207
207
206
204
207
211 | 466
462
464
463
467
466
467
464
464
468
471
7 | 0.00180
.00152
.00148
.00104
.00077
.00063
.00070
.00076
.00054
.00044
.00047
.00053 | 255
245
223
210
196
201
216
214
193
214
213
209
215
239
285 | 466
464
466
462
468
464
463
463
463
463
463
463 | 0.00169
.00140
.00115
.00081
.00069
.00064
.00072
.00072
.00060
.00058
.00060
.00069
.00149 | 278
249
226
217
207
206
203
202
200
194
200
200
209
244 | 466
464
467
465
465
466
465
463
463
465 | 0.00198
.00148
.0018
.00099
.00086
.00082
.00067
.00056
.00062
.00059
.00047
.00038 | | | | | $T_{t} = 508^{\circ}$ | R; u ₀ / | $v_0 = 0$. | 641×10 ⁶ 1 | n1 | | | | | $T_{t} = 522^{\circ}$ | R; u ₀ / | v ₀ = 0. | 648×10 ⁶ 11 | n1 | | | | 2
3
4
5
6
7
8
9
10
10.62
11.5
12.5
12.5
14.75 | 298
306
343
359
367
373
377
377
357
354
359
367
372 | 460
462
462
466
466
468
471
472
472
470
471
468
471 | 0.00150
.00140
.00200
.00228
.00240
.00250
.00265
.00255
.00243
.00190
.00196
.00200 | 232
287
311
319
300
325
352
348
298
337
328
337
328
337
350
443 | 461
461
461
465
466
474
470
468
467
468
467
468 | 0.00170
.00138
.00190
.00200
.00155
.00180
.00209
.00200
.00132
.00142
.00135
.00135 | 290
265
261
272
231
273
282
280
275
263
259
266 | 460
458
460
467
465
468
468
468
467
470
 | 0.00138
.00148
.00160
.00158
.00107
.00113
.00110
.00099
.00080
.00076
.00078 | 312
278
251
242
225
237
248
250
256
250
247
252
260 | 474
470
472
473
478
476
481
481
482
479
478
484
486
 | 0.00155
.00120
.00103
.00082
.00068
.00067
.00068
.00067
.00069
.00050
.00050 | 284
279
257
244
224
257
254
233
251
256
257
273
290
321 | 474
476
477
473
478
475
482
478
476
473
478
479
480
481
468 | 0.00126
.00118
.00096
.00074
.00064
.00063
.00074
.00052
.00052
.00052
.00050
.00060
.00065 | 313
280
259
254
242
243
247
248
248
236
244
251
266 | 472
472
474
477
484
482
483
481
482
481
482 | 0.00160
.00112
.00093
.00080
.00068
.00071
.00072
.00070
.00064
.00061
.00042
.00056
.00056 | (b) Parabolic-nosed-cylinder model. | x,
in. | | θ = | 00 | | θ = | 45° | | θ = | 90° | | θ = | 90° | | θ = | 135 ⁰ | | θ =] | 180° | |--|--|---|--|---|---|--|--|---|---|--|--|---|---|--|--|--|---|--| | | T _w , | Tad' | Stanton
number | Tw, | Tad' | Stanton
number | T _W , | Tad' | Stanton | Tw, | Tad' | Stanton | T _w , | Tad, | Stanton
number | Tw, | Tad, | Stanton | | | | | T _t = 519° | R; u ₀ / | $v_0 = 0.$ | 362×10 ⁶ 1 | n1 | | | | | T _t = 510° | R; u ₀ / | $v_0 = 0$. | .367×10 ⁶ 1 | n1 | | | | 1.5
2.3
4.5
6.7
8.9
10
11.2.5
14.16 | 318
302
290
284

273
266
255
256
245
249 | 474
472
472
473
473
470
470
470
470 | .00200
.00179
.00155
.00145
.00119
.00112
.00097
.00091
.00084 | 302
287
265
260
250
251
240
237
230
226
225
 | 472
472
469
470
467
472
468
468
468
468
472 | .00199
.00167
.00132
.00120
.00105
.00105
.00094
.00070
.00070
.00076 | 321
287
270
242
232
217
209
204
200
195
190
191
191
191 | 472
468
470
467
463
465
464
464
463
464
470 | 0.00251
.00185
.00150
.00109
.00093
.00073
.00062
.00061
.00050
.00052
.00054 | 318
283
269
239
232
217
208
205
201
196
191
191
195

365 | 463
461
462
459
462
455
458
455
458
457
455
458
