NASA Contractor Report 182210

Development of Free-Piston Stirling Engine Performance and Optimization Codes Based on Martini Simulation Technique

William R. Martini Martini Engineering Richland, Washington

September 1989

Prepared for Lewis Research Center Under Contract NAS3-22256

(NASA-CR-182210) DEVELOPMENT OF EREE-PISTON STIRLING ENGINE PERFURMANCE AND OPTIMIZATION CODES MASED ON MARTINI SIMULATION TECHNIQUE (Martini Engineering) 269 p CSCL 109 N90-18326

Unclas 63/85 0266365 ,

FOREWORD

This is a modified version of the final report written by Dr. W.R. Martini to summarize the work done under NASA Contract NAS3-22256 to develop a free-piston Stirling engine performance and optimization code. The code reported on here is operational. However, it was recognized by Dr. Martini and NASA that the code needed additional development in several areas and also needed validation; only minimal validation of the performance codes (there are several performance code options available), primarily against RE-1000 engine data, was performed under the contract. The "isothermal" performance code option predicted RE-1000 performance close to the values measured at design. The "adiabatic" performance, code option predicted power too large by a factor of almost two; it's possible, considering the minimal "debugging" that was done on this particular option, that a programming error could be responsible for the large error. Since no engines were designed with the code, no information exists concerning its design accuracy.

It had been anticipated that additional development and validation would be carried out under a follow-on contract. However, as a result of Dr. Martini's death the work was never done.

Continued development of Stirling technology during the several years following Dr. Martini's death, means that a potential user of the code would need to carefully evaluate it's assumptions. For example, a free-piston Stirling space engine has been recently constructed which operates at approximately 100 Hz; the Martini code does not account for some effects, such as gas inertia, that become important at higher engine frequencies. Also, the optimization algorithm incorporated in the code is a simple one that was written to expedite the development of the design code's structure; it had been intended that a more powerful and efficient technique would be substituted in the next stage of development.

Dale Hubler of Sverdrup Technology, Inc. (a NASA Lewis Research Center support service contractor) has corrected some problems that a user of the code might encounter. For example, the interactive data input procedure was improved upon and the code was converted to double precision. Dale also disabled (but did not eliminate the coding) of certain graphic features of the code that could be depended upon to work only with a particular graphics board used by Dr. Martini. These and other changes are discussed in certain modified sections of the report.

It has been decided not to expend funds in further development of the Martini design code. However, it is felt that the code might be useful to some in its current stage of development. For example, requests have been received from university students for codes that could be used for class Stirling engine design projects. This fast response code could also be useful to individuals interested in gaining an understanding of Stirling engines by investigating sensitivities of designs to various geometrical changes. Of course, the code could be used as the starting point for development into a design tool for high performance Stirling engines, if sufficient effort were expended in that direction. A copy of the code on 5 and 1/4 in. floppy disk in high density format can be obtained on request from:

NASA Lewis Research Center Stirling Technology Branch Mail Stop 301–2 21000 Brookpark Road Cleveland, Ohio 44135

> Roy Tew Manager, NASA Contract NAS3-22256

PREFACE

This manual describes a computer program originally written by W.R. Martini to simulate a free piston Stirling engine on the IBM PC. Sverdrup's only contribution to this program and manual has been the following six changes to the original Martini program and the appropriate changes to the manual. Portions of the manual that have been rewritten by Sverdrup are marked by a vertical bar down the side of the page.

(1) The program has been converted to double precision to increase the accuracy of the results. Formerly, when using the program on mainframes the results of power and efficiency often differed from machine to machine (mainframe results were used for comparisons only). Converting the program to double precision brought these results into agreement. Appendix E, J, L, and all sample base cases have been updated to double precision results. Summary results based on these and other cases have been updated wherever possible. Appendix F, K, and M are presented with the single precision results also. The results between versions differ more when the simulated engine is in free piston mode rather than in specified motion mode but the differences are not great. The remainder of the appendices and other examples are left with the results obtained by the single precision version. The increased accuracy comes at the cost of more computer time. Some free motion optimization cases have run overnight on an IBM PC-AT.

(2) The input method was replaced by a more friendly routine which consists of two screens and one instruction line for the user. Each screen displays half of the possible input variables. The user is prompted to choose a variable by name and then to enter a new value. Screen positioning is handled by an assembly language routine and only the chosen variable has its displayed value updated. This method is faster and more flexible than the old. This is IBM-PC assembler and will not work on other machines.

(3) The former input display is now used as a method of recording values of input variables on the printed output. This block of variable values, together with the instructions, would scroll across the screen with each change to a value. The block of numbers gives the input value together with an input variable number. Appendix A show each input variable name together with the number assigned to it. In free piston mode the displacer phase angle (PHASED), the power piston stroke (PPSTR), and the displacer strike (DSPSTR) values on the output are not the values input but the values of the variables at the end of the last case considered.

(4) The capability to optimize the mass of the power piston and the displacer was added.

(5) All executable statements in the graphics subroutines were commented out. Calls to these subroutines now immediately return to the calling program. These subroutines were only useful with a particular graphics board which is not commonly in use. They have been left in the program to assist anyone who wishes to convert this option to be used on another device.

(6) The 17 original source files have been merged into five files (four fortran and one assembler) to simplify changing and moving the files.

Dale Hubler Sverdrup Technology, Inc.

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	ENGINE DESCRIPTION	1
4.0	4.2.1 Subroutine Screen	8881365333
5.0	 SAMPLE RESULTS	333554
	Isothermal Analysis605.2.3 Free-Piston Motion, Inertial Compressor, Isothermal Analysis605.2.4 Specified Motion and Moving Gas Node Analysis605.2.5 Specified Motion and Rios Adiabatic Analysis605.2.6 Calculated Motion Linear Alternator Load and Moving Gas Node, Adiabatic Analysis60	553
	5.2.7 Calculated Motion, Inertial Compressor, and Moving Gas Node, Adiabatic Analysis735.2.8 Conclusion on Sample Base Cases735.3 Optimization Searches855.3.1 Specified Motion - Three Adjustable Inputs855.3.2 Specified Motion - Four Adjustable Inputs875.3.3 Calculated Motion - Three Adjustable Inputs945.3.4 Calculated Motion - Four Adjustable Inputs945.3.5 Comments on Optimization Searches1025.3.5.1 Closer Approach to Constant Power1025.3.5.2 Provision for No Solution1025.3.5.4 Limitation on Dimensions102	
PAG	PRECEDING PAGE BLANK NOT FILMED	

ų.

.

5.4 Effect of Leakage	107 108
6.1 Using the Compiled FPSE.EXE	111 111 112
7.0 STATUS OF THE CODE AND REQUIREMENTS FOR FURTHER DEVELOPMENT	120
8.0 REFERENCES	122
APPENDIX A INPUT VALUE TABLE (N1.NOM)	123
APPENDIX B NOMENCLATURE FOR ALL PROGRAMS (NASA.NOM)	131
APPENDIX C VARIABLE USE TABLE (VARTAB.NOM)	145
APPENDIX D DERIVATION OF RIOS ADIABATIC ANALYSIS EQUATIONS	160
APPENDIX E EFFECT OF CONVERGENCE CRITERIA ON RESULTS (COMPUTER OUTPUT) DOUBLE PRECISION	169
APPENDIX F EFFECT OF CONVERGENCE CRITERIA ON RESULTS (COMPUTER OUTPUT) SINGLE PRECISION	183
APPENDIX G EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS 0.2 MSEC TIME STEP, 0.005 CONVERGENCE CRITERIA	191
APPENDIX H EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS 0.5 MSEC TIME STEP, 0.005 CONVERGENCE CRITERIA	207
APPENDIX I EFFECT OF PRESSURE ON ISOTHERMAL FREE-PISTON ANALYSIS 0.1 MSEC TIME STEP, 0.005 CONVERGENCE CRITERIA	217
APPENDIX J EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA = 0.01, INITIAL TIME STEP = 1 MSEC, DOUBLE PRECISION	225
APPENDIX K EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA = 0.01, INITIAL TIME STEP = 1 MSEC, SINGLE PRECISION	249
APPENDIX L EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA = 0.005, INITIAL TIME STEP = 0.25 MSEC, DOUBLE PRECISION	63
APPENDIX M EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS, CONVERGENCE CRITERIA = 0.005, INITIAL TIME STEP = 0.25 MSEC, SINGLE PRECISION	75

PHUM VI INTERTALLY BLANK

1.0 SUMMARY

A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included.

Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable inputs and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

2.0 INTRODUCTION

Since 1966, the author has been involved in Stirling engine development work and has evolved a method of analysis which has been described in a number of publications (refs. 1-5). Since 1979, Martini Engineering has developed a number of additional computer programs that are more sophisticated than the original isothermal analysis. These involved original methods of taking into account the adiabatic spaces and the partial adiabatic spaces in a Stirling engine. Since essentially all this work was done one government contract or another, there is no proprietary position to protect and the methods of these calculations are freely disclosed in this report.

First, the engine will be described in some detail and then the computer programs will be presented by discussing the flow charts which describe the logic of the main programs and all the subsidiary programs. Next the sample results of some of the base case calculational options are given, both as the output printout as well as a photograph of the graphical output display. Also, the effect of time step size and the time for solution are presented and discussed. Finally, a program users manual is given and current code status and suggestions for further work are discussed. A derivation of the Rios equations and detailed outputs obtained in the time step studies are given in the appendices.

3.0 ENGINE DESCRIPTION

The computer program described in this report is designed to calculate the power output and efficiency of a free displacer, free-power piston Stirling engine similar to the RE-1000 engine built by Sunpower and tested extensively by NASA Lewis Research Center (refs. 7-8). Figure 3.1 show a perspective drawing of the full engine with load. The engine heater tubes are heated by conducting electricity through the tubes themselves. The engine is loaded by dash pot and is water cooled. Figure 3.2 shows a more detailed drawing of the

FIGURE 3.1. - DRAWING OF RE-1000 ENGINE (8).

FIGURE 3.2. - RE-1000 HEATER HEAD THERMOCOUPLE LOCATIONS AND HEAT CONDUCTION PATHS (8).

heater and regenerator and part of the cooler to show how the thermal conduction paths between the hot part and the cold part of the engine are currently fabricated.

Figure 3.3 shows some details about the power piston centering ports which are important to consider in the free-piston analysis. These centering ports open up only momentarily at the mid-point of the stroke and the pressure equalization which partially takes place at this time keeps the power piston near the mid-point of its stroke. Note also that the displacer is sprung to the case instead of to the power piston as is sometimes done. Figure 3.4 gives more detail about the displacer rod mounting and communication ports. These communication ports are centering ports and serve the same function for the displacer as is done for the power piston. These four sketches plus the tables of information supplied with the contract statement of work were used to derive the input numbers given in Appendix A. These input numbers give a full description of the engine as far as the computer is concerned.

One thing that is not clear in the four figures given in this section is that the gas cooler is made up of a finned section which is cooled from one side of the fins. We assume that the fin efficiency is 100 percent.

The engine computer program will be described in the next section.

.

FIGURE 3.3. - POWER PISTON LEAK PATH OF RE-1000 ENGINE.

FIGURE 3.4. - DISPLACER ROD MOUNTING AND COMMUNICATION PORTS FOR RE-1000 ENGINE.

.

4.0 COMPUTER PROGRAM DESCRIPTION

Sections 4.0, 4.1, and 4.2 have been extensively rewritten and all other sections have been changed where appropriate.

The nomenclature for the computer program described in this report is given in Appendices A to C. In Appendix A the input variables are described since they will have to be identified by number and the optimization variables, which are a subset of the input variables, also are identified. The default value for each of the input variables is also shown. Appendix B gives the nomenclature used in the program in alphabetical order along with the units that are used. For a particular variable the units always remain the same. If the units change the variable name changes also. Appendix C contains a variable use table. This compliments the nomenclature list given in Appendix B by identifying the part of the program that the variable is used in. Most variables are in named common so they can be transferred from one subroutine to another. It was found that with the software available, the named common saved much more computer space than use of formal parameters, which we originally tried. This means that sometimes a large common block is introduced into a subroutine when only a few members of that block are actually employed in that subroutine. Nevertheless, it is more economical of computer space when it is all compiled. Also, the table was very useful in writing the program to be certain that all of the variables are defined before they are used and if they are defined in one part of the program and used in another part they are being shared. Also, some variables are used iteratively in subroutimes, generated in one pass and used during the next. These must be in a common block. If on each pass they are generated and then used, the variables need only be local variables and their memory location may be freed when the subroutine is exited.

In this chapter the logic of the programming will be explained with the use of flow charts. In most cases the actual equations used are described in the source code to show what is being calculated. Often the source code is commented to give the references where the equations come from.

4.1 Main Program (FPSE)

Figure 4.1 shown the main program flowchart. The program starts by initializing flags. Then the main program calls FPIN, (F1) which will change any of the input variables the user requests it to. This subroutine is described in section 4.2. Next, if graphics are called for, ¹ the previous graphic display is removed from the screen and a frame is drawn to start the new display. Also, a cycle counter is reinitialized. We are now at label 350. The main program does some more initializing and then calls subroutine CYCLE (F2) which is the main part of the simulation portion of the program. The simulation portion calculates works, heats, and losses for the particular input values as specified.

¹All graphics subroutines are specifically written to an Orchid board and have been commented out in the current release of this program to avoid compiler errors.

Now comes the decision about whether optimization is called for. This is determined by one of the input values. If optimization is called for the program calls PAOPTI which adjusts the power and controls and records the optimization process. This is explained in Section 4.5. This subroutine first adjusts the power of the engine so it is very close to the target power and then searches through up to 15 of the selected input numbers to find the best values. Once the best values have been selected it is necessary to recalculate the works, heats, and losses for the best ones by going through F2 one more time. If optimization is not called for, or if optimization is called for and optimum values have been found then the control passes to 910 and thence to the subroutine DESOPT which is described in Section 4.4. This prints out the results of the calculations to the printer. Now comes an operator decision about whether to do another case. If the operator decides no, the program stops right there. If the operator decides yes, then it must be tested whether optimization was engaged in. If it was, certain flags have to be reinitialized by starting the program over again and therefore, one cannot go around and find another optimum through the program. Therefore, if the decision is made to continue and optimization is not done the subroutine CLEAR is called, if the graphic option was used, to clear the screen of the last graphic display and control returns to label 300.

4.2 FPIN Input Subroutine

Figure 4.2 shows the flowchart for subroutine FPIN. This subroutine uses arrays to store the input variable names, default values, screen coordinates. and integer flag information. Screen clearing and positioning is handled by an assembly language routine appropriately named SCREEN. The SCREEN routine is described in Section 4.2.1. The subroutine FPIN begins by asking the user if he would like to have the last input case recalled. If the response is no (N) the default values for the input data set are used to initialize all input variables. The screen is then cleared and the first 60 of the input variables and their default values are displayed in three columns on the screen. The user may select any variable by name and enter a new value. This new value must be entered as a real value (i.e., with a decimal point) even though the variable might have an integer value because the new value is read as a real value and later converted to an integer if required. If the user enters "exit" as a variable name the program displays the second half of the input variables as it did the first. If the user enters "exit" on this screen the program will assign all input values, save these values to diskette on drive B, and end the subroutine. The user may enter "prior" as a variable on the second screen if he desires to return to the first screen for additional changes.

Input variable number 45 (NGN) is a special case in the list of input variables. The program initializes the number of gas nodes at 21 and creates additional nodes, up to 200, as required during the simulation. The printed output of input values will display the value of NGN at the end of the run.

4.2.1 Subroutine screen

Description

The screen subroutine is a special purpose subroutine to move the cursor or clear the screen. It is written in assembly language and uses BIOS interrupt 10H to provide some screen facilities.

Calling Format

CALL SCREEN (ROW, COL, FUNC)

Parameters

- Row Integer value containing the row number to which the cursor is to be moved (1 to 24).
- Col Integer value containing the column number to which the cursor is to be moved (1 to 80).
- Func Integer function code. A value of one will clear the screen, any other value will position the cursor at Row, Col.

Notes

- Row and Col are not checked for range errors. Any value outside the appropriate range will give unpredictable results.
- No values passed are modified.

FIGURE 4.1. - MAIN PROGRAM FLOW CHART (FPSE).

FIGURE 4.2. - FLOW CHART FOR SUBROUTINE FPIN (F1).

4.3 CYCLE Subroutine (F2)

Figure 4.3 shows the flow chart for the CYCLE subroutine. The source code listing is available on floppy diskette (see Foreword). This subroutine is the heart of the computational procedure. It contains much of the computational procedure itself plus it calls eight additional subroutines, F21-F28. for the additional parts of the full computation. The first thing that is done after the subroutine CYCLE is called is the subroutine CONSTS is called. This takes the input values and calculates a large number of intermediate values needed by the rest of the program. These values are placed in INTMED common, which is common to all the subroutines F2-F28 and is the means of passing variables from one to the other. In addition, certain first time flags and accumulators are set at the very beginning which are needed just inside of program F2 or CYCLE. Label 700 is the return point after one cycle is calculated. Then the variables that need to be initialized at the beginning of each cycle are put in. Label 400 is the return point after each time step cycle is calculated. Therefore, the loop starting with label 400 is gone through for each time step.

It was decided that the first time through this calculation, the program should go as if the isothermal specified motion case were selected. This would get the temperatures and motions approximately correct and would be a good start for the other calculations to finish up on. Therefore, the first decision is whether this is the first time or whether we are asking for specified motion or for free motion. If this is the first cycle through the calculation, the subroutine MOVESP is called which calculates the future position of the power piston and the displacer and the volumes that would be represented by this future position based upon specified motion. If free-piston is called for, then MOVEFR is called which does the same thing, but this is based upon a force balance of both the power piston and the displacer and is much more complicated.

After going through one branch or the other, the calculation comes back together. Based upon the motions that have been calculated, the new bounce space volumes and pressures for the displacer bounce space as well as the power piston bounce space are calculated. Next, the program calls subroutine LEAK which calculates new gas masses in the working gas space and in the displacer bounce space and the power piston bounce space based upon calculated leakages between these different spaces due to the current pressure difference.

Then for each time step the pressure in the working gas and bounce space and the position of the power piston are added up so that at the end of the cycle the average pressure and average power piston position can be calculated.

Next, there is in effect a three way split depending upon whether an isothermal or an adiabatic analysis is desired. If it is an adiabatic analysis, the further decision must be made as whether to use the Martini moving gas node analysis or the Rios analysis. In all three cases the basic thing that is calculated for a particular time step is what the next pressure should be. This is done quite differently in these three different branches.

The calculation then comes back together again and the accumulated work and heat integrals are found. These have to be added to for each time step so that at the end of one cycle, we have the line integral of the total volume versus the pressure to give the basic work output per cycle and the line integral of the hot volume versus the pressure to give the basic heat input per cycle.

FIGURE 4.3. - FLOW CHART FOR SUBROUTING CYCLE (F2).

FIGURE 4.3. - CONCLUDED.

If graphics are to be used, then at this point the control splits off to plot segments of seven different line on the screen. This is more fully explained in figure 5.6 of Section 5. Then for all cases the maximum mass fractions of the gas in the hot and cold spaces of the engine and the maximum derivatives of these values are calculated along with the maximum and minimum pressure. Of course, the final values of these are not known until the cycle is completed, but this part finds values as it goes along.

One reason for having an end of cycle test is to integrate a pressure-hot volume curve for exactly one cycle to determine the thermodynamic heat input for one cycle. Another reason is to integrate a pressure total working gas volume curve for exactly one cycle to determine the thermodynamic power output.

For specified motion, the end of cycle test is easy because you know when the cycle will end. You can make it come out to an even number of computational steps. Also both cycles start and end at the same times.

For free motion you do not know ahead of time when the cycle will end. It will always actually end between time steps. Even for small time steps, there is a large error incurred if the end of cycle is not interpolated between time steps. In the free-motion case, the first cycle is always in specified motion just to get the parts moving. In the second cycle, the cycle time for the power piston is usually different than the cycle time for the displacer. As the simulation settles down these two cycle times become the same again. In between, large errors in calculated heat input can occur if the end of cycle is determined by when the power piston finishes its cycle. These errors perturb the way the effective hot and cold working gas temperatures are chosen which feeds back into the pressure-volume curves. These errors, at best, delay convergence and may prevent it. A more serious problem is the choice of an end of cycle test. For some test and for some cases encountered in an optimization search the end of cycle test is never satisfied. The computation hangs up.

The end of the cycle test that was finally found to work and successfully complete an optimization search in the free-piston mode uses a separate end of cycle test for the hot volume and the total volume. At the time the first flag is set, the initial hot volume and the initial total volume are noted. The initial total volume is at the point where the centering ports of the power piston are open. Because of the phase shift, the initial hot volume is near one end of the displacer stroke. Since this extreme hot volume may never be calculated again, at the start the hot volume at which the displacer centering ports are fully open is calculated and used as the end of cycle test for the hot volume. During the first cycle the power piston actually goes through a full cycle, but the displacer goes through about three-quarters of a cycle. Using the trapezoid rule, the first heat input integral is estimated. In all subsequent cycles, the cycle for the displacer, and for the power piston both start and end at midstroke. The cycle times may be different. The power piston cycle time is used to compute frequency.

Now, all present values are made past values and all future values are made present values. In some computer programs large arrays are used so that full information on engine position, pressure, temperatures and so on for the full cycle is available at the end of the cycle for use. For each time step the future values of all these different physical quantities are calculated from present values and sometimes, particularly in the case of the Rios analysis is calculated also from immediate past values. Therefore, for any time step the present, immediate future and immediate past values are the only values that are used and therefore, they are the only ones that are retained. During this part of the program the values are indexed.

After this index, a split is made depending upon whether the end of cycle has been found or not. If not, control returns to label 400 to begin the next time step. If it has been found, we go on to correct the work and heat input integrals for large time increments. This is a correlation developed by Martini (ref. 1) to correct for the smaller line integral which is realized when a relatively small number of time steps are used.

After the free-piston mode has settled down there will be different displacer and power piston strokes and a different phase angle than was input. This program recalculates these.

Next, the subroutine CYCLE calls the subroutine LOSSES which calculates the flow losses and heat losses for the cycle. After exiting LOSSES, the program shows a line in a table which gives the fractional changes in power output and heat input. These can be compared with the convergence criteria in the heading of the table. The operator can judge whether the solution is converging. Also shown in the table are workout and heat input per cycle, the ending pressure and the time step in effect.

The next question asked is, is this the first cycle. If it is, the first cycle flag is changed so it no longer shows the first cycle and the cycle starts over again.

Finally comes the convergence test. As each new value of the heat input and power output integral is determined, the absolute value of the fractional change between the new one and past one is calculated. To pass the convergence test, both these changes must be less than the convergence criteria which is input for two successive times. In addition, at least four cycles must be gone through.

If the convergence test is not met, control passes back to label 700 for another cycle. On the way, the time step is halved after the 10th, 20th and 30th cycle. Experience has shown that when the solution is not converging, reducing the time step helps convergence happen.

If the convergence test is met, warnings are printed out if either the displacer or the power piston hit the end stops. Control then returns to the main program.

<u>4.3.1 CONSTS subroutine (F21)</u>. - Figure 4.4 shows the flow chart for subroutine CONSTS. The full source code listing is available per the Foreword. In general, F21 takes the input numbers and from these generates a large number of constants that are used throughout the rest of the subroutine CYCLE. This flow chart enumerates the general headings of these constants and more specific headings are in the source code. After calculating all these constants it calculates the time step in one of two ways whether specified motion or free motion is being called for. It initializes the elapsed time counter. If inertial pump is called for, the initial pressures for this pump are calculated. Finally, for the Martini integration method it calculates the initial gas node properties and then returns to subroutine F2.

IN

FIGURE 4.4. - FLOW CHART FOR SUBROUTINE CONSTS (F21).

<u>4.3.2 Specified motion subroutine (F22)</u>. - The flow chart for the specified motion subroutine MOVESP (F22), is given in figure 4.5. The full source code for this subroutine is available on diskette. Entering this subroutine, the first decision is whether this is the first time step or not. If it is, it initializes the first positions and the first volumes and starts the search for the maximum and the minimum volumes. Then it proceeds on as it does for all other times to index the elapsed time, find the new positions and volumes based upon the formula which is determined by the amount of elapsed time, and searches for the maximum and minimum hot and cold volumes. It then returns to subroutine F2.

4.3.3 Calculated motion subroutine (F23). - The flow chart for this subroutine is shown in figure 4.6. The source code is available on diskette. When this subroutine is called, the first decision is if this is the first time step. If it is, then the search for the maximum and minimum hot and cold volumes is initialized with values that are bound to change. Then the elapsed time is indexed. Next the force balance for the displacer is calculated. The same is true of the power piston, but this is more complicated because the power piston has attached to it one of four different loads. These loads determine one of the forces that are part of the force balance. The load force must be calculated. The power piston force balance is then calculated. In consistent units the time derivative of velocity is equal to the ratio of the net force acting on a body divided by its mass. There are two bodies, the displacer and the power piston. The Adams method is used for integration for better computational stability. This method uses the current ratio plus the last three ratios. These ratios are indexed along. Then the current force per mass ratios are calculated. If this is the start of the second cycle these past ratios do not exist. Therefore, the past ratios are made equal to the current ratio. When this is done the Adams method reduces to the Euler method.

Under some circumstances the use of the Adams method still resulted in computational instability. It was found that because of the lightness of the displacer, this was where the instability started. We found that for a number of time steps before instability could be noticed in the calculated displacer position, the force per mass ratios were alternating in sign with rapidly increasing magnitude. It was found that as soon as this was detected, the instability could be quelled by reducing the time step. After the time step is reduced the Adams method is not strictly correct for four time steps. However, it was found that computational stability was restored.

The Adams method determines the velocity at the end of the next time step. The position of the part at the end of the next time step is calculated from the average velocity for the time step.

Next the new positions are tested to see of they exceed the mechanical stops in the machine. If they do, they are bounced back with a specified bounce coefficient. Then the search for the maximum and minimum hot and cold volumes is done for each time step during the cycle. Finally, the future pressure inside the pumping chambers of the inertial pump is calculated, if inertial pump is called for, and the program return back to subroutine F2.

<u>4.3.4 LEAK subroutine (F24)</u>. – The flow chart for subroutine LEAK is shown in figure 4.7. The source code is available on diskette. The first thing this subroutine does is to calculate the leakage for the pressure differences

FIGURE 4.5. - FLOW CHART FOR SUBROUTINE MOVESP (F22).

FIGURE 4.6. - FLOW CHART FOR SUBROUTINE MOVEER (F23).

currently in effect for the displacer rod seal and the power piston seal and for the displacer centering port and the power piston centering port. For these last two leakages, the program deals with five cases. Case 0 is when the centering port is not open at all. Case 1 is when the centering port opens and closes during the time step. Case 2 is when the centering port opens during the time step. Case 3 is when the centering port close during the time step. Case 4 is when the centering port stays open during the time All these five cases are needed to determine how long the centering step. port is open during the time step. This is used along with the flow coefficient and the pressure difference to determine the leakage for the time step. It should be mentioned here that the flow coefficient which is calculated in subroutine F21 is first calculated for the dimensions given in the input numbers and then is adjusted by input number 40 which is the experience factor for the centering ports. The value of 10 now used in Appendix A means that the flow resistance employed is ten times greater than that which was calcula-During the development of the program we tried using the flow resistance ted. as calculated and found that it really disturbed the operation of the engine. There are probably some inertial effects that come into play when the port is open for such a short time. It really should be taken into account in a very detailed evaluation of this procedure. However, since the size and shape of these ports probably have been derived by experience, this experience factor is a good way of taking it into account.

Once these leakages are determined, the change in inventory of the working gas, displacer bounce space and power piston bounce space are determined. In order to fit with the rest of the program the inventories are expressed in MR units, that is the mass of gas in gram moles times the gas constant. The units of these so-called masses are joules per degree Kelvin. Next there is some branching depending upon whether the isothermal or adiabatic calculational mode is used and whether the Martini or Rios method of integration is used. In the isothermal analysis, the change in the gas inventory governs. However, in Martini and the Rios integration method the pressures are important in the continuing integration process. So these have to be changed because of the change in the gas inventory. Also, the mass change that comes out of the cold space are the last gas nodes and this, of course, has to be changed. Finally, in the Martini analysis the change in gas inventory expands or contracts all gas nodes which has an effect on their temperature. For all cases after label 400 the new pressure in the displacer bounce space and power piston bounce space needs to be computed because of leakage. Finally, the control returns back to subroutine F2.

<u>4.3.5 Pressure calculation by using isothermal analysis (F25)</u>. - Isothermal analysis is performed by subroutine PHISQ (F25). The flow chart for this subroutine is given in figure 4.8 and the source code is available on diskette. You will note from examination of figure 4.3 that at this point in the calculation there are three branches. This is the first of the branches that will be discussed. There are only nine executable statements in this branch, but the other two branches are much more extensive. No matter which branch is gone through, the result is the same, that is the calculation of the next or future pressure for the time step. In this case the future pressure is calculated by the isothermal assumption which is based upon the future mass, volumes and effective temperatures. This is a single simple equation. If the Rios integration method is used, the future hot space and cold space and working gas inventories need to be calculated so that at the beginning of the second cycle

FIGURE 4.7. - FLOW CHART FOR SUBROUTINE LEAK (F24),

FIGURE 4.8. - FLOW CHART FOR SUBROUTINE PHISO (F25).

when the Rios integration method begins to be used, there are future, present and past hot and cold gas inventories which are needed in the Rios analysis. Also, another embellishment was needed in order to keep from calculating an unrealistically high flow rate. At the end of each cycle there is an adjustment of the effective hot and cold space gas temperature which then are effective for the next cycle. At the first of the iteration procedure this adjustment can be quite drastic and since in the isothermal analysis the pressure depends upon these temperatures as well as upon the gas inventory, the present and future gas pressures would not go together. Therefore, at the beginning of the cycle the present pressure is recalculated based upon the new effective hot and cold space gas temperatures which have just been recalculated. This is the reason for the last part of the flow chart. It solved the problem of making the graphical display look reasonable, and solved the problem of giving a realistic maximum flow rate for the cycle.

As in previous subroutines of this series, control then returns back to subroutine F2.

4.3.6 Pressure calculation by moving gas node analysis (F26). - The flow chart for this subroutine which is called PHMART is given in figure 4.9. The source code listing is available on diskette. This subroutine adapts the Martini version of the moving gas node analysis to this particular application. It does not use it to its full potential since it is used only to predict the next pressure. It does not take advantage of its ability to calculate heat inputs and outputs for the different parts of the machine. In subroutine F21 the working gas space of the engine was divided into 22 different nodes. There are five nodes in the appendix gap space, one node in hot space, five nodes in the heater, five nodes in the regenerator, five nodes in the cooler and one node in the cold space. To get things started each node is given a volume and a temperature. Based upon this volume and temperature, it is given mass. The total working gas mass is then added up and the total of number nodes is added up. As the process continues the number of nodes changes, but can never exceed 200 with the present programming. A check is made to see if any mass is lost during the calculation and it never is. However, between one time step and the next, working gas mass is lost due to leakage as determined by the subroutine LEAK (F24). Starting with the first time step of the second cycle and in each time step thereafter, a ten step process is gone through to compute what the next pressure should be.

In Step 1, based upon total working gas volume change, the new common pressure and new temperatures for each gas node are determined. These new temperatures and the common pressure are determined based upon an adiabatic process. This change in the total volume plus the change in the displacer position causes the positions of these original gas nodes to change relative to the engine itself. Note that the nodes are not tied to the engine, but represent a string of packets of gas that fill the engine working gas space.

In Step 2 the present boundaries between these different packets are determined as measured in volumes from the root of the appendix gap in the hot end of the engine.

In Step 3 the gas nodes are redefined. If a gas node straddles the boundary between the appendix gap and the hot space, the gas node is split into two parts. The part in the hot space is combined with the node already in the hot space and the part in the appendix gap is redefined with a smaller volume and

Step 1. Based upon total working gas volume change determine new common pressure and new temperatures for each gas node based upon a adiabatic process.	an
Step 2. Determine new positions of current gas nodes based upon th change in Step 1.	e
Step 3. Split gas nodes that are now part in one part of the engine and part in another.	2
Step 4. Reinitialize for next time step and consolidate low volume	nodes.
Step 5 With a mount of	
Step 5. With no movement of gas nodes, compute new gas temperature each node based upon temperature difference, and applicable heat tra coefficient. Keep a running total of the net heat transferred in ea part of the engine. Adjust the temperature of the 3 regenerator nod based upon their heat capacity.	insfer
Step 6. Adjust regenerator matrix node temperatures due to metal conduction.	
Step 7. New pressure for each gas node due to temperature change due to heat transfer with each node retaining its same volume.	e
Stop 9 Added at	
Step 8. Adiabatic pressure equilibration at constant total working gas volume. (Future pressure is calculated at this point.)	
Step 9. Adjust nodal gas temperatures due to the pressure changes in Step 8. Adiabatic process.	
Step 10. Identify calculated hot and cold space gas temperatures.	
RETURN	

IN

FIGURE 4.9. - FLOW CHART FOR SUBROUTINE PHMART (F26).

a smaller mass. This same splitting process takes place between the hot space and the heater and between the cooler and the cold space. At the end of step 3 there are a number of nodes in the appendix gap, one node in the hot space, a number of nodes in the heater, regenerator and cooler, and one node in the cold space.

In Step 4 the second gas masses are made the first gas masses and the second gas temperature is made the first gas temperature and the second gas volumes are made the first gas volumes for all nodes. In addition, very small nodes are combined together so that they can be properly calculated. At this point there is an error trap to determine if there are too many nodes. One too many nodes causes the calculation to go crazy.

In Step 5 each gas node is assumed to be stationary and no gas is allowed to move from one node to the next. During the space of time of one time step heat transfer is allowed to happen consistent with the area available for heat transfer and the heat transfer coefficient that applies for that node. A running total is kept of the net heat transfer to or from each part of the engine and the net heat transfer to or from all the gas nodes together. This is powerful information, but it is not used in this calculation because it is incompatible with the rest of the computer program. During this step the regenerator metal nodes are allowed to float. That is, if the temperature of the gas is found to be higher than the temperature of the matrix surrounding it, the temperature of the gas drops and the temperature of the matrix rises, and the amount of heat transfer is recorded. At the end of step 5 each gas node has a different pressure as well as a different temperature.

In Step 6 the temperature of the metal nodes is adjusted to allow for conduction of heat transfer through the matrix. This process must take place at the same time as the heat transfer to or from the gas so that the node temperatures will remain realistic.

In Step 7 we need to normalize the fictitious condition set up by Step 5. That is, each gas node which has been constrained fictitiously to remain at the same volume when the temperatures change and therefore, attain a different pressure, must be allowed to expand or contract so that all gas nodes will end with a common pressure. In Step 5 we calculated the temperature changes. In Step 7 we determine what these pressures are. In Step 8 we perform a pressure equilibration which is simply the solving of one algebraic equation to determine what the pressure would be if each gas node is allowed to expand or contract adiabatically to a single common pressure. This common pressure is the future pressure for the time step.

In Step 9 we adjust the nodal gas temperatures due to the fact that each node either expanded or contracted adiabatically and therefore, changed its gas temperature appropriately. These then are taken into account.

In Step 10 the hot and cold space gas temperatures are identified, since these are needed later on to calculate some of the losses. These temperatures vary widely during the cycle because of the adiabatic character of the analysis. However, they are only used at the end of each cycle for loss calculations as has been mentioned. The loss calculations should really use the information available in this nodal analysis. But since this would be incompatible with the other methods of calculation, it was not done at this time.

After this ten step process the control passes back to subroutine F2.

<u>4.3.7 Pressure calculation by Rios adiabatic analysis (F27)</u>. - The flow chart for this subroutine is given in figure 4.10. The source code for this part of the program is available on diskette. The analysis upon which this program is based was first published by P.A. Rios in 1969 (ref. 6). The equations were derived in dimensionless form for a crank operated cooling machine. The program listing in the thesis was illegible, but thanks to the cooperation of Professor Joseph L. Smith of MIT, the author was able to receive a listing of the program and transposed this program for a crank operated heat engine, like the General Motors 4L23 machine. This program was published in the second edition of the Stirling Engine Design Manual (ref. 4). In appendix D of this report the Rios equations have been rederived in a dimensional form which is compatible with the rest of the free-piston Stirling engine program.

According to the flow chart in figure 4.10 at the first of each cycle the choice matrix is defined and constants are calculated which are good for the entire cycle. The choice matrix is simply a programming device for communicating which one of the four paths or cases should be followed through the program. The cases are: (1) mass increasing in both hot and cold spaces; (2) mass decreasing in both hot and cold spaces; (3) mass decreasing in cold space and increasing in hot space; (4) mass increasing in cold space and decreasing in hot space. Some are good for the entire calculation and could have also been calculated in subroutine F21 and transposed over here in a common statement. However, since they are calculated only once each cycle and since the Rios computation requires 360 time steps per cycle to be stable, the time involved is negligible.

Once the initial calculations are out of the way, the program branches into four parts depending upon the case number that is in effect. During the cycle all four cases are used. It does not matter particularly which case you start with, because after each time step the case required for the next time step is determined. Therefore, it quickly gets into the right case. Each case uses a different set of equations to calculate the pressure and the mass change in both the hot and cold part of the machine.

After going through one of these four paths, it comes back together at label 300 and calculates the mass change in both the hot and cold spaces. Based upon this, it goes through a choice matrix calculation to determine the case number which is used in the next time step. This program accumulates a number of arrays that are used for the Rios loss equations. After accumulating these arrays as much as can be done for one time step, it returns control to program F2.

<u>4.3.8 Calculation of losses (F28)</u>. - The flow chart for subroutine LOSSES (F28) is given in figure 4.11. The source code for this program is available on diskette. The first thing that happens when we enter this subroutine is to index the cycle number. Then we save the last basic heat input and power output and calculate the next basic heat input and power output. Then if we are doing the adiabatic moving gas node analysis, we set the fractional change of the basic power and the fractional change to the basic heat as the convergence criteria. Note that this is not the convergence criteria that is currently used. It is available for possible future use. Otherwise, we go on and calculate the convergence criteria later. Next we determine the effective flow rates and the fraction of the time that these flow rates act by evaluation of numbers that are calculated as part of F2 during the cycle. Subroutine LOSSES is only entered into after the cycle is over and when the losses for the

FIGURE 4.10. - FLOW CHART FOR SUBROUTINE PHRIOS (F27).

FIGURE 4.11. - FLOW CHART FOR SUBROUTINE LOSSES (F28).

FIGURE 4.11. - CONCLUDED.

cycle are going to be calculated. Now we determine whether the Rios loss equations are to be used. If the inputs specify that they should be used, they will not be used on the first cycle because the Rios integration method is not used on the first cycle. If it is after first cycle, the Rios loss equations can only be used if the Rios integration method is also used to supply information. Therefore, once this is sorted out, there are two main paths through the subroutine, one for the Martini loss equations and one for the Rios loss equations. We will discuss the Martini loss equations first and then the Rios loss equations.

In the Martini loss equations the effective flow rates and cycle times that were calculated in the first part of the subroutine are now used to determined the flow losses or windage losses for the regenerator, heater and cooler. These use standard engineering flow friction equations and are similar to those used in the Stirling Engine Design Manuals (ref. 3 and 4). All of these correlations have been carefully reevaluated to eliminate any discontinuities. Next from these three windage losses plus the area for the displacer a retarding force coefficient is calculated to be used in the free-piston analysis part of the program. It need only be calculated if the free-piston analysis part is invoked, but it is calculated every time. Since this happens only once each cycle, it is not very serious in terms of calculation time.

Next, if the moving gas node analysis is used, no adiabatic correction is needed. Otherwise, the adiabatic correction for the power output and heat input is calculated by a two-dimensional interpolation of the table as explained in references 1 and 2. Control comes back together at label 600. The indicated power is computed, which is the basic power less all the flow losses.

The next four heat losses, the reheat loss, the temperature swing loss, the pumping loss and the shuttle loss, are all calculated in the standard manner using essentially the same equations as have been used in earlier publications. Subroutine STATIC is called for all the static heat losses which are the same on both the Rios leg and the Martini leg of the program.

Therefore, from the basic heat requirement plus all the heat losses and the static heat losses, the heat demands and the cooler heat load can be calculated. These are needed in order to determine what temperature offset there is between the heater temperature and the effective hot space temperature and between the effective cold space temperature and the cooler temperature. Also, at this point the heat transfer coefficients for the heater and cooler are calculated. These are used both to calculated the temperature offsets and to be used in the moving gas node analysis.

Now if the moving gas node analysis is used, a section of the program is skipped. Otherwise, the new effective cold space and hot space temperatures are calculated based upon the heater and cooler demand, the heater and cooler heat transfer coefficient and the heat transfer areas that are calculated earlier in subroutine F21. This now finishes the Martini loss equations side.

In the Rios loss equation side starting with label 450, the Rios method for computing the losses starts out with some flow integrals. This interpretation of what was actually calculated by Rios is based upon a careful reading of this thesis and an evaluation of what was done in the second edition of the Stirling Engine Design Manual. Based upon these flow integrals the cold exchanger, the hot exchanger and regenerator flow losses are computed. The effective heater and effective cooler gas temperatures are computed and the reheat, shuttle and pumping losses are computed in a different way and was done on the Martini analysis even though the names are the same. Based upon this the basic power and indicated power are calculated in the Rios method and then the static heat losses are calculated by calling the same subroutine as before. In the Rios analysis the effective hot space and cold space temperature now refer to the temperature in the heater and cooler only. The Rios analysis does not calculate a temperature for the hot space and the cold space, but assumes that this is an adiabatic region. The procedure does not require calculating this temperature.

Now for both Rios and Martini loss equations the effective hot and cold space temperatures are calculated in degrees centigrade for use in the output program. Then if graphics are called for, a plot is made on the screen of the current and past effective hot and cold spaces temperatures. These plots are useful in that they give an indication of how the solution is converging. Moving gas node analysis does not use these effective temperatures and does not, therefore, render them into degrees centigrade and does not require to have them displayed on the screen. All this is skipped and comes back together at label 610. Finally, we need to determine the calculated engine speed and the time steps per cycle which are needed for the output and are placed in the output common block. After this, the program returns to subroutine F2.

Figure 4.12 shows the flow chart for subroutine STATIC. It is a straight forward subroutine which calculates the static heat losses in the standard way that is found in any engineering test. Many of these are made to depend upon the effective hot and cold space temperature which in the case of the moving gas node analysis is the hot and cold space temperature at the end of the cycle. Possibly in reevaluation some of these loss terms should be calculated based upon metal temperatures instead.

This marks the end of the explanation of the analysis part of the program. Now we move on to the reporting and the optimization of the program.

FIGURE 4.12. - FLOW CHART FOR SUBROUTINE STATIC.

4.4 Data Output Subroutine (F3)

Figure 4.13 shows the flow chart for the data output subroutine DESOPT (F3). The source code for this part of the program is available on diskette. As the program is presently designed first all input variable values are printed and then all the outputs to the printer get a final record.

If optimization is called for, the program writes how many cases were tried to find the optimum. It also writes the total input cases which are more because each case must be adjusted to have approximately the target power specified. For the way it is now programmed, the number of input cases is twice the number of variable combinations searched plus one. Next the total number of cycles gone through to find the optimum is given and the number of cycles needed to attain convergence for the last case.

If optimization is not called for, the program simply prints the number of cycles to convergence.

In either case it shows the convergence criteria used. Then it writes a run number and the name of the engine which is the RE-1000. Then depending upon the type of motion it writes specified motion or writes free-piston motion and shows what type of load and load parameters are used. The next thing is a decision on analysis, either isothermal or adiabatic. If it is isothermal, it writes isothermal analysis with corrections. If it is adiabatic, it then determines whether it uses the Martini integration method or the Rios adiabatic analysis and says which one has been used. Then another decision is the loss equations whether the Martini loss equations or the Rios loss equations and it shows the order in which the optimizing is done and the final optimized values. If it is not called for, it says the solution was not optimized. Then it prints out the current operating conditions and the power outputs and heat inputs and returns to the main program.

4.5 Optimization Subroutine (F4)

Figure 4.14 gives the flow chart for the subroutine PAOPTI (F4) which adjusts the power and optimizes after the power is adjusted. The source code for this part of the program is available on diskette. It was found that the indicated power output is almost exactly proportional to the working gas pressure. It was also found that the efficiency is usually a very weak function of pressure. Therefore, in order to speed the search for the optimum, we allowed just two trials for each variable combination. The first trial uses the charge pressure from the last test. The second trial uses a charge pressure calculated assuming the power is directly proportional to pressure.

This subroutine is very simple. It simply asks if the power has been adjusted. If it has not, control goes to F41 for adjustment. If it has, the power adjust flag is reset and control passes to F42 to record and control the optimization process.

<u>4.5.1 Power adjustment subroutine (F41)</u>. – Figure 4.15 gives the flow chart for this subroutine. A diskette gives the source code. To start with the decision is made based upon input information how the power is to be adjusted. It can be adjusted by either changing the pressure or changing the

FIGURE 4.13. - FLOW CHART FOR SUBROUTINE DESOPT (F3).

FIGURE 4.14. - FLOW CHART FOR SUBROUTINE PAOPTI (F4).

FIGURE 4.15. - FLOW CHART FOR SUBROUTINE PRAJST (F41).

engine diameter. If it is to be changed by the engine diameter, the engine diameter is changed as though the power is proportional to the square of the diameter. If it is changed by the charge pressure, the charge pressure is changed as though the power is proportional to the engine charge pressure.

Control then comes back to label 300. The power adjust flag is set and control passes back to F4.

One of the aspects of this calculation procedure that was not realized fully at first is that the calculation can be repeatable and that for each pressure the power output and heat input can appear to be converging very well. But, a graph of power output versus charge pressure can still be quite irregular -- so can the efficiency-pressure curve. Only when a combination of time step size and convergence criteria can be found that will result in regular curves can a optimization search can be undertaken with confidence.

4.5.2 Optimization recording and controlling subroutine (F42). -

Figure 4.16 shows the flow chart of this subroutine. The source code listing can obtained on diskette. On entering this subroutine the first thing that is done is calculate an engine efficiency and index the trial counter. Then the question is asked, is this the first time this subroutine has been entered. If the answer is yes, there are a great number of things that need to be done to set up this subroutine for further use. The first thing is to reset the first time flag so that we will never do this again without starting the program all over. There are 21 input values identified in appendix A as also optimizable values and given an optimization number which goes from one to 21. The way the program is set up now only these 21 values can be adjusted in an optimization routine. As many as 15 of these variables can be adjusted at one time. Some of these variables are real numbers and some are integers. They are transposed into a trial array which is a real number array 21 places long. Then the table heading is displayed and the best choice and best efficiency variables are initialized. Also, the short cut flag is initialized to no short cut. All the elements of a choice matrix are set to one. Then the first line of the data is printed. This is the base case that the optimizing program started with. Then the maximum choice number is calculated which is three raised to the power of the number of choices that are going to be considered. For instance, if three choices are being considered, it is three to the third, or 27; if four, it's three to the fourth or 81. Finally, the current trial array is also saved as an original trial array. The original trial array is sometimes called the base case.

Basically, the program tests all combinations of the adjustable variables around the base case either greater of less than in all combinations. For instance, table 4.1 shows the progression of choice matrices used if there are three adjustable inputs and number 13 is the first choice, number 15 is the second choice, and number 14 is the third choice. The first row in table 4.1 is the base case choice matrix. Note that all the values are 1.0. For this particular case, all the choice matrix numbers except 13, 14, and 15 are always one. The program is set up so that any of the 19 adjustable values can be chosen in any order up to a total of 15. Note that the second row in table 4.1 gives the second choice matrix. It is all 1.0 except for number 13. The third choice matrix is all 1.0 except for number 13 which is 0.9 Note that as the program applies this choice matrix to the 21 adjustable inputs, it systematically tests the three that in this case were chosen for adjustment both 10 percent higher and 10 percent lower in all possible combinations.

FIGURE 4.16. - FLOW CHART FOR SUBROUTINE OPTRAC (F41).

TABLE 4.1 CHOICE MATRIX VALUES FOR BASE CASE 3 OF ADJUSTABLE INPUTS

Choice NCH	‡	CHMTX(1)- CHMTX(12)	CHMTX(13)	CHMTX(14)	CHMTX(15)	CHMTX(16)- CHMTX(19)
1		1.0	1.0	1.0	1.0	1.0
2		1.0	1.1	1.0	1.0	1.0
3		1.0	0.9	1.0	1.0	1.0
4		1.0	1.0	1.0	1.1	1.0
5		1.0	1.1	1.0	1.1	1.0
6		1.0	0.9	1.0	1.1	1.0
7		1.0	1.0	1.0	0.9	1.0
8		1.0	1.1	1.0	0.9	1.0
9		1.0	0.9	1.0	0.9	1.0
10		1.0	1.0	1.1	1.0	1.0
11		1.0	1.1	1.1	1.0	1.0
12		1.0	0.9	1.1	1.0	1.0
13		1.0	1.0	1.1	1.1	1.0
14		1.0	1.1	1.1	1.1	1.0
15		1.0	0.9	1.1	1.1	1.0
16		1.0	1.0	1.1	0.9	1.0
.17		1.0	1.1	1.1	0.9	1.0
18		1.0	0.9	1.1	0.9	1.0
19		1.0	1.0	0.9	1.0	1.0
20		1.0	1.1	0.9	1.0	1.0
21		1.0	0.9	0.9	1.0	1.0
22		1.0	1.0	0.9	1.1	1.0
23		1.0	1.1	0.9	1.1	1.0
24		1.0	0.1	0.9	1.1	1.0 1.0
25		1.0	1.0	0.9	0.9	
26		1.0	1.1	0.9	0.9	1.0
27		1.0	0.9	0.9	0.9	1.0

Since each one of these trials have very close to the same power output, the question is, which one has the best efficiency. All combinations are tried and the best efficiency combination is noted. This best efficiency combination is now made the original trial array and a short cut flag is set so that the choice matrix which was found to be best defines a particular direction of motion from the base case to the optimum. This direction is used as many times as it will produce better efficiency. Then the program goes back to a normal search through all possible choices. An optimum is found when the subroutine has gone through all possible choices and has found that the best one is still the first one, that is, no change. Now with this as a general discussion we will then go back to talking through the flow chart.

If this is not the first time through the program, the control goes to label 200 and the question that is asked is, "Is the short cut flag set?" If it is, it means that the case that has just been calculated and adjusted for the right power output will be displayed with the choice number being the last choice number. If the short cut flag is not set, the display of the last calculated results would be shown with the current choice matrix number. If the short cut flag is set, the question is asked at label 221, "Is efficiency better than the last best efficiency?" If it is, we are on the short cut path and we make the original trial array values to be the current trial array values and make the best efficiency be the current efficiency and go on to label 350. We also save the charge pressure to use for the last calculation in case this should turn out to be the optimum choice.

If the short cut flag is set, but the efficiency is not better than the last best, then going to label 230, we start the search over by setting the current choice number and the best choice number to one and reset the short cut flag and go to label 310.

If the short cut flag is not set, then after displaying the results the question is asked again "Is efficiency better that the last best?" If it is, we make the best efficiency be the current efficiency and the best choice number be the current choice number and save the charge pressure and go on to label 300, which is where the control comes in if this is the first time through the program. At this point the question is asked "Has the maximum choice number been reached?" If the answer is no, control passes to label 310 and the choice number is indexed to the next choice number. The subroutine CHOICE is called to find the next choice matrix based upon this choice number and other input values such as the number of optimization values that are being chosen and what order these optimizable values are being tested. Figure 4.19 gives the flow chart for this subroutine. Control then passes to label 350.

However, if the maximum choice number has been reached, control passes to label 320 and the question is asked "Is the best choice number the number one choice number?" If it is, this is an indication that the optimum value has been found and the optimum flag is set and control passes to label 500.

From label 350 we have a choice matrix that is in effect. Either it is the short cut choice matrix or the choice matrix that has just been calculated and we need to multiply this choice matrix by the original trial array to get the next current trial array to go back into the design program. This is done and control passes to label 500. If the maximum choice number has been reached, but the choice number with the best efficiency is not the number one choice number, we must recalculate the choice matrix for the trial number which has been saved to indicate which of all the many choice matrices that were calculated creates the best efficiency when applied to the original trial array. This choice matrix is recreated by calling subroutine CHOICE. Once this choice matrix has been recalculated, the original trial array is changed to be the best current trial array from the last series and the short cut flag is set to determine the way the control passes in the next time through this program. Control then moves to label 500.

At label 500, the question is asked "Has the optimum been found?" If it is, the original trial array is transposed into the input common variables that they come from and the saved charge pressure is transposed into the input charge pressure and the program returns. If the optimum is not found, the current trial array is transposed into the input common variable that they come from. However, some of them will have been changed from the original transposition at the beginning of this subroutine. After either one of these transpositions the control is passed back into the subroutine F4.

Figure 4.17 shows the flow chart for subroutine CHOICE. Subroutine CHOICE is called at two different points in the OPTRAC (F42) subroutine. This subroutine is designed to change the choice matrix which is 19 columns long, as shown in table 4.1, to an array depending upon what optimization number are chosen, how many are chosen and the percent change used in the optimization search. For the base case given in appendix A, the first optimization number to be searched is 13, followed by 15 and 14. These are to be changed by 10 percent. Table 4.1 shows the choice matrix values for these 27 choices. Note that the choice matrix column one to column 12 is one and from 16 to 19 is one at all times. The only changes, of course, are 13, 14, and 15. This periodic relationship between the choice number and the choice matrix values is calculated in subroutine CHOICE which then calls the subroutine ADJST. For the base case subroutine CHOICE calls ADJST just times and then returns. It may call it up to 15 times and till work properly.

Figure 4.18 shows the flow chart for subroutine ADJST. The first time ADJST is called, J = 1 and it returns the value for CHMTX (ref. 13). The second time ADJST is called J = 2 and it returns for CHMTX (ref. 15). The third time ADJST is called J = 3 and it returns values for CHMTX (ref. 14). This subroutine has been checked and does produce the periodic values given in table 4.1. It is expandable to give any number desired. For a large number of adjustable inputs, it would be impossible to store the choice matrices precalculated in the computer. It is necessary to calculate them each time they are used.

FIGURE 4.17. - FLOW CHART FOR SUBROUTINE CHOICE.

FIGURE 4.18. - FLOW CHART FOR SUBROUTINE ADJST.

5.0 SAMPLE RESULTS

It was found by experience that time step size was all important, particularly when the calculated motion options were being exercised. It was found that solutions could be rapidly convergent but still give erroneous results. A number of trials were done which showed that only when the time steps were small enough did the effect of pressure on the solution make reasonable sense. Therefore, the effect of time step size and convergence criteria on the solution will be presented first. Next, the results of sample base cases will be given. Finally, the results of optimization searches will be presented.

5.1 Effect of Time Step and Convergence Criteria

Two separated investigations were made into the effect of time step and convergence criteria on the results. The first used isothermal analysis with corrections and employed a linear alternator with a load constant of $0.040 \text{ N/(cm/sec)}^2$. The second employed the Martini moving gas node analysis (adiabatic analysis) and employed a linear alternator with a load constant of $0.02 \text{ N/(cm/sec)}^2$.

<u>5.1.1 Isothermal analysis</u>. – To review, two solution parameters affect the answers that are obtained for a given case, one is the convergence criteria and the other is the time step.

The convergence criteria is the fraction that both the heat input and the power output integral changes from one cycle to the next. For the convergence criteria to be satisfied, this change for both the heat input and the power output integral must be less than the convergence criteria for two successive cycles.

The time step is simply the time interval used to calculate the solution. The smaller the time interval, up to a point, the more accurate the solution and also the more time consuming the calculation becomes.

It was observed that the convergence criteria and the time step were related. A large time step caused considerable variability from one time step to the next. Therefore, a tight convergence criteria would never be met except by accident.

5.1.1.1 Effect of convergence criteria: Table 5.1 summarizes the results of a series of calculations to determine the best convergence criteria. The full computer output is given in appendix E. These results are from the double precision version. The series was all run at 66 Bar pressure and an initial time step of 0.1 msec, which resulted in 415 time steps per cycle. Note that as the convergence criteria get tighter the cycles to solution get longer. However, the frequency of operation is not changed, and the indicated efficiency is hardly changed. The only change of note is in the indicated power. However, in order to save computer time, a convergence criteria of 0.005 was picked in order to get good accuracy with reasonable calculation time.

5.1.1.2 Interaction of Convergence Criteria and Time Step: Table 5.2 shows how the time step and the convergence criteria relate to number of cycles it takes to convergence. Note that at even the smallest time step tested it

TABLE 5.1 EFFECT OF CONVERGENCE CRITERIA SUNPOWER RE-1000 ENGINE FREE MOTION -LINEAR ALTERNATOR Load Constant = 0.040 N/(cm/sec)²

Isothermal Analysis 66 Bar Charge Pressure 0.1 msec time step (See Appendix E for full output)

Convergence	Cycles to	Indicated	Indlcated	Calc.
criteria	Solution	Power, W	Efficiency, %	freq., Hz
0.001	10	719.05	28.14	24.08
0.005	13	728.0	28 27	24.07
0.002	23	744.51	28.43	24.07
0.001	30	750.44	28.48	24.06
0.0005	39	754.90	28.54	24.06

Table 5.2

RELATIONSHIP BETWEEN CONVERGENCE CRITERIA AND TIME STEP

Convergence	Cycles to	convergence	at time step of:			
Criteria	0.1 msec	0.2 msec	0.5 msec	1.0 msec		
0.01	11					
0.005	12-13(3)	11 - 13(1)	12-39(2)	00.0000		
0.002	23		12 0/(2/	no conv.		
0.001	33					
0.0005	41					
0.0002	no conv.					
	、					

- (1) Various charge pressures (See Appendix W)
 (2) Various charge pressures (See Appendix X)
 (3) Various charge pressures (See Appendix X)
- (3) Various charge pressures (See Appendix Y)

is possible to set the convergence criteria so tight that the criteria would never be satisfied. This indicates the variability gets smaller from cycle to cycle as the calculation progresses but there is an inherent variability that remains which is reduced only by reducing the size of the time step.

Going the other direction in table 5.2 at a convergence criteria of 0.005 there is a time step, in this case 1.0 msec, in which the inherent variability was so large from cycle to cycle that there was practically no chance that the convergence criteria would be satisfied. In this case, the heat input integral was calculated for 167 cycles. After the first 10 cycles, there was no noticeable convergence. The change in power output integral was roughly cycling from 0.000 to 0.036. The change in heat input varying randomly from 0.050 to 0.170. Therefore, there was no way for two successive changes in these two integrals to be less than 0.005.

Table 5.2 shows that the cases calculated at a convergence criteria of 0.005 showed a larger variability in the number of cycles to convergence. As the time step increased, the maximum number of cycles increased but the minimum remained nearly the same. This indicates again the chance nature of satisfying the convergence criteria. The full printout for the cases that are summarized in table 5.2 are included in appendices W, X and Y. They were calculated to determine how the power output and efficiency change with charge pressure.

Table 5.3 summarizes how the calculated power output and efficiency varies with charge pressure over a wide range. Appendix W gives the full computer printout. It is surprising that the same engine works over such a wide range of charge pressures. Table 5.3 was done for a time step of 0.2 msec.

Table 5.4 was done for the same case and for a limited range of pressures only with 0.5 msec as the time step.

Table 5.5 was also done for the same case and for a limited range of pressures only with 0.1 msec as the time step.

Figure 5.1 graphs the information given in table 5.3 over the full range. Note that the calculated power is very nearly proportional to charge pressure, especially in the range of normal operating pressure. Also, note that the efficiency in the normal operating range of 60 to 70 bar is not a strong function of frequency. Therefore, it was concluded that in choosing between engine designs to find the optimum one need not find the exact pressure that will give the target power in order to choose between competing designs on the basis of efficiency.

Figure 5.2 compares tables 5.3, 5.4 and 5.5 over a limited pressure range of 66 to 72 bar and on an expanded scale so that the difference between the results can be noted more clearly. Note that as expected, the 0.1 msec time step gave the most regular results but they were not perfect. The 0.2 msec time step was not quite as good but still acceptable. The 0.5 msec time step gave results that can be quite misleading. Also note, as was observed in table 5.1, that the frequency is easiest to calculated correctly, next comes efficiency, and finally, the most difficult, indicated power.

5.1.2 Adiabatic analysis. - The adiabatic analysis available in the program is the Martini moving gas node analysis. This analysis predicts the next pressure without making adjustments in the effective constant hot space and cold space gas temperatures at the end of each cycle. Therefore, progress toward convergence is smoother. Therefore, it was felt that a longer time step of 1 msec would be satisfactory. At this time step and a convergence criteria of 0.005, the allowable number of gas nodes of 200 was exceeded after 19 cycles. Therefore, the series was done at a convergence criteria of 0.01. The computer outputs for this series are given in appendix Z. The power output, efficiency and frequency are plotted in figure 5.3. Note that, as usual, the calculation of frequency is very regular but the calculation of indicated power and efficiency is somewhat irregular particularly when calculations are made for closely spaced pressures. It should be noted that some runs given in appendix Z did not finish at a time step of 1 msec. Sometimes the number of cycles exceeded 10 and the time step was automatically halved. Sometimes calculational instability was detected by the program and the time step was halved one or two times. Nevertheless, the convergence criteria of 0.01 was retained.

Since this series was not regular, another series of calculations was run with a convergence criteria of 0.005 and an initial time step of 0.25 msec. The full computer output for this series of calculations is given in appendix AA. It was not necessary to change from this initial value since convergence was found in from seven to nine cycles. Figure 5.4 compares the results from appendix AA and Z plotted on an expanded scale for pressures from 70 to 82 bar. As usual, the frequency is calculated accurately either way. However, only the calculation series with 0.005 convergence criteria and 0.25 msec time step makes sense as far as calculating power. Therefore, the results given in appendix Z must be considered seriously in error.

5.1.3 Conclusion on time step and convergence criteria. - In employing the computer program described in this report in the calculated motion mode, one should graph the calculated powers versus charge pressure over a short range to see that this power is regular and approximately proportional to charge pressure. If not, a smaller time step or a smaller convergence criteria or both should be used until such a regular relationship is obtained.

SUMMARY OF COMPUTED RESULTS RE-1000 ENGINE

Time Step = 0.2 msec Convergence Criteria = 0.005 Heater Temperature = 600 C Cooler Temperature = 40 C

Free Motions - Linear Alternator
Load Constant = 0.040 N/(cm/sec)**2

Isothermal Analysis with Corrections (Full printout in Appendix W)

Charge Pressure	Indicated Bar Power, W	Indicated Efficiency, %	Calculated Frequency, Hz
10.00	69.43	9.97	9.46
20.00	199.40	18.96	13,50
30.00	318.40	22.79	16.40
40.00	428.70	25.47	18.86
50.00	540.33	27.12	21.03
60.00	657,10	27.96	23.00
66.00	723.51	28.23	24.10
67.00	733.31	28.26	24.29
68.00	742.31	28.25	24.46
69.00	754.88	28.29	24.64
70.00	761.03	28.31	24.81
71.00	773.44	28.34	24.99
72.00	783.68	28.33	25.16

SUMMARY OF COMPUTED RESULTS RE-1000 ENGINE

Time Step = 0.5 msec Convergence Criteria = 0.005 Heater Temperature = 600 C Cooler Temperature = 40 C

Free Motions - Linear Alternator Load Constant = 0.040 N/(cm/sec)**2

Isothermal Analysis with Corrections (Full printout in Appendix X)

Charge	Indicated	Indicated	Calculated		
Fressure Bar	Power, W	Efficiency, %	Frequency, Hz		
66.00 67.00 68.00 69.00 70.00 71.00 71.50 72.00	711.72 750.97 749.05 749.70 758.76 765.12 787.16 781.90	28.25 28.29 28.27 28.14 28.16 28.23 28.38 28.28	24.18 24.34 24.53 24.70 25.07 25.17 25.23		

SUMMARY OF COMPUTED RESULTS RE-1000 ENGINE

Time Step = 0.1 msec Convergence Criteria = 0.005 Heater Temperature = 600 C Cooler Temperature = 40 C

Free Motions - Linear Alternator Load Constant = 0.040 N/(cm/sec)**2

Isothermal Analysis with Corrections (Full printout in Appendix Y)

Charge	Indicated	Indicated	Calculated
Pressure Bar	Fower, W	Efficiency, %	Frequency, Hz
67.00	736.20	28.29	24.26
68.00	744.65	28.30	24.44
69.00	755.28	28.32	24.62
70.00	767.57	28.35	24.79
71.00	776.14	28.37	24.97
72.00	788.89	28.42	25.14

FIGURE 5.1. - EFFECT OF PRESSURE ON CALCULATED FREE-PISTON ENGINE GENERATOR OPERATION. TIME STEP, 0.2 MSEC; CONVERGENCE CRITERIA, 0.005. (SEE TABLE 5.3.)

FIGURE 5.3

FIGURE 5.3 - EFFECT OF PRESSURE ON INDICATED POWER, EFFICIENCY, AND FREQUENCY. INITIAL TIME STEP, 1 MSEC; CONVERGENCE CRITERIA, 0.01. (ADIABATIC ANALYSIS.)

FIGURE 5.4

FIGURE 5.4 - COMPARISON OF FREQUENCY, LIFT-CIENCY, AND POWER FOR DIFFERENT TIME STEPS AND CONVERGENCE CRITERIA. (ADIABATIC ANALYSIS.)

5.2 Sample Base Cases

The engine dimensions and operating conditions for all the sample cases are given in appendix A except as specifically stated in each one of the base cases. It was found that in producing these base cases, it was extremely helpful to pay close attention to the graphical display because it was much easier to determine whether the solution was going awry by watching the display than by looking at diagnostic printouts, although these were also very useful in certain cases. All results demonstrated in these base cases were generated by the double precision version of the program.

5.2.1 Specific motion isothermal analysis. - This is the analysis one gets if no change is made at all in the base case program with the exception of adding graphical output if the computer has the capability for this. Table 5.6 shows the printout that is obtained when this is done. Note that the run number is one of the input values that can be changed and is for the convenience of the user. The different options of the program are specified in the heading so that one can see at a glance what choices have been made. All the dimensions of the RE-1000 engine are printed on the output. Note that the operating conditions are given first. These are all things that can be changeable in the engine without rebuilding it. The power piston stroke and displacer piston stroke are input numbers. They do not necessarily represent the actual strokes of the parts unless the specified motion option is chosen which it is in this case.

The reader is referred to section 4 for a detailed explanation of how these different values are calculated under the different circumstances. In this section will be explained the significance that each one of these values given in table 5.6 and succeeding tables that follow is supposed to represent. There is a basic power and a basic heat requirement that are required if the engine were perfect. Since the engine is not perfect, a number of corrections have to be made to the basic power as well as the basic heat requirement to obtain the predicted value for the power output and efficiency. In this case of isothermal analysis and specified motion we know ahead of time how the displacer and the power piston move. In the isothermal analysis we assume we know what an effective temperature will be for the hot space and the heater gas and for the cold space and cooler gas. Therefore, we can determine the pressure during the cycle. The line integral of the total volume versus this pressure times the frequency is the basic power output for the cycle. The line integral of the hot volume versus the pressure times the frequency is the basic heat input.

Then, according to references 1 and 2, Martini Engineering has worked out a method of relating the basic power output and the basic heat input calculated by isothermal analysis to the basic power output and heat input for an adiabatic hot space and cold space which would be more time consuming to compute. There is a functional relationship between both the isothermal work and the adiabatic work and between the isothermal heat input and the adiabatic heat input. Therefore, a correction is applied by a two-dimensional interpolation in a data table which is part of the computer program.

Also, on the power output side an estimate is made of the flow losses through the heater, regenerator, and cooler, and these are subtracted from the basic power to give the indicated power. In the case of a free piston Stirling

COMPUTED RESULTS FOR SPECIFIED MOTION, ISOTHERMAL ANALYSIS

(Base Case Dimensions from Appendix A)

		(00							
CONVE	ERGENCE C	RITER	RIA IS:	.000					
CYCLE	E CHANGE	: C	HANGE	WORK	HEAT		END	TIM	
NUMB.	POWER	н	IEAT	OUT	IN		PRESSUR		
	OUT	I	N	JOULES	S JOUL	ES		MSE	
1	.00000).	00000	41.203	64.3	800	7.0134	1.40	29
2	.58796	, ,	67810	38.428	64.0	719	7.0389	1.40	29
3	.06735			34.165		642	7.0413	1.40	29
4	.11093			36.682			7.0386	1.40	29
5	.07366			37.551			7.0401	1.40	29
6	.02369			36.733			7.0409	1.40	
7	.02177			36.708			7.0405	1.40	
8	.00070			36.949			7.0404	1.40	
9	.00656			36.903		747	7.0405	1.40	
10	.00124			36.847			7.0405	1.402	
				36.883		748	6.9675	.70	
11	.00150					046	6.9724		
12	.00097			36.840			6.9720	.70	
13	.00116			36.940		092	6.9720	.70	
14	.00271			36.922		223		.70	
15	.00051			36.897		995	6.9720		
16	.00068			36.908		475	6.9719	.70	
17	.00031			36.913		702	6.9719		
18	.00012			36.908		494	6.9719	.70	15
CURRE			CONDITIO						
01=	72.000						40.000		49.600
06=	2.700		2.600		0		1		1.000
11=	0	12=	.000	13=	1.000	14=		15=	1
16=	0	17=	3	18=	1000.000	19=	10.000		
CURRE	NT DIMEN	SIONS							
20=	1	21=	4.0400	22=	4.2000	23=	4.7000		5.7180
25=	15.1900	26=	.0365	27=	1.6630	28=	5.7790		29.7000
30=	6.2000	31=	.4260	32=	0	33=	33.0000	34=	15.2500
	25.4000	36=	7.6000		381.0000	38=	.0000	39=	.8000
	10.0000	41=	31.7900		20.5000		2.3900	44=	72.5300
45=	22	46=	24		1.0200		.1575	49=	.1067
	.7600	51=			.1016		31.7900	54=	2.9200
55=	2	56=	34	57=	18.3400		.2362	59=	9.2600
	1 5000		.0000		6.4460				88.9000
	75.9000	66=	.0000	67=	.0000	68=	.0000	69=	135
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
		76=	1.0000	72=	3.0000	78=	1.0000	79=	4.0000
75=	.0000			82=	.1000	83=	.0005	84=	.0000
	20.0000	81=	.0100				7.9300	89=	.4600
85=	.0000	86=	-4.5650	87=	.4684			89= 94=	.4000
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94= 99=	.0000
95=	.5000	96=	0	97=	.0000	98=	.0000		.0000
100=		101=	13	102=	15	103 =	14	104 =	
105=		106=	0	107=	0	108=	0	109=	0 0
110=		111=	0	112=	0	113=	0	114=	
115=	0	116=	0	117=	0	118=	0	119=	- 0
120=	0								

Table 5.6 Concluded

MARTINI LOSS	SIVE INTEGRALS OF HEAT THAN .0005 000 ENGINE TIONS NALYSIS WITH CORRECTIONS	
OPERATING CONDITIONS ARE: SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR,CM = 2.70 CALC.FREQ., $HZ = 29.70$	CHRG. PRESS., BAR = HEAT OUT, DEG. C = PHASE ANG. DEGREES = DISPL. STROKE, CM = TIME STEPS/CYCLE =	72.00 40.00 49.60 2.60 48.00
COMPUTED PERFORMANCE USING FPSE POWER, WATTS BASIC 1096.1822 ADIABATIC CORR50.6575 HEATER FLOW LOSS -80.6737 REGEN.FLOW LOSS -84.0998 COOLER FLOW LOSS -3.4007 INDICATED 877.3505 	BY MARTINI ENG.: HEAT REQUIREMENT, WATTS BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND. DISPLCR WALL COND.	1819.1067 92.1976 610.9303 104.7203 5.9110 1.0149 193.2727 33.7666
INDICATED EFFICIENCY, % 31.17 EXP.SP.EFFECT.TEMP.,C 574.73 COMP.SP.EFFECT.TEMP.,C 57.46	REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	60.9939 6.0904 4.5869 4.7596 -122.7236 2814.6273

engine the mechanical losses are considered negligible and are not considered. Therefore, the indicated power is the power applied to the load.

On the heat input side the reheat loss is simply the extra heat that must be added each cycle to bring the working gas entering the hot space back to hot space temperature. A better regenerator can reduce reheat loss. The shuttle loss is the loss suffered as heat is transferred across the displacer gap as it moves back and forth. Increasing the gap or increasing the length of the displacer with reference to its stroke can reduce this loss. Pumping loss is the loss incurred by packing hot gas into this appendix gap around the displacer and then bringing back somewhat colder gas because of the heat transfer Pumping loss can be decreased by decreasing this gas thickness. into this gap. Therefore, there is a trade off between shuttle loss and pumping loss. Temperature swing loss is the additional loss incurred due to the fact that the regenerator matrix has heat capacity. This is a correction to the reheat loss which assumes that the regenerator matrix has infinite heat capacity. The different steady state conduction terms are then itemized. These are the cylinder wall conduction, the hot cap wall conduction, the regenerator wall conduction, the cylinder gas conduction, the regenerator matrix conduction, and the radiation inside the displacer. Also, since the flow losses in the heater and half of them in the regenerator are converted to heat, there is a credit for this giving a total heat requirement for the engine. Also, shown in table 5.6 is the expansion space effective temperature and the compression space effective temperature which were obtained by an iterative procedure such that the temperature difference between the heat source metal temperature and the effective expansion space gas temperature was adequate to transfer heat through the heater considering that the temperature difference is effective during the time the gas moves. The same calculation is made for the cold side so that the temperature offset is adequate to transfer heat that is needed to be transferred through the cooler.

This procedure has been used by Martini and has been published in a number of places (refs. 1-5).

Figure 5.5 gives a graphical output for this case. Figure 5.6 gives an explanation of what is meant by this graphical output. Seven curves are plotted for each cycle. These curves are superimposed upon each other until a convergence is reached. The most important is the total volume pressure curve or indicator diagram. This is shown as a pickle-shaped diagram on the right hand side of the display. There is a lighter curve above and a heavier curve below. The lighter curve is the first cycle in which it was assumed that the beginning pressure is the charge pressure. Since this created a higher than desired average pressure for the working gas space, the pressure was adjusted for the second cycle so that the average pressure in the working gas space would be equal to the charge pressure.

As explained in figure 5.6 there are three curves that involve this pressure. One plots the total volume versus the working gas pressure to give a closed curve proportional to the power output. Another curve plots the hot volume versus the working gas pressure to give a closed curve with an area proportional to the heat input. Finally, there are three curves that show how the working gas, displacer bounce and power piston bounce pressure vary with time during the cycle.

FIGURE 5.5. - GRAPHICAL OUTPUT FOR SPECIFIED MOTION. (ISO-THERMAL ANALYSIS.) (SEE FIG, 5.6 FOR EXPLANATION OF CURVES.)

Also shown in figure 5.5 are the positions of the displacer and the power piston for one cycle. Since this is a specified position case, these positions do not change from cycle to cycle and they are assumed to be sinusoidal. The frequency, the amplitude and the phase angle that are given are used to plot these curves. Finally, as is common in isothermal analysis, the effective hot space and cold space temperatures are adjusted. The curves as explained in the third part of figure 5.6 show how these adjustments take place. Most of the adjustment is in the second cycle and after that, very minor adjustments are needed and after 17 cycles the solution meets the very tight convergence criteria and the solution ends.

5.2.2. Free-piston motion with linear generator and isothermal analysis. - In the free-piston motion the specified motion of the displacer and the power piston is replaced with a force balance which takes into account all the forces acting upon the displacer and power piston at a particular time and, knowing its current velocity and mass, predict the velocity for the next time step and therefore, the position of the power piston and the displacer for the next time step. Also, the history of the last three time steps are used in the Adams method of integration.

