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SECTION 1. SUMMARY
BASE PROGRAM

Thermal mechanical fatigue (TMF) crack initiation mechanisms and methods for life prediction of
coated single crystal PWA 1480 were investigated. Isothermal and TMF tests were conducted on over
200 smooth coated specimens. Test conditions were designed to ca})ture material characteristics at
relevant turbine blade strains and temperatures. Specimens were fabricated from cast bars which
had primary crystallographic orientations of <001>, <011>, <111>,and < 213> and coated with
one of two §eneric coating types: a _Flasma sprayed overlay, designated PWA 286, and an aluminide
diffusion, designated PWA 273. o account for the observed cracking trends, the selected life
approach considered clclic life as the sum of coating cracking life, single crystal crack initiation life,
and single crystal crack propagation life.

Constitutive models were developed for the overlay coating and single crystal PWA 1480 to provide
descriptions of the local coating/substrate stress—strain history. The coatin constitutive model was
based on Dr. Walker’s isotropic viscoplastic model developed for Hastelloy X. The PWA 1480
constitutive model used a micromechanical approach. In this approach, the applied global stresses
and strains are resolved into the single crystal cube and octahedral slip systems. Inelastic calculations
are performed for each slip system, and then the stresses and strains are resolved back into the global
system.

Life models were developed to predict the overlay coating and single crystal TMF crack initiation
events. The coating cracking model was based on integrated tensile hysteretic energy. Because
coatings exhibit highly nonlinear behavior and because thermal expansion mismatch introduces
biaxial loads into the coating during the thermal cycling, inelastic finite element analysis of the
coating/single crystal composite was performed to obtain the coating hysteretic response. The PWA
1480 TMF crack initiation life model was based on the maximum mode I stress intensity factor, Kmax.
In this model, coating cracks were treated as initial flaws which propagated into the single crystal.
Increased crack propagation rate due to bulk cyclic inelasticitg was assumed to be insignificant based
on the elastic hysteresis observed in the TMF specimens. Both coating and single crystal models
include temperature- and time-dependent terms to account for thermal exposure effects.

The constitutive and life models were subsequently incorporated into a computer program called
LAYER. LAYER was developed to perform nonlinear finite element and life é)rediction analyses of
multi-layered composites at critical component locations. Input to the LAYER system is obtained
from previously conducted component analysis.

OPTION 1 PROGRAM

The Option 1 portion of the contract developed constitutive and fatigue life prediction models
applicable to the attachment regions of single crystal turbine blades and vanes. Constitutive and Low

cle Fatigue (LCF) tests were conducted on smooth and notched single crystal PWA 1480 specimens
haviniseveral different crystallographic orientations. Specimens were machined from castings having
growth directions within 10 degrees of <001>, <011>, <213> or <111>. In all cases, the casting
direction corresponded to the loading direction. Notched specimens were carefully machined to
control a second geometric axis relative to the crystal axes. A single heat of PWA 1480 was used for
all specimens. The bulk of the fatigue testing in the program was conducted at 650°C (1200°F)
although some tests were conducted at 760°C (1400°F) and 870°C (1600°F). All of the fatigue data
is reported here, but only the 650°C (1200°F) data was used to develop a fatigue model. The fatigue
model was developed for notched features typical of the attachment region of single crystal turbine
blades. The form of the model was derived from smooth specimen tests for which stresses and strains
were well known. The notched fatigue data itself was used to obtain model constants for the notched
model. Notch stresses were calculated using a Neuber approach after having been evaluated usin
nonlinear finite element analyses (FEA) incorporating the Base Program anisotropic PWA 14
material model. A verification test was conducted using a specimen having a geometry closely
matching an actual turbine blade attachment. Finally, a small amount of fatigue data was generated
for Hot fsostatical]y Pressed material.



SECTION 2. INTRODUCTION

One of the more important developments in gas turbine blade materials has been the introduction
of directionally solidified and single crystal castings. Among the advantages of these materials are:

® Substantially increased high temperature creep and stress rupture strengths and
enhanced oxidation/corrosion resistance due to the elimination of grain boundaries.

® Increased low cycle fatigue life due to a thermal stress reduction incurred as a result
of lower elastic modulus along the solidification direction.

® Higher melting temperature and greater heat treatment flexibility resulting from the
elimination of grain boundary strengthening elements.

This casti:F process has matured to the level where it is now routinely used in the production of
commercial and military aircraft jet engine turbine blades. Unfortunately, metallurgical and
processing advances have not been matched by corresponding advancements in the knoerd e and
understanding of the mechanics of these materials, their failure mechanisms, and methods for life
prediction. In order to realize the full potential of these materials, it is necessary to determine the
dominant life limiting parameters. Anisotropy introduces many life prediction questions, especially
for stresses which are not parallel to the direction of solidification. Oxidation resistant coatings
further complicate the questions. All of these issues were addressed in this NASA sponsored
program.

The program consisted of a Base Program and an optional program (Option 1). The Base Program
addressed coated single crystal material subjected to relevant turbine airfoil temperatures and load
histories. Option 1 addressed uncoated single crystal material operating at root attachment
temperatures and notched conditions.

In the Base and Option 1 programs, candidate constitutive and life prediction models were developed
concurrently. Laboratory specimens, tested using a variety of mechanical and thermal load histories,
provided data for the final model selections. The selected Base Program models were incorporated
into computer code.

The first year effort of the program involved materials selection, specimen fabrication, basic material
tests, literature searches of appropriate constitutive and life prediction models, initial formulation of
constitutive models, and initial constitutive and fatigue life tests. The results of the first year effort
were reported in NASA CR-174952 (Reference 1).

The second year effort of the program involved constitutive testing of the selected overlay coating and
primary single crystal (PWA 1480) materials, Level I fatigue life testing, development of “microscopic”
and “macroscopic” single crystal constitutive models, selection of two coating constitutive models for
further development, and initial coating and single crystal life model evaluations. The results of the
second year effort were reported in NASA CR-179594 (Reference 2).

The third through fifth years of the program involved selection of coating and PWA 1480 constitutive
models, selection of the final overlay coating life model, completion of coated PWA 1480 fatigue life
tests, evaluation of candidate life models for coated PWA 1480, completion of elastic finite
element stress analysis for notched specimens, and results from initial smooth and notched fatigue
tests of uncoated PWA 1480 at root attachment temperature levels. The results of these years were
reported in NASA CR-189222 (Reference 3).

This report summarizes the work reported in References 1 to 3 and covers the work period from
January, 1989 to May, 1990. During this period the remaining Base Program final model selections
were made and incorporated into a computer program called LAYER. The LAYER 3pro ram was
delivered to NASA and a User manual for LA was reported in NASA CR-187038 (Reference
4). Finally, the Option 1 life model for uncoated PWA 1480 at root attachment temperatures and
notched conditions was completed.



SECTION 3. TASK I - MATERIAL/COATING SELECTION AND ACQUISITION

PWA 1480 and Alloy 185 were selected as the primary and secondary single crystal materials,
respectively, to be evaluated in this program (Reference 1).

PWA 1480 was the first superalloy specifically designed for use in single crystal form and was
developed with the goal of achieving an optimum balance of creep strength, thermal fatigue strength,
and oxidation and hot corrosion resistance. PWA 1480 was certified for commercial use in the
JTID-TR4D/E engine in late 1981 and has since been certified for use in the JTOD-7R4G/H, PW2000,
PW4000, and V2500 engines.

Two heats of PWA 1480 were procured for this program from the Howmet Turbine Components
Corporation, Alloy Division, Dover, New Jersey. gl'he prima heat, identified by Howmet as

A14824, was designated P9866. The secondary heat, 1dentified by Howmet as 200B14773, was
designated P9867.

Alloy 185 exhibits greater creep anisotropy than PWA 1480 as a result of its higher hardener content
compared to PWA 1480 and different structure. Consequently, its selection as the secondary single
crystal material made it possible to test the range of applicability of the constitutive and life models
developed in the program (Reference 1).

A single heat of Alloy 185 was procured for this program from the Howmet Corporation, Alloy
Division. This heat, designated by Howmet as 242A15847, was designated P9921.

Nominal compositions for PWA 1480 and Alloy 185 along with actual compositions of the procured
llxeats are listed in Table 1. The typical solution heat treated microstructures are presented in Figure

The directional solidification casting process was employed to cast cylindrical single crystal bars of
both selected alloys with nominal 15.2 cm (6.0 in.) length and 2.54 cm (1.0 in.) and 1.59 cm (0.625 in.)
diameters. The primary growth direction was controlled to produce <001>, <111>, <011>, and
<213> oriented bars. The castings were solution heat treated, followed by a rigorous evaluation to
ensure that only quality castings were used for specimen fabrication (Reference 1).

Two coatings were selected for this program to be representative of those employed on actual turbine
airfoils operating in gas turbine engines: PWA 286 overlay coating and PWA 273 outward diffusion
aluminide (Reference 1). The general coating compositions and application processes are
summarized in Table 2. Typical coating microstructures are presented in Figure 2.

3.1 PRIMARY ALLOY (PWA 1480) AND COATING SPECIMEN FABRICATION

3.1.1 Coating Constitutive Specimens

Overlay Coating

Fivgvure 3 illustrates the specimen geometries employed for testing the mechanical properties of bulk
PWA 286 overlay coating material. The sFecimen diagrammed in Figure 3A was machined from PWA
286 ingots of hot isostatically pressed %P)_l%owder. Figure 3B illustrates specimens fabricated from

thick sheets of plasma sprayed PWA e thick sheets were produced by plasma spraying thick
layers of PWA 286 onto substrates. The substrates were subsequently removed by machining.

Photomicrographs of the overlay coating structure in both types of specimens are presented in Figure
4 It shoulcf be noted that the different porosi;y levels obtained in the two specimens bracket the
porosity of overlay coatings on actual airfoils (Figure 2): the HIP specimen contained virtually no
porosity, while the unpeened thick plasma spray specimen contained a high level of porosity.

Aluminide Coati

The structure of diffusion coatings is much more complex than that of overlay coatings. The diffusion
coating chemistry and microstructure vary from the coating surface to the substrate because of



interdiffusion between the coating material and the substrate during the coating process. As a result,
aluminide coating mechanical properties can not be effectively determined from homogeneous bulk
specimens. To obtain diffusion coating behavior, the approach taken in this program was to coat two

icknesses of thin PWA 1480 substrates and test the resulting composite structure. Theoretically,
the effective coating properties could then be obtained by comparing the thicker specimen response
to that of the thinner specimen.

Flat specimens for PWA 273 coating constitutive tests were fabricated by forming coating on both
sides of the PWA 1480 substrate. PWA 1480 < 100> substrates were fabricated from 2.54 cm (1.0
in.) diameter bars of heat P9867 material. The specimens were oriented such that the transverse
direction was parallel to a secondary <010> direction. The nominal, before coating, substrate gage
section thicknesses were: 0.25 mm (0.01 in.) and 0.13 mm (0.005 in.) as shown in nggure 5. Due to
the fragile nature of these specimens, fixtures were constructed to hold the specimens during the
coating process and subsequent diffusion heat treatment at 1079°C (1975°F) and aging at 871°C
(1600°F).

The microphotographs in FiEure 6 show the structure of the completed flat specimens. The 0.25 mm
(0.010 in.) initial substrate thickness reduced to about 0.14 mm (0.0055 in.) after coating, while the
0.13 mm (0.005 in.) initial thickness reduced to about 0.02 mm (0.0008 in.) remaining substrate.

3.1.2 PWA 1480 Material Specimens

Figures 7A and 7B illustrate the specimen geometries employed for coated and uncoated tensile and
creep testing and uncoated cyclic constitutive testing.

Fatigue test specimen geometries used for coated and uncoated PWA 1480 were chosen to allow test
conditions comparable to those found in actual turbine airfoils. Figure 8 schematically illustrates the
%eometries for the hollow tube LCF/TMF (low cycle fatigue/thermomechanical fatigue) specimens.

o take full advantage of external extensometry, a ridgeless specimen (Figure 8B) was developed early
in the program to replace the internally ridged specimen (Figure 8A). A comparison study of internal
and external extensometers was reported in Reference 2.

32 ALTERNATE SINGLE CRYSTAL MATERIAL (ALLOY 185) SPECIMEN
FABRICATION

Alloy 185 bars were cast using the single crystal directional solidification process. Bar sizes were
consistent with the PWA 1480 bars (Reference 1). The bars were heat treated at 1316°C (2400°F)
followed by a forced glz_l}s; cool to refine and homogenize the tgamma prime hardener without the onset
of incipient melting. The same inspection procedure used for the PWA 1480 cast bars was employed
to ensure the quality of the Alloy 185 castings.

3.3 PHYSICAL, THERMAL AND MONOTONIC MECHANICAL PROPERTIES
3.3.1 Thermal-Physical Properties

The thermal-physical properties of PWA 1480 single crystal material, unlike mechanical properties,
are isotropic. Therefore, measurements are required only for a single orientation.

Thermal-physical property tests for <001> oriented PWA 1480 and PWA 273 and PWA 286 coatings
were concﬁxcted at Southern Research Institute. Thermal conductivity, thermal expansion, specific
heat and density property data were obtained and were included in Appendices A and B of Reference
1. Property curves based on the data are presented in Figures 9 through 11, respectively.

3.3.2 Elastic Constants
Elastic constants for PWA 1480 were obtained by ultrasonic wave velocity measurements (Reference

3) over the entire range of temperatures applicable to turbine airfoils. The resulting “dynamic”
stiffnesses are shown in Figure 12. Table 3 contains the dynamic stiffnesses, Cij, and the dynamic



compliances, Sij, which are related by the following equations.

Cll1 + C12
S = (C11-C12) (Cl1 + 2C12) M
-Cc12
S12 =1 {Cli-c12) (C11 + 212 )
1
S44 = 3

C44

Also included in Table 3 is the “apparent modulus” that would be obtained from a simple tensile test
of a single crystal bar oriented in each of the four primary orientations used in this program. The
apparent modulus is obtained through the following equation.

"E" = [S11-[2(S11 - S12) - S44] F}" ®
] in2
where F = sin’a cos’a + MTSM ©)

The angles o and B define the tensile direction as shown in Figure 13.

Figures 14 through 17 compare the apparent modulus obtained from “static” tensile testing to the
apparent modulus from the dynamic constants. At higher temperatures and for certain orientations
the “static” modulus is lower than the “dynamic” mo§ulus. The orientation dependence appears to
have at least some degree of correlation with the cube sli Sﬂstem shear stresses. The maximum
resolved shear stresses and the number of slip systems witﬁ shear stresses within 10 percent of the
maximum are given below.

Resolved Shear Stress (% of Applied Stress)

Tensile Octahedral Systems Cube Systems

Directi Maxi ¢ within 10% Maxi ¢ within 10%
<001> 41% 8 0% 0
<213> 47% 1 46% 2
<011> 41% 4 35% 4
<111> 2% 6 47% 3

The dynamic elastic constants were used in the PWA 1480 single crystal constitutive modeling effort.

3.3.3 Tensile Properties

A total of 40 monotonic tensile tests were conducted on PWA 1480 single crystal specimens with
orientations of <100>, <110>, <111> and <213>. All tests were run at the American Society
for Testing Materials (ASTM) standard strain rate of 0.005 min~l. Tests included uncoated and



aluminide and overlay coated < 100> and <111> oriented specimens. A summary of test conditions
and observed material properties is presented in Table 4. Additional tensile tests were conducted in
the Option 1 program (see Section 11.2).

Some of the tensile test results can be understood by examining the fracture surfaces (Figure 18). Note
that the faceting is quite pronounced at 760°C (1400°F), but as the temperature is increased to 1093°C
(2000°F), the number of faceting planes increases dramatically and the fracture surface appears more
normal to the tensile load. Also note that necking and the ductility of the specimens increase with
temperature. All of these trends can be explained by the increase in the number of active slip systems
with temperature.

3.34 Creep Properties

PWA 1480 Single Crystal

A total of 40 monotonic creep tests were conducted on PWA 1480 single crystal specimens with
orientations of <100>, <110>, <111> and <213>. Tests were run at constant temperature and

load conditions, and included uncoated and aluminide and overlay coated specimens. The test results
were summarized in Table 5 and a discussion of the results was presented in Reference 2.

PWA 286 Overlay Coating
A summary of the test conditions and observed material properties is presented in Table 6. No
previous creep experience was available with this material. The creep test conditions were set based

on the limited stress relaxation tests conducted for the constitutive modeling effort. As a result, most
tests required uploading or were discontinued before rupture.



SECTION 4. TASK II - SELECTION OF CANDIDATE LIFE PREDICTION AND
CONSTITUTIVE MODELS

41 SELECTION OF CONSTITUTIVE MODELS FOR COATINGS AND SINGLE
CRYSTAL MATERIALS

Basic to life prediction for any structural component is the description of local stress-strain history.
This necessitates availability of good constitutive models. As a gas turbine part is cycled through a
wide range of stresses, strains, and temperatures, deformation and damage accumulate by a variety
of mechanisms both in the single crystal alloy base material and the coating, all of which play a role
in the component’s ultimate fatlure. Tt is the goal of constitutive modeling to predict this stress-strain
history so that the conditions at fatigue crack initiation are accurately known.

During the first year of this program, candidate constitutive models for the coatings and single crystal
material were selected for evaluation (Reference 1). The selected models included:

1. Coatings
a. Classical model (uncoupled plasticity and creep, e.g. Reference 5)
b. Walker’s model (unified viscoplastic, References 6 and 7)
c. Simplified Walker’s model (no equilibrium stress term, Reference 1)

d. Moreno’s Simplified Approach  (hybrid model for Hastelloy X, Reference 8)
e. Stowell equation (based on self-diffusion mechanism, References 9-11)
2. Single Crystal Material
Classical Hill model (based on Von Mises yield function, Reference 12)
b. Lee and Zaverl model (macroscopic viscoplastic model, References 6 & 13)

¢. Micromechanical Viscoplastic  (extension of Walker’s model to crystallographic
Formulation deformation, References 6 and 13

Detailed descriptions of these models and discussion of their selection were presented in Reference

42 SELECTION OF LIFE PREDICTION MODELS

421 Literature Survey

In order to identify life prediction models which were applicable to coated anisotropic materials of
%‘s turbine airfoils, a literature survey was conducted as part of the work reported in Reference 1

e survey resulted in an extensive listing of model concepts that have been used to match available
data and meet specific needs of individual investigators.

Three broad classes of life models were available: phenomenological, cumulative damage, and crack
growth.

A detailed discussion of individual model descriptions was presented in Appendix C of Reference
1

422 Life Prediction Model Approach

Based on the literature survey (see e.g., References 15 to 20), previous Pratt & Whitney experience,
and specimen tests conducted under this program, it was concluded that coatings have a role equally



important with that of the base material in determining turbine airfoil crack initiation life. Coatings,
applied to the airfoil surfaces to provide oxidation protection, were found to serve as primary crack
initiation sites at relevant turbine operating conditions. Thus, coatings were a major determinant of
cracking location and life. Base material cracks subsequently develop from coating cracks and
propagate to failure.

Base material cracking underneath the coating was also observed on coated single crystal specimens.

Base alloy initiated cracks typically occurred when the base alloy was subjected to high stress levels

and low strain levels such as under high temperature isothermal conditions for single crystal primary

orientations which significantly deviate from <001>. Such orientations had high elastic modulus

relative to <001> so that smaller strains introduced higher stresses. In some instances, coating

;:ra_cks vﬁre observed along with base alloy initiated cracks, but they did not influence the specimen’s
atigue life.

The large variety of cracking modes that were observed on anisotropic material test specimens
indicated that a complex life prediction approach was required to determine when such materials will
fail due to fatigue. %or coated surfaces, the approach must include the capability to account for
coating cracking, coating affected cracking of the base alloy and crack propagation in the base alloy.
Base material crack initiation was a competing failure mode to coating cracking and required
additional predictive capabilities. These included predicting crack initiation from three sources:
macroscopic inelasticity, uncoated surface interaction with the environment, and microscopic defects

(e.g., porosity).

The following overall life prediction approach was selected:

Nf = Nc + Nsc + Nsp 6)
or Nf = Nsi + Nsp, whichever is smaller, @)
where Nf = Total cycles to failure.

Nc = Cycles to initiate a crack through the coating.

Nsc¢ = Cﬁ'clgs for a coating crack to penetrate a small distance into the substrate (base
alloy).

Nsi = Cycles to initiate a substrate (base alloy) crack.

Nsp = Cycles to propagate a substrate (base alloy) crack to failure.

In this program, crack initiation of coated nickel-based single crystal materials operatjn§_ at relevant
as turbine airfoil conditions was addressed. As such, only the prediction of the cyclic life given by
¢ and Nsc was considered.

4.2.3 Candidate Life Prediction Models
Coating Life (Nc):

Coatings undergo substantial inelastic deformation during typical gas turbine engine operation and
coating cracking appears strongly related to such deformation.

Two candidate models for coating cracking life prediction were selected for evaluation. These were
the Coffin-Manson model which relates %ife to inelastic strain and Ostergren’s hysteretic energy
model. An important ingredient for these models was that terms may be added to account for
environmental degradation of the coatings.

Coffin-Manson (Reference 21):
€inel - NBl = C1 (8)



Ostergren (Reference 22):

W;.NB2 = C2 9)
where €inel = inelastic strain range
Wi = tensile inelastic hysteretic energy
N = cracking life, including cycle frequency correction

for environmental exposure
B1, B2, C1,C2 = material constants

Phenomenological models were particularly appropriate for coating life prediction because structural
modeling and experimental capabilities for coatings significantly lag those for structural materials.
Coating microstructure and composition change with time as the coating is exposed to the severe
turbine operating environment. Ks a result, the coating properties which affect coating fatigue life,
such as thermal expansion, ductility, and creep resistance, are altered. To accommodate such
behavior, complex life prediction models typically require material property information documenting
the change in each coating property. ~Obtaining such information was beyond the available
capabilities of specimen fabrication and experimentation for coatings. Thus, simple models which
were able to include environmental effects were chosen in this program.

Single Crystal Life (Nsc):

In order to extend isotropic material life prediction models to anisotropic materials such as single
crystals, a method to account for material orientation effects was required. Similar to the methods
for single crystal constitutive modeling, both macroscopic and micromechanical approaches were
possible. The macroscopic approach describes anisotropy effects in terms of bulk material properties
and observed loading response. The use of this approach generally assumes that the initiating crack
orientation is known, usually normal to the applied load direction. The micromechanical approach
utilizes material deformations at the slip levef. Applied strains are resolved into components along
the individual slip directions which depend on the material orientation. Fatigue life may then be
related to the resulting slip plane stresses and strains.

Based on previous Pratt & Whitney experience and the fatigue data generated in this program, coated
single crystal material initiates cracks normal to the loading direction. Crystallographic fatigue crack
initiation, which would necessitate a micromechanical based model, was not observed for relevant gas
turbine cyclic loading conditions. As a result, macroscopic based models were considered a good
starting point from which to develop a single crystal life model.

Atleast one representative model from each class (phenomenological, cumulative damage, and crack
growth) was selected for evaluation.

1. Coffin-Manson (Reference 21)

Modified Strain Model

Hysteretic Energy Approach (References 15 and 23)

Cyclic Damage Accumulation (CDA) (References 24 and 25)

LAY S

Crack Tip Opening displacement (CTOD) (Reference 25)

Detailed descriptions of these models and discussion of their selection were presented in Reference
3.



SECTION 5. TASK III - LEVEL I EXPERIMENTS
5.1 COATING CONSTITUTIVE TESTS

Cyclic stress relaxation tests were conducted to determine the constitutive behavior for the coating
systems selected in this program. A typical test cycle is presented in Figure 19.

In order to obtain data from coating specimens, significant development of testing techniques was
required, including rig control improvements and extensometry development. Manual specimen
loading was not adequate for maintaining constant strain rates. Also, maintaining constant strain
hold periods during stress relaxation was difficult. For these reasons, computer controls were
installed, making use of a test software package developed in a separate Pratt & Whitney program.
Another concern was the method for obtaining deflection measurements from the PWA 273
specimens. Such a thin specimen could not support the extensometer hardware. Two externally
supported extensometry setups were subsequently developed in another Pratt & Whitney program.
The first extensometer concentrated on minimizing the extensometer loads on the specimen and
resulted in the counter-balanced lever type extensometer shown in Figure 20. This extensometer was
successfully used to gather data on the 0.25 mm (0.010 in.) thick specimens up to 982°C (1800°F).
Unfortunately, at higher temperatures (or low loads), this extensometer tended to produce an irregular
response due to motion at the pivot points. In the second extensometer setup, the pivot points were
eliminated and the deflections were measured directly using an MTS extensometer &-‘igure 21).
Speciall{’ designed double quartz rods were used to balance side forces on the specimen normally
caused by the spring loaded extensometer rods. The results of the coating constitutive tests are
presented in Appendices A, B and C.

5.2 SINGLE CRYSTAL CONSTITUTIVE TESTS

Cyclic tests were conducted to determine the constitutive behavior of PWA 1480. A typical specimen
test consisted of fully reversed cycling over several strain ranges and, for the high temperature tests,
several orders of magnitude in strain rate.

The test matrix is presented in Table 7. Test results are too voluminous for this report, but they are
available from NASA Lewis in the form of raw load-deflection plots. Stress and strain conversion
factors are noted on the cover sheet of each specimen test.

5.3 SINGLE CRYSTAL FATIGUE TESTS
5.3.1 Test Facility

The test facility used for isothermal and thermomechanical fatigue (TMF) tests consisted of a
servo—controlled, closed loop hydraulic testing machine with MTS controllers, a low frequency (10
kHz) 20 kW TOCCO induction heater, and an Ircon model 7000 radiation pyrometer, calibrated over
a temperature range of 260°C to 1371°C (500°F to 2500°F), for temperature measurement. Induction
heating was selected to accommodate MTS external extensometry and to provide adequate heating
rates. The quartz rods of the MTS extensometer, which define a 2.54 cm (1.0 in.) gage section, are
spring loaded against the specimen and did not show signs of slippage during testing. A typical test
setup is illustrated in Figures 22 and 23. -

The internal and external extensometer setup shown in Figure 22 was used during initial fatigue tests
to compare the two extensometers and gain e)g)erience with the external extensometer. The external
extensometer was proven to provide better deflection measurements and was chosen as the sole
deflection measurement device. A summary of the internal and external extensometer comparison
study was given in Reference 2.

