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The objective of thisgrant was to obtain accurate potential energy surfaces

(PES's) for a number of reactionswhich are important in the H/N/O combustion

process. The interestin thisat NASA centered around the design of the SCRAM

jet engine for the National Aerospace Plane (NASP), which was envisioned as an

air-breathinghydrogen-burning vehiclecapable of reaching velocitiesas large as

Mach 25. Preliminary studiesindicated that the supersonic flow in the combustor

region of the scram jet engine required accurate reaction rate data for reactionsin

the H/N/O system, some of which was not readilyavailablefrom experiment.

Among reactionswhich are important in the H/N/O system, the followingreac-

tions were selected as being criticaland were studied in thisgrant. (The following

discussionisorganized by classof reaction,while the publicationsaxe in chrono-

logicalorder.)

The firstclassof reactionswhich were studied are initiationreactions.The

dominant initiationreactionin H2 combustion isthought to be the reaction

H2 + 02 -_H + H02 (1)

The rate for this reaction has been inferred from the rate of the reverse reaction

H -{- H02 -"+prod_tc_s (2)

This analysis is complex because the ractants give rise to both a triplet surface

which leads to H2 + O_ as products and a singlet surface which correlates with

H2 O2 and gives OH as product. The experimental rate is derived from the dif-

ference in the rate of dissappearance of HO_ and the rate of appearance of OH.

There are considerable uncertainties in the experimental result. Also kinetic mod-

ds used at Lewis and Langley were not in agreement on the rate of this reaction.

In Ref. 14 the saddle point on the triplet surface for reaction (2) was character-

ized in sufficient detail to permit computation of the rate constant as a func-

tion of temperature using transition state theory plus an estimate of tunneling

through an Eckart barrier. This computed rate is believed to be the most accu-

rate estimate available for the rate of reaction (2).

Another initiation reaction which was studied is the reaction
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O(_D) + 1t2 ---* H20* _ HO + H (3)

This reaction was of interest because the 1D excited state of O atom reacts with

H2 with no barrier, while the 3p ground state has an _ 12.5 kcal/mol barrier.

Thus, the excited state might be used to initiate combustion in the SCRAM jet.

This study focused on the long range portion of the potential, in particular on the

relative barriers to end-on and edge-on insertion of O atom into H2. These fea-

tures of the surface are relevant to difficulties in reproducing, from calculations,

the isotopic ratios in the reaction of O(1D) with HD. This work is discussed in

Ref. 4.

The most important chain propagation mechanism in H2 combustion is the re-

action

H + 02 ---' H02 _ OH + 0 (4)

A detailed study has been made of this reaction. Ref. 3 focused on the minimum

energy path (MEP) region of this surface. Ref. 8 studied the potential for ex-

changing the H between the two oxygens via a T-shaped HO2 saddle point. This

exchange process is important in the reaction of H + 02, since the saddle point

is _ 13 kcal/mol below H + 02. The study of this system has culminated in the

last year in the generation of enough computed points to provide a global PES for

H + 02. The H + 02 and HO2 portions of the global potential are described in

Ref. 13, while the OH + 0 portion of the potential is nearly complete and will be

published later. At the current time the plan is to collaborate with A.F. Wag-

ner (Argonne National Laboratory) to develop an analytical representation of

the computed points and carry out dynamics calculations for reaction (4). Fig.

1 shows a perspective plog of the H + O2 PES.

The most important class of combustion reactions from the standpoint of the

NASP project are radical recombination reactions, since these reactions result

in most of the heat release in the combustion process. These processes involve

recombination of two radicals (A and B) with a third body (C) to remove enough

energy that the resulting AB fragment remains bound. This process is thought
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THE H + 0 2 SURFACE
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Fig. 1: Global Potential for H + 02. See ref. 13. for a detailed discussion.

to involve either i) formation of a metastable AB* species which transfers energy

to C or ii) formation of an intermediate complex AC which subsequently reacts

with B to yield AB. An example of the latter process, referred to as a chaperone

mechanism, is illustrated by the series of reactions.

I

H + _2 -* HN2 (5)

+ HN2 -* _2 + 82 (6)

The net result of reactions (5) and (6) is recombination of two H atoms with N2

as a third body.



Calculations described in Refs. 5 and I0 indicatethat the HN2 molecule is

unstable with respect to H + N_ by 3-4 kcal/mol but isquasi-bound due to an

12 kcal/mol barrierto dissociation.The HN2 well is able to support 6 vibra-

tionallevelsand in Ref. 5 the lifetimesfor dissociationwere estimated using a

method which utilizesan Eckart barrierto compute one-dimensional tunneling ef-

fects.In Ref. 10 computed points which definea global potentialfor reaction (5)

were reported. The PES for thisreaction is shown in Fig. 2. G.S. Schatz (North-

western) has obtained an analyticrepresentationof the global H -{-N2 potential

and willbe carrying out quantum calculationswhich willdetermine the rate of

formation and decay of HN2. Calculations for reaction (6) are described in Ref.

7. The important conclusion for the recombination process is that reaction (6)

has no barrierand thus should proceed at close to the gas kineticcollisionfre-

quency. Combining thisinformation itshould be possible to obtain estimates of

the rate for the overallrecombination process.

Another specieswhich may be important in H atom recombination isHNO.

H + NO _ HNO (7)

u + nlvo -,H2 + No (s)

The sequence of reactions(7) and (8) may be important in SCRAM jet simula-

tion studies due to NO_ formation by the Zeldovich mechanism. The lowest aA*,

IA", and 3A" surfacesfor HNO and HON have been characterized in the mini-

mum energy path regions as discussed in Ref. 9. In a related study, decribed in

Ref. 11, the rate constant for the reaction,

NH +O--, N +OH (9)

which isan important reactionin nitramine combustion, was computed using

transitionstatetheory with a one-dimensional tunneling correctionbased on an

Eckart barrier.While a recommended rate constant expression for reaction (9)

existed priorto thiswork, itwas only an estimate based on no data and therefore

the computed rate constant isbelieved to be much more reliable.Fig. 3 shows

the computed rate constant for reaction (9).
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Fig. 2: Global Potential for H + N2. See ref. 10. for a detailed discussion.

The last recombination reaction which was considered is

H+H+H20 _ H2 +H20 (7)

An analytic function has been developed which consists of the known H2 and

H20 potentials plus a term which describes the interaction. The interaction term

is expanded in terms of OH and O0 two body interactions, which were obtained

from computed H + H20 interactions, and a correction term which was fit based

on H2 + H20 interactions. This potential has an overall root-mean-square error

of 0.64 mEh. This work is described in Ref. 12.
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Appendix

The appendix contains copies of Ref's 10-14 which have not yet appeared as jour-

nal articles.

9





Theoretical Characterization of the Potential Energy Surface

for

H + N2 _ H N2

II. Computed Points to Define a Global Potential

Stephen P. Walch _

ELORET Institute

Sunnyvale, Ca. 94087

Abstract. A previous calculation for H + N2 [Walch, Duchovic, and Rohlfing, J.

Chem. Phys, 90, 3230(1989)] focused on the minimum energy path (MEP) region

of the potential energy surface and on estimates of the lifetime of the HN2 species.

In this paper, we report energies computed at geometries selected to permit a global

representation of the potential energy surface (PES). As in the previous work, the

calculations were performed using the complete active space self consistent field

/ externally contracted configuration interaction (CASSCF/CCI) method. The

surface was characterized using the same basis set as in the previous paper except

that an improved contraction of the H s basis is used. Calculations with a larger

basis set were carried out along an approximate MEP obtained with the smaller

basis set. The new PES exhibits a sharp curvature, which was not present in the

previous calculations, and has a slightly narrower and smaller barrier to disociation.

Saddle points for H atom exchange via coUinear and T-shaped HN2 complexes are

also reported.

_Mailing Address: NASA Ames Research Center, Moffett Field, CA 94035.



I. Introduction

The HN2 species has been postulated as an important intermediate in thermal

De-NOz processes [1-4]. Indirect evidence for the existance of this species has been

obtained from experimental studies of the reaction:

NH2 + NO _ products

Studies of reaction (1) have considered three possible product channels [5]:

(1)

+ H20 (2)

N, + + H (3)

HN2 + OH (4)

While the experimental studies varied widely as to the branching ratio for OH

production, none of the experiments observed H atoms [5]. This result, along with

the product channels assumed here, argues for the existence of the HN2 species.

Given the possible importance of the HN2 species in combustion processes, there

have been several theoretical and experimental studies directed toward estimating

its lifetime. A recent ab-initio study [6] (hereafter referred to as I) of the minimum

energy path (MEP) region of the HN2 surface found the HN2 species to be unstable

with respect to H + N_ by 3.0 kcal/mol, but to be quasi-bound due to a 12.2

kcal/mol barrier to dissociation (before zero-point correction). In I the lifetime of

the HN2 species was estimated using a method which utilizes an Eckart barrier to

compute one-dimensional tunneling effects. The lifetime of the lowest vibrational

level was estimated to be between 8.8 × 10 -11 and 5.8 x 10 -9 sec. This lifetime

is somewhat longer than the value of 5 × 10 -11 obtained theoretically by Curtiss

et al. [7]. The short lifetime of HN2 obtained by theory has been supported by
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the recent experimental work of Selgren et al. [8], who estimate the ground state

lifetime of HN2 to be less than 5 × 10 -7 sec. Thus, both theory and experiment

suggest a short lifetime for HN2, which limits its role in combustion processes. This

is in contrast to combustion models [9] which require lifetimes at least several orders

of magnitude longer than current estimates.

Previous theoretical studies of the lifetime of the HN2 species were based on a

one-dimensional estimate of tunneling. In order to obtain a more accurate estimate

of quantum mechanical effects for this reaction a global potential energy surface

is required. Computations directed toward that goal are reported herein. The

computational method is discussed in Section II, the results are presented in Section

III, and the conclusions are given in Section IV.

II. Computational Details.

The calculations used the CASSCF/CCI method [10,11] with a selected reference

list. The details of these calculations are given in I. Two basis sets were used. The

first basis set was the same as that given in I except for two changes in the H basis

set. The original H basis used as contraction coefficients the natural orbitals from

a CI calculation on H2, as described by Alml_f and Taylor [12], however using only

three contracted s type functions leads to an _ 1 kcal/mol error in the H atom

energy, thus we replace the first contracted s type function with the SCF orbital for

the H atom. In addition, the d function on H was omitted since it was found to have

only a very small contribution to the energy. The first basis set is [4s3p2dlf/3s*2p]

and is referred to as basis set 1, where 3s* indicates the modified contraction of the

H s functions. The second basis set, which is [Ss4p3d2f/4s*3p2d] and is referred to

as basis set 2, is that given by AlmlSf and Taylor except for the modified contraction

of the H s functions.

The relative positions of the atoms for these calculations are specified in terms of



the NN distance (rNN), the H to centerof massof N_ distance (rH-NN), and the

angle (0) between a line connecting H to the center of mass of N2 and a normal to

the NN bond at the bond midpoint ( 0 is 0 ° for T-shaped H-N2 and 90 ° for collinear

H-N2).

Most of the calculations were carried out in C, symmetry. As discussed below,

some of the calculations for 8 - 0 ° and 90 ° used C2_ symmetry. 8 was varied from

0 ° through 90 ° in 10 ° increments. For each 8 value both rH-NN and rNN were

varied to obtain minimum energy cuts at fixed 8 values.

The calculations were carried out on the NASA Ames Cray Y-MP/832. These

calculations used the MOLECULE[13]-SWEDF_N[14] system of programs.

III. Results and Discussion

The computed energies are given in Table AI of the appendix. In order to aid

in visualizing the surface, the energy was evaluated along fixed 8 minimum energy

cuts. For each 8 and r/_-NN, rNN was varied and the energy at the minimum

and the optimal rN/v are given in Table I. These minimum energy cuts are shown

graphically in Figs. 1 and 2.

From Fig. 1 it is evident that for large rH-NN a T-shaped H-N2 geometry is

favored. This geometrical arrangement minimizes non-bonded H-N repulsions in

the long-range repulsive region of the potential. As discussed in ref. 6, at shorter

rar-N/V an NH bond is formed leading to a chemically bonded bent HN2 species.

This structure has an / HNN of _ 120 ° (8 _ 50°). At rH--NN _ 3.5 a0, the bent

HNN structure drops below the T-shaped structure leading to a sharp curvature in

the reaction path. Formation of HN2 involves breaking an NN lr bond as the HN

bond forms with a resultant barrier. As is evident from Fig. 1, the barrier occurs at

approximately the same rH-NN as the sharp change in 8. This reflects a crossing

between the T-shaped structure, which is lowest in the repulsive part of the surface,
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and the bent HN2 structure, which is more stable in the chemically bonded region

of the surface.

It should be noted here that the PES obtained in I did not show the sharp

curvature in 0 which is evident in the present PES. This difference appears to be a

basis set effect. The basis set used in I placed the T-shaped structure too high with

respect to the bent HN2 structure and thus the bent structure remains lowest at

larger rH-NN. From Fig. 2 it is evident that the surface is quite flat with respect

to variations in 0 for rH-NN larger than the _ 4.0 a0. Thus, the sharp curvature

in 0 observed in the present work may not be especially significant in the dynamics

of H + N2 collisions.

In order to define an approximate MEP, polynomial fits ( six-term quadratic in

rNN and 0) were obtained at each rH-NN distance using the three 0 values nearest

the minimum and three values of rNN (9 points). At the HN2 minimum and en-

trance channel saddle point ten-term quadratic polynomials in all three coordinates

were obtained to define the stationary points. It should be noted that this procedure

defines the stationary points rigorously (within the accuracy of the polynomial fit),

but the MEP connecting the stationary points is only obtained approximately as

defined above. The primary problem with the approximate procedure used here to

define the MEP is that the reaction coordinate is taken as rH-NN and therefore vari-

ations of the energy along this coordinate are not allowed. In order to indicate that

this constraint has been imposed we designate the approximate MEP obtained here

as a constrained energy minimum path (CEM). The CEM is given in Table II. Ad-

ditional calculations were carried out along the CEM using the [5s4p3d2f/4s'3p2d]

basis set. These results are also given in Table II. In Fig. 3, the energy along the

CEM with both basis sets is compared with the energy along the CEM of ref. 6 (us-

ing the basis set of ref. 6). From Fig. 3 it is seen that the present calculations give



a narrower barrier and smaller barrier height to HN2 dissociation. Both of these

changes result from the improved contraction of the H s basis set which stabilizes

H -l- N_ with respect to HN2.

Table Ill shows the geometrical parameters of the stationary points on the HN2

surface. For the HN2 minimum and H-N2 entrance channel saddle point the ge-

ometries are compared to the results obtained in I. Here it is seen that at the HN2

minimum the bond lengths are within 0.01 ao and the bond angle is within 1 ° of the

values obtained in I. These differences are probably within the precision of the fits

used to derive the geometrical parameters. For the H-N2 minimum, on the other

hand, the differences are larger. This difference reflects the changes in the large

rH-NN portion of the surface as discussed above. The relative energies are also

given in Table III. Here it is seen that the best estimate ([Ss4p3d2f/4s*3p2d] basis

set energies at the geometry obtained with the [4s3p2dlf/3s*2p] basis) is that the

bottom of the HN2 well is 3.9 kcal/mol above the bottom of the H + N2 well as

compared to 3.0 kcal/mol from I. The barrier to dissociation at the same level of

calculation is 11.3 kcal/mol as compared to 12.2 kcal/mol from I.

Fig. 4 and Fig. 5 compare the variation of 0 and rNN along the CEM as a

function of rH--NN for the present work and the calculations in I. From Fig. 4 it is

seen that the 0 variation is quite different in the present work, with 0 rising sharply

from 0 ° at rI_-NN about 3.75 a0, but for smaller rI-1-NN 0 is similar. On the other

hand, from Fig. 5 it is seen that the variation in rNN is quite similar for the present

work and ref. I. These results are consistent with the observations made above.

Figs. 1 and 2 also shows higher energy regions of the surface corresponding to 0

values near 0 ° and 90 °. Here it is evident that there are saddle points for H atom

exchange (i.e. motion of an H atom between symmetry equivalent minima on the

potential energy surface) along cuts with 0 = 0 ° and 90 °. For these two choices of 0



the actual symmetry is C2_ and the barrier (maximum on the surface) prior to the

saddle point corresponds to a curve crossing (2A1 -_ 2B2 for 0 = 0 ° and 2_]+ _, 2ii

for 0 -- 90°). To clarify these regions of the surface, we report energies for both

electronic states involved in the curve crossing. For 0 = 90 ° the calculations for

both states were carried out in C2r symmetry leading to an actual curve crossing

which is evident in Fig. 1 and Table I. For 0 = 90 °, the 2B_ symmetry points were

computed in C2v symmetry, while the 2A1 symmetry points were computed in C°

symmetry. While this region of the surface should also exhibit a curve crossing, this

region of the surface is plotted in Fig. 1 as if there were an avoided crossing. Since

this region of the surface is _ 60 kcal/mol above H + N2, this inconsistency should

not be important. Table III also shows the saddle point geometries and barriers for

the two exchange saddle points. Both of these saddle points are above the barrier

height for dissociation of HN2 to H + N2.

IV. Conclusions.

Previous studies [6] of the H + N_ surface have been extended by the use of

improved basis sets and consideration of larger regions of the surface, with the

goal of mapping out a global potential energy surface suitable for use in dynamical

studies.

Most of the surface has been characterized with a [4s3p2dlf/3s*2p] basis set which

differs from the basis set used in ref. 6 only in the contraction of the H s basis.

This basis provides a more balanced description of free H atom and bonded H (as

in HN2).

In the large rR-NN region, the CEM for H atom addition to N2 obtained with the

new basis set is different from that obtained in ref. 6. The new CEM shows a sharp

curvature in the vicinity of the saddle point for H atom addition, with 0 decreasing

sharply to 0 ° (T-shaped HN2 structure) for r_-NN greater than 3.5 a0. In the region



of the HN2 minimum the new surface and that of ref. 6 appear to be similar as

evidenced by essentially identical HN_ equilibrium geometries. Calculations using a

[5s4p3d2f/4s*3p2d] basis set along the CEM defined with the [4s3p2dlf/3s*2p] basis

set place HN_ 3.9 kcal/mol above H + N2 and predict a barrier to dissociation of

11.3 kcal/mol (before correction for zero-point energy). These energetics are within

1 kcal/mol of those predicted in ref. 6.

The barrier height for dissociation of HN2 to H + N_ is slightly smaller and

the barrier is slightly narrower than in the calculations of ref. 6. Within a one-

dimensional tunneling model, this result suggests an even shorter lifetime for HN2

than had been predicted in ref. 6.

It should be noted here that one reaction which has not been previously considered

is:

H + HN2 ---, 1t2 ÷ N2 (5)

Recent studies of the potential energy surface for this reaction [15] indicate no

barrier for H abstraction. Thus, though the lifetime of HN2 is short, it is very

reactive toward H atom, and if formed could effectively scavenge H atoms formed

in Eq. (3). This could account for the failure to observe H atoms even if both Eq.

(3) and Eq. (4) are important product channels.