This case is different from the base case by making the following changes:

Number 10 Time step to 0.1 msec Number 14 Engine load to four Number 15 Method of calculation from one to two Number 75 Alternator load parameter to 0.04 Number 83 Convergence criteria from 0.0005 to 0.005

These changes were made because the calculation series given in table 5.1 and appendix Y showed that this is a stable operating point. Table 5.7 shows the computed results for this final version of the computer program. Appendix Y was done with an earlier version which did not have the final aids to convergence added. For these conditions and 72 bar charge pressure, the solution in appendix Y required 13 cycles. This final solution for the same time step and convergence criteria required 11 cycles. The results are almost identical as far as power output, frequency and efficiency are concerned. The changes in power output and heat input from cycle to cycle are less drastic at first, but in this case the solution at 0.1 msec time step does not usually allow the fractional change in both integrals to be less than 0.005 for two successive times. After going to a time step of 0.05 msec, the calculation settled down enough to meet the criteria.

There should be no reason that tables 5.6 and 5.7 should give the same results since the frequencies and strokes are quite different.

Figure 5.6(a) shown the graphical output for this case. Note that the new lower frequency is found after three cycles. The rest of the time was taken to settle the solution. Thirteen curves are drawn, but after the first few the rest are essentially repeats as far as the graphical output is concerned. Note also that it takes only about three cycles to change the phase angle.

RESULTS FOR CALCULATED MOTION AND LINEAR ALTERNATOR LOAD - ISOTHERMAL ANALYSIS

CYCLE CHANC NUMB. POWER OUT 1 .0000 2 .5878 3 .1563 4 .2838 5 .1715 6 .0021 7 .0091 8 .0083 9 .0105 10 .0048 11 .0037	R HEAT IN .00000 33 .67868 31 .00790 34 .09512 36 .14274 .3 .00677 .3 .00880 .00 .00610 .7 .01094 .5 .00511	.00500 WORK OUT JOULES 41.2171 47.6599 34.1322 39.9877 39.9027 40.2669 40.6012 41.0302 41.2292 41.3839 41.5762 ONS ARE:	HEAT IN JOUL 64.2 63.7 57.6 65.9 66.3 66.3 66.9 67.3 68.1 68.4 68.9	ES 647 569 921 273 738 577 663 034 511 004	END PRESSURI MPA 6.8745 7.0252 6.8714 6.8900 6.8695 6.8617 6.8401 6.8336 6.8277 6.8109 6.8052	TIM E STE MSE .10 .10 .10 .10 .10 .10 .10 .10 .10 .10	P C. 00 00 00 00 00 00 00 00 00 00 00 00 00
01= 72.000 06= 2.221 11= 0 16= 0 CURRENT DIME 20= 1	02= 2 07= 2.72 12= .00 17= 3 NSIONS ARE:	$ \begin{array}{rcrcr} 03 = & 6 \\ 3 & 08 = \\ 0 & 13 = \\ 18 = & 10 \end{array} $	0 1.000	04= 09= 14= 19= 23=	1	05= 10= 15= 24=	.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5 27 = 383 $37 = 383$ $42 = 20$ $47 = 35$ $57 = 18$ $62 = 6$ $67 = 35$ $72 = 35$ $77 = 35$ $82 = 35$ $87 = 35$ $92 = 37$ $92 = 37$ $97 = 102 = 107 = 12$ $107 = 112 = 35$	1.6630 0	28 = 33 = 38 = 43 = 43 = 53 = 58 = 63 = 73 = 78 = 83 = 93 = 93 = 98 = 103 = 108 = 113 =	5.7790 33.0000 .0000 2.3900 .1575 31.7900 .2362 .5440 .0000 1.5000 1.0000 .0050 7.9300 .0813 .0000 14 0	29 = 34 = 39 = 44 = 49 = 54 = 59 = 64 = 69 = 74 = 79 = 84 = 89 = 94 = 99 = 104 = 109 = 114 = 109 = 100 = 114 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 100000 = 100000 = 100000 = 100000 = 100000000	$\begin{array}{c} 29.7000\\ 15.2500\\ .8000\\ 72.5300\\ .1067\\ 2.9200\\ 9.2600\\ 88.9000\\ 135\\ .0000\\ 4.0000\\ .0000\\ .4600\\ .0000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}$

Table 5.7 Concluded

ENTERED PRINT ROUTINE AFTER 11 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT = .040 N/(CM/SEC)**2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: OPERATING CONDITIONS ARE:SPEC.FREQ., HZ = 29.70HEAT IN, DEG C = 600.00HEAT IN, DEG C = 600.00W. GAS 1=H2,2=HE,3=AIR 2POWER P.STR,CM = 2.22POWER P.STR,CM = 2.22CALC.FREQ., HZ = 25.13CALC.FREQ., HZ = 25.13CONDITIONS ARE:CONDITIONS ARE:CALC.FREQ., HZ = 25.13CONDITIONS ARE:CONDITIONS ARE:CONDITIONS ARE:CALC.FREQ., HZ = 25.13CONDITIONS ARE:CONDITIONS ARE:CONDITIONS ARE:CONDITIONS ARE:CHRG. PRESS., BAR = 72.00<math>HEAT OUT, DEG. C = 40.00<math>HEAT OUT, DEG. C = 92.23POWER P.STR, CM = 2.22DISPL. STROKE, CM = 2.72CALC.FREQ., HZ = 25.13TIME STEPS/CYCLE = 795.71COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: COMPORED FERTOR WATTSHEAT REQUIREMENT, WATTSPOWER, WATTS1045.0108BASIC1733.7518BASIC1045.0108BASIC1733.7518ADIABATIC CORR.-45.9296ADIABATIC CORR.88.1723HEATER FLOW LOSS-92.2179REHEAT666.2807REGEN.FLOW LOSS-115.0524SHUTTLE116.1903COOLER FLOW LOSS-5.8318PUMPING9.1725INDICATED785.9791TEMP. SWING1.3352CYL. WALL COND.195.5516DISPLCR WALL COND.34.1648REGEN. WALL COND.61.7131INDICATED EFFICIENCY, % 28.35CYL. GAS COND.6.1623REGEN. MTX. COND.4.6409RAD.INSIDE DISPL.4.7975EXP.SP.EFFECT.TEMP.,C576.06FLOW FRIC. CREDIT-149.7441COMP.SP.EFFECT.TEMP.,C52.73TOTAL HEAT TO ENG.2772.1888 POWER, WATTS

FIGURE 5.6(a)

----- -

RESULTS FOR FREE-PISTON MOTION AND INERTIAL COMPRESSOR LOAD - ISOTHERMAL ANALYSIS

CONVI	ERGENCE		RIA IS:	.00	0500				
CYCLI			CHANGE	WORK	HEA	T	END	TIM	я Г
NUMB	. POWER	Ł	HEAT	OUT	IN	-	PRESSU		
	OUT		IN	JOULE		LES	MPA	MSE	
1	.0000	0	.00000	41.21		2647	6.8745	.10	
2	.5878	3	.67868	35.06		5180	7.0958		
3	.1491		.16723	39.22		8193		.10	
4	.1185		.04300	55.11		9361	7.0217	.10	
5	.4050		.55746	61.88			6.9616	.10	
6	.1228		.16073	63.86			6.9491	.10	
7	.0320		.05570	63.44			6.9579	.10	
8	.0064		.00117				6.9732	.10	
9	.0064			63.03			6.9697	.10	
10	.0073		.01110	63.50			6.9590	.10	00
11			.00707	63.74			6.9664	.100	00
	.0038		.00516	63.84			6.9547	.050	00
12	.0016		.00186	63.89	20 106.7	7274	6.9521	.050	00
CURRE	NT OPERA	ATING	CONDITIC						
01=	72.000	02=	2	03=	600.000	04=	40.000	05=	69.724
06=	3.585	07=			0	09=	1	10=	.100
11=	0	12=	.000	13=	1.000) 14=	3	15=	2
16=	0	17=		18=	1000.000		10.000		2
	NT DIMEN	ISIONS	S ARE:				201000		
20=	1	21=	4.0400	22=	4.2000	23=	4.7000	24=	5.7180
25=	15.1900	26=	.0365		1.6630		5.7790		29.7000
30=	6.2000	31=	.4260		0		33.0000		15.2500
35= 2	25.4000	36=	7.6000		381.0000		.0000	39=	
40= 1	10.0000	41=	31.7900	42=	20.5000		2.3900		.8000
45≃	22	46=	24	47=	1.0200				72.5300
50=	.7600	51=	.1321	52=	.1016		.1575 31.7900	49=	.1067
55=	2	56=	34	57=	18.3400			54=	
60=	1.5000	61=	.0000	62=	6.4460		.2362	59=	9.2600
	75.9000	66=	.0000	67=			.5440		88.9000
70=	.0508	71=	.3760	72=	.0000		.0000	69=	135
	.0400	76=	1.0000	72-	7.9200		1.5000	74=	
80=	5.0000	81=			3.0000		1.0000	79=	.5000
85=	.0000	86=	1.0000	82=	.1000	83=	.0050	84=	.0000
90=	4.4500	91=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
			.3710		.1450		.0813	94=	1
95= 100-	.5000	96=	0	97=	.0000	98=	.0000	99=	.0000
100 =	.0000		13	102=	15	103=	14	104=	0
105=		106=	0	107=	0	108=	0	109=	0
110=		111=	0	112=	0	113=		114=	0
115=	0	116=	0	117=	0	118=	0	119=	0
120=	0								-

.

Table 5.8 Concluded

ENTERED PRINT ROUTINE AFTER 12 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- INERTIAL COMPRESSOR INLET PRESSURE OF PUMPED GAS= 1.00 BAR. OUTLET PRESSURE OF PUMPED GAS= 5.00 BAR. AREA OF LOAD PISTON= .500 CM**2. END CLEARANCE IN PUMP= 1.000 CM. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FREQ., HZ = 29.70CHRG. PRESS., BAR = 72.00HEAT IN, DEG C = 600.00HEAT OUT, DEG. C = 40.00W. GAS 1=H2,2=HE,3=AIR 2PHASE ANG. DEGREES = 69.72POWER P.STR,CM = 3.59DISPL. STROKE, CM = 2.80CALC.FREQ., HZ = 30.62TIME STEPS/CYCLE = 653.15 COMPUTED PERFORMANCEHEAT RECOMPUTEDPOWER, WATTS1956.4315BASIC1956.4315ADIABATIC CORR.-115.9755HEATER FLOW LOSS-169.1202PEGEN.FLOW LOSS-192.3061SHUTTLE10 1656PUMPING COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: HEAT REQUIREMENT, WATTS 3268.0914 201.7725 876.8796

 REGEN.FLOW LOSS
 -192.3061
 SHUTTLE
 118.8972

 COOLER FLOW LOSS
 -10.1656
 PUMPING
 12.7575

 INDICATED
 1468.8642
 TEMP. SWING
 2.1328

 CYL. WALL COND.
 189.7416

 DISPLCR WALL COND.
 33.1497

 REGEN. WALL COND.
 59.8795

 INDICATED EFFICIENCY, % 32.55
 CYL. GAS COND.
 5.9792

 REGEN. MTX. COND.
 4.5031

 RAD.INSIDE DISPL.
 4.5325

 EXP.SP.EFFECT.TEMP.,C
 56.81
 TOTAL HEAT TO ENG.

 118.8972

5.2.3 Free-piston motion, inertial compressor, isothermal analysis. - To calculate this case, the following input values were changed from the previous case.

Number 14 Engine load from four to three Number 78 Inlet pressure of pumped gas to 1.00 bar Number 79 Areas of load piston = 0.5 cu^2 Number 80 Outlet pressure of pumped gas to 5.00 bar Number 81 End clearance in pump = 1 cm

The results of this calculation are shown in table 5.8. The graphical output is shown in figure 5.7.

In this case the power piston of the engine is attached to a gas compressor that is double acting and has inlet and output valves on each end. The effect of the area of the connecting rod is ignored. The gas in the pumping gas spaces is assumed to act as if it were adiabatic as far as the compression and expansion effects are concerned. One must specify the inlet and outlet pressure of the gas, the area of the load piston and the end clearance in the pump which is the distance between the piston and the end of the pumping chamber when the power piston is at its stop on either end. All these values affect how the displacer and power piston move. Note that at the end of each cycle the effective temperature of the gas in the hot space and the cold space of the engine is adjusted as is usually done in the isothermal analysis so the temperature between the metal and gas is adequate to transfer the heat that is required by the engine. The graphical presentation of the data as well as the work output and heat inputs in table 5.8 shows that about four or five cycles are needed to steady out the work and the frequency. After this they become quite stable and the operation is stable within some narrow bounds. As in the last case, adequate stability to meet the convergence criteria only when the time step is halved after 10 cycles. Only two more cycles are needed to meet convergence criteria.

5.2.4 Specified motion and moving gas node analysis. - To calculate this case the following input values are changed from the previous case:

Number 15 Calculation option from two to three

In this analysis, the concept of an effective hot space and cold space temperature is not used. In its place a large number of gas nodes are assumed to move back forth through the working gas space. Each one of these gas nodes represents a specific quantity of gas which is followed through the cycle. However, in the expansion and the compression space the gas nodes are redefined so that there is one homogenized gas node for the expansion space and another one for the compression space. Otherwise, there is no flow between one gas node and the next. Table 5.9 shows the results of this sample case. This solution is not disturbed each cycle by the picking of a different effective hot and cold space temperature. The hot space and cold space temperatures change smoothly during the cycle and fairly quickly attain a steady state operation. That is, they cycle through the same temperatures each cycle. Table 5.9 shows how these works approached a steady state and shows that the results with this type of analysis are reasonable.

FIGURE 5.7. - GRAPHICAL OUTPUT FOR FREE-PISTON MOTION INERTIAL COMPRESSOR LOAD. (ISOTHERMAL ANALYSIS.)

Table 5.10 compares two calculations of the same engine under the same conditions. The adiabatic analysis predicts 35 percent more power and 10 percent more efficiency than the isothermal analysis. The adiabatic analysis should be more accurate since it is much closer to the true way the engine operates. However, the isothermal analysis has been shown to agree with the General Motors data on their 4L23 engine to within ± 10 percent (refs. 1 and 2). It will be interesting to see how these two agree with test results on the RE-1000 engine (ref. 7).

Since in the moving gas node analysis the hot and cold spaces are adiabatic, there is no need for an adiabatic correction. Therefore, this has been set to zero. Otherwise, all the other losses are calculated in the same way as previously. Figure 5.8 shows that the graphical output is very well behaved. The work diagram is slightly more tipped (as you would expect) because of the adiabatic character of the hot and cold spaces.

5.2.5 Specified motion and Rios adiabatic analysis. – In order to do this case the following changes are made from the last case:

Number 32 Integration option from zero to one Number 46 Number of time steps per cycle from 24 to 360

With the aid of the Rios thesis (ref. 6) and the program given in the Second Edition of the Stirling Engine Design Manual (ref. 4), the Rios analysis was adapted to the free-piston environment. One important change was that the hot and cold spaces do not go to zero once each cycle like they did in the original Rios analysis. Therefore, they cannot be reinitialized like Rios did once each cycle. The problem is that the Rios algorithm in which central difference is used is computationally unstable. However, by using small time steps and initializing once each cycle, Rios could use this effectively. However, since our hot and cold spaces do not go to zero because this is a free-piston machine, the reinitialization cannot take place and the instability of the solution builds up to unuseful proportions after about two cycles. Figure 5.9 shows how this happens. Every other time step is either higher or lower than it should be. Eventually, the line becomes so broad as to be useless. For specified motion it might be possible to redefine the hot and cold volume so that they would go to zero each cycle and to reinitialize the integrals. However, this would not work for the calculated motion case.

Table 5.11 shows how the work output and heat input integrals began to be calculated for the Rios method. These figures were calculated by the single precision version of the program. The double precision version could not complete more than one cycle. These work and heat input integrals should be the same as the moving gas node analysis integrals since the assumptions are the same. Note the comparison on table 5.12. Note that the Rios work output is much larger than any of the others. It was not determined why this is so.

5.2.6 Calculated motion, linear alternator load and moving gas node, adiabatic analysis. - To do this case from the last one, the following changes were made:

Number 10 Time step from 0.1 to 0.25 Number 14 Engine load from three to four Number 15 Method of calculation from three to four Number 32 Integration option from one to zero

- -----

RESULTS OF SPECIFIED MOTION AND MOVING GAS NODE ANALYSIS

CONVE CYCLE NUMB. 1 2 3 4 5 6	RGENCE CHANG POWER OUT .0000 .5901 .0606 .0425 .0084 .0024	E C H I 0 . 0 . 3 . 4 . 7 .	HANGE EAT N 00000 67891 09772 14749 00989	.005 WORK OUT JOULES 40.990 43.475 45.325 45.709 45.598 45.607	HEAT IN JOUL 64.2 57 70.4 51 80.8 91 81.6 83 81.4	ES 182 939 912 915 233	END PRESSUR MPA 7.0150 7.0120 7.0086 7.0103 7.0103 7.0105	TIME E STEE MSEC 1.402 1.402 1.402 1.402 1.402 1.402	29 29 29 29 29 29 29
			CONDITIO						
01=	72.000	02=	2	03=	600.000	04=	40.000	05=	49.600
01-	2.700	02=	2.600	03=	0	09=	1	10=	
11=	2.700	12=	.000	13=	1.000	14=		15=	3
11 - 16 =	0	17=	.000		1000.000	19=	10.000		_
	NT DIME			10-	1000.000	± 2	101000		
20=		21 =	4.0400	22=	4.2000	23=	4.7000	24=	5.7180
	15.1900	26=	.0365	27=	1.6630	28=	5.7790		29.7000
30=	6.2000	31=	.4260	32=	0	33=	33.0000		15.2500
	25.4000	36=	7.6000		381.0000	38=	.0000	39=	.8000
	10.0000	41=	31.7900	42=	20.5000	43=	2.3900	44=	72.5300
45=	36	46=	24	47=	1.0200	48=	.1575	49=	.1067
50=	.7600	51=	.1321	52=	.1016	53=	31.7900	54=	2.9200
55=	2	56=	34	57=	18.3400	58=	.2362	59=	9.2600
60=	1.5000	61=	.0000	62=	6.4460	63=	.5440	64=	88.9000
	75.9000	66=	.0000	67=	.0000	68=	.0000	69=	135
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
75=	.0400	76=	1.0000	77=	3.0000	78=	1.0000	79=	.5000
80=	5.0000	81=	1.0000	82=	.1000	83=	.0050	84=	.0000
85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
95=	.5000	96=	0	97=	.0000	98=	.0000	99=	.0000
100=	.0000	101=	13	102=	15	103=	14	104=	0
105=	0	106=	0	107=	0	108=	0	109=	0
110=	0	111=	0	112=	0	113=	0	114=	0
115=	0	116=	0	117=	0	118=	0	119=	• 0
120=	0								

Table 5.9 Concluded

ENTERED PRINT ROUTINE AFTER 6 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE SPECIFIED MOTIONS MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FREQ., HZ = 29.70CHRG. PRESS., BAR = 72.00HEAT IN, DEG C = 600.00HEAT OUT, DEG. C = 40.00W. GAS 1=H2,2=HE,3=AIR 2PHASE ANG. DEGREES = 49.60POWER P.STR,CM = 2.70DISPL. STROKE, CM = 2.60CALC.FREQ., HZ = 29.70TIME STEPS/CYCLE = 24.00 COMPUTED PERFORMANCE USING FPSE DIHEAT REQUIREMENT, WAILSPOWER, WATTSHEAT REQUIREMENT, WAILSBASIC1354.5408BASIC1354.5408ADIABATIC CORR..0000HEATER FLOW LOSS-74.2184REGEN.FLOW LOSS-102.5136COOLER FLOW LOSS-102.5136INDICATED1172.3106INDICATED EFFICIENCY, % 34.01108.1517DISPLCR WALL COND.198.1517DISPLCR WALL COND.62.5336CYL. GAS COND.6.2442REGEN. MTX. COND.4.7026RAD.INSIDE DISPL.4.6421FLOW FRIC. CREDIT-125.4752TOTAL HEAT TO ENG.3446.6611 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:

TABLE 5.10

COMPARISON OF ISOTHERMAL AND ADIABATIC METHODS OF ANALYSIS RE-1000 ENGINE

	Isothermal	Adiabatic
Charge pressure, bar Heat in, C Heat out, C Phase angle, deg. Power piston, Str, cm Displacer stroke, cm	72.00 600.00 40.00 49.6 2.70 2.60	72.00 600.00 40.00 49.6 2.70 2.60
Gas	Helium	Helium
Frequency	29.7	29.7
Reference	Table 5.6	Table 5.9
Cycles to convergence	18	6
Convergence criteria	0.0005	0.005
Time steps/cycle	48	24
Indicated power, watts	877.35	1172.3
Indicated efficiency	31.17	34.01

FIGURE 5.8. - GRAPHICAL OUTPUT FOR SPECIFIED MOTION AND MOVING GAS NODE ANALYSIS.

Table 5.13 shows the results of this calculation. Figure 5.10 shows the graphical output. This sample output calculates the same case as was done with isothermal analysis. Table 5.14 compares the main results from these two cases. Note that the results are fairly close except for the power output. The adiabatic analysis seems to consistently predict higher power than the isothermal analysis. This observation is confirmed by comparing the size of the heat input and power curves in figure 5.10 compared with figure 5.6.

5.2.7 Calculated motion, inertial compressor, and moving gas node, adiabatic analysis. - To do this case from the last one, the following changes were made in the input:

Number 14 Engine load from four to three

Table 5.15 gives the printed results and figure 5.11 gives the graphical results. As always, the first cycle is isothermal, specified motion just to get the part moving. Then it takes five cycles to transition to approximately the steady state operating condition for calculated motion. Then it takes another three cycles of steady state operation to satisfy the convergence criteria. After the natural transition has occurred, mathematical convergence comes guickly.

Table 5.16 compares the results of two calculations for the same engine and inertial compressor. The isothermal analysis was done with a correction for the adiabatic effect. The adiabatic analysis is a nodal analysis in which the adiabatic nature of the hot and cold spaces is taken into account during the calculation. The main outputs are fairly close except for power. The adiabatic analysis predicts twice as much power as the isothermal analysis. It will be interesting to find out if either one agrees with tests.

5.2.8. Conclusion on sample base cases. - The computer program calculates accurately converged results for all four methods of calculation. The Martini moving gas node method of adiabatic analysis is operational but consistently predicts larger powers than the isothermal analysis. The Rios analysis has an inherent calculational instability which prevents a complete solution.

FIGURE 5.9. - GRAPHICAL OUTPUT FOR SPECIFIED MOTION AND RIOS ADIABATIC ANALYSIS.

TABLE 5.11 PARTIAL RESULTS FOR SPECIFIED MOTION AND RIOS ADIABATIC ANALYSIS

Convergence criteria is: 0.00500

Cycle Numb.	Change power, out	Change heat, in	Work out, Joules	Heat in, Joules	End pressure, MPa	Time step, msec
1	0.00000	0.00000	41.2054	64.2541	6.8808	0.0935
2	.58795	.67873	58.2716	84.6213	7.0516	
3	.41417	.31698	61.0769	82.0306	6.9603	
4	.04814	.03061	60.1012	78.1137	7.1011	

75

TABLE 5.12 COMPARISON OF WORK OUTPUTS AND HEAT INPUTS FOR THREE METHODS OF CALCULATION

Specified Motion	Work out Joules	Heat in Joules	References
Adiabatic analysis moving gas node	46	81	Table 5.9
Adiabatic analysis Rios	60	78	Table 5.11
Isothermal analysis and correction	36.9	61.2	Table 5.6

RESULTS FOR CALCULATED MOTION, LINEAR ALTERNATOR LOAD AND MOVING GAS NODE (ADIABATIC) ANALYSIS

CONVER CYCLE NUMB. 1 2 3 4	CGENCE CHANG POWER OUT .0000 .5881 .3595 .1574	E (H D . 4 . 0 .	CHANGE HEAT IN .00000 .67872 .29320	.005 WORK OUT JOULES 41.186 55.992 64.809 75.169	HEAT IN 5 JOUL 53 64.2 28 83.0 97 115.4	ES 555 952 784	END PRESSURE MPA 6.8796 6.6469 6.5569 6.5023	MSE	P C. DO DO DO
5	.1598		16763	79.282	29 142.7	712	6.4827	.250	
6	.0547	3.	05885	80.426			6.4620	.250	
7	.0144	3.		80.872			6.4894	.250	
8	.0055			81.205		244	6.4643	.250	
9	.0041			81.361		427	6.4407	.250	00
			CONDITIO						
	72.000	02=	2	03=	600.000			05=	
	2.652		3.561					10=	
	0		.000			14=		15=	4
* •	0		3	18=	1000.000	19=	10.000		
	T DIMER 1		ARE: 4.0400	22-	4 2000	23=	4.7000	24=	5.7180
20 =	5.1900	21= 26=	4.0400	22= 27=	4.2000 1.6630	28=	5.7790		29.7000
	6.2000	20- 31=	. 4260	32=	1.0030		33.0000		15.2500
	5.4000	31 = 36 = 36	7.6000		381.0000				.8000
	0.0000	41=	31.7900	42=	20.5000	13-	.0000		72.5300
40= 1	124	41=	31.7900		1.0200	48=	2.3900 .1575		.1067
	.7600	51=	360.1321	52=	.1016	53=	31.7900	54=	
55=	2	56=	.1321	57=	18.3400	58=	.2362	59=	
	1.5000	61=	.0000	62=	6.4460		.5440		88.9000
	5.9000	66=	.0000	67=	.0000	68=	.0000	69=	135
	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
75=	.0400	76=	1.0000	77=	3.0000	78=	1.0000	79=	.5000
	5.0000	81=	1.0000	82=	.1000	83=	.0050	84=	.0000
	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
95=	.5000	96=	0	97=	0000	98=	.0000	99=	.0000
100=	.0000	101=	13	102=	15	103=		104=	0
105=	0 0 0	106=	0	107=	U	100-		109=	
110=	0	111=	Ő	112=		113=		114=	
	÷	116=	0	117=	0	118=	0	119=	- 0
120=	0								

Table 5.13 Concluded

ENTERED PRINT ROUTINE AFTER 9 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT = .040 N/(CM/SEC)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FREQ., HZ = 29.70CHRG. PRESS., BAR = 72.00HEAT IN, DEG C = 600.00HEAT OUT, DEG. C = 40.00W. GAS 1=H2,2=HE,3=AIR 2PHASE ANG. DEGREES = 77.61POWER P.STR,CM = 2.65DISPL. STROKE, CM = 3.56CALC.FREQ., HZ = 26.95TIME STEPS/CYCLE = 148.44 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:POWER, WATTSBASICADIABATIC CORR.ADIABATIC CORR..0000HEATER FLOW LOSS-208.4823REGEN.FLOW LOSS-351.5405SHUTTLEINDICATEDINDICATED EFFICIENCY, % 30.42Kegen. MIX. COND.ADIABATIC COND.ADIABATIC CORR..0000ADIABATIC CORR..0000ADIABATIC CORR..0000ADIABATIC CORR..0000ADIABATIC CORR..0000HEATER FLOW LOSS-208.4823REHEAT196.5663REGEN.FLOW LOSS-351.5405SHUTTLE1604.8597TEMP. SWING4.3889CYL. WALL COND.190.3624DISPLCR WALL COND.33.2582REGEN. WALL COND.60.0754CYL. GAS COND.5.9987REGEN. MTX. COND.4.5178

 REGEN. MTX. COND.
 4.5178

 RAD.INSIDE DISPL.
 3.9868

 FLOW FRIC. CREDIT
 -384.2526

 TOTAL HEAT TO ENG.
 5275.0776

78

FIGURE 5.10. - GRAPHICAL OUTPUT FOR CALCULATED MOTION, LINEAR ALTERNA-TOR LOAD AND MOVING GAS NODE. (ADIABATIC ANALYSIS.)

TABLE 5.14 COMPARISON OF CALCULATED RESULTS FOR AN ISOTHERMAL AND MOVING GAS NODE, ADIABATIC, ANALYSIS OF A CALCULATED MOTION LINEAR ALTERNATOR

Calculated motion	Isothermal	Adiabatic
Reference	Table 5.7	Table 5.13
Load constant, N/(cm/sec) ² Charge pressure, bar	0.040 72.00	0.040 72.00
Time step, msec Convergence criteria	0.1 0.005	0.25 0.005
Power piston, Str., cm	2.22	2.65
Displacer, Str., cm	2.72	3.56
Calc. frequency, Hz	25.13	26.95
Indicated power, W	785.98	1604.86
Indicated eff., percent	28.35	30.42
Cycles to convergence	13	9

RESULTS FOR CALCULATED MOTION, INERTIAL COMPRESSOR LOAD, AND MOVING GAS NODE, ADIABATIC ANALYSIS

CYCLE NUMB. 1 2 3 4 5 6 7 8 9	CHANG POWER OUT .00000 .5881 .01820 .5065 .64599 .17520 .0368 .00962 .0003	E (F 0 4 0 9 1 2 7	.55434 1 .77586 1 .22597 1 .03140 1	27.635	HEAT IN 5 JOUL 63 64.2 59 67.0 70 104.1 85 185.0 75 226.8 57 233.9 49 236.6 81 237.3 54 236.7	ES 555 226 761 017 067 285 349 906	END PRESSURE MPA 6.8796 6.9231 6.7206 6.6209 6.6092 6.5661 6.5991 6.5596 6.5938	TIMI E STEJ MSE(.25(.25(.25(.25(.25(.25(.25(.25	2 50 50 50 50 50 50 50 50 50 50 50
01=	72.000		2		600.000	04=	40.000	05=	55.478
	4.198		3.814		0		1	10=	.250
11=	0		.000		1.000			15=	4
16=	0	17=	3		1000.000	19=	10.000		
	T DIME								
20=	1		4.0400		4.2000	23=	4.7000	24=	
	5.1900	26=	.0365		1.6630	28=	5.7790		29.7000
30=	6.2000		.4260		0		33.0000		15.2500
	5.4000	36=	7.6000		381.0000	38=	.0000 2.3900 .1575	39=	
	0.0000	41=	31.7900	42=	20.5000	43=	2.3900		72.5300
45=	116		360	47=	1.0200	48=	.1575		.1067
50=	.7600	51=			.1016	53=	31.7900	54=	
55=	2		34	57=	18.3400	58=	.2362	59=	9.2600
60=	1.5000	61=	.0000		6.4460	63=	.5440		88.9000 135
	5.9000	66=	.0000		.0000	68=	.0000	69=	
	.0508	71=	.3760		7.9200	73=	1.5000	74=	.0000 .5000
75=	.0400	76=	1.0000		3.0000	78=	1.0000	79=	
	5.0000	81=	1.0000		.1000	83=	.0050	84=	.0000 .4600
	.0000	86=	-4.5650		.4684	88=	7.9300	89=	
	4.4500	91=	.3710	92=	.1450	93=		94= 99=	
	.5000	96=	0	97=	.0000	98=	.0000	99= 104=	
100=	.0000		13 0	102-	15 0	103 =	14 0	104= 109=	0
105=	0 0	106=	0	107=	0		0	109-	
			0		= 0				-
	0 0	TID=	· 0	11/=	. 0	110=	0	T T 2 -	0
120=	U								

Table 5.15 Concluded

ENTERED PRINT ROUTINE AFTER 9 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- INERTIAL COMPRESSOR INLET PRESSURE OF PUMPED GAS= 1.00 BAR. OUTLET PRESSURE OF PUMPED GAS= 5.00 BAR. AREA OF LOAD PISTON= .500 CM**2. END CLEARANCE IN PUMP= 1.000 CM. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: COPERATING CONDITIONS ARE:SPEC.FREQ., HZ = 29.70HEAT IN, DEG C = 600.00HEAT IN, DEG C = 600.00W. GAS 1=H2,2=HE,3=AIR 2POWER P.STR,CM = 4.20POWER P.STR,CM = 4.20CALC.FREQ., HZ = 31.61CALC.FREQ., HZ = 31.61COPERATING CONDITIONS ARE:CONDITIONS ARE:CONDITIONS ARE:CONDITIONS ARE:CHRG. PRESS., BAR = 72.00<math>HEAT OUT, DEG. C = 40.00HEAT OUT, DEG. C = 40.00HEAT OUT, DEG. C = 55.48DISPL. STROKE, CM = 3.81CALC.FREQ., HZ = 31.61TIME STEPS/CYCLE = 126.54COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:POWER, WATTSHEAT REQUIREMENT, WATTSBASIC4034.7092ADIABATIC CORR..0000HEATER FLOW LOSS-443.6864REGEN.FLOW LOSS-443.6864REGEN.FLOW LOSS-710.7298SHUTTLE214.7223COOLER FLOW LOSS-61.9715INDICATED2818.3215TEMP. SWING9.1490CYL. WALL COND.184.1234DISPLCR WALL COND.32.1682REGEN. WALL COND.58.1065CYL. GAS COND.5.8021REGEN. MTX. COND.4.3697ADICATED32.7482 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: REGEN. MTX. COND. 4.3697 3.7482 RAD.INSIDE DISPL.
 RAD.INSIDE DISPL.
 3.7482

 FLOW FRIC. CREDIT
 -799.0513

 TOTAL HEAT TO ENG.
 8978.1474

FIGURE 5.11. - GRAPHICAL OUTPUT FOR CALCULATED MOTION INERTIAL COMPRES-SOR LOAD AND MOVING GAS NODE. (ADIABATIC ANALYSIS.)

TABLE 5.16 COMPARISON OF CALCULATED RESULTS FOR AN ISOTHERMAL AND A MOVING GAS NODE, ADIABATIC ANALYSIS OF AN INERTIAL COMPRESSOR OPERATING WITH CALCULATED MOTION

	Isothermal	Adaibatic
Reference table	5.8	5.15
Inputs Conver <mark>gence Criteria</mark>	0.005	0.005
Time step, msec	.05	. 25
Cycles to convergence	12	9
Inlet pressure of pumped gas, bar	1.00	1.00
Outlet pressure of pumped, gas	5.00	5.00
Area of load piston, cm ²	0.5	0.5
End of clearance in pump, cm	1.0	1.0
Outputs Calculated frequency, Hz	30.62	31.61
Indicated power, watts	1469	2818
Efficiency	32.55	31.39

5.3 Optimization Searches

The ability of this program to conduct a search for the optimum design is one of the reasons for developing the program. Experience has shown that the calculation of each case must be solidly done. It must be done at a small enough time step and a tight enough convergence so that the solution will be accurate (see Section 5.1) The program must have provisions to adjust the time step so that a proper solution would be found for every case. The results of four searches will be presented:

- (1) Specified motion, isothermal analysis, three adjustable inputs
- (2) Specified motion, isothermal analysis, four adjustable inputs
- (3) Calculated motion, linear alternator, isothermal analysis, three adjustable inputs
- (4) Calculated motion, linear alternator, isothermal analysis, four adjustable inputs

<u>5.3.1 Specified motion, three adjustable inputs</u>. – In this sample search, three properties of the regenerator were adjusted. The goal was to find the best efficiency with the engine power near 1 kW. To do this case, the following inputs need to be changed or checked:

Number 15 Method of calculation to 1 Number 16 Optimization option to 1 Number 17 Number of adjustable variables to 3 Number 18 Target power, watts to 1000 Number 19 Percent change in optimization to 10 Number 46 Number of time steps per cycle to 24 Number 83 Convergence criteria to 0.005 Number 101 First optimizable variable to 13 Number 102 Second optimizable variable to 15 Number 103 Third optimizable variable to 14

Table 5.17 shows the first part of the search table. For this case, the choice matrix is as shown in table 4.1. There are 27 choice matrices to test to see which gives the best efficiency. The first time the choice matrix is applied to change the three selected inputs the charge pressure for the last case is used. A case is run which results in a particular power. The charge pressure is then adjusted to give the target power by assuming that the power is proportional to charge pressure. The results of the second try for each of the 27 change matrix numbers is printed in table 5.17. Note that the power is usually within 1 percent of the target power. Considering that the efficiency is usually not a strong function of pressure or power (see figs. 5.1, 5.2, and 5.4), this accuracy in hitting the target power is more than adequate. Note that the first column in table 5.17 shows that trial number. The second column shows the choice matrix number which goes from 1 to 27. The third column shows the choice matrix number that results in the best efficiency for a particular search. The fourth column gives the cylinder diameter. One has a choice of adjusting either the cylinder diameter or the average pressure to get the target power. This test was done by changing the pressure. The fifth column shows these average pressures. The sixth column shows the powers which should be close to the target power of 1000 W. The seventh column gives the efficiency for each case calculated. The eighth column gives the best efficiency

FIRST PART OF OPTIMUM SEARCH TABLE SPECIFIED MOTION - THREE VARIABLES

SEARCH FOR OPTIMUM

The number of active optimization numbers is: 3								
The order	in which	the op	timization	numbers	are teste	d is.		
	14 U (0	0 0 0	0 0	0 0	0 0		
Trial Num		Best#	Cyl.D.cm	Pavg.E	Bar Pwr.W	Eff. %	Bst.Eff.%	
1 2	1	1	5.718	81.96	1010.48	31.63	31.63	
2	2	1	5.718	80.89	999.09	31.91	31.63	
3	3	2	5.718	81.77	1000.88	31.18	31.91	
4	4	2	5.718	80.22	998.83	27.34	31.91	
5	5	2	5.718	80.64	1000.31	27.50	31.91	
6	6	2	5.718	80.14	999.60	27.12	31.91	
7	7	2	5.718	84.68	1005.42	33.24	31.91	
8	8	7	5.718	83.15	998.43	33.74	33.24	
9	9	8	5.718	86.13	1003.82	32.53	33.74	
10	10	8	5.718	80.27	995.21	30.81	33.74	
11	11	8	5.718	80.56	1000.24	31.10	33.74	
12	12	8	5.718	81.04	1000.46	30.45	33.74	
13	13	8	5.718	80.31	999.46	26.16	33.74	
14	14	8	5.718	80.74	1000.31	26.29	33.74	
15	15	8	5.718	80.11	999.50	25.96	33.74	
16	16	8	5.718	83.30	1003.56	32.88	33.74	
17	17	8	5.718	82.17	998.90	33.33	33.74	
18	18	8	5.718	84.50	1002.80	32.26	33.74	
19	19	8	5.718	81.75	997.44	32.33	33.74	
20	20	8	5.718	81.57	999.83	32.70	33.74	
21	21	8	5.718 -	82.79	1001.29	31.85	33.74	
22	22	8	5.718	80.24	998.06	28.57	33.74	
23	23	8	5.718	80.64	1000.30	28.75	33.74	
24	24	8	5.718	80.33	999.73	28.32	33.74	
25	25	8	5.718	86.56	1008.06	33.48	33.74	
26	26	8	5.718	84.46	997.73	34.05	33.74	
27	27	26	5.718	88.33	1005.35	32.66	34.05	
28	26	26	5.718	89.89	1001.56	34.46	34.05	
29	26	26	5.718	97.95	1010.48	33.71	34.46	
30	2	1	5.718	87.26	991.94	35.15	34.46	
31	3	2	5.718	93.42	1009.66	33.49	35.15	

so far. Note that the program always goes through all 27 cases for each search. In the first search, it finds the second choice matrix results in a better efficiency than the first. Then the seventh is better than the second. Then the eighth is better than the seventh. Finally the 26th choice matrix is better than the eighth. The 26th choice matrix is a set of multipliers to multiply the base case values of all the optimizable input values to get a trial set (see table 4.1 and appendix A). After trial number 27, the program multiplies choice matrix number 26 by the base case values to get a new set of base case values. The program then applies the 26 choice matrix another time to multiply the base values by to get the trial number 28. This was found to result in a better efficiency. This is a shortcut procedure. We have found by excerience that if we had started the search over with choice matrix number 1, we still would have found number 26 to be the best.

Since the shortcut worked once, we try it again. This time (trial number 29) it does not result in a higher efficiency. Therefore, trial number 28 is taken as the base case choice matrix number 1, for the next full search of all possibilities around the new base case.

In table 5.18, the end of this search table is shown. Note that at trial number 212 the test efficiency of 37.34 percent with a pressure of 94.74 bar is found. This is choice matrix number 19. Applying this choice matrix once more in trial number 221 does not result in a better efficiency. After trial number 220, a new base case input value set is calculated from the old set by multiplying by choice matrix number 19. This new base case was found to be better than any combination, up or down of the three adjustable variables (27 possibilities). Therefore, the optimum value has been found. The final values for he adjustable inputs and the itemized losses are shown in table 5.19. Table 5.20 summarizes and identifies the beginning and ending values. Note that the optimization search increases efficiency by 5.6 percentage points by tripling the radial thickness of the regenerator to allow a much larger flow area, reducing the porosity somewhat and halving the wire diameter.

It should be mentioned that the best efficiency of 37.37 percent found in table 5.18 does not get duplicated in table 5.19 when the best case is recalculated. The reason for this is the pressure for the best case was not saved and reentered. This was done in the calculated motion optimizing sessions.

5.3.2 Specified motion – four adjustable inputs. – To do this case the following inputs need to be changed or checked over the last one:

Number 17 Number of adjustable variables to 4 Number 104 Fourth optimizable variable to 12

Table 5.21 shows the first and last part of the optimization search table. It works the same as the previous case except there are 81 choice matrices to search through instead of 27.

Table 5.22 shows the optimized results for this case. Table 5.23 shows how these four variables changed due to optimization. All other variables are made to be the same. Only the pressure changes to adjust the power to near the target power. Note that 6.8 percentage points are gained by increasing the radial thickness (flow area) by a factor of four and decreasing the regenerator length by a factor of five and by decreasing the wire diameter by a factor of six. At this point, nothing is said about how the pressure vessel for the

LAST PART OF OPTIMUM SEARCH TABLE SPECIFIED - THREE VARIABLES

			SFEC	TLIED	- INKEE	VARIA	RLF2		
	212	19	1	5.718	3 94	.74	1002.78	37.37	37.34
	213	20	19	5.718		.59	1001.61	37.35	37.37
	214	21	19	5.718		.43	995.64	37.27	37.37
	215	22	19	5.718		.24	1000.44	37.05	37.37
	216	23	19	5.718		.82	1001.29	36.91	
	217	24	19	5.718		.62			37.37
	218	25	19	5.718			996.96	37.14	37.37
						.10	1014.42	36.77	37.37
	219	26	19	5.718		.09	999.98	36.80	37.37
	220	27	19	5.718		.68	995.81	36.36	37.37
	221	19	19	5.718		.23	999.48	37.24	37.37
	222	2	1	5.718		.46	1000.20	37.34	37.37
	223	3	1	5.718	92	.45	995.78	37.27	37.37
	224	4	1	5.718	93.	.24	1000.44	37.05	37.37
	225	5	1	5.718	95.	.82	1001.29	36.91	37.37
	226	6	1	5.718	90.	. 62	996.96	37.14	37.37
	227	7	1	5.718	99.	.10	1014.42	36.77	37.37
	228	8	1	5.718		.09	999.98	36.80	37.37
	229	9	ī	5.718		68	995.81	36.36	37.37
	230	10	ī	5.718		94	997.06		
	231	11	ĩ	5.718		42		37.32 37.29	37.37
	232	12	i	5.718			1001.85		37.37
	233	13	1				996.12	37.31	37.37
	233			5.718		60	1000.73	36.73	37.37
		14	1	5.718		19	1001.10	36.56	37.37
	235	15	1	5.718			997.42	36.85	37.37
	236	16	1	5.718			1009.30	37.03	37.37
	237	17	1	5.718			1000.82	37.06	37.37
	238	18	1	5.718	94.	17	995.68	36.75	37.37
	239	19	1	5.718			1002.75	37.26	37.37
	240	20	1	5.718	98.	24	1001.79	37.29	37.37
	241	21	1	5.718	94.	34	995.11	37.09	37.37
	242	22	1	5.718	94.		999.85	37.30	37.37
	243	23	1	5.718	96.		1001.55	37.20	37.37
	244	24	1	5.718	91.		996.40	37.34	37.37
	245	25	ī	5.718	102.		1023.16	36.36	37.37
	246	26	ī	5.718	102.		998.07		
	247	27	ī	5.718	101.			36.36	37.37
			CONDITION	JC NDF	. 100.	13	996.68	35.79	37.37
01=	94.741		2	03=	600.000	0.4	40.000	0-	
06=	2.700		2.600						49.600
11=				08=	0	09=		10=	1.000
	0	12=	.000	13=	1.000		_	15=	1
16=	1	17=	3	18= 1	1000.000	19=	10.000		
CURREI	NT DIME	NSIONS							
20=	1	21=	4.0400	22=	4.2000	23=	4.7000		5.7180
25=	15.1900	26=	.0365	27=	1.6630	28=	5.7790	29= 29	
30=	6.2000	31=	.4260	32=	0	33=	33.0000	34= 15	5.2500
35= 2	25.4000	36=	7.6000	37= 3	81.0000	38=	.0000	39=	.8000
40-							2 2000	AA - 77	2.5300
40≃.		41=	31.7900	42=	20.5000	43=	2.3900	44- /4	
40= .	10.0000 22	41= 46=	31.7900 24	42= 47=	1.0200	43= 48=	.1575	44- 72	.1067
45=	10.0000 22	46=	24	47=	1.0200	48=	.1575	49=	.1067
45= 50=	10.0000 22 .7600	46= 51=	24 .1321	47= 52=	1.0200 .1016	48= 53=	.1575 31.7900	49= 54= 2	.1067 2.9200
45= 50= 55=	10.0000 22 .7600 2	46= 51= 56=	24 .1321 34	47= 52= 57=	1.0200 .1016 18.3400	48= 53= 58=	.1575 31.7900 .2362	49= 54= 2 59= 9	.1067 2.9200 9.2600
45= 50= 55= 60=	10.0000 22 .7600 2 1.5000	46= 51= 56= 61=	24 .1321 34 .0000	47= 52= 57= 62=	1.0200 .1016 18.3400 6.4460	48= 53= 58= 63=	.1575 31.7900 .2362 1.5521	49= 54= 2 59= 9 64= 46	.1067 2.9200 0.2600 5.7727
45= 50= 55= 60= 65= 6	10.0000 22 .7600 2 1.5000 56.9506	46= 51= 56= 61= 66=	24 .1321 34 .0000 .0000	47= 52= 57= 62≕ 67=	1.0200 .1016 18.3400 6.4460 .0000	48= 53= 58= 63= 68=	.1575 31.7900 .2362 1.5521 .0000	49= 54= 2 59= 9 64= 46 69=	.1067 2.9200 0.2600 5.7727 135
45= 50= 55= 60= 65= 70=	10.0000 22 .7600 2 1.5000 56.9506 .0508	46= 51= 56= 61= 66= 71=	24 .1321 .0000 .0000 .3760	47= 52= 57= 62= 67= 72=	1.0200 .1016 18.3400 6.4460 .0000 7.9200	48= 53= 58= 63= 68= 73=	.1575 31.7900 .2362 1.5521 .0000 1.5000	49= 54= 2 59= 9 64= 46 69= 74=	.1067 2.9200 2.2600 5.7727 135 .0000
45= 50= 55= 60= 65= 70= 75=	10.0000 22 .7600 2 1.5000 56.9506 .0508 .0000	46= 51= 56= 61= 66= 71= 76=	24 .1321 34 .0000 .0000 .3760 1.0000	47= 52= 57= 62≕ 67= 72= 77=	1.0200 .1016 18.3400 6.4460 .0000 7.9200 3.0000	48= 53= 58= 63= 68= 73= 78=	.1575 31.7900 .2362 1.5521 .0000 1.5000 1.0000	49= 54= 2 59= 9 64= 46 69= 74= 79= 4	.1067 2.9200 2.2600 5.7727 135 .0000
45= 50= 55= 60= 65= 70= 75= 80=	10.0000 22 .7600 2 1.5000 56.9506 .0508 .0000 20.0000	46= 51= 56= 61= 66= 71= 76= 81=	24 .1321 34 .0000 .0000 .3760 1.0000 .0100	47= 52= 57= 62= 72= 72= 77= 82=	1.0200 .1016 18.3400 6.4460 .0000 7.9200 3.0000 .1000	48= 53= 58= 63= 73= 78= 83=	.1575 31.7900 .2362 1.5521 .0000 1.5000 1.0000 .0050	$\begin{array}{r} 49 = \\ 54 = 2 \\ 59 = 9 \\ 64 = 46 \\ 69 = \\ 74 = \\ 79 = 4 \\ 84 = \end{array}$.1067 2.9200 2.2600 5.7727 135 .0000 .0000
45= 50= 55= 60= 70= 75= 80= 85=	10.0000 22 .7600 2 1.5000 56.9506 .0508 .0000 20.0000 .0000	46= 51= 56= 61= 66= 71= 76= 81= 86=	24 .1321 34 .0000 .0000 .3760 1.0000 .0100 -4.5650	47= 52= 57= 62= 67= 72= 77= 82= 87=	1.0200 .1016 18.3400 6.4460 .0000 7.9200 3.0000 .1000 .4684	48= 53= 58= 63= 68= 73= 78= 83= 88=	.1575 31.7900 .2362 1.5521 .0000 1.5000 1.0000 .0050 7.9300	49= 54= 2 59= 9 64= 46 69= 74= 79= 4 84= 89=	.1067 2.9200 2.2600 5.7727 135 .0000 .0000 .0000 .4600
45= 50= 55= 60= 70= 75= 80= 85= 90=	10.0000 22 .7600 2 1.5000 56.9506 .0508 .0000 20.0000 .0000 4.4500	46= 51= 56= 61= 66= 71= 76= 81= 86= 91=	24 .1321 34 .0000 .3760 1.0000 .0100 -4.5650 .3710	47= 52= 57= 62= 72= 77= 82= 87= 92=	1.0200 .1016 18.3400 6.4460 .0000 7.9200 3.0000 .1000 .4684 .1450	48= 53= 58= 63= 73= 78= 83= 88= 93=	.1575 31.7900 .2362 1.5521 .0000 1.5000 1.0000 .0050 7.9300 .0813	49= 54= 2 59= 9 64= 46 69= 74= 79= 4 84= 89= 94=	.1067 2.9200 2.2600 5.7727 135 .0000 .0000 .0000 .4600 1
45= 50= 55= 60= 70= 75= 80= 85=	10.0000 22 .7600 2 1.5000 56.9506 .0508 .0000 20.0000 .0000 4.4500 .5000	46= 51= 56= 61= 66= 71= 76= 81= 86= 91= 96=	24 .1321 34 .0000 .3760 1.0000 .0100 -4.5650 .3710 0	47= 52= 57= 62= 67= 72= 77= 82= 87= 92= 97=	1.0200 .1016 18.3400 6.4460 .0000 7.9200 3.0000 .1000 .4684 .1450 .0000	48= 53= 58= 63= 73= 78= 83= 93= 98=	.1575 31.7900 .2362 1.5521 .0000 1.5000 1.0000 .0050 7.9300 .0813 .0000	49= 54= 2 59= 9 64= 46 69= 74= 79= 4 84= 89= 94= 99=	.1067 2.9200 2.2600 5.7727 135 .0000 .0000 .0000 .4600 1 .0000
45= 50= 55= 60= 70= 75= 80= 85= 90=	10.0000 22 .7600 2 1.5000 56.9506 .0508 .0000 20.0000 .0000 4.4500	46= 51= 56= 61= 66= 71= 76= 81= 86= 91= 96=	24 .1321 34 .0000 .3760 1.0000 .0100 -4.5650 .3710 0	47= 52= 57= 62= 72= 77= 82= 87= 92=	1.0200 .1016 18.3400 6.4460 .0000 7.9200 3.0000 .1000 .4684 .1450 .0000 15	48= 53= 58= 63= 73= 78= 83= 93= 98= 103=	.1575 31.7900 .2362 1.5521 .0000 1.5000 1.0000 .0050 7.9300 .0813 .0000 14	49= 54= 2 59= 9 64= 46 69= 74= 79= 4 84= 89= 94= 99= 104=	.1067 2.9200 2.2600 5.7727 135 .0000 .0000 .0000 .4600 1 .0000 0
45= 50= 55= 60= 70= 75= 80= 90= 95=	10.0000 22 .7600 2 1.5000 56.9506 .0508 .0000 20.0000 .0000 4.4500 .5000	46= 51= 56= 61= 66= 71= 76= 81= 86= 91= 96=	24 .1321 34 .0000 .3760 1.0000 .0100 -4.5650 .3710 0 13	47= 52= 57= 62= 67= 72= 77= 82= 87= 92= 97=	1.0200 .1016 18.3400 6.4460 .0000 7.9200 3.0000 .1000 .4684 .1450 .0000	48= 53= 58= 63= 73= 78= 83= 93= 98=	.1575 31.7900 .2362 1.5521 .0000 1.5000 1.0000 .0050 7.9300 .0813 .0000	49= 54= 2 59= 9 64= 46 69= 74= 79= 4 84= 89= 94= 99=	.1067 2.9200 2.2600 5.7727 135 .0000 .0000 .0000 .4600 1 .0000

ENTERED PRINT ROUTINE AFTER 247 OPT. VARIABLE COMBINATIONS 495 TOTAL INPUT CASES 4114 TOTAL CYCLES NUMBER OF CYCLES FOR LAST CASE WAS 8 FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE SPECIFIED MOTIONS ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS THE ORDER IN WHICH THE OPTIMIZATION NUMBERS ARE TESTED IS: 13 15 14 0 0 0 0 0 0 0 0 0 0 0 0 FINAL VALUES FOR CHANGABLE INPUT BY OPTIMIZATION # OPTIMIZATION # VALUE 13 1.5521 66.9506 15 46.7727 14 OPERATING CONDITIONS ARE:SPEC.FREQ., HZ = 29.70HEAT IN, DEG C = 600.00W. GAS 1=H2,2=HE,3=AIR 2POWER P.STR, CM = 2.70DISPL. STROKE, CM = 2.60CALC.FREQ., HZ = 29.70TIME STEPS/CYCLE = 24.00 OPERATING CONDITIONS ARE: COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: COMPORTED FLATION MARKED CORRANGED CONFORTED FLATION MARKED CORRANGED CONTROL FLATHEAT REQUIREMENT, WATTSPOWER, WATTS1252.2024BASIC2041.1550BASIC1252.2024BASIC104.1847ADIABATIC CORR.-52.0053ADIABATIC CORR.104.1847HEATER FLOW LOSS-97.4405REHEAT185.5717REGEN.FLOW LOSS-94.4209SHUTTLE107.6520COOLER FLOW LOSS-5.5529PUMPING7.2932TEMPSWING1843 HEAT REQUIREMENT, WATTS -97.4405 REHEAT -94.4209 SHUTTLE -5.5529 PUMPING 1002.7828 TEMP. SWING

 INDICATED
 1002.7828
 TEMP. SWING
 .1843

 CYL. WALL COND.
 254.6543

 DISPLCR WALL COND.
 34.7119

 INDICATED EFFICIENCY, % 37.37
 CYL. GAS COND.
 62.7014

 INDICATED EFFICIENCY, % 37.37
 CYL. GAS COND.
 6.2609

 REGEN. MTX. COND.
 18.7517

 RAD.INSIDE DISPL.
 4.9054

 COMP.SP.EFFECT.TEMP.,C
 580.49
 FLOW FRIC. CREDIT
 -144.6510

 COMP.SP.EFFECT.TEMP.,C
 48.78
 TOTAL HEAT TO ENG.
 2683.3756

 TABLE 5.20RESULTS OF OPTIMIZATION SPECIFIED MOTION - THREE VARIABLES

Optimization number	Identity	Units	Original values	Final values
13	Radial thickness of regenerator	CM	0.554	1.5521
15	Porosity of matrix	%	75.9	66.9506
14	Diameter of wire in matrix	Microns	88.9	46.7727
	Efficiency	%	31.63	37.37

FIRST AND LAST PART OF OPTIMUM SEARCH TABLE SPECIFIED MOTION - FOUR ADJUSTABLE VARIABLES SEARCH FOR OPTIMUM

The number of active optimization numbers is: 4 The order in which the optimization numbers are tested is:							
	in which	the opt	timization	numbers	are tested	1 15:	
13 15 1			0 0 0	0 0	0 0	0_0	Det DEE 4
Trial Num.	Ch.Mx.#	Best#		Pavg.Ba	ar Pwr.W	Eff. %	Bst.Eff.%
1	1	1	5.718	81.96	1010.48	31.63	31.63
2	2	1	5.718	80.89	999.09	31.91	31.63
3	3	2	5.718	81.77	1000.88	31.18	31.91
4	4	2	5.718	80.22	998.83	27.34	31.91
5	5	2	5.718	80.64	1000.31	27.50	31.91
6	6	2 2	5.718	80.14	999.60	27.12	31.91
		2		84.68	1005.42	33.24	31.91
7	7	2	5.718		998.43	33.74	33.24
8	8	7	5.718	83.15		32.53	33.74
9	9	8	5.718	86.13	1003.82		33.74
10	10	8	5.718	80.27	995.21	30.81	
11	11	8	5.718	80.56	1000.24	31.10	33.74
12	12	8	5.718	81.04	1000.46	30.45	33.74
13	13	8	5.718	80.31	999.46	26.16	33.74
14	14	8	5.718	80.74	1000.31	26.29	33.74
15	15	8	5.718	80.11	999.50	25.96	33.74
16	16	8	5.718	83.30	1003.56	32.88	33.74
17	17	8	5.718	82.17	998.90	33.33	33.74
			5.718	84.50	1002.80	32.26	33.74
18	18	8		84.50	997.44	32.33	33.74
19	19	8	5.718			32.70	33.74
20	20	8	5.718	81.57	999.83		33.74
21	21	8	5.718	82.79	1001.29	31.85	
22	22	8	5.718	80.24	998.06	28.57	33.74
23	23	8	5.718	80.64	1000.30	28.75	33.74
24	24	8	5.718	80.33	999.73	28.32	33.74
25	25	8	5.718	86.56	1008.06	33.48	33.74
26	26	8	5.718	84.46	997.73	34.05	33.74
27	27	26	5.718	88.33	1005.35	32.66	34.05
28	28	26	5.718	82.12	994.63	31.79	34.05
29	29	26	5.718	82.31	1000.16	32.14	34.05
		26	5.718	83.21	1000.92	31.35	34.05
30	30			81.16	998.48	27.78	34.05
31	31	26	5.718		1000.35	27.93	34.05
32	32	26	5.718	81.64	1001.92	37.68	38.42
963	63	1	5.718	79.65			38.42
964	64	1	5.718	75.15	994.86	38.30	38.42
965	65	1	5.718	75.96	1000.94	38.29	
966	66	1	5.718	75.23	999.07	38.32	38.42
967	67	1	5.718	74.55	999.38	37.44	38.42
968	68	1	5.718	75.29	1000.66	37.34	38.42
969	69	1	5.718	73.93	998.71	37.53	38.42
970	70	1	5.718	78.39	1007.91	38.14	38.42
971	71	1	5.718	77.71	998.94	38.13	38.42
972	72	ī	5.718	78.21	1000.92	37.92	38.42
973	73	1	5.718	76.74	997.92	38.40	38.42
. 974	74	1	5.718	77.14	1000.55	38.41	38.42
. 975	75	1	5.718	76.84	999.54	38.33	38.42
	76	1	5.718	74.96	998.12	38.10	38.42
976					1000.75	38.02	38.42
977	77	1	5.718	75.72		38.17	38.42
978	78	1	5.718	74.52	998.71		38.42
979	79	1	5.718	81.81	1016.50	37.72	
980	80	1	5.718	80.05	996.67	37.70	38.42
981	81	1	5.718	81.63	1003.67	37.31	38.42

PRINTOUT OF OPTIMIZED DESIGN SPECIFIED MOTION - FOUR ADJUSTABLE VARIABLES

CURRENT OPERATING CONDITIONS ARE:									
01=		02=	2	03=	600.000	04=	40.000	05=	49,600
06=	2.700	07=	2.600	08=	0	09=	1	10=	
11=	-	12=	.000	13=	1.000		ī	15=	
16=	1	17=	4	18=	1000.000	19=	10.000		-
CURR	ENT DIME	NSIONS	ARE:						
20=	1	21=	4.0400	22=	4.2000	23≖	4.7000	24=	5.7180
25=	15.1900	26=	.0365	27=	1.6630		5.7790		29.7000
30=	6.2000	31=	.4260	32=	0		33,0000		15.2500
35=	25.4000	36=	7.6000	37=	381.0000	38=	.0000	39=	.8000
40=	10.0000	41=	31.7900	42=	20.5000	43=	2.3900		72.5300
45=	22	46=	24	47=	1.0200	48=	.1575		.1067
50=	.7600	51≖	.1321	52=	.1016	53=	31.7900	54=	
55≠	2	56=	34	57=	18.3400	58=	.2362	59=	9.2600
60=	1.5000	61=	.0000	62=	1.3272	63=	2.0247	64=	14.8260
	73.6457	66=	.0000	67=	.0000	68=	.0000	69=	135
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
75=	.0000	76=	1.0000	77=	3.0000	78=	1.0000	79=	4.0000
	20.0000	81=	.0100	82=	.1000	83=	.0050	84=	.0000
85=	.0000	86=	-4.5650	87=	.4684	88-	7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.1450	93≃	.0813	94 =	1
95=	.5000	96=	0	97=	.0000	98=	.0000	99=	.0000
100=	.0000	101=	13	102=	15	103=	14	104=	12
105=	0	106=	0	107=	0	108=	0	109=	0
110=	0	111=	0	112=	0	113=	0	114=	0
115=	0								

ENTERED PRINT ROUTINE AFTER 981 OPT. VARIABLE COMBINATIONS 1963 TOTAL INPUT CASES 17854 TOTAL CYCLES NUMBER OF CYCLES FOR LAST CASE WAS 10 FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE SPECIFIED MOTIONS ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS THE ORDER IN WHICH THE OPTIMIZATION NUMBERS ARE TESTED IS: 13 15 14 12 0 0 0 0 0 0 0 0 0 0 0 FINAL VALUES FOR CHANGABLE INPUT BY OPTIMIZATION # OPTIMIZATION # VALUE 13 2.0247 15 73.6457 14 14.8260 12 1.3272 OPERATING CONDITIONS ARE: 77.17 SPEC.FREQ., HZ = 29.70 HEAT IN, DEG C = 600.00 CHRG. PRESS., BAR = HEAT OUT, DEG. C = 600.00 40.00 W. GAS 1=H2,2=HE,3=AIR 2 PHASE ANG. DEGREES = DISPL. STROKE, CM = 49.60 POWER P.STR, CM = 2.70CALC.FREQ., HZ = 29.702.60 DISPL. STROKE, C. TIME STEPS/CYCLE 24.00 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: POWER, WATTS HEAT REQUIREMENT, WATTS BASIC 1201.0909 BASIC 1974.8192 ADIABATIC CORR. -52.5440 ADIABATIC CORR. 100.4631 HEATER FLOW LOSS REHEAT 122.0498 REGEN.FLOW LOSS SHUTTLE -60.3180 106.2553 COOLER FLOW LOSS 6.8512 -3.5367 PUMPING -3.5367 FOR INC 1000.5247 TEMP. SWING CYL. WALL COND. INDICATED 1.1423 277.2513 DISPLCR WALL COND. 34.2616 ------REGEN. WALL COND. 61.8880 INDICATED EFFICIENCY, \$ 38.42
 CYL. GAS COND.
 6.1797

 REGEN. MTX. COND.
 22.2208

 RAD.INSIDE DISPL.
 4.8352

 FLOW FRIC. CREDIT
 -114.3265

 TOTAL HEAT TO ENG.
 2603.8910
 EXP.SP.EFFECT.TEMP.,C 577.75 COMP.SP.EFFECT.TEMP.,C 52.87

92

C2

TABLE 5.23RESULTS OF OPTIMIZATION SPECIFIED MOTION - FOUR VARIABLES

Optimization number	Identity	Units	Original values	Final values
13	Radial thickness of regenerator	cm	0.554	2.0247
15	Porosity of matrix	°∕.	75.9	73.6457
14	Diameter of wire in matrix	Microns	88.9	14.826
12	Regenerator length in direction of flow	cm	6.446	1.3272
	Efficiency	%	31.63	38.42

engine could be designed or whether such fine wire is practical (15 μ m = 0.0006 in.). Fully completed optimization programs should have practical limitations set based upon engine design and availability of materials.

In comparison of tables 5.20 and 5.23, one sees that simply by including the length of the regenerator, we optimize to quite a different looking engine but gain very little in efficiency. One needs to combine optimization searches with common sense.

<u>5.3.3 Calculated motion – three adjustable inputs</u>. – To do this case the following inputs need to be checked or changed over the last one:

Number 10 Time step to 0.2 msec Number 14 Engine load to four Number 15 Method of calculation to two Number 17 Number of adjustable variables to three Number 75 Alternator constant to 0.02 N/(cm/sec)²

Table 5.24 shows the first and last part of the optimization search table. The important difference to note here is target power can be missed by ± 20 percent instead of about ± 1 percent specified motion case. This is contrary to tests shown in figures 5.1 and 5.2 where indicated power is nearly exactly proportional to charge pressure for the same mode of calculation, calculated motion and linear generator. The variation is almost too large.

Table 5.25 shows the optimized results for this case with a list of itemized losses.

Table 5.26 shows how these three adjustable inputs change as the optimum is searched. Note that the search predicts a 6.0 percentage point increase in efficiency by increasing the radial thickness by 66 percent, decreasing the porosity and increasing the wire diameter. These last two trends are opposite those found in the last two optimization searches. (The final porosity is not easy to attain--close packed spheres have 40 percent porosity.) We need a flow loss equation that will take this into account.

5.3.4 Calculated motion – four adjustable inputs. – To do this case the following inputs need to be changed:

Number 10 Time step to 0.1 msec Number 17 Number of optimizable variables to four Number 104 Fourth optimizable variable to be variable number 12

Table 5.27 shows the first and last part of the optimum search table. The same wide variation in powers is noted. The original example as calculated by W. Martini was done with a time step of 0.25 msec. W. Martini modified the program to calculate a more consistent target power but he could only get the simulation to run for 37 trials. When the program was converted to double precision this case would stop working on the 187th trial. It was necessary to decrease the time step to 0.1 msec to allow the program to complete and output results. Table 5.28 shows these results. Table 5.29 shows the initial and final values for the four optimized variables.

FIRST AND LAST PART OF OPTIMUM SEARCH TABLE CALCULATED MOTION - THREE ADJUSTABLE VARIABLES

SEARCH FOR OPTIMUM

11

The number	• of activ	ve optin	mization n	umbers is	s: 3		
The order	in which	the opt	timization	numbers	are teste	d is:	
13 15 1			0 0 0		0 0	0 0	
Trial Num.	Ch.Mx.#	Best#	Cyl.D.cm	Pavg.Ba	ar Pwr.W	Eff. %	Bst.Eff.%
1	1	1	5.718	48.48	1013.62	29.36	29.36
2	2	1	5.718	46.80	988.46	29.31	29.36
3	3	1	5.718	51.67	1036.02	29.41	29.36
4	4	1 3 3	5.718		956.32	25.77	29.41
5	5	3	5.718	45.76	1001.19	25.89	29.41
6 7	6	3 3 7	5.718	45.44	982.90	25.70	29.41
7	7	3	5.718	68.89	1051.69	32.35	29.41
8	8	7	5.718	58.75	1016.07	31.88	32.35
9	9	7	5.718	76.49	992.56	32.24	32.35
125	14	1 1	5.718	61.17	993.15	33.83	35.47
126	15	1	5.718	83.73		34.79	35.47
127	16	l	5.718	152.32	1321.23	35.42	35.47
128	17	1 1 1	5.718	99.70	923.40	34.83	35.47
129	18	l	5.718	154.00	1132.57	34.91	35.47
130	19	1	5.718	120.18	1030.85	35.28	35.47
131	20	l	5.718	102.49	909.17	34.73	35.47
132	21	1	5.718	159.78	1121.92	34.83	35.47
133	22	1	5.718	98.55	1090.72	35.39	35.47
134	23	1	5.718	79.18	928.39	34.72	35.47
135	24	1	5.718	118.74	1099.40	35.22	35.47
136	25	1	5.718	204.75	1283.77	34.71	35.47
137	26	l	5.718	135.86	900.69	34.32	35.47
138	27	1	5.718	222.62	1143.86	33.88	35.47

PRINTOUT OF OPTIMIZED DESIGN CALCULATED MOTION - THREE ADJUSTABLE INPUTS

 $\begin{array}{c} \text{CURRENT OPERATING CONDITIONS ARE:}\\ 01= 109.221 02= 2 03= 600.000 04= 40.000 05= 88.648\\ 06= 2.616 07= 1.885 08= 0 09= 0 10= .200\\ 11= 0 12= .000 13= 1.000 14= 4 15= 2\\ 16= 1 17= 3 18= 1000.000 19= 10.000\\ \hline \\ \text{CURRENT DIMENSIONS ARE:}\\ 20= 1 21= 4.0400 22= 4.2000 23= 4.7000 24= 5.7180\\ 25= 15.1900 26= .0365 27= 1.6630 28= 5.7790 29= 29.7000\\ 30= 6.2000 31= .4260 32= 0 33= 33.0000 34= 15.2500\\ 35= 25.4000 36= 7.6000 37= 381.0000 38= .0000 39= .8000\\ 40= 10.0000 41= 31.7900 42= 20.5000 43= 2.3900 44= 72.5300\\ 45= 22 46= 24 47= 1.0200 48= .1575 49= .1067\\ 50= .7600 51= .1321 52= .1016 53= 31.7900 54= 2.9200\\ 55= 2 56= 34 57= 18.3400 58= .2362 59= 9.2600\\ 60= 1.5000 61= .0000 62= 6.4460 63= .8761 64= 94.8855\\ 65= 44.8182 66= .0000 67= .0000 68= .0000 69= 135\\ 70= .0508 71= .3760 72= 7.9200 73= 1.5000 74= .0000\\ 75= .0200 76= 1.0000 77= 3.0000 78= 1.0000 79= 4.0000\\ 85= .0000 81= .0100 82= .1000 83= .0050 84= .0000\\ 85= .0000 86= -4.5650 87= .4684 88= 7.9300 89= .4600\\ 90= 4.4500 91= .3710 92= .1450 93= .0813 94= 1\\ 95= .5000 96= 0 97= .0000 98= .0000 99= .00000\\ 90= 4.4500 91= .3710 92= .1450 93= .0813 94= 1\\ 95= .5000 96= 0 107= 0 108= 0 109= 0\\ 100= 0 111= 0 112= 0 113= 0 114= 0\\ 115= 0 \end{array}$

96

Table 5.25 Concluded

ENTERED PRINT ROUTINE AFTER 138 OPT. VARIABLE COMBINATIONS 277 TOTAL INPUT CASES 2363 TOTAL CYCLES NUMBER OF CYCLES FOR LAST CASE WAS 6 FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 0 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT = .020 N/(CM/SEC) **2.ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS THE ORDER IN WHICH THE OPTIMIZATION NUMBERS ARE TESTED IS: 13 15 14 0 0 0 0 0 0 0 0 0 0 0 0 FINAL VALUES FOR CHANGABLE INPUT BY OPTIMIZATION # OPTIMIZATION # VALUE .8761 13 15 44.8182 94.8855 14 OPERATING CONDITIONS ARE: CHERATING CONDITIONS ARE:SPEC.FREQ., HZ = 29.70HEAT IN, DEG C = 600.00HEAT OUT, DEG. C = 40.00W. GAS 1=H2,2=HE,3=AIR 2POWER P.STR, CM = 2.62POWER P.STR, CM = 2.62DISPL. STROKE, CM = 1.89CALC.FREQ., HZ = 30.57TIME STEPS/CYCLE = 163.54COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: COMPUTED PERFORMANCE COMPUTED PERFORMANCE COMPPOWER, WATTSBASICHEAT REQUIREMENT, WATTSBASICADIABATIC CORR.-65.8808ADIABATIC CORR.HEATER FLOW LOSS-89.8186REGEN.FLOW LOSS-285.0101SHUTTLECOOLER FLOW LOSS-6.9309PUMPINGINDICATED1105.8803TEMP. SWINGCYL. WALL COND. HEAT REQUIREMENT, WATTS 2568.2358 130.9153 235.7924 56.1540 19.1353 INDICATED1105.8803TEMP. SWING.2201CYL. WALL COND.215.4641DISPLCR WALL COND.34.4467REGEN. WALL COND.62.2223INDICATED EFFICIENCY, % 35.47CYL. GAS COND.EXP.SP.EFFECT.TEMP.,C577.81FLOW FRIC. CREDIT-232.3236COMP.SP.EFFECT.TEMP.,C49.23TOTAL HEAT TO ENG.3117.6875 .2201

TABLE 5.26 RESULTS OF OPTIMIZATION CALCULATED MOTION - THREE VARIABLES [Linear alternator load]

Optimization number	Identity	Units	Original values	Final values
13	Radial thickness of regenerator	CM	0.544	.8761
15	Porosity of matrix	9/ /0	75.9	44.8182
14	Diameter of wire in matrix	Microns	88.9	94.8855
	Efficiency	%	29.36	35.47

Table 5.27

. ...

SEARCH FOR OPTIMUM

The number of active optimization numbers is: 4							
The order	in which	the opt	timization	numbers	are teste	d is:	
13 15 1		0	0 0 0	0 0	0 0	0 0	
Trial Num.	Ch.Mx.#	Best#	Cyl.D.cm		ar Pwr.W	Eff. %	Bst.Eff.%
1	1	1	5.718	48.39	1011.34	29.36	29.36
2	2	1	5.718	46.81	985.36	29.30	29.36
3	3	1	5.718	51.67	1036.06	29.43	29.36
4	4	3	5,718	44.07	951.82	25.75	29.43
5	5	3	5.718	46.24	1021.47	25.91	29.43
6	6	3	5.718	45.86	996.42	25.71	29.43
7	7	3	5.718	68.55	1049.10	32.37	29.43
8	8	7	5.718	58.63	1015.50	31.88	32.37
9	9	7	5.718	76.38	993.29	32.29	32.37
10	10	7	5.718	45.23	948.25	28.48	32.37
11	11	7	5.718	47.28	1020.72	28.77	32.37
12	12	7	5.718	48.65	1005.15	28.60	32.37
13	13	7	5.718	44.57	972.91	24.83	32.37
14	14	7	5.718	45.32	996.39	24.92	32.37
15	15	7	5.718	45.91	1005.99	24.76	32.37
16	16	7	5.718	59.00	1000.85	31.36	32.37
10	17	7	5.718	52.66	998.93	30.87	32.37
	18	7	5.718	69.29	1028.81	31.76	32.37
18		7	5.718	51.93	1030.18	30.07	32.37
19	19	7	5.718	47.43	975.34	29.90	32.37
20	20			56.32	1011.03	30.40	32.37
21	21	7	5.718		924.33	26.63	32.37
22	22	7	5.718	43.53		26.88	32.37
23	23	7	5.718	46.87	1028.88	26.88	32.37
24	24	7	5.718	46.19	993.06		32.37
25	25	7	5.718	78.60	1041.86	33.01	
26	26	25	5.718	66.67	1031.16	32.86	33.01
27	27	25	5.718	86.36	985.19	32.90	33.01
28	28	25	5.718	53.35	1070.29	29.75	33.01
29	29	25	5.718	47.44	960.11	29.44	33.01
30	30	25	5.718	55.03	1007.51	29.84	33.01
31	31	25	5.718	44.66	943.07	26.09	33.01
32	32	25	5.718	47.32	1022.78	26.21	33.01
33	33	25	5.718	46.73	998.69	26.13	33.01
34	34	25	5.718	74.17	1029.71	32.56	33.01
394	67	1	5.718	67.20	1085.00	34.46	36.21
395	68	1	5.718	54.54	860.80	32.83	36.21
396	69	1	5.718	97.13	1316.34	35.40	36.21
397	70	1	5.718	108.62	1085.11	35.85	36.21
398	71	1	5.718	85.64	832.11	34.64	36.21
399	72	1	5.718	156.57	1350.12	35.75	36.21
400	73	1	5.718	104.08	899.61	35.37	36.21
401	74	1	5.718	98.47	962.64	35.67	36.21
402	75	1	5.718	151.67	1242.72	35.94	36.21
403	76	1	5.718	86.35	981.96	35.41	36.21
404	77	1	5.718	75.33	888.52	34.72	36.21
405	78	1	5.718	123.22	1273.33	36.20	36.21
406	79	1	5.718	164.40	1256.85	36.11	36.21
407	80	1	5.718		754.10	34.38	36.21
408	81	1	5.718	234.62	1416.26	34.95	36.21
		-					

Table 5.28

1 ENTERED PRINT ROUTINE AFTER 408 OPT. VARIABLE COMBINATIONS 817 TOTAL INPUT CASES 7183 TOTAL CYCLES NUMBER OF CYCLES FOR LAST CASE WAS 7 FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT = .020 N/(CM/SEC) **2.ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS THE ORDER IN WHICH THE OPTIMIZATION NUMBERS ARE TESTED IS: 13 15 14 12 0 0 0 0 0 0 0 0 0 0 FINAL VALUES FOR CHANGABLE INPUT BY OPTIMIZATION # OPTIMIZATION # VALUE 13 .7965 15 36.3027 14 115.9712 12 4.6056 OPERATING CONDITIONS ARE: CPERATING CONDITIONS ARE.SPEC.FREQ., HZ = 29.70HEAT IN, DEG C = 600.00W. GAS 1=H2,2=HE,3=AIR 2POWER P.STR,CM = 2.55CALC.FREQ., HZ = 31.75CALC.FREQ., HZ = 31.75CHRG. PRESS., BAR = 114.19HEAT OUT, DEG. C = 40.00PHASE ANG. DEGREES = 85.69DISPL. STROKE, CM = 1.78TIME STEPS/CYCLE = 314.91COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: POWER, WATTS DWER, WALLSBASIC1621.7096BASICADIABATIC CORR.-70.1346ADIABATIC CORR.HEATER FLOW LOSS-89.4897REHEATREGEN.FLOW LOSS-261.6603SHUTTLECOOLER FLOW LOSS-5.3216PUMPINGINDICATED1195.1034TEMP. SWINGCYL. WALL COND.DISPLOR WALL COND. HEAT REQUIREMENT, WATTS 2686.5611 138.3823 287.6481 50.0445 20.6800 210.6503 .2828 INDICATED EFFICIENCY, % 36.21 DISPLCR WALL COND. REGEN. WALL COND. CYL. GAS COND. 34.3773 62.0969 INDICATED EFFICIENCI, © 30.21CIL. GRO COND.0.2000REGEN. MTX. COND.18.9148EXP.SP.EFFECT.TEMP., C576.90FLOW FRIC. CREDIT4.8199COMP.SP.EFFECT.TEMP., C50.30TOTAL HEAT TO ENG.3300.3387

1

TABLE 5.29 - RESULTS OF OPTIMIZATION CALCULATEDMOTION - FOUR ADJUSTABLE INPUTS

[Linear Alternator Load]

Optimization number	Identity	Units	Original values	Final values
13	Radial thickness of regenerator	Cm	0.554	0.7965
15	Porosity of matrix	%	75.9	36.303
14	Diameter of wire in matrix	Microns	88.9	115.97
12	Length of regenerator	CM	6.446	4.606
	Efficiency	%	29.70	36.21

5.3.5 Comments on optimization searches. - The program can do optimization searches for both specified motion and calculated motion options as required by contract. However, the program still needs to be improved in a number of respects to be of practical use in Stirling engine design. Suggestions for improvements are discussed below.