5.3.2 Fatigue Tests
Isothermal fatigue and TMF tests were conducted to define crack initiation life of coated PWA 1480

single crystal material and to provide data for initial life prediction model evaluations. All fatigue
tests used the specimen geometry shown in Figures 8A or 8B. The latter design (denoted as 73C) relied
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on an MTS extensometer for deflection measurement. Where necessary, the recorded deflections
obtained from the internal extensometer in the 44C design were corrected by 2-D finite element
analysis to be consistent with the MTS extensometry.

Level I tests were limited to key variables considered relevant to creep-fatigue and TMF life

prediction. The variables included crystallographic orientation, coating, strain range, mean strain,

strain rate, strain hold periods, and temperature. Tests were conducted using strain controlled

(I:;)ndiéi%ns. A summary of Level I fatigue lives and specimen responses is presented in Appendices
and E.

The onset of coating cracking and crack propagation was monitored during each test by taking a series
of acetate film surface replicas. Metallographic inspection of the tested specimens was performed
at the conclusion of each test in order to interpret the replica data, characterize cracking patterns,
and identify crack initiation sites. Specimen load, strain, and temperature histories were monitored
during the course of testing to provide information useful for the modeling efforts. Typical isothermal
and TMF specimen hysteresis loops and representative dislocation networks produced during TMF
were presented in Reference 2.

In general, both PWA 286 overlay and PWA 273 diffusion aluminide coated specimens were found
to develop coating cracks substantially before specimen failure. Subsequent metallographic
inspection of failed specimens indicated that, in manf' specimens, the coating cracks had progressed
into the PWA 1480 substrate and directly caused failure. However, in other specimens, the coating
cracks did not extend into the PWA 1480 substrate, and the failure resulted from a competing crack
which had initiated near to, or at, the uncoated ID of the specimen. In all cases, PWA 273 aluminide
coating initiated cracks propagated into the PWA 1480 substrate. PWA 286 overlay coated specimens,
however, did not propagate coating cracks into the PWA 1480 when the sgecimen was subjected to
tensile stresses at high temperatures (1038°C isothermal or in-phase TMF). In such instances, ID
cracks caused specimen failure, even though the overlay coating cracks developed early in the
isothermal tests. Overlay coating cracks propagated into the PWA 1480 during low temperature
isothermal LCF or out-of-phase TMF tests. Representative coating crack micro hotographs are
presented in Figure 24. In some other coated specimens, principly the < 111> PWA 1480 coated
specimens, subsurface crack initiation was observed.

To bookkeep all the observed crack initiation modes, the following nomenclature was adopted for
identifying where the crack which led to specimen failure had initiated:

¢ = Coating
cs = Coating diffusion zone
sc = Coating-substrate interfacial region
s = Substrate (subsurface)
ID = Uncoated ID surface of the specimen
IDc = Uncoated ID surface of the specimen; coating cracks observed along the OD surface
IDs = Substrate (subsurface) initiation near the uncoated ID surface
d = Test discontinued with no observed cracks
dc = Test discontinued with coating cracks observed along the OD surface
des = Test discontinued with cracks along the OD surface which initiated at the coating

diffusion zone

dsc = Test discontinued with cracks along the OD surface which initiated at the coating-
substrate interfacial region

11



Examples of c, cs, sc, and s failure modes are presented in Figures 25 to 28.

Level I tests indicated that creep-fatigue and TMF life is dependent on several factors: 1) the presence
of a coating, 2) the coating composition and microstructure, 3) single crystal orientation, and 4) the
cyclic strain-temperature-time relationship (i.e., the cyclic loading history). And, of those variables
encompassed by cyclic loading history, mean strain appeared to be the least significant. Observations
made during the Level I experiments reinforced the need for constitutive and life models for coating
materials and verified the chosen life approach (Section 4.2.2). Discussions of critical experiments
conducted to define important fatigue attributes were presented in References 1 to 3.

12



SECTION 6. TASK IV - CORRELATION OF MODELS WITH LEVEL I EXPERIMENTS
6.1 OVERLAY COATING CONSTITUTIVE MODEL

FEvaluation results of the five candidate coating constitutive models (see Section 4.1) were presented
in References 2 and 3. Discussion of the final overlay coating constitutive model is presented in
Section 8.1.

6.2 SINGLE CRYSTAL CONSTITUTIVE MODEL

Evaluation results of the three candidate single crystal constitutive models (see Section 4.1) using PWA
1480 isothermal data were presented in Reference 2. Discussion of the final single crystal constitutive
model is presented in Section 8.2.

63 COATED SINGLE CRYSTAL LIFE PREDICTION MODELING

Fatigue life for coated single crystal materials was defined as follows (see Section 422):

Nf = Nc + Nsc + Nsp (10)
or Nf = Nsi + Nsp, whichever is smaller, (11)
where Nf = Total cycles to failure.
Nc = Cycles to initiate a crack through the coating.
Nsc¢ = acl¥§;'gs for a coating crack to penetrate a small distance into the substrate (base
Nsi = Cycles to initiate a substrate (base alloy) crack.
Nsp = Cycles to propagate a substrate (base alloy) crack to failure.

The choice of coating crack initiation (Nc) was based on experimental observations and the practical
limitation of the acetate film inspection technique. Acetate replicas of surface cracks during TMF
tests and the post-test crack morphology exams together indicated that coating cracks rapidly

enetrate through the coating. Also, crack depths less than % to 1 coating thickness (about 0.08 mm
?0.00 ")) were difficult to replicate and were considered at the limit of acetate film replica resolution.

Substrate cracking (Nsc or Nsi) included short crack behavior. For engineering purposes, a crack
size which is easily inspected in a component is desirable. This translated to a surface crack size of
about 0.76 mm (0.031 in.). Thus, the depth of penetration into the substrate was selected to be 0.254
mm (0.010 in.) so that the overall surface crac?( lenﬁth would approximate 0.76 mm (0.031 in.) for a
2.0 aspect ratio thumbnail crack in a specimen with a 0.127 mm (0.005 in.) coating.

Modeling of substrate crack initiation life (Nsi) or substrate crack propagation life (Nsp) was not
addressed in this program.

6.3.1 Overlay Coating Life Model

Evaluation results of the two candidate coating life models (see Section 4.2.3) were presented in
Reference 3. Discussion of the final overlay coating life model is presented in Section 8.3.1.

6.3.2 Single Crystal Life Models (Coated)

Five life models were applied to an isothermal data base consisting of PWA 273 coated PWA 1480
crack initiation lives at 927°C (1700°F).
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1) Coffin-Manson N = AAeB (12)

n
2) Crack Tip Opening Displacement (CTOD). N = A(o % /an)B (13)
3) Modified Strain: N = A(Ae E/2)B (14)
4) Ostergren: N = Ao Agin)P (15)
B
. Adyyy]

5) Hysteretic Energy Approach : N = A] o, A¢jp £ (16)
where: Oy = Specimen tensile stress

Oy = 0.2% PWA 1480 yield stress

A€ = Specimen inelastic strain range

E = PWA 1480 elastic modulus parallel to specimen loading direction

Ae = Specimen total (mechanical) strain range

Aoy = PWA 1480 resolved maximum octahedral normal stress range

The model correlations were presented in Reference 3.

Of the five models considered, the Hysteretic Energy Approach, Ostergren, and Coffin-Manson
models were the most promising for correlating isothermal fatigue life data when measureable
inelastic strains were present.

This program, however, emphasized life prediction of TMF cycles. As such, selection of life prediction
models for PWA 1480 was deferred until sufficient TMF life data from all four orientations was
available from the Level II experiments. The remainder of the PWA 1480 life model development
effort in this task was devoted to developing a process by which accurate PWA 1480 life data may
be obtained from the tested specimens.

Specimen failures caused by cracking were observed at several locations deFendjng on the test
temperatures and loads and specimen orientation. A description of each failure location is presented
below:

gag Specimen failed inside the 2.54 cm (1.0 in.) extensometer monitored gage section.

but

Specimen failed at the specimen buttonhead grip fillet.
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ext = Specimen failed from crack which initiated underneath the MTS extensometer

quartz rods.

IDr = Specimen failed from the ID surface near the ID ridge region (44C specimen
design only)..

gagr = Specimen failed inside the monitored gage section near the ID ridge region (44C

specimen design only).

ogag = Specimen failed outside the monitored gage section, but within the constant
cross-section portion of the specimen.

“IDr” and “gagr” type of failures were limited to certain 44C specimen tests conducted in the Level
I experiments. Only cracks which initiated along the OD surface, away from the extensometer rods,
and inside the constant cross-section portion of the specimen were considered useful for life
preflicti(:ln modeling of Nc and Nsc. Other cracks which appeared outside this restriction were not
evaluated.

Several methods were identified and used to obtain PWA 1480 crack initiation life, Nsc or Nsi, from
the coated specimens. A particular method was chosen for each specimen based on its observed
cracking behavior. A synopsis of when and how each method was applied is presented below. Slight
modifications to these basic methods were considered when specimen information was limited.
Case 1 - “Classical” Cracking

In this case, crack geometry was typically thumbnail in nature and OD surface replicas were used to
establish PWA 1480 crack initiation life. This type of crack geometry is shown in Figure 29A.

Method 1 : Obtain crack aspect ratio (length/depth) from fractographic analysis.

- Enter surface crack length versus cycle number curve at crack length of: (crack aspect
ratio)*(crack depth); Crack depth = coating thickness + 0.254 mm (0.010 in.).

- Replica data may be prudently extrapolated.

- See Figure 30.
Case 2 - “Non-Classical” Cracking
Coating cracks grew along the specimen circumference and minimall; penetrated into the substrate
or appearred as “ring” cracks. These types of cracks are shown in igure 29B. Long OD surface
cracks observed on replicas were, therefore, not indicative of substrate cracking. As such, it was

considered reasonable to determine lower and upper bounds on life (Nmin and Nmax) between which
the actual life lies.

Nmin = Lower life bound = Nc + Nsc (lower bound)
Nmax = Upper life bound = Nc + Nsc (upper bound)
Nc = Coating life

Method2 : Fora grimary gage section crack that penetrates less than 0.254 mm (0.010 in.) into
the substrate.

- Set Nmin = cycle number which generated the small crack.

- Obtain estimate of substrate crack aspect ratio from fractographic analysis.
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Method 3 :

Method 4 :

Draw a straight line from the replica data curve at the point where Nc occurs through
the known crack length (crack aspect ratio * known crack depth), Nmin point.

Extrapolate the straight line to the desired crack length and pick off Nmax.
See Figure 31.

For a primary gage section crack that penetrates more than 0.254 mm (0.010 in.) into
the substrate.

Determine number of cycles (typically Nf) to a known crack depth and crack aspect
ratio by using fracture photos.

Plot the known crack surface length (crack aspect ratio * known crack depth), cycle
number point together with the specimen replica data.

Extrapolate replica data curve beyond the last replica data point. Note: This
extrapolated curve will rarely pass through the known crack size, cycle point.

Draw a straight line from the replica data curve at the point where Nc occurs to the
known crack size, cycle point.

Pick Nmin off the straight line at a surface crack length equal to the (crack aspect
ratio)*(desired crack depth).

If Nmin is less than would be obtained by using the extrapolated replica data curve,
redetermine Nmin from the extrapolated replica data curve.

Translate extrapolated replica data curve so that it passes through the known crack
size, cycle point.

Pick Nmax off the translated replica data curve in the same manner as Nmin was
picked.

See Figures 32 and 33.
Check of Nmax obtained by Methods 2 and 3.

Using rlot of specimen stress range versus cycle number, determine cycle number at
which load range drop initiates (Nld), see Reference 26.

If Nld < Nmax ; Nmax = NId.
See Figure 34.
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SECTION 7. TASK V - LEVEL II SINGLE CRYSTAL EXPERIMENTS

Isothermal fatigue and TMF tests were conducted to define the crack initiation life of coated PWA
1480 single crystal material in order to verify Level I data trends and increase the database for life
model selection and development.

All fatigue tests used the specimen geometry shown in Figure 8B.

The test facilitz used for Level II experiments was identical to that used in the Level I experiments
(see Section 5.3).

The specimen and fatigue test variables considered for Level II experiments included thermal
exposure in addition to those variables considered in the Level I tests (see Section 5.3).

The onset of coating cracking and crack propagation was monitored during each test by taking a series
of acetate film surface replicas. Metallographic inspection of the tested specimens was performed
at the conclusion of each test in order to interpret tﬁe replica data, characterize cracking patterns,
and identify crack initiation sites. Specimen load, strain, and temperature histories were monitored
during the course of testing to provide information useful for the modeling efforts.

7.1 UNIAXIAL FATIGUE TESTS

A séugmary of Level IT uniaxial fatigue lives and specimen responses is presented in Appendices D
and E.

Level 11 tests confirmed that coated PWA 1480 single crystal creep-fatigue and TMF life is dependent
on several factors: 1) the presence of a coating, 2) the coating composition and microstructure, 3)
single crystal orientation, and 4) the cyclic strain-temperature-time relationship (i.e., the cyclic
loading history). In addition, thermal exposure effects were shown to be important.

The effect of cyclic history on coated TMF life was confirmed during Level II experiments and was
consistent with the results of the Reference 23 program. PWA 286 overlay coated < 111> PWA 1480
specimens LB-32 and LB-29 were TMF tested using the “baseball” cycle shown in Figure 35 to verify
the data trend observed from aluminide coated specimens LB-21 and LB-156. Specimen LB-32 was
cycled in a counter-clockwise (ccw) direction and LB-29 was cycled in a clockwise (cw) direction.
Stabilized hysteresis loops for LB-29 and LB-32 were practically identical to those presented in
Figures 36 and 37 for specimens LB-156 and LB-21, respectively. Specimen LB-29 (cw cycle) crack
initiation and failure lives were 2600-3200 and 3773 cycles while the crack initiation life for specimen
{‘..13—32 was d> 11852 cycles. At 11852 cycles no cracks were observed on LB-32 and the test was
1scontinued.

PWA 286 overlay coated <111> PWA 1480 specimens LB-26 and LB-30 confirmed the importance
coatings play in fatigue crack initiation. Specimen LB-30 was isothermally fatigued at 427°C (800°F),
+(0.25% strain at 10 cpm. Specimen LB-26 was TMF tested at *0.25% strain using the “T—cycle”
strain-temperature cycle shown on the first _?a e of Appendix D. The associated crack initiation and
failure lives of these two specimens were > 13g0 and 7130 for LB-30 and > 3260 and 3532 for LB-26.
Sgecimen LB-30 failed at the specimen buttonhead grip fillet at 7130 cycles and no cracks were
observed in the gage section. Specimen LB-26 failed from a crack underneath the extensometer quartz
rods and small cracks were observed in the fa e section which penetrated the coating at 2560 cycles
and minimally penetrated into the PWA 1480 substrate. Further discussion of the “T-cycle” was
presented in Reference 3.

A coating spalling failure mode in which the coating is liberated from the substrate may occur when
the coating undergoes severe compressive deformation. Specimen JB-102 was TMF tested using a
counter—clockwise baseball cycle at 427-1038°C (800-1900°F), +0.4%, 1 cpm. Note that this
specimen previously ran roughly 41000 cycles at 800°F, +0.3%, 8 cpm. Although JB-102 failed from
a crack which initiated at the uncoated ID surface, the coating surface was littered with cracks which
were inclined roughly 45° to the loading axis. A transverse coating micrograph is presented in Figure
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38. Acute coating rumpling and cracks tending to propagate parallel to the interface were the
dominant features. The coating cracks were apparently due to shear, not tensile forces. Severe
compressive nonlinear coating behavior was predicted by the PWA 286 overlay coating constitutive
model, thus activating the shear failure mode. In addition, the predicted level of coating compressive
stress introduces a significant tensile radial stress component in the tube specimen at the
coating-substrate interface. Itis believed that this radial stress influenced the crack trajectory, forcin
it to turn along the interface. Coating spalling was observed for aluminide coated PWA 14
specimens undergoing similar test conditions in the Reference 23 program. Final fracture was
crystallographic in nature indicating that the PWA 1480 load levels were not generally relevant to gas
turbine airfoils. However, the interesting failure of JB-102 indicates that multiple failure modes are
possible in coatings. This places limits on the realistic extrapolation capability of the coating life
models developed for cracks normal to the loading direction g.e., typical Mode I cracks).

Numerous coated non-<001> oriented PWA 1480 specimens tested under isothermal conditions
failed from PWA 1480 porosity adjacent to the coating or uncoated ID surface. Examples of crack
initiation sites from such specimens are presented in Figures 39 to 41. Contrary to that experience,
out-of-phase TMF tests produced failures which originated from coating cracks in a manner
consistent with Pratt & Whitney’s experience with coated single crystal airfoils. Typical TMF failures
are presented in Figures 42 to 44.

7.2 EFFECT OF THERMAL EXPOSURE ON FATIGUE LIFE

A total of 12 coated PWA 1480 specimens were pre-exposed 100 hours at 1093°C (2000°F) before
testing to determine the significance of thermal exposure on coated fatigue life. A summary of these
test results are included in Appendices D and E.

7.2.1 Coating Materials

TMF coating lives for the pre-exposed specimens is presented in Figures 45 and 46. PWA 286 overlay
coating out-of-phase TMF life was not significantly affected by the pre-exposure. Baseline PWA 273
aluminide TMF data is limited. However, the life trend suggests that pre-exposure was detrimental.

Insufficient information exists from which to conclude what specific physical mechanism causes the
observed life trends. It is speculated, however, that the composition and microstructure evolution
which occurs as a result of high temperature exposure is the main cause.

Coatings, by their very nature, are not stable alloys. High temperature exposure causes diffusion of
aluminum towards the surface for oxidation protection and into the substrate. Depletion of aluminum
Brecipitates formation of gamma prime and/or gamma matrix in the coating, principly at coating grain

oundaries. Coating micrographs from pre-exposed specimens JB-133 and JB-154 are compared
to non-pre-exposed micros from specimens JB-147 and JB-98 in Figures 47 and 48. As a result of
these coating compositional and microstructural changes which occur during exposure, coating
constitutive behavior and properties such as ductility and coefficient of thermal expansion are
different than those obtained from virgin specimens.

One factor which may play a significant role is thermal expansion (see Figure 49). A NiCoCrAlY
overlay coating is composed of aluminum rich beta (NiAl) and the heavier elemental gamma phases.
This is a much more stable composition and microstructure than in an aluminide which is initially
composed of the beta phase. As diffusion occurs, more gamma phase is formed in both coatings, but
the potential gradient for diffusion is higher in the aluminide than the overlay. Since gamma phase
is generated, it is anticipated that the coefficient of thermal expansion increases for both coatings,
but more rapidly in the aluminide. This suggests that the life of an aluminide is more sensitive to
exposure than that of an overlay for certain TMF cycle types.

An increase in coating coefficient of thermal expansion is detrimental to coating life in cases when
tensile straining is occurring during cooling (i.e., out-of-phase TMF). In such cases, higher tensile
strains (or stresses) are produced. Aluminides, which have limited ductility at low temperatures,
would be sensitive to such cases. For discussion purposes, hysteretic energies for the aluminide
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coating were generated using the PWA 286 overlay coating constitutive model with the aluminide
coefficient of thermal expansion (i.e., unexposed coating coefficient of thermal expansion). The
resulting life relationship for 427-1038°C (800-1900°F) out-of-phase TMF is presented in Figure 50.
As shown in this figure, arbitrarily increasing the coefficient of thermal expansion by 10% produces
a significant increase in hysteretic energy and nearly a 7X life reduction.

722 PWA 1480 Single Crystal Material

The crack initiation (Ng.) and propagation (Nsp) lives for the pre—exposed specimens subjected to
TMF are compared to TMF tested non-pre-exposed specimens in Figures 51 and 52, respectively.
In general, the pre—exposure was found to be somewhat more detrimental to the propagation life than
the crack initiation life. This observation suggests that the crack propagation rate of PWA 1480
(associated with Ngp,) is more sensitive to thermal exposure than PWA 1480 crack initiation. However,
the shorter pre-exposed specimen propagation lives were generally associated with crack geometries
which generate high values of stress intensities. Thus, it is felt that the pre-exposure had little overall
effect on PWA 1480 TMF life.
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SECTION 8. TASK VI - FINAL SELECTION OF LIFE PREDICTION AND
CONSTITUTIVE MODELS

8.1 OVERLAY COATING CONSTITUTIVE MODEL
8.1.1 Final Model Formulation

Based on overall correlation and prediction capabilities as well as ease of incorporation into a finite
element code, the Walker model was selected as the final overlay coating constitutive model
(References 2 and 3).

Final coating constitutive model selection was based on the second series of overlay coating stress
relaxation ex%eriments conducted at the United Technologies Research Center (UTRC) and shown
in Appendix B. The results of these experiments were considered superior to the first series of tests
which are shown in Appendix A. However, the data used at 427°C (800°F) was from the first series
of experiments, not the second, because the second series specimen at 427°C (800°F) broke at the
§pecimen grip before any inelastic activity was observed. This test is included as part of Appendix

The Walker model utilized, presented in one-dimensional form below, was the differential form of
the Hastelloy X model discussed in Reference 6.

€ = % + € an
. O—Q n
L= 18
() -
K = K1-K; exp (-n1R) (19)
L L an * * lan *
Q= (n+n) €, + E,',,—BTI T - (Q—Qo—nlfin)(G—nza; T) (20)

L) . 21
G = (n3 + ngexp(-nsR)) R + ng(Q - Qo—nlf,',,)m'l @

R = el (22)

Material constants:  E, g, n, m, nl, n2, n3, n4, n5, n6, n7, K1, K2,
depend on temperature, T.
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Interpolation and extrapolation of model constants was performed to produce consistent tensile
behavior throughout a 427-1204° C (800-2200°F) temperature range. A summary of regressed Walker
model constants for unexposed, bulk HIP PWA 286 overlay coating is presented in Table 8.

Poisson’s ratio for PWA 286 was assumed equivalent to Hastelloy X. Based on the observed inelastic
go‘;v similagity between PWA 286 and Hastelloy X, Poisson’s ratio for PWA 286 was obtained from
eference 6.

Correlation of the 649°C (1200°F) stress relaxation test from the second test series by the Walker
model is Yresented in Figure 53. Overall, the Walker model correlates this data set reasonably well
and is able to fit the positive stress relaxation trend.

Walker model prediction of the response of an unexposed, bulk HIP PWA 286 coating specimen tested
using an out-of-phase TMF waveform is presented in Figure 54. Again, the Walker model is
reasonably able to duplicate the observed behavior. The Walker model does overRIredict the maximum
tensile stress, however, it is able to predict the graceful tensile yielding trend. Note that the second

cle maximum compressive stress is also overpredicted. This was not expected since the model fit
the baseline relaxation rates well.

A summary of predicted secondary creep rates versus data is presented in Table 9. The secondary
creep rates were generally overpredicted. Coatings do not elongate in gas turbine applications
because the substrate material constrains the coating creep extension. Assuch, the inability to predict
long term creep rates should not restrict the model. Walker model predicted creeF strain versus creep
data is presented in Figure 55. Note that the primary creep regime (i.e., for times less than 15 minutes)
was fairly well duplicated by the Walker model. Times up to 15 minutes are consistent with the
maximum strain hold time present in the baseline stress refaxation experiments.

8.1.2 Computer Software Development

Checkout of the MARC (Reference 27) user subroutine HYPELA was completed for isothermal cases
and MARC element ttypes 7 and 21 (3D “brick” elements). As part of the checkout process, a study
of the “reference” stiffness matrix concept (Reference 28) was conducted. A detailed description of
the “reference” stiffness matrix concept is presented in Section 8.2. Results indicated that reassembly
of the stiffness matrix is necessary for this material. In fact, cases in which the temperature was not
equivalent to the reference temperature (temperature at which the reference stifiness matrix was
formed) failed to converge.

Every convergence strategy available in the MARC version K.1 was considered, but none was
successful. Evidently, this material’s stiffness variation across the relevant temperature range is too
great to use the reference stiffness matrix concept. Presumably, after a few attempts, an adequately
small MARC increment size could be chosen to obtain convergence. However, the associated cost
of conducting coated component analyses in such a manner 1is probably higher than the cost to
reassemble the stiffness matrix.

A check on the effective inelastic strain increment size was included in the PWA 286 MARCHYPELA
routine to prevent non-convergence during stress relaxation. Previously, PWA 286 HYPELA
subincrement step size determination was based solely on mechanical strain, temperature, or time
MARC increments only. During isothermal stress relaxation, however, strain and temperature
increments are zero and the number of subincrements obtained from the time increment criterion
is too small. This results in MARC convergence failure. Currently, when the effective inelastic strain
increment size limit is exceeded, the number of subincrements is recalculated and the MARC
increment is recycled through the subincrement looF. The effective inelastic strain increment size
limit and the maximum number of subincrements allowed are user defined variables.

82 SINGLE CRYSTAL CONSTITUTIVE MODEL
The micromechanical model was selected as the final single crystal constitutive model. A discussion

of candidate model formulations and correlations of PWA 1480 isothermal hysteresis loop data was
reported in Reference 2.
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8.2.1 Metallurgical Background for Micromechanical Model

The cast single crystal nickel-base superalloy PWA 1480 has been under development at Pratt &
Whitney for nearly 15 years and has been successfully tested as a blade alloy in both commercial and
military engines. Other single crystal alloys such as the General Electric alloy Rene-N4 and the
Canon-Muskegon alloy CMSX-2 are also being used in gas turbine engines. These alloys were
developed in order to eliminate the Erain boundaries which are present in conventionally cast equiaxed
polycrystalline superalloys, and which are susceptible to grain boundary corrosion, cracking, and
creep deformation. In alloy PWA 1480 the normal grain boundary strengthening elements (hatnium,
carbon, boron, and zirconium) have been deleted. These elements are also melting point depressants
and without them the single crystal alloy PWA 1480 has an incipient melt temperature above 1300°C
(2372°F). This allows nearly complete Y’ solutioning during heat treatment and a reduction in
dendritic segregation. The absence of grain boundaries, the opportunity for full solution heat
treatment, and the reduced dendritic segregation after heat treatment have resulted in single crystal
alloys with significantly improved properties over conventionally cast blade materials.

