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Foreword

The practice of modeling and controlling flexible aerospace systems
grows in importance as the performance needed of active control
systems increases. As the size of spacecraft increases and the

demands of control systems become more exacting, the accuracy
required of the models used for analysis also increases.

The increased complexity, the increased model accuracy, and the
demands for more precise and higher control system performance

result in an increased burden on the part of the analyst. Although this
burden is somewhat alleviated by advances in software, there remains

the pressure for assuring system stability and performance under
conditions of plant uncertainty. Although robust considerations are
included in many synthesis techniques, the price in terms of reduced
system performance is often prohibitive.

Because similar difficulties and concerns are encountered for different

applications, it is valuable to enhance the exchange of information with
regard to aircraft, spacecraft and robotic applications. This is the
fourth workshop in a series which has emphasized the computational
aspects of controlling flexible aerospace systems. It is hoped that the

reports contained in this proceedings will be useful to practicioners of
modeling and controlling flexible systems.

Lawrence W. Taylor, Jr.

NASA Langley Research Center
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SPILLOVER, NONLINEARITY, & FLEXIBLE STRUCTURES _"/_,!

Robert W. Bass Dean Zes

Rockwell International Science Center, McDonnell Douglas Helicopter Co.

P.O. Box 1085, Thousand Oaks, CA 91358 5000 McDowell Road, Mesa, flZ 85205

ABSTR_C_

Many systems whose evolution in time is governed by Partial Differential

Equations (PDEs) are linearized around a known equilibrium before Computer Aided

Control Engineering (CACE) is considered. In this case there are infinitely many

independent vibrational modes, and it is intuitively evident on physical grounds that

infinitely many actuators would be needed in order to control all modes.

A more precise, general formulation of this grave difficulty (the "spillover"

problem) is due to A.V. Balakrishnan [Applied Functional Analysis, Springer, 1981, p.

233]. Let the system's state vector x be an element of a separable Hilbert space _{

whose dimension is not finite; let A be a closed linear operator with domain dense in

which is the infinitesimal generator of a strongly continuous semi-group of

transition operators T(t) for non-negative times t; and let B denote a bounded linear

operator acting on another separable Hilbert space %/ (the control space) with range in

R. Now consider the control problem dx/dt = Ax + Bu, with x(O) given. Then according

to Balakrishnan this system is not exactly controllable if B is compact.

A possible route to circumvention of this difficulty lies in leaving the PDE in

its original nonlinear form, and adding the essentially finite-dimensional control

action Bu prior to linearization. In many cases it can be shown that the nonlinearity

couples the system's modes in such a manner that only a finite-dimensional subset of

the modes is functionally independent, with the remaining higher-order modes

nonlinearly dependent upon them. Hence control of all modes can be achieved by

controlling only finitely many modes.

One possibly applicable technique is the Liapunov-Schmidt rigorous reduction of

singular infinite-dimensional implicit function problems to finite-dimensional

implicit function problems. Such a procedure was employed by Leon Lichtenstein in the

1930's to prove the existence of a solution of the Navier-Stokes equations for a

sufficiently small time-interval 0 -< t < e.

Omitting details of Banach-space rigor, the formalities of this approach are as

follows. Let _ be a Fredholm operator with pseudo-inverse _; then there exist

idempotent projection operators 5D = Y - _2, Q = Y - 21( whose ranges are

finite-dimensional and such that a NASC for (.) 2x - _(x) = 0 is that (**) x = :Px +

_(_(x) & Q?(x) = 0. Thus one may set x = u + v where v satisfies the auxiliary equation

v = E?(u + v) and u the bifurcation equations [Verzweigungsgleichungen] Q?(u + v) = 0.

Typically one may solve the auxiliary equation by (contraction) iterations to find v =

_(u) where now v is infinite-dimensional but u is finite-dimensional and then insert

the result into the (finitely many) bifurcation equations to define a

finite-dimensional vector function f(u) = Q_(u + _(u)) such that (*) is equivalent to

f(u) = O. In summary, a NASC for (*) is

(***) x = u + _(u), _£u = O, P_(u) = O, :Pu = u, f(u) = O.

As an illustration the auxiliary equation and bifurcation equations for the

problem of deflection of an in tension (a > 0) EXTENSIBLE beam (a > O) is considered,
0 i

including viscous damping (a > 0) and Balakrtshnan-Taylor damping (a > 0). Here
3 4

+ a "u = a u + a + a • )Z'dx + a4 _-o x xt xxUtt 2 xxxx 3 xxt 0 I --0

¥ t >-- 0, 0 --< X --< L. As the dimension N of the bifurcation equations increases, the

result approaches an N-dimensional truncated eigenexpanston (provided that the initial

deflections and their initial spatial and temporal rates of change are not too large).



Preface

The basic idea behind the present paper is simply:

S_GEST UO_I JDon't linearize a PDE until after its reduction to a finite-dimensional ODE.

This idea can be implemented by means of the following analytical procedure:

L0_PU_©V-SC_DT BIFURCATION EQUATIONS:

A rigorous reduction of a singular infinite-dimensional implicit equationto
the problem of an equivalent, merely f_nite-dimensional implicit equation.

This suggestion is presented as a possible technique for circumvention of the
famous "Spillover Problem."

Introduction

If the problem of control of a flexible structure is linearized before one
considers the control aspects, then frequently it leads to an abstract problem in
functional analysis of the type of the following system of ordinary differential

equations:

dx 0
Y: dt - Ax + Bu, x(0) = x. (1)

Here x e is an element of an infinite-dimensional state space taken to be a
separable Hilbert space. Also u • 72 is an element of the control space, taken to be

jr00another separable Hilbert space. We take A: _D 9 to denote a closed linear mapping

of the dense linear-subspace domain /) into H _ = _ which is the infinitesimal generator

of a strongly continuous semi-group of transition operators T(t) for t -> O. Finally we

H _require that B: ?2 -_ be a bounded linear operator.

The celebrated "Spillover Problem" now has an exact formulation by means of:

THEOREM. (Balakrishnan, [5], p. 233.) If B is compact, then Y is NOT exactly

controllable.

A compact operator is one which can be approximated arbitrarily closely by an
operator whose range is finite-dimensional. Therefore the practical import of the

preceding theorem can be phrased as: tf a linear system has infinitely many
independent modes of motion, it cannot be controlled completely with a finite-
dimensional actuator suite.

This suggests that complete control of a flexible structure by a finite actuator

suite is foredoomed to impossibility. However, there may be a way to circumvent this

difficulty. Note that the preceding theorem has been proved only in the case that the
dynamical system _' is linear. The purpose of the present paper is to demonstrate that
for many flexible structure problems, such nonlinear mechanisms as Balakrishnan-Taylor
damping will couple the higher order modes of motion to the lower order modes in such

a way that only a finite number of the lower order modes is functionally independent.
This suggests that a finite actuator suite could control such a system. However, we
defer consideration of the control problem and deal here only with the free motion of

an uncontrolled, but intrinsically nonlinear system. Our purpose is to stimulate
further research into this approach rather than to present a finished theory.



Liapunov-Schmidt Bifurcation Theory

For the reader's convenience we recall the salient features of this theory from a

purely formal point of view. The details of Banach space rigor can be found in pages
173-177 of Deimling [2] and other texts on nonlinear functional analysis [3], [4].

Let £ denote a Fredholm operator, which may be singular, i.e. there may exist
elements u _ 0 such that ,_u = 0. Let _ denote a pseudo-inverse of _, i.e. a linear

operator such that

/(£X -- /_ ,

Now define projection operators

90 = t - _,

_/(_ = _. (2)

Q = _ - _X; (3)

it is readily verified that 9D2 = 9o, Q2 = Q, i.e. these operators are idempotent,

which justifies referring to them as projection operators. Note that _P is a right zero
of £, and Q is a left zero of £.

Let _ = _(.} denote a nonlinear operator.

equivalence of the implicit equation problem

(*) ._x = _Oc), ._P = O, Q._ = O,

and the problem
(*-) x = 9Px + :K_{x), Q_(x) = O.

Now define u = 5Px and verify that _Pu = u; then we can replace (**) by

(definition) X = U + V,

{AUXILIARY EQUATION} v = :K_{u + v),

{BIFURCATION EQUATION) Q_{u + v} = 0.

Another name for the Bifurcation Equations is Branching Equations.

Suppose that the right-hand side of (7), regarded as a function of v, has a
global Lipschitz constant less than unity. Then by the well-known principle of

geometric convergence of Contraction Mappings we may, for each fixed u, define a
nonlinear mapping v = _{u} as

k k+l yk}, 0v = lira v , v = /(5_{u + v = 0, ( k = O, 1, 2, 3, .." ). (9)
k-_ca

Here _ is the resolvent of the auxiliary equation in the sense that

- /(_(u + _}. (10)

Hence we may eliminate the auxiliary equation and replace v in the bifurcation
equation by _ to obtain a new finite-dimensional equation

f(u) =- Q_{u + _{u}) = O, (11)

which is equivalent to the original infinite-dimensional implicit equation. Thus

(*) ¢=_ (**) _=_ (***) x = u + 5"{u}, ,_u = 0, _P_{u} = O, _Pu = u, f(u) = 0. (12)

If the original functional equation was analytic, then the final
finite-dimensional equation f(u) -- 0 will also be analytic.

If _ was non-singular, then 1( = _-1, whence P = O, Q -- O, u = O, the bifurcation

equation does not arise, and the resolvability of the auxiliary equation is equivalent
to the resolvability of the original equation:

_x = _Oc} ¢=_ x = _-t_{x} = _{O}. (13}

Finally, if _ was singular, then the linear part F = :x(0) = (Sfl/Sx 1) of f(x} is

necessarily also singular. Typically then the solutions of f(x} = 0 will not be unique

and one studies the branching of these solutions by such methods as Newton's polygon.

Then it is easy to verify the

(4)

(S)

(6)

(7)

(8)



Deflection of an Extensible, Nonlinearly Damped Beam

Let u denote the normal deflection from equilibrium. Then the vibrations of the
beam can be described by u = u(t,x), 0 -_ x -_ L, 0 -_ t < +0% which satisfies the PDE

p.u + EI.u = C.u + [ H + EAc Itt xxxx xxt T" _ + F" _ Uxx, (14a)

--= (1/2} " J_o(Ux)2 " dx,
(14b)

where

[_0 ] 2(n+B)+l_ (uxut).dx j ,
{ 0 _ [3 < 1/2 ),

t_ - [0,+_)- (z [ O-_z < +_},
÷

x _ J --[O,l] - { ( ] 0 -<( -<I },

p = density,

E = Young's modulus of elasticity,

l = cross-sectional moment of inertia,

C = coefficient of viscous damping,

H = axial force (tension or compression)

Ae = cross-sectional area,

L = length,
F = Balakrishnan-Taylor damping coefficient.

Now define the constants

a = H/p, a = EAc/(2pL), a = El�p,
0 1 2

Then the PDE (14) can be expressed as

( n = O, 1, 2, 3, -'' ), (14c)

a = C/p, a = F/p (15)
3 4

• (u u ).dx .u .
U + a -u = a -u + + a • ) + a4 x xt xx

tt 2 xxxx 3 xxt i - 0

(16)

Boundary Conditions

As usual, we require that

u(t,O) = O, u(t,L) = O, (17a)

u {t,O) = O, u (t,L) = O. (17b)
XX XX

Initial Conditions

Let @ and @ be functions of x defined on J with the following smoothness requirements.
The function _ should be continuously once differentiable on J and its second

derivative _" should exist almost everywhere on J and be [Lebesgue] square-integrable
on J. The function _ should be continuous on J, which of course implies that it is

[Riemann] square-integrable on J. These smoothness requirements may be summarized as:

_ ctl)(J), _" _ Lz(J), (17c)

_0_ C(°)(J), _ _0 _ /2(J), (17d)



Now _b and _0 are used to define the initial conditions on u as follows:

u(O,x) =- ¢(x), u (O,x) = ¢,(x),
t

¢(0) = ¢(L) = O, ¢j(O) = #j(L) = O.

(17e)

(17f)

Normalized Constants

For future convenience, we define

b o = (_/L) 2.a o, bI = (g/L)4.(L/2).al, b 2 = (g/L)4.a2, (lSa)

b3 = (lrf/L)2"a3 ' b4 = (_/L)4[l+n+8]'(L/2)2(n+Bl+l'a "4. (18b)

Function Space Coordinatization

Define the complete orthonormal set {e k) on L2(J) by

e = e (_c) - s_n(kn[_c/L]), ( k = 1, 2, 3, ... ). (19)
k k

Assumptions (17c,d) imply that there exist (as 1.i.m.) sequences (ak}, {/3k) such that

= _(X)_ _ _k-ek(x)_ _ k4"_2 <+m'k

k=l k=l

2

= _(x) = [_k'% (_)' [ _k < +_"
k=l k=l

(20a)

(20b)

Now we can seek to find a sequence of time-varying functions {uk(t)} such that

co

u(t,x) = _. Uk(t)'ek(x), (21)
k=l

where, by (17f), the initial values and initial rates of the {Uk(t)} must satisfy

uk(0) = _k' Uk(0) = /3k, ( k = 1, 2, 3, ''- ). (22)

Infinite System of ODEs

Insert the series expansion (21) into the PDE (16} and use the orthonormality

property of the complete basis {e } to derive an equivalent infinite system of ODEs:
k

°',
tt + b k2"_ + (b + b _ + b _ + b /<2)'.k2"u = O, { k = 1, 2, 3, ''" ), {23a)

k 3 k 0 1 4 2 k

0o

_. .2 2 (23b}-= 3 "uj ,
j=l

oo 2(n+B)+l

[z ](_ = J "u J'u (23c1
J=l J '

where the solutions of (23) are required to satisfy the initial conditions (22). As an
alternative to (23a), in which the linear and nonlinear terms are displayed
separately, we may write

,',
12 + b k 2.t_ + (b + b k 2) k 2 "k 2• "u = -_ "U, ( k = 1, 2, 3, "'" ), (23d)

k 3 k 0 2 k k

5



,2 2 .2- bl _ + b_ _) --- b 1" d "uj + b4" 3 "ul'u I •
j =i J =i

(23e)

Energy Integral

Multiply each equation of (23a) by 2u and sum over all k, using the identities
k

2u "u -= (u_)" and 2u "u -= (u2)" to obtaink k k k k '

t_2 + b • k 2.u 2 + b • "u + (b/2) +
k 0 k 2 k 1 k

k=l k=l k=l k-

0 k 0 k=l

(24a)

=_

E _ constant
o

[ 2 _ +bk2) k2 2 + (b/Z) k2J
_k + (bo 2 "ek 1 Lk_l kk=l k=1

(24b)

(24c)

L2 [ bo-_2 rL(La ¢')z b 2 arL( 0'')2 (bl/2)" [L2__ I ]z= JLl//20dx + J0 dx + 2---£--|o dx + (_b') 2 dx - (24d)

2

_- + +b + ] ,
where in the last expression we have used an obvious notation for the mean-square

values of $, ¢', and ¢" on d = [O,L].

A key technique in what follows is the use of (24) to obtain a priori bounds on

the solutions of (23).

Vector Notation

For convenience we shall denote the infinite column whose rows are ku by x, and
k

we shall partition x into a finite-dimensional component u and an infinite-dimensional

component v as follows:

x = - ( ku ), u • v • IR , (25a)
v k

Uk = kUk, Vk = kVk, ( Vk -- Uk ' k z N ). (25b)

A Priori Bounds

Obviously

00

llxll 2 -- llull z + llvll 2 -= _k 2"u: ,
k=l

while from (24a) it is easy to infer that

(b + b }-IlxU z + (b/Zl'llxU 4 <- E ,
0 2 1 0

which implies that

(26)

(27}

6



(N+I) z. IIvll z

and

IIxII -_ R, (28)

where (choosing the numerically stable quadratic root formula)

b2)2 -< b .)1/2R - (2EO/{(b ° + b 2) + [(b ° + + 2bl ¢011/2})1/2 (¢o/[bo + 21 . (29)

Similarly,

gO gO gO O0

(N+I)2 _" Jr2" v_ <k -- _ j{4 2. Vk ----- _ k4"UZk - _ jr4 .u2 __k _0/b2 ' (30)

k=N+ I k=N+ 1 k=N+ I k=l

gO

y_2 _< ¢k 0 '
k=l

(31)

which together with (30) yields, via the Cauchy-Schwarz inequality,

.2 • k 4 u 2 <- (E [i_ /b ])1/2 E /{b )1/2 (32)J "U "_ -< " k 0 0 2 = 0 2 "
j =1 J J k= k=l

Finally, using (29) and (32),

- b "llxll 2 + b "(x'x) 2(n+f_)+l -< b "R 2 + b -[E /(b )1/212(n+B)+l --< b "6 , (33)
1 4 1 4 0 2 5 0

b --- [b /(b + b )] + b /(b )n+B+(1/X), (34)
5 1 0 2 4 2

where we have used the assumption that

E < I. (35)
0

Now let _N(pl and _gO(p) denote balls of radius p in R N and R °° where x = u®v is

considered to be an element of the Cartesian product _n®_gO we shall show that for

all sufficiently large values of N, BNIR )®IBgO(R ) is a subset of the ball defined in
N

RN®R go by (28), where 0 < e < i is an arbitrarily small positive constant, where

R = R'(1 - c) 1/2, (36)
c

R = (E /b )l/2/(N + 1), (37)
N 0 2

and where

In fact,

Ilxll

N + i >- (6 /0 )1/2/(Rc1/2). (38)
o 2

= Ilull 2 + Ilvll 2 -< (R)2 + (R)2 -< R2.(1 - e) + R 2-_: = R 2.
C R

(39)

Initial Conditions

Define

and note that

Next, define

a -= ( k'a ) • [RN, a iN) -= ( [N + k]'o_ ) • [R°°, (40a)
k N+k

a = u(O), a (m = v(O). (40b)

go

b = ( ilk ) e [RN, b (N) - (BN,k) e [R , (40c)



and note that

b = _-l'u(O), b (N) = _-I"v(0).
N

where the bounded linear operators _-l and _-1 are represented by matrices
N

_-1 = drag ( 1/k ), _-1 = drag ( 1/[k + NI ).
N

Resolution of Linear Part

(40d)

(40e)

In component form, the infinite ODE can be written, for ( k = 1, 2, 3, --- ), as

t _ " [ _.1,] .U j ]2{I1+13)+1}
.'. (bo+b2k2). 1<2 2 2 .2 • uu + b k2"_t + "u =- b j "u + b "u k 2

k 3 k k 1 J 4 j k
J=l j=

Alternatively, in vector notation

(41)

_0-IX + ba "_)0_ + (bo + b2"_:)'_)oX = - ( bl'UXU2 + b4"(x'x)2(n+$)+l }'_)0x'
(42)

b = axial force coefficient, (43a)
0

b = extensibility coefficient, (43b)
1

b = elasticity coefficient, (43c)
2

b = viscous damping coefficient, (43d)
3

b = Balakrishnan-Taylor nonlinear damping coefficient, (43e)
4

where the unbounded linear operator I) is defined by the infinite matrix obtained by
0

taking N = 0 in the reciprocal of (40e). Upon multiplying (42) through by /)-ix and
o

integrating, we obtain the energy integral (24) in the form

t

II/)-lxll 2 + b .llxll z + (b/2)'llxll 4 + b .IIZ) xll 2 + 2 I {ba'llxl12 + b4"(x'x)2(n*B+l)} dt -
0 0 i 2 0 0

= G - IIb°°ll 2 + b • Ila°°ll 2 + (b/2)" Ila°°ll 4 + b • II_D a°°ll 2, (44a)
0 0 1 2 0

where as before

co N bOO b®b N.a = a®a , =

For future use define e and c3 by
N N

co

(N + 1) z IlaNll 2 < k 4 2 = c -> O,
• -- " _k

k=N+ I

oo

IIBNII2 = flk = N -> O,
k=N+l

(44b)

N -> +o% (45a)

N -> +co, (45b)

Homogeneous Linear Part

Henceforth we shall assume that the system is underdamped, i.e. that

b < 2(b )1/2.
3 2

The characteristic polynomial of the homogeneous part of (41) is

(46)



X2 + b k2"_ + (b +b k2)'k 2 = O, (47a)
k 3 k 0 2

which has roots

k
k

/2
_0 _ b3 '

where, obviously,

, = -1 ),= -P'k +- t'v k ( iZ

= ./<2 = k2
I"tk "/d'O ' Vk " tOk '

- (1/2).{4b - (b)z + 4(bo/kZ)}l/2t_k 2 3 '

(47b)

(47c)

(47d)

/_o/O)k -< b3/{4b2 - (b3)2}1/2. (47e)

From (47a) the general solution of the homogeneous linear part of (41) is of the form

Uk = exp(-gkt)'{flk'COS(Vkt) + Bk'Sin(vkt)}, (47f)

where A and B are arbitrary constants. Specializing these constants in order to use
k k

Lagrange's variation of constants formula to re-express (41) in terms of an impulse
response convolution with the right-hand side we get

t _ T) ¢ tZk(T) dT,u (t) = dlkll(t)'cCk+(dlkz)Ct)/k)'_k- d{3)(t
k 0

(47g)

where

d_1)(t) -- exp(-gkt).{COS(Vk t) + (_ZO/Wk)'sin(vkt)} , (48a)

dtkZ)(t) = exp(-I_kt). {[1/(k'Ok)]'stn(vkt)}, (48b)

dt3)(t) - k-dtZ)(t). (48c)
k k

Next, define three finite and three infinite diagonal matrices as

-- diag( d (j)) [RN (RNDj k : -> , ( j = 1, 2, 3 ), ( k = 1, 2, 3, "'', N ),

0R_ R°°
D3,N -- di.ag( d(J))k*N: -) ' ( "] = 1, 2, 3 ), ( k = 1, 2, 3, "'' ).

Finally, multiply (47g) through by k in order to convert to vector notation:

(49a)

(49b)

t

x(t) = Dt,o(t)-a = + Dz,o(t).b _ - f D (t - T)'_'X(T) dz, [50a)
0 3,0

x(t} = b,o(t).a °° + bz,o(t).b _ ftb -- (t T).¢.x(_) dT,
0 3,0

(50b)

-= b • Ilxll 2 + b -(x'x) z(n+B)+l. (50c)
1 4

(In deriving (50b) we used the fact that D (0) -- 0.) The fact that we have been
3,0

able to reformulate the original PDE boundary-value and initial-value problem in the
form (50) is the equivalent of (13), i.e the non-singular case, wherein there is no
requirement for a Bifurcation Equation since the entire system now has the form of the

Auxiliary Equation. If now we can prove that the iteration, for m = O, 1, 2, 3, --- ,

9



t D
= " + D2'0 0 :3,0

xm*1(t) D1,o(t) a _ (t)-boo - (t - T)'_(xm,xm)'xm(T) dT, (51a)

o0 oo
x°(t) - 0, xl(t) --- D (t).a + D (t).b , (51b)

1,0 2,0

converges, then we have constructed a solution of the original problem.

To avoid certain difficulties, we shall consider this iterative solution only for

the problem

b = O, _ = _(x) =-- b -IIxII2; (52)
4 1

the more general problem will be approached by a non-constructive homotopy method.

Consider now the fixed-point problem

x = _(x}, Ilxll - sup IIx(t)ll, {53a)
oo

(t>o)
t

• + S2'° _0 3,0_ - _{x(')}(t) --- Dl,o{t) a _ (t).boo - D (t - T)'_(X(Z)).X(T) d'r. (53b)

We want to find a Lipschitz constant for _:, i.e. a constant _: such that

II_{x j+l} - _{xJ}ll -< r" IIx j÷l - xJll V x j e B°°(R), ( j = O, 1, 2, ... ). (54)
oo co

Later we shall prove that

+OO

f < - 4/{b314b 2 - (b3)211/2}. (55)IID3,o(Z)ll dT - b 6
0

In the Hilbert space norm of Noo it is clear that

II {llx2112} x 2 - {llxlll 2} X 1 II -- II {llx2112} (x 2 - X 1) + {(X 2 + X1)'(X 2 - xl)} X 1 II -_

_ {llxlll 2 + IlxZll z + Ilxlll • IlxZll}.llx z - x]ll _.< 3R z. iix 2 - x]ll.

Hence we may take

(56)

• -- 3{b .b /[b + bz]}E -- 0 < 1, (57a)= 3RZbl b6 1 6 o o

if E is taken to be sufficiently small that
0

E 0 < (1/12)'O'{(bo + b2)'b3"[4b 2 - (b3)Z]I/Z}/b I. (57b)

The a priori bounds (28)-(29) apply to the first iterate (51b) and so the first

iterate is inside the ball Boo(R); now, using (54) with j = 0, i, 2, etc. it is clear

that x z, x 3, all remain in the ball provided that llx*ll + @.llx*ll + 0 z.llx*ll + ... < R,
oo oo Go

i.e. summing the geometric series, provided that

{llxlll /(i - O)} < R, (58a)
oo

which is readily obtainable simply by taking _ so small that

0 < 1 - (llxlll /R). (58b)
oo

Now we can apply the well known principle of contraction mappings (also called the

Banach fixed point theorem and Caccioppoli's fixed point theorem) to prove that the

map (53) has a unique fixed point in the ball B°°(R) and that this fixed point can be

computed constructively by the iterative procedure just described.

10



by where 0 -_ /2 -_ 1, and note that the aNext, replace the coefficient b 4 /_b4,

pr_orL bounds previously derived remain valid for all values of /2 _ [0,1]. Hence we

may infer the existence of a solution for all /1 E [0,1] by a homotopy method. For

sufficiently small values of /2, this is Poincar6's method of analytic continuation of

solutions of functional equations. Here the fact that the problem was non-singular at

/2 = 0 implies that the Leray-Schauder Index [2], [3] or topological degree of the map

is of magnitude unity at /2 = 0. Consequently the existence of the a priori bound for

any solution on 0 _- /2 -_ 1 implies that there is a continuum of solutions connecting

the solution at 12 = 0 with one at /2 = 1. Thus in summary we have proved the following

result.

Existence Theorem

THEOREM. If _', _", and _ [as defined in (24d-e)] are all sufficiently small,

then the nonlinear functional PDE (16) has at least one solution which exists for all

t - 0 and satisfies the boundary conditions (17a-b) and initial conditions (17e) as

well as the a prtor_ bounds

rjL[u (t,x)] 2 dx _- R 2 _- _o/(bo + b ),
2

L 0 x 2

(59)

+_ 2 L dx} Eo/(263),fo {--£-fo[UXt(t,x)]2 dt _-
(60)

where

2

_ _2 + bo,(_,)2 * b "C@")2 + (b /2)" [(_')2 ] . (62)go 2 1

Proof. Existence has already been proved. Equation (59) holds because

the left-hand side of (59) is by (26) equal to IJxll 2 which in (28) is proved smaller

than R 2. Equation (60) follows from inspection of (24a) and (24b), which hold for all

t -_ O, making it permissible to let t -_ +o0.

Rigorous Truncation

In "naive truncation" one simply sets v - 0, i.e. in (41) one takes

u (t) = 0, ( k = N + I, N + 2, N + 3, -.. ). (63)
k

Here we shall prove that the solution proved above to exist can be derived as in the

Liapunov-Schmidt bifurcation theory, and that, for all t z 0,

IIv(t)ll _ RN.exp(-ba[N + 112.t/2) -_ Re 1/2, (64)

provided that N is taken larger than the lower bounds in (3S) and in (68b)-(69) below.

By inspection of (50), we can express the problem as follows.

Bifurcation Equation

t

u(t) = D (t).a + Dz(t)'b - f D3(t - T)'_'U(T) dT,
1 0

(65a)

11



• v v) 2(n*m+lO -= b "{llull 2 + IIv, 2} + b (u'u + •
1 4

(65b)

Auxiliary Equation

v(t) = DI,N(t)" a N + DZ,N(t). b N - _'tDo3'N(t - i:}._- v(z) dz.

More A Priori Bounds

(65c)

From (48a),

d (1) (_tO/(_k)Z}l/2 eXp(-gokZt) )Z]}l/Z exp(-b ak ] -< {I + -< (l + bZ/[4b - (b t/2) -3 2 3

- [1/{1 - (bZ/4b)}l/Zl.exp(-bat/2).3 2
(66a)

The induced Euclidean norm of any diagonal matrix is equal to the absolute value of

its (absolutely] largest element. Hence

IIDlll <-- [1/11 - (b2/463 2}}l/2]'exp(-b3 t/2)" (66b)

Similarly,

IIDzll - l_a-_N Id¢Z)lk lrrja_N-- {1/(kwk)}'exp(-bat/2)

-< [2/{4b 2 - (b_)}l/2] .exp(-b3t/2), (66c)

< < - (bZ)}l/z] "exp(-b3t/Z), (66d)IID311 - l_-N {1/(kWk)}'exp(-bat/2) - [2/{4bx a

IIDI,NII -< (1/[1 - (bZ/4ba z)]l/Z}'exp(-b3 [N + 112t/2)'

IIDz,NII - {[2/{4bz (bZ)}l/Zl/(N3 + 1)}'exp(-b3[N + llZt/2)"

(66e)

(66f)

IIDa,NII -< [2/{4b 2 - (b_)}i/2].exp(-ba[N + l]Zt/2).

Integrating (66d), one obtains

+00

IID3('r)ll dl: -< b = 4/{ba[4b z - (b3)2]1/2}.6
0

Similarly,

÷oo

IIDa,N(Z)II d-c <- b6/(N + 1) 2,
o

which we have used above in (55) in the case N = 0.

Next, from (65c), (66e,f,g), and (45a,b),

(66g)

(66h)

(66i)

where

IIv(t)ll - _N'exp(-ba[N + i]2t/2) + {bsb6Eo/(N + 1)z} • llv(t)ll, (67a)

_'N = {1/[1 - (bZ/4b)]l/2}llaNII + ([2/{4b - (bZ)}l/Z]/(N + 1)}llbNII -<3 2 2 3

12



-< ( {1/[1 - (b2/4b)]1/2}'c32 N + [2/{4b - (O_)}I/Z]'SN I/CN + 1) - °" /(N + 1)'2N (67b)

Consequently, if E is so small that
0

b b _' < 1/2, (68a}
6 5 0

i.e. so small that

< 1/[{8/{b314b 2- (b)2]l/2}.{[bl/(bo+ b2)] + b4/(b2)n+B+(1/2)}l, (68b}

then we may subtract the second term on the right hand side of (67a} from the left

hand side, and then, by {4Sa,b), making N still larger (if necessary) so that

-_ (Co/b2) 1/2 - (N + 1}'RN (69)CrN/{1 - (1/2)1} ---- 2_ N

we can ensure that, for all t -_ O,

112" 1/2IIv(t)ll <- R .exp(-b IN + t/Z) <- R <- R'e , (70)
N 3 N

as claimed in (64).

Quite similarly, from (65a) and (68a},

Ilull -< liD II.llall + liD II.llbll + (b b E )-Ilull -< liD II.llall + liD II'llbll + (1/2)-Ilull,(71a)
1 2 6 5 0 1 2

whence, precisely as before,

i,e.

{1 - (1/2)}.llull -< liD II.llall + liD II-Ilbll, (71b}
1 2

Ilull -< 2' {lIDlll.llall + IID211-11bll} -< Re,

provided only that, by (66b,c)

Ilall

(71c)

-< (1/4). {t - (b_/4bz)}]/z"? R c, (72a)

< - (b2)) ]/2. R e, (72a)Ilbll - (1/8).{4b 2 3

which can be assured simply by taking ¢' and @ small enough.

Recalling that, by (62), 6 can be made arbitrarily small by making the initial
o

mean-square spatial rates of change ¢', ¢", and @ of u , u and u arbitrarily
x xx t

small, we may conclude that when those initial rates are sufficiently small then every

solution of (6Sa,b) must, for all t - 0, satisfy a pr_or£

Ilu(t)ll _ R -= R-(1 - c) 1/2, (73a)
E

and every solution of (65b,c) must, for all t _ 0, satisfy a pr£ori

IIv(t)ll -< R -< R-c 1/2, (73b)
N

whence finally, as in (39), every solution of the combined systems {65a,b,c) must for

all t --- 0, satisfy a pr_or_

Ilxll = {llu(t)tl 2 + IIv(t)ll2} I/2 -< R. (73c)

Conclusion: Naive vs Rigorous Truncation

Let u(t), u(t) be arbitrarily given continuous N-vector functions and insert them

into the nonlinear function @ defined in (65b), and then insert this functional of v

13



only into (65c), giving an infinite system of integral equationsfor v(t). As in (28)
through (35), the nonlinear term can be made arbitrarily small by taking E

0

arbitrarily small. Similarly the nonlinear term can be made to have a Lipschitz

constant less than unity by restrictions upon g as in (53)-(58).
0

This infinite system of Auxiliary Equations can be solved by one of the methods

illustrated above (iteration or homotopy), and the result inserted into the

Bifurcation Equations (65a) to provide a finite-dimensional system of functional

integral equations exactly-equivalent to the the original infinite-dimensional system.

When the arbitrarily given u(t), u(t) in the Auxiliary Equations (65b,c) are

taken to be the projection into g_N of the solution x(t) _ g_N®Rm proved to exist in the

Theorem concerning (59)-(62), then the . Auxiliary Equations have a solution

corresponding to the projection v(t) of x(t) into _. The resulting Bifurcation

Equations then must be satisfied by the same u(t) used to define the Auxiliary

Equations. However, all of the a priori bounds proved above to apply to the solution x

of the complete problem now apply to the projections u, v of the rigorously truncated

problem.

Consequently we can compare the rigorous version of the Bifurcation Equations,

namely (65a), with the naively truncated version wherein one sets v - 0, and note that

that, as go becomes sufficiently small for the bounds to apply, then as N becomes

arbitrarily large the difference between the solutions of the naively truncated

version of (6Sa) and its rigorously truncated version becomes arbitrarily small.

Consequently in attempting to solve the given nonlinear function PDE boundary-

value initial-value problem, we may be confident that if we truncate naively for some

finite N, the results become arbitrarily accurate as N increases without limit

provided that the initial mean-square spatial rates of change _', _", and _ of u ,
x

u and u are kept sufficiently small.
XX t

Further research is needed in order to ascertain whether or not this conclusion

would still apply if the homogeneous boundary conditions were replaced by

inhomogeneous boundary conditions corresponding to a finite number of actuators.
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Abstract

In this paper we consider application magnetic forces for stabilization of vibrations of flexible
space structures. We investigate three electromagnetic phenomena, such as, a) magnetic body-force, b)
reluctance torque, and c) magnetostriction, and analyse their application for stabilization of a beam. The
magnetic body-force actuator utilizes the force that exists between poles of magnets. The reluctance
actuator is configured in such a way that the reluctance of the magnetic circuit will be minimum when
the beam is straight. Any bending of the beam increases the reluctance and hence generates a restoring
torque that reduces bending. The gain of the actuator is controlled by varying the magnetizing current.
Since the energy density of a magnetic device is much higher compared to piezo-electric or thermal
actuators, it is expected that the reluctance actuator will be more effective in controlling the structural
vibrations.

I. INTRODUCTION

The problems of modeling and control of flexible space structures have been a subject of considerable
research interest in recent years. These future space vehicles will be large structures consisting of a
rigid body and several flexible appendages, such as long beams, solar panels, large antennas etc. It is
known that these space structures will possess low structural rigidity, high modal density and low damping.
Consequently, in order for them to perform properly some active means of increasing the damping or
the energy dissipation must be provided. There is a very large collection of research results available in
the literature on the control and stabilization of flexible space structures. The references listed in this
paper are only a small cross section of these results, and are not meant to be exhaustive.

Dynamic analysis and control system design of flexible structures are based on two different ap-
proaches: a) finite dimensional, and b) infinite dimensional. Although the finite dimensional approach
[1- 7] have been widely investigated in the past, the main objections are modal truncation, lack of
a priori information of required mode numbers, and control spillover [15]. Because of these reasons,
the infinite dimensional approach using partial differential equations appears to be more appropriate.
Since large space structures are actually partly rigid and partly flexible, the complete mathematical model
requires a combination of both ordinary differential equations and hyperbolic partial differential equations
[8 - 16]. Stabilization of flexible space structures through active velocity feedback have been discussed
in [8,9,13,14]. A more rigorous analysis of stabilization using semigroup theory is considered in [10,11].
Reference [16] describes the synthesis of optimal controls for this class of systems. Stabilization of
flexible systems using thermal [17,18,19] and peizo-electric [20,21] actuators have been investigated in
recent years. It has been shown both analytically and experimentally that thermo-elastic damping can
be induced in materials by suitable application of thermal gradients. In [20,21] it has been shown that
spatially distributed control actuators can be designed using piezoelectric polymers, and that feedback of
beam tip angular velocity can be used for stabilization of vibrations of a beam.

In this paper, we investigate application of magnetic forces for stabilization of elastic structures.
Magnetic forces and torques are developed in ferromagnetic systems in a variety of ways. Here we discuss
three electromagnetic phenomena which have very good potential of stabilizing a vibrating structure; these
are: a) magnetic body-force, b) reluctance torque, and c) magnetostriction. Magnetic body-force actuator
relies on the force that exists between the poles of magnets. Reluctance torque is a consequence of the
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principle of conservation of energy, and arises due to the fact that the most stable configuration of a
magnetic system is that of minimum reluctance. Magnetostriction causes generation of very high forces
in ferromagnetic materials when subjected to applied magnetic fields. We show that a vibrating beam
can be stabilized if the magnetizing current in the magnetic actuator is varied proportional to the rate
of change of beam bending moment or the beam tip angular velocity. These magnetic actuators can
be implemented using ferromagnetic or ferroplastic materials, and can be applied over the entire spatial
domain of the elastic structure, thus emulating a distributed control actuator. Since the energy density
of a magnetic device is much higher compared to piezo-electric or thermal actuators, it is expected that
the magnetic actuator will be more effective in controlling the structural vibrations.

II. MAGNETIC ACTUATORS

A magnetomechanical transducer or actuator is a device that links a magnetic system and a mechanical
system. The coupling between the two systems is through the magnetic field which acts as the energy
storage device. A change in the stored energy leads to a energy conversion process to convert the
magnetic energy to the mechanical energy, or vice-versa. There are several electromagnetic phenomena
[22,23] that govern this energy conversion process among which the following are most important, and
are commonly utilized in practical devices:

1. A mechanical force is exerted on a current carrying conductor in a magnetic field. Likewise,
mechanical forces exist between two current carrying conductors because of their own magnetic
fields.

2. A mechanical force is exerted on a movable ferromagnetic material tending to align it along the
magnetic flux lines, or to reduce the reluctance of the flux path.

3. Most ferromagnetic materials show a small deformation in the presence of a magnetic field.
This phenomenon is known as magnetostriction. Although the deformation is very small, the
corresponding mechanical force may be very large.

All the above energy conversion processes are reversible in the sense that applications of mechanical
forces or body deformations produce changes in the magnetic energy. In this research, we intend to
utilize the magnetic-to-mechanical energy conversion processes for production of forces for stabilization
of structural vibrations of elastic systems. In what follows, we present the fundamentals of three magnetic
actuators which have very good potential of practical implementation for stabilization of large flexible
space structures.

2.1 MAGNETIC BODY-FORCE ACTUATOR

The basic idea of this device is the magnetic body-force or stress acting between the magnetic poles.
Consider the attraction of north and south poles of two magnets. The total force on one pole face is
given by the integration of magnetic stress as

Fm= 2-- odA (1)

where B,_ is the normal component of the field
air gap. Consider a magnetic system consisting
and with 11 and 12 as the magnetizing currents

density to the surface, and #0 is the permeability of the
of two ferromagnetic elements separated by a distance,
as shown in Fig. 1.

Fig. I Naffnetie Bodg-Force
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Then it can be shown that the resultant magnetic body-force is given by

Fm= kl I1 ./2. (2)

We may assume that one of the ferromagnetic materials is replaced by a permanent magnet, or an electro
magnet with a constant exciting current• Then the force resulting from this magnetic system is of the
form

fm= k21 (3)

where ka is suitable constant, and I is the magnetzing current. This analysis shows that this simple
configuration of magnetic materials may be used for production of a force, and that this force could be
made proportional to a control current. For the sake of simplicity, we assume that the magnetic force is
distributed all over the spatial domain. In fact, for a single layer of ferromagnetic segments, this force
may appear as a train of step functions. By using several layers of segments, one can obtain an average
force that is distributed all over the spatial domain.

Now consider a flexible beam with a layer of ferromagentic segments rigidly attached to the upper
surface of the beam, and another layer on the lower surface as shown in the Fig. 2.

/ Beam
.

....•

• °

T h2

i hl

Fig. 2 Flexible Beam with Bodg-Force Ac_uatoP

We assume that the same magnetizing current is used for both the upper and the lower layers, and
that the corresponding forces are same in magnitude but opposite in direction• This results in a bending

moment given by

T(x, t) = Fro(x, t)(hl + h2)

= c I(x, t) (4)

where c is a constant depending of the beam geometry and the properties of the magnetic material.

The dynamics of the transverse vibrations of a beam in the presence of this additional bending
moment is given by

02y 02 [ rO2Y'_ 02 ( )%-7  I(z't) =0, x•(O,L), t__O (5)

with the boundary conditions

y(0, t) = 0

Oy (o, t) = o

OZYrL t) = c I(L, t)-:d x2 ,

0 /,_02y'_(L,t)= OI(L t)

(6)

where y is the transverse deflection, Y is the flexural rigidity, and p is the mass density (per unit length)
of the composite beam.
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STABILIZATION

The beam dynamics described above contains a controllable parameter I(x,t) which may be appro-
priately regulated in order to achieve a stabilizing action. For this purpose we follow the Lyapunov type

analysis. Consider the total energy of beam vibrations given by

V(t) = _ p -_ + Ox 2 dx. (7)

Then using the dynamics (5) along with the boundary conditions, we obtain

dV fOL i)3y-- CI(X, t) _ dx. (8)

This clearly shows that for asymptotic decay of vibration energy the magnetizing control current may be
chosen as

OaY (z,t) (9)s(x, t) = -k

where k is a suitable gain, in other words, the control current should be proportional to the rate of
change of bending moment of the beam.

It is interesting to note that this ferromagnetic actuator essentially introduces in the system a type
of damping commonly known as "structural damping" in the literature. Indeed, substituting the equation

(9) into the dynamics (5), the beam equation can be rewritten as

02y 0 2 1" 02y'_ 05y
%-j + [ + kOx4ot -o, (lo)

in which the last term represents the structural damping. Note that the damping parameter k is very
small for naturally occurring structural damping of elastic materials. In this case the control current can
be suitably regulated so as to obtain the desired damping.

In case the feedback current is assumed to be uniform all over the length of the beam, equation (8)
reduces to

dV _  I(t) °zy (11)
dt Oz Ot"

Hence considering a feedback current proportional to the tip angular velocity of the beam, i.e.,

I(t) = -k o_ot (L,t ) (12)

we obtain asymptotic stability of the system.

The control laws discussed above require regulation of the control current proportional to the angular
velocity of the tip of the beam, or the rate of change of the (distributed) bending moment. For practical
applications it may be relatively easier to measure the tip angular velocity only. Proportional variations of
the control current can be done by suitable electronic circuits. One can also consider on-off or deadzone

type of controls derived [9] from (8).
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2.2 RELUCTANCE ACTUATOR

A property of a conservative system is that its energy is a function of only its state, and given sufficient
time, the system always attains its rest state at which the energy is minimum. Consider a magnetic circuit
containing a movable member. The energy stored in the magnetic field is minimum when the movable
member attains a position for which the magnetic reluctance is minimum. Any perturbation of this
position would imply a higher energy state of the system, and hence would lead to the production of
a restoring force or torque that will realign the movable member to the minimum reluctance position.
This is the fundamental principle of the Reluctance Actuator.

Consider a magnetic circuit consisting of two ferromagnetic segments as shown before; but in this
case we assume that these segments can undergo an angular displacement relative to each other.

L12

d 0

F i.9. 3 Uax, iat ion o£ Hutua 1 Inductance u ith Ang'u lar Pos it ion

The magnetic potential energy stored in the air gap depends on the mutual inductance and the
magnetizing currents, and is given by

wm = Lt2 I1 h. (13)

The mutual inductance Ll2 varies with the angular orientation of the two segments relative to each
other. It is clear from Fig. 3 that when 0 is 0° or 360 ° , reluctance is minimum so that inductance is
at the maximum value. Similarly, when 0 is 180 °, reluctance is maximum with the correspondingly small
inductance. Hence the mutual inductance can be expressed as

L12 = Lo + L_, cos& (14)

Any rotation of the movable member would tend to increase the air gap, and hence would increase the
reluctance, or decrease the inductance. Then according to the principle of conservation of energy, a
restoring torque is produced that would realign the movable member with the stationary member. This
restoring torque is given by

0_V (11, h, 0)
T-

OO

- L_ I1 h sin0. (15)

Clearly, the torque reduces to zero when there is no angular deflection, i.e., when the two segments are
aligned. In what follows, we show that this torque can be utilized to stabilize a vibrating beam.

Consider a cantilever beam with a string of ferromagnetic segments interlaced by air gaps as shown

in the Fig. 2. Consider two typical segments located at the axial distances x - 4 and x + -_ respectively,
where d is the distance between the two segments. The angular orientation "of these segments on a

perturbed beam will be given by o,:_z - 5) and a_.x + respectively. Hence the relative angle between
the two segments is

0 ._, d 0 _1, d
t) = + U -

Oe_J'. _) (16)
= d_tz,



Using this equation in (15) and assuming small angle perturbations of the beam, the restoring torque
becomes

• 02y
T(x,t) = -L_ ll l2 s,n(d _x2)

02y" t)
__ -d Lo ll I2 _xz t x, (17)

For simplicity we assume that the magnetizing currents are equal, and /1 = I2 = I. Then the
dynamics of transverse vibration of the beam is given by

O2y rO4y k1204y = 0 (18)
p -F+ } b--g 4+ 0x--7

with appropriate boundary conditions. This shows that the reluctance torque essentially increases the
flexural rigidity of the elastic material, and this stiffening action is independent of the direction of the
magnetizing current. Thus reluctance torque can be used to introduce artificial flexural rigidity in elastic
members. Alternatively, feedback control schemes can be designed to stabilize the system. Indeed, after
some analysis using the energy function (7), it can be shown that a feedback current proportional to the
rate of change of bending moment of the elastic member,i.e.,

02yll:
I1/z(t) = -q 7 IIoxz IlL2

(19)

can be used to stabilize the system. Here q is the gain of the controller.

2.3 MAGNETOSTRICTION

Magnetostriction is the elastic deformation of a magnetic material due to the change in the magnetic
field. If a ferromagnetic bar such as nickel, cobalt, is subjected to an applied magnetic field, it shrinks in
length. If the bar is restrained from contracting, a mechanical force is developed and mechanical energy
can be extracted. For some magnetic materials the action is to elongate rather than contract while in
some others first to elongate and then contract. The change in length is usually very small and of the
order of 0.01%, but the resulting force may be very large of the order of 200 N/cm 2 or 300 psi. It is
important to note that the stress due to magnetostriction is independent of the direction of the applied
magnetic field. As such the mechanical force obtainable from a magnetostrictive device will be bounded
between zero and some upper limit depending on the strength of the applied field.

llI. CONCLUSIONS

We consider stabilization of flexible structures using three types of magnetomotive forces: a) magnetic
body-force, b) reluctance torque, and c) magnetostriction. We prove stabilization of the system using the
first two types of forces. This requires feedback of rate of bending moment of the structure in the form
of a magnetizing current. It is important to note that magnetic body-force and the reluctance torque
are complementary and occur simultaneously, in other words, the same hardware will produce two types
of stabilizing action in the vibrating system. Although magnetostriction produces a mechanical force that
can be extracted, at this time it is not clear whether this can be utilized to produce any stabilizing action.
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Optima| Control of Systems with Capacity-related n_15e£

Abstract 1_[ l_ 1 -22310

Mifang Ruan* and Ajit K. Choudhury+

In the ordinary theory or optimal control (t.QR and Kalman Filter),
t,m variances cf the actuators and the sensors are assumed to be known(, r_ol

related to the capacities of the devices). This assumption is not true in practic:e.

Generally, a device with greater capacity to exert actuating force_; and a sen:mr

capable o1 sensing greater sensing range will generate noise of !,_reater power

swctral density.
When the ordinary theory of optimal control is used to estimate Ihe

crrrors of Ihe outputs in such casts it will lead to faulty results, because lhe

capacities of such devices are unknown before the system is designed. The

performance o[ the system designed by the ordinary theory will not be _ptimal
as the variances of the sensors and the actuators are neither known nc_r c,_n

sqant. The interaction between the control system and structure could be serious

because the ordinary method will lead to greater feedback (Kalman gain)
matrices.

The ;na;n purpose of this paper is to dvelop methods which c:_n

optimize the performance of systems when noises of the actuators and lhe

s_:nsors are related to their capacities. These methods will resul! in slnalk',

feedback ( Kalm__n gain) matrix. The smaller matrices will reduce the interac-

tion he>,veen the control system and syslem structure and, 1hereby, reducing Ihe

requirements on lhe structures and consequently making the strucltm: mr_re

flexible.

INrlRODUCTION

In the optimal control of stochastic systems, we ordinarily assunm tlmt
r_oiscs of the actuators and the sensors are not related to the capacilv o[ Ihc

g.ctutors and sensors[ 1,2,31 This assumption is not true in practice.Generaity,

the \,ariances of actuators and the sensors, especially the actuator:; , are rclaled

to the ,:apacities of lhe devices. Obviously, a fuel iet capabh.' of generating a

f,_rce of l l*0 [hs will have greater noises than the one capable ,_f gencralinl:', a

fo!Te cf 1 ll_. It will be realistic and practical to assume that the _mis(.' variavmc
of the actualor'_ and the sensors be linear function of the ,,arian,:e (_l the cc,n-

tKolling forces and the output of the sensors i.e., the observatiot_s. Ilndcr this

assu_nt',tion when _, device is required to have greater capacity it will also inlro

duce greater noise. The ordinary method of optimal control problems have at
i:'.ast fierce defects.

(a) II is hard to specify correctly the noise power spcclral (lensiti_:s

of the actuator and the sensor because the capacilies of these device:_ are un-

knowll

' Graduate Strident, Dept. of Mechanical Engr., Howard Univ.. \Va,;hingl(ll.

D.C. 20059,+ Assoc. Professor, Dept. of Electrical Engineering, ttoward Univ.
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t',efove the system ;s designed

(b) The resultant feedback and Kalman gain matrice,_ mav not be

optimal when the noises in these devices are not related to their capacities.

1-'herefore, the pexformance of the control system may not be as good a.'; it
would he otherwise.

(c) When ttle noises are assumed to be not relaled to tile capacilie_

of ttle devices, the res_Jkant feedback and Kalman gain matrices will be large,

rnaking the interaction between control system and the structure: unsafe[4].

Because of these defects, it is hard for us to esfimale the errors ot

t"m outputs. The errors of the outputs will be large, and the interaction hclwe,:'N

the control syslem and system structures will produce large errc_rs.

In some control systems, such as communications satellite and on--_>r

bit telescope, the precision of the control system is critical, and in the futur,.:

missions their strlzctures could be very flexible. The variance,; of these dcvic,es

will he assumecl to be linear functions of their capacities.

In this paper, we will develop methods which will optimize th(: pc.r-

f,)iMal:Ce of systems when noises of the actuators and the sensors arc rclatcct co

the'if capacities. The feedback (and Kahnan gain) matrices are found by this

methods will be automatically smaller than those found by ordinary methods.

"l'herefore, the intcl-action between the control system and the strtlrcltnc will be

reduced and thereby, permitting more flexible structures.

II PROBI,EM STATEMENT

Let _s frst (,msidcr the optimal control of a first ordm svst(:m

X --'-- a x + U + w
(la_

tl = - [ X 1.b)

{ 2 ,,}.1 = E x + r u
1 , (5)

This is a steady-state optimal control problem with exa(:t ot_scrvati_n.

f is tl_e feedback coefficient to be determined, a and r are given paramelcrs. E

i,_ the mean operator, w is a zero mean white Gaussian noise, l.Jnlike the oKli

rmry control prolflem, we assume that the variance of the noise w, ,:an he

clescl ibed Iw

,24-



2

W= W O + O_ Cr
u

2 2

= Wo+ 5
2

where W o , and oe are non-negative constants. Ou can be considcrcd as lhc

rtominal variance of the input, a good measure of the capacity of tile ac-

tdator.From (la) and (lb) , we have

x = ( a - f )x + w

(3)

According to stochastic control theory, the variance o[ x, denotc'd by P

can he determi_ed b'/

2(a-f)P + W = 0 (,1)

2

_" = P , eq.(4) reduces to_,ln C(' O" x

2

2(a - f )+ W + c_ f P= 0
0 ('_'l

2

or ( 2a -- 2f + o_t ) P + W0 = 0 (6)

Since P must be greater than or equal to zero, the following condition must
hold

'2

2a - 2f + ct f < 0 7_

"l'he ccst funclional can be written as

2

J = P + r f P ¢,_)

Using eq.(6 ), we have

2 W
0

J---( 1 + r f ) ................................ ] ....

(2 f- 2 a - (_ f )

(93
The inequality above indicate the stable region for the problem.



The stable region for ordinary problem is defined by

a-f < 0 (10)

The stable regions describe by equations (7) and (10) are plolted in

Fig. 1. Obviously, the stable region of the present problem is only a subset of

the region of the ordinary problem. The stable region becomes smaller when o:

becomes greater and this region is not directly related to the constant term. For

certain values of a > 0 and c_, it is possible that there is no f which lie in the

slable region, i.e.. such a system can't be stabilized.

The optimal feedback control can be found by dilferentiating

equaticm (9) with respect to f and equaling the derivative of J with respect to f

to zero. The derivative of J with respect to f after simplification can be
written in the form

d J 2 \V0 2
- 22 ( rf

df ( 2 f- 2 a--_ f )
-2raf+_ f-l)

Equating the derivative of J to zero and solving the quadratic equa-

tmn in f anti neglecting the extraneous solution, we obtain the optimal feeclback
control as fo!lo_s.

-(c_ -2 r a ) + (c_-2r a) _ 4 r
f _ ----

2 r
(1la)

Figs 2,4 and 6 show tim ratio of optimal feedback (the vahlc of f

given by equation (1 la)) to the feedback found by ordinary method vs. r Ic_r

,,arinus vahnes of a and o_. We can see that the value of f/fo is less than 1,

i.e., when the noise of the actuator is capacity related, the optimal feedback

te.nds to decrease.The reason for this is that a greater feedback correspon_ds to

a greater actuator signal, and increased capacity of the device and increa,'ied

noise power spcchtJl density of the noise.Therefore, a smaller fee.dback matrix

will be preferred. When r becomes smaller, c_ becomes bigger and a becomes

greater. The difference between f and f0 will becomes greater. The reason is
nol hard to imagi;m. When r becomes smaller, the feedback b}, the ordinary

method becomes greater even it is out of the stable region, while the feedback

by the present method although becomes greater but the incrcmenl will not be

significant because it has not taken the incnease in noise power into c_msidera-

tion, and the feedV, ack will never be out of the stable region. When _x (alpha)

hecornes greater, noise is more related to the capacity and the. system will more

seriously depend on the feedback. Figs 3,5 and 6 show the ratios of ,3plimal

cost found by the propsed method to the case when f is found b,_ the _)rd nary

method. Fig.5 does not have a plot for c_ =1, because the feedback found by
the ordinary me.thod is out of stable region, and the ratios, Jo/J i_ infiniw_,

26"



III GENERRAL CASE

In tile above section, we have solved a simple problem 13y theoretical

approach, In general system contains multiple stales with multiple inpl.lt:; and

remltiple oulput,,% pncl t,_e meassurements are corrupted by noises, Then , tim

prohlem can 13e stated as follows.

wilh constraints

1 T

rain J = E { Y Q Y + u R u }
F,K (1 lh'_

y = Hx

x =Ax + Bu + Gw 1Z a )

U = - F X 12.li)

x = A x + B u + K ( z - Mx) 12.¢ 1

where

y= Output vector
x= State vector

u= Control Vector

z= Measurement Vector

x= Estimated State Vector

w= input noise vector (zero-mean white Gaussia_l noise)

v= Measurement noise vector( zero mean white (_;_ssian

nnise)
F' = Feedhack matrix

I< = Kalman Gain Matrix

and ehe matrices are of appropriate dimension
The noise covariance malrices

.]--

E { w } = w

arc _iven l:,y

T

u{ v ,,} =

The or@ cliffcrence between the ordinary problem and proposed problem is

that the model of the covariance matrices w and v. Ordinarily W and V _re

a.ssumcd to be: constan¢ matrices which are not related to the capacitics_ of Ihe
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_U,E_I.ors and sensors In this 13aper W and V are assumed to he matrices

whose covariance matrices are functions of the capacities of acmalors and
sL'nsors.

The capacity of an acluator can be reasonably be veprc:sented by the

nominal varianacc of the actuator signal,

2 _ _ 'r

(r =E {u 2 } =f E {xx
I.I,

, oo i i oo

T A T
}f = f p.f

i i x i

where fi is the ith row of F.

And , we will assume the variance of an actualor Io be'. a linmr

tunclion of its capacities , i.e.,

W = diag{ w j , w 2 ' wm }

2
W. ---- W + C_ , (T

I I IJ .
I

Similarly,

wherc w .

I 0
and Ot i are non-negative constants

V = diag { Vl , Va ...... V, }

2

V. -" V. + ]3 i (r
T I 0 z i

wherc V., and [3+ are non - negative constants
0

,- ( 2 } ' A p 'or. = E z = m E {x x }m m m
I " i i i = i "< i

where m , is Ihe ilh row of M.

Clearly Ihe covarince matrices become functions of lhc feedback

and Kalman gain matrices.

Equation (12.a) ,(12.b) and (12.c) can be written as
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1lx K M A- BF-KM X
^

×

G

+

0 iIi0 w'

K v

t_,o:ording to the
followi

P
×

P
x x

Stochastic Control theory

ng equal.imv.

A -BF

KM

the covariance matrices

I A -BFKM A-

T

1

A -- BF-KM /

B F- KM J

+

P X X

satisfy the

"I"

=0

where W and V al'e fiJ:,ctions of P P"× , _ , F and K ,To solve the ahovc

optimization problem, we probably have to use numerical appreach

IV DIRECT APPROACH

The simplest way to solve the problem is to use direct approach. In

the direct appnmch, we assume that all the elements of F and K am paramc.lers.

The cost J can l_e found by solving equation (1 lb) ileratively when F and K are

given. Various techniques of optimization theory can be used t,:_ find the op
timum valuc" of P and K.

However, this method can solve only prohlems of smaller dimcnsi_:m.
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[:or relatively large problems, the number of parameters will be large and the

computational effm'ts to find the cost for given F and K will also he large:there-

fore, the total computational load will be large

It seeems that the challenging problem here is development of com-

putationally efficicnt fast algorithm to sove the feedback gai1_ and the Kalman

gain
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Querying Databases of Trajectories of Differential Equations II:

Index Functions
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Abstract Suppose that a large number of parameterized trajectories 7 of a dynamical system evolving in a N are

stored in a database. Let 7; C R N denote a parameterized path in Euclidean space, and let I1" II denote a norm on
the space of paths. In this paper, we define data structures and indices for trajectories and give algorithms to answer

queries of the following forms:
Query 1. Given a path r/, determine whether r/occurs as a subtrajectory of any trajectory 7 from the database. If

so, return the trajectory; otherwise, return null.
Query 2. Given a path r/, return the trajectory 7 from the database which minimizes the norm

11_-711.

1 Queries about trajectories

Suppose that a large number of parameterized trajectories 7 of a dynamical system evolving in R N are

stored in a database. Let r/C R g denote a parameterized path in Euclidean space, and let II" II denote a

norm on the space of paths to be specified later. In this paper, we define a data structure and indices to

represent trajectories of dynamical systems and sketch algorithms to answer queries of the following forms:

Query 1. Given a path r/, determine whether r/occurs as a subtrajectory of any trajectory 7 from the

database. If so, return the trajectory; otherwise, return null.

Query 2. Given a path r/, return the trajectory 7 from the database which minimizes the norm

117-  11.

The paper is a successor to [2], which describes the data structure to store trajectories which is used here.

Efficient algorithms to answer these type of queries should prove useful for a number of applications.

As an example, consider the path-planning problem for a robotic arm. Suppose that a large number of

feasible trajectories of the robotic arm have been stored in a database. Let r/ be the desired path of the

arm. It is not necessary that r/itself be a feasible trajectory. Query 2 would return the feasible trajectory

7 of the arm which is closest to the desired path r/.

As another example, consider a database containing control trajectories for an aircraft. Assume that

those trajectories which enter into an unstable control regime somewhere along their flight path are tagged.

*This research is supported in part by grant NAG2-513 from NASA and by grant DMS-8904740 from the National
Science Foundation and by the Laboratory for Advanced Computing. Address: Department of Mathematics, Statistics,
and Computer Science, Mail Code 249, University of Illinois at Chicago, Box 4348, Chicago, IL 60680, (312) 413-2164,
grossman_uicber t .eecs.uic.edu.



Let r/ denote a measured portion of the flight path. Then Query 1 would return the nearest full control

trajectory in the database, which includes information about the stability of the trajectory. More generally,

one could imagine retrieving from the database those stable trajectories which avoid a given obstacle, such

as a turbulent region of space. In other words, the query could be used as part of a supervisory control

system and be viewed as a means of extracting qualitative or summary information about the control

system.