Saddle points have also been characterized for H atom exchange via T-shaped

and coUinear HN2 complexes. The barrier heights with the [4s3p2dlf/3s*2p] basis

set are 46.0 and 29.8 kcal/mol for these two processes, respectively.
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Table I. H + N2 energy along fixed 0 cuts '_.

rH-NN @ rNN

5.0 0.0 2.1

4.5 0.0 2.1

4.0 0.0 2.1

3.75 0.0 2.1

3.5 0.0 2.098

3.25 0.0 2.099

3.0 0.0 2.102

2.75 0.0 2.106

2.25 0.0 2.356

2.0 0.0 2.369

1.75 0.0 2.435

Energy b

-0.88024

-0.87748

-0.87145

-0.86629

-0.85890

-0.84837

-0.83334

-0.81194

-0.79226

-0.8OO1O

-0.79515

6 E(kcal/mol) _

1.19

2.92

6.70

9.94

14.58

21.18

30.62

44.04

56.39_

51.47d

54.58 d

5.0 10.0 2.1

4.5 10.0 2.1

4.0 10.0 2.1

3.75 10.0 2.1

3.5 10.0 2.099

3.25 10.0 2.102

3.0 10.0 2.109

2.75 10.0 2,126

2.5 10.0 2.264

2.25 10.0 2.322

2.0 10.0 2.351

1.75 10.0 2.385

-0.88017

-0.87734

-0.87127

-0.86615

-0.85893

-0.84885

-0.83509

-0.81729

-0.80302

-0.81092

-0.81407

-0.80219

1.23

3.01

6.81

10.03

14.56

20.88

29.52

40.69

49.64

44.68

42.71

50.16

5.0 20.0 2.1

4.5 20.0 2.1

4.0 20.0 2.1

-0.87994

-0.87693

-0.87073

1.37

3.26

7.15
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3.75

3.5

3.25

3.0

2.75

2.5

2.25

2.0

1.75

5.0

4.5

4.0

3.5

3.25

3.0

2.75

2.5

2.25

2.0

1.75

5.0

4.5

4.0

3.5

3.25

3.0

2.75

2.5

2.25

2.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

2.1

2.103

2.111

2.128

2.183

2.260

2.306

2.331

2.374

2.1

2.1

2.1

2.109

2.126

2.162

2.226

2.268

2.297

2.314

2.360

2.1

2.1

2.1

2.119

2.143

2.204

2.224

2.281

2.259

2.263

-0.86573

-0.85903

-0.85043

-0.84046

-0.83181

-0.83275

-0.83593

-0.82961

-0.80068

-0.87950

-0.87612

-0.86962

-0.85898

-0.85298

-0.84863

-0.85129

-0.85609

-0.85048

-0.83173

-0.77193

-0.87876

-0.87474

-0.86761

-0.85846

-0.85564

-0.85913

-0.86698

-0.87015

-0.85459

-0.79989
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10.29

14.50

19.89

26.15

31.58

30.99

28.99

32.96

51.11

1.65

3.77

7.85

14.53

18.29

21.02

19.35

16.34

17.23

31.63

69.15

2.11

4.64

9.11

14.85

16.62

14.43

9.51

7.52

17.28

51.61



5.0

4.5

4.0

3.5

3.25

3.0

2.75

2.5

2.25

2.0

5.0

4.5

4.0

3.5

3.25

3.0

2.75

2.5

2.25

5.0

4.5

4.0

3.5

3.25

3.0

2.75

2.5

5.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

70.0

70.0

70.0

70.0

70.0

70.0

70.0

70.0

80.0

2.1

2.1

2.1

2.131

2.177

2.229

2.248

2.237

2.208

2.157

2.1

2.1

2.1

2.141

2.206

2.241

2.242

2.190

2.116

2.1

2.1

2.1

2.147

2.234

2.248

2.209

2.130

2.1

-0.87767

-0.87264

-0.86425

-0.85652

-0.85758

-0.86608

-0.87320

-0.86772

-0.82346

-0.71216

-0.87627

-0.86980

-0.85911

-0.85060

-0.85444

-0.86436

-0.86608

-0.84011

-0.75716

-0.87477

-0.86655

-0.85207

-0.83766

-0.84331

-0.85270

-0.84521

-0.79685

-0.87357
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2.80

5.96

11.22

16.07

15.41

10.07

5.60

9.04

36.82

106.66

3.68

7.74

14.45

19.78

17.38

11.15

10.07

26.37

78.42

4.62

9.78

18.86

27.91

24.36

18.47

23.17

53.51

5.37



4.5 80.0 2.1 -0.86376 11.53

4.0 80.0 2.1 -0.84485 23.39

3.5 80.0 2.135 -0.81577 41.64

3.25 80.0 2.279 -0.82676 34.75

3.0 80.0 2.250 -0.83652 28.62

2.75 80.0 2.184 -0.82043 38.72

2.5 80.0 2.088 -0.75359 80.66

10.0 90.0 2.1 -0.88213 0.00

6.05 90.0 2.1 -0.88057 0.98

5.05 90.0 2.1 -0.87371 5.28

4.55 90.0 2.1 -0.86392 11.43

4.05 90.0 2.1 -0.84428 23.75

3.75 90.0 2.1 -0.82357 36.75

3.5 90.0 2.060 -0.79957 51.8e

3.5 90.0 2.332 -0.79301 55.9!

3.25 90.0 2.295 -0.81616 41.40

3.0 90.0 2.241 -0.82552 35.52

2.75 90.0 2.169 -0.80590 47.84

a Unless otherwise noted energies are in EH, bond lengths are in a0, and angles are

in degrees.

The energy includes a multireference Davidson's correction (See Ref. I) and is

relative to -109.00000 EH.

c Energy relative to the H -b N2 asymptote.

a These points are for the 2B2 state and are computed with C2_ symmetry.

• This point and preceeding points for 0 = 90 ° are for the 2_+ state and are

computed with C2_ symmetry.

I This point and preceeding points for 8 = 90 ° are for the 2_+ state and are

computed with C2_ symmetry.
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Table II. Computed Energies for HN2 Along the CEM a.

rH-NN rNN 8 Energy(bs 1 b) Energy(bs 2 c)

20.5 2.095 32.5 (-.88213) 0.0

I0.0 2.1 0.0

5.0 2.1 0.0 (-.88024) 1.2

4.5 2.1 0.0 (-.87748) 2.9

4.0 2.1 0.0 (-.87145) 6.7

3.75 2.1 0.0 (-.86629) 9.9

3.5 2.11 28.4 (-.85905) 14.5
3.35 2.17 48.5 (-.85698) 15.8

3.25 2.17 48.9 (-.85766) 15.3

3.00 2.23 52.9 (-.86636) 9.9

2.75 2.24 49.6 (-.87307) 5.7

2.69 2.25 47.3 (-.87321) 5.6

2.5 2.26 43.1 (-.87075) 7.1

-lO9.87596(-.8936o)o.o
-109.87402(-.89190) 1.07

-109.87118(-.88929) 2.70

-109.86501(-.88354) 6.31

-109.85974(-.87860) 9.41

-109.85125(-.87170) 13.74

-109.84416(-.86936) 15.21

-109.84520(-.87102) 14.17

-109.85240(-.88010) 8.47

-lO9.86oo2(-.88713)4.0o
-109.86037(-.88732) 3.94

-109.85655(-.88656) 4.42

" Unless otherwise noted energies are in EH, bond lengths are in a0, and angles are

in degrees.

b [4s3p2dlf/3s*2p] ANO basis set. Selected reference (Ci > 0.05) CASSCF/CCI

calculations correlating eleven electrons. The values in parenthesis include a mul-

tireference Davidson's correction (See Ref. 1) and are relative to -109.00000 EH.

The second column of numbers are relative energies in kcal/mol.

¢ [5s4p3d2f/4s3p2d] ANO basis set. Selected reference (Ci > 0.05) CASSCF/CCI

calculations correlating eleven electrons. The first column gives the CCI and CCI +

Davidson's correction total energies (in EH), while the second column gives relative

energies in kcal/mol.
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Table III. Stationary Points on the H + N2 Surface _.

H-N2 HN2 H-N2(0=0 °) H-N2(0=90 °)

rNN 2.173 2.253

rH-NN 3.355 2.695

0 48.5 47.3

rNH 2.641 2.017

8'b 122.7 115.0

E(bs 1) 15.8 5.6

E(bs 2) 15.2 3.9

r_vg 2.146 2.262

r_vH 2.753 2.007

0 'b 118.6 116.3

E ¢ 15.2 3.0

2.390 2.240

1.955 3.052

0.0 90.0

51.6 35.4

Bond lengths are in a0, angles are in degrees, and energies are in kcal/mol relative

to the H + N2 asymptote.

b / HNN.

c values from ref. 6.
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Figure Captions.

Fig. 1. Potential surface for H + N2. The figure shows ten fixed 8 minimum energy

cuts. For each rH-NN, rNN WaS varied and the minimum energy is shown in the

figure.

Fig. 2. Potential surface for H + N2. The figure shows the same information as in

Fig. 1 in the format of a perspective plot.

Fig. 3. Comparison of energy as a function of rtt-NN along the CEM from I and

the present calculations. For the present calculations results are shown with both

basis sets.

Fig. 4. Comparison of 8 as a function of rH-NN for the CEM from I and the present

work.

Fig. 5. Comparison of rNN as a function of rH-NN for the CEM from I and the

present work.
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Appendix. The appendix contains a table of all the computed CASSCF/CCI ener-

gies. The energies are in the form CCI(CCI +Q). Note that for the CCI + Q energies

-109. is not repeated. Thus, for the first point the CCI energy is -109.86500 and

the CCI-{-Q energy is -109.88213. Distances are in a0, angles are in degrees, and

energies are in Eli.
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Table AI. Computed Energies for HNz (C, symmetry) _.

EH-NN
0 rNN

20.544 32.53 2.095

6.587 37.92 2.095

5.598 39.33 2.095

5.088 39.20 2.096

4.608 40,92 2.097

4,119 42,24 2.101

3,636 43.93 2.118

3.446 44.71 2.133

3.241 44,37 2.172

3.052 45.12 2.205

2.872 46.53 2.232

2.683 47.38 2.278

2.528 50.88 2.255

5.00 0.0 2.1

4.50 0.0 2.1

4.00 0,0 2.1

3.75 0.0 2.1

3.5 0.0 2.0

3.5 0,0 2.1

3.5 0.0 2.2

3.25 0.0 2.0

3.25 0.0 2.1

3.25 0.0 2.2

Energy

_109.86500(-.88213)

_109.86490(-.88207)

_109.86378(-.88106)

.109.86190(-.87934)

.109.85794(-.87573)

_109.85037(-.86903)

_io9.83871(-.8597o)
_109.83452(-.85710)

-109.83273(-.85705)

-109.83597(-.86164)

_i09.84263(-.86896)

.i09.84633(-.87277)

-i09.83772(-.86807)

-109.86286(- .88024)

-109.85989(--87748)

lO9.85347(-.87145)
- 109.84800(-.86629)

-109.83458(--85234)

- 109.84019(-.85890)

-109.83189(-.85168)

-109.82335(-.84159)

,109,82911(-.84837)

-109.82098(-.84139)
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3.0

3.0

3.0

2.75

2.75

2.75

2.25

2.25

2.25

2.0

2.0

2.0

1.75

1.75

1.75

5.00

4.5

4.00

3.75

3.5

3.5

3.5

3.5

3.25

3.25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

10.0

10.0

10.0

10.0

10.0

10.0

I0.0

I0.0

10.0

10.0

2.0

2.1

2.2

2.0

2.1

2.2

2.2

2.4

2.6

2.2

2.4

2.6

2.2

2.4

2.6

2.1

2.1

2.1

2.1

2.0

2.1

2.2

2.3

-lO9.8o74o(-.826225
-109.81342(-.833345

-109.80556(-.826755

-109.78478(-.80428 )

_1o9.79121(-.811925
-lO9.78378(-.8o5895

.i09.76161(-.784995 b

.109.76708(-.791705 b

_109.74818(-.774645 b

-109.76928(-.792225 b

-109.77533(--799835 _

-109.75578(-.78536) _

.109.75963(-.78234) b

.109.76739(-.79486) b

_109.74839(-.788855 b

_1o9.86278(-.88Ol7)
-109.85974(-.87734)

-109.85325(-.871275

-109.84779(-.86615)

-109.83438(-.852235

.109.84011(-.858935

-109.83199(-.85191)

-109.81467(-.83586)

_109.82340(-.84176)

-109.82945(- .84885)
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3.25

3.0

3.0

3.0

2.75

2.75

2.75

2.5

2.5

2.5

2.25

2.25

2.25

2.0

2.0

2.0

1.75

1.75

1.75

1.75

5.00

4.5

4.00

3.75

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

IO.O

10.0

10.0

I0.0

10.0

20.0

20.0

20.0

20.0

2.2

2.0

2.1

2.2

2.0

2.1

2.2

2.2

2.3

2.4

2.2

2.3

2.4

2.2

2.3

2.4

2.2

2.3

2.4

2.5

2.1

2.1

2.1

2.1

2O

-109.82172(-.84232)

-109.80818(-.82717)

-109.81491(-.83504)

-109.80809(-.82951)

-lO9.78755(-.8o728)
-109.79593(-.81686)

-109.79162(-.81383)

-lO9.77858(-.8o2o8)
_1o9.77631(-.8o272)
-109.76975(-.79875)

-109.77911(-.80543)

-109.78303(-.81074)

-109.77951(-.80866)

-109.77873(-.80542)

-109.78458(-.81308)

-109.78201(-.81316)

-109.76126(-.78976)

-109.76931(-.80008)

-109.76984(-.80213)

-109.76474(-.79837)

-109.86253(-.87994)

-109.85926(-.87693)

-lO9.85255(-.87o73)
-109.84714(- .86573)



3.5

3.5

3.5

3.5

3.25

3.25

3.25

3.0

3.0

3.0

2.75

2.75

2.75

2.5

2.5

2.5

2.25

2.25

2.25

2.0

2.0

2.0

1.75

1.75

1.75

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

2.0

2.1

2.2

2.3

-109.83374(-.85187)
-109.83985(-.85902)

-lo9.83224(-.8526o)
-109.81564(-.83737)

2.0

2.1

2.2

-lO9.82351(-.84229)
-1o9.83o_4(-.85o35)

-lO9.82393(-.84513)

2.0

2.1

2.2

-lO9.81o_2(-.82999)
-109.81917(-.83995)

_109.81514(-.83721)

2.1

2.2

2.3

.109.80775(-.82938)

.109.80864(-.83171)

.109.80209(-.82702)

2.2

2.3

2.4

-1o9.8o71o(-.83164)
-lO9.8o611(-.83227)
-109.79911(-.82681)

2.2

2.3

2.4

-109.80679(-.83203)

-109.80918(-.83592)

-lo9.8o413(-.83292)

2.2

2.3

• 2.4

-109.79636(-.82300 )

-109.80084(-.82925)

-109.79820(-.82774)

2.2

2.3

2.4

-109.76285(-. 78997)

-1o9.77o98(-.7992o)
-109.77114(-.80050)

21



1.75

5.00

4.5

4.00

3.5

3.5

3.5

3.5

3.25

3.25

3.25

3.0

3.0

3.0

3.0

2.75

2.75

2.75

2.5

2.5

2.5

2.5

2.25

2.25

2.25

20.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

2.5

2.1

2.1

2.1

2.0

2.1

2.2

2.3

2.0

2.1

2.2

2.0

2.1

2.2

2.3

2.1

2.2

2.3

2.1

2.2

2.3

2.4

2.1

2.2

2.3

22

_109.76594(-.79644)

-109.86204(-.87950)

-I09.85834(-.87612)

_I09.85117(-.86962)

-109.83235(o.85102)

-109.83908(-.85892)

-109.83236(-.85353)

.109.81702(-.83968)

-109.82331(-.84290)

-109.83170(-.85256)

-109.82721(-.84944)

_109.81354(-.83419)

_109.82529(-.84720)

_109.82482(-.84811)

_109.81668(-.84163)

-109.82182(-.84478)

-109.82660(-.85101)

- 109.82314(-.84909 )

- 109.82036(-.84411 )

-109.82973(-.85465)

-lO9.82964(-.85577)
-109.82283(-.85065)

- 109.81328(-.83738)

_109.82531(-.85102)

-109.82651(-.85468)



2.25

2.0

2.0

2.0

1.75

1.75

1.75

1.75

5.00

4.5

4.0O

3.5

3.5

3.5

3.25

3.25

3.25

3.0

3.0

3.0

2.75

2.75

2.75

2.5

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

2.4

2.2

2.2

2.3

2.4

2.5

2.1

2.1

2.1

2.0

2.1

2.2

2.1

2.2

2.3

2.1

2.2

2.3

2.1

2.2

2.3

2.1

.109.82141(-.85048)

-109.80028(-.82697)

-109.80442(-.83166)

- 109.80087 (-.82900)

-109.73752(-.76349)

.lo9.74431(-.77111)
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b Points computed in C2_ symmetry.

c This point and preceeding points with 0 = 90 o axe 2_]+ symmetry.
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d This point and following points with 0 = 90 ° are 2II symmetry.
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Abstract. The reactant, product, and saddle point regions of the sII and 3II poten-

tial energy surfaces for the reaction NH + O --_ N + OH have been characterized

using complete active space self consistent field / externally contracted configu-

ration interaction (CASSCF/CCI) calculations with large atomic natural orbital

(ANO) basis sets. The computed barrier heights are 5.6 and 11.7 kcal/mol on the

sII and sit surfaces, respectively. Transition state theory with an Eckart tunneling

correction is used to estimate the rate constant on the s IT surface.
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I. Introduction

The lowest three potential energy surfaces (PES's) of 1A', SA", and 1A" symmetry

for H + NO _ HNO/HON have been discussed elsewhere [1]. In Ref. 1 the barriers

for H atom addition to NO to give HNO and the regions of the PES's around the

HNO/HON equilibrium geometries were characterized and a schematic of the PES's

for HNO/HON was constructed based on ab iuitio quantum chemical calculations

[1-4] and qualitative arguments. That schematic of the PES's for HNO/HON is

reproduced here as Fig. 1. In this paper, we focus on the PES's for the reaction of

NH + O. From Fig. 1 it is seen that the reactants NH + O correlate with the 1A',

SA", and 1AU surfaces of HNO leading to H + NO as one product.

NH + 0 -.-, HNO -.-> H + NO (i)

Reaction (1) has been studied by Mdius et al. [4] using MoUer-Plesset perturbation

theory and bond additivity corrections. These authors were mainly interested in

more complex reactions, which are important in the thermal De-NO_ process [5-7],

but did comment that reaction (1) could proceed with no activation energy on the

sing, let or triplet HNO surfaces.

From Fig. 1 it is seen that an alternative reaction pathway is the production of

N+OH.

NH +O--+ N +OH (2)

Reaction (2) is believed to be important in the combustion of nitramines [8], which

are of interest as rocket propellants. Benson et al. [9] have recommended the

expression
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K = 6.3E + llT°'Sexp(-8OOO/RT)cmSmol-lsec -1 (3)

for the rate constant of reaction (2). However, this expression is only an estimate of

the rate constant and is not based on experimental data. Melius et al. [4] predicted

a small activation energy for reaction (2) on the quintet surface, where II abstraction

is the dominant process. In this paper, that abstraction pathway is studied in more

detail.

As discussed in section II, reactants and products of reaction (2) may be connected

by surfaces of 5if and sII symmetry. Of these only the SA" component of the sii

surface correlates with the low-lying states of IINO/IION, which have been discussed

elsewhere [1]. Thus, for bent geometries, the 5At and 5A" components of the 5if

surface and the 3A' component of the sit surface do not interact with IINO/ttON.

In addition, for the 3A" component of 31"[, the collinear geometry corresponds to a

saddle point. Thus, the sit and sit surfaces are expected to dominate reaction (2),

and these surfaces are studied here.

Qualitative features of the PES's are discussed in section II, the computational

method is discussed in Section III, the results are presented in Section IV, and the

conclusions are given in Section V.

II. Qualitative Features.

The ground state of NIl is s_]- and the ground "state of O is sp. From this it

follows that the ground state reactants give rise to PES's of 1,S,SA' and l'S'SA"

symmetry. The ground state of OIl is 2if and the ground state of N is 4S. Thus, the

ground state products give rise to PES's of S,SA' and s'sA" symmetry. From the

preceeding discussion, it is seen that PES's of 3'SAe and S'SA" symmetry connect

the reactants and products of reaction (2). For coUinear geometries these surfaces



correspond to the 3'sH surfaces considered in this paper.

The low-lying electronic states of HNO/HON are of 1A t, 1A, ' and 3A" symmetry.

Thus, only the SAte surface of HNO/HON is of the same symmetry as the PES's for

reaction (2). As discussed later, the SA" component of sII is stabilized for highly

bent geometries (/NHO less than 135°), but the collinear geometry corresponds to

a saddle point. From Fig. 1 it is expected that any reactants which "leak" into this

channel will lead to H + NO, since the barriers to isomerization of HNO to HON

are larger than the HN bond energy.