Single crystal nickel-base superalloys are essentially two-phase composite materials (Reference 29)
consisting of a large volume fraction (~60% to 65%) of intermetallic 'y’ precipitates having the L1,
crystal structure (Reference 30) interspersed in a coherent face-centered cubic 'y solid solution nickel
matrix. In the heat treated condition the y’ precipitates to form periodic three-dimensional arrays
of cuboidal particles immersed in the 'y matrix of face-centered nickel material, with the cuboid edges
aligned along the (001) directions of the 'y and y’ phases.

Recent evidence suggests that the deformation behavior of the y-y’ composite single crystal alloy is
governed largely by the behavior of the L1; ordered y' phase. A summary of the constitutive behavior
of pure Y’ Ni3Al material which has the L1; crystal structure has been presented in the review paper
by Pope and Ezz in Reference 30. They state that little is known regarding its creep behavior, but
a fairly complete concensus of opinion about its flow stress behavior has been compiled. They also
point out that Ni3Al vy’ material exhibits an anomalous increase of flow stress with increasing
temperature up to about 760°C (1400°F) after which the flow stress rapidly decreases with further
temperature increases. In two-phase y-y’ alloys this behavior is rationalized on the basis of cross-slip
of screw dislocations from the octahedral crystallographic slip planes to the cube slip planes when
dislocation pairs enter and shear the -y’ precipitates. Shearing of the ¥’ precipitates, rather than
dislocation bowing around the y’ precipitates, occurs due to the high volume fraction (65%) of
precipitate particles. Dislocations travel in pairs because single dislocations on the octahedral planes
create an Antiphase Boundary (APB) trail where atoms of the structure are out-of-phase with each
other. The energy associated with this APB is removed by the passage of another dislocation, which
leaves a trail in which the atoms in the structure are in—-phase with each other. Dislocations are
therefore attracted to each other in pairs, in which there is an APB between each dislocation pair.
The APB energy is anisotropic, being smaller on the cube planes than on the octahedral planes. Screw
dislocations thus tend to cross-slip from the octahedral planes where the APB energy is high to the
cube planes where it is low. As the octahedral dislocations enter the 'y’ particles they cross-slip onto
the cube planes and are prevented from further motion by a pinning process (Reference 30). This
pinning of the screw dislocations on the cube planes impedes the motion of the primary octahedral
screw dislocations and raises the flow stress in the octahedral system. The octahedral flow stress thus
increases with temperature since the rate at which the screw dislocations cross-slip and become
pinned is governed by a diffusive process which increases with temperature.

Takeuchi and Kuramoto (Reference 31) proposed a theory for the anomalous increase of flow stress
with temperature based on this diffusive cross-slip behavior, and the theory was refined by Lall, Chin

and Pope (Reference 32). In the latter theory the octahedral (a/2)[101] dislocation is an extended
dislocation (Reference 33) consisting of two Shockley partial dislocation pairs, (a/6)[211] + (a/6)[112],
separated by a stacking fault. In order to slip the pair must constrict into a single (a/2)(101]

dislocation. The constriction is aided by a shear stress on the (111) plane in the [121] direction,

whereas a shear stress in the opposite direction extends the dislocation pair and tends to inhibit
cross-slip. This “core-width effect” gives rise to the tension-compression asymmetry observed in L1,
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crystal alloys. In recent work Paidar, Pope, Vitek and Umakoshi (References 34 and 35) have noted
that the tension-compression asymmetry disappears, according to the theory of Lall, Chin and Pope,
on the [012]-[T13] great circle in the standard [001] - [011] - [T11] stereographic triangle. However,
experimental work shows that the tension-compression asymmetry disappears to the left of the
[012]-[T13] great circle in the standard stereographic projection, and Paidar, Pope and Vitek
(Reference 34) have modified the Lall, Chin and Pope approach (Reference 32) to account for this
effect by incorporating work originally due to Escaig FReference 36) in their flow stress model. Below
a temperature of 760°C (1400°F) the flow stress of pure Ni3Al v’ material increases with increasing
temperature due to the pinning of screw dislocations on the cube planes, but the overall macroscopic
deformation is due to octahedral stip. No macroscopic cube slip is evident. However, above the peak
temperature of 760°C (1400°F) the flow stress rapidly decreases with increasing temperature when
large amounts of macroscopic cube slip occur in the v’ material. For [001] orientated specimens no
cube slip can occur and it is grobable that the flow stress decreases with increasing temperature when
the screw dislocations which have become pinned on the {100} cube planes by cross-slip from the
{111} octahedral planes become unpinned (References 34 and 37 to 39) as soon as they are formed
and cross-slip back to the {111} octahedral planes.

822 Single Crystal Micromechanical Model Formulation

Constitutive modelling of nickel-base single crystal superalloys began with the work of Paslay, Wells
and Leverant (Reference 39) in 1970. They proposed a theoretical formulation of steady state creep
deformation based on crystallographic slip theory of face-centered cubic materials. In1971 the theory
was applied by Paslay, Wells, Leverant and Burck (Reference 40) to describe the creep behavior of
single crystal nickel-base superalloy tubes under biaxial tension. Steady state creep formulations
suitable for the analysis of single crystals were used by Brown (Reference 41) in 1970 and by
Hutchinson (Reference 42) in 1976 to predict the behavior of polycrystalline materials whose aggregate
consists of randomly orientated single crystal grains. Recently, Weng (Reference 43) has developed
a single crystal creep formulation which accounts for transient (éuimary) as well as steady state
(secondary) creep. However, in order to describe the combine plastic and creep behavior of
polycrystalline materials, Weng combines the rate-independent plastic and rate-dependent creep
components in such a way that each component is governed by a separate constitutive relation; that
is, plasticity and creep are assumed to be uncoupled phenomena.

In the decade of the seventies the creep and plastic responses of materials were combined into unified
viscoplastic formulations (References 6, 7 and 44 to 48). These formulations differ from steady state
creep theories by introducing history dependent state variables to account for primary creep and
plasticity, A single crystal formulation which accounts for the time-dependent viscoplastic behavior
of materials at elevated temperature can therefore be constructed by incor orating the steady state
crystallographic creep model presented by Paslay, Wells, and Leverant (Reterence 39) into a unified
viscoplastic formulation. The Takeuchi-Kuramoto cube cross-slip mechanism (Reference 31) and the
Lall, Chin, and Pope (References 32, 34, 35 and 37) Shockley partial tension-compression flow stress
asymmetry mechanism may then be incorporated into the drag stress state variable of the unified
viscoplastic constitutive formulation.

In order to model the constitutive behavior of single crystal superalloys it is necessaliy to include both
octahedral and cube crystallographic slip systems in the viscoplastic formulation. In the unit cell of

the face—centered cubic crystal we denote by /m? a unit vector in the rth slip direction (of type (110)),

whilst 7 is a unit vector in the normal direction to the slip plane (of type {111}) of which m?
constitutes a slip direction. The four octahedral {111} planes and the twelve corresponding (110) slip
directions (three on each plane) are shown in Figure 56. To each of the unit vectors /¢ and 72 in

the r'h slip system there correspond perpendicular unit vectors, 77, given by #=m%xi?. The
vector 7° corresponds to the octahedral (112) type slip directions and lies in the slip plane containing

the vector r? , and the vectors ril, il, ¥ form an orthogonal triad of unit vectors for the rth octahedral
slip system. The corresponding unit vectors for the cube slip planes are denoted by 73 and 77 , where
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the three cube {100} planes and the six corresponding (110) slip directions (two on each plane) are
shown in Figure 57.

From the crystal geometry in Figure 56 the twelve unit vectors for the octahedral slip system are given
by

= (-R)/ V2, my=(-i+]) 2, m=(j+R/ 2, @=G-R,

0
ms

i-P/V2, =G+ k)2, A= (i-k)/2, mg=(-])/2, (23)

= G+ 0/, iy = Ci-B 2, = G+ B = i+ By
with unit normals

A=m=/=0+j+k//3, === (i+j+k//3,

(24)
Al=ng =)= (-i-j+ R/ B, AYy=nad =nh=>1-]+k)/3,
and corresponding perpendicular vectors
NA=(@-2+k/V6, D=G+j-2%)//6, HB=(-2+j+k)//6,
H=Q+j+k)/l6, HB=(i+j-20/06, H=(i-2J+k)//6, 2

B=i+2d+k/6, = (-i-j-2k)//6, #®X=i-j+k)//6,

By=(2-j+ky/l6, D =a+j-2k)/V6, &H=(@+2+k)//6,

where i, j, k , are unit vectors along the x, y, z, crystallographic axes. The six corresponding unit
vectors for the cube slip system are given by

m§ = +7)/V2, m§=(-i+)/V2, m§=3+k)//2,
(26)
=i+ k)2, ms=(G+k)/2, m§=(-]+k)//]2,
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with unit normals

Figure 58 shows a single crystal bar specimen whose global axes are denoted by x*, y*, z* and whose
crystallographic axes are denoted by x, y, z. If Q;j denotes the orthogonal tensor which rotates the
crystallographic (unstarred) axes into the global (starred) axes, viz, x;* = QjjXj, then the stress tensor

ojj and the strain rate tensor E,-,- in the crystallographic axes may be obtained from the stress tensor

* .
o; and the strain rate tensor €; in the global system from the usual transformation relations,

. . . (28)
o;j = QuouQu  and € = QuexQjr,
where, for the bar specimen shown in Figure 58,
- . 1
cosy 0 -siny
[0] = [sindsiny cos sindcosy| . (29)
cos¥siny - sin? costcosy

The assumption is now made that any of the unified viscoplastic models discussed in References 6,
7 and 44 to 47, when specialized to the case of shear deformation, is a valid constitutive relation in
each of the twelve octahedral and six crystallographic slip directions. In the r'h octahedral slip

direction the Schmid resolved shear stress, :z;m , is obtained from the relation

Ton = 1ty G 1y r=12..,12), (30)

where no sum over r is implied in equation (30) or in the equations which follow. When referred to
the orthogonal system ¢, A7, # , the remaining components of the octahedral stress tensor can be
written in the form:

nm = My 0 M
(31

25



Tl;e Schmid resolved shear stress in the rth cube slip direction, r, is obtained from the corresponding
relation,

T = Ty = S G A r=12,...,6) 32)

It is further assumed, in a manner analogous to the unified isotropic viscoplastic models, that the
applicable relation governing the inelastic shear strain rate in the r'P octahedral slip direction is

¥r = K2(70, - )| 7, - 0, [P =12..12), (33)

where K; and o, denote the total drag stress and the equilibrium (rest or back) stress in the '
octahedral slip direction. The stress component T is defined by the relation

T = Toun + QrumTm + QunTtan + Gy + 20T, + 2ap70, (r = 1,2,...,12), (34)

in which the tensor asq represents the effect of the non-Schmid factors (Reference 49) upon the
inelastic strain rate in the rth octahedral slip direction. For example, the term containing G/pn
represents the effect of the resolved stress, normal to the slip plane containing the rth octahedral slip
direction, on the inelastic strain rate in the r'h octahedral slip direction. Such terms can represent
the effect of a pressure dependent inelastic strain rate. The dominant term in equation (34) is the
Schmid type term containing the stress component . ; estimates of the magnitude of the

non-Schmid type terms containing the tensor apq have been given by Asaro and Rice (Reference 49).

A power law expression is used in equation §33), but hyperbolic sine and exponential functional forms
may also be used, as deemed appropriate for the material in question.

To complete the octahedral constitutive formulation it is necessary to specify the growth relations for

the equilibrium and drag stress state variables. The equilibrium stress in the 1P octahedral slip system
may be assumed to evolve according to the evolution equation

oy = e1yr—02|yr| 0 - Q3|wr|m-1wr (r=12..,12). (35)

The integral form of equation (35) is

wlt) = e1()
¢

(a}'r/ ag) exp| -
0 ¢

{0201 3%,/35| + 03()| wAL) | ™" |dL d, (36)
§

| v, =
I A m—— =~

with pi(t) = p1[T(t)] etc. in contemplation of the fact that the material constants pj, p2 p3, and m
may change with temperature T during a thermomechanical loading history. The integral of equation
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(35) should strictly be written in the form of equation (36) in which the material constant pj(t) occurs
inside the integral over £ in the form py(£), and the material constants px(t), p3(t) and m(t) occur inside
the integral over { in the forms px({), p3({) and m({). However, the integral form in equation (35) is

referred, since this form allows w(t) to change instantaneously with temperature in the absence of
inelastic deformation.

Upon differentiation with respect to time, equation (36) yields the relation

wr = 01r - 02| %l 0, - 03] 0| ™ Y0r + X (r=12..,12), (37
where

[o20)187,/38] + 03| 0AD)|™)dg
£

240 = [210/e1®loAr) - 1)
3

(ayr/ aE) exXp|-
0 ¢

[ —.
B —— ~

(020)133./3] + €)1 @)™ + m(os)] )| log i) dx [dE (39
&

F
.

Without the term ¥, th.e differential form of equation (36) shows that in the absence of inelastic

deformation (i.e. when ¥, is very small) the equilibrium stress wy changes only by thermal recovery.
With ; included in the differential equation the equilibrium stress w; can change with temperature
in the absence of inelastic deformation.

The drag stress for the rth octahedral slip system may be assumed to grow according to the evolution
equation

k=1

. 12 .
K, = {Z[ﬂl[q + (1-4)5m]-ﬂ1(Kn—Kmm}'k|]-hl(Kn-Km)’ r=12..,12) )

On each octahedral slip system the drag stress is assumed to harden according to the hardening
modulus kyx = Bi[g + (1-9)d4] , which accounts for the latent hardening effects observed in single

crystal materials. Numerous forms of the hardening moduli hyy have been proposed in the literature
and a review of single crystal hardening moduli may be found in the article by Asaro (Reference 50).
The particular form for hy adopted in equation (39) is due to Hutchinson gReference 51); similar
forms, which include the effects of finite deformation, were used by Asaro (Reference 52), and Peirce,
Asaro and Needleman (Reference 53), in finite element computations of finite deformation slip
behavior in single crystal materials. Further reviews concerning the hardening moduli can be found
in the paper by Havner (Reference 54), which refers to previous work by Havner and his colleagues.
Taylor hardeninf, in which each slip system hardens at equal rates, can be simulated with the
Hutchinson modulus, hy, by settingq = 1.
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The initial value of the drag stress in the r'P octahedral slip system, K, is defined by the relation
Ko = Ki+ o4mp + 05|¥,| (r=1,2,...,12) (40)

accounts for the tension-compression asymmetry of the flow stress observed in single crystal

nickel-base superalloys. The shear stress component W, is the resolved shear stress on the cube

crystallographic slip planes in the direction of the octahedral slip vector m?. According to the

Takeuchi-Kuramoto cross-slip model this stress component is the driving force which causes the
primary dislocations on the {111} octahedral planes to cross-slip onto the {100} cube planes where
they form sessile segments. The interaction getween the primary octahedral dislocations and the
pinned sessile segments increases the flow stress in the octahedral system. Anincrease in temperature
enhances the cross-slip process and is therefore responsible for the increase in flow or yield stress
with temperature in the octahedral slip system. In a unified viscoplastic formulation the yield or flow
stress is analogous to the drag stress state variable and the constants p4, ps therefore increase with
temperature T (in Takeuchi and Kuramoto’s model according to the relation exp[-H/kT]). This
provides the anomalous increase of flow stress with increasing temperature found in superalloy
crystals which have vy’ precipitate particles possessing the L1, superlattice crystal structure. Since
the magnitude of the stress component ¥; occurs in equation (40), the increase in yield (flow) stress
due to the cube cross-slip process is the same for both tension and compression testing of a single
crystal bar specimen.

The effect of the Shockley partial dislocations on yield stress asymmetry is recognized explicitly in
the “core-width” term containing the stress component 7, in the initial drag stress term in equation
40. This shear stress component in the octahedral (112) type directions can extend or constrict the
Shockley partial dislocations and changes sign when the applied stress state changes from tension to
compression in a single crystal bar specimen, as proposed by Lall, Chin and Pope (References 30 and
32). The expression for nj, is given in equation 31, whilst the cube cross-slip component ¥, is
obtained from the following relations:

Qu

U =md 6-), Wa=m) Gk Ws=ml 60, Wi=m) 6°j

Ws=ml G-k We=md G'j, Wi=ml"6j Weg=md 6k (41)
Wo=ml 6-1 Yo =% G5 Wi=r Gk W= 61
9=mg-0"1, 10 =My "0 1, 11 =my; " 0K, 12 =My, "0 "],

The expressions containing the material constants 1; and h; in equation (39) represent the dynamic
and thermal recovery terms of the drag stress evolution equations in which the recovery is assumed
to take place towards the initial value of the drag stress, K;o.

The integral forms of the equilibrium stress and drag stress components listed in equation 3536) change
instantaneously with temperature, since the material constants which occur in the integr forms are
evaluated at the current temperature. The differential form of the integral in equation (36) will involve
terms such as X, containing the derivatives of the material constants with temperature, in addition
to the terms already present in equations (35) and (39). These extra terms allow the state variables
to change with temperature in the absence of inelastic deformation. In a yield surface plasticity theory
a change in the equilibrium (rest or back) stress corresponds to a kinematic shift of the center of the
yield surface, while a change in the drag stress corresponds to an isotropic change in the radius of
the yield surface. In the absence of inelastic deformation both the yield surface center and its radius
can change instantaneously with temperature, and the integral forms of the state variables in equation
(36) is the corresponding analogue in the unified constitutive formulation.
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A similar set of constitutive equations is assumed to hold for the case of crystallographic cube slip.
The inelastic shear strain rate in the r'h cube slip direction is assumed to have the form

a, = LAt -Q)|u-2%! ¢ =12,...,6) (42)

where Lyt and Q, denote the total drag stress and the equilibrium (rest or back) stress in the rth cube
slip direction. These state variables are assumed to evolve according to the evolution equations

Q, = gsar-07lar| Q- 08| |"™'Q  (r=1,2,...,6) 43)

and

. 6 .
L = {Z[ﬂz[qz + (l—qz)drk]—nz(Ln-Lm)llarl}-hz(L,,-L,,,y r=12..6) (44
k=1

where L, = L is the initial constant value of the drag stress component on the rth cube slip system.

The shear slip strain rates may now be resolved into the crystallographic system and summed for each
slip system to obtain the inelastic strain rate tensor, E,, , with respect to the crystal axes in the form

12 6
&= 2 ajir+ 2B 6 @)
r=1 r=1
where

@ = ‘/z[(i'ﬁ?)(rﬁ?'f)+(f'n'19)(ﬁ9'f)] and b, = Y| - AoRs < ] )+ (- mENAEE )] (46)
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Finally, the stress rate tensor with respect to the crystallographic axes is determined from the relation

0;j = Dfex— cu) + Dijf€rs - ), 47

where Dy, is the anisotropic elasticity tensor for the face-centered cubic crystal referred to the
crystallographic axes. The variables can now be updated in the Euler forward difference form:

oi(t + A1) = 0i(7) + 0(DAT, €t + A1) = €(7) + €{T)AT, (T + AT) = .C‘;I(T)At,

ot + A1) = wfr) + c;,(r)At, Qt + A1) = Q1) + é,(t)At, K{t + A7) = I.(,-(T) + KA(1)Ar,

(48)

L{t + A1) = L(7) + l.,,(r)At LYAT + AT) = p(1) + )./,(r)Ar, alt + At) = a1) + c;,(r)Ar,

0T + A7) = Quon(z + ADQ;, €t + AT) = Quen(t + ADNQ;.

A summary of the slip system viscoplastic equations is presented in Figures 59 and 60.

Many of the temperature dependent constants are effectively zero for PWA 1480. Thus, the PWA 1480
constitutive model was simplified to that shown in Figure 61. PWA 1480 constants are presented in
Figures 62 to 69 for both the Base and Option 1 programs. Typical high temperature isothermal results
from the PWA 1480 constitutive model are compared to data in Figure 70. Low temperature results
(Set B constants) are discussed in Section 14.

8.2.3 Computer Software Development

Effort concentrated on incorporating the slip system based constitutive model into the MARC finite
element program with particular emphasis on non-isothermal loading.

Refl Stiff Mati
Generally, if the temperature at any part of a structure experiences a temperature change from one

increment to the next, the structural stiffness matrix is reformulated with the elastic constants at the
new temperature. This is a time consuming task which is circumvented by measures introduced in

30



previous NASA sponsored constitutive modeling contracts (Reference 28). In brief, these measures
set flags in appropriate MARC subroutines so tﬁat the structural stiffness matrix is formulated and
inverted only once using elastic constants from a “reference temperature”. All elastic stress changes
due to temperature variations (as well as actual inelastic stress increments) are included in the
inelastic stress increment vector, G, supplied by the HYPELA subroutine. A schematic of this
method is presented in Figure 71.

Elastic Elements

A provision has been made for elastic behavior of selected elements in a structure. Such a feature
was provided in the constitutive model for B1900+ Hf in a previous NASA contract (Reference 55),
and it was shown to be very desirable for analysis of large complicated structures that may have
regions of confined inelasticity or regions where only “average” stiffnesses contribute to structural
loads (e.g., internal pedestals in a turbine blade). For the elastic elements, the inelastic calculations
are bypassed so that the contribution to the G vector (the inelastic stress increment) due to material
inelasticity is zero. However, the contribution to G due to an elastic modulus change from the
reference stiffness temperature will be included.

Rate Independent Material Model

To improve low temperature model predictions, the low temperature model response was
reformulated based on the observed rate independent material behavior. As temperature decreases
below approximately 760°C (1400°F), PWA 1480 material becomes increasingly rate independent.
This poses a fundamental difficulty for viscoplastic models which are formulated to be rate dependent.
In the present model, the low temperature rate independence effectively imposes a severe constraint
on the model constants, causing, for example, the exponent of the overstress to be very high for the
octahedral systems. To overcome these concerns, the applied strain rates are “transformed” to
effective strain rates before being used with the same set of evolutionary equations. The
transformation is such that applied strain rates are preserved at high temperatures, while a constant
(reference) strain rate is achieved at low temperatures. In a transition temperature regime
(approximately 704°C (1300°F) to 816°C (1500°F)), the effective strain rate transitions between the
two limits. Symbolically, the transformation is:

E eff = AxEactual + B (49)
where E eff = the effective strain rate
E actual = the applied strain rate

and the limits on the constants A and B are as follows:

Low T Limi C Hieh T Limi
0 A 1
E ref B 0

A routine was subsequently added to the HYPELA code that produces rate independent behavior
at low temperatures. The model constants were fit to isot ermal cyclic stress-strain data at
temperatures of 760°C (1400°F) and above. At 649°C (1200°F) and below, the model constants were
fit to monotonic tensile data. Because the thermal mechanical fatigue cycles of interest in this contract
are nominally elastic below 649°C (1200°F) it was judged that this assumption would not severely
affect the use of the model in the Base Program. A schematic of the rate independent correction is
presented in Figure 72.

Sof Verificati
The micromechanical HYPELA code was checked out using simple one element test cases. An
out-of-phase thermal mechanical fatigue cycle, similar to that conducted on specimen LB-34, was
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used as one of the test cases. Figure 73 compares the test case strain-temperature cycle to that
imposed on specimen LB-34. In each cycle the strain-time variation is sinusoidal over a period of
60 seconds. The MARC test case results and the experimental results from LB-34 are shown in Figure

No obvious incompatabilities with the MARC code were observed in the test cases. In spite of the
relatively large load steps in some portions of the TMF cycle, convergence was achieved without
recycling. The load increments are shown in Figures 73 and 74. Additional test cases, using even larger
load increments and a strain hold period at the high temperature end of the cycle also executed well.
The test case load increments are expected to be larger than those that would be employed in a
transient analysis of a turbine airfoil. For example, in a previous NASA HOST contract (Reference
55), the load increments corresponded to 10°C (50°F) temperature increments.

Back Stress Evalution Formulation for Non-Isothermal Cvel

Based on the low temperature model prediction shown in Figure 74, the back stress formulation was
revised to include the effect of temperature rate. This feature is schematically presented in Figure
75 for the non-isothermal cycle of LB-34. Allowing the back stress to evof,ve during the elastic
(tensile-going) loading portion of the cycle effectively reduces the overstress (0-w), thereby increasing
the predicted yield point.

Prediction of LB-34 incorporating this feature is presented in Figure 76.

Another feature was added to the model to effect a controlled cycle-by-cycle relaxation of
non-isothermal loops. It is a characteristic of viscoplastic models containing a back stress that over
many cycles of loading the entire hysteresis loop will relax in stress until the back stress is
approximately symmetric about zero global stress. The rate of relaxation of the loop is usually
uncontrolled in that it is not explicitly modeled in the evolutionary equations for the state variables.
Such is the case with the model developed in this program. That is, the model was formulated and
the dcc;n‘sitants were fit to reproduce the stress-strain loop shape; long term cyclic evolution was not
modeled.

In general, comparisons between predicted and experimental non-isothermal hysteresis loops
indicated that the predicted stress range was accurately represented, but the hysteresis loop stress
relaxed much too rapidly and provided a poor mean stress evolution with continued cycling. Asa
means to control the rate of stress relaxation, additional temperature rate terms were added to the
g,\slc))lutionary equations for octahedral and cube equilibrium (back) stresses (compare Figures 61 and

The constants which drive the temperature rate terms were set by an iterative technique using <001>
TMF data to set the octahedral term and < 111> TMF data to set the cube term. Although acceptable
stress relaxation behavior was obtained for the data used to set the temperature rate constants,
prediction of other TMF cyclic conditions was adversely affected. For example, Figure 77 shows the
predicted TMF behavior for <001> PWA 1480 without the temperature rate terms. Note the
seemingly constant stress relaxation rate per cycle for the three different mean strains. Also, the
prediction of the V = 1 test shows continued ratchetting of the minimum stress into tension. Such
a trend was not observed in any TMF test. The predictions were repeated, but this time, the
temperature rate term for the octahedral equilibrium stress was activated. These predictions are
presented in Figure 78. Although the V = 0 mean strain condition reasonably matched the TMF test
data, the predicted relaxation response of the other mean strain conditions was generally worse than
before. The V = -1 test data indicates a very rapid initial relaxation should occur, but the predicted
loop stabilized after the first quarter cycle. Overall, the incorporation of the temperature rate terms
did not improve the predictions of non-isothermal hysteresis loops for turbine blade relevant
cgng{i)tions. .?s a result, the temperature-rate terms were inactivated (see note at bottom of Figures
59, 60 and 61).