5.3.5.1 Closer approach to constant power: The provision of having just two cases per trial number, with the first case used to set the charge pressure for the second, works well for specified motion but poorly for calculated motion. A second method needs to be added in order to zero in on the target power efficiently. The target power cannot be obtained exactly because of the jitter in the solution. Figure 5.12 shows the results of some calculations aimed at finding the exact pressure that will give exactly 1000 W of power. Note that when the scale is greatly expanded, and when enough trials are made, one can see that even with a fairly small time step and an apparently tight convergence, there is still some jitter in the solution. One must make the window around the target power large enough so that the solution can find it.

Table 5.30 compares the results plotted in Figure 5.12. Note the very high value calculated with 11 cycles and the low values calculated with 7 cycles. Apparently, there needs to be more cycles and a closer approach to steady state.

A new series was done with a convergence criteria of 0.001 instead of 0.005. This series is summarized in table 5.31 and graphed in figure 5.13. Note the jitter is gone but it makes a lot of difference whether 24 or 25 cycles are used to find the solution. The convergence criteria still is not tight enough.

These observations substantiate the data given in table 5.1. Most runs in Section 5 were done at a convergence criteria of 0.005 knowing that the power would be calculated low but the computation time would be small.

The effect of an even smaller convergence criteria will be discussed in Section 5.4.

5.3.5.2 Provision for no solution: In the calculated motion mode some cases will stop operating or after a few cycles never complete the next cycle. Provisions must be added to the program to stop such cases and ignore them in searching for the optimum.

5.3.5.3 Limitation on porosity: The heat transfer and flow loss equations need to be improved to adequately take into account the porosity of the matrix and make it impossible to choose unreasonable matrix porosities.

5.3.5.4 Limitation on dimensions: In the limited experience so far obtained with optimization searches, an "optimum" design was found to have a regenerator with a very large face area and a very short flow path. It would be difficult to enclose such a regenerator. As the optimization search is extended to other parts of the engine similar difficulties may arise. These mechanical constraints need to be written into the program.

FIGURE 5.12. - LARGE SCALE POWER VERSUS PRESSURE PLOT. CALCULATED MOTION - LINEAR ALTERNATOR. LOAD CONSTANT, 0.040; INITIAL TIME STEP, 0.1 MSEC; CONVERGENCE CRITERIA, 0.005.

Table 5.30

EFFECT OF PRESSURE ON COMPUTED RESULTS CALCULATED MOTION - LINEAR ALTERNATOR Load Constant = 0.040 N/(cm/sec)², Initial Time Step = 0.1 msec, Convergence Criteria = 0.005

Pressure Bar	Indicated Fower Watts	∦ Cycle to Solution	Indicated Efficiency	Calculated Freq. Hz	Final Time msec
Ear 97.50 97.60 97.80 97.88 97.89 97.90 97.91 97.92 97.93 97.94	Watts 999.3268 997.3368 999.0834 999.3170 999.6638 1000.2170 1000.1320 1000.1190 999.8864 999.8163	Solution 10 10 10 10 10 10 10 10 10 10	Efficiency 27.81 27.82 27.82 27.80 27.82 27.81 27.81 27.81 27.81 27.80 27.81		
97.95 97.96 97.97 97.98 97.98 97.99	999.8077 1000.3810 1000.7230 1000.6570 1000.7170	10 10 10 10 10	27.79 27.82 27.81 27.81 27.81 27.80	29.29 29.29 29.29 29.29 29.29 29.29	0.1 0.1 0.1 0.1 0.1
98.00 98.05 98.10 98.11 98.12 98.13	1000.6160 1000.8140 1001.3980 1001.3400 1001.3660	10 10 10 10 10	27.81 27.80 27.80 27.80 27.80 27.80	29.29 29.30 29.31 29.31 29.31 29.31	0 • 1 0 • 1 0 • 1 0 • 1 0 • 1
98.13 98.15 98.16 98.17 98.18 98.19 98.20	1005.4270 986.2051 986.2258 986.2603 986.3230 1001.9550 1001.9790 1001.9090	11 7 7 7 10 10	27.85 27.70 27.69 27.69 27.68 27.79 27.79 27.79 27.79	29.30 29.36 29.37 29.37 29.37 29.32 29.32 29.32 29.32	$\begin{array}{c} 0 \cdot 1 \\ 0 \cdot 1 \end{array}$

.

Table 5.31

EFFECT OF PRESSURE ON COMPUTED RESULTS (Same Case as Table 5.34 except Convergence Criteria = 0.001

Pressure Ear	Indicated Power Watts	<pre># Cycle to Solution</pre>	Indicated Efficiency	Calculated Freq. Hz	Final Time msec
·4.6υ	998.4567	24	28.10	28.78	0.025
94.90	999,3182	24	28.10	28.80	0.025
94.96	999.7576	24	28.10	28.81	0.025
94.97	999.9558	24	28.10	28.81	0.025
94.98	1000.7030	25	28,10	28.81	0.025
44.99	1000.0710	24	28,10	28.81	0.025
95.00	1000.1530	24	28,10	28.81	0.025
95.01	1000.8860	25	28.10	28.81	0.025
95.02	1000.3180	24	28.09	28.82	0.025
95.03	1000.3940	24	28.09	28,82	0.025
95.04	1001.2340	25	28.10	28,82	0.025
95.05	1000.5580	24	28.10	28.82	0.025
95.06	1000,7570	24	28.09	28.82	0.025
95.07	1001.4760	25	28.10	28.82	0.025
95.08	1000.8580	24	28.09	28.82	0.025
95.09	1001.6090	25	28.10	28.83	0.025
95.10	1001.0080	24	28.10	28.83	0.025
95.20	1002.4990	25	28.09	28.84	0.025

FIGURE 5.13. - LARGE SCALE POWER VERSUS PRESSURE PLOT. (SAME CASE AS FIG. 5.12 EXCEPT CONVERGENCE CRITERIA, 0.001.)

5.4 Effect of Leakage

In Section 5.3.5.1, we found it takes a very long time to reach a steady operating point. In investigating this property of the computer program, some interesting observations were made concerning leakage.

In the standard program, the following adjustments are made in the working gas inventory:

- (1) Arbitrary adjustment at the end of each cycle to make average working gas pressure and average bounce space pressure equal
- (2) Leakage through displacer centering port
- (3) Leakage through power piston centering port
- (4) Leakage through displacer rod seal

5. Leakage through power piston seal

Tests were run to separate some of these effects. The results of tests are summarized in table 5.32 and in figure 5.14.

We found that the pressure adjustment by itself was adding gas to the working gas at a constant rate. This adjustment was cut back just for this test to be only the first four cycles when it is really needed. With this feed removed, the normal seal leakage and centering port leakage settles out guicker and at a lower power.

Keeping the pressure adjustment cut back to the first four cycles, we investigated what part of the leakage was having an effect. When the seal leakage was stopped and the centering port leakage was allowed to remain the power increased. This needs to be looked into thoroughly because this centering port should draw off power. We found that when the centering port leakage was made large, that the engine pressures were adjusted the right way. With the centering ports plugged and the seal leakage at normal values, the power drops as expected. The reason for the peculiar shape of this curve is not understood.

5.5 Computer Time

Converting this program to double precision has increased the computer time required to run the program. Some optimization cases can easily run overnight on an IBM PC/AT. The cases in appendix J were timed to see how much difference in the two versions there is. The single precision version required approximately 20 min to calculate results for these 11 cases and the double precision version took over 50 min for the same 11 cases.

The differences can accumulate rapidly in an optimization problem. Example 5.3.1 takes 44 min to run nearly 500 cases with the double precision version. The single precision version only requires 33 min. Example 5.3.2 required 3 hr to run 1963 total cases with the double precision version. The single precision version ran 1343 cases in 1 hr 40 min. These are all cases which are centered around the base set of conditions. Choosing other options such as the Rios loss equation method for calculating losses can increase the necessary calculation time even more. The base optimization examples were run with the Rios loss equation method and the results using this method are identical to the documented results. Table 5.32

EFFECT OF LEAKAGE 95 BAR CHAKGE FRESSURE CALCULATED MOTION - LINEAR GENERATOR Load Constant, 0.04 N/(cm/sec**2 Convergence Criteria = 0.0001

Input No.

Final Time Step,msec	0.0125	0.0125	0.05	0.0125	0.0125	0.0125
Calculated Final Frequency Time Hz Step,	28.80		28.56	28,80	28.67	28.70
ed Indicated Efficiency %	28.16	converge	28.44	27.99	28,06	28.40
ir at s	1006.8140	did not	984.5011	990.2820	942.1617	1036,3780
	10		6	6	6	10
Cycles • to Conv•	45		15	ម ភូមិ	31	37
No.40 Center Cycle Prt.exp. to Factors Conv.	10	666	666	10	666	10
No.35 D.Rod Clear Micron	25.4	0.0	0.0	25.4	25.4	0.0
No.33 F.F. Clear Micron	33	0.0	0.0	33	ee S	0.0
Cycles for Fressure Adjust	Every	Every	First 4	First 4	First 4	First 4

FIGURE 5.14. - EFFECT OF LEAKAGE.

6.0 PROGRAM USERS MANUAL

This program was developed on an IBM personal computer with two double density disk drives, drives A and B, and additional memory. Each diskette drive had a capacity of 315 Kb. The memory was rated at 384 Kb and in addition there was a ram disk (C) which acts as a third rapid access disk drive with a capacity of 251 Kb. The configuration described above worked for the FPSE program which was compiled on it.

In addition to the added memory that this particular IBM personal computer had there was a graphics package which allowed high resolution graphics to be displayed on the IBM monochrome personal computer display. This particular graphics package provided 350 lines by 720 columns. The package was obtained from Orchid Technology, 47790 Westinghouse Drive, Fremont, California 94539. The package included a plug-in board and software for a number of different computer languages which allows the graphics capability to be used very conveniently. This graphics package may not be available now but it is the one that Martini Engineering used. This users manual is exact for the type of computer described above. It would, of course, have to be adapted for other computers, but much of the way of doing things should remain the same.

Sverdrup Technology's IBM PC's are typically equipped with a hard drive and do not have the disk storage limits W. Martini had. This has given us the option of using larger files without running out of space while compiling. The files have been combined as follows:

F1.FOR contains FPSE.FOR and FPIN.FOR FPIN.FOR replaces F1.FOR, F11.FOR, and F12.FOR F2A.FOR contains F2.FOR and F21.FOR F2B.FOR contains F22.FOR through F28.FOR F3.FOR contains F3.FOR, F4.FOR, F41.FOR, and F42.FOR

Together with SCREEN.ASM these four files contain the 17 source members Martini used with his dual diskette drive system. These programs are distributed on 2 DS-DD diskettes. The source diskette contains the previously mentioned 5 source files, the default input data table, and the SCREEN object and listing files. The program diskette contains an executable version with 2 input files. Initially both files are identical but the program uses INPUT.TBL to store the last case simulated and so this file will change whenever the program is run. MAKE BACKUP COPIES OF BOTH DISKETTES. This program will run on a monochrome, color, or enhanced graphics display, provided the user includes the command 'DEVICE=ANSI.SYS' in the file CONFIG.SYS in his root directory.

First the method of using the compiled program will be described and then the method of modifying the source codes and recompiling will be described.

6.1 Using the Compiled FPSE.EXE

To use this compiled program all one needs is an IBM compatible PC that can read the file from a 5-1/4 in. diskette. Once the computer is on and ready for operation, put the program diskette in the B disk drive. Do a directory of the diskette and you will find three files. One file is FPSE.EXE with a size of 209054 bytes. The other files are INPUT.TBL and DEFLT.TBL and they have a size of 3000 bytes. The file FPSE.EXE contains the executable code. The other

two files are the data. The program expects to find the data file on drive B. On a PC with only one floppy diskette drive the program will run from drive A. It is also possible to change the drive designation by modifying the source code in FPSE.FOR. To start the program type B:FPSE and hit the return key. After the program loads into memory it will ask the question 'Bring in last file for more modification?'. If the user answers 'NO' then the default data for the RE-1000 engine will be displayed. If the answer is 'YES' then the last case simulated is displayed on the screen. The user then proceeds to name the variable they wish to change and assign a new value to it. The screen is updated with this new value. When all changes have been made the user enters 'EXIT' and the simulation begins. After the computer is finished with the particular case the program asks the user whether they would like to calculate another case. If the answer is 'Y' the display will be erased and the input table redisplayed. If the answer is 'N' or if optimization was done as part of the last case then the program must be restarted as described in this section.

6.2 Changing Source Code and Recompiling*

For those users who plan to transfer the computer program described in this report to a mainframe computer, this section will be of no interest. However, for those users who will be using this computer program on something like an IBM personal computer, this section is written. It is assumed that the user has some sort of editor program which can take the source code files available on disk and make whatever modifications the user wants to make to them. Then the user must recompile the files that have been changed to produce object codes and then link these object codes into one executable code similar to the one that was furnished with the report. The author has used both the IBM FORTRAN and the Microsoft FORTRAN to develop this program. The author found that the IBM FORTRAN had a number of problems with it that could not be resolved by contacting the vendor. IBM supports their FORTRAN program by requiring the vendor to understand what the problem is and to call in and obtain an answer. Since it is a very rare vendor salesman who has ever used FORTRAN of any description this method of support breaks down very quickly. The author has found that the Microsoft FORTRAN works very well in almost all instances and is well supported by Microsoft of Bellevue, Washington. Both FORTRAN's were written by Microsoft and operate in the same way. Both compilers are for FORTRAN 77 with some restrictions. As of this time they are the only ones known that will compile large programs on the IBM personal computer or compatible computers for any type of FORTRAN.

Another FORTRAN is available for the IBM-PC and many other microcomputers. It is sold by Supersoft. On a sample program that was felt to give a typical mix of instructions, Supersoft claims the following performance in comparison:

	Time,	Size,		
	sec	EXE file		
IBM PC FORTRAN Supersoft FORTRAN	158.1 78.9	40 192 21 760		

^{*}These instructions are written for a two-drive machine with drive C being a ram disk.

However, they state that the current compiler allows only 64 K of code space and 64 K of data space. By a phone call of Supersoft in March 1983, we found that they expected to have chaining in September 1983. True large programs would be much later.

Since it is possible that a number of readers of this report will use the same or similar equipment to what the author used, the system that the author found to be efficient for compiling this size program will be described in the following paragraphs.

Both the Microsoft and IBM FORTRAN compilers have a limit of 64 K of memory in compiling any one module of a large program. Then any number of modules can be linked together to form a single executable file and the limit here is only in the size of the main memory. The FPSE program was written, edited and compiled in 17 different modules, when divided into the major subroutes. Experience has shown that to maintain such a program, it is better to have an even larger number of modules than the 17 that it is presently divided into. The reason for this is that the smaller modules take less time to recompile and the subsequent linking operation is about the same no matter how many modules there are, as long as the total length is the same. We found that the use of common blocks to transfer data from one program module to another was much more saving of computer memory than was the use of formal parameters. If a given size program module runs out of memory at compile time, the only thing that can be done is to subdivide it into two or more smaller pieces. In putting the full program together this subdivision was carried to ridiculous lengths as it seemed at the time without getting to a program which would compile without running out of memory. At that time we switched over from formal parameters to named common blocks at the suggestion of the Microsoft technical support people, and the problem went away. Some of the program modules which had not been broken up at this time were still very large but were compilable by the use of common blocks. At least in the microcomputer environment the use of named common blocks appears to be much more saving of memory than the use of formal parameters. However, both will work and can be used.

There are many different ways of using the FORTRAN software to produce an executable code. If there were enough disk space, it would be possible to design a batch file to go all the way from a collection of source files to an executable file. This might be possible for a microcomputer with a hard disk. It would also certainly be possible for a programmer operating with a mainframe computer. However, using the IBM personal computer at the most basic level there is a lot of constant attention and changing of disks in order to go from a source file to an executable file. For the size program that was produced in this contract, the following method was found to be about the best. This method used two batch files. One batch file was used to take the source code and produce an object file more or less automatically. Another batch file was used to gather up all the object files and make one single executable file. The use of these two batch files will now be further explained.

Table 6.2 Batch File for Compiling FORTRAN Programs.

REM OP COMPILES USING FOR1 AND FOR2 AND STORES OBJECT FILE ON A DISK COPY CP.BAT C: COPY %1.FOR C: T: PAUSE --INSERT FORTRAN A: DISK IN DRIVE "B" AND OBJ. FILES DISK IN DRIVE "A". B:FOR1 %1.A:,CON,NUL; B:FOR2 ERASE %1.FOR REM -- REMOVE OBJECT FILES DISK AND INSERT SOURCE FILE AND EDIT IN "A". A: - ----

Table 6.3 Record of Console Displays During Compilation.

A) CP FPSE

A) REM CP COMPILES USING FOR1 AND FOR2 AND STORES DBJECT FILE ON A DISK

A)COPY CP.BAT C: 1 File(s) copied A)COPY FPSE.FOR C: 1 File(s) copied A)C:

C) PAUSE -- INSERT FORTRAN A: DISK IN DRIVE "B" AND OBJ. FILES DISK IN DRIVE "A". Strike a key when ready . . . C) B:FOR1 FPSE, A:, CON, NUL; Microsoft FORTRAN77 V3.10 05/03/83

(This part is given in Appendix D.)

C) ERASE FPSE. FOR

C) REM -- REMOVE OBJECT FILES DISK AND INSERT SOURCE FILE AND EDIT IN "A".

The batch file that is used to convert a single source file written in FORTRAN into an object file is given in table 6.2. To use this batch file you need one or more disks that contain the source code files and possibly the editor program that is used. These source code disks should each have a copy of CP.BAT on them. Also, you need another disk with copies of the first and second compilation code that is used by either IBM FORTRAN or Microsoft FORTRAN. The first pass should be labeled FORLEXE and the second pass should be labeled FOR2.EXE. A copy of CP.BAT should also be on this disk. From the disk operating system prompt (A>) type in CP, a space, then the name of the file without the .FOR subscript (for instance, FPSE). Hit return. See the first line of table 6.3. The first thing that shows is the remark line to show what kind of a program you have. After this, it copies the CP.BAT and the subject source file to the C disk. Check to see that both files get copied. By using the C disk as well as the A and B disks it is possible to do a compilation without additional supervision from the operator. Next the control passes to the C disk and there is a pause in order to carry out the instructions given. Put a formatted disk that is to accept all the object files into the A drive and the disk that contains the FOR1 and FOR2 in the B drive. When this is done. it says strike any key. The rest of the compilation is now automatic. A listing of the source code with line numbers and with errors highlighted, if there are any, and a listing of all the variables used in alphabetical order is displayed on the screen and can be printed out by using the control P code to make the printer print what is displayed on the screen. The listings given in the appendices D to T^{*} were all done by this method. It is very convenient because one can watch the compilation proceed and determine what errors there are even before compilation is finished. If there are no errors, the object file will be created and have the same prefix as the source file but the suffix will be .0BJ.

In this way each one of the modules of the full program can be compiled and the object files stored on a single disk. Of course, any compile time errors must be noted and corrections made before the linking can be undertaken. Table 6.3 is a record of what appears on the screen during a typical compilation section for file FPSE.FOR.

At the end of the printout the batch file concludes by erasing the source file (in this case, FPSE.FOR) from the C disk and presenting the instruction, "Remove the object files disk and insert source file and edit in A." This is a convenient way of doing it because disk B can continue to have the compilation software on it. This software with two programs takes up most of the disk so additional programs of any magnitude cannot be added to an ordinary double density disk for the IBM PC OR PC compatible machines.

Batch files also work well for linking all the programs together. Table 6.4 shows a listing of a batch file that does this and table 6.5 shows the messages that are recorded on the console when this is undertaken. To start with, the batch file LK should be on both of the disks in drive A which should also contain all the object files that have been accumulated by the 17 different compilation steps that have preceded this. On drive B should also be a copy of the LK batch file as well as a copy of LINK, a microsoft disk

^{*}Program listings have been removed from the appendices and are now available on diskette.

Table 6.4 Batch File for Linking All Components of FPSE.

```
REM "LK" links all .OBJ files in the FPSE program and stores the .EXE
PAUSE --Put .OBJ disk in A: and LINK disk in B: -- A: is defalt.
B:LINK FPSE+F1+F11+F12+F2+F21+F22+F23+F24+F25+F26+F27+F28+F3+F4+F41+F42,C:FPSE.E
XE:NUL.MAP,B:FORTRAN.LIB+B:HALOF.LIB
PAUSE --Put FPSE.EXE disk in B:
COPY LK.BAT C:
COPY LK.BAT C:
C:
FPSE.EXE B:
C:
```

Table 6.4 Batch File for Linking All Components of FPSE.

- -----

REM "LK" links all .OBJ files in the FPSE program and stores the .EXE PAUSE --Put .OBJ disk in A: and LINK disk in B: -- A: is defait. B:LINK FPSE+F1+F11+F12+F2+F21+F22+F23+F24+F25+F26+F27+F28+F3+F4+F41+F42,C:FPSE.E XE,NUL.MAP,B:FORTRAN.LIB+B:HALOF.LIB PAUSE --Put FPSE.EXE disk in B: COPY LK.BAT C: COPY C:FPSE.EXE B: C: FPSE operating system utility and a copy of FORTRAN.LIB which is the FORTRAN library which is the one that uses the particular processor that the IBM personal computer has available to it as well as the library for the graphics component if this is installed. These programs also take up most of the disk and no additional substantial program can be added to it. The default disk should be drive A.

With this setup, type LK and hit the enter button. The batch file comes backl14th the remark line to describe what it is that you called up and the pause line that tells you to do what has just been instructed. This gives you a chance to see if this has actually been done. When you strike your key when ready, the batch file automatically enters the command line to link the program. This is 1-1/2 lines long and would otherwise have to be keyed in every time a linking is required. This is set up so that the source of the object files is drive A, the source of the program is drive B, and destination of the executable program is drive C. Therefore, linking can take place automatically. Note that the linker discovers that MOVEFR is defined more than once in the HALOF.LIB which is the graphics program library. Since this subroutine is not called up, it is not an error in this program. During the linking operation, the program uses all the memory space available and if additional memory space is needed, it creates a file VM.TMP on the default disk drive.

Occasionally, during the development of this program there hasn't been enough space for this temporary file to be fully created and the linking was stopped. We found that the size of the object files could be reduced by 20 to 30 percent by removing the meta command \$DEBUG. The DEBUG feature rarely works as it was intended. By making this change in the components of the program we had already debugged, it was possible to keep the procedure outlined in these paragraphs the same. After the linking is complete, the program FPSE.EXE is on disk C. Since this disk is not permanent, the remaining part of the batch file LK transfers a copy of this program to a disk which is inserted in B in place of the linking diskette. After striking any key, the transfer is made from C to B and the computer program is started automatically from the C disk.

These two batch files have been used in the last stages of the development of this program at Martini Engineering and have been found to be quite beneficial. We recommend them for those who would take up this computer program, particularly on an IBM personal computer or a machine compatible with it. Very similar utilities are also available for those using the CP/M operating systems and probably for almost any first class operating system on mainframe computers as well.

7.0 STATUS OF THE CODE AND REQUIREMENTS FOR FURTHER DEVELOPMENT

A computer code to optimize the design and predict the performance of free-piston Stirling engines has been developed on a microcomputer for use on micro- or mainframe computers. It appears that the code has the potential to become a valuable design tool. However, some additional development work is required before it potential can be fully realized.

Sample code calculations are shown in this report for the following cases:

- (1) Engine performance predictions
 - a. isothermal analysis with specified piston motions
 - b. isothermal analysis with free-piston and displacer motions
 - c. adiabatic analysis with specified piston motions
 - d. adiabatic analysis with free-piston and displacer motions
- (2) Optimization of the engine design
 - a. isothermal analysis with specified piston motions
 - b. isothermal analysis with free-piston motions

The code needs additional development in the following areas:

(1) The effect of leakage on output needs to be reviewed. There may be an error in how the centering port leakage is applied.

(2) In the optimization program the method of adjusting pressure to obtain the target power is satisfactory only for specified piston motion. A secant method for adjusting pressure to quickly obtain the desired engine power should be added.

(3) During the optimization search, sometimes a solution never finishes. Provision should be added for abandoning a solution in this case.

(4) Much faster optimization searches can possibly be obtained by using a large time steps and no leakage. This should be tried.

(5) The moving gas node analysis has potential that was not used in this program for directly calculating the heat requirement. This needs to be added.

(6) The speed of the moving gas node analysis can be improved by using a fixed number of constant mass gas nodes plus one variable mass gas node in the cold space to allow for leakage. This type of analysis has been found to be stable and may be faster than the isothermal analysis in reaching a solution. This improvement should be tried.

(7) The Rios second-order Runge-Kutta analysis was not stable beyond two cycles and thus was not usuable. The free-piston environment prevented reinitialization after each cycle, as had been done to keep the Rios analysis stable when used to simulate crank operated machines. Further thought should be given to the development of this technique to determine if it is suitable for use in the design of free-piston engines. (8) The performance calculation techniques should be validated against data. There are actually three differenct performance calculation techniques to chose from:

a. The Martini isothermal analysis which uses loss calculations to correct the basic isothermal assumptions, plus a correction to go from isothermal to adiabatic analysis in arriving at predicted performance for a real engine.

b. The Martini adiabatic moving gas node analysis which currently assumes adiabatic expansion and compression spaces but could easily be modified to allow heat transfer in these spaces. It could be fixed to operate in the free-piston mode.

c. The Rios analysis which also uses loss calculations to correct the basic assumption.

These three techniques should be comparatively evaluated as to their suitability for performance predictions and engine design. With fully instrumented engine data, it would be possible to at least partially separate the different loss components and determine what methods of analysis are reasonably accurate.

(9) An effort should be made to compare different available optimization techniques to see of others might be quicker to arrive at the same optimum design.

(10) The option of adjusting bore size to get the desired power during optimization should be comparatively evaluated against the option of adjusting pressure level.

(11) The optimization procedure should be validated by:

- a. excercising it against existing engine designs
- b. introducing geometrical constrainsts on the optimization variables where appropriate
- c using it to derive new engine designs.

8.0 REFERENCES

- W.R. Martini, "ISO82--A Fast Design Program for Stirling Cycle Heat Engines and Heat Pumps." Final report to ORNL under purchase order 62X-43168V. April 1983.
- 2. W.R. Martini, "A Revised Isothermal Analysis Program for Stirling Engines." 1983 IECEC Record, pp. 743-748.
- 3. W.R. Martini, "Stirling Engine Design manual." DOE/NASA/3152-78-1. NASA-CR-135382, April 1978.
- 4. W.R. Martini, "Stirling Engine Design Manual -- Second Edition." DOE/NASA/3194-1, NASA CR-168088, January 1983.
- 5. W.R. Martini, "A Simple Method of Calculating Stirling Engines for Engine Design Optimization." 1978 IECEC Record, pp. 1753-1762.
- P.A. Rios, "An Analytical and Experimental Investigation of the Stirling Cycle." PhD Thesis, Massachusetts Institute of Technology, September, 1969.
- J. Schreiber, "Testing Results and Description of a 1-kW Free-Piston Stirling Engine with a Dashpot Load." DOE/NASA/1005-1, NASA TM-83407, August 1983.
- 8. J. Schreiber, "Testing and Performance Characteristics of a 1-kW Free-Piston Stirling Engine." NASA TM 82999, April, 1983.

APPENDIX A INPUT VALUE TABLE (N1.NOM)

.

-----•

N1. NOM 14 APRIL 1984

14 APRIL 1984	ağır ağır ağır ağır ağır ağır ağır ağır
	** INPUT TABLE FOR **
IN=In⊳ut Number	** THE NASA-LEWIS **
ON=Optimization Number	+=+ FREE-PISTON ++
	** STIRLING ENGINE **
	nên dên sên sên dên dê sên sên dê sên dê sên sên sên sên sên sên sên sên sên sê

ΙN	ON	SYMBOL	MEANING	VALUE	UNITS
***	****		**** OPERATING CONDITIONS *************		
71		PAVGB	AVERAGE WORKING GAS PRESSURE	72.	BAR
72		OG	OPTIONS FOR OPERATING GASSES	2	
			1 – H2		
			2 - HE		
			3 - AIR		
53		TMHTRC	METAL TEMPERATURE OF GAS HEATER	600.	DEG. C
04		TMCLRC	METAL TEMPERATURE OF GAS COOLER	40.	DEG. C
05	01	PHASED	DISPLACER PHASE ANOLE	49.6	DEG.
DE -	ð2	PPSTR	POWER PISTON STROKE	2.70	CM
07	03	DSPSTR	DISPLACER STROKE	2.60	CM
18		JPWR	POWER ADJUST OPTION	Ø	
			Ø – ADJUST AVERAGE PRESSURE		
			1 - ADJUST BORE SIZE		
19		NDF	CASE NUMBER DEFINED BY USER	1	
Ø		TSTEP	TIME STEP USED DURING FORCE BALANCE	1.0	MILLISEC
			SIMULATION		
1		GRAOPT	GRAPHIC OPTION	Ø	
			Ø – ND GRAPHICS		
			1 - FULL GRAPHICS		
2		DEGFVT	ENGINE ORIENTATION IN DEGREES FROM	0	DEGREES
			VERTICAL, HEATER END DOWN		
3		GVTMAG	GRAVITY MAGNITUDE RELATIVE TO EARTH	1.	
			GRAVITY		
4		L_DOPT	OPTION FOR CHOICE OF ENGINE LOAD	1	
			1 - DASHPOT		
			2 - HYDRAULIC PUMP		
			3 - INERTIAL COMPRESSOR		
			4 - LINEAR ALTERNATOR		
5		ICALC	OPTION FOR METHOD OF CALCULATION	1	
			1 - ISOTHERMAL & SPECIFIED MOTION	~	
			2 - ISOTHERMAL & CALCULATED MOTION		
			3 - ADIABATIC & SPECIFIED MOTION		
			4 - ADIABATIC & CALCULATED MOTION		
ε		IDPT	OPTION FOR OPTIMIZATION	Ø	
			0 - NO OPTIMIZATION	-	
			1 - DO OPTIMIZATION		
7		IVAR	NUMBER OF INDEPENDENT VARIABLES IN	3	
			OPTIMIZATION ROUTINE	-	
8		PWRTGT		1000.	WATTS
9		PRCNG	PERCENT CHANGE IN OPTIMIZATION SEARCH	10.	×
-	****		RY www.www.		
Ø		NCYL	NUMBER OF CYLINDERS PER ENGINE	1	

BAGE 124 INTENTIONALLY BLANK

PRECEDING PAGE BLANK NOT FILMED

IN	ΟN	SYMBOL	MEANING	VALUE	UNITS
21				4.04	СМ
22 23	02 04	PPSTRM		4.20	CM
23	104	CYLOFS DIAPP		4.70	CM
25	05			5.718	CM
26 26	86	GAP	GAP BETWEEN DISPLACER AND CYLINDER WALL	15.19	CM
27			DISPLACER ROD DIAMETER	1.663	CM CM
28			ID OF ENGINE CYLINDER AROUND DISPLACER		CM
29		SPHZ	ENGINE SPEED	29.7	HZ
**		+∗ WEIGH1			
30			POWER PISTON MASS	6.2	KG
31	21		DISPLACER MASS	0.426	KG
े2		INTOPT	INTEGRATION OPTION	Ø	
			0 - MARTINI METHOD		
			1 - RIOS METHOD		
	·	SEALS			
33		PPCLR		33.	MICRONS
34		DRCLIT	(DN DIAMETER) POWER PISTON SEAL LENGTH		
35				15.25	CM
36 36			AVE. LENGTH OF DISPLACER ROD SEAL	25.4	MICRONS
3.7		DSPCLR		7.6	CM
		20/02/	CLEARANCE (ON DIAM.)	381.	MICOONO
38		DSPCLL		0.0	MICRONS CM
39		BNCOEF		0.8	
40		FEXPR		10.	
÷÷#<#:	*:*: V	DLUMES *	***		
41	07	VOLDSP		31.79	CC
42	30			20.5	LITERS
43		HTDV	HOT DEAD VOLUME (IN ADD. TO TUBES)	2.39	CC
44		CLDDV	COLD DEAD VOLUME (IN ADD. TO SLOTS)	72.53	CC
45 46		NGN	MAX. NUM. OF GAS NODES (NOT INPUT.)	99	-
-		NTS	NUMBER OF TIME STEPS/CYCLE ING PORTS ******	24	
47			HOLE LENGTHS IN ENGINE CYLINDER		
48		DORPP	DIAMETER OF ORIFICE IN POWER PISTON	1.02	CM
49		DORCYL	DIAMETER OF ORIFICE IN CYLINDER	0.1575	CM
50		HLLNDP		0.76	CM CM
51			DIAMETER OF ORIFICE IN DISPLACER	0.1321	CM
52		DORDR		0.1015	CM
53		VRGS	REST VOLUME OF DISPLACER GAS SPRING	31.79	CC
54		HLLNPP	HOLE LENGTHS IN POWER PISTON	2.92	CM
55		NHLPP	NUMBER OF CENTERING PORTS	2	
		EATER ***			
56		NHTRTB		34	
57	10			18.34	
58 59	11	HTID HTUHLH	ID OF HEATER TUBES	0.2362	CM
59 EØ		V1	UNHEATED LENGTH OF HEATER TUBES ENTRANCE & EXIT VELOCITY HEADS	9.26	CM
61		- 1	OPEN	1.5	
	* RE	GENERATO	DR (ANNULAR) ++++		
E2	12	REGLTH		6.446	CM
Е3	13	SANREG		0.554	CM
E4	14			88.9	MICRONS
E/5	15			75.9	*

IN	ON SYMBOL	MEANING	VALUE	UNITS
66		OPEN		
E 7		OPEN		
68		OPEN		
	COOLER **			
-		NUMBER OF COOLER SLOTS (RECTANGULAR)		
		COOLER SLOT WIDTH COOLER SLOT DEPTH	0.0508	
		COOLER SLOT LENGTH	0.376 7.92	CM CM
73	∨2	ENTRANCE & EXIT VELOCITY HEADS	1.5	
74		OPEN		
		RAMETERS-ELECTRIC GENERATOR *******		
75	CELECT		0.0	N/(CM/SEC)++2
		ALTERNATOR		
76	хр Хр	RAMETERS-INERTIAL COMPRESSOR ******* LENGTH OF DOUBLE ACTING HYDRAULIC	1.0	CM
		PISTON	1.0	un
77	XBP	LENGTH OF DEAD BAND PORT	3.0	CM
78	PMIN		1.	BAR
79	ALDPS		4.0	CM**2
80	PMAX		20.	BAR
81 1	CLEND		.01	CM
82	CDSPT	METERS-DASHPOT ***** PROPORTIONALITY CONSTANT FOR DASHPOT	0.1	N/(CM/CEC)
		L OPERATING CONDITIONS *****	U. 1	N/(CM/SEC)**2
83		CONVERGENCE CRITERIA, FRACTION CHANGE	0.0005	~ ~
84		OPEN		
85		OPEN		
₩:₩:₩:₩:₩ 	← TEMPERATU KM	RE CONDUCTION & PROPERTY VALUES *****		
	NA	THERMAL CONDUCTIVITY (300 SERIES S.S.) KM=EXP(AA+BB+ALOG(T))		M/CMK
86	AA		-4,565	
87	BB		0.4684	
83	RHOM	METAL DENSITY	7.93	G/CC
69	CPM	METAL HEAT CAPACITY	0.46	J/G K
90	WLHC	WALL LENGTH FOR HEAT CONDUCTION	4-45	CM
91 92	SCYLW2 SCYLW1	THICKNESS OF OUTER CYLINDER WALL THICKNESS OF INNER CYLINDER WALL	0.371	CM
93	SDSPW	THICKNESS OF DISPLACER WALL	0.145 0.0813	CM CM
94	NRADSH		1	
95	EMIS	EMISSIVITY OF RADIATION SHIELDS	0.5	
96	NRIDSL	OPTION ON LOSS EQUATIONS	0	
		0 - USE MARTINI LOSS EQUATIONS		
07		1 - USE RIOS LOSS EQUATIONS		
97 98		OPEN OPEN		
99		OPEN		
	ORDER OF 1	INDEPENDENT PARAMETERS SEARCHED IN *****		
	NESTING DO	LOOP SEARCH ****		
100	0.07 (4)	OPEN		
101	DPT(1)	OPT. NUMBER OF FIRST (INNERMOST) ADJUSTABLE PARAMETER	13	
1 02	OPT (2)	OPT. NUMBER OF SECOND ADJ. PARAM.	15	
1 03	DPT (3)	OPT. NUMBER OF THIRD ADJ. PARAM.	14	
104		OPT. NUMBER OF FOURTH ADJ. PARAM.	08	
105	OPT (5)	OPT. NUMBER OF FIFTH ADJ. PARAM.	00	

IN ON	SYMBOL	MEANING	VALUE	UNITS
56		DPEN		
66 67		OPEN		
68		OPEN		
+:+:+:+:+:	COOLER ++		1 7 E	
69 16	NCLRTB	NUMBER OF COOLER SLOTS (RECTANGULAR)	135 0.0508	CM
70 17	CTWIDT	COOLER SLOT WIDTH	0.376	CM
	CTDPTH	COOLER SLOT DEPTH	7.92	CM
72 19		COOLER SLOT LENGTH ENTRANCE & EXIT VELOCITY HEADS	1.5	
73	∨2	OPEN		
74		AMETERS-ELECTRIC GENERATOR *******		
75	CELECT	PROPORTIONALITY CONSTANT FOR LINEAR	0.0	N/(CM/SEC)**2
		O TERNATOR		
***	* LOAD PA	RAMETERS-INERTIAL COMPRESSOR *******		CH
76	XP	LENGTH OF DOUBLE ACTING HYDRAULIC	1.0	CM
		PISTON	3.0	CM
77	XBP	LENGTH OF DEAD BAND PORT	1.	BAR
78	PMIN	ABSOLUTE PRESSURE OF INLET FLUID AREA OF LOAD PISTON	4.0	CM++2
79	PMAX		20.	BAR
80 81	CLEND		. Ø1	CM
	INON PARA	METERS-DASHPOT ****		
80	CDSPT	PROPORTIONALITY CONSTANT FOR DASHPUT	Ø. 1	N/(CM/SEC)++2
+.****	ADDITIONA	L OPERATING CONDITIONS ++++	0.0005	
83	CNVCRT	CONVERGENCE CRITERIA, FRACTION CHANGE	0.0005	
84		OPEN		
85	TEMPEDATI	OPEN IRE CONDUCTION & PROPERTY VALUES *****		
+ +:+ + *	KM	THERMAL CONDUCTIVITY (300 SERIES S.S.)		
	N.I	KM=EXP(AA+BB+ALOO(T))		M/CMK
86	AA		-4.565	
87	BB		0.4684	
83	RHOM	METAL DENSITY	7.93 0.46	G/CC J/G K
89	CPM	METAL HEAT CAPACITY	0.46 4.45	CM
90	WLHC	WALL LENGTH FOR HEAT CONDUCTION THICKNESS OF OUTER CYLINDER WALL	0.371	CM
91	SCYLW2		0.145	CM
92	SCYLW1 SDSPW	THICKNESS OF DISPLACER WALL	0.0813	ĊM
93 94	NRADSH	NUMBER OF RADIATION SHIELDS	1	
95	EMIS	EMISSIVITY OF RADIATION SHIELDS	0.5	
96	NRIDSL	OPTION ON LOSS EQUATIONS	Ø	
		0 - USE MARTINI LOSS EQUATIONS		
		1 - USE RIOS LOSS EQUATIONS		
97		OPEN		
98		OPEN OPEN		
99		INDEPENDENT PARAMETERS SEARCHED IN *****		
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	NESTING I	DO LOOP SEARCH ****		
1040		OPEN	13	
101	OPT (1)	OPT. NUMBER OF FIRST (INNERMOST)	10	
	005 (0)	ADJUSTABLE PARAMETER OPT. NUMBER OF SECOND ADJ. PARAM.	15	
102	OPT (2) OPT (3)	OPT. NUMBER OF THIRD ADJ. PARAM.	14	- -
103 104	OPT(3)	OPT. NUMBER OF FOURTH ADJ. PARAM.	00	
1.04	OPT (5)	OPT. NUMBER OF FIFTH ADJ. PARAM.	00	

.

-

IN ON	SYMBOL	MEANING	VALUE	UNITS
1 206	OPT (6)	OPT. NUMBER OF SIXTH ADJ. PARAM.	00	
107	OPT (7)	OPT. NUMBER OF SEVENTH ADJ. PARAM.	00	
1 288	OPT (8)	OPT. NUMBER OF EIGHTH ADJ. PARAM.	80	
109	OPT (9)	OPT. NUMBER OF NINTH ADJ. PARAM.	00	
110	OPT(10)	OPT. NUMBER OF TENTH ADJ. PARAM.	00	
111	OPT (11)	OPT. NUMBER OF ELEVENTH ADJ. PARAM.	00	
1 12	OPT(12)	OPT. NUMBER OF TWELFTH ADJ. PARAM.	00	
113	OPT(13)	OPT. NUMBER OF THIRTEENTH ADJ. PARAM.	90	
114	OPT(14)	OPT. NUMBER OF FOURTEENTH ADJ. PARAM.	90	
1 15	OPT (15)	OPT. NUMBER OF FIFTEENTH ADJ. PARAM.	00	

.

APPENDIX B

NOMENCLATURE FOR ALL PROGRAMS

(NASA.NOM)

PAGE 130 INTENTIONALLY BLANK

NASA.NOM **********4-13-84********* ****** =WINDAGE CREDIT, WATTS (ALSO TEMPORARY VARIABLE) -THERMAL CONDUCTIVITY COEFFECIENT, REAL AA AC =HEAT TRANSFER AREA FOR COOLER, SQ. CM. ADCORH-CORRECTION TO BASIC HEAT INPUT DUE TO ADIABATIC SPACES, WATTS ADCORP=CORRECTION TO BASIC POWER DUE TO ADIABATIC SPACES, WATTS AF =AREA OF FLOW, SQ. CM. AFC =AREA OF FLOW THRU REGENERATOR SLOTS, SQ. CM. AFH =AREA OF FLOW THRU HEATER TUBES, SQ. CM. =AREA OF FLOW FOR LEAKAGE OF WORKING GAS, SQ. CM. AFL AFR =FREE AREA OF FLOW THRU REGENERATOR, SQ. CM. =HEAT TRANSFER AREA OF HEATER, SQ. CM. AH =HEAT TRANSFER AREA FOR REGENERATOR, SQ. CM. AHT AHIN =HEAT TRANSFER AREA FOR A PARTICULAR NODE, SQ. CM. ALDPS #AREA OF LOAD PISTON, CM++2 ALPH = PHASE ANGLE, RADIANS ANSWER=ANSWER TO QUESTION, Y OR N =AREA OF POWER PISTON, SQ. CM. AP APMAR #AREA OF POWER PISTON MINUS AREA OF ROD IN COMP. SP., SQ. CM ARG -ANGLE BETWEEN PRESSURE WAVE AND VOLUNE WAVE IN RIOS CALC., RAD. R =INDICATED EFFICIENCY FOR HEAT ENGINE, * RR =THERMAL CONDUCTIVITY COEFFICIENT, REAL BBEST =BEST INDICATED EFFICIENCY FOUND SD FAR, * =BASIC HEAT INPUT, WATTS BH. -LAST BASIC HEAT INPUT, WATTS BHI BNCDEF=BOUNCE COEFFICIENT ON HITTING END STOPS BNVOL =VOLUMETRIC DISPLACEMENT USED IN CLEARANCE RATIOS, CC =BASIC POWER OUTPUT FOR HEAT ENGINE, WATTS ъP BPL =LAST BASIC POWER OUTPUT, WATTS C 1 *CONVERGENCE CRITERIA =CONVERGENCE CRITERIA C2 -CONVERGENCE CRITERIA 03 =CONVERGENCE CRITERIA - C4 CALCNU=CALCULATED FREQUENCY, HZ CALCSP=CALCULATED ENGINE SPEED, HZ CD =TOTAL COLD DEAD VOLUME, CC CDSPT = PROPORTIONALITY CONSTANT FOR DASH POT, N/(CM/SEC) **2 CELECT=PROPORTIONALITY CONSTANT FOR LINEAR ALTERNATOR, N/(CM/SEC)++2 CE =COOLER WINDAGE, WATTS CFLOW =RETARDING FORCE FLOW CDEFF., NEWTONS/(CM/SEC)++2 CHMIX(19) = ARRAY OF MULTIPLIERS USED IN OPTIMIZING SEARCH, REAL CLDDV =COLD DEAD VOLUME, CC CLEND =END CLEARANCE, CM =LEAKAGE COEFFICIENT THRU POWER PISTON SEAL, OM MOL/(SEC+MPa) CIK CLKDP #LEAKAGE COEFFICIENT THRU DISPLACER ROD SEAL, GM MOL/(SEC+MPa) CLRATO=TEMPERATURE CORRECTED CLEARANCE RATIO, DIMENSIONLESS CMTXN -HEAT CAP. OF ONE OF THE THREE REGEN. MATRIX METAL NODES, J/K =COLD GAS VISCOSITY, G/CM/SEC CMU =MINIMUM FC1 DURING CYCLE, DIMENSIONLEBS CN. CNDCYL=CONDUCTANCE OF ONE ENGINE CYLINDER WALL, WATTS/K CNDDSP=DISPLACER WALL CONDUCTANCE, WATTS/K CNDRW =CONDUCTANCE OF ONE REGENERATOR WALL, WATTS/K ONTIM #TIME FROM THE START OF THE CYCLE WHEN THE MASS OF GAS IN THE COLD SPACE IS AT A MINIMUM, SEC CNTU =NUMBER OF HEAT TRANSFER UNITS IN COOLER, DIMENSIONLESS CNVCRT=CONVERGENCE CRITERIA, FRACTION CHANGE IN POWER-OUT AND

133

inter ander der ander HEAT-IN INTEGRALS CONDMX = CONDUCTANCE OF REGENERATOR MATRIX, J/K COR #INTERMEDIATE VALUE IN RIOS FLOW LOSS CALCULATIONS =HEAT CAPACITY OF WORKING GAS, J/(G+K), (ASSUMED NOT TO VARY CP SIGNIFICANTLY WITH TEMPERATURE) CPM -METAL HEAT CAPACITY, J/G K CTDPTH=COOLER SLOT DEPTH, CM CTUNTH=COOLER SLOT LENGTH, CM CTWIDT=COOLER SLOT WIDTH, CM CV =HEAT CAPACITY OF WORKING GAS AT CONSTANT VOLUME, J/(G+K) C₩ -FRICTION FACTOR FOR MET NET AND OTHERS CX. =MAXIMUM FC1 DURING CYCLE, DIMENSIONLESS CXTIM #TIME FROM THE START OF THE CYCLE WHEN THE MASS OF GAS IN THE COLD SPACE IS AT A MAXIMUM, SEC CYCTIM=TIME FOR ONE CYCLE, SEC CYLDFS=DISPLACER CYLINDER OFFSET, CM DALF = RADIANS PER DOUBLE TIME INCREMENT, RIOS CALCULATION DEFF =EFFECTIVE DIAMETER FOR COOLER SLOTS, CM++3 DEGEVT-ENGINE ORIENTATION IN DEGREES FROM VERTICAL, HEATER END DOWN, DEGREES DFCDT =RATE AT WHICH FC CHANGES, FRACTION/SEC. DFCDTM=MAXIMUM RATE AT WHICH FC CHANGES, FRACTION/SEC. DFHDT =RATE AT WHICH FH CHANGES, FRACTION/SEC. DFHDTM-MAXIMUM RATE AT WHICH FH CHANGES, FRACTION/SEC. DIAPP =DIAMETER OF POWER PISTON, CM DICYL -ID OF ENGINE CYLINDER AROUND DISPLACER, CM DID =DISPLACER OR HOT CAP INSIDE DIAMETER, CM DISPMS=DISPLACER MASS, KG DMC "-"MASS" CHANGE IN COLD SPACE, RIOS, J/K DMR1 =DISPLACER ROD SEAL LEAKAGE DURING ONE TIME STEP, J/K =POWER PISTON SEAL LEAKAGE DURING ONE TIME STEP, J/K DMR2 DMR3 = DISPLACER CENTERING PORT LEAKAGE DURING ONE TIME STEP, J/K DMR4 = POWER PISTON CENTERING PORT LEAKAGE DURING ONE TIME STEP, J/K =SUM OF MASS CHANGES IN RIOS CALCULATIONS, DIMENSIONLESS DMRE DMW ="MASS" CHANGE IN HOT SPACE, RIOS, J/K DORCYL=DIAMETER OF ORIFICE IN CYLINDER, CM DORDR =DIAMETER OF ORIFICE IN DISPLACER ROD, CM DORDSP=DIAMETER ORIFICE IN DISPLACER, CM DORPP = DIAMETER OF ORIFICE IN POWER PISTON, CM DP =PRESSURE DROP IN GENERAL, MPA DP1 =PRESSURE DROP THROUGH CENTERING PORT HOLES IN ENGINE CYLINDER, MPA DP2 =PRESSURE DROP THROUGH CENTERING PORT HOLES IN P.PIST. CYLINDER, MPA DPC =PRESSURE DROP IN COOLER, MPA =PRESSURE DROP IN HEATER, MPA DPH DPPP =PRESSURE DROP THRU P. PIST. CENTERING PORTS, MPA DPR =PRESSURE DROP IN REGENERATOR, MPA DRA =AREA OF ROD IN COMPRESSION SPACE, SQ. CM. DRDCLR=DISPLACER ROD CLEARANCE ON DIAMETER, MICRON DRDLTH=AVERAGE LENGTH OF DISPLACER ROD SEAL, CM DRDOD =DISPLACER ROD DIAMETER, CM DSPCLL=DISPLACER SEAL LENGTH, CM DSPCLR=DISPLACER BODY, DISPLACER CYLINDER CLEAR, (ON DIAMETER), MICRON DSPLTH=DISPLACER LENGTH, CM

inter anderater ander NABA. NOM ++++++++++4-13-84+++++++++++ DSPMAX=LARGEST POSITIVE POSITION OF DISPLACER DURING CYCLE, CM DSPMIN=SMALLEST NEGATIVE POSITION OF DISPLACER DURING CYCLE, CM DSPSTR=DISPLACER STROKE, CM DSTRMX=MAXIMUM DISPLACER STROKE, CM =RELATES EFFEC. COMPRESSION SPACE TEMP TO COOLER METAL TEMP, K DTC -RELATES EFFEC. EXPANSION SPACE TEMP TO HEATER METAL TEMP, K DTH DTS =TIME STEP, SECONDS (IN GENERAL) DISCP -TIME THAT CENTERING PORT IS OPEN DURING TIME STEP, SEC DISOV =PART OF TIME STEP OVER AT END OF CYCLE, SEC -DIAMETER OF "WIRE" IN REGENERATOR, CM DW DWIRE =DIAMETER OF WIRE IN MATRIX, MICRONS DX =1. /XNDS ELTIME=ELAPSED TIME FROM BEGINING OF THE CYCLE, SECONDS EMIS -EMISSIVITY OF RADIATION SHIELDS -FRACTION OF CYCLE TIME THAT FLOW OUT OF EXPANSION SPACE IS F 1 ASSUMED TO OCCUR AT CONSTANT RATE -FRACTION OF CYCLE TIME THAT FLOW OUT OF COMPRESSION SPACE IS E3 ASSUMED TO OCCUR AT CONSTANT RATE -AREA FACTOR FOR RADIATION HEAT TRANSFER FA FANG1 = PHASE ANGLE BETWEEN MAX. PISTON AND DISPLACER POSITIONS, DEG. FANG2 = PHASE ANGLE BETWEEN MIN. PISTON AND DISPLACER POSITIONS, DEG. FAREG -FACE AREA OF ONE ANNULAR REGENERATOR, CM FBALDS=FORCE BALANCE ON DISPLACER, NEWTONS FBALPP=FORCE BALANCE ON POWER PISTON, NEWTONS (TOWARD HOT END IS +.) =FRICTION FACTOR IN COOLER. FC. -FRACTION OF WORKING DAS MASS IN COLD SPACE IN THE PAST FCØ =FRACTION OF WORKING GAS MASS IN COLD SPACE IN THE PRESENT FC1 ■FRACTION OF WORKING GAS MASS IN COLD SPACE IN THE FUTURE FC2 =FRACTION LESS THAN ONE IN YCR UNITS USED IN INTERPOLATION FCR FDMC = FACTOR TO CONVERT DMC IN J/K TO DIMENSIONLESS GR. USED BY RIOS FDMW =FACTOR TO CONVERT DMW IN J/K TO DIMENSIONLESS GR. USED BY RIOS FDPR =FACTOR TO CONVERT PRESSURE CHANGE IN MPA/SEC. TO A DIMENSIONLESS GROUP USED BY RIOS. =FACTOR TO CONVERT COLD VOL. CHANGE IN CC TO DIMENSIONLESS GR. FDVC FDVW =FACTOR TO CONVERT HOT VOL. CHANGE IN CC TO DIMENSIONLESS GR. -EMISSIVITY FACTOR FOR RADIATION HEAT TRANSFER FE FEXPR #EXPERIENCE FACTOR FOR CENTERING PORT LEAKAGE. ⇒FILLER FACTOR, FRACT. OF REGEN. VOLUME FILLED WITH SOLID EEE FGVDSP=FORCE OF GRAVITY ON DISPLACER, NEWTONS FOVPP -FORCE OF GRAVITY ON POWER PISTONS, NEWTONS =FRICTION FACTOR IN HOT SPACE, DIMENSIONLESS FH *FRACTION OF WORING GAS MASS IN HOT SPACE IN PAST FHØ =FRACTION OF WORING GAS MASS IN HOT SPACE IN PRESENT FHI =FRACTION OF WORING GAS MASS IN HOT SPACE IN FUTURE FH2 FLOAD #FORCE ON POWER PISTON DUE TO LOAD, NEWTONS (TOWARD HOT END IS +.) FMDSP(4)=FORCE PER MASS RATIO ON THE DISPLACER FOR PAST 4 TIMES, 100+NEWTONS/KG FMPP(4) = FORCE PER MASS RATIO ON THE DISPLACER FOR PAST 4 TIMES, 100+NEWTONS/KG FN =RADITION SHIELD FACTOR FORG(19)=ORIGINAL VALUES OF OPTIMIZABLE INPUT, VARIOUS =FRACTION OF CYCLE TIME THAT FLOW IN THE REGENERATOR IS FR ASSUMED TO OCCUR AT CONSTANT RATE IN ONE DIRECTION

FRAD =RADIATION H. T. FACTOR FOR ONE DISP. OR HOT CAP, W/K**4

FRDRCP=FLOW RESISTANCE OF DISPLACER CENTERING PORTS, CC/(SEC+BAR) FRPPCP=FLOW RESISTANCE OF POWER PISTON CENTERING PORTS, CC/SEC+BAR FRRIDS(3) =FLOW FRICTION IN REGENERATOR USING THE RIDS ANALYSIS. FTR -FRACTION LESS THAN ONE IN XTR UNITS USED IN INTERPOLATION FTRL(19)=TRIAL ARRAY OF OPTIMIZABLE INPUT VALUES, VARIOUS =(KK-1)/KKGA. GAP =GAP BETWEEN DISPLACER AND CYLINDER WALL, CM -MASS VELOCITY THROUGH COOLER, G/SEC/SQ. CM. GC ODMS(11)=CALCULATED MASS FLOW VALUES =MABS VELOCITY IN HEATER, G/SEC/SQ. CM. GH. GI2(11)=PARAMETER IN RIDS CALCULATION GI3(11) = PARAMETER IN RIDS CALCULATION GINT(11)=FLOW LOSS VARIABLE GLH =HEATER PRESSURE DROP INTEGRAL -REGENERATOR PRESSURE DROP INTEGRAL GLR GLS =COOLER PRESSURE DROP INTEGRAL GR =MASS VELOCITY IN REGENERATOR, G/SEC/SQ. CM. GRAOPT=GRAPHIC OPTION. 2-NO GRAPHICS, 1-FULL GRAPHICS, I =REGENERATOR REHEAT FACTOR, RIOS GRL GVTMAG=GRAVITY MAGNITUDE RELATIVE TO EARTH GRAVITY, REAL =FRACTION OF TOTAL REDUCED DEAD VOLUME FROM COLD END TO MIDWAY H(1)IN COOLER. =FRACTION OF TOTAL REDUCED DEAD VOLUME FROM COLD END THROUGH H(2)THE COOLER. H(3) FRACTION OF TOTAL REDUCED DEAD VOLUME FROM COLD END THROUGH HALF THE REGENERATOR. H(4) -FRACTION OF TOTAL REDUCED DEAD VOLUME FROM COLD END THROUGH THE REGENERATOR. H(5) -FRACTION OF TOTAL REDUCED DEAD VOLUME FROM COLD END THROUGH THE MIDDLE OF THE GAS HEATER. (1.-H(5)) INCLUDES THE REST OF THE HEATER AND THE APPENDIX GAP.) HAC -COLD ACTIVE VOLUME AMPLITUDE, CC -HOT ACTIVE VOLUME AMPLITUDE, CC HAV HC =HEAT TRANSFER COEFFICIENT AT COOLER, WATTS/SQ. CM. /DEG. K HCV *REDUCED COOLER AND COLD DUCT DEAD VOLUME, DIMENSIONLESS HD =TOTAL HOT DEAD VOLUME, CC HEC -REDUCED COLD END CLEARANCE DEAD VOLUME, DIMENSIONLESS *REDUCED APPENDIX GAP DEAD VOLUME, DIMENSIONLESS HGV -HEAT TRANSFER COEFFICIENT IN HEATER, WATTS/ SQ. CM./DEG. K HH HHC -REDUCED HOT CLEARANCE DEAD VOLUME, DIMENSIONLESS =REDUCED HEATER DEAD VOLUME, DIMENSIONLESS HHV HULNCY-HOLE LENGTH OF CENTERING PORTS IN ENGINE CYLINDER, CM HLLNDP=HOLE LENGTH OF CENTERING PORTS IN DISPLACER, CM HLLNPP=HOLE LENGTH OF CENTERING PORTS IN POWER PISTON, CM =GAS VISCOSITY IN HEATER, G/BEC/CM HMU HN =MINIMUM FH DURING CYCLE, DIMENSIONLESS HNTIM -TIME FROM THE START OF THE CYCLE WHEN THE MASS OF GAS IN THE HOT SPACE IS AT A MINIMUM, SEC HNTH - NUMBER OF HEAT TRANSFER UNITS IN THE HEATER, DIMENSIONLESS HRV ■REDUCED REGENERATOR DEAD VOLUME, DIMENSIONLESS HTDV =HOT DEAD VOLUME, CC HTID = ID OF HEATER TUBES, CM HTLNGH=HEAT TUBE LENGTH (HEATED), CM HTUHLH=UNHEATED LENGTHS OF HEATER TUBES, CM =HEATER WINDAGE LOSS, WATTS HL

NASA. NOM #**********4-13-84********* -MAXIMUM FH DURING CYCLE, DIMENSIONLESS HX HXTIM -TIME FROM THE START OF THE CYCLE WHEN THE MASS OF GAS IN THE HOT SPACE IS AT A MAXIMUM, SEC =HEAT TRANS. COEFF. IN REGEN., W/(CM++2+K) HY =INTEGER COUNTER T ICALC = OPTION FOR METHOD OF CALCULATION: 1-ISOTHERMAL AND SPECIFIED MOTION, 2-ISOTHERHAL AND CALCULATED MOTION, 3-ADIABATIC AND SPECIFIED MOTION, 4-ADIABATIC PLUS CALCULATED MOTION =INTEGER JUST LESS THAN YCR ICR IDFLT =Array of default values for integer input variables IEND1 -END OF POWER OUT CYCLE FLAG, G-NO, 1-YES IFND2 =END OF HEAT IN CYCLE FLAG, 0=NO, 1=YES IFIRST = FLAG TO MAKE THE SOLUTION GO THRU ISOTHERMAL ANALYSIS FIRST IND(2,2)=CHOICE MATRIX IN RIOS INTEGRATION METHOD, DIMENSIONLESS INTOPT=INTEGRATION OPTION: 0 - MARTINI METHOD 1 - RIOS METHOD =OPTION FOR OPTIMIZATION: IOPT 0 - NO OPTIMIZATION, 1 - DO OPTIMIZATION. =INDICATED POWER OUTPUT FOR HEAT ENGINE, WATTS IP =COUNTER TO ACCUMULATE RIOS INTEGRALS IR ISIG =NUMBER OF PRESSURES ADDED TO FIND AVERAGE PRESSURE, INTEGER ITR =INTEGER JUST LESS THAN XTR ITYPE =Array of flags to indicate integer input variables IVAR =NUMBER OF INDEPENDANT VARIABLES IN OPTIMIZATION ROUTINE, I =INTEGER COUNTER J -NODE NUMBER OF COMPRESSION SPACE JCMP JCR =INTEGER JUST GREATER THAN YCR JEXP =NODE NUMBER OF EXPANSION SPACE **TPWR** = POWER ADJUST OPTION: 0 - ADJUST AVERAGE PRESSURE 1 - ADJUST BORE SIZE JQ =INTEGER TRANSFER VARIABLE =INTEBER JUST GREATER THAN YCR JTR =FIRST TIME COUNTER FLAG, INTEGER ĸ FIRST TIME COUNTER FLAG, INTEGER FIRST TIME COUNTER FLAG, INTEGER K1 K2 -CONSTANT IN REHEAT LOSS EQUATION (F28) K3 KЗ #FIRST TIME COUNTER FLAG, INTEGER (F26) К4 -FIRST TIME COUNTER FLAG, INTEGER =COEFFICIENT FOR GAS THERMAL CONDUCTIVITY CALCULATION KA =CDEFFICIENT FOR GAS THERMAL CONDUCTIVITY CALCULATION KB =GAS THERMAL CONDUCTIVITY, WATTB/CM K KG =CP/CV KK =METAL THERMAL CONDUCTIVITY, WATTS/CM K KM =THERMAL CONDUCTIVITY OF REGEN. MATRIX, WATTS/CM K KMX KR =1./KK -COUNTER TO DETERMINE NUMBER OF NODES AFTER GAS FLOW, INTEGER L LDOPT = OPTION FOR CHOICE OF ENGINE LOAD, 1-DASHPOT, 2-HYDRAULIC PUMP, 3-INERTIAL COMPRESSOR, 4-LINEAR ALTERNATOR, I =NUMBER OF MOLES OF GAS IN WORKING FLUID, GRAM MOLES M1, M2, M3 =CONSTANTS TO CALCULATE VISCOSITY

MR0 - #GAS INVENTORY TIMES GAS CONSTANT IN PAST, JOULE/DEG. K

** ***** NASA. NOM ************** = GAS INVENTORY TIMES GAS CONSTANT IN PRESENT, JOULE/DEG. K MR1 MR2 = GAS INVENTORY TIMES GAS CONSTANT IN FUTURE, JOULE/DEG. K MRCS0 = GAS INVENTORY TIMES GAS CONSTANT IN COLD SPACE IN PAST, JOULE/DEG. K MRCS1 = GAS INVENTORY TIMES GAS CONSTANT IN COLD SPACE IN PRESENT, JOULE/DEG. K MRCS2 = GAS INVENTORY TIMES GAS CONSTANT IN COLD SPACE IN FUTURE. JOULE/DEG. K MRDBSØ=GAS INVENTORY TIMES GAS CONSTANT IN DISPL. BOUNCE SPACE IN PAST, JOULE/DEG. K MRDBS1=GAS INVENTORY TIMES GAS CONSTANT IN DISPL. BOUNCE SPACE IN PRESENT, JOULE/DEG. K MRDES2=GAS INVENTORY TIMES GAS CONSTANT IN DISPL. BOUNCE SPACE IN FUTURE, JOULE/DEG. K MRHS@ =GAS INVENTORY TIMES GAS CONSTANT IN HOT SPACE IN PAST, JOULE/DEG. K MRHS1 - GAS INVENTORY TIMES GAS CONSTANT IN HOT SPACE IN PRESENT, JOULE/DEG. K MRHS2 = GAS INVENTORY TIMES GAS CONSTANT IN HOT SPACE IN FUTURE. JOULE/DEG. K MRPBSØ-GAS INVENTORY TIMES GAS CONSTANT IN POWER PISTON BOUNCE SPACE IN PAST, JOULE/DEG. K MRPBS1=GAS INVENTORY TIMES GAS CONSTANT IN POWER PISTON BOUNCE SPACE IN PRESENT, JOULE/DEG. K MRPBS2=GAS INVENTORY TIMES GAS CONSTANT IN POWER PISTON BOUNCE SPACE IN FUTURE, JOULE/DEG. K MU =GAS VISCOSITY, G/CM/SEC MW =MOLECULAR WEIGHT, G/G MOLE MX -MASS OF REGENERATOR MATRIX, BRAMS NCASE =TOTAL NUMBER OF INPUT CASES CONSIDERED DURING OPTIMIZATION (MORE THAN THE NUMBER OF OPTIMIZATION VARIABLES SINCE EACH VARIABLE REQUIRES, IN GENERAL, PRESSURE ADJUSTMENT TO YIELD THE DESIRED POWER.) NCH -CHOICE NUMBER IN OPTIMIZATION ROUTINE NCHBST=CHOICE NUMBER RELATING TO BEST EFFICIENCY NCHMAX=MAXIMUM CHOICE NUMBER NCLRTB=NUMBER OF COOLER SLOTS NCYC = NUMBER OF CYCLES FOR CURRENT SET OF GEOMETRICAL PARAMETERS AND OPERATING CONDITIONS + EQUALS TOTAL NUMBER OF CYCLES IF THERE IS NO OPTIMIZATION. NCYCL #NCYC WHEN NTRIAL CHANGES. NCYCT =TOTAL NUMBER OF CYCLES DURING OPTIMIZATION NCYL =NUMBER OF CYLINDERS PER ENGINE =CASE NUMBER DEFINED BY USER NDF NDS =NUMBER OF INTERVALS IN WHICH THE DEAD SPACE IS DIVIDED IN THE RIOS METHOD NERST #FIRST TIME FLAG FOR OPTIMIZATION AND CONTROL NGN =CURRENT NUMBER OF GAS NODES NHLPP =NUMBER OF CENTERING PORTS IN THE POWER PISTON, NHIRTB=NUMBER OF HEATER TUBES =NDS+1 NIN =CHOICE NUMBER IN RIOS INTEGRATION METHOD NO NPAJST=PRESSURE OR DIAMETER ADJUSTMENT FLAG 0 -- NOT ADJUSTED 1 -- ADJUSTED

ante antes mine antes antes mine NRADSH-NUMBER OF RADIATION SHIELDS IN DISPLACER NRIDSL=OPTION ON LOSS EQUATIONS: 0 - USE MARTINI LOSS EQUATIONS 1 - USE RIOS LOSS EQUATIONS NSHCUT-SHORT CUT FLAG IN OPTIMIZATION ROUTINE -NUMBER OF TRANSFER UNITS IN REGENERATOR NT NTRIAL=COUNTER FOR NUMBER OF TRIALB IN OPTIMIZATION SEARCH NTRLST=LAST NTRIAL -NUMBER OF TIME STEPS PER CYCLE NTS =ENGINE FREQUENCY, HZ NU NXCORD =Adjusted x coordinate for input screen display =OPTIONS FOR OPERATING BASES. 1-H2, 2-HE, 3-AIR, I 00 OPT(15)=ARRAY GIVING THE OPTIMIZATION NUMBERS IN THE ORDER IN WHICH THEY ARE TO BE TESTED, INTEGER OPTEND=FLAG TO SHOW WHETHER OPTIMIZATION IS FOUND 0 - NOT FOUND 1 - FOUND -COMMON PRESSURE AFTER ADIABATIC TOTAL VOLUME CHANGE, MPA P 1 P4 mPT/A PAVOB -AVERAGE WORKING GAS PRESSURE, BAR PBIC = PRESSURE IN BOTTOM OF INERTIA PUMPING CHANBER, BAR PDPBS0=PRESSURE IN DISPLACER BOUNCE SPACE IN PAST, MPA PDPBS1=PRESSURE IN DISPLACER BOUNCE SPACE IN PRESENT, MPA PDPBS2=PRESSURE IN DISPLACER BOUNCE SPACE IN FUTURE, MPA -AVERAGE GAS PRESSURE, MPA PR PHASED=DISPLACER PHASE ANGLE, DEGREES PHASED=ORIGINAL INPUT DISPLACER PHASE ANGLE, DEGREES =3.14159PI PMAX =OUTLET PRESSURE OF PUMPED FLUID, BAR PMAXR = PX/PG=DIMENSIONLESS MAXIMUM PRESSURE USED BY RIOS. PMIN =ABSOLUTE PRESSURE OF INLET FLUID, BAR -MINIMUM PRESSURE, MPA PN PNEW(200) - ARRAY OF NEW PRESSURES AFTER HEAT TRANSFER AT CONSTANT PRESSURE, MPA -AVERAGE PRESSURE FOR OPTIMUM CASE, MPA POPT PORMIX=POROSITY OF MATRIX, # PP PPCLR = POWER PISTON CLEARANCE (ON DIAMETER), MICROS PPHAS = POWER PISTON MASS, KO PPPBS0=PRESSURE IN POWER PISTON BOUNCE SPACE IN PAST, MPA PPPESI = PRESSURE IN POWER PISTON BOUNCE SPACE IN PRESENT, MPA PPPBS2=PRESSURE IN POWER PISTON BOUNCE SPACE IN FUTURE, MPA PPSLLT=POWER PISTON SEAL LENGTH, CM PPSTR =POWER PISTON STROKE, CM PPSTRO-ORIGINAL POWER PISTON STROKE, CM PPSTRM-MAXIMUM POWER PISTON STROKE, CM =PRANDTL NUMBER TO THE 2/3 POWER PD PRCNG =PERCENT CHANGE IN OPTIMIZATION SEARCH, * PSTMAX-MAXIMUM POWER PISTON POSITION DURING CYCLE, CM PSTMIN-MINIMUM POWER PISTON POSITION DURING CYCLE, CM PTIC -PRESSURE IN TOP INERTIAL PUMPING CHANBER, BAR PWGØ -PRESSURE OF WORKING GAS IN THE PAST, MPA PW01 -PRESSURE OF WORKING GAS IN THE PRESENT, MPA PW02 =PRESSURE OF WORKING DAS IN THE FUTURE, MPA PWJEND=PRESSURE OF WORKING GAS AT END OF CYCLE, MPA PWRTGT=TARGET POWER FOR OPTIMIZATION, WATTS

NASA. NOM ************ PX -MAXIMUM PRESSURE, MPA DAPDX -NET HEAT TRANS. FROM GAS IN APDX SPACE TO THE METAL, JOULES QB -BETA FOR SHUTTLE HEAT LOSS CALCULATION -HEAT ABSORBED BY COOLER, WATTS QC. QCCYL -HEAT CONDUCTION THRU ALL CYLINDER WALLS OF ENGINE, WATTS QCDSPW-HEAT CONDUCTION THRU ALL DISPLACER WALLS OF ENGINE, WATTS QCGAS -HEAT CONDUCTION THRU ALL GAS INSIDE CYLINDERS OF ENGINE, WATTS QCLR -HEAT ABSORBED FROM GAS BY COOLER, JOULES GCMTX =HEAT CONDUCTION THRU ALL REGEN. MATRICIES OF ENGINE, WATTS OCRAD -HEAT RADIATION INBIDE ALL DISPLACERS OF ENGINE, WATTS QCRWL -HEAT CONDUCTION THRU ALL REGENERATOR WALLS OF ENGINE, WATTS -REHEAT FACTOR QDK . -PUMPING LOSS FACTOR QES QHTR -NET HEAT TRANS. FROM HEATER TO GAS DURING ONE CYCLE, JOULES QL1 -SHUTTLE FACTOR QLM =REHEAT FACTOR QN =NET HEAT REQUIRED FOR HEAT ENGINE, WATTS QNCCR =NET HEAT COND. AT THE COLD NODE OF THE REGENERATOR, JOULES QNCHR -NET HEAT COND. AT THE HOT NODE OF THE REGENERATOR, JOULES QNCMR -NET HEAT COND. AT THE MIDDLE NODE OF THE REGENERATOR, JOULES QNPH -REHEAT PRESSURIZATION EFFECT QNTU -NUMBER OF REGENERATOR TRANSFER UNITS, DIMENSIONLESS -PUMPING OR APPENDIX LOSS FOR ALL CYLINDERS, WATTS **RP** QPRIDS-WINDAGE FACTOR, RIDS ANALYSIS QQ =TRANSFER REAL VARIABLE -REGENERATOR WINDAGE LOSS COMPONENT, WATTS QR1 -REGENERATOR WINDAGE LOSS COMPONENT, WATTS QR2 -REGENERATOR WINDAGE LOSS COMPONENT, WATTS OR3 QRATO1(8, 9) - ARRAY OF RATIOS FOR HYDROGEN OR AIR BETWEEN ADIABATIC HEAT INPUT AND ISOTHERMAL HEAT INPUT DEPENDING CLRATO, TRATIO. QRATO2(8,9)=ARRAY OF RATIOS FOR HELIUM BETWEEN ADIABATIC HEAT INPUT AND ISOTHERMAL HEAT INPUT DEPENDING CLRATO, TRATIO. QREG -NET HEAT TRANSFERRED FROM THE GAS TO THE REGENERATOR DURING ONE CYCLE, JOULES -SHUTTLE LOSS FOR ALL CYLINDERS, WATTS QS. QTOT -TOTAL HEAT TRANSFERRED FROM GAS FOR ONE CYCLE, JOULES QTRAN -HEAT TRANSFERRED BY ONE NODE FROM GAS TO METAL, JOULES =GAS CONSTANT, 8,314 JOULE/(G MOLE+K) RA =0.0174533 RADIANS PER DEGREE RCRDAN-RADIAL CLEARANCE OF ROD SEAL ANNULUS, CM RCSLAN-RADIAL CLEARANCE OF SEAL ANNULUS ON POWER PISTON, CM -TOTAL REGENERATOR DEAD VOLUME, CU. CM. 80 RDFLT =Array of default values for real input variables RDMC(350) - ARRAY OF DIMENSIONLESS MASS CHANGES IN COLD SPACE FOR RIOS LOSS EQUATIONS RDHW =MASS GAS CONSTANT=R/MW, JOULES/(GM+K) RDPR (360) - ARRAY OF DIMENSIONLESS PRESSURE CHANGES RDVC (360) - ARRAY OF DIMENSIONLESS VOLUME CHANGES IN COLD SPACE. RDVW =RIOS DIMENSIONLESS VOLUME CHANGE IN THE HOT SPACE. =REYNOLDS NUMBER, HEATER OR COOLER RE REC -REYNOLDS NUMBER IN COOLER REGLTH-REGENERATOR LENGTH, CM REH -REYNOLDS NUMBER IN HEATER =REGENERATOR REYNOLDS NUMBER FACTOR RER RERIOS(3) = REYNOLDS NUMBER IN THE REGENERATOR BY THE RIOS ANALYSIS =REHEAT LOSS FOR ALL CYLINDERS IN AN ENGINE, WATTS RH

infer anferitfer anfer anfer anfer affer anfer affer anfer anfer anfer anfer anfer anfer anfer anfer anfer anfer