The data structure we use to represent trajectories is closely related to hashing methods for curves that

have been used in computer vision; see [7] and [8]. A related means of extracting qualitative information

from dynamical systems is described in [1]. We are concerned in this paper with data structures and

indexing for object oriented databases consisting of trajectories. For general methods of indexing in object

oriented databases see [3], [4], [5], and [6].

In Section 2 we review the relevant facts about trajectories of differential equations and define different

data structures to store trajectories. In Section 3, we show how these data structures can be used to answer

the queries above. Section 4 contains some concluding remarks.

2 Paths, trees and vector fields

In this section, we describe a data structure for paths following [2]. The point of view is to assume that

the path arises from a trajectory of a differential equation and to base the data structure upon the initial

value problem for the differential equation.

We begin by recalling some basic facts and definitions about trajectories of differential equations. Let

D u = O/Oxt`. A vector field
N

E = y_ at'D,
t`=l

on l_ N is determined by specifying N functions

at` : R N _ R.

We also denote the vector field by Ea. A parameterized path

7 :[t°, tl] C R ----* R N

is called a trajectory of the dynamical system

z(t) = E_(x(t))

in case it is the unique solution of the initial value problem

x(t) = E,(x(t)), x(t °) = 7(t°).

(1)

(2)

We define the vector field/reference point representation or VEFREP of a path r/to be the pair (E, R),

consisting of a vector field E and a reference or initial point R, where the trajectory is the solution of the

initial value problem

x(t) = E(x(t)), x(t°) = R.

Note that this representation is not unique. Indeed, several different vector fields could have a given spatial

curve as a trajectory, while any point along the spatial curve could serve as the initial value.

We now give an algorithm whose input is a parameterized path

r/: [t o ,t 1] C R _ R N,
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and whose output is a labeled, rooted binary tree. We assume for convenience that to = 0 and t 1 -- 1;

if not, we can reparameterize. We do not assume that r/ is a trajectory of the dynamical system (1). To

define the tree, we first fix a tolerance e > 0. The tree we define is a subset of the complete rooted binary

tree. There are 2k children at height k from the root: number them left to right from 1 to 2k. We assign

two labels to the jth node v from the left at height k:

and

_(v) = (1/2k)(r/(_)- r/(-_k 1 ))CR N

We use the following stopping criterion to grow the tree. If a node has children v and v _ with labels g and

g', respectively, and if Jig- _'JJ < e, then the nodes v and v' are leaves. Here ]]. J] denotes the Euclidean

norm. We denote by T(r]) the tree that arises in this fashion. This tree has a simple interpretation: the

0 labels represent points on the path 7/, while the _¢ labels represent approximate tangent vectors at those

points. The tree is grown until the difference between two adjacent tangent vectors is uniformly small.

Using the tree T(r/), we now define a vector field E(rl). The vector field E(r/) is simply the vector field

which interpolates the labels (0(v), r/(v))

E(,)(0(,0) = (3)

for all leaves v in T(rl). Recall that O(v) is the point on the curve rI corresponding to the node v, and g(v)

is the approximate tangent to the curve at that point.

For some applications, it is better to impose an upper bound on the degree of the interpolating functions.

Let q denote this bound. In this case, we can define the vector field E(r]) by requiring that the coefficients

b_' minimize the quantity

IJE(_)(O(v))- _(v)l h (4)
leaves v

where the minimum is over vector fields with interpolating functions of degree less than or equal to q.

We conclude this section by defining a specific point R(rl) , associated with a parametrized path

rl : [t°, t 1] C R -----* R N .

Let T(rl) the corresponding tree and E(y) the associated vector field. Consider the trajectory defined by

the initial value problem

x(t) = E_(z(t)), x(O) = p(t°).

Let 7 denote this trajectory. In general, 7 is only an approximation to the path rb Define R(p) E R g as

follows: if the path 7 and the unit sphere in R N intersect precisely once, let R(r/) denote this intersection; if

they intersect several times, let R(r]) denote the intersection which occurs first when the list of intersections

is ordered in iexigraphical order; otherwise, let R(r/) denote the closest point between the unit sphere and

the trajectory 7.

3 Query Algorithms

Let r/ C R g denote a path. In this section, we define an index I(rl) that can be used for storing and

accessing the path r/. First, fix injective functions

hn :R _ ----* {1,2,...},

37



for each n = 1, 2,... Given a path r}, first compute its VEFREP (E(r/), n(r})) from its rectifying tree T(r/).

Assume the tree T(rl) has K leaves. Next, view the coefficients of the vector field E(r/) as a K • N vector,

so that the pair (E(rl), R(r/)) has (g + 1)N components. Then the hash index H(q) associated with 7/is

defined by

H(O) = h(K+DN(E(o), R(O)).

We can now assign indices I(r}) to trajectories sequentially: use the hash index H(r}) to determine

whether the path r/has an index assigned to it. If so, use that index; if not, use the next available index.

Suppose that 3'1, • • -, 7P are trajectories of the dynamical system

= Eo(x(t)),

as a ranges over some parameter space. To each such trajectory 7, let

(E(7), a(7))

denote its VEFREP representation. Given a parameterized path r/, Algorithm 1 below returns the trajec-

tory 7 from the database which contains a segment equal to the path q. If there is no such trajectory, null

is returned.

Algorithm 1. The input is a parameterized path 71, and the output is the trajectory 7 from the database

answering Query 1. Fix e > 0 and q > 1.

Step 1. This step is a precomputation. For each trajectory 7i, i = 1,...,P, compute its VEFREP

representation (E(Ti), R(7i)). This depends upon q and e.

Step 2. Given a query path r/, compute its rectifying tree T(r/). This depends upon e. Using T(r/) and

Equation 4, compute its VEFREP representation (E(o), R(r/)). This depends upon q.

Step 3. Using the VEFREP (E(rt), R(0)), compute the hash index H(_/). If there is an index in the row

H(q) of the index table, retrieve the VEFREP representation (E, R) corresponding to this index;

otherwise, return null.

Step 4. If Step 3 yielded a VEFREP (E, R), return the trajectory 7 which is the solution to the initial

value problem

x(t) = E(x(t)), x(O) = R;

otherwise, return null.

Theorem 3.1 Assume thai the database contains n trajectories. Algorithm 1 answers Query 1 in time

0(1).

Easy modifications of Algorithm 1 can be used to answer Query 2 in time O(n).

4 Conclusion

In this paper, we have described preliminary work concerned with queries of databases containing trajec-

tories of differential equations. Trajectories of differential equations have many different representations.

For the types of queries considered here, we have chosen to represent parameterized trajectories

7 : [to ,tl] C R _ R N
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by a pair, consisting of a vector field E on R N with polynomial coefficients and a point R C R N such that

the trajectory is the solution of the initial value problem:

x(t) = x(t°) = 6.

We call this a VEFREP representation. Using the VEFREP representation, we have introduced an index

1(7 ) and algorithms to answer queries which retrieve subtrajectories and close by trajectories of a given

query trajectory.
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A FAST ALGORITHM FOR CONTROL AND ESTIMATION USING A POLYNOMIAL STATE-SPACE STRUCTURE
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ABSTRACT

One of the major problems associated with the control of flexible structures is

the estimation of system states. Since the parameters of the structures are not

constant under varying loads and conditions, conventional fixed parameter state-

estimators can not be used to effectively estimate the states of the system. One

alternative is to use a state-estimator which adapts to the condition of the system.

One such estimator is the Kalman filter. This filter is a time-varying recursive

digital filter which is based upon a model of the system being measured. This filter

adapts the model according to the output of the system. Previously, the Kalman filter

has only been used in an off-line capacity due to the computation time required for

implementation. With recent advances in computer technology, it is becoming a viable

tool for use in the on-line environment. The following paper describes a distributed

Kalman filter implementation for fast estimation of the state of a flexible arm. A key

issue, is the sensor structure and initial work on a distributed sensor that could be

used with the Kalman filter is presented.

INTRODUCTION

The parameters of flexible structure systems are generally dynamic. They change

under varying load and environmental conditions. When there is a need to control such

dynamic systems, these parameters must be measured or estimated. These systems are

usually very complex and often more parameters are needed for control than can be

measured. The parameters which cannot be measured must therefore be estimated in some

manner.

With the rapid evolution of computers, the Kalman filter is becoming an excellent

tool for estimation of system parameters. Previously, this filter could only be used

in off-line applications such as filtering of laboratory data Brubaker. Now, it is

becoming useful in on-line environments for state estimation.

The Kalman filter is a time-varying digital filter which is based upon a model of

the system being studied. The filter uses signals from the system to adapt the model

and estimate system parameters. These parameters along with the measured signals can

then be used to control the system. A key issue in the use of parameter estimation is

the sensor distribution and use of appropriate sensor types. Along with this is the

data fusion issue from sensors to provide appropriate control information. Here we only

describe the estimation procedure with comments on the sensor issue. A block diagram

of the filter structure is shown in Fig. I for a single input system. For multiple

sensors, multiple filters could be deployed and data fusion done with filter outputs.

This work was supported by NASA Subcontract G-1926-1.
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KALMAN FILTER THEORY

The Kalman filter is a time-varying recursive digital filter which estimates the

states of a system from one or more sensor signals. The filter operates on time domain

signals using linear least squares estimation that utilizes all of the past data from

the output signals. This estimation can provide separation of signal components. These

components can be used to determine the states of the system. The Kalman filter can

also improve noise reduction on the signals under consideration [Brubaker].

The first step in the design of a Kalman filter is the choice of a linear or

linear$zed signal model that describes the signal or serves as an approximation to the

signal. One of the most flexible of these models is a polynomial. The input signal to

the filter (output from the system), z(t), is represented by a polynomial of order m.

At time t - nT, where T is the sampling period of the system, the state vector for the

system is given by

z (nT)

z

dz

dt

d mz

. t-nT

(I)

Here, the system is being represented in canonical state-space form with the components

of the state vector being the derivatives of the polynomial model. When a system is to

be represented in a different state-space form, a linear transformation can be performed

to change the state vector to the desired form.

To use the polynomial model for the Kalman filter, the state vector must be

redefined using a Taylor Series representation for each element of z(nT). The resulting
state vector is

x(nT)

z

r --

T m dz _

m! dtm
t-nT

(2)

The state of the system at t = (n+h)T can now be described in terms of the state at t=nT

by the relationship

x[ (n+h) T] -_ (h) x[nT] <3)
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where _[h] is the following (m+l) X (m+l) state transition matrix:

I h .. h m

0 1 .. mhm-I

• [h] = . . ..

• • • •

0 0 ,. 1

(4)

The filter is implemented by first producing forecasts of the estimate

x1(nT) - ff@(1)x[ (n-l) T] (5)

and covariance matrix

SI(nT) - #(1)S[(n-1)T]OT(1) + Q

at t = nT using the previous estimate, x[(n-l)T], and covariance matrix, S[(n-I)T].

These forecasts are obtained by using the state transition relationship given in (4).

The matrix Q is the covariance of the driving noise. It allows the designer to "fade"

the effects of past inputs. The covariance forecast is then used to calculate the

Kalman Gain Matrix,

K(nT) - S 1(nT) Mr[a 2 + MS I (nT) M r]-1 (7)

The term a 2 is the variance of the measurement noise. The matrix M is a row matrix

which relates the measurable state variables to the actual measurements. For this

filter, the measurements are assumed to be components of the state-vector z(Nt) given

in (i). Therefore, M relates the estimate vector x(Nt) given in (2) to the measured

components of z(Nt). The Kalman Gain Matrix is then used to obtain the covariance

estimate,

S(nT) - [I - K(nT)M]S 1(nT) (8)

and the state-vector estimate,

x(nT) - x I (nT) + K(nT) [y(nT) - Mx I (nT) ] (9)

In (9), the term y(nT) is the data measurement vector at t=Nt which consists of the

measured components of z(nT). Equations (I) through (9) are the basis for the Kalman

filter. A complete derivation for these equations can be found in many texts for

example, Liebelt and Meditch.
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KALMAN FILTER DESIGN

With the choice of a polynomial model for the input signal, the design of a Kalman

filter involves the determination of a few key parameters. These parameters are set

according to the system and design specifications.

The first group of parameters which must be determined are associated directly

with the properties of the system. The first is the sampling period, T. This period

is usually set according to the nyquist rate,

fs " __i h 2f m (I0)
T

where fm is the maximum frequency of the bandlimited input signal and fs is the

sampling frequency.

The second parameter is the variance of the sensor noise, o2 . This parameter is

a property only of the sensors which are employed. Another term which is determined

from the sensors which are utilized is the Data Measurement Vector. This is the number

of terms in the state vector of equation i which can be directly measured.

The remaining filter parameters are determined using both design and system

specifications. The order of the polynomial model must be set according to the sampling

period and the angular velocity of the input signal oscillations. The calculation time

of the filter is larger for higher orders. The order must be small enough to allow the

calculation time to be smaller than the sampling period. On the other hand, the order

must be large enough to allow the filter to track the input signal well.

The key design parameter of the Kalman filter is the covariance matrix of the

driving noise, Q. For this paper, the driving noise is assumed to be uncorrelated white

noise. This simplifies the matrix Q to a diagonal matrix. After testing different

forms for the Q matrix, little difference was found. Therefore, the matrix Q was taken

to be the identity matrix times a constant, f.

The constant f is known as the fading factor. This term determines how the filter

will handle past data. When f = O, the filter is simply an expanding memory filter.

All past data is used evenly to calculate the present estimate. This will cause the

variance of the estimate and its covariance matrix to decrease to zero as time

increases, but deterministic errors will become large. If the fading factor is greater

than zero, more emphasis is placed on the present sample than on past samples. Thus,

the past samples are faded from the filter's memory. Larger values of f cause past

samples to fade more quickly. The fading of past samples causes the Kalman filter to

have a much smaller deterministic error, but the variance of the estimate and its

covariance approach the values at the input.

One way to minimize the deterministic error associated with a small fading factor

is to periodically reinitialize the Kalman filter. This requires establishing a

relationship between the frequency of initialization and the fading factor. The fading

factor should be the minimum value for which the deterministic error just prior to

reinitialization is within specifications. This value will cause the Kalman filter to

provide maximum noise reduction while meeting deterministic error specifications.
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To reinitialize the Kalman filter, a nonrecursive filter is used. This filter

utilizes a window of the past samples to estimate the state vector and its covariance.

These parameters are then passed to the Kalman filter.

DESIGN EXAMPLE

The Kalman filter was tested in two separate operating conditions. The first was

with data acquired from the hub of the flexible arm at CSU. The second test was with

an eighth order model of the flexible arm. This test included the simulation of the

system with control in a closed-loop environment. A program has been developed which

allows the design and testing of these and other filter structures. The results of

these experiments are discussed in the following paragraphs.

The data acquired from the hub of the flexible arm was position information

sampled at a rate of i00 samples per second. A polynomial model of order 3 was required

to accurately represent the position of the hub. Since velocity information was not

available, a Data Measurement Vector of one was used. The variance of the sensor noise

was arbitrarily set at I0 -_. The filter was reinitialized every I00 samples, 1 second,

and a fading factor of 10 -9 was used.

The outputs of the filter are shown in Figs. 2 through 5. Figure 2 demonstrates

the ability of the filter to estimate the position signal. Figure 3 displays the

estimate of the velocity. Figures 4 and 5 show the estimates of the second and third

derivatives of the position signal. No actual data was available for the second and

third derivatives. Therefore, the accuracy of these estimates could not be determined.

The second test of the filter involved an eighth order simulation of the flexible

arm with the filter outputs used as control feedback. The simulation provided the

position of the tip as input to the filter. A third order polynomial model was used for

the Kalman filter. The variance of the sensor noise was taken to be i0 -_ and the fading

factor was 5xlO -12. The feedback control was implemented as simple proportional position

only negative feedback. The feedback gain was set to 2.5

The results of this simulation are shown in Figs. 6 through 9. Figure 6 shows a

comparison of the position signal before and after the Kalman filter. Figures 7 through

9 show the first, second and third derivatives of position.

FUTURE WORK

Future work on the Kalman filter consists of implementation issues. A good design

method has been set forward, but many implementation issues have not been addressed.

The major implementation problem comes with the selection of hardware to run the Kalman

filter. This hardware must consist of a microprocessor which is fast enough to meet the

sampling rate, but inexpensive enough to make its use feasible. Another major problem

comes in the sensors which will provide state information for the Kalman filter. These

sensors must be selected for each application such that they provide accurate

information with a low noise level. A final problem which must be addressed is a method

to download the Kalman filter program to the hardware. This downloading could be done

by the design program with the appropriate interfaces. After these problems have been

resolved, the Kalman filter will provide a very effective state estimator in many
applications.



A NEWSENSOR

Within the past few monthsour group has designedand performed initial tests on
a distributed fiber optic sensor. Here, the fiber is connectedto a flexible structure
over a onemeter length. Thefiber is excited with a milliwatt laser and the defraction
pattern out of the end is used to provide an estimate of displacement. Figures I0 and
Ii illustrate the results via changein the output pattern. For implementation a CCD
memorycould be used to store the pattern and subsequently the information is driven
into a computerwhere basic pattern recognition techniques are used to generate good
estimates of displacement. A well designed system can also be used to estimate
velocity. Within the context of this paper, a two-dimensionalKalmanfilter can be used
to estimate parameters. Note that in Figs. i0 and ii, black andwhite imagesare shown.
In a physical system color will be used.

CONCLUSIONS

An investigation has been started into the usefulness of the Kalmanfilter as a
state estimator in an on-line environment. Previously, the filter has been used
strictly in an off-line capacity to do data analysis. With the advancesin computing
speed, the filter is nowbecomingfeasible as a real-time state estimator.

A Kalman filter based on a polynomial state-space model has been tested on
flexible structure data. This filter hasproven to give excellent state-estimation and
noise reduction in such systems. Thepolynomial modelprovides for a very easy design
of the filter. Do to the ease of design, a program has been written to provide
assistance in the design process.

The Kalman filter design program provides a very straight forward design
methodology with an interactive graphics approach. This approach allows the designer

to see how well the filter works and the effects of changes in the design parameters.

When the program is combined with the appropriate hardware, a very effective state

estimation tool will become available for use in the real-time environment.
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Figure ]0. Fiber-Optic Output With Zero Beam Displacements
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SUMMARY

Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic

programming problems are presented. The computational method is valid for a general class of optimal

control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in

continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization

techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop

restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and

supercomputing hardware help alleviate Bellman's curse of dimensionality in dynamic programming

computations, by permitting the solution of larger multibody problems. Possible applications include

lumped flight dynamics models for uncertain environments, such as large scale and background random

aerospace fluctuations.

INTRODUCTION

The objective of this research is to provide a general, highly optimized, computational treatment of

stochastic optimal control applications in continuous time. Advanced computing techniques have been

implemented so that stochastic dynamic programming algorithms can be used to solve larger optimal

control problems than possible by ordinary computing methods. Optimization techniques will help alleviate

Bellman's curse of dimensionality, in that the computational and memory requirements grow exponentially

as the dimension of the state space increases, limiting the size of the control problem that can be

computed. Computer optimization techniques can help alleviate Bellman's curse by permitting larger, but

still hardware limited problems to be computed. Optimization consists of parallelization and vectorization

methods to enhance performance on advanced computers, such as parallel processors and vectorizing

supercomputers. Preliminary results for massively parallel processors are also presented.

General Markov random noise in continuous time consists of two kinds, Gaussian and Poisson.

Gaussian white noise, being continuous but nonsmooth, is useful for modeling background random

fluctuations, such as turbulence and moderate environmental variations. Poisson white noise (its frequency

spectrum is also flat like Gaussian noise), being discontinuous, is useful for modeling large random

fluctuations, such as shocks, collisions, unexpected external events and large environmental changes. Our

general feedback control approach combines the treatment of both linear and nonlinear (i.e., singular and

'This work was supported by the National Science Foundation Computational Mathematics Program under grant DMS-88-

06099 at the University of Illinois at Chicago, by the Argonne National Laboratory Advanced Computing Research Facility, by

the University of Illinois at Urbana National Center for Supercomputing Applications, and by the UIC Workshop Program on

Scientific Supercomputing.
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nonsingular) control through the use of small to moderate quadratic costs. The methods also handle

deterministic and stochastic control in the same code, making it convenient for checking the effects of

stochasticity on the application. Some actual applications are models of resources in an uncertain

environments [16], [13], [8].

The Markov, multibody dynamical system is illustrated in Figure 1 and is governed by the stochastic

differential equation (SDE):

dy(s) = F(y, s, u)ds + G(y, s)dW(s) + H(y, s)dP(s) , (1)

with initial value y(t) = x, 0 < t < s < tl, y(s) E _y, u E _, where y(s) is the m x 1 multibody state

vector at time s starting at time t, u = u(y, s) is the n × 1 feedback control vector, F is the m x 1

deterministic nonlinearity vector, W is the r-dimensional normalized Gaussian white noise vector, P is the

independent q-dimensional Poisson white noise vector with jump rate vector [Ai]q×l, G is an rn x r diffusion

coefficient array, and H is an m × q Poisson amplitude coefficient array. In a more general treatment, the

Poisson jump amplitude can also be random.

The control criterion is the optimal expected cost performance,

V*(x,t) = n_un [MEAN [V[y, s, u, P, W] ]y(t) = x]] ,
re.w)

(2)

where the random total cost is

V[y, t, u, P, W 1 ft tl: ds C(y(s), s, u(y(s), s)) , (3)

on the time horizon (t, tl). The instantaneous cost function C = C(x,t, u) is assumed to be at least a
quadratic function of the control,

C(x,t,u) = C0(x,t) + cr(x,t)u + _urC2(x,t)u. (4)

C2 is assumed to be positive definite, so that large controls are much more costly on a per unit basis. In

addition, the dynamics in (1) are assumed to be linear in the controls,

F(x,t,u) = F0(x,t)+ Fl(x,t)u, (5)

remaining nonlinear in the state variable x.

The Bellman functional PDE of dynamic programming (or Hamilton-Jacobi-BeUman Equation),

0V*

o = Ot +

+

OF*

Ot
+ F0 VV• + ½aCT(x,t): vvrv•

q

At" [ V*(x + I-It(x,t), t) - V*(x,t) ]
l=1

+ Co + (1V*- uR)Tc2u * ,
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follows from the generalized It5 chain rule for Markov SDEs as in [7] and [161. Here, U* is the optimal

feedback control computed by constraining the unconstrained or regular control,

uR(x,t) = -c;'(cl + Flvv*), (7)

to the control set D_,, under the assumption of positive definite quadratic costs. In general, the Bellman

equation (6) is nonlinear with discontinuous coefficients due to the quadratic last term,

(½U* - uR)Tc2u *, in (6) and due to the compact relationship between the constrained, optimal control

and the unconstrained, regular control,

V i (x, t) : min[gmax,i, max[Vmin,i, UR.i(x, t)l ], (8)

for i = 1 to n controls. Here, Umin is the minimum control constraint vector and Umax is the maximum.
,

As the constraint components are attained, the optimal control component Ui , changes from the regular

control component, Un.i, to components of the constraints, U,_i,,.i or Um_:..i, which in general are functions

v TM v"_ A_jB_j,of state and time. In (6), the symbol (:) denotes the scalar matrix product A : B = _-_i=1 _=_

assuming B is symmetric. It is important to note that the principal equation, the Bellman equation (6), is

an exact equation for the optimal expected value V* and does not involve any sampling approximations

such as the use of random number generators in simulations.

As the number of state variables, m, increases, the spatial dimension rises, and computational

difficulties are present that can compare to those of three-dimensional fluid dynamics computations. Thus

there is a great need to make use of advanced-architecture computers, to use parallelization as well as

vectorization, in order to solve larger state space systems. The Panel on Future Directions in Control

Theory [6] stresses the importance of making gains in such areas as nonlinear control, stochastic control,

optimal feedback control and computational methods for control. This paper is a report on our efforts to

treat all of the above mentioned areas combined from the point of view of computational control.

SYMBOLS

C, C0, C_, C2

DX, DT

F, F0, FI, FV

G

H, Hi

j,js,jv

m,M

n

P

q

t

t, tl,Tk
U

UR,U*

Um_, , Umaz

V,V.

W

x, X j,

cost coefficients (eq. (4))

state mesh increment, time increment (eq. (9))

nonlinearity function coefficients (eq. (5))

Gaussian noise amplitude matrix (eq. (1))

Poisson noise jump amplitude (eq. (1), (6))

Hamiltonian for Bellman Equation (eq. (6))

indices for state mesh points (eq. (9), (15), (18))

state dimension, number of mesh points for each state (eq. (1), (9))

control space dimension (eq. (1))

Poisson noise vector (eq. (1))

Poisson noise dimension (eq. (1))

Gaussian noise dimension (eq. (1))

forward time variable (eq. (1))

backward time variable, final time, discrete time (eq. (3), (9))

control vector (eq. (1))

regular control, optimal control (eq. (7), (8))

control constraint vectors (eq. (8))

total cost, optimal expected total cost (eq. (3), (2))

Gaussian noise vector (eq. (1))

initial state vector, discrete state (eq. (2), (9))



Y forward state variable (eq. (1))

component of Poisson jump rate vector (eq. (6))

THE BASIC COMPUTATIONAL PROCEDURE

The integration of the PDE in (6) is backward in time, because V* is specified finally at the final time

t = t! , rather than at the initial time. A summary of the discretization in state and backward time is

given below:

x _ Xj = [Xij,]m×l = [Xil + (ji - 1)'DXi]m×l,

j = [ji]m×l , whereji = 1 toMi , 'fori = ltom;

s _ Tk = t I - (k - 1).DT, fork = ltoK;

_j,k+ "V *(Xj,Tk) _ I_, k ; 7"/[V*](Xj,Tk+ ½) -----' ½ ,

where DXi is the mesh size for state i and DT is the step size in backward time.

(9)

The numerical algorithm is a modification of the predictor corrector, Crank Nicolson methods for

nonlinear parabolic PDEs in [5]. Modifications are made for control feedback, switch term optimization

and delay term calculations. Derivatives and Poisson induced differences are approximated with an

accuracy that is second order in the local truncation error 02(DXi), at all interior and boundary points.

Even though the Bellman equation (6) is a single PDE, the process of solving it not only produces the

optimal expected cost V*, but also the optimal expected feedback control law U*. This is because the

Bellman equation is a functional PDE, in which the computed regular control feeds back into the optimal

cost and the optimal cost feeds back into regular control through its gradient. The nonstandard part of the

algorithm is to decompose this tightly coupled analytical feedback system so that both the cost and the

control can be calculated by successive iterations, such that each successive approximation of one quantity

improves the next approximation of the other quantity. While our procedure may look superficially like a

standard application of finite differences, it is not due to the nonstandard control features mentioned

above. For these reasons, we are not aware of any other successful stochastic dynamic programming code

that treats anywhere near the generality of applications that we treat and with the advanced computing

techniques that we use, especially with regard to Poisson noise. Variations of this algorithm have been

successfully utilized in [16] and [8]. Quadrat and his co-workers [1] discuss several algorithms for stochastic

dynamic programming problems that admit stationary solutions, and describe an expert system for their

solution.

Prior to calculating the values, Tvj,k+l, at the new (k + 1) "t time step for k

values, Vj .k and I_ ,k-l, are assumed to be known, with Vj0 =- T_]I. The algorithm begins with an

convergence accelerating extrapolator (x) start:

v Cx) : ½(3. - .
j ,k+

= 1 to K-l, theold

The extrapolated values are use to calculate updated values of the gradient DV, the second order

derivatives DDV, the Poisson functional terms (V* evaluated at (x ÷ H)), the regular control UR, the

optimal feedback control U*, and the spatial functional _j,k+0.s of the Bellman equation. These

evaluations are used in the extrapolated predictor (xp) step:

(lO)

l/:(xP)
vj,k+ 1 = Vj, k + DT. !7-/(x)2 • 1 "

j ,k+ 5
(11)
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which are then used in the predictor evaluation (xpe) step:

v(xpe) 1 cv(xP)
1 = _x'j.k+l + TvJ,k) ' (12)

j ,k+

and continuing with other terms of the spatial functional 7-(. The evaluated predictions are used in the

corrector (zpec) step:

v(xpec, 7 + 1)
j,k+a = I_,k + DT • 7-/(xpe'7).1 (13)

j .k+

for 7 = 0 to 7maz until the stopping criterion is met, with corrector evaluation (zpece) step:

v(xpece,7 + 1) l¢t_(xpec, 7 + 1)
1 = 2x'j,k+l + l/].k). (14)

j .k+_

The stopping criterion for the corrections is formally derived from a comparison to a predictor corrector

convergence criterion for a linearized, constant coefficient PDE. A robust mesh selection method is used to

determine the stopping criterion, so that only a couple of corrections are needed, except at the first time

step. The proper selection of the time to state mesh ratio guarantees that the corrections for the

comparison equation converge, whether the Bellman equation is parabolic-like when the Gaussian noise is

present or hyperbolic-like when there is no Gaussian noise.

Current efforts are concentrated on implementing the code on the AUiant FX/8, Cray X-MP/48,

Cray 2S/4-128, and the Connection CM-2 for more general multi-state and multi-control applications. In

order to implement the code for arbitrary state space dimension, a more flexible data structure is needed

for the problem arrays, F, G and H, as well as for the solution arrays, V along with its derivatives and U.

The advantages of the algorithm is that it 1) permits the treatment of general continuous time

Markov noise or deterministic problems without noise in the same code, 2) maintains feedback control, 3)

permits the cheap control limit to linear singular control to be found from the same quadratic cost code,

and 4) produces very vectorizable and parallelizable code whose performance is described in the next
section.

ADVANCED SUPERCOMPUTER OPTIMIZATION

The code for the algorithm has been developed and tested on three advanced architecture machines,

the ACRF Alliant FX/8 vector multiprocessor at Argonne National Laboratory; the NCSA Cray X-MP/48

and the NCSA Cray 2S/4-128 at the University of Illinois in Urbana; the massively parallel Connection

Machine CM-2 at both the ACRF and NCSA. The Alliant FX/8, with its superb concurrent outer, vector

inner (COVI) parallelizing compiler, is mainly used to test for the paraUelization of the code. The Cray

X-MP/48, noted for its very fast pipelined processing unit, is used for the testing of small and moderate

size code (less than 1 MW, where MW denotes a megaword or one million words). As the number of states

grows, the problem size grows exponentially, we have to make use of the huge internal memory (up to 128

MW) of the Cray 2S/4-128 or large numbers of parallel processors on the Connection Machine CM-2.

The present code under testing has been obtained from the three-state, three-control modification

of Hanson's two-state, two-control resource model [8]. Modifications have been made to the present code so

that it can apply to arbitrary number of state variables and mesh points by just changing a few

parameters, numbers of state variables m and mesh points M.

Initial parallelization and vectorization of the algorithm were done by what might be called the
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"Machine Computational Model Method," i.e., tuning the code to optimizable constructs that are

automatically recognized by the compiler, with the Alliant FX/8 vector multiprocessor [2] in mind. All

inner double loops were reordered to fit the Alliant concurrent-outer, vector-inner (COVI) model. All

non-short single loops were made vector-concurrent. Short loops became scalar-concurrent only. Multiple

nested loops were reordered with the two largest loops innermost. A total of 37 out of 39 loops was

optimized for the two-state code, two-control model with Poisson noise. Detailed results are reported in [8],
[9] and [10].

The relative performance of column oriented versus row oriented code is discussed in [11].

Dongarra, Gustavson, and Karp [4] have demonstrated that loop reordering gives vector or supervector

performance for standard linear algebra loops on a Cray 1 type column oriented FORTRAN environment

with vector registers. However, for the stochastic dynamic programming application, the dominant loops

are non-standard linear algebra loops, so that the preference for column oriented loops is not a rule, as

demonstrated on the Alliant vector multiprocessor [11]. The present code under testing has up to four

states and controls, with Gaussian as well as Poisson noise. This code is a general modification of the
two-state, two-control model.

Vector Data Structure

In the original code, the data structure for the problem arrays, F and G, the solution arrays V, the

derivative arrays, and the control arrays U, depend on all the numerical node indices, js(is), for all state
variables. The resulting data structure takes the form:

F(is, js(1 ), js(2), - - -, js (rn)) (15)

for each state equation, is = 1 to m, with the nonlinearity function used as an example. If it is assumed

that there are a common number M = M1 = Ms ..... Mm of nodes per state, then is(is) = 1 to M

points for is = 1 to m states. As a consequence, the typically dominant loops for the computation of the

nonlinearity function F, the solution gradient DV, and similar arrays, are nested to a depth of at least

m + 1. A typical loop will take the form:

do 1 i= 1, m

do 1 jl= 1, M

do 1 jm = 1, M

1 F(i,jl,j2,...,jm) .......

This state size dependent loop nest depth level of m + 1 inhibits the development of general multibody

algorithms, especially when the state size m is incremented and the number of loops in each nest has to be

changed. Also, vectorization is inhibited for compilers that vectorize only the most inner loop. As the

number of states grows, the computational load will grow asymptotically like some multiple of

m" M rn = m . e raIn(M), (16)

i.e., the load grows exponentially in the number of states rn. The exponential growth in (16) is merely a

quantitative expression of Bellman's curse of dimensionality.

One way around this inhibiting structure is to use a vector data structure [12]:

FV(is,jv) (17)
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to replace the original hypercube type of data structure in (15), using the nonlinearity vector as an example,

such that all the numerical nodes are collected into a single vector indexed by the global state index jr,

where jv = 1 to M '_ over all state nodes.
m

jv = _-_(js(i) - 1), M i-1 + 1, (18)
i=1

in the the case that the state mesh size, Mi has a common value of M for all i.

Both the direct mapping from the original data structure to the vector data structure and the

inverse mapping are needed to compute the amplitude functions, F, G and H, as well as the derivatives of

V , because these quantities depend on the original formulation. The pseudo-inverse of the vector index in

(18) can be shown to permit the recovery of the individual state indices by way of integer arithmetic:
m

js(is;jv) = l + [jv-1- _" (js(i;jv) - l). Mi-1]/M i'-1, (19)
i=is+ l

recursively, for is = m to 1, by back substitution, with _i_,_+1 ai = 0, as long as each state has the same

number of discrete nodes M. The vector data structure of (17) to (19) results in major do loop nests of the

order of 1 to 2, rather than order of m + 1.

A typical vector data structure loop has the form

do 2 i = 1, m ! parallel loop.

do 2 jv = 1, M * ,m ! vector loop.

2 FV(i,jv) .......

resulting in collapsing the loop nest depth from m + 1 to a depth 2, independent of the number of states m.

This is analogous to the automatic compiler technique of loop collapsing on the Alliant for simple loops.

Table I shows the performance of the code for m = 3 states and M = 16 nodes per state on the

Alliant FX/8 at Argonne National Laboratory's ACRF. implemented and run on vector multiprocessors

which will be discussed in the following two subsections.

Parallelization in Alliant FX/8

When loop 2 above is executed on multiprocessors such as the Alliant FX/8, due to the COVI

(concurrent-outer, vector-inner) compiler optimization scheme, the/-loop will run in parallel while the

jr-loop is vectorized. For machines with such architecture, the gain in speed is achieved through the full

exploitation of all its processors. If the number states m is less than the maximum number of processors

(the maximum number of processors is eight on the Alliant), performance ceases to improve beyond rn

processors as demonstrated in Table I when the number of processors p is greater than three. The speedup

Sp,2 = T1,2/Tp,: for loop 2 also levels off at roughly 2.9 in this table starting at p = 3. This means

degradation in efficiency because a large proportion of processors available are sitting idle.

One simple modification of the loop structure will solve the problem by parallelizing and

vectorizing the entire loop nest, further enhancing the performance. This is illustrated by the restructuring

of loop 2 by a compiler directive in loop 3 below.

do 3 jv = 1, M **m ! vector-concurrent loop.

CVDSL NOVECTOR
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do 3 i = I, rn ! scalar loop.

FV(i,jv) .......

Due to the flexibility of the optimization scheme of the FX Fortran compiler, we can choose whichever

loop we want to parallehze and vectorize by inserting suitable compiler directives, such as CVDSL

NOVECTOR in loop 3. The i-loop is moved innermost and is forced to run in Scalar Mode by inserting a
CVDSL NOVECTOR directive. The modification has two effects:

i. the outer jr-loop is forced to run in Vector-Concurrent Mode, hence, full parallehzation of the entire

work load can be achieved through self-scheduling by the compiler;

ii. moving the /-loop inner-most increases the chunk or grain size of each iteration, while overhead for

parallelization and vectorization is lessened.

The modification leads to an improvement of 46% of computing time for the code running by 8
processors in the Alliant.

Table II shows the performance of the modified code, for rn = 3 states and M = 16 points per

state, on the Alliant FX/8 at Argonne National Laboratory's ACRF. The speedup, also given in the table,

reaches a good value over six times executing on all eight Alliant processors using the form of loop 3. The

last column compares the results of using loops 2 and 3 for the main stochastic dynamic programming

loops and shows that the loop 3 form outperforms the loop 2 form by 1.85 times on all eight processors.

Thus, the restructured loop 3 gives better load balancing that the pure vector data structure of loop 2.

Parallelization on the Cray 2

ParaUelization in the Cray 2S/4-128 is done through multitasking. Basically, the compiler follows the

COVI optimization scheme that the outer loop will run in parallel and inner loop is vectorized. In a

multi-user environment such as that in NCSA, improvement through multitasking is hard to measure

unless the code is run in a dedicated machine. Therefore, performance utihties such as Job Accounting (ja),

are used to get an approximate measure of the CPU time and speed-up obtained.

Table III shows the performance of multitasking on the NCSA Cray 2S/4-128. Note that the

timings grow drastically as either the state dimension m and the common mesh size M increase.

Performance on the Connection Machine

As the number of states increase, the performance obtained from Cray shows an exponential growth as

in Table IV. Thus for a larger size problem, another solution would be to implement the problem on a

massively parallel computer system. The Connection Machine CM-2 at the NCSA has 32K or 32,768 bit

processors and one floating point processor for every 32 bit processors.

The preliminary results obtained from the Connection Machine are shown in Table IV. We

implemented the problem in the Fortran 8X language with array notation extensions and two dimension

data structure. Also the CM-2 directives CMF$LAYOUT and CMFSALIGN overlay different size of

arrays, in order to reduce the internal communication time and hence improve the performance. The

program is compiled with -O option and run with at most 32K data processors in single precision. The

preliminary results on the CM-2 indicate that when the problem size increases, the Connection Machine

computes the problem with relatively small increase in the execution time. For instance, for the case n.x=4

states, when mesh size per state increases from M=8 to M=16, the execution time increases by about 2.1

times for Real Time (sum of CM-2 time and the time on the front-end computer) and 5.8 times for CM
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Time in Table IV, while on the Cray the time increases by about 23.8 times, according to Table III, which

is much larger than for the CM-2.

It must be noted that the Cray and the CM-2 have different computational structures and our current

Fortran 8X program is translated from our Cray algorithm and data structure. A further goal will be to

modify the algorithm and data structure so that the performance on the CM-2 will be competitive with the

performance on the Crays in an absolute sense.

Computation for Boundary Points

The computation of the solution gradient D V and the array of second derivatives DD V, which is

carried out in the subroutine GETDV, requires different algorithms for the interior nodes and the boundary

nodes. Due to the complexity and generality of the underlying stochastic dynamical system, the boundary

values cannot be specified in general, but must be calculated from the Bellman Equation (6) itself, except

for the most trivial boundaries and processes. Use of the Bellman Equation at the boundaries, makes the

algorithm segments for updating the boundary values quite different from the interior values in order to

maintain the same order of error as at the interior points, i.e., to avoid numerical pollution of the order,

O(DX) 2, at the interior points. When the vector data structure is used, the boundary nodes (js(is) = 1

and M) are scattered throughout the data arrays FV(is,jv). Due to this nonuniform distribution of the

boundary nodes, a time-consuming nested if-then-else loop has to be used in the original GETDV, which

greatly degrades the computation speed. For the current testing code with m = 3 and M = 16, GETDV

takes 34% of the running time in the Alhant runs and 30% in the Cray X-MP runs. One way to alleviate

this degradation is by homogeneous global computation and then separate recorrection for the boundary

points.

Since the proportion of boundary nodes is generally small compare with internal nodes (2/M for

M mesh points per state) and all of them can be extracted exphcitly from the inverse vector index (19).

Hence, we can pass the whole data array through a homogeneous computation first, taking all points to be

internal nodes, then recorrect the boundary nodes outside the main loop. Artificial or redundant points are

added to prevent overwriting valid data, and it will be seen the resulting small addition to the memory by

the use of artificial points is worth the benefit in improved performance.

Table V compares the performance for the old and new forms of GETDV for different mesh

points M run on the CR.AY X-MP. A faster run time for the new version of 1.45 times the old version and

a saving of up to 31% of running time is exhibited.

MEMORY REQUIREMENTS

Since the memory requirements grows exponentially with increases in the state variable from

Bellman's curse of dimensionality (16), a machine with large internal memory is needed for the large state

variable case. For the sake of a uniform comparison, all the testings were carried out on the NCSA Cray

2S/4-128, which possesses a huge internal memory (up to 128 MW). Table VI summarizes the memory

requirements for different test codes. Also in Table VI, the memory in words is compared to the order of

magnitude of the Bellman's curse of dimensionality term in (16). The approximate asymptote for large

state dimensions m or very fine state meshes M is about 12, which gives the effective number of major

loops of nest depth m + 1. The CPU time measurements in Table III have similar exponential growth

characteristics to that of memory requirements.

CONCLUSIONS

Stochastic dynamic programming can be optimized for the a moderate and perhaps larger number of

state variables using a vector multiprocessor. Loop collapsing using a vector data structure, compiler
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directives making possible more efficient loop reordering, and homogeneous global computation making

boundary value computation more efficient, all help obtain superior optimization of the stochastic dynamic

programming code. Parallelization, vectorization, large memories, and other supercomputing features are

important in solving larger state space problems In order to handle a large number of state variables, a

large number of parallel processors with extremely large memory would be desirable, but BelLman's curse

of dimensionality appears to very much weakened. Computation with massively parallel processors, like the

Connection Machine CM-2, is still preliminary, but shows promise for larger state spaces. These techniques

are generally applicable to other vector and parallel computers. Our general code is essentially valid for

general Markov noise in continuous time, feedback control, nonlinear control and the cheap control limit.
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Table I: Timings on the AUiant with vector data structure

for loop 2 with 3 states and 16 nodes per state.

Number of

Processors

P

User CPU

Time (seconds)

Tp,2

83.68

56.23

30.07

29.24

29.20

29.24

28.77

28.64

Speedup

Sp,2

TI,_ / Tp,2

1.00

1.49

2.78

2.86

2.87

2.86

2.91

2.92

Table II: Timings on the Alliant with order and directive modified loops

for loop 3 with 3 states and 16 nodes per state.

Number of

Processors

P

User CPU

Time (seconds)

Tv.3

95.32

49.00

34.61

25.74

22.66

18.82

17.78

15.44

Speedup

Sp,3

TI.s / Tv,3

1.00

1.95

2.75

3.70

4.21

5.06

5.36

6.17

Improvement
Ratio

Tv,2 / Tp,3

0.88

1.15

0.87

1.14

1.29

1.55

1.62

1.85
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Table III: CPU time (seconds) for different state dimensions

and different mesh sizes on the Cray 2S/4-128 with Multitasking.

State

Variables

/72

Mesh Points M

16 32

T Sp T Sp

0.130 3.66 i 0.685 3.54

1.169 2.86 [ 24.626 1.5460.151 1.73 2338.290 2.10

8

T Sp

0.033 1.60

0.10_. 3.53

2.52_ 3.14

Table IV: CPU time (seconds) for different state dimensions
and different mesh sizes on the Connection Machine CM-2 (CM Time)

and front-end (Real Time).

State Mesh Points M

Variables 8 16 32

rn Real Time CM Time Real Time CM Time Real Time CM Time

3 10.97

4 36.02

2.79 21.51 5.83 52.53 30.14

11.42 76.01 66.41 -- --

Table V: Performance comparison of the old and new forms of GETDV

on the Cray X-MP/48 for loop 3 with 3 states.

Number of

Mesh Points

M

8

16

24

32

40

User CPU Time (seconds)

Old GETDV

Told

0.142

2.093

10.378

32.725

78.510

New GETDV

0.098

1.523

7.679

24.234

58.467

Improvement
Ratio

Toza/T,_e_,

1.45

1.37

1.35

1.35

1.34

Per Cent

Savings

100(1 - Tne,_,/Toid)

31.

27.

26.

26.

26.
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Table VI: Memory requirements for different state dimensions

and different mesh sizes on the Cray 2S/4-128.

State

Variables

m

Mesh Points M Mesh Points M

8 1161 32 8 I 18 132
Memory (MW) Words/m • M"

0.13 0.14 0.16 1000. 270. 78.

0.15 0.28 1.30 98. 23. 13.

0.34 3.28 50.23 21. 13. [ 12.

STATES

CONTROLS I
MULTIBODY DYNAMICS

[F_(y,u,s)]m×l Nonlinearities

[Wi(s)]rx 1 Gaussian Noise

[Pi(s)]qxl Poisson Noise

Feedback in time dt /z

Figure 1: The stochastic multibody system with feedback.
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A Fast, Reliable Algorithm for Computing Frequency Responses of

State Space Models

Matt Wette

Jet Propulsion Laboratory, Ca.ltech

Abstract

Computation of frequency responses for large or-

der systems described by time-invariant state space
systems often provides a bottleneck in control sys-

tem analysis. In this talk we show that banding the
A-matrix in the state space model can effectivly re-

duce the computation time for such systems while

maintaining reliability in the results produced.

Introduction to the Problem

Consider the following realization of some transfer

function G(jw):

i.(t) = Ax(t) + B_L(t), y(t) = Cx(t) + Du(t)

where x E IRn, u(t) E IRm, and y(t) E ]Rp. The re-
lationship of the realization to the transfer function

is given by

G(jw) = C(jwI-A)-IB + D

In control system design the computation of the

frequency response play's an important role in

frequency-based design methods, t!'o1" medium
sized problems the order of x(t) may be in the hun-
dreds while G(jcak) must be computed for hundreds
of values of "_k. It has not been uncommon for a

frequency response calculation to require hours of
CPU time. Thus, efficient and reliable algorithms

for this computation are needed for handling large

order systems.

Typical Approach

A typical approach to computing frequency re-

sponses for state space systems is to first perform a
state transformation on the realization to bring the
A-matrix into some reduced form and then solve

the appropriate system of linear equations for each

frequency point.

Computational Issues

The above algorithm for computing frequency re-

sponses involves two issues: efficiency and sensitiv-
ity. A potential bottleneck in computing frequency
responses is the solution of (jaakI-A)X = B for X.

Efficient computation is accomt)lished by reducing
A to some form A which allows efficient sohltion of

the al)ove equation. Another issue is that of sen-

sitivity. The transformation process takes place in
finite precision arithmetic and hence will change, to

some degree, the properties of the transfer function
which the realization represents. It is important,

therefore, to consider the numerical properties of
the transformation.

Sensitivity of the Transformation

The effect of numerical computations in the pre-
sense of finite I)recision arithmetic can be treated

in terms of sensitivity of the coefficient matrices.
Tranformations which do not increase sensitivity to
state transformations are termed well condiHoncd.

Ill-conditioned transformations can and usually do

significantly increase the sensitivity of the coeffi-
cient matrices to small perturbations. Presense of

this sensitivity is often an indication of a numeri-
cally unstable algorithm.

Efficient Solutions to (j_I- A)X = B

As stated, efficient solution of the above equation is

usually accomt)lished by' reducing A to some spe-
cial form. Consider the case where m = 1 (i.e.,
B E IR"×1). Then for A in general form, solution
of the equation requires O(n a) floating t)oint op-

erations (or flops). For .+t in IIessenberg form or

Schur form, where :i is "imarly" ut)I)er triangular,

solution of the equation requires O(n 2) flops. The
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transformation to produce these forms is known
to be extremely well-conditioned. For ,zi in diago-

nal form or Jordan canonical form, solution of the

equation requires O(n) flops. However, the trans-
formation producing these forms may be very ill-
conditioned, leading to a reduced form which no

longer accurately represents the tranfer function
of interest. A good compromise is to seek some

compromise between the upper-triangular and di-

a_gonal forms. This leads reduced forms in which
A is upper-triangular and block diagonal or upper-
triangular and banded. We feel the banded form is

a better strategy since it is a simpler structure to
work with. The banded matrix is characterized by

its order and bandwidth; the block diagonal form
is characterized by order, block sizes, and block or-

der. Due to the simpler structure of the banded
matrix, algorithms based on banded matrices can

be adopted to vector hardware architectures in a
nicer way.

A New Banding Algorithm

The new banding algorithm uses several steps.
First the matrix A is reduced to real Schur, or

quasi-upper-triangular, form As. Then an order-

ing algorithm is applied to order the eigenvalues
appearing on the diagonal of A2 in a way that will

aid the next step in producing a small bandwidth.
The transformations associated with the first two

processes is very well conditioned. The third step

involves examining the properties of the eigenval-
ues to determine a "good" bandwidth a priori. A
"good" bandwidth is one for which the condition
number of T is small. Next the matrix is reduced

to banded form, Ab, using a series of operations

to eliminate off diagonal elements. The operations
are accumulated in a matrix T. If T is found to

be ill-conditioned, then the tolerance for Step 3
is tighned and Steps 3 and 4 are repeated. Fi-

nally, the matrix Ab is brought to complex, upper-
triangular, banded form using a series of Givens
transformations. We note that the transformations

used in Step 4 are scaled to provide reduction in
their condition numbers.

An Illustration

The figure shown illustrates the banding algorithm.

The first operation shows the effect of bringing the

system to Schur form. After the matrix has been

brought to Schur form, the matrix is analyzed to
determine a "good" bandwidth. Here we choose
a bandwidth of 2. The second set of operations

shows how the algorithm reduces a diagonal of the
matrix. The third set of operations shows how the

remaining diagonals are eliminated to produce the
final upper-triangular, banded matrix.

Test Case

The algorithm described has been coded into For-
tran and installed into our Pro-Matlab implemen-

tation using the Pro-Matlab MEX facility. We
chose as a test set a set of single input, single

output systems with state order ranging from 20
to 80. Matrix coefficients were generated from a

random number generator. For each case we com-
puted 200 frequency points. The table shows times
for the Pro-Matlab bode function versus times for

our bodeq function. As one can see, the new al-

gorithm reduced the computation time from 75 to
88 percent.

Extensions and Future Work

The algorithm has also been applied to time simu-
lation of linear, time-invariant systems. The band-

ing strategy and algorithm could be extended to
generalized state space systems. In this case, we
would band the A and E matrices simultaneously.

Another possible area of future work would be pro-
duction of better banding algorthms. The current
algorithm is bases on solution of Sylvester equa-

tions and has a limitation: the algorithm cannot
band systems well when all eigenvalues are very

closely spaced. It should be possible to band these
matrices using different algorithms.

Summary

In summary, we have developed a new algorithm
for computing frequency responses of state space
models. In this development, we have taken into

account the two prime computational issues: effi-
ciency and sensitivity. We showed that the algo-
rithms worked on a test problem and was able to

reduce computational time considerable without a
notable cost in accuracy. Finally, we proposed that

the banding strategy may provide fllrther applica-

tion in control system design.
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Introduction to the Problem

Consider a transfer function G(j_) with state space realization given by

_(_) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

where u(t) E ]R m, x(t) E E_,n, and y(t) E ]R p.

G(j_) is associated with {A, B, C, D} through

G(jw) = C(j_zI- A)-]B + D

Problem: desire G(jwk) for many (hundreds) of values of flz k

where n < 200 (medium order systems).

JPL

Typical Approach

1 Transform the system realization:

{A,B,C,D} _ {]4,/),C',/)} := {T-1AT, T-1B, CT, D}

2 For each _Jk do

a) solve (jwkl - .4)..\" ----/_ for .\r

b) com pute G(j_ k ) = C.\_ + b

Compuatational Issues

• Solution of (j_kI - fi)X =/_ must be efficient.
This is usually the limiting factor.

• Given the presence of finite precision arithmetic

{.4,/_, _7, D} must be an accurate realization of G(joa).
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Sensitivity of the Transformation

Consider

{A+AA, B+AB, C+AC, D+AD} _ {A+A.)i,/_+A/9, C'+AC',D+AD}

Then we have

where

IIA_'4It IIAAI[,_(T)-2 II_Alt < < ,_(T)2
IIAll- II--_ - IIAII

,_(T)-_ IIz_BIt < It_DII < ,_(T)II_BII
IlSll- IlO-_- IlSll

_(r)-i II_Cll IIA_II IIACll
IlCll < = <_(T)-IICll- IIcll

_(T) := IITIIIIT-III and I1 II is some consistent norm.

JPL

Efficient Solutions to (j_kI- _4)X =

• A a general matrix =_ O(n 3) flops/a; k

• /I an upper Hessenberg or Schur matrix :=_ C9(n 2) flops/w k

• A a matrix in diagonal form =;, O(n) flops/w k

• A a matrix in Jordan canonical form ==_ O(n) flops/w k

• A a block-diagonal matrix ==_ O(n l) flops/wk, where 1 < l < 2

• Jt a banded matrix _ O(n • bw) flops/wit where bw is the bandwidth, 0 < bw < n
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A New Banding Algorithm

Given a full general A matrix, produce A b where A b is upper triangular and banded.

The algorithm is essentially

1 Reduce A to upper real Schur form, As

2 Order the eigenvalues appearing on diagonal blocks of As to produce Ao

3 Analyze Ao to determine a "good" bandwidth (to make K(T) small)

4 Uses an algorithm based on solving Sylvester equations to bancI Ao, producing A b

5 Convert the quasi-upper triangular matrix A b to complex, upper triangular form.

Step 4 uses transformations of the form

,o0o0;]Ii°°°i]0 1 0 xi, j 0 d 2 0 0
0 0 I 0 0 I 0
0 0 0 1 0 0 d4
0 0 0 0 0 0 0

JIlL

An Illustration

X X X X

X X X X

X X X X

X X X X

X X X X
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X X X X X

0 x x x x
0 0 x x x
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0 x x x x
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0 0 0 0 x

X

0
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0
0
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x x ® x
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T2,4__3,5  xox ]0 x x 0 x
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0 0 0 0

0 x x 0 ® 0 x x
0 0 x x _ 0 0 x
0 0 0 x 0 0 0
0 0 0 0 0 0 0

0
x

x

0

X

0
0
0
0

x 0 0 0
x x 0 0
0 x x 0
0 0 x x
0 0 0 x
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Test Case

Single-Input, Single-Output Model with Random Coefficients

Pro-Matlab bode function versus banded bodeq function

pts. n

200 20
200 30
200 40
200 50
200 60
200 70
200 80

bode bodeq

(sec) (sec)

39.9 4.8
81.1 10.6

139.8 24.0
211.7 41.6
300.6 64.8
407.7 .104.6
527.1 135.1

bw _(T)

3 250
3 350

13 45
17 38
20 66
31 27
32 67

Reduction in time from 75% to 88%

JPL

Extensions and Future Work

• Application to time simulation of {A,B,C,D}

• Application to extended (or generalized) models:

ES: = Ax + Bu, y = Cx + Du

• Better banding algorithms: Banding strategy has good potential but current algorithm
has some limitations.
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Summary

• Developed new algorithm for computing frequency responses of state space systems.

• The algorithm provides a method for trading off the two computational issues at hand:

sensitivity and efficiency.

• The algorithm was shown to provide large saving in computational time on a set of test
problems.

• The strategy has some potential for other applications on medium order models.
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COUPLED RICCATI EQUATIONS FOR
COMPLEX PLANE CONSTRAINT

KRISTIN M. STRONG AND JOHN R. SESAK

Lockheed Missiles and Space Co., Inc.
Sunnyvale, Calif. 94089-3504

ABSTRACT

A new LQG design method is presented which provides prescribed
imaginary-axis pole placement for optimal control and estimation systems.

This procedure contributes another degree of design freedom to flexible
spacecraft control: Current design methods which interject modal damping
into the system tend to have little affect on modal frequencies, i.e. they
predictably shift open-loop plant poles horizontally in the complex plane to

form the closed-loop controller or estimator pole constellation, but make little
provision for vertical (imaginary-axis) pole shifts. Imaginary-axis shifts
which reduce the closed-loop modal frequencies (the bandwidth) are desirable

since they reduce the sensitivity of the system to noise disturbances. The new
method drives the closed-loop modal frequencies to predictable (specified)

levels--frequencies as low as zero rad/sec (real-axis pole placement) can be
achieved. The design procedure works through rotational and translational
destabilizations of the plant, and a coupling of two independently-solved

algebraic Riccati equations through a structured state-weighting matrix. Two
new concepts, gain transference and Q-equivalency, are introduced and

employed in the design process.

1. INTRODUCTION

Multi-input, multi-output

systems, such as those encountered
in flexible spacecraft control, are
often approached with modern

optimal control techniques which
conveniently generate closed-loop

system gain matrices for simultan-
eous multi-loop closures. However,
modern optimal control, as

presented in most textbooks, is not a
complete control system design
methodology. The major problems

of translating control system
performance requirements, band-

width constraints, and compensator
robustness constraints into the

performance index have not been
fully developed [1]. The result is a

control system design methodology
that is iterative and empirical. An

approach to solving these problems

and de-empiricizing the design
process is to use structured
performance index (SPI) con-

straints [2]. SPI constraints may be
defined as structured performance
index weighting matrices which

constrain the weighted variables to
approach desired predefined
directions and values in the state

space as the weighting matrix

entries approach infinity. This is
in contrast to generalized con-
straints for which the weighted
variables approach zero as the

weighting matrix entries approach
infinity. To employ structured

constraints, and avoid the applica-
tion of generalized constraints, the
weighting matrices for the SPI must

be less than full rank. The poten-
tial usefulness of the SPI approach

is apparent: An appropriately-
structured performance index can
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drive state variables in predictable
directions thereby achieving a

desired performance and bandwidth
objective. SPI's can provide a non-
empirical means of constraining
the controller, estimator, and

compensator dynamics--the latter is

critical for closed-loop system
robustness.

j o_

¢7;

Figure 1. Design Objective."
Complex Plane Constraint

The overall design objective
for the controller/estimator utiliz-

ing the SPI approach is illustrated

in Fig. 1: The gain matrices genera-
ted through the SPI translate the
open-loop poles to some prescribed
closed-loop boundary in the com-

plex plane. Similarly the compen-
sation dynamics are constrained to

reduce closed-loop system sensitivi-
ty. Note that to achieve this

objective, two degree-of-freedom
control is required over each
controlled mode, i.e. poles require
movement in two dimensions in the

complex plane, both horizontally
(along the real-axis) and vertically
(along the imaginary-axis).

In the next section we review

SPI design methods for prescribed

real-axis constraint in the optimal
control, estimation, and

compensation systems, and

introduce a coupled Riccati
equation design technique for

prescribed imaginary-axis
constraint.

2. SPI DESIGN METHODS

Currently a well-known
performance index exists for
prescribed real-axis pole

translations in the optimal
controller and estimator systems [1]:

In the "alpha-shift" technique
shown in Fig. 2, the standard Linear
Quadratic Gaussian (LQG)

performance index is augmented
with an exponential weighting.
This exponential weighting
guarantees that the quadratic terms

in the performance index decay
with at least a rate of 2ct so that the

performance index remains finite
over the infinite interval. The

result is a guaranteed stability
margin--all closed-loop poles lie to
the left of the -2a-line in the

complex plane.

The design procedure with
the alpha-shift technique is

straight-forward: [+_tI] is appended
to the nominal plant dynamics, A.
This tends to destabilize the plant.

Optimal control theory is applied

PERFORMANCE INDEX

-- fo 2c_t
J -- e [xTQx+ uTR U] dl ( 1 )

ORIGINAL DYNAMICS

x = Ax + Bu (2)

DAMPED DYNAMICS

= [A +c¢ I] x+ Bu 13)

L Destabilized Plant

OLLINE

X I

Xxl

I
I

xl
xX I

I
I

j (o

Figure 2. The Alpha-Shift Technique Provides a Prescribed
Real-Axis Pole Translations ]Anderson & Moore]

8o



and state feedback gains are

generated for the destabilized plant,
characterized by [A+ctI], which are

guaranteed to stabilize it. When
these gains are applied to the

nominal plant, A, the closed-loop
poles have real parts of -2¢t. This
technique provides horizontal

(real-axis) translation of the plant
poles from their open to closed-loop
positions.

For the compensator,
predictable real-axis pole

translations are also possible
through indirect SPI design
techniques which structure control
and observation constraints [3].
These constraints tend to normalize

the control and observation effort

thereby providing indirect control
over compensator poles, bandwidth,
and closed-loop singular values.

Prescribed imaginary-axis
pole translations in the optimal
control and estimation systems are

the focus of this paper: SPI design
techniques are presented which
drive the modal frequencies of the

closed-loop system to desired levels.
Conceptually, prescribed

imaginary-axis pole placement may
be considered to be composed of a 90

degree rotation, a vertical
translation, and a stabilization of

the open-loop plant poles as shown
in Fig. 3. Stabilization is achieved

by generating a stabilization matrix
for the plant in rotated space and

applying it to a standard alpha-shift

design through a SPI. Using the
stabilization matrix from one

optimal design process and

applying it to another couples two
algebraic Riccati equations (ARE's)
together.