Because the &)rediction of PWA 1480 TMF life requires an accurate definition of tensile stress and

the PWA 1480 constitutive model was unable to reasonably predict tensile stress, the current form
of the PWA 1480 constitutive model, by itself, was judged inadequate for TMF life prediction.
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An alternative “stress envelope” approach was developed to predict tensile stress during TME This
approach was based on the assumption that out-of-phase TMF loops of <001> PWA 1480 at
maximum temperatures above roughly 927°C (1700°F) tend to stabilize according to conventional
yield surface criteria. And, since the cyclic TMF hysteresis loogs of interest are nominally elastic in
nature, the yield surface envelope was taken to be defined by the proportional limit of a tensile test
(i.e., the stress at which the tensile curve deviates from a linear response). Then, knowing the stress
ranﬁe (;f a particu]ar TMEF cycle (remember that the constitutive model predicted TMEF stress ranges
, t

wel e “effective” tensile stress can be calculated using the following simple formula:
St = Sten *(DS/(Sten + Scomp) ) (50)
where: S = “Effective” tensile stress
DS = Predicted stress range.
Sten = Proportional limit stress at the temperature associated with the

maximum predicted stress.

Scomp = Proportional limit stress at the temperature associated with the mini-
mum predicted stress.

Further information on this method and its application was presented in Reference 4.
8.24 Model Limitations and Future Work

While the constitutive model for PWA 1480 was successful in modeling the high temperature
orientation and rate dependence, there are some aspects of PWA 1480 material behavior that are not
accurately modeled. is discussion is intended to highlight those areas so that the analyst can
intelligently decide whether to pursue nonlinear analyses using the model and to make informed
judgements about analytical results obtained with the model.

The model was formulated to reproduce the stabilized stress-strain behavior during cyclic loading.
The data used to obtain the material constants was from completely reversed strain controlled
isothermal tests. The correlation with test data above (760°C) (1400°F) is quite good. Below 760°C
(1400°F), the material becomes rate independent, and the uniaxial tests were judged to be unreliable
for obtaining cyclic material behavior due to the onset of sudden, localized slip. So the material
constants used in the current version of the model for temperatures below 760°C (1400°F) attempt
to rSeprpduci(f4 the monotonic tensile properties. The subject of low temperature behavior is discussed
1n Section 14.

In general, the single crystal constitutive model suffers from “traditional” viscoplastic model
deficiencies such as:

e Unstable mean stress at low temperature
» Predicts cyclic or monotonic data, but not both

 Uses homogeneous slip formulation to model discrete slip phenomena - need two deformation
modes for this class of alloys

 Long term cycle to cycle ratchetting during TMF is not captured, and would be too costly to
model by full integration over thousands of cycles.

Nonetheless, the PWA 1480 micromechanical model is regarded as a valuable research tool and as
a good starting point for further development.
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8.3 COATED SINGLE CRYSTAL LIFE PREDICTION MODELING
The fatigue life approach for coated single crystal materials was defined in Section 6.3.
8.3.1 Overlay Coating TMF Life Model

The final PWA 286 TMF life model formulation was based on Ostergren’s hysteretic energy approach
(Reference 22). In this case, however, Ostergrens’ time dependent damage term, v, was extended to
include temperature effects by introducing a temperature dependent damage rate which, in
combination with the time, describes damage. The damage rate was formulated by an equation
usually applied to thermally activated processes, such as oxidation and diffusion. Since v was defined
as a correction for temperature- and time-dependent damage, v < 1.0 by definition. A change from
Ostergrens’ model was that compressive hold time contributes to damage. Dwell periods, which
frequently occur within a gas turbine duty cycle, were explicitlif treated in the temperature- and
time-dependent damage term. The formulation is presented below:

0.5
Ne = 28050w; 81y (51)
cycle
W, = j A€y ; 0= 0 (52)
v = 1.0 ; v< 1.0
cycle ( 53)
exp| O A1 1) \Fac Ar
AT, T
Fac = 1.0 + [c, - catanh(o - ©) - 1.0]exp(- 10000 | €mecn]) (54)
Chf + Th
c1 = —f > f (55)
¢y = Chf; Thf (56)
where: Wt = Integrated tensile hysteretic energy (psi)
14 = Effective cycle frequency (Hz)
Teff = 1.0/n = Effective time (sec)
o = Stress (psi)



Q = Equilibrium stress (psi)

Ag;, = Inelastic strain increment (in/in)

Qo = Normalized effective activation energy = 50000°R

To = Reference temperature = 2660°R

Fac = Hold time correction factor

Emech = Mechanical strain rate (sec™!) associated with the stress s
At = Time increment (sec)

Chf = Compression hold factor = 0.19

Thf = Tension hold factor = 0.38.

Application of the PWA 286 overlay coating life model included consideration of multiaxial loadings.
It is well known that biaxial loads are introduced into the coating during thermal cycling due to
coating/substrate thermal growth mismatch. This biaxial loading contribution to coating damage was
not ignored. For example, MARC finite element analysis of a simple two element structure was
performed to obtain the coating hysteretic response to a uniaxial, out-of-phase TMF test conducted
at 427-1038°C (800-1900°F), = 0.15 percent, and 1cpm. The predicted hysteresis loop from the finite
element analysis is compared to the predicted loop from a one-dimensional analysis in Figure 79.

In an effort to reduce application inconsistencies, the expression Fac was formulated which describes
a hold time as a cyclic condition where mechanical strain rate is negligible. The function, Fac, is
presented in Figure 80.

Model constants were obtained by regression analysis from predicted hysteresis loops and
out-of-phase TMF test life data. The resulting correlation is presented in Figure 81 and summarized
in Table 10. All data in this set is correlated well within +2X which is considered excellent.

The predictive capability of the model was judged based on the redictions of all the remaining PWA
286 overlay coating TMF life data obtained in this program. The resulting predictions are shown in
Figure 82 and summarized in Table 11. All predictions of the known life points were made within
a =2.5X life band and the majority lie within a =2X life band. Also, the predicted versus actual life
of the TMF test designed to simulate an airfoil leading edge loading condition was within the +2X
life band. The “runout” tests were generally underpredicted.

832 Coated PWA 1480 TMF Life Model

The final life model formulation for PWA 1480 single crystal was based on maximum stress intensity
factor, Kmax, modified to account for the effects of threshold stress intensity, crystallographic
orientation and temperature- and time-dependent damage. Selection of the Kmax based model was
discussed in Reference 3.

a) Base

N, = %—(ﬂ o ./—JE)-Z ln(t‘_t_di) (57)

L

where: o = Maximum tensile stress (ksi)

Crack boundary correction factor

)
i
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te Coating thickness (in)
ds = Maximum crack depth in the substrate (in); ds = 0.01 in this program.
b) Base + Threshold Effects

Based on observations from both high temperature isothermal fatigue and in-phase TMF data,
coating cracks do not always propagate into the substrate. This phenomenon indicated that a
threshold stress intensity exists for umaxial TMF of PWA 1480.

nal
2 -2 K
.2 (KK - Ko
= 5 (,BU: \/J_t) n (Kpm-Kin) K. - Ky, K,"gitia! ©9
where: K, = fo;/na =
s — g (60)

Kird = g, [n(t; + ds) (61)
Ky, = Threshold stress intensity (ksi/in)

¢) Base + Threshold + Crystallographic Effects

A comparison of median predicted lives obtained from model b) above indicated that crystallographic
orientation was also important for prediction of uniaxial TMF. Initially, the damage factor reported
in Reference 15 was investigated; however, that Farticular factor produced unsatisfactory predicted
life trends. To better capture the observed crystallographic effects, another crystallographic factor was
derived from the following assumptions:

® All crack growth occurs along the maximum normal stressed octahedral slip plane.

® The energy required to grow a crack is a function of the crystallographic orientation
relative to the loading direction.

® The ratio of elastic modulus, E, to the spring constant, K, is a constant for all
orientations.

Combining the first two assumptions yields:

Witz = Wi (62)
where: Wc111> = Energy portion due to the maximum normal octahedral slip plane force

and associated deflection and the superscripts refer to the crystalline
orientation along which the load is applied.

For life modeling purposes, it was not necessary to determine the absolute level of W < 111 >, but rather
its relative ranking among the orientations. Since, ina <111> oriented uniaxial tensile specimen, an
octahedral slip plane is situated normal to the apElied load, the <111> orientation was chosen as
the baseline or reference orientation against which all orientations were compared.
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11>
WZiis

—<Wl> = 10 by definition (63)
wiiit3

Wen> - F* 0> o 5 F_ Force (64)

Welllz ~ Froslilz U T K Spring Constant

_(FYK<> _ Pan>/Kans
i
(F/K)$Hil3 FEMZY/KES

Now, F<j11> = F cos 8 = F/f<111> wherefc111> is the factor which resolves the applied stress

into the maximum normal octahedral slip plane stress. f<111> is given below for the crystalline
orientations used in this program.

(65)

Orientation feans

<001> 1/3

<111> 1

<011> 2/3

<213> 0.857

Also, from assumption 3,
K> - K:{H: (66)
E<m> EIZ
_ KSHiZE<ms>
o Rem> = "pamr “

Substituting the expressions for F< 111> and K<111> into the energy ratio equation yields:

2 <111> <11ll>
Wemns _ f<ns PP/KSMSE<m>/ECiii3) )
11> > 2/p<lil>
WZiii> <ins> Fo/K<iis
which reduces to:
<1ll>
Waii> - f<n> ECiiis (69)
111>
wilihiz E<i>

since fS1112 = 10.

For example, the energy ratio for the <001> orientation is given by:

will>  p<ii> 4185 .
Al T3 peot ~3 e ¢ 00 108 ™
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This was interpreted to mean that the <001> orientation requires 86.4 percent of the energy required
by the < 111> orientation to extend a crack at 800°F. Therefore, the associated < 001> damage factor
relative to <111> is 1.0 / 0.864 which equals 1.157 and the appropriate damage factor is:

E

Damage factor = E<TiT> (M)

f<11>

where the <111> subscripts associated with the moduli have been deleted.

Substituting the above expression into model b) yields:

nal
2 [E -2 K, m
Ne=% | = In (K- Kip)-—2—
sc = 3 ( f) (ﬂm »/7_5) n (Km-Kn) K- Ky, il (72)
2
1 E
where: f = f< 11> (E<111>) (73)

Note that the factor f includes an extra 1/E<111> in its formulation. This was done so that the crack
growth equation was consistent with an elastic strain energy density.

E< 111>

sz‘x]m*E* o

(74)

where J;, = elastic strain energy density based on K. The elastic modulus proportionality factor,
E < 111> 'was effectively nullified by a change in the regression constant 1/A.

d) Base + Threshold + Crystallographic + Temperature- and Time-Dependent Effects

A comparison of median predicted lives obtained from model c) for 1038°C (1900°F) maximum
temperature (Tmax) TMF tests without hold times, 1038°C (1900°F) Tmax TMF tests with hold times
and 1149°C (2100°F) Tmax TMF tests indicated that the median lives of the latter two data sets were
overpredicted. Model ¢) was subsequently modified to include the temperature- and time-dependent
damage term developed for coatings.

E -2 K Kﬁ’w * ,0.15
Ne=330 (2 (Bor/z)” | In (K- Ka) - g~ N5 (75)

Kl"gitial

v =
cycle (76)
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Fac =10 + [cl—cz tanh (0-Q) - l.O]exp(- 250000[€.mec;,|) (77)

¢l = Chf;- Thf (78)
) = Chf 5 Thf (79)
where: Kin = Threshold stress intensity factor 1.30 ksi 1/in

14 = Effective cycle frequency (Hz)

Tesf = 1.0/n = Effective time (sec)

o) = Stress (psi)

Q = Equilibrium stress (psi)

Qo = Normalized effective activation energy = 33500°R

To = Reference temperature = 2860°R

Fac = Hold time correction factor

: = Mechanical strain rate (sec™!) associated with the stress s

At = Time increment (sec)

Chf = Compression hold factor = 0.05

Thf = Tension hold factor = 0.05

The final model was selected from models a) through d) by applying the Quality Loss Function (QLF)
described in Reference 56 to the ratio of predicted to actual life (Np/Na). For a perfect prediction
Np/Na = 1.0. As Np/Na deviates from 1.0, significant cost implications arise. If Np/Na < 10, the
model is conservative and components maK be retired prematurely. If Np/Na > 10, the model is
anticonservative and components may crack unexpectedly. In this apé)lication, the QLF was used to
quantify the relative cost associated with using a particular life mo el. Lower values of the QLF
translate into lower customer life cycle costs. %Ialculated QLF values are presented in Table 12.

Based on the QLE, model d) was the model which best minimized the customer life cycle cost. Mode!
d) was thus selected as the final coated PWA 1480 uniaxial TMF life model.

Model constants were obtained by regression analysis of out-of-phase TMF test data. The resulting
correlation is presented in Figure 83 and summarized in Table 13. All data in this set is correlated
within about +2X which is considered good.

The predictive capability of the model was judged based on the predictions of all the remaining coated
PWA 1480 TMF life data obtained in this program. The resulting predictions are shown in Figure 84
and summarized in Table 14. The predictions were made within about a +2.5X life band and the
majority lie within a +2X life band. Also, the predicted versus actual life of the TMF test designed
to simulate an airfoil leading edge loading condition fell within the +2X life band.
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The PWA 1480 TMF crack growth data obtained in the Reference 57 program was reduced using the
maximum mode I stress intensity, Kmax. The Paris Law exponent from the TMF crack growth data
was then compared to that obtained from the Kmax correlation of initiation data (Nsc) obtained in
this program. The two exponents differed by roughly 50% with the exponent from the initiation data
being smaller than that of the crack growth data. In addition, the crack growth data indicated that
Kmax did not collapse data of different maximum temperatures which appears contrary to the
experience with the Initiation data.

The inability of crack growth data to replicate the crack initiation data is unfortunate but not
unexpected. The crack growth data was obtained from a similar TMF specimen geometry as the
initiation data but used a through-wall crack started out of a small (0.010”) machined slot. In some
instances, the initiation data Kmax was below the initial Kmax induced by the machined slot. Another
important consideration is the fact that the initiation data lives used to deduce the exponent on Kmax
were based on the largest observed crack and did not include the effects of multiple cracks which were
typically adjacent to, and often linked-up with, the largest crack.

8.3.3 Life Model Limitations

The life models developed in this NASA sponsored effort do not cover the entire range of potential
application and have not been calibrated with gas turbine engine thermomechanical fatigue cracking
experience. TMF specimen tests were limited to two maximum metal temperatures (1038°C (1900°F)
and 1149°C (2100°F)). Extrapolation of TMF life outside these temperature limits should be viewed
with some skepticism.

83.4 Life Model Constant Determination

Model constant determination from TMF cycles is complicated and cannot be effectively
accomplished by hand analysis. Application of a nonlinear least squares regression computer code
is probably the best means to obtain the model constants. This is not considered an impractical
approach since such regression capability is generally required to obtain constitutive material model
constants. The following procedure was used:

A) Coating

1) Predict the coating hysteresis loop for each TMF specimen by executing the LAYER program
(Reference 4). Note: Both coating and substrate material models (HYPELA) must be compiled
using the AUTODBL o%tion to create executable files with double precision (Real*8). Also, check
to make sure that HYPELA is set to generate a nonlinear analysis (i.e., set NELAS = 1) for both
materials.

a) Generate stress analysis input file (GENERATE)
- Two elements are used, one coating and one substrate

- To properly predict the load share, the thickness of the substrate is set to 1.0
in. and the thickness of the coating is set to the ratio of coating to substrate
cross-sectional areas (Ac / As). '%his is done to ensure convergence of the
STRESS program. The STRESS pro%:'am converges using an energy term
which tends toward zero for small thicknesses.

b) Execute stress analysis (STRESS)
¢) Post-process stress analysis output (POST)

d) Obtain integrated tensile hysteretic energy, Wt (LIFE)

Note: If the substrate life model is to be regressed at a later date, record the
coating stress which occurs at the maximum substrate stress. This coating
stress 1s needed to adjust the observed coated specimen loads to account
for coating load share.



2) Create a file to store the predicted coating responses from each TMF specimen analyzed. The
coating response is contained in the file Post Output which is created by the POST program.

Note: If the substrate life model is to be regressed at a later date, store the
substrate stress response in a separate file. This will eliminate the necessity
to rerun the TMF specimen analyses.

Note: Put all the TMF cycles of the correlation data set in one file and the TMF
cycles of the verification (or prediction) data set in another file. The
correlation data set for the coating many not be identical to that of the
substrate.

3) At this point, the following are available for model constant regression:
a) Actual coating life, Nc-act (cycles)
b) Integrated tensile hysteretic energy, Wt (psi)
c¢) Coating response for each TMF specimen test stored in a file (i.e.. the correlation data set file).

The procedure from this point is largely up to the individual user. There are perhaps many different
approaches one may take to perform the actual constant regression. The challenge is to develop a
regression technique which can integrate the temperature- and time-dependent damage term each
time a particular TMF specimen life is calculated. The regression routine used to obtain model
constants in this program has the ca ability to read the coating behavior of a particular specimen
from the correlation data set file eacﬁ time that specimen life is calculated. The temperature- and
time-dependent damage term is then integrated and combined with the corresponding Wt and the
life is calculated using the current values of the model constants. The Wt parameter was previously
integrated to save computer cost because non-linear regression techniques are computer intensive.
The regression routine also has the capability to constrain constants to a fixed value. This helps the
user apply the regression routine. For example, the exponent, b, on Wt can be found by using specimen
tests without significant temperature- and time-dependent damage (i.¢., fast cyclic rates or low
temperatures). Once b is determined, it is constrained for the balance of the regression. Of course,
it helps to have a good starting point for each of the constants. To that end, the following suggestions
may help in choosing initial guesses for coating constants:

A 28050. Between 10000 and 100000, based on experience.
b -0.81 Between -0.8 and -1.0, based on experience.
0.50 0.5, based on the notion that coating damage at high tempera-

tures and/or times is controlled by inelastic deformation which
gives an exponent, n, of roughly 2.0 on the inelastic strain flow
rule and ¢ = 1/ n. An exponent of 0.5 is also consistent with
parabolic oxidation Kinetics.

Qo 50000. Between 30000 and 70000 depending on how rapidly the coating
life drops with increasing temperature. Higher life reductions
generally require higher values of Q.

To 2660. Roughly equivalent to the incipient melting point temperature.
Chf 0.19 Determined from tests with and without hold times at a maxi-
mum temperature which occurs in compression (out-of-phase
TMF).
Thf 0.38 Determined from tests with and without hold times at a maxi-
mum temperature which occurs in tension (in-phase TMF).
v 10000. Arbitrarily determined, suggested value = 10000 for coatings.

41



B) Substrate

1) Obtain the substrate maximum stress from each TMF specimen by correcting the observed
specimen maximum stress for the coating load share. This is accomplished by subtracting the
product of coating stress (which occurs at the observed maximum specimen stress) and coating
area from the observed specimen load and dividing the result by the substrate area. Coating stress
is predicted by the STR%SS program.

0s = (Po— 0:Ac)/As (80)

2) Obtain the crack boundary correction factor by executing the LIFE program portion of the
LAYE% program using the correct specimen and crack geometries. Dummy values for stresses
are used.

3) Create a file to store the predicted substrate responses from each TMF specimen analyzed by the
LAXER program. This file should be available from the analyses performed for the coating life
model.

4) At this point, the following are available for model constant regression:
a) Actual substrate life, Nsc-act (cycles)
b) Maximum substrate tensile stress, 0y (ksi)
¢) Coating thickness, tc (in)
d) Crack boundary correction factor, 3
e) Elastic modulus of the substrate, E (ksi)
f) Elastic modulus of a <111> oriented bar, E< 111> (ksi)

g) Factor which resolves the applied stress into the maximum normal octahedral slip plane stress,
fe11>

h) Substrate response for each TMF specimen test stored in a file (i.e., the correlation data set
file).

The procedure from this point is largely up to the individual user. There are perhaps many different
approaches one may take to perform the actual constant regression. The challenge is to develop a
regression technique which can integrate the temperature- and time-dependent damage term each
time a particular TMF specimen life is calculated. The regression routine used to obtain model
constants in this program has the capability to read the substrate behavior of a particular specimen
from the correlation data set file each time that specimen life is calculated. The temperature- and
time-dependent damage term is then integrated and combined with the corresponding integrated
crack growth life using the current values of the model constants to obtain the calculated life.

VA 165. Between 50 and 500, based on experience.
b -1.00 Between -0.8 and -2.0, based on experience.
Kinh 130 Less than 1.7 based on the results of specimen JB-29.
c 0.15 Based on the notion that substrate damage at high tempera-

tures and/or times is controlled by creep type inelastic defor-
mation. In keeping with the notion that all crack growth occurs
along the maximum normal stressed octahedral (<111>)
plane, the exponent, n, was determined from a power law rela-
tionship of <111> specimen secondary creep rate vs. stress.
The constant ¢ = 1/n.
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Qo 33500. Between 20000 and 50000 depending on how rapidly the sub-
strate life drops with increasing temperature. Higher life reduc-
tions generally require higher values of Q.

To 2860. Roughly equivalent to the incipient melting point temperature.
Chf 0.05 Determined from tests with and without hold times at a tem-
perature which occurs in compression (out-of-phase TMF).
Thf 0.05 Determined from tests with and without hold times at a tem-
perature which occurs in tension (in-phase TMF).
v 250000. Arbitrarily determined.

84 COMPUTER SOFTWARE DEVELOPMENT

Conducting an analysis of a coated airfoil was considered impractical for general design applications
due to the increased model complexity and the small increments needed to converge the coating
constitutive model (i.e., overwhelming engineering and computer costs). Instead, an alternative
method was developed. One which used a simplified structural analysis to simulate airfoil critical
locations and drive the life prediction models. This simplified structural model has the capability to
model the general multiaxial loading conditions of a smooth flat surface. Boundary conditions for
the simplified structural model could be obtained from an uncoated airfoil elastic or inelastic analysis.

Integration of all constitutive and life models with the simplified structural analysis technique is
detailed in Reference 4, “LAYER User and Programmer Manual.” The software flowchart is shown
in Figure 85. All the LAYER program software is modular to permit future model additions or
alterations.
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SECTION 9. TASK VII -SUBCOMPONENT VERIFICATION FOR PRIMARY SC
MATERIAL

9.1 TEST SPECIMEN AND CYCLE

The specimen geometry selected for the verification test is shown in Figure 8B. Specimen orientation
and coating chosen were <001> and PWA 286 overlay (specimen JB-135). The test envelope chosen
was 427-1038°C (800-1900°F) with a strain range of 0.45% and strain ratio (V-ratio) of -1.

The verification test TMF cycle was defined based on the nonlinear airfoil analysis conducted by T
Meyer in support of NASA Contract NAS3-23925 (Reference 55). Specifically, the predicted airfoil
leading edge strain-temperature history presented by Meyer for an entire transient flight cycle was
normalized and used to calculate test parameters. Maximum and minimum temperatures and strain
range were selected to approximate the airfoil loading history. The predicted airfoil versus test
strain-temperature histories are compared in Figure 86 and a description of the airfoil transient flight
cycle is presented in Table 15. Constant loading conditions which occur in the airfoil during climb
and cruise were modeled by holding constant strain. Test strain versus time and temperature versus
time cycles are presented in Figures 87 and 88, respectively.

9.2 VERIFICATION TEST RESULTS

The results from specimen JB-135 are included in Appendices D and E and the strain-temperature
and initial hysteresis loops are presented in Figures 89 and 90. Cracking was typical of an overlay
coated PWA 1480 specimen. Coating cracks initiated at multiple sites throughout the specimen gage
section. Failure was caused by linkup of multiple, coatin% generated, cracks which had initiated at
slightly different gage section levels along the specimen OD. The general appearance of the fracture
surface of JB -135 is presented in Figure 91.

9.3 LIFE MODEL PREDICTION OF VERIFICATION TEST

The predicted sum of coating and substrate crack initiation life (Nc + Nsc) for the TMF verification
test 1s 1994 + 1013 = 3007 cycles relative to the observed life of 1280 + 790 = 2070 cycles which
is well within a factor of 2X.

The substrate life (Nsc) was predicted using the calculated substrate stress level from the specimen
response and the associated specimen coating and substrate thicknesses and crack geometry. Usin%
predicted stresses obtained by the stress envelope method (Section 8.2.3) gives Nsc¢ = 1324 to 175

cles. Using an average crack geometry and nominal coating and substrate thicknesses along with

e predicted stresses gives Nsc = 1429 to 1901 cycles. The true predicted life is then 1994 + 1429
(or 1901) = 3423 to 3895 cycles which is just within 2X of the actual life. From these analyses, it was
concluded that the Nsc life prediction can be improved by developing a better method for predicting
the substrate tensile stress.



SECTION 10. TASK VIII - ALTESI‘II_."SXTE SC MATERIAL CHARACTERIZATION FOR
AIRFOI

10.1 TEST SPECIMEN FABRICATION

Eighteen (18) solid bar and ten (10) cylindrical tube specimens were fabricated to support Task VIII
testing. A summary of the fabricated specimens is presented in Table 16 and specimen geometries
are shown in Figure 92 (solid) and 8B (tube).

10.2 MONOTONIC TESTS

10.2.1 Alloy 185 Tensile Tests

A summary of Alloy 185 tensile test results is presented in Table 17.
10.2.2 Alloy 185 Creep Tests

A summary of Alloy 185 creep test results is presented in Table 18.
10.3 FATIGUE TESTS

Baseline PWA 286 overlay coated Alloy 185 TMF experiments were conducted. The results from
optical fracture surface inspection are given below:

1) <001> HIJB4 427-1038°C (800-1900°F), +0.15%, 1 cpm, Out-of-phase
Coating initiated cracking. Multiple sites observed alon% fracture surface.
Coating cracks appeared early during the test and grew along the specimen
circumference with little growth into the substrate. This resulted in
substrate cracks which were long and shallow.

2) <001> HJB-1 427-1038°C (800-1900°F), +0.25%, 1 cpm, Out-of-phase
Mixed mode (ID and OD surface initiation) cracking was observed. The
predominant mode was OD coating initiated cracking. Multiple coating
cracks were observed along the fracture surface.