As discussed above, NH + O can also lead to surfaces of 1A t and 1A" symmetry.

These surfaces were not studied in this paper, since they can not correlate with the

products of reaction (2). This channel is expected to lead to H + NO product via

HNO/HON, as for the 3A" surface.

III. Computational Details.

The calculations are complete active space self consistent field/externally con-

tracted configuration interaction (CASSCF/CCI) and are basically the same as in

ref. 1. Two basis sets were used. The smaller basis set is a [4s3p2dlf/3s2pld] atomic

natural orbital (ANO) basis set as developed by AlmlSf and Taylor [10]. This basis

set is denoted as b.s. 1. and is the same basis set as was used in ref. 1. As discussed

elsewhere [11-12] b.s. 1 leads to an error of _ 1 kcal/mol in the free H atom energy

and an improved contraction of the H s orbitals has been developed [11]. However,

for reaction (2) this defect in the basis is not expected to lead to significant errors,

since free H atom is not involved. As a further check on the accuracy of the results,

additional calculations were carried out with a larger [5s4p3d2f/4s3p2d] ANO basis

set, denoted as b.s. 2.

Most of the calculations were carried out in C2v symmetry. In the CASSCF

calculation 10 electrons were correlated (all but the Ols, Nls, and O2s electrons,



which leadsto a 4tr2_" active space. In the subsequent CCI calculations 12 electrons

were correlated (all but the Ols and Nls electrons). The CAS for eight electrons

in 3#21r active orbitals was used as a reference space.

The saddle points on the 5II and 3II surfaces were obtained from a fit to a six-term

quadratic polynomial in ro_ and rN_. Bending potentials were obtained for both

surfaces with roll and rlv_ fixed at the saddle point values. The wavefunctions in

C° symmetry were equivalent to those for the C2v symmetry calculations, except

in the case of the 3II surface only ten electrons were correlated (due to memory

limitations).

The calculations were carried out on the NASA Ames Cray Y-MP/832. These

calculations used the MOLECULE[13]-SWBDEN[14] system of programs.

IV. Results and Discussion.

The computed energies for the sII and 3II states are given in Tables I and II,

respectively. Table III shows the stationary point geometries and energies. In the

case of the two saddle points the geometry was obtained by fitting to a six-term

polynomial, while for the reactants and products the geometry was obtained from

a parabolic fit.

The computed exoergicity for reaction (2) is 22.9 kcal/mol with b.s 1. Using the

Do value of 3.37 eV for NH recommended by Bauschlicher et al. [15] in conjunction

with the experimental [16] Do for OH and experimental [16] o_, values for NH and

OH, leads to 24.2 kcal/mol as the best estimate of this energy difference. The error

of 1.3 kcal/mole is twice the error estimate in ref. 15 of 4- 0.7 kcal/mol for the Do

of NH. Calculations with b.s. 2 lead to an exoergicity of 23.1 kcal/mol and reduce

the error to 1.1 kcal/mol. This basis set differs from that used in ref. 15 in that

it did not have a g function. This basis set difference and contraction error due to

the contracted CI must account for the remainder of the difference between the two



calculations. The computed NH and OH bond lengths are _ 0.01 a0 longer than

experiment.

The computed barrier heights are 5.6 and 11.7 kcal/mol for the 5H and 3H sur-

faces, respectively, with b.s. 1. The barrier height on the SH surface is reduced by

ouly 0.07 kcal/mol with b.s. 2.

Table I also gives energies for bent N-H-O on the _A' and SA" surfaces. Table

IV gives energies for bent N-H-O on the SA' and 3A" surfaces. In both cases ouly

/ NHO was varied, with rNH and ton fixed at the saddle point values. In the case

of the 3A' and 3A" surfaces, only ten electrons were correlated (due to memory

restrictions). This approximation is justified based on the HNO calculations in

ref. 1, where it was found that the results with 10 and 12 correlated electrons are

very similar. The bending potentials are also shown in Fig. 2. Here it is seen

that the 5A' and 5A" bending potentials are quite similar. (Note that there is a

residual spLitting for the collinear geometry due to symmetry breaking.) However,

the bending potentials for the 3A' and SA" PES's (See Fig. 3.) differ considerably

for highly bent geometries, with the SA" curve dropping for L NHO smaller than

140 °. As discussed earlier, this resuit is expected, since the 3A" state correlates

with HNO/HON for bent geometries. The fiat SA" bending potential suggests that

this component of the SH surface would lead to H + NO product via HNO*/HON*.

Table III also gives harmonic frequencies obtained for the saddle point on the

SA' and 5A" surface. These frequendes axe based on the polynomial fits discussed

above and were obtained with the program SUP, VIB [17]. In order to correct for the

slight symmetry breaking evident in Fig. 2, the energy at the predicted coUinear

saddle point was computed in C2_ symmetry and the bending curves for the two

components of the SH surface were shifted by the difference between the C2_ and C,

symmetry calculations. In spite of this correction, there is stiU a slight (< 4 cm -1)
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differencein the frequencies of the in-plane vibrational modes, which arises from

different quality least squares fits of the 5A' and 5A" energies.

Transition state theory (TST) calculations were carried out using rigid rotor and

harmonic osciUator partition functions [18] and an estimate of tunneling through

an Eckart barrier based on the formalism of MiUer [19]. The 5.52 kcal/mol barrier

obtained with b.s. 2 was used without adjustment. In these calculations the re-

actants NH and O had electronic degeneracy of 3 and spatial degeneracy of 1 and

3, respectively, while the saddle point N-H-O species had a spin degeneracy of 5

(quintet surface) and a spatial degeneracy of 1 for each component (SA_ and 5A")

of the 5II state. The TST theory calculations were carried out separately for each

component of the 5II surface and the rate constants for the two components are

summed to give the overall rate constant for reaction (2) on the 5H surface. There

is also a 5 E surface, but this surface correlates with an excited state of OH and does

not contribute to the rate for reaction (2). The results of the TST calculations are

given in Table V. The value of _, a multiplicative constant which gives the effect

of tunneling, is also given in Table V. As expected, tunneling is only important

at lower temperatures: the effect is less than a factor of two for T < 500K. It is

expected that the 5II surface win dominate the rate for reaction (2) since the barrier

for the 3II surface is twice as large.

The TST rate constants for the sII surface and the rate constant recommended

by Benson [9] (eqn (3)) are also plotted as a function of temperature in Fig. 3.

From Fig. 3 it is seen that gqn. 3 is a factor of _ 2.0 below the computed rate

constant in the high temperature region but is more than two orders of magnitude

below the computed rate constant at low temperatures. Based on previous work

[20-21] for similar systems with moderate barriers, the TST theory rate constant is

expected to be within a factor of 2 of experiment. Because TST does not take into



account barrier recrossing effects and because variational effects are not included in

the present calculation, the TST rate constant should be larger than experiment,

possibly by as much as the factor of 2 difference between the computed rate constant

and Eqn. 3 seen at high temperature. However, it is clear that the rate constant at

low temperature is much larger than predicted by Eqn. 3, and it is believed that

the TST rate constant is much more reliable and should replace Eqn. 3 as the best

estimate of the rate constant for reaction (2).

V. Conclusions.

The computed barrier heights for the 5II and SH surfaces for

NH +O--* N +OH

are 5.6 and 11.7 kcal/mol, respectively. Thus, the SH surface is expected to dom-

inate the kinetics for this reaction. Transition state theory calculations plus an

estimate of tunneling based on an Eckart barrier give a rate constant on the 51-[

surface which is a factor of _-, 2.0 greater at high temperatures and more than two

orders of magnitude greater at low temperatures than a rate constant expression

recommended by Benson (not based on experimental data). While transition state

theory may slightly overestimate rates ( up to a factor of 2) due to neglect of re-

crossing effects, it is clear that the computed rate constant is far more reliable than

the previous recommendation, and should replace it.

The sII surface has also been characterized. The SA" component of this surface

is of the same symmetry as the lower lying HNO/HON surface. This leads to a

complex bending curve for this component of the sII surface and the possibility

that part of the flux may bleed off into the 1,[ + NO product channel.
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Figure Captions.

Fig. 1. Schematic of the potential surfaces of HNO/HON (See Ref. 1). Two

product channels are shown for the reaction of NH + O. H + NO products arise

from the 1A', SA', and 1A" surfaces of HNO, while OH + N products arise via an

H abstraction process predominately on a quintet surface (See the text).

Fig. 2. Bending potentials for the SA' and SA" states of N-H-O.

Fig. 3. Bending potentials for the SA' and 3A" states of N-H-O.

Fig. 4. Computed rate constant for reaction (2) on the 5II surface. The rate

constant is computed separately for the SA' and 5A" components of the 5II surface

and the total rate constant is the sum of the separate rate constants. The rate

expression estimated by Benson is also shown for comparison.
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Table I. Computed Energies for N-H-O (sII state) _.

rNH rOH 0

1.9 20.0 180.

1.994 20.0 180.

2.1 20.0 180.

Energy

-130.10584(-.12822)

-130.10669(-.12914)

-130.10403(-.12653)

1.9 2.4 180.

1.9 2.6 180.

1.9 2.8 180.

1.9 3.0 180.

- 130.08127 (-.i 0763 )

-130.08721(-.11266)

-130.09191(-.11639)

-130.09566(-.11935)

2.0 2.4 180.

2.0 2.6 180.

2.0 2.8 180.

2.0 3.0 180.

-130.08881(-.11537)

-130.09219(-.11795)

-130.09520(-.11999)

-130.09792(-.12187)

2.1 2.2 180.

2.1 2.4 180.

2.1 2.6 180.

2.1 2.8 180.

2.1 3.0 180.

-130.09172(-.11853)

-130.09335(-.12002)

-130.09413(-.12016)

-130.09532(-.12042)

-130.09692(- .12113)

2.2 2.0 180.

2.2 2.2 180.

2.2 2.4 180.

2.2 2.6 180.

2.2 2.8 180.

-130.09485(-.12106)

-130.09745(-.12411)

-130.09592(-.12263)

-130.09409(-.12034)

-130.09338(-.11876)

2.3 2.0 180. .130.10232(-.12820)
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2.3 2.2 180.

2.3 2.4 180.

2.3 2.6 180.

2.3 2.8 180.

2.5 2.0 180.

2.098 2.732 180._

2.098 2.732 170.

2.098 2.732 160.

2.098 2.732 150.

2.098 2.732 140.

2.098 2.732 180 -c

2.098 2.732 170.

2.098 2.732 160.

2.098 2.732 150.

2.098 2.732 140.

20.0 1.7 180.

20.0 1.75 180.

20.0 1.837 180.

20.0 1.9 180.

.13O.lO174(-.12818)

-130.09729(-.12393)

-130.09290(-.11926)

-130.09018(-.11580 )

-130.11344(-.13864)

130.09475(-.i2097)
-130.09451(- .12069)

-130.09374(-.11984 )

-130.09243(-.I1846)

-130.09029(-.11639)

-130.09470(-.12082 )

-130.09442(-.12051)

-130.09358(-.11961)

-130.09211(-.11806)

-130.08977(-.11570)

-130.13727(-.15959)

-130.14087(-.16327)

-130.14317(-.16572)

-130.14238(-.16503)

[4s3p2dlf/3s2pld] ANO basis set. Second order CASSCF/CCI calculations cor-

relating twelve electrons.

Calculation in C. symmetry( 5A' state).

¢ Calculation in Ca symmetry( 5A" state).
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Table II. Computed Energies for N-H-O (aO state) _.

rNH rOH
0

1.9 2.4 180.

1.9 2.6 180.

1.9 2.8 180.

2.0 2.2 180.

2.0 2.4 180.

2.0 2.6 180.

2.0 2.8 180.

2.1 2.2 180.

2.1 2.4 180.

2.1 2.6 180.

2.1 2.8 180.

2.2 2.0 180.

2.2 2.2 180.

2.2 2.4 180.

2.2 2.6 180.

2.2 2.8 180.

2.3 1.8 180.

2.3 2.0 180.

2.3 2.2 180.

2.3 2.4 180.

2.3 2.6 180.

2.3 2.8 180.

Energy

-130.07188(-.09930)

-130.07911(-.10506)

-130.08576(-.11034)

-130.07420(-.10199)

-130.07816(-.10581)

-130.08280(-.10923)

-130.08799(-.I1298)

-130.08147(-.10898)

.13o.o8178(-.lO948)
_13o.o8349(-.1 o39)
_13o.o87oo(-.11242)
-130.08757(-.11438)

-130.08708(-.11431)

-130.08386(-.11135)

-130.08240(-.10966)

-130.08389(-.10979)

-130.08807(-.11367)

-130.09522(-.12150)

.13o.o9167(-.11856)
-130.08518(-.11240)

-130.08o45(-.10783)

-130.07953(-.10591)

[4s3p2dlf/3s2pld] ANO basis set. Second order CASSCF/CCI calculations cor-

relating twelve electrons.
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Table III. Computed Stationary Point Properties for the sII and 3II surfaces of NH

+O.

rNH rOH 6 E frequencies

b.s. 1 b.s. 2

NH + O 1.975 20.0 0.0 0.0 3110

N-H-O(SII)

SAI 2.098 2.732 5.59 5.52

SA" 2.098 2.732 5.59 5.52

855.,6oo.(2),-1175.
853.,62o.(2),-I179.

N-H-O(3II) 2.152 2.571 11.72

N + OH 20.0 1.847 -22.9 -23.1
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Table IV. Computed Energies for N-H-O (3II state) Bent Geometries a.

rNH rOH
0 Energy

2.152 2.571 180.

2.152 2.571 170.

2.152 2.571 160.

2.152 2.571 150.

2.152 2.571 140.

-129.99839(-.01616) b

-129.99807(- .01536)

-129.99772(-.01495)

-129.99712(-.01437)

-129.99626(--01360)

2.152 2.571 180.

2.152 2.571 170.

2.152 2.571 160.

2.152 2.571 150.

2.152 2.571 140.

2.152 2.571 130.

_129.99835(-.01590) c

-129.g9817(-.01566)

.129.99780(-.01528)

.129.99735(-.01496)

.129.99712(-.01508)

-129.99790(-.01663)

a [4s3p2dlf/3s2pld] ANO basis set. Second order CASSCF/CCI calculations cor-

relating ten electrons.

b 3A_ state.

b 3A. state.
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Table V. Computed Transition State Theory Rate Constant for Reaction (1) on the

SH Surface.

T _ rate _ rate total

s A, 5A,,

300.00 3.5326 0.1265E-13 3.5778 0.1165E-13

500.00 1.5864 0.9191E-13 1.5927 0.8566E-13

750.00 1.2364 0.3675E-12 1.2385 0.3440E-12

1000.00 1.1313 0.9007E-12 1.1324 0.8442E-12

1250.00 1.0848 0.1728E-11 1.085_ 0.1620E-11

1500.00 1.0596 0.2862E-II 1.0600 0.2685E-II

2000.00 1.0344 0.6050E-11 1.0347 0.5676E-11

2500.00 1.0242 0.1042E-I0 1.0245 0.9774E-11

3000.00 1.0153 0.1581E-10 1.0153 0.1483E-10

0.2430E-13

0.1776E-12

0.7115E-12

0.1745E-II

0.3348E-11

0.5547E-11

0.1173E-10

0.2019E-10

0.3064E-10
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We have performed extensive ab initio calculations on the ground state po-

tential energy surface of H_ +H20, using a large contracted Gaussian basis set and

a high level of correlation treatment. An analytical representation was then ob-

tained which represents the calculated energies with an overall root-mean-square

error which is 0.64 mEh. All nine internal degrees of freedom are explicitly included
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H_. The strategy used to minimize the number of energy calculations is discussed

as weU as other advantages of the present method for determining the analytical

representation.
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I. Introduction

An important series of reactions for r'odeling combustion are the three-body

recombination processes

A+B+M _ AB +M, (1)

where A and B are either atoms or small molecules and M is the third body.

For hydrogen combustion, a wide variety of components have been studied

experimentally, 1 and a very interesting result is that for A=H, B=OH, most nonre-

active third bodies give similar rates, with the exception of M=H20, which appears

to cause a much higher rate of recombination. Because of the experimental uncer-

tainties involved, it is important to verify this observation with theoretical studies,

and to explain the cause of the differences. A study of this type by necessity re-

quires comparison to other third bodies and recombiuing molecules, and the results

of extensive calculations for A=B=H, M=H and H2 have recently been reported. 2

The next logical system to consider is A=B=H, M--H20, and in this paper we re-

port the first step in these calculations, namely the determination of an analytical

representation of the potential energy of the collision partners.

The potential energy surface (PES) can be obtained from empirical models,

from fits to various types of experimental information, from ab initio electronic

structure calculations, or combinations of these methods. However, for processes

that sample a large amount of the PES the only practical method is to use ab iniLio

data. In the dynamics techniques we are planning to use for the H2+H20 system,

we wi]] include highly excited H2 molecules and collision energies corresponding to

several thousand degrees Kelvin, 2 thus we are primarily interested in relatively high

energy portions of surface. Points in arbitrary regions of the PES will be required in

the dynamics calculations, thus it is necessary to construct an interpolating function

so that the number of ab iniLio electronic structure calculations can be kept to a

minimum. The construction of a faithful interpolating function can be an arduous

task if an inappropriate strategy is used.

In this paper we report a successful extension to a nonreactive diatom-

polyatomic system of a method for constructing interpolating functions originally

applied to a nonreactive atom-diatom system, s This method has also been modified

for use for a diatom-diatom system. 4 The basic strategy used in the present work

is to introduce a simple triaJ function which has many of the global properties of



the pentatomic system, and then make corrections to this function to make up for

its local inadequacies. It is expected that this procedure will reduce the complexity

of the function which is being represented, resulting in a reduction of the number

of points required and an increase in the accuracy of the result. The analytical

representation used in the present work has other attractive features: most of the

numerical parameters are linear, which makes their optimization straightforward,

and also the function is designed for efficient computer evaluation. Many of the

techniques introduced in this paper concerning polyatomics are more general than

the present application and are thus expected to be valuable in other attempts

to produce analytical representations of potential energy surfaces involving poly-

atomics.

In Sec. II we discuss our electronic structure calculations, then in Sec. III we

give the interpolating function. Our final discussions and conclusions are contained

in Sec. IV. All quantities are quoted in Itartree atomic units unless otherwise

noted, thus the unit of energy is Eh = 2625.500 kJ/mol, the unit of length is

a0 = 0.5291771 x 10 -1° m, and the unit of mass is me = 9.109534 x 10 -sl kg.

II. Electronic Structure Calculations.

For a one-electron basis we used a (13s8p6d4f/Ss6p4d) Gaussian primitive

basis set, derived from the van Duijneveldt s (13s8p/8s) set by adding polariza-

tion functions as described in Ref. 6. These functions were then contracted

using the ANO scheme 6 to yield a [4s3p2dlf/3s2pld] basis set. Finally in or-

der to improve the description of the outermost regions of the charge density,

the most diffuse s and p primitive functions on O and the most diffuse prim-

itive s function on H were uncontracted, 7,s giving rise to our final basis, de-

noted [4+ls 3+lp 2d lf/3+ls 2p ld], which was used in all calculations of the

supermolecule. This basis will give more accurate multipole moments than the

[4s3p2dlf/3s2pld] basis, and thus can be expected to lead to an improved descrip-

tion of the long-range interactions.

The energy calculations were designed to give an accurate description of the

process H + H + H20 --+ H2 + H20 with the H20 geometry always near its

equilibrium configuration. The most important nondynamical electron correlation

effects were taken into account by means of CASSCF calculations, and the dynami-

cal correlation effects were estimated using the size-extensive ACPF 9 method. The

3



CASSCF configurations correspond to a single configuration description of H2 0 and

a two-electron two active orbital description of H2, and the ACPF calculations used

the same reference space. All calculations were carried out using the MOLECULE-

SWEDEN 10 program system on either the NAS CR.AY Y-MP/832 or the Ames

ACF CRAY Y-MP/832.

The computed H20 fragment properties obtained using these methods are

given in Table I, where they are also compared to experimental measurements 11-15.