The next section introduces

two key concepts, gain
transference and Q-equivalency,
that are critical to the development

of the SPI for Riccati equation
coupling. This is followed by an
outline of the actual design steps

required for prescribed imaginary-
axis pole placement.

3. DESIGN PROCEDURE:
PRESCRIBED IMAGINARY-
AXIS POLE PLACEMENT

The design procedure for
prescribed imaginary-axis pole
placement employs a SPI that

couples two ARE's together. Gain
transference and Q-equivalency are
important to understanding the
development of this SPI.

Gain transference involves

designing optimal gains for one
plant and applying them to

another, indirectly-related, plant.
As shown in Fig. 4, optimal

regulator theory is applied to
system 1, generating optimal gains

-R-IBTp 1. A closed-loop state feed-

back system is formed for system 2
with these gains. (Note that system

I

E

ff 2 : = :: : : I_ o

I) Rotation 2) gertlcdll TrmnJImt_on 3) StlbilizRtian

Figure 3. Conceptual Development: Prescribed Imaginary-Axis Pole Placement
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Optimal
System 1 Regulator

;(= Alx + Blu

Algebraic Riccati Equation State Feedback

ATpI+p/_,_P,B,R-IB'_x+Q=O _ u=-R-IB, P,x

System 2

x=A2x+Blu
Gain Transference from System 1

to form Closed-Loop for System 2

Closed-Loop System

x=A_x -BIR-IBTPIx
• -I T

x= [A2--B1R BIP 1 ]x

Figure 4. Gain Transference Theory

2 has identical input vectors as

system 1.) The optimal gains

generated for system 1 have been
transferred to system 2 to form the

closed-loop system.

The utility of gain
transference lies in its harmonic-

restructuring capability. The
harmonic structure of the closed-

loop system [A2-BIR-IB Tp1 1] can be

strongly influenced by the

harmonic structure of A 1. In the

design procedure for prescribed

imaginary-axis pole placement,

optimal gains, PI' are generated for

the plant in a rotated space, AI -

When these gains are transferred to

the nominal plant, A 2, for state

feedback, the closed-loop system
takes on the harmonic characteris-

tics of the plant in a rotated space.
The state feedback transforms the

nominal plant to rotational space--a

key step in achieving prescribed
imaginary-axis pole placement.

Q-equivalency, the other
concept central to the design

procedure, involves expanding and
collecting terms in an ARE to

indirectly generate a state-
weighting matrix. An example of
the concept is shown in Eq. 1 for
the ARE employed in the alpha-

shift technique.

(A+aI)Tp+P(A+ctI) - PBR-1BTp + Q = 0

ATp + PA - PBR-1BTp + 2otIP = 0

Qeq = 2ctlP

= _ (ATp+pA_PBR-1BTp) (1)

The alpha terms are

expanded and collected to form a Q-
equivalent matrix equal to 2ctlP. In

a SPl, Qeq is a state-weighting ma-
trix that will generate the same

optimal gains for the nominal
plant, as those generated through
the ARE for the alpha-shifted plant.

This concept is used in the design
procedure to couple two ARE's

together: A Qeq matrix for the ARE
in rotational space is used as the

state-weighting matrix for an ARE
in translational (alpha-shifted)

space.

An overview of the actual

design steps that employ the

concepts of gain transference and
Q-equivalency are illustrated in Fig.
5 and described below:

1) Rotational Plant Destabilization.
A simple matrix transformation

of the plant rotates poles
circularly from their open-loop
positions to the real-axis. This
removes all harmonic compon-

ents from the rotated plant

dynamics. Half of the rotated
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Open-LoopRant 1)Rotetiona/ Ptant-Oestabilization 2) Stabilization

m

iii o

DoublePoles,/ 3) PrescribedImaginary-Axis
Pole Plecemonl

Figure 5. The Three Design Steps for Imaginary-Axis Pole Placement

plant poles in this space are
unstable.

2) Rotational Plant Stabilization. A
stabilization matrix is generated

for the rotationally-destabilized
plant through a SPI using
standard optimal regulator

design methods. Unstable right-

hand-plane (RHP) poles at {+tol'

+co 2 ..... +tOn} are moved to the left-

hand-plane (LHP) to positions of

{-C°l' -0)2 ..... -ton }, respectively.

The stabilization matrix does not

affect the stable LHP poles at {-

co 1' -°)2 ..... -tOn }" The resulting

closed-loop system has double

poles at each modal frequency
in the LHP.

3) Prescribed Imaginary-Axis Pole
Placement. The stabilization

matrix generated for the

rotationally-destabilized plant is
used in a SPI to transform an

alpha-shift design to rotational
space. The value of ct determines
the closed-loop modal frequen-

cies, i.e. et prescribes the amount
of imaginary-axis pole transla-
tion from the real-axis.

We now present details of the

prescribed imaginary-axis pole
placement design procedure for

optimal control and estimation
systems. The three steps outlined

above are expanded and applied to a
low-order system to illustrate their

effects. The complete design

procedure is then developed and its
application to flexible spacecraft
control is illustrated in a numerical

example.

DESIGN STEP 1: Rotational
Plant-Destabilization

To introduce rotational plant-
destabilization we compare it

graphically to the alpha-shift
technique. As shown in Fig. 6,
alpha-shifted plant-destabilization

is accomplished via a horizontal
translation of the poles into the

right-half of the complex plane.
Rotational plant destabilization
occurs with circular rotations of

the open-loop poles to the real-axis.

ALPHA-SHIFT VS. ROTATIONAL

ill

)

]l _x
IP, O

) "_" X

A A+=I

(Plant) (Destabilized)

i(I

]

(Destabilized)

A
(Planl)

Figure 6. Plant Destabilization
Techniques
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The transformation matrix that

accomplishes this destabilization of

the plant is described below for an
n-mode system. If the plant matrix,
A, in block-diagonal form is:

A

--O 1

2

_10

O 1

-_2 o
2

O 1

-0.)20
rl

:nx2n

then the rotationally-destabilized

plant matrix, A r, is defined to be:
A

A r = AT

where

m =

"_ 1/(0]

f_l 0

O 1/o3 2

% o

O 1/O3 n

o, o
m

and A =
r

m

(o 1

(o 1

- (J0
2

(`O2

- (,On

%
m

with eigenvalues k(_+(Ol,+C0 2 ..... _+(On).

We note that this set of eigenvalues
is not unique to Ar. Other transfor-

mations of the plant will produce
block-diagonal or off-diagonal

matrices with equivalent eigen-
value sets. These matrices may be

used in lieu of Ar in designing the
controllers and estimators, but the

closed-loop system bandwidths tend

to be larger than those designed
with A r. Ar's diagonal structure

provides the smaller bandwidth

controller for this design proce-
dure, and we use this structure in

the following two-mode example

illustrating rotational destabiliza-

tion, and in the flexible spacecraft

example at end of the paper.

Given System: co1= 10 rad/sec

co2 = 15 rad/sec

One actuator and collocated

sensor corresponding to torque
actuation and velocity sensing
are employed.

A

0 1 0

100 0

0 1 B =

-225

Transformation for A:

T =

0 1/10 0 0 1

0 0 0 0

0 0 0 1/15

0 0 15 0

Rotationally-Destabilized Plant:

Ar= AT=

-10 0 0 0 /

E i 10 0 0J0 -15 0

0 0 15

Note that half the eigen-

values of A r are unstable. Optimal

regulator design theory may now

be used to stabilize the rotationally-
destabilized plant.

DESIGN STEP 2: Stabilization
of Rotational Plant

In this intermediate step,

optimal regulator theory is applied
to the plant in rotational space. The

optimal gains that are generated
will stabilize the rotationally-
destabilized plant, but their prac-



tical function in this design
algorithm is to structure a perfor-
mance index that will rotate and
stabilize an alpha-shift design for
the nominal plant. The motivation

for using the gains in this way
came from applying them to the

nominal plant and observing their
significant effect: They eliminate
harmonic components from the

closed-loop system poles. State
feedback with this set of optimal
gains rotates the open-loop plant
poles to the real-axis. This suggests

that a SPI employing a feedback
structure with these optimal gains
as its state-weighting matrix can
produce rotation and stabilization of

a prescribed damping design.

An example of rotational

stabilization is now presented for

the low-order system used previous-
ly. The rotationally-destabilized
plant matrix, Ar, developed in step

1, becomes a parametric design
matrix in the algebraic Ricatti
equation (ARE), i.e. the nominal
plant, A, is replaced with Ar in the

ARE. We note also that the paramet-
ric design matrix Q is set equal to
zero in the example. This results in

double poles in the closed-loop
systems. Double poles are not

mandatory. Alternative selections
of Q may include an identity matrix

which will split the closed-loop
system poles, but still maintain
them in the LHP. Positive scaling of
the identity matrix will provide as
much separation of the poles as

desired. Negative scaling of the
identity matrix Q adds harmonics to
the closed-loop system and can be
used, if desired, to obtain an
additional increase in the modal

frequencies in the final design
step, or to decrease the optimal
gains. Other structurings of the Q

matrix are currently being evalua-

ted for their closed-loop system
effects. All examples in this paper
employ a zero matrix Q which

produces the double-pole structur-

ing in the intermediate closed-loop
systems. We now perform the
rotational stabilization:

Algebraic Riccati Equation:

ATP1 +PI A-P1BR- 1BTP1 +Q=0

Parametric Design Matrices:

A=A r

R=I

Q=[0]4x 4

Intermediate Riccati Solution for Ar:

p_= 5.5556E3 0 -5.00E
0 0

-5.0000E3 0 4.6875E3__]

Eigenvalues of Intermediate Closed-
Loop Systems:

)_(Ar-BR-|BTP1) = {-10,-10,-15,-15}

X(A-BR-1BTp 1) = {+5, +5,-30, -30}

Note that P1 is sparse and

singular. Also, as indicated earlier,
all harmonic components are com-
pletely eliminated from the closed-

loop design model when the optimal
gains are applied to the nominal

plant, i.e. all poles have imaginary
parts equal to zero. The real parts

are positive or negative values
which typically have values given
by one-half or two times the modal
frequencies. This intermediate

closed-loop system must now be
stabilized in a final design step with

an additional algebraic Ricatti
equa-tion which will also add a
prescribed degree of harmonics to

the closed-loop system.

DESIGN STEP 3: Prescribed

Imaginary-Axis Pole Placement

In this section we develop

the SP1 that is employed to design
optimal controllers and estimators

as-



with prescribed (closed-loop) modal

frequencies. The exponentially-
weighted performance index of the
alpha-shift technique is modified
with the optimal gains of the rota-

tional plant stabilization step. The
modification of one SPI with the

optimal gains from another results
in a coupling of two independently-
solved ARE's. As developed below,

the coupling occurs through the
ARE parametric matrix, Q.

The optimal gains generated

in the rotational plant stabilization
step are used to structure the

parametric matrix, Q. "Q-equivalen-
cy", the expansion and collection of
terms in an ARE to indirectly

generate a state-weighting matrix,

is used to structure Q. A Qeq equa-
tion, parallel to that shown in Eq. 1,
is developed for the rotationally-
destabilized ARE in Eq. 2. (The unity

subscripts indicate that this is the
first ARE that is solved in the design

algorithm.)

It is Qeql that is used to
modify the exponentially-weighted

performance index used in alpha-
shift designs. The modified perfor-
mance index and its accompanying
ARE are shown in Eqs. 3a, 3b, and 4a

respectively. Qeql transforms the
alpha-shift design to rotational

space. After rotation, the alpha
parameter prescribes the amount of
imaginary-axis pole translation
that is desired from the real-axis.

A Qeq may be developed for
the modified ARE: Terms in Eq. 4a

are expanded and collected as
shown in Eq. 4b. Eq. 4c is formed by

substitution of Qeql and defining

Qeq2 = 2czlP 2. Qeq then is the sum of

two terms--Qeql from the rotation-

ally-destabilized ARE and Qeq2 from

the alpha-shift design as shown in

Eq. 5. If Qeq2 >> Qeql , i.e. ifct is
large relative to the modal

frequencies, then the alpha-shift
term will dominate, and the

imaginary-parts of the poles will
asymptotically approach the desired

alpha value.

We now demonstrate pre-
scribed imaginary-axis pole place-
ment for the low-order system used

previously. The optimal gains, PI'

designed under step 2 are used to

form Qeql and modify the
performance index for three alpha-

shift designs: {cz=0, cz=l, and ct=2}.

ArTPI + P1Ar- P1BR-1BTPI = 0

- P1BR-1BTp 1 + (ArP 1 + P1Ar ) = 0

Qeql = (ArP1 + P1Ar ) = P1BR-1BTP1 (2)

J2: I_ 2c_x. T0 O tx Qeql x + uTR u] dt

J2= I=e2_X[xTp BI_'-IBTP1 x + uTR u] dt
O ]

(A+al)TP2 + P2(A+aI) - P2BR-1BTp 2 + P1BR-IBTp 1 = 0

(3a)

(3b)

(4a)

ATP2 + P2 A - P2BR-1BTp 2 + P1BR-1BTp 1 + 2MP 2 = 0

ATP2 + P2 A - P2BR-1BTp 2 + Qeql + Qeq2 = 0

Qeq = Qeql + Qeq2 = P1BR-1BTP1 + 2edP 2

(4b)

(4c)

(5)
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Modified ARE: (A+c_l)TP2 + P2(A+ctl) _ P2BR-1BTP2 + PIBR-1BTp 1 = 0

Qeql Formed From Optimal Gains PI:

0

Qeql = P1BR-I BTPI = 0
0
0

0 0 0

1.1111E5 0 -1.2500E5

0 0 0

-1.2500E5 0 1.4062E5

Optimal Gains P2 for Design 1:ct=0

6.2844E5 -5.1200E4 - 1.0080E6 3.0400E4

-5.1200E4 9.2711E3 1.0440E5 -6.7200E3
- 1.0080E6 1.0440E5 1.7601 E6 -6.4800E4

3.0400E4 -6.7200E3 -6.4800E4 5.3025E3

Optimal Gains P2 for Design 2: ot=l

7.1690E5 -5.2195E4 -1.1158E6 3.0532E4

-5.2195E4 1.2205E4 1.2129E5 -8.7124E3
-1.1158E6 1.2129E5 1.9794E6 -7.5562E4

3.0532E4 -8.7124E3 -7.5562Ea 6.6674E3

Optimal Gains P2 for Design 3:c_=2

8.2904E5 -4.8182E4 -1.2239E6 2.7139E4
-4.8182E4 1.6620E4 1.4013E5 -1.1753E4
-1.2239E6 1.4013E5 2.2091E6 -8.7720E4

2.7139E4 - 1.1753E4 -8.7720E4 8.7729E3

Closed-Loop Eigenvalues X(A-BR-1BTP2):

a=0: {-5.0, -5.0, -30.0, -30.0}

a=l' {-6.1 _+ 1.0 i, -31.1 + 1.0 i}

or=2:{-7.2 +_ 1.8 i, -32.2 _+ 2.0 i}

For c_=0, the imaginary-parts
of the closed-loop poles are zero

rad/sec--stable, real-axis pole

placement is achieved. The inter-
mediate closed-loop system of step 2,

characterized by [A-BR-1BTP1], has

been stabiized; only the RHP double

poles at +5 are affected by the new

optimal gain matrix, R-1BTP2].

For a=l, the imaginary-parts
of the closed-loop poles have values
of 1 rad/sec. The real-parts of the

eigenvalues have been increased
from their values for the previous

design as Qeq2 has begun to have an
effect.

For or=2, the imaginary-parts
of the closed-loop poles have values
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of 2 rad/sec., or approaching 2

rad/sec. As ct increases, Qeq2 will

begin to dominate the Qeq term for

the modified ARE--some closed-loop
modal frequencies may be slightly
less than the specified modal

frequencies.

Step 3 concludes the
prescribed imaginary-axis pole
placement procedure for optimal
controller design.

The optimal estimator is

designed via duality theory using
the same 3-step procedure.

We now present the design
procedure in algorithmic form, and

illustrate its effects on a higher-
order example derived from flexible
spacecraft control.

4. DESIGN ALGORITHM

Fig. 7 illustrates the design
algorithm for prescribed
imaginary-axis pole placement in

the optimal controller system. Two
independently-solved ARE's are
employed: the ARE in rotational

space, and the ARE in translational
space. The coupling between the

GIVEN SYSTEM

x=Ax+Bu

y=Ox

r

mln J = f _ [ uTRlu + xTQ X ] dtu 1 0 1

Subject to: x = A x + B u
r

ARE:A p,+p,A-p,8..'sTp, ÷ O=0

5=

Desired Closed-Loop

Modal Frequencies

min J =foo 2ctx. T_u 2 0 e ix ueq 1 x + uTR u]dt

rain J = J" _02°tX[XT_l 8R-lgTel x + MTR U] dtu 2

Alpha-shifted Dynamics: x = [A +_xl] x + B u

QEQI = P B R-1BTp I1 1

ARE: [A+e¢ I] Tp + P [A+(xl] P B R-IBTp + =0
2 2 2 2 QEQ1

[ I

(_. (A - 8 R-IBTp2)) _ ±(xt

1) Transform Plant

to Rotated Space

2) Apply Optimal Regu-

lator Theory to ARE
in Rotational Space

3) Form Q-equivalent
Matrix for ARE in

Rotational Space

4) Modify ARE in
Translational

Space with Q-

equivalent Matrix
From ARE in Rota-

tional Space and
Apply Optimal

Regulator Theory

5) Form Closed-

Loop System

Figure 7. Design Algorithm



ARE's occurs with the Q-equivalent
matrix for the ARE in rotational

space. This Q-equivalent matrix acts
as a state-weighting matrix for the

ARE in translational space. The
design algorithm for the optimal
estimator follows a parallel struc-
ture: Dual variables are substituted

into J2' and A T replaces A in the

ARE in translational space.

5. FLEXIBLE SPACECRAFT
CONTROL EXAMPLE

The design algorithm is

applied to a model for the spacecraft
boom shown in ,Fig. 8. The model
contains twelve modes with fre-

quencies ranging from 0.67 to 11.4
Hz. Four collocated actuators and

sensors are positioned at the tip of
the boom and mid-boom. All modes

are modeled with zero damping.

For the example, we design
five optimal controllers and com-

pare their pole constellations. The

Figure 8. Flexible Spacecraft Boom

alpha values for the five designs,
i.e. the prescribed imaginary-axis
pole placement that is desired, are

as follows: {al=0, c_2=1 , c_3=5 ' a5=10,

ct5=15}.

The design results are shown

in Fig. 9 which plots the

_.(A-BR-IBTp 2) for the five designs.

(Only the upper-half of the complex
plane is shown.) Small values of

T6
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FIGURE 9. Controller Eigenvalues for Five Design Values of a
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alpha (al=0, a2=l) most closely ap-

proach the "prescribed" response,
i.e. the imaginary-parts of all poles

are approximately equal to the
prescribed ct value. This is due to a
small or non-existent contribution

of Qeq2 to the Qeq matrix for the
modified ARE, as explained in the

previous section. For large values

of et, the Qeq2 term begins to contri-

bute to the Qeq matrix, and the
imaginary-parts of the pole asymp-

totically approach the desired a
value. Poles corresponding to
higher frequency modes have
imaginary-parts that are closer to

the a-asymptote.

6. SUMMARY/FUTURE WORK

A design procedure has been

developed for prescribed-
imaginary axis pole constraints for
the optimal control and estimation
systems: The imaginary-parts of

the closed-loop system poles
asymptotically approach a

prescribed value, a. At this stage in
the development, the maximum

value that a may assume for a given

system is constrained, possibly by a
computational problem with
solutions for the alpha-shifted ARE.

Values of a that are large relative to
the lowest modal frequency in the
system can produce root migration

from the desired a-asymptote.
Small or mid-range frequency
values of a produce excellent
results as shown in the example of

Section 5. Further analysis of the

computational problem is required.

The design procedure

developed empirically as the result
of numerical experiments in gain
transference and Q-equivalency
theory. Future work calls for

developing an analytical basis for
the procedure. Additional work

requires extending the design
procedure to cover prescribed

imaginary-axis constraints for the

optimal compensator system.
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Optimal Controllers for Finite Wordlength Implementation
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ABSTRACT

When a controller is implemented in a digital computer, with A/D and D/A conversion,

the numerical errors of the computation can drastically affect the performance of the control

system. There exists realizations of a given controller transfer function yielding arbitrarily large

effects from computational errors. Since, in general, there is no upper bound, it is important to

have a systematic way of reducing these effects. Optimum controller designs are developed

which take account of the digital round-off errors in the controller implementation and in the

A/D and D/A converters. These results provide a natural extension to the LQG theory since they

reduce to the standard LQG controller when infinite precision computation is used. But for finite

precision the separation principle does not hold.
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I. INTRODUCTION

LQG controllers are normally designed under the assumption that computer implemention

will be perfect (this is the infinite word.length assumption for state variable computation).

However, real control systems are subject to the effects of finite wordlength computation. These

round-off errors should not be ignored in the design of the controller. The influence of these

errors on the control system and the optimum controller design considering their effects are the

subjects of this paper.

We consider the problems that arise with fixed-point arithmetic and the finite word length

of digital computers. This paper was motivated by the work of Kladiman and Williamson

[I989]. Mullis and Roberts [1976] and Hwang [1977] in the field of signal processing first

revealed the fact that the influence of round-off errors on digital filter performance depends on

the realization chosen for the filter implementation. To minimize round-off errors these papers

suggest a special coordinate transformation T prior to filter (or controller) synthesis.

This is in stark contrast to frequency domain approaches to control, which regard as

irrelevant (and hence is completely ignored) the state space realization of the controller transfer

function.

The idea of applying a coordinate transformation prior to controller synthesis has been

applied to Kalman filter and LQG controller design problems, Williamson [1985], Kladiman and

Williamson [1989]. One may select the wordlength of the computer to insure that the resulting

degradation in the performance from round-off error is less than a certain percentage of the ideal

behavior of the standard Kalman filter or LQG controller without round-off error. This approach

was adapted by Sripad [1981] in the design of Kalman filters, and later by Moroney, et. al [1983]

for LQG controller design. In these papers the standard Riccati equations are solved, followed

by a coordinate transformation to reduce the effects of round-off errors. We shall call these

controllers LQG T to indicate a standard LQG controller followed by an "optimal" coordinate

transformation T. This transformation depends on the control gains, hence, we put the word

optimal above in quotes, because the standard LQG gain is not the optimal gain for the round-off
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error problem. The optimum solution is to design the controller which directly takes into

account the round-off errors associated with a finite word length implementation, rather than

merely performing a coordinate transformation T on the LQG controller after it is designed. The

optimal state estimation problem was solved by Williamson [1985]. This leads to a modified

Kalman filter. The problem of optimum LQG controller design in the presence of round-off

error was studied by Kadiman and Williamson [1989]. This paper worked with upper bounds

and numerical results showed improvement over earlier work, but their algorithm does not

provide the necessary conditions for an optimal solution. This paper provides the necessary

conditions and a controller design algorithm for the solution of this problem. We shall call this

controller LQGFw.

With a fixed point implementation, the states of the LQGFw controller are properly scaled

to reduce the possibility of overflow. There are many scaling criteria available. The method we

shall use is the variance oriented procedure, 12-norm scaling [Hwang 1977]. We assume round-

off errors are additive. This tends to be supported by the literature on state quantization, whereas

quantization of coefficients leads to multiplicative errors [Williamson 1985].

The organization of the paper is as follows. In Section 2, the problem of LQG controller

design in the presence of round-off errors is formulated. The importance of the coordinates of

the controller will be discussed in Section 3. Section 3 summarizes the needed results from

[Kadiman and Williamson 1989], and our new results on upperbounds of finite wordlength

effects. It is shown that the portion of the LQG cost contributed by these errors will range from

arbitrarily large to an achievable lower bound with the variation of the realization of the

controller (variation of the choice of coordinates). The coordinate achieving the lower bound is

described. In Section 4, the optimization problem is discussed in terms of chosing both the

controller parameter matrices and the realization coordinate simultaneously. The necessary

conditions are derived for the optimization problem. An algorithm is then presented for the

designs of the optimal LQGFw controller. The standard LQG and the LQGFw controller are

compared in Section 5. Some conclusions appear in Section 6.
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II. Round-Off Error and LQG Controller Design Problem

In this section, we formulate the LQG controller design problem when round-off errors are

present. The formulation procedure follows the original ideas of Mullis [1976], Hwang [1977]

and the ideas of Williamson [1985], Kadiman and Williamson [1989]. Let us assume, for the

study of round-off error, the discrete controller is designed from a discrete model of the plant to

be controlled. We then introduce a model for finite wordlength effects into the discrete design

problem.

Considering the following discrete-time model of a time-invariant plant:

xp(k + 1) = Apxp(k) + Bpu(k) + Dpwp(k)

zp(k) = Mpxp(k) + vp(k)

yp(k) = Cpxp(k)

(1)

where Xp is the state np-vector, u, yp and zp are the control nu-vector, output ny-vector,

measurement nz-vector, vp and Wp are assumed to be mutually independent, zero mean, discrete

white Gaussian noises with covariance matrices Vp and Wp, respectively.

The controller that one might desire to implement is described by following equations:

xc(k + 1) = Acxc(k) + Bczp(k)u(k) Ccxc(k) + Dc zp(k)
(2)

where Xc is the controller state nc-vector, u and zp are the control and measurement vectors

described in the plant model. In a finite wordlength digital computer, the controller state xc and

measurement variable zp will be quantized at each time of computation. Considering the

quantization process, computation (1) and (2) cannot be accomplished. Instead the computation

is described by
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xp(k + 1) = Apxp(k) + BpQ[u(k)] + Dpwp(k)

zp(k) = Mpxp(k) + vp(k)

yp(k) = Cpxp(k)

xc(k + 1) = AcQ[xc(k)] + Bc Q[zp(k)]

u(k) = CcQ[xc(k)] + Dc Q[zp(k)]

(3a)

(3b)

where Q['] stands for the quantization process. Assuming an additive property of the round-off

error, we can model the quantization process by:

Q[u(k)] = u(k) + eu(k)

Q[x c(k)] = Xc(k) + ex (k)

Q[zp(k)] = Zp(k) + ez(k)

D/A (4a)

control computer (4b)

##D (4c)

where eu is the round-off error resulting from D/A conversion, ex (k) is the error resulting from

quantization and ez(k) is the error resulting from A/D conversion. We do not claim that this

assumption is always justified, but we invoke this common assumption in this paper, since one

cannot optimize with respect to coefficient errors directly. One can only evaluate designs with

respect to coefficient errors. There are many such evaluations in filter theory, and we shall add

our own numerical evaluation in this paper. All such evidence points to a conclusion that

controller structures that are good with respect to state quantization tend to also be good with

respect to coefficient quantization.

It was shown [Sripad 1977] that, under sufficient excitation conditions, the round-off error

%(k) can be modeled as a zero mean, white noise independent of wp(k) and vp(k), with

covariance matrix Ex,

Ex = qI, q _=@2 2-2g (Sa)

where [3 is the worcUength of the control computer. Similarly, we assume the D/A conversion

error %(k) and the A/D conversion error ez(k) to be zero mean, mutually independent white
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noise and also independent of wp(k), vp(k) and ex(k) with covariance matrices Eu and Ez,

Eu = quI, qua__@2 2-2_u (5b)

Ez = qzI, qz A 1= -_- 2-2_" (5c)

where _u and _z are the worcUengths of D/A and A/D converters. Substitute

obtain a closed-loop system model including finite word.length effects,

xp(k + 1) = Apxp(k) + Bpu(k) + Dpwp(k) + Bpeu(k)
zp(k) = Mpxp(k) + vp(k) (6a)

yp (k) = Cp xp (k)

XC(k + 1) = Acxc(k) + Bczp(k) + Acex(k) + Bcez(k)(k) = Ccxc(k) + Dczp(k) + Ceex(k) + Dcez(k) (6b)

We seek the controller to minimize the following cost function

J = lira E {yp(k)Qpyp(k) + u*(k)Ru(k)} (7)
k ---_ *.*

where u and yp are again control and output vectors, and Qp and R are the weighting matrices.

combining (6a) and (6b), and usingAfter

matrices:

(4) into (3) to

the closed-loop system is compactly described by
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x(k + 1)= [A + BGM]x(k)+ Dwp(k)+ BGIlvp(k)+ BGI2ex(k)+ BGIlez(k)+ BIleu(k)
y(k) = [C+ IoGM]x(k)+ IoGI1vp(k)+ IoGI2ex(k)+ IoGI1ez(k) (9)

andthecostfunction(7)maybewritten

J= lim E {y* (k)Qy(k) }.
k--e**

(10)

Now, substitute (9) into (10), since eu(k), ex(k), ez(k), wp(k), and vp(k)

independent,

J = tr{X[C + IoGM]*Q[C + IoGM] } + tr{Vp(IoGI1)'Q(IoGI1 )}

+ tr{Ex(IoGI2)*QIoGI2)} + tr{Ez(IoGI1)*Q(IoGI1)}

are mutually

(11a)

where X is the state covariance satisfying:

X = [A + BGM]X[A + BGM3" + DWpD* + (BGI1)Vp(BGI1)*

+ (BGI2)Ex (BGI2)* + (BGI1)Ez(BGI1 )" + BI1Eu (BI1)* (llb)

We can decomposite J in eqn. (1 la) into two terms:

J = J_ + Je (12a)

where

Jw_ _ tr{Xl[C + IoGM]*Q[C + IoGM] } + tr{(Vp + Ez)(IoGI1)*Q(IoGI1)} (12b)

X1 = [A + BGM]XI[A + BGM]* + DWpD* + (BGI1)(Vp + Ez)(BGI1)* + BI1Eu(BI1) * (12c)

and

Je _=tr{Xe[C + IoGM]'Q[C + IoGM]] + tr{Ex (IoGI2)'Q(IoGI2)}

Xe = [A + BGM]Xe[A + BGM]' + (BGI2)Ex(BGI2)*

(12d)

(12e)

where X = X1 + Xe. J_ is the portion of the performance index contributed by disturbances

eu(k), ez(k), wp(k) and vp(k). Je is the portion contributed solely by round-off error ex(k).
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To prevent the overflow in controller state variable computation, we must properly scale

the state variables. We use the 12-norm scahng procedure which is written as:

[X1(2, 2)]ii =s i= 1, "" , nc (13)

where X1 (2, 2) is the (2.2) subblock matrix of X1 matrix (the controller subblock), and [']il

stands for the ith diagonal element of the matrix. Equation (13) requires that the controller state

variables have variance equal to s when the closed-loop system is excited only by outside

disturbance and measurement noise. We call (13) the scaling constraint

Therefore, the optimization problem is

rain J = rain (Jw_ + Je) • (14)
G G

subject to (12-13).
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HI. Contribution of Round-Off Error to the LQG Performance Index

In this section, we discuss the Je term in (12a) and defined by eqn. (12d) which is the

portion of the LQG cost function contributed by round-off errors. This portion of the cost

function is coordinate dependent. It is unbounded from above, (that is, it can be arbitrarily

large), but it has an achievable lower bound, which can be achieved in an optimal coordinate.

The lower bound result was obtained by [Moroney et. al. 1983] and [Kadiman and Williamson

1989]. The construction of this optimal coordinate is discussed in this section, where we assume

G is some given matrix (we shall optimize G later).

We will first present three key lemmas, which form the basis for the results of this section.

Lemma 1. [Mullis and Roberts 1976, Hwang 1977].

Given any nxn matrix M, there exist a (non-unique) unitary matrix U such that CIJlk, IU*)jj = S

for all j, if and only if tr(M) = sn

[]

Lemma 2. [well known]

For any two positive definite matrices P and Q, let _-i ['] denote the i th eigenvalue of matrix ['].

Then,

a) _'i [QP] > 0 for all i

b) The Xi[QP] are invariant under the transformation f_= TPT* and Q = T-* QT -1 where T is

nonsingular.

[]

Lemma 3.

Let a scalar J be defined by
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j _ tr{Tr'P} (15a)

where the np x np nonsingular matrix T is constrained by

(T -1T-*)ii = s for all i (15b)

and P is a positive definite matrix. Then over the set of all nonsingular matrices T constrained

by (15b),

a) J is not bounded from above.

b) J is bounded from below (J ->J_)by

_=l r'-
J *-:---[tr('4P )12 (16a)
- Snp

where

P= _ "_ (16b)

and _ is symmetric.

c) J_ in (16a) is achievable by the matrix T."

T = .T.T_ utrItV; (17a)

where Ut, Vt are unitary, I-it diagonal, satisfying

Utlqz2U_ = Snp

tr(ff->
(17b)

-2 *
[Vtf'lt Vt ]ii = s for all i . (17c)

[]
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Statements b) and c) are minor modifications of the results obtained by [Mullis and

Roberts 1976] and [Hwang, 1977]. The proof of a) appears in Appendix A. An algorithm for

solving (17b), (17c) is given in Appendix B.

The contribution of finite wordlength error in the cost function is described by equations

(12d) and (12e). This Je term can also be written as:

Je = tr{ Ke (BGI2)Ex (BGI2)* } + tr{Ex (IoGI2)* Q(IoGI2) }

I_ = [A + BGM]*I_[A + BGM] + [C + IoGM]*Q[C + IoGM] .

(18a)

(18b)

Since Ex = qI, we then have:

Je = q tr {(BGI2)* Ke ('BGI2) + (IoGI2)* Q(Io GI2) }. (19)

We can easily check that the (2, 2)th subblock matrix of Ke (the controller subblock Ke(2, 2))

satisfies:

Ke(2, 2) = (BGIz)'Ke(BGI2) + (IoGI2)'Q(IoGI2) . (20)

Substituting (20) into (19) reduces (19) to

Je = qtr[K.(2, 2)] .

Hence, the minimization of Je reduces to the problem:

min Je, Je = qtr{Ke(2, 2)} (21)

subject to (18b), (13) and (12c). From the singular value decompositions

X1 (2, 2) = U_ZxU x

* 1,4ZPUxKe(2, 2)UxZx = U_.F-,kUk

(22a)

(22b)

then Ux, Uk are unitary, Zx, Zk are diagonal and
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Y'k _=diag {... _[Ke(2, 2)X1(2, 2)] ... } . (22c)

Suppose we begin our study with the closed-loop coordinate transformation T as:

i, 0j* I_- * •T= 0 UxZx Uk

Then, after this coordinate transformation as suggested by Kadiman and Williamson [1989]"

(23)

-- * IA * -1 * IA -* -*
X a(2,2)=(UxZ xUk) Xl(2,2)(UxZ xUk ) =I

-- , Ih ** * ½ *Ke(2, 2) = (UxZx Uk) K_(2, 2)(UxZx Uk) = Y-_ .

(24)

(25)

If we take one more controller coordinate transformation To, the index Je and its constraint

equations, (after we substitute (24) and (25) into (13) and (21)), become

J_ = qtr[TcT_Zk] (26a)

[T71TT*]ii = s, i= 1, • .. , nc • (26b)

Since, from Lemma 2, Zk in (22c) is coordinate independent, we may i_maore the I_ and X 1

calculations (18b) and (12c) and concentrate on Tc in (26). Then, by applying Lemma 3 on

equation (26), we have following theorem.

Theorem 1. The round-off error term Je in the LQG performance index (12d) and (12e), and

constrained by the scaling constraint eqn. (12c), (13), is controller coordinate dependent. It is

unbounded from above when the realization coordinate varies arbitrarily. It is

bounded from below by the following lower bound."

J- q trZk (27)
Snc

The lower bound is achieved by the following controller coordinate transformation.

* 1_ * *

T = UxZ x UkUtI_tVt
_C

(28a)

where Ux, Uk, Ut, Vt are unitary matrices, Zx, I-It are diagonal matrices, subject to the
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constraints."

Xl(2, 2) = UIExU x

Zx UxKe(2, 2)UxZx = UkZkUk

(28b)

(28c)

2 * snc ILk
UtI-l_- Ut -

trZk (28d)

2 *

[Vtl-lt Vt ]ii = s, i = 1, • • - , nc (28e)

[]

To find the optimal coordinate transformation T in (28a), we must solve (28d), (28e) to
--C

obtain Ut, Fit, Vt. The equations (28d), (28e) are, however, special cases of (17b), (17c), where

P is the diagonal matrix Yk. An algorithm is given in Appendix B to compute the Ut, Fit, Vt

needed for (28a).

The conclusion of this section is that the problem min Je is solved by the coordinate
T,

transformation given by (28a).



IV. LQG Controller Design in the Presence of Round-Off Errors

As discussed in Section II, when round-off error is present, the LQG performance index

can be decomposed into two terms. One term contains the influence of disturbance and

measurement noise, the other term is contributed by round-off errors. Although the first term is

not influenced by the coordinate of the controller, the second term is critically dependent on the

coordinate. An optimal coordinate transformation is given by (28a). With the scaling

requirement of the controller state variables to prevent overflow, we have a different

optimization problem now for controller design comparing to the original optimal control design

problem without round-off errors. In this section, we will discuss the controller design.

Let us first present a useful result.

1"1

Lemma 4. Suppose Jkx _=_ _X.t[K(i, i)X(j, j)] where K(i, i) and X(j, j) are the (i, i)th subblock
1=1

of K and (j, j)th subblock of X respectively. Define

A
VkJkx = x-=-_.Jk_

O1%

then."

a) VkJkx(p, q) = 0 when p _ i or q ,: i (29a)

[E -1 (i, j)]_th-row[E(i, j)]/*th--eolX(j, j)

VkJkx(P'q) = 1'_ - _/_4[K(i, i)X(j, j)]
when p = i and q = i (29b)

b) VxJkx(p, q) = 0 whenp_jorq¢j (29c)

1 n K(i, i)[E -1 (i, j)] _th-row[E(i, j)] t*th--eol
VxJkx(p, q)

2"l-z_.l 5/_.t[K(i, i)X(j, j)]
when p = j and q = j (29d)

where VkJkx(p, q) and VxJkx(.p, q) are the (p, q)th subblock of VkJkx and VxJkx, E(i, j) is the

eigenvector matrix of matrix K(i, i)X(j, j)
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The proof of the lemma is given in Appendix A.

The LQG controller design problem, when finite wordlength effects are taking into

account, are described by the equations (12-14). This is denoted as the LQGFw controller.

However, the scaling constraint (13) can be always satisfied by properly choosing the

coordinates of the controller, so the problem breaks up into two parts: Finding G and finding its

optimal coordinate transformation Tc to satisfy (12), (13) and (14). On the strength of Section 3,

we can therefore write the optimization problem as

rnin J = min (Jw,, + J_) = min[min (Jw,, + Je)]
G,T, G,T_ G T,

since Jw, is constant in terms of the variation of Tc, we have

min J = min [Jw,, + min Je] (30)
G,T_ G T c

Assume J _ n'fin Je is given by (27), from Theorem 1.
"e T_

problem becomes

Hence, the equivalent LQGFw design

min[Jw,_ +J] , (30a)
G

subject to (12c) and (18b) where

Jw,, = trX1 (C + IoGM)*Q(C + IoGM) + tr(Vp + Ez)(IoGIl )*Q(IoGI 1)

J =_q (trI;k) 2
---e sn c

(30b)

(30c)

where 15k is defined by (22c), and the transformation Tc which yields J is given by the

algorithm in Appendix B, and may be computed only after the optimal G is obtained from (30).

The following theorem states the necessary conditions of the optimization problem (30).

Theorem 2:

Necessary conditions for G to be the solution of the optimal controller design problem (30) are."
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[A + BGM]XI [A + BGM]* + DWpD* + (BGI1)(Vp + Ez)(BGI 1)* + BI1Eu(BI 1)* - X1 = 0 (31a)

[A + BGM]* Ke[A + BGM] + [C + IoGM]*Q[C + IoGM] - I_ = 0

[A + BGM]*K2[A + BGM] + [C + IoGM]*Q[C + IoGM] - K 2 + V x = 0

[A + BGM]K3 [A + BGM]* - K3 + Vk = 0

(I_QIo + B*K2B)G(MX1 M* + 11(Vp + Ez)I_) + (I_QIo + B*KeB)GMK3M* +

+ B*(K2AX1 + KeAK3)M ° = 0

(31b)

(31c)

(31d)

(31e)

where V x has 4 subblocks as

Vx(i, j) =0 i;e2 orj_2

f

Vx(2, 2)= qtr ZkJ_ Ke(2, 2)[E-1]'_lo_,['E]_ol

sn c [_-=1 J
and V k also has 4 subblocks as

Vk(i,j)=O i#2 or j*2

2,= 2,1
where E is the matrix of eigenvectors of the matrix Ke (2, 2) X 1(2, 2).

[]

The proof of theorem 2 is given in Appendix A.

Remark 1: The only terms in (31) which are affected by q are the two terms in (31c) and (31d)

denoted by V x, Vk. Hence setting [3= _ gives q = 0, Vk = 0, V x = 0, K3 = 0, K2 = ICe. Hence,

eqs. (31) reduce to the standard LQG design by setting [3= _. In this case, the 11 block of (31a)

reduces to the Kalman filter Riccati equation, and the 22 block of (31c) reduces to the control

Riccati equation. ] 0



Remark 2: We shall denote the controller satisfying (31) as the LQGFw controller to indicate

that the LQGpw controller requires an additional step; the computation of T from Appendix B.
_C

Now, we have following LQGFw controller design algorithm:

The LQG_v Algorithm

Step 1: Solve G from equations (31a)-(31e). This gives the LQG_ controller.

* l/z * *Step 2: Compute T = Ux]_ x Ukgtl-ItVt
-c

using the G obtained in Step 1.

by solving Ux,]_x,Uk,Ut,Xit,Vt from (28b)-(28e),

Step 3: G = I;0]T- 1 G
--C

[:o]
[]

Remark: A natural algorithm to suggest in Step 1 is as follows. Suppose one desires to design a

LQGFw controller for 10 bit arithmetic.

(i) Solve (31a)-(31e) for 13i= *_, (hence, the standard LQG controller).

(ii) On the next iteration set _i = 32 (or whatever gives a reasonably small number for

Vx, Vk.

(iii) Iterate by indexing 13i- Change 13iby no more than one bit on each iteration. This gives

an "answer" in 32-10 = 22 iterations (but this manner of choosing step sizes in not

guaranteed to be sufficient to yield the optimal answer).

This is a "natural" homotopy method, since 13is a natural choice for a homotopy parameter.
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V. Computation Examples

We consider an Euler Bernoulli beam modeled by its first 5 bending modes with 2 inputs

and 2 outputs. The modal frequencies appear in TABLE 1. In discrete controller design, the

discrete model is represented by the matrices {Ap,Bp,Cp,Dp,Mp,Wp,Vp} in equation (1).

These matrices are given in Appendix C for a uniform sample time At = 0.018 sec. The LQG

cost function is given by equation (7) with

Qp = 0.99I R = 0.01I .

The wordlength of the control computer is assumed to be 4 bits. Since the effects of D/A and

A/D conversion errors on the control system simply modify the effects of system disturbance

and measurement noise, we ignore these errors in the example. Both the standard LQG

controller and the LQGFw controUer are computed for the system.

Frequency Damping Factor

Mode 1 3.4987e+00 9.9994e-03

Mode 2 1.3995e+01 2.1301e-02

Mode 3 3.1488e+01 4.5600e-02

Mode 4 5.5979e+01 8.0400e-02

Mode 5 8.7468e+01 1.2530e-01

TABLE 1. Frequencies and Damping Factors of the

Euler-Bernoulli Beam Example



The standardLQG controllerof coursewasdesignedwithoutconsiderationof round-off

errors(_ = *¢)andis labeledcontroller"LQG" in theTABLES. Controllersdenoted"LQGTi"

i = 1, • ••, 4 arethesameastheLQG,butfor acoordinatetransformationon thecontrollerafter

G is computed.Thematrices{Ac,Bc,Cc,Dc}associatedwith theLQGT1controllerareshown

in AppendixC. In differentcoordinates T i, TABLE 2 shows the finite wordiength contribution

Je in the closed-loop system cost, using the standard LQG controller. In the optimal coordinate

T 1 (controller LQGT1) the cost Je is about 500 times smaller than the cost in the original

coordinate design (controller LQG). This improvement is equivalent to increasing the

1
word.length of the control computer by about 5 bits (5 = _- log2500). The effect of

computational errors J¢ in two commonly used coordinates, Normalized Observable Hessenberg

Coordinates [Skelton 1988] and Phase Variable Coordinates, are also given in TABLE 2. The

fact that Phase Variable Coordinates are bad for computation is consistent with other findings in

filter synthesis [Williamson 1990]. The extreme high costs of the controller in a particular

coordinate (LQGT4) in TABLE 2 serves only to demonstrate that the cost Je can become

unbounded for some coordinates. The choice of coordinate T4 was rather arbitrary and will not

be described or discussed further.
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Controller Controller Coordinates Cost Je

LQGT1 Optimal 9.793

LQG_ Normalized Obs. Hess. 2.692 x 102

LQG Plant Coordinates 4.862 × 103

LQGT'3 Phase Variable 9.486 × 103

LQGT4 Coordinate "X" 1.472 x 108

TABLE 2. Standard LQG ControLler in

Different Coordinates

The LQGFw controller was designed by the LQGFw algorithm given in Section 4. The

controller matrices {Ac,B¢,Ce,D¢ } of this controller also appear in Appendix C. TABLE 3

shows the computed costs of the standard LQG controller, the transformed LQG controller

(LQGT1), and the LQGFw controller (The "LQGFw with coefficient error" will be discussed

later). The costs for three different groups of excitations are computed in each case. The

applicable disturbances for J, Jy, and Ju include plant disturbance w, sensor noise v, and finite

wordlength error e. The applicable disturbance for Je, Jey, Jeu is only e, and for J_,, Jwvy, Jwvu

are only Wp and Vp (no finite wordlength effects). Hence, these sums apply to the various cost

decompositions; Jy is the output term of J (the total cost), Ju is the control term in J, hence J =

Jy + Ju- Jwvy is the output term of J,,,v (the contribution of Vp and Wp in J), where Jy = Jwvy + Jey

and Je = Jey + Jeu, J = Jwv + Je. Jwvu is the control term of Jwv and Ju = J_u + Jeu. As we can
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Disturbances

Applied

All v, w,

and e

e only

v and w

only

Costs

Jy

LQG

Controller

4.8827e+03

2.8053e+03

LQGT1

Controller

3.0589e+01

2.3458e+01

LQGFw

Controller

2.1207e+01

2.0798e+01

LQGFw

with coeff, errors

2.4695e+01

2.4232e+01

Ju 2.0774e+03 7.1303e+00 4.0941e-01 4.631e-01

Je 4.8621e+03 9.9302e+00 2.0067e-01 1.4071e-01

Jey 2.7850e+03 3.1790e+00 1.3841e-01 1.0275e-01

J_u 2.0771e+03 6.7512e+00 6.2267e-02 3.7961e-02

J_, 2.0659e+01 2.0659e+01 2.1006e+01 2.4554e+01

Jw,,y 2.0279e+01 2.0279e+01 2.0659e+01 2.0279e+01

Jw,,u 3.7912e-01 3.7912e-01 3.4715e-01 4.2514e-01

TABLE 3. Evaluation of LQG Controllers in Plant Coordinates, Optimal

Coordinate and of the LQGFw Controller

see in the TABLE 3, even when the standard LQG controller is in its optimal coordinate

(LQGT1), the Je portion of the cost is still about 33% of the total cost (9.9302 compared to

30.589). By using the new LQGFw controller design algorithm, we reduce the Je portion of the

cost 50 times, compared to the LQGT1 controller and 24,110 times compared to the LQG

controller. In the latter case, this is equivalent to increasing the wordlength of the control

computer by about 7 bits, That is, controller LQGFw will give the same performance using 4 bit

ar_,thmetic that LQG gives using 11 bits. Furthermore this improvement in output performance

is accompanied by a reduction in control effort RMS = .4_'4_1 vs. RMS = _. To
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conclude this point, we see that if both controllers use 4 bits, the difference in RMS output

performance is an order of magnitude ('_.798 vs. _). This kind of improvement in

performance can mean the difference between feasibility and infeasibility of some control

missions.

With the new controller, the round-off portion Je of the cost is only 0.85% of the total cost

as opposed to 33% for LQG. Now let us discuss the cost Jw_, which would be the total cost if

the closed-loop system was only excited by measurement noise vp and disturbance wp. That is,

suppose the LQGFw controller was designed for 4 bits, but evaluated using infinite bits. These

are the conditions of the standard LQG design, since there are no disturbances in the evaluation.

Jw_ of the LQGFw controller is a little higher than that of standard LQG controller. The output

term of the cost is also a little higher and the control term a little lower. These indicate that the

LQG_v controller is a little more conservative than the designed standard LQG controller. This

compromise in nominal performance allows robustness to computational errors. Note in

TABLE 3, that the quantities that are optimized by the theory (under the given conditions) are

shaded.

In the design of the LQG_v controller, the equations (31a) to (31e) were solved iteratively

by a gradient method. The standard LQG controller in its optimal coordinate CLQGT1 ) was used

as the initial controller design for starting the iterative process. Figs. 1-3 illustrate the

convergence process for the LQGFw algorithm, plotting the total cost J, the wordiength cost Je,

the the out-put Jy and input Ju performances, versus iteration. The optima/ coordinate

transformation played a crucial role in reducing the round-off errors (reducing the error by 3-4

orders of magnitude) as shown in Fig. 2. This was expected because the transformation was

formulated in the optimization problem. The LQGFw controller was obtained after about 300

iterative computations, but note from Figs. 1-3 that after 120 iterations one might have stopped

with little loss.



Coefficient Errors

In the introduction we promised some evaluation of the effects of coefficient errors. We

argued that even though the LQGFw controller is optimized only for state quantization it

performs well with coefficient quantizafion as weIl. To show this we introduced coefficient

errors in the controller by using 4 bit precision instead of infinite precision in the controller

coefficients. The key issue here is this. Quanfization errors in the state degades performance,

but does not destabilize, since the effect of e is just a disturbance (note that all controllers in

TABLEs 1 and 2 are stable). Coefficient errors can easily destabilize. Figure 4 shows the closed

loop pole locations using the standard LOG regulator (using infinite precision). The system is

stable as marked by the x's. When the controller coefficients are implemented using only 4 bit

arithmafic, some poles as indicated by the o's in Fig. 4, are outside the unit circle. Hence the

standard LQG controller is unstable using a 4 bit control computer.

Fig. 5 shows the improvement in the LQG controller by its optimal coordinate

transformation before synthesis. This is the LQGT] controller. The poles (o's) are in improved

locations compared to Fig. 4, but the closed loop system is still unstable. The coordinate

transformation helped but not enough. Fig. 6 shows the LQGFw controller when controller

coefficients are implemented using only 4 bits. The system is stable, confirming for this

example improved robustness to controller coefficient errors, even though the controller has

been optimized only for errors in controller state computation. The performance degradation in

J, listed in the column "LQGvw with coefficient errors" in TABLE 3 is about 15% (compared to

nominal performance in TABLE 3).

Finally, we consider errors in both the plant and controller coefficients (due to

quantization to 4 bits). These results are summarized in TABLE 4, where the modal damping in

all modes is multiplied by parameter p. Hence p=l corresponds to the nominal plant in all of the

prior discussion. The range for stability using the LQGvw controller is .729 < p _< 1.23,

demonstrating improved robustness over standard LQG controllers in the presence of errors in

plant and controller coefficients.
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Damping Error Factor p LQG

Controller

LQGT1

Controller

LQGv-w

Controller

1.5242e+00 unstable unstable unstable

1.3717e+00 unstable unstable unstable

1.2346e+00 unstable unstable STABLE

1.1111 e+00 unstable unstable STABLE

1.0000e+00 unstable (Fig 4) unstable (Fig 5) STABLE (Fig 6)

9.0000e-01 unstable unstable STABLE

8.1000e-01 unstable unstable STABLE

7.2900e-01 unstable unstable STABLE

6.5610e-01 unstable unstable unstable

5.9049e-01 unstable unstable unstable

TABLE 4. Robustness Controllers with respect to modal damping

(4-Bit Wordlength Controllers)



VI. Conclusion

This papersolvesthe problemof designingan LQG controllerto be optimal in the

presenceof finitewordlengtheffects(modeledaswhite noisesourceswhosevariancesarea

functionof computerwordlength).Thisnewcontroller,denotedLQG_v, hastwocomputational

steps.First the gainsareoptimized,and thena specialcoordinatetransformationmust be

applied to the controller. This transformationdependson the controller gains, so the

transformationcannotbeperformeda priori. ('Hence, there is no separation theorem.) The new

LQGvw controller design algorithm reduces to the standard LQG controller when an infinite

wordlength is used for the controller synthesis, so this is a natural extension of the LQG theory.

It was shown both theoretically and by example that the choice of controller coordinates

significantly influences the effects of computational errors on the control system and that there

exists an optimal set of coordinates in which to do these computations. Since we have not

obtained a closed form solution for the LQG_-w problem, design of the LQGzw controller by this

algorithm requires significant computation. Hence, the improvement of the new controller is

achieved at the expense of extra computational effort in design.
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Appendix A

1. Proof of Lemma 3

a) Using the singular value decomposition of T = UtI-ItV_, then the constraint equation (15b)

becomes

(VtI]t2W;)ii -- S for all i (32)

from Lemma 1, above equation is equivalent to

tr(I-I?2) = s% . (33)

Now, let us study the cost 7of (15a). Using the inequality

tr(AA') >
[tr(AB*)] 2

_(BB*)

we have a lower bound on

y = {WtX'It2Wt p } = tr{ ('_tW; "_V")(XXtW; _P")* }

* * -1 *2[_{(n_u,_/F)(u,[qF] )] (_{n_})2
> =

_ { (V: [-x]V']-I )C/_: [-_-]-1 )* } IT{P -1 }

(34)

Now, to prove that 'r is unbounded from above, we prove that for any large scalar m > 0, we

have y('_) _>m for some 'r. Let us choose a "Fhaving the following l=It:

l=It = diag (l_i) such that

1

fi_=fi2= "'" =fl_-2=7ss

and
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_m_(P-I)

"_2mstr(P-: ) - 1

, fl,_ = _/mt'(m:)

where m is so chosen that

1
m>

2str(P-: )

Then

tr(l=it 2)=_ 1 =s(np-2)+
i=l

2mtr(P-:)- 1 + 1

mtr(P -1 ) mlx(P -1 )
- Snp.

Hence the chosen T satisfies the constraint (33). Now, we have:

rip_ 2

(trlfl,}) 2 (zni)_=: (fl,_)2
y_> - > -m

Ix[P-: } tr{P "q } tr{P -a)

we then conclude the proof of part a). The proof of b) and c) follows next. The lower

bound and the matrix T are found by using following inequality:

(trR) 2 < tr(QRQ*)tr(Q-*RQ -1) (35)

the equality holds above when Q*Q = 2_2I.

Let us assume T = Utl-ItVt, P = UpFIpU_, where nt and I-lp are diagonal, Ut, Vt, Up

are unitary matrices. Assume for the R and Q matrices in (35),

* ½ *
R = Ut Uprip UpU t

* a,a * 2 * 1/, *
Q*Q = Ut UprIp UpUtrl t U t Upl-Ip UpU t

(36)

(37)

then

* -x,4 * 2 * -% *
(Q,Q)-1 =Ut Upr_p UpUtI] t U t Upa]p UpU t .

Hence, we have: / / 7



• V2 * * V4 " 2 * V4 *
tr(QRQ*) = tr(RQ*Q) -- tr[(-Ut UprIp UpUt)(Ut UpI-ip UpUt_r]t U t UprIp UpUt) ]

= tr[Upl-IpU_Ud-i2U _] = tr[PTT*] = y

• 1,4 * * -V4 * -2 * -V, *
tr(Q-*RQ -1) = tr[R(Q*Q) -a] = tr[(Ut UpIlp UpUt)(U t UpI-ip UpUtI-it Ut UpI_p UpUt) ]

• 2 *
= tr[UpUtl-i [ U t Up] - tr[rIt2]

From equation (33), and the above equation we have the following:

tr(Q-* RQ -1 ) = tr[1-l_-2] = Snp

* ½ * 1,4 1,4 *
NOW, tr(R) -- tr(U t Uprlp UpUt) = tr(rlp ) = tT(Uprlp Up) = IINFP-. Substitute

equalities back into inequality (35). We then have: [tr('_P")] 2 < Snpy, that is

the above

7_> (38)
Snp

Now, suppose the matrix T = UtX]tV t yields the equality in (38). Since the equality in (35)

holds when Q*Q = X2I, then we have:

-- V4 * :A *--
g t Upl-'Ip UpUtI-I t U t UpX'Ip UpU t = _,2I ,

that is

-- --2--* - 2 IA *
u,rl, u, _. Upn 7 Up=U,_72u_ -2 ,`4 *= ----_ UpI-Ip Up • (39)

Hence

--2 U t Up].lp UpU t
FI =

Xz

_2
Substitute this II into equation (32) to obtain

IA

(VtU t Up___UpUtVtr, *- )ii= s .

Then tr [@] = Snp, hence )_2 = _1tr(I-I_)=snp l_tr('_-)'Snp N°w' substitute the ab°ve k2



into (39), to obtain

-----2--* e,_ IT FIVaT!* Snp_ -
UtI]t Ut = o,,p_pl.p Up -- (40)

Hence (38) yields the lower bound in (16a), and the matrix achieving this bound, shown by

(40), must satisfy (17b). (17c) can be easily deduced from (15b). This concludes the proof.

[]

2. Proof of Lemma 4

a) Proof of (29a): Since Jkx does not depend on K(p,q) for p _ i or q _ i, we have:

3

VkJrx(P' q) - OK(p, q) Jk, x = 0

Proof of (29b): We need following equality (e.g. Page 444 of Skelton [1988]) to prove the

equation:

k i[A] = [E -1 ]ith_rowA[E]ith._co 1

where %i is the ith eigenvalue of A, and E the eigenvector matrix of A. Now, we have by

taking A = K(i, i)X(j, j)

)_t[K(i, i)X(j,j)] = [E-a ]ah-rowK(i, i)Xfj, j)[E]ah-.-¢_l

= tr{ K(i, i)X(j, j)[E]_th.-¢ol [E -1 lab--row }

Hence from the differentiation rule 3trAB _ AT we get
3B

J]9



3_._ FE-_ T T •- ]ah-row [El lth--_o_X(j, j)
3K(i, i)

Then, we have:

3Jk.x 1 n 3K(i, i) k_[K(i' i)X(j, j)]

3K(i, i) - 2-,_ "_K(i, i)X(j, j)]

- "_kdK(i, i)X(j, j)]

The proof of part b) follows in a similar manner

[]

3. Proof of Theorem2: Apply Lagrangian Multipliers K2, K3, then (30a)-(30c) leads to

minimization of

= tr{ Q([C + IoGM]X1 [C + IoGM] ° + (IoGI1)(Vp + Ez)(IoGI1 )')] }

+ tr{K2([A + BGM]X1 [A + BGM]* + DWpD* + (BGI1)(Vp + Ez)(BGI1)* + (BI1)Eu(BI1)*

- X1)} + tr{K3([A + BGM]' IQ[A + BGM] + [C + IoGM]* Q

[C + IoGM] - ICe)} + _ (trZk) 2
Snc

Then
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3K2
- [A + BGM]X1 [A + BGM]* + DWpD" + (BGI1)(Vp + Ez)(BGI 1)* + BIIEu (BI1)" - X1 = 0

- [A + BGM]* Ke[A + BGM] + [C + IoGM]*Q[C + IoGM] - K_ = 0

3J _ [C + IoGM]*Q[C + IoGM] + [A + BGM]'K2[A + BGM] - K2 + V×_ = 0
3X1

3Ke
- [A + BGM]K3 [A + BGM]* - K3 + Vk_ = 0

Applying Lemma 4 on the above two equations, we can obtain Vx, and Vk_ as stated in the

theorem. This verifies (31a)-(31d). Now

3G
- 2I_QCX1 M" + 2I_QIo GMX1 M" + 2I_ QIo GI2 (Vp + Ez)I _ + 2B* K2 AX1 M*

+ 2B" K2BGMX1 M* + 2B" K2 BGI1 (Vp + Ez)I_ + 2B* K1AK3M*

+ 2B'K1BGMK3M* + 2I_QCK3M* + 2I_QIoGMK;M* = 0 ,

but since I_QC = 0, then,

_J - 2[I_QIoG(MX 1M" + I 1(Vp + Ez)I_) + B* (K2AX 1 + K2AK3)M"
3G

+ (B'K1B + I_)QIo)GMK3 M° + B*K2BG(MX1 M* + 11(Vp + Ez)I_)]

= 2[(I_3QI0 + B*K2B)G(MX1M ° + Ii (Vp + Ez)I_) + B'(K2AX1 + K1AK3)M*

+ (B'K1B + I_)QIo)GMK3M'] = 0 .

This verifies (31e).

[]
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Appendix B

We now present an algorithm (originally developed by Hwang [1977]) for solving (17b)

and (17c) for one set of solutions of Ut, 1-It, Vt (The solutions for Ut, I-It, Vt are not unique).

Let _ in (17b) be written in terms of its singular value decomposition

"_P-= UpY-,pU_ (41)

where Up unitary, Zp diagonal.