3) <001> HJB-8 427-1038°C (800-1900°F), +0.35%, 1 cpm, Out-of-phase
Coating initiated cracking. Some small ID surface cracks were also
observed. Coating cracks appeared early and formed long, shallow
substrate cracks similar in nature to specimen HJB-4.

Life and stress history for the Alloy 185 tests are presented in Appendix E
In general, out-of-phase TMF cracking of overlay coated <001> Alloy 185 was similar in nature to
that of overlay coated PWA 1480 (i.e., multigle coating initiated substrate cracks). T);pical fracture

surface appearance is presented in Figure 9 Initiation life (Nsc) of coated Alloy 185 is compared
to coated PWA 1480 in Figure 94. As expected, PWA 1480 is the superior alloy.
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SECTION 11. TASK XII - SPECIMEN PREPARATION
11.1 SPECIMEN DESIGN AND PREPARATION

The initial smooth section strain controlled fatigue tests showed a propensity to fail in the threaded
section outside the monitored gage section. e smooth specimen geometry was subsequently
redesigned. The new design had a smaller gage section diameter (0.63 cm versus 0.76 cm, 0.25 in.
versus 0.30 in.) and finer threads. As a part of the new design, slight sockets were placed in the gage
section to receive the ends of the extensometer to prohibit extensometer slipping. These sockets did
not cause premature fatigue crack initiation. The original and new smooth specimen geometries are
shown in Figure 95.

Sgecimen designs for the rectangular section, notched specimens are presented in Figures 96 through
98.

To facilitate SEM (Scanning Electron Microscope) inspection of the notch slip behavior, selected
notched specimens were polished to about 4 rms surface finish.

Criteria used in designing the notched specimens and selecting their primary (P)and secondary

(8) orientations included testability, parametric variation of possible deformation and fatigue life

variables, and applicability of two dimensional analyses. A discussion of these specimen design
considerations was presented in Reference 3.

11.2 PHYSICAL, THERMAL, AND MONOTONIC MECHANICAL PROPERTIES

Thirteen (13) monotonic tensile tests were conducted to supplement the tensile tests conducted in the
Base Program.

Table 19 summarizes the results of these tests along with previously generated uncoated monotonic
data. The reduction in area was not reported because many of the final cross sections at the lower
temperatures were either highly elliptical due to coarse slip on octahedral planes or were multi-planar
(also on the octahedral slip planes). Figure 99 is a plot of the 0.2% offset yield strength. A summary
of tensile specimen ovalization was presented in Reference 3.
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SECTION 12. TASK XIII - SELECTION OF CANDIDATE CONSTITUTIVE AND LIFE
PREDICTION MODELS

12.1 SPECIMEN STRUCTURAL ANALYSIS

Three dimensional elastic structural analyses of the Option 1 specimen designs were conducted for
use in the life prediction models. MARC finite element and BEST3D boundary element (which was
developed under NASA contract NAS3-23697) codes were used in this effort.

Figure 100 shows the typical BEST3D mesh used in the analyses and Table 20 summarizes the results.
Stress values were normalized by the net section stress to give a stress concentration factor. Figures
101 through 103 show the variation of the principal stress on the surface of the notch and the maximum
octahedral slip system shear stress for <001> <100> oriented specimens with a net section stress
of 689 MPa (100 Ksi). A curve was fit through the BEST3D nodal points based on a more refined
two dimensional boundary element analysis. These plots show that the location of maximum principal
stress is not at the minimum section (theta = 0) as would be expected for an isotropic material. Table
20 also includes the results for an isotropic material using the same BEST3D mesh.

The finite element analyses were conducted using the K.3 version of the MARC program. This version
of the MARC program calculates stresses at nodal points and they have been found to agree well with
BEST3D boundary element results. The MARC analysis was chosen for all future analysis in the
program because of its widespread use in indust and its nonlinear material capability. Figure 104
shows the finite element meshes used for each of the specimens. Prior to the anisotropic analyses,
an isotropic material analysis was conducted to evaluate the accuracy that could be expected from
the mesh being used. Results were within 3% of handbook solutions for the geometries. Figure 105
shows the results of the anisotropic stress analyses. The stresses shown are normalized to net section
stress and correspond to the maximum values whether they are mid-plane or locations near the lateral
surface of the specimen. Itis only inthe <213> and the <111> primarf' orientations that restrained
out-of-plane warping leads to peak stresses near the lateral surface. In all other orientations, the peak
stresses occur at the mid-plane. (It is interesting to note that fatigue initiation sites in the <111>
primary oriented specimens did not appear to be at the lateral surface, indicating that the actual
restraints during testing may not be as severe as those modeled by restrained lateral motion.) The

rinciple stresses shown in Figure 105 are parallel to the contour o the notch at the angular location
indicated. The slip system shear stress shown (also normalized to net section stress) is that
corresponding to the octahedral slip system having the highest shear stress. All six components of
global stress were used in determining the slip system shear stress.

12.2 CANDIDATE CONSTITUTIVE MODELS

The slip system based constitutive model developed in the Base Program was selected for the low
temperature notched regions. A major difficulty with this model and all “unified” material models
is that the basic mathematical formulation is strain rate dependent and so has difficulty in
reproducing rate independent behavior at low temperatures. This difficulty has been overcome b
incorporating a subroutine in the model which changes the applied time increment to one which will
result in a constant reference strain rate for low temperatures. The transition between rate
dependence and rate independence occurs gradually between 816°C (1500°F) and 704°C (1300°F)
(see Section 8.2.3).

The fatigue data obtained indicates that the total stress excursions in the notches are less than twice
the 0.27§;ield strength for low cycle fatigue lives greater than approximately 1000 cycles. See Figures
99 and 106. This conclusion is based on elastic finite element anal{ses of the specimens which should

roduce an upper bound on the stress range. This indicates that large cyclic inelastic strains are not
ﬁkely to be encountered in the notches. In addition, only small cyclic inelastic strains were observed
in strain controlled fatigue tests whose lives were greater than approximately 1000 cycles. In contrast,
significant inelasticity is expected during the initial loading portion of the fati Fue cycle. So the efforts
in the constitutive model development focused on the monotonic response o the material. This was
important for determining the mean stress in the notches.
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12.3 CANDIDATE LIFE PREDICTION MODELS

Four candidate life prediction models were identified for evaluation:

1) Hysteretic energy (Reference 15)
2) Maximum principle stress
3) Octahedral slip system shear stress

4) Stress range, mean stress (Reference 58)
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SECTION 13. TASK XIV - CYCLIC LIFE AND CONSTITUTIVE BEHAVIOR

The intent of this program was to develop constitutive and life models applicable to relatively low
temperature (i.e. below the creep regimeg notched regions typical of attachment regions of single
crystal components. The dominant loading in the attachment region of a turbine blade is centrifugal
loading which may lead to localized tensile yielding in notched details at maximum rotor speed.
Reverse yielding is not expected when rotor speed is decreased. Therefore, the relevant fatigue cycle

can be idealized as a strain controlled, one way fatigue cycle which may produce localized plasticity.
The test conditions employed in this program have been selected to simulate these conditions.

13.1 TEST FACILITY

The tests for Option 1 were conducted on two MTS servohydraulic test machines available at United
Technologies Research Center. Strain controlled tests em loyed standard MTS extensometry and
were controlled by a DEC computer running MTS BAS‘%C. Special purpose control and data
acquisition programs provided control for the constitutive and strain controlled fatigue tests. Load
controlled fatigue tests were controlled by the standard function generators supplied with each system.
Specimens were heated with standard resistance furnaces.

13.2 CYCLIC LIFE TESTS
13.2.1 Specimen Inspection Technique

A sensitive die penetrant had been used to inspect for cracks but without success in spite of frequent
inspections. That inspection technique is capable of detecting cracks as small as 0.25 mm (0.010 in.).
Inspection intervals were as frequent as 2000 cycles. More frequent inspections were impractical due
to the large number of tests conducted and the life regime being tested (5000 to 100000 cycles).

All efforts to find developing fatigue cracks failed. Scanning Electron Microscopy has shown that
the steady fatigue crack zone was confined to a very small surface crack length which in many cases
was near the detection limits of standard wink zyglo techniques. Consequently, inspections for crack
initiation were suspended and specimens were cycled to failure.

13.2.2 Fatigue Tests

Smooth Fatigue

Strain controlled fatigue tests were conducted on 6.35 mm (0.25 inch) diameter bars having a gage
length of 254 mm (1.0 inch). All tests were conducted at a strain rate of 0.1% per minute. All
specimens were loaded in tension first to the maximum strain limit. The minimum strain limit for
the majority of the tests was zero although some non-zero R ratio (minimum strain/maximum strain)

tests were included in the data set. Tests conditions and resulting stresses and lives for all tests are
shown in Appendix G. The majority of the tests were conducted at 649°C (1200°F).

Fatigue cracks were observed to initiate from micropores located at the surface or very near the
surface of the specimens. No cracks were observed to start from surface features such as machining
marks or crystallographic slip steps. Typically the fatigue cracks were observed to originate at
micropores and progress along a plane perpendicular to the loading direction. Final fracture occurred
along < 111> type crystallographic planes.

Notched Fatigue
Notched fatiﬁue tests were conducted in load control at a constant temperature. Test conditions and
results for all tests are given in Appendix H.

The locations of the maximum principal stress and the maximum principal strain do not coincide in
the <001> <100> oriented specimens. Tyé)ically, the fatigue crack initiation sites are at the
maximum principal stress location as illustrated in Figure 107. As with the smooth specimens, fatigue
cracks were observed to initiate from micropores at the specimen surface or very near the surface.
The majority of the initiation sites also occurred at the mid-plane of the specimen.
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Secondary Orientation Eff

X-ray analyses were conducted on several <001> oriented smooth specimens to determine the
secondary orientation of the fatigue crack initiation sites. The results of these analyses are shown in
Table 21. At 649° (1200°F), three of the four specimens examined had initiating pores at a
circumferential location corresponding to the point where the <010> crystal axes coincides with the
surface normal. This trend does not appear to hold at higher temperatures or for HIP’d material as
indicated in Table 21. Secondary orientation of initiation sites in smooth < 111> fatigue samples were
identified to determine if there was a similar trend. The results are shown in Table 22.

The initiation sites were measured from either the <011 > or the < 112> type crystal directions which
are 30 degrees from each other and lie in the plane perpendicular to the <111> load axis. Table 22
shows that there is not a strong correlation between the initiation site and these two directions. Taken
in combination with the other results for the <001> specimens, it is concluded that there is at most
a weak correlation of initiation site with secondary crystal direction. However, a much larger number
of samples would be needed to reach a definitive conclusion.

Porosity Effect

Several smooth and notched specimens were examined to quantify pore size at the initiation sites.
The initiating pores were always either surface connected or very slightly (approximately one pore
diameter) subsurface and could be classified as either very regular shaped micropores or irregular

shaped shrinkage pores. Even though quantifying the size of shrinkage pores is very subjective, no
correlation could be drawn between pore size or shape and fatigue life.

] rial

A small amount of fatigue testing was conducted using PWA 1480 material that had been Hot
Isostatically Pressed (HIP) to eliminate micropores prior to machining. Micropores were observed
to be fatigue crack initiation sites in the testing described above. Individual test conditions for the
HIP specimens are included in Appendices G and H.

Substantial life improvements are observed for HIP'd material when compared to un-HIP’d material.
The fatigue crack Initiation sites of HIP'd specimens correspond to the maximum stress location in
the notch. They are neither casting pores (as would be expected since the material is HIP'd to
eliminate pores) nor slip bands at the surface. The smooth HIP’d data, although limited, indicates
that a life improvement remains at 871°C (1600°F) for <001> bars (although possibly somewhat
diminished from that observed at 649°C (1200°F)), but virtually no life improvement remained at
871°C (1600°F) for the HIP‘d <111> specimen tested.

13.3 CONSTITUTIVE TESTS

Two room temperature tensile tests were conducted using tube specimens rather than the solid
cylindrical specimens used in previous constitutive tests. Unlike the sclid specimens, the tube
specimens exhibited very fine, evenly distributed slip lines throughout the gage section. The
stress—strain response of the tube specimen did not display an unstable strain burst at the onset of

ielding. The 0.2% yield strength measured from the tube specimens compared very well to the solid
ar data.

Strain gage surveys were conducted on two mild notched specimens to provide an experimental
evaluation of the constitutive model. One specimen had a <001> < 100> orientation, the other was
oriented in the <011> <01-1> direction. Strains were recorded at several different load levels and
the residual strains were measured after unloading from several of the peak load levels. Figure 108
is the strain history of one of the strain gages on the <011> <01-1> specimen. This strain gage
was located on the lateral surface of the specimen, approximately 0.025 inches from the maximum
principal stress location. One very important observation is that there was very little cyclic inelasticity
even for peak loads as high as 3500 lbs. This corresponds to an elastic notch stress which is more
than 30 percent higher than the peak stress levels in fatigue (> 1000 cycles in life). This implies that
very little cyclic inelasticity is occurring in the fatigue life regime of interest.
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SECTION 14. TASK XV - FINAL SELECTION OF CONSTITUTIVE AND LIFE
PREDICTION MODELS FOR UNCOATED SINGLE
CRYSTAL MATERIALS AT ROOT ATTACHMENT
TEMPERATURES

14.1 CONSTITUTIVE MODEL

In order to apply the life model of Equation 83 (Section 14.2.1), the stress range, mean stress and
inelastic strain range in the notched specimens must be calculated. As discussed previously, little or
no cyclic inelasticity is expected so that inelastic strain range can be taken to be zero and the stress
range can be obtained from conventional elastic stress analyses. However, a viable nonlinear analysis
is needed to determine the mean stress in the notch. Because the notch is expected toyield only during
the initial loading portion of the fatigue cycle, only the monotonic tensile response 15 required. The
mean stress is simply the stress achieved during initial loading minus half the (elastic) stress range.

The Base Program single crystal constitutive model (with Set B constants) was used to simulate room
temperature strain gage surveys conducted on the mild notched specimen shown in Figure 104. The
results are shown in Figures 109a and 109b for the strain gage test of a <011> < 01-1> specimen.
The overall correlation of the analysis and the data is encouraging especially at load levels that were
used in the fatigue program. Figure 110 shows that the nonlinear analysis predicts a stress strain
response close to the uniaxial stress strain curve in the appropriate orientation.

Figures 111a and 111b show room temperature monotonic data and simulations. The overall
correlation is fairly good. However,it should be noted that the model does not match the observed
ordering of the limit stress with orientation. The model predicts that the < 011> and <213> curves
fall between the <001> and < 111> curves. The data shows a different trend. On the other hand,
there is not a great deal of variation in the numerical values of limit stress between the orientations
tested. Figures 112a and 112b make the same comparisons at 649°C (1200°F). Once again the
ordering of the model is not consistent with the data and unlike the room temperature results, there
are large numerical differences between the actual limit stresses. From these two comparisons, it can
be concluded that use of the model at room temperature should produce reasonable inelastic stress
levels, within approximately 20 Ksi (the scatter in the data itself) but may give incorrect orientation
trends within tge range. But at 649°C (1200°F), there is considerably more orientation dependence
as seen in Figure 112, and the constitutive model did not predict the correct ordering of the data.
It was therefore concluded that the constitutive model could not be used to determine mean stress
at 649°C (1200°F).

However, the need to calculate the yield stress in the notch remains. The procedure introduced by
Neuber (Reference 59) has been used to this end since his procedure does not require a sophisticated
constitutive model, but can instead use experimental stress strain curves. To apply the Neuber
procedure, the product of stress and strain at the maximum stress location is determined from an
elastic finite element analysis. The actual stress and strain values are then assumed to lie on the
experimental stress strain curve for the relevant orientation.

In an attempt to evaluate this procedure, nonlinear finite element analyses (FEA) were conducted
using a “model” anisotropic material and the FEA results were compared to the Neuber results. The
constitutive model discussed above was taken to describe the model material. Evaluations were made
for the thin mild notched specimens having two crystallographic orientations: < 001> in the loading
direction with < 100> normal to the notch and < 111> in the loading direction with <01-1> normal
to the notch.

A Neuber parameter at a reference (elastic) loading condition was determined from an initial elastic
finite element analysis. The Neuber parameter is simply the product of stress and strain components
parallel to the contour of the notch:

Py =opep @1
stress at a reference elastic condition,
strain at a reference elastic condition.

where oy
€
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In this evaluation, stress and strain at the finite element integration point closest to the notch surface
are used. It should be noted that in general, all components of stress and strain are present at these
integration points since they do not lie on a free surface. However, only the components of stress and
strain parallel to the contour of the notch are considered here.

Because both stress and strain can be scaled by the applied load in an elastic analysis, the Neuber
parameter at any other nominal stress level, S, is

P = Py (S/Sp) , (82)

where §p = Nominal stress at the reference condition,
Py = Neuber parameter at the reference condition.

The Neuber procedure assumes that the value of this parameter is the same whether an elastic or an
inelastic analysis is performed. Figure 113 shows the value of this parameter obtained from the
nonlinear FEA compared to Equation 82. The reference elastic conditions required in Equations 81
and 82 were taken from the first (elastic) increment of loading in the nonlinear stress analysis. Figure
113 shows good correlation even for nominal stresses that approach net section yielding.

Finite element and Neuber predictions of the individual stresses and strains were compared at several
locations in the notches. Figures 114 through 117 show the ratio of the Neuber and the FEA results
as a function of the applied nominal stress on the specimen. The ratio of the Neuber parameter
derived from Equation 82 and that obtained from the FEA are also shown in these figures. Results
are shown for two locations in the notch; at theta = 3.8 and at theta = 22.4 degrees (see Figure 118).
Theta = 0 corresponds to the maximum stress location in the <111> <01-1> specimen and theta
= 22.4 degrees corresponds to the maximum stress location in the <001> <100> specimen. The
model material’s stress strain response, which “partitions” the Neuber parameter into individual
stresses and strains, was obtained from the constitutive model under uniaxial conditions. Figures 119
through 122 show the corresponding stress-strain responses for these locations. These figures show
that there are significant differences between the two analyses. If it is assumed that the finite element
analyses give the correct results, then the Neuber procedure must be modified.

A modification of the Neuber procedure certainly must address the multiaxial stress state since it is
clear from Figures 119 througg 122 that such high stresses can only be achieved in the presence of
a substantial multiaxial stress state. The direct components of stress at the last load step of the
nonlinear analysis are shown in these figures. Shear stresses are also present but are an order of
magnitude smaller than the direct components. A suggested modification would be to perform the
Neuber calculations based on deviatoric stress and strain rather than the direct component. Figure
123 shows the product of the deviatoric stress and strain at different applied nominal stresses for the
<001> < 100> mild notched specimen. This parameter appears to vary in a manner similar to
Equations 81 and 82 suggesting that such a parameter could be used in conjunction with an
experimental effective stress-strain curve to calculate the value at any desired load level. In order to
recover the direct component of stress at any nominal stress level, the degree of multiaxiality would
also have to be known. Figure 124 shows that the degree of multiaxiality (measured as the ratio of
the hydrostatic stress or strain component to the direct component) changes as yielding proceeds but
that the product of these ratios remains approximately equal to that for the elastic case. These two
figures suggest an approach for modifying the Neuber procedure for multiaxiality. But to further
develop this approach would require a considerable effort which is beyond the scope of this program.

14.2 LIFE PREDICTION MODEL

The majority of the tests were conducted at 649°C (1200°F) and only this data was used to develop
fatigue life prediction models.

The correlations re%orted in Reference 15 and the Base Program (Reference 3) were encoura%ing, but
an inelastic strain based model such as hysteretic energy was considered difficult to apply to the
predominantly elastic cyclic loading and conditions found in the relevant life regime.

The octahedral slip system shear stress at the initiation site was evaluated as a correlating parameter.
The results are shown in Figures 125 and 126. Figure 125 shows that the smooth and mild notched
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data are segregated by this parameter. As shown in Figure 126, the apparent slope difference between
thin and thick specimens is no longer apparent. However, it is clear that the parameter does not
account for orientation properly since the thick < 111> specimens fall well below the rest of the data.
While it is possible that ditferent surface finish conditions could account for the segregation of the
smooth and the notched data seen in Figure 125, the unexplained orientation dependence seen in
Figure 126 was not acceptable. So a slip system based fatigue model was not pursued further.

Correlations were tried using the principal stress range as a correlating parameter. As shown in Figure
127, the smooth specimen and mild notched specimen data were fairly well correlated using this
Earameter. However, it was noted that this parameter did not fullK account for orientation effects.

urthermore, as shown in Figure 128, thick specimens appeared to have a different slope on the S-N
diagram than the smooth and mild notched specimens. So a fatigue model based only on maximum
principal stress was judged inadequate. The model finally selected is discussed below.

14.2.1 Smooth Fatigue

Figures 129 and 130 show the correlation between separation life and either strain range or stress
range. Clearly, stress range more nearlf' collapses the fatigue data. However, a clear orientation
dependence is still apparent in Figure 130. ’I'Ee <001> data and the <111> data fall into two
separate groups as indicated by the mean life lines. Figure 131 further illustrates this segregation by

lotting actual fatigue life versus the life calculated from a single trend line through all of the data
in Figure 130. Nearly all of the <001> specimen lives are overpredicted by the single trend line while
nearly all of the < 111> specimen lives are underpredicted.

The observed mean stress levels for each of the strain controlled tests are plotted in Figure 132 versus
the observed stress range. The <001> specimens have higher mean stress levels than the <111>
specimens for a given stress range. This agrees qualitatively with the trend lines shown in Figure 130.
at is, the <001> specimens have lower lives than < 111> specimens for the same stress range.
The difference in mean stress levels is a consequence of the different yield behavior of the two
orientations during the first cycle of loading. Referring to the 649°C (1200°F) tensile curves in Figure
112, it can be expected that a <001> specimen would achieve a higher peak stress during the first
cycle of loading than would a < 111> specimen. Subsequent elastic unloading from these different
eak stress levels produces a higher mean stress for <001> specimens than for <111> specimens.
ince this material neither cyclicly hardens nor cyclicly softens, the mean stress level is set during the
initial loading. Figure 132 shows the possible stress range and mean stress values for fatigue cycles
with a2 minimum strain of zero and an elastic-perfectly plastic idealization of the <001> and <111>
tensile behavior. For the sake of illustration in Figure 132, the yield point has been taken to be the
actual 0.2% yield strength for the respective orientations.

It should be noted that a two parameter model based on stress range and mean stress has a limitation
for strain controlled conditions tested in this program. That is, for monotonic stress strain curves
with little or no strain hardening (which is the case for all orientations except <001> ), the mean stress
approaches zero and the stress range will not increase appreciably beyond twice the yield stress. So
a fatigue model based only on stress range and mean stress could not be expected to apply to the very
low cycle life regime where cyclic inelastic strains are significant. As discussed above, fatigue cycles
with significant cyclic inelasticity would not be expected in the notched regions of turbine blade
attachments. However, in order to broaden the data base used in the model development and to
provide a more general model, these data points have been included. The following three parameter

model was adopted and fit to the smooth specimen data set.

N = A AoB 10Com 1pDAep (83)

where N separation life (cycles),

Ao = stress range (psi),
Om = mean stress (psi),
Aep = cyclic inelastic strain (in./in.)
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and A = 1.291 E43
B = -7.339
C = -8.795 E-6
D = -132.2

Figure 133 and Table 23 show actual lives versus lives calculated using this three parameter model.
As expected, the segregation of the data by orientation has been significantly reduced and those
specimens with significant cyclic inelastic strain are also reasonably well predicted.

14.2.2 Notched Fatigue

Figure 134 shows the correlation of the thin, mild notched data with stress range alone. The limits

of the <001> and <111> specimen data are indicated for clarity along with the mean trend line

for the smooth <001> specimens. The single data point that lies outside of the limit lines

corresponds to a specimen (JJB105A) tested at a maximum load very near net section yielding. This

test condition is outside of the load regime expected in gas turbine blade attachment. Consequently

hhis test \;vas not considered in developing the fatigue model and will not be included in the focl‘owing
ata analysis.

A significant orientation dependence is apparent in Figure 134 which is similar to that seen in the
smooth specimen data. For the same stress range the <111> specimens have lives that are on the
average an order of magnitude longer than the <001> specimen. In addition, Figure 134 shows
consi erablfy more scatter in the mild notched data than in the smooth specimen data. The apparent
scatter is a factor of 60:1 for the <001 > data and a factor of 90:1 for the <111> data. A significant
portion of this scatter has been found to be associated with the time period during which different
groups of specimens were manufactured. The time at which the raw bars were cast, heat treated and
machined to final shape was different for different groups or “lots” of specimens. With the large
number of specimens used in the program, it was not possible to coordinate each phase of
manufacturing to occur at the same time. Nor was it possible to systematically vary the specimen lots
with test conditions and orientations to rank or normalize them. Table 24 shows the combinations
of specimen geometries, orientations and lot numbers tested. Within the time constraints and the
specimens available, as many duplicate tests as possible were conducted to better define the lot-to-lot
variations. Figures 135 and 136 show the variation in fatigue lives at given stress level as a function
of lot number. The largest variation between lots was observed in the <111> specimens, with at least
a 20:1 life variation between typical lives and 40:1 variation between the extremes. There were
insufficient specimens available to conduct a more extensive characterization of the scatter or to
isolate the causes.

The fatigue model given in Equation 83 was used to predict the notched data. Predicted lives versus
actual lives are shown in Figure 137 for the mild notched data and in Figure 138 for all notched
geometries. The orientation dependence noted above has been greatly reduced. Considering only
the mild notched data, the average difference between <001> and <111> specimens has been
reduced from a factor 10:1 to a factor of 3:1. The scatter in this data set remains approximately the
same as seen above.

To calculate the mean stress for Equation 83, a simple correction was made to the Neuber stresses
based on the finite element analysis of the thin mild notched specimen using the Base Program single
crystal material model. Figure 139 shows the error in the Neuber stress at the maximum stress location
as a function of the Neuber parameter. This error curve was assumed to apply for PWA 1480 and
all notch configurations tested in this program. The maximum stress for each test condition was
calculated by the Neuber procedure using experimental stress strain curves and divided by the Neuber
correction given in Figure 139. Table 25 shows the elastic stresses and strains for a unit reference stress
that were used in the Neuber calculations (Equations 81 and 82). Table 25 also shows the
crystallographic orientation at the maximum stress location and the orientation of the experimental
stress strain curve used in the analyses. For the <001> < 100> oriented specimens, experimental
stress strain curves were not available in the orientation exactly matching the crystal direction at the
maximum stress location. For these specimens the <001> experimental curves were used. The
corrected maximum stress was then used to calculate mean stress. (Mean stress is the peak stress
minus one half the stress range.)