Calculations are carried out for four H20 geometries. These correspond to the

equilibrium (denoted EQ), le an approximate turning point for the symmetric stretch

normal mode (denoted SS), the asymmetric stretch normal mode (denoted AS), and

the bending normal mode (denoted B). The normal mode analysis was performed

using the H20 potential of Ref. 17 which is a slight modification of the fit of Ref. 18

to the ab initio electronic structure calculations of Ref. 19. The modification is to

adjust the expansion coei_cient a002 to reproduce experimental bending vibrational

energy levels in a variational basis set calculation. This function represents well the

results from the present calculation m the function given in Ref. 17 predicts energy

differences between the equilibrium and distorted geometries given in this table to

be uniformly 0.1 mEh lower than our ab initio calculations.

Also in Table I, we compare to experimental values for the dipole moment, the

quadrupole moment, and the mean polarizability defined as

)
The quadrupole and dipole moments are computed as expectation values, while

the polarizability is computed as an energy derivative, as in Ref. 8. For the

quadrupole moment and mean polarizability, the experimental measurements are

of vibrationally-thermally-averaged results whereas the theoretical results are for a

specific geometry. Nonetheless, the agreement is quite satisfactory, with differences

on the order of a few per cent. For the dipole moment, it is possible to estimate

values for particular geometries from experiment. To do so we follow B.ef. 13 and

write (note that we use different axis labels and directions than from those in ltef.

and
1

_=q3,#_ = (4)
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where qi is a dimensionless normal mode coordinate. These coordinates were corn-

puted from

(_) 1/4 x--', 1/2qi "- 2-_ mj ljiAzj, (5)
J

where )q is an eigenvalue of the mass-weighted Cartesian Hessian matrix, the sum

over j is over all coordinates and atoms in H20, rnj is the mass of the atom associ-

ated with index j, Azj is the displacement from equilibrium for the atom/coordinate

associated with index j, and lji is the j¢_ component of the i ¢h normalized eigenvec-

for of the mass-weighted Cartesian Hessian matrix. The eigenvectors were phased

to be consistent with Ref. 13. For the AS geometry, it is necessary to rotate the

coordinates before applying Eq. (5) in order to properly separate vibration and ro-

tation. This is done as described in Ref. 20, and the rotation angle is -5.363*. The

dipole moment components given by Eqs. (3) and (4) are then rotated by 5.363 °

to make the comparisons in Table I. We take p0 from Ref. 11, ft], p] and ft_ 2 from

Ref. 12, and ft] from Ref. 13. Again the agreement is satisfactory, with differences

of a few per cent or less. Of particular note is the fact that the accuracy for the

different geometries is about the same.

In Table II we summarize the energies of the non.interacting fragments. We

will need energies for Ha bond lengths dose to, but not exactly equal to points in

Table II, and these were generated by interpolation. The six points in Table II with

Ha O at the EQ geometry and Ha bond length (ra,) varying from 1.2 to 2.2 were

fit to a five term expansion in 1/ra_ , and energies were determined at the bond

lengths 1.201, 1.601, 1.801 and 2.001 a0. The difference between using the five term

expansion and a six term expansion is no larger than 0.01 mEh.

Four sets of calculations for the interacting system were carried out. The first

consisted of the calculation of H+Ha O interactions at two relative orientations with

the HaO geometry fixed at the equilibrium geometry. This geometry has OH bond

lengths equal to 1.8111 a0, and an HOH angie equal to 104.45". These results are

given in Table III. The second set is made up of 9 different relative orientations of

Ha and H20, with the H2 at its equilibrium separation of 1.401a0 and the HaO at

the experimental equilibrium geometry. The results of these calculations are given

in Table IV. The third set relaxes the restriction that Ha be at equilibrium, and the

results for these calculations are given in Table V. The final set relaxes the Ha O

equilibrium geometry restrictions, and the results are given in Table VI. Since the



interpolating function obtained using the data of Tables I-V represents the data

in Table VI well, we computed no other points. In all, a total of 181 points were

computed. It should be noted that although we quote only five decimal digits for

the energy in the tables, when fitting the points, eight digits were used. Since the

errors in the fit are larger than 0.01mEh, the difference between using eight and five

digits should not be significant.

The relative orientations of H2 and H2 0 are given by a code of the form a + be

where a is z or z, and b and c are z, y, or z. This code will uniquely specify the

orientations in the Cartesian coordinate system which has the 0 at the origin and

the H2 center of mass on the positive z axis. The first part of the code gives the

axis the H2 bond is paraUel to, and the last two dements of the four part code give

the plane the H20 lies in. Furthermore, the bisector of the HOH angle is the b axis,

and the sign on b indicates the sign of the b axis components of the coordinates of

the H atoms in H20. For example, z - zz indicates that the H2 is on the z axis and

the H20 lies in the zz plane with the H atoms having coordinates (+1.431545, 0,

-1.109420).

III. Interpolating function

The basic idea of Ref. 3 is that although a pairwise-additive potential is not

quantitativdy accurate, it is always physically reasonable for a nonreactive system,

thus it can be productive to start out with a pairwise additive potential and then

make corrections to it. In particular, the pairwise additive potential was shifted by

a small amount to make it always positive, then was multiplied by a function which

never differs greatly from unity.

In the extension to a diatom-diatom system, 4 the main modification was to ex-

plicitly consider the long-range forces and to include the comp.lications arising when

atom exchange can occur. In the present application we wiU ignore the possibility

of atom exchange between the Ha and Ha O and write the potential energy as

V = V _t + V a' + V a'°, (6)

where V H2 is the asymptotic Ha fragment potential, V H=O is the asymptotic HaO

fragment potential, and V i'_t is the interaction potential. This last term is given by

v'o' =, o+ _, +v,R]+ _,)vo, (¢)



where fsv is the multiplicative correction function for small vibrational displace-

ments, a is a switching function, V ° is a sum of palrwise potentials, e is a constant

which ensures that /sv will remain close to unity even if V ° is small and V inz is

large, or vice versa, and V r_R is the long-range part of the potential. We now discuss

each of the functions that go into V in detail.

The function V H_ is taken from Ref. 4, and is an accurate representation of

the best ground state H_ potential curve. It includes radiative, relativistic and

adiabatic corrections to the very accurate Born-Oppenheimer calculations of Ref.

21, although of course these corrections are considerably smaller then our overall

uncertainties. For the function V H2°, we take the expression from Ref. 17, which

is a slight modification of the fit of Ref. 18 to the ab initio electronic structure

calculationsof Ref. 19. The choice of the fragment potentials is not important

for the determination of the interaction potentialand other choices may be more

suitable for a particular application. For example V H3 ---,oo a.srx_ _ 0 for the

function of Ref. 4 and V H2° has spurious deep wells for some geometries highly

distortedfrom equilibrium for the function of Ref. 17, and these features may cause

difficulty.Thus we encourage users of this potentialto substitute these fragment

potentialswith other choices ifrequired.

The zeroth-order potential V ° is written as the sum of the two H+H2 0 inter-

actions, and each "HsO" potentialiswritten as

vH,O __ vHH(R3zx. ) + vHH(RHm6 ) "4- vH°(RHo), (8)

where V HA isa non-bonding pair potentialbetween the lone H and atom A, R,,A is

the distance between the lone H and atom A, and the hydrogens in H20 are labeled

a and b. The pair potentialsare represented as

V HA = bHA exp(--cl_RHA), (9)

with bHA and cRA constants. The constants in Eqs. (8)-(9) were determined by

fittingthe data in Table III using nonlinear leastsquares. For these calculations,

we take the zero of energy to be --77.34187Eh, which is the value in Table III

with the H2 bond length equal to 10 a0. In the leastsquares procedure, allpoints

with interactionenergies lessthan 40 mEh were equally weighted, while the other

points were given a weight of zero. Thus 17 points were used to determine the

7



four parameters. This fit has a root-mean-square (rms) error of 0.40 mEh and the

parameters are given in Table VII and the fit is compared graphically to the data

in Fig. 1.

The points with interaction energies greater than 40 mEh were not included in

the fitting procedure because a plot of the energies in Table III for the geometry

z- zz reveals an avoided crossing for an OH distance ,_ 2.0 a0. This feature

corresponds to an interaction with the I_A1 state of HsO, which may be thought 22

of as a 3s Rydberg state arising from Hs O +. Since this feature occurs for energies

greater than 40 mEh, it is not expected to be important in the energy range over

which the present potential is expected to be accurate. We therefore do not attempt

to reproduce this feature of the potential, and neglect these higher energy points.

To proceed further, we must define our coordinates in more detail. Two kinds

of coordinates are used in the analytical representation of the H_+H20 potential.

The first consists of distances between points, such as atoms or centers of mass.

The second is more suitable for scattering calculations and consists of angles as well

as distances. We will assume that the input to the calculation of the analytical

representation will consist of Cartesian coordinates of the atoms in some arbitrary

laboratory-fixed coordinate system. From these coordinates, the calculation of dis-

tances between points is straightforward, while the determination of the second set

of coordinates is more complicated.

The second set of coordinates wiU consist of cI,, A, I', r, ri2,8, fox" , rosb, O,

a, _, and % The Euhr angles _, A, and r specify the relative orientation between

the laboratory-fixed coordinate system and the body-fixed coordinate system, r is

the distance between the centers of mass of H2 and HzO, r,,_ is the H_ bond length,

8 specifies the H2 orientation in the body-fixed coordinate system, ros" , ros b and O

specify the H20 geometry, and the Euler angles a, fl and 7 specify the orientation

of the water molecule in the body-fixed coordinate system.

We determine these coordinates from the laboratory-fixed Cartesian coordi-

nates of the atoms via the following procedure. We first shift the origin of the

laboratory-fixed coordinates to the center of mass of the H_ O molecule, and then

construct the rotation matrix R B°dy which rotates these laboratory-fixed coordi-

nates to the body-fixed coordinates. That is, we find the matrix which satisfies

z_ °_A -- _ --iyRB°'_Y-Z'abA_y (I0)

Y

8



and

z_A = _ Rjiso_v_sod,A_j, (II)

J

where ; BodyA iS the ith component of the Cartesian coordinates of point A in the

body-fixed coordinate system and _.j-Labx is the jth component of the coordinates of

point A in the laboratory-fixed coordinate system. Now we choose our body-fixed

z axis to go from the origin to the center of mass of the H2, and the body-fixed zz

plane to contain H2. It is then a simple matter to construct orthogonal unit vectors

along the body-fixed z and z axes with components expressed the laboratory-fixed

coordinate system. To get the unit vector along the body-fixed y axis, we simply

take the cross product of these two unit vectors (_ = _'× 3). Then since the z B°d_A

in Eq. (11) are just columns of the unit matrix, we can identify the elements

of the rotation matrix p Bod_ with the elements of the unit vectors expressed in

the laboratory-fixed coordinate system. This rotation matrix determines the Euler

angles _, A, I", but we never explicitly need to know these angles -- it is the rotation

matrix which is of use. Once 1%B°dy has been determined, we can rotate the atomic

coordinates to the body-fixed coordinate system.

The lengths r and rs_ are easily determined from the body-fixed coordinates

of the H2, and the angle 8 is the angle which rotates the H2 about its center of mass

to lie on the z axis. However as in the case with the angles @,A, and 1', it is not

necessary to explicitly determine 8, but rather just the rotation matrix R. H_ which

rotates the H2 coordinates so that only the z components are nonzero. The nonzero

entries of this rotation matrix can be found by simple arithmetic operations from

the Cartesian coordinates and rxl.

The internal H2 0 coordinates are fox" , the distance from the 0 to hydrogen

atom a, roub, the distance from the 0 to hydrogen atom b, and e, the HOH

angle. These coordinates are easily determined from the Cartesian coordinates of

the atoms and are chosen because they are used for the H20 fragment potential

of R.ef. 17. In order to specify the Ruler angles a, _, 7, we define a standard

H20 orientation. 23 This consists of the O atom lying on the positive z axis, the

center of mass at the origin, the H atoms in the zz plane, and H_ having z positive.

Then the Ruler angles are those angles which rotate the particular body frame H20

coordinates to the standard orientation. As before, it is only necessary to know the

rotation matrix R.H2° which rotates the particular H_O coordinates to the standard



orientation. This can be determined in the same manner as R s°d_, described above,

without the explicit determination of the Euler angles.

We now turn to the long-range part of the potential. We wiU include the

dipole-quadrupole and quadrupole-quadrupole electrostatic interactions, the dipole-

induced dipole interaction, and the leading dispersion contribution. These consist

of terms which decay as r -4 through r -6. To compute these interactions, we took

the H20 properties from Table I, the H2 quadrupole moment from Ref. 24 and

polarizability from Ref. 25, and the dispersion coefficients from Ref. 26. These

were then used in damped versions of the appropriate formulas from Ref. 27.

SpedficaUy, for the dipole-quadrupole interaction, we begin with the expres-

sions
1

v - (12)
ijk

r2., k: +,j6,, + -7,

where i, j, k refer to z, y or z components of the various tensors, _z,_ is an dement of

the dipole moment tensor for H20, 6a,js, is an dement of the quadrupoh moment

tensor for Ha, and ri is a component of the vector from the center of mass of

the Ha O to the center of mass of the H2. It should be noted that the mnltipole

moments and r_ must all have been calculated using paraild coordinate systems for

these equations to be valid. We will evaluate Eqs. (12) and (13) in the body-tLxed

coordinate system. In this case the only nonzero contribution from the _'i comes

from i = 3, (i.e. the z component) thus Eq. (13) becomes

Z'2,_,jk = -3156i36ja6k3 - 6,_3_,jI, -- 6js6_l, --/_k36_j]r -4. (z4)

We now modify Eq. (14) to remove the singularity at r = 0 by changing r -4 to

(r 4 + d4) -1, with d a positive damping parameter. Finaily, before we can apply

Eq. (12), it is necessary to obtain the components of the dipde moment and

quadrapole moment tensors with respect to the body-fixed coordinates. We do this

by rotating the laboratory-fixed coordinates using the rotation matrices determined

when calculating the body-fixed coordinates. That is, in Eq. (12), we use the

moments

(15)

10



and

kl

where pj is from Table I, and

®H_ = _8kZ(_1)6,3(1 + 6k3)Q/4, (17)

with Q the quadrupole moment from Ref. 24. Now because ®H_ is diagonal and

B. H_ only rotates about the y axis, several terms in Eq. (12) vanish, and the so the

dipole-quadrupole interaction simplifies to

= - - +,t'). (18)V_,e

For the quadrupole-quadrupole interaction, we proceed in the same m_ner,

starting with
1

V e° "- _" '_ _l,,j_±,hlT2,,j_l, (19)

T_,ijkt :3 [35ririrkr! -- 5r2(rirl_ih + rirl_ik

+ rkrl6ij + rjrkSil + rirk6jl + rirjSkl) (20)

+ r4(5.Sjh + _zjS_k + _kzSi._)] r -9 •

After including damping and taking advantage of the fact that we evaluate this

expression in the body frame and that certain elements of the H2 quadrupole are

always zero, the quadrupole-quadrupole interaction simplifies to

V ee = 3(r s + d s)

+ 1202,as61,3s - 1662,1361,1s],

where O2,ij is defined by Eq. (16) and

"L"ki *_lj vkl '

kl

with ®H_O from Table I.

For the dipole-induced dipole interaction we begin with the expression

1 _ _H, OFH, O
= tz2,i_E2,1 2,j '

11

(21)

(22)

(23)



where

F H_ 0
2,i -- _ T2,ik/_2,k,

T2,i_ -- (3rir_ - _ikr2)/r -s

(24)

(25)

and a2,_j is given by

c_2,ij - _ Dktt_ r)H''*H'_-,i_'k, , (26)
kl

where at,R/* is an element of the H_ polarizability tensor. In terms of the II and _1_

¢o po o t ofthepol , bi'  y,.e h vo = = and = Tho
other components are zero. Simplifying and damping as before, we obtain

1 2 & -2 - -2
Vir*d = --_(r_2,11_1,1 _- 2,22Pl,2 "3L4a2,zspl,s -- 4a2,1,a/_l,1/]l,s)/(r 6 + d6). (27)

Finally, for the dispersion interaction we use

vd_,p = -c61(,.e + de). (28)

Then the long-range potential is given by

V LR = V _0 -_- V oe + V _d + V di'v. (29)

To represent the dependence of the mttltipole moments, polarizabilities, and

dispersion coefficients on the vibrational coordinates, we proceeded as follows. For

the H2 quadrupole moment, we used the expression from Ref. 4 for Q. This function

was determined by fitting the accurate results of Ref. 24.

For the H2 polarizability, we fit the data of Ref. 25 to the form

ac -(goc -t- glcX + g_cX2)/(1 -k X2), (30)

where the subscript c refers to I[ or 1, gic is a parameter, and

X = exp[h¢(r,, 2 - r¢)]. (31)

The parameters gic, hc and rc were determined by nonlinear least squares, with the

exception that g_, was constrained to be nine so that the asymptotic value of a,

is accurately obtained. The points were unequally weighted in the fit, with most

points having a weight of one. The five points near the equilibrium bond length

12



had larger weights, and a point near the maximum and a point past the maximum

were also more heavily weighted. The weighted rms error for a[i is 5.7 × 10 -2 %3

and the weighted rms error for a± is 4.4 × 10 -2 a s. A comparison of these fits and

the data points is given in Fig. 2, and the values of the parameters are given in

Table VIII.

For the dependence of the dispersion coeffcient on the H2 bond length, we

used the procedure of Ref. 4, i.e. we assume

,/,too ,._0 -c6 = _,, _,a6 + bore,)exp[-(dere,)']_s, (32)

with the parameters m °, a °, _0, and dQ taken from Ref. 4. The parameters for

Eq.(32) are given in Table VIII.

For the multipole moments and mean polarizability of H20, we make the ap-

proximation

M(roe., ro,,b , ®) = M °°° + M1°°%,,. + M°l°ro,,b + Mll°roe. roe . + M 0010, (33)

where M is a component of either the dipole moment, the quadrupole moment, or

the mean polarizability. The parameters in Eq.(33) are determined by fitting the

data from Table I and are given in Table IX.

To determine the dependence of the dispersion coefficient on the H2 0 geome-

try, we invoke the Slater-Kirkwood approximation 2s and the geometric mean rule.

The $1ater-Kirkwood approximation gives the HzO-H_O dispersion coeffcient as a

constant times _s/_, while the geometric mean rule gives the H20-H2 dispersion

coeffcient as the geometric mean between the H20-H20 and H2-H_ coeffcients.

Thus we take the dispersion coefficient to be proportional to _s/4 and multiply

the expression of Eq. (32) by the ratio of the 3/4 power of the mean polarizability

computed from Eq. (33) and the equilibrium value of 9.35 a0s.

We now turn to the remaining ingredients of fay'. Before we proceed we need

to specify the switching function s in Eq.(7). This function is designed to correct

for deficiencies in the potential when the H2 bond is greatly stretched. Thus we

write

s = ._/(1 + J), (34)

with

= - ,")1. (35)

13



Our procedure to determine fay will be to guess values for the nonlinear parameters

e, d, a °, and 7"a, and then invert Eq. (7) and solve for the multiplicative correction

function. This function is then fitted, and then the four nonlinear parameters

defining the numerically determined fsv are adjusted until a satisfactory fit is

obtained.

We will expand the multiplicative correction function as follows:

fSV _ $v

pqmrrd

(36)

where vpe,_,sv is a yet to be determined function and Av_,_, n, is an angular function.

The prototype angular function is 20

= .,...,.,,,.,, (37)

where Yp,_ is a spherical harmonic, and _(_) is a Wigner rotation matrix element.S°a" Fl_ yrD,#

These angular functions are orthogonal, but are comphx. This implies reIations

between the expansion coefficients, as/sv is real. Since it can be easily shown that

y/./t --

A;e,r,,,_' = (-1) Apq-,,_-,.,, (38)

we can restrict the sum in Eq. (36) to m > 0, m' unrestricted, or m = 0, m' _> 0,

and take the real part of the angular functions. Of the real angular functions with

p, q <_ 2, we have chosen to use the nine angular functions given in Table X. It

should be noted that for convenience, the normalization factors for these functions

have been omitted.

