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Foreword

The practice of modeling and controlling flexible aerospace systems
grows in importance as the performance needed of active control
systems increases. As the size of spacecraft increases and the
demands of control systems become more exacting, the accuracy
required of the models used for analysis also increases.

The increased complexity, the increased model accuracy, and the
demands for more precise and higher control system performance
result in an increased burden on the part of the analyst. Although this
burden is somewhat alleviated by advances in software, there remains
the pressure for assuring system stability and performance under
conditions of plant uncertainty. Although robust considerations are
included in many synthesis techniques, the price in terms of reduced
system performance is often prohibitive.

Because similar difficulties and concerns are encountered for different
applications, it is valuable to enhance the exchange of information with
regard to aircraft, spacecraft and robotic applications. This is the
fourth workshop in a series which has emphasized the computational
aspects of controlling flexible aerospace systems. It is hoped that the
reports contained in this proceedings will be useful to practicioners of
modeling and controlling flexible systems.

Lawrence W. Taylor, Jr.
NASA Langley Research Center
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SPILLOVER, NONLINEARITY, & FLEXIBLE STRUCTURES g /
Robert W. Bass Dean Zes
Rockwell International Science Center, McDonnell Douglas Helicopter Co.
P.0. Box 1085, Thousand Oaks, CA 91358 5000 McDowell Road, Mesa, AZ 85205
ABSTRACT

Many systems whose evolution in time is governed by Partial Differential
Equations (PDEs) are linearized around a known equilibrium before Computer Aided
Control Engineering (CACE) is considered. In this case there are infinitely many
independent vibrational modes, and it is intuitively evident on physical grounds that
infinitely many actuators would be needed in order to control all modes.

A more precise, general formulation of this grave difficulty (the "spillover"
problem) is due to A.V. Balakrishnan [Applied Functional Analysis, Springer, 1981, p.
233]. Let the system’s state vector x be an element of a separable Hilbert space K
whose dimension is not finite; let A be a closed linear operator with domain dense in
# which is the infinitesimal generator of a strongly continuous semi-group of
transition operators T(t) for non-negative times t; and let B denote a bounded linear
operator acting on another separable Hilbert space U (the control space) with range in
#. Now consider the control problem dx/dt = Ax + Bu, with x(0) given. Then according
to Balakrishnan this system is not exactly controllable if B is compact.

A possible route to circumvention of this difficulty lies in leaving the PDE in
its original nonlinear form, and adding the essentially finite-dimensional control
action Bu prior to linearization. In many cases it can be shown that the nonlinearity
couples the system’s modes in such a manner that only a finite-dimensional subset of
the modes is functionally independent, with the remaining higher-order modes
nonlinearly dependent upon them. Hence control of all modes can be achieved by
controlling only finitely many modes.

One possibly applicable technique is the Liapunov-Schmidt rigorous reduction of
singular infinite-dimensional implicit function problems to finite-dimensional
implicit function problems. Such a procedure was employed by Leon Lichtenstein in the
1930’s to prove the existence of a solution of the Navier-Stokes equations for a
sufficiently small time-interval O =t < €.

Omitting details of Banach-space rigor, the formalities of this approach are as
follows. Let £ be a Fredholm operator with pseudo-inverse X; then there exist
idempotent projection operators P = § - K¢, Q = ¥ - £K whose ranges are
finite-dimensional and such that a NASC for (x) £x - F(x) = O is that (x*) x = Px +
KF(x) & QF(x) = 0. Thus one may set x =u +V where v satisfies the auxiliary equation
v = KF(u + v) and u the bifurcation equations [Verzweigungsgleichungen) QF(u + v) = 0.
Typically one may solve the auxiliary equation by (contraction) iterations to find v =
€(u) where now v is infinite-dimensional but u is finite-dimensional and then insert
the result into the (finitely many) Dbifurcation equations to define a
finite-dimensional vector function f(u) = Q¥F(u + €(u)) such that (=) is equivalent to
f(u) = 0. In summary, a NASC for (%) is

(x%%x) x = u + §lu), fu =20, PE(w) = 0, Pu=u, flu)=0.

As an illustration the auxiliary equation and bifurcation equations for the
problem of deflection of an in tension (ao> 0) EXTENSIBLE beam (a1 > 0) is considered,

including viscous damping (a3 > 0) and Balakrishnan-Taylor damping (a4 > 0). Here

L 2 2(n+B)+1
u +a-u =a - u +1a +a-|w)-dx+a- (uu )dx ‘u
tt 2  XXXX 3 xxt 0 1 o X 4 o x xt XX

vt=0 0=x = L. As the dimension N of the bifurcation equations increases, the
result approaches an N-dimensional truncated eigenexpansion (provided that the initial
deflections and their initial spatial and temporal rates of change are not too large).



Preface

The basic idea behind the present paper is simply:

SUGGES T ION
Don’t linearize a PDE until after its reduction to a finite-dimensional ODE.

This idea can be implemented by means of the following analytical procedure:

LIAPUNOV-SCHMIDT BIFURCATI ON EQUATIONS:

A rigorous reduction of a singular infinite-dimensional implicit equation to
the problem of an equivalent, merely finite-dimensional implicit equation.

This suggestion is presented as a possible technique for circumvention of the
famous "Spillover Problem."

Introduction

If the problem of control of a flexible structure is linearized before one
considers the control aspects, then frequently it leads to an abstract problem in
functional analysis of the type of the following system of ordinary differential
equations:

& dx Ax + Bu, x(0) = x°. (1)

dt
Here x e ¥ is an element of an infinite-dimensional state space taken to be a
separable Hilbert space. Also u € U is an element of the control space, taken to be

another separable Hilbert space. We take A: D 5 ®® to denote a closed linear mapping

of the dense linear-subspace domain D into ¥* = D which is the infinitesimal generator
of a strongly continuous semi-group of transition operators T(t) for t = 0. Finally we

require that B: U > H” be a bounded linear operator.
The celebrated "Spillover Problem" now has an exact formulation by means of:

THEOREM. (Balakrishnan, [5], p. 233.) If B is compact, then ¥ is NOT exactly

controllable.

A compact operator is one which can be approximated arbitrarily closely by an
operator whose range is finite-dimensional. Therefore the practical import of the
preceding theorem can be phrased as: if a linear system has infinitely many
independent modes of motion, it cannot be controlled completely with a finite-
dimensional actuator suite.

This suggests that complete control of a flexible structure by a finite actuator
suite is foredoomed to impossibility. However, there may be a way to circumvent this
difficulty. Note that the preceding theorem has been proved only in the case that the
dynamical system ¥ is linear. The purpose of the present paper is to demonstrate that
for many flexible structure problems, such nonlinear mechanisms as Balakrishnan-Taylor
damping will couple the higher order modes of motion to the lower order modes in such
a way that only a finite number of the lower order modes is functionally independent.
This suggests that a finite actuator suite could control such a system. However, we
defer consideration of the control problem and deal here only with the free motion of
an uncontrolled, but intrinsically nonlinear system. Our purpose is to stimulate
further research into this approach rather than to present a finished theory.



Liapunov-Schmidt Bifurcation Theory

For the reader’s convenience we recall the salient features of this theory from a
purely formal point of view. The details of Banach space rigor can be found in pages
173-177 of Deimling [2] and other texts on nonlinear functional analysis [3], [4].

Let ¢ denote a Fredholm operator, which may be singular, i.e. there may exist
elements u # O such that fu = 0. Let K denote a pseudo-inverse of £, i.e. a linear
operator such that

KEK = K, £KE = 2. (2)

Now define projection operators
P =3 - K&, Q=9 - 2K; (3)
it is readily verified that P = P, Q2 = @, i.e. these operators are idempotent,

which justifies referring to them as projection operators. Note that P is a right zero
of ¢, and Q is a left zero of £

Let § = %{-} denote a nonlinear operator. Then it is easy to verify the
equivalence of the implicit equation problem
(=) $x = Fi{x}, 2P =0 Q£=0, (4)
and the problem
(%) x = Px + KF{x}, QF{x} = 0. (5)
Now define u = Px and verify that Pu = u; then we can replace (#*) by
(definition) X =Uu+v, (6)
(AUXILIARY EQUATION) v = K¥u + v}, (7)
(BIFURCATION EQUATION) QF{u + v} = 0. (8)

Another name for the Bifurcation Equations is Branching Equations.

Suppose that the right-hand side of (7), regarded as a function of v, has a
global Lipschitz constant less than unity. Then by the well-known principle of
geometric convergence of Contraction Mappings we may, for each fixed u, define a
nonlinear mapping v = §{u} as

0

v=1lim vk, vk+1 = KF{u + vk), v =0, (k=012 3, -+ ) (9)
k>

Here € is the resolvent of the auxiliary equation in the sense that
§ = K¥u + §h (10)

Hence we may eliminate the auxiliary equation and replace v in the bifurcation
equation by § to obtain a new finite-dimensional equation

flu) = QFu + §{u}} = 0, (11)
which is equivalent to the original infinite-dimensional implicit equation. Thus
(%) & (*%) & (xx%x) x =u + S}, fu=0, PE{uy = 0, Pu=u, flu)=0 (12)

If the original functional equation was analytic, then the final
finite-dimensional equation f(u) = O will also be analytic.

If £ was non-singular, then X = .93_1, whence P = 0, Q = 0, u = 0, the bifurcation
equation does not arise, and the resolvability of the auxiliary equation is equivalent

to the resolvability of the original equation:
x = Fx) o  x = £'Hx) §{0). (13)

fx(O) = (6f1/6xj) of f(x) is

Finally, if £ was singular, then the linear part F

necessarily also singular. Typically then the solutions of f(x} = O will not be unique
and one studies the branching of these solutions by such methods as Newton’s polygon.

3



Deflection of an Extensible, Nonlinearly Damped Beam

Let u denote the normal deflection from equilibrium. Then the vibrations of the
beam can be described by u = u(t,x), 0 = x =< L, 0 =t < +o, which satisfies the PDE

p-u + El-u =C-u + ( H + EAC-(D + ¥ ] u o, (14a)
tt XXXX xxt L XX
® = (1/2)-J—L(u )z-dx, (14b)
0 X
2(n+B)+1
¥ = U-L(uxuxt)-dx] , (0 =8<12), (n=0,12,3, --- ), (14c}
0

where
t€R+E[0,+m)E(T|OST<+w},

xeJ=[0l1l={&|0=€=1),

p = density,

Young’s modulus of elasticity,

= cross-sectional moment of inertia,
coefficient of viscous damping,
axial force (tension or compression)

E
I

C
H

Ac = cross-sectional area,
L = length,
I' = Balakrishnan-Taylor damping coefficient.
Now define the constants
a = H/p, a = FAc/(2pL), a = El/p, a, = C/p, a, = T'/p (15)
Then the PDE (14) can be expressed as

2
‘u a -u +la +a- -} (u)dx+a-
tt 2  XXXx 3 xxt 0 1 o X 4

]

S
+
1
I

XX

2(n+B)+1
(v u )-dx] ]-u . (16)
x xt

Boundary Conditions

As usual, we require that
u(t,0) = 0, u(t,L) = 0, (17a)

uxx(t,O) = 0, uxx(t,L) = 0. (17b)

Initial Conditions

Let ¢ and ¢ be functions of x defined on J with the f ollowing smoothness requirements.
The function ¢ should be continuously once differentiable on J and its second

derivative ¢”’ should exist almost everywhere on J and be [Lebesgue] square-integrable
on J. The function ¢ should be continuous on J, which of course implies that it is
[Riemann] square-integrable on J. These smoothness requirements may be summarized as:

¢ e cVwW, ¢ e L), (17¢)

Yy e C(O)(J), > Ye LZ(J). (17d)



Now ¢ and ¢ are used to define the initial conditions on u as follows:

u(0,x) = ¢(x), ut(O,x) = Ylx), (17e)

¢(0) = ¢(L) = 0O, y(0) = ¢(L) = O. (17f)

Normalized Constants

For future convenience, we define

b = (wil-a, b = @D (L2 a, b, =@l a, (18a)
0 0 1 1 2 2
b = (wL)a, b = @D (L2 P, (18b)
3 3 4 4
Function Space Coordinatization
Define the complete orthonormal set (ek) on LZ(J ) by
e = ek(x) = sin(knlx/L]), (k=12 3, -+ ). (19)

Assumptions (17c,d) imply that there exist (as l.i.m.) sequences (ock}, {Bk) such that

k4-ai < +oo, (20a)

¢ = ¢lx) = ak~ek(x),

1

It~18

—

n~18

k

x

y = ylx) = (20b)

3

Bk-ek(x),
1

=

It ~18
™
™
A
+
8

—

~18

=

Now we can seek to find a sequence of time-varying functions {uk(t)} such that
o«
ult,x) = ) u (b e (x), (21)
o K

where, by (17f), the initial values and initial rates of the {uk(t)} must satisfy

u 0 = o, u () = B, (k=123 -+ ) (22)
k k k k

Infinite System of ODEs

Insert the series expansion (21) into the PDE (16) and use the orthonormality
property of the complete basis {ek} to derive an equivalent infinite system of ODEs:

i +bk>u +b +b B+b S+0kHKu =0, (k=123 ) (23a)
k 3 k 0 1 4 2 k
[+ 0]
L ]
j=1
w0 2 . 2{n+B)+1
4 = [Z j.u.u] , (23¢c)
L )

where the solutions of (23) are required to satisfy the initial conditions (22). As an
alternative to (23a), in which the linear and nonlinear terms are displayed
separately, we may write

i +bKiu + (b +bk)Ku =-b-k>u, (k=123 ) (23d)
k 3 k 0 2 k k



~ 6 $ « 2 2 0 2 . 72n+B)+1
d = b1 + b4 = bl- z J U + bA-[Z J -uJ-uj] (23e)
j=1 j=1
Energy Integral
Multiply each equation of (23a) by Ztlk and sum over all k, using the identities
2ii 4 = (L'LZ)' and 2u ‘u = (uz)', to obtain
K kK Kk kK k Kk
v -2 v.2 2 C.4 2 v.2 21°
Zuk +b0~Zk-uk + bz-Zk-uk +(b1/2)-“:k-uk] +
k=1 k=1 k=1 k=1
t <) 2 -2 t 0 2 R 2(n+B)+1
+ 2b3-J [Zk -uk] dt + (b4/2)-f [z k -uk-uk] dt = (24a)
0 k=1 0o k=1
= 80 = constant = (24b)
2 = 2, 2 2 .2 21°
= ZBk + X(b0 + bzk ) k o+ (b1/2)[ Zk o ] = (24c)

1 k=1 k=1

2 Lz 2 L 2 2 L 2 2 L 2 z
- TIO"’ dx + bO-TJO(¢) dx + bz-Tjo(¢ 7 dx + (b, /2): [z—fo(qb) dx] = (24d)

=2 2

2
=y 4+ bo-($’) + bz-(E")2 + (b1/2)- [(5’)2 ] , (24e)

where in the last expression we have used an obvious notation for the mean-square

values of ¥, ¢’, and ¢’ on J = [0,L].
A key technique in what follows is the use of (24) to obtain a priori bounds on

the solutions of (23).
Vector Notation

For convenience we shall denote the infinite column whose rows are kuk by x, and

we shall partition x into a finite-dimensional component u and an infinite-dimensional
component v as follows:

x=["’:] E(kuk), ue[RN, v eR”, (25a)
u = ku, v = kv, (v = u , k=z=N) (25b)
k k k Kk Kk K
A Priori Bounds
Obviously
[re]
z 2 2 _ 2 2
nxn® = pun® + v = kzlk u’ (26)
while from (24a) it is easy to infer that
2 4
b+ b )-lxll + (b /2)-lxil = & , 27)
o 2 1 0

which implies that



Ixll = R, (28)

where (choosing the numerically stable quadratic root formula)

R = (284 +b)+[b +b)+2681"N"% = (8 /b +b N2 (29)
0 (0] 2 0 2 1 0 0 0 2
Similarly,
2 2 2 o 2 2 b4 4 2 & 4 2 S 4 2
(N+DZ- v = (N+1)*- ZK Vo= ZK Vo= ZR ul s Zk ul = g/b,, (30)
k=N+1 k=N+1 k=N+1 k=1
and
2] .2
Zu = & , (31)
k 0
k=1

which together with (30) yields, via the Cauchy-Schwarz inequality,

o 2 . v 2 e .4 2 2 172 172
Z Frua s {[ Zuk]-[ ZK -uk]} = (68,60 = €))7 (32)
i1 k=1 k=1

Finally, using (29) and (32),

2(n+B)+1

8 = b-Ixt®+b (x-x) = b R+ b -8 /0)PVT <p 6, (33)
1 3 1 4 0 2 )
b = b/ +b)]+ b /b)Y, (34)
5 1 o 2 4 T2
where we have used the assumption that
80 < 1 (35)
Now let IBN(p] and [Bw(p) denote balls of radius p in R and R” where x = uev is

considered to be an element of the Cartesian product [RN®|R°°; we shall show that for
all sufficiently large values of N, lBN(RC)@le(RN) is a subset of the ball defined in

RNoR™ by (28), where 0 < £ < 1 is an arbitrarily small positive constant, where
172

Re = R-(L -¢€)°7, (36)
R = (€/6)%(N + 1, (37
N o 2
and where
N+l = (80/b2)”2/(Re”2). (38)
In fact,
ixi? = wubl® + nvn® s (RC)Z + (RN)2 < R®(1-¢€)+ Re = R (39)
Initial Conditions
Define
_ N N 0
a = ( k-ock) e R, a = ([N + k]-ocN+k) e R, (40a)
and note that
a = ul0), aM = v(o). (400)
Next, define
— N (N) - «©
b = (B)eR, b = (B )ek, (40c)



and note that

b = 2 o), b™ = D;-\'r(o).

. -1 - .
where the bounded linear operators D  and DNl are represented by matrices

D' = diag (/K ), D;l = diag ( L/[k + N] ).

Resolution of Linear Part

In component form, the infinite ODE can be written, for ( k = I, 2, 3,

: 2 2 2 °°2 2 ODZ '2(n+B)+l 2
i +bk’u +(b+bk)'k'u=—b2j-u +b Zj-u-u Ku .
k 3 k 0o 2 k szl 1 4J=l b Kk

Alternatively, in vector notation

D'k +b -Dx+ (b
4] 3 0 (o]}

b0 = axial force coefficient,

= extensibility coefficient,

b2 = elasticity coefficient,
bs = viscous damping coefficient,
b = Balakrishnan-Taylor nonlinear damping coefficient,

+b -SDZ)-fD X =-{b-Ixli*+b _(x.)'()z(m»ﬂ)ﬂ }D x
2 7o Vo 1 4 0

(40d)

(40e)

(42)

(43a)
(43b)
(43c¢)
(43d)
(43e)

where the unbounded linear operator Do is defined by the infinite matrix obtained by

taking N = O in the reciprocal of (40e). Upon multiplying (42) through by fD;l):{ and

integrating, we obtain the energy integral (24) in the form

t
1D k% + b - lixi® + (b/2)-uxi* + b -ID xI% + 2 J' o 1x1? + b4-(x-x)2(mm”) dt
0

= € it + bo-ua°°n2 + (bl/z)-ua“n4 + bz-llfDoamMz,

0

where as before

a® = a@aN, b* = b®bN.
For future use define €y and 6N by

[¢0]
2 N, 2 4 2 2
(N + D llan® = k -« e o o, N -5 +o,
k=N+1

A

mwh? = g = 53 5> 0, N > +x,
k=N+1

Homogeneous Linear Part

Henceforth we shall assume that the system is underdamped, i.e. that

b < 2b)2
3 2

The characteristic polynomial of the homogeneous part of (41) is

(44a)

(44b)

(45a)

(45b)

(46)



2% + b k2-A + (b +b kKD)-K° = 0, (47a)
k 3 k 0 2

which has roots

A = -p % iv, (if=-1), (47b)
k k k
2 2
Bo= Kopy o v, = L {47¢)
o= bs2, w = wa-{db, - () + 4l V750 Sl (47d)
0 3 k 2 3 4}
where, obviously,
ws/w = bab - b)H (47e)
0 k 3 2 3

From (47a) the general solution of the homogeneous linear part of (41) is of the form
u = exp(-ukt)-(Ak'cos(vkt) + Bk-sm(vkt)), (471)
where Ak and Bk are arbitrary constants. Specializing these constants in order to use

Lagrange’'s variation of constants formula to re-express (41) in terms of an impulse
response convolution with the right-hand side we get

t
ut) = aP)a+ @PtKg - f a®t - v u(r) dr, (47g)
k k k k k o k k
where
dPt) = expl-p t)-{cosv t) + (u /w )-sin(v 1)}, (48a)
k k k 0 k k
d]((Z)(t) = expl-p t)-{1/(k-w)) sin(v D), (48b)
d®w) = k-aPa. (48¢)
k k
Next, define three finite and three infinite diagonal matrices as
D = diagl dlij)) RV 5 ®RY, (j=123) (k=123 -, N)  (49)
D = diag(d?):R® 5> R®, (j=1223) (k=1223 =)  (49)
J:N k+N

Finally, multiply (47g) through by k in order to convert to vector notation:

t

x(t) = D (t)-a° + D_ (t)b” - J D (t - 7)-3-x(1) dr, (50a)
1,0 2,0 o 30
. . w . m t- ~
x(t) = D (t)-a + D_ (t)'b - J D (t - t)-¢-x(1) dr, (50b)
1,0 2,0 o 30
3 = b Ixn® + ba-(x-;'c)z‘“”””. (50¢)
(In deriving (50b) we used the fact that D3 0(O) = 0.} The fact that we have been

able to reformulate the original PDE boundary-value and initial-value problem in the
form (50) is the equivalent of (13), i.e the non-singular case, wherein there is no
requirement for a Bifurcation Equation since the entire system now has the form of the
Auxiliary Equation. If now we can prove that the iteration, for m =0, 1, 2, 3, -+,



t
™) = Dl’o(t)-am + Dz'o(t)-bm - JoDa,o(t - 1)-3(x™,x™) - x™(7) dr, (5la)
0 _ 1 - L@ L@
x(@) = 0, x(@) = D (t)-a” + D (1)-b%, (51b)

converges, then we have constructed a solution of the original problem.
To avoid certain difficulties, we shall consider this iterative solution only for
the problem

b =0, & = &x)

b - xi?; (52)

the more general problem will be approached by a non-constructive homotopy method.
Consider now the fixed-point problem

X = F{x}, Ixll = sup Nx(t)H, (53a)
(+>0) ® .
= - — . m . w— — ¢~ .
F o= Fx(NO = D (12" 4D, (1)b J'oos_o(t 1)-3(x(1)-x(T) dr.  (53b)

We want to find a Lipschitz constant for ¥, i.e. a constant x such that

NFeS - ?{xj)llm s k-lxMt - lelm vV XX eBR), (j=0,1,2 --) (54
Later we shall prove that
+00
- _ 2.1/2
J'o 1D, (Ol dr < b = 4/ 146, - (b)), (55)
In the Hilbert space norm of R” it is clear that
1% %% - xS ko= A - %Y e (X - k) K =
= (e uxn® ot nxln - nx® - <\ = 3R%-ux? - x'. (56)
Hence we may take
K = 3Rb b = 3b-b/b +bDE = & < 1, (57a)
1 6 1 6 0 20
if 80 is taken to be sufficiently small that
2.1/2
< 9 . . - .
80 (1/12) -0 ((bO + bz) b3 [4b2 (ba) ] }/b1 (57b)
The a priori bounds (28)-(29) apply to the first iterate (51b) and so the first
iterate is inside the ball [Bm(R); now, using (54) with j = 0, 1, 2, etc. it is clear
that xz, xa, all remain in the ball provided that lelllm+ ﬁ-llxlllm+ Gz-llxlllm+ -+ < R,

i.e. summing the geometric series, provided that

(x'n_ /(1 - 9) < R, (58a)
which is readily obtainable simply by taking ¢ so small that

& < 1- (x'l_/R). (58b)

Now we can apply the well known principle of contraction mappings (also called the
Banach fixed point theorem and Caccioppoli’s fixed point theorem) to prove that the

map (53) has a unique fixed point in the ball B™(R) and that this fixed point can be

computed constructively by the iterative procedure just described.

10



Next, replace the coefficient b4 by ub4, where 0 < p = 1, and note that the a

priori bounds previously derived remain valid for all values of pu € [0,1]. Hence we
may infer the existence of a solution for all p € [0,11 by a homotopy method. For
sufficiently small values of u, this is Poincaré’s method of analytic continuation of
solutions of functional equations. Here the fact that the problem was non-singular at
p = O implies that the Leray-Schauder Index [2]1, [3] or topological degree of the map
is of magnitude unity at p = 0. Consequently the existence of the a priori bound for
any solution on O = u = 1 implies that there is a continuum of solutions connecting
the solution at p = O with one at p = 1. Thus in summary we have proved the following

result.
Existence Theorem

THEOREM. If ¢, ¢, and ¢ [as defined in (24d-e)] are all sufficiently small,

then the nonlinear functional PDE (16) has at least one solution which exists for all
t > 0 and satisfies the boundary conditions (17a-b) and initial conditions (17e) as
well as the a priori bounds

L
2 2 < 2
Tjolux(t,x)] dx = R = 80/(b0+b2), (59)
+00 2 L 2
j {TJ [u_(t,x)] dx} dt = € /(2b), (60)
) 0
where
-2 =12 — 12 .
80 = Y+ bo-(¢) + bz-(¢ )+ (bl/Z)-[(¢) ] . (62)

Proof. Existence has already been proved. Equation (59) holds because
the left-hand side of (59) is by (26) equal to Ix#? which in (28) is proved smaller
than Rz. Equation (60) follows from inspection of (24a) and (24b), which hold for all

t = 0, making it permissible to let t » +w.

Rigorous Truncation

In "naive truncation” one simply sets v = O, i.e. in (41) one takes
uk(t)EO, (k=N+1, N+2, N+3, - ). (63)

Here we shall prove that the solution proved above to exist can be derived as in the
Liapunov-Schmidt bifurcation theory, and that, for all t = O,

v = RN-exp(-b3[N+1]2-t/2) = Re? (64)

provided that N is taken larger than the lower bounds in (38) and in (68b)-(69) below.

By inspection of (50), we can express the problem as follows.

Bifurcation Equation

t ~
u(t) = Dl(t)-a + Dz(t)-b - I D3(t - 1)+-$-ult) dr, (65a)
0

11



R
H

bl-{llullz + Ivil? o+ b, - (u-u + v-p)?™, (65b)

Auxiliary Equation

t
N N =
v(t) DLN(t)-a + Dz,N(t)-b - IOD&N“ - 1)-¢-v(T) dT. (65c)

More A Priori Bounds

From (48a),
(1),

EN

= {1+ (po/wk)2)1/2~exp(—uok2t) = {1+ bi/[4b2 - (b3)2]}l/2-exp(-b3t/2)

= 2 172
= [1/11 - (b3/4b2])

]-exp(-bat/2). (66a)
The induced Euclidean norm of any diagonal matrix is equal to the absolute value of
its (absolutely) largest element. Hence

1/2

DI = (AL - (b§/4b2)) I-exp(-b_t/2). (66b)
Similarly,
(2)
DIl = max |[d”] ,22%, (ko )}-exp(-b t/2) =
= [2/44 - (b;))l/zl-exp(-bat/z), (66¢)
2.,1/72
DN = max {/(ke))-exp(-bt/2) = (27146, - (6))Y""1-exp(-b_t/2), (66d)
2 172 2
D, I = (/1L - (b2/4b )] }-exp(-b IN + 11’t/2), (66€)
D, Il = {[2/{4b_ - (62)21/(N + 1)}-expl-b [N + 11%/2). (66f)
2,N 2 3 3
< _ 2..1/2 . _ 2
D, = [2/(4b, - (D)%) expl b IN + 11°t/2). (66g)
Integrating (66d), one obtains
+00
_ 2,1/2
J’O ID(T) dr = b, = /b [ab - (o)UY, (66h)
Similarly,
+00 2
f “DS,N(T)" dtr = bﬁ/(N + 1), (66i)

0
which we have used above in (55) in the case N = 0.
Next, from (65c), (66e,f,g), and (45a,b),

v(t)lh = 7N-exp(—b3[N + 1]2t/2) + (b5b680/(N + 1)2)-Ilv(t)ll, (67a)
where
_ 2 172y, N 2,,1/2 N,
¥y = {1 - (b3/4b2)] Hia Il + ([2/{4b2 - (b3)} I/IN + DYIb I =

12



< [(1/[1 - %ab NS e+ (22480 - B8 ]/(N +1) = o /(N + 1) (67b)
3 2 N 2 3 N N
Consequently, if 80 is so small that
bb & < 172, (68a)
65 0
i.e. so small that
2.1/2 n+B+(1/2)
80 < 1/[(8/(b3[4b2— (ba) ] }-{[bl/(bo+ bz)] + b4/(b2) }]. (68b)

then we may subtract the second term on the right hand side of (67a) from the left
hand side, and then, by (45a,b), making N still larger (if necessary) so that

172

O‘N/(l - (2)y = 20‘N = (Eo/bz) = (N + 1)~RN (69)
we can ensure that, for all t =z O,
2 172
(it = RN-exp(—ba[N + 117 t/2) = R =R’ (70)

as claimed in (64).
Quite similarly, from (65a) and (68a),

full = UDI-llall + ID_H-lbll + (b b & }-ilull = UD N-ltall + WD _Il-lbi + (1/2})- llull, (71a)
1 2 65 0 1 2

whence, precisely as before,

{L - (1/2))-lul = WD N-Wall + UD_N-Wbl, (71b)
1.€.
lull = 2-(UD N-Nall + UD_N-Ib} s R, (71c)
provided only that, by (66b,c)
lall = (1/74)-41 - (bZrab BER (72a)
bl = (1/8)-(4b, - B2)2R (72a)

which can be assured simply by taking ¢' and ¥ small enough.

Recalling that, by (62), 80 can be made arbitrarily small by making the initial
mean-square spatial rates of change ¢’, ¢’, and Y of u, u and u  arbitrarily
small, we may conclude that when those initial rates are sufficiently small then every
solution of (65a,b) must, for all t = O, satisfy a priori

@l = R = R0 - o'’ (73a)
and every solution of (65b,c) must, for all t = O, satisfy a priori
vl s R < R-'7, (73b)
whence finally, as in (39), every solution of the combined systems {65a,b,c) must for
all t = 0, satisfy a priori

Ixi = {u@n® « mven®”? < r (73c)

Conclusion: Naive vs Rigorous Truncation

Let u(t), u(t) be arbitrarily given continuous N-vector functions and insert them

into the nonlinear function g defined in (65b), and then insert this functional of v

13



only into (65c), giving an infinite system of integral equations for v(t). As in (28)
through (35), the nonlinear term can be made arbitrarily small by taking 80

arbitrarily small. Similarly the nonlinear term can be made to have a Lipschitz
constant less than unity by restrictions upon 80 as in (53)-(58).

This infinite system of Auxiliary Equations can be solved by one of the methods
illustrated above (iteration or homotopy), and the result inserted into the
Bifurcation Equations (65a) to provide a finite-dimensional system of functional
integral equations exactly-equivalent to the the original infinite-dimensional system.

When the arbitrarily given u(t), u(t) in the Auxiliary Equations (65b,c) are

taken to be the projection into lRN of the solution x(t) € IRN®IR’°° proved to exist in the
Theorem concerning (59)-(62), then the Auxiliary Equations have a solution

corresponding to the projection v(t) of x(t) into R”. The resulting Bifurcation
Equations then must be satisfied by the same wul(t) used to define the Auxiliary
Equations. However, all of the a priori bounds proved above to apply to the solution x
of the complete problem now apply to the projections u, v of the rigorously truncated
problem.

Consequently we can compare the rigorous version of the Bifurcation Equations,
namely (65a), with the naively truncated version wherein one sets v = 0, and note that
that, as 80 becomes sufficiently small for the bounds to apply, then as N becomes

arbitrarily large the difference between the solutions of the naively truncated
version of (65a) and its rigorously truncated version becomes arbitrarily small.
Consequently in attempting to solve the given nonlinear function PDE boundary-
value initial-value problem, we may be confident that if we truncate naively for some
finite N, the results become arbitrarily accurate as N increases without limit

provided that the initial mean-square spatial rates of change ¢’, ¢’’, and ¥ of U,
u and u  are kept sufficiently small.

Further research is needed in order to ascertain whether or not this conclusion
would still apply if the homogeneous boundary conditions were replaced by
inhomogeneous boundary conditions corresponding to a finite number of actuators.
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Abstract

In this paper we consider application magnetic forces for stabilization of vibrations of flexible
space structures. We investigate three electromagnetic phenomena, such as, a) magnetic body-force, b)
reluctance torque, and c) magnetostriction, and analyse their application for stabilization of a beam. The
magnetic body-force actuator utilizes the force that exists between poles of magnets. The reluctance
actuator is configured in such a way that the reluctance of the magnetic circuit will be minimum when
the beam is straight. Any bending of the beam increases the reluctance and hence generates a restoring
torque that reduces bending. The gain of the actuator is controlled by varying the magnetizing current.
Since the energy density of a magnetic device is much higher compared to piezo-electric or thermal
actuators, it is expected that the reluctance actuator will be more effective in controlling the structural
vibrations.

I. INTRODUCTION

The problems of modeling and control of flexible space structures have been a subject of considerable
research interest in recent years. These future space vehicles will be large structures consisting of a
rigid body and several flexible appendages, such as long beams, solar panels, large antennas etc. It is
known that these space structures will possess low structural rigidity, high modal density and low damping.
Consequently, in order for them to perform properly some active means of increasing the damping or
the energy dissipation must be provided. There is a very large collection of research results available in
the literature on the control and stabilization of flexible space structures. The references listed in this
paper are only a small cross section of these results, and are not meant to be exhaustive.

Dynamic analysis and control system design of flexible structures are based on two different ap-
proaches: a) finite dimensional, and b) infinite dimensional. Although the finite dimensional approach
[1 — 7] have been widely investigated in the past, the main objections are modal truncation, lack of
a priori information of required mode numbers, and control spillover [15]. Because of these reasons,
the infinite dimensional approach using partial differential equations appears to be more appropriate.
Since large space structures are actually partly rigid and partly flexible, the complete mathematical model
requires a combination of both ordinary differential equations and hyperbolic partial differential equations
[8 - 16). Stabilization of flexible space structures through active velocity feedback have been discussed
in [8,9,13,14). A more rigorous analysis of stabilization using semigroup theory is considered in [10,11].
Reference [16] describes the synthesis of optimal controls for this class of systems. Stabilization of
flexible systems using thermal [17,18,19] and peizo-electric [20,21] actuators have been investigated in
recent years. It has been shown both analytically and experimentally that thermo-elastic damping can
be induced in materials by suitable application of thermal gradients. In [20,21] it has been shown that
spatially distributed control actuators can be designed using piezoelectric polymers, and that feedback of
beam tip angular velocity can be used for stabilization of vibrations of a beam.

In this paper, we investigate application of magnetic forces for stabilization of elastic structures.
Magnetic forces and torques are developed in ferromagnetic systems in a variety of ways. Here we discuss
three electromagnetic phenomena which have very good potential of stabilizing a vibrating structure; these
are: a) magnetic body-force, b) reluctance torque, and c) magnetostriction. Magnetic body-force actuator
relies on the force that exists between the poles of magnets. Reluctance torque is a consequence of the
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principle of conservation of energy, and arises due to the fact that the most stable configuration of a
magnetic system is that of minimum reluctance. Magnetostriction causes generation of very high forces
in ferromagnetic materials when subjected to applied magnetic fields. We show that a vibrating beam
can be stabilized if the magnetizing current in the magnetic actuator is varied proportional to the rate
of change of beam bending moment or the beam tip angular velocity. These magnetic actuators can
be implemented using ferromagnetic or ferroplastic materials, and can be applied over the entire spatial
domain of the elastic structure, thus emulating a distributed control actuator. Since the energy density
of a magnetic device is much higher compared to piezo-electric or thermal actuators, it is expected that
the magnetic actuator will be more effective in controlling the structural vibrations.

II. MAGNETIC ACTUATORS

A magnetomechanical transducer or actuator is a device that links a magnetic system and a mechanical
system. The coupling between the two systems is through the magnetic field which acts as the energy
storage device. A change in the stored energy leads to a energy conversion process to convert the
magnetic energy to the mechanical energy, or vice-versa. There are several electromagnetic phenomena
[22,23] that govern this energy conversion process among which the following are most important, and
are commonly utilized in practical devices:

1. A mechanical force is exerted on a current carrying conductor in a magnetic field. Likewise,
mechanical forces exist between two current carrying conductors because of their own magnetic
fields.

2. A mechanical force is exerted on a movable ferromagnetic material tending to align it along the
magnetic flux lines, or to reduce the reluctance of the flux path.

3. Most ferromagnetic materials show a small deformation in the presence of a magnetic field.
This phenomenon is known as magnetostriction. Although the deformation is very small, the
corresponding mechanical force may be very large.

All the above energy conversion processes are reversible in the sense that applications of mechanical
forces or body deformations produce changes in the magnetic energy. In this research, we intend to
utilize the magnetic-to-mechanical energy conversion processes for production of forces for stabilization
of structural vibrations of elastic systems. In what follows, we present the fundamentals of three magnetic
actuators which have very good potential of practical implementation for stabilization of large flexible
space structures.

2.1 MAGNETIC BODY-FORCE ACTUATOR

The basic idea of this device is the magnetic body-force or stress acting between the magnetic poles.
Consider the attraction of north and south poles of two magnets. The total force on one pole face is
given by the integration of magnetic stress as

BZ
F, = —2 dA 1
/A 20 )

where B, is the normal component of the field density to the surface, and o is the permeability of the
air gap. Consider a magnetic system consisting of two ferromagnetic elements separated by a distance,
and with I and I as the magnetizing currents as shown in Fig. 1.

N F,—S

Fig. 1 Magnetic Body-Force
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Then it can be shown that the resultant magnetic body-force is given by
Fm = k] 11 Iz. (2)

We may assume that one of the ferromagnetic materials is replaced by a permanent magnet, or an electro
magnet with a constant exciting current. Then the force resulting from this magnetic system is of the

form
Frn=kI 3)

where ky is suitable constant, and I is the magnetzing current. This analysis shows that this simple
configuration of magnetic materials may be used for production of a force, and that this force could be
made proportional to a control current. For the sake of simplicity, we assume that the magnetic force is
distributed all over the spatial domain. In fact, for a single layer of ferromagnetic segments, this force
may appear as a train of step functions. By using several layers of segments, one can obtain an average
force that is distributed all over the spatial domain.

Now consider a flexible beam with a layer of ferromagentic segments rigidly attached to the upper
surface of the beam, and another layer on the lower surface as shown in the Fig. 2.

Actuator e Y
/] o I i
]
é Bean hy
% S

Fig. 2 Flexible Beam with Body-Force Actuator

We assume that the same magnetizing current is used for both the upper and the lower layers, and
that the corresponding forces are same in magnitude but opposite in direction. This results in a bending
moment given by

T(z,1) = Fn(z, 1)(h1 + h2)
= cI(z,1) 4)
where ¢ is a constant depending of the beam geometry and the properties of the magnetic material.

The dynamics of the transverse vibrations of a beam in the presence of this additional bending
moment is given by

aZy 32 ,aZy 82 _

with the boundary conditions

&%y
W00 =0 YZHLO =l
dy 2 (6)
al‘ 8:1: Y 0.’1,‘2 (La t) ¢ ax (La t)

where y is the transverse deflection, Y is the flexural rigidity, and p is the mass density (per unit length)
of the composite beam.
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STABILIZATION

The beam dynamics described above contains a controllable parameter I(z,t) which may be appro-
priately regulated in order to achieve a stabilizing action. For this purpose we follow the Lyapunov type
analysis. Consider the total energy of beam vibrations given by

1 fE (’)y2 %y

o~ 2} dz. 7

Then using the dynamics (5) along with the boundary conditions, we obtain

v [k Py

This clearly shows that for asymptotic decay of vibration energy the magnetizing control current may be
chosen as

I(z,t) = -k é%u,t) 9)

where k is a suitable gain, in other words, the control current should be proportional to the rate of
change of bending moment of the beam.

It is interesting to note that this ferromagnetic actuator essentially introduces in the system a type
of damping commonly known as “structural damping” in the literature. Indeed, substituting the equation
(9) into the dynamics (5), the beam equation can be rewritten as

?y  9* 8%y Py _
Poz * 5‘2("%) thosie =0 (10)

in which the last term represents the structural damping. Note that the damping parameter k is very
small for naturally occurring structural damping of elastic materials. In this case the control current can
be suitably regulated so as to obtain the desired damping.

In case the feedback current is assumed to be uniform all over the length of the beam, equation (8)
reduces to

v

&y
—r =cl(t) = (11

Oz Ot

Hence considering a feedback current proportional to the tip angular velocity of the beam, ie.,

_ 0y
1) = ~k5—2(L,1) (12)

we obtain asymptotic stability of the system.

The control laws discussed above require regulation of the control current proportional to the angular
velocity of the tip of the beam, or the rate of change of the (distributed) bending moment. For practical
applications it may be relatively easier to measure the tip angular velocity only. Proportional variations of
the control current can be done by suitable electronic circuits. One can also consider on-off or deadzone
type of controls derived [9] from (8).
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2.2 RELUCTANCE ACTUATOR

A property of a conservative system is that its energy is a function of only its state, and given sufficient
time, the system always attains its rest state at which the energy is minimum. Consider a magnetic circuit
containing a movable member. The energy stored in the magnetic field is minimum when the movable
member atlains a position for which the magnetic reluctance is minimum. Any perturbation of this
position would imply a higher encrgy state of the system, and hence would lead to the production of
a restoring force or torque that will realign the movable member to the minimum reluctance position.
This is the fundamental principle of the Reluctance Actuator.

Consider a magnetic circuit consisting of two ferromagnetic segments as shown before; but in this
case we assume that these segments can undergo an angular displacement relative to each other.

Lyy \/\/\
%)

a

d

1\
-

Fig. 3 Variation of Mutual Inductance with Angular Position

The magnetic potential energy stored in the air gap depends on the mutual inductance and the
magnetizing currents, and is given by
W, = Liz 1) I2. (13)

The mutual inductance Li; varies with the angular orientation of the two segments relative to each
other. It is clear from Fig. 3 that when 6 is 0° or 360°, reluctance is minimum so that inductance is
at the maximum value. Similarly, when 8 is 180°, reluctance is maximum with the correspondingly small
inductance. Hence the mutual inductance can be expressed as

Liz = Lo+ Lycosb. (14)

Any rotation of the movable member would tend to increase the air gap, and hence would increase the
reluctance, or decrcase the inductance. Then according to the principle of conservation of energy, a
restoring torque is produced that would realign the movable member with the stationary member. This
restoring torque is given by

oW (Iy, I,6)
a0
= _L, I, I sinf. (15)

Clearly, the torque reduces to zcro when there is no angular deflection, i.e., when the two segments are
aligned. In what follows, we show that this torque can be utilized to stabilize a vibrating beam.

Consider a cantilever beam with a string of ferromagnetic segments interlaced by air gaps as shown
in the Fig. 2. Consider two typical segments located at the axial distances z — 3 and z + % respectively,

where d is the distance between the two segments. The angular orientation “of these segments on a

perturbed beam will be given by %J%(g: - %) and 3%(1: + 31) respectively. Hence the relative angle between

the two segments is

dy, . d dy d
——\ZL — =—\Z

ot = 5 e+ 3) - 5,0 =3)
~ dg;’{(x,z) (16)
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Using this equation in (15) and assuming small angle perturbations of the beam, the restoring torque
becomes

2
T(z,t) = ~L, I I sin (d gﬁ)

02
~-dL, L L a_wg(x,t) (17)

For simplicity we assume that the magnetizing currents are equal, and /; = I, = I. Then the
dynamics of transverse vibration of the beam is given by

Py oY &y
pW'F)W'*'kIZW:O (18)

with appropriate boundary conditions. This shows that the reluctance torque essentially increases the
flexural rigidity of the elastic material, and this stiffening action is independent of the direction of the
magnetizing current. Thus reluctance torque can be used to introduce artificial flexural rigidity in elastic
members. Alternatively, feedback control schemes can be designed to stabilize the system. Indeed, after

some analysis using the energy function (7), it can be shown that a feedback current proportional to the
rate of change of bending moment of the elastic member,i.e.,

d 2

9?
L) = —g= |25

Oz?

(19)

Ly

can be used to stabilize the system. Here ¢ is the gain of the controller.

2.3 MAGNETOSTRICTION

Magnetostriction is the elastic deformation of a magnetic material due to the change in the magnetic
field. If a ferromagnetic bar such as nickel, cobalt, is subjected to an applied magnetic field, it shrinks in
length. If the bar is restrained from contracting, a mechanical force is developed and mechanical energy
can be extracted. For some magnetic materials the action is to elongate rather than contract while in
some others first to elongate and then contract. The change in length is usually very small and of the
order of 0.01%, but the resulting force may be very large of the order of 200 N/ecm? or 300 psi. It is
important to note that the stress due to magnetostriction is independent of the direction of the applied
magnetic field. As such the mechanical force obtainable from a magnetostrictive device will be bounded
between zero and some upper limit depending on the strength of the applied field.

III. CONCLUSIONS

We consider stabilization of flexible structures using three types of magnetomotive forces: a) magnetic
body-force, b) reluctance torque, and c) magnetostriction. We prove stabilization of the system using the
first two types of forces. This requires feedback of rate of bending moment of the structure in the form
of a magnetizing current. It is important to note that magnetic body-force and the reluctance torque
are complementary and occur simultaneously, in other words, the same hardware will produce two types
of stabilizing action in the vibrating system. Although magnetostriction produces a mechanical force that

can be extracted, at this time it is not clear whether this can be utilized to produce any stabilizing action.
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Optimal Control of Systems with Capacity-related nNieé v~ 0
Abstract 1- 2 2 3 1 0
Mifang Ruan* and Ajit K. Choudhury+

In the ordinary theory ol optimal control (LQR and Kalman Filter),
tne variances ¢l the aciuators and the sensors are assumed to be known( not
related to the capacities of the devices). This assumption is not true in practice.
Gienerally , a device with greater capacity to exert actuating forces and a sensor
capahle of sensing greater sensing range will generate noise of greater power
saectral density.

When the ordinary theory of optimal control is used to cstimate the
crrrors of the outputs in such cases it will lead to faulty results, because the
capacitics of such devices are unknown hefore the system is designed. The
performance of the system designed by the ordinary theory will not be optimal
as the variances of the sensors and the actuators are ncither known nor con
siant. The interaction between the control system and structure could he sericus
because the ordinary method will lead to greater feedback (Kalman gain)
raatrices.

The man purpose of this paper is to dvelop mecthods which ¢on
oplimize the parformance of — systems when noises of the actuators  and the
sensors are related to their capacitics. These methods will result in smaller
foedback ( Kalmen gain) matrix. The smaller matrices will reduce the interac-
tion hetween the control system and system structure and, thereby, reducing the
requirements on the structures and consequently making the structure mare
ficxihle.

INTRODUCTION

In the optimal control of stochastic systems, we ordinarily assume that
noises of the actuators and the sensors are not related to the capacity of the
zctutors and sensors|1,2,3] This assumption is not true in practice. Generatly,
the variances of actuators and the scnsors, especially the actuators , are related
t the capacitics of the devices. Obviously, a [uel jet capable of gencrating o
force of 100 Ihs will have greater noises than the onc capable of generating a
farce of 1 [h. 1 will he realistic and practical to assume that the noise variance
of the actuators and the sensors be lincar function of the variance af the con-
trolling forces and the output of the sensors i.c., the observations. Under this
asstnption when v device is required to have greater capacity it will also intro-
duce greater noise. The ordinary method of optimal control problems have at
least three deflcects.

(a) It is hard to specify correatly the noise  power spectral densities
of the actuator and the sensor because the capacitics of these devices are un-
known o
+ Graduate Student, Dept. of Mechanical Engr., Howard Univ.. \\/nf%|1i'1$.l‘({“~
D.C. 20059.+ Assoc. Professor, Dept. of Electrical Engineering, Howard Univ.
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hefore the system s designed

(b) The resultant feedback and Kalman gain matrices mav not be
optimal when the noises in these devices are not related to their capacitics.
Thercfore, the performance of the control sysiem may not be as good as it
would he otherwise.

(¢) When the noises are assumed to be not related (o the capacitics
of the devices, the resultant feedback and Kalman gain matrices will be large,
making the interaction between control system  and the structure unsafc[4].

Because of these defects, it is hard for us to estimatc the crrors of
the outputs. The errors of the outputs will be large, and the interaction hetwern
the control system and system structures will  produce large crrors.

In some control systems, such as communications satellite and on—or-
bit telescope, the precision of the control system is  critical, and in the Tuture
missions their structurcs could be very [lexible. The variances of these devices
will be assumed to be linear functions of their capacities.

In this paper, we will develop methods which will optimize the per-
[wrmarce of systems when noiscs of the actuators and the sensors are related o
their capacitics. The fecdback (and Kalman gain) matrices arc found by this
mecthods will be automatically smaller than those found by ordinary methodls.
Therefore, the interaction between the control system and the strurcture will be
reduced and thereby, permitting more {lexible structurcs.