457
455 | 0.00260
.00169
.00150
.00111
.00098
.00075
.00064
.00057
.00061
.00044
.00055
.00044 | 273
248
218
213
197
203
196
195
196
198
217 | 461
462
457
456
461
458
458
456
457
458 | .00169
.00135
.00090
.00076
.00060
.00063
.00053
.00048
.00044
.00058 | 276
251
230
226
216
214
210
214
207
212 | 463
460
459
459
458
457
456
459
461 | .00167
.00131
.00093
.00077
.00059
.00057
.00058
.00062 | | 1.5 | 342
325
312 | 465
463
465 | .00151
.00122
.00105 | 328
310
289 | 461
463
460 | .00152
.00122
.00111 | 343
310
294
268 | 461
458
460
459 | 0.00200
.00145
.00115 | 350
313
299
269 | 463
460
461
462 | 0.00200
.00144
.00120
.00096 | 301
277
248 | 461
463
459 | .00131
.00106
.00078 | 309
282
265 | 464
460
462 | .00137
.00101
.00077 | | 4
5
6
7
8
9
10
11
12.5 | 306
296
291
281
281
272
278 | 466
468
468
467
466
466
467 | .00099
.00082
.00077
.00069
.00076
.00068 | 287
275
278
275
270
263
258
253 | 465
465
470
468
468
467
469
467 | .00100
.00080
.00087
.00082
.00080
.00068
.00062
.00059 | 269
257
262
267
263
256
248
246
247 | 467
463
465
464
465
464
465
468 | .00091
.00083
.00087
.00086
.00086
.00073
.00071
.00070 | 268
261
262
272
272
271
254
254
266 | 469
465
468
466
468
467
465
467
469 | .00091
.00088
.00090
.00091
.00093
.00082
.00076
.00080 | 248
239
246
243
241
244
246 | 465
469
465
465
465
467
468 | .00077
.00061
.00062
.00059
.00056
.00056 | 264
254
251
245
245
237
242 | 463
463
462
461
464
465
467 | .00077
.00064
.00061
.00053
.00052
.00057 | | 14
16 | | | | 298 | 469 | .00087 | 393 | 455 | .00255 | 364 | 447 | | 261 | 470 | .00068 | | | | Figure 1. - Details of models and thermocouple locations. (a) Shoes in retracted position along the tunnel wall. Figure 2. - Tunnel installation. (b) Shoes enclosing model for precooling process. Figure 2. - Concluded. Tunnel installation. Figure 3. - Comparison of laminar boundary-layer theory with experimental data for the most windward (0°) generator of the conical forebody. Figure 4. - Effect of peripheral conduction along the most windward generator of the conical forebody; unit Reynolds number per inch, 0.36×10⁶. Figure 5. - Effect of angle of attack on heat-transfer coefficients along the most windward (0°) generator; unit Reynolds number per inch, 0.36×10^6 . Figure 6. - Effect of angle of attack on heat-transfer coefficient along the most leeward (180°) generator; unit Reynolds number per inch, 0.36×10^{6} . Figure 7. - Comparison of Stanton
numbers along the most windward (0°) and most leeward (180°) generators at various angles of attack; parabolic-nosed-cylinder model; unit Reynolds number per inch, 0.65×106. Figure 8. - Effect of forebody geometry on heat-transfer coefficient; angle of attack, 12°; unit Reynolds number per inch, 0.36×10⁶. Figure 9. - Effect of forebody geometry on the location of transition to turbulent flow along the most windward generator; unit Reynolds number per inch, 0.65×10^6 . (b) Parabolic-nosed-cylinder model; angle of attack, 18°. Figure 10. - Heat-transfer coefficients along the most leeward generator at two values of the unit Reynolds number.