Development of Free-Piston Stirling Engine Performance and Optimization Codes Based on Martini Simulation Technique

William R. Martini
Martini Engineering
Richland, Washington

September 1989

Prepared for
Lewis Research Center
Under Contract NAS3-22256

Mnsn

National Aeronautics and
Space Administration
(NASA-CP-13?210) UFVFLPPMENT OF FREE-FISTUN
STIRLINR FMGINE PFRFGRMANCE ANO UPTIMILATIOA

FOREWORD

This is a modified version of the final report written by Dr. W.R. Martini to summarize the work done under NASA Contract NAS3-22256 to develop a free-piston Stirling engine performance and optimization code. The code reported on here is operational. However, it was recognized by Dr. Martini and NASA that the code needed additional development in several areas and also needed validation; only minimal validation of the performance codes (there are several performance code options avallable), primarily against RE-1000 engine data, was performed under the contract. The "isothermal" performance code option predicted RE-1000 performance close to the values measured at design. The "adiabatic" performance, code option predicted power too large by a factor of almost two; it's possible, considering the minimal "debugging" that was done on this particular option, that a programming error could be responsible for the large error. Since no engines were designed with the code, no information exists concerning its design accuracy.

It had been anticipated that additional development and validation would be carried out under a follow-on contract. However, as a result of Dr. Martini's death the work was never done.

Continued development of Stirling technology during the several years following Dr. Martini's death, means that a potential user of the code would need to carefully evaluate it's assumptions. For example, a free-piston Stirling space engine has been recently constructed which operates at approximately 100 Hz ; the Martini code does not account for some effects, such as gas inertia, that become important at higher engine frequencies. Also, the optimization algorithm incorporated in the code is a simple one that was written to expedite the development of the design code's structure; it had been intended that a more powerful and efficient technique would be substituted in the next stage of development.

Dale Hubler of Sverdrup Technology, Inc. (a NASA Lewis Research Center support service contractor) has corrected some problems that a user of the code might encounter. For example, the interactive data input procedure was improved upon and the code was converted to double precision. Dale also disabled (but did not eliminate the coding) of certain graphic features of the code that could be depended upon to work only with a particular graphics board used by Or. Martini. These and other changes are discussed in certain modified sections of the report.

It has been decided not to expend funds in further development of the Martini design code. However, it is felt that the code might be useful to some in its current stage of development. For example, requests have been received from university students for codes that could be used for class Stirling engine design projects. This fast response code could also be useful to individuals interested in gaining an understanding of Stirling engines by investigating sensitivities of designs to various geometrical changes. Of course, the code could be used as the starting point for development into a design tool for high performance Stirling engines, if sufficient effort were expended in that direction.

A copy of the code on 5 and $1 / 4$ in. floppy disk in high density format can be obtained on request from:

NASA Lewis Research Center
Stirling Technology Branch
Mail Stop 301-2
21000 Brookpark Road
Cleveland, Ohio 44135
Roy Tew
Manager, NASA Contract NAS3-22256

PREFACE

This manual describes a computer program originally written by
W.R. Martini to simulate a free piston Stirling engine on the IBM PC.

Sverdrup's only contribution to this program and manual has been the following six changes to the original Martini program and the appropriate changes to the manual. Portions of the manual that have been rewritten by Sverdrup are marked by a vertical bar down the side of the page.
(1) The program has been converted to double precision to increase the accuracy of the results. Formerly, when using the program on mainframes the results of power and efficiency often differed from machine to machine (mainframe results were used for comparisons only). Converting the program to double precision brought these results into agreement. Appendix E, J, L, and all sample base cases have been updated to double precision results. Summary results based on these and other cases have been updated wherever possible. Appendix F, K, and M are presented with the single precision results also. The results between versions differ more when the simulated engine is in free piston mode rather than in specified motion mode but the differences are not great. The remainder of the appendices and other examples are left with the results obtained by the single precision version. The increased accuracy comes at the cost of more computer time. Some free motion optimization cases have run overnight on an IBM PC-AT.
(2) The input method was replaced by a more friendly routine which consists of two screens and one instruction line for the user. Each screen displays half of the possible input variables. The user is prompted to choose a variable by name and then to enter a new value. Screen positioning is handled by an assembly language routine and only the chosen variable has its displayed value updated. This method is faster and more flexible than the old. This is IBM-PC assembler and will not work on other machines.
(3) The former input display is now used as a method of recording values of input variables on the printed output. This block of variable values, together with the instructions, would scroll across the screen with each change to a value. The block of numbers gives the input value together with an input variable number. Appendix A show each input variable name together with the number assigned to it. In free piston mode the displacer phase angle (PHASED), the power piston stroke (PPSTR), and the displacer strike (DSPSTR) values on the output are not the values input but the values of the variables at the end of the last case considered.
(4) The capability to optimize the mass of the power piston and the displacer was added.
(5) All executable statements in the graphics subroutines were commented out. Calls to these subroutines now immediately return to the calling program. These subroutines were only useful with a particular graphics board which is not commonly in use. They have been left in the program to assist anyone who wishes to convert this option to be used on another device.
(6) The 17 original source files have been merged into five files (four fortran and one assembler) to simplify changing and moving the files.

Dale Hubler
Sverdrup Technology, Inc.

TABLE OF CONTENTS

1.0 SUMMARY 1
2.0 INTRODUCTION 1
3.0 ENGINE DESCRIPTION 1
4.0 COMPUTER PROGRAM DESCRIPTION 7
4.1 Main Program (FPSE) 7
4.2 FPIN Input Subroutine 8
4.2.1 Subroutine Screen 9
4.3 CYCLE Subroutine (F2) 12
4.3.1 CONSTS Subroutine (F21) 16
4.3.2 Specified Motion Subroutine (F22) 18
4.3.3 Calculated Motion Subroutine (F23) 18
4.3.4 LEAK Subroutine (F24) 18
4.3.5 Pressure Calculation by Using Isothermal Analysis (F25) 21
4.3.6 Pressure Calculation by Moving Gas Node Analysis (F26) 23
4.3.7 Pressure Calculation by Rios Adiabatic Analysis (F27) 26
4.3.8 Calculation of Losses (F28) 25
4.4 Data Output Subroutine (F3) 33
4.5 Optimization Subroutine (F4) 33
4.5.1 Power Adjustment Subroutine (F41) 33
4.5.2 Optimization Recording and Controlling Subroutine (F42) 37
5.0 SAMPLE RESULTS 43
5.1 Effect of Time Step and Convergence Criteria 43
5.1.1 Isothermal Analysis 43
5.1.1.1 Effect of Convergence Criteria 43
5.1.1.2 Interaction of Convergence Criteria and Time Step 43
5.1.2 Adiabatic Analysis 46
5.1.3 Conclusion on Time Step and Convergence Criteria 46
5.2 Sample Base Cases 54
5.2.1 Specific Motion Isothermal Analysis 54
5.2.2 Free-Piston Motion with Linear Generator and Isothermal Analysis 60
5.2.3 Free-Piston Motion, Inertial Compressor, Isothermal Analysis 66
5.2.4 Specified Motion and Moving Gas Node Analysis 66
5.2.5 Specified Motion and Rios Adiabatic Analysis 68
5.2.6 Calculated Motion Linear Alternator Load and Moving Gas Node, Adiabatic Analysis 68
5.2.7 Calculated Motion, Inertial Compressor, and Moving Gas Node, Adiabatic Analysis 73
5.2.8 Conclusion on Sample Base Cases 73
5.3 Optimization Searches 85
5.3.1 Specified Motion - Three Adjustable Inputs 85
5.3.2 Specified Motion - Four Adjustable Inputs 87
5.3.3 Calculated Motion - Three Adjustable Inputs 94
5.3.4 Calculated Motion - Four Adjustable Inputs 94
5.3.5 Comments on Optimization Searches 102
5.3.5.1 Closer Approach to Constant Power 102
5.3.5.2 Provision for No Solution 102
5.3.3.3 Limitation on Porosity 102
5.3.5.4 Limitation on Dimensions 102Imilenimanaly
5.4 Effect of Leakage 107
5.5 Computer Time 108
6.0 PROGRAM USERS MANUAL 111
6.1 Using the Compiled FPSE.EXE 111
6.2 Changing Source Code and Recompiling 112
7.0 STATUS OF THE CODE AND REQUIREMENTS FOR FURTHER DEVELOPMENT 120
8.0 REFERENCES 122
APPENDIX A INPUT VALUE TABLE (NI.NOM) 123
APPENDIX B NOMENCLATURE FOR ALL PROGRAMS (NASA.NOM) 131
APPENDIX C VARIABLE USE TABLE (VARTAB.NOM) 145
APPENDIX D DERIVATION OF RIOS ADIABATIC ANALYSIS EQUATIONS 160
APPENDIX E EFFECT OF CONVERGENCE CRITERIA ON RESULTS (COMPUTER OUTPUT) DOUBLE PRECISION 169
APPENDIX F EFFECT OF CONVERGENCE CRITERIA ON RESULTS (COMPUTER OUTPUT) SINGLE PRECISION 183
APPENDIX G EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS 0.2 MSEC TIME STEP, 0.005 CONVERGENCE CRITERIA 191
APPENDIX H EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS 0.5 MSEC TIME STEP, 0.005 CONVERGENCE CRITERIA 207
APPENDIX I EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS 0.1 MSEC TIME STEP, 0.005 CONVERGENCE CRITERIA 217
APPENDIX J EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA $=0.01$, INITIAL TIME STEP $=1$ MSEC, DOUBLE PRECISION 225
APPENDIX K EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA $=0.01$, INITIAL TIME STEP $=1$ MSEC, SINGLE PRECISION 249
APPENDIX L EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA $=0.005$, INITIAL TIME STEP $=0.25$ MSEC, DOUBLE PRECISION 263
APPENDIX M EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA $=0.005$, INITIAL TIME STEP $=0.25 \mathrm{MSEC}$, SINGLE PRECISION 275

1.0 SUMMARY

A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included.

Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable inputs and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

2.0 INTRODUCTION

Since 1966, the author has been involved in Stirling engine development work and has evolved a method of analysis which has been described in a number of publications (refs. 1-5). Since 1979, Martini Engineering has developed a number of additional computer programs that are more sophisticated than the original isothermal analysis. These involved original methods of taking into account the adiabatic spaces and the partial adiabatic spaces in a Stirling engine. Since essentially all this work was done one government contract or another, there is no proprietary position to protect and the methods of these calculations are freely disclosed in this report.

First, the engine will be described in some detail and then the computer programs will be presented by discussing the flow charts which describe the logic of the main programs and all the subsidiary programs. Next the sample results of some of the base case calculational options are given, both as the output printout as well as a photograph of the graphical output display. Also, the effect of time step size and the time for solution are presented and discussed. Finally, a program users manual is given and current code status and suggestions for further work are discussed. A derivation of the Rios equations and detailed outputs obtained in the time step studies are given in the appendices.

3.0 ENGINE DESCRIPTION

The computer program described in this report is designed to calculate the power output and efficiency of a free displacer, free-power piston Stirling engine similar to the RE-1000 engine built by Sunpower and tested extensively by NASA Lewis Research Center (refs. 7-8). Figure 3.1 show a perspective drawing of the full engine with load. The engine heater tubes are heated by conducting electricity through the tubes themselves. The engine is loaded by dash pot and is water cooled. Figure 3.2 shows a more detailed drawing of the

FIGURE 3.1. - DRAMIMG OF RE-1000 ENGIVE (8).

FIGURE 3.2. - RE-1000 heater head thermocouple locations and heat conduction paits (8).
heater and regenerator and part of the cooler to show how the thermal conduction paths between the hot part and the cold part of the engine are currently fabricated.

Figure 3.3 shows some details about the power piston centering ports which are important to consider in the free-piston analysis. These centering ports open up only momentarily at the mid-point of the stroke and the pressure equalization which partially takes place at this time keeps the power piston near the mid-point of its stroke. Note also that the displacer is sprung to the case instead of to the power piston as is sometimes done. Figure 3.4 gives more detail about the displacer rod mounting and communication ports. These communication ports are centering ports and serve the same function for the displacer as is done for the power piston. These four sketches plus the tables of information supplied with the contract statement of work were used to derive the input numbers given in Appendix A. These input numbers give a full description of the engine as far as the computer is concerned.

One thing that is not clear in the four figures given in this section is that the gas cooler is made up of a finned section which is cooled from one side of the fins. We assume that the fin efficiency is 100 percent.

The engine computer program will be described in the next section.

figure 3.3. - power piston leak path of re-1000 engine.

FIgURE 3.4. - DISPLACER ROD MOUNTING AND COMMUNICATION PORTS FOR RE- 1000 ENGINE.

4.0 COMPUTER PROGRAM DESCRIPTION

Sections 4.0, 4.1, and 4.2 have been extensively rewritten and all other sections have been changed where appropriate.

The nomenclature for the computer program described in this report is given in Appendices A to C. In Appendix A the input variables are described since they will have to be identified by number and the optimization variables, which are a subset of the input variables, also are identified. The default value for each of the input variables is also shown. Appendix B gives the nomenclature used in the program in alphabetical order along with the units that are used. For a particular variable the units always remain the same. If the units change the variable name changes also. Appendix C contains a variable use table. This compliments the nomenclature list given in Appendix B by identifying the part of the program that the variable is used in. Most variables are in named common so they can be transferred from one subroutine to another. It was found that with the software available, the named common saved much more computer space than use of formal parameters, which we originally tried. This means that sometimes a large common block is introduced into a subroutine when only a few members of that block are actually employed in that subroutine. Nevertheless, it is more economical of computer space when it is all compiled. Also, the table was very useful in writing the program to be certain that all of the variables are defined before they are used and if they are defined in one part of the program and used in another part they are being shared. Also, some variables are used iteratively in subroutines, generated in one pass and used during the next. These must be in a common block. If on each pass they are generated and then used, the variables need only be local variables and their memory location may be freed when the subroutine is exited.

In this chapter the logic of the programming will be explained with the use of flow charts. In most cases the actual equations used are described in the source code to show what is being calculated. Often the source code is commented to give the references where the equations come from.

4.1 Main Program (FPSE)

Figure 4.1 shown the main program flowchart. The program starts by initializing flags. Then the main program calls FPIN, (FI) which will change any of the input variables the user requests it to. This subroutine is described in section 4.2. Next, if graphics are called for, 1 the previous graphic display is removed from the screen and a frame is drawn to start the new display. Also, a cycle counter is reinitialized. We are now at label 350. The main program does some more initializing and then calls subroutine CYCLE (F2) which is the main part of the simulation portion of the program. The simulation portion calculates works, heats, and losses for the particular input values as specified.
$l_{\text {All }}$ graphics subroutines are specifically written to an Orchid board and have been commented out in the current release of this program to avoid compiler errors.

Now comes the decision about whether optimization is called for. This is determined by one of the input values. If optimization is called for the program calls PAOPTI which adjusts the power and controls and records the optimization process. This is explained in Section 4.5. This subroutine first adjusts the power of the engine so it is very close to the target power and then searches through up to 15 of the selected input numbers to find the best values. Once the best values have been selected it is necessary to recalculate the works, heats, and losses for the best ones by going through F2 one more time. If optimization is not called for, or if optimization is called for and optimum values have been found then the control passes to 910 and thence to the subroutine DESOPT which is described in Section 4.4. This prints out the results of the calculations to the printer. Now comes an operator decision about whether to do another case. If the operator decides no, the program stops right there. If the operator decides yes, then it must be tested whether optimization was engaged in. If it was, certain flags have to be reinitialized by starting the program over again and therefore, one cannot go around and find another optimum through the program. Therefore, if the decision is made to continue and optimization is not done the subroutine CLEAR is called, if the graphic option was used, to clear the screen of the last graphic display and control returns to label 300.

4.2 FPIN Input Subroutine

Figure 4.2 shows the flowchart for subroutine FPIN. This subroutine uses arrays to store the input variable names, default values, screen coordinates, and integer flag information. Screen clearing and positioning is handled by an assembly language routine appropriately named SCREEN. The SCREEN routine is described in Section 4.2.1. The subroutine FPIN begins by asking the user if he would like to have the last input case recalled. If the response is no (N) the default values for the input data set are used to initialize all input variables. The screen is then cleared and the first 60 of the input variables and their default values are displayed in three columns on the screen. The user may select any variable by name and enter a new value. This new value must be entered as a real value (i.e., with a decimal point) even though the variable might have an integer value because the new value is read as a real value and later converted to an integer if required. If the user enters "exit" as a variable name the program displays the second half of the input variables as it did the first. If the user enters "exit" on this screen the program will assign all input values, save these values to diskette on drive B, and end the subroutine. The user may enter "prior" as a variable on the second screen if he desires to return to the first screen for additional changes.

Input variable number 45 (NGN) is a special case in the list of input variables. The program initializes the number of gas nodes at 21 and creates additional nodes, up to 200, as required during the simulation. The printed output of input values will display the value of NGN at the end of the run.

4.2.1 Subroutine screen

Description
The screen subroutine is a special purpose subroutine to move the cursor or clear the screen. It is written in assembly language and uses BIOS interrupt 10 H to provide some screen facilities.

Calling Format
CALL SCREEN (ROW,COL,FUNC)
Parameters
Row Integer value containing the row number to which the cursor is to be moved (1 to 24).

Col Integer value containing the column number to which the cursor is to be moved (1 to 80).

Func Integer function code. A value of one will clear the screen, any other value will position the cursor at Row, Col.

Notes

- Row and Col are not checked for range errors. Any value outside the appropriate range will give unpredictable results.
- No values passed are modified.

FIgURE 4.1. - MAIN PROGRAM FLOW CHART (FPSE).

FIGURE 4.2. - FLOW CHART FOR SUBROUTINE FPIN (Fi).

4.3 CYCLE Subroutine (F2)

Figure 4.3 shows the flow chart for the CYCLE subroutine. The source code listing is avallable on floppy diskette (see foreword). This subroutine is the heart of the computational procedure. It contains much of the computational procedure itself plus it calls eight additional subroutines, F21-F28, for the additional parts of the full computation. The first thing that is done after the subroutine CYCLE is called is the subroutine CONSTS is called. This takes the input values and calculates a large number of intermediate values needed by the rest of the program. These values are placed in INTMED common, which is common to all the subroutines F2-F28 and is the means of passing variables from one to the other. In addition, certain first time flags and accumulators are set at the very beginning which are needed just inside of program F2 or CYCLE. Label 700 is the return point after one cycle is calculated. Then the variables that need to be initialized at the beginning of each cycle are put in. Label 400 is the return point after each time step cycle is calculated. Therefore, the loop starting with label 400 is gone through for each time step.

It was decided that the first time through this calculation, the program should go as if the isothermal specified motion case were selected. This would get the temperatures and motions approximately correct and would be a good start for the other calculations to finish up on. Therefore, the first decision is whether this is the first time or whether we are asking for specified motion or for free motion. If this is the first cycle through the calculation, the subroutine MOVESP is called which calculates the future position of the power piston and the displacer and the volumes that would be represented by this future position based upon specified motion. If free-piston is called for, then MOVEFR is called which does the same thing, but this is based upon a force balance of both the power piston and the displacer and is much more complicated.

After going through one branch or the other, the calculation comes back together. Based upon the motions that have been calculated, the new bounce space volumes and pressures for the displacer bounce space as well as the power piston bounce space are calculated. Next, the program calls subroutine LEAK which calculates new gas masses in the working gas space and in the displacer bounce space and the power piston bounce space based upon calculated leakages between these different spaces due to the current pressure difference.

Then for each time step the pressure in the working gas and bounce space and the position of the power piston are added up so that at the end of the cycle the average pressure and average power piston position can be calculated.

Next, there is in effect a three way split depending upon whether an isothermal or an adiabatic analysis is desired. If it is an adiabatic analysis, the further decision must be made as whether to use the Martini moving gas node analysis or the Rios analysis. In all three cases the basic thing that is calculated for a particular time step is what the next pressure should be. This is done quite differently in these three different branches.

The calculation then comes back together again and the accumulated work and heat integrals are found. These have to be added to for each time step so that at the end of one cycle, we have the line integral of the total volume versus the pressure to give the basic work output per cycle and the line integral of the hot volume versus the pressure to give the basic heat input per cycle.

FIgure 4.3. - fLOW Chart for subrouting cycle (f2).

FIGURE 4.3. - CONCLUDED.

If graphics are to be used, then at this point the control splits off to plot segments of seven different line on the screen. This is more fully explained in figure 5.6 of Section 5 . Then for all cases the maximum mass fractions of the gas in the hot and cold spaces of the engine and the maximum derivatives of these values are calculated along with the maximum and minimum pressure. Of course, the final values of these are not known until the cycle is completed, but this part finds values as it goes along.

One reason for having an end of cycle test is to integrate a pressure-hot volume curve for exactly one cycle to determine the thermodynamic heat input for one cycle. Another reason is to integrate a pressure total working gas volume curve for exactly one cycle to determine the thermodynamic power output.

For specified motion, the end of cycle test is easy because you know when the cycle will end. You can make it come out to an even number of computational steps. Also both cycles start and end at the same times.

For free motion you do not know ahead of time when the cycle will end. It will always actually end between time steps. Even for small time steps, there is a large error incurred if the end of cycle is not interpolated between time steps. In the free-motion case, the first cycle is always in specified motion just to get the parts moving. In the second cycle, the cycle time for the power piston is usually different than the cycle time for the displacer. As the simulation settles down these two cycle times become the same again. In between, large errors in calculated heat input can occur if the end of cycle is determined by when the power piston finishes its cycle. These errors perturb the way the effective hot and cold working gas temperatures are chosen which feeds back into the pressure-volume curves. These errors, at best, delay convergence and may prevent it. A more serious problem is the choice of an end of cycle test. For some test and for some cases encountered in an optimization search the end of cycle test is never satisfied. The computation hangs up.

The end of the cycle test that was finally found to work and successfully complete an optimization search in the free-piston mode uses a separate end of cycle test for the hot volume and the total volume. At the time the first flag is set, the initial hot volume and the initial total volume are noted. The initial total volume is at the point where the centering ports of the power piston are open. Because of the phase shift, the initial hot volume is near one end of the displacer stroke. Since this extreme hot volume may never be calculated again, at the start the hot volume at which the displacer centering ports are fully open is calculated and used as the end of cycle test for the hot volume. During the first cycle the power piston actually goes through a full cycle, but the displacer goes through about three-quarters of a cycle. Using the trapezoid rule, the first heat input integral is estimated. In all subsequent cycles, the cycle for the displacer, and for the power piston both start and end at midstroke. The cycle times may be different. The power piston cycle time is used to compute frequency.

Now, all present values are made past values and all future values are made present values. In some computer programs large arrays are used so that full information on engine position, pressure, temperatures and so on for the full cycle is available at the end of the cycle for use. For each time step the future values of all these different physical quantities are calculated from present values and sometimes, particularly in the case of the Rios
analysis is calculated also from immediate past values. Therefore, for any time step the present, immediate future and immediate past values are the only values that are used and therefore, they are the only ones that are retained. During this part of the program the values are indexed.

After this index, a split is made depending upon whether the end of cycle has been found or not. If not, control returns to label 400 to begin the next time step. If it has been found, we go on to correct the work and heat input integrals for large time increments. This is a correlation developed by Martini (ref. 1) to correct for the smaller line integral which is realized when a relatively small number of time steps are used.

After the free-piston mode has settled down there will be different displacer and power piston strokes and a different phase angle than was input. This program recalculates these.

Next, the subroutine CYCLE calls the subroutine LOSSES which calculates the flow losses and heat losses for the cycle. After exiting LOSSES, the program shows a line in a table which gives the fractional changes in power output and heat input. These can be compared with the convergence criteria in the heading of the table. The operator can judge whether the solution is converging. Also shown in the table are workout and heat input per cycle, the ending pressure and the time step in effect.

The next question asked is, is this the first cycle. If it is, the first cycle flag is changed so it no longer shows the first cycle and the cycle starts over again.

Finally comes the convergence test. As each new value of the heat input and power output integral is determined, the absolute value of the fractional change between the new one and past one is calculated. To pass the convergence test, both these changes must be less than the convergence criteria which is input for two successive times. In addition, at least four cycles must be gone through.

If the convergence test is not met, control passes back to label 700 for another cycle. On the way, the time step is halved after the 10 th, 20 th and 30 th cycle. Experience has shown that when the solution is not converging, reducing the time step helps convergence happen.

If the convergence test is met, warnings are printed out if either the displacer or the power piston hit the end stops. Control then returns to the main program.
4.3.1 CONSTS subroutine (F21). - Figure 4.4 shows the flow chart for subroutine CONSTS. The full source code listing is available per the Foreword. In general. F21 takes the input numbers and from these generates a large number of constants that are used throughout the rest of the subroutine CYCLE. This flow chart enumerates the general headings of these constants and more specific headings are in the source code. After calculating all these constants it calculates the time step in one of two ways whether specified motion or free motion is being called for. It initializes the elapsed time counter. If inertial pump is called for, the initial pressures for this pump are calculated. Finally, for the Martini integration method it calculates the initial gas node properties and then returns to subroutine F2.

Calculate: Utility Constants, Unit Conversions, The Radiation Factor, Volumetric
Displacements, Gas Property Values, Heat Transfer areas, Gas Volumes, Initial Temperatures, Initial working gas mass, Leakage Coefficients, Thermal Conductivities, Gravity forces, Initial Pressures

FIGURE 4.4. - FLOW CHART FOR SUBROUTINE CONSTS (F21).
4.3.2 Specified motion subroutine (F22). - The flow chart for the specified motion subroutine MOVESP (F22), is given in figure 4.5. The full source code for this subroutine is available on diskette. Entering this subroutine, the first decision is whether this is the first time step or not. If it is, it initializes the first positions and the first volumes and starts the search for the maximum and the minimum volumes. Then it proceeds on as it does for all other times to index the elapsed time, find the new positions and volumes based upon the formula which is determined by the amount of elapsed time, and searches for the maximum and minimum hot and cold volumes. It then returns to subroutine F2.
4.3.3 Calculated motion subroutine (F23). - The flow chart for this subroutine is shown in figure 4.6. The source code is available on diskette. When this subroutine is called, the first decision is if this is the first time step. If it is, then the search for the maximum and minimum hot and cold volumes is initialized with values that are bound to change. Then the elapsed time is indexed. Next the force balance for the displacer is calculated. The same is true of the power piston, but this is more complicated because the power piston has attached to it one of four different loads. These loads determine one of the forces that are part of the force balance. The load force must be calculated. The power piston force balance is then calculated. In consistent units the time derivative of velocity is equal to the ratio of the net force acting on a body divided by its mass. There are two bodies, the displacer and the power piston. The Adams method is used for integration for better computational stability. This method uses the current ratio plus the last three ratios. These ratios are indexed along. Then the current force per mass ratios are calculated. If this is the start of the second cycle these past ratios do not exist. Therefore, the past ratios are made equal to the current ratio. When this is done the Adams method reduces to the Euler method.

Under some circumstances the use of the Adams method still resulted in computational instability. It was found that because of the lightness of the displacer, this was where the instability started. We found that for a number of time steps before instability could be noticed in the calculated displacer position, the force per mass ratios were alternating in sign with rapidly increasing magnitude. It was found that as soon as this was detected, the instability could be quelled by reducing the time step. After the time step is reduced the Adams method is not strictly correct for four time steps. However, it was found that computational stability was restored.

The Adams method determines the velocity at the end of the next time step. The position of the part at the end of the next time step is calculateu from the average velocity for the time step.

Next the new positions are tested to see of they exceed the mechanical stops in the machine. If they do, they are bounced back with a specified bounce coefficient. Then the search for the maximum and minimum hot and cold volumes is done for each time step during the cycle. Finally, the future pressure inside the pumping chambers of the inertial pump is calculated, if inertial pump is called for, and the program return back to subroutine $\dot{F} 2$.
4.3.4 LEAK subroutine (F24). - The flow chart for subroutine LEAK is shown in figure 4.7. The source code is available on diskette. The first thing this subroutine does is to calculate the leakage for the pressure differences

FIGURE 4.5. - FLOW CHART FOR SUBROUTINE MOVESP (F22).

currently in effect for the displacer rod seal and the power piston seal and for the displacer centering port and the power piston centering port. For these last two leakages, the program deals with five cases. Case 0 is when the centering port is not open at all. Case 1 is when the centering port opens and closes during the time step. Case 2 is when the centering port opens during the time step. Case 3 is when the centering port close during the time step. Case 4 is when the centering port stays open during the time step. All these five cases are needed to determine how long the centering port is open during the time step. This is used along with the flow coefficient and the pressure difference to determine the leakage for the time step. It should be mentioned here that the flow coefficient which is calculated in subroutine F 21 is first calculated for the dimensions given in the input numbers and then is adjusted by input number 40 which is the experience factor for the centering ports. The value of 10 now used in Appendix A means that the flow resistance employed is ten times greater than that which was calculated. During the development of the program we tried using the flow resistance as calculated and found that it really disturbed the operation of the engine. There are probably some inertial effects that come into play when the port is open for such a short time. It really should be taken into account in a very detailed evaluation of this procedure. However, since the size and shape of these ports probably have been derived by experience, this experience factor is a good way of taking it into account.

Once these leakages are determined, the change in inventory of the working gas, displacer bounce space and power piston bounce space are determined. In order to fit with the rest of the program the inventories are expressed in MR units, that is the mass of gas in gram moles times the gas constant. The units of these so-called masses are joules per degree Kelvin. Next there is some branching depending upon whether the isothermal or adiabatic calculational mode is used and whether the Martini or Rios method of integration is used. In the isothermal analysis, the change in the gas inventory governs. However, in Martini and the Rios integration method the pressures are important in the continuing integration process. So these have to be changed because of the change in the gas inventory. Also, the mass change that comes out of the cold space are the last gas nodes and this, of course, has to be changed. Finally, in the Martini analysis the change in gas inventory expands or contracts all gas nodes which has an effect on their temperature. For all cases after label 400 the new pressure in the displacer bounce space and power piston bounce space needs to be computed because of leakage. Finally, the control returns back to subroutine F2.
4.3.5 Pressure calculation by using isothermal analysis (F25). - Isothermal analysis is performed by subroutine PHISQ (F25). The flow chart for this subroutine is given in figure 4.8 and the source code is available on diskette. You will note from examination figure 4.3 that at this point in the calculation there are three branches. This is the first of the branches that will be discussed. There are only nine executable statements in this branch, but the other two branches are much more extensive. No matter which branch is gone through, the result is the same, that is the calculation of the next or future pressure for the time step. In this case the future pressure is calculated by the isothermal assumption which is based upon the future mass, volumes and effective temperatures. This is a single simple equation. If the Rios integration method is used, the future hot space and cold space and working gas inventories need to be calculated so that at the beginning of the second cycle

FIgure 4.7. - FLOW CHART FOR SUbrOUTINE LEAK (F24).

FIGURE 4.8. - FLOW CHART FOR SUBROUTINE PHISO (F25).
when the Rios integration method begins to be used, there are future, present and past hot and cold gas inventories which are needed in the Rios analysis. Also, another embellishment was needed in order to keep from calculating an unrealistically high flow rate. At the end of each cycle there is an adjustment of the effective hot and cold space gas temperature which then are effective for the next cycle. At the first of the iteration procedure this adjustment can be quite drastic and since in the isothermal analysis the pressure depends upon these temperatures as well as upon the gas inventory, the present and future gas pressures would not go together. Therefore, at the beginning of the cycle the present pressure is recalculated based upon the new effective hot and cold space gas temperatures which have just been recalculated. This is the reason for the last part of the flow chart. It solved the problem of making the graphical display look reasonable, and solved the problem of giving a realistic maximum flow rate for the cycle.

As in previous subroutines of this series, control then returns back to subroutine F2.
4.3.6 Pressure calculation by moving gas node analysis (F26). - The flow chart for this subroutine which is called PHMART is given in figure 4.9. The source code listing is available on diskette. This subroutine adapts the Martini version of the moving gas node analysis to this particular application. It does not use it to its full potential since it is used only to predict the next pressure. It does not take advantage of its ability to calculate heat inputs and outputs for the different parts of the machine. In subroutine F 21 the working gas space of the engine was divided into 22 different nodes. There are five nodes in the appendix gap space, one node in hot space, five nodes in the heater, five nodes in the regenerator, five nodes in the cooler and one node in the cold space. To get things started each node is given a volume and a temperature. Based upon this volume and temperature, it is given mass. The total working gas mass is then added up and the total of number nodes is added up. As the process continues the number of nodes changes, but can never exceed 200 with the present programming. A check is made to see if any mass is lost during the calculation and it never is. However, between one time step and the next, working gas mass is lost due to leakage as determined by the subroutine LEAK (F24). Starting with the first time step of the second cycle and in each time step thereafter, a ten step process is gone through to compute what the next pressure should be.

In Step 1, based upon total working gas volume change, the new common pressure and new temperatures for each gas node are determined. These new temperatures and the common pressure are determined based upon an adiabatic process. This change in the total volume plus the change in the displacer position causes the positions of these original gas nodes to change relative to the engine itself. Note that the nodes are not tied to the engine, but represent a string of packets of gas that fill the engine working gas space.

In Step 2 the present boundaries between these different packets are determined as measured in volumes from the root of the appendix gap in the hot end of the engine.

In Step 3 the gas nodes are redefined. If a gas node straddles the boundary between the appendix gap and the hot space, the gas node is split into two parts. The part in the hot space is combined with the node already in the hot space and the part in the appendix gap is redefined with a smaller volume and

Step 1. Based upon total working gas volume change determine new common pressure and new temperatures for each gas node based upon an adiabatic process.

Step 2. Determine new positions of current gas nodes based upon the
change in Step 1.

Step 3. Split gas nodes that are now part in one part of the engine and part in another.

Step 7. New pressure for each gas node due to temperature change due to heat transfer with each node retaining its same volume.

FIGURE 4.9. - FLON CHART FOR SUBROUTIME PHMART (F26).
a smaller mass. This same splitting process takes place between the hot space and the heater and between the cooler and the cold space. At the end of step 3 there are a number of nodes in the appendix gap, one node in the hot space, a number of nodes in the heater, regenerator and cooler, and one node in the cold space.

In Step 4 the second gas masses are made the first gas masses and the second gas temperature is made the first gas temperature and the second gas volumes are made the first gas volumes for all nodes. In addition, very small nodes are combined together so that they can be properly calculated. At this point there is an error trap to determine if there are too many nodes. One too many nodes causes the calculation to go crazy.

In Step 5 each gas node is assumed to be stationary and no gas is allowed to move from one node to the next. During the space of time of one time step heat transfer is allowed to happen consistent with the area available for heat transfer and the heat transfer coefficient that applies for that node. A running total is kept of the net heat transfer to or from each part of the engine and the net heat transfer to or from all the gas nodes together. This is powerful information, but it is not used in this calculation because it is incompatible with the rest of the computer program. During this step the regenerator metal nodes are allowed to float. That is, if the temperature of the gas is found to be higher than the temperature of the matrix surrounding it, the temperature of the gas drops and the temperature of the matrix rises, and the amount of heat transfer is recorded. At the end of step 5 each gas node has a different pressure as well as a different temperature.

In Step 6 the temperature of the metal nodes is adjusted to allow for conduction of heat transfer through the matrix. This process must take place at the same time as the heat transfer to or from the gas so that the node temperatures will remain realistic.

In Step 7 we need to normalize the fictitious condition set up by Step 5. That is, each gas node which has been constrained fictitiously to remain at the same volume when the temperatures change and therefore, attain a different pressure, must be allowed to expand or contract so that all gas nodes will end with a common pressure. In Step 5 we calculated the temperature changes. In Step 7 we determine what these pressures are. In Step 8 we perform a pressure equilibration which is simply the solving of one algebraic equation to determine what the pressure would be if each gas node is allowed to expand or contract adiabatically to a single common pressure. This common pressure is the future pressure for the time step.

In Step 9 we adjust the nodal gas temperatures due to the fact that each node either expanded or contracted adiabatically and therefore, changed its gas temperature appropriately. These then are taken into account.

In Step 10 the hot and cold space gas temperatures are identified, since these are needed later on to calculate some of the losses. These temperatures vary widely during the cycle because of the adiabatic character of the analysis. However, they are only used at the end of each cycle for loss calculations as has been mentioned. The loss calculations should really use the information available in this nodal analysis. But since this would be incompatible with the other methods of calculation, it was not done at this time.

After this ten step process the control passes back to subroutine F2.
4.3.7 Pressure calculation by Rios adiabatic analysis (F27). - The flow chart for this subroutine is given in figure 4.10. The source code for this part of the program is available on diskette. The analysis upon which this program is based was first published by P.A. Rios in 1969 (ref. 6). The equations were derived in dimensionless form for a crank operated cooling machine. The program listing in the thesis was illegible, but thanks to the cooperation of Professor Joseph L. Smith of MIT, the author was able to receive a listing of the program and transposed this program for a crank operated heat engine, like the General Motors 4 L 23 machine. This program was published in the second edition of the Stirling Engine Design Manual (ref. 4). In appendix D of this report the Rios equations have been rederived in a dimensional form which is compatible with the rest of the free-piston Stirling engine program.

According to the flow chart in figure 4.10 at the first of each cycle the choice matrix is defined and constants are calculated which are good for the entire cycle. The choice matrix is simply a programming device for communicating which one of the four paths or cases should be followed through the program. The cases are: (1) mass increasing in both hot and cold spaces; (2) mass decreasing in both hot and cold spaces; (3) mass decreasing in cold space and increasing in hot space; (4) mass increasing in cold space and decreasing in hot space. Some are good for the entire calculation and could have also been calculated in subroutine F21 and transposed over here in a common statement. However, since they are calculated only once each cycle and since the Rios computation requires 360 time steps per cycle to be stable, the time involved is negligible.

Once the initial calculations are out of the way, the program branches into four parts depending upon the case number that is in effect. During the cycle all four cases are used. It does not matter particularly which case you start with, because after each time step the case required for the next time step is determined. Therefore, it quickly gets into the right case. Each case uses a different set of equations to calculate the pressure and the mass change in both the hot and cold part of the machine.

After going through one of these four paths, it comes back together at label 300 and calculates the mass change in both the hot and cold spaces. Based upon this, it goes through a choice matrix calculation to determine the case number which is used in the next time step. This program accumulates a number of arrays that are used for the Rios loss equations. After accumulating these arrays as much as can be done for one time step, it returns control to program F2.
4.3.8 Calculation of losses (F28). - The flow chart for subroutine LOSSES (F28) is given in figure 4.11. The source code for this program is available on diskette. The first thing that happens when we enter this subroutine is to index the cycle number. Then we save the last basic heat input and power output and calculate the next basic heat input and power output. Then if we are doing the adiabatic moving gas node analysis, we set the fractional change of the basic power and the fractional change to the basic heat as the convergence criteria. Note that this is not the convergence criteria that is currently used. It is available for possible future use. Otherwise, we go on and calculate the convergence criteria later. Next we determine the effective flow rates and the fraction of the time that these flow rates act by evaluation of numbers that are calculated as part of F2 during the cycle. Subroutine LOSSES is only entered into after the cycle is over and when the losses for the

FIGURE 4.10. - FLOW CHART FOR SUBROUTINE PHRIOS (F27).

FIGURE 4.11. - FLOW CHART FOR SUBROUTINE LOSSES (F28).

Figure 4.11. - CONCLUDED.
cycle are going to be calculated. Now we determine whether the Rios loss equations are to be used. If the inputs specify that they should be used, they will not be used on the first cycle because the Rios integration method is not used on the first cycle. If it is after first cycle, the Rios loss equations can only be used if the Rios integration method is also used to supply information. Therefore, once this is sorted out, there are two main paths through the subroutine, one for the Martini loss equations and one for the Rios loss equations. We will discuss the Martini loss equations first and then the Rios loss equations.

In the Martini loss equations the effective flow rates and cycle times that were calculated in the first part of the subroutine are now used to determined the flow losses or windage losses for the regenerator, heater and cooler. These use standard engineering flow friction equations and are similar to those used in the Stirling Engine Design Manuals (ref. 3 and 4). All of these correlations have been carefully reevaluated to eliminate any discontinuities. Next from these three windage losses plus the area for the displacer a retarding force coefficient is calculated to be used in the free-piston analysis part of the program. It need only be calculated if the free-piston analysis part is invoked, but it is calculated every time. Since this happens only once each cycle, it is not very serious in terms of calculation time.

Next, if the moving gas node analysis is used, no adiabatic correction is needed. Otherwise, the adiabatic correction for the power output and heat input is calculated by a two-dimensional interpolation of the table as explained in references 1 and 2. Control comes back together at label 600. The indicated power is computed, which is the basic power less all the flow losses.

The next four heat losses, the reheat loss, the temperature swing loss, the pumping loss and the shuttle loss, are all calculated in the standard manner using essentially the same equations as have been used in earlier publications. Subroutine STATIC is called for all the static heat losses which are the same on both the Rios leg and the Martini leg of the program.

Therefore, from the basic heat requirement plus all the heat losses and the static heat losses, the heat demands and the cooler heat load can be calculated. These are needed in order to determine what temperature offset there is between the heater temperature and the effective hot space temperature and between the effective cold space temperature and the cooler temperature. Also, at this point the heat transfer coefficients for the heater and cooler are calculated. These are used both to calculated the temperature offsets and to be used in the moving gas node analysis.

Now if the moving gas node analysis is used, a section of the program is skipped. Otherwise, the new effective cold space and hot space temperatures are calculated based upon the heater and cooler demand, the heater and cooler heat transfer coefficient and the heat transfer areas that are calculated earlier in subroutine F21. This now finishes the Martini loss equations side.

In the Rios loss equation side starting with label 450 , the Rios method for computing the losses starts out with some flow integrals. This interpretation of what was actually calculated by Rios is based upon a careful reading of this thesis and an evaluation of what was done in the second edition of the Stirling Engine Design Manual. Based upon these flow integrals the cold exchanger, the hot exchanger and regenerator flow losses are computed. The
effective heater and effective cooler gas temperatures are computed and the reheat, shuttle and pumping losses are computed in a different way and was done on the Martini analysis even though the names are the same. Based upon this the basic power and indicated power are calculated in the Rios method and then the static heat losses are calculated by calling the same subroutine as before. In the Rios analysis the effective hot space and cold space temperature now refer to the temperature in the heater and cooler only. The Rios analysis does not calculate a temperature for the hot space and the cold space, but assumes that this is an adiabatic region. The procedure does not require calculating this temperature.

Now for both Rios and Martini loss equations the effective hot and cold space temperatures are calculated in degrees centigrade for use in the output program. Then if graphics are called for, a plot is made on the screen of the current and past effective hot and cold spaces temperatures. These plots are useful in that they give an indication of how the solution is converging. Moving gas node analysis does not use these effective temperatures and does not, therefore, render them into degrees centigrade and does not require to have them displayed on the screen. All this is skipped and comes back together at label 610. Finally, we need to determine the calculated engine speed and the time steps per cycle which are needed for the output and are placed in the output common block. After this, the program returns to subroutine F2.

Figure 4.12 shows the flow chart for subroutine STATIC. It is a straight forward subroutine which calculates the static heat losses in the standard way that is found in any engineering test. Many of these are made to depend upon the effective hot and cold space temperature which in the case of the moving gas node analysis is the hot and cold space temperature at the end of the cycle. Possibly in reevaluation some of these loss terms should be calculated based upon metal temperatures instead.

This marks the end of the explanation of the analysis part of the program. Now we move on to the reporting and the optimization of the program.

4.4 Data Output Subroutine (F3)

Figure 4.13 shows the flow chart for the data output subroutine DESOPT (F3). The source code for this part of the program is available on diskette. As the program is presently designed first all input variable values are printed and then all the outputs to the printer get a final record.

If optimization is called for, the program writes how many cases were tried to find the optimum. It also writes the total input cases which are more because each case must be adjusted to have approximately the target power specified. For the way it is now programmed, the number of input cases is twice the number of variable combinations searched plus one. Next the total number of cycles gone through to find the optimum is given and the number of cycles needed to attain convergence for the last case.

