Pro . Water & SANG

TWR-17272 - VOL-5

Flight Motor Set 360L001 (STS-26R) Final Report

Volume V (Nozzle Component)

July 1989

Prepared for

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

 Contract No.
 NAS8-30490

 DR No.
 3-5

 WBS No.
 4B601-03-08

 ECS No.
 956

Thickol CORPORATION

SPACE OPERATIONS

P.O. Box 707, Brigham City, UT 84302-0707 (801) 863-3511

Publications No. 89435

(NASA-CR-183771) FLIGHT MOTUR SET 360L001 (STS-26R). VOLUME 5: NO7ZLE COMPONENT Final Report (Thiokol Corp.) 371 p CSCL 21H

N90-13588

Unclas 63/20 0239734 TWR-17272

360L001 (STS-26R) Final Report Nozzle Component

July 1989

Prepared by:

Ma R. J. George Nozzle/TVC Design

Approved by:

S. Graves, Manager Non-Metallic Components

Wagner U

R. B. Roth, Manager Nozzle Engineering Work Center

NH System/Safety

fr.

E. Fonnesbeck, Supervisor Nozzle/TVC Design J. E. L. Diehl SRM Nozzle Programs

. TOUNE

Cation Planning D. B. Harris, Jr.

<u>C Judeck 8-15-89</u> Release

Thickol corporation space operations

TABLE OF CONTENTS

1.0	INTRODUCTION 1
2.0	OBJECTIVES 2
3.0	SUMMARY/CONCLUSIONS 2
4.0	RESULTS/DISCUSSION34.1STS-26A (LH) Nozzle/Flex Bearing44.1.1STS-26A Nozzle Components44.1.2STS-26A Nozzle Internal Joints154.2STS-26B Nozzle Flex Bearing214.2.1STS-26B Nozzle Components214.2.2STS-26B Nozzle Internal Joints334.3Instrumentation38
5.0	DISCREPANCY REPORTS AND PROCESS DEPARTURES
6.0	NOZZLE COMPONENT PROGRAM TEAM (NCPT) RECOMMENDATIONS ANDREDESIGN PROGRAM REVIEW BOARD (RPRB) ASSESSMENT6.1STS-26A Nozzle6.2STS-26B Nozzle
APPE	NDIX AA-1
APPE	CNDIX BB-1

DOC NO.	TWR-17272	VOL
SEC	PAGE	

Thickol corporation space operations

LIST OF FIGURES

Figure 1 STS-26 Nozzle Components
Figure 4 STS-26A Forward Nozzle Assembly
Figure 4 STS-26A Forward Nozzle Assembly
Figure 6 STS-26A Forward Nozzle Assy (External) 180 ° to 270 ° to 0 °53 Figure 7 STS-26A Forward Nozzle Assy (External) 180 ° to 270 ° to 0 °54 Figure 8 STS-26A Forward Nozzle Assy (Internal) 0 ° - 90 °
Figure 8 STS-26A Forward Nozzle Assy (Internal) 190 % to 270 %
Figure 10 STS-26A Aft Exit Cone Fragment
Figure 12 STS-26A Forward Exit Cone Bondline Separations
Figure 31 STS-26A Forward Nose Ring and Art Infer Ring (503 and -504) Section (90 Degrees)
Section (180 Degrees) Figure 33 STS-26A Forward Nose Ring and Aft Inlet Ring (-503 and -504)
Section (270 Degrees)
Figure 39 STS-26A Nose Inlet Housing Bonding Surfaces (90 Degrees)92 Figure 40 STS-26A Nose Inlet Housing Bonding Surfaces (90 Degrees)92

DOC NO.	TWR-17272	VOL
SEC	PAGE	

Thickol corporation space OPERATIONS

LIST OF FIGURES (continued)

Figure 41 STS-26A Nose Inlet Housing Bonding Surfaces (180 Degrees)93
Figure 42 STS_264 Nose Injet Housing Bonding Surfaces (270 Degrees)
Figure 43 STS 264 Nose Inlet Housing (Nose Cap) Bonding Surface
(00 Degrees)
Figure 44 STS 264 Nose Inlet Housing (Nose Cap) Bonding Surface
(190 Dogrees)
Figure 45 STS_264 Nose Inlet Housing (-504 Ring) Bonding Surface
(90 Degrees)
Figure 46 STS_264 Nose Inlet Housing (-504 Ring) Bonding Surface
(270 Degrees)
P_{resp} (7 STS 264 Coul/OBE Closeup (0 Degrees)
p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7} p_{7
π_{i} mine 40 STS 264 Cow1/OBR CloseND (180 Degrees) $\dots \dots \dots$
π_{1} = π_{2} = π_{2
r_{1} = 51 cmc (4. Coul Ding Section (1) Degrees) r_{1}
$\pi_1 = 52$ GTC 264 Coul (90 Degrees)
π^{\prime} = 50 CTC $\frac{161}{180}$ (180) $\frac{100}{100}$
r = r = r = r = r = r = r = r = r = r =
Figure 55 Coul Bing and Outer Boot Ring Erosion Measurement Stations
nimuma 54 cmc 264 OBP Aft End Delaminations (200 Degrees)
Eleuro 57 STS 264 Fractured OBR Aft Tip Adjacent to flex bool
TRANSPORTS 264 Outer Boot Ring Section (U Degrees)
Etauro 50 STS 264 Outer Boot Ring/Flex Boot (90 Degrees)
Figure 60 STS_264 Outer Boot Ring/Flex Boot (180 Degrees)
Timuma 61 CTC 264 Outer Boot Ring/Flex Boot (280 Degrees)
Figure 62 STS-26A Flex Boot (Cavity Side - 0 Degrees)
r_{i} rung 62 grs 264 Flex Boot (Cavity Side - 120 Degrees)
There is store 264 Flow Boot (Cavity Side - 240) Degrees)
Figure 65 STS 264 Fixed Housing Vedgeout (280 Degrees)
r_{i} and r_{i}
nturne (7 CTC 36A Rived Housing Section (90) Degrees)
Dimune (0 CTC 264 Fixed Housing Section (180) Degrees)
π_{1} π_{2} π_{2
nimuma 70 Rived Housing Liner Fresion Measurement Station
π_{i} minute 71 GTG 26A Bearing Protector (1) Degrees)
Eleven 72 STS 26A Bearing Protector (120) Degrees)
There 72 CTC 26A Bearing Protector (240 Degrees)
π_{1} π_{2} π_{2
E_{i} mino 75 STS 264 Floy Bearing (180) Degrees)
Figure 76 STS 264 Forward Exit Cone-to-AIL EXIL CONE JOINT INTELLACE 194
Figure 77 STS_264 Aft Exit Cone Forward End (U Degrees)
Figure 79 STS 264 Aft Exit Cone Forward End (120 Degrees)
righter 70 STS 264 Aft Frit Cone Forward End (240 Degrees)
Figure 80 STS-26A Forward Exit Cone - Aft End (0 Degrees)
Figure do Sid-Zon forward Bare cone and and the of the

DOC NO.	TWR-17272	VOL
SEC	PAGE	iii

Thickol CORPORATION

LIST OF FIGURES (continued)

Figure 81 STS-26A Forward Exit Cone - Aft End (120 Degrees)139 Figure 82 STS-26A Forward Exit Cone - Aft End (240 Degrees)140 Figure 83 STS-26A Forward Exit Cone Aft End Black Corrosion (338 Degrees)141 Figure 84 STS-26A Forward Exit Cone Aft End White Corrosion (45 Degrees)142 Figure 85 STS-26A Forward Exit Cone Aft End Scratch Mark (90 Degrees) ..143 Figure 86 STS-26A Throat/Forward Exit Cone Joint144 Figure 87 STS-26A Forward Exit Cone - Forward End (0 Degrees)145 Figure 88 STS-26A Forward Exit Cone - Forward End (120 Degrees)146 Figure 89 STS-26A Forward Exit Cone - Forward End (240 Degrees)147 Figure 90 STS-26A Throat Aft End (0 Degrees)148 Figure 91 STS-26A Throat Aft End (120 Degrees)149 Figure 92 STS-26A Throat Aft End (240 Degrees)150 Figure 93 STS-26A Throat Aft End - Blowpath (310 Degrees)151 Figure 95 STS-26A Throat Forward End (0 Degrees)153 Figure 96 STS-26A Throat Forward End (120 Degrees)154 Figure 97 STS-26A Throat Forward End (240 Degrees)155 Figure 98 STS-26A Aft Inlet (-504) Ring Aft End (0 Degrees)156 Figure 99 STS-26A Aft Inlet (-504) Ring Aft End (120 Degrees)157 Figure 100 STS-26A Aft Inlet (-504) Ring Aft End (240 Degrees)158 Figure 101 STS-26A Throat Forward End Blowpath (136 Degrees)159 Figure 102 STS-26A Aft Inlet (-504) Ring Aft End Blowpath (136 Degrees).160 Figure 104 STS-26A Cowl Forward End (O Degrees)162 Figure 105 STS-26A Cowl Forward End (120 Degrees)163 Figure 106 STS-26A Cowl Forward End (240 Degrees)164 Figure 107 STS-26A Nose Cap Aft End (O Degrees)165 Figure 108 STS-26A Nose Cap - Aft End (120 Degrees)166 Figure 109 STS-26A Nose Cap - Aft End (240 Degrees)167 Figure 110 STS-26A Bearing Forward End Ring (0 Degrees)168 Figure 111 STS-26A Bearing Forward End Ring (120 Degrees)169 Figure 112 STS-26A Bearing Forward End Ring (240 Degrees)170 Figure 113 STS-26A Cowl Forward End - Blowpath Location (216 Degrees) ..171 Figure 115 STS-26A Fixed Housing Forward End (O Degrees)173 Figure 117 STS-26A Fixed Housing Forward End (240 Degrees)175 Figure 118 STS-26A Bearing Aft End Ring (O Degrees)176 Figure 119 STS-26A Bearing Aft End Ring (120 Degrees)177 Figure 122 STS-26A Fixed Housing Forward End Rust on Metal Surfaces Figure 123 STS-26A Bearing Aft End Ring - White Corrosion Spot

DOC NO.	TWR-1/2/2	VOL
SEC	PAGE	iv

Thickol corporation space operations

LIST OF FIGURES (continued)

197
Figure 124 STS-26B Joint Flow Surface Gap Openings
The same of the Fernard Norrig Assembly
10/ OMC 9/D Removed Nogzie Assembly
n, 107 CTC 26B Forward Nozzle Assembly (External) U (0.90
ny una 120 cmc 26P Forward Nozzle Assembly (External) 180 ° to 270
The superior of the Forward Nozzle Assembly (Internal) U = 10 90
nt 120 CTC 260 Forward Nozzle Assembly (Internal) 180 ° (0 270
- 101 cmc 36P Aft Evit Cone Fragment
Figure 132 SIS-26B Forward Exit Cone Bondline Separations
Figure 133 STS-26B Forward Exit Cone Liner Section (0 Degrees)
Figure 134 STS-26B Forward Exit Cone Liner Section (90 Degrees)
Figure 135 STS-26B Forward Exit Cone Liner Section (180 Degrees)
Figure 136 STS-26B Forward Exit Cone Liner Section (100 Degrees)
Figure 137 STS-26B Forward Exit Cone Corrosion (0 Degrees)
Figure 138 STS-26B Forward Exit Cone Corrosion (80 Degrees)
Figure 138 STS-268 Forward Exit Cone Corrosion (80 Degrees)
Figure 139 STS-26B Forward Exit Cone Corrosion (30 Degrees)
Figure 140 SIS-26B Forward Exit Cone Corrosion (60 Degrees)
Figure 141 SIS-26B Forward Exit Cone Corrosion (120 Degrees)
Figure 142 STS-26B Forward Exit Cone Corrosion (240 Degrees)
Figure 143 SIS-26B Forward Exit Cone Corrosion (270 Degrees)
Figure 144 SIS-26B Forward Exit cone correspond (28 - 40 Degrees)205 Figure 145 STS-26B Throat Inlet Ring Wedgeout (28 - 40 Degrees)
Figure 146 STS-26B Throat Assembly Bondline Separations
Figure 146 STS-26B Throat Assembly Bond Interview (0 Degrees)
$\sim \sim $
Figure 149 STS-26B (-503) Ring Impact Marks (125 Degrees)
Figure 150 STS-26B (-503) Ring Impact Marks (185 Degrees)
Figure 151 STS-26B Typical Nose Cap Aft End Wedgeout (Post-Burn)
(170 Begrood)
Figure 153 STS-26B Nose Inlet Assembly Bondline Separations
Contion (1) Degrees)
Figure 155 STS-26B Forward Nose Ring and Aft Inlet Ring (-503 and -504)
Contion (90 Degrees)
Figure 156 STS-26B Forward Nose Ring and Aft Inlet Ring (-503 and -504)
nimum 157 CTS 26B Forward Nose Ring and Aft Inlet Ring (-503 and -504)
150 cmc 3(D Nose Can Soction (O Degrees)
m, 170 cmc 960 Nono Can Section (180 Degrees)
Figure 160 STS-26B Nose Cap Section (100 Degrees)

DOC NO.	TWR-17272	VOL
SEC	PAGE	
	l v	

LIST OF FIGURES (continued)

. . . .

Figure 162 STS-26B Nose Inlet Housing Bonding Surfaces (0 Degrees)226
- $ -$
-1 A(1 000 0(D Nora Intot Houging Konding Surlates (100 Desired) $(100 - 100)$
- ICE and OCD Nege Thist Housing Bonding Surfaces (2/0 Decrees) (11-2)
-1 1/7 and 1/P Nego Con Bonding Surface (180 Devices) $++++++++++++++++++++++++++++++++++++$
Figure 167 SIS-26B Nose Cap Bonding Surface (180 Degrees)
Figure 168 STS-26B Nose fillet housing filtering (100 Degrees)
Figure 169 STS-26B Cow1/OBR Closeup (O Degrees)
Figure 169 STS-26B Cow1/0BK Closeup (0 Degrees)
Figure 170 STS-26B Cow1/0BR Closeup (160 Degrees)235 Figure 171 STS-26B Cow1/0BR Closeup (320 Degrees)
Figure 172 STS-26B Cowl Vent Hole Plugged with Stag (100 Degrees)
· · · · · · · · · · · · · · · · · · ·
= 170 and 900 Coul Ding Soction (4) Devices ($11111111111111111111111111111111111$
= 1 477 and 960 2000 1000 5000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
-, $-$, $-$, $-$, $-$, $-$, $-$, $-$,
- 170 and 04P Outor Boot Ring Aff (1) Delamination (0 Desices) """
-1 170 cmc 920 0.000 Root Ring Section (U Devices) $1000000000000000000000000000000000000$
Figure 180 SIS-26B Outer Boot King Section (160 Degrees)
Figure 181 STS-26B Outer Boot King Section (100 Degrees)
Figure 181 SIS-26B Outer Boot Ring Section (280 Degrees)
Figure 182 STS-26B flex Boot (Cavity Side – O Degrees)
AO I O O O O D D O O D O O O O O O O O O
$\sim \sim $
\sim
\sim 100 omg 9(D Divid Houging Section (100 Devices) \rightarrow \rightarrow
And ama O(D Descing Brotootor (1) Degrees)
AAE AMA ACH AEA Ruit Cono Korward KNA LU DEVLEESI +++++++++++++++
Figure 196 STS-26B Aft Exit Cone Forward End (240 Degrees)
Figure 197 STS-26B Art Exit cone Forward End (240 Degrees)
Figure 198 STS-26B Forward Exit Cone - Alt End (O Degrees)
Figure 198 STS-26B Forward Exit Cone – Aft End (120 Degrees)
- ATT MOD LEVEL COND - ATT MOD LEVEL CONT
=
- $ -$
Figure 205 STS-26B Forward Exit Cone - Forward End (240 Degrees)278 Figure 206 STS-26B Forward Exit Cone - Forward End (240 Degrees)278
LIRULE TOO PID TOT TOT TOT TOT TOT TOT TOT TOT TOT TO

TWR 17272

Thickol corporation space operations

LIST OF FIGURES (continued)

		Throat Aft End (O Degrees)
Figure 20	0 CTC-20B	Throat Aft End (120 Degrees)
Figure 20	08 STS-26B	Throat Aft End (240 Degrees)
Figure 20	9 STS-26B	Nose Inlet/Throat Housing Joint
Figure 21	0 STS-26B	Throat - Forward End (0 Degrees)
Figure 21	1 STS-26B	Throat - Forward End (0 Degrees)
Figure 21	2 STS-26B	Throat – Forward End (120 Degrees)
Figure 21	3 STS-26B	Throat - Forward End (240 Degrees)
Figure 21	4 STS-26B	Aft Inlet (-504) Ring - Aft End (0 Degrees)
Figure 21	15 STS-26B	Aft Inlet (-504) Ring - Aft End (120 Degrees)287
Figure 23	L6 STS-26B	Aft Inlet (-504) Ring - Aft End (240 Degrees)288
Figure 23	L7 STS-26B	Nose Inlet Housing/Flex Bearing Joint
Figure 21	L8 STS-26B	Cowl - Forward End (O Degrees)
Figure 2	19 STS-26B	Cowl - Forward End (120 Degrees)
Figure 22	20 STS-26B	Cowl - Forward End (240 Degrees)
Figure 23	21 STS-26B	Nose Cap – Aft End (O Degrees)
Figuro 2'	77 STS_76B	Nose Cap – Aft End (120 Degrees) $\dots \dots \dots$
Figure 2	73 STS_26R	Nose Cap - Aft End (240 Degrees)
Figure 2	24 CTC26R	Bearing Forward End Ring (O Degrees)
Figuro 2	25 STS_26B	Bearing Forward End Ring (150 Degrees)
Figure 2	26 STS_26B	Bearing Forward End Ring (240 Degrees)
Figure 2	27 STS-26B	Nose Can - Aft End (266 Degrees)
Figuro 2	28 STS_268	Cowl Forward End - Blowpath Location (18 Degrees)300
Figure 2	70 CTC 76R	Flex Rearing/Fixed Housing Joint
Figuro 2	30 STS_26B	Bearing Aft End Ring (0 Degrees)
Riguro 2	31 STS_26B	Bearing Aft End Ring (120 Degrees)
Figuro 2	37 STS_76B	Bearing Aft End Ring (240 Degrees)
Figuro 2	33 STS_26B	Fixed Housing Forward End (O Degrees)
Figuro 2	34 STS-26B	Fixed Housing Forward End (120 Degrees)
Figure 2	35 STS_26B	Fixed Housing Forward End (240 Degrees)
Figure 7	36 STS_26B	Aft Exit Cone LDI Location (45 Degrees)
LIRUTE T	JU DIO 200	

DOC NO.	TWR-17272	VOL
SEC	PAGE V	ii

LIST OF TABLES

- -

		and the poly office Crease Redial
Table	1	STS-26A Aft Exit Cone Post-Flight Polysulfide Groove Radial
		Widths
Table	2	STS-26A Forward Exit Cone Erosion and Char Data
Table	3	STS-26A Throat Assembly Erosion and Char Data
Table	4	STS-26A Nose Inlet Rings (-503, -504) Erosion and Char Data 87
Table	5	STS-26A Nose Cap Assembly Erosion and Char Data
Table	6	STS-26A Cowl/OBR Erosion and Char Data
Table	7	STS-26A Flex Boot Data Performance Margins of Safety
Table	8	STS-26A Fixed Housing Insulation Erosion and Char Data127
Table	9	STS 26B Aft Fyit Cone Post-Flight Polysulfide Groove Radial
		Widths
Table	10	STS 26B Forward Exit Cone Erosion and Char Data
Tabla	11	STS_26B Throat Assembly Erosion and Char Data
Tabla	12	STE 26B Noce Injet Rings (-503, -504) Erosion and Unar Data223
Tabla	13	STS_26B Nose Can Assembly Erosion and Char Data
Table	1 /	cmc 26B Cowl/OBR Erosion and Char Data
m.L.1.	15	cmc 26P Floy Boot Data Performance Margins of Salety
Table	16	STS-26B Fixed Housing Insulation Erosion and Char Data
	10	STS-26B Maximum Bearing Protector Erosion in Line with Cowl
Table	1/	Vent Holes
		Vent Holes

Thickol CORPORATION SPACE OPERATIONS

1.0 INTRODUCTION

A review of the performance and post-flight condition of the STS-26 Redesigned Solid Rocket Motor (RSRM) nozzles is presented in this document. Applicable Discrepancy Reports (DRs) and Process Departures (PDs) are presented in Section 5.0. The Nozzle Component Program Team (NCPT) performance evaluation and the Redesign Program Review Board (RPRB) assessment is included in Section 6.0.

The STS-26 nozzle assemblies were flown on the RSRM First Flight (Space Shuttle Discovery) on 29 September 1988. The nozzles were a partially submerged convergent/divergent movable design with an aft pivot point flexible bearing. The nozzle assembly (Figure 1) incorporated the following features:

- a. RSRM forward exit cone with snubbers
- b. RSRM fixed housing
- c. Structural backup Outer Boot Ring (OBR)
- d. RSRM cowl ring
- e. RSRM nose inlet assembly
- f. RSRM throat assembly
- g. RSRM forward nose and aft inlet ring
- h. RSRM aft exit cone assembly with Linear-Shaped Charge (LSC)
- i. RTV backfill in joints 1, 3, and 4
- j. Use of EA913 NA adhesive in place of EA913 adhesive

DOC NO. TWR-17272		VOL	
SEC	PAGE 1		

Thickol CORPORATION SPACE OPERATIONS

k. Redesigned nozzle plug

1. Carbon Cloth Phenolic (CCP) with 750 ppm sodium content

Figures 2a and 2b show the CCP material usage for the STS-26 forward nozzle assemblies and aft exit cone assemblies.

2.0 OBJECTIVES

The RSRM First Flight test objectives, as outlined in TWR-17535 (MTI Engineering Requirements Document for RSRM First Flight), are as follows (CPW1-3600 paragraph numbers are in parentheses):

- K. Demonstrate flex bearing system reusability (3.2.1.9.c).
- Y. Post-flight inspection of flex bearing to determine sealing performance in the flight environment (3.2.1.2.3.b).
- Z. Post-flight inspection to verify no gas leaks occurred between the flex bearing internal components (3.2.1.2.3.d).
- AD. Post-flight inspection for flex bearing damage due to water impact (3.2.1.4.6.a).
- AE. Post-flight inspection to verify nozzle liner performance (3.2.1.4.13).
- AV. Post-flight inspection to verify remaining nozzle ablative thicknesses (3.3.6.1.2.7).

Post-flight inspection to verify nozzle safety factors (3.3.6.1.2.8).

3.0 SUMMARY/CONCLUSIONS

Compliance to the objectives is discussed below.

K. Evaluation indicates no condition which would adversely affect the reusability of the flex bearing system. Both flex bearings

201/01/01	DOC NO. TWR-17272	VOL
REVISION	SEC PAGE 2	

Thickol CORPORATION SPACE OPERATIONS

have met all of the refurbishment requirements and are acceptable for reuse.

- Y. Preliminary inspection shows the flex bearings remained sealed throughout all motor induced environments. Tensile leak tests done during the refurbishment cycle indicated no leakage.
- Z. Preliminary inspection shows the flex bearings maintained a positive seal within the internal components. Tensile leak tests done during the refurbishment cycle also indicated no leakage.
- AD. Both flex bearings have met all of the refurbishment requirements indicating there was no damage due to water impact.
- AE. Evaluation of both nozzle liners revealed erosion profiles similar to what has been observed on RSRM static test nozzles. Wedgeouts in the aft ends of the RH cowl (120 to 137 degrees) and nose cap (5 to 20 degrees) contained small amounts of slag. Sectioning of the liners showed that the wedgeouts occurred post-burn.
- AV. Measurements of the nozzle remaining ablative liner thicknesses show that the design safety factors have been met.

Sectioning and measurement of the liners show that the performance margins of safety are all positive.

4.0 RESULTS/DISCUSSION

All STS-26 post-flight nozzle observations are discussed in detail below. CCP liner Performance Margins of Safety (PMS) are presented using measured erosion, and corresponding measured char values adjusted to the end of action time.

DOC NO. TWR-17272		VOL
SEC	PAGE	

Thickol CORPORATION SPACE OPERATIC

4.1 STS-26A (LH) Nozzle/Flex Bearing

Overall erosion of the STS-26A forward nozzle assembly CCP ablative liner was smooth and uniform. All CCP delaminations, wedgeouts, and pop-ups were determined to be post-burn occurrences resulting from cooldown of the liners. Blowpaths were observed in joints 1, 2, and 4, but there was no blowby, erosion, or heat effect to the primary O-rings. Small amounts of corrosion were found on the metal surfaces of joints 1, 3, 4, and 5, but no pitting was observed. Heavy corrosion and pitting was found on the nose inlet housing bonding surfaces when the phenolics were washed off.

Post-flight subassembly flow surface gaps are shown in Figure 3. Overall views of the nozzle are shown in Figures 4 through 9.

4.1.1 STS-26A Nozzle Components

STS-26A Aft Exit Cone Assembly

Overall views of the STS-26A aft exit cone fragment are shown in Figures 10 and 11.

The aft exit cone was severed aft of the compliance ring by the LSC. The nozzle severance system performance was nominal. The exit cone cut was clean, with no unusual tearing or breaking. The remaining aft exit cone

DOC NO. TWR-17272		VOL	
SEC	PAGE 4		

Thickol CORPORATION

fragment showed missing CCP liner 360 degrees circumferentially. This is a typical post-flight observation and occurs at LSC firing and at splashdown. Glass Cloth Phenolic (GCP) plies exposed by the missing liner showed no signs of heat effect.

The polysulfide groove fill on the forward end of the aft exit cone showed no separations. Post-flight measurements of the polysulfide groove radial width (Table 1) show that the GCP insulator did not pull away from the aluminum shell during cooldown. The polysulfide shrank axially aft up to 0.12 in.

There were no separations observed within the GCP insulator on the forward end.

STS-26A Forward Exit Cone Assembly

Overall views of the STS-26A forward exit cone are shown in Figures 8 and 9.

The forward exit cone showed missing CCP liner over the center portion of the cone 360 degrees circumferentially. This is a typical post-flight observation and occurs at splashdown and during Diver Operated Plug (DOP) insertion. The GCP insulator exposed by the missing liner showed no signs of heat effect. The CCP liner remained bonded on the forward 11 inches and

TWR-17272		VOL
SEC	PAGE 5	

Thickol corporation

on the aft 8 inches of the cone. These portions showed nominal erosion with no major washing or pocketing. The aft 8 inches of the liner showed the typical dimpled erosion pattern that has occurred on all flight and static test forward exit cones (see Figure 12). The maximum radial depth of the dimpled erosion was 0.15 inch.

The aft end of the forward exit cone showed bondline separations between the EA946 adhesive and the steel housing from 30 to 60 degrees and from 124 to 148 degrees. The maximum radial width of the separations was 0.025 inch. The forward end of the forward exit cone showed bondline separations between the GCP and CCP (0.04 inch maximum radial width), and cohesive separations within the GCP (0.04 inch maximum radial width) intermittently around the circumference. Figure 13 lists the location and radial width measurements of all separations on the forward exit cone. These separations are typical observations which have been seen on previous static test and flight nozzles, and have been shown to occur post-burn.

Photographs of the sectioned forward exit cone liner are presented in Figures 14 through 17. Char and erosion analysis of the sections is presented in Table 2. Figure 18 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.01 occurring at station 28 (180 degrees).

DOC NO. TWR-17272		VOL
SEC	PAGE	

Thickol CORPORATION SPACE OPERATIONS

STS-26A Throat Assembly

Overall views of the STS-26A throat assembly (throat ring and throat inlet ring) are shown in Figures 8 and 9.

The post-fired mean diameter of the throat was 55.922 inches (erosion rate of 8.42 mils/second based on an action time of 122.4 seconds). Nozzle post-burn throat diameters have ranged from 55.787 to 56.38 inches. The flow surface bondline gap between the throat and throat inlet rings was 0.08 inch and is typical of past static test and flight nozzles.

Erosion of the throat and throat inlet rings was smooth and uniform with no wedgeouts observed. Popped-up charred CCP material was observed on the forward 1.5 inches of the throat ring at 10, 70, 210, 285, and 345 degrees. Sharp edges indicate the popped-up material occurred after motor operation. Impact marks were noted on the throat inlet ring and on the aft end of the throat ring intermittently around the circumference. The largest was located on the throat inlet ring at 130 degrees and measured 1 inch circumferentially by 0.5 inch axially by 0.25 inch radially (Figure 19). These marks most likely resulted from the loose aft and forward exit cone CCP material inside the motor at splashdown.

Bondline separations between the EA913 NA adhesive and the steel throat support housing were observed on the aft end circumferentially except from

DOC NO. TWR-17272		VOL
SEC	PAGE 7	

Thickol CORPORATION

O to 25 degrees and at 335 degrees. The maximum radial width of these separations was 0.10 inch. Metal-to-adhesive bondline separations measuring 0.03 inch wide radially were observed on the forward end of the throat assembly circumferentially except at 180 degrees. Separations between the adhesive and GCP and within the adhesive were observed at 110, and 180 degrees, respectively. These also measured 0.03 inch wide radially. Figure 20 lists the location and radial width measurements of all separations on the throat assembly. These separations are typical observations which have been seen on previous static test and flight nozzles, and have been shown to occur post-burn.

Photographs of the sectioned throat assembly liner are presented in Figures 21 through 24. Char and erosion analysis of the sections is presented in Table 3. Figure 25 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.06 occurring at station 8 (0 degrees).

STS-26A Nose Inlet Assembly

Overall views of the STS-26A nose inlet asssembly (forward nose ring, aft inlet ring, and nose cap) are shown in Figures 4 and 5.

The ply angle of the forward nose (-503) ring was checked and found to be of the RSRM design. The flow surface bondline gap between the -503 ring

DOC NO. TWR-17272		VOL	
SEC	PAGE 8		

Thickol CORPORATION SPACE OPERATIONS

and the aft inlet (-504) ring was 0.15 inch. The flow surface bondline gap between the -503 ring and the nose cap was 0.05 inch. These post-fired measurements are typical of past static test and flight nozzles.

The -503 and -504 rings showed smooth erosion with no pockets, wash areas, or wedgeouts. Impact marks occurring after motor operation were observed on both rings intermittently around the circumference (Figures 26 and 27). These marks most likely resulted from the loose aft and forward exit cone CCP material inside the motor at splashdown.

The nose cap showed smooth erosion with no pockets or major washes observed. The aft 2 to 3 inches showed popped-up charred CCP material at 137, 280, 310, and 332 degrees. Typical post-burn wedgeouts on the aft 2 to 3 inches (Figure 28) were noted from 14 to 26, 40 to 93, 110 to 122, 156 to 172, and 248 to 265 degrees. The maximum radial depth was 0.5 inch at the cowl interface. Sharp edges indicate the popped-up material and the wedgeouts occurred after motor operation. No wedgeouts were observed on the forward end of the nose cap.

The aft end of the nose inlet assembly (-504 ring aft end) showed metal to adhesive bondline separations (0.01 inch maximum radial width) occurring intermittently around the circumference. Bondline separations between the EA946 adhesive and the GCP (0.01 inch maximum radial width) were also

DOC NO. TWR-17272		VOL	
SEC	PAGE		

Thickol CORPORATION ACE OPERATIO

observed. Bondline separations were observed on the aft end of the nose cap between the metal and EA946 adhesive, and the adhesive and GCP intermittently around the circumference. The maximum radial width of these separations was 0.005 inch. One separation, 0.003 inch wide radially, was noted within the adhesive from 26 to 28 degrees. Figure 29 lists the location and radial width measurements of all separations on the nose inlet assembly. These separations are typical observations seen on previous static test and flight nozzles and have been shown to occur post-burn.

Photographs of the sectioned nose inlet assembly rings are presented in Figures 30 through 37. Char and erosion analysis of the sections is presented in Tables 4 and 5. Figure 38 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.05 occurring at station 39.5 (180 degrees) for the -503/-504 rings, and 0.04 occurring at station 24 (90 degrees) for the nose cap.

Following the washout of the phenolics, it was found that the aluminum nose inlet housing had extensive corrosion and pitting on all bonding surfaces 360 degrees circumferentially (Figures 39 through 46). This was also found on the STS-26B (RH) nose inlet housing. The cause of this corrosion has been attributed to seawater which enters bondline separations during splashdown and retrieval (Ref. Memo L231-FY89-M130). The metal bonding surfaces were not accessible until phenolic washout at Clearfield Operations. Therefore, corrosion protection was not applied to these

DOC NO.	TWR-17272		VOL	
SEC		PAGE 10		

Thickol CORPORATION

surfaces until approximately 4 months after flight. This hardware will be inspected during refurbishment for compliance to STW7-3434 (Refurbishment Of And Acceptance Criteria For Space Shuttle SRM Nozzle Metal Hardware).

STS-26A Cowl Ring

Overall views of the STS-26A cowl ring are shown in Figures 6 and 7. Close-up views are shown in Figures 47 through 50. All cowl vent holes appeared plugged with slag on the Outer Diameter (OD) of the ring (see Figure 48).

Typical ridged erosion was observed intermittently around the cowl circumference. The forward portion of the ring eroded a maximum of 0.15 inch greater than on the aft portion of the ring (Figure 47). This is a result of the low ply angle of the cowl ring and has been observed on the majority of flight and static test nozzles. There were no wedgeouts observed on the cowl ring.

There were no bondline separations on the forward end of the cowl ring.

Photographs of the sectioned cowl ring are presented in Figures 51 through 54. Typical subsurface ply lifting was observed intermittently around the circumference along the forward 2 inches of the cowl. The largest ply lift separation was 0.10 inch at 0 degrees (Figure 51). There was no evidence of flow or erosion within the delaminations.

TWR-17272	VOL
SEC	PAGE 11

REVISION ____

Thickol CORPORATION SPACE OPERATI

Char and erosion analysis of the sections is presented in Table 6 (Stations 0 through 7). Figure 55 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.19 occurring at station 2 (90 degrees).

STS-26A Outer Boot Ring/Flex boot

Overall views of the STS-26A OBR and flex boot are shown in Figures 6 and 7. Close-up views of the OBR are shown in Figures 47 through 50. The bondline between the OBR and cowl ring remained intact with no indications of flow. The flow surface bondline gap was 0.18 inch and is typical of past static test and flight nozzles.

The structural backup OBR was intact. The flow surfaces showed smooth erosion with no pockets, major washes, or wedgeouts. Delaminations in the charred CCP of the aft tip were observed 360 degrees circumferentially (Figure 56). Charred CCP material on the aft tip adjacent to the flex boot fractured and popped up over a majority of the circumference (Figure 57). A large impact mark was located on the aft end of the OBR at 190 degrees and measured 6 inches circumferentially (Figure 49). This may have been due to the loose CCP material in the motor after splashdown. Sharp edges on the surfaces indicate this occurred after motor operation.

DOC NO. TWR-17272	VOL	
SEC	PAGE 12	

Thickol CORPORATION SPACE OPERATIONS

Photographs of the sectioned OBR are presented in Figures 58 through 61. Char and erosion analysis of the sections is presented in Table 6 (Stations 8 through 12). Figure 55 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.58 occurring at station 9 (90 degrees).

The flex boot remained attached to the outer boot ring 360 degrees circumferentially, and showed no bonline separations. The cavity side of the flex boot was evenly sooted and showed no evidence of flow or erosion (Figures 62 through 64). It appeared typical of previous flight and static test motor flex boots. A minimum of 3 NBR plies remained around the circumference after motor burn. Table 7 presents the flex boot material affected depths and performance margins of safety (PMS). The worst case PMS was 0.19 at 280 degrees.

STS-26A Fixed Housing

Overall views of the STS-26A fixed housing assembly are shown in Figures 6 and 7.

The fixed housing insulation erosion was smooth and uniform. Post-burn wedgeouts of charred CCP material were observed on the forward 2 inches intermittently around the circumference (Figure 65). The maximum radial depth of these wedgeouts was 0.5 inch. There was no heat effect to the GCP.

DOC NO. TWR-17272		VOL
SEC	PAGE 13	

Thickol CORPORATION SPACE OPERATIONS

There were no bondline separations observed on the forward or aft end.

Photographs of the sectioned fixed housing assembly liner are presented in Figures 66 through 69. Char and erosion analysis of the sections is presented in Table 8. Figure 70 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.56 occurring at station 11 (0 degrees).

STS-26A Bearing Protector

The bearing protector was sooted along the entire length and circumference (Figures 71 through 73). Slightly heavier soot and erosion was observed in line with the cowl ring vent holes at the thickened portion, but there was no bearing protector burn-through. There was no evidence of heat effect on the Inner Diameter (ID) surface of the bearing protector.

STS-26A Flex Bearing

Examination of the flex bearing revealed no damage, soot, heat effect, or flow indications (see Figures 74 and 75). All rubber pads, metal shims, and end rings appeared to be in nominal condition. Subsequent refurbishment and testing has verified that the flex bearing is acceptable for reuse.

DOC NO. TWR-17272		VOL
SEC	PAGE 14	·

Thickol CORPORATION SPACE OPERATIONS

4.1.2 STS-26A Nozzle Internal Joints

Descriptions of the STS-26A nozzle internal joints follows.

STS-26A Aft Exit Cone-to-Forward Exit Cone (Joint No. 1)

A cross-sectioned view of the STS-26A aft exit cone/forward exit cone field joint is presented in Figure 76. Photographs of the post-flight joint are shown in Figures 77 through 82.

The backfilled RTV extended below the joint char line circumferentially except at the 266.2-degree location. RTV filled the radial ID portion of the joint except at 236.2, 266.2, 292.8, and 296.6 degrees where unfilled void areas were located. The backfill also reached the high pressure side of the primary 0-ring from 38 to 185, and 314.4 to 356.2 degrees. One blowpath 0.10 inch wide circumferentially was observed at the 266.2 degrees unfilled void area. The primary 0-ring saw pressure, but showed no signs of blowby, erosion, or heat effect.

Examination of the joint showed a black residue and aluminum oxide corrosion appearing on both metal surfaces of the joint between the primary and secondary O-rings, and outboard of the secondary O-ring intermittently around the circumference. The black residue was heaviest from 131 to 270 to 0 degrees (Figure 83). The aluminum oxide corrosion was heaviest from 0

DOC NO. TWR-17272		VOL
SEC	PAGE 15	

Thickol CORPORATION

to 90 to 131 degrees (Figure 84). There was no pitting observed. It has been determined that the black residue is the beginning stage of the aluminum oxide corrosion.

The aft flange of the forward exit cone was scratched at the 90-degree location by a guide pin during aft exit cone demate (Figure 85). The scratch was approximately 0.002 inch deep axially, 3.5 inches long circumferentially and 0.375 inch wide radially.

STS-26A Throat-to-Forward Exit Cone (Joint No. 4)

A cross-sectioned view of the STS-26A throat/forward exit cone joint is presented in Figure 86. Photographs of the post-flight joint are shown in Figures 87 through 92.

The RTV backfill extended below the joint char line and filled the axial portion of the joint 360 degrees circumferentially. RTV reached the high pressure side of the primary O-ring from 65 to 125, 195 to 210, and 312 to 350 degrees. One blow path measuring 1.0 inch circumferentially was found at 310 degrees on the radial OD portion of the joint (Figure 93). The GCP was sooted at this location, but not heat affected. The primary O-ring saw pressure, but there was no evidence of blowby, erosion, or heat effect. Soot was not evident on the radial ID or the axial portions of the joint.

DOC NO. TWR-17272		VOL
SEC	PAGE 16	

Thickol CORPORATION

It is believed that the blow path extended cohesively through the RTV at this location. White deposits, possibly salt, were found on the phenolic radial ID portion of the joint intermittently around the circumference.

Corrosion was evident on both metal surfaces of the joint, extending from 25 to 125, and 190 to 330 degrees on the throat and 360 degrees circumferentially on the forward exit cone. There was no pitting observed on the metal surfaces.

STS-26A Nose Inlet-to-Throat (Joint No. 3)

A cross-sectioned view of the STS-26A nose inlet/throat joint is presented in Figure 94. Photographs of the post-flight joint are shown in Figures 95 through 100.

The RTV backfill extended below the joint char line 360 degrees circumferentially. RTV completely filled the radial ID portion of the joint circumferentially except from 309 to 313 degrees. RTV also extended onto the radial OD from 52 to 70, 146 to 149, 163 to 171, 174 to 190, 195 to 197, and 210 to 220 degrees, but did not reach the primary 0-ring. One blow path measuring 0.9 inch wide circumferentially and 1.2 inches deep radially was observed at 136 degrees (Figures 101 and 102). The blow path terminated within the RTV. The primary 0-ring did not see pressure.

DOC NO. TWR-17272		VOL
SEC	PAGE 17	

Thickol CORPORATION

Aluminum oxide corrosion was observed on both metal surfaces of the joint inboard of the primary O-ring, but no pitting was observed. Rust was found within the metal/adhesive separations on the forward end of the throat support housing intermittently around the circumference.

Minor surface scratches were observed on the aft end of the nose inlet housing (-504 ring aft end) where jacking screws were used to disassemble the joint.

STS-26A Nose Inlet-to-Bearing Forward End Ring-to-Cowl (Joint No. 2)

A cross-sectioned view of the STS-26A nose inlet/forward end ring/cowl joint is presented in Figure 103. Photographs of the post-flight joint are shown in Figures 104 through 112.

The RTV extended below the joint char line and filled the axial portion of the joint 360 degrees circumferentially. The radial bondline between the nose cap and cowl showed RTV mixed with the EA913 NA adhesive 360 degrees circumferentially. The adhesive was typically sandwiched between two layers of RTV. There was no RTV extending to the primary O-ring. One blow path was observed at 216 degrees. On the aft end of the nose cap, the blow path measured 0.60 inch wide circumferentially and charred the GCP approximately 0.005 inch deep axially. On the forward end of the cowl ring, the blow path measured 0.40 inch wide circumferentially and charred

DOC NO. TWR-1727	2 VOL
SEC	PAGE 18

Thickol corporation

the silica cloth phenolic (SCP) approximately 0.01 inch deep axially (Figure 113). The EA913 NA adhesive on the cowl eroded approximately 0.1 inch deep axially (maximum) by 0.7 inch wide circumferentially at the blow path location. Soot was observed on the nose cap/forward end ring interface surfaces, reaching the primary 0-ring from 156 to 162, and 180 to 240 degrees (Figure 112). There was no blowby, erosion, or heat effect to the primary 0-ring. Soot also extended to midway between the bolt holes around the remainder of the circumference.

Both the nose inlet housing and the cowl housing metal surfaces were heavily sooted at the blow path location. Electrical conductivity tests run on these parts showed that there was no heat damage. The bearing forward end ring was also sooted, and the paint was chipped off in various spots, but neither the end ring or the paint were heat affected.

Water was found on the nose housing aft face and in the bolt holes from 12 to 198 degrees. Aluminum oxide corrosion was observed on the forward face of the cowl housing from 214 to 224 degrees and extended approximately 0.5 inch radially inward. Corrosion and salt deposits were also found on the 360 degrees flange forward housing the cowl of surface ID This indicates water leaked between the cowl housing circumferentially. and bearing protector during splashdown.

DOC NO. TWR-17272	VOL
SEC	PAGE 19

Thickol CORPORATION SPACE OPERATIONS

STS-26A Fixed Housing-to-Bearing Aft End Ring (Joint No. 5)

A cross-sectioned view of the STS-26A aft end ring/fixed housing joint is presented in Figure 114. Photographs of the post-flight joint are shown in Figures 115 through 121.

RTV filled approximately 80 percent of the axial portion of the joint and reached the high pressure side of the primary 0-ring at 25 to 30, 35 to 43, 55, 65 to 78, 240, and 308 to 313 degrees. Voids isolated within the RTV were observed on the radial portion of the joint intermittently around the circumference (Figure 121). The largest measured 0.9 inch deep radially by 1.7 inches wide circumferentially. None of the voids extended to the flex boot cavity. There were no blow paths observed in the joint.