It PROBLEM STATEMENT

Let us st consider the optimal control of a [irst order svstem

X = ax +u+w (1.ai

U =-[x (1.h)

2 2 .
B { X + ru } (1o

This is a steady—state optimal control problem with cxact observation.
f is the feedback coelficient to be determined. a and r are given parametcrs. E
is the mcan operator. w is a zero mean white Gaussian noisc. Unlike the ordi-
nary control problem, we assume that the variance of the noise w. can be
clescribed by

J
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W= W + a a

0
u
2 2
= WO + a [ «a
X
2
4] ) .
v can be considered as the

where W and o are non-negative constants.
rominal variance of the input, a good measure of the capacity of the ac

taator.From (1a) and (1b) . we have

x = (a-fix + w
(3)

According lo stochastic control theory, the variance of x, denoted hy P

can he determined by

2(a-f)P + w = 0 ()
Since n( = P, eq.(4) reduces 1o
2
2(a - [ ) + \’VO + o f P=0 (5)
2
or (2 - 2f +oat )P + W, =0 (6)
condition must

Since P must be greater than or equal to zero, the following

hold

]

2a — 2f+ a f < O (7N
The cest functional can be wrilten as
2
J] =P 4+ £ P ()
Using cq.(6 ), we have
2 WO
J=( 1 +rf )— kS
(2f-2a —aol )
(9)

The inequality above indicate the stable region for the problem

25



The stable region for ordinary problem is defined by

a-f < 0 (10
The stable regions describe by equations (7) and (10) are plotted in
Fig. 1. Obviously, the stable region of the present problem iz only a subset of
the region of the ordinary problem. The stable region becomes smaller when o
becomes greater and this region is not directly related to the constant term. For
certain values of a > 0 and «, it is possible that there is no [ which lie in the
stable region, i.c.. such a system can’t be stabilized.

The optimal feedback control can be found by dilferentiating

equation (9) with respect to [ and equalting the derivative of J with respect to f
to zero. The derivative of J  with respect to [ after simplification can he
written in the form

dJ _ 2 Wy 2 f
= 2 2 rf -2raf+af -1
df (271 -2a- ) ( )

Equating the derivative of J 1o zero and solving the quadratic cqua-
tion in [ and neglecting the extranecous solution, we obtain the optimal fecdback
control  as  follows.

2 .
T A ) + \/ (¢ =21 a) " 4_‘_‘___

_(a__

f = -
2r
(1a)

Figs 2,4 and 6 show the ratio of optimal feedback (the value of f
given by equation (1ta)) to the feedback found by ordinary method vs. r lor
various values of a and o. We can sce that the value of (/fo is less than 1,
i.c., when the noisc of the actuator is capacity related, the optimal [eedback
tends Lo decrease. The reason for this is that a greater feedback corresponds to
a greater actuator signal, and increased capacity of the device and  increased
noisc power spectial density of the noise. Therefore, a smaller feedback matrix
will be preferred. When r becomes smaller, @ becomes bigger and a becomes
greater. The difference between [ and [ will becomes greater. The reason is
nol hard to imagine. When r becomes smaller, the feedback by the ordinary
method  becomes greater cven it is out of the stable region, while the leedback
by the present method although becomes greater but the increment will not be
signilicant because it has not taken the increase in noise power into considera-
tion, and the feedhack will never be out of the stable region. When « ( alpha)
hecomes greater, noise is more related to the capacity and the system will more
seriously depend on the feedback. Figs 3,5 and 6 show the ratios of optirnal
cost found by the propsed method to the case when [ is found bv the ordinary
method. Fig.5 doecs not have a plot for o =1, because the feedback found by
the ordinary method is out of stable region, and the ratios, Jo/J is infinite,
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111 GENERRAL CASE

In the above section, we have solved a simple problem by theoretical
approach. Tn general system contains multiple states with multiple inputs and
raultiple outputs, #nd the meassurements arce corrupted by noiscs. Then , the
problem can be slated as follows.

F.K (11b)
with constraints
y = Hx
x =Ax + Bu + Gw (12.4)
u = - F x (1210
X =Ax + Bu + K (7 - Mx) (12.9)

where
y=Output vector
x= State vector
u= Control Vector
7= Measurement Vector
x= Eslimated State Vector
w= input noise vector (zero—mean white Gaussian noise)
v=  Measurement noise vector( zero mean white Gaussian
nnise)
' = Feedback matrix
k. = Kalman Gain Matrix

and the matrices arc of appropriate dimension
The noise covariance  matrices —arc  given by
.
E { W w } - W

T »
E{v v}= "

The only diffcrence between the ordinary problem and proposed problem is
that the model of the covariance matrices w and v. Ordinarily W and V' are
assumed o be coastani matrices which are not related to the capacitics of the
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actuators and sensors. In this paper W and V arc assumed {0 pe matrices

whose covariance matrices are functions of the capacitics of actuators and
SeNSors.

The capacity of an actuator can be reasonably be represented by the
nominal varianacc of the actuator signal,

5 AT g
2
o, =E {u“} =L E {xx }I
i 1

[ i

">

where [, is the ith row of F.

And , we will assume the variance of an actuator to be 3 linear
function of its capacitics , i.c.,

A%

W = diag{ w ,, 5 wo}

2
w. = w + a .
i i u

where w.  and @, are non—negativc constants
0

Similarly,
V= diag { Vv, .V, . v,
2
V. = V. ) + B, (77i
where V. and B, arc non — negative  constants
0
z 2 T 1
o, =E{ 2 }= m E {x x b m A:ml":m
2 i ;

i i
where ™ is the ith row of M.

Clearly the covarince matrices become functions of the feedback
and Kalman gain matrices.

Equation ( 12.a) ,(12.b) and (12.¢) can be writicn as
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X A -BF X G 0

=

A A

X K M A - BF-KM X 0 K

<

According to the  Stochastic Control theory the covariance matrices satisfy the
following equalion:

P P A -BF
! X X X
t +
{
PP ’ KM A- BF-KM
A -BF P p -
X X X
KM  A- BF-KM P P
.
G 0 W 0 G 0
+ =0
0 K 0 \Y 0 K
where W and % are [irictions of P , P , F and K .To solve the above

aptimization problem, we probablv have to use numcrical approach
IV . DIRECT APPROACH

The simplest way to solve the problem is o use dircct approach. In
the direct approach, we assume that all the elements of F and K are parameters.
The cost J can be found by solving cquation (11h) iteratively when F and K are
given. Various techniques of optimization theory can be used to find the op-
timum valuc of F and K.

However, this method can solve only problems ol smaller dimension.
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For relatively large problems, the number of parameters will be large and the
computational efforts to {ind the cost for given F and K will also be large:there-

fore, the total computational load will be large
It secems that the challenging problem here is development of com-
putationally efficicnt fast algorithm to sove the feedback gain and the Kalman

gain
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Querying Databases of Trajectories of Differential Equations II:
Index Functions

Robert Grossman®
University of Illinois at Chicago
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Abstract Suppose that a large number of parameterized trajectories v of a dynamical system evolving in RN are
stored in a database. Let n C RY denote a parameterized path in Euclidean space, and let || - || denote a norm on
the space of paths. In this paper, we define data structures and indices for trajectories and give algorithms to answer
queries of the following forms:

Query 1. Given a path 75, determine whether 7 occurs as a subtrajectory of any trajectory v from the database. If
so, return the trajectory; otherwise, return null.

Query 2. Given a path 5, return the trajectory v from the database which minimizes the norm

= Il

1 Queries about trajectories

Suppose that a large number of parameterized trajectories v of a dynamical system evolving in RY are
stored in a database. Let n C RY denote a parameterized path in Euclidean space, and let || - || denote a
norm on the space of paths to be specified later. In this paper, we define a data structure and indices to
represent trajectories of dynamical systems and sketch algorithms to answer queries of the following forms:
Query 1. Given a path 7, determine whether 1 occurs as a subtrajectory of any trajectory y from the
database. If so, return the trajectory; otherwise, return null.

Query 2. Given a path 7, return the trajectory 4 from the database which minimizes the norm

ln = ~ll-

The paper is a successor to [2], which describes the data structure to store trajectories which is used here.

Efficient algorithms to answer these type of queries should prove useful for a number of applications.
As an example, consider the path-planning problem for a robotic arm. Suppose that a large number of
feasible trajectories of the robotic arm have been stored in a database. Let n be the desired path of the
arm. It is not necessary that 7 itself be a feasible trajectory. Query 2 would return the feasible trajectory
v of the arm which is closest to the desired path 7.

As another example, consider a database containing control trajectories for an aircraft. Assume that
those trajectories which enter into an unstable control regime somewhere along their flight path are tagged.

*This research is supported in part by grant NAG2-513 from NASA and by grant DMS-8904740 from the National
Science Foundation and by the Laboratory for Advanced Computing. Address: Department of Mathematics, Statistics,
and Computer Science, Mail Code 249, University of Illinois at Chicago, Box 4348, Chicago, IL 60680, (312) 413-2164,
grossman@uicbert.eecs.uic.edu.
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Let n denote a measured portion of the flight path. Then Query 1 would return the nearest full control
trajectory in the database, which includes information about the stability of the trajectory. More generally,
one could imagine retrieving from the database those stable trajectories which avoid a given obstacle, such
as a turbulent region of space. In other words, the query could be used as part of a supervisory control
system and be viewed as a means of extracting qualitative or summary information about the control
system.

The data structure we use to represent trajectories is closely related to hashing methods for curves that
have been used in computer vision; see [7] and [8]. A related means of extracting qualitative information
from dynamical systems is described in [1]. We are concerned in this paper with data structures and
indexing for object oriented databases consisting of trajectories. For general methods of indexing in object
oriented databases see [3], [4], [5], and [6].

In Section 2 we review the relevant facts about trajectories of differential equations and define different
data structures to store trajectories. In Section 3, we show how these data structures can be used to answer
the queries above. Section 4 contains some concluding remarks.

2 Paths, trees and vector fields

In this section, we describe a data structure for paths following [2]. The point of view is to assume that
the path arises from a trajectory of a differential equation and to base the data structure upon the initial
value problem for the differential equation.

We begin by recalling some basic facts and definitions about trajectories of differential equations. Let
D, =0/0z,. A vector field

N
E=) a"D,
p=1
on R is determined by specifying N functions
a,:RY — R.
We also denote the vector field by E,. A parameterized path
v: %t c R — RN
is called a trajectory of the dynamical system
z(t) = Ea(2(t)) (1)
in case it is the unique solution of the initial value problem
2(t) = Ea(2(1)),  =(t°) = 2(t%). (2)

We define the vector field/reference point representation or VEFREP of a path 7 to be the pair (E, R),
consisting of a vector field E and a reference or initial point R, where the trajectory is the solution of the
initial value problem

z(t) = E(z(1)), z(t®) = R.
Note that this representation is not unique. Indeed, several different vector fields could have a given spatial
curve as a trajectory, while any point along the spatial curve could serve as the initial value.

We now give an algorithm whose input is a parameterized path

n: [to)tl] C R — RN:
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and whose output is a labeled, rooted binary tree. We assume for convenience that t® = 0 and t! = I;
if not, we can reparameterize. We do not assume that 7 is a trajectory of the dynamical system (1). To
define the tree, we first fix a tolerance € > 0. The tree we define is a subset of the complete rooted binary
tree. There are 2% children at height k from the root: number them left to right from 1 to 2*. We assign
two labels to the jth node v from the left at height k:

<) = (172 () - nly)) e RY

and -
] —
9(1)):7;( ok )ERN.
We use the following stopping criterion to grow the tree. If a node has children v and v’ with labels x and
k', respectively, and if ||k — &’|| < ¢, then the nodes v and v’ are leaves. Here || - || denotes the Euclidean

norm. We denote by T'() the tree that arises in this fashion. This tree has a simple interpretation: the
8 labels represent points on the path 5, while the « labels represent approximate tangent vectors at those
points. The tree is grown until the difference between two adjacent tangent vectors is uniformly small.

Using the tree T'(n), we now define a vector field E(n). The vector field E(n) is simply the vector field
which interpolates the labels (8(v), n(v))

E(n)(8(v)) = &(v), (3)

for all leaves v in T(n). Recall that 8(v) is the point on the curve 1 corresponding to the node v, and &(v)
is the approximate tangent to the curve at that point.

For some applications, it is better to impose an upper bound on the degree of the interpolating functions.
Let ¢ denote this bound. In this case, we can define the vector field £ (n) by requiring that the coeflicients
b% minimize the quantity

Y. Em@@E)) - s, (4)
leaves v
where the minimum is over vector fields with interpolating functions of degree less than or equal to ¢.
We conclude this section by defining a specific point R(n), associated with a parametrized path

n:[t°%t']Cc R — RV,

Let T(n) the corresponding tree and E(n) the associated vector field. Consider the trajectory defined by
the initial value problem '

(t) = Ea(2(t)),  =(0) = n(t°).

Let ¥ denote this trajectory. In general, v is only an approximation to the path 5. Define R(n) € RV as
follows: if the path v and the unit sphere in RY intersect precisely once, let R(n) denote this intersection; if
they intersect several times, let B(n) denote the intersection which occurs first when the list of intersections
is ordered in lexigraphical order; otherwise, let R(n) denote the closest point between the unit sphere and
the trajectory 7.

3 Query Algorithms

Let 7 C R™ denote a path. In this section, we define an index I(n) that can be used for storing and
accessing the path n. First, fix injective functions

hn i R® — {1,2,...},
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for each n = 1,2, ... Given a path 5, first compute its VEFREP (E(n), R(n)) from its rectifying tree T(n).
Assume the tree T'(n) has K leaves. Next, view the coefficients of the vector field E(n) as a K - N vector,
so that the pair (E(n), R(n)) has (K + 1)N components. Then the hash indez H(n) associated with 7 is
defined by

H(n) = hge4yn(E(n), R(n))-

We can now assign indices I(n) to trajectories sequentially: use the hash index H(7n) to determine
whether the path 1 has an index assigned to it. If so, use that index; if not, use the next available index.
Suppose that v,,...,7p are trajectories of the dynamical system

z(t) = Ea(2(t)),

as a ranges over some parameter space. To each such trajectory 7, let

(E(7), R(7))

denote its VEFREP representation. Given a parameterized path 7, Algorithm 1 below returns the trajec-
tory v from the database which contains a segment equal to the path n. If there is no such trajectory, null
is returned.

Algorithm 1. The input is a parameterized path 5, and the output is the trajectory v from the database
answering Query 1. Fix € > 0 and ¢ > 1.

Step 1. This step is a precomputation. For each trajectory v, ¢ = 1,..., P, compute its VEFREP
representation (E(¥;), R(v;)). This depends upon ¢ and e.

Step 2. Given a query path 7, compute its rectifying tree T'(n). This depends upon €. Using T(77) and
Equation 4, compute its VEFREP representation (E(7), R(n)). This depends upon g.

Step 3. Using the VEFREP (E(7), R(1)), compute the hash index H(n). If there is an index in the row
H(n) of the index table, retrieve the VEFREP representation (E, R) corresponding to this index;
otherwise, return null.

Step 4. If Step 3 yielded a VEFREP (E, R), return the trajectory ¥ which is the solution to the initial
value problem

#(t) = E(z(t)), z(0) = R;

otherwise, return null.

Theorem 3.1 Assume that the database contains n trajectories. Algorithm 1 answers Query 1 tn time

o(1).

Easy modifications of Algorithm 1 can be used to answer Query 2 in time O(n).

4 Conclusion

In this paper, we have described preliminary work concerned with queries of databases containing trajec-
tories of differential equations. Trajectories of differential equations have many different representations.
For the types of queries considered here, we have chosen to represent parameterized trajectories

v:[t°t)c R — RN
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by a pair, consisting of a vector field £ on RV with polynomial coefficients and a point R € RY such that
the trajectory is the solution of the initial value problem:

i(t) = E=(1)), =(®)=R.

We call this a VEFREP representation. Using the VEFREP representation, we have introduced an index
I(y) and algorithms to answer queries which retrieve subtrajectories and close by trajectories of a given
query trajectory.
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A FAST ALGORITHM FOR CONTROL AND ESTIMATION USING A POLYNOMIAL STATE-SPACE STRUCTURE

James R. Shults and Thomas Brubaker
Colorado State University

Gordon K. F. Lee
North Carolina State University

ABSTRACT

One of the major problems associated with the control of flexible structures is
the estimation of system states. Since the parameters of the structures are mnot
constant under varying loads and conditions, conventional fixed parameter state-
estimators can not be used to effectively estimate the states of the system. One
alternative is to use a state-estimator which adapts to the condition of the system.

One such estimator is the Kalman filter. This filter is a time-varying recursive
digital filter which is based upon a model of the system being measured. This filter
adapts the model according to the output of the system. Previously, the Kalman filter
has only been used in an off-line capacity due to the computation time required for
implementation. With recent advances in computer technology, it is becoming a viable
tool for use in the on-line environment. The following paper describes a distributed
Kalman filter implementation for fast estimation of the state of a flexible arm. A key
issue, is the sensor structure and initial work on a distributed sensor that could be
used with the Kalman filter is presented.

INTRODUCTION

The parameters of flexible structure systems are generally dynamic. They change
under varying load and environmental conditions. When there is a need to control such
dynamic systems, these parameters must be measured or estimated. These systems are
usually very complex and often more parameters are needed for control than can be
measured. The parameters which cannot be measured must therefore be estimated in some
manner.

With the rapid evolution of computers, the Kalman filter is becoming an excellent
tool for estimation of system parameters. Previously, this filter could only be used
in off-line applications such as filtering of laboratory data Brubaker. Now, it is
becoming useful in on-line environments for state estimation.

The Kalman filter is a time-varying digital filter which is based upon a model of
the system being studied. The filter uses signals from the system to adapt the model
and estimate system parameters. These parameters along with the measured signals can
then be used to control the system. A key issue in the use of parameter estimation is
the sensor distribution and use of appropriate sensor types. Along with this is the
data fusion issue from sensors to provide appropriate control information. Here we only
describe the estimation procedure with comments on the sensor issue. A block diagram
of the filter structure is shown in Fig. 1 for a single input system. For multiple
sensors, multiple filters could be deployed and data fusion done with filter outputs.

This work was supported by NASA Subcontract G-1926-1.
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KAIMAN FILTER THEORY

The Kalman filter is a time-varying recursive digital filter which estimates the
states of a system from one or more sensor signals. The filter operates on time domain
signals using linear least squares estimation that utilizes all of the past data from
the output signals. This estimation can provide separation of signal components. These
components can be used to determine the states of the system. The Kalman filter can
also improve noise reduction on the signals under consideration [Brubaker].

The first step in the design of a Kalman filter is the choice of a linear or
linearized signal model that describes the signal or serves as an approximation to the
signal. One of the most flexible of these models is a polynomial. The input signal to
the filter (output from the system), z(t), is represented by a polynomial of order m.
At time t = nT, where T is the sampling period of the system, the state vector for the
system is given by

dz
dt

z(nT) =| (1)

danz
| dt 7]

t=nT

Here, the system is being represented in canonical state-space form with the components
of the state vector being the derivatives of the polynomial model. When a system is to
be represented in a different state-space form, a linear transformation can be performed
to change the state vector to the desired form.

To use the polynomial model for the Kalman filter, the state vector must be

redefined using a Taylor Series representation for each element of z(nT). The resulting
state vector is

dz
dt

x(nT) = ) (2)

" dz”
|t qe )

t=nT

The state of the system at t = (n+h)T can now be described in terms of the state at t=nT
by the relationship

x[(n+h) T] =® (h) x[nT] (3)
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where ©®[h] is the following (m+l) X (m+l) state transition matrix:

1 h .. hm
01 .. mh™1

®h =|. ... . (4)
0 0 . 1

The filter is implemented by first producing forecasts of the estimate

x,(nT) = ®(1)x[(n-1)T] (3)

and covariance matrix

S (nT) = ®(1)SH(n-1)TI®T(1) + 0

at t = nT using the previous estimate, x{(n-1)T]}, and covariance matrix, S[(n-1)T].
These forecasts are obtained by using the state transition relationship given in (4).
The matrix Q is the covariance of the driving noise. It allows the designer to "fade"
the effects of past inputs. The covariance forecast is then used to calculate the
Kalman Gain Matrix,

K(nT) - 5,(nT)MT[o® + MS, (nT)MT] ! (7)

The term o2 is the variance of the measurement noise. The matrix M is a row matrix

which relates the measurable state variables to the actual measurements. For this
filter, the measurements are assumed to be components of the state-vector z(Nt) given
in (1). Therefore, M relates the estimate vector x(Nt) given in (2) to the measured
components of z(Nt). The Kalman Gain Matrix is then used to obtain the covariance
estimate,

S(nT) = [I - K(nT)M]S, (nT) (8)

and the state-vector estimate,

x(nT) = x,(nT) + K(nT) [y(nT) - Mx, (nT)] (%)

In (9), the term y(nT) is the data measurement vector at t=Nt which consists of the
measured components of z(nT). Equations (1) through (9) are the basis for the Kalman
filter. A complete derivation for these equations can be found in many texts for
example, Liebelt and Meditch.
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KAILMAN FILTER DESIGN

With the choice of a polynomial model for the input signal, the design of a Kalman
filter involves the determination of a few key parameters. These parameters are set
according to the system and design specifications.

The first group of parameters which must be determined are associated directly
with the properties of the system. The first is the sampling period, T. This period
is usually set according to the nyquist rate,

P

sT T 2f, (10)

where f; 1is the maximum frequency of the bandlimited input signal and £, 1is the
sampling frequency.

The second parameter is the variance of the sensor noise, o¢%. This parameter is
a property only of the sensors which are employed. Another term which is determined
from the sensors which are utilized is the Data Measurement Vector. This is the number
of terms in the state vector of equation 1 which can be directly measured.

The remaining filter parameters are determined using both design and system
specifications. The order of the polynomial model must be set according to the sampling
period and the angular velocity of the input signal oscillations. The calculation time
of the filter is larger for higher orders. The order must be small enough to allow the
calculation time to be smaller than the sampling period. On the other hand, the order
must be large enough to allow the filter to track the input signal well.

The key design parameter of the Kalman filter is the covariance matrix of the
driving noise, Q. For this paper, the driving noise is assumed to be uncorrelated white
noise. This simplifies the matrix Q to a diagonal matrix. After testing different
forms for the Q matrix, little difference was found. Therefore, the matrix Q was taken
to be the identity matrix times a constant, f.

The constant f is known as the fading factor. This term determines how the filter
will handle past data. When £ = 0, the filter is simply an expanding memory filter.
All past data is used evenly to calculate the present estimate. This will cause the
variance of the estimate and its covariance matrix to decrease to zero as time
increases, but deterministic errors will become large. If the fading factor is greater
than zero, more emphasis is placed on the present sample than on past samples. Thus,
the past samples are faded from the filter's memory. Larger values of f cause past
samples to fade more quickly. The fading of past samples causes the Kalman filter to
have a much smaller deterministic error, but the variance of the estimate and its
covariance approach the values at the input.

One way to minimize the deterministic error associated with a small fading factor
is to periodically reinitialize the Kalman filter. This requires establishing a
relationship between the frequency of initialization and the fading factor. The fading
factor should be the minimum value for which the deterministic error just prior to
reinitialization is within specifications. This value will cause the Kalman filter to
provide maximum noise reduction while meeting deterministic error specifications.
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To reinitialize the Kalman filter, a nonrecursive filter is used. This filter
utilizes a window of the past samples to estimate the state vector and its covariance.
These parameters are then passed to the Kalman filter.

DESIGN EXAMPLE

The Kalman filter was tested in two separate operating conditions. The first was
with data acquired from the hub of the flexible arm at CSU. The second test was with
an eighth order model of the flexible arm. This test included the simulation of the
system with control in a closed-loop environment. A program has been developed which
allows the design and testing of these and other filter structures. The results of
these experiments are discussed in the following paragraphs.

The data acquired from the hub of the flexible arm was position information
sampled at a rate of 100 samples per second. A polynomial model of order 3 was required
to accurately represent the position of the hub. Since velocity information was not
available, a Data Measurement Vector of one was used. The variance of the sensor noise
was arbitrarily set at 10"%. The filter was reinitialized every 100 samples, 1 second,
and a fading factor of 107% was used.

The outputs of the filter are shown in Figs. 2 through 5. Figure 2 demonstrates
the ability of the filter to estimate the position signal. Figure 3 displays the
estimate of the velocity. Figures 4 and 5 show the estimates of the second and third
derivatives of the position signal. No actual data was available for the second and
third derivatives. Therefore, the accuracy of these estimates could not be determined.

The second test of the filter involved an eighth order simulation of the flexible
arm with the filter outputs used as control feedback. The simulation provided the
position of the tip as input to the filter. A third order polynomial model was used for
the Kalman filter. The variance of the sensor noise was taken to be 107 and the fading
factor was 5x10°12. The feedback control was implemented as simple proportional position
only negative feedback. The feedback gain was set to 2.5

The results of this simulation are shown in Figs. 6 through 9. Figure 6 shows a
comparison of the position signal before and after the Kalman filter. Figures 7 through
9 show the first, second and third derivatives of position.

FUTURE WORK

Future work on the Kalman filter consists of implementation issues. A good design
method has been set forward, but many implementation issues have not been addressed.
The major implementation problem comes with the selection of hardware to run the Kalman
filter. This hardware must consist of a microprocessor which is fast enough to meet the
sampling rate, but inexpensive enough to make its use feasible. Another major problem
comes in the sensors which will provide state information for the Kalman filter. These
sensors must be selected for each application such that they provide accurate
information with a low noise level. A final problem which must be addressed is a method
to download the Kalman filter program to the hardware. This downloading could be done
by the design program with the appropriate interfaces. After these problems have been
resolved, the Kalman filter will provide a very effective state estimator in many
applications.
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A NEW SENSOR

Within the past few months our group has designed and performed initial tests on
a distributed fiber optic sensor. Here, the fiber is connected to a flexible structure
over a one meter length. The fiber is excited with a milliwatt laser and the defraction
pattern out of the end is used to provide an estimate of displacement. Figures 10 and
11 illustrate the results via change in the output pattern. For implementation a CCD
memory could be used to store the pattern and subsequently the information is driven
into a computer where basic pattern recognition techniques are used to generate good
estimates of displacement. A well designed system can also be used to estimate
velocity. Within the context of this paper, a two-dimensional Kalman filter can be used
to estimate parameters. Note that in Figs. 10 and 11, black and white images are shown.
In a physical system color will be used.

CONCLUSIONS

An investigation has been started into the usefulness of the Kalman filter as a
state estimator in an on-line environment. Previously, the filter has been used
strictly in an off-line capacity to do data analysis. With the advances in computing
speed, the filter is now becoming feasible as a real-time state estimator.

A Kalman filter based on a polynomial state-space model has been tested on
flexible structure data. This filter has proven to give excellent state-estimation and
noise reduction in such systems. The polynomial model provides for a very easy design
of the filter. Do to the ease of design, a program has been written to provide
assistance in the design process.

The Kalman filter design program provides a very straight forward design
methodology with an interactive graphics approach. This approach allows the designer
to see how well the filter works and the effects of changes in the design parameters.
When the program is combined with the appropriate hardware, a very effective state
estimation tool will become available for use in the real-time environment.
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Block Diagram of Kalman Filter System.
For multiple sensors, multiple distributed Kalman

Filters could be employed with data fusion a key, important and

still a research issue.

Figure 1.
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Figure 10. Fiber-Optic Output With Zero Beam Displacements

Figure 11. Fiber Optic Output With 5 cm Displacement
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SUPERCOMPUTER OPTIMIZATIONS FOR STOCHASTIC OPTIMAL CONTROL
APPLICATIONS*
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SUMMARY

Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic
programming problems are presented. The computational method is valid for a general class of optimal
control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in
continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization
techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop
restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and
supercomputing hardware help alleviate Bellman’s curse of dimensionality in dynamic programming
computations, by permitting the solution of larger multibody problems. Possible applications include
lumped flight dynamics models for uncertain environments, such as large scale and background random
aerospace fluctuations.

INTRODUCTION

The objective of this research is to provide a general, highly optimized, computational treatment of
stochastic optimal control applications in continuous time. Advanced computing techniques have been
implemented so that stochastic dynamic programming algorithms can be used to solve larger optimal
control problems than possible by ordinary computing methods. Optimization techniques will help alleviate
Bellman’s curse of dimensionality, in that the computational and memory requirements grow exponentially
as the dimension of the state space increases, limiting the size of the control problem that can be
computed. Computer optimization techniques can help alleviate Bellman's curse by permitting larger, but
still hardware limited problems to be computed. Optimization consists of parallelization and vectorization
methods to enhance performance on advanced computers, such as parallel processors and vectorizing
supercomputers. Preliminary results for massively parallel processors are also presented.

General Markov random noise in continuous time consists of two kinds, Gaussian and Poisson.
Gaussian white noise, being continuous but nonsmooth, is useful for modeling background random
fluctuations, such as turbulence and moderate environmental variations. Poisson white noise (its frequency
spectrum is also flat like Gaussian noise), being discontinuous, is useful for modeling large random
fluctuations, such as shocks, collisions, unexpected external events and large environmental changes. Our
general feedback control approach combines the treatment of both linear and nonlinear (i.e., singular and

*This work was supported by the National Science Foundation Computational Mathematics Program under grant DMS-88-
06099 at the University of Illinois at Chicago, by the Argonne National Laboratory Advanced Computing Research Facility, by
the University of Dllinois at Urbana National Center for Supercomputing Applications, and by the UIC Workshop Program on
Scientific Supercomputing.
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nonsingular) control through the use of small to moderate quadratic costs. The methods also handle
deterministic and stochastic control in the same code, making it convenient for checking the effects of
stochasticity on the application. Some actual applications are models of resources in an uncertain
environments [16], [13], [8].

The Markov, multibody dynamical system is illustrated in Figure 1 and is governed by the stochastic
differential equation (SDE):
dy(s) = F(y,s,u)ds + G(y,s)dW(s) + H(y, s)dP(s) , (1)
with initial value y(t) = 2, 0 < t < 5 < ty, y(s) € Dy, u € D, where y(s) is the m x 1 multibody state
vector at time s starting at time ¢, u = u(y, s) is the n x 1 feedback control vector, F is the m x 1
deterministic nonlinearity vector, W is the r-dimensional normalized Gaussian white noise vector, P is the
independent g-dimensional Poisson white noise vector with jump rate vector [Ai]gx1, G is an m x r diffusion

coefficient array, and H is an m x ¢ Poisson amplitude coefficient array. In a more general treatment, the
Poisson jump amplitude can also be random.

The control criterion is the optimal expected cost performance,

V(1) = min [MEAN [Vly,s,w.P. W) | y(t) = x], (2)

where the random total cost is
ty
Virtw P W = [7ds Cy(s).s,uly(s).s)) )

on the time horizon (¢, t;). The instantaneous cost function C = C(x,t,u) is assumed to be at least a
quadratic function of the control,

C(x,t,u) = Co(x,t) + CT(x,t)u + JulCy(x,t)u. (4)

C» is assumed to be positive definite, so that large controls are much more costly on a per unit basis. In
addition, the dynamics in (1) are assumed to be linear in the controls,

F(x,t,u) = Fo(x,t) + Fi(x,t)u, (5)
remaining nonlinear in the state variable x.

The Bellman functional PDE of dynamic programming (or Hamilton-Jacobi-Bellman Equation),

ov* .
0 = —BT + H[V]

ov

5t FavVv* + 16GT(x,t): vvTy*

(6)
+ Z A V(x4 Hy(x,t),t) - V*(x,t) ]
=1

+ Co + (JU*-uUR)TCU*,
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follows from the generalized It6 chain rule for Markov SDEs as in [7] and [16]. Here, U* is the optimal
feedback control computed by constraining the unconstrained or regular control,

Ug(x,t) = -C;1(C; + F{VV*Y), (7)

to the control set D,, under the assumption of positive definite quadratic costs. In general, the Bellman
equation (6) is nonlinear with discontinuous coefficients due to the quadratic last term,

*
2

(U -~ Ug)TC,U*, in (6) and due to the compact relationship between the constrained, optimal control

and the unconstrained, regular control,

U, (x,1) = min[Usmex.;» max{Usmin s, Uni(%, 1)]], (8)

for 1 = 1 to n controls. Here, Uy, is the minimum control constraint vector and U, is the maximum.

. . . *
As the constraint components are attained, the optimal control component U, , changes from the regular
control component, I/, ;, to components of the constraints, Upin; 0 Umazi, which in general are functions
of state and time. In (6), the symbol (:) denotes the scalar matrix product A: B =Y, Y0 4,5 B;;,

Lat=1 £ug=1

assuming B is symmetric. It is important to note that the principal equation, the Bellman equation (6), is

an exact equation for the optimal expected value V' and does not involve any sampling approximations
such as the use of random number generators in simulations.

As the number of state variables, m, increases, the spatial dimension rises, and computational
difficulties are present that can compare to those of three-dimensional fluid dynamics computations. Thus
there is a great need to make use of advanced-architecture computers, to use parallelization as well as
vectorization, in order to solve larger state space systems. The Panel on Future Directions in Control
Theory [6] stresses the importance of making gains in such areas as nonlinear control, stochastic control,
optimal feedback control and computational methods for control. This paper is a report on our efforts to
treat all of the above mentioned areas combined from the point of view of computational control.

C,Co,C1,C,
DX, DT
F,F,, F,FV
G

H H,

H

j’jSle,

m,M

SYMBOLS

cost coefficients (eq. (4))

state mesh increment, time increment (eq. (9))
nonlinearity function coefficients (eq. (5))
Gaussian noise amplitude matrix (eq. (1))
Poisson noise jump amplitude (eq. (1), (6))
Hamiltonian for Bellman Equation (eq. (6))

indices for state mesh points (eq. (9), (15), (18))

state dimension, number of mesh points for each state (eq. (1), (9))
control space dimension (eq. (1))

Poisson noise vector {eq. (1))

Poisson noise dimension (eq. (1))

Gaussian noise dimension (eq. (1))

forward time variable (eq. (1))

backward time variable, final time, discrete time (eq. (3), (9))
control vector (eq. (1))

regular control, optimal control (eq. (7), (8))

control constraint vectors (eq. (8))

total cost, optimal expected total cost (eq. (3), (2))

Gaussian noise vector (eq. (1))

initial state vector, discrete state (eq. (2), (9))
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y forward state variable (eq. (1))
Al component of Poisson jump rate vector (eq. (6))

THE BASIC COMPUTATIONAL PROCEDURE

The integration of the PDE in (6) is backward in time, because V* is specified finally at the final time
t = ty, rather than at the initial time. A summary of the discretization in state and backward time is
given below:

x — Xj = [Xij.]mxl = [Xa + (Gi — 1) DXilmx1 »
i = [fi)mx1, wherej; = 1toM;, fori = ltom;
s — T =t; — (k- 1)-DT, fork = 1to K ; ()
V(X Te) — Vies RV ](xj’Tk+%) o Hj.k+%;

where DX; is the mesh size for state 7 and D7 is the step size in backward time.

The numerical algorithm is a modification of the predictor corrector, Crank Nicolson methods for
nonlinear parabolic PDEs in [5]. Modifications are made for control feedback, switch term optimization
and delay term calculations. Derivatives and Poisson induced differences are approximated with an
accuracy that is second order in the local truncation error 0?(DX;), at all interior and boundary points.
Even though the Bellman equation (6) is a single PDE, the process of solving it not only produces the

optimal expected cost V*, but also the optimal expected feedback control law U”. This is because the
Bellman equation is a functional PDE, in which the computed regular control feeds back into the optimal
cost and the optimal cost feeds back into regular control through its gradient. The nonstandard part of the
algorithm is to decompose this tightly coupled analytical feedback system so that both the cost and the
control can be calculated by successive iterations, such that each successive approximation of one quantity
improves the next approximation of the other quantity. While our procedure may look superficially like a
standard application of finite differences, it is not due to the nonstandard control features mentioned
above. For these reasons, we are not aware of any other successful stochastic dynamic programming code
that treats anywhere near the generality of applications that we treat and with the advanced computing
techniques that we use, especially with regard to Poisson noise. Variations of this algorithm have been
successfully utilized in [16] and [8]. Quadrat and his co-workers (1] discuss several algorithms for stochastic
dynamic programming problems that admit stationary solutions, and describe an expert system for their
solution.

Prior to calculating the values, V] x,;, at the new (k + 1)** time step for k = 1to K — 1, the old
values, Vj j and Vj ;_;, are assumed to be known, with Vjo = Vj;. The algorithm begins with an
convergence accelerating eztrapolator (z) start:

v® = 33 Vix — Vikor) (10)

j.k+%

The extrapolated values are use to calculate updated values of the gradient DV, the second order
derivatives DDV, the Poisson functional terms (V* evaluated at (x + H)), the regular control UK, the
optimal feedback control U*, and the spatial functional H; j_.¢s of the Bellman equation. These
evaluations are used in the eztrapolated predictor (zp) step:

AU DT%HE) . (11)

Jk+1 kts
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which are then used in the predictor evaluation (zpe) step:

(xpe) _ (Xp) 7.
VIS = HE ¢ Vi, (12)

and continuing with other terms of the spatial functional . The evaluated predictions are used in the
corrector (zpec) step:
yireeerth oy oy pr oy (13)

J k41 : Jkt+3

for 4 = 0 to Ymae until the stopping criterion is met, with corrector evaluation (zpece) step:

(xpece,y + 1) _ 1,y-(xpecy + 1) -
VJ’.k+% = 2(Vjan + Vi) - (14)

The stopping criterion for the corrections is formally derived from a comparison to a predictor corrector
convergence criterion for a linearized, constant coefficient PDE. A robust mesh selection method is used to
determine the stopping criterion, so that only a couple of corrections are needed, except at the first time
step. The proper selection of the time to state mesh ratio guarantees that the corrections for the
comparison equation converge, whether the Bellman equation is parabolic-like when the Gaussian noise is
present or hyperbolic-like when there is no Gaussian noise.

Current efforts are concentrated on implementing the code on the Alliant FX/8, Cray X-MP /48,
Cray 25/4-128, and the Connection CM-2 for more general multi-state and multi-control applications. In
order to implement the code for arbitrary state space dimension, a more flexible data structure is needed
for the problem arrays, F, G and H, as well as for the solution arrays, V along with its derivatives and U.

The advantages of the algorithm is that it 1) permits the treatment of general continuous time
Markov noise or deterministic problems without noise in the same code, 2) maintains feedback control, 3)
permits the cheap control limit to linear singular control to be found from the same quadratic cost code,
and 4) produces very vectorizable and parallelizable code whose performance is described in the next
section.

ADVANCED SUPERCOMPUTER OPTIMIZATION

The code for the algorithm has been developed and tested on three advanced architecture machines,
the ACRF Alliant FX/8 vector multiprocessor at Argonne National Laboratory; the NCSA Cray X-MP/48
and the NCSA Cray 25/4-128 at the University of Illinois in Urbana; the massively parallel Connection
Machine CM-2 at both the ACRF and NCSA. The Alliant FX/8, with its superb concurrent outer, vector
inner (COVI) parallelizing compiler, is mainly used to test for the parallelization of the code. The Cray
X-MP/48, noted for its very fast pipelined processing unit, is used for the testing of small and moderate
size code (less than 1 MW, where MW denotes a megaword or one million words). As the number of states
grows, the problem size grows exponentially, we have to make use of the huge internal memory (up to 128
MW) of the Cray 25/4-128 or large numbers of parallel processors on the Connection Machine CM-2.

The present code under testing has been obtained from the three-state, three-control modification
of Hanson’s two-state, two-control resource model [8]. Modifications have been made to the present code so
that it can apply to arbitrary number of state variables and mesh points by just changing a few
parameters. numbers of state variables m and mesh points M.

Initial parallelization and vectorization of the algorithm were done by what might be called the
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“Machine Computational Model Method,” i.e., tuning the code to optimizable constructs that are
automatically recognized by the compiler, with the Alliant FX/8 vector multiprocessor (2] in mind. All
inner double loops were reordered to fit the Alliant concurrent-outer, vector-inner (COVI) model. All
non-short single loops were made vector-concurrent. Short loops became scalar-concurrent only. Multiple
nested loops were reordered with the two largest loops innermost. A total of 37 out of 39 loops was
optimized for the two-state code, two-control model with Poisson noise. Detailed results are reported in [8],
[9] and [10].

The relative performance of column oriented versus row oriented code is discussed in [11].
Dongarra, Gustavson, and Karp [4] have demonstrated that loop reordering gives vector or supervector
performance for standard linear algebra loops on a Cray 1 type column oriented FORTRAN environment
with vector registers. However, for the stochastic dynamic programming application, the dominant loops
are non-standard linear algebra loops, so that the preference for column oriented loops is not a rule, as
demonstrated on the Alliant vector multiprocessor [11]. The present code under testing has up to four
states and controls, with Gaussian as well as Poisson noise. This code is a general modification of the
two-state, two-control model.

Vector Data Structure

In the original code, the data structure for the problem arrays, F and G, the solution arrays V, the
derivative arrays, and the control arrays U, depend on all the numerical node indices, 7s(is), for all state
variables. The resulting data structure takes the form:

F(is,js(l),js(Z),---,js(m)) (15)

for each state equation, s = 1 to m, with the nonlinearity function used as an example. If it is assumed
that there are a common number M = M; = M, = --- = M,, of nodes per state, then js(is)=1to M
points for is = 1 to m states. As a consequence, the typically dominant loops for the computation of the
nonlinearity function F, the solution gradient DV, and similar arrays, are nested to a depth of at least
m + 1. A typical loop will take the form:

do 1 i=1m
do 1jl= 1M
do 1 m= 1M

1 F(ijL,j2,--jm) = -+«

This state size dependent loop nest depth level of m + 1 inhibits the development of general multibody
algorithms, especially when the state size m is incremented and the number of loops in each nest has to be
changed. Also, vectorization is inhibited for compilers that vectorize only the most inner loop. As the
number of states grows, the computational load will grow asymptotically like some multiple of

m-M™=m.eminM) (16)

i.e., the load grows exponentially in the number of states m. The exponential growth in (16) is merely a
quantitative expression of Bellman's curse of dimensionality.

One way around this inhibiting structure is to use a vector data structure [12):

FV(is, jv) (17)

62



to replace the original hypercube type of data structure in (15), using the nonlinearity vector as an example,
such that all the numerical nodes are collected into a single vector indexed by the global state index juv,
where jv = 1 to M™ over all state nodes.

m

ju="3 (js(d) - 1) M=t 41, (18)

=1

in the the case that the state mesh size, M; has a common value of M for all <.

Both the direct mapping from the original data structure to the vector data structure and the
inverse mapping are needed to compute the amplitude functions, F, G and H, as well as the derivatives of
* . . . . .
V", because these quantities depend on the original formulation. The pseudo-inverse of the vector index in

(18) can be shown to permit the recovery of the individual state indices by way of integer arithmetic:
m

jslisijo) =1+ [jv—1- 37 (js(i;jv) = 1) M7'Y/MH, (19)
i=ia+1
recursively, for is = m to 1, by back substitution, with 3772 ., ¢; =0, as long as each state has the same

number of discrete nodes M. The vector data structure of (17) to (19) results in major do loop nests of the
order of 1 to 2, rather than order of m + 1.

A typical vector data structure loop has the form

do 2 i=1,m ! parallel loop.
do 2 jv=1 Mxsxm | vector loop.
2 FV(i,jv) = -

resulting in collapsing the loop nest depth from m + 1 to a depth 2, independent of the number of states m.
This is analogous to the automatic compiler technique of loop collapsing on the Alliant for simple loops.

Table I shows the performance of the code for m = 3 states and M = 16 nodes per state on the
Alliant FX/8 at Argonne National Laboratory’s ACRF. implemented and run on vector multiprocessors
which will be discussed in the following two subsections.

Parallelization in Alliant FX /8

When loop 2 above is executed on multiprocessors such as the Alliant FX/8, due to the covI
(concurrent-outer, vector-inner) compiler optimization scheme, the i-loop will run in parallel while the
jv-loop is vectorized. For machines with such architecture, the gain in speed is achieved through the full
exploitation of all its processors. If the number states m is less than the maximum number of processors
(the maximum number of processors is eight on the Alliant), performance ceases to improve beyond m
processors as demonstrated in Table I when the number of processors p is greater than three. The speedup
Sp2 = T1.2/Tp2 for loop 2 also levels off at roughly 2.9 in this table starting at p = 3. This means
degradation in efficiency because a large proportion of processors available are sitting idle.

One simple modification of the loop structure will solve the problem by parallelizing and
vectorizing the entire loop nest, further enhancing the performance. This is illustrated by the restructuring
of loop 2 by a compiler directive in loop 3 below.

do 3 jv=1 Mx*m ! vector-concurrent loop.

CVDSL NOVECTOR
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do 3 i=1m ! scalar loop.
3 FV(ijv) =

Due to the flexibility of the optimization scheme of the FX Fortran compiler, we can choose whichever
loop we want to parallelize and vectorize by inserting suitable compiler directives, such as CVD$L
NOVECTOR in loop 3. The i-loop is moved innermost and is forced to run in Scalar Mode by inserting a
CVD$L NOVECTOR directive. The modification has two effects:

1. the outer jv-loop is forced to run in Vector-Concurrent Mode, hence, full parallelization of the entire
work load can be achieved through self-scheduling by the compiler;

. moving the i-loop inner-most increases the chunk or grain size of each iteration, while overhead for
parallelization and vectorization is lessened.

The modification leads to an improvement of 46% of computing time for the code running by 8
processors in the Alliant.

Table II shows the performance of the modified code, for m = 3 states and M = 16 points per
state, on the Alliant FX/8 at Argonne National Laboratory’s ACRF. The speedup, also given in the table,
reaches a good value over six times executing on all eight Alliant processors using the form of loop 3. The
last column compares the results of using loops 2 and 3 for the main stochastic dynamic programming
loops and shows that the loop 3 form outperforms the loop 2 form by 1.85 times on all eight processors.
Thus, the restructured loop 3 gives better load balancing that the pure vector data structure of loop 2.

Parallelization on the Cray 2

Parallelization in the Cray 25/4-128 is done through multitasking. Basically, the compiler follows the
COVI optimization scheme that the outer loop will run in parallel and inner loop is vectorized. In a
multi-user environment such as that in NCSA, improvement through multitasking is hard to measure
unless the code is run in a dedicated machine. Therefore, performance utilities such as Job Accounting (ja),
are used to get an approximate measure of the CPU time and speed-up obtained.

Table III shows the performance of multitasking on the NCSA Cray 25/4-128. Note that the
timings grow drastically as either the state dimension m and the common mesh size M increase.

Performance on the Connection Machine

As the number of states increase, the performance obtained from Cray shows an exponential growth as
in Table IV. Thus for a larger size problem, another solution would be to implement the problem on a
massively parallel computer system. The Connection Machine CM-2 at the NCSA has 32K or 32, 768 bit
processors and one floating point processor for every 32 bit processors.

The preliminary results obtained from the Connection Machine are shown in Table IV. We
implemented the problem in the Fortran 8X language with array notation extensions and two dimension
data structure. Also the CM-2 directives CMFSLAYOUT and CMFS$ALIGN overlay different size of
arrays, in order to reduce the internal communication time and hence improve the performance. The
program is comnpiled with —~O option and run with at most 32K data processors in single precision. The
preliminary results on the CM-2 indicate that when the problem size increases, the Connection Machine
computes the problem with relatively small increase in the execution time. For instance, for the case nx=4
states, when mesh size per state increases from M=8 to M=16, the execution time increases by about 2.1
times for Real Time (sum of CM-2 time and the time on the front-end computer) and 5.8 times for CM
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Time in Table IV, while on the Cray the time increases by about 23.8 times, according to Table III, which
is much larger than for the CM-2.

It must be noted that the Cray and the CM-2 have different computational structures and our current
Fortran 8X program is translated from our Cray algorithm and data structure. A further goal will be to
modify the algorithm and data structure so that the performance on the CM-2 will be competitive with the
performance on the Crays in an absolute sense.

Computation for Boundary Points

The computation of the solution gradient DV and the array of second derivatives DDV, which is
carried out in the subroutine GETDYV, requires different algorithms for the interior nodes and the boundary
nodes. Due to the complexity and generality of the underlying stochastic dynamical system, the boundary
values cannot be specified in general, but must be calculated from the Bellman Equation (6) itself, except
for the most trivial boundaries and processes. Use of the Bellman Equation at the boundaries, makes the
algorithm segments for updating the boundary values quite different from the interior values in order to
maintain the same order of error as at the interior points, i.e., to avoid numerical pollution of the order,
O(DX)?, at the interior points. When the vector data structure is used, the boundary nodes (js(is) =1
and M) are scattered throughout the data arrays FV (is,jv). Due to this nonuniform distribution of the
boundary nodes, a time-consuming nested if-then-else loop has to be used in the original GETDV, which
greatly degrades the computation speed. For the current testing code with m =3 and M =16, GETDV
takes 34% of the running time in the Alliant runs and 30% in the Cray X-MP runs. One way to alleviate
this degradation is by homogeneous global computation and then separate recorrection for the boundary
points.

Since the proportion of boundary nodes is generally small compare with internal nodes (2/M for
M mesh points per state) and all of them can be extracted explicitly from the inverse vector index (19).
Hence, we can pass the whole data array through a homogeneous computation first, taking all points to be
internal nodes, then recorrect the boundary nodes outside the main loop. Artificial or redundant points are
added to prevent overwriting valid data, and it will be seen the resulting small addition to the memory by
the use of artificial points is worth the benefit in improved performance.