An important simplification is that since we are assuming as input Cartesian

coordinates the angular functions can be evaluated without trigonometric functions.

This is because these functions are contained in the rotation matrices. In particular,

co. Z= (39)

sin2/3 cos(27) = (RH_°) 2 -- (/_o)2, (40)

2 - 7 ' (41)

14



and

,42,
We now turn to the functions svu_q,_,_,. We will first fit the data of Table IV,

i.e. those points with both the H2 and H20 at their equilibrium geometry. For this

fit, the svu_,q,,_m, axe dependent only on the variable r, and we expand them as

SV

i= 1,3

(43)

FoUowing the principles of Hamilton and Light, sl we set the exponential parameter

a sia equal to (1/dSia) z. In the fitting procedure, for a fixed combination of the six

noalinear parameters, r sia, d sia, d, _, a', and r', we determine the linear parameters

vpq_,_,sv i that minimize the rms error of the multiplicative correction function fsv

The points in this fit are weighted by the inverse of the number of points for a given

relative orientation, e.g. for geometry z - zz the weight was 1/9 and for geometry

z + zz, the weight was 1/8. Then the nonlinear parameters are adjusted to minimize

the rms errors in the fit to the potential subject to the constraint that r sa > 0.

After several trials it was determined that the damping parameter d would not be

large enough to provide adequate damping if it was allowed to vary freely, so it was

constrained to be always greater than four. This became apparent when Ha was

allowed to be distorted away from equilibrium. The switching parameters in Eq.

(35) are also adjusted, considering data with the Ha bond stretched. The resulting

parameters are given in Table XI. The weighted rms error in the fit to the fs¢ is

7.2 x 10 -s, and the tmweighted rms error in V i'* is only 0.13 mEh. A total of 78

points are included in this fit. The largest relative errors occur in attractive regions

of the potential, but since the magnitude of the potential is very small there and we

plan to use this potential for dynamics calculations at high temperatures, we made

no attempt to improve the fit to these features by weighting the points differently.

We next consider fitting the data in Table V, which has includes several values

of the Hz bond length. Here we will proceed in a multi-step process. First of

all, we proceed in a similar manner as described above for the data of Table IV,

and determine functions sv vpq,n,_,i(ra, ). The currentvi, q,nm,(r,,,) and coeflidents sv

procedure differs from that used above in that the nonlinear parameters are fixed

at the values determined above, and the data of Table V is not used directly. Since

15



slightly different values of H2 bond lengths were used for the different geometries,

we synthesize a consistent set of data by taking all points in Tables IV and V which

differ only in the value of the H2 bond length, and interpolate to a common group

of bond lengths. These lengths are 1.2, 1.401, and 1.6 a0, and the interpolation was

carried out by fitting the points to a polynomial in 1/r,,, which exactly reproduced

the input data. This was only carried out for geometries and values of r where there

were at least three different values of the H2 bond length. This yields 35 data points

per rz, which were used to determine the 27 parameters _psv,,_,_,_(rx, ). These fits to

fsv gave rms errors in V i'_ from 22_Eh to 62_Eh. Then the resulting parameters

were fit to the form

SV
_)pqmm' i(rrl,) -- _ "SVvp_,_,,,ij(r., --1.401ao)J.

j=O

(44)

This gives a trial set of expansion coefficients, however it does not exactly reproduce

the fit to the data of Table IV, since only 35 rather than 78 points are used for the

1.401 04 data. We correct this by replacing _psv,,,,,i0 with the _psv,a,,, _ of Table XI.

This is akin to separately fitting the function and its derivatives, s2 The parameters

for Eq. (44) are given in Table XII. The overall rms error for the 156 data points

in Tables IV and V with H2 bond length less than 3 a0 using these parameters is

only 0.64 mEh.

So far we have not discussed the inclusion of the switching function in Eq.

(7). The need for such a function can be seen from considering orientations with

the H2 on the z axis, such as the z + yz orientation shown in Fig. 3. The ab

ird_io calculations predict that as rs 2 and r increase with the H to O distance fixed,

V i"t decreases approximately linearly. However, this can not continue indefinitely

because eventually the further H will no longer interact with the fixed Hs O fragment

and the interaction energy will become constant. This is exactly what the sum of

palrwise potentials, V °, predicts, while fsv will continue to predict a decrease.

Thus we switch to the V ° potential for re, greater than about 2.5 a0.

We now turn to the data of Table VI, which has the H2 at its equilibrium bond

length and the H20 at distorted geometries. In principle, one could continue the
-SV

procedure used to fit the data in Table V and expand the coefficients vpq,_,r_,ij in

terms of the H20 internal coordinates, however this would require a vast increase

in the number of ab initio energies. We thus proceed in the following manner: the
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potential as it stands has a dependence on the H20 internal coordinates through V °

and V LR, and we ask how well this reproduces the ab initio calculations. Thus we

performed a series of test calculations with displaced H20 geometries and compared

to the predictions of the fit. The results of the test calculations are given in Table

VI, and the comparison between the ab initio and predicted values for V i'_ are

given in Table XIII. Of the twelve entries in this table, eight have differences less

than 1 mEh (often much less), three have differences between 1 and 2 mEh, and the

final point, which is high-energy, has a difference of 8 mEh, which is only 6% of the

interaction energy. Thus although the fit to this data is not as good as the fit to

the data in Tables IV and V, the degree of agreement is fair, and thus we conclude

that the analytical representation is satisfactory as it stands for describing small

H2 O distortions with H2 at equilibrium.

We also have not yet considered points where both the H2 and H20 are dis-

placed from equilibrium, however, since the analytical representation does a good

job when either molecule is at its equilibrium geometry, and furthermore no param-

eters are explicitly required to represent the H20 distortions, we will assume that

the present analytical representation will describe these points accurately as well.

Therefore we propose that the analytical representation as it stands will provide a

realistic representation of the H2 +H20 interaction potential.

IV. Discussion and Conclusions

We have produced an analytical representation of the H2 +H20 potential energy

surface suitable for dynamics calculations. All nine internal degrees of freedom are

included, and the overall rms error between the 156 ab ini_io points in Tables IV and

V and the function is only 0.64 mEh. This is obtained with a function containing a

total of 139 parameters, of which 87 are obtained from the 156 points and 52 which

are obtained from other data.

We have computed the minimum energy for the H2 +H20 van der Waals com-

plex predicted using this potential. The depth of the minimum is quite small, 0.43

kcal/mol, which is on the same order of the overall rms error in the fit, 0.40 kcal/mol,

so the reliability of the prediction can be questioned. However, the rms error for

attractive points is only 0.08 kcal/mol, so it is likely that the prediction of the van

der Waals complex is reasonable. The geometry of the minimum is asymmetric,

but very close to a C2_ symmetry structure, with the H_ pointing toward the H20
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center of mass. The angle between the H2 bond and the H20 plane is about 151 °,

with the H atoms pointing away from each other. The value of r at the minimum is

5.81 a0 and the geometries of the H2 and H20 are close to their equilibrium values.

The analytical representation of the H2 +H2 0 potential energy surface proposed

here has several desirable features. It represents the ab initio interaction energies

well, and does so with relatively few parameters. In addition it is well behaved as H2

dissociates, so it can be used to study three-body recombination. From a practical

point of view, it is useful to observe that most of the least squares parameters are

linear parameters, so it is easy to determine them. Of the remaining parameters,

the analytical representation is not a sensitive function of their exact values, so it

is not difficult to obtain reasonable values for them. From a computational point

of view, the potential should be reasonably efficient to evaluate, for a minimum

number of special functions are required. In particular, the only trigonometric

function used is arc cosine, to determine the HOH angle for the H20 fragment

potential. From a conceptual point of view, a major advantage of the present

analytical representation is that it was not necessary to explicitly include parameters

describing small distortions of the H2 O molecule. This greatly reduces the number

of ab ini_io calculations required to determine the interpolating function.
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Table I. Properties of H20 fragment. For H20, the O is at the origin and the H

atoms lle in the zz plane. All values quoted are in atomic units. The numbers in

parenthesis are experimental results.

H20 geometry

EQ B SS AS

4-ZH 1.431545 1.561 1.515 1.418

ZH. --1.10942 --1.013 --1.233 --0.9053

ZH_ --1.10942 --1.013 --1.233 --1.315

E ACPF -76.34202 -76.33813 -76.33309 -76.33295

#. -0.7504 -0.6974 -0.7762 -0.7502

(-0.7268 _) (-0.6719 b) (-0.7529 b) (-0.7258 _)

o. o. o. o.o3oo

O. O. O. (0.0304 b)

O_ 1.874 2.382 1.927 1.827

(1.96d)

0;_ -1.757 -1.875 -1.922 -1.759

(-1.86 a)

01, O. O. O. 0.3904

_" 9.35 9.79 10.39 9.36

(9.642f)

From Ref. 11.

b Computed using the data from Refs. 11 - 13. See text for details.

¢ Calculated with the origin at the center of mass. O.z is computed by requiring

that the qu_drupole moment tensor be traceless.

d From Ref. 14.

• Mean polarizability computed using the [4+ls 3+lp 2+ld/3+ls 2+lp] basis set

and methods of Ref. 8.

! From Ref. 15.

21



Table II. Energies for noninteracting H2+H20 + 77 Eh. The shortest atom-atom

distance between the fragments is at ]east 20 a0.

r_i 2 H2 0 b E ACPF rail, H2 0 b E ACPF

1.401 B -0.51168 1.6 EQ -0.50982

1.401 SS -0.50670 1.8 EQ -0.49633

1.401 AS -0.50648 2.0 EQ -0.47935

1.2 EQ -0.50556 2.2 EQ -0.46128

1.401 EQ -0.51555 10.0 EQ -0.34187

H_ bond length.

H20 geometry.
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Table Ill. Energies for H+H+H20 + 77 Eh. All energies and distances are in atomic

units.

R_) H E ACPF ROH E ACPF

geometry z - zz b geometry z + zz

1.50 -0.23800 2.7000 --0.27793

1.75 -0.28452 3.2000 -0.31222

2.00 -0.29341 3.7188 -0.32870

2.25 -0.29812 3.9688 -0.33305

2.50 -0.30628 4.2188 -0.33605

3.00 -0.32296 4.4688 -0.33810

3.50 -0.33308 4.7188 -0.33950

4.00 -0.33816 5.2188 -0.34105

5.00 -0.34149 5.7188 -0.34168

10.00 -0.34187 6.2188 -0.34190

7.2188 -0.34196

Distance of closest H to O in 1_20. The other H is 20 a0 from the O.

b See text for geometry code.
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Table IV. Energies for H2+H20 +77 Eh with H2 and H20 at their equilibrium

geometries. All energies and distances are in atomic units.

RSx EAcP; Rox E AcPF

geometry z -- zx

2.00 --0.39854 2.5

2.25 --0.44006 3.0

2.50 --0.46767 3.5

2.75 --0.48595 4.0

3.00 --0.49787 5.0

3.50 --0.51022 6.0

4.00 -0.51479 7.0

5.00 --0.51650 20.0

10.00 --0.51564

geometry z + yz

2.2 -0.42505 2.5

2.4 -0.45114 3.0

2.6 -0.47025 3.5

2.8 -0.48412 4.0

3.0 -0.49410 5.0

3.2 -0.50119 6.0

3.5 -0.50807 7.0

4.0 -0.51361 20.0

5.0 -0.51616

I0.0 -0.51561

geometry z -- zy

2.5 -0.36970 2.5

3.0 -0.45060 3.0

3.5 -0.48848 3.5

4.0 -0.50480 4.0

5.0 -0.51408 5.0

6.0 -0.51539 5.5

geometry

geometry

geometry

z+zx

-0.40682

-0.46738

-0.49552

-0.50775

-0.51467

-0.51555

-0.51558

-0.51554

Z -- ZZ

-0.36057

-0.44664

-0.48662

-0.50384

-0.51378

-0.51527

-0.51547

-0.51554

z +zx

-0.22643

-0.38570

-0.45984

-0.49283

-0.51267

-0.51486
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7.0 -0.51552 6.0 -0.51561
20.0 -0.51555 6.5 -0.51582

7.0 -0.51583
20.0 -0.51555

geometry z + zy geometry z + yz

2.5 -0.28418 2.5 -0.34296

3.0 -0.40844 3.0 -0.43577

3.5 -0.46952 3.5 -0.48047

4.0 -0.49730 4.0 -0.50060

5.0 -0.51388 5.0 -0.51307

5.5 -0.51556 6.0 -0.51521

6.0 -0.51604 7.0 -0.51552

7.0 -0.51601 20.0 -0.51555

20.0 -0.51555

geometry z + zy geometry z + zy

2.75 -0.40140 4.00 -0.50137

3.00 -0.43867 4.50 -0.50980

3.25 -0.46443 5.00 -0.51334

3.50 -0.48190 10.00 -0.51555

Distance between 0 and nearest H if the H2 bond points to the O, otherwise the

distance between 0 and the H2 center of mass.
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Table V. Energies for H2+H20 + 77 Eh with H20 at its equilibrium geometry and

H2 displaced from equilibrium. All energies and distances are in atomic units.

R_X _I2 E AcPF R_x _I, EACPF

geometry z - zz

2.00 1.6 --0.41306

2.00 1.8 --0.41768

2.00 2.0 -0.41642

2.00 2.2 -0.41173

2.25 1.6 -0.44747

2.25 1.8 -0.44575

2.50 1.2 -0.44861

2.50 1.6 -0.47019

2.50 1.8 -0.46416

3.00 1.2 -0.48445

3.00 1.6 -0.49532

geometry z + zz

2.5 1.8 --0.40498

3.0 1.2 --0.45385

3.0 1.6 --0.46488

3.5 1.2 --0.48448

3.5 1.6 --0.49079

geometry z - zy

2.5 1.2 -0.35527

2.5 1.6 -0.37009

3.0 1.6 -0.44546

3.0 1.2 -0.44091

3.5 1.2 -0.47941

3.5 1.6 -0.48221

geometry z + zy

2.5 1.6 -0.29103

geometry z + zy

2.75 1.601 -0.39807

2.75 1.201 -0.39044

3.00 1.601 -0.43342

3.00 1.201 -0.42923

3.25 1.601 -0.45831

3.25 1.201 -0.45554

3.50 1.601 -0.47547

3.50 1.201 -0.47310

4.00 1.601 -0.49496

4.00 1.201 -0.49229

geometry z --zz

2.5 1.6 --0.35863

2.5 1.2 --0.34837

3.0 1.2 --0.43792

3.0 1.6 --0.44049

3.5 1.2 --0.47799

3.5 1.6 --0.47989

geometry z + zz

2.5 1.6 -0.22158

2.5 1.2 -0.21865

3.0 1.6 -0.37847

3.0 1.2 -0.37893

3.5 1.2 -0.45227

3.5 1.6 -0.45243

geometry z + yz

3.0 1.6 -0.42983
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2.5 1.8 -0.29236 3.0 1.2 -0.42693

2.5 2.0 -0.29171 2.5 1.2 -0.32995

2.5 2.2 -0.29083 2.5 1.6 -0.34194

3.0 1.2 -0.39687 2.5 1.8 -0.33464

3.0 1.6 -0.40586 3.5 1.6 _0.47373

3.5 1.2 -0.45984 3.5 1.2 -0.47190

3.5 1.6 -0.46419

geometry z + yz geometry z + yz

2.2 1.601 -0.43573 2.8 1.601 -0.48406

2.2 1.801 -0.43687 3.0 1.201 --0.48000

2.2 2.201 -0.43270 3.0 1.601 -0.49231

2.4 1.601 -0.45703 3.2 1.201 -0.48839

2.4 1.801 -0.45402 3.2 1.601 --0.49820

2.6 1.601 -0.47265 3.5 1.201 -0.49648

2.6 1.801 -0.46658 3.5 1.601 -0.50394

2.8 1.201 -0.46814 4.0 1.201 -0.50299

4.0 1.601 -0.50855

Distance between O and nearest H if the H2 bond points to the O, otherwise the

distance between O and the H2 center of mass.
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Table VI. Energies for H2+H20 + 77 Eh with H2 at its equilibrium geometry and

H2 0 displaced from equilibrium. All energies and distances are in atomic units.

R_) X E ACPF R_) x E ACPF

geometry z + zz, AS geometry z - zz,

3. -0.37285 3. -0.43794

4. -0.48282 4. -0.49483

geometry z + zz, SS geometry z - zz,

3. -0.36676 3. -0.44101

4. -0.48045 4. -0.49566

geometry z + zz, B geometry z - zz,

4. -0.48928 3. -0.44223

3. -0.38958 4. -0.49963

AS

SS

B

* Distance between O and nearest H.
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Table VII. Parameters for non-bonding pair potentials in atomic units.

H 1.618 2.085

O 1.113 1.384
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Table VIII. Coefficients for bond-length dependence of H2 long-range potential pa-

rameters in atomic units.

I] -1.26998 26.9001 9 0.882033

± -0.176017 3.69209 9 0.715359

2.85570

1.8981

1 1.17467 1.72657 0.449685 7.26091
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Table IX. Parameters for the vibrational dependence of the H20 electrostatic prop-

erties. See Eq. (33).

M M °°° M 10° M °1° M 11° M °°1

Pz -1.034 -0.1463 -0.1463 0.05971 0.3387

p= 0.000 0.1194 -0.1194 0.000 0.000

®_= 6.246 -5.581 -5.581 3.307 2.741

®_I, 2.085 -1.151 -1.151 0.2764 -0.3180

e_z 0.000 1.552 -1.552 0.000 0.000

-11.97 7.545 7.545 -2.033 0.3624

a calculated with the origin at the center of mass of the H20.
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Table X. Angular expansionfunctions.

no. p q rrt tit I Apqmm,

i 0 0 0 0 1

2 0 1 0 0 cos

3 0 2 0 0 3 cos2_ - 1

4 2 0 0 0 3 cos20 - 1

5 2 1 0 0 cos#(3 cos20 - 1)

6 2 2 0 0 (3_os_- 1)(3cos20- 1)
7 0 2 0 2 sin2_ cos(27)

8 2 2 2 2 sin28cos4(_/2) cos 2(a +7)

9 2 2 2 -2 sin2Ssin4(_/2)cos 2(a -'7)
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Table XI. Parameters for the fit of Eq.(43) in atomic units.

p q m m t SV SVVpqrftTn' 1 Vp_Tnrn' 2

0 0 0 0 8.0288800E-01 4.9208551E-02

0 1 0 0 3.1244004E-01 -9.0318002E-03

0 2 0 0 -3.2853972E-02 1.7373376E-03

2 0 0 0 -1.2802147E-01 -7.8669031E-03

2 1 0 0 -I.0989261E-02 1.8603093E-03

2 2 0 0 1.3347056E-02 -2.8587331E-04

0 2 0 2 -1.7133020E-02 5.8373975E-04

2 2 2 2 6.0174056E-02 2.5171433E-04

2 2 2 -2 -1.4148450E-01 1.5470255E-02

rsa dsa d _ a" r"

O. 1.72 4.0 0.562 2.5 3.0

-1.9085039E-03

-3.9700638E-04

-4.6648941E-04

- 1.4491438E- 03

1.5477987E-05

-6.2784176E-05

2.0297984E-04

-6.3496729E-05

-3.9044009E-04

33



Table XII. Parameters for the fit of Eq.(44) in atomic units.

p q 7rt _r -SV -SVDpq_m' l j Dpqm,n' 2j

j=l

0 0 0 0 -7.8409154E-01 5.7772398E-02

0 1 0 0 -2.8981900E-02 -6.4440092E-03

0 2 0 0 -2.7464954E-02 5.4274961E-03

2 0 0 0 -1.7779328E-01 -2.2780539E-02

2 1 0 0 -3.3807402E-02 1.3647800E-03

2 2 0 0 2.2092459E-02 -8.8503368E-04

0 2 0 2 2.6905372E-02 -8.4002092E-03

2 2 2 2 8.2026964E-02 1.2664571E-04

2 2 2 -2 -2.3292928E-01 2.3490078E-02

j = 2

0 0 0 0 -2.6892232E-01

0 1 0 0 1.7217490E-01

0 2 0 0 1.1942930E-01

2 0 0 0 -2.0629499E-01

2 1 0 0 1.8435082E-01

2 2 0 0 1.0729963E-01

0 2 0 2 -4.1360738E-02

2 2 2 2 1.4759330E-02

2 2 2 -2 -3.7665040E-02

-3.7369693E-02

-1.5812969E-02

-1.2523267E-02

-1.1532656E-02

-2.7919859E-02

-6.8764652E-03

3.7667774E-03

1.0189559E-03

-2.4012130E-03

-5.2699265E-03

1.8197968E-04

7.8214372E-05

-2.5086883E-04

-4.6390793E-04

4.5817703E-04

2.6707433E-03

2.8665551E-05

-2.2725534E-03

2.9057342E-03

1.5763320E-03

2.4867362E-03

-5.2182780E-04

4.9524319E-03

1.2178887E-03

-7.1684775E-04

-9.5442150E-05

1.2519036E-03
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Table XIII. Comparison of analytical representation to the ab initio data of Table

VI. All energies are in mEh.

win_

r (a_) H20 _ geometry ab initio fit

3. B z + zz 122.1 114.1

3. SS z + zz 139.9 139.2

3. AS z + zz 133.6 134.4

4. B z + zz 22.41 21.08

4. SS z + zz 26.25 24.36

4. AS z + zz 23.66 23.61

3. B z - zz 69.45 70.10

3. SS z - zz 65.69 67.25

3. AS z - zz 68.54 68.88

4. B z - zz 12.05 11.99

4. SS z - zz 11.04 11.20

4. AS z - zz 11.66 11.61

b H20 geometry.
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Figure captions:

Fig. 1: Comparison of V ° to the ab initio data of Table III. Both have 0.01 Eh

added to them. The solid line and o are for the z + zz orientation and the dashed

line and a are for the z - zz configuration.