Water was found on the aft face of the aft end ring and in the bolt holes intermittently around the circumference. Rust corrosion was observed on both metal surfaces of the joint between the O-rings at 15 degrees (Figure 122), but there was no pitting. Rust corrosion was found on the aft end ring inboard of the secondary O-ring intermittently around the circumference. Again, no pitting was observed. A white corrosion spot (0.10 inch in diameter) located at 260 degrees was also noted (Figure 123).

DOC NO. TWR-17272		VOL
SEC	PAGE 20	

Thickol CORPORATION

4.2 STS-26B Nozzle/Flex Bearing

Overall erosion of the STS-26B forward nozzle assembly CCP ablative liner was smooth and uniform. All CCP delaminations, wedgeouts, and pop-ups were determined to be post-burn occurrences resulting from cooldown of the liners. Blowpaths were observed in joints 2 and 4, but there was no blowby, erosion, or heat effect to the primary O-rings. Small amounts of corrosion were found on the metal surfaces of joints 1, 2, 3, and 4, but no pitting was observed. Heavy corrosion and pitting was found on the nose inlet housing bonding surfaces when the phenolics were washed off. The forward exit cone also showed corrosion on the ID bonding surface.

Post-flight subassembly flow surface gaps are shown in Figure 124. Overall views of the nozzle are shown in Figures 125 through 130.

4.2.1 STS-26B Nozzle Components

STS-26B Aft Exit Cone Assembly

An overall view of the STS-26B aft exit cone fragment is shown in Figure 131.

The aft exit cone was severed aft of the compliance ring by the LSC. The nozzle severance system performance was nominal. The exit cone cut was clean, with no unusual tearing or breaking. The remaining aft exit cone

DOC NO. TWR-17272		VOL
SEC	PAGE 21	

Thickol CORPORATION SPACE OPERATION

fragment showed missing CCP liner 360 degrees circumferentially. This is a typical post-flight observation and occurs at LSC firing and during splashdown. GCP plies exposed by the missing liner showed no signs of heat effect.

The polysulfide groove fill on the forward end of the aft exit cone showed one separation between the polysulfide and the GCP insulator. The separation was located at 211 degrees and measured 0.02 inch wide radially, 0.04 inch deep axially and 1.3 inches long circumferentially. Post-flight measurements of the polysulfide groove radial width (Table 9) show that the GCP insulator did not pull away from the aluminum shell during cooldown. The polysulfide shrank axially aft up to 0.10 inch.

There were no separations observed within the GCP insulator on the forward end.

STS-26B Forward Exit Cone Assembly

Overall views of the STS-26B forward exit cone are shown in Figures 129 and 130.

The forward exit cone showed missing CCP liner over the center 14 inches of the cone 360 degrees circumferentially. This is a typical post-flight observation and occurs at splashdown and during Diver Operated Plug (DOP) insertion. The GCP insulator exposed by the missing liner showed no signs

DOC NO. TWR-17272		VOL
SEC	PAGE 22	

Thickol corporation space Operations

of heat effect. The CCP liner remained bonded on the forward 11 inches and on the aft 9 inches of the cone. These portions showed nominal erosion with no major washing or pocketing. The aft 9 inches of the liner showed the typical dimpled erosion pattern that has occurred on all flight and static test forward exit cones (Figure 132). The maximum radial depth of the dimpled erosion was 0.15 inch.

The aft end of the forward exit cone showed no bondline or cohesive separations. Bondline separations on the forward end of the forward exit cone were noted between the steel shell and the EA946 adhesive circumferentially except at 105 degrees. Separations were also found between the GCP and CCP, within the GCP, and within the adhesive. Figure 133 lists the location and radial width measurements of all separations on the forward exit cone. These separations are typical observations seen on previous static test and flight nozzles and have been shown to occur post-burn.

Photographs of the sectioned forward exit cone liner are presented in Figures 134 through 137. Char and erosion analysis of the sections is presented in Table 10. Figure 18 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.05 occurring at station 1 (0 and 180 degrees), and station 8 (270 degrees).

DOC NO. TWR-17272		VOL
SEC	PAGE 23	

Thickol CORPORATION SPACE OPERATIONS

Following washout of the phenolics, large areas of corrosion were noted along the forward 5 to 12 inches of the ID bonding surface (Figures 138 and This "band" of corrosion appeared aft of the forward shear pins. 139). Light and dark colored areas of corrosion as well as rust spots and pitting were observed. Corroded areas were also found on the aft 7 inches of the ID bonding surface centered around the aft shear pin holes (Figures 140 through 144). The largest area was at 120 degrees (Figure 142). Visual inspections of these indicate that sea water may have leaked through the shear pin holes where the lightning cables were attached (every 30 Light and dark areas of corrosion, rust spots, and pitting were degrees). Small rust spots were also noted intermittently around the rest observed. of the ID surface (Figure 142). These were typically 0.050 to 0.10 inches in diameter. This hardware will be inspected during refurbishment for compliance to STW7-3434 (Refurbishment Of And Acceptance Criteria For Space Shuttle SRM Nozzle Metal Hardware).

STS-26B Throat Assembly

Overall views of the STS-26B throat assembly (throat ring and throat inlet ring) are shown in Figures 125 and 126.

The throat post-flight mean diameter was 55.876 inches (erosion rate of 8.18 mils/second based on an action time of 123.2 seconds). Nozzle post-burn throat diameters have ranged from 55.787 to 56.38 inches. The

DOC NO. TWR-17272		VOL
SEC	PAGE 24	

Thickol CORPORATION SPACE OPERATIONS

flow surface bondline gap between the throat and throat inlet rings was 0.10 inch and is typical of past static test and flight nozzles.

The throat and throat inlet rings eroded smoothly with no pockets or major washes observed. The forward end of the throat inlet ring showed post-burn wedgeouts of charred CCP material from 28 to 40, 95 to 105 and 355 to 0 to 5 degrees (Figure 145). The maximum axial width of the wedgeouts was 0.75 inch at the 28-to-40-degree location. Post-burn wedgeouts of the throat inlet ring forward end have been observed on previous post-flight nozzles. The forward 1.5 inches of the throat ring showed popped-up charred CCP material intermittently around the circumference. Sharp edges indicate the popped-up material occurred after motor operation. Marks resulting from DOP insertion were observed on the throat ring intermittently around the circumference.

Bondline separations on the aft end of the throat ring between the EA913 NA adhesive and the steel throat support housing were observed around the majority of the circumference. Separations were also found between the adhesive and GCP, within the GCP, and within the adhesive. There were no separations between the GCP and CCP on the aft end. The forward end of the throat inlet ring showed metal to adhesive bondline separations circumferentially except from 255 to 0 degrees. Separations were also observed between the GCP and CCP. Figure 146 lists the location and radial width measurements of all separations on the throat assembly. These

DOC NO. TWR-17272		VOL
SEC	PAGE 25	

Thickol CORPORATION

separations are typical observations seen on previous static test and flight nozzles and have been shown to occur post-burn.

Photographs of the sectioned throat assembly liner are presented in Figures 147 through 149. Char and erosion analysis of the sections is presented in Table 11. Figure 25 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.07 occurring at station 8 (180 degrees).

STS-26B Nose Inlet Assembly

Overall views of the STS-26B nose inlet assembly (forward nose ring, aft inlet ring, and nose cap) are shown in Figures 125 through 128.

The ply angle of the forward nose ring was checked and found to be of the RSRM design. The flow surface bondline gap between the forward nose (-503) ring and the aft inlet (-504) ring was 0.18 inch. The flow surface bondline gap between the -503 ring and nose cap was 0.05 inch. These post-fired measurements are typical of past static test and flight nozzles.

The -503 and -504 rings showed smooth erosion with no pockets or major washes observed. The -503 ring showed popped-up charred CCP material at the nose cap interface from 155 to 165 degrees. The popped-up material was 0.08 inch wide axially and occurred after motor operation. Impact marks

DOC NO. TWR-17272		VOL	
SEC	PAGE 26	<u> </u>	

Thickol CORPORATION SPACE OPERATIONS

occurring after motor operation were observed on both rings intermittently around the circumference (Figures 150 and 151). The marks most likely resulted from the loose aft and forward exit cone CCP material in the motor at splashdown.

The nose cap showed smooth erosion with no pockets or major washes observed. The aft 2.0 to 3.5 inches of the nose cap showed typical post-burn wedgeouts intermittently around the circumference (Figure 152). These measured approximately 0.5 in. deep radially at the cowl interface. One wedgeout location from 5 to 20 degrees showed slag covering exposed CCP material. Sectioning of the liner determined that this wedgeout occurred post-burn.

The aft end of the nose inlet assembly (-504 ring aft end) showed metal to adhesive bondline separations measuring 0.02 inch wide radially from 238 to 245 degrees, and at 250 degrees. There were no cohesive separations or separations at the adhesive/GCP and GCP/CCP interfaces. Bondline separations were observed on the aft end of the nose cap between the metal and EA946 adhesive at 105, 135 to 255, 285 to 315, and 345 degrees. These separations were typically 0.005 inch wide radially. There were no cohesive separations or separations at the adhesive/GCP and GCP/CCP interfaces. Figure 153 lists the location and radial width measurements of all separations on the nose inlet assembly. These separations are typical observations seen on previous static test and flight nozzles, and have been shown to occur post-burn.

DOC NO. TWR-17272	VOL
SEC	PAGE 27

Thickol CORPORATION SPACE OPERATIO

Photographs of the sectioned nose inlet assembly rings are presented in Figures 154 through 161. Char and erosion analysis of the sections is presented in Tables 12 and 13. Figure 38 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.01 occurring at station 32 (180 degrees) for the -503/-504 rings, and 0.01 occurring at station 24 (225 degrees) for the nose cap.

Following the washout of the phenolics, it was found that the aluminum nose inlet housing had extensive corrosion and pitting on all bonding surfaces 360 degrees circumferentially (Figures 162 through 167). Most of the corrosion on the nose cap bonding surface was found on the aft 5 inches 360 degrees circumferentially. The forward edge of this corrosion was shaped in a "saw tooth" pattern (Figure 166). The leading edge of the nose inlet housing showed areas of pitting approximately 0.04 to 0.05 inch deep (Figure 168). The entire -503 ring bonding surface was heavily corroded and pitted 360 degrees circumferentially, and approximately 90 percent of the -504 ring bonding surface showed various stages of corrosion and This corrosion has been attributed to seawater which enters pitting. during splashdown and retrieval (Ref. Memo bondline separations L231-FY89-M130). The metal bonding surfaces were not accessible until phenolic washout at Clearfield Operations. Therefore, corrosion protection was not applied to these surfaces until approximately 4 months after This hardware will be inspected during refurbishment for flight. compliance to STW7-3434 (Refurbishment Of And Acceptance Criteria For Space Shuttle SRM Nozzle Metal Hardware).

DOC NO.	TWR-17272		VOL
SEC		PAGE 28	

i.

Thickol CORPORATION

STS-26B Cowl Ring

Overall views of the STS-26B cowl ring are shown in Figures 127 and 128. Close-up views are shown in Figures 169 through 171. All cowl vent holes appeared plugged with slag on the OD of the ring (Figure 172).

The cowl ring showed typical ridged erosion intermittently around the part circumference. The forward portion of the ring eroded a maximum of 0.15 inch greater than the aft portion (Figure 169). This is a result of the low ply angle of the cowl ring and has been observed on the majority of flight and static test nozzles. One wedgeout was observed on the aft 3.5 inches of the cowl ring from 120 to 137 degrees (Figure 173). The maximum radial depth of the wedgeout was 0.6 inch at the outer boot ring interface. Slag coated the exposed CCP material at the wedgeout location. Sectioning of the liner determined that this wedgeout occurred post-burn.

There were no bondline separations on the forward end of the cowl ring.

Photographs of the sectioned cowl ring are presented in Figures 174 through 177. Typical subsurface ply lifting was observed intermittently around the circumference along the length of the cowl. The largest ply lift separation was 0.20 inch at 270 degrees (Figure 177). There was no evidence of flow or erosion within the delaminations. Char and erosion analysis of the sections is presented in Table 14 (Stations 0 through 7).

DOC NO. TWR-17272		VOL	
SEC	PAGE 29		

Thickol CORPORATION

Figure 55 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.04 occurring at station 0 (45 degrees).

STS-26B Outer Boot Ring/Flex Boot

Overall views of the STS-26B outer boot ring are shown in Figures 127 and 128. Close-up views are shown in Figures 169 through 171. The bondline between the outer boot ring and cowl ring remained intact with no indications of flow. The flow surface bondline gap was 0.20 inch and is typical of past static test and flight nozzles.

The structural backup outer boot ring was intact. The flow surfaces showed smooth erosion with no pockets, wedgeouts, or major washes. Minor wash areas extended from the cowl to the forward 1.5 inches of the OBR from 120 to 150, and 151 to 158 degrees, and measured a maximum of 0.2 inch radially deep. These have occurred on the majority of flight and static test nozzles. Popped-up charred CCP material was observed on the forward 1.8 inches of the OBR intermittently around the circumference. The popped-up material is a common observation and occurs after motor operation. Delaminations in the charred CCP of the aft tip were observed 360 degrees circumferentially (Figure 178). Charred CCP material on the aft tip adjacent to the flex boot fractured and popped up over a majority of the circumference.

DOC NO. TWR-17272		VOL
SEC	PAGE 30	

Thickol CORPORATION SPACE OPERATIO

Photographs of the sectioned outer boot ring are presented in Figures 179 through 182. Char and erosion analysis of the sections is presented in Table 14 (Stations 8 through 11.3). Figure 55 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.59 occurring at station 10 (0 degrees).

The cavity side of the flex boot was evenly sooted and showed no evidence of flow or erosion (Figures 183 through 185). It appeared typical of previous flight and static test motor flex boots. A minimum of 3.0 NBR plies remained around the circumference after motor burn. Table 15 presents the flex boot material affected depths and Performance Margins of Safety. The worst case PMS was 0.19 at 280 degrees.

STS-26B Fixed Housing Assembly

Overall views of the STS-26B fixed housing assembly are shown in Figures 127 and 128.

The fixed housing insulation showed smooth erosion with no pockets or major washing observed. Post-burn wedgeouts of charred CCP material were observed on the forward 2.0 inches of the fixed housing insulation from 30 to 65, 135 to 145, and 165 to 180 degrees. The wedgeouts were a maximum of 0.5 inch deep radially. There was no heat effect to the GCP.

DOC NO. TWR-17272	VOL	
SEC	PAGE 31	

Thickol CORPORATION

There were no bondline separations observed on the forward or aft end.

Photographs of the sectioned fixed housing assembly liner are presented in Figures 186 through 189. Char and erosion analysis of the sections is presented in Table 16. Figure 70 shows the location of the measurement stations. All margins of safety were positive, with a minimum of 0.54 occurring at station 3 (270 degrees).

STS-26B Bearing Protector

The bearing protector was sooted along the entire length and circumference (Figures 190 through 192). Heavier soot and erosion were observed in line with the cowl ring vent holes at the thickened portion of the bearing protector. Erosion depths at the vent hole locations are presented in Table 17. There was no evidence of heat effect on the ID surface of the bearing protector.

STS-26B Flex Bearing

Examination of the flex bearing revealed no damage, soot, heat effect, or flow indications (Figure 193). All rubber pads, metal shims, and end rings appeared to be in nominal condition. Subsequent rerfurbishment and testing has verified that the flex bearing is acceptable for reuse.

TWR-17272	VOL
SEC	PAGE 32

Thickol CORPORATION SPACE OPERATIONS

4.2.2 STS-26B Nozzle Internal Joints

Descriptions of the STS-26B nozzle internal joints follows.

STS-26B Aft Exit Cone-to-Forward Exit Cone (Joint No. 1)

A cross-sectioned view of the STS-26B aft exit cone-to-forward exit cone field joint is presented in Figure 194. Photographs of the post-flight joint are shown in Figures 195 through 200.

The backfilled RTV extended below the joint char line 360 degrees circumferentially. RTV filled the radial ID portion of the joint except at 103 degrees where an unfilled void area approximately 1.0 inch wide circumferentially was located. The backfill also extended to the high pressure side of the primary 0-ring from 0 to 81, 82 to 101, 103 to 123, 154 to 178, 182 to 237, 243 to 251, 258 to 265, and 268 to 0 degrees. There were no blowpaths observed in the joint and the primary 0-ring saw no pressure. Char was observed on the RTV in the axial portion of the joint at 237 degrees. The RTV was not eroded or heat affected at the charred location. It is believed that the char penetrated the joint at splashdown.

Examination of the joint showed a black residue and aluminum oxide corrosion appearing on both metal surfaces between the primary and secondary O-rings, and outboard of the secondary O-ring intermittently

DOC NO. TWR-1727	2 VOL
SEC	PAGE 33

Thickel corporation

around the circumference (Figure 201). The aluminum oxide corrosion was heaviest from 112.6 to 143.2 degrees. There was no pitting observed. It was determined that the black residue is the beginning stage of the aluminum oxide corrosion.

One through hole on the forward exit cone housing aft flange was dinged by a guide pin during the aft exit cone demate. The ding was approximately 0.02 inch deep and was located at 95.6 degrees (Figure 202).

STS-26B Throat-to-Forward Exit Cone (Joint No. 4)

A cross-sectioned view of the STS-26B throat-to-forward exit cone joint is presented in Figure 203. Photographs of the post-flight joint are shown in Figures 204 through 209.

The RTV backfill extended below the joint char line and filled the radial ID portion of the joint circumferentially, except at 185 degrees. RTV filled the axial portion of the bondline from 40 to 165 degrees, and 240 to 345 degrees. RTV did not reach the high-pressure side of the primary 0-ring. One blow path measuring 0.25 inch circumferentially was found at 185 deg. Excess grease at this location inhibited the RTV backfill, resulting in an unfilled void area. The primary 0-ring saw pressure, but ther was no evidence of blowby, erosion, or heat effect. The GCP also showed no signs of heat effect.

DOC NO. TWR-17272	VOL
SEC	PAGE 34

Thickol CORPORATION

Rust corrosion was observed on both surfaces of the joint within the metal housing/adhesive bondline separations intermittently around the circumference. Black corrosion was observed near the primary sealing surface of the throat housing aft end from 80 to 85 degrees, and 345 to 0 to 4 degrees. There was no pitting on the metal surfaces.

STS-26B Nose Inlet-to-Throat (Joint No. 3)

A cross-sectioned view of the STS-26B nose inlet-to-throat joint is presented in Figure 210. Photographs of the post-flight joint are shown in Figures 211 through 216.

The RTV backfill extended below the joint char line 360 degrees circumferentially. RTV filled the radial ID portion of the joint circumferentially except at 50 degrees. RTV also extended onto the radial OD up to the GCP/CCP interface at 35, 275, and 325 degrees. An unfilled void area, 1.0 inch circumferentially, was located at 50 degrees. There was no blow path to the void area. The primary 0-ring did not see pressure. Grease was observed on both sides of the joint 360 degrees circumferentially extending 0.1 to 1.0 inch inboard of the primary 0-ring.

Minor surface corrosion was observed on the aft end of the nose inlet housing inboard of the primary O-ring, but no pitting was observed. This aluminum oxide corrosion extended approximately half way down the ID side

DOC NO. TWR-17272		VOL
SEC	PAGE 35	

Thickol CORPORATION

of the primary O-ring groove at 325 degrees. There was no corrosion on the forward end of the throat housing.

STS-26B Nose Inlet-to-Bearing Forward End Ring-to-Cowl (Joint No. 2)

A cross-sectioned view of the STS-26B nose inlet-to-bearing forward end ring-to-cowl joint is presented in Figure 217. Photographs of the post-flight joint are shown in Figures 218 through 226.

The RTV extended below the joint char line and filled the axial portion of the joint 360 degrees circumferentially. The radial bondline between the nose cap and cowl showed RTV mixed with the EA913 NA adhesive intermittently around the circumference. The adhesive was typically sandwiched between two layers of RTV. RTV filled approximately 80 percent of the axial bondline between the nose cap and bearing forward end ring. No RTV extended to the primary O-ring. One blow path was observed at 266 degrees and measured 0.5 inch wide circumferentially (Figure 227). The cowl SCP and nose cap GCP insulators showed no heat effect. The primary O-ring saw pressure, but there was no evidence of blowby, erosion, or heat Soot was observed on the radial OD of the joint 360 degrees effect. circumferentially. Soot reached up to the axial bolt holes on the nose inlet housing intermittently around the circumference, but did not reach the primary O-ring. Salt deposits were also noted on the radial OD surfaces.

DOC NO. TWR-17272		VOL	
SEC	PAGE 36		

Thickol CORPORATION

Both the aft face of the forward end ring flange and the forward face of the cowl housing were sooted at 130 to 153, 165, 255, and 303 to 310 degrees, but were not heat effected. The paint on the forward end ring OD flange surface was chipped off in various spots, but was not heat affected. Minor rust spots were noted in areas where the paint was chipped off. Aluminum oxide corrosion was observed on the forward end ring/nose inlet housing interface surfaces, and on the cowl housing/forward end ring interface surfaces intermittently around the circumference. Aluminum oxide corrosion was also found intermittently on the forward flange ID surface of the cowl housing (Figure 228).

STS-26B Fixed Housing-to-Bearing Aft End Ring (Joint No. 5)

A cross-sectioned view of the STS-26B aft exit cone/forward exit cone field joint is presented in Figure 229. Photographs of the post-flight joint are shown in Figures 230 through 235.

RTV filled approximately 75 percent of the axial portion of the joint and reached the high pressure side of the primary 0-ring from 75 to 110, 123 to 128, 135 to 148, and 195 to 218 degrees. Voids isolated within the RTV were observed on the radial portion of the joint intermittently around the circumference. The largest measured 0.45 inch deep radially by 0.30 inch wide circumferentially. A void at 171 degrees extended onto the axial portion of the joint, but terminated within the RTV. There were no blow paths observed in the joint, and the primary 0-ring did not see pressure.

DOC NO. TWR-17272	VOL	
SEC	PAGE 37	

Thickol CORPORATION SPACE OPERATIONS

Rust corrosion was found on the aft end ring inboard of the secondary O-ring intermittently around the circumference. No pitting was observed.

4.3 Instrumentation

There was no instrumentation installed on the STS-26 nozzles.

5.0 DISCREPANCY REPORTS AND PROCESS DEPARTURES

The STS-26 Nozzle DRs and PDs reviewed by the Morton Thiokol senior material review board are included in Appendix A. These were presented in the STS-26 RSRM Acceptance Review Level III (TWR-18117A). Brief descriptions of the DRs and PDs, and correlations to post-flight observations are discussed below.

5.1 STS-26A DRs and PDs

Aft Exit Cone

DR 123524-01 (Waiver No. RWW 404)

LDIs within the GCP were found at 240 degrees, 54 inches aft of the forward end. This portion of the aft exit cone was severed by the LSC during reentry and was not recovered. Post-flight inspection of this part was not possible.

TWR-17272	1	VOL
SEC	PAGE 38	

Thickol CORPORATION SPACE OPERATIONS

DR 162635-01, -02 (Waiver No. RWW 405)

LDIs within the GCP were found at 222 degrees (39.5 inches aft of the compliance ring), and 240 and 243 degrees (4 inches aft of the compliance ring). This portion of the aft exit cone was severed by the LSC during reentry and was not recovered. Post-flight inspection of this part was not possible.

Forward Exit Cone

DR 151717-01 (Waiver No. RWW 387)

Eight LDIs within the GCP were found running 360 degrees circumferentially along a full ply length. Post-flight inspection of the exposed GCP did not reveal any delaminations extending to the surface.

PD 150663-01

The white stripe (90-degree mark) on the phenolic liner was 1.75 inches from the 90-degree reference pin (0.75 inch over maximum). The liner was bonded at the same radial location as the dry fit. Orientation to correlate post-flight performance with any pre-flight anomalies was not affected.

Throat Assembly

DOC NO TWR-17272		VOL
SEC	PAGE 39	

Thickol CORPORATION SPACE OPERATIONS

DR 128578-01

Intermittent pitting, a maximum of 0.002 inch deep, was found on the aft sealing surface. After being repaired, the joint was succesfully leak tested. Post-flight inspection did not reveal any indications of blow-by.

Nose Inlet Assembly

DR 152142-01

Phosphoric Acid Anodization (PAA) and EA9228 Primer applied to the bonding surfaces was not uniform (dark streaks and spots). The PAA and primer system was deleted from the engineering design change. This part was grit blasted and the phenolics bonded using 51-L surface preparation techniques. All of the phenolics were intact and remained bonded to the housing.

PD 150024-01

The EA946 adhesive for the nose cap bond was not applied within 6 hours from the grit blast requirement. This was reworked to blueprint requirements. No post-flight anomamlies were noted.

PD 150024-02

The EA946 adhesive for the nose cap bond was not applied within 1 hour from methylchloroform wipe. This was reworked to blueprint requirements. No post-flight anomamlies were noted.

DOC NO. TWR-17272		VOL
SEC	PAGE 40	

Thickol CORPORATION SPACE OPERATIONS

Cowl Assembly

DR 126842-01

Intermittent pitting was found on the cowl housing (worst-case condition was 0.180 inch in diameter by 0.039 inch deep on the ID flange. The pits were honed out to remove sharp edges. No post-flight anomalies were noted.

Flex Bearing

DR 123208-01

One threaded hole (0.190-32 UNF) on the aft end ring accepted the no-go threaded plug gage for 6.5 turns. Proper bolt torque was verified and showed no damage. Post-flight inspection showed damage to the bolt hole.

DR 123439-01

The unbond area on pad 11 exceeded the maximum allowable of 9 in². The flex bearing passed all of the acceptance tests and post-flight refurbishment requirements.

5.2 STS-26B DRs and PDs

Nozzle/Aft Segment Assembly

DOC NO. TWR-17272		VOL	
SEC	PAGE 41		

Thickol CORPORATION SPACE OPERATIONS

DR 153960-01

A broken girth gage wire was found between the aft dome boss and nozzle assembly. This did not affect O-ring gap openings. The joint successfully passed leak check. Post-flight inspection showed no anomalies as a result of this condition.

Aft Exit Cone

DR 123533-01, (Waiver No. RWW 406)

An LDI measuring 2.35 inches circumferentially, 1.2 inches axially, and 0.031 inch radially was found in the GCP 0.393 inch from the forward end at 45 degrees. Post-flight inspection of the GCP after sectioning (Figure 236) did not reveal any delaminations.

Throat/Nose Inlet Joint Assembly

DR 150682-01, -02

The primary to secondary seal cavity was pressurized to 1040 psig during high pressure leak check (the requirement is 740 ± 15 psig), and 40 psig during low pressure leak check (the requirement is 30 ± 3 psig). The joint passed leak check, and no anomalies were observed during post-flight inspection.

DOC NO. TWR-17272		VOL
SEC	PAGE 42	

Thickol CORPORATION SPACE OPERATIONS

Nose Inlet Assembly

PD 149145-01

This involved the forward first wrap of the nose ring during the carbon hydroclave cure. While decreasing pressure, the pressure dropped to 168 psig for 4 minutes, then remained in tolerance during the remainder of the cure. The CCP liner met all acceptance criteria. There were no anomalies observed during post-flight inspection.

Cowl Assembly

DR 128474-01

Pitting was observed on the OD and ID surfaces of the cowl housing. Maximum depths were 0.049 inch on the ID side, and 0.041 inch on the OD side. These were blended out to remove sharp edges. Post-flight inspection has not revealed any anomalies.

Flex Bearing

DR 123437-01

One threaded hole (0.750-16 UNF) on the aft end ring accepted the no-go threaded plug gage for eight turns. A helical coil insert was used as a standard repair. There was no damage noted during post-flight inspection. The repair did not affect the flex bearing performance.

DOC NO. TWR-17272	VOL	
SEC	PAGE 43	

Thickol CORPORATION SPACE OPERATIONS

Bearing Protector

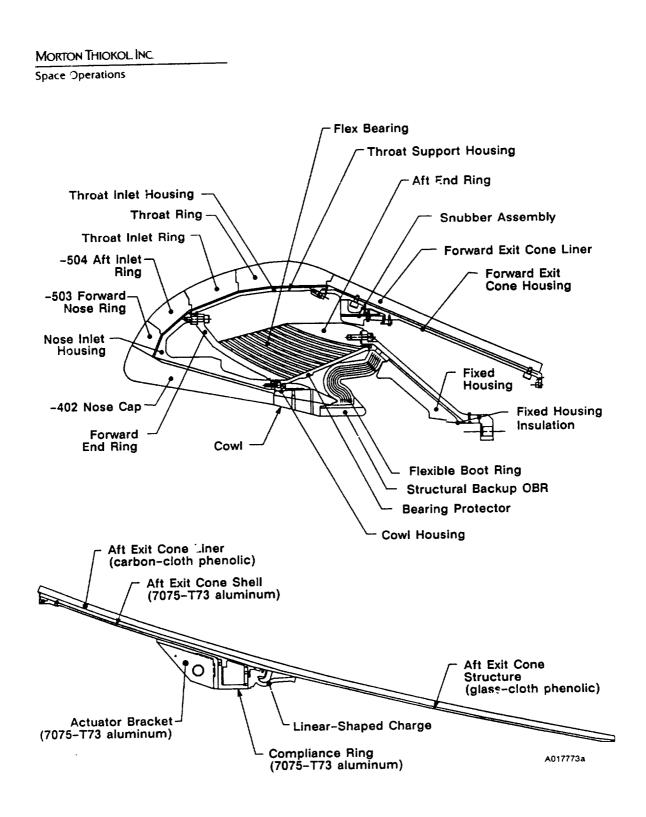
PD 127767-01

This involved the GCP autoclave cure for the bearing protector inner ring. The autoclave vacuum dropped below the minimum of 15 in. Hg for a total of 177 minutes. The inner ring met all acceptance tests, and the bearing protector assembly using this ring passed strength tests. There were no anomalies observed during post-flight inspection.

6.0 NOZZLE COMPONENT PROGRAM TEAM (NCPT) RECOMMENDATIONS AND REDESIGN PROGRAM REVIEW BOARD (RPRB) ASSESSMENT

The NCPT reviewed all observations documented in this report. The team classified five Problem Reports (written at KSC) as minor anomalies. After internal nozzle joint inspections at Clearfield, the team initially classified five observations as potential anomalies. Three of these were further classified as minor anomalies, and the other two remained observations. These were presented to the RPRB on 9 and 11 November, 1988. The RPRB agreed with all the classifications. These minor anomalies were recorded on Post-Fire Anomaly Record (PFAR) forms and are included in Appendix B. The PFARs contain detailed descriptions and corrective actions as accepted and/or modified by the RPRB. A listing of the PFARs is listed below.

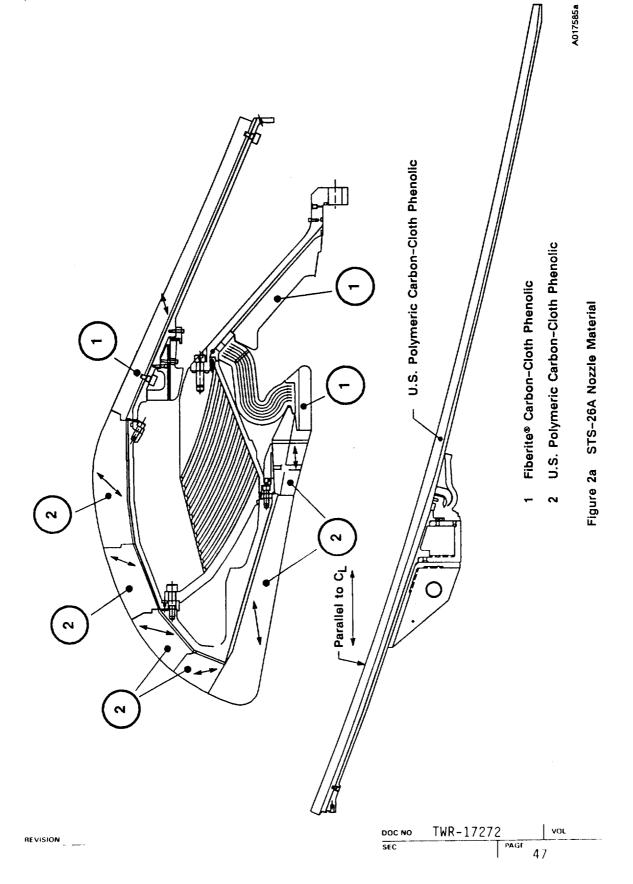
6.1 STS-26A Nozzle

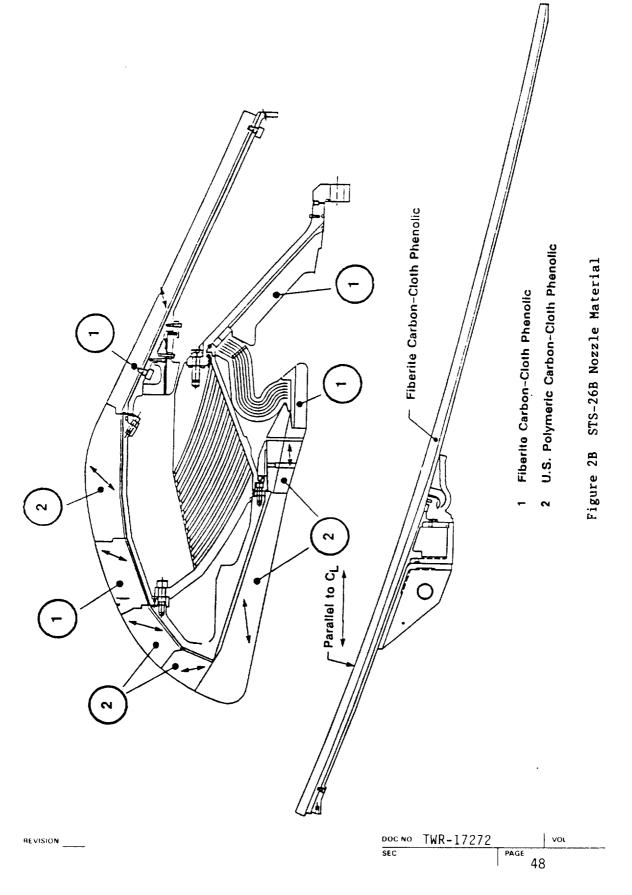

PFAR NUMBER	DESCRIPTION
	Corrosion on aft exit cone metal between primary and secondary O-rings.

DOC NO TWR-17272		VOL
SEC	PAGE 44	

Thickol corporation space Operations

360L001A-12	Corrosion on forward exit cone metal between primary and secondary aft exit cone O-rings.
360L001A-43	RTV and EA913 NA adhesive mixing in joint 2.
6.2 STS-26B Nozzle	
PFAR NUMBER	DESCRIPTION
360L001B-10	Corrosion on aft exit cone metal between primary and secondary O-rings.
360L001B-38	Ding on forward exit cone aft flange.
360L001B-42	Corrosion on forward exit cone metal between primary and secondary aft exit cone O-rings.
360L001B-44	RTV backfill in joint 4 inhibited by excessive grease.
360L001B-45	RTV and EA913 NA adhesive mixing in joint 2.


DOC NO. TWR-17272		VOL
SEC	PAGE 45	<u></u>


Figure 1 STS-26 Nozzle Components

	DOC NO	TWR-17272	VOL
REVISION	SEC	PAGE	46

Space Operations

Space Operations

Space Operations

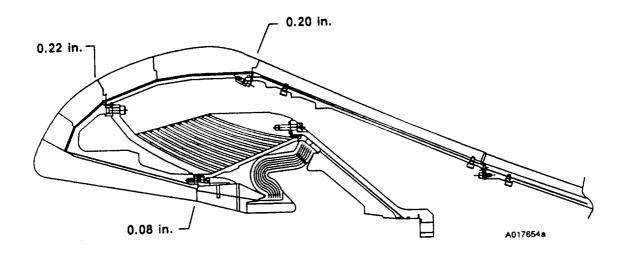


Figure 3 STS-26A Joint Flow Surface Gap Openings

	DOC NO. TWR-17272	VOL
ON	SEC	PAGE 49

Space Operations

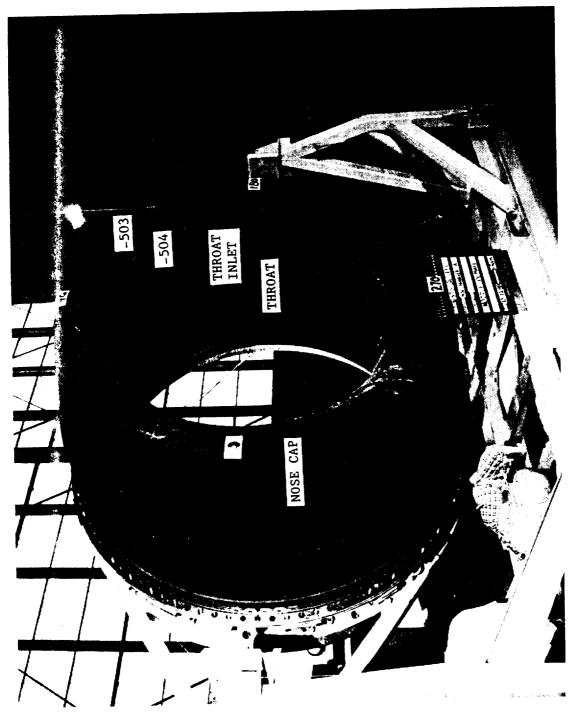
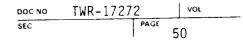


Figure 4 STS-26A Forward Nozzle Assembly

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



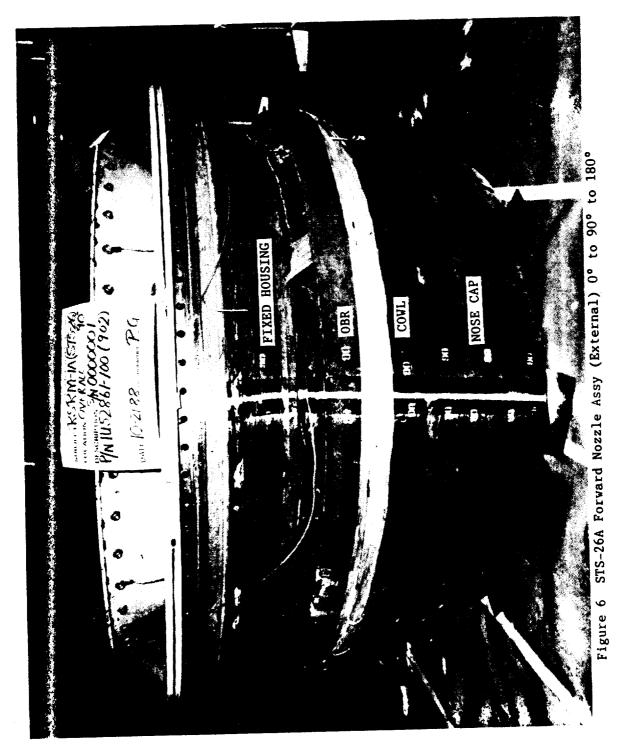


Figure 5 STS-26A Forward Nozzle Assembly

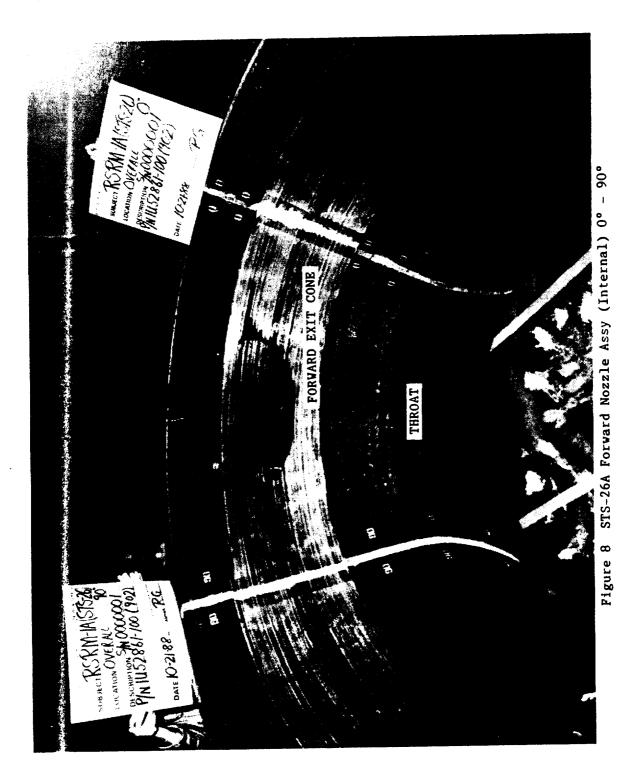
DOC NO	TWR-17272		VOL
SEC		PAGE	51

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


DOC NO.	TWR-17272		VOL	
SEC		PAGE	5	2

REVISION ____


ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

DOC NO	TWR-17272		ļ	VOL
SEC		PAGE	53	}

Space Operations


REVISION

DOC NO TWR-17272 VOL SEC PAGE 54

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272	VOL
SEC	PAGE	55

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

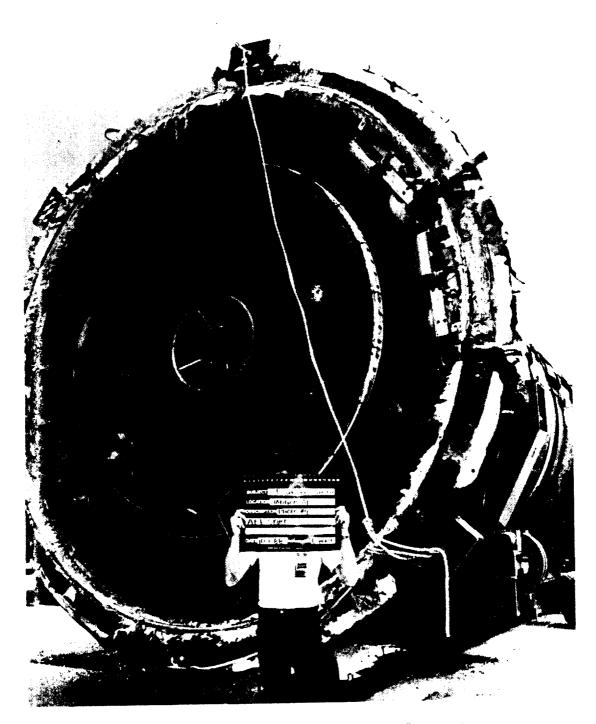


Figure 10 STS-26A Aft Exit Cone Fragment

DOC NO	TWR-17272			VOL
SEC		PAGE	5	6

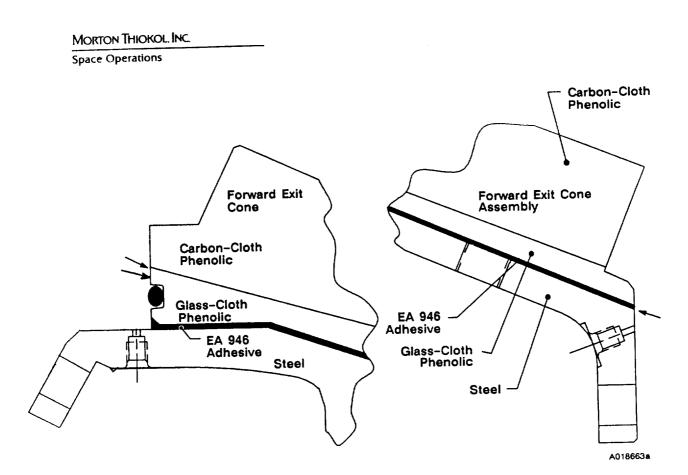
DOC NO.	TWR-17272	VOL
SEC	PAGE	57

Space Operations

	Nominal Preflight Radial Groove Width	Carbon-Cloth Phenolic (completely missing) Aft Exit Cone Assembly 0.20 in. Polysulfide Groove Fill EA 946
Angular		
Location	Width	Glass-
_(de ç)	<u>(in.)</u>	Cloth
	0.40	Phenolic
С	0.18	Aluminum/
15	0.19	/
30	0.19	\sim
45	0.18	A017588a
60	0.19	
75	0.18	
90	0.18	
105	0.19	
120	0.18	
13 5	0.18	
150	0.17	
165	0.17	
180	0.17	
195	0.16	
210	0.16	
225	0.17	
240	0.16	
255	0.17	
270	0.14	
285	0.18	
300	0.17	
315	0.19	
330	0.16	
345	0.17	