Table V compares the performance for the old and new forms of GETDV for different mesh
points M run on the CRAY X-MP. A faster run time for the new version of 1.45 times the old version and
a saving of up to 31% of running time is exhibited.

MEMORY REQUIREMENTS

Since the memory requirements grows exponentially with increases in the state variable from
Bellman's curse of dimenstonality (16), a machine with large internal memory is needed for the large state
variable case. For the sake of a uniform comparison, all the testings were carried out on the NCSA Cray
25/4-128, which possesses a huge internal memory (up to 128 MW). Table VI summarizes the memory
requirements for different test codes. Also in Table VI, the memory in words is compared to the order of
magnitude of the Bellman’s curse of dimensionality term in (16). The approximate asymptote for large
state dimensions m or very fine state meshes M is about 12, which gives the effective number of major
loops of nest depth m + 1. The CPU time measurements in Table IIT have similar exponential growth
characteristics to that of memory requirements.

CONCLUSIONS

Stochastic dynamic programming can be optimized for the a moderate and perhaps larger number of
state variables using a vector multiprocessor. Loop collapsing using a vector data structure, compiler
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directives making possible more efficient loop reordering, and homogeneous global computation making
boundary value computation more efficient, all help obtain superior optimization of the stochastic dynamic
programming code. Parallelization, vectorization, large memories, and other supercomputing features are
important in solving larger state space problems In order to handle a large number of state variables, a
large number of parallel processors with extremely large memory would be desirable, but Bellman’s curse
of dimensionality appears to very much weakened. Computation with massively parallel processors, like the
Connection Machine CM-2, is still preliminary, but shows promise for larger state spaces. These techniques
are generally applicable to other vector and parallel computers. Our general code is essentially valid for
general Markov noise in continuous time, feedback control, nonlinear control and the cheap control limit.
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Table I: Timings on the Alliant with vector data structure
for loop 2 with 3 states and 16 nodes per state.

Number of User CPU Speedup
Processors | Time (seconds) Sp.2

p Ty T12/Tp2

1 83.68 1.00

2 56.23 1.49

3 30.07 2.78

4 29.24 2.86

5 29.20 2.87

6 29.24 2.86

7 28.77 2.91

8 28.64 2.92

Table II: Timings on the Alliant with order and directive modified loops
for loop 3 with 3 states and 16 nodes per state.

Number of User CPU Speedup | Improvement
Processors | Time (seconds) Spa Ratio
P Tpa Tr3/Tp3 Tp2/Tp3
1 95.32 1.00 0.88
2 49.00 1.95 1.15
3 34.61 2.75 0.87
4 25.74 3.70 1.14
5 22.66 4.21 1.29
6 18.82 5.06 1.55
7 17.78 5.36 1.62
8 15.44 6.17 1.85
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Table III: CPU time (seconds) for different state dimensions
and different mesh sizes on the Cray 25/4-128 with Multitasking.

State Mesh Points M
Variables 8 16 32
m T Sp T Sp T Sp
2 0.033 | 1.60 | 0.130 | 3.66 0.685 | 3.54
3 0.104 | 3.53 1.169 | 2.86 24.626 | 1.54
4 2.527 | 3.14 | 60.151 | 1.73 | 2338.290 | 2.10

Table IV: CPU time (seconds) for different state dimensions
and different mesh sizes on the Connection Machine CM-2 (CM Time)
and front-end (Real Time).

State Mesh Points M
Variables 8 16 32
m Real Time | CM Time | Real Time | CM Time | Real Time | CM Time
3 10.97 2.79 21.51 5.83 52.53 30.14
4 36.02 11.42 76.01 66.41 — —

Table V: Performance comparison of the old and new forms of GETDV
on the Cray X-MP/48 for loop 3 with 3 states.

Number of | User CPU Time (seconds) | Improvement Per Cent
Mesh Points | Old GETDV | New GETDV Ratio Savings
M Told Tnew Told/Tnew 100(1 - Tnew/Told)
8 0.142 0.098 1.45 31.
16 2.093 1.523 1.37 27.
24 10.378 7.679 1.35 26.
32 32.725 24.234 1.35 26.
40 78.510 58.467 1.34 26.
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Table VI: Memory requirements for different state dimensions
and different mesh sizes on the Cray 25/4-128.

State Mesh Points M Mesh Points M
Variables | 8 | 16 | 32 8 [ 16 | 32
m Memory (MW) Words/m - M™
2 0.13 | 0.14 | 0.16 | 1000. | 270. | 78.
3 0.15 | 0.28 1.30 98. 23. | 13.
4 0.34 | 3.28 | 50.23 21. 13. | 12.

CONTROLS
[ui(y, 8)Inx1

\ MULTIBODY DYNAMICS

[Fi(y,u,$)lmx1 Nonlinearities

STATES

(¥ilmx1 [Wi(s)lrx1 Gaussian Noise

1 [Pi(8))gx1 Poisson Noise

Feedback in time dt

Figure 1: The stochastic multibody system with feedback.
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A Fast, Reliable Algorithm for Computing Frequency Responses of
State Space Models

Matt Wette
Jet Propulsion Laboratory, Caltech

Abstract

Computation of frequency responses for large or-
der systems described by time-invariant state space
systems often provides a bottleneck in control sys-
tem analysis. In this talk we show that banding the
A-matrix in the state space model can effectivly re-
duce the computation time for such systems while
maintaining reliability in the results produced.

Introduction to the Problem

Consider the following realization of some transfer
function G(jw):

2(t) = Az(t) + Bu(t), y(t) =Caz(t)+ Du(t)

where z € IR, u(t) € R™, and y(t) € IRP. The re-
lationship of the realization to the transfer function
is given by

G(jw) = C(jwl—-A)"'B+ D

In control system design the computation of the
frequency response plays an important role in
frequency-based design methods. For medium
sized problems the order of 2(¢) may be in the hun-
dreds while G(jw;) must be computed for hundreds
of values of wy. It has not been uncommon for a
frequency response calculation to require hours of
CPU time. Thus, efficient and reliable algorithms
for this computation are needed for handling large
order systems.

Typical Approach

A typical approach to computing frequency re-
sponses for state space systems is to first perform a
state transformation on the realization to bring the
A-matrix into some reduced form and then solve
the appropriate system of linear equations for each
frequency point.

Computational Issues

The above algorithm for computing frequency re-
sponses involves two issues: efficiency and sensitiv-
ity. A potential bottleneck in computing frequency
responses is the solution of (jwil—A)X = B for X.
Efficient computation is accomplished by reducing
A to some form A which allows efficient solution of
the above equation. Another issue is that of sen-
sitivity. The transformation process takes place in
finite precision arithmetic and hence will change, to
some degree, the properties of the transfer function
which the realization represents. It is important,
therefore, to consider the numerical properties of
the transformation.

Sensitivity of the Transformation

The effect of numerical computations in the pre-
sense of finite precision arithmetic can be treated
in terms of sensitivity of the coefficient matrices.
Tranformations which do not increase sensitivity to
state transformations are termed well conditioned.
lll-conditioned transformations can and usually do
significantly iucrease the sensitivity of the coefli-
cient matrices to small perturbations. Presense of
this sensitivity is often an indication of a numeri-
cally unstable algorithm.

Efficient Solutions to (jur/—A)X =10

As stated, efficient solution of the above equation is
usually accomplished by reducing A to some spe-
cial form. Consider the case where m = 1 (i.e.,
B € R™™!). Then for A in general form, solution
of the equation requires Q(n®) floating point op-
crations (or flops). For A in Hessenberg form or
Schur form, where A is “nearly” upper triangular,
solution of the equation requires Q(n?) flops. The
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transformation to produce these forms is known
to be extremely well-conditioned. For A in diago-
nal form or Jordan canonical form, solution of the
equation requires O(n) flops. However, the trans-
formation producing these forms may be very ill-
conditioned, leading to a reduced form which no
longer accurately represents the tranfer function
of interest. A good compromise is to seek some
compromise between the upper-triangular and di-
agonal forms. This leads reduced forms in which
A is upper-triangular and block diagonal or upper-
triangular and banded. We feel the banded form is
a better strategy since it is a simpler structure to
work with. The banded matrix is characterized by
its order and bandwidth; the block diagonal form
is characterized by order, block sizes, and block or-
der. Due to the simpler structure of the banded
matrix, algorithms based on banded matrices can
be adopted to vector hardware architectures in a
nicer way.

A New Banding Algorithm

The new banding algorithm uses several steps.
First the matrix A is reduced to real Schur, or
quasi-upper-triangular, form A;. Then an order-
ing algorithm is applied to order the eigenvalues
appearing on the diagonal of Ay in a way that will
aid the next step in producing a small bandwidth.
The transformations associated with the first two
processes is very well conditioned. The third step
involves examining the properties of the eigenval-
ues to determine a “good” bandwidth a priori. A
“good” bandwidth is one for which the condition
number of T is small. Next the matrix is reduced
to banded form, A,, using a series of operations
to eliminate off diagonal elements. The operations
are accumulated in a matrix 7. If T is found to
be ill-conditioned, then the tolerance for Step 3
is tighned and Steps 3 and 4 are repeated. Fi-
nally, the matrix A4; is brought to complex, upper-
triangular, banded form using a series of Givens
transformations. We note that the transformations
used in Step 4 are scaled to provide reduction in
their condition numbers.

An Illustration

The figure shown illustrates the banding algorithm.
The first operation shows the effect of bringing the

system to Schur form. After the matrix has been
brought to Schur form, the matrix is analyzed to
determine a “good” bandwidth. Here we choose
a bandwidth of 2. The second set of operations
shows how the algorithm reduces a diagonal of the
matrix. The third set of operations shows how the
remaining diagonals are eliminated to produce the
final upper-triangular, banded matrix.

Test Case

The algorithm described has been coded into For-
tran and installed into our Pro-Matlab implemen-
tation using the Pro-Matlab MEX facility. We
chose as a test set a set of single input, single
output systems with state order ranging from 20
to 80. Matrix coefficients were generated from a
random number generator. For each case we com-
puted 200 frequency points. The table shows times
for the Pro-Matlab bode function versus times for
our bodeq function. As one can see, the new al-
gorithm reduced the computation time from 75 to
88 percent.

Extensions and Future Work

The algorithm has also been applied to time simu-
lation of linear, time-invariant systems. The band-
ing strategy and algorithm could be extended to
generalized state space systems. In this case, we
would band the A and F matrices simultaneously.
Another possible area of future work would be pro-
duction of better banding algorthms. The current
algorithm is bases on solution of Sylvester equa-
tions and has a limitation: the algorithm cannot
band systems well when all eigenvalues are very
closely spaced. It should be possible to band these
matrices using different algorithms.

Summary

In summary, we have developed a new algorithm
for computing frequency responses of state space
models. In this development, we have taken into
account the two prime computational issues: effi-
ciency and sensitivity. We showed that the algo-
rithms worked on a test problem and was able to
reduce computational time considerable without a
notable cost in accuracy. Finally, we proposed that
the banding strategy may provide further applica-
tion in control system design.
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Introduction to the Problem

Consider a transfer function G(jw) with state space realization given by
&(t) = Az(t) + Bu(t), y(t) = Cz(t)+ Du(t)
where u(t) € R™, z(t) € R", and y(t) € IR?.
G(jw) is associated with {4, B,C, D} through
G(jw) = CGjwl— A)"'B+D

Problem: desire G(jw;) for many (hundreds) of values of jw;
where n < 200 (medium order systems).

JPL

Typical Approach
1 Transform the system realization:
{4,B,C,D} 1 {4,B,C,D} := {T"'AT,T7'B.CT, D)

2 For each wy do
a) solve (jupl — A)X = B for X
b) compute G(jwi) = CX +D

Compuatational Issues

e Solution of (jwrl — A)X = B must be efficient.
This is usually the limiting factor.

e Given the presence of finite precision arithmetic
{A,B,C, D} must be an accurate realization of G(jw).
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Sensitivity of the Transformation

Consider

(A+AA, B+AB,C+AC, D+ADY 5 (A+AA4, B+AB,C+AC, D+AD)

Then we have

2 I8AL _1AA) e IAA

MO S Ty = T

_1llaBy _ IaBl o IAB]

SRl - T TR

oot IACH _NACY o IACH

O et = ey =" el

where &(T) := \TINT ]| and ||| is some consistent norm.

JPU

Efficient Solutions to (jw;I — A)X = B

o A a general matrix = O(n®) flops/w;

o A an upper Hessenberg or Schur matrix = O(n2) flops/wy,

e A a matrix in diagonal form = O(n) flops/wy.

e A a matrix in Jordan canonical form = O(n) flops/wy

o A a block-diagonal matrix = O(n') flops/wy, where 1 << 2

o A a banded matrix = O(n - bw) flops/w}, where bw is the bandwidth, 0 < bw < n
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A New Banding Algorithm
Given a full general A matrix, produce Ay where Ay is upper triangular and banded.
The algorithm is essentially

1 Reduce A to upper real Schur form, A;

2 Order the eigenvalues appearing on diagonal blocks of As to produce A,

3 Analyze A, to determine a “good” bandwidth (to make x(T) small)

4 Uses an algorithm based on solving Sylvester equations to band A,, producing A,

5 Convert the quasi-upper triangular matrix A, to complex, upper triangular form.

Step 4 uses transformations of the form

I 00 O O0O3yrZ o 0 O O
010xi,j00d2000
Ti,jZOOIOOOOIOO
0 00 1 ©0/j0 0 0 dg O
o 0o 0 IJlO 0O O O I
JPU
An lllustration
X X X X X X X X X X
X X X X X 0 x x X X
xxxxxiﬁOOXXX
X X X X X 0 0 0 x x
X X X X X 0O 0 0 0 x
X X & x X x x 0 x x x x 0 x X
0 x x x X 0 x x & x 0 x x 0 x
OOXXXBOOXXXTzﬁa'SOOXX(@
0 0 0 x x 0 0 0 x x 0 0 0 x x
0 0 0 0 x 0 0 0 0 x 0 0 0 0 x
x x 0 & x x x 0 0 ® x x 0 0 0
0><><0®Tq0><><00T0><><00
0 0 x x 0]l=2l0 0 x x 0|20 0 x x O
0 0 0 x x 0 0 0 x x 0 0 0 x x
0 0 0 0 x 0 0 0 0 x 0 0 0 0 x
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Test Case

Single-Input, Single-Output Model with Random Coefficients
Pro-Matlab bode function versus banded bodeq function

pts. n bode bodeq bw &(T)
(sec) (sec)
200 20 39.9 4.8 3 250
200 30 81.1 10.6 3 350
200 40 139.8 24.0 13 45
200 50 211.7 41.6 17 38
200 60 300.6 64.8 20 66
200 70 407.7 104 .6 31 27
200 80 527.1 135.1 32 67

Reduction in time from 75% to 88%

JPU

Extensions and Future Work

o Application to time simulation of {4, B,C, D}

e Application to extended (or generalized) models:

Eir=Ax+ Bu, y=Cz+ Du

o Better banding algorithms: Banding strategy has good potential but current algorithm
has some limitations.
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Summary

Developed new algorithm for computing frequency responses of state space systems.

The algorithm provides a method for trading off the two computational issues at hand:
sensitivity and efficiency.

The algorithm was shown to provide large saving in computational time on a set of test
problems.

The strategy has some potential for other applications on medium order models.
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ABSTRACT

A new LQG design mecthod is presented which provides prescribed
imaginary-axis pole placement for optimal control and estimation systems.
This procedure contributes another degrce of design freedom to flexible
spacecraft control: Current design methods which interject modal damping
into the system tend to have little affect on modal frequencies, i.e. they
predictably shift open-loop plant poles horizontally in the complex plane to
form the closed-loop controller or estimator pole constellation, but make little
provision for wvertical (imaginary-axis) pole shifts. Imaginary-axis shifts
which reduce the closed-loop modal frequencies (the bandwidth) are desirable
since they reduce the sensitivity of the system to noise disturbances. The new
method drives the closed-loop modal frequencies to predictable (specified)
levels--frequencies as low as zero rad/sec (real-axis pole placement) can be

achieved. The design procedure works through rotational and translational
destabilizations of the plant, and a coupling of two independently-solved
algebraic Riccati equations through a structurcd state-weighting matrix. Two

new concepts, gain transference and (J-equivalency, are introduced and
employed in the design process.

1. INTRODUCTION and de-empiricizing the design
process is to use structured

Multi-input, multi-output performance index (SPI) con-
systems, such as those encountered straints [2].  SPI constraints may be
in flexible spacecraft control, are defined as structured performance
often approached with modern index weighting matrices which
optimal control techniques which constrain the weighted variables to
conveniently generate closed-loop approach desired predefined
system gain matrices for simultan- directions and values in the state
eous multi-loop closures.  However, space as the weighting matrix
modern optimal control, as entries approach infinity. This is
presented in most textbooks, is not a in contrast  to generalized con-
complete control system design straints for which the weighted
methodology.  The major problems variables approach =zero as the
of translating control system weighting matrix entries approach
performance requirements, band- infinity. To employ structured
width constraints, and compensator constraints, and avoid the applica-
robustness constraints into the tion of generalized constraints, the
performance index have not been weighting matrices for the SPI must
fully developed [1}. The result is a be less than full rank. The poten-
control system design methodology tial usecfulness of the SPI approach
that is iterative and empirical. An is apparent: An appropriately-
approach to solving these problems structured performance index can
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drive state variables in predictable
directions thereby achieving a
desired performance and bandwidth
objective. SPI's can provide a non-
empirical means of constraining
the controller, estimator, and
compensator dynamics--the latter is
critical for closed-loop system
robustness.

e

\X

X

Figure 1. Design Objective:
Complex Plane Constraint

The overall design objective

for the controller/estimator utiliz-
ing the SPI approach is illustrated
in Fig. 1: The gain matrices genera-
ted through the SPI translate the

open-loop poles to some prescribed
closed-loop boundary in the com-
plex plane.  Similarly the compen-
sation dynamics are constrained to
reduce closed-loop system sensitivi-
ty. Note that to achieve this
objective, two degree-of-freedom
control is required over each
controlled mode, i.e. poles require
movement in two dimensions in the
complex plane, both horizontally
(along the real-axis) and vertically
(along the imaginary-axis).

In the next section we review

design methods for prescribed
real-axis constraint in the optimal
control, estimation, and
compensation systems, and
introduce a coupled Riccati
equation design technique for
prescribed imaginary-axis
constraint.

SPI

2. SPI DESIGN METHODS

Currently a well-known
performance index exists for
prescribed real-axis pole
translations in the optimal
controller and estimator systems [1}:
In the “alpha-shift” technique
shown in Fig. 2, the standard Linear
Quadratic Gaussian (LQG)
performance index is augmented
with an exponential weighting.
This exponential weighting
guarantees that the quadratic terms
in the performance index decay
with at least a rate of 2o so that the
performance index remains finite
over the infinite interval. The
result is a guaranteed stability
margin--all closed-loop poles lie to
the left of the -2a-line in the
complex plane.

The design
the alpha-shift
straight-forward: [+al] is appended
to the nominal plant dynamics, A.
This tends to destabilize the plant.
Optimal control  theory is applied

procedure with
technique is

PERFORMANCE INDEX

oo

-’=f o2 [xTQx+ u R Ul dt
o

ORIGINAL DYNAMICS
x = Ax + Bu

DAMPED DYNAMICS
x =[A+al}] x+ Bu

Destabilized Plant

Figure 2.

(1)

(2)

(3)

The Alpha-Shift Technique
Real-Axis Pole Translations
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and state feedback gains are
generated for the destabilized plant,
characterized by [A+al], which are
guaranteed to stabilize it. When
these gains are applied to the
nominal plant, A, the closed-loop
poles have real parts of -2a. This
technique provides horizontal
(real-axis) translation of the plant
poles from their open to closed-loop
positions.

For the compensator,
predictable real-axis pole
translations are also possible
through indirect SPI design
techniques which structure control
and observation constraints [3].

These constraints tend to normalize
the control and observation effort
thereby providing indirect control
over compensator poles, bandwidth,
and closed-loop singular values.

Prescribed imaginary-axis
pole translations in the optimal
control and estimation systems are
the focus of this paper: SPI design
techniques are presented which
drive the modal frequencies of the
closed-loop system to desired levels.
Conceptually, prescribed
imaginary-axis pole placement may
be considered to be composed of a 90
degree rotation, a vertical
translation, and a stabilization of
the open-loop plant poles as shown
in Fig. 3. Stabilization is achieved
by generating a stabilization matrix
for the plant in rotated space and
applying it to a standard alpha-shift

the
one

design through a SPIL Using
stabilization  matrix from
optimal design process and
applying it to another couples two
algebraic Riccati equations (ARE’s)
together.

section introduces
two key concepts, gain
transference and Q-equivalency,
that are critical to the development
of the SPI for Riccati equation
coupling.  This is followed by an
outline of the actual design steps
required for prescribed imaginary-
axis pole placement.

The next

3. DESIGN PROCEDURE:
PRESCRIBED IMAGINARY-
AXIS POLE PLACEMENT

The design procedure for
prescribed imaginary-axis pole
placement employs a SPI that
couples two ARE’s together. Gain

transference and Q-equivalency are
important to understanding the
development of this SPL

Gain transference involves
designing optimal gains for one
plant and applying them to
another, indirectly-related, plant.
As shown in Fig. 4, optimal
regulator theory is applied to
system 1, generating optimal gains

-R'IBTPI. A closed-loop state feed-

back system is formed for system 2
with these gains. (Note that system

jo i@
x
x
x
g | [+

Open-Loop Plant

1} Rotation

2) Vertical  Transiation

3} Stabilization

Figure 3. Conceptual Development:

Prescribed Imaginary-Axis Pole Placement
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e
Optimal . . . .

System 1 Regulator Algebraic Riccati Equation State Feedback

. Theory T | Ti:‘ —1

x=A x+Bu A P+ PA -PBR 31 +Q=0 —% u=-R B Fx

System 2 Closed-Loop System

y Gain Transference from System 1 : ~1.,T

x=Ax+Bu » o form Closed-Loop for System 2 ' X =Ax-B,R IB}P1X

X= [A2—B1R B1F’1 ]1x

.

J

Figure 4. Gain Transference Theory

2 has identical input vectors as
system 1.) The optimal gains
gencrated for system 1 have becen
transferred to system 2 to form the
closed-loop system.

The utility of gain
transference lies in its harmonic-
restructuring capability. The
harmonic structure of the closed-

1BITPI] can be
strongly influenced by the
harmonic structure of Al‘ In the

loop system [A2—B1R'

design procedure for prescribed
imaginary-axis pole placemecnt,
optimal gains, P, are generated for

the plant in a rotated space, A;.

When these gains are transferred to
the nominal plant, A2, for state

feedback, the closed-loop system
takes on the harmonic characteris-
tics of the plant in a rotated space.
The state feedback transforms the
nominal plant to rotational space--a
key step in achieving prescribed
imaginary-axis pole placement.

Q-equivalency, the other
concept central to the design
procedure, involves expanding and
collecting terms in an ARE 1o
indirectly generate a state-
weighting matrix. An cxample of
the concept is shown in Eq. 1 for
the ARE employed in the alpha-
shift technique.

82

(A+oD)TP+P(A+al) - PBRIBTP+Q =0

-1

ATp + PA - PBRIBTP + 201P = 0

Qeq = 2alP

= - (ATp+PA-PBR!BTP) (1)

The alpha terms are
expanded and collected to form a Q-
equivalent matrix equal to 2alP. In
a SPI, Qeq is a state-weighting ma-

trix that will generate the same
optimal gains for the nominal
plant, as those generated through
the ARE for the alpha-shifted plant.
This concept is used in the design
procedure to couple two ARE’s
together: A Qeq matrix for the ARE

in rotational space is used as the
state-weighting matrix for an ARE
in translational (alpha-shifted)
space.

An overview of the actual
design steps that employ the
concepts of gain transference and
Q-equivalency are illustrated in Fig.
5 and described below:

1) Rotational Plant Destabilization.
A simple matrix transformation
of the plant rotates poles
circularly from their open-loop
positions to the real-axis.  This
removes all harmonic compon-
ents from the rotated plant
dynamics. Half of the rotated



Open-Loop Plant 1) Rotational Plant-Destabilization

}
et
— o 1¢¢ .
IR X ]
—————i
2] Stabilization (Double Poles) 3) Prescribed Imaginary-Axis

Pole Placement

Figure 5. The Three Design Steps for Imaginary-Axis Pole Placement

plant poles in this space are
unstable.

2) Rotational Plant Stabilization. A
stabilization matrix is generated
for the rotationally-destabilized
plant through a SPI using
standard optimal regulator
design methods.  Unstable right-
hand-plane (RHP) poles at {+w,

+m2,...,+wn} are moved to the left-

hand-plane (LHP) to positions of
{—ml, —mz,...,—mn}, respectively.
The stabilization matrix does not
affect the stable LHP poles at {-
oy, —mz,...,—mn}. The resulting

closed-loop system has double
poles at each modal frequency
in the LHP.

3) Prescribed Imaginary-Axis Pole
Placement. The stabilization
matrix generated for the
rotationally-destabilized plant is
used in a SPI to transform an
alpha-shift design to rotational
space. The value of a determines
the closed-loop modal frequen-
cies, i.e. o prescribes the amount
of imaginary-axis pole transla-
tion from the real-axis.

We now present details of the
prescribed imaginary-axis pole
placement design procedure for
optimal control and estimation
systems.  The three steps outlined
above are expanded and applied to a
low-order system to illustrate their

effects. The complete design
proccdure is then developed and its
application to flexible spacecraft
control is illustrated in a numerical
example.

DESIGN STEP 1: Rotational
Plant-Destabilization

To introduce rotational plant-
destabilization we compare it
graphically to the alpha-shift
technique. As shown in Fig. 6,
alpha-shifted plant-destabilization
is accomplished via a horizontal
translation of the poles into the
right-half of the complex plane.
Rotational plant destabilization
occurs with circular rotations of
the open-loop poles to the real-axis.

ALPHA-SHIFT Vs, ROTATIONAL
je ja
— )
— )
>0 °
AP
— "X {Destabilized)
X
R 4
A Asal A
{Plant)  {Destabilized) (Plant)

R
Figure 6. Plant Destabilization
Techniques



The transformation matrix that
accomplishes this destabilization of
the plant is described below for an
n-mode system. If the plant matrix,
A, in block-diagonal form is:

— —_
o 1
-wf [¢)
o 1
A - —u); (o]
o 1
~w? 0
n
- —2nx2n
then the rotationally-destabilized
plant matrix, A, is defined to be:
A
A, = AT
where
G 1/w, 7]
(Dl [e]
0O 1w,
T - - w, (o]
0 1w,
wn o _J
™~ w =
1
(]
1
Lo,
and A - @2
-,
(l)nJ

with eigenvalues A(twq,tw9,...,.toq).
We note that this set of eigenvalues
is not unique to Ar. Other transfor-
mations of the plant will produce
block-diagonal or off-diagonal
matrices with equivalent eigen-
value sets. These matrices may be
used in lieu of Ar in designing the
controllers and estimators, but the
closed-loop system bandwidths tend

to be larger than those designed
with Ap. Af’s diagonal structure
provides the smaller bandwidth
controller for this design proce-
dure, and we wuse this structure in
the following two-mode example
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illustrating rotational destabiliza-
tion, and in the flexible spacecraft
example at end of the paper.

©1=10 rad/sec
®2=15 rad/sec

Given System:

One actuator and collocated
sensor corresponding to torque
actuation and velocity sensing
are cmployed.

o] 1 0
A -100 © .3
= o 1 B = o
-225 0 .4
Transformation for A;:
(o] 1/10 [¢] o]
10 (o] o] (o]
T= —
o] o] (o] 1715
o} (o] 15 (o]

-10 o} o} (o}
[¢] 10 (o] o]
A r = AT =
o} [} 15 o]
o} o] ¢} 15
Note that half the eigen-
values of A, are unstable. Optimal

regulator design theory may now
be used to stabilize the rotationally-
destabilized plant.

DESIGN STEP 2:
of Rotational Plant

Stabilization

In this intermediate
optimal regulator theory is applied
to the plant in rotational space. The
optimal gains that are generated
will  stabilize the rotationally-
destabilized plant, but their prac-

step,



tical function in this design
algorithm is to structure a perfor-
mance index that will rotate and
stabilize an alpha-shift design for
the nominal plant. The motivation
for using the gains in this way
came from applying them 1to the
nominal plant and observing their
significant effect: They eliminate
harmonic components from the
closed-loop system poles. State
feedback with this set of optimal
gains rotates the open-loop plant
poles to the real-axis. This suggests
that a SPI employing a feedback
structure with these optimal gains
as its state-weighting matrix can
produce rotation and stabilization of
a prescribed damping design.

An example of rotational
stabilization is now presented for
the low-order system used previous-
ly. The rotationally-destabilized
plant matrix, Ay, developed in step
1, becomes a paramectric design
matrix in the algebraic Ricatti
equation (ARE), i.e. the nominal
plant, A, is replaced with Ar in the
ARE. We note also that the paramet-
ric design matrix Q is sct cqual to
. zero in the example. This results in
double poles in the closed-loop
systems. Double poles are not
mandatory. Alternative sclections
of Q may include an identity matrix
which will split the closed-loop
system poles, but still maintain
them in the LHP. Positive scaling of
the identity matrix will provide as
much separation of the poles as
desired. Negative scaling of the
identity matrix Q adds harmonics to
the closed-loop system and can be
used, if desired, to obtain an
additional increase in the modal
frequencies in the final design
step, or to decrease the optimal
gains.  Other structurings of the Q
matrix are currently being evalua-
ted for their closed-loop system
effects.  All examples in this paper
employ a zero matrix Q which

produces the double-pole structur-
ing in the intermediate closed-loop
systems. We now perform the
rotational stabilization:

Algebraic Riccati Equation:
ATP +P AP BRIBTP +Q=0

Parametric Design Matrices:
A=A
r
R=1
Q=[0l44

Intermediate Riccati Solution for Ap:

0 0 0 0

P = 0 5.5556E3 0 -5.0000E3
0 0 0 0
0 -5.0000E3 O 4.6875E3

Eigenvalues of Intermediatc Closed-
Loop Systems:

x(Ar-BR"BTPI) = {-10, -10, -15, -15)
A(A-BR"IBTP]) = (45, +5, -30, -30}

Note that P; is sparse and
singular.  Also, as indicated ecarlier,
all harmonic components arc com-
pletely eliminated from the closed-
loop design model when the optimal
gains are applied to the nominal
plant, i.c. all poles have imaginary
parts equal to zero. The real parts
arc positive or negative values
which typically have values given
by one-half or two times the modal
frequencies. This intermediate
closed-loop system must now be
stabilized in a final design step with
an additional algebraic Ricatti
equa-tion which will also add a
prescribed degree of harmonics to
the closed-loop system.

DESIGN STEP 3:
Imaginary-Axis Pole

Prescribed
Placement

In this section we develop
the SPI that is employed to design
optimal controllers and estimators



with prescribed (closed-loop) modal
frequencies. The exponentially-
weighted performance index of the
alpha-shift technique is modified
with the optimal gains of the rota-
tional plant stabilization step. The
modification of one SPI with the
optimal gains from another results
in a coupling of two independently-
solved ARE’s. As devcloped below,
the coupling occurs through the
ARE parametric matrix, Q.

The optimal gains gencrated
in the rotational plant stabilization
step are used to structure the
parametric matrix, Q. “Q-equivalen-
cy”, the expansion and collection of
terms in an ARE to indirectly
gencrate a state-weighting matrix,
is used to structure Q. A Qcq equa-
tion, parallel to that shown in Eq. 1,
is developed for the rotationally-
destabilized ARE in Eq. 2. (The unity
subscripts indicate that this is the
first ARE that is solved in the design
algorithm.)

It is Qeq1 that is wused to
modify the exponentially-weighted
performance index used in alpha-
shift designs. The modified perfor-
mance index and its accompanying
ARE are shown in Egs. 3a, 3b, and 4a

15T

T
APy +P,A -P;BR 'B

respectively.  Qeq1 transforms the
alpha-shift design to rotational
space. After rotation, the alpha
parameter prescribes the amount of
imaginary-axis pole translation
that is desired from the real-axis.

A Qeq may be developed for
the modified ARE: Terms in Eq. 4a
are expanded and collected as
shown in Eq. 4b. Eq. 4c is formed by
substitution of chl and defining

Qeq2 = 2aIP2. ch then is the sum of

two terms--chl from the rotation-
ally-destabilized ARE and Qeq2 from
the alpha-shift design as shown in
Eq. 5. If Qeq2 >> Qeql ., ie. if o is
large relative to the modal
frequencies, then the alpha-shift
term will dominate, and the
imaginary-parts of the poles will
asymptotically approach the desired
alpha wvalue.

We now demonstrate pre-
scribed imaginary-axis pole place-
ment for the low-order system used
previously.  The optimal gains, P,
designed under step 2 are used to
form Qeq1 and modify the
performance index for three alpha-
shift designs: {a=0, a=1, and a=2}.

-1,T =
-PIBR B"P, +(/-‘\1,P1 +P1Ar)_0 .
= _ -1
chl =(AP +PIA) = P,BR B'P, (2)

J = I:ezat[x’roeq‘ X + u'Ru]dt (3a)
3= [T R BRIBTR X+ uTR u] dt (3b)
(A+aD)TP, + Py(A+al) - PzBR'lBTPz + PlBR'lBTPl =0 (42)
ATP, + PyA - p,BR!BTP, + P,BRIBTP, + 201P, =0 (4b)
ATP, + PyA - PBRIBTP, + Qeq1 + Qeq2 =0 (4¢)
Qeq = Qeql + Qeq2 = PIBR'lBTPl +2alP, (5)
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Modified ARE: (A+al) TP, + Py(A+al) - PzBR'lBTPz +PBRIBTP =0

Qeql Formed From Optimal Gains P,:

0 0 0 0
- 1T, )

chl =P,BR'B'P, = 0 1.1111ES 0 1.2500E5

0 0 0 0
0 -1.2500ES 0 1.4062ES5

Optimal Gains P, for Design 1: a=0

6.2844E5 -5.1200E4 -1.0080E6 3.0400E4
-5.1200E4 9.2711E3 1.0440E5 -6.7200E3
-1.0080E6 1.0440ES 1.7601E6 -6.4800E4

3.0400E4 -6.7200E3 -6.4800E4 5.3025E3

Optimal Gains P, for Design 2: a=1

7.1690E5 -5.2195E4 -1.1158E6 3.0532E4

-5.2195E4 1.2205E4 1.2129E5 -8.7124E3
-1.1158E6 1.2129E5 1.9794E6 -71.5562E4
3.0532E4 -8.7124E3 -7.5562E4 6.6674E3

Optimal Gains P, for Design 3: a=2

8.2904E5 -4.8182E4 -1.2239E6 2.7139E4
-4.8182E4 1.6620E4 1.4013ES -1.1753E4
-1.2239E6 1.4013E5 2.2091E6 -8.7720E4

2.7139E4 -1.1753E4 -8.7720E4 8.7729E3
Closed-Loop Eigenvalues A(A-BR” 1 BTPZ):

o=0: {-5.0, -5.0, -30.0, -30.0)
a=1:  {-6.1 £ 1.0 i, -31.1 + 1.0 i}

o=2: {-7.2 £ 181, -322 + 2.0 i}

For a=0, the imaginary-parts For a=1, the imaginary-parts
of the closed-loop poles are zero of the closed-loop poles have values
rad/sec——stable, rcal-axis pole of 1 rad/sec. The rcal-par}s of the
placement is achieved. The inter- eigenvalues have been increased

from their values for the previous
design as Qeq2 has begun to have an

cffect.

mediate closed-loop system of step 2,
characterized by [A-BR'IBTpl], has

been stabilzed; only the RHP double

poles at +5 are affccteld Fl;y the new For a=2, the imaginary-parts

optimal gain matrix, R""B " P,]. of the closed-loop poles have values
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of 2 rad/sec., or approaching 2
rad/sec. As o increases, ch2 will

begin to dominate the Q.
the modified ARE--some closed-loop
modal frequencies may be slightly
less than the specified modal
frequencies.

term for

Step 3 concludes the
prescribed imaginary-axis pole
placement procedure for optimal
controller design.

The optimal estimator s
designed via duality theory using
the same 3-step procedure.

GIVEN SYSTEM
x=Ax+Bu
y=Cx

We now present the design
procedure in algorithmic form, and
illustrate its effects on a higher-
order example derived from flexible
spacecraft control.

4. DESIGN ALGORITHM

Fig. 7 illustrates the design
algorithm for prescribed
imaginary-axis pole placement in
the optimal controller system. Two
independently-solved ARE’s are
employed: the ARE in rotational
space, and the ARE in translational
space. The coupling between the

1) Transform Plant
to Rotated Space

Subject to: x=A x+B u

min J =j°°[uTRu + xTa x]dt
u 1 70 1 1

=1
ARE: A'P+PA-PB R B'P,+ Q=0
r r 1

2) Apply Optimal Regu-
lator Theory to ARE
in Rotational Space

B R—IBTPI

3) Form Q-equivalent
Matrix for ARE in

P
1
o=
Desired Closed-Loop QBQ1= P1
Modal Frequencies
QEQI !

Rotational Space

minJ_= T2 xTa_ x + u"Rujat
2 (4] eq

u

1

min J2= f“ezmlx-'i? BFX_IBTPl x + uTR U] dt
u (4]

Alpha-shifted Dynamics: x = [A +al] x + B u
T, —1_ T,
ARE: [A+q 1] P2 + F’2 [A+eal] - PZB R B P2 + QEQI =0

4) Modify ARE in
Translational
Space with Q-
equivalent Matrix
From ARE in Rota-
tional Space and
Apply Optimal
Regulator Theory

Pz‘

- -1 T
x=[A-BR BR]x

'

5) Form Closed-
Loop System

M@ (A-8R'BR)) — 1o

Figure 7.
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ARE’s occurs with the Q-cquivalent
matrix for the ARE in rotational
spacc. This Q-cquivalent matrix acts
as a state-weighting matrix for the
ARE in translational space. The
design algorithm for the optimal
estimator follows a parallel struc-
ture:  Dual variables are substituted

into 12, and AT replaces A in the
ARE in translational space.

§. FLEXIBLE SPACECRAFT
CONTROL EXAMPLE

The design algorithm s
applied to a modecl for the spacecraft
boom shown in Fig. 8. The model
contains twelve modes with fre-
quencies ranging from 0.67 to 114
Hz. Four collocated actuators and
scnsors are positioned at the tip of
the boom and mid-boom. All modes
are modeled with zero damping.

Figure 8. Flexible Spacecraft Boom

alpha values for the five designs,
i.e. the prescribed imaginary-axis
pole placement that is desired, are
as follows: {a1=0, ap=1, a3=5, a5=10,

as=15}.

The design results are shown

in Fig. 9 which plots the
For the example, we design MA-BRIBTPy) for the five designs.
five optimal controllers and com- (Only the upper-half of the complex
pare their pole constcllations. The plane is shown.) Small values of
18
[ ]
. Fa=15 | .
w 'L
x N .
< 2
> N
% o L O=10] + . + )
t
Z -
O & F[ +
< - .
= C +
] * [ =5 x .
2 - o= »* * X y
E . :
I NEA
o 2 — [
- o=1_ o o o | 3 o gy
Q@ i 1 1 i a:O . 2 - l( I} 1 1 ] 1 1 1 1 1 % 1 1 1 h’% 1 ly‘l % 4 r’* IO
-200 -t80 -160 -~140Q -1209 -1202 -80 -80 -40 -20 L4
REAL-AXIS
FIGURE 9. Controller Eigenvalues for Five Design Values of a
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alpha (a1=0, aap=1) most closely ap-
proach the “prescribed” response,
i.e. the imaginary-parts of all poles
arc approximately equal to the
prescribed o value. This is duc to a
small or non-existent contribution
of Qeq2 to the Qeq matrix for the
modified ARE, as explained in the
previous section.  For large values
of a, the Qeq2 term begins to contri-
bute to the Qggq matrix, and the
imaginary-parts of the pole asymp-
totically approach the desired o
value. Poles corresponding to
higher frequency modes have
imaginary-parts that are closer to
the a-asymptote.

6. SUMMARY/FUTURE WORK

A design procedure has becn
developed for prescribed-
imaginary axis pole constraints for
the optimal control and estimation
systems: The imaginary-parts of
the closed-loop system poles
asymptotically approach a
prescribed value, a. At this stage in
the development, the maximum
value that o may assume for a given
system is constrained, possibly by a
computational problem with
solutions for the alpha-shifted ARE.
Values of « that are large relative to
the lowest modal frequency in the
system can produce root migration
from the desired o-asymptote.
Small or mid-range frequency
values of o produce excellent
results as shown in the example of
Section 5. Further analysis of the
computational problem is required.

The design procedure
developed empirically as the result
of numerical experiments in gain
transference and Q-equivalency
theory. Future work calls for
developing an analytical basis for
the procedure. Additional work
requires extending the design
procedure to cover prescribed

go

imaginary-axis constraints for the
optimal compensator system.
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Optimal Controllers for Finite Wordlength Implementation
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ABSTRACT

When a conrroller is implemented in a digital computer, with A/D and D/A conversion,
the numerical errors of the computation can drastically affect the performance of the control
system. There exists realizations of a given controller transfer function yielding arbitrarily large
effects from computational errors. Since, in general, there is no upper bound, it is important to
have a systematic way of reducing these effects. Optimum controller designs are developed
which take account of the digital round-off errors in the controller implementation and in the
A/D and D/A converters. These results provide a natural extension to the LQG theory since they
reduce to the standard LQG controller when infinite precision computation is used. But for finite

precision the separation principle does not hold.

9l



L. INTRODUCTION

LQG controllers are normally designed under the assumption that computer implemention
will be perfect (this is the infinite wordlength assumption for state variable computation).
However, real control systems are subject to the effects of finite wordlength computation. These
round-off errors should not be ignored in the design of the controller. The influence of these
errors on the control system and the optimum controller design considering their effects are the
subjects of this paper.

We consider the problems that arise with fixed-point arithmetic and the finite word length
of digital computers. This paper was motivated by the work of Kladiman and Williamson
[1989]. Mullis and Roberts [1976] and Hwang [1977] in the field of signal processing first
revealed the fact that the influence of round-off errors on digital filter performance depends on
the realization chosen for the filter implementation. To minimize round-off errors these papers
suggest a special coordinate transformation T prior to filter (or controller) synthesis.

This is in stark contrast to frequency domain approaches to control, which regard as
irrelevant (and hence is completely ignored) the state space realization of the controller transfer
function.

The idea of applying a coordinate transformation prior to controller synthesis has been
applied to Kalman filter and LQG controller design problems, Williamson [1985], Kladiman and
Williamson [1989]. One may select the wordlength of the computer to insure that the resulting
degradation in the performance from round-off error is less than a certain percentage of the ideal
behavior of the standard Kalman filter or LQG controller without round-off error. This approach
was adapted by Sripad [1981] in the design of Kalman filters, and later by Moroney, et. al [1983]
for LQG controller design. In these papers the standard Riccati equations are solved, followed
by a coordinate transformation to reduce the effects of round-off errors. We shall call these
controllers LQGr to indicate a standard LQG controller followed by an "optimal" coordinate
transformation T. This transformation depends on the control gains, hence, we put the word

optimal above in quotes, because the standard LQG gain is not the optimal gain for the round-off
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error problem. The optimum solution is to design the controller which directly takes into
account the round-off errors associated with a finite word length implementation, rather than
merely performing a coordinate transformation T on the LQG controller after it is designed. The
optimal state estimation problem was solved by Williamson [1985]. This leads to a modified
Kalman filter. The problem of optimum LQG controller design in the presence of round-off
error was studied by Kadiman and Williamson [1989]. This paper worked with upper bounds
and numerical results showed improvement over earlier work, but their algorithm does not
provide the necessary conditions for an optimal solution. This paper provides the necessary
conditions and a controller design algorithm for the solution of this problem. We shall call this
controlier LQGpgw .

With a fixed point implementation, the states of the LQGgw controller are properly scaled
to reduce the possibility of overflow. There are many scaling criteria available. The method we
shall use is the variance oriented procedure, l;-norm scaling [Hwang 1977]. We assume round-
off errors are additive. This tends to be supported by the literature on state quantization, whereas
quantization of coefficients leads to multiplicative errors [Williamson 1985].

The organization of the paper is as follows. In Section 2, the problem of LQG controller
design in the presence of round-off errors is formulated. The importance of the coordinates of
the controller will be discussed in Section 3. Section 3 summarizes the needed results from
[Kadiman and Williamson 1989], and our new results on upperbounds of finite wordlength
effects. It is shown that the portion of the LQG cost contributed by these errors will range from
arbitrarily large to an achievable lower bound with the variation of the realization of the
controller (variation of the choice of coordinates). The coordinate achieving the lower bound is
described. In Section 4, the optimization problem is discussed in terms of chosing both the
controller parameter matrices and the realization coordinate simultaneously. The necessary
conditions are derived for the optimization problem. An algorithm is then presented for the
designs of the optimal LQGpw controller. The standard LQG and the LQGgw controller are

compared in Section 5. Some conclusions appear in Section 6.
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II. Round-Off Error and LQG Controller Design Problem

In this section, we formulate the LQG controller design problem when round-off errors are
present. The formulation procedure follows the original ideas of Muﬂis [1976], Hwang [1977]
and the ideas of Williamson [1985], Kadiman and Williamson [1989]. Let us assume, for the
study of round-off error, the discrete controller is designed from a discrete model of the plant to
be controlled. We then introduce a model for finite wordlength effects into the discrete design
problem.

Considering the following discrete-time model of a time-invariant plant:

Xptk+1) = Apxp (k) + Bpu(k) + Dpwp(k)
z, (k) Mpx, (k) + vp (k) O
yp(k) = Cpxp(k)

where xp, is the state ny—vector, u, yp and z,, are the control ny—vector, output ny—vector,
measurement n,—vector, v, and wy, are assumed to be mutually independent, zero mean, discrete
white Gaussian noises with covariance matrices Vp and W, respectively.

The controller that one might desire to implement is described by following equations:

n

Acxc(k) + Bezp (k)

Cexe(k) + Dz (k) @

Xc(k+1)
u(k)

where x. is the controller state n.—vector, u and z, are the control and measurement vectors
described in the plant model. In a finite wordlength digital computer, the controller state x, and
measurement variable z, will be quantized at each time of computation. Considering the
quantization process, computation (1) and (2) cannot be accomplished. Instead the computation

1s described by
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xp(k + 1) = Ayx, (k) + B, QIu(k)] + Dy wy (k)
25(K) = My (K) + v (K) (Ga)
}'p(k) = Cpxp(k>

{xc (k + 1) = A.Q[x. ()] + B Qlz,(K)] ab)

u(k) = CcQ[xc (k)] + De Qlzp(k)]

where Q[] stands for the quantization process. Assuming an additive property of the round-off

error, we can model the quantization process by:

Qlu(k)} = u(k) + ey (k) D/A (4a)
Qlxc (k)] = xc(k) + ex (k) control computer (4b)
Qlz, (k)] = z; (k) + e, (k) A/D (4¢)

where e, is the round-off error resulting from D/A conversion, e, (k) is the error resulting from
quantization and e, (k) is the error resulting from A/D conversion. We do not claim that this
assumption is always justified, but we invoke this common assumption in this paper, since one
cannot oprimize with respect to coefficient errors directly. One can only evaluate designs with
respect to coefficient errors. There are many such evaluations in filter theory, and we shall add
our own numerical evaluation in this paper. All such evidence points to a conclusion that
controller structures that are good with respect to state quantization tend to also be good with
respect to coefficient quantization.

It was shown [Sripad 1977] that, under sufficient excitation conditons, the round-off error
ex(k) can be modeled as a zero mean, white noise independent of wp(k) and vp(k), with
covariance matrix E,,

I o
E, =ql, qéﬁ2 ® (5a)

where B is the wordlength of the control computer. Similarly, we assume the D/A conversion

error e, (k) and the A/D conversion error ¢,(k) to be zero mean, mutually independent white
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noise and also independent of wp(k), vp(k) and e, (k) with covariance matrices E, and E,,

A 1 -2,

Eo=aql qf27 (5b)
1 -2,

E;=ql g & EV) 2 P (5¢)

where B, and B, are the wordlengths of D/A and A/D converters. Substitute (4) into (3) to

obtain a closed-loop system model including finite wordlength effects,

xp(k + 1) = Apx, (k) + Bpu(k) + Dpwp (k) + Byey (k)

Zp(k) = Mpxp k) + Vp(k) (6a)
yp(k) = Coxp(k)
Xc(k + 1) = Acxc (k) + Boz, (k) + Acex (k) + Beey (k)
(k) = Cexe(K) + Dezp(9) + Cetx(K) + Dty &) ©o
We seek the controller to minimize the following cost function
J =klgnmE{y;<k)prp(k) +u" (K)Ru(k)) %)

where u and y,, are again control and output vectors, and Qp and R are the weighting matrices.