Algorithm (Solving Ut, 1-It, Vt in (17b) and (17c))

I. Take:

Ut = Up (42a)

(42b)

Vt = Vn-1Vn--2 " " ' Vi " " " VzV1 (42c)

where Vi, i = 1, • • • , n - 1 is computed as follows:

Ii. Compute V l: Let

21_Flt z=diag(''' oaj'") (43a)

Assume oll and o1_ are two numbers such that one of them is bigger than s, the other is smaller

than s. Then take V1 as:
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g 1 =

l_row

13column

fl 0 ... 0 gl 0 ... O

0 1 ... 0 0 0 ... 0

0 1 0

-gl 0 ... 0 f] 0 ...

0 ...... 1

0

............ 1

(43b)

where

gl =
1 - 011

Oal_- ol 1

½

½

(43c)

(43d)

Compute Vi: Let

Y-i = Vi-1 _-'i-1Vi-I = _-i3 (44a)

where Y--iE ]R (i-1)x(i-1) satisfies the property [Y_il]jj = s, Y'i2 EIR(i-1)x(n-i+l) is a nonzero matrix,

and El3 can be written as

Assume oii and oia are numbers such that one of them is bigger than s and the other is smaller

than s. Then take V i as
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i rOW ---) 0

i column

0

... fi 0

0 1

0

0

... gi 0

0

0

a column

0

0 0

... 0 gi ... 0

0

0

1 0

... ofi ... o

0

0 1

(,_b)

Compute fi and gi as:

| Oia -- 1
fi LOia -- Oii

1 -aii
gi=

(Nia--Oii

[]

Computation of T

T is formed as follows: T ^_U_Exlt2U_UtYItV;
mC n¢

1) Compute the Covariance Matrix and Observability Grammian

Ke = [A + BGM]*Ke[A + BGM] + [C + IoGM]*Q[C + IoGM]

Xl = [A + BGM]X1 [A + BGM]* + DWpD* + (BGI1)(Vp + Ez)(BGI1)* + BI1EuBI1

Assume Ke(2,2), X1(2,2) to be (2,2) the subblocks of Ke and X 1 (the controller

subblocks).



2) Compute Ux, Zx, Uk.

These three matrices are computed by applying singular value decomposition on following

matrices:

X1 (2,2) = UxY-,xUx

1/2 * 1/2
Xx UxK2(2,2)Ux,Xx =U[Y_,kUk

3) Compute Ut, I-It, Vt.

Let us replace P matrix in the algorithm of appendix B as

P _ diag [_-i{K.(2,2)X1 (2,2)}]

Then we can compute Ut, I-it, Vt by applying the algorithm on matrix P.



AppendixC

DESIGNEXAMPLEOFROUND-OFFLQGCONTROLLER

PlantModel: 10thOrderEuler-BernoulliBeam

Word-Lengthof theAssumedComputer:4 bits

1) The10thOrderEuler-BernoulliBeamModelfor ControllerDesign

A __.

0.9980 0.0179 0 0 0 0 0 0 0 O"

-0.2196 0.9968 0 0 0 0 0 0 0 0

0 0 0.9687 0.0177 0 0 0 0 0 0

0 0 -3.4620 0.9582 0 0 0 0 0 0

0 0 0 0 0.8469 0.0166 0 0 0 0

0 0 0 0 -16.4457 0.7993 0 0 0 0

0 0 0 0 0 0 0.5594 0.0139 0 0

0 0 0 0 0 0 --43.6477 0.4340 0 0

0 0 0 0 0 0 0 0 0.1138 0.0095

0 0 0 0 0 0 0 0 -72.4045 0.0937



B

0.0014 0.0006"

0.1557 0.0716

-0.0004 0.0011

-0.0480 0.1257

-0.0012 0.0013

-0.1299 0.1440

0.0007 0.0012

0.0720 O. 1164

0.0007 0.0007

0.0588 0.0588

D

0.0014 0.0006-

0.1557 0.0716

-0.0004 0.0011

-0.0480 0.1257

-0.0012 0.0013

-0.1299 0.1440

0.0007 0.0012

0.0720 0.1164

0.0007 0.0007

0.0588 0.0588

C= [13 7.8297 0 7.1091 0-1.3744 0 -8.3569 0 -6.2128]

[u 6.2128 0-8.7875 0 6.2128 0 0 0 -6.2128J

r

M = 10 7.8297

P 6.2128

w:;

0 0_ .  440
oJ0-8.7875 0 6.2128 0 0

W

i.0003e-03 0]0 1.0003e-03

2) Designed Regular LQG Controller in Optimal Coordinate LQGT1
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m c _--

"-0.4582 -0.1633 -0.0133

0.4144 0.6040 0.4587

0.0849 -0.5217 0.5622

0.4753 -0.3503 0.2226

0.3326 0.0383 -0.5299

0.2946 -0.1855 -0.0.850

1.5034 -0.2726 -0.0095

0.5293 0.0908 -0.0359

-0.0468 -0.0574 -0.0709

-0.4312 0.1539 -0.0256

-0.1836 0.1574 -0.4386 -0.1054 --0.2805

-0.4122-0.0201 --0.0411 0.2748

-0.3257 0.3373 0.2351 0.0665

0.5105 -0.3084 0.0821 0.4446

-0.1864 0.4324 0.3391 0.3306

-0.3095--0.2941 -0.0605 -49.7404

-0.2270 -0.0416--0.4845

--0.0617-0.3343 --0.0787

-0.0716-0.0416 0.1318

0.0559 -0.1463 0.4745

0.2304 -0.2815'

0.1059 -0.0786 0.0379

0.1975 -0.1651 0.2658

0.1978 -0.1382 --0.0456

0.2351 -0.1635 -0.1155

0.0085 0.1530 0.5389

-1.5704 -0.3867 -0.0236-0.4084

-1.0273 --0.1971 -0.0491 0.4129

0.5827 --0.9215 -0.0746 0.2806

-0.0777 -0.3449 -0.9854 -0.6735

Bc ---

0.1894 --0.2895"

-0.422 0.0230

--0.0296 0.0941

-0.0120 -0.0024

-0.0258 0.0940

-0.0611 0.0609

-0.2200 0.4919

-0.0737 0.2522

0.0252 -0.0076

0.0737 -0.0776

D C _---

-1.9370 3.8601 4.1659 3.4458 1.8923 -4.2436 -15.7358 --6.5380 3.7048 -5.3330]

C¢ = [ 1.6850 -3.2381 -2.7357 -2.8624 -2.7744 5.2406 11.5365 3.9625 -2.8745 ..-o.1711j

3) LQGFw ControUer from the LQGFw Algorithm of Section 4



0.3501 0.4306-0.2223 0.3078-0.5350 0.1231 0.1595-0.2003 -0.1024 0.1325"

--0.2004 --0.2851-0.2294 0.1810 0.6715-0.4432 0.2756 0.1591 0.3525-0.3974
--0.2033 0.2556-0.0197 -0.8326 -0.8293 0.0885-0.0605 0.2870-0.0571 0.1147
-0.2973 -0.3621 0.6480 0.3770---0.40950.4031-0.2736 0.0125 0.0426-0.0372

0.0308 -0.2207 -0.5168 -0.3001 -0.9847 1.1705-1.0703 0.7456-0.0979 0.1920
-0.1187 0.4836 0.0470 0.3655 0.2493-1.0109 0.3516 0.5930 0.2744.--0.3872
0.0089 -0.3363 0.0664-0.0869 0.0085--0.0712-0.1936 0.113 0.3818-0.5248

-0.3341 0.2935 0.1055 0.1309 0.2251-0.3631-0.7912 -0.5655 -0.2610 0.3180
0.0731 -0.0312 -0.0788-0.1349 --0.4369 0.2594-0.4096-.-0.3895 0.7609 0.3237

-0.1129 0.0070 0.0781 0.1679 0.4955-0.3354 0.5865 0.4685 0.2460 0.6396

Bc --

_0.0134 0.0927"

0.0812 --0.1630

0.0706 ---0.3987

0.2464 -0.6411

0.4583 -1.0134

---0.5942 1.0745

0.2455 ---0.2146

0.1121 0.0815

0.1013 ---0.2475

-0.1510 0.3465

-0.4486e-04 --0.1328e-04"

-0.5913e-04 -0.1567e-04

0.8861 -1.8997 3.8592 -0.3107 5.3072 ---0.7395 0.6339 -1.6517 0.9202

-1.4019 2.2532 -2.6576 0.1575 -3.3358 1.2007 --0.5179 0.2062 -0.9969
-1.37341

1.3884j
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INTRODUCTION

To develop enabling technologies needed for future advanced astrophysics

missions, two NASA centers, the Jet Propulsion Laboratory (JPL) and the Langley

Research Center (LaRC), are undertaking a joint effort on a Precision Segmented

Reflector (PSR) Project. The missions to which PSR is intended to support include

the Submillimeter Explorer (SMME) and Submillimeter Infrared Line Survey (SMILS),

both planned for the mid-1990's, and the Large Deployable Reflector (LDR) for the

early 2000's. All of these mission will employ large (up to 20 meters in diameter)

telescopes. The essential requirement for the telescopes is that the reflective

surface of the primary mirror must be made extremely precise to allow no more than

a few microns of errors and, additionally, this high surface precision must be

maintained when the telescope is subjected to on-orbit mechanical and thermal

disturbances. Based on the mass, size, and stability considerations, reflector

surface formed by segmented, probably actively or passively controlled, composite

panels are regarded as most suitable for future space-based astronomical telescope

applications.

In addition to the design and fabrication of composite panels with a surface

error of less than 3 microns RMS, PSR also develops related reflector structures,

materials, control, and sensing technologies. Furthermore, a Technology

Demonstration has been proposed to illustrate hardware integration, study

interaction of technologies, and evaluate system performance. As part of the

planning effort for PSR Technology Demonstration, a system model which couples the

reflector, consisting of panels, support truss and actuators, and the optical bench

was assembled for dynamic simulations. Random vibration analyses using seismic

data obtained from actual measurements at the test site designated for PSR

Technology Demonstration are described in this paper.

BACKGROUND

The Precision Segment Reflector (PSR) Program was Initiated In early 1988 as an

element of NASA'a Civilian Space Technology Initiative (CSTI).

• A joint LaRC/JPL effort.

• To develop enabling technologies needed for future astrophysics missions

Large Deployable Reflector (LDR)

Submilllmeter Explorer (SMME), Submillimeter Infrared Une Survey

(SMILS)

• Four major elements are Included in the PSR technology development

Lightweight composite panels

Lightweight support structures

Panel figure control

System technology demonstration
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STRUCTURAL CONFIGURATION

The current baseline LDR telescope system, illustrated in the sketch shown in

Figure i, has a 20-meter filled aperture reflector with the reflective surface form

by five rings of 84 hexagon-shaped, lightweight, composite panels[l]. The backup

structure employed to support these panels is a tetrahedral, space-erectable truss

constructed with thin-walled composite strut_. In order to conduct astronomical

observations in the sub-millimeter/far-infrared wavelength range of 30 to 50

microns, the LDR is required to have a surface precision that allows no more than a

few microns (root-mean-square) errors.

As a precursor technology development effort for the LDR-class space optical

systems, the Precision Segmented Reflector (PSR) Program was initiated in 1988 as

one of the major elements of NASA's Civil Space Technology Initiative (CSTI). The

PSR (Figure 2) has a parabolic reflective surface that is formed by 19 hexagonal

composite panels and with a focal length of 2.4 meters. The nominal size of each

PSR hexagonal composite panel is 0.9 meters, measured from vertex to vertex. When

fully assembled, all PSR panels except the central one will be actively controlled

by voice-coil actuators. There will be three actuators for each panel to

accomplish controlled motions for three degrees of freedom, one piston and two

tilts.

In the PSR structures area, the major accomplishment has been the successful

development of the PSR Testbed (TB) truss structure [2]. This space-erectable

truss structure, consisting of 45 aluminum nodes, 300 aluminum joints and 150

graphite-epoxy composite struts, was designed, analyzed, fabricated, and assembled

at LaRC. Photogrammetry survey performed on the as-assembled PSR TB truss

structure indicated that the RMS error of positioning accuracy for the 27 upper

surface nodes is about 70 microns and is substantially better than the i00 microns

goal. Structural tests including static deflection and modal survey were also

conducted and correlated with analytical predictions [3].

"%

!

Fig.l Large Deployable Reflector (LDR) Fig.2 Precisio N Segmented Reflector (PSR)



ARTICULATED PANEL MODULE (APM)

Another significant accomplishment related to the PSR structural effort is the

development of the Articulated Panel Module (APM) design concept for attaching

panels to the support truss. The APM is a modular design specifically developed to

provide well-defined, "soft-support" interface between the PSR composite panels and

the TB truss structure (Figure 3). It also provides physical support to the

control actuators and serves as the optical bench for the edge sensors employed for

aligning neighboring panels.

Specific PSR/APM design requirements for the 0.9 m panel are described in

Reference 4. The allowable panel movements and panel offset are applied to define

the geometries of the APM components. The flexure sizes, as well as the dimensions

of the lateral constraint struts, are derived from the specifications of the

desired natural frequency range. The current APM configuration has been designed

so that the natural frequencies of the piston mode and the tilt modes are less than

0.2 Hz and the natural frequencies of the rotational and the lateral modes are

somewhat near 50 Hz. In addition, the non-rigld spatial deformation of the front

panel facesheet above the interface node is not allowed to exceed 20 run. over a 6.6

cm. distance with a temperature difference of 2°C. This thermal deformation

requirement led us to choose INVAR as the panel interface fitting material.

Various design considerations and solutions had to be addressed in the design

of a prototype APM that would accommodate all the functional requirements and the

design criteria. The first design consideration was to establish low thermal

expansion coefficients in the overall APM components for an expected 200 K space

operational environment. This CTE consideration was solved by using low CTE

materials through the entire APM. The proposed materials are graphite/epoxy,

titanium and INVAR-36. The consideration of design simplicity was met through the

proper design configuration. There are only three panel interface points in the

current APM design. The lateral constraint struts were placed inside the subframe

tubes in order to reduce the packaging complexity. The lightweight consideration

was fulfilled by choosing lightweight materials. That is why graphite/epoxy was

used for the lateral constraint struts and the subframe tubes, moreover, titanium

was proposed for all the fittings and flexures. Fittings are applied in order to

facilitate the APM assembly. Flexures are used in the APM for both precise and

predictable considerations. A description of the APM development, including

details on its structural and functional requirements and design approaches, is

presented in Reference 5. ____________ _

i Pmnel/APM

/ _Int.t,._ ,/ttl_ /

Fig.3 APM,Panel,and Backup Struts



PSR TECHNOLOGY DEMONSTRATION MODEL

The PSR TD is a test and demonstration effort with the following specific

objectives: (i) demonstrate the integration of panels, backup structure, APM and

figure sensing hardware components developed within the PSR program; (2) validation

of individual PSR component technologies in a complete telescope reflector system

environment; (3) development of ground test methods for large precision space

structures; and (4) generation of experimental data for comparison with results

predicted by an optical performance simulation model. Figure 4 is one of the

baseline test configuration proposed for the PSR TD. Only one of the nineteen

composite panels will be actively controlled in the PSR TD tests. The actively

controlled panel can be located on either the first (inner) or the second (outer)

ring of the reflective surface, however, the final locations for actively

controlled panels have not been selected.

The structural model of the PSR TD system includes the panels, the APM and the

backup support truss. However, the optical bench is not included in the PSR TD

system model. This is because of that the structural design of the optical bench

has not been completed and its stiffness is considered to be relatively rigid

compared to the TD structural system. The panels incorporated in the PSR TD

program are a hexagonal shape and of a 2-inch thick aluminum core and O.04-inch

thick composite facesheets. The corresponding lowest natural frequency of the panel

itself is about 200 Hz[6]. Two PSR TD structural models were assembled in the

present study. The first model (System I) is based on the assumption that the

actively-controlled panel is attached to the first ring of the backup support

struts, as shown in Figure 5.a. The System II model assumes that the actively-

controlled panel is attached at the second ring of the backup struts, as shown in

Figure 5.b. The boundary conditions of both systems are assumed to be rigidly

mounted to the ground at the three inner nodes of the lower surface of the backup
truss.

Fig. 4 PSR TD Configuration

-----_X

(b) System II

Fig. 5 PSR TD System Models



DYNAMIC CHARACTERISTICS OF PSR TD SYSTEMS

The natural frequencies of these two system models are listed in Table i, with

the corresponding mode shapes briefly described. It should be noted that the

natural frequencies of the APM alone are very close to those of the PSR system

models. No couplings are observed for the piston mode, tilt modes and rotational

mode between the APM and the backup struts. However, slight couplings are noted

for the lateral modes. This is may also be due to the effects of an in-plane
offset as discussed in Ref. 5.

Table i

MODE NO.

1-6

7

8

9

10

11

12

13

14

15

16

13'

18

19

20

Dynamic Characteristics of PSR System Models

NATURAL FREQUENCY (Hz)

SYSTEM I

0.000

O.057

0.105

0.106

25.15

25.29

29.43

43.53

53.05

54.12

55.62

57.46

67.44

68.35

95.79

SYSTEM II

0.000

0.057

0.105

0.105

25.32

25.75

29.43

44.31

47.32

53.05

55.47

57.55

67.09

68.90

05.84

MODE SHAPE

Rigid Body Modes

Panel Piston Mode

Panel Tilt Mode

Panel Tilt Mode

Bending Mode oil Backup Slmts

Bending Mode ot Backup Slruts

Panel Core Mode

Translation Mode In X-dlrecUon

Translaiion Mode In Y-direction

Panel Rotational Mode



CHARACTERIZATION OF THE TEST ENVIRONMENT

The PSR TB structural tests are to be performed in the Magnet Room of High

Bay I located in the Spacecraft Assembly Facility (SAF) at JPL. A survey was

conducted to characterize acoustic and seismic environments of this proposed test

site [7]. In this survey, acoustic and seismic data were accumulated over a time

period of one week. For ground motion measurements, three Wilcox Research Model

731 accelerometers, one unit along each of the north-south, east-west, and vertical

axes, were used. The idB frequency responses of these seismic accelerometers were

measured from 0.i to 300 Hz. Three set of data, for day time, night time, and day

time with equipment off, were collected by these accelerometers. The collected

data was presented in three forms: (I) G_/Hz vs. Hz; (2) G vs. Hz; and (3) peak

displacement vs. Hz. A 1024 point Fast Fourier Transform was taken with a 1024-

channel analyzer to convert the raw data into frequency domain from the time

domain. The resulted acceleration power spectrum densities of the measured seismic

disturbances are applied in the random response analyses of the PSR Technology

Demonstration system model. Two extreme cases are examined in this work: (i)

daytime disturbances (Fig. 6.a), and (2) nighttime disturbances (Fig. 6.b). The

coordinate system shown in Figure 6 is defined as follows: X-Axis is for the

recorded north-south data, Y-Axis is for the east-west direction and Z-Axis is for

the vertical direction. For conservative purposes, the envelopes shown in these

disturbances are applied in the random analyses. It is noted that the magnitudes

of the daytime disturbances in the low frequency range are much higher than those

of the nighttime disturbances. However, the magnitudes of the daytime disturbance

in the high frequency range are very close to those of the nighttime disturbances.

Fig. 6 SAF DISTURBANCES

(a) Daytime (b) Nighltime
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ANALYTICAL APPROACH

Random analysis approach used in this work is based on a data reduction

procedure that is applied to the results of a frequency response analysis. The

frequency response function H(f) is obtained by applying a variable frequency

sinusoidal acceleration, Ao, to the PSR system models and calculating the

acceleration response at the specified points. Dividing the calculated

acceleration by the input Ao, H(f) can be expressed as function of the excitation

frequency, f. Then the root-mean-square (RMS) responses (g) at the specified

points can be calculated numerically from the equation

-_ . [ _ S(f,) IH(f,) l_ Af,] I/z

where S(f i) is the acceleration power spectral density function at the discrete

frequency fi.

The random response analyses are implemented by using the NASTRAN modal

frequency response solution scheme (Sol. 30) coupled with the results from the

normal mode analyses (Sol. 3). The peak random responses of the PSR system are

calculated by using the RMS values of frequency responses induces by random

disturbances over a frequency range form 0.01 Hz to 200 Hz. An uncorrelated

approach is applied in this work in order to be able to examine the peak responses

of the PSR system due to each individual external disturbance in a different

excitation axis. The final peak responses of the system subjected to the

disturbances of all three axes are then calculated by using the root sum square

(RSS) of the RMS peak responses in three axes. Two sets of relative displacements

are calculated in the analyses. The first one is the relative displacement between

the grid point of the front panel facesheet, located above the truss node, and the

backup truss node. The second set is the relative displacement between the backup

truss node and the ground support points. An 0.5% modal damping was applied to the

frequency response analyses.

RANDOM RESPONSE ANALYSES

• Modal frequency response associated with results from normal mode analyses

Oats reduction procedure

• Implemented by using MSC/NASTRAN

• Uncorrelatsd approach

Frequency range: 0.01Hz to 200 Hz

Modal damping: 0.5%

Probability of exceeding the specific displacement

J40



RESULTS AND DISCUSSION

The results of the l-a peak displacements are summarized is Table 2 for both

the PSR System I and System II models subjected to these seismic disturbances. It

is noted that the movements of the panel occurred in nighttime are much smaller

than those occurred in daytime. However, the difference in the nighttime and the

daytime movements of the nodes is not as large as that in the panel. This is

because the movements of the panel are predominant in the lower frequency (about

0.i Hz) range (Figure 7) and the movements of the nodes are predominant at a higher

frequency (about 25 Hz) governed by the truss modes (Figure 8). It is also noted

that the lateral movements of the panel are larger in the PSR System II than those

in the PSR System I. However, the vertical movements of the panel are almost

identical in both PSR systems. This is because the vertical movements of the panel

are dominated by the piston modes and the natural frequencies of the piston mode in

both PSR systems are identical. Another observation is that the lateral movements

of the panel are more location-dependent than the vertical movements of the panel.

However, the opposite results are observed in the movement of the strut nodes.

For the proposed PSR Technology Demonstration configuration (System I), the

lateral peak movements (l-a) are about 2.9 #m for the daytime disturbance case and

0.36 #m for the nighttime case. The vertical peak movements are 13_m and 2_m for

the daytime case and the nighttime case, respectively. The l-u peak responses of

the PSR System II are 4.5 _m for the lateral movement and 13 _m for the vertical

movement in the daytime case. These peak responses are well below the expected

figure control range of ±imm and the i00 _m gaps between the panels. This implies

that the isolation table is not a necessity in the TD optical bench design.

The peak responses of a hard mount case had also been studied by increasing the

flexure size of the lateral constraint struts such that the natural frequency of

the piston mode is 1.6 Hz and the natural frequency of the tilt modes is 2.0 Hz.

Results of analyses based on the nighttime SAF environmental data indicate that the

l-a lateral movement of the panel is 0.14 _m and the l-a vertical movement of the

panel is 0.08 _m. The comparison indicates that the peak vertical movement can be

reduced dramatically (from 2.0 _m to 0.08 #m) by using the hard mount APM design.



Table 2 1-O RMS Displacement Responses (p m) ol the PSR systems

Daytim Oislud:_nceo NightUme
Location Component

Sy_dem 1 I Symm 2 Syelem 1 System 2

Relative DisSents Belween Front Panel F_,esheet and Strut Nodeo

Corner 1

Corner 2

Corner 3

Relative Diq:)lacemenlM

1.34
1.72

12.89

1.12
2.58

12.53

1.50
2.54

11.96

2.18
3.14

12.85

1.89
4.05

12.46

2.29
3.92

11.83

Betwonn Sb_ Nodon ond Grouml

0202
0.293
1.851

0.172
0.336
1.911

0_21
0.331
1,819

0.377
0.479
1.794

O.284
O.573
1_46

O.336
0.551
1.751

Node1

Node2

Node 3

0.026
0.018
0.012

0.029
0.018
0.022

0.032
0.023
0.053

0.031
0.010
0.O30

0.O34
0.019
0.044

0.037
0.027
0.065

0.019
0.013
0.010

0.020
0.013
O.O2O

0.023
0.017
0.046

0.022
0.015
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CONCLUSION

Technologies, including those related to large space structures, developed by

the PSR program play a vital role in enabling future astronomical missions that

require large precise telescopes. To verify these enabling technologies, ground

tests must be performed and the planning of the tests mandates a need for a

thorough assessment of the test environment and responses of the test structure to

the environment. This need has been partially satisfied by random vibration

analyses of the PSR structure using seismic inputs derived from measurements of

ground motions of the test site. Results of the analyses indicated that the

maximum daytime movements of the precise panel supported by the PSR structural

system, including the APM, will be less than 13 microns in the vertical direction

and 3 microns in the lateral directions. These movements are well within the

acceptable limits and the need for elaborate vibration isolation devices does not

exist. The next step in planning the PSR TD tests is to design an optical-bench

structure which will not amplify or adversely alter the seismic disturbances

imposed on the test structure. The PSR TD optical bench will be extremely stiff

such that frequencies of its vibratory modes are well above the frequency range

occupied by PSR structural system. A fundamental frequency above 50 Hz is

considered to be desirable for the PSR TD optical bench. Design of such an optical

bench is currently in progress.

SUMMARY

PSR Technology Demonstratlon system model has been established

Panel

Articulated Panel Module (APM)

Backup trusa

Seismic disturbances of the PSR TD test site were measured. The resulted

acceleration power spectrum densities of these disturbances were applied in the

random response analyses of the PSR TD system model.

Analytical results indicated that the movements of the precise panels supported

by the PSR structural system were within the acceptable limits.

Elaborate vibration isolation devices are not necessary.

Future Work

Optical bench

Suspension system
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ABSTRACT

Dynamic equations which include the effects of

unsteady aerodynamic forces and a flexible body

structure have been developed for a free-flying

high performance fighter aircraft. The linear and

angular deformations are assumed to be small in

the body reference frame, allowing the equations

to be llnearlzed in the deformation variables,

Equations for total body dynamics and flexible

body dynamics are formulated using the hybrid

coordinate method and integrated in a state space

format. A detailed finite element model of a

generic hlgh-performance fighter aircraft is used

to generate the mass and stiffness matrices.

Unsteady aerodynamics are represented by a

rational function approximation of the doublet

lattice matrices. The equations simplify for the

case of constant angular rate of the body

reference frame, allowing the effect of roll rate

to be studied by computing the eigenvalues of the

system. It is found that the rigid body modes of

the aircraft are greatly affected by introducing a

constant roll rate, while the effect on the

flexible modes is minimal for this configuration.

I. INTRODUCTION

Future fighter aircraft must be able to meet

stringent maneuverability and performance

requirements. This will result in aircraft

designs in which the interaction of flexibility,

aerodynamics, and overall body motion during a

maneuver are of prime importance. The need for

superagility and the use of advanced lightweight

materials wlll make it very important to consider

*Senior Research Specialist

**Department Engineer

_Assoclate Engineer

T-tSenior Associate Engineer

flexibility effects in the analysis of the

aircraft undergoing maneuvers at high rates.

Flexible body dynamics have been investigated

in many other writings, including references [I] -

[4]. In this paper, dynamic equations will be

derived in a manner similar to that in reference

[51, which contains a more thorough development of

the equations. In addition, aerodynamic forces

will be explicitly included in the equations.

These equations will then be applied to a

realistic model of a modern fighter aircraft.

The aircraft is assumed to be a collectlon of

elastically interconnected, discrete rigid

subbodles which are subjected to external forces

and torques, including unsteady aerodynamic

forces. It is assumed that the deformations of

the subbodies with respect to the body reference

frame are small so that the high order terms in

the deformation variables and their rates can be

neglected. The rotational effects of motors,

fans, and turbines are not included in this

representation.

BODY REFERENCEFRAME

b3 b2
k ;# UNDEFORMED

CURRENTCM_ STH ELEMENT

_d/ y_ / P, f ELEMENTAL BOOY

/ _ / REFERENCEFRAME

_3_ DEFORMED STH ELEMENT

_:'_i2 INERTIALREFERENCEFRAME

q

Figure I. Reference Frames and a Subbody
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Table i. Vectors and Dyads definitions

Vectors and Dyads Definition

basis matrix for inertial reference frame (IRE)

basis matrix for body reference frame (BRF)

direction cosine matrix relationship between IRF and BRF

angular velocity of body reference frame

basis matrix for sth elemental body reference frame(ERF)

{b}_ .
{i} = {H •

= T{b}T
_bs }

d = {i)_ d
V [i}- v

_s = clot vs
c = {b} _c

_s = [b}T r s

is " {b}_.us

_S = {b}_ S s
i = {b} I {b}

Is ={bs]T Is {bs}

Position of current center of mass (CM) in IRF

Velocity of current CM in IRF
Position of the sth element in IRF

position of CM in BRF

position of undeformed sth element from undeformed CM

position of sth element from the undeformed position
position of differential mass in sth elemental body

angular deformation of sth element

Inertia dyadic of the aircraft with respect to CM

Inertia dyadic of the sth elemental body about its CM

Table 2. Vector Identities and Matrix Operation
Equivalents

Vector representation:

x = {i} T = {i} T X

Z ={ilT Y2 = {i}T Y

3

Cross product representation:

x x y = [i} T X Y = - [i} T Y X

where the " operator is defined below:

(x)- = _ = x3 0 -
-x2 x I 31

Operations with dyad

I = {i}T I {i]
=

I • x = {i) T I X

I x x " Z : {i}T I _ Y

A highly detailed description of the hybrid

coordinate method, which is used here to develop

the dynamic equations, can be found in references

[5] and [6]. Only some highlights of the

development of these equations will be presented

in this paper. The development of the equations

closely follows that of reference [7], with

aerodynamic forces added. The equations are

implemented as a computer program, FLXAIR.

Figure 1 shows a schematic diagram of the

various reference frames associated vlth each

subbody. Definitions of the vectors and dyads

used in this figure and in the derivations are

given in Table 1. Table 2 shows the equivalency

between various operations in a vector/dyad format

and those in a matrix format. The matrix format

is used for implementing the computer solution to

our problem.

Section 2 deals with the net force and torque

applied to the total body. The net forces and

torques on the subbodies are described in section

3. Derivations are kept brief, with only main

steps provided. The rational function

approximation used for describing the unsteady

aerodynamic forces is given in section 4. In

section 5 the equations are integrated in a state

space format, with aerodynamic forces specifically

separated from other external forces. These

nonlinear and time dependent equations can be used

for simulation. Vhen the angular velocity of the

body reference frame is constant, the equations

become time Invarlant. It is then possible to

study the effects of angular velocity on vehicle

structural dynamics by performing an eigenvalue

analysis. When unsteady aerodynamic loading is

included in this formulation, this is seen to be a

flutter analysis under maneuver.

A large-order finite element model which is a

realistic representation of an advanced fighter

was used to demonstrate the stability effects of

high roll rates. Section 6 describes the NASTRAN



model, structural and aerodynamic, which was used

in the analysis. Results are shown for various

roll rates and for variations of overall stiffness

of the aircraft. The analyses show little effect

on the flexible modes of the system due to roll

maneuvers. Considerable effect was, however,

observed for the rigid body modes.

2. TOTAL BODT DTNAMICS

The equations are derived from Newton-Euler

equations. The equations for the net force [, and

the net torque P , can be represented as follows.

= i_2(MTot _) (1)

p = id (H) (2)

HTo t is the total mass, and H is the angular

momentum referred to the CH of the aircraft.

Presuperscrlpt i refers to the fact that the

differentiation must be with respect to the

inertial reference frame.

The further development neglects the effects

of rotating bodies such as engine compressors,

fans, rotors, etc.. It is assumed that the

deformation of flexible bodies is small in the

body reference frame. This assumption is used to

neglect the high order terms in the deformation

variables Es(linear deformation of sth element)

and @s(angular deformation of the sth element) and

their derivatives.

Equation (1) can be written in the body

reference frame and for ease of computer

implementation in matrix form as follows:

F - MTo t ev (3)

The development of equation (2) to a computer

Implementable step is lengthy. Only few key steps

are given.

The angular momentum H is defined as

H - 5(£+Is+Us+_s) x id (c÷r.s÷Us+0s) dm (4)

The development makes use of the mass-center

definition

I(c÷r.s*Us÷Ps) dm - 0 (5)

and the following identity:

;(£s+_Us+_Os) x ( u x (rs+Us,£s) ) d. - I "_ (6)

Vtth the use of equations (4) to (6), equation (2)

can be written as

_P=_Z'__+2× !" °+ _'°.cxc

. _d ;(__s'__s'__s)x (__s÷__s-'_os)dm (7)
dt

The assumptions of discrete lumped masses and

small deformations with respect to the body

reference frame are now used to convert the

integration operation into the following summation

operation:

;(ls*Us+_Ps) x (_rs+Us+_Ps) dm =

E_rs x ms u s + _ Is " -Bs (B)

where m s is defined as:

; dm = m s (9)

s

and center of mass definition of sth lumped mass

is given by

J" £s dm = 0 (I0)

s

Finally, equation (7) can be written in a

computer implementable form as:

P = I_ +Ira +_16o

+ r{((_rs)-_s_)usms *_su'sms+Is_s}

+ _gIs_ s (11)

The total inertia is assumed to be linear in

the deformation variables.

I = I*+rJ. s{2rsTusE -rsuT -Usrs T}

* z(Sszs-ZsSs) (z2)

where I* is the inertia of the undeformed

airplane. Therefore

i = Zm s{2rsTusE -rsu I -usrs T)

+ zc;sZs-ls_) (13)

Equations (12) and (13) can be substituted into

equation (11) to further simplify the equation.
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3. ELEMENTAL BODY DTNAMICS 4. RATIONAL FUNCTION APPROZIMATION

The net forces and torques on the sth

elemental body are as follows:

-fs = ms id2-(d + c + _rs + us ) (14)
_-_Z -- --

Ps = i_tHs (15)

_Hs is the inertial angular momentum of sth element

referred to its mass center. Note that this

equation is applicable to all n subbodies.

It is assumed that the body reference frame

and the elemental body reference frames are

initially colinear. This assumption, though not

necessary, is used here to simplify the equations.

Equation (14) can be written in the following

computer implementable form:

fs = ms (8_) + c'+ _(rs+us+c) +2_0(C+Us)

+ U's +°Y_a(rs*Us+C) ) (16)

noting that

v = d (d) (17)

dt

H_S is defined as

Hs - Is " _= (18)

Invoking the assumption of small deformation, the

rotation is represented by

_s = [b}T Ss (lg)

Note that this equation is strictly true if the

rotations are infinitesimally small. The

relationship between the body reference frame and

the elemental reference frame can now be

approximated as

{bs)T , [b}T (E+_s) (20)

where E is a 3x3 unit matrix.

Using equations (18) to (20), equation (15)

can be vrltten in the following computer

implementable form:

Ps " ls(_+_s) *(Is r_s-(zs=)" )is +_Is=

+ (is_ _(is_ )- __(is_ )- +_Is_)8 s (21)

OF UNSTEADy kJ_ODTNANICS

The formulation of the unsteady aerodynamics

is based on the relation

[_} . 2 [NID] tap} (22)
pV2

where (ap} represents the pressures at aerodynamic

force nodes, {v} contains the velocities normal to

the lifting surface induced by {_p}, and [NID| is

the induced normal downwash influence matrix. The

induced velocities are defined as dovnwash

collocation points which are located at the 3/4

chord of each aerodynamic box for the doublet

lattice method.

Downwash collocation points are those points

on a lifting surface at which the induced velocity

normalized by the free stream velocity is equal to

the local angle Of attack {a), i.e.,

{a} = {_) (23)

The pressures are then given by

1
(_p} . _ _V2 [NID] -1 {a} (24)

or

I
{np} = _ pv2 [AIC] (a} (25)

where [AIC] = [NID] -1.

In the following derivation, Equation (24) is

used as a starting point.

From (ap), by an integration or "lumping"

process represented by [ZP], the aerodynamic

forces are obtained:

(Zaero } - [ZP] (8p} (26)

The local angle of attack, taken relative to

the free stream velocity, V, is given by

[a} - {aT} + {a_} (27)

The contribution sT is the instantaneous

slope of the lifting surface, relative to V, in a

plane through V perpendicular to the lifting

J4 ;



surface:

CaT} = [Do) {z) (28a)

where [De] is a differentiating matrix.

The contribution a_ results from the rate of

translation in a direction perpendicular to the

lifting surface:

{a_] = ,Dz] {V)

where [Dz] is an interpolating matrix.

(28b)

Substituting Equation (28) into Equation (27)

and replacing _ by sz yields"

[a} = [D8] + 7 [Dz] {z) (29)

Combining Equations (24), (26) and (29) leads

tO:

l ]-I{Zaero ) = _ ,V2[ZP] [NID

[ s [Dz]]{z}* ID e] + (30)

For constant amplitude oscillation s = i_ =

t(Vk/c). The induced velocity matrix is a

function of tk. It follows that Equation (30) can

be written as:

1
{Zaero} = [ oV2 [A(ik)l (z} (31)

where A(ik) is given by:

tA(ik)] . [ZP] lNID(ik)] -I tiDe] . _'-Ik lOz] ]

(32)

For developing the explicit function of s,

[A(s)], corresponding to [A(ik)], the [De] and

JDz] contribution to [A(tk)] are identified

separately, and the explicit occurrence of s in

Equation (30) is maintained.

lA(Ik,s)l - [ZP] [NID(ik)] -1

* [OO]+ _ lZP] [NID(Ik)1-1 [Oz]

(33)

Let:

[AT(ik)] = [Ze] [NID(Ik)] -1 lO el (3a)

and

[Az(tk)] = [Zp] [NID(tk)] -1 [Dz]

Then:

s
[A(ik,s)] = [AT(ik)] + _ Ihz(ik)]

(35)

(36)

Preliminary to approximating [A(tk,s)] by an

explicit function of only s, [AT(ik) ] and [Az(lk) ]

are approximated by tAT(P) ] and [Az(p)], where p

is the nondimensional form of s: p = cslY.

Following Reference [8], the following terms

are approximately,

[AT(P) ] = [BTo ] + r. (37)
j=l p + bj

[hz(p) ] - [BzO ] + E (38)
J-1 p ÷ bj

These matrices can be obtained by generating

aerodynamic matrices for several values of k and

then employing a least-squares fit.

Because the state-space equation will be

written in terms of s, Equations (37) and (38) are

written in terms of s by letting p = cs/V:

[AT(S)] = [BTo] + s _ (39)
j=l s + 6j

[Az(s)l - [Bzo] + s _ (40)
J=1 s + 6J

where

_j = V bj/c

Combination of Equations (31), (35), (36),

(39), and (40) leads to the following approximate

expressions for the aerodynamic forces:

(Zaero) = _- 0%/2 [BTo ] + (z)
m

÷ {z)
+ _ oV2 [BzOl V-" J 1

(41)



5. INTEGRATED TOTAL BODY AND ELEMENTAL

BODT DINAMICS

The general form o£ the linear flexible body

equation is

M'q + D q * G'(_)q + K'(;x;_,K)q

+ A'(_,_)q = L'(_,_,fs,p s) (42)

,- uT _T ,U_,_] T M, D, and Kwhere q-[ulT,_lT ", s,_s,'"

are mass, damping, and stiffness matrices

respectively of the airplane which are obtained by

a traditional finite element method, such as

NASTRAN. The other terms, G', K', A' and L' are

obtained from equations (16), and (42). Note that

K' is a symmetric matrix. Equations (3), (ii),

(12), (13) and (42) can be written in the state

space llke format as follows:

i 0000111ro .

0 En o /h

LMrEO8 AO 0 ' 2

oooolf10 _aI* _ F I 0J

0 0 0 -E n h I

0 A 1 K'+A' G'*D 2

(43)

Equations (44)-(55) explain

equation (43).

various terms in

nl = q (44)

n2 = q (45)

O is a null matrix and dimensions are context

dependent.

E n is 6nx6n matrix.

F0 h2 . Emsfsus+KIs_ s (46)

nl = _(T-ms(2rsTusE-rsu_-Usrs T)

+ I_sls-[Is_s}_ (£ms(2rsTus E

_ rsu_-usrsT)+t_sIs-;IsBs}_ (47)

rl n2 = (gms(2rsTusE-rsU_-Usrs T)

+ EBsls-ElsSs)_ *r.msl(&rs)-

* _s_JUs * _Is_ s

E = 3x3 unit matrix

(48)

H - block diagonal 6nx6n matrix vhere block

diagonals are 3x3 matrices

= Block diagonal [ miE, 1 I, .., msE, I s,

• ., mnE, I n ]

_EO " [ E 0 E 0 .. E O IT 6nx3 matrix

ZOE " [ 0 E 0 E .. O E ]T 6nx3 matrix

M' . M(E n - _EoETEoM/MTot ) (49)

= M(_OE - R) (50)

fi = _2/ (51)

°l;°
A1 = [T..0EM~ M _OE -MI_EO=]" _ (52)

[roEe]- = block diagonal matrix of dimension

6nx6n. Each block is 3x3.

The diagonal blocks are

[ _ 0 • o .. _ o l

[£EOe] ~ - block diagonal matrix of dimension

6nx6n. Each block is 3x3.

The diagonal blocks are

[ o _ 0 _.. 0 _ i

[H_oE_]" = block diagonal matrix of dimension

6nx6n. Each block is 3x3.

The diagonal blocks are

[ 0 (I1_)" 0 (I2_)- .. 0 (In_) ~]

K' - K + [roE=l- M [roE=I - + H ( [ZEOm ]"

* [ZEO=] ~ -ZEO_EE_ M/HTo t } (53)
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A' - MI_OE_I- - [S_Oe_l-

+ S { [ZEOL]" - EEO_EEoM/MTot }

+ [r_E_]" [MZOE,.,]" (54)

+ 2M [ [ZEO_]" - EEO_EEoM/MTot ] (55)

Definitions of [EOE_] ~, [EEOC]', and IMZoE_] ~

are very similar to [EOE_] ~, [ZEO_] -, and [MEoE_I-

and hence they are not given here.

Equation (43) has the form

A 0 X • A 1X . U (56)

where definitions of A O, A l, X, and U are obvious.

Equation (56) can be written as

= -Ao-I A 1X + A0-1U (57)

Eq.(57) can be simply written as

_ A X + B U (58)

Definitions of A and B are obvious.

Eq.(58) can be used for the time simulation.

To better understand the interaction between the

total body and the flexible body dynamics, steady

state maneuvers (i.e. constant angular rates of

the body reference frame) are studied.

By putting the derivative of _ to zero and

including the aerodynamic force representation

from equation (41), equation (43) becomes:

I 0 0 0 ]

BZO M' -0V -oV BZ2

T BZ1 _ J

0 0 I

0 0 0

io'+A'-pV2T BT0 G'+D' --'/--°V2 BTI BT2

0 -I 131

0 -I 0 82 J

]62 +

63

64

n 3

n 4

0

o

0

0

(59)

Note that the coefficient matrices on L,HS of

the equation (59) are time invariant when the

angular rate, _, is constant. Hence the

eigenvalues of the system can be used to check the

stability of the system and to study the effects

on modes of the system at different angular rates.

6. APPLICATION TO FINITE ELEMENT MODEL

A large-order finite element model (FEM) of a

generic fighter was obtained for use in the

application of this method. The aircraft planform

is similar to an F/A-18, although stiffness and

mass data 4o not necessarily represent this

airplane. Although the FEM consists primarily of

beam elements, it is a highly detailed model

containing an A-set of 228 degrees of freedom

(DOF) and approximately 200 structural elements.

Aerodynamic modeling of the aircraft consisted of

230 boxes, and can be seen in Ffgure 2. The

doublet lattice method was used to formulate

aerodynamic influence coefficient matrices. Eight

values of reduced frequency were used to calculate

unsteady aerodynamic matrices.

Certain assumptions used to develop the

equations required that some modifications be made

to the model. The equations assume that the

mathematical model has six DOF for every subbody.

If these matrices are generated from a FEM, this

is rarely true. In NASTRAN , this corresponds to

the initial global set (G-set) of coordinates.

These DOF cannot normally be used, however,

because many are constrained due to the method of

modeling and imposition of boundary conditions.

Figure 2. Aerodynamic Configuration
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Table 3. Flexible Mode Frequency and Damping for Roll Rate Maneuvers
Full Stiffness

HSC/NASTR_

FLUTTER

ANALYSIS

iFREQUENCY DAMPING

Bz

6.734 -.0689

8.948 -.000459

9.085 -.0740

14.192 -0.175

16.434 -.0730

18.736 -.0249

21.172 -.0188

23.172 -.0268

24.352 -.0406

29.578 -.00707

32.916 -.0458

FLXAIR

ANALYSIS

0.0 DEG/SEC

ROLL RATE

FREQUENCY DAMPING

Hz

6.699 -.0653

8.957 -.000422

9.056 -.0722

14.371 -0.142

16.779 -.0806

18.756 -.0297

21.812 -.0157

23.333 -.0292

24.692 -.0416

29.719 -.00878

33.439 -.0387

FLXAIR

ANALYSIS

90.0 OEG/SEC

ROLL RATE

FREQUENCY DAMPING

Hz

6.696 -.0653

8.955 -.000467

9.053 -.0722

14.368 -0.142

16.778 -.0806

18.755 -.0298

21.813 -.0159

23.333 -.0293

24.691 -.0416

29.276 -.00871

33.448 -.0387

FLXAIR

ANALYSIS

180.O DEG/SEC

ROLL RATE

FREQUENCY DAMPING

Hz

6.685 -.0655

8.946 -.000539

9.044 -.0722

14.361 -0.142

16.774 -.0806

18.753 -.0298

21.814 -.0165

23.331 -.0294

24.689 -.0416

29.721 -.00865

33.437 -.0387

FLY,AIR

ANALYSIS

240.0 DEG/SEC

ROLL RATE

FREQUENCT DAMPING

Hz

6.673 -.0656

8.936 -.000602

9.035 -.0722

14.353 -0.142

16.771 -.0805

18.751 -.O298

21.815 -.0162

23.333 -.O294

24.688 -.0416

29.722 -.00863

33.436 -.0387

These constrained DOF present a problem which

requires either the modification of the equations

or of the input matrices.

Another assumption made in the equations is

that the mass matrix is block diagonal. However,

the typical mass matrix from a FEM analysis

contains coupling terms. These arise because of

the following reasons:

i) Mass data may be input at locations other

than structural grid point locations.

2) Coupling results from the use of

dependency relations (multi-point

constraints in NASTRAN).

3) Coupling results from the static reduction

if inertia is lumped on any of the

omitted DOF (Guyan reduction).

These considerations make it necessary to

adjust the model as follows:

1) The inertia is relumped so that it is

located at exact grid point locations.

2) Inertia at dependent DOF is relumped so

that it is associated only with

independent DOF.

3) Inertia located at DOF which are

eliminated by the Guyan reduction process

must be relumped at retained DOF (A-set).

4) A Boolean transformation matrix is formed

for use in expansion of the FEM A-set DOF

to the 6n DOF required by the equations.

After forming the state space equations,

this same matrix can be used to eliminate

those DOF.

A NASTRAN flutter analysis of the vehicle was

conducted for a case representing Mach .7 and an

altitude of 20,000 ft. Mass, stiffness, and

aerodynamic matrix data were obtained from NASTKAN

for this case. The necessary matrices for the

rational function approximation of the

aerodynamics were obtained by a least squares fit

using aerodynamic matrices for reduced frequencies

of 0.0, 0.2, and 0.8 The state space equations

were formed and eigenvalue solutions were obtained

for various values of roll rate.

For zero roll rate, the results agreed with

the NASTRAN analysis. Increasing roll rate showed

little effect on the flexible modes of the system,

as can be seen in Table 3. The rigid body modes

were affected, however. A root locus plot of the

rigid body roots as a function of roll rate is

shown in Figure 3. For zero roll rate, two stable

real roots and one stable complex conjugate pair

are obtained - corresponding to a roll convergence

mode, a spiral mode, and an oscillatory dutch roll

mode. With increasing roll rate, however, we see
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Figure 3. Rigid Body Eigenvalues for Roll Rote
Maneuvers
Full.Stiffness
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-1.O_ -4.00 L3100 -2.00 -}.00 0.00

REAL AXIS

that some roots become unstable, and also change

from real to complex and back again to real.

Another case, representing a more flexible

airplane, shows the same behavior (Figure 4),

although the changes occur at lower roll rates.

This case represents 50% of the initial overall

airplane stiffness. Table 4 shove again that the

flexible modes were not greatly affected, even for

the reduced stiffness case.

7. DISCUSSION

Dynamic equations have been derived for a

flexible fixed wing aircraft, including an

explicit representation of unsteady aerodynamic

forces. The aircraft is assumed to be a

collection of elastically interconnected discrete

rigid subbodies. Defornattons are assumed to be

small in the body reference frame, thus alloying

the equations to be lineerized in the deformation

variables.

1.00 2.00 3,00 4.00 5.00

The hybrid coordinate method is used to

derive the total body and the elemental body

dynamic equations which are then converted to

matrix form. These equations are integrated in a

state space format, along with a rational function

approximation of the unsteady aerodynamic forces.

These equations can be used for simulation, For

the case of constant angular velocities of the

body reference frame, the coefficient matrices

become time invariant, alloying the use of an

eigenvalue analysis to evaluate the effects of the

angular rates on the system dynamic properties.

Vhen this method is applied to a realistic finite

element model of a generic high-performance

fighter, significant changes in the stability

characteristics of the aircraft are observed.

Vith increasing roll rate, some roots become

unstable, and also change back and forth from

complex to real. The dutch roll Bode becomes two

reel roots, one of which combines wlth the spiral

mode to produce an unstable oscillatory mode. The

other real root from the original dutch roll mode

/3-3



Table 4. Flexible Mode Frequency and Damping for Roll Rate Maneuvers

50 Percent Stiffness

FLXAIR

_ALYSIS

0.0 DEG/SEC

ROLL RATE

F_XAIR

ANALYSIS

60.0 DEG/SEC

ROLL RATE

FLXAIR

ANALYSIS

90.0 DEG/SEC

ROLL RATE

FLY.AIR

ANALYSIS

180.O DEG/SEC

ROLL RATE

FREQUENCY DAMPING FREQUENCY DAMPING

Bz Bz

FREQUENCY DAMPING

Mz

4.858 -.0737

6.333 -.000553

6.500 -.0930

10.229 -0.186

11.871 -.0874

13.334 -.0431

15.435 -.0199

16.527 -.0365

17.497 -.0578

21.021 -.0124

23.711 -.0479

FREQUENCY DAMPING

Bz

4.855 -.0737

6.331 -.000590

6.500 -.0930

10.227 -0.186

11.870 -.0874

13.333 -.0432

15.435 -.0200

16.527 -.0366

17.497 -.0578

21.022 -.0124

23.671 -.0479

4.839

6.318

6.484

10.216

11.867

13.331

15.436

16,525

17.494

21.024

23.669

-.07367

-.000492

-.0929

-0.186

-,0873

-.0431

-.0196

-.0364

-.0578

-.0125

-.0479

4.860

6.335

6.500

10.230

11.871

13.334

15.435

16.527

17.498

21.021

23.671

-.0739

-.000727

-.0930

-0.185

-.0873

-.0431

-.0204

-.0367

-.0578

-.0122

-.0479

Figure 4. Rigid Body Eigenvalues for Roll Rate
Maneuvers

50 Percent Stiffness
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combines with the roll convergence to form another

oscillatory mode which becomes more stable with

increasing roll rate. The effect on the flexible

modes of the aircraft was minimal for this

configuration. The behavior of the rigid body

modes is somewhat dependent on airframe stiffness,

as can be observed for the 50_ stiffness case.

It is expected that a design with increased

span would show a greater effect due to roll rate

for both the rigid body and flexible modes. This

should be given consideration in the design of any

future high-performance aircraft.
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Objective:

Analysis of the Efficiency of Algorithms resulting from

Kane's Equation for Serial and Parallel Computation of Mass

Matrix.

Overview:

* Algorithms resulting from Kane's Equation and Modified

Kane's Equation.

* Analysis of two Classes of Algorithms for Computation of
Mass Matrix: The Newton-Euler Based Algorithms and the

Composite Rigid-Body Algorithms.

* Analysis of the Efficiency of Different Algorithms for

Serial and Parallel Computation.

* Conclusion



Multibody Dynamics

Case Study: Rigid Multibody as Specialized to a Single Chain

Robot Manipulator.

0_

Multibody Dynamics: Solution for Q from

AQ = _- b = _" (1)

A: nxn Symmetric Positive definite Mass Matrix
Q: nxl Vector of Generalized Accelerations

_: nxl Vector of Applied Forces/Torques

b: nxl Vector of nonlinear Terms (Bias vector)

_: nxl Vector of Applied Inertia Forces/Torques

The O(n 3) Algorithms for Multibody Dynamics:

1) Computation of b and F.

2) Computation of Mass Matrix A.

3) Solution of Eq. (1) by Inversion of A.

Kane's Equation is widely used for Computation of Mass
Matrix.



Kane's Method: Notation

Q: nxl Vector of Generalized Coordinates

U: nxl Vector of Generalized Speeds

n

Choice of U: U = _" A Q * B
i _ I] ] i

]=I

Angular and Linear Velocity of Body (Link) i

n

O_ = _ O_ U + _

--i t_ -i (j) j -I (t)
]=I

n

V = V U
--i --i(j) j

j=1

O

+V
-i (t)

: Angular Velocity of Body i
i

: jth Partial Angular Velocity of Body i
l(j)

: Angular Velocity of Remainder Terms
t(t)

V : Linear Velocity of Center
i

of Mass of Body i

V
l(j)

: jth Partial Linear Velocity of Center of Mass

of Body i

O

V
I(t)

: Linear Velocity of Center of Mass of Body i

Remainder Terms



Kane's Method: Notation

Partial Angular and Linear Momentum

N =I_
-i (j) =l-[ (j)

F =mV
--1(j) i-I (j)

N : jth Partial Angular Momentum of Body i
i(j)

F : jth Partial Linear Momentum of Body i
i(j)

Kane's Equation for Computation of Mass Matrix

The element a of Mass Matrix A is Computed as
ij

n

Za = V .F + _ .N
ij --k(i) --k(j) --k(i) --k(j)

k=j

n

= V .mY +_ .Iw
--k(1) k--k (J) --k(i) =k--k (j)

k=J



Kane's Equation: Analysis of General Case

For Analysis of the
General Case We Set U = Q.

' i 1

= Z and _ = 0
-i(j) --J -i(t)

i

=[ Zq--i -J ]
j=l

V = (_Z.xP
--i(j) j --i*, j

) and V
-i (t)

i

j=l

= 0

N = I_ = IZ
-i (j) =i-i (j) =i-j

F =m(ZxP )
--i(j) i --j --i*,j

Kane's Equation can be written as

n

a=[
lj

k=]

(Z x P i).m (Z x P--i k*, k --j --k*, j

) +Z.IZ
--i =k--j



AN O(n 3) Algorithm Based on Kane's Equation

For i = I, 2, ..., n

For j = i, i+1, ..., n

n

aij = _ (Z x P ).m (Z x P ) + Z .I Z
k=j --i --k *, I k--j --k_,j --I --k--j

This Algorithm is Designated as Original Kane'

Algorithm.

s Equation (OKE)



Modified Kane's Equation

n

a t = _ (Z x P ).m (Z x P ) + Z .I Z
j --j --k m, j k --i --k*, i --j ----k-i

k=J

n

= _ Z .(Pk. x (mZx P ) + Z .I Z--j -- , j k--i --k*, i --j =k--i
k=j

n

= [ Z .((_P x (mZ x P ) + I Z )
--j k*, j k--i --k*, i =k--i

k=j



AN O(n 2) Algorithm Based on Kane's Equation

For i = I, 2, ..., n

For j = i, i+i, ..., n

P =P +p
--j, i --j-i, i --j, J-i

P =P + S
.j', i --j, i --j

N = IZ
--j (i) =j- i

F =m(ZxP )
-j(i) J -i -J*,i

For j = n, n-l, ..., i

f =F + f
--J(1) --j(i) --j+l(i)

n =N +SxF +n +P xf
--j(:) --j(i) --j --j(i) --j+l (i) --j+l, j --j+l (i)

a =Z.n
ij --j --j(i)

This Algorithm is Designated as Variant of Kane's Equation CVKE)

Algorithm.



Algorithms for Computation of Mass Matrix

,o
IP

t- •

"- J l oo yl

AS=F' (1)

ai]= all =/"i (2)

For the conditions given as

Qi = 1 and (_j = Qj_i = 0 For j = 1, 2, ..., n (3)

Two physical interpretations of Eqs. (2) & (3) lead to two

classes of algorithms for computation of mass matrix:

1. The Newton-Euler Based (N-E B) Algorithms.

Underlying Physical Concept: Propagation of acceleration

among rigidly connected bodies.

The Variant of Kane's Equation (VKE) Algorithm belongs to
this class.

2. The Composite Rigid-Body (CRB) Algorithms.

Underlying physical Concept: Propagation of force among

rigidly connected bodies.

)9O



Algorithms for Computation of Mass Matrix

Clearly, the two physical interpretations are the same.

We have shown that the algorithms of the two classes can be

transformed to one another.

From an algorithmic point of view, the main difference

between the algorithms of the two classes is the presence of

a two-dimensional recursion in Composite Rigid-Body

Algorithms.

The main issue is to determine the best algorithm(s) for

serial and parallel computation.

The Original Kane's Equation Algorithm is the least efficient

since its computational complexity is of O(n3).

The computational complexity of both the Newton-Euler

Based Algorithms and Composite Rigid-Body Algorithms is of

O(n2). However, the Composite Rigid-Body Algorithms, in

general, are more efficient.



Algorithms for Computation of Mass Matrix

There are four major redundancies in the Original

Newton-Euler Based Algorithm which can be removed by:

1) Optimizing the Newton-Euler Formulation for the

conditions given in Eq. (3),

2) Using a variant of Newton-Euler Formulation,

3) Choosing a better coordinate frame for projection of
equations.

4) Introducing a two-dimensional recursion in the

computation which transforms it to an equivalent

Composite Rigid-Body Algorithm.



A Variant of Newton-Euler Based Algorithm

Step I :

For j = I, 2, ..., n

For i = j, j+l, ..., n

_(i,j) = z(j)

D

¢(i,j) = V(i-l,j) + _(i,j)x_P(i,i-l)

F(i+l,i,j) = m(i)¢(i,j)_ + _(i,j)xh(i)

NCi+l,i,j) = k(i)__(i,j)

Step 2:

For i = n, n-l, ..., j

F(n+l,n+l,j) = N(n+l,n+l,j) = 0

F(n+l,i,j) = F(i+l,i,j) + F(n+l,i+l,j)

N(n+l,i,j) = N(i+l,i,j) + N(n+l,i+l,j) +

P(i+l,i)xF(n+l,i+l,j)

a.. = Z(i).N(n+l,i+l,j)
jl - --

This algorithm results from removing the first two redundancies

of the 0 N-E B Algorithm. It is clearly equivalent to the 0(n 2)

algorithm resulting from the Kane's Equation or the Variant of

Kane' s Equation (VKA) Algorithm. {_3



re(i) Mass of body i.

h(i)

k(i)

z(i)

First moment of mass of body i about point 0..
1

Second moment of mass of body i about point 0..
1

Axis of joint i

P(i,j)

V(i,j)

F(k+l,i,j)

N(k+l,i,j)

Position vector from point j to point i.

Angular acceleration of body i resulting from the

unit acceleration of joint j.

Linear acceleration of body i (point 0.)
1

resulting from the unit acceleration of joint j.

Force exerted on point O. due to the acceleration
1

of bodies i through k, i.e., the bodies contained

between points Oi and Ok+l, resulting from the

unit acceleration of joint j.

Moment exerted on point O. due to the acceleration
l

of body i through k, resulting from the unit

acceleration of joint j.



A Variant of Composite Rigid-Body Algorithm

Step 1 :

For i = n, n-l, ..., I

M(i) = m(i) + M(i+l)

_H(i) = h(i) +_H(i+l)

K(i) = k(i) + K(i+l)

A A

P(i+l, i)_H(i+l)

f(i) = Z(i)xH(i)

n(i) = K(i)Z(i)

a = Z(i).n(i)

+ M(i+l)P(i+l,i)

-M( i+1 )P(i+l, i )P(i+l, i )

- H(i+l)P(i+l,i)

Step 2:

For j = i-l, i-2, ..., 1

f(j) = £(j+1)

_n(j) = __n(j+l) +

a = _Z(j)._n(j)
jl

P(j+I, j)xf(j+l)



M(i)

H(i)

K(i)

Mass of composite rigid-body i composed of bodies i

through n.

First moment of mass of composite rigid-body i about

point 0..
z

Second moment of mass of composite rigid-body i

about point 0..
l



Comparison of Serial Efficiency of Different
Algorithms

In order to study the relative efficiency of the algorithms,

the optimal choice of coordinate frame(s) for projection of

the Equations should be carefully analyzed.

For the Variant of Newton-Euler Algorithm, projection of all

equations onto any fixed frame leads to maximum

computational efficiency; It requires O(n) transformations.

Projection onto the body frame leads to copmputational

inefficiency; it requires O(n 2) transformations!

For the Variant of Composite Rigid-Body Algorithm,

projection of Step 1 onto body frame and Step 2 onto any

fixed frame leads to maximum computational efficiency; It

requires O(n) transformations.

Projection of both steps onto the body frame leads to

copmputational inefficiency; it requires O(n 2)
transformations!



Comparison of Serial Efficiency of Different
Algorithms

Redundancy

®, ® ® ®

V C R-B 0 C R-B V N-E B 0 N-E B

®

OKA

Serial Efficiency

OKEA: Original Kane's Equation Algorithm.