Table 1 STS-26A Aft Exit Cone Post-Flight Polysulfide Groove Radial Widths

	DOC NO. TWR-17272	OL
REVISION	SEC PAGE 58	


Space Operations

URIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 12 STS-26A Forward Exit Cone Dimpled Erosion (270 Degrees)

DOC NO TWR-17272	VOL
SEC	PAGE 59

Forward End			Aft End			
Location (deg)	Radial Separation (in.)	Separation Type	Location (deg)	Radial Separation (in.)	Separation Type	
310 325 332	0.005 0.040 0.040	GCP/CCP GCP/CCP GCP/CCP	30 45 60 124	0.015 0.015 0.002 0.025	Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive	
182-192 230-252 285-307 318-325 362-0	0.015 0.030 0.030 0.030 0.030 0.040	Within GCP Within GCP Within GCP Within GCP Within GCP	135 148	0.025 0.025	Metal/Adhesive Metal/Adhesive	

Figure 13 STS-26A Forward Exit Cone Bondline Separations

-	DOC NO	TWR-17272		VOL
REVISION	SEC		PAGE	60

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 14 STS-26A Forward Exit Cone Liner Section (0 Degrees)

DOC NO	TWR-17272			VOL
SEC		PAGE	61	

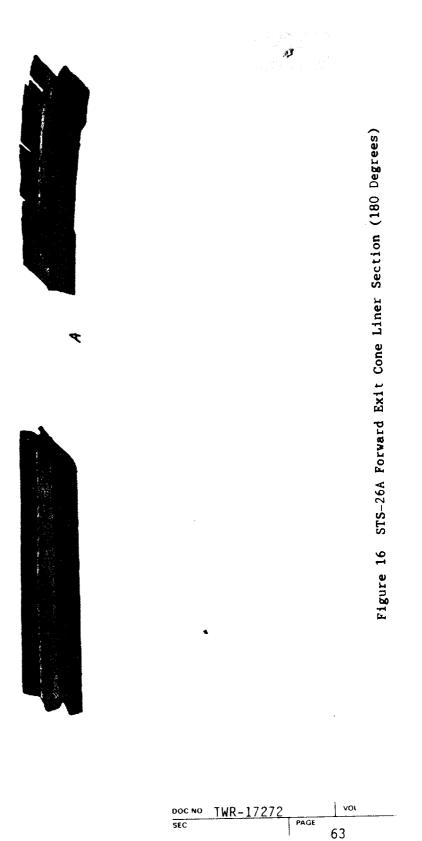
REVISION ____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 15 STS-26A Forward Exit Cone Liner Section (90 Degrees)

 $\frac{1}{2} \frac{1}{1+\frac{1}{2}} \frac{1}{\frac{1}{2}} \frac{1$


REVISION

DOC NO	TWR-17272		VOL
SEC		PAGE	62

۰

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

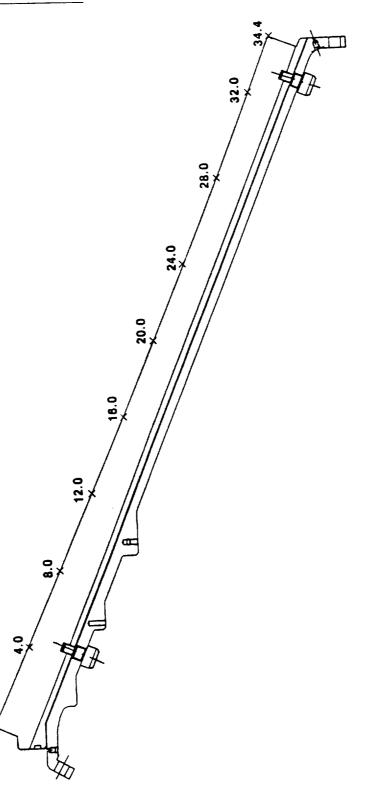
Figure 17 STS-26A Forward Exit Cone Liner Section (270 Degrees)

DOC NO	TWR-17272		voi
SEC		PAGE	
		1	64

•										
	ľ	¥	8	12	16	2 0	24	28	32	34
0 degrees										
	N N	•	m	A M	N.N.	КЛ	N N	 N 	2	
Measured Char	N N	9	ŗ.	X X	N N	N N	N N	ø	ŗ.	~
Adjusted Char*	A P	ŝ		V R I	4 H H	44	44	ŝ	ņ	ه ه
2E + 1.25AC	A P	5.		4 H 4		< - -	4 H V H	-		•
RSRM Min Liner Thickness Margin of Safety	1.769 MA	1.714 0.24	1.614 0.14	1.510 HA	1.414 MA	1.345 MA	1.314 MA	1.321 0.11	1.3660.10	4.0
90 degrees										
Measured Trosion	0.45	•	•	A N	N N	A N	MA	0.24	~	•
Measured Char	0.84	•	0.71	A M	N N	N N	МЛ	0.71	٢.	•
	0.67	•	5	A M	MA	A N	МA	0.57	9.	•
2E + 1.25AC	1.74	1.46	m	N N	N N	N N	RA	1.19	1.22	1.12
RSRM Min Liner Thickness	1.789	•	e.	1.510	1.414	1.345	1.314	1.321	٣.	
Margin of Safety	0.03	•	•	A R	ИЛ	N N	N N	0.11	7	•
180 degrees										
Measured Erosion	٠.	•	۳.	A N	N A	ИЛ	МА	0.29		-
Measured Char	•	•	٢.	A N	N N	N N	A N	0.73	٢.	٢.
Adjusted Char [*]	0.66	0.61	0.58	A N	N N	N A	N N	0.58	0.62	0.58
2E + 1.25AC	9.	•	•	N N	NA	NA	MA	1.31	-	۴.
RSRM Min Liner Thickness	٢.	•	9	1.510	1.414	1.345	1.314	1.321	۳.	٦.
Margin of Safety	٩.	•	- .	۲ N	N N	V E	V N	0.01	7.	₹.
270 degrees										
Measured Fresion	0.44	0.37	0.41	N N	Ш	N A	N N	N N	МA	A N
Messured Char				A R	N A	A N	N N	N N	N N	N N
	9.	. 6		A R	N N	N N	MA	A M	N A	N A
2E + 1.25AC	•	ŝ		N N	N N	A N	R A	N N	A N	N N
RSRM Min Liner Thickness	1.789	1.714	1.614	1.510	1.414	1.345	1.314	1.321	1.366	1.404
Margin of Safety	۰.	-		47	K N	K N	4 Y	V H	V N	4 H
•	Messure	d Char	Adjusted	to end o	of action	i time				
			m 1	imum li	ner thic)	thickness				
Ž.	Margin of	Sacaty								

Space Operations

MORTON THIOKOL. INC.


ORIGINAL PAGE IS OF POOR QUALITY

REVISION

DOC NO TWR-17272 SEC PAGE 65

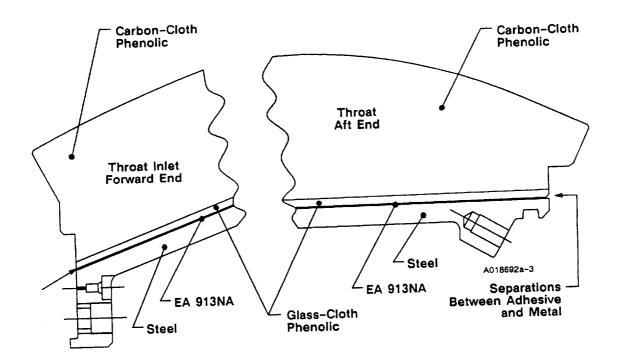
VOL

Space Operations

DOC NO	TWR-17272		VOL
SEC		PAGE	
	1		66

REVISION

0.0



DOC NO	TWR-17272		VOL	
SEC		PAGE	67	

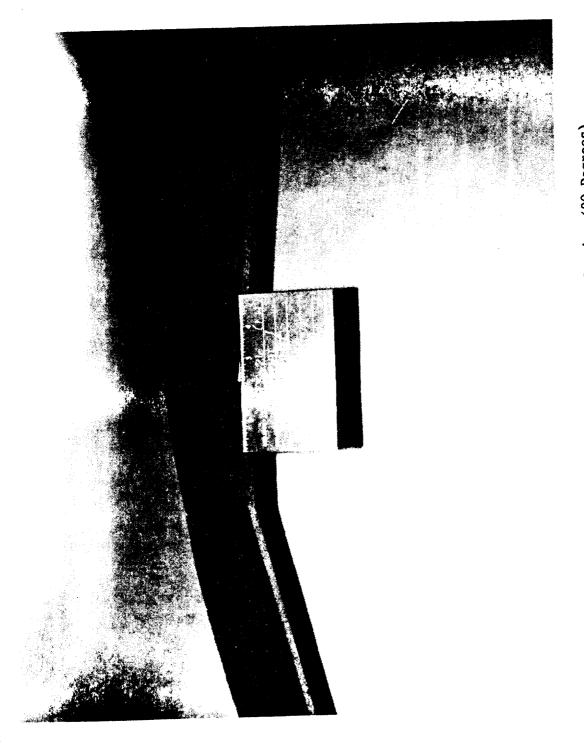
REVISION ____

MORTON THIOKOL. INC.

Space Operations

B	Fwd End	ations	Aft End Metal-to-Adhesiv <u>Bondline Separatic</u> Radia						
Location (deg)	Badial Separation (in.)	Separation Type	Location	Separation (in.)					
0 15 30 45 60 75 90 105 110 120 135 150 165 180 185 210 225 270 285 300 315 330 345	0.030 0.030	Metal/Adhesive Metal/Adhesive	30 45 60 75 90 105 120 135 150 165 180 195 210 225 270 285 300 315 330 345	0.100 0.005 0.100 0.100 0.100 0.100 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.100 0.100 0.100 0.100 0.100 0.100					

Figure 20 STS-26A Throat Assembly Bondline Separations


-	DOC NO. TWR-17272	VOL
REVISION	SEC P/	age 68

Space Operations

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272		VOL	
SEC		PAGE	70	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

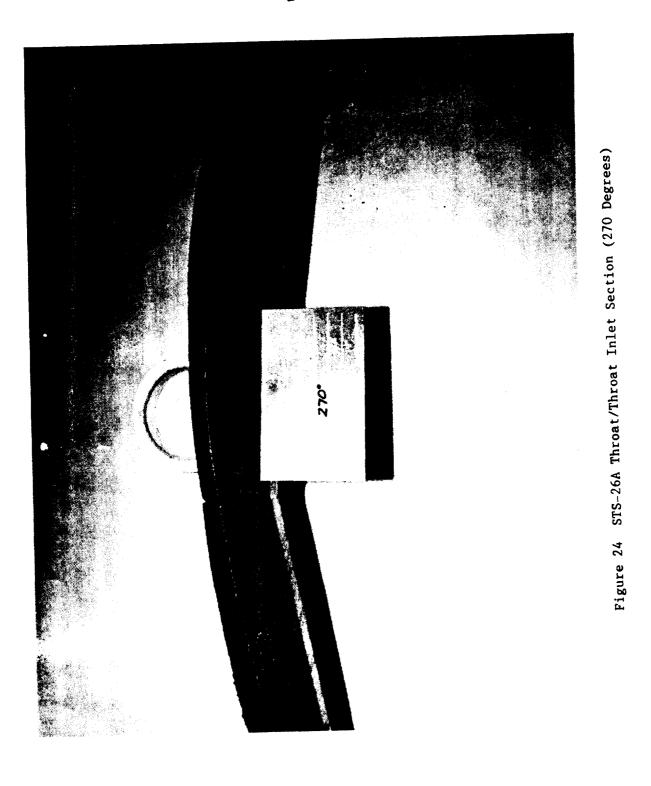
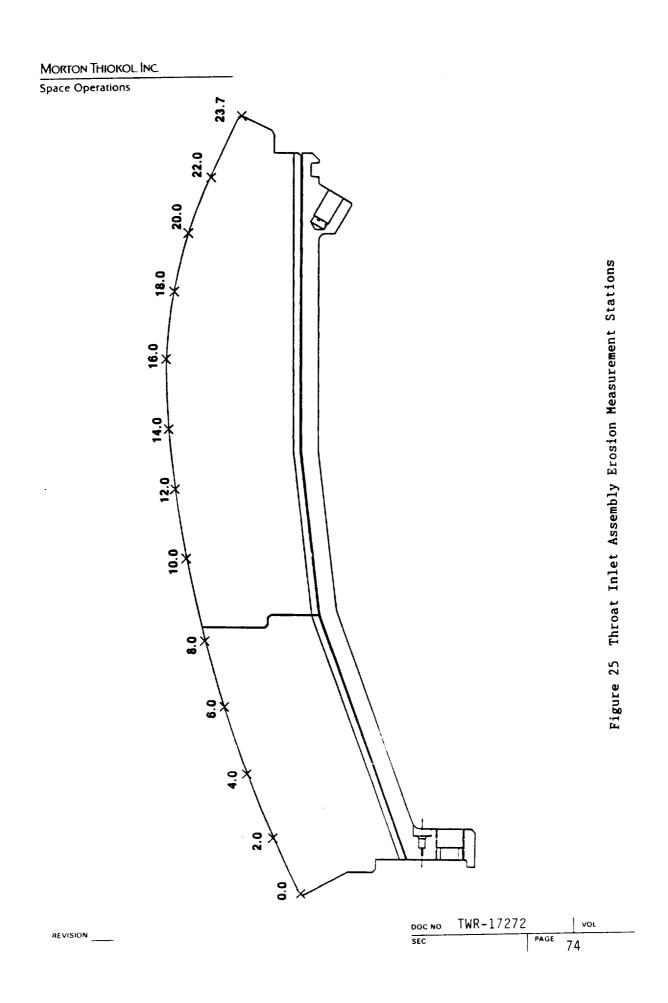


Figure 23 STS-26A Throat/Throat Inlet Section (180 Degrees)

DOC NO	TWR-17272			VOL	
SEC		PAGE	71		

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


DOC NO.	TWR-17272		VOL	
SEC		PAGE	72	

ORIGINAL PAGE IS OF POOR QUALITY

													-				Ν		-														
ORTO				. 11	۹C.				_																								
ace C)pera		רח איז איז איז	_	0,0	•		-	8	ω .	ب س ا	I	Ś	16	5	ہ ۲۰	4 17			.38	o c a v		110	•		4	51	0.43	7 7 7 7 7 7	5			
	55			÷.	4.0	4	Ξ.	9	1	۳.	1 10				9								~			o	0	0	i n	• 0			
		9	00	-		-	_										_													2			
		2		5	683	0	3		6	13	7 0 Y		۹ ۱	78	59	-		•			- 1	n ve	5			-	ŝ	.41	4° 4	. • •			
	22		- s - o	•	•	•				-	-			0	0.59		~ 0	,		0	0 0	- c	• •	•		-	0	0		• •	1		
																	~						7	_				5			,		
	-	2	0 6	2	232	7	4 6		20	•	. 232	5		9	. 50	60.	. 23	2		Γ.	6	ņ-		٠.				0.42	ຕຸເ				
	20		0.70	~	m	•	a			2					0	N	n e	•		0	0 (• •	•		•	, ,						
					9						9		_		• ••	~	9			-						•		. 4	-		4		
	80	-	. 60	- 10		-	-	. *	. •	۰.		•		۰ ۲	1	ς.	<u>د</u> .							0.3			•		•	•	•		
	-					•	c	-	00	-	~ (2	c	• c	0	~	~ (2		Ũ		•											
				_	•			~ ^	n 0		10	0				5	10	5		7	4		10				- -	- u	U D I		*		
	16		. 58	*		.					3.71	•									0	0							~	, ,			
		-	00	~ c	• ••	3	•	~ (- 0	•		-																		9			
					5e	~			0		526	0		-	n 1	-	Ś	~~ ·		20	6 4	3.7	8 6 6 3 6				- •	i T	83	č, e			
	14			•		~	•		- - -		3.6	•								-	0						-		7	~ <	>		
											~						2						ŗ				0.	<u> </u>	- 14	51	^		
70	2		15	m 0	N N	~		18	4 4		3.517	25	•	•	22		<u>.</u>	7									2			<u>ب</u>	~		
on	-			•		•		-			m	0		-	•	9 (1		0		-	. 0	0		10									
Stations					~						-	_			م ۰		5	0		-	• •	-	-							197	8	:	
Sta	10	•	205.	m o	ол (m			-	•	.	. 6	2		-	0.5	* *		~		í í							•	0	• •	•	•	t i	
	-	•	• •	0 0	~	0		-	0	0	• •*	•					••••	-												6		ion	thickness
								ē	~	0.				2	9		6.8	60		2	9 F	36	~	189			~	5.5	* 01	8	•	a c t j	Ę
	-		8.4.0	•	°			~	5	-		?		1.2	0.0			0.0			- 0	0	2				-	0	- ~	m	•	• f =	7 O U
			- 0	0	~ ~				-								_							-						•	_	Ţ	Lit
			n n	6				-	22	3	5 6 5 6 5 6	-			60		D N	5			ne ur		σ,	. 28	•		۲.	. 52	م .	27	1.	ч • о	
	•		1.22	с. о	0 r			-	0	0				-	0	o 1	~ ~					• •	2	~ •	2		-	•	•		•	بد	i n i a
																	4				_		_	.			0	r	. .		9	t e d	8
	4		9 2 9 7 9	-	16	1			5.5	Ę		15		-	5.8	•	<u>م</u> ،	1					6	3.31	-		1.2	.e 0	5 0 0		0.0	s n (
					~ .			-	• •	0	~ ~	10		-	0	0	~ ~	• •							-							Þ.	
					ł	~ .		_			~ ;				. თ	-		21			- !		2.0	. 247			12	2	54	247	0.11	char	
		4	5.12		9	3.24 0.17		2				0.23		0	- 0 - 0		2.5	0.7			-	0 0	~	3.247	0							ں ج	
					~ ~ ·	мQ																								-	-	8 1 7 9	
			· o	- - 0	an I	₽		4	∩		, 191	•/1-F		000	5 C	1 1	ν 2 2	0.25			٠0.	0,0	0.0	3.174	E T .		0	6.9	25.		.12	Meas	
	-	-	1.0		5.6	3.174 0.18			- 0		N (-			~	- 0			-	0	- c	m	•		-	- 0	0		.0	Σ •	
																		3						18 13							n D		
						n e 5												k se						z k n é						4 1 1			
						L C P						P I C						h Le			~			Ch Lo	>			2		ļ	Y T		
	uo		uo			τ, τ			u o I	•		Ë Z •			101	•		и н Г абогу			1011	E.	•	1	بر ۲۰			5 1 0 N	•		i e r F e r		
	Anyular Location		•		4	askm Min Liner Thickness Margın of Safety			Erosion	Char		RSAM Min Liner Thicknes Margın of Safety			sured Erosion	har	2E + 1.25AC	Sum Min Linet Phicknes argin of Safety		'n	ncisol'i belue	Char	Adjusted Char	, i D	Margin of Safety	5		3013	ch.	U A	RSAM MIN LINGE TRICERS Margin of Safety		
	Loc	'n			djusted cnat E + 1.25AC	Li f S	4				2E + 1.25AC	ΞŢ	0 degrees		ພີ ບາ	טנ הינ	25A	ן ני ני		- 10	رد. ا	J C	9 P C		٥ţ	degrees				. 25	1 n o f		
		394	r.d		L . 2	M Lin n	degrees		De 31148		-	Mir n G	10+1			9 14 14 15	,	ĩ q			μľė	910	ste.	ž	110	, e b		1.1.1			N N 07 0		
	'Inf	deyree'	Measurad	Measured	Adjusted 2E + 1.25	км г 9 1			U C R		+	RSKM Mİ Margın	01		Measu	Measured Adjusted	, + , ω	NSUM MIN L Margin of		7 10	1 F - M	Measured	μĺΡ	+ ¥ 2 × 4	6 I ¶	130		Manusan Manusan Kananan Manusan Kanan Manusan	1074	3 6	2 1 1 1 2 2 2 2 3 2 2 4 1 2 4 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	An.	3	ř	X	N N	S H	06		ž	24	3	5 R 4	18		ž	ž A	5	×Ψ	:	7	z	Ξ	4	~ 6									
																					DC	oc f	0		TWF	2-17	72	72				vo	n
																					SE	_	_							GE			

Refer to Figure 25 for Station Locations

.

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 26 STS-26A -503 Ring Impact Marks (3 Degrees)

DOC NO	TWR-17272		VOL	
SEC		PAGE	75	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

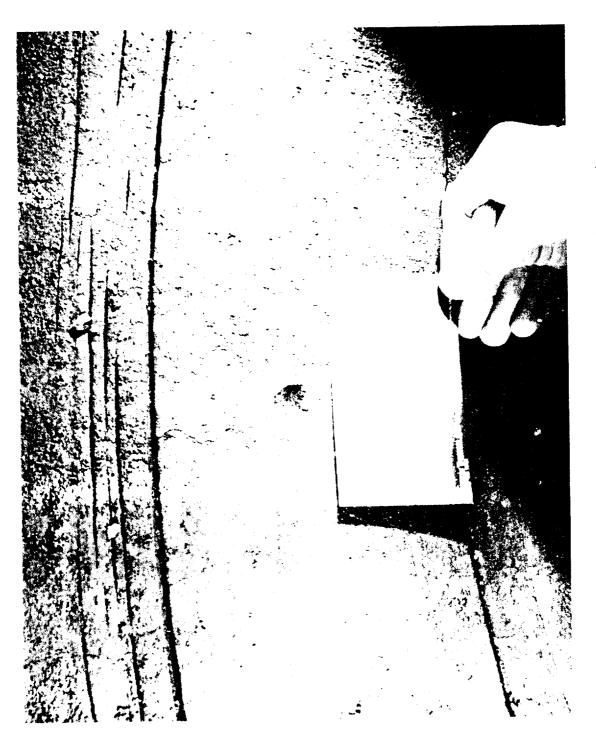


Figure 27 STS-26A -504 Ring Impact Mark (85 Degrees)

DOC NO	FWR-17272		νοι
SEC		PAGE	76

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

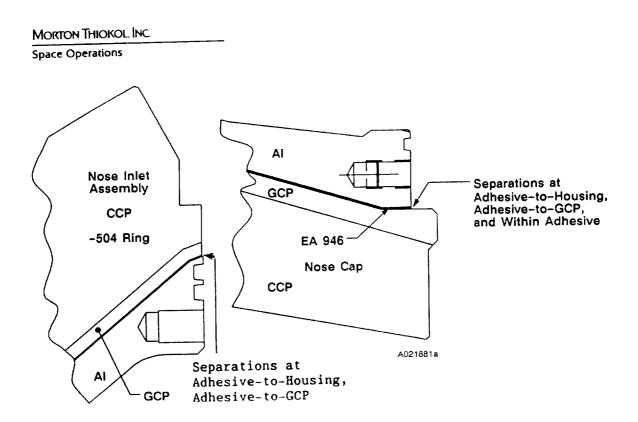



Figure 28 STS-26A Nose Cap Wedgeout (20 Degrees)

DOC NO	TWR-17272		νοι
SEC		PAGE	77

Location (deg)	Radial Separation (in.)	Separation Type*	Location (deg)	Radial Separation (in.)	Separation Type*
0	0.005	1	0	0.005	1
15	0.005	1	0-6	0.005 0.005	2
30	0.005	1	15	0.005	1
45	0.005	1	24	0.003	3
75	0.005	1	26-28 28-36	0.003	3 2 2
165	0.005	1	28-30 75	0.003	2
180	0.010	1	114	0.003	1
195	0.010	2	150	0.003	1
210	0.005	1	165	0.003	2
240	0.005 0.005	1	180	0.003	2
255	0.005	1	228	0.003	1
270	0.005	2	240	0.003	2
330 345	0.005	2	250-256	0.005	2
340	0.000	-	258-267	0.003	2
			277–282	0.005	1
			282-285	0.003	2
			300	0.003	1, 2
			309-319	0.003	2 2
			330	0.003	2
			336-342	0.003	2
			345	0.003	2

*Type 1 = Metal/Adhesive
Type 2 = Adhesive/GCP

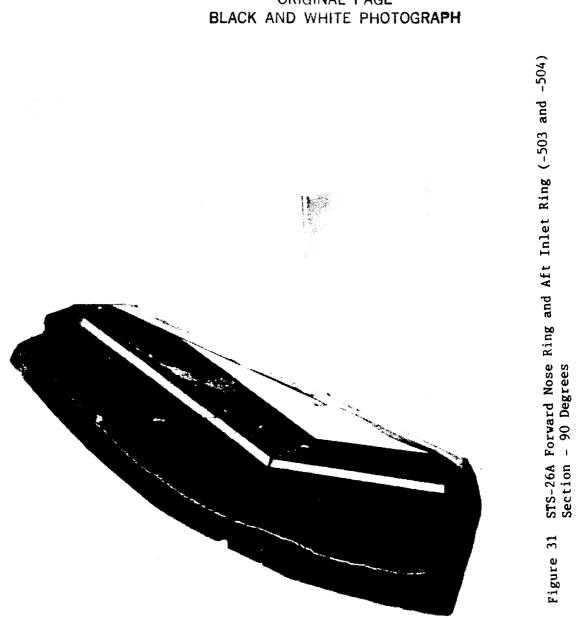

Figure 29 STS-26A Nose Inlet Assembly Bondline Separations

	Figure 25		TWR-17272	,	Lun
		DOC NO.	IWK-1/2/2		VOL
REVISION		SEC		PAGE	78

Space Operations

Space Operations

ORIGINAL PAGE

1 νοι TWR-17272 DOC NO. SEC PAGE 80

Figure 31

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO TWR-17272 VOI SEC PAGE 81

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272			νοι
SEC		PAGE	82	2

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

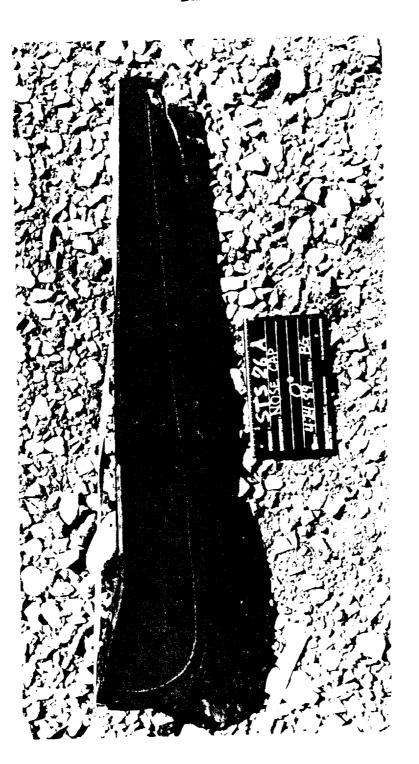


Figure 34 STS-26A Nose Cap Section (0 Degrees)

DOC NO	TWR-17272			VOL
SEC		PAGE	8	3

REVISION ____

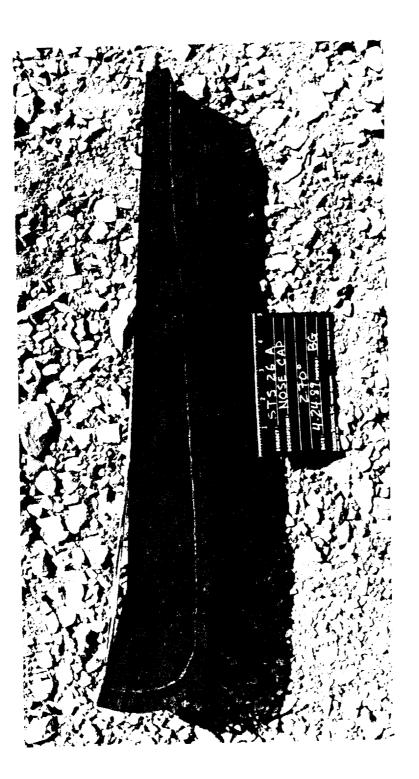
Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272	VOL
SEC	•	age 84

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


Figure 36 STS-26A Nose Cap Section (180 Degrees)

DOC NO TWR-17272		VOL
stc	PAGE	85

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

MORTON THIOKOL. INC.

Space Operations

DOC NO	TWR-17272			VOL
SEC		PAGE	5	36

Space Operations

Table 4 STS-26A Nose Inlet Rings (-503, -504) Erosion and Char Data

Angular Location			S	tations			
Angular Docution	28	30	32	34	36	38	39.5
0 degrees					0.90	0.96	1.20
Measured Erosion	1.19 0.70	0.94 0.71	0.91 0.66	0.87 0.55	0.90	0.60	0.45
Measured Char	0.53	0.53	0.50	0.41	0.45	0.45	0.34
Adjusted Char*	3.04	2.55	2.44	2.26	2.36	2.48	2.82
2E + 1.25AC	3.508	3.252	2.950	3.182	3.200	3.026	2.981
RSRM Min Liner Thkns	0.16	0.28	0.21	0.41	0.35	0.22	0.06
Margin of Safety	••••						
90 degrees							
Manual Provid	1.09	0.83	0.86	0.83	0.85	0.94	1.15
Measured Erosion Measured Char	0.70	0.70	0.64	0.63	0.61	0.62	0.44
Measured Char Adjusted Char*	0.53	0.53	0.48	0.47	0.46	0.47 2.46	2.71
2E + 1.25AC	2.84	2.32	2.32	2.25	2.27 3.200	2.40	2.981
RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	0.41	0.23	0.10
Margin of Safety	0.24	0.40	0.27	0.41	0.41	0.25	•••
180 degrees				0.82	0.83	0.90	1.20
Measured Erosion	0.96	0.75	0.86 0.76	0.69	0.67	0.70	0.48
Measured Char	0.85	0.75	0.57	0.52	0.50	0.53	0.36
Adjusted Char*	0.64	0.56	2.43	2.29	2.29	2.46	2.85
2E + 1.25AC	2.72	2.20	2.950	3,182	3.200	3.026	2.981
RSRM Min Liner Thkns	3.508	3.252	0.21	0.39	0.40	0.23	0.05
Margin of Safety	0.29	0.40	0.11				
270 degrees							
	1.08	0.87	0.94	0.87	0.86	0.94	NA
Measured Erosion	0.88	0.72	0.67	0.58	0.69	0.62	NA
Measured Char	0.66	0.54	0.50	0.44	0.52	0.47	NA
Adjusted Char* 2E + 1.25AC	2.99	2.42	2.51	2.28	2.37	2.46	NA 2.981
2E + 1.25AC RSRM Min Liner Thkns	3.508	3.252	2.950	3.182	3.200	3.026 0.23	2.901 NA
Margin of Safety	0.18	0.35	0.18	0.39	0.35	0.23	86
120 degrees							
-		0.87	0.89	0.82	0.86	0.91	0.97
Measured Erosion	1.15	0.87	0.78	0.62	0.60	0.67	0.65
Measured Char	0.59	0.82	0.59	0.47	0.45	0.50	0.49
Adjusted Char*	3.03	2.32	2.51	2.22	2.28	2.45	2.55
2E + 1.25AC	3.508	3.252	2.950	3.182	3.200	3.026	2.981
RSRM Min Liner Thkns	0.16	0.40	0.17	0.43	0.40	0.24	0.17
Margin of Safety							
	* Measu	red Char	Adjuste	d to end	of acti	on time	

minimum liner thickness Margin of Safety = ______ - 1 2 X erosion + 1.25 X adj char*

Refer to Figure 38 for Station Locations

DOC NO. TWR-17272	νοι
SEC	PAGE 87

Data
Char
and
Erosion
Assembly
Cap
Nose
STS-26A
Table 5

Angular Location		2 				ŝ	Stations						
	1.5	4	ę	ø	10	12	14	16	18	20	22	24	26
0 degrees													
Maasurad Erosion	NA	0.26	0.34		٠.	4		9.	Ś	0.92	1.42	1.59	1.13
Char	NA.	0.60	0.54	ŝ	ŝ	ŝ	4	٠	₹.	1	ŝ	9.	Γ.
	NA	0.48	0.43	4	٠.	4.	٣.	٣,	۳.	۳.	₹.	ŝ	ŝ
2E + 1.25AC	N N	1.12	1.22	1.23	1.36	1.45	m	1.66	.81	. 24	. 4 2	. 8 6	. 9 2
RSRM Min Liner Thickness	1.776	2.038	2.248	۳.	9.	۰.	٩.	?	ŝ	•	٢.	•	°.
Margin of Safety	NA	0.82	0.84	٩.	°.	σ.	°.	б.	ື	~	<u>.</u>		.
45 degrees													
			76 0		4	u"	ŝ	9		0	9	80	۳.
Measured Erosion	44	# 0 •		е и	ŗ	1	1		4		5	٢.	٢.
	A N			, 4	۲	. "			. "	1	ി	9	s.
Adjusted Chat "		 		. 4	4		9	1 10	2.1	2.63	5 C C C	4.39	3.32
26 t 1.20AC Dodk min Tinar Thirkness	1 776	2.038	2.248		9	80	°.	?	3.5	٩.	٢.	٠6	•
Margin of Safety	NA	0.60	0.76	0.71	0.79	0.89	0.85	.80	. 67	. 54	. 20	٩.	7
90 degrees													
Measured Erosion	NA	0.40	0.42	4.	s.	'n	0.66	0.75	0.80	1.05	1.63	1.84	1.23
Measured Char	NA	0.62	0.66	9.	۰	9.	9.	ŝ	ŝ	•	Ŀ.		<u>،</u> ه
	NA	0.50	0.53	. 52	ŝ	ŝ	4	4	4	Ω.	ŝ		
2E + 1.25AC	NA	1.42	0	ŝ	. 6 8	. 67	. 9 2	8.			5.		
	1.776	2.038	2.248	2.458	2.668	2.878	<u>،</u>	Ņ	٩, v			• •	0 0 1
Margin of Safety	NA	0.44	0.50	Ϋ́.	ŝ		•	•	•	4	•		!
ı				•									
135 degrees													
Measured Erosion	NA	NA	NA	NA	NA	NA	N A	NA	NA	NA	NA	NA	NA
Char	NA	NA	NA	NA	NA	NA	NA	N N	NA	NA	٧N	NA	V N
	NA	N N	NA	NA	NA	NA	N A	N N	A N	NA	N N	N N	N N
2E + 1.25AC	NA	NA		N N	ΝA	N A	N N	N N N	A N	N N N		A N	A N N
RSRM Min Liner Thickness	1.776	2.038	2.248	2.458	2.668	2.878	3.055	3.298	106.5	4.000	4./13 41	4.07T	100.0
Margin of Safety	NA	NA	VN	NA	AN	~	4		6	6		G	ç
	' measured char		adjusted	to end o	f action	time							
TW			in	i mumi	er thi	10 K							
	margin of safety	safety											
	I.		9	051	.25 X	dj char*							

(-2

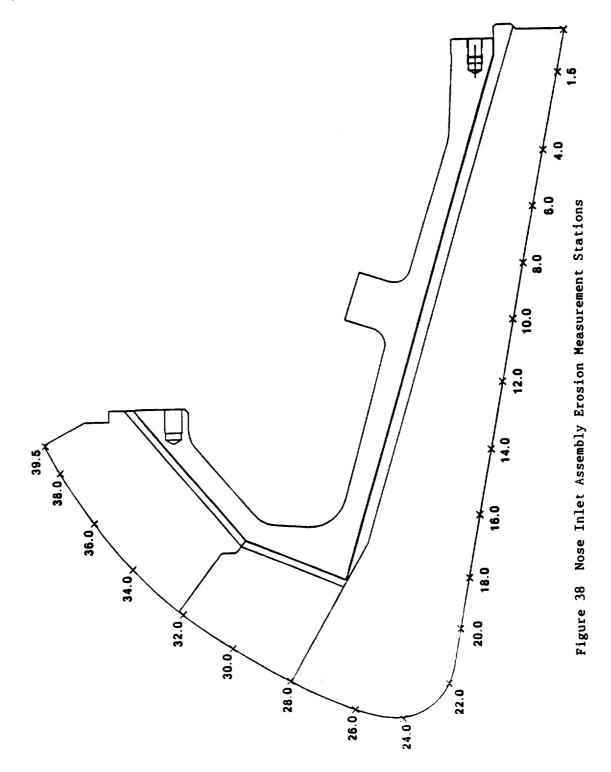
.-

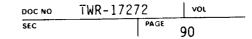
TWR-17272

Refer to Figure 38 for Station Locations

88

STS-26A Nose Cap Assembly Erosion and Char Data (continued) Tahle 5


		Table	5 STS-	-26A Nose	Cap	ASSEMULY	1010111				•		
						st	tations						
Angulat botation	1.5	4	ę	83	10	12	14	16	16	20	22	24	26
180 degrees										•	4		
	N N	0.38	0.38	٠.	ŝ	<u>د</u>	ŝ	•	0.75	1.04	0.73	0.00	0.75
Mensured Froston Konstrad Char	NA	0.62	0.61	9.	ŝ	n, '	<u>^</u> -	٠	. 4		ി	۰.	°.
noticeted Char *	NA	0.50	0.49	•	4		- r	•	: -:	9	σ.	4	.38
7E + 1.25AC	N N	60	1.37	4 S .	5 . 5	•	29	• •	ູ່ທີ	°.	٢.	÷.	°.
RSRM Min Liner Thickness Margin of Safety	1.776 NA	2.038 0.48	2.248 0.64	0.60	0.68	0.78	0.82	0.67	. 65	- 54	r.	°.	-
225 degrees											-	Y	c
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 8 0	~	2	4	ŝ	9	Γ.	5		• •	, r
	0.28	17.0	0.57	. თ	ി	s.	۰.	٠.	<u>س</u>	• •	ų.	0 ¥	
Measured Char	10.0	1010	0.46	4	4.	۳.	ς.	<u>,</u> ,	., e	<u>,</u> r		1 CC -	1
Adjusted Char "	1 07	1.05	1.17	.24	.28	.38	.49		א יע	<u>,</u> c	5	4.691	3.863
2E + 1.23AC RSRM Min Liner Thickness Margin of Safety	1.776 0.66	2.038 0.94	2.248 0.92	2.458 0.98	2.668 1.08	2.878 1.09	3.088	0.67.0		0.72	0.38	0.22	.40
270 degrees								,	f	d	•	1.65	-7
	NA	0.26	0.31	۳.	4	0.48	ົ່	29.0	• •	94.0	0.72	0.85	0.81
Here is the second s	A N	0.74	0.52	9	ف	90.0	ņ.	. "	1	. ~	ŝ	0.68	٩.
Adjusted Char *	NA	0.59	0.42	ŝ	۰.	0.40			6.	.36	.56		.10
2E + 1.25AC	NA	1.26	1.14	2.4	. 4	878 C		2	ŝ	٩.	٢.	4.691	
RSRM Min Liner Thickness Margin of Safety	1.776 NA	2.038 0.62	0.97	0.81	60	0.87	6.0	6.	0.84	. 72	m.	0.13	
315 degrees										•	•	F	-
		08 0	1 35		4	<u>د</u>	۰	0.66	0.78	5,1	٩, I		• •
Measured Erosion	A N	0.00	0.60	<u>،</u>	0.58	0.53	0.48	0.45	0.41	0.36			0.53
Measured Char	(A 2	74.0	0.48	1	٩.	4.	۳.	0.36			י י י	41.6	
4	A N	1.19	1.30	۳.	.38	. 57	. 76	E .	1.9.1			4.691	
ZE + 1.23AC		2.038	2.248	4	φ.	æ	਼	3.298		ים היים היים	• •	0.13	.34
RSRM MIN LINE INTERNESS Margin of Safety	AN	0.71		0.85	<u>.</u>	÷.	·.	0.80					
	AUSA88 *	measured char	adjusted	to end	of actio	on time							
	- - 	1											


TWR-17272

-

89

Space Operations

Space Operations

DOC NO	TWR-17272			VOL
SEC		PAGE	91	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272		VOL
SEC		PAGE	
	ł		92

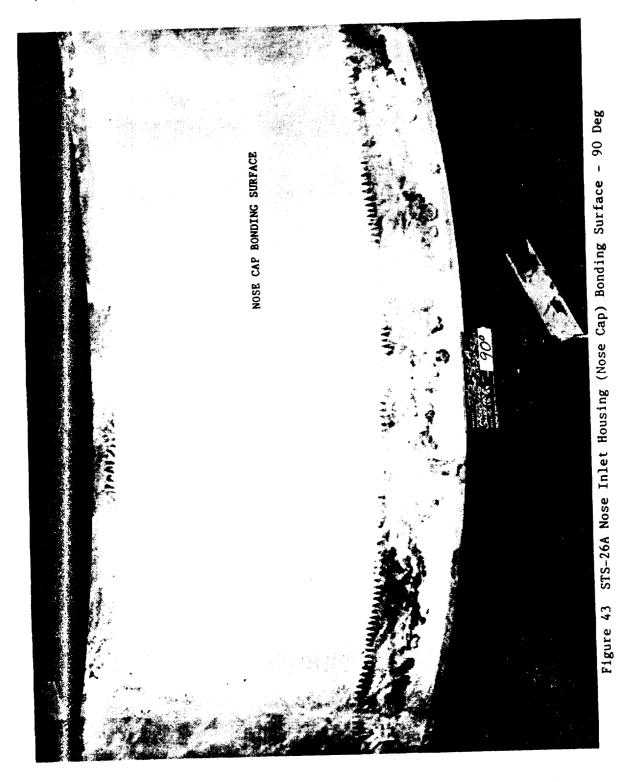
Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272)		VOL	
SEC		PAGE	ç	93	

Morton Thiokol. Inc.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


Space Operations

DOC NO	TWR-17272		VOL
SEC		PAGE	94

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

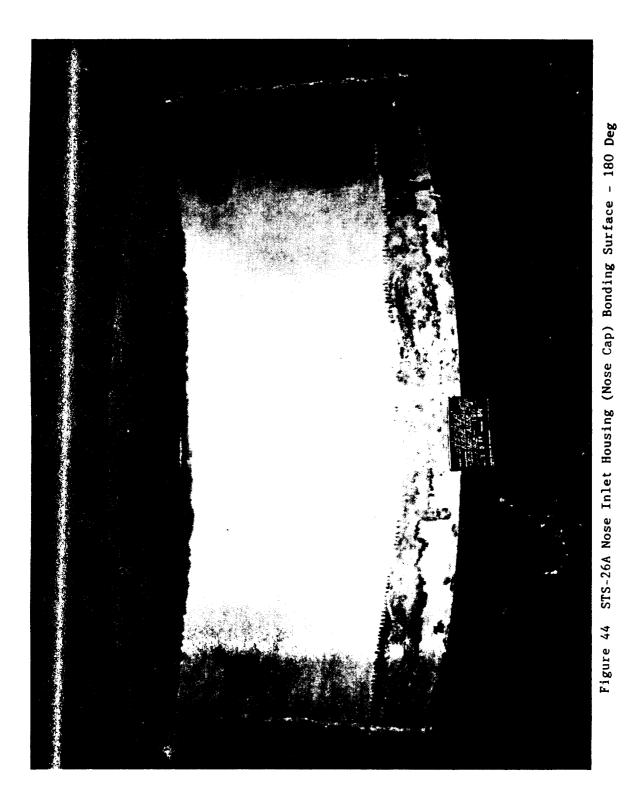
Space Operations

DOC NO	TWR-17272		νοι
SEC		PAGE	
			95

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

TWR-17272

VOL


96

PAGE

DOC NO

SEC

Space Operations

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO.	TWR-17272	VOL
SEC	PAGE	97