NASA.NOM ++++++++4-13-84+++++++++++ e sign affer a RHOLK = GAS DENSITY THROUGH LEAK, G. /CC RHOM -METAL DENSITY, G/CC -GAS DENSITY IN GENERAL, G/CC RM =GAB VISCOSITY IN REGENERATOR, G/SEC/CM RMI RNTU -NUMBER OF HEAT TRANSFER UNITS IN REGENERATOR, DIMENSIONLESS =MAXIMUM PRESSURE/MINIMUM PRESSURE RP RPR(360)=ARRAY OF DIMENSIONLESS PRESSURES =REGENERATOR REYNOLDS NUMBER RR RRDMW(360)=ARRAY OF DIMENSIONLESS MASS CHANGES IN HOT SPACE RT =REYNOLDS NUMBER, HEATER =DISPLACED MASS RATIO RVT -REGENERATOR WINDAGE, WATTS, FOR ALL CYLINDERS IN ENGINE RW =REYNOLDS NUMBER, COOLER R7 SANREG=THICKNESS OF ANNULAR REGENERATOR, CM SCYLW1=THICKNESS OF INNER CYLINDER WALL, CM SCYLW2=THICKNESS OF OUTER CYLINDER WALL, CM SDSPST=STORAGE FOR INPUT VALUE DSPSTR SDSPW =THICKNESS OF DISPLACER WALL, CM SIG =STEFAN-BOLTZMAN CONSTANT = 5.67E-12 WATTS/(CM++2+K+++4) SIGPBS=SUM OF ALL BOUNCE SPACE PRESSURES FOR CYCLE, MPA SIGPWG=SUM OF ALL WORKING GAS PRESSURES FOR CYCLE, MPA SIGXPP-SUM OF ALL POWER PISTON POSITIONS FOR CYCLE, CM -TEMPERATURE SWING LOSS FOR FULL ENGINE, WATTS SL SPD =ENGINE SPEED, RADIANS/SEC SPHASE-STORAGE FOR INPUT VALUE PHASED SPHTAC=SPECIFIC HEAT TRANSFER AREA IN COOLER, CM**2 OF HEAT TRANS. AREA PER CM++3 OF DAS SPHTAH-SPECIFIC HEAT TRANSFER AREA IN HEATER, CM++2 OF HEAT TRANS. AREA PER CM++3 OF GAS SPHTAR=SPECIFIC HEAT TRANSFER AREA IN REGENERATOR, CM**2 OF HEAT TRANS. AREA PER CM++3 OF GAS SPHZ #ENGINE SPEED, HZ SPPSTR=STORAGE FOR INPUT VALUE PPSTR -STANTON NUMBER TIMES PRANDTL NUMBER TO THE 2/3 POWER ST TCMP = EFFECTIVE COMPRESSION SPACE TEMPERATURE, K TCMPC =EFFECTIVE COMPRESSION SPACE TEMPERATURE, C TCMPL =TCMP FOR LAST CYCLE *RATIO OF THERMAL CAPACITY OF TIDAL GAS TO THERMAL CAPACITY TCR OF MATRIX, DIMENSIONLESS =THERMAL DIFFUSIFITY OF METAL, SQ. CM/SEC TDM TDMAX -TIME FROM START OF CYCLE TO MAXIMUM DISPLACER POSITION, SEC. TDMIN =TIME FROM START OF CYCLE TO MINIMUM DISPLACER POSITION, SEC. TEXP = EFFECTIVE EXPANSION SPACE TEMPERATURE, K TEXPC -EFFECTIVE EXPANSION SPACE TEMPERATURE, C TEXPL =TEXP FOR LAST CYCLE TGN(2,200) = TEMPERATURE OF GAS NODES BEFORE AND AFTER FLOW, K TMCLRC-METAL TEMPERATURE OF GAS COOLER, DEG. C TMCMPK=TEMP. METAL IN COMPRESSION SPACE HEAT EXCHANGER, K TMET -TEMP. OF METAL OPPOSITE MID-POINT OF GAS NODE, K TMEXPKETEMP. METAL IN EXPANSION SPACE HEAT EXCHANGER, K TMHTRC=METAL TEMPERATURE OF GAS HEATER, DEG. C TMPNAM =Variable name input by user TMPVAL =Variable value input by user TPMAX -TIME FROM START OF CYCLE TO MAXIMUM POWER PISTON POSITION, SEC. TPMIN =TIME FROM START OF CYCLE TO MINIMUM POWER PISTON POSITION, SEC. **#REGENERATOR TEMPERATURE, K** TR

TR3C = TEMPERATURE OF COLD THIRD OF REGENERATOR MATRIX, K

i befer efter after after efter efter efter efter after TR3H -TEMPERATURE OF HOT THIRD OF REGENERATOR MATRIX, K TR3M -TEMPERATURE OF MIDDLE THIRD OF REGENERATOR MATRIX, K TRATID-EFFECTIVE GAS TEMPERATURE RATIO, DIMENSIONLESS TSPCYC=TIME STEPS PER CYCLE, REAL TSTEP -TIME STEP USED DURING FORCE BALANCE SIMULATION, MILLI-SECONDS TWLM -TEMPERATURE WAVE LENGTH IN METAL, CM -CUMULATIVE TEMPERATURE TIMES MASS, K+GM TXH UDM(5)=CRITICAL MASS FLOW VALUES FROM SUBPLOT UI23 - CRITICAL PRESSURE DROP VALUE, RIOS ALALYSIS UI24 -CRITICAL PRESSURE DROP VALUE, RIOS ALALYSIS UI33 - CRITICAL PRESSURE DROP VALUE, RIDS ALALYSIS UI34 - CRITICAL PRESSURE DROP VALUE, RIOS ALALYSIS UIN(5)=CRITICAL PRESSURE DROP INTEGRALS FROM SUBPLOT UTR HOT METAL TEMP, K)/(COLD METAL TEMP, K) -VELOCITY HEAD LOSSES IN HEATER DUE TO BENDS, ENTRANCE AND EXIT -VELOCITY HEAD LOSSES IN COOLER DUE TO BENDS, ENTRANCE AND EXIT V1 V2 VA =VAPDX VAPDX -VOLUME OF APPENDIX GAS, CM++3 VB -CUMULATIVE VOLUME FROM HOT END THRU EXPANSION SPACE, CC =(F28) VELOCITY THROUGH GAS COOLER OR CONNECTING DUCT, EM/SEC VC - (F26) CUMULATIVE VOLUME FROM HOT END THRU HEATER, CC ٧C VCO -COLD VOLUME IN THE PAST, CC VCI -COLD VOLUME IN THE PRESENT, CC VC2 -COLD VOLUME IN THE FUTURE, CC VCMAX =MAXIMUM COLD VOLUME FOR THE CYCLE, CC VCMIN =MINIMUM COLD VOLUME FOR THE CYCLE, CC UD. =CUMULATIVE VOLUME FROM HOT END THRU REGENERATOR, CC VDPBS0=VOLUME OF DISPLACER BOUNCE SPACE IN PAST, CC VDPBS1=VOLUME OF DISPLACER BOUNCE SPACE IN PRESENT, CC VDPBS2=VOLUME OF DISPLACER BOUNCE SPACE IN FUTURE, CC VDRIOS=DIMENSIONLESS DEAD VOLUME, RIOS VDSP0 =VELOCITY OF THE DISPLACER IN THE PAST, CM/SEC VDSP1 =VELOCITY OF DISPLACER IN THE PRESENT, CM/SEC VDSP2 =VELOCITY OF DISPLACER IN THE FUTURE, CM/SEC VE -CUMULATIVE VOLUME FROM HOT END THRU COOLER, CC VGN(2, 200) * CUMULATIVE VOLUME OF GAS NODES FROM HOT END BEFORE AND AFTER FLON, CC VH. -VELOCITY THROUGH GAS HEATER, CM/SEC HOT VOLUME IN THE PAST, CC VHØ VHE =HOT VOLUME IN THE PRESENT, CC VH2 -HOT VOLUME IN THE FUTURE, CC VHEND -HOT VOLUME AT END OF CYCLE, CC VHERST-HOT VOLUME AT START OF CYCLE, CC VHMAX -MAXIMUM HOT VOLUME FOR CYCLE, CC VHMIN =MINIMUM HOT VOLUME FOR CYCLE, CC VHZERO-HOT VOLUME AT MIDPOINT OF DISPLACER STROKE, CC VMDPT =CUMULATIVE VOLUME TO MID-POINT OF BAS NODE, CC VN. -MINIMUM TOTAL VOLUME, CU CM vname =Array of input variable name VOLBS = VOLUME OF BOUNCE SPACE, LITERS VULDSP=VOLUME DISPLACER GAS SPRING (AVG), CC VPP0 = VELOCITY OF POWER PISTON IN THE PAST, CM/SEC VPP1 =VELOCITY OF POWER PISTON IN THE PRESENT, CM/SEC =VELOCITY OF POWER PISTON IN THE FUTURE, CM/SEC VPP2 VPPBS0=VOLUME OF POWER PISTON BOUNCE SPACE IN THE PAST, CC VPPBS1=VOLUME OF POWER PISTON BOUNCE SPACE IN THE PRESENT, CC

NASA.NOM +++++++++4-13-84++++++++++ VPPBS2=VOLUME OF POWER PISTON BOUNCE SPACE IN THE FUTURE, CC VRGS -REST DAS VOLUME OF DAS SPRING, CC -TOTAL WORKING GAS VOLUME IN THE PAST, CC VTØ -TOTAL WORKING GAS VOLUME IN THE PRESENT, CC -TOTAL WORKING GAS VOLUME IN THE FUTURE, CC VT1 VT2 VTEND =TOTAL WORING GAS VOLUME AT END OF CYCLE, CC VTERST-TOTAL WORKING GAS VOLUME AT FIRST OF NEXT CYCLE, CC VTMAX -MAXIMUM WORKING BAS VOLUME, CC -MAXIMUM TOTAL VOLUME, CU CM VX. =WORK OUTPUT FOR ONE CYCLE, JOULES W1 -UNCORRECTED WORK OUTPUT FOR ONE CYCLE, JOULES W1A WICYC =COMPLETE UNCORRECTED WORK OUTPUT FOR FULL CYCLE, JOULES WIEND -CORRECTION TO WORK OUTPUT AT END OF CYCLE, JOULES WIM1 =FIRST IMMEDIATE PAST W1 W1M2 =SECOND IMMEDIATE PAST W1 =HEAT INPUT FOR ONE CYCLE AND ONE CYLINDER, JOULES W2 -UNCORRECTED HEAT INPUT FOR ONE CYCLE, JOULES ₩28 W2COMP=APPROXIMATE WORK TO COMPLETE HEAT INPUT INTEGRAL TO START OF FIRST CYCLE, JOULES W2CYC -COMPLETE UNCORRECTED HEAT INPUT FOR FULL CYCLE, JOULES W2END -CORRECTION TO HEAT INPUT AT END OF CYCLE, JOULES ■FIRST IMMEDIATE PAST W2 W2M1 W2M2 -SECOND IMMEDIATE PAST W2 =CONSTANT FLOW RATE INTO OR OUT OF COMPRESSION SPACE, G/SEC WC. WCRIOS=DIMENSIONLESS COLD WORK, RIOS WCUM #CUMULATIVE MASS, OM (USED TO FIND TOTAL MASS WHEN NODES ARE COMBINED) WGM -WORKING GAS MASS WGN(2,200)=MASSES OF GAS IN NODES BEFORE AND AFTER FLOW, GRAMS =CONSTANT FLOW RATE INTO OR OUT OF EXPANSION SPACE, G/SEC WH WKINT -WORK OUTPUT INTEGRAL, JOULES WLHC = WALL LENGTH FOR HEAT CONDUCTION, CM =CONSTANT FLOW RATE THRU REGENERATOR, G/SEC WR. WRATOI(8, 5) = ARRAY OF RATIOS FOR HYDROGEN OR AIR BETWEEN ADIABATIC WORK AND ISOTHERMAL WORK DEPENDING CLRATO, TRATID. WRATD2(8,9)=ARRAY OF RATIOS FOR HELIUM BETWEEN ADIABATIC WORK AND ISOTHERMAL WORK DEPENDING CLRATO, TRATIO. WWRIDS=DIMENSIONLESS HOT WORK =DUMMY REAL VARIABLE X =CONVERGENCE CRITERIA X 1 -CONVERGENCE CRITERIA X2 =TEMPORARY VARIABLES X3 =TEMPORARY VARIABLES X4 -WALL EFFECT PARAMETER ХÐ XBP -LENGTH OF DEAD BAND PORT, CM XCOORD =Array of x coordinates for input screen display XDSP0 -POSITION OF DISPLACER FROM ZERO POINT IN THE PAST, CM XDSP1 =POSITION OF DISPLACER FROM ZERO POINT IN THE PRESENT, CM XDSP2 =POSITION OF DISPLACER FROM ZERO POINT IN THE FUTURE, CM XDSPMX=MAXIMUM DIPLACER POSITION FROM NULL, CM =PRESSURE DROP INTEGRAL - ACCOUNTS FOR THE RELATIONSHIP BETWEEM XI1 THE SHAPES OF MASS AND PRESSURE FLUCTUATIONS -INFLUENCE OF MASS FLOW TIME VARIATION ON THE HEAT TRANSFER XI2 XI3 =XI1/XI2**Y TNT** =BASIC PRESSURE DROP INTEGRAL, RIOS XNDS **≈NDS**

- XNHT = VALUE OF EXPONENT IN HEAT TRANS. RELATION OF REGENERATOR MATRIX XP -LENGTH OF DOUBLE ACTING HYDRAULIC PISTON, CM =X COORDINATE AT START OF PLOTTED LINE, 0. (XP1(1.0) =X COORDINATE AT END OF PLOTTED LINE, 0. (XP2(1.0) XP1 XP2 XPP0 = POSITION OF POWER PISTON IN THE PAST, CM XPP1 = POSITION OF POWER PISTON IN THE PRESENT, CH XPP2 = POSITION OF POWER PISTON IN THE FUTURE, CM =POSITION OF POWER PISTON IN THE PRESENT, CM XPPMX =MAXIMUM POWER PISTON FROM NULL, CM XTR =TRATIO IN UNITS OF ARRAYS QRATO AND WRATO, DIMENSIONLESS XХ =TEMPORARY VARIABLE XΥ -RATIO OF NEW TO OLD GAS TEMPERATURES AFTER VOLUME CHANGE =TEMPORARY VARIABLE Y YCOORD =Array of y coordinates for input screen display YCR -CLRATO IN UNITS OF ARRAYS GRATO AND WRATO, DIMENSIONLESS -WALL EFFECT FACTOR IN SHUTTLE HEAT LOSS YΚ YP1 =Y COORDINATE AT START OF PLOTTED LINE, 0. (YP1(1.0 =Y COORDINATE AT END OF PLOTTED LINE, 0. (YP2(1.0 YP2 YΥ =TEMPORARY VARIABLE Ζ =TEMPORARY VARIABLE
- ZH =TOTAL STATIC HEAT CONDUCTION LOSS FOR COMPLETE ENGINE, WATTS

APPENDIX C VARIABLE USE TABLE (VARTAB.NOM)

*********************** VARTAB.NOM ********4-13-84**********

This table shows all the variables and where they are generated and where they are used. For brevity the file names are used rather than the subroutine names.

Name Variable	Common Block	Gen.in File N.	Used in File numbers	Comments
A AA AC ADCORH	INPUT INTMED OUTPUT	F3 FPSE F21 F28	F3 All F28 F3	LOCAL VARIABLE I 86
ADCORP AF AFC AFH AFL	ουτρυτ	F28 F21 F28 F28 F28 F21	F3 F21 F28 F28 F21	LOCAL VARIABLE LOCAL VARIABLE LOCAL VARIABLE LOCAL VARIABLE
AFR AH AHT AHTN	INTMED	F28 F21 F28 F26 FPSE	F28 F28 F28 F26 ALL	LOCAL VARIABLE LOCAL VARIABLE LOCAL VARIABLE I 79
ALDPS ALPH ANSWER AP	INPUT INTMED	F21 FPSE F21	F28 FPSE F22, 23, 21	CHARACTER
APMAR ARG B BB BB	INTMED OUTPUT INPUT OUTPUT	F 21 F 28 F 28 F PSE F 28	F22, 23, 21 F28 F3 ALL F3	LOCAL VARIABLE I 87
BBEST BH BHL BNCOEF BNVOL	UNPUT	F 28 F 28 F 28 F PSE F 21	F3 F28 all F28	LOCAL VARIABLE I 39
8P 8PL C1 C2	OUTPUT	F28 F28 F2 F2 F2	F3 F28 F2 F2 F2	LOCAL VARIABLE LOCAL VARIABLE LOCAL VARIABLE LOCAL VARIABLE
C3 C4 CALCNU CALCSP CD	INTMED OUTPUT INTMED	F2 F2 F27 F28 F21	F2 F2 F28 F3 F22, F23, F26, F27, F2	LOCAL VARIABLE
CDSPT CELECT CF CFLOW	INPUT INPUT OUTPUT INTMED	FPSE FPSE F28 F23 F42	All All F3 F28 F42	I 82 I 75
CHMTX(19) CLDDV CLEND CLK CLKDP	OPTI INPUT INPUT INTMED INTMED	F 42 F PSE F PSE F 21 F 21	F42 All F24 F24	I 44 I 81
CLRATO CMTXN	INTMED	F28 F21	F28 F26	LOCAL VARIABLE

*Note: Sverdrup Technology has combined the files W. Martiniused for his programs as follows

F1.FOR contains FPSE.FOR and FPIN.FOR FPIN.FOR replaces F1.FOR, F11.FOR, & F12.FOR F2A.FOR contains F2.FOR and F21.FOR F2B.FOR contains F22.FOR through F28.FOR F3.FOR contains F3.FOR, F4.FOR, F41.FOR, & F42.FOR

PRECEDING PAGE BLANK NOT FILMED

ਿਛਸ਼ਦ	Commun	ben. in	Used H.	 , in condition and
(H1U		(1.24) (1.24)	1.15	3. (
CH.	INTMED	F.C.	128	
CNDCYL	INTMED	F 21	F28	
LINDDSP	INTMED	+21	F 28	
1-10 R H	INTHED	F 21	F 29	
ONTIM	INTMED	F2	193	
1441		F23	F 252	
CMVCRT	INPUT	FPSE	AL1	1.83
CONDMX	INTMED	F21	F26	1 0 3
COR		F28	F28	LOCAL VARIAND
CP	INTMED	F21	F28	CODHE STRIAG
CPM	INPUT	FPSE	ALL	1 89
CIDPIH	INPUT	FPSE	a la	1 7)
CTENTH	INPUT	FPSE	ALL	
CIWIDT	INPUT	FPSF	ALL	1 70
\Box ∇	INTMED	F . 1	F28+F25	
- W		F21-28	F21-28	LOCAL VARIARI
() x	INTMED	F 2	F28	
CXIIM	INTMED	<u>د ۲</u>	F 25	
CYCTIM		F2	£2.2	 An all second sec
1 DFS	INPUT	FP :	1 A 2	
Erekt (F		F27,28	F 227 + 285	UCAL MARKA
DEFE		F:28	F G	DOM: Venilheri
DEGFIVE	INPUT	FPBE	4414	1.1.2
DECDT		F2	12	ENCIL VERSIALE
DECDIM	INTMED	F2	28	CONTRACTOR CONTRACTOR
DEHDT		F2	1	LUCAL VARIABLE
DEHDTM	INTMED	F2	F28	A A A A A A A A A A A A A A A A A A A
DIAPP	INPUT	FPSE	ALL	1 24
⇒10¥1.	INPUT	FPSE	ALL	1 281
110	INTMED	F/21	F 28	
DISPMS	INPUT	FPSE	ALL.	1 1
DMC		F27	F27	EDCAL VEREALE
L/ME 1		F24	F24	LOGAL VENDAU
1053.2		F24	F24	LOCAL VARIABLE
OMRIS		F24	F24	LOCAL VARIABLE
DMR4		F24	F24	LOCAL CARIANI
OMRE		F28	F28	LUCAL VARIARI
OMW		F27	F27	LOCAL VARIANT
liques ya	INPUT	F PBE	AL:	1 45
1.1.1.1212	INPUT	FPSE	HI I	
3 1 fe	INPUT	EPSE	44 1	L 51
(+(14))+(1	INPUT	F PSE	A) I	I 48
0+2		GU		
UP1		F 21	F21	LOCAL MAR DOMA
和我们		1.21	F'21	LOCAL TO SHEEP
1 mil		F 28	-28	LACA
D PE		F28	F28	EDCO: FEASTER
DPPP		F21	F21	LOCAL T INTERPORT
1) P R		F28	F28	Leffan - sonan ipan
(\$28)	INTMED	F 24	F23	
. 위한민준 🖻	INPUT	E PSE	At t	1 · · · · ·
5 82135 [} }	INPUT	* PSE	411	1. 1940 - Contractor (Contractor)
$([0,1]] \to \{0\}$	INPUT	I PSE	A+1	1 A.C.
DOPPHILL	INPUT	FPSE	A11	1

- - - -

	_			0
Name	Common	Gen.in	Used In	Comments
DSPCLR	INPUT	FPSE	ALL	I 37
DSPLTH	INPUT	FPSE	A11 F2 F2 A11	I 25
DSPMAX		F2	F2	LOCAL VARIABLE
DSPMIN		F2	F2	LOCAL VARIABLE
DSPSTR	INPUT	FPSE	ALL	I Ø7
DSTRMX	INPUT	FPSE	ALL	I 21
DTC		F28	F28	LOCAL VARIABLE
DTH		F28	F28	LOCAL VARIABLE
DTS	INTMED	F21	F22, F23, F24, F26, F	
DTSCP		F24	F24	LOCAL VARIABLE
DTSOV		F2	F2	LOCAL VARIABLE
	THITMED	F21	F28	LOCAL VARIABLE
DW	INTMED			
DWIRE	INPUT	FPSE	ALL	I 64
DX		F28	F28	LOCAL VARIABLE
ELTIME	INTMED		F23, F25, F27	
EMIS	INPUT	FPSE	ALL	I 95
Fi		F28	F28	LOCAL VARIABLE
F3		F28	F28	LOCAL VARIABLE
FA		F21	F21	LOCAL VARIABLE
FANG1		F2	F2	LOCAL VARIABLE LOCAL VARIABLE
FANG2		F2	F2	LOCAL VARIABLE
FAREG		F21,28	F21,28	LOCAL VARIABLE
FBALDS		F23	F23	LOCAL VARIABLE
		F23	F23	LOCAL VARIABLE
FBALPP				
FC		F28	F28	LOCAL VARIABLE
FC0	INTMED		F28	
FC1	INTMED		F28	
FC2	INTMED		F28	_
FCR		F28	F28	LOCAL VARIABLE
FDMC	RIOS	F27	F28	
FDMW	RIOS	F27	F28	
FDPR	RIOS	F27	F28	
FDVC	RIOS	F27	F28	
FDVW		F27	F27	LOCAL VARIABLE
FE		F21	F21	LOCAL VARIABLE
FEXPR	INPUT	FPSE	ALL	I 40
FFF	INTMED	F21	F28	
FGVDSP	INTMED		F23	
FGVPP	INTMED	F21	F23	
FH		F28	F28	LOCAL VARIABLE
FHØ	INTMED		F28	EDUAL VANIADEL
			F 28	
FH1	INTMED			
FH2	INTMED	F2	F28	
FLOAD		F23	F23	LOCAL VARIABLE
FMDSP(4)		F22	F23	
FMPP(4)	ADAMS	F22	F23	
FN		F21	F21	LOCAL VARIAÐLE
FORG(19)	OPTI	F42	F3	
FR		F28	F28	LOCAL VARIABLE
FRAD	INTMED	F21	F28	
FRDRCP	INTMED	F21	F24	
FRPPCP	INTMED	F21	F24	
FRRIOS		F28	F28	LOCAL VARIALBE
FTR		F28	F28	LOCAL VARIABLE
FTRL (19)		F42	F42	LOCAL VARIABLE
·				an ar ar fig that the transform

Name	Common	Ben. in		۰	Comments
GA	INTMED	F21	F26		
GAP	INPUT	FPSE	ALL		1 26
GC		F21,28	F28,21		LOCAL VARIABLE
ODMS(11)		F28	F28		LOCAL VARIABLE
GH		F28	F28		LOCAL VARIABLE
GI2(11)		F28	F28		LOCAL VARIABLE
GI3(11)		F28	F28		LOCAL VARIABLE
GINT(11)		F28	F28		LOCAL VARIABLE
GLH		F28	F28		LOCAL VARIABLE
GLR		F28	F28		LOCAL VARIABLE
GLS		F28	F28		LOCAL VARIABLE
GR		F21,28	F21,28		LOCAL VARIABLE
GRADPT	INPUT	FPSE	ALL		I 11
GRL		F28	F28		LOCAL VARIABLE
GVTMAG	INPUT	FPSE	ALL		I 13
H(5)		F28	F28		LOCAL VARIABLE
HAC		F28	F28		LOCAL VARIABLE
HAV		F28	F28		LOCAL VARIABLE
HC	INTMED	F26	F28		
HCV		F28	F28		LOCAL VARIABLE
HD	INTMED	F21	F21,22,	23, 26, 27, 28	
HEC		F28	F28		LOCAL VARIABLE
HGV		F28	F28		LOCAL VARIABLE
нн	INTMED	F26	F28		
HHC		F28	F28		LOCAL VARIABLE
HHV		F28	F28		LOCAL VARIABLE
HLLNCY	INPUT	FPSE	ALL		I 47
HLLNDP	INPUT	FPSE	ALL		I 50
HLLNPP	INPUT	FPSE	ALL		I 54
HMU		F28	F28		LOCAL VARIABLE
HN	INTMED	F2	F25		
HNTIM	INTHED	F2	F25		
HNTU		F28	F28		LOCAL VARIABLE
HRV		F28	F28		LOCAL VARIABLE
HTDV	INPUT	FPSE	A11		I 43
HTID	INPUT	FPSE	ALL		I 58
HTLNGH	INPUT	FPSE	ALL		I 57
HTUHLH	INPUT	FPSE	A11		I 59
ны	OUTPUT	F28	F3		
нх	INTMED	F2	F25		
HXTIM	INTMED	F2	F25		
HY	INTMED	F28	F26,28		
I		ALL	ALI		LOCAL VARIABLE
ICALC	INPUT	FPSE	ALL		I 15
ICR		F28	F28		LOCAL VARIABLE
IDFLT		FPIN	FPIN		Local variable
IEND1		F2	F2		LOCAL VARIABLE
IEND2		F2	F2		LOCAL VARIABLE
IFIRST		F2	F2		LOCAL VARIABLE
IND(2,2)	INTMED	F27	F27		
INTOPT	INPUT	FPSE	AII		I 32
IOPT	INPUT	FPSE	ALI		I 16
IP	OUTPUT	F28	F3		
IR	RIOS	F27	F28		
ISIG		F2	F2	1	LOCAL
ITR		F28	F28		LOCAL
- • • •		. 20	. 20	1	

NI	Courses	Gen.in	Used in	Comments
Name	Common	FPIN	FPIN	Local variable
ITYPE		FPIN		
IVAR	INPUT	FPSE	ALI	I 17
J		F2,26	F2,26	LOCAL VARIABLE
JCMP		F26	F25	LOCAL VARIABLE
JCR		F28	F28	LOCAL VARIABLE
JEXP		F26	F26	LOCAL VARIABLE
JPWR	INPUT	FPSE	ALL	I Ø8
JQ		F12	F12	LOCAL VARIABLE
JTR		F28	F28	LOCAL VARIABLE
к		F26	F26	LOCAL VARIABLE
К1		F26	F26	LOCAL VARIABLE
K2		F 26	F26	LOCAL VARIABLE
кз		F28, 25	F28, 26	LOCAL VARIABLE
К4		F26	F26	LOCAL VARIABLE
KA		F21	F21	LOCAL VARIABLE
KВ		F21	F21	LOCAL VARIABLE
KG	INTMED	F21	F28	
ĸĸ	INTMED	F21	F23, 26, 27	
КM	INTMED	F 21	F28	
KMX	INTMED	F21	F28	
KR	INTMED	F21	F26	
L		F26, 27	F26,27	LOCAL VARIABLE
LDOPT	INPUT	FPSE	ATI	I 14
M		F28	F28	LOCAL VARIABLE
Mi	INTMED	F21	F28	
M2	INTMED	F21	F28	
H3	INTMED	F21	F28	
MRØ	INTMED	F24	F25	
MR1	INTMED	F27	F27	
MR2	INTMED	F24	F27	
MRCSØ	INTMED	F:27	F27	
MRCS1	INTHED	F27	F27	
MRCS2	INTMED	F27	F27	
MRDBSØ	INTMED	F24	F27	
MRD8S1	INTMED	F24	F27	
MRDBS2	INTMED	F24	F27	
MRHSØ	INTMED	F27	F27	
MRHSI	INTMED	F27	F27	
MRHS2	INTMED	F27	F27	
MRPBSØ	INTMED	F24	F27	
MRPB51	INTHED	F24	F27	
MRPBS2	INTMED	F24	F27	
MU		F21,28	F28, 21	LOCAL VARIABLE
MW	INTMED	F21	F28	
MX		F28	F28	LOCAL VARIABLE
NCASE	OUTPUT			
NCH	OUTPUT	F4	F3	
NCHBST	OUTPUT	F4	F3	
NCHMAX	OUTPUT	F4	F3	
NCLRTB	INPUT	FPSE	ALL	I 69
NCYC	OUTPUT	FPSE	F28, 3	
NCYCL	OUTPUT	F4	F41	
NCYCT	OUTPUT		a	1 00
NCYL	INPUT	FPSE	ALL	I 20
NDF	INPUT	FPSE	A11	
NDS		F28	F28	LOCAL VARIAR 7

Name NFRST	Common OUTPUT	Gen.in F4	Used in	Comments
NGN	INPUT	FPSE	F3	
NHLPP	INPUT		A11	I 45
NHTRTB	INPUT	FPSE	AH	I 55
NIN	INFUT	FPSE	A11	I 56
NO	INTMED	F28	F28	LOCAL VARIABLE
NPAJST		F27	F27	
NRADSH	OUTPUT		-	
	INPUT	FPSE	Alt	I 94
NRIOSL NSHCUT	INPUT	FPSE	ALI	I 96
NT	OUTPUT	F4	F3	
NTRIAL		F28	F28	LOCAL VARIABLE
	OUTPUT	F4	F3	
NTRLST	OUTPUT	F4	F41	
-	INPUT	FPSE	ALL	I 46
NU	INTMED	F21	F28	
NXCORD		FPIN	FPIN	Local variable
06	INPUT	FPSE	ALL	I Ø2
DPT(1)	OPTI	FPSE	F42	I 1 @ 1
OPT(2)	OPTI	FPSE	F42	I102
0PT(3)	OPTI	FPSE	F42	I 103
OPT(4)	OPTI	FPSE	F42	I 1 Ø 4
OPT(5)	OPTI	FPSE	F42	I 105
0PT(6)	OPTI	FPSE	F42	I106
OPT(7)	OPTI	FPSE	F42	I107
OPT(8)	OPTI	FPSE	F42	1108
0PT(9)	OPTI	FPSE	F42	I109
OPT(10)	OPTI	FPSE	F42	I110
OPT(11)	OPTI	FPSE	F42	I111
OPT(12) OPT(13)	OPTI OPTI	FPSE	F42	I112
OPT(14)	OPTI	FPSE	F42 F42	1113
0PT(15)	OPTI	FPSE	F42	1114
OPTEND	OUTPUT	FF3E F4	F42 F3	I115
P1	001101	F26	F26	
P4	INTMED	F21	F28	LOCAL VARIABLE
PAVGB	INPUT	FPSE	A11	T (3)
PBIC	INTMED	F27	F27	I Ø1
PDPBSØ	INTMED	F24	F27	
PDPBS1	INTMED	F24	F27	
PDPBS2	INTMED	F24	F27	
PG	INTHED	F21	F28,3	
PHASED	INPUT	FPSE	AI 1	I 05
PHASED		F2	F2	LOCAL VARIABLE
PI	INTMED	F21	F28	COURT VARIABLE
PMAX	INPUT	FPSE	ALI	I 80
PMAXR		F28	F28	LOCAL VARIABLE
PMIN	INPUT	FPSE	ALL	I 78
PIN	INTMED	F2	F28	1.0
PNEW (200)		F26	F26	LOCAL VARIABLE
POPT	F42	F42	F42	
PORMITX	INPUT	FPSE	ALL	I 65
PP	INTMED	F21	F28	
PPCLR	INPUT	FPSE	A11	I 33
PPMAS	INPUT	FPSE	ALI	I 30
PPPBSØ	INTMED	F24	F27	
PPPBS1	INTMED	F24	F27	

Nane	Common	Gen. In		Comments
PPPBS2	INTMED	F24	F27	
PPSLLT	INPUT	FPSE	ALI	I 34
PPSTR	INPUT	FPSE	ALL	I Ø6
PPSTRM	INPUT	FPSE	Alt	I 22
PPSTRO		F2	F2	LOCAL VARIABLE
PR	INTMED	F21	F28	
PRCNO	INPUT	FPSE	ATI	I 19
PSTMAX		F2	F2	LOCAL VARIABLE
PTIC	INTMED	F27	F27	
PWGØ	INTMED	F27	F27	
PWG1	INTMED	F2 3	F24,25,26,27	
PWG2	INTMED	F25	F26,27	
PWGEND		F2	F2	LOCAL VARIABLE
PWRTGT	INPUT	FPSE	ALL	I 18
PX	INTMED	F2	F28	
QAPDX		F26,2	F26,2	LOCAL VARIABLE
QB		F28	F28	LOCAL VARIABLE
QC		F28	F28	LOCAL VARIABLE
QCCYL	OUTPUT	F28	F3	
QCDSPW	OUTPUT	F28	F3	
QCGAS	OUTPUT	F28	F3	
DCLR		F26,2	F26,2	LOCAL VARIABLE
QCMTX	OUTPUT		F3	
QCRAD	OUTPUT	F28	F3	
OCRWL	OUTPUT	F28	F3	
DDK		F28	F28	LOCAL VARIABLE
QFS		F28	F28	LOCAL VARIABLE
QHTR		F26,2	F26,2	LOCAL VARIABLE
QL1		F28	F28	LOCAL VARIABLE
QLM		F28	F28	LOCAL VARIABLE
QN	OUTPUT	F28	F3	
QNCCR		F26	F26	LOCAL VARIABLE
QNCHR		F26	F26	LOCAL VARIABLE
QNCMR		F26	F26	LOCAL VARIABLE
QNPH		F28	F28	LOCAL VARIABLE
QNTU		F28	F28	LOCAL VARIABLE
QP	OUTPUT	F28	F3	
QPRIOS		F28	F28	LOCAL VARIABLE
		F12 F28	F12 F28	
QR1 QR2		F28	F28	LOCAL VARIABLE LOCAL VARIABLE
QR3		F 28	F28	LOCAL VARIABLE
QRATU1 (8,	a	F28	F28	LOCAL VARIABLE
QRATO2(8)		F28	F28	LOCAL VARIABLE
QREG	27	F26, 2		LOCAL VARIABLE
QS	OUTPUT	F28	F3	
QTOT	00// 0/	F26	F26	LOCAL VARIABLE
QTRAN		F26	F26	LOCAL VARIABLE
R	INTMED	F21	F24,28	
RA	INTMED	F21	F22	
RCRDAN		F21	F21	LOCAL VARIABLE
RESLAN		F21	F21	LOCAL VARIABLE
RD	INTMED	F21	F22, 23, 25, 26, 27, 28	
RDFLT		FPIN	FPIN	Local variable
	PT OC	F27	F28	
RDMC (360)	RIOS	F21	F26	
RDMW	INTMED	1 2 1	120	

Name	Common	Gen.in	Used in	Comments
RDPR (360) RIOS	F27	F28	ocontribe (1 C g
RDVC (360) RIOS	F27	F28	
RDVW		F27	F27	LOCAL VARIABLE
RE		F21+28	F21,28	LOCAL VARIABLE
REC		F28	F28	LOCAL VARIABLE
REGLITI	H INPUT	FPSE	AL1	I 62
REH		F28	F28	LOCAL VARIABLE
RER		F28	F28	LOCAL VARIABLE
RERIO	5(3)	F28	F28	LOCAL VARIABLE
RH	OUTPUT	F 28	F3	
RHOLK		F21	F21	LOCAL VARIABLE
RHOM	INPUT	FPSE	AL I	I 88
RM		F21,28	F21,28	LOCAL VARIABLE
RMU		F28	F28	LOCAL VARIABLE
RNTU		F28	F28	LOCAL VARIABLE
RP		F28	F28	LOCAL VARIABLE
RPR(36	SØ) RIOS	F27	F28	
RR		F28	F28	LOCAL VARIABLE
	360) RI OS	F27	F28	
RT		F28	F28	LOCAL VARIABLE
RVT		F28	F28	LOCAL VARIABLE
RW RZ	OUTPUT	F'28	F3	
SANREG	TALOUT	F28	F28	LOCAL VARIABLE
SCYLW1		FPSE	ALL	I 63
SCYLW2		FPSE	ALL	I 92
SDSPST		FPSE	ALL	I 91
SDSPW		FPSE	FPSE	
SIG	INPUT	FPSE	ALL	I 93
SIGPBS		F21	F21	LOCAL VARIABLE
SIGPWG		F2 F2	F2	LOCAL VARIABLE
SIGXPP		F2 F2	F2 F2	LOCAL VARIABLE
SL	OUTPUT	F28	F2 F3	LOCAL VARIABLE
SPD	001101	F28	F28	
SPHASE	FPIST	FPSE	FPSE	LOCAL VARIABLE
SPHTAC	INTMED	F21	F26	
SPHTAH	INTMED	F21	F26	
SPHTAR	INTMED	F21	F26	
SPHZ	INPUT	FPSE	A11	I 29
SPPSTR	FPIST	FPSE	FPSE	1 23
ST		F28	F28	LOCAL VARIABLE
TCMP	INTMED	F21	F28,27	COCHE VHRIABLE
TCMPC	OUTPUT	F28	F3	
TCMPL		F28	F28	LOCAL VARIABLE
TCR		F28	F28	LOCAL VARIABLE
TDH		F28	F28	LOCAL VARIABLE
TDHAX		F2	F2	LOCAL VARIABLE
TDMIN		F2	F2	LOCAL VARIABLE
TEXP	INTMED	F21	F28,27	ESCHE VANTABLE
TEXPC	OUTPUT	F28	F3	
TEXPL		F28	F28	LOCAL VARIABLE
TGN(2,2	00)INTMED	F21	F26	LOUIL THITPLE
TMCL RC	INPUT	FPSE	ALL	I 034
TMCMPK	INTMED	F21	F26,28	
TMET		F26	F26	LOCAL VARIABLE

Name TMEXPK	Common INTMED		Used in F26,28	Comments
TMHTRC	INPUT	FPSE	AU	1 97
TMPNAM	INFUI	FPIN		I 03
			FPIN	Local variable
TMPVAL		FPIN	FPIN	Local variable
TPMAX		F2	F2	LOCAL VARIABLE
TPMIN		F2	F2	LOCAL VARIABLE
TR	INTHED	F21	F25, 27, 28	
TR3C	INTMED	F21	F25	
TR3H	INTMED	F21	F26	
TR3M	INTMED	F21	F26	
TRATIO		F28	F28	LOCAL VARIABLE
TSPCYC	OUTPUT	F28	F3	
TSTEP	INPUT	FPSE	ALL	I 10
TWLM		F28	F28	LOCAL VARIABLE
TXW		F26	F25	LOCAL VARIABLE
UDM(5)		F28	F28	LOCAL VARIABLE
UI23		F28	F28	LOCAL VARIABLE
UI24		F28	F28	LOCAL VARIABLE
UI33		F28	F28	LOCAL VARIABLE
UI34		F 28	F28	LOCAL VARIABLE
UIN(5)		F28	F28	LOCAL VARIABLE
UTR		F28	F28	LOCAL VARIABLE
	INPUT	FPSE	ALL	I 60
V1	INPUT	FPSE	ALL	I 73
V2	INFUT			LOCAL VARIABLE
VA	THITMED		F25,27	LOCHE VARIABLE
	INTMED	F21,26		LOCAL VARIABLE
VB VC			26F21,28,26	LOCAL VARIABLE
	TNEMET		20721,28,20	LUCHL VHRIHBLE
VC0 VC1	INTMED	F27,21,	F22,21	
			F22, 23, 25	
VC2	INTMED		F23	
VCMAX	INTMED	F22	F23	
VCMIN	INTMED			LOCAL VARIABLE
VD		F21,26		LUCHL VHRIHBLE
VDPBSØ	INTMED		F23, F24	
VDPBS1	INTMED		F23, F24	
VDPBS2	INTHED	F21	F23, F24	LOCAL VARIABLE
VDRIOS		F28	F28	LUCAL VARIABLE
VDSPØ	INTMED		507	
VDSP1	INTMED	F22	F23	PUE OK
VDSP2	INTMED	FO1 05	F23	CHECK LOCAL VARIABLE
VE		F21+25		LUCHL VHRIHBLE
VGN(2,200	DINIMED	F21	F26	
VH		F28	F28	LOCAL VARIABLE
VHØ	INTMED		FOR 07 01	
VH1		F22, 21		
VH2	INTMED	F22	F23, 25, 26, 27	
VHEND		F2		LOCAL VARIABLE
VHERST		F'2	F2	LOCAL VARIABLE
VHMAX	INTHED	F22	F23	
VHMIN	INTMED	F:22	F23	DEDI HORTORI
VHZERO		FI2	F2	LOCAL VARIABLE
VMDPT		F26	F26	
VN		F21	F21	LOCAL VARIABLE
VNAME		FPIN	FPIN	Local variable
VOLBS	INPUT	F PSE	ALL	I 42
VOLDSP	INPUT	FPSE	ALL	I 41
VPPØ	INTMED	F2	F2	

Nane	Common	Ben.in	Used in	Comments
VPP1	INTMED		F23	connerreg
VPP2	INTMED		F23	
VPPBS0	INTMED	F21	F23, F24	
VPPBS1	INTMED		F23, F24	
VPPBS2	INTMED		F23, F24	
VRGS	INPUT	FPSE	ALL	1 53
VTO	INTMED		F2	1 33
VTI	INTMED		F25,26	
VT2	INTMED		F23, 25, 26	
VTEND	INTICO	F2	F23, 23, 26	
VTERST		F2		LOCAL VARIABLE
VTMAX	PLOT		F2	LOCAL VARIABLE
VX		F21 F21	F2	
W1	INTMED INTMED			
	INTRED	F2	F28	
W1A		F2	F2	LOCAL VARIABLE
W1CYC		F2	F2	LOCAL VARIABLE
W1M1		F2	F2	LOCAL VARIABLE
W1M2		F2	F2	LOCAL VARIABLE
WIEND		F2	F2	LOCAL VARIABLE
W2	INTMED	F2	F28	
W2A		F2	F2	LOCAL VARIABLE
W2COMP		F2	F2	LOCAL VARIABLE
W2CYC		F2	F2	LOCAL VARIABLE
W2END		F:2	F2	LOCAL VARIABLE
W2M1		F2	F2	LOCAL VARIABLE
W2M2		F2	F2	LOCAL VARIABLE
WC		F21,28	F21,28	LOCAL VARIABLE
WCRIOS	RIOS	F:27	F28	
WEUM		F 26	F26	LOCAL VARIABLE
WGM		F21	F21	LOCAL VARIABLE
WGN (2, 20)	0) INTMED	F21	F21,26	
WH		F 28	F28	LOCAL VARIABLE
WLHC	INPUT	FPSE	ALL	I 90
WR		F28	F28	LOCAL VARIABLE
WRATD1 (B	, 9)	F 28	F28	LOCAL VARIABLE
WRAT 02 (8,	9)	F28	F28	LOCAL VARIABLE
WWRIOS	RIDS	F27	F28	
X		ALL	ALL	LOCAL VARIABLE
X 1	INTMED	F28	F2	
X2	INTMED	F28	F2	
XЗ		F26, 23	F26,23	LOCAL VARIABLE
X4		F26,23	F26,23	LOCAL VARIABLE
XB		F28	F28	LOCAL VARIABLE
XBP	INPUT	FPSE	ALL	I 77
XCOORD	_	FPIN	FPIN	
XDSPØ	INTMED	F2		Local variable
XDSP1	INTMED	F 22	507	CHECK
XDSP2	INTMED		F23	
XDSPMX	INTMED		F23	
XI1	ANT DED	F21	F22, 23	
X12		F28	F28	LOCAL VARIABLE
X12 X13		F28	F28	LOCAL VARIABLE
XINT		F28 F28	F28	LOCAL VARIABLE
XNDS			F28	LOCAL VARIABLE
XNUS XNHT		F28	F28	LOCAL VARIABLE
XNHI XP	THOUT	F28	F28	LOCAL VARIABLE
λ.Γ	INPUT	FPSE	ALL	I 76

Name XP1 XP2	Common	Gen. in F2,28 F2,28	Used in F2;28 F2;28	Comments LOCAL VARIABLE LOCAL VARIABLE
XPPØ	INTMED	F2	F2	
XPP1	INTMED	F22	F23,24	
X PP2	INTMED	F22	F23+24	
XPPMX	INTMED	F21	F23	
XTR		F28	F28	LOCAL VORIABLE
XX		F26,21,2	24F26 21,24	LOCAL VARIABLE
XY		F26,24	F25-24	LOCAL VARIABLE
Y		A11	At t	LOCAL VARIABLE
YCOORD		FPIN	FPIN	Local variable
YCR		F28	F28	LOCAL VARIABLE
YK		F 28	F28	LOCAL VARIABLE
YP1		F2,28	F2,28	LOCAL VARIABLE
YP2		F2,28	F2,28	LOCAL VARIABLE
YY		F24,28	F24,28	LOCAL VARIABLE
z		F24,22	F24,22	LOCAL VARIABLE
žн		F 28	F28	LOCAL VARIABLE

, ,

APPENDIX D

DERIVATION OF RIOS ADIABATIC ANALYSIS

EQUATIONS

.

•

APPENDIX D - DERIVATION OF RIOS ADIABATIC ANALYSIS EQUATIONS

As a price for extending the contract, the method of integration of the equations assuming adiabatic hot and cold spaces used by Rios in his thesis is added to the program. The original MIT thesis bears a date of September 1969 and is entitled, "An Analytical and Experimental Investigation of the Stirling Cycle." It is on file at Martini Engineering as 1969am in the form of a microfilm and a white on black paper copy. It contains 180 pages.

The form of the equations used in the computer program in the second edition of the design manual are specially formulated to use dimensionless groups and to use cranks to move two pistons with fixed angle. Also inherent in the equations is the provision that the mass of gas remains constant. In this derivation we plan to keep the equations in a dimensional form so it will fit with the rest of the analysis and accept the quantities the rest of the analysis has to give it.

It is still assumed that during a cycle the gas in the heater is at a fixed temperature. Initially, this would be the heater metal temperature. At later iterations the effective heater gas temperature would be adjusted so that the heat that must be supplied to the engine can be transferred through the heat exchanger because of its area, heat transfer coefficient and the temperature drop between the heater metal temperature and the effective heater gas temperature.

It is also still assumed that the gas in the cooler is handled in the same way as the heater.

The gas in the regenerator is assumed to remain at the log mean temperature between heat source and heat sink metal temperatures. This temperature is what is used elsewhere in the program and is more correct than the arithmetic mean used by Rios.

The gas in the hot space is assumed to be adiabatic. However, its mass may never go to zero as the Rios computer program demands.

The gas in the cold space is handled in the same manner as the hot space.

Now the Rios's integration method must be adapted. He calculated arrays of reduced volumes and volume derivatives at the beginning of every degree of crank rotation and then half-way through every degree. In a free piston arrangement we do not have this information. The information at the beginning of the time increment was used to determine the pressure at the middle. The pressure at the middle of the time increment was used to calculate a truer derivative to calculate the pressure at the end of the time increment. In our computer program we only know the conditions according to the following table.

PRECEDING PAGE BLANK NOT FILMED

	Past,	Current,	Future,
	O	1	2
Total volume	VTO	VT1	VT2
Hot volume ^a	VHO	VH1	VH2
Cold volume ^b	VCO	VC1	VH2 VC2
Pressure	PWGO	PWG1	?
Total working gas "mass" ^C	MRO	MR1	MR2
Hot space inventory ^C	MRHSO	MRHS1	?
Cold space inventory ^C	MRCSO	MRCS1	

^aIncludes hot dead volume, HD in heater. ^bIncludes cold dead volume, CD in cooler. ^cIt is convenient to use the mass times the gas constant, units j/k.

Because of the rest of the computer program, we know everything about the future time step except what the pressure should be. Like Rios did, the way we will determine the future pressure is to determine the time derivative of pressure at the current time and use this to determine the future pressure based upon the past pressure. See figure D-1 for further details.

Because of leakage the working gas mass is not constant from time step to time step. Nevertheless, all the changes in gas inventory in the different part of the engine are equal to this gas inventory change.

$$d(MR)_{HS} + d(MR)_{H} + d(MR)_{R} + d(MR)_{C} + d(MR)_{CS} = d(MR)_{TOTAL}$$
(A-1)

where MR = the mass in gram moles times the gas constant in j/g mol K. Units j/k.

$$PWG2 = PWGO + \frac{dP}{dt} (2)(DTS) \qquad (A-2)$$

For either the hot space or cold space Rios starts with the differential form of the first law of thermodynamics

$$dE = dQ - pdV + hdm \qquad (A-3)$$

Since these spaces are assumed to be adiabatic, dQ = 0. The perfect gas relationship allows the above equation to be interpreted differently for gas entering and leaving the gas space. For gas entering (Rios is wrong at this point):

mC _v d1 =	pdV	C T*dm	(A-4)
energy change in contained gas due to temperature change	energy change in contained gas due to volume change	energy change in contained gas due due to gas flow	(), 4)

where:

m mass inventory of gas in hot or cold space, g mol

 C_v heat capacity at constant volume, j/g mol $^{\circ}K$

dT differential temperature change, K

p pressure, MPa

dV differential volume change, cm^3

 C_p heat capacity at constant pressure, j/g mol °K

T* temperature of the gas entering either from the heater or cooler, assumed to be constant, °K

dm differential change in gas inventory, g mol

Now use the perfect gas relationship.

$$PV = mRT$$
 (A-5)

Differentiate assuming the mass is constant

$$PdV + VdP = mRdT$$
 (A-6)

Now if equation (A-6) is solved for dT and substituted into equation (A-4) and the equation simplified, remembering that $R = C_p - C_v$, the results is as Rios states:

$$dm = \frac{PdV}{RT*} + \frac{1}{k} \frac{VdP}{RT*} \qquad \left[dm > 0\right] \qquad (A-7)$$

where $K = C_{p}/C_{v}$

Now for the case where gas is leaving the hot or cold space, equation (A-3) translates to:

$$mC_{v}dT = -PdV + C_{p}Tdm \quad [dm > 0] \qquad (A-8)$$

(This is also different than what Rios has.)

The only new nomenclature is: T = temperature of the gas in the hot or cold space which is now leaving. Now if equation (A-5) is solved for T and substituted into equation (A-8), and if equation (A-6) is solved for dT and also substituted into equation (A-8), then as before equation (A 8) can be simplified and solved for dm to give

$$dm = m\left(\frac{dV}{V} + \frac{1}{k} \frac{dP}{P}\right) \qquad \left[dm > 0\right] \qquad (A-9)$$

(This equation is the same as Rios shows.)

Now for each of the dead volumes, we can differentiate equation (A-5) knowing that V, R, and T are constant. Thus:

$$dm = \frac{VdP}{RT}$$
 (A-10)

For each dead volume the volume and temperature would be different.

Now we need to translate these differential equations into difference equations using the values calculated in the rest of the program. Also, the rest of the computer program keeps track of mass in terms of MR. (see eq. (A-1)).

Thus, for the hot space, mass increasing:

$$d(MR)_{HS} = \frac{PWG1 * (VH2 - VH0)}{TEXP} + \frac{(VH1 - HD) * (PWG2 - PWG0)}{KK * TEXP}$$
(A-11)

(The nomenclature now is the same as the rest of the computer program). For the hot space mass decreasing:

$$d(MR)_{HS} = MRHS1 * \left(\frac{VH2 - VH0}{VH1 - HD} + \frac{PWG2 - PWG0}{KK * PWG1}\right)$$
(A-12)

Note here that MRHS1, the mass in MR units of the gas in the hot space at present time must be input at the start of the solution and kept track of during the solution. Rios was able to get a solution quickly because he did not have any adiabatic dead volume and the mass in both the hot and cold space could be reset to zero each cycle. In our solution, the initial value for MRHS will come from isothermal analysis. The value during the solution will be determined each time step using either equations (A-11) or (A-12).

Next, the dead volume differentials will be translated to difference equations. For the heater

$$d(MR)_{H} = \frac{HD * (PWG2 - PWG0)}{TEXP}$$
(A-13)

For the regenerator and appendix space:

$$d(MR)_{R} = \frac{(RD + VAPDX) * (PWG2 - PWG0)}{TR}$$
(A-14)

For the cooler:

$$d(MR)_{c} = \frac{VC * (PWG2 - PWG0)}{TCMP}$$
(A-15)

Then the cold space differential for mass increasing in the cold space is:

$$d(MR)_{CS} = \frac{PWG1 * (VC2 - VC0)}{TCMP} + \frac{(VC1 - CD) * (PWG2 - PWG0)}{KK * TCMP}$$
(A-16)

And for mass decreasing:

$$d(MR)_{CS} = MRCS1 * \left(\frac{VC2 - VC0}{VC1 - CD} + \frac{PWG2 - PWG0}{KK * PWG1}\right)$$
(A-17)

Here again, MRCS1 must be calculated initially using the isothermal analysis and then must be determined each time step using either equations (A-16) or (A-17).

Finally, the total working gas mass does change. Thus;

$$d(MR)_{total} = MR2 - MR0$$
 (A-18)

Rios identified four cases that happen during the cycle. The table below defines these cases and shows what equations should be substituted into equation (A-1) and solved for PWG2.

Case	Hot space	Cold space	Equations to substitute in equation (A-1)
1	dm > 0	dm > 0	A-11, A-13, A-14, A-15, A-16, A-18
2	dm < 0	dm < 0	A-12, A-13, A-14, A-15, A-17, A-18
3	dm > 0	dm < 0	A-11, A-13, A-14, A-15, A-17, A-18
4	dm < 0	dm > 0	A-12, A-13, A-14, A-15, A-16, A-18

These substitutions were made and equation solved for PWG2. The results are given below. For all cases:

$$Z = \frac{HD}{TEXP} + \frac{RD + VAPDX}{TR} + \frac{CD}{TCMP}$$
(A-19)

For Case 1:

$$X = MR2 - MR0 - PWG1 * \left(\frac{VH2 - VH0}{TEXP} + \frac{VC2 - VC0}{TCMP}\right)$$

$$Y = \frac{VH1 - HD}{KK * TEXP} + Z + \frac{VC1 - CD}{KK * TCMP}$$

$$PWG2 = PWG0 + X/Y$$
(A-20)

For Case 2:

$$X = MR2 - MR0 - \frac{MRHS1 * (VH2 - VH0)}{(VH1 - HD)} - \frac{MRCS1 * (VC2 - VC0)}{(VC1 - CD)}$$
$$Y = \frac{MRHS1}{KK * PWG1} + Z + \frac{MRCS1}{KK * PWG1}$$
(A-21)
$$PWG2 = PWG0 + X/Y$$

For Case 3:

$$X = MR2 - MR0 - \frac{PWG1 * (VH2 - VH0)}{TEXP} - \frac{MRCS1 * (VC2 - VC0)}{VC1 - CD}$$

$$Y = \frac{VH1 - HD}{KK * TEXP} + Z + \frac{MRCS1}{KK * PWG1}$$

$$PWG2 = PWG0 + X/Y$$
(A-22)

For Case 4:

$$X = MR2 - MR0 - \frac{MRHS1(VH2 - VH0)}{VH1 - HD} - \frac{PWG1 * (VC2 - VC0)}{TCMP}$$

$$Y = \frac{MRSH1}{KK * PWG1} + Z + \frac{VC1 - CD}{KK * TCMP}$$

$$PWG2 = PWG0 + X/Y$$
(A-23)

The program starts by choosing Case 4 since at zero time the displacer is in midstroke toward the hot end and the power piston has just started the expansion stroke.

After PWG2 is first calculated by equation (A-23), the mass increments in the hot space and cold space are calculated. The mass increment difference equations are:

For hot space mass increasing:

$$MRHS2 = MRHSO + \frac{PWG1 * (VH2 - VH0)}{TEXP} + \frac{(VH1 - HD) * (PWG2 - PWG0)}{KK * TEXP}$$
(A-24)

For hot space mass decreasing:

$$MRHS2 = MRHS0 + MRHS1 * \left(\frac{VH2 - VH0}{VH1 - HD} + \frac{PWG2 - PWG0}{KK * PWG1}\right)$$
(A-25)

For cold space mass increasing:

$$MRCS2 = MRCS0 + \frac{PWG1 * (VC2 - VC0)}{TCMP} + \frac{(VC1 - CD) * (PWG2 - PWG0)}{KK * TCMP}$$
(A-26)

For cold space mass decreasing:

$$MRCS2 = MRCS0 + MRCS1 * \left(\frac{VC2 - VC0}{VC1 - CD} + \frac{PWG2 - PWG0}{KK * PWG1}\right)$$
(A-27)

The table below shows what equations will be used to calculate the masses of gas in the hot and cold gas spaces.

Case	MRHS2 calculation by equation	MRSC2 calculation by equation
1	A-24	A 26
, ,		A-26
2	A-25	A-27
3	A-24	A-27
4	A-25	A-26

Once the new masses are calculated we determine what case should be used for the next time increment by the sign of the mass derivatives.

This Rios integration method merely calculates the next pressure and determines the case for the next time increment. Other parts of the program determine convergence by noting very little change in either the hot space or the cold space effective temperature.

¥

APPENDIX E EFFECT OF CONVERGENCE CRITERIA ON RESULTS (COMPUTER OUTPUT) DOUBLE PRECISION

CONVE CYCLE NUMB. 1 2 3 4 5 6 7 8		E (F 0 5 6 6 9 6	CHANGE HEAT IN .00000 .70565 .04863 .11507 .15497 .00660 .01046	.010 WORK OUT JOULES 37.804 46.280 32.042 38.240 38.115 38.529 38.882 38.882 39.318	HEAC IN S JOUI 48 58.8 09 61.7 21 54.6 09 63.0 51 63.5 91 64.7 23 64.6		END PRESSURE MPA 6.3023 6.4564 6.2992 6.3203 6.2959 6.2831 6.2689 6.2570	TIM STE MSE .100 .100 .100 .100 .100 .100 .100	P C. 00 00 00 00 00 00 00 00
9	.0112	2.	01158	39.526	59 65.7	7471	6.2463	.100	
10	.0053			39.706)397	6.2465	.100	00
			CONDITIO						
01=	66.000	02=	2	03=	600.000		40.000	05=	
06=	2.250	07=	2.815		0	09=	1	10=	.100
11=	0	12=	.000		1.000		4	15=	2
16=	0	17=	3	18=	1000.000) 19=	10.000		
	NT DIME				4 0000		4 7000	24	5 7100
20=	1	21=	4.0400		4.2000		4.7000	24=	
	15.1900	26=	.0365	27=	1.6630		5.7790		29.7000
30=	6.2000	31=	.4260	32=	0		33.0000		15.2500
	25.4000	36=	7.6000		381.0000		.0000	39=	.8000
	10.0000	41=	31.7900	42=	20.5000		2.3900		72.5300
45=	22	46=	24	47=	1.0200		.1575	49=	.1067
50=	.7600	51=	.1321	52=	.1016		31.7900	54=	
55=	2	56=	34	57=	18.3400		.2362	59=	9.2600
60=	1.5000	61=	.0000	62=	6.4460		.5440		88.9000
	75.9000	66=	.0000	67=	.0000		.0000	69=	135
70=	.0508	71=	.3760	72=	7.9200		1.5000	74=	.0000
75=	.0400	76=	1.0000	77=	3.0000		1.0000	79=	4.0000
	20.0000	81=	.0100	82=	.1000		.0100	84=	.0000
85=	.0000	86=	-4.5650	87=	.4684		7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.1450		.0813	94=	1
95=	.5000	96=	0	97=	.0000		.0000	99≃	.0000
100=	.0000	101=	13	102=	15	103=	14	104=	0
105=	0	106=	0	107=	0	108=	0	109=	0
110=	0	111=	0	112=	0	113=		114=	0
115=	0	116=	0	117=	0	118=	0	119=	0
120=	0								

ENTERED PRINT ROUTINE AFTER 10 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0100 RUN¥ 1 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT = .040 N/(CM/SEC)**2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FREQ., HZ = 29.70 CHRG. PRESS., BAR = 66.00 HEAT IN, DEG C = 600.00 HEAT OUT, DEG. C = 40.00 W. GAS 1=H2,2=HE,3=AIR 2 PHASE ANG. DEGREES = 91.99 POWER P.STR,CM = 2.25 DISPL. STROKE, CM = 2.82 CALC.FREQ., HZ = 24.08 TIME STEPS/CYCLE = 415.20 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: POWER, WATTS BASIC ADIABATIC CORR. -42.6077 ADIABATIC CORR. -42.6079 SHUTTLE 123.9003 COOLER FLOW LOSS -106.2699 SHUTTLE 123.9003 COND. 6.14555 REGEN. WALL COND. 195.0205 DISPLCR WALL COND. 6.15455 CYL. WALL COND. 6.15455 REGEN. WALL COND. 6.15455 REGEN. WALL COND. 6.14555 REGEN. WALL CO

CONVE	RGENCE (RITE	RTA TS:	.005	500				
CYCLE			CHANGE	WORK	HEA	т	END	TIME	Ξ
NUMB.			HEAT	OUT	IN		PRESSURE	STER	P
	OUT		IN	JOULES	S JOU	LES	MPA	MSEC	с.
1	.00000)	.00000	37.804		8702	6.3023	.100	00
2	.62195	5	.70565	46.280		7328	6.4564	.100	00
3	.22421	L	.04863	32.042	21 54.	6293	6.2992	.100	00
4	.30766		.11507	38.240		0954	6.3203	.100	00
5	.19346	5	.15497	38.115	51 63.	5116	6.2959	.100	00
6	.00329)	.00660	38.529	91 64.	1757	6.2831	.100	00
7	.01086	5	.01046	38.882	64.	6377	6.2689	.100	00
8	.00917	7	.00720	39.318	35 65.	3865	6.2570	.100	00
9	.01122	2	.01158	39.526	59 65.	7471	6.2463	.100	
10	.00530)		39.706		0397	6.2465	.100	
11	.00455			39.916		3575	6.2298	.050	
12	.00528			40.065		5949	6.2245	.050	
13	.00373		.00358			8346	6.2191	.050	00
CURRE	NT OPERA		CONDITIO						
01=	66.000	02=	2	03=	600.00		40.000	05=	
06=	2.261	07=	2.827		0	09=	1	10=	
11=	0	12=	.000		1.00		4	15=	2
16=	0	17=	3	18=	1000.00	0 19=	10.000		
	NT DIMEN								
20=	1	21=	4.0400				4.7000	24=	
	15.1900	26=	.0365				5.7790		29.7000
30=	6.2000	31=	.4260		0		33.0000		15.2500
	25.4000	36=	7.6000		381.000		.0000	39=	.8000
	10.0000	41=	31.7900		20.500		2.3900		72.5300
45=	22	46=	24	47=	1.020		.1575		.1067
50=	.7600	51=	.1321		.101		31.7900	54=	2.9200
55=	2	56=	34	57=	18.340		.2362	59=	9.2600
60=	1.5000	61=	.0000		6.446		.5440		88.9000
	75.9000	66=	.0000		.000		.0000	69=	135
70=	.0508	71=	.3760		7.920		1.5000	74=	.0000
75=	.0400	76=	1.0000		3.000		1.0000	79=	4.0000
	20.0000	81=	.0100		.100		.0050	84=	.0000
85=	.0000	86=	-4.5650		.468	-	7.9300	89=	.4600
90=	4.4500	91=	.3710		.145		.0813	94=	1
95=	.5000	96=	0	97=	.000		.0000	99=	.0000
100 =		101=	13	102=	15			104=	0
105=		106=	0	107=	0			109= 114=	0
110=	0	111=	= 0	112=	0				v
115=		116=	= 0	117=	0	118=	0	119=	. 0
120=	0								

ENTERED PRINT ROUTINE AFTER 13 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER CUT HAS BEEN LESS THAN .0050 RUN# 1 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR LOAD CONSTANT = .040 N/(CM/SEC)**2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FREQ., HZ = 29.70 CHRG. PRESS., BAR = 66.00 HEAT IN, DEG C = 600.00 HEAT OUT, DEG. C = 40.00 W. GAS 1+H2,2+HE,3=AIR 2 POWER P.STR, CM = 2.26 DISPL. STROKE, CM = 2.83 CALC.FREQ., HZ = 24.07 TIME STEPS/CYCLE = 830.79 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: POWER, WATTS BASIC 968.1708 BASIC 968.1708 BASIC 1608.9434 ADIABATIC CORR. -43.1398 ADIABATIC CORR. -43.1398 ADIABATIC CORR. -43.29 REGEN.FLOW LOSS -107.4881 INDICATED 728.0027 TEMP. SWING 1.0050 CYL. WALL COND. 194.9924 DISPLCR WALL COND. 61.5366 INDICATED 728.0027 TEMP. SWING 1.0050 CYL. WALL COND. 46277 REGEN. MTX. COND. 4.6277 RAD.INSIDE DISPL. 4.7926 REGEN. MTX. COND. 4.6275 REGEN. MTX. COND. 4.6277 REGEN. MTX. CON

TT

CONVE	DOENCE C	הזשתים		.00	200				
CYCLE	RGENCE C			WORK	LOO HEA	Ψ	END	TIM	E
NUMB.				OUT	IN	. 1	PRESSURE		
NOMD.	OUT			JOULE		LES	MPA	MSE	
1	.00000			37.80		8702	6.3023	.10	
2	.62195			46.28		7328	6.4564	.10	
2	.22421			32.042		6293	6.2992	.10	
4	.30766			38.24		0954	6.3203	.10	
5	.19346			38.11		5116	6.2959	.10	
6				38.529		1757	6.2831	.10	
	.00329					6377	6.2689	.10	
7	.01086			38.882 39.314		3865	6.2570	.10	
8	.00917						6.2463	.10	
9	.01122			39.52		7471			
10	.00530			39.70		0397	6.2465	.100	
11	.00455			39.91		3575	6.2298	.05	
12	.00528			40.06		5949	6.2245		
13	.00373			40.21		8346	6.2191	.050	
14	.00379			40.344		0336	6.2089	.050	
15	.00315			40.45		2126	6.2046	.050	
16	.00282			40.565		3797	6.2003	.050	
17	.00268			40.660		5358	6.1963		
18	.00247			40.758		6792	6.1927	.050	
19	.00227			40.843		8117	6.1893	.050	
20	.00210			40.923		9347	6.1861	.050	
21	.00195			41.020		0787	6.1800	.025	
22	.00237			41.096		1995	6.1767	.025	
23	.00184			41.163		3054	6.1734	.025	50
			CONDITIO			~ ~ ^ /	40 000	05-	91.836
01=	66.000	02=	2	03=	600.00		40.000	05=	.100
06=	2.280	07=	2.849	08=	0	09=	1	10= 15=	2
11=	0	12=	.000	13=	1.00		4	10-	2
16=	0	17=	3	18=	1000.00	0 19=	10.000		
	NT DIMEN				4 200	A 33	4 7000	24=	5.7180
20=	1	21=	4.0400	22=	4.200		4.7000 5.7790		29.7000
	15.1900	26=	.0365	27=	1.663				15.2500
30=	6.2000	31=	.4260	32=	0		33.0000	34- 39=	.8000
	25.4000	36=	7.6000		381.000		.0000		72.5300
	10.0000	41=	31.7900	42=	20.500		2.3900	44- 49=	
45=	22	46=	24	47=	1.020		.1575 31.7900	49- 54=	
50=	.7600	51=	.1321	52=	.101			54- 59=	9.2600
55=	2	56=	34	57=	18.340		.2362		88.9000
60=	1.5000	61=	.0000	62=	6.446		.5440		135
	75.9000	66=	.0000	67=	.000		.0000	69= 74=	.0000
70=	.0508	71=	.3760	72=	7.920		1.5000		
75=	.0400	76=	1.0000	77=	3.000		1.0000	79=	4.0000
	20.0000	81=	.0100	82=	.100		.0020	84=	
85=	.0000	86=	-4.5650	87=	.468		7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.145		.0913	94=	1
95=	.5000	96=	0	97=	.000		.0000	99=	.0000
100=		01=	13	102=	15	103=		104 =	0
105=		106=	0	107=	0	108 =		109=	0 0
110=		11=	0	112=	0	113=		114 =	-
115=	0	116=	0	117=	0	118=	0	119=	= 0
120=	0								

IN AND FOWER OUT HAS RU SU FR IS MA	TWO SUCCESS BEEN LESS T IN# 1 FOR INPOWER RE10 EE MOTIONS LOAD CON OTHERMAL AN RTINI LOSS	IVE INTEGRALS OF HEAT HAN .0020 00 ENGINE LINEAR ALTERNATOR STANT = .040 N/(CM/ ALYSIS WITH CORRECTION	SEC) * * 2.
OPERATING CONDITIONS	ARE:		
SPEC.FREQ., HZ =	29.70	CHRG. PRESS., BAR = HEAT OUT, DEG. C = PHASE ANG. DEGREES = DISPL. STROKE, CM = TIME STEPS/CYCLE =	66 00
HEAT IN, DEG C = 6	00.00	HEAT OUT, DEG. C =	40 00
W. GAS 1=H2,2=HE,3=AI	R 2	PHASE ANG. DEGREES =	40.00 01 9 <i>4</i>
POWER P.STR,CM =	2.28	DISPL. STROKE, CM =	2 85
CALC.FREQ., $HZ =$	24.07	TIME STEPS/CYCLE =	1662 09
COMPUTED PERFORMANCE POWER, WATTS BASIC ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED	USING FPSE F 990.6545 -44.1679 -86.4874 -110.0525 -5.4339 744.5129	BY MARTINI ENG.: HEAT REQUIREMENT, WATT BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND. DISPLCR WALL COND. REGEN. WALL COND.	2S 1643.8460 83.5202 591.0968 126.8023 8.3916 1.0313 194.9141
INDICATED EFFICIENCY,	<pre>% 28.43</pre>	DISPLCR WALL COND. REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	34.0534 61.5119 6.1422 4.6258 4.7870

CONV	/ERGENCE	CRITE	PTA TC.	0.0	100				
CYCL			CHANGE	WORK	HEAT	ب	END	TIME	
NUME			HEAT	OUT	IN	1	PRESSUR		
	OUT		IN	JOULE		FS	MPA	MSEC.	
1	.0000		.00000	37.80		3702	6.3023	.1000	
2	.6219		.70565	46.28		7328	6.4564	.1000	
3	.2242							.1000	
			.04863	32.04		5293	6.2992		
4	.3076		.11507	38.24			6.3203	.1000	
5	.1934		.15497	38.11			6.2959	.1000	
6	.0032		.00660	38.52			6.2831	.1000	
7	.0108		.01046	38.88		5377	6.2689	.1000	
8	.0091		.00720	39.31		3865	6.2570	.1000	
9	.0112	2	.01158	39.52	69 65.7	471	6.2463	.1000	
10	.0053	0	.00552	39.70	69 66.0)397	6.2465	.1000	
11	.0045	5	.00445	39.91	67 66.3	3575	6.2298	.0500	
12	.0052	8	.00481	40.06	54 66.5	5949	6.2245	.0500	
13	.0037		.00358	40.21			6.2191	.0500	
14	.0037		.00360	40.34			6.2089	.0500	
15	.0031		.00298	40.45			6.2046	.0500	
16	.0028		.00267	40.56			6.2003	.0500	
17	.0026		.00249	40.66			6.1963	.0500	
18	.0024		.00232	40.75			6.1927	.0500	
19	.0022		.00212	40.84			6.1893	.0500	
20	.0021		.00196	40.92			6.1861	.0500	
21	.0019			41.02			6.1800	.0250	
22	.0023			41.09			6.1767	.0250	
23	.00184			41.16			6.1734	.0250	
24	.0016		.00155	41.22	36 68.3	989	6.1703	.0250	
25	.00149	5.	.00137	41.27	88 68.4	830	6.1674	.0250	
26	.00134	4.	.00123	41.33	13 68.5	642	6.1646	.0250	
27	.00123	7.	.00119	41.37	95 68.6	376	6.1619	.0250	
28	.00117	7.	.00107	41.42	47 68.7	077	6.1594	.0250	
29	.00109			41.46			6.1569	.0250	
30	.00099			41.504			6.1572	.0250	
			CONDITIO						
01=	66.000	02=	2	03=		04=	40.000	05= 91	.614
06=	2.287	07=	2.857		0	09=	1		.100
11=	0	12=	.000		1.000		4	15=	2
16=	Ő	17=	3		1000.000		10.000	19-	2
CURRI				10-	1000.000	19-	10.000		
20=	ENI DIMER	21 =	4.0400	22-	4 2000	22-	1 7000	24= 5.7	7180
	15.1900	26=	.0365	-	4.2000	23 =	4.7000 5.7790	24 = 5. 29 = 29.	
					1.6630	28=			
30=	6.2000	31=	.4260		0	33=	33.0000	34= 15.2	
	25.4000	36=	7.6000		381.0000	38=	.0000		3000
	10.0000	41=	31.7900		20.5000	43=	2.3900	44= 72.5	
45=	22	46=	24	47=	1.0200	48=	.1575		1067
50=	.7600	51=	.1321		.1016	53=	31.7900		9200
55=	2	56=	34	57=	18.3400	58=	.2362		2600
60=	1.5000	61=	.0000	62=	6.4460	63=	.5440	64= 88.9	
65=	75.9000	66=	.0000	67=	.0000	68=	.0000	69= 2	.35
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74= .(0000
75=	.0400	76=	1.0000	77=	3.0000	78=	1.0000	79= 4.0	0000
80=	20.0000	81=	.0100	82=	.1000	83=	.0010		0000
85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300		600
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
95=	.5000	96=	. 5 / 10	97=	.0000	98=	.0000		0000
100=	.0000		13	102=	15	103=		104= 	0
100=		101 = 106 = 106	13	102 = 107 =	0	103 = 108 =		104=	0
110=		100 = 111 =	0	107 = 112 =	o	108 = 112 =		114=	0
110~	Ū	<u>-</u> -	U	112-	U	110-	U	тт .н	U