O N-E B: Original Newton-Euler Based Algorithm.

V N-E B: Variant of Newton-Euler Based Algorithm.

0 C R-B: Original Composite Rigid-Body Algorithm.

V C R-B: Variant of Composite Rigid-Body Algorithm.

Algorithm

VN-EB

VCR-B

General

Mul. Add.

(39/2)n2+ 19n2+

(195/2)n-95 55n-66

(9/2)n2+ 4n2+

(231/2)n-181 88n-137

n=6

1192 948 2140

644 535 1179

Mul. Add. Total
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Algorithmic Choice for Parallel Computation of
Mass Matrix

Parallelism in Computation of Mass Matrix: Time and
Processors Bouds

We have shown that the time lower bound in computation of

mass matrix is of O(log2n ) and can be achieved by using O(n 2)

processors.

The Original Kane's Equation Algorithm might seem very

suitable for parallel computation since all elements of the

mass matrix can be computed totally in parallel.

The computation of each element of mass matrix can be

performed in O(log2n ) steps by using O (n) processors. Hence,

in order compute all the elements in parallel and achieve the

time lower bound of O(log2n ) , O(n 3) processors are required!

Using both the Newton-Euler Based Algorithms and the

Composite Rigid-Body Algorithms, the mass matrix can be

computed in O(log2n ) steps with only O(n 2) processors.
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Algorithmic Choice for Parallel Computation of
Mass Matrix

The Newton-Euler Based Algorithms are more suitable for

parallel computation due to their regular computational

structure and a lesser degree of data-dependency in their

computation.

1) They provide a high degree of coarse grain parallelism:

The columns of the mass matrix can be computed in

parallel.

2) They are more regular and have a finer grain:

A higher degree of parallelism in computation of the

elements of each column can be exploited

3) Their parallel computation on a two-dimensional

processor array requires simpler communication and

synchronization mechanisms.

Choice of Coordinate Frame for Parallel Computation on a

two-dimensional processor array:

For the Variant of Newton-Euler Based Algorithm it is more

efficient to project the equations of onto the End-effector

(Body n) frame while for the Variant of Composite Rigid-Body

Algorithm it is more efficient to project the equations onto
the base frame!
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Conclusion

* For recursive serial computation, the Variant of Composite

Rigid-Body Algorithm is significantly more efficient than
the Variant of Newton-Euler and the Variant of Kane's

Equation Algorithms.

* For parallel computation with O(n 2) processors, i.e.,

maximum exploitation of parallelism, the Variant of

Newton-Euler and the Variant of Kane's Equation Algorithms

are not only significantly more efficient than the Variant of

Composite Rigid-Body Algorithm but they also require

much simpler architectural features.

* For parallel computation with O(n) processors, i.e., limited

exploitation of parallelism, the Variant of Composite

Rigid-Body Algorithm is more efficient than the Variant of

Newton-Euler and the Variant of Kane's Equation Algorithms
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Comparison of Two Classes of Serial and Parallel

Algorithms for Computation of Mass Matrix

Algorithm

VCR-B

SA

VN-EB

VCR-B

PA

VN-EB

VCR-B

PPA

VN-EB

Computation Cost

General n=6

((9/2)m+4a))n2+

((231/2)m+SSa))n-

(181m+137a)

644m+535a

((39/2)m+19a)n2+

((195/2)m+55a)n-

(95m+66a)

l192m+948a

(48m+63a)[log2n]+

(100m+65a)

244m+254a

(33m+33a)[log2n]+

(109m+89a)

208m+188a

(9m+ga)n+(48m+63a)[log2n]+

(58m+24a)

256m+261a

(39m+38a)n+(27m+lSa) [log2n]+ 340m+280a

(25m-2a)

SP Proc.

- 1

- 1

2.40 n(n+l)/2

2.98

2.32

1.90

n(n+l)/2

n

n

SA: Serial Algorithm.

PA: Parallel Algorithm with O(n 2) processors.

PPA: Parallel Algorithm with O(n) processors. 203



Parallel VNEB algorithm

Step 1 :

I) Parallel compute R(j+l,j) by all processors of Row j.

For j = i, 2 ,..., n

For i = I, 2, ..., j

PRji : R(j+I,j)

2) Parallel compute R(n+l,j) by processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ..., n

For _ = I step i until [log2(n+l-i)], Do

R(j+2 W,j) = R(n+l,j)

j+2W>j+2n-lZn+l

R(j+2 W,j) = R(n+l,j) = R(n+l,j+2n-1)R(j+2 W-I,j)

j+2W__n+l>j+2 W-I

R( j+2 W, j) = R (j+2 n, j+2 TM )R( j+2 W-I , j )

n+l>j+2n>j+2 _-I

End_Do

3) Shift R(n+l,j+l) by processors of Row j+l to the processors of

Row j.

For j = I, 2, ..., n

For i = I, 2, ..., j

PR : R(n+l, j+l)
Jl

with R(n+l,n+1) = U (Unit Matrix)
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4) Parallel compute n+Iz(j), n+Ip(j+l,j), and n+IH(j) by all

processors of Row j.

For j = I, 2 , .... n

For i = I, 2, ..., j

n+l_, .
a) PR : /-tJ) = R(n+I,J)JZ(J)

]i

with JZ(j) = [0 0 1] t

n+lpb) PR : (j+l,j) = R(n+l,j+l)J+IP(j+l,j)
]I

n+l Sc) PR : (j) = R(n+l,j+l)J+IS(j)
J_

n+lH ,n+1Sd) PR : (j) = M(j) (j)
]t

Step 2:

I) Parallel compute P(j+l,i) and _(j,i) by processors of Column i.

For i = I, 2 .... , n

For j = i, i+l .... , n

For _ = I step I until [logz(n+l-i) ], Do

_(j+2 n,i) = _(j+2 n-l,i) = Z(i)

P(j+2 n,j) = P(j+l,i)

j+2n>j+2n-1__n+l

P(j+27),j) = P(j+l,i) = P(j+2 _,J+27)-1)+P(J+2 TM,J)

j+2nZn+l>j+2 TM

P(j+2 n,j) = p(j+2 n,j+2n-1)+P(j+2 n-l,j)

n+l>j+2#>j+2 TM

End_Do
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2) Parallel compute V(j,i), F(j+l,j,i), and N(j+l,j,i) by

processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ...n

a) PR : V(j,i) = _(j,i)xP(j+l,i) = Z(i)xP(j+l,i)
ji

b) PR : F(j+l,j,i) = _(j,i)xH(j)+M(j)V(j,i)
ji

C) PRj : N(j+l,j,i): R(n+l,j+l)[J+IK(j)R(j+l,n+l)n+l_(j,i)] +

H(j)xV(j, i)

Step 3:

I) Parallel compute F(n+l,j,i) processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ..., n

For _ = 1 step 1 until [loga(n+l-j) ], Do

F(j+2 _,j,i) = F(n+l,j,i)

j+2_>j+2_-1__n+ 1

F(j+2 D,j,i) = F(n+l,j,i) = F(j+2 _,j+2 _-1,i)+F(j+2 TM,j,i)

j+2_>n+ 1 >j+2 D-I

F(j+2 n,j,i) = F(j+2 _,j+2 _-1,i)+F(j+2 _-1,j,i)

n+l>j+2_>j+2 _-i

End_Do
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2) Shift F(n+l,j+l,i) by processors of Row j+l to processors of

Row j.

For j = I, 2, .... n

For i = I, 2, ..., j

PR : F(n+l, j+l, i)
jl

3) Parallel compute N(n+l,j,i) by processors of Column i.

For i = I, 2, ..., n

For j = i, i+l, ..., n

a) PR : N(j+I,j,i) = N(j+l,j,i)+P(j+l,j)xF(n+l,j+l,i)
jl

b) For D = 1 step 1 until ._[l°g2(n+l-J) ], Do

N(j+2W, j,i) = N(n+l,j,i)

j+2n>j+2W-Imn+l

N(j+2W, j,i) = N(n+l,j,i) = N(n+l,j+2_-i,i)+N(j+ZW-i,j,i)

j+2nan+l>j+2 n-i

N(j+ZW, j,i) = N(j+Zn, j+Zn-l,i)+N(j+2n-l,j,i)

n+l>j+2n>j+2 TM

End Do

2) Parallel compute aji by PRjl.

For i = I, 2, ..., n

For j = i, i+I .... n

PR : a = Z(j).N(n+l,j,i)
jl jl
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Algorithm-To-Architecture Mapping

Determination of an Algorithmically-Speciaslized Parallel

Architecture for Efficient Implementation of the Algorithm.

1) Processors Interconnection and Communication

Complexity

For perfect mapping:

a) The required interconnection among processors of each

column is Shuffle Exchange augmented with Nearest-Neighbor

(SENN).

b) The required interconnection among processors of each

row is Nearest-Neighbor.

The perfect mapping leads to a communication complexity of

O(Iog2n ). Mapping on an array with nearest-neighbor

interconnection leads to the communication complexity of
O(n).

2) Synchronization Mechanism

Exploitation of parallelism at two computational levels:

a) Coarse grain parallelism in computing columns of mass
matrix, and

b) Fine grain parallelism in computing the elements of each
column.

Global Clock-Based Synchronization Mechanism (similar to

Systolic Array) for processors of each column, and Local Data

Driven (similar to Wavefront Array) for processor of each
row,
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A GENERIC MULTI-FLEX-BODY
SIMULATION TOOL FOR
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Ken W. London*, PhD and John F. L. Lee**, PhD
Honeywell, Inc., Clearwater, Florida

Ramen P. Singh***, PhD and Buddy Schubele ....
DYNACS Engineering, Inc., Clearwater, Florida

ABSTRACT

An order (n) multi-flex body Space Station simulation tool is introduced. The flex multibody modeling
is generic enough to model all phases of Space Station from build up through to Assembly Complete
configuration and beyond. Multibody subsystems such as the Mobile Servicing System (MSS)
undergoing a prescribed translation and rotation are also allowed. The software includes
aerodynamic, gravity gradient and magnetic field models. User-defined controllers can be discrete or
continuous. Extensive preprocessing of body-by-body NASTRAN flex data is built in. A significant
aspect, too, is the integrated controls design capability which includes model reduction and analytic
linearization.

1.0 INTRODUCTION

The buildup of the International Space Station Freedom evolves through a series of widely
differing configuration each with its own unique mass property distribution and ensuing stability and
controls issues. Even the relatively mature Assembly Complete configuration can itself undergo
significant variation in mass properties when the MSS is in transit and/or carrying out payload
maneuvers or during Orbiter docking. In addition to the complications introduced by the multibody
articulated nature of these configurations, there is the fact that each component assembly is not rigid
but possesses a degree of structural flexibility. To support the controls design and verification for
such complex orbiting dynamic systems requires a versatile and high fidelity simulation capability.

This paper describes a dynamics, controls time history simulation software package (SSSIM Rev.
2.0):1: that specializes a very generic multibody topology to the needs of Space Station with flexibility
effects included and is a significant extension of the rigid model described in Ref. 1. Flex modeling is
based on a finite element 'nodal' representation compatible with NASTRAN. An efficient
preprocessor is used to extract the necessary mass, stiffness and damping characteristics as well as
the dynamic rigid/flex coupling coefficients. Calculations can be simplified considerably depending
on the nature of the boundary conditions. To minimize the system order, a model reduction feature
is built into the code. An interactive setup program aids the user in constructing the data tile.

* Staff Engineer
*" Senior Engineering Fellow
*'* President

.... Aerospace Engineer

:_ Developed under subcontract to Honeywell (SSG), Inc. by DYNACS Engineering, Inc.
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The intent overall is to have a complete controls design analysis capability, hence, the code
includes a series of idealized sensor options and a range of actuator types. The design process is
assisted too by a newly developed analytic linearization capability which can linearize about nontrivial
states and yields output in a form directly compatible with standard linear analysis tools such as
MATLAB. Such features, when combined with a user-defined controller (continuous or discrete),
provide a full closed loop large angle transient dynamic analysis tool for Space Station.

An overview follows of basic features and capabilities embodied in the software. As well, an
outline is given of the approach used for the flex dynamics formulation and for the solution algorithm
(numerous steps are taken to minimize simulation execute times). Preliminary results and run time
performance are given for representative Space Station configurations.

2.0 CONFIGURATION AND FLEX DYNAMIC ANALYSIS

2.1 TOPOLOGY

The generic "tree" configuration topology forming the basis for the code is shown in Fig. 1. Any
body that has more than one outboard body attached to it is labelled as a "base" body. A "leaf" body
has no bodies outboard of it. A "branch" is made up of a chain of adjacent bodies starting with a base
body innermost and ending with another base body or a leaf body. The "level" of a branch is a
measure of how many base bodies there are between the branch base body and the reference (level
1) base body. Each body is defined on a stand-alone basis without regard to the rest of the bodies in
the tree. The sensors, actuators and joints are connected to the bodies at specific locations called
node points. Each individual body may be rigid or flexible.

R12 2

SOLAR ARRAYS POWER
BOOM

ORBIT

Fig. 1 Generic multibody configuration with a multiple branch, multiple base body hierarchy, point-
connected interbody joints and a prescribed orbiting LVLH reference applied to Space
Station.
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For applications to Space Station, the structure is assumed to have a core body undergoing up
to 3 translational and up to 3 rotational (attitude) degrees of freedom (DOF) relative to the local
vertical, local horizontal (LVLH). The frame fixed to LVLH is, in turn, following some predetermined
orbital trajectory. All other bodies can have up to one rotational degree of freedom or can have
prescribed motions that can occur along one axis for rotation and along up to 3 axes in translation. As
indicated in Fig. 1, for example, base body 1 (BB1) can represent the core body and base body 2
(BB2) can be a power boom with leaf bodies 7 and 8 being pairs of solar arrays.

The MSS itself is a complex multibodied subassembly which, when operational, can significantly
alter the overall mass properties of the Space Station. MSS-related activies can also generate
significant disturbance loads.Consequently, it has served as somewhat of a focal point in
development of the SSSlM software. One objective is to have the code generic enough to capture
the major dynamic impact of the MSS during its many different configurations and missions. The
current software can represent the MSS as an assembly of any number of point-connected bodies.
There is no restriction as to body location or as to individual body mass properties. Prescribed
motions are possible at joints both in rotation and in translation and are general enough to allow plane
change maneuvering. The base body must be rigid if prescribed motions are involved since there
are no suitable NASTRAN flex modes available for a translating structure. Payload release is also

readily accomodated.

2.2 DYNAMICS FORMULATION OVERVIEW

The order (n) dynamics developed in Ref. 2 for rigid multibody cases is extended to include
elastic deformations. Now accelerations associated with the outboard body vibrations are first shifted

inboard along with outboard body acceleration. It is beyond the scope of this presentation to go into
full detail (Refs. 3, 4) but the basic impact of flexibility on displacement field is shown here in order to
appreciate the fundamental nature of the model.

Figure 2 provides a description of body pairs j and L(j). As seen in Figure 2, a "nodal" body
representation for flexible bodies is assumed. The nodal body, bjo, will facilitate representation of

"NODAL"
Body L(j) BODY

bjo

node

node

INERTIAL
REFERENCE

Figure 2 Inboard (LO)) outboard (j) 2-body geometry forms the basis for the recursive kinematics.
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discrete nodal data from finite element program NASTRAN, and provides means of accounting for
effects such as mass center offset and eccentricity in the dynamics. These effects can arise when,
for example, lumped masses are attached at nodes when running NASTRAN. For a consistent finite
element formulation, effects such as these result in a coupled nodal mass matrix. In addition to the
effects such as eccentricity, it is worth pointing out that this nodal body concept also introduces an
additional rotation for mass elements as evident in Figure 2 where the nodal body, bjo, has its' own
reference frame. Throughout this text, it will be assumed that the nodal body reference frames are
aligned with the body reference frame when the generalized modal coordinates are zero. It is also
assumed that the deformations are small so that linear, time invariant, modal data is used.

With the multibody description provided, it is evident that required body data (mass properties,
geometry, modal data, etc.) is defined for each body separately in its own reference. The vector

location of the mass element, din, of nodal body bjo of body j is in inertial as follows:

where:
= +-'- +". +e,

_ = Vector locating body j

reference in inertial space

_rio = Undeformed location vector of

nodal body bjo reference wrt body j reference

_ujo = Vector of linear deformation

associated with nodal body

bio reference wrt body j reference

NMj
A,,,o= (,.,o)

/--1

_Pj =-- Vector locating dm of nodal body bjo wrt nodal body

bjo reference (fixed in nodal body bjo basis)

The location vector of body j reference in inertial space is defined in a recursive sense via the
location of its inboard body and relative joint displacements.

where:

Vector locating body L(j)

(body directly inboard of body j)

reference in inertial space
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rL(J)

__(J )

__(J )

L(j

= Vector locating undeformed reference point p (point fixed

in Body L(j) for defining joint j)

wrt body L(j) reference, fixed in body L(j)

= Vector of linear deformation associated with

point p wrt body L(j) reference, fixed in body L(j)

NML(j)

i=l

= Vector of linear joint j displacement of

reference point q in body j wrt

reference point p in body L(j), fixed in reference p

of body L(j)

NTj

i=l

= Vector locating undeformed reference point

q (point fixed in body j for defining joint j)

wrt body j reference, fixed in body j

_q_ = Vector of linear deformation associated with

reference point q wrt body j reference, fixed in body j

NMj

/=1

The coefficients of h, _, are referred to as "Mode Shape" vectors and are pr6vided via

NASTRAN. The model shape vectors are assumed to be time invariant consistent with the

assumption that deformation, u, is small. The second generalized coordinate was that associated
with joint j displacement, y. The relative displacement of point q in body j with respect to (wrt) point p
in body L(j) is written in terms of the orthogonal unit vectors, ._-(fixed in the material frame at point p in
body LO')) and the generalized translation coordinate y, where/is from 1 to the number of translational
degrees of freedom of the joint, NTj.

NMj is the number of modes of body j, NTj is the number of translational degrees of freedom for
joint j, and NRj is the number of rotational degrees of freedom for joint j.

Velocity and acceleration follow by differentiation. Here though, only velocity is presented. The
acceleration is even more complex. Local material frames will have a relative, local angular velocity
with respect to body reference frames due to rotational deformation. For the most part, local
rotation due to deformation at the nodal bodies will be neglected in as much as the associated
coordinate transformations are not introduced (which would give rise to higher order terms).
However, the relative orientation of reference frames particular points will include rotation due to
deformation, for example, in computing body jto body LO') coordinate transformation. Like linear
deformation and mode shape vectors, rotation deformation for local angular velocity will use the
"Mode Slope Vectors", _,ealso available from NASTRAN.

Inertial velocity of mass element, dm, of nodal body bjo of body jtollows. An open dot above a
vector will be used to denote local velocity, whereas a solid dot above a vector will be used to denote
an inertial velocity.
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Performing the differentiationof the displacement field,the inertialvelocity

of the masa element is as follows.

where:

z;

+ '-o__"__,,,,J_¢_+g)-_

J - Angular velocity vector of body j referencein inertialspace

wj A _L(j)._ ___LO) °/J_ = +Lo__ ._

---- Angular velocity vector of body L(j) reference in inertial space

_-_ Angular velocity vector of reference at point p in body L(j)

wrt inertial space

h O/£(j)
= _%._0) t.(j)+

NMLO)

i----i

o NTj

d=l

L(j_ _. Angular velocity vector of reference q wrt reference p

NRj

iffil

= Angular velocity vector of nodal body bjo referencein inertialspace

Also,

A 0 I= ff+_o
NM_

i--I

NM/
o_J

i=l
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Clearly, flexibility introduces considerable additional algebraic detail, augmenting not just the
displacement field but contributing significantly to both translation and rotational velocity.

The Newton, Euler dynamic equation can now be formulated for a 2 body point-connected pair
and solved for recursively. The kinematics, dynamics is transformed successively body by body from
outermost to the most inboard body frame (which need not be situated at the mass center).
Accelerations are then determined for this innermost body based on augmented inertia properties.
This solution is propagated outboard to solve for the accelerations of all other bodies. The net effect
is a solution algorithm that avoids the need for direct numerical inversion of a high order system mass
matrix. Consequently, run time is proportional to number of degrees of freedom (n) - i.e. order (n) -
and not to n2 or n3 say (2).

3.0 OVERVIEW OF CAPABILITY

3.1 BASIC SUPPORT FEATURES

In addition to high fidelity modeling of the multibody dynamics, the SSSIM Rev. 2.0 software
provides the same basic support features common in Ref. 1. These include detailed models of the
primary environmental loads in orbit, i.e. the Earth's gravitational effect (including oblateness) and
low density aerodynamics (1970 Jacchia atmosphere) applied to flat plate or cylindric surfaces. A
magnetic field model is available too and is in use for passive damper studies for early configurations.
For controls design purposes, the code includes a series of idealized options such as position
sensors, single-axis rate gyros and accelerometers, resolvers, tachometers as well as a control
moment gyro (CMG) resolver. Similarly, a range of actuator types are provided which include: reaction
jets, torque motors, torque devices, magnetic torques and double-gimbal CMG's. User defined
controllers can be continuous or discrete.

The basic simulation capability described above is complemented by a series of enhancements
that model disturbance associated with:

• solar radiation pressure

• CMG, torque motor friction effects

• fuel slosh (3 DOF point mass and nonlinear stiffness, damping)

• static, dynamic imbalance for rotating bodies

• fans

• fluid flow (pumps, heat exchangers, throttles)

• start/stop fdction of solar array drives, antenna pointing mechanisms

• crew actions (kick-off, sneezing, walking).

Such detailed modeling makes it possible to assess impact of such disturbances on acceleration
level at any specified location (i.e. micro "g" impact).

3.2 SUMMARY OF MODELING CAPABILITIES AND LIMITATIONS

Structure. The structure is composed of bodies and joints connected in an open tree
topology. You can have any number of bodies. There are two limitations on topology. The joints
between adjacent bodies are pin connected and no closed loops ar are allowed.

Bodies. The bodies in SSSIM may be rigid or flexible. All of the data for each individual body is
defined in that body's reference frame. For flexible bodies the boundary conditions are arbitrary, i.e.,
fixed-free, etc. The finite element models for flexible bodies can have point masses or rigid bodies
called nodal bodies at each one of the node points. There are 3 limitations on the definitions of
bodies. The first is that only normal modes may be used, the second is that deformations must be
small, and the third is that the third degree terms in deformation are neglected.

21'7



Joints. Each joint connects two adjacent bodies. The degrees of freedom at each joint can be
prescribed, free, or locked and large angle rotations and translations are allowed. Initial values of the
coordinates for locked degrees of freedom are allowed. Joint 1 connects the core body to the local
vertical reference frame and is treated differently from all the remaining joints. The number of

prescribed and free degrees of freedom is limited as defined in Table 1. An additional limitation is that
for each joint with prescribed translation, the inboard body must be rigid.

TABLE 1 JOINT DOF

Free Rotation

Prescribed Rotation
Free Translation

Prescribed Translation

Allowable Number of DOF's

Joint I Joints 2-N

0,1,2,3 0,1
0 0,1 '_

0,3 0
0 0,1,2,3

=If the i th joint hz_ 1 free rotation DOF then it must have 0 prescribed rotation DOF's

Sensors and Actuators. Sensors and actuators are generic in their types and placement.
Your can select the types of sensors and actuators from a menu and place them at any node in the
structure. The sensors and actuators are limited in that they do not include dynamics or noise with
the exception of CMG's and torque motors. CMG dynamics are included and fully coupled with the
structure dynamics. Both the CMG and the torque motors have a friction model which may be
considered a noise source.

Controllers. The controllers have unlimited capability because they are user supplied
subroutines. The continuous controller is called inside the fourth order Runge-Kutta integration loop
and the discrete controller is called outside the loop at discrete instants in time. Controllers are
limited to only one controller per simulation.

Orbiter Environment. The orbit environment includes a standard NASA atmosphere and
magnetic field model. The atmosphere model includes the diurnal bulge and the effect of solar flux
and magnetic activity. The primary limitation on the orbit environment is that the orbit is fixed and
defined a priori. This means that any forces and moments acting on the structure due to reaction jets,
aerodynamic drag, etc. will not change the orbit. The orbital equations are uncoupled form the
dynamic equations and solved assuming zero disturbance acceleration. The effect of gravity
gradient on the multi-body structure is modeled as a point force and moment applied at the reference
frame of each individual body, where the distributed effect of the gravitational disturbance on
flexibility has been neglected.

3.3 SPECIAL FEATURES AND ADDED CAPABILITY

The basic SSSIM software has been enhanced considerably in order to support the flex modeling; in
order to create a controls analysis tool and in order to improve user friendliness and efficiency. This
section outlines the major areas of enhancement.

SETUP Program

A considerable volume of data can be required to run SSSIM Rev. 2 as the number of bodies and

joints grow and with full-up implementation of controllers. A single error in the data file can stop a run
and it can be a painstaking process to track down. Program SETUP is designed to assist the user
interactively in building up an error-free data file. Data is entered block by block, e.g. body 1, body 2,
...; joint 1, joint 2 .... etc. The user can add, delete and modify any given block of data and error
checking is provided.
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PREFLX Program

The flex model, as shown earlier, is based on a linear assumed mode representation of the elastic
displacement. During solution, the deformation is separated into a space dependent part and a time
dependent part. Furthermore, the spatial modal component is discretized into displacements

for a series of interconnected 'nodal' mass elements analogous to the finite element models used in
NASTRAN. This type of modeling ensures compatibility with contractor-supported structural data.

The purpose of the PREFLX program is to interface with NASTRAN data to form all the modal
coefficients and terms needed by SSSIM Rev. 2 to accommodate flex degrees of freedom and to
ensure rigid, elastic coupling.

Standard terms include the zeroth order terms _,J, _ and the rigid body inertia dyadic, "$Origid"

The optional terms include the first and second order terms _i, Y_, and _i"

Quantities computed by PREFLX are expressed in the nodal body formulation as:

Zeroth Order Terms

- mj ( o=1 o

NNB:

= _ j, (:. +ej) x _, + (,.jo+ej) × (_ x es),_,-,,
o.=.1 o

NNB.T .

-

First Order Terms

NNBj

NNBj

0=1 o

Second Order Term

NNBI

0=1
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where,

mj

{.}
{:}
nj

nm

_e

= Mass of jth Body

= Location of dm wrt nodal body refrence frame

= Undeformed location of nodal body refrence frame

= Mode Shape of ithMode at othNode on jth body

= Mode Slope of i_^ Mode of o_^ Node on jt/Lbody

-- 3 × Icolumn matrix

= Skew symmetric matrix

- The number of NASTRAN structuralnodes

= The number of retained flexiblemodes

= Rigid body mass center location wrt the body refrence frame

= Modal mass matrix

It is evident that considerable computational elfort can be required. PREFLX is currently designed to
accommodate 2500 node points and up to 250 modes per body.

LINEAR Program

Much control design is based on analysis of a linear systems model. An independent code LINEAR
is in place which provide linear analytic modes (about zero or nonzero states). The topology is
provided by SETUP. The analytic approach is considerably more accurate and more computationally
efficient than its numerical counterpart. The output of this program is deliberately formatted for
compatatibility with linear analysis tools such as MATLAB.

MODRED Program

MODRED performs model reduction on the linearized multi-flex-body output fro LINEAR at the
component or system level. Three options are provided the user: (1) modified Component Cost
Analysis (CCA); (2) CCA with special choice of parameters that yield costs based on controllability,
observability Grammians; and (3) system model reduction using a p-q Covariance Equivalent

Realization projection approach. Note that component model reduction preserves original
coordinates allowing trace back to original flex body source data.

RESTART Option

Long duration runs are typical tor Space Station, sometimes just to let the controller establish steady
state. With this in mind, a RESTART option is provided to allow a run to be extended. At the end of a
run the finat system state is stored and used to initiatized the data rite for the next starting time.

3.4 COMPUTATIONAL CONSIDERATIONS

High fidelity dynamic simulation for an orbiting multibodied system such as Space Station can be
computationally intensive. Run times can easily stretch into many hours even for the all-rigid cases.
The problem becomes much more serious for flex modeling. Hence, the importance of order (n)
modeling and solution. It is the flex cases that require the really high order models.

Other methods are needed to control run times too because of the higher flex frequencies which
tend to dictate smaller integration step size. The number of modes retained can be kept to a
minimum by carrying out model reduction. The software also provides 'options' to compute only up
to zeroth, to first or to second order flex effects. A further innovation is the separate and
independent coding of flex equations for ditfedng boundary conditions.
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The controls design is sped up too for flex cases by having an 'analytic' as opposed to a 'numeric'
linearization. At all stages of development great care is exercised in storing and accessing the

potentially large amount of flex data.

In addition to the flex-related steps taken above, the software also minimizes coordinate
transformations by allowing only the core body to have up to 6 degrees of freedom whereas all other

joints can have up to 1 rotation only (in addition to prescribed motions).

The RESTART capability does not speed up a run but it can remove the need to rerun time histories.
Previous runs can be used to start up other longer term case studies as needed.

4.0 THE INTEGRATED SIMULATION, CONTROL SOFTWARE ENVIRONMENT

The capabilities and leatures discussed are integrated to provide a single time history simulation as
well as a frequency domain controls analysis environment as shown in Fig. 3. The Space Station data
can include multi-rigid-body configuration and mass properties and/or multi-flex-body NASTRAN
structure models.

!

I Multi-Rigid Body I I

Configuration I i _
and Mass
Properties I i InteractiveSetup

I Program

I - Rigid Body I

Multi-Flex Body I -Flex Body
- INASTRAN I'-"-"l_i I I

°aa' 1'
Preprocessor __]

P.EFLXr
I i i I
!

I I

I

I I

CMG/MM
RCS

CONTROLLERS

Rigid/Flex
Space Station

Simulation

SSSIM Rev. 2.0

Analytical
Linearization

Multi-Flex-Body
Modal

Reduction
MODRED

I Non-Linear
Rigid/Flex Time

Domain Simulation
; i

I

I

I 1 :MAC-MATLAB 1

II UnearFre uenc i
-_ ....... I _l I Domain Flex Analysis I

_._ R="m" ['_ I HIFLX i -I
A , i :: I
I Updated Bending Fillers -I

__ Linear Reduced 1

Order Model
Evaluation Analysis

EVAL

ANALYSISINPUT DATA-_ ET.U p'_IMU LATtON

FIG. 3 MULTI-RIGID/FLEX-BODY DYNAMICS AND CONTROLS

ANALYSIS/SIMULATION OVERVIEW

The separate stand-alone programs SETUP, PREFLX, SSSIM Rev. 2, LINEAR, MODRED, EVAL
AND HIFLX that make up the SSSlM analysis environment can be applied in various combinations to

perform 1. non-linear time history simulation, 2. model reduction, 3. linear system analysis, or 4.
micro-gravity studies. The 6 programs are connected via data files that are created by one program
and read by another without any user interaction. Three of these programs are interactive: SETUP is

the basic model building program, MODRED and EVAL are used for model reduction and prompt the
user for model reduction criteria. It is to be noted that all programs reside on a single VAX computer
except for HIFLX, which is Macintosh (MAC) based. Data transfer between the VAX and MAC is
carried out via the KERMIT program which is a file transfer protocol.
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Non-linear, Time-history Simulation. Time-history simulation is primary a three step process using
SETUP, PREFLX AND SSSlM. The first step in this process is to define a model and enter the data
using SETUP. The structure model is composed of bodies, joints, sensors and actuators.

The second step is to create the flex body data files. The bulk of the data for flexible bodies is
handled automatically by PREFLX. A finite element model is created and used by NASTRAN to

produce a modal model. PREFLX will read the modal model, compute the necessary modal integrals

and form the flex data input tile for the SSSIM Rev. 2 core. Once the number of nodes and modes
are selected in SETUP, PREFLX takes over.

The third step is to simply execute the time-history simulation program, SSSIM.

Model Reduction. Model reduction is an iterative process. The lirst step is to create a full order
model by running SETUP and PREFLX for the time-history simulation. Then instead of running
SSSlM to do the simulation LINEAR is run to create a linear model of the system. The reduced order
model is created by truncating flex modes from the full order model just created. MODRED and
EVAL rank the modes and help select the retained bodes for the reduced order model. PREFLX is
then re-run to create the flex data tiles for the reduced order model.

Linear System Analysis. A linear model of the system is created by running SETUP, PREFLX AND
LINEAR to produce a linear model in the ABCD matrix quadruple format. HIFLX then can add the
orbital dynamics, rigid body state estimator dynamics and Control Moment Gyro (CMG), Reaction jet
Control System (RCS) controller effects to produce open and closed loop frequency domain as well
as linear time domain response (via MATLAB). Any changes in control and filtering, can be fed back
to the VAX through KERMIT to perform time-domain simulation.

Micro-Gravity Studies. Micro-gravity analysis is performed by measuring accelerations at one point on
the Space station structure caused by forces and moments exerted at different points on the
structure. SSSIM has a special provision for performing this analysis. You can select the points at
which you want to compute the Micro-gravity accelerations, and you can locate actuators at the points
where you want to insert the forces. Time history simulation can be run by connection function
generators to the actuators.

5.0 APPLICATION TO SPACE STATION

Preliminary results are presented showing flex time history response and a linear controls design
Nichols plot. An earlier Assembly Complete flex configuration is chosen as part of the validation
process because of the availability of earlier test case data.

5.1 Simulated Space Station Flex Response

5.1.1 Time History Response

The objective is to simulate the reponse overall and to assess run time performance for a multibodied
Space Station with a large number of flex models. The configuration is shown in Fig. 4 divided into
11 separate interconnected segments.

The core truss structure (body 1) is allowed 3 attitude rotations and 3 translations relative to LVLH.
Each of the power booms (bodies 2, 3) undergoes a single rotation about a local 'y' axis (a gimbals)
while each of the solar arrays (bodies 4 through 11) ar are kept locked (f gimbals). The NASTRAN flex
models include: 12 'free-free' modes for the core, 12 'fixed-free' modes for each of the 2 power
booms and 12 'fixed-free' modes for each of the 8 solar arrays. Damping ratios of 0.5% are assigned
all modes. The simulation is run open-loop without aero drag or gravity. Excitation is by applying an
initial 500 lb. pulse over 0.1s along the x axis.

Inertial 3-axis attitude rotations are shown in Fig. 5(a). They are, as expected, quite small (< 0.04
degrees) and there is an oscillatory perturbation induced by the combined flex effect. Generalized
coordinates associated with the first three modes of body 1 are plotted in Fig. 5(b). The frequencies
are quite low, especially when compared with mode 11 of body 11 (Fig. 5(c)). Overall the results
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Fig. 4 Represenlalive AssemblyComplete Configuration

0
,._" £" C__,_, v'_ ,1_ '_"

5"

Fig. 5 Preliminarytime history response demonstrating the flex capability of SSSIM Rev. 2.0: (a)
attitude of core body relative to LVLH axes (b) generalized flex coordinate for first 3 modes of
core body, and (c) generalized flex coordinate of mode 11 of solar array (body 11).

appear to be consistent and all indications are.th_.t the flex coupling effects have been captured. The
same results are found using the TREETOPS_software but much more computer CPU time is
needed as discussed below.

,5.1.2 Run Time Performance

The 5s simulation for the above case is carried out;t using a 4 term Runge-Kutta integratorat a step
size of 0.025s. When run on a Sun Work Station SSSIM Rev. 2.0 requires 36 minutes as opposed to
the 13 h ours needed to run TREETOPS. The improvement by a factor of at least 20 to 1 is dramatic
enough to be evidence of a new era in multibody flex simulation. The improvement is almost as
dramatic too by changing hardware to Digital Equipment VAX 6410 processor which completes this
140 DOF run in 3 minutes.
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5.2 Linear Controls Analysis

SSSIM Rev. 2.0 also provides the linear models needed to carry out frequency response studies.
For example, Fig. 6 shows a typical Nichols diagram generated for reaction jet control (RCS) along the
roll (x) axis of an Assembly Complete configuration. The first order state estimator filter operates at 1
radian/s. All flex modes appear to be stable.

20- , ,

Fig. 4 Typical

0

-20

-40

-60 _
-IlO

Assembly Complete
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- 100 -90 -80

deg

'roll' axis Nichols diagram for RCS.

6.0 CONCLUDING REMARKS AND FUTURE DEVELOPMENT

An order (n) nodal flex multibody model has been successfully developed for Space Station. The
improvement in run time perlorrnance is significant, exceeding by at least an order of magnitude the
existing generic codes (TREETOPS). To accommodate the flex modeling, an efficient preprocessor
is built in which converts NASTRAN source data directly to the required input format and computes all
additional rigid flex coupling coelficients.

A second major development is integration of the controlsdesign support programs into the SSSIM
Rev. 2.0 environment. Analytic linearization and model reduction can now tie in directly with linear
analysis software such as MATLAB.

Ongoing efforts include introduction of symbolic processing into solution of equations and into
describing elements of the controller as well as of the environmental loads, such as gravity gradient.
Alternale integration algod[hms and strategies are under investigation, too, as possible means of
improving run times.
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Control/structure interaction is an issue in some current space structures

like the R_IS arm on the shuttle, and will definitely be an issue in the design of

future spacecraft which will be larger in size, and therefore more flexible. At the

same time, these structures would have to meet more stringent performance re-

quirements so that a rigid-body approximation of the structural dynamics would

be inadequate. Low structural frequencies of these large, flexible structures will

fall within the bandwidth of the controllers used to control these structures. This

would lead to significant interaction between the control inputs and the flexible

structural response. Hence, integrated controller and structural synthesis is neces-

sary to enhance system performance while ensuring stability and robustness of the

system.

I I

Control / Structure Interaction

" Need to account for flexibility in the dynamics of future
space structures

--> larger size, more flexible structures
--> more stringent performance requirements

• Lower structural frequency modes excited by high
bandwidth controllers

* Integrated controller and structural synthesis
--> exploit this interaction to enhance performance,

while ensuring stability and robustness.
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The conventiona_ approach has been to design an optimal structure, and

then design an optimal controller for that structure. However, this approach does

not take advantage of the interaction between the structural and the controller de-

sign processes. Note that in contrast to the physical interaction between control in-

puts and flexible structural response, here we are referring to the interaction during

the synthesis process. Hence, simultaneous design of the controller and the structure

is essential for the optimal synthesis of the entire system. The optimization-based

approach is to perform analysis and synthesis of the structure and the controller in

a unified software environment (as opposed to using separate tools for structural

analysis and control design) and to optimize the structural and controller objectives

with respect to both structural and controller variables. With numerous structural

and controller objectives to be optimized, this approach naturally leads to multi-

objective optimization.

Optimization-based Approach

Conventional Approach :
Optimal structural design --> optimal controller design;
does not take advantage of the interaction between
structural and controller designs

Simultaneous design of the structure and the controller
is essential

* Optimization-based Approach :
--> Analysis and synthesis of the structure and the

controller in a unified software environment
--> Multiple controller and structural performance

objectives
--> Optimization with respect to both structural and

controller variables simultaneously.



Optimization of a single objective function, f(x), sometimes referred to as

scalar performance index, over a constrained design space, f2, is mathematically

well-defined, since real numbers have a unique and complete order. However, this is

not the case for multi-objective optimization. The objectives, f_ (x), f2 (x), ..., fm (x),

can be considered as the elements of a vector, f(x), in the criteria space R'; there-

fore this problem is sometimes called optimization of a vector performance index.

However, minimization of a vector is meaningless, since the criteria space, R "_, does

not have any unique and complete order. A partial order of the space R '_, called

the "natural order", leads to the concept of Pareto optimality [1].

Multi-objective Optimization

Scalar performance index :

min f(x)

R nwhere _={x_ I ui(x) <0, i=1,2,..,p; vj(x)=0, j=l,2 ..... q}

---> welt defined, since real numbers have unique, complete order

Vector performance index:

"min" f(x) T
x _ _ where f(x) = { fl(x), f2(x)..... fro(x)}

---> no unique, complete order for R m
---> a partial order of space R rn, called" natural order ", leads to

the concept of Pareto optimality



The definition of Pareto optimality is given below. A vector, x*, is Pareto

optimal for a multi-objective optimization if and only if there exists no feasible

vector x such that fi(x) _< fi(x*) for all i, and fj(x) < f./(x*) (with a strict

inequality) for at least one j. In words, x* is Pareto optimal if there exists no

feasible vector x that would decrease some objective function fj(x) without causing

a simultaneous increase in some other objective function. Conversely, if x is not

a Pareto optimal vector, some objective f/(x) can be decreased without increasing

any other objective (other objectives decrease or remain constant).

Pareto Optimality

A vector x * is Pareto optimal for the multi-objective optimization
problem

"min" f(x)
xe_ where f(x) = { fl(x), f2 (x), ..., %(x)}T

if and only if there exists no x e £J such that

fi(x) _< fi(x*) for i = 1, 2..... m, and
fj (x) < fj(x*) for at least one j.

In words, x * is Pareto optimal if there exists no feasible vector x that
would decrease some objective fi(x) without causing a simultaneous
increase in at least one other objective.



This figure graphically shows Pareto optimal solutions for a two objective

optimization problem. The shaded area is the attainable set, A, which is the image

of the feasible design space, f_, under the transformation of the objective functions,

f(x), in the criteria space R 2. The thick line shows the Pareto optimal set. Along

this line we cazmot decrease one objective function without causing a simultaneous

increase in the other [1]. As seen here, in general, Pareto optimal is not a unique

vector, but a set of vectors which satisfy the definition. The designer still has ample

choice to select a good design after performing parametric trade-off studies among

different objectives, but a solution to the multi-objective optimization should at

least be Pareto optimal.

f 2 Attainable set, A

'real set

fl

In general, Pareto optimal is not a unique vector x°, but a set of
designs which satisfy the definition.

Solution to a multi-objective optimization should at least be
Pareto optimal.



The approach used here for multi-objective optimization follows from the

goal attainment approach [2]. For this approach, a set of functions, gj(x), are

derived from the objective functions, fj(x), as shown below. The parameters aj are

certain reference values or goal values of the objectives, and bj are scaling parameters

so that various objectives become commensurable, and some weights are assigned to

the objectives. As seen from the expression for gj(x), the weight of each objective

depends inversely on bi. A solution to the multi-objective optimization problem

is then given by minimizing over x the maximum of gj's. Problems with this

approach are that the maximization function is non-differentiable, which disrupts

most numerical nonlinear programming algorithms. Also, the solution from this

approach may not be Pareto optimal.

Goal Attainment Approach for Multi-objective Optimization

fj(x) - aj
%(x) =

bj

where aj
bj

for j= 1,2..... m,

are reference values or goal values,
are scaling parameters so that various
objectives are commensurable.

min [ max { gl(x), g2(x)..... gj(x) ..... gin(x)} ]
x j

Problems:
1) nondifferentiable max function
2) solution may not be Pareto optimal



The Kreisselmeier-Steinhauser (KS) function [3,4] given by the expression

below provides an approximation for the maximum of a set of functions g/(x).

Values of the KS function remain within the interval g,n_z _< KS <_ grnaz + (].nm)/p,

where g,na= is the maximum of the set and p is a positive scalar parameter of the KS

function. For larger values of p, the KS function provides a closer approximation of

the maximization function. Secondly, the KS function is differentiable with respect

to the design variable, xi, as given by the expression below. This assumes that

the functions gi(x) are differentiable with respect to xi, which follows from the

differentiability of the objective functions fj(x). Thus, the KS function provides

a differentiable approximation for the maximization function. The first expression

for the KS function tends to cause floating point overflow problems in numerical

computations. An algebraically equivalent expression for the KS function is given

below to avoid this problem.

Kreisselmeier-Steinhauser (KS) Function

! In exp[pgj(x)]}KS: -y J

Useful properties:

I)

2)

gmax(x) < KS < gmax(X) + (In m)/p

a gj(x)

_, exp {pgj(x)}
_) KS j

o_xi _ exp {p gj(x)}
J

KS with large p provides a differentiable approximation for the
function max {gi(x)}

J

1 In {_, exp [p ( g (x) - gmax)]}
KS = gmax + _ j i

has good computational properties.



Our approach to multi-objective optimization is to use the KS function in-

stem of the maximization function in the goM attainment approach. The expression

given here for gj(x) corresponds to an objective function which has to be minimized.

In case an objective has to be maximized, we use the standard approach of minimiz-

ing the negative of #i(x) instead. Also, there is no penaity for over-achieving the

goals, i.e., if all the reference values have been reached, the optimization algorithm

is free to take the gj's to negative values. Minimization over x of the KS function of

g_(x) gives a multi-objective optima/solution. Thus, with this approach the prob-

lem is reduced to an unconstrained minimization (apart from side constraints on the

design variables) of a differentiable function, which is very amenable to numerical

nonlinear programming algorithms. Furthermore, the minimum KS solution is a

Pareto optima/solution.

Multi-objective Optimization Approach

min KS
X

1

rain { gmax + --In(Z exp[p(gj(x)-gmax)]) }
X P l

where a j
gj(x) = fi(x) "

b.
J

gives a multi-objective optimal solution.

for j= 1..... m

--> unconstrained minimization of a differentiable function

--> min KS solution is a Pareto optimal solution.
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Structural analysis for CSI design is performed using finite element model-

ing of the structure, i.e., assembling the mass and stiffness matrices of the discretized

structure and solving a generalized eigenvalue problem to determine a desired num-

ber of natural frequencies and mode shapes of the structure. With some assumed

modal damping, the structural dynamics equations in modal form are used as open-

loop plant dynamics for control design. The feedback control law used herein is a

dissipative controller employing collocated and compatible pairs of actuators and

sensors [5,6]. For example, torque actuators are used with attitude and attitude rate

sensors. A constant gain dissipative feedback controller is presented here. The gain

matrices, Gp and Gr, have to be positive definite to ensure the dissipative properties

of the controller. With these properties, the controller provides guaranteed robust

stability in the presence of unmodeUed elastic modes, parametric uncertainties (in

modal frequencies, mode shapes etc.), first-order actuator dynamics, and certain

types of nonlinearities in the actuators and sensors [6].

Control Law

Dissipative Controllers •

--> Utilize collocated / compatible actuators and sensors
(e.g. attitude and attitude rate sensors with torque actuators)

--> Constant Gain Dissipative Controller •

U = - Gpyp- GrY r

where Gp, G r are symmetric and positive definite

R_bust stability is guaranteed in presence ofunmodelled elastic modes,
b) parametric uncertainties,
c) first order actuator dynamics,
d) certain types of nonhnearities in sensors and actuators.



The open-loop plant model has a large number of structural modes, and a

reduced-order model is needed for control/strucutred integrated design. We use a

novel Hoo norm-based approach for this model reduction. The idea is to include

the modes which are most significant in the overall system transfer function. The

system transfer function is the rigid body transfer function, Gns(a), plus a sum of

the components of the transfer function due to each flexible mode, G,,(_), as shown

below. The contribution of each mode to the overall transfer function is measured

by the Hoo norm of G,i(s) given by the expression below. For the reduced order

model, we pick the modes with the largest Hoo norms of G,,(a).

Model Reduction

--> H =, norm-based approach to select modes for reduced
order model

System transfer function is

,- Tj'IT T n (QiQT)

Y(S) l
(Rigid body) (Flexible structure)13

G(s) = GRB(S) + _ G (S)i=1 ei

contribution of each mode to transfer function is measured by
H - norm of Gei (s).

II Gei(s) I1.. =
1

--> pick modes with largest II G_(s) II =.

24.1



In order to demonstrate this control/structure integrated design approach,

an integrated design of the Spacecraft Control Laboratory Experiment (SCOLE)

configuration [7] was performed. The SCOLE consists of a reflector antenna at-

tached to the shuttle by a flexible mast. This configuration was chosen because

of its structurally simple model as a flexible beam with off-set, inertial massess at

either end.

Example : CSI Redesign of SCOLE

i

24-2



A finite element model of SCOLE used in this study is shown here. The

flexible mast is modelled as 10 ELder beam elements. The space shuttle is repre-

sented by a concentrated mass at the tip with inertial properties (including mass,

moments of inertia and products of inertia) of the shuttle. The off-set reflector is

modelled as a concentrated mass with inertial properties of the reflector at its center

of mass, which is connected to the tip of the mast by a massless rigid link. Com-

patible and collocated pairs of actuators and sensors are placed at the tips of the

flexible mast. The actuator masses depend on the control gains and are included in

the finite element model. A modal damping of 0.3% is assumed. Numerical values

of various parameters were taken from a paper by Poelaert [8].

Finite Element Model of SCOLE

massless rigid link =-_

/
Concentrated mass with
inertial properties of the
reflector

sensors and actuators
actuator mass added

sensors and actuators
actuator mass added

Flexible mast modeled as
10 Euler beam elements

concentrated mass with
inertial properties of shuttle

Assumed modal damping = 0.3 %

24-3



Structural design variables are the diameters of tubular beam elements.

Hence, there are 10 structural design variables. Controller design variables deter-

mine the attitude and attitude rate gain matrices for the constant gain dissipative

feedback control law. Since Gp and Gr have to be positive definite for this con-

troller, we use Cholesky factors of the gain matrices as follows: Gp = LpL T, and

G,. = L,.L T, where Lp and Lr are lower triangular matrices. The controller de-

sign variables are the elements of Lp and Lr matrices. Subsequently, there are 24

controller design variables in this study.

Design Variables

Structural:

10 structural design variables -- diameters of tubular beam elements

Controller:

Controller design variables -- the attitude and rate gain matrices

Since Gp, Gr , are positive definite, we use Cholesky factors for design
T T

Gp= LpLp and Gr= LrL r

Hence, controller design variables are elements of Lp and Lr

24 controller variables for this case.



Four control/structure objectives were selected for this study. The first

structural objective is to minimize mass of the flexible mast and the actuators,

MT; obtained by subtracting the fixed masses of the shuttle and the reflector from

the total mass of the system. Another structural objective is to maximize the first

open-loop frequency, wl, so that the structure can be made as stiff as possible within

allowable values of the mass and the control objectives. The first control objective

is to minimize a measure of transient response decay time, r. This measure is the

sum of the reciprocal of absolute real parts of the closed-loop eigenvalues, as shown

below. The last CSI objective is to minimize a noise attenuation measure, a, which

is the steady-state root mean square attitude error due to a white noise input at

the sensors.

CSI Performance Objectives

Structural:

1) Mass of flexible mast and actuator mass, MT

2) First open-loop structural frequency, e)1

Controller:

3) A measure of transient response decay time, '_

n 1

i=1 I Re _.,I

4) A noise attenuation measure -- root mean square attitude
error due to a white noise input at the sensors,



The main issue in using approaches which employ incremental scaling pa-

rameters ai and bj is to select values for these parameters. Although arbitrary

values of these parameters would still lead to a Pareto optimal solution with our

approach, some preliminary optimizations are performed to establish trends in the

behavior of various objectives, which assist in choosing reasonable values for the

scaling parameters. Minimizing mass, MT, alone takes the structural variables to

their lower bounds (for least possible structural mass), and the controller variables

close to zero (for least actuator mass). However, this makes the structure very

flexible. Maximizing first open-loop frequency, wl, sends the structural variables to

their upper bounds and the controller variables close to zero (near zero point masses

at the tips). This leads to a very massive and stiff structure. These optimizations

show the tradeoff between the first two objectives. Optimizing both, i.e. minimiz-

ing mass and maximizing the first open-loop frequency, simultaneously, results in

reasonable values for both objectives.

Trends from Optimization

* Minimizing mass MT"
structural variables--> lower bounds
controller variables --> close to zero
Mass MT~IO 4

-3 9
very flexible structure, (o1~10 ; "_~10

-5
; (_ =1.65x 10

" Maximizing first open loop frequency 031 "
structural variables --> upper bounds
controller variables --> close to zero

First open loop frequency 031 -- 12.24 -s
very massive structure, MT~ 15300, '_ = 134.26, (_= 2.3 x 10

Structural optimization -- minimizing mass, maximizing frequency
structural variables -- thick close to shuttle end, thin out at the

reflector end
controller variables -- close to zero

MT = 2827.3, 031 = 0.173,
-5

'_ = 99.9, c = 2.15x10



The previous optimizations were primarily structural optimizations. In

controls, first a rigid body controller is designed (with no optimization) as follows:

Gp - w2j and Gr = 2pwJ, where J is the moments of inertia matrix for the

structure and p,w are closed-loop damping ratio and frequency. With p = 0.707

and w = 0.05 for the nominal SCOLE configuration, we get r = 121.34 and

a = 2.16 x 10 -5. Next, an optimization is performed with respect to control vari-

ables only, while using the nominal structural configuration for SCOLE, resulting

in reduction of v to 104.37. Finally, performing simultaneous optimization with

respect to structural and controller variables reduces r further to 65.86, but this

results in a massive and stiff structure with MT = 5537.6, since there was no re-

striction on mass. Thus, there is another tradeoff involved between mass, ,'VIT, and

the transient response decay measure, v.

Minimizing transient response decay time measure, "_ :

1) No optimizaUon. Using rigid body controller as
G p = 0)2J and Gr = 2p_ J

where o_ = 0.05 and p =0.707
= 121.34 and _ =2.16x10 s

2) Optimization with controller variables only.
structural variables at nominal value
'_ =104.37 and c =2.12xt0 °5

3) Optimization with both structural and controller variables
'_ = 65.86 and _ =2.16 x 10"s

but since there is no restriction on mass, MT = 5537.67



With some idea of the tradeoffs among different objectives and some insight

into the numerical values of the objectives involved for selecting the parameters ai

and bi, multi-objective optimizations are performed, next. The control-optimized

design is used as the initial design. In order to reduce both mass and response decay

time, lower values of desired mass and desired response decay time are used. The

desired values for the first open-loop frequency and the noise attenuation meam_re,

are used more as constraint values than performance objectives. The parameters bi

were chosen to make the incremental variations from the desired values commensu-

rable. The optimization results in lower values for both mass, MT = 2847.7, and

response decay time measure, _" -- 94.622. However, the first open-loop frequency is

lower than its desired value. To emphasize this objective more, we reduce the value

of parameter b2. Now, the optimal first open-loop frequency is much closer to its

desired value; but the mass and the response decay time measure, are not reduced

quite as much.

Multi-objective Optimization Results

INITIAL

1

aI

b1
i
1

2
aj

MT

2881.0

2800.0

0.2055

0.2

10.0 0.01

2847.7 0.153

2800.0 0.2
2

bl 10.0 0.001
2

f o_ 2880.6 O.197

I:

104.37

90.0

1.0

94.622

90.0

1.0

97.92

-5!
2.1x 10

2.2 x 10.5

-4
10

2.14 x 10"s

2.2 x 10s

-4
10

2.21 x 10 "s



Previousresultsdemonstratedthat masswastheconstrainingfactor in im-

provingtheresponsedecaytime. In fact, the optimizerwasreducingthe structural

massmakingthe mast more flexibleand addingthe massto the actuators to im-

prover. Therefore,in thenext seriesof optimizations,the desiredmassis increased

to allow reduction in responsedecaytime. Optimization resutlsindeedshowthe

trendof the massgoingup while r is reduced. In a similar manner, by varying the

values of a i and bi, the designer can place different emphasis on various objectives,

and perform parametric tradeoff studies with Pareto optimal designs.

Multi-objective Optimization Results

INITIAL

3

a i

3

4
aj

MT

2881.0

3000.0

(Ol

0.2055

0.2

104.37

90.0

0.485

G

-5
2.1x 10

2.2 x 105

87.53

-410.0 0.01 1.0 10

2996.11 0.292 89.74 2.15 x 10s

3500.0 0.2 80.0 2.2 x 10.5

4 .-4
bj 10.0 0.01 1.0 10

4
f o_ 3575.2 2.15 x 10-5



This paper demonstrates the benefits of a multi-objective optimization-

based control/structure integrated design methodology. An application of the pro-

posed CSI methodology to the integrated design of the SCOLE configuration is

presented here. Integrated design resulted in reducing both the control perfor-

mance measure, r, and the mass, MT. Thus, better overall performance is achieved

through integrated design optimization.

The multi-objective optimization approach used here provides Pareto opti-

mal solutions by unconstrained minimization of a differentiable KS function. Fur-

thermore, adjusting the parameters aj and bj gives insight into the trade-offs in-

volved between different objectives.

Concluding Remarks

" Control/Structure Integrated Design:

--> Example application of CSI methodology to SCOLE

--> Integrated design optimization gives better overall
performance

Multi-objective Optimization Approach:

--> Pareto optimal solutions

--> Unconstrained optimizations
(constraints can be included as desired values with large
weights)

--> Adjusting ai and bj gives insight into tradeoffs
involved between different objectives



Benefits of the CSI design were observed in a structurally simple SCOLE

configuration. Greater opportunity for such benefits exists in the CSI design of more

complex space structures. We will be applying this methodology to: 1) the EOS

(Earth Observing System) structure, which is the ADMT/CSI focus configuration,

and 2) the phase-zero evolutionary model at NASA Langley Research Center. This

methodology will also be used with more sophisticated control laws such as dynamic

dissipative controllers, as well as, LQG and Hoo optimal controllers. Also, open-

loop plant dynamics could be refined by including sensor/actuator dynamics (which

would include filtering of input and output signals).

Future Work

Apply this technique to more complex structures
1) EOS structure --> ADMT/CSI focus configuration
2) Phase zero evolutionary model

Use with more sophisticed control laws
1) Dynamic dissipative controllers
2) LQG and H,. optimal controllers

Optimization including sensor/actuator dynamics
(which would include filtering of input and output signals)
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COMBINEDSTRUCTURES-CONTROLS OPTIMIZATION OF LATTICE TRUSSES

A. V. Balakrishnan

ABSTRACT

The purpose of this paper is to demonstrate concretely the role that distributed
parameter models can play in CSI, in particular in combined structures-controls optimiza-
tion problems of importance in preliminary design. Closed form solutions can be obtained

for performance criteria such as rms attitude error, making possible analytical solutions of
the optimization problem. This is in contrast to the need for numerical computer solution
involving the inversion of large matrices in traditional finite element model use. Another
advantage of the analytic solution is that it can provide much needed "insight" into
phenomena that can otherwise be obscured -- or difficult to discern from numerical

computer results.
As a compromise in level of complexity between a toy laboratory model and a real

space structure we have chosen the lattice truss used in the EPS (Earth Pointing Satellite).

The optimization problem chosen is a generic one: of minimizing the structure mass
subject to a specified stability margin and to a specified upper bound on the rms attitude
error ("tip response"), using co-located controller and sensors. Standard FEM treating each
bar as a truss element is used, while the continuum model is anisotropic Timoshenko
beam model. Performance criteria are derived for either model, except that for the
distributed parameter model we obtain explicit closed form solutions. Numerical results

obtained by the two models show complete agreement. Based on the continuum model
we obtain a solution to the problem of optimal placement of actuators to minimize mean

square attitude error. A canonical optimization problem is examined and shown to be
trivial, and even capable of analytical solution, using the continuum model performance
criteria formulas in contrast to the complex computer solutions based on FEM or

truncated modal models currently in vogue.



Introduction

Themostvoiced criticism against the use of continuum models for structures is that

they are (a) impossible to derive for a realistic structure and (b) even if it could be done,

calculations using the model are equally impossible. We shall show that both statements

are false -- at least in the CSI optimization problem -- in particular in preliminary

design.

In combined controls-structures optimization, the optimization is the least difficult --

the real challenge is to derive expressions for the chosen performance criteria in terms of

the controls/structures parameters. We shall show that such formulas are much simpler

when continuum models are used -- moreover in many cases we can derive explicit

closed form expressions in terms of elementary function which can actually trivialize the

optimization problem. In particular the techinques of optimization need no longer

dominate.

The purpose of this paper is to demonstrate concretely the role that distributed

parameter models can play in CSI, in particular in combined structures-controls optimiza-

tion problems of importance in preliminary design. Closed form solutions can be obtained

for performance criteria such as rms attitude error, making possible analytical solutions of

the optimization problem. This is in contrast to the need for numerical computer solution

involving the inversion of large matrices in traditional finite element model use. Another

advantage of the analytic solution is that it can provide much needed "insight" into

phenomena that can otherwise be obscured -- or difficult to discern from numerical

computer results.

As a compromise in level of complexity between a toy laboratory model and a real

space structure we have chosen the lattice truss used in the EPS (Earth Pointing Satellite).

This is described in Section 1. The optimization problem chosen is a generic one: of

minimizing the structure mass subject to a specified stability margin and to a specified

upper bound on the rms attitude error ("tip response"). The mathematical statement of



theperformancecriteriais givenin Section2. Thefirst stepis to evaluatetheperformance

criterionfor a givencontrolconfiguration-- weconsiderco-locatedsensor/controlsonly.

Thefiniteelementmodelis describedin Section3, andthecontinuummodelin Section4.

Thedynamicstatespacemodelis seento be identicalin bothcasesexceptfor statespace

dimension.Section5 derivesthe performancecriteriavalid for eithermodel,exceptthat

for the distributedparametermodelweobtainexplicitclosedform solutions.Section6

comparesthenumericalresultsobtainedby thetwomodels,showingcompleteagreement.

As a byproductof ouranalysis,weobtaina solutionto theproblemof optimalplacement

of actuatorsto minimizemeansquareattitudeerror-- in Section7. An optimization

problemper se -- a canonical one -- is treated in Section 8 and by virtue of our explicit

formulas for performance indices in terms of structure/control parameter, shown to be

"trivial" and even capable of analytical solution -- in contrast to computer solutions using

FEM or truncated modal models as in [9, 10].