Fig. 2: Comparison of the fit to the H2 polarizability to the ab initio data from

Ref. 25. The solid line and o are for the IIcomponent and dashed line and a are for

the I component.

Fig. 3: Comparison of V int to data for z + yz orientation. The variable r changes

with rm2 to maintain a fixed RoB distance. The curves are for Roll=2.2, 2.4, 2.6,

2.8, 3.0, 3.2, 3.5, and 4.0 ao.
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Theoretical Characterization of the Potential Energy Surface

for

H-FO2 ---+HO_ ---+HOq-O

III. Computed Points to Define a Global Potential for H -q- 02

Stephen P. Walch _ and Ronald J. Duchovic`*

ELORET Institute

Sunnyvale, Ca. 94087

Abstract. Recent calculations on the H + O2 surface have focused on the minimum

energy path region of the surface ( J. Chem. Phys., 88, 6273(1988) I ) and on

the saddle point region for H atom exchange via a T-shaped HO2 complex ( J.

Chem. Phys., 91, 2373(1989) II ). In this paper, additional computed points are

reported which, when combined with previously reported points, permit a global

representation of the H _- 02 and HO2 regions of the potential energy surface. The

calculations are complete active space SCF/ externally contracted configuration

interaction (CASSCF/CCI) using the same wavefunction as in II. The new points

characterize the potential for all angles of approach ranging from perpendicular to

co]linear with the OO bond, for H to center of mass of 02 distances ranging from

5.0 a0 in to a distance corresponding to greater than 30 kcal/mol up the inner wall.

A new coUinear exchange saddle point is reported.

'*Mailing Address: NASA Ames Research Center, Moffett Field, CA 94035.



I. Introduction

The reaction

H + 02 --" HO_ ---+HO +0 (1)

is an important reaction in combustion. In addition, as part of a program to model

combustion processes important in the design of the high-speed civil transport, rate

constants for H atom diffusion in air are needed. Computation of these rate con-

stants requires a global potential for H + O2. Recently, calculated points have been

reported for the minimum energy path (MEP) region of the potential energy surface

for reaction (1) [1]. (Hereafter, referred to as I.) Also, additional calculations have

been reported which characterize the pathway for exchange of an H atom of HO2

via a T-shaped HO2 saddle point [2]. (Hereafter, referred to as II.) In the present

paper, additional points are computed which, together with the points previously

computed in II, provide the data needed to produce a global representation of the

H + 02 interaction.

The computational method is discussed in Section II, the results are presented in

Section III, and the conclusions are given in Section IV.

II. Computational Details.

The coordinate system for these calculations is the same as that used in II. The

coordinates used are the OO distance (roo), the H to center of mass of O2 distance

(rH-oo), and the angle (0) between a line connecting H to the center of mass of O2

and a normal to the OO bond at the bond midpoint ( 0 is 0 ° for T-shaped H-O2

and 90 ° for collinear H-O2).

The calculations were carried out in the same way as in I. A problem which was

encountered in designing the calculations in II was that in the vicinity of the T-



shaped HO2 saddle point a 5al2a" CASSCF active space was needed while in the

remainder of the surface a 4a_la '' active space was more appropriate. The way in

which this was handled was to use the larger active space for 0 = 0 °, 10 °, and 20 °

and the smaller active space for larger 0 values. In the current calculations the

smaller active space was used for all points except those having 0 = 0 °, 10 °, and

20 ° and rH-O0 smaller than the values considered in II. The orbitals obtained using

these two active space sizes are similar enough that there has been no indication

of discontinuities in the subsequent CCI energies which are CASSCF/CCI with a

5a'2a" CASSCF wavefunction as reference space for the CI. All of the calculations

were carried out in C, symmetry. Some of the calculations in II were carried out in

C2¢ symmetry and where these were combined with the present calculations this is

indicated in the tables.

Most of the calculations were carried out with the [4s3p2dlf/3s*2pld] basis set

described in II. As discussed in II, the notation s ° indicates that the contraction of

the first natural orbital for H is based on the atomic SCF orbital, while in the original

basis of AlmlSff and Taylor [3] this contraction is based on natural orbitals from

a CI calculation on H2. Additional calculations were carried out along the MEP

defined with the [4s3p2dlf/3s*2pld] basis set using a larger [5s4p3d2f/4s'3pd2d]

basis set [3].

Calculations were carried out for 0 values of 0 ° through 90 ° in 10 ° increments.

For each 0 value a grid was carried out over rH-O0 and too to obtain minimum

energy cuts at fixed 0 values.

The calculations were carried out on the NASA Ames Cray Y-MP/832. These

calculations used the MOLECULE[4]-SWEDEN[5] system of programs.

III. Results and Discussion

The computed energies are given in Table AI of the appendix. In order to aid
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in visualizing the surface, the energy was evaluated along fixed 0 minimum energy

cuts. For each 0 and rH-oo, roo was varied and the energy at the minimum

and the optimal too are given in Table I. These minimum energy cuts are shown

graphically in Figs. 1 and 2.

A number of features of the surface are evident in Figs. I and 2. These features

include a very small entrance channel barrier, a minimum _ 51 kcal/mol below H +

02, a T-shaped(0 = 0 °) H exchange saddle point _ 13 kcal/mol below H + 02, and

a coUinear(0 = 0 °) H exchange saddle point _ 9 kcal/mol above H + 02. It is also

evident from Figs. 1 and 2 that for each 0 value there is a maximum and subsequent

minimum as rH-oo is decreased. This leads to additional stationary points which

are maxima on the global surface for 0 = 0 ° and 90 °. In addition to these features

there is also an OH + O product channel which is discussed below. The MEP for

this process corresponds approximately to increasing roo while varying the other

two geometrical parameters.

In order to define the MEP for the reactants channel, polynomial fits ( six-term

quadratic in roo and 0) were obtained at each r_-oo distance using the three

0 values nearest the minimum and three values of roo (9 points). At the HO2

minimum a ten-term quadratic polynomial in all three coordinates was obtained

to define the stationary points. These results are given in Table II. Additional

calculations were carried out along this MEP using the [Ss4p3d2f/4s*3p2d] basis

set. These results are also given in Table II.

In Fig. 3, the energy along the MEP with the [4s3p2dlf/3s*2pld] basis set is

compared with the energy along the MEP of I (using the basis set of I). Both

curves are referenced to the respective H + O2 asymptotic energy, therefore they

coincide at large r_-oo. From Fig. 3 it is seen that the curves essentially coincide

up to rH-oo _ 3.5a0. For shorter rH-oo the comparison is more difficult since
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the MEP of I was determined on a courser rH-O0 grid than in the present work.

For I only the energy at the minimum is shown near the bottom of the well. The

saddle point geometries and relative energies for the H-O2 entrance channel saddle

point and HO2 minimum are given in Table III. Here it is seen that the geometry

at the HO2 minimum is in good agreement with that obtained in I (maximum

error is 0.02 a0 in roll) but the H-O2 weU depth is 1.9 kcal/mol smaller with the

[4s3p2dlf/3s*2pld] basisset and 0.2 kcal/mol smaller with the [5s4p3d2f/4s*3p2d]

basis set.The H-O2 entrance saddle point geometry differsmore between the two

calculations(maximum error0.18 a0 in rHo, but the differencein the barrierheight

isonly 0.04 kcal/mol for the largerbasis set).

Using the computed HO2 well depth, the computed HO2 and O2 vibrational

frequencies from I, and the experimental H atom AH_ of 51.6 kcal/mol [6], gives

a AH_ of 5.3 kcal/mol for HO2. This value may be compared to the value of

3.5+0_is° kcal/mol recommended by Benson [7]. Using the error limits quoted by

Benson, the error in the computed HO2 well depth is between 0.8 and 2.3 kcal/mol.

This error range is quite reasonable for the basis set and level of calculation used

here, and thus these calculations are consistent with the AH_ for HO2 recommended

by Benson.

Fig. 4 and Fig. 5 compare the variation of 0 and roo along the MEP as a function

of rH-oo for the present work and the calculations in I. The general features of the 0

and roo variations are similar but there are some significant variations in detail. It

is interesting that these geometrical parameters seem to coincide at the stationary

points but vary in between. This may result from the non-rigorous method of

,Zefining the MEP which is used here. It should be noted that the MEP as defined

here is mainly for purposes of visualizing the surface. A more accurate definition of

these features must await the development of an accurate analytic representation
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of the surface.

Table IV shows three fixed 0 minimum energy cuts in which r/_-oo is varied

for each too. These cuts are for motion orthogonal to the reactant channel and

represent the intersection of the product channel MEP and the HO0 minimum.

These curves are plotted in the inset to Fig. 1.

Fig. 1 also shows higher energy regions of the surface corresponding to 0 values

near 0 ° and 90 °. It is evident from Fig. 1 that there are saddle points for H atom

exchange along cuts with 0 -- 0 ° and 90 °. For these two choices of 0 the actual

symmetry is C2_ and the barrier (maximum on the surface) prior to the saddle

point corresponds to a curve crossing (2BI _ 2A2 for 0 -- 0 ° and 2E- --_ 2H for fl

= 90°). Table III also shows the saddle point geometries and barriers for the two

exchange saddle points. Here it is seen that the T-shaped exchange saddle point is

13 kcal/mol below H + 02, while the coUinear saddle point is 9 kcal/mole above

H + 02. Both of these barriers are below the OH + O product channel. Given

the barriers to dissociation for 0 = 90 ° and also possible centrifugal barriers, it is

possible that a complete circular motion of H around 02 could occur for energies

greater than 9 kcal/mol. In any case, the T-shaped H exchange saddle point is

accessible to all H + O2 collisions, since it is below the H + 02 asymptote. It is

anticipated that these previously uncharacterized features of the H + O2 potential

will have significant dynamical consequences.

IV. Conclusions.

Computed points are reported which_ when combined with previously published

points from If, permit a global representation of the H + 02 and HO2 regions of

the potential energy surface for the reaction:

H + 02 --* HO_ ---, HO + 0
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The new points characterizethe potential for all anglesof approach of H to 02

and for the inner repulsive wall region. In addition to connecting the points for

the T-shaped H-02 exchange saddle point ( previously characterized in II ) to the

reactant minimum energy path and inner wall regions, this work also characterizes

a new coUinear H-O2 exchange saddle point which is only 9 kcal/mol above H +

02. It is anticipated that these new features of the potential energy surface will

have significant dynamical consequences.
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Table I. H + 02 Energy Along Fixed (9 Cuts.

rH-O0 rO-O 8 Energy _E

1.4 2.878 0.0

1.2 3.101 0.0

-0.46948

-0.44941

5.0 2.28 10.0

4.5 2.28 10.0

4.0 2.28 10.0

3.5 2.283 10.0

3.0 2.335 10.0

2.5 2.603 10.0

2.0 2.627 10.0

1.8 2.670 10.0

1.6 2.745 10.0

1.4 2.903 10.0

1.2 3.164 10.0

-0.46208

-0.45963

-0.45435

-0.44366

-0.42631

-0.45009

-0.48636

-0.49069

-0.48507

-.46851

-.44622

1.09

2.62

5.94

12.64

23.53

8.61

-14.15

-16.87

-13.34

-2.85

11.04

5.0 2.28 20.0

4.5 2.28 20.0

4.0 2.28 20.0

3.5 2.300 20.0

3.0 2.412 20.0

2.5 2.545 20.0

2.2 2.509 20.0

-0.46254

-0.46078

-0.45737

-0.45235

-0.45429

-0.48478

-0.50633

0.80

1.90

4.04

7.19

5.97

-13.16

-26.68



2.0

1.8

1.6

1.4

1.2

2.594

2.664

2.802

3.060

3.653

20.0

20.0

20.0

20.0

20.0

-0.50976

-0.50461

-0.48671

-0.45957

-0.43836

-28.83

-25.60

-14.37

2.66

15.97

5.0

4.5

4.0

3.5

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

2.28

2.28

2.284

2.324

2.444

2.494

2.521

2.543

2.555

2.557

2.666

2.974

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

-0.46308

-0.46227

-0.46168

-0.46479

-0.48378

-0.49779

-0.51274

-0.52515

-0.53097

-0.52470

-0.50064

-0.45961

0.46

0.97

1.34

-0.61

-12.5

-21.3

-30.7

-38.5

-42.1

-38.2

-23.1

2.64

5.0

4.5

4.0

3.5

3.0

2.8

2.28

2.28

2.294

2.36

2.487

2.516

40.0

40.0

40.0

40.0

40.0

40.0

-0.46329

-0.46315

-0.46499

-0.47546

-0.50753

-0.52402

0.33

0.41

-0.74

-7.31

-27.4

-37.8
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2.6

2.4

2.2

2.0

1.8

5.0

4.5

4.0

3.5

3.0

2.8

2.6

2.4

2.2

2.0

5.0

4.5

4.0

3.5

3.0

2.5

2.2

5.0

2.530

2.528

2.523

2.533

2.648

2.28

2.28

2.357

2.416

2.435

2.537

2.515

2.472

2.405

2.303

2.28

2.28

2.313

2.491

2.559

2.404

2.252

2.28

40.0

40.0

40.0

40.0

40.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

70.0
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-0.53803

-0.54451

-0.53653

-0.50476

-0.43845

-0.46262

-0.46208

-0.46450

-0.48006

-0.52048

-0.53564

-0.54252

-0.53321

-0.49595

-0.41303

-0.46076

-0.45806

-0.45677

-0.47462

-0.51669

-0.50224

-0.39683

-0.45805

-46.6

-50.6

-45.6

-25.7

15.9

0.75

1.09

-0.43

-I0.2

-35.6

-45.1

-49.4

-43.5

-20.2

31.9

1.91

3.61

4.42

-6.78

-33.2

-24.1

42.0

3.61



4.5

4.0

3.5

3.0

2.5

2.28

2.297

2.588

2.543

2.296

70.0

70.0

70.0

70.0

70.0

-0.45152

-0.44194

-0.45769

-0.49354

-0.43458

7.71

13.72

3.84

-18.66

18.34

5.0

4.5

4.0

3.5

3.0

2.5

2.28

2.28

2.255

2.674

2.503

2.222

80.0

80.0

80.0

80.0

80.0

80.0

-0.45545

-0.44514

-0.42539

-0.43334

-0.46114

-0.37282

5.25

11.72

24.11

19.12

1.68

57.1

5.0

4.5

4.0

3.5

3.25

3.0

2.75

2.28

2.28

2.28

2.723

2.617

2.493

2.352

90.0

90.0

90.0

90.0

90.0

90.0

90.0

-0.45456

-0.44269

-0.41797

-0.41288

-0.43737

-0.44634

-0.42450

5.80

13.25

28.77

31.96

16.6

10.96

24.7
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Table II. Computed MEP for H Atom Addition to 02.

rH-oo ro-o 0 Energy(bs 1a) Energy(bs 2 b)

10.0 2.28 (-0.46381)

5.0 2.28 37.4 (-0.46332)

4.60 2.28 40.6 (-0.46325)

4.5 2.28 39.5 (-0.46315)

4.0 2.30 43.2 (-0.46520)

3.5 2.41 49.6 (-0.48008)

3.0 2.54 52.7 (-0.52111)

2.8 2.55 52.8 (-0.53612)

2.6 2.52 47.2 (-0.54331)

2.49 2.52 43.5 (-0.54546)

2.4 2.51 41.3 (-0.54462)

2.2 2.52 36.1 (-0.53994)

0.0

0.31

0.35

0.41

-0.87

-10.21

-35.96

-45.38

-49.89

-51.24

-50.71

-47.77

-150.46219(-.47133) 0.0

-150.46134(-.47068) 0.41

-150.46110(-.47060) 0.46

-150.46287(-.47304) -1.07

-150.47626(-.48805) -10.49

-150.51830(-.53019) -36.9

-150.53274(-.54445) -45.9

-150.54244(-.55393) -51.8

-150.54415(-.55557) -52.9

-150.54393(-.55529) -52.7

-150.53760(-.54886) -48.7

" [4s3p2dlf/3s'2p] ANO basis set.

b [5s4p3d2f/4s,3p2d] ANO basis set.
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Table III. Stationary Points on the H _ 02 Surface.

H-02 HO2 H-02(0--0°) c H-O2(0=90 °)

roo 2.28 2.52

rH-oo 4.60 2.49

0 46.3 43.5

rOH 3.96 1.86

0I_ 118 104.2

E(bs 1) 0.35 -51.2

E(bs 2) 0.46 -52.9

r_o 2.29 2.52

r_H 4.14 1.84

0 'b 116.4 104.4

E b 0.5 -53.1

2.70

1.74

0.0

-13

2.51

3.06

90.0

9.2

a / HOO.

b values from reL I.

c from ref. II.
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Table IV. H + 02 Energy Along Fixed ® Cuts.

ro-o rH-O0 Energy 6E

2.4 2.410 40.0

2.5 2.410 40.0

2.6 2.412 40.0

2.7 2.415 40.0

-0.54100

-0.54436

-0.54341

-0.53944

-48.4

-50.4

-49.9

-47.5

2.4 2.228 30.0

2.5 2.212 30.0

2.6 2.199 30.0

2.7 2.176 30.0

-0.52560

-0.53031

-0.53050

-0.52758

-38.8

-41.7

-41.8

-40.0

2.4 2.599 50.0

2.5 2.614 50.0

2.6 2.630 50.0

2.7 2.646 50.0

-0.53967

-0.54251

-0.54116

-0.53693

-47.6

-49.4

-48.5

-45.9
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Figure Captions.

Fig. 1. Potential surface for H + 02. The figure shows ten fixed # minimum energy

cuts. For each rH-O0, roo was varied and the minimum energy is shown in the

figure. These cuts are for the reactant (H + 02) channel. The inset shows three

fixed 0 minimum energy cuts. Here rH-oo is varied for each too. These cuts are

for motion orthogonal to the reactant channel and represent the intersection of the

product channel MEP and the HOO minimum.

Fig. 2. Potential surface for H + 02. This figure shows the same information as

Fig. 1 in the format of a perspective plot.

Fig. 3. Comparison of energy as a function of rH-oo along the MEP from I and

the present calculations. For the present calculations results are shown with both

basis sets.

Fig. 4. Comparison of 0 as a function of rH-oo for the MEP from I and the present

work.