SUI FRI ISC MAI	TWO SUCCESS BEEN LESS T N# 1 FOR NPOWER RE10 EE MOTIONS LOAD CON DTHERMAL AN RTINI LOSS 1	IVE INTEGRALS OF HEA HAN .0010 00 ENGINE LINEAR ALTERNATOR STANT = .040 N/(CI ALYSIS WITH CORRECTIO	M/SEC)**2.
OPERATING CONDITIONS A	ARE:		
SPEC.FREQ., HZ = 2 HEAT IN, DEG C = 60 W. GAS 1=H2,2=HE,3=AIF POWER P.STR,CM = CALC.FREQ., HZ = 2	29.70	CHRG. PRESS., BAR =	= 66.00
HEAT IN, DEG C = 60	0.00	HEAT OUT, DEG. C =	= 40.00
W. GAS 1=H2,2=HE,3=AIF	₹ 2	PHASE ANG. DEGREES =	91.61
POWER P.STR, CM =	2.29	DISPL. STROKE, CM =	2.86
CALC.FREQ., HZ = 2	24.06	TIME STEPS/CYCLE =	1662.19
COMPUTED PERFORMANCE U POWER, WATTS BASIC ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED INDICATED EFFICIENCY, EXP.SP.EFFECT.TEMP.,C	SING FPSE E 998.7834 -44.5415 -87.3130 -110.9985 -5.4867 750.4436	BY MARTINI ENG.: HEAT REQUIREMENT, WA BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND. DISPLCR WALL COND. REGEN. WALL COND.	ATTS 1656.3628 84.1547 593.8710 127.4825 8.4418 1.0402 194.8838 34.0481 61.5023
INDICATED EFFICIENCY,	8 28.48	CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL.	6.1412 4.6251 4.7850
EXP.SP.EFFECT.TEMP.,C	575.62	FLOW FRIC. CREDIT	-142.8122
COMP.SP.EFFECT.TEMP.,C	54.05	TOTAL HEAT TO ENG.	2634.5262

CONV	EDGENCE C		00050			
		RITERIA IS:	.00050		END	TIME
CYCL			WORK	HEAT	END	
NUMB		HEAT	OUT	IN	PRESSURE	STEP
	OUT	IN	JOULES	JOULES	MPA	MSEC.
1	.00000		37.8048	58.8702		.1000
2	.62195		46.2809	61.7328		.1000
3	.22421	.04863	32.0421	54.6293		.1000
4	.30766	.11507	38.2409	63.0954		.1000
5	.19346	.15497	38.1151	63.5116	6.2959	.1000
6	.00329	.00660	38.5291	64.1757	6.2831	.1000
7	.01086		38.8823	64.6377		.1000
8	.00917		39.3185	65.3865		.1000
9	.01122		39.5269	65.7471		.1000
10	.00530		39.7069	66.0397		.1000
10	.00455		39.9167	66.3575		.0500
$11 \\ 12$.00528		40.0654	66.5949		.0500
12	.00373	.00358	40.2173	66.8346		.0500
		.00360	40.3440	67.0336		.0500
14	.00379					.0500
15	.00315	.00298	40.4576	67.2126		.0500
16	.00282	.00267	40.5659	67.3797		
17	.00268	.00249	40.6661	67.5358		.0500
18	.00247	.00232	40.7583	67.6792		.0500
19	.00227	.00212	40.8439	67.8117		.0500
20	.00210	.00196	40.9234	67.9347		.0500
21	.00195	.00181	41.0205	68.0787		.0250
22	.00237	.00212	41.0960	68.1995	6.1767	.0250
23	.00184	.00178	41.1639	68.3054	6.1734	.0250
24	.00165	.00155	41.2236	68.3989	6.1703	.0250
25	.00145	.00137	41.2788	68.4830	6.1674	.0250
26	.00134	.00123	41.3313	68.5642		.0250
27	.00127	.00119	41.3795	68.6376		.0250
28	.00117	.00107	41.4247	68.7077		.0250
29	.00109	.00102	41.4659	68.7713		.0250
30	.00099	.00093	41.5042	68.8297		.0250
31	.00092	.00085	41.5512	68.9007		.0125
			41.5852	68.9540		.0125
32	.00113	.00103				.0125
33	.00082	.00077	41.6171	69.0032		
34	.00077	.00071	41.6463	69.0483		.0125
35	.00070	.00065	41.6722	69.0883		.0125
36	.00062	.00058	41.6961	69.1249		.0125
37	.00057	.00053	41.7183	69.1589		.0125
38	.00053		41.7386	69.1903		.0125
39	.00049		41.7574	69.2189	6.1441	.0125
CURRE	ENT OPERAT	FING CONDITIO	ONS ARE:			
01=	66.000	02= 2	03= 60	0.000 0	4 = 40.000	05= 91.597
06=	2.292	07= 2.863	3 08=	0 0	9 = 1	10= .100
11=	0	12= .000	0 13=	1.000 1	4 = 4	15= 2
16=	0	17= 3			9= 10.000	
		SIONS ARE:				
20=	1	21= 4.0400	22 = 4	.2000 2	3= 4.7000	24= 5.7180
	15.1900	26= .0365				29= 29.7000
	6.2000	31= .4260			3= 33.0000	34= 15.2500
	25.4000	36= 7.6000			8= .0000	39= .8000
						44= 72.5300
	10.0000	41= 31.7900				49 = .1067
45=	22	46= 24				
50=	.7600	51= .1321				
55=	2	56= 34				59 = 9.2600
	1.5000	61= .0000				64 = 88.9000
65=	75.9000	66= .0000) 67=	.0000 6	8= .0000	69= 135

70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
75=	.0400	76=	1.0000	77=	3.0000	78=	1.0000	79=	4.0000
80=	20.0000	81=	.0100	82=	.1000	83=	.0005	84=	.0000
85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
95=	.5000	96=	0	97=	.0000	98=	.0000	99=	.0000
100=	.0000	101=	13	102=	15	103=	14	104=	0
105=	0	106=	0	107=	0	108=	0	109=	0
110=	0	111=	0	112=	0	113=	0	114=	0
115=	0	116=	0	117=	0	118=	0	119=	0
120=	0								

· · · · ·

ISOTHERMAL ANA MARTINI LOSS E SOLUTION IS NO	VE INTEGRALS OF HEAT AN .0005 O ENGINE - LINEAR ALTERNATOR TANT = .040 N/(CM/SEC)**2. LYSIS WITH CORRECTIONS QUATIONS T OPTIMIZED.
OPERATING CONDITIONS ARE: SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR,CM = 2.29 CALC.FREQ., $HZ = 24.06$	
SPEC.FREQ., $HZ = 29.70$	CHRG. PRESS., BAR = 66.00
HEAT IN, DEG C = 600.00	HEAT OUT, DEG. C = 40.00
W. GAS 1=H2,2=HE,3=AIR 2	PHASE ANG. DEGREES = 91.60
POWER P.STR, $CM = 2.29$	DISPL. STROKE, CM = 2.86
CALC.FREQ., $HZ = 24.06$	TIME STEPS/CYCLE = 3324.99
COMPUTED PERFORMANCE USING FPSE BPOWER, WATTSBASIC1004.6925ADIABATIC CORR44.8123HEATER FLOW LOSS-87.8469REGEN.FLOW LOSS-111.6095COOLER FLOW LOSS-5.5209INDICATED754.9029	Y MARTINI ENG.: HEAT REQUIREMENT, WATTS BASIC 1665.4221 ADIABATIC CORR. 84.6140 REHEAT 595.4148 SHUTTLE 128.0116 PUMPING 8.4771 TEMP. SWING 1.0454 CYL. WALL COND. 194.8632 DECEMENT 2010
INDICATED EFFICIENCY, % 28.54	DISPLER WALL COND. 34.0443 REGEN. WALL COND. 61.4958 CYL. GAS COND. 6.1406 REGEN. MTX. COND. 4.6246 RAD.INSIDE DISPL. 4.7836 FLOW FRIC. CREDIT -143.6517 TOTAL HEAT TO ENG. 2645.2857

_

•

APPENDIX F

EFFECT OF CONVERGENCE CRITERIA ON RESULTS

(COMPUTER OUTPUT)

SINGLE PRECISION

Conver	sence crit	eria ist	. 01 02	0		
	Chanse		WOTK	Heat	End	
Numb.	Power	Heat	Dut	Heat. In	Pressure	•
	Out	In	Joules	In Joules 60.0 275 36.57 13	MPa	
1	. ପରରରତ	. 00000	37.8047	60.0275	6.3023	
2	.62195	. 69986	46.2530	36. 5713	6.4682	
2	.22347	. 39076	30.9251	23,0194	6.2259	
4	.33139	. 37056	40.7464	59.2616	6.2110	
5	.31758	1.57442	41.3248	70.1108	6.2858	
Б	.01420	. 18307	39.4081	67.4282	6.3029	
7	.04636	.03826	38.7702	54.0875	6.2768	
в	.01619	.04954	39.1211	64.3247	6.2653	
9	.00905	.00370	39.4816	65.0930	6,2538	
10	.00922	.01194	39.6682	65.6441	6.2436	
11	.00473	.00847	39.8061	50.0275 36.5713 23.0194 59.2516 70.1108 67.4282 64.0875 64.3247 65.0930 65.5441 65.9363 CYCLES	6.2444	
Fractio	onal chans	∉ in two s	successi	ve integral	s of heat	
in and	power out	has been	less th	an .01	00	
			FOR			
				0 ENGINE		
				- LINEAR AL		
				tant =		
				YSIS WITH I	CURRECTIONS	
				QUATIONS F OPTIMIZED.		
		aucorit		OFTIMIZED.		
OPERATI	ING CONDIT	TONS OPE:				
SPEC.FE	REQ., H7 =	29.70) (.Hby bbecc	- 90P -	CC 00
HEAT IN	DEG C =	600 00		FAT OUT. DE		66.00 40.00
W. GAS	1=H2, 2=HE	3=AIR 2	· · ·	HASE ANG. I	STREFTS =	40.00
POWER P	STR.CM =	2.25	i T	TSPL. STROP	(F. CM =	2 82
CALC.FF	REQ., HZ =	24.08		CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/C		415 22
						413.22
COMPUTE	D PERFORM	ANCE USING	FPSE BY	MARTINI EN	10. :	
PONER,	WATTS		۲	EAT REQUIRE BASIC	MENT WATTS	3
BASIC	:	95	8.6682	BASIC		1588.5030
ADIAE	BATIC CORR.	-4	2.6793	ADIABATIC	CORR.	1588.5030 80.7161 581.9340
HEATE	R FLOW LOS	SS -8	3.4276	REHEAT		581.9340
REGEN	I.FLOW LOSS	5 -10	6.5504	SHUTTLE		581.9340 124.1131 8.1986 1.0001 195.0585 74.0385
COOLE	R FLOW LOS	SS -	5.2400	PUMPING		8,1986
INDIC	ATED	72	0.7709	TEMP. SWIN	G	1.0001
				CYL. WALL	COND.	195.0585
				DISPLCR WA	LL COND.	34.0786
				REGEN. WAL	L COND.	61.5575
INDICAT	ED EFFICIE	NCY: * 2	8.22	CYL. GAS C	OND.	E.1467
				REGEN. MTX	. COND.	4.6292
				RAD. INSIDE	DISPL.	4.7959
EXP.SP.	LEFECT. TEM	IP.,C 57	5.06	FLOW FRIC.	CREDIT	195.0585 34.0786 61.5575 6.1467 4.5292 4.7959 -136.7028 2554.0290
CDMP.SP	LEFFECT.TE	MP. C 5	4.06	TOTAL HEAT	TO ENG.	2554.0290

Conversence	criteria ist	. 4050	n		
Convergence Cycle Change Numb. Power 1 .00000 2 .62193 3 .22341 4 .33135 5 .31756 6 .01420 7 .04636 8 .01615 9 .00902 10 .00922 11 .00473 12 .00345 ENTERED PRINT Fractional of	e Chanse	Work	Heat	Fnd	
Numb. Power	Heat	Out	In	Ргевенго	
Out	In	Joules	Joules	MPa	
1.0000	. 00000	37.8047	60.0275	6.3023	
2 .6219	5 .69986	46.2530	36.5713	5.4682	
3.22341	7.39076	30.9251	23.0194	6, 2259	
4 .33139	3 .37056	40.7464	59.2616	6,2110	
5.31758	3 1.57442	41.3248	70.1108	6.2858	
Б. Ю1420	.18307	39, 4081	67.4282	6. 3029	
7 .04638	.03826	38.7702	64.0875	6.2788	
8 .01619	.04954	39.1211	64.3247	6.2653	
9 .00905	.00370	39.4816	65.0930	6,2538	
10 .00922	.01194	39.6682	65.6441	6.2436	
11 .00473	.00847	39.8061	65, 9583	6.2444	
12 .00349	.00479	39.9427	66,2037	E. 2347	
ENTERED PRINT	ROUTINE AFT	ER 12	CYCLES.		
		SUCCESSIV	e integrale	: 04 baat	
in and power	out has been	less tha	n .005	50	
	RUN# 1	E FOR			
	SUNPOW	ER RE1000	ENGINE		
	FREE M	OTIONS	LINEAR ALT	ERNATOR	
	L	oad const	ant≃ .0	140 N/(cm/se	ec)*#2.
	ISOTHE	RMAL ANAL	YSIS WITH C	ORRECTIONS	
	MARIIN	I LOSS EQ	JATIONS		
	SOLUTI	JN IS NOT	OPTIMIZED.		
OPERATING CON					
	7 - 00 7	•			
HEAT IN. DEG I			IRG. PRESS.	BAR =	66.00
			AT DUT, DE	G.C ≠	40.00
PONER P STR. C		14 T	HSE ANU. D	EGREES =	92.43
CALC.ERED. H	7 =	ע ג <u>ו</u> ו. די איז	SPL. SIRUK	E, CM ≖	2.82
DPERATING CON SPEC.FREQ., H HEAT IN, DEG (W. GAS 1=H2,2 POWER P.STR,CI CALC.FREQ., H)	24, pt	а I.	ME STEPS/C	YCLE =	415.23
PONER, MATTS	SAMAGE DOING	, LLS - 11 115	OT DEOUTOR	U.: MCNT	
BASIC	90	1 97CC	DOGIC	MENG WHIIS	
ADIABATIC CO		2 9716	ODIODOTIC	0000	1594.3800
REATER FLOW		77706	HUTHBHILL I	CURR.	81.0140
REGEN. FLOW L	.055 -10	5. 9005			582.0237
COOLER FLOW	1055 -	5 2596	DUMOTICE		124.3927
INDICATED	72	3 2144	TEMP CUITAN	2	8.2193
		212144			1.0017
					195.0430
			REGEN WAL	COND.	34.0759
INDICATED EFFI	CIENCY, X 2	8, 25	CVI BAS CO		ы.5525
			REGEN MTY		6.1462
			ROD INSING	DICOND.	4.6289
EXP. SP. EFFECT.	TEMP.,C 57	6.02	FINH FRIDE	CPENIT	4,7949
COMP.SP.EFFECT	TEMP. C 5	4.06	TOTAL HEAT		-137.1808 2560 0000
COMPUTED PERFO PONER, WATTS BASIC ADIABATIC CO HEATER FLOW REGEN.FLOW L COOLER FLOW INDICATED INDICATED EFFI EXP. SP. EFFECT. COMP.SP. EFFECT				·• LH0.	7700.0350

.

Conver	ganca cri	teria ist	. 110200	n		
Cycle	Chanse	Chanse			End	
NUND.	Power	Heat	Üut	In	Pressure	
	Ουτ	In	Joules	Jouies	MPa	
1	. 00000	.00000 .69986 .39076	37.8047	60.0275	E.3023	
2	.62195	.69986	46.2530	36.5713 23.0194	6.4682	
3	.22347	.39076	30.9251	23.0194	6.2259	
4	.33139	. 37056	40.7464	59.2616	6.2110	
5	.31758	, 37056 1, 57442	41.3248	70.1108	6.2858	
E	.01420	.18307	39.4081	67.4282	6.3029	
	.04638		36.7702	64.0875	6.2788	
	.01619	.04954	39.1211		6.2653	
	. 00905	.00370	39.4816		6.2538	
10	.00922	.01194	39.6682	65.6441	6.2436	
11	.00473	.00847	39.8061	65.9583 66.2037 66.4439	6.2444	
12	.00348	.00479	39.9427	66.2037	6.2347	
13	.00343	.00372	40.0639	66.4439	6.2259	
14	.00304	.00363	40.1962	66.6812	ь. 217ь с. 2 7 00	
15	.00330	.00357	40.3235	ьь. 9181	5.2035 5.2035	
16	.00316	.00355	40.4371	67.1008	5. 2125 5. 0040	
17	.00282	.00348	40.5389	66.4439 66.6812 66.9181 67.1508 67.3278 67.6369 67.7382 67.7382 67.9155 68.0445 58.1564 CYCLES.	6.2040 C 1001	
18	.00252	.00264	40.5207	67.3063	6.1301 6.1301	
19 210	.00202	.00265	40.7110	E7 7700	6.1910	
210	.00223	.00193	40.7972	67.7362	5,10J4 5 1007	
21	.00210	.00130	40.6533	68 0445	5.183/ 5.1834	
22 23	.00211	.00262	410.3521	68 1564	6.1779	
CNTERE	D POINT F	OUTINE AFT	FR 23	CYCLES.	011112	
				e integrals		
in and		it has been	less that	in .002	0	
		RUN# 1	E FOR			
		SUNPO	VER RE1000	ENGINE		
		FREE 1	DTIONS	- LINEAR ALT	ERNATOR	
		L	.oad const	ant = .K	1410 N/(cm/s	ec)**2.
				YSIS WITH D	ORRECTIONS	
			AT LOSS EG			
		SOLUTI	ION IS NOT	OPTIMIZED.		
		TIONS ARE:				
COFERMI	PED . H7	= 29.7	700 (*	HRG. PRESS. HEAT OUT, DE PHASE ANG. D ISPL. STROK	, BAR =	66.00
LEAT T	NE DEG C	- E00 (10 +	FAT OUT, DE	G.C.=	40.00
	1=H2.2=H	E.3=AIR 2	,с ,	HASE ANG. C	EGREES =	91.90
PINER	P STR.CM	= 2.1	ים פי נו	ISPL. STROK	E, CM =	2.84
CALC.F	REQ., HZ	= 24.V	1E T	IME STEPS/C	YCLE =	415.21
COMPUT	ED PERFOR	MANCE USIN	NG FPSE BY	MARTINI EN	16. 1	
POWER	WATTS		F	EAT REQUIRE	MENT: WATT	
BASI	С	9. –	367.8560	BASIC		1641.4800
ADIA	BATIC COR	1R	-44.0377	ADIABATIC	CORR.	83.4007
HEAT	ER FLOW L N.FLOW LC	.055 -	-86.3844	REHEAT		590.6995
REGE	N.FLOW LC)SS -1	09.9459	SHUTTLE		126.3998 8.3812
	ER FLOW L	.055 .	-5.4287	ADIABATIC REHEAT SHUTTLE PUMPING TEMP. SWIN	IC	1 01/2012
INDI	CATED	7	42,0593	IEMP. SWIN		19/ 92/01
				DISPICE US		34.0551
				BEBEN HO		61.5150
			78 37	CYL. GAS C	IND.	6.3812 1.0301 194.9240 34.0551 61.5150 6.1425
INDICH	JED EFFIC		~ 0. 07	REGEN. MTX	COND.	4.6260
	**				DISPL.	4.7876
	FORT T	CMO 0 1	76 74	FLOW FRIC.	CREDIT	4. 5260 4. 7876 -141. 3573
COMP.S	P.EFFECT	TEMP.,C	54:07	FLOW FRIC.	TO ENG.	2616.0840
		· —				

C						
Cycle		iteria ist Chanse	.00100 Work) Heat	En d	
Numb.	Power	Heat	Dut	In	End Pressure	
	Out	In	Joules	Joules	MPa	
1	.00000	. 00000	37.8047	60.0275	6.3023	
Ĵ	.62195 22347	.69986 .39076	46.2530 30.9251	36.5713	6.4692	
á	.33139	. 37056	40.7464	23.0194 59.2515	5.2259 5.2110	
5	.31758	1.57442	41.3248	70.1108	6.2859	
ε	.01420	.18307	39.4081	67.4282	6.3029	
7	.04638	.03826	38.7702	54.0875	6.2788	
8	.01619 .00905	.04954	39.1211	64.3247	6.2653	
10	.00922	.00370 .01194	39.4816 39.6682	65.0930	6.2538	
11	.00473	.00847	39.8061	65.6441 65.9583	6.2436 6.2444	
12	.00348	.00479	39.9427	66.2037	6.2347	
13	.00343	.00372	40.0639	66.4439	6.2259	
14 15	.00304 .00330	.00363	40.1962	66.6812	6.2176	
15	.00316	.00357 .00355	40.3235 40.4371	66.9181 67.1 50 8	6.2096 6.2126	
17	.00282	.00348	40.5389	67.3278	6.2048	
18	.00252	.00264	40.6207	67.5063	6.1981	
19	.00202	.00265	40.7115	67.6369	Б. 1916	
20 21	.00223	.00193	40.7972	67.7382	6.1854	
22	.00210 .00211	.00150 .00262	40.6833 40.9621	67.9155	6.1897	
23	.00193	.00190	41.0171	58.0445 58.1564	6.1834 6.1779	
24	.00134	.00164	41.0830	68.2369	6,1728	
25	.00161	.0011E	41.1463	68.3712	6.1779	
26 27	.00154	.00197	41.2074	68.3821	6.1724	
26	.00149 .00105	.00015 .00244	41.2508 41.3027	68.5487	6.1677	
29	.00126	.00065	41.3451	68.5930 68.6668	6.1631 6.1690	
30	. 00103	.00108	41.3936	68.6863	6.1639	
31	.00117	. 00028	41.4232	68.7977	6.1598	
32 33	.00072	.00162	41.4636	68.8423	6.1558	
	.00097 D PRINT RE	.00065 DUTINE AFTE	41.4964	68.8949 YCLES.	6.1621	
Fractio	onal chans	e in two s	SUCCESSIVE	integrals	of heat	
in and	power out	has been	less than	. 001		
		RUN# 17				
			ER RE1000	ENGINE LINEAR ALT		
			ad consta		410 N/(cm/se	
				SIS WITH C	DRRECTIONS	·c/***2.
		MARTINI	LOSS EQU	ATIONS		
		SOLUTIC	N IS NOT	OPTIMIZED.		
OPERATI	NG CONDIT	LONS ORE:				
	REQ., HZ =		СН	RO. PRESS.,	BAR =	66.00
	+ DEG C =	600.00		AT OUT, DEC		40.00
	1=H2, 2=HE			ASE ANG. DE		91.90
	NED., HZ =			SPL. STROKE		2.8E
		24. VIC		ME STEPS/CY	′CLE ≠	415.24
COMPUTE	D PERFORM	ANCE USING	FPSE BY 1	MARTINI ENG	5. 1	
BASIC	ATTC CORA	33	9.3320 1	BASIC		1659.1540
HEATE	R FLOW LOS	-4- 55 -6	473684 F	ADIABATIC C	ORR.	84.2962
REGEN	FLOW LOSS	5 -11	1.4200 5			594.4083
COOLE	R FLOW LOS	5S -:	5.5112 F	AT REQUIREM BASIC ADIABATIC C REHEAT BHUTTLE PUMPING CMP. SWING CYL. WALL C		127.3271 8.4523
INDIC	ATED	750	0.1664 1	EMP. SWING	i	
			0	YL, WALL C	OND.	194.8779
				REGEN LIGHT	L COND.	34.0471
INDICAT	ED EFFICIE	ENCY, ¥ 28	B.44 D	YL. GAS CO	ND.	61.3005 6.1410
			R	EGEN. MTX.	COND	4,6250
			R	AD. INSIDE	DISPL.	4.7845
COMP SP.	EFFEUI. IEM FFFFOT TE	IMP C 575	5.62 F	LOW FRIC.	CREDIT	1.0429 194.8779 34.0471 61.5005 6.1410 4.6250 4.7846 -143.3761 2637.2810
_ G.G G.F.			••• ••• •••	UTHL MEHT	IU ENG.	2637.2810

Cycle	Chanse	teria ist Change	. (10050 Work	Heat	End	
NUMB.	Power	Heat	Out	In	Pressure	
	Out	In	Joules	Joules	MPa	
1	. 00000	. ଉତ୍ତରତ	37.8047	60. 0275	6. 3023	
2	.62195	.69985	46.2530	36.5713	6. 4682	
3	. 22347	. 39076	30.9251	23.0194	5.2259	
4	.33139	.37055	40.7464	59.2616	5.2110	
5	.31758	1.57442	41.3248	70.1108	6.2858	
6	.01420	.18307	39.4081	67.4282	6.3029	
7	.04538	.03826	38.7702	64.0875	6.2788	
8	.01619	.04954	39.1211	64.3247	6.2653	
9	.00905	.00370	39, 4816	65.0930	5.2538	
10	.00922	.01194	39.6682	65.6441	6.2436	
11	.00473	.00847	39.8061	65.9583	6.2444	
12	.00346	.00479	39.9427	66.2037	6.2347	
13	.00343	.00372	40.0539	65.4439	6.2259	
14	.00304	.00363	40.1952	66,6812	6.2176 5.2000	
15 16	.00330 .00316	.00357 .00355	40.3235 40.4371	65.9161 67.1508	6.2 09 6 6.2126	
17	.00282	.00346	40.5389	67.3278	5.2 0 48	
18	.00252	.00264	40.6207	67.5053	6.1961	
19	.00202	.00265	40.7115	67.6369	6. 1916	
20	.00223	.00193	40.7972	67.7382	6.1854	
21	.00210	.00150	40.8833	67.9155	6. 1897	
22	.00211	.00262	40.9621	68.0445	6. 1834	
23	.00193	.00190	41.0171	68.1564	6,1779	
.24	.00134	.00164	41.0830	68.2369	6.1728	
25	.00161	.00118	41.1463	68.3712	6.1779	
36	.00154	.00197	41.2074	68.3821	6.1724	
27	.00149	. 00016	41,2508	68.5487	6.1677	
28	.00105	.00244	41.3027	68.5939	6.1631	
29	.00126	. 00065	41.3451	68.6668	6.1690	
70	.00103	.00103	41.3955	58.5863	5.1639	
31 72	.00117	.00025	41.4232	68.7977	6.1598	
	.00072 .00097	.00162 .00065	41.4636 41.4964	68.8423	6.1558	
54	.00073	.00076	41.5340	68, 8949 68, 8768	5.1521 5.1574	
35	.00091	.00025	41.5590	69.0120	6.1536	
36	. 00060	.00195	41.5872	69.0062	5.1499	
37	.00068	. 00008	41.6162	69.0700	6.1565	
38	.00070	.00092	41.6401	69.0450	6, 1522	
-39	.00057	. 00036	41.6579	69.1453	6.1486	
40	.00043	.00145	41.6777	69.1532	6.1452	
41	.00045	.00011	41.6965	69.1772	6.1519	
		DUTINE AFT		CYCLES.		
				e integrals		
in and	POWET OUT		less that	n .000°	5	
		RUN# 1		CALC LAUS		
			ER RE1000		- ANATAR	
			oad consta	LINEAR ALTE	≟RNHIUR 1µ01 NZ(cm/se	
		TSOTHE		SIS WITH CO		
			I LOSS FOL			
				OPTIMIZED.		
		IONS ARE:				
		29.7	Ø CH	IRG. PRESS.	BAR ≂	6E,00
	DEG C =	600.0	0 HE	AT OUT, DEC ASE ANG, DE	6.C ≠	40.00
J. GAS	1=H2, 2=HE	3=AIR 2	PH	ASE ANG. DE	GREES =	91.46
ONERF	STR.CM =	2, 2 24, 0	9 DI	SPL. STROKE ME STEPS/CY	., CM =	2.86
HLC.FR	κεώ., HZ =	24.0	s TI	ME STEPS/CY	'ULE =	415.25
CHEUTE		ANCE DETEN	C E D C DY	MODITAL CAR		
		HNUR USIN		MARTINI ENG		
BASIC	HATTS	1.00		AT REQUIREM BASIC	CHI WHIS	
	ATIC CORR			ADIABATIC C	ากคล	1665.936 84.641
	A FLOW LO	 SS		REHEAT		596.619
	IFLOW LOS	S -11	11.9541	SHUTTLE		127.740
	R FLOW LO	SS -	-5.5416	PUMPING TEMP. SWING		8.482
INDIC		75	53.7146	TEMP. SWING		1.049
_				CYL. WALL C		194.870
				DISPLCR WAL	L COND.	34.045
		•• •		REGEN. WALL	COND.	61.498
NDICAT	ED EFFICI	ENCY, 🗶 💈	28.48	CYL. GAS CO	ND.	6.140
				REGEN. MTX.		4.Б24
				RAD.INSIDE FLOW FRIC. TOTAL HEAT	DISPL.	4, 783 -144, 121 2646, 310

-

.

APPENDIX G

EFFECT OF PRESSURE ON ISOTHERMAL

FREE-PISTON ANALYSIS

0.2 MSEC TIME STEP

0.005 CONVERGENCE CRITERIA

PRECEDING PAGE BLANK NOT FILMED

Convergence criteria is:	መናለወ
Cycle Change Change Work	Heat End
N Deview Heat Dut	In Pressure
∩u+ In Jo⊍	es Joules MPa
1 .00000 .00000 5.	592 9.0084 .9571
1 .00000 .00000 5.7 2 .94241 .95495 15.8	064 1.3638 .9274
	076 14 6588 . 9099
4 .39369 9.74883 10.1	575 17.9246 .9154
5 .13292 .22279 10.2	852 17,1418 .9177
6 .05271 .04358 10.1	734 16.9289 .9143
7 .01067 .01242 9.4	621 16.8045 .9222
8 .02077 .00735 9.1	621 16.8045 .9222 680 16.3272 .9201
9 .02952 .02840 9.1	157 16.3759 9173
9.02952.02840.9. 10.00493.00293.9.1	765 16.4754 .9160
	1/04 16 5605 9149
12 .00383 .00395 9.1	536 16.6065 .9127
ENTERED PRINT ROUTINE AFTER	12 CYCLES,
Fractional change in two SUCC	ssive integrals of heat
in and power out has been lest	than .0050
RUN# 32	OR
SUNPOWER R	1000 ENGINE
FREE MOILO	IS LINEAR ALTERNATOR
Load	constant = .040 N/(cm/sec)**2.
	ANALYSIS WITH CORRECTIONS
MARTINI LD	S EQUATIONS
SOLUTION 1	NOT OPTIMIZED.
OPERATING CONDITIONS ARE:	01100 00500 000 - 118 MM
SPEC.FREG., HZ = 29.70	
HEAT IN, DEG U = 600 MM	$\frac{1}{1000} = \frac{1}{1000} = 1$
W. GAS 1=H2,2=HE,S=HIR Z	CHRG. PRESS. BAR = 10.00 HEAT OUT, DEG. C = 40.00 PHASE ANG. DEGREES = 94.67 DISPL. STROKE, CM = 3.97 TIME STEPS (CVC) E = 522 55
POWER P.STR, CM = 2.64	TIME STEPS/CYCLE = 528.56
CALC.FREQ., HZ = 9.46	The sterstonal - sector
COMPUTED PERFORMANCE USING FP	E BY MORTINI ENG :
COMPUTED PERFORMANCE DSING FF	HEAT REQUIREMENT, WATTS
POWER, WATTS BASIC 93.2	
ADIABATIC CORR4.7	26 BASIC 157.0929 53 ADIABATIC CORR. 7.9075
HEATER FLOW LOSS -5.5	
REGENTFLOW LOSS = 10.0	38 SHUTTLE 255,6636 59 PUMPING .5608 519 TEMP. SWING .0006
	US TEMP. SWING . NOUS
INDICATED 03:00	CYL. WALL COND. 185.3751
	DISPLCE WALL COND. 32.3869
	REGEN. WALL COND. 59.5015
INDICATED FEFTCIENCY. X 9.9	CYL. GAS COND. 5.8416
LINDICHICD CLITICICAGIT / 313	REGEN. MTX. COND. 4. 3994
ويرجع والمراجع المراجع والمراجع ومراجع ومراجع ومراجع ومراجع ومراجع والمراجع والمراجع والمراجع ومراجع والمراجع	RAD. INSIDE DISPL. 4.8467
TYP SP FFFFCT TEMPC 555.2	
	FLOW FRIC. CREDIT 12,0826
COMP.SP.EFFECT.TEMP. (38 SHUTTLE 235.6633 59 PUMPING .5608 619 TEMP. SWING .0005 CYL. WALL COND. 185.3751 DISPLCR WALL COND. 32.3859 REGEN. WALL COND. 53.5015 CYL. GAS COND. 53.5015 CYL. GAS COND. 5.8416 REGEN. MTX. COND. 4.3934 RAD.INSIDE DISPL. 4.3467 FLOW FRIC. CREDIT -12.0826 TOTAL HEAT IO ENG. 695.4179

PRECEDING PAGE BLANK NOT FILMED

PAGE 192 INTENTIONABLY BLANK

E ve La		teria is!			End	
NUME	Power	Last	MUT N	In	Presente	
NUND.	FOWEI Dut	To		Heat In Joules 18.0502 -2.1325 22.4522	MPa	
	000	100	11 5075	10 (3/5/3/2	1 9179	
1	.00000	. 00000	11.0070	-0 1705	1. 5105	
2	.88492	. 909/5	23.8580	-2.1323	1.0007	
3	1.24966	1.11814	17.5491	22.4622	1.8030	
4	.32211	11.53346	22.5048	37.3540 35.2236	1.84/4	
5	.28239	.66297	20.5535	35.2235	1.8649	
6	.03670	.05703	19.9030	33.6598 34.3983	1.85/2	
7	.03165	.04440	19.9842	34.3983	1.8642	
8	.00408	.02194	19.5367	33.4609	1.8594	
9	.02239	.02725	19.6302	33.5835	1.8533	
10	.00478	.00367	19.8014	34.3563 33.4608 33.5835 33.9317 34.0590 34.1521	1.8510	
11	.00872	.01037	19.8696	34.0590	1.8490	
12	.00345	.00375	19,9235	34.1521	1.8440	
ENTERE	D PRINE F	ROUTINE HE	IER 12	UYCLES.		
				ve integrals		
⇒n⊢avne	I power ou		n less tha 31 - FOR	an .005	50	
		ISOTH	ERMAL ANA	tant = .W LYSIS WITH (
				QUATIONS		
ດອະລຸດາ		SOLUT	ION IS NO	T OPTIMIZED.		
OPERAT	ING CONDI	SOLUT	ION IS NO	T OPTIMIZED.		·201. 140
DPERAT SPEC.F	TING CONDI TREQ., HZ	SOLUT	ION IS NO	T OPTIMIZED.		20.00 40.00
DPERAT SPEC.F HEAT J	ING CONDI REQ., HZ IN, DEG C 3 1=H2, 2=b	SOLUT	ION IS NO	T OPTIMIZED.		20.00 40.00 95.23
DPERAT SPEC.F HEAT J W. GAS	TING CONDI FREQ., HZ (N, DEG C 5 1=H2,2=F P STP.CM	SOLUT	ION IS NO	T OPTIMIZED.		20.00 40.00 95.23 4.04
DPERAT SPEC.F HEAT J W. GAS POWER	TING COND TREQ., HZ IN, DEG C 5 1=H2, 2=H P.STR, CM	SOLUT	ION IS NO	T OPTIMIZED.		20.00 40.00 95.23 4.04 370.48
DPERAT SPEC.F HEAT J W. GAS POWER CALC.F	TING COND REQ., HZ IN, DEG C 5 1=H2, 2=H P.STR, CM FREQ., HZ	SOLUT	ION IS NO			20.00 40.00 95.23 4.04 370.48
SPEC.F HEAT J W. GAS POWER CALC.F	REQ., HZ (N, DEG C 3 1=H2,2=+ P.STR,CM FREQ., HZ	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.5	ION IS NO : 70 1 100 1 50 1 50	T OPTIMIZED.	, BAR = EG. C = DEGREES = KE, CM = CYCLE =	20.00 40.00 95.23 4.04 370.48
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT	FREQ., HZ IN, DEG C 5 1=H2,2=H P.STR,CM FREQ., HZ IED PERFOI	SOLUT ITIONS ARE = 29.7 = 600.0 HE, 3=AIR 2 = 2.0 = 13.7 RMANCE USI	ION IS NO : 70 1 50 5 NG FPSE B	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. T DISPL. STRO TIME-STEPS/C Y MARTINI EN HEAT REQUIRE	, BAR = EG. C = DEGREES = (E. CM = CYCLE = NG.: EMENT, WATT:	
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT	FREQ., HZ (N, DEG C 3 1=H2,2=H P.STR,CM FREQ., HZ FREQ., HZ WATTS	SOLUT ITIONS ARE = 29.7 = 600.0 HE, 3=AIR 2 = 2.0 = 13.7 RMANCE USI	ION IS NO : 70 1 50 5 NG FPSE B	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. T DISPL. STRO TIME-STEPS/C Y MARTINI EN HEAT REQUIRE	, BAR = EG. C = DEGREES = (E. CM = CYCLE = NG.: EMENT, WATT:	5
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ	FREQ., HZ IN, DEG C 5 1=H2,2=H P.STR,CM FREQ., HZ IED PERFOR WATTS IC	SOLUT ITIONS ARE = 29.7 = 600.0 HE, 3=AIR 2 = 2.0 = 13.7 RMANCE USI	ION IS NO : 70 1 50 5 NG FPSE B	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. T DISPL. STRO TIME-STEPS/C Y MARTINI EN HEAT REQUIRE	, BAR = EG. C = DEGREES = (E. CM = CYCLE = NG.: EMENT, WATT:	5 460 3 .
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF	REQ., HZ [N, DEG C 3 1=H2,2=N P.STR,CM TREG., HZ TED PERFOI WATTS [C RBATIC CO!	SOLUT ITIONS ARE = 29. = 500.0 HE, 3=AIR 2 = 2.1 = 13.3 RMANCE USI RR.	ION IS NO : 70 1 53 1 50 1 NG FPSE B 268.8846 -14.7798	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. F DISPL. STRO TIME STEPS/C Y MARTINI EN HEAT REQUIRE BASIC ADIABATIC	, BAR = EG. C = DEGREES = KE, CM = CYCLE = NG.: EMENT, WATTS	5 46 8. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT	FREQ., HZ IN, DEG C 3 1=H2,2=N P.STR,CM FREQ., HZ FED PERFON WATTS IC 3BATIC CON IER FLOW L	SOLUT ITIONS ARE = 29. = 500.1 HE, 3=AIR 2 = 2.1 = 13.1 RMANCE USI RR. -055	ION IS NO 70 0 53 1 50 1 263.8846 -14.7798 -19.1771	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR == EG. C == DEGREES = KE, CM == CYCLE == NG.: EMENT, WATTS CORR.	5 46 0. 23. 82.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT REGE COOL INDI I NDI CF	REQ., HZ IN, DEG C IN, DEG C I=H2,2=F P.STR,CM FREG., HZ IED PERFOR WATTS IC RBATIC CON IER FLOW LO LER FLOW LO LER FLOW LO ATED EFFIC	SOLUT ITIONS ARE = 29. = 500.0 HE, 3=AIR 2 = 13. RMANCE USI RR. LOSS DSS LOSS DSS DSS	ION IS NO 70 1 53 1 50 1 5	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/C Y MARTINI EN HEAT REQUIRG BASIC ADIABATIC REHEAT SHUTTLE PUMPING TEMP. SWIN CYL. WALL DISPLCR WA REGEN. WAL CYL. GAS (REGEN. MAL	, BAR = EG. C = DEGREES = (E, CM = CYCLE = NG.: EMENT, WATTS CORR. COND, COND, ALL COND. L. COND. COND. (. COND.	5 460. 23. 82. 236. 1. 1. 180. 31. 57. 57. 4.
SPEC.F HEAT J W. GAS POWER CALC.F COMPUT POWER, BASJ ADIF HEAT REGE COOL INDI I NDI CF	REQ., HZ IN, DEG C IN, DEG C I=H2,2=F P.STR,CM FREG., HZ IED PERFOR WATTS IC RBATIC CON IER FLOW LO LER FLOW LO LER FLOW LO ATED EFFIC	SOLUT ITIONS ARE = 29. = 500.0 HE, 3=AIR 2 = 13. RMANCE USI RR. LOSS DSS LOSS DSS DSS	ION IS NO 70 1 53 1 50 1 5	T OPTIMIZED. CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP TIME STEPS/(Y MARTINI EP HEAT REQUIRE BASIC ADIABATIC REHEAT	, BAR = EG. C = DEGREES = (E, CM = CYCLE = NG.: EMENT, WATTS CORR. COND, COND, ALL COND. L. COND. COND. (. COND.	5 460.1 23.1 82.1

Conver	sence cra	teria ist	. 0050	8		
	Chanse	Chanse			End	
Numb.	Power	Heat	Out	In	Pressure	
	Out	In	Joutes		MPa	
1	.00000	. 00000			2.8743	
2	.82755	.86438	33.6654		2.8881	
3	.95221	.93168		17.1923	2.7176	
4	.38034	8.27729	30.8814		2.7677	
5	.48032	1.62161				
6	.05842	.20964	26.2974	52.4712 45.4871	2.8685	
7	.09560	.03758	24.3779	45.4871		
8	.07299	.13310	23.4632 24.7354	35.6411	2.8387	
9	.03752	.21646	24.7354	37.0250	2.8011 2.7922	
10	.05422	.03883	26.0887	43.7341 46.7834	2.6048	
11	.07492	.18121 nedzo	20.7003	40.7004 75 0000	2.8095	
12	.00565 .02634 01447		20.0040	45.8288 43.8115	2.8037	
13	.020.34					
14	.01447 .00985	104402 (AD/ET	26 1590	43.6084	2.7837	
15 16	01709	.00463	26.3030	45 3952	2.7794	
16	.01729 .00911	01768	26.6370	45.3952 45.6921	2.7757	
16	.00143	001700	26.6370	45.7809	2.7718	
	.00131	.00194	26, 7637	45,7809 45,8714	2.7676	
		ROUTINE AFT	TER 19	CYCLES.		
Eranti	onal char	se in two	SUCCESSI	ve integrals	of heat	
in and	POWET OL	it has been	less th	an .005	10	
			SØ FOR			
		SUNPON	VER RE100	Ø ENGINE		
		FREE N	10TIONS -	- LINEAR ALT	ERNATOR	
		L	load cone	stant =K	140 N/(cm/se	<u>c)</u> #*2.
		ISOTHE	ERMAL ANA	LYSIS WITH C	DRRECTIONS	
				QUATIONS		
		SOLUTI	ION IS NO	T OPTIMIZED.		
OPERAT	ING CONDI	TIONS ARE	1			
SPEC.F	RED., HZ	= 29.7 = 600.0	70	CHRG. PRESS. HEAT OUT, DE	, BAR =	30.00
HEAT I	N, DEG C	= 600.0	3Ø	HEAT OUT, DE	.G. C =	40.00
W. GAS	1=H2,2=H	E,3≕AIR 2		PHASE ANG. D	EGREES =	96.77
PONER	P.STR, CM	= 2.5	55	DISPL. STROK	Ei CM ≖	3.86
CALC.F	REQ., HZ	= 16.4	10	TIME STEPS/0	YULE =	304.93
				V MARTINE		
		MANCE USIN	NG FPSE B	Y MARTINI EN	IU MENT UNTTR	
	WATTS			HEAT REQUIRE	INCINES WHEES	752.1644
BASI	C	2	38.8512	BASIC ADIABATIC	000	37.6499
	BATIC COP	(K	-24.3141	HUIHDHILC OFUEAT	LUNN.	165.7423
	ER FLOW L	.055 -	-36.7416	REHEAT SHUTTLE		217.9078
	N.FLOW LC		- 77.230J			2.9490
	ER FLOW L	.055 -	~2.1343	PUMPING TEMP. SWIN	IC .	.0740
INDI	CATED		10.4044	CYL. WALL	COND.	182.1925
				DISPLCR WP	ILL COND.	31.8308
				REGEN. WAL		57.4972
TNDTCO	TED FEFT	IENCY, X	22.79	CYL. GAS C		5.7413
TINETON	oll conte			REGEN. MTX	. COND.	4.3239
				RAD. INSIDE		4.2786
EXP. SP	.EFFECT.T	EMP.,C 5	53.61	FLOW FRIC.		-65.3610
COMP.S	P.EFFECT.	TEMP.C	65.93	TOTAL HEAT		1396.9910

Conve	sence ci	iteria (st	. 005	00		
Cycle	Chanse	Chanse			End	
Numb.		Heat	Out	In	Pressure	
	Dut	In	Joules		MPa	
1	.00000	. 00000			3.8264	
2 3	.77029					
3 4	.ES277		21.309			
5	.44873	1.04105 32.40430	31.707		3.6719	
5	.09174					
7	.10839	.49250 .04634		0 EE 0		
8	.09221	.15174	28.018	2 55.2677		
9	.06569		26.018	7 37,2821 Ø 36,3799	3.8396	
13	.04463	02420	30 559	0 30.3733 2 40 1767	3, 7609 3, 7443	
11		. 32316	31.209	2 48.1363 1 54.0862	3.7740	
12	.02130	12365	30.191	2 53 2469	3.7922	
13	.03262	.01555	29.454	2 53.2469 5 50.1989	3.7749	
14	.02407	.05724	29.535	7 49.0306	3.7646	
15	.00242	.02327	30.094	7 49.0306 2 50.1135	3.7547	
16	.Ø1891	.02209	30.460	51.3299 51.6927	3.7473	
17	.01219	.02427	30, 536	9 51.6927	3.7415	
13	.00249	.00707	30.570	5 51.7489	3.7356	
19	.00111	.00109	30.682	5 51.7489 5 51.9451	3.7293	
ENTERE	D PRINT F	ROUTINE AFT	ER 19	A CYCLES		
n Sai⊂tii	⊇na: i⊆har 	se in two	success	ve integrals	i of heat	
i li all'i	bower or	t has been	less th	naun .101005	50	
			9 FOR			
		SUNPUW	ER RE100	0 ENGINE		
				- LINEAR ALT	ERNATOR	
		ISOTHE	Dad Cons Rmoi Ong	stant = .0 N⊒YSIS WITH D	1410 N/(cm/se	ec)**2.
		MARTIN	T LOSS F	QUATIONS	URRECTIONS	
		SOLUTI	IN IS NO	T OPTIMIZED.		
				or or mining.		
OPERATI	NG CONDI	TIONS ARE:				
	RED., HZ		0	CHRG. PRESS.	, BAR =	40.00
HEAT IN	DEG C	≕ ьюю.юн	0	CHRG. PRESS. HEAT OUT, DE	G.C =	40.00
W. GAS	1=H2, 2=H	E, 3=AIR 2		PHASE ANG. D DISPL. STROK	EGREES =	95.12
POWER P	STR.CM	= 2.43	5	DISPL, STROK	E, CM =	र <i>1</i> र
CHLL.FR	EUL, HZ	= 18.86	5	TIME STEPS/C	YCLE =	265.07
COMPUTE						
POWER	W PERFURG Watte	THINGE USINC	HASE B	Y MARTINI EN	6. :	
BASIC		E 7		HEAT REQUIRE	MENT, WATTS	
	ATIC COR	2	3.7675	BHSIC		979,8344
	R FLOW LC		7 0700	ADIABATIC I	LORR.	49.3310
REGEN	FIGUID		9 8296	REHEAT		260.0647
COOLE	R FLOW LC	155	2 8894			177.5176
INDIC	ATED	42	B. 7021	PUMPING TEMP. SWING	r	4.2273
	-	~-	and the second	CYL. WALL O		1870)
				DISPLCR WALL		187.9541
				REGEN. WALL	COND.	32.8374 59.3154
INDICAT	ED EFFICI	ENCY × 2	5.47	CYL. GAS CO		5,9228
				REGEN. MTX.		4.4606
· ·				RAD, INSIDE		4.5856
E XP. SP. 8	ЕРНЕСТ, ТЕ	MP.,C 55	7.48	FLOW FRIC.	CREDIT	-82.8985
CUMP.SP.	EFFECT.T	EMP. C 6	4.48	TOTAL HEAT	TO ENG.	1683.3490

.

Conver	Sence or	steria is:	. 1995	202		
Cycle	Chanse	Change	Work	Heat In Joules 3 45.3705 3 45.1070	End	
Numb.	Power	Heat	Dut	In	Pressure	
	Out	In	Joutes	Joules	MPa	
1		. 00000	28.686	45.3706	4.7823	
2	.71314	.77315	42.483	3 45.1070	4.9638	
2	.48100	.00581	23,694	49860	4.7577	
4	.44227	1.02186	33.884	49860 5 44.5196	4.6231	
5	.43007	46.15195	37.924	64.4261 62.8112	4.7578	
6	.11923	. 44714	34.432	62.8112	4.7929	
7	.09208	.02507	32.903	5 56.3745	4.7897	
8	.04441	.10248	32.624	5 56. 3745 3 52. 5117 3 53. 7369	4.7657	
9	.00847	.06852	33.301	3 53,7369	4.7414	
10	.02075	.02333	32, 963.	7 56.1097	4.7355	
11	.01988	.04416	34, 129	53.7083 7 56.1097 2 56.8596 5 57.0024 7 57.1250	4.7314	
12	.00487	.01335	34, 159	5 57.0024	4.7271	
13	.00059	.00251	34.288	57.1250	4.7086	
				S CYCLES.		
				ive integrals		
n and	PONET O			nan .00	שכ	
			28 FOR			
				00 ENGINE		
				LINEAR AL' stant =		2.000
				ALYSIS WITH (URRECTIONS	
				QUATIONS DT OPTIMIZED.		
		SUCUL	100 15 00	n oennized.	1	
OPERAT		ITIONS ARE				
SPEC.E	REQ. HZ	= 29.1	- 7 121	CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP	HAR =	50.00
HEAT D	N. DEG C	= 600.0	. ย สต	HEAT OUT, DE	FG. C ==	40.00
W. GAS	1=H2, 2=H	HE. 3=AIR 2		PHASE ANG. 1	EGREES =	93, 69
POWER	P. STR. CM	= 2.1	34	DISPL. STRON	(E, CM =	3.14
CALC.F	RED., HZ	= 21.0	03	TIME STEPS/0	CYCLE =	237.74
COMPUT	ED PERFOR	MANCE USI	NG FPSE E	Y MARTINI EN	16.:	
POWER	WATTS	RANCE USIA		HEAT REQUIRE	MENT, WATTS	3
BASI	С	-	721.1404	BASIC		1201.4210
ADIA	BATIC COM	RR	-34.0748	ADIABATIC	CORR.	60.7957
			-60.1742	ADIABATIC REHEAT SHUTTLE		371.8056
REGE	N.FLOW LO)SS -	-82.8674	SHUTTLE		151.7054
COOLE	ER FLOW L	.055	-3.6983	PUMPING		5.6663
INDI	CATED		540.3259	TEMP. SWIN	16	.3909
				CYL. WALL	COND.	192.3626
				DISPLCR WA	ALL COND.	33.6076
				REGEN. WAL	L COND.	371.8056 151.7054 -5.6663 -3909 192.3526 33.6076 50.7057 -6.0618 4.5653 4.5653 -4.7554
INDICA	TED EFFIC	CIENCY, 🗡	27.12	CYL. GAS C	OND.	5.0618
				REGEN. MTX	COND.	4.5653
				RAD. INSIDE	DISPL.	4.7554
EXP. SP.	EFFECT. 7	EMP.,C 5	574.66	FLOW FRIC. TOTAL HEAT	CREDIT	-101.6079
	- FFFFF77	IEMP. C	59.84	TUTAL HEAT	IU ENG.	1992,2360

	Genra dr	iteria ist	(3,3)5			
Cycle	Chanse	Change	work .	VO Heat	Ford	
NUMB.	Power	Heat	Out	Heat In	Pressure	
	Out	In	Joules	Joules	MPa	
1	. 00000	. 00000	34.389	6 54.54Ø7 2 38.5443	5. 7378	
2	.65610	.72730	45.255	2 38.5443	5.8913	
3	.31596	. 29329	28.438	1 14.6005	5.6706	
4	.37161	.52120	38.714	1 14.6005 3 54.7625	5.6261	
5	. 361 35	2.75072	40.247	3 54.7625 9 58.7902 0 55.7414 3 60.8321	5.7105	
6	.03961	.25615	37.596	6 65.7414	5.7404	
7	.06589	.04432	36.641	5 60.8321	5.7220	
8	.02539	.07468	36.865	5 60.2957	5.7018	
9	.00612	.00882	37, 383	63.7414 60.8321 60.8321 60.2957 4 61.5911 7 52.3171 5 62.6343 63.1774 63.1774	5.6840	
10	.01405	.02148	37.633	7 62.3171	5.6867	
11	.00670	.01179	37.777	5 62,6343	5.6706	
12	.00382	. 00509	37.896	8 62,9007	5.6742	
13	.00314	.00425	38. 05 20	63,1774	5.6589	
		NOOTINE HUT		2 GIULES.		
Fractio	onal chai	nse in two	success	ive integral	s of heat	
in and	power of	Jt has been	less th	nan ,00	50	
			7 FOR			
		SUNPUW	ER REIM	0 ENGINE		
		FREE M	UIIUNS -	- LINEAR AL	TERNATOR	
		TROTUR	Gad cons	stant = .!	040 N/(cm/s	ec)**2.
		MODITA	KUSHL HNE	LYSIS WITH I	CURRECTIONS	
		SOLUTI	1 1.U35 8 DN 16 NG	T OPTIMIZED.		
		000011		DI OFTIMIZED.	•	
OPE RAT 1	ING CONDI	TIONS ARE:				
SPEC.FF	REQ., HZ	= 29.70	ה		- 0 00	
HEAT IN	DEG C	= 600.00	õ	HEAT OUT. DE		1010-1010 /03-0303
W. GAS	1=H2, 2=H	E,3=AIR 2		CHRG. PRESS HEAT OUT, DE PHASE ANG. I DISPL. STROM TIME STEPS/O	TEGREEG +	40.00 00.05
PONER F	STR. CM	= 2.29	3	DISPL STRON	(F. /M =	7 G7
CALC.FR	RED., 4Z	= 23.00	- 7	TIME STEPS/		217 47
						211.40
COMPUTE	D PERFOR	MANCE USING	FPSE B	Y MARTINI EN	NG.:	
POWER	WATTS			HEAT REQUIRE		5
BASIC	;	97 R. — 3	75.0565	BASIC	_	1452.8160
AD IAB	ATIC COR	R. —3	9.6571	BASIC ADIABATIC REHEAT	CORR.	73.7325
	R FLOW L	OSS -7	5.1686	REHEAT		501.5879
REGEN	.FLOW LD	55 -5	8.4482	SHUTTLE		133.4746
CUOLE	R FLOW L ATED					7.2672 .7304
INDIC	ATED	65	7.0952	TEMP, SWIN	IG	.7304
				PUMPING TEMP. SWIN CYL. WALL	COND.	194.2586
				DISPLCR WA	ILL COND.	33.9389
TNDTCOT				REGEN. WAL	L COND.	61.3050
TNDICAT	ED EFFIC	IENCY, × 2	7.96	CYL. GAS C	OND.	6.1215
				REGEN. MTX	. COND.	4.6103
				CYL. WALL DISPLCR WA REGEN. WAL CYL. GAS C REGEN. MTX RAD.INSIDE FLOW FRIC. TOTAL HEAT	DISPL.	4.7831
		EMP.,C 57	5.58	FLOW FRIC.	CREDIT	-124,3927
CUMP.SP	EFFEUL.	TEMP.,C 5	5.76	TOTAL HEAT	TO ENG.	2350.2330

Conver	aanca ari	****	0.05			
Cycle	Change	teria is: Changa	- 1010 - Work	Hest	E s. J	
Numb.	Power	Heat	Dut	Heat In	End Pressure	
	Out	In	ີ້ກາງເມືອດ	In Joules 2 60.0577 8 37.8263	MDs	
1	. ดิดิดิดิด	ิติตเลติด	37 806	2 60 04577	111 as 65 17 1 1 03	
2	E2194	69971	4E 712	12 00.0077	6.0110 6 /6/0	
3	. 23556	37017	30.712	2 22 57 57 77	5.404Z	
4	.34027	40058	40 582	2 22.6737 1 59.0001	6 2147	
5	.31687	1.60214	41 321	< 50 0702	6.2822	
6	.D1822	18507	79 204	7 67 7081	6.2822 6.2930	
7	.04905	03820	78 656	5 69.9782 7 67.3051 1 64.0173	n,∠⊐010 ⊂ ⊃0775	
8	01600	0/025		T EA 0170	6,2936 6,2720	
9	. 00859	00305	79 770	7 67.3051 1 64.0173 3 64.2123 0 64.9205 2 65.3530	6.2541	
10	.00855	.01103	39 519	6 64.9205 2 65.3530 2 65.7023 4 65.9977 7 66.2510	5.2041 £ 0551	
11	.00473	00666	79 668	2 65 7007	6.2001 6.34017	
12	.004.30	.00534	19 810	L 65 9977	5.2407 5.3455	
13	.00308	. 00450	39 952	7 55 2510	C 0204	
ENTERE	D PRINT R	UTINE OFT	FR 1	3 CYCLES.	0.2234	
Fractio	onal chans	e in two	SUCCESS	ive integral	s of heat	
in and	POWer out	has been	less t	han .00	150	
		RUN# 19	FOR			
		SUNPOW	ER RE10	00 ENGINE		
				LINEAR AL	TERNATOR	
					040 N/(cm/s	er)##2
		ISOTHER	MAL AN	ALYSIS WITH	CORRECTIONS	
				EQUATIONS		
		SOLUTIO	N IS NO	OT OPTIMIZED		
OPERATI	ING CONDIT	IONS ARE:				
SPEC.FF	RED., HZ =	29.70	1	CHRG, PRESS	., BAR =	66.00
HEAT IN	\rightarrow DEG C =	600.00	1	HEAT OUT, D	., BAR = EG. C = DEGREES = KE, CM =	40.00
W. GAS	1=H2,2=HE	,3=AIR 2		PHASE ANG.	DEGREES =	92.37
POWERF	P.STR,CM =	2.25	5	DISPL. STRO	KE, CM =	2.82
CALC.FF	RED., HZ =	24.12)	TIME STEPS/	CYCLE =	207.4E
004045						
	LD PERFORM	ANCE USING	FPSE E	Y MARTINI E	NG.:	
	WHIIS			HEAT REQUIR	EMENT, WATTS	
000100		4	2.8906	BASIC		1596.7030
HDIHE	THILLURR	-4	2.8700	ADIABATIC	CORR.	81.1326
	R FLOW LO	55 -8	4.0065	ADIABATIC REHEAT SHUTTLE		582. 8763
SE.UEIN	C DUCH LUS	5 -10	7.2241	SHUTTLE		124.2414
	R PLUW LU: Otito	- 20	5.2784	PUMPING	-	8.2343
INDIC	HIEU	12	5.5115	TEMP. SWIT	NĢ	1.0039
				DISPLO HALL	CUND.	195.0442
				DEGEN UN	HLL GUND.	34.0761
INDICAT	ED FEELCI		0 07	CVI COS	L LUND.	582.8763 124.2414 8.2343 1.0039 195.0442 34.0761 61.5529 6.1463 4.6289 4.7947 -137.6185 2562.8160
TINGTOWI	up in Filuit	LINUTI № ZÌ	0.23	DECEN HT		6.1463
				REDEN. MI)	CUND.	4.6289
FYP SP	FERENT TEN			KHU. INSIDE	DISPL.	4.7947
COMP SP	FFFF07 TE	MP.C 5/	0.V)1 / (AS	TOTAL PRIC.		-137.6185
JUN .JC	•••••••		+• 00	IUTHL HEAT	IU ENG.	2562,8160

_ _ _

199

Nunь. 1 2 3 4 5 5 5 7 8 9 10 11	.22319 .33331 .30663	Heat In . 69511 . 37956 . 36977 1. 51023 . 17814	Out Joules 38.375 45.940 31.294 40.890		End Pr esoure MPa 6.4065 6.5552	
1 2 3 4 5 6 7 8 9 10 11	00t .00000 .61625 .22319 .33331 .30563 .01794	n .00000 .59511 .37956 .36977 1.51023 .17814	Joules 38.375 46.940 31.294 40.890	Joutes 5 68.9783 6 37.8336	MPa 6.4065	
1 2 3 4 5 6 7 8 9 10 11	.00000 .61625 .22319 .33331 .30663 .01794	.00000 .59511 .37956 .36977 1.51023 .17814	45.940 31.294 40.890	5 6 8. 9783 6 37.8336	6.4065	
2 3 4 5 7 8 9 10 11	.61625 .22319 .33331 .30663 .01794	.69511 .37956 .36977 1.51023 .17814	45.940 31.294 40.890	6 37.8336		
3 4 5 7 8 9 10 11	.22319 .33331 .30663 .01794	.37956 .36977 1.51023 .17814	31.294 40.890			
4 5 7 8 9 10 11	.33331 .30663 .01794	.36977	40.890		6.3236	
5 6 7 8 9 10 11	.30663	1.51023			6.3243	
6 7 9 10 11	.001794	. 17814			6.3818	
7 8 9 10 11	.05044	.1/014	70 805	0 10.0105		
8 9 10 11 12 13	.01525	()) () () () () () () () () () () () ()	33.323	0 0/.0000	6.4044	
9 10 11 12 13		.04041	30.322	2 64.0092	6.3736	
10 11 12 13	03040	.04867	39.232	5 64.4321	6.3648	
11 12 13	.00848	.00113	39.648	8 65.4771	6.3570	
11 12 13	.01010	.01622	39.822	1 55./801	6.3512 6.3452	
12	.00437	.00463	39.956	8 66.2143	6.3452	
13	.00338	.00550	40.092	3 65.4811 4 66.5810	6.3402	
					6.3355	
				3 CYCLES.		
				ive integrals		
in aind	power out			han .005	0	
		RUN# :	25 FOR			
		SUNPO	JER RE10	00 ENGINE		
				LINEAR ALT	ERNATOR	
				stant = .0		ec)**2.
				ALYSIS WITH C		
				EQUATIONS		
				DT OPTIMIZED.		
		30031				
OPERAT I	NG CONDIT	IONS ARE				
SPEC.FR	EQ., HZ =	29.3	761	CHRG. PRESS.	, BAR =	67.00
HEAT IN	DEG C =	600.0	00	HEAT OUT, DE	G.C ∓	40.00
	L=H2, 2=HE			HEAT OUT, DE PHASE ANG, DE DISPL, STROK	EGREES =	92.57
	STR, CM =		25	DISPL STROK	E. CM =	2.80
	G., HZ =		9	TIME STEPS/C		205 89
	- G: + 7 /12	<u>.</u>	L			203.03
COMPUTED		ANCE LIST		BY MARTINI EN	n :	
	ATTS			HEAT REQUIRE		9
BASIC			976.1994			1616.4
	ATIC CORR		43.3461		2000	82.
	FLOW LO			REHEAT	JUNK.	596.6
	FLOW LOS					
			. US. DO41	SHUTTLE		122. 3
	FLOW LD	- 60	-3.3/91	PUMPING	~	8.0
INDICE	TED	1	33.3102			1.4
				CYL. WALL (195.
				DISPLCR WAN		34.6
				REGEN. WALL	_ COND.	61.5
INDICATE	D EFFICI	ENCY, X	28.26	CYL. GAS CO REGEN. MTX.	JND.	6.1
				REGEN. MTX.	COND.	4.6
				RAD. INSIDE	DISPL.	4.6 4.7 -139.6
EXP. SP. E	EFECT. TEL		70 10			

200 (-3

Conver	sence crit	aria ist	. 4050	a		
Cycle	Change	Change	Work	Heat	End	
Numb	Priver	Heat	Ciut.	In	Pressure	
1401121	Out	In	Joules	Joules	MPa	
1		. 00000	38.9444	61.8990	6.5020	
2	. 51056	. 69051	47.1721	37.8628	5.6682	
रे	21127	. 38831	31.2293	25.1906	6.4220	
4	.33797	.33469	41.0906	60. 0963	6.4151	
5	31577	1.38567	41.6701	70.1199	6, 4839	
5	.01410	.16679	39.8680	67.9951	6.4945	
7	.04325	.03030	39.2960	65.0277	6.4747	
8	.01435	.04354	39.6245	65,1852	5.4547	
9	.00836	.00242	39, 9592	65.9177	6,4587	
10	.00845	.01124	40.1480	66.4581	6.4411	
11	.00473	.00820	40.2509	66.7522	6.4254	
12	.00281	.00443	40.3841	66.9571	6.4320	
ENTERE	D PRINT RO	UTINE AFT	ER 12			
Fracti	onal chans	e in two	SUCCASSI	ve integrals	of heat	
ה and	POWRT OUT	. has been	less th	n .005	iØ	
			0 FOR			
		SUNPOW	ER RE100	B ENGINE		
				- LINEAR ALT		
				tant = .0		
				YSIS WITH C	ORRECTIONS	
			I LOSS E			
		SOLUTI	ON IS NO	r OPTIMIZED.		
		_				
OPERAT	ING CONDIT	IONS ARE:	_	CHRG. PRESS. HEAT OUT, DE PHASE ANG. D DISPL. STROK TIME STEPS/C		75 44
SPEC.F	REQ., HZ =	29.7	10 I	CHRG. PRESS.	→ RHK =	68.00
HEAT I	N, DEG C =	600.0	10 H	HEAT DUT, DE		40.00
W. GAS	1=H2, 2=HE	⇒3=AIR_Z		THASE AND. D	EUREES =	31.32
POWER	P.SIR, CM =	2.2	4 1	DISPL. STRUK		2.78
CALC.F	REQ., HZ =	24.4	Б	TIME STEPS/C	YULE =	204.38
				-		
CUMPUT	ED PERFURM	HNLE USIN	G FPSE BY	MARTINI EN	NENT LOTT	-
PUNER	WHIIS		r Offores	TEHI REWUIRE	MENTE WHITE	
BHSI		Э	67.9361	BHOIL	CDOB	07 0010
ADIA	BALLC CORR	. ~	43.7383	HUIHDHILL	CURK.	63.2010 E10 93030
HE.H			00.0311	CUNTTE		121 0951
REDE	N,FLUW LUS	5 -1	23.77J4 5 /59/	DIMPTNG		8 5370
	ER FLUM LU Coted	23 7	-3.4334 /2 3113	TEMP SUIN	G	1 1078
TNDT	CHIED	/ /	42.0110			195 2797
				DISPICE WALL		36 1171
				BEGEN UDI		61.6269
1 ND 100	TED FEETCI	ENCV. Y	28 25	TYL ROS D	OND.	5, 1537
INDICH	IED EFFICI		هراه مرا	REGEN MTY	COND-	4. 5345
				ROD. INSIDE	DISPL	4.7988
E YP CP	FEFECT TE	MP C 5	75.17	FLOW FRIC.	CREDIT	5 1638.0370 83.2518 610.9302 121.0951 8.53700 1.1078 195.2787 34.1171 61.6269 5.1537 4.6345 4.7988 -141.5388 2628.0400
	P FFFFCT T	EMP. C	53.56	TOTAL HEAT	TO ENG.	2628.0400

_____···

.....

Conver	sence crit	eria ist	. 0050	Ø		
Cycie	Chanse	Chanse	Work	Heat	End	
NUMB.	Power	Heat	llut	In Joures 62.6203	Pressure	
	Out	In	Joules	Joules	MPa	
1	.00000	. 00000	39.5132	62.8203	6.5975	
2	.60487	. 68230	47.4078	38, 1162	6.7583	
2	.19960	.39325	31.7529	26.2688 60.8163 70,7040 68.1483 65.4117 65.6846 66.4517 66.7450 67.1182 67.3341 67.6046 CYCLES.	6.5159	
4	.33022	.31082	41.3702	60.8163	6.5205	
2	.30288	1.31515	41.9458	70,7040	6.5776	
5	.01391	.16258	40.0711	68.1483	6.5775	
2	.04469	.03615	39.5550	65.4117	6.5680	
8	.01288	04016	39.9288	65.6846	6.5579	
5	.00945	- 00417	40.2279	66.4517	6.5503	
10	.00/49	.01168	40.3930	55.7450	6.5438	
12	.00410	· (0/0/44]	40.5250	67.1182	6.5374	
12	.00327	.000009	40.538	67.3341	6. 5320	
E NTE BET) PRINT ROL	TINE OFT	40,7827	67.6046	6.5266	
				ve integrals		
	unasi ⊆nasinge no⇔ar out	- 111 LWO 9	10418551 104551	/e integrals An .005	of heat	
	NOWEL OUT		FOR	kn .003	3 0	
				ENGINE		
		EREE ME	TIONS	- LINEAR ALT	FONOTOD	
			ad const	ant = .0	ERNHIUR Will NI/Cau/aa	
		ISOTHER		YSIS WITH (NAU N/ (CM/Se	PC)**Z.
			LOSS EG		UNRECTIONS	
				OPTIMIZED.		
				Gi i ini ilegi		
OPERATI	NG CONDITI	ONS ARE:				
SPEC.FR	EQ., HZ =	29.70		HRO. PRESS.	, BAR =	69.00
HEAT IN	DEG C =	600.00	· +	CHRO. PRESS. HEAT OUT, DE HASE ANG. D HISPL. STROK IME STEPS/C	G. C =	40.00
W. GAS	1=H2, 2=HE,	3=AIR 2	F	HASE ANG. D	EGREES =	92.19
PONER P	STR,CM =	2.24	E	ISPL. STROK	E, CM =	2.77
CALC.FR	EQ., HZ =	24.64	т	IME STEPS/C	YCLE =	202.94
COMPUTE	D PERFORMA	NCE USING	FPSE BY	MARTINI EN	G. 1	
POWER,	WATTS		H	EAT REQUIRE	MENT, WATTS	
BASIC		100	4.7890	BASIC		1665.6150
HDIAB	ALIC CORR.	-4	4.3994	ADIABATIC	CORR.	84.6769
HEATE	R FLOW LDS	S -8	8.4129	REHEAT		625.3972
REGEN	FLUW LUSS	-11	1.5225	SHUTTLE		119.9740
	R FLUW LUS	5 -:	5.5/63	PUMPING	-	8.7150
INDIC	HIED	10	4.8782	TEMP. SWIN	6	1.1650
				LYL. WALL I	CUND.	195.3661
				DISPLER WAL	LL COND.	34.1324
				REGEN. WALL	L COND.	61.6545
INDICHT	ED EFFICIE	NUT: 74 28	5.29	UYL. GAS CO	JND.	5.1564
				REGEN. MTX.	COND.	4.6365
E'YO CD	CCCCT TEM			KHD. INSIDE	DISPL.	4.7988
		лина месе 51	⊃•⊥⊡ र राग	TOTAL HEAT		-144.1741
		.⊂ تانين	24-00	IDIHL HEHI	IU ENG.	1655.6150 84.6769 625.3972 119.9740 8.7150 1.1650 195.3661 34.1324 61.6545 6.1564 4.6365 4.7988 -144.1741 2668.1140

a

Conver	sence cri	teria ist	. 0050	Ø		
					End	
Numb.	Power	Heat	Out	H eat In	Pressure	
	Dut	In	Joules	Joules	MPa	
1	. 00000	.00000	40.0820	Joules 63.7417	6.6931	
2	.59918	. 58129	47.6317	38.3519 27.3205	6.8476	
3	.18836	.39832	32.2812	27.3205	6.6090	
4	.32228	.28764	41.6425	61.5711 70.8245	6.6023	
5	.28999	1.25365	42.0096	70.8245	6.6715	
6	.00881	.15029	40.3280	68.3844	6.6799	
7	.04003	.03445	39.8397	65.8319	6.6571	
8	.01211	. 03733	40.2163	68.3844 65.8319 66.3603 66.9167 67.2184 67.5172	5.6579	
9	.00940	.00303	40.0040	67 0104	5.5373	
110	00710	100833	40.0341	67.2164 67.5170	6.6414	
LI ENTERE	NUUSZU N POTNY DI	DUTINE AFT	40.7304	6VC) 55	0.0221	
				ve integral		
				an .00		
	201101		1 FOR			
				ð ENGINE		
				- LINEAR AL	TERNATOR	
					840 N/(cm/se	ec)**2.
					CORRECTIONS	
		MARTIN	I LOSS E	QUATIONS		
		SOLUTI	DN IS NO	F OPTIMIZED.		
OPERAT:	ING CONDIT	IONS ARE:			EG.C = DEGREES = KE,CM = CYCLE =	
SPEC.F	REQ., HZ =	29.7	200	CHRG. PRESS.	, BAR =	70.00
HEAT IN	N, DELI L =	5000.01		HEAT DUTH DE	10. C =	40.00
	1=H2,Z=H6	., S=HIK Z	* 7	THESE HNG. I		91.07
PUNER N		2,2	2) I 4 7	THE STEPS		2,70
CHLUIFI	YE6:., MZ =	24.6	1	IME SIEPS/L	SYULE =	201.01
СОМРИТЕ	TO PERFORM	ONCE LISTN	S FREE BY	MARTINI EN	16 1	
PONER.	WATTS			FOT REDUTRE	MENT. WATTE	
BASIC		101	12.3270	BASIC		1675.2970
ADIAE	SATIC CORR	(4. 6243	ADIABATIC	CORR.	85, 1829
HEATE	ER FLOW LD	SS -8	39.0564	REHEAT	00/111	638.1532
REGEN	.FLOW LOS	5 -1	1.9914	SHUTTLE		118.1190
COOLE	R FLOW LO	55 -	-5.6216	PUMPING		8.8340
INDIC	CATED	76	51.0331	TEMP. SWIN	IG	1.2139
				CYL. WALL	COND.	195.4755
				DISPLCR WA	LL COND.	34.1515
				REGEN. WAL	L COND.	61.6891
INDICAT	ED EFFICI	ENCY, % 2	23.31	CYL. GAS C	OND.	6.1599
				REGEN. MTX	COND.	4.6391
				RAD. INSIDE	DISPL.	4.8007
EXP. SP.	EFFECT. TE	MP.,C 57	5,19	FLOW FRIC.	CREDIT	-145.0521
COMP.SP	".EFFECT.T	EMP.+C 5	5.11	TUTAL HEAT	TO ENG.	1675.2970 85.1829 638.1532 118.1190 8.8340 1.2139 195.4755 34.1515 61.6891 6.1599 4.6391 4.8007 -145.0521 2688.6640

	sence crit					
	Chanse				End	
	Power	Heat In	Out	In Joules	Pressure	
	Out	In	Joures	Joules 5 64.6635 6 38.5918	MPa	
1	. ପଥର୍ଷ ବ	- 00000	40.650	5 64.6635	6.7886	
2	.59350	. 67668	47.850	6 38, 5918	5.9359	
	.17712	123.9	42, 820	28. 244	'000°	
	5 4 Q	123.9		And the second sec		
2	a terraria. A terraria	Province in	12 25.	A (3.155)	5 540. 5 510.	
	- 0000 r	.14148	40.525	50 62 9051	ь. 7788	
7	.04100	.03356	40.110	M 66.29TT	6 76 6 7	
8	.01024	.03652	40.451	8 66 6409	L: 700 4 m	
9	.00877					
	.00712	.00989	40.915	67,6525	6.7309	
11	.00408	.00524	41.052	8 67.9752	6. 7215	
12	.00335	.00477	41.181	58 57.3000 59 67.6525 58 67.9752 1 68.2111	6. 71 27	
ENTERE						
r racti	onal chans	e in two	success	ive integrale	of heat	
าก สถาย	POWER OUT	nas beer	i less t	.han .005	60	
			23 FOR			
		SUNPOL	IER RE10	00 ENGINE		
		FREE M	OTIONS	LINEAR ALT	ERNATOR	
		L.	.oad con	Stant	40 N/(cm/m	ec)++2.
		TSOTHE	RMAL AN	ALYSIS WITH C	ORRECTIONS	
		MARTIN	I LOSS	EQUATIONS		
		SOLUTI	ON IS N	OT OPTIMIZED.		
DEC E	ING CONDIT	LUNS ARE:	_			
STELLE: NEAT 1	REQ., HZ =	29.7	0	CHRG. PRESS.	, BAR =	/1.00
	Ni DEG L =	Б00.0	0	CHRG. PRESS. HEAT DUT, DE	0.C 🖬	40.00
w. OH5	1-12, 2=85	→ S=HIK Z	-	PHASE AND. D	EGREES =	92.74
	P.STR.CM =	2.2	2	PHASE AND. D DISPL. STROK	E, CM ≖	2.73
	$REU_1 + HZ =$	24.9	9	TIME STEPS/C	YCLE =	200.08
	LO PERFORM	ANCE USIN	G FPSE I	BY MARTINI EN	G. :	
YUWER,	WATTS			HEAT REQUIRE	MENT, WATTS	3
BASIC	-	10	29.0930	BASIC		1704.5590
	BATIC CORR.		47.2000		CORR.	86.6801
	ER FLOW LOS		90.8535	REHEAT		651.1033
	A.FLOW LOSS		13.7718	SHUTTLE		116,9634
	ER FLOW LOS	5S ·	-5.7414	PUMPING		9.0143
INDIC	CATED	7	73.4375	TEMP. SWING	3	1,2719
				CYL, WALL (COND.	195.5183
				DISPLCR WAL	L COND.	34.1590
				REGEN. MOLI	ICONID	61.7025
NDICAT	ED EFFICIE	ENCY, 🗶 🗅	28.34	CYL. BAS CO	DND.	6.1612
				REGEN. MTX.	COND.	4.6402
				RAD. INSIDE	DISPL.	4.7990
XP. SP.	EFFECT. TEM	1P.,C 57	б.14	FLOW FRIC.	CREDIT	-147.7393
COMP.SP	LEFFECT.TE	EMP.,C 5	52.89	TOTAL HEAT	TO ENG.	27:28 97:00

Converses	ice criteria	155 .ØØS	500		
Cycle CH	ange Cha	nge Work	Heat	End	
Numb. Рс	wer Hea	t Dut Joules	In	Pressure	
0.			s Joules	MPa	
1.0	00000 .00	000 41.218	39 65,5856 42 38,8945	6.8841	
2.5	58781 .67	207 48.064	12 38.8945	7.0457	
3.1	.6607 .40	697 32.81	54 29, 4695 5 62, 4682	6.8163	
4.3	.24	232 42.13	5 52.4652	6.8073 6.8722	
5.2		975 42.416			
6.0	10657 .13	954 40.545	69.0817 53 66.8879	6,8477	
7.0	3697 .02	175 40.400	33 67 1712	6.8445	
8.0 9.0	1052 .03	176 440.753 426 A1 013	67.1712 71 67.6491	6.8423	
18 .02	10673 100 10673 100		A 68.2054	6.8171	
11 .0	10602 000 10622 000	822 41.329	68.2054 68.5138	6.8175	
12 12	10288 100	452 41.459	68.6910	6.8171	
ENTERED P	RINT ROUTIN	E AFTER 1	2 CYCLES.		
Enactiona	l change in	two success	sive integral	s of heat	
in and PC	wer out has	been less t		50	
		UN# 22 FOF			
		UNPOWER REIR			
	F	REE MOTIONS	LINEAR AL	TERNATOR	
		Load cor	istant = 👘 📑	И4И N/(cm/se	c)**2.
			ALYSIS WITH	CORRECTIONS	
		ARTINI LOSS			
	S	OLUTION IS N	OT OPTIMIZED	•	
		0.05			
OPERATING	CONDITIONS	AREI		NO9 -	7.7 1803
SPECTERED	$H_{1} = H_{2}$	29,70 COM AN	LING, FREDD		10.00
HEAT IN-	DEG L = .up	10 3	PLACE ONG	LO. C - DEAREES =	92 14
W. UH5 1=		1 N Z	CHRG. PRESS HEAT DUT, D PHASE ANG. DISPL. STRO	KF. CM =	2.72
	$1 \square 7 =$	2.22	TIME STEPS/		198.73
LHLL.FREU	.,	20,10			220110
COMPUTED	PERFORMANCE	USING EPSE	BY MARTINI E	NG.:	
PONER, NO	TIS		HEAT REGULER	EMENT, WATTS	3
BOSIC		1043.1100			
ADIABAT	TTS	-45.8236	BASIC ADIABATIC	CORR.	87.8958
HEATER	FLOW LOSS				666.8961
	LOW LOSS	-115.3125	SHUTTLE		115.6702
	FLOW LOSS	-5.8487	PUMPING TEMP. SWII		9.1747
INDICAT	ED	783.6825	5 TEMP. SWI	NG	1.3356
			CYL. WALL	COND.	195.5769
			DISPLCR W REGEN, WA	ALL COND.	34.1692
			REGEN. WA	L COND.	61.7211
INDICATED	EFFICIENCY	, ≯ 28.33	CYL. BAS	COND.	6.1631
			REGEN. MT	X. COND.	4.6415
			CYL. GAS REGEN. MT RAD.INSID FLOW FRIC TOTAL HER	CPENIT	4./983 150 0991
EXP. SP. EF	FEUL IEMP. 1	L 3/6,10	TOTON MED		- เมชาชรรม 2766 - 20สิมศ
LUMP.SP.t	FFELI. EMP.	16 .32.63			

....