After combining (6a) and (6b), and using the following notation for the vectors and

matrices:

[xp(K) yp (k) A, 0 B, © C, ©

k)= yy(k) = A= ,B= ,C=

X9 bxc(k)J yi) [u(k)} 0 0 0 I =l0 o

D, D. C 0 0 1] 0

D= 0}36_ BC Ac ,IO—[ O}’Il—[o ’12_{1}»

M= ’Mp 0 Q= Qp 0
|0 I 0 R

the closed-loop system is compactly described by
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<(k + 1) = [A + BGMJx(K) + Dwp (k) + BGI1 v () + BGLex (k) + BGI1e, (k) + Blyey (k)

$(K) = [C + [GMIx(K) + IoGl; v (K) + IoGlze; () + IoGly e, () ©)
and the cost function (7) may be written
J= lim E {y" (0OQy(K)) . (10)

Now, substitute (9) into (10), since ea(k), ex(k), e (k), wp(k), and vp(k) are mutually

independent,
J = r{X[C + [,GM] Q[C + I,GM]} + tr{Vp(IoGll)'Q(IoGll ))
+ tr(E, (IoG1)" QloGla)) + tr(Ez (1,GT)" QLGl)) (112)
where X is the state covariance satisfying:

X = [A + BGM]JX[A + BGM]" + DW,D" + (BGI})V,(BGI,)"
+ (BGL)Ex(BGL)" + (BGIE,(BGL)" +BLE.(BI)"  (11D)

We can decomposite J in eqn. (11a) into two terms:
J=Jww +Je (12a)
where

Ton 2 (X, [C + 1oGMI" QIC + 1,GM]) + r{(V,, + E)1oGL1) QUloGly)) (12b)
X, = [A + BGMI]X; [A + BGM]" + DW,D" + (BGI})(V, + E,)(BGI;)" + BL,E,(BI;)’ (12¢)

and

I, 8 (X [C+ 1h)GM] Q[C + [,GM]) + r{E; (IoGL) Qo Gly)) (12d)
X, = [A + BGM]X,[A + BGM]" + (BGI;)E(BGL,)" (12e)

where X = X + X,. Juv is the portion of the performance index contributed by disturbances

cu'(k), e, (k), wp(k) and vp (k). J, is the portion contributed solely by round-off error e, (k).
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To prevent the overflow in controller state variable computation, we must properly scale

the state variables. We use the l;-norm scaling procedure which is written as:
[Xl(zs 2)]ii=5 lzl, Tty Ie (13)

where X;(2, 2) i1s the (2.2) subblock matrix of X; matrix (the controller subblock), and [-];;
stands for the ith diagonal element of the matrix. Equation (13) requires that the controller state
variables have variance equal to s when the closed-loop system is excited only by outside
disturbance and measurement noise. We call (13) the scaling constraint.

Therefore, the optimization problem is

min J =min (J,. +71.) , (14)
G G

subject to (12-13).
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III. Contribution of Round-Off Error to the LQG Performance Index

In this section, we discuss the J term in (12a) and defined by eqn. (12d) which is the
portion of the LQG cost function contributed by round-off errors. This portion of the cost
function is coordinate dependent. It is unbounded from above, (that is, it can be arbitrarily
large), but it has an achievable lower bound, which can be achieved in an optimal coordinate.
The lower bound result was obtained by [Moroney et. al. 1983] and [Kadiman and Williamson
1989]. The construction of this optimal coordinate is discussed in this section, where we assume
G is some given matrix (we shall optimize G later).

We will first present three key lemmas, which form the basis for the results of this section.
Lemma 1. [Mullis and Roberts 1976, Hwang 1977].

Given any nxn matrix M, there exist a (non-unique) unitary matrix U such that (UMU” )ij =S
for all j, if and only if t(M) = sn
O

Lemma 2. [well known]

For any two positive definite matrices P and Q, let A; [*] denote the i® eigenvalue of marrix [].

Then,
a) AQP]>0 foralli

b) The A[QP] are invariant under the transformation P=TPT" and Q=T QT where T is
nonsingular.

O

Lemma 3.

Let a scalar J be defined by
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J&u{TT P) (15a)
where the n, X ny, nonsingular matrix T is constrained by
(T'T™); =s foralli (15b)

and P is a positive definite matrix. Then over the set of all nonsingular matrices T constrained

by (15b),
a) Jis not bounded from above.

b) T is bounded from below (J 2]) by

18 L2 (16a)
Snp

where
P=\P \P (16b)

and \fl; is symmerric.
¢) Jin(16a) is achievable by the matrix T:
A »*
T=T=U,ILV, (17a)

where U,, V, are unitary, I, diagonal, satisfying

P

U720 = (17b)
II('\jl;)

V2V )y =s foralli . (17¢)

0

JOO



Statements b) and c¢) are minor modifications of the results obtained by [Mullis and
Roberts 1976] and [Hwang, 1977]. The proof of a) appears in Appendix A. An algorithm for

solving (17b), (17c¢) is given in Appendix B.
The contribution of finite wordlength error in the cost function is described by equations
(12d) and (12¢e). This J, term can also be written as:

Jo = r{K (BGI,)Ex (BGI,)" } + tr(Ex (1sGI2)  Q(IoGly)) (18a)
K, = [A + BGM] K.[A + BGM] + [C + [;GM] "Q[C + I,GM] . (18b)

Since E, = gl, we then have:
Je = qur{(BGL) K. (BGL) + (IpGl) QyGLy)} - (19)

We can easily check that the (2, 2)th subblock matrix of K, (the controller subblock Ke(2, 2))

satisfies:
K.(2, 2) = (BGL) K. (BGLp) + (IgGl,) " QloGl) - (20)
Substituting (20) into (19) reduces (19) to
Je = quKe(2, 2)] .
Hence, the minimization of J, reduces to the problem:
minJe, Je =qur{Ke(2, 2)} 21
subject to (18b), (13) and (12¢). From the singular value decompositions

X1(2, 2) = U Uy (22a)
TAULK(2, U Z2 = Up 5 Uy (22b)

then U,, Uy are unitary, L,, Iy are diagonal and
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%, & diag (... M[Ke(2, X2, 2] ... ) . (22¢)

Suppose we begin our study with the closed-loop coordinate transformation T as:

I 0 }
. (23)

0 UZiug

Then, after this coordinate ransformation as suggested by Kadiman and Williamson [1989]:

X2, 2)= (U Z2U0 " X2, DUREEURY ™ =1 (24)
Ke(2, 2) = (U; LU K (2, 2)(URZ LU = 3 (25)

If we take one more controller coordinate transformation T, the index J. and its constraint

equations, (after we substitute (24) and (25) into (13) and (21)), become

Jo = qu[ T T &) (26a)
[T T g =s, i=1, -~ ,n.. (26b)

Since, from Lemma 2, Iy in (22¢) is coordinate independent, we may ignore the K, and X,
calculations (18b) and (12c) and concentrate on T in (26). Then, by applying Lemma 3 on
equation (26), we have following theorem.

Theorem 1. The round-off error term I, in the LQG performance index (12d) and (12e), and
constrained by the scaling constraint egn. (12c), (13), is controller coordinate dependent. It is

unbounded from above when the realization coordinate varies arbitrarily. It s

bounded from below by the following lower bound:

] = g tr
L= Tk (27)

The lower bound is achieved by the following controller coordinate transformation:
T, = U:ZPUUIL V] (282)

where Uy, Uy, Uy, Vi are unitary matrices, X, T, are diagonal matrices, subject to the
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constraints.

X1(2, 2)=U;Z,U,
LEUK (2, 2URZE = U 5 U,

o, J snc X
U II2U; = t;zk
[VII2Vii=s, i=1, - ,n

(28b)
(28¢)

(28d)

(28e)

To find the optimal coordinate transformation IC in (28a), we must solve (28d), (28e) to

obtain U, I, V,. The equations (28d), (28e) are, however, special cases of (17b), (17¢), where

P is the diagonal matrix Zy. An algorithm is given in Appendix B to compute the U,, I, V,

needed for (28a).

The conclusion of this section is that the problem min J. is solved by the coordinate

c

transformation given by (28a).
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IV. LQG Controller Design in the Presence of Round-Off Errors

As discussed in Section II, when round-off error is present, the LQG performance index
can be decomposed into two terms. One term contains the influence of disturbance and
measurement noise, the other term is contributed by round-off errors. Although the first term is
not influenced by the coordinate of the controller, the second term is critically dependent on the
coordinate. An optimal coordinate transformation is given by (28a). With the scaling
requirement of the controller state variables to prevent overflow, we have a different
optimization problem now for controller design comparing to the original optimal control design
problem without round-off errors. In this section, we will discuss the controller design.

Let us first present a useful result.

n
Lemma 4. Suppose I 4 D \/K,[K(i, X3, ) where K(i, 1) and X(j, j) are the (i, 1)th subblock
i=1

of K and (j, j)th subblock of X respectively. Define

0 0
VI 8 e Vi 4 =T
then:
a) ViJo(.Q=0 whenpz#iorq=#i (29a)
n _11’.-~mw i,'* X.’.
Vol (0.0) = ?I[Z [E™" G, Dith-row[EGs Dith—cot X J) when p=iand q=i (29b)
= VMIKG, DXG, )]
b) Vi@, Q=0 whenp=jorq#j (29¢)
n K, HE™ G, )] inrow EG, )11
V. Je 0, CI)=%Z D itrrow [EQ,s D]ith—col when p=jand q=j (29d)
i=1 VMIKG, DXG, )]

where Vi Ji(p, Q) and V,Ji(p, Q) are the (p, qQ)th subblock of Vi, and VyJi, EQ, j) is the

eigenvector matrix of matrix K(i, 1)X(j, j)

] 04 D



The proof of the lemma is given in Appendix A.

The LQG conwoller design problem, when finite wordlength effects are taking into
account, are described by the equations (12-14). This is denoted as the LQGrw controller.
However, the scaling constraint (13) can be always satisfied by properly choosing the
coordinates of the controller, so the problem breaks up into two parts: Finding G and finding 1ts
optimal coordinate transformation T, to satisfy (12), (13) and (14). On the strength of Section 3,

we can therefore write the optimization problem as

gl%p J= erTn Jwv +Je) = Hgn[rrTli‘n Uwv +Je)]

since J, is constant in terms of the variation of T, we have

gl}rn J= mGin Jwv + n%n Tl (30)

Assume le -é-n:_}in J. is given by (27), from Theorem 1. Hence, the equivalent LQGrw design

problem becomes

mGin[Jwv +lt] R (30a)
subject to (12c) and (18b) where
Jov = X1 (C + L,GM) Q(C + 1,GM) + tr(V}, + E;)(I,G ) QI Gl,) (30b)
L= @5 (30¢)

where Iy is defined by (22c), and the wansformation T. which yields J 1is given by the

algorithm in Appendix B, and may be computed only after the optimal G is obtained from (30).
The following theorem states the necessary conditions of the optimization problem (30).
Theorem 2:

Necessary conditions for G to be the solution of the optimal controller design problem (30) are:
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[A + BGMJX; [A + BGM]" + DW,D" + (BGI;)(V, + E,)(BGI})" + BLE,(BL))" - X; =0 (31a)

[A + BGM]I'K.[A + BGM] + [C + [,GM] ' Q[C + ,GM] - K, =0 (31b)
[A + BGM] K[A + BGM] + [C + [,GM] Q[C + ,GM] ~K; + V, =0 (31c)
[A + BGM]JK;3[A + BGM]” = K3 + V; =0 (31d)
(15Ql + B Ky BYGMX, M™ + 1, (V, + EDIT) + (1pQlo + B"K.B)GMK3;M" +

+ B (K,AX; + K AK3)M" =0 (31e)

where V, has 4 subblocks as
V.4, =0 i#2orj=#2

~1*

q n Ke(2, 2)[E 150w Elicol
Vo(2,2)= ——1r Iy

Snc i=1 Zk.‘

1

and Vy also has 4 subblocks as

Vi, )=0 i#2orj#2

e [E7 iow [Elico X1 (2, 2)
T Xy E
Sn¢ i=1 Zk,.

1

Vk(2,2)=

where E is the matrix of eigenvectors of the matrix K.(2,2) X,(2,2).

The proof of theorem 2 is given in Appendix A.

Remark 1: The only terms in (31) which are affected by q are the two terms in (31c) and (31d)
denoted by V,, Vi. Hence setting f=eo gives q =0, Vy =0, V, =0, K3 =0, K; = K. Hence,
egs. (31) reduce to the standard LQG design by setting B = oo. In this case, the 11 block of (31a)

reduces to the Kalman filter Riccati equation, and the 22 block of (31c) reduces to the control

Riccati equation.
106



Remark 2: We shall denote the controller satisfying (31) as the LQGgw controller to indicate

that the LQGpw controller requires an additional step; the computation of IC from Appendix B.

Now, we have following LQGgw controller design algorithm:

The LQGgw Algorithm

Step 1. Solve G from equations (31a)-(31e). This gives the LQGgw controller.

Step2:  Compute T =UyZ2URUIL V] by solving Uy, Z,, Uy, U,T1,, V, from (28b)-(28e),

using the G obtained in Step 1.

_Jr o
Step3: G= G
p 0 1

I 0

o T |18theoptimal LQGgw controller for implementation.
-

Remark: A natural algorithm to suggest in Step 1 is as follows. Suppose one desires to design a

LQGgw controller for 10 bit arithmetic.
i) Solve (31a)-(31e) for B; = o=, (hence, the standard LQG controller).

(ii) On the next iteration set B; = 32 (or whatever gives a reasonably small number for

V. V.

(iii) Iterate by indexing B;. Change B; by no more than one bit on each iteration. This gives
an "answer" in 32-10 = 22 iterations (but this manner of choosing step sizes in not
guaranteed to be sufficient to yield the optimal answer).

This is a "natural” homotopy method, since f is a natural choice for a homotopy parameter.
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V. Computation Examples

We consider an Euler Bernoulli beam modeled by its first 5 bending modes with 2 inputs
and 2 outputs. The modal frequencies appear in TABLE 1. In discrete controller design, the
discrete model is represented by the matrices {Ap,By,Cp.Dp, My, W, V) in equation (1).

These matrices are given in Appendix C for a uniform sample time At = 0.018 sec. The LQG

cost function is given by equation (7) with

Q, = 0.991I

The wordlength of the control computer is assumed to be 4 bits. Since the effects of D/A and
A/D conversion errors on the control system simply modify the effects of system disturbance

and measurement noise, we ignore these errors in the example. Both the standard LQG

R=0.01I .

controller and the LQGgw controller are computed for the system.

Frequency | Damping Factor
Mode 1 | 3.4987e+00 9.9994¢-03
Mode 2 | 1.3995e+01 2.1301e-02
Mode 3 | 3.1488e+01 4.5600e-02
Mode 4 | 5.5979e+01 8.0400e-02
Mode 5 | 8.7468e+01 1.2530e-01

TABLE 1. Frequencies and Damping Factors of the

Euler-Bernoulli Beam Example
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The standard LQG controller of course was designed without consideration of round-off
errors (B =) and is labeled controller "LQG" in the TABLES. Conwollers denoted "LQGT;"
i=1, ---, 4are the same as the LQG, but for a coordinate transformation on the controller after
G is computed. The matrices {A;,B.,C.,D.} associated with the LQGr; controller are shown
in Appendix C. In different coordinates T;, TABLE 2 shows the finite wordlength contribution
J. in the closed-loop system cost, using the standard LQG controller. In the optimal coordinate
T, (controller LQGT,) the cost J. is about 500 times smaller than thc- cost in the original

coordinate design (conwoller LQG). This improvement is equivalent to increasing the
wordlength of the control computer by about 5 bits (5 = % log,500). The effect of

computational errors J. in two commonly used coordinates, Normalized Observable Hessenberg
Coordinates [Skelton 1988] and Phase Variable Coordinates, are also given in TABLE 2. The
fact that Phase Variable Coordinates are bad for computation is consistent with other findings in
filter synthesis [Williamson 1990]). The extreme high costs of the controller in a particular
coordinate (LQGt4) in TABLE 2 serves only to demonstrate that the cost J, can become
unbounded for some coordinates. The choice of coordinate T, was rather arbitrary and will not

be described or discussed further.
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Controller | Controller Coordinates Cost J,

LQGy, | Optimal 9.793

LQGr; | Normalized Obs. Hess. | 2.692 x 10*

LQG Plant Coordinates 4.862 x 10°
LQGr | Phase Variable 9.486 x 10°
LQGT, Coordinate "X" 1.472 x 108

TABLE 2. Standard LQG Controller in
Different Coordinates

The LQGgw controller was designed by the LQGgw algorithm given in Section 4. The
controller matrices {A.,B.,C.,D.} of this controller also appear in Appendix C. TABLE 3
shows the computed costs of the standard LQG controller, the transformed LQG controller
(LQGT;), and the LQGgw controller (The "LQGgw with coefficient error” will be discussed
later). The costs for three different groups of excitations are computed in each case. The
applicable disturbances for J, J,, and J, include plant disturbance w, sensor noise v, and finite
wordlength error e. The applicable disturbance for J., Jey, Jey 1s only €, and for Juy, Javy, Jumu
are only w, and v, (no finite wordlength effects). Hence, these sums apply to the various cost
decompositions; Jy is the output term of J (the total cost), I, is the control term in J, hence J =
Iy + 3y Jwvy is the output term of J,, (the contribution of v, and wy, in J), where Jy =Jyvy + Jey

and Je =Jey + Jeu, J = Juy +Je. Jwwu 18 the control term of Jyy and Jy = Juvy + Jew. As we can
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Disturbances | Costs | LQG LQGT; LQGgw LQGgw
Applied Controller Controller Controller with coeff. errors

J 4.8827e+03 | 3.0589e+01 | 2.1207e+01 | 2.4695e+01
All v, w, Jy 2.8053e+03 | 2.3458e+01 | 2.0798e+01 | 2.4232e+01
and e

A 2.0774e+03 | 7.1303e+00 | 4.0941e-01 4.631e-01

Je 4.8621e+03 | 9.9302e+00 | 2.0067e-01 1.4071e-01
e only Jey 2.7850e+03 | 3.1790e+00 | 1.3841e-01 1.0275¢e-01

Jeu 2.0771e+03 | 6.7512e+00 | 6.2267e-02 | 3.7961e-02

T 2.0659e+01 | 2.0659e+01 | 2.1006e+01 | 2.4554e+01
vand w Tsvy 2.0279e+01 | 2.0279e+01 | 2.0659¢+01 | 2.0279e+01
only

Jonvu 3.7912e-01 3.7912e-01 3.4715e-01 4.2514e-01

TABLE 3. Evaluation of LQG Controllers in Plant Coordinates, Optimal

Coordinate and of the LQGgw Controller

see in the TABLE 3, even when the standard LQG controller is in its optimal coordinate
(LQGTy), the J. portion of the cost is still about 33% of the total cost (9.9302 compared to
30.589). By using the new LQGgw controller design algorithm, we reduce the J. portion of the
cost 50 times, compared to the LQGr; controller and 24,110 times compared to the LQG
controller. In the latter case, this is equivalent to increasing the wordlength of the control
computer by about 7 bits, That is, controller LQGgw will give the same performance using 4 bit

arithmetic that LQG gives using 11 bits. Furthermore this improvement in output performance

is accompanied by a reduction in control effort RMS = V.40941 vs. RMS = V2077.4. To
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conclude this point, we see that if both controllers use 4 bits, the difference in RMS output

performance is an order of magnitude (\20.798 vs. ¥2805.3). This kind of improvement in
performance can mean the difference between feasibility and infeasibility of some control
missions.

With the new controller, the round-off portion J. of the cost is only 0.85% of the total cost
as opposed to 33% for LQG. Now let us discuss the cost Jwy, which would be the total cost if
the closed-loop system was only excited by measurement noise v, and disturbance wp. That is,
suppose the LQGgw controller was designed for 4 bits, but evaluated using infinite bits. These
are the conditions of the standard LQG design, since there are no disturbances in the evaluation.
Juv Of the LQGFw controller is a little higher than that of standard LQG controller. The output
term of the cost is also a little higher and the control term a little lower. These indicate that the
LQGgw controller is a little more conservative than the designed standard LQG controller. This
compromise in nominal performance allows robustness to computational errors. Note in
TABLE 3, that the quantities that are optimized by the theory (under the given conditions) are
shaded.

In the design of the LQGgw controller, the equations (31a) to (31e) were solved iteratively
by a gradient method. The standard LQG controller in its optimal coordinate (LQGT,) was used
as the initial controller design for starting the iterative process. Figs. 1-3 illustrate the
convergence process for the LQGgw algorithm, plotting the total cost J, the wordlength cost Te,
the the output J, and input J, performances, versus iteration. The optimal coordinate
transformation played a crucial role in reducing the round-off errors (reducing the error by 3-4
orders of magnitude) as shown in Fig. 2. This was expected because the transformation was
formulated in the optimization problem. The LQGgw controller was obtained after about 300
iterative computations, but note from Figs. 1-3 that after 120 iterations one might have stopped

with little loss.
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Coefficient Errors

In the introduction we promised some evaluation of the effects of coefficient errors. We
argued that even though the LQGrw controller is optimized only for state quantization it
performs well with coefficient quantization as well. To show this we introduced coefficient
errors in the conmoller by using 4 bit precision instead of infinite precision in the controller
coefficients. The key issue here is this. Quantization errors in the state degrades performance,
but does not destabilize, since the effect of e is just a disturbance (note that all controllers in
TABLEs 1 and 2 are stable). Coefficient errors can easily destabilize. Figure 4 shows the closed
loop pole locations using the standard LQG regulator (using infinite precision). The system is
stable as marked by the x’s. When the controller coefficients are implemented using only 4 bit
arithmatic, some poles as indicated by the o’s in Fig. 4, are outside the unit circle. Hence the
standard LQG controller is unstable using a 4 bit control computer.

Fig. 5 shows the improvement in the LQG controller by its optimal coordinate
ransformation before synthesis. This is the LQGT; controller. The poles (0’s) are in improved
locations compared to Fig. 4, but the closed loop system is still unstable. The coordinate
ransformation helped but not enough. Fig. 6 shows the LQGFw controller when controller
coefficients are implemented using only 4 bits. The system is stable, confirming for this
example improved robustness to controller coefficient errors, even though the controller has
been optimized only for errors in controller state computation. The performance degradation in
1, listed in the column "LQGrw with coefficient errors” in TABLE 3 is about 15% (compared to
nominal performance in TABLE 3).

Finally, we consider errors in both the plant and controller coefficients (due to
quantization to 4 bits). These results are summarized in TABLE 4, where the modal damping in
all modes is multiplied by parameter p. Hence p=1 corresponds to the nominal plant in all of the
prior discussion. The range for stability using the LQGpw controller is 729 <ps 1.23,
demonstrating improved robustness over standard LQG controllers in the presence of errors in

plant and controller coefficients.
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Damping Error Factor p LQG LQGT, LQGgw
Controller Controller Controller

1.5242e+00 unstable unstable unstable
1.3717e+00 unstable unstable unstable
1.2346e+00 unstable unstable STABLE
1.1111e+00 unstable unstable STABLE
1.0000e+00 unstable (Fig 4) | unstable (Fig5) | STABLE (Fig 6)
9.0000e-01 unstable unstable STABLE
8.1000e-01 unstable unstable STABLE
7.2900e-01 unstable unstable STABLE
6.5610e-01 unstable unstable unstable
5.9049¢-01 unstable unstable unstable

TABLE 4. Robustness Controllers with respect to modal damping

(4-Bit Wordlength Controllers)
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V1. Conclusion

This paper solves the problem of designing an LQG controller to be optimal in the
presence of finite wordlength effects (modeled as white noise sources whose variances are a
function of computer wordlength). This new controller, denoted LQGgw, has two computational
steps. First the gains are optimized, and then a special coordinate transformation must be
applied to the controller. This transformation depends on the controller gains, so the
transformation cannot be performed a priori. (Hence, there is no separation theorem.) The new
LQGpw controller design algorithm reduces to the standard LQG controller when an infinite
wordlength is used for the controller synthesis, so this is a natural extension of the LQG theory.
It was shown both theoretically and by example that the choice of controller coordinates
significantly influences the effects of computational errors on the control system and that there
exists an optimal set of coordinates in which to do these computations. Since we have not
obtained a closed form solution for the LQGgw problem, design of the LQGgw controller by this
algorithm requires significant computation. Hence, the improvement of the new controller is

achieved at the expense of extra computational effort in design.

Acknowledgement: The importance of this problem was pointed out to us by Darrell
Williamson. We gratefully acknowledge many helpful discussions with him, and the support of

this work by NASA grant NAG1-857, Technical Menitor E.S. Armstrong.
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Appendix A

1. Proof of Lemma 3

a) Using the singular value decomposition of T = U,I1,V;, then the constraint equation (15b)

becomes
(VII2Vy ) =s  foralli (32)
from Lemma 1, above equation is equivalent to
u(T;?) =sn, . (33)
Now, let us study the cost yof (15a). Using the inequality

[tr(AB"))?

r(AA") 2 >
tr(BB )

we have a lower bound on y
Y= (UII?U{P} = o { @LU; VP XL U; VP)' )

, [ @UINeYUTVPI )P ()2
e VPIHUIPTYT) (P

(34)
Now, to prove that 7 is unbounded from above, we prove that for any large scalar m > 0, we
have 'y(’f) > m for some T. Let us choose a T having the following I:I,:

flt = diag (fli) such that

= = - 1
M=M= =M_,=—
EaC

S

and
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fip =00 f, = Nmee)

np-l - Y
V2msr(P1) - 1

where m is so chosen that

m> o
2s(P™)

Then

-2 %o 2mir(P1) - 1 1
= = —2
) 5‘1 ﬁ? snp —2)+ mtr(P~) * mir(P1)

=snp.

Hence the chosen T satisfies the constraint (33). Now, we have:

we then conclude the proof of part a). The proof of b) and c) follows next. The lower

bound and the matrix T are found by using following inequality:

(zR)? < r(QRQHMQ'RQ™) (35)

the equality holds above when Q*Q = A?L
Let us assume T = U,T1,V;, P=U,IL,U,, where I1, and I1, are diagonal, U, V;, Up

are unitary matrices. Assume for the R and Q matrices in (35),

R =U;UITFULU, (36)
Q'Q=U; U, [T U, U,II?U; U, ITF UL U, 37

then
(Q Q™ = Ul U, I U UL 20U Up I UL U,

Hence, we have: / / 7



w(QRQ") = 5(RQ"Q) = r{ (U Up I U U (U Up I U U IR U U, T UL U,)
= o{U,IL,U,UTI?U; ] = u[PTT ) =y
w(QRQ™) = oRQ Q™) = vl(U Up I U Un (U Up [, U, U1 2U; U, I U 5 Uy)
= o{Up U T2 U U] = w7 2)

From equation (33), and the above equation we have the following:
w(QRQ™) = ufI1;?] = sn,,

Now, m(R)=u(U;UpITFULUy) = r(I1%) = a(U,II%US) = rVP. Substitute the above

equalities back into inequality (35). We then have: [tr(\/l;)]2 < snyY, that is

Js [OP?

snp

(38)

Now, suppose the matrix T = [_J‘ﬁtvl yields the equality in (38). Since the equality in (35)
holds when Q*Q = A2, then we have:

U, UpI14U; 0,010, U, ITAUST, = 421
that is
T 2 Myt T F G 2 Yoyr*
U =2 UpI%0, = UL, 0, =270, %U; . (39)

Hence

——* 1/2 * =
I__I.-z _ U, UpIIg UG,
12
. . =2 .
Substitute this IT ~ into equation (32) to obtain
Y%

o= g
(V,U, Up ?‘UPULVI hi=s .

P
2

A

Then tr

1 ) 5
J = sny, hence A2 = Ftr(l'lrf) = -S%—II(\/P_’ ). Now, substitute the above A2
p p
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into (39), to obtain

— —-2_* snpUpHg’U; snp\/F_’-
UII, U, = =
tr(‘fl;) tr(‘/g)

(40)
Hence (38) yields the lower bound in (16a), and the matrix achieving this bound, shown by

(40), must satisfy (17b). (17c) can be easily deduced from (15b). This concludes the proof.
O

2. Proof of Lemma 4

a) Proof of (29a): Since J, does not depend on K(p,q) for p#1i or q # i, we have:

0

Vker(p’ Q= mjk.x =0

Proof of (29b): We need following equality (e.g. Page 444 of Skelton [1988]) to prove the

equation:
7\-i [A]l= [E—l Jith-row AlE}ih—col

where A; is the ith eigenvalue of A, and E the eigenvector matrix of A. Now, we have by

taking A = K@, D)X, j)

MIKGE, DXG3)] = B Yimrow K, DXG, DE]in—col

= r{KG, DXG, DIEN—col (B Tithrow }

OwrAB _

Hence from the differentiation rule 5 AT we get
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o\
dK(i, i)

= [E™ ) row [E) e X J)

Then, we have:

- 2 MG, DG, D)

21 AMIKG, DX, §)]
[E™ ) hrow [E] Far—co1 X 3)
=1 AMIKG, DXG, §))

The proof of part b) follows in a similar manner

3. Proof of Theorem 2: Apply Lagrangian Multipliers K;, K3, then (30a)-(30c) leads to

minimization of

T={Q(C + L,GMIX, [C + ,GM]" + (1,G1; )(V, + E)LGL))
+tr{Kz([A + BGM]X; [A + BGM]" + DW,D" + (BGI; X(V,, + E,XBGI))" + (BI, )E, (BL;)"
- X1)} + r{K3([A + BGM]"K.[A + BGM] + [C + [;GM]"Q

[C+1,GM] - K,)) + S;‘ ()

c

Then
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o] [A +BGMJX;[A + BGM]" + DW,D" + (BGL)(Vp, + E,)(BGI;)" + BLE,(BI))" ~X; =0

oK,
oJ [A + BGM] K, [A + BGM] + [C + [;,GM] QIC + [pGM] - K. =0

——— =

3

I _ (C+1,GMI"QIC + I;GM] + [A + BGMI'K,[A + BGM] - K, + V, =0

0X;

aiie =[A +BGM]K3[A + BGM]" = K3 + Vy, =0

Applying Lemma 4 on the above two equations, we can obtain V, and Vy as stated in the

theorem. This verifies (31a)-(31d). Now

o 215QCX M + 215QI,GMX  M” + 2[5QI G, (V, + E, I} + 2B Kr AX M

oG
+2B"K,BGMX;M" + 2B"K,BGI, (V,, + E,)I; + 2B K  AK3M”

+2B"K;BGMK3M" + 2I5QCK3sM" + 2[5QI,GMK;3;M™ =0 ,

but since I5QC = 0, then,

oG
+ (B"K;B + I5QIp)GMK3;M" + B'K;BGMX  M” +1; (V, + E)IT))

0] 2[MHQLGMX M +1)(V, +E)I}) + B* (K AX) + K AK3 M

= 2[(15Ql + B K;B)GIMX, M” +1; (V,, + E)I}) + BT (Ko AX + K; AK3)M

+ (B"K,B +I5Qlg)GMKsM ] =0 .

This verifies (31e).
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Appendix B

We now present an algorithm (originally developed by Hwang [1977]) for solving (17b)

and (17¢) for one set of solutions of U,, I;, V; (The solutions for U, I1;, V, are not unique).

Let N{}_; in (17b) be written in terms of its singular value decomposition

VP =Up5,U;

where Up, unitary, L, diagonal.
Algorithm (Solving Uy, I1;, V, in (17b) and (17c))

I. Take:
U =0
I, = A / U(ZP)E;I
snyp
Vi=ViiVaa oo Voo VoV
where V;, i=1, --- , n—1is computed as follows:

1I. Compute V;: Let

Zlén:zzdlag( 01_})

(41

(42a)

(42b)

(42¢c)

(43a)

Assume 1, and G;p are two numbers such that one of them is bigger than s, the other is smaller

than s. Then take V, as:
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fl 0 .. 0 g1 0 0
01 .. 000 .. 0
v, = ; : ) :
0 1o 43b
-5 0 . 0f 0 .. 0 (430)
B row — .
0
0 1
where
s N5
oig— 1
f= |—2 (43¢)
| O1p ~ O11 |
(oo | (43d)
B1= | C18 — O |
Compute V;: Let
E =V TV 2y I 42
i =Viet L Vier = | a
PR T s 5,

where I; e ROVXD garisfies the property [Z li=s Zo eREDX@=HD 4o 3 nonzero matrix,

and X;3 can be written as

Assume Cj; and Ojy are numbers such that one of them is bigger than s and the other is smaller

than s. Then take V; as
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1 column o column

r -

1 0 0
S0 0
irow— |0 f; 0 0 & 0
01 0
Vi= o : .. .0 (44b)
0
o TOW —> 0 .. g0 .. 0f ... O
0 - o :
0 0 1
Compute f; and g; as:
f O — 1 1%
il wpry e
r l_ou Y%
5= | Gamor o

Computation of IC
T_ is formed as follows: T, 2 UITPURUILV;

1)  Compute the Covariance Matrix and Observability Grammian

K. = [A + BGM] K.[A + BGM] + [C + [,GM] Q[C + [,GM]
X, =[A + BGMJX; [A + BGM]" + DW,D" + (BGI;)(V, + E,)BGI;)” + B, E,B],

Assume K.(2,2), X;(2,2) 1o be (2,2) the subblocks of K. and X; (the controller
subblocks).
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2)

3)

Compute U,, Z,, Uy.

These three matrices are computed by applying singular value decomposition on following

matrices:
X1(2,2) = UL, U,
ZYPUKL(2,2UR M2 = UL 5, U,

Compute Uy, I1,, V,.

Let us replace P matrix in the algorithm of appendix B as
P £ diag [A; (Ke(2,2)X1(2.2))]

Then we can compute U,, I1;, V, by applying the algorithm on matrix P.
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Appendix C

DESIGN EXAMPLE OF ROUND-OFF LQG CONTROLLER

Plant Model: 10th Order Euler-Bernoulli Beam

Word-Length of the Assumed Computer: 4 bits

1) The 10th Order Euler-Bernoulli Beam Model for Controller Design

[ 0.9980 0.0179 0 0 0 0 0 0 0 0
—0.2196 0.9968 0 0 0 0 0 0 0 0

0 0 09687 0.0177 0 0 0 0 0 0

0 0 -3.4620 0.9582 0 0 0 0 0 0

Ao 0 0 0 0 0.8469 0.0166 0 0 0 0
0 0 0 0 -16.4457 0.7993 0 0 0 0

0 0 0 0 0 0 0.5594 0.0139 0 0

0 0 0 0 0 0 —43.6477 0.4340 0 0

0 0 0 0 0 0 0 0 0.1138 0.0095

0 0 0 0 0 0 0 0 -72.4045 0.0937
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[ 0.0014 0.0006] [ 0.0014  0.0006]
0.1557 0.0716 0.1557 0.0716
~0.0004 0.0011 —0.0004 0.0011
—0.0480 0.1257 ~0.0480 0.1257
5o 00012 0.0013 Do [~00012 0.0013
—0.1299  0.1440 ~0.1299  0.1440
0.0007  0.0012 0.0007  0.0012
00720 0.1164 0.0720 0.1164
0.0007  0.0007 0.0007  0.0007

| 0.0588  0.0588| | 0.0588  0.0588

_107.8297 0 7.1091 0 -1.3744 0 -83569 0 —6.2128
~ 10 62128 0 -8.7875 0 6.2128 0 0 0 -6.2128

{o 7.8297 0 7.1091 0 —1.3744 0 —8.3569 o}

"~ 10 6.2128 0 —8.7875 0 6.2128 0 00
we |! 0 Cve 1.0003e~03 0
0 1 0 1.0003e~03

2) Designed Regular LQG Controller in Optimal Coordinate LQGr;
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_0.4582 —0.1633 —0.0133 -0.1836 0.1574 -0.4386 —0.1054 —0.2805 0.2304 —0.2815]
0.4144 0.6040 0.4587 -0.4122 —-0.0201 —0.0411 0.2748 0.1059 —0.0786 0.0379
0.0849 —0.5217 0.5622 —-0.3257 0.3373 0.2351 0.0665 0.1975 -0.1651 0.2658
0.4753 —0.3503 0.2226 0.5105 -0.3084 0.0821 0.4446 0.1978 —0.1382 -0.0456
0.3326 0.0383 —0.5299 —0.1864 0.4324 0.3391 0.3306 0.2351 -0.1635 —0.1155
0.2946 -0.1855 —0.0.850 —0.3095 —0.2941 -0.0605 —0.7404 0.0085 0.1530 0.5389
1.5034 —0.2726 -0.0095 —0.2270 —0.0416 —0.4845 —1.5704 —0.3867 —0.0236 —0.4084
0.5293  0.0908 -0.0359 —0.0617 —-0.3343 -0.0787 —-1.0273 —0.1971 —0.0491 0.4129

-0.0468 —0.0574 —0.0709 —0.0716 —0.0416 0.1318 0.5827 —0.9215 -0.0746 0.2806

—0.4312 0.1539 -0.0256 0.0559 —0.1463 0.4745 —0.0777 —0.3449 —0.9854 —0.6735

Ac

[ 0.1894 —0.2895)
-0.422  0.0230
-0.0296  0.0941
-0.0120 —0.0024
-0.0258  0.0940
-0.0611  0.0609
02200  0.4919
-0.0737  0.2522
0.0252 —0.0076
| 00737 00776

_|-1.9370 3.8601 4.1659 3.4458 1.8923 —4.2436 -15.7358 —6.5380 3.7048 -5.3330
7| 1.6850 —3.2381 -2.7357 -2.8624 -2.7744  5.2406 11.5365 3.9625 -2.8745 -0.1711

3) LQGpw Controller from the LQGgw Algorithm of Section 4
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[ 0.3501
~0.2004
—0.2033
—0.2973

0.0308
—0.1187

0.0089
—0.3341

0.0731
~0.1129

—0.0134
0.0812
0.0706
0.2464
0.4583

~0.5942
0.2455
0.1121
0.1013

-0.1510

_ | 0.8861
€7 [-1.4019

0.4306 ~0.2223 0.3078 —0.5350 0.1231 0.1595 —0.2003 —0.1024 0.1325 |

—0.2851 -0.2294 0.1810 0.6715 —0.4432 0.2756
0.2556 —0.0197 —0.8326 —0.8293 0.0885 —0.0605
—0.3621 0.6480 0.3770 —-0.4095 0.4031 —0.2736
—0.2207 -0.5168 —0.3001 —0.9847 1.1705 -1.0703
0.4836 0.0470 0.3655 0.2493 -1.0109 0.3516
—0.3363 0.0664 —0.0869 0.0085 —0.0712 —0.1936

0.2935 0.1055 0.1309 0.2251 -0.3631 —0.7912 —0.5655 —0.2610 0.3180
—0.0312 -0.0788 —0.1349 -0.4369 0.2594 —0.4096 —0.3895 0.7609 0.3237

0.0070 0.0781 0.1679 0.4955 -0.3354 0.5865

0.0927]
-0.1630
—0.3987
—0.6411
-1.0134 D o |T0-4486e-04  —0.1328e-04
1.0745 ©7 1-0.5913e—04 —0.1567e~04
—0.2146
0.0815
-0.2475
0.3465 |

-1.8997 3.8592 -0.3107 5.3072 -0.7395 0.6339
2.2532 -2.6576  0.1575 -3.3358  1.2007 —0.5179
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0.1591 0.3525 -0.3974
0.2870 -0.0571 0.1147
0.0125 0.0426 —0.0372
0.7456 ~0.0979 0.1920
0.5930 0.2744 -0.3872
0.113 0.3818 —0.5248

0.4685 0.2460 0.6396

-1.6517 0.9202 -1.3734
0.2062 -0.9969  1.3884
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INTRODUCTION

To develop enabling technologies needed for future advanced astrophysics
missions, two NASA centers, the Jet Propulsion Laboratory (JPL) and the Langley
Research Center (LaRC), are undertaking a joint effort on a Precision Segmented
Reflector (PSR) Project. The missions to which PSR is intended to support include
the Submillimeter Explorer (SMME) and Submillimeter Infrared Line Survey (SMILS),
both planned for the mid-1990's, and the Large Deployable Reflector (LDR) for the
early 2000’s. All of these mission will employ large (up to 20 meters in diameter)
telescopes. The essential requirement for the telescopes is that the reflective
surface of the primary mirror must be made extremely precise to allow no more than
a few microns of errors and, additionally, this high surface precision must be
maintained when the telescope is subjected to on-orbit mechanical and thermal
disturbances. Based on the mass, size, and stability considerations, reflector
surface formed by segmented, probably actively or passively controlled, composite
panels are regarded as most suitable for future space-based astronomical telescope
applications.

In addition to the design and fabrication of composite panels with a surface
error of less than 3 microns RMS, PSR also develops related reflector structures,
materials, control, and sensing technologies. Furthermore, a Technology
Demonstration has been proposed to illustrate hardware integration, study
interaction of technologies, and evaluate system performance. As part of the
planning effort for PSR Technology Demonstration, a system model which couples the
reflector, consisting of panels, support truss and actuators, and the optical bench
was assembled for dynamic simulations. Random vibration analyses using seismic
data obtained from actual measurements at the test site designated for PSR
Technology Demonstration are described in this paper.

BACKGROUND

] The Precision Segment Reflector (PSR) Program was initiated in early 1988 as an
element of NASA's Civilian Space Technology Initiative (CSTI).

] A joint LaRC/JPL effort.

) To deveiop enabling technologies needed for future astrophysics missions

- Large Deployable Refiector (LDR)
- Submiliimeter Explorer (SMME), Submillimeter Infrared Line Survey

(SMILS)

. Four major elements are included in the PSR technology development

- Lightweight composite panels

- Lightweight support structures

- Panel figure control

- System technology demonstration
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STRUCTURAL CONFIGURATION

The current baseline LDR telescope system, illustrated in the sketch shown in
Figure 1, has a 20-meter filled aperture reflector with the reflective surface form
by five rings of 84 hexagon-shaped, lightweight, composite panels[l]. The backup
structure employed to support these panels is a tetrahedral, space-erectable truss
constructed with thin-walled composite struts. In order to conduct astronomical
observations in the sub-millimeter/far-infrared wavelength range of 30 to 50
microns, the LDR is required to have a surface precision that allows no more than a
few microns (root-mean-square) errors.

As a precursor technology development effort for the LDR-class space optical
systems, the Precision Segmented Reflector (PSR) Program was initiated in 1988 as
one of the major elements of NASA’s Civil Space Technology Initiative (CSTI). The
PSR (Figure 2) has a parabolic reflective surface that is formed by 19 hexagonal
composite panels and with a focal length of 2.4 meters. The nominal size of each
PSR hexagonal composite panel is 0.9 meters, measured from vertex to vertex. When
fully assembled, all PSR panels except the central one will be actively controlled
by voice-coil actuators. There will be three actuators for each panel to
accomplish controlled motions for three degrees of freedom, one piston and two
tilts.

In the PSR structures area, the major accomplishment has been the successful
development of the PSR Testbed (TB) truss structure [2]. This space-erectable
truss structure, consisting of 45 aluminum nodes, 300 aluminum joints and 150
graphite-epoxy composite struts, was designed, analyzed, fabricated, and assembled
at LaRC. Photogrammetry survey performed on the as-assembled PSR TB truss
structure indicated that the RMS error of positioning accuracy for the 27 upper
surface nodes is about 70 microns and is substantially better than the 100 microns
goal. Structural tests including static deflection and modal survey were also
conducted and correlated with analytical predictions [3].

Fig.1 Large Deployable Reflector (LDR) Fig.2 Precisiop Segmented Reflector (PSR)



ARTICULATED PANEL MODULE (APM)

Another significant accomplishment related to the PSR structural effort is the
development of the Articulated Panel Module (APM) design concept for attaching
panels to the support truss. The APM is a modular design specifically developed to
provide well-defined, "soft-support” interface between the PSR composite panels and
the TB truss structure (Figure 3). It also provides physical support to the
control actuators and serves as the optical bench for the edge sensors employed for
aligning neighboring panels.

Specific PSR/APM design requirements for the 0.9 m panel are described in
Reference 4. The allowable panel movements and panel offset are applied to define
the geometries of the APM components. The flexure sizes, as well as the dimensions
of the lateral constraint struts, are derived from the specifications of the
desired natural frequency range. The current APM configuration has been designed
so that the natural frequencies of the piston mode and the tilt modes are less than
0.2 Hz and the natural frequencies of the rotational and the lateral modes are
somewhat near 50 Hz. In addition, the non-rigid spatial deformation of the front
panel facesheet above the interface node is not allowed to exceed 20 nm. over a 6.6
cm. distance with a temperature difference of 2°C. This thermal deformation
requirement led us to choose INVAR as the panel interface fitting material.

Various design considerations and solutions had to be addressed in the design
of a prototype APM that would accommodate all the functional requirements and the
design criteria. The first design consideration was to establish low thermal
expansion coefficients in the overall APM components for an expected 200 K space
operational environment. This CTE consideration was solved by using low CTE
materials through the entire APM. The proposed materials are graphite/epoxy,
titanium and INVAR-36. The consideration of design simplicity was met through the
proper design configuration. There are only three panel interface points in the
current APM design. The lateral constraint struts were placed inside the subframe
tubes in order to reduce the packaging complexity. The lightweight consideration
was fulfilled by choosing lightweight materials. That is why graphite/epoxy was
used for the lateral constraint struts and the subframe tubes, moreover, titanium
was proposed for all the fittings and flexures. Fittings are applied in order to
facilitate the APM assembly. Flexures are used in the APM for both precise and
predictable considerations. A description of the APM development, including
details on its structural and functional requirements and design approaches, is
presented in Reference 5.

Panel/APH
Interface Fitting

Backup Strut/ APM Lateral Control Struts
iInterface Connecter H

Backup Strut )

s g

}j;é; Fig.3 APM,Panel,and Backup Struts



PSR TECHNOLOGY DEMONSTRATION MODEL

The PSR TD is a test and demonstration effort with the following specific
objectives: (1) demonstrate the integration of panels, backup structure, APM and
figure sensing hardware components developed within the PSR program; (2) validation
of individual PSR component technologies in a complete telescope reflector system
environment; (3) development of ground test methods for large precision space
structures; and (4) generation of experimental data for comparison with results
predicted by an optical performance simulation model. Figure 4 is one of the
baseline test configuration proposed for the PSR TD. Only one of the nineteen
composite panels will be actively controlled in the PSR TD tests. The actively
controlled panel can be located on either the first (inner) or the second (outer)
ring of the reflective surface, however, the final locations for actively
controlled panels have not been selected.

The structural model of the PSR TD system includes the panels, the APM and the
backup support truss. However, the optical bench is not included in the PSR TD
system model. This is because of that the structural design of the optical bench
has not been completed and its stiffness is considered to be relatively rigid
compared to the TD structural system. The panels incorporated in the PSR TD
program are a hexagonal shape and of a 2-inch thick aluminum core and 0.04-inch
thick composite facesheets. The corresponding lowest natural frequency of the panel
itself is about 200 Hz[6]. Two PSR TD structural models were assembled in the
present study. The first model (System I) is based on the assumption that the
actively-controlled panel is attached to the first ring of the backup support
struts, as shown in Figure 5.a. The System II model assumes that the actively-
controlled panel is attached at the second ring of the backup struts, as shown in
Figure 5.b. The boundary conditions of both systems are assumed to be rigidly
mounted to the ground at the three inner nodes of the lower surface of the backup

truss. v

1
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(a) System I t /'

(b) System II

Fig.4 PSR TD Configuration Fig.5 PSR TD System Models
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DYNAMIC CHARACTERISTICS OF PSR TD SYSTEMS

The natural frequencies of these two system models are listed in Table 1, with
the corresponding mode shapes briefly described. It should be noted that the
natural frequencies of the APM alone are very close to those of the PSR system
models. No couplings are observed for the piston mode, tilt modes and rotational
mode between the APM and the backup struts. However, slight couplings are noted
for the lateral modes. This is may also be due to the effects of an in-plane
offset as discussed in Ref. 5.

Table 1 Dynamic Characteristics of PSR System Models

NATURAL FREQUENCY (H2)
MODE NO. MODE SHAPE
SYSTEM | SYSTEM I

16 0.000 0.000 Rigid Body Modes

7 0.087 0.087 Pane! Piston Mode

8 0.105 0.105 Panel Tit Mode

9 0.106 0.108 Panel Tiit Mode
10 25.15 25.32 Bending Mode of Backup Struts
1 25.29 25.75 Bending Mode of Backup Struts
12 29.43 29.43 Panel Core Mode
13 43.53 44.31 Translation Mode In X-direction
14 53.05 47.32 Translation Mode in Y-direction
15 54.12 53.06
16 55.62 55.47 Panel Rotational Mode
17 57.46 57.55
18 67.44 67.09
19 68.35 68.90
20 95.79 96.84




CHARACTERIZATION OF THE TEST ENVIRONMENT

The PSR TB structural tests are to be performed in the Magnet Room of High
Bay 1 located in the Spacecraft Assembly Facility (SAF) at JPL. A survey was
conducted to characterize acoustic and seismic environments of this proposed test
site [7]. In this survey, acoustic and seismic data were accumulated over a time
period of one week. For ground motion measurements, three Wilcox Research Model
731 accelerometers, one unit along each of the north-south, east-west, and vertical
axes, were used. The 1dB frequency responses of these seismic accelerometers were
measured from 0.1 to 300 Hz. Three set of data, for day time, night time, and day
time with equipment off, were collected by these accelerometers. The collected
data was presented in three forms: (1) G°/Hz vs. Hz; (2) G vs. Hz; and (3) peak
displacement vs. Hz. A 1024 point Fast Fourier Transform was taken with a 1024-
channel analyzer to convert the raw data into frequency domain from the time
domain. The resulted acceleration power spectrum densities of the measured seismic
disturbances are applied in the random response analyses of the PSR Technology
Demonstration system model. Two extreme cases are examined in this work: (1)
daytime disturbances (Fig. 6.a), and (2) nighttime disturbances (Fig. 6.b). The
coordinate system shown in Figure 6 is defined as follows: X-Axis is for the
recorded north-south data, Y-Axis is for the east-west direction and Z-Axis is for
the vertical direction. For conservative purposes, the envelopes shown in these
disturbances are applied in the random analyses. It is noted that the magnitudes
of the daytime disturbances in the low frequency range are much higher than those
of the nighttime disturbances. However, the magnitudes of the daytime disturbance
in the high frequency range are very close to those of the nighttime disturbances.