Fig. 5. Comparison of roo as a function of rH-O0 for the MEP from I and the

present work.
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Appendix. The appendix contains a table of all the computed CASSCF/CCI ener-

gies. The energies are in the form CCI(CCI +Q). Note that for the CCI + Q energies

-150. is not repeated. Thus, for the first point the CCI energy is -150.45491 and

the CCI+Q energy is -150.46381. Distances are in a0, angles are in degrees, and

energies are in EH.
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Table AI. H + 02 Long Range Points.

rH-O0 rO-O

I0.0 2.28

0 Energy

-150.45491(-.46381)

11.15 2.3 90.0

6.15 2.3 90.0

5.15 2.3 90.0

4.15 2.3 90.0

-150.45482 ( -.46385) _

.150.45364(-.46269) _

-150.44734(-.45656 )_

-150.41740(-.42687) _

5.0 2.28 90.0

4.5 2.28 90.0

4.0 2.28 90.0

.15o. 542(-.45456)
-150.43341(-.44269)

-150.40842(-.41797)

3.5 2.4 90.0

3.5 2.5 90.0

3.5 2.6 90.0

3.5 2.7 90.0

3.5 2.8 90.0

3.25 2.5 90.0

3.25 2.6 90.0

3.25 2.7 90.0

-150.38260(-.39467)

-150.39275(-.40517)

15o.398o3(-.41o83)
-150.39960(-.41281)

-150.39837(-.41206)

_15o.42224(-.43441)
-150.42481(-.43731)

- 150.42299 (-.43588)

3.0 2.4 90.0

3.0 2.5 90.0

3.0 2.6 90.0

3.0 2.7 90.0

.15o.43172(-.44341)
15o.43434(-.44632)

.1 o.43o21(-.44251)
-150.42044(-.43310 )

2.75 2.3 90.0

2.75 2.4 90.0

-150.41175(-.42306)

-150.41165(-.42325)
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2.75

2.75

5.0

4.5

4.0

4.0

4.0

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.0

3.0

3.0

3.0

2.5

2.5

2.5

2.5

2.5

2.5

2.6

2.28

2.28

2.28

2.3

2.4

2.28

2.3

2.4

2.5

2.6

2.7

2.8

2.4

2.5

2.6

2.7

2.1

2.2

2.3

2.4

2.5

2.28

2.28

90.0

90.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

80.0

70.0

70.0
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-150.40087(-.41273)

-150.38048(-.39260)

.150.44640(-.45545)

.150.43592(-.44514)

-150.41553(-. 42522 )

-150.41504(-.42483)

_150.40886(-.41950)

_150.39797(-.41069)

.150.40051(-.41324)

_150.41073(-.42345)

.15o.41696(-.42971)
_150.41991(-.43278)

_150.42030(-.43327)

_150.41872(-.43168)

-150.44633(-.45797)

-150.44927(-.46114)

.150.44627(-.45833)

-150.43848(-.45071)

-150.34869(- .35939 )

-150.36147(-.37237)

-15o.35636(-.36744)
-150.33626(-.34751)

- 150.30295(-.3143 7)

_150.44899(-.45805)

_150.44221(-.45152)



4.0

4.0

4.0

2.28

2.3

2.4

70.0

70.0

70.0

- 150.43188(-.44187)

-150.43181(-.44194)

-150.42845(-.43937)

3.5

3.5

3.5

3.5

3.5

3.5

2.28

2.3

2.4

2.5

2.6

2.7

70.0

70.0

70.0

70.0

70.0

70.0

-150.43284(-.44477)

-15o.43473(-.44677)
-15o.44153(-.45387)

-150.44479(-.45720)

-150.44536(-.45768)

-150.44456(-.45689)

3.0

3.0

3.0

3.0

2.4

2.5

2.6

2.7

70.0

70.0

70.0

70.0

.15o.47718(-.48871)
-150.48143(-.49310)

-150.48094(-.49270)

-150.47690(-.48865)

2.5

2.5

2.5

2.5

2.2

2.3

2.4

2.5

70.0

70.0

70.0

70.0

-150.41862 (-.42911 )

-150.42388 (-.43457)

-150.41739(-.42823)

-150.40149(-.41242)

5.0

4.5

2.28

2.28

60.0

60.0

-150.45167(-.46076)

-150.44871(-.45806)

4.0

4.0

4.0

3.5

3.5

3.5

3.5

2.28

2.3

2.4

2.28

2.3

2.4

2.5

60.0

60.0

60.0

60.0

60.0

60.0

60.0

-15o.44649(-.45649)
-150.44661(-.45673)

-150.44399(-. 45473 )

-150.45585(-.46717)

-150.45732(-.46875)

-150.46175(-.47358)

-150.46258(- .47461 )
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3.5

3.0

3.0

3.0

3.0

2.5

2.5

2.5

2.2

2.2

2.2

2.2

5.0

4.5

4.0

4.0

4.0

4.0

4.0

3.5

3.5

3.5

3.5

3.5

3.0

2.6

2.3

2.4

2.5

2.6

2.3

2.4

2.5

2.2

2.3

2.4

2.5

2.28

2.28

2.28

2.3

2.4

2.5

2.6

2.28

2.3

2.4

2.5

2.6

2.3

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0
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.15o.461o7(-.4731o)

-150.49059(-.50188)

-150.50007(-.51146)

-150.50446(-.51597)

-150.50480(-.51634)

- 150.48774(- .49838 )

-150.49144(-.50223)
- 150.48810(-.49898)

-150.38533(-.39542)

-150.38534(-.39559)

-150.37485(-.38521)

-15o.35665(-.367o7)

- 150.45354(-.46262)

-150.45276(-.46208)

-150.45418(-.46407)

-150.45427(-.46425)

.15o.45131(-.46179)

-150.44439(-.45534)

-150.43532(-.44663)

-150.46541(-.47630)

-150.46646(-.47745)

-150.46860(-.48001)

-150.46703(-.47869)

-150.46319(-.47493)

-150.49815(-.50933 )



3.0

3.0

3.0

2.8

2.8

2.8

2.6

2.6

2.6

2.4

2.4

2.4

2.2

2.2

2.2

2.2

2.0

2.0

2.0

2.0

1.8

1.8

1.8

1.6

1.6

2.4

2.5

2.6

2.4

2.5

2.6

2.4

2.5

2.6

2.4

2.5

2.6

2.3

2.4

2.5

2.6

2.3

2.4

2.5

2.6

2.6

2.5

2.4

2.6

2.5

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

22

-150.50602(-.51735)

-15o.5o888(-.52o27)
-150.50834(-.51976)

-150.52075(-.53186)c

-150.52416(-.53537) c

-150.52359(-.53484)c

-150.52875(-.53967)¢

-150.53146(-.54247) ¢

-150.52991(-.54096)¢

-150.52137(-.53206)c
-150.52225(-.53304)¢
15o.51875(-.52958)o

-150.48128(-.49161)

-150.48548(-.49595) _

-150.48344(-.49399)o
-150.47714(-.48772) _

-150.40079(- .41089)

-150.40111(-.41133) c

-150.39575(-.40604)¢

- 150.38684(-.39716)¢

-150.22628(-.23634)_

-150.23443(-.24445)_

-150.24079(-.25074) ¢

-149.98o75(-.99o5o)_

-149.97765(-.98735)c



1.6

4.0

4.0

4.0

4.0

4.0

3.5

3.5

3.5

3.5

3.5

3.0

3.0

3.0

3.0

2.8

2.8

2.8

2.6

2.6

2.6

2.4

2.28

2.28

2.28

2.3

2.4

2.5

2.6

2.28

2.3

2.4

2.5

2.6

2.3

2.4

2.5

2.6

2.4

2.5

2.6

2.4

2.5

2.6

50.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

23

-149.97579(-.98544)c

-150.45423(-.46329)

-150.45391(-.46315)

-150.45524(-.46493)

-150.45521(-.46498)

-150.45152(-.46173)

-15o.44363(-.45425)
-150.43332(-.44430)

- 150.46344(-.47399 )

-150.46409(-.47473)

-150.46411(-.47515)

-150.46028(-. 47159 )

-150.45418(-.46562)

-150.48923(-.50028)

-150.49505(-. 50626)

-15o.49619(-.5o75o)
-150.49407(-.50541)

-150.51051(-.52162) c

-150.51279(-.52397) ¢

-150.51153(-.52276) c

-150.52366(-.53460)c

-150.52680(-.53785)°

150.52592(-.53704)°

_150.53019(-.54098) _

-150.53343(o .54434)c



2.4 2.6 40.0 -150.53241(-.54338)c

2.2

2.2

2.2

2.4

2.5

2.6

40.0

40.0

40.0

-150.52262(-.53324)c

-150.52569(-.53641)_

-150.52448(-.53526)_

2.0

2.0

2.0

2.4

2.5

2.6

40.0

40.0

40.0

-15o.49o7o(-.5o112)°
-15o.494o2(-.5o454)¢
-15049326(-.50384)°

1.8

1.8

1.8

1.8

2.8

2.6

2.5

2.4

40.0

40.0

40.0

40.0

-150.42584(-.43624)

-15o.42786(-.43823)c
-150.42605(- .43636) c

-150.42065(-.43086)_

1.6

1.6

1.6

2.6

2.5

2.4

40.0

40.0

40.0

-150.31825(-.32841) _

- 150.30895(-.31903 )_

-150.29676(-.30674) c

5.0

4.5

2.28

2.28

30.0

30.0

-150.45406(-.46308)
.150.45312(-.46227)

4.0

4.0

4.0

4.0

4.0

2.28

2.3

2.4

2.5

2.6

30.0

30.0

30.0

30.0

3O.0

-150.45219(-.46167)
-150.45205(-.46160)

_15o.44768(-.4576o)
-150.43888(-.44920)

-150.42747(-.43815)

3.5

3.5

3.5

3.5

2.28

2.3

2.4

2.5

30.0

30.0

30.0

30.0

-150.45401 (-.46423)

-150.45431(-.46462)
-150.45244(-.4631v)
-150.44664(- .45766 )
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3.5

3.0

3.0

3.0

3.0

2.8

2.8

2.8

2.6

2.6

2.6

2.4

2.4

2.4

2.2

2.2

2.2

2.0

2.0

2.0

1.8

1.8

1.8

1.8

1.8

2.6

2.3

2.4

2.5

2.6

2.4

2.5

2.6

2.4

2.5

2.6

2.4

2.5

2.6

2.4

2.5

2.6

2.4

2.5

2.6

2.8

2.7

2.6

2.5

2.4

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0
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-150.43856(-.44975)

-150.46833(-.47922)

- 150.47228(-. 48336)

-150.47187(-.48308)

-150.46851(-.47976)

-15o.48517(-.49622)c
-150.48661(-.49778) c

-150.48456 (-.49578 ):

-150.49880(-.50978)c
-150.50155(-.51265) 
-15o.5oo31(-.51147)°

-150.51004(-.52093) _

-150.51376(-.52477) c

-150.51338(-.52447) c

-150.51472(-.52548) c

- 150.51940(-.53029)_

-150.51953(-.53050)_

-150.50681(-.51743) ¢

- 150.51256(-.52332 )¢

-150.51374(-.52458) ¢

-150.48787(-.49866)

-150.48976(-.50051)

-150.48948(-.50016) c

-150.48602(-.49660)_

- 150.47799(- .48845)¢



1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.6

5.0

4.5

4.0

3.5

3.5

3.5

3.0

3.0

3.0

2.5

2.5

2.5

2.5

2.2

2.2

2.2

2.0

3.2

3.0

2.9

2.8

2.7

2.6

2.5

2.4

2.28

2.28

2.28

2.28

2.3

2.4

2.3

2.4

2.5

2.4

2.5

2.6

2.7

2.8

2.7

2.6

2.8

30.0

30.0

30.0

30.0

30.0

30.0

30.0

30.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

.150.44722(-.45793)

.150.44885(-.45959)

.15o.448n(-.45943)

.150.44747(-.45815)

_15o.44463(-.45524)
-150.43952(-.45003)"

_15o.43119(-.4416o)°
_150.41833(-.42860) c

- 150.45356(-. 46254 )

-150.45171(-.46078)

.150.44810(-.45737)

-150.44237(-.45223)

-150.44238(-.45235)

.150.43891(-.44935)

_150.44106(-.45183)

-150.44329('.45426)

-15o.44167(-.45275)

-150.46918(-.48023)

_150.47314(-.48434)

-150.47284(-.484147

-150.46949(--48084)

.150.48701(-.49756) c

-150.49198(-.50255) c

- 150.49487 (-. 505477"

_150.49399(-.50439) _
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2.0

2.0

1.8

1.8

1.8

1.6

1.6

1.6

1.4

1.4

1.4

1.2

1.2

1.2

1.2

1.2

1.2

5.0

4.5

4.0

3.5

3.5

3.5

3.0

3.0

2.7

2.6

2.8

2.7

2.6

3.0

2.8

2.6

3.2

3.1

3.0

3.8

3.6

3.4

3.3

3.2

3.1

2.28

2.28

2.28

2.28

2.3

2.4

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0
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- 150.49796(-.50834)c

-150.49940(-.50976)c

-150.49191(-.50214) c

-150.49424(-.50444) c

-15o.4939o(-.5o4o6)°

-150.47234(-.48250)d

-150.47664(-.48671)_

-150.47239(-.48235)c

-150.44828(-.45846) d

-150.44936(-.45948) _

-150.44932(-.45937) d

-150.42758(-.43790) d

-150.42788(-.43830) d

-150.42671(-.43700) d

-150.42507(-.43528) d

-150.42233(-.43247) d

-150.41812(-.42819) d

-150.45313(-.46208)

-150:45063(-.45963)

- 150.44523(-.45435)

- 150.43420(-. 44366 )

-150.43401(-.44357)

-150.42934(-.43941)

-150.41506(-.42612)

-150.41441(-.42564)



3.0 2.5 I0.0 -150.41082(-.42200)

2.5

2.5

2.5

2.5

2.5

2.3

2.4

2.5

2.6

2.7

i0.0

I0.0

I0.0

I0.0

I0.0

-15o.41874(-.42984)
-150.43054(-. 44196)

-150.43654(-.44826)

-150.43810(-.45009)
- 150.43630(-. 44849)

10.0

10.0

-150.45917(-.46980) c

-150.46435(-.47497) c

2.0

2.0

2.0

2.8

2.7

2.6

10.0

10.0

10.0

-150.47161(-.48214) c

-150.47510(-.48561)c

-150.47576(-.48625)c

1.8

1.8

1.8

2.8

2.7

2.6

I0.0

I0.0

I0.0

-15o.4778o(-.4882o)°
- 150.48019(-.49056 )c

-150.47964(-.48997) c

1.6

1.6

1.6

1.4

1.4

1.4

1.4

1.2

1.2

1.2

1.2

2.8

2.7

2.6

3.0

2.9

2.8

2.7

3.2

3.1

3.0

2.9

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

- 150.47433(- .48460) c

-150.47453(-.48475) ¢

-150.47161(-.48178) c

-150.45726(-.46754) d

-150.45830(-.46851) d

-150.45729(-.46743) _

-150.45360(-.46367) _

-150.43572(-.44611) _

-150.43556(-.44586) _

-150.43366(-.44387) d

-150.42961(-.43972) _
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5.0

5.0

5.0

5.0

4.0

4.0

4.0

3.5

3.5

3.5

3.0

3.0

3.0

2.5

2.5

2.5

2.5

2.15

2.15

2.15

2.0

2.0

2.0

1.8

2.0

2.2

2.3

2.4

2.2

2.3

2.4

2.2

2.3

2.4

2.2

2.3

2.4

2.4

2.5

2.6

2.7

2.5

2.6

2.7

2.5

2.6

2.7

2.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
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-150.40941(-.41785)b

-150.45111(-.45990)b

-150.45345(-.46236)b

-150.44854(-.45754)b

-150.44257(-.45144) b

-150.44494(-.45392) b

-150.44010(-.44917) b

- 150.43014(-.43916) b

-150.43272(-.44189) b

- 150.42810(-. 43736)b

- 150.40491 (-.41429 ) b

-150.40815(-.41769) b

-150.40416(-.41381 )b

-150.41135(-.42244) b

-150.42059(-.43164) b

-150.42431(-.43533) b

-150.42401(-.43499) b

-150.45182(-.46259) b

-150.45537(-.46613) b

-150.45486(-.46562)b

-150.46131(-.47194) _

-150.46517(-.47580) b

-150.46494(-.47559) b

-150.46714(-.47757) b



1.8 2.6 0.0

1.8 2.7 0.0

1.8 2.8 0.0

-150.47205(-.48251)b

-150.47280(-.48329)b

-150.47049(-.48102) b

1.6 2.5 O.O

1.6 2.6 O.O

1.6 2.7 O.O

1.6 2.8 0.0

- 150.46109(-.47132) b

- 150.46822(- .47850 )b

-150.47104(-.48137) b

- 150.47065(- .48104) b

1.4 3.0 0.0

1.4 2.8 0.0

1.4 2.6 0.0

-150.45702(-.46743) d

-150.45839(-.46863) _

-150.44870(-.45879) 2

1.2 3.2 O.O

1.2 3.O O.O

1.2 2.8 0.0

1.2 2.6 0.0

-150.43782(-.44836) d

-150.43801(-.44832) d

-150.42961(-.43972) d

-150.40785(-.41778) 4

" Points run in C_, (collinear) symmetry (from II).

b Points run in C_, (edge-on) symmetry (from II.).

c Points from II.

Points run in C_ symmetry with (52) active space to be comparable with the
calculations in II.
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sition state theory based on energies which are derived from complete active space
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to resemble H + HO2 and the computed barrier height is 3.6 kcal/mol.
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I. Introduction

The reaction

H2 + 02 -+ HO2 + H (1)

is thought to be an important initiation reaction in H2 combustion. The only

experimental determination [1] of the rate of reaction (1) derives from an indirect

measurement of the rate of the reverse reaction.

H02 + H --.+ H2 + O_ (2)

The products of reaction (2) correspond to a triplet surface. However, the reactants

also correlate with the ground state of H2 02 for the singlet surface.

HO__ + H -_ H20_ -_ OH + OH (3)

Here the product is OH radical. The rate of reaction (2) was inferred from the rate

of disappearance of HO2 and the rate of formation of OH. This rate determination

was carried out at only two temperatures (_ 300K and _ 500K). Thus, it is difficult

to extrapolate the rate to flame temperatures (_ 2000K). Current kinetics models

[2,3] differ significantly in the rate which is used for reaction (2). The uncertainty

in this rate is sufficient that a theoretical estimate of the rate, even one with some

severe approximations, would be useful.

Reaction (2) is exoergic by 58 kcal/mol. In accord with this, the saddle point is

expected to resemble H + HO2 and a small barrier is expected to this H abstraction

process. In the present calculations the force constant matrix at the saddle point

for reaction (2) is computed from ab-initio calculations and the rate of reaction (2)
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is computed using transition state theory (TST) with a one-dimensional tunneling

correction based on an Eckart barrier [4].

The computational method is discussed in Section II, the results are presented in

Section III, and the conclusions are given in Section IV.

II. Computational Details.

The basis sets used in the present study are atomic natural orbital(ANO) basis

sets [5]. These basis sets are optimal for describing the atomic correlation and

have very small basis set superposition errors, but are sufficiently flexible to be

used in molecular calculations at both the SCF and CI level. The O basis set is

(13s8p6d4f)/[4s3p2dlf] and is described in detail in Ref. 5. The H basis set is

(Ss6p4d)/[3s2pld], and is that developed by AlmlSf and Taylor [5].

Most of the calculations were carried out in C0 symmetry. The CASSCF active

space had 6 active electrons distributed among five a' and one a" orbitals. The

qualitative character of the CASSCF orbitals is: 1-4a wcorrespond to the O ls and

O 2s levels, which are not correlated in these calculations. The 5a' orbital is a 2p

lone pair localized mainly on the far oxygen. 6a' and 7a r are the OO and OH bond

orbitals. 8a' is the H Is orbital. 9a _ and 10a w are correlating orbitals for the OO

and OH bonds. The la" orbital is an O 2p lone pair localized mainly on the near

oxygen and the 2a" orbital is a singly occupied O 2p orbital localized mainly on the

far oxygen.