We should note that structural engineers (Noor, et aL [1, 2] and Renton [3]) have

already voiced the advantages of continuum models in preliminary structure design --

what is new here is the application to control design, to the Controls-Structures Interaction

problem.



1. The Physical Article

The physical structure (Figure 1) is a lattice of rectangular bays, each single-laced

single-bay. Offset at each end is an antenna. The controllers are force and moment

actuators with co-located attitude as well as rate sensors stationed at arbitrary locations

along the structure. Table 1 is a breakdown of the parameters describing each bay.

TABLE I

Element Properties

Longitudinal Diagonal Cross Bracing
Battens Bars Bars in Battens

Length L b _ d 8

Sectional
Area A At, A_ A a A s

Elastic
Modulus E Eb Et Ea ES

Mass Density m Pb P5 Pd 9S

Element

Mass = pAL mb me me ms

Element
Stiffness = EA/L Sb St Sd Ss

The beam geometry is shown in Figure 2. By the "nominal" structure, we shall mean the

following choice of structural parameters:

b = g; d= _ = _g

A b = A_ = A a = A s = A

= = et -- = Es

= Pb = P_ = Pa = PS

L = rig;

2ff7"

= E

= p



Nominalvalues:

n = 9

£= 3m

9 --- 3250

E = 2.759 x 1011

A = 2.468 x 10-4m 2 .
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2. Performance Criteria

As in previous CIS optimization studies (see [9] and the references therein) the

objective is to minimize the total mass of the structure, including the controller mass,

subject to meeting specified performance requirements, which we shall now describe in

mathematical terms.

The performance criteria chosen are:

(i) the mean-square attitude error due to sensor noise (using co-located sensors/

actuators). As we shall see, this actually depends on the steady state "tip" response to step

inputs so that "noise" notions can be eschewed if necessary.

(ii) the "stability margin": defined as the sum of the absolute values of the real

parts of the closed-loop eigenvalues. This is one measure of stability among very many

(see, e.g., [10]). We choose this one because it is essentially equivalent to any other one

but has the advantage that we can derive a simple closed-form expression for it.

Let us now define the criteria more precisely. First of all we assume the control

law to be PD ("proportional plus derivative") as in classical servo design. Let vp(t) denote

the "displacement" or "attitude" vectors at the sensor locations and let vr(t) the rate.

Then U(t) the control is defined to be

U(e) = _Vp(t) + Tvr(t)

where ot and T are (positive) scalar "gains." This is not altogether a

assumption -- that the scalar rate feedback is actually optimal is shown in [4]. The

beam-axis being the xl-axis, we have, with L denoting the beam-length:

O<xt<L.

Let f(0), f(L) denote the 6-DOF displacement vectors at the ends. Let

f(0) =

u(0)

v(0)

w(0)

¢i(0)

¢2(0)

%(0)

f(L)

2G/

u(L)

v(L)

w(L)

_1(L)

_2(L)

O3(L)

(2.1)

"simplifying"

(2.2)



whereu, v, w are the 3-DOF displacements, _l the torsion angle about the beam axis,

and _2, _3 about the mutually perpendicular axes. Then the mean square attitude error is

defined by

0 2 = U(0) 2 + u(L) 2 + v(0) 2 + v(L) 2 + w(0) 2 + w(L) 2

+ Ir012_ + IrLI 2_ ,

(2.3)

where the bars denote time averages, Irl being the length of the moment arm as required.

Under our feedback law (often referred to as "positive-definite" feedback) the closed-

loop system is guaranteed to be stable. Assuming no damping in th structure (as we shall

indeed do), the real parts of the closed-loop eigenvalues are guaranteed negative (see

Section 5) -- or if we assume the structure is already damped we have stability enhance

ment corresponding to the increment, the real parts being now more negative. Let c i

denote the real part increment corresponding to the ith closed-loop mode. Then the

infinite series

]_--oi (2.4)
i

converges. Denote the sum by c s. We shall take this to be the "stability index" -- the

higher the index, the more stable.



3. The Finite Element Model

Since most of the techniques in developing the FEM are standard, we shall only

present the relevant numerical data. Each bar is taken as a truss element with 6 DOF.

There are (13 + 5) elements per bay, and hence (13x9 + 5) = 122 elements for 9 bays.

There are 40 nodes with 3 DOF each, so that the stiffness matrix A and the mass/inertia

matrix M are 120x120. The state vector is thus 120xl. The displacements along the axis

of the truss are then expressed (or, rather, extrapolated):

u(kg,O-b/2) + u(k£_O+b/2) + u(kg_-b/2,0) + u(k£,+b/2_O)
u(k£) = u(k£, O, O) = 4

v(kg_O-b/2) + v(k£,O+b/2) + v(kg,-b/2_O) + v(k£,+b/2_O)
v(kg) = v(k£, 0, 0) = 4

w(kg) = w(kg, O, O) = w(kg, O-b/2) + w(kg, O+b/2) + w(k£,-b/2,0) + w(kg,+b/2,0)
4

1 [w(kg,+b/2,0)- w(kg,-b/2,0) v(kg, O,+b/2)- v(kg, O,-b/2)](Pl (kt) = -_ b - b

(_:(k£) = u(k£,O,+b/2) - u(kg, O,-b/2)b

(P3(k£) = u(k£,+b/2,0) - u(kg,-b/2,0)
b

where k is an integer and 0 _< k_ _< L. Allowing for rn controllers at k = kl, kz ..... k_,

the corresponding relations can be represened by a 6mx120 matrix acting on the state

vector. (We consider in this paper m = l, 2 or 3.) Let B denote the transpose of this

matrix. Then the state space dynamics with co-located sensors can be described by:

with sensor data:

MY¢ + Ax + BU + BN a = 0 (3.1)

where U(') denotes

(mutually independent) white Gaussian

respectively, I being the identity matrix.

vp(t) = B*x(t) + Np(t) (3.2)

vr(t ) = B*x(t) + Nr(t ) (3.3)

the control; Na(" ), Np('), Nr(') model additive noise taken as

with spectral density matrices dal, dpl, d,l



4. The Continuum Model

As we noted in Section 1, the problem of producing an "exact," "three-D" continuum

model for a real-world structure like the truss we are considering can be a formidable one

-- although research in this area looks promising [5]. One way out of this difficulty is to

exploit where possible the special nature of the truss -- in our case it is a lattice of bays

along the same axis numerous enough so that it is even visually "beam-like." In that case

there are many ways to approximate by "one-D" beams -- without going into the details

of this theory, suffice it to say that the approach by Noor and Russell [2] is the one

adapted here. We thus create an "equivalent" (referring to [2] for the precise sense) one-

dimensional anisotropic Timoshenko beam as follows.

u denoting axial (longitudinal) displacement (along the xl-axis);

01 the torsion angle about this axis,

w, 02 denoting the transverse bending displacement in the xl-x3 plane

and torsion angle about the x2-axis,

v, 03 denoting the transverse bending displacement in the xl-x 2 plane

and torsion angle about the x3-axis,

the three axes being mutually perpendicular; 0 -< xl -< L,

L being the beam length = ng ; n = number of bays

The Timoshenko equations (valid between control nodes) are:

mlla - cl_u"- c14v"- c15w"- clsO_+ c140_= 0

m22_" - c44v" - Cl4U" + ¢4403 = 0

m33_ - cssw" - clsu"- css0__-0

m4401 - c6601' - ¢3602' - c2603' = 0

m5502 + m5603 + cI5 u' + c55w' - ¢3601' + c5502 - c3302' - c2303' = 0

.... _t wl

m6603 + m5602 -- CI4U' -- C44V' -- C2601 -- C2302' + C4403 -- C2203 = 0

where the superdots denote time-derivativesand the primes, space derivatives.The coeffi-



cients of these dynamic equations are related to the truss parameters as follows: (cf. [2]):

The mass coefficients are given by:

4m b + 4mt + 4m d + m 8

roll = m22 = m33 --

£(8m b + 12m t + 8m a + m 6)

m44 = 2m55 = 2rn66 = 61,t2

The stiffness (flexibility) c0 are given by:

4t..SbSaP.2

cll = 4t.St + Sa + Sb(t t + p2)

cl 4 cl 5 2gSbSa

c44 = 1./. - c55 = _ - Sd + Sb(_. + I1.2 )

£3 St g3Sb Sa

c22 = c33 = _t2 + 4(Sa + Sb(f_ + 1.1.2))

£3SbS a

c23 = 4(Sa + So(£ + 1.1.2))

g3SbS a

c66 = -2c26 = -2c36 = _2(S d + Sb(£ + _2))

where

In order not to complicate matters unduly in this demonstration, we shall freeze all

parameters except the cross-sectional area A which will then be the structural parameter to

be optimized. In this case

cla = (40 + 24"_)EA (Newton)
9 +4"_

2EA

Cl 4 = .._cl 5 = /L,44 1= c55 = 1 + 2"_/2 (Newton)

(2725 + 1476"_)EAg 2 (Newton)m z
c22 = c33 = 2628 + 1336",/2



r(97 + 140-_)EAg2]

c23 = -L2628 + 1336_- J
(Newton)m 2

1 (16 + 33"_/2)EAg 2 (Newton)m2
6"26 = -c36 = 2c66 = 296 + 130"_-

ml] = m22 = m33 = (8 +5"_/2)Ap kg/m

m44 = 2m55 = 2m66 = (20 + 9"_/-2)Ag2p
6 kg • m

(A£2P) kg • m
m56 = - 6"42

Once the coefficients ci), mij are defined (on whatever basis), we can develop the

generic state space dynamic model analogous to the FEM formulas (3.1), (3.2), (3.3):

MY¢ + Ax + Bu + BNo = 0 (4.])

Vp(t) = B*x(t) + Np(t) l

JVr(t) = B*x(t) + Na(t )

(4.2)

where Na('), Np('), Nr(" ) are white Gaussian noise with spectral density dal, dpl, d,l

respectively._ Only, the dimension of the state x(t) is not finite. The technique of

derivation is also different, in particular in the role of the energy. See [6, 7] for details.

Here we can only summarize the basic results.

Case 1: One Controller

We begin with constructing the state space model for one controller ("midcontroller"),

and offset masses at each end, referring to [4, 6] again for more details and to [7] where

the general case of distributed control is treated. Thus the state x(t) at time t is defined

by
f(', t)

x(t) = f(O, t)

f(s2, t)

f(L, t)

1 See [7] for generalization to arbitrary diagonal matrices.
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where s parametrizes the beam axis, zero denoting one end and L the other, L being the

total beam length, and s2 denotes the location of the mid-controllers and f(-, t) denotes a

(6x I vector) function of s, 0 < s < L, representing displacements and angles:

u(s,t)

v(s,0

f(s, t) = w(s,t)

'1 (s, t)

*2 (s, t)

*3(s,O

The stiffness operator A is defined as follows:

I)

v

f(.)

f(O)

x = f(s)

f(L)

g(s) = -A2f"(s ) + Alf'(s) + Aof(s),

The derivative f'(.) has a discontinuity at s = s2, and

V

and thus defined, the potential energy

lAx, x]

-Ll f(O) - A2f(O)

-A2( f'(s2+ ) - f'(s2-) )

L1 f(L) + A2f'(L)

where

L

HI f'(s) if(s)' f(s)

0<S<S2 ; S2 <s<L.

ds>O

n

C1 0 0 -C2

0 C3 0 0

0 0
Ao

o

A2

0

C3

2G7



C 1 --

Cll c14 c15

c14 c44 0

cls 0 c55

C_

I c66 c36 c26
c36 c33 c23

c26 c23 c22

I 0 C2 IAi = --C_ 0

C2

I O -c15 c14
0 0 c44

0 -c55 0

Ao = Diag. [0, 0, 0, 0, c55, c44 ]

B is defined by

and

0 -C2 [L1 = 0 0 "

0

BU = 0
U '

0

B*x = f(s2)

The mass/inertia operator M is defined

U is 6xl

(6×1) .

Mof(')

Mx = Mb'o/(O)

mcf(s2)

mb,Lf(L)



where

M 0

roll

m22

m33

/7,/44

m55 m56

m56 m66

Diag. Mbo = (too, too, mo , Diag. lo)

where rn0 is the offset mass at s = 0 and I0 is its moment of inertia about zero, and

similarly

Diag. MbL = (m L, m L, rnL, Diag. l L ).

See also [6] for more on Mbo, MbL.

M£

m e 0 0 0 0 0

0 m c 0 0 0 0

0 0 m c 0 0 0

0 0 0

0 0 0 lc

0 0 0

where m c is the force actuator (rotor) mass and I c the moment of inertia of the moment

actuator about its center of gravity. The m.s. attitude error matrix is defined by

1 T r }lim _f f(O,t) f(O,)*dt + I f f(L, t) f(L, t)* dt
T _** 0 0

2 is the sum of the diagonal terms as defined.and c a

Case 2: Two Controllers

Next we consider the case of two controllers, one at each end. Here, since there is

no mid-controller, we may delete that entry in the state. Thus

f(-, t)

x(t) = f(O, t)

f(L, t)

2¢9



Mof(',O

Mx = Mb, of(O, t)

Mb, Lf(L, t)

where the end-masses m o, m L must now include

similarly for the moment of inertia matrices. We shall use the notation

Mb,o 0
M c =

0 Mb ,L

With U(') denoting the control vector, (12xl), we have

Finally

BU =

n*x =

I°1
f(0, t)

f(L, t)

V

mx= v

-L1 f(0) - A2f'(0)

L1 f(L) + A2f'(L)

g(s) = -A2f"(s) + Alf'(s) + Aof(s),

Here the mean square attitude error-matrix

T

xfl im _ (B*x(t))(B*x(t))* dt .
T-_** 0

the actuator moving masses, and

0<s<L.

Case 3: Three Controllers

In this case we have a mid-controller at s = s2 as well as a controller at each end.

Here

f(', t)

f(0, t)

x(t) = f(s2, t) '

f(L, t)



in other words the same state vector as in Case 1.

Mx(t)

M 0 f(., t)

Mb. o f(O, t)

= Mb, 2 f(s 2, t)

Mb, L f(L, t)

where

Mo,2

m c 0 0 0 0 0

0 mc 0 0 0 0

0 0 m, 0 0 0

0 0 0

o o o _

0 0 0

where m c is the force actuator moving mass and I c is the moment of inertia about its

center of gravity, corresponding to the "mid-controller."

0IBU= [U

f(o, t)
B*x = f(s2, t)

f(L, t)

2 from the diagonal terms of the mean square error matrix:We can calculate o a

T
1

1 i m _Ff (B*x(t))(B*x(t))* dtDiag. o

T_** 0

which now has 18 entries. Once again we adopt the notation:

M£

M o

Mt_o

Mla2

M b_L

27i



5. Formulas for Performance Criteria

We shall now develop formulas for the Performance Critera. First the mean square

attitude error: Using either model FEM (3.1)-(3.3) or Continuum (4.1)-(4.2) we have the

state space form:

M)_ + Ax + BU + BN a = 0

vp - B*x + Np

v, = B*x + N r

and

U(O = avp(t) + _,v,(t).

Substituting this control law into the state equations we have:

MYc + (A + txBB*)x + TBB*x + B(N a + fin e + TNr) = O .

The steady-state output covariance matrix

e a -_ E((B*x(t))(B*x(t))*) = [ _2dP
+

k

where the matrix part:

da +_2d r )2T (B*(A + ff.BB*)- 1B)

B*(A + ty.BB*)-IB

is recognized as the steady-state input-output response matrix: it is the value at co = 0 of

the input-output transfer-function:

B*((ico)2M + A + ff+BB* + (i(o)'tBB*)-I B .

The scalar factor

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

d + _+aF'+ ao ++2d,
2_ (5.7)

consolidates the "noise" part. For the case of two controllers the mean square attitude

error Ca2 can be calculated from

Diag. R a .

For the third case of three controllers it is given by

ZTZ



where

Diag. LR,, L*

ILU = f(L) "

For Case l with one controller only, we have to calculate

E(f(0, t)f(0, 0")

E(f(L, t)f(L, 0") •

Separately, expressing each as a transformation of the state:

Llx = f(O)

tax = I(L).

In the FEM version, we have thus to invert the matrix

(A + aBB*)

which in our case is 120x120 -- and of course can be done only numerically. For the

continuum model however we have to invent the operator

(.4 + txBB*)-1

but -- and this is the main point of departure -- this can be done analytically. Referring

to [7] for details, here we shall simply enumerate the formulas below.

Case 1: One Controller Only

E[f(O, Of(O, t)*] = Diag. (a' o_ '

E[f(L. t)f(L,t)*] = Diag. [1 I + (L-s2)2, Of, J

1 + (L-$2) 2 1 1 1_) d
aJ

(each is a diagonal matrix!). Steady state step response corresponding to step input U:



1
f(0, _)=

]3

0 0 0

0 0 -s2

0 s2 0

0 13

U

I

f(L, _,)=

]3

0 0 0

0 0 L-s 2

0 s2-L 0

0 /3

U

Note: Controller at s = s 2 .

Case 2: Two End Controllers

Diag. E[f(0, t)f(O, t)*] -- Diag. E[f(L, t)f(L, t)*] .

And the first four diagonal terms in either matrix are given in order by:

where

= [1

_- [1

+ 13(kl_-2).I

+ 13(_._-2)J

L c33 +'-_- + 4

cxL+ (x/_,

oL L 2
- 2c8 + -4-

_ = B + 1

(Cl I -- 2 c ) ( 20t + c_L)
_, = I.t + 2 + 2_c_i

2 74



C : C44

1
8=

I+L-_
12

- c44
c__

C3s - 4

Case 3: Three Controllers

Then

where

Here we have to express the answers in terms of 6x6 matrices. Thus let

E[f(0, t)f(0, t)*]
Dll =

d

D22 = E[f(s2, t)f(s2, t)*]
d

E[f(L, t)f(L, t)*l
D33 =

d

-I

DII = dll(S2) - d12(s2)(d22(s2) + (dll(L-$2) -1 - 00 -I ) d_12(s2)

D22 = (d2_(s2) + dll(L-s2) -1 - 00-1

,
D33 = (OJ + m3(L-s2))-l{txl + m3(L-s2) + m21(L-s2)(D22)m21(L-s2) }

X (otl+ m3(L-s2)) -1

all(s)

d22(s)

dl2(S)

= ((a + ml(s)) - m21(s)*(O_ + ms(s))-lm21(s)) -1

= ((IX + m3(s)) - m21(s)(O_ + ml(s))-lm'_l(s)) -I

= -dll(s)m21(s)*(Otl + ms(s)) -1

ml(s) =

CsS-_Al i c2_-_A12

c2_-_A_2 C3 +cs4_-_A22s

m3(s ) =

Cs_-_Al I - c2_-_A12

-c2_-_A_2 C3 +cs4_-_-A22s 27S



m21(s) =

_ c_S) A11
$ - c2_-_Al2

- _s + 4 A22

where

8(s) =

All

1 (zu__c 2(1 -_(s)l

1

-1

-1

0

1

0 1 1

AI2 = 0 0 1

0 -1 0

0 0 0
A22 = 0 1 0

0 0 1

Stability Margin Formula

From (5.5) it is clear that the closed-loop eigenfunctions are specified by

(again, irrespective

_2M_ + (A + otBB*)¢ + yLBB*¢ = 0

of whether we are using the FEM version (3.1)-(3.3) or the

continuum version (4.1), (4.2)) where ¢ denotes the eigenvector ("mode shape"), with the

eigenvalue _. specified by

_-2[M(_, 0] + [(A + txBB*)¢, 0] + _,y[B*¢, B*¢] = 0

where we may normalize the mode shape ¢ so that [M¢, ¢] = 1. Since ot > 0 and y > 0,
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it follows that the eigenvalue

where

__, IIB*_II 2
a = _ 2

(02 = (og _ 02

fO_ = [(A + ctBB*)#, #] .

Thus the closed-loop eigenvalues have strictly negative real pa_s.

It is shown in [8] that the sum of the absolute values of the closed-loop eigenvalues is

given by

y Tr. M71 (5.8)

in all cases, where in M c only moving parts of the actuators must be considered (as

opposed to the stationary mass such as the armature mass). The simplicity of this formula

is striking when compared with taking the sum of the inverses of the absolute values of

the real parts of the closed loop eigenvalues for a finite number of modes as in [10]. We

may note that for zero natural damping (or with damping, if we consider only the increment),

** 1

for any continuum model. Again, (5.8) applies for the FEM version (3.1)-(3.3), as well

as for the continuum model (4.1), (4.2).
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6. Numerical Results

In this section we compare the numerical results by the two methods for the mean

square attitude errors (and equivalently, tip response), for each of the three cases: one,

two and three controllers -- using the nominal values (cf. Section 1) for the truss para-

meters.

Case 1: One Controller

FEM

The tip response f(0, oo) and f(L, o,,) was calculated for:

o_ = c44 = 35571851.2; s2 = 0,
L L L
9'3'2'

ct = 10,000 ; s2 = 0,
L L L
9'3'2'

o_ = 100 ; s2 = O,
L L L
9'3'2'

both f(0, o.) and f(L, 00) values were exactly the same as the values predicted by the

continuum model and hence are not displayed.

Case 2: Two Controllers

bii = Diag. B*(A + Ctl)-l B , i = 1 ..... 12

Ot=l

= 50

(3[..= C44

= 3.557x 107

bxl = b77

b22= b33
= b88 = b99

b44 = bloAo

bl I = b77

b22 = b33

= bat = b99

b44 = blo,lo

bll = b77

b22= b33

= b88 = b99

/44= b10,10

FEM

0.4998

0.99727

0.50028

0.01

0.019945

0.01

2.2978 xl0 -8

2.80545 xl0 -s

2.478 xl0 -s

Continuum

0.5

0.99727

0.5

0.01

0.019945

0.01

2.2978 xl0 -8

2.80546 xl0 -s

2.478 xl0 -8



Case 3: Three Controllers

o_ = 3.557 x 107

bii = i=1 ..... 18

Actuator

Position

bll x l0 s bll x 10 s

FEM Continuum

L
s = - 1.5119 1.5127

9

3L
s =-- 1.8366 1.8370

9

s - 1.9461 1.9465

S --

4L
9

5L
9

6L

9

7L
9

S --

2.0330

2.1031

2.1602S --

2.0333

2.1033

2.1603

In other words the FEM and the continuum gave exactly the same numerical results

within (the SUN-386i) computer accuracy in all cases.



SUM OF M.S. AXIAL DISPLACEMENTS AT BOTH ENDS

3.95"

3.9"

3.B5-

3.8

3.75

3.7"

3.65"

I I I I I I I
2 4 6 0 i0 12 14

FIGURE 3

MIDACTUATOR POSITION: INCREMENTS L/16
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SUM OF M.S. BENDING DISPLACEMENTS AT BOTH ENDS

5

I I 11 I I
2 4 6 8 i0 12 14

FIGURE 4

MIDACTUATOR POSITION: INCREMENTS L/16



SUMOFM.S. TORSIONATBOTHENDS

4.5"

4.4"

4 ,3-

4.2-

I0 12 14

FIGURE 5

MIDACTUATOR POSITION: INCREMENTS L/16



M.S. AXIALDISPLACEMENTATACTUATORLOCATION

I .6-

1.55-

1.5"

1.45

1.4

1.3

I I I I I
2 4 6 8 i0 12 14

FIGURE 6

MIDACTUATOR POSITION: INCREMENTS L/16



7. Optimal Location of Controllers

As a byproduct of our theory, we can examine the problem of the optimal actuators

placement that minimizes the mean square attitude for any given choice of control gains

and structure parameters.

Case 1: One Actuator

Here we take the criterion as the sum of the mean square displacements at both ends.

We calculate explicitly that

[E[f(O,t) f(0,t)*] + E[f(L,t) f(L,O*]]

d

= Diag" [ 2' 2 +s2 +(L-s)20_ ' 2' + s2 + (L-s)22ix ' o_' _'2 2 1

from which it is clear that the optimal placement is in the middle:

L
$ = _-.

Only the bending-displacement is affected by actuator position.

For Case 2 of two actuators there is no placement problem since one is required to

be at each end.

Case 3: Three Actuators

Here we can consider the optimal placement of the midactuator while the other two

are fixed one at each end. The behavior of the sum of the mean square errors (setting

c_ = 1) at both ends for the axial mode is shown in Figure 3; and the bending mode is

shown in Figure 4; and the axial torsion in Figure 5. In all cases we see that the worst

position is at the middle! The best place is at either end. Finally Figure 6 shows the mean

square axial displacement at the actuator location. Again the worst place is the middle.



8. Optimization

We shall now treat a canonical optimization problem currently studied by FEM and

truncated modal models [9, 10]. The objective is to minimize the total mass -- structure

and control -- subject to meeting specified indices of performance. Here we take them to

be_

(a) mean square attitude error due to sensor noise less than or equal to fixed value

(b) stability index: sum of the absolute values of the real parts of the closed loop

eigenvalues to be not less than a fixed value.

We shall see that the problem can be solved analytically by virtue of the formulas we

have developed using continuum models.

The structural parameter we shall use is the cross-sectional area A of the longerons

(assumed to be the same for battens and cross-bars). Other parameters being fixed, the

structure mass is then proportional to A. (The extension to the case of nonequal areas

only complicates the algebra, as can be seen from the expressions (cf. Section 3) for the

flexibility coefficients.) The control mass has to be subdivided into a stationary mass

(armature mass, for example) and a moving mass (rotor mass, for example) since only the

latter is involved in the stability index formula. The stationary mass is of course related to

the moving mass -- for simplicity we shall take it to be inversely proportional to the

rotor mass. The control parameters are the attitude and rate gains o_ and T. These of

course will need to be constrained not to exceed prescribed limits. Thus we have the

following formulation (nominal values for all structure parameters except A):

Structure mass ffi N_pA

k
Control stationary mass ffi -m

Moving mass = m

k
Total mass = NgpA + -- + m

irn

_Y___
Stability index - M + m



(where M denotes the contribution of the end-masses). For the truss considered,

N = (76 + 46"42) .

Finally the mean square attitude error -- to be specific, we shall consider the case of

two controllers, one at each end; and take the sum of the mean square displacements at

either end. First we express these in terms of the structural parameter A -- we have thus

to use the expressions we have derived for the flexibility coefficients {ci)) in terms of A

in Section 5 and substitute them into the formulas for mean square errors for two controllers

in Table 3 under Case 2. In doing so we shall also take advantage of the simplification

possible by noting that for the nominal value of L = 27 meters, we can readily calculate

that

_,13> 2

so that we may replace both (_,[3 - 1) and (_,[3 - 2) by k_. Thus the first four diagonal

terms in

2 Diag. Elf(0, t)f(O, t)*]

( = 2 Diag. Elf(L, t)f(L, t)*] )

are given in order by:

L 2 L ot

1 -4- + 2c8 EA
f(cx, y, A) = -_ 1 +

L 2 L _ - 2c 2C_ + LcSEA]
2 + -_-+ 2c8 EA + (c112c8)( _ J

d

[ "-- + 2c8 •
1 1 + L4 L

et 1 + -_- + 2c8 _.1

d

I .-- + 2c8
1 1 + L4 L

0t 1 + -_-+ 2c5 E-A.I

d

L
+ 2EA

L otc33 + + 2 EA

(c33 + ff__ + Lot L c_)2E-A ") (c66 + 2 EA



where now

40 + 2442
Cll --

9 + 4"¢_

2
C --

i +242

= n[ 2725 + 1476421c33 2-_ + 1336"_-

[ 32 + 66",12]C66 = n
296 + 13--_J

n = number of bays ; L = n£

L 2 c

1 + 1---_" (c33 _ c66/4)

with d as given by (5.7). These formulas enable us to draw conclusions concerning the

dependence on the cross-sectional area A without resorting to numerical computer calcu-

iations. We see that all the errors decrease as A increases. The axial error decreases from

2d at A = 0 to d at A = ,,o; similarly the torsion error. The bending error is least

affected, decreasing from d_ at A = 0 to _ _ at .4 = _,. In all cases the

minimal mean square error is at most 3 db less than the maximum!

For the optimization let us fix on the mean square bending error as being the easiest

analytically: let

f(cx, T,A) = _ 1 L 2 L ot

1 + -_- + 2c8 EA

Thus the optimization problem is that of minimizing

subject to:

k
NgpA + -- +m

> 2
M+m - cs

m

2
f(a,T,A) < a a .
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The first inequality can clearly be reversed to read

M+m

'y

We note that the objective functional

k
NtpA + m + m

is infinitely smooth and trivially convex, and the constraints are also infinitely smooth

and convex. Hence we are assured of the existence of a minimum (which is further

verified to be unique). Moreover we can go to the Langrange parameter formulation and

minimize:

(N£pA + -- + + _2f(tx, y, A)m L Y )

where _.1, _-2 > 0 are the Lagrange parameters. See [l l] for the standard results that

are applicable here.

Compared to the FEM versions [9, 10] this is a "trivial" problem and complete

"analytical" solution is possible. We omit the details since our primary aim in this paper

is to demonstrate the simplicity of the optimization problem relative to the FEM versions.
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Control and Dynamics of a Flexible Spacecraft

during Stationkeeping Maneuvers

D. Liu and J. Yocum

Hughes Aircraft Company

D.S. Kang
C. S. Draper Laboratory

Summary

A case study of a spacecraft having flexible solar arrays is presented. A
stationkeeping attitude control mode employing both earth and rate gyro reference signals
and a flexible vehicle dynamics modelling and implementation is discussed.

The control system is designed to achieve both pointing accuracy and structural
mode stability during stationkeeping maneuvers. Reduction of structural mode interactions
over the entire mode duration is presented. The control mode employing a discrete-time
observer structure is described to show the convergence of the spacecraft attitude transients

during AV thrusting maneuvers without pre-loading thrusting bias to the on-board control

processor. The simulation performance using the three-axis, body-stabilized nonlinear
dynamics is provided.

The details of a five-body nonlinear dynamics model are discussed. The spacecraft
is modelled as a central rigid body having cantilevered flexible antennas, a pair of flexible
articulated solar arrays, and two gimballed momentum wheels. The vehicle is free to
undergo unrestricted rotations and translations relative to inertial space. A direct
implementation of the equations of motion will be compared to an indirect implementation
that uses a symbolic manipulation software to generate rigid body equations. A
generalization of this approach to this class of flexible vehicles will be provided.

1. Introduction

Three-axis body stabilized spacecrafts having solar wings with significant structural
flexibility may exhibit rigid-flex coupling effects during a typical stationkeeping maneuver.
One of the primary concerns for the design of three-axis stabilized spacecraft is the
structural mode interaction with the attitude control system. In addition, the dynamic
analysis and tbe control performance evaluation are sensitive to the rigid-flex modelling
accuracy. This paper presents a case study on the design, analysis and digital simulation of
a microprocessor-based stationkeeping control system of a 3-panel communication
spacecraft using thrusters as control actuators. It discusses the control system to achieve
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modal stabilization, the dynamic model development and validation, and the technique for
closed-loop digital simulation.

The vehicle under discussion is a three-axis stabilized geosynchronous
communication satellite. The vehicle is powered by photovohaic solar arrays and are
controlled in its on-orbit operation by a combination of momentum wheels, reaction control
thrusters, and solar array motion. This satellite is modelled as a central rigid body having
cantilevered flexible antennas, a pair of flexible articulated solar arrays, and two gimballed
momentum wheels. The vehicle is free to undergo unrestricted rotations and translations
relative to inertial space. The solar arrays rotate relative to the central body in response to
the action of control torques. The momentum wheels are assumed to be controlled such
that their motions relative to the central body are prescribed. In the deployed configuration,
the solar arrays contain 75% of the total inertia of the satellite with only 7% of the total
mass. Each solar array has 4 cantilevered frequencies below 1 Hz.

The solar wing flexibility is fully coupled into the body roll and yaw dynamics
because the flexible solar wings are fixed about the roll and yaw axes of the central body,
while articulating about its pitch axis. The pitch coupling depends upon the nonlinearity of
the solar wing drive and its friction characteristics. The control bandwidth of the on-orbit
normal mode is usually designed at a frequency well below the first structural mode so that
the solar wing flexibility does not interact seriously with the normal mode controller.
However, a relative high control bandwidth is needed to maintain pointing accuracy in the
presence of a large thrusting disturbance. The disturbance torques are primarily induced by
the offset of spacecraft center of gravity (CG) from the geometric or pressure center of
maneuvering jets as well as the thrust mismatch. The sensed spacecraft flexible dynamics
interact with the stationkeeping controllers, which may result in structural mode instability
at high loop gains.

.During the thrusting maneuver, the dominant modes coupling in the stationkeeping
control are phase stabilized using the lead inherent in the sensed gyro rates together with the
phase-lead notch filters, while the non-dominant modes at higher frequencies are gain-
stabilized. After the thrusting maneuver, any residual rates must be nulled by an order of
magnitude in preparation for a smooth transfer back to the normal control mode. This
paper will focus on the stationkeeping control during the thrusting maneuver only. The
thrusting bias about each control axis is estimated such that a fast convergence on the bias
estimates can be achieved without an open-loop torque pre-bias by ground command,
although this feature is also included in the design. The control loop bandwidths are
designed as high as possible to meet pointing requirements, while still achieving adequate
modal stability. Simulation results demonstrate stationkeeping control performance from a
typical 2-jet (5 lbf each) south maneuver under the worst case maneuvering conditions are
presented.

To verify the accuracy of the dynamics model, two approaches are taken. In the
first approach, the direct approach, the equations of motion for the vehicle are derived from
fundamental momentum principles. The flexible appendages are modelled with
conventional lumped mass model employing stiffness matrices to characterize the internal
energy. Transformations to appendage modal coordinates are made and a reduction in the
number of elastic degrees of freedom is achieved through their truncation. Simplifying
assumptions are made regarding the magnitude of certain nonlinear kinematic terms based
on operational considerations. The final set of governing equations are coded in a fh-st
order form suitable for numerical integration.

In the second approach, the indirect approach, an unconventional method is
employed. The "rigid" portion of the equations and the code is obtained from a symbolic
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manipulation software. The "rigid/flex" coupling terms are derived and implemented. The
details of this approach will be presented later in this paper. The two approaches were
numerically compared through a set of chosen open loop comparison tests.

2. Performance Requirements and Control System Descriptions

Performance Requirements

The spacecraft under study requires at least 400 bi-weekJy south maneuvers with a
maximum duration of 120 sec per maneuver using two 5 lbf thrusters. East/west
corrections are 5 sec short burn each. Factors affecting pointing accuracy during the
stationkeeping maneuver are earth sensor noise, rate gyro noise, gyro rate bias estimation
errors, thrusters pulse-to-pulse repeatability, spacecraft CG offset, CG migration due to
propellant motion, flexibility of solar wings and reflectors, thrust mismatch, thruster
misalignment, on-time/off-time thruster delay, thruster plume-impingement, etc. Effects
due to environment disturbance such as solar torques, magnetic torques, wing torques,
etc., are assumed to be negligible. The goal is to maintain body transients to within _+0.1
deg in roll/pitch and _+0.2 deg in yaw. The control loops should stabilize structural mode
oscillation seen on spacecraft attitude and provide stability range in the presence of
structural mode frequency uncertainty.

Control Algorithms

The stationkeeping control is executed through special control algorithms that run
when the spacecraft is in Stationkeeping Mode. Due to the spacecraft CG offset and
variation in thrust pulse amplitude, various thrusting disturbance torques about the control
axes may be induced when the maneuver thrusters are activated. Stationkeeping Mode
provides thruster control for a maneuver execution and autonomous attitude control to limit
body transient errors and maintain pointing accuracy during maneuvers. Attitude control in
roll and pitch axes is achieved using earth referenced signals and rate integrating gyro data
with 5 lbf thrusters. A rate integrating gyro is used as rate references in yaw control.

Figure 2.1 shows the functional block diagram of the 3-axis stationkeeping attitude
control system during maneuvers. The control logic for each of roll and pitch rate loops in
Stationkeeping Mode is combined with the gyro referenced attitude estimator for position,
rate and acceleration bias estimates and the proportional controller for control acceleration
command generation. Using earth referenced pitch and roll position signals, effects due to
gyro drift can be minimized by an on-board software calibration to the raw rate
measurements. The yaw control logic in Stationkeeping Mode is identical to the roll and
pitch channels except for the yaw gyro bias estimate, which is constant based on
premaneuver calibration estimate. The technique for rate gyro calibration will not be
discussed in this paper.
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The earth referenced pitch and roll position errors are sensed at 2.0345 Hz, i.e.
every 30 real time interrupts (RTIs) at 16.384 msec per RTI, to supply position references
for the roll and pitch gyro calibration. The angle estimate is obtained by adding the gyro
bias estimate to the raw rate measurement, and integrating the resulting rate. For the yaw
control loop, it does not perform the yaw gyro calibration during maneuver, since no yaw
position position references are available in Stationkeeping Mode. Instead, yaw gyro bias
is estimated in the normal mode prior to maneuver, and its value is held throughout the
maneuver.

The gyro referenced rate measurements with calibration are sensed every 8 RTIs to
supply rate references to a third-order attitude estimator for each axis. Each attitude
estimator performs two functions. First, it integrates the gyro rate (after correction for
bias) to obtain a position estimate. Both the roll and pitch gyro calibration along with
integrations operate during the premaneuver gyro calibration period as well as throughout
the maneuver. Second, it estimates the spacecraft angular rate and acceleration bias about
the respective axis. The roll and yaw attitude estimators also include the effect of roll-yaw
coupling due to spinning wheel momentum.

A proportional controller is employed for each axis to determine the control
acceleration commands based upon the position, rate and acceleration bias estimates. The
control acceleration commands are held constant over each control sample period. The on-
board optimal thruster selection (OTS) logic selects available thrusters and determines
necessary thruster on/off command duration to valve drivers based upon the minimum fuel
consumption. The selected 5 lbf thrusters are turned on/off for commanded durations to
deliver the control momentum equivalent to the commands, and achieve attitude corrections
during maneuvers. The detailed technique for conversion of the control acceleration
commands to thruster commands will not be discussed further. Although the control

sample period is designed to be commandable, it must be selected to meet the needs of the
control processor thruput and avoid structural mode instabilities as well.

3. Flexible Spacecraft Model Descriptions

The mechanical idealization of the satellite is illustrated in Figure 3.1. The model
consists of a central body, which is considered to be rigid and to which are mounted a set
of reaction control thrusters. Cantilevered to the central body are a complement of
structurally flexible antennas. Two distinct, structurally flexible solar arrays are hinge
connected to the central body. The arrays can rotate independently about parallel drive axes
in response to control torques, which are assumed to be known functions of time. Two
independent, identical, rigid axisymmetric, variable-speed momentum wheels are mounted
to the central body through two-axis gimbal mechanisms. The complete motions of the
wheels relative to the central body are assumed to be prescribed functions of time.

The communications antennas of the actual satellite are capable of limited
articulation relative to the central body. However, because these rotations are small in both
magnitude and rate, their influence on the vehicle's overall attitude dynamics was deemed
negligible, and these degrees of freedom were not included in the model. While the solar
arrays will be virtually identical under nominal circumstances, they are treated as
structurally distinct to accommodate more general conditions.
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Flexible Solar Array-1

Momentum Wheel- 1

Reaction Control Thruster

Flex_le Antenna

Flexible Antennas

Flexible Solar Array-2

Momentum Wheel-2

Figure 3.1. Mechanical Idealization of a satellite.



The deformations of the antenna and solar array structures are assumed to be linear
elastic in character and small in magnitude. The respective appendages are modelled as
collections of point masses interconnected by massless elastic structure. Stiffness matrices
are used to define the elastic restoring forces acting internal to these assemblies.
Ultimately, modal coordinate transformations are introduced for each appendage and the
final motion equations are cast in terms of truncated sets of those variables.

Cantilevered frequencies of an individual solar array and of an assembled antennas
are provided in Table 3.1.

Table 3.1. Characteristic Cantilevered Frequencies of the Appendages.

Mode # Solar Array

Frequenc), (Hz)

Antennas

Frecluenc _, (Hz)

1 .118 1.586

2 .355 1.792

3 .705 1.953

4 .835 2.043

5 1.825 4.235

6 2.725 4.867

7 3.167 5.323

8 4.914 5.893

9 6.161 13.366

6.90510 19.558



4, Control Design and Analysis

Linearized Spacecraft Open Loop Dynamics

Let {b} be the spacecraft body frame, {S}w be the solar wing frame and Cw be the

direction cosine matrix at the wing-to-body angle et such that {S}w = Cwlb}, where w = n
(North wing) or s (South wing). Figure 4.1 is a geometry showing the spacecraft with the
thrusting forces and torques and the disturbance created by thruster plume impingement; in
which we assume that point i is the pressure center on North wing where the resultant
plume force vector applies.

_:P(plume-induced
(plume-induced torque t,_ J resullant forces_
about pressure center)Fx _

_B i pressure center ol
_ / plume forces on

_ north wing

" _terfa_;l_ point_.,t
_t an_ o nod wing(external thrusting torques)

(plume-induced torques
about S/C CG) _f

._'_ _t (external thrusting forces)

__ s/c CG

• interface point
of south wing

Figure 4.1 A Geometry showing External Thrusting Forces/Torques
and Plume Disturbance

The linearized body-stabilized spacecraft hybrid dynamics with articulated solar wings are
given in Equations (4.1) - (4.6).

mY, + Pnl"ln + Pslqs = F t + F p (S/C translational motion) (4.1)

Is/c (b + In e2 tJ)n +

I. ¢b +

eT Is (b +

Is e2 _s + Qn _n + Qs qs = "It + TP (S/C rotational motion) (4.2)

_2 (bn + eT Q_ iln = "_nwd (North wing pitch dynamics) (4.3)

P2 (bs + e_ Q_ _s = "Pswd (South wing pitch dynamics) (4.4)



pTR + Q_m + {e_Q_)TOn+ iin + 2_/i, + A2rln=

(Northwingflex dyn.) (4.5)

pT R + QT m + (e2T Q_)T cos + i'is + 2_A/Is + A2rls = 0 (South wing flex dyn.) (4.6)

where
m =

Is/c =
X =

(0 =

In,I s =

(On,O) s =

TIn,TIs =
po po

rl,_ $ =

Pn, Ps =

=

=

rs wd "_s wdn , =

FP,ATP =

=

A

=
e2 =

total S/C mass
S/C mass inertias
S/C translational position vector

S/C angular rate vector

pitch inertias of wings about their interface points

relative pitch angular rates of wings

modal variables of wings

rigid-flex translational coupling matrices of wings about their
interface points

rigid-flex translational coupling matrices of wings about the
S/C CG

rigid-flex rotational coupling matrices of wings about their
interface points

rigid-flex rotational coupling matrices of wings about the
S/C CG

solar wing torques

plume induced force and torque about pressure center

mode shape at point i of North wing (a nx6 matrix with 3 translational
and 3 rotational deformation, where n is the number of modes in
concern)

cantilever mode frequencies for each wing

structural damping factor

[0 1 O] T

The model above is with articulated solar wings driven by the wing torques about
their hinge axes. To fully include the flexibility of wings, the dynamic inertias of each
wing referenced to its interface point must contain at least 99% of the roll or yaw moment
of inertia about the same point, or, the pitch inertia excluding yoke. The flexible reflectors
have relatively small dynamic inertias compared to the total spacecraft mass inertias; the
structural mode control interaction is negligible. Therefore, the reflectors are considered to
be rigid and included as a part of rigid central body in stability analysis. For the pitch
dynamics of wings in the "constraint" state (see Design Considerations below for further
discussion), the solar wing angular acceleration terms in Equations (4.1), (4.2), (4.4) and
(4.5) may be eliminated from these equations, and the resulting model represents the
linearized spacecraft dynamics with non-articulated wings.
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Control Design Model of Rate Loops

The control system has an outer loop (i.e. position loop) and an inner loop (i.e. rate
loop). The position loop is designed at very low bandwidth with its gain crossover well
below the structural modes and consequently has generous gain margin (> 40 dB) on all
flexible modes. As for the modal stability, the rate loops are the primary concerns. The
design model of rate control loops in Stationkeeping Mode is given below.

0ig 1 ag- 0)i (i=1,2,3)
Rate Gyro Dynamics S S + ag

Gyro Processors o)_(n+l) = [0i_(n+l) - 0iS(n)] / AT

---g ^g

Attitude Estimators 0i(n+l) = 0i(n) + AT o#i(n+l)

_ig(n+l) = _oiS(n) + Ao_(n) + AT di(n) + Ao_(n)

_ig(n+l): _ig(n+l) + Kr [_i(n+l)-c_i(n+l)]

d'i(n+l) = di(n) + Ka [_i(n+l) - _ig(n+l)]

Ao)C(n) =-(HTAT/I1) _,'_(n) (i=l)

= 0 (i=2)

= (HTAT[I3) _o_(n) (i=3)

Ao_l(n) = AT (xiPf(n-1)

Proportional Controllers

Np(z) =

_iPf(z) =-Np(z) (Cp0_ + Crag} - di(z)

n2 z2 + nlz + no (Phase Lead Notch Filter)
z2 + dlZ + do

Control Transport Delay

where

o_T= AT-_iPf(n-l.t )
"_c

=0

0i =

mi =
^g

0i =

if n AT + Xd < t -<n AT + Xd + Xc, B = (Xd + .5 '%)/AT

otherwi_

spacecraft angular position about body axis i [deg]

spacecraft angular rate about body axis i [deg/sec]

estimate of 0i [deg]
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di =

=
RTI =

_f =

=

A_ =

AT =

=

=
n =

Kr =

Iq =
Cp =
Cr =

Np(z) =
ag =
Ii =
HT =

rate gyro measurement with calibration [deg/sec]

estimate of _ [deg/sec]

acceleration bias estimate about body axis i [deg/sec 2]

position signal output from the rate integration gyro [deg]
real time interrupt = 16.384 msec

filtered control acceleration commands

actual control acceleration acting about body axis i over 'rc [deg/sec 2]

feedforward rate changes [deg/sec]

control sample period [sec]

control pulsing delay [sec]

actual control pulsewidth [sec]

control sampling time in Stationkeeping Mode
rate estimation gain [(deg/sec)/(deg/sec)]

acceleration bias estimation gain [(deg/sec2)/(deg/sec)]

spacecraft position control gain in Stationkeeping Mode [sec 2]

spacecraft rate control gain in Stationkeeping Mode [sec -1]

phase-lead notch filter, z--esAT
gyro servo bandwidth [rad/sec]

spacecraft moment of inertias about body axis i [slug-ft 2]
total spacecraft angular momentum about pitch axis

It employs a discrete predictor-corrector algorithm to estimate the spacecraft rate and
acceleration bias and the integration of the rate measurement (after correction for gyro bias)
for position estimate. A discrete phase-lead notch filter is added in series with the attitude
control acceleration command (i.e. the proportional controller excluding, the acceleration
bias control term, which is added to the filtered attitude control acceleranon command) to

provide additional phase lead for modal stabilization. The spacecraft dynamics used in the
design are represented by the linearized hybrid dynamic model. The rate gyro model,
which has a fh'st order servo of 8 Hz bandwidth, output positional signal, and the gyro

processor determines the rate based upon the position change over one control sample
period. The equivalent transfer function of the design model will not be given in this
paper. We will discuss various design concerns which are related to transient performance
and structural mode stability in general, and the design philosophy in achieving the goals.

Sensitivity To Modal Parameters

The stability of the structural modes selected for baseline design may be affected by
both the structural frequency uncertainty and the structural damping. A structural damping
ratio of 0.0025-0.005 is added to the hybrid dynamic model. The P and Q matrices defined
earlier are essentially the diagonal matrix elements of the translational and rotational rigid-
flex coupling matrix B given in Equation (6.9). The coupling matrix selected for the
baseline design is derived based upon the the spacecraft on orbit nominal configuration
with fully deployed wings whose z-axis is directed to the Earth. By knowing the location
of the interface point relative to the spacecraft CG and the wing orientation, it can be proved

.2oi



that conversion of the coupling parameters to about the spacecraft CG is accomplished
through the relations:

Pn : cT l_n, Qn = C_ Q_ + RnPn (4.7)

Ps =cf , = +  sPs (4.8)

where "-" denotes the skew symmetric matrix operator which achieves a vector cross
product. P and Q will change when the spacecraft is no longer in nominal configuration
under the following two conditions. First, P and Q vary as the wings rotate about their
hinge axes; and second, due to the nonlinear characteristics of panel hinge stiffness. The
solar wings could be at any orientation with 16 deg or less wing separation angle. Rotation
of wings will primarily affect P and Q about the spacecraft body roll and pitch axes, and
almost no change about the body pitch axis in the presence of the symmetric north/south
wings. Furthermore, when the east or west thrusters fire during an east/west maneuver
with non-zero wing angles, the panel hinge loads as induced primarily by the linear
acceleration of the spacecraft along the the panel z-axis as well as the flexibility of wings
may exceed the spring preload such that the panel stiffness will drop from its hardstop
region, where the nominal P and Q are derived, to the deadband region, where a soft panel
stiffness is present. The worst case panel hinge loads result when the wing is at 90 deg
orientation during an east/west maneuver. When this occurs, po and QO about the interface
point of the wing will vary about all three axes. Both the roll and yaw control axes must be
designed to stabilize all possible structural mode frequencies which may result from the
rotation of wings and the nonlinear characteristics of panel stiffness.

Spacecraft CG Uncertainty

The CG offset of the spacecraft from the pressure center of maneuver thrusters will
result in a thrusting disturbance about the control axis. If the actual CG offset was
predicted to a 100% accuracy by the OTS in advance, the thrusting disturbance would be
self-compensated with the selected thrusters -- the unique feature of the OTS. The CG
uncertainty of the spacecraft has a major impact on the maneuver transients. The concerns
are in two areas: (i) the CG uncertainty of the spacecraft while on station at a steady state
condition, which is primarily caused by the tank misalignment and the possible imbalance
of the dry spacecraft and (ii) the CG uncertainty due to propellant motion during a
maneuver. The estimation errors on the acceleration bias may result in an initial transient
about each axis that exceeds steady state pointing. The acceleration bias estimation gain
(K d) must be designed to minimize the maneuver initialization transient, and to avoid
excitation of structural modes, while still being able to track disturbance. The transient
errors can also be improved with an initialization of the acceleration bias estimates to the
steady state values recorded from the last maneuver.

Firing Thrusters on Flexure

The wing flexibility may be fully excited in the steady state condition from a long
maneuver burn. Also, when switching the control logic to further null the rigid body
residual rates at the completion of a maneuver, an instant loss of thrusting forces could
yield a significant response to the already excited flexible dynamics with the magnitude
exceeding the impulse control deadband limits. To avoid firing on flexure, the rate
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estimation gain (Kr) in Stationkeeping Mode must be as low as possible to filter the sensed
spacecraft flexible dynamics, so that the proportional controllers determine the required
control momentum based upon the estimated rigid body dynamics. The rate gain in the
range 0 < Kr < 0.5 (deg/sec)/(deg/sec) meet the requirement, while still being able to track
the spacecraft dynamics to a degree of accuracy by feeding forward the commanded rate
changes to the estimators from the OTS.

Control Transport Delay

Due to onboard control software processor speed, a computational delay on rate
change command processing in OTS is induced. Such a delay together with the phase
delay induced by the gyro rate signal processing and the control pulsewidth delivery induce
a phase lag to each control loop, which affects the stability of structural modes. To
compensate for the loss of phase due to the control transport delay, a phase-lead notch filter
is employed in Stationkeeping Mode to provide each control loop with an additional phase
lead. The design philosophy is to set the modulation frequency so that the half sample
frequency is well above the dominant modes to ensure phase stabilization of these modes
with additional phase lead produced by the notch filter. Because the notch filter is not wide
enough to provide all modes with sufficient phase lead, the modes near the half sample rate
are gain-stabilized. Phase stabilization of the dominant modes simply means that the
control loop will generate a stabilizing feedback signal to that mode. This is to be
contrasted to gain stabilization wherein the non-dominant modes rely upon the structural
damping of the spacecraft to provide enough damping to overcome any slight destabilizing
effects.

Effect of SWD Deadband on Torsional Mode Stability

Due to the solar wing drive (SWD) backlash, the flexible pitch dynamics of wings
about their interface points may appear in one of the three states: "free-free", "constraint"
and one between these two states, depending upon whether the wings are inside or outside

the deadband and the magnitude of friction. The SWD has a 0.5 ° deadband. When the
wings are inside the deadband and the magnitude of friction is insufficient to overcome the
wing relative motion, the central body pitch dynamics are then disturbed by the load
torques with a phase-shifted bang-bang profile whose magnitude is equal to Coulomb
friction. It is very complex to analyze the torsional mode stability with such a profile. The
best way to examine the performance is through the simulation by actually including the
SWD. When the wings are inside the deadband but the friction is negligible so that the
flexible dynamics of each wing are "flee-flee" about its pitch axis, the central body pitch
dynamics are then fully decoupled from the wing relative motion. The central body under
this state is considered to be rigid. The stabilities of the "free-free" modes will not become
a problem as long as the free-flee motion remains inside the deadband. Still, when inside
the deadband but the relative motion of the wing is locked up by friction, or, the wing-to-
body rates are large enough to break the friction and the gear teeth are recontacted to the
SWD shaft, the pitch flexible dynamics of wing are now considered to be "constrained"
about its pitch axis; that is, the SWD will output load torques in absence of stepping
commands, to drive the wings to prevent them from moving about the pitch axis of the
central body. From this viewpoint, the wings are also fixed to the central body about its
pitch axis and the flexible dynamics of wings are fully coupled into the body pitch axis
through the load torques.



Plume Impingement Effects

Forces and torques created by thruster plume impingement on spacecraft
appendages (north wing and east/west antennas) may result in a net change in the overall
control torques and an unmodelled excitation of the structural modes. From the spacecraft
stability viewpoint, the principle concern is that the plume disturbance shall not add phases
to erode the phase margins of the phase stabilization modes nor magnify amplitudes to
degrade the gain margins of the gain stabilization modes.

Since ? is the pressure center of plume forces, the plume induced torques about the
deformed S/C CG is

T p = (R--n +r)×FP + AT p

ATP = TP - (Rn +r) X_p = {s}T{fn Tp - (C'--_n + rXCnFP)}

or

AT p : CnTP- (C--_n + rXfnF p}

Referring to Equation (4.5), the modal excitation of the north wing is induced by (i) the
spacecraft and the north wing motion driven by the terms

En =pT_ + Q_o) + (p.,_(_n)T (_

and (i.i) the plume disturbance

Ep = (I)T [(CnFp)T(ATP )T]T

acting about point i, the assumed pressure center of plume forces.

In the presence of the plume disturbance P..Pacting on the North wing, the open

loop dynamics transfer function ¢0(s)/T t (s) from an impulse response can be derived from

the single axis hybrid dynamic model with one mode only as

where

o(s) _ 1 1-l.q s2+2_13+]s+3+_ l

Tt(s) Is/c 1-1+t2s: + 2 _23+2s + 3+_ s

I.tl = eP qn / Tt

IZ2= 2 q2n/ Is/c

¢2 = ;/fi- 2
3+t = 3+/fl-:-Ill

3+2 = 3+/¢f:-1_2



Theparameters@andqnaretheplumedisturbanceandtherigid-flexrotationalcoupling
termassociatedwith thestructuralmodeof frequency_.andmodaldamping_. "It is the

impulse thrusting torque about the single axis in concern. If l.tl _ 0 (i.e.e.P _ 0), the plume
disturbance will perturb the zeros of the transfer function above from their nominal

locations. If the perturbed zeros move toward the poles (i.e. lal > 0), then it improves the
margin of the phase-stabilized mode, producing less rigid-flex coupling. On the contrary,

if I.tl < 0, the zeros move away from the poles, and the loop gain is magnified by a factor

of (1- l.ti ): both of these factors will erode the margin of any gain-stabilized mode.

The geometry of the thrusters and solar wings are such that, in fundamental modes
(those with no inflection points), the plume impingement coupling and the rigid-flex
dynamic coupling act in phase with one another to excite a mode. In other words, plume
impingement acts to amplify modal excitation already present due to rigid-flex dynamic

coupling. This implies that P-I < 0 for fundamental modes. In this case, the zeros of the
transfer function move even further from the poles, exacerbating the flexible dynamics

coupling problem for these modes. Thus if I.tl < 0, it is desirable to have the magnitude of

P.1 as small as possible: l.tl I <, I I.t21 is goodness. In this case study, P-I = -0.0388 for the
first out-of-plane mode at 0.1185 Hz. Fortunately, values are small in comparison to the

corresponding _2 = 0.7037, indicating that plume impingement is not a dominant effect.
One measure is the zero/pole frequency ratio: with no plume impingement

_ =  z77-037 = .544
_-2

whereas with plume impingement

_ _/ 1-.70371+.0388
- .534

This is a change of only 1.87% which is small relative to the 5% or 10% accuracy to which

_2 is known to begin with (A 1.58% change in the value of _2 would result in the same

change in zero/pole ratio).

Higher frequency modes whose mode shapes include an odd number of inflection
points between the attach point and the "point of application" of the plume impingement

force can exhibit a positive value for P-I. In this case, the plume impingement force acts

opposite to the direct rigid-flex dynamic coupling and tends to reduce modal excitation. In
the transfer function this is reflected by the fact that the zeros move closer to the poles, thus

tending to cancel. Should I.tl ever get as big as i.t2, the zero would exactly cancel. An even

higher value of I11 would reverse the phase of the modal coupling. This situation is of less
interest, and is probably not possible with plume impingement as the excitation source.
Since plume impingement is, in reality, a distributed force rather than a point force as
modeled herein, its viability in exciting a higher frequency mode diminishes rapidly as the



number of inflection points increases. The assumption made herein that plume
impingement force is applied at a single point loses its validity for higher frequency modes,
therefore results should not be taken too literally for such modes. The "constrained" state

is similar to those for roll or yaw loop.

5. Control Loop Stability

With the panel support cantilevered at its base about the transverse axes, but free in
torsion, Table 5.1 characterizes the flexibility of 0 deg, 3-panel single wing in terms of the

modal frequencies with associated dynamic inertias about the interface point of wing. The
first twelve modes as listed contain > 99% of the total inertias of wing about each axis,
which are sufficient to describe the flexible characteristics of wings. When the wings are

attached to their base, the flexible dynamics appeared to the angular motion of the

spacecraft through rigid-flex coupling have frequencies higher than that of the cantilever
modes. The increased modal frequencies, assuming perfectly symmetric wings, are

defined as the system modes in Table 5.1. The frequencies of the system modes will shift
as the wings rotate about the hinge axes; 90 deg wings yield out-of-plane cantilever modes

in the yaw axis and in-plane cantilever modes in the roll axis. For the transfer function of
the corresponding open loop dynamics, the dominant modes have wider pole/zero

separations. One of the design goals is to stabilize the system modes under any wing
orientation.

Table 5.1. Solar Wing Structural Modes at Zero Degree Wing Angle

Mode Cantilever

1 0.1185
2 0.3547
3 0.7051
4 0.8508
5 1.8254
6 2.8058

7 3.1668

8 5.1320
9 6.1608

10 8.2235
11 8.9668

12 9.4732

Frequency, Hz

System

Constraint Free-Free

0.2117
0.6323
0.7631
0.8582 1.3645
1.8627

2.8091 3.1938
3.2573

5.1338 5.3698
6,1704
8.2333
8.9898 9.1631

9.4882 9.7306

Dynamic Inertia

(about imerface

point), Kg-m 2

44.498
45.970
8.722
4.498
3.550

1.588
3.412

0.854
0.592
0.432
0.643

0.524

Definition

out-of-plane
in-plane

out-of-plane
torsional

out-of-plane
torsional

out-of-plane
torsional

out-of-plane
out-of.plane
torsional
torsional



Figure 5.1 shows the discrete-time Bode plots and Nichols chart of the 8*RTI
Stationkeeping Mode spacecraft roll rate control loop with no structural filter or control
transport delay. The control bandwidth was designed to limit transient errors to within 0.1
deg in the presence of a 1.5 inches spacecraft CG offset along the z-axis. The first five
out-of-plane modes at nominal frequencies, 0.5% structural damping and 0 deg wing angle
were included. Using gyro references, both the first (mode 1) and second out-of-plane
mode (mode 3) are phase-stabilized with about 70 deg and 30 deg phase margins,
respectively, and the remaining out-of-plane modes (5, 7, 9 & 10) are gain-stabilized with
at least 22 dB gain margin. The control design provides a 6.5:1 ratio to the separation
between the zero gain crossing frequency and the pole of the first structmal mode. Figure
5.2 shows the same design without a structural filter, but with a 2 RTI control transport
delay. The transport delay effect can be seen on the structural modes greater than 0.33 Hz,
to which the phase lag induced by transport delay was added, yielding almost no phase
margin on the second out-of-plane mode. The linear design was then improved with a
phase-lead notch filter, which has a unit gain in the low frequency range and a maximum of
68 deg phase lead at the notch frequency of 1.209 Hz. Figure 5.3 shows that the phase
margin of the second out-of-plane mode was increased up to 36 deg with the phase-lead
notch filter. The notch frequency was carefully selected to ensure that all phase-stabilized
modes will remain in the phase stabilization region in the presence of 100% frequency
increase as shown in Figure 5.4. Although a 100% frequency increase is allowed before
mode 3 loses its phase stabilization characteristics, this mode is also gain stabilized once its
frequency increases from the nominal. Also, the third out-of-plane mode (mode 5) is gain
stabilized with 13 dB margin at its nominal frequency (1.8627 Hz, system mode).
Decreasing the frequency of this mode immediately leads it to the phase stabilization region,
while the gain stabilization characteristics are still retained. This mode reaches adequate
phase margin before the gain stabilization characteristics vanish at more than 50%
frequency drop as shown in Figure 5.5.