If optimization is not called for, the program simply prints the number of cycles to convergence.

In either case it shows the convergence criteria used. Then it writes a run number and the name of the engine which is the RE-1000. Then depending upon the type of motion it writes specified motion or writes free-piston motion and shows what type of load and load parameters are used. The next thing is a decision on analysis, efther isothermal or adiabatic. If it is isothermal, it writes isothermal analysis with corrections. If it is adiabatic, it then determines whether it uses the Martini integration method or the Rios adiabatic analysis and says which one has been used. Then another decision is the loss equations whether the Martini loss equations or the Rios loss equations and it shows which one of those are used. Finally, if the optimizing is called for, it shows the order in which the optimizing is done and the final optimized values. If it is not called for, it says the solution was not optimized. Then it prints out the current operating conditions and the power outputs and heat inputs and returns to the main program.

4.5 Optimization Subroutine (F4)

Figure 4.14 gives the flow chart for the subroutine PAOPTI (F4) which adjusts the power and optimizes after the power is adjusted. The source code for this part of the program is available on diskette. It was found that the indicated power output is almost exactly proportional to the working gas pressure. It was also found that the efficiency is usually a very weak function of pressure. Therefore, in order to speed the search for the optimum, we allowed just two trials for each variable combination. The first trial uses the charge pressure from the last test. The second trial uses a charge pressure calculated assuming the power is directly proportional to pressure.

This subroutine is very simple. It simply asks if the power has been adjusted. If it has not, control goes to $\mathrm{F4} 1$ for adjustment. If it has, the power adjust flag is reset and control passes to F 42 to record and control the optimization process.
4.5.1 Power adjustment subroutine (F41). - Figure 4.15 gives the flow chart for this subroutine. A diskette gives the source code. To start with the decision is made based upon input information how the power is to be adjusted. It can be adjusted by either changing the pressure or changing the

FIGURE 4.13. - FLOW CHART FOR SUBROUIINE DESOPT (F3).

FIGURE 4.14. - FLON CHART FOR SUBROUTINE PAOPTI (F4).

FIGURE 4.15. - flow chart for subroutine prajst (f41).
engine diameter. If it is to be changed by the engine diameter, the engine diameter is changed as though the power is proportional to the square of the diameter. If it is changed by the charge pressure, the charge pressure is changed as though the power is proportional to the engine charge pressure.

Control then comes back to label 300. The power adjust flag is set and control passes back to F4.

One of the aspects of this calculation procedure that was not realized fully at first is that the calculation can be repeatable and that for each pressure the power output and heat input can appear to be converging very well. But, a graph of power output versus charge pressure can still be quite irregular -- so can the efficiency-pressure curve. Only when a combination of time step size and convergence criteria can be found that will result in regular curves can a optimization search can be undertaken with confidence.
4.5.2 Optimization recording and controlling subroutine (F42). -

Figure 4.16 shows the flow chart of this subroutine. The source code listing can obtained on diskette. On entering this subroutine the first thing that is done is calculate an engine efficiency and index the trial counter. Then the question is asked, is this the first time this subroutine has been entered. If the answer is yes, there are a great number of things that need to be done to set up this subroutine for further use. The first thing is to reset the first time flag so that we will never do this again without starting the program all over. There are 21 input values identified in appendix A as also optimizable values and given an optimization number which goes from one to 21 . The way the program is set up now only these 21 values can be adjusted in an optimization routine. As many as 15 of these variables can be adjusted at one time. Some of these variables are real numbers and some are integers. They are transposed into a trial array which is a real number array 21 places long. Then the table heading is displayed and the best choice and best efficiency variables are initialized. Also, the short cut flag is initialized to no short cut. All the elements of a choice matrix are set to one. Then the first line of the data is printed. This is the base case that the optimizing program started with. Then the maximum choice number is calculated which is three raised to the power of the number of choices that are going to be considered. For instance, if three choices are being considered, it is three to the third, or 27 ; if four, it's three to the fourth or 81 . Finally, the current trial array is also saved as an original trial array. The original trial array is sometimes called the base case.

Basically, the program tests all combinations of the adjustable variables around the base case either greater of less than in all combinations. For instance, table 4.1 shows the progression of choice matrices used if there are three adjustable inputs and number 13 is the first choice, number 15 is the second choice, and number 14 is the third choice. The first row in table 4.1 is the base case choice matrix. Note that all the values are 1.0. For this particular case, all the choice matrix numbers except 13, 14, and 15 are always one. The program is set up so that any of the 19 adjustable values can be chosen in any order up to a total of 15 . Note that the second row in table 4.1 gives the second choice matrix. It is all 1.0 except for number 13 . The third choice matrix is all 1.0 except for number 13 which is 0.9 Note that as the program applies this choice matrix to the $2 l$ adjustable inputs, it systematically tests the three that in this case were chosen for adjustment both 10 percent higher and 10 percent lower in all possible combinations.

FIGURE 4. 16. - FLOW CHARI FOR SUBROUTINE OPIRAC (F41).

TABLE 4.1
CHOICE MATRIX VALUES FOR BASE CASE 3 OF ADJUSTABLE INPUTS

Chaice NC:H	CHMTX(1) CHMTX(12)				
CHMTX(13)	CHMTX(14)	CHMTX(15)	CHMTX(16) CHMTX(19)		
1	1.0	1.0	1.0	1.0	1.0
2	1.0	1.1	1.0	1.0	1.0
3	1.0	0.9	1.0	1.0	1.0
4	1.0	1.0	1.0	1.1	1.0
5	1.0	1.1	1.0	1.1	1.0
6	1.0	0.9	1.0	1.1	1.0
7	1.0	1.0	1.0	0.9	1.0
8	1.0	1.1	1.0	0.9	1.0
9	1.0	0.9	1.0	0.9	1.0
10	1.0	1.0	1.1	1.0	1.0
11	1.0	1.1	1.1	1.0	1.0
12	1.0	0.9	1.1	1.0	1.0
13	1.0	1.0	1.1	1.1	1.0
14	1.0	1.1	1.1	1.1	1.0
15	1.0	0.9	1.1	1.1	1.0
16	1.0	1.0	1.1	0.9	1.0
17	1.0	1.1	1.1	0.9	1.0
18	1.0	0.9	1.1	0.9	1.0
19	1.0	1.0	0.9	1.0	1.0
20	1.0	1.1	0.9	1.0	1.0
21	1.0	0.9	0.9	1.0	1.0
22	1.0	1.0	0.9	1.1	1.0
23	1.0	1.1	0.9	1.1	1.0
24	1.0	0.1	0.9	1.1	1.0
25	1.0	1.0	0.9	0.9	1.0
26	1.0	1.1	0.9	0.9	1.0
27	1.0	0.9	0.9	0.9	1.0

Since each one of the se trials have very close to the same power output, the question is, which one has the best efficiency. All combinations are tried and the best efficiency combination is noted. This best efficiency combination is now made the original trial array and a short cut flag is set so that the choice matrix which was found to be best defines a particular direction of motion from the base case to the optimum. This direction is used as many times as it will produce better efficiency. Then the program goes back to a normal search through all possible choices. An optimum is found when the subroutine has gone through all possible choices and has found that the best one is still the first one, that is, no change. Now with this as a general discussion we will then go back to talking through the flow chart.

If this is not the first time through the program, the control goes to label 200 and the question that is asked is, "Is the short cut flag set?" If it is, it means that the case that has just been calculated and adjusted for the right power output will be displayed with the choice number being the last choice number. If the short cut flag is not set, the display of the last calculated results would be shown with the current choice matrix number. If the short cut flag is set, the question is asked at label 221, "Is efficiency better than the last best efficiency?" If it is, we are on the short cut path and we make the original trial array values to be the current trial array values and make the best efficiency be the current efficiency and go on to label 350. We also save the charge pressure to use for the last calculation in case this should turn out to be the optimum choice.

If the short cut flag is set, but the efficiency is not better than the last best, then going to label 230 , we start the search over by setting the current choice number and the best choice number to one and reset the short cut flag and go to label 310.

If the short cut flag is not set, then after displaying the results the question is asked again "Is efficiency better that the last best?" If it is, we make the best efficiency be the current efficiency and the best choice number be the current choice number and save the charge pressure and go on to label 300, which is where the control comes in if this is the first time through the program. At this point the question is asked "Has the maximum choice number been reached?" If the answer is no, control passes to label 310 and the choice number is indexed to the next choice number. The subroutine CHOICE is called to find the next choice matrix based upon this choice number and other input values such as the number of optimization values that are being chosen and what order these optimizable values are being tested. Figure 4.19 gives the flow chart for this subroutine. Control then passes to label 350 .

However, if the maximum choice number has been reached, control passes to label 320 and the question is asked "Is the best choice number the number one choice number?" If it is, this is an indication that the optimum value has been found and the optimum flag is set and control passes to label 500 .

From label 350 we have a choice matrix that is in effect. Either it is the short cut choice matrix or the cholce matrix that has just been calculated and we need to multiply this choice matrix by the original trial array to get the next current trial array to go back into the design program. This is done and control passes to label 500.

If the maximum choice number has been reached, but the choice number with the best efficiency is not the number one choice number, we must recalculate the choice matrix for the trial number which has been saved to indicate which of all the many choice matrices that were calculated creates the best efficiency when applied to the original trial array. This choice matrix is recreated by calling subroutine CHOICE. Once this choice matrix has been recalculated, the original trial array is changed to be the best current trial array from the last series and the short cut flag is set to determine the way the control passes in the next time through this program. Control then moves to label 500.

At label 500, the question is asked "Has the optimum been found?" If it is, the original trial array is transposed into the input common variables that they come from and the saved charge pressure is transposed into the input charge pressure and the program returns. If the optimum is not found, the current trial array is transposed into the input common variable that they come from. However, some of them will have been changed from the original transposition at the beginning of this subroutine. After either one of these transpositions the control is passed back into the subroutine F 4 .

Figure 4.17 shows the flow chart for subroutine CHOICE. Subroutine CHOICE is called at two different points in the OPTRAC (F42) subroutine. This subroutine is designed to change the choice matrix which is 19 columns long, as shown in table 4.1, to an array depending upon what optimization number are chosen, how many are chosen and the percent change used in the optimization search. For the base case given in appendix A, the first optimization number to be searched is 13 , followed by 15 and 14 . These are to be changed by 10 percent. Table 4.1 shows the choice matrix values for these 27 choices. Note that the choice matrix column one to column 12 is one and from 16 to 19 is one at all times. The only changes, of course, are 13, 14, and 15. This periodic relationship between the choice number and the choice matrix values is calculated in subroutine CHOICE which then calls the subroutine ADJST. For the base case subroutine CHOICE calls ADJST just times and then returns. It may call it up to 15 times and till work properly.

Figure 4.18 shows the flow chart for subroutine ADJST. The first time ADJST is called, $J=1$ and it returns the value for CHMTX (ref. 13). The second time ADJST is called $J=2$ and it returns for CHMTX (ref. 15). The third time ADJST is called J = 3 and it returns values for CHMTX (ref. 14). This subroutine has been checked and does produce the periodic values given in table 4.1. It is expandable to give any number desired. For a large number of adjustable inputs, it would be impossible to store the choice matrices precalculated in the computer. It is necessary to calculate them each time they are used.

FIGURE 4.17. - FLOW CHART FOR SUBROUTINE CHOICE.

FIGURE 4.18. - FLOW Chart FOR SUBROUTIME ADJSt.

5.0 SAMPLE RESULTS

It was found by experience that time step size was all important, particularly when the calculated motion options were being exercised. It was found that solutions could be rapidly convergent but still give erroneous results. A number of trials were done which showed that only when the time steps were small enough did the effect of pressure on the solution make reasonable sense. Therefore, the effect of time step size and convergence criteria on the solution will be presented first. Next, the results of sample base cases will be given. Finally, the results of optimization searches will be presented.

5.1 Effect of Time Step and Convergence Criteria

Two separated investigations were made into the effect of time step and convergence criteria on the results. The first used isothermal analysis with corrections and employed a linear alternator with a load constant of $0.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})^{2}$. The second employed the Martini moving gas node analysis (adiabatic analysis) and employed a linear alternator with a load constant of $0.02 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})^{2}$.
5.1.1 Isothermal analysis. - To review, two solution parameters affect the answers that are obtained for a given case, one is the convergence criteria and the other is the time step.

The convergence criteria is the fraction that both the heat input and the power output integral changes from one cycle to the next. For the convergence criteria to be satisfied, this change for both the heat input and the power output integral must be less than the convergence criteria for two successive cycles.

The time step is simply the time interval used to calculate the solution. The smaller the time interval, up to a point, the more accurate the solution and also the more time consuming the calculation becomes.

It was observed that the convergence criteria and the time step were related. A large time step caused considerable variability from one time step to the next. Therefore, a tight convergence criteria would never be met except by accident.
5.1.1.1 Effect of convergence criteria: Table 5.l summarizes the results of a series of calculations to determine the best convergence criteria. The full computer output is given in appendix E. These results are from the double precision version. The series was all run at 66 Bar pressure and an initial time step of 0.1 msec , which resulted in 415 time steps per cycle. Note that as the convergence criteria get tighter the cycles to solution get longer. However, the frequency of operation is not changed, and the indicated efficiency is hardly changed. The only change of note is in the indicated power. However, in order to save computer time, a convergence criteria of 0.005 was picked in order to get good accuracy with reasonable calculation time.
5.1.1.2 Interaction of Convergence Criteria and Time Step: Table 5.2 shows how the time step and the convergence criteria relate to number of cycles it takes to convergence. Note that at even the smallest time step tested it

TABLE 5.1
EFFECT OF CONVERGENCE CRITERIA SUNPOWER RE-1000 ENGINE FREE MOTION LINEAR ALTERNATOR Load Constant $=0.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})^{2}$

Isothermal Analysis
66 Bar Charge Pressure
0.1 msec time step
(See Appendix E for full output)

Convergence criteria	Cycles to Solution	Indicated Power, W	Indlcated Efficiency, $\%$	Calc. freq.,
0.001	10	719.05	28.14	
0.005	13	728.0	28.27	24.08
0.002	23	744.51	28.43	24.07
0.001	30	750.44	28.48	24.07
0.0005	39	754.90	28.54	24.06

Table 5.2
 FELATIONSHIP EETWEEN CONUERGENCE CRITERIA AND TIME STEP

Convergence Criteria	Cycles to convergence at time step of:				
	0.1 msec	0.2 msec	0.5 msec	1.0	msec
0.01	11				
0.005	12-13(3)	11-13(1)	12-39(2)		conv.
0.002	23		12-39(2)		conv.
0.001	33				
0.0005	41				
0.0002	rio coriv.				
(1) Various	ge pressur	S See Ap	ndix W)		
(2) Various	ge pressu	5 (See Ap	ndi\% X)		
(3) Various	ge pressu	5 (See Ap	nidix Y)		

is possible to set the convergence criteria so tight that the criteria would never be satisfied. This indicates the variability gets smaller from cycle to cycle as the calculation progresses but there is an inherent variability that remains which is reduced only by reducing the size of the time step.

Going the other direction in table 5.2 at a convergence criteria of 0.005 there is a time step, in this case 1.0 msec , in which the inherent variability was so large from cycle to cycle that there was practically no chance that the convergence criteria would be satisfied. In this case, the heat input integral was calculated for 167 cycles. After the first 10 cycles, there was no noticeable convergence. The change in power output integral was roughly cycling from 0.000 to 0.036 . The change in heat input varying randomly from 0.050 to 0.170 . Therefore, there was no way for two successive changes in these two integrals to be less than 0.005 .

Table 5.2 shows that the cases calculated at a convergence criteria of 0.005 showed a larger variability in the number of cycles to convergence. As the time step increased, the maximum number of cycles increased but the minimum remained nearly the same. This indicates again the chance nature of satisfying the convergence criteria. The full printout for the cases that are summarized in table 5.2 are included in appendices W, X and Y. They were calculated to determine how the power output and efficiency change with charge pressure.

Table 5.3 summarizes how the calculated power output and efficiency varies with charge pressure over a wide range. Appendix W gives the full computer printout. It is surprising that the same engine works over such a wide range of charge pressures. Table 5.3 was done for a time step of 0.2 msec .

Table 5.4 was done for the same case and for a limited range of pressures only with 0.5 msec as the time step.

Table 5.5 was also done for the same case and for a limited range of pressures only with 0.1 msec as the time step.

Figure 5.1 graphs the information given in table 5.3 over the full range. Note that the calculated power is very nearly proportional to charge pressure, especially in the range of normal operating pressure. Also, note that the efficiency in the normal operating range of 60 to 70 bar is not a strong function of frequency. Therefore, it was concluded that in choosing between engine designs to find the optimum one need not find the exact pressure that will give the target power in order to choose between competing designs on the basis of efficiency.

Figure 5.2 compares tables $5.3,5.4$ and 5.5 over a limited pressure range of 66 to 72 bar and on an expanded scale so that the difference between the results can be noted more clearly. Note that as expected, the 0.1 msec time step gave the most regular results but they were not perfect. The 0.2 msec time step was not quite as good but still acceptable. The 0.5 msec time step gave results that can be quite misleading. Also note, as was observed in table 5.l, that the frequency is easiest to calculated correctly, next comes efficiency, and finally, the most difficult, indicated power.
5.1.2 Adiabatic analysis. - The adiabatic analysis available in the program is the Martini moving gas node analysis. This analysis predicts the next pressure without making adjustments in the effective constant hot space and cold space gas temperatures at the end of each cycle. Therefore, progress toward convergence is smoother. Therefore, it was felt that a longer time step of 1 msec would be satisfactory. At this time step and a convergence criteria of 0.005 , the allowable number of gas nodes of 200 was exceeded after 19 cycles. Therefore, the series was done at a convergence criteria of 0.01 . The computer outputs for this series are given in appendix 2 . The power output, efficiency and frequency are plotted in figure 5.3. Note that, as usual. the calculation of frequency is very regular but the calculation of indicated power and efficiency is somewhat irregular particularly when calculations are made for closely spaced pressures. It should be noted that some runs given in appendix Z did not finish at a time step of 1 msec . Sometimes the number of cycles exceeded 10 and the time step was automatically halved. Sometimes calculational instability was detected by the program and the time step was halved one or two times. Nevertheless, the convergence criteria of 0.01 was retained.

Since this series was not regular, another series of calculations was run with a convergence criteria of 0.005 and an initial time step of 0.25 msec . The full computer output for this series of calculations is given in appendix $A A$. It was not necessary to change from this initial value since convergence was found in from seven to nine cycles. Figure 5.4 compares the results from appendix $A A$ and Z plotted on an expanded scale for pressures from 70 to 82 bar. As usual, the frequency is calculated accurately either way. However, only the calculation series with 0.005 convergence criteria and 0.25 msec time step makes sense as far as calculating power. Therefore, the results given in appendix Z must be considered seriously in error.
5.1.3 Conclusion on time step and convergence criteria. - In employing the computer program described in this report in the calculated motion mode, one should graph the calculated powers versus charge pressure over a short range to see that this power is regular and approximately proportional to charge pressure. If not, a smaller time step or a smaller convergence criteria or both should be used until such a regular relationship is obtained.

```
                    Table 5.3
                    SUMMAFY OF COMPUTED RESULTS
                RE-1000 ENGINE
                            Time Step = 0.2 msec
        Corivergence Criteria = 0.005
    Heater Temperature = 600 C
        Cooler Temperature = 40 C
    Free Motions - Linear Alternator
Load Constant = 0.040 N/(cm/sec)w*2
Isothermal Analysis with Corrections (Full printout in Appendix W)
```

Charge Pressure Eiar	Iridicated Frower, W	Indicated Efficiency, \%	Calculated Frequency, Hz
10.00	69.43	9.97	9.46
20.00	199.40	18.96	13.50
30.00	318.40	22.79	16.40
40.00	428.70	25.47	18.86
50.00	540.33	27.12	21.03
60.00	657.10	27.96	23.00
66.00	723.51	28.23	24.10
67.00	733.31	28.26	24.29
68.00	742.31	28.25	24.46
69.00	754.88	28.29	24.64
70.00	761.03	28.31	24.81
71.00	773.44	28.34	24.99
72.00	783.68	28.33	25.16

```
                    Table 5.4
                        SUMMAFY OF COMFUTED FESULTS
                FE-1000 ENGINE
                    Time Step = 0.5 msec
        Convergence Criteria = 0.005
            Heater Temperature = 600 C
            Cooler Temperature = 40 C
    Free Motions - Linear Alternator
Load Constarit = 0.040 N/(cm/sec)w*2
```


Isothermal Arialysis with Corrections

```
(Full priritout in Appendix \(X\) )
```

Charge Fressiure Ear	Indicated Fower,	Indicated Efficiency,	Calculated Frequency,
66.00	711.72	28.25	
67.00	750.97	28.29	24.18
68.00	749.05	28.27	24.34
69.00	749.70	28.14	24.53
70.00	758.76	28.16	24.70
71.00	765.12	28.23	24.90
71.50	787.16	28.38	25.07
72.00	781.90	28.28	25.17
			25.23

```
Table 5.5
SUMMARY OF COMPUTED RESULTS RE-1000 ENGINE
Time Step \(=0.1 \mathrm{msec}\)
Convergence Criteria \(=0,005\)
Heater Temperature \(=600 \mathrm{C}\) Cooler Temperature \(=40 \mathrm{C}\)
Free Motions - Linear Alternator Load Constant \(=0.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec}) * * 2\)
Isothermal Analysis with Corrections
(Full printout irl Appendix Y)
```

Charge	Iridicated		
Fressure Eiar	Fower, W	Indicated Efficiency,	Calculated Frequency,
67.00	736.20	28.29	24.26
68.00	744.65	28.30	24.44
69.00	755.28	28.32	24.62
70.00	767.57	28.35	24.79
71.00	776.14	28.37	24.97
72.00	788.89	28.42	25.14

FIGURE 5.1. - EFFECT of pressure on calculaied free-pision emgine generaior operation. IIME SIEP, 0.2 MSEC; CONVERGENCE CRITERIA, 0.005. (SEE TABLE 5.3.)

FIGURE 5.2. - COMPARISON OF FREQUENCY EFFICIENCY AND indicated power for DIFFERENT TIME SIEPS. (ISOTHERMAL AMALYSIS.)

FIGURE 5.3

FIgure 5.3 - effect of pressure on indicaitd
POWER. EFFICIENCY, AND FREQUFNCY. INIIIAL
IIME STEP, 1 mSEC: CONVERGENCE CRIIERIA.
0.01. (ADIABATIC ANAI YSIS.)

FIGURE 5.4

FIGIRE 5.4-COMPARISON OH FKIQUNCY. LIII CIENCY. AND POWER FOR DIFFERENI IIME SIEPS AND CONVERGENCE CRIIERIA. (ADIABAIIC ANALYSIS.)

5.2 Sample Base Cases

The engine dimensions and operating conditions for all the sample cases are given in appendix A except as specifically stated in each one of the base cases. It was found that in producing these base cases, it was extremely helpful to pay close attention to the graphical display because it was much easier to determine whether the solution was going awry by watching the display than by looking at diagnostic printouts, although these were also very useful in certain cases. All results demonstrated in these base cases were generated by the double precision version of the program.
5.2.1 Specific motion isothermal analysis. - This is the analysis one gets if no change is made at all in the base case program with the exception of adding graphical output if the computer has the capability for this. Table 5.6 shows the printout that is obtained when this is done. Note that the run number is one of the input values that can be changed and is for the convenience of the user. The different options of the program are specified in the heading so that one can see at a glance what choices have been made. All the dimensions of the RE-1000 engine are printed on the output. Note that the operating conditions are given first. These are all things that can be changeable in the engine without rebuilding it. The power piston stroke and displacer piston stroke are input numbers. They do not necessarily represent the actual strokes of the parts unless the specified motion option is chosen which it is in this case.

The reader is referred to section 4 for a detailed explanation of now these different values are calculated under the different circumstances. In this section will be explained the significance that each one of these values given in table 5.6 and succeeding tables that follow is supposed to represent. There is a basic power and a basic heat requirement that are required if the engine were perfect. Since the engine is not perfect, a number of corrections have to be made to the basic power as well as the basic heat requirement to obtain the predicted value for the power output and efficiency. In this case of isothermal analysis and specified motion we know ahead of time how the displacer and the power piston move. In the isothermal analysis we assume we know what an effective temperature will be for the hot space and the heater gas and for the cold space and cooler gas. Therefore, we can determine the pressure during the cycle. The line integral of the total volume versus this pressure times the frequency is the basic power output for the cycle. The line integral of the hot volume versus the pressure times the frequency is the basic heat input.

Then, according to references 1 and 2, Martini Engineering has worked out a method of relating the basic power output and the basic heat input calculated by isothermal analysis to the basic power output and heat input for an adiabatic hot space and cold space which would be more time consuming to compute. There is a functional relationship between both the isothermal work and the adiabatic work and between the isothermal heat input and the adiabatic heat input. Therefore, a correction is applied by a two-dimensional interpolation in a data table which is part of the computer program.

Also, on the power output side an estimate is made of the flow losses through the heater, regenerator, and cooler, and these are subtracted from the basic power to give the indicated power. In the case of a free piston Stirling

Table 5.6

COMPUTED RESULTS FOR SPECIFIED MOTION, ISOTHERMAL ANALYSIS

(Base Case Dimensions from Appendix A)
CONVERGENCE CRITERIA IS: . 00050

CYCLE	CHANGE	CHANGE	WORK	HEAT	END	TIME
NUMB.	POWER	HEAT	OUT	IN	PRESSURE STEP	
	OUT	IN	JOULES	JOULES	MPA	MSEC.
1	.00000	.00000	41.2037	64.3800	7.0134	1.4029
2	.58796	.67810	38.4287	64.0719	7.0389	1.4029
3	.06735	.00479	34.1658	52.8642	7.0413	1.4029
4	.11093	.17492	36.6826	60.2570	7.0386	1.4029
5	.07366	.13984	37.5514	63.1660	7.0401	1.4029
6	.02369	.04828	36.7339	60.9168	7.0409	1.4029
7	.02177	.03561	36.7083	60.7805	7.0405	1.4029
8	.00070	.00224	36.9490	61.4834	7.0404	1.4029
9	.00656	.01156	36.9033	61.3747	7.0405	1.4029
10	.00124	.00177	36.8478	61.2095	7.0405	1.4029
11	.00150	.00269	36.8837	61.1748	6.9675	.7015
12	.00097	.00057	36.8409	61.0046	6.9724	.7015
13	.00116	.00278	36.9408	61.4092	6.9720	.7015
14	.00271	.00663	36.9221	61.3223	6.9720	.7015
15	.00051	.00142	36.8970	61.1995	6.9720	.7015
16	.00068	.00200	36.9086	61.2475	6.9719	.7015
17	.00031	.00078	36.9132	61.2702	6.9719	.7015
18	.00012	.00037	36.9085	61.2494	6.9719	.7015

CURR	NT OPER	TING	C	E					
$01=$	72.000	02=	2	$03=$	600.000	$04=$	40.000	05=	49.600
$06=$	2.700	$07=$	2.600	$08=$	0	$09=$	1	$10=$	1.000
$11=$	0	$12=$. 000	$13=$	1.000	$14=$	1	$15=$	1
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRE	NT DIME	IONS	ARE:						
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$. 0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$. 0000	$39=$	8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	22	$46=$	24	$47=$	1.0200	$48=$. 1575	$49=$	1067
$50=$. 7600	$51=$. 1321	$52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	6.4460	$63=$. 5440	$64=$	88.9000
$65=$	75.9000	$66=$. 0000	$67=$. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0000	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$. 0100	$82=$. 1000	$83=$. 0005	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	$87=$. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	$92=$. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	$97=$. 0000	$98=$. 0000	$99=$	0000
$100=$. 0000	101=	13	$102=$	15	$103=$	14	$104=$	0
$105=$	0	$106=$	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	$116=$	0	$117=$	0	$118=$	0	$119=$	0
$120=$	0								

Table 5.6 Concluded

```
    ENTERED PRINT ROUTINE AFTER 18 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
IN AND POWER OUT HAS BEEN LESS THAN .0005
                                    RUN# 1 FOR
                                    SUNPOWER RE1000 ENGINE
                                    SPECIFIED MOTIONS
                                    ISOTHERMAL ANALYSIS WITH CORRECTIONS
                                    MARTINI LOSS EQUATIONS
                                    SOLUTION IS NOT OPTIMIZED.
```

OPERATING CONDITIONS ARE:			
SPEC.FREQ., $\mathrm{HZ}=29.70$	CHRG. PRESS., BAR	=	72.00
HEAT IN, DEG C $=600.00$	HEAT OUT, DEG. C	=	40.00
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$	PHASE ANG. DEGREES	$=$	49.60
POWER P.STR,CM = 2.70	DISPL. STROKE, CM	$=$	2.60
CALC.FREQ., $\mathrm{HZ}=29.70$	TIME STEPS/CYCLE	$=$	48.00

COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:
POWER, WATTS HEAT REQUIREMENT, WATTS
BASIC 1096.1822 BASIC 1819.1067
ADIABATIC CORR. $\quad-50.6575$ ADIABATIC CORR. 92.1976
HEATER FLOW LOSS -80.6737 REHEAT 610.9303
REGEN.FLOW LOSS -84.0998 SHUTTLE 104.7203
COOLER FLOW LOSS -3.4007 PUMPING 5.9110
INDICATED 877.3505 TEMP. SWING
CYL. WALL COND. 193.2727
DISPLCR WALL COND. 33.7666
REGEN. WALL COND. 60.9939
CYL. GAS COND. 6.0904
REGEN. MTX. COND. 4.5869
RAD.INSIDE DISPL. 4.7596
EXP.SP.EFFECT.TEMP.,C 574.73
COMP.SP.EFFECT.TEMP.,C 57.46
FLOW FRIC. CREDIT
-122.7236
TOTAL HEAT TO ENG.
2814.6273
engine the mechanical losses are considered negligible and are not considered. Therefore, the indicated power is the power applied to the load.

On the heat input side the reheat loss is simply the extra heat that must be added each cycle to bring the working gas entering the hot space back to hot space temperature. A better regenerator can reduce reheat loss. The shuttle loss is the loss suffered as heat is transferred across the displacer gap as it moves back and forth. Increasing the gap or increasing the length of the displacer with reference to its stroke can reduce this loss. Pumping loss is the loss incurred by packing hot gas into this appendix gap around the displacer and then bringing back somewhat colder gas because of the heat transfer into this gap. Pumping loss can be decreased by decreasing this gas thickness. Therefore, there is a trade off between shuttle loss and pumping loss. Temperature swing loss is the additional loss incurred due to the fact that the regenerator matrix has heat capacity. This is a correction to the reheat loss which assumes that the regenerator matrix has infinite heat capacity. The different steady state conduction terms are then itemized. These are the cylinder wall conduction, the hot cap wall conduction, the regenerator wall conduction, the cylinder gas conduction, the regenerator matrix conduction, and the radiation inside the displacer. Also, since the flow losses in the heater and half of them in the regenerator are converted to heat, there is a credit for this giving a total heat requirement for the engine. Also, shown in table 5.6 is the expansion space effective temperature and the compression space effective temperature which were obtained by an iterative procedure such that the temperature difference between the heat source metal temperature and the effective expansion space gas temperature was adequate to transfer heat through the heater considering that the temperature difference is effective during the time the gas moves. The same calculation is made for the cold side so that the temperature offset is adequate to transfer heat that is needed to be transferred through the cooler.

This procedure has been used by Martini and has been published in a number of places (refs. 1-5).

Figure 5.5 gives a graphical output for this case. Figure 5.6 gives an explanation of what is meant by this graphical output. Seven curves are plotted for each cycle. These curves are superimposed upon each other until a convergence is reached. The most important is the total volume pressure curve or indicator diagram. This is shown as a pickle-shaped diagram on the right hand side of the display. There is a lighter curve above and a heavier curve below. The lighter curve is the first cycle in which it was assumed that the beginning pressure is the charge pressure. Since this created a higher than desired average pressure for the working gas space, the pressure was adjusted for the second cycle so that the average pressure in the working gas space would be equal to the charge pressure.

As explained in figure 5.6 there are three curves that involve this pressure. One plots the total volume versus the working gas pressure to give a closed curve proportional to the power output. Another curve plots the hot volume versus the working gas pressure to give a closed curve with an area proportional to the heat input. Finally, there are three curves that show how the working gas, displacer bounce and power piston bounce pressure vary with time during the cycle.

FIGURE 5.5. - GRAPHICAL OUTPUT FOR SPECIFIED MOTION. (ISOTHERMAL ANALYSIS.) (SEE FIG, 5.6 FOR EXPLANATION OF CURVES.)

Three graphs are superimposed.

l Igure 5.6. - graphical output for calculaied motion, linear aliernator LOAD. (ISOIHERMAL ANALYSIS.)

Also shown in figure 5.5 are the positions of the displacer and the power piston for one cycle. Since this is a specified position case, these positions do not change from cycle to cycle and they are assumed to be sinusoidal. The frequency, the amplitude and the phase angle that are given are used to plot these curves. Finally, as is common in isothermal analysis, the effective hot space and cold space temperatures are adjusted. The curves as explained in the third part of figure 5.6 show how these adjustments take place. Most of the adjustment is in the second cycle and after that, very minor adjustments are needed and after 17 cycles the solution meets the very tight convergence criteria and the solution ends.
5.2.2. Free-piston motion with linear generator and isothermal analysis. - In the free-piston motion the specified motion of the displacer and the power piston is replaced with a force balance which takes into account all the forces acting upon the displacer and power piston at a particular time and, knowing its current velocity and mass, predict the velocity for the next time step and therefore, the position of the power piston and the displacer for the next time step. Also, the history of the last three time steps are used in the Adams method of integration.

This case is different from the base case by making the following changes:

> Number 10 Time step to 0.1 msec Number 14 Engine load to four \quad Number 15 Method of calculation from one to two \quad Number 75 Alternator load parameter to 0.04 to 0.005

These changes were made because the calculation series given in table 5.1 and appendix Y showed that this is a stable operating point. Table 5.7 shows the computed results for this final version of the computer program. Appendix Y was done with an earlier version which did not have the final aids to convergence added. For these conditions and 72 bar charge pressure, the solution in appendix Y required 13 cycles. This final solution for the same time step and convergence criteria required 11 cycles. The results are almost identical as far as power output, frequency and efficiency are concerned. The changes in power output and heat input from cycle to cycle are less drastic at first, but in this case the solution at 0.1 msec time step does not usually allow the fractional change in both integrals to be less than 0.005 for two successive times. After going to a time step of 0.05 msec , the calculation settled down enough to meet the criteria.

There should be no reason that tables 5.6 and 5.7 should give the same results since the frequencies and strokes are quite different.

Figure 5.6(a) shown the graphical output for this case. Note that the new lower frequency is found after three cycles. The rest of the time was taken to settle the solution. Thirteen curves are drawn, but after the first few the rest are essentially repeats as far as the graphical output is concerned. Note also that it takes only about three cycles to change the phase angle.

Table 5.7
RESULTS FOR CALCULATED MOTION AND LINEAR ALTERNATOR LOAD - ISOTHERMAL ANALYSIS

FIGURE 5.6(a)

Table 5.8
RESULTS FOR FREE-PISTON MOTION AND INERTIAL COMPRESSOR LOAD - ISOTHERMAL ANALYSIS

Table 5.8 Concluded

ENTERED PRINT ROUTINE AFTER 12 CYCLES. ERACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT -A. AND POWER OUT HAS BEEN LESS THAN . 0050

RUN\# 1 FOR
SUNPOWER RE1000 ENGINE
FREE MOTIONS -- INERTIAL COMPRESSOR
INLET PRESSURE OF PUMPED GAS= 1.00 BAR . OUTLET PRESSURE OF PUMPED GAS= 5.00 BAR . AREA OF LOAD PISTON = . $500 \mathrm{CM} * * 2$.
END CLEARANCE IN PUMP $=1.000 \mathrm{CM}$.
ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED.

OPERATING CONDITIONS ARE:		
SPEC.FREQ., $\mathrm{HZ}=29.70$	CHRG. PRESS., BAR	72.00
HEAT IN, DEG C = 600.00	HEAT OUT, DEG. C	40.00
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$	PHASE ANG. DEGREES	69.72
POWER P.STR, $\mathrm{CM}=3.59$	DISPL. STROKE, CM	2.80
CALC.FREQ., $\mathrm{HZ}=30.62$	TIME STEPS/CYCLE	653.15
COMPUTED PERFORMANCE USING FPSE	BY MARTINI ENG.:	
POWER, WATTS	HEAT REQUIREMENT, WATTS	
BASIC 1956.4315	BASIC	3268.091
ADIABATIC CORR. -115.9755	ADIABATIC CORR.	201.7725
HEATER FLOW LOSS -169.1202	REHEAT	876.8796
REGEN.FLOW LOSS -192.3061	SHUTTLE	118.8972
COOLER FLOW LOSS -10.1656	PUMPING	12.7575
INDICATED 1468.8642	TEMP. SWING	2.1328
	CYL. WALL COND.	189.7416
	DISPLCR WALL COND.	33.1497
	REGEN. WALL COND.	59.8795
INDICATED EFFICIENCY, \% 32.55	CYL. GAS COND.	5.9792
	REGEN. MTX. COND.	4.5031
	RAD.INSIDE DISPL.	4.5325
EXP.SP.EFFECT.TEMP., C 564.63	FLOW FRIC. CREDIT	-265.2732
COMP.SP.EFFECT.TEMP., C 56.81	TOTAL HEAT TO ENG.	4513.0435

5.2.3 Free-piston motion, inertial compressor, isothermal analysis. - To calculate this case, the following input values were changed from the previous case.

Number 14 Engine load from four to three
Number 78 Inlet pressure of pumped gas to 1.00 bar
Number 79 Areas of load piston $=0.5 \mathrm{cu}^{2}$
Number 80 Outlet pressure of pumped gas to 5.00 bar
Number 81 End clearance in pump $=1 \mathrm{~cm}$
The results of this calculation are shown in table 5.8. The graphical output is shown in figure 5.7.

In this case the power piston of the engine is attached to a gas compressor that is double acting and has inlet and output valves on each end. The effect of the area of the connecting rod is ignored. The gas in the pumping gas spaces is assumed to act as if it were adiabatic as far as the compression and expansion effects are concerned. One must specify the inlet and outlet pressure of the gas, the area of the load piston and the end clearance in the pump which is the distance between the piston and the end of the pumping chamber when the power piston is at its stop on either end. All these values affect how the displacer and power piston move. Note that at the end of each cycle the effective temperature of the gas in the hot space and the cold space of the engine is adjusted as is usually done in the isothermal analysis so the temperature between the metal and gas is adequate to transfer the heat that is required by the engine. The graphical presentation of the data as well as the work output and heat inputs in table 5.8 shows that about four or five cycles are needed to steady out the work and the frequency. After this they become quite stable and the operation is stable within some narrow bounds. As in the last case, adequate stability to meet the convergence criteria only when the time step is halved after 10 cycles. Only two more cycles are needed to meet convergence criteria.
5.2.4 Specified motion and moving gas node analysis. - To calculate this case the following input values are changed from the previous case:

Number 15 Calculation option from two to three

In this analysis, the concept of an effective hot space and cold space temperature is not used. In its place a large number of gas nodes are assumed to move back forth through the working gas space. Each one of these gas nodes represents a specific quantity of gas which is followed through the cycle. However, in the expansion and the compression space the gas nodes are redefined so that there is one homogenized gas node for the expansion space and another one for the compression space. Otherwise, there is no flow between one gas node and the next. Table 5.9 shows the results of this sample case. This solution is not disturbed each cycle by the picking of a different effective hot and cold space temperature. The hot space and cold space temperatures change smoothly during the cycle and fairly quickly attain a steady state operation. That is, they cycle through the same temperatures each cycle. Table 5.9 shows how these works approached a steady state and shows that the results with this type of analysis are reasonable.

FIGURE 5.7. - GRAPHICAL OUTPUT FOR FREE-PISTON MOTION IMERTIAL COMPRESSOR LOAD. (ISOTHERMAL AMALYSIS.)

Table 5.10 compares two calculations of the same engine under the same conditions. The adiabatic analysis predicts 35 percent more power and 10 percent more efficiency than the isothermal analysis. The adiabatic analysis should be more accurate since it is much closer to the true way the engine operates. However, the isothermal analysis has been shown to agree with the General Motors data on their 4 L 23 engine to within ± 10 percent (refs. I and 2). It will be interesting to see how these two agree with test results on the RE-1000 engine (ref. 7).

Since in the moving gas node analysis the hot and cold spaces are adiabatic, there is no need for an adiabatic correction. Therefore, this has been set to zero. Otherwise, all the other losses are calculated in the same way as previously. Figure 5.8 shows that the graphical output is very well behaved. The work diagram is slightly more tipped (as you would expect) because of the adiabatic character of the hot and cold spaces.
5.2.5 Specified motion and Rios adiabatic analysis. - In order to do this case the following changes are made from the last case:

Number 32 Integration option from zero to one
 Number 46 Number of time steps per cycle from 24 to 360

With the aid of the Rios thesis (ref. 6) and the program given in the Second Edition of the Stirling Engine Design Manual (ref. 4), the Rios analysis was adapted to the free-piston environment. One important change was that the hot and cold spaces do not go to zero once each cycle like they did in the original Rios analysis. Therefore, they cannot be reinitialized like Rios did once each cycle. The problem is that the Rios algorithm in which central difference is used is computationally unstable. However, by using small time steps and initializing once each cycle, Rios could use this effectively. However, since our hot and cold spaces do not go to zero because this is a free-piston machine, the reinitialization cannot take place and the instability of the solution builds up to unuseful proportions after about two cycles. Figure 5.9 shows how this happens. Every other time step is either higher or lower than it should be. Eventually, the line becomes so broad as to be useless. For specified motion it might be possible to redefine the hot and cold volume so that they would go to zero each cycle and to reinitialize the integrals. However, this would not work for the calculated motion case.

Table 5.11 shows how the work output and heat input integrals began to be calculated for the Rios method. These figures were calculated by the single precision version of the program. The double precision version could not complete more than one cycle. These work and heat input integrals should be the same as the moving gas node analysis integrals since the assumptions are the same. Note the comparison on table 5.12. Note that the Rios work output is much larger than any of the others. It was not determined why this is so.
5.2.6 Calculated motion, linear alternator load and moving gas node, adiabatic analysis. - To do this case from the last one, the following changes

Number 10 Time step from 0.1 to 0.25
Number 14 Engine load from three to four
Number 15 Method of calculation from three to four
Number 32 Integration option from one to zero

Table 5.9
RESULTS OF SPECIFIED MOTION AND
MOVING GAS NODE ANALYSIS

Table 5.9 Concluded
ENTERED PRINT ROUTINE AFTER 6 CYCLES.

TABLE 5.10
COMPARISON OF ISOTHERMAL AND
ADIABATIC METHODS OF ANALYSIS
RE-1000 ENGINE

	Isothermal	Adiabatic
Charge pressure, bar		
Heat in, C	72.00	72.00
Heat out, C	600.00	600.00
Phase angle, deg.	40.00	40.00
Power piston, Str, cm	49.6	49.6
Displacer stroke, cm	2.70	2.70
Gas	2.60	2.60
Frequency	Helium	Helium
Reference	29.7	29.7
Cycles to convergence	Table 5.6	Table 5.9
Convergence criteria	18	6
Time steps/cycle	0.0005	0.005
Indicated power, watts	48	24
Indicated efficiency	877.35	1172.3
	31.17	34.01

FIGURE 5.8. - GRAPHICAL OUIPUT FOR SPECIFIED MOTION AND MOVING GAS NODE ANALYSIS.