Figure 138 shows that virtually all of the notched specimens have longer lives than predicted. Taken
as a whole, the notched data is an order of magnitude longer in life than predicted. Possible
inaccuracies in the stress calculations were explored as a source of this difference. The stress range
calculation is believed to be 1uite accurate since it is an elastic calculation and the stress ranges tested
are insufficient to cause cyclic plasticity. A small error may be due to the use of integration point
values rather than values extrapolated to the surface. Comparison of three dimensional finite element
and a plane strain Boundary Element analysis (which is presumed to be more accurate) showed that
this error was less than 4 percent, with the FEA results giving somewhat higher stresses. A 4%
overprediction of the stress range would lead to a 35% underprediction of life. An error of 35% in
the stresses would be required to produce the observed order of magnitude difference in life. The
mean stress calculation is likely to be less accurate. Figure 140 shows the stress range - mean stress
pairs for smooth and notched specimen test conditions. For the smooth data, the values are measured,
whereas the values are calculated for the notched data by the method discussed above. The effect
of the notch multiaxiality can be seen in the higher mean stresses for a given stress range. This would
lead to lower predicted lives for a given stress range. However, it should be noted that the model
constants in Equation 83 would require approximately a 115,000 psi error in mean stress to account
for the approximate order of magnitude error in the prediction. Even though the mean stress
calculation must be viewed as approximate, such a large error is not likely. By examining Figures 120
and 122, which correspond to the maximum stress locations in mild notch specimens, the error inmean
‘sitsrgss car}not be more than approximately 40,000 psi. An error of this magnitude would predict a life
o 10O 10w,

Another possible reason for the discrepancy may be associated with different processing of the
smooth and notched specimens. As previously noted, scatter as large as 40:1 can be attributed to
different lots of notched specimens. IS)imilar processing variations cannot be ruled out as a source
of difference between the smooth and the notched data.

A third possibility is an expected difference in the crack growth portion of the failure lives. No crack
growth data was obtained in either the smooth or the notched specimen tests. However, it can be
expected that the crack growth portion would be longer in the notched specimens.

Being unable to determine the source of the difference between the smooth and notched data, a
practical engineering approach was adopted: the notched data alone was used to develgl%a fatigue
model. The smooth data was used only to provide the functional form of the model. That is, the
general form of Equation 83 was assumed to apply and the model constants were determined from

the notched data alone. Because no cyclic inelasticity was present, the plastic strain range term was
not included in the model. So the resulting notch fatigue model is:

N = AAoB 10Com (84)

where N = separation life (cycles),
Ao = stress range (psi),
Om = mean stress (psi),
and A = 1.496 E43
B = -7.181
C = -8.440 E-6

Figure 141 and Table 26 show the lives predicted using Equation 84 versus actual fatigue lives.
Considering only the thin, mild notched data, there is still a 3:1 difference between <001> and
<111> data. The statistical significance of this difference is questionable in view of the demonstrated
lot-to-lot scatter. Considering the entire notched data set, there is no significant difference between
the orientations and no clear trends with specimen geomet?'. It is therefore concluded that, within
the scatter of the data, Equation 84 proviJ)es a reasonable fatigue model for notched geometries.
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14.23 Hot Isostatically Pressed Material Data

Figure 142 compares the actual and predicted fatigue lives for these notched data. As seen in Figure
145. there is an average life improvement of approximately an order of magnitude for the HIP material
relative to the conventional material. All the HIP data is shown except specimen JJB86A (see Table
26). This specimen was tested at a nominal stress approaching net section yielding which was not
in the loading regime of interest. However, this test condition can be compared directly to a non-HIP
specimen JJB105A, which is also contained in Table 26. This comparison shows a significant life
enhancement due to HIP even for this high stress level.



SECTION 15. TASK XVI - MODEL VERIFICATION ON PRIMARY SC MATERIAL FOR
BLADE ROOT ATTACHMENT

A verification fatigue test was conducted on a specimen designed to simulate the load transfer features
in a turbine blade attachment. Figure 143 shows the test specimen and its loading fixture. The
specimen was machined with the <001> crystal direction in the loading direction and the <100>
crystal direction in the plane of the specimen. A plane strain elastic Boundaxg Element analysis was
conducted to determine stress and strain at the maximum stress location. Stress range and mean
stress were then calculated by the procedure outlined previously. Details of the verification specimen
such as stress levels, test conditions and predicted lives are included in Appendix H for convenience
but this test result was not used to deveﬁ) model constants. This verification test was reasonably
well predicted by the notched fatigue model given by Equation 84 (see Figure 141).
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APPENDIX B
PWA 286 CONSTITUTIVE DATA
SERIES 2

USED FOR PWA 286 CONSTITUTIVE MODEL
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APPENDIX C

PWA 273 CONSTITUTIVE DATA
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APPENDIX D

LIFE DATA SUMMARY FOR PWA 1480 FATIGUE TESTS
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STRAIN

STRAIN

STRAIN

STRAIN

SCHEMATICS OF TMF CYCLES

TEMP

OUT-OF-PHASE

V TEMP

Z-CYCLE

TEMP

BASEBALL-CW

TEMP

ELLIPTICAL-CCW
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APPENDIX F
LIFE DATA SUMMARY FOR ALLOY 185 FATIGUE TESTS
AND

STRESS/INELASTIC STRAIN DATA SUMMARY FOR ALLOY 185 FATIGUE TESTS
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APPENDIX G

PWA 1480 SMOOTH SPECIMEN LOW CYCLE FATIGUE STRAIN CONTROLLED
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PWA 1480 SMOOTH SPECIMEN LOW CYCLE FATIGUE STRAIN CONTROLLED

0.1% PER SEC. 1200°F (Unless Noted Otherwise)

Spec Strain % PL. Range Stress (KSI) Life Comments

Max. Min. Max. Min. (Cycles)

<001 > Orientation

JIB49 1.509 0.014 0.025 158.0 -76.5 1326.

JIB43 1.120 0.020 0.000 149.0 -35.0 4414,

JIB50 1.202 0.008 0.000 159.5 -39.3 5673.

JIB45 1.740 0.270 0.020 165.5 -61.0 1593.

JJB101 0.891 0.018 0.000 153.0 -8.5 29516.

JIB109 0.726 0.000 0.000 114.2 0.2 365072. |SUS

JIJB170 0.678 0.000 0.000 112.0 5.6 212570. |LDC

< 111> Orientation

JLBS8 0.809 0.008 0.140 138.1 -138.8 1016.

JLB56 0.600 0.000 0.010 120.0 | -104.0 3410.

JLB66 0.591 0.015 0.010 126.1 -105.0 7356.

JLB57 0.960 0.150 0.080 148.3 -150.3 843.

JLB59 1.205 0.625 0.000 132.9 -91.5 7904.

JLB60 1.219 -0.603 1.020 171.7 | -168.7 26.

JLB61 0.291 ~-0.284 0.000 119.7 | -118.4 7101.

<213> Orientation

JMB29 1.212 0.000 0.270 130.6 | -140.6 79.

JIMB41 0.795 0.013 0.000 1229 | -120.4 4175.

JMB35 0.600 0.000 0.000 113.7 -48.8 114789.

JMB32 0.602 0.008 0.000 117.7 -61.5 45640. |SUS

JMB36 0.601 0.005 0.000 132.8 -6.5 34676.

<011> Orientation

JIB112 0.896 0.013 0.000 127.1 -90.8 7532.

JKB21 0.920 0.040 0.000 119.2 -127.1 2672.

JKB24 0.695 0.019 0.000 122.4 -60.2 30220.

<001> Orientation

JIB41 1.120 0.030 0.000 153.0 -13.0 4912. | 1400°F

JIB46 1.160 0.000 0.060 119.7 -28.0 5431. | 1600°F
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PWA 1480 SMOOTH SPECIMEN LOW CYCLE FATIGUE STRAIN CONTROLLED

(Continued)
Spec Strain % PL Range Stress (KSI) Life |Comments
Max. Min. ' Max. Min. (Cycles)
< 111> Orientation
JLB64 0.602 0.007 0.070 116.9 ~79.4 3354. |1600°F
<213 > Orientation
JMB39 1.170 0.005 0.211 133.1 -113.0 350. 11600°F
< 001> Orientation
JJB74 1.814 0.015 0.054 186.8 | -100.6 1471. {HIP
JIB75B 1.508 0.011 0.016 180.0 -68.0 2964. |HIP
JIB79 1.202 0.010 0.000 167.8 -31.9 20051. |HIP
JIB80 1.103 0.021 0.000 160.2 -19.7 32448. |HIP
< 111> Orientation
JLB25B | 0.811 0.003 0.126 145.5 -1442 1166. |HIP
JLB25A | 0.590 0.014 0.000 1372 | -101.3 27410. |HIP
JLB26A | 0.492 0.019 0.000 125.1 -70.7 325570. [HIP
< 011> Orientation
JKBI3A| 0.902 0.016 0.000 126.4 | -112.2 1806. |HIP
JKB13B | 0.890 0.027 0.000 131.1 -110.5 737. |HIP
< 001> Orientation
JIB78 1.164 0.007 0.060 133.1 -26.9 12413. {HIP,
1600°F
JIB81 1.160 0.011 0.055 134.4 -249 13174. |HIP,
1600°F
< 111> Orientation
JLB26B | 0.598 0.007 0.052 123.9 -82.1 4269. |HIP,
1600°F
Notes: SUS Test suspended without failure

= Test conducted in load control
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APPENDIX H

PWA 1480 NOTCHED FATIGUE TESTS LOAD CONTROL

160



PWA 1480 NOTCHED FATIGUE TESTS LOAD CONTROL

1 CPS, 1200°F (Unless Noted Otherwise)

Specmen [Lot No.|Smax |Smin/| Life Comments
(Ksi) | Smax | (Cycles)
<001> < 100> Thin, Mild Notched Specimen
JIJB105A {1160 140.0 | 0.05 30.
JJB125A {1160 125.0 | 0.05| 14340.
JIB108A | 1160 125.0 | 0.05| 23740.
JJIB106A | 1160 125.0 | 0.05] 22940.
JJB125B |1160EP | 125.0 | 0.05{ 54470.
JJB106B | 1160 125.0 | 0.25}| 93850.
JJB128B | 1160 125.0 | 0.40| 535200.
JJB121A {1160 120.0 | 0.05| 18880.
JJB121B 1160 120.0 | 0.04| 14260.
JJB26B | 7590 115.0 | 0.05 2860.
JJB18A |7590 115.0 | 0.05| 17227.
JJB127B | 1160 115.0 | 0.05| 10010.
JB30A 7590 115.0 | 0.50 | 1122917.
JB30B |7590 950 | 0.05| 62119.
JB18B | 7590 95.0 | 0.05]| 84626.
JJB127A {1160 95.0 | 0.05] 198930.
<001> <210> Thin, Mild Notched Specimen
JJB48A |316B 115.0 | 0.05 3434,
JJB48B |316B 95.0 | 0.05| 16427.
JJB56B |316B 95.0 | 0.05| 85040.
JJB52A |316B 95.0 | 0.05| 43090.
<111> <01-1> Thin, Mild Notched Specimen
JLB79B |1535 100.0 | 0.05] 157320.
JLB67B |1535 100.0 | 0.05| 333380.
JLB72B |316B 100.0 | 0.05| 18490.
JLB69B |316B 100.0 | 0.05 4178.
JLB69A |316B 85.0 | 0.05| 97870.
JLB71A [316B 85.0 | 0.05| 347360.
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PWA 1480 NOTCHED FATIGUE TESTS LOAD CONTROL

(Continued)
Specmen | Lot No. |Smax |Smin/| Life Comments
(Ksi) | Smax | (Cycles)
JLB71B |316B 85.0 | 0.05] 413050.
JLB67A |1535 85.0 | 0.05 | 1000000. | Upload to 100.0 for 870.
JLB79A |[1535 85.0 | 0.05]1166580. | Upload to 130.0 for 14450.
<011> <01-1> Thin, Mild Notched Specimen
JKB25A |1535 95.0 | 0.05] 13220.
JKB26A |[1535 95.0 | 0.05] 23040.
JKB25B [1535EP| 95.0 | 0.05{ 18370.
<001> < 100> Thin, Mild Notched Specimen
JB26A |7590 115.0 | 0.05 2476. 1400°F
JB132B (7590 115.0 | 0.05 1128. | 1600°F
JB58B {7590 95.0 | 0.05 3402. | 1600°F

<001> <100> Thin, Mild

Notched Specimen

JLB70A [316B 100.0 | 0.05 930. [1600°F
JLB70B |[316B 85.0 | 0.05 1952. 11600°F
<001> < 100> Thin, Sharp Notched Specimen

JJB137A {1535 100.0 | 0.05] 53030.

JIB122A [ 1535 100.0 | 0.05 6940.

830-4B {7590 100.0 | 0.05 4190.

JJB4B  [7590 100.0 | 0.05 6157.

789-3B 7590 88.0 | 0.05] 16015.

789-4B | 7590 88.0 | 0.05| 117596.

JJB4A  [7590 75.0 | 0.05]1070000. | Upload to 88.0 for 4485.
<111> <01-1> Thin, Sharp Notched Specimen

JLB73A [316B 83.0 | 0.05 5286.

JLB73B [316B 73.0 | 0.05 5154.

JLB74A |316B 73.0 | 0.05 6888.

JLB74B |316B 57.0 | 0.05|1250000. | Test Suspended
<001> <100> Thick, Mild Notched Specimen

789-2 {7590 1150 | 0.05| 12048.
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PWA 1480 NOTCHED FATIGUE TESTS LOAD CONTROL

(Continued)
Specmen |Lot No. {Smax | Smin/ Life Comments
(Ksi) | Smax | (Cycles)
830-2 7590 97.3 0.05 8253.
830-3 7590 973 0.05] 17232.
JJB130 [1160 107.0 0.05{ 10730.
JJB132 |1160 81.0 0.05| 76210.
JJB133 {1160 81.0 0.05| 500450.
<111> <01-1> Thick, Mild Notched Specimen
JLB75 |316B 94.2 0.05 6343.
JLB76 |316B 79.5 0.051 20918.
JLB78 |316B 79.5 0.05} 396570.
JLB77 |316B 66.0 | 0.05|1044340. |Upload to 79.5 for 396570.

<001> < 100> Single Tooth Firtree (STFT) Specimen

JJB180A 1534

23.26

0.05

27354.

< 001> < 100> Thin, Mild

Notched Specimen

JIB86A |900 140.0 0.05 170. | HIP

JIJBSSA |900 130.0 0.05| 33770.|HIP

JJB84B 900 120.0 0.05| 94400. |HIP

JIJB82A 900 115.0 0.05| 413610. |HIP

JIB82B {900 115.0 0.05] 327143.|HIP

JIB84A |900 95.0 0.05 | 1060620. | HIP, Load Increase to 115.0 Ksi for 137130.
<001> <210> Thin, Mild Notched Specimen

JIB93A |900 115.0 0.05| 87030. |HIP

JJB104 {900 95.0 0.05 | 1334290. | HIP, Load Increased to 115.0 Ksi for 2860.
<001> <100> Thin, Sharp Notched Specimen

JJB96B | 900 120.0 0.05] 19550. |HIP

JJB95A |900 120.0 0.05| 48190. |HIP

JIB96A |900 120.0 0.05| 142330. |HIP

<111> <01-1> Thin, Sharp Notched Specimen

JLB81A |1535 108.0 0.05| 52190. |HIP

JLB8OB |1535 93.0 0.05| 73040. |HIP, Test Suspended

JLB80OA |[1535 83.0 0.05| 612930. |HIP, Test Suspended
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Table 1

Single Crystal Superalloys

Alloy Composition (Weight Percent)

Heat Elements
Alloy ~ Code N Cr Co Ti Al Ta M Mo C
PWA 1480 Nominal Bal* 10.0 5.0 1.5 5.0 12.0 4.0 -- --
P9866 Bal* 10.35 5.5 1.44 4,95 12.2 3.9 -- 0.01
(Heat A)
P9867 Bal* 10.3 5.3 1.44 4.9 10.2 4.0 -- 0.004
(Heat B)
Alloy 185 Nominal Bal* -- -- - 6.8 - 6.0 14.0 0.04
P9921 Bal* -- -- 0.001 6.82 -- 6.10 13.85 0.04
*Balance
Table 2
Coating Compositions and Application Processes
Coating Type Composition Deposition Process
PWA 286 Overilay NiCoCrAl1Y+Si+Hf Vacuum Plasma Spray
PWA 273 Aluminide NiAl Pack Cementation
(Outward
Diffusion)
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Table 3

Dynamic Elastic Constants
and Apparent Modulus for PWA 1480 Uniaxial Bars In Four Orientations

CONSTANTS REFERRED TO CRYSTAL AXES APPARENT MODULUS
TEMP CH Cl12 Ca4 S11 S12 S44  ¢00I> «<101> <213> <11
°F Msi  Msi  Msi - x 107° Psi~’ Msi Msi Ms i Msi
0. 36.5 23.6 19.0 55.6 -21.8 52.7 18.0 33.3 33.3 46.4
100. 36.3 23.6 18.7 56.5 -22.3 53.3 17.7 32.8 32.8 45.9
200. 36.0 23.4 18.5 56.9 -22.4 54.0 17.6 32.5 32.5 45.4
300. 35.7 23.2 18.3 57.4 -22.6 S4.7 17.4 32.2 32.2 44.8
400. 35.4  23.1 18.0 8.0 -22.9 55.5 17.2 31.8 31.8 44.3
500. 35.1 22.9 17.8 58.9 -23.3 56.3 17.0 31.4 31.4 43,7
600. 34.8 22.8 17.5 59.7 -23.7 57.2 16.7 30.9 30.9 43.]
700. 3.5 22.7 17.2 60.8 -24.1 58.1 16.4 30.4 30.4 42.5
800. 34.1 22.6 16.9 61.9 -24.7 59.0 16.1 29.9 29.9 41.9
900. 33.8 22.4 16.6 63.0 -25.2 60.1 15.9 29.5 29.5 41.2
1000. 33.4 22.3 16.4 64.2 -25.7 61.1 15.6 29.0 29.0 40.6
1100. 33.0 22.1 16.1 65.5 -26.3 62.2 15.3 28.4 28.4 39.9
1200. 32.7 22.0 15.8 66.9 -26.9 63.4 15.0 27.9 27.9 39.3
1300. 32.3 21.9 15.5 68.6 -27.7 64.6 14.6 27.3 27.3 38.6
1400. 31.8 21.8 15.2 70.6 -28.7 65.9 14.2 26.7 26.7 37.9
1500. 31.4  21.7 14.8 72.9 -29.8 67.3 13.7 26.0 26.0 37.2
1600. 30.9 21.6 14.5 75.6 -31.0 68.9 13.2 25.3 25.3 36.4
1700. 30.4 21.4 14.1 78.5 -32.4 70.7 12.7 24.6 24.6 35.6
1800. 29.9 21.2 13.7 81.9 -34.0 72.8 12.2 23.7 23.7 34.6
1900. 29.2 21.0 13.3 86.0 -36.0 75.2 1.6 22.8 22.8 33.6
2000. 28.5 20.8 12.8 91.4 -38.6 78.1 10.9 21.8 21.8 32.5
2100. 27.8 20.7 12.3 99.4 -42.5 81.4 10.1 20.5 20.5 31.3
2200. 27.0 20.6 11.8 108.9 -47.1 85.0 9.2 19.2 19.2 30.1
1 MPa = 1.45 x 107° Msi = 145 Psi
C=1.8x (F-32)

165



Table 4

Summary of PWA 1480 Tensile Tests

3
Temp. Spec. Coat Ex10” .21 Yield Ule. Elong
“C(°F) ] Orient Type MPa(KSI) MPa(KSI) HPa(KSI) k3
427(800) JA-16 100 ——- 113.8(16.5) 989.4(143.5) 1118.4(162.2) 5.7
KA-2 110 -—- 221.3(32.1) 921.9(133.7) 957.0{138.8) 14.3
LA-36 111 --- 239.3(34.7) 897.0(130.1) 1393.5(202.1) 11.7
MA-1 123 -—- 198.6(28.8) 837.7(121.5) 1218.3(176.7) 19.1
649(1200) JA-33 100- -—-- POROSITY FAILURE
KA-3 110 -—— 176.5(25.6) 929.4(134.8) 1081.1(156.8) 4.7
LA-51 111 -—- 253.7(36.8) 849.5(123.2) 1245.2(180.6) 23.7
MA-3 123 - 193.7(28.1) 824.0(119.5) 1082.5(157.0) 22.7
760(1400) JA-34 100 5ot B 101.4(14.7) 1177.0(170.7) 1324.5(192.1) 14.1
JA-22 2731'3 103.4(15.0) 1159.7(168.2) 1293.5(187.6) 4.8
JA-11 286" 94.5(13.7) 1163.2(168.7) 1290.1(187.1} 8.0
KA-4 110 -— 174.4(25.3) 948.1(137.5) 1108.7(160.8) 10.5
LA-52 111 ==T12 200.0(29.0) 879.8(127.6) 1093.5(158.6) 22.1
LA-25 2731'3 220.6(32.0) 920.5(133.5) 1030.1(149.4) 16.8
LA-13 286" 171.7(24.9) 908.1(131.7) 1106.6{160.5) 21.4
MA-4 123 -— 180.0(26.1) B891.5(129.3) 985.3(142.9) 17.8
871(1600) JA-36 100 “TT12 102.0(14.8) 715.0(103.7) 1021.1(148.1) 13.7
JA-24 2731'3 92.4(13.4) 756.4(108.7) 991.5(143.8) 18.7
JA-12 2867 91.7(13.3) 755.7(109.6) 961.9(139.5) 21.7
KA-6 110 - 149.6(21.7) 786.0(114.0) 910.1(132.0) 13.1
LA-53 111 ety 2 190.3(27.6) 696.4(101.0) 819.8(118.9) 19.0
LA-26 2731'3 201.3(29.2) 682.6(99.0) 812.2(117.8) 20.3
LA-14 286" 181.3(26.3) 671.6(97.4) 812.2(117.8) 22.1
MA-S 123 -—- 179.3(26.0) 626.1(90.8) 764.7(110.9) 18.0
982(1800) JA-37 100 =12 88.3(12.8) 452.3(65.6) 695.0(100.8) 23.0
JA-25 2731'3 92.4(13.4) 437.1(63.4) 659.9(95.7) 24.0
JA-13 286" 102.0(14.8) 428.9(62.2) 642.6(93.2) 22.9
KA-8 110 --- 133.1(19.3) 519.9(75.4) 628.8(91.2) 16.7
LA-54 111 ot U 189.6(27.5) 427.5(62.0) 557.8(80.9) 22.2
LA-28 2731’3 175.1(25.4) 448.2(65.0) §75.7(83.5) 18.3
tA-16 286" 120.0(17.4) 455.1(66.0) 557.1(80.8) 23.7
MA-6 123 ——- 164.8(23.9) 431.6{62.6) 539.9(78.3) 25.9
1093(2000) JA-38 100 oo O 72.4(10.5) 275.1(39.9) 371.6(53.9) 30.0
JA-26 2731‘3 52.4(7.6) 272.4(39.5) 368.2(53.4) 31.3
JA-14 286" 68.9(10.0) 269.6(39.1) 353.7(51.3) 43.0
KA-9 110 -—— 91.7{(13.3) 315.8(45.8) 385.4(55.9) 18.7
LA-SS 111 cTT12 132.4(19.2) 259.9(37.7) 328.9(47.7) 41.7
LA-29 2731'3 97.9(14.2) 253.0(36.7) 315.1(45.7) 28.0
LA-18 286"* 85.5(12.4) 262.7(38.1) 321.3(46.6) 29.2
MA-9 123 -— 125.5(18.2) 273.0(39.6) 319.2(46.3) 24.9
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35.

1 X-sectional area used to calculate stress excludes coating area
2 Aluminide diffusion

3 NiCoCrAlY overlay
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Table 5

Summary of PWA 1480 Creep Tests

Temperature Spec. Coat Stress X of Life Creep Rate Elong. RA

*C (°F) 10 Orient. Type MPa  (ksi) 0.2% Yield (hours) (minutes)-! (%) x)

871 (1600) JA-40 <001> -- 413.7 (60) 57.8 462.9 8.846-07 12.0 20.1
JA-41 - s17.1  (75) 72.3 79.0 8.82E-06 15.3 28.9
KA-10 <011> -- 413.7 (60) 52.6 330.7 7.33€-07 3.2 1.6
KA-11 -- 482.6 {70) 61.4 83.5 3.79E-06 3.2 4.6
MA-10 <123> -- 413.7 (60) 66.0 167.1 4.66E-06 7.5 9.7
MA- 11 -- 482.6 (70) 771 42.6 3.226-05 15.5 19.1
LA-56 <1 -- 413.7 (60) 59.4 3713.7 4.18£-07 13.0 16.7
LA-57 -- 482.6 (70) 69.3 67.1 2.90E-05 14.9 22.8

982 (1800) Ja-42 <001> -- 220.6 (32) 48.8 Stopped at 5.4 hours for TEM!
JA-27 2732,3 231.7 (33.6) §3.0 89.1 3.94E-06 25.2 44.2
JA-15 286204 237.9 (34.5) 55.5 105.5 3.65€-06 20.0 42.3
JA-45 -- 248.2 (36) 54.9 80.5 4.74€-06 20.7 41.4
JA-28 2732,3  260.6 (37.8) 59.6 53.3 8.74€-06 24.3 40.6
JA-17 2862,4 268.2 (38.9) 62.5 51.7 8.48£-06 20.7 36.3
KA-14 <011> -- 248.2 (36) 47.7 75.4 1.796€-06 Failed outside gage
KA-13 -- 248.2 (36) 47.1 88.7 1.31€-06 8.6 39.8
MA-12 <123> -- 206.9 (30) 63.8 2717 5.87£-07 23.5 57.4
MA-13 -- 248.2 (36) 76.6 76.6 3.12E-06 23.5 33.1
LA-S8 < -- 220.6 (32) 51.6 618.6 9.37€-07 17 19.9
LA-30 2732.3 230.5 (33.4) §3.9 Stopped at 17.3 hours for TEM!
LA-20 2862.4 239.7 (34.8) 56.2 274.6 3.6)E-06 17.5 24.1
LA-59 -- 248.2 (36) 58.1 258.1 3.58€-06 12.9 17.2
LA-31 2732.3 259.6 (37.6) 60.7 156.3 9.06€-06 19.6 22.4
LA-21 28624 266.0 (38.6) 62.3 Stopped at 44.8 hours for TEM!