Fig.6 SAF DISTURBANCES

(a) Daytime (b) Nighttime
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ANALYTICAL APPROACH

Random analysis approach used in this work is based on a data reduction
procedure that is applied to the results of a frequency response analysis. The
frequency response function H(f) is obtained by applying a variable frequency
sinusoidal acceleration, A,, to the PSR system models and calculating the
acceleration response at the specified points. Dividing the calculated
acceleration by the input Ay, H(f) can be expressed as function of the excitation
frequency, £. Then the root-mean-square (RMS) responses (a) at the specified
points can be calculated numerically from the equation

/2

1
- gjsu,) EEAIE S

where S(fj) is the acceleration power spectral density function at the discrete
frequency fj.

The random response analyses are implemented by using the NASTRAN modal
frequency response solution scheme (Sol. 30) coupled with the results from the
normal mode analyses (Sol. 3). The peak random responses of the PSR system are
calculated by using the RMS values of frequency responses induces by random
disturbances over a frequency range form 0.01 Hz to 200 Hz. An uncorrelated
approach is applied in this work in order to be able to examine the peak responses
of the PSR system due to each individual external disturbance in a different
excitation axis. The final peak responses of the system subjected to the
disturbances of all three axes are then calculated by using the root sum square
(RSS) of the RMS peak responses in three axes. Two sets of relative displacements
are calculated in the analyses. The first one is the relative displacement between
the grid point of the front panel facesheet, located above the truss node, and the
backup truss node. The second set is the relative displacement between the backup
truss node and the ground support points. An 0.5% modal damping was applied to the
frequency response analyses.

RANDOM RESPONSE ANALYSES
. Modal frequency response assoclated with results from normal mode analyses

] Data reduction procedure

i ¥ n
- lt :é d ﬂ'.‘ . 4 t-[;:su,)lmt,n u,l
—M—*. - =-» (] X (!

. implemented by using MSC/NASTRAN

. Uncorrelated approach

L Frequency range: 0.01Hz to 200 Hz
Modal damping: 0.5%

L] Probability of exceeding the specific displacement
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RESULTS AND DISCUSSION

The results of the 1-o0 peak displacements are summarized is Table 2 for both
the PSR System I and System II models subjected to these seismic disturbances. It
is noted that the movements of the panel occurred in nighttime are much smaller
than those occurred in daytime. However, the difference in the nighttime and the
daytime movements of the nodes is not as large as that in the panel. This is
because the movements of the panel are predominant in the lower frequency (about
0.1 Hz) range (Figure 7) and the movements of the nodes are predominant at a higher
frequency (about 25 Hz) governed by the truss modes (Figure 8). It is also noted
that the lateral movements of the panel are larger in the PSR System II than those
in the PSR System I. However, the vertical movements of the panel are almost
identical in both PSR systems. This is because the vertical movements of the panel
are dominated by the piston modes and the natural frequencies of the piston mode in
both PSR systems are identical. Another observation is that the lateral movements
of the panel are more location-dependent than the vertical movements of the panel.
However, the opposite results are observed in the movement of the strut nodes.

For the proposed PSR Technology Demonstration configuration (System I), the
lateral peak movements (l-o) are about 2.9 um for the daytime disturbance case and
0.36 um for the nighttime case. The vertical peak movements are 13um and 2um for
the daytime case and the nighttime case, respectively. The l-¢ peak responses of
the PSR System II are 4.5 pym for the lateral movement and 13 um for the vertical
movement in the daytime case. These peak responses are well below the expected
figure control range of *lmm and the 100 um gaps between the panels. This implies
that the isolation table is not a necessity in the TD optical bench design.

The peak responses of a hard mount case had also been studied by increasing the
flexure size of the lateral constraint struts such that the natural frequency of
the piston mode is 1.6 Hz and the natural frequency of the tilt modes is 2.0 Hz.
Results of analyses based on the nighttime SAF environmental data indicate that the
l-0 lateral movement of the panel is 0.14 um and the 1l-0 vertical movement of the
panel is 0.08 um. The comparison indicates that the peak vertical movement can be
reduced dramatically (from 2.0 um to 0.08 um) by using the hard mount APM design.

Ky



Table 2

1-0 RMS Displacement Responses (i m) of the PSR systems

Location

Component

Daytime Disturbances

Nighttime Disturbances

System 1 I System 2

Systom 1 | System 2

Relative Displacements Between Front Panel Facesheet and Strut Nodes

Comer 1 X 1.34 2.18 0.202 0377

y 1.72 3.14 0.293 0.479

z 12.89 12.85 1.851 1.794

Comer 2 1.12 1.89 0.172 0.284

y 2.58 4.05 0.338 0.573

z 12.53 12.46 1.911 1.848

Comer 3 x 1.50 229 0.221 0.336

y 254 3.92 0.331 0551

z 11.96 11.83 1819 1.751

Relative Dispiacements Between Strut Nodes and Ground

Node 1 x 0.026 0.031 0.019 0.022

y 0.018 0.019 0.013 0.01S

z 0.012 0.038 0.010 0.032

Node 2 x 0.029 0.034 0.020 0.024

Yy 0.018 0.019 0.013 0.015

z 0.022 0.044 0.020 0.039

Node 3 x 0.032 0.037 0.023 0.027

y 0.023 0.027 0.017 0.022

z 0.053 0.065 0.046 0.055
4 . }: L : y .
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Fig.7 Response of Panel Facesheet

Fig.8 Response of Strut

Node



CONCLUSION

Technologies, including those related to large space structures, developed by
the PSR program play a vital role in enabling future astronomical missions that
require large precise telescopes. To verify these enabling technologies, ground
tests must be performed and the planning of the tests mandates a need for a
thorough assessment of the test environment and responses of the test structure to
the environment. This need has been partially satisfied by random vibration
analyses of the PSR structure using seismic inputs derived from measurements of
ground motions of the test site. Results of the analyses indicated that the
maximum daytime movements of the precise panel supported by the PSR structural
system, including the APM, will be less than 13 microns in the vertical direction
and 3 microns in the lateral directions. These movements are well within the
acceptable limits and the need for elaborate vibration isolation devices does not
exist. The next step in planning the PSR TD tests is to design an optical-bench
structure which will not amplify or adversely alter the seismic disturbances
imposed on the test structure. The PSR TD optical bench will be extremely stiff
such that frequencies of its vibratory modes are well above the frequency range
occupied by PSR structural system. A fundamental frequency above 50 Hz is
considered to be desirable for the PSR TD optical bench. Design of such an optical
bench is currently in progress.

SUMMARY
= PSR Technology Demonstration system model has been established

- Panel
- Articutated Panel Module (APM)
- Backup truss

. Seismic disturbances of the PSR TD test site were measured. The resulted
acceleration power spectrum densities of these disturbances were applied in the
random response analyses of the PSR TD system model.

" Analytical results indicated that the movements of the precise panels supported
by the PSR structural system were within the acceptabie limits.

- Elaborate vibration isolation devices are not necessary.
L Future Work

- Optical bench
- Suspension system
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ABSTRACT

Dynamic equations which include the effects of

unsteady aerodynamic forces and a flexible body
for a free-flying

The linear and

structure have been developed
high performance fighter aircraft.
be small in

angular deformations are assumed to

the body reference frame, allowing the equations
the deformation variables.
and flexible

the hybrid

in a state space

to be linearized in

Equations for total body dynamics

body dynamics are formulated using

coordinate method and integrated
A detailed finite model of a

format. element

generic high-performance fighter aircraft is used

to generate the mass and stiffness matrices.
represented by a

the doublet

Unsteady aerodynamics are

rational function approximation of

lattice matrices. The equations simplify for the

case of constant angular rate of the body

reference frame, allowing the effect of roll rate

to be studied by computing the eigenvalues of the

system. It is found that the rigid body modes of

the aircraft are greatly affected by introducing a

constant roll rate, while the effect on the

flexible modes is minimal for this configuration.

1. INTRODUCTION

Future fighter aircraft must be able to meet

stringent maneuverability and performance

requirements. This will result in aircraft

designs in which the interaction of flexibility,

aerodynamics, and overall body motion during a

maneuver are of prime importance. The need for

superagility and the use of advanced lightweight

materials will make it very important to consider

*Senior Research Specialist
**Department Engineer
+Associate Engineer
+t+Senlor Associate Engineer

flexibility effects in the

alrcraft undergoing maneuvers at high rates.

analysis of the

Flexible body dynamics have been investigated
in many other writings, including references [1) -
[4]. In this

derived in a manner

paper, dynamic equations will be

similar to that in reference

[5], which contains a more thorough development of

the equations. In addition, aerodynamic forces
will be explicitly included in the equations.
These equations will then be applied to a

realistic model of a modern fighter aircraft.

The aircraft is assumed to be a collection of

elastically interconnected, discrete rigid

subbodies wvhich are subjected to external forces

and torques, including  unsteady aerodynamic

forces. It 1is assumed that the deformations of
the subbodies with

frame are small so that the

respect to the body reference

high order terms in
the deformation variables and their rates can be

neglected. The rotational effects of motors,

fans, and turbines are not included in this

representation.
BODY REFERENCE FRAME

UNDEFORMED
STH ELEMENT

o

CURRENT CM

ELEMENTAL BODY
REFERENCE FRAME

DEFORMED STH ELEMENT

INERTIAL REFERENCE FRAME

Figure 1. Reference Frames and a Subbody

N91-22318



Table 1. Vectors and Dyads definitions

Definition

angular deformation of sth element
Inertia dyadic of the aircraft with respect to CM
Inertia dyadic of the sth elemental body about its CM

Vectors and Dyads

1T basis matrix for
(53T basis matrix for
(13T - T e direction cosine
w = (b)T w angular velocity
Tog)T basis matrix for
d= ()T d Position of

7= (1)T vV Velocity of

T = (i)}F ¥g Position of

c = (b} ¢ position of

;s = ()T rg position of

ug = {p3T ug position of

Ps = (b _}T o position of

Bs = [bf Bg

= ()71 (b

;5 = {bg)* Ig (bgl

inertial reference frame (IRF)

body reference frame (BRF)

matrix relationship between IRF and BRF
of body reference frame

sth elemental body reference frame(ERF)
current center of mass (CM) in IRF

current CH in IRF

the sth element in IRF

CM in BRF

undeformed sth element from undeformed CM
sth element from the undeformed position
differential mass in sth elemental body

Table 2. Vector Identities and Matrix Operation

Equivalents

Vector representation:

x1
x = ()T [x2] = (13T x
3
y1
y = W7 kz] = (i)Ty
3
Cross product representation:
xxy=WTxY=--({)T¥x
vhere the ~ operator is defined below:
- 0 -X3 X2
(X)” =X = x3 0 -x
-x3 x3 O

Operations with dyad

various reference frames associated
subbody. Definitions of the
used in this figure and in

given in Table 1.

and those in a matrix format.
is used for implementing

our problem.

Section 2 deals with
applied to the total body.

torques on the subbodies

3. Derivations are kept brief,

steps provided. The rational
approximation used for describing
aerodynamic forces 1is given iIn section

section 5 the equations

separated from other external forces.

with each

vectors and dyads
the derivations are
Table 2 shows the equivalency
between various operations in a vector/dyad format
The matrix format

the computer solution to

the net force and torque
The net forces and
are described in section

vith only main

the unsteady

are integrated in a state

space format, with aerodynamic forces specifically

1= T1 )
I-x={HT1x
Ixx y=(TI1%7Y

of the hybrid

used here to develop

A highly detailed description
coordinate method, which is
be found in references
highlights of

will be presented

the dynamic equations, can
[5] {6]. Only

development of these

and some the

equations

in this paper. The development of the equations
closely follows that of reference [7], with
aerodynamic forces added. The equations are

implemented as a computer program, FLXAIR.

Figure 1 shows a schematic diagram of the

nonlinear and time dependent equations can be used

for simulation. Vhen the angular velocity of the

body reference frame is constant, the equations

It

angular velocity on vehicle

become time invariant. is

of

then possible to
study the effects

structural dynamics
Vhen

by performing an eigenvalue
analysis. unsteady aerodynamic loading is
included in this formulation, this is seen to be a

flutter analysis under maneuver.

A large-order finite element model which is a
of advanced fighter
demonstrate the stability effects of
Section 6 describes the NASTRAN

realistic representation an
was used to

high roll rates.



model, structural and aerodynamic, which wvas used
in the analysis. Results are shown for various
roll rates and for variations of overall stiffness
of the aircraft. The analyses shov little effect
on the flexible modes of the system due to roll
maneuvers. Considerable effect was, howvever,

observed for the rigid body modes.

2. TOTAL BODY DYNAMICS

The equations are derived from Newton-Euler
equations. The equations for the net force F, and

the net torque P , can be represented as follows.

_ 142 (M7 d) 1
_F = 3?2 ot X ( )
" ig (H) 2
P I5 - (2)

Mro¢ is the total mass, and H is the angular
momentum referred to the CM of the aircraft.
Presuperscript 1 refers to the fact that the
differentiation must be wvith respect to the
inertial reference frame.

The further development neglects the effects
of rotating bodies such as engine compressors,
fans, rotors, etc.. It is assumed that the
deformation of flexible bodies is small in the
body reference frame. This assumption is used to
neglect the high order terms in the deformation
variables ug(linear deformation of sth element)
and Es(angular deformation of the sth element) and
their derivatives.

Equation (1) can be written in the body
reference frame and for ease of computer

implementation in matrix form as follows:

F = Mpg, OV 3

The development of equation (2) to a computer
implementable step is lengthy. Only few key steps
are given.

The angular momentum H is defined as
H = J(cergsugepe) x i4 (cergrug+pg) dm (&)
= Ct+IgtlUgtp A Us*p

The development makes use of the mass-center
definition

I(S’ES’ES’ES) dm = O (3)

and the folloving identity:
J(rs+usrps) x (@ x (rgeugrps) ) dm v I -w (6)

With the use of equations (4) to (6), equation (2)

can be vritten as
P-To+ox]-w+fwecxe
+ ig flrgrugepg) x (is‘és‘és) dm N
dt

The assumptions of discrete lumped masses and

small deformations with respect to the body

reference frame are nov used to convert the
integration operation into the following summation

operation:
J(rg+ug+ps) x (is‘és‘és) dm =
Irg x mg Qs + Llg és (8}
vhere mg is defined as:

Jdm = mg 9
s

and center of mass definition of sth lumped mass

is given by

I pg dm = 0 (10)
S

Finally, equation (7) can be written in a

computer implementable form as:
P=Ik+lw+ale
+ L{((Brg)” sEg)ugmg +Egugmg +IgHg)
+ BEISéS (11)

The total inertia is assumed to be linear in

the deformation varlables.
Ia I*+Ims[2rsTusE -rsug -usrsT)
+ E(Bglg-IgBg) (12)

vhere I* is the inertia of the undeformed

airplane. Therefore
I - Img{2rgTugE -rgul -ugrgT)
+ I(Bglg-IgBg) (13)

Equations (12) and (13) can be substituted into
equation (11) to further simplify the equation.



3. ELEMENTAL BODY DYNAMICS

The net forces and torques on the sth

elemental body are as follows:

fg = mg igéz(ﬂ + €+ Eg + Ug) (14)
Bs = g He (15)
dt

Hg is the inertial angular momentum of sth element
referred to 1its mass center. Note that this
equation is applicable to all n subbodies.

It is assumed that the body reference frame
and the elemental body reference frames are
initially colinear. This assumption, though not
necessary, is used here to simplify the equations.

Equation (14) can be vritten in the following

computer implementable form:
fs = mg { oV + c+ é(rs+us+c) +2&(é+ﬁs)
+ Ug +WW(rgrug+e) ) (16)
noting that
vV =d (d) (17)
dt
Hg is defined as

Hg = lg " @ (18)

Invoking the assumption of small deformation, the

rotation is represented by
Bs = ()T Bg (19)

Note that this equation is strictly true if the
rotations are infinitesimally small. The

relationship betveen the body reference frame and

the elemental reference frame can now be
approximated as
(bg)T = ()T (E+By) (20)

where E Is a 3x3 unit matrix.
Using equations (18) to (20), equation (13)
folloving computer

can be vritten in the

implementable form:

ps = Lg(wrBg) +(Iginalg-(Igw)” )Bg +BIgw

o (Igh -(Igw)™ -B(Igw)™ +@Igh)Bg (21)
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4. RATIONAL FUNCTION APPROXIMATION
OF UNSTEADY AERODYNAMICS

The formulation of the unsteady aerodynamics
is based on the relation

) - % (NID] (8p) (22)
-]

vhere (8p} represents the pressures at aerodynamic
force nodes, {v} contains the velocities normal to
the lifting surface induced by {8p}, and [NID] is
the induced normal downvash influence matrix. The
induced velocities are defined as dowvnwash
collocation points which are located at the 3/4
chord of each aerodynamic box for the doublet

lattice method.

Downwash collocation points are those points
on a lifting surface at vhich the induced velocity
normalized by the free stream velocity is equal to

the local angle of attack {a}, i.e.,
(a) = () (23)

The pressures are then given by

(8p} = 5 ov2 [NID]-! (a] (24)

N3 =

or

{8p) = = oVZ [AIC] (a) (25)

=

where [AIC] = [NID]-1.
In the following derivation, Equation (24) is

used as a starting point.

From {6p), by an integration or "lumping"”
process represented by {ZP], the aerodynamic

forces are obtained:
(Zaero] - ‘ZP] (Ap] (26)

The local angle of attack, taken relative to

the free stream velocity, V, is given by

{a}) = {ap] + (8}) (27)

The contribution ap is the instantaneous
slope of the lifting surface, relative to V, in a
plane through V perpendicular to the 1lifting



surface:
{aT) = [Dg] (2} (28a)
vhere [Dg] is a differentiating matrix.
The contribution a; results from the rate of

translation in a direction perpendicular to the

lifting surface:

z
ta;) = 10,1 (&} (28%)
vhere [D;] is an interpolating matrix.

Substituting Equation (28) into Equation (27)
and replacing Z by sz ylelds:

(a) = [(Dg] + & [D;1] (2) (29)
v

Combining Equations (24), (26) and (29) leads

to:
(Zaero) = 5 eV°12P] (NID]-
* [ivgl + £ 10,1]12) (30)
For constant amplitude oscillation s = iw =
i(Vk/c). The 1induced velocity matrix 1is a

function of ik. It follews that Equation (30) can

be written as:
L 2
{Zaerol = 7 #V° [AUIK)] (2} 3D
vhere A(ik) is given by:

(ACtio} = (22} INID(iR)]-1 [(Dg) + 2X fD,1]
(32)
For developing the explicit function of s,
[A(s)], corresponding to [A(ik)], the {Dg] and
IDz] contribution to [A(ik)] are identified

separately, and the explicit occurrence of s in
Equation (30) is maintained.

[A(ik,s)] = [2P] [NID(ik)]-!
* [Dg+ § (2P] [NID(1K)]-1 [Dy)

(33)
Let:

[A (1K)} = [2P) [NID(ik)}~1 [Dg) (34)

and
[Az(1K)] = [2p] INID(ik)]-) [D,) (35)

Then:

[ACk,s)] = [ALCHOT + § [Az(5K)) (36)

Preliminary to approximating [A(ik,s)] by an
explicit function of only s, [Ap(ik)] and [A,(iKk)]
are approximated by [Ap(p)] and {Az{(p)], where p

i{s the nondimensional form of s: p = cs/V.

Following Reference [B], the following terms

are approximately,

n P

(Ar(p)] = [Brol + L EBE s (37)
3=1 3
n P

[Az(P)] - [Bzol + L %t],_ (38)
3u1 3

These matrices can be obtained by generating
aerodynamic matrices for several values of k and

then employing a least-squares fit.

Because the state-space equation will be
written in terms of s, Equations (37) and (38) are

written in terms of s by letting p = cs/V:

n
(Ar(s)] = [Brol + s I £E§i%— (39)
j=1 J
n 1
(Ay(s)] = (Byol + s L £E§igi (40)
3=1 3
vhere
ﬂj =V bj/C

Combination of Bquations (31), (35), (36),
(39), and (40) leads to the following approximate

expressions for the aerodynamic forces:

n
(Zaero) = % ov2 {[Brg) + s L £E§1%— (z)
J=1 ]
X
2 n
1
7 ov2 |7 (Bo) + - h 5351%; (z)

(41)
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5. INTEGRATED TOTAL BODY AND ELEMENTAL
BODY DYNAMICS

The general form of the linear flexible body

equation is

H'g + D q+ C (@) + K'(8,K)g
« AT (B,@)q = L (@, B, f5,pg) (42)

where q-[ulT,BlT,..,UE,BE,..,UE,BE]T. M, D, and K
are mass, damping, and stiffness matrices
respectively of the airplane which are obtalned by
a traditional finite element method, such as
NASTRAN. The other terms, G’, K’, A’ and L’ are
obtained from equations (16), and (42). Note that
K' is a symmetric matrix. Equations (3), (11),
(12), (13) and (42) can be wvritten in the state

space like format as follows:

0 0 0 Q F

0 S Sl ry | [ P
= (43)

0 0 0 -Ep | |m 0

L O A K'+AY G’+D Ny A

Equations (44)-(55) explain various terms in

equation (43).

n - q (4
-4 (45)

0 is a null matrix and dimensions are context

dependent.
E, i3 6nxén matrix.
To hZ - zms?sus*ZIsés (46)

In = &(Ims(erTusE-rsu§~usrsT)
+ IBgIg-II Bglwe (Img(2rgTugk

- 's“g‘usrsT)’résls‘zlsés’” (47)
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T} ny = (Img(2rgTugB-rgul-ugr Ty
+ IBglg-IIgBe)w +Img|(rg)”

+ Eghlugy IRIGBg (48)
E = 3x3 unit matrix

L] = block diagonal 6nx6n matrix where block

diagonals are 3x3 matrices

= Block diagonal [ myE, Ij, .., mgE, I,

oy mpE, Ipn ]
Egg={E 0 E 0..E 01T 6nx3 matrix

o= 10 E O E.. O E ]T 6nx3 matrix

M’ = M(E, - LgoITgoM/MToy) (49)
Ay = M(Igg - R) (50)
£1]
0
. 3]
R = (51)
0
,
L0 |
Ay = lZggw]™ M Igg -M{Iggw]™ R (52)

[Logw]™ = block diagonal matrix of dimension
6nx6n. Each block is 3x3.
The diagonal blocks are
{® 0 @ .. @ 0

[Lggw]™ = block diagonal matrix of dimension
6nx6n. Bach block is 3x3.
The diagonal blocks are
[0 & 0 .. O @]

[HIggw]™ = block dlagonal matrix of dimension
6nx6n. Each block is 3x3.
The diagonal blocks are
[0 (L1w)” 0 (Iw)” .. 0 (Iw~)

K = K+ [Lggw]™ M [Zggw]™ + M ( [Iggw]”

* [Lpgw]™ -Lgg@lgd M/Mrg, ) (53)



A’ = M|Lgg@]™ - [MIggw]™
+ M [ [Eggw]™ - IggulggH/Mrey }
+ | Lggw]™ [MIggw]™ (54)

G’ = H[Lggw]™ + [Iggw]™ M - [MIgpw}~
o M ( [Iggw]™ - LpoRIggh/MTey ) (55)

Definitions of [Eggwl™, [Iggw]™, and [HIggw]~
are very similar to [Iggw]™, [Iggw]™, and [MIggw]~
and hence they are not given here.

Equation (43) has the form
Ag X+ Ay X =U (56)

where definitions of Ag, Ay, X, and U are obvious.

Equation (56) can be written as

. -1 -1
X = —AO Al X AO U (57)

Eq.(57) can be simply written as
X=AX+BU (58)

Definitions of A and B are obvious.

Eq.(58) can be used for the time simulation.
To better understand the interaction between the
total body and the flexible body dynamics, steady
state maneuvers (i.e. constant angular rates of
the body reference frame) are studied.

By putting the derivative of w to zero and

including the aerodynamic force representation

from equation (41), equation (43) becomes:

R 1y
1 0 0 0 ny
-oV B M° -V B -oV B n
- % T & |,
0 0 1 o n
3
i 0 0 ) I R
r ‘N
0 -I 0 0 n
K’#A'-sz BTO G'+D’ -pV2 BTI —oV2 BTZ nz
= v -7 -
0 -1 B, 0 n
0 -1 0 LI B UM
o
0
(59)
0
0
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Note that the coefficient wmatrices on LHS of
the equation (59) are time invariant vhen the
angular rate, w, is constant. Hence the
eigenvalues of the system can be used to check the
stability of the system and to study the effects

on modes of the system at different angular rates.

6. APPLICATION TO FINITE ELEMENT MODEL

A large-order finite element model (FEM) of a
generic fighter was obtained for use in the
application of this method. The aircraft planform
is similar to an F/A-18, although stiffness and
mass data do not necessarlly represent this
airplane. Although the FEM consists primarily of
beam elements, 1t is a highly detailed model
contalning an A-set of 228 degrees of freedom
(DOF) and approximately 200 structural elements.
Aerodynamic modeling of the alrcraft consisted of
230 boxes, and can be seen in Figure 2. The
doublet lattice method was used to formulate
aerodynamic influence coefficient matrices. Eight
values of reduced frequency were used to calculate

unsteady aerodynamic matrices.

Certain assumptions wused to develop the
equations required that some modifications be made
to the model. The equations assume that the
mathematical model has six DOF for every subbody.
If these matrices are generated from a FEM, this
is rarely true. In NASTRAN , this corresponds to
the initial global set (G-set) of coordinates.
These DOF cannot normally be wused, hovever,
because many are constrained due to the method of

modeling and imposition of boundary conditions.

Figure 2. Aerodynamic Configuration



Table 3. Flexible Mode Frequency and Damping for Roll Rate Maneuvers
Full Stiffness

MSC/NASTRAN FLXAIR FLXAIR FLXAIR FLXAIR
FLUTTER ANALYSIS ANALYSIS ANALYSIS ANALYSIS
ANALYSIS 0.0 DEG/SEC 90.0 DEG/SEC 180.0 DEG/SEC 240.0 DEG/SEC

ROLL RATE ROLL RATE ROLL RATE ROLL RATE
FREQUENCY| DAMPING |FREQUENCY| DAMPING |FREQUENCY| DAMPING |FREQUENCY| DAMPING |[FREQUENCY| DAMPING
Hz Hz Hz Hz Az
6.734 -.0689 6.699 -.0653 6.696 -.0653 6.685 -.0655 6.673 -.0656
8.948 -.000459| 8.957 -.000422| 8.955 -.000467| 8.946 ~.000539| 8.936 -.000602
9.085 -.0740 9.056 -.0722 9.053 -.0722 9.044 -.0722 9.035 -.0722
14.192 -0.175 14.371 -0.142 14.368 -0.142 14.361 -0.142 14.353 -0.142
16.434 -.0730 16.779 -.0806 16.778 -.0806 16.774 -.0806 16.771 -.0805
18.736 -.0249 18.756 -.0297 18.755 .0298 18.753 -.0298 18.751 -.0298
21.172 -.0188 21.812 -.0157 21.813 .0159 21.814 ~.0165 21.815 ~.0162
23.172 -.0268 23.333 -.0292 23.333 .0293 23.331 -.0294 23.333 -.0294
24,352 -.0406 246.692 -.0416 24.691 .0416 24.689 -.0416 24.688 -.0416
29.578 -.00707 | 29.719 -.00878 29.276 .00871 | 29.721 -.00865 | 29.722 -.00863
32.916 -.0458 33.439 -.0387 33.448 .0387 33.437 -.0387 33.436 -.0387

These constrained DOF present a problem vhich

requires either the modification of the equations

or of the input matrices.
Another assumption made in the equations s
that the mass matrix

the

is block diagonal.
FEM

These arise because of

However,

typical mass matrix from a analysis

contains coupling terms.
the following reasons:
1) Mass data may be input at locations other

than structural grid peint locations.

2) Coupling results from the use of
dependency relations (multi-point
constraints in NASTRAN).

3) Coupling results from the static reduction

if 1inertia 1s 1lumped on the

omitted DOF (Guyan reduction).

any of

These

adjust the model as follows:

considerations make 1t necessary to

1) The inertia {s it is
located at exact grid point locations.

relumped so that

2) Inertia at dependent DOF 1is relumped so
that it is associated only with
independent DOF.

3) Inertia located at DOF vwhich are

eliminated by the Guyan reduction process
must be relumped at retained DOF (A-set).
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matrix is formed
of the FEM A-set DOF

4) A Boolean transformation
for use in expansion
to the 6n DOF
After forming

required by the equations.
the state space equations,
this same matrix can

those DOF.

be used to eliminate

A NASTRAN flutter
conducted for a case
altitude

analysis of the vehicle vas
representing Mach .7 and an
of 20,000 fr.
aerodynamic matrix data were obtained from NASTRAN
The

function

Mass, stiffness, and

for this case. necessary matrices for the

rational approximation of the

aerodynamics vere obtained by a least squares fit
using aerodynamic matrices for reduced frequencies
of 0.0, 0.2, and 0.8

vere formed and eigenvalue solutions vere obtained

The state space equations

for various values of roll rate.

For zero roll rate,
the NASTRAN analysis.
little effect on the flexible modes of the system,

The rigid body modes
root locus plot of the

the results agreed with
Increasing roll rate showed

as can be seen in Table 3.
vere affected, hovever. A
function

rigid body roots as a of roll rate is

shown in Figure 3. For zero roll rate, tvo stable
real roots and one stable complex conjugate pair
are obtained - corresponding to a roll convergence
mode, a spiral mode, and an oscillatory dutch roll
mode.

Vith increasing roll rate, hovever, ve see



Figure 3. Rigid Body Eigenvalues for Roll Rate

Maneuvers
Full Stiffness
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that some roots become unstable, and also change
from real to complex and back again to real.
Another case, representing a more flexible
airplane, shows the same behavior (Figure 4),
although the changes occur at lower roll rates.
This case represents 50% of the initial overall
airplane stiffness. Table 4 shows again that the
flexible modes vere not greatly affected, even for

the reduced stiffness case.

7. DISCUSSION

Dynamic equations have been derived for a
flexible fixed wing
explicit representation of unsteady aerodynamic
forces.

alrcraft, including an

The aircraft is assumed to be a
collection of elastically interconnected discrete
rigid subbodies.
small in the body reference frame, thus alloving
the equations to be linearized in the deformation
variables.

Deformations are assumed to be

The hybrid coordinate method is used to
derive the total body and the elemental body
dynamic equations which are then converted to
matrix form. These equations are integrated in a
state space format, along with a rational function
approximation of the unsteady aerodynamic forces.
These equations can be used for simulation. For
the case of constant angular velocities of the
body reference frame, the coefficient matrices
become time invariant, alloving the use of an
eigenvalue analysis to evaluate the effects of the
angular rates on the system dynamic properties.
Vhen this method is applied to a realistic finite
element model of
fighter,

a generic high-performance
significant changes in the stability
characteristics of the aircraft are observed.
Vith increasing roll rate, some roots become
unstable, and also change back and forth from
complex to real. The dutch roll mode becomes two
real roots, one of which combines vith the spiral
mode to produce an unstable oscillatory mode. The

other real root from the original dutch roll mode
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Table 4. Flexible Mode Frequency and Damping for Roll Rate Maneuvers
50 Percent Stiffness

FLXAIR FLXAIR FLXAIR FLXAIR
ANALYSIS ANALYSIS ANALYSIS ANALYSIS
0.0 DEG/SEC 60.0 DEG/SEC 90.0 DEG/SEC 180.0 DEG/SEC
ROLL RATE ROLL RATE ROLL RATE ROLL RATE
FREQUENCY DAHPING FREQUENCY DAMPING FREQUENCY DAMPING FREQUENCY DAMPING
Bz Hz Hz gz
4.860 -.07367 4.858 -.0737 4.855 -.0737 4.839 -.0739
6.335 ~.000492 6.333 -.000553 6.331 -.000590 6.318 -.000727
6.500 -.0929 6.500 -.0930 6.500 -.0930 6.484 -.0930
10.230 -0.186 10.229 -0.186 10.227 -3.186 10.216 -0.185
11.871 -.0873 11.871 -.0874 11.870 -.0874 11.867 -.0873
13.334 ~.0431 13.334 ~.0431 13.333 -.0432 13.331 ~.0431
15.435 -.0196 15.435 -.0199 15.435 -.0200 15.436 -.0204
16.527 -.0364 16.527 ~.0365 16.527 -.0366 16.525 -.0367
17.498 -.0578 17.497 -.0578 17.497 -.0578 17.494 -.0578
21.021 ~.0125 21.021 -.0124 21.022 -.0124 21.024 -.0122
23.671 ~.0479 23.711 ~.0479 23.671 -.0479 23.669 -.0479
Figure 4. Rigid Body Eigenvalues for Roll Rate
Maneuvers
S0 Percent Stiffness
1.0 LEGEND
O 0 DEG/SEC
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combines vith the roll convergence to form another
more stable with
The effect on the flexible
this
the rigid body

oscillatory mode which becomes
increasing roll rate.
of the

configuration.

minimal for

of

alrcraft
The

modes vas
behavior

modes is somewvhat dependent on airframe stiffness,

as can be observed for the 50% stiffness case.

It Is expected that a design vith increased
span would shov a greater effect due to roll rate
for hoth the rigid body This

should be given consideration in the design of any

and flexible modes.

future high-performance aircraft.
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Objective:
Analysis of the Efficiency of Algorithms resulting from

Kane's Equation for Serial and Parallel Computation of Mass
Matrix.

Overview:

* Algorithms resulting from Kane's Equation and Modified
Kane's Equation.

* Analysis of two Classes of Algorithms for Computation of
Mass Matrix: The Newton-Euler Based Algorithms and the
Composite Rigid-Body Algorithms.

* Analysis of the Efficiency of Different Algorithms for
Serial and Parallel Computation.

* Conclusion
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Multibody Dynamics

Case Study: Rigid Multibody as Specialized to a Single Chain
Robot Manipulator. |
Multibody Dynamics: Solution for Q from
AQ=C-b=[" (1)
A: nxn Symmetric Positive definite Mass Matrix
Q: nx1 Vector of Generalized Accelerations
C: nx1 Vector of Applied Forces/Torques
b: nx1 Vector of nonlinear Terms (Bias vector)
[': nx1 Vector of Applied Inertia Forces/Torques
The O(n3) Algorithms for Multibody Dynamics:
1) Computation of b and [,

2) Computation of Mass Matrix A.

3) Solution of Eq. (1) by Inversion of A.

Kane's Equation is widely used for Computation of Mass
Matrix.



Kane's Method: Notation

Q: nx1 Vector of Generalized Coordinates

U: nxl Vector of Generalized Speeds

n
. : _ .
Choice of U: U Zj-lA”QJ B,

Angular and Linear Velocity of Body (Link) 1

n

-1 z 9'1( )U * Qi(t)
oy T

€
Il

»

n
»
Z v U +¥V
—i j=1"‘1(3) j —i(t)

<
"

w : Angular Velocity of Body i

1

wiu): jth Partial Angular Velocity of Body i

w : Angular Velocity of Remainder Terms

i(t)

*

Vl: Linear Velocity of Center of Mass of Body i

V:U): jth Partial Linear Velocity of Center of Mass

of Body 1

»

1(t): Linear Velocity of Center of Mass of Body i

Remainder Terms
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Kane's Method: Notation

Partial Angular and Linear Momentum

N Iw
—i(j) =i—1(y)

F mYV
—1(}) I=1(j)
NiU): Jth Partial Angular Momentum of Body i

FiU): Jth Partial Linear Momentum of Body i

Kane's Equation for Computation of Mass Matrix

The element aij of Mass Matrix A is Computed as

Y
i

*
Z V .F +
ij k(i) “k(j)

gﬁ(w'h&()
k=] ! ]

» »
Z \'4 .mV +
—k(i) kTk(}j)

W dw
k(1) =kTk(y)
k=]
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Kane's Equation: Analysis of General Case

For Analysis of the General Case, We Set U_l = b

1

= and w =
—i(j) j —i(t)
i ]
w =) 20
i i=1 ]
»* *
= (Z2x P ) and V. =0
—i(j) j i*,j i(t)

Kane’s Equation can be written as

n

a =z (Zix_l_’k*

)m(zx P )+ 2Z.12
k=] i kK —j Tk*, ]

, "1k
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AN O(n3) Algorithm Based on Kane's Equation

FOI" i = 1) 2, 3 n
For j = 1i, i+1, » N
n
= . + .
aij Z '(Zix fk*,i) mk(ZjX fk*,j) ‘Z‘i ;kzj

This Algorithm is Designated as Original Kane’s Equation (OKE)

Algorithm.
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Modified Kane's Equation

k-J(ij _I_-"k*, J,). mk(Zix fk*’

) 2., x (mZxP

K *
k=] ’

Z z2.((p, x (mZx P
k=3 j k*,] k™1 —k*

|88

) +2 .12

) +

?

—j =k—i

12

) + _I_kZi)



AN O(n?) Algorithm Based on Kane's Equation

For i =1, 2, ,
For j = i, i+1, , N
P =P + P
—J)i —j—l)i _j, J-l
= +
—PJ*,I l:’j,l §J
=12
—j(i) =j—i
—j(i) = mj(—ix —J*, i)
For j = n, n-1, , 1

£ = F +f
—j(1) i) —j+1(i)

n = N + Sx F +n + P x f
—j(i) —j (i) —j —j(i) —j+1(i) —J+l, 5 —j+1(i)

Z.n
ij  —5 =5
This Algorithm is Designated as Variant of Kane’s Equation (VKE)

Algorithm.
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Algorithms for Computation of Mass Matrix

7y Q Body »

Body {

600\‘/ !
AQ=[" (1)
aij = aii :_r'i (2)

For the conditions given as

Q;=1 and Qi=0i$i=0 For j=1,2,..,n (3)

Two physical interpretations of Egs. (2) & (3) lead to two
classes of algorithms for computation of mass matrix:

1. The Newton-Euler Based (N-E B) Algorithms.
Underlying Physical Concept: Propagation of acceleration
among rigidly connected bodies.

The Variant of Kane's Equation (VKE) Algorithm belongs to
this class.

2. The Composite Rigid-Body (CRB) Algorithms.
Underlying physical Concept: Propagation of force among
rigidly connected bodies.
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Algorithms for Computation of Mass Matrix

Clearly, the two physical interpretations are the same.
We have shown that the algorithms of the two classes can be
transformed to one another.

From an algorithmic point of view, the main difference
between the algorithms of the two classes is the presence of
a two-dimensional recursion in Composite Rigid-Body
Algorithms.

The main issue is to determine the best algorithm(s) for
serial and parallel computation.

The Original Kane's Equation Algorithm is the least efficient
since its computational complexity is of o(n3).

The computational complexity of both the Newton-Euler
Based Algorithms and Composite Rigid-Body Algorithms is of
O(n?). However, the Composite Rigid-Body Algorithms, in
general, are more efficient.
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Algorithms for Computation of Mass Matrix

There are four major redundancies in the Original
Newton-Euler Based Algorithm which can be removed by:

1) Optimizing the Newton-Euler Formulation for the
conditions given in Eq. (3),

2) Using a variant of Newton-Euler Formulation ,

3) Choosing a better coordinate frame for projection of
equations.

4) Introducing a two-dimensional recursion in the

computation which transforms it to an equivalent
Composite Rigid-Body Algorithm.
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Step 1:
For j =

For

Step 2:

A Variant of Newton-Euler Based Algorithm

1, 2, ..., n
i=3, j*¥1, ..., n
(i, j) = 2(3)

V(i-1,§) + &(i, j)xP(i,i-1)

V(i, j)
F(i+1,i,J) = m(i)V(i, j) + o(i, j)xh(i)

N(i+1,1,J) = k(i)e(i, )

For i = n, n-1, ..., J

F(n+1,n+1, j) = N(n+1,n+1,j) = 0

F(n+1,i,J) = F(i+1,i,j) + F(n+1,i+1, j)

N(n+1,1i, j) = N(i+1,i, j) + N(n+1,i+1,j) +
P(i+1,i)xF(n+1,i+1, j)

a.. = 2(i).N(n+1,i+1, j)
g ==

This algorithm results from removing the first two redundancies

of the O N-E B Algorithm. It is clearly equivalent to the O(n2)

algorithm resulting from the Kane’s Equation or the Variant of

Kane’s Equation (VKA) Algorithm. 193



m(i) Mass of body 1i.

h(i) First moment of mass of body i about point Oi'
k(i) Second moment of mass of body i about point Oi'
Z(1i) Axis of joint i

P(i, j) Position vector from point j to point i.

w(i, j) Angular acceleration of body i resulting from the

unit acceleration of joint j.

V(i, j) Linear acceleration of body i (point Oi)

resulting from the unit acceleration of joint j.

F(k+1,1i, j) Force exerted on point 0i due to the acceleration
of bodies i through k, i.e., the bodies contained

between points 0i and O 1’ resulting from the

k+
unit acceleration of joint j.

N(k+1,1, j) Moment exerted on point Oi due to the acceleration

of body i through k, resulting from the unit

acceleration of joint j.
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A Variant of Composite Rigid-Body Algorithm

M(i) = m(i) + M(i+1)

H(i) = h(i) + H(i+1) + M(i+1)P(i+1,i)

K(1) = k(1) + K(i+1) -M(i+1)P(i+1,1)P(i+1,1) -
PGi+1,1)H(i+1) - H(i+1)P(i+1,1)

£(i) = Z(1)xH()

n(i) = K(1)Z(i)

a . =2(i).n(i)

Step 2:

For j = i-1, i-2, ..., 1

£(3) = £(j+1)

n(j) = n(j+1) + P(j+1, j)xf(j+1)

a = 2(3).n(J)
ji
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M(i) Mass of composite rigid-body i composed of bodies i

through n.

H(i) First moment of mass of composite rigid-body i about
point Oi'

K(i) Second moment of mass of composite rigid-body i

about point Oi'
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Comparison of Serial Efficiency of Different
Algorithms

In order to study the relative efficiency of the algorithms,
the optimal choice of coordinate frame(s) for projection of
the Equations should be carefully analyzed.

For the Variant of Newton-Euler Algorithm, projection of all
equations onto any fixed frame leads to maximum
computational efficiency; It requires O(n) transformations.
Projection onto the body frame leads to copmputational
inefficiency; it requires O(n?) transformations!

For the Variant of Composite Rigid-Body Algorithm,
projection of Step 1 onto body frame and Step 2 onto any
fixed frame leads to maximum computational efficiency; It
requires O(n) transformations.

Projection of both steps onto the body frame leads to
copmputational inefficiency; it requires O(n?)
transformations!
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Comparison of Serial Efficiency of Different

Algorithms
Redundancy
>
® ® —@— -® ®
V C R-B O C R-B V N-E B O N-E B OKA
Serial Efficiency
<

OKEA: Original Kane’s Equation Algorithm.

O N-E B: Original Newton-Euler Based Algorithm.

V N-E B: Variant of Newton-Euler Based Algorithm.
O C R-B: Original Composite Rigid-Body Algorithm.

V C R-B: Variant of Composite Rigid-Body Algorithm.

General n==~=6
Algorithm
Mul. Add. Mul.  Add. Total
V N-E B |(39/2)n°+ 19n°+ 1192 948 2140

(195/2)n-95 S5n-66

V C R-B | (9/2)n°+ an°+ 644 535 1179
(231/2)n-181  88n-137
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Computational Structure of and Data-Dependency in Algorithms for
Mass Matrix
a) The Newton-Euler Based Algorithms
b) The Composite Rigid-Body Algorithms
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Algorithmic Choice for Parallel Computation of
Mass Matrix

Parallelism in Computation of Mass Matrix: Time and
Processors Bouds

We have shown that the time lower bound in computation of
mass matrix is of O(log,n) and can be achieved by using O(n?)

processors.

The Original Kane's Equation Algorithm might seem very
suitable for parallel computation since all elements of the
mass matrix can be computed totally in parallel.

The computation of each element of mass matrix can be
performed in O(log,n) steps by using O (n) processors. Hence,

in order compute all the elements in parallel and achieve the
time lower bound of O(log,n) , O(n3) processors are required!

Using both the Newton-Euler Based Algorithms and the
Composite Rigid-Body Algorithms, the mass matrix can be
computed in O(log,n) steps with only O(n?) processors.
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Algorithmic Choice for Parallel Computation of
Mass Matrix

The Newton-Euler Based Algorithms are more suitable for
parallel computation due to their regular computational
structure and a lesser degree of data-dependency in their
computation.

1) They provide a high degree of coarse grain parallelism:
The columns of the mass matrix can be computed in
parallel.

2) They are more regular and have a finer grain:
A higher degree of parallelism in computation of the
elements of each column can be exploited

3) Their parallel computation on a two-dimensional
processor array requires simpler communication and
synchronization mechanisms.

Choice of Coordinate Frame for Parallel Computation on a
two-dimensional processor array:

For the Variant of Newton-Euler Based Algorithm it is more
efficient to project the equations of onto the End-effector
(Body n) frame while for the Variant of Composite Rigid-Body
Algorithm it is more efficient to project the equations onto
the base frame!
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Conclusion

* For recursive serial computation, the Variant of Composite
Rigid-Body Algorithm is significantly more efficient than
the Variant of Newton-Euler and the Variant of Kane's
Equation Algorithms.

* For parallel computation with O(n?) processors, i.e.,
maximum exploitation of parallelism, the Variant of
Newton-Euler and the Variant of Kane's Equation Algorithms
are not only significantly more efficient than the Variant of
Composite Rigid-Body Algorithm but they also require
much simpler architectural features.

* For parallel computation with O(n) processotrs, i.e., limited
exploitation of parallelism, the Variant of Composite
Rigid-Body Algorithm is more efficient than the Variant of
Newton-Euler and the Variant of Kane's Equation Algorithms
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Comparison of Two Classes of Serial and Parallel

Algorithms for Computation of Mass Matrix

Computation Cost
Algorithm SP | Proc.
General n==s
VCR-B | ((9/2)m+4a))n’+ 644m+535a | - 1
((231/2)m+88a) )n-
(181m+137a)
SA
VN-EB | ((39/2)m+19a)n°+ 1192m+948a| - 1
((195/2)m+55a)n~
(95m+66a) J
VCR-B (48m+63a)[1og2n]+ 244m+254a | 2.40| n(n+1)/2 f
(100m+65a) ;
PA
VN-EB | (33m+33a)[log,n]+ 208m+188a | 2. 98/ n(n+1)/2
(109m+89a) ;
VCR-B | (9m+8a)n+(48m+63a) [log n]+  2S6m261a |2.32 n |
(58m+24a) F
PPA |
VN-EB | (39m+38a)n+(27m+182) [log n]+ 340m+280a | 1.90| n |
(25m-2a) ?
SA: Serial Algorithm.

PA:

Parallel Algorithm with O(n2) processors.

PPA: Parallel Algorithm with O(n) processors.
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Parallel VNEB algorithm

Step 1:

1) Parallel compute R(j+1, j) by all processors of Row J.