-

APPENDIX H

EFFECT OF PRESSURE ON ISOTHERMAL

FREE-PISTON ANALYSIS

0.5 MSEC TIME STEP

0.005 CONVERGENCE CRITERIA

C		teria ist	. 0050	∂ .		
	Chanse	Change	Work	Heat	End	
Numb.		Heat	Out	In	Pressure	
	. .	7 _	100100	Joules	MPa	*
	0,0000	00000	37.8055	60.2208	6.3286	•
2	.62194	. 69890	47.5820	40.8191	6 .466 2	
3	.25860	. 32218	30.1480	21.7777	6.2539	
Ă	.36640	. 46648	39.9914	40.8191 21.7777 58.1572	6.2403	
5	. 32550	1.67050	41.2351	69.677 1 67.1625	Б. 3175	
6	.03110	.19808	38,9337	67.1625	6.3292	
7	:05581	.03609	38.0869	63.3742	6.2815	
8	.02175	.05640	38.3847	63.3742 63.0299	6.2861	
9	.00782	.00543	39.8316	63.9658 64.5468 64.5978 64.5901	6.2893	
10	.01164	.01465	39. Ø336	64.5468	6.2430	
11	.00520	. 00908	39.0733	64.5978	6.2334	
12	.00102	. 00079	39.2629	64.5901	6.2603	
ENTERE	D PRINT R	OUTINE AFT	ER 12	CYCLE8.		
Fracti	onal chan	se in two	SUCCESSI	ve integrals	of heat	
in and	power ou			an .005	0	
			6 FOR			
		SUNPOW	ER RE100	8 ENGINE		
		FREE M	IOTIONS -	- LINEAR ALT	ERNATOR	
		L	oad cons	tant = .0	40 N/(cm/se	c)##2.
		ISOTHE	RMAL ANA	LYSIS WITH C	URRECTIONS	
		MARTIN	I LOSS E	DUATIONS		
		SOLUTI	ON IS NO	T OPTIMIZED.		
OPERAL	ING CUNDI	TIONS ARE:		-	. BOR =	56.00
SPEC.F	NEUL HZ	- בסוסוס	0	HEAT OUT. DE	G. C. =	40.00
HEHI I	1N, DEU L 1	– ອຍຍ.ຄ ເສືອງອີຊີ		PHASE ANG. D	EGREES =	95.12
W. GHS	D CTD CH	= 22	· .	CHRG. PRESS. HEAT OUT, DE PHASE ANG. D DISPL. STROK	F, CM =	2.79
PUNER		- 2.2	8	TIME STEPS/C	YCLE =	82.70
LALL.F	REGIN HZ	- 24.1	0		, 0.12	
COMPUT	ED PERFOR	MANCE USIN	G FPSE B	Y MARTINI EN	G. :	
001101	UDTIS			HEAT REQUIRE	MENT, WATTS	
POWER	WATTS C	q	49.4999	BASIC		1561.9920
	DAT TO COR	- 6	42.2063	BASIC ADIABATIC	CORR.	79.3773
HEAT	ER FINU I	nee -	B3. 5473	REHEAT SHUTTLE		3/9.8140
DEGE		135 -	25.7647	SHUTTLE		
	FR FLOW CC	1950 Inss	-5.2574	PUMPING		8.1849
1 ND1	CATED	7	11.7242	TEMP. SWIN	6	. 9903
11401				CYL. WALL	COND.	195.1540
				DISPLCR WA	LL COND.	34.0953
				REGEN. WAL	L COND.	61.5876
TNDTCO	TED FEFT	IENCY, X	28.25	CYL. DAS C	OND.	6.1497
110100				REGEN. MTX	. COND.	4.6315
				RAD. INSIDE	DISPL.	4.7996
E XP. SP	.EFFECT.T	EMPC 5	576.36	FLOW FRIC.	CREDIT	122.1005 8.1849 9903 195.1540 34.0953 61.5876 6.1497 4.6315 4.7996 -136.9297 2518.9480
COMPLS	P.FFFECT.	TEMP. C	53.84	TOTAL HEAT	TO ENG.	2518.9480

Cycle	Change	iteria is: Chanse				
NUND.	Power	Heat	Work Dut	Heat In	End Pressure	_
	Out	In	Joures	Joules	MPa	2
1	. 00000	. 00000	38.3745	61.1443	5.4244	
2	.61625	.69428	47,7625	41.9850	6.6009	
3	.24464	.31335	29.5391	22.4735	6.3736	
4	.38154	.46473	39.9334	57.2282	6.3423	
5 6	.35188	1.54648	41.2891	69.1508	6.3983	
7	.03395	.20833	39.2684	67.4040	6.3897	
6	.024894 .021959	-02526 DE100	38,4990	63.2725	6.3742	
9	.00925	.06129 .01715	38.8551	64.3574	6.3545	
10	.00880	.00545	39.1972 39.3150	54.7084 54.4010	6.3935	
11	.00301	.00336	39.5063	64.4912 65.9810	6.3767	
12	.00485	.02310	39.6264	66.1253	6,3609 6,3485	
13	.00304	.00219	39.6125	65.1426	6.3362	
14	.00035	.01466	39.8360	66.2199	6.3216	
15	.00564	.01654	40. 1249	67.0068	6.3097	
16	.00474	.01168	40.0021	66.0042	6.2994	
17	.00057	.01496	40.0930	66,0307	6.3408	
18	.00227	.00040	40.4342	67.3862	6.3242	
19	.00851	.02053	40.3795	67.7980	6.3142	
20	.00135	.00611	40.3101	66.8059	6. 3050	
21 2 2	.00172	.01463	40.3540	66.4931	6.2942	
23	.00109 .00750	.00468	40.6567	67.7790	6.2819	
24	.000937	.01934 .00274	40.6963 40.6529	67.9647	6.2728	
25	.00107	.00590	40.7348	67.5638 67.0231	6.3168	
26	.00202	. 00800	40.7941	67.7286	6.3031	
27	.00146	.01053	40.9425	68.3454	6.2928 6.2826	
28	.00364	.00911	40.8932	68.4503	6.2736	
29	.00121	.00153	40.8526	67.7301	6.2654	
30	.00099	.01052	40.8964	67.4143	6.2562	
-31	.00107	.00466	41.0735	68.0858	6.2994	
32	.00433	.00996	41.1905	58.4011	6.2858	
77	. 00285	.00463	41.0863	68.7729	6,2769	
3.4						
	.00253	.00544	41.0381	68.2528	6.2692	
35	.00117	.00756	41.0357	67.6795		
35 38	. 00117 . 00005	.00756 .00840	41.0357 41.1608	67.6795 68.0439	5.2692 5.2605 6.2512	
35 36 37	. 00117 . 00005 . 00305	.00755 .00840 .00538	41.0357 41.1608 41.2914	67.6795 68.0439 68.7387	6.2692 6.2605 6.2512 6.2412	
35 38 37 38	. 00117 . 00005 . 00305 . 00317	.00755 .00840 .00539 .01021	41.0357 41.1608 41.2914 41.2466	67.6795 68.0439 68.7387 68.8729	5.2592 5.2605 6.2512 6.2412 6.2861	
35 38 37 38 39	.00117 .00005 .00305 .00317 .003109	.00755 .00840 .00539 .01021 .00195	41.0357 41.1608 41.2914 41.2466 41.2041	67.6795 68.0439 68.7387 68.8729 68.5715	6.2692 6.2605 6.2512 6.2412	
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .00535 .01021 .00195 UTINE AFTE e in two s	41.0357 41.1608 41.2914 41.2466 41.2041 59 39 0	67.6795 58.0439 58.7387 58.8729 58.5715 YCLES.	6.2692 6.2605 6.2512 6.2412 6.2861 6.2743	
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .00535 .01021 .00195 UTINE AFTE e in two s	41.0357 41.1608 41.2914 41.2466 41.2041 59 39 0	67.6795 58.0439 58.7387 58.8729 58.5715 YCLES.	5.2692 5.2605 5.2512 6.2412 6.2851 6.2743	
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00640 .00538 .01021 .00195 UTINE AFTE	41.0357 41.1608 41.2914 41.2465 41.2041 59 39 C 5000000000000000000000000000000000000	67.6795 58.0439 58.7387 58.8729 58.5715 YCLES.	5.2692 5.2605 5.2512 6.2412 6.2851 6.2743	
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .00535 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C Successive Less than 7 FOR ER RE1000	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE	6.2692 6.2605 6.2512 6.2512 6.2412 6.2851 6.2743 of heat	
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .00538 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC	41.0357 41.1608 41.2914 41.2466 41.2041 58 39 C Successive 1955 than 7 FOR 58 RE1000 0TIONS 1	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0056 ENGINE LINEAR ALT	6.2692 6.2605 6.2512 6.2512 6.2412 6.2851 6.2743 of heat	
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 .SUNPOWE FREE MC	41.0357 41.1608 41.2914 41.2041 58 50 50 50 50 50 50 50 50 50 50 50 50 50	67.6795 68.0439 68.7387 68.8729 68.8715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .00	6.2692 6.2605 6.2512 6.2412 6.2861 6.2743 of heat a	с)**≥.
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .008335 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISO THER	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C SUCCESSIVE TESS than FOR ER RE1000 TIONS I Diad constai	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH 12	6.2692 6.2605 6.2512 6.2412 6.2861 6.2743 of heat a	c)**2.
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC ISOTHER MARTINI	41.0357 41.1608 41.2914 41.2455 41.2041 59 C3UCCESSIVE 1855 than 7 FOR 58 RE1000 50 CONSTANCE 1005 - 1 50 CONSTANCE MAL ANALY:	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS	6.2692 6.2605 6.2512 6.2412 6.2861 6.2743 of heat a	c)**2.
35 38 37 38 39 ENTERED Finantin	.00117 .00005 .00305 .00317 .00109 .00109 .00109	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC ISOTHER MARTINI	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C SUCCESSIVE TESS than FOR ER RE1000 TIONS I Diad constai	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS	6.2692 6.2605 6.2512 6.2412 6.2861 6.2743 of heat a	c)**2.
35 36 37 38 39 ENTEREE Fractic on and	.00117 .00005 .00305 .00317 .00109 D PRINT R0 .00109 D PRINT R0 .00109 D PRINT R0 .00109 D PRINT R0 .00017 .00117	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC ISOINER MARTINI SOLUTIO	41.0357 41.1608 41.2914 41.2455 41.2041 59 C3UCCESSIVE 185 Chan 7 FOR 59 RE1000 50 CONSTAN MAL ANALYI LOSS EQUIN 15 NOT (67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS	6.2692 6.2605 6.2512 6.2412 6.2861 6.2743 of heat a	c)**2.
35 36 37 38 39 ENTEREE Fractic on and	.00117 .00005 .00305 .00317 .00109 D PRINT R0 .00109 D PRINT R0 .00109 D PRINT R0 .00109 D PRINT R0 .00017 .00117	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC ISOINER MARTINI SOLUTIO	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C SUCCESSIVE TESS than 7 FOR 28 RE1000 DTIONS 1 04 consta MAL ANALY LOSS EQUIN 15 NOT (67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH CO ATIONS DPTIMIZED.	6.2692 6.2605 6.2512 6.2412 6.2861 6.2743 of heat a ERNATIOR W N/(cm/se DRRECTIONS	
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN	.00117 .00005 .00305 .00317 .00103 D PRINT RO .001 Chang Power Out NG CONDIT: EQ., HZ = , DEG C =	.00755 .00840 .00539 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOITES MARTIN: SOLUTIO IONS ARE: 29.70 600.00	41.0357 41.1608 41.2914 41.2466 41.2041 59 CC455FVe 1955 than 7 FOR 50 RE1000 0TIONS 1 50 CONS 1 50 CON	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0056 ENGINE LINEAR ALTH nt = .02 SIS WITH DC ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEC	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat 8 Cm/se BAR = 0. C =	67.00
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS	.00117 .00005 .00305 .00317 .003103 D PRINT RO Smal chang Power out NG CONDIT: EQ., HZ = . DEG C = 1=H2, 2=HE,	.00755 .00840 .00539 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOFHEE MARTINI SOLUTIO IONS ARE: 29.70 600.00	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C SUCCESSIVE TESS than 7 FOR 28 RE1000 DTIONS 1 24 CONSTA 200 DTIONS 1 25 CONSTA 200 DTIONS 1 200 DTIONS	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DC ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEG ASE ANG. DE	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat Ø ERNATIJR Ø N/(cm/se JRRECTIONS BAR = 5. C = GREES ≠	67.00 40.00
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS	.00117 .00005 .00305 .00317 .003103 D PRINT RO Smal chang Power out NG CONDIT: EQ., HZ = . DEG C = 1=H2, 2=HE,	.00755 .00840 .00539 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOFHEE MARTINI SOLUTIO IONS ARE: 29.70 600.00	41.0357 41.1608 41.2914 41.2466 41.2041 53 UCCESSIVE 1955 THAN 7 FOR 63 RE1000 0TIONS 1 04 CONSTA 101 COSS EQUA 101 S NOT (101 CHI 101 CHI 100 CHI 100 CHI 100 CHI 100 CHI	67.6795 68.0439 68.7387 68.5715 YCLES. Integrals .0056 ENGINE LINEAR ALTA nt = .04 SIS WITH IC ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEG SE ANG. DE SPL. STROKE	6.2692 6.2605 6.2512 6.2512 6.2861 6.2743 of heat 0 ERNATIOR W N/(cm/se DRRECTIONS BAR = 0. C = GREES = ; CM =	67.00 40.00 91.99 2.81
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS	.00117 .00005 .00305 .00317 .003103 D PRINT RO Smal chang Power out NG CONDIT: EQ., HZ = . DEG C = 1=H2, 2=HE,	.00755 .00840 .00539 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOITES MARTIN: SOLUTIO IONS ARE: 29.70 600.00	41.0357 41.1608 41.2914 41.2466 41.2041 53 UCCESSIVE 1955 THAN 7 FOR 63 RE1000 0TIONS 1 04 CONSTA 101 COSS EQUA 101 S NOT (101 CHI 101 CHI 100 CHI 100 CHI 100 CHI 100 CHI	67.6795 68.0439 68.7387 68.5715 YCLES. Integrals .0056 ENGINE LINEAR ALTA nt = .04 SIS WITH IC ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEG SE ANG. DE SPL. STROKE	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat Ø ERNATIJR Ø N/(cm/se JRRECTIONS BAR = 5. C = GREES ≠	67.00 40.00 91.99 2.81
35 36 37 38 39 ENTERED Fractic in and OPERATIN SPEC.FR HEAT IN W. GAS POWER P CALC.FR	.00117 .00005 .00305 .00317 .00109 D PRINT RO .001 Chang Power Out EQ., HZ = . DEG C = 1=H2, 2=HE, .STR, CM = EQ., HZ =	.00755 .00840 .00538 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOIHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 2.25 24.34	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C SUCCESSIVE IER RE1000 TIONS I DITONS	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DC ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEC ASE ANG. DE SPL. STROKE 16 STEPS/CY	6.2692 6.2605 6.2512 6.2412 6.2851 6.2743 of heat a sof heat sof heat a sof heat a sof heat a sof heat a sof heat a sof heat a sof heat a sof heat a sof heat sof heat sof heat a sof heat sof	67.00 40.00 91.99 2.81
35 36 37 38 39 ENTERED Fractic in and OPERATIN SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE	.00117 .00005 .00305 .00317 .00103 D PRINT RO .001 Chang Power Out EQ., HZ = . DEG C = 1=H2, 2=HE, .STR, CM = EQ., HZ = D PERFORME	.00755 .00840 .00538 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOIHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 2.25 24.34	41.0357 41.1608 41.2466 41.2466 41.2466 41.2041 ER 39 C SUCCESSIVE ISS THAN FOR ER RE1000 IN IS NOT (IN IS NOT (CHI HEA PHA DIS TIN FPSE BY N	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH IC ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEG ASE ANG. DE SPL. STROKE 16 STEPS/CY 10ATINI ENG	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat 0 RNATUR W N/(cm/se DRRECTIONS BAR = 0. C = 0.6REES = ; CM = CLE = .:	67.00 40.00 91.99 2.81 82.19
35 36 37 38 39 ENTERED Fractic in and OPERATIN SPEC.FR HEAT IN W. GAS POWER P CALC.FR	.00117 .00005 .00305 .00317 .00103 D PRINT RO .001 Chang Power Out EQ., HZ = . DEG C = 1=H2, 2=HE, .STR, CM = EQ., HZ = D PERFORME	.00755 .00840 .00539 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOIFEE MARTINI SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 2.26 24.34	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C Successive Tess than 7 FOR ER RE1000 DTIONS 1 DA CONSTA DTIONS 1 DTIONS -	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals INTEGRALTH NTEGRALTH NTEGRALTH NTEGRALTH NTEGRASS. ATOUT, DEC ANG. DE SPL. STROKE 16 STEPS/CY 16 ARTINI ENG 17 REOUTREM	6.2692 6.2605 6.2512 6.2861 6.2861 6.2743 of heat 0 ERNATUR 0 N/(cm/se 0 RECTIONS BAR = .C = .CREES = .CK = CLE = .:	67.00 40.00 91.99 2.81 82.19
35 36 37 38 39 ENTEREE Fractic Fractic in and OPERATI SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE POWER, 0 BASIC	.00117 .00005 .00305 .00317 .00103 D PRINT RO .001 Chang Power Out EQ., HZ = . DEG C = 1=H2, 2=HE, .STR, CM = EQ., HZ = D PERFORME	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING	41.0357 41.1608 41.2456 41.2456 41.2041 ER 39 C Successive Less than 7 FOR ER RE1000 DILONS 1 DILONS 1 DILONS 1 DILONS EQUI IN IS NOT (CHI HEA PHA DIS TIN FPSE BY M HEA 2.7150 F	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEC SPL. STROKE 16 STEPS/CY MARTINI ENG MARTINI ENG	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat 0 RNATUR W N/(cm/se DRRECTIONS BAR = 0. C = IGREES = 1. CM = CLE = .: ENT. WATTS D99	67.00 40.00 91.99 2.81 82.19 3658.710
35 36 37 38 39 ENTEREL Fractic in and DPERATIN W. GAS POWER P CALC.FR COMPUTE: DWER, 0 BASIC ADIABO	.00117 .00005 .00305 .00307 .00109 D PRINT RD .00109 D PRINT RD .00109 D PRINT RD .0017 .00109 D PRINT RD .0017 .00109 .0017 .0017 .0017 .00109 .0017 .00109 .0017 .00109 .0017 .00109 .0017 .00109 .0017 .00109 .0010000000000	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING	41.0357 41.1608 41.2456 41.2456 41.2041 ER 39 C Successive Less than 7 FOR ER RE1000 DILONS 1 DILONS 1 DILONS 1 DILONS EQUI IN IS NOT (CHI HEA PHA DIS TIN FPSE BY M HEA 2.7150 F	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEC SPL. STROKE 16 STEPS/CY MARTINI ENG MARTINI ENG	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat 0 RNATUR W N/(cm/se DRRECTIONS BAR = 0. C = IGREES = 1. CM = CLE = .: ENT. WATTS D99	67.00 40.00 91.99 2.81 82.19 :658.71(84.79
35 36 37 38 39 ENTERED Fractic in and OPERATIN BACLFR HEATIN COMPUTE POWER, 10 BASIC ADIABI HEATED	.00117 .00005 .00305 .00307 .00317 .00103 D PRINT RO Smal chang Power out EQ., HZ = 1=H2,2=HE, .STR,CM = EQ., HZ = D PERFORMA	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING	41.0357 41.1608 41.2456 41.2456 41.2041 ER 39 C Successive Less than 7 FOR ER RE1000 DILONS 1 DILONS 1 DILONS 1 DILONS EQUI IN IS NOT (CHI HEA PHA DIS TIN FPSE BY M HEA 2.7150 F	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEC SPL. STROKE 16 STEPS/CY MARTINI ENG MARTINI ENG	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat 0 RNATUR W N/(cm/se DRRECTIONS BAR = 0. C = IGREES = 1. CM = CLE = .: ENT. WATTS D99	67.00 40.00 91.99 2.81 82.19 :838.710 84.79 506.91
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE POWER, 0 BASIC ADIABO HEATED REGEN. COOLEF	.00117 .00005 .00305 .00317 .00103 D PRINT RO .001 Chang Power Out BOWER OUT EQ., HZ = . DEG C = 1=H2, 2=HE, .STR, CM = EQ., HZ = D PERFORME WATTS ATIC CORR. & FLOW LOSS & FLOW LOSS	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING	41.0357 41.1608 41.2456 41.2456 41.2041 ER 39 C Successive Less than 7 FOR ER RE1000 DILONS 1 DILONS 1 DILONS 1 DILONS EQUI IN IS NOT (CHI HEA PHA DIS TIN FPSE BY M HEA 2.7150 F	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEC SPL. STROKE 16 STEPS/CY MARTINI ENG MARTINI ENG	6.2692 6.2605 6.2512 6.2851 6.2851 6.2743 of heat 0 RNATUR W N/(cm/se DRRECTIONS BAR = 0. C = IGREES = 1. CM = CLE = .: ENT. WATTS D99	67.00 40.00 91.99 2.81 82.19 82.19 84.79 506.91 123.79
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE POWER. 0 ADIABO ADIABO HEATEL REGEN.	.00117 .00005 .00305 .00317 .00103 D PRINT RO .001 Chang Power Out BOWER OUT EQ., HZ = . DEG C = 1=H2, 2=HE, .STR, CM = EQ., HZ = D PERFORME WATTS ATIC CORR. & FLOW LOSS & FLOW LOSS	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING	41.0357 41.1608 41.2456 41.2456 41.2456 41.2041 ER 39 C Successive Iss than 7 FOR ER RE1000 IDIONS I Did consta MAL ANALY IN IS NOT (1 HEF PHF DIS FPSE BY M HEF 2.7150 F 3.9224 R 3.9224 R 2.6335 S 5.6051 P	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH 100 ATIONS OPTIMIZED. RG. PRESS., AT OUT, DEG ASE ANG. DE SPL. STROKE 16 STEPS/CY MARTINI ENG ASIC DIARATIC C EMEAT HUTTLE UMPING EMPS SUINC	6.2692 6.2605 6.2512 6.2412 6.2851 6.2743 of heat 0 ERNATUR W N/(cm/se DRRECTIONS BAR = 0.C =	67.00 40.00 91.99 2.81 82.19 :638.71(84.79 506.91: 123.799 8.586 1.98
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE POWER, 0 BASIC ADIABO HEATED REGEN. COOLEF	.00117 .00005 .00305 .00317 .00103 D PRINT RO .001 Chang Power Out BOWER OUT EQ., HZ = . DEG C = 1=H2, 2=HE, .STR, CM = EQ., HZ = D PERFORME WATTS ATIC CORR. & FLOW LOSS & FLOW LOSS	.00755 .00840 .00838 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING	41.0357 41.1608 41.2466 41.2466 41.2041 ER 39 C Successive less than 7 FOR ER RE1000 DTIONS 1 DTIONS 1 D	67.6795 68.0439 68.7397 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEC ASE ANG. DE SPL. STROKE 16 STEPS/CY MARTINI ENG NT REQUIREM MASIC DDIABATIC C DDIABATIC C HUTTLE UMPING EMP. SWING YL WOIN	5.2692 5.2605 5.2512 5.2412 5.261 5.2743 of heat 0 ERNATUR W N/(cm/se DRRECTIONS BAR = 0. C = IGREES = 1. CM = CLE = .: ENT. WATTS DRR.	67.00 40.00 91.99 2.81 82.19 (658.710 84.79 506.91 123.79 8.586 1.08 1.08 1.08
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE POWER. 0 ADIABO HEATEI REGEN. COOLEG INDICO	.00117 .00005 .00305 .00307 .00109 D PRINT RO .00109 D PRINT RO .00109 D PRINT RO .00109 D PRINT RO .0017 .00109 D PRINT RO .0017 .00109 .0017 .0010 .0030 .0030 .0017 .0030 .0040	.00755 .00840 .009339 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOIFHER SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 .24.34 ANCE USING 100 -44 55 -51 55 -11. 55 -55	41.0357 41.1608 41.2466 41.2466 41.2041 ER 39 C Successive less than 7 FOR ER RE1000 DTIONS 1 DTIONS 1 D	67.6795 68.0439 68.7397 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH DO ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEC ASE ANG. DE SPL. STROKE 16 STEPS/CY MARTINI ENG NT REQUIREM MASIC DDIABATIC C EMPAT HUTTLE UMPING EMP. SWING YL. WOING	5.2692 5.2605 5.2512 5.2412 5.261 5.2743 of heat 0 ERNATUR W N/(cm/se DRRECTIONS BAR = 0. C = IGREES = 1. CM = CLE = .: ENT. WATTS DRR.	67.00 40.00 91.99 2.81 82.19 (658.710 84.79 506.91) 123.79 8.586 1.087
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE POWER, 0 BASIC ADIABO HEATED REGEN. COOLEF INDICO	.00117 .00005 .00305 .00317 .00103 D PRINT RO .0017 .00103 D PRINT RO .0017 .00103 D PRINT RO .0017 .0010 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0010 .0017 .00107 .0017 .00107 .0017 .0	.00755 .00840 .009339 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC Lc ISOITHEN SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING .44 SS -55 5 -111 .55 -55	41.0357 41.1608 41.2914 41.2466 41.2041 ER 39 C Successive Less than 2 FOR ER RE1000 DTIONS 1 Dad constan MAL ANALY IN 15 NOT (1 CHI 1 HEF 2.7150 F 4.5789 F 4.5789 F 5.6051 P 0.9748 T 0 0 0 0 0 0 0 0 0 0 0 0 0	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals INTEGRALT INTEGRALT 0050 ENGINE LINEAR ALT NT = 004 SIS WITH 120 ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEC ASE ANG. DE SPL. STROKE 16 STEPS/CY MARTINI ENG MARTINI ENG MARTINI ENG MARTINE DIABATIC C ISPLCR WALL EGFN. WALL C	6.2692 6.2605 6.2512 6.2615 6.2861 6.2743 of heat 0 ERNATUR W N/(cm/se DRECTIONS BAR = 0. C = CREES = . CM = CLE = .: ENT. WATTS DRR. DND. COND. COND.	67.00 40.00 91.99 2.81 82.19 (658.710 84.79 506.91) 123.79 8.586 1.087
35 36 37 38 39 ENTEREE Fractic in and OPERATI SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTE POWER, 0 BASIC ADIABO HEATED REGEN. COOLEF INDICO	.00117 .00005 .00305 .00317 .00103 D PRINT RO .0017 .00103 D PRINT RO .0017 .00103 D PRINT RO .0017 .0010 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0010 .0017 .00107 .0017 .00107 .0017 .0	.00755 .00840 .009339 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC Lc ISOITHEN SOLUTIO IONS ARE: 29.70 600.00 .3=AIR 2 24.34 ANCE USING .44 SS -55 5 -111 .55 -55	41.0357 41.1608 41.2456 41.2456 41.2456 41.2456 41.2041 ER 39 C Successive less than FOR R RE1000 ITIONS I Sold consta MAL ANALY LOSS EQUI IN IS NOT (CHI FPSE BY M FPSE BY M FPSE BY M HEF 2.7150 F 4.5788 P 5.6051 P 0.9748 T C 0.9748 T 0.9748 C 0.9748 C	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals INTEGRALT INTEGRALT OUT, DEC SIS WITH CO ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEC SPL. STROKE 15 STEPS/CY MARTINI ENG ASSIC DIABATIC C EMPLS WING EMP. SWING YL. WALL CO ISPLCR WALL YL. GAS CO	6.2692 6.2605 6.2512 6.261 6.2861 6.2743 of heat a ERNATUR W N/(cm/se DRECTIONS BAR = .C = .CREES = .CK = CLE = .: ENT. WATTS ORR. DND. .COND. COND. ND.	67,00 40.00 91.99 2.81 82.19 82.19 605.91 123.799 8.586 1.085 195.028 34.073 61.548
35 36 37 38 39 ENTERED Fractic F	.00117 .00005 .00305 .00307 .00109 D PRINT RO .00109 D PRINT RO .00109 D PRINT RO .00109 D PRINT RO .0017 .00109 D PRINT RO .017 .017 .017 .017 .017 .017 .017 .017	.00755 .00840 .009339 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 3=AIR 2 24.34 ANCE USING 100 -44 55 -58 5 -11. 55 -5 50 -11.	41.0357 41.1608 41.2466 41.2466 41.2466 41.2041 ER 39 C Successive less than 7 FOR ER RE1000 ITIONS I Dad constan MAL ANALY N IS NOT (10 FPSE BY N FPSE BY N FPSE BY N 4.5788 6.9224 8.9224 8.924 0 0 0 0 0 0 0 0 0 0 0 0 0	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals .0050 ENGINE LINEAR ALTH nt = .04 SIS WITH CO ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEC ASE ANG. DE SPL. STROKE 16 STEPS/CY 10ARTINI ENG NARTINI ENG	5.2692 5.2605 5.2512 5.2412 5.261 5.2743 of heat 0 Comparison BAR = 0. C =	67.00 40.00 91.99 2.81 82.19 :638.710 84.799 506.911 123.799 8.586 1.087 195.029 34.073 61.546 6.145 4.528
35 36 37 38 39 ENTERED Fractic F	.00117 .00005 .00305 .00307 .00109 D PRINT RO .00109 D PRINT RO .00109 D PRINT RO .00109 D PRINT RO .0017 .00109 D PRINT RO .017 .017 .017 .017 .017 .017 .017 .017	.00755 .00840 .009339 .01021 .00195 UTINE AFTE e in two s has been RUN# 7 SUNPOWE FREE MC LC ISOTHER MARTIN: SOLUTIO IONS ARE: 29.70 600.00 3=AIR 2 24.34 ANCE USING 100 -44 55 -58 5 -11. 55 -5 50 -11.	41.0357 41.1608 41.2466 41.2466 41.2466 41.2041 ER 39 C Successive less than 7 FOR ER RE1000 ITIONS I Dad constan MAL ANALY N IS NOT (10 FPSE BY N FPSE BY N FPSE BY N 4.5788 6.9224 8.9224 8.924 0 0 0 0 0 0 0 0 0 0 0 0 0	67.6795 68.0439 68.7387 68.8729 68.5715 YCLES. Integrals INTEGRALT INTEGRALT OUT, DEC SIS WITH CO ATIONS DPTIMIZED. RG. PRESS., AT OUT, DEC SPL. STROKE 15 STEPS/CY MARTINI ENG ASSIC DIABATIC C EMPLS WING EMP. SWING YL. WALL CO ISPLCR WALL YL. GAS CO	5.2692 5.2605 5.2512 5.2412 5.2851 5.2743 of heat 0 ERNATUR W N/(cm/se DRRECTIONS BAR = 0. C = IGREES = 1. CM = CLE = .: ENT. WATTS ORR. DND. COND. COND. COND. COND.	67.00 40.00 91.99 2.81 82.19 82.39 506.91 123.799 8.586 1.087 195.028 34.073 61.548 6.145

	Chanse	Chanse	Work	Heat	End	
NUB.	Power	Heat	0u t	In	Pressure	
	Qut	In	Joules		MPa	
1	. 00000	.00000 .68966	38.9434		6.5202	
2	.61057	.68 96 6	48.0201	41.3211	6.6815	
3	.23307	.33426	30.1882	23.8095	6.4247	
4	.37134	.42379		59.0509	6.4288	
5	.33457	1.46014	41.4086	69.1007	6.5190	
6	.02781	17019	39.4 093	67.3591	6.4863	
7	.04828	.02520	38.7761	64.8996	6. 50 46	
8	.01607	.03651	39.0881	64.1540	6.4642	
9	.00805	.01149 .00361 .01281	39.3559	64.3855	6.4813	
10	.00685	.00361	39.6219	65.2105	6.4439	
11	.00676	.01281	39.7755	66.5965	6.4643	
12	.00368	.02125	39.9227	66.0070	6.4277	
13	.00370		39.8879	65.6710	6.4489	
14	.00087	. 00509	40.1661	67.2850	6.4114	
15	. 00696	.02462	40.2191	66.8031	6.4346	
15	.00132	.00721	40.2435	66.1485	6.3991	
17	.00061	.00980	40.4250	67.9718	5.4208	
18	.00451	.02756	40.5875	65.6710 67.2880 66.8031 66.1485 67.9718 66.9642 66.9803 67.9233 67.8297 67.5857 67.5857	6.3870	
19	.00402	.01482	40.4819	66,9803	6.4100	
20	.00260	.00024	40.7699	67.9233	6.3743	
21	.00711	.01409	40.7757	67.8797	6.3983	
22	.00014	.00064	40.7859	67.5857	6.4190	
ENTERE	D PRINT R	OUTINE AFT	ER 22	CYCLES.		
Finantio	onal chan	se in two	successiv	e integrals	of heat	
	power ou	t has beer	less tha	ທ .0415	0	
and and						
in auno		RUN#	6 FOR			
i i atho		RUN# SUNPOK	Б FOR JER RE1000	ENGINE		
i i akno		RUN# Sunpuk Free M	6 FOR JER RE1000 10TIONS	ENGINE LINEAR ALT	ERNATOR	
i i akno		RUN# Sunpuk Free M	6 FOR NER RE10002 10TIONS Load const	ENGINE LINEAR ALT	ERNATOR 40 N/(cm/sec	j)**2,
i i akno		RUN# SUNPOK FREE M LSOTHE	6 FOR NER RE1 002 10TIONS .Gad const IRMAL ANAL) ENGINE - LINEAR ALT ant = .0 YSIS WITH C	ERNATOR 40 N/(cm/sec	j)***2,
i i akno		RUN# SUNPOK FREE M LSOTHE MARTIN	6 FOR JER RE1000 10TIONS Load const IRMAL ANAL JI LOSS EG	ENGINE LINEAR ALT ant =0 YSIS WITH C DUATIONS	ERNATOR 40 N/(cm/sec ORRECTIONS	;)** <u>2</u> ,
i i akno		RUN# SUNPOK FREE M LSOTHE MARTIN	6 FOR JER RE1000 10TIONS Load const IRMAL ANAL JI LOSS EG) ENGINE - LINEAR ALT ant = .0 YSIS WITH C	ERNATOR 40 N/(cm/sec ORRECTIONS	j)***2,
		RUN# SUNPDW FREE M ISOTHS MARTIN SOLUTI	6 FOR IER RE1000 10TIONS Load const IRMAL ANAL NI LOSS EG ON IS NOT	ENGINE LINEAR ALT ant =0 YSIS WITH C DUATIONS	ERNATOR 40 N/(cm/sec ORRECTIONS	t)++*2,
DESAT		RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI	6 FOR JER RE1 000 10TIONS .oad const .RMAL ANAL NI LOSS EG .ON IS NOT	DENGINE LINEAR ALT ant = .0 VSIS WITH (VATIONS OPTIMIZED.	ERNATOR 40 N/(cm/sec ORRECTIONS	
DESAT		RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI	6 FOR JER RE1 000 10TIONS .oad const .RMAL ANAL NI LOSS EG .ON IS NOT	DENGINE LINEAR ALT ant = .0 VSIS WITH () VATIONS OPTIMIZED.	ERNATOR 40 N/(cm/sec ORRECTIONS	
DPERAT SPEC.F	ING CONDI REG., HZ N, DEG C	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0	6 FOR JER RE10002 10TIONS .cad const TRMAL ANAL NI LOSS EG ON IS NOT 0 C 00 H) ENGINE LINEAR ALT ant = .40 YSIS WITH () UATIONS OPTIMIZED. HRG. PRESS.	ERNATOR 40/N/(cm/sev ORRECTIONS , BAR ≖ G.C ⊐	58.00 40.00
DPERAT SPEC.F! HEAT II 4. GAS	ING CONDI REQ., HZ N, DEG C 1=H2,2=H	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 600.7 E, 3=AIR 2	6 FOR JER RE10002 10TIONS .coad const RMAL ANAL NI LOSS EG ON IS NOT 00 IS NOT 70 CC) ENGINE LINEAR ALT ant = .40 YSIS WITH () UATIONS OPTIMIZED. HRG. PRESS.	ERNATOR 40/N/(cm/sev ORRECTIONS , BAR ≖ G.C ⊐	58.00 40.00 92.72
DPERAT SPEC.F! HEAT II	ING CONDI REQ., HZ N, DEG C 1=H2,2=H	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 600.7 E, 3=AIR 2	6 FOR JER RE10002 10TIONS .coad const RMAL ANAL NI LOSS EG ON IS NOT 00 IS NOT 70 CC	ENGINE LINEAR ALT ant = .0 YSIS WITH (UATIONS DPTIMIZED. HRG. PRESS. HRG. PRESS. HASE ANG. D HASE ANG. D ISPL. STROK	ERNATOR 40 N/(cm/sev ORRECTIONS , BAR = G.C = EGREES = E, CM =	66. 00 40. 00 92. 72 2. 78
DPERAT SPEC.F! HEAT II 4. GAS	ING CONDI REQ., HZ N, DEG C 1=H2,2=H	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0	6 FOR JER RE10002 10TIONS .coad const RMAL ANAL NI LOSS EG ON IS NOT 00 IS NOT 70 CC	ENGINE LINEAR ALT ant = .0 YSIS WITH (UATIONS DPTIMIZED. HRG. PRESS. HRG. PRESS. HASE ANG. D HASE ANG. D ISPL. STROK	ERNATOR 40/N/(cm/sev ORRECTIONS , BAR ≖ G.C ⊐	68.00 40.00 92.72 2.78
DPERAT SPEC.FI HEAT II J. GAS POWER I CALC.FI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5	5 FOR JER RE10002 LOTIONS Load const RMAL ANAL II LOSS EC ON IS NOT 70 C 10 H 24 D 33 T	ENGINE LINEAR ALT ant = .0 VSIS WITH C UATIONS DPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D USPL. STROK IME STEPS/C	ERNATOR 40 N/(cm/sec ORRECTIONS 5. C = EGREES = E, CM = YCLE =	68.00 40.00 92.72 2.78
DPERAT SPEC.FI HEAT II J. GAS POWER CALC.FI CONPUTI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 2.2 = 24.5 MANCE USIN	6 FOR JER RE10002 LOTIONS Load const RMAL ANAL II LOSS EG ON IS NOT 20 C 10 H 24 D 53 T 16 FPSE BY	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DUATIONS DPTIMIZED. HAG. PRESS. HAG. PRESS. HAG. PRESS. DISPL. STROK IME STEPS/C MARTINI EN	ERNATOR 40 N/(cm/sev ORRECTIONS 5. C = EGREES = E, CM = YCLE = G.:	6 6.00 40.00 92.72 2.78 81.54
DPERAT SPEC.FI HEAT II J. GAS POWER CALC.FI COMPUTI POWER,	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR.CM REQ., HZ ED PERFOR WATTS	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 E, 3=AIR 2 = 24.5 MANCE USIN	6 FOR JER RE1000 10TIONS .oad const RMAL ANAL 11 LOSS EG ON IS NOT 70 C 100 H 14 D 15 T 16 FPSE BY H	B ENGINE LINEAR ALT ant = .00 YSIS WITH () OPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE	ERNATOR 40 N/(cm/sec ORRECTIONS 5. C = EGREES = E, CM = YCLE =	58.00 40.00 92.72 2.78 81.54
DPERAT SPEC.F HEAT II J. GAS POWER CALC.FI COMPUTI POWER, BASI(ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 E, 3=AIR 2 = 24.5 MANCE USIN	6 FOR JER RE1000 10TIONS .oad const RMAL ANAL 11 LOSS EG ON IS NOT 70 C 70 C 7	B ENGINE LINEAR ALT ant = .0 YSIS WITH C UATIONS DPTIMIZED. HRG. PRESS. HRG. PRESS. HARSE ANG. D HASE ANG. D HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC	ERNATOR 40 N/(cm/sev ORRECTIONS 6. C = EGREES = E, CM = YCLE = G.: MENT, WATTS	68. 00 40. 00 92. 72 2. 78 81. 54 1657. 809
DPERAT SPEC.F HEAT II A. GAS POWER. CALC.FI COMPUTI POWER. BASI(ADIA)	ING CONDI REG., HZ N, DEG C 1=H2,2=H P.STR,CM REG., HZ ED PERFOR WATTS C BATIC COR	RUN# SUNPOK FREE M ISOTHS MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN R. 100	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C UATIONS DPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D HSPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC	ERNATOR 40 N/(cm/sev ORRECTIONS 6. C = EGREES = E, CM = YCLE = G.: MENT, WATTS	66.00 40.00 92.72 2.78 81.54 1657.809 84.265
DPERAT SPEC.FI HEAT II W. GAS POWER I COMPUTI POWER, BASIC ADIAI HEATS	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LI	RUN# SUNPOK FREE M ISOTHS MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN R. 100	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C UATIONS DPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D HSPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC	ERNATOR 40 N/(cm/sev ORRECTIONS 6. C = EGREES = E, CM = YCLE = G.: MENT, WATTS	55.00 40.00 92.72 2.78 81.54 1657.809 84.255 515.967
DPERAT SPEC.F HEAT II J. GAS POWER I COLD.FI COMPUTO POWER, BASIO ADIAI HEATE REGET	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO N.FLOW LO	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN 10 R OSS - SS -1	5 FOR JER RE1000 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C UATIONS DPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D USPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE	ERNATOR 40 N/(cm/sev ORRECTIONS 6. C = EGREES = E, CM = YCLE = G.: MENT, WATTS	58.00 40.00 92.72 2.78 81.54 1657.809 84.255 515.967 120.941
DPERAT SPEC.F HEAT II J. GAS POWER DONER. BASIC ADIAI HEATI REGET CODLI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI IIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN 10 R 0SS -1 0SS -1	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DUATIONS DPTIMIZED. HAG. PRESS. HAG. PRESS. HAG. PRESS. HAG. PRESS. HART OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING	ERNATOR 40 N/(cm/sec ORRECTIONS G. C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR.	68.00 40.00 92.72 2.78 81.54 1657.809 84.265 615.967 120.941 8.651
DPERAT SPEC.F HEAT II J. GAS POWER DONER. BASIC ADIAI HEATI REGET CODLI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN 10 R 0SS -1 DSS -1	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DUATIONS DPTIMIZED. HAG. PRESS. HAG. PRESS. HAG. PRESS. HAG. PRESS. HART OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING	ERNATOR 40 N/(cm/sec ORRECTIONS G. C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR.	55. 00 40. 00 92. 72 2. 78 81. 54 1657. 809 84. 265 515. 967 120. 941 8. 651 1. 126
DPERAT SPEC.F HEAT II J. GAS POWER DONER. BASIC ADIAI HEATI REGET CODLI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN 10 R 0SS -1 DSS -1	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DUATIONS DPTIMIZED. HAG. PRESS. HAG. PRESS. HAG. PRESS. HAG. PRESS. HART OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING	ERNATOR 40 N/(cm/sec ORRECTIONS G. C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR.	66.00 40.00 92.72 2.78 81.54 1657.809 84.265 615.967 120.941 8.651 1.126 195.223
DPERAT SPEC.F HEAT II J. GAS POWER DONER. BASIC ADIAI HEATI REGET CODLI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN 10 R 0SS -1 DSS -1	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DUATIONS DPTIMIZED. HAG. PRESS. HAG. PRESS. HAG. PRESS. HAG. PRESS. HART OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING	ERNATOR 40 N/(cm/sec ORRECTIONS G. C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR.	55.00 40.00 92.72 2.78 81.54 1657.809 84.255 515.967 120.941 8.651 1.126 195.223
DPERAT SPEC.F HEAT II J. GAS POWER DONER. BASIC ADIAI HEATI REGET CODLI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN 10 R 0SS -1 DSS -1	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DUATIONS DPTIMIZED. HAG. PRESS. HAG. PRESS. HAG. PRESS. HAG. PRESS. HART OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING	ERNATOR 40 N/(cm/sec ORRECTIONS G. C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR.	58.00 40.00 92.72 2.78 81.54 1657.809 84.255 515.967 120.941 8.651 1.126 195.223 34.107 61.609
DPERAT SPEC.F HEAT II J. GAS POWER DONER. BASIC ADIAI HEATI REGET CODLI	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2 = 24.5 MANCE USIN 10 R 0SS -1 DSS -1	5 FOR JER RE10002 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DUATIONS DPTIMIZED. HAG. PRESS. HAG. PRESS. HAG. PRESS. HAG. PRESS. HART OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING	ERNATOR 40 N/(cm/sec ORRECTIONS G. C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR.	58.00 40.00 92.72 2.78 81.54 1657.809 84.265 515.967 120.941 8.651 1.126 195.223 34.107 51.609 5.151
DPERAT SPEC.F HEAT II A. GAS POWER CALC.FI POWER. ADIAI HEATI REGET COOLI INDICA	ING CONDI REG., HZ 1=H2,2=H P.STR.CM REQ., HZ ED PERFOR WATTS D BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO CATED	RUN# SUNPOW FREE M ISOTHE MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E,3=AIR 2 = 24.5 MANCE USIN 10 R 0SS - 10 SS - 10 SS 7 IENCY, %	5 FOR JER RE1000 IDTIONS	D ENGINE LINEAR ALT ant = .00 VSIS WITH C UATIONS DPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D ISPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING TEMP. SWIN CYL. WALL DISPLCR WA REGEN. WALL CYL. GAS C REGEN. MTX	ERNATOR 40 N/(cm/sev ORRECTIONS G.C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR. G COND. LL COND. L COND.	58.00 40.00 92.72 2.78 81.54 1657.809 84.265 515.967 120.941 8.651 1.126 195.223 34.107 51.609 5.151
DPERAT SPEC.F HEAT II W. GAS POWER CALC.FI COMPUTI POWER, BASIC ADIAI HEATE REGET COOLF INDIC	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHS MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2.2 = 24.5 MANCE USIN 10 R 0SS -1 0SS 7 - 1ENCY, %	5 FOR JER RE1000 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DATIONS DPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D USPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING TEMP. SWIN CYL. WALL DISPLCR WAL REGEN. WALL CYL. GAS C REGEN. MTX RAD.INSIDE	ERNATOR 40 N/(cm/sec ORRECTIONS G.C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR. COND. LL COND. LL COND. L COND. DND. . COND. DISPL.	58.00 40.00 92.72 2.78 81.54 1657.809 84.265 515.967 120,941 8.651 1.126 195.223 34.1076 61.609 6.151 4.633 4.794
DPERAT SPEC.F HEAT II W. GAS POWER CALC.FI COMPUTI POWER, BASIC ADIAI HEATE REGET COOLF INDIC	ING CONDI REQ., HZ N, DEG C 1=H2,2=H P.STR,CM REQ., HZ ED PERFOR WATTS C BATIC COR ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO ER FLOW LO	RUN# SUNPOK FREE M ISOTHS MARTIN SOLUTI TIONS ARE: = 29.7 = 600.0 E, 3=AIR 2.2 = 24.5 MANCE USIN 10 R 0SS -1 0SS 7 - 1ENCY, %	5 FOR JER RE1000 10TIONS	D ENGINE LINEAR ALT ant = .0 VSIS WITH C DATIONS DPTIMIZED. HRG. PRESS. EAT OUT, DE HASE ANG. D USPL. STROK IME STEPS/C MARTINI EN EAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING TEMP. SWIN CYL. WALL DISPLCR WAL REGEN. WALL CYL. GAS C REGEN. MTX RAD.INSIDE	ERNATOR 40 N/(cm/sev ORRECTIONS G.C = EGREES = E, CM = YCLE = G.: MENT, WATTS CORR. G COND. LL COND. L COND.	58.00 40.00 92.72 2.78 81.54 1657.809 84.265 515.967 120,941 8.651 1.126 195.223 34.107 61.609 6.151 4.633 4.794

.

Conver	gence cr	iteria 15:	14035.0	10		
		Chanse			End	
NUMB.		Heat	Dut	In	Pressure	
	Out	In	Joutes	Joules	MPa	
i	.00000	. 00000	39.5122	62.9924 41.9071 24.7610	6.6160	
2	.60468	. 68504	48.2289	41. 9071	6.7619	
3	.22061	.33473	30.9872	24.7510		
4	.35750	.40915	40.6158	59, 5811	6. 5087	
5	.35750 .31073 .02211	1.40625	41.5138	59.5811 69.5082	6.5797	
E	.02211	.16661	- 39.7002	67.4130	6. 5787	
7	.04369	. 03014	39.1146	55.0465	6.5713	
8	.01475	.03014 .03510	39.3517	65.0465 65.1722	6.5651	
9	.01475 .00606	.00193	39.5610	65.6539 65.6394	5.5620	
10	.00532	.00739 00022	39.7418	65,6394	6.5593	
11	.00532 .00457	.00022	39,9588	55.8186	6 5549	
12	.00546	.00273	40.1876	66.2991 65.8799	6.5498	
13	.00573	.00730	40.3388	65.8799	6.5455	
14	. 1010.575	- MME7E	40 4179	E7 1005	5 5400	
15	. 001 96	.00373	40.4896	67. 2567	6. 5387	
ENTEREI	U PRINT R	OUTINE AFT	ER 15	CYCLES.		
- Fractio	onal chan	se in two	successi	ve integrals	of heat	
in and	Power ou	t has been	less th	an .005	Ø	
			5 FOR			
		SUNPOW	ER RE1000	0 ENGINE		
		FREE M	DTIONS	- LINEAR ALT	ERNATOR	
		L.	ad const	tant≃ .U	40 N/(cm/se	ar)**2.
		ISOTHE	RMAL ANAL	YSIS WITH C	ORRECTIONS	
		MARTIN	I LOSS EC	UATIONS		
		SOLUTIO	IS NO	OPTIMIZED.		
OPERAT I	ING CONDI	TIONS ARE:				
SPEC.FF	REQ., HZ :	= 29.76	5 E	HRG. PRESS.	BAR =	69.00
HEAT IN	N DEG C =	- 600.00	5 F	IEAT OUT, DEC	3.C =	40.00
W. GAS	1=H2, 2=H	5,3=AIR 2	F	HASE ANG. DI	EGREES =	91.07
POWERP	P.STR.CM =	= 2,23	5 E	ISPL. STROK	5, CM =	2.75
CALC.FR	REQ., HZ =	= 24.70	ד (CHRG, PRESS. HEAT OUT, DEC HASE ANG. DE MISPL. STROKE IME STEPS/CY	/CLE =	80.96
COMPUTE	D PERFORM	ANCE USING		MARTINI ENG		
PUNER	WATTS		н	EAT REQUIREN	IENT, WATTS	j
BASIC		100	0.2140	BASIC		1661.4400
ADIAE	ATIC CORA			ADIABATIC (84.4649
	R FLOW LC)SS -8	8.7710	REHEAT		628.1825
	.FLOW LOS	is -11	1.9441	SHUTTLE		118.6626
	R FLOW LO	ISS -	5.6034	SHUTTLE		8.7164
INDIC	ATED	74	5.6034 9.7000	200 M 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.1696
				CYL. WALL C	OND.	195.3623
				CYL. WALL C DISPLCR WAL	L COND.	34, 1317
				REGEN. WALL	COND.	61.6533
INDICAT	ED EFFICI	ENCY, % 2	6.14	CYL. GAS CO REGEN. MTX.	ND.	6.1563
				REBEN. MTX.	COND.	
				RAD. INSIDE	DICO	4 7000
EXP. SP. 1	EFFECT. TE	MP. JC 57	6.14	FLOW FRIC.	CREDIT	-144.7430
COMP.SP.	.EFFECT.T	EMP.,C 5	3.30	TOTAL HEAT	TO ENG.	2664.6320

C			005	AA		
		iteria is: Change		Heat	End	
		Heat		In		
	But	In	Joules	In Joui es	MPa	
1	800000	00000	10 030	Joules Joules 6 63.9168 4 42.0225 6 25.8545	6.7117	
2	59919	68842	48.447	4 42.10225	6.8403	
3	20874	.34254	31.756	5 25.8545	6.6295	
4	.34452	.38475	40.913	6 59,9944	6.6455	
5	28835	1 32046	42.058	3 70.4845	6 6891	
7	05221	03701	79 720	2 65 70917	5 5915	
Ŕ	01191	03560	39 642	4 66 1666	5 5508	
ă	00819	01165	79 811	B 65 1861	6 6342	
เดิ	00/78	01482	40 081	7 55 2975	5.6515	
11	005.28	01705	40.001	8 66 1701	6 6329	
17	00520	001100	40.230	00.07000 0 67 01007	6 6054	
17	001116	00110	40,420	t 67 4707	5 5172	
16	00261	00666	40.525	67 1959	6 60 90	
15	00171	00138	40.678	8 67.8756 2 65.3913 4 65.1666 8 65.1861 7 65.2976 8 66.3703 0 67.4387 3 67.4787 4 67.3859 4 57.5582 5 5	6 5199	
ENTERE	D PRINT F	ROUTINE AFT	FR 1	5 CYCLES.	4. (30.35	
				ive integral	s of heat	
				han .00		
		RUN4	4 FOR			
				00 ENGINE		
				LINEAR AL	TERNATOR	
				stant ≈ .		c) * *2.
				ALYSIS WITH		
				QUATIONS	· · · · · · · · · · · · · · · · · · ·	
		SOLUTI	ON IS NO	OT OPTIMIZED		
OPERAT	ING CONDI	TIONS ARE:				
SPEC.F	RED., HZ	= 29.7	0	CHRG. PRESS	. HAR =	70.00
HEAT I	N, DEG C	= 600.W	0	CHRG. PRESS HEAT OUT, D PHASE ANG. DISPL. STRO	EG. C =	40.00
W. GAS	1=H2,2=H	E+3≍AIR 2		PHASE ANG.	DEGREES =	92.61
PONER	P.STR,CM	= 2.2	2	DISPL. STRO	KE: CM =	2.73
CALC.F	REQ., HZ	= 24.9	2	TIME STEPS/	CYCLE =	80.33
				Y MARTINI E		
POWER,	WATTS			HEAT REQUIR		
BASI	С	10 R	12.7850	BASIC		1682.0190
ADIA	BATIC COR	R	44.6190	ADIABATIC REHEAT	CORR.	35. 5279
	ER FLOW L	.055 -'	30.2289	REHEAT		640.1371
REGE	N.FLOW LO	55 -1	13,4624	SHUTTLE		117.1529
COOLI	ER FLOW L CATED	055	-5.7125	REHEAT SHUTTLE PUMPING TEMP. SWIN		8,8773
INDI	CATED	7	58.7621	TEMP. SWI	NG	1.2245
				CYL. WALL	COND.	195.4898
				DISPLCR W	ALL COND.	34.1540
				PUMPING TEMP. SWI CYL. WALL DISPLCR WA REGEN. WAL CYL. GAS (REGEN. MT) RAD. INSIDE	LL COND.	61.6936
INDICA	TED EFFIC	IENCY, 7 1	28.16	CYL. GAS (COND.	6.1603
				REGEN. MT	COND.	4.6395
				RAD. INSIDE	E DISPL.	4.6001
E XP. SP	.EFFECT.T	ЕМР. С 5	75.18	RAD. INSIDE FLOW FRIC.	CREDIT	-146.9602
COMP.S	P.EFFECT.	TEMP.,C	53.04	TOTAL HEAT	T TO ENG.	2694.9160

Conver	sence crim	teria ist	. രമ	តរង <i>រ</i> ង		
Cycle	Chanse	Change	Work	Heat	End	
NUMB.	Prowers	Ho	(3) .			
	Out	In	Joules	In Jourge 64 64.8417 3 27.2461 3 61.2638 6 69.9938	MPa	
1	. 00000	. 00000	40.649	64.8417	6.8075	
2	.59351	.67579	48.580	3 41.8594	6.9731	
3	.19756	. 35444	31.218	3 27. 2461	6.7395	
4	.35871	.34911	41.130	3 61.2638	6.7327	
5	.31751	1.24854	41.845	6 69, 9938	6.8137	
б	.01742	.14250	40.065	0 68, 1457	6.8213	
7	.04257	.02640	39.500	68.1457 8 55.4819	6 7655	
6	.01406	.03909	39.856	5 65.3840	5 7695	
9	. 00901	.00149	40.235	0 68.1457 8 55.4819 5 55.3840 7 56.2301 0 56.9594 4 67.3505 4 67.5205 0 67.2803 3 CYCLES.	6 7716	
10	.00951	.01294	40.425	66 9694	6 717/	
11	.00471	.01116	40.482	4 67 3505 4	5 7350	
12	.00142	.00569	40.630	67.5005	6.7235	
13	.00365	00252	40.727	A 67 2001	6.7314	
ENTERED	D PRINT RO	UTINE AFT	FR 11		6. 1312	
in and	POWer out	has heen	LOCE TH	aan ,0005	of near	
		MARTIN	I LOSS E	Itant = .0 ALYSIS WITH C QUATIONS DT OPTIMIZED.	ORRECTIONS	°C)*₩Z.
OPERATI SPEC.FR HEAT IN	NG CONDIT ED., HZ = DEG C =	MARTIN	NTAL ANA I LOSS E ON IS NO	ALYSIS WITH C EQUATIONS DT OPTIMIZED.	ORRECTIONS	
SPEC.FR HEAT IN W. GAS	ED., HZ = DEG C = 1=H2,2=HF,	MARTIN SOLUTI IONS ARE: 29.70 600.00	RAAL ANA I LOSS H ON IS NO 2	CHRG, PRESS, HEAT OUT, DE	ORRECTIONS BAR = G. C =	71.00 40.00
SPEC.FR HEAT IN W. GAS	ED., HZ = DEG C = 1=H2,2=HF,	MARTIN SOLUTI IONS ARE: 29.70 600.00	RAAL ANA I LOSS H ON IS NO 2	CHRG, PRESS, HEAT OUT, DE	ORRECTIONS BAR = G. C =	71.00 40.00
SPEC.FR HEAT IN W. GAS	ED., HZ = DEG C = 1=H2,2=HF,	MARTIN SOLUTI IONS ARE: 29.70 600.00	RAAL ANA I LOSS H ON IS NO 2	CHRG, PRESS, HEAT OUT, DE	ORRECTIONS BAR = G. C =	71.00 40.00
SPEC.FR HEAT IN W. GAS POWER P DALC.FR	EQ., HZ = DEG C = 1=H2,2=HE, .STR,CM = EQ., HZ =	1907HE MARTIN SOLUTI (DNS ARE: 29.70 500.00 3≈AIR 2 2.21 25.07	RTHL ANF I LOSS I ON IS NO 2 2 3 4	CYSIS WITH C COUATIONS IT OPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN	ORRECTIONS BAR = G. C = EGREES = E, CM = YCLE =	71.00 40.00
SPEC.FR HEAT IN W. GAS POWER P DALC.FR	ED., HZ = DEG C = 1=H2,2=HE, .STR,CM = ED., HZ = D. PEDEDDW0	MARTIN SOLUTI (ONS ARE: 29.7(500.0(3≈AIR 2 2.2) 25.07	NTHL ANF I LOSS L ON IS NO 2 2 2	ALYSIS WITH C COUNTIONS DT OPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN	ORRECTIONS DAR = G. C = EGREES = E. CM = YCLE =	71.00 40.00 92.00 2.71 79.78
SPEC.FR HEAT IN W. GAS POWER P DALC.FR	ED., HZ = DEG C = 1=H2,2=HE, .STR,CM = ED., HZ = D. PEDEDDW0	MARTIN SOLUTI (ONS ARE: 29.7(500.0(3≈AIR 2 2.2) 25.07	RTHL ANF I LOSS H ON IS NO 2 2 2	ALYSIS WITH C COUNTIONS DT OPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN	ORRECTIONS DAR = G. C = EGREES = E. CM = YCLE =	71.00 40.00 92.00 2.71 79.78
SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTER POWER, I BASIC	ED., HZ = , DEG C = 1=H2,2=HE, .STR,CM = ED., HZ = D PERFORMA WATTS	MARTIN SOLUTI SOLUTI IONS ARE: 29.7(500.0(3≈AIR 2 2.2) 25.07 NUCE USIN(102	RTHL ANF I LOSS E DN IS NO 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ALYSIS WITH C CUATIONS TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREP BOSIC	ORRECTIONS , BAR = G. C = EGREES = E, CM = /CLE = G.: HENT, WATTS	71.00 40.00 92.00 2.71 79.76
SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTER POWER, I BASIC ADIABA	EQ., HZ = DEG C = 1=H2,2=HE, STR.CM = EQ., HZ = D PERFORMA WATTS ATIC CORR.	MARTIN SOLUTI SOLUTI IONS ARE: 29.7(500.0(3≈AIR 2 2.2) 25.07 NUCE USIN(102	RTHL ANF I LOSS E DN IS NO 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ALYSIS WITH C CUATIONS TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREP BOSIC	ORRECTIONS , BAR = G. C = EGREES = E, CM = /CLE = G.: HENT, WATTS	71.00 40.00 92.00 2.71 79.76 1696.7410
SPEC.FR HEAT IN W. GAS POWER P CALC.FR COMPUTED POWER, I BASIC ADIABO HEATED	ED., HZ = DEG C = 1=H2,2=HE, STR,CM = ED., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOO	MARTIN SOLUTI IONS ARE: 29.7(500.0(3≈AIR 2 2.2) 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	КЛНЦ АЛА I LOSS E DN IS NO 2 2 3 5 FPSE B 21.0420 44.8930 44.8930	ALYSIS WITH C CUATIONS IT OPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN BASIC ADIABATIC C	ORRECTIONS BAR = G. C = EGREES = COLE = G.: HENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.78 1686.7410 85.776
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.778) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.776) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.776) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.776) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.776) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.776) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.776) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.74((85.776) 653.445)
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CURG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREN DASIC ADIABATIC C REHEAT SHITTE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1696.7410 85.7767 653.4457
SPEC.FR HEAT IN W. GAS FOWER P CALC.FR COMPUTE POWER. I BASIC ADIABI HEATEF REGEN.	EQ., HZ = I DEG C = 1=H2,2=HE, STR,CM = EQ., HZ = D PERFORMA WATTS ATIC CORR. R FLOW LOSS FLOW LOSS	MARTIN SOLUTI (DNS ARE: 29.7(500.00 3*AIR 2 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.07	MHL ANF I LOSS E DN IS NO 3 3 5 FPSE B 1.0420 44.8980 91.0865 91.0865	ALYSIS WITH C CUARG. PRESS. TOPTIMIZED. CHRG. PRESS. HEAT OUT, DEC PHASE ANG. DE DISPL. STROKE TIME STEPS/CN Y MARTINI ENC HEAT REQUIREP BASIC ADIABATIC C REHEAT SHUTTLE	ORRECTIONS BAR = G. C = EGREES = COLE = MENT, WATTS CORR.	71.00 40.00 92.00 2.71 79.76 1596.7410 85.7767 553.4457

.

Conver	sence cri	iteria ist	. 0050	101		
Сусте	Chanse	Change	WOLK	Heat	End	
Numb.	Power	Heat	Dut	In	Pressure	
1	Dui .00000	ln maaaa	Joules	Joules	MPa	
2	. 59066	.00000 .67348	40.9336		6.8554	
3	.19127	.35666	48,7631		6.9838	
4	33803	. 32368	41.2167		6.7567 6.7698	
5	. 27687	1.14820	41.9362		6.8080	
6	01746	.15611	40.2224		6.8345	
7	.04087	.02421	39.7070		6.8514	
8	.01282	.04918	39,9883		6.8089	
9 10	.00709	.00705	40.3558		6.8297	
11	.00919 .00327	.02771 .00775	40.4877		6.7915	
12	.00121	.01348	40.7586		6.7563 6.7781	
13	00791	. 03196	40.9802	67.8670	6.7995	
14	.00544	.00481	40.8560		6.7626	
15	.00303	.01116	41.0665		6.7856	
16	.00515	.02718	41.2251	68. 2623	6.7497	
17	.00386	.01003	41.1035		6.7753	
18	.00295	.00697	41.4211	69.4124	6.7369	
19	.00773	.02605	41.3882	68.4191	6.7648	
2 8 21	.00079 .00147	.01431 .00741	41.4489	68.9261	6.7276	
22	.00281	.00390	41.5553	69.1952 68.1605	6.7540 6.7200	
23	.00092	.01495	41.6939	70.2058	6.7447	
24	.00401	. 03001	41.7574	68.5770	6.7122	
	.00152	.02320	41.7187	69.6310	6.7381	
26	.00093	.01537	41.9217	69.3221	6.7030	
	.00487	.00444	41.7818	69.0439	6.7314	
		DUTINE AFT		CYCLES,		
in and	പപ്പംപം	ie in two : Chas been	Less the	e integrals n .005		
			9 FOR			
			ER RE1000	ENGINE		
				LINEAR ALT	ERNATOR	
					40 N/(cm/se	c)**2.
				YSIS WITH C	ORRECTIONS	
			LLOSS EQ			
		SULUIT	IS NOT	OPTIMIZED.		
		IONS ARE:				
	EQ., HZ =		ю с	HRG. PRESS.	, BAR =	71.50
	DEG C =			EAT OUT, DE		40.00
W. GAS	1=H2, 2=HE	,3=AIR 2	Р	HASE ANG. D	EGREES =	92.88
	STR, CM =			ISPL. STROK		2.72
CALC. FR	EQ., HZ =	25.17	Υ T	IME STEPS/C	YCLE ≈	79.46
COMPLITE			EDER DV		· ·	
POWER I		HNCE USING		MARTINI EN	MENT, WATTS	
BASIC		105	1.6750	BASIC	NEMIA WHITE	1737.8780
	ATIC CORR		E. 2574	ADIABATIC	CORR.	98.3778
HEATER	R FLOW LD		4.4539	REHEAT		666.9669
REGEN.	FLOW LOS	S -1i	7.8176	SHUTTLE		116.1058
	R FLOW LD	55	5.9689	PUMPING	_	9.2434
INDICA	ATED	78	7.1572	TEMP. SWIN		1.3368
				CYL. WALL I		195.4731 34.1511
				DISPLCR WAL		54.1511 61.6883
		ENCY, % 2		CYL. GAS CO		6.1598
				REGEN. MTX.		4.6391
				RAD. INSIDE	DISPL.	4.7926
		MP C 57		FLOW FRIC.		-153.3627
COMP.SP.	EFFECT.TE	EMP.,C 5	2.64	TOTAL HEAT	TD ENG.	2773.4500

	gence cri	teria ist	. 00500	0		
Cycle		Chanse			End	
NUND.	Power	Heat	Dut	In	Pressure	
	Out	[n	Joules	Joures 65.7667		
1	. 00000	. 00000	41.2179	Joures 65.7667 42.9744 27.3725 61.1830 70.7865 67.6888 66.5025 55.7220	6.9033	
2	.58782	.67117	48.8205	42.9744	7.0516	
3	.18445	.34656	31.9210	27.3725	5.8448	
4	.34616	.36305	41.3684	61.1830	6.8093	
5	.29596	1.23520	41.9966	70.7865	6.8680	
6	.01519	.15696	40.2653	67.6668	6.9122	
7	.04123	.04376	39.8236	66.5025	6.8839	
			40.1021	00.7220	0.0020	
9	.00850	.01174	40.4407	67.1472	6.8377	
10	.00694	.02168	40.5700	66.8365	6.8193	
11 .	.00320	.00463	40.7720	67.5785	6.8564	
12	.00498	.01110	40.9441	68.4571	6.8335	
15	.00422	.01300	40.8827	67.1652	6.8160	
14	.00150	.01587	41.0837	68.3268	6.7943	
10	.00492	.01729	41.2020	68.3053	6.8364	
	,00288 D DDINT D	- 1010001 Dutine of 2	41.3449	67.1472 66.8365 67.5785 58.4571 67.1652 68.3268 68.3053 68.3814 CYCLES.	ь. 8141	
	onali chair aosair ori	90 IN 100	SUCCESSIV	re integrals In .005	of heat a	
	POWER OU	C FIGLES DEEL			6	
			ER RE1000			
				LINEAR ALT	FONOTIO	
				ant = .0		~1++2
				YSIS WITH C		()**2.
		MARTIN	I LOSS EQ	HATIONS	UNRECTIONS	
				OPTIMIZED.		
OPERAT	ING CONDI	TIONS ARE:				
SPEC.FI	REQ., HZ -	- 29.7	'Ø C	HRG. PRESS.	BAR =	72.00
HEAT IN	N, DEG C 4	- 500.0	ю н	HRG. PRESS. EAT OUT, DE HASE ANG. DE ISPL. STROKE	G. C ≠	40.00
W. GAS	1=H2+2=HE	53=AIR 2	q	HASE ANG. DE	EGREES =	91.45
POWER P	P.STR,CM =	= 2.2	n D	ISPL. STROKE	E, CM =	2.71
CALC.FF	REQ., HZ =	= 25.2	3 T	IME STEPS/C	YCLE =	79.27
COMPUTE	ED PERFORM	ANCE USIN	G FPSE BY	MARTINI EN	3. :	
POVER	WATTS		н	EAT REQUIREN	IENT, WATTS	
BASIC	2	1Ø	43.0740	BASIC		1725.1690
RDIAR		₹. –	45.7888	ADIABATIC (CORR.	87.7428
	HILL CORP					01.1420
HEATE	ER FLOW LO)SS -	93.1809	REHEAT		570.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT		670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT		670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT	3	670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT	COND.	670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT) Cond. LL Cond.	670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT) Cond. LL Cond. . Cond.	670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT) Cond. L Cond. . Cond. Ind.	670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT	G COND. LL COND. COND. ND. COND.	670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT	G COND. LL COND. . COND. DND. COND. DISPL.	670.6785
HEATE	ER FLOW LO)SS -	93.1809	REHEAT SHUTTLE PUMPING TEMP. SWINC CYL. WALL O DISPLCR WAL REGEN. WALL CYL. GAS CO REGEN. MTX. RAD. INSIDE FLOW FRIC. TOTAL HEAT	G COND. L COND. COND. COND. DISPL. CREDIT	670.6785

APPENDIX I

.....

EFFECT OF PRESSURE ON ISOTHERMAL

FREE-PISTON ANALYSIS

0.1 MSEC TIME STEP

0.005 CONVERGENCE CRITERIA

Conver	gence cru	teria is‡	. 005	90			
Cycle	Chanse	Chanse	WOTK	Heat In	End		
Numb.	Power	Heat	()ut	In	Pressure	•	
-	Out	In	Joules	Joules 8 60.9473	MPa		
1	. 00000	. 00000	38.373	8 60.9473	6.3977		
2	.61625	. 69526	46.487	3 36.6278	6.5602		
3	21143	. 39902	31.406	0 24.2166	6.3227		
4	.32442	. 33635	41.043	5 59.9677	6.3099		
5	30687	1.47631	41.535	6 70.4090	6.3861		
Ē	01199	.17412	39,679	4 67.8131	6.3932		
7	.04469	.03687	39.065	1 64.5602	6.3804		
B	.01548	.04797	39.427	8 60.9473 3 36.6278 0 24.2166 5 39.9677 6 70.4098 4 67.8131 1 64.5602 8 65.5361 5 59.9677 6 70.4098 4 67.8131 1 64.5602 8 65.5361 5 56.0311 9 66.4014 9 66.9305 3< <td>CYCLES.</td> <td>6.3565</td> <td></td>	CYCLES.	6.3565	
9	.00926	.00439	39.761	8 65,5961	6.3463		
10	.00849	.01151	39,949	5 56.0311	6.3473		
11	.00472	.00663	40.103	9 66,4014	6.3377		
12	.00386	.00551	40.226	9 66.6840	6.3291		
13	00305	00426	40.355	2 66.9305	6.3210		
ENTERE	D PRINT P	INTINE AFT	FR 13	3 CYCLES.			
				ive integrals			
- in and		IT HAS HOME	.,000033	han .005	501 (ieuro) 501		
i ii dina	201101-01		5 FDR		~~		
				00 ENGINE			
				LINEAR ALT	EPNOTOP		
				stant = .K		0-1447	
		ICO TUC	.040 CON	ALYSIS WITH C	CODECTIONS	et/***.	
					UNNEL I LUND		
		, . .		EQUATIONS			
		SUCULI	UN IS NO	OT OPTIMIZED.			
OPERAT	ING CONDI	TIONS ARE:					
SPEC.F	REQ., HZ	= 29.7	0	CHRG. PRESS. HEAT OUT, DE PHASE ANG. D DISPL. STROK TIME STEPS/O	, BAR =	67.00	
HEAT I	N, DEG C	= 600.0	10	HEAT OUT, DE	G.C =	40.00	
W. GAS	1=H2, 2=H	E. 3=AIR 2		PHASE ANG. D	EGREES =	92.65	
POWER	P.STR.CM	= 2.2	15	DISPL. STROK	Έ, CM =	2.81	
CALC.E	REQ., HZ	= 24.2	ε	TIME STEPS/C	YCLF =	412.15	
COMPUTI	ED PERFOR	MANCE USIN	IS FPSE 1	BY MARTINI EN	IG.:		
POWER	WATTS			HEAT REQUIRE	MENT, WATT	s	
BASI	С	9	979.1478	BASIC		1623.9490	
ADIA	BATIC COR	R	43.4919	ADIABATIC	CORR.	82.5300	
HEAT	ER FLOW L	055 -	85.4560	REHEAT		596.3245	
REGE	N. FLOW LO	SS -1	08.6297	SHUTTLE		123.1582	
COOLI	ER FLOW L	055	-5.3746	HARTINI EN HEAT REQUIRE BASIC ADIABATIC REHEAT SHUTTLE PUMPING TEMP. SWIN		8,3999	
INDI	CATED	7	36, 1956	TEMP. SWIN	G	1.0552	
				CYL. WALL	COND.	195.1425	
				DISPLCE WA	LL COND.	34.0933	
				REGEN, WAI	L COND.	61.5840	
	TED FEETC	TENCY. K	9 0 80	REHEAT SHUTTLE PUMPING TEMP. SWIN CYL. WALL DISPLCR WA REGEN. WAL CYL. GAS C REGEN. MTX RAD.INSIDE FLOW FRIC.	OND.	E. 1494	
THUICH	THE COLO		~~~~~	REGEN. MTY	COND.	4.6312	
				ROD THETHE	DISP:	A 7950	
			76 (45	FLOW ERIC	CREDIT	-139.7709	
CARLER.	. EFFELI. (0 ECEEPT	CHEINE J TEMP F	57 00	FLOW FRIC. TOTAL HEAT		2602 0710	
	P.EFFEUL.	IEMP. L	J.2. 84	IDING REAL		20102.0410	

- ----

Conver	sence cri	teria ist	. 0050	0		
Cycle	Change	Change	Work	Heat	End	
Numb.	Power	Heat	Jut	In Joules 61.8675 36.7685	Pressure	
	Out	In	Joules	Joules	MPa	
1	. 00000	. 00000	38,9427	61.8675	6.4931	
2	.E1057	.69066	46.7219	36.7685	6.6512	
3	.19976	40569	31.9042	25.3469	6.4183	
4	.31715	.31064	41.3311	25.3469 60.6913	6.4183 6.4069	
5	.29547	1.39443	41.7318	70.7162	6.4733	
6	.00970	. 16521	39.9082	68.1018	6.4916	
7	.04370	.03700	39.3656	65.0057	6.4673	
8	.01359	.04546	39,7282	65, 3378	6.4545	
9	.00921	.00511	40.0693	50.6913 70.7162 68.1018 65.0037 65.3378 66.1015 56.5585 65.8568 67.1430	6.4438	
10	.00859	.01169	40.2421	56 . 558 5	6.4343	
11	.00431	.00691	40.3829	66,8668	6.4361	
12	.00350	.00463	40.5216	67.1430	6.4269	
Fractio	onal chan	se in two	successi	ve integral	s of heat	
in and	power ou			an .00	50	
			4 FOR			
				Ø ENGINE		
				- LINEAR AL		
		L	oad cons	tant ≈ _l	040 N/(cm/se	c)**2.
		ISOTHE	RMAI ANA	LYSIS WITH (ORRECTIONS	
				QUATIONS		
		SOLUTI	ON IS NO	T OPTIMIZED.		
OBCOAT		1000 000				
	ING CUNDI	IONS ARE:	-			
	(EU., HZ =	29.7		CHRU. PRESS.	$\rightarrow BAR =$	68.00
LL COS	1-42 3-44	- 5000.01 7-010-0	0 1		16. C =	40.00
	1-01,1-00 0 610 CM -	., э-нік 2	. I	THHSE HNG. L	, BAR = EG.C = DEGREES = KE, CM = CYCLE =	92.02
		· 2.2	+ I	JISPL, SIRUP		2.79
CHLC.FP	100., 12 -	24.40	+	ITTE STEPS/L	YULE =	409.19
COMPUTE		INNE LISTN	L'ACE N	MARTINI EN	IC 1	
PONER	HATTS	HAGE GOING		FOT PEOLITES	NG.: MENT, WATTS CORR.	
BASIC	•	94	່ຄລອເຄ	PACIC		1660 0000
ADIAB			1 HE 79	ODIOBOTIC	CUBB	1640.6690
HEATE	RELOWID	55 -8	SE 6214	REHEAT	CONN.	63,4060 E10 5700
REGEN	I.FLOW LDS	S -10	19. 70 38	SHUTTLE		121 5450
COOLE	R FLOW LO	- SS -	-5. 4534	PLIMPING		0 5400 0 54007
INDIC	ATED	74	4.6495	TEMP. SWIN	G	1 10170
				CYL. WALL	COND.	195 2704
				DISPLCR WA	LL COND.	34.1157
				REGEN. WAL	L COND.	61, 6243
INDICAT	ED EFFICI	ENCY, X 2	8.30	CYL. GAS C	OND.	6 1534
	_	•		REGEN. MTX	COND.	4.6343
				RAD. INSIDE	DISPL.	4. 7984
EXP.SP.	EFIFECT, TE	MP.,C 57	6.14	FLOW FRIC.	G COND. LL COND. L COND. OND. . COND. DISPL. CREDIT TO ENG.	-141.4733
COMP.SP	.EFFECT.T	EMP. C 5	3.58	TOTAL HEAT	TO FNG.	2631.1820

ι

.

.

Convergence criteria is: .00500 Cycle Change Change Work Heat End Numb. Power Heat Out In Pressure Out In Joules Joules MPa 1 .00000 .00000 39.5115 62.7881 6.5884 2 .60488 .68605 46.9496 36.8991 6.7519 3 .19823 .41232 32.1409 25.5131 6.5139 4 .31540 .29147 41.5720 61.2070 6.5146 5 .29343 1.30955 41.9930 70.9216 6.5687 6 .01013 .15672 40.1504 68.3495 6.5869 7 .04364 .03627 39.6608 65.3505 6.5614 6 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 6.5368 10 .00800 .01010 40.5239 66.9762 6.5375 11 .00412 .00603 40.6752 67.3122 5.5272 12 .00373 .00499 40.7956 67.6238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat *D and constant = .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)++2. ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED.
Note: Note: Note: Note: Note: Note: Note: 0ut In Joules: Joules: Joules: MPa 1 .00000 .00000 .5115 .52.7881 .5884 2 .60488 .68605 46.9486 .68991 .6.7519 3 .1823 .41232 .22.1409 .25.5131 .5.5139 4 .31540 .29147 .41.5720 .61.2070 .5.5146 5 .29343 1.30855 .41.9930 .0.9216 .5687 6 .01013 .15672 .40.1504 .68.3496 .5869 7 .04364 .03527 .9.5808 .5.3505 .5614 6 .01194 .04095 .40.3578 .66.5767 .5368 9 .00898 .00550 .40.5239 .65.9762 .5375 11 .00412 .00603 .40.7552 .67.6238 .5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. .5180 .5180 Fractuonal change in two successive integrals of heat .10 and oower out
Out In Joules Joules MPa 1 .00000 .00000 39.5115 62.7881 6.5884 2 .60488 .69605 46.9486 36.8991 6.7519 3 .1823 .41232 32.1409 26.5131 6.5139 4 .31540 .29147 41.5720 61.2070 6.5146 5 .29343 1.30855 41.9330 70.9215 6.5687 6 .01013 .15872 40.1604 68.3496 6.5869 7 .04364 .03527 39.6808 65.5505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 5.3568 10 .00800 .01810 40.5239 65.9767 6.5375 11 .00412 .00603 40.6752 67.3122 6.5272 12 .00373 .00499 40.7956 67.6238 6.5180
3 .18823 .41232 32.1409 26.5131 6.5139 4 .31540 .29147 41.5720 61.2070 6.5146 5 .29343 1.30856 41.9930 70.9216 6.5687 6 .01013 .15872 40.1504 68.3496 6.5969 7 .04364 .03527 39.6608 65.3505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 5.5368 10 .00898 .00550 40.3523 65.9762 5.5375 11 .00412 .00603 40.6752 67.5238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. 5180 Enderweit change in two successive integrals of heat .00504 RUN# 13 FOR .0050 SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+#2. ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
3 .18823 .41232 32.1409 26.5131 6.5139 4 .31540 .29147 41.5720 61.2070 6.5146 5 .29343 1.30856 41.9930 70.9216 6.5687 6 .01013 .15872 40.1504 68.3496 6.5969 7 .04364 .03527 39.6608 65.3505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 5.5368 10 .00898 .00550 40.3523 65.9762 5.5375 11 .00412 .00603 40.6752 67.5238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. 5180 Fractional change in two successive integrals of heat .00504 RUN# 13 FOR .0050 SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+#2. ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
3 .18823 .41232 32.1409 26.5131 6.5139 4 .31540 .29147 41.5720 61.2070 6.5146 5 .29343 1.30856 41.9930 70.9216 6.5687 6 .01013 .15872 40.1504 68.3496 6.5969 7 .04364 .03527 39.6608 65.3505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 5.5368 10 .00898 .00550 40.3523 65.9762 5.5375 11 .00412 .00603 40.6752 67.5238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. 5180 Fractional change in two successive integrals of heat .00504 RUN# 13 FOR .0050 SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+#2. ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
7 .04364 .03627 39.6808 65.3505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 6.5368 10 .00800 .01010 40.5239 66.9782 6.5375 11 .00412 .00603 40.6752 67.3122 6.5272 12 .00373 .00499 40.7956 67.6238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been (ess than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .0400 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
7 .04364 .03627 39.6808 65.3505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 6.5368 10 .00800 .01010 40.5239 66.9782 6.5375 11 .00412 .00603 40.6752 67.3122 6.5272 12 .00373 .00499 40.7956 67.6238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been (ess than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .0400 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
7 .04364 .03627 39.6808 65.3505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 6.5368 10 .00800 .01010 40.5239 66.9782 6.5375 11 .00412 .00603 40.6752 67.3122 6.5272 12 .00373 .00499 40.7956 67.6238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been (ess than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .0400 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
7 .04364 .03627 39.6808 65.3505 6.5614 8 .01194 .04095 40.0373 65.9112 6.5481 9 .00898 .00550 40.3578 66.5767 6.5368 10 .00800 .01010 40.5239 66.9782 6.5375 11 .00412 .00603 40.6752 67.3122 6.5272 12 .00373 .00499 40.7956 67.6238 6.5180 ENTERED PRINT ROUTINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been (ess than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .0400 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
ENERED FRINT RUDIINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been less than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
ENERED FRINT RUDIINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been less than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
ENERED FRINT RUDIINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been less than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
ENERED FRINT RUDIINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been less than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
ENERED FRINT RUDIINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been less than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
ENERED FRINT RUDIINE AFTER 12 CYCLES. Fractional change in two successive integrals of heat th and power out has been less than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
Fractional change in two successive integrals of heat th and mower out has been less than .0050 RUN# 13 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)##2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
Th and power out has been less than0050 RUN# 13 FOR SUNPOWER RE10000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant =040 N/(cm/sec)##2. ISOTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
FREE MOTIONS LINEAR ALTERNATOR Load constant = .040 N/(cm/sec)+*2. ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
Load constant = .040 N/(cm/sec)+*2. ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
ISDTHERMAL ANALYSIS WITH CORRECTIONS MARTINI LOSS EQUATIONS
MARTINI LOSS EQUATIONS
SOLUTION IS NOT OPTIMIZED.
DPERAIING CONDITIONS ARE:
SPEC.FREQ., HZ = 29.70 CHRG. PRESS., BAR = 69.00
HEAT IN, DEG C = 600.00 HEAT OUT, DEG. C = 40.00
SPEC.FREQ., HZ = 29.70 CHRG. PRESS., BAR = 69.00 HEAT IN, DEG C = 600.00 HEAT OUT, DEG. C = 40.00 W. GAS 1=H2, 2=HE, 3=AIR 2 PHASE ANG. DEGREES = 92.26 POWER P.STR.CM = 2.24 DISPL. STROKE, CM = 2.77
PONER P.STR.CM = 2.77 CALC.FRED., HZ = 24.62 TIME STEPS/CYCLE = 406.22
CALC.FREQ., HZ = 24.52 TIME STEPS/CYCLE = 406.22
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.:POWER, WATTSBASIC1004.2810BASIC1004.2810BASIC1654.7210ADIABATIC CORR44.3865ADIABATIC CORR.84.6303HEATER FLOW LDSS-88.0160REHEAT624.0253
POWER, WATTS HEAT REQUIREMENT, WATTS
DIGUOLUS 2000 1004. 2810 BASIC 1654. 7210
HDIRENTIC CORR 44.3855 ADIABATIC CORR. 84.6303
REGEN, FLOW LOSS -88, 0160 REHEAT 524, 0253 REGEN, FLOW LOSS -111, 0527 SHUTTLE 120, 1373
INDICATED 755.2776 TEMP. SWING 1 1605
INDICATED 755.2776 TEMP. SWING 1.1605 CYL. WALL COND. 195.3564
DIGN CR UND 195.3564
DISPLCR WALL COND. 34.1310 REGEN. WALL COND. 61.6521
INDICATED EFFICIENCY, 7 28.32 CYL. GAS COND. 6.1562
REGEN. MTX. COND. 4.5364 RAD. INSIDE DISPL. 4.7988
EXP. SP. EFFECT. TEMP., C 576 13 FIGUE FROM CORDITIONS
EXP. SP. EFFECT. TEMP., C 576.13 FLOW FRIC. CREDIT -143.5423 COMP.SP. EFFECT. TEMP., C 53.35 TOTAL HEAT TO ENG. 2665.5660

•

Donver	gence crit	eria is:	. 1005110	1		
Cycle	Chanse	Chanse	Work	Heat	End	
NUmb.	Power Out	Heat	Out	In Joures	Pressure	
	Out	In	Joules	Joutes	MPa	
1	. 00000	. 00000	40.0802		6.6838	
2	.59920	.68145	47.1792	37.1600	6.6838 6.8409	
3	.17712	- 41672	32.6792	21.3331	6.6066	
4	.30734	.25846	41.8397	61.9085	6.6073	
5	.26031	1.24667	42.1572	71.2595	6.6721	
6	.00759	.15105	40.4200		6.6771	
7	.04121	.03579	39.9396	65.9433	6.6618	
8	.01186	.04025	40.3217	66.3570 67.0184	6.6466	
9	.00956	.00627	40.6237	67.0184	6.6339	
10	.00749	.00997	40.7935	67.0184 67.4264 67.7826 68.0506 68.2719	6.6336	
11	.00418	.00509	40.9435	67.7826	6.6218	
12	.00366	.00528	41.0599	68.0506	6.6113	
13	.00264	.00395	41.1804	68.2719	6.6124	
	J PRINI RU	UTINE HEIE	R 13	CYCLES.		
	onati⊂hansi nouni tut	e in two s	uccessiv	e integrals i	of heat	
in and	POWer OUt		FOR	n .0050		
				1-1100 1 4 107		
			R RE1000			
				LINEAR ALTER		
		TEOTHEN	ad consta Mou onous	ant = .040 YSIS WITH COM	0 N/(cm/se	c)**2.
		MORTINI	LOSS EQ	1315 WITH LUI	RECTIONS	
				OPTIMIZED.		
		3020110		UFILMIZED.		
OPERATI	NG CONDIT	IONS ARE:				
SPEC.FR	EQ., HZ =	29.70	(*)	ARG PRESS	P09	70 00
HEAT IN	b DEG C ⇒	600.00	н	HRG. PRESS., EAT OUT, DEG. HASE ANG. DEG ISPL. STROKE, IME STEPS/CYO	C =	10.00 10.00
W. GAS	1=H2, 2=HE,	3=AIR 2	14	ASE ANG DEC	07FFG =	40.00
POWERP	STR.CM =	2.23	DI	SPL. STROKE.	rm =	2 75
CALC.FR	EQ., HZ =	24.79	τī	ME STEPS/CYC	01F =	403 33
						400,00
COMPUTE	D PERFORMA	ANCE USING	FPSE BY	MARTINI ENG.	:	
PONER	WATTS			AT REQUIREME		
BASIC		1021 -45	1.0050	BASIC		1692.6990
ADIAB	ATIC CORR. R FLOW LOS .FLOW LOSS	-45	5.0466	ADIABATIC CO REHEAT SHUTTLE PUMPING	IRR.	86.0627
HEATE	R FLOW LOS	35 -89	9.8467	REHEAT		_
REGEN	FLOW LOSS	5 -112	2.8758	SHUTTLE		118.9305
COOLE	R FLOW LOS	is -5	5.67034	PUMPING		8.6790
INDIC	ATED	767	7.5666	TEMP. SWING		1.2204
				CYL. WALL CO	ND.	195.4079
				DISPLCR WALL	COND.	34.1397
				REGEN. WALL	COND.	61.6677
INDICAT	ED EFFICIE	NCY × 28	3.35	CYL. GAS CON	D.	6.1577
				REGEN. MTX.	COND.	4.6375
				REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL CO DISPLCR WALL REGEN. WALL CYL. GAS CON REGEN. MTX. RAD. INSIDE D	ISPL.	4.6375 4.7973
				FLUW FRIU. L	REDIS	-146 ZBA6
COMP.SP.	EFFECT.TE	MP. C 53	. 12	TOTAL HEAT T	D ENG.	2707.0350

Conver	sence cr.	iteria ist	. 005	00		
Cycle	Chanse	Change	Work		End	
Numb.	Power	Heat	Dut	In	Pressure	
	Out	In	Joules	Joules		
1	. 00000	. 00000	40.648	Joures 5 64,6300	6.7792	
2	. 59351	.67685	47.399	7 37.4425		
3	.16608	.42066	32.943	1 26.6059	6.6998	
4	.30499	.23600	42.050		6.7003	
5	.27675 .00571	1.18055	42.300	1 71.3692	6,7639	
ε	.00571	.14416	60 CO.		6.7782	
7	.03826	.03369	40.247	5 55,4580 5 55,4580	6.7603	
8	.03826 .01068	03635	40.623	2 66.9031		
9	.00934					
10	.00705	00938	41.07/0	5 67,5305 8 67,8990	6 7273	
11	.00392	. 00546	41, 2189	9 68.2393	5 7140	
12	.00363	.00500	41.3429	68,2383 68,4783	5 7130	
ENTERE	D PRINT R	OUTINE AFT	FR 1		0.71.91	
Fracti	nnal chan	se in two	SUCCASE	ive integral	e of Lost	
(D) and	ออพคา อน	t has been	Lace th	nan .00	SUN NEWL	
			1 FOR			
				00 ENGINE		
				- LINEAR AL	TERNATOR	
		rentue		stant =	0410 N/ (Cm/56	ec)#*Z.
				QUATIONS	JURREL LIUNS	
		502011		IT OPTIMIZED.	•	
D PERAT		TIONS ARE:				
SPECE			(b	CU00 00000	D.4.0	
HEAT IN		– בסגס ה	e 7	UEAT OUT DE	., BHR =	/1.00
L GOS	1		e de la companya de la	CHRG. PRESS. HEAT DUT, DE PHASE ANG. I DISPL. STROP	10. L =	40.00
PONER F	P STR. CM	C) 0-HIR 2	7	PHHSE HNG. I	JEUNEES =	92.35
				TIME STEPS/C		2.74
CALLIFY		- 24.9	/	THE STEPS/L	CYCLE =	400.47
		ACHEC LICTH				
	UATTE	THRUE USIN		Y MARTINI EN		
	WATTS -	1.0	10 7500	HEAT REQUIRE		
	ATIC CORF	10	32.3500	BASIC		1709.9320
	THILL SURF	K. –		ADIABATIC	CORR.	86,9528
	R FLOW LO		51.0385	REHEAT		652.5814
	A.FLOW LOS		5.9777	SHUTTLE		117.4462
	R FLOW LO	155 -	-5.7521	PUMPING		9.0242
INDIC	CATED	1.	6.1441	TEMP. SWIN	IG	1.2770
				CYL. WALL	COND.	195.5083
				DISPLCR WA	LL COND. L COND.	34.1572
				REGEN. WAL	L COND.	61.6994
INDICAT	ED EFFICI	ENCY, X	28.37	CYL. GAS C REGEN, MTX	OND.	E.1609
					. COND.	4.6399
				RAD. INSIDE	DISPL.	4.7984
- XP. SP.	EFFECT. TE	MP.,C 57	6.10	RAD. INSIDE FLOW FRIC.	CREDIT	-148.0274
COMP.SP	.EFFECT.T	EMP. C 5	52.90	TOTAL HEAT	TO ENG.	2736.1500

Conver	gence crit	eria is:	. 00	500		
Lycie	Chanse				End	
Numь.		Heat	Out		Pressur	e
	Out	In	Joules	5 Joules	MPa	
1	.00000	. 00000	41.21	70 65.5511		
2	. 58783	.67224	47.624	49 37.7585	7.0386	
3	.15547	.42398	33, 231	8 29 6779	6 0827	
	.30222	.21507	42.31.	22 62.9074	6.8011	
5		1.12254				
5		. 13737			6.8739	
		.03200		5 66.9297	6.8532	
		.03364		5 67.4000		
9	.00925	.00703	41.180	1 68.0065	6.8283	
10	.00674	. 00900	41.343	5 68.3232 6 68.685	6.8233	
11	.00397	.0046E	41.481	6 68.6685	6.8070	
12	.00334	. 00505	41.604	0 68,9201	6.8037	
13 /	.00295	. ØØ36E	41.740	68,9201 2 69,1436	6.8001	
ENTERED	PRINI RUL	JIINE AFT	ER 1	3 DVDLES		
Fractio	nal ⊂hanse	e in two	success	ive integral	s of heat	
in and	power out	has been	less t	han .00	50	
			Ø FOR			
		SUNPOW	ER RE10	00 ENGINE		
		FREE M	OTIONS	LINEAR AL	TERNATOR	
		1_4	oad con	stant = .(040 N/(cm/s	ec)**2.
		ISOTHE	RMAL AN	ALYSIS WITH I	ORRECTIONS	
				EQUATIONS		
		SOLUTII	JN IS NI	DT OPTIMIZED.		
OPERATI	NG CONDITI	UNS ARE:				
SPEC.FR	EQ., HZ =	29.70	3	CHRG. PRESS.	, BAR =	7.2 0101
HEAT IN	DEG C =	500.00		CHRG. PRESS. HEAT OUT, DE	6. C =	40.00
				PHASE ANG. D	FORFES -	93.11
POWER P.	STR, CM =	2.22	2	PHASE ANG. D DISPL. STROK	E CM =	2,72
CALC.FRE	STR, CM = EQ., HZ =	25.14	L .	TIME STEPS/C	YCLE =	2,72
						031.10
CUMPUTER	PERFORMA	NCE USING	FPSE E	Y MARTINI EN	IG. :	
PUNER N	ATTS			HEAT REQUIRE	MENT, WATTS	3
BASIC			9.3710	BASIC		1738.3060
	ATIC CORR.		6.1067		CORR,	88.4058
	FLOW LOS		2.8062	REHEAT		666.1506
	FLOW LOSS		5.6985			116 2873
	FLOW LOSS	3 ~	5,8690 8,8903	PUMPING		9.2046
INDICA	TED	78	8.8903	TEMP, SWIN	G	1.3371
				CYL. WALL	COND.	195.5586
				DICOLOD UN		34.1660
				REGEN WOLL	COND	61.7153
INDICATE	D EFFICIEN	NCY, X 2	ε.42			6.1625
				REGEN. MTX.	· CUND.	
				RAD. INSIDE	DISPL.	4.6411 4.7971
EXP. SP. E	FFECT. TEMP	ν., C 57	Б.Ю4	FLOW FRIC.	CREDIT	-150.6554
					GREDI	-100,6334
	EFFECT. TEM		2.69	TOTAL HEAT	TO ENG.	2776.0780

APPENDIX J EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS CONVERGENCE CRITERIA = 0.01 INITIAL TIME STEP = 1 MSEC DOUBLE PRECISION

.....

S.e.

Computer Name: IBM/PC-AT DOS 3.00 Operating System: Built-in BIOS dated: Thursday, July 3, 1986 Main Processor: Intel 80286 Serial Ports: 2 Co-Processor: Intel 80287 Parallel Ports: 2 Video Display Adapter: Enhanced Graphics, 256 K-bytes Current Video Mode: Text, 80 x 25 Color Available Disk Drives: 3, A: - C: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: 640 K-bytes main memory (at hex 0000-A000) 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting ... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Performance Index (PI), relative to IBM/XT: Not computed. 9:14 pm, Wednesday, July 22, 1987 CONVERGENCE CRITERIA IS: .01000 CYCLE CHANGE CHANGE WORK HEAT END TIME NUMB. POWER PRESSURE STEP HEAT OUT IN OUT IN JOULES JOULES MPA MSEC. 1 .00000 .00000 28.5988 44.5242 4.7965 1.0000 2 .71401 .77738 73.0936 100.2775 4.5827 1.0000 3 1.55583 1.25220 97.7726 171.8939 4.5404 1.0000 4 .33764 .71418 102.5759 181.7607 4.4795 1.0000 5 .04913 102.6339 .05740 182.4127 4.5521 1.0000 6 .00056 .00359 104.4397 184.5055 4.4928 1,0000 7 .01759 .01147 102.5796 182.3018 4.4521 1.0000 8 .01781 .01194 101.6088 180.2685 4.5129 1.0000 9 .00946 .01115 100.8817 178.6897 4.4708 1.0000 10 .00716 .00876 101.1199 178.3157 4.5236 1.0000 CURRENT OPERATING CONDITIONS ARE: 01= 50.000 02= 600.000 2 03= 04= 40.000 05= 66.163 06= 3.905 07= 4.028 08= 0 09= 0 10 =1.000 11= Ο 12 =.000 13= 1.000 14= 4 15= 4 16= 17= 0 18= 1000.000 10.000 3 19= CURRENT DIMENSIONS ARE: 20 =21= 4.0400 22= 4.2000 23= 1 4.7000 24= 5.7180 25 = 15.190026= .0365 27 =1.6630 28= 5.7790 29= 29.7000 30= 6.2000 31= .4260 32= 33= 0 33.0000 34 = 15.250035 = 25.400036= 7.6000 37= 381.0000 38= 39= .0000 .8000 40 = 10.000031.7900 41 =42= 20.5000 43= 2.3900 44= 72.5300 45 =54 47= 1.0200 46 =24 48= 49= .1575 .1067 50 =.7600 51= .1321 52= .1016 53= 31.7900 54= 2.9200 55= 2 56= 34 57= 18.3400 58= .2362 59= 9.2600 60= 1.5000 61= .0000 62= 6.4460 63= .5440 64 = 88.900065 = 75.900066= .0000 67= 69= .0000 68= .0000 135 7.9200 70= .0508 71= .3760 72= 73= 1.5000 74= .0000 75= 76= 77= .0200 1.0000 3.0000 78= 1.0000 79= 4.0000 80= 20.0000 81= 82= .0100 .1000 83= .0100 84= .0000 85= .0000 86= -4.5650 87= 7.9300 89= .4684 88= .4600 90 =4.4500 91= .3710 92= .1450 93= .0813 94= 1 95= .5000 96= 97= 0 .0000 98= .0000 99= .0000 100= .0000 101= 13 102= 15 103 =14 104 =0 0 106= 0 107= 105 =0 108= 0 109= 0 0 110 =111= 0 112= 0 113 =0 114 =0 115 =0 116 =0 117= 0 118 =0 119= 0 120 =0

RECEDING PAGE BLANK NOT FILMED

RACE 22 6 REPATIONALLY BLANK

SUNI FREI MART MART	VO SUCCESS SEN LESS T # 0 FOF POWER REIC E MOTIONS LOAD CON CINI MOVIN CINI LOSS	IVE INTEGRALS	RNATOR 0 N/(CM/SF	C)**2.
OPERATING CONDITIONS AF	E:			
SPEC.FREQ., $HZ = 29$.70	CHRG. PRESS.	BAR =	50.00
HEAT IN, DEG C = 600	.00	HEAT OUT, DEG.	. C =	40.00
W. GAS 1=H2,2=HE,3=AIR	2	PHASE ANG. DEC	GREES =	66.16
POWER P.STR, $CM = 3$.91	DISPL. STROKE,	CM =	4.03
SPEC.FREQ., HZ = 29 HEAT IN, DEG C = 600 W. GAS 1=H2,2=HE,3=AIR POWER P.STR,CM = 3 CALC.FREQ., HZ = 22	.97	TIME STEPS/CYC	CLE =	43.53
COMPUTED PERFORMANCE US POWER, WATTS BASIC ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED				
INDICATED EFFICIENCY, %	33.01	REGEN. WALL CYL. GAS CON REGEN. MTX. RAD.INSIDE D FLOW FRIC. C TOTAL HEAT T	COND. D. COND. ISPL. REDIT O ENG.	60.8006 6.0711 4.5723 4.1295 -411.8704 5150.7223

CONVE	RGENCE	CRITER	IA IS:	.010	000				
CYCLE	CHANG	E C	HANGE	WORK	HEAT	1	END	TIM	E
NUMB.		н	EAT	OUT	IN		PRESSUR	E STE	P
	OUT	I	N	JOULES	S JOUL	ES	MPA	MSE	с.
1	.0000		00000	34.264	2 53.4	851	5.7550	1.000	00
2	.6573	6.	73257	75.844	1 105.4	377	5.4634	1.000	00
3	1.2135			10.732	20 190.9	202	5.5094	1.000	00
4	.4600			18.073		336	5.3372	1.000	00
5	.0663			19.403			5.3882	1.000	00
6	.0112			19.308			5.4571	1.000	
7	.0007			20.191		458	5.2900	1.000	00
			CONDITIO						
01=	60.000		2		600.000		40.000		81.662
06=	3.948	07=	4.032	08=	0	09=		10=	
11=	0	12=	.000		1.000			15=	4
16=	0	17=	3	18=	1000.000	19=	10.000		
	NT DIME								
20=	1	21=	4.0400				4.7000		
	15.1900	26=	.0365	27=	1.6630		5.7790		29.7000
30=	6.2000	31=	.4260		0		33.0000		15.2500
	25.4000	36=	7.6000		381.0000		.0000		.8000
	10.0000	41=	31.7900	42=	20.5000		2.3900		72.5300
45=	45	46=	24	47=	1.0200		.1575		.1067
50=	.7600	51=	.1321	52=	.1016		31.7900	54=	
55=	2	56=	34	57=	18.3400		.2362	59=	9.2600
60=	1.5000	61=	.0000	62=	6.4460		.5440		88.9000
	75.9000	66=	.0000	67=	.0000		.0000	69=	135
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	
75=	.0200	76=	1.0000	77=	3.0000	78=	1.0000	79=	4.0000
	20.0000	81=	.0100	82=	.1000		.0100	84=	.0000
85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
95=	.5000	96=	0	97=	.0000		.0000	99=	.0000
100=	.0000		13	102=	15	103=	14	104=	0
105=	0	106=	0	107=	0	108=	0	109=	0
110=	0	111=	0	112=	0	113=	0	114=	0
115=	0	116=	0	117=	0	118=	0	119=	0
120=	0								

SUNP FREE MART MART	O SUCCESSI EN LESS THA O FOR OWER RE1000 MOTIONS LOAD CONST INI MOVING INI LOSS EQ	VE INTEGRALS OF HI AN .0100 DENGINE - LINEAR ALTERNATO FANT = .020 N/0 GAS NODE ANALYSIS	DR (CM/SEC)**2.
OPERATING CONDITIONS AR	E:			
SPEC.FREQ., HZ = 29 HEAT IN, DEG C = 600 W. GAS 1=H2,2=HE,3=AIR POWER P.STR,CM = 3 CALC.FREQ., HZ = 25	.70 0	HRG. PRESS., BAR	=	60.00
HEAT IN, DEG $C = 600$.00 H	IEAT OUT, DEG. C	=	40.00
W. GAS 1=H2,2=HE,3=AIR :	2 F	HASE ANG. DEGREES	=	81.66
POWER $P.STR, CM = 3$.95 E	DISPL. STROKE, CM	=	4.03
CALC.FREQ., $HZ = 25$.20 I	IME STEPS/CYCLE	=	39.68
COMPUTED PERFORMANCE US POWER, WATTS BASIC : ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED :	ING FPSE BY H 029.3419 .0000 -325.8154 -517.1593 -40.1269 146.2403	MARTINI ENG.: EAT REQUIREMENT, BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND.	WATTS	5382.2590 .0000 1214.6156 250.0777 24.5821 4.4607 191.9098
INDICATED EFFICIENCY, %	32.56	REGEN. WALL COND CYL. GAS COND. REGEN. MTX. COND RAD.INSIDE DISPL FLOW FRIC. CREDI TOTAL HEAT TO EN	•	6.0475 4.5545

CYCLE NUMB. 1 2 3 4	POWER OUT .0000 .6008 .9467 .4702	E C H 1 0 . 9 . 2 . 6 .	HANGE EAT N 00000 68768 73731 1 79967 1	.010 WORK OUT JOULES 39.912 77.695 14.232 30.690	HEAT IN 5 JOUL 12 62.4 58 108.5 29 195.2 56 232.7	ES 641 194 987 135	END PRESSUR MPA 6.7134 6.4170 6.4314 6.4401	MSE 1.00 1.00 1.00	P C. 00 00 00 00
5 6	.1441 .0183			33.091 33.382			6.2287 6.2899	1.000	
7	.0183			34.837			6.3415	1.000	
8	.0109			35.462			6.3938	1.000	
9	.0046			35.563			6.1886	1.000	
			CONDITIO			502	0.1000	1.000	
01=	70.000		2	03=		04=	40.000	05=	78.243
06=	3.916		4.017	08=	0	09=		10=	
11=	0	12=	.000	13=	1.000	14=	4	15=	4
16=	0	17=	3	18=	1000.000	19=	10.000		
CURRE	NT DIME	NSIONS	ARE:						
20=	1	21=	4.0400	22=	4.2000		4.7000		
	15.1900		.0365	27=	1.6630		5.7790		29.7000
30=	6.2000		.4260	32=	0	33=	33.0000		15.2500
	25.4000		7.6000		381.0000		.0000	39=	.8000
	10.0000	41=	31.7900	42=	20.5000	43=	2.3900		72.5300
45=	42	46=	24	47=	1.0200	48=	.1575	49=	.1067
50=	.7600	51=	.1321	52=	.1016		31.7900	54=	2.9200
55=	2	56=	34	57=	18.3400		.2362	59=	9.2600
60=	1.5000	61=	.0000	62=	6.4460	63=	.5440		88.9000
	75.9000	66=	.0000	67=	.0000	68=	.0000	69=	135
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
75=	.0200	76=	1.0000	77=	3.0000	78=	1.0000	79=	4.0000
	20.0000	81=	.0100	82=	.1000	83=	.0100	84=	.0000
85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
95=	.5000	96=	0	97=	.0000	98=	.0000		.0000
100=	.0000		13	102=	15	103=	14	104=	0
105≕	0	106=	0	107=	0	108=	0	109=	0
110=	0	111=	0	112=	0	113=	0	114=	0
115=	0	116=	0	117=	0	118=	0	119=	• 0
120=	U								

IN AND POWER OUT HAS BEEN LESS THAN .0100 RUN# 0 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR LOAD CONSTANT = .020 N/(CM/SEC)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED.	
OPERATING CONDITIONS ARE:	
SPEC.FREQ., $HZ = 29.70$ CHRG. PRESS BAD - 70.00	
HEAT IN, DEG C = 600.00 HEAT OUT, DEG C = 40.00	
W. GAS $1=H2, 2=HE, 3=AIR 2$ PHASE ANG. DEGREES = 78.24	
POWER P.STR, $CM = 3.92$ DISPL. STROKE. $CM = 4.02$	
OPERATING CONDITIONS ARE:SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00W. GAS 1=H2,2=HE,3=AIR 2POWER P.STR,CM = 3.92CALC.FREQ., $HZ = 27.17$ CALC.FREQ., $HZ = 27.17$ COMMIN CONDITIONS ARE:COMMIN CONDITIONS ARE:COMMIN CONDITIONS ARE:SPEC.FREQ., $HZ = 27.17$ CALC.FREQ., $HZ = 27.17$ COMMIN CONDITIONS ARE:COMMIN CONDITIONS ARE:COMMIN CONDITIONS ARE:CALC.FREQ., $HZ = 27.17$ CALC.FREQ., $HZ = 27.17$ CALC.FREQ.CONDITIONS ARE:CALC.FREQ.FREQ.CONDITIONS ARE:CALC.FREQ.FREQ.CONDITIONS ARE:CALC.FREQ.FREQ.FREQ.FREQ.FREQ.FREQ.FREQ.FREQ	
COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: HEAT REQUIREMENT, WATTSPOWER, WATTSHEAT REQUIREMENT, WATTSBASIC3682.9462BASICADIABATIC CORR0000ADIABATIC CORR.HEATER FLOW LOSS-412.2269REHEAT1546.4REGEN.FLOW LOSS-623.7307SHUTTLE239.8COOLER FLOW LOSS-51.3077PUMPING30.2INDICATED2595.6809TEMP. SWING7.7INDICATED EFFICIENCY, % 32.75CYL. WALL COND.185.4INDICATED EFFICIENCY, % 32.75CYL. GAS COND.5.8REGEN. MTX. COND.4.4RAD.INSIDE DISPL.3.6FLOW FRIC. CREDIT-724.0TOTAL HEAT TO ENG.7925.8	1933 0000 4308 3775 3835 7222 1997 086 408 4455 024

.....

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CONV	ERGENCE	CRITE	RIA IS:	.01	000				
OUTINJOULESJOULESMPAMSEC.1.00000.0000041.038364.26206.90501.00002.58962.6786979.4195109.99156.69611.00003.93525.71161114.6301195.84836.62731.00004.44335.78058132.9314236.53926.51911.00005.15965.20777136.1457243.68956.43321.00006.02418.03023136.9811244.28636.62161.00007.00614.00245136.6121245.88466.50071.0000CURRENT OPERATING CONDITIONS ARE:0000101.00001=72.00002=203=600.00014=415=416=017=318=1000.00019=10.00011=012=.00013=1.00014=415=416=017=318=1000.00019=10.00025=15.190026=.036527=1.663028=5.779029=29.700030=6.200031=.426032=033=33.000034=15.250035=25.400036=7.600037=381.000038=.000039=800040=10.000061=.132152=.101653=31.790054=2.9200 <td></td> <td></td> <td></td> <td></td> <td></td> <td>HEAT</td> <td>2</td> <td>END</td> <td>TIM</td> <td>E</td>						HEAT	2	END	TIM	E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								PRESSUF	E STEI	P
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								MPA	MSEC	2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								6.9050	1.000	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								6.6961	1.000	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									1.000	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_						1.000	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									1.000	00
CURRENT OPERATING CONDITIONS ARE:0.1001/11/08/0000/08/00000/08/00000/08/00000/08/00000/08/0000/08/0000/09/00000/0000/0000/0000/0000/0000/08/00000/08/0000/08/00000/0000/0000/0000/000/0000/0000/0000									1.000	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							846	6.5007	1.000	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-		-		
CURRENT DIMENSIONS ARE: $20=$ 1 $21=$ 4.0400 $22=$ 4.2000 $23=$ 4.7000 $24=$ 5.7180 $25=$ 15.1900 $26=$ $.0365$ $27=$ 1.6630 $28=$ 5.7790 $29=$ 29.7000 $30=$ 6.2000 $31=$ $.4260$ $32=$ 0 $33=$ 33.0000 $34=$ 15.2500 $35=$ 25.4000 $36=$ 7.6000 $37=$ 381.0000 $38=$ $.0000$ $39=$ $.8000$ $40=$ 10.0000 $41=$ 31.7900 $42=$ 20.5000 $43=$ 2.3900 $44=$ 72.5300 $45=$ 44 $46=$ 24 $47=$ 1.0200 $48=$ $.1575$ $49=$ $.1067$ $50=$ $.7600$ $51=$ $.1321$ $52=$ $.1016$ $53=$ 31.7900 $54=$ 2.9200 $55=$ 2 $56=$ 34 $57=$ 18.3400 $58=$ $.2362$ $59=$ 9.2600 $60=$ 1.5000 $61=$ $.0000$ $62=$ 6.4460 $63=$ $.5440$ $64=$ 88.9000 $65=$ 75.9000 $66=$ $.0000$ $67=$ $.0000$ $78=$ 1.0000 $74=$ $.0000$ $70=$ $.0508$ $71=$ $.3760$ $72=$ 7.9200 $73=$ 1.5000 $74=$ $.0000$ $80=$ 20.0000 $81=$ $.0100$ $82=$ $.1000$ $83=$ $.0100$ $84=$ $.0000$ $80=$ 20.0000 $81=$ <		-								4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			18=	1000.000	19=	10.000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
70 =.0508 $71 =$.3760 $72 =$ 7.9200 $73 =$ 1.5000 $74 =$.0000 $75 =$.0200 $76 =$ 1.0000 $77 =$ 3.0000 $78 =$ 1.0000 $79 =$ 4.0000 $80 =$ 20.0000 $81 =$.0100 $82 =$.1000 $83 =$.0100 $84 =$.0000 $85 =$.0000 $86 =$ -4.5650 $87 =$.4684 $88 =$ 7.9300 $89 =$.4600 $90 =$ 4.4500 $91 =$.3710 $92 =$.1450 $93 =$.0813 $94 =$ 1 $95 =$.5000 $96 =$ 0 $97 =$.0000 $98 =$.0000 $99 =$.0000 $100 =$.0000101 =13102 =15 $103 =$ 14 $104 =$ 0 $105 =$ 0106 =0107 =0 $108 =$ 0 $109 =$ 0 $110 =$ 0111 =0112 =0113 =0 $114 =$ 0										
75 $.0200$ 76 1.0000 77 3.0000 73 1.5000 74 $.0000$ 80 20.0000 81 $.0100$ 82 $.1000$ 83 $.0100$ 84 $.0000$ 85 $.0000$ 86 -4.5650 87 $.4684$ 88 7.9300 89 $.4600$ 90 4.4500 91 $.3710$ 92 $.1450$ 93 $.0813$ 94 1 95 $.5000$ 96 0 97 $.0000$ 98 $.0000$ 99 $.0000$ 100 $.0000$ 101 13 102 15 103 14 104 0 105 0 106 0 107 0 108 0 109 0 110 0 111 0 112 0 113 0 114 0										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
95= .5000 $96=$ 0 $97=$.0000 $98=$.0000 $99=$.0000 $100=$.0000 $101=$ 13 $102=$ 15 $103=$ 14 $104=$ 0 $105=$ 0 $106=$ 0 $107=$ 0 $108=$ 0 $109=$ 0 $110=$ 0 $112=$ 0 $113=$ 0 $114=$ 0		-								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				= -						_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
						_		=		
	115=	ő	116=	0	112-	0	113 = 118 =	-		-
115^{2} 0 116^{2} 0 117^{2} 0 118^{2} 0 119^{2} 0 129^{2} 0		-	±±v-	0	··/-	0	TT0=	0	118=	0

____

FREE MOT	JCCESSIVE LESS THAN FOR	INTEGRALS OF HE)**2.
OPERATING CONDITIONS ARE:				
SPEC. FREQ. $HZ = 29.70$	CHR	G. PRESS. BAR	=	72.00
SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2	HEA	T OUT, DEG. C	=	40.00
W. GAS 1=H2,2=HE,3=AIR 2	PHA	SE ANG. DEGREES	5 =	74.05
POWER P.STR, CM = 3.91	DIS	PL. STROKE, CM	=	4.02
POWER P.STR,CM =3.91CALC.FREQ., HZ =27.42	TIM	IE STEPS/CYCLE	=	36.46
COMPUTED PERFORMANCE USING POWER, WATTS BASIC 3746 ADIABATIC CORR. HEATER FLOW LOSS -427 REGEN.FLOW LOSS -643 COOLER FLOW LOSS -53 INDICATED 2622		ADDING DNG .		
INDICATED EFFICIENCY, % 31	R L.68 C R R F T	EGEN. WALL CON EGEN. WALL CON EGEN. MTX. CON AD.INSIDE DISPI LOW FRIC. CREDI OTAL HEAT TO EN).). IG.	60.8569 6.0768 4.5766 4.1226 -749.0907 8276.8534

CONVERGENCE CRITERIA IS: .01000 CYCLE CHANGE CHANGE WORK HEAT END TIME NUMB. POWER HEAT OUT IN PRESSURE STEP OUT IN JOULES JOULES MPA MSEC. 1 .00000 .00000 42.1648 66.0607 7.0967 1.0000 2 .57835 .66970 80.0999 110.5241 6.7438 1.0000 3 .89969 .67307 117.6396 201.3334 6.7680 1.0000 4 .46866 .82162 136.6534 243.6999 6.7751 1.0000 5 .16163 .21043 139.1340 248.5741 6.8058 1.0000 6 .01815 .02000 137.4939 245.6142 6.5997 1.0000 7 .01179 .01191 136.0149 244.1677 6.6714 1.0000 8 .01076 .00589 138.5902 248.3855 6.6991 1.0000 9 .01893 .01727 140.6466 252.3617
OUTINJOULESJOULESMPAMSEC.1.00000.0000042.164866.06077.09671.00002.57835.6697080.0999110.52416.74381.00003.89969.67307117.6396201.33346.76801.00004.46866.82162136.6534243.69996.77511.00005.16163.21043139.1340248.57416.80581.00006.01815.02000137.4939245.61426.59971.00007.01179.01191136.0149244.16776.67141.00008.01076.00589138.5902248.38556.69911.00009.01893.01727140.6466252.36176.72451.000010.01484.01601141.1062252.65946.75281.0000
OUTINJOULESJOULESMPAMSEC.1.00000.0000042.164866.06077.09671.00002.57835.6697080.0999110.52416.74381.00003.89969.67307117.6396201.33346.76801.00004.46866.82162136.6534243.69996.77511.00005.16163.21043139.1340248.57416.80581.00006.01815.02000137.4939245.61426.59971.00007.01179.01191136.0149244.16776.67141.00008.01076.00589138.5902248.38556.69911.00009.01893.01727140.6466252.36176.72451.000010.01484.01601141.1062252.65946.75281.0000
2 .57835 .66970 80.0999 110.5241 6.7438 1.0000 3 .89969 .67307 117.6396 201.3334 6.7680 1.0000 4 .46866 .82162 136.6534 243.6999 6.7751 1.0000 5 .16163 .21043 139.1340 248.5741 6.8058 1.0000 6 .01815 .02000 137.4939 245.6142 6.5997 1.0000 7 .01179 .01191 136.0149 244.1677 6.6714 1.0000 8 .01076 .00589 138.5902 248.3855 6.6991 1.0000 9 .01893 .01727 140.6466 252.3617 6.7245 1.0000 10 .01484 .01601 141.1062 252.6594 6.7528 1.0000
3 .89969 .67307 117.6396 201.3334 6.7680 1.0000 4 .46866 .82162 136.6534 243.6999 6.7751 1.0000 5 .16163 .21043 139.1340 248.5741 6.8058 1.0000 6 .01815 .02000 137.4939 245.6142 6.5997 1.0000 7 .01179 .01191 136.0149 244.1677 6.6714 1.0000 8 .01076 .00589 138.5902 248.3855 6.6991 1.0000 9 .01893 .01727 140.6466 252.3617 6.7245 1.0000 10 .01484 .01601 141.1062 252.6594 6.7528 1.0000
4 .46866 .82162 136.6534 243.6999 6.7751 1.0000 5 .16163 .21043 139.1340 248.5741 6.8058 1.0000 6 .01815 .02000 137.4939 245.6142 6.5997 1.0000 7 .01179 .01191 136.0149 244.1677 6.6714 1.0000 8 .01076 .00589 138.5902 248.3855 6.6991 1.0000 9 .01893 .01727 140.6466 252.3617 6.7245 1.0000 10 .01484 .01601 141.1062 252.6594 6.7528 1.0000
5.16163.21043139.1340248.57416.80581.00006.01815.02000137.4939245.61426.59971.00007.01179.01191136.0149244.16776.67141.00008.01076.00589138.5902248.38556.69911.00009.01893.01727140.6466252.36176.72451.000010.01484.01601141.1062252.65946.75281.0000
6.01815.02000137.4939245.61426.59971.00007.01179.01191136.0149244.16776.67141.00008.01076.00589138.5902248.38556.69911.00009.01893.01727140.6466252.36176.72451.000010.01484.01601141.1062252.65946.75281.0000
6.01815.02000137.4939245.61426.59971.00007.01179.01191136.0149244.16776.67141.00008.01076.00589138.5902248.38556.69911.00009.01893.01727140.6466252.36176.72451.000010.01484.01601141.1062252.65946.75281.0000
8 .01076 .00589 138.5902 248.3855 6.6991 1.0000 9 .01893 .01727 140.6466 252.3617 6.7245 1.0000 10 .01484 .01601 141.1062 252.6594 6.7528 1.0000
9 .01893 .01727 140.6466 252.3617 6.7245 1.0000 10 .01484 .01601 141.1062 252.6594 6.7528 1.0000
10 .01484 .01601 141.1062 252.6594 6.7528 1.0000
ll .00327 .00118 138.9851 253.1977 6.5574 .5000
12 .01503 .00213 138.8284 251.4863 6.6469 .5000
13 .00113 .00676 138.4697 252.6428 6.5581 .5000
CURRENT OPERATING CONDITIONS ARE:
01= 74.000 02= 2 03= 600.000 04= 40.000 05= 80.493
06= 3.873 07= 4.036 08= 0 09= 0 10= 1.000
11= 0 $12=$.000 $13=$ 1.000 $14=$ 4 $15=$ 4
16= 0 $17=$ 3 $18=$ 1000.000 $19=$ 10.000
CURRENT DIMENSIONS ARE:
20= 1 21= 4.0400 22= 4.2000 23= 4.7000 24= 5.7180
25= 15.1900 26= .0365 27= 1.6630 28= 5.7790 29= 29.7000
30= 6.2000 31= .4260 32= 0 33= 33.0000 34= 15.2500
35= 25.4000 36= 7.6000 37= 381.0000 38= .0000 39= .8000
40= 10.0000 41= 31.7900 42= 20.5000 43= 2.3900 44= 72.5300
45= 76 46= 24 47= 1.0200 48= .1575 49= .1067
50= .7600 51= .1321 52= .1016 53= 31.7900 54= 2.9200
55= 2 56= 34 57= 18.3400 58= .2362 59= 9.2600
60= 1.5000 61= .0000 62= 6.4460 63= .5440 64= 88.9000
65= 75.9000 66= .0000 67= .0000 68= .0000 69= 135
70= .0508 71= .3760 72= 7.9200 73= 1.5000 74= .0000
75= .0200 76= 1.0000 77= 3.0000 78= 1.0000 79= 4.0000
80= 20.0000 81= .0100 82= .1000 83= .0100 84= .0000
85= .0000 86= -4.5650 87= .4684 88 = 7.9 300 89= .4600
90= 4.4500 91= .3710 92= .1450 93= .0813 94= 1
95= .5000 96= 0 97= .0000 98= .0000 99= .0000
100= .0000 101= 13 102= 15 103= 14 104= 0
105= 0 106= 0 107= 0 108= 0 109= 0
110= 0 111= 0 112= 0 113= 0 114= 0
115= 0 116= 0 117= 0 118= 0 119= 0
120= 0

FREE MOTION LOAD O MARTINI MOV MARTINI LOS	ESSIVE INTEGRALS OF HEAT 5 THAN .0100 FOR	C)**2.
OPERATING CONDITIONS ARE:		
OPERATING CONDITIONS ARE: SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR.CM = 3.87	CHRG. PRESS. BAR =	74.00
HEAT IN, DEG C = 600.00	HEAT OUT, DEG. C =	40.00
W. GAS 1=H2,2=HE,3=AIR 2	PHASE ANG. DEGREES =	80.49
CALC.FREQ., $HZ = 27.95$	TIME STEPS/CYCLE =	71.56
COMPUTED PERFORMANCE USING FPS POWER, WATTS BASIC 3870.09 ADIABATIC CORR00 HEATER FLOW LOSS -476.01 REGEN.FLOW LOSS -744.26 COOLER FLOW LOSS -65.74 INDICATED 2584.07	E BY MARTINI ENG.: HEAT REQUIREMENT, WATTS 65 BASIC 00 ADIABATIC CORR. 73 REHEAT 43 SHUTTLE 31 PUMPING 18 TEMP. SWING CYL. WALL COND. DISPLER WALL COND.	7061.1267 .0000 1782.6607 246.2056 32.5734 10.1062 188.5885 32.9483
INDICATED EFFICIENCY, % 30.12	 REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG. 	59.5156 5.9428 4.4757 3.8727 -848.1494 8579.8668

	CONV	ERGENCE	CRITE	RIA IS:	.01	000				
	CYCL			CHANGE	WORK	HEAT	n	END	TIM	'F.
	NUMB			HEAT	OUT	IN		PRESSUR		
		OUT		IN	JOULE		FS	MPA	MSE	
	1	.0000		.00000	43.29			7.2883	1.00	
	2	.5671		.66070	79.95			7.0647	1.00	
	3	.8470			116.19			6.9860	1.00	
	4	.4531			135.41			6.9135		
	5	.1653			141.83	· · –			1.00	
	6							6.7829	1.00	
	7	.0473			140.49			6.9507	1.00	
		.0093			L42.94			6.8667	1.00	
	8	.0174			L44.47			6.7467	1.00	
	9	.0106			L41.65			6.9170	1.00	
	10	.0194			44.71			6.8264	1.00	
	11	.0215			140.03			6.7302	.50	
	12	.0323			40.038			6.7954	.50	
	13	.0000			40.994		038	6.8352	.50	00
				CONDITIC						
	01=	76.000		2		600.000		40.000		
	06=	3.863	07=			0	09=	0	10=	
	11=	0	12=			1.000		4	15=	4
	16=	0	17=		18=	1000.000	19=	10.000		
		ENT DIME								
	20=	1	21=				23=	4.7000		
		15.1900	26=	.0365		1.6630	28=	5.7790		29.7000
	30=	6.2000	31=	.4260		0	33=	33.0000		15.2500
		25.4000	36=	7.6000		381.0000	38=	.0000	39=	.8000
		10.0000	41=	31.7900		20.5000	43=	2.3900	44=	72.5300
	45=	71	46=	24	47=	1.0200	48=	.1575	49=	.1067
	50=	.7600	51=	.1321	52=	.1016	53=	31.7900	54=	2.9200
	55=	2	56=	34	57=	18.3400	58=	.2362	59=	9.2600
r 1	60=	1.5000	61=	.0000		6.4460	63=	.5440	64=	88.9000
		75.9000	66=	.0000	67=	.0000	68=	.0000	69=	135
	70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
	75=	.0200	76=	1.0000	77=	3.0000	78=	1.0000	79=	4.0000
		20.0000	81=	.0100	82=	.1000	83=	.0100	84=	.0000
	85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
	90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
	95=	.5000	96=	0	97=	.0000	98=	.0000	99=	.0000
	100=	.0000	101=	13	102=	15	103=	14	104=	0
	105=	0	106=	0	107=	0	108=	0	109=	0
	110=	0	111=	0	112=	0	113=	0	114=	0
	115=	0	116=	• 0	117=	• 0	118=	0	119=	= 0
	120=	0								

ENTERED PRINT ROUTINE AFTER FRACTIONAL CHANGE IN TWO SUCCESS IN AND POWER OUT HAS BEEN LESS T RUN# 0 FOR SUNPOWER RE10 FREE MOTIONS LOAD CON MARTINI MOVING MARTINI LOSS T SOLUTION IS NO	IVE INTEGRALS OF HEAT HAN .0100	2)**2.
OPERATING CONDITIONS ARE:		
SPEC. FREO. $HZ = 29.70$	CHRG, PRESS, BAR =	76.00
HEAT IN. DEG C = 600.00	HEAT OUT. DEG. $C =$	40.00
W. GAS $1=H2, 2=HE, 3=AIR 2$	PHASE ANG. DEGREES =	76.37
POWER P.STR, $CM = 3.86$	DISPL. STROKE, CM =	4.04
OPERATING CONDITIONS ARE: SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR,CM = 3.86 CALC.FREQ., $HZ = 28.29$	TIME STEPS/CYCLE =	70.70
COMPUTED PERFORMANCE USING FPSE I POWER, WATTS BASIC3988.2775 .0000ADIABATIC CORR0000HEATER FLOW LOSS-498.5310REGEN.FLOW LOSS-770.0800COOLER FLOW LOSS-68.6176INDICATED2651.0488	BY MARTINI ENG.: HEAT REQUIREMENT, WATTS BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND.	7266.9935 .0000 1901.8050 248.4265 33.6362 11.3310 190.1826
INDICATED EFFICIENCY, % 29.87	REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	60.0187 5.9931 4.5135 3.9886 -883.5710 8876.5444

CONVERGENCE CRITERIA IS: .01000									
CYCL				WORK	HEAT		END	TIM	-
NUMB				OUT			PRESSUR		
	OUT			JOULES			MPA	MSEC	
1	.0000			44.415			7.4799	1.000	
2	.5558			79.60]			7.3781	1.000	
3	.7922			14.113			7.1657	1.000	
4	.4335			40.834			7.2019	1.000	
5	.2341			45.264			6.9541	1.000	
6	.0314			44.903			6.9887	1.000	
7	.0024			45.120		493	7.0088	1.000	00
			CONDITIO			~ ~ ~			
01=			2		600.000		40.000		77.373
06=					0	09=			1.000
11=	0				1.000			15=	4
16=	0	17=		18=	1000.000	19=	10.000		
	ENT DIME								
20=	1		4.0400						5.7180
	15.1900		.0365		1.6630		5.7790		29.7000
30=	6.2000		.4260		0		33.0000		15.2500
	25.4000		7.6000		381.0000				.8000
	10.0000		31.7900		20.5000				72.5300
45=	39	46=	24	47=	1.0200				.1067
50=	.7600	51=	.1321	52=	.1016		31.7900		
55=	2	56=	34	57=	18.3400		.2362		9.2600
60=	1.5000	61=	.0000	62=	6.4460		.5440		88.9000
	75.9000	66=	.0000	67=	.0000		.0000		135
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000		
75=	.0200	76≃	1.0000	77=	3.0000	78=	1.0000		
	20.0000	81=	.0100	82=	.1000		.0100		.0000
85=	.0000	86=	-4.5650	87=	.4684		7.9300		.4600
90=	4.4500	91=	.3710	92=	.1450		.0813	94=	1
95=	.5000	96=	0	97=	.0000		.0000		
100=	.0000		13	102=	15	103=	14	104=	0
105=	0	106=	0	107=		108=	0	109=	0
110=	0	111=	0	112=		113=		114=	
115=		116=	0	117=	0	118=	0	119=	0
120=	0								

ENTERED PRINT ROUTINE AFTER 7 CYCLES. FRACTIONAL CHANGE IN TWO SUCCESSIVE INTEGRALS OF HEAT IN AND POWER OUT HAS BEEN LESS THAN .0100 RUN# 0 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS LINEAR ALTERNATOR LOAD CONSTANT = .020 N/(CM/SEC)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED.						
OPERATING CONDITIONS A	RE:					
SPEC.FREQ., HZ = 2 HEAT IN, DEG C = 60	9.70	CHRG. PRESS. BAR =	78,00			
HEAT IN, DEG C = 60	0.00 1	HEAT OUT, DEG. $C =$	40.00			
W. GAS 1=H2,2=HE,3=AIR	2	PHASE ANG. DEGREES =	77.37			
POWER $P.STR, CM =$	3.86 1	DISPL. STROKE, CM =	3.99			
CALC.FREQ., $HZ = 2$	8.66	FIME STEPS/CYCLE =	34.90			
COMPUTED PERFORMANCE U POWER, WATTS BASIC ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED INDICATED EFFICIENCY,	SING FPSE BY 4158.6933 .0000	Y MARTINI ENG.: HEAT REQUIREMENT, WAT BASIC ADIABATIC CORR.	TS 7437.8641 .0000			
HEATER FLOW LOSS	-506.6584	REHEAT	2001.4901			
REGEN.FLOW LOSS	-786.5313	SHUTTLE	246.3540			
COOLER FLOW LOSS	-71.0972	PUMPING	35.2456			
INDICATED	2794.4064	TEMP. SWING	12.5352			
		CYL. WALL COND.	193.0020			
		DISPLCR WALL COND.	33.7194			
		REGEN. WALL COND.	60.9085			
INDICATED EFFICIENCY,	* 30.59	CYL. GAS COND.	6.0819			
		REGEN. MTX. COND.	4.5804			
		RAD.INSIDE DISPL.	4.1128			
		FLOW FRIC. CREDIT	-899.9241			
		TOTAL HEAT TO ENG.	9135.9698			

CYCLE NUMB. 1 2 3		E C H I 0 . 0 .	CHANGE IEAT N 00000 64270	.010 WORK OUT JOULES 45.539 82.363	HEAT IN 5 JOUL 96 71.4 31 115.1	ES 608 615	END PRESSUR MPA 7.6715 7.4151 7.2577	TIM E STE MSE 1.00 1.00	P C. 00 00
4	.4533			39.627			7.3861	1.00	00
5	.1664	8.	22023 1	45.499	92 258.8	323	7.2486	1.00	00
6	.0420	6.	03438 1	46.437	79 262.6	790	7.3524	1.00	00
7	.0064	5.	01486 1	47.724	1 264.7	185	7.2250	1.00	00
8	.0087	8.	00776 1	48.493	L2 265.2	681	7.3173	1.00	00
CURRE	NT OPER	ATING	CONDITIO	NS ARE	5:				
01=	80.000	02=	2	03=	600.000	04=	40.000	05=	78.085
06=	3.877	07=	3.998	08=	0	09=	0	10=	1.000
11=	0	12=	.000	13=	1.000	14=	4	15=	4
16=	0	17=	3	18=	1000.000	19=	10.000		
CURRE	NT DIME	NSIONS	ARE:						
20=	1	21=	4.0400	22=	4.2000	23=	4.7000	24=	5.7180
25=	15.1900	26=	.0365	27=	1.6630	28=	5.7790	29=	29.7000
30=	6.2000	31=	.4260	32=	0	33=	33.0000	34=	15.2500
35=	25.4000	36=	7.6000	37=	381.0000	38=	.0000	39=	.8000
40=	10.0000	41=	31.7900	42=	20.5000	43=	2.3900	44=	72.5300
45=	46	46=	24	47=	1.0200	48=	.1575	49=	.1067
50=	.7600	51=	.1321	52=	.1016	53=	31.7900	54=	2.9200
55=	2	56≕	34	57=	18.3400	58=	.2362	59=	9.2600
60=	1.5000	61=	.0000	62=	6.4460	63=	.5440	64=	88.9000
65=	75.9000	66=	.0000	67=	.0000	68=	.0000	69=	135
70=	.0508	71=	.3760	72=	7.9200	73=	1.5000	74=	.0000
75=	.0200	76=	1.0000	77=	3.0000	78=	1.0000	79=	4.0000
80=	20.0000	81=	.0100	82=	.1000	83=	.0100	84=	.0000
85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89=	.4600
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94=	1
95≕	.5000	96=	0	97=	.0000	98=	.0000	99=	.0000
100=	.0000	101=	13	102=	15	103=	14	104=	0
105=	0	106=	0	107=	0	108=	0	109=	0
110=	0	111=	0	112=	0	113=	0	114=	0
115=	0	116=	0	117=	0	118=	0	119=	0
120=	0								

LOAD CON MARTINI MOVIN MARTINI LOSS	IVE INTEGRALS OF HEAT HAN .0100 00 ENGINE LINEAR ALTERNATOR STANT = .020 N/(CM/SE G GAS NODE ANALYSIS	C)**2.
OPERATING CONDITIONS ARE:		
SPEC.FREO., $HZ = 29.70$	CHRG, PRESS, BAR =	80.00
HEAT IN, DEG C = 600.00	HEAT OUT. DEG. $C =$	40.00
W. GAS 1=H2,2=HE,3=AIR 2	PHASE ANG. DEGREES =	78.09
POWER P.STR, CM = 3.88	DISPL. STROKE, CM =	4.00
SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR,CM = 3.88 CALC.FREQ., $HZ = 28.92$	TIME STEPS/CYCLE =	34.58
COMPUTED PERFORMANCE USING FPSE POWER, WATTS BASIC 4294.4265 ADIABATIC CORR0000 HEATER FLOW LOSS -530.9920 REGEN.FLOW LOSS -771.1359 COOLER FLOW LOSS -67.2421 INDICATED 2925.0565 		
INDICATED EFFICIENCY, % 30.96	CYL. GAS COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	62.1808 6.2090 4.6761 4.3782 -916.5599 9449.0038

CONV	ERGENCE	CRITE	RIA IS:	.01	.000			
CYCL			CHANGE	WORK	HEAT	r	END	TIME
NUMB	. POWER	2	HEAT	OUT	IN	-		RE STEP
	OUT		IN	JOULE		LES	MPA	MSEC.
1	.0000	0	.00000	46.66			7.8631	1.0000
2	.5333	7	.63369	86.41			7.6518	1.0000
3	.8518	2	.61899	126.07		622	7.5897	1.0000
4	.4590	5	.83847	145.43			7.5503	1.0000
5	.1534	9	.19492	150.56			7.5014	1.0000
6	.0352	9	.02960	149.84			7.4918	1.0000
7	.0047	6	.00254	147.94			7.4946	1.0000
8	.0126	6	.01046	146.55			7.5172	.5000
9	.0094	3	.00500	148.29	91 268.9	339	7.5822	.5000
10	.0119	0	.02072	143.80	19 262.7	468	7.5371	.5000
11	.0303	3	.02301	142.36	61 263.1	699	7.4900	.2500
12	.0099	8 .	.00161 3	L40.93	76 261.1	260	7.4467	.2500
13	.0100	3.	.00777	L40.44	43 260.1	328	7.4143	.2500
14	.0035			L40.02		642	7.4637	.2500
CURRE	ENT OPER	ATING	CONDITIC	ONS AR	Е:			
01=	82.000	02=	2	03=	600.000	04=	40.000	05= 79.298
06=	3.757	07=	3.941		0	09=	0	10= 1.000
11=	0	12=	.000) 13=	1.000	14=	4	15= 4
16=	0	17=	3	18=	1000.000	19=	10.000	
	NT DIME							
20=	1	21=	4.0400	22=	4.2000	23=	4.7000	24= 5.7180
	15.1900	26=	.0365	5 27=	1.6630	28=	5.7790	29= 29.7000
30=	6.2000	31=	.4260		0	33=	33.0000	34= 15.2500
	25.4000	36=	7.6000	37=	381.0000	38=	.0000	
	10.0000	41=	31.7900	42=	20.5000	43=	2.3900	44= 72.5300
45=	149	46=	24	47=	1.0200	48=	.1575	49= .1067
50=	.7600	51=	.1321	. 52=	.1016	53=	31.7900	54= 2.9200
55=	2	56=	34	57=	18.3400	58=	.2362	59= 9.2600
60=	1.5000	61=	.0000		6.4460	63=	.5440	64= 88.9000
	75.9000	66=	.0000		.0000	68=	.0000	69= 135
70=	.0508	71=	.3760		7.9200	73=	1.5000	74= .0000
75=	.0200	76=	1.0000		3.0000	78=	1.0000	79= 4.0000
	20.0000	81=	.0100		.1000	83=	.0100	84= .0000
85=	.0000	86=	-4.5650	87=	.4684	88=	7.9300	89= .4600
90=	4.4500	91=	.3710	92=	.1450	93=	.0813	94= 1
95=	.5000	96=	0	97=	.0000	98=	.0000	99= .0000
100=		101=	13	102=	15	103=	14	104= 0
105=	0	106=	0	107=	0	108=	0	109= 0
110=	0	111=	0	112=	0	113=	0	114= 0
115=	0	116=	0	117=	• 0	118=	0	119= 0
120=	0							

LOAD CONST MARTINI MOVING MARTINI LOSS EQ	VE INTEGRALS OF HEAT AN .0100 D ENGINE - LINEAR ALTERNATOR FANT = .020 N/(CM/SEC)**2. GAS NODE ANALYSIS	
OPERATING CONDITIONS ARE:		
SPEC.FREO., $HZ = 29.70$	CHRG. PRESS. BAR = 82.00	
HEAT IN, DEG C = 600.00 H	HEAT OUT, DEG, $C = 40.00$	
W. GAS 1=H2, 2=HE, 3=AIR 2 H	PHASE ANG. DEGREES = 79.30	
POWER P.STR, $CM = 3.76$	DISPL. STROKE, $CM = 3.94$	
SPEC.FREQ., $HZ = 29.70$ C HEAT IN, DEG C = 600.00 H W. GAS 1=H2,2=HE,3=AIR 2 H POWER P.STR,CM = 3.76 H CALC.FREQ., $HZ = 29.37$ T	TIME STEPS/CYCLE = 136.20	
COMPUTED PERFORMANCE USING FPSE BY POWER, WATTS H BASIC 4112.4574 ADIABATIC CORR0000 HEATER FLOW LOSS -520.5505 REGEN.FLOW LOSS -790.3608 COOLER FLOW LOSS -71.4993 INDICATED 2730.0468		90391791
INDICATED EFFICIENCY, % 29.01	REGEN. WALL COND.60.559CYL. GAS COND.6.047REGEN. MTX. COND.4.554RAD.INSIDE DISPL.4.114FLOW FRIC. CREDIT-915.730TOTAL HEAT TO ENG.9412.299	4 1 2 3 9 0

Computer Name: IBM/PC-AT 9:53 pm, Wednesday, July 22, 1987 Operating System: DOS 3.00 Thursday, July 3, 1986 Built-in BIOS dated: Serial Ports: 2 Main Processor: Intel 80286 Intel 80287 Parallel Ports: 2 Co-Processor: Enhanced Graphics, 256 K-bytes Video Display Adapter: Text, 80 x 25 Color Current Video Mode: Available Disk Drives: 3, A: - C: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: (at hex 0000-A000) 640 K-bytes main memory 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Performance Index (PI), relative to IBM/XT: Not computed. 9:55 pm, Wednesday, July 22, 1987 .01000 CONVERGENCE CRITERIA IS: TIME CHANGE CHANGE WORK HEAT END CYCLE PRESSURE STEP NUMB. POWER HEAT OUT IN JOULES JOULES MPA MSEC. OUT ΤN .00000 .00000 51.1493 80.4751 8.6295 1.0000 1 .59762 80.7176 114.7667 8.4269 1.0000 .48851 2 3 .57808 .42611 118.8008 202.2814 8.3051 1.0000 145.7117 263.6789 8.3336 .5000 4 .47181 .76254 .30353 5 152.3259 276.2889 8.3828 .5000 .22652 8.3415 .5000 6 .04539 .04782 150.3713 274.1696 8.2960 7 .01283 .00767 150.0041 275.2033 .5000 .00377 149.7298 274.9802 8.2386 .5000 .00244 8 CURRENT OPERATING CONDITIONS ARE: 40.000 01= 90.000 02= 2 03= 600.000 04= 05= 82.822 09= 0 10 =1.000 3.734 07= 3.872 08= 0 06 =.000 13= 1.000 14 =4 15= 4 11= 0 12 =Ω 3 18= 1000.000 19= 10.000 16= 17 =CURRENT DIMENSIONS ARE: 4.2000 23= 4.7000 24= 5.7180 4.0400 22 =21 =20 =1 27= 1.6630 28= 5.7790 29= 29.7000 25= 15.1900 26= .0365 34= 15.2500 30= 6.2000 31= .4260 32= 0 33= 33.0000 39= .8000 7.6000 37= 381.0000 38= .0000 35= 25.4000 36= 43 =2.3900 44= 72.5300 42= 20.5000 40 = 10.000041= 31.7900 1.0200 48= 46 =47 =.1575 49= .1067 45 =75 24 31.7900 54= 2.9200 51= 52= 53= 50 =.7600 .1321 .1016 .2362 18.3400 58= 59= 9.2600 56= 34 57= 55= 2 62= 6.4460 63= .5440 64= 88.9000 60= 1.5000 61= .0000 69= .0000 68= 135 65= 75.9000 66= .0000 67= .0000 73= 1.5000 74 =.0000 7.9200 .0508 71= .3760 72= 70 =3.0000 78= 1.0000 79= 4.0000 77= 75= .0200 76= 1.0000 .1000 82= 83= .0100 84= .0000 80= 20.0000 81= .0100 .4684 89= .4600 88= 7.9300 85= .0000 86= -4.5650 87= .0813 94= 1 .3710 92= .1450 93= 90= 4.4500 91= .0000 .5000 96= .0000 98= .0000 99= 0 97= 95= 0 104 =.0000 101= 13 102= 15 103= 14 100 =0 0 0 109= 0 108= 107= 105 =0 106= 0 112= 113= 0 114= 0 0 111= 110 =0 0 118= 0 119= 0 0 117= 115 =0 116= 120 =0

=

SUNI FREI MART MART	NO SUCCESSIV SEN LESS THA O FOR COWER RE1000 S MOTIONS LOAD CONST CINI MOVING CINI LOSS EQ	E INTEGRALS OF HE N .0100 ENGINE LINEAR ALTERNATC ANT = .020 N/(GAS NODE ANALYSIS)R 'CM/SE(C) **2.
OPERATING CONDITIONS A				
SPEC FREQ. $HZ = 29$		HRG. PRESS. BAR	=	90.00
HEAT IN. DEG $C = 600$).00 H	EAT OUT, DEG. C	=	40.00
W. GAS $1=H2.2=HE, 3=AIR$	2 P	HASE ANG. DEGREES	=	82.82
POWER P.STR.CM = 3	.73 D	ISPL. STROKE, CM	=	3.87
OPERATING CONDITIONS AN SPEC.FREQ., HZ = 29 HEAT IN, DEG C = 600 W. GAS 1=H2,2=HE,3=AIR POWER P.STR,CM = 3 CALC.FREQ., HZ = 30).67 T	IME STEPS/CYCLE	=	65.20
COMPUTED PERFORMANCE US POWER, WATTS BASIC ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED				
INDICATED	3058.3075	TEMP. SWING CYL. WALL COND. DISPLCR WALL CON	D.	19.0252 190.8693 33.3467
INDICATED EFFICIENCY, 9	29.43			
		TOTAL HEAT TO EN	G.	10390.0949

Computer Name: IBM/PC-AT DOS 3.00 Operating System: Thursday, July 3, 1986 Built-in BIOS dated: Serial Ports: 2 Main Processor: Intel 80286 Intel 80287 Parallel Ports: 2 Co-Processor: Enhanced Graphics, 256 K-bytes Video Display Adapter: Current Video Mode: Text, 80 x 25 Color 3, A: - C: Available Disk Drives: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: 640 K-bytes main memory (at hex 0000-A000) 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting ... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Performance Index (PI), relative to IBM/XT: Not computed. 9:59 pm, Wednesday, July 22, 1987 CONVERGENCE CRITERIA IS: .01000 WORK TIME CHANGE HEAT END CYCLE CHANGE NUMB. POWER HEAT OUT TN PRESSURE STEP OUT TN JOULES JOULES MPA MSEC. .00000 56.7402 89.5067 .00000 9.5873 1.0000 1 83.0855 119.4000 9.5893 .5000 2 .43260 .55247 .33398 3 .46431 118.5261 204.3221 9.2892 .5000 262.9645 145.1683 9.3336 .5000 4 .42656 .71124 152.6234 280.1653 9.1687 .5000 5 .28701 .22478 6 .05136 .06541 154.3851 283.8908 9.2200 .5000 7 .01330 155.7138 287.3159 9.2481 .5000 .01154 156.2025 288.0685 9.2611 .5000 8 .00861 .01206 .00262 156.7662 288.7771 9.0800 .5000 9 .00314 CURRENT OPERATING CONDITIONS ARE: 03= 600.000 04= 40.000 05= 75.716 01= 100.000 02= 2 3.756 3.656 07= 08= 0 09= 0 10 =1.000 06 =.000 15= 11 =0 12 =13= 1.000 14= 4 4 18= 1000.000 19= 10.000 0 17= 3 16 =CURRENT DIMENSIONS ARE: 21= 4.0400 22= 4.2000 23= 4.7000 24= 5.7180 20 =1 29 = 29.700027= 28 =5.7790 25= 15.1900 26= .0365 1.6630 33.0000 34= 15.2500 0 33 =32 =30= 6.2000 31= .4260 7.6000 37 = 381.000038= .0000 39= .8000 35 = 25.400036= 40= 10.0000 43 =2.3900 44= 72.5300 41= 31.7900 42= 20.5000 .1067 47= 1.0200 48= .1575 49= 45 =68 46= 24 54 =2.9200 51= .1321 52= .1016 53= 31.7900 50= .7600 59= 9.2600 .2362 55= 2 56= 34 57= 18.3400 58= 6.4460 64= 88.9000 63= .5440 .0000 62= 60= 1.5000 61= .0000 .0000 67= 68= .0000 69= 135 65= 75.9000 66= .0508 71= .3760 72= 7.9200 73= 1.5000 74= .0000 70 =78≃ 1.0000 79= 4.0000 75 =.0200 76= 1.0000 77= 3.0000 .1000 .0100 83= .0100 84= .0000 80= 20.0000 81= 82= .4684 .4600 87= 88= 7.9300 89= .0000 86= -4.5650 85= 94= ٦ .3710 92= .1450 93= .0813 90 =4.4500 91= .0000 99= .0000 .0000 98= 95= .5000 96= 0 97= 14 0 13 102= 15 103= 104= .0000 101= 100 =0 107= 0 108= 0 109= 0 105= 0 106= 0 112= 0 114= 0 0 111= 0 113= 110= 0 119= 0 0 117= 0 118= 0 116= 115= 120 =0

**

LOAD CO MARTINI MOVI MARTINI LOSS	SSIVE INTEGRALS OF HEAT THAN .0100 DR	EC)**2.
OPERATING CONDITIONS ARE:		
SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR,CM = 3.66 CALC.FREQ., $HZ = 32.36$		
HEAT IN, DEG C = 600.00	URG. PRESS., BAR =	100.00
W. GAS $1=H2$ $2=HE$ $3=ATP$ 2	HEAT OUT, DEG. $C =$	40.00
POWER P. STR. $CM = 3.66$	PHASE ANG. DEGREES =	75.72
CALC. FRED. $HZ = 32.36$	DISPL. STROKE, CM =	3.76
52.50	TIME STEPS/CYCLE =	61.81
COMPUTED PERFORMANCE USING FPSEPOWER, WATTSBASIC5072.547ADIABATIC CORR000HEATER FLOW LOSS-665.863REGEN.FLOW LOSS-961.309COOLER FLOW LOSS-93.773INDICATED3351.600	BY MARTINI ENG.: HEAT REQUIREMENT, WATTS 6 BASIC 0 ADIABATIC CORR. 9 REHEAT 8 SHUTTLE 8 PUMPING	9344.0762 .0000 2814.7207 211.7298 46.1187
INDICATED EFFICIENCY, % 28.92	CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	5.9001 4.4435 3.8346

APPENDIX K EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS CONVERGENCE CRITERIA = 0.01 INITIAL TIME STEP = 1 MSEC SINGLE PRECISION

.