1093 (2000) JA-46 <001> -- nz.z () 42.6 132.2 9.24€-07 13.2 49.5
JA-48 -- nz.z () 42.6 137.1 9.03€-07 16.1 50.9
JA-29 2732,3 108.5 (15.7) 39.4 Stopped at 29.8 hours for TeM!
JA-18 28624 12.9 (16.4) 41.1 223.9 5.73€-07 13.5 48.2
JA-30 2732,3 123.1  (12.8) 4.7 76.4 2.97€-06 20.6 58.1
JA-19 2862.4 297.4 (43.1) 108.1 Stopped at 0.4 hour for TEM!
KA-15 <01> - 89.6 (13) 28.4 197.6 7.70€-08 2.7 4.9
KA-16 -- 103.4 (15) 32.8 138.7 3.026-07 6.0 30.3
MA-14 <123> -- 89.6 (13) 32.9 251.2 3.29£-07 1.9 a7
MA-17 -- 103.4 (15) 37.9 130.7 6.59E-07 14.0 19.8
LA-60 <an> - 89.6 (13) u.5 825.7 2.386-07 13.0 17.0
LA-32 2732.3 144.6 (21) 55.7 83.2 Mot available  12.0 17.1
LA-22 2862.4 11.0 (16.1) 2.7 Stopped at 132.3 hours for TEM!
LA-61 -- 103.4 (15) 39.8 372.4 1.81€-07 Failed outside gage
LA-34 2732.3 180.8 (26.2 69.5 14.6 4.05€-05 18.5 22.3
LA-23 28624 nt.s (16.2 43.0 322.4 8.37€-07 9.6 19.7

Notes:

Transmission electron microscopy (TEM)
Cross sectional area used to calculate stresses excludes coating area

1.

2.

3. Aluminide diffusion
4. NifaCrAlY overlay
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Table 6

Summary of Bulk HIP PWA 286 Creep Tests

Secondary
Temp. Spec.  Stress Life Creep Rate
*CL°F) 10 MPa(ksI) (Hrs)  (Min~))
649(1200) 9-T 68.9(10) 1700 2.99 £-07
9-B  103.4(15) 1130 1.25 £-06
760(1400) 17-7 34.5(5) 446 6.53 £-06
12-7 20.7/55.2{3/8) 92.1 2.64 £-06/4.60 E-05
B871(1600) 18-8 6.9/13.8(1/2) 280.5 9.38 £-07/2.31 E-05
17-8 20.7(3) 26.8 1.40 E-04
982(1800) 15-8B 3.45(.5) .- e

N/A = Not available

168

Elong

N/A

N/A

93.2
166.1

77.1

206.0
139.1

87.1
23.7

84.9

86.7
66.1

Comments

Discontinued
At 1700 hrs.
Discontinued
At 1130 hrs.

Uploaded from
20.7 MPa/3 ksi
to 55.2 MPa/8
ksi at 48 hrs.
Uploaded from
6.9 MPa/l ksi
to 13.8 MPa/2
ksi at 160 hrs.

Failed on
loading



Nominal
Qrientation

<001>

<011>

<111>

<213>

Base Program Cyclic Constitutive Tests

Table 7

1975°F

2000°F  2100°F

AT wmmmwwmmwv

MA27

Temperature _
800°F 1200°F 1400°F 1600°F 1800°F 1900°F
JAG1 JAG4 JA44 JAB3 JAS8 JAGI9
JAG67 JAG6
JAGS
KA27 KA31 KA26 KA23 KA22
KA33
LAG66 LA71 LAG3 LABS LAG4 LAG2
LAG7 LAGS LA69
MA26 MA25 MA35 MA23
MA28
MA30 MA30

* MERL 73C Tube Specimen. All others are LED41784 solid round specimens.

+ Coated
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JB44*

JB1* JABS

KB107*

LB300*  LB94*
LB179*%



E, psi
WALKER

n
nl, psi
n2, psi
n3
n4
nS
né
n?
K1, psi
K2, psi
m

Qg, psi

Table 8

Summary of Walker Constitutive Model Regressed
Temperature Dependent Constants for Unexposed, Bulk HIP PWA 286

6.895 kPa = 1 psi

427°C 538°C 649°C 760°C 871°C 1093°C
(800°F) (1000°F) (1200°F) (1400°F) (1600°F) (2000°F)

0.2180E8 0.2133E8 0.1902¢E8 0.1550t8 0.9502E7 0.1500E7

0.5143E2 0.2070E2 0.3300E1 0.2130E1 0.1705¢E1 0.1345E1
0. 0. 0. 0. 0. 0.

0.3130E8 0.3130E8 0.3017t8 0.1334E8 0.3467E7 0.7292E5

0.5000€E3 0.7000E3 0.9000¢E3 0.1000€E4 0.8786E3 0.2516E3

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.
0.1488E-8 0.3162E-7 0.3162E-6 0.1110E-5 0.2109E-5 0.3437E-5
0. 0. 0. 0. 0. 0.
0.9548E5 0.1240E6 0.1253E7 0.2488E7 0.1543¢7 0.3950E6
0. 0. 0. 0. 0. 0.
0.1200E1 0.1320E1 0.1492E1 0.1788E1 0.2042E1 0.2202E1
0. 0. 0. 0. 0. 0.
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Table 9

Unexposed, Bulk HIP PWA 286 Creep Rates
Data Vs. Prediction

Secondary Creep Rate (in/in/hr)

Predicted
Temp. °C (°F) Stress MPa (ksi) Data Walker

649 (1200) 68.9 (10) 0.266E-4 0.305E-4
649 (1200) 103.4 (15) 0.173E-3 0.574E-4
760 (1400) 20.7 (3) 0.139€-3 0.256E-3
760 (1400) 34.5 (5) 0.388E-3 0.732E-3
871 (1600) 6.9 (1) 0.461E-4 0.171E-2
871 (1600) 20.7 (3) 0.103E-1 0.179E-1
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Table 10

PWA 286 Overlay Coating TMF Life Model
Correlation Data Set

Note: A1l e-T cycles are out-of-phase
Nc
Compression Cycle Actual Correlated
Spec Substrate Tmax Hold Time Period Life Life
1D Orientation - ( F) (sec) (sec) (cycles) (cycles)
JB-147 <001> 1900 0 60 1400 1111
JB-121 <001> 1900 30 90 1350 1061
JB-137 <001> 1900 60 120 1070 878
JB-10 <001> 1900 0 60 500 881
JB-9 <001> 1900 0 60 370 347
JB-80 <001> 1900 0 60 300 318
JB-111 <001> 2100 0 60 3000 2124
JB-89 <001> 2100 0 60 770 648
LB-170 <111> 1900 0 60 5720 4299
LB-181 <111> 1900 0 60 5720 4310
LB-27 <111> 1900 0 60 2500 2894
LB-216 <111> 2100 0 60 3090 3592
LB-236 <111> 2100 0 60 2160 3248
KB-32 <011> 1900 0 60 2680 3542
KB-24 <011> 1900 0 60 2900 3539
KB-34 <011> 1900 0 60 900 1506
KB-48 <011> 2100 0 60 2460 3629
KB-52 <011> 2100 0 60 4300 3620
MB-17 <213> 1900 0 60 4600 4252
MB-23 <213> 1900 0 60 5050 4252
MB-22 <213> 1900 0 60 3500 2628
MB-8 <213> 1900 0 60 3930 2634
MB-19 <213> 1900 0 60 3700 2642
MB-62 <213> 1900 0 60 1800 2619
MB-27 <213> 1900 300 360 1170 1186
MB-35 <213> 2100 0 60 3620 3655
MB-37 <213> 2100 0 60 2840 3285
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Table 11

PWA 286 Overlay Coating TMF Life Model
verification Data Set

Compression Nc

Substrate Hold Cycle Actual Predicted
Spec Orienta- e-T Tmax Time Period Life Life

ID tion © cycle (°F) (sec) (sec) (cycles) (cycles)
JB-174 <001> Out-of-phase 1900 0 60 2050 2297
JB-104 <001> T-cycle 1900 0 120 3300 2545
JB-11 <001> In-phase 1900 0 60 >10000 10872
JB-21 <001> Z-cycle 1900 0 120 820 965
JB-102 <001> Baseball-ccw 1900 0 60 1260 2182
JB-146€  <001> Out-of-phase 1900 0 60 1400 1540
JB-133¢ (001> Out-of-phase 1900 0 60 740 1134
JB-135 '<001> Airfoil L.E. 1900 60 300 1280 1994
LB-29 <111, Baseball-cw 1900 0 60 2000 1150
LB-26 <111> T-cycle 1900 0 120 2560 6703
LB-31 <111> Out-of-phase 1900 0 60 >3219 2950
LB-32 <111> Baseball-ccw 1900 0 60 >11852 6343
KB-36 <011> Elliptical-ccw 1900 0 60 >9743 4926
KB-93¢€ <011> Out-of-phase 1900 0 60 2420 3490

Superscript e = Specimen was exposed 100 hours at 2000 F before testing.
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Table 12

Relative Quality Loss Function Values for the
Nominal-Is-Best Quality Characteristic
Calculated for Each PWA 1480 TMF Life Model

Base
Data Set Model a) Model b) Model c) Model d)
Correlation 1.20 1.20 1.13
Verification 1.0 0.92 1.11
A1l <001> data 1.58 1.57 1.52
A1l <111> data 1.0 0.98 0.96

A1l <0l1> data 1.0 0.90 1.11
A1l <213> data 1.0 1.09 1.09

ATl 1900°F data 1.09 1.15

without hold times

A11 2100°F data 1.0 0.92 1.18

B @6

A1l 1900°F data 1.0 1.17 1.12
with hold times

A1l overlay coated 1.30 1.32

—
.

(-
w

A1l aluminide coated 1.0 0.83 1.00
ATl data 1.0 1.05 1.15
Rank 2 3 4 1
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Table 13

PWA 1480 TMF Life Model

Correlation Data Set

Notes: All e-T cycles are out-of-phase
A1l specimens oriented along the <001> direction
Compression Cycle Actual Correlated

Tmax Coating Hold Time Period Life Life
Spec ID (°F) Type (sec) {sec) (cycles) (cycles)
JB-147 1900 Overlay 0 60 850 1391
JB-121 1900 Overlay 30 90 1050 1472
JB-137 1900 Overlay 60 120 980 1850
JB-10 1900 Overlay 0 60 340-2500 2265
JB-9 1900 Overlay 0 60 500-1200 696
JB-80 1900 Overlay 0 60 300-800 480
JB-111 2100 Overlay 0 60 1800-3900 2622
JB-89 2100 Overlay 0 60 1100-1600 1420
JB-125 1900 Aluminide 300 360 600-2650 1369
JB-98 1900 Aluminide 0 60 3000-9400 1568
JB-66 1900 Aluminide 60 120 800-3000 789
JB-62 1900 Aluminide 300 360 <1210 476
JB-91 1900 Aluminide 0 60 840-2130 937
JB-22 1900 Aluminide 0 60 1100-2500 963
JB-59 1900 Aluminide 0 60 3300-5000 1824
JB-19 1900 Aluminide 0 60 200-560 378
JB-81 1900 Aluminide 0 60 160440 299
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Table 14

PWA 1480 TMF Life Model Verification Data Set

Compression Cycle Actua) Predicted
Spec Coating =T Tmax Hold Time Period Life Life
_1D <hk1> Type Cycle (°F) (sec) (sec) (cycles) (cycles)
JB-174 <001> Overlay Out-of-phase 1900 0 60 2350 4008
JB-135 <001> Overlay Airfoil L.E. 1800 60 300 750 1013
JB-104 <001> Overlay T-cycle 1900 0 120 2700 1526
JB-21 <001> Overlay Z-cycle 1900 0 120 560-670 41
JB-102 <001> Overlay Baseball-cew 1900 0 60 »2170 2043
JB-146¢ <001> Overlay Qut-of-phase 1900 0 60 1600-2200 1400
JB-133¢€ <001> Overlay Out-of-phase 1900 0 60 910 : 1592
JB-61 <001> Aluminide Out-of-phase 1900 0 60 <3550 1286
JB-59 <001> Aluminide In-phase 1900 0 60 >15700 100000
JB-29 <001> Aluminide In-phase 1900 0 60 9100-91000 52320
JB-38 <001> Aluminide Z-cycle 1900 0 120 410-550 198
JB-72 <001> Aluminide Z-cycle 1900 0 120 300-820 237
JB-154¢ <001> Aluminide Out-of-phase 1900 0 60 1000-2000 2667
JB-161€ <001> Aluminide Out-of-phase 1900 0 60 1700-2500 1473
JB-88 <001> Aluminide OQut-of-phase 2100 0 60 <7000 2878
JB-82 <001> Aluminide Out-of-phase 2100 0 60 <780 279
LB-170 <111>  Overlay Out-of-phase 1900 0 60 760 562
LB-181 <111>  Overlay Out-of-phase 1900 0 60 1000 517
LB-27 <111>  Overlay Qut-of-phase 1900 0 60 530 725
LB-29 <111>  Overlay Baseball-cw 1900 0 60 600-1200 1184
LB-26 <111>  Overlay T-cycle 1900 0 120 >1000 476
LB-216 <111>  Overlay Out-of-phase 2100 0 60 730 704
LB-239 <111»  Overlay Qut-of-phase 2100 0 60 640 562
LB-20 <111>  Aluminide Out-of-phase 1900 0 60 800-1000 353
LB-189 <111>  Aluminide Out-of-phase 2100 0 60 1000-3000 390
KB-32 <011>  Overlay Out-of-phase 1900 0 60 2370 1624
KB-24 <011> Overlay Out-of-phase 1900 0 60 1100 916
KB8-34 <011>  OQOverlay Out-of-phase 1900 0 60 710 499
KB-48 <011> Overlay Qut-of-phase 2100 0 60 940 2019
KB-52 <011>  Overlay Out-of-phase 2100 0 60 850 1005
KB-93¢€ <011>»  Overlay Out-of-phase 1900 0 60 <520 641
KB-49 <011> Aluminide OQut-of-phase 2100 0 60 220-760 624
KB-27 <011> Aluminide Out-of-phase 2100 0 60 230-1280 561
KB-92¢€ <011> Aluminide OQut-of-phase 1900 0 60 <760 373
MB-17 <213> Overlay Out-of-phase 1900 0 60 1970 829
MB-23 <213>  Overlay OQut-of-phase 1900 0 60 2650 2572
MB-22 <213>  Overlay Qut-of-phase 1900 0 60 900-1700 857
MB-8 <213»  Overlay Qut-of-phase 1900 0 60 1570 1292
MB-19 <213> Overlay Out-of-phase 1900 0 60 1800-3500 3020
MB-62 <213>» Overlay Qut-of-phase 1900 0 60 1760 629
MB-27 <213> Overlay Out-of-phase 1900 300 360 930 568
MB-35 <213>  Overlay Out-of-phase 2100 0 60 900 1042
MB-37 <213> Overlay Qut-of-phase 2100 0 60 940 1162
MB-1 <213> Aluminide Out-of-phase 1900 0 60 <500 432
MB-16 <213> Aluminide Out-of-phase 2100 0 60 1400-2400 755
MB-24 <213> Aluminide Out-of-phase 2100 0 60 1140 1307

Superscript e = Specimen was exposed 100 hours at 2000°F before testing.
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Table 15

Description of Airfoil Leading Edge Transient Flight Cycle

Strain Temp
Point Number (in/in) (R Comment
A -0.00041 930 Steady state ground idle
B -0.00339 1966 End of takeoff
C -0.00228 1779 End of climb
D -0.00129 1535 End of cruise
E -0.00047 818 Decent
F -0.00077 929 Steady state ground idle
G -0.00036 805 Shutdown (200 rpm)
Table 16

Summary of Alloy 185 Specimens

Specimen Design Specimen Type Orientation Coating Number

LED 41784 solid bar <001> none 4
<111 none 2

M26 solid bar <001>» none 7
<A11> none 5

73C cylindrical tube <001> PWA 286 7
<111> PWA 286 3
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Table 17
Summary of Uncoated Alloy 185 Tensile Tests

Test Strain Rate = 0.005 / min

Temp  Spec. E x 10°° 0.2% Yield Ultimate Elong.
C(F) ID Orient MPa(KSI) MPa(KSI) MPa(KSI) %
RT HJA-5 <001> 139.3 757.8 1025.3 7.0
(20.2) (109.9) (148.7)
427 HJA-7 <Q01> 133.1 886.0 1057.7 6.3
(800) (19.3) (128.5) (153.4)
760 HJA-9 <«001>» 117.2 1008.0 1070.8 6.0
(1400) . (17.0) (146.2) (155.3)
982 HJB-3 <001> 90.8 711.8 714.6 18.0
(1800 (13.0) (101.9) (102.3)
1093 HJIB-17 <001> 71.9 440.8 458.9 29.3
(2000) (10.3) (63.1) (65.7)
427  HLB-29 <A1 266.1 950.1 1474 .1 9.6
(800) (38.6) (137.8) (213.8)
760  HLB-33 <11 246.1 B52.9 1070.8 25.0
(1400) (35.7) (123.7) (155.3)
1093  HLB-35 <A1 131.9 455.1 466.1 19.0
(2000) (19.1) (66.0) (67.6)
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Table 18

Summary of Uncoated Alloy 185 Creep Tests

Stress Percent Creep

Temp Spec. MPa of 0.2% Life Rate Elong
C(P) 1D Orient  (KSI) Yield (hr) (1/min) %

982 HJA-1 <001> 193.1 27.5 165.1  9.23e-7 16.0
(1800) (28.0)

1093 HJA-3 <001> 68.9 15.8 1080.2 2.24E-8 -
(2000) (10.0)

Uploaded @ 1080.2 hrs. 103.4 23.8 +131.8 5.07E-7 6.0

(15.0)

982 HLA-10  <111> 248.2 NA 142.3  6.84E-7 9.3
(1800) (36.0)

1093 HLB-27  <111> 172.4 37.9 64.2 1.35E-6 3.3
(2000) (25.0)
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Table 19

PWA 1480 Monotonic Tensile Data

Temp Spec Modulus 0.2% Offset
°CC°R) 1D <hkl> MPa  (Msi) MPa (Ksi)
JB49 001 123.4 (17.9 1013.0 (146.9
21 J3B17 001 123.4 (17.9> 1011.7 (146.7)
(700 JJB28 001 130.3 (18.9> 993.1 (144.0)
JJB21 001 128.3 (18.6) 1024.1 (148.5%
JKBSB 011 220.0 (31.9) 980.7 (142.2)
KB20 Ol 217.9 (31.6> 958.4 (139.0»
427 JA16* 001 113.8 (16.5) 989.4 (143.%)
(800) KA2* 011 221.3 (32.1) 921.9 (133.7)
LA36* 111 239.3 (34.7) 897.0 (130.1)
JLBIBA 111 300.7 (43.6) 844.8 (122.%)
MA1* 123 198.6 (28.8) 837.7 (121.%)
JMB2A 123 210.3 (30.5> 799.3 115.9)
649 KA3* 011 176.5 (25.6) 929.4 (134.8)
(1200) LAST* 111 253.7 (36.8) 849.5 (123.2)
JLB14B 111 293.8 (42.6) 944.8 (137.0)
MA3* 123 193.7 (28.1) 824.0 (119.5
JMB2B 123 193.8 (28.1) 793.1 Q115.0)
JMB4B 123 189.0 (27.4) 773.1 Q112.1)
760 JA34* 001 101.4 (14.7) 1177.0 170.7)
(1400) JJB22 001 100.7 (14.6) 1186.9 <(172.1)
KA4* 011 174.4 (25.3) 948.1 (137.%
LAS2* 11 200.0 (29.0) 879.8 (127.6)
MA4* 123 180.0 (26.1) 891.5 (129.3)
871 JA36* 001 102.0 (14.8) 715.0 (103.7)
(1600 KA6* 011 149.6 (21.7) 786.0 (114.0)
LAS3* 111 190.3 (27.6> 696.4 (101.0)
MAS* 123 179.3 (26.0) 626.1 ( $0.8)
JMB4A 123 183.4 (26.6) 842.8 (122.2)
982 JA37* 001 88.3 (12.8) 452.3 ( 65.6)
(1800 KA8* 011 133.1 (19.3) 519.9 ( 75.4)
LAS4* 111 189.6 (27.5) 427.5 ( 62.0)
MAG* 123 164.8 (23.9) 431.6 ( 62.6)
1093 JA38* 001 72.4 (10.5) 275.1 ( 39.9)
(2000) KA9* 011 91.7 (13.3> 315.8 ( 45.8)
LASS* 111 132.4 (19.2) 25%9.9 ( 37.7)
MA9* 123 125.5 (18.2) 273.0 ( 39.6)

* Tests conducted at a strain rate of 0.0083 %4/sec. All
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tests were conducted at a strain rate of 0.1000 %/sec.

** Tube specimen. Interrupted tensile test @ 1.37%
*** Tybe specimen. Interrupted tensile test @ 0.67%
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Table 20

BEST3D Elastic Analysis Results for Notched Specimens

Location Stress
Material and in Notch Concentration
Specimen Type Orientation (degrees) Kt
Thin Sharp Notch Isotropic 0. 2.59
(TM3387) Single Crystal 0. 2.14
<001><100> 15. 2.26
Thin Mild Notch Isotropic 0. 2.00
(TM3487) Single Crystal 0. 1.64
<001><100» 30. 1.73
Thick Mild Notch Isotropic 0. 2.06
(LED3587) Single Crystal 0. 1.74} :
<001><100> 30. 1.79  ™id plane
0. 1.50} Jateral
30. 1.58 § surface

Notes: 1. Angular location in the notch measured
from the minimum section
2. Kt = principal stress / net section stress
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Table 21

Summary of Secondary Orientation At the Crack Initiation Site

Spec
No.

JJB49
JJB45
JJB50
JJB43

JJB4l
JJB46
JJB74
JJB758
JJB79
JJB80

JJB78

Strain
Temp Range
°P (in/in)
1200 0.015
1200 0.017
1200 0.012
1200 0.0M
1400 0.011
1600 0.012
1200 0.018
1200 0.015
1200 0.012
1200 0.0M
1600 0.012

Stress Initiation

Range Life Site

(Ksi) (cycles) (degress from <010>)
235 1326 5
227 1593 5
199 5673 6
184 4414 25
169 4912 10
148 5431 40
287 1471 9 HIP'd
248 2964 30 HIP'd
200 20051 42 HIP'd
180 32448 2 HIP'd
160 12413 7 HIP'd

Table 22

Summary of Secondary Orientation At the Crack Initiation Site

Strain Stress Initiation Site
Spec Temp Range Range Life Degrees from
No. (°F) (in/in) (Ksi) (cycles) 011> <112>
JLB58 1200 0.008 276.9 1016 1"
JLB66 1200 0.006 23111 7356 3
JLB59 1200 0.006 224.4 7904 10
JLB61 1200 0.006 238.1 7101 3
JLB64 1600 0.006 196.3 3354 15 15
JLB25A 1200 0.006 238.5 27410 5 HIP'd
JLB26B 1600 0.006 206.0 4269 0 HIP'd
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Stress Range

Spec

<001>
JJB49
JJB43
JJBs0
JJB4s
JJB101
JJB109
JJB170
<111>
JLB58
JLB56
JLBE6
JLB57
JLB59
JLB60
JLB61
<213>
JMB29
JMB41
JMB35
JMB32
JMB36
<011>
JJB112

Specimens

Specimens

Specimens

TABLE 23

Actual and Calculated Fatigue Lives
1200°F, PWA 1480 Smooth Specimens

Strain Range
Mean Stress

(PSI (PSI)
234500. 40750.
184000. 57000.
198800. 60100.
226500. 52250.
161500. 72250.
114000. 57200.
106400. 58800.
276900. -350.
224000. 8000.
231100. 10550.
298600. -1000.
224400. 20700.
340400. 1500.
238100. 650.
271200. -5000.
243300. 1250.
162500. 32450.
179200. 28100.
139300. 63150.
217900. 18150.
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Piastic

(IN/IN)

o O O O O o o o O O o o o o

o O O o O

.00025
.00000
.00000
.00020
.00000
.00000
.00000

.00140
.00010
.00010
.00080
.00000
.01020
.00000

.00270
.00000
.00000
.00000
.00000

.00000

Actual Life

(Cycles)

1326.
4414,
5673.
1593.

29516.

365072.
212570.

1016.
3410.

7356.

843.
7904.
26.
7101.

79.
4175.
114789.
45640.
34676.

7532.

Calculated
Life
(Cycles)

2000.
9300.
5000.
2100.
18000.
310000.
500000.

970.
5800.
4300.

680.
4500.

14.
4400.

830.
3700.
38000.
20000.
63000.

5900.



Table 23 (Continued)

Stress Range Mean Stress

Spec (¢sT __(ps1)
JKB21 246300. -3950.
JKB24 182600. 31100.
<001> Specimens, HIP PWA 1480
JJB74 287400. 43100.
JJB758 248000. 56000.
JJB79 199700. 67950.
JJBso 179900. 70250.
<111> Specimens, HIP PWA 1480
JLB25B 289700. 650.
JLB25A 238500. 17950.
JLB26A 195800. 27200.
<011> Specimens, HIP PWA 1480
JKB13A 238600. 7100.
JKB13B 241600. 10300.

Plastic

Note: “+” indicates testing was stopped prior to failure.