REVISION ____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272			VOL	
SEC		PAGE	9	8	

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

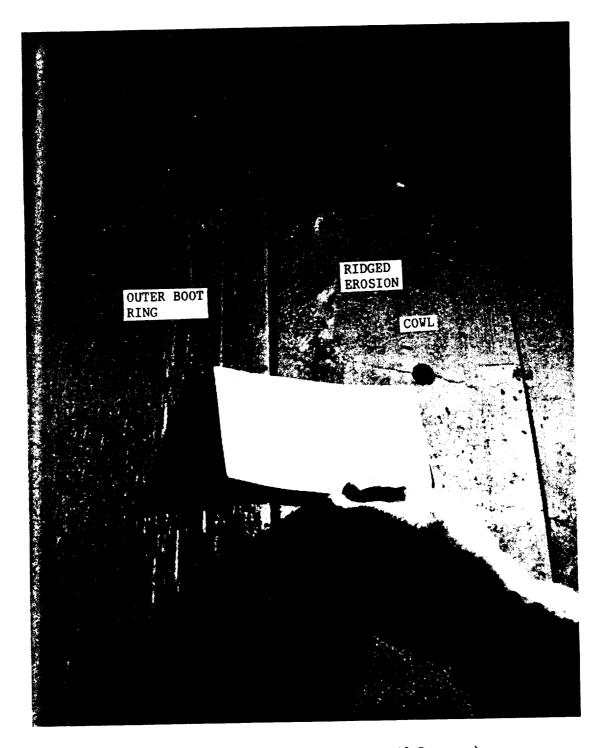


Figure 47 STS-26A Cowl/OBR Closeup (O Degrees)

DOC NO TWR-17272 VOI PAGE 99

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

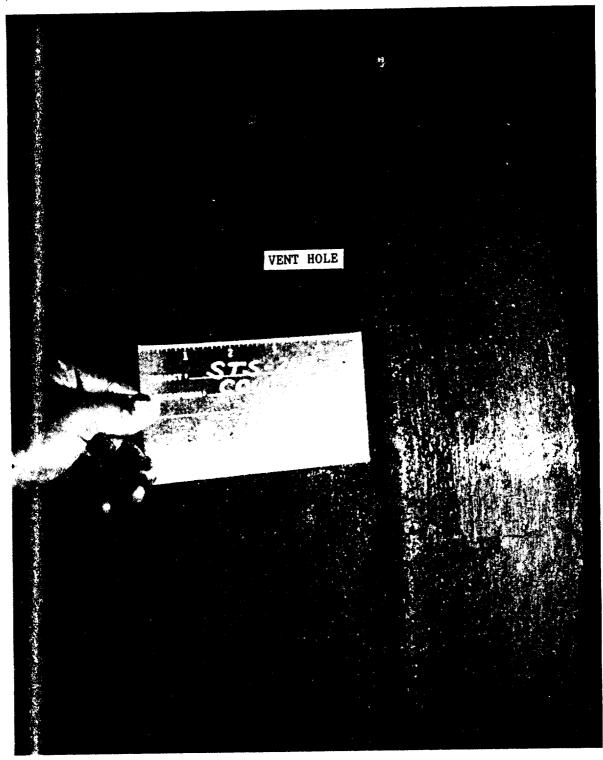


Figure 48 STS-26A Cowl/OBR Closeup (160 Degrees)

REVISION

DOC NO TWR-17272 VOL SEC PAGE 100

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 49 STS-26A Cowl/OBR Closeup (180 Degrees)

DOC NO.	TWR-17272		VOL
SEC		PAGE	101

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

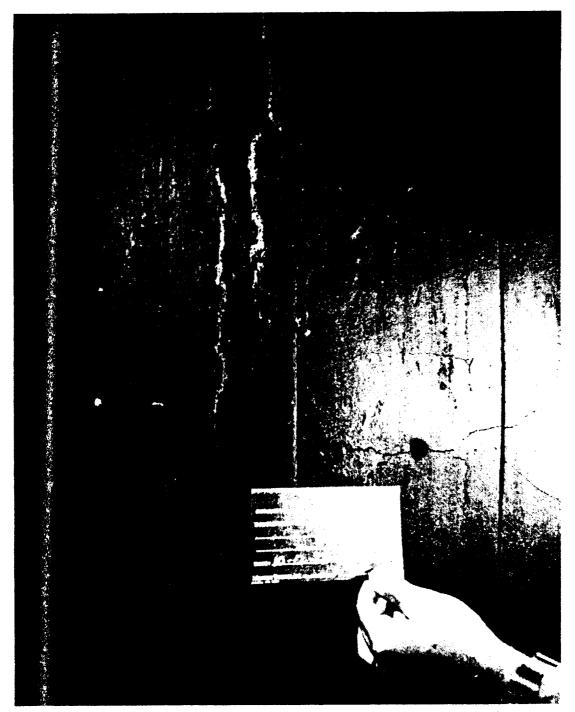
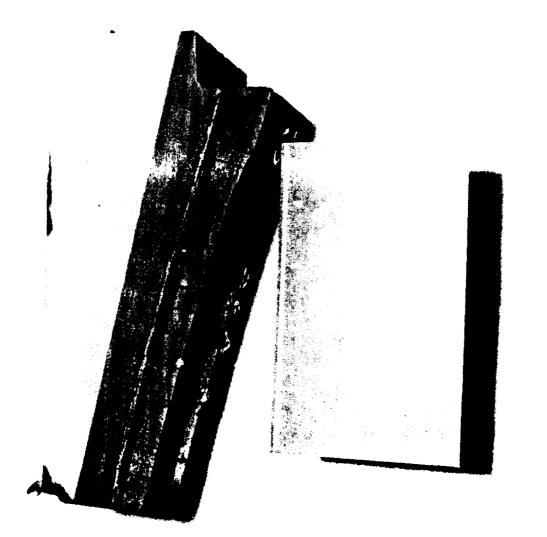
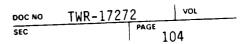



Figure 50 STS-26A Cowl/OBR Closeup (320 Degrees)

DOC NO.	TWR-17272	VOL
SEC	PAGE	102

Space Operations

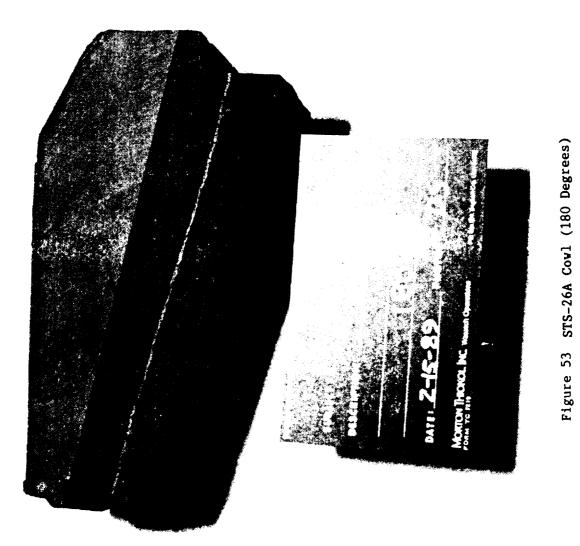
ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



DOC NO	TWR-17272			νοι
SEC		PAGE	10	3

Space Operations

Figure 52 STS-26A Cowl (90 Degrees) ÷


ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

REVISION _____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO.	TWR-17272	-		VOL	
SEC		PAGE	10	05	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

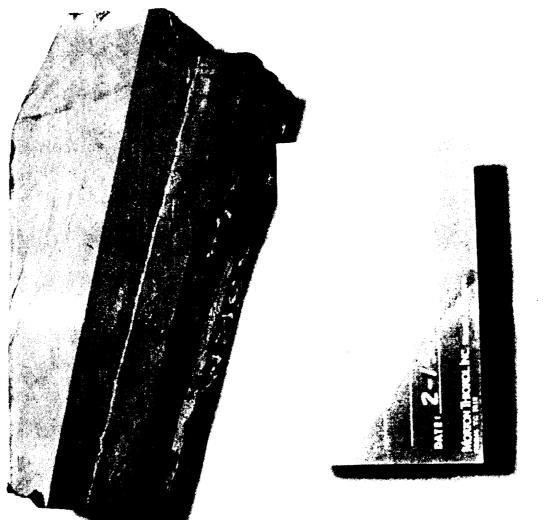


Figure 54 STS-26A Cowl (270 Degrees)

DOC NO	TWR-1727	2	VOL	
SEC		PAGE	106	

4 5 5 0.31 5 2 0.51 5 2 0.51 5 2 0.51 7 3 1.811 7 1.811 7 1.8111 7 1.8111 7 1.8111 7 1.8111 7 1.8111 7 1.811	0 1 0 26 0.18 0.26 0.57 0.62 0.46 0.50 0.93 1.14 1.417 1.49 1.417 1.49 0.52 0.31 0.52 0.31	2.29	e	4	ŝ	9	٢	80	6		11.3
destens 0 1 0 1 0 1 0 1 0 </th <th>0 1 Char 0.18 0.26 Char 0.57 0.62 Char 0.57 0.50 Char 0.93 1.49 Liner 1.417 1.49 Liner 0.52 0.31 E 546 0.52 0.31 E 546 0.52 0.31 Char 0.52 0.52 0.31 Char NA NA NA</th> <th>. 29</th> <th>r</th> <th>•</th> <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th>	0 1 Char 0.18 0.26 Char 0.57 0.62 Char 0.57 0.50 Char 0.93 1.49 Liner 1.417 1.49 Liner 0.52 0.31 E 546 0.52 0.31 E 546 0.52 0.31 Char 0.52 0.52 0.31 Char NA NA NA	. 29	r	•		,					
	Erosion 0.18 0.26 Char 0.57 0.62 char 0.46 0.50 5AC 1.417 1.49 Liner Thickness 1.417 1.49 C Safety 0.52 0.31 es nA NA NA Char NA NA NA	. 29		1	F	ſ	2	8 A	۰.	•	0.03
10.4 10.4	Char 0.57 0.62 Char 0.46 0.50 char 0.46 0.50 SAC 1.417 1.49 Liner Thickness 1.417 1.49 C Safety 0.52 0.31 es NA NA NA Char NA NA NA		. 33	. 5 /	49		8	NA	• <u>•</u> •	<u>ده</u>	
Willing State 0.55 0.55 0.55 1.55 </td <td>char * 0.46 0.50 char * 0.93 1.14 Liner Thickness 1.417 1.49 f Safety 0.52 0.31 es NA NA NA Char NA NA</td> <td>. e .</td> <td></td> <td>52</td> <td>.51</td> <td>9.</td> <td>9</td> <td>N N</td> <td>e e</td> <td>• •</td> <td>: "</td>	char * 0.46 0.50 char * 0.93 1.14 Liner Thickness 1.417 1.49 f Safety 0.52 0.31 es NA NA NA Char NA NA	. e .		52	.51	9.	9	N N	e e	• •	: "
<pre>Size 1.735 1.733 1.611 1.619 1.537 1.555 1.733 1.611 1.619 1.613 1.733 1.611 1.619 1.</pre>	r Thickness 0.93 1.19 r Thickness 1.417 1.49 0.52 0.31 0.52 0.31 0.51 0.31 ion NA NA NA NA NA NA		. 31	. 39	.38	.32	20	A A A A	4 F n 4	. 9	.
Right Min Liner Thickness 1.51 0.13 0.13 0.13 0.14	afety 1.41/ 1.43 afety 0.52 0.31 osion NA NA af	577	.655	. 733	.811	. 88	5.				e 0
01 dagress 01 dagress <td>A N N N N N</td> <td></td> <td>. 26</td> <td>. 25</td> <td>.31</td> <td>4</td> <td></td> <td>C E</td> <td></td> <td></td> <td></td>	A N N N N N		. 26	. 25	.31	4		C E			
Manured Ereston Majured Stort Majured Stort Maju	A N A N A N					;	2	A N	°.	0.	•
Manutred Chail M.N. M.N. M.N. M.N. M.N. M.N. M.N. M.N.	4 N 4 N	MA	NA	NA	NA	NA			-	•0	٣,
Majusted Chrit. W.	4 2	NA	NA	NA	NA	NA	~~			9	۶.
Majured Chef * MA WA		NA	NA	NA	NA	A N		A N	ീ	8	0.96
22 + 1.25X 1.417 1.59 1.477 1.55 1.713 1.411 1.59 0.06 0.06 40 degrees MA		NA	NA	NA	N N	ہ ۔ 2 ×	30	5.5	. 67	.68	Γ.
RASH Min Liner Thickness N.N. N.N. N.	AC	1.57	. 65		18.	0	. 4	NN	.76	۶.	Γ.
10 degrees 10 degrees <td>AN AN</td> <td></td> <td>ЧЛ</td> <td>N N</td> <td>VN</td> <td>4</td> <td>5</td> <td></td> <td></td> <td></td> <td></td>	AN AN		ЧЛ	N N	V N	4	5				
Measured Frosion MA MA<	40 degrees		:	-		NA	NA	Y N	°.	°.'	00.0
Messured Froston NA NA<	19	MA	NA	VN			M N	NN	٩.	o,	2
Margan of Safety Resulted Claf Resh Min Line Thickness Resh Min Min Line Thickness Resh Min		NA	NA	NA	V N 1	4	N A	N A	۰.	٢.	•0
Adjusted cint Thickness WA	A N	NA	NA	N N			NA	NA	. 85	6.	5
25 H HILLENG 1.117 1.499 1.577 1.655 1.733 1.417 0.97 0	Ϋ́Ν.	NA	NA	A I	4 4 4 4		96.	53	. 67	. 68	
RSRM min Liner Thickness NA	Thirkness 1.417 1.49	1.57	. 65	?;			NA	ΝA	ົ	¢	•
55 degrees 55 degrees 0.28 0.26 0.29 0.32 0.31 0.32 0.20 NA NA <td>NA</td> <td>N N</td> <td>NN</td> <td>22</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NA	N N	NN	22	4						
55 degrees Measured Erosion Measured Erosion Measured Erosion Measured Erosion Measured Erosion Measured Erosion Measured Erosion Measured Erosion 0:57 0:58 0:56 0:57 0:58 0:64 NA NA NA Adjusted char 1:13 1:26 1:29 1:36 1:39 1:36 1:59 1:675 1.675 1.675 1:417 1:499 1:57 1.655 1:733 1:311 1:989 1:963 1.597 1.675 1.67 1:417 1:499 1:57 1.655 1:733 1:311 1:989 1:963 1.597 1.675 1.67 Margin of Safety Measured Erosion Masured Erosion Masured Erosion Masured Erosion Masured Erosion Masured Erosion Masured Erosion Masured Erosion Masured Erosion Masured Char Masured C											
Masured Erosion 0.28 0.26 0.29 0.32 0.32 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.33 0.31 0.33	ŝ				~	~		ЧЧ	N N	N N	NA
Messured Clart 0.57 0.72 0.68 0.65 0.57 0.58 0.64 NA WA WA WA Messured Clart 0.46 0.56 0.55 0.56 0.57 0.58 0.64 NA WA WA WA MA WA Majured Clart 0.46 0.56 0.56 0.57 0.58 1.20 1.36 1.20 NA NA WA WA MA WA WA CLARE Thickness 1.417 1.249 1.267 1.655 1.733 1.011 1.869 1.963 1.597 1.675 1.65 1.656 1.20 0.39 0.64 NA MA WA	0.28 0.2	0.2	ņ	ŗr	<u>,</u> r	5	°0.	NA	MA	NA	K A
Mercured Chart Adjusted Chart Est 1:255 2.5 + 1:255 2.5 + 1:255 2.5 + 1:255 2.5 + 1:255 2.5 + 1:255 2.5 + 1:25 2.5 + 1:255 2.5 + 1:25 2.5 + 1:255 2.5 + 1:25 2.5 + 1:257 2.5 + 1:257 2.5 + 1:257 2.5 + 1:257 2.5 + 1:257 2.5 + 1:257 2.5 + 1:255 2.5 + 1:255 3.5		0.6	ہ ہ	. "	. vr	ŝ	. 6	A N	NN	N N	
AGG Harden 1.13 1.24 1.25 1.25 1.733 1.811 1.869 1.597 1.675 1.733 1.811 1.869 1.597 1.675 <t< td=""><td></td><td>0.5</td><td>٩, r</td><td><u>?</u> "</td><td></td><td></td><td>. 20</td><td>N A</td><td>NN</td><td>NA.</td><td>1 104</td></t<>		0.5	٩, r	<u>?</u> "			. 20	N A	NN	NA.	1 104
RSRM Min Liner Thickness 1.417 1.499 1.25 0.28 0.27 0.39 0.64 NA <	1.13 1.2	97.T	N 14 N 14		°.	.88.	96.	. 59	•		
Margin of Safety 0.25 0.21 0.22 0.20 0.0 60 degrees Mesured Erosion Masured Erosion Masured Char Ma NA 0.72 0.9 Mesured Char Ma NA	s 1.417 1.4	9 I.5/			. "	۳.	۶.	NN	N N	5	5
60 degrees Measured Erosion Masured Erosion Masured Char Ma NA 0.72 0.9 Measured Char Masured Char Ma NA	0.25 0.2	7.0	•								
Mesured Erosion NA					1	1	A M	N N	°.	°.	0.03
Mesured Erosion NA	Υ. Υ.		NA	NA	42	6 7		N N	۶.	۰,	۰.
Mesured Char NA	Erosion wa		NA	NA	NN		41	A N	٢.	٢.	۰.
Adjusted chaf " NA			N A	NA	N N			A N	٥.	۴,	۶.
2E + 1.25ÅC	A N			NA	A A		9	65	. 67	۶.	1.704
RSRM Min Liner Thickness Lity NA NA NA NA NA NA MA	41 7 1 4	99 1.57	. 65		5	.,		N N	٢.	۰.	۳.
Measured char adjusted to end of action time			NA	NA	NA						
			to end	f actio	n ti						
	5				-						
			ıniau	lner		1 1					

Table 6 STS-26A Cowl/OBR Erosion and Char Data

Refer to sigure 55 for Station Locations

Andrike faction a damage factor a dama								Stations					
	Angular Location			ŗ	r	4	'n	ę	7	æ	Ø		•
	0 degrees	0	H	4	, ,		000	~		NA			0.08
	lessured Erosion	0.26	0.26	m, Y	~, "	່	0.61	4 10	0	NA	5	r. •	0.72
	leasured Char	0.55	, 0 , 0	р ч		4	0.49	ŝ	8	NA	ņ	n a	
	char	946.0		<u>,</u> "	: ^	1	1.21	.01	. 30		0 ř 5 v	84.	1.704
0.117 0.117 0.11 0.13 0.13 0.11 0.13 0.13 0.14	E + 1.25AC		1 400	i n	. 65	.73	1.811	60 60		1.00.1		6.	9.04
<pre>Michanss With With With With With With With With</pre>	SRM Min Liner Thickness Largin of Safety	0.32	0.35		.31	e.	0.50	r.	<u>.</u>	4		•	
NA NA <th< td=""><td>00 degrees</td><td></td><td></td><td></td><td></td><td>÷</td><td></td><td>4 5</td><td>A M</td><td>V N</td><td>°.</td><td>۰.</td><td></td></th<>	00 degrees					÷		4 5	A M	V N	°.	۰.	
NA NA<	teresion	N N	NA	N N	< z	4 2 2		NA.	NA	N N	٩	•0	•
Nickmann	lessured Char	N N	V N	A N			N N	V F	A M	NA	9	é.	•
F Thickness 1.417 1.419 1.577 1.555 1.773 1.411 1.669 1.963 1.597 1.667 1.597 1.655 1.731 1.411 1.669 1.963 1.597 1.657 1.747 1.555 1.731 1.411 1.669 1.963 1.597 1.657 1.757 1.555 1.731 1.411 1.669 1.567 0.565	diusted char *	NA	N N	22		NA	N N	AA		NA.	5	2	•
<pre>Main way way way way way way way way way way</pre>	E + 1.25AC	NN L		1 577	65	. 73	1.811	1.889	96.	65.	0.4	0 T	• •
WA WA <td< td=""><td>ISRM Min Liner Thickness Largin of Safety</td><td>4 N N N</td><td></td><td>ИЛ</td><td>VN</td><td>NA</td><td>22</td><td>V N</td><td>4</td><td>4</td><td></td><td>•</td><td></td></td<>	ISRM Min Liner Thickness Largin of Safety	4 N N N		ИЛ	VN	NA	22	V N	4	4		•	
NA NA <thna< th=""> NA NA <thn< td=""><td>.20 degrees</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ŝ</td><td></td><td>¢ N</td><td>0</td><td>۰.</td><td>~</td></thn<></thna<>	.20 degrees							ŝ		¢ N	0	۰.	~
NA NA<		NA	NA	NA	NA	NA	~ ~ ~		4 N	N N	°.	۳.	-
NA NA<		NA	NA	NA	NA	A N		4	NA	NA	۶.	۶.	.
Thickness NA		NA	N A	N N	N N	4 2 2		N.	NA	V N	. 83	.83	~ 1
Thickness 1.417 1.499 1.277 1.00 NA NA NA NA NA NA 1.02 1.03 1.03 1.47 1.417 1.499 1.277 1.655 1.733 1.411 1.889 1.963 1.597 1.666 0 NA NA 0.73 0.66 NA NA 0.73 0.66 1.417 1.499 1.577 1.655 1.733 1.411 1.889 1.963 1.597 1.675 1.667 1.417 1.499 1.577 1.655 1.733 1.411 1.889 1.963 1.597 1.675 1.667 1.417 1.99 1.577 1.655 1.733 1.411 1.889 1.963 1.597 1.675 1.668 NA NA 0.00 0.00		NA		NN L'L			. 81	88.	.96	. 59	. 67	80 e	`
NA N	ssam min Liner Thickness	1.417	•		ר מ א מ	A N	N N	A N	NA	NA	ς.	2	-
NA 0.00 0.0	Margin of Safety	VN	NN	6	6								
<pre>MA NA /pre>	140 degrees						1	4	A N	YN	۰.	0.00	0.0
NA 0.597 1.655 1.733 1.811 1.889 1.963 1.577 1.655 1.733 1.811 1.889 1.963 1.675 1.687 <td< td=""><td>Erosion</td><td>NA</td><td>NA</td><td>N N</td><td>A N</td><td>NA</td><td>~ ~ ~</td><td>A N</td><td>A N</td><td>N N</td><td>6.</td><td>0.86</td><td>8 . 0</td></td<>	Erosion	NA	NA	N N	A N	NA	~ ~ ~	A N	A N	N N	6.	0.86	8 . 0
<pre>Cont * NA /pre>	sense of the sense	NA	NA	A N			MA	A N	N N	NA	Γ.	0.69	e • > •
5AC NA 0.63 1.675 1.687	char	NA	AN	A N			AN	NA	NA	N N	1 6 .	0.50	• r • •
<pre>1.417 1.499 1.577 1.655 1.733 1.611 1.889 1.963 1.675 1.687 0.084 0.99 NA NA 0.00 0.00</pre>	7E + 1.25AC	NA			5 5 5 5	1 733	1.811	88.8	.96	. 59	. 67	1.08	
NA N	RSRM Min Liner Thickness Margin of Safety	1.417 NA	ר ת	NA.	N.N.	NA	V II	ЧЧ	V N	V N			
NA N	160 degrees						;		A N	A N	۰.	۰.	0,0
NA N		NN	NA	NA		NA	V Z		(N	N N	•0	۰.	0
 NA NA N	Messured Erosion	NA	NA	NA		NN	4 N N		NA.	N N	۰	۶.	0
NA N	Measured Char 	NA	A N	N N		A N			NA	NA	۳,	.85	0
ar Thickness 1.417 1.499 1.277 4.00 MA NA NA NA NA NA NA 1.04 0.90 A A fety NA NA NA NA 1.04 0.90 A A fety na NA NA NA 1.04 0.90 A A A A A A A A A A A A A A A A A A A	Adjusted cimi 26 + 1.25AC	NA	<u>.</u>	NA LLa	NA 1 A 5	1.733	1.811	1.38	.96	. 59	1.6	9 9 9 9	
NA NA NA MA	rsam Min Liner Thickness	1.417	6.			NA	NN		N N	V N	•	.	-
Measured char adjusted to end of action minimum liner this	Margin of Safety	NA	NN	NA									
inimum liner thi		Measu	ed cha	djuste	to	ofa							

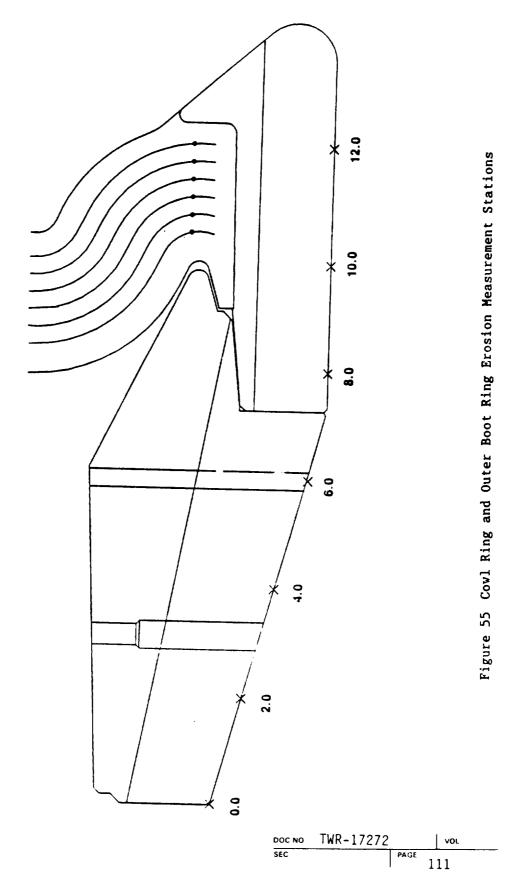
(continued)
Data
and Char Data
Erosion
Cowl/OBR
STS-26A
Table 6

			; ; ;	,)								
totation							Stations					
180 degrees	o	ч	2	e	•	ŝ	9	2	-	9	10	11.3
Measured Erosion	0.42	0.22	0.22	0.26	0.27	0.24	0.22	0.17	A N A N	0.00	0.00	0.00
	0.28	0.52		ŝ	Ņ,	o v	<u>,</u> "	. v	VN VN	, vo	ŝ	9
÷	27.0	7 8 7	•	2		: -	1	1		•	.74	٢.
25 + 1.25AC	1 417	1.499	о и 	9	5	•	8	6.	1.597	9	9	<u> </u>
RSRM MID LINET INLERNESS Margin of Safety	0.27	0.56	. 5 2	. 52	. 55	φ.	• •	. 0	V N	°.	?	?
200 degrees												
Mercinad Frosion	N.A.	NA	NA	N N	N A	NN	NN	N N	A N	<u>،</u> ا	°, •	•
Negatied biotect	MA	NA	NA	V R	N N	VH	NA	N N	V N	<u>،</u>		ю. Ч
Adrusted Char *	NA	NA	NA	N N	X N	N N	N N	< 2 1	4 H H	0.0	, d	•
2F + 1.25AC	NA	NA	N N		٨N	Z N	N N	V V		5 F N 4		, r
RSRM Min Liner Thickness Margin of Safety	1.417 NA	1.499 NA	1.577 NA	1.655 Ma	1.733 Ka	1.811 NA	1.889 Na	1.905 NA		0.86	0.76	1.10
210 degrees												
		0.26		2	. 2	. 2	. 2	٦.	NA	NA	ЧY	NA
	0.57	0.62		٢.	٢.	٢.		è.	NA	NA	N N	V N
1000000000000000000000000000000000000	0.46	0.50		ŝ	ŝ	è.	<u>م</u>	ŝ	N N	NA	V N	< N N
	6.93	1.14	7	٦.	٦.	.17	.16	8	A N I	N N	× `	
RSRM Min Liner Thickness	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.903	/ 6C · T		1 0 0 1 T	
Margin of Safety	0.52	16.0		4	*	<u>.</u>	•	n .	5	5		
22j degrees											1	•
	N N	NA	NA	NA	NA	NA	N N	N N	NA	ē	•	0.1
	N.A.	NA	NA	NA	N N	N N	NA	٧N	VN	ດຸ່	<u>م</u> ا	100
	N N	NA	NA	NN	N N	N A	NA	NA	N N			
	NA	NA	NA	NN	N N	۷N	NA	A N	A N	46.0		97.0
te titane Thickness	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.963	1.96.1	<u>م</u> , •	• •	7
Margin of Safety	VN	NA	NA	V N	ИЛ	NA	N N	A N	N N	7.		
240 degrees												•
Measured Erosion	NA	NA	NA	NA	NA	A N	N N	A N	NA V	0.06	9 0 0 0 0	0.02
Measured Char	NA	N N	NA	N N	N N	A N	A N	44		e 4	9 M	
	NA	NA	AN	N N	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~~	6 2				. "
2E + 1.25AC	NN		NA '	NA	NA 1 733	LIS I	1.889	1.963	1.597		9	5
RSRM Min Liner Thickness Margin of Safety	1.417 NA	1.499 MA	V C - T	VN VN	NA	N.	N A	N N	N.N.	. 78	•	•0
	* Measured cha	•d char	adjusted	to end	of actio	on time						

		-		107-010	A COWL/U	BK Eros	10n and	313-20A COWL/UBK Erosion and Char Data (continued)	ita (con	tinued)		
Angular Location							Stations					
270 degrees	0	ы	2	£	Ŧ	ŝ	Q	٢	Ð	6	10	11.3
Measured Erosion	0.19	0.22	0.23	0.27	0.32	0.20	0.16	0.19	R.A.	0.03	0.03	0.03
Measured Char	0.62	0.57	0.63	0.63	0.60	0.70	0.80	0.80	NA	94.0	0.96	0.95
Adjusted char *	0.50	0.46	0.50	0.50	0.48	0.56	0.64	0.64	MA	0.75	0.77	0.76
2E + 1.25AC	1.00	1.01	1.09	1.17	1.24	1.10	1.12	1.18	NA	1.00	1.02	1.01
RSRM Min Liner Thickness	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.963	1.597	1.675	1.687	1.704
Margin of Safety	0.42	0.48	0.45	0.41	0.40	0.65	0.69	0.66	NA	0.68	0.65	0.69
280 degrees												
Measured Eroston	NA	NA	N N	NA	NA	NA	NA	N.A.	V N	00.0	0.00	0 0 0
Measured Char	NA	NA	NA	NA	NN	NA	NA	N N	N N	0.89	0.83	0.85
Adjusted char *	A N	NA	N N	N N	N.N.	NA	NA	NA	N N	0.71	0.66	0.68
2E + 1.25AC	٩N	N N	N N	N N	NA	NA	NA	NA	NA	0.89	0.83	0.85
RSRM Min Liner Thickness	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.963	1.597	1.675	1.687	1.704
Margin of Safety	NA	NA	N N	N N	N N	NN	N A	NA	N A	0.88	1.03	1.00
300 degrees												
Measured Eroston	0.16	0.22	0.24	0.30	0.31	0.19	0.15	0.17	КА	0.01	0.02	0.01
Measured Char	0.60	0.64	0.66	0.63	0.66	0.76	0.78	0.82	NA	0.80	0.81	0.81
Adjusted char *	0.48	0.51	0.53	0.50	0.53	0.61	0.62	0.66	N N	0.64	0.65	0.65
2E + 1.25AC	0.92	1.08	1.14	1.23	1.28	1.14	1.08	1.16	NA	0.82	0.85	0.83
RSRM Min Liner Thickness	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.963	1.597	1.675	1.687	1.704
Margin of Safety	0.54	0.39	0.38	0.35	0.35	0.59	0.75	0.69	VN	1.04	86.0	1.05

Table 6 STS-26A Cowl/OBR Erosion and Char Data (continued)

TWR-17272


-1 -

ainiaum liner thickness

* Measured char adjusted to end of action time

Space Operations

•

Space Operations

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 56 STS-26A OBR Aft End Delaminations (260 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	112

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

TWR-17272	VOL
PAGE	
	113

DOC NO

SEC

REVISION _____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

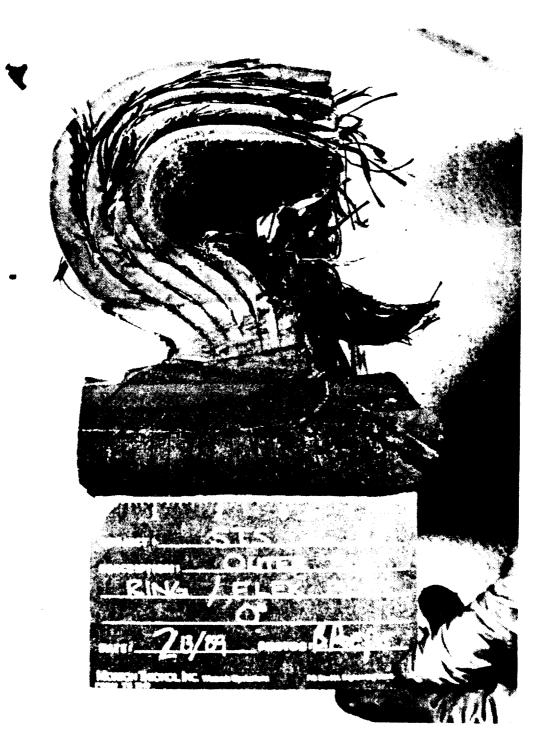


Figure 58 STS-26A Outer Boot Ring Section (0 Degrees)

DOC NO.	TWR-17272		VOL	
SEC		PAGE	114	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 59 STS-26A Outer Boot Ring/Flex Boot (90 Degrees)

DOC NO	TWR-17272			VOL	
SEC		PAGE	1	15	

REVISION ____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 60 STS-26A Outer Boot Ring/Flex Boot (180 Degrees)

DOC NO	TWR-17272			VOL
SEC		PAGE	1	16

Space Operations

REVISION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

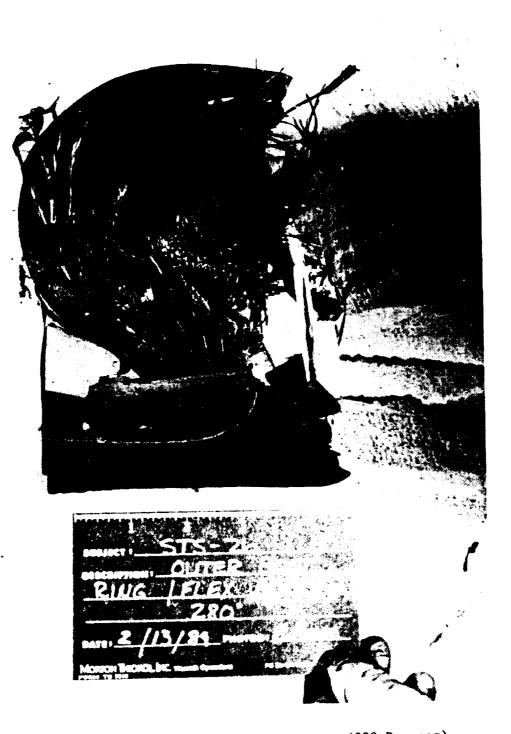


Figure 61 STS-26A Outer Boot Ring/Flex Boot (280 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	117

Space Operations

ORIGINAL PAGE BLACK AND V/HITE PHOTOGRAPH

Figure 62 STS-26A Flex Boot (Cavity Side - 0 Degrees)

DOC NO	TWR-17272		VOI
SEC		PAGE	118

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

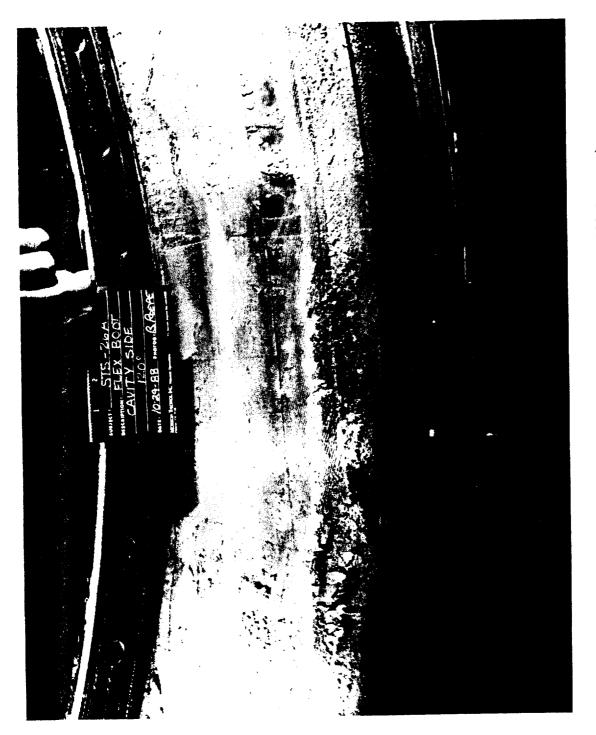


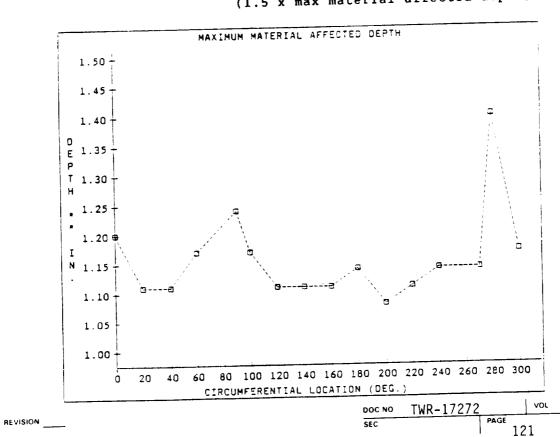
Figure 63 STS-26A Flex Boot (Cavity Side - 120 Degrees)

DOC NO	TWR-17272		νοι
SEC		PAGE	119

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-26A Flex Boot (Cavity Side - 240 Degrees) Figure 64


DOC NO TWR-17272 VOL SEC PAGE 120

Space Operations

į

Degree Location	Remaining Plies	Max Material Affected Depth (in.)	Margin Of Safety*
0 20 40 60 90 100 120 140 160 180 200 220 240 270 280	3.6 3.9 3.9 3.7 3.5 3.7 3.9 3.9 3.9 3.9 3.8 4.0 3.9 3.8 4.0 3.9 3.8 4.0 3.9 3.8 3.8 3.8 3.8	$1.20 \\ 1.11 \\ 1.11 \\ 1.17 \\ 1.24 \\ 1.17 \\ 1.11 \\ 1.11 \\ 1.11 \\ 1.14 \\ 1.08 \\ 1.11 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.14 \\ 1.17 $	0.39 0.50 0.42 0.34 0.42 0.50 0.50 0.50 0.50 0.50 0.46 0.54 0.54 0.50 0.46 0.46 0.46 0.19 0.42
300	3.7	1.1/	

Table 7 STS-26A Flex Boot Data Performance Margins of Safety



Figure 65 STS-26A Fixed Housing Wedgeout (280 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	
		1	22

Space Operations

REVISION ____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272	voi
SEC	PAGE	123

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

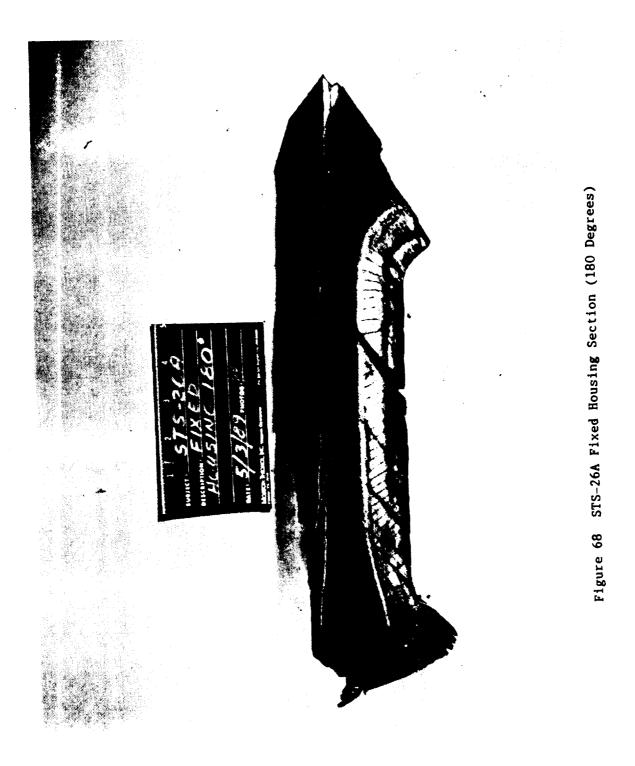


Figure 67 STS-26A Fixed Housing Section (90 Degrees)

DOC NO TWR-17272 VOL SEC PAGE 124

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO.	TWR-17272		
SEC		PAGE	125