Table 5.13 shows the results of this calculation. Figure 5.10 shows the graphical output. This sample output calculates the same case as was done with isothermal analysis. Table 5.14 compares the main results from these two cases. Note that the results are fairly close except for the power output. The adiabatic analysis seems to consistently predict higher power than the isothermal analysis. This observation is confirmed by comparing the size of the heat input and power curves in figure 5.10 compared with figure 5.6.
5.2.7 Calculated motion, inertial compressor, and moving gas node, adiabatic analysis. - To do this case from the last one, the following changes were made in the input:

Number 14 Engine load from four to three
Table 5.15 gives the printed results and figure 5.11 gives the graphical results. As always, the first cycle is isothermal, specified motion just to get the part moving. Then it takes five cycles to transition to approximately the steady state operating condition for calculated motion. Then it takes another three cycles of steady state operation to satisfy the convergence criteria. After the natural transition has occurred, mathematical convergence comes quickly.

Table 5.16 compares the results of two calculations for the same engine and inertial compressor. The isothermal analysis was done with a correction for the adiabatic effect. The adiabatic analysis is a nodal analysis in which the adiabatic nature of the hot and cold spaces is taken into account during the calculation. The main outputs are fairly close except for power. The adiabatic analysis predicts twice as much power as the isothermal analysis. It will be interesting to find out if either one agrees with tests.
5.2.8. Conclusion on sample base cases. - The computer program calculates accurately converged results for all four methods of calculation. The Martini moving gas node method of adiabatic analysis is operational but consistently predicts larger powers than the isothermal analysis. The Rios analysis has an inherent calculational instability which prevents a complete solution.

FIGURE 5.9. - GRAPHICAL OUTPUT FOR SPECIFIED MOIIOM AND RIOS ADIABATIC AMAL YSIS.

TABLE 5.11
PARTIAL RESULTS FOR SPECIFIED MOTION AND RIOS ADIABATIC ANALYSIS

Convergence criteria is: 0.00500

Cycle Numb.	Change power, out	Change heat, in	Work out, Joules	Heat in, Joules	End pressure, MPa	Time step, msec
		0.00000	0.00000	41.2054	64.2541	6.8808

TABLE 5.12
COMPARISON OF WORK OUTPUTS AND HEAT INPUTS
FOR THREE METHODS OF CALCULATION

Specified Motion	Work out Joules	Heat in Joules	References
Adiabatic analysis moving gas node	46	81	Table 5.9
Adiabatic analysis Rios	60	78	Table 5.11
Isothermal analysis and correction	36.9	61.2	Table 5.6

Table 5.13
RESULTS FOR CALCULATED MOTION, LINEAR ALTERNATOR LOAD AND MOVING GAS NODE (ADIABATIC) ANALYSIS

Table 5.13 Concluded

ENTERED PRINT ROUTINE AFTER 9 CYCLES.
ERECTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
$\therefore \therefore$ AND POWER OUT HAS BEEN LESS THAN . 0050
RUN\# 1 FOR
SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT $=.040 \mathrm{~N} /(\mathrm{CM} / \mathrm{SEC}) * * 2$.
MARTINI MOVING GAS NODE ANALYSIS
MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED.

OPERATING CONDITIONS ARE:
SPEC.FREQ., $\mathrm{HZ}=29.70$
HEAT IN, DEG C $=600.00$
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$

POWER P.STR,CM = 2.65
CALC.FREQ., $\mathrm{HZ}=26.95$

CHRG. PRESS., BAR	$=$
HEAT OUT, DEG. C	$=$
PHASE ANG. DEGREES	$=$
DISPL. STROKE, CM	$=$
TIME STEPS/CYCLE	$=37.00$
	$=148.56$

COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: POWER, WATTS

HEAT REQUIREMENT, WATTS

BASIC
ADIABATIC CORR.
HEATER FLOW LOSS
REGEN.FLOW LOSS
COOLER FLOW LIOSS
INDICATED

NDICATED EFFICIENCY, \% 30.42
2192.3912 BASIC
.0000 ADIABATIC CORR.
-208.4823 REHEAT
-351.5405 SHUTTLE
-27.5087 PUMPING
1604.8597 TEMP. SWING

CYL. WALL COND. DISPLCR WALL COND. REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG. 5275.0776

FIgure 5.10. - GRAPHICAL OUIPUT FOR CALCULATED MOTION, LIMEAR ALTERNATOR LOAD AND MOVING GAS MODE. (ADIABATIC AMALYSIS.)

TABLE 5.14
COMPARISON OF CALCULATED RESULTS FOR AN ISOTHERMAL AND MOVING GAS NODE, ADIABATIC, ANALYSIS OF A CALCULATED MOTION LINEAR ALTERNATOR

Calculated	Isothermal	Adiabatic
motion	Table 5.7	Table 5.13
Reference		
Load constant,	0.040	0.040
N/(cm/sec)2	72.00	72.00
Charge pressure, bar	0.1	0.25
Time step, msec	0.005	0.005
Convergence criteria	2.22	2.65
Power piston, Str., cm	2.72	3.56
Displacer, Str., cm	25.13	26.95
Calc. frequency, Hz	785.98	1604.86
Indicated power, W	28.35	30.42
Indicated eff., percent	13	9

Table 5.15
RESULTS FOR CALCULATED MOTION, INERTIAL COMPRESSOR LOAD, AND MOVING GAS NODE, ADIABATIC ANALYSIS

CONVERGENCE CRITERIA IS:				. 00500					
CYCLE	E CHANGE		CHANGE	WORK	HEAT		END	TIME	
NUMB.	POWER		HEAT	OUT	IN		PRESSURE	STEP	
	OUT		IN	JOULES	JOUL		MPA	MSEC	
1	. 00000		. 00000	41.1863	364.2	555	6.8796	. 250	
2	. 58814		. 67872	41.9359	967.0	226	6.9231	. 250	
3	. 01820		. 04306	63.1770	0104.1	761	6.7206	. 2500	
4	. 50651		. 55434	103.9885	5185.00	17	6.6209	. 250	
5	. 64599		. 775861	122.2075	5226.8	067	6.6092	. 250	
6	. 17520		. 225971	126.7057	7233.92	85	6.5661	. 250	
7	. 03681		.031401	127.9249	9236.63	349	6.5991	. 250	
8	. 00962		. 011571	127.8781	1237.39	96	6.5596	. 2500	
9	. 00037		. 003191	127.6354	4236.75	90	6.5938	. 250	
CURRENT OPERATING CONDITIONS ARE:									
$01=$	72.000	$02=$	2	$03=$	600.000	$04=$	40.000	$05=$	55.478
$06=$	4.198	$07=$	3.814	4 08=	0	$09=$	1	$10=$	250
$11=$	0	$12=$. 000	0 13=	1.000	$14=$	3	$15=$	4
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRENT DIMENSIONS ARE:									
$20=$	1	$21=$	4.0400	0 22=	4.2000	$23=$	4.7000	$24=$	5.7180
$25=1$	15.1900	$26=$. 0365	5 27=	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	- 32=	0	$33=$	33.0000	$34=$	15.2500
$35=2$	25.4000	$36=$	7.6000	0 37=	381.0000	$38=$. 0000	$39=$. 8000
$40=1$	10.0000	$41=$	31.7900	0 42=	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	116	$46=$	360	$47=$	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	$152=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	- 62=	6.4460	$63=$. 5440	$64=$	88.9000
$65=7$	75.9000	$66=$. 0000	- 67=	. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$	3760	-72=	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0400	$76=$	1.0000	-77=	3.0000	$78=$	1.0000	$79=$. 5000
$80=$	5.0000	$81=$	1.0000	-82=	. 1000	$83=$. 0050	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	-87=	. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	- 92=	. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	$97=$. 0000	$98=$. 0000	$99=$. 0000
$100=$. 0000	$101=$	13	$102=$	15	$103=$	14	$104=$	0
$105=$	0	$106=$	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
:15=	0	$116=$	$=0$	0 117=	0	$118=$	0	$119=$	0
$120=$	0								

Table 5.15 Concluded

```
    ENTERED PRINT ROUTINE AFTER 9 CYCLES.
ERACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
-.. AND POWER OUT HAS BEEN LESS THAN . 0050
    RUN# 1 FOR
    SUNPOWER RE1000 ENGINE
    FREE MOTIONS -- INERTIAL COMPRESSOR
                                    INLET PRESSURE OF PUMPED GAS= 1.00 BAR.
                                    OUTLET PRESSURE OF PUMPED GAS= 5.00 BAR.
                AREA OF LOAD PISTON= . 500 CM**2.
                END CLEARANCE IN PUMP= 1.000 CM.
    MARTINI MOVING GAS NODE ANALYSIS
    MARTINI LOSS EQUATIONS
    SOLUTION IS NOT OPTIMIZED.
```

OPERATING CONDITIONS ARE:		
SPEC.FREQ., $\mathrm{HZ}=29.70$	CHRG. PRESS., BAR	72.00
HEAT IN, DEG C = 600.00	HEAT OUT, DEG. C	40.00
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$	PHASE ANG. DEGREES	55.48
POWER P.STR,CM = 4.20	DISPL. STROKE, CM	3.81
CALC.FREQ., $\mathrm{HZ}=31.61$	TIME STEPS/CyCLE	126.54
COMPUTED PERFORMANCE USING FPSE	BY MARTINI ENG.:	
POWER, WATTS BASIC	HEAT REQUIREMENT, WATTS	
BASIC 4034.7092	BASIC	7484.2374
ADIABATIC CORR. .0000	ADIABATIC CORR.	. 0000
HEATER FLOW LOSS -443.6864	REHEAT	1752.0629
REGEN.FLOW LOSS -710.7298	SHUTTLE	214.7223
COOLER FLOW LOSS -61.9715	PUMPING	28.7088
INDICATED 2818.3215	TEMP. SWING	9.1490
	CYL. WALL COND.	184.1234
	DISPLCR WALL COND.	32.1682
	REGEN. WALL COND.	58.1065
INDICATED EFFICIENCY, of 31.39	CYL. GAS COND.	5.8021
	REGEN. MTX. COND.	4.3697
	RAD.INSIDE DISPL.	3.7482
	FLOW FRIC. CREDIT	-799.0513
	TOTAL HEAT TO ENG.	8978.1474

FIGURE 5.11. - GRAPHICAL OUTPUT FOR CALCULATED MOTION INERTIAL COMPRESSOR LOAD AND MOVING GAS NODE. (ADIABATIC AMALYSIS.)

TABLE 5.16
COMPARISON OF CALCULATED RESULTS FOR AN ISOTHERMAL AND A MOVING GAS NODE, ADIABATIC ANALYSIS OF AN INERTIAL COMPRESSOR

OPERATING WITH CALCULATED MOTION

	I sothermal	Adaibatic
Reference table	5.8	5.15
Inputs		
Convergence Criteria	0.005	0.005
Time step, msec	. 05	. 25
Cycles to convergence	12	9
Inlet pressure of pumped gas, bar	1.00	1.00
Outlet pressure of pumped, gas	5.00	5.00
Area of load piston, cm^{2}	0.5	0.5
End of clearance in pump, cm	1.0	1.0
Outputs Calculated frequency, Hz	30.62	31.61
Indicated power, watts	1469	2818
Efficiency	32.55	31.39

5.3 Optimization Searches

The ability of this program to conduct a search for the optimum design is one of the reasons for developing the program. Experience has shown that the calculation of each case must be solidly done. It must be done at a small enough time step and a tight enough convergence so that the solution will be accurate (see Section 5.1) The program must have provisions to adjust the time step so that a proper solution would be found for every case. The results of four searches will be presented:
(1) Specified motion, isothermal analysis, three adjustable inputs
(2) Specified motion, isothermal analysis, four adjustable inputs
(3) Calculated motion, linear alternator, isothermal analysis, three adjustable inputs
(4) Calculated motion, linear alternator, isothermal analysis, four adjustable inputs
5.3.1 Specified motion, three adjustable inputs. - In this sample search, three properties of the regenerator were adjusted. The goal was to find the best efficiency with the engine power near 1 kW . To do this case, the following inputs need to be changed or checked:

| Number 15 | Method of calculation to 1 |
| :--- | :--- | :--- |
| Number 16 | Optimization option to 1 |
| Number 17 | Number of adjustable variables to 3 |
| Number 18 | Target power, watts to 1000 |
| Number 19 | Percent change in optimization to 10 |
| Number 46 | Number of time steps per cycle to 24 |
| Number 83 | Convergence criteria to 0.005 |
| Number 101 | First optimizable variable to 13 |
| Number 102 | Second optimizable variable to 15 |
| Number 103 | Third optimizable variable to 14 |

Table 5.17 shows the first part of the search table. For this case, the choice matrix is as shown in table 4.1. There are 27 choice matrices to test to see which gives the best efficiency. The first time the choice matrix is applied to change the three selected inputs the charge pressure for the last case is used. A case is run which results in a particular power. The charge pressure is then adjusted to give the target power by assuming that the power is proportional to charge pressure. The results of the second try for each of the 27 change matrix numbers is printed in table 5.17. Note that the power is usually within 1 percent of the target power. Considering that the efficiency is usually not a strong function of pressure or power (see figs. 5.1, 5.2, and 5.4), this accuracy in hitting the target power is more than adequate. Note that the first column in table 5.17 shows that trial number. The second column shows the choice matrix number which goes from 1 to 27 . The third column shows the choice matrix number that results in the best efficiency for a particular search. The fourth column gives the cylinder diameter. One has a choice of adjusting either the cylinder diameter or the average pressure to get the target power. This test was done by changing the pressure. The fifth column shows these average pressures. The sixth column shows the powers which should be close to the target power of 1000 W . The seventh column gives the efficiency for each case calculated. The eighth column gives the best efficiency

Table 5.17
FIRST PART OF OPTIMUM SEARCH TABLE SPECIFIED MOTION - THREE VARIABLES

SEARCH FOR OPTIMUM

The number of active optimization numbers is: 3
The order in which the optimization numbers are tested is: $\begin{array}{lllllllllll}13 & 15 & 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ Trial Num. Ch.Mx.\# Best\# Cyl.D.cm Pavg. Bar

um.	Ch. Mx. ${ }^{\text {\# }}$	Best\#	Cyl. D.cm	Pavg. B	ar Pwr.W	Eff. \%	Bst.Eff.
1	1	1	5.718	81.96	1010.48	31.63	31.63
2	2	1	5.718	80.89	999.09	31.91	31.63
3	3	2	5.718	81.77	1000.88	31.18	31.91
4	4	2	5.718	80.22	998.83	27.34	31.91
5	5	2	5.718	80.64	1000.31	27.50	31.91
6	6	2	5.718	80.14	999.60	27.12	31.91
7	7	2	5.718	84.68	1005.42	33.24	31.91
8	8	7	5.718	83.15	998.43	33.74	33.24
10	9	8	5.718 5.718	86.13	1003.82	32.53	33.74
11	11	8	5.718 5.718	80.27 80.56	995.21	30.81	33.74
12	12	8	5.718	81.04	1000.24	31.10	33.74
13	13	8	5.718	80.31	1000.46 999.46	30.45 26.16	33.74
14	14	8	5.718	80.74	1000.31	26.29	33.74 33.74
15	15	8	5.718	80.11	999.50	25.96	33.74
16	16	8	5.718	83.30	1003.56	32.88	33.74
17	17	8	5.718	82.17	998.90	33.33	33.74
18	18	8	5.718	84.50	1002.80	32.26	33.74
19	19	8	5.718	81.75	997.44	32.33	33.74
20	20	8	5.718	81.57	999.83	32.70	33.74
21	21	8	5.718	82.79	1001.29	31.85	33.74
22	22	8	5.718	80.24	998.06	28.57	33.74
23	23	8	5.718	80.64	1000.30	28.75	33.74
24	24	8	5.718	80.33	999.73	28.32	33.74
25	25	8	5.718	86.56	1008.06	33.48	33.74
26	26	8	5.718	84.46	997.73	34.05	33.74
27	27	26	5.718	88.33	1005.35	32.66	34.05
28	26	26	5.718	89.89	1001.56	34.46	34.05
29	26	26	5.718	97.95	1010.48	33.71	34.46
30	2	1	5.718	87.26	991.94	35.15	34.46
31	3	2	5.718	93.42	1009.66	33.49	35.15

so far. Note that the program always goes through all 27 cases for each search. In the first search, it finds the second choice matrix results in a better efficiency than the first. Then the seventh is better than the second. Then the eighth is better than the seventh. Finally the 26th choice matrix is better than the eighth. The 26 th choice matrix is a set of multipliers to multicly the base case values of all the optimizable input values to get a trial set (see table 4.1 and appendix A). After trial number 27, the program multiplies choice matrix number 26 by the base case values to get a new set of base case values. The program then applies the 26 choice matrix another time to multiply the base values by to get the trial number 28 . This was found to result in a better efficiency. This is a shortcut procedure. We have found by eveerience that if we had started the search over with choice matrix number 1 , we still would have found number 26 to be the best.

Since the shortcut worked once, we try it again. This time (trial number 29) it does not result in a higher efficiency. Therefore, trial number 28 is taken as the base case choice matrix number 1 , for the next full search of all possibilities around the new base case.

In table 5.18, the end of this search table is shown. Note that at trial number 212 the test efficiency of 37.34 percent with a pressure of 94.74 bar is found. This is choice matrix number 19. Applying this choice matrix once more in trial number 221 does not result in a better efficiency. After trial number 220, a new base case input value set is calculated from the old set by multiplying by choice matrix number 19. This new base case was found to be better than any combination, up or down of the three adjustable variables (27 possibilities). Therefore, the optimum value has been found. The final values for he adjustable inputs and the itemized losses are shown in table 5.19. Table 5.20 summarizes and identifies the beginning and ending values. Note that the optimization search increases efficiency by 5.6 percentage points by tripling the radial thickness of the regenerator to allow a much larger flow area, reducing the porosity somewhat and halving the wire diameter.

It should be mentioned that the best efficiency of 37.37 percent found in table 5.18 does not get duplicated in table 5.19 when the best case is recalculated. The reason for this is the pressure for the best case was not saved and reentered. This was done in the calculated motion optimizing sessions.
5.3.2 Specified motion - four adjustable inputs. - To do this case the following inputs need to be changed or checked over the last one:

> Number 17 Number of adjustable variables to 4
> Number 104 Fourth optimizable variable to 12

Table 5.21 shows the first and last part of the optimization search table. It works the same as the previous case except there are 81 choice matrices to search through instead of 27.

Table 5.22 shows the optimized results for this case. Table 5.23 shows how these four variables changed due to optimization. All other variables are made to be the same. Only the pressure changes to adjust the power to near the target power. Note that 6.8 percentage points are gained by increasing the radial thickness (flow area) by a factor of four and decreasing the regenerator length by a factor of five and by decreasing the wire diameter by a factor of six. At this point, nothing is said about how the pressure vessel for the

Table 5.18

LAST PART OF OPTIMUM SEARCH TABLE SPECIFIED - THREE VARIABLES

212	19
213	20
214	21
215	22
216	23
217	24
218	25
219	26
220	27
221	19
222	2
223	3
224	4
225	5
226	6
227	7
228	8
229	9
230	10
231	11
232	12
233	13
234	14
235	15
236	16
237	17
238	18
239	19
240	20
241	21
242	22
243	23
244	24
245	25
246	26
247	27

1	5.718
19	5.718
19	5.718
19	5.718
19	5.718
19	5.718
19	5.718
19	5.718
19	5.718
19	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	5.718
1	518

94.741002 .78

37.37	37.34
37.35	37.37
37.27	37.37
37.05	37.37
36.91	37.37
37.14	37.37
36.77	37.37
36.80	37.37
36.36	37.37
37.24	37.37
37.34	37.37
37.27	37.37
37.05	37.37
36.91	37.37
37.14	37.37
36.77	37.37
36.80	37.37
36.36	37.37
37.32	37.37
37.29	37.37
37.31	37.37
36.73	37.37
36.56	37.37
36.85	37.37
37.03	37.37
37.06	37.37
36.75	37.37
37.26	37.37
37.29	37.37
37.09	37.37
37.30	37.37
37.20	37.37
37.34	37.37
36.36	37.37
36.36	37.37
35.79	37.37

CURRENT OPERATING CONDITIONS ARE:

$01=$	94.741	$02=$	2	$03=$	600.000	$04=$	40.000	$05=$	49.600
$06=$	2.700	$07=$	2.600	$08=$	0	$09=$	1	$10=$	1.000
$11=$	0	$12=$.000	$13=$	1.000	$14=$	1	$15=$	1
$16=$	1	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRENT DIMENSIONS	ARE:								
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$.0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$.4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$.0000	$39=$.8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	22	$46=$	24	$47=$	1.0200	$48=$.1575	$49=$.1067
$50=$.7600	$51=$.1321	$52=$.1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$.2362	$59=$	9.2600
$60=$	1.5000	$61=$.0000	$62=$	6.4460	$63=$	1.5521	$64=$	46.7727
$65=$	66.9506	$66=$.0000	$67=$.0000	$68=$.0000	$69=$	135
$70=$.0508	$71=$.3760	$72=$	7.9200	$73=$	1.5000	$74=$.0000
$75=$.0000	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$.0100	$82=$.1000	$83=$.0050	$84=$.0000
$85=$.0000	$86=$	-4.5650	$87=$.4684	$88=$	7.9300	$89=$.4600
$90=$	4.4500	$91=$.3710	$92=$.1450	$93=$.0813	$94=$	1
$95=$.5000	$96=$	0	$97=$.0000	$98=$.0000	$99=$.0000
$100=$.0000	$101=$	13	$102=$	15	$103=$	14	$104=$	0
$105=$	0	$106=$	0	$107=$	0	$108=$	0	$109=$	0

TABLE 5.20
RESULTS OF OPTIMIZATION SPECIFIED MOTION - THREE VARIABLES

Cprimization number	Identity	Units	Original values	Final values
13	Radial thickness of regenerator	cm	0.554	1.5521
15	Porosity of matrix	\%	75.9	66.9506
14	Diameter of wire in matrix	Microns	88.9	46.7727
	Efficiency	\%	31.63	37.37

Table 5.21

FIRST AND LAST PART OF OPTIMUM SEARCH TABLE SPECIFIED MOTION - FOUR ADJUSTABLE VARIABLES SEARCH FOR OPTIMUM

Table 5.22

PRINTOUT OF OPTIMIZED DESIGN SPECIFIED MOTION - FOUR ADJUSTABLE VARIABLES

こJRRENT OPERATING			CONDITIONS ARE:						
$01=$	77.170	02=	2	03=	600.000	$04=$	40.000	$05=$	49.600
$06=$	2.700	$07=$	2.600	$08=$	0	$09=$	1	$10=$	1.000
$11=$	0	$12=$. 000	$13=$	1.000	$14=$	1	$15=$	
$16=$	1	17=	4	$18=$	1000.000	$19=$	10.000		
CURREN	NT DIMEN	NSIONS	ARE:						
20=	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=1$	15.1900	$26=$. 0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=2$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$. 0000	$39=$. 8000
$40=10$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	22	$46=$	24	$47=$	1.0200	$48=$. 1575	$49=$. 1067
$50=$.7600	$51=$. 1321	$52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	1.3272	$63=$	2.0247	$64=$	14.8260
$65=7$	73.6457	$66=$. 0000	$67=$. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$	0000
$75=$. 0000	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=2$	20.0000	$81=$. 0100	$82=$. 1000	$83=$. .0050	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	$87=$. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	$92=$. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	$97=$. 0000	$98=$. 0000	$99=$. 0000
00=	. 0000	$101=$	13	$102=$	15	$103=$	14	$104=$	12
05=	0	$106=$	0	107=	0	$108=$	0	$109=$	0
$10=$ $15=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0

TABLE 5.23
RESULTS OF OPTIMIZATION SPECIFIED MOTION - FOUR VARIABLES

Optimization number	Identity	Units	Original values	Final values
13	Radial thickness of regenerator	cm	0.554	2.0247
15	Porosity of matrix	$\%$	75.9	73.6457
12	Diameter of wire in matrix	Microns	88.9	14.826
	Regenerator length in direction of flow	cm	6.446	1.3272

engine could be designed or whether such fine wire is practical ($15 \mu \mathrm{~m}=$ 0.0006 in.). Fully completed optimization programs should have practical limitations set based upon engine design and availability of materials.

In comparison of tables 5.20 and 5.23 , one sees that simply by including She length of the regenerator, we optimize to quite a different looking engine but gain very little in efficiency. One needs to combine optimization searches with common sense.
5.3.3 Calculated motion - three adjustable inputs. - To do this case the following inputs need to be checked or changed over the last one:

Number 10 Time step to 0.2 msec
Number 14 Engine load to four
Number 15 Method of calculation to two
Number 17 Number of adjustable variables to three
Number 75 Alternator constant to $0.02 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})^{2}$
Table 5.24 shows the first and last part of the optimization search table. The important difference to note here is target power can be missed by ± 20 percent instead of about ± 1 percent specified motion case. This is contrary to tests shown in figures 5.1 and 5.2 where indicated power is nearly exactly proportional to charge pressure for the same mode of calculation, calculated motion and linear generator. The variation is almost too large.

Table 5.25 shows the optimized results for this case with a list of itemized losses.

Table 5.26 shows how these three adjustable inputs change as the optimum is searched. Note that the search predicts a 6.0 percentage point increase in efficiency by increasing the radial thickness by 66 percent, decreasing the porosity and increasing the wire diameter. These last two trends are opposite those found in the last two optimization searches. (The final porosity is not easy to attain--close packed spheres have 40 percent porosity.) We need a flow loss equation that will take this into account.
5.3.4 Calculated motion - four adjustable inputs. - To do this case the following inputs need to be changed:

Number 10 Time step to 0.1 msec
Number 17 Number of optimizable variables to four
Number 104 Fourth optimizable variable to be variable number 12
Table 5.27 shows the first and last part of the optimum search table. The same wide variation in powers is noted. The original example as calculated by W. Martini was done with a time step of 0.25 msec . W. Martini modified the program to calculate a more consistent target power but he could only get the simulation to run for 37 trials. When the program was converted to double precision this case would stop working on the 187 th trial. It was necessary to decrease the time step to 0.1 msec to allow the program to complete and output results. Table 5.28 shows these results. Table 5.29 shows the initial and final values for the four optimized variables.

Table 5.24
FIRST AND LAST PART OF OPTIMUM SEARCH TABLE CALCULATED MOTION - THREE ADJUSTABLE VARIABLES

SEARCH FOR OPTIMUM

The number of active optimization numbers is: 3
The order in which the optimization numbers are tested is:

$13 \quad 15 \quad 14$	40	0	000	00	0	0	
Trial Num.	Ch.Mx.\#	Best\#	Cyl. D.cm	Pavg. Bar	Pwr.W	Eff. \%	Bst.Eff. $\%$
1	1	1	5.718	48.48	1013.62	29.36	29.36
2	2	1	5.718	46.80	988.46	29.31	29.36
3	3	1	5.718	51.67	1036.02	29.41	29.36
4	4	3	5.718	44.12	956.32	25.77	29.41
5	5	3	5.718	45.76	1001.19	25.89	29.41
6	6	3	5.718	45.44	982.90	25.70	29.41
7	7	3	5.718	68.89	1051.69	32.35	29.41
8	8	7	5.718	58.75	1016.07	31.88	32.35
9	9	7	5.718	76.49	992.56	32.24	32.35
125	14	1	5.718	61.17	993.15	33.83	35.47
126	15	1	5.718	83.73	1040.76	34.79	35.47
127	16	1	5.718	152.32	1321.23	35.42	35.47
128	17	1	5.718	99.70	923.40	34.83	35.47
129	18	1	5.718	154.00	1132.57	34.91	35.47
130	19	1	5.718	120.18	1030.85	35.28	35.47
131	20	1	5.718	102.49	909.17	34.73	35.47
132	21	1	5.718	159.78	1121.92	34.83	35.47
133	22	1	5.718	98.55	1090.72	35.39	35.47
134	23	1	5.718	79.18	928.39	34.72	35.47
135	24	1	5.718	118.74	1099.40	35.22	35.47
136	25	1	5.718	204.75	1283.77	34.71	35.47
137	26	1	5.718	135.86	900.69	34.32	35.47
138	27	1	5.718	222.62	1143.86	33.88	35.47

Table 5.25
PRINTOUT OF OPTIMIZED DESIGN
CALCULATED MOTION - THREE ADJUSTABLE INPUTS

CURRENT OPERATING			CONDITIONS ARE:						
$01=$	109.221	$02=$	2	$03=$	600.000	04=	40.000	05=	88.648
06=	2.616	07=	1.885	08=	0	09 $=$	40.000	$10=$	88. 200
$11=$	0	$12=$. 000	$13=$	1.000	$14=$	4	$15=$. 20
16=	1	$17=$	3	$18=$	1000.000	$19=$	10.000		2
CURRENT DIMENSIONS ARE: $18=1000.00019=10.000$									
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	26=	. 0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	-	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	36=	7.6000	$37=$	381.0000	$38=$. 0000	$39=$	15.8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$4=$	72.5300
$45=$	22	46=	24	$47=$	1.0200	$48=$. 1575	$9=$. 1067
$50=$. 7600	$51=$. 1321	$52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	6.4460	$63=$		$64=$	94.8855
$65=$	44.8182	$66=$. 0000	$67=$. 0000	$68=$. 80000	$64=$ $69=$	94.8855 135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$ $80=$. 0200	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$ $85=$	20.0000	$81=$. 0100	$82=$. 1000	$83=$. 0050	84=	. 0000
$85=$ $90=$. 0000	$86=$	-4.5650	$87=$. 4684	88=	7.9300	$89=$. 4600
$95=$	4.4500 .5000	91=	. 3710	$92=$. 1450	$93=$. 0813	$94=$	1
$100=$. 0000	101=	13	102=	. 15	98 103 10	. 0000	99=	. 0000
105=	0	106=	0	$107=$	15	$103=$ $108=$	14	$104=$	0
110=	0	$111=$	-	$112=$	0	$113=$	0	$109=$	0
115=						$113=$	0	$114=$	0

Table 5.25 Concluded

TABLE 5.26
RESULTS OF OPTIMIZATION CALCULATED MOTION - THREE VARIABLES [Linear alternator load]

Optimization number	Identity	Units	Original values	Final values
13	Radial thickness of regenerator	cm	0.544	.8761
15	Porosity of matrix	$\%$	75.9	44.8182
14	Diameter of wire in matrix	Microns	88.9	94.8855
	Efficiency	$\%$	29.36	35.47

Table 5.27

SEARCH FOR OPTIMUM

The number of active optimization numbers is: 4 The order in which the optimization numbers are tested is: $13 \begin{array}{lllllllllllll}15 & 14 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ Trial Num. Ch.Mx.\# Best\#

1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	13
14	14
15	15
16	16
17	17
18	18
19	19
20	20
21	21
22	22
23	23
24	24
25	25
26	26
27	27
28	28
29	29
30	30
31	31
32	32
33	33
34	34
394	67
395	68
396	69
397	70
398	71
399	72
400	73
401	74
402	75
403	76
404	77
405	78
406	79
407	80
408	81

1
5.718

Pavg. Bar PWr.W	Eff. $\%$	Bst.Eff. $\%$	
48.39	1011.34	29.36	29.36
46.81	985.36	29.30	29.36
51.67	1036.06	29.43	29.36
44.07	951.82	25.75	29.43
46.24	1021.47	25.91	29.43
45.86	996.42	25.71	29.43
68.55	1049.10	32.37	29.43
58.63	1015.50	31.88	32.37
76.38	993.29	32.29	32.37
45.23	948.25	28.48	32.37
47.28	1020.72	28.77	32.37
48.65	1005.15	28.60	32.37
44.57	972.91	24.83	32.37
45.32	996.39	24.92	32.37
45.91	1005.99	24.76	32.37
59.00	1000.85	31.36	32.37
52.66	998.93	30.87	32.37
69.29	1028.81	31.76	32.37
51.93	1030.18	30.07	32.37
47.43	975.34	29.90	32.37
56.32	1011.03	30.40	32.37
43.53	924.33	26.63	32.37
46.87	1028.88	26.88	32.37
46.19	993.06	26.70	32.37
78.60	1041.86	33.01	32.37
66.67	1031.16	32.86	33.01
86.36	985.19	32.90	33.01
53.35	1070.29	29.75	33.01
47.44	960.11	29.44	33.01
55.03	1007.51	29.84	33.01
44.66	943.07	26.09	33.01
47.32	1022.78	26.21	33.01
46.73	998.69	26.13	33.01
74.17	1029.71	32.56	33.01
67.20	1085.00	34.46	36.21
54.54	860.80	32.83	36.21
97.13	1316.34	35.40	36.21
108.62	1085.11	35.85	36.21
85.64	832.11	34.64	36.21
156.57	1350.12	35.75	36.21
104.08	899.61	35.37	36.21
98.47	962.64	35.67	36.21
151.67	1242.72	35.94	36.21
86.35	981.96	35.41	36.21
123.33	888.52	34.72	36.21
164.40	1273.33	36.20	36.21
111.92	754.10	34.38	36.21
234.62	1416.26	34.95	36.21

1

Optimization number	MOTION - FOUR ADJUSTABLE InPUTS			
	[Linear Alternator Load]			Final values
	Identity	Units	Original values	
13	Radial thickness of regenerator	cm	0.554	0.7965
15	Porosity of matrix	\%	75.9	36.303
14	Diameter of wire in matrix	Microns	88.9	115.97
12	Length of regenerator	cm	6.446	4.606
	Efficiency	\%	29.70	36.21

5.3.5 Comments on optimization searches. - The program can do optimization searches for both specified motion and calculated motion options as required by contract. However, the program still needs to be improved in a number of respects to be of practical use in Stirling engine design. Suggestions for improvements are discussed below.
5.3.5.1 Closer approach to constant power: The provision of having just tivo cases per trial number, with the first case used to set the charge pressure for the second, works well for specified motion but poorly for calculated motion. A second method needs to be added in order to zero in on the target power efficiently. The target power cannot be obtained exactly because of the jitter in the solution. Figure 5.12 shows the results of some calculations aimed at finding the exact pressure that will give exactly 1000 W of power. Note that when the scale is greatly expanded, and when enough trials are made, one can see that even with a fairly small time step and an apparently tight convergence, there is still some jitter in the solution. One must make the window around the target power large enough so that the solution can find it.

Table 5.30 compares the results plotted in Figure 5.12. Note the very hign value calculated with 11 cycles and the low values calculated with 7 cycles. Apparently, there needs to be more cycles and a closer approach to steady state.

A new series was done with a convergence criteria of 0.001 instead of 0.005 . This series is summarized in table 5.31 and graphed in figure 5.13. Note the jitter is gone but it makes a lot of difference whether 24 or 25 cycles are used to find the solution. The convergence criteria still is not tight enough.

These observations substantiate the data given in table 5.1. Most runs in Section 5 were done at a convergence criteria of 0.005 knowing that the power would be calculated low but the computation time would be small.

The effect of an even smaller convergence criteria will be discussed in Section 5.4.
5.3.5.2 Provision for no solution: In the calculated motion mode some cases will stop operating or after a few cycles never complete the next cycle. Provisions must be added to the program to stop such cases and ignore them in searching for the optimum.
5.3.5.3 Limitation on porosity: The heat transfer and flow loss equations need to be improved to adequately take into account the porosity of the matrix and make it impossible to choose unreasonable matrix porosities.
5.3.5.4 Limitation on dimensions: In the limited experience so far cotained with optimization searches, an "optimum" design was found to have a regenerator with a very large face area and a very short flow path. It would be difficult to enclose such a regenerator. As the optimization search is extended to other parts of the engine similar difficulties may arise. These mecnanical constraints need to be written into the program.

figure 5.12. - large scale pomer versus pressure plot. calculated motion - limear altermator. LOAD CONSIANT. 0.040; INITIAL TIME STEP, 0.1 MSEC; CONVERGENCE CRITERIA, 0.005 .

Table 5.30
EFFECT OF PRESSURE ON COMPUTED RESULTS CALCULATED MOTION - LINEAR ALTERNATOR

Load Constant $=0.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})^{2}$,
Initial Time Step $=0.1 \mathrm{msec}$,
Convergence Criteria $=0.005$

| riessure | Iridicated Fower |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Eiar | Cycle to |
| Satts | |

Table 5.31
EFFECT OF PRESSURE ON COMPUTED RESULTS
(Same Case as Table 5.34 except Convergence Criteria $=0.001$

$\begin{gathered} \text { Fressure } \\ \text { Ear } \end{gathered}$	Indicated Fower Watts	* Cycle to Solution	Iridicated Efficiency	Calculated Frea. Hz	Firial Time msec
24.6U	998.4567	24	28.10	28.78	0.025
¢4.90	999.3182	24	28.10	28.80	0.025
94.90	999.7576	24	28.10	28.81	0.025
94.97	999.9558	24	28.10	28.81	0.025
9+.98	1000.7030	25	28.10	28.81	0.025
94.99	1000.0710	24	28.10	28.81	0.025
-5.00	1000.1530	24	28.10	28.81	0.025
95.01	1000.8860	25	28.10	28.81	0.025
95.02	1000.3180	24	28.09	28.82	0.025
95.03	1000.3940	24	28.09	28.82	0.025
95.04	1001.2340	25	28.10	28.82	0.025
95.05	1000.5580	24	28.10	28.82	0.025
95.06	1000.7570	24	28.09	28.82	0.025
95.07	1001.4760	25	28.10	28.82	0.025
95.08	1000.8580	24	28.09	28.82	0.025
95.09	1001.6090	25	28.10	28.83	0.025
95.10	1001.0080	24	28.10	28.83	0.025
95.20	1002.4990	25	28.09	28.84	0.025

figure 5.13. - large scale power versus pressure plot. (same case as fig. 5.12 EXCEPT CONVERGENCE CRITERIA. 0.001.)

5.4 Effect of Leakage

In Section 5.3.5.1, we found it takes a very long time to reach a steady operating point. In investigating this property of the computer program, some interesting observations were made concerning leakage.

In the standard program, the following adjustments are made in the working gas inventory:
(1) Arbitrary adjustment at the end of each cycle to make average working gas pressure and average bounce space pressure equal
(2) Leakage through displacer centering port
(3) Leakage through power piston centering port
(4) Leakage through displacer rod seal
5. Leakage through power piston seal

Tests were run to separate some of these effects. The results of tests are summarized in table 5.32 and in figure 5.14.

We found that the pressure adjustment by itself was adding gas to the working gas at a constant rate. This adjustment was cut back just for this test to be only the first four cycles when it is really needed. With this feed removed, the normal seal leakage and centering port leakage settles out quicker and at a lower power.

Keeping the pressure adjustment cut back to the first four cycles, we investigated what part of the leakage was having an effect. When the seal leakage was stopped and the centering port leakage was allowed to remain the power increased. This needs to be looked into thoroughly because this centering port should draw off power. We found that when the centering port leakage was made large, that the engine pressures were adjusted the right way. With the centering ports plugged and the seal leakage at normal values, the power drops as expected. The reason for the peculiar shape of this curve is not understood.

5.5 Computer Time

Converting this program to double precision has increased the computer : in required to run the program. Some optimization cases can easily run overnight on an IBM PC/AT. The cases in appendix J were timed to see how much difference in the two versions there is. The single precision version required acoroximately 20 min to calculate results for these 11 cases and the double orezision version took over 50 min for the same 11 cases.
-he differences can accumulate rapidly in an optimization problem Example 5.3.1 takes 44 min to run nearly 500 cases with the double precision version. The single precision version only requires 33 min . Example 5.3.2 reguiled 3 hr to run 1963 total cases with the double precision version. The jingle orecision version ran 1343 cases in 1 hr 40 min . These are all cases which are centered around the base set of conditions. Choosing other options such as the Rios loss equation method for calculating losses can increase the nezessary calculation time even more. The base optimization examples were run vitn : he Rios loss equation method and the results using this method are iden--ical to the documented results.

Figure 5.14. - effect of leakage.

6.0 PROGRAM USERS MANUAL

This program was developed on an IBM personal computer with two double densizy disk drives, drives A and B, and additional memory. Each diskette drive had a capacity of 315 Kb . The memory was rated at 384 Kb and in addi::on :here was a ram disk (C) which acts as a third rapid access disk drive iv't a capacity of 251 kb . The configuration described above worked for the =PSE arogram which was compiled on it.
-n addition to the added memory that this particular IBM personal computer had there was a graphics package which allowed high resolution graphics to be aiso:ayey on the IBM monochrome personal computer display. Tinis particular graphics package provided 350 lines by 720 columns. The package was obtained from Orchid Technology, 47790 Westinghouse Drive, Fremont, California 94539. The package included a plug-in board and software for a number of different compu:er languages which allows the graphics capability to be used very convenientiy. This graphics package may not be available now but it is the one that Martini Engineering used. This users manual is exact for the type of computer described above. It would, of course, have to be adapted for other computers, out mucn of the way of doing things should remain the same.

Sverdrup Technology's IBM PC's are typically equipped with a hard drive and do not have the disk storage limits W. Martini had. This has given us the option of using larger files without running out of space while compiling. the files have been combined as follows:

FI.FOR contains FPSE.FOR and FPIN.FOR
FPIN.FOR replaces FI.FOR, F11.FOR, and F12.FOR
F2A.FOR contains F2.FOR and F21.FOR
F2B.FOR contains F22.FOR through F28.FOR
F3. FOR contains F3.FOR, F4.FOR, F41.FOR, and F42.FOR
Together with SCREEN.ASM these four files contain the 17 source members Martini used with his dual diskette drive system. These programs are distributed on 2 DS-DD diskettes. The source diskette contains the previously mentioned 5 source files, the default input data table, and the SCREEN object and listing files. The program diskette contains an executable version with 2 input files. Initially both files are identical but the program uses INPUT.TBL to store the last case simulated and so this file will change whenever the program is run. MAKE BACKUP COPIES OF BOTH DISKETTES. This program will run on a monochrome, color, or enhanced graphics display, provided the user includes the command 'DEVICE=ANSI.SYS' in the file CONFIG.SYS in his root directory.

First the method of using the compiled program will be described and then the method of modifying the source codes and recompiling will be described.

6.1 Using the Compiled FPSE.EXE

To use this compiled program all one needs is an IBM compatible PC that can read the file from a $5-1 / 4 \mathrm{in}$. diskette. Once the computer is on and ready for operation, put the program diskette in the B disk drive. Do a directory of the diskette and you will find three files. One file is FPSE.EXE with a size of 209054 bytes. The other files are INPUT.TBL and DEFLT.TBL and they have a size of 3000 bytes. The file FPSE.EXE contains the executable code. The other
two files are the data. The program expects to find the data file on drive B On a $P C$ with only one floppy diskette drive the program will run from drive A. It is also possible to change the drive designation by modifying the source code in FPSE.FOR. To start the program type B:FPSE and hit the return key. After the program loads into memory it will ask the question 'Bring in last file for more modification?'. If the user answers 'NO' then the default data for the RE-1000 engine will be displayed. If the answer is 'YES' then the last case simulated is displayed on the screen. The user then proceeds to name the variable they wish to change and assign a new value to it. The screen is updated with this new value. When all changes have been made the user enters 'EXIT' and the simulation begins. After the computer is finished with the particular case the program asks the user whether they would like to calculate another case. If the answer is 'Y' the display will be erased and tre input table redisplayed. If the answer is ' N ' or if optimization was done as part of the last case then the program must be restarted as described in this section.

6.2 Changing Source Code and Recompiling*

For those users who plan to transfer the computer program described in this report to a mainframe computer, this section will be of no interest. However, for those users who will be using this computer program on something like an IBM personal computer, this section is written. It is assumed that the user has some sort of editor program which can take the source code files available on disk and make whatever modifications the user wants to make to trem. Then the user must recomplie the files that have been changed to produce object codes and then link these object codes into one executable code similar to the one that was furnished with the report. The author has used both the IBM FORTRAN and the Microsoft FORTRAN to develop this program. The author found that the IBM FORTRAN had a number of problems with it that could not be resolved by contacting the vendor. IBM supports their FORTRAN program by requiring the vendor to understand what the problem is and to call in and obtain an answer. Since it is a very rare vendor salesman who has ever used FORTRAN of any description this method of support breaks down very quickly. The author has found that the Microsoft FORTRAN works very well in almost all instances and is well supported by Microsoft of Bellevue, Washington. Both FORTRAN's were written by Microsoft and operate in the same way. Both compilers are for $\operatorname{FORTRAN} 77$ with some restrictions. As of this time they are the only ones known that will compile large programs on the IBM personal computer or compatible computers for any type of FORTRAN.