NO-HIP

HIP

SPECIMEN

<001> < 100>
<001> <210>
<011> <017>

<t1><0T>

<001> < 100>
<001> <210>
<t11><01T>

Table 24

Distribution of Manufacturing Lots

LOT 7500
THIN  THIN

Strain Range Calculated
(IN/IN) Actual Life Life
(Cycles) (Cycles)
0.00000 2672. 3800.
0.00000 30220. 17000.
0.00054 1471. 400.
0.00016 2964. 1000.
0.00000 20051. 4100.
0.00000 32448. 8400.
0.00126 1166. 710.
0.00000 27410. 3100.
0.00000 325570. 11000.
0.00000 1806. 3800.
0.00000 737. 3200.
LOT 1160 LOT 1535 LOT 800

LOT 3188

THICK THIN THIN THICK THIN THIN
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Table 25

Stress and Strain Concentration Factors and Local Crystal Orientations
Used In the Neuber Calculation

Unjaxial Test

Stress and Strain Normalized to Crystal Direc- Orientation
a Reference Nominal Stress tion at Maxi- Used In
Specimen _ Stress Strain mum Stress Neuber Cal-
Type Orientation (Dimensionless) (Psi)-1 Location culation
Thin, Mild <001><100> 1.82 7.49E-8 24 Degrees <001>
Notch From <001>
<001><210> 1.79 7.30E-8 24 Degrees <001>
From <001>
<111><011> 2.46 5.24E-8 <111> <111>
<011><017> 2.58 7.41E-8 <011> <011>
Thin, Sharp  <001><100> 2.48 11.60E-8 <001> <001>
Notch
<111><011> 2.95 6.17e-8 <111> <111>
Thick, Mild  <001><100> 2.08 7.41E-8 24 Degrees <001>
Notch From <001>
<111><011> 2.54 5.36E-8 <111> <111>
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1200°F Data
Stress Mean
Range Stress
Specimen (PSI) (PSI)
<001><100> Thin, Mild Notched Specimen
JJB105A 242060. 81649.
JJUB125A 216125. 76113.
JJB108A 216125. 76113.
JJB106A 216125. 76113.
JJB125B 216125. 76113.
JJB106B 170625. 98863.
JJB128B 136500, 115925.
JJB121A 207480. 74176.
JJB1218B 209664 . 73084,
JJB26B 198835. 72716.
JJB18A 198835. 72716.
JJB1278B 198835. 72716.
JB30A 104650. 119809.
JB30B 164255, 67139.
JB18B 164255. 67139.
JJB127A 164255, 67139.
<001><210> Thin, Mild Notched Specimen
JJB48A 195557. 71609.
JJB48B 161547. 65223.
JJB568B 161547. 65223.
JJUB52A 161547. 65223.
<111><01-1> Thin, Mild Notched Specimen
JLB798B 233700. 27501.
JLB678B 233700. 27501.
JLB72B 233700. 27501.

Table 26

Actual and Calculated Notched Specimen Fatigue Lives
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Actual
Life
(Cycles)

30.
14340.
23740.
22940,
54470.
93850.

535200.
18880.
14260.

2860.
17227.
10010.
1122917.
62119.
84626.
198930.

3434,
16427.
85040.
43090.

157320.
333380.
18490.

Calculated
Life
(Cycles)

6700.
17000.
17000.
17000.
17000.
59000.

210000.
23000.
22000.
33000.

- 33000.
33000.
1300000.

140000.

140000.

140000.

37000.
170000.
170000.
170000.

25000.
25000.
25000.



Table 26 (Continued)

Stress Mean Actual Calculated
Range Stress Life Life
Specimen (pS1) (pSI) (Cycles) (Cycles)
JLB69B 233700. 27501. 4178. 25000.
JLB69A 198645. 39836. 97870. 62000.
JLB71A 198645. 39836. 347360. 62000.
JLB71B 198645. 39836. 413050. 62000.
JLB67A 198645. 39836. 1000000.+ 62000.
JLB79A 198645. 39836. 1166580.+ 62000.
<011><01-1> Thin, Mild Notched Specimen
JKB25A 232845. 35906. 13220. 21000.
JKB26A 232845, 35906. 23040. 21000.
JKB25B 232845. 35906. 18370. 21000.
<001><100> Thin, Sharp Notched Specimen
JJUB137A 235600. 91925. 53030. 6600.
JUB122A 235600. 91925. 6940. 6600.
830-48B 235600. 91925. 4190. 6600.
JJB4B 235600. 91925. 6157. 6600.
789-3B 207328. 84309. 16015. 19000.
789-48 207328. 84309. 117596. 19000.
JJB4A 176700. 77054. 1070000.+ 70000.
<111><01-1> Thin, Sharp Notched Specimen
JLB73A 232608. 27525. 5286. 25000.
JLB73B 204583. 37415. 5154. 53000.
JLB74A 204583. 37415. 6888. 53000.
JLB748B 159743. 54470. 1250000.+ 220000.
<001><100> Thick, Mild Notched Specimen
789-2 227240. 67050. 12048. 14000.
830-2 192265. 63749. 8253. 49000.
830-3 192265. 63749. 17232. 49000.
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Table 26 (Continued)

Stress _Mean

Range Stress

Specimen (rsy) (pSI)
JJB130 211432. 65010.
JJB132 160056. 55361.
JJB133 160056. 55361.

<111><01-1> Thick, Mild Notched Specimen
JLB75 227305. 29500.
JLB76 191833. 42245,
JLB78 191833. 42245.
JLB77 159258. 54736.

<001><100> Single Tooth Firtree Specimen
JJB180A 162192. 61300.

<001><100> Thin, Mild Notched Specimen,
JJBB6A 242060. 81649.
JJB88BA 224770. 78247.
JJB84B 207480. 74176.
JJB82A 198835. 72716.
JJB82B 198835. 72716.
JJB84A 164255. 67139.
<001><210> Thin, Mild Notched Specimen,

JJBI3A 195557. 71609.
JJB104 161547. 65223.

<001><100> Thin, Sharp Notched Specimen,
JJBI6B 282720. 101409.
JJBI5A 282720. 101409.
JJBIGA 282720. 101409.
<111><01-1> Thin, Sharp Notched Specimen,
JLB81A 302670. 11234.
JLB80B 260633. 19749.
JLB8OA 232608. 27525.

NOTE: "+" Indicates testing was stopped prior to
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Actual
Life
(Cycles)

10730.

76210.
500450,

6343.

20918.

396570.
1044340.+

27354,
HIP
170.
33770.
94400.
413610.
327143.
1060620.+
HIP
87030.
1334290.+
HIP
19550.
48190.
142330.
HIP
52190.
73040.+
612930.+

failure.

Calculated
Life
(Cycles)

24000.

220000.
220000.

29000.
76000.
76000.
230000.

180000.

6700.
12000.
23000.
33000.
33000.

140000.

37000.
170000.

1500.
1500.
1500.

5300.
13000.
25000.



Typical Solution Heat Treated Microstructure Illustrating Gamma/Gamma Prime Eutec-
tic Islands in Gamma Matrix With Fine Unresolved Gamma Prime Precipitates of: A)
PWA 1480, and B) Alloy 185. (500X Mag., Etchant: Mixed Acids)

Figure 1
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Figure 2 Typical Micrographs of: (A) PWA 286 Overlay Coating, and (B) PWA 273 Diffusion Coat-
ing Hlustrating the Microstructural Differences Between the Coatings. Note the small in-
terdiffusion zone associated with the overlay coating compared to that of the diffusion
coating. The substrate is PWA 1480. (500X Mag., Etchant: Mixed Acids)
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A) TENSILE, RELAXATION, AND STRESS-RUPTURE SPECIMEN FABRICATED FROM HOT
ISOSTATICALLY PRESSED POWDER

8.33 cm
- (3.28 in) -

| . 3.56 cm
(1.40 in)”]
{1

S g — I__ ‘1__
ZIO.QS cm 91 cm 0.45 cm

(0.375 in) _(3.357 in) (0.178 in)

B) TENSILE, RELAXATION, AND STRESS-RUPTURE SPECIMEN FABRICATED FROM PLASMA
SPRAYED SHEETS

- 10.16 cm
(4.00 in)

3.81 cm
(1.50 in)
0.48 ¢cm

(0.19 in)
I\_L,__J[ Iy

/!\ — S ¢ (51355'7")%’
: m—i . o.10¢cm

2.54

(100 im™ (0.25 in) (0.04 in)
GAGE LENGTH DIA.

Figure 3 Specimen Designs for Bulk PWA 286 Coating Material Mechanical Property Tests
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Figure 4 PWA 286 Bulk Specimen Microstructure: A) Hot Isostatic Pressed and B) Plasma
Sprayed
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UNCOATED DIMENSIONS ~ CM (IN)

- 9.91
(3.9)
3.17 2.54 3.17
t——(1.26)—" | (1.0} —‘-I le—(1.25) ——
1.78 PN . B
‘0{) —‘)R —O—
0.89-» F—x_
0.26
(0.35) {0.11DIA.
(001}
L—v (100)
PWA 1480
ORIENTATION
?6215) 0.0130R0.025
i {0.005 OR0.01)

T |

Figure 5 Substrate Design for Diffused Aluminide Coating Mechanical Property Tests
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Figure 6 Microstructure of PWA 273 Coated Difference Method Specimens with (A) 0.25 mm
(0.010in.) and (B) 0.13 mm (0.005 in.) Original PWA 1480 Substrates. The center bands
represent the remaining substrate after coating. (250X Mag., Etchant: Mixed Acids)
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A) TENSILE AND CREEP TEST SPECIMEN

» 10.65 cm o
—@a i T

3.80 ¢cm
(1.495 in)
[
I
I | _ 1
1 ) N
1.27 ¢cm ‘__ 0.64 cm

(0.50 in) {0.252 in)

B} CYCLIC CONSTITUTIVE TEST SPECIMEN

~ 8.89 cm y
(3.50 in) v

2.719 cm
(1.10 in)

A
0.76 cm '

1.02 ¢cm (0.30 in)
(0.40 in)

1.27 cm
(0.50 in)

Figure 7 Specimen Designs for Single Crystal PWA 1480 Mechanical Property Tests
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(A) OLD FATIGUE SPECIMEN DESIGN — TYPE 44C

10.68CM
- (4.165IN} o

2.57CM _
(1.011N)

) I
—— -FT ~ T — {

— e w—— —

e e e e — y————rr—y

!
1.90 CM__/

(0.75IN) L 1.13CM
1.38CM {0.444 IN)

(0.544 IN)

(B) NEW FATIGUE SPECIMEN DESIGN — TYPE 73C

10.82CM —

' {4.261IN)
I L i |

— e e e - — o b e - e - —

—_—-— - =l

o

_—— e o] e - w— = = w—

L1.13CM
1.567CM 1.38CM (0.444 1IN} 0.64CM I l

(0.62 IN} (0.544 IN} {0.25 IN)

Figure 8 Geometnies of Uniaxial Tubular Specimens for Fatigue Testing
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Figure 9

Figure 10

CONDUCTIVITY (BTU IN/SQ FT/HR/°F)
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Figure 11

SPECIFIC — HEAT (BTU/LB/°F)
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Figure 12 PWA 1480 Dynamic Stiffnesses Vs. Temperature
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Figure 13 Definition of PWA 1480 Orientation Angles o and 3
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Figure 14 Comparison of <111> PWA 1480 Static and Dynamic Moduli
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982°C (1800°F) 1083°C (2000°F)

Figure 18 Fracture Surfaces of <001 > PWA 1480 Tensile Specimens. Note the pronounced facet-
ing at 760°C (1400°F) is reduced with increased temperature.



CYCLIC RELAXATION TEST
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Figure 19 Representative Stress Relaxation Test Used to Obtain Coating Behavior
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Figure 20 Schematic of Extensometer Arrangement Used to Obtain Deflection Data From Initial

0.25 mm (0.01 in.) Thick Aluminide Coating Constitutive Specimens
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Figure 21 Extensometer Setup Used to Obtain Deflection Data From 0.13 mm (0.005 in.) and High
Temperature 0.25 mm (0.01 in.) Aluminide Coating Constitutive Specimens
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Figure 22 Extensometry Setup for Fatigue Testing
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Figure 23 Thermomechanical Fatigue Test Rig
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Figure 24
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JB-6 ‘ A385 (B) JB-9
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Representative Coating Cracks: (A) PWA 286, 1038°C (1900 °F) LCF; (B) PWA 286,
427°C to 1038°C (800°F to 1900°F) Out-of-Phase TMF: (C) PWA 273, 1038°C

(1900°F) LCF; and (D) PWA 273, 427°C to 1038°C (800°F to 1900°F) Out-of-Phase
TMF

207



RIDGE

COATING
[

L DIFFUSION
;| ZONE

PWA 1480

Figure 25 Backscatter Electron Image of Primary Crack Initiation Region In Specimen MB-1 After
Fatigue Testing at 427-1038°C (800-1900°F), *0.2%, 1 cpm, Out-of-Phase for 749
Cycles. Initiation occurred at ridge inside coating layer. Failure mode = “C”.

COATING
B

DIFFUSION
ZONE

PWA 1480

Figure 26 Backscatter Electron Image of Primary Crack Initiation Region In Specimen MB-21 Af-
ter Fatigue Testing at 927°C (1700°F), £0.25%, 10 cpm for 11648 cycles. Arrow indi-
cates initiation site. Failure mode = “CS”.

208



o

i

T PO TUGRERY,

SUBSTRATE

500X

Figure 27 Secondary Electron Image of Primary OD Surface Crack In Specimen LB-1 56 After Fa-

tigue Testing at 427-1 038°C (800-1900°F), £0.15%, 1 cpm, Clockwise Baseball Cycle
for 1639 Cycles. Initiation occurred at coa
= “SC ".

ting-substrate interfacial region. Failure mode

I——
100w

N

Figure 28 Backscatter Electron Image of Primary Crack I nitiation Region In Specimen LB-180 Af-
ter Fatigue Testing at927°C (1 700°F), =0.25%, 10 cpm for3941 Cycles. Arrows indicate
porosity initiation sites in PWA 1480. Failure mode = “S".
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Figure 29 Tipes of O.D. Initiated Cracking Observed From Coated PWA 1480 Speci-
mens
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Figure 30 Method 1 Application to SpecimenJB-121. Crack aspect ratio = 4.5, desired crack length
= 4.5 (0.0154 in.) = 0.0693 in.
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Figure 31
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Method 2 Application to Specimen JB-1 03. Coating initiation appeared as a ring crack.
Estimated substrate crack aspect ratio = 4.0. N, was determined at 4 x (coating thickness)
= 4(0.0022in.) = 0.0088 in. Maximum crack penetration = 0.0096 in. at 63050 cycles.
Desired crack length = 4.0 (0.010 in. + 0. 0022 in.) = 0.0488 in.
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Figure 32 Method 3 Application to Specimen JB-89. Estimated crack aspect ratio = 2.0. N, was
determined at 2 x (coating thickness) = 2 x (0.0050 in.) = 0.0100 in. Maximum crack
penetration = 0.0234 in. at 2912 cycles (N). Desired crack length = 2 (0.0150 in.) =
0.0300 in. From straight line extrapolation, Np,in, = 1930 cycles. From translated extrapo-
lated replica data curve, Nygy = 2320 cycles.
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Figure 33
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1. Estimated crack aspect ratio = 3.0. N, was

3 (0.0056 in.) = 0.0168 in. Maximum crack

penetration = 0.044 in. at 1847 cycles (Ny). Desired crack length = 3 (0.0156 in.) =

0.0468 in. From straight line extrapolation, Nmin

= 1060 cycles, but Npin = 1380 cycles

from replica data. Use Npin = 1 380 cycles. From translated extrapolated replica data

curve, Nymax = 1490 cycles.
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Figure 34
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Method 4 Check of Ny Calculation. It is assumed that a crack which has penetrated
into the PWA 1480 at least 0.010 in. exists at the load drop tangency point.
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Figure 35 Schematic of Mechanical Strain Vs. Temperature Cycle Used In TMF Testing of Speci-
mens LB=21 and LB-156. This cycle type is called a “baseball” cycle.

80 (—

1 KSI = 6.895 MPa

60 p=

40f—

STRESS, KSI

-20p—

~ 40 ==

-60 | | ] ]

-0.002 -0.001 0 0.001 0.002
STRAIN, IN/IN

Figure 36 Stress Vs. Mechanical Strain Response of Specimen LB-156 - Clockwise “Baseball” TMF
Cycle
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Figure 37 Stress Vs. Mechanical Strain Response of Specimen LB-21 — Counter-Clockwise “Base-
ball” TMF Cycle
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Figure 39

e g™

R 3

FrioTOGHARR

ULI‘\(;K r"\f\\) !-tl":zl "l

Secondary Electron Image of PWA 273 Aluminide Coated < 111> PWA 1480 Specimen
LB-124 After Isothermal LCF Testing At 760°C (1400°F), +0.3%, 0.5 cpm for 1372
cycles. Arrow indicates location of subsurface PWA 1480 porosity where crack initiation
occurred.

Figure 40

Optical Microscopy Image of PWA 286 Overlay Coated <011 > PWA 1480 Specimen
KB-65 After Isothermal LCF Testing At 927°C (1700°F), £0.25%, 1 cpm for 6624
cycles. Arrow indicates location of subsurface PWA porosity where crack initiation oc-
curred.
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Figure 41

Coated <213> PWA 1480 Specimen

Optical Microscopy Image of PWA 286 Overlay
MB-38 After Isothermal LCF At 1038°C (1 900°F), +0.25%, 10 cpm for 8253 Cycles.

Arrow indicates location of subsurface PWA 1480 porosity where crack initiation oc-

curred.
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Figure 42 Optical Microscopy Image of PWA 286 Overlay Coated <111> PWA 1480 Specimen
LB-181 After Out—of-Phase TMF Testing At 427-1038°C (800-1900°F), +0.125%, 1
cpm for 7675 Cycles. Arrow indicates typical coating initiated crack.
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Figure 43 Optical Microscopy Image of PWA 286 Overlay Coated <011> PWA 1480 Specimen
KB-24 After Out-of-Phase TMF Testing At 427-1 038°C (800-1900°F) £0.15%, 1 cpm
for 5927 cycles. Arrow indicates typical coating initiated crack.
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Figure 44 Optical Microscopy Image of PWA 286 Overlay Coated <213 > PWA 1480 Specimen
MB-17 After Out-of-Phase TMF Testing At 427-1038°C (800-1900°F), +0.125%, 1
cpm for 7294 Cycles. Arrow indicates typical coating initiated crack.
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Figure 45 Strain Range Vs. Coating Life for PWA 286 Overlay Coated PWA 1480. All tests are

J_,L_El;

427-1038°C (800-1900°F), 1 cpm, Out—of-Phase TME.
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Figure 46 Strain Range Vs. Coating Life for PWA 273 Aluminide Coated PWA 1480. All tests are

427-1038°C (800-1900°F), 1 cpm, Out—of-Phase TME
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Overlay Coating Microstructure of a) Pre-exposed Specimen JB—133 and b) Non-pre—ex-
posed Specimen JB-147 TMF Tested at 427-1038°C (800-1900°F), *0.225%, 1 cpm,
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Figure 49 Coefficient of Thermal Expansion Vs. Temperature Trends
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Figure 50 Hysteretic Energy Vs. Coating Life for PWA 273 Aluminide Coated PWA 1480. All tests

are 427-1038°C (800-1900°F), 1 cpm, Out-of-Phase TME
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Figure 51 Strain Range Vs. PWA 1480 Crack Initiation Life (Ny) for A) Overlay Coated Specimens

and B) Aluminide Coated Specimens Subjected to 427-1038°C (800-1900°F), 1 cpm,
Out-of-Phase TMF
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Figure 54 Walker Model Prediction of Out-of-Phase TMF Test
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(") EQUATION NUMBERS ARE THOSE REFERENCED IN THE PWA 1480 HYPELA
COMPUTER PROGRAM (REFERENCE 4).

@) THIS TERM AVAILABLE TO CONTROL CYCLIC RELAXATION OF NONISOTHERMAL
LOOPS FOR USE IN FATIGUE LIFE PREDICTION CODE.
THE TERM IS NOT ACTIVE UNLESS ACTION IS TAKEN BY USER.

Figure 59 Octahedral Slip System Equations
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(1) EQUATION NUMBERS ARE THOSE REFERENCED IN THE PWA 1480
HYPELA COMPUTER PROGRAM (REFERENCE 4).

@ THIS TERM IS AVAILABLE TO CONTROL CYCLIC RELAXATION OF
NONISOTHERMAL LOOPS FOR USE IN A FATIGUE LIFE PREDICTION CODE.
THE TERM IS NOT ACTIVE UNLESS ACTION IS TAKEN BY THE USER.

Figure 60 Cube Slip System Equations
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Figure 61 Active Terms In the Constitutive Model for PWA 1480
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Figure 62 PWA 1480 Octahedral Slip System Drag Stress Constant, K;, Vs. Temperature
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Figure 63 PWA 1480 Octahedral Slip System Inelastic Strain Rate Exponent, p, V. Temperature
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Figure 64 PWA 1480 Octahedral Slip System Kinematic Hardening Constant, pj, Vs. Temperature
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Figure 65 PWA 1480 Octahedral Slip System Dynamic Equilibrium Stress Recovery Constant, 03,
Vs. Temperature

x 105
1.2'_

1.01
} SETA=SETB
0.8
Ly |
0.6

0.4 4

4

0.2

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 °F
93 204 316 427 538 649 760 871 982 1,093 1,204 °C

TEMPERATURE

Figure 66 PWA 1480 Cube Slip System Drag Stress Constant, L}, Vs. Temperature
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Figure 67 PWA 1480 Cube Ship System Inelastic Strain Rate Exponent, d, Vs. Temperature
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Figure 68 PWA 1480 Cube Slip System Kinematic Hardening Constant, pg, Vs. Temperature
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GLOBAL STIFFNESS MATRIX, Kjj, CHANGES DURING EACH INCREMENT IF
TEMPERATURE CHANGES

Kij AU; = APj* + APj + AR;

{z_[BTka.B,,-dv}Aui - szTj(AGj+ajaAT) dV + AP, + AR

VoL T voL T T
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AT CURRENT TEMPERATURE
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INELASTIC STRESS LOADS

INCREMENT FROM
PREVIOUS
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REFERENCE STIFFNESS ALGORITHM INCORPORATES STIFFNESS
CHANGE IN LOAD VECTOR

{ZJ.B.{kD& B|jdV}AUi = ZJBE(AG;+81'(IAT) dV + AP; + AR

voL voL roT
* (e}
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Figure 71 Reference Stiffness Algorithm



Ateﬂ = F‘1 Atreal + F2b

V 2/3 Ae*

REFERENCE STRAIN RATE

v/ 2/3 Ae* = SUBINCREMENT EFFECTIVE STRAIN

1.0

0
1300F 1400F 1500F

Figure 72 Constitutive Model Is Rate Independent for T <1300F
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Figure 73 Strain Vs. Temperature Waveforms of LB-34 Compared to the One Used In the Test Case
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Figure 74 Predicted Vs. Actual Behavior of Specimen LB-34
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Figure 76 Predicted Vs. Actual Behavior of Specimen LB-34 With Temperature Rate Terms In-
cluded In the Back Stress Evolution Equations
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Figure 77 PWA 1480 Constitutive Model Prediction of <001> PWA 1480 Undergoing Out-of-
Phase TMF Cycling at Three Different Mean Strains — Predictions were made without
equilibrium stress temperature rate terms.
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Figure 78 PWA 1480 Constitutive Model Prediction of <001> PWA 1480 Undergoing Out-of-
Phase TMF Cycling at Three Different Mean Strains — Predictions were made with the
equilibrium stress lemperature rate terms.
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Figure 79 Predicted PWA 286 Coating Response to 427-1038°C (800-1900°F) x0.15 percent, 1
cpm, Qut-of-Phase Uniaxial TMF Test. A hypothetical material with elastic moduli
equivalent to <001 > PWA 1480 was assumed for the substrate.
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Figure 80 Hold Time Function, Fac. For Compression Holds Fac = 0.19 and for Tension Holds
Fac = 0.38
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Figure 81 PWA 286 Overlay Coating TMF Life Model Correlation
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Figure 82 PWA 286 Overlay Coating TMF Life Model Prediction of the Verification Data Set
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Figure 83 PWA 1480 TMF Life Model Correlation
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Figure 84 PWA 1480 TMF Life Model Prediction of the Verification Data Set
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Figure 86 Normalized Strain Vs. Normalized Temperature Comparison of Airfoil Leading Edge and
Verification Test Cycles. See Table 15 for Description of Points A through G.
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Figure 87 Normalized Strain Vs. Time for Verification Test. Strain holds labelled A and B are de-
signed to simulate climb and cruise holds.
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Figure 88 Normalized Temperature Vs. Time for Verification Test. Hold at maximum temperature
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Figure 89 Experimental Strain-Temperature History for Verification TMEF Test of SpecimenJB-135.
Tmax = 1029°C (1885°F).
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Figure 91

(B)

Fracture Surface Appearance of Verification TMF Test Specimen JB-135 After Testing At
427-1038°C (800-1900°F), 0 to —0.45%, Using the Airfoil Cycle Defined In Figures
86-88 for 5059 Cycles. (A) Appearance of major fatigue crack region and (B) Typical
appearance of secondary fatigue cracks.
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Figure 92 Specimen Designs for Alloy 185 Single Crystal Property Tests
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Figure 94 Comparison of PWA 1480 and Alloy 185 Overlay Coated 427-1038°C (800-1900°F)
Out-of-Phase TMF Tests
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Figure 99
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Boundary Element Mesh

Figure 100
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Figure 104 MARC Finite Element Meshes
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Figure 110 Comparison of the Predicted and Actual Stress Strain Response of An <011> Tensile
Bar and the Predicted Response of An Element In the Notch of a Thin, Mild Notched
Specimen With <001 > <01-1> Orientation
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Room temperature monotonic data
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Figure 111 (a) Room Temperature Monotonic Stress Sirain Data for Uniaxial Specimens of Different
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Bars As Predicted by the Constitutive Model
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650 C monotonic data
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Figure 116 Error In Neuber Calculations for <111 > <01-1> Mild Notch Specimen at 6 =377°
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Figure 117 Error In Neuber Calculations for <111 > <01-1> Mild Notch Specimen at 6 = 22.38°
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Figure 120 Stress-Strain Response In a <001 > <100> Mild Notch Specimen at 6 = 22.38°
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Figure 124 Evolution of Multiaxiality In a <001 > <100> Mild Notched Specimen In the Model
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