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272		VOL	_
SEC		PAGE	126	

0 1 2 3 4 5 6 7 8 11 1105 1.00 0.01 0.00<	Angular Location					Stati	ions					
Jayres Jayres Jayres Frosten 0.01 0.00 0.00 0.00 0.00 0.00 Frunted Frosten 1.01 1.01 1.01 1.01 0.01 0.00 0.00 0.00 Frunted Frosten 1.01 1.01 1.01 1.01 1.01 0.01 0.00 <th></th> <th>0</th> <th>1</th> <th>~</th> <th>E</th> <th>4</th> <th>ŝ</th> <th>ę</th> <th>٢</th> <th>83</th> <th>9</th> <th></th>		0	1	~	E	4	ŝ	ę	٢	83	9	
01 0.04 0.03 0.00 <												
Thickness 1.35 1.25 1.21 1.05 1.01 1.03	Erosion	0.04	°.	٥.	٩.	۰.	0.00	0.1	°. (ō, d	$\circ \circ$	<u>ه</u> و
Thickness 1.00 0.05 0.04 0.01 0.01 0.01 0.00		1.35	?	4	٩,	٩.	1.01	<u>م</u> ا	יר	י י		1
Thickness 1.443 1.131 1.057 1.031 1.131 1.057 1.031 1.134 1.035 1.031 1.134 1.035 1.031 1.135 1.035 1.031 1.135 1.035 1.031 1.037 1.135 1.031 1.037 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.035 1.031 1.035		1.08	਼	۰,	٩,	°.	0.81	. '	. •	. •		5
3.607 2.081 1.825 1.827 1.829 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.92 0.91 0.91 0.92		1.43	"	. 11	. 05	.01	1.01	5.				
0.03 0.01 0.04 0.00 0.00 0.00 0.01 0.01 1.20 1.21 1.06 1.05 1.03 1.07 1.02 0.01 0.01 1.26 1.21 1.06 1.05 0.01 0.00 0.00 0.00 0.01 1.26 1.23 1.05 1.03 1.07 0.13 1.01 0.14 1.26 1.23 1.62 1.82 1.82 1.82 1.82 1.82 1.93 1.26 1.14 1.26 1.23 1.23 1.23 1.24 1.25 1.25 1.23 1.25 1.23 <td< td=""><td>w</td><td>3.807 1.66</td><td><u> </u></td><td>. 6 4 6 4</td><td>. 82 . 74</td><td>.81</td><td>1.831 0.81</td><td>. 8</td><td>ο 40 •</td><td>40.</td><td>6</td><td>. 56</td></td<>	w	3.807 1.66	<u> </u>	. 6 4 6 4	. 82 . 74	.81	1.831 0.81	. 8	ο 40 •	40.	6	. 56
0.03 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.01	i .)											
hickness 1.07 1.07 1.02 1.00 0.82 0.92 1.93 hickness 1.26 1.23 1.14 0.05 1.03 1.07 1.02 1.00 0.92 0.92 1.93 1.124 1.93 1.124 1.94 1.94 0.94 0.94 0.94 0.94 0.94 1.09 0.93 0.94 1.93 1.24 </td <td></td> <td></td> <td>c</td> <td>C</td> <td>0</td> <td>0</td> <td>0.00</td> <td>٩.</td> <td>٩.</td> <td>°,</td> <td><u>،</u></td> <td></td>			c	C	0	0	0.00	٩.	٩.	°,	<u>،</u>	
Char Char	easured Erosion		2.5	2	0	9	1.07	°.	٩.	•	σ.	ຈຸ
Thickness 1.26 1.23 114 1.05 1.03 1.07 1.06 1.00 0.82 0.94 1.9 Thickness 1.26 1.23 114 1.05 1.03 1.03 1.03 1.834 1.834 1.536 0.6 0.60 2.00 0.00 0.00 0.00 0.00 0.00 0.00	lessured Char		• •	, a		~	0.86	۳.	۳.	۰.	r.	ŝ
1.60 2.081 1.825 1.827 1.829 1.821 1.825 1.827 1.829 1.826 2.426 3.0 2.00 0.69 0.60 0.74 0.78 0.71 0.73 0.83 1.24 1.58 0.6 1.18 1.17 1.14 1.12 1.06 0.00	djusted Char ^a		ŗ	? -	2	9	1.07	٩,	٩.	. 8.2	.94	. 91
2.02 0.69 0.60 0.74 0.75 0.71 0.73 0.83 1.24 1.58 0.6 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.18 1.17 1.14 1.12 1.06 1.05 0.99 0.66 0.75 1.26 1.17 1.14 1.12 1.08 1.06 1.05 0.99 0.66 0.75 1.13 1.26 1.17 1.14 1.12 1.08 1.06 1.05 0.99 0.66 0.75 1.13 2.022 0.778 0.63 0.69 0.73 0.74 0.74 0.75 1.13 2.022 0.778 0.63 0.69 0.73 0.74 0.74 0.75 1.13 2.022 0.778 0.63 0.79 0.76 0.75 1.13 2.23 0.74 2.023 0.79 0.60 0.70 0.74 0.75 1.13 2.23 0.74 2.024 0.74 0.74 0.74 0.75 <	E + 1.25AC			-		8.2	-	. 83	. 8 .	. 83	4 2	•
degrees degrees degrees 0.04 0.00 <td>ISRM min Liner Thickness Lirgin of Safety</td> <td>2</td> <td>.69</td> <td>. 60</td> <td>1</td> <td>. 78</td> <td>_</td> <td>. 73</td> <td>۴.</td> <td>?</td> <td>ŝ</td> <td>•</td>	ISRM min Liner Thickness Lirgin of Safety	2	.69	. 60	1	. 78	_	. 73	۴.	?	ŝ	•
ured Erosion 0.04 0.00 <th>8. degrees</th> <th></th>	8. degrees											
hickness 1.05 1.05 1.05 0.99 0.86 0.75 1 hickness 1.17 1.14 1.12 1.08 1.06 0.69 0.69 0.69 1.26 1.17 1.14 1.12 1.82 1.82 1.82 0.69 0.60 0.60 0.73 0.69 0.60 0.73 0.69 0.75 0.73 0.74			· ·	C	c	0	۰.	٩.	۰.	۰.	٩.	0.00
Thickness 3.807 2.081 0.91 0.90 0.86 0.85 0.84 0.79 0.69 0.60 1 Thickness 3.807 2.081 1.825 1.827 1.829 1.831 1.832 1.834 1.836 2.426 3 ty 2.02 0.78 0.60 0.63 0.69 0.73 0.74 0.85 1.13 2.23 0 0.01 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00	lessured Erosion	. .	2	? -	? -	0	°.	٩.	σ,	۳.	Γ.	è.
Thickness 1:26 0.17 111 112 108 106 1.05 0.99 0.86 0.75 1 Thickness 2:02 2.081 1.825 1.827 1.829 1.831 1.832 1.834 1.836 2.426 3 ty 2.02 0.78 0.60 0.63 0.63 0.69 0.73 0.74 0.85 1.13 2.23 0 on 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00	feasured Char		- •	+ c	• •	, «		8	٢.	۰.	÷.	ς.
Thickness 1:26 1:17 1:825 1:827 1:829 1:831 1:832 1:834 1:835 2:426 3 ty 2:02 0:78 0:60 0.63 0.69 0.73 0.74 0.85 1:13 2:23 0 o 74 0.85 1:13 2:23 0 o 74 0.95 1:13 2:23 0 o 75 0.95 0.95 0.88 0.96 0.89 0.84 0.76 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	vdjusted Char*	~	· .	<u>.</u> -	<u>.</u> -			2	۴.	۳.	٢,	9.
3.807 2.081 1.525 1.63 0.69 0.73 0.74 0.85 1.13 2.23 0 2.02 0.78 0.60 0.63 0.69 0.73 0.74 0.85 1.13 2.23 0 0.04 0.03 0.00 0.00 0.00 0.00 0.00 MA 1.20 1.10 1.01 1.11 1.11 1.05 1.09 1.05 0.76 MA 0.96 0.88 0.89 0.89 0.84 0.87 0.84 0.76 MA 1.28 1.16 1.07 1.11 1.11 1.05 1.09 1.05 0.95 MA 1.28 1.16 1.07 1.11 1.11 1.09 1.095 0.95 MA 3.807 2.081 1.825 1.827 1.829 1.837 1.836 2.426 3 1.97 0.79 0.71 0.65 0.65 0.74 0.93 MA 1.97 0.79 0.71 0.65 0.74 0.63 0.93 MA <	2E + 1.25AC	9		# (•••		. "	83	833	. 83	.42	°.
0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00	ksem min Liner Thickness Aargin of Safety	0 N	. 78	. 60	e ve 	69.	· · ·	. 74	. 85	. 13	~.	.
0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00	213 degrees	·										i
<pre>hickness 1:20 1:10 1:07 1.11 1.11 1:05 1:09 1:05 0:95 MA 0.96 0.88 0.86 0.89 0.89 0.84 0.87 0.84 0.76 MA 1.28 1:16 1:07 1:11 1:11 1:05 1:09 1:05 0:95 MA 1:97 0.79 0.71 0.65 0.65 0.74 0.68 0.75 0:93 MA * Measured char adjusted to end of action time</pre>		 C 	9	0	٩.	٥.	٩	°.	0	°. '	N N	4
Thickness 3.807 2.088 0.36 0.89 0.89 0.84 0.87 0.84 0.76 MA 1.28 1.16 1.07 1.11 1.11 1.05 1.09 1.05 0.95 MA 1.97 2.081 1.825 1.827 1.829 1.831 1.832 1.834 1.836 2.426 3 ty * Measured char adjusted to end of action time		5	1	0	٦.	7	٩.	°.	٩.	5.	< 2	
Thickness 3:807 2:081 1:825 1:827 1:829 1:831 1:832 0:95 WA Thickness 3:807 2:081 1:825 1:827 1:829 1:831 1:832 1:834 1:836 2:426 3 ty * Measured char adjusted to end of action time		. 0		م	•0	٩,	۳.	°.	°.			
<pre>+ 1.25AC 1.831 1.836 1.836 1.827 1.829 1.831 1.832 1.836 2.426 3 RM min Liner Thickness 3.607 2.081 1.825 1.827 1.829 1.831 1.832 1.836 2.426 3 rgin of Safety 1.97 0.79 0.71 0.65 0.65 0.74 0.68 0.75 0.93 MA * Measured char adjusted to end of action time * Measured char adjusted to end of action time</pre>	Adjusted Char	h (? -	0	-	۲.	٩,	66.	•	. 9 2		ŝ
1.97 0.79 0.71 0.65 0.65 0.74 0.68 0.75 0.93 MA * Measured char adjusted to end of action time	25 + 1.23AC 			8	.82	.82	.83	. 83			N	
Measured char adjusted to end of action time	RSER WIN LINGE INTERNESS Maryin of Safety	56		.71	. 65	. 65	r.	9.	ſ.	ъ.	V N	
	*	Measu	•d cha	adjusted	to end	f actio	n tim					
X						4 +						


Table 8 STS-26A Fixed Housing Insulation Erosion and Char Data

TWR-17272

ORIGINAL PAGE IS OF POOR QUALITY 127

 $\mathsf{Pe}^{\texttt{fer}}$ to Figure 70 for Station Locations

Space Operations

DOC NO	TWR-17272			VOL
SEC		PAGE	12	28

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

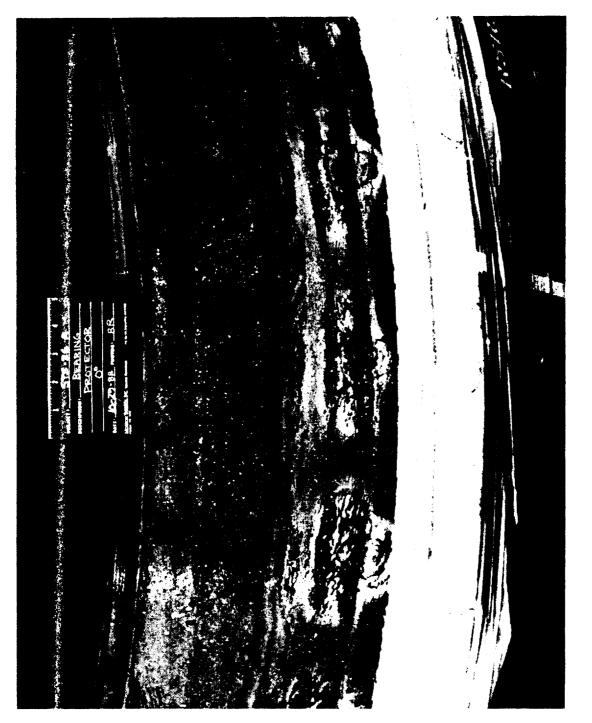


Figure 71 STS-26A Bearing Protector (0 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	129

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 72 STS-26A Bearing Protector (120 Degrees)

DOC NO	TWR-17272			VOL
SEC		PAGE 130		

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 73 STS-26A Bearing Protector (240 Degrees)

DOC NO	TWR-17272		VOL	
SEC	PAGE	1	31	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

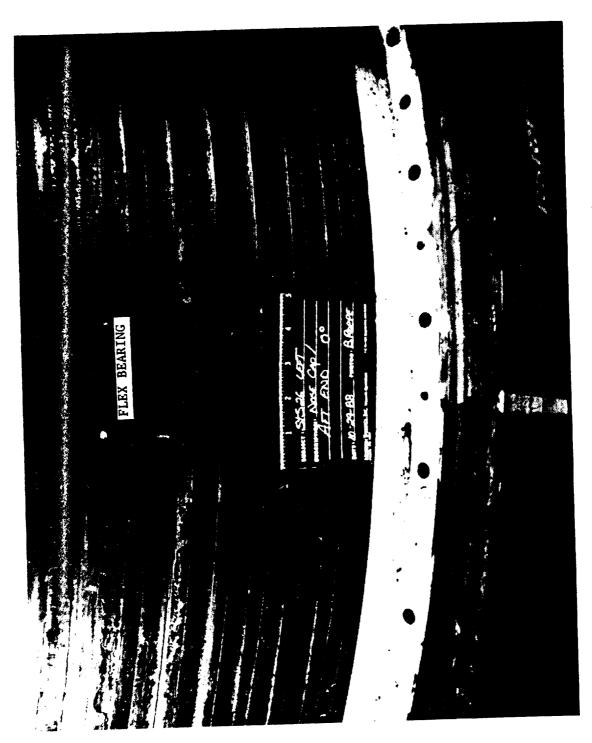


Figure 74 STS-26A Flex Bearing (0 Degrees)

DOC NO	TWR-17272	VOL
SEC	PAGE	132

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

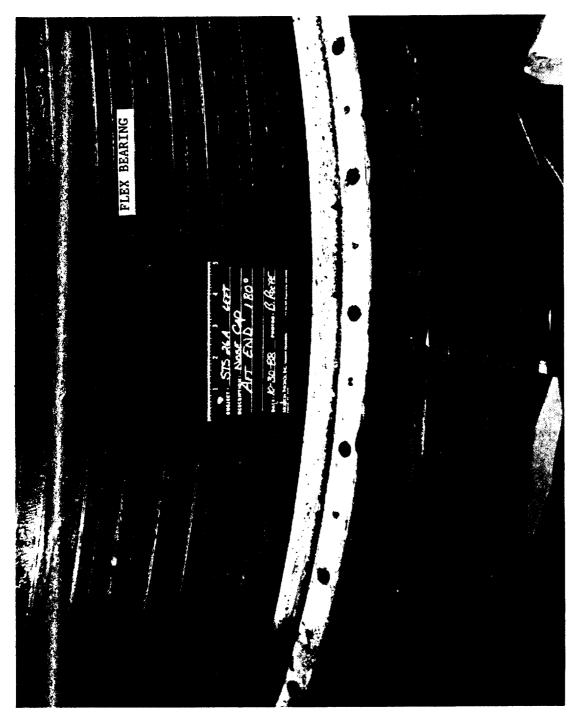


Figure 75 STS-26A Flex Bearing (180 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE 133	

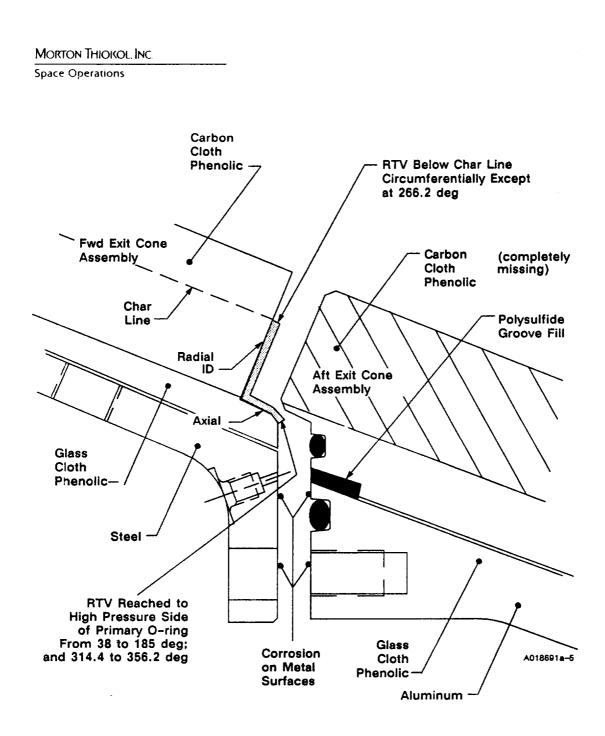


Figure 76 STS-26A-Forward Exit Cone-to-Aft Exit Cone Joint Interface

DOC NO	TWR-17272	2	VOL
SEC		PAGE 13	4

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 77 STS-26A Aft Exit Cone Forward End (O Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	135

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 78 STS-26A Aft Exit Cone Forward End (120 Degrees)

DOC NO	TWR-17272			VOL	
SEC		PAGE	1	36	

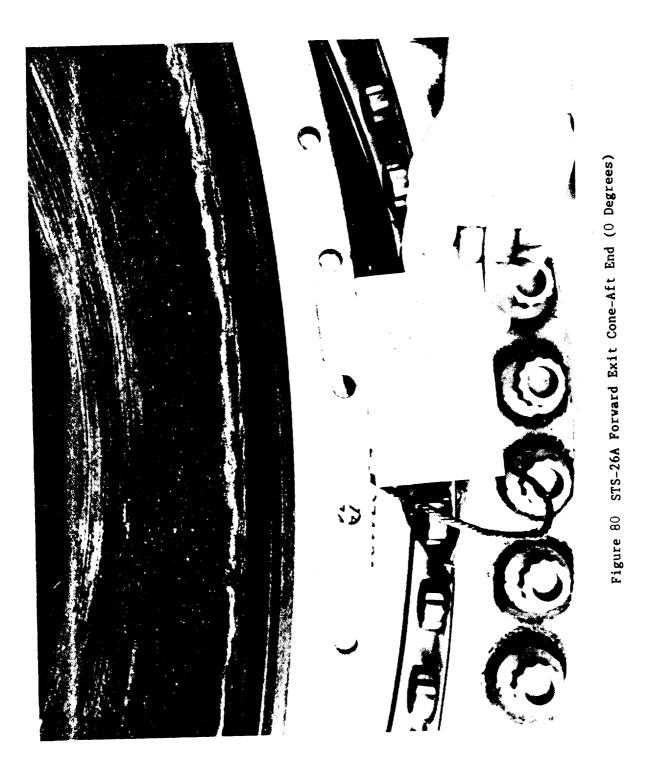


Figure 79 STS-26A Aft Exit Cone-Forward End (240 Degrees)

DOC NO. TWR-17272		VOL	
SEC	PAGE	137	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO TWR-17272 VOL SEC PAGE 138

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

MORTON THIOKOL, INC.

Space Operations

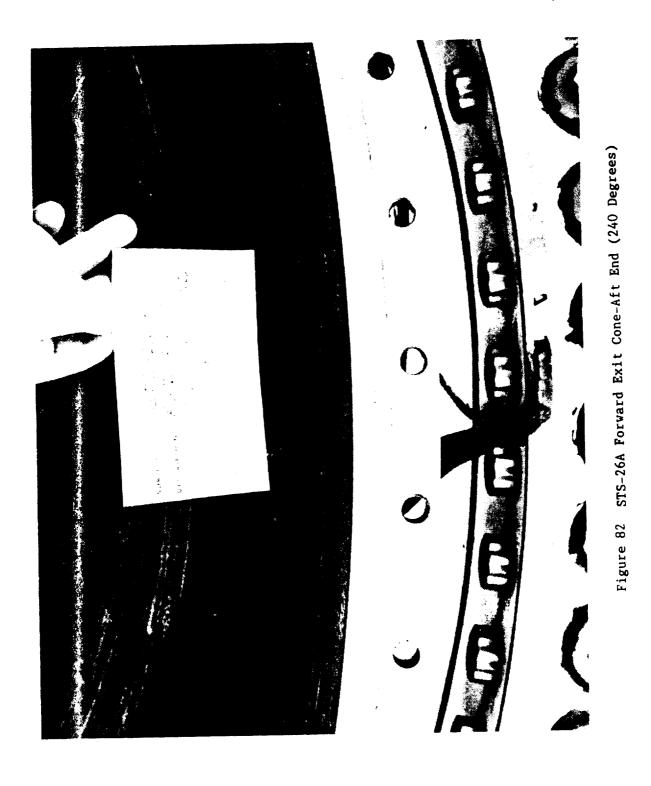


Figure 81 STS-26A Forward Exit Cone-Aft End (120 Degrees)

DOC NO	TWR-17272		VOL	
SEC		PAGE	139	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

TWR-1727	2	VOL	
SEC	PAGE	140	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272		VOL	
SEC		PAGE	141	

STS-26A Forward Exit Cone-Aft End White Corrosion (45 Degrees) Figure 84

DOC NO.	TWR-17272		VOL	
SEC		PAGE	142	

REVISION _____

MORION THIOKOL INC

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-26A Forward Exit Cone-Aft End Scratch Mark (90 Degrees) Figure 85

DOC NO TWR-1727	2	VOL
SEC	PAGE	143

Space Operations

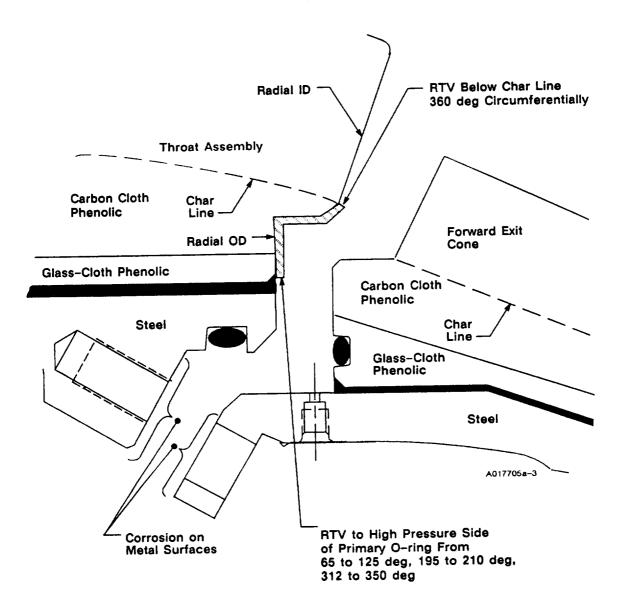


Figure 86 STS-26A Throat/Forward Exit Cone Joint

	doc no T	WR-17272	VOL
REVISION	SEC	PAGE 144	4

Space Operations

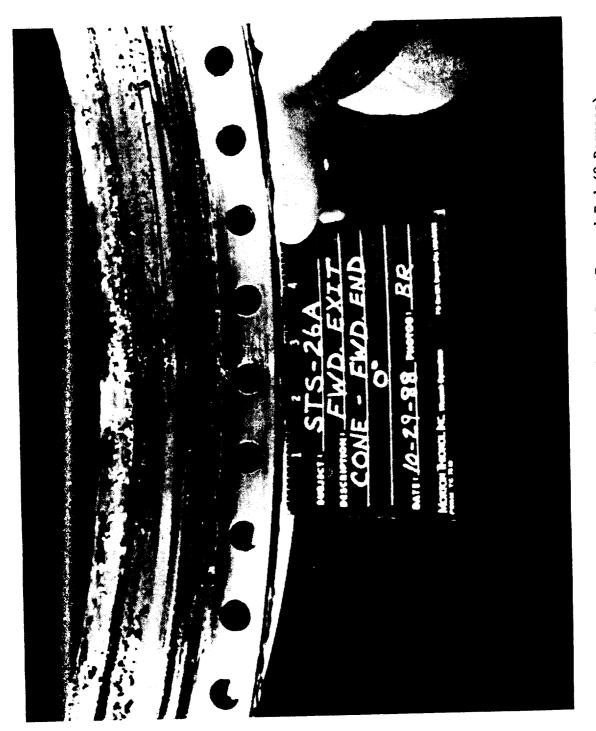


Figure 87 STS-26A Forward Exit Cone-Forward End (O Degrees)

TWR-17272

DOC NO

SEC

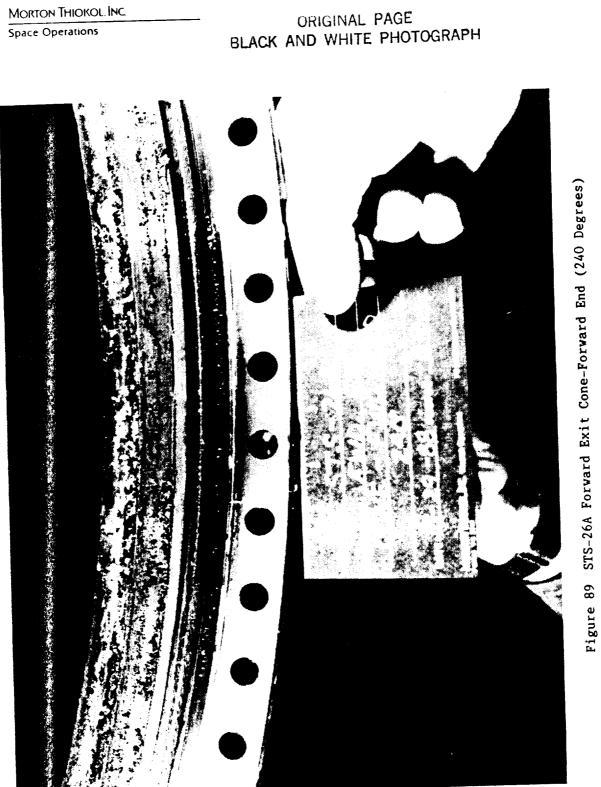
VOL

145

PAGE

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

REVISION ____


Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 88 STS-26A Forward Exit Cone-Forward End (120 Degrees)

DOC NO	TWR-17272	VOL
SEC	PAGE	146

£

DOC NO TWR-17272		VOL
SEC	PAGE	147

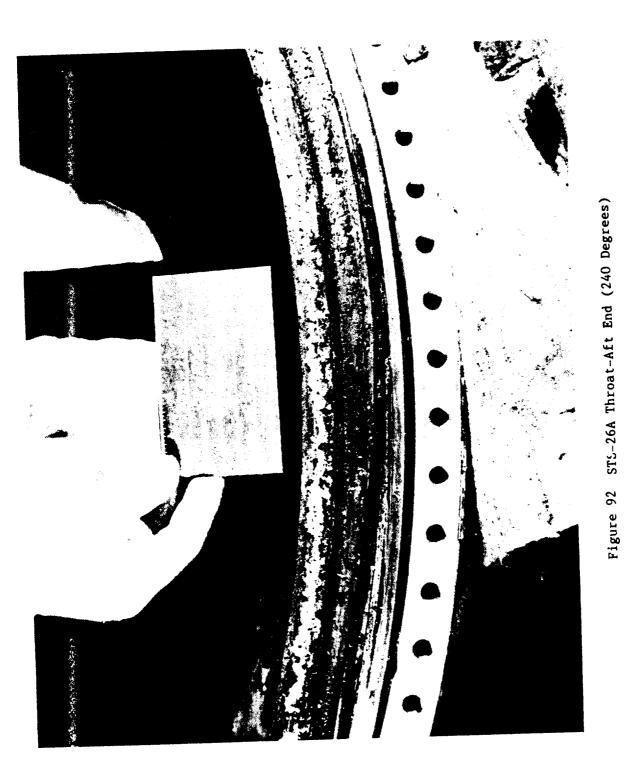
Figure 90 STS-26A Throat Aft End (0 Degrees)

DOC NO TWR-17272 VOL SEC PAGE 148

REVISION

MORTON THIOKOL. INC.

Space Operations


ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272		VOL	
SEC		PAGE	149	

ORIGINAL PAGE

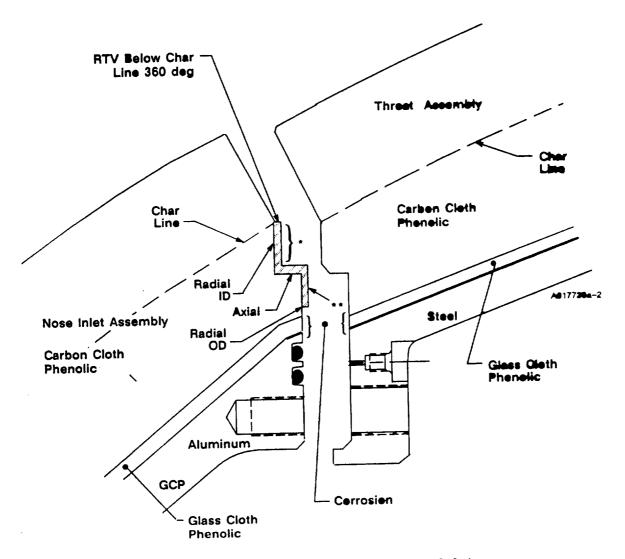
BLACK AND WHITE PHOTOGRAPH

MORTON THIOKOL. INC.

Space Operations

DOC NO TWR-17272 VOL SEC PAGE 150

Space Operations



ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

> DOC NO. TWR-17272 VOL SEC PAGE 151

REVISION ____

Space Operations

*RTV filled radial ID circumferentially except from 309 deg to 313 deg **RTV extended onto radial OD intermittently around circumference

Figure 94 STS-26A-Nese Inlet/Throat Heusing Jeint

	DOC NO TWR-17272		VOL
REVISION	SEC	PAGE	152

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 95 STS-26A Throat-Forward End (0 Degrees)

DOC NO.	TWR-17272		VOL
SEC		PAGE	153

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 96 STS-26A Throat-Forward End (120 Degrees)

DOC NO	TWR-17272	νοι
SEC		PAGE 154

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 97 STS-26A Throat-Forward End (240 Degrees)

DOC NO	TWR-17272		l	νοι	
SEC		PAGE	1	55	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 98 STS-26A Aft Inlet (-504) Ring-Aft End (0 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	156

DOC NO	TWR-17272		VOL	
SEC		PAGE	157	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

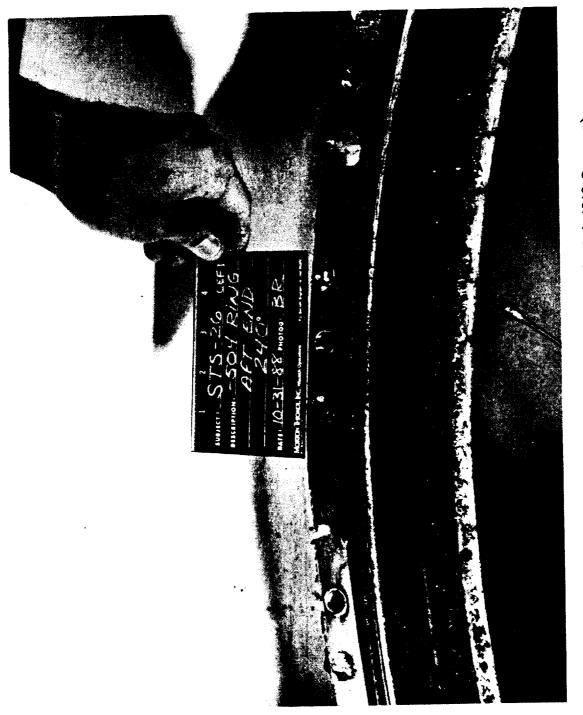
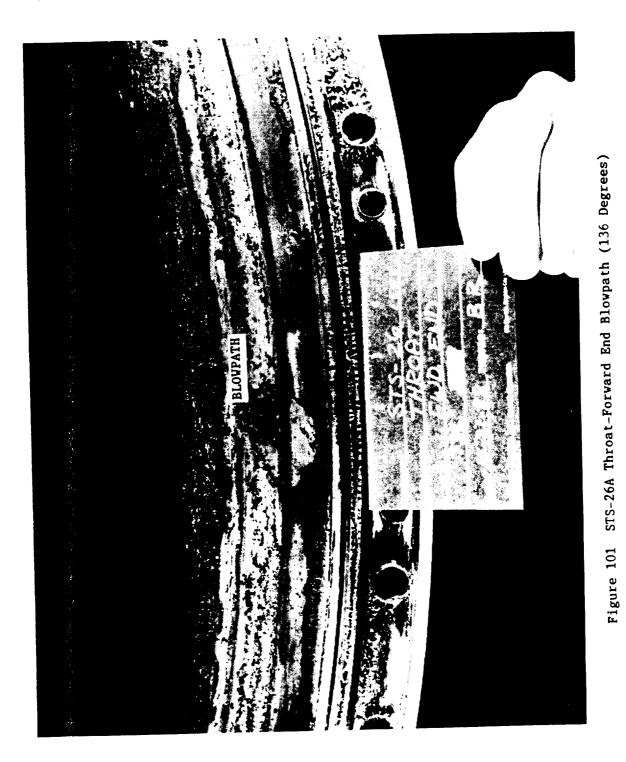



Figure 100 STS-26A Aft Inlet (-504) Ring-Aft End (240 Degrees)

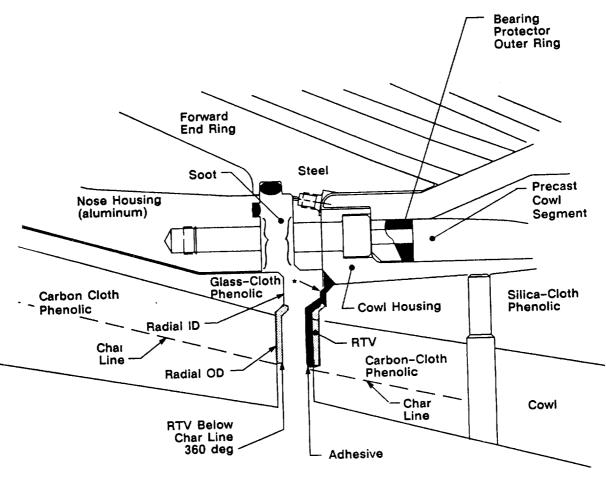
DOC NO.	TWR-17272			VOL	
SEC		PAGE	1	58	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272	VOL	
SEC	PAGE	159	

Figure 102 STS-26A Aft Inlet (-504) Ring-Aft End Blowpath (136 Degrees) BLOUPATH 0


DOC NO	TWR-17272		VOL
SEC		PAGE	160

REVISION _____

MORTON THIOKOL. INC. Space Operations

ORIGINAL FAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

A017703a-2

*Blowpath at 216 deg Eroded the Adhesive and Charred the SCP

Figure 103 STS-26A Nose Inlet Housing/Flex Bearing Joint

	DOC NO. TWR-	-17272 VOL
REVISION	SEC	PAGE 161

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 104 STS-26A Cowl-Forward End (O Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	162

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

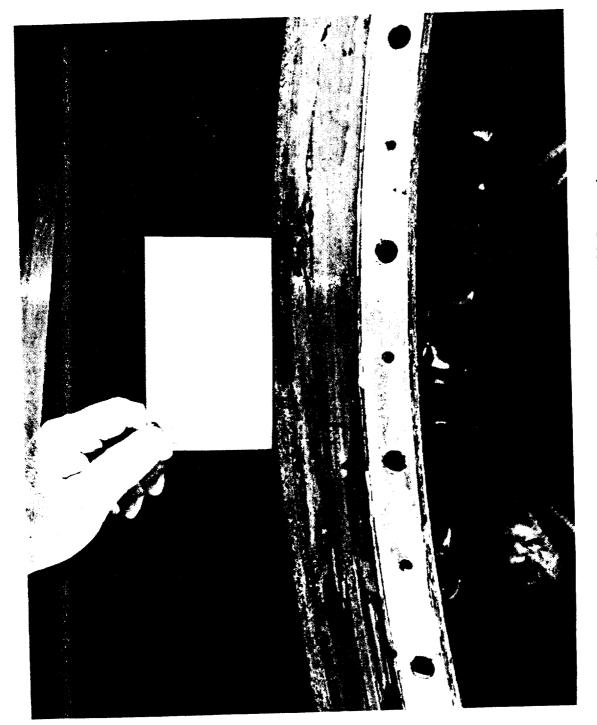


Figure 105 STS-26A Cowl-Forward End (120 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	163

Space Operations

ÖRIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 106 STS-26A Cowl-Forward End (240 Degrees)

DOC NO	TWR-17272		VOL	
SEC		PAGE	164	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 107 STS-26A Nose Cap-Aft End (0 Degrees)

DOC NO	TWR-17272	νοι
SEC	PAGE	165

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 108 STS-26A Nose Cap-Aft End (120 Degrees)

DOC NO	TWR-17272		VOL
SEC	PAGE	1(56

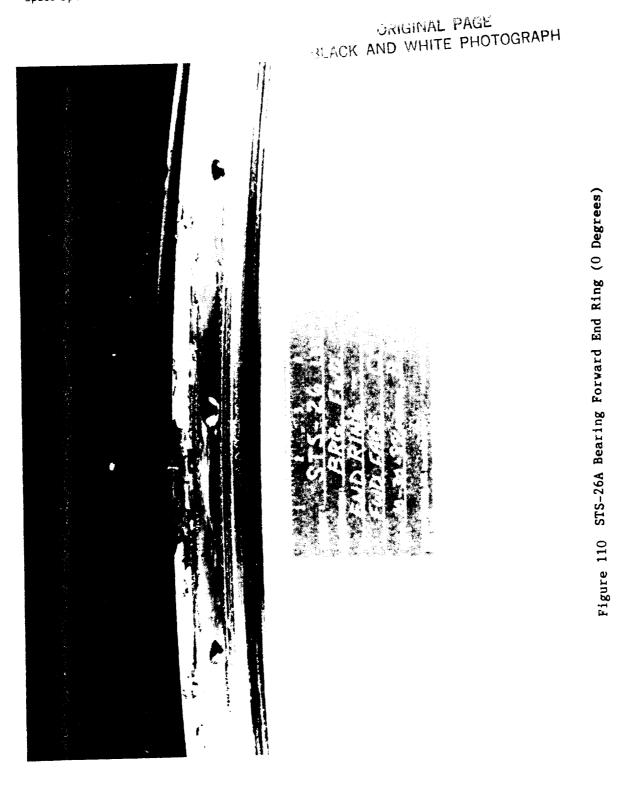


Figure 109 STS-26A Nose Cap-Aft End (240 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	167

MORTON THIOKOL. INC. Space Operations ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

DOC NO	TWR-17272		VOL	
SEC		PAGE	168	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

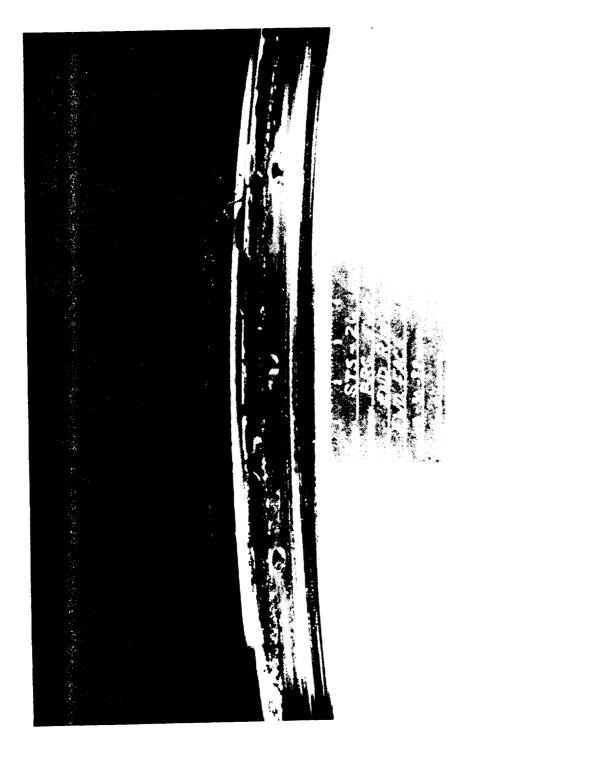
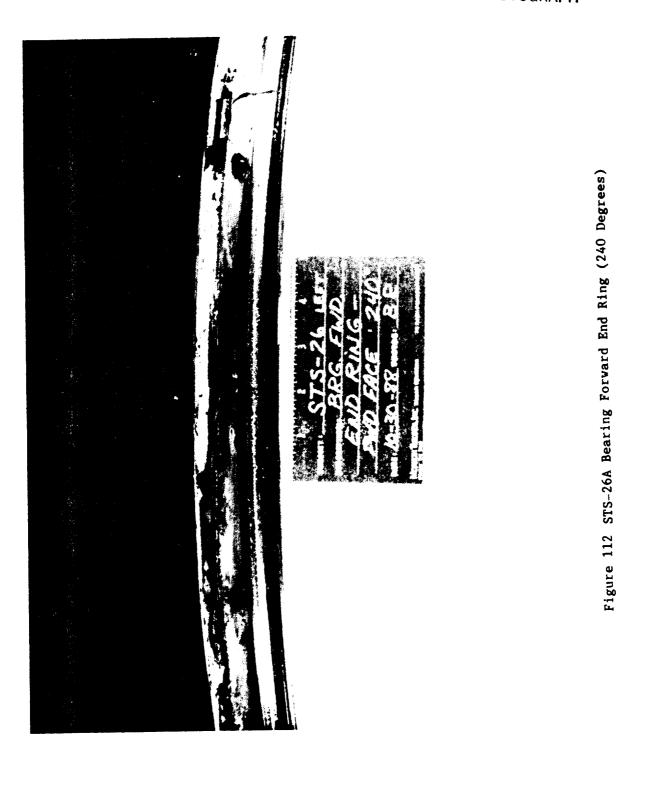



Figure 111 STS-26A Bearing Forward End Ring (120 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	
			169

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272			VOL	
SEC		PAGE	1	70	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

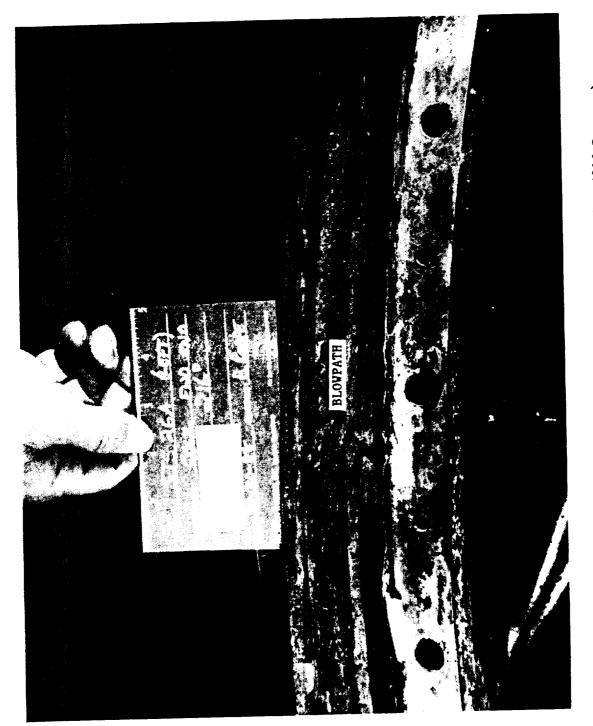


Figure 113 STS-26A Cowl Forward End-Blowpath Location (216 Degrees)

DOC NO	TWR-17272		VOL	
SEC		PAGE	171	

Space Operations

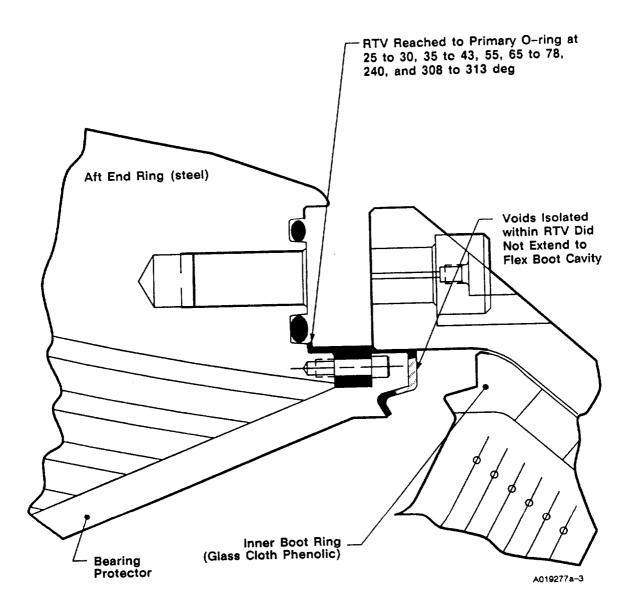


Figure 114 STS-26A—Flex Bearing/Fixed Housing Joint

	DOC NO TWR-17272	VOL
REVISION	SEC	PAGE 172

Figure 115 STS-26A Fixed Housing Forward End (0 Degrees)

DOC NO.	TWR-17272	VOL
SEC	PAGE	173

Figure 116 STS-26A Fixed Housing Forward End (120 Degrees)

DOC NO.	TWR-17272			VOL
SEC		PAGE	17	74



Figure 117 STS-26A Fixed Housing Forward End (240 Degrees)

DOC NO	TWR-17272		VOL	
SEC	P	AGE	175	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17272 VOL SEC PAGE 176