Another FORTRAN is available for the IBM-PC and many other microcomputers. It is sold by Supersoft. On a sample program that was felt to give a typical mix of instructions, Supersoft claims the following performance in comparison:

Time,	Size,
sec	EXE file
158.1	40192
78.9	21760

[^0]However, they state that the current compller allows only 64 K of code space and 64 K of data space. By a phone call of Supersoft in March 1983, we found that they expected to have chaining in September 1983. True large programs would be much later.

Since it is possible that a number of readers of this report will use the same or similar equipment to what the author used, the system that the author found to be efficient for compiling this size program will be described in the following paragraphs.

Both the Microsoft and IBM FORTRAN compilers have a limit of 64 K of memory in compiling any one module of a large program. Then any number of modules can be linked together to form a single executable file and the limit here is only in the size of the main memory. The FPSE program was written, edited and compiled in 17 different modules, when divided into the major subroutes. Experience has shown that to maintain such a program, it is better to have an even larger number of modules than the 17 that it is presently divided into. The reason for this is that the smaller modules take less time to recompile and the subsequent linking operation is about the same no matter how many modules there are, as long as the total length is the same. We found that the use of common blocks to transfer data from one program module to another was much more saving of computer memory than was the use of formal parameters. if a given size program module runs out of memory at compile time, the only thing that can be done is to subdivide it into two or more smaller pieces. In putting the full program together this subdivision was carried to ridiculous lengths as it seemed at the time without getting to a program which would compile without running out of memory. At that time we switched over from formal parameters to named common blocks at the suggestion of the Microsoft technical support people, and the problem went away. Some of the program modules whicn had not been broken up at this time were still very large but were compilable by the use of common blocks. At least in the microcomputer environment the use of named common blocks appears to be much more saving of memory than the use of formal parameters. However, both will work and can be used.

There are many different ways of using the FORTRAN software to produce an executable code. If there were enough disk space, it would be possible to design a batch file to go all the way from a collection of source files to an executable file. This might be possible for a microcomputer with a hard disk. It would also certainly be possible for a programmer operating with a mainframe computer. However, using the IBM personal computer at the most basic level tnere is a lot of constant attention and changing of disks in order to go from a source file to an executable file. For the size program that was produced in this contract, the following method was found to be about the best. This method used two batch files. One batch file was used to take the source code and produce an object file more or less automatically. Another batch file was used to gather up all the object files and make one single executable file. The use of these two batch files will now be further explained.

```
Table 6.2 Batch File for Compiling FORTRAN Programs.
```

```
FEM CP COMPILES USING FORI AND FOR2 AND STORES OBJECT FILE ON A DISK
COPY CP.RAT C:
COPY %1.FOR C:
`:
"FUSE ..INSERT FORTRAN H: DISK IN DRIVE "B" RND OBJ. FILES DISK IN DRIVE "A".
F:FOR: X1, R:,EON,NUL;
E:FORE
ERASE %1. FOR
REM - - REMOVE DEJECT FILES DISK AND INSERT SOURCE FILE AND EDIT IN "A".
A:
```

Table 6.3 Record of Console Displays During Compilation.

```
A) CP FPSE
A) REM CP COMPILES USING FDRI AND FOR2 AND STORES DBJECT FILE ON A DISK
A) COPY CP. BAT C:
    1 File(s) copied
A) COPY FPSE. FOR C:
l File(s) copied
C) PAUSE --INSERT FORTRAN A: DISK IN DRIVE "B" AND OBJ. FILES DISK IN DRIVE "R".
Strike a key when ready . . .
C) B:FOR1 FPSE, A2, CON, NUL;
Microsoft FORTRAN77 V3.10 05/03/83
    (This part is given in Appendix D.)
C)ERASE FPGE.FDR
C) REM -- REMOVE OEJECT FILES DISK AND INSERT SOURCE FILE AND EDIT IN "A".
C) A:
```

The batch file that is used to convert a single source file written in FORTRAN into an object file is given in table 6.2. To use this batch file you need one or more disks that contain the source code files and possibly the editor program that is used. These source code disks should each have a copy of CP.BAT on them. Also, you need another disk with copies of the first and second compilation code that is used by either IBM FORTRAN or Microsoft FORTRAN. The first pass should be labeled FORI.EXE and the second pass should be labeled FOR2.EXE. A copy of CP. BAT should also be on this disk. From the disk operating system prompt (A)) type in CP, a space, then the name of the file without the . $F O R$ subscript (for instance, $F P S E$). Hit return. See the first line of table 6.3. The first thing that shows is the remark line to show what kind of a program you have. After this, it copies the CP.BAT and the subject source file to the C disk. Check to see that both files get copied. By using the こ disk as well as the A and B disks it is possible to do a compilation without additional supervision from the operator. Next the control passes to the C disk and there is a pause in order to carry out the instructions given. Put a formatted disk that is to accept all the object files into the A drive and the disk that contains the FORI and FOR2 in the B drive. When this is done, it says strike any key. The rest of the compilation is now automatic. A listing of the source code with line numbers and with errors highlighted, if there are any, and a listing of all the variables used in alphabetical order is displayed on the screen and can be printed out by using the control P code to make the printer print, what is displayed on the screen. The listings given in the appendices D to T^{*} were all done by this method. It is very convenient because one can watch the compilation proceed and determine what errors there are even before compilation is finished. If there are no errors, the object file will be created and have the same prefix as the source file but the suffix will be .OBJ.

In this way each one of the modules of the full program can be compiled and the object files stored on a single disk. Of course, any compile time errors must be noted and corrections made before the linking can be undertaken. Table 6.3 is a record of what appears on the screen during a typical compilation section for file FPSE.FOR.

At the end of the printout the batch file concludes by erasing the source file (in this case, FPSE.FOR) from the C disk and presenting the instruction, "Remove the object files disk and insert source file and edit in A." This is a convenient way of doing it because disk B can continue to have the compilation software on it. This software with two programs takes up most of the disk so additional programs of any magnitude cannot be added to an ordinary double density disk for the IBM PC OR PC compatible machines.

Batch files also work well for linking all the programs together. Table 6.4 shows a listing of a batch file that does this and table 6.5 shows the messages that are recorded on the console when this is undertaken. To start with, the batch file LK should be on both of the disks in drive A which should also contain all the object files that have been accumulated by the 17 different compilation steps that have preceded this. On drive B should also be a copy of the LK batch file as well as a copy of LINK, a microsoft disk

[^1]Table 6.4 Batch File for Linking All Components of FPSE.

```
REM "LK" liriks ali .OBJ files in the FPSE program and stores the . EXE
PAUSE --Put. OBJ disk in A: and LINK disk in B: -- A: is defalt.
E:LINK FPSE+F1+F11+F1Z +F2+F21+F22+F23+F24+F25+F26+F27+F28+F3+F4+F41+F42,C:FPSE.E
XE,NUL.MAP, E:FORTRAN.LIE+B:HALDF.LIB
PAUSE --PUT FPSE.EXE diSk in E:
COPY LK.BAT C:
COPY C:FPSE.EXE E:
[:
FPSE
```

Table 6.4 Batch File for Linking All Components of FPSE.

```
REM "LK" links all. OBJ files in the FPSE prosram and stores the .EXE
PRUSE --Put . OBJ disk in A: and LINK disk in B: -- A: is defatt.
B:LINK FPSE+F1+F11+F12-F2+F21+F22+F23+F24+F25+F26+F27+F28+F3+F4+F41+F42,C:FPSE.E
XE,NUL. MAP, B: FORTRAN. LIB+B:HALOF.LIB
PAUSE --PUT FPSE.EXE diSk in R:
COPY LK.BAT C:
COPY C:FPSE. EXE E:
C:
FPSE
```

operating system utility and a copy of FORTRAN.LIB which is the FORTRAN library which is the one that uses the particular processor that the IBM personal computer has available to it as well as the library for the graphics component if this is installed. These programs also take up most of the disk and no additional substantial program can be added to it. The default disk should be drive A.
with this setup, type LK and hit the enter button. The batch file comes back!l4th the remark line to describe what it is that you called up and the pause line that tells you to do what has just been instructed. This gives you a chance to see if this has actually been done. When you strike your key when ready, the batch file automatically enters the command line to link the program. This is $1-1 / 2$ lines long and would otherwise have to be keyed in every time a linking is required. This is set up so that the source of the object files is drive A, the source of the program is drive B, and destination of the executable program is drive C. Therefore, linking can take place automatically. Note that the linker discovers that MOVEFR is defined more than once in the HALOF.LIB which is the graphics program library. Since this subroutine is not called up, it is not an error in this program. During the linking operation, the program uses all the memory space available and if additional memory space is needed, it creates a file VM. TMP on the default disk drive.

Occasionally, during the development of this program there hasn't been enough space for this temporary file to be fully created and the linking was stopped. We found that the size of the object files could be reduced by 20 to 30 percent by removing the meta command \$DEBUG. The DEBUG feature rarely works as it was intended. By making this change in the components of the program we had already debugged, it was possible to keep the procedure outlined in these paragraphs the same. After the linking is complete, the program FPSE.EXE is on disk C. Since this disk is not permanent, the remaining part of the batch file LK transfers a copy of this program to a disk which is inserted in B in place of the linking diskette. After striking any key, the transfer is made from C to B and the computer program is started automatically from the C disk.

These two batch files have been used in the last stages of the development of this program at Martini Engineering and have been found to be quite beneficial. We recommend them for those who would take up this computer program, particularly on an IBM personal computer or a machine compatible with it. Very similar utilities are also available for those using the CP/M operating systems and probably for almost any first class operating system on mainframe computers as well.

7.0 STATUS OF THE CODE AND REQUIREMENTS FOR FURTHER DEVELOPMENT

A computer code to optimize the design and predict the performance of free-piston Stirling engines has been developed on a microcomputer for use on micro- or mainframe computers. It appears that the code has the potential to become a valuable design tool. However, some additional development work is reauired before it potential can be fully realized.

Sample code calculations are shown in this report for the following cases:
(1) Engine performance predictions
a. isothermal analysis with specified piston motions
b. isothermal analysis with free-piston and displacer motions
c. adiabatic analysis with specified piston motions
d. adiabatic analysis with free-piston and displacer motions
(2) Optimization of the engine design
a. isothermal analysis with specified piston motions
b. isothermal analysis with free-piston motions

The code needs additional development in the following areas:
(1) The effect of leakage on output needs to be reviewed. There may be an error in how the centering port leakage is applied.
(2) In the optimization program the method of adjusting pressure to obtain the target power is satisfactory only for specified piston motion. secant method for adjusting pressure to quickly obtain the desired engine power should be added.
(3) During the optimization search, sometimes a solution never finishes. Provision should be added for abandoning a solution in this case.
(4) Much faster optimization searches can possibly be obtained by using a large time steps and no leakage. This should be tried.
(5) The moving gas node analysis has potential that was not used in this program for directly calculating the heat requirement. This needs to be added.
(6) The speed of the moving gas node analysis can be improved by using a fixed number of constant mass gas nodes plus one variable mass gas node in the cold space to allow for leakage. This type of analysis has been found to be stable and may be faster than the isothermal analysis in reaching a solution. This improvement should be tried.
(7) The Rios second-order Runge-Kutta analysis was not stable beyond two cacles and thus was not usuable. The free-piston environment prevented reinitialization after each cycle, as had been done to keep the Rios analysis s:able when used to simulate crank operated machines. Further thought should be given to the development of this technique to determine if it is suitable for use in the design of free-piston engines.
(8) The performance calculation techniques should be validated against data. There are actually three differenct performance calculation techniques to chose from:
a. The Martini isothermal analysis which uses loss calculations to correct the basic isothermal assumptions, plus a correction to go from isothermal to adiabatic analysis in arriving at predicted performance for a real engine.
b. The Martini adiabatic moving gas node analysis which currently assumes adiabatic expansion and compression spaces but could easily be modified to allow heat transfer in these spaces. It could be fixed to operate in the free-piston mode.
c. The Rios analysis which also uses loss calculations to correct the basic assumption.

These three techniques should be comparatively evaluated as to their suitability for performance predictions and engine design. With fully instrumented engine data, it would be possible to at least partially separate the different loss components and determine what methods of analysis are reasonably accurate.
(9) An effort should be made to compare different available optimization techniques to see of others might be quicker to arrive at the same optimum design.
(10) The option of adjusting bore size to get the desired power during optimization should be comparatively evaluated against the option of adjusting pressure level.
(11) The optimization procedure should be validated by:
a. excercising it against existing engine designs
b. introducing geometrical constrainsts on the optimization variables where appropriate
c using it to derive new engine designs.

8.0 REFERENCES

1. W.R. Martini, "ISO82--A Fast Design Program for Stirling Cycle Heat Engines and Heat Pumps." Final report to ORNL under purchase order 62X-43168V. April 1983.
2. W.R. Martini, "A Revised Isothermal Analysis Program for Stirling Engines." 1983 IECEC Record, pp. 743-748.
3. W.R. Martini, "Stirling Engine Design manual." DOE/NASA/3152-78-1. NASA-CR-135382, April 1978.
4. W.R. Martini, "Stirling Engine Design Manual -- Second Edition." DOE/NASA/3194-1. NASA CR-168088, January 1983.
5. W.R. Martini, "A Simple Method of Calculating Stirling Engines for Engine Design Optimization." 1978 IECEC Record, pp. 1753-1762.
6. P.A. Rios, "An Analytical and Experimental Investigation of the Stirling Cycle." PhD Thesis, Massachusetts Institute of Technology, September. 1969.
7. J. Schreiber, "Testing Results and Description of a l-kW Free-Piston Stirling Engine with a Dashpot Load." DOE/NASA/1005-1, NASA TM-83407, August 1983.
8. J. Schreiber, "Testing and Performance Characteristics of a 1-kW Free-Piston Stirling Engine." NASA TM 82999, April, 1983.

APPENDIX A

INPUT VALUE TABLE
(NI.NOM)

IN	ON	SYMPOL	MEANING	VALUE	UNITS
21	03	dstirmx	MAXIMUM DISPLACER STROKE	4.04	CM
22	02	PPSTRM	MAXIMUM POWER PISTON STROKE	4.20	CM
25	04	cylofs	DESIGN CYLINDER OFFSET	4.70	CM
24		DIAPP	DIAMETER OF POWER PISTON	5.718	CM
25	05	DSPLTH	DISPLACER LENGTH	15.19	CM
26	et	GAP	GAP BETWEEN DISPLACER AND CYLINDER WALL	0.0365	CM
27		DRDOD	DISPLACER ROD DIAMETER	1.563	CM
$\bigcirc 8$		DICYL	Id df engine cylinder around displacer	5. 779	CM
-9		SPHZ	ENGINE SPEED	29.7	Hz
:**** WEIGHT			*******		
? 0	20	PPMAS	POWER PISTON MASS	6.2	KG
71	21	IISPMS	DISPLACER MASS	0.426	KG
82		INTOPT	INTEGRATION OPTION © - MARTINI METHOD	0	Ko
			1 - RIOS METHOD		
		SPEALS	POWER PISTON CLERRANCE (ON DIAMETER)	33.	MICRONS
3.3					
34		ppstlit	POWER PISTON SEAL LENGTH	15.25	CM
35		DRDCLR	DISPLACER ROD CLEARANCE ON DIAMETER	25.4	Microns
TE		DRDLTH	AVE. LENGTH OF DISPLACER ROD SEAL	7.E	CM
7.7		DSPCLR	DISPLACER BODY -- DISPLACER CYLINDER		
			CLEARANCE (ON DIAM.)	381.	
38		DSPCLL	DISPLACER SEAL LENGTH	0.0	CM
? 9		ENCOEF	END STOP BOUNCE COEFFICIENT	0.8	--
40		FEXPR	EXP. FACTOR FOR CENTERING PORTS	10.	--
		Olumes VOLDSP	*****		
	07		VOLUME DISPLACER GAS SPRING (AVG.)	31.79	CC
42	88	VOLBS	VOLUME OF BOUNCE SPACE	20.5	LITERS
43		HTDV	HOT DEAD VOLUME (IN ADD. TO TUBES)	2.39	cc
44		CLDDV	COLD DEAD VOLUME (IN ADD. TO SLOTS)	72.53	CC
45		NGN	MAX. NUM. DF GAS NODES (NOT INPUT.)	99	--
46		NTS	NUMPER OF TIME STEPS/CYCLE	24	--
******		- CENTERI HLLNCY	ING PORTS *******		
47			HOLE LENOTHS IN ENGINE CYLINDER	1.02	CM
48		DORPP	DIAMETER OF ORIFICE IN POWER PISTON	0. 1575	CM
49		DORCYL	DIAMETER OF ORIFICE IN CYLINDER	0. 1067	CM
50		HLLNDP	HOLE LENGTHS OF DISPLACER PORTS	อ. 76	CM
51		DORDSP	DIAMETER OF ORIFICE IN DISPLACER	0. 1321	CM
52		DORDR	DIAMETER OF ORIFICE IN DIBPLACER ROD	0.1016	CM
53		VRGS	REST VOLUME OF DISPLACER GAS SPRING	31.79	CC
54		HLLNPP	HOLE LENGTHS IN POWER PISTON	2.92	CM
cis		NHLPP	Number of centering ports	2	
***** HEATER ******					
56	09	NHTRTE	NUMBER O_{1} HEATER TUBES	34	--
57	10	HTLNGH	HEATER TUBE LENGTH (HEATED)	18.34	CM
58	11	HTID	ID OF HEATER TUBES	0.2362	CM
59		HTUHLH	UNHEATED LENGTH OF HEATER TUBES	9. 26	CM
Ed		v_{1}	ENTRANCE \& EXIT VELOCITY heads OPEN	1.5	
E 1					
+***** REGENERATOR (ANNULAR) ******					
E 2	12	REGLTH	REGENERATOR LENOTH E.	$6.44 E$	CM
E 3	13	Sanreg	THICKNESS OF ANNULAR REGENERATOR D.	0.554	CM
E4	14	DWIRE	DIAMETER OF WIRE IN MATRIX	88.9	Microns
E. 5	15	PORMTX	PDROSITY OF MATRIX 7	75.9	

IN	ON	SYMBOL	MEAN	ING			VRLUE	UNITS
106		DPT (E)	OPT.	NUMEER	OF	SIXTH ADJ. PARAM.	00	--
107		DPT (7)	DPT.	NUMBER	OF	GEVENTH ADJ. PARAM.	00	--
188		OPT (8)	OPT.	NUMBER	DF	EIGHTH ADJ. PARAM.	00	--
189		OPT (9)	OPT.	NUMBER	OF	NINTH ADJ. PARAM.	00	--
110		OPT (10)	OPT.	NUMBER	OF	TENTH ADJ. PARAM.	00	--
111		OPT (11)	OPT.	NUMBER	DF	ELEVENTH ADJ. PARAM.	00	--
112		DPT (12)	OPT.	NUMPER	DF	TWELFTH ADJ. PARAM.	00	--
113		OPT (13)	OPT.	NUMBER	OF	THIRTEENTH ADJ. PARAM.	00	--
114		OPT (14)	OPT.	NUMBER	OF	FDURTEENTH ADJ. PARAM.	00	--
115		OPT (15)	OPT.	NUMBER	OF	FIFTEENTH ADJ. PARAM.	00	-

APPENDIX B
NOMENCLATURE FOR ALL PROGRAMS
(NASA.NOM)


```
NASA. NOM ***************4-13-84***************
FRDRCP=FLOW RESISTANCE OF DISPLACER CENTERINB PORTS,CC/(SEC*BAR)
FRPPCP=FLOW RESISTANCE DF POWER PISTON CENTERING PORTS,CC/GEC*BAR
FRRIOS(J) =FLOW FRICTION IN REGENERATOR USING THE RIOS ANALYSIG.
FTR =FRACTION LESS THAN ONE IN XTR UNITG USED IN INTERPDLATION
FTRL (19)=TRIAL ARRAY OF OPTIMIZABLE INPUT VALUEB, VRRIOUS
GA =(KK-1)/KK
GAP =GAP BETWEEN DIBPLACER AND CYLINDER WALL.,CM
GC =MASS VELOCITY THROLOH COOLER, G/8EC/BR. CM.
GDMS (11)=CALCULATED MAS8 FLOW VALUES
GH xMRBS VELOCITY IN HEATER, G/8EC/SQ. CM.
GI2(11)=PARAMETER IN RIOS CALCULATION
GI3(11)=PARAMETER IN RIOS CALCULATION
GINT (11)=FLOW LOSS VARIABLE
GLH =HEATER PRESSURE DRDP INTEGRAL
GLR =REGENERATOR PRESSURE DROP INTEGRAL
GLS =COOLER PRESGURE DROP INTEGRAL
GR =MASS VELOCITY IN REGENERATOR, G/BEC/SQ. CM.
GRAOPT=GRAPHIC OPTION. E-NO ORAPHICE, 1-FULL GRAPHICS,I
GRL = REGENERATOR REHEAT FACTOR, RIOS
GUTMAGEGRAVITY MAONITUDE RELATIVE TO EARTH GRAVITY,REAL
H(1) =FRACTION OF TOTAL REDUCED DEAD VOLUME FROM COLD END TO MIDWAY
        IN COOLER.
H(2) mFRACTION OF TOTAL REDUCED DERD VOLUME FROM COLD END THROUGH
                THE COOLER.
H(3) FFRACTION DF TOTAL REDUCED DEAD VOLUME FROM COLD END THROUGH
        HALF THE KEGENERATOR.
H(4) =FRACTION OF TOTAL REDUCED DEAD VOLUME FROM COLD END THROUGH
        THE REGENERATOR.
H(5) =FRACTION DF TOTAL REDUCED DEAD VOLUME FROM COLD END THRDUGH
        THE MIDDLE OF THE GAS HEATER. (1.-H(5)) INCLUDES THE REST
        OF THE HEATER RND THE APPENDIX GAP.)
HAC =COLD ACTIVE VOLUME AMPLITUDE, CC
HAV =HOT ACTIVE VOLUME AMPLITUDE, CC
HC =HEAT TRANSFER COEFFICIENT AT COOLER, WATTS/SQ. CM./DEG. K
HCV =REDUCED COOLER AND COLD DUCT DEAD VOLUME, DIMENSIONLESS
HD =TOTAL HOT DEAD VOLUME, CC
HEC =REDUCED COLD END CLEARANCE DEAD NOLUME, DIMENSIONLESS
HGV =REDUCED APPENDIX GAP DEAD VOLUME, DIMENGIONLESE
HH WHEAT TRANSFER COEFFICIENT IN HEATER, WATTS/ SQ. CM. /DEG. K
HHC = REDUCED HOT CLEARANCE DEAD VOLUME, DIMENSIONLESS
HHV =REDUCED HEATER DEAD VOLUME, DIMENBIONLESS
HLLNCY=HOLE LENOTH OF CENTERINO PORTS IN ENOINE CYLINDER, CM
HLLNDP=HOLE LENOTH OF CENTERING PORTS IN DIBPLACER, CM
HLLNPP=HOLE LENGTH OF CENTERING PORTS IN POWER PISTON, CM
HMU =GAS VISCOSITY IN HEATER, G/GEC/CM
HN =MINIMUM FH DURINO CYCLE, DIMENSIONLESS
HNTIM =TIME FRDM THE START OF THE CYCLE WHEN THE MASS OF GAS IN THE
    HOT SPACE IS AT A MINIMUM, SEC
HNTU =NUMEER OF HEAT TRANGFER UNITS IN THE HEATER, DIMENSIONLESS
HRV =REDUCED REGENERATOR DEAD VOLUME, DIMENSIONLESS
HTDV =HOT DEAD VOLUME,CC
HTID =ID OF HEATER TUBES, CM
HTLNGH=HEAT TUBE LENGTH (HEATED),CM
HTUHLH=UNHEATED LENGTHS DF HEATER TUBE8,CM
HW =HEATER WINDAGE LOSG, WATTG
```



```
HX =MAXIMUM FH DURING CYCLE, DIMENSIONLESS
HXTIM =TIME FROM THE START OF THE CYCLE WHEN THE MASS IF GAS IN THE
    HOT GPACE IS AT A MAXIMUM. BEC
HY =HEAT TRANG. COEFF. IN REGEN., W/(CM****K)
I =INTEGER COUNTER
ICALC =OPTIDN FOR METHOD OF CALCULATION:
            1-ISOTHERMAL AND SPECIFIED MOTION,
    2-ISOTHERMAL AND CALCULATED MOTIDN,
    3-ADIABRTIC AND GPECIFIED MOTION,
    4-ADIABATIC PLUS CALCULATED MOTION
ICR I INTEGER JUST LESS THAN YCR
IDFLT =Array of default values for integer input variables
IEND1 =END OF POWER OUT CYCLE FLAG, 0=NO, 1=YES
IFND2 =END OF HEAT IN T.YCLE FLAG, D=ND, 1=YES
IFIRST=FLAG TO MAKE THE SOLUTION GO THRU ISOTHERMAL ANALYSIS
    FIRST
IND(2,2)=CHOICE MATRIX IN RIOS INTEGRATION METHOD, DIMENSIONLESS
INTOPT=INTEGRRTION OPTION:
            0 - MARTINI METHOD
            1 - RIOS METHOD
IOPT =DPTION FOR OPTIMIZATION:
        0 - ND OPTIMIZATION.
        1 - DO OPTIMIZATION.
    IP =INDICATED POWER OUTPUT FOR HERT ENOINE, WATTS
IR =COUNTER TO ACCUMULATE RIOS INTEGRALS
ISIG =NUMBER OF PRESSURES ADDED TO FIND AVERAGE PRESSURE, INTEGER
ITR =INTEGER JUST LESS THAN XTR
ITYPE =Array of flags to indicate integer input variables
IVAR =NUMBER OF INDEPENDANT VARIABLES IN OPTIMIZATION ROUTINE,I
J =INTEGER COUNTER
JCMP =NODE NUMBER OF COMPREBSION SPACE
ICR =INTEGER JUST ORERTER THAN YCR
JEXP =NODE NUMBER OF EXPANSION SPACE
JPWR =POWER ADJUST OPTION:
        0 - ADJUST AVERAGE PRESSURE
        1 - ADJUST BORE BIZE
        -INTEGER TRANSFER VARIABLE
JTR =INTEGER JUST GREATER THAN YCR
K FFIRST TIME COUNTER FLAB, INTEGEA
K1 =FIRST TIME COUNTER FLAG, INTEOER,
K2 =FIRST TIME COUNTER FLAG, INTEBER
K3 =CONSTANT IN REHEAT LOBS ECUUATION (F2日)
K? FFIRST TIME COUNTER FLAB, INTEGER (F2G)
K'4 FIRRST TIME COUNTER FLAG, INTEBER
KA ECOEFFICIENT FOR GAS THERMIAL CONDUCTIVITY CALCULATION
KB =CDEFFICIENT FOR OAS THERMAL CONDUCTIVITY CALCULATION
KG =GAS THERMAL CONDUCTIVITY, WATTB/CM K
KK =CP/CV
KM =METAL THERMAL CONDUCTIVITY, WATTS/CM K
KMX =THERMAL CONDUCTIVITY DF REGEN. MATRIX, WATTS/CM K
KR =1./KK
L mCOUNTER TO DETERMINE NUMBER OF NODES AFTER GRS FLOW, INTEGER
LDOPT =OPTION FOR CHOICE OF ENGINE LOAD,1-DASHPOT,2-HYDRAULIC PUMP,
    3-INERTIIAL COMPRESSOR,4-LINEAR ALTERNATOR,I
    =NUMBER OF MOLES OF GAS IN WORKING FLUID, GRAM MOLES
M1,M2,M3 =CONSTANTS TO CALCULATE VISCOSITY
MRD GGAS INVENTORY TIMES GAS CONSTANT IN PAST, JOULE/DEO. K
```

```
                                    NASA.NOM ************4-13-84************
    MR! =GAS INNENTDRY TIMES GAS CONSTANT IN PRESENT, JOULE/DEG. K
    MR2 =GAS INVENTURY TIMES GAS CONSTANT IN FUTURE, JOULE/DEG. K
    MRCSO =GAS INVENTORY TIMES GAS CONSTANT IN COLD SPACE IN PAST,
        JOUIEE/DEG. K
    MRCSI =GAS INVENTORY TIMES GAS CONSTANT IN COLD SPACE IN PRESENT
        JOULE/DEG. K
MRCS2 =GAS INVENTORY TIMES GAS CONSTANT IN COLD SPACE IN FUTURE,
        JOULE/DEG. K
MRDESD=GAS INVENTORY TIMES BAS CONSTANT IN IIISPI.. BOIJNCE SPALF IN
        PAST, JOULE/DEO. K
MRDRSI=GAS INVENTORY TIMES GAS CONSTANT IN DISPL. BOUNCE SPACE IN
        PRESENT, JOULE/DEG. K
MRDES2=GAS INVENTORY TIMEB GAS CONSTANT IN DISPL. BOIJNCE SPACE IN
        FUTURE, JOULE/DEG. K
MRHSO =GAS INVENTIRY TIMES GAS CONSTANT IN HOT SPACE IN PAST,
        JOULE/DEG. K
MRHSI =GAS INUENTORY TIMES GAS CONSTANT IN HOT SPACE IN PRESENT,
        JOULE/DEG. K
MRHS2 =GAS INVENTITRY TIMES GAS CONSTANT IN HIT GPACE IN FUTURE,
        JOLLE/DEG. K
MRPBSD=GRS INVENTURY TIMES GAS CONSTANT IN POWER PISTON BOUNCE SPACE
        IN PAST, JOULEE/DEG. K
MRPBSI=GAS INNENTITRY TIMES GAS CONSTANT IN POWER PISTON BOUNCE SPACE
        IN PRESENT, JOULE/DEG. K
MRPES2=GRS INVENTORY TIMES GAS CONSTANT IN POWER PISTON BDUNCE SPACE
        IN FUTURE, JOULE/DEG. K
MU =GAS VISCOSITY, G/CM/SEC
MW =MOLECULAR WEIGHT, G/O MOLE
MX =MASS OF REGENERATOR MATRIX, GRAMS
NCASE =TOTAL NUMBER OF INPUT CASES CONSIDERED DURING OPTIMIZATION
        (MORE THAN THE NUMBER DF OPTIMIZATION VARIABIIES SINCE EACH
        VARIABIEE FEQUIRES, IN GENERAL, PRESSURE ADJUSTMENT TO YIFLD
        THE DESIRED POWER.)
NCH =CHOICE NUMFER IN OPTIMIZATION ROUTINE
NCHEST=CHOICE NUMEER RELATING TO BEST EFFICIENCY
NCHMAX=MAXIMUM CHOICE NUMBER
NCLRTB=NUMBFR OF COOLER SLOTS
NCYC =NUMBER OF CYCLES FOR CURRENT SET OF GEOMETRICAL PARAMETERS AND
        OPERATING CONDITIONS: EQUAI.S TOTAL NUMBER OF CYCLES IF THERE
        IS NO OPTIMIZATION.
NCYCL =NCYC WHEN NTRIAL CHANOES.
NCYCT =TOTAL NUMBER OF CYCLES DURING OPTIMIZATION
NCYL =NUMBER OF CYLINDERS PER ENGINE
NDF =CASE NIJMBER DEFINED BY USER
NDS =NIJMBER IFF INTERVALS IN WHICH THE DEAD SPACE IS DIVIDED IN THE
        RIOS METHOI
NFRST &FIRST TIME FLAG FOR DPTIMIZATION AND CONTROL
NISN =CURRENT NUMBER OF GAS NODES
NHLPP =NIJMBER OF CENTERING PORTS IN THE POWER PISTON,
NHTRTB=NUMBER IFF HEATER TUBES
NIN=NDS+1
NO =IHOICE NUMAER IN RIOS INTEGRATION METHOD
NPAJST=PRESSURE OR DIAMETER ADJIJSTMENT FLAG
    D -- NOT ADJUSTED
        1 -- ADJUSTED
```

```
NRADSH=NUMBER OF RADIATION GHIELDS IN DISPLACER
NRIOSL=OPTION ON LOBS ELUATIONB:
    B - LUSE MARTINI LOSS EQUATIONS
    1 - USE RIOS LOSS EQUATIDNE
NSHCUT-SHORT CUT FLAG IN OPTIMIZATION ROUTINE
NT -NUMBER OF TRANSFER UNITS IN REGENERATOR
NTRIPL=COUNTER FOR NUMBER OF TRIALS IN OPTIMIZATION SEARCH
NTRLST=LAST NTRIAL
NTS -NUMBER OF TIME GTEPS PER CYCLE
NU =ENGINE FREQUENCY, HZ
NXCORD =Adjusted x coordinate for input screen displav
OG OOPTIONS FOR OPERATING GASEB. 1-H2, 2-HE,3-AIR, I
OPT(15)=ARRAY GIVING THE OPTIMIZATION NUMBERS IN THE ORDER IN WHICH
    THEY ARE TD BE TESTED, INTEGER
OPTFND=FLAG TO SHOW WHETHER OPTIMIZATION IS FDUND
    0 - NOT FOUND
    1 - FOUND
P1 =COMMON PRESSURE AFTER ADIABATIC TOTAL VOLUME CHANGE, MPA
P4 -PI/4
PAVGB =AVERRGE WORKING BAS PRESSURE,BAR
PBIC =PRESSURE IN BOTTOM OF INERTIA PUMPING CHANBER, BAR
PDPBSO=PRESSURE IN DISPLACER BOUNCE SPACE IN PAST, MPA
PDPBSI=PRESSURE IN DISPLACER BOUNCE SPACE IN PRESENT, MPA
PDPBS2=PRESSURE IN DISPLACER BOUNCE SPACE IN FUTURE, MPA
PG =AVERAGE GAS PRESSURE, MPA
PHAGGED=DISPLACER PHASE ANGLE,DEBREES
PHASEO=ORIGINAL INPUT DISPLACER PHASE ANGLE,DEGREES
PI =3.14159
PMAX =OUTLET PRESSURE OF PUMPED FLUID,BAR
PMAXR = PX/PG=DIMENSIONLESS MAXIMUM PRESSURE USED BY RIOS.
PMIN =ABSOLUTE PRESSURE OF INLET FLUID,BAR
PN GMINIMUM PRESSURE, MPA
PNEW(200) =ARRAY OF NEW PRESSURES AFTER HEAT TRANSFER AT CONSTANT
                        PRESSURE, MPA
POPT =RUERAGE PRESSURE FOR OPTIMUM CASE, MPA
PORMTX=POROSITY OF MATRIX,x
PP zug. DOE894 MPA/PSIA
PPCLR =POWER PISTON CLEARANCE (DN DIAMETER),MICROS
PPMARS =POWER PISTON MASS,KB
PPPBSD=PRESSURE IN POWER PISTON BOUNCE SPACE IN PAST, MPA
PPPPESI-PRESSURE IN POWER PISTON BOUNCE SPACE IN PRESENT, MPA
PPPBS2=PRESSURE IN POWER PISTON BOUNCE SPACE IN FUTURE, MPA
PPSLLT=POWER PISTON GEAL LENGTH,CM
PPSTR =POWER PISTON STROKE,CM
PPSTTRO=ORIGINAL POWER PISTON STROKE,CM
PPSTRTM=MAXIMUM POWER PISTON STROKE,CM
PR -PRANDTL NUMBER TO THE 2/3 POWER
PRCNG =PERCENT CHANGE IN OPTIMIZATION SEARCH, }
PGIMAX=MAXIMUM POWER PIBTON POSITION DURINO CYCLE, CM
PGTMIN=MINIMUM POWER PIGTON POSITION DURING CYCLE, CM
PTIC OPRESSURE IN TOP INERTIAL PUMPINO CHANBER, BAR
PWGG -PRESSURE OF WORKING GAS IN THE PAST, MPA
PWG1 -PRESSURE OF WORKING GAS IN THE PRESENT, MPA
PWGZ =PRESSURE OF WORKING GAS IN THE FUTURE, MPA
PWGEND=PRESSURE DF WORKING GAS AT END DF CYCLE, MPA
PWRTGT-TARGET POWER FOR OPTIMIZATION,WATTS
```

```
NASA.NOM ***********4-13-84************
    PX =MAXIMLM PRESSURE, MPA
    QAPDX =NET HEAT TRANB. FROM GAS IN APDX SPACE TO 「HE METAL, JOULES
    QB =BETA FOR BHUTTLE HEAT LOSB CALCULATION
    QC =HEAT ABSORBED BY COOLER, WATTS
    QCCYL =HEAT CONDUCTION THRU ALL CYLINDER WALLS OF ENGINE, WATTS
    QCDSPW=HEAT CONDUCTION THRU ALL DISPLACER WAILS OF ENGINE, WATTE
    QCGAS =HEAT CONDUCTION THRU ALL GAS INBIDE CYLINDERS OF ENGINE, WATTS
    QCLR GHEAT ABSORBED FROM GAS BY COOLER, JOLILES
    QCMTX =HEAT CONDUCTION THRU ALL REOEN. MATRICIES DF ENGINE, WATTS
    OCRAD =HEAT RADIATION INBIDE ALL DISPLACERB OF ENGINE, WATTS
    QCRWL =HEAT CONDUCTION THRU ALL REGENERATOR WALLS OF ENGINE, WATTS
    QDK -REHEAT FACTOR
    QFS EPUMPING LOSS FACTOR
    QHTR =NET HEAT TRANS. FROM HEATER TO GAS DURING ONE CYCLE, JOULES
    QL1 =SHUTTLE FACTOR
    QLM = REHEAT FACTOR
    QN =NET HEAT REQUIRED FOR HEAT ENGINE, WATTS
    GNCCR =NET HEAT COND. AT THE COLD NODE OF THE REGENERATOR, JUULES
    QNCHR -NET HEAT COND. AT THE HOT NODE OF THE REGENERATOR, JOULES
    QNCMR =NET HEAT COND. AT THE MIDDLE NODE OF THE REGENERATOR, JOULES
    QNPH =REHEAT PRESSURIZATIDN EFFECT
    QNTU =NUMBER OF REGENERATDR TRANSFER IJNITS, DIMENSIONLESS
    QP =PUMPING OR APPENDIX LOSS FOR ALL CYLINDERS, WATTS
QPRIOS=WINDAGE FACTOR, RIOS ANALYSIS
QQ -TRANEFER REAL VARIABLE
QR1 = REGENERATOR WINDAGE LOSS COMPONENT, WATTS
QR2 -REGENERATOR WINDAGE LOSS COMPONENT, WATTS
QR3 - REGENERATOR WINDAGE LOSS COMPONENT, WATTS
QRATOI (8, 9)=ARRAY OF RATIOS FOR HYDROGEN OR AIR BETWEEN ADIABATIC HEAT
                                    INPUT AND ISOTHERMAL HEAT INPUT DEPENDING CLRATO, TRATIO.
QRATO2(8,9)=ARRAY OF RATIOS FOR HELIUM BETWEEN ADIABATIC HEAT INPUT
                    AND ISOTHERMAL HEAT INPUT DEPENDING CLRATO, TRATIO.
QREG -NET HEAT TRANSFERRED FROM THE GAB TD THE REGENERATOR DURING ONE
            CYCLE, JOULES
QS =SHUTTLE LOSS FOR ALL CYLINDERS, WATTS
QTOT =TOTAL HEAT TRANGFERRED FROM GAB FOR ONE CYCLE, JOULES
QTRAN =HEAT TRANSFERRED BY ONE NODE FROM GAS TO METAL, JOULES
R =GAS CONSTANT, 8.314 JOULE/ (G MOLE*K)
RA =0.0174533 RADIANS PER DEGREE
RCRDAN=RADIPL CLERRANEE OF ROD SEAL ANNULUS, CM
RCSLAN-RADIAL CLEARANCE OF SEAL ANNULUS ON POWER PISTON, CM
RD =TOTAL REGENERATOR DEAD VOLUME, CU. CM.
RDFLI =Array of default values for real input variables
RDMC (350) =ARRAY OF DIMENSIONLESS MASS CHANGES IN COLD SPACE FOR RIOS
                    LOSS EQUATIONS
RDMW =MASS GAS CONSTANT=R/MW, JOULES/(GM*N)
RDPR(360) = RRRAY OF DIMENSIONLESS PRESSURE CHANGES
RDVC (3ED) =ARRAY OF DIMENSIONLESS VOLUME CHANGES IN COLD SPACE.
RDVW =RIOS DIMENSIONLEGS VOLUME CHANQE IN THE HOT SPACE.
RE =REYNOLDS NUMBER, HEATER DR COOLER
REC =REYNOLDS NUMBER IN COOLER
REGLTH=REGENERATOR LENGTH, CM
REH -REYNOLDS NUMBER IN HEATER
RER =REGENERATOR REYNOLDS NUMBER FACTOR
RERIOS(3)=REYNOLDS NUMBER IN THE REGENERATOR BY THE RIOS ANALYSIS
RH =REHEAT LOSS FOR ALL CYLINDERS IN AN ENGINE, WATTS
```



```
    TKYH -TEMPERATURE OF HOT THIRD OF REGENERATOR MATRIX, K
```