For j=1,2,..., n
For i =1, 2, ..., ]
PRji : R(j+1,J)

2) Parallel compute R(n+1, j) by processors of Column 1i.
For i=1, 2, ..., n
For j =1, i+1, ..., n

For n = 1 step 1 until [1og2(n+1—i)], Do

R(j+27, j) = R(n+1,J)
3+2™> 542" t2n+1
R(j+2", 3) = R(n+1,J) = R(n+t1, j+27 HR(G+2" ", 3)
j+2Mzn+1> §+27 1

R(j+27, 5) = R(j+2", 3+2" IR(G+2", 5)
n+1>j+27> j+21
End_Do
3) Shift R(n+1, j+1) by processors of Row j+l to the processors of
Row j.
For j=1,2, ..., n
Fori=1, 2, ..., ]
Ple: R(n+1, j+1)
with R(n+1,n+1) = U (Unit Matrix)

204



4) Parallel compute nHZ(\J'), n+1P(j+1,j), and nHH(j) by all
processors of Row ]j.
For j=1, 2 ,..., n
For i =1, 2, ..., ]
a) PR+ "Z()) = R(n#1, §)72(J)

with 92(j) = [0 0 1]t

b) PR : "1p(j+1, j) = R(n+1, j+1)P(§+1, §)

n+1 i+

c) PR : S(j) = R(n+1, j+1)

i s(Jj)

d) PR : "H(5) = M) s(5)

Step 2:
1) Parallel compute P(j+1,i) and w(j,1) by processors of Column 1i.
For i =1, 2, ..., n

For j =1, i+1, ..., n

For n = 1 step 1 until [logz(n+1-i)], Do

w(i+2", 1) = w(§+2"1 1) = 2(1)
P(j+2", 5) = P(j+1,1)

3+2™ 5427 t2ne
P(j+2",§) = P(§+1,1) = P(j+2", 5+2™ 1)4p(j+2™, )

j+2M=n+1> 34271
P(3+2", 3) = P(3+2", 42" ) 4p (542, )
n+1>j+27> 4217

End_Do
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2) Parallel compute V(j, i), F(j+1,j,1i), and N(j+1, j,1i) by
processors of Column i.
For i=1, 2, ..., n
For j =‘i, i+1, ...n
a) PRji: V(j, i) = w(j,1)xP(j+1,1) = 2(1)xP(j+1,1)
b) PRji: F(j+1, 3, 1) = w(J, 1IxH(GI+M(FIV(F, 1)
c) PR, : N(j+1,J,1) = R(n+1,j+1){”*K(j)R(j+1,n+1f“1w(j,i)]+

H(jIxV(j, 1)

Step 3:
1) Parallel compute F(n+1, j,1i) processors of Column i.
For i=1, 2, ..., n
For j =1, i+1i, ..., n
For = 1 step 1 until [1og2(n+1-j)], Do
F(j+2",3,1) = F(n+1,j,1)
j+2n>j+2n—1zn+1
F(j+2", j,1) = F(n+1,j,1) = F(j+2",j+2”'1,i)+F(j+2n"1,J,i)
j+2Mn+1> 427
F(j+27, 5, 1) = F(g+2", 3+2™ 1, 0)+F(3+2"7, 5, 1)
21

n+1>j+2"> j+

End_Do
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2) shift F(n+1, j+1,1i) by processors of Row Jj+1 to processors of
Row j.

For j=1, 2, ..., n

For i =1, 2, ..., j

PR i Fn+l, j+1,1)

3) Parallel compute N(n+1, j,i) by processors of Column i.
For i =1, 2, ..., n

For j =1, i+1, ..., n

a) PR51: N(j+1, j,1) = N(j+1,j,i)+P(j+1,j)xF(n+1,j+1,i)
b) For = 1 step 1 until flogz(n+1—j)], Do

N(j+2", 3,1) = N(n+1, j,1)

j+2n>j+2n_lzn+1

N(j+2",3,1) = N(n+1,5,1) = N(n+1, j+2™ 1)+N(§+2™1, 5, 1)
\j+2nzn+1>j+2n_1
N(G+2T, 5,10 = N(G+2", g2 )N (ge2™ 2, 5, 1)
n+1>j+2™> 542172
End_Do

2) Parallel compute 2 by Pij

FOI‘ i = 1, 2, ., N
For j =1, i+1, ...n
PRj1: aji = 2(J).N(n+1, j, i)
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Algorithm-To-Architecture Mapping

Determination of an Algorithmically-Speciaslized Parallel
Architecture for Efficient Implementation of the Algorithm.

1) Processors Interconnection and Communication
Complexity

For perfect mapping:

a) The required interconnection among processors of each
column is Shuffle Exchange augmented with Nearest-Neighbor
(SENN).

b) The required interconnection among processors of each
row is Nearest-Neighbor.

The perfect mapping leads to a communication complexity of
O(log,n). Mapping on an array with nearest-neighbor

interconnection leads to the communication complexity of

o(n).
2) Synchronization Mechanism
Exploitation of parallelism at two computational levels:

a) Coarse grain parallelism in computing columns of mass
matrix, and

b) Fine grain parallelism in computing the elements of each
column.

Global Clock-Based Synchronization Mechanism (similar to
Systolic Array) for processors of each column, and Local Data
Driven (similar to Wavefront Array) for processor of each

row.
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SIMULATION TOOL FOR SPACE STATION -
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Ramen P. Singh***, PhD and Buddy Schubele****
DYNACS Engineering, Inc., Clearwater, Florida

ABSTRACT

An order (n) multi-flex body Space Station simulation tool is introduced. The flex multibody modeling
is generic enough to model all phases of Space Station from build up through to Assembly Complete
configuration and beyond. Multibody subsystems such as the Mobile Servicing System (MSS)
undergoing a prescribed translation and rotation are also allowed. The software includes
aerodynamic, gravity gradient and magnetic field models. User-defined controllers can be discrete or
continuous. Extensive preprocessing of body-by-body NASTRAN flex data is built in. A significant
?spect, too, is the integrated controls design capability which includes mode! reduction and analytic
inearization.

1.0 INTRODUCTION

The buildup of the International Space Station Freedom evolves through a series of widely
differing configuration each with its own unique mass property distribution and ensuing stability and
controls issues. Even the relatively mature Assembly Complete configuration can itself undergo
significant variation in mass propenties when the MSS is in transit and/or carrying out payload
maneuvers or during Orbiter docking. In addition to the complications introduced by the multibody
articulated nature of these configurations, there is the fact that each component assembly is not rigid
but possesses a degree of structural flexibility. To support the controls design and verification for
such complex orbiting dynamic systems requires a versatile and high fidelity simulation capability.

This paper describes a dynamics, controls time history simulation software package (SSSIM Rev.
2.0)3 that specializes a very generic multibody topology to the needs of Space Station with flexibility
effects included and is a significant extension of the rigid model described in Ref. 1. Flex modeling is
based on afinite element ‘nodal’ representation compatible with NASTRAN. An efficient
preprocessor is used to extract the necessary mass, stiffness and damping characteristics as well as
the dynamic rigid/flex coupling coefficients. Calculations can be simplified considerably depending
on the nature of the boundary conditions. To minimize the system order, a model reduction feature
is built into the code. An interactive setup program aids the user in constructing the data file.

* Staff Engineer

** Senior Engineering Fellow
*** President

**** Aerospace Engineer

¥ Developed under subcontract to Honeywell (SSG), Inc. by DYNACS Engineering, Inc.
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The intent overall is to have a complete controls design analysis capability, hence, the code
includes a series of idealized sensor options and a range of actuator types. The design process is
assisted too by a newly developed anaiytic linearization capability which can linearize about nontrivial
states and yields output in a form directly compatible with standard linear analysis tools such as
MATLAB. Such features, when combined with a user-defined controlier (continuous or discrete),
provide a full closed loop large angle transient dynamic analysis tool for Space Station.

An overview follows of basic features and capabilities embodied in the software. As well, an
outline is given of the approach used for the flex dynamics formulation and for the solution algorithm
(numerous steps are taken to minimize simulation execute times). Preliminary results and run time
performance are given for representative Space Station configurations.

2.0 CONFIGURATION AND FLEX DYNAMIC ANALYSIS
2.1 TOPOLOGY

The generic “tree” configuration topology forming the basis for the code is shown in Fig. 1. Any
body that has more than one outboard body attached to it is labelled as a “base” body. A “leaf” body
has no bodies outboard of it. A “branch” is made up of a chain of adjacent bodies starting with a base
body innermost and ending with another base body or a leaf body. The “level” ot a branchis a
measure of how many base bodies there are between the branch base body and the reference (level
1) base body. Each body is defined on a stand-alone basis without regard to the rest of the bodies in
the tree. The sensors, actuators and joints are connected to the bodies at speciic locations called
node points. Each individual body may be rigid or flexible.

Inertial Earth

Fig. 1 Generic multibody configuration with a multiple branch, muitiple base body hierarchy, point-
connected interbody joints and a prescribed orbiting LVLH reference applied to Space
Station.
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For applications to Space Station, the structure is assumed to have a core body undergoing up
to 3 translational and up to 3 rotational (attitude) degrees of freedom (DOF) relative to the local
vertical, local horizontal (LVLH). The frame fixed to LVLH is, in turn, following some predetermined
orbital trajectory. All other bodies can have up to one rotational degree of freedom or can have
prescribed motions that can occur along one axis for rotation and along up to 3 axes in translation. As
indicated in Fig. 1, for example, base body 1 (BB1) can represent the core body and base body 2
(BB2) can be a power boom with leaf bodies 7 and 8 being pairs of solar arrays.

The MSS itself is a complex muttibodied subassembly which, when operational, can significantly
alter the overall mass properties of the Space Station. MSS-related activies can also generate
significant disturbance loads.Consequently, it has served as somewhat of a focal point in
development of the SSSIM software. One objective is to have the code generic enough to capture
the major dynamic impact of the MSS during its many different configurations and missions. The
current software can represent the MSS as an assembly of any number of point-connected bodies.
There is no restriction as to body location or as to individual body mass properties. Prescribed
motions are possible at joints both in rotation and in transiation and are general enough to allow plane
change maneuvering. The base body must be rigid if prescribed motions are involved since there
are no suitable NASTRAN flex modes available for a translating structure. Payload release is also
readily accomodated.

2.2 DYNAMICS FORMULATION OVERVIEW

The order (n) dynamics developed in Ref. 2 for rigid multibody cases is extended to include
elastic deformations. Now accelerations associated with the outboard body vibrations are first shifted
inboard along with outboard body acceleration. It is beyond the scope of this presentation to go into
full detail (Refs. 3, 4) but the basic impact of flexibility on displacement field is shown here in order to
appreciate the fundamental nature of the model.

Figure 2 provides a description of body pairs jand L(j). As seenin Figure 2, a “nodal" body
representation for flexible bodies is assumed. The nodal body, bjo, will facilitate representation of

“NODAL”
BODY

INERTIAL
REFERENCE

Figure 2 Inboard (L(j)) outboard (j) 2-body geometry forms the basis for the recursive kinematics.
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i I data from finite element program NASTRAN, and provides means of accounting for
g;?:gstessggzlsd;ass center offset and r-e)accentricity in the dynamics. These effects can arise whqn.,
for example, lumped masses are attached at nodes when running NASTRAN. Fora consistent finite
element formulation, effects such as these result in a coupled nodal mass matrix. In e_zddmon to the
effects such as eccentricity, it is worth pointing out that this nodal body concept also mtrodqcc?s an
additional rotation for mass elements as evident in Figure 2 where the nodal body, bjo, has its’ own
reference frame. Throughout this text, it will be assumed that the nodal body reference frames are
aligned with the body reference frame when the general‘szed. moqal coordinates are zero. Itis also
assumed that the deformations are small so that linear, time invariant, modal data is used.

With the multibody description provided, it is evident that requi'red body data (mass properties,
geometry, modal data, etc.) is defined for each body separately in its own reference. The vector

location of the mass element, dm, of nodal body bjo of body j is in inertial as follows:

}_2) =Ef{+£)o +y.)o+£1

where:

ﬁ; = Vector locating body j
reference in inertial space

Undeformed location vector of

Lio
nodal body b;, reference wrt body j reference

!jo

Vector of linear deformation
associated with nodal body
b;, reference wrt body j reference

NM;j

!jo é Z: g (zjo) 'T:

i=1

= Vector locating dm of nodal body b;, wrt nodal body

bj, reference (fixed in nodal body b;, basis)

The location vector of body j reference in inertial space is defined in a recursive sense via the
location of its' inboard body and relative joint displacements.

B = RED 4 (eE0) 4 yl0)) 4 20 — (o 4 u)
where:

REG)

]

Vector locating body L(j)
(body directly inboard of body )

reference in inertial space
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Vector locating undeformed reference point p (point fixed

rEG)
in Body L(j) for defining joint j)
wrt body L(j) reference, fixed in body L(j)
Vector of linear deformation associated with
point p wrt body L(j) reference, fixed in body L(j)
NML(j) .

Z g_L(J') (z{;(i)) niL(J)

i=t

Vector of linear joint j displacement of

L;
!P(J)

e

Lii
EiD(.v)

LGy

reference point ¢ in body j wrt
reference point p in body L(j), fixed in reference p
of body L(j)

NTj

Wy 2y gy
i=1

Vector locating undeformed reference point

L
Hi

q (point fixed in body j for defining joint j)
wrt body j reference, fixed in body j

Vector of linear deformation associated with

L.
I

reference point ¢ wrt body j reference, fixed in body j

N

2

J

o] (rg) !

ne

1
u,

i=1

The coefficients of 2, @, are referred to as “Mode Shape” vectors and are provided via
NASTRAN. The model shape vectors are assumed to be time invariant consistent with the

assumption that deformation, u, is small. The second generalized coordinate was that associated
with joint j displacement, y. The relative displacement of point q in body jwith respect to (wrt) point p
in body L(j) is written in terms of the orthogonal unit vectors, gi{fixed in the material frame at point pin
body L(j)) and the generalized translation coordinate y, where /is from 1 to the number of translational
degrees of freedom of the joint, NTj.

NM;is the number of modes of body j, NTjis the number of translational degrees of freedom for
joint j, and NR;is the number of rotational degrees of freedom for joint /.

Velocity and acceleration follow by differentiation. Here though, only velocity is presented. The
acceleration is even more complex. Local material frames will have a relative, local angular velocity
with respect to body reference frames due to rotational deformation. For the most pan, local
rotation due to deformation at the nodal bodies will be neglected in as much as the associated
coordinate transformations are not introduced (which would give rise to higher order terms).
However, the relative orientation of reference frames particular points will include rotation due to
deformation, for example, in computing body jto body L (j) coordinate transformation. Like linear
deformation and mode shape vectors, rotation deformation for local angular velocity will use the

“Mode Slope Vectors”, ¢/also available from NASTRAN.
Inertial velocity of mass element, dm, of nodal body bj, of body jfollows. An open dot above a

vector will be used to denote local velocity, whereas a solid dot above a vector will be used to denote
an inertial velocity.
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Performing the differentiation of the displacement field, the inertial velocity
of the mass element is as follows.

Rj =R’j+‘-"-j x(£j0+y.jo)+;£jo +g£)<£j

where:
i = Ef(”+g“” x (££0) 4+ yHi))4 i:‘” + Wk x My
T
w’ = Angular velocity vector of body j reference in inertial space
W 8ty 509 ey g7
wl) =  Angular velocity vector of body L(j) reference in inertial space
u_.L‘f(j) = Angular velocity vector of reference at point p in body L(j)

wrt inertial space

W) & ri)y g5
w2 N%j)ﬂm) (eED)) 4EO)
i=1
L % "
v = ) di
i=1
LUy = :\ngular velocity vector of reference g wrt reference p
NRj

R E D WAL
i=1

w) = Angular velocity vector of nodal body b;, reference in inertial space

e

Y
NMj

Yo E ﬂj (Ejo) 'ﬂ
i=l

-4
(1]

Also,
o' & N PN o§
g = ) & ()
i=1

216



Clearly, flexibility introduces considerable additional algebraic detail, augmenting not just the
displacement field but contributing significantly to both translation and rotational velocity.

The Newton, Euler dynamic equation can now be formulated for a 2 body point-connected pair
and solved for recursively. The kinematics, dynamics is transformed successively body by body from
outermost to the most inboard body frame (which need not be situated at the mass center).
Accelerations are then determined for this innermost body based on augmented inertia properties.
This solution is propagated outboard to solve for the accelerations of all other bodies. The net effect
is a solution algorithm that avoids the need for direct numerical inversion of a high order system mass
matrix. Consequently, run time is proportional to number of degrees of freedom (n) - i.e. order (n) -
and not to n2 or n3 say (2),

3.0 OVERVIEW OF CAPABILITY
3.1 BASIC SUPPORT FEATURES

In addition to high fidelity modeling of the multibody dynamics, the SSSIM Rev. 2.0 software
provides the same basic support features common in Ref. 1. These include detailed models of the
primary environmental loads in orbit. i.e. the Earth’s gravitational effect (including oblateness) and
low density aerodynamics (1970 Jacchia atmosphere) applied to flat plate or cylindric surfaces. A
magnetic field model is available too and is in use for passive damper studies for early configurations.
For controls design purposes, the code includes a series of idealized options such as position
sensors, single-axis rate gyros and accelerometers, resolvers, tachometers as well as a control
moment gyro (CMG) resolver. Similarly, a range of actuator types are provided which include: reaction
jets, torque motors, torque devices, magnetic torques and doubie-gimbal CMG’s. User defined
controllers can be continuous or discrete.

The basic simulation capability described above is compiemented by a series of enhancements
that model disturbance associated with:

+ solar radiation pressure

»  CMG, torque motor friction effects

+ tuel slosh (3 DOF point mass and nonlinear stiffness, damping)

»  static, dynamic imbalance for rotating bodies

» fans

« fluid flow (pumps, heat exchangers, throttles)

= start/stop friction of solar array drives, antenna pointing mechanisms
»  crew actions (kick-off, sneezing, walking).

Such detailed modeling makes it possible to assess impact of such disturbances on acceleration
level at any specified location (i.e. micro “g” impact).

3.2 SUMMARY OF MODELING CAPABILITIES AND LIMITATIONS

Structure. The structure is composed of bodies and joints connected in an open tree
topology. You can have any number of bodies. There are two limitations on topology. The joints
between adjacent bodies are pin connected and no closed loops ar are allowed.

Bodies. The bodies in SSSIM may be rigid or flexible. All of the data for each individual body is
defined in that body's reference frame. For flexible bodies the boundary conditions are arbitrary, i.e.,
fixed-free, etc. The finite element models for flexible bodies can have point masses or rigid bodies
called nodal bodies at each one of the node points. There are 3 limitations on the definitions of
bodies. The first is that only normal modes may be used, the second is that deformations must be
small, and the third is that the third degree terms in deformation are neglected.
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Joints. Each joint connects two adjacent bodies. The degrees of freedom at e_gch joint can be
prescribed, free, or locked and large angle rotations and translations are allowed. Initial values of the
coordinates for locked degrees of freedom are allowed. Joint 1 connects the core body to the local
vertical reference frame and is treated differently from all the remaining joints. T.h.e nunjbe:r ot
prescribed and free degrees of freedom is limited as defined in Table 1. An additional limitation is that
for each joint with prescribed translation, the inboard body must be rigid.

TABLE 1 JOINT DOF
Allowable Number of DOF’s
Joint 1 Joints 2-N
Free Rotation 0,1,2,3 0,1
Prescribed Rotation 0 0,1¢
Free Translation 0,3 0
Prescribed Translation 0 0,1,2,3

aIf the i*® joint has 1 free rotation DOF then it must have 0 prescribed rotation DOF's

Sensors and Actuators. Sensors and actuators are generic in their types and placement.
Your can select the types of sensors and actuators from a menu and place them at any node in the
structure. The sensors and actuators are limited in that they do not include dynamics or noise with
the exception of CMG’s and torque motors. CMG dynamics are included and fully coupled with the
structure dynamics. Both the CMG and the torque motors have a friction model which may be
considered a noise source.

Controllers. The controllers have unlimited capability because they are user supplied
subroutines. The continuous controller is called inside the fourth order Runge-Kutta integration loop
and the discrete controller is called outside the loop at discrete instants in time. Controllers are
limited to only one controller per simulation.

Orbiter Environment. The orbit environment includes a standard NASA atmosphere and
magnetic field model. The atmosphere model includes the diurnal bulge and the effect of solar flux
and magnetic activity. The primary limitation on the orbit environment is that the orbit is fixed and
defined a priori. This means that any forces and moments acting on the structure due to reaction jets,
aerodynamic drag, etc. will not change the orbit. The orbital equations are uncoupled form the
dynamic equations and solved assuming zero disturbance acceleration. The effect of gravity
gradient on the multi-body structure is modeled as a point force and moment applied at the reference
frame of each individual body, where the distributed effect of the gravitational disturbance on
flexibility has been neglected.

3.3 SPECIAL FEATURES AND ADDED CAPABILITY

The basic SSSIM software has been enhanced considerably in order to support the fle_x_ modeling; in
order to create a controls analysis tool and in order to improve user friendliness and efficiency. This
section outlines the major areas of enhancement.

SETUP Program

A considerable volume of data can be required to run SSSIM Rev. 2 as the number of bodies and
joints grow and with full-up implementation of controllers. A single error in the data file can stop a run
and it can be a painstaking process to track down. Program SETUP is designhed to assist the user
interactively in building up an error-free data file. Data is entered block by block, e.g. body 1, body 2,
... joint 1, joint 2, ...etc. The user can add, delete and modify any given block of data and error
checking is provided.



PREFLX Program

The flex model, as shown earlier, is based on a linear assumed mode representation of the elastic
displacement. During solution, the deformation is separated into a space dependent part and a time
dependent part. Furthermore, the spatial modal component is discretized into displacements

for a series of interconnected ‘nodal’ mass elements analogous to the finite element models used in
NASTRAN. This type of modeling ensures compatibility with contractor-supported structural data.

T
The purpose of the PREFLX program is to interface with NASTRAN data to form all the modal

coefficients and terms needed by SSSIM Rev. 2 to accommodate flex degrees of freedom and to
ensure rigid, elastic coupling.

Standard terms include the zeroth order terms @], h? and the rigid body inertia dyadic, f,-g.-d-

The optional terms include the first and second order terms ﬁl{, _}_’_i‘. and @1.

Quantities computed by PREFLX are expressed in the nodal body formulation as:

Zeroth Order Terms

_ L
J = ] ]
ey mj{ Z / Q’Oi+ﬁ’i>(£jdm}

0=1 bi°
_ NNB,
Joo_ ] 7]
Al = ; /b,.,(zjo + E,') x fo,- +(zjo +E,‘) X (201, X ej)dm
' NNB,
fareip = 0;1 e ((Ijo +2;) (zjo + Ej)) Y- (g5, + 2;)(Zjo + p,)dm

First Order Terms

NNB,
= X[ ot e) &)U, )6 dm
@J'T
] N;VB,' '
Y, = Z _/ ¢ Xfoiﬁ-_q_&‘{kx(g’ix_p_j))dm

0=1 bj0 o
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|

Second Order Term
NNB,

i‘ = Z /b (?Joh g‘)y—gkfo‘dm

0=1 10
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where,

m; = Massof j** Body

g; = Location of dm wrt nodal body refrence frame

r;, = Undeformed location of nodal body refrence frame
Qi . = Mode Shape of ith Mode at o'* Node on j** body
g’,’; = Mode Slope of i* Mode of o'* Node on j** body
{-} = 3 x lcolumn matrix

{7} = Skew symmetric matrix

nj = The number of NASTRAN structural nodes
nm = The number of retained flexible modes

r. = Rigid body mass center location wrt the body refrence frame

Mpmam = Modal mass matrix

It is evident that considerable computational effort can be required. PREFLX is currently designed to
accommodate 2500 node points and up to 250 modes per body.

LINEAR Program

Much control design is based on analysis of a linear systems model. An independent code LINEAR
is in place which provide linear analytic modes (about zero or nonzero states). The topology is
provided by SETUP. The analytic approach is considerably more accurate and more computationally
efficient than its numerical counterpart. The output of this program is deliberately formatted for
compatatibility with linear analysis tools such as MATLAB.

MODRED Program

MODRED performs model reduction on the linearized multi-flex-body output fro LINEAR at the
component or system level. Three options are provided the user: (1) modified Component Cost
Analysis (CCA); (2) CCA with special choice of parameters that yield costs based on controllability,
observability Grammians; and (3) system model reduction using a p-q Covariance Equivalent
Realization projection approach. Note that component model reduction preserves original
coordinates allowing trace back to original flex body source data.

RESTART Option

Long duration runs are typical for Space Station, sometimes just to let the controlier establish steady
state. With this in mind, a RESTART option is provided to allow a run to be extended. Atthe end of a
run the final system state is stored and used to initialized the data file for the next starting time.

3.4 COMPUTATIONAL CONSIDERATIONS

High fidelity dynamic simulation for an orbiting multibodied system such as Space Station can be
computationally intensive. Run times can easily stretch into many hours even for the all-rigid cases.
The problem becomes much more serious for flex modeling. Hence, the importance of order (n)
modeling and solution. It is the flex cases that require the really high order models.

Other methods are needed to control run times too because of the higher flex frequencies which
tend to dictate smaller integration step size. The number of modes retained can be keptto a
minimum by carrying out model reduction. The software also provides ‘options’ to compute only up
to zeroth, to first or to second order flex effects. A further innovation is the separate and
independent coding of flex equations for differing boundary conditions.
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The controls design is sped up too for flex cases by having an ‘analytic’ as opposed to a ‘numeric’
linearization. At all stages of development great care is exercised in storing and accessing the
potentially large amount of flex data.

In addition to the flex-related steps taken above, the software also minimizes coordinate
transformations by allowing only the core body to have up to 6 degrees of freedom whereas all other
joints can have up to 1 rotation only (in addition to prescribed motions).

The RESTART capability does not speed up a run but it can remove the need to rerun time histories.
Previous runs can be used to start up other longer term case studies as needed.

4.0 THE INTEGRATED SIMULATION, CONTROL SOFTWARE ENVIRONMENT

The capabilities and features discussed are integrated to provide a single time history simulation as
well as a frequency domain controls analysis environment as shown in Fig. 3. The Space Station data
can include multi-rigid-body configuration and mass properties and/or multi-flex-body NASTRAN
structure models.

Multi-Rigid Body |

! {
Configuration I c".':f;’g” !
andMass | \yoacive | | | CONTROLLERS '
Properties | Setup | |
Program
I I i
- Rigid Body| |
Muti-FlexBody | | | Flex gody N '
NASTRAN . I Rigid/Flex | Non-Linear
Data | I Space Station +—= Rigid/Flex Time
| A | Simuiation | Domain Simulation
' 11 SSSIM Rev. 2.0
' L [T/ _ L
[ 1 L MAC-MATLAB
| Flex { ) | L .
Preprocessor Analytical Inear Frequency
T PREFLX ™1 Linearization = CERMIT bo] Domam'::gt )/(\nalysns -
| |
' ! Y I f Updated Bending Filters
1 | Multi-Flex-Body ), -~ - --- - - - =°
L 1 Modal - Linear Reduced
' ) Reduction L Order Modeil
| I MODRED | Evaluation Analysis
|

| | EVAL

Y

~4— INPUT DATA—}t——SET-UP —#=}——SIMULATION ——=a—— ANALYSIS

FIG.3 MULTI-RIGID/FLEX-BODY DYNAMICS AND CONTROLS
ANALYSIS/SIMULATION OVERVIEW

The separate stand-alone programs SETUP, PREFLX, SSSIM Rev. 2, LINEAR, MODRED, EVAL
AND HIFLX that make up the SSSIM analysis environment can be applied in various combinations to
perform 1. non-linear time history simulation, 2. model reduction, 3. linear system analysis, or 4.
micro-gravity studies. The 6 programs are connected via data files that are created by one program
and read by another without any user interaction. Three of these programs are interactive: SETUP is
the basic model building program, MODRED and EVAL are used for model reduction and prompt the
user for model reduction criteria. It is to be noted that all programs reside on a single VAX computer
except for HIFLX, which is MacIntosh (MAC) based. Data transfer between the VAX and MAC is
carried out via the KERMIT program which is a file transfer protocol.
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Non-linear, Time-history Simulation. Time-history simulation is primary a three step process using
SETUP, PREFLX AND SSSIM. The first step in this process is to define a model and enter the data
using SETUP. The structure model is composed of bodies, joints, sensors and actuators.

The second step is to create the flex body data files. The bulk of the data for flexible bodies is
handled automatically by PREFLX. A finite element model is created and used by NASTRAN to
produce a modal model. PREFLX will read the modal model, compute the necessary modal integrals

and form the flex data input file for the SSSIM Rev. 2 core. Once the number of nodes and modes
are selected in SETUP, PREFLX takes over.

The third step is to simply execute the time-history simulation program, SSSIM.

Model Reduction. Model reduction is an iterative process. The first step is to create a full order
model by running SETUP and PREFLX for the time-history simulation. Then instead of running
SSSIM to do the simulation LINEAR is run to create a linear mode! of the system. The reduced order
model is created by truncating flex modes from the full order model! just created. MODRED and
EVAL rank the modes and help select the retained bodes for the reduced order model. PREFLX is
then re-run to create the flex data files for the reduced order model.

Linear System Analysis. A linear model of the system is created by running SETUP, PREFLX AND
LINEAR 1o produce a linear model in the ABCD matrix quadruple format. HIFLX then can add the
orbital dynamics, rigid body state estimator dynamics and Control Moment Gyro (CMG), Reaction jet
Control System (RCS) controller effects to produce open and closed loop frequency domain as well
as linear time domain response (via MATLAB). Any changes in control and filtering, can be fed back
to the VAX through KERMIT to perform time-domain simuiation.

Micro-Gravity Studies. Micro-gravity analysis is performed by measuring accelerations at one point on
the Space station structure caused by forces and moments exerted at different points on the
structure. SSSIM has a special provision for performing this analysis. You can select the points at
which you want to compute the Micro-gravity accelerations, and you can locate actuators at the points
where you want to insert the forces. Time history simulation can be run by connection function
generators to the actuators.

5.0 APPLICATION TO SPACE STATION

Preliminary results are presented showing flex time history response and a linear controls design
Nichols plot. An earlier Assembly Complete flex configuration is chosen as pan of the validation
process because of the availability of earlier test case data.

51 Simulated Space Station Flex Response
5.1.1 Time History Response

The objective is to simulate the reponse overall and to assess run time performance for a multibodied
Space Station with a large number of flex models. The configuration is shown in Fig. 4 divided into
11 separate interconnected segments.

The core truss structure (body 1) is allowed 3 attitude rotations and 3 translations relative to LVLH.
Each of the power booms (bodies 2, 3) undergoes a single rotation about a local 'y’ axis (a gimbals)
while each of the solar arrays (bodies 4 through 11) ar are kept locked (f gimbals). The NASTRAN flex
models include: 12 ‘free-free’ modes for the core, 12 ‘fixed-free’ modes for each of the 2 power
booms and 12 ‘'fixed-free’ modes for each of the 8 solar arrays. Damping ratios of 0.5% are assigned
all modes. The simulation is run open-loop without aero drag or gravity. Excitation is by applying an
initial 500 Ib. pulse over 0.1s along the x axis.

Inertial 3-axis attitude rotations are shown in Fig. 5(a). They are, as expected, quite small (< 0.04
degrees) and there is an oscillatory perturbation induced by the combined flex effect. Generalized
coordinates associated with the first three modes of body 1 are plotted in Fig. 5(b). The frequencies
are quite low, especially when compared with mode 11 of body 11 (Fig. 5(c)). Overall the results
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Fig. 5 Preliminary time history response demonstrating the flex capability of SSSIM Rev. 2.0: (a)
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5.2 Linear Controls Analysis

SSSIM Rev. 2.0 also provides the linear models needed to carry out frequency response studies.
For example, Fig. 6 shows a typical Nichols diagram generated for reaction jet control (RCS) along the
roll (x) axis of an Assembly Complete configuration. The first order state estimator filter operates at 1
radian/s. All flex modes appear to be stable.

20 : :
0 ]
8 -2 i
-40 ]
o 0 90 %30

deg

fig. 4 Typical Assembly Complete 'roll' axis Nichols diagram for RCS.

6.0 CONCLUDING REMARKS AND FUTURE DEVELOPMENT

An order (n) nodal flex multibody model has been successfully developed for Space Station. The
improvement in run time perlorrance is significant, exceeding by at least an order of magnitude the
existing generic codes (TREETOPS). To accommodate the flex modeling, an efficient preprocessor
is built in which converts NASTRAN source data directly to the required input format and computes all
additional rigid flex coupling coefficients.

A second major development is integration of the controlsdesign support programs into the SSSIM
Rev. 2.0 environment. Analytic linearization and model reduction can now tie in directly with linear
analysis software such as MATLAB.

Ongoing efforts include introduction of symbolic processing into solution of equations and into
describing elements of the controlter as well as of the environmental loads, such as gravity gradient.
Alternate inlegration algorithms and strategies are under investigation, too, as possible means of
improving run times.
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Control/structure interaction is an issue in some current space structures
like the RMS arm on the shuttle, and will definitely be an issue in the design of
future spacecraft which will be larger in size, and therefore more flexible. At the
same time, these structures would have to meet more stringent performance re-
quirements so that a rigid-body approximation of the structural dynamics would
be inadequate. Low structural frequencies of these large, flexible structures will
fall within the bandwidth of the controllers used to control these structures. This
would lead to significant interaction between the control inputs and the flexible
structural response. Hence, integrated controller and structural synthesis is neces-
sary to enhance system performance while ensuring stability and robustness of the

system.

Control / Structure Interaction

* Need to account for flexibility in the dynamics of future
space structures
--> larger size, morae flexible structures
--> more stringent performance requirements

* Lower structural frequency modes excited by high
bandwidth controllers

* Integrated controlier and structural synthesis
--> exploit this interaction to enhance performance,
while ensuring stability and robustness.
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The conventionai approach has been to design an optimal structure, and
then design an optimal controller for that structure. However, this approach does
not take advantage of the interaction between the structural and the controller de-
sign processes. Note that in contrast to the physical interaction between control in-
puts and flexible structural response, here we are referring to the interaction during
the synthesis process. Hence, simultaneous design of the controller and the structure
is essential for the optimal synthesis of the entire system. The optimization-based
approach is to perform analysis and synthesis of the structure and the controller in
a unified software environment (as opposed to using separate tools for structural
analysis and control design) and to optimize the structural and controller objectives
with respect to both structural and controller variables. With numerous structural
and controller objectives to be optimized, this approach naturally leads to multi-

objective optimization.

Optimization-based Approach

* Conventional Approach :
Optimal structural design --> optimal controlier design;
does not take advantage of the interaction between
structural and controller designs

* Simultaneous design of the structure and the controller
is essential

Optimization-based Approach :

--> Analysis and synthesis of the structure and the
controller in a unified software environment

--> Multiple controller and structural performance
objectives

--> Optimization with respect to both structurai and
controller variables simultaneously.
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Optimization of a single objective function, f(x), sometimes referred to as
scalar performance index, over a constrained design space, (1, is mathematically
well-defined, since real numbers have a unique and complete order. However, this is
not the case for multi-objective optimization. The objectives, f1(x), f2(X), ..., fm(X),
can be considered as the elements of a vector, f(x), in the criteria space R™; there-
fore this problem is sometimes called optimization of a vector performance index.
However, minimization of a vector is meaningless, since the criteria space, R™, does
not have any unique and complete order. A partial order of the space R™, called
the “natural order”, leads to the concept of Pareto optimality [1].

Multi-objective Optimization

Scalar performance index :

min f(x)
Xe Q
where Q={x¢e R"| u.(x) <0,i=12,.p; v, (x)=0,j=1.2,..q}

---> well defined, since real numbers have unique, complete order
Vector performance index :

‘min"  f(x)
XxeQ where £(x) = { f,(x), §(X), ..., fm (X))

---> No unique, complete order for R m _
---> a partial order of space R™, called " natural order ", leads to
the concept of Pareto optimality
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The definition of Pareto optimality is given below. A vector, x*, is Pareto
optimal for a multi-objective optimization if and only if there exists no feasible
vector x such that fi(x) < fi(x*) for all 4, and f;(x) < f;(x*) (with a strict
inequality) for at least one j. In words, x* is Pareto optimal if there exists no
feasible vector x that would decrease some objective function f ;(x) without causing
a simultaneous increase in some other objective function. Conversely, if x is not
a Pareto optimal vector, some objective f;(x) can be decreased without increasing

any other objective (other objectives decrease or remain constant).

Pareto Optimality

A vector x " is Pareto optimal for the multi-objective optimization
problem

"min" f(x) T
xXe where f(x) = {f(x), f2(x), ..., fn(x)}

if and only if there exists no x e Q such that
fi(x) < f(x*) fori=1,2,..,m, and
fj(x) < fi(x*) for atleastonej.

Inwords, x* is Pareto optimal if there exists no feasible vector x that
would decrease some cbjective f(x) without causing a simultaneous
increase in at least one other objéctive.

235



This figure graphically shows Pareto optimal solutions for a two objective
optimization problem. The shaded area is the attainable set, A, which is the image
of the feasible design space, (2, under the transformation of the objective functions,
f(x), in the criteria space R%. The thick line shows the Pareto optimal set. Along
this line we cannot decrease one objective function without causing a simultaneous
increase in the other [1]. As seen here, in general, Pareto optimal is not a unique
vector, but a set of vectors which satisfy the definition. The designer still has ample
choice to select a good design after performing parametric trade-off studies among
different objectives, but a solution to the multi-objective optimization should at

least be Pareto optimal.

Attainable set, A

Pareto Optimal set

]

b

In general, Pareto optimal is not a unique vector x", but a set of
designs which satisfy the definition.

Solution to a muiti-objective optimization shouid at least be
Pareto optimal.
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The approach used here for multi-objective optimization follows from the
goal attainment approach [2]. For this approach, a set of functions, g;(x), are
derived from the objective functions, f;(x), as shown below. The parameters a; are
certain reference values or goal values of the objectives, and b; are scaling parameters
so that various objectives become commensurable, and some weights are assigned to
the objectives. As seen from the expression for g;(x), the weight of each objective
depends inversely on b;. A solution to the multi-objective optimization problem
is then given by minimizing over x the maximum of g;’s. Problems with this
approach are that the maximization function is non-differentiable, which disrupts
most numerical nonlinear programming algorithms. Also, the solution from this

approach may not be Pareto optimal.

Goal Attainment Approach for Multi-objective Optimization

j(x) - a

for j=1,2,...m,
b
where a | are reference values or goal values,
b j are scaling parameters so that various
objectives are commensurable.

an [ mjax{g1(x), GfX), -y (%), e G(X)} ]

Problems:
1)} nondifferentiable max function
2) solution may not be Pareto optimal
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The Kreisselmeier-Steinhauser (KS) function [3,4] given by the expression
below provides an approximation for the maximum of a set of functions g;(x).
Values of the KS function remain within the interval gmsz < KS < gmaz + (lnm)/p,
where gmar is the maximum of the set and p is a positive scalar parameter of the KS
function. For larger values of p, the KS function provides a closer approximation of
the maximization function. Secondly, the KS function is differentiable with respect
to the design variable, z;, as given by the expression below. This assumes that
the functions g;(x) are differentiable with respect to z;, which follows from the
differentiability of the objective functions fj(x). Thus, the KS function provides
a differentiable approximation for the maximization function. The first expression
for the KS function tends to cause floating point overflow problems in numerical
computations. An algebraically equivalent expression for the KS function is given

below to avoid this problem.

Kreisselmeier-Steinhauser (KS) Function

KS = %-In {12 exp [pg; (x)]}
Useful properties:

gmax(x) < KS < gmax(x) + (Inm)/p
ag;(x)
Zjl exp {p g; (X)) 5

Zj exp {p g, (x)}

KS with large p provides a differentiable approximation for the
function mjax { gj (x)}

=g )i}

+==in{Z eplo(g (0 - g
J

max max

has good computational properties.
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Our approach to multi-objective optimization is to use the KS function in-
stead of the maximization function in the goal attainment approach. The expression
given here for ¢;(x) corresponds to an objective function which has to be minimized.
In case an objective has to be maximized, we use the standard approach of minimiz-
ing the negative of g;(x) instead. Also, there is no penalty for over-achieving the
goals, i.e., if all the reference values have been reached, the optimization algorithm
is free to take the g;’s to negative values. Minimization over x of the KS function of
g;(x) gives a multi-objective optimal solution. Thus, with this approach the prob-
lem is reduced to an unconstrained minimization (apart from side constraints on the
design variables) of a differentiable function, which is very amenable to numerical
nonlinear programming algorithms. Furthermore, the minimum KS solution is a

Pareto optimal solution.

Multi-objective Optimization Approach

min KS
X

min { g, + ;—ln (? exp{p(gj(x)-gmax)]) }

X

where f(x) - a.
W =T
i
gives a multi-objective optimal solution.

--> unconstrained minimization of a differentiable function

--> min KS solution is a Pareto optimal solution.
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Structural analysis for CSI design is performed using finite element model-
ing of the structure, i.e., assembling the mass and stiffness matrices of the discretized
structure and solving a generalized eigenvalue problem to determine a desired num-
ber of natural frequencies and mode shapes of the structure. With some assumed
modal damping, the structural dynamics equations in modal form are used as open-
loop plant dynamics for control design. The feedback control law used herein is a
dissipative controller employing collocated and compatible pairs of actuators and
sensors 5,6]. For example, torque actuators are used with attitude and attitude rate
sensors. A constant gain dissipative feedback controller is presented here. The gain
matrices, G, and G, have to be positive definite to ensure]:he dissipative properties
of the controller. With these properties, the controller provides guaranteed robust
stability in the presence of unmodelled elastic modes, parametric uncertainties (in
modal frequencies, mode shapes etc.), first-order actuator dynamics, and certain

types of nonlinearities in the actuators and sensors [6].

Control Law

Dissipative Controllers :

--> Utilize collocated / compatible actuators and sensors
(e.g. attitude and attitude rate sensors with torque actuators)

--> Constant Gain Dissipative Controller :

u=-Gpyp- Gy,

where G,, G, are symmetric and positive definite

--> Robust stability is guaranteed in presence of
a) unmodelled elastic modes,
b) parametric uncertainties,
c) first order actuator dynamics,
d) certain types of nonlinearities in sensors and actuators.
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The open-loop plant model has a large number of structural modes, and a
reduced-order model is needed for control/strucutred integrated design. We use a
novel Hy, norm-based approach for this model reduction. The idea is to include
the modes which are most significant in the overall system transfer function. The
system transfer function is the rigid body transfer function, Grp(s), plus a sum of
the components of the transfer function due to each flexible mode, G.;(s), as shown
below. The contribution of each mode to the overall transfer function is measured
by the Ho, norm of G.i(s) given by the expression below. For the reduced order

model, we pick the modes with the largest H, norms of G,(s).

Model Reduction

—-> H . norm-based approach to select modes for reduced
order model

System transfer function is

T
TJ -1 TT n ( q’; ¢i ) u
+ (s)
vis) [ s? iZ=1 s¢+2 pms + “)iz ]

(Rigid body) n {Flexible structure)
G(s) = Gggls) + E‘ G, (s)

contribution of each mode to transfer function is measured by
H o norm of G (S).

@ 6)

| Ggi(s) [l =

X
207 p,(1-p)2

--> pick modes with largest || Gg(s) ||
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In order to demonstrate this control/structure integrated design approach,
an integrated design of the Spacecraft Control Laboratory Experiment (SCOLE)
configuration [7] was performed. The SCOLE consists of a reflector antenna at-
tached to the shuttle by a flexible mast. This configuration was chosen because
of its structurally simple model as a flexible beam with off-set, inertial massess at

either end.

Example : CSi Redesign of SCOLE

24.2



A finite element model of SCOLE used in this study is shown here. The
flexible mast is modelled as 10 Euler beam elements. The space shuttle is repre-
sented by a concentrated mass at the tip with inertial properties (including mass,
moments of inertia and products of inertia) of the shuttle. The off-set reflector is
modelled as a concentrated mass with inertial properties of the reflector at its center
of mass, which is connected to the tip of the mast by a massless rigid link. Com-
patible and collocated pairs of actuators and sensors are placed at the tips of the
flexible mast. The actuator masses depend on the control gains and are included in
the finite element model. A modal damping of 0.3% is assumed. Numerical values

of various parameters were taken from a paper by Poelaert [8].

Finite Element Model of SCOLE

massless rigid link * | ™~ sensors and actuators

/ actuator mass added

Concentrated mass with

inertial properties of the _
reflecto? P - Flexible mast modeled as

10 Euler beam elements

-

sensors and actuators ;
actuator mass added \ concentrated mass with

./ inertial properties of shuttle

Assumed modal damping = 0.3 %
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Structural design variables are the diameters of tubular beam elements.
Hence, there are 10 structural design variables. Controller design variables deter-
mine the attitude and attitude rate gain matrices for the constant gain dissipative
feedback control law. Since G, and G, have to be positive definite for this con-
troller, we use Cholesky factors of the gain matrices as follows: G, = L,Lf, and
G, = L.LT, where L, and L, are lower triangular matrices. The controller de-

sign variables are the elements of L, and L, matrices. Subsequently, there are 24

controller design variables in this study.

Design Variables

Structural:

10 structural design variables -- diameters of tubuiar beam elements

Controller:

Controller design variables -- the attitude and rate gain matrices
Since Gp, Gr , are positive definite, we use Cholesky factors for design

T T
G,= LoLp and G/= L/L,
Hence, controller design variables are elements of Lpand L,

24 controller variables for this case.
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Four control/structure objectives were selected for this study. The first
structural objective is to minimize mass of the flexible mast and the actuators,
Mrp; obtained by subtracting the fixed masses of the shuttle and the reflector from
the total mass of the system. Another structural objective is to maximize the first
open-loop frequency, w, so that the structure can be made as stiff as possible within
allowable values of the mass and the control objectives. The first control objective
is to minimize a measure of transient response decay time, 7. This measure is the
sum of the reciprocal of absolute real parts of the closed-loop eigenvalues, as shown
below. The last CSI objective is to minimize a noise attenuation measure, o, which
is the steady-state root mean square attitude error due to a white noise input at

the sensors.

CS! Performance Objectives

Structural:
1) Mass of flexible mast and actuator mass, Mt

2) First open-loop structural frequency,

Controller:

3) A measure of transient response decay time, T
n 1
= 3 —
TE 5 | Re Al

4) A noise attenuation measure -- root mean square attitude
error due to a white noise input at the sensors, ¢




The main issue in using approaches which employ incremental scaling pa-
rameters a; and b; is to select values for these parameters. Although arbitrary
values of these parameters would still lead to a Pareto optimal solution with our
approach, some preliminary optimizations are performed to establish trends in the
behavior of various objectives, which assist in choosing reasonable values for the
scaling parameters. Minimizing mass, M, alone takes the structural variables to
their lower bounds (for least possible structural mass), and the controller variables
close to zero (for least actuator mass). However, this makes the structure very
flexible. Maximizing first open-loop frequency, wi, sends the structural variables to
their upper bounds and the controller variables close to zero (near zero point masses
at the tips). This leads to a very massive and stiff structure. These optimizations
show the tradeoff between the first two objectives. Optimizing both, i.e. minimiz-
ing mass and maximizing the first open-loop frequency, simultaneously, results in

reasonable values for both objectives.

Trends from Optimization

* Minimizing mass Mt :
structural variables --> lower bounds
controller vanables --> close to zero
Mass M1 ~107*

9 -5
very flexible structure, u)1~10 ;7 1~10 ; o =1.65x 10

* Maximizing first open loop frequency ®; :
structural variables --> ur)per bounds

controller variables --> close to zero
First open loop frequency w, = 12.24
very massive structure, My~15300, 1t = 134.26, 6 =23 X 10

* Structural optimization -- minimizing mass, maximizing frequency :
structural variables -- thick close to shuttle end, thin out at the
reflector end
controller variables -- close to zero

My = 28273, 4= 0.173, ]
= 99.9, o =215x10
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The previous optimizations were primarily structural optimizations. In
controls, first a rigid body controller is designed (with no optimization) as follows:
G, = w?*J and G, = 2pwJ, where J is the moments of inertia matrix for the
structure and p,w are closed-loop damping ratio and frequency. With p = 0.707
and w = 0.05 for the nominal SCOLE configuration, we get 7 = 121.34 and
o = 2.16 x 10~°. Next, an optimization is performed with respect to control vari-
ables only, while using the nominal structural configuration for SCOLE, resulting
in reduction of 7 to 104.37. Finally, performing simultaneous optimization with
respect to structural and controller variables reduces r further to 65.86, but this
results in a massive and stiff structure with Mp = 5537.6, since there was no re-
striction on mass. Thus, there is another tradeoff involved between mass, Mt, and

the transient response decay measure, 7.

Minimizing transient response decay time measure, T :

1) No optimization. Using rigid body controller as
Gp = w’J and G, = 2pwd
where w = 0.05 and p =0.707
T = 12134 and o =2.16x10

2) Optimization with controller variables only.
structural variables at nominal value

1 =104.37 and ¢ =2.12x 10

3) Optimization with both structural and controller variables
T =65.86 and ¢ =2.16x 10°°
but since there is no restriction on mass, My = 5537.67
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With some idea of the tradeoffs among different objectives and some insight
into the numerical values of the objectives involved for selecting the parameters a;
and b;, multi-objective optimizations are performed, next. The control-optimized
design is used as the initial design. In order to reduce both mass and response decay
time, lower values of desired mass and desired response decay time are used. The
desired values for the first open-loop frequency and the noise attenuation measure,
are used more as constraint values than performance objectives. The parameters b;
were chosen to make the incremental variations from the desired values commensu-
rable. The optimization results in lower values for both mass, M7 = 2847.7, and
response decay time measure, 7 = 94.622. However, the first open-loop frequency is
lower than its desired value. To emphasize this objective more, we reduce the value
of parameter b;. Now, the optimal first open-loop frequency is much closer to its
desired value; but the mass and the response decay time measure, are not reduced

quite as much.

Multi-objective Optimization Resulits

MT (o)

INITIAL 2110
22x10°
10
2.14x10°
22x10°
10*
221x10°
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Previous results demonstrated that mass was the constraining factor in im-
proving the response decay time. In fact, the optimizer was reducing the structural
mass making the mast more flexible and adding the mass to the actuators to im-
prove 7. Therefore, in the next series of optimizations, the desired mass is increased
to allow reduction in response decay time. Optimization resutls indeed show the
trend of the mass going up while 7 is reduced. In a similar manner, by varying the
values of a; and b;, the designer can place different emphasis on various objectives,

and perform parametric tradeoff studies with Pareto optimal designs.