Space Operations

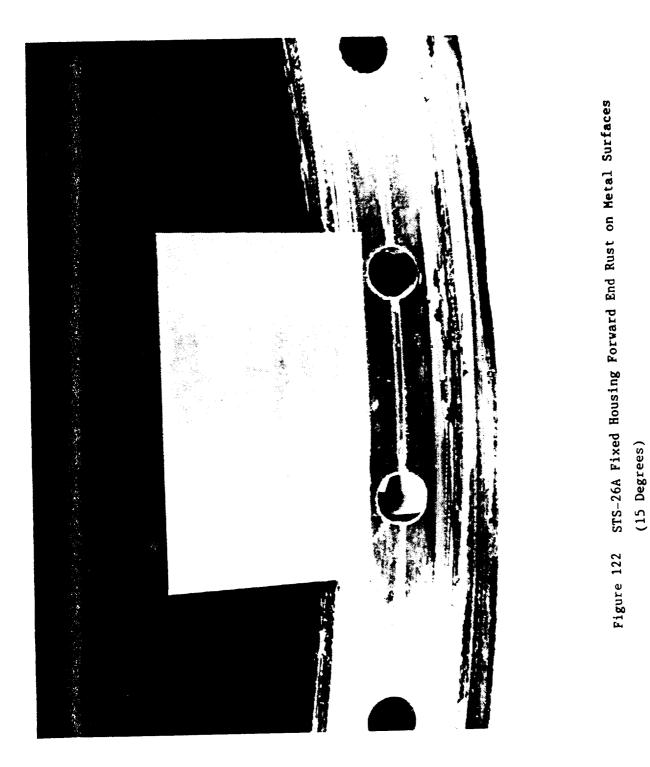
ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 119

DOC NO	TWR-17272	VOL
SEC	PAGE	177

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


DOC NO	TWR-17272			VOL	
SEC		PAGE	1	78	

DOC NO.	TWR-17272		VOL
SEC		PAGE	179

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

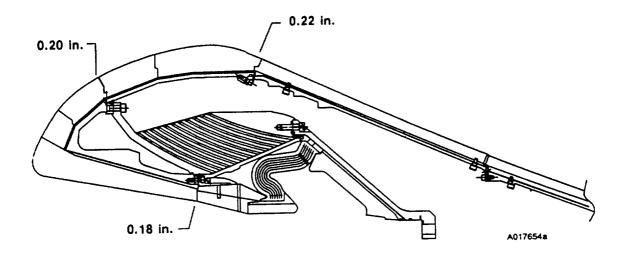
DOC NO	TWR-17272	VOL
SEC	PAGE	180

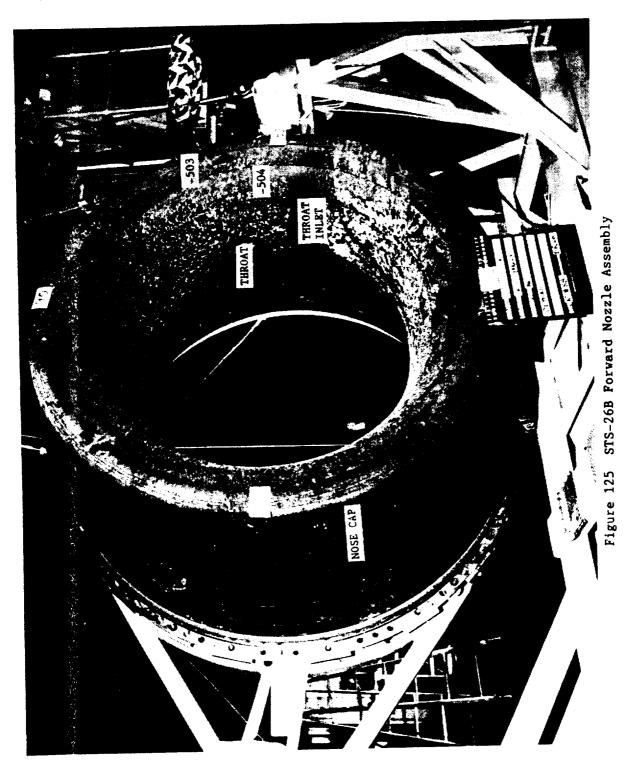
Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO.	TWR-17272		VOL
SEC		PAGE	181

Space Operations



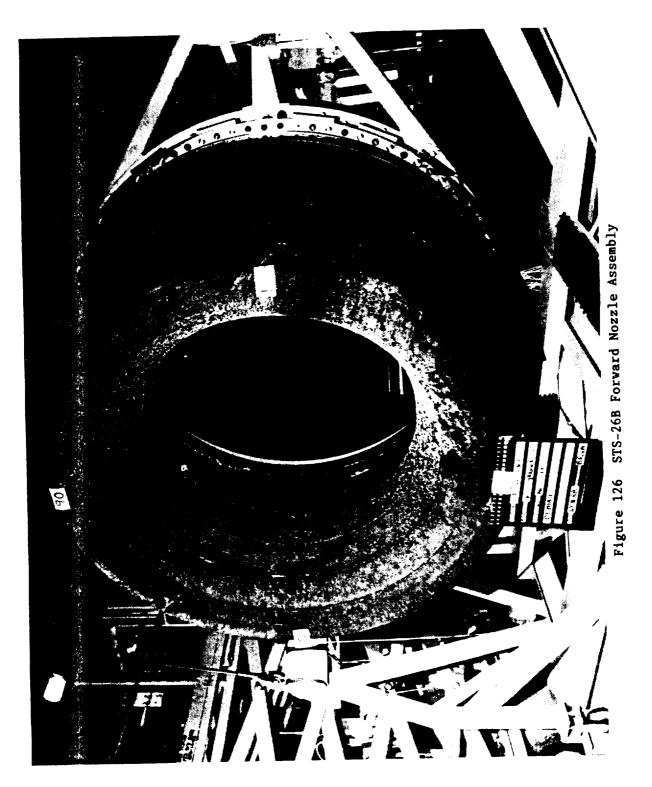

Figure 124 STS-26B Joint Flow Surface Gap Openings

	DOC NO TWR-1727	72 <u>vol</u>
REVISION	SEC	PAGE 182

Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

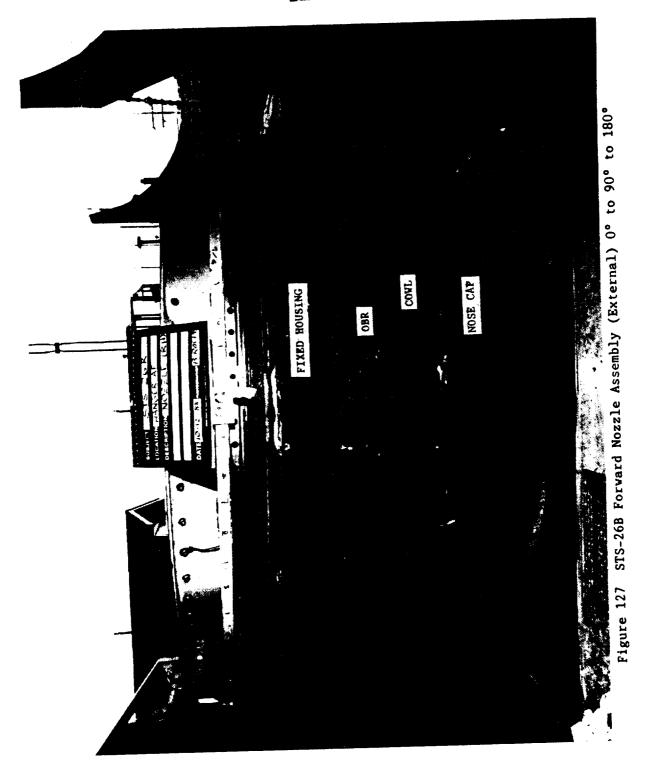

DOC NO	TWR-17272		VOL
SEC		PAGE 18	3

REVISION _____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

MORTON THIOKOL. INC.

Space Operations

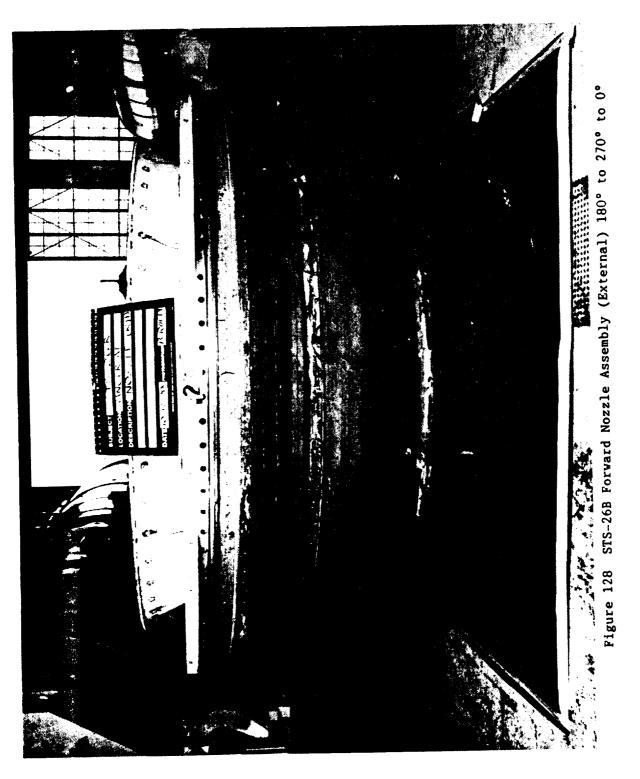


DOC NO	TWR-17272		VOL
SEC		PAGE	184

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

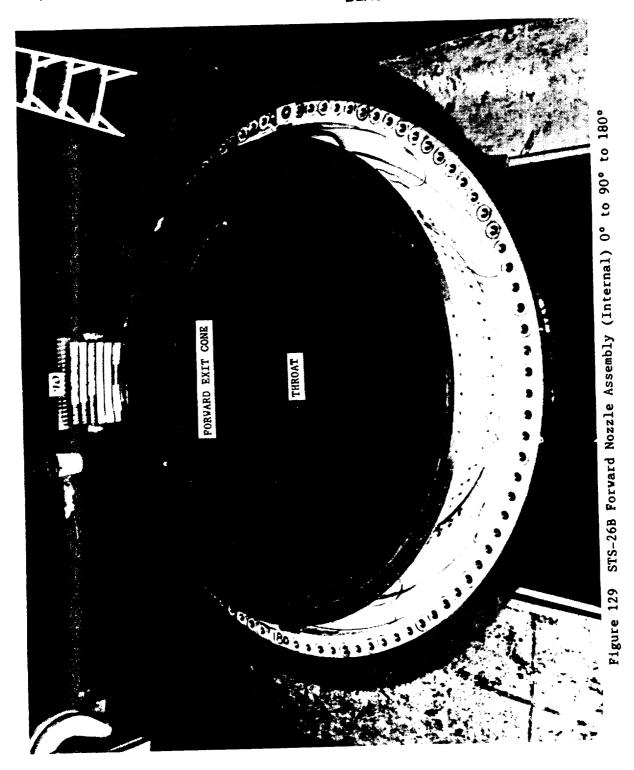

C Z

REVISION _____

MORTON THIOKOL, INC. Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

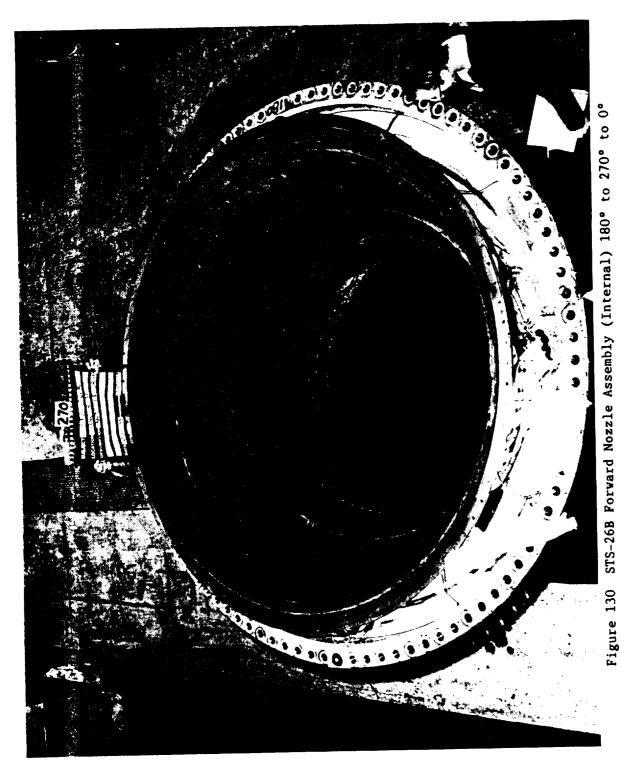

00C NO.	TWR-17272		VOL
SEC		PAGE	186

REVISION ____

Aerospace Group

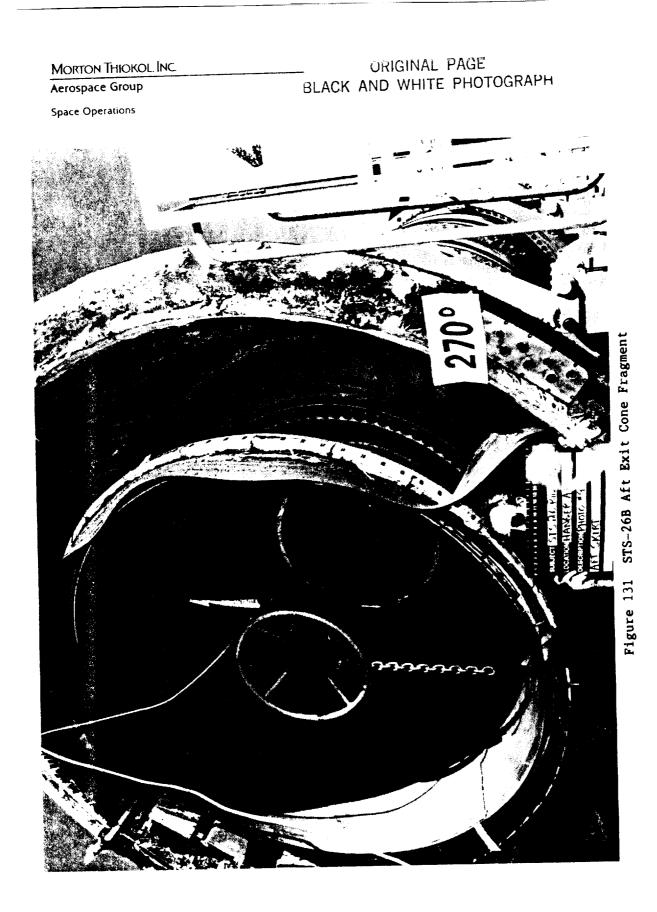
Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


DOC NO.	TWR-17272		VOL	
SEC		PAGE	187	

REVISION ____

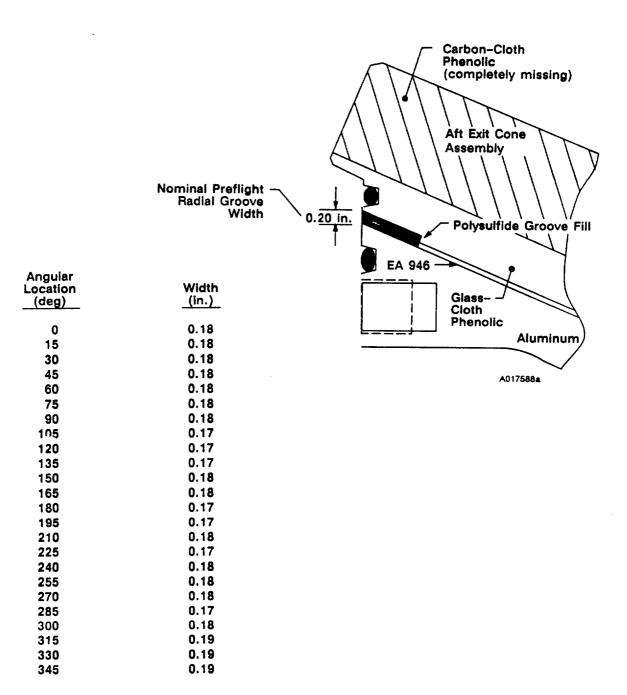
MORTON THIOKOL. INC. Aerospace Group


Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272			VOL	
SEC		PAGE	18	38	

REVISION ____



DOC NO.	TWR-17272		VOL
SEC		PAGE	189

REVISION ____

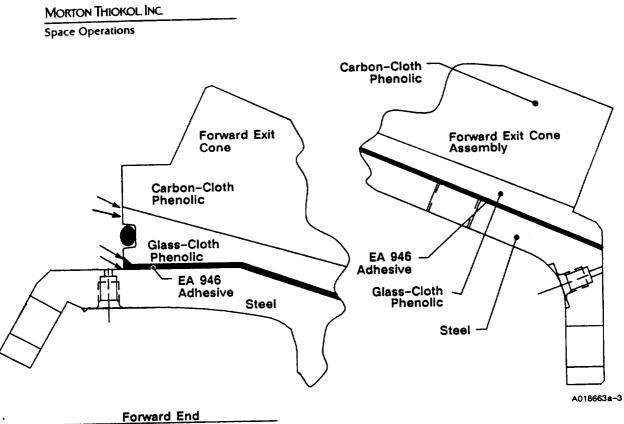
Aerospace Group

Space Operations

Table 9 STS-26B Aft Exit Cone Post-Flight Polysulfide Groove Radial Widths

	NOC TWR-17272	VOL
REVISION	SEC	PAGE 190
FORM TC 7994-310 (REV 2-88)		1

Aerospace Group


Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO.	TWR-17272		VOL
SEC		PAGE	191

REVISION ____

Forward End				
Location (deg)	Radial Separation (in.)	Separation Type		
0 15	0.05 0.03	Metal/Adhesive Metal/Adhesive		
30	0.005	Metal/Adhesi√e Metal/Adhesive		
45 60	0.005 0.005	Metal/Adhesive		
60	0.03	GCP Metal/Adhesive		
75 75	0.02 0.03	GCP		
90	0.005	Metal/Adhesive Cohesive		
90 105	0.04 0.01	Metal/Adhesive		
105	0.02 0.005	GCP/CCP GCP		
120 135	0.005	Metal/Adhesive		
150	0.03 0.005	Metal/Adhesive Metal/Adhesive		
165 180	0.005	Metal/Adhesive		
195	0.005 0.005	Metal/Adhesive Metal/Adhesive		
210 225	0.005	Metal/Adhesive		
240	0.005 0.005	Metal/Adhesive Metal/Adhesive		
255 270	0.01	Metal/Adhesive		
285 300	0.005 0.005	Metal/Adhesive Metal/Adhesive		
315	0.005	Metal/Adhesive		
330 345	0.01 0.02	Metal/Adhesive Metal/Adhesive		

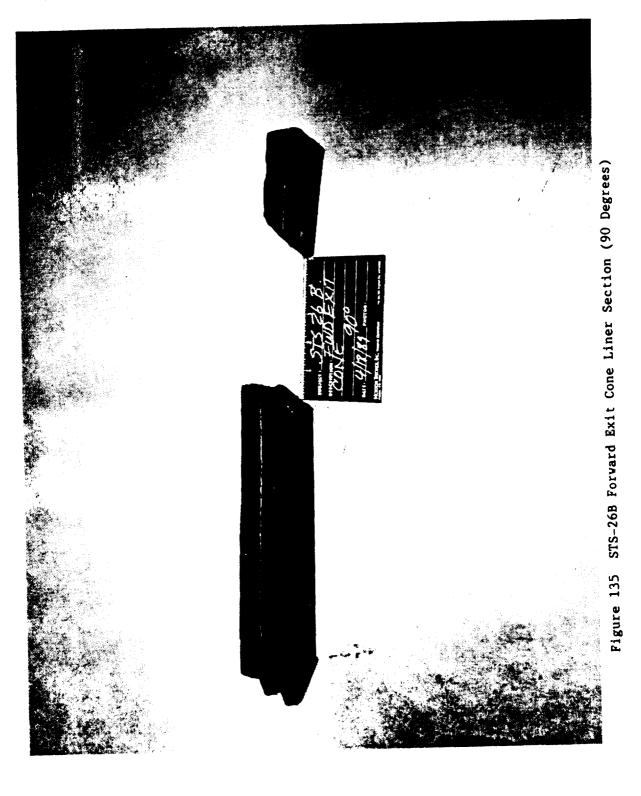

Figure 133 STS-26B Forward Exit Cone Bondline Separations

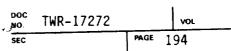
DOC NO. TWR-17272		VOL
SEC	PAGE	192

Aerospace Group

Space Operations

URIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

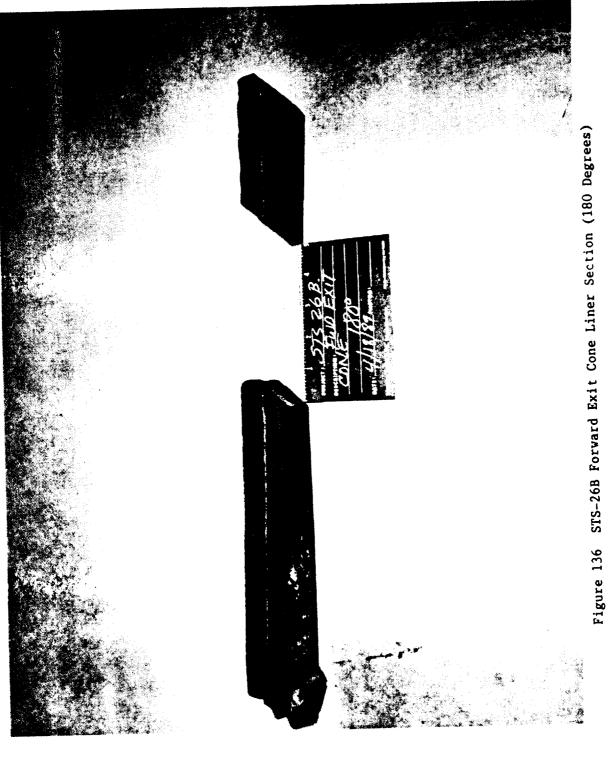



DOC NO.	TWR-17272			VOL	_
SEC		PAGE	1	93	

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



REVISION _

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272		VOL	
SEC		PAGE	195	

REVISION _____

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-26B Forward Exit Cone Liner Section (270 Degrees) Figure 137

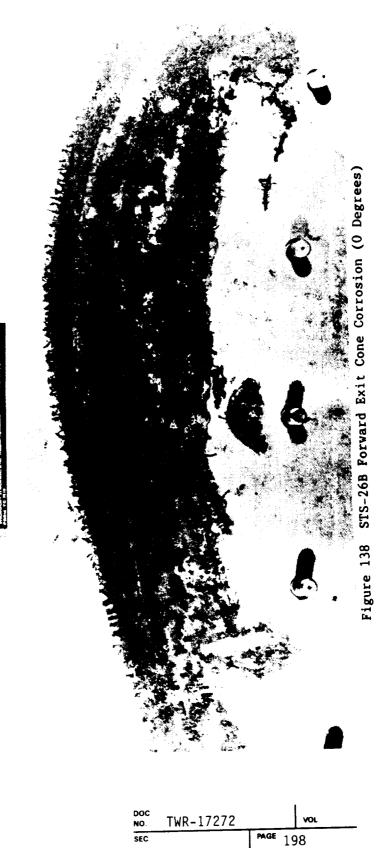
DOC NO.	TWR-17272		VOL
SEC		PAGE	196

REVISION __

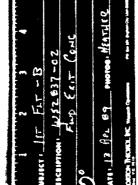
MORTON T	HIOKOL	INC
----------	--------	-----

Space Operations

1 1	Angular Location					Station	ions				
OT 0.46 0.14 0.12 MA MA NA NA NA 0.11 0.19 0.19 Thickness 1.79 1.49 1.40 1.5 MA MA NA NA NA 0.11 0.17 0.19 Thickness 1.79 1.40 1.5 1.40 1.51 1.41 1.44 1.44 1.44 1.14 Thickness 1.79 1.40 1.51 1.41 1.51 1.44 1.44 1.44 1.44 1.14 Thickness 1.79 1.15 1.15 1.5 MA NA NA NA NA 0.19 0.19 Thickness 1.79 1.15 1.15 1.5 NA NA NA NA NA 0.19 0.19 Thickness 1.79 1.11 1.11 1.11 1.11 1.120 1.140 Thickness 1.79 1.71 0.17 0.17 1.41 1.51 1.44 1.44 1.44 1.44 1.44 1.44		1	4	Ð	12	16	20	24		32	
OT 0.46 0.14 0.32 MA WA WA WA WA 0.21 0.19 0.19 Thickness 1.79 1.79 1.79 1.91 0.11 Thickness 1.79 1.714 1.510 1.414 1.345 1.314 1.121 1.156 1.140 Thickness 1.79 0.13 0.13 0.134 MA WA	0 degrees										
Thickness [178] 0.11 0.15 0.16 NA NA NA NA NA 0.77 0.79 0.79 (171 1.16 1.16 1.16 1.16 NA NA NA NA NA 1.19 1.17 Thickness [178] 0.15 0.15 NA NA NA NA 0.12 0.126 (171 1.16 1.17 1.16 1.16 1.16 1.16 1.16 1			0.34	0.32	N N	NA	NA	NA	0.21		0.18
Thickness 1.71 1.65 0.61 MA WA WA WA WA 0.11 1.321 1.166 1.400 Thickness 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.166 1.400 Thickness 1.774 1.614 1.510 1.414 1.345 1.314 1.321 1.166 1.400 Thickness 1.769 0.134 WA WA WA WA WA WA WA WA WA 0.19 0.62 0.63 0.63 0.74 WA WA WA WA WA WA WA WA WA 0.19 Thickness 1.769 1.744 1.614 1.341 1.341 1.311 1.306 1.400 Thickness 1.769 0.21 0.14 WA WA WA WA WA WA WA WA 0.19 Thickness 1.769 0.21 0.14 WA WA WA WA WA WA WA WA 0.19 Thickness 1.769 0.21 0.14 WA WA WA WA WA WA WA 0.19 Thickness 1.769 0.21 0.14 WA WA WA WA WA WA WA 0.10 Thickness 1.769 0.174 1.61 WA WA WA WA WA WA 0.21 0.25 Thickness 1.799 1.714 1.61 WA WA WA WA WA 0.21 0.25 Thickness 1.799 1.714 1.61 WA WA WA WA WA 0.21 0.25 Thickness 1.790 1.714 1.61 WA WA WA WA WA 0.21 0.25 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.17 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.77 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.77 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.77 0.15 Thickness 1.790 1.714 1.61 WA WA WA WA 0.20 0.77 0.15 WARDAR 0.05 0.81 0.95 WA WA WA WA WA 0.20 0.77 0.12 Thickness 1.790 1.714 1.61 WA WA WA WA 0.10 0.10 0.12 Thickness 1.790 1.714 1.61 WA WA WA WA 0.10 0.10 0.12 WARDAR 0.05 0.81 0.15 WA WA WA WA WA 0.10 0.12 WARDAR 0.05 0.81 0.15 WA WA WA WA WA 0.10 0.12 0.12 WARDAR 0.05 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91	Meastrad Char		0.81	0.76	N N	A N	N A	NA	77.0	٢.	0.79
Thickness 1.71 1.49 1.40 WA WA WA WA WA 1.119 1.117 1.115 Trickness 1.71 1.49 1.40 WA WA WA WA WA 0.111 0.175 0.222 0.05 0.15 0.15 WA WA WA WA WA WA WA 0.19 0.042 0.32 0.32 0.74 WA WA WA WA WA 0.19 Thickness 1.56 1.42 1.310 1.414 1.345 1.314 1.321 1.366 1.400 Thickness 1.769 1.714 1.614 1.310 1.414 1.345 1.314 1.322 1.366 1.40 Thickness 1.769 1.714 1.614 1.310 1.414 1.345 1.314 1.322 1.366 1.40 Thickness 1.769 1.714 1.614 1.310 1.414 1.345 1.314 1.322 1.326 1.40 Thickness 1.769 1.714 1.614 1.310 1.414 1.345 1.314 1.322 1.366 1.40 Thickness 1.799 1.714 1.614 1.510 1.414 1.345 1.314 1.322 1.326 1.40 0.045 0.67 0.77 0.77 WA WA WA WA WA WA 0.27 0.064 0.67 0.67 WA WA WA WA WA WA 0.67 0.77 0.170 1.41 1.510 1.414 1.315 1.314 1.312 1.316 1.40 Thickness 1.799 1.714 1.614 1.510 1.414 1.345 1.314 1.316 1.40 0.17 0.17 0.17 0.17 0.17 0.17 0.064 0.65 0.65 WA WA WA WA WA 0.20 0.17 0.77 0.054 0.67 0.65 WA WA WA WA WA 0.20 0.17 0.176 1.700 1.71 0.16 1.410 1.510 1.414 1.345 1.314 1.316 1.400 1.71 0.156 0.15 WA WA WA WA WA 0.20 0.17 0.126 1.700 1.71 0.16 1.411 1.51 1.315 1.316 1.316 1.400 1.71 0.15 0.117 0.114 1.510 1.414 1.345 1.314 1.316 1.316 1.700 0.77 0.77 0.77 0.77 0.77 1.711 1.60 0.12 0.13 0.14 1.510 1.414 1.345 1.314 1.316 1.400 1.71 0.75 0.61 0.60 0.15 WA WA WA WA WA 0.00 0.77 0.77 0.75 0.717 0.717 0.714 1.510 1.414 1.345 1.314 1.316 1.126 1.700 0.17 0.117 0.114 1.510 1.414 1.345 1.314 1.316 1.126 1.700 0.17 0.117 0.116 1.510 1.414 1.345 1.314 1.316 1.126 1.700 0.17 0.126 0.65 WA WA WA WA WA WA 0.00 0.00 0.77 1.600 0.12 0.65 WA WA WA WA WA WA 0.00 0.00 0.77 1.600 0.12 0.65 WA WA WA WA WA WA 0.20 0.177 0.126 1.600 0.12 0.05 WA WA WA WA WA WA 0.00 0.00 0.177 0.126 1.600 0.12 0.05 WA WA WA WA WA WA WA 0.20 0.117 0.126 1.600 0.12 0.05 WA WA WA WA WA 0.10 0.10 0.120 0.120 1.600 0.12 0.05 WA WA WA WA WA WA WA 0.20 0.017 0.123 1.600 0.117 0.05 WA WA WA WA WA WA WA 0.20 0.100 0.177 1.600 0.12 0.05 WA	Adjusted Char*	•	0.65	0.61	NA	RA	N N	NA	0.62	. 6	0.63
<pre>hickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.400 0.05 0.15 0.15 NA NA NA NA NA NA NA NA 0.19 0.19 0.66 1.42 0.59 0.59 NA NA NA NA NA NA 0.19 0.19 0.66 1.42 1.42 NA NA NA NA NA NA 0.12 0.12 0.66 1.42 1.42 NA NA NA NA NA NA 0.12 0.12 0.66 1.42 1.42 1.43 1.310 1.414 1.345 1.314 1.321 1.366 1.40 0.66 1.42 0.35 0.37 NA NA NA NA NA NA 0.23 0.66 1.42 1.44 1.314 1.314 1.321 1.366 1.40 0.66 1.41 1.14 1.310 1.414 1.311 1.321 1.36 0.12 0.66 1.42 0.13 0.66 1.42 0.14 NA NA NA NA NA 0.71 0.14 0.14 1.341 1.311 1.311 1.311 0.14 0.17 0.14 0.14 1.311 1.414 1.311 1.311 1.311 1.311 0.14 0.15 0.05 0.17 0.14 NA NA NA NA NA NA 0.71 0.25 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67</pre>	2E + 1.25AC	•	1.49	1.40	NA	A N		A N	1.19	.17	1.15
0.05 0.15 0.15 0.15 NA NA NA 0.11 0.17 0.22 0.62 0.82 0.34 NA NA NA NA NA 0.19 0.19 0.66 0.59 NA NA NA NA NA 0.19 0.19 0.66 0.59 NA NA NA NA NA 0.120 0.19 0.66 0.56 0.56 0.56 0.59 1.66 0.51 0.14 1.341 1.345 1.314 1.321 1.366 1.40 0.66 0.25 NA NA NA NA NA NA 0.77 0.77 0.66 0.25 0.66 1.40 1.61 1.510 1.414 1.345 1.314 1.321 1.366 1.40 0.16 0.25 0.12 NA NA NA NA NA NA 0.77 0.77 0.06 0.25 0.62 NA NA NA NA NA NA 1.30 1.196 1.40 1.70 0.14 1.510 1.414 1.345 1.314 1.322 1.326 1.60 1.41 NA NA NA NA NA 0.77 0.77 0.05 0.147 0.14 1.510 1.414 1.345 1.314 1.322 1.326 1.66 0.25 0.62 NA NA NA NA NA NA 1.321 1.366 1.40 0.167 0.147 1.614 1.510 1.414 1.345 1.314 1.322 1.326 1.70 0.17 0.16 0.05 0.117 0.14 NA NA NA NA 1.321 1.326 1.40 1.70 0.16 0.35 NA NA NA NA NA 1.321 1.326 1.40 1.70 0.16 NA NA NA NA NA 1.321 1.326 1.40 1.70 0.16 0.13 NA NA NA NA 1.321 1.326 1.40 1.70 0.16 0.13 NA NA NA NA 1.321 1.326 1.40 1.70 0.16 0.13 NA NA NA NA 1.321 1.326 1.40 1.70 0.16 0.13 NA NA NA NA 1.321 1.326 1.40 1.100 0.17 0.16 NA NA NA NA 1.321 1.326 1.40 1.100 0.17 0.16 0.13 1.100 1.14 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 1.100 0.17 0.16 0.13 1.100 0.17 0.123 0.15 1.100 0.17 0.10 0.10 0.10 0.10 0.10 0.10	ter Thicknes	. 78	.71	.61	1.510	.41	-	Ë.	1.321	. 36	1.404
rosion 0.42 0.30 0.34 NA NA NA NA NA 0.19 0.19 har 0.66 0.66 0.59 NA NA NA NA NA NA 0.68 0.72 har 0.66 1.66 0.59 NA NA NA NA NA NA 0.66 0.59 inor Thickness 1.56 1.66 0.51 0.14 1.510 1.414 1.345 1.314 1.311 1.166 1.40 5acety 0.21 0.13 0.13 NA NA NA NA NA 0.21 0.25 har 0.69 0.21 0.14 1.510 1.414 1.345 1.314 1.312 1.156 1.40 5acety 0.21 0.13 0.12 NA NA NA NA NA 0.21 0.25 har 0.19 0.17 0.14 NA NA NA NA NA 0.2 har 0.19 0.17 0.14 1.510 1.414 1.345 1.314 1.316 1.10 2.25 har 0.19 0.17 0.14 NA NA NA NA NA 0.2 har 0.19 0.17 0.14 NA NA NA NA 0.2 har 0.19 0.17 0.14 NA NA NA NA 0.2 har 0.17 0.14 NA NA NA NA 0.2 har 0.19 0.17 0.14 NA NA NA NA 0.2 har 0.17 0.14 NA NA NA NA NA 0.2 har 0.17 0.14 NA NA NA NA NA 0.2 har 0.17 0.14 NA NA NA NA NA 0.2 har 0.17 0.14 1.41 1.345 1.131 1.156 1.110 har 1.20 1.110 har 1.20 1.110 1.110 har 1.20 1.110 1.110 har 1.40 1.21 1.61 1.51 1.414 1.345 1.1314 1.316 1.110 har 1.40 1.71 1.61 1.51 1.410 1.41 1.41 har 1.60 1.12 1.61 1.51 1.411 1.345 1.1314 1.120 1.126 har 1.60 1.12 1.61 1.51 1.411 1.345 1.1314 1.120 1.126 har 1.60 1.12 1.61 1.51 1.51 1.51 1.51 1.51 1.51 1.51		•	9.15	-	N N	N N	N N	NN	0.11	-	0.22
resion 0.42 0.30 0.34 NA NA NA NA NA NA NA 0.19 0.19 har 0.66 0.69 NA NA NA NA NA NA NA 0.19 0.19 c.10.10.114 1.314 1.314 1.316 1.101 c.110.114 1.314 1.314 1.316 1.101 c.1114 1.314 1.314 1.316 1.101 c.1114 1.314 1.314 1.311 1.316 1.101 c.1114 1.314 1.314 1.314 1.316 1.20 c.1114 1.314 NA NA NA NA NA 0.17 c.1114 1.314 1.314 1.314 1.316 1.20 c.1114 1.314 NA NA NA NA NA 0.21 0.25 c.1114 1.314 1.314 1.314 1.314 1.316 1.20 c.1114 1.314 1.314 1.314 1.316 1.20 c.1114 1.314 1.314 1.314 1.314 1.316 1.119 c.1114 1.314 1.314 1.314 1.314 1.316 1.119 c.1125 1.170 c.114 1.510 1.414 1.314 1.314 1.316 1.119 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.112 c.113 c.113 c.113 c.114 1.314 1.314 1.314 1.316 1.119 c.115 c.114 1.510 1.414 1.314 1.314 1.316 1.119 c.115 c.117 c.117 c.118 c.117 c.118 c.117 c.118 c.117 c.118 c.117 c.118 c.117 c.118 c.117 c.118 c.118 c.119 c.119 c.119 c.119 c.1114 1.314 1.314 1.314 1.316 c.112 c.117 c.118 c.117 c.118 c.117 c.118 c.119 c.117 c.118 c.119 c.119 c.119 c.110 c.119 c.110 c.119 c.110 c.110 c.110 c.110 c.111 c.111 c.111 c.111 c.1114 1.314 1.314 1.314 1.110 c.111 c.1114 1.314 1.314 1.316 c.111 c.1114 1.314 1.314 1.316 c.111 c.1114 1.314 1.314 1.316 c.1114 1.314 1.314 1.3	90 degrees										
Mart 0.01 0.02 0.74 NA NA <td>Measured Ergslon</td> <td>4</td> <td></td> <td>•</td> <td>NA</td> <td>N A</td> <td>ИА</td> <td>N.A.</td> <td>NA</td> <td>۲.</td> <td>0.19</td>	Measured Ergslon	4		•	NA	N A	ИА	N.A.	NA	۲.	0.19
Tite 0.66 0.66 0.29 NA NA <td>Kessing Cher</td> <td>- 0</td> <td>+</td> <td>•</td> <td>N A</td> <td>N N</td> <td>NA</td> <td>N N</td> <td>N N</td> <td>۳.</td> <td>0.72</td>	Kessing Cher	- 0	+	•	N A	N N	NA	N N	N N	۳.	0.72
Timer Thickness 1:66 1:42 1:42 1:510 1:131 1:321 1:321 1:326 1:40 Safety 0.08 0.211 0.14 NA NA NA NA NA 1.321 1:366 Safety 0.08 0.211 0.14 NA NA NA NA 0.23 Safety 0.08 0.217 0.14 NA NA NA 0.21 0.25 Safety 0.64 0.77 0.77 0.77 0.77 0.77 har 0.64 0.22 0.14 1.41 1.41 1.42 iner 1.70 1.41 1.41 1.41 1.42 iner 0.64 0.62 0.61 NA NA NA 0.77 iner 1.70 1.41 1.41 1.341 1.321 1.366 1.40 iner 1.79 1.41 1.41 1.44 1.345 1.40 0.15 iner 1.79 1.614 1.510 1.414 1.34 1.321 1.366 iner 1.790 1.61 1.41 1.41 1.4 1.41 1.4 iner 0.05 0.12	Adjusted Char*	۰	•	•	NA	N A	N A	N	N N	9.	0.58
<pre>instructuress 1.789 1.714 1.614 1.510 1.414 1.45 1.314 1.321 1.566 1.40 Safety 0.28 Safety 0.616 0.21 0.14 NA NA NA NA NA 0.21 0.25 Froston 0.45 0.35 0.35 0.37 NA NA NA NA NA 0.77 0.77 har 0.64 0.62 0.62 NA NA NA NA NA NA 0.62 0.62 har 1.700 1.47 1.41 NA NA NA NA NA 0.71 0.77 har 1.700 1.47 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 safety 0.05 0.17 0.14 NA NA NA NA 0.20 0.17 0.75 frat 1.700 1.47 0.35 NA NA NA NA NA 0.20 0.17 0.75 frat 0.05 0.17 0.14 NA NA NA NA 0.20 0.17 0.75 frat 0.05 0.17 0.14 NA NA NA NA 0.20 0.17 0.75 frat 1.700 1.47 0.35 NA NA NA NA NA 0.20 0.17 0.75 frat 0.05 0.12 0.43 NA NA NA NA 0.20 0.17 0.75 frat 0.05 0.12 0.43 NA NA NA NA 0.20 0.17 0.75 frat 0.05 0.12 0.43 NA NA NA NA 0.20 0.17 0.75 frat 0.16 0.12 0.43 NA NA NA NA 0.20 0.17 0.75 frat 0.16 0.12 0.13 NA NA NA NA 0.20 0.17 0.75 frat 0.16 0.12 0.13 NA NA NA NA 0.20 0.17 0.75 frat 0.16 0.16 NA NA NA NA 0.20 0.17 0.15 frat 0.16 0.16 NA NA NA NA 0.20 0.17 0.15 frat 0.16 0.12 0.15 NA NA NA NA 0.20 0.17 0.17 frat 0.16 0.15 NA NA NA NA NA 0.20 0.17 0.17 frat 1.101 1.36 frat 1.510 1.414 1.345 1.314 1.321 1.366 1.40 frat 1.60 0.15 NA NA NA NA NA 0.20 0.17 frat 1.61 1.510 1.414 1.345 1.314 1.321 1.366 frat 1.40 frat Thickness 1.789 1.714 1.614 1.510 1.414 1.345 frat 1.610 1.61 frat Thickness 1.789 1.714 1.614 1.510 1.414 1.345 frat 1.610 1.61 frat Thickness 1.789 1.714 1.614 1.510 1.414 frat 1.345 frat 1.610 1.65 frat Thickness 1.789 1.714 1.614 1.510 1.414 frat 1.345 frat 1.610 1.65 frat Thickness 1.789 1.714 1.614 1.510 1.414 frat 1.345 frat Thickness 1.789 1.714 1.614 1.510 1.414 frat 1.345 frat 1.610 frat 1.510 1.414 frat 1.345 frat 1.610 frat 4.6104 frat 1.55 X addite frat 4.6104 frat 1.25 X addite 1.25 X additer </pre>	2E + 1.25AC	6		•	NA	NA	RA	N A	N N	. 20	1.10
Safety 0.08 0.21 0.14 MA NA NA NA 0.14 0.28 rosion 0.45 0.35 0.32 MA NA NA NA NA 0.21 0.25 har har har har to 0.64 0.62 0.62 NA NA NA NA NA 0.21 0.25 har 0.64 0.62 0.62 NA NA NA NA NA 0.62 0.62 i.70 1.41 MA NA NA NA 1.321 1.166 1.140 i.70 1.70 0.14 1.510 1.414 1.345 1.314 1.321 1.166 1.140 safety 0.05 0.17 0.14 NA NA NA NA 0.20 0.17 0.15 safety 0.75 0.81 0.35 NA NA NA NA 0.20 0.17 0.73 har 0.06 0.12 0.035 NA NA NA NA 0.20 0.17 0.16 rosion 0.47 0.36 0.35 NA NA NA NA 0.20 0.17 0.73 har 0.60 0.65 NA NA NA NA 0.20 0.17 0.16 rosion 0.47 0.35 NA NA NA NA 0.20 0.17 0.16 rosion 0.47 0.35 NA NA NA NA 0.20 0.17 0.13 har har har har na 1.25 1.314 1.314 1.321 1.166 1.440 har har har har har har har har	knes	. 78	•	٠	. 51	41	•	Ĩ.	1.321	36.	40
<pre>streston 0.45 0.35 0.32 WA WA WA WA 0.21 0.25 har 0.80 0.77 0.77 WA WA WA WA 0.77 0.77 har 0.80 0.77 0.77 0.77 0.77 c 0.64 0.62 0.62 0.62 0.62 i.00 1.47 1.41 MA WA WA WA WA 0.19 i.00 1.47 1.41 MA WA WA WA WA 0.19 i.10 1.414 1.345 1.314 1.321 1.366 1.40 i.10 0.15 0.14 WA WA WA WA WA 0.10 safety 0.05 0.17 0.14 WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA WA 0.00 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA WA 0.20 0.17 0.16 from 0.47 0.36 0.35 WA WA WA WA WA 0.20 0.17 from 0.47 0.36 0.35 WA WA WA WA WA WA 0.20 0.17 from 0.47 0.36 0.35 WA WA WA WA WA WA 0.20 0.17 from 0.47 0.36 0.45 WA WA WA WA WA 0.20 0.17 from 0.47 0.05 0.65 WA WA WA WA WA 0.20 0.17 from 0.47 0.05 0.65 WA /pre>		۰.	•		NA	NA	ИЛ	N	N N		
<pre>Frosion 0.45 0.35 0.32 KA KA KA WA WA WA WA 0.21 0.25 har 0.64 0.57 0.77 0.77 har 0.64 0.62 NA WA WA WA WA WA 0.62 char 1.70 1.47 1.41 KA WA WA WA WA 0.62 char 1.70 1.47 1.41 KA WA WA WA WA 1.19 char 1.70 1.71 0.14 WA WA WA WA WA 1.366 char 0.05 0.17 0.14 WA WA WA WA WA 0.15 char 0.05 0.17 0.14 WA WA WA WA 0.15 char 0.05 0.17 0.14 WA WA WA WA 0.15 char 0.05 0.17 0.15 0.11 char 0.15 0.13 0.35 WA WA WA WA WA 0.20 0.17 char 0.15 0.11 0.83 WA WA WA WA 0.10 0.16 char 0.15 0.11 0.83 WA WA WA WA 0.10 0.11 char 0.15 0.11 0.15 1.141 1.345 1.314 char 0.106 0.123 1.53 char 0.106 0.123 1.53 char 0.106 0.123 1.53 char 0.106 0.12 char 1.714 1.510 1.414 1.345 1.314 char 1.20 char 1.714 1.510 1.41 char 1.345 1.314 1.345 char 0.20 char 1.714 1.510 1.41 char 1.345 1.314 char 1.20 char 1.31 char 1.3 char 1.</pre>	180 degrees										
Ther 0.80 0.77 0.77 0.77 NA NA NA NA NA NA 0.77 0.77 Ther Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 Safety 0.05 0.17 0.14 NA NA NA NA 1.321 1.366 1.40 Safety 0.05 0.17 0.14 NA NA NA NA 0.15 0.11 Safety 0.15 0.35 NA NA NA NA 0.20 0.17 0.75 Char 0.75 0.81 0.83 NA NA NA NA 0.20 0.17 0.73 Char 0.75 0.66 NA NA NA NA 0.64 0.62 0.62 Char 0.60 0.65 0.66 NA NA NA NA 0.10 0.10 0.13 Char 1.69 1.730 1.414 1.345 1.314 1.321 1.316 Char 0.06 0.65 0.66 NA NA NA NA 0.00 0.77 0.73 Char 1.69 1.730 1.410 1.345 1.314 1.345 1.410 Char 1.69 1.730 1.710 1.614 1.510 1.410 1.345 1.314 Na 0.00 0.12 0.05 NA NA NA NA 0.00 0.77 0.73 Char 1.69 1.730 1.710 1.614 1.510 1.414 1.345 1.314 1.321 1.321 Char 1.69 1.730 1.710 0.23 0.23 NA NA NA NA NA NA NA 0.10 0.23 0.23 Char 1.69 1.753 1.510 1.414 1.345 1.314 1.321 1.316 1.410 Char 1.69 1.730 1.710 0.23 0.23 NA NA NA NA NA NA NA NA NA NA 0.10 0.23 Char 1.69 1.753 1.551 1.414 1.345 1.314 1.321 1.316 1.410 Char Thicknes 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.410 Char Thicknes 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.410 Char Thicknes 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.321 1.316 1.410 Char Thicknes 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.321 1.316 1.410 Char Thicknes 1.789 1.718 1.614 1.510 1.414 1.345 1.314 1.221 1.316 1.410 Char Thicknes 1.789 1.718 1.510 1.414 1.345 1.314 1.25 X adj char -1 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 Char Thicknes 2 X erosion + 1.25 X adj char -1 C	Measured Erosion	0.45	0.35	۳.	N N	N N	NA	N N	NA	~	0.25
<pre>Ther* 0.64 0.62 0.62 NA NA NA NA NA NA 0.62 0.62 Ther Thickness 1.70 1.47 1.41 NA NA NA 1.19 1.27 C 1.710 1.714 1.510 1.414 1.345 1.314 1.321 1.366 1.40 Safety 0.05 0.17 0.14 NA NA NA NA 1.321 1.366 1.40 Erosion 0.47 0.36 0.35 NA NA NA NA NA 0.20 0.17 0.16 Erosion 0.47 0.36 0.35 NA NA NA NA 0.20 0.17 0.72 Char* 0.75 0.81 0.83 NA NA NA NA 0.60 0.77 0.73 Char* 0.75 0.81 0.83 NA NA NA NA 1.20 1.11 1.10 C 1.65 Char* 0.60 0.65 NA NA NA NA 0.20 0.17 0.16 C 2.65 Char* 0.76 0.12 0.05 NA NA NA NA 0.20 0.17 0.16 Safety 0.60 0.65 NA NA NA NA 0.20 0.17 0.16 C 2.75 Char* 0.76 0.12 0.63 NA NA NA NA 0.20 0.17 0.16 C 2.65 Char* 0.76 0.12 0.05 NA NA NA NA NA 0.20 0.17 0.16 C 2.65 C 2.</pre>	Measured Char	0.80	0.77	٢.	NA	V N	NA	N A	N N	ŗ.'	11.0
<pre>1.10 1.47 1.41 MA NA NA NA NA NA NA 1.19 1.10 1.1366 1.40 2.1614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 2.1614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 2.161 5.20101 0.47 0.36 0.35 NA NA NA NA NA 0.20 0.17 0.78 5.161 0.53 NA NA NA NA 0.64 0.67 0.62 Char 0.75 0.81 0.83 NA NA NA NA 1.20 1.11 1.10 Char 0.75 0.61 0.65 NA NA NA NA 1.314 1.321 1.366 1.40 Char 0.60 0.65 NA NA NA NA NA 0.64 0.62 0.62 Char 0.75 0.61 1.53 NA NA NA NA 1.30 1.316 1.40 Char 0.06 0.12 0.05 NA NA NA NA 0.010 0.23 0.23 Char 1.69 1.53 1.53 NA NA NA NA 0.010 0.23 0.23 Char 0.06 0.12 0.05 NA NA NA NA NA 0.010 0.23 0.23 Char 1.69 1.51 1.510 1.414 1.345 1.314 1.326 1.40 Char 1.69 1.53 1.53 NA NA NA NA NA 0.10 0.23 0.23 Char 1.69 1.51 1.510 1.414 1.345 1.314 1.326 1.40 Char 1.69 1.51 1.53 NA NA NA NA NA NA 0.10 0.23 0.23 Char 1.69 1.51 1.510 1.414 1.345 1.314 1.326 1.40 Char 1.69 1.53 1.53 NA NA NA NA NA 0.10 0.23 0.23 A magin of Safety =</pre>	Adjusted Char*	0.64	0.62	9	N A	YN	NA	N N	N.N	۰.	29.0
<pre>iner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.300 1.70 Safety 0.05 0.17 0.14 NA NA NA NA NA NA 0.15 0.11 Erosion 0.47 0.36 0.35 NA NA NA NA 0.20 0.17 0.16 Erosion 0.47 0.36 0.35 NA NA NA NA 0.64 0.62 0.62 Char 0.75 0.81 0.83 NA NA NA NA 0.64 0.67 0.73 Char 0.75 0.65 0.66 NA NA NA NA 1.20 1.11 1.10 Char 1.69 1.53 1.53 NA NA NA NA 1.20 1.11 1.10 Char 1.69 1.53 1.53 NA NA NA NA 0.10 0.23 0.23 Char 0.06 0.12 0.05 NA NA NA NA 0.10 0.23 0.23 Char 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 Char 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 Char 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 Char 1.69 1.53 1.53 NA NA NA NA 0.10 0.23 0.23 Char 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.306 1.40 Char 1.780 0.06 0.12 0.05 NA NA NA NA NA 0.10 0.23 0.23 Char 1.780 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.40 Char 1.780 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.306 1.40 Char 1.780 0.06 0.12 0.05 NA /pre>	2E + 1.25AC	. 70	1.47	.41	A N		A N	VN	Ň		3
Safety 0.05 0.17 0.14 MA MA MA MA MA WA 0.13 0.14 Sefety 0.47 0.36 0.35 MA NA MA MA 0.20 0.17 0.1 Erosion 0.47 0.36 0.35 MA NA MA MA 0.20 0.17 0.1 Char 0.75 0.81 0.83 NA NA MA MA 0.60 0.67 0.7 Char 1.69 1.53 1.53 NA NA MA MA 0.64 0.62 0.6 Char 1.69 1.53 1.53 NA NA MA MA 1.20 1.11 1.1 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.320 1.1366 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.326 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.326 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.316 1.4 Liner Thickness 1.789 1.714 1.510 1.414 1.345 1.314 1.231 1.316 1.4 Margin of Safety =	knes	. 78	1.714	.61	. 51		7 7		. 3 4	2.	2.
<pre>ss Froston 0.47 0.36 0.35 MA NA NA NA 0.20 0.17 0.1 Char 0.75 0.81 0.83 NA NA NA NA 0.80 0.77 0.7 Char 0.60 0.65 0.66 NA NA NA NA 0.80 0.77 0.7 Char 1.69 1.53 1.53 NA NA NA NA 1.20 1.11 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Ciner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.356 1.4 Ciner Thickness 1.789 1.714 1.614 1.55 X adj char* 1.4 Ciner Thickness 1.755 X adj char* 1.55 X</pre>	οĘ	0.05	0.17	-	N N	N	A A	NA	4	-	-
Erosion 0.47 0.36 0.35 NA NA NA NA 0.20 0.17 0.1 Char Char Char Char Char Char Char Char Char Char Char Char Char Char Char Co Co Co Co Co Co Co Co Co Co	270 degrees										
<pre>Char 0.75 0.81 0.83 NA NA NA NA NA 0.80 0.77 0.7 Char 0.60 0.65 0.66 NA NA NA NA 0.64 0.62 0.6 Liner Thickness 1.69 1.53 1.53 NA NA NA 1.20 1.11 1.1 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Safety 0.06 0.12 0.05 NA NA NA NA 0.10 0.23 0.2 Margin of Safety =</pre>	Measurad Erosion		0.36	Ξ.	NA	N A	NA	NA	0.20	1	7
Char 0.60 0.65 0.66 NA NA NA NA 0.64 0.62 0.6 C. 1.69 1.53 1.53 NA NA NA NA 1.20 1.11 1.1 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Safety 0.06 0.12 0.05 NA NA NA NA 0.10 0.23 0.2 Margin of Safety = minimum liner thickness - 1 Margin of Safety =	Measured Char	•	0.81	۰.	NA	NA	N A	NA	0.80	٢.	٢.
NG 1.69 1.53 1.53 NA NA NA 1.20 1.11 1.1 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.366 1.4 Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.321 1.366 1.4 Safety 0.06 0.12 0.05 NA NA NA 0.10 0.23	Char	•	0.65	9.	NA	NA	NA	NA	9.64	Ŷ.	9.
Liner Thickness 1.789 1.714 1.614 1.510 1.414 1.345 1.314 1.321 1.366 1.4 Safety 0.06 0.12 0.05 NA NA NA 0.10 0.23 0.2 * Measured Char Adjusted to end of action time Margin of Safety =	7E + 1 25AC	•	1.53	ŝ	N N	NA	NA	NA	1.20	.11	7
0.06 0.12 0.05 NA KA NA NA 0.10 0.23 0.2 • Measured Char Adjusted to end of action time miner thickness Margin of Safety =	Liner Thicknes	. 78	11.	9.	1.510		.34	1.314	1.321	.36	۳.
Measured Cher Adjusted to end of action time minimum liner thickness rgin of Safety =		. 06	0.12	۰.	V N	NA	NA	NA	0.10	?	?
minimum liner thickness rgin of Safety =		9 7.	ъ	Adjusted	to en d						
rgin of Safety =					ļ	er thi	kness				
		rgin		*	rosion	1.25	di char	; 			
				•			;,				