 TKYH -TEMPERATURE OF HOT THIRD OF REGENERATOR MATRIX, K
 TRYM -TEMPERATURE OF MIDDLE THIRD OF REGENERATOR MATRIX, K
 TRYM -TEMPERATURE OF MIDDLE THIRD OF REGENERATOR MATRIX, K
 TRATIO-EFFECTIVE GAS TEMPERATURE RATIO, DIMENSIONLESS
 TRATIO-EFFECTIVE GAS TEMPERATURE RATIO, DIMENSIONLESS
 TSPCYC=TIME STEPG PER CYCLE, REAL
 TSPCYC=TIME STEPG PER CYCLE, REAL
 TSTEP -TIME STEP USED DURING FORCE BALANCE BIMULATION,MILLI-SECONDS
 TSTEP -TIME STEP USED DURING FORCE BALANCE BIMULATION,MILLI-SECONDS
 THLM =TEMPERATURE WAVE LENGTH IN METRL, CM
 THLM =TEMPERATURE WAVE LENGTH IN METRL, CM
 TXW =CUMULATIVE TEMPERATURE TIMES MASS, K*OM
 TXW =CUMULATIVE TEMPERATURE TIMES MASS, K*OM
 UDM(5)=CRITICAL MASS FLOW VALUES FROM BUBPLOT
 UDM(5)=CRITICAL MASS FLOW VALUES FROM BUBPLOT
 UI23 =CRITICAL PREGSURE DROP VALUE, RIOS ALALYSIS
 UI23 =CRITICAL PREGSURE DROP VALUE, RIOS ALALYSIS
 UI24 =CRITICAL PRESSURE DROP VALUE, RIOS ALALYSIS
 UI24 =CRITICAL PRESSURE DROP VALUE, RIOS ALALYSIS
 UI33 =CRITICAL PRESSURE DROP VALUE, RIOS ALALYSIS
 UI33 =CRITICAL PRESSURE DROP VALUE, RIOS ALALYSIS
 UI34 =CRITICAL PRESSURE DROP VALIJE, RIOS ALALYSIS
 UI34 =CRITICAL PRESSURE DROP VALIJE, RIOS ALALYSIS
 UIN(5)=CRITICAL PRESSURE DROP INTEGRALS FROM SUBPLOT
 UIN(5)=CRITICAL PRESSURE DROP INTEGRALS FROM SUBPLOT
 UTR F(HOT METAL TEMP, K)/(COLD METAL TEMP, K)
 UTR F(HOT METAL TEMP, K)/(COLD METAL TEMP, K)
 VI -VELOCITY HEAD LOSSES IN HEATER DUE TO BENDS, ENTRANCE AND EXIT
 VI -VELOCITY HEAD LOSSES IN HEATER DUE TO BENDS, ENTRANCE AND EXIT
 VZ =VELOCITY HEAD LOSSES IN COOLER DUE TO BENDB, ENTRANCE AND EXIT
 VZ =VELOCITY HEAD LOSSES IN COOLER DUE TO BENDB, ENTRANCE AND EXIT
 VA =VAPDX
 VA =VAPDX
 VAPDX =VOLUME DF APPENDIX GAS, CM**3
 VAPDX =VOLUME DF APPENDIX GAS, CM**3
 VB =CUMULATIVE VOLUME FROM HOT END THRU EXPANSIDN SPACE, CL
 VB =CUMULATIVE VOLUME FROM HOT END THRU EXPANSIDN SPACE, CL
 VC = (F:28) VELOCITY THROUBH GAS COOLER OR CONNECTING DUCT, CM/SEC
 VC = (F:28) VELOCITY THROUBH GAS COOLER OR CONNECTING DUCT, CM/SEC
 VC - (F26) CUMULATIVE VOLUME FROM HOT END THRU HERTER, CL
 VC - (F26) CUMULATIVE VOLUME FROM HOT END THRU HERTER, CL
 VCO =COLD VOLUME IN THE PAST,CC
 VCO =COLD VOLUME IN THE PAST,CC
 VE1 =COLD VOLUME IN THE PRESENT, CC
 VE1 =COLD VOLUME IN THE PRESENT, CC
 VCZ =COLD VOLUME IN THE FUTURE, CC
 VCZ =COLD VOLUME IN THE FUTURE, CC
 VEMAX =MAXIMUM COLD VOLUME FOR THE CYCLEE, CC
 VEMAX =MAXIMUM COLD VOLUME FOR THE CYCLEE, CC
 VOMIN =MINIMUM COLD VOLIJME FOR THE CYCLE, CC
 VOMIN =MINIMUM COLD VOLIJME FOR THE CYCLE, CC
 VD =CUMULATIVE VOLUME FROM HOT END THRU REGENERATOR, CL
 VD =CUMULATIVE VOLUME FROM HOT END THRU REGENERATOR, CL
 VDPESO=VOLUME OF DISPLACER BOUNCE SPACE IN PAST, CC
 VDPESO=VOLUME OF DISPLACER BOUNCE SPACE IN PAST, CC
 VDPBSI=VOLUME OF DISPLACER BOUNCE SPACE IN PRESENT, CC
 VDPBSI=VOLUME OF DISPLACER BOUNCE SPACE IN PRESENT, CC
 VDPBS2=VOLUME OF DISPLACER BOUNCE SPACE IN FUTURE, CE
 VDPBS2=VOLUME OF DISPLACER BOUNCE SPACE IN FUTURE, CE
 VDRIOS=DIMENSIONLESS DEAD VOLUME, RIOS
 VDRIOS=DIMENSIONLESS DEAD VOLUME, RIOS
 VDSPQ =VELOCITY OF THE DISPLACEH IN THE PAST, EM/SEC
 VDSPQ =VELOCITY OF THE DISPLACEH IN THE PAST, EM/SEC
 VDSP1 =VELDCITY OF DISPLACER IN THE PRESENT, CM/SEC
 VDSP1 =VELDCITY OF DISPLACER IN THE PRESENT, CM/SEC
 UDSPZ =VELOCITY OF DISPLACER IN THE FUTURE, CM/SEC
 UDSPZ =VELOCITY OF DISPLACER IN THE FUTURE, CM/SEC
 VE CLUMULATIVE VOLUME FROM HOT END THRIJ COOLER, CC
 VE CLUMULATIVE VOLUME FROM HOT END THRIJ COOLER, CC
 VGN(2,200) &CUMLULATIVE VOLUME OF BAS NODES FROM HOT END REFGRE AND AFTER
 VGN(2,200) &CUMLULATIVE VOLUME OF BAS NODES FROM HOT END REFGRE AND AFTER
 FLOW, CC
 FLOW, CC
 UH =VELOCITY THROUGH BAS HEATER, CM/SEC
UH =VELOCITY THROUGH BAS HEATER, CM/SEC
VHE =HOT VOLUME IN THE PAST, CC
VHE =HOT VOLUME IN THE PAST, CC
UH1 =HOT VOLIJME IN THE PRESENT, CC
UH1 =HOT VOLIJME IN THE PRESENT, CC
VH2 -HOT VOLUME IN THE FUTURE, CC
VH2 -HOT VOLUME IN THE FUTURE, CC
VHEND =HOT VOLUME AT END OF CYCLE, CC
VHEND =HOT VOLUME AT END OF CYCLE, CC
VHFRST=HOT VOLUME AT START OF CYCLE, CC
VHFRST=HOT VOLUME AT START OF CYCLE, CC
VHMAX =MAXIMUM HOT VOLLME FOR CYCLE, CC
VHMAX =MAXIMUM HOT VOLLME FOR CYCLE, CC
VHMIN -MINIMUM HOT VOLUME FOR CYCLE, CC
VHMIN -MINIMUM HOT VOLUME FOR CYCLE, CC
VHIERO=HOT VOLUME AT MIDPOINT OF DISPLACER STROKE, CC
VHIERO=HOT VOLUME AT MIDPOINT OF DISPLACER STROKE, CC
VMDPT =CUMULATIVE VOLUME TO MID-POINT OF GAS NODE, CC
VMDPT =CUMULATIVE VOLUME TO MID-POINT OF GAS NODE, CC
VN EMINIMUM TOTAL VOLUME, CU CM
VN EMINIMUM TOTAL VOLUME, CU CM
vname =Array of input variable names
vname =Array of input variable names
VILBS =VOLIJME OF BOUNCE SPACE,LITERS
VILBS =VOLIJME OF BOUNCE SPACE,LITERS
VULDSP=VOLISME DISPLACER GAS BPRINO (AVO),CC
VULDSP=VOLISME DISPLACER GAS BPRINO (AVO),CC
UPFO =VELOCITY OF POWER PIBTON IN THE PAST, CM/SEC
UPFO =VELOCITY OF POWER PIBTON IN THE PAST, CM/SEC
VPPI =VELOCITY OF POWER PISTON IN THE PRESENT, CM/SEC
VPPI =VELOCITY OF POWER PISTON IN THE PRESENT, CM/SEC
VPPZ =VELOCITY OF POWER PISTON IN THE FUTURE, CM/SEC
VPPZ =VELOCITY OF POWER PISTON IN THE FUTURE, CM/SEC
VPPBSO=VOLUME OF POWER PISTON BOUNCE SPACE IN THE PAST, LC
VPPBSO=VOLUME OF POWER PISTON BOUNCE SPACE IN THE PAST, LC
UPPRSI=VOLIJME OF POWER PISTON BOUNCE SPACE IN THE PRESENT, IO

```
UPPRSI=VOLIJME OF POWER PISTON BOUNCE SPACE IN THE PRESENT, IO
```



```
UPPBS2=VOLIMME DF POWER PIBTON BOUNCE SPACF. IN THE FUTIJRF, CC
```

UPPBS2=VOLIMME DF POWER PIBTON BOUNCE SPACF. IN THE FUTIJRF, CC
VRGS =REST ORS VOLUME OF GAS GPRING. CC
VRGS =REST ORS VOLUME OF GAS GPRING. CC
VTO =TOTAL WORKING GAS VOLUME IN THE PAST, CC
VTO =TOTAL WORKING GAS VOLUME IN THE PAST, CC
VT1 =TOTAL WORKING GAS VOLUME IN THE PRESENT, CE
VT1 =TOTAL WORKING GAS VOLUME IN THE PRESENT, CE
VT2 =TOTAL WORKING BAS VOLUME IN THE FUTURE, CC
VT2 =TOTAL WORKING BAS VOLUME IN THE FUTURE, CC
VTEND =TOTAL WORING GAS VOLUME AT END OF CYCLE, CC
VTEND =TOTAL WORING GAS VOLUME AT END OF CYCLE, CC
UTFRST-TOTAL WORKING GAS VOLUME AT FIRST OF NEXT CYCLE, CC
UTFRST-TOTAL WORKING GAS VOLUME AT FIRST OF NEXT CYCLE, CC
VTMAX =MAXIMUM WORKING GAS VOLUME, CC
VTMAX =MAXIMUM WORKING GAS VOLUME, CC
VX =MAXIMUM TOTAL VOLUME, CU CM
VX =MAXIMUM TOTAL VOLUME, CU CM
W1 =WORK OUTPUT FOR ONE CYCLE, JOULES
W1 =WORK OUTPUT FOR ONE CYCLE, JOULES
W1A EUNCORRECTED WORK OUTPUT FOR ONE CYCLE, JOULES
W1A EUNCORRECTED WORK OUTPUT FOR ONE CYCLE, JOULES
WICYC =COMPLETE UNCORRECTED WORK OUTPUT FOR FULL CYCLE, JOULES
WICYC =COMPLETE UNCORRECTED WORK OUTPUT FOR FULL CYCLE, JOULES
WIEND =CORRECTION TO WORK OUTPUT AT END OF CYCLE, JOULES
WIEND =CORRECTION TO WORK OUTPUT AT END OF CYCLE, JOULES
WIMI =FIRST IMMEDIATE PAST WI
WIMI =FIRST IMMEDIATE PAST WI
WIMZ =SECOND IMMEDIATE PAST WI
WIMZ =SECOND IMMEDIATE PAST WI
WZ =HERT INPUT FOR ONE CYCLE AND ONE CYLINDER, JOULES
WZ =HERT INPUT FOR ONE CYCLE AND ONE CYLINDER, JOULES
W2R =UNCORRECTED HEAT INPUT FOR ONE CYCLE, JOULES
W2R =UNCORRECTED HEAT INPUT FOR ONE CYCLE, JOULES
WZCOMP=APPROXIMATE WORK TO COMPLETE HEAT INPIUT INTFGRAL TO START OF
WZCOMP=APPROXIMATE WORK TO COMPLETE HEAT INPIUT INTFGRAL TO START OF
FIRST CYCLE, JOULES
FIRST CYCLE, JOULES
WZCYC =COMPLETE UNCORRECTED HEAT INPUT FOR FULL CYCLE, JOULES
WZCYC =COMPLETE UNCORRECTED HEAT INPUT FOR FULL CYCLE, JOULES
WZEND =CORRECTION TO HEAT INPUT AT END OF CYCLE, JOULES
WZEND =CORRECTION TO HEAT INPUT AT END OF CYCLE, JOULES
WZM1 FIRST IMMEDIATE PAST WZ
WZM1 FIRST IMMEDIATE PAST WZ
WIMZ =SECOND IMMEDIATE PAST WZ
WIMZ =SECOND IMMEDIATE PAST WZ
WC =CONSTANT FLOW RATE INTO UR OUT OF COMPRESSION SPACE, G/SE:O
WC =CONSTANT FLOW RATE INTO UR OUT OF COMPRESSION SPACE, G/SE:O
WCRIUS=DIMENSIONLESS COLD WORK, RIOS
WCRIUS=DIMENSIONLESS COLD WORK, RIOS
WCUM =CUMLLATIVE MASS, GM CUSED TO FIND TOTAL MASS WHEN NODES ARE
WCUM =CUMLLATIVE MASS, GM CUSED TO FIND TOTAL MASS WHEN NODES ARE
COMBINED)
COMBINED)
WGM mWORKING GAS MASS
WGM mWORKING GAS MASS
WGN(2,ZQO)=MASSES OF GAS IN NODES BEFORE AND AFTER FLOW, GRAMS
WGN(2,ZQO)=MASSES OF GAS IN NODES BEFORE AND AFTER FLOW, GRAMS
WH =CONSTANT FLOW RATE INTO OR OUT OF EXPANSION SPACE, B/SEC
WH =CONSTANT FLOW RATE INTO OR OUT OF EXPANSION SPACE, B/SEC
WKINT =WORK OUTPUT INTEGRAL, JOULES
WKINT =WORK OUTPUT INTEGRAL, JOULES
WLHC =WALL LENGTH FOR HERT CONDUCTION,CM
WLHC =WALL LENGTH FOR HERT CONDUCTION,CM
WR =CONSTANT FLOW RATE THRU REGENERATOR, G/SEC
WR =CONSTANT FLOW RATE THRU REGENERATOR, G/SEC
WRATOI (8, 9)=ARRAY OF RATIOS FOR HYDROGEN OR AIR BETWEEN ADIABRTIC
WRATOI (8, 9)=ARRAY OF RATIOS FOR HYDROGEN OR AIR BETWEEN ADIABRTIC
WORK AND ISOTHERMAL WORK DEPENDING CLRATO, TRATIO.
WORK AND ISOTHERMAL WORK DEPENDING CLRATO, TRATIO.
WRATOZ(8,9)=ARRAY OF RATIOS FOR HELIUM BETWEEN ADIABATIC WORK
WRATOZ(8,9)=ARRAY OF RATIOS FOR HELIUM BETWEEN ADIABATIC WORK
AND ISOTHERMAL WORK DEPENDING CLRATO, TRATIO.
AND ISOTHERMAL WORK DEPENDING CLRATO, TRATIO.
WWRIOS=DIMENSIONLESS HOT WORK
WWRIOS=DIMENSIONLESS HOT WORK
X =DUMMY REAL VARIABLE
X =DUMMY REAL VARIABLE
x = CONVERGENCE CRITERIA
x = CONVERGENCE CRITERIA
X2 =CONVERGENCE CRITERIA
X2 =CONVERGENCE CRITERIA
X3 =TEMPORARY VARIABLES
X3 =TEMPORARY VARIABLES
X4 =TEMPORARY VARIABLES
X4 =TEMPORARY VARIABLES
XE =WRLL EFFECT PARRMETER
XE =WRLL EFFECT PARRMETER
XBP =LENGTH OF DEAD BAND PORT,CM
XBP =LENGTH OF DEAD BAND PORT,CM
XCOORD =Array of x coordinates for input screen display
XCOORD =Array of x coordinates for input screen display
XDSPD = POSITION OF DISPLACER FROM ZERO POINT IN THE PAST, CM
XDSPD = POSITION OF DISPLACER FROM ZERO POINT IN THE PAST, CM
XDSP1 =POSITION DF DISPLACER FROM ZERO POINT IN THE PRESENT, LM
XDSP1 =POSITION DF DISPLACER FROM ZERO POINT IN THE PRESENT, LM
XDSP2 =POSITION OF DISPLACER FRDM ZERO POINT IN THE FUTURE, CM
XDSP2 =POSITION OF DISPLACER FRDM ZERO POINT IN THE FUTURE, CM
XDSPMM=MAXIMUM DIPLACER POSITION FROM NULI,,CM
XDSPMM=MAXIMUM DIPLACER POSITION FROM NULI,,CM
XII =PRESSURE DROP INTEGRAL - ACCOUNTS FOR THE RELATIONSHIP BETWEEM
XII =PRESSURE DROP INTEGRAL - ACCOUNTS FOR THE RELATIONSHIP BETWEEM
THE SHAPES OF MASS AND PRESSURE FLUCTUATIIONS
THE SHAPES OF MASS AND PRESSURE FLUCTUATIIONS
XI2 EINFLUENCE OF MASS FLON TIME VARIATION ON THE HEAT TRANSFER
XI2 EINFLUENCE OF MASS FLON TIME VARIATION ON THE HEAT TRANSFER
XI3 =XI1/XI2
XI3 =XI1/XI2
XINT =BASIC PRESSURE DROP INTEGRAL, RIOS
XINT =BASIC PRESSURE DROP INTEGRAL, RIOS
XNDS =NDS

```
XNDS =NDS
```



```
XNHT =VALUE OF EXPONENT IN HEAT TRANS. RELATION OF REGENERATIJR MATRIX
XP =LENGTH DF DOUBLE ACTINB HYDRAULIC PISTON,CM
XP1 = X COORDINATE AT START OF PLDTTED LINE, O. <XPI<1.|
XP2 = X COORDINATE AT END DF PLOTTED I.INE, D. &XP2(1.D
XPPD =POSITION OF POWER PISTON IN THE PAST, CM
XPP1 =POSITION OF POWER PISTON IN THE PRESENT, CM
XPPZ =POSITION OF POWER PIBTON IN THE FUTURE, CM
XPPMX =MAXIMUM POWER PISTON FROM NLLLL, CM
XTR =TRATIO IN UNITG OF ARRAYS QRATO AND WRATO, DIMENSIDNLESS
XX =TEMPORARY VARIABLE
XY = RATID OF NEW TO DLD GAS TEMPERATURES AFTER VOLUME CHANGE
Y =TEMPORARY VARIABLE
YCOORD =Array of y coordinates for input screen display
YCR =CLRATO IN UAITS OF ARRAYS QRATO AND WRATD, DIMENSIONLESS
YK -WALL EFFECT FACTOR IN SHUTTLE HEAT LDSS
YP1 =Y COORDINATE AT START DF PLOTTED LINE, D. (YPI<1.D
YP2 =Y CODRDINATE AT END OF PLOTTED LINE, D. \YPZ\1.D
YY =TEMPORARY VARIABLE
Z =TEMPORARY VARIABLE
ZH =TOTAL STATIC HEAT CONDUCTION IOSS FOR CDMPLETE ENGINE, WATTS
```

APPENDIX C
VARIABLE USE TABLE
(VARTAB.NOM)

\cdots ant	Eommesir		Jxed to．	．	
－ 11		¢ ．\％	$\because \because$	1．－	：
？！	INTME：${ }^{\text {I }}$（	12	\％		
MHEMY	INTMET	$5 \div$	50		
－MbSp	INIMED	＋21	＋29		
\cdots	INTMED	$F \because 1$	1－29		
	INTMED	F2	F		
$\therefore \% 1$		F\％	F		＇＇${ }^{\text {a }}$
GHWi．AT	INPUT	F PSE	H11	163	
CONDMX	INTMED	F21	$F 2 \mathrm{~F}$		
COR		F28	$F 28$	1．JCAL	
ΓP	INTMED	F21	$F 28$		
（1．PM	INPUT	FPSt	9il	1 －${ }^{4}$	
\because OP：H	INPUT	FPSE	Al：	1%	
CTLNTH	INPUT	FPSE	A：	$\cdots \quad \therefore$	
$\because 1 W I D T$	INPUT	FPOS	A11	1%	
＊	INTMED	＋\because ！	$F 3 \mathrm{~F}, \mathrm{y}$		
－W		4－2 -2	F71，2日	：O17．al	
Cx	INTMED	$+2$	［2 2		
LXIM	INTMED	$\cdots ?$	5.25		
－TTIM		F	$\mathrm{r}^{-}{ }^{2}$	－：	－．．．
\cdots ？1） 5	INPUT	F－${ }^{\prime}$ ：+	：		
－ray		Fat， 21	1．\quad ， 11 ，	：JCHat．	$\therefore 1_{17}$
Y1F		$F 2 \mathrm{~B}$	F\％	，if in	困保16：4
EGGFVT	INPUT	FPSF	＇i＇${ }^{\text {（ }}$	， 1%	
DFCDT		F 2	1－\because	1 li｀tat	
DFFCDTM	INTMED	$F ?$	：$\%$		
［1F H！T		F	1.	$\because 13{ }^{2}+1$	
DF－HI）TM	INTMED	52	F28		
リFPF	INPUT	FFSr	＋11	141	
\％	INPUT	FPSF	A11	1 \％ 19	
＂！，	INTMED	$F \mathrm{Fl}$	F28		
：，1：9MS	INPUT	FPSE	H11	$1{ }^{1} 1$	
1M1		F27	F27		（6itichats
为为		F24	$F 24$	i． $31 .+1$	\％．．AT！
$19-5$		$F 24$	$F 24$	1 ： 1 cal	URAMG！it
		$F 24$	F24	1，¢CAL	VGRIPHI－
！n¢04		$F 24$	F24	Bociol	¢TOTAT！
ग？${ }^{\text {ar }}$		＋28	$F 2 \mathrm{C}$	1 19 Cl	
Hembe		$F 27$	F？？	U1931	
\because O	INPUT	＋ PSH	il1：	：	
｜！1．7：	INPUT	FPGF	－if：	$\therefore *$	
；\quad－	（NW：${ }_{\text {N }}$	P－PS：	471	［51	
（1）	（NPUT	FPSE	A 11	143	
\％		GU			
！		1×1	$F 21$	111901	（ation，
！\％${ }^{\text {\％}}$		121	F21	－¢ ¢ ¢	$\cdots{ }^{\prime}$
＇${ }^{-1}$		128	$1-23$	1，14\％	－．．．
2619		$+28$	FSO	¢ ¢ ¢ \％	
万F\％		F21	$F 21$	1．1：19	
9		－28	Fe	\％\％\％	$\because \because \%$－
い！	INTHED	－ 1	－7		
H！．：A	INPUT	－prys	－it	1 \％	
－1～1	TNPUT	\therefore FSE	6it	－${ }^{\text {－}}$	
－	TNPUT	1PBE	911	；\because	
？\％¢ ！ 1.	INPUT	FFyE	＋：	！\because	

Name	Common	Gen. in	Used in ---------	Comments
DSPCLR	INPUT	FPSE	All	137
DSPLTH	INPUT	FPSE	All	125
DSPMAX		F2	F2	LOCAL VARIABILE
DSPMIN		F2	F2	LOCAL VARIABLE
DSPSTR	InPUT	FPSE	Al1	107
DSTRMX	INPUT	FPSE	All	121
DTC		F28	F28	LOCAL VARIABLE
DTH		F28	F28	LOCRL VARIRBLE
DTS	intmed	F21	F22, F23, F24,F26, F2	
DTSCP		F24	F24	LOCAL VARIABLE
DTSOV		F2	F2	LOCAL VARIABLE
DW	INTMED	F21	F28	
DWIRE	INPUT	FPSE	All	164
DX		F28	F28	local variable
Eltime	INTMED	F22	F23, F25, F27	
EMIS	INPUT	FPSE	Al1	195
F1		F28	F28	LOCAL VARIABLE
F3		F28	F28	LOCAL VARIABLE
FA		F21	F21	LOCAL VARIRBLE
FANG1		F2	F2	LOCAL VARIABLE
FRNG2		F2	F2	LDCAL VARIABLE
FAREG		F21, 28	F21, 28	LOCAL VARIABLE
FEALDS		F23	F23	LDCAL VARIABLE
FBAL PP		F23	F23	LOCAL VARIABLE
FC		F28	F28	LOCAL VARIABLE
FCO	INTMED	F2	F28	
FC1	INTMED	F2	F28	
FC2	INTMED	F2	F28	
FCR		F28	F28	LOCAL VARIABLE
FDME	RIOS	F27	F28	
FDMW	RIOS	F27	F28	
FDPR	RIOS	F27	F28	
FDVC	RIOS	F27	F28	
FDVW		F27	F27	LOCAL VARIABILE
FE		F21	F21	LOCAL VARIABLE
FEXPR	INPUT	FPSE	A11	I 40
FFF	INTMED	F21	F28	
fgudsp	INTMED	F21	F23	
FGUPP	INTMED	F21	F23	
FH		F28	F28	LOCAL VARIABLE
FHo	INTMED	F2	F28	
FH1	INTMED	F2	F28	
FH 2	INTMED	F2	F28	
FLOAD		F23	F23	LOCAL VARIPBLE
FMDSP (4)	adams	F22	F23	
FMPF (4)	ADAMS	F22	F23	
FN		F21	F21	LOCAL VARIABLE
FORG(19)	OPTI	F42	F3	
FR		F28	F28	Local variable
FRAD	INTMED	F21	F28	
FRDRCP	INTMED	F21	F24	
FRPPCP	INTMED	F21	F24	
FRRIOS		F28	F28	Local varialbe
FTR		F28	F28	LOCAL VAriable
FTRL (19)		F42	F42	LOCAL VARIABLE

Name	Common	Ben. in	Used in ---------	Comments --
GA	INTMED	F21	+26	
GAP	INPUT	FPSE	All	126
GC		F21. 28	F28, 21	LOCAL VARIABLE
GDMS (11)		F28	F28	LOCAL VARIABLE
GH		F28	F28	LOCAL VARIABLE
G12(11)		F28	F28	Local variable
GI3(11)		F28	F28	LOCAL VARYABLE
GINT(11)		F28	F28	LOCAL VARIABLE
GLH		F28	F28	Local variable
GLR		F28	F28	LOCAL VARIABLE
GLS		F28	F28	LOCAL VARIABLE
GR		F21, 28	F21, 28	LOCAL VARIABLI:
GRAOPT	INPIUT	FPSE	Al:	111
GRL		F28	F28	LOCAL VARIABLE
GUtMag	INPUT	FPSE	A11	113
H(5)		F28	F28	Local variable
HAC		F28	F28	Local variable
HRV		F28	F28	LOCAL VARIABLE
HC	Intmed	F26	F28	
HCV		F28	F28	ICCAH VARIABLI
HD	INTMED	F21	F21,22.23,24.27.28	
HEC		F28	F28	LOCAL VARIABLE
HGV		F28	F28	LOCAL VARIABLE
HH	INTMED	F26	$F=8$	
HHC		F28	F28	LOCAL VARIABLE
HHV		F28	F28	LOCAL VARIABLE
hllncy	INPUT	FPSE	Al:	I 47
HLLNDP	INPUT	FPSE	RII	I 50
HLLNPP	INPUT	FPSE	Ali	I 54
HMU		F28	F28	LOCAL VARIABLE
HN	INTMED	F2	F25	
HNTIM	INTMED	F2	F25	
HNTU		F28	F28	LOCAL Variarle
HRV		F28	F28	LOCAL VARIAELE
HTDV	INPUT	FPSE	Al:	143
HTID	INPUT	FPSE	Ali	158
HTLNGH	INPUT	FPSE	All	157
HTUHLH	INPUT	FPSE	All	I 59
HW	OUTPUT	F28	F3	
HX	INTMED	F2	F25	
HXTIM	INTMED	F2	F25	
HY	INTMED	F28	F26, 29	
1		A1:	Al:	LOCAL VARIable
ICALC	InPUT	FPse	A11	115
ICR		F28	F28	LOCAL VARIABLE
IDFLI		FPIN	FPIN	Local variable
IEND1		F2	F2	LOCAL VARIABLE
IEND2		F2	F2	LOCAL VARIABLE
IFIRST		F2	F2	LOCAL VARIABLE
IND (2,2)	INTMED	F27	F27	
INTOPT	INPUT	FPSE	Al:	132
IOPT	INPUT	FPGE	A 11	116
1 P	DUTPUT	F28	F3	
IR	RIOS	F27	F28	
1510		F2	F2	LOCAL
ITR		F28	F28	LOCAL E

Name	Common	jen. in	Used in ---------	Comments --
IIYPE		FPIN	FPIN	Local variable
IVAR	INPUT	FPSE	Alı	I 17
J		F2, 26	F2, 26	LOCAL VARIABLE
JCMP		F26	F26	LOCAL VARIABLE
JCR		F28	F28	LOCAI. VARIARLE
JEXP		F26	F26	local variable
JPWR	INPUT	FPSE	Al1	188
JQ		F12	F12	LOCAL VARIABLE
JTR		F28	F28	LOCAL VARIABLE
k		F26	F26	LOCAL VARIABLE
K1		F26	F25	LOCAL VARIABLE
K2		F26	F26	LOCAL VARIABLE
K3		F28, 25	F28, 26	LOCAL VARIABLE
$\kappa 4$		F26	F26	LOCAL VARIABLE
KA		F21	F21	LOCAL VARIABLE
KB		F21	F21	LOCAL VARIABLE
KG	INTMED	F21	F28	
KK	INTMED	F21	F23, 25, 27	
KM	INTMED	F21	F28	
KMX	INTMED	F21	F28	
KR	INTMED	F21	F26	
L		F26, 27	F26, 27	LOCAL VARIABLE
LDOPT	INPUT	FPSE	A11	1 I
M		F28	F28	local variable
Mi	INTMED	F21	F28	
M2	INTMED	F21	F28	
M3	INTMED	F21	F28	
MRE	INTMED	F24	F25	
MR1	INTMED	F27	F27	
MR2	INTMED	F24	F27	
MRESO	INTMED	F27	F27	
MRCS 1	INTMED	F27	F27	
MRES2	INTMED	F27	F27	
Mrdeso	INTMED	F24	F27	
MRDBS 1	INTMED	F24	F27	
MRDES2	INTMED	F24	F27	
MRHSE	INTMED	F27	F27	
MRHS 1	INTMED	F27	F27	
MRHS 2	INTMED	F27	F27	
MRPBSO	INTMED	F24	F27	
MRPBSI	INTMED	F24	F27	
MRPBE2	INTMED	F24	F27	
MU		F21, 28	F28, 21	LOCAL VARIABLE
MW	INTMED	F21	F28	
MX		F28	F28	LOCAL VARIABLE
nCAse	QUTPUT			
NCH	OUTPUT	F4	F3	
NCHBST	OUTPUT	F4	F3	
NCHMAX	OUTPUT	F4	F3	
NCLRTB	INPUT	FPSE	Al'	169
NCYC	OUTPUT	FPSE	F28, 3	
NCYCL	OUTPUT	F4	F41	
NCYCT	OUTPUT			
NCYL	INPUT	FPSE	All	128
NDF	InPUT	FPSE	All	109
NDS		F28	F28	LOCAL VARIAE:

Name	Common	Gen. in	Used in --------	Comments
NF RST	OUTPUT	F4	F3	
NGN	INPUT	FP8E	A1I	I 45
NHLPP	INPUT	FPSE	Ali	155
NHTRTB	INPUT	FPGE	A11	156
NIN		F28	F28	LOCAL VARIABLE
NO	INTMED	F27	F27	LOCAL VARIABLE
NPAJST	OUTPUT			
NRADSH	INPUT	FPSE	All	I 94
NRIOSL	INPUT	FPSE	AII	196
NSHCUT	OUTPUT	F4	F3	
NT		F28	F28	LDCAL VARIABLE
NTRIAL	OUTPUT	F4	F3	LDCAL UARIABLE
NTRLST	OUTPUT	F4	F41	
NTS	INPUT	FPSE	All	146
NU	INTMED	F21		
NXCORD		FPIN	FPIN	Local variable
OG	INPUT	FPSE	All	102
DPT(1)	OPTI	FPSE	F42	1101
OPT (2)	OPTI	FPSE	F42	1102
OPT (3)	OPTI	FPSE	F42	1103
OPT (4)	OPTI	FPSE	F42	1104
OPT (5)	OPTI	FPSE	$F 42$	1105
OPT (6)	OPTI	FPSE	F42	1106
OPY (7)	OPTI	FPSE	F42	1107
OPT (8)	OPT I	FPSE	F42	1108
OPT (9)	OPTI	FPSE	F42	1109
OPT (10)	OPTI	FPSE	F42	1110
OPT (11)	OPT I	FPSE	F42	I111
OPT (12)	OPTI	FPSE	F42	I 112
OPT(13)	OPTI	FPSE	F42	1113
OPT (14)	OPT	FPSE	F42	1114
OPT(15)	OPTI	FPSE	F42	1115
DPTFND	OUTPUT	F4	F3	
P1		F26	F26	LOCAL VARIABLE
P4	INTMED	F21	F28	
PAVGB	INPUT	FPSE	Al1	I $\triangle 1$
PBIC	INTMED	F27	F27	
PDPBSD	INTMED	F24	F27	
PDPBS 1	INTMED	F24	F27	
PDPBS2	INTMED	F24	F27	
PG	INTMED	F21	F28, 3	
PHASED	INPUT	FPSE	A1:	105
PHASEO		Fz	F2	LOCAL VARIABLE
PI	INTMED	$F \cdot 11$	F28	
PMRX	INPUT	FPSE	Al1	I 80
PMAXR		F28	F28	LOCAL VARIABLE
PMIN	INPUT	FPSE	Al1	I 78
Piv	INTMED	F-	F28	
PNEW (200)		F26	F26	LOCAL VARIRBLE
POPT	F42	F42	F42	
PORMTX	INPUT	FPSE	A11	I 65
PP	INTMED	F21	F20	
PPCLR	INPUT	FPSE	A11	133
PPMAS	INPUT	FPSE	Al I	130
PPPES0	INTMED	F24	F27	
PPPESI	INTMED	F24	F27	

Name	Common	Ben. in	Used in ---m-----	Comments ----
PPPES2	INTMED	F24	F27	
PPPLLLT	INPUT	FPSE	Al1	1.34
PPSTR	INPUT	FPSE	Alı	105
PPSTRM	INPUT	FPGE	Alı	122
PPSTRO		F2	F2	LOCAL VARIABLE
PR	INTMED	F21	F29	
PRCNO	INPUT	FPSE	All	119
PSTMAX		F2	F2	LOCAL VARIABLE
PTIC	INTMED	F27	F27	
PWGD	INTMED	F27	F27	
PWG1	INTMED	F23	F24, 25, 26, 27	
PWG2	INTMED	F25	F26, 27	
PWOEND		F2	F2	LDCAL VARIABLE
PWRTGT	INPUT	FPSE	All	I 18
PX	INTMED	F2	F28	
QAPDX		F26, 2	F26, 2	LOCAL VARIABLE
QB		F28	F28	LOCAL VARIABLE
QC		F28	F28	LOCAL VARIABLE
QCCYL	OUTPUT	F2B	F3	
QCDSPW	OUTPUT	F28	F3	
QCGAS	OUTPUT	F28	F3	
QCLR		F26, 2	F26, 2	LOCAL UARIABLE
QCMTX	OUTPUT	F28	F3	
QCRAD	OUTPUT	F28	F3	
QCRWL	OUTPUT	F29	F3	
QDK		F28	F28	LOCAL VARIABLE
QFS		F28	F28	LOCAL VARIABLE
QHTR		F26, 2	F26, 2	LOCAL VARIABLE
QLI		F28	F28	LDCAL VARIABLE
QLM		F28	F28	LOCAL VARIABLE
QN	OUTPUT	F28	F3	
QNCCR		F26	F26	LOCAL VARIABLE
QNCHR		F26	F26	LOCAL VARIABLE
QNCMR		F26	F26	LOCAL VARIABLE
QNPH		F28	F28	LOCAL VARIABLE
QNTU		F28	F28	LOCAL VARIABLE
QP	OUTPUT	F28	F3	
QPRIDS		F28	F28	LOCAL VARIABLE
QO		F12	F12	LOCAL VARIABLE
QR1		F28	F28	LOCAL VARIABLE
QR2		F28	F28	LOCAL VARIABLE
QR3		F28	F28	LOCAL VARIAELE
QRATUI (8, Q $^{\text {d }}$		F 28	F28	LOCAL VARIABIEE
QRATO2 (8, 9		F28	F28	LOCAL VARIABLE
QREG		F26, 2	F26, 2	LOCAL VARIABLE
QS	OUTPUT	F28	F3	
QTOT		F 26	F26	LOCAL VARIABLE
QTRAN		F26	F26	LOCAL VARIABLEE
R	INTMED	F21	F24, 28	
RA	INTMED	F21	F22	
RCRDAN		F21	F21	LOCAL VARIABLE
RCSLAN		F21	F21	LOCAL VARIABLE
RD RDFLT	INTMED	$\begin{aligned} & \text { F2I } \\ & \text { FPIN } \end{aligned}$	$\begin{aligned} & \text { F22, 23, 25, 26, 27, 28 } \\ & \text { FPIN } \end{aligned}$	Local variable
RDMC (360)	RIOS	F27	F28	
RDMW	INTMED	F21	F26	

Name	Common	Sen. in	Used in	Comments .-......-
RIPrR(3E0)) RIOS	F27	F28	Comments
RDVC (JE0)	RIOS	F27	F28	
RDVW		F27	F27	LOCAL VARIABLF
RE		F21, 28	F21, 28	LOCAL VARIABLE
REC		F28	F28	Local variable
REGLTH	INPUT	FPSE	A11	152 Lariable
REH		F28	F28	LOCAL VARIABLE
RER		F28	F28	LOCAL VARIABLE
RERIOS (3)		F28	F28	LOCAL VARIABLE
RH	output	F. 28	F3	
RHOLK		F21	F21	LOCAL VARIABLE
RHOM	INPUT	FPSE	Alı	188 (
RM		F21, 28	F21,2日	LOCAL VARIABLE
RMu		F28	F28	LOCAL VARIABLE
RNTU		F28	F28	LOCAL VARIABLE
RP ${ }^{\text {RPR (}}$		F28	F28	local variable
RPR(360)	RIOS	F27	F28	
RR R 2 M ((360))RIOS	F28	F28	local variable
RT		F28	F28	
RUT		F28	F28	I OCAI VARIAFIE
RW	OUTPUT	F28	F3	
RZ		F28	F28	LOCAL VARIABLE
SANREG	INPUT	FPSE	Al:	153 atable
SCMLW1	INPUT	FPSE	R1,	192
Screwz	INPUT	FPSE	Al:	191
SDSPST	FPIST	FPSE	FPSE	
SISPW	INPUT	frse	A11	193
SIG		F21	F21	LOCAL VARIABLE
SIGPES		F2	F2	LOCAL VARIABLE
SIGPWG		Fz	F2	Local variable
SIGXPP		F2	F2	LOCAL VARIABLE
SPD	output	F28 F28	F3	
SPHASE	FPIST	FPSE	FPSE	LOCAL VARIABI_E
SPHTAC	INTMED	F21	F26	
SPHTAH	INTMED	F21	F26	
SPHTAR	INTMED	F21	F26	
SPhZ	INPUT	FPSE	A11	129
SPPSTR	FPIST	FPSE	FPSE	129
ST		F28	F28	LOCAL VARIPBLE
TCMP	INTMED	F21	F28, 27	local variable
TCMPC	OUTPUT	F28	F3	
TCMPL		F28	F28	LOCAL VARIAELE
TCR		F28	F28	LOCAL VARIABLE
TDM		F 20	F28	LOCAL VARIABLE
TDMAX TDMIN		F2	F2	LOCAL VARIABLE
TEXP I	INTMED	F21	F28, 27	LOCAL Variable
TEXPC D	OUTPUT	F28	F3	
TEXPL		F28	F28	LOCAL VARIABLE
TGN(2,200)I	INTMED	F21	F26	
MMCLRC I	INPUT	FPSE	A11	104
TMCMPK I	INTMED	F21	F26, 28	
MET		F26	F25	LOCAL VARIPBLE

Name TMEXPK	Common INTMED	Gen. in F21	Used in \qquad $\mathrm{F} 26,28$	Comments -
TMHT RC	INPUT	FPSE	All	103
TMPNAM		FPIN	FPIN	Local variable
TMPVAL		FPIN	FPIN	Local variable
tPmax		F2	F2	local variable
TPMIN		F2	F2	LOCAL VARIABLE
TR	INTMED	F21	F25, 27, 28	
TRJC	INTMED	F21	F25	
TR3H	INTMED	F21	F26	
TR3M	INTMED	F21	F26	
TRATIO		F28	F28	LOCAL VARIAELE
TSPCYC	OUTPUT	F28	F3	
TSTEP	INPUT	FPSE	All	110
TWLM		F28	F28	Local variable
TXW		F26	F25	LOCAL VARIABLE
UDM(5)		F28	F28	LOCAL VARIABLE
4123		F28	F28	LOCAL VARIABLE
4124		F28	F28	LOCAL VARIABLE
U133		F28	F28	LOCAL VARIABLE
U134		F28	F28	LOCAL VARIABLE
UIN(S)		F28	F28	LOCAL VARIABLE
UTR		F28	F28	LOCAL VARIABLE
V1	INPUT	FPSE	All	160
$v z$	InPUT	FPSE	All	173
\checkmark A		F21, 26	F21, 26	LOCAL VARIABLE
VAPDX	INTMED	F21	F25, 27	
\checkmark V		F21, 26	F21, 26	LOCAL VARIABLE
VC		F21, 28,	2FF21, 28, 26	LOCAL VARIAELE
VCU	INTMED	F27		
VC1	INTMED	F27, 21 ,	F22, 21	
VC2	INTMED	F27, 22	F22, 23,25	
VCMAX	INTMED	F22	F23	
VCMIN	INTMED	F22	F23	
VD		F21, 26	F21, 26	LOCAL VARIABLE
VDPBS	INTMED	F21	F23, F24	
VDPBS1	INTMED	$F 21$	F23, F24	
VDPBS2	INTMED	F21	F23, F24	
VDRIOS		F28	F28	LOCAL VARIABLE
VDSPE	INTMED	F2		
VDSP 1	INTMED	F22	F23	
VDSP2	INTMED		F23	CHECK
VE		F21, 26	F21, 26	LOCAL VARIAble
$\operatorname{VGN}(2,200)$	INTMED	F21	F26	
VH		F28	F28	LOCAL VARIABLE
VHE	INTMED	F27		
VH:	INTMED	F22, 21	F25, 27, 21	
VH2	INTMED	F22	F23, 25, 26, 27	
VHEND		F2	F2	local variable
UHFRST		F2	F2	LOCAL VARIABLE
UHMAX	intmed	F22	F23	
VHAIN	INTMED	F 22	F23	
VHIERO		F 2	F2	Local variagle
UMDPT		F26	F26	LOCAL JARIABLE
UN		F21	F21	lochl variable
uname		FPIN	FPIN	Local varimas
VOLES	INPUT	FPSE	AII	I 42
VOLDSP	input	FPSE	Alı	141
UPPD	INTMED	F2	F2	

APPENDIX D
DERIVATION OF RIOS ADIABATIC ANALYSIS
EQUATIONS

APPENDIX D - DERIVATION OF RIOS ADIABATIC ANALYSIS EQUATIONS

As a price for extending the contract, the method of integration of the equations assuming adiabatic hot and cold spaces used by Rios in his thesis is added to the program. The original MIT thesis bears a date of September 1969 and is entitled, "An Analytical and Experimental Investigation of the Stirling Cycle." It is on file at Martini Engineering as 1969am in the form of a microfilm and a white on black paper copy. It contains 180 pages.

The form of the equations used in the computer program in the second edition of the design manual are specially formulated to use dimensionless groups and to use cranks to move two pistons with fixed angle. Also inherent in the equations is the provision that the mass of gas remains constant. In this derivation we plan to keep the equations in a dimensional form so it will fit with the rest of the analysis and accept the quantities the rest of the analysis has to give it.

It is still assumed that during a cycle the gas in the heater is at a fixed temperature. Initially, this would be the heater metal temperature. At later iterations the effective heater gas temperature would be adjusted so that the heat that must be supplied to the engine can be transferred through the heat exchanger because of its area, heat transfer coefficient and the temperature drop between the heater metal temperature and the effective heater gas temperature.

It is also still assumed that the gas in the cooler is handled in the same way as the heater.

The gas in the regenerator is assumed to remain at the log mean temperature between heat source and heat sink metal temperatures. This temperature is what is used elsewhere in the program and is more correct than the arithmetic mean used by Rios.

The gas in the hot space is assumed to be adiabatic. However, its mass may never go to zero as the Rios computer program demands.

The gas in the cold space is handled in the same manner as the hot space.
Now the Rios's integration method must be adapted. He calculated arrays of reduced volumes and volume derivatives at the beginning of every degree of crank rotation and then half-way through every degree. In a free piston arrangement we do not have this information. The information at the beginning of the time increment was used to determine the pressure at the middle. The pressure at the middle of the time increment was used to calcuiate a truer derivative to calculate the pressure at the end of the time increment. In our computer program we only know the conditions according to the following table.

	Past, 0	Current, 1	Future, 2
Total volume	VTO	VT1	VT2
Hot volumed	VHO	VH1	VH2
Cold volumeb	VC0	VC1	VC2
Pressure	PWG0	PWG1	$?$
Total working gas "mass"C	MRO	MR1	MR2
Hot space inventoryc	MRHSO	MRHS1	$?$
Cold space inventoryc	MRCSO	MRCS1	$?$

a Includes hot dead volume, $H D$ in heater.
Includes cold dead volume, $C D$ in cooler.
${ }^{c}$ It is convenient to use the mass times the gas constant, units j / k.