Ten electrons were correlated in the CCI calculations. The reference configura-

tions for the CCI consisted of following 29 spatial occupations formed from the 5-10

a _ and the 1-2 a" orbitals:



5a"6a_Ta_Sa'19a" lOa_ [

5a" 6a _Ta _8a"9a _lOa"_

/

t

5a" 6a '17a" 8a" 9a '°10a"

5a" 6a" 7a" 8a 'z 9a '° lOa"

5a" 6a" 7a 's 8a 's 9a ° lOa '°

Sa _ 6a _ 7a" 8a" 9a '° lOa 's

I

5a _ 6a _ Ta 'o8a 'z9a _ lOa m

5a n 6a 's 7a'z8a" 9a 'z lOa m

5a '_6a '°7a 'z 8a" 9- " lOa m

5a '26a "7a '°8a '19a'zlOan l la"2e"

Z_ 5a'2 6a'17a" 8a"9a" lOa " )

Sa 'z6a m7a 'z 8a,z 9a 'z lOa 's

5a'_ 6a_ 7a'o 8a'Z 9a'elOa _

5a ':l6a" 7a '18.. 'z9amlO. _,

Sa" 6a '°7a" 8a 's 96 '°10_"/

The first group of configurations includes products of sinsle excitations among the
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a' HO2 like orbitals and single excitations among the a" orbitals. While the second

group of configurations includes double excitations among the a' HO2 like orbitals.

These groups of configurations were found to be the most important classes of

configurations for this system for the H + HO2 and H - H02 saddle point regions

of the surface, and included all the configurations with expansion coefficient greater

than 0.05 in the CASSCF wavefunction.

The multireference analog of Davidson's correction [fi] was computed to estimate

the importance of higher excitations. The correction used in the CCI [7] is AE (1

2 2- C0)/C0, where AE is the CI energy minus the reference energy and C 2 is the

sum of the squares of the coefficients of the reference configurations in the CI wave

function. In the CCI program two different estimates of Co are used. The second is

obtained as defined above as the dot product of the valence portion of the CI vector

with itsself, while the first is the dot product of the valence CI vector with the

valence portion of the CI vector. In most cases these two estimates of C 2 give very

similar results and we have normally reported the first estimate. In the present

case, there is enough difference that we have chosen to use the second estimate,

which we believe to be more reliable.

The electronic structure calculations were carried out on the NASA Cray XMP-

48 and the NAS Cray Y-MP/8-32. All the calculations used the MOLECULE[8]-

SWEDEN[9] system of programs. The normal mode analysis at the saddle point for

reaction (2) was carried out using the program SURVIB[10], while the TST theory

calculations were carried out using code written locally.

III. Results and Discussion.

The computed energies are tabulated in the appendix [10]. The computed points

are adequate to define both the diagonal and off diagonal components of the force

constant matrix at the saddle point. A polynomial was fit to the computed points
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using the SURVIB program [10]. This polynomial contained 45 terms through cubic

in the in plane coordinates ( roo, roz_, / HO0, rHH, and / HHO) and a quadratic

and quartic term in the dihedral angle defined by the HO0 plane of the HO2 species

and the HHO plane formed by the two hydrogens and the near O. This fit had an

RMS error ,_ 0.1 kcal/mol. The saddle point geometry, vibrational frequencies, and

barrier height are given in Table I. From Table I it is seen that the saddle point

roll, roo, and / HOO are 0.15 a0 longer, -0.06 a0 shorter, and 2.7 ° larger than

the geometry obtained for free HOO [12] using the same basis set and a similar CCI

calculation. The changes in too and 6 are consistent with the slightly elongated

OH bond, based on the computed minimum energy path for H atom addition to

02 [12]. The rHH on the other hand is _ 0.8 a0 longer than in free OH. The latter

result is consistent with an early saddle point as expected for a very exothermic H

abstraction process. The saddle point is coplanar with the far H atom 3.8 ° from

being co]linear with the OH bond (in a direction away from the far O atom). The

computed barrier height is 3.63 kcal/mol before correction for zero-point energy.

Table II shows the potential for varying the angles a and the dihedral angle/3

between the HOO and HHO planes. From Table II it is seen that the most stable

structure has the HH bond trans to the OO bond (/3 - 180°), with the 90 ° dihedral

angle structure next, and the 0 ° dihedral angle structure (cis) highest. Fig. 2 shows

the energy as a function of the variation of/3 for a fixed at 3.63 °. One interesting

feature of Fig. i is a slight minimum at/3 -=0.0 °. This feature appears to be real. In

particular it has been found that it is not an artifact of symmetry breaking effects,

which are found to be negligable. In a hindered rotor model, the variation in energy

for a full rotation of the dihedral angle with / HHO fixed at 176.4 ° (a=3.63 °)

is _ 0.07 kcal/mo] (_ 23 cm-1). This energy change may be compared to an out

of plane bending frequency of _ 300 cm -1 if the out of plane motion is treated
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as a bend. This result reflects the near degeneracy of the bending modes i.e. the

rotational barrier would be zero if the bend modes were degenerate. None the less

two models were considered: i) a bend model in which the two bending modes of

the HH group are nearly degenerate and ii) a hindered rotor model in which one

bending mode remains, but the other vibration is treated as a hindered rotation.

These two models lead to somewhat different rates within the transition state theory

model, as discussed below.

The vibrational frequencies are also given in Table I. From examination of the

normal mode coordinates, _2 and _s are found to be OH stretch and OO stretch

modes, respectively. The frequencies of these modes differ from those reported

for free HOO [12] by -26 and +6 cm -1, respectively. This is consistent with the

early saddle point for reaction (2). wl is found to be an OH stretching mode. The

frequency for this mode is 1795 cm -1 smaller than for free HO2. Exa_nination of the

normal mode coordinates indicates that this mode involves motion of both H atoms

of the H-HO2 complex. Thus, the lower frequency results from a larger reduced mass

as weU as some decrease in the bond force constant due to the stretched OH bond.

The remaining two real frequencies are 347 and 333 cm -1 and these correspond to

in plane and out of plane bending motion of the HH group. The near degeneracy

of these two modes is consistent with the near conlnear arrangement of the H-H-O

atoms at the saddle point H-HO2 geometry. It should be noted here that the out of

plane bending mode is significantly anharmonic. The 333 cm -1 frequency results

from a quadratic-quartic fit of the dihedral angle. A quadratic term only leads

to a frequency of 887 cm -1. Finally, the frequency corresponding to the reaction

coordinate is 1786 i

Table I also shows the zero-point correction computed within the bend model

using the HO2 frequencies reported in Ref. 12. The frequencies in Ref. 12 were



obtained with the same basis set and comparable computational level to that used

in the present work. There may be some inconsistency with the present work in that

in Ref. 12 only a quadratic polynomial was used as compared to a cubic polynomial

in the present work. These small effects will not be of great significance here since,

within the transition state theory model, the reactant vibrational frequencies mainly

effect the effective barrier, through the zero-point energy, and the computed barrier

height is probably uncertain by _ 1 kcal/mol in the present calculation. Using

the bend model the zero-point corrected barrier is 2.01 kcal/mol. In the hindered

rotor model the out of plane vibration is removed, which reduces the zero-point

energy by half of 333 cm -1 or _ 0.50 kcal/mol, leading to an effective barrier of

1.5 kcal/mol. In the hindered rotor model the moment of inertia for the hindered

rotation is very small leading to widely spaced rotational levels. Thus, the rigid

rotor partition function is still used.

Fig. 2 compares the computed rates for reactions (1) and (2) to the experimental

data [1] and to rate expressions used in combustion models [2,3]. In the transition

state theory calculations the H atom and HO2 each have an electronic degeneracy of

2 and a spatial degeneracy of 1, while H-HO2 saddle point structure has an electronic

degeneracy of 3 and a spatial degeneracy of 1. Computed rate curves are shown for

the bend and hindered rotation models. In both cases the computed barrier heights

are used without correction. The effect of tunneling is extimated using an Eckart

potential. From Fig. 2 it is seen that at low temperatures the rigid rotor model

gives a larger rate due to the lower effective barrier, but at higher temperatures the

bend model shows a larger rate. This effect arises from the large contribution at

h/gh temperatures of the small out of plane bending frequency to the vibrational

partition function. The bend model is expected to be more reliable, since the in-

plane and out-of-plane bend frequencies are nearly degenerate - a result which is



consistentwith the very small a value (i.e. the H-H-O moiety is nearly collinear).

Thus, to a first approximation the model is like a linear triatomic. Within this

viewpoint, the very small barrier to "hindered rotation" shown in Fig. 1 is simply

indicative of the close proximity of this system to the linear triatomic limit. Given

this, only the rate predicted with the bend model is considered in the comparisons

to experiment and current kinetic models.

Fig. 2 also shows the recommended experimental rate expression. At least at

low temperatures, where experimental data exists, the experimental rate is larger

than the theoretical rate. This result casts some doubt on the experimental rate,

since the assumption of no recrossing and neglect of variational effects in the TST

calculations should result in overestimating the rate. The rate used at 1000K by

the Langley model [3] is in good agreement with the TST rate based on the bend

model. The Lewis kinetic model [2] agrees weU with the TST rate based on the bend

model at high and low temperatures but is below the computed rate at intermediate

temperatures. Also the TST rate shows a marked curvature which is not present in

the Lewis model. Taking all this into consideration, the TST rate based on the bend

model is recommended as the most reliable estimate of the rate for this reaction.

The rate as a function of temperature computed with this model is given in Table

III.

IV. Conclusions.

Transition state theory calculations including an estimate of tunneling through an

Eckart barrier and based on an ab-initio potential energy surface have been carried

out for the rate of the reaction



This reaction is found to have an early barrier with the H-H-O moiety very nearly

collinear. Consistent with this the in-plane and out-of-plane HH bending modes

are found to be nearly degenerate. TST theory calculations have been carried out

for this model (bend model) and also for a model in which the bend motion of

the H-H-O moiety is treated as a bend and hindered rotation (rotor model). It is

concluded that the bend model is far more realistic in this system where the two

components of the bend are nearly degenerate. The rate based on the bend model

is recommended as the best estimate currently available for the rate of this reaction.
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Figure Captions.

Fig. 1. Energy for H-HO2 as a function of the dihedral angle (8) with the remaining

geometrical parameters fixed at the computed H-HO2 saddle point geometry.

Fig. 2. Comparison of TST calculations and "experimental" rate data for the

reaction H2 + 02 --* H + HO2.
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Table I. Computed Saddle Point Properties for H + HOO.

Geometry

'_' rHH rOH ro0 8

-3.8 2.238 1.991 2.463 107.1

Frequencies

d 2a

dZ.d4_

Barrier Height

AE_

A ZPE

AE(corr.)

_] _2 _3 _4 W5 _6

1736 1391 1226 347 887 1786 i

1736 1391 1226 347 333 1786 i

3.63

-1.62

2.01

" The dihedral angle is fit with a quadratic term.

The dihedral angle is fit with a quadratic and a quartic term.
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Table II. Computed Energies for H + HOO (a and 3 variation).

a /_ roo 0 rHH roH

3.63 180.0 2.457 107.0 2.218 1.997

3.63 135.0 2.457 107.0 2.218 1.997

3.63 90.0 2.457 107.0 2.218 1.997

3.63 45.0 2.457 I07.0 2.218 1.997

3.63 0.0 2.457 107.0 2.218 1.997

D2

-151.039454

-151.039415

-151.039381

-151.039350

-151.039362

12.0 180.0 2.457 107.0 2.218 1.997

7.5 180.0 2.457 107.0 2.218 1.997

0.0 0.0 2.457 107.0 2.218 1.997

7.5 0.0 2.457 107.0 2.218 1.997

7.5 90.0 2.457 107.0 2.218 1.997

-151.03920

-151.03939

-151.03945

-151.03919

-151.03926
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Table IIl.Computed Rate for Reaction (2)."

T _ rate

300 4.01 0.2976E-11

500 1.79 0.6586E-11

750 1.32 0.1355E-10

1000 1.17 0.2340E-10

1250 1.10 0.3625E-10

1500 1.07 0.5206E-10

2000 1.04 0.9216E-10

2500 1.02 0.1427E-09

3000 1.01 0.2026E-09

" Computed using the bend model (see text).
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Table AI. Computed Energies for H + HOO a

c_ too 8 r_ ro_ E(hartree) D1 D2

0.0 2.52 104.4 18.16 1.84 b -151.03432 (-.04594) (-.04528)

0.0 2.52 104.4 2.4 2.2 -151.01734 (-.03518) (-.03194)

0.0 2.52 104.4 2.4 2.0 -151.02580 (-.04070) (-.03913)

0.0 2.52 104.4 2.4 1.8 -151.02563 (-.03901) (-.03807)

0.0 2.52 104.4 2.2 2.2 -151.02038 (-.04035) (-.03579)

0.0 2.52 104.4 2.2 2.0 -151.02460 (-.04060) (-.03854)

0.0 2.52 104.4 2.2 1.8 -151.02157 (-.03554) (-.03445)

0.0 2.52 104.4 2.0 2.2 -151.02464 (-.04684) (-.04081)

0.0 2.52 104.4 2.0 2.0 -151.02304 (-.04035) (-.03764)

0.0 2.52 104.4 2.0 1.8 -151.01589 (-.03058) (-.02926)

0.0 2.52 104.4 1.8 2.2 -151.02874 (-.05243) (-.04544)

0.0 2.57 104.4 2.238 2.009 -151.02324 (-.03897) (-.03708)

0.0 2.52 104.4 2.238 2.009 -151.02469 (-.04059) (-.03857)

0.0 2.47 104.4 2.238 2.009 -151.02526 (-.04134) (-.03917)

0.0 2.42 104.4 2.238 2.009 -151.02473 (-.04103) (-.03867)

0.0 2.37 104.4 2.238 2.009 -151.02287 (-.03939) (-.03682)

0.0 2.468 100.0 2.238 2.009 -151.02388 (-.03962) (-.03767)

0.0 2.468 105.0 2.238 2.009 -151.02534 (-.04147) (-.03926)

0.0 2.468 110.0 2.238 2.009 -151.02498 (-.04150) (-.03905)
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0.0 2.468 115.0 2.238 2.009 -151.02295 (-.03989) (-.03719)

-10.0 2.468 106.9 2.238 2.009 -151.02525

-5.0 2.468 106.9 2.238 2.009 -151.02539

0.0 2.468 106.9 2.238 2.009 -151.02541

5.0 2.468 106.9 2.238 2.009

10.0 2.468 106.9 2.238 2.009 -151.02506

(-.04164) (-.03925)

(-.04174) (-.03938)

(-.04169) (-.03938)

(-.04113) (-.03899)

-2.5 2.468 106.9 2.238 2.009 -151.02541 (-.04173) (-.03940)

-2.5 2.37 117. 2.238 2.009 -151.02089 (-.03840) (-.03522)

-2.5 2.37 97. 2.238 2.009 -151.01831 (-.03439) (-.03211)

-2.5 2.57 117. 2.238 2.009 -151.01835 (-.03509) (-.03258)

-2.5 2.57 97. 2.238 2.009 -151.02140 (-.03666) (-.03508)

-2.5 2.37 106.9 2.238 2.1 -151.02326 (-.04199) (-.03807)

-2.5 2.37 106.9 2.238 1.9 -151.02277 (-.03793) (-.03610)

-2.5 2.57 106.9 2.238 2.1 -151.02071 (-.03807) (-.03524)

-2.5 2.57 106.9 2.238 1.9 -151.02385 (-.03861) (-.03716)

-2.5 2.468 117. 2.238 2.1 -151.02067 (-.03964) (-.03570)

-2.5 2.468 117. 2.238 1.9 -151.02132 (-.03684) (-.03490)

-2.5 2.468 97. 2.238 2.1 -151.02009 (-.03715) (-.03443)

-2.5 2.468 97. 2.238 1.9 -151.02264 (-.03697) (-.03576)

-2.5 2.37 106.9 2.34 2.009 -151.02333 (-.03931) (-.03700)
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-2.5

-2.5

-2.5

2.37

2.57

2.57

106.9

106.9

106.9

2.14

2.34

2.14

2.009

2.009

2.009

-151.02352

-151.02367

-151.02236

(-.o4o98)

(-.03906)

(-.03892)

(-.03789)

(-.03727)

(-.03660)

-2.5

-2.5

-2.5

-2.5

2.468

2.468

2.468

2.468

117.

117.

97.

97.

2.34

2.14

2.34

2.14

2.009

2.009

2.009

2.009

-151.02183

-151.02160

-151.02258

-151.02163

(-.03821)

(-.03952)

(-.03756)

(-.03781)

(-.03578)

(-.03627)

(-.03599)

(-.03567)

7.5

7.5

-12.5

-12.5

2.37

2.57

2.37

2.57

106.9

106.9

106.9

106.9

2.238

2.238

2.238

2.238

2.009

2.009

2.009

2.009

-151.02316

-151.02284

-151.02307

-151.02278

(-.03970)

(-.03863)

(-.03986)

(-.03884)

(-.03714)

(-.03672)

(-.03711)

(-.03672)

7.5

7.5

-12.5

-12.5

2.468

2.468

2.468

2.468

117

97

117

97

2.238

2.238

2.238

2.238

2.009

2.009

2.009

2.009

-151.02152

-151.02174

-151.02139

-151.02195

(-.03852)

(-.03700)

(-.03856)

(-.03770)

(-.o3581)

(-.o3538)

(-.o3569)

(-.o3573)

7.5

7.5

-12.5

-12.5

2.468

2.468

2.468

2.468

106.9

106.9

106.9

106.9

2.34

2.14

2.34

2.14

2.009

2.009

2.009

2.009

-151.02556

-151.02482

-151.02548

-151.02477

(-.o41o6)

(-.04163)

(-.04122)

(-.o4188)

(-.03918)

(-.03910)

(-.03914)

(-.03912)

2.468

2.468

106.9

106.9

2.238

2.238

-151.02354

-151.02536

(-.04125)

(-.04013)

(-.03812)

(-.03865)
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2.468

2.468

106.9

106.9

2.238

2.238

-151.02352

-151.02523

(-.04154)

(-.04022)

(-.o3818)

(-.o3857)

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

2.468

2.468

2.468

2.468

2.468

2.468

2.468

106.9

106.9

106.9

106.9

106.9

106.9

106.9

1.8

1.8

2.0

2.0

2.0

2.14

2.14

2.1

2.4

2.009

2.1

2.4

1.9

2.1

-151.02735

-151.04332

-151.02452

-151.02592

-151.03369

-151.02412

-151.02459

(-.o4882)

(-.o6928)

(-.o4257)

(-.o46o2)

(-.o6o55)

(-.03952)

(-.04342)

(-.04346)

(-.06103)

(-.03933)

(-.04145)

(-.05145)

(-.03772)

(-.03961)

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

-2.5

2.468

2.468

2.468

2.468

2.468

2.468

2.468

2.468

106.9

106.9

106.9

106.9

106.9

106.9

106.9

106.9

2.14

2.14

2.238

2.238

2.34

2.34

2.34

2.34

2.2

2.4

1.8

2.2

1.8

1.9

2.1

2.2

-151.02411

-151.02616

-151.02231

-151.02192

-151.02432

-151.02682

-151.02315

-151.01998

(-.04554)

(-.05296)

(-.03628)

(-.04230)

(-.03795)

(-.04126)

(-.04019)

(-.03922)

(-.03998)

(-.04372)

(-.03512)

(-.03742)

(-.03689)

(-.03986)

(-.03739)

(-.o35o6)

-12.0

-7.5

-3.63

0.0

7.5

2.457

2.457

2.457

2.457

2.457

106.99

106.99

106.99

106.99

106.99

2.218

2.218

2.218

2.218

2.218

1.997

1.997

1.997

1.997

1.997

-151.02520

-151.02539

-151.02547

-151.02547

-151.02525

(-.04161)

(-.04177)

(-.04181)

(-.04176)

(-.04139)

(-.03920)

(-.03939)

(-.03945)

(-.03945)

(-.03919)
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[4s3p2dlf/3s2pld] ANO basis set. CASSCF/CCI calculations correlating 10 elec-

trons using a (52) CASSCF active space and selected reference configurations (see

text).

b This geometry is taken as H + HO2 at infinite separation.
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