The pitch transient during south maneuvers is affected by thrusting disturbance,
primarily induced by both the thruster cant angles and the thrust mismatch. The net pitch
disturbance is estimated to be 0.4 ft-lb, which requires the 8 msec minimum control
pulsewidth to be fired at a rate of 1.667 Hz at which the half sample rate is nearly equal to
the first torsional mode. The pitch loop has rigid response in south stationkeeping because
the effect of the torsional mode is insignificant about the half sample control rate. The pitch
transient during east/west maneuvers is primarily affected by the S/C CG yaw offset from
the pressure center of the maneuver thrusters. With a 5.9 inches yaw offset, it requires a
1.5 RTI control pulsewidth to be fired every modulation period. The linear frequency
analysis of the spacecraft pitch rate loop in Stationkeeping Mode when the pitch wing
dynamics with SWD are in the "constraint" state is shown in Figure 5.6. The design with
the same phase-lead notch filter as applied to the roll and yaw loops was based on 2 RTIs
control pulsewidth, 2 RTIs control transport delay and 8 RTIs modulation period. The first
torsional mode (mode 4) is both phase and gain stabilized at its nominal frequency with $55
sup o$ phase margin and 20 dB gain margin. Either dropping or increasing the frequency
produces no impact on stability at all.

Figure 5.7 shows the stability of the first in-plane mode (mode 2) at nominal
frequency and with the phase-lead notch filter. It is also phase-stabilized with 46 deg phase
margin. This mode remains in the phase stabilization region even with a 100% frequency

increase while still having 230 phase margin as shown in Figure 5.8.
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6. Dynamic Model Validation and Digital Implementation

The main objective is to consider issues dealing with flexibility in multibody
dynamics. Multibody dynamics is differentiated from structural dynamics by its capability
to undergo arbitrary rigid body motion. Analysis of flexible structures are well established
using finite element method within the context of structural dynamics. In multibody
dynamics context, need for flexibility modelling arose in recent years as exemplified by
large space structures and 3-axes stabilized satellites.

To systematically address the addition of flexible domain, the virtual work principle
is chosen as the basis for derivation. The motivation for this choice is based on intended

discretization using the f'mite element method. By choosing the same basis for multibody
dynamics and for the finite element method, extensions into nonlinear flexibility is natural
and consistent. Other choices are readily available in the literature [1-3].

Virtual Work Principle

An integral representation of the governing equations of motion of solids are
imbedded in the virtual work principle. By deriving the multibody dynamics equations via
the virtual work principle, a consistent treatment of flexible domain can be made. In
practice, the flexible domain is discretized using the finite element method. The virtual
work principle is the basis for the finite element method. The technology developed in the
finite element method can be integrated into the flexible multibody dynamics efforts.

The virtual work principle states

where

[iWext = I _R" (f- pR)dV = _Wint = I _ " _dV
(6.1)

R = material particle position vector wrt inertial frame
f = force/unit volume

p = density
V = reference configuration

13 = strain

O = stress

The main advantages offered by applying the virtual work principle are twofold.
First, the integral representation together with the virtual displacements allow domain
decomposition between the rigid and the flexible portions of a vehicle. Second, a
consistent formulation of a flexible multibody vehicle can be derived and assessed.
Consistency refers to final discretization using the finite element method. Once such
consistent derivation is made, extensions to nonlinear flexible models can be made by
adopting techniques developed in the finite element method [ 14].

3)2



Rigid Body with Attached Flexible Appendage

To further explore the method presented by the virtual work principle, an idealized
flexible spacecraft model is derived. The idealization involve representing the spacecraft as
a rigid body with attached flexible appendage. The flexible appendage is assumed to be
fixed to the rigid body. Articulation is not allowed. Even with this simplifying
assumptions, a wide class of vehicles can be modelled.

Consider the idealization shown in Figure 6.1.

V
F

Figure 6.1. Idealized Rigid Body with Flexible Appendage.

The domains, frames, and the position vectors are defined as

V F = flexible domain
VR = rigid domain

Fl = inertial frame
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Fb = body frame
R = inertial flame origin to body frame origin

_R = inertial frame origin to rigid body material particle

rR = body frame origin to rigid body material particle
s = body frame origin to rigid body center of mass

_F = inertial flame origin to flexible material particle
rF = body frame origin to reference material particle position

rl = relative particle displacement
c = body frame origin to vehicle center of mass

Application of the virtual work principle to this vehicle yields

I 5_R "(f-p_R}dV+ fwS_F'(l'-p_F)dV = I q_)E'(_dV
R F (6.2)

with

_R = R +rR

..

_.--r_E_+0,×_+_,×r_R+ o,×(o,×r.)]- r_a_R

5_.--r_ [Sx+50×r. ]
and

_F = R +rF + rl

_F =F_[u_' +cox u+c_x(r_F+ 12)+2_x!l + cox(o)x(_+ _))+!i]-FbTa_F

5_F--r_ [Sx+50x_ + n) +5hi
where

u = velocity of body frame wrt inertial frame

c0 = angular rate of body frame wrt inertial frame

5x = virtual displacement of the body frame

50 = virtual rotation of the body frame

fiB. = virtual relative displacement

The components, underlined, are defined with respect to the first occurrence of the frame

definition. For example, in above definition, the components u and 0_ are defined in the
body frame. For further discussion on this notation is clearly covered in [1]. Note that the
virtual quantities are obtained through infinitesimal variation of the current equilibriated
state. Substituting the above quantities into Equation (6.1), following three sets of
equations, with respect to the body frame, can be derived.



F=mj+m_xu+mCx£ +m r"°x(°_x£)+2°°x(IF_pdV)+ (IFijpdV)

(6.3)

!=mcxj+m cx(eoxu)+Id_+ _oxlm

(!F+ !l) x _pdV
F (6.4)

with

_v _Tf'FdVF = (f_'Tpdv) I] + (f_'Tpdv) fO×u

+

+ 2 aglTIoJxn)pdV + il pdV + _:'odV

F

_F = Fb + fv f.FdV
F

(6.5)

_T = _Tb + fv (rF+ !1) x f_FdV

where
F_.b = force applied to the rigid body at body frame origin
Tb = torque applied to the rigid body about body flame origin

I = instantaneous vehicle inertia matrix wrt body frame origin

Often in practice, the integral representation in Equations (6.3) - (6.5) is skipped by
assuming the lumped mass idealization. However, the discretization of the flexible domain
into finite element idealization stem from these equations. The lumped mass idealization is
an extreme case. Such inconsistent assumption with finite element method may produce
inaccurate results for crude finite element mesh. More systematic study should be made to
assc,,ss the consequence of such assumption.

As closure, the lumped mass idealization will be made to produce a set of equations
that may be compared to previous derivation [4]. The lumped mass idealization takes the
volume integral and cast it into a sum spanning the total number of nodes in a finite element
mesh. For an arbitrary function, this idealization can be expressed as



f( !2, :fl, _)p dV = _f(
i

Ri, _i, g)mi

where

_i = finite element nodal displacement vector
mi = corresponding lumped mass

Adopting this idealization, Equations (6.3) - (6.5) can be reduced to

F_F_=m_+mo.)xu+m_x¢ +m _x(o)x¢) +2Emimx_ +E mi0.i
i i (6.6)

T=mcxt_+m c_.×(coxu)+ I._.+ coxlo_

+2£mi (ri+ _i) X (OaX_)
i

+ E mi ( ri + _i) × _i
i (6.7)

fi=m_+mi_x_u+mi_x(r_i + 9.i)+mi O_X(¢O×( ri+ _))

+2mi_x_ +mini + £Kijqj

J (6.8)

where
m = total vehicle mass

Kij = assembled stiffness matrix

By interpreting the stiffness matrix as the tangent stiffness matrix, the equations are valid
for nonlinear flexible systems. Since modal reduction generally is not possible for
nonlinear flexible systems, the finite element nodal degrees of freedom must be used to
represent flexible degrees of freedom. For linear flexible system, an indepth coverage of
an alternate derivation of Equations (6.6) - (6.8) is provided in [4].

Extending Symbolic Rigid Body Code to include Flexibility

In the recent years symbolic manipulation software capable of generating rigid body
code became available. Some example of such codes are SD/FAST (Symbolic Dynamics,
Inc.) [6], AUTOLEV (OnLine Dynamics, Inc.) [8], and AUTOSIM (Univ. of Michigan)
[9]. For rigid vehicles, these tools can dramatically reduce the time spent on deriving and
implementing the equations of motion.

By combining the codes generated by the symbolic manipulation software with
reduced set of "hand" derived equations addressing the flexible domain, the capability of
these codes can be extended to flexible vehicles. A systematic method for such an
extension is provided for a satellite class of flexible vehicles. This method will be



illustratedwith previouslyderivedequationsof motion for a rigid body with flexible
appendages.

Forarigid bodywithflexibleappendages,theresultingequationscanbepartitioned
into

where

IA"]I R}: RR+RRF)BT 1 {iF RF

UR = rigid degrees of freedom
UF = modal amplitude degrees of freedom

(6.9)

and
B --[p o]

Note that the P and Q submatrices are defined in the previous section. In Equation (6.9), a
modal reduction has been assumed. The portion of the partitioned equation generated by a

symbolic manipulation software is

[A] {{iR} = {RR} (6.10)

This portion is obtained by supplying the symbolic manipulation software information on
the current configuration. In another words, the total vehicle is assumed to be rigid. The
requirement of current configuration entails configuration update at each integration step.
The current configuration is the reference configuration.

The solution process follows by forming

{{iF} = {RF}- [B T] {i-iR}

and substituting into the rigid partition to yield

(6.11)

[A -BB T] {{iR} = {RR+RRF} - [B] {RF} (6.12)

In terms of actual equations of motion, by observing the structure of Equations (6.4) -
(6.6), the necessary additional partitions can be generated by discretization and modal
reduction of the terms



-4 [B]

(6.13)

-4 {RRF}

(6.14)

The flexible partition can be generated by Equation (6.5).

Methodology presented above produces an "exact" set of equations. Standard
assumptions such as constant vehicle center of mass and inertia together with small relative
flexible displacements can be made as deemed plausible to reduce computational effort.

Rigid Body with Articulated Flexible Appendages

With assumption that an symbolic manipulation software will be used to generate
the rigid partition of the equation of motion, only the required matrices for the articulated
flexible domain will be documented. The idealized articulated flexible appendage is shown
in Figure 6.2.
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Figure 6.2. Idealized Articulated Flexible Appendage.

The quantities are defined as

VF = flexible domain

Ft = inen:ial frame

Fb = body frame

Fk = appendage frame imbedded in the yoke body
R = inertial frame origin to body frame origin

A = body frame origin to appendage frame origin

_F = inertial frame origin to flexible material particle
rF = appendage frame origin to reference material particle position

rl = relative particle displacement
c = body frame origin to vehicle center of mass
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In generating the rigid partition using a symbolic manipulation software, consider
the yoke body and the flexible domain as a single rigid body defined in the current
configuration.

Application of the virtual work principle to the flexible appendage yields

S_r: (f-p_F)dV : I _e' odV
F (6.15)

with

_F=R+ A+rF+q = FIT R + FbT A + rk1"(r_F+ !2)

* _'_[_x(rF+ _)+2_x_ + !a_kX(.C_x (_rF* n))+_] =rbTab = rkTa_k

where

u = velocity of body frame wrt inertial frame

= angular rate of body frame wrt inertial frame

_k = angular rate of appendage frame wrt inertial flame

8x = virtual displacement of the body frame

59.b = virtual rotation of the body frame

_59.k = virtual rotation of the appendage frame

= virtual relative displacement

The appendage angular rate can be decomposed into

Similarly,

_Ok : _"kT _0-.k = FT _O-_b + FT _bk

where

= relative angular rate of appendage frame wrt body frame

= relative virtual rotation of the appendage flame wrt body frame

(6.16)

(6.17)



Theframesaretransformedwith

F b = Cbk Fk

CorrcspondingtoEquation(6.9),thcrigiddcgrccsoffrccdom dcfinc

I _6

{_R}= {

(J)bk

SubstitutionintoEquation(6.15)yieldsfollowingrclations.

[B] {_F}

(6.18)

(6.19)

(6.20)

j f,_ Cbk _ dV)

{IvF (A+Cbk(IF+ !l), × (Cbk_)dV,

Ax(C_(_x_))+C_ ((_+n)x(_xn))pdV)

(21F((rF+ll)x(_xrl))pdV)

-'> {RRF}

(6.21)

32J



The equations for the flexible domain results in

Ivr _]]T-fFdV = I _nT
F

pdV

(6.22)

Equations (6.20) - (6.22) yield necessary equations to generate the full equations of motion
for a vehicle with articulated flexible appendage. All terms are retained. Vehicle specific
truncation of nonlinear terms should be made to these equations. Detailed derivation using
an alternate approach of a vehicle with articulated flexible appendage is provided in [5].

Validation

To validate the concept of mating flexible domain equations with code generated
using a symbolic manipulation software, the HS-601 satellite [5] is chosen for
implementation. AUTOLEV software generated the rigid body portion of the code. Rest
of the code that deals with flexible domain has to be coded by the user.

The specific example applies 40 fi-lbs of torque about the roll-axis for. I sec. The
magnitude of the torque characterizes the authority of the reaction control thrusters. The
angular positions and rates are shown in Figures 6.3 - 6.4. The results are identical to the
previous simulation that was implemented using the derivation described in [5]. Note that
the response shown characterizes an actual vehicle. The effects of the flexibility are
pronounced. In the rate plots, the magnitude of the rates peak at about 4 times the rate
expected for a rigid vehicle with same applied torque.

The use of a symbolic manipulation software with flexible domain equations offers
large time saving in terms of both derivation and implementation. In this context, this
approach is practical as an engineering tool.
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7. Simulation Performance

Digital simulations employing the hybrid dynamic model with the complete,
nonlinear body-stabilized dynamics have been performed to demonstrate the stationkeeping
control performance. Key simulation parameters which were added to produce worst case
transient errors are: (1) 1.0 inches spacecraft CG offset from the pressure center of the
south maneuver thrusters along the z-axis, (2) 5 lbf thrusters with 5% thrust mismatch
producing the worst case acceleration disturbance, (3) 1.0 deg thruster misalignment in the
direction adding disturbance, (4) flexible north and south wings at 0 deg wing angle, (5) 2
RTI control transport delay, (6) solar wing drive with +0.25 deg deadband, (7) thruster
EPW (Electrical Impulse Width) error model, which computes the thruster impulse on time
delay as a function of time since last pulse. To accommodate the control loss due to EPW
error, a fixed 4 msec thruster delay compensation was added to the command pulsewidth,
(8) 8 msec pulsing constraint, (9) momentum wheel spinning at 45 ft-lb-sec throughout
maneuver, (10) 0.035 deg sample to sample three sigma earth sensor noise, and (11) gyro

sensor noises: rate random walk at PSD = (10 -7 d/s 2 )2,/Hz, angle random walk at PSD =

(10 .4 d/s 2 )2/Hz, angle noise at PSD = (1.3 x 10 -5 d/s 2 )2/Hz and quantization of 0.3
a/'csec.

With nominal structural mode frequencies and 0.5% structura_ damping, Figure 7.1
shows the Stationkeeping Mode control performance from a 100-sec south maneuver. The
spacecraft angular position and rate along with their estimates about each control axis are
plotted. It also shows the acceleration bias estimate and the control acceleration command
about each axis. The acceleration bias estimates in this run were initialized to zero. The

roll transient, which was induced primarily by the spacecraft yaw CG offset and the thrust
mismatch, reaches 0.09 deg, while the yaw transient was primarily due to the thrust
mismatch and was about 0.045 deg. The pitch transient induced by the combined effect of
canted and thrust mismatch is 0.01 deg. In the steady state, a limit cycle about the pitch
axis resulted from the 8 msec thrusting constraint. The acceleration bias estimation
converges within 5 sec, showing a smooth bias estimate in the steady state. Transient
errors can be improved with an initialization of the acceleration bias estimates to their steady
state values. Figure 7.2 shows the performance with both the roll and yaw acceleration
bias estimates initialized to 4.5% off their steady state values. Due to an over estimate of
the thrusting bias by 4.5%, the roll and yaw attitude were over controlled, yielding
transients up to 0.06 deg and 0.042 deg, respectively, in the direction opposite to Figure
7.1. Ideally, a perfect initialization would result in an significant reduction to the roll and
yaw transients.

Effects of structural mode uncertainty and damping were also investigated through
simulations. Figure 7.3 shows the performance with a 100% frequency increase to each
mode, and Figure 7.4 a 50% frequency drop. In both cases, a 0.25% structural damping

was assumed. A 50% ( A ) frequency error is equivalent to a 75% [= 1-(1- A )2] change to

stiffness of the flexible wings. It is not expected that the structural modes at the on orbit
deployed condition would exceed more than 20% from the nominals. Likewise, the
structural damping nominally exceeds 0.5%. The modal errors given above are to
demonstrate the robustness of the control system. The simulation results show that
variations in modal parameters have no major effects on the modal stability nor degrade the
pointing performance.
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8. Concluding Remarks

The design and analysis of a stationkeeping control system for a body-stabilized
spacecraft having flexible solar wings of 3 solar panels per wing were presented. The use
of the hybrid coordinate modeling approach along with frequency domain analysis
technique accurately modeled the rigid-flex coupling behavior. The design philosophy to
stabilize the structural modes and to smooth the flexure was discussed. The control system
was designed to gain and/or phase-stabilize the structural modes. The lead inherent rate
gyro references, the structural filters and the time-varying bias estimation gains were key
factors to achieve a successful design. Control performance of Stationkeeping/Transition
Modes during a south maneuver under the worst case simulation environment was
demonstrated through digital simulation. The accuracy of the analytical model for structural
mode/control loop interaction is best verified with the test data obtained from
comprehensive ground testing. The control system as presented allows for a high degree
of uncertainty on mode shape and frequency.

An alternate, indirect implementation of flexible vehicle dynamics has been
presented. The effort required to derive and to implement the equations of motion can be
significantly reduced. A formulation through the virtual work principle allowed consistent
derivation and discretization of the flexible domain within the context of the finite element
method. Extensions into nonlinear flexible models can be made.

Acknowledgement - A portion of this work supported by the C. S. Draper Laboratory
Internal Research & Development is gratefully acknowledged.
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A BSTRACT

An opcn loop optimal control algorithm is developed for

general flexible structures, based on Laplace transfonn
methods. A distributed parameter model of thc structure is first

presented, followed by a derivation of the optimal control

algorithm. The control inputs are expressed in temls of their

Fourier series expansions, so that a numerical solution can Ix:

easily obtained. Thc algorithm deals directly with the

transcendental transfer functions from control inputs to outputs
of interest, and structural deformation penalties, as well as

penalties on control effort, are included in the formulation. Thc

algorithm is applied to several structures of increasing

complexity to demonstrate its generality.

1. INTRODUCTION

The control of large flexible structures has become an
important issue in recent years, primarily in the aerospace

industry, l As larger structures continue to be deployed in

space, the effects of control-structure interaction are becoming

increasingly important. For example, stringent pointing
requirements for space-based antennae make it necessary to

isolate and suppress unwanted structural vibration caused by

both slewing maneuvers and exogenous disturbances.
Consequently, it becomes necessary to mtxlcl structural

flexibility when developing control laws for these types of
structures.

Because disturbances and control forces generally act at

discrete points on the structure, struchlral responses tend to
exhibit wave propagation characteristics. Traditional finite

element codes are tmable to capture the high frequency behavior

of such structures, due primarily to the spatial discretization

associated with lumped parameter models. This limitation

makes it particularly difficult to study the propagation of
flexural waves within structures, since an extremely fine

discretization is required to preserve the local wave-like

characteristics of the disturbances. To overcome this problcln,
this paper develops a distributed parameter, system-based

model, which deals directly with lhe governing partial

differential equations that describe the structure.

Given the continuum model of a flexible structure, there

remains the issue of identifying control mcthtxlologies that take
advantage of tile additional high frequency infonnalion

available therein. Tzafestas 2 develops a distributed par:mlctcr

analogue of the linear quadratic regula|or theory. A distributed
parameter Riccati equation, expressed in tenns of spatial

differential operators, is presented. Miller, llall, and yon
Flotow 3 develop optimal control laws for power flow at

structural junctions based on a travelling wave approach. The

effect of the localized controller is to modify tile wave scattering
matrix at the junction in a way that minimizes the powcr

I 4flowing from thejt, nction. MacMarfn and l lall consider

*Member, AIAA

optimal control of power flow in nncertain structures based on

an 11oo cost criterion. Closed-loop stability is guaranteed by

mmilnizing the maximutn pov,,er imparted to the structure over
all frequencies. The optilnal distributed control of a rigid

spacecraft with flexible appendages is discussed by
Brcakwcll. 5

Skaar 6 presents closcd-fonn open loop optimal control

solutions for a simple structure. The cost ftmction considered
has the fomt:

|[

J = (f { klu(t)2+ k2t'(t)2 } dt (:)

where u represents the control input, and kl and k2 are
constants. Tenninal and integrated penalties on the strucmnd

dcfomlalions ,arc not pcmlilted. Rather, the terminal constraints

arc adjoined to the cost function with Lagnmge nmltiplicrs.
The exclusion of dcfonnational pcnallies makes it possible to

derive analytical solutions for certain types of maneuvers.

Otherwise, the optimal control solution can, in general, only bc

obtained by numcrical methods.

Analytic:d results are availahlc for only the simplest of

distributed parameter mtxlcls, containing very few flexible
elemcnts. More oftcn, at complex structure, such as a truss

beam, is replaced by a single equivalent member in the
coulintmm model. Such an approximation is usually accurate at

low fiequencies only. For general struclures, the strttctural

responses nmst be calculated numerically. The convolution
integnd representation technklue developed by Skaar is

generalized in this paper to handle arbitrary structural
con figur:ttions.

A review of the conlimwm modeling approach is
presented in section 2. The optimal control formulation is

developed in seclion 3. Several examples of this methtxl,

applied to structures of increasing complexity, are then
presented in section 4. Conclusions and recommendations can
be found it: scction 5.

2. STRUCTUI/AL blODELING

2.1 Modeling of l"lexible Elemcnls

Traditional approaches for modcling complex structures
have relicxl on finite element modeling techniques. This

approach idealizes a structure as an assembly of many small
pieces which are constrained to move together in a maimer

consistent with the internal elastic behavior of the underlying

continunnl model. These techniques are powerful and widely
nsed. ltowever, they stiffer from various modeling

idealiz;_tions which limit the accuracy of behavior predictions,
particularly for high frequcncy.

In order to better model the high frequency behavior of
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elastic frame-like structures, a continuum approach is presented
in this paper which overcomes the conventional limitations of
traditional finite element modeling techniques. The continuum
method (also known as the exact finite element, distributed

parameter, or dynamic stiffness method), deals directly with the
governing partial differential equations for the individual elastic
elements to eliminate the explicit time dependence in the
equations of motion. The Laplace transform is employed to
convert the governing partial differential extuations into ordinary
differential equations in the spatial dimcnsion. For common
elemem models (e.g., rtxls in torsion, Bernoulli-Euler beams in
bending), simple analytical solutions to these equations exist.
The resulting solutions are explicit functions of the generally
complex frequency parameter, s, which has been introduced
through the application of the Laplace transfoml technique.

As an example, consider the case of a rod in torsion,
shown in Fig. 1. The governing partial differcutial cquatiou is

GJ0"(x,t) + mr20(x,t) = x(x,t)

where 0 is the cross sectio,ml angle of twist, GJ is the torsional
rigidity, m is the mass per unit length, r is the cross sectional
radius of gyration, ( )'=3( )/0x, ( )=o_( )/cqt, and x is the
distributed torque. Applying the Laplace tra,lsfonn, we obtain

0"(x,s) + GJ 0(x,s) = 0

where initial conditions and distributed forcing along the
element have been temporarily neglected. The general solution
follows as:

0(x,s) = A(s) cos _,x + B(s) sin 13x, 132 mr2
= -GT s2 (4)

where die functions A(s) and B(s) depend on the constraints
imposed at the boundaries of the element. To simplify the
mathematical developments, a structural state vector is defined
for the elastic element as follows:

= r o(x,s) 1y(x,s)
L T(x,s) ]

where T represents the net torque resultant along the rod. With
knowledge of the state at one boundary of the element, it is then
possible to determine the state at any internal location. A
frequency-dependant spatial transition matrix is used to
propagate the system state to arbitrary element locations. Its
transcendental elements can be thought of as spatially varying
transfer functions. For this example, the transition matrix can
be shown to be

E 1cos 13x G-_ sin 13x

• (x,s) = - G J13 sin 13x cos 13x

y(x,s) = q_(x,s) y(0,s) (7)

and

Ahernativcly, when the displacements at the boundaries are
known, they can be related to the forces. This is accomplished
by a dynamic stiffness matrix. Its name derives from the
stiffness matrix associated with the traditional finite element

method. For the rod in torsion, this matrix is given by

= G_G_L/3_[cos131 -1]K(s) sinl_l - 1 cos [31 (8)

where 1 is the length of the rod.

In addition to torsional rods, the formvlation also
handles Euler beams in bending in two directions and axial
rods. Timoshcnko beams can also be includcd as continuum
elements.

Because the continuum method treats each elastic

(2) member as a single element, no spatial discretization is
required. This is in marked contrast with traditional finite
element methods, where each element must be lumped imo
several segments. As a result, the continuum model is valid at
all frequencies, insofar as the partial differential equation
represents the actual physical structure. In contrast, the spatial
discretization associated with the finite element approach creates
a computational burden for even the simplest of structures (each

(3) flexible element is typically broken down into more than ten
segments). This significant reduction in the number of discrete
modeling elements required makes the continuum method more
attractive from a computational point of view.

Another advantage to the frequency domain modeling
approach is the ease with which damping is incorporated into
the structural model. For internal damping (where energy is
dissipated as heat within the structural elements) the static
bending, axial or torsional stiffness is replaced by a complex
valued function of the complex frequency. The functional
relationship depends on the type of damping modeled. For
example, a fractional derivative damping model scales the static
stiffiaess by the square root of the complex frequency. 7 This
type of damping model is extremely difficult to inlplenaent in
time domain fomaulations, and requires a knowledge of the

(5) entire past history of the deformation of the structural element.
For external damping (where structural energy is dissipated to
the surroundings) the mass per unit length is replaced by a
frequency-dependant parameter. 7

(6)

_,:_ Assembly of Elements

The assembly of flexible elements into a complex
frame-like structure is accomplished using the method of
local/global coordinates, 7 which is irnplemented in most finite
element software. The structure to be modeled is divided into a

set of flexible elements and a set of rigid joints, which attach to
any number of flexible elements at their respective boundaries,
as shown in Fig. 2. External forces arc applied at the joints
only, but the deformation of the structure is available at all
points. (The case of a concentrated force applied within a

Distributed

Torque
/ GJ,m,r constant

"r(o,s) _ × / / "_-- i iJ Ill" J _ Ill t dT(I,s)

I_ L _l

Fig. 1: Example of a distributed parameterelement: a rod in torsion.

jo,,1,s7 x,,,
Flexible

Element

Fig. 2: Generic frame-like structure.
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flexible element is treated by breaking the member into two
continuous elements connected by a masslessjoint. Modeling
distributed forcing is somewhat more difficult.) Massive joints
are modeled by dynamic stiffness matrices as well, so that their
contribution to the structural response at all frequencies is
retained.

The topology of the structure is given by a connectivity
matrix, which relates the local displacements of the structural
elements (both flexible and rigid) to a set of global
displacements which uniquely describe the location and
orientation of all .joints in the structure. The applied forces at
the joints are defined in a dual manner, so that for every global
displacement there exists a global forcing input at the same
point and in the same direction. It is then a simple matter to
compute file dynamic stiffness matrix for the structure as a
whole at any given complex frequency. The individual

stiffness matrices are first arranged in a large block diagonal
matrix. This matrix is then post- and pre-multiplied by the
connectivity matrix and its transpose, respectively, resulting in
the system dynamic stiffness matrix.

Because the dynamic stiffness matrix is tran_endenta]
in nature, computing natural frequencies is not a simple matter
of solving an eigenvalt, e problem, as is the case for the finite
element approach. Rather, the stiffness matrix must be

computed at many frequencies in order to gradually converge
on each modal frequency. However, a powerful algorithm is
available which rapidly converges on these eigenfrequencies. 8
The algorithm works for undamped systems only, and
additional root-searching algorithms must be employed when
structural damping is modeled. 7

The system dynamic stiffness matrix can be inverted, if
desired, yielding the dynamic flexibility matrix for the
structure. Its elements can be thought of as transfer functions
from the joint forces to the joint displacements or as admittance
functions. This flexibility matrix, in conjunction with the
flexible element spatial transition matrices, enables the

straightforward calculation of the transfer function from any
joint force to any point on the structure.

2.3 Inverse Laolace Transform

In the frequency domain, the responses at various
locations within a linear elastic structure to multiple control
inputs are determined by exploiting the principle of
superposition. The set of responses, yi(s), are expresscd as

rfl

yi(s) = ._ gij(s) uj(s), i = 1..... r (9)
j=l

where gii(s) is the transfer function flom the j'th input, u(s), to
the i'th output yi(s). These equations can be expressed _
more compact foma using matrix notation:

y(s) = g(s)u(s) (10)

The matrix G(s) is the dynamic flexibility matrix for the given
structure, or some partition of it, depending on the inputs and
outputs considered.

The time response vector corresponding to y(s) is
available via the inverse Laplace transform, given by

cc+j_
1

y(t) = _ _y(s)e_'ds (11)

where the integration path is known as the Bromwich contour.9

For finite dimensional systems, a residual expansion is used in
lieu of Eq. (11) to compute the time rcsponses analytically.

"I'l_esame can be done for distributed parameter systems, except
that the expansion has an infinite number of temas and must
therefore be truncated at some point. However, greater
numerical accuracy is possible by working with Eq. (I 1)
directly. The frequency domain response is tabulated for
values of complex frequency equally spaced along the
Bromwich contour, and a numerical procedure converts this
data into a response history evaluated at equal spaces in time. t0

Because this approach utilizes frequency domain
representations of the control inputs, it circumvents the
computationally expensive calculation of convolution integrals.
Furthermore, signals that cannot be represented by finite
dimensional state space models are easily handled in the
frequency domain. For example, the implementation of a time
delay simply requires multiplication of the frequency domain
data by a suitable exponential of the complex frequency before
the inverse Laplace transform algorithm is invoked.
Implementing such a time delay on a modal basis requires a
truncated series expansion of the complex exponential (such as
a Pad_ approximation), with many temls needed to obtain an
accurate representation.

3. OPTIMAL CONTI,IOL FORMULATION

With the continuum modeling approach descrihed
above, it is possible _o recast a class of optimal control
problems into a convenient fomL from which optimal control
trajectories are easily calculated. This form is applicable to a
completely general frame-like structure (although applying this
method to structures containing plates and membranes is the
subject of current research I1), with multiple control inputs and
multiple outputs. The class of problems discussed here are
fixed-time, linear quadratic, open lt_p control problems with
penahies on control effort, position and velocity of various
output points on the struclure, and structural deformation.
Thus, the cost functional has the foma

J"= [y(tf)- YdlTli[y(tf)- Yd]
t/"

+ J{ ly(t[)- ydlTQly(tr) - YdJ + u(t)TRu(t)}dt (12)

where II, Q and R are weighting matrices, and Yd is the vector
of desired OUlpot values. It should be noted that Yd represents
the physical output variables of interest, and is not related to the
oulputs of some state variable representation of the system.

Traditionally, the dynamics of the system are adjoined
to this functional via a costate vector as differential equation
constraints. However, because the structural transfer functions
are transcendental and infinite din_ensional, a finite dimensional
costate vector cannot be defined. Tzafestas 2 succeeded in
identifying a distributed pm-ameter optimal control solution
which incorporates an infinite dimensional costate. This

solution represents the distributed parameter analogue of the
Riccati differential equation for finite dimensional systems.
t Iowever, the method is not i,nmediately applicable to complex
structures, where more than one partial differential equation is
involved. Even the case of a single beam in bending presents
considerable difficulty. 12

One alternative to adjoining an infinite dimensional
costate is modal truncation. The high frequency modes of the
structure are simply ignored, and the dynamics of the structure
is approximated wifll a finite dimensional state space
realization. However, in order to take advantage of the
"exactness" of the continuum modeling approach, it seems
appropriate to avoid modal truncation altogether. Instead, we
express each response as the convolution of impulse responses
with control inputs. This yields for the cost function

.333



tf

o

+ U(I)TI/,u(t)} dt (13)

where G(t) is the matrix of impulse responses from each
control input to each output, as defined in section 2.3. These
convolution integrals need not be computed directly, as they are
tile inverse transforms of the appropriate transfer functions
multiplie.d by the associated control inputs. Taking variations
in u, we are left with an iulcgral equation which, except for a
very small number of spccial cases, is difficult or impossible to
solve in closed foma. It is therefore necessary to express the
control inputs as weighted sums of an appropriate set of basis
functions which span the function space of allowablc control

inputs. For fixed time problems, the Fourier series is a g_d
candidate, leading to

u(t) f(t)Tc2 F(t)Tc f(t) (14)

Lf(t)Tcm i sin n nt/tf

L-cos nnt/tf

where

E Ic]f(t) f(t) c2
F(t) = . , c =

• f(t) C':m

(15)

The cost functional now depends only upon a constant vector,
c, representing the coefficients in the Fourier series expansions
of the control inputs. The resulting cost functional is quadratic
in the coefficient vector, and the minimization problem is
straightforward, yielding:

c = AlByd (16)

where

If

n = Y(tf)TIIY(tf) + f{Y(t)TQy(t) + F(t)TRF(t)}dt (17)
0

tf

B = Y(t0TII + f{ Y(t)TQ}dt (18)
0

and
t

Y(t) = J G (t-x) F('_) d'_
(19)

Once again, the convolution of impulse responses with basis
function inputs can be calculated via the inverse Laplace
transform:

Y(t) = L-t[G(s) F(s)} (2o)

Vurthennore, these basis responses can be computed a priori,
providcd that the forcing locations and structural defommtion

penalty locations are known in advance. This makes it possible
to try a large number of cost ftmctionals without repeatedly
calculating the responses to basis inputs• It should be
mcntioned that a large amount of memory is required to store
this data.

A unique advantage of this approach is that it readily
accommodates penalties in higher derivatives of both control
cffort and physical deformation. In the frequency domain,
differentiation merely requires multiplication of the data by the
Laplace transform variable. The inverse transfommtion will

then produce the derivative of the original signal. Highcr order
dcrivatives are obtained by muhiplying by higher powers of the
complex frequency. Incorporating higher derivative penalties
in the traditional optimal control formulation is considerably
more difficult.

Special constraints on the control histories arc trealed by
adjoining the constraints via Lagrange multipliers. An example
is the re(luiremeut that the controls be continuous at the

beginlfing and end of Ihe maneuver. This implies that the
controls go to zcro at the initial and final times. Two Lagrangc
nmhipliers arc therefore introduced for each control input.
Performing the minimization, we obtain

kt = F(O) r 0 (21)

k2 F(tf) T 0 0 J

wherc ;kI and ;k2 arc Lagrange multiplier vectors corresponding
to the control constraints at the initial and final times,
rcspectivcly.

It should be noted that the only approximation in the
entire development involves expressing the control inputs in
terms of the basis functions. The dynamics of the entire
structure is accounted for, since the impulse responses are exact
(insohlr as the original equations represent physical reality)•
Also, the structural deformations are assnmed to be small, so
that linearization does not introduce significant errors. As a
result, large angle slew maneuvers are not included in this class
of problems. It is possible, however, to express structural
defommtions with respect to a nominal condition during a large
angle slew, and then linearize about that reference.

It is important to note the difference between the
approximations made in the continuum approach and those
made in control systems based on finite element models.
Typically, a finite elemcnt model is used to detennine a
truncated slate space realization of the system. The control
system is then designed using standard methodologies, such as
linear quadratic regulator (LQR) or l-I theory. The modeling
crror associated with modal truncation must then be considered

in assessing the performance of the system. In contrast to this,
the continuum approach retains all mc_les of the system and
thcrcfore has no modeling crror associated with it, provided
that the original partial differential equations represent the
physical system exactly• The only limitation to this approach is
therefore the number of basis functions chosen to represent the
control signals. Using the Fourier series expansion essentially
places a limit on the bandwidth of the control inputs. If the
bandwidth of the physical controls are known in advance, the
number of basis functions used in the calculations can bc

adjusted accordingly. The resulting control history wou',d then
indccd bc optimal for th:lt set of physical controls.

.2"34,



4.1 Rigid Mass wiilt Flexible ADuendage

In an earlier analytical study by Skaar 6, the open loop
control of a rigid rnass with a flexible appcndage, shown in
Fig. 3, was studied. In his work, deformational penalties werc
not incorporated into the cost function; rather, the terufinal
conditions were adjoined to the cost functional as constraints.
Skaar derived analytical expressions for impulse responses of
the simple mass/appendage structure and thus obtained closed
foma optimal control soh, tions for the structure. His approach
does not readily generalize for more complex structures. In
contrast, the fonnulalion prescntcd hcre readily generalizcs for
realistic complex structures. Nevertheless, the mass/appendage
structure is used as a first example to validate the optimal
control formulation.

The maneuver involves translating tile mass a dislancc
of 10 metcrs along the axis of the flcxiblc appcndagc, bringing
it to rest with minimal rcsklual energy and post-maneuver drift
after 20 seconds. The first case places tcnninal penalties on the
final position and velocity of the rigid mass and on a point 4/5
of the length along the flexible appendage. A small penalty is
also placed on control rate, and 17 basis functions are used to
approximate the control input. The results, shown in Fig. 4,
indicate that the teru_inal conditions are matched, and residual

energy is minimized. The second case places additional
terminal penalties on points along the flexible appendage, as
well as en-route (integrated) penalties on structural deformation
at these points. As shown in Fig. 5, the magnitude of the
structural deformation during the maneuver is reduced slightly
(about 15%), and large deformation occurs over smaller
intervals of time, resulting in a lower RMS displacement of the
tip of the appendage over the mancuvcr interval. The terulinal
conditions are again matched. In the final case, the member
stiffness is reduced by a factor of four, so that the primary
modal frequency of the structure corresponds approximatcly

X(t)

u(t) _ _ ..................
M = 1 kg I = 0.5 rn

m = 2 kg/m
EA = 0.05 Nt

Fig. 3: Mas_flexiblcappendage system.
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Fig. 4: RcsulL_of optimal maneuver of mass/Iqexiblc apl_ndagc syslem
(case #1): (a) control forceapplied to rigid mass, (h) lx_sition of rigid mass,
(c) dcfi_rmation of tip of flexible appendage witll respect to lx)sitionof
rigid mass.

with tile fleqnency of Ihe first basis function of the control
input. The results of this case, presented in Fig. 6, indicate that
the control input has been adjusted so that excitation of the
primary mode of the structure is snppresscd, at the expense of
incrcased control cffort. Again, thc terminal conditions ,are
nlatched, and residual internal energy is minimal.

ii
.

Time (see)

(a)

4.2 Slarfish Configuralion

A typical model for a spacecraft with flexible
appendages is the starfish configuration, shown in Fig. 7. It
consists of a rigid hub, to which four flexible arms are
attached. At the end of each ann is a rigid mass. Control

inputs are available at the hub and at the tips of two of the
flexible arms.

For this structural model, two maneuvers ,are presented.

The first is an in-plane translation of 0.1 meter in the direction
of one of the flexible appendages, with a final time of 5
seconds and all three control inputs available. Terminal

penalties are placed on the position and velocity of the hub, as
well as at three locations along the two arms whose axes lie in a
direction perpendicular to the motion. It is anticipated that the
control forces will excite bending vibration in these

perpendicular members due to their inertia. Identical magnitude
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and velocity penalties are also placed on the three control
inputs. The results of this maneuver ;ire shown in Fig. 8. The

forces provided by the thrusters at tile two appendages are

identical (except for thcir sign) and differ slightly from the

control history of the thruster at the hub. This discrepancy

compensates for the inertia of the flexible anus, bringing the
system to tile final desired stale with minirnal residual energy.

The second maneuver involves a small (0.1 radian)
counter-clockwise in-plane rotation about the hub in addition to

the translation of the previous maneuver, in order to

demonstrate the ability of the optimal control approach to
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Fig. 5: Results of optimal inaneuver of mas_flexible appendage system

(cam #2): (a) control force applied to rigid ma_. (b) position of rigid mass,

(c) dcforlnation of tip of flexible appendage with respect to position of
rigid mztss.
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Fig. 6: RcsultsofOl_timalmaneuverofmas_flexibleappendagcsystem

with rextucexlaxial stiffness (ca_ #3): (a) control force appliexl Io rigid
mass, (b) posilion of rigid mats, (c) deformation of tip of flexible

apI_ndage with respect Io position of rigid mass.

h:mdle multiple final conditions. Here, only the lateral forces at

the tips of two of the appendages are available. Also, terminal
position and velocity penalties are placed on two points along

all four anns, as well as on the central hub, and the final time

remains unchanged. The results are presented in Fig. 9.

Again, the incorporation of state penalties involving structural
deformation succeeds in minimizing residual internal energy at
the ten'ninal tinm. As previously mentioned, the linear control

solution applied to this type of rnaneuver is only appropriate for

small rotations and angular rates. For large rotations, nonlinear

kinematics must be considered, whereas for large angulzu- rates,

gyroscopic forces become significant.



I • 1.22 m

m = 1.37 kg/m
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M • 15 kg//
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I = 11X10-3 kg.m 2
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Fig. 7: Diagramof starfish configuration.
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Fig. 9: Optimal mancuver of starfish involving translation and rot,ation:
(a) Control h_rcesapplied to thruster #2 (,solidline) and thru._ter#3 (dotted
line), (h) translation of central hub. (c) rotation of central hub.

4.3 SCOLE Slrugture

The final example is a complex three dimensional
structure proposed by NASA as a design challenge. 13 The
Spacecraft COntrol Laboratory Experiment, shown in Fig. 10,
consists of a rigid shuttle and hexagonal truss antenna
connected by a flexible mast. Previous authors have treated the
antenna as being rigid. In this paper, however, the flexibility
of the antenna is considered, Figure 11 shows the transfer
functions from a torque applied to the shuttle along about the
axis of the mast to various points along the mast and antenna
for both the rigid and flexible antenna models. A validation of
this structural model with a traditional finite element code is
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currently underway. As indicated in the figure, tile flexibility
of the antenna has a considerable effect on the transfer

functions at higher frequencies. It is therefore appropriate to
include a dynamic model for the antenna when applying the
optimal control algorithm.

It

/

M = 92986 kg 1

I=x = 1.23x106 kg.m 2

lyy = 9.20x10 s kg-m_

lzz = 9.61x106 kg-m;_

Iz z = 0.20X10 G kg.m 2

(a)

I = 3g.6 m

rn = 4.58 kgtrn

El = 16.5_(106 NI -m2

EA = 58.5x106 H!

r : 0.53 rrl

GJ = 16.5_(106 NI "m2

C, = 0.003

(b)

Fig. 10: The SCOLE exi_riment: (a) Shuttle and flexible mctst
properties, (b) flexible antenna model used in this study.
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Fig. 1h Some transfer functions from control torque applied to
shuttle along mast axis to inertial accelerations at various poinLson
SCOLE structure for a rigid antenna (.solid lines) and for a flexible antenna
(dottod lines): (a) torsion of midpoint of mast, (b) torsion of mast at
antenna junction, (c) transverse deflection of mast in pitching direction at
antenna junction, (d) deflection, in plane of antenna, of antenna hub.

The SCOLE maneuver presented here consists of a 0. I
radian rotation about the z-axis of the shuttle. The three

dimensional model used in the optimal control formulation
incorporates 52 partial differential equations, which account for
axial, torsional, and bending vibration in the mast and each of
the twelve antenna elements. The shuttle is modeled as a

massive rigid body with six degrees of freedom. Torque
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controls directed along tile z-axis are placed at either end of the

mast. Due to the asymmetry of the structure, bending/torsion

coupling is expected. Consequently, roll and pitch torque
controls are also located on the shuttle, ht the cost functional,

equal magnitude and rate penalties are placed on all four
controls. Large tcmainal penalties are applied to the roll, pilch

and yaw angles of the shuttle, as well as the torsional
defomaation of the mast at its midpoint and at the mast/antenna

junction. The maneuver time is ten seconds.

The results of the SCOLE slew are shown in Fig. 12.

Because of the conventions used in defining the axes at the

nodal points, the torques applied to the ends of the mast are

opposite in sign. Tile physical torques are, however, applied in
the same direction. From the figure, it is clear that, although

the shuttle has rotated the prescribed amount, there is a small

amount of residual torsional energy in the stnJcture. This

energy is due primarily to the dcfonnation of the antenna. It is

expected that additional penahics on structural defonuation

placed at various points on the a.ntenna will significantly reduce

this residual energy.

5. CONCLUSIONS

The open loop optimal control algorithm has bccn

demonstrated for several structural ulodcls. The generality of

tile approach has been exploited in applying the algorithm to a

complex structure. Furthcnnore, the ability of this approach to
handle constraints and derivative penalties has been

demonstrated. One major issue concerning this open ltx_p
method is modeling error. Because tile approach presented is

open loop, this fomudation makes no guarantees on the

perfortnance of tile actual structure, for which tile rnathematical

abstraction is only an approximation. The necessary sensitivity

analysis and closed loop formulations are topics of current
research. It may also be possible to incorporate an adaptive

identification algorithm to adjust the model in such a way as to
minimize modeling error.

If the optimal control problem has an infinite time

horizon, it is possible to use a different set of basis functions to

converge on a solution. Candidate bases include Legcndre and

Laguerre functions, which are linear combinations of
exponentials and other decaying functions. 14

A method for incorporating distributed penalties into the

optimal control algorithnl is one topic of current research.
Rather than penalizing certain points along a particular flexible

element, an integral over the entire elernent, subject to some
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Fig. 12: Results of optimal SCOLE maneuver: (a) yaw torque

apF,licd to shultle (solid line) and masl/antenna junction (doued line). (b)

roll torque (solid line) and pitch torque (dotted line) applied to shuttle, (c)
yaw rotation of shuttle, (d) relative torsional deflection ot mast at midpoint

(solid line) and at mztstJantenna junction (dotted line).

weighting function, becomcs part of the cost functional. Such

a capability would make it possible to develop controls that
minimize the total (kinetic plus potential) energy within the
structure in a continuous sense, rather than penalizing a large

numbcr of points within cach flexible element.



Work is currently underway to extend the basic
modeling approach to continuous plate and membrane
elements. This capability will pemait modeling and control
formulations for the NASA space station class of large space
structures.
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f
What Structural Representation Results

in Accurate Closed-Loop Model?

Commands

Dynamics

Loads

StructuraIDynamlcsJ Responses

Sensor ]
Dynamics

The purpose of this study is to determine what reduced order
structural representation is most appropriate for coupling with a
control system. The goal is to choose a reduced order structural
model which retains as closely as possible the characteristics of
the closed-loop model with a full order structural representation.
By characteristics of the closed-loop model we mean the
closed-loop eigenvalues and the closed-loop transfer functions
from commands to loads and from commands to responses. This
process does not address the accuracy of the full-order model
(usually a finite element model) but only the loss of accuracy
associated with reducing the model. For the purposes of this study
we will limit ourselves to collocated sensors and actuators. The

choice of a structural representation for non-collocated sensors
and actuators is not so clear.
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f
What Do We Mean by

Accurate Closed-Loop Model?

(1) Accurate Closed-Loop Frequencies:

e = I;_pprox_x_tl
I_,exacd

(2) Accurate Closed-Loop Frequency Response:

IG(jo)exacd

- From Commands to Responses

- From Commands to Input Loads

More specifically we will define errors as follows: For each
closed-loop frequency we will define a relative error as the
distance from the closed-loop pole based on the reduced model to
the closed-loop pole based on the full order model, divided by the
magnitude of the closed-loop pole based on the full-order model.
For the transfer functions from commands to input loads and from
commands to responses we will use the same measure to define a
relative error as a function of frequency. The reduced order model
is said to closely represent the closed-loop model when these error
measures are small.



Structural Model is Highly Idealized

I Ph ysical Structure II

I Full Order Model II

I Choose Shape Functions II

I Reduced Order Model II

As mentioned before we are only addressing one aspect of the
accuracy issue. The overall modeling process starts with a
physical structure or drawings of a physical structure and proceeds
to develop what we will call a full-order model. Whether this
model is based on finite elements or partial differential equations,
a number of assumptions were made in its derivation. For the
purposes of this study, we will assume that these assumptions are
valid to the extent that the full-order model accurately represents
modal frequencies in the control bandwidth and also the static
deflection due static loads applied at the controller interface
locations. The full order model, whether it is represented by a
finite element model or partial differential equations, is almost
certainly too large for practical control system analysis. The
model is reduced by choosing a small number of shape functions
(often normal modes). We are addressing the choice of these
shape functions, such that accuracy of the closed-loop model is
retained with as few functions as possible.



Problem is Related to
Component Mode Synthesis

Modal Reduction Modal Re_'uction
f

I
- Normal Modes are not Good Representations•Alternate Representations Developed

j

A very similar problem is that of component mode synthesis
(CMS). In CMS the goal is to represent a number of substructures
by reduced order models based on shape functions such that when
these substructures are coupled, the modal frequencies of the
coupled model will be as accurate as possible. In the case of
control-structure interaction (CSI) we are simply replacing one the
substructures by a control system.

Researchers in CMS have demonstrated for more than 20 years
that the use of normal modes to represent the substructures can
result in large inaccuracies of the coupled model. A number of
alternate substructure representations have been developed that
result in much more accurate coupled models.



Alternate Representations are
Statically Exact

• Residual Flexibility adds Static Contribution of
Neglected Modes

• Craig-Bampton Representation adds Static
Solution to Cantilevered Modes*

• Lanczos Vectors are Based on Static Solutions

_, *Implemented in NASTRAN as standard method j/

Two methods for representing substructures in CMS have
emerged as standards. These are normal modes with addition of
residual flexibility and a Craig-Bampton representation. The use
Lanczos vectors rather than modes has also been suggested.

The residual flexibility method adds static flexibility that is not
represented by the retained normal modes. This flexibility can
either be represented as a purely static flexibility at the interface
or by a high frequency subsystem which contributes
quasi-statically at the interface. The residual flexibility subsystem
is uncoupled (orthogonal to) the retained normal modes.

The Craig-Bampton method combines a static reduction (Guyan
reduction) to the interface degrees of freedom with a set of normal
modes calculated with the interface degrees of freedom held fixed.

Lanczos vectors are generated by a series of static solutions and
do not require the solution of an eigenvalue problem. The
resulting mass and stiffness matrices are tri-diagonal rather than
diagonal.



I

r

Craig-Bampton Representation
Standard in Structural Dynamics

M_B I |,x,/ 0 _2 jrx,/

IF," Guyan reduction to exterior DOF
Static shapes based on unit deflections of exterior DOF

° Static shapes = rigid body modes for rigid body control

° Relative not absolute DOF fixed at joints

• Results in accurate system models

The Craig-Bampton method is the most popular method used in
CMS. It is conceptually very simple, it is accurate and it is
implemented as the standard representation used by
MSC/NASTRAN's superelement capability. Two sets of shape
vectors are used. The first are static shapes based on unit
deflections at the interface. These are the same shape functions
used in the Guyan reduction process. The second are normal
modes calculated with the interface fixed. The Craig-Bampton
representation has the form illustrated above. While it is not
diagonal, it can be diagonalized. In this case it is very similar to
the residual flexibility representation, with a number of normal
modes combined with a set of high frequency modes representing
static flexibility at the interface.

When the Craig-Bampton representation is used in CSI for
systems with joints, the relative rotation rather than the absolute
rotation at the joint can be held fixed during the calculation of
"component" modes.



Why Do We Persist in Using
Normal Modes?

• Tradition

• Obtainable from any Structural Dynamics Routine

• Physical Interpretation

• Approximately Balanced (in sense of Moore)

• We Don't Understand Damping (modal damping)

• Small Amount of Data to Transfer

• Uncoupled Equations of Motion

J

Given that normal modes are known to generate poor solutions in
CMS problems, and given that alternate representations are better,
why are normal modes used so pervasively in CSI? There are a
number of reasons why normal modes are convenient. They are
standard output from any structural dynamics routine, and are
certainly more "standard" than the ahernate representations used
in CMS. They have a physical interpretation. For lightly damped
systems with sufficiently separated frequencies they are
approximately balanced and cost decoupled, suggesting that they
are natural coordinates to use for model reduction. Modal
damping is simple to define. The amount of data transferred is
limited to modal frequencies and mode shape coefficients. And
finally, the resulting equations of motion are uncoupled, resulting
in very fast simulations.



f
Alternate Representations

can be Diagonalized

Alternate Reduced Eigenvalue Diagonalized
Order Model Solution Representation

Ii Eigenvalue Problem is Small (size of reduced order

model)

Diagonalized Representation has Many Advantages

of Normal Mode Representation

J

Many of the advantages of the normal modes representation are
shared by the Craig-Bampton representation, if the reduced order
model is diagonalized. The diagonalization involves an
eigenvalue solution on the reduced order model, which is typically
very fast. The resulting "modes" will include some low frequency
normal modes along with some high frequency residual modes
which contribute quasi-statically in the low frequency range. The
coordinates are now balanced and cost-decoupled with respect to
the reduced order model, though not necessarily with respect to
the full order model. The amount of information to be transferred

is again limited to frequencies and mode shape coefficients and
the equations of motion are uncoupled. The high frequency
modes may need to be treated carefully during a transient
simulation, though extra damping can be added without affecting
their contribution in the frequency range of interest.
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Summary of Structural
Representations

• Goal is Accurate Closed-Loop Model

- Accurate Closed-Loop Frequencies

- Accurate Closed-Loop Transfer Functions

• Choice of Shape Functions can be Motivated by CMS

• Alternate Representations are Statically Exact

• Alternate Representations can be Dia_lonalized

J

In summary, the goal of this study is to select a minimal number
of shape functions that accurately represent the closed-loop model.
While normal modes are often used, alternate representations
developed in the field of CMS can also be applied. These
alternate representations are statically exact at the interface points
and can be diagonalized to recover some of the advantages of
normal modes. Following, we will show two examples which
demonstrate that the Craig-Bampton representation does in fact
result in significantly more accurate closed-loop models than the
normal modes representation.



f
Hinged Beam Provides

Simple Example

Flexible Frequency at 13.5 Hz

Z

I PD Controller Designed for I Hz Control Mode IIand 0.707 Damping Ratio I

J

One might expect that as a control system became stiffer with
respect to the structure, a set of fixed interface modes would be
more appropriate, while for a soft control system the free interface
modes would be more appropriate. It is certainly true, that as the
control system gets stiffer, the inaccuracies associated with the use
of free interface modes become larger, however, this simple
example shows that the errors can be large even when the control
system is significantly softer than the structure. We have chosen
PD control gains to give a rigid body frequency of 1 Hz and a
damping ratio of 70.7%. The actual frequency and damping ratio
will differ due to the flexibility of the beam. The "full-order"
model is the finite element model with 20 degrees of freedom.
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Craig-Bampton Modes Result in

More Accurate Control Frequency

Normalized
Error

= 1.05 HZ, _ = 0.662

5%

2"/,,

1'%

0 ' '

0 4 8 12 16 20

Number of Flexible Modes

The actual control frequency based on the full 20 degree of
freedom model is 1.05 Hz with a damping ratio of 66.2%. Using
even one Craig-Bampton mode results in an exact representation
of the frequency, while seven normal modes are required to reduce
the error to less than 1%.
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Craig-Bampton Modes Result in

More Accurate 1st Flexible Frequency
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The first closed-loop flexible mode is at 7.54 Hz and is critically
damped. In this case two Craig-Bampton modes represent the
closed-loop mode exactly, while thirteen normal modes are
required to reduce the error to less than 10%. In this case the error
in the closed-loop frequency using normal modes is drastic.
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Craig-Bampton Modes Result in
More Accurate Transfer Function
Closed-Loop Transfer Function from a Rotational

Command to a Rotational Response
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Examining the frequency response from a rotational command to a
rotational response tells the same story. Using Craig-Bampton
modes, the error is less than 1% up to a frequency of 1000 rad/sec,
while using normal modes, the error exceeds 1% at just over 6
rad/sec.



(' SPACE STATION MODEL IS MORE REALISTIC

_]_ ReactiOncontrol,1155Modes Below 3 Hz I /

_._ System J13 Control Inputs and Outputs

"" Alpha
Joints

Joints Control _.

Consider Pitch Axis Control I
o_ = .01 Hz, _ = .707, (_F = .2 Hz II

The methods presented here were developed for Space Station
Freedom, which is a complex structure with very high modal
density. Examining pitch control of the Space Station provides a
more realistic example. In this case the first significant flexible
mode interacting with the control system is near 0.2 Hz. The
control gains are chosen to provide a rigid body control frequency
of 0.01 Hz and a damping ratio of 70.7%. Once more, this is a
system where the control frequency is more than an order of
magnitude below the first flexible frequency. In this case it is not
possible to calculate the true "full-order" closed-loop model
because the finite element model has over 1000 degrees of
freedom, so the exact model is one based on 155 Craig-Bampton
modes. The two reduced order models are each based on 41

flexible modes. The first based on 41 Craig-Bampton modes, and
the second based on 41 normal modes.



Craig-Bampton Modes Result in
More Accurate T.F. to Response

Transfer Function from Pitch Command to Pitch Response
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The error in the transfer function from a rotational command to a
rotation about the pitch axis again illustrates the improved
accuracy associated with the Craig-Bampton representation. In
this case the reduced order model based on 41 Craig-Bampton
modes is accurate (less than 1% error) up to a frequency of 0.5
rad/sec, while the reduced order model based on 41 normal modes
is only accurate up to a frequency of 0.05 rad/sec.
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Craig-Bampton Modes Result in

More Accurate T.F. to Torque

Transfer Function from Pitch Command to Pitch Torque
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Results for the transfer function from rotational commands to

torques applied by the controller to the structure suggest similar
conclusions. Again the model based on Craig-Bampton modes is
significantly more accurate than the model based on normal
modes.
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CONCLUSIONS

• Alternate Modal Representations are Available and
Easy to Implement

• Key Difference is Exact Static Representation

• Alternate Modal Representations can be Diagonalized

• Alternate Modal Representations Result in More
Accurate Closed-Loop Models with Collocated
Sensors and Actuators

• Non-Collated Sensors and Actuators Less Clear
I

In conclusion, the use of an ahemate structural representation,
such as the Craig-Bampton representation, can result in much
more accurate results than are obtained when using a truncated set
of normal modes. The key difference between the alternate
representations and the normal mode representation is the
incorporation of a static solution. The alternate representations do
not necessarily generate diagonal mass and stiffness matrices, but
they can be diagonalized at a minimal effort in order to capture
some of the advantages of normal modes.

All the results presented here are based on collocated sensors and
actuators. The issue with non-collocated sensors and actuators is
somewhat different since it is not clear which points should be
held fixed during the modal solution. This is an issue that still
needs to be resolved.
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ABSTRACT

Because of the possibility of adverse interaction between the control

system and the structural dynamics of large, flexible spacecraft, great
care must be exercised to ensure stability and system performance.
Because of the high cost of insertion of mass into low earth orbit, it is

prudent to optimize the roles of structure and control systems
simultaneously. Because of the difficulty and the computational burden in

modeling and analyzing the control/structure system dynamics, the total
problem is often split and treated iteratively. The awkwardness and
inaccuracy of this approach can lead to poor designs.

It would aid design if the control/structure system dynamics could be
represented in a single system of equations. Heretofore this has not been

possible. With the availability of the software PDEMOD it is now possible
to optimize structure and control systems simultaneously. The
distributed parameter modeling approach enables embedding the control

system dynamics into the same equations for the structural dynamics
model. By doing this the current difficulties involved in model order
reduction are avoided.

The NASA Mini-MAST truss is used as an example for studying integrated
control/structure design. Comparisons are made for (1) structure
without control, (2) controls only, and for optimal combinations of

structure and control. Both proof-mass and torque-wheel actuators are
considered. The results give insight with regard to the essential factors
in trading structure and control for space applications.

INTRODUCTION

Certain future space missions will be performed by large, flexible
spacecraft. Because of the high cost of insertion of mass into low earth
orbit, it is prudent to optimize the design of both the structure and
control systems. The current practice is to create a finite element model
of the structure and to use a reduced order modal model for control

synthesis. Unfortunately, this disjoint procedure is inaccurate and is an

impediment to integrated design. There is a need for a dynamics model



which includes both structural and control dynamics which is
parameterized in terms of the design variables.

Distributed parameter modeling has been shown to be quite accurate for
modelling (reference 1.) the dynamics of the first six modes of portal
frames. The root-mean-square error in frequency was about 7/10 of one
percent for the first six modes of two experimental configurations. The

difficulty in modeling complex structures has been an obstacle to the use
of distributed parameter modeling. The development of finite element

software has resulted in the wide-spread practice of modeling flexible
structures with finite element models. The availability of modeling
software such as DISTEL (reference 2.) and BUNVIS-RG (reference 3.)

offers the alternative of modeling complex configurations with distributed
parameter models.