Because of the rest of the computer program, we know everything about the future time step except what the pressure should be. Like Rios did, the way we will determine the future pressure is to determine the time derivative of pressure at the current time and use this to determine the future pressure based upon the past pressure. See figure D-1 for further details.

Because of leakage the working gas mass is not constant from time step to time step. Nevertheless, all the changes in gas inventory in the different part of the engine are equal to this gas inventory change.

$$
\begin{equation*}
d(M R)_{H S}+d(M R)_{H}+d(M R)_{R}+d(M R)_{C}+d(M R)_{C S}=d(M R)_{\text {TOTAL }} \tag{A-1}
\end{equation*}
$$

where $M R=$ the mass in gram moles times the gas constant in $j / g \mathrm{~mol} \mathrm{~K}$. Units j / k.

$$
\begin{equation*}
P W G 2=P W G O+\frac{d P}{d t}(2)(D T S) \tag{A-2}
\end{equation*}
$$

For either the hot space or cold space Rios starts with the differential form of the first law of thermodynamics

$$
\begin{equation*}
d E=d Q-p d V+h d m \tag{A-3}
\end{equation*}
$$

Since these spaces are assumed to be adiabatic, $d Q=0$. The perfect gas relationship allows the above equation to be interpreted differently for gas entering and leaving the gas space. For gas entering (Rios is brong at this point):

$m C_{v} d T$	-pdV	$C_{p}{ }^{\text {d }}$ dm
energy change in	energy change	energy change in
contained gas due	in contained	contained gas due
to temperature	gas due to	due to gas flow

where:
m mass inventory of gas in hot or cold space, g mol
C_{V} heat capacity at constant volume, j / g mol ${ }^{\circ} \mathrm{K}$

FIGURE D-1. SECOND-ORDER INIEGRATION METHOD.

```
dT differential temperature change, K
```

p pressure, MPa
$d V$ differential volume change, cm^{3}
C_{p} heat capacity at constant pressure, j / g mol ${ }^{\circ} \mathrm{K}$
T temperature of the gas entering either from the heater or cooler,
assumed to be constant, ${ }^{\circ} \mathrm{K}$
dm differential change in gas inventory, g mol
Now use the perfect gas relationship.

$$
\begin{equation*}
P V=m R T \tag{A-5}
\end{equation*}
$$

Differentiate assuming the mass is constant

$$
\begin{equation*}
P d V+V d P=m R d T \tag{A-6}
\end{equation*}
$$

Now if equation ($A-6$) is solved for $d T$ and substituted into equation ($A-4$) and the equation simplified, remembering that $R=C_{p}-C_{V}$, the results is as Rios states:

$$
\begin{equation*}
d m=\frac{P d V}{R T *}+\frac{1}{k} \frac{V d P}{R T *} \quad[d m>0] \tag{A-7}
\end{equation*}
$$

where $K=C_{p} / C_{v}$
Now for the case where gas is leaving the hot or cold space, equation (A-3) translates to:

$$
\begin{equation*}
m C_{V} d T=-P d V+C_{p} T d m \quad[d m>0] \tag{A-8}
\end{equation*}
$$

(This is also different than what Rios has.)
The only new nomenclature is: $T=$ temperature of the gas in the hot or cold space which is now leaving. Now if equation $(A-5)$ is solved for T and substituted into equation ($A-8$), and if equation $(A-6)$ is solved for $d T$ and also substituted into equation ($A-8$), then as before equation (A, 8) can be simplified and solved for dm to give

$$
\begin{equation*}
d m=m\left(\frac{d V}{V}+\frac{1}{k} \frac{d P}{P}\right) \quad[d m>0] \tag{A-9}
\end{equation*}
$$

(This equation is the same as Rios shows.)

Now for each of the dead volumes, we can differentiate equation ($A-5$) knowing that V, R, and T are constant. Thus:

$$
\begin{equation*}
d m=\frac{V d P}{R T} \tag{A-10}
\end{equation*}
$$

For each dead volume the volume and temperature would be different.
Now we need to translate these differential equations into difference equations using the values calculated in the rest of the program. Also, the rest of the computer program keeps track of mass in terms of MR. (see eq. (A-1)).

Thus, for the hot space, mass increasing:

$$
\begin{equation*}
d(M R)_{H S}=\frac{P W G 1 *(V H 2-V H O)}{T E X P}+\frac{(V H 1-H D) *(P W G 2-P W G O)}{K K * T E X P} \tag{A-11}
\end{equation*}
$$

(The nomenclature now is the same as the rest of the computer program). For the hot space mass decreasing:

$$
\begin{equation*}
d(M R)_{H S}=M R H S 1 *\left(\frac{V H 2-V H O}{V H 1-H D}+\frac{P W G 2-P W G O}{K K * P W G 1}\right) \tag{A-12}
\end{equation*}
$$

Note here that MRHSI, the mass in MR units of the gas in the hot space at present time must be input at the start of the solution and kept track of during the solution. Rios was able to get a solution quickly because he did not have any adiabatic dead volume and the mass in both the hot and cold space could be reset to zero each cycle. In our solution, the initial value for MRHS will come from isothermal analysis. The value during the solution will be determined each time step using either equations ($A-11$) or ($A-12$).

Next, the dead volume differentials will be translated to difference equations. For the heater

$$
\begin{equation*}
d(M R)_{H}=\frac{H D *(P W G 2-P W G O)}{T E X P} \tag{A-13}
\end{equation*}
$$

For the regenerator and appendix space:

$$
\begin{equation*}
d(M R)_{R}=\frac{(R D+V A P D X) *(P W G 2-P W G O)}{T R} \tag{A-14}
\end{equation*}
$$

For the cooler:

$$
\begin{equation*}
d(M R)_{c}=\frac{V C *(P W G 2-P W G O)}{T C M P} \tag{A-15}
\end{equation*}
$$

Then the cold space differential for mass increasing in the cold space is:

$$
\begin{equation*}
d(M R)_{C S}=\frac{P W G 1 *(V C 2-V C O)}{T C M P}+\frac{(V C 1-C D) *(P W G 2-P W G O)}{K K * T C M P} \tag{A-16}
\end{equation*}
$$

And for mass decreasing:

$$
\begin{equation*}
d(M R)_{C S}=M R C S 1 *\left(\frac{V C 2-V C 0}{V C 1-C D}+\frac{P W G 2-P W G O}{K K ~ * P W G 1}\right) \tag{A-17}
\end{equation*}
$$

Here again, MRCSI must be calculated initially using the isothermal analysis and then must be determined each time step using either equations (A-16) or ($A-17$).

Finally, the total working gas mass does change. Thus;

$$
\begin{equation*}
d(M R)_{\text {total }}=M R 2-M R O \tag{A-18}
\end{equation*}
$$

Rios identified four cases that happen during the cycle. The table below defines these cases and shows what equations should be substituted into equation ($A-1$) and solved for PWG2.

Case Hot space Cold space Equations to substitute in equation (A-1)

$$
\begin{array}{llll}
1 & d m>0 & d m>0 & A-11, A-13, A-14, A-15, A-16, A-18 \\
2 & d m<0 & d m<0 & A-12, A-13, A-14, A-15, A-17, A-18 \\
3 & d m>0 & d m<0 & A-11, A-13, A-14, A-15, A-17, A-18 \\
4 & d m<0 & d m>0 & A-12, A-13, A-14, A-15, A-16, A-18
\end{array}
$$

These substitutions were made and equation solved for PWG2. The results are given below. For all cases:

$$
\begin{equation*}
Z=\frac{H D}{T E X P}+\frac{R D+V A P D X}{T R}+\frac{C D}{T C M P} \tag{A-19}
\end{equation*}
$$

For Case 1 :

$$
\begin{gather*}
X=M R 2-M R O-P W G 1 *\left(\frac{V H 2-V H O}{T E X P}+\frac{V C 2-V C O}{T C M P}\right) \\
Y=\frac{V H 1-H D}{K K * T E X P}+Z+\frac{V C 1-C D}{K K * T C M P} \tag{A-20}\\
P W G 2=P W G O+X / Y
\end{gather*}
$$

For Case 2:

$$
\begin{gather*}
X=M R 2-M R O-\frac{M R H S 1 *(V H 2-V H O)}{(V H 1-H D)}-\frac{M R C S 1 *(V C 2}{(V C 1-C D)}-\frac{C O)}{} \\
Y=\frac{M R H S 1}{K K * P W G 1}+Z+\frac{M R C S 1}{K K * P W G 1} \tag{A-21}\\
\text { PWG2 }=P W G O+X / Y
\end{gather*}
$$

For Case 3:

$$
\begin{gather*}
X=M R 2-M R O-\frac{P W G 1 *(V H 2-V H O)}{T E X P}-\frac{M R C S 1 *(V C 2-V C O)}{V C 1-C D} \\
Y=\frac{V H 1-H D}{K K * T E X P}+Z+\frac{M R C S 1}{K K * P W G 1} \tag{A-22}\\
P W G 2=P W G O+X / Y
\end{gather*}
$$

For Case 4:

$$
\begin{gather*}
X=M R 2-M R O-\frac{M R H S 1(V H 2-V H O)}{V H 1-H D}-\frac{P W G 1 *(V C 2-V C O)}{T C M P} \\
Y=\frac{M R S H 1}{K K * P W G 1}+Z+\frac{V C 1-C D}{K K * T C M P} \tag{A-23}\\
P W G 2=P W G O+X / Y
\end{gather*}
$$

The program starts by choosing Case 4 since at zero time the displacer is in midstroke toward the hot end and the power piston has just started the expansion stroke.

After PWG2 is first calculated by equation (A-23), the mass increments in the hot space and cold space are calculated. The mass increment difference equations are:

For hot space mass increasing:

$$
\begin{equation*}
\text { MRHS2 }=\text { MRHSO }+\frac{\text { PWG1 * }(V H 2-V H O)}{T E X P}+\frac{(V H 1-H D) *(P W G 2-P W G O)}{K K * T E X P} \tag{A-24}
\end{equation*}
$$

For hot space mass decreasing:

$$
\begin{equation*}
M R H S 2=M R H S O+M R H S 1 *\left(\frac{V H 2-V H O}{V H 1-H D}+\frac{P W G 2-P W G O}{K K * P W G 1}\right) \tag{A-25}
\end{equation*}
$$

For cold space mass increasing:

$$
\begin{equation*}
M R C S 2=M R C S O+\frac{P W G 1 *(V C 2-V C O)}{T C M P}+\frac{(V C 1-C D) *(P W G 2-P W G O)}{K K * T C M P} \tag{A-26}
\end{equation*}
$$

For cold space mass decreasing:

$$
\begin{equation*}
M R C S 2=M R C S O+M R C S 1 *\left(\frac{V C 2-V C 0}{V C 1-C D}+\frac{P W G 2-P W G O}{K K * P W G 1}\right) \tag{A-27}
\end{equation*}
$$

The table below shows what equations will be used to calculate the masses of gas in the hot and cold gas spaces.

Case	MRHS2 calculation by equation	MRSC2 calculation by equation
1	$A-24$	$A-26$
2	$A-25$	$A-27$
3	$A-24$	$A-27$
4	$A-25$	$A-26$

Once the new masses are calculated we determine what case should be used for the next time increment by the sign of the mass derivatives.

This Rios integration method merely calculates the next pressure and determines the case for the next time increment. Other parts of the program determine convergence by noting very little change in either the hot space or the cold space effective temperature.

APPENDIX E
 EFFECT OF CONVERGENCE CRITERIA ON RESULTS
 (COMPUTER OUTPUT)
 DOUBLE PRECISION


```
    ENTERED PRINT ROUTINE AFTER 13 CYCLES.
    FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
    IN AND POWER OUT HAS BEEN LESS THAN .0050
                RUN# 1 FOR
                SUNPOWER RE1000 ENGINE
                        FREE MOTIONS - - LINEAR ALTERNATOR
                            LOAD CONSTANT = .040 N/(CM/SEC)**2.
                        ISOTHERMAL ANALYSIS WITH CORRECTIONS
                        MARTINI LOSS EQUATIONS
                        SOLUTION IS NOT OPTIMIZED.
    OPERATING CONDITIONS ARE:
    SPEC.FREQ., HZ = 29.70 CHRG. PRESS., BAR = 66.00
    HEAT IN, DEG C = 600.00 HEAT OUT, DEG. C = 40.00
    W. GAS 1=H2,2=HE, 3=AIR 2
    POWER P.STR,CM = 2.26
CALC.FREQ., HZ = 24.07
PHASE ANG. DEGREES = 93.12
DISPL. STROKE, CM = 2.83
TIME STEPS/CYCLE = 830.79
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:
POWER, WATTS HEAT REQUIREMENT, WATTS
    BASIC 968.1708 BASIC 1608.9434
    ADIABATIC CORR. -43.1398 ADIABATIC CORR. 81.7501
    HEATER FLOW LOSS - 84.2486 REHEAT 582.2778
    REGEN.FLOW LOSS -107.4881 SHUTTLE 124.9339
    COOLER FLOW LOSS -5.2915 PUMPING 8.2534
    INDICATED 728.0027 TEMP. SWING 1.0050
    CYL. WALL COND. 194.9924
    DISPLCR WALL COND. 34.0671
    REGEN. WALL COND. 61.5366
    CYL. GAS COND. 6.1446
    REGEN. MTX. COND. 4.6277
    RAD.INSIDE DISPL. 4.7926
    FLOW FRIC. CREDIT - 137.9927
    TOTAL HEAT TO ENG. 2575.3319
```

CONVERGENCE CRITERIA IS:				. 00200			END		
CYCLE	CHANGE		CHANGE	WORK	HEAT			TIME	
NUMB.	POWER		HEAT	OUT	IN		PRESSURE		
	OUT		IN	JOULES	JOULES		MPA	MSEC.	
1	. 00000		. 00000	37.804	58.8702		6.3023	. 1000	
2	. 62195		. 70565	46.280	961.7328		6.4564	. 1000	
3	. 22421		. 04863	32.042	54.6293		6.2992	. 1000	
4	. 30766		. 11507	38.240	63.0954		6.3203	. 1000	
5	. 19346		. 15497	38.115	63.5116		6.2959	. 1000	
6	. 00329		. 00660	38.529	64.1757		6.2831	. 1000	
7	. 01086		. 01046	38.882	64.6377		6.2689	. 1000	
8	. 00917		. 00720	39.318	65.3865		6.2570	. 1000	
9	. 01122		. 01158	39.526	65.7471		6.2463	. 1000	
10	. 00530		. 00552	39.706	66.0397		6.2465	1000	
11	. 00455		. 00445	39.916	66.3575		6.2298	. 0500	
12	. 00528		. 00481	40.065	66.5949		6.2245	. 0500	
13	. 00373		. 00358	40.217	66.8346		6.2191	. 0500	
14	. 00379		. 00360	40.344	67.0336		6.2089	. 0500	
15	. 00315		. 00298	40.457	67.2126		6.2046	. 0500	
16	. 00282		. 00267	40.565	67.3797		6.2003	. 0500	
17	. 00268		. 00249	40.666	67.5358		6.1963	. 0500	
18	. 00247		. 00232	40.758	67.6792		6.1927	. 0500	
19	. 00227		. 00212	40.843	67.811767.9347		6.1893	. 0500	
20	. 00210		. 00196	40.923			6.1861	. 0500	
21	. 00195		. 00181	41.020	68.0787		6.1800	. 0250	
22	. 00237		. 00212	41.096			$\begin{aligned} & 6.1767 \\ & 6.1734 \end{aligned}$. 0250	
23	. 00184		. 00178 41.1639 ${ }_{\text {CONDITIONS ARE: }}$		6868.199568.3054				
CURRENT OPERATING CONDITIONS ARE:									
$01=$	66.000	02=	$\stackrel{2}{2} 2.849$	$03=$	600.000	$04=$	40.000	$\begin{aligned} & 05= \\ & 10= \end{aligned}$	$\begin{array}{r} 91.836 \\ .100 \\ 2 \end{array}$
$06=$	2.280	$07=$		08=	0	$09=$	1		
$11=$	0	$12=$. 000	$13=$	1.000000.000	$14=$	4		
$16=$	0	17=	3	$18=$		$19=$	10.000	$15=$	
Curren	NT DIMEN	NSIONS	S ARE:		4.2000		4.7000		
$20=$	1	$21=$	4.0400	$22=$		$23=$		$24=$	5.7180
$25=1$	15.1900	$26=$. 0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	$\begin{gathered} 0 \\ 381.0000 \end{gathered}$	$33=$	33.0000	$34=$	15.2500
$35=2$	25.4000	$36=$	7.6000	$37=$		$38=$. 0000	$39=$. 8000
$40=$	10.0000	$41=$	31.7900	$42=$	$\begin{array}{r} 20.5000 \\ 1.0200 \end{array}$	$43=$	2.3900	$44=$	72.5300
$45=$	22	$46=$	24	$47=$		$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	$52=$	$\begin{array}{r} 1.0200 \\ .1016 \end{array}$	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	57=	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	$\begin{array}{r} 6.4460 \\ .0000 \end{array}$	$63=$. 5440	$64=$	88.9000
$65=7$	75.9000	$66=$. 0000	67=		$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0400	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=2$	20.0000	$81=$. 0100	$82=$	$\begin{array}{r} .1000 \\ .4684 \end{array}$	$83=$. 0020	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	$87=$		88=	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	$92=$. .1450	$93=$.03:3	$94=$	1
$95=$. 5000	$96=$	0	$97=$. . 0000	$98=$. 0000	$99=$. 0000
$100=$. 0000	$101=$	13	$102=$	$\begin{array}{r} 15 \\ 0 \end{array}$	$103=$	14	$104=$	0
$105=$	0	$106=$		107 $=$		$108=$	0	$109=$	0
$110=$	0	111=	0	$112=$	${ }^{0}$	$113=$	0	$114=$	
$115=$	0	$116=$	$=0$	$117=$		$118=$	0	$119=$	0
$120=$	0								


```
    ENTERED PRINT ROUTINE AFTER 30 CYCLES.
    FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
    IN AND POWER OUT HAS BEEN LESS THAN .0010
                    RUN# 1 FOR
                        SUNPOWER RE1000 ENGINE
                        FREE MOTIONS -- LINEAR ALTERNATOR
                        LOAD CONSTANT = . .040 N/(CM/SEC)**2.
                        ISOTHERMAL ANALYSIS WITH CORRECTIONS
                        MARTINI LOSS EQUATIONS
                        SOLUTION IS NOT OPTIMIZED.
OPERATING CONDITIONS ARE:
SPEC.FREQ., HZ = 29.70
HEAT IN, DEG C = 600.00
W. GAS 1=H2,2=HE, 3=AIR 2
POWER P.STR,CM = 2.29
CALC.FREQ., HZ = 24.06
\begin{tabular}{|c|c|c|}
\hline CHRG. PRESS., BAR & & 66.00 \\
\hline HEAT OUT, DEG. C & & 40.00 \\
\hline PHASE ANG. DEGREES & \(=\) & 91.61 \\
\hline DISPL. STROKE, CM & \(=\) & 2.86 \\
\hline TIME STEPS/CYCLE & = & 1662.19 \\
\hline
\end{tabular}
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:
POWER, WATTS HEAT REQUIREMENT, WATTS
    BASIC F
    ADIABATIC CORR 1656.3628
    HEATER FLOW LOSS -44.5415 ADIABATIC CORR. 84.1547
    -87.3130 REHEAT 593.8710
    REGEN.FLOW LOSS -110.9985 SHUTTLE 127.4825
    COOLER FLOW LOSS -5.4867 PUMPING 8.4418
    INDICATED 750.4436 TEMP. SWING 1.0402
        CYL. WALL COND. 194.8838
        DISPLCR WALL COND. 34.0481
        REGEN. WALL COND. 61.5023
        CYL. GAS COND. 6.1412
        REGEN. MTX. COND. 4.6251
        RAD.INSIDE DISPL. 4.7850
    FLOW FRIC. CREDIT -142.8122
    TOTAL HEAT TO ENG. 2634.5262
```


$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0400	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$. 0100	$82=$. 1000	$83=$. 0005	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	$87=$. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	$92=$. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	$97=$. 0000	$98=$. 0000	$99=$. 0000
$100=$. 0000	101=	13	$102=$	15	$103=$	14	$104=$	0
$105=$	0	106=	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	$116=$	0	$117=$	0	$118=$	0	$119=$	0
$120=$	0								

```
    ENTERED PRINT ROUTINE AFTER 39 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
IN AND POWER OUT HAS BEEN LESS THAN .0005
RUN# 1 FOR
SUNPOWER RE1000 ENGINE
FREE MOTIONS -- LINEAR ALTERNATOR
    LOAD CONSTANT = . 040 N/(CM/SEC)**2.
ISOTHERMAL ANALYSIS WITH CORRECTIONS
MARTINI LOSS EQUATIONS
SOLUTION IS NOT OPTIMIZED.
```

OPERATING CONDITIONS ARE:
SPEC.FREQ., $\mathrm{HZ}=29.70$
HEAT IN, DEG $C=600.00$
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$
POWER P.STR,CM $=2.29$
CALC.FREQ., $\mathrm{HZ}=24.06$
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:
POWER, WATTS
HEAT REQUIREMENT, WATTS 1665.4221
BASIC
BASIC 1004.6925 BASIC 1665.4221
ADIABATIC CORR. -44.8123 ADIABATIC CORR. 84.6140
HEATER FLOW LOSS -87.8469
REGEN.FLOW LOSS -111.6095 SHUTTLE 128.0116
COOLER FLOW LOSS -5.5209
INDICATED 754.9029

CHRG. PRESS., BAR	$=$	66.00
HEAT OUT, DEG. C	$=$	40.00
PHASE ANG. DEGREES	$=$	91.60
DISPL. STROKE, CM	$=$	2.86
TIME STEPS/CYCLE	$=3324.99$	

 -87.8469 REHEAT \(\quad 595.4148\)
 PUMPING 8.4771
 TEMP. SWING 1.0454
 CYL. WALI COND. 194.8632
 DISPLCR WALL COND. 34.0445
 REGEN. WALL COND. 61.4958
 INDICATED EFFICIENCY, \% 28.54
EXP.SP.EFFECT.TEMP.,C 575.56
COMP.SP.EFFECT.TEMP.,C 54.05
CYL. GAS COND. 6.1406
REGEN. MTX. COND. 4.6246
RAD.INSIDE DISPL. 4.7836
FLOW FRIC. CREDIT -143.6517
TOTAL HEAT TO ENG. 2645.2857

APPENDIX F
effect of convergence criteria on results
(COMPUTER OUTPUT)
SINGLE PRECISION

Convergence Eriteria is:			. 110200					
Cycle	Chans*	Change	Work	Heat	End			
Nunb.	Pcwer ${ }^{\text {r }}$	Hefot	Jut	In	Pressure			
	Out	$1{ }^{1}$	Joules	Joules	MP			
1	. 00000	- 100000	37.8047	60.0275	E. 3023			
2	. 62195	. E998E	46.2530	36. 5713	6. 4682			
\pm	. 22347	. 39076	30.9251	23. 1919	6. 2259			
4	. 33139	3705E	40.7464	59. 2616	6.2110			
5	. 31758	1. 57442	41.3248	70. 1108	6. 2858			
E	. 01420	. 18307	39.4081	6i7. 4282	6.3029			
7	. 04638	. 03826	38.7702	H4. 0875	6. 2788			
8	.01619	. 04954	39.1211	64.3247	5. 2653			
9	. 00905	.00370	39.4816	55.6930	6.2538			
10	. 08922	. 01194	39.6682	65. 6441	6. 2436			
11	. 08473	. 00847	39.8061	65.9583	E. 2444			
12	. 00348	. 08479	39.4427	15. 2037	6. 2347			
13	.00343	. 00572	40.0639	66.4439	6. 2259			
14	. 00504	. 00353	40.1962	66. 6812	6.2176			
15	.00330	. 00357	40.3235	56.9181	E. 2096			
15	. 00315	. 00355	40.4371	57. 1508	6. 2126			
17	. 00282	. 00348	40.5389	b7. 3278	6. 2048			
18	. 00252	. 002 E 4	409.6207	67.5063	E. 1981			
19	. 00202	. 00265	40.7115	67.6369	6. 1916			
20	. 00223	. 08193	40.7972	67.7382	6.1854			
21	. D0210	. 00150	40.8833	¢7.9155	5.1897			
22	. 00211	. 00262	40.9621	68.14445	5.1834			
23	. 00193	. 00190	41.6171	58. 1564	6. 1779			
ENTERED PRINT ROUTINE AFTER 23 CYCLES.								
Fractional change in two successive integrais of heat								
RUN* $1 E$ FOR SUNPOWER REIODO ENGINE								
FREE P JTIONS -- LINEAR ALTERNATOR								
l.oad constant $=$. W4W $N /(c m / s e c) * * 2$. ISOTHERMAI. ANALYSIS WITH GORRECTIONS								
MARTINI LOSS EQUATIONS								
SOLUTION IS NOT UPTIMIZED.								
DPERATING CONDITIDNS ARE:								
SPEC.F	REQ., HZ	-9.		Rrg. PRES	, BAR	BE. DH		
HEAT I	N, DEG C	50.		AT JUT,	E. C	40.00		
W. GAS	$1=\mathrm{H} 2,2=$, $3=A 1 \mathrm{R}=$		HASE ANG.	DEGREFS	91.90		
POWER	P.STR,CM			SPL. STR	KE, CM	2.84		
CALC.F	REG., H2	24.		ME STEPS	cycle	415.21		
COMPUTED PERFDRMANCE USING FPSE BY MARTINI FNG.:								
PDWER,	WATTS			AT REQUI	MENT, WATTS			
EASI		987.8560		BASIC	CORR.	1641.4800		
AD:A	tatic coba	-44.0377		ADI RARTI		83.4007		
HEAT	R FLOW	$5 \quad-86.3844$		REHEAT		590.6995		
REGE	. Fiow	-109.9459		SHUTTLE		126.3998		
COOL	R FLOW	$5 \quad-5.4287$		PUMPING		5. 38:?		
INDICATED		742.0593		TEMP. SW	COND.	1.030:		
		CYL. WALL	194.9240					
				DISPLCR	ALL COND.	34.0551		
				RELEN. W	LL COND.	61. 5150		
INDICATED EFFICIENCY, * 26.37				CYL. GAS	ND.	6.1425		
				REGEN. M	X. COND.	4. 5260		
						RAD. INSI	DISPL.	4.7876
EXP. SP	EFFECT.	MP., C	5. 71	FLDW FRI	CREDIT	-141. 3.573		
COMP.S	. EFFECT	EMP., C	:07	TOTAL HE	r TO ENG.	2EIE. DEA		

OPERATING CDNDITIDNS ARE:


```
APPENDIX G
EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS
0.2 MSEC TIME STEP
0.005 CONVERGENCE CRITERIA
```

Cionvergence Griteria s:			. 10500		
Cycte	Chatige	Chanc	Work	Hent	r.rid
Numb.	Pawer	Heat	Dut	$!$	prossur
	Out	Ir	Joules	Joules	MPa
1	. 000000	. 000000	5.7592	9. 10844	. 9571
2	. 94241	. 95496	15.8064	1. 3 E38	. 9274
3	1.74455	. 84851	9.5835	14. 5588	. 9099
4	. x 9 ES	9.748E3	10. 0575	17.924E	. 9154
5	. 1.329	. 22279	10.2852	17.1418	. 9177
6	. 05271	. 04.55	10.1734	16.9289	. 9143
7	. 01007	. 01242	9.9621	16.804 .5	- 9222
8	. 02077	. 007.35	9.6580	16. 3272	- 9201
9	. 02952	. 02840	4. 7157	15. 5759	. 9173
10	. 00493	. 00293	9.7765	16. 47.54	- 9160
.	. DOEVS	. 00505	9.8140	1E. 5465	- 3143
:2	. 00385	. $00 \leq 95$	9.8535	1E. FOES	. 9127
ENTERED PRINT RUUTINE AFTER 12 IVYCIES.					
I In arid oower Gut has heen less than					
SUNOJWFR KEEIODO FENSINE.					
FRES MQIITNS -- L.INEAR AI.TERNAIDR					
			and ronst	ISUTHERMA. HNALVSIS WITH PORREIT [DNS	
MARIINI 1.DS' EOJATIONS					
SOLIJTON :					

DPERRT ING CONDITIONS RRE:

Comver	gense cr	teria is	. 00500		
Cructe	Change	Crange	Work	Heat	End
Nunt.	Power	Heat	Out	In	Pressu
	Out	In	Joules	Joutes	MPa
1	. 00000	. 00000	11.5075	18.050:2	1.9139
2	. 88492	. 90975	25. 8880	-2.1325	1.8887
3	1.24965	1. 11814	17.5491	22.4622	1.8030
4	. 32211	11.53346	22.5048	$37.3541)$	1.8474
5	. 28239	. E5297	20.5535	35.2236	1.8549
5	. 09670	.05703	19.9030	33. 5598	1. 8572
7	-03165	. 04440	19.9842	34.3983	1.8642
8	. 00408	. 02194	19.5367	33.4508	1.8594
9	. 02239	. 02725	19.6.302	33.5835	1. 45.33
10	. 004478	. 00.867	19.8014	33.9317	1.8510
11	. 020872	. 01085	19.8E95	34.10590	1.8490
12	.00345	. 00.375	19.9235	34.1521	1. 8440
ENTERED	D PRINT	ROUTINE AF	R 12	YCIFS.	
Fract	口nal chan	99E in tw	successiv	intesra	3f heat
11 and	dower	it has ber	1055 than	. 8	
		RUN\#	FOR		
		Sun-1	gr reiudou	FNOINE	
		FREE	rions -	linear al	RNATITR
			ayd corist	nt $=$	$\mathrm{N} / \mathrm{Ccm}$
		$150 T$	MA: ANAL	SIS WITH	RRECTIO
		MART	Loss E0	ATIONS	
		Sot. 15	On is not	ofrimizel	

OPERATING CONDITIITNS ARE:

SPEC.FREO., $\mathrm{HZ}=2$ 29.70	CHRG. PRESS., HAR	20.00
HEAT IN, DEG $\mathrm{C}=600$. VD	HEAT OUT, DEIG. C	40.40
W. GAS $1=H 2,2=H E, 3=A I R ~ 2 ~$	Phast Ang. degrees	95.23
POWER P.STR, $\mathrm{CM}=$ 2.ES	DISPI. STRDKE, CM	4.184
	timesters/cycle	370.

COMPUTED PERFORMANILE POWER, WATTS		GY MARTINI FNG.: HEAT REQUIT REMENT, WATTS	
BASIC	2ES. 8845	BASIC	4E0.911E
ADIABGTIC CORR.	-14.7798	ADIABATIC. EIRRA.	23. 1 ¢3. 7
HEATER FLOW LOSS	-19.1771	REHEAT	P2, 285
REGEN. FLOW LOSS	-34.2555	SHUTTLE	235.4990
COOLER FLOW LOSS	-1. 2686	PUMPING	1.7358
indicated	199.402E	TEMP. SWING	. 0155
		CYL. WAII COND.	180.7845
		DISPI_CR WALIL COND.	31.5848
		REGEN. WALL COND.	57.0578
INDICATEU EFFICIENEY,	18. $9 E$	CYL. GAS CONO.	5.8969
		REDEN. MTX. COND.	4. 29005
		RAD. INSIDE DISPI.	4.1263
EXP. SP. EFFEECT. TEMP., C	546.02	FLOW FRIC. CREDIT	-36. 3054
COMP.SP. EFFECT. TEMP.	62. 20	total heat to enig.	1051.7110

Conver Cycie Nunt.	. 00500				Find Pressure	
	Change	Charige	Work	Heat		
	Power	Heat	Out	In		
	Out	In	Joules	Joules	MPa	
1	. 00000	. 00000	17.2448	27.1248	2.8703	
2	. 82755	. 85438	33.6554	1. 8532	2.8881	
\pm	. 95221	. 93169	20.8513	17.1923	2.7175	
4	. 38034	8. 27729	30.8814	45.0713	2.7677	
5	. 48032	1. E2161	29.6772	54.5201	2.9381	
6	. 05842	. 20964	26. 2974	52.4712	2. 8685	
7	. 09560	. 0.3758	24. 3775	45.4871	2.8751	
8	. 07299	. 13310	23.4632	35.6411	2. 9387	
9	. 03752	. 21645	24.7354	37.0250	2.8011	
10	. 05422	.03883	26.5887	43.7341	2.7922	
11	. 07492	. 18121	26.7389	46. 7834	2.8048	
12	. 005ES	. 06972	26.4346	45. 8288	2.8095	
13	. 02534	. 02040	25.5579	43.8115	2.8037	
14	. 21447	. 04402	25.9108	43.6084	2. 7898	
15	. De9ers	. 00463	26. 3590	44.6054	2.78.37	
16	. 01729	. 02285	26.5990	45.3952	2.7794	
17	.00911	. 01758	26.5370	45.6921	2.7757	
18	. 00143	. 00554	26.5720	45. 7809	2.7718	
19	. 80131	. 00194	26.7E37	45.8714	2.7576	
ENTERED FRINT ROUTINE AFTER 19 CYCLES.						
Fraitional change in two successive intesrals of heat						
- 11 and power out has been less than . Dest						
SUNDOWER REIDEO ENGINE						
	Load constant $=\quad-144) \mathrm{N} /(\mathrm{cm} / \mathrm{s}$				$\mathrm{N} /(\mathrm{Im} / \mathrm{se}$ RRECTIONS	
SOLUTION IS NOT GPTIMIZED.						

QPERATING CONDITYONS A	ARE: 29.70	Chrg. PRESS., bAR	30.00
HEAT IN, DEG C = 5R	00.00	HEAT OUT, DEG. C	40.00
W. GAS $1=H 2,2=H E, ~ S=A I R ~$	82	PHASE ANG. degrees	96.77
PGWER P.STR, CM	2.55	DISPL. STROKE, CM	3. 8 E
CALC.FREG., HZ	16.40	TIME STEPS/EYCIE	3.04 .93
computed performance using fpse by martini eng.: POWER, WATTS HEAT REQIIIREMENT, WATTS			
BASIC	438.8512	GASIC	752.1644
ADIABATIC CORR.	-24.3141	ADIABATIC CORR.	37. 73499
HEATER FLDW LOSS	-36.7415	REHEAT	165.7423
REGEN. FLOW LOSS	- 57.2385	SHUTTLE	217.9073
COOLER FLOW LOSS	-2.1545	PLMPING	2.9490
INDICATED	318.4024	TEMP. SWING	. 0740
		CYL. WALL COND.	182.1925
		displer wali cond.	31.8308
		RESEN. WALI. COND.	57.4972
INDICATED EFFICIENCY, $x 22.79$		CYL. GAS COND.	5.7413
		REGEN. MTX. COND.	4. 3239
		RAD. INSIDE DISPL.	4.2756
EXP. SP. EFFECT. TEMP. , C	553.61	FLOW FRIC. CREDIT	-55. 3610
COMP.SP. EFFECT. TEMP. ,	65.95	TOTAL HERT TD ENG.	1596.9910

-ence 勺1:					
Lscie	Change	Change	Work	Heat	Find
Nuntr.	Power	Heat	Out	In	Pressure
	Dut	ITI	Joules	Joules	MPa
1	. 0 arodo	-00000	22.9710	3E. 2318	3.8264
2	. 77029	. 81884	38.6549	32. 3636	3.9479
3	. ES277	. 10E7E	21.3092	-1.3285	3.7635
4	. 44873	1.04105	31.7073	41.7207	3. 6719
5	. 48796	32.40430	34.6152	62. 2682	3. 8010
ε	. 09174	. 49250	30.8643	55.1540	3. 8719
7	. 10835	. 04534	28.0182	55.2677	3. 8926
8	. 09221	- 15174	2E. 1777	37. 28.21	3.8 .395
9	.06569	. 3254 ?	27. 3450	35. 3799	3.7609
12	. 044 ES	. 02420	50. 5592	48.1353	3.7443
11	. 11747	. 32315	3.2091	$54.0985 ?$	3.7740
12	. 02130	. 12355	30. 1912	53. 2469	3.7922
13	.032Eこ	.01555	29.4645	50. 1989	3.7749
14	- 02507	. 05724	29.5357	49.4306	3. 7 E 45
15	. 00242	. 02327	30.14942	50. 1135	T. 7547
16	. 01891	. 02209	30. 4E09	51.3299	3. 7475
17	.01-19	. 02427	50. 5359	31.6927	3.7415
: 5	- 00249	. 00707	30.5705	51.7489	3.7356
-9	. 00112	.00109	50.6828	51.9451	3.7293
ENTERED PRINT ROUTINE AFTER 19 IVYCIFS.					
a't sna: Gmange in two suctessive integrals of meat i: ary dower out has been less than . Desu					
RUN\# 29 FOR					
SUNPOWER REIODO ENGINE					
FREE MITIONS -- LINEAR AI_TERNATIR					
ISOTHERMAI. ANAI-YSIS WITH CORRECTIONS					
MARTINI LOSS EQUATIONS					
SOLIJTION IS NOT OPTIMIZED.					

DPERATING CONDITIONS ARE:
SPEC.FREQ., $\mathrm{HZ}=29.70$
HEAT IN, DEC C = 6DD.DD
W. GAS $1=H 2,2=H E, T=A I R 2$
POWER D.S:R.EM $=$ 2.4?
CALC.FRED., HI = 19.85

CHRG. PRESS. BAR $=$	40.000
HEAT DUT, DEG. C =	40.00
PHASE ANG. DEGREES =	95.12
1)ISPI.. STROKF, EM	3.43
TIME STEPS/CVCLE	265.07
BY MARTINI ENG. :	
HEAT REIDIJIREMENT, WATTS	
AASIC	979. 6344
ADIARATIC LCORR.	49.3310
REHEAT	260.0E47
SHUTTLE	177.517E
PUMPING	4. 2273
TEMP. SWING	. 1e7w
CYL. WALL COND.	187.9541
DISPI.CR WALL COND.	32.8374
REGEN. WALL COND.	59.3154
CYI., GAS COND.	5.9228
REGEN. MTX. CDND.	4. $4 E D E$
RAD. INSIDE DISPL.	4. 5ESE
FLDW FRIL. CREDIT	-82. 88.5
TOTAL HEAT TO ENG.	1683. 3494

Lionvergenceroteria is: .000500					
CxCle	Change	Chang	Work	Hatat	Enc
Numb.	Power	Heat	Dut	In	Pressure
	Out	in	Joules	Joules	MPa
1	- 00000	. 00000	34.3895	54.5407	5.7378
2	. 55510	. 72730	45.2552	38.544 .3	5.8913
3	. 31536	. 29329	28.4381	14.6005	5. 6706
4	. 37161	. 52120	38.7143	54.7625	5. 6251
5	. 36135	2.75072	40. 2479	58.7902	5.7105
6	.03961	. 25815	37.5950	65. 7414	5.7404
7	. DES89	. 04432	36.6413	60.8321	5.7220
8	.02539	. 07468	36.8655	60.2957	5. 7018
9	. DeE 12	. 00882	37. 38.34	51. 5911	5. 5840
10	01405	. 02148	37.6337	52.3171	5.6857
11	00E70	. 01179	57.7775	52.5343	5.6706
12	. 00852	. 00509	57.8960	52. 9007	5.6742
13	. 00314	. 00425	38.4528	Si3. 1774	5. 6589
ENTERED PRINT ROUTINE AFTER 13 CYCLES.					
Fratitional Ghanse in two successive integrals int meat					
i) 1 and	sower o	has been RUn\#	less tha FDR	- Dr	neat
SUNPOWER REIUOO ENGINE					
FREF MOTIONS -- İINEAR ALTERNATOR					
Lozd ronstant m. .040 $\mathrm{N} /(\mathrm{cm} / \mathrm{sec}$					
ISOTHERMAL ANALYSIS WITH CORRECTIDNS					
MRRIINI L-DSS EQUATIONS					
SOLIJTION IS NOT OPTIMIZ					

OPEFATING CONDITIONS ARE:
SPEC FRER
HFAT IN. DEG $C=5010 . D O$
W. GAS $1=H 2,2=H E, 3=R I R \quad 2$
PDWER P.STR,CM $=\quad 2.25$

CALC.FREG., $H Z=24.29$

COMPUTED PERFORMANCE USING FPSE BY MARTINI FNG.:

POWER, WATTS		HEAT REQUIREMENT, WATTS	
BASIC	976. 1994	BASIC	1E16.9270
ADIABATIC CORR.	-43.3461	ADIABATIC CORR.	62. 1749
HEATER FLOW LOSS	-85.4799	REHEAT	59E. 6408
REGEN. FLOW LOSS	-108.6841	SHUTTLE	122.7418
COOLER FLOW L.OSS	-5.3791	PUMPING	B. 3911
INDICATED	733.3102	TEMP. SWING	1.0559
		CYL. WRLL COND.	195. 1E43
		DISPLCR WALL COND.	34.6971
		REGEN. WALL COND.	61.5908
INDICATED EFFICIENCY,	$\times 28.26$	CYL. GAS COND.	6. 1501
		REGEN. MTX. COND.	4.5317
		RAD. INSIDE DISPL.	4.7957
EXP. SP. EFFECT. TEMP., C	576.12	FLOW FRIC. CREDIT	-139.8220
COMP.SP. EFFECT. TEMP.	53.77	TOTAL HEAT TO FNG.	2594.5410

Convergence criteria is: . 00500					
Cycie	Change	Chang?	Work	Heat	Fnd
Nunt.	Power	Heat	Dut	In	Pressure
	Out	In	Joules	Joules	MPa
1	. 00000	. 00000	38. 9444	61.8990	5. 5020
2	. 61055	. 69051	47.1721	37.8628	6. 6882
3	. 21127	. 3 es31	31. 2293	25.1906	5.4228
4	. 33797	. 33469	41.0986	60. 10953	6. 4151
5	. 31577	1. 38567	41.5701	70.1199	ti. 48.59
5	. 81410	. 15673	39.8680	67.9951	6. 4945
7	. 04325	. 03030	39.2960	55.0277	6.4747
8	. 81435	. 84354	39.6245	55.1852	5.4547
9	. 00836	. 00242	39. 9592	65.3177	6. 4587
10	. 00845	. 01124	40.1480	56.4581	6. 4411
11	. 00473	. 00820	40. 2509	65. 7522	6.4254
12	. 00281	. 00443	40.3841	66.9571	6.4320
ENTERED PRINT ROUTINE AFTER 12 CYCI.ES.					
Fractional Ghange in two suecessive integrals of heat					
11) and power out has been less than .0050					
RUN* 20 FOR					
SUNPOWER REIDOD ENGINE					
FREE MOTIONS -- LINEAR ALTERNATOR					
LDad constant $=$. $040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})$ w* L .					
MARTINI LOSS EQUATIONS					
		SOLUT	I IS NOT	OPTIMIZE	

DPERATING CONDITIDNS ARE:
SPEC.FREQ., $\mathrm{HZ}=29.70$
HEAT IN, DEG C = 600.00
W. GAS $1=H 2,2=H E, 3=A I R 2$

POWER P.STR,CM $=\quad 2.24$
CALC.FREG., $\mathrm{HZ}=24.4 \mathrm{E}$

COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:
PONER, WATTS HEAT REQUIREMENT, WATTS
BASIC 987.9561 BASIC 1638.0370

ADIABATIC CORR. -43.7589 ADIABATIC CORR. 83. $2 E 18$
HE:RTER FLOW LOSS -8E.6511 REHEAT 610.9302
PECEN FLOW LOSS
-109.7754
121.095!
8.5370

1. 1078

COOLER FLOW LOSS
-5.4594 PUMPING
INDICATED
CYL. WALL EOND.
195. 2787

DISPLCR WALL COND. 34.1171
INDICATED EFFICIENCY, $\times 28.25$
---------------------------------------17-
EXP. SP. EFFECT. TEMP. , C 575.17
COMP.SP. EFFECT. TEMP., C 53.56
REGEN. WALL COND.
61.6259

CYL. GAS COND.
E. 1537
4. 53.45
4. 7988

RAD INSIDE DISP
141.9388

FLOW FRIC. CREDIT	-141.5388
TOTAL HERT TO ENG.	2628.0400


```
APPENDIX H
EFFECT OF PRESSURE ON ISOTHERMAL
FREE-PISTON ANALYSIS
0.5 MSEC TIME STEP
0.005 CONVERGENCE CRITERIA
```

Convergence criteria is:			. 08500		End	
Cycie	Change	Change	Work	Heat		
Numb.	Power	Heat	Out	In	Pressure	
	Out	In	Joules	Joules	MPa	
1	. 0 0000	. 00000	37.8055	60. 2208	6. 3286	
2	. 62194	. 69890	47.5828	40.8191	6. 4662	
3	. 25860	. 32218	30. 1480	21.7777	6. 2539	
4	. 3 E640	. 46548	39.9914	58.1572	6. 2403	
5	. 32550	1.67050	41.2351	69.6771	E. 3175	
6	. 03110	. 19808	38.9337	67.1E25	6. 3292	
7	:0558:	. 03609	38.18869	63.3742	6. 2815	
8	.02175	. 05640	38.3847	63. 8299	6. 2861	
9	. 00782	. 00543	38.8316	63. 9658	6. 2893	
10	. 01164	. 01485	39.0336	64. 5468	6. 2430	
11	. 00520	. 00908	39.10733	64.5978	6. 2534	
12	.00102	. 00079	39.2629	54. 5901	6. 2603	
ENTERED PRINT ROUTINE AFTER 12 CYCLEB. Fractional change in two successive integrals of heat						
in and power out has been less than . Desod						
		RUN*	- FOR			
SUNPOWER REIDOO ENGINE						
FREE MOTIONS -- LINEAR ALTERNATOR						
Load constant - . $040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})+$ + 2 .						
MARTINI LOSS EQUATIONS						
SOLUTION 15 NOT OPTIMIZED.						