Multi-objective Optimization Results

MT g

INITIAL | 2881.0 21x10°
3000.0 . 22x10°
10.0 . 107
2996.11 2.15x10°
3500.0 i 22x10°
10.0 : 107
3575.2 2.15x 10"

249



This paper demonstrates the benefits of a multi-objective optimization-
based control/structure integrated design methodology. An application of the pro-
posed CSI methodology to the integrated design of the SCOLE configuration is
presented here. Integrated design resulted in reducing both the control perfor-
mance measure, 7, and the mass, V7. Thus, better overall performance is achieved

through integrated design optimization.

The multi-objective optimization approach used here provides Pareto opti-
mal solutions by unconstrained minimization of a differentiable KS function. Fur-
thermore, adjusting the parameters a; and b; gives insight into the trade-offs in-

volved between different objectives.

Concluding Remarks

Control/Structure Integrated Design:

--> Example application of CSI methodology to SCOLE

--> Integrated design optimization gives better overall
performance

Multi-objective Optimization Approach :

--> Pareto optimal solutions

--> Unconstrained optimizations

(constraints can be included as desired vaiues with large
weights)

--> Adjusting aj and D {_f gives insight into tradeoffs

involved between different objectives
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Benefits of the CSI design were observed in a structurally simple SCOLE
configuration. Greater opportunity for such benefits exists in the CSI design of more
complex space structures. We will be applying this methodology to: 1) the EQOS
(Earth Observing System) structure, which is the ADMT/CSI focus configuration,
and 2) the phase-zero evolutionary model at NASA Langley Research Center. This
methodology will also be used with more sophisticated control laws such as dynamic
dissipative controllers, as well as, LQG and H., optimal controllers. Also, open-
loop plant dynamics could be refined by including sensor/actuator dynamics (which

would include filtering of input and output signals).

Future Work

* Apply this technique to more complex structures
1) EOS structure --> ADMT/CSI focus configuration
2) Phase zero evolutionary model

" Use with more sophisticed control laws
1) Dynamic dissipative controllers
2) LQG and H.. optimal controllers

* Optimization including sensor/actuator dynamics
(which would include filtering of input and output signals)
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COMBINED STRUCTURES-CONTROLS OPTIMIZATION OF LATTICE TRUSSES

A. V. Balakrishnan

ABSTRACT

The purpose of this paper is to demonstrate concretely the role that distributed
parameter models can play in CSI, in particular in combined structures-controls optimiza-
tion problems of importance in preliminary design. Closed form solutions can be obtained
for performance criteria such as rms attitude error, making possible analytical solutions of
the optimization problem. This is in contrast to the need for numerical computer solution
involving the inversion of large matrices in traditional finite element model use. Another
advantage of the analytic solution is that it can provide much needed “insight” into
phenomena that can otherwise be obscured — or difficult to discern from numerical
computer results.

As a compromise in level of complexity between a toy laboratory model and a real
space structure we have chosen the lattice truss used in the EPS (Earth Pointing Satellite).
The optimization problem chosen is a generic one: of minimizing the structure mass
subject to a specified stability margin and to a specified upper bound on the rms attitude
error (“tip response”), using co-located controller and sensors. Standard FEM treating each
bar as a truss element is used, while the continuum model is anisotropic Timoshenko
beam model. Performance criteria are derived for either model, except that for the
distributed parameter model we obtain explicit closed form solutions. Numerical results
obtained by the two models show complete agreement. Based on the continuum model
we obtain a solution to the problem of optimal placement of actuators to minimize mean
square attitude error. A canonical optimization problem is examined and shown to be
trivial, and even capable of analytical solution, using the continuum model performance
criteria formulas in contrast to the complex computer solutions based on FEM or
truncated modal models currently in vogue.
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Introduction

The most voiced criticism against the use of continuum models for structures is that
they are (a) impossible to derive for a realistic structure and (b) even if it could be done,
calculations using the model are equally impossible. We shall show that both statements
are false — at least in the CSI optimization problem — in particular in preliminary
design.

In combined controls-structures optimization, the optimization is the least difficult —
the real challenge is to derive expressions for the chosen performance criteria in terms of
the controls/structures parameters. We shall show that such formulas are much simpler
when continuum models are used — moreover in many cases we can derive explicit
closed form expressions in terms of elementary function which can actually trivialize the
optimization problem. In particular the techinques of optimization need no longer
dominate.

The purpose of this paper is to demonstrate concretely the role that distributed
parameter models can play in CSI, in particular in combined structures-controls optimiza-
tion problems of importance in preliminary design. Closed form solutions can be obtained
for performance criteria such as rms attitude error, making possible analytical solutions of
the optimization problem. This is in contrast to the need for numerical computer solution
involving the inversion of large matrices in traditional finite element model use. Another
advantage of the analytic solution is that it can provide much needed *“insight” into
phenomena that can otherwise be obscured — or difficult to discern from numerical
computer results.

As a compromise in level of complexity between a toy laboratory model and a real
space structure we have chosen the lattice truss used in the EPS (Earth Pointing Satellite).
This is described in Section 1. The optimization problem chosen is a generic one: of
minimizing the structure mass subject to a specified stability margin and to a specified

upper bound on the rms attitude error (“tip response”). The mathematical statement of
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the performance criteria is given in Section 2. The first step is to evaluate the performance
criterion for a given control configuration — we consider co-located sensor/controls only.
The finite element mode! is described in Section 3, and the continuum model in Section 4.
The dynamic state space model is seen to be identical in both cases except for state space
dimension. Section 5 derives the performance criteria valid for either model, except that
for the distributed parameter model we obtain explicit closed form solutions. Section 6
compares the numerical results obtained by the two models, showing complete agreement.
As a byproduct of our analysis, we obtain a solution to the problem of optimal placement
of actuators to minimize mean square attitude error — in Section 7. An optimization
problem per se — a canonical one — is treated in Section 8 and by virtue of our explicit
formulas for performance indices in terms of structure/control parameter, shown to be
“trivial” and even capable of analytical solution — in contrast to computer solutions using
FEM or truncated modal models as in [9, 10].

We should note that structural engineers (Noor, et al. [1, 2] and Renton [3]) have
already voiced the advantages of continuum models in preliminary structure design —
what is new here is the application to control design, to the Controls-Structures Interaction

problem.
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1. The Physical Article

The physical structure (Figure 1) is a lattice of rectangular bays, each single-laced
single-bay. Offset at each end is an antenna. The controllers are force and moment
actuators with co-located attitude as well as rate sensors stationed at arbitrary locations

along the structure. Table 1 is a breakdown of the parameters describing each bay.

TABLE 1
Element Properties
Longitudinal | Diagonal | Cross Bracing
Battens Bars Bars in Battens
Length L b £ d &
Sectional
Area A Ay Ay Aq As
Elastic
Modulus E E, E, Eqy Es
Mass Density m Py Pe P4 Ps
Element
Mass = pAL e g "4 s
Element
Stiffness = EA/L Sp St S Ss

The beam geometry is shown in Figure 2. By the “nominal” structure, we shall mean the

following choice of structural parameters:

b = 2; d=28=1\2¢

=Eb=El=Ed=E5=E
=Pp =P =Pz =Ps =P
L = nf;



Nominal values:

n =29

£ =3m

p = 3250

E = 2759 x 10"

A = 2468 x 10 *m? .
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Figure 1. Earth Pointing Satellite (EPS)
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2. Performance Criteria

As in previous CIS optimization studies (see {9] and the references therein) the
objective is to minimize the total mass of the structure, including the controller mass,
subject to meeting specified performance requirements, which we shall now describe in
mathematical terms.

The performance criteria chosen are:

(i) the mean-square attitude error due to sensor noise (using co-located sensors/
actuators). As we shall see, this actually depends on the steady state “tip” response to step
inputs so that “noise” notions can be eschewed if necessary.

(ii) the “stability margin”: defined as the sum of the absolute values of the real
parts of the closed-loop eigenvalues. This is one measure of stability among very many
(see, e.g., [10]). We choose this one because it is essentially equivalent to any other one
but has the advantage that we can derive a simple closed-form expression for it.

Let us now define the criteria more precisely. First of all we assume the control
law to be PD (“proportional plus derivative”) as in classical servo design. Let v, (#) denote
the “displacement” or “attitude” vectors at the sensor locations and let v,(r) the rate.
Then U(s) the control is defined to be

U@ = O.Vp(t) + yv,. () 2.1

where o and y are (positive) scalar “gains.” This is not altogether a “simplifying”
assumption — that the scalar rate feedback is actually optimal is shown in [4]. The

beam-axis being the x;-axis, we have, with L denoting the beam-length:
0 < Xy < L.

Let £(0), f(L) denote the 6-DOF displacement vectors at the ends. Let

u(0) u(L)
v(0) V(L)
= | - W (2.2)
N0 & L)
9,(0) 82(L)
93(0) 4:(L)
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where u, v, w are the 3-DOF displacements, ¢, the torsion angle about the beam axis,

and ¢,, ¢ about the mutually perpendicular axes. Then the mean square attitude error is

defined by
o2 = uw0)? + u) + vOF + v(L)Z + w0y + w(L)?
2.3)
+ |’o|2 9, (0) + "'1,|2 o, (L),

where the bars denote time averages, |r| being the length of the moment arm as required.

Under our feedback law (often referred to as “positive-definite” feedback) the closed-
loop system is guaranteed to be stable. Assuming no damping in th structure (as we shall
indeed do), the real parts of the closed-loop eigenvalues are guaranteed negative (see
Section 5) — or if we assume the structure is already damped we have stability enhance
ment corresponding to the increment, the real parts being now more negative. Let o,
denote the real part increment corresponding to the ith closed-loop mode. Then the
infinite series

Y -o; (2.4)

i
converges. Denote the sum by o,. We shall take this to be the “stability index” — the

higher the index, the more stable.
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3. The Finite Element Model

Since most of the techniques in developing the FEM are standard, we shall only
present the relevant numerical data. Each bar is taken as a truss element with 6 DOF.
There are (13 +5) elements per bay, and hence (13x9 + 5) = 122 elements for 9 bays.
There are 40 nodes with 3 DOF each, so that the stiffness matrix A and the mass/inertia
matrix M are 120x120. The state vector is thus 120x1. The displacements along the axis

of the truss are then expressed (or, rather, extrapolated):

u(k2,0-b/2) + u(k£,0+b/2) + u(kf,—b/2,0) + u(kf,+b/2,0)
4

uk®) = u(k£,0,0) =
v(kE) = v(k&, 0,0) = v(kR,0-b/2) + v(kR,0+b/2) Z v(kR,—b/2,0) + v(kk,+b/2,0)
w(k®) = wike, 0, 0) = w(k€,0-5/2) + w(k,0+b/2) Z w(k®,—b/2,0) + w(kf,+b/2,0)
o (k) = 1 [w(k£,+b/2,0) — w(k&,-b/2,0) v(k£,0,+b/2) - v(k%,O,—@]
1 ) b - b
u(kf,0,+b/2) — u(k%,0,-b/2
¢2(k2) - ( + ) A U( )
u(kl,+b/2,0) — u(kf,-b/2,0
oukt) = X ) — )
where k is an integer and 0 < k£ < L. Allowing for m controllers at k = ky, ky, ..., &,

the corresponding relations can be represened by a 6mx120 matrix acting on the state
vector. (We consider in this paper m = 1, 2 or 3.) Let B denote the transpose of this

matrix. Then the state space dynamics with co-located sensors can be described by:

Mxi + Ax + BU + BN, = 0 (3.1

with sensor data:
vp(t) = B*x(r) + Np(t) (3.2)
v,() = B*x(r) + N.(9) (3.3)

where U(-) denotes the control, N, (-, Np('), N,(-) model additive noise taken as
(mutually independent) white Gaussian with spectral density matrices d,/, d,/, 4,/

respectively, I being the identity matrix.
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4. The Continuum Model

As we noted in Section 1, the problem of producing an “exact,” “three-D” continuum
model for a real-world structure like the truss we are considering can be a formidable one
— although research in this area looks promising [S]. One way out of this difficulty is to
exploit where possible the special nature of the truss — in our case it is a lattice of bays
along the same axis numerous enough so that it is even visually “beam-like.” In that case
there are many ways to approximate by “one-D” beams — without going into the details
of this theory, suffice it to say that the approach by Noor and Russell [2] is the one
adapted here. We thus create an “equivalent” (referring to [2] for the precise sense) one-

dimensional anisotropic Timoshenko beam as follows.

« denoting axial (longitudinal) displacement (along the x,-axis);
¢, the torsion angle about this axis ,

w, ¢, denoting the transverse bending displacement in the x;-x3 plane
and torsion angle about the x,-axis ,

v, ¢; denoting the transverse bending displacement in the x;-x, plane
and torsion angle about the xj3-axis ,

the three axes being mutually perpendicular; 0 < x; <L,
L being the beam length = n2 ; n = number of bays

The Timoshenko equations (valid between control nodes) are:

myit — cpu” = cqvV" = csw" - cis0; + ca0; = 0
mpV ~ caqV” — crad” + cq403 = 0
my3w — cssw” — cysu” - cssh; = 0
muady ~ cesdf — c3sdy — a0y = O
msshy + msgdy + cisu’ + Cssw - C36d) + Cssby — C3305 - €305 = O
mesdy + msgd, — Cial’ — caaV' — C260f — 2305 + Casds — C105 = O

where the superdots denote time-derivatives and the primes, space derivatives. The coeffi-
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cients of these dynamic equations are related to the truss parameters as follows: (cf. [2]):

The mass coefficients are given by:

4m, + 4my, + dmy; + mg
myp = My = M3 = I3

L8my + 12m, + 8m, + mg)
mys = 2mss = 2mgs = : zﬁuz :

kmg
msg = _12;,12

The stiffness (flexibility) c;; are given by:

425,81’
R S A NIRRT
e 2 G1a o as 2855
44 M 33 m Sq + Sp(L + p2)
23S, 235,58,
2 = = YT T 45, + 5, (8 + @)
235,85,

€23 =4S, + S, (L + uI))

5 235,58,
206 = 2% = IS, (L + )

€66
where
o b
In order not to complicate matters unduly in this demonstration, we shall freeze all

parameters except the cross-sectional area A which will then be the structural parameter to

be optimized. In this case

{Newton)

2EA
c = —C = C = C = @ —— Newton)
14 15 44 55 1+ 2 r‘z (

2
ey = 3y = (2725 + 1476V2)EAL (Newtom)m®

2628 + 1336V2
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_[(97 + 140V2)EAR

- Newton)m?

2628 + 133672 (Newtom)m

1 (16 + 33W2)EA®? 2

Crg = = —Cgp = Newton)m
20077007 2% T 06 4 130V2 (Rewton)

mp; = mpy; = M3y = (8+5\/-2T)Ap kg/m

20 + 9V2)AL2
myy = 2mss = 2mgg = ( +g JALp kg
(A%%p)
Mg = — kg - m .
56 6V2 8

Once the coefficients cij, my; are defined (on whatever basis), we can develop the

generic state space dynamic model analogous to the FEM formulas (3.1), (3.2), (3.3):
Mi + Ax + Bu + BN, = 0 4.1

vp(t) = B*x(1) + NP(I)
(4.2)
v.() = B*x(t) + N,(1)
where N, ('), Np('), N,(-) are white Gaussian noise with spectral density d,/, dp 1, 4.1
respectively.! Only, the dimension of the state x(s) is not finite. The technique of

derivation is also different, in particular in the role of the energy. See [6, 7] for details.

Here we can only summarize the basic results.

Case 1: One Controller

We begin with constructing the state space model for one controller (“midcontrolier”),
and offset masses at each end, referring to [4, 6] again for more details and to [7] where
the general case of distributed control is treated. Thus the state x(¢) at time ¢ is defined

by

fG, 0

f©O, 9

f(s2, 1)
L, o

x(1) =

t See [7] for generalization to arbitrary diagonal matrices.
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where s parametrizes the beam axis, zero denoting one end and L the other, L being the
total beam length, and s, denotes the location of the mid-controllers and f(-, ) denotes a

(6x1 vector) function of s, 0 <s < L, representing displacements and angles:

u(s,t)

v(s,?)

f(S, t) = W(s’t)

¢, (s,0

9, (5,0

¢3(S,t)

The stiffness operator A is defined as follows:
1)
8| £(0)
AL * = | fs)
i)
gs) = A f'(s) + ALf(@s) + Agf(s), O<s<sy; sp3<s<L.

The derivative f'(-) has a discontinuity at s = 55, and
~L1£(0) - A2 £(0)
Vo= | A (s24) - f(s2-)
Lif(L)y + A f'(L)

and thus defined, the potential energy

L
= [Ax, x] =J [H ;(E;) , ;(S) ]ds 20
0
where
¢, 0 0 -G
0 C3 0 O
=10 0o
0
—C+ 0
C; O
A = 'o Cs
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G

A

G

Ao

B is defined by

and

BU

€11 Ci4
Cla Caq4
Ci1s 0
€66 C3s
Cig €33
€26 €23
0 G
C¥ 0
0 -c5
0 0
0 -css

C1s

Css

€26
€23

€22

C14

C44

= Dlag [O’ 0’ 0’ 0’ €55, 644]

|

0 -C,
0 0
0
0
U
0
B*x

b

= f(s2)

The mass/inertia operator M is defined

Mx

Mo f(")
M, o £(0)
M f(s2)

My L f(L)
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where

LOY)

mss
My =
myy

mss  Mse

mse  Mgg

Dlag Mbo = (mo sy, Mo, Mg, Diag. 10 )
where myg is the offset mass at s = 0 and /g is its moment of inertia about zero, and

similarly

Diag MbL = ( m, m, my , Dlag IL ) .

See also [6] for more on Mbo, MbL'

m, 0 0 0 O

0 m 0

0 0 m 0
M, =

0 0 0

0 0 O I,

0 0 O

where m,_ is the force actuator (rotor) mass and /. the moment of inertia of the moment

actuator about its center of gravity. The m.s. attitude error matrix is defined by

T T
lim { lTOf £00, 0 £0, y* dt + %of AL, 1 FL, O* dr}

T 400

and o2 is the sum of the diagonal terms as defined.

Case 2: Two Controllers

Next we consider the case of two controllers, one at each end. Here, since there is

no mid-controller, we may delete that entry in the state. Thus

fG¢, 0
x(ry = | f(0,0
fL, 9
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MOf( " t)
Mx = Mb,(]f(ov t)
M, LfL, 0

where the end-masses mgy, m; must now include the actuator moving masses, and
similarly for the moment of inertia matrices. We shall use the notation

Mb,O 0
M =

0 Mb,L

With U(:) denoting the control vector, (12x1), we have

0
BU =
U
f0, 9
B*x = .
fiL, 9
Finally
- |}

-L1 f(0) - A2 f'(0)
Ly f(L) + A f'(L)

g(s) A f(s) + ALf(s) + Apf(s), O<s<L.

Here the mean square attitude error-matrix

T
- lim -}J (B*x(1))(B*x())* dr .

T oo

Case 3: Three Controllers

In this case we have a mid-controller at s = s, as well as a controller at each end.

Here
fG, 9
£, 9
= fsan |
flL, o
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in other words the same state vector as in Case 1.

Myf(-, 9
M, o f(0, 9
Mx) = M, 2 f(s2,0) |’
M, f(L, 1)
where
m. O 0
0 m O
M ~ 0 0 m
2 " 1o 0 o0
0 0 0 I
0 0 O

where m_ is the force actuator moving mass and /. is the moment of inertia about its

center of gravity, corresponding to the “mid-controller.”

0
BU =
£, 9
B*x = f(Sz,I)
fL, 9

We can calculate 62 from the diagonal terms of the mean square error matrix:

T

Diag. lim 7 [ (B*x())(B*x()* dr
T e 0

which now has 18 entries. Once again we adopt the notation:
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$. Formulas for Performance Criteria
We shall now develop formulas for the Performance Critera. First the mean square
attitude error: Using either model FEM (3.1)-(3.3) or Continuum (4.1)-(4.2) we have the

state space form:

Mx + Ax + BU + BN, = 0 ¢.1
v, = B*x + N, (5.2)
v, = B¥t + N, (5.3
and
U = av,(n) + v, (0. (5.4)

Substituting this control law into the state equations we have:
Mi + (A +aBB%)x + yYBB*x + B(N, + OLNP +¥N,) = 0. (5.5

The steady-state output covariance matrix
2 2
o'd, + d, +y°d,
2y

R, = E((B*x(t))(B*x(f)*) = [ ](B*(A + aBB*) ' B) (5.6)

where the matrix part:
B*(A + oBB*)'B
is recognized as the steady-state input-output response matrix: it is the value at ® = 0 of
the input-output transfer-function:
B*((i0)’M + A + aBB* + (i(o)yBB*)'lB .
The scalar factor
old, + d, +y’d,

d = 2y (5.7

consolidates the “noise” part. For the case of two controllers the mean square attitude

error 62 can be calculated from

Diag. R, .

For the third case of three controllers it is given by
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Diag. LR, L*

where

f(0)

LU = .
i)

For Case 1 with one controller only, we have to calculate

E(f(0, 1) £(0, *)
E(f(L, ©) f(L, O .

Separately, expressing each as a transformation of the state:

Lix = f(0)
Lyx = f(L).

In the FEM version, we have thus to invert the matrix
(A + 0BB¥*)
which in our case is 120x120 — and of course can be done only numerically. For the

continuum model however we have to invent the operator

(A + cBBY!
but — and this is the main point of departure — this can be done analytically. Referring

to [7] for details, here we shall simply enumerate the formulas below.

Case 1: One Controller Only

2
E[£(0, 1) f(0, n*] = Diag. [é 1_:;_& 1_;'55 é é. é]d

2 PRY)
EUAL 0 fL, %) = Diag. (L, 1 E=sl 12 wf L1 1),

(each is a diagonal matrix!). Steady state step response corresponding to step input U:
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Q[

f(ov °°) =

R[m=

f(L’ °°) =

Note: Controller at s = 5;.

Case 2: Two End Controllers

Diag. E[£(0, 1) f(0

0 0 0
I
0 0 —52
s 0
2 U
0 I3
0 0 0
13 0 0 L-—Sz
0 s-L 0
2 U
0 I

» %1 = Diag. E[f(L, 1) f(L, )*] .

And the first four diagonal terms in either matrix are given in order by:

[1 + X%ELZ‘] [51&)"

T uAB=1)] (1
= B(m—z)] [2_&)‘1

] ‘Eﬂxﬁ-lf 1
= |1+ B(xﬁ_z)] (3a)4

where

A=

oL L
2¢6 T 4
p o+ 1
(c13 — 2¢)(2a + cdL)
H o+ 2 + 208
274
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Case 3: Three Controllers

Here we have to express the answers in terms of 6X6 matrices. Thus let

E[f(0, D f(O, O*

Dll = d

D,, - ELf(s2, 0 f(s2, )*]
22 d

D - EU, 0 L, 9*)
33 d .
Then
-1 -1,"1
Dy = dii(s) — dia(s:)(daa(sy) + (diy(L-s2)" - @)"')  dia(s2)

(d33(s2) + dpy(L-5)" - o)

N%
1

= (o] + '"3(L—52))_l{(11 + my(L-53) + m21(L_52)(D22)m;1(L_52)}

N
[

x (&l + my(L—55))""

where
di(s) = (0 + my(s)) = mg (s)*(0 + ms(s)) " mpp(s))”"
dia(s) = ((0 + my(s)) — myy(s)(et + my(s)) ' m3y(s))”"
dia(s) = —dyi(Imyy(s)*(@l + my(s))”"
_(‘)‘CE £ A _L)_cgs Az
mi(s) =
cgngATZ _C_:?_ . csggs)An
_(‘)‘cis Aqg - —(‘lcgs Az
my(s) = 5 c 5
_C_Z(E).A""Z __gl+“_4(£)_'422 275




_ﬂ_)_css Ay - —(‘)‘Cgs A

rmyi(s) =
czgsgA.rz _%3_+ csigs) Azy
where
1
&(s) =
e
12
1 (e
50 ( L —2(1-—5(5)] 1 -1
Ay = 1 1 0
-1 0 1
1
Ap = 0
0 -1 0
0 0
Ay =
0

Stability Margin Formula

From (5.5) it is clear that the closed-loop eigenfunctions are specified by
A2Mo + (A + 0BB*)¢ + YABB*® = 0

(again, irrespective of whether we are using the FEM version (3.1)-(3.3) or the
continuum version (4.1), (4.2)) where ¢ denotes the eigenvector (“mode shape™), with the

eigenvalue A specified by
Af[MO, 6] + [(A + aBB*)0, ¢] + AY[B*¢, B*¢] = 0

where we may normalize the mode shape ¢ so that [M¢, ¢] = 1. Since ¢ 20 and y 2 O,
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it follows that the eigenvalue A is given by:

A=<t i0
where
0! = 0} - ¢
o) = [(A+ aBB%)9, 9].

Thus the closed-loop eigenvalues have strictly negative real parts.
It is shown in [8] that the sum of the absolute values of the closed-loop eigenvalues is
given by

yTr. M:! (5.8)

in all cases, where in M_ only moving parts of the actuators must be considered (as
opposed to the stationary mass such as the armature mass). The simplicity of this formula
is striking when compared with taking the sum of the inverses of the absolute values of
the real parts of the closed loop eigenvalues for a finite number of modes as in [10]. We
may note that for zero natural damping (or with damping, if we consider only the increment),
IR
]

lo;i

i

for any continuum model. Again, (5.8) applies for the FEM version (3.1)-(3.3), as well

as for the continuum model (4.1), (4.2).
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6. Numerical Results

In this section we compare the numerical results by the two methods for the mean
square attitude errors (and equivalently, tip response), for each of the three cases: one,
two and three controllers — using the nominal values (cf. Section 1) for the truss para-

meters.

Case 1: One Controller
FEM

The tip response f(0, e) and f(L, ) was calculated for:

O = c44 = 35571851.2; Sy = 0, %, %, %,
. - L L L

o = 10,000 N 52 = 0 ] 9 ’ 3 ] 2 »
: L L L

a = 100 N 32 = 0 » 9 ’ 3 3 2 »

both f(0, =) and f(L, =) values were exactly the same as the values predicted by the

continuum model and hence are not displayed.

Case 2: Two Controllers

. -1 .
b, = Diag. B¥A + al) 'B, i=1,..12
FEM Continuum
bii=bn 0.4998 0.5
o=1 byy = b3 0.99727 0.99727
= bgg = byg
bua=bro 1o |0-50028 0.5
biy= b7 0.01 0.01
o =50 baz = b3 0.019945 0.019945
= bgg= byo
baa= b1o 10 0.01 0.01
by = by 22978 x10°%(2.2978 x107®
& = C4s baz = b33 2.80545 x10°% |2.80546 x10™°
=3.557x107| = bsg=bygo s 8
bua=bro o |2478 x107°[2.478 10
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Case 3: Three Controllers
o = 3.557 x 107

b, = i=1,..,18

by x 108 | by x 108
Actuator
Position FEM Continuum
s=’§“ 15119 | 15127
5= %’“ 1.8366 | 1.8370
5= 19@ 1.9461 1.9465
s=3k 20330 | 20333
s=% 21031 | 2.1033
5= 21602 | 2.1603

In other words the FEM and the continuum gave exactly the same numerical results

within (the SUN-386i) computer accuracy in all cases.
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7. Optimal Location of Controllers
As a byproduct of our theory, we can examine the problem of the optimal actuators
placement that minimizes the mean square attitude for any given choice of control gains

and structure parameters.

Case 1: One Actuator
Here we take the criterion as the sum of the mean square displacements at both ends.

We calculate explicitly that

[ELF(0,2) £(0,0*] + ELf(L.9) f(L.)*]]
d

- Dia [g 2+5% 4+ (L-5s? 2+ 8 + (L-s)* 2 2
= g. o’ o ) o o’ o’

QN

]

from which it is clear that the optimal placement is in the middle:

Lo L
- L

Only the bending-displacement is affected by actuator position.

For Case 2 of two actuators there is no placement problem since one is required to

be at each end.

Case 3: Three Actuators

Here we can consider the optimal placement of the midactuator while the other two
are fixed one at each end. The behavior of the sum of the mean square errors (setting
a = 1) at both ends for the axial mode is shown in Figure 3; and the bending mode is
shown in Figure 4; and the axial torsion in Figure S. In all cases we see that the worst
position is at the middle! The best place is at either end. Finally Figure 6 shows the mean

square axial displacement at the actuator location. Again the worst place is the middle.
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8. Optimization

We shall now treat a canonical optimization problem currently studied by FEM and
truncated modal models [9, 10]. The objective is to minimize the total mass — structure
and control — subject to meeting specified indices of performance. Here we take them to
be:

(a) mean square attitude error due to sensor noise less than or equal to fixed value

{(b) stability index: sum of the absolute values of the real parts of the closed loop

eigenvalues to be not less than a fixed value.
We shall see that the problem can be solved analytically by virtue of the formulas we
have developed using continuum models.

The structural parameter we shall use is the cross-sectional area A of the longerons
(assumed to be the same for battens and cross-bars). Other parameters being fixed, the
structure mass is then proportional to A. (The extension to the case of nonequal areas

only complicate§ the algebra, as can be seen from the expressions (cf. Section 3) for the
flexibility coefficients.) The control mass has to be subdivided into a stationary mass
(armature mass, for example) and a moving mass (rotor mass, for example) since only the
latter is involved in the stability index formula. The stationary mass is of course related to
the moving mass — for simplicity we shall take it to be inversely proportional to the
rotor mass. The control parameters are the attitude and rate gains o and y. These of
course will need to be constrained not to exceed prescribed limits. Thus we have the

following formulation (nominal values for all structure parameters except A):
Structure mass = NZpA
Control stationary mass = i
Moving mass = m
Total mass = NEA + = + m

e N Y
Stability index = M+ m
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(where M denotes the contribution of the end-masses). For the truss considered,
N = (76 + 46V2) .

Finally the mean square attitude error — to be specific, we shall consider the case of
two controllers, one at each end; and take the sum of the mean square displacements at
either end. First we express these in terms of the structural parameter A — we have thus
to use the expressions we have derived for the flexibility coefficients {c;;} in terms of A
in Section 5 and substitute them into the formulas for mean square errors for two controllers
in Table 3 under Case 2. In doing so we shall also take advantage of the simplification
possible by noting that for the nominal value of L = 27 meters, we can readily calculate
that

AB = 2

so that we may replace both (AB - 1) and (AR - 2) by AB. Thus the first four diagonal
terms in

2 Diag. E[£(0, 1) £(0, 5)*]
(= 2 Diag. E[f(L, 1) f(L, 9*])

are given in order by:

L2, L o
] 4 " 2¢5 EA
f(oc,Y,A) = o 1 + 5 . L_2+ L& [c” —2(‘) [2(1+ LCSEA) d
4 T 2:5EA " 2¢o o
L2, L o)
1. 4 " 3B EA|,
a L, Lo
I 4 T 2.5 EA
L2 L af
1, 4 " 2B EA|,
a L, Lo
L 4 2¢cd EA.

€66 L o
1, L €33 * "4 * 2 FA 4
o T 2EA ces |, L L o cis
((.‘3 + 4 + > EAJ [C66 + 2 EA) - 2



where now

40 + 24\2
9+ 42

€11 =

2
1+ 2V2

(2725 + 147645}
= p—
2628 + 1336V2

_32_+@]

co6 ="[ws+1ywi

n = number of bays; L =nt

1

3 = 7

T
12 (033 — C66/4)

with d as given by (5.7). These formulas enable us to draw conclusions concerning the
dependence on the cross-sectional area A without resorting to numerical computer calcu-

lations. We see that all the errors decrease as A increases. The axial error decreases from

%1 at A =0 to g at A = oo; similarly the torsion error. The bending error is least
, d L? d
affected, decreasing from o & A=20t [mf] o & A = oo, In all cases the

minimal mean square error is at most 3 db less than the maximum!
For the optimization let us fix on the mean square bending error as being the easiest

analytically: let

1
L, Lo
4 2cd EA

1 -

QA

f(a’ Y’ A) =

Thus the optimization problem is that of minimizing

NZpA+£+m
m

subject to:
I 2
M+m 20
fle, v, 4) € o
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The first inequality can clearly be reversed to read

M+m 1
Y Sa:'.

We note that the objective functional
k
NepA + — + m
m

is infinitely smooth and trivially convex, and the constraints are also infinitely smooth
and convex. Hence we are assured of the existence of a minimum (which is further
verified to be unique). Moreover we can go to the Langrange parameter formulation and
minimize:

M+

(VoA + £ v m) 4 0 [MER] 4 Asa v 4)

where A;, A; 2 0 are the Lagrange parameters. See [11] for the standard results that
are applicable here,

Compared to the FEM versions [9, 10] this is a “trivial” problem and complete
“analytical” solution is possible. We omit the details since our primary aim in this paper

is to demonstrate the simplicity of the optimization problem relative to the FEM versions.
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Summary

A case study of a spacecraft having flexible solar arrays 1is presented. A
stationkeeping attitude control mode employing both earth and rate gyro reference signals
and a flexible vehicle dynamics modelling and implementation is discussed.

The control system is designed to achieve both pointing accuracy and structural
mode stability during stationkeeping maneuvers. Reduction of structural mode interactions
over the entire mode duration is presented. The control mode employing a discrete-time
observer structure is described to show the convergence of the spacecraft attitude transients

during AV thrusting maneuvers without pre-loading thrusting bias to the on-board control
processor. The simulation performance using the three-axis, body-stabilized nonlinear
dynamics is provided.

The details of a five-body nonlinear dynamics model are discussed. The spacecraft
is modelled as a central rigid body having cantilevered flexible antennas, a pair of flexible
articulated solar arrays, and two gimballed momentum wheels. The vehicle is free to
undergo unrestricted rotations and translations relative to inertial space. A direct
implementation of the equations of motion will be compared to an indirect implementation
that uses a symbolic manipulation software to generate rigid body equations. A
generalization of this approach to this class of flexible vehicles will be provided.

1. Introduction

Three-axis body stabilized spacecrafts having solar wings with significant structural
flexibility may exhibit rigid-flex coupling effects during a typical stationkeeping maneuver.
One of the primary concerns for the design of three-axis stabilized spacecraft is the
structural mode interaction with the attitude control system. In addition, the dynamic
analysis and the control performance evaluation are sensitive to the rigid-flex modelling
accuracy. This paper presents a case study on the design, analysis and digital simulation of
a microprocessor-based stationkeeping control system of a 3-panel communication
spacecraft using thrusters as control actuators. It discusses the control system to achieve
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modal stabilization, the dynamic model development and validation, and the technique for
closed-loop digital simulation.

The vehicle under discussion is a three-axis stabilized geosynchronous
communication satellite. The vehicle is powered by photovoltaic solar arrays and are
controlled in its on-orbit operation by a combination of momentum wheels, reaction control
thrusters, and solar array motion. This satellite is modelled as a central rigid body having
cantilevered flexible antennas, a pair of flexible articulated solar arrays, and two gimballed
momentum wheels. The vehicle is free to undergo unrestricted rotations and translations
relative to inertial space. The solar arrays rotate relative to the central body in response to
the action of control torques. The momentum wheels are assumed to be controlled such
that their motions relative to the central body are prescribed. In the deployed configuration,
the solar arrays contain 75% of the total inertia of the satellite with only 7% of the total
mass. Each solar array has 4 cantilevered frequencies below 1 Hz.

The solar wing flexibility is fully coupled into the body roll and yaw dynamics
because the flexible solar wings are fixed about the roll and yaw axes of the central body,
while articulating about its pitch axis. The pitch coupling depends upon the nonlinearity of
the solar wing drive and its friction characteristics. The control bandwidth of the on-orbit
normal mode is usually designed at a frequency well below the first structural mode so that
the solar wing flexibility does not interact seriously with the normal mode controller.
However, a relative high control bandwidth is needed to maintain pointing accuracy in the
presence of a large thrusting disturbance. The disturbance torques are primarily induced by
the offset of spacecraft center of gravity (CG) from the geometric or pressure center of
maneuvering jets as well as the thrust mismatch. The sensed spacecraft flexible dynamics
interact with the stationkeeping controllers, which may result in structural mode instability
at high loop gains.

.During the thrusting maneuver, the dominant modes coupling in the stationkeeping
control are phase stabilized using the lead inherent in the sensed gyro rates together with the
phase-lead notch filters, while the non-dominant modes at higher frequencies are gain-
stabilized. After the thrusting maneuver, any residual rates must be nulled by an order of
magnitude in preparation for a smooth transfer back to the normal control mode. This
paper will focus on the stationkeeping control during the thrusting maneuver only. The
thrusting bias about each control axis 1s estimated such that a fast convergence on the bias
estimates can be achieved without an open-loop torque pre-bias by ground command,
although this feature is also included in the design. The control loop bandwidths are
designed as high as possible to meet pointing requirements, while still achieving adequate
modal stability. Simulation results demonstrate stationkeeping control performance from a
typical 2-jet (5 Ibf each) south maneuver under the worst case maneuvering conditions are
presented.

To verify the accuracy of the dynamics model, two approaches are taken. In the
first approach, the direct approach, the equations of motion for the vehicle are derived from
fundamental momentum principles. The flexible appendages are modelled with
conventional lumped mass model employing stiffness matrices to characterize the internal
energy. Transformations to appendage modal coordinates are made and a reduction in the
number of elastic degrees of freedom is achieved through their truncation. Simplifying
assumptions are made regarding the magnitude of certain nonlinear kinematic terms based
on operational considerations. The final set of governing equations are coded in a first
order form suitable for numerical integration.

In the second approach, the indirect approach, an unconventional method is
employed. The "rigid" portion of the equations and the code is obtained from a symbolic
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manipulation software. The “rigid/flex" coupling terms are derived and implemented. The
details of this approach will be presented later in this paper. The two approaches were
numerically compared through a set of chosen open loop comparison tests.

2. Performance Requirements and Control System Descriptions

Performance Requirements

The spacecraft under study requires at least 400 bi-weekly south maneuvers with a
maximum duration of 120 sec per maneuver using two 5 lbf thrusters. East/west
corrections are 5 sec short burn each. Factors affecting pointing accuracy during the
stationkeeping maneuver are earth sensor noise, rate gyro noise, gyro rate bias estimation
errors, thrusters pulse-to-pulse repeatability, spacecraft CG offset, CG migration due to
propellant motion, flexibility of solar wings and reflectors, thrust mismatch, thruster
misalignment, on-time/off-time thruster delay, thruster plume-impingement, etc. Effects
due to environment disturbance such as solar torques, magnetic torques, wing torques,
etc., are assumed to be negligible. The goal is to maintain body transients to within 0.1
deg in roll/pitch and 0.2 deg in yaw. The control loops should stabilize structural mode
oscillation seen on spacecraft attitude and provide stability range in the presence of
structural mode frequency uncertainty.

Control Algorithms

The stationkeeping control is executed through special control algorithms that run
when the spacecraft is in Stationkeeping Mode. Due to the spacecraft CG offset and
variation in thrust pulse amplitude, various thrusting disturbance torques about the control
axes may be induced when the maneuver thrusters are activated. Stationkeeping Mode
provides thruster control for a maneuver execution and autonomous attitude control to limit
body transient errors and maintain pointing accuracy during maneuvers. Attitude control in
roll and pitch axes is achieved using earth referenced signals and rate integrating gyro data
with 5 Ibf thrusters. A rate integrating gyro is used as rate references in yaw control.

Figure 2.1 shows the functional block diagram of the 3-axis stationkeeping attitude
control system during maneuvers. The control logic for each of roll and pitch rate loops in
Stationkeeping Mode is combined with the gyro referenced attitude estimator for position,
rate and acceleration bias estimates and the proportional controller for control acceleration
command generation. Using earth referenced pitch and roll position signals, effects due to
gyro drift can be minimized by an on-board software calibration to the raw rate
measurements. The yaw control logic in Stationkeeping Mode is identical to the roll and
pitch channels except for the yaw gyro bias estimate, which is constant based on
premaneuver calibration estimate. The technique for rate gyro calibration will not be
discussed in this paper.
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The earth referenced pitch and roll position errors are sensed at 2.0345 Hz, i.e.
every 30 real time interrupts (RTIs) at 16.384 msec per RTI, to supply position references
for the roll and pitch gyro calibration. The angle estimate is obtained by adding the gyro
bias estimate to the raw rate measurement, and integrating the resulting rate. For the yaw
control loop, it does not perform the yaw gyro calibration during maneuver, since no yaw
position position references are available in Stationkeeping Mode. Instead, yaw gyro bias
is estimated in the normal mode prior to maneuver, and its value is held throughout the
maneuver.

The gyro referenced rate measurements with calibration are sensed every 8 RTIs to
supply rate references to a third-order attitude estimator for each axis. Each attitude
estimator performs two functions. First, it integrates the gyro rate (after correction for
bias) to obtain a position estimate. Both the roll and pitch gyro calibration along with
integrations operate during the premaneuver gyro calibration period as well as throughout
the maneuver. Second, it estimates the spacecraft angular rate and acceleration bias about
the respective axis. The roll and yaw attitude estimators also include the effect of roll-yaw
coupling due to spinning wheel momentum.

A proportional controller is employed for each axis to determine the control
acceleration commands based upon the position, rate and acceleration bias estimates. The
control acceleration commands are held constant over each control sample period. The on-
board optimal thruster selection (OTS) logic selects available thrusters and determines
necessary thruster on/off command duration to valve drivers based upon the minimum fuel
consumption. The selected 5 1bf thrusters are turned on/off for commanded durations to
deliver the control momentum equivalent to the commands, and achieve attitude corrections
during maneuvers. The detailed technique for conversion of the control acceleration
commands to thruster commands will not be discussed further. Although the control
sample period is designed to be commandable, it must be selected to meet the needs of the
control processor thruput and avoid structural mode instabilities as well.

3. Flexible Spacecraft Model Descriptions

The mechanical idealization of the satellite is illustrated in Figure 3.1. The model
consists of a central body, which is considered to be rigid and to which are mounted a set
of reaction control thrusters. Cantilevered to the central body are a complement of
structurally flexible antennas. Two distinct, structurally flexible solar arrays are hinge
connected to the central body. The arrays can rotate independently about parallel drive axes
in response to control torques, which are assumed to be known functions of time. Two
independent, identical, rigid axisymmetric, variable-speed momentum wheels are mounted
to the central body through two-axis gimbal mechanisms. The complete motions of the
wheels relative to the central body are assumed to be prescribed functions of time.

The communications antennas of the actual satellite are capable of limited
articulation relative to the central body. However, because these rotations are small in both
magnitude and rate, their influence on the vehicle's overall attitude dynamics was deemed
negligible, and these degrees of freedom were not included in the model. While the solar
arrays will be virtually identical under nominal circumstances, they are treated as
structurally distinct to accommodate more general conditions.
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Flexible Solar Array-1

Momentum Wheel-1
Reaction Control Thruster

Flexible Antenna

Momentum Wheel-2

Flexible Solar Array-2

Figure 3.1. Mechanical Idealization of a satellite.
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The deformations of the antenna and solar array structures are assumed to be linear
elastic in character and small in magnitude. The respective appendages are modelled as
collections of point masses interconnected by massless elastic structure. Stiffness matrices
are used to define the elastic restoring forces acting internal to these assemblies.
Ultimately, modal coordinate transformations are introduced for each appendage and the
final motion equations are cast in terms of truncated sets of those variables.

Cantilevered frequencies of an individual solar array and of an assembled antennas
are provided in Table 3.1.

Table 3.1. Characteristic Cantilevered Frequencies of the Appendages.

Mode # Solar Array Antennas
Frequency (Hz) Frequency (Hz)
1 .118 1.586
2 .355 1.792
3 .705 1.953
4 .835 2.043
5 1.825 4.235
6 2.725 4.867
7 3.167 5.323
8 4.914 5.893
9 6.161 13.366
10 6.905 19.558
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4. Control Design and Analysis

Linearized Spacecraft Open Loop Dynamics

Let {b) be the spacecraft body frame, {s}w be the solar wing frame and Cy, be the

direction cosine matrix at the wing-to-body angle o such that (s}, = Cy{b}, where w=n
(North wing) or s (South wing). Figure 4.1 is a geometry showing the spacecraft with the
thrusting forces and torques and the disturbance created by thruster plume impingement; in
which we assume that point i is the pressure center on North wing where the resultant
plume force vector applies.

=p y
{plume-induced torque AT® F* (plume-induced

about pressure center) r/ resuttant forces)

i pressure center of
- plume forces on
r north wing

interface point

(external thrusting torques) T of north wing
{(plume-induced torques
about S/C CG) N
S~——n (external thrusling forces)
; SIC CG

d interface point
of south wing

Figure 4.1 A Geometry showing Extemnal Thrusting Forces/Torques
and Plume Disturbance

The linearized body-stabilized spacecraft hybrid dynamics with articulated solar wings are
given in Equations (4.1) - (4.6).

mXx + Py, + Pkny = F + PP (S/C translational motion) 4.1)

lye® +Inez@n + Liey@s +QuTin +Qafls =T +TP (/- rovational motion) (4.2)

e}l + Gon +ef QM =To  (North wing pitch dynamics) (4.3)
o + Bog +eJ @1, =T™ e Di i
21 2Ws + 6 s s (South wing pitch dynamics) 4.4
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PIX + QI(D +(e'{@1)'rd)n+ﬁn +2CAﬁn +A2nn= (D'xr

C, PP
AT

1

(North wing flex dyn.)

PIx + Qo + (e-zr @)T s +Ms +20AMN, + A= 0 (South wing flex dyn.)

where
m

Ise
X

w
In.Is

(Dnau)S
Nn,Ms
P2, P?
P, Ps

&, @&

]

Qn, Qs

]

T?]wd Tsswd
FP ATP

It

total S/C mass
S/C mass inertias
S/C translational position vector

S/C angular rate vector

pitch inertias of wings about their interface points
relative pitch angular rates of wings

modal variables of wings

rigid-flex translational coupling matrices of wings about their
interface points

rigid-flex translational coupling matrices of wings about the
S/C CG

rigid-flex rotational coupling matrices of wings about their
interface points

rigid-flex rotational coupling matrices of wings about the
S/C CG

solar wing torques
plume induced force and torque about pressure center

(4.5)

(4.6)

mode shape at point i of North wing (a nx6 matrix with 3 translational

and 3 rotational deformation, where n is the number of modes in
concern)

cantilever mode frequencies for each wing

structural damping factor
(010]7

The model above is with articulated solar wings driven by the wing torques about
their hinge axes. To fully include the flexibility of wings, the dynamic inertias of each
wing referenced to its interface point must contain at least 99% of the roll or yaw moment
of inertia about the same point, or, the pitch inertia excluding yoke. The flexible reflectors
have relatively small dynamic inertias compared to the total spacecraft mass inertias; the
structural mode control interaction is negligible. Therefore, the reflectors are considered to
be rigid and included as a part of rigid central body in stability analysis. For the pitch
dynamics of wings in the "constraint” state (see Design Considerations below for further
discussion), the solar wing angular acceleration terms in Equations (4.1), (4.2), (4.4) and
(4.5) may be eliminated from these equations, and the resulting model represents the
linearized spacecraft dynamics with non-articulated wings.
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Control Design Model of Rate Loops

The control system has an outer loop (i.e. position loop) and an inner loop (i.e. rate
loop). The position loop is designed at very low bandwidth with its gain crossover well
below the structural modes and consequently has generous gain margin (> 40 dB) on all
flexible modes. As for the modal stability, the rate loops are the primary concerns. The
design model of rate control loops in Stationkeeping Mode is given below.

g

o} =
s+a8

w; (i=1,2,3)

-

Rate Gyro Dynamics

wd(n+1) =[0%(n+1) - 8%(n)] / AT

Gyro Processors

~8 ~g
Attitude Estimators 8i(n+1) =6;(n) +AT Wf(n+1)
o¥(n+l) =a¥n) +Awi(n) +ATdi(n) + Awi(n)
wf(n+1) = @B(n+l) + K, [0¥(n+1) - @¥(n+1)]

din+1) = din) + Kq [0B(n+1) - @¥(n+1)]

Awi(n) = -(HrAT/) @im) (i=1)
=0 (i=2)
= (HrAT/l3) @¥(n) (i=3)

Awi(n) = AT of'(n-1)

a};f(z) = -Np(2) (Cpel8 + Cra)lg} - ai(Z)

Proportional Controllers

2
Np(z)= 2222+ MZ * M0 (phase Lead Notch Filter)
22 + djz +dy

Control Transport Delay

of = Q—Taff(n-u) if NAT + 14 <t<nAT+ 14+, k= (g +.5 T)/AT
C

=0 otherwise
where
0; = spacecraft angular position about body axis i [deg]
®; = spacecraft angular rate about body axis i [deg/sec]
~8
0; = estimate of 6; [deg]
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estimate of wj {deg/sec]

“)ii; = rate gyro measurement with calibration [deg/sec]
8
1
di acceleration bias estimate about body axis i [deg/sec?]

= position signal output from the rate integration gyro [deg]
RTI = real time interrupt = 16.384 msec
pf .
O; = filtered control acceleration commands
T
O = actual control acceleration acting about body axis 1 over ¢ [deg/sec?)