Another advantage of distributed parameter modeling is that control and
sensor dynamics can be incorporated into the equations of motion of the
structural dynamics. Again, the burden of assembling the necessary

equations for complex configurations has become routine because of the
capabilities of the software PDEMOD (reference 4). It is now possible to
optimize structure and control systems simultaneously (references 5. and
6.) for complex spacecraft because of the incorporation of their dynamics

into a single system of equations. The distributed parameter modeling
embeds the control system dynamics into the same equations for the
structural dynamics model so that model order reduction is not
necessary. The resulting structures/controls model is particularly well
suited for integrated design.

In this paper only preliminary comparisons are made for the Mini-MAST
truss (references 7. and 8.) for (1) structure without control, (2) controls

only, and for optimal combinations of structure and control. Both proof-

mass and torque-wheel actuators are considered. The results give insight
into the essential factors in trading structure and control for space
applications. Subsequent, more in-depth study will consider the
transient dynamics aspects using PDEMOD and will use the optimization
techniques of Fogel and Holland (references 9. and 10.).

DISCUSSION

The software PDEMOD enables the generation of models of complex
structural configuration which include the dynamics of the control
system as well as the structural dynamics. This is done using partial
differential equations to describe the dynamics of flexible beam elements
which together with rigid body elements form a connected network of
components of the structure. The coefficients of the sinusoidal and

hyperbolic functions for each flexible element give the mode shapes. The
sensed motion and control forces and moment are expressed in terms of



the same parameters and the influence of control on the configuration is
represented by terms added to the equations for the structural dynamics.

Structural Dynamics

First, the structural configuration is viewed as an assembly of flexible and

rigid elements. It is then necessary to indicate the connectivity of the
elements. This is done by giving the identification of the rigid bodies at
either end of each flexible beam element and the related points of
attachment. The alignments of the flexible beam axes must also be given.
The axis for each rigid body is that of a particular, attached beam.

The next input needed is the stiffness (EIx, EIy, EAz, EIy) and mass (m/L,
Iy/L) characteristics and the length of each flexible beam element. The

mass and inertia of each rigid body is needed to complete the
information required for the structural dynamics model.

Control Dynamics

The addition of feedback control does not increase the order of the

system matrix unless the applied force or moment is applied to the
interior of a flexible beam element. In such a case it is necessary to add a
node or rigid body with negligible mass at that point. In other cases it is

only necessary to add terms to the matrix elements which already exist.
The dynamics of the sensors and actuators are inserted as transfer

functions multiplying the additional terms. The additional terms are
located in the rows which correspond to the body to which the control

force and/or moment is applied, and in the columns which correspond to
the beam elements which contain the location of the sensed motion.

Optimization

In order to perform optimization for parameter estimation or for criteria

involving structural dynamics, sensitivity functions are usually required.
The sensitivity functions relate the change in the criterion to changes in
the parameters involved in the optimization. Although it is possible to

express in closed form these derivatives it is most unwieldy to evaluate
the expressions. This is because derivatives must be taken of the

determinant of the system matrix which can be quite large. It is more
practical to approximate the derivative numerically by the ratio of the
change in the criterion to the change in the parameter. This was the

approach used in reference 8. for a parameter estimation application.
Changes in the modal frequencies for each of the model parameters was
generated numerically.



Although parameter estimation is an example of optimization, it is the
optimal, integrated control/structural design that we now turn our
attention. The selection of the design criterion and the corresponding
conditions or constraints are of paramount importance. An ill-posed
problem can easily result in nonsensical results which bear no relation to
the actual design problem. Perhaps the most suitable design criterion for
the integrated control/structure problem would be the life-cycle-cost of
the entire system, subject to a set of system performance and structural

specifications. In many cases it suffices to consider only the total
structure and control system mass.

There are alternatives to optimization schemes which require the

sensitivity functions mentioned earlier. Genetic algorithms (GA's), as

introduced by Holland (reference 10), are one form of directed random
search. The form of direction is based on Darwin's theory of the "survival
of the fittest". In GA's a finite number of candidate solutions or designs

are randomly (or heuristically) generated to create an initial population.

This initial population is then allowed to evolve over generations to
produce new, and hopefully better designs. The basic conjecture behind
GA's is that evolution is the best compromise between determinism and

pure chance. GA's have the capability to solve continuous, discrete, and
mixed optimization problems.

There are four main operations in a basic GA: evaluation, selection,
crossover, and mutation. Evaluation is the process of assigning a fitness
measure to each member of the current population. The fitness measure

is typically chosen to be related to the objective function which is to be
maximized. No gradient or auxiliary information is used. Therefore, GA's
are more likely to converge to a global maximum than a hill climbing

algorithm, although no algorithm can guarantee convergence to the global
maximum. Selection is the operation of choosing members of the

current population to be parents for producing the next generation.
Selection is weighted towards the more fit members of the population.
Therefore, designs which are better as viewed from the fitness function,
and therefore the objective function, are more likely to be chosen as

parents. Crossover is the process in which design information is
transferred to the prodigy from the parents. Mutation is a low probability

random operation which slightly perturbs the design represented by the
prodigy. The mutation operation is used to retain design information
over the entire domain of the design space during the evolutionary

process.

INTEGRATED DESIGN PROBLEM

The integrated control/structural design problem to be considered is to
minimize the total system mass while limiting the response to a
disturbance force at the tip of the Mini-MAST truss. This will be
accomplished by the selection of the stiffness of the truss elements, the



use of a proof mass actuator and a torque wheel actuator, both located at
the tip. The total system mass is increased when (1) the stiffness of truss
elements is increased, (2) the capacity of the proof mass actuator is
increased, and (3) the capacity of the torque wheel actuator is increased.

Prior to involving the software PDEMOD to calculate the dynamic
response of the actively controlled Mini-MAST to the disturbance force,
it is prudent to investigate the best mix of structural stiffness and the use
of active control in a more simple way.

The structural stiffness of a uniform Bemoulli beam is given by:

K = 3EI/L 3

Because the mass of the truss elements is proportional to their stiffness
the truss mass is:

Masstruss = Masstruss,o[EI/EIo][Lo/L] 3

Note that to keep the same resistance to a disturbance force applied at

the tip of the Mini-MAST the increased stiffness and corresponding mass
increases by the length to the third power.

Because the 66-foot Mini-MAST truss has 18 bays it is possible to alter
the stiffness of the truss elements as each bay to reduce the total mass
while achieving the same stiffness or resistance to a disturbance force at
the tip. The maximum saving that can be achieved appears to be about 17
percent.

A moving or proof mass actuator (PMA) can produce a force to oppose a
constant disturbance force but only for a relatively short period of time

which depends on the size of the proof mass and its stroke. Neglecting
the stationary mass the mass for the PMA can be shown to be:

MaSSpMA = .5*Force*Time 2/Stroke

Note that the mass of the proof mass actuator is proportional to the time

of application squared but does not depend on the truss length or
stiffness.

A rotating mass or torque wheel actuator (TWA) can produce a moment
which by reaction of the truss structure can oppose a constant

disturbance force but only for a relatively short period. The mass of the
TWA depends on the moment, maximum wheel speed and the time of
application. Neglecting the stationary mass the mass of the TWA can be
expressed as:

MaSSTWA = Moment*Time/(Wheel Speed*Radius 2)



A moment applied to the tip of the Mini-MAST produces a lateral
deflection which can be used to oppose a disturbance force. The moment

per deflection is given by:

Moment/Deflection = 2EI/L 2

The force per deflection is:

Force/Deflection = 3EI/L 3

The mass of the totque wheel actuator (TWA) capable of countering a

particular force for a specific time becomes:

MaSSTWA = .667*Force*Time*Length/(Max Wheel Speed*Radius 2)

Note that the mass of the torque wheel actuator is proportional to both

the time of application of the disturbance force and the length of the
Mini-MAST.

The problem now is to determine the combination of structural stiffness
and the sizes of the proof mass and torque wheel actuators which
minimizes the total mass.

MaSSTotal = Masstruss + MaSSpMA + MaSSTWA

The fundamental variables which determine the best mix is the time, T,

for which the disturbance force is applied and the length, L, of the Mini-

MAST truss. By examining different combinations of truss length, L and
the time, T, for which the disturbance force is applied the regions for
which the truss structure, the proof mass actuator, or the torque wheel

actuator is best in countering the disturbance force can be determined.
The result of such a study shows that the truss structure is best for large
values of the time for which the disturbance force is applied. The proof
mass actuator is best for long trusses. Under only limited conditions is
the torque wheel actuator best for countering disturbance forces.

CONCLUDING REMARKS

Distributed parameter models of structures have important advantages for
problems involving the active control of flexible structures. This is
especially true for repetitive lattice structures such as the Mini-MAST

truss because its dynamics can be accurately represented by only a few
parameters.

Until the advent of software for distributed parameter modeling of
complex flexible structures it was not practical to model complex

spacecraft configurations using distributed parameter models. Now the
software PDEMOD enables modeling complex configurations and can also



include the control system dynamics in the same equations. The need to
resort to model order reduction is eliminated because the closed loop
stability and system performance can be determined without ignoring any
of the modes.

This capability enables working integrated control/structures problems.
An example problem is examined in which structure and active controls
are used to counter the disturbance force at the tip of the NASA Mini-
MAST truss. The regions are determined in which structure, proof mass
actuators, and torque wheel actuators result in the minimum mass
system. Variations of this tradeoff between control and structure
considerations are being pursued.

The development of the PDEMOD software has been underway for about
one year. The formulation and coding has been completed for modelling
general three-dimensional configurations. Modal frequencies and mode
shapes have been generated for the Spacecraft Control Laboratory
Experiment (SCOLE) configuration and the Mini-MAST truss. Graphics
for drawing wireframes of the deflected configurations has been the most
recent addition. Transient response, transfer functions, Timoshenko
beam option and improved root-finding algorithms will be added during
the next year. Copies of the source code will be made available to anyone
interested in modelling new configurations or contributing to the
software development.
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INTRODUCTION

• Difficulties of Current Practice

• Advantages of Distributed Parameter Modeling

• Difficulties of Modeling Complex Structures

• Capabilities of PDEMOD Software

• Integrated Design Objective Functions

• Necessary Additions to PDEMOD

• Example Controls-Structures Design Problem

• Insights Offerred by Particular Tradeoffs

• Concluding Remarks
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Issues in Modeling Complex Structures

Finite Element Modeling

Excessive Complexity

• Parameter Estimation is Difficult

Model Order Reduction Required for

Control Analysis

Distributed Parameter Modeling

• Fewer Model Parameters

Parameter Estimation Straightforward

Closed-Loop Stability Analysis does not

Require Order Reduction
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I Beam Model )

y(L)

X(L%/z(L)

T(O)

The Moments and Forces at (0) in Beam Axes are

Mx = Elyu_(O)

My =- EI xUx'°'(O)

f

Mz = El_tqj(O)

Fx = EIyJy(O)

Fy = - ElxUx'_ O)

Fz = EAzu_(O)

MBeam = My FBeam = Fy

Mz Fz

]'he sign el the forces and moments at tile outboard

end el the beam are opposite to those el the inboard

end.
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Partial Differential Equations J

Bernoulli-Euler Equations will be used for bending

m u x + E |xUx = 0

•- M

muy+ElyUy : o

String Equations are used for elongation and

torsion.

.. ,_,

mu x + EAzU z : o

.. ,_,

plyu¥ + E l_J¥ : o

Examination of each equation will establish the

relationship between the "b" parameters and

frequency, m.

• - N

From (mu x + ElxU x : o ) we get-

It

4
mm2u x : b x ElxU x

follows that

m

(bxL =
mL4



I Forces and Moments

The forces and

Fbeam = PF

moments

A X

Bx

Cx

D x

Ay

By

Cy

Dy

A z

B Z

B

in body axes are-

M beam = PM

Ax

Bx

Cx

D x

Ay

By

Cy

Dy

A z

Bz

B
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Equations of Motion

Force Equations:

Moment Equations:

, TTI;'
Aj = Quj + _ E{TbeamiPM + RbeamiTbeamiPF )

body j body j body j

Constraint Equations:

T2u2(o)- R2T2u_(o) = T 1 utCO) - RITLU;(O)

___o_ -- T,,,,co)



Body 1

Body 2

Body 3

Constraint

System Equations
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Mode Shape Functions

U x = Axsin_z) + Bxcos(lJz) +

Cxsinh(_z) + Dxcosh_z)

U

:HX]

= Uvl

UZj

/Jr2 Coefricienlis- ....."-..

= QuO/L-f°_rm State Vector- y)

/f Trigonometric and "_\

L. Hyperbolic Functions/Y
'_- __ __.... of 60 ..... s-----

Similarly for u', Force, Moment, etc.



Control System I

Output feedback control systems can be nlodeled
directly using tile structural model.

Collocated Force Control

Fbodyj = Kuu i+KuU i

This controller would add

l.erlll:

AAi.i - lni[Ku-'- jmK u } Qui

Collocated Moment Control

f S

Mbody i = K_[ u t -,-K(/fl i

This controller would

[elnl:

add

AAi. j = /il[Ku / + jmKu/} Qua.

to the appropriate

to tile appropriate

tligher order compensation for controller can be
included as complex functions of w.

Uncollocated controllers would have tile same form

but would have different indices to reflect the
locations of sensors and actuators.
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I l)imensionality I

Because 1 2 modal parameters are invlolved lot each beam, A

like number of equations are involved in the eigen value

solution. The SCOI.E configuration is an example of such a simple

conl|guration. _ l)

12 24

_77

Tim Mini-MAST, a cantilevered beam with lumped masses at the

tip and bay l 0 will involve 24 equations.

A hexagonal shape with bodies at each point and at its center

will involve 144 equations.

Clearly, numerical dilficulties can be expected to limit the

complexity of a conliguration that can be handled.
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Sketches of the Three Spacecraft-Type Structures for which
Distributed Parameter Models are Constructed.
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Figure 14. Schematics of Distributed Parameter Models for Bending and
Torsion of the, Mini-MAST Truss.



,J = (_(o)TM-I_(o)

OJ
O0

-- 2_(o)_-_ _(o) + _(o)_- _(o) ^o = oao 2UO _-6

, - Parameter Estimation,

Control Synthesis,

Structural Design

306



Genetic algorithms (GA's) are one form of directed random search. In GA's, a

finite number of candidate solutions are randomly genereated to create an initial

population. This initial population is then allowed to evlove overt generations to

produce new, and hopefully better designs. The basic motivation behind the

development of GA's is that they are robust problem solvers for a wide class of

problems. The basic conjecture behind GA's is that evolution is the best compromise

between determinism and chance.

GENETIC OPTIMIZATION

o Darwins "Survival of the Fittest"

o Related to Simulated Annealing

o Requires Function Evaluations (no Gradient
Information required)

o Seeks to Maximize a "Fitness" Index - related to

objective function

o Works with Multiple Designs Simultaneously

o Identifies "Nearly Optimal" Alternatives

o Suitable for Parallel Processing



The genetic algorithm was used to determine the optimal continuum beam

characteristics of the two sections of the NASA LaRC Mini-Mast for bending in one

plane of motion. The objective of the design was to minimize the total structural mass

subject to constraints on the tip displacement. As would be expected, the optimizer

increases the stiffness of the lower section of the Mini-Mast while decreasing the

stiffness of the upper section.

DESIGN PROBLEM

o FEM Representation of Continuum Model of Mini-Mast
(PDEMOD soon to follow)

o Design Variables - EI(z) of Two Sections
(d*EI(z)nominal)

o Problem Statement - Minimize Total Mass Subject to
Dynamic Displacement Constraints

o Results

o Nominal - d(1) = d(2) = 1

Total Mass = 7.1208 slugs
Constraint Violation = 5.3%

o Optimized Design - d(1) = 1.2059 d(2) = 0.4647

Total Mass = 6.2412 slugs
Constraint Violation = None



The GA search was run for 40 generations with a population size of 20 members.

thus, the total nuber of function evaluations was 800. The convergence history of the

GA is shown below. At a given generation number, the maximum fitness value

represents the most fit member in the population whereas the average fitness is the

mean fitness of the entire population. It can be seen that the average fitness increases

with each new generation, which is a property of the particular GA used. It is also

seen that the maximum fitness (i.e. optimal solution) is obtained in an early

generation.

CONVERGENCE HISTORY
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GENERATION NUMBER

o Each Generation Represents 20 Function Evaluations

(corresponding to 20 Designs)

o Average "Fitness" of the Multiple Designs Increase

Quickly 3B9



Example Design Problem

Article: Mini-MAST Truss

Disturbance: F - Fma x

Specification: uti p < Uma x

Controls: Proof Mass Actuator

Torque Wheel Actuator

Objective: J = min{mtrus s + mproof

+ mtorque}
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MANEUVER SIMULATIONS OF FLEXIBLE SPACECRAFT BY SOLVING TPBVP

Feiyue Li and Peter M. Bainum

Department of Mechanical Engineering

Howard University, Washington D.C.

SUMMARY

The optimal control of large-angle rapid maneuvers and vibrations of a

Shuttle-mast-reflector system is considered. The nonlinear equations of motion are

formulated by using Lagrange's formula, with the mast modeled as a continuous beam.

The nonlinear terms in the equations come from the coupling between the angular

velocities, the modal coordinates, and the modal rates. Pontryagin's Maximum

Principle is applied to the slewing problem, to derive the necessary conditions for

the optimal controls, which are bounded by given saturation levels. The resulting

two-point boundary-value problem (TPBVP) is then solved by using the

quasilinearization algorithm and the method of particular solutions. In the

numerical simulations, the structural parameters and the control limits from the

Spacecraft Control Laboratory Experiments (SCOLE) are used.

In the two-dimensional (2-D) case, only the motion in the plane of an Earth

orbit or the single-axis slewing motion will be discussed. The effects of the

structural offset connection, the so-called axial shortening, and the gravitational

torque on the slewing of a flexible spacecraft in Earth orbit is considered. In the

case of three-dimensional (3-D) slewing, the mast is modeled as a continuous beam

subject to 3-D deformations. The numerical results for both the linearized system

and the nonlinear system are presented to compare the differences in their time

responses.

INTRODUCTION

Future space missions require large-angle rotational (attitude), 3-dimensional

maneuvering ("slew") of a large flexible spacecraft in target acquisition, target

tracking, and surveying multiple targets, etc. The whole spacecraft system may be

composed of multibodies, including the "rigid" parts involving large relative

movements and its flexible parts undergoing "small" deformations. The motions of the

system for these space activities are best described by nonlinear equations instead

of the "linearized" or linear equations. Many authors have considered the problem of

large-angle rapid maneuvers of flexible spacecraft (refs. 1-8). The direct

application of Pontryagin's maximum principle to this problem has been applied by

many authors (refs. 1-3, 6-8). Most of these researches are concentrated on the 2-D

slewing problem, except ref. 8, a recent result for the 3-D slewing of the SCOLE.

2-D Slewings

In ref. 6, the rapid slewing of the 2-D SCOLE has been considered. It is

* Research supported by NASA Grant NSG-1414.

394-



observed that (ref. 6) the time response history of the nonlinear system has a shift

from that of the linearized system; the reason for this is mainly due to the

structural offset (ref. 7).

The so called axial shortening effect of a beam induced by its transverse

displacement has been brought to attention by some authors (Refs. i-3, 9). Although

the shortening terms have been included in the equations (Refs. 1-3), their effect

on the slew lacked quantitative analysis; specifically, the numerical examples with

and without these terms were not provided. On the other hand, a numerical example in

Ref. 9 shows that large differences do result between models with and without the

shortening effect. But the numerical example is only for an uncontrolled dynamical

response case and the main body's motion is prescribed. In ref. 7, therefore, the

shortening terms are considered in the formulation of the equations of motion and

numerical examples both with and without these terms are presented to compare the

difference between them. Also in ref. 7, the gravitational torque terms are modeled

and included in the equations to show their effect on the slewing motion.

3-D Slewings

The direct solution of the open-loop TPBVP for 3-D slews of flexible spacecraft

resulted in numerical problems with rank-deficient matrices as stated in ref. 5.

However, a different numerical method may be used to overcome this difficulty. In

ref. 8, the problem has been solved successfully by using the quasilinearization

algorithm and the method of particular solutions for 3-D slews of the asymmetrical

flexible SCOLE configuration.

The open-loop slewing approach has several obvious distinct properties. First,

the control law is easy to implement in practice for both ground tests and space

flight tests. Second, the open-loop solution may serve as a good reference for the

feedback control law design, as proposed in refs. 4-5, in which the open-loop

solution for a rigid (instead of a flexible) spacecraft is used as the nominal

reference trajectory. As an extension to refs. 4-5, it may be helpful if the

open-loop solution for the 3-D slew of a flexible spacecraft system could also be

used as a nominal reference solution. In addition, through the present study, we can

also see how different are the responses of the nonlinear system from those of the

linearized system.

In the present report, we will summarize most of the results obtained in refs.

7-8. At the same time, the detailed numerical techniques (briefly mentioned in refs.

7-8) for solving the nonlinear TPBVP will be discussed. Numerical examples are

presented to illustrate the use of the techniques and the numerical problems

associated with the calculations will be discussed.

EQUATIONS OF THE SYSTEMS

System Configurations

The 2-D and 3-D models of the orbiting SCOLE are shown in figures 1 and 2 ,

respectively. The Shuttle and the reflector are assumed to be rigid bodies. One end

of the flexlble mast is fixed to the Shuttle at its mass center, Os, while the other

end is firmly connected to the reflector at an offset point, a (x in the 2-D
r r



case). Three Euler angles (Ol, 02, 03) (O in the 2-D case) or four quaternions are

used to describe the attitude of the Shuttle with respect to an orbital reference

system.

The 3-D deformation of the mast consists of two bending deflections U(z,t) and

V(z,t) in the x-z and y-z planes, respectively, and torsion _(z,t) about the z axis.

It is assumed that these deformations are small as compared with the length of the

mast and can be expressed by the following modal superposition formulas (ref. i0):

U(z,t)=_ i (z)a i (t), F(z,t)=]_q i (z)_ i (t), qb(z, t)=_ i (z)a i (t), (i)

where _i' _i" and _i are modal shape function vector components normalized by a

common factor, and _. is a scaled modal amplitude associated with the ith mode. In
l

the 2-D case, only the first equation is used.

The free vibration of this structure can be considered as a space free-free

beam vibration problem with boundary conditions including the masses and moments of

inertia of the Shuttle and the reflector. The partial differential equation

formulation for this problem (refs. 10-11) can be solved by using the separation of

variables method. Note that the natural frequencies and modal functions of the 2-D

structure are different from those of the 3-D structure.

2-D Dynamical Equations

After developing the kinetic energy and potential energy, we can obtain the

dynamical equations of the 2-D structure in the following matrix form (ref. 7):

I+2_Tma +(*TMz_ (mz+M4a)T
............................. ,.....................

m +Me M
2 4 3

&
(2)

where _ is the nxl modal amplitude vector, n is the number of flexible modes;

M.(i=2,3,4,5) and M are constant nxn matrices; m and m are nxl constant vectors; K
z a a 2

is the nxn constant diagonal stiffness matrix; V is the gravitational energy of the
g

system which is a function of the orbital rate, e0' rotation angle, e, and the

deformation amplitude, =(t); and QO' Qa are the generalized forces produced by the

controls associated with O and _, respectively.

In equation (2), the elements of the vector, m , and the matrices, M , M , and
a m 4

M have a common factor x , the offset. In another words, x =0 results in m =0, etc.
5 r r a

The effect of this structural offset on the slewing is analyzed by changing the

value of x (from 0 to 32.5 ft). Of course, different x imply different natural
r r

frequencies and modes. The frequencies decrease as the offset distance increase.

The axial shortening of the beam due to the geometric deformation is also

considered by adding a shortening term



1 z "o_-_ 2

dz
into the formulation. Apparently, Az is a second order term in the modal amplitude,

_. The shortening term is involved in the matrices M2, M s in equation (2).

If we distinguish the terms on the right side of equation (2) according to
their order in a and a, we can see that m and M are involved in the lower order

a a

terms, while M and M contribute to the higher order term. Therefore, for moderate
2 5

nonzero values of x and small-deformation slews, the influence of the structural
r

offset can be greater than the shortening effect. The linearized equations can be

obtained by neglecting all nonlinear terms,

: T

I _ m 2

m2 i M3

,,

o{

0

LIN

(3)

where "LIN" refers to constant and linear terms. Note that on the right side of

equation (3), both the structural offset and the shortening terms disappear. This

means that by using the linearized equations of motion, we may lose some important

information such as the terms associated with the structural offset about the

original system.

3-D System Equations

The dynamic equations for the 3-D system can be obtained, by using the

Lagrangian method, in the following state form (ref. 8):

where a is the nxl modal amplitude vector, _=_ is the modal rate vector, (0 is the

3xl angular velocity vector of the Shuttle, _ is a 6xl vector defined by

and u is the 9xl control vector:

• T

2 (02 J(02 3 _2(03 (03(01 (01_)2

If f if f if f if f ]*.U= fly lz" 2x 2y" 3x 3y" 4x 4y

A3+n)x 6 , D(3+5)x, and E(3+n)xg, are constant matrices. Also, (_)(3+,)xs'

(C_)(3+n)x 3 , (Fa)(3+n)x9, are defined as

_=[Bj ! B2= !'"i S6=], %:[C_P i cz_i %#], _:[Fj i F2_ i'"i F9_]

(4)
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where B, C.,
I I

F are all (3+n)xn constant matrices.
i

Note that in the development of equations (4), a constant inertia (mass) matrix

has been assumed for convenience. Meanwhile, all the second and higher order terms

of the flexible variables (_ and _) are abandoned in the final equations. But all

nonlinear terms (_) representing the rigid body motion are retained.

Clearly, the dynamic equations for the rigidized spacecraft can be obtained by

deleting all terms related with _ and _, that is,

: X _ + _ u (5)

where A and E are 3x6 and 3x9 constant matrices, respectively.

A linearized form of Equation (4) can also be obtained by deleting all

nonlinear terms,

: Da + Eu (6)

By using the quaternion vector q=[qo ql q2 qs IT' the kinematic equations can be

expressed as

= -- 0 q, where _ =

0 -to -%) -to
1 2 3

(a 0 co --0
1 3 2

--to 0 o
2 3 1

o o --x0 0
3 2 1

(_)

OPTIMAL CONTROL-NECESSARY CONDITIONS

For the 3-D slewing problem, we use the following quadratic cost functional,

J-12_tf(_TQla +%)TQ20 +_TQ3_ +uTRu)dt
0

(a)

where Qi' and R are weighting matrices, tf

of the controls, u, are bounded,

is the given slewing time. The magnitudes

luil< Uib, i=l, ... , 9. (9)

The Hamiltonian of the system is,

H=_(TQI__ .+OTQ2 0 +_TQ3 _ +uTRu +pV_q)+_fV_+%V[ (A +Bo_)_ +(C_ >_ +I)c_ +(E +_)u ]

, X2] Twhere p 7, and X=[% 1 are the costate vectors associated with q, _, _, and _,

respectively. By using the Maximum Principle, the necessary conditions for the

unrestricted optimal control problem are the dynamical equations (4, 7) plus the

following differential equations for the costates,
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b-a_-_p•
aq 2-

XI--a___H_= _Q2o__[ q]p _[XT(A+_)]o -(C_)TX

(lOa,b)

(lOt,d)

and the optimal control,

aH
=0, ==> u=-R-1(E+F )rx (11)

au ot

The control law (II) is then modified by consideration of the saturations (9):

I - } otherwise, L )

Uib • if U icg-uib

=u =-[R-I(E+ vX] i
Ui if U Z U ' Ui i c

Uib" ic ib i=l, . .., 9.

(12)

The same type of cost functional has been used for the 2-D slew problem. Therefore,

the associated necessary conditions are similar to equations (I0) and (12).

Two-Point Boundary-Value Problem (TPBVP)

One way of obtaining the optimal control law is to transform the above

necessary conditions into the following TPBVP. Let x represent the state vector, and

X represent the costate vector. After substituting the control expressions (12) into

equations (4) and (10b), one can obtain two sets of ordinary differential equations

for the states and the costates,

x:f (x, X)i?+2n)xl (13a)

X=f2(x, X)(V÷2n)x I (13b)

with the following boundary conditions,

x(O) and x(t r) prescribed, X(O) and X(tf) unknown.
(14)

Due to the known boundary conditions being specified at the two ends of the slewing

time, this problem is usually called the two-point boundary-value problem. This kind

of split boundary conditions usually result from the large-angle maneuver

requirements, in which the initial (t=0) and final (t=tf) states of the system are

specified. By solving this problem, we can obtain the optimal control (based on the

necessary conditions). The often used solution strategy is to change the boundary

value problem to the initial value problem, i.e., find X(0), the missing initial

costates. Once X(O) is obtained, one can solve the equations (13) as an initial

value problem by using any numerical integration method. However, owing to the

nonlinearity of the equations, there is generally no analytical solution to this

problem or simple numerical method to obtain the solution except for some very

simple cases such as the linear time-invariant case. The numerical iteration method

is the general approach to the this problem.

To start an iteration process, one usually needs an initial guess of X(°)(O).

Then• equations (13) or their equivalent form (the linearized version of (13)) are



solved and a x(°)(tf) is obtained. Based on the difference Ax(tt)=x (0} (tf )-x(tf)

the correction to k(0), AX(0), is obtained. This gives us a new initial value of
{1) .....

k(O), k (0). Hence, the next iteratlon beglns. The iteratlon process can be

terminated when Ix(k+1}(O)-X(k)(O)l is le_s. than a given error limit. One can see

immediately that if the beginning guess x'u)(0) is close to the true value

(converged value) of k(O), the solution will converge and less iterations are

needed. However, a "good" guess of _(0) is often difficult to obtain for the general

nonlinear problem.

Therefore, the effort for solving the TPBVP is two fold. The first is try to

establish a good iteration (correction) method with a wide convergence interval so

that it can guarantee convergence even for a "poor" initial guess. The other is try

to find a "good" initial guess based on the characteristics of the practical problem

and using some simplified mathematical models. In this report, we use the

quasilinearization method. We also use the solution of %(0) from the simplified

linear, time-invariant model of the system as the initial guess for starting the

iteration process.

Linear and Time-Invariant TPBVP

For linear, time-invariant versions of equations (13) (refs. 1-3),

z=Az, where zT=[x T , X x ]

its transition matrix (constant exponential matrix),

e =

A21 A2 2

can be used to obtain the initial costates (closed form solution):

_(O)=AI:[x(tf)-AIIx(O)]

(15)

(16)

Nonlinear TPBVP

The continuation (relaxation) process (to increase the participation of the

nonlinearity in the solution) and the differential correction (for determination of

the initial costate variables) have been used in references 1-3 for the 2-D slewing

problem. However, as stated in ref. 5, the extension of these techniques to the 3-D

slewing problem has encountered a numerical problem: rank deficiency.

In references 6-8, the quasilinearization method has been successfully used.

In this method, one needs to linearize the differential equations (13),

z=g(z), where zT=[x r, _r], gT=[f1,7 f:] (17)

about an approximate solution of this equation in the following form (a series of

linearized, time-variant, nonhomogeneous equations):

• {k+l) (k÷l) k)
z =(ag/az)z + h(z c ) (18)

 rO0



where z(k} is the kth solution of the same linearized equation. It is also the kth

approximate solution of the original nonlinear equations (17). Here, the boundary

conditions, (14), are naturally adopted as the boundary conditions of the linearized

equations, (18). The control expressions, (11), also need to be linearized (ref•

12):

(k÷l)=uCk) R-I[F(_:x)]¥_(k)-R'I[E+F(a(k})]'aX (19)u

where _X=(x(k+I)--(X(k} and _X--_(kvl}-_ {k) By assuming that

uCk)=_R-I[R+_((x(k) )]T) (k) (20)

for the unbounded control case, equation (19) can be rewritten as,

(k÷l) 1 ]Tx_k) 1 ]vX(k+l)u =-R- [_(_a) -R" L_+_(=_)) (21)

However, in the bounded control case, equations (12) are considered, that is,

f -u or u

(k) ib tb

Ui _{R_ l[E+_(a(k) ) ]TX(k) ) l

(22)

Accordingly, at the (k+l)st step, u {k+l) can be determined by

(k+l}
U
i

'-Uib or 5b" if l{R'1[E+_(a(k))]VX(k)}lJZ Uib
-(R'I[F(_CZ)]Tx(k)-R-I[E+p(a(k))]Tx(k÷I))I

(23)

So far, an iteration process is formed. In each iteration, only a linear TPBVP is

solved. It is this property that gives this approach the name quasilinearization
method.

The linear TPBVP can be solved by many ready-made methods. One of the

frequently used algorithms is the method of particular solutions (ref. 13). Let m

represent the number of the states (also the costates). Equations (18) can also be

rewritten in the following form,

x(t)=G(t)x(t)+H(t)_(t), i(t)=I(t)x(t)+J(t)X(t) (24a,b)

From the theorem of the linear system, any solution equation (24a) can be expressed

as the linear combination of its m+l particular solutions, i.e.,

m+l m+l

x(t)= E c xi(t), as long as E c =I (25)
is1 i itl i

where c are constants and xi(t) are the ith particular solution vectors. The method
i

begins by integrating equations (24a, b) forward m+l times, with the initial

conditions,



" x(O)
1
0

I 0 zZ(O)=z (o)= : , zm(0)=

' ,<<oO>1 ' :<o>1°11 I o
0 :

I .... , ', and z'÷l(O) =

I 0
o J 1

"i
xO

I

oJ
This gives us m+l particular solutions, x1(t), x2(t), ..., xm+1(t). Substituting

these solutions into equations (25), and setting t=t , we have
f

m÷1 m÷l

Z CtXi(tf)=x(t f) Z C =Iiffil ' i=l i
(26)

This is a set of m+l algebra equations for m+l unknown constants, c . By assuming
i

the existence of inverse of the coefficient matrix, we can obtain the solution,

c=[c I c2 -.- cm]T and Cm+l. By doing the following manipulation,

m+l

z(O):i_ 1 cizi(O)=

m+l

Z c xi(0)
i©1 i

C
1

C
.2

C

ill

x(O)

i c I

=i c
2

L cm

one immediately realizes that c=%(0), the missing initial costates.

NUMERICAL RESULTS

2-D Slews

The parameters of the orbiting SCOLE (refs. 10-11) are used. The orbital

angular rate is chosen as e =0.OO1 (rad/s) (orbital altitude h_ 981 km). The first
O

three natural frequencies used here are:

0.3365257, 2.062547, 5.316669 (hz), for x =0;
r

0.3199540, 1.287843, 4.800169 (hz), for x =32.5 (ft) (same as ref. I0)
r

All simulations are 90 degree rest-to-rest slews and can be represented by:

Case 1

Case

Case 3

Case 4

Xr:O, u=u 1, R=IE-6, tr=27.6 (s)

x =0, u=[u I u u u iT, R=DIAG(1E_6, .15, .21, IE-4) t =8.196 (s)
r 2_ 3 4 ' f

x =32.5 (ft), u=u , R=IE-6, t =27.6 (s)
r 1 f

x :32.5 (ft) u=[u I u u u4]Z R=DIAG(IE-6, .15 .21, IE-4), t =8.196 (s)r ' 2 3 ' ' f



Figs. 3a-g display the time histories of O(t), u(L,t), _(L,t), u(t) for Case 4.

Clearly, the response of 8(t) for both linear and nonlinear systems are very close.

However, there exist some differences between the two systems in u(L,t), #(L,t) and

the controls, u. The difference is primarily due to the offset x (here, x =32.5
r r

ft). When x =0, this difference can be reduced markedly, regardless of whether the
r

shortening effect and gravitation are considered. It is also interesting to know

that the controls have large differences only around the mid-slew-time.

Table 1 lists the maximum (minimum) values for the displacement, u(L,t), and

angle, _(L,t), of the beam during the associated slews for all cases. The first line

in each case lists the results for the linearized system, while all remaining lines

represent those for the nonlinear system with different considerations. For example,

AL=0 means the shortening effect is not considered. The last column gives the

largest relative displacement error, with respect to the linear results, based on

(eD ,. p )*=Max (' MAX*-MAXL i, I/' MAXL i N ],' MIN,-MINL i, '/' MINL ,, ']

Nonlinear System vs. Linearized S.ystem First, let us examine line I and line 2 in

each case. In Case I, since no offset, the differences between the two lines are

very small. In Case 2, where more controllers are used and the slewing time is

shortened, the differences increase symmetrically (IMAXI=IMIN[), in spite of x =0.
F

Case 3 uses the same slewing conditions as used in Case i, except x =32.5 ft. This
F

offset shifts the envelop of the response downward and results in a larger relative

displacement error than that in Case 2. ease 4 is the combination of Cases 2 and 3.

The shift now is upward which is due to the inclusion of more controllers. When more

controllers are used (Ref. 3), the phase of the response reverses, so do the maximum

(minimum) amplitudes.

Shortening Effect By comparing line 2 and line 3 in each case, we can see that the

shortening terms (I) reduce the amplitude (Cases 2 and 3); (2) increase the

amplitude (Case 4); and shift the response upward (Cases 3 and 4). These

observations coincide with the fact that Az only results in a second order effect as

compared with the offset effect.

Gravitational Effect By observing lines 3 and 4, we can conclude that the addition

of the gravitational torques into the equations of motion has a very small effect on

the slew, although they shift the response downward. This is because the orbital

rate is much smaller than the slewing rate and the magnitude of the gravitational

torque term is much smaller than that of the active control torque term.

3-D Slews

The location of the mass center of the reflector is x =18.75 ft, and y =32.5
r F

ft. The first five natural frequencies are (hz): .2740493, .3229025, .7487723,

1.244013, 2.051804.

The numerical tests based on the previously described method have been

performed for the roll-axis slews, pitch-axis slews, as well as arbitrary-axis

slews. All these tests are rest-to-rest slews and the iteration process is

terminated after the initial costates are reached within five digit accuracy.

The following procedure is designed to obtain the solution of the nonlinear



TPBVP (figure 4). First, the linear TPBVP based on equation (6) is solved and a

nominal trajectory is produced, in which the control is unbounded and the initial

costates are calculated by using the transition matrix method. Then, a converged

solution for the linear TPBVP with bounded controls is obtained by iterations

starting from the previously obtained trajectory. Note that the Euler angles are

used in all the above computations.

Next, to obtain the starting solution for the nonlinear TPBVP, the 3 Euler

angles and the 3 associated costates are transformed to the 4 quaternions and their

4 costates (from t=O to t=tf). Reference 14 provides us the following relationship

between the quaternions, q(t) and their costates, p(t):

Po

Pl

P2

P3

d -d -d -d
0 I 2 3

d d -d d
I O 3 2

d d d -d
2 3 O I

d -d d d
3 2 ] 0

qo

ql

q2

q3

(27)

where d
i

Then,

are constants. For the case q(0)=[1 0 0 0] v we can choose Po(0)=0, d0=0

[Pl(O) PZ(O) P3(O)]=[dl d 2 d3]=dT (28)

The vector d can be determined by

d = 2 [initial Euler angle costate vector] (29)

This result can be proved if one compares the related state and costate equations

for both linear and nonlinear TPBVPs (for the case e(O)=0). After finding the q(t)

by using a nonsingular transformation between q(t) and the Euler angles, el(t),

e2(t) , and 83(t), one can use equations (27-29) to obtain p(t).

Finally, the nonlinear TPBVP is solved through the quasilinearization process and

the method of particular solutions.

Case 3: Fig. 5 shows the results for a simultaneous three-axis slew (01=60,

e2=30 , e3=45 deg). The weightings for the states are QI=Q2=Q3=O. In this case, The

(flx fly ) and the reflector forces (f4x and f ) areShuttle torques , , and flz ' 4y

used• The associated weighting for the control is R=DIAG(IE-4, IE-4, IE-4, 0.6,

1.4-3). The slewing time, t , is 40 sec. The solid lines in the figures 5a-h
f

responses of the rigidized system, equation (5), while the dotted lines represent

the slew results for the flexible spacecraft.

CONCLUSION

Generally, for the 2-D case, the linearized system can predict the system

dynamics very well in the slow slewing case. However, in the rapid large-angle

slewing problem, the responses of the system deviate noticeably from those described



by the linearized equations if the effects of structural offset and axial shortening
are included in the simulations. Thestructural offset (if any) results in a first
order nonlinear effect. The shortening effect results in only a secondorder nonlinear
effect and maynot be considered, in the controlled simulations, unless the
deformation is out of the linear range. The gravitational effect can be safely
neglected in the slew motions considered here.

The application of Pontryagin's MaximumPrinciple to the large angle slewing
maneuverproblemhas been extended to the slewing of a 3-D flexible spacecraft
(SCOLE).A numerical simulation procedurebased on the quasilinearization algorithm
for solving the resulting nonlinear TPBVPhas beenestablished and tested
successfully for several examples.Thegeneral nonlinear dynamical equations
developedhere contain all quadratic terms _n the angular veloclty componentsof the
main body and their coupling with the first order modal amplitudes and modal rates.

It is suggested that higher order terms be included if a further analysis is

conducted. The numerical results show an important fact that the linearized system

can represent the nonlinear system adequately for predicting the major motions but

not as well for the secondary motions. For further research, it is recommended that

the applicability of this method to more complicated systems be established.
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SOLUTION PROCEDURE
FOR NONLINEAR TPBVP

Linear TPBVP

Euler Angles
Unbounded Control

Linear TPBVP

Euler Angles
Bounded Control

Transformation:

Euler Angles --) Quaternions
(using relation between them)

Euler Angle Costates --) Quaternion Costates
(using relation between

quaternions and their costates)

T

r 1
i Nonlinear TPBVP

Fig. 4. Solution Procedure for Nonlinear TPBVP
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CONTROL EFFORT ASSOCIATED WITH MODEL REFERENCE ADAPTIVE CONTROL

FOR VIBRATION DAMPING

Richard Scott Messer and Raphael T. Haftka

Department Of Aerospace and Ocean Engineering

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24060

SUMMARY

The performance of Model Reference Adaptive Control (MRAC) is

studied in numerical simulations with the objective of understanding

the effects of differences between the plant and the reference model.

MRAC is applied to two structural systems with adjustable error

between the reference model and the actual plant. Performance indices

relating to control effort and response characteristics are monitored

in order to determine what effects small errors have on the control

effort and performance of the two systems. It is shown that

reasonable amounts of error in the reference model can cause dramatic

increases in both the control effort and response magnitude (as

measured by energy integrals) of the plant

INTRODUCTION

During the past decade, researchers have shown much interest in

control and identification of large flexible structures, with emphasis

on Large Space Structure (LSS). Furthermore, our inability to model

these large structural systems accurately has generated extensive

research into adaptive controllers capable of maintaining stability in

the face of large structural uncertainties as well as changing

structural characteristics. However, most of this research has been

strictly theoretical in nature (e.g., refs. i-i0) and experimental

verification (e.g., refs. 11,12) of the proposed theories is lagging

far behind. In addition, the focus of most theoretical research has

been on designing stable adaptive controllers with little or no

concern for the issue of control effort.

While it is possible to design an adaptive controller that will

stabilize a structure even if we have a very poor model, the control

effort may be very high. The objective of the present paper is to

study the correlation between the control effort and the fidelity of

the structural model. Specifically, the first step is to demonstrate

that the effort associated with an adaptive control system is

sensitive to knowledge of the structure. For this purpose the popular

Model Reference Adaptive Control (MRAC) method was selected and two

examples were studied in detail. In this paper, we monitor four

performance indices: Maximum Control Force, Quadratic Control Effort,



Kinetic Energy, and Potential Energy. These performance indices
allow us to evaluate the effects of errors in the theoretical model.
Numerical simulations were used to see how each performance index
changed when errors were introduced into the system. Section II
summarizes the MRACalgorithm, section III shows how a simply
supported beam can be sensitive to the choice of Reference Models,
section IV presents the sensitivity of a more complicated structure
and section V provides concluding remarks.

MODEL REFERENCE ADAPTIVE CONTROL

Adaptive controllers generally fall into two classifications,
direct and indirect. The basic difference between the two

classifications is system identification. Indirect adaptive methods

(e.g., refs. 9-10, 13-14) require system identification before the

adaptive gains in the controller can be updated, whereas direct

methods (refs. 1-8, 11-12) do not use system identification. MRAC is

one of the more popular direct methods (refs. 1-7). MRAC methods

adaptively tune the controller gains, forcing the actual system to

follow some ideal reference model. Because this reference model can

be of lower order than a typical model of the actual system, this

method is very attractive for applications to LSS, where structural

models can be of very high order and require truncation for use with

any controller. Figure 1 shows a block diagram of a generalized MRAC

system (ref. 6).

PROBLEM FORMULATION

The LSS, or controlled plant can be represented in standard state

space form:

Xp(t) - ApXp(t) + BpUp(t) (la)

Yp(t) - CpXp(t) (ib)

Np M M
where Xp E R , U E R, Y _ R and A, B, C are of appropriateP. P P P . P
dimensions. It is assumed that (A , B ) is controllable, (A , C ) is

P . P , P
observable, and that the number of inputs (M) is equal to the number

of outputs.

A stable reference model which specifies the desired performance

of the plant is also described by a state space representation,

42o



Xm(t) - AmXm(t) + BmUm(t) (2a)

Ym " CmXm(t) (2b)

where X e R Nm, Us £ RM, Ym E RM and Am, Bin, Cs are of appropriate
, .m

dlmenslons. For practical application to LSS the following condition
must be true

Np >> N s (3)

To aid in measuring how close the actual plant is to the reference

model, the output error between the plant and the reference model is
defined as

ey(t) - Ym(t) - Yp(t) (4)

Since the output error tells us how close the actual plant is to the

desired performance of the reference model, the objective of any

adaptive update scheme is to design a control input which forces the

output error to zero asymptotically.

ADAPTIVE LAW

The adaptive mechanism used in this paper is based on the work of

Sobel, Kaufman and Mabius (ref. i) and has no provisions for the

destabilizing effects of noise. However, it has found important

application to LSS. The control input is written as,

Up(t) - K(t) r(t) (5)

where

T T T] (6a)r T - ey, Xm,U m

K(t) - [Ke(t),Kx(t), Ko(t)] (6b)

The adaptive gain K(t) is calculated as the sum of a proportional

component Kpr(t ) and an integral component K,(t) so that

K(t) - Kpr(t ) + Ki(t ) (7)

The adaptive laws for Kpr(t ) and Ki(t ) are given as

Kpr(t) . eyrtT • (8)
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I<I (t) : eyrTT (9)

where T* and T are time invariant weighting matrices of appropriate

dimension chosen by the designer. Sufficient conditions for global

stability are presented in (ref 1-3, 11-12) and will only be

summarized here.

I. T & T* > 0

2. there exist P = pT > 0 and Q = QT > 0 such that

PBp - C Tp

Tp
PAp + Ap - -Q

Condition 1 is met simply by choosing appropriate matrices (i.e., the

identity matrix). Condition 2 is equivalent to the assumption that

the open-loop plant transfer function matrix

Z(s) = Cp(SI - Ap)-IBp i0)

is strictly positive real. This condition is met for any LSS havlng

small but non-zero inherent damping and colocated sensors and

actuators.

CONTROL EFFORT

In order to assess the added implementation costs of MRAC in

systems where reasonable amounts of error would occur, we have adopted

the following procedure. The first step is to choose a linear system

to represent the actual physical system. Next, we create a reference

model which specifies the desired performance and has some measurable

amount of error. Previous examples, see (ref. 2), have chosen the

reference model to be a reduced model of the actual plant with the

same frequencies and mode shapes plus extra damping. While this would

be the ideal situation, it is not probable that we would have an exact

theoretical model. For this reason we have intentionally introduced

errors between our reference models and the actual plant model. To

aid in quantifying the increased effort due to the errors, we

calculate the following performance indices:

the maximum control force required by each actuator,



uimax= Max( I Ui (t) I ) 0 .....<t < tfinat, i = i, ,M
(ll)

the quadratic control effort,

Utota [ = fUTUdt
(12)

the integral of the potential energy of the system,

PE = 1 [XTKXdt
_J

(13)

and the integral of the kinetic energy

1 [XTMXdt
KE - _j

(14)

where the first two performance indices measure the control effort and

the second two provide information about system response

characteristics. These performance indices allow us to see how

increments of error affect the cost and performance of the system.

SIMPLY SUPPORTED BEAM EXAMPLE

The first example is a simply supported beam with a variable

concentrated mass at the mid-span and a velocity sensor and force

actuator colocated at one-sixth span (see figure 2). This simple

structure is similar to a structure used by Bar-Kana, Kaufman & Balas

(ref. 2) for demonstrating the MRAC method. The only difference

between the present structure and the structure of reference 2 is the

variable concentrated mass. The variable concentrated mass at the

mid-span was used to create error in the system due to unknown mass

characteristics. The concentrated mass was varied between 0-20% of

the mass of the beam, with zero mass corresponding to an exact

reference model. It should be noted that the reference model was

held constant while the plant model was varied to match changes in the

concentrated mass.

The beam was modeled with 12 beam finite elements with a

displacement and rotational Degree of Freedom (DOF) at each nodal

point. The coupled equations of motion are written in standard form

as

Mq + Cq + Kq = F (15)

where M and K are the mass and stiffness matrices respectively, and C

is the damping matrix calculated from assumed inherent damping ratios

_. Using modal analysis the equations are transformed from a set of

coupled equations in physical coordinates to a set of

423



coupled equations in physical coordinates to a set of uncoupled

equations in modal coordinates

where

+ 2_)X + AX - B°F

A- diag[_,4,..._2]

(16)

the _i's are the undamped natural frequencies

(_n " diag[_1_,_2_,''',{12_2]

B° " [_5,1,_5,2, "- • ,#5,12]T

and the _5,i's are the fifth element of each eigenvector (the sensor
and actua£or are at the 5 th DOF) normalized so

_TM_ - I

Equation 16 is rewritten in state space form as

ixp112   1[xpl[Bo1Xp " I 0 J[XpJ + 0pUp

(17a)

where the subscript p denotes the equations apply to the plant. The

reference model takes the same form,

[XmIxm " [-2_I(_m -_][Xm]o][Xm] + [Bo_]Urn (18a)

where the subscript m applies to the reference model.

For the purpose of numerical simulations we must reduce the size

of the actual plant. In this example (as in ref. 2) we consider only



the first three modes of the actual plant and choose a reference model
that includes only 2 modes. Damping ratios in the plant are assumed
to be 0.01 while the desired damping ratios of the reference model are
set at 0.05. All other parameters (length, EI, etc.) are set to 1.0
for convenience in calculations. In the present study we consider
only initial condition responses. The first three modal states were
initially set to 1.0, while all others were set to zero. From figures
3-4 it can be seen that the controller does an excellent job of
forcing the actual plant to follow the reference model. However, from
Table 1 it can be seen that the addition of the concentrated mass,
i.e. errors between the actual plant and the reference model, can
produce very large increases in the maximum control force and control
effort needed for the controller to function. For example, a
concentrated mass weighing 20% of the beam weight causes a factor of
six increase in the quadratic control effort. This large increase in
control effort demonstrates a need to find a method for choosing a
good reference model.

SLEWING GRID EXAMPLE

The Virginia Tech slewing grid laboratory structure shown in

figure 5 is a more complex example. The slewing grid was designed to

have characteristics of LSS, namely closely spaced modes, low

vibration frequencies, and low inherent damping. Three pairs of

velocity sensors and force actuators are colocated at joints 3,4 &5.

The slewing grid was designed to include a zero frequency rigid body

rotation mode about the shaft, but this has never been realized

because of bearing friction and slight misalignments of the rotational

shaft. Although the geometry of the structure is symmetric about a

horizontal line through joint 3, the vibration mode shapes are not

similarly symmetric because the structure's weight causes asymmetric

member gravity loading and therefore asymmetric stiffness

distribution. It was considered desirable in the design phase to have

at least one beam member in substantial compression relative to its
buckling load, both to reduce the overall structural stiffness and to

permit the possibility of nonlinear response. The lower horizontal

member carries the largest compressive load, being compressed to about

70% of its Euler (pin-ended) buckling load. Great effort has been

taken to accurately predict the loads in each member of the structure.

However, each joint is held in place with a nut and bolt assembly and

the process of tightening these bolts induces forces which we have

been unable to determine accurately. Therefore our current Finite

Element Model (FEM) only takes gravity forces into account. The

rotational shaft was modeled by 8 beam finite elements with a
displacement and rotation DOF at each node. Each of the 5 members of

the structure is modeled with 4 finite elements which include a

transverse displacement, an in-plane rotation, and an out of plane

rotation at each node. The complete FEM has 72 DOF and the coupled

equations of motions can be written



MX + CX + (K + G)X - F (19)

where G is the geometric stiffness matrix. To make the problem more

manageable we created a reduced eleventh order model using the Guyan

Reduction (ref. 15). The linear equations for the slewing grid can

be written (in physical coordinates)

[::If :oI (2Oa)

where

(20b)

}_p = Kp + Gp (21)

Mp, Cp, Kp, and. Gp are the. reduced mass, damping, stiffness and
geometric stlffness matrlces, and B is (22 X 3) matrix with only 3

non-zero elements for mapping the c_ntrol inputs to the proper DOF at

joints 3,4,5.

The accuracy of the frequencies and modes predicted by the FEM is

not good. During the past two years, great pains have been taken to

find a FEM which would accurately model the structure. However all

the non-linearities in the structure, such as friction in the bearing,

large gravity loading in the lower horizontal member, and the loads

induced by tightening the bolts at each joint of the structure, have

resulted in a modeling nightmare. Table 2 compares frequencies

predicted by our best FEM to the experimental vibration frequencies,

and figures 6-9 compare several experimental and theoretical mode

shapes. The difficulty in accurately modeling this structure was the

driving force behind the decision to apply adaptive control to the

slewing grid. The challenges of modeling the slewing grid may be

similar to those we will face when we begin to model LSS.

In order to study the performance of MRAC for this case we first

had to choose a model for simulating the actual plant. Our efforts to

model the slewing grid as accurately as possible resulted in several

FEM with varying degrees of accuracy. The most accurate model used

experimental frequencies and mode shapes in a correction method

proposed by Baruch (ref.16) to force the theoretical model to have

exact experimental frequencies. The least accurate model was the

standard FEM with no corrections. With this in mind we chose the most

accurate FEM to simulate the plant and a linear combination of the



most accurate and least accurate model as the reference model.
reference model is described by the following equation.

The

Ref.Model - _(standard FEM) + (l-a)(corrected model) (22)

Thus we can vary the amount of error between the reference model and

the actual model and monitor the control effort and system response as

the error increases (a = 0---Perfect Modeling , a = i--- Max. Error).

Damping ratios for the simulated plant were obtained experimentally,

while the damping ratios for the reference model specify the desired

performance (see table 3).

In addition to varying the parameter a, we also varied the initial

conditions of the structure. In the first simulation the structure

was deformed into the second mode shape (see figure 6) and released.

Table 4 shows that introducing errors into the reference model had a

significant effect on the maximum force at joint 3 and the quadratic

control effort. The maximum force required at joint 3 is I0 times

larger at _ = 1.0 than at _ = 0.0, and the quadratic control effort is

increased by a factor of 27 over the same interval. In the second

simulation the structure was deformed into the theoretical fourth mode

shape (see figure 8) and released. Table 5 shows that introducing

errors in this case also causes dramatic increases in control costs.

For example, at the point of maximum error (a = i), the total control

effort needed increased by almost 2500%, the maximum control force

required by actuator 3 increased over 600%, and the amount of

potential and kinetic energy in the system increased over 550%.

CONCLUDING REMARKS

The performance of Model Reference Adaptive Control (MRAC) was

studied in numerical simulations with the objective of understanding

the effects of differences between the plant and the reference model.

MRAC was applied to two structural systems with controlled error

between the reference model and the actual plant. Performance indices

relating to control effort and response characteristics were monitored

in order to determine what effects small errors have on the control

effort and performance of the two systems. It was shown that

reasonable amounts of error in the reference model can cause dramatic

increases in both the control effort and and response magnitude (as

measured by energy integrals) of the plant.
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TABLE 1

SUMMARY OF PERFORMANCE MEASURES FOR VARYING

AMOUNTS OF MASS ERROR IN THE SIMPLY SUPPORTED BEAM EXAMPLE

% ERROR MAXIMUM FORCE TOTAL QUADRATIC

CONTROL EFFORT

0.0 380 11,422

i0.0 540 27,486

20.0 920 72,263

TABLE 2

SUMMARY OF THEORETICAL VS EXPERIMENTAL FREQUENCIES

FOR THE SLEWING GRID STRUCTURE

MODE #

1

2

5

6

7

8

9

I0

ii

FREQUENCIES (Hz)

THEORETICAL

0.36

1.37

3.00

4.47

EXPERIMENTAL

0.42

1.45

2.88

5.39

% ERROR

16.67

5.84

4.00

20.58

6.02 6.41 6.48

6.69 6.88 2.84

9.79 9.05 7.56

11.52 10.18 11.63

13.11 13.56 3.43

15.35 14.90 2.93

15.3721.16 27.36



TABLE 3

DAMPINGRATIOS FORTHE MODELSOF THE SLEWINGGRID

MODE#

9

EXPERIMENTAL
FREQUENCY

(HZ)

EXPERIMENTAL
DAMPINGRATIOS

DAMPINGRATIOS
FORTHE

REF. MODEL

0.42 0.ii0 0.15

1.45 0.015 0.05

2.88 0.011 0.05

5.39 0.008 0.05

6.41 0.003 0.05

6.88 0.011 0.05

9.05 0.003 0.05

10.18 0.003 0.05

0.00213.56 0.01

i0 14.90 0.002 0.01

ii 15.37 0.002 0.01

TABLE 4

SUMMARYOF PERFORMANCEMEASURESFORVARYINGAMOUNTS
OF ERRORIN THE SLEWINGGRID

INITIAL CONDITIONS= MODESHAPE2

ALPHA
MAXIMUMFORCE(LBS)

JT. 3 JT. 4 JT. 5

QUADRATIC
CONTROL
EFFORT

LBS2-SEC

KINETIC
ENERGY

INTEGRAL
LB-IN-SEC

POTENTIAL
ENERGY

INTEGRAL
LB-IN-SEC

0.00 0.0182 0.022 0.021 0.00044 0.116 0.117

0.25 0.0596 0.028 0.025 0.00107 0.114 0.119

0.50 0.1090 0.038 0.035 0.00299 0.112 0.120

0.75 0.1520 0.048 0.045 0.00742 0.iii 0.122

1.00 0.1825 0.057 0.058 0.01250 0.ii0 0.125



TABLE 5

SUMMARYOF PERFORMANCEMEASURESFORVARYINGAMOUNTS
OF ERRORIN THE SLEWINGGRID

INITIAL CONDITIONS= MODESHAPE4

ALPHA
MAXIMUMFORCE(LBS)

JT. 3 JT. 4 JT. 5

QUADRATIC
CONTROL
EFFORT
LBS2-SEC

KINETIC
ENERGY

INTEGRAL
LB-IN-SEC

POTENTIAL
ENERGY

INTEGRAL
LB-IN-SEC

0.00 0.44 0.68 0.58 0.35 0.60 0.60

0.25 0.58 0.78 0.64 0.52 0.70 0.72

0.50 1.19 0.93 0.72 1.47 1.09 1.13

0.89

0.903.12

5.20

9.05

0.75 2.42 1.04

1.04

2.49

3.941.00

2.55

3.93

4-32
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ng Assembly**

Steel Shaft, 1 3/8" (3.49 cm) diameter

61.5" (1.56 m)
1

_---Uppe r Horizontal*

(UH)

on Diagonal*

(TD)

Attachment

Fittings

Vertica

(v)

ight

Diagonal*

(DWD)

Lower Horizontal*

(LH)

_aring Assembly**

4

*Aluminum Beam Members

Alloy 6061-T6

Nominal cross-section:

2" x 1/8"

(5.08 cm x 0.32 cm)

**Ball Bearings
Make: SKF

Bearing No. 478207-106

Pillow Block Flange Unit

No. FYP-106

(Bearing seals and all

grease were removed to

reduce friction.)

Figure 5

SLEWING GRID STRUCTURE
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THIRD MODE SHAPE FOR SLEWING GRID STRUCTURE
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Damping Ratios of the Reassembled System's

Rigid-body, Retained, and Extraneous Modes

Mode Frequency (Hz)

0

0

_gid-body (o_
0

0

Retained (%) Extraneous (%)

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0.0001 0

9 0,8644 0,2500

10 1.2355 0.2500

"11 1.4788 0.2500

12 1.6782 0.5228

'13 1.7070 0.2500

14 1.7346 0.2500

15 2,0724 0.2500

16 2.3513 0.2500

17 2.8152 0.2500

18 3.7066 0.2500

19 4.1724 0.2500

20 5.2314 0.2500

21 5.2473 0.2500

22 5.4695 0.2500

23 6.0124 22.4335

24 7.0593 0.2500

25 7.1711 41.0165

26 8.1534 0.2500

27 9.3513 14.5847

28 9.6102 0.2500

29 10.3556 0.2146

30 10.4210 0.2500

31 10.5549 0.2500

32 13.5342 0.2500

33 13.9894 0.2500

34 17.0659 0.5842

35 19.9321 0.4905

36 27.2954 0.7231

37 38.4226 1.0406

38 53.0927 1.4643

39 66.6673 1.9455
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