Cipnvergerice Eriteria isi			. 00500		End
Cycle	Change	Change	Work	Heat	
Nunto.	Power	Heat	Dut	In	Pressure
	Out	In	Joules	Jouleg	MPa
1	.00000	. 00000	38.9434	62. 0682	6. 5202
2	. 61057	. 689EE	48.0201	41.3211	6. 5815
3	.23307	. 3342 E	30. 1882	23.8095	6. 4247
4	. 37134	. 42379	40.2683	59.18509	6. 4288
5	. 3.357	1.48014	41.4086	69.1007	6.5190
6	.02781	. 17015	39.4093	67.3591	6.4863
7	- 04828	. 02520	38.7761	64.8996	6.5046
8	. 01607	. 03651	39.0881	64.1540	6. 4E42
9	. D08®5	. 01149	39.3559	64. 3855	6. 4813
10	.00685	. DO361	39.6219	65. 2105	6. 4439
11	. 00676	. 01281	39.7755	66. 5965	6. 464.3
12	. 00388	. 02125	39.9227	66. 0070	5. 4277
$1{ }^{7}$. 00370	. 00885	39.4879	65.6710	6. 4489
14	. 00067	. 00509	40. 1E51	67.2850	6. 4114
15	.00096	. 02462	40.2191	56.803:	5. 4346
15	.00132	-00721	40.2436	66. 148 E	6. 3991
17	- DDOE 1	. 00980	40.4250	67.9718	5.4208
18	. 00451	. 22756	40.5875	66. 9642	6. 3870
19	. 00402	. 01482	40.4819	66.9803	6. 4100
20	- 00260	. 00024	40.7699	67.9233	6. 3743
21	. 00711	. 01408	40.7757	57.8797	E. 3983
22	. ©ODI4	. ODDE 4	40.7859	57.5857	F. 4190
ENTERED PRINT ROUTINE AFTER 22 CYCIES.					
Frart, ina change in two suctessive integrals of heat					
1) and	Dower	has bex	less than		
		RUN*	FOR		
		SUNPI	R REIODO	NGINE	
		FREE	TIONS - -	INEAR At	Rnator
		1 SOTH	and const MMA! RNAI	it =	$\mathrm{N} / \mathrm{Cm} / \mathrm{se}$ REITIONS
		MARTI	loSS EO	TIONS	
		SOLIJ	I IS NOT	PTIMIZFD	

operating conditions are:

SPEC.FREQ., $\mathrm{HZ}=29.70$	CHRG. PRESS., BAR	$=$ b6. 00
HEAT IN, DEG $C=$ EDO. $\triangle D$	HEAT OUT, DEG. C	40.00
W. GAS $1=H 2,2=H E, 3=A I R \quad 2$	PHASE ANB. DEGREES	92.72
POWER P.STR,CM $=224$	DISPL. STROKE, CM	2. 78
CPLC.FREG., $\mathrm{HZ}=24.53$	TIME STEPS/CYCI_E	$=81.54$

COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:		
PONER, WATTS	HEAT REQUIREMENT, WATTS	
日ASIC 1000.4360	BASIC	1657.8090
ADIAEATIC CORR. $\quad-44.32 \geq 9$	ADIABATIC CORR.	84. 2ES $^{\text {¢ }}$
HEATER FLOW LOSS -89. 1040	REHEAT	515.9672
REGEN, FLOW LOSS -112.4494	SHUTTLE	120.941.
COOLER FLOW LOSS -5.5122	PUMPING	8.6514
INDICATFO 749.0479	TEMP. SWING	1. 1267
	CYL. WPLL CUND.	195.2235
	DISPLCR WALL CUND.	34.1074
	REGEN. WALL COND.	61. 5095
INDICATFD EFFIVIFNCY, $\quad 28.27$	CYL. GAS I:OND.	6. 1519
	REGEN. MTX. COND.	4.85%
	RAD. INSIDE DISPL.	4.794
EXP. SP. FFIECT, TEMP., C STF, ME,	FI.OW FRRIC. CREDIT	-145. 2237
[OMF.SP. EFFECT. TEME., C 5 . 45	TOTAL HEAT TO RNG.	2 50.45

Convergence criteria is: . 00500					
Cacte	Change	Chanse	Work	Heat	Find
Numb).	Power	Heat	Out	In	Pressure
	Dut	Ir,	Joules	Joules	MPa
1	. 000000	. 080000	40.0908	53. 9158	5. 1117
こ	. 59919	. 68042	48.4474	42.10225	5. 3483
$?$. 20874	. 8.4254	31.7565	25.8545	6. 6295
4	. 34452	. 38475	40.9136	59.9944	6. 6455
5	. 28835	1.32046	42. 13E83	70.4845	6. 6891
6	. 02822	. 17485	39.8718	67. 8756	6. 7249
7	. 05221	. 03701	39. 3202	65. 3913	E. 6916
8	. 01383	. 03660	39. 5424	6E. 1666	E. 6608
9	. 00819	. 81185	39.8318	65. 1861	E. 6342
10	. 00478	. 01482	40. 18817	66. 2976	G. $6 E 15$
11	. DOE 28	. 01705	40.2988	66.3703	6. 6329
12	. 00522	. 00110	40.4260	67.0307	5. 5054
13	. 00336	. 00995	40.5233	57.4787	6. 5372
14	. 00241	- 006EE	40.5744	67.3859	B. 6080
15	. 00575	. 00138	40.6764	67.5582	5. 5399
ENTERED PRINT ROUTINE AFTER 15 CYCles.					
Fractinnal shange in two successive intesrals of heat					
n and Dower gut mas been tess than .00S0					
		RUN*	- ror		
			RUNA 4 FOR GNGINE	NGINE	
FREE MOTIONS -- LINEAR GLTERNATOR					
L.oad constant $=.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec}$					
ISOTHERMAI. ANALYSIS WITH CORRECTIDNS					
MARTINI LISS EQUATIONS					
SOLIITION IS NOT OPTIMIZED.					

OPERAAI ING CONDITIONS ARE:
SPET,FREO, $\mathrm{HZ}=$ HFAT IN, DEG $C=$ EOD.WO w. GAS $I=H 2,2=H E, ~ I=A I R:$

PONER P.STR,CM $=2.2 \because$
CAC.FREG., $\mathrm{HZ}=24.90$

CHRLS. PRESS., HAR		70.00
HEAT DUT, JEG. C		40.00
PHASE ANG. DEGRFYS	-	92.61
DISPL. STROKE, CM		$\therefore 78$
TIME STEPS/LYCLE	=	80.

COMPUTED PERFDRMANCF POWER. WATTS		hY MARTINI ENG.: HEAT REQIIIREMFNT, WATTS	
EASIC	1012.7850	BASIC	1622. 3190
ADIAEATIC CORR.	-44. 5190	ADIABATIC CORR.	35. 5279
MEATER FLOW LOS5	-90. 2289	REMEAT	640.1371
REGEN. FLOW LOSS	-113.6624	SHUTTLE	117.1529
COOLER FLOW l.OSS	-5.7125	Pumping	8. 8773
INDICATED	758.7621	TEMP. SWING	1. 2245
		EYL. WALL. EOND.	195.4898
		DISPLCR WALI. COND.	34.1540
		REGEN. WRLL COND.	51.6936
INDICATED EFFICIENEY,	\% 2E. 1E	CYL. GAS COND.	E. 1E0\%
		REGEN. MTX. COND.	4.5395
		RAD. INSIDE DISPL.	4.8001
EXP. SP. EFFECT. TEMP. . E	57E. 16	FLOW FRIC. CREDIT	-146.9602
COMP.SP.EFFFCT.TEMP.,	53. 14	TOTAL HEAT TO FNG.	2FS4.9150

Convergenite iriteria is:					
Ciycie	Charige	Change	Woin	Heat	End
Nunb.	Pown	Heat	lue	1 n	Mresmum
	Dut	15	Icrulos	Jouses	MPa
1	- 00000	- Dandor	40.9536	E5. 3043	5. 8554
2	. 590E6	. 67348	48. 7531	41.9690	5.9838
3	. 19127	. 3.566F	72. 2795	28. 3157	6. 7557
4	. 33803	. 32368	41.2167	60.8297	E. 7698
5	. 27687	1. 14820	41.93 .52	70. 3268	5. 8080
E	. 0174 E	. 15611	40.2224	58. 5236	6.8345
7	. 04087	. 02421	39.7070	55.2487	6. 8514
8	. 01282	. 04918	T9.9885	65. 7087	5. 8089
9	. 00709	. 00705	40.3558	67.5293	5.8297
10	. 00919	. 02771	40.4877	57.0062	6. 7915
11	. 00327	. 00775	40.4389	E6. 1029	6.7563
12	. 008121	. 01340	40.7586	68. 2154	F. 7781
13	. 08791	. 03196	40.9802	67.8870	6.7995
14	. 00544	. 00481	40.8560	57. 1294	6. 7625
15	. 00303	. 0111 E	41. OE65	58. 9535	6. 7856
16	. 00515	. 02718	41.2251	68. 2623	6.7497
17	. $00 \boxed{86}$. 01005	41.1035	67.6497	E. 7753
18	. 00295	. 00897	11.4211	69.4124	6. 7359
19	. 00773	. 02685	41.3882	58.4191	6. 7548
20	. 00079	. 01431	41.4489	68. 3261	6. 7275
21	. 08147	. 00741	41.5553	69. 1952	6.7540
22	. 00281	. 00390	41.5272	58. 1605	6.7200
$2{ }^{2}$. 00092	. 01495	41.6939	70. 2058	6. 7447
24	. 00401	. 03001	41.7574	E8. 5770	5. 7122
2	. $0015:$.02320	41.7187	59.5310	b. 7381
26	. 0009 x	. 0153	41.9217	59. 3221	6.7030
27	. 00487	. 010444	41.7818	69.14439	E. 7314
ENTERED PRINT ROUTINE GFTER 27 İYCltis.					
Fractional Ghange in twa successive integrals of heat					
RUN\# 9 FOR					
SUNPOWER REIDOD ENGINE					
Free motidns -- Linear alternator					
		Load constant $=.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec}) * * 2$.			
MARTINI LOSS EQUATIONS					
		SOLUT	,	相	

OPERATING CONDITIONS ARE:

SPEC.FREC., HZ	29.70	CHRG. PRESS., BAR	=	71.50
HEAT IN, DEE C =	508.08	HEAT OUT, DEG. C	$=$	40.00
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}$,	18 2	PHASE ANG. DEGREES	$=$	92.88
POWER P.STR,CM $=$	2. 22	DISPL. STROKE, CM	=	2.72
CALC.FREG., HZ	25.17	TIME STEPS/EYCLE	=	79.4E

COMPUTED PERFORMRNCE USING FPSE BY MARTINI ENG.:

POWER, WATTS

BASIC	1051.6750
ADIRERTIC CORR.	-46.2574
HEATER FLOW LOSS	-94.4539
REGEN.FLDW LOSS	-117.8176
COOLER FLDW LOSS	-5.9689
INDICATED	787.1572

INDICATED EFFICIENCY, \% 2 E .38
EXP. SP. EFFECT. TEMP. .
COMP.SP. EFFECT. TEMP. .

HEAT REQUIREMENT, WATTS BASIC
ADIABATIC CORR.
REHEAT
1737.8780
88.3778
$666.96 E 9$
11E. 1058
9. 2434

1. 3358

PUMPING

TEMP. SWING
$\begin{array}{lr}\text { CYL. WALL COND. } & 195.47 \geq 1 \\ \text { DISPLCR WALI. COND. } & 34.1511\end{array}$ REGEN. WAIL COND. 51.688? CYL. GAS COND. 6. 1598 REGEN. MTX. COND. 4.6391 RAD. INSIDE DISPL. 4.7926 FLOW FRIC. CREDIT -155. 3627 TOTAL HEAT TO FNG. $2773.4 S D O$

Convergence criteria is: . 08500					
Cycte	Change	Change	Work	Heat	End
Numb.	Pawer	Heat	Uut	In	Pressuta
	Out	[1	Juules	Joules	MPa
1	. 00000	. 00000	41.2179	55.7667	6. 903.3
2	. 58782	. 67117	48.8205	42.9744	7.0516
3	. 18445	. $3465 E$	31.9210	27.3725	6. 8448
4	. 3 4E1E	. 36305	41.3694	61.1830	6. 8093
5	. 29596	1.23520	41.9966	70. 7865	6. 8580
5	. 01519	. 15596	40.2653	67.6868	6. 9122
7	.04123	. 0437.5	39.8236	66.5025	6. 8839
8	. 01097	. 01753	40.1621	65.7220	6. 8620
9	. 00850	. 01174	40.4407	67. 1472	6. 8377
10	. 00694	. 02158	40.5700	66.8355	6.8193
11	.00320	. 00453	40.7720	67.5785	5. 8564
12	. 00498	.01110	40.9441	68. 4571	6. 8335
15	. 00422	. 01300	40.8527	67. 1652	6.8150
14	. 00150	. 01587	41.0837	68. 32.58	6. 7943
15	. 00492	. 01729	41.2020	68. 3053	6. 8364
16	. 00288	. 00031	41.3449	68. 3814	6. 8141
ENTERED PRINT ROUTINE AFTER 15 CYCLES.					
Fractional inange in two sucsessive intesrals of heat					
17 and Dower out has been less than . Oesd					
FREE MOTIONS -- LINEAR ALTERNATIR					
Loas constant $=\quad .040 \mathrm{~N} /(\mathrm{cm} / \mathrm{se}$					
MRRTINI LOSS EQUATIONS					
SOLUTION IS NDT OPTIMIZED					

OPERATING CONDITIONS ARE:

COMPUTED PERFDRMANCE USING FPSE BY MARTINI ENG:

PONER, WATTS		HEAT REQUI REMENT, WATTS	
BASIC	1043.0740	BRSIC	1725.1690
ADIABATIC CORR.	-45. 7888	ADIABATIC CORR.	87.7428
HEATER FLOW LOSS	-9.5. 1809	REMEAT	570.6785
REGEN. FLDW LOSS	-116.2890	Shuttle	$114.856 E$
COOLER FLOW LOSS	-5.9137	PUMPING	9. 2121
INDICATED	781.9020	TEMP. SWING	1. 3459
		CYL. WALL COND.	195.5023
		DISPLCR WALL COND.	34.1737
		REGEN. WALL COND.	E1.7291
: NDICATED EFFICIENCY,	2S. 28	CYL. GAS COND.	6. 1 E39
		REGEN. MTX. COND.	4. 5421
		RAD. INSIDE DISPL.	4.7951
EXP. SP. EFFECT. TEMP.,	576.11	FLOW FRIC. CREDIT	-151.3254
COMP. SP. EFFECT. TEMP. . C	52.61	TOTAL HEAT TO	2764. 7890

APPENDIX I

EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS
0.1 MSEC TIME STEP
0.005 CONVERGENCE CRITERIA

C．onvergence criteria is：			－00500		
Cucte	Change	Change	WOTK	Heat	Find
Nunb．	Power	Heat	Dut	In	Pressur
	Out	In	Joules	Joules	MPa
1	． 010000	． 000000	2S． 3738	50． 94.13	E． 3977
2	． 61525	． 59525	4E．4E73	36.5278	F．SEけこ
5	． 21143	． 39982	$31.40 E 0$	24.2165	5．3227
4	． 3.2442	． 53655	41.18435	59．9677	E． 3099
5	． 30697	1．47631	41.5356	70.4098	6． 3851
E	． 01199	． 17412	39．6794	57． 8131	6.3932
7	． 04459	．036E7	39．0E51	64.5602	6． 3804
B	． 01548	． 04797	39.4270	64． 8432	6． 3555
9	． 00925	． 00435	39．7618	55． 5961	E． 3483
10	． 00849	． 01161	39.9495	56． 6311	E． 3473
11	． 00472	．00EEJ	40.1039	66.4014	E． 33.77
12	． 00368	． 00551	40． 2269	E6． 6840	F． 3291
15	． 0030 O	． 00425	40.3552	66． 93015	6． 3210
ENTERED PRINT RDUTINE AFTER 13 CYCI．ES．					
Fraditional inange in two successive integrals of heatin and oower out has been less than onsy					
RUN＊ 15 FDR					
SUNPOWER REIDOO FNGINE					
Free motions－－linear hl ternatior					
	ISOTHERMA＇－ANALYSIS WITH CORRECTIDN				
MARTINT $1.0 S 5$ fobiations					
SOLIJTIUV IS NOT OPTIMIZED．					

OPERATING CONDITIUNS ARE：		
SPEC．FREQ．， $\mathrm{HZ}=29.70$	IVRRS．PRESS．，YAR	57.00
HEAT IN，DEG C＝6DO．（1）	HEAT JUT，DEG．C	40.00
W．GAS $1=\mathrm{H} 2,2=H E, 3=A 1 A 2$	PHASE ANG．DEGREES＝	42.65
POWER P．STR，CM $=2.25$	DISPL．STROKF，IM	$\bigcirc 01$
CALC．FRES．， $\mathrm{HZ}=24.2 \mathrm{EE}$	TIME STEPS／CVCIF	412.15
COMPUTED PERFORMANCF USINS FPSE	HY MARTINI ENG．：	
F＇OWER，WATTS	HEAT HEQUIREMENT，WATTS	
EASIC 979．1478	BASIC	1623．9490
ADIARATIC CORR．－43．4919	ADIABATIC CORR．	82.5300
HEATER FIOW LOSS－85．45ED	REHEAT	595．3245
REGEN．FLOW LOSS－108．6297	SHUT TAE	123．158：
CODLER RLOW LOSS－5．3745	PUMPING	8． 3989
INDICATHD 735．1956	TEMP．SWING	1． 15552
	CYL．WALI BOND．	195.1425
	DISPLCR WALL COND．	74．1993
	REGEN．WALL COND．	51.5848
INDICATED EFFICIFNCY，＊ 26.49	CYI．SJAS COND．	ヒ． 1494
	REGEN．MTX．COND．	4．5312
	RAD．INSIDE 1SISPL．	4.7958
EXP．SP．EFFEECT．TEMP．，C S7E．US	FLDW FRIL．CREDIT	－189．7709
	total heat to feng．	2502．6410

Convergerire criteria is: . 0050					
Cycle	Chanse	Change	Work	Heat	End
Numb.	Power	Heat	Dut	In	Pressure
	Out	In	Joules	Joules	MPa
1	. 00000	. 000000	. 38.9427	61.8675	6.4931
2	. 61857	. 690EE	4E. 7219	36. 7685	6. 5512
3	.19975	. 40563	1. 9042	25. 3469	5.4183
4	. 31715	. 31064	41.3311	50.6913	6.4069
5	. 29547	1. 3944.3	41.7318	70. 7182	6.4733
6	. 00970	. 16521	39. 9082	68. 1018	6. 4916
7	. 04.70	.03700	39. 3656	65. 0057	6.457 .3
8	. 01359	. 0454 E	39.7282	f5. 3378	6. 4545
9	.00921	. 00511	40.0593	56. 1015	E. 4438
10	. 008859	.011E9	40.2421	66.5585	6.4343
11	. 00431	. 00691	40.3829	66. 8658	5. 4351
12	. 00350	. 10463	40.5216	67. 1430	6. 4259
ENTERED PRINT ROUTINE AFTER 12 EYCLES.					
Fractional change in two succesgive integrais of heat					
RUN\# 14 FOR					
SUNPOWFR REIDOO ENGINE					
Free motions -- Linear alternator					
Load constant $=.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{gec}) * * 2$. ISOTHERMAI. ANALYSIS WITH ISORRECTIONS					
MARTINI ILOSS EQUATIONS					
SOLIJTION IS NOT OPTIMIZED					

OPERATING CONDITIONS ARE:

PONER, WATTS		HEAT REQIIIREMENT, WATTS	
BASIC	990.2960	BASIC	1640.8890
ADIARATIC CORR.	-43. 8679	ADIABATIC CORR.	63. 4050
HEATER FLOW LOSS	-SE. 62 14	REHEAT	510.5700
REGEN. FLOW LOSS	-109.7038	SHUTTLE	121.5465
COOLER FLOW LOS5	-5.4534	PUMPING	8.5403
IND: CATED	744.6495	TEMP. SWING	1. 1070
		CYL. WRLL COND.	195. 2704
		DISPLCR WRLL COND.	34. 115%
		REGEN. WALL CONO.	61.5243
INDICATEL EFFICIENCY,	\% 28.30	CYL. GAS COND.	6. 1534
		REGEN. MTX. COND.	4. 5.343
		RAD. INSIDE DISPL.	4.7984
EXP. SP. EFFECT. TEMP.,	575.14	FLDW FRIC. CREDIT	-141.4733
COMP. SP. EFFECT. TEMP. , C	5Ј. 58	TOTAL HEAT TO FNG.	2631.1820

Convergence criteria is: .00500					
Cycte	Change	Change	work	Heat	End
Nunb.	Power	Heat	Dut	In	Pressure
	Dut	In	Joules	Joules	MPa
1	. 00000	. 00000	40.5485	54.6308	6. 7792
2	. 593.51	. E7EES	47.3997	37.4425	E. 9402
3	. 1 E60E	. 420 E	32.9431	26. 6859	6.6998
4	. 30499	23600	42. 4600	52.3767	6. 7003
5	. 27E75	1.18055	42.3001	71.3692	6. 7639
E	. 00571	. 14416	40.6818	58. 9645	6. 7782
7	.03526	. 03569	40.2473	56. 4588	5. 7603
8	. 010 ES	. 03535	40.6232	66.9851	6. 74.35
9	. 00374	. 00570	40.9096	67. 5305	5. 7292
2 E	. 00705	. 00938	41.0700	57.8990	5. 7273
11	. 00592	. 0054 E	41.2189	58. 23.53	6. 7140
12	. 003e?	. 00500	41.3429	68.4753	5.7131
SNTERED PRINT ROUTINE AFTER 12 CYCl_Fs.					
Frastionat change in two surcessive integrals of heat					
(i) and power dut has been less than . Dosb					
RUN\# 11 FOR					
SUNPUWER REIDOU ENGINE					
FREE MOTIONS -- LINEAR ALTERNATOR					
Load constant $=.040 \mathrm{~N} /(\mathrm{cm} / \mathrm{sec})+* 2$.					
ISOTHERMAL ANALYSIS WITH CORRECTIONS					
MARTINI L.DSS EQUATIONS					
SOLUTION IS NOT OPTIMI					

APPENDIX J
EFFECT OF PRESSURE ON ADIABATIC
FREE-PISTON ANALYSIS
CONVERGENCE CRITERIA $=0.01$
INITIAL TIME STEP $=1$ MSEC
DOUBLE PRECISION

```
        Computer Name: IBM/PC-AT
    Operating System: DOS 3.00
    Built-in BIOS dated:
        Main Processor:
            Co-Processor:
Video Display Adapter:
    Current Video Mode:
Available Disk Drives:
Thursday, July 3, 1986
Intel 80286
Intel 80287
Enhanced Graphics, 256 K-bytes
Text, 80 x 25 Color
3, A: - C:
DOS reports 640 K-bytes of memory:
40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs
A search for active memory finds:
640 K-bytes main memory (at hex 0000-A000)
32 K-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: 0000
Computing Index (CI), relative to IBM/XT: Testing... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.
Performance Index (PI), relative to IBM/XT: Not computed.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{CONVERGENCE CRITERIA IS:} & \multicolumn{2}{|l|}{. 01000} & \multicolumn{2}{|r|}{} \\
\hline CYCLE & CHANGE & CHANGE & WORK & HEAT & END & TIME \\
\hline NUMB. & POWER & HEAT & OUT & IN & PRESSURE & STEP \\
\hline & OUT & IN & JOULES & JOULES & MPA & MSEC. \\
\hline 1 & . 00000 & . 00000 & 28.5988 & 44.5242 & 4.7965 & 1.0000 \\
\hline 2 & . 71401 & . 77738 & 73.0936 & 100.2775 & 4.5827 & 1.0000 \\
\hline 3 & 1.55583 & 1.25220 & 97.7726 & 171.8939 & 4.5404 & 1.0000 \\
\hline 4 & . 33764 & . 71418 & 102.5759 & 181.7607 & 4.4795 & 1.0000 \\
\hline 5 & . 04913 & . 05740 & 102.6339 & 182.4127 & 4.5521 & 1.0000 \\
\hline 6 & . 00056 & . 00359 & 104.4397 & 184.5055 & 4.4928 & 1.0000 \\
\hline 7 & . 01759 & . 01147 & 102.5796 & 182.3018 & 4.4521 & 1.0000 \\
\hline 8 & . 01781 & . 01194 & 101.6088 & 180.2685 & 4.5129 & 1.0000 \\
\hline 9 & . 00946 & . 01115 & 100.8817 & 178.6897 & 4.4708 & 1.0000 \\
\hline 10 & . 00716 & . 00876 & 101.1199 & 178.3157 & 4.5236 & 1.0000 \\
\hline
\end{tabular}
CURRENT OPERATING CONDITIONS ARE:
\begin{tabular}{rrrrrrrrrr}
\(01=\) & 50.000 & \(02=\) & 2 & \(03=\) & 600.000 & \(04=\) & 40.000 & \(05=\) & 66.163 \\
\(06=\) & 3.905 & \(07=\) & 4.028 & \(08=\) & 0 & \(09=\) & 0 & \(10=\) & 1.000 \\
\(11=\) & 0 & \(12=\) & .000 & \(13=\) & 1.000 & \(14=\) & 4 & \(15=\) & 4 \\
\(16=\) & 0 & \(17=\) & 3 & \(18=\) & 1000.000 & \(19=\) & 10.000 & & \\
CURRENT DIMENSIONS & ARE: & & & & & & & \\
\(20=\) & 1 & \(21=\) & 4.0400 & \(22=\) & 4.2000 & \(23=\) & 4.7000 & \(24=\) & 5.7180 \\
\(25=\) & 15.1900 & \(26=\) & .0365 & \(27=\) & 1.6630 & \(28=\) & 5.7790 & \(29=\) & 29.7000 \\
\(30=\) & 6.2000 & \(31=\) & .4260 & \(32=\) & 0 & \(33=\) & 33.0000 & \(34=\) & 15.2500 \\
\(35=\) & 25.4000 & \(36=\) & 7.6000 & \(37=\) & 381.0000 & \(38=\) & .0000 & \(39=\) & .8000 \\
\(40=\) & 10.0000 & \(41=\) & 31.7900 & \(42=\) & 20.5000 & \(43=\) & 2.3900 & \(44=\) & 72.5300 \\
\(45=\) & 54 & \(46=\) & 24 & \(47=\) & 1.0200 & \(48=\) & .1575 & \(49=\) & .1067 \\
\(50=\) & .7600 & \(51=\) & .1321 & \(52=\) & .1016 & \(53=\) & 31.7900 & \(54=\) & 2.9200 \\
\(55=\) & 2 & \(56=\) & 34 & \(57=\) & 18.3400 & \(58=\) & .2362 & \(59=\) & 9.2600 \\
\(60=\) & 1.5000 & \(61=\) & .0000 & \(62=\) & 6.4460 & \(63=\) & .5440 & \(64=\) & 88.9000 \\
\(65=\) & 75.9000 & \(66=\) & .0000 & \(67=\) & .0000 & \(68=\) & .0000 & \(69=\) & 135 \\
\(70=\) & .0508 & \(71=\) & .3760 & \(72=\) & 7.9200 & \(73=\) & 1.5000 & \(74=\) & .0000 \\
\(75=\) & .0200 & \(76=\) & 1.0000 & \(77=\) & 3.0000 & \(78=\) & 1.0000 & \(79=\) & 4.0000 \\
\(80=\) & 20.0000 & \(81=\) & .0100 & \(82=\) & .1000 & \(83=\) & .0100 & \(84=\) & .0000 \\
\(85=\) & .0000 & \(86=\) & -4.5650 & \(87=\) & .4684 & \(88=\) & 7.9300 & \(89=\) & .4600 \\
\(90=\) & 4.4500 & \(91=\) & .3710 & \(92=\) & .1450 & \(93=\) & .0813 & \(94=\) & 1 \\
\(95=\) & .5000 & \(96=\) & 0 & \(97=\) & .0000 & \(98=\) & .0000 & \(99=\) & .0000 \\
\(100=\) & .0000 & \(101=\) & 13 & \(102=\) & 15 & \(103=\) & 14 & \(104=\) & 0 \\
\(105=\) & 0 & \(106=\) & 0 & \(107=\) & 0 & \(108=\) & 0 & \(109=\) & 0 \\
\(110=\) & 0 & \(111=\) & 0 & \(112=\) & 0 & \(113=\) & 0 & \(114=\) & 0 \\
\(115=\) & 0 & \(116=\) & 0 & \(117=\) & 0 & \(118=\) & 0 & \(119=\) & 0
\end{tabular}
```

ENTERED PRINT ROUTINE AFTER
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT

CONVERGENCE CRITERIA IS				. 01000			END		
CYCLE	E CHANGE		CHANGE	WORK	HEAT			TIME	
NUMB.	. POWER		HEAT	OUT	IN		PRESSURE	E STEP	
	OUT		IN	JOULES	JOULES		MPA	MSEC.	
1	. 00000		. 00000	34.2642	$2 \quad 53.4$	851	5.7550	1.0000	
2	. 65736		. 73257	75.8441	1105.4	377	5.4634	1.000	
3	1.21351		. 97135	110.7320	190.9	202	5.5094	1.000	
4	. 46000		. 81074	118.0731	1209.9	336	5.3372	1.0000	
5	. 06630		. 09959	119.4016	6211.9	120	5.3882	1.000	
6	. 01125		. 00942	119.3089	9211.9	170	5.4571	1.0000	
7	. 00078		.000021	120.1918	8213.5	458	5.2900	1.0000	
CURRENT OPERATING			CONDITIONS ARE:		:				
$01=$	60.000	02=	2	$03=$	600.000	$04=$	40.000	05=	81.662
06=	3.948	$07=$	4.032	2 08=	0	09=	0	$10=$	1.000
$11=$	0	$12=$. 000	- 13=	1.000	$14=$	4	$15=$	4
16=	0	$17=$	3	$18=1$	1000.000	$19=$	10.000		
CURRENT DIMENSIONS			S ARE:						
$20=$	1	$21=$	4.0400	- $22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$. 0365	27=	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	- 32=	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	- $37=3$	381.0000	$38=$. 0000	$39=$. 8000
$40=$	10.0000	$41=$	31.7900	-42=	20.5000	$43=$	2.3900	$44=$	72.5300
45=	45	$46=$	24	47=	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	51=	. 1321	152=	. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	56=	34	57=	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	-62=	6.4460	$63=$. 5440	$64=$	88.9000
$65=$	75.9000	$66=$. 0000	-67=	. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	72=	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	-77=	3.0000	$78=$	1.0000	$79=$	4.0000
$80=2$	20.0000	$81=$. 0100	82=	. 1000	83=	. 0100	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	87=	. 4684	88=	7.9300	$89=$. 4600
$90=$	4.4500	91=	. 3710	92=	. 1450	93=	. 0813	$94=$	1
$95=$. 5000	96=	0	97=	. 0000	98=	. 0000	99=	. 0000
$100=$. 0000	101=	13	102=	15	$103=$	14	$104=$	0
$105=$	0	106=	0	$107=$	0	108=	0	$109=$	0
$110=$	0	$111=$	0	112=	0	113=	0	$114=$	0
$115=$	0	$116=$	- 0	117=	0	$118=$	0	119=	0
$120=$	0								

CONVERGENCE CRITERIA IS:				. 01000			END		
CYCLE	E CHANGE		CHANGE	WORK	HEAT			TIME	
NUMB.	. POWER		HEAT	OUT	IN		PRESSURE	STEP	
	OUT		IN	JOULES	JOULES		MPA	MSEC.	
1	. 00000		. 00000	39.9112	262.4	641	6.7134	1.000	
2	. 60089		. 68768	77.6958	8108.5	194	6.4170	1.000	
3	. 94672		. 73731	114.2329	9 195.2	987	6.4314	1.000	
4	.47026		. 79967	130.6966	$6 \quad 232.7$	135	6.4401	1.000	
5	. 14412		. 19158	133.0914	4238.6	489	6.2287	1.000	
6	. 01832		. 02551	133.3821	1239.8	750	6.2899	1.0000	
7	. 00218		. 00514	134.8375	5240.0	621	6.3415	1.000	
8	. 01091		. 00078	135.4629	9239.8	686	6.3938	1.0000	
9	. 00464		. 00081	135.5635	240.5502		6.1886	1.0000	
CURRENT OPERATING			CONDITIONS ARE:		: 00.000			05=	
$01=$	70.000	$02=$	2	$03=$	600.000	$04=$	40.000		78.243
$06=$	3.916	07=	4.017	7 08=	0	09=	0	$10=$	1.000
$11=$	0	$12=$. 000	0 13=	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=1$	1000.000	$19=$	10.000		
CURRENT DIMENSIONS			ARE:						
$20=$	1	$21=$	4.0400		4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$. 0365	$5 \quad 27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	- 32=	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	- $37=3$	381.0000	$38=$. 0000	$39=$$44=$. 8000
$40=$	10.0000	$41=$	31.7900	- 42=	20.5000	$43=$	2.3900		72.5300
45=	42	46=	24	47=	1.0200	$48=$. 1575	$44=$ $49=$. 1067
$50=$. 7600	$51=$. 1321	$152=$. 1016	$53=$	31.7900	$\begin{aligned} & 49= \\ & 54= \end{aligned}$	2.92009.2600
$55=$	2	56=	34	$57=$	18.3400	$58=$. 2362	$59=$	
$60=$	1.5000	$61=$. 0000	- 62=	6.4460	$63=$. 5440	$64=$	88.9000
$65=7$	75.9000	$66=$. 0000	- 67=	. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	- 72=	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	-77=	3.0000	$78=$	1.0000	$79=$	4.0000
$80=20$	20.0000	$81=$. 0100	-82=	. 1000	$83=$. 0100	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	- 87=	$\begin{aligned} & .4684 \\ & .1450 \end{aligned}$	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	- 92=		$93=$. 0813	$94=$	$\begin{gathered} 1 \\ .0000 \end{gathered}$
$95=$. 5000	$96=$	0	97=	.0000	$98=$. 0000	$\begin{array}{r} 99= \\ 104= \end{array}$	
$100=$. 0000	$101=$	13	$102=$	150	$103=$	14		0
105=	0	106=	0	$107=$		$108=$		$109=$	0
$110=$	0	111=	0	$112=$	0	$113=$	0	$114=$	0
115=	0	$116=$		- 117=		$118=$		$119=$	0
$120=$	0								

CONVERGENCE CRITERIA IS:				. 01000			END		
CYCLE	E CHANGE		CHANGE	WORK	HEAT			TIME	
NUMB.	- POWER		HEAT	OUT	IN		PRESSURE	E STEP	
	OUT		IN	JOULES	JOULES		MPA	MSEC.	
1	. 00000		. 00000	41.0383	364.2620		6.9050	1.0000	
2	. 58962		. 67869	79.4195	109.9915		6.6961	1.0000	
3	. 93525		. 71161	114.6301	195.8483		6.6273	1.0000	
4	. 44335		. 78058	132.9314	$4 \quad 236.5392$		6.5191	1.0000	
5	. 15965		. 20777	136.1457	7243.6895		6.4332	1.0000	
6	. 02418		. 03023	136.9811	244.2863		6.6216	1.0000	
7	. 00614		. 00245	136.6121	245.8846		6.5007	1.0000	
CURRENT OPERATING CONDITIONS ARE: 1.000									
$01=$	72.000	$02=$	2	03=	600.000	$04=$	40.000	05=	74.045
06=	3.907	07=	4.019	$908=$	0	$09=$	0	$10=$	1.000
$11=$	0	$12=$. 000	0 13=	1.000	$14=$	4	$15=$	1.
16=	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURREN	NT DIMEN	NSIONS	S ARE:						
$20=$	1	$21=$	4.0400	- $22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=1$	15.1900	$26=$. 0365	- $27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	- 32=	0	$33=$	33.0000	$34=$	15.2500
$35=2$	25.4000	$36=$	7.6000	- $37=3$	381.0000	$38=$. 0000	$39=$. 8000
$40=1$	10.0000	$41=$	31.7900	-42=	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	44	$46=$	24	$47=$	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	1 $52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	-62=	6.4460	$63=$. 5440	$64=$	88.9000
$65=7$	75.9000	$66=$. 0000	67=	. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	72=	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	77=	3.0000	$78=$	1.0000	$79=$	4.0000
$80=2$	20.0000	81=	. 0100	82=	. 1000	$83=$. 0100	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	87=	. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	$92=$. 1450	$93=$. 0813	$94=$	-4600
95=	. 5000	$96=$	0	$97=$. 0000	$98=$. 0000	$99=$	0000
$100=$. 0000	101=	13	$102=$	15	$103=$	14	$104=$	0
$105=$	01	$106=$	0	$107=$	0	$108=$	0	$109=$	-
$110=$	01	$111=$	0	112=	0	$113=$	0	$114=$	0
$115=$	0	$116=$	0	$117=$	0	$118=$	0	$119=$	0
$120=$	0								


```
    ENTERED PRINT ROUTINE AFTER 13 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
IN AND POWER OUT HAS BEEN LESS THAN .0100
                        RUN# 0 FOR
                        SUNPOWER REIOOO ENGINE
                        FREE MOTIONS -- LINEAR ALTERNATOR
                        LOAD CONSTANT = . 020 N/(CM/SEC)**2.
                        MARTINI MOVING GAS NODE ANALYSIS
                MARTINI LOSS EQUATIONS
                SOLUTION IS NOT OPTIMIZED.
OPERATING CONDITIONS ARE:
SPEC.FREQ., HZ = 29.70
HEAT IN, DEG C = 600.00
W. GAS 1=H2,2=HE,3=AIR 2
POWER P.STR,CM = 3.87
CALC.FREQ., HZ = 27.95
\begin{tabular}{ll} 
CHRG. PRESS., BAR & \(=\) \\
HEAT OUT, DEG. C & \(=\) \\
PHASE ANG. DEGREES & \(=\) \\
DISPL. STROKE, CM & \(=\) \\
TIME STEPS/CYCLE & \(=\) \\
(
\end{tabular}
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:
POWER, WATTS
HEAT REQUIREMENT, WATTS
    BASIC 3870.0965
        BASIC
        7061.1267
    ADIABATIC CORR.
        ADIABATIC CORR. .0000
    HEATER FLOW LOSS
-476.0173 REHEAT 1782.6607
-476.0173 REHEAT 1782.6607
-476.0173 REHEAT 1782.6607
    REGEN.FLOW LOSS
    COOLER FLOW LOSS
        -744.2643 SHUTTLE
        246.2056
    -65.7431 PUMPING 32.5734
2584.0718 TEMP. SWING 10.1062
    INDICATED 2584.0718
-------
INDICATED EFFICIENCY, % 30.12
```


CONVERGENCE CRITERIA IS:				. 01000			END		
cycle	E CHANGE		CHANGE	WORK	HEAT			TIME	
NUMB.	. POWER		HEAT	OUT	IN		PRESSURE	STEP	
	OUT		IN	JOULES	JOULES		MPA	MSEC.	
1	. 00000		. 00000	44.4154	$4 \quad 69.6$	601	7.4799	1.000	
2	. 55585		. 65170	79.6018	8113.5	077	7.3781	1.000	
3	. 79221		. 62945	114.1137	7194.3	013	7.1657	1.000	
4	. 43356		. 71179	140.8346	$6 \quad 249.4$	005	7.2019	1.000	
5	. 23416		. 28358	145.2642	2258.7	319	6.9541	1.000	
6	. 03145		. 03742 l	144.9034	259.4705		6.9887	1.0000	
7	. 00248		.002851	145.1204259 .5493	259.5493		7.0088	1.0000	
CURRENT OPERATING			CONDITIONS ARE:						
01=	78.000	02=	2	$03=$	600.000	$04=$	40.000	05=	77.373
06=	3.860	07=	3.991	$108=$	0	09=	0	$10=$	1.000
11=	0	$12=$. 000	0 13=	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=1$	$1000.00019=$		10.000		
CURRENT DIMENSIONS			ARE:						
$20=$	1	$21=$	4.0400	$022=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=1$	15.1900	$26=$. 0365	- 27=	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	- 32=	0	$33=$	33.0000	$34=$	15.2500
$35=2$	25.4000	36=	7.6000	- $37=3$	381.0000	$38=$. 0000	$39=$. 8000
$40=1$	10.0000	$41=$	31.7900	-42=	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	39	46=	24	$47=$	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	$152=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	57=	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	62=	6.4460	$63=$. 5440	$64=$	88.9000
$65=7$	75.9000	$66=$. 0000	67=	. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	72=	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	77=	3.0000	$78=$	1.0000	$79=$	4.0000
$80=2$	20.0000	$81=$. 0100	82=	. 1000	$83=$. 0100	84=	. 0000
$85=$. 0000	86=	-4.5650	87=	. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	-92=	. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	97=	. 0000	$98=$. 0000	$99=$. 0000
$100=$. 0000	101=	13	$102=$	15	$103=$	14	$104=$	0
105=	0	106=	0	107=	0	$108=$	0	109=	0
$110=$	0	111=	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	$116=$	$=0$	$117=$	0	$118=$	0	$119=$	0
$120=$	0								

ENTERED PRINT ROUTINE AFTER 7 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN . 0100

RUN\# 0 FOR
SUNPOWER REIOOO ENGINE
FREE MOTIONS -- LINEAR ALTERNATOR
LOAD CONSTANT $=.020 \mathrm{~N} /(\mathrm{CM} / \mathrm{SEC}) * * 2$.
MARTINI MOVING GAS NODE ANALYSIS
MARTINI LOSS EQUATIONS
SOLUTION IS NOT OPTIMIZED.

OPERATING CONDITIONS ARE:		
SPEC.FREQ., $\mathrm{HZ}=29.70$	CHRG. PRESS., BAR =	78.00
HEAT IN, DEG C = 600.00	HEAT OUT, DEG. C =	40.00
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$	PHASE ANG. DEGREES	77.37
POWER P.STR,CM $=3.86$	DISPL. STROKE, CM	3.99
CALC.FREQ., $\mathrm{HZ}=28.66$	TIME STEPS/CYCLE	34.90
COMPUTED PERFORMANCE USING FPSE	BY MARTINI ENG.:	
POWER, WATTS	HEAT REQUIREMENT, WATTS	
BASIC 4158.6933	BASIC	7437.8641
ADIABATIC CORR. . 0000	ADIABATIC CORR.	. 0000
HEATER FLOW LOSS -506.6584	REHEAT	2001.4901
REGEN.FLOW LOSS -786.5313	SHUTTLE	246.3540
COOLER FLOW LOSS -71.0972	PUMPING	35.2456
INDICATED 2794.4064	TEMP. SWING	12.5352
	CYL. WALL COND.	193.0020
	DISPLCR WALL COND.	33.7194
	REGEN. WALL COND.	60.9085
INDICATED EFFICIENCY, \% 30.59	CYL. GAS COND.	6.0819
	REGEN. MTX. COND.	4.5804
	RAD.INSIDE DISPL.	4.1128
	FLOW FRIC. CREDIT	-899.9241
	TOTAL HEAT TO ENG.	9135.9698

Computer Name:
operating System:
Built-in BIOS dated:
Main Processor: Co-Processor:
Video Display Adapter:
Current Video Mode: Available Disk Drives:

IBM/PC-AT 9:53 pm, Wednesday, July 22, 1987
DOS 3.00
Thursday, July 3, 1986
Intel 80286
Intel 80287
Parallel Ports: 2
Enhanced Graphics, 256 K-bytes
Text, 80×25 Color
3, A: - C:

DOS reports 640 K -bytes of memory:
40 K-bytes used by DOS and resident programs
600 K-bytes available for application programs
A search for active memory finds:
640 K-bytes main memory (at hex 0000-A000)
32 K-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: C000
Computing Index (CI), relative to IBM/XT: Sesting...
Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.
Performance Index (PI), relative to IBM/XT: Not computed. 9:55 pm, Wednesday, July 22, 1987
CONVERGENCE CRITERIA IS: .01000

CYCLE	CHANGE	CHANGE	WORK	HEAT	END	TIME
NUMB.	POWER	HEAT	OUT	IN	PRESSURE STEP	
	OUT	IN	JOULES	JOULES	MPA	MSEC.
1	.00000	.00000	51.1493	80.4751	8.6295	1.0000
2	.48851	.59762	80.7176	114.7667	8.4269	1.0000
3	.57808	.42611	118.8008	202.2814	8.3051	1.0000
4	.47181	.76254	145.7117	263.6789	8.3336	.5000
5	.22652	.30353	152.3259	276.2889	8.3828	.5000
6	.04539	.04782	150.3713	274.1696	8.3415	.5000
7	.01283	.00767	150.0041	275.2033	8.2960	.5000
8	.00244	.00377	149.7298	274.9802	8.2386	.5000

CURRENT OPERATING CONDITIONS ARE:


```
    ENTERED PRINT ROUTINE AFTER 8 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
IN AND POWER OUT HAS BEEN LESS THAN .0100
                    RUN# 0 FOR
                    SUNPOWER REIOOO ENGINE
                    FREE MOTIONS -- LINEAR ALTERNATOR
                            LOAD CONSTANT = .020 N/(CM/SEC)**2.
    MARTINI MOVING GAS NODE ANALYSIS
    MARTINI LOSS EQUATIONS
    SOLUTION IS NOT OPTIMIZED.
OPERATING CONDITIONS ARE:
SPEC.FREQ., HZ = 29.70
HEAT IN, DEG C = 600.00
W. GAS l=H2,2=HE,3=AIR 2
POWER P.STR,CM = 3.73
CALC.FREQ., HZ = 30.67
\begin{tabular}{ll} 
CHRG. PRESS., BAR & \(=\) \\
HEAT OUT, DEG.C & \(=\) \\
PHASE ANG. DEGREES & \(=\) \\
DISPL. STROKE, CM & \(=\) \\
TIME STEPS/CYCLE & \(=32.00\) \\
( & 30.87 \\
\end{tabular}
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:
POWER, WATTS
```



```
    ADIABATIC CORR.
    HEATER FLOW LOSS
    -588.0119
    REGEN.FLOW LOSS -865.8817 SHUTTLE 229.3948
    COOLER FLOW LOSS
    INDICATED
INDICATED EFFICIENCY, % 29.43
.0000 ADIABATIC CORR. .0000
    -80.7307 PUMPING 40.5399
3058.3075 TEMP. SWING 19.0252
    CYL. WALL COND. 190.8693
        DISPLCR WALL COND. 33.3467
        REGEN. WALL COND. 60.2354
        CYL. GAS COND. 6.0147
        REGEN. MTX. COND. 4.5298
        RAD.INSIDE DISPL. 4.0468
        FLOW FRIC. CREDIT -1020.9527
        TOTAL HEAT TO ENG. 10390.0949
```

Computer Name: IBM/PC-AT
Operating System: DOS 3.00
Built-in BIOS dated: Main Processor: Co-Processor:

Thursday, July 3, 1986

Intel 80286

Serial Ports: 2
Parallel Ports: 2
Video Display Adapter:
Current Video Mode: Available Disk Drives:

Intel 80287

Enhanced Graphics, 256 K-bytes
Text, 80×25 Color
3, A: - C:
DOS reports 640 K-bytes of memory:
40 K-bytes used by DOS and resident programs
600 K-bytes available for application programs
A search for active memory finds:
640 K-bytes main memory (at hex 0000-A000)
32 K-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: C 000
Computing Index (CI), relative to IBM/XT: Testing...
Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.
Performance Index (PI), relative to IBM/XT: Not computed.

CONVERGENCE CRITERIA			. 01000			
CYCLE	CHANGE	CHANGE	WORK	HEAT	END	TIME
NUMB.	POWER	HEAT	OUT	IN	PRESSURE	STEP
	OUT	IN	JOULES	JOULES	MPA	MSEC.
1	. 00000	. 00000	56.7402	89.5067	9.5873	1.0000
2	. 43260	. 55247	83.0855	119.4000	9.5893	. 5000
3	. 46431	. 33398	118.5261	204.3221	9.2892	. 5000
4	. 42656	. 71124	145.1683	262.9645	9.3336	. 5000
5	. 22478	. 28701	152.6234	280.1653	9.1687	. 5000
6	. 05136	. 06541	154.3851	283.8908	9.2200	. 5000
7	. 01154	. 01330	155.7138	287.3159	9.2481	. 5000
8	. 00861	. 01206	156.2025	288.0685	9.2611	. 5000
9	. 00314	. 00262	156.7662	288.7771	9.0800	5000

こURRENT OPERATING CONDITIONS ARE:

$01=$	100.000	$02=$	2	$03=$	600.000	$04=$	40.000	$05=$	75.716
$06=$	3.656	$07=$	3.756	$08=$	0	$09=$	0	$10=$	1.000
$11=$	0	$12=$.000	$13=$	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRENT	DIMENSIONS	ARE $:$							
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$.0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$.4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$.0000	$39=$.8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	68	$46=$	24	$47=$	1.0200	$48=$.1575	$49=$.1067
$50=$.7600	$51=$.1321	$52=$.1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$.2362	$59=$	9.2600
$60=$	1.5000	$61=$.0000	$62=$	6.4460	$63=$.5440	$64=$	88.9000
$65=$	75.9000	$66=$.000	$67=$.0000	$68=$.0000	$69=$	135
$70=$.0508	$71=$.3760	$72=$	7.9200	$73=$	1.5000	$74=$.0000
$75=$.0200	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$.0100	$82=$.1000	$83=$.0100	$84=$.0000
$85=$.0000	$86=$	-4.5650	$87=$.4684	$88=$	7.9300	$89=$.4600
$90=$	4.4500	$91=$.3710	$92=$.1450	$93=$.0813	$94=$	1
$95=$.5000	$96=$	0	$97=$.0000	$98=$.0000	$99=$.0000
$100=$.0000	$101=$	13	$102=$	15	$103=$	14	$104=$	0
$105=$	0	$106=$	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	$116=$	0	$117=$	0	$118=$	0	$119=$	0

$120=0$

ENTERED PRINT ROUTINE AFTER 9 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0100 RUN\# 0 FOR SUNPOWER REIOOO ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT $=.020 \mathrm{~N} /(\mathrm{CM} / \mathrm{SEC}) * * 2$. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED.

SPEC.FREQ., $\mathrm{HZ}=29.70$		
H.	HEAT OUT, DEG. C	
W.	PHASE AN	. 00
POWER P.STR, CM $=3.6$	DISPL. STROK	
CALC.FREQ., HZ		.

APPENDIX K
EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS
CONVERGENCE CRITERIA $=0.01$ INITIAL TIME STEP $=1$ MSEC SINGLE PRECISION

JPERAT ING CONDITIONS ARE:

Comvergenie ciiteria isi . Cl						
Cycle	Chanse	Change	Work	Heat	End	Time
Nunt.	Power	Heat	Out	In	Pressure	Step
	Out	In	Joules	Joules	MPa	Msec.
$!$. 00000	. 00000	40.9585	64. 1346	6.9056	1.0000
2	. 59041	. 67953	80. 2632	110. 7805	6.6857	1.0000
\pm	. 95962	. 72731	117.0388	199.7856	5.6125	1.0000
4	. 45819	. 90343	134.1538	238. 7630	6.5031	1.0000
5	. 14623	. 19510	137.1394	245.2684	6.4227	1.0000
5	. 02225	. 02725	137.5190	245.3689	E. 6101	1.0000
TE	. 00277	.00041	137.E235	247.1985	E. 4940	1.0000
ENTERED PRINT		UTINE AFTER 7 CYCLES.			E. 4940	$1.80{ }^{\text {d }}$
Fraitional change in two successive Intesrals of heat						
and orwer out has been less than . Diad						
SUNPOWER REIDDO ENGINE						
FREE MOTIONS -- LINEAR ALTERNATOR						
Load constant $=$. D20 N/(Em/5Ec)**2.						
martini loss equations						
SOLUTION IS NOT OPTIMIZ						

DPERATING CONDITIONS	ARE:		
SPEC.FREG., $\mathrm{HZ}=$	29.70	CHRG. PRESS., har	$7 \% .00$
HEAT IN. DEG C =	E00.00	HEAT OUT, DEG. ¿	40.00
W. GAS $1=H 2,2=H E, ~ X=A 1$	182	PHASE ANG. Degrees	91.05
OONER P.STR,CM $=$	3. 91	DISPL. STRJME, CM.	4.03
CRLC.FREO. . Hz	27.45	time stepg/cycle	36. 42
COMPUTED PERFORMANLE USING FPSE fower, watts besic ADIAERTIC CORR. INDICATED EFFICIENCY, $x \quad 3 i y s$		by martini eng.:	
		HEAT RLCSUI REMENT, WATTSBASIC	67EE. 7150
		REHEAT	1E52.5300
		shuttle	255.817 E
		PIJMPING	31.5025
		TEMP. SWING	E. 5707
		CYL. WRLL COND.	197.1122
		DISPLCR WALL COND.	34. 3.415
		REOEN. WALL COND.	E2.0322
		CYL. GAS CDND.	E. 1941
		REGEN. MTX. COND.	4.7579
		RAD. INSIDE DISPL.	4.3271
		FLOW FRIC. CREDIT	-757.9929
		TOTAL HEAT TO ENG.	8285.9080

Uonvergenie iriter：a ist						
Cycle	Crange	Change	Work	Heat	Fnd	Time
Numb．	Power	Heat	Out	In	Pressure Steo	
	Out	In	Joules	Joules	MPa	MsE6．
1	． 010000	． 000000	44.3290	E9．5218	7.4805	1．0000
2	．S5E 1	．ESご 9	80.3305	114.2001	7．3E29	1． 00000
3	．S1214	． $542 E 5$	11E．3743	197.6075	7．1E23	1.0000
4	． 44 BE9	．7 S0SE	142.2400	252.3547	7.1820	1.0000
5	．こ2ご	． 27705	145.3085	259.4654	6.9431	1.0000
6	．0－157	．028：	145．3．298	260.1332	6.9752	1.0000
7	． 00015	． 00257	146.2410	261．2395	F． 9970	1.0000
ENTERED PRINT ROUTINE AFTER 7 CYCLES．						
Fractiana change imitw sutcessive integrals pf meat						
¢ and	ocwer o	has been less than ．$\Delta 100$				
		RUN\＃ 30 FOR				
		SUNPOWER REIDOD ENGINE				
		FREE MOTIONS－－LINEAR Gl．TERNATOR				
		MARTINI MOUING GAS NODE ANALYSIS				
		MARTINI LOSS EGUATIONS				
		SOLIJTIIN IS NOT OPTIMITFI）．				

U＇EFRAT ING：CONDITIUNS ARE：		
GPEL．FREG．，H ？$=\%$ 9．70	LHRG．PRESS．BAR＝	7ゼ．ロッ
HEAT IN，DEG C＝EDO．DOL	HEAT OUT，DEG．E	$40 . \mathrm{MD}$
W．CRS $:=H 2,2=H E, ~$＝AIR 2	PHASE ANG．DEGREES＝	7？．4気
FOWER P．STR，CM＝T．ST	DISPL．STROKE，CM	4．${ }^{\text {an }}$
EALC．FREG．，$H Z=$－ 8 ？	TIME STEPS／EYCLE	S4． 48
COMPUIED PERFORMANCE USING FPSE BY MARTINI ENG．：		
FITWER，WATTS	HEAT REQUIREMENT，WATT	
BASIC 4192．1670	BASIC	7488.7320
ADIAEAT IC LORR．． 0000	ADIABATIC CORR．	－DDD®
HEATER FLOW LOSS－510．E435	REHEAT	1985.5350
REGEN．FLOW LOSS－7E9．3250	SHUTTLE	245.0460
COOLER FLOW LOSS－72．0780	PUMPING	35．4E29
INDICATED 2840．1200	TEMP．SWING	12．191E
	CYL．WALL COND．	191．${ }^{1981}$
	DISPLCR WALL COND．	33.3453
	REGEN．WALL COND．	E0． 2340
INDICATED EFFICIENCY，\％－0．97	CYL．GAS COND．	E．DIAE
	REGEN．MTX．COND．	4.6200
	RAD．INSIDE DISPL．	3． 9914
	FLOW FRIC．CREDIT	－695． 2059
	TOTAL HEAT TO ENG．	9171．2E50

Convergence criteria is：						
Cucle	Change	Change	Work	Heat	End	ime
Numbe．	Power	Heat	Qut	In	Pressure	Step
	Out	In	Joutes	Joules		Msec．
1	． 000000	． 00000	$4 E .5724$	73.1159	7．BE． 8	1．0000
2	$5 ? 428$	．G3442	81．5279	113.9749	7.7119	1.0000
3	． 7505 E	． 55880	118．2813	200．0311	7.4777	1.0000
4	． 45001	． 75504	142.8638	255.8164	7.4487	1．0000
5	．20783	． 27888	144．8968	261．5237	7.3872	1．0000
6	．D14こ？	－822さ1	147.7994	265．4393	7.3059	1.0000
7	．0200？	． 11497	152.5079	271.5308	7.5570	1.0000
8	．DT， CE	． 02295	153.7300	273.7958	7.5025	1.0000
9	－00801	． 008 z 4	150.4201	258.9335	7.4865	1．0000
10	．02153	．D177E	148.7587	256.01431	7.5172	． 5000
11	． 01105	． 01075	149．1709	272．8339	7.4902	． 2500
12	． 00277	． 655	144.2757	$2 \mathrm{ES.9754}$	7.4407	． 2500
：${ }^{\text {I }}$	－ロアこの？	－WこE！	142.5868	2ES． 8296	7.4759	－ 2500
14	． 1111	－vosal	141.4809	262．9780	7.4359	－500
： 5	． 634.5	－D0ざ号	141.4197	262．8314	7.4031	2500
ENIE RER FRINT ROLITINE AFTER 15 CYCLES．						
Fait Pral Ghange in two subiessive integrals of heat						
and Dower ilt has been less than ．Dida QUN\＃TR FOR						
SUNPOWER REIDOO ENGINE						
FREE MOTIONS－－LINEAR ALTERNATOR						
MARTINI MOVING GAS NODE ANALYSIS						
MARTINI LOSS EQUATIONS						
SOLIJTIDN IS NOT OPTIMIZED．						

OPERATING CONDITIONS ARE：

SPEC．FREC．， $\mathrm{HZ}=$	29.70	CHRG．PRESS．，BAR	82.000
HEAT IN，DEG C＝	500.00	HEAT OUT，DEG．C	40.00
W．GRS $1=H 2,2=H E, 3$	IR 2	PHASE ANG．DEGREES	77.93
POWER P．STR，CM＝	3.77	DISPL．STROKE，CM	ธ． 97
CALC．FREG．，HZ＝	29．35	TIME STEPS／CYCLE	13E． 27
COMPUTED PERFORMANCE USING FPSE PIOWER，WFTTG BASIC $4151 . \Delta 580$ AD：AEAT IC CORR． .0000 HERTER FLOW LUSS －532．日も34 REGEN．F：OW I．OSS －779．JEJ6 CDOLER FLOW LOSS －72．8741 IND：CAT：D $27+5.9570$		BY MARTINI ENG．： HEAT REQUIREMENT，WATTS BASIC	7714.8240.0000
		ADIABATIC CORR．	
		REHEAT	2115.5 SEO
		SMUTTLF	241.0000
		PUMPING	－5．985E
		TEMP．SWING	14． 1745
		CYL．WALL COND．	191．6418
		DISPLCR WALL COND．	8］． 5884
		REGEN．WRLL COND．	E0． 10.107
		CYL．GAS COND．	E．0222
		REGEN．MTX．COND．	4． E 258
		RAD．INSIDE DISPL．	4．1452E
		FLOW FRIC．CREDIT	－922．5452
		TOTAL HEAT TO ENG．	9499．0970

Cururgence E：itera s：．Di000						
CxCle	Change	Change	Work	Hoat	End	Time
	Piwer	Heat	Out	In	Pressure	Sted
	OUt	$1 r_{1}$	Joulこs	Joules	MPa	Msec．
	． 020000	． 00000	51.0502	80.3153	8．ES02	1.0000
	． 48950	． 59842	81.7493	115.6993	8.4088	1.0000
	．E01 5	． 44056	120．7E12	205．4203	8． 2731	1.0000
	． 47721	． 77547	148.9485	270．1057	8．2SE4	． 5000
5	こTさ41	． 31489	153.6181	278．9634	8．3368	．5000
5		．03279	151.8585	277．3596	8．2867	． 5000
\checkmark	． $0: 274$	．00575	151.8109	278.0777	E． 2291	． 5000
ε	－D00 1	． 00259	151.5250	278．575E	8． 1937	.5000
ENTERE PRINT ROUTINE AFTER 8 CYCLES．						
F ra．：－na inarge in two suteessive integrals af heat						
： 11 ane Derve：		has been less than－Di00RUN SO FOR				
		SUNPOWER RFIDOD ENGINE				
		FREE MOTIONS－－LINEAR ALTERNATOR				
		Liad constant $=\quad .020 \mathrm{~N} /(\mathrm{Gm} / \mathrm{sec})+42$.				
		MARTINI MOVING GAS NDDE ANALYSIS				
		MARTINI I＿OSS EQUATIONS				
		SOLUTION IS NOT OPTIMIZED．				

GOESAT IN［ CONDITIIJNS RRE：

こIMPUTES PERFDRMANCE FIJER WDTTE	USING FPSE	BY MARTINI ENG．： HEAT REQUIREMENT，WATTS	
BFASIC	4E54． $0 E 80$	BASIC	8556.4000
ADIAEATIC CORR．	． 0000	ADIABATIC CORR．	． 0000
HEATER FLOW LOSS	－E07．4160	REHEAT	2431.1180
REGEN．FLOW LOSS	－870．6307	SHUTTLE	235． 3769
CDOLER FLOW LOSS	－84．EE15	PUMPING	41.3563
INDICATED	3091．JE00	TEMP．SWING	19．2872
		CYL．WALL COND．	195．6535
		DISPLER WALL COND．	53． 7389
		REGEN．WALL COND．	E0． 9437
INDICATED EFFICIENCY，	$\times 29.32$	CYL．GAS COND．	E． 0854
		REGEN．MTX．COND．	4．E744
		RAD．INSIDE DISPL．	4.1572
		FLOW FRIC．CREDIT	-1042.7310
		TOTAL HEAT TD ENG．	10544.0700


```
            APPENDIX
EFFECT OF PRESSURE ON ADIABATIC
    FREE-PISTON ANALYSIS
    CONVERGENCE CRITERIA = 0.005
    INITIAL TIME STEP = 0.25 MSEC
    DOUBLE PRECISION
```

Computer Name:	IBM/PC-AT		
Operating system:	DOS 3.00		
Built-in BIOS dated:	Thursday, July 3, 1986		
Main Processor:	Intel 80286	Serial Ports:	2
co-Processor:	Intel 80287	Parallel Ports:	2
deo Display Adapter:	Enhanced Graphics, 256	K-bytes	
Current Video Mode:	Text, 80×25 Color		
ailable Disk Drives:	3, A: - C:		

DOS reports 640 K-bytes of memory:
40 K-bytes used by DOS and resident programs
600 K-bytes available for application programs
A search for active memory finds:
640 k -bytes main memory (at hex 0000-A000)
32 k-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: 0000
Computing Index (CI), relative to IBM/XT: Testing... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.

Ferformance Index (PI), relative to IBM/XT: Not computed.
10:05 pm, Wednesday, July 22, 1987

CONVERGENCE CRITERIA IS:				.00500		
CICLE	CHANGE	CHANGE	WORK	HEAT		
CHAB.	FOWER	HEAT	OUT	IN		
	OUT	IN	JOULES	JOULES		
1	.00000	.00000	42.3211	66.0547		
2	.57679	.66973	76.9909	110.9607		
3	.81921	.67983	112.6644	198.6434		
4	.46335	.79021	131.6836	240.8939		
5	.16881	.21270	132.3613	245.9497		
6	.00515	.02099	132.4149	246.3626		
7	.00040	.00168	133.5549	247.7698		
8	.00861	.00571	133.0705	247.7724		
9	.00363	.00001	133.2528	247.6401		

END	TIME
PRESSURE	STEP
MPA	MSEC.
7.0704	.2500
6.7774	.2500
6.6186	.2500
6.6186	.2500
6.6109	.2500
6.6165	.2500
6.6240	.2500
6.6287	.2500
6.5617	.2500

CURRE	NT OPERA	NG	CONDITI	NS ARE					
$01=$	74.000	$02=$	2	03=	600.000	$04=$	40.000	05=	76.890
$06=$	3.813	07=	4.028	08=	0	09 =	0	$10=$. 250
$11=$	0	$12=$. 000	$13=$	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRE	ENT DIMEN	SSIONS	ARE:						
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$. 0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$. 0000	$39=$. 8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	125	46=	24	$47=$	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	$52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	6.4460	$63=$. 5440	$64=$	88.9000
$65=$	75.9000	$66=$. 0000	$67=$. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$. 0100	$82=$. 1000	$83=$. 0050	$84=$. 0000
$85=$. 0000	$86=$	-4.5650	87=	. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$.3710	92=	. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	$97=$. 0000	$98=$. 0000	$99=$. 0000
$100=$. 0000	$101=$	13	$102=$	15	$103=$	14	$104=$	0
105=	0	$106=$	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	$116=$	0	$117=$	0	$118=$	0	$119=$	0

$120=$
\qquad intentiomakly blakk
ENTERED PRINT ROUTINE AFTER
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT

Computer Name:
Operating System: Built-in BIOS dated:

Main Processor: Co-Processor:
Video Display Adapter:
Current Video Mode:
Available Disk Drives:

IBM/PC-AT
DOS 3.00
Thursday, July 3, 1986
Intel 80286
Intel 80287
Serial Ports: 2
Parallel Ports: 2
Enhanced Graphics, 256 K-bytes
Text, 80 x 25 Color
3, A: - C:

DOS reports 640 K-bytes of memory:
40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs
A search for active memory finds:
640 K-bytes main memory (at hex 0000-A000)
32 K-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: 0000
Computing Index (CI), relative to IBM/XT: Sesting...
Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.
Performance Index (PI), relative to IBM/XT: Not computed.
10:27 pm, Wednesday, July 22,1987
CONVERGENCE CRITERIA IS:
.00500

CYCLE	CHANGE	CHANGE	WORK	HEAT	END	TIME
NUMB.	POWER	HEAT	OUT	IN	PRESSURE STEP	
	OUT	IN	JOULES	JOULES	MPA	MSEC.
1	.00000	.00000	43.4553	67.8546	7.2613	.2500
2	.56545	.66073	77.1778	111.5839	6.9604	.2500
3	.77603	.64446	114.9291	201.5237	6.8575	.2500
4	.48915	.80603	135.1515	247.5242	6.8474	.2500
5	.17596	.22826	136.1571	252.9939	6.8331	.2500
6	.00744	.02210	135.3473	252.1798	6.8220	.2500
7	.00595	.00322	135.2010	251.5647	6.8152	.2500
8	00108		0.245	135.2639	51.5814	6.8085

CURRENT OPERATING CONDITIONS ARE:

$01=$	76.000	$02=$	2	$03=$	600.000	$04=$	40.000	05=	77.898
06=	3.798	$07=$	4.009	08=	0	09=	0	$10=$. 250
$11=$	0	$12=$. 000	$13=$	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRENT DIMENSIONS ARE:									
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$. 0365	$27=$	1.6630	28=	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	38=	. 0000	$39=$. 8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	131	$46=$	24	$47=$	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	$52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	6.4460	$63=$. 5440	$64=$	88.9000
$65=$	75.9000	66=	. 0000	$67=$. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$. 0100	82=	. 1000	$83=$. 0050	$84=$. 0000
$85=$. 0000	86=	-4.5650	$87=$. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	92=	. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	$97=$. 0000	98=	. 0000	$99=$. 0000
$100=$. 0000	101=	13	$102=$	15	$103=$	14	$104=$	0
105=	0	106=	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	$116=$	0	$117=$	0	$118=$	0	$119=$	0

Computer Name: IBM/PC-AT
operating System:
Built-in BIOS dated:
Main Processor: Co-Processor:
Video Display Adapter:
Current Video Mode: Available Disk Drives:

DOS 3.00
Thursday, July 3, 1986
Intel 80286
Intel 80287
Enhanced Graphics, 256 K-bytes
Text, 80 x 25 Color
3, A: - C:

DOS reports 640 K-bytes of memory:
40 K-bytes used by DOS and resident programs
600 K-bytes available for application programs
A search for active memory finds:
640 K-bytes main memory (at hex 0000-A000)
32 K-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: 0000
Computing Index (CI), relative to IBM/XT: Testing...
Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.
Performance Index (PI), relative to IBM/XT: Not computed.
10:54 pm, Wednesday, July 22, 1987
CONVERGENCE CRITERIA IS: . 00500

CYCLE	CHANGE	CHANGE	WORK	HEAT	END	TIME
NUMB.	POWER	HEAT	OUT	IN	PRESSURE STEP	
	OUT	IN	JOULES	JOULES	MPA	MSEC.
1	.00000	.00000	44.5891	69.6552	7.4522	.2500
2	.55411	.65172	77.7231	112.2121	7.1960	.2500
3	.74310	.61096	114.6122	201.8918	7.0021	.2500
4	.47462	.79920	136.0783	249.0893	6.9805	.2500
5	.18729	.23378	138.1878	256.3194	7.0317	.2500
6	.01550	.02903	138.1995	256.7590	7.0005	.2500
7	.00008	.00172	136.9810	255.7389	6.9768	.2500
8	.00882	.00397	136.7460	254.5478	6.9536	.2500
9	00172	00466	136.7136	254.7651	6.9331	.2500

CURRENT OPERATING CONDITIONS ARE:

01=	78.000	02=	2	03=	600.000	$04=$	40.000	05=	77.614
06=	3.780	07=	3.982	08=	0	09=	0	$10=$. 250
$11=$	0	$12=$. 000	$13=$	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRENT DIMENSIONS			ARE:						
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$. 0365	27=	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$. 0000	$39=$. 8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	131	$46=$	24	$47=$	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	$52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	6.4460	$63=$. 5440	$64=$	88.9000
$65=$	75.9000	$66=$. 0000	$67=$. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$. 0100	$82=$.1000	$83=$. 0050	$84=$. 0000
$85=$. 0000	86=	-4.5650	$87=$. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	92=	. 1450	$93=$. 0813	$94=$	1
95=	. 5000	$96=$	0	97=	. 0000	$98=$. 0000	$99=$. 0000
$100=$. 0000	101=	13	$102=$	15	$103=$	14	$104=$	0
$105=$	0	106=	0	$107=$	0	108=	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	116=	0	$117=$	0	$118=$	0	$119=$	0
$120=$	0								

ENTERED PRINT ROUTINE AFTER 9 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN\# 0 FOR SUNPOWER REIOOO ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT $=\quad .020 \mathrm{~N} /(\mathrm{CM} / \mathrm{SEC}) * * 2$.
MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED.

OPERATING CONDITIONS ARE:		
SPEC.FREQ., $\mathrm{HZ}=29.70$	CHRG. PRESS., BAR	78.00
HEAT IN, DEG $\mathrm{C}=6600.00$	HEAT OUT, DEG. C	40.00
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$	PHASE ANG. DEGREES =	77.61
POWER P.STR, $\mathrm{CM}=\quad 3.78$	DISPL. STROKE, CM $=$	77.61 3.98
CALC.FREQ., $\mathrm{HZ}=28.75$	TIME STEPS/CYCLE =	139.15
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: POWER, WATTS HEAT REQUIREMENT, WATTS BASIC 3929.9592 BASIC		
ADIABATIC CORR. $\quad .0000$		7323.4568
HEATER FLOW LOSS -487.8686	ADIAEAT	1924.0000
REGEN.FLOW LOSS -755.2201	SHUTTLE	1924.4151 239.7918
COOLER FLOW LOSS -67.5045	PUMPING	239.7918 33.8977
INDICATED 2619.3660	TEMP. SWING	11.9319
	CYL. WALL COND.	188.6476
	DISPLCR WALL COND.	32.9586
INDICATED EFFICIENCY, \% 29.22	REGEN. WALL COND.	59.5343
	CYL. GAS COND.	5.9447
	REGEN. MTX. COND.	4.4771
	RAD.INSIDE DISPL.	3.8979
	FLOW FRIC. CREDIT	-865.4786
	TOTAL HEAT TO ENG.	8963.4748

"
Computer Name: IBM/PC-AT
Operating System: DOS 3.00
Built-in BIOS dated:
Main Processor: Co-Processor:
Video Display Adapter:
Current Video Mode: Available Disk Drives:

Thursday, July 3, 1986
Intel 80286
Intel 80287
Enhanced Graphics, 256 K-bytes
Text, 80×25 Color
3, A: - C:

DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: 640 K-bytes main memory (at hex 0000-A000) 32 K-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: 0000
Computing Index (CI), relative to IBM/XT: Sesting...
Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.
Performance Index (PI), relative to IBM/XT: Not computed.
11:15 pm, Wednesday, July 22, 1987
CONVERGENCE CRITERIA IS:

CYCLE	CHANGE	CHANGE	WORK	HEAT
NUMB.	PONER	HEAT	OUT	IN
	OUT	IN	JOULES	JOULES
1	.00000	.00000	45.7223	71.4566
2	.54278	.64272	77.9461	112.8138
3	.70477	.57877	114.0896	201.4527
4	.46370	.78571	137.3974	251.5339
5	.20429	.24860	138.3819	257.4623
6	.00717	.02357	138.4165	257.6174
7	.00025	.00060	139.3705	258.8617
8	.00689	.00483	138.7004	258.7929
9	.00481	.00027	138.6880	258.0990

CURRENT OPERATING CONDITIONS ARE:

$01=$	80.000	$02=$	2	03=	600.000	$04=$	40.000	05=	77.245
06=	3.768	07=	3.960	08=	0	09 =	0	$10=$. 250
$11=$	0	$12=$. 000	$13=$	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRE	ENT DIMEN	NSIONS	ARE:						
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$. 0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$. 4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$. 0000	$39=$. 8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	127	$46=$	24	47=	1.0200	$48=$. 1575	$49=$. 1067
$50=$. 7600	$51=$. 1321	$52=$. 1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$. 2362	$59=$	9.2600
$60=$	1.5000	$61=$. 0000	$62=$	6.4460	$63=$. 5440	$64=$	88.9000
$65=$	75.9000	66=	. 0000	$67=$. 0000	$68=$. 0000	$69=$	135
$70=$. 0508	$71=$. 3760	$72=$	7.9200	$73=$	1.5000	$74=$. 0000
$75=$. 0200	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$. 0100	$82=$. 1000	$83=$. 0050	$84=$. 0000
$85=$. 0000	86=	-4.5650	$87=$. 4684	$88=$	7.9300	$89=$. 4600
$90=$	4.4500	$91=$. 3710	$92=$. 1450	$93=$. 0813	$94=$	1
$95=$. 5000	$96=$	0	$97=$. 0000	$98=$. 0000	$99=$. 0000
$100=$. 0000	101=	13	102=	15	$103=$	14	$104=$	0
$105=$	0	106=	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	111=	0	$112=$	0	113=	0	114=	0
$115=$$120=$	0	116=	0	$117=$	0	$118=$	0	$119=$	- 0
	0								

"
Computer Name: IBM/PC-AT
operating system: DOS 3.00
Built-in BIOS dated: Thursday, July 3, 1986
Main Processor: Co-Processor:
Video Display Adapter:
Current Video Mode:

Intel 80286

Intel 80287
Serial Ports: 2
Parallel Ports: 2
Enhanced Graphics, 256 K-bytes
Text, 80×25 Color
Available Disk Drives: 3, A: - C:
DOS reports 640 K-bytes of memory:
40 K-bytes used by DOS and resident programs
600 K-bytes available for application programs
A search for active memory finds:
640 K-bytes main memory (at hex 0000-A000)
32 K-bytes display memory (at hex B800-C000)
ROM-BIOS Extensions are found at hex paragraphs: 0000
Computing Index (CI), relative to IBM/XT: Sesting...
Disk Index (DI), relative to IBM/XT: Not computed. No drive specified.
Performance Index (PI), relative to IBM/XT: Not computed.

CYCLE	CHANGE	CHANGE	WORK	HEAT	END	TIME
NUMB.	POWER	HEAT	OUT	IN	PRESSURE	STEP
	OUT	IN	JOULES	JOULES	MPA	MSEC.
1	.00000	.00000	46.8550	73.2587	7.8339	.2500
2	.53145	.63371	78.0792	113.2805	7.5954	.2500
3	.66640	.54631	114.1493	201.6138	7.3697	.2500
4	.46197	.77978	139.3602	254.2570	7.3465	.2500
5	.22086	.26111	140.2112	261.4208	7.3470	.2500
6	.00611	.02818	140.3642	261.1081	7.3513	.2500
7	.00109	.00120	141.5032	262.9644	7.3638	.2500
8	.00811	.00711	140.7424	262.8528	7.3656	.2500
9	.00538	.00042	140.5482	262.0261	7.2904	.2500
10	.00138	.00315	140.5629	261.9927	7.2959	.2500

CURRENT OPERATING CONDITIONS ARE:

$01=$	82.000	$02=$	2	$03=$	600.000	$04=$	40.000	$05=$	80.866
$06=$	3.753	$07=$	3.941	$08=$	0	$09=$	0	$10=$.250
$11=$	0	$12=$.000	$13=$	1.000	$14=$	4	$15=$	4
$16=$	0	$17=$	3	$18=$	1000.000	$19=$	10.000		
CURRENT DIMENSIONS	ARE $:$								
$20=$	1	$21=$	4.0400	$22=$	4.2000	$23=$	4.7000	$24=$	5.7180
$25=$	15.1900	$26=$.0365	$27=$	1.6630	$28=$	5.7790	$29=$	29.7000
$30=$	6.2000	$31=$.4260	$32=$	0	$33=$	33.0000	$34=$	15.2500
$35=$	25.4000	$36=$	7.6000	$37=$	381.0000	$38=$.0000	$39=$.8000
$40=$	10.0000	$41=$	31.7900	$42=$	20.5000	$43=$	2.3900	$44=$	72.5300
$45=$	128	$46=$	24	$47=$	1.0200	$48=$.1575	$49=$.1067
$50=$.7600	$51=$.1321	$52=$.1016	$53=$	31.7900	$54=$	2.9200
$55=$	2	$56=$	34	$57=$	18.3400	$58=$.2362	$59=$	9.2600
$60=$	1.5000	$61=$.0000	$62=$	6.4460	$63=$.5440	$64=$	88.9000
$65=$	75.9000	$66=$.0000	$67=$.0000	$68=$.0000	$69=$	135
$70=$.0508	$71=$.3760	$72=$	7.9200	$73=$	1.5000	$74=$.0000
$75=$.0200	$76=$	1.0000	$77=$	3.0000	$78=$	1.0000	$79=$	4.0000
$80=$	20.0000	$81=$.0100	$82=$.1000	$83=$.0050	$84=$.0000
$85=$.0000	$86=$	-4.5650	$87=$.4684	$88=$	7.9300	$89=$.4600
$90=$	4.4500	$91=$.3710	$92=$.1450	$93=$.0813	$94=$	1
$95=$.5000	$96=$	0	$97=$.0000	$98=$.0000	$99=$.0000
$100=$.0000	$101=$	13	$102=$	15	$103=$	14	$104=$	0
$105=$	0	$106=$	0	$107=$	0	$108=$	0	$109=$	0
$110=$	0	$111=$	0	$112=$	0	$113=$	0	$114=$	0
$115=$	0	$116=$	0	$117=$	0	$118=$	0	$119=$	0

ENTERED PRINT ROUTINE AFTER 10 CYCLES.
FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT
IN AND POWER OUT HAS BEEN LESS THAN . 0050
RUN\# 0 FOR
SUNPOWER RE1000 ENGINE
FREE MOTIONS -- LINEAR ALTERNATOR
LOAD CONSTANT $=.020 \mathrm{~N} /(\mathrm{CM} / \mathrm{SEC}) * * 2$.
MARTINI MOVING GAS NODE ANALYSIS
MARTINI LOSS EQUATIONS
SOLUTION IS NOT OPTIMIZED.

OPERATING CONDITIONS ARE:		
SPEC.FREQ., $\mathrm{HZ}=\quad 29.70$	CHRG. PRESS., BAR	82.00
HEAT IN, DEG C $=600.00$	HEAT OUT, DEG. C	40.00
W. GAS $1=\mathrm{H} 2,2=\mathrm{HE}, 3=\mathrm{AIR} 2$	PHASE ANG. DEGREES =	80.87
POWER P.STR, $\mathrm{CM}=3.75$	DISPL. STROKE, CM	3.94
CALC.FREQ., $\mathrm{HZ}=29.46$	TIME STEPS/CYCLE	135.78
COMPUTED PERFORMANCE USING FPSE	BY MARTINI ENG.:	
POWER, WATTS	HEAT REQUIREMENT, WATTS	
BASIC 4140.9098	BASIC	7718.1671
ADIABATIC CORR. .0000	ADIABATIC CORR.	. 0000
HEATER FLOW LOSS -522.0358	REHEAT	2055.1560
REGEN.FLOW LOSS -795.4852	SHUTTLE	233.6653
COOLER FLOW LOSS -72.3040	PUMPING	36.1071
INDICATED 2751.0849	TEMP. SWING	13.9835
	CYL. WALL COND.	187.7257
	DISPLCR WALL COND.	32.7975
	REGEN. WALL COND.	59.2433
INDICATED EFFICIENCY, \% 29.17	CYL. GAS COND.	5.9156
	REGEN. MTX. COND.	4.4552
	RAD. INSIDE DISPL.	3.8478
	FLOW FRIC. CREDIT	-919.7784
	TOTAL HEAT TO ENG.	9431.2859

APPENDIX M
EFFECT OF PRESSURE ON ADIABATIC
FREE-PISTON ANALYSIS
CONVERGENCE CRITERIA $=0.005$
INITIAL TIME STEP $=0.25 \mathrm{MSEC}$
SINGLE PRECISION

Convergerice criteria is: .00500						
Cycie	Change	Change	Wark	Heat	End	Time
Nuns.	Piower	Heat	Dut	In	Pressure	Sted
	Out	In	Joules	Joules	MPa	Msec.
1	. 00000	. 00000	42.2383	65.92 .36	7.0711	. 2500
?	. 577 EL	. 67838	78.7738	112.9292	6.7964	. 2500
	. EE499	. 71303	117.8490	207.4365	E. ES60	. 2500
4	. 49804	. 83687	132.8834	244.7849	E. Ex09	. 2500
5	. 12757	. 18005	134. 3069	249.0340	E. E299	. 2500
5	. 81071	. 01736	134.0694	249. 2252	E. 6259	. 2500
NTERED PRINT		. 00077	133.7013	248.9502	E. 627e	. 2500
		itine af	ER 7	YCles.		
artinal Enalige in two suctessive integrals of hea						
and powe aut has been less than . D05						
SUNPOWER REIDOO ENGINE						
FRES MITIIONS -- LINEAR ALTERNATUR						
Load constant $=.020 \mathrm{~N} / \mathrm{Ccm} /$						
martini moving gas node anal_ysis						
MARTINI l-OSS EQUATIONS						
SOLUTION IS NOT OPTIMIZED.						

WSA Report Documentation Page		
1. Report No. NASA CR-182210	2. Government Accession No.	3. Recipient's Cataiog No.
4. Title and Subtitle Development of Free-Piston Stirling Engine Performance and Optimization Codes Based on Martini Simulation Technique		5. Report Date September 1989 6. Performing Organization Code
$\begin{aligned} & \text { 7. Author(s) } \\ & \text { William R. Martini } \end{aligned}$		8. Performing Organization Report No. None (E-4416)
9. Performing Organization Name and Address Martini Engineering 2303 Harris Richland. Washington 99352		11. Contract or Grant No. NAS3-22256
12. Sponsoring Agency Name and Address National Aeronautics and Space Admi Lewis Research Center Cleveland. Ohio 44135-3191	istration	14. Sponsoring Agency Code
15. Supplementary Notes Project Manager, Roy C. Tew. Jr.. P	wer Technology Division, NASA Lew	Research Center.
16. Abstract A FORTRAN computer code is descr Stirling engine similar to the $\mathrm{RE}-1000$ displacer and power piston motion or load may be a dashpot. inertial compr isothermal analysis or adiabatic analysis. analysis or the Rios second-order Run display of engine motions and pressur independent dimensions is included. S piston motions: these results are show tion searches are shown using specified one is for four. Also, two optimization adjustable inputs. The effect of leakag	ed that could be used to design and engine made by Sunpower. The code for allowing these motions to be calcula essor, hydraulic pump or linear alterna is. Adiabatic analysis may be done usi e-Kutta analysis. Flow loss and heat s and temperatures are included. Prog mple performance results are shown for as generated by each of the two Mar piston motion isothermal analysis. O searches for calculated piston motion is evaluated. Suggestions for further	timize a free-displacer, free-piston contains options for specifying ted by a force balance. The engine or. Cycle analysis may be done by g the Martini moving gas node ss equations are included. Graphical amming for optimizing up to 15 both specified and unconstrained ni analyses. Two sample optimizae is for three adjustable input and are presented for three and for four ork are given.
17. Key Words (Suggested by Author(s)) Stirling engine Stirling computer model	18. Distribution Statement Unclassified - Unlimited Subject Category 85	
19. Security Classif (of this report) Unclassitied	20. Security Classif. (of this page) Unclassitied	21. No of pages 22. Price 281 A13

[^0]: *These instructions are written for a two-drive machine with drive C being a ram disk.

[^1]: *Program listings have been removed from the appendices and are now available on diskette.