Aw} = feedforward rate changes [deg/sec]

AT = control sample period [sec]

194 = control pulsing delay [sec]

% = actual control pulsewidth [sec]

n = control sampling time in Stationkeeping Mode

K, = rate estimation gain [(deg/sec)/(deg/sec)]

K4 = acceleration bias estimation gain [(deg/scc2)/(deg/sec)]

Cp = spacecraft position control gain in Stationkeeping Mode [sec?]

Cr = spacecraft rate control gain in Stationkeeping Mode [sec 1]
Np(z) = phase-lead notch filter, z=eSAT

ag = gyro servo bandwidth [rad/sec]

I;, = spacecraft moment of inertias about body axis i [slug-ft2]

Ht = total spacecraft angular momentum about pitch axis

It employs a discrete predictor-corrector algorithm to estimate the spacecraft rate and
acceleration bias and the integration of the rate measurement (after correction for gyro bias)
for position estimate. A discrete phase-lead notch filter is added in series with the attitude
control acceleration command (i.. the proportional controller excluding the acceleration
bias control term, which is added to the filtered attitude control acceleration command) to
provide additional phase lead for modal stabilization. The spacecraft dynamics used in the
design are represented by the linearized hybrid dynamic model. The rate gyro model,
which has a first order servo of 8 Hz bandwidth, output positional signal, and the gyro
processor determines the rate based upon the position change over one control sample
period. The equivalent transfer function of the design model will not be given in this
paper. We will discuss various design concerns which are related to transient performance
and structural mode stability in general, and the design philosophy in achieving the goals.

Sensitivity To Modal Parameters

The stability of the structural modes selected for baseline design may be affected by
both the structural frequency uncertainty and the structural damping. A structural damping
ratio of 0.0025-0.005 is added to the hybrid dynamic model. The P and Q matrices defined
earlier are essentially the diagonal matrix elements of the translational and rotational rigid-
flex coupling matrix B given in Equation (6.9). The coupling matrix selected for the
baseline design is derived based upon the the spacecraft on orbit nominal configuration
with fully deployed wings whose z-axis is directed to the Earth. By knowing the location
of the interface point relative to the spacecraft OG and the wing orientation, it can be proved
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that conversion of the coupling parameters to about the spacecraft CG is accomplished
through the relations:

P, = G P, Q =C &+ R,P, (4.7)
P, = (I R, Q =T @+ RP (4.8)
where "~" denotes the skew symmetric matrix operator which achieves a vector cross

product. P and Q will change when the spacecraft is no longer in nominal configuration
under the following two conditions. First, P and Q vary as the wings rotate about their
hinge axes; and second, due to the nonlinear characteristics of panel hinge stiffness. The
solar wings could be at any orientation with 16 deg or less wing séparation angle. Rotation
of wings will primarily affect P and Q about the spacecraft body roll and pitch axes, and
almost no change about the body pitch axis in the presence of the symmetric north/south
wings. Furthermore, when the east or west thrusters fire during an east/west maneuver
with non-zero wing angles, the panel hinge loads as induced primarily by the linear
acceleration of the spacecraft along the the panel z-axis as well as the flexibility of wings
may exceed the spring preload such that the panel stiffness will drop from its hardstop
region, where the nominal P and Q are derived, to the deadband region, where a soft panel
stiffness is present. The worst case panel hinge loads result when the wing is at 90 deg
orientation during an east/west maneuver. When this occurs, P® and Q© about the interface
point of the wing will vary about all three axes. Both the roll and yaw control axes must be
designed to stabilize all possible structural mode frequencies which may result from the
rotation of wings and the nonlinear characteristics of panel stiffness.

Spacecraft CG Uncertainty

The CG offset of the spacecraft from the pressure center of maneuver thrusters will
result in a thrusting disturbance about the control axis. If the actual CG offset was
predicted to a 100% accuracy by the OTS in advance, the thrusting disturbance would be
self-compensated with the selected thrusters -- the unique feature of the OTS. The CG
uncertainty of the spacecraft has a major impact on the maneuver transients. The concerns
are in two areas: (i) the CG uncertainty of the spacecraft while on station at a steady state
condition, which is primarily caused by the tank misalignment and the possible imbalance
of the dry spacecraft and (ii) the CG uncertainty due to propellant motion during a
maneuver. The estimation errors on the acceleration bias may result in an initial transient
about each axis that exceeds steady state pointing. The acceleration bias estimation gain
(Kq) must be designed to minimize the maneuver initialization transient, and to avoid
excitation of structural modes, while still being able to track disturbance. The transient
errors can also be improved with an initialization of the acceleration bias estimates to the
steady state values recorded from the last maneuver.

Firing Thrusters on Flexure

The wing flexibility may be fully excited in the steady state condition from a long
maneuver burn. Also, when switching the control logic to further null the rigid body
residual rates at the completion of a maneuver, an instant loss of thrusting forces could
yield a significant response to the already excited flexible dynamics with the magnitude
exceeding the impulse control deadband limits. To avoid firing on flexure, the rate
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estimation gain (K,) in Stationkeeping Mode must be as low as possible to filter the sensed
spacecraft flexible dynamics, so that the proportional controllers determine the required
control momentum based upon the estimated rigid body dynamics. The rate gain in the
range 0 < K; < 0.5 (deg/sec)/(deg/sec) meet the requirement, while still being able to track
the spacecraft dynamics to a degree of accuracy by feeding forward the commanded rate
changes to the estimators from the OTS.

Control Transport Delay

Due to onboard control software processor speed, a computational delay on rate
change command processing in OTS is induced. Such a delay together with the phase
delay induced by the gyro rate signal processing and the control pulsewidth delivery induce
a phase lag to each control loop, which affects the stability of structural modes. To
compensate for the loss of phase due to the control transport delay, a phase-lead notch filter
is employed in Stationkeeping Mode to provide each control loop with an additional phase
lead. The design philosophy is to set the modulation frequency so that the half sample
frequency is well above the dominant modes to ensure phase stabilization of these modes
with additional phase lead produced by the notch filter. Because the notch filter is not wide
enough to provide all modes with sufficient phase lead, the modes near the half sample rate
are gain-stabilized. Phase stabilization of the dominant modes simply means that the
control loop will generate a stabilizing feedback signal to that mode. This is to be
contrasted to gain stabilization wherein the non-dominant modes rely upon the structural
damping of the spacecraft to provide enough damping to overcome any slight destabilizing
effects.

Effect of SWD Deadband on Torsional Mode Stability

Due to the solar wing drive (SWD) backlash, the flexible pitch dynamics of wings

about their interface points may appear in one of the three states: "free-free", "constraint”
and one between these two states, depending upon whether the wings are inside or outside

the deadband and the magnitude of friction. The SWD has a 0.5 deadband. When the
wings are inside the deadband and the magnitude of friction is insufficient to overcome the
wing relative motion, the central body pitch dynamics are then disturbed by the load
torques with a phase-shifted bang-bang profile whose magnitude is equal to Coulomb
friction. It is very complex to analyze the torsional mode stability with such a profile. The
best way to examine the performance is through the simulation by actually including the
SWD. When the wings are inside the deadband but the friction is negligible so that the
flexible dynamics of each wing are "free-free” about its pitch axis, the central body pitch
dynamics are then fully decoupled from the wing relative motion. The central body under
this state is considered to be rigid. The stabilities of the "free-free” modes will not become
a problem as long as the free-free motion remains inside the deadband. Still, when inside
the deadband but the relative motion of the wing is locked up by friction, or, the wing-to-
body rates are large enough to break the friction and the gear teeth are recontacted to the
SWD shaft, the pitch flexible dynamics of wing are now considered to be "constrained”
about its pitch axis; that is, the SWD will output load torques in absence of stepping
commands, to drive the wings to prevent them from moving about the pitch axis of the
central body. From this viewpoint, the wings are also fixed to the central body about its
pitch axis and the flexible dynamics of wings are fully coupled into the body pitch axis
through the load torques.
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Plume Impingement Effects
Forces and torques created by thruster plume impingement on spacecraft
appendages (north wing and east/west antennas) may result in a net change in the overall
control torques and an unmodelled excitation of the structural modes. From the spacecraft
stability viewpoint, the principle concemn is that the plume disturbance shall not add phases
to erode the phase margins of the phase stabilization modes nor magnify amplitudes to
degrade the gain margins of the gain stabilization modes.

Since r is the pressure center of plume forces, the plume induced torques about the
deformed S/C CG is

TP = (R, +T)xF? + ATP

ATP = TP - (R, +7)xFP = {s)T{C,TP - (C,R, + TC.FP))

or
ATP = C,TP - (C,R, + TIC,FP)

Referring to Equation (4.5), the modal excitation of the north wing is induced by (i) the
spacecraft and the north wing motion driven by the terms

&n =PIx + QQoo + (J &) @,
and (ii) the plume disturbance

e =o' (. T T

acting about point i, the assumed pressure center of plume forces.

In the presence of the plume disturbance €P acting on the North wing, the open

loop dynamics transfer function w(s)/T! (s) from an impulse response can be derived from
the single axis hybrid dynamic model with one mode only as

o) _ 1 I s?+28kgs +23 1

where
ul=€an/T[
M2 =2q%/ Iy
G =8/ ¥Tpy
L2 =8/ VTpy
Ay =AY
IVIEY WA ) BTPY
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The parameters €P and qy, are the plume disturbance and the rigid-flex rotational coupling
term associated with the structural mode of frequency A and modal damping {. Ttis the
impulse thrusting torque about the single axis in concern. If u # 0 (i.e. €P #0), the plume
disturbance will perturb the zeros of the transfer function above from their nominal

locations. If the perturbed zeros move toward the poles (i.€. pj > 0) , then it improves the
margin of the phase-stabilized mode, producing less rigid-flex coupling. On the contrary,

if 1 <0, the zeros move away from the poles, and the loop gain is magnified by a factor
of (1- p ): both of these factors will erode the margin of any gain-stabilized mode.

The geometry of the thrusters and solar wings are such that, in fundamental modes
(those with no inflection points), the plume impingement coupling and the rigid-flex
dynamic coupling act in phase with one another to excite a mode. In other words, plume
impingement acts to amplify modal excitation already present due to rigid-flex dynamic

coupling. This implies that py < 0 for fundamental modes. In this case, the zeros of the
transfer function move even further from the poles, exacerbating the flexible dynamics

coupling problem for these modes. Thus if pj <0, itis desirable to have the magnitude of

1 as small as possible: pj | « 1 p21is goodness. In this case study, pj = -0.0388 for the
first out-of-plane mode at 0.1185 Hz. Fortunately, values are small in comparison to the

corresponding 2 = 0.7037, indicating that plume impingement is not a dominant effect.
One measure is the zero/pole frequency ratio: with no plume impingement

;—1= VT = VI-7037 = 544
2

whereas with plume impingement
Mo_ oo fIH2 _ 17037
—_ = _— = Al L = 4
)\'2 -y 1+.0388 >3

This is a change of only 1.87% which is small relative to the 5% or 10% accuracy to which

2 is known to begin with (A 1.58% change in the value of 2 would result in the same
change in zero/pole ratio).

Higher frequency modes whose mode shapes include an odd number of inflection
points between the attach point and the “point of application” of the plume impingement
force can exhibit a positive value for py. In this case, the plume impingement force acts
opposite to the direct rigid-flex dynamic coupling and tends to reduce modal excitation. In
the transfer function this is reflected by the fact that the zeros move closer to the poles, thus
tending to cancel. Should | ever get as big as 2, the zero would exactly cancel. Aneven

higher value of |1] would reverse the phase of the modal coupling. This situation is of less
interest, and is probably not possible with plume impingement as the excitation source.
Since plume impingement is, in reality, a distributed force rather than a point force as
modeled herein, its viability in exciting a higher frequency mode diminishes rapidly as the
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number of inflection points increases. The assumption made herein that plume
impingement force is applied at a single point loses its validity for higher frequency modes,
therefore results should not be taken too literally for such modes. The "constrained” state
is similar to those for roll or yaw loop.

5. Control Loop Stability

With the panel support cantilevered at its base about the transverse axes, but free in
torsion, Table 5.1 characterizes the flexibility of O deg, 3-panel single wing in terms of the
modal frequencies with associated dynamic inertias about the interface point of wing. The
first twelve modes as listed contain > 99% of the total inertias of wing about each axis,
which are sufficient to describe the flexible characteristics of wings. When the wings are
attached to their base, the flexible dynamics appeared to the angular motion of the
spacecraft through rigid-flex coupling have frequencies higher than that of the cantilever
modes. The increased modal frequencies, assuming perfectly symmetric wings, are
defined as the system modes in Table 5.1. The frequencies of the system modes will shift
as the wings rotate about the hinge axes; 90 deg wings yield out-of-plane cantilever modes
in the yaw axis and in-plane cantilever modes in the roll axis. For the transfer function of
the corresponding open loop dynamics, the dominant modes have wider pole/zero
separations. One of the design goals is to stabilize the system modes under any wing
orientation.

Table 5.1. Solar Wing Structural Modes at Zero Degree Wing Angle
Frequency, Hz Dynamic Inertia
System (about interface
Mode | Cantilever | Constraint | Free-Free | point), Kg~m? | Definition
1 0.1185 02117 44498 out-of -plane
2 0.3547 0.6323 45970 in-plane
3 0.7051 0.7631 8.722 out-of-plane
4 0.8508 0.8582 1.3645 4.498 torsional
5 1.8254 1.8627 3.550 out-of-plane
6 2.8058 2.8091 3.1938 1.588 torsional
7 3.1668 3.2573 3412 out-of-plane
8 5.1320 5.1338 5.3698 0.854 torsional
9 6.1608 6.1704 0.592 out-of-plane
10 8.2235 8.2333 0.432 out-of-plane
11 8.9668 8.9898 9.1631 0.643 torsional
12 9.4732 9.4882 9.7306 0.524 torsional
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Figure 5.1 shows the discrete-time Bode plots and Nichols chart of the 8*RTI
Stationkeeping Mode spacecraft roll rate control loop with no structural filter or control
transport delay. The control bandwidth was designed to limit transient errors to within 0.1
deg in the presence of a 1.5 inches spacecraft CG offset along the z-axis. The first five
out-of-plane modes at nominal frequencies, 0.5% structural damping and 0 deg wing angle
were included. Using gyro references, both the first (mode 1) and second out-of-plane
mode (mode 3) are phase-stabilized with about 70 deg and 30 deg phase margins,
respectively, and the remaining out-of-plane modes (S, 7, 9 & 10) are gain-stabilized with
at least 22 dB gain margin. The control design provides a 6.5:1 ratio o the separation
between the zero gain crossing frequency and the pole of the first structural mode. Figure
5.2 shows the same design without a structural filter, but with a 2 RTI control transport
delay. The transport delay effect can be seen on the structural modes greater than 0.33 Hz,
to which the phase lag induced by transport delay was added, yielding almost no phase
margin on the second out-of-plane mode. The linear design was then improved with a
phase-lead notch filter, which has a unit gain in the low frequency range and a maximum of
68 deg phase lead at the notch frequency of 1.209 Hz. Figure 5.3 shows that the phase
margin of the second out-of-plane mode was increased up to 36 deg with the phase-lead
notch filter. The notch frequency was carefully selected to ensure that all phase-stabilized
modes will remain in the phase stabilization region in the presence of 100% frequency
increase as shown in Figure 5.4. Although a 100% frequency increase is allowed before
mode 3 loses its phase stabilization characteristics, this mode is also gain stabilized once its
frequency increases from the nominal. Also, the third out-of-plane mode (mode 5) is gain
stabilized with 13 dB margin at its nominal frequency (1.8627 Hz, system mode).
Decreasing the frequency of this mode immediately leads it to the phase stabilization region,
while the gain stabilization characteristics are still retained. This mode reaches adequate
phase margin before the gain stabilization characteristics vanish at more than 50%
frequency drop as shown in Figure 5.5.

The pitch transient during south maneuvers is affected by thrusting disturbance,
primarily induced by both the thruster cant angles and the thrust mismatch. The net pitch
disturbance is estimated to be 0.4 ft-1b, which requires the 8 msec minimum control
pulsewidth to be fired at a rate of 1.667 Hz at which the half sample rate is nearly equal to -
the first torsional mode. The pitch loop has rigid response in south stationkeeping because
the effect of the torsional mode is insignificant about the half sample control rate. The pitch
transient during east/west maneuvers is primarily affected by the S/C CG yaw offset from
the pressure center of the maneuver thrusters. With a 5.9 inches yaw offset, it requires a
1.5 RTI control pulsewidth to be fired every modulation period. The linear frequency
analysis of the spacecraft pitch rate loop in Stationkeeping Mode when the pitch wing
dynamics with SWD are in the "constraint” state is shown in Figure 5.6. The design with
the same phase-lead notch filter as applied to the roll and yaw loops was based on 2 RTIs
control pulsewidth, 2 RTIs control transport delay and 8 RTIs modulation period. The first
torsional mode (mode 4) is both phase and gain stabilized at its nominal frequency with $55
sup o$ phase margin and 20 dB gain margin. Either dropping or increasing the frequency
produces no impact on stability at all.

Figure 5.7 shows the stability of the first in-plane mode (mode 2) at nominal
frequency and with the phase-lead notch filter. It is also phase-stabilized with 46 deg phase
margin. This mode remains in the phase stabilization region even with a 100% frequency

increase while still having 230 phase margin as shown in Figure 5.8.

207



Magnisude, dB

Phase, deg

Magnitude, dB

0 v e S .
] T S SEE——— -
Gain Margin =292 4B @ 8.318 ridhec I S Gaio Margio »19.1 4B @ S48 ndsec |
m.
10F
] SR NUPTURPPIPPRPRRRS S R eI iont Seurts < R BENNE ] sttt bh b [
7 . J_cu..na
'm“SmplimR.n&:' o -
L estimaux 2 7.625 He
30 Drop. cootroller = 7,625 Hz
BoSulazor =7.625 Ha (wa)
w, S T
-S0}
40
100 S Ty T as
Modularicn Period (Tm} = 8 RT1 | Modulacion Period (Tm} 28R —~ ol ]
30t Transpon Deliy = ZRTT’ Transpont Delay = 2 RTI
Control Pulsewidsh = 3 RTL Coool Pulsewidth = 3RTT | i
0} NoNotch Filges - - - - - No Notch Filter
I -
K']S
-100%-
.10+ S e Na.. [N R R Shehits” atb it ta bt b A eyt
............................................. I STl SO N S
= " s Mg <577 deg @ 1946 s B i g e @ 6
" 300 N .
B3 102 10 100 102 10 101
Narmalized Frequency (2w/ws), ws = 7.625 Hz Normalized Frequency (Qw/ws), ws=7.625 Hz
w w v
W - e 4
20+ -
[1] R ket e L L LR ittt - =
-20F 4
0} 4
€0- - 40 1
; % 0 <100 0 100
0 400 -300 200 100 [} 100 500 400 -300
Phase. deg Phase, deg
Figure 5.1 Discrete Bode Plots and Nichols Chart of Figure 5.2  Discrete Bode Plots and Nichols Chart of

Roll Rate Loop in Stationkeeping Mode at 0.5% Structural

Damping, Nominal Frequencies : without Structural
Filter and Zero Control Transport Delay

Roll Rate Loop in Stationkeeping Mode at 0.5% Structural

Damping, Nominal Frequencies :
Filter, but with 2 RTls Control Transport Delay

without Structural

508 ORIGINAL PAGE IS

OF POOR QUALITY



Magnitude, dB

Phasc, deg

Magninude, 4B

- v

S . ‘ | "
Gain Margin =27 25 4B @ 10T x| 3of . Qo Murgn 22042 4B @ 10621300 __
20} -y
-

10 4
lo- B R U RUUUUURUOUN Y 1 SRR |
TR USROS B SEES . .L

M-276
.10+ . ‘ . "
Sampling Rates: Sampling Raies: I
[ i estimator = 1,625 Hz ms;‘:.‘u:lﬁz?m \. -
" coomrolier = 1.628 Hz prop. coatroller = 7.

0} - modular =1.625 B2 (W) .. -  modulaior =7.625 Ha ()

-0
100 N - e ————rry .

Modulatico Period (Tm) 2 SRTL o~~~ N sl Modulasion Period (Tmy = 8RTL N i
008 fraspon Deby = 2RT Transport Delay = 2 RTI
dth

o} ool Pusewidth = 3RTL o .Cont Pulsenid 2 3RTH

.50 -50
-100 g -100
-150+ -uol}-
I i e — ol
-Bor " Bhise Margn =57.08 deg @ 1348 ndisec ’mi * Phase Marpn =57.9 deg @ 2015 radfsec

102 102 10" 100 107 102 10 10°

Normalized Frequency Quwiws), ws = 7625 Hz Narmalized Frequency (RQwrws), ws=7625 Hz
0 0 ~

Magniude, 38

o 1
0o 200 300 200 T 0 100
Phase, deg

Figure 5.3  Discrete Bode Plots and Nichols Chart of
Roll Rate Loop in Stationkeeping Mode at 0.5% Structural

Damping, Nominal Frequencies :

with Phase-Lead

Notch Filter and 2 RTIs Control Transport Delay

Figure 5.4 Discrete Bode Plots and Nichols Chart of
Roll Rate Loop in Stationkeeping Mode at 0.5% Structural

Damping, 100% Frequency Increase : with Phase-Lead
Notch Filter and 2 RTls Control Transport Delay

F09

ORIGINAL PAGE IS
OF POOR QUALITY



Magnude, dB

Phase, deg

Magnitude, dB

-+ — T

Gain Margin =20 14 dB @ 10 72 rad/aec

/
10+ \ /
Sampting Rates: /
) ant. estimaror = 7625 Ha \ 1
. coatroller = 7.628 Hz |
modulator = 7.625 Hz (ws)

Modulanoa Penod (Tm) =8 R]”!'ﬂ
Tnns‘pon De);y =2RTI
Control Pulsewdth = 3 RTI
Notch Filter:

T Phase Marpin =54 06 deg @ 1738 radfsec

102 10 100

Normalized Frequency (Iwiws), wy = 7625 Hez

60} <
R %00 300 o 2100 0 100
Phase. deg

Figure 5.5 Discrete Bode Plots and Nichols Chart of
Roll Rate Loop in Stationkeeping Mode at 0.5% Structural
Damping, 50% Frequency drop :  with Phase-Lead
Notch Filter and 2 RTIs Contrni Transport Delay

dB

T Ty T ~ Ty
Gain Margin =27.16 dB @ 11.54 nd/sec
30+ A e e e e
20+
104
0 ] U o
10
20+
.30}
40
-0 r — ———r . - -
Modularion Period (Tm) = & RTI
Transport Delay = 2 RTY
oop ConodlPubewidma2rm ) ]
MO0F ek Filter:

Phase Margin =55.68 deg @ 4791 rad/sec

10} 102 10~
Normalized Frequency (Qw/ws), ws =7.625 Hz
0 . . —r T T
0 - . , - - !
‘-osm 400 -300 -200 -100 0 100
Phase, dog

Figure 5.6  Discrete Bode Piots and Nichols Chart of
Pitch Rate Loop in Stationkeeping Mode at 0.5% Structural
Damping, Nominal Frequencies : with Phase-Lead
Notch Filter and 2 RTIs Control Transport Delay



Magnirude, dB

L) - —r —~— Ty

o Gain Marga =26.61 4B @ 122 radher

0}

101 -

] L | O L -

10+ .

20" Samphing Raees: ™ 77 T

.30} an. estimasor = 7.625 He e S Y SR N
prop. congroller = 7.625 Hz

-0+ -

-0t - - - ~

0 SN s I

30 — Ty T YT

v T T
o} Transpon Delay = 2RTI. e ..rw.‘.q

Control Pulsewidth = | RTI

-50} - - - - -
-100} - - ~
s
- - +
150 PM = 46° |
=200 - S, -
Pbase Margin =58.43 deg @ 2028 radisec
109 ’ 102 T e BT
Normalized Frequency (2w/ws), ws=7.625 Hz
60 — — ~
R 400 300 " 100 0 100
Phase, deg
Figure 5.7  Discrete Bode Plots and Nichols Chart of

Yaw Rate Loop in Stationkeeping Mode at 0.5% Structural
Damping, Nominal Frequencies : with Phase-Lead
Notch Filter and 2 RTis Control Transport Delay

CRKUNAL PAGE IS
OF PODR QUALITY

Phase, deg

31

T YTy - T

Gain Margin =23.73 @B @ 1217 nd/see |

#Or " an conimatar = 7629 2 ; 7
prop. coatraller = 7.625 Hx '
<o} . S
8 DN
50 REme s m v s Y T
o} Transpon Delay = 2 R11 N ST R
Control Pulsewidth = | RT o
-sob -
-100F
150 s TN )
PM = 23° *\
.................................................................. [ PRI | PP

Phase Margin =58 53 deg @ 2035 rad/sec

10 102 10+ 100
Normalized Frequency (Qw/ws), ws = 7.625 Hz
60 v v -+

J-OS(X) -400 -300 -200 -100 0 100
Phase, deg

Figure 5.8  Discrete Bode Plots and Nichols Chart of
Yaw Rate Loop in Stationkeeping Mode at 0.5% Structural
Damping, 100% Frequency Increase : with Phase-Lead
Notch Filter and 2 RTis Control Transport Delay



6. Dynamic Model Validation and Digital Implementation

The main objective is to consider issues dealing with flexibility in multibody
dynamics. Multubody dynamics is differentiated from structural dynamics by its capability
to undergo arbitrary rigid body motion. Analysis of flexible structures are well established
using finite element method within the context of structural dynamics. In multibody
dynamics context, need for flexibility modelling arose in recent years as exemplified by
large space structures and 3-axes stabilized satellites.

To systematically address the addition of flexible domain, the virtual work principle
is chosen as the basis for derivation. The motivation for this choice is based on intended
discretization using the finite element method. By choosing the same basis for multibody
dynamics and for the finite element method, extensions into nonlinear flexibility is natural
and consistent. Other choices are readily available in the literature [1-3).

Virtual Work Principle

An integral representation of the governing equations of motion of solids are
imbedded in the virtual work principle. By deriving the multibody dynamics equations via
the virtual work principle, a consistent treatment of flexible domain can be made. In
practice, the flexible domain is discretized using the finite element method. The virtual
work principle is the basis for the finite element method. The technology developed in the
finite element method can be integrated into the flexible multibody dynamics efforts.

The virtual work principle states

awm=fak - pR)dV=8Wim=I 8 : o dV

v (6.1)

where

R = maternial particle position vector wrt inertial frame

f = force/unit volume

p = density

V = reference configuration

€ = strain

G = stress

The main advantages offered by applying the virtual work principle are twofold.
First, the integral representation together with the virtual displacements allow domain
decomposition between the rigid and the flexible portions of a vehicle. Second, a
consistent formulation of a flexible multibody vehicle can be derived and assessed.
Consistency refers to final discretization using the finite element method. Once such
consistent derivation is made, extensions to nonlinear flexible models can be made by
adopting techniques developed in the finite element method [14].
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Rigid Body with Attached Flexible Appendage

To further explore the method presented by the virtual work principle, an idealized
flexible spacecraft model is derived. The idealization involve representing the spacecraft as
a rigid body with attached flexible appendage. The flexible appendage is assumed to be
fixed to the rigid body. Articulation is not allowed. Even with this simplifying
assumptions, a wide class of vehicles can be modelled.

Consider the idealization shown in Figure 6.1.

Figure 6.1. Idealized Rigid Body with Flexible Appendage.

The domains, frames, and the position vectors are defined as

Vg = flexible domain
VR = rigid domain
i = inertal frame
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Fb = body frame

R = inertal frame origin to body frame origin

Er = inertial frame origin to rigid body material particle

rR = body frame origin to rigid body material particle

S = body frame origin to rigid body center of mass

EF = inertial frame origin to flexible material particle

re = body frame origin to reference material particle position
N = relative particle displacement

c = body frame origin to vehicle center of mass

Application of the virtual work principle to this vehicle yields

f6aR-(f-p%R)dv+faap'(f-pép)dwf&:odv

Ve (6.2)
with
éR = R+I‘R
gk=f1[u+mxu+ﬁzxm+ o x(wxrg)] = Fs ar
8g = Fr [55 +30 x IR]
and

Sr=R+rp+m
Er=Fp[i+oxu+@x(r+ n)+20x0 + ox(@x (r+ 1))+1] =Fyar

SEf = Fy [0x +88 x (1r + 1) + 81

where
u = velocity of body frame wrt inertial frame
@ = angular rate of body frame wrt inertial frame
dx = virtual displacement of the body frame
860 = virtual rotation of the body frame
dn = vinual relative displacement

The components, underlined, are defined with respect to the first occurrence of the frame

definition. For example, in above definition, the components u and @ are defined in the
body frame. For further discussion on this notation is clearly covered in [1]. Note that the
virtual quantities are obtained through infinitesimal variation of the current equilibriated
state. Substituting the above quantities into Equation (6.1), following three sets of
equations, with respect to the body frame, can be derived.
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F=mi+m@xXu+m@x¢ +mgg><(mxg) +2 @ X +

filpdv Ihpdv)

(6.3)

T=mg¢xu+m gx(@xu)+lg§+ oxlo

+2j (rF + n)x(ggxﬁ)pdv + f (rr+ n)x npdV
VE

A (6.4)
f 80 pdv
VE

) +([ 811TpdV
VF
T - T
[Bn @x(r+1)pdV fﬁn oxlox(rr+n)) pdv
vF v

wXxu

J 50 frdV =

+ +

+2 f sn' (@xn)pdv] + U sn' 1§ pdv]| + f 8¢ : 6dV
VF VF A4 (65)
with
F=F, + I frdVv
VF
I=Ib+f(&+n)X&dV
VE

where

Fp = force applied to the rigid body at body frame origin

Tp = torque applied to the rigid body about body frame origin

I = instantaneous vehicle inertia matrix wrt body frame ongin

Often in practice, the integral representation in Equations (6.3) - (6.5) is skipped by
assuming the lumped mass idealization. However, the discretization of the flexible domain
into finite element idealization stem from these equations. The lumped mass idealization is
an extreme case. Such inconsistent assumption with finite element method may produce
inaccurate results for crude finite element mesh. More systematic study should be made to
assgss the consequence of such assumption.

As closure, the lumped mass idealization will be made to produce a set of equations
that may be compared to previous derivation [4]. The lumped mass idealization takes the
volume integral and cast it into a sum spanning the total number of nodes in a finite element
mesh. For an arbitrary function, this idealization can be expressed as
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fCn, 8, 0)pdvV =Y f(a g &)m,
VF i
where

finite element nodal displacement vector
corresponding lumped mass

Qi
my

Adopting this idealization, Equations (6.3) - (6.5) can be reduced to

F=mi+me@xu+maxc +m wx(@xc +2) m@xg + Y mi

i i (6.6)
T=mcxi+m gx(@xg)+I§Q+ axlg
+23 m (5+ g;) X (wxg) +> m (5+ @) X G
: i (6.7)
f=mu+maexu+max(n+ g) +m oxlex(n+ g)
+2mig)><gi +mjgi + ZKUQJ
j (6.8)
where
m = total vehicle mass
Kij = assembled stiffness matrix

By interpreting the stiffness matrix as the tangent stiffness matrix, the equations are valid
for nonlinear flexible systems. Since modal reduction generally is not possible for
nonlinear flexible systems, the finite element nodal degrees of freedom must be used to
represent flexible degrees of freedom. For linear flexible system, an indepth coverage of
an alternate derivation of Equations (6.6) - (6.8) is provided in {4].

Extending Symbolic Rigid Body Code to include Flexibility

In the recent years symbolic manipulation software capable of generating rigid body
code became available. Some example of such codes are SD/FAST (Symbolic Dynamics,
Inc.) [6], AUTOLEV (OnLine Dynamics, Inc.) [8], and AUTOSIM (Univ. of Michigan)
[9]. For rigid vehicles, these tools can dramatically reduce the time spent on deriving and
implementing the equations of motion.

By combining the codes generated by the symbolic manipulation software with
reduced set of "hand" derived equations addressing the flexible domain, the capability of
these codes can be extended to flexible vehicles. A systematic method for such an
extension is provided for a satellite class of flexible vehicles. This method will be
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illustrated with previously derived equations of motion for a rigid body with flexible
appendages.

For a rigid body with flexible appendages, the resulting equations can be partitioned

into
{A B] {in _ { Rg + Rpe ;
BT 1 J \UF Rr (6.9)
where
ur = rigid degrees of freedom
ug = modal amplitude degrees of freedom
and

B =[P Q]
Note that the P and Q submatrices are defined in the previous section. In Equation (6.9), a

modal reduction has been assumed. The portion of the partitioned equation generated by a
symbolic manipulation software is

(A] {iir) = (R} (6.10)
This portion is obtained by supplying the symbolic manipulation software information on
the current configuration. In another words, the total vehicle is assumed to be rigid. The

requirement of current configuration entails configuration update at each integration step.
The current configuration is the reference configuration.

The solution process follows by forming

ig) = (Re) - [BT] {iir} 6.11)

and substituting into the rigid partition to yield
[A -BBT] (iir) = {Rr +RgF} - [B] (Re) (6.12)

In terms of actual equations of motion, by observing the structure of Equations (6.4) -
(6.6), the necessary additional partitions can be generated by discretization and modal
reduction of the terms
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I U dev) ‘ I 2@x[ﬁpdv l
VP _ VF N {RRF}
‘ U (rr+ n) x fpdV \(ZI (e + M) x{@xn)pav f
v v (6.14)

The flexible partition can be generated by Equation (6.5).

Methodology presented above produces an "exact” set of equations. Standard
assumptions such as constant vehicle center of mass and inertia together with small relative
flexible displacements can be made as deemed plausible to reduce computational effort.

Rigid Body with Articulated Flexible Appendages

With assumption that an symbolic manipulation software will be used to generate
the rigid partition of the equation of motion, only the required matrices for the articulated
flexible domain will be documented. The idealized articulated flexible appendage is shown
in Figure 6.2.
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Figure 6.2. Idealized Articulated Flexible Appendage.

The quantities are defined as

VE
T

flexible domain
inerdal frame
body frame

appendage frame imbedded in the yoke body
inertial frame origin to body frame origin

body frame origin to appendage frame origin

inertial frame origin to flexible material particle
appendage frame origin to reference material particle position

relative particle displacement
body frame origin to vehicle center of mass
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In generating the rigid partition using a symbolic manipulation software, consider
the yoke body and the flexible domain as a single rigid body defined in the current
configuration.

Application of the virtual work principle to the flexible appendage yields

f 85;-(f-pép)dv= f d:0dV
ve vr (6.15)

with

EF=R+A+rp+n =F R +Fy A+ Fy (rp+ 1)

Er=Fs [+ @ xu+@xA+ o x(axal]

+ Fil@oc(r+ )+ 20xq + @oxfaox (et 1))+ il] =Fra = Fra

8&;=f{[8§+6ﬁbxé] + I-'I[Sﬂkx(gp+ n)+811}

where
= velocity of body frame wrt inertial frame

= angular rate of body frame wrt inertial frame

= angular rate of appendage frame wrt inertial frame
= virtual displacement of the body frame

virtual rotation of the body frame

virtual rotation of the appendage frame

SEEREE"

= virtual relative displacement

The appendage angular rate can be decomposed into

T T T
o = Frox= op+ opx = Fp p + Fi ik (6.16)
Similarly,
86« = Fi 08 = Fp 80, + Fy 504 (6.17)
where
Wbk = relative angular rate of appendage frame wrt body frame
d0pk = relative virtual rotation of the appendage frame wrt body frame
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The frames are transformed with
Fp = Cu Fi

Corresponding to Equation (6.9), the rigid degrees of freedom define

N

|

Substitution into Equation (6.15) yields following relations.

f CoxnpdVv

f [AX(Coxl) + Cox ((rp+ n)x )] pav

{ir} =

U (zr+ 1)x DpdV

f Cu fr dV)
VF

f (A+Cbk(IF+ Il)) X (Cbk fp)dV

U (rr+ M) xfpdV¥
VF

ZI Cox (ax x 1) pav
VF

(Zf ((LF+11)><(&(><ﬁ))PdV)
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The equations for the flexible domain results in

j &0 frdV = J sn' a pdv + f 8¢ : G dV
v v ve (6.22)

Equations (6.20) - (6.22) yield necessary equations to generate the full equations of motion
for a vehicle with articulated flexible appendage. All terms are retained. Vehicle specific
truncation of nonlinear terms should be made to these equations. Detailed derivation using
an alternate approach of a vehicle with articulated flexible appendage is provided in [5].

Validation

To validate the concept of mating flexible domain equations with code generated
using a symbolic manipulation software, the HS-601 satellite [5] is chosen for
implementation. AUTOLEYV software generated the rigid body portion of the code. Rest
of the code that deals with flexible domain has to be coded by the user.

The specific example applies 40 ft-1bs of torque about the roll-axis for .1 sec. The
magnitude of the torque characterizes the authority of the reaction control thrusters. The
angular positions and rates are shown in Figures 6.3 - 6.4. The results are identical to the
previous simulation that was implemented using the derivation described in [5]. Note that
the response shown characterizes an actual vehicle. The effects of the flexibility are
pronounced. In the rate plots, the magnitude of the rates peak at about 4 times the rate
expected for a rigid vehicle with same applied torque.

The use of a symbolic manipulation software with flexible domain equations offers

large time saving in terms of both derivation and implementation. In this context, this
approach is practical as an engineering tool.
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Figure 6.3. Angular Position (deg).
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Figure 6.4. Angular Rate (deg/sec).
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7. Simulation Performance

Digital simulations employing the hybrid dynamic model with the complete,
nonlinear body-stabilized dynamics have been performed to demonstrate the stationkeeping
control performance. Key simulation parameters which were added to produce worst case
transient errors are: (1) 1.0 inches spacecraft CG offset from the pressure center of the
south maneuver thrusters along the z-axis, (2) 5 1bf thrusters with 5% thrust mismatch
producing the worst case acceleration disturbance, (3) 1.0 deg thruster misalignment in the
direction adding disturbance, (4) flexible north and south wings at 0 deg wing angle, (5) 2
RTI control transport delay, (6) solar wing drive with £0.25 deg deadband, (7) thruster
EPW (Electrical Impulse Width) error model, which computes the thruster impulse on time
delay as a function of time since last pulse. To accommodate the control loss due to EPW
error, a fixed 4 msec thruster delay compensation was added to the command pulsewidth,
(8) 8 msec pulsing constraint, (9) momentum wheel spinning at 45 ft-1b-sec throughout
maneuver, (10) 0.035 deg sample to sample three sigma earth sensor noise, and (11) gyro

sensor noises: rate random walk at PSD = (10-7 d/s? )2/Hz, angle random walk at PSD =
(10-4 d/s2 )2/Hz, angle noise at PSD = (1.3 x 10-3 d/s2 )2/Hz and quantization of 0.3
arcsec.

With nominal structural mode frequencies and 0.5% structural damping, Figure 7.1
shows the Stationkeeping Mode control performance from a 100-sec south maneuver. The
spacecraft angular position and rate along with their estimates about each control axis are
plotted. It also shows the acceleration bias estimate and the control acceleration command
about each axis. The acceleration bias estimates in this run were initialized to zero. The
roll transient, which was induced primarily by the spacecraft yaw CG offset and the thrust
mismatch, reaches 0.09 deg, while the yaw transient was primarily due to the thrust
mismatch and was about 0.045 deg. The pitch transient induced by the combined effect of
canted and thrust mismatch is 0.01 deg. In the steady state, a limit cycle about the pitch
axis resulted from the 8 msec thrusting constraint. The acceleration bias estimation
converges within 5 sec, showing a smooth bias estimate in the steady state. Transient
errors can be improved with an initialization of the acceleration bias estimates to their steady
state values. Figure 7.2 shows the performance with both the roll and yaw acceleration
bias estimates initialized to 4.5% off their steady state values. Due to an over estimate of
the thrusting bias by 4.5%, the roll and yaw attitude were over controlled, yielding
transients up to 0.06 deg and 0.042 deg, respectively, in the direction opposite to Figure
7.1. Ideally, a perfect initialization would result in an significant reduction to the roll and
yaw transients.

Effects of structural mode uncentainty and damping were also investigated through
simulations. Figure 7.3 shows the performance with a 100% frequency increase to each
mode, and Figure 7.4 a 50% frequency drop. In both cases, a 0.25% structural damping

was assumed. A 50% ( A ) frequency error is equivalent to a 75% [= 1-(1- A )2] change to
stiffness of the flexible wings. It is not expected that the structural modes at the on orbit
deployed condition would exceed more than 20% from the nominals. Likewise, the
structural damping nominally exceeds 0.5%. The modal errors given above are to
demonstrate the robustness of the control system. The simulation results show that
variations in modal parameters have no major effects on the modal stability nor degrade the
pointing performance.
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8. Concluding Remarks

The design and analysis of a stationkeeping control system for a body-stabilized
spacecraft having flexible solar wings of 3 solar panels per wing were presented. The use
of the hybrid coordinate modeling approach along with frequency domain analysis
technique accurately modeled the rigid-flex coupling behavior. The design philosophy to
stabilize the structural modes and to smooth the flexure was discussed. The control system
was designed to gain and/or phase-stabilize the structural modes. The lead inherent rate
gyro references, the structural filters and the time-varying bias estimation gains were key
factors to achieve a successful design. Control performance of Stationkeeping/Transition
Modes during a south maneuver under the worst case simulation environment was
demonstrated through digital simulation. The accuracy of the analytical model for structural
mode/control loop interaction is best verified with the test data obtained from
comprehensive ground testing. The control system as presented allows for a high degree
of uncertainty on mode shape and frequency.

An alternate, indirect implementation of flexible vehicle dynamics has been
presented. The effort required to derive and to implement the equations of motion can be
significantly reduced. A formulation through the virtual work principle allowed consistent
derivation and discretization of the flexible domain within the context of the finite element
method. Extensions into nonlinear flexible models can be made.

Acknowledgement - A portion of this work supported by the C. S. Draper Laboratory
Internal Research & Development is gratefully acknowledged.
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An open loop optimal control algorithm is developed for
general flexible structures, based on Laplace transform
methods. A distributed parameter model of the structure is [irst
presented, [ollowed by a derivation of the optimal control
algorithm. The control inputs are expressed in terms of their
Fourier series expansions, so that a numerical solution can be
casily obtained. The algorithm deals directly with the
transcendental transfer functions from control inputs to outpuls
of interest, and structural deformation penaltics, as well as
penalties on control effort, arc included in the formulation. The
algorithm is applicd 10 several structures of increasing
complexity to demonstrate its generality.

L INTRODUCTION

The control of large flexible structures has become an
important issue in recent years, primarily in the acrospace
industry.! As larger structures continuc to be deployed in
space, the effects of control-structure interaction are becoming
increasingly important. For example, stringent pointing
requircments for space-bascd antennae make it nccessary 1o
isolate and suppress unwanted structural vibration causcd by
both slewing mancuvers and exogenous disturbances.
Consequently, it becomes necessary to model structural
flexibility when developing control laws for these types of
structures.

Because disturbances and control forces generally act at
discrete points on the structure, structural responses tend to
exhibit wave propagation characteristics. Traditional finite
clement codes are unable to capture the high frequency behavior
of such structures, due primarily to the spatial discretization
associated with lumped parameter models. This limitation
makes it particularly difficult to study the propagation of
flexural waves within structurcs, since an cxtremely fine
discretization is required to preserve the local wave-like
characteristics of the disturbances. To overcome this problem,
this paper develops a distributed parameter, system-based
model, which deals directly with the governing partial
differential equations that describe the structure.

Given the continuum model of a flexiblc structure, there
remains the issue of identifying control methodologies that take
advantage of the additional high frequency information
available thercin. Tzafestas? develops a distributed parameter
analoguc of the linear quadratic regulator theory. A distributed
parameter Riccati equation, expressed in terms of spatial
differcatial operators, is prescnted. Miller, Hall, and von
Flotow3 develop optimal control laws for power flow at
structural junctions based on a travelling wave approach. The
effect of the localized controller is to modify the wave scattering
matrix at the junction in a way that minimizes the power
flowing from the junction. MacMartin and Hall* consider

*Member, AIAA
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optimal coutrol of power flow in uncertain structures based on
an H__ cost criterion. Closed-loop stability is guaranteed by
minimizing the maximum power imparted to the suucture over
all frequencies. The optimal distributed control of a rigid
spacecraft with flexible appendages is discussed by
Breakwell.3

Skaar® presents closed-form open loop optimal control
solutions for a simple structure. The cost function considered
has the form:

i

J J { kju(()2+ kzil(l)Z}m

0]
{

where u represents the control input, and ky and kp are
constants. Terminal and integrated penalties on the structural
defoimalions are not permitted. Rather, the terniinal constraints
are adjoined to the cost function with Lagrange multiplicrs.

The exclusion of deformational penallies makes it possible to
derive analytical solutions for certain types of mancuvers.
Otherwise, the optimal control solution can, in general, only be
obtained by numerical methods.

Analytical results are available for only the simplest of
distributed parameter models, containing very few flexible
clements. More often, a complex structure, such as a truss
beam, is replaced by a single equivalent member in the
continuum model. Such an approximation is usually accurate at
low frequencies only. For general structures, the structural
responscs must be calculated numerically. The convolution
integral representation technique developed by Skaar is
generalized in this paper to handle arbitrary structural
configurations.

A review of the continuum modeling approach is
presented in section 2. The optimal control formulation is
developed in section 3. Several examples of this method,
applied to structures of increasing complexity, are then
presented in section 4. Conclusions and recommendations can
be found in scction 5.

~

ling of il 1

Traditional approaches for modcling comiplex structures
have relicd on finite clement modeling techniques. This
approach idealizes a structure as an assembly of many small
pieces which are constrained to move together in a manncr
consistent with the internal clastic behavior of the underlying
continuum model. These techniques are powerful and widely
used. Towever, they suffer from various modeling
idealizations which limit the accuracy of behavior predictions,

particularly for high frequency.

In order to better model the high frequency behavior of



clastic frame-like structurcs, a continuum approach is presented
in this paper which overcomes the conventional limitations of
traditional finite element modeling techniques. The continuum
method (also known as the exact finite element, distributed
parametcr, or dynamic stiffness method), deals directly with the
governing partial differential equations for the individual elastic
clements to eliminate the explicit time dependence in the
equations of motion. The Laplace transform is employed to
convert the governing partial differential equations into ordinary
differential cquations in the spatial dimension. For commnion
element models (c.g., rods in torsion, Bernoulli-Euler beams in
bending), simple analytical solutions to these equations exist.
The resulting solutions arc explicit functions of the generally
complex frequency parameter, s, which has been introduced
through the application of the Laplace transform technigue.

As an example, consider the case of arod in torsion,
shown in Fig. 1. The governing partial differential equation is

GIB (0 + mr20(x.0) = T(x.0) @

where 0 is the cross sectional angle of twist, GJ is the torsional
rigidity, m is the mass per unit length, r is the cross sectional
radius of gyration, ( )'=d( }/dx, ()=d( )/dt, and T is the
distributed torque. Applying the Laplace transform, we obtain

" 2¢2
0"(x,s) + mfa‘—e(x,s) =0 3)

where initial conditions and distributed forcing along the
clement have been temporarily neglected. The general solution
follows as:

8(x,5) = A(s) cos Px + B(s) sin Bx, P2 = -%}2 2 @)

where the functions A(s) and B(s) depend on the constraints
imposed at the boundaries of the element. To simplify the
mathematical developments, a structural state vector is defined
for the elastic element as follows:

_ 1 0(x,8)
¥xs) = [m,s)] )

where T represents the net torque resultant along the rod. With
knowledge of the state at one boundary of the element, it is then
possible to determine the state at any internal location. A
frequency-dependant spatial transition matrix is used to
propagate the system state to arbitrary element locations. Its
transcendental elements can be thought of as spatially varying
transfer functions. For this example, the transition matrix can
be shown to be

cos Px -Lsin Bx

B(x,s) = Gp @)
- GIBsinPx cos x
and
Distributed
Torque

/ GJ,m,r constant

T0.5) @jﬁﬁéﬁﬁ:} T0.s)
B i -

Fig. 1: Examplc of a distributcd paramcicr clement: a rod in torsion.

¥(x,8) = ®(x,5) y(0,5) )]

Alternatively, when the displacements at the boundarics are
known, they can be related to the forces. This is accomplished
by a dynamic stiffness matrix. Its name derives from the
stiffness matrix associated with the traditional finite element
method. For the rod in torsion, this matrix is given by

_ G | cosPl -1
K(s) = sin[}l[ 1 cosBJ 8)

where 1 is the length of the rod.

In addition to torsional rods, the formulation also
handles Euler beams in bending in two directions and axial
rods. Timoshenko beams can also be included as continuum
clements.,

Because the continuum method treats each clastic
member as a single clement, no spatial discretization is
required. This is in marked contrast with traditional finite
clement mcthods, where each element must be lumped into
several segments. As a result, the continuum model is valid at
all frequencies, insofar as the partial differential equation
represents the actual physical structure. In contrast, the spatial
discretization associated with the finite element approach creates
a computational burden for even the simplest of structurcs (cach
flexible element is typically broken down into more than ten
segments). This significant reduction in the number of discrete
modeling clements required makes the continuum method more
attractive from a computational point of view.

Another advantage to the frequency domain modeling
approach is the 