Conversence	e criteria is	. 0100	00		
Cycle Char	nse Chanse	Work	Heat	End	Time
Numb, Pow	er Heat	Out	In	Pressure	
Out	In	Joules	Joules	MPa	Msec.
1.00	300 . 00000	28.5430	44.4350	4.7969	
2.714	457 .77782	74.4353	101.7938	4.5655	1.0000
3 1.607	783 1.29079	98.7119		4. 5228	1.0000
4 . 328	.70752	102.5878		4.4564	1.0000
5.039	926 .04780	102.9620		4.5246	1.0000
6.003	65 .00494	104.4905	184.9041	4.4697	1.0000
7.014	85 .01028	103.3019	182.6106	4.5363	1.0000
	.3E .01240	102.3861	181.8464	4.4799	1.0000
9 .008	87 .00419	101.2155	179.4664 179.6266	4.4028	1.0000
10.011	43 .01309	101.2586	179.6266	4 4954	1.0000
11 .000	43 .00089	99. 898 9	179.7921 179.6501	4.4334	
12 .013	43 .00092	99.8082	179.6501	4.4681	. 5000
13 .000	91 .00079	99, 9488	180 2364	4.4001	.5000
ENTERED PRI	NT ROUTINE AF	TER 13	CYCLES.		
E actional	change in two	Successiv	e integrale	5 of heat	
h and powe	r out has been	n less tha	an . 1916	301 N.C.C.L.	
	RUN# (30 FOR			
	SUNPO	VER RE1000	ENGINE		
	FREE	10TIONS	- LINEAR ALT	REPNOTOR	
	L	oad const	tant = .0	1201 NZ(cm/c	a.=)
	MARTIN	I MOVING	GAS NODE AN		elizeez.
	MARTIN	I LOSS EG	UATIONS		
	SOLUTI	ON IS NOT	OPTIMIZED.		
			Grinnico,		
OPERATING CO	DNDITIONS ARE:				
SPEC.FREQ.,	HZ = 29.7		HRG PRESS	, BAR =	50.00
HEAT IN, DEC	G C ≃ 600.0	ій н	FAT OUT, DE	у рык — С С —	00.00
W. GAS 1=H2,	2=HE, 3=AIR 2	е п	HRG. PRESS. EAT OUT, DE HASE ANG. D ISPL. STROK	FGREES -	40.00 70,57
POWER P.STR,	CM = 3.8 HZ = 23.0	: Эр	ISPL. STROK	EUREES -	
CALC.FREQ.,	HZ = 23.0	- 2 Б. Т	IME STEPS/C		4.04
		~ '			86,72
COMPUTED PER	REORMANCE USIN	6 FPSE BY	MORTINI EN	с ·	
POWER, WATTS	5		EAT REQUIRE		
BASIC	23	04.9840	BASIC	HENRY WHITE	4156.5450
ADIABATIC		. 0000		CUBB	
HEATER FLC		38.6136	REHEAT		.0000 929.3856
REGEN, FLOW		93.7831	SHUTTLE		
COOLER FLC		29.7468	PUMPING		257.1762
INDICATED		42.8400	TEMP SUITNI	2	18.2637
	10	-2. 0400	TEMP. SWING CYL. WALL (2.2619
			DISPLCR WAL		197.5456
			DEGEN UNU	COND.	34.4170
INDICATED FF	FICIENCY, K	1.37	REGEN. WALL CYL. GAS CO		62.1686
		24.07			E.2077
			REGEN. MTX.	COND.	4.7683
			RAD. INSIDE		4.3353
			FLOW FRIC.	UREDIT	~435.5051
			TOTAL HEAT	IU ENG.	5237.5700

PAGE 250 INTENTIONALLY BLANK

Conversence criteria is: .01000 Cycle Chanse Chanse Work Heat End Out In Pressure Time Numb. Power Heat Pressure Step Out Joules In Joules MPa Msec. .00000 .00000 .55802 .73310 . 00000 34.1975 53.3791 5.7555 1.0000 .73310 2 76.6313 106.1063 5.4489 1.0000 5.5058 1.0000 1.24065 .98779 111.5715 193.2346 3 .98779 111.8715 193.2348 .82114 118.9481 211.2709 .09334 119.8078 213.1546 .00892 119.6750 212.3812 .45726 4 5.3264 1.0000 5 .06516 5.3726 1.0000 5.4239 1.0000 Б .00723 ENTERED PRINT ROUTINE AFTER 6 CYCLES. Fractional chanse in two successive integrals of heat -> and power out has been less than .0100 RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant # .020 N/(cm/sec)++2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: 60.00 SPEC.FREG., HZ =29.70CHRG. PRESS., BAR =HEAT 1N, DEG C =500.00HEAT OUT, DEG. C =W. GAS 1=H2, 2=HE, 3=AIR 2PHASE ANG. DEGREES =PONER P.STR, CM =3.95DISPL. STROKE. CM = SPEC.FREG., HZ = CHRG. PRESS., BAR = 40.00 86.13 PONER P.STR, CM = DISPL. STROKE, CM = 3,95 4.01 25.18 CALC.FREQ. HZ = TIME STEPS/CYCLE æ 39.71 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : POWER, WAITS HEAT REC 3013.8560 BASIC HEAT REQUIREMENT, WATTS BASIC 5348.5410 ADIABATIC CORR. . 0000 ADIABATIC CORR. . 0000 HEATER FLOW LOSS -329.4142 REHEAT 1261.2610 -519.1392 REGEN.FLOW LOSS SHUTTLE 259,5436 COOLER FLOW LOSS 24.6812 -42.6132 PUMPING TEMP. SWING CYL. WALL COND. INDICATED 2122.6890 4.5243 201.5313 DISPLCR WALL COND. 35.1114 63.4229 REGEN. WALL COND. INDICATED EFFICIENCY, × 32.04 CYL. GAS COND. 6.3330 4.8645 4.5952 REGEN. MTX. COND. RAD. INSIDE DISPL. RAD. INSIDE DISPL.4.5952FLOW FRIC. CREDIT-588.9838TOTAL HEAT TO ENG.6625.4260

Convei	gence cast	etiat is:	. 0100	2		
Cycle	Chanse	Chanse	Work	Heat In Joules 62.3402 109.2820	End	Time
NUmb.	Power	Heat	Out	In	Pressure	Step
	Out	In	Joules	Joules	MPa	Msec.
1	. 00000	. 00000	39.8336	62.3402	Б.7139	1.0000
2	.60166	.68830	78.5484	109.2820	E. 4010	1.0000
5	.9/191	./5299	116.6637	199.0422	6.4160	1.0000
4	.48525	.82136	131.5403	234.2840 240.4875	6.4368	1.0000
5	.12752	.17706	134.0405	240.4875	6.2107	1.0000
£	.01901	.02648	134.2915	241.2317	6 . 2585	1.0000
7	.00187	.00309	134.3912	240.5260	6.3091	1.0000
	D PRINT RO					
				/e integrals		
ು ವರ್ಷ	power out			an .010	0	
			Ø FOR			
			ER RE1000			
				- LINEAR ALT		
				ant = .0		ec)**2.
				GAS NODE AN	ALYSIS	
			I LOSS EG			
		SOLUTI	ON IS NOT	OPTIMIZED.		
OPERAT	ING CONDIT	IUNS ARE:	•		545	70.00
	HEU., HZ =	29.7	6 L 19 L	HRU. PRESS.	, RHK =	712.1212
- HEH 10	N, DEG L ≅	500.0		CHRG. PRESS. HEAT DUT, DE PHASE ANG. D DISPL. STROK	U. L = ECOEEE -	40.00
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1= HZ, Z=HE.	ע אוא-∿י סיד	רי היי	TEDI ETDOX	EDREED -	4 81
		נ.ט סיד כ	6 L /. 1	IME STEPS/C	VCIE =	36.71
CHLC.F	AEG: HZ	27.2	LA I	THE STEPS/C		50.71
	Th PERFORM	ONCE LISTN	S FRSF RY	MARTINI EN	G :	
	UNTIS			EAT REQUIRE	MENT, WATT	9
BOSI		TE				
	SATIC CORR		00.0200	ADIABATIC	CORR.	. 0000
HEATE	ER FLOW LO	55 -4	46.5843	BASIC ADIABATIC REHEAT		1593.6930
REGEN	N.FLOW LOS			SHUTTLE		253.3739
000018		39 -	57.3561	PUMPING		30.7397
	CATED		96.0530	TEMP. SWIN	G	8 0082
				CYL. WALL	COND.	197.0812
				DISPLCR WA	LL COND.	34.3361
				REGEN HOL	COND	62.0224
INDICAT	ED EFFICIE	ENCY, %	31.31	CYL. GAS C	DND.	6.1932
				REGEN. MTX	COND.	4.7571
				RAD. INSIDE	DISPL.	4.3189
				FLOW FRIC.	CREDIT	4.7571 4.3189 -776.6491
				TOTAL HEAT	TO ENG.	7971.8040

Conversence criteria ist . 01000 Cycle Chanse Chanse Numb, Power Heat Work Heat End Time Out In Pressure Step θυt In Joures Joules MPa Msec. .00000 40.9585 64.1346 .67933 80.2632 110.7806 .72731 117.0388 199.7856 . 00000 6.9056 1.0000 . 59041 2 6.6857 1.0000 6.6125 1.0000 3 .95962 .80343 134.1530 238.7630 6.5031 1.0000 .19510 137.1394 245.2684 6.4227 1.0000 .02725 137.5190 245.3689 6.6101 1.0000 .00041 137.6235 247.1985 6.4940 1.0000 Δ .45819 5 .14523 Б .02226 7 .00277 ENTERED PRINT ROUTINE AFTER 7 CYCLES. Fractional change in two successive integrals of heat in and power out has been less than .0100 RUN# 24 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FREQ., HZ = 29.70 CHRG. PRESS., BAR = 72.00 HEAT IN, DEG C = HEAT OUT, DEG. C 👘 600.00 40.00 W. GAS 1≐H2,2=HE,3=AIR 2 PHASE ANG. DEGREES = 91.05 POWER P.STR.CM = 3.91 DISPL. STROKE, CM = 4.03 CALC. FRED. . HZ = 27.45 TIME STEPS/CYCLE Ŧ 36.42 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : PONER, WATTS HEAT REQUIREMENT, WATTS 3778.3850 BASIC BASIC 6786.7130 ADIABATIC CORR. . 0000 ADJABATIC CORR. . 0000 HEATER FLOW LUSS -439.3748 REHEAT 1652.5320 REGEN, FLOW LOSS -637.2364 SHUTTLE 255.8176 COOLER FLOW LOSS -54.7534 PUMPING 31.5025 INDICATED 2647.3288 TEMP. SWING 8,5707 CYL. WALL COND. 197.1122 DISPLCR WALL COND. 34.3415 REGEN. WALL COND. 62.0322 INDICATED EFFICIENCY, X 31,95 CYL. GAS COND. Б. 1941 4. 7579 4. 3271 REGEN. MTX. COND. RAD. INSIDE DISPL. FLOW FRIC. CREDIT -757,9929 TOTAL HEAT TO ENG. 8285.9080

Convergence criteria is: .01000 Heat Cycle Change Change Work Numb, Power Heat Out End Time Heat Joules In Pressure Step Out Τn Joules MPa Msec.
 .00000
 .00000
 42.0829
 65.9296
 7.0973
 1.0000

 .57917
 .67035
 81.2774
 111.7511
 6.7324
 1.0000

 .93137
 .69501
 119.4400
 204.7475
 6.7608
 1.0000

 .46954
 .83218
 138.4974
 246.8775
 6.7588
 1.0000
 1 2 3 ά .15956 .20577 139.8503 250.0273 6.8032 1.0000 .00977 .01276 138.7231 247.7342 6.5957 1.0000 .00806 .00917 138.3022 247.9315 6.6446 1.0000 5 Б 7 ENTERED PRINT ROUTINE AFTER 7 CYCLES. Fractional change in two successive integrals of heat in and power out has been less than .0100 RUNH 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: CHRG. PRESS., BAR = SPEC.FRED., HZ = 29.70 74.00
 29.70
 CHRG. PRESS., BAR =

 500.00
 HEAT OUT, DEG. C =

 518.2
 PROF ONG DEGREES =
 HEAT IN, DEG C = 40.00 W. GAS 1=H2,2=HE,3=AIR 2 PHASE ANG, DEGREES = 80.45 POWER P.STR.CM = 3.87 DISPL. STROKE, CM = 3.99 CALC.FREQ. HZ = 27.93 TIME STEPS/CYCLE = 35.80 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : PONER, WATTS HEAT REQUIREMENT, WATTS BASIC 3863.3080 BASIC 6925.6740 . 0000 ADIABATIC CORR. ADIABATIC CORR. . 0000 HEATER FLOW LOSS -455.1402 REHEAT 1733.5860 REGEN. FLOW LOSS -670.7785 SHUTTLE 241.5485 COOLER FLOW LOSS -59.6059 PUMPING 32.6731 INDICATED 2677.7830 TEMP. SWING 9.3677 CYL. WALL COND. 190.0600 DISPLCR WALL COND. 33.1128 59.8128 REGEN. WALL COND. INDICATED EFFICIENCY, % 31.69 CYL. GAS COND. 5.9725 4.5877 3.9265 REGEN. MTX. COND. RAD. INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG. -790.5294 8449.7920

 Conversence criteria is:
 .01000

 Cycle Chanse Chanse Work Heat
 Numb. Power Heat Out In

 Out In Joules Joules

 1
 .000000
 .000000
 43.2063
 67.7253

 2
 .56794
 .66137
 80.8833
 112.8856
 End Time Pressure Step MPa Msec.
 Out
 In
 Joures
 Joures
 MPa
 Msec.

 .00000
 .00000
 43.2063
 67.7253
 7.2889
 1.0000

 .56794
 .66137
 80.8833
 112.8856
 7.0498
 1.0000

 .87202
 .66581
 118.1830
 200.9208
 6.9672
 1.0000

 .46115
 .77965
 138.7211
 246.9792
 5.8610
 1.0000

 .17378
 .22924
 143.3199
 255.9675
 5.9832
 1.0000

 .03315
 .03639
 141.4345
 254.3263
 5.9003
 1.0000

 .01315
 .00641
 143.9257
 256.6958
 6.8008
 1.0000

 .01751
 .00932
 142.9021
 255.3152
 6.9495
 1.0000

 .00969
 .00538
 142.9753
 254.3604
 6.8738
 1.0000
 3 4 5 6 8 9 ENTERED PRINT ROUTINE AFTER 9 CYCLES. Fractional change in two successive integrals of heat in and power out has been less than . 0100 RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FRED., HZ = 29.70 CHRG. PRESS., BAR = HEAT OUT, DEG. C = PHASE ANG. DEGREES = DISPL. STROKE, CM = TIME STEPS/CYCLE = CHRG. PRESS., BAR = 76.00 HEAT IN, DEG C = 600.00 40.00 W. GAS 1=H2,2=HE,3=AIR 2 86.17 POWER P.STR.CM = 3.88 CHLC.FRED. HZ = 28.34 4.00 35.28 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : PONER, WATTS HEAT REQUIREMENT, WATTS BASIC 4052.1560 BASIC 7208.9920 ADIABATIC CORR. .0000 ADIABATIC CORR. . 0000 HEATER FLOW LOSS -499.2296 REHEAT 1866.1420 REGEN. FLOW LOSS -733.7512SHUTTLE 250.6759 COOLER FLOW LOSS -66.6499 PUMPING 34.2944 INDICATED 2752, 5250 TEMP. SWING 10.8660 CYL. WALL COND. 195.6264 DISPLCE WALL COND. 34.0826 REGEN. WALL COND. 61.5646 INDICATED EFFICIENCY, % 31.24 Б.1474 CYL. GAS COND. REGEN. MTX. COND. 4.7220 4.2442 RAD. INSIDE DISPL. 4.2442 FLOW FRIC. CREDIT -866.1051 TOTAL HEAT TO ENG. 8811.2520 - -----

Conver	sence crat	terna ist	. 0100	ø		
Cycle	Chanse	Chanse	Work	Heat	End	Time
NUMB.	Power	Heat	Dut.	Īn	Proceura	a Stan
	Out	In	Joules	Joules 59.5218 114.2001	MPa	Msec.
1	. 00000	. 00000	44.3290	69.5 218	7.4805	1.0000
2	.55671	65239	80.3305	114.2001	7.3629	1.0000
3	.81214	.64265	116.3743	197.6075	7.1623	1.0000
4	.44869	.73036	142.2400	197.6075 252.3547 259.4654	7.1820	1.0000
5	.22226	.27705	145.3085	259,4654	6.9431	1.0000
6	.02157	.02818	145.3298	260.1332 261.2395	6,9752	1.0000
7	.00015	.00257	146.2410	261.2395	6,9970	1.0000
ENTERE	D PRINI RL	UTINE HE	ER 7	CYCLES.		
Fractio	ona' chang	e in two	successi	ve integrals	of heat	
ು ತಗರ	Power out	has beer	less th	an .0100)	
			0 FOR			
			JER RE100			
		FREE M	IOTIONS	- LINEAR ALTE	RNATOR	
				tant = .02		ec)**2.
		MARTIN	II MOVING	GAS NODE ANA	LYSIS	
			I LOSS EC			
		SOLUTI	ON IS NOT	OPTIMIZED.		
OPERATI	ING CONDIT	10NS ARE:				
SPEC.FF	RE0., HZ ==	C9.7	0 Ú	HRG. PRESS.	BAR ≃	78. MM
HEAT IN	N, DEG C =	600.0				
W. GAS	1≈н2+2=не	3=AIR 2	F	HASE ANG. DE	GREES =	77.40
PONER F	P.STR,CM =	3.8	7 L	PHASE ANG. DE DISPL. STROKE	, CM =	4.00
CALC.FF	REG., HZ =	28.6	ר ?	IME STEPS/CY	CLE =	34.88
COMPUTE	D PERFORM	ANCE USIN	G FPSE BY	MARTINI ENG		
POWER	WATTS		۲	IEAT REQUIREM		
BASIC		41	92.1670	BASIC ADIABATIC C REHEAT SHUTTLE PUMPING		7488.7320
ADIAE	AT LC CORR.		. 0000	ADIABATIC C	DRR.	. 0000
HEALE	R FLOW LOS	55 -5	10.6435	REHEAT		.0000 1985.5350
REGEN	IFLUW LUSS	5	69.3250	SHUTTLE		245.0460
COULE	R FLOW LOS	35 -	72.0780	PUMPING		35.4629
INDIC	ATED	28	40.1200	TEMP. SWING		i2.1916
				CYL. WALL C	JND.	191.3981
				DISPLCR WALL	_ COND.	33.3459
				REGEN. WALL	COND.	.0000 1985.5350 245.0460 35.4629 12.1916 191.3981 33.3459 60.2340 6.0146 4.6200 3.9914 -895.3059
INDICAT	ED EFFICIE	NCY, % T	.Ø.97	CYL. GAS COM	ND.	E.Ø14E
				REGEN. MTX.	COND.	4.6200
				RAD. INSIDE I	DISPL.	3.9914
				FLOW FRIC. (CREDIT	-895.3059
				TOTAL HEAT 1	O ENG.	9171.2650

Conver	sence crit	ena ist	. 0100	00		
	Chanse			Heat		
Numb.	Power	Heat	Dut	In Joules	Pressure	
	Dut	In	Joules	Joules	MPa T TTOO	
1 2	.00000	.000000	40.4011	71.3190	7.6722 7.3756	
	.88889		126.2561			
		.82426				
	13074		147.6756			
6		. 02830			+ -	
-	.01415		147.2981			
ε	.01647	.00921	149.3688	255.0840	7.2925	1.0000
9	.Ø14ØE	.00491	145.2424	262,9778	7.1875	
.0	.02093 .00659	.01167	147.2057	262.8257 265.8296	7.2993	
11	.00659	.00058	144.6242	265.8296	7.1955	
:2	.00984	.01143	146.0477	265.8530 267.5661	7.2101	. 5000
ENTERE	D PRINT RD	LITINE OFT	146.1383	267.3661	7.ØE14	. 5000
				ve integral	s of beat	
				an .01		
			10 FOR			
		SUNPOW	ER RE100	Ø ENGINE		
				- LINEAR AL		
				tant = .6		ec)**2.
				GAS NODE AN	NALYSIS	
				QUATIONS T OPTIMIZED.		
		306.011	UN 15 NU	i OFTINIZED.	•	
OPERAT	ING CONDIT:	LUNS ARE:				
SPEC.FR	RE0., HZ =	29.7	e .	CHRG. PRESS. HEAT OUT, DE PHASE ANG. I DISPL. STROP	, BAR =	80.00
HEAT IN	N, DEG C ÷	600.0	ø	HEAT OUT, DE	EG.C =	40.00
W. GAS	1=H2,2=HE,	3≠AIR_2		PHASE ANG. I	DEGREES =	78.38
POWER N	P.SIR, CM =	3.8	4	DISPL. STROP	$(E_F CM = $	4.02
UHLU.Fr	RED., HZ =	29.0	0	TIME STEPS/0	JYULE ≝	68.90
COMPUTE		NCE USTN	G FPSF B	Y MARTINI EN	JG :	
				HEAT REQUIRE	-	S
BASIC	WATTS C	42	42.1250	BASIC		7766.9400
ADIAE	BATIC CORR.		. 0000	ADIABATIC	CORR.	. 0000
	ER FLOW LOS					2036.7430
	A.FLOW LOSS	5 -8	23.1697	SHUTTLE		242.4501
	ER FLOW LDS	is - an	/5.3588	PUMPING TEMP. SWIN	10	36.1783
INDIC	CATED	26	17.3570	CVI HOLI	COND.	13,1972
				DISPLCR WA		187.5181 32.6700
				REGEN. WOL	I COND	59.0129
INDICAT	ED EFFICIE	NCY, X	29.84	CYL. GAS C	OND.	5.8926
				REGEN. MTX	. COND.	
				REGEN. MTX RAD.INSIDE	DISPL.	4.5263 3.7780
				FLOW FRIC.		-947.8246
				TOTAL HEAT	TO ENG.	4.5263 3.7780 ~947.8245 9441.0830

			.0100	2		
		Chanse			End	
NUME.	Power	Heat	Out	In	Pressur	
	Out	In	Joures	Joules	MPa	
1	.00000	. 00000	46.5724		7.8638	1.0000
2	.53428	.63442	81.5279		7.7119	1.0000
3	.75056	. 55880	118,2813		7.4777	i.0000
4	.45081	.75504	142.8638		7.4487	1.0000
5	.20783	.27888			7.3872	1.0000
6	.01423	.02231			7.3059	1.0000
7	.02003		152.5079		7.5570	1.0000
8	.03186	.02295	153.7300	273.7958	7.5025	1.0000
	.00801		150.4201		7.4866	1.0000
10	.02153		148.7587		7.5172	. 5000
11	.01105		149.1709	272, 8339	7.4902	.2500
	.00277		144.2757	265.9754	7.4403	. 2500
13	07282	.02514	142,5868	263,8296	7.4768	
14	.01171		141.9809		7.4339	.2500
:5 ENTERS	.00425	.00313	141.4197	262.8314	7.4031	.2500
	U PRINI R	OUTINE AF	TER 15	CYCLES.		
traic ta e	⊇nnarli⊂hain 	ge in two	Successiv	e integrale	5 of heat	
it:and	POWER	t has been		n .Ø10	0	
		RUN#				
			ER RE1000			
				LINEAR ALT		
		L	Cad const	ant = .02)20 N/(⊂m/s	sec)*+2.
		MARTIN	I MOVING	GAS NODE AN	ALYSIS	
			I LOSS EQ			
		SULULI	UN IS NOT	OPTIMIZED.		
		IONS ARE:				
		29.7		HRG. PRESS.	909 -	00.00
HEAT IN	DEG C =	- 600.0		EAT OUT, DE		82.00
		53=AIR 2		HASE ANG. D		40.00
		3.7		ISPL. STROK		77.93
	EQ., HZ =			IME STEPS/C		3.97
		20.0	J 1.	THE STEPS/L	TULE =	136.27
COMPUTE	D PERFORM	ANCE USIN	G FPSE BY	MARTINI EN	G. :	
PONE:R	WAITS			AT REQUIRE		q
BASIC		41	51.0580	BASIC		7714.8240
ADIAB	AT IC CORR		. 0000	ADIABATIC (CORR.	. 0000
HEATE	R FLOW LO	55 -5	32.8634	REHEAT		2115.5360
	FLOW LOS		79.3636	SHUTTLE		241.0808
COOLE	R FLOW LO	SS -	72.8741	PUMPING		35.9856
INDIC	AT CD		5.9570	TEMP. SWING	3	14.1745
				CYL. WALL O	COND.	191.6418
				DISPLCE WAL	L COND.	33.3884
				REGEN. WALL	COND.	60.3107
NDICAT	ED EFFICI	ENCY, K ,		CYL. GAS CO	DND.	6.0222
				REGEN. MTX.	COND.	4.6258
				RAD. INSIDE		4 MS2E
				FLOW FRIC.		-922.5452
				TOTAL HEAT		-522.0402 9499.0970
						J⇒JJ,UJ/U

Conversence criteria ist .01000 Work Heat Out In Cycle Chanse Chanse End Time Numb. Power Heat Pressure Step Out Joules In Joules MPa Msec. . ସହରହନ . 00000 51.0502 80.3153 8.6302 1.0000 81.7493 115.6993 .48950 .59842 8.4088 1.0000 .60135 . 44056 120. 7612 205. 4203 8.2731 1.0000

 .60133
 .44036
 120.7612
 203.4203
 6.2731
 1.0000

 .47721
 .77547
 148.9485
 270.1057
 8.2564
 .5000

 .23341
 .31489
 153.8181
 278.9634
 8.3368
 .5000

 .03269
 .03279
 151.8585
 277.3598
 8.2867
 .5000

 .01274
 .00575
 151.8109
 278.0777
 8.2291
 .5000

 .00031
 .00259
 151.5250
 278.5756
 8.1937
 .5000

 ۵ 5 5 3 ENTERED PRINT ROUTINE AFTER 8 CYCLES. Fract onal change in two successive integrals of heat IN And Power out has been less than .0100 RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERALING CONDITIONS ARE: SPEC.FRED., HZ = 29.70 CHRG. PRESS., BAR = 90.00 HEAT IN. DEG C -500.00 HEAT OUT, DEG. C = 40.00 W. GAS 1=H2, 2=HE, 3=AIR 2 POWER P.STR.CM = 3.74 PHASE ANG. DEGREES = 86.01 DISPL. STROKE, CM = 3.90 CALC.FREC. HZ = 50.71 TIME STEPS/CYCLE = 65.12 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : POWER, WATTE HEAT REQUIREMENT, WATTS BASIC 4654.0680 BASIC 8556.4080 ADIABATIC CORR. . 0000 ADIABATIC CORR. . 0000 HEATER FLOW LOSS -607.4160 REHEAT 2431.1180 -870.6307 REGEN. FLOW LOSS SHUTTLE 235.3769 CODLER FLOW LOSS -84.6615 PUMPING 41.3563 INDICATED 3091.3600 TEMP. SWING 19.2872 CYL. WALL COND. 193.6535 DISPLCR WALL COND. 33.7389 ------REGEN. WALL COND. 60,9437 INDICATED EFFICIENCY, ¥ 29.32 CYL. GAS COND. 6.0854 REGEN. MTX. COND. 4.6744 RAD. INSIDE DISPL. 4.1572 FLOW FRIC. CREDIT TOTAL HEAT TO ENG. -1042.7310 10544.0700

- .

. 01000 Conversence criteria ist End Dycle Chanse Chanse WOTH Heat Time Heat Out Pressure Step NUME. Power In MPa Out In Joutes Joules Msec. . 00000 . 00000 56.6305 89.3286 9.5881 1.0000 .43370 . 55336 84.4963 120.8660 i21.4291 208.7427 . 5000 9.5783 2 3 .49206 .35305 9.2594 . 5000 .33300 12... .72706 148.0986 .437Ø9 . 5000 269.1479 9.3024 ά .21963 . 28938 155. 2503 284. 9063 5 9.3037 . 5000 .05855 157.2908 269.9953 .01786 158.3152 291.7746 .00614 159.4120 293.6351 .04829 6 9.1179 .5000 9.1412 .Ø1314 . 5000 7 .00651 9.1613 Б . 5000 ENTERED PRINT ROUTINE AFTER 8 CYCLES. Fractional change in two successive integrals of heat in and power out has been less than .0100 RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)+*2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: CHRG. PRESS., BAR = 100.00 HEAT DUT, DEG. C = 40.00 W. 349 1182,2=88,3=818 2 PHASE ANG. DEGREES = 81.53 POWER P.STR.CM = 3.80 3.68 DISPL. STROKE, CM = CALC.FRED., HZ = 32.35 TIME STEPS/CYCLE = 61.82 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : HEAT REQUIREMENT, WATTS POWER, WATTS BASIC 5157.6390 BASIC 9500.3120 . 0000 ADIABATIC CORR. ADIABATIC CORR. . 0000 HEATER FLOW LOSS -701.9781 REHEAT 2835.4930 REGEN. FLOW LOSS -976.2700 SHUTTLE 217.3928 COOLER FLOW LOSS -98.7872 PUMPING 46.7226 TEMP. SWING INDICATED 3380.6040 27.2619 CYL. WALL COND. 188.0180 DISPLCR WALL COND. 32.7571 REGEN. WALL COND. 59.1702 5.9083 INDICATED EFFICIENCY, M 28.82 CYL. GAS COND. REGEN. MTX. COND. 4.5384 - RAD. INSIDE DISPL. 3.8660 FLOW FRIC. CREDIT TOTAL HEAT TO ENG. -1190.1130 11731.3300

,

•

APPENDIX L EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS CONVERGENCE CRITERIA = 0.005 INITIAL TIME STEP = 0.25 MSEC DOUBLE PRECISION

:

PAGE 262 INTENTIONALLY BLANK

IBM/PC-AT Computer Name: Operating System: DOS 3.00 Built-in BIOS dated: Thursday, July 3, 1986 Serial Ports: 2 Main Processor: Intel 80286 Parallel Ports: 2 Co-Processor: Intel 80287 Video Display Adapter: Enhanced Graphics, 256 K-bytes Current Video Mode: Text, 80 x 25 Color Available Disk Drives: 3, A: - C: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: (at hex 0000-A000) 640 K-bytes main memory 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Ferformance Index (PI), relative to IBM/XT: Not computed. 10:05 pm, Wednesday, July 22, 1987 CONVERGENCE CRITERIA IS: .00500 WORK HEAT END TIME CYCLE CHANGE CHANGE NUMB. POWER HEAT OUT IN PRESSURE STEP OUT JOULES JOULES MPA MSEC. ΙN . 00000 1 .00000 42.3211 66.0547 7.0704 .2500 .2500 2 .57679 .66973 76.9909 110.9607 6.7774 .2500 3 .81921 .67983 112.6644 198.6434 6.6186 131.6836 .2500 240.8939 6.6186 4 .46335 .79021 245.9497 6.6109 .2500 5 .16881 .21270 132.3613 .00515 .02099 132.4149 246.3626 6.6165 .2500 6 .00168 7 .00040 133.5549 247.7698 6.6240 .2500 .00861 133.0705 247.7724 6.6287 .2500 8 .00571 .00001 133.2528 6.5617 247.6401 .2500 9 .00363 CURRENT OPERATING CONDITIONS ARE: 01= 74.000 02= 04= 40.000 05= 76.890 03 = 600.0002 4.028 08= 0 09= 0 10= .250 06= 07 =3.813 .000 13= 1.000 14 =4 15= 4 0 12 =11= 10.000 0 17 =3 18= 1000.000 19 =16 =CURRENT DIMENSIONS ARE: 4.0400 22= 4.2000 23= 4.7000 24= 5.7180 20 =1 21 =.0365 28= 5.7790 29= 29.7000 25 = 15.190026= 27= 1.6630 34= 15.2500 33= 33.0000 30= 6.2000 31= .4260 32= 0 37= 381.0000 .0000 39= .8000 38 =35= 25.4000 36= 7.6000 31.7900 20.5000 43= 2.3900 44= 72.5300 40= 10.0000 41= 42 =49= 45= 125 46= 24 47= 1.0200 48= .1575 .1067 52= 53= 31.7900 54= 2.9200 50= .7600 51= .1321 .1016 57= 18.3400 58≍ .2362 59= 9.2600 55= 2 56= 34 .5440 64 = 88.900060 =1.5000 61= .0000 62= 6.4460 63= 135 69= .0000 65= 75.9000 66= .0000 67= .0000 68= 7.9200 1.5000 74= .0000 73 =.3760 72= 70 =.0508 71 =77= 3.0000 78= 1.0000 79= 4.0000 1.0000 76= 75= .0200 .0050 .1000 83= 84= .0000 81= .0100 82= 80= 20.0000 .4600 87= .4684 88= 7.9300 89= 86= -4.5650 85= .0000 .0813 94= .3710 1 4.4500 91= 92= .1450 93= 90 =.0000 99= .0000 98= .0000 95= .5000 96= 0 97= 15 103= 0 14 104= 13 102= .0000 101= 100 =0 107= 0 112= 109= 0 0 108= 0 0 106= 105= 0 114= 0 0 111= 112= 0 113 =110= 0 119= 0 0 117= 0 118= 115 =0 116= 0 120=

...

ST FI MJ MJ	TWO SUCCESS BEEN LESS T JN# 0 FOR JNPOWER RE10 REE MOTIONS LOAD CON ARTINI MOVING ARTINI LOSS	IVE INTEGRALS OF H HAN .0050 00 ENGINE LINEAR ALTERNAT STANT = .020 N/ G GAS NODE ANALYSI	for (cm/s	SEC) **2.
OPERATING CONDITIONS	ARE:			
SPEC.FREQ., HZ = HEAT IN, DEG C = (W. GAS 1=H2,2=HE,3=A) POWER P.STR,CM = CALC FPEO HZ =	29.70	CHRG. PRESS., BAR	2 =	74.00
HEAT IN, DEG C = ϵ	500.00	HEAT OUT, DEG. C	=	40.00
W. GAS 1=H2,2=HE,3=A]	IR 2	PHASE ANG. DEGREE	S =	76.89
POWER P.STR,CM =	3.81	DISPL. STROKE, CM	=	4.03
CALC.FREQ., $HZ =$	28.01	TIME STEPS/CYCLE	=	142.80
COMPUTED PERFORMANCE POWER, WATTS BASIC ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED INDICATED EFFICIENCY,	USING FPSE F 3732.5443 .0000 -451.2578 -710.8188 -62.3938 2508.0738	BY MARTINI ENG.: HEAT REQUIREMENT, BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND. DISPLCR WALL CON REGEN. WALL CON	WATI ND.	2S 6936.6438 .0000 1779.9279 247.0111 31.8143 9.9799 189.9550 33.1870 59.9469
INDICATED EFFICIENCY,	% 29.52 	CYL. GAS COND. REGEN. MTX. CON RAD.INSIDE DISP FLOW FRIC. CRED TOTAL HEAT TO E	D. L. IT NG.	5.9469 5.9859 4.5081 3.9664 -806.6673 8496.2589

Computer Name: IBM/PC-AT DOS 3.00 Operating System: Built-in BIOS dated: Thursday, July 3, 1986 Intel 80286 Main Processor: Serial Ports: 2 Co-Processor: Intel 80287 Parallel Ports: 2 Video Display Adapter: Enhanced Graphics, 256 K-bytes Current Video Mode: Text, 80 x 25 Color Available Disk Drives: 3, A: - C: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: 640 K-bytes main memory (at hex 0000-A000) 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting ... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Performance Index (PI), relative to IBM/XT: Not computed. 10:27 pm, Wednesday, July 22, 1987 CONVERGENCE CRITERIA IS: .00500 CYCLE CHANGE CHANGE WORK HEAT TIME END NUMB. POWER HEAT OUT TN PRESSURE STEP OUT IN JOULES JOULES MPA MSEC. .00000 .00000 1 43.4553 67.8546 7.2613 .2500 2 .56545 .66073 77.1778 111.5839 6.9604 .2500 3 .77603 .64446 114.9291 201.5237 6.8575 .2500 4 .48915 .80603 135.1515 247.5242 6.8474 .2500 5 .17596 .22826 136.1571 252.9939 .2500 6.8331 6 .00744 .02210 135.3473 252.1798 6.8220 .2500 7 .00595 .00322 135.2010 251.5647 .2500 6.8152 8 .00244 .00108 135.2639 251.5814 6.8085 .2500 CURRENT OPERATING CONDITIONS ARE: 2 03= 600.000 40.000 01= 76.000 02= 04 =05= 77.898 3.798 4.009 06 =07 =08= 0 09= 0 10= .250 11= Ω 12 =.000 13 =1.000 14 =4 15= 4 16 =0 17 =3 18 = 1000.00019= 10.000 CURRENT DIMENSIONS ARE: 20 =1 21= 4.0400 22= 4.2000 23= 4.7000 24= 5.7180 25= 15.1900 26= .0365 27= 1.6630 28= 5.7790 29= 29.7000 30= 6.2000 31= 33= 33.0000 .4260 32 =0 34 = 15.250035= 25.4000 7.6000 37= 381.0000 38= 36= 39 =.0000 .8000 40= 10.0000 41= 31.7900 42= 20.5000 43= 2.3900 44= 72.5300 45 =46= 47 =131 24 1.0200 48= .1575 49= .1067 .1321 50= .7600 51= 52= .1016 53= 31.7900 54= 2.9200 57= 55= 2 56= 34 18.3400 58= .2362 59= 9.2600 60= 1.5000 .0000 .5440 64= 88.9000 61= 62= 6.4460 63= 65= 75.9000 .0000 .0000 68= 67= 69= 66= .0000 135 .3760 70= .0508 71= 72= 7.9200 73= 1.5000 74= .0000 75= .0200 76= 1.0000 77= 3.0000 78= 1.0000 79= 4.0000 80= 20.0000 82= 84= 81= .0100 .1000 83= .0050 .0000 .4684 85= .0000 86= -4.5650 87= 88= 7.9300 89= .4600 94= 90= 4.4500 91= .3710 92= .1450 93= .0813 1 .0000 98= 99= .0000 95= .5000 96= 0 97= .0000 102 =15 103= 14 104= 0 100 =.0000 101= 13 105= 0 106= 0 107= 0 108= 0 109= 0 110 =0 111= 0 112= 0 113= 0 114= 0 115= 0 0 117= 116 =0 118= 0 119= 0 0 120=

11

LOAD CONS MARTINI MOVING MARTINI LOSS E	IVE INTEGRALS OF HEAT IAN .0050 OO ENGINE - LINEAR ALTERNATOR TANT = .020 N/(CM/SE GAS NODE ANALYSIS	C)**2.
OPERATING CONDITIONS ARE:		
SPEC.FREO. $HZ = 29.70$	CHRG. PRESS. BAR =	76 00
HEAT IN, DEG C = 600.00	HEAT OUT, DEG. C =	40.00
W. GAS 1=H2,2=HE,3=AIR 2	PHASE ANG. DEGREES =	77.90
POWER P.STR, $CM = 3.80$	DISPL. STROKE, CM =	4.01
SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR,CM = 3.80 CALC.FREQ., $HZ = 28.38$	TIME STEPS/CYCLE =	140.95
COMPUTED PERFORMANCE USING FPSE BPOWER, WATTSBASIC3838.5617ADIABATIC CORR0000HEATER FLOW LOSS-471.8859REGEN.FLOW LOSS-741.4427COOLER FLOW LOSS-66.0587INDICATED2559.1745	Y MARTINI ENG.: HEAT REQUIREMENT, WATTS BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND. DISPLCE WALL COND	7139.4528 .0000 1877.9208 246.6475 32.8934 11.1355 191.4722 23.4521
INDICATED EFFICIENCY, % 29.20	REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	4.5441 4.0697 -842.6073

... IBM/PC-AT Computer Name: DOS 3.00 Operating System: Thursday, July 3, 1986 Built-in BIOS dated: Serial Ports: 2 Main Processor: Intel 80286 Parallel Ports: 2 Intel 80287 Co-Processor: Enhanced Graphics, 256 K-bytes Video Display Adapter: Text, 80 x 25 Color Current Video Mode: Available Disk Drives: 3, A: - C: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: (at hex 0000-A000) 640 K-bytes main memory 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting ... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Performance Index (PI), relative to IBM/XT: Not computed. 10:54 pm, Wednesday, July 22, 1987 CONVERGENCE CRITERIA IS: .00500 WORK END TIME CYCLE CHANGE CHANGE HEAT PRESSURE STEP TN POWER HEAT OUT NUMB. OUT IN JOULES JOULES MPA MSEC. .00000 .00000 44.5891 69.6552 7.4522 .2500 1 .55411 .65172 77.7231 112.2121 7.1960 .2500 2 .2500 114.6122 201.8918 7.0021 3 .74310 .61096 .79920 6.9805 .2500 4 .47462 136.0783 249.0893 .2500 256.3194 7.0317 5 .18729 .23378 138.1878 138.1995 256.7590 7.0005 .2500 .02903 6 .01550 6.9768 .00008 .00172 136.9810 255.7389 .2500 7 .00882 .00397 136.7460 254.5478 6.9536 .2500 8 6.9331 .2500 .00466 136.7136 254.7651 9 .00172 CURRENT OPERATING CONDITIONS ARE: 40.000 05= 77.614 03= 600.000 04 =01= 78.000 02= 2 09= 0 10= .250 3.982 08= 0 06= 3.780 07= .000 13= 15 =1.000 14= 4 4 12 =11= 0 19= 10.000 18 = 1000.000Ω 17 =3 16= CURRENT DIMENSIONS ARE: 4.7000 24= 5.7180 4.2000 23= 20 =1 21= 4.0400 22 =29= 29.7000 5.7790 .0365 27= 1.6630 28= 25= 15.1900 26= 34 = 15.250033= 33.0000 .4260 32= 0 30 =6.2000 31= 7.6000 37= 381.0000 38= .0000 39 =.8000 35 = 25.400036= 31.7900 42= 20.5000 44= 72.5300 43 =2.3900 40 = 10.000041 =48 =.1575 49= .1067 131 47 =1.0200 46= 24 45 =54= .7600 51= .1321 52= .1016 53= 31.7900 2.9200 50= 59= 9.2600 57= 18.3400 58= .2362 55 =2 56= 34 .5440 64 = 88.9000.0000 62= 6.4460 63= 1.5000 61= 60 =.0000 69= 135 .0000 68= 67= .0000 65= 75.9000 66= 1.5000 73= 74= .0000 .0508 71= .3760 72= 7.9200 70 =3.0000 79= 78= 1.0000 4.0000 1.0000 77= 75= .0200 76= .1000 84= .0000 .0100 83= .0050 82= 80= 20.0000 81= -4.5650 87= .4684 88= 7.9300 89= .4600 85 =.0000 86= 1 .1450 93= .0813 94= 91= .3710 92= 4.4500 90 =.0000 99= .0000 .5000 97= .0000 98= 95= 96= 0 103= 14 104 =0 102= 15 100= .0000 101= 13 0 0 109= 107= 0 108 =105= 0 106= 0 112= 0 113 =0 114= 0 0 110 =Ω 111 =0 118= 0 119= 0 0 117= 0 116 =115 =0 120 =

SUI FRI MAI MAI	TWO SUCCESS BEEN LESS TH N# 0 FOR NPOWER RE100 EE MOTIONS - LOAD CONS RTINI MOVING RTINI LOSS H	IVE INTEGRALS OF HE. IAN .0050 OO ENGINE LINEAR ALTERNATO STANT = .020 N/(0 GAS NODE ANALYSIS	R	C)**2.
OPERATING CONDITIONS A	ARE:			
OPERATING CONDITIONS ASPEC.FREQ., HZ =HEAT IN, DEG C =60W. GAS 1=H2,2=HE,3=AIFPOWER P.STR,CM =CALC.FREQ., HZ =2	29.70 20.00 2 3.78 28.75	CHRG. PRESS., BAR HEAT OUT, DEG. C PHASE ANG. DEGREES DISPL. STROKE, CM TIME STEPS/CYCLE		78.00 40.00 77.61 3.98 139.15
COMPUTED PERFORMANCE U POWER, WATTS BASIC ADIABATIC CORR. HEATER FLOW LOSS REGEN.FLOW LOSS COOLER FLOW LOSS INDICATED INDICATED EFFICIENCY,	SING FPSE B	Y MARTINI ENG.:	13 000 0	
BASIC	3929.9592	BASIC	ATTS	7222 4542
ADIABATIC CORR.	.0000	ADIABATIC CORR		/323.4568
HEATER FLOW LOSS	-487.8686	REHEAT		1024 4151
REGEN.FLOW LOSS	-755.2201	SHUTTLE		230 7010
COOLER FLOW LOSS	-67.5045	PUMPING		33 8977
INDICATED	2619.3660	TEMP. SWING		11,9319
		CYL. WALL COND.		188.6476
		DISPLCR WALL COND	•	32.9586
INDICATED EFFICIENCY	<u> </u>	REGEN. WALL COND.		59.5343
- DIGITAD BITICIENCI,	8 29.22	CYL. GAS COND.		5.9447
		REGEN. MTX. COND.		4.4771
		FLOW FRIC OPEDIT		3.8979
		TOTAL HEAT TO ENG.		-865.4786
		IDAL TO ENG.	•	0903.4748

Computer Name: IBM/PC-AT Operating System: DOS 3.00 Built-in BIOS dated: Thursday, July 3, 1986 Main Processor: Intel 80286 Serial Ports: 2 Co-Processor: Intel 80287 Parallel Ports: 2 Video Display Adapter: Enhanced Graphics, 256 K-bytes Current Video Mode: Text, 80 x 25 Color Available Disk Drives: 3, A: - C: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: 640 K-bytes main memory (at hex 0000-A000) 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting ... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Performance Index (PI), relative to IBM/XT: Not computed. 11:15 pm, Wednesday, July 22, 1987 CONVERGENCE CRITERIA IS: .00500 CYCLE CHANGE CHANGE WORK HEAT END TIME NUMB. POWER HEAT OUT IN PRESSURE STEP OUT INJOULES JOULES MPA MSEC. 1 .00000 .00000 45.7223 71.4566 7.6430 .2500 2 .54278 .64272 77.9461 112.8138 7.3617 .2500 3 .70477 .57877 114.0896 201.4527 7.2281 .2500 4 .46370 137.3974 .78571 251.5339 7.1743 .2500 5 .20429 .24860 138.3819 257.4623 7.2048 .2500 6 .00717 .02357 138.4165 257.6174 7.1483 .2500 7 .00025 .00060 139.3705 258.8617 7.1892 .2500 8 .00689 .00483 138.7004 258.7929 7.1340 .2500 9 .00481 .00027 138.6880 258.0990 7.1719 .2500 CURRENT OPERATING CONDITIONS ARE: 01 =80.000 02= 03= 600.000 2 04 =40.000 05= 77.245 3.768 06 =07 =3.960 08= 0 09= 0 10 =.250 11= 12 =0 .000 13= 1.000 14= 4 15 =4 16= 0 17= 3 18 = 1000.00019= 10.000 CURRENT DIMENSIONS ARE: 20 =1 21 =4.0400 22= 4.2000 23= 4.7000 24= 5.7180 25= 15.1900 27= 26= .0365 1.6630 28= 5.7790 29= 29.7000 30= 6.2000 31 =32= .4260 0 33= 33.0000 34= 15.2500 35 = 25.400036= 7.6000 37= 381.0000 38 =.0000 39 =.8000 44= 72.5300 40= 10.0000 41= 31.7900 42= 20.5000 43= 2.3900 45= 127 46= 24 47= 1.0200 48 =.1575 49= .1067 50 =51= .7600 .1321 52= .1016 53= 31.7900 54= 2.9200 55= 2 56= 34 57= 18.3400 58= .2362 59= 9.2600 60= 1.5000 .0000 61 =62= 64= 88.9000 6.4460 63= .5440 .0000 .0000 65= 75.9000 66= 67= .0000 68= 69= 135 70 =.0508 71= .3760 72= 7.9200 73= 1.5000 74= .0000 75= .0200 76= 1.0000 77= 3.0000 78= 1.0000 79= 4.0000 80= 20.0000 81= .0100 82= .1000 83= .0050 84= .0000 85= .0000 86= -4.5650 87= .4684 88= 7.9300 89= .4600 .3710 .0813 90= 4.4500 92= .1450 91= 93= 94 =1 95= .5000 96= 0 97= .0000 98= .0000 99= .0000 .0000 101= 100 =13 102= 15 103 =14 104 =0 105 =0 106= 0 107= 0 108 =0 109= 0 0 0 110= 0 111= 0 112= 113 =114= 0 0 0 117= 0 118= 0 119= 0 116 =115= 120= 0

...

IN AND POWER OUT HAS RU SU FF MA MA	TWO SUCCESS BEEN LESS T IN# 0 FOR INPOWER RE10 EE MOTIONS LOAD CON RTINI MOVING RTINI LOSS	IVE INTEGRALS OF HEAT HAN .0050	EC)**2.
OPERATING CONDITIONS	ARE:		
SPEC.FREQ., $HZ =$	29.70	CHRG. PRESS. BAR =	80.00
HEAT IN, DEG C = 6	00.00	HEAT OUT, DEG. $C =$	40.00
W. GAS 1=H2,2=HE,3=AI	R 2	PHASE ANG. DEGREES =	77.25
POWER P.STR, CM =	3.77	DISPL. STROKE, CM =	3.96
CALC.FREQ., $HZ =$	29.09	CHRG. PRESS., BAR = HEAT OUT, DEG. C = PHASE ANG. DEGREES = DISPL. STROKE, CM = TIME STEPS/CYCLE =	137.48
INDICATED EFFICIENCY,	¥ 29.12	REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	-092.0001

Computer Name: IBM/PC-AT Operating System: DOS 3.00 Built-in BIOS dated: Thursday, July 3, 1986 Serial Ports: Main Processor: Intel 80286 2 Co-Processor: Intel 80287 Parallel Ports: 2 Video Display Adapter: Enhanced Graphics, 256 K-bytes Current Video Mode: Text, 80 x 25 Color Available Disk Drives: 3, A: - C: DOS reports 640 K-bytes of memory: 40 K-bytes used by DOS and resident programs 600 K-bytes available for application programs A search for active memory finds: 640 K-bytes main memory (at hex 0000-A000) 32 K-bytes display memory (at hex B800-C000) ROM-BIOS Extensions are found at hex paragraphs: C000 Computing Index (CI), relative to IBM/XT: Sesting ... Disk Index (DI), relative to IBM/XT: Not computed. No drive specified. Performance Index (PI), relative to IBM/XT: Not computed. 11:35 pm, Wednesday, July 22, 1987 CONVERGENCE CRITERIA IS: .00500 HEAT CYCLE CHANGE CHANGE WORK END TIME NUMB. POWER PRESSURE STEP HEAT OUT IN OUT IN JOULES JOULES MPA MSEC. .00000 ٦ .00000 46.8550 73.2587 7.8339 .2500 2 .53145 .63371 113.2805 78.0792 7.5954 .2500 3 .66640 .54631 114.1493 201.6138 7.3697 .2500 4 .46197 .77978 139.3602 254.2570 7.3465 .2500 .22086 5 .26111 140.2112 261.4208 7.3470 .2500 .00611 6 .02818 140.3642 261.1081 7.3513 .2500 .00109 7 .00120 141.5032 262.9644 7.3638 .2500 140.7424 8 .00811 .00711 262.8528 7.3656 .2500 9 .00538 .00042 140.5482 262.0261 7.2904 .2500 10 .00138 .00315 140.5629 261.9927 7.2959 .2500 CURRENT OPERATING CONDITIONS ARE: 01= 82.000 02= 600.000 2 03= 04 =40.000 05= 80.866 0.6 =3.753 07 =3.941 08= 0 09= 0 10 =.250 .000 11= 0 13 =1.000 14 =4 15= 12 =Δ 16 =0 17 =3 18 = 1000.00019= 10.000 CURRENT DIMENSIONS ARE: 24= 20 =1 21 =4.0400 22= 4.2000 23= 4.7000 5.7180 25= 15.1900 26= .0365 27= 1.6630 28= 5.7790 29= 29.7000 30= 6.2000 31= .4260 32= 0 33= 33.0000 34 = 15.250035= 25.4000 36= 7.6000 37= 381.0000 38 =39= .0000 .8000 40 = 10.000031.7900 44= 72.5300 41= 42 =20.5000 43 =2.3900 45 =46 =24 47 =1.0200 48 =49 =128 .1575 .1067 50 =.7600 51= .1321 52= .1016 53= 31.7900 54= 2.9200 55≓ 2 56= 34 57= 18.3400 58= .2362 59= 9.2600 .5440 60= 1.5000 61= .0000 62= 6.4460 63= 64= 88.9000 65= 75.9000 66= .0000 67= .0000 68= .0000 69= 135 70 =.0508 71= 72= 7.9200 73 =1.5000 74= .3760 .0000 75= .0200 1.0000 4.0000 76= 1.0000 77= 3.0000 78= 79= .1000 80= 20.0000 .0100 83= .0050 81= 82= 84= .0000 .4684 85= .0000 86= -4.5650 87= 88= 7.9300 89= .4600 90= 4.4500 91= .3710 92= .1450 93= .0813 94= 1 95= .5000 96= 0 97= .0000 98= .0000 99= .0000 102= 15 103= 104 =Ω 100 =.0000 101= 13 14 105 =0 106= 0 107= 0 108 =0 109= 0 0 111= 0 112= 110= 0 113 =0 114= 0 0 119= 115= 116 =0 117= 0 118 =0 0 0 120 =

11

LOAD CON MARTINI MOVIN MARTINI LOSS	IVE INTEGRALS OF HEAT HAN .0050 OO ENGINE LINEAR ALTERNATOR STANT = .020 N/(CM/SE G GAS NODE ANALYSIS	C)**2.
OPERATING CONDITIONS ARE:		
SPEC.FREO. $HZ = 29.70$	CHRG. PRESS., BAR =	82.00
HEAT IN, DEG C = 600.00	HEAT OUT, DEG. $C =$	40.00
W. GAS 1=H2,2=HE,3=AIR 2	PHASE ANG. DEGREES =	80.87
POWER P.STR, $CM = 3.75$	DISPL. STROKE, CM =	3.94
SPEC.FREQ., $HZ = 29.70$ HEAT IN, DEG C = 600.00 W. GAS 1=H2,2=HE,3=AIR 2 POWER P.STR,CM = 3.75 CALC.FREQ., $HZ = 29.46$	TIME STEPS/CYCLE =	135.78
COMPUTED PERFORMANCE USING FPSE I POWER, WATTS BASIC4140.9098 0000ADIABATIC CORR0000HEATER FLOW LOSS-522.0358REGEN.FLOW LOSS-795.4852COOLER FLOW LOSS-72.3040INDICATED2751.0849	BY MARTINI ENG.: HEAT REQUIREMENT, WATTS BASIC ADIABATIC CORR. REHEAT SHUTTLE PUMPING TEMP. SWING CYL. WALL COND. DISPLCE WALL COND	7718.1671 .0000 2055.1560 233.6653 36.1071 13.9835 187.7257 32.7975
INDICATED EFFICIENCY, % 29.17	REGEN. WALL COND. CYL. GAS COND. REGEN. MTX. COND. RAD.INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG.	5.9156 4.4552 3.8478 -919.7784

APPENDIX M EFFECT OF PRESSURE ON ADIABATIC FREE-PISTON ANALYSIS CONVERGENCE CRITERIA = 0.005

INITIAL TIME STEP = 0.25 MSEC

SINGLE PRECISION

Conversence criteria is: .00500 End Cycle Change - Change - Work Heat Time Heat Out In Joules Numb. Power In Pressure Step Jn ->a fluit. MPa Joules Msec. . 00000 .00000 42.2383 65.9236 .67038 78.7738 112.9292 .71303 117.8490 207.4365 7.0711 6.7964 6.6360 . 2500 1 .86499 715 . 2500 2 ₹ .2500 .49604 4 .83687 132,8834 244.7849 6.6309 .2500 .12757 .18005 134.3069 249.0340 5.6299 .2500 .01071 .01736 134.0694 249.2262 5.6259 .2500 .00177 .00077 133.7013 248.9602 5.6276 .2500 .12757 5 .01071 Б ENTERED PRINT ROUTINE AFTER 7 CYCLES. Fractional change in two successive integrals of heat .0050 and power out has been less than RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS HRE: SPEC.FREQ. HT = 29.70 HEAT IN, DEC C = 600.00 CHRG. PRESS., BAR = 74.00 HEAT OUT, DEG. C 600.00 40.00 ₩. GAS 1=H2,2=HE,3=AIR 2 PHASE ANG. DEGREES = 76.87 POWER P.STR, CM = 3.82DISPL. STROKE, CM = TIME STEPS/CYCLE = 4.04 CALC.FRED. HZ = 28.00 142.85 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : POWER, WATTS HEAT REQUIREMENT, WATTS BASIC 3743.8990 BASIC 6971.3750 ADIABATIC CORR. .0000 ADIABATIC CORR. . 0000 -459.0747 REHEAT -700.0262 SHUTTLE HEATER FLOW LOSS 1843.4110 REGEN, FLOW LOSS 255.9045 COOLER FLOW LOSS -63.6428 PUMPING 31.9922 INDICATED 2521.1560 TEMP. SWING 10.2175 CYL. WALL COND. 196.3468 DISPLCR WALL COND. 34.2081 REGEN. WALL COND. 61.7914 CYL. GAS COND. INDICATED EFFICIENCY, * 29.28 6.1701 REGEN. MTX. COND. 4.7394 4.3104 RAD. INSIDE DISPL. FLOW FRIC. CREDIT TOTAL HEAT TO ENG. -809.0879 8611.3790

PAGE 276 INTENTIONALLY BLANK

Conversence criteria is: . 00500 Сусте Change Change Work Heat Numb. Power Heat Out In Out In Joures Joures End Time Pressure Step MPa Msec.
 OUT
 In
 Joures
 Joures
 MPa

 .00000
 .00000
 43.3706
 67.7199
 7.2620

 .56629
 .66140
 79.3667
 113.6582
 6.9716

 .22996
 .67836
 117.6094
 207.9836
 6.7944

 .48185
 .82992
 135.8742
 248.9141
 6.8574

 .15530
 .19679
 136.5900
 254.1944
 6.8375

 .00527
 .02121
 136.0478
 253.2675
 6.8220

 .00397
 .00355
 136.3173
 253.3362
 6.8121
 .2500 1 . 2500 2 7 ۵ . 2500 . 2500 5 6 . 2500 . 2500 ENTERED PRINT ROUTINE AFTER 7 CYCLES. Fractional change in two successive integrals of heat on and power out has been less than .0050 RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINE MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. DPERATING CONDITIONS ARE: SPEC.FREC. HZ = 23.70 HEAT IN, DEG C = 600.00

 SPEC.FRED., HZ =
 23.70
 CHRG. PRESS., BAR =
 76.00

 HEAT IN, DEG C =
 600.00
 HEAT OUT, DEG. C =
 40.00

 W. GAS 1=H2, 2=HE, 3=AIR 2
 PHASE ANG. DEGREES =
 80.43

 PONER P.STR.CM =
 3.81
 DISPL. STROKE, CM =
 4.03

 CALC.FRED., HZ =
 28.37
 TIME STEPS/CYCLE =
 141.00

 CHRG. PRESS., BAR = 76.00 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : POWER, WATTS HEAT REQUIREMENT, WATTS RASIC 3867.1570 BASIC 7186.8420 HEATER FLOW LOSS REDEN FLOW . 0000 ADIABATIC CORR. .0000 -478.3193 REHEAT 1907.6540 -725.7664 REGEN.FLOW LOSS SHUTTLE 254.2589 COOLER FLOW LOSS -66.8043 PUMPING 33.1752 INDICATED 2596.2670 TEMP. SWING 11.1497 CYL. WALL COND. 195.9528 DISPLCR WALL COND. 34.1395 REGEN. WALL COND. 61.6674 INDICATED EFFICIENCY, X 29.31 6.1577 4.7299 4.2888 CYL. GAS COND.

 REGEN. MTX. COND.
 4.7299

 RAD. INSIDE DISPL.
 4.2888

 FLOW FRIC. CREDIT
 -841.2025

 TOTAL HEAT TO ENG.
 8858.8130

Donver	sence crit	eria (s:	. 0050	Ø		
	Chanse	Chanse	Work Out	Heat	End	Time
Numb.	Power	Heat	Out	In	Pressure	
	Dut	In	Joules	Joules 69.5170	MPa 7.4529	Msec.
1	. 00000	. 00000	44.5021	69.5170		. 2500
2	. 55498		79.8778	114.6482	7.1414	. 2500
τ.	.79492	.64921	117.9989	209.0195	7.0152	.2500
4		.82314	137.2358	251.2925	6.9835	. 2500
5	16303	. 20224				. 2500
5	.16303 .01093	.82314 .20224 .02604	138.7304	257.8351 257.8145	6.9987	. 2500
Ę	.00004	. 00008	138.0148	257,4344	6.9661	. 2500
5	.0051E	.00147	138.2345	257, 4344 257, 3291	E. 9454	.2500
9	.00159	.00041	138.4096	257.5728	6.9248	. 2500
	D PRINT RO					
				ve integrals	of beat	
				an .005		
5.15			0 FOR		-	
			ER RE100	7 ENGINE		
				- LINEAR ALT	FRNATOR	
				tant = .0		ar) ##2
				GAS NODE AN		
			I LOSS E		neroro	
				T OPTIMIZED.		
		300071	014 15 140			
O PERAT	ING CONDIT	IONS ARE:				
SPEC. F	RED., HZ -	29.7	0 0	CHRG. PRESS.	, BAR =	78.00
HEAT I	NH DEG C =	EØØ. 0	10 H	HEAT OUT, DE	G.C =	40.00
W. DAS	1=H2, 2=HE	3=AIR 2	i	HEAT OUT, DE PHASE ANG. D	EGREES =	77.59
POWER	P.STR.CM =	3.8	10 I	DISPL. STROK	E, CM ≃	4.01
CALC.F	RE0., HZ =	28.7	·4 ·	DISPL. STROK TIME STEPS/C	YCLE =	139.20
COMPUTE	ED PERFORM	ANCE USIN	IG FPSE B	/ MARTINI EN	G.:	
POWER	WATTS		ŀ	HEAT REQUIRE	MENT, WATTS	5
BASI	2	39	77.2560	BASIC		7401.4770
ADIAI	BATIC CORR.		. 0000	ADIABATIC	CORR.	. 0000
HEATF	ER FLOW LOS	55 -4	97.2415	REHEAT SHUTTLE		1963.8580
REGET	N. FLOW LOSS	5 -7	47.4787	SHUTTLE		246.0410
COOLE	ER FLOW LOS	55 -	69.4024	PUMPING		34.2350
INDIC	CATED	26	63.1440	TEMP. SWIN	G	12.0208
				CYL. WALL	COND.	191.6263
				DISPLCR WAL	LL COND.	33.3857
				REGEN. WALI	_ COND.	60.3058
INDICAT	TED EFFICIE	ENCY, X	29.31	CYL. GAS C	JND.	6.0217
				REGEN. MTX.	COND.	4.6255
				RAD. INSIDE	DISPL.	4.0263
				FLOW FRIC.	CREDIT	-870.9808
						9086.6430

-

Conversence criteria ist . 00500 Heat Dycle Change Change Work End Time Pressure Step NUBB. Power Heat Out In Joules In Dut Joules
 Dut
 In
 Joures
 Joures
 mra

 .00000
 .00000
 45.6332
 71.3149
 7.6438

 .54367
 .64343
 78.5378
 113.6355
 7.3513

 .72107
 .59343
 115.7731
 204.1404
 7.2007

 .47411
 .79645
 138.9744
 254.0302
 7.1565

 .20040
 .24439
 139.5723
 260.3812
 7.1794

 .00430
 .02500
 139.7359
 260.0427
 7.1325

 .00117
 .00130
 139.9386
 260.3003
 7.1574
 MPa Msec. 1 .2500 2 . 2500 7.2007 .2500 3 ۵ 7.1794 2500 5 7.1794 .2500 7.1325 .2500 6 7 7.1574 .2500 ENTERED PRINT ROUTINE AFTER 7 CYCLES. Fractional change in two successive integrals of heat in and power out has been less than .0050 RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FREQ., HZ =29.70CHRG. PRESS., BAR =HEAT IN, DEG C =600.00HEAT OUT, DEG. C =W. GAS 1=H2, 2=HE, 3=AIR 2PHASE ANG. DEGREES = - 8**0**. 00 40.00 77.23 PONER P.STR.CM = 3.78 3.78 29.09 DISPL. STROKE, CM = 3.98 CALC.FRED., HZ = TIME STEPS/CYCLE = 137.51 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG.: POWER, WATTS HEAT REQUIREMENT, WATTS BASIC 4070.6390 BASIC 7571.8100 ADIABATIC CORR. . 0000 ADIABATIC CORR. HEATER FLOW LOSS -509.9724 .0000 REHEAT -759.3469 2049.1280 REGEN.FLOW LOSS SHUTTLE 243.8703 COOLER FLOW LOSS -70.8367 PUMPING 35.2715 INDICATED TEMP. SWING 2730.4830 13.1527 CYL. WALL COND. 192.5370 DISPLCR WALL COND. 33.5444 60.5924 REGEN. WALL COND. INDICATED EFFICIENCY, ¥ 29.28 CYL. GAS COND. CYL. UHS COND. 4.0475 REGEN. MTX. COND. 4.0475 RAD.INSIDE DISPL. 4.0890 FLOW FRIC. CREDIT -889.6459 FLOW FRIC. CREDIT -889.6459 9325.0470 6.0504 4.6474 4.0890 - -----

Conversence criteria ist . 00500 Cycle Chanse Chanse Work Heat End Time Out In Pressure Step Joules Joules MPa Msec. Heat Numb. Power Out
 Dut
 In
 Joules
 Joules
 MPa

 .00000
 .00000
 46.7637
 73.1132
 7.8346

 .53236
 .53443
 79.1479
 114.2906
 7.5820

 .69251
 .55320
 115.6417
 204.5695
 7.4203

 .46108
 .78991
 140.3167
 256.1898
 7.3325

 .21337
 .25234
 141.9066
 264.1675
 7.3302

 .01133
 .03114
 141.6468
 263.9586
 7.3274

 .001E3
 .00079
 141.7094
 263.8538
 7.3281
 In Msec. 1 . 2500 2 7.5820 .2500 3 . 2500 á. .2500 5 .2500 Б .2500 7 . 2500 ENTERED PRINT ROUTINE AFTER 7 CYCLES. Fractional change in two successive integrals of heat in and power out has been less than . 0050 RUN# 30 FOR SUNPOWER RE1000 ENGINE FREE MOTIONS -- LINEAR ALTERNATOR Load constant = .020 N/(cm/sec)**2. MARTINI MOVING GAS NODE ANALYSIS MARTINI LOSS EQUATIONS SOLUTION IS NOT OPTIMIZED. OPERATING CONDITIONS ARE: SPEC.FRED., HZ =29.70CHRG. PRESS., BAR =HEAT IN, DEG C =600.00HEAT DUT, DEG. C =W. GAS 1=H2, 2=HE, 3=AIR 2PHASE ANG. DEGREES =POWER P.STR, CM =3.7EDISPL. STROKE, CM =CALC.FRED., HZ =29.44TIME STEPS/CYCLE = 82.00 40.00 78.16 3.96 135.87 COMPUTED PERFORMANCE USING FPSE BY MARTINI ENG. : PONER WATTS HEAT REQUIREMENT, WATTS JNER. WAITS HEAT REG BASIC 4171.8110 BASIC ADIABATIC CORR. 00000 ADIABA 7767.6450 ADIABATIC CORR. . 0000 HEATER FLOW LOSS -527.4219 REHEAT 2069.3280 REIGEN, FLOW LOSS -774.4562 SHUTTLE 235.1304 COOLER FLOW LOSS -72.5438 PUMPING 36.1181 INDICATED 2797.3890 TEMP. SWING 13.8473 CYL. WALL COND. 187.7191 DISPLCR WALL COND. 32.7050 59.0762 REGEN. WALL COND. INDICATED EFFICIENCY, ¥ 29.44 CYL. GAS COND. 5.8990 REGEN. MTX. COND. 4.5311 3.8283 RAD. INSIDE DISPL.3.8283FLOW FRIC. CREDIT-914.6500TOTAL HEAT TO ENG.9501.1780 RAD. INSIDE DISPL.

Suace Administration	Report Documentation	Page		
1. Report No. NASA CR-182210	2. Government Accession No.	3. Recipient's Catalo	g No.	
4. Title and Subtitle		5. Report Date	·	
Development of Free-Piston Stirlir	Development of Free-Piston Stirling Engine Performance and Optimization		September 1989	
Codes Based on Martini Simulation Technique		6. Performing Organi	6. Performing Organization Code	
7. Author(s)		8. Performing Organi	ization Report No.	
William R. Martini		None	(E-4416)	
		10. Work Unit No.		
		586-01-11		
9. Performing Organization Name and Addre	955	11. Contract or Grant	No.	
Martini Engineering	NAS3-22256	NAS3-22256		
2303 Harris Richland, Washington 99352		13. Type of Report an	d Period Covered	
-	Contractor Rep			
2. Sponsoring Agency Name and Address	Final			
National Aeronautics and Space A Lewis Research Center Cleveland, Ohio 44135-3191	dministration	14. Sponsoring Agency	y Code	
5. Supplementary Notes				
6. Abstract		· · · · · · · · · · · · · · · · · · ·		
A FORTRAN computer code is de Stirling engine similar to the RE-1 displacer and power piston motion load may be a dashpot, inertial cor isothermal analysis or adiabatic and analysis or the Rios second-order H display of engine motions and press independent dimensions is included piston motions; these results are sh tion searches are shown using spec one is for four. Also, two optimiza adjustable inputs. The effect of lea	000 engine made by Sunpower. The or for allowing these motions to be impressor, hydraulic pump or linear alysis. Adiabatic analysis may be de Runge-Kutta analysis. Flow loss an assures and temperatures are include I. Sample performance results are so nown as generated by each of the twi- ified piston motion isothermal anal- ation searches for calculated piston	he code contains options for e calculated by a force balant alternator. Cycle analysis n one using the Martini movir d heat loss equations are inc d. Programming for optimiz shown for both specified and wo Martini analyses. Two sa ysis. One is for three adjust motion are presented for the	specifying nce. The engine nay be done by ng gas node cluded. Graphical ing up to 15 l unconstrained ample optimiza- able input and	
7. Key Words (Suggested by Author(s))	18. Distribut	ion Statement		
Stirling engine Stirling computer model		assified – Unlimited ect Category 85		

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161

. ≩.,