Refer to Figure 18 for Station Locations

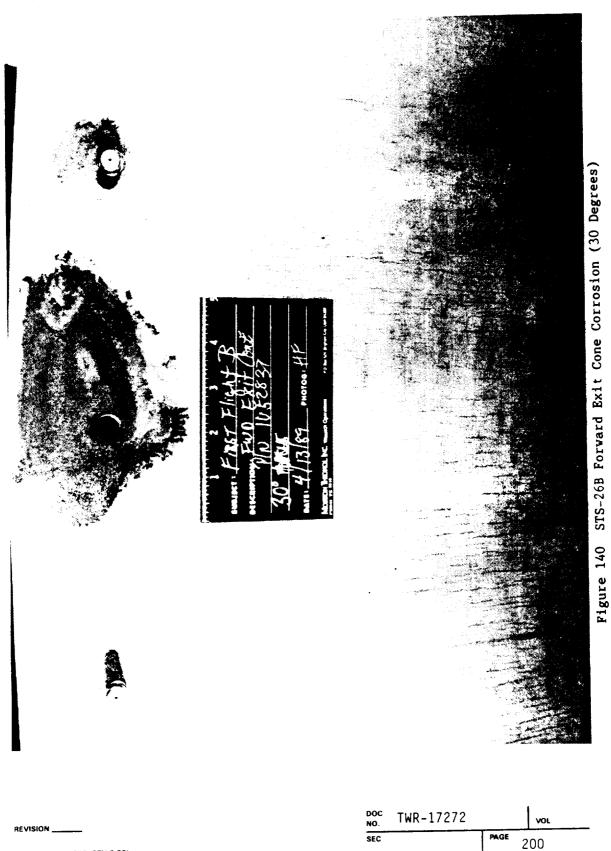
-			


DOC NO. TWR-17272 VOL SEC PAGE 197

Aerospace Group

Space Operations

BLACK AND WHITE PHOTOGRAPH


FORM TC 7994-310 (REV 2-88)

MORTON THIOKOL. INC. BLACK AND WHITE PHOTOGRAPH Aerospace Group Space Operations N. 1 STS-26B Forward Exit Cone Corrosion (80 Degrees) Figure 139 10 . . . ŝ DOC NO. TWR-17272 VOL REVISION ____ SEC PAGE 199

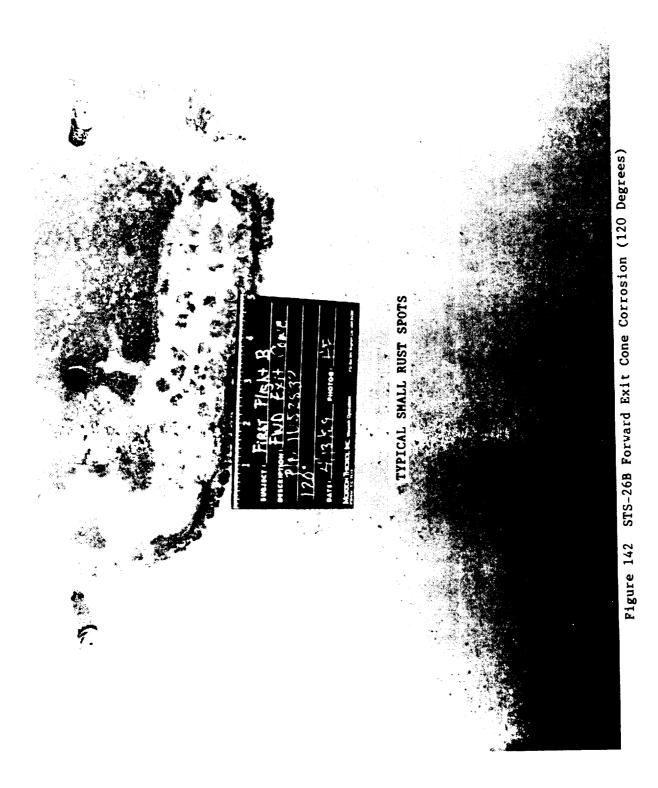
ORIGINAL PAGE

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Aerospace Group Space Operations

Aerospace Group

Space Operations


NO. TWR-17272	VOL
SEC	PAGE 201

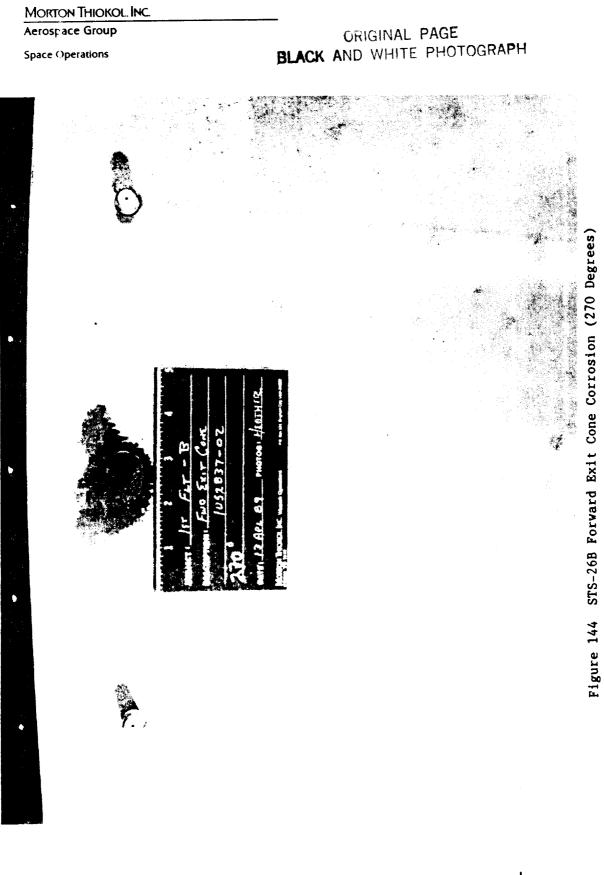
REVISION

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

 DOC NO.
 TWR-17272
 VOL


 SEC
 PAGE 202

REVISION ____

Aerospace Group

Space Operations

FORM TC 7994-310 (REV 2-88)

HEVISION ___

 DOC NO.
 TWR-17272
 VOL

 SEC
 PAGE 204

Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

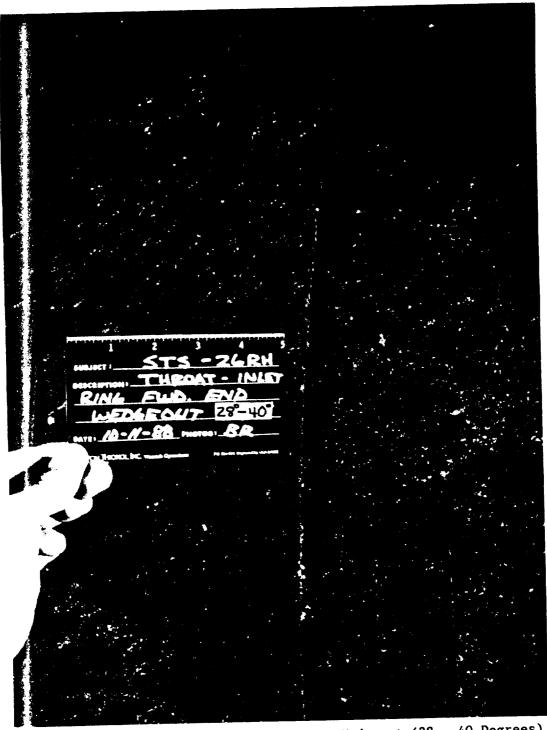
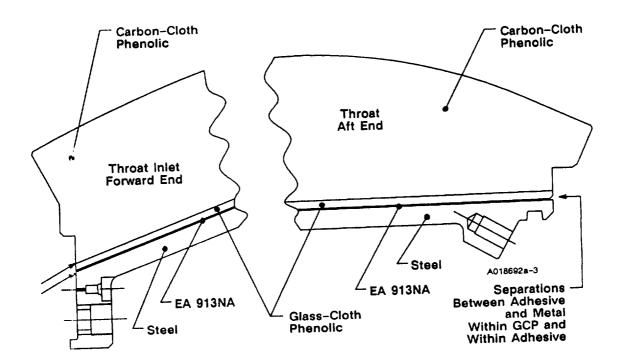



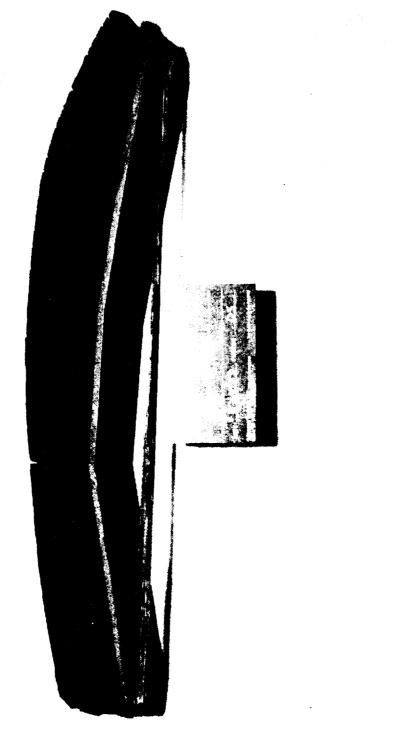
Figure 145 STS-26B Throat Inlet Ring Wedgeout (28 - 40 Degrees)

DOC NO	TWR-17272		VOL
SEC		PAGE	205

REVISION _____

Space Operations

Fwd End Bondline Separations				Aft End Bondline Separations			
Location (deg)	Radial Separation (in.)	Separation	Location (deg)	Radial Separation (in.)	Separation		
0 15 20 45 45 5 9 10 5 10 5 10 5 10 5 10 5 10 5 10 5	0.030 0.030 0.030 0.030 0.020 0.030 0.030 0.030 0.020	Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive Metal/Adhesive GCP/CCP Metal/Adhesive GCP/CCP	0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 345	0.030 0.030 0.020 0.040 0.040 0.040 0.040 0.040 0.050 0.050 0.050 0.050 0.050 0.020 0.020 0.010 0.030 0.010 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030	Metal/Adhesive GCP Metal/Adhesive Within Adhesive Metal/Adhesive Metal/Adhesive Within Adhesive Wetal/Adhesive Metal/Adhesive		


Figure 146 STS-26B Throat Assembly Bondline Separations

	DOC NO.	TWR-17272		VOL
REVISION	SEC		PAGE	206

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-26B Throat/Throat
Figure 147

.

Inlet Section (0 Degrees)

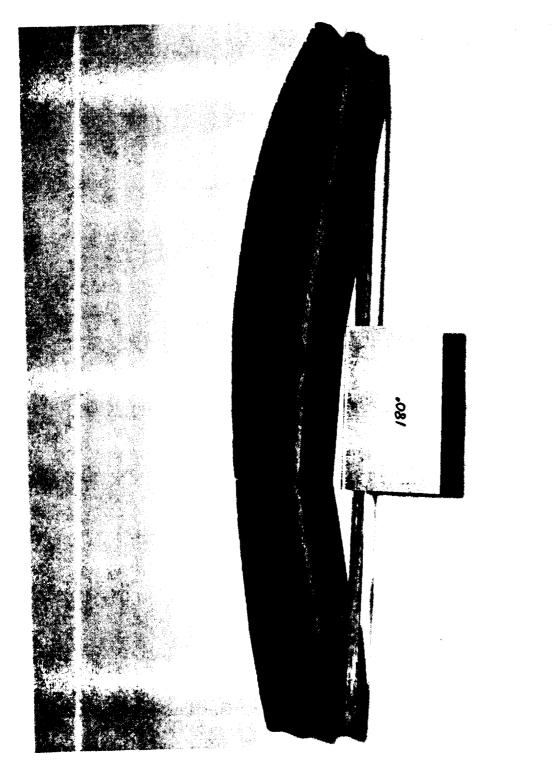
DOC NO.	TWR-17272		VOL
SEC		PAGE	207

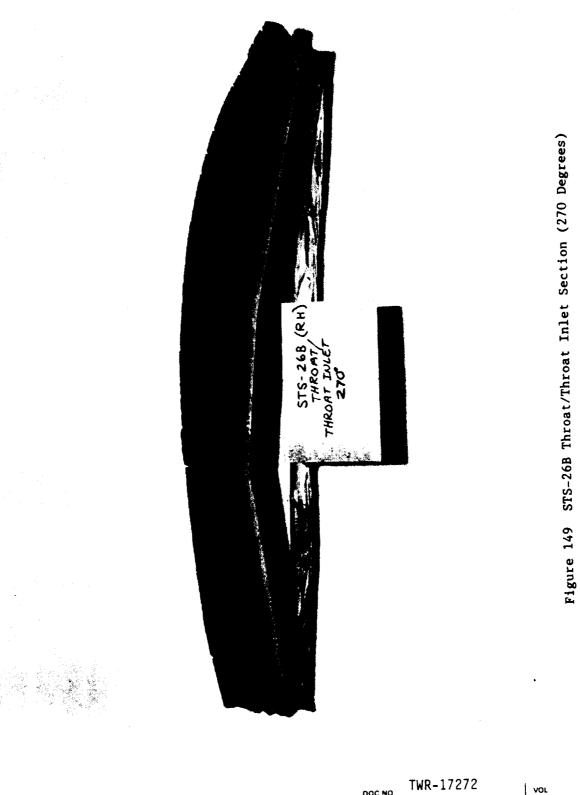
FORM TC 7994-310 (REV 2-88)

REVISION _____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH




Figure 148 STS-26B Throat/Throat Inl&t Section (180 Degrees)

DOC NO	TWR-17272			VOL
SEC		PAGE	2(08

Space Operations

REVISION ___

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

VOL DOC NO. PAGE SEC 209

			Table	11 STS	5-26B Throat		Assembly Erosion	Irosion	and Char	c Data			
and for foretton						5	stations				;		
	7	7	-	'9	-	10	12	14	16	18	20	2	6 7
0 degrees							20.	~	1.05	88.0	0.71	0.49	0.43
Measurad Erosion	86.0	1.03	1.03	1.15	1.18	1.10	1.00	0.66	0.66	0.70	0.67	0'.79	0.86
	0.61	0.62	0.64	* * * • •	0.45	0.41	94.0	1	0.50	0.5 u	0.0	1.72	1.67
Adjusted Char *	0.46	2.64	2.66	2.90	92	2.71	2.72	~ ~	3.710	3.586	3.232	2.583	2.110
2E + 1.25AC RSRM Min Liner Thickness Margin of Safety	3.174	3.247	3.314 0.25	3.280 0.13	3.189 0.09	3.397 0.26	62.0	1 0 1	0.36	4	0.58	0.50	0.27
Searcet Co													.,
			,			1 09	1.09	1.02	1.02		0.64		
Measured Erosion	1.06	1.10	1.13	1.20	0.62	0.59	0.57	0.60	0.59	0.67	9/ · 0		0.61
Measured Char	0.56	- 0 - 0 - 0			0.47	0.44	0.43	0.45	0.44 		66.1	1.60	5.0
Adjusted Char *	1 4 7 7 4 7	2.71		•	2.86	. 73	2.71	2.60	012.1	3.586	3.232	2.583	2.110
2E + 1.25AC	1.174	3.247	3.314	•	3.189	3.397	110.5			0.57	. 62	0.61	0.34
RSRM Min Liner inicaness Margin of Safety	0.20	0.20	0.15	•	0.11	0.24	2						
180 degraes											07	0.53	0.45
	1.08	1.11	1.18	1.19	1.21	1.14	1.10	1.10	0.50	0.61	0.75	0.74	0.79
Measured Fronton Londinal Char	0.58	0.55	0.56	0.58	0.60		0.42	0.38	0.38	0.46	- 56	0.56	65.0
Adducted (1995 Adjusted (Dat *	0.44	0.41	0.42	44.0	 	2.82	2.73	2.67	2.59	· •	.10		1.01
2E + 1.25AC	2.70	2.74	2.89	26.7 080 c	1.189	3.397	3.517	3.626	3.710	3.586	. 232		• •
rsam Min Liner Thickness Margin of Safety	3.174 0.17	3.2470.19	17.0	0.12	0.07	0.20	0.29	0.36	0.43	0.40	• n		
270 degrees								5			0.68	0.50	0.44
	1 06	1.10	-	1.17	1.14	1.12	1.0.1		0.59	. •	0.67	0.76	0.78
Measured Erosion Measured Fher	0.50	0.53	ŝ	0.59	0.60	50.D		. 4 3		٠.	0.50	0.57	65.0
resured Char	0.38	0.40	-			2.74	2.66	2.67	2.61	2.45	1.99	1./1	1011 C
2E + 1.25AC	2.59	<u> </u>	<u>،</u> م	2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.189	3.397	3.517	3.626	3.710	. .	3.232		
RSRM Min Liner Thickness Marrin of Safety	0.23	3.24/0.20	0.17	0.13	0.12	0.24	0.32	0.36	0.42				
	* Measur	Measured char	adjusted	d to end	of action	n time							
TWR			1.1 m	inimum l:	iner thic	ckness		-					
-17	Margin o	of Safety	~ ~	erosion	•rosion + 1.25 X	∎dj ch	•						
272 21	Refer 1	Refer to Figure	25	r Statio	for Station Locations	ions							

 $\langle \sum \rangle$

()

Ľ

272 210

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272		VOL	
SEC		PAGE	211	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

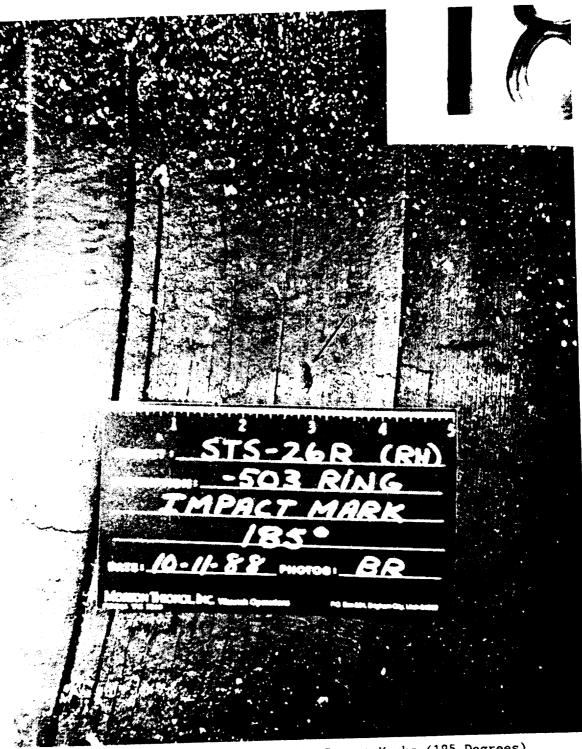
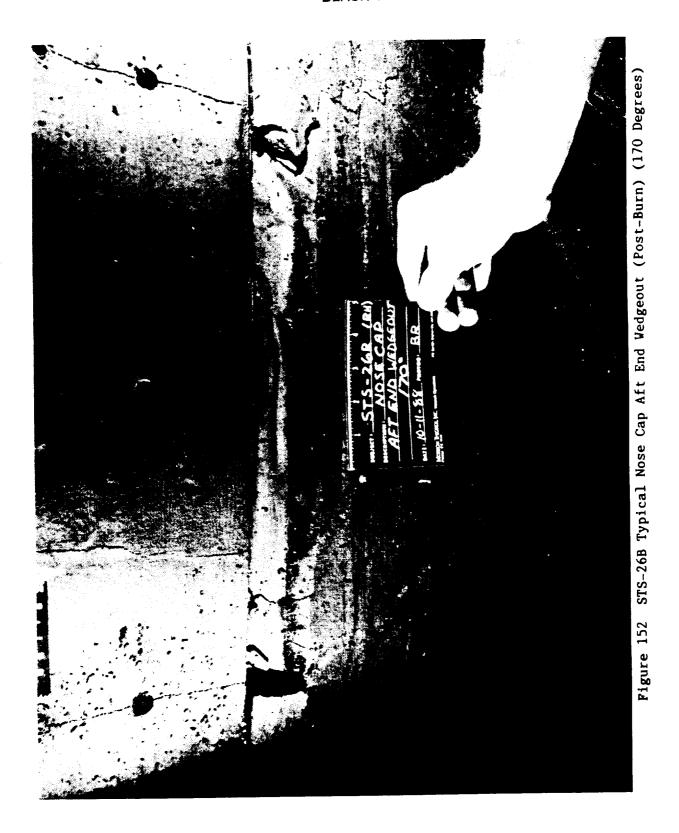
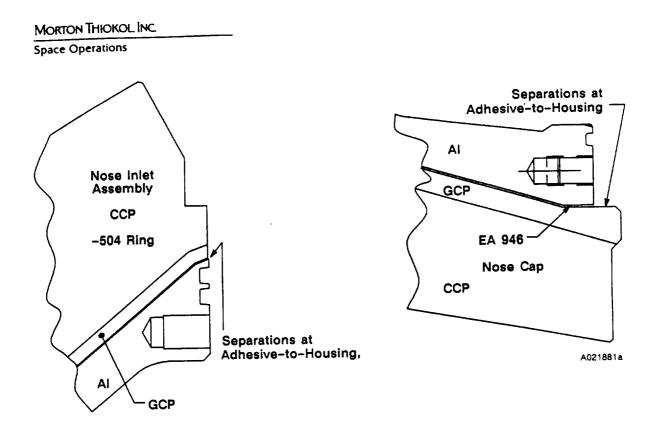



Figure 151 STS-26B (-503) Ring Impact Marks (185 Degrees)

DOC NO TWR-1727	2		VOL
SEC	PAGE	21	.2


Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17272 VOL SEC PAGE 213

REVISION ____

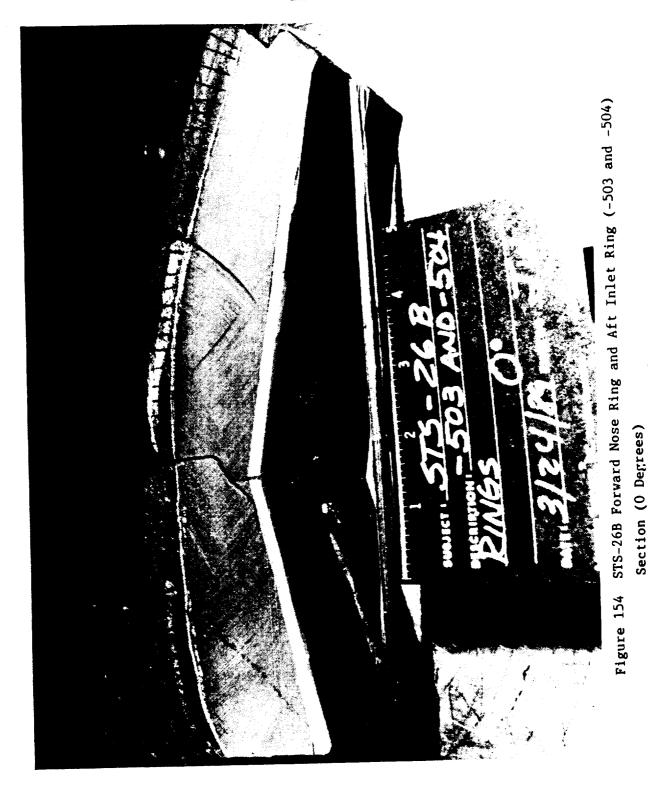
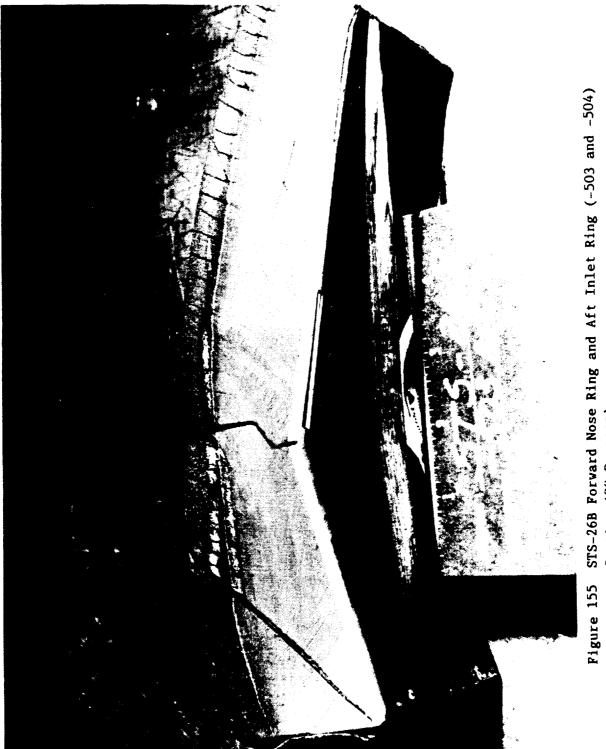
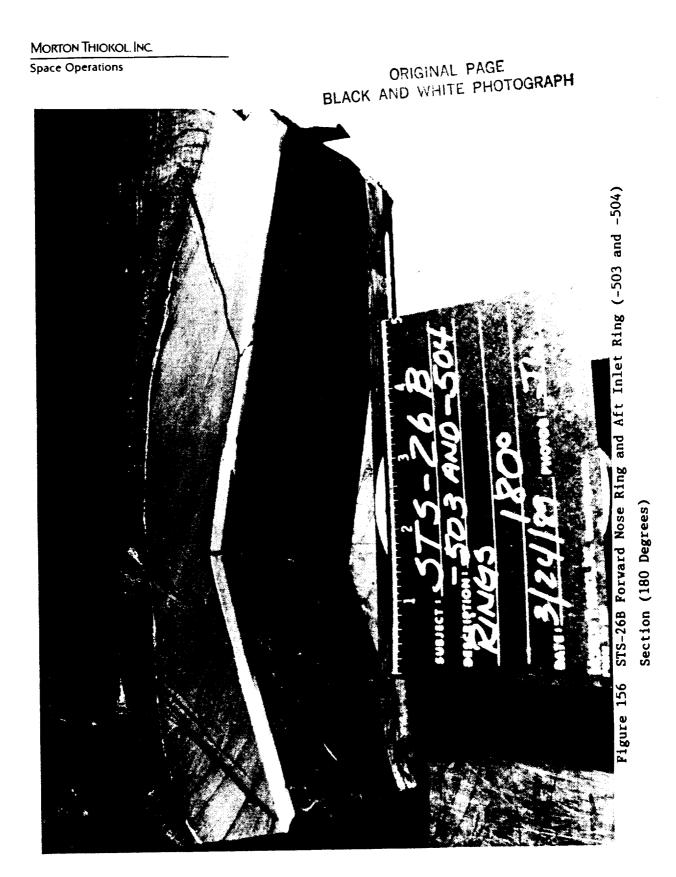

Location (deg)	Radial Separation (in.)	Separation Type*	Location (deg)	Radial Separation (in.)	Separation Type*
		Metal/Adhesive	105	0.005	Metal/Adhesive
238-245	0.020		135	0.005	Metal/Adhesive
250	0.020	Metal/Adhesive	150	J.005	Metal/Adhesive
			165	0.005	Metal/Adhesive
			180	0.005	Metal/Adhesive
			195	0.005	Metal/Adhesive
			210	0.005	Metal/Adhesive
			225	0.005	Metal/Adhesive
			240	0.005	Metal/Adhesive
			255	0.005	Metal/Adhesive
			285	0.005	Metal/Adhesive
			300	0.005	Metal/Adhesive
			315	0.005	Metal/Adhesive
			345	0.005	Metal/Adhesive

Figure 153 STS-26B Nose Inlet Assembly Bondline Separations

DOC NO.	TWR-17272		VOL
SEC		PAGE	214

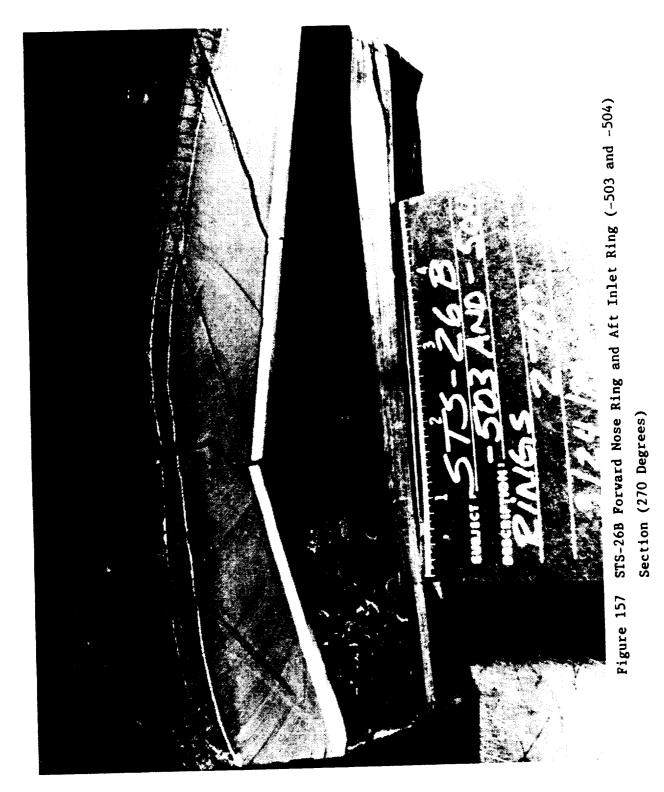

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

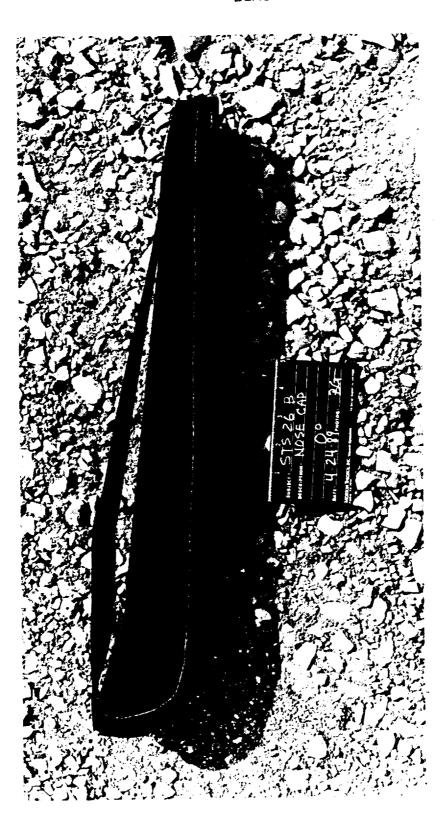

Space Operations

GRIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-26B Forward Nose Ring and Aft Inlet Ring (-503 and -504) Section (90 Degrees)

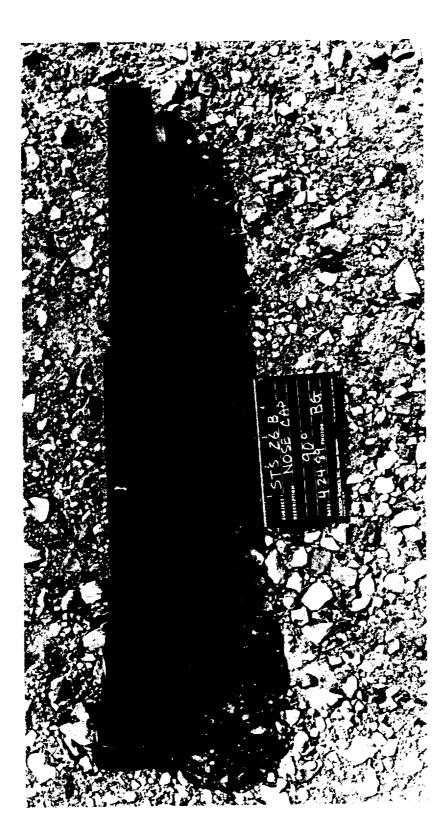

DOC NO.	TWR-17272		VOL
SEC		PAGE	216

DOC NO.	TWR-17272		VOL
SEC		PAGE	217


Space Operations

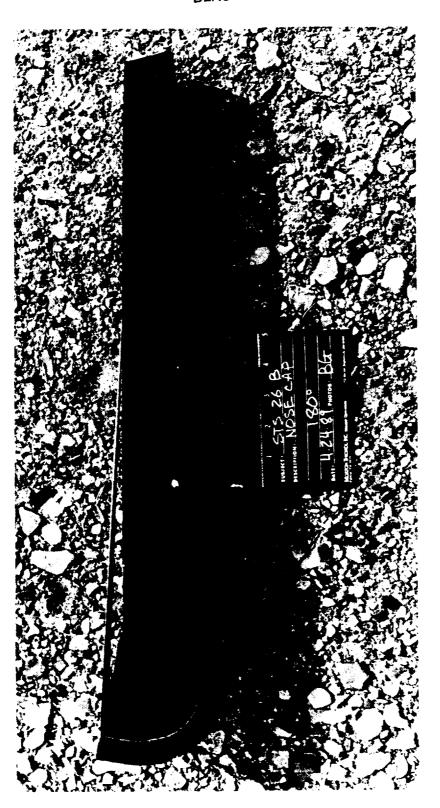
ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations


ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO.	TWR-17272		V	ol
SEC		PAGE	219)

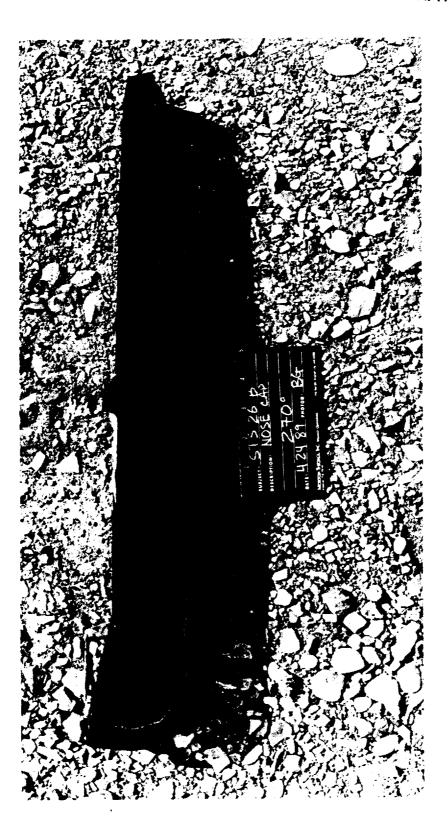
Space Operations


ORIGINAL PAGE BLACK AND VIHITE PHOTOGRAPH

DOC NO.	TWR-17272		VOL	
SEC		PAGE	220	

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



DOC NO.	TWR-17272		VOL
SEC		PAGE 22	1

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO	TWR-17272			VOL
SEC		PAGE	22	22

Space Operations

Table 12 STS-26B Nose Inlet Rings (-503,-504) Erosion and Char Data

Angular Location			s	tations			
	28	30	32	34	36	38	39.5
0 degrees							
Measured Erosion	0.97	0.81	0.88	0.80	0.88	0.92	0.95
Neasured Char	0.95	0.77	0.73	0.64	0.62	0.72	0.68
Adjusted Char*	0.71	0.58	0.55	0.48	0.47	0.54	0.51
2E + 1.25AC	2.83	2.34	2.44	2.20	2.34	2.52	2.54 2.981
RSRM Min Liner Thickness	3.508	3.252	2.950	3.182	3.200	3.026	0.17
Margin of Safety	0.24	0.39	0.21	0.45	0.37	0.20	0.17
90 degrees							
Measured Erosion	1.12	0.84	0.87	0.86	0.90	0.97	NA
Measured Char	0.72	0.76	0.76	0.68	0.70	0.65	NA
Adjusted Char*	0.54	0.57	0.57	0.51	0.53	0.49	NA
2E + 1.25AC	2.92	2.39	2.45	2.36	2.46	2.55	NA
RSRM Min Liner Thickness	3.508	3.252	2.950	3.182	3.200	3.026	2.981
Margin of Safety	0.20	0.36	0.20	0.35	0.30	0.19	NA
180 degrees							
Measured Erosion	1.38	0.85	1.28	0.86	0.87	0.92	1.02
Measured Char	0.53	0.76	0.37	0.66	0.58	0.63	0.49
Adjusted Char*	0.40	0.57	0.28	0.50	0.44	0.47	0.37
2E + 1.25AC	3.26	2.41	2.91	2.34	2.28	2.43	2.50 2.981
RSRM Min Liner Thickness		3.252	2.950	3.182	3.200	0.24	0.19
Margin of Safety	0.08	0.35	0.01	0.36	0.40	0.24	0.19
270 degrees							
Measured Erosion	1.07	0.83	0.95	0.82	0.84	0.95	1.19
Measured Char	0.77	0.78	0.67	0.60	0.63	0.60	0.54
Adjusted Char*	0.58	0.59	0.50	0.45	0.47	0.45	0.41
2E + 1.25AC	2.86	2.39	2.53	2.20	2.27	2.46	2.89
RSRM Min Liner Thickness		3.252	2.950	3.182	3.200	3.026	2.981
Margin of Safety	0.23	0.36	0.17	0.44	0.41	0.23	0.03
	* Heasure	d Char A	djusted	to end	of action	time	
				nimum li:	ner thick	n e s s	1
	Margin of	Safety	2 X •1	rosion +	1.25 X A	dj char'	

Refer to Figure 38 for Station Locations

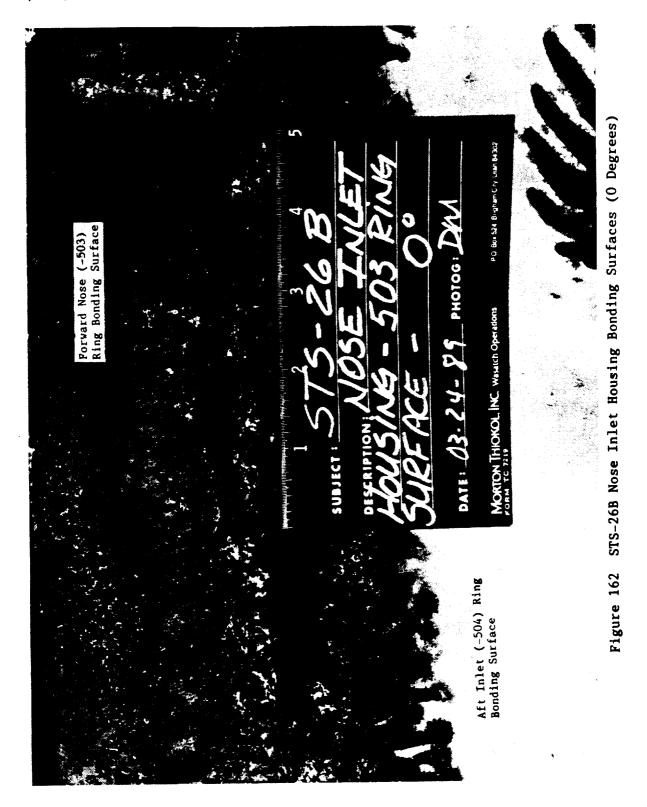
DOC NO.	TWR-17272	1	VOL	
SEC		PAGE - 2	39	2-2-5

Table 13 STS-26B Nose Cap Assembly Erosion and Char Data

						s	tations						
Angulat Potetton	1.5	4	ę	æ	10	12	14	16	18	20	22	24	26
0 degrees											I	1	
	0.31	0.35	۳.	4	₹.	n.	9.		<u>م</u> ،		1.73	1.70	1.32
		0.67	0.61	9.	ŝ	ŝ	ŝ	γ,	<u></u>	ņ,	•	. «	5
	ŝ	0.54	0.49	ŝ	4	4	4	•	er (* 0			. "
	1.30	1.37	1.39	. 53	. 54	. 70	80 G 80 G	7 0 7	<u>י</u> י	2 V 0 C		• •	8
RSRM Min Liner Thickness Margin of Safety	1.776 0.37	2.038 0.49	2.248 0.62	2.458 0.61	2.668 0.73	2.8/8	3. U 6 9 0. 6 4	0.63	0.52	9.44.0	.16	0.13	.17
45 degrees												1	(
	4 10	0.25	0.32	۳.	4.	ŝ	4	0.63	0.66	0.86	1.43	1.63	1.22
Reastred Froston Restrict Char	NA	0.63	0.53	\$	ŝ	₹.	ŝ	4	4.1		<u>،</u> ۱	• •	- K
	NA.	0.50	0.42	٩.	4	<u>س</u> ،	4° 4	י י	ŗr	ļ		20	
2E + 1.25AC	NA	1.13	1.17			1.50 1.50		• •		: ?	Γ.	9	8
RSRM Min Liner Thickness	1.776	2.038	2.248	-	•	°, с		1 U 1 U 1	8	8.4	ς.	.16	. 23
Margin of Safety	NA	0.80	0.92	•	•	·.	an - T	n •)			
90 degrees											•	٩	ſ
Konstrod Rrocion	NA	0.36	0.37	4	4	₹.	ŝ		°, '		e v	1 C C	•
Measured Char	NA	0.58	0.59	ŝ	ŝ	ŝ	Ŷ	e . r	5 M	р (* •	з и ^с		ŝ
	NA	0.46	0.47	4	4	4	. .	າ ª			5		۳.
2E + 1.25AC	NA	1.30	1.33	.46	.44		. c	. ^	• •		ς.	9.	8
RM Mİ	1.776	2.038	2.248	2.458	2.008	0/0.7 0 0V		0.80	0.61	0.51	0.18	Р.	0.14
Margin of Safety	N A	16.0	£0.0	•		2							
135 degrees													
	A IN	05 0	0.40	4	ŝ	്	0.64		0.86	1.10	1.70	1.95	1.40
	A N	0.71	0.61	9.	. و	<u>۹</u>	0.49	4	ŝ	Ŷ	. `	<u> </u>	. v
	NA	0.57	0.49	ŝ	4.	₹.	0.39	ς.	م ا		°	ņч	י א י
Adjusted Luat Jr + 1 25ar	NA	1.31	1.41	m	.60	1.69	1.77	ao (~		• •	9.4	
26 T L.C.D.C Depk Min Tiner Thickness	٦	2.038	2.248	. 4	9	°,	3.088		2	? `		? -	1
Margin of Safety		0.56	0.59	. 61	0.67	5	0.74		ſ.		-		•
	* measure	ed char	adjusted	to end	of actio	n time							
WR-				nimum li	ner thi	2 2 2 2	-						
-172	margin o	of safety	2 X e	rosion +	1.25 X	char	4 1 [*						

Refer to Figure 38 for Station Locations

IR-17272 -240 Table 13 STS-26B Nose Cap Assembly Erosion and Char Data (continued)


1 180 degrees													
180 degrees	1.5	4	9	60	10	12	14	16	18	20	22	24	26
Measured Erosion 0.	. 23		0.30	<u>م</u>	0.33	0.49	0.52	0.56	0.66	0.93	1.37	1.50	1.02
Char			0.59	ŝ	<u>•</u> •		ан (т •	1."		, m		9	9
• •				• •	-	. "	. 4			. "	. 39	۲.	•0
	1 50.1 1 376 1		1.13	• •	• •			2	\$	°,	٢.	9.	3.86
RSKM MIN LINE INICANERS 1. Margin of Safety 0.		0.82	69.0	1.05	. 24	Τ.	-	. 18	6 .	. 73	Ű,	<u>م</u>	m.
225 degrees													
Maasurad Erosion N		.15	0.22	m.	۳.	64.0	0.48	0.50	0.67	0.90	1.65	1.99	1.43
Char	NA 0		0.63	ŝ	ŝ	0.51	• •	. .	n 1	о ч •	• •	s vr	
Char *			0.50	4	•	1 4 1		? *	* *		2	9.10	
			1.07		N 4	878 6	29	"	. vi	: ?	Γ.	9	•0
RSRM Min Liner Thickness I. Margin of Safety ^b	NA 1	1.04	1.10	1.16	1.08	1.10	. 22	•	88.	. 68		°.	-
270 degrees													•
Maasurad Erosion	NA C	1.33	0.37	4.	•	\$	0.62	0.71	0.81	1.06	1.50	1.68	
		1.69	0.60	.و	9.	ŝ	ŝ		0.48	4	•		- u
Char *		0.55	0.48	4	₹.	٠.	4		0.35		•	<u>-</u>	<u> </u>
		1.35	1.34		1.54	1.57	. 81	6.		- v		- 4	• •
ner Thickness	76	2.038	2.248	٩.	9	30 ·	<u> </u>	•	100.0		•	? -	
		0.51	0.68	0.63	<u>г</u> .	•0	17.0	6 · / 4		ņ	•	•	•
315 degrees													
	A N	0 24	0.30		۳,	۳.	4.	0.54	9	۳.	?		ົ່
Reasured Eroston		65.0	0.53	ŝ	٩.	ŝ	ŝ	0.51	ŝ	ŝ	9	~ '	٠
		0.47	0.42	4.	4.	4.	4.	0.41	-	4 (n, ·	eч	Ωŗ
5AC		1.07	1.13	1.16	1.17	1.25	1.42	1.59	1.63	2.21	3.18 • 713	107 0	
RM Min Liner Thickness	1.776	2.038	2.248	4	9	•		5.246				. "	
		06.0	66.0		?		-	1.0/	7	•	0 T	n i	
<u>i</u> 15 degrees											(- -
doisol permaen	NA	0.30	0.39	۳.	۳.	•	0.42	0.53	0.67	68.0	1.31	1.57	0 4 - 0
Measured Char		0.50	0.44	s,	ŝ	ŝ	ŝ	ŝ	•		. '	. "	
Adjusted Char *		0.40	0.35	4	4	4	4.	4			• •	∩ ≪	• • •
2E + 1.25AC		1.10	1.22	1.21	1.30		.41	2.5.	. "	8 T .	е г	• •	
RSRM Min Liner Thickness	76	2.038	2.248	4	9.	8 . '	•••	7	n c	» «	100		0.41
Margin of Safety	AN	0.85	0.84	°.	2	⊃	:	•					

ר י

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

Aerospace Group

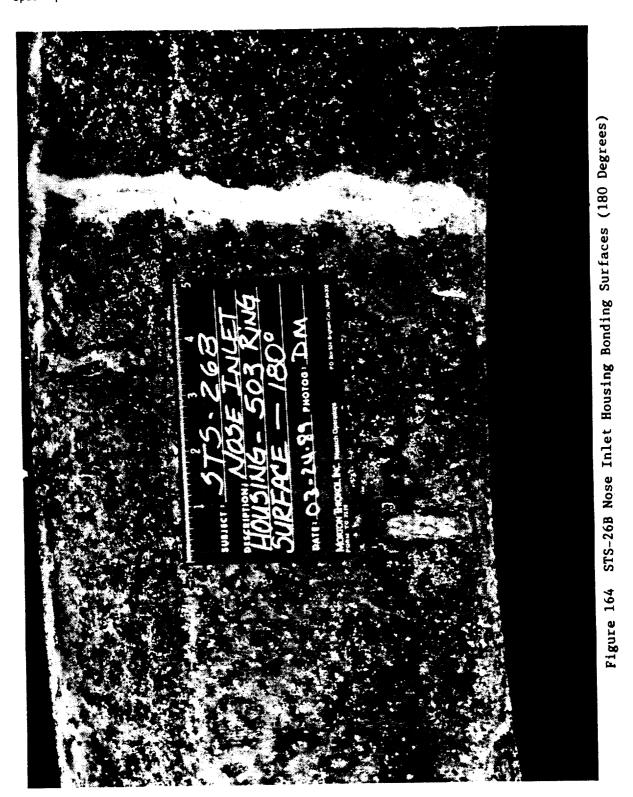

DOC NO.	TWR-17272		VOL
SEC		PAGE -2	23

REVISION ____

FORM TC 7994-310 (REV 2-88)

Aerospace Group

Space Operations


ORIGINAL PAGE

STS-26B Nose Inlet Housing Bonding Surfaces (90 Degrees) Figure 163

REVISION	DOC NO.	TWR-17272	VOL
FORM TC 7994-310 (REV 2-88)	SEC	PAGE	224
			A. A. /

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Aerospace Group Space Operations

DOC NO.	TWR-17272		VOL		
SEC	PAGE	2	25	2	•

REVISION ____

FORM TC 7994-310 (REV 2-88)

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

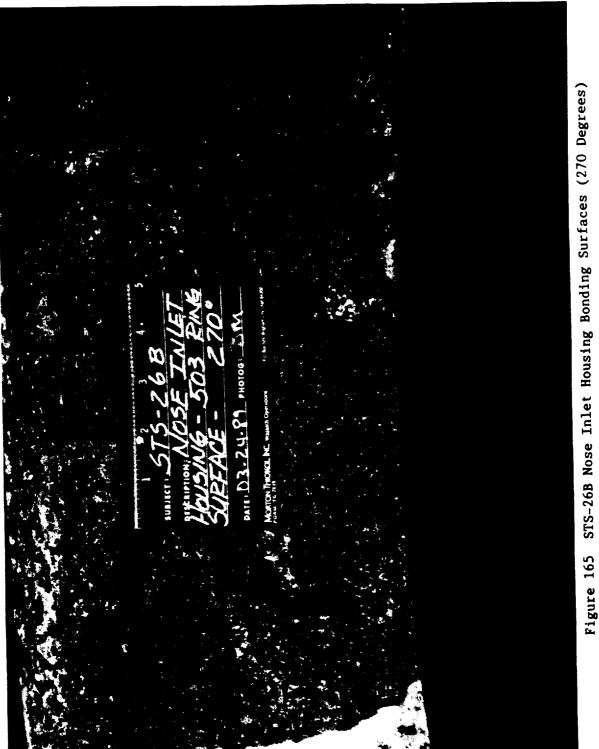


Figure 165

NO. TWR-17272		VOL
SEC	PAGE	226 2.20

REVISION

FORM TC 7994-310 (REV 2-88)

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

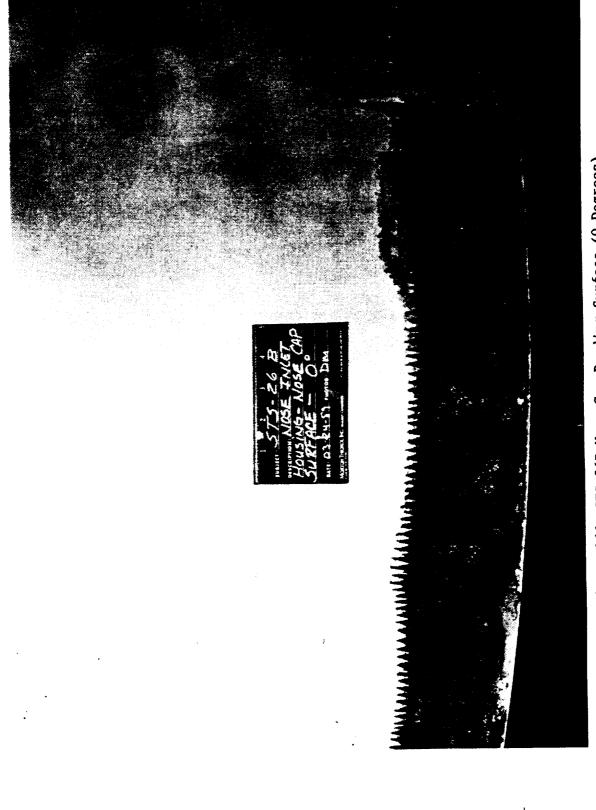
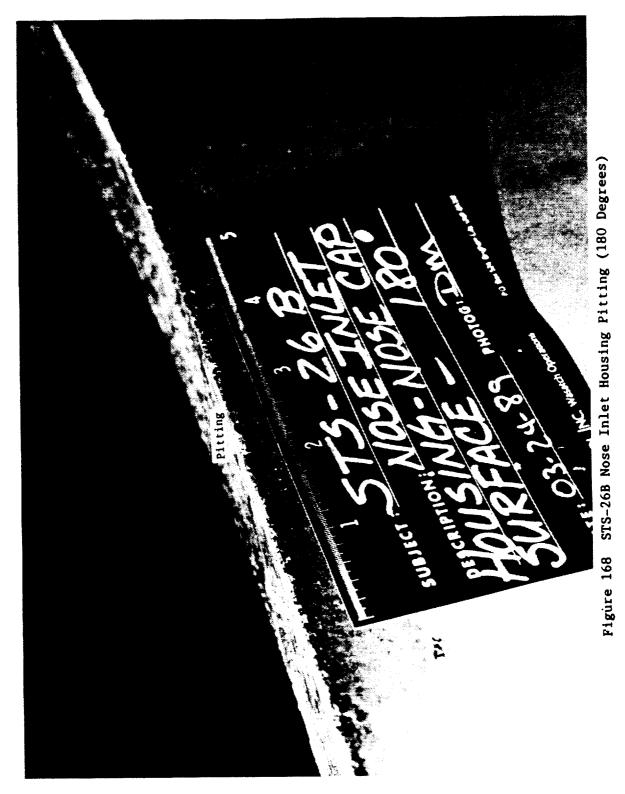


Figure 166 STS-26B Nose Cap Bonding Surface (0 Degrees)

Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations



REVISION ____

Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

DOC NO.		VOL
SEC)	229

REVISION ____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 169 STS-26B Cowl/OBR Closeup (O Degrees)

REVISION	
----------	--

DOC NO.	TWR-17272		vc	н
SEC		PAGE	230	233

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

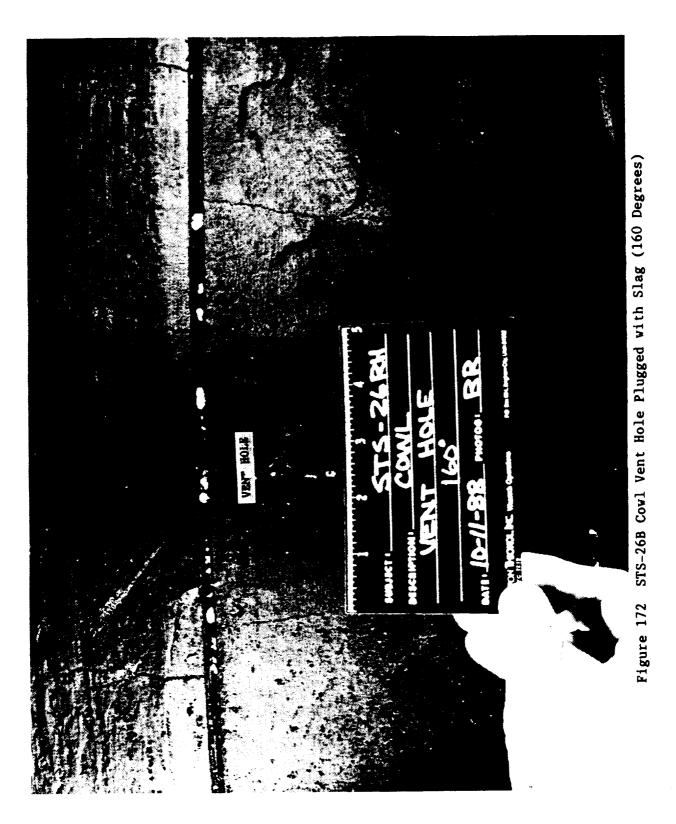
Figure 170 STS-26B Cowl/OBR Closeup (180 Degrees)

DOC NO.	TWR-17272			VOL		
SEC		PAGE	.2	31		

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

Aerospace Group


Figure 171 STS-26B Cowl/OBR Closeup (320 Degrees)

DOC NO.	TWR-17272		VOL	
SEC		PAGE	232	. 35

REVISION ____

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO.	TWR-17272			vo	ι
SEC		PAGE	2	33	

REVISION _

Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

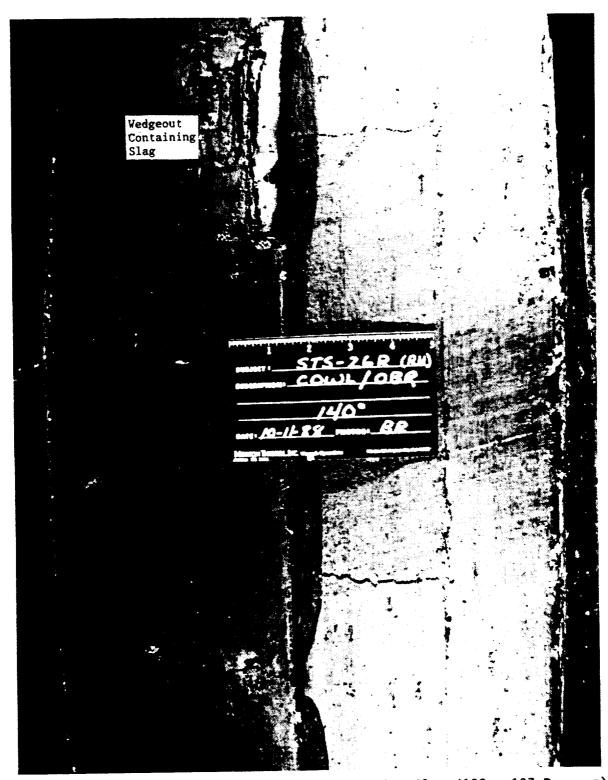


Figure 173 STS-26B Cowl Ring Wedgeout Containing Slag (120 - 137 Degrees)

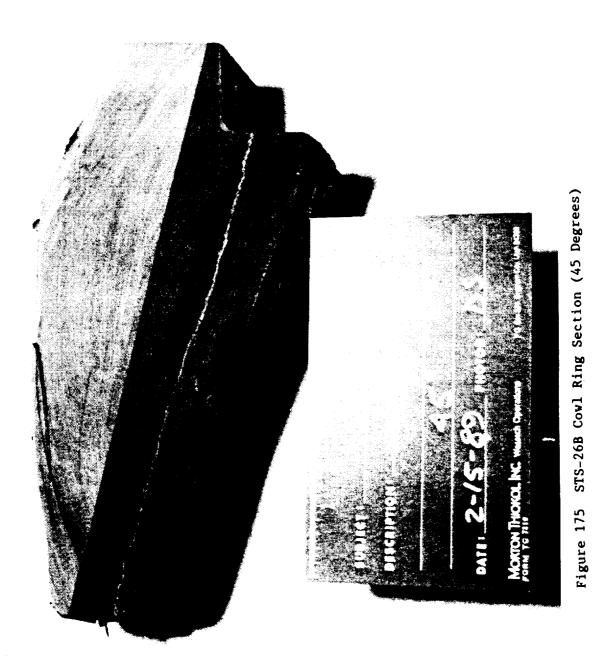
DOC NO.	TWR-17272		VOL	
SEC		PAGE 2	34	

REVISION ____

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


STS-26B Cowl Ring Section (0 Degrees) Figure 174

DOC NO.	TWR-17272		VOL	
SEC		PAGE 2	35	

Aerospace Group

Space Operations

ORICIMAL PAGE BLACK AND WHITE PHOTOGRAPH

DOC NO. TWR-17272 VOL PAGE SEC 236

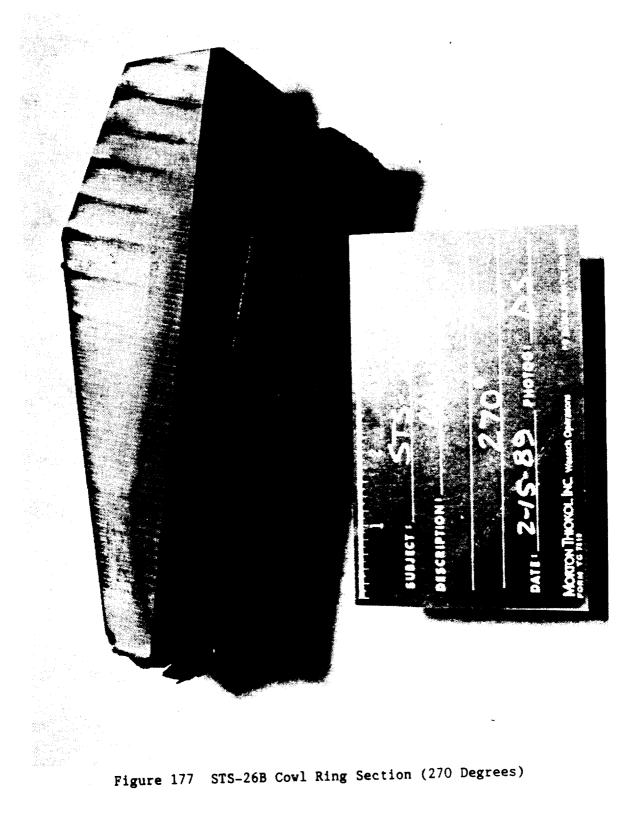
REVISION _____

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

REVISION _____


FORM TC 7994-310 (REV 2-88)

DOC NO.	TWR-17272		VOL	
SEC		PAGE	237 2.10	

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

	DOC NO.	TWR-17272		VOL	_
7.89)	SEC		PAGE	238 .	

REVISION ____

FORM TC 7994-310 (REV 2-88)

dependent 0 1	Angular Location							Statione	8				
<pre>Econome Constrainty Const</pre>	0 degrees	o	1	7	m	4	2	ę	٢	•0	6		
		0.21	0.21	÷.	. 2	. 2				N N		0.0	0.0
		0.62	0.61	ŝ	ŝ	9	9	Γ, '	<u>ہ</u> ہ	V N	юч •	יי	о ч
Thickness 1447 1.433 1.135	Char	0.50	0.49	4	•	4	n, d	<u>و</u>			• •	2	
Thickness 1.44 1.45 0.137 0.133 <	E + 1.25AC	1.04	1.03		• · ·		<u>.</u>		7 7 7 7 7			89.	
State NA	sRM Min Liner Thickness argin of Safety	1.4170.36	1.499 0.46			. 53	69.		. 76	AN NA	. 60	. 59	
<pre>Econion M M M M M M M M M M M M M M M M M M M</pre>) degrees												
Contraction NA	Crosica	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	۰.	°.
Contribution NA		NN	N.A.	NN	NA	NA	NA	NA	N A	NA	NA	8	6.
MA MA<	Char	NA	NA	N N	NA	NA	NA	NA	NA	NN	NA		ſ. '
minicipar Thickness 1.417 1.499 1.577 1.655 1.733 1.411 1.409 1.577 1.655 1.733 1.411 1.405 1.597 1.507<		NA	N A	NA	NA	NA	NA	NA	NA	N N	NA	. 99	<u>،</u> ا
MA NA NA<	iam Min Liner Thickness Irgin of Safety	1.417 NA	1.499 NA	. 57 NA	. 65 NA	. 73. NA	. 8 1 NA	. 88 N.N	.96. NA	. 59 N.N.	NA NA	. 70	• •
NA NA<) degrees												
NA NA<	asured Erosion	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 222	0, 1	•
Thickness I.417 I.499 I.577 I.655 I.733 I.811 I.869 I.5677 I.675 I.687 I.73 Tyrickness I.417 I.499 I.577 I.655 I.733 I.811 I.869 I.5677 I.675 I.667 I.7 Tyrickness I.417 I.499 I.577 I.655 I.733 I.811 I.869 I.5677 I.675 I.667 I.7 Tyrickness I.417 I.499 I.577 I.655 I.733 I.811 I.869 I.567 I.675 I.667 I.7 Tyrickness I.417 I.499 I.577 I.655 I.733 I.911 I.809 I.963 I.597 I.675 I.667 I.7 Thickness I.417 I.499 I.577 I.655 I.731 I.911 I.919 I.917 NA NA NA NA NA Trickness I.417 I.199 I.127 I.128 I.117 NA NA NA NA NA NA Trickness I.417 I.199 I.277 I.655 I.731 I.911 I.919 I.963 I.597 I.675 I.687 I.7 Thickness I.417 I.919 I.277 I.28 I.73 I.911 I.919 I.917 NA NA NA NA Thickness I.417 I.919 I.277 I.28 I.731 I.911 I.919 I.916 I.918 NA NA NA NA Thickness I.417 I.910 I.128 I.131 I.919 I.916 I.918 NA NA NA NA Thickness I.417 I.919 I.28 I.731 I.911 I.919 I.916 I.918 I.91 I.917 NA Thickness I.417 I.919 I.128 I.131 I.919 I.916 I.918 I.91 I.917 NA Thickness I.417 I.919 I.128 I.131 I.117 NA NA NA NA NA NA	asured Char	NA	NA	NA	NA	NA	A N	NA	NA	A N	A N	•	n 1
<pre>r Thickness 1.417 1.439 1.577 1.655 1.733 1.811 1.899 1.963 1.597 1.675 1.697 1.7 ety</pre> <pre>r Thickness 1.417 1.439 1.577 1.655 1.733 1.811 1.899 1.963 1.597 1.675 1.687 1.7 ety</pre> <pre>n 0.58 0.25 0.26 0.27 0.24 0.22 0.19 0.18 NA NA NA NA NA n 0.21 0.61 0.66 0.75 0.70 0.66 0.981 NA NA NA NA NA n 0.17 0.49 0.53 0.60 0.56 0.54 0.68 0.68 0.68 0.68 NA NA NA NA n 1.37 1.111 1.18 1.29 1.131 1.18 1.17 NA NA NA NA n 1.37 1.111 1.18 1.29 1.131 1.181 1.1675 1.687 1.7 ety</pre> <pre>n 1.417 1.499 1.577 '.655 1.733 1.811 1.889 1.963 1.997 1.675 1.687 1.7 n 0.014 0.35 0.34 0.28 0.67 0.66 0.68 0.68 0.68 NA NA NA NA NA n NA NA NA NA NA NA NA NA NA NA NA NA NA</pre>		NA	NA	NA	NA	NA	NA	NA	NA	N A	N N	e (
M Min Liner Thickness 1.417 1.499 1.577 1.655 1.733 1.811 1.899 1.900 1.597 1.677 0.61 degrees degrees aured Erosion aured Erosion aured Erosion aured Erosion 1.17 0.59 0.25 0.26 0.77 0.24 0.22 0.19 0.18 MA MA MA MA aured Char 1.117 1.11 0.65 0.75 0.70 0.64 0.80 0.81 MA MA MA MA 1.117 1.11 0.19 0.15 0.56 0.73 0.64 0.66 0.71 1.11 1.117 1.10 0.19 0.15 0.56 0.71 0.65 0.74 0.65 1.117 1.11 1.199 1.577 0.55 1.733 1.911 1.889 1.963 1.597 1.6677 1.7 HA IN LINER Thickness 1.117 1.199 1.577 0.55 1.731 1.911 1.889 1.963 1.597 1.667 1.7 HA IN MA MA MA MA MA MA MA MA MA MA MA MA MA	+ 1.25AC	NA	NA	٧N	٨N	N A		NA	NA V A	N N	AN VA		<u>،</u> د
MA MA<	RM Min Liner Thicknes	1.417	1.499	. 57	. 6 5	. 73		8 8 1	0 7 7				` "
0.58 0.25 0.26 0.27 0.24 0.22 0.19 0.18 NA NA NA NA NA NA NA NA NA NA NA NA NA	ırgin of Safety	N	NN	V N	¥ N	A N	4		4	4	5)
0.58 0.25 0.26 0.27 0.24 0.22 0.19 0.18 NA NA NA NA NA NA NA NA NA NA NA NA NA													
0.21 0.61 0.66 0.75 0.70 0.68 0.80 0.81 NA NA NA NA NA NA NA NA NA NA NA NA NA		0.58	0.25	?	. 2	?	. 2	Ξ.	۲.	N N	NA	NA	NA
0.17 0.49 0.53 0.60 0.56 0.54 0.65 NA NA<		0.21	0.61	9.	٢.	٢.	9.	æ.	°	NA	NA	AN	A N
hickness 1.37 1.11 1.18 1.12 1.18 1.11 1.1675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6675 1.6687 1.675 1.6687 1.675 1.6687 1.675 1.6687 1.688 1.577 1.655 1.611 1.1811 1.1811 1.1811 1.1675 1.687	Char	0.17	0.49	ŝ	9.	ŝ	ŝ	• •	•••	V N	N N	V Z	
hickness 1.417 1.499 1.577 050 1.417 1.499 1.577 050 1.417 1.499 1.577 1.499 1.577 1.605 1.406 1.406 1.407 1.406 1.407 1.406 1.406 1.407 1.406 1.407 1.406	E + 1.25AC	1.37	1.11	.18	. 29	8	.12		- 0	2 V 10 10		8 4 U	1 . 70
0.04 0.35 0.34 0.28 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00	M Min Liner Thicknes	1.417	1.499	. 57	59.	2.5	10	6 C	л ч				N N
NA NA NA NA NA NA NA NA NA NA NA NA NA N	o L	°.	cr.0			# •)				
NA NA NA NA NA NA NA NA NA NA NA NA NA N													
NA NA NA NA NA NA NA NA NA NA NA NA NA N	esurad Erosion	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.1	°. (
Char WA NA	asstrod Char	NA	NA	NA	NA	N A	NA	NA	NA	NA	NA	°, '	<u>م</u> ر
AC NA NA NA NA NA NA NA NA NA NA NA NA NA	Char	NA	NA	NA	NA	N N	NA	NA	NA	NA	NA 	<u> </u>	. •
th Min Liner Thickness 1.417 1.499 1.577 1.655 1.733 1.911 4.003 4.577 4.07 4.07 4.07 4.07 4.07 4.07 4.07 4.	E + 1.25AC	NA .	NA	NA 	NA NA	NA NA	NA.	NA •	A A A	4 4 6 4 4 6	A A A		•
gin of Safety NA NA NA NA NA NA NA NA NA NA NA NA NA	SRM Min Liner Thickness	1.417	1.499	.5	2		10.	•				, d	. ve
Measured char adjusted to end of action time 	argin of Safety	NA	NA	AN	NA	AN	A N	4			6		
······································		* Measure		djuste	to end	f acti	n tim						
DINUM TIME LUTCENS					iniaua		ickne						

Table 14 STS-26B Cowl/OBR Erosion and Char Data

242

Refer to Figure 55 for Station Locations

់ ២.ស.ស.ស. 🧿	•										
Erosion Char Char a 5AC Liner Thickness f Safety	-	2	m	4	ß	9	٢	60	6	10	11.3
char Char SAC Liner Thickness f Safety	NN	NA	NA	NA	NA	NA	NA	NA	0.00	00.00	0.00
Char * 5AC Liner Thickness f Safety	NA	NA	NA	N N	NA	NA	NA	N N	n 1	יי	<u>م</u> .
	VN	N N	V N	N N	4 z 3	44			. •	. "	
	NA NA	NA 1 677	NA 1 655	657 1	AN 1	1.889	1.963	1.597			<u>۲</u>
	C C L - T			V N	V N	N N	VN	V N	. 8 2	. 8.7	°.
90 degrees											
NA Stration	0.27	~			-	۳.	1.	N N	NA	0	0
	NA	٢.	۲.	٢.	٢.	٢.	۴.	NA	٨N	•••	8
Char *	NA	ŝ	9.	۰2	ŝ	9.	<u> </u>	VN	N N	•••	••
AC .		.18	. 13	.14	.08	60.	. 21	A N A	AN Ara	юч •	• •
RSRM Min Liner Thickness 1.417 Margin of Safety NA	1.499 NA	1.577 0.34	1.655 0.46	1./33 0.52	1.811 0.68	1.00.73	0.63	VN VN	A N	1.03	1.05
120 degrees											
NA Street on	NA	NA	NA	NA	NA	NA	NA	NA	NA	•	۰.
	NA	NA	NA	NA	NA	NA	NA	NA	NA	eo •	م ۱
Char *	NA	N N	NA	N N	NA	NA	N A	NA	N N	0.70	0
, AC			NA	NA	NA	N A	NA V V	Ň	N N N		זר
RSRM Min Liner Thickness 1.417	٦	1.577	1.655	1.733	1.811	1.889	1.903	2	c/ g · T		•
Margin of Safety NA	V N	AN	V N	NA	VN	AN	C Z	4	4	'n.	•
125 degrees											
Maasurad Frosion 0.16		.2	. 2	4	.6	٢.	NA	NA	NA	N N	N N
Char Char		٢.	9.	s.	۳.	٦.	NA	N A	NA	AN	AN
Char *	0.64	°.	ŝ	4	. 2	-	NA	NA	V N	V N	A N
2E + 1.25AC 1.02	1.	1.24	1.24	1.35	1.60	1.77	AN	d u Z	NA A	NA 1 687	4 N 1 0 C 1
ner Thickness	1.4	ŝ	•			» ه	606.T	n i			. 4
			m.	~	7.	? .	4		6	6	6
140 degrees											•
Wassurad Erosion NA	NA	NA	NA	NA	NA	NA	NA	N N	٩,	<u>.</u>	• •
	NA	NA	NA	NA	NA	NA	NA	NA	5	<u>۲</u>	د ه ۱
Char t	NA	NA	NA	NA	NA	NA	NA	NA	ņ	<u>،</u> ه	7
		NA		NA	NA	NA 20	NA NA	A N A	0.74 , 575	0.80	
ner Thickness 1	-	1.577	1.655 	1.733	1.811	1.889	1.905	7 7	•	°	•
Margin of Safety NA	NA	NN	A N	G E		t n					
* Measured	ured char	adjusted	to end	of action	n time						
					-						

Table 14 STS-26B Cowl/OBR Erosion and Char Data (continued)

243

ī

160 degrees							Stations	vi				
	o	1	7	e	4	2	9	7	•	6	10	11.3
Measured Erosion Measured Char Addinated Char	4 4 4 7 7 7 7 7	V V V	4 4 4 7 4 7	V N V N N	V N V N V N	V N V N	4 N V N V N	4 N 1 N 1 N	V N V N V N	9.7.9	0.7.9	
AC Liner Safe	NA 1.417 NA	NA 1.499 NA	ИА 1.577 NA	NA 1.655 NA	NA 1.733 NA	NA 1.811 NA	NA 1.889 NA	NA 1.963 NA	NA 1.597 NA	0.85 1.675 0.97	0.83 1.687 1.03	0.88 1.704 0.93
180 degrees												
Measured Erosion	0.28	0.18	. 7		. 2	. 2		. 2	NA	N N	N N	NA
Char	0.58	0.70	<u>۲</u> , י	<u>م</u> ا	<u>،</u> ،	ŗ.,	۲.	8 4	N N	N N	VN VN	V N N
Adjusted Char " 26 + 1.25AC	0.40 1.14	0 C . D 6	<u>, 1</u>		<u>י י</u>	<u>, -</u>	:	. ግ	4 N	A N	4 N N N	<
	1.4170.25	1.499 0.41	1.577 0.40	1.655 0.18	1.733 0.43	1.811 0.53	1.889 0.69	1.963 0.51	1.597 NA	1.675 NA	1.687 MA	1.704 NA
220 degrees												
	NA	NA	NA	NA	NA	NA	NA	NN	NA	•	0.1	0.1
Char	NA	N N	A N	A z	N N	N N	N N	A N	VN N		. '	10 V
Adjusted Char * 25 ± 1 35ac	V 2	V N V N	A N A N	A N N	4 4 7	A N A N	4 N N	VN N	VN VN	•	e «	° .
	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.963	1.597	1.675	1.687	1.704
Margin of Safety	NA	N N	VN	NA	NA		Y N	NA	NA	•	°.	°.
225 degrees												
	0.18	0.28		<u>۳</u>	4	4	~ `	~	NA	NA	NA	NA
Measured Char	0.68	0.68	•		о ч	<u> </u>	, r	ю.чо •	A N A N	4 N N	A N A N	4 A 2
	1.04	1.24	. Se	• • •		<u>.</u>	.32	. 28	NN	VN	NA	NA
M Min L	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.963	1.597 WA	1.675 WA	1.687	1.704
Margin of Sarety		17.0	•		-		•		e e			5
240 degrees												
	NA	NA	NA	NA	NA	NA	NA	NA	NA	°. '	°. '	
	NA	N A	N N	N N	A N	N N	A N	V 2	A N	юч •	юч •	ю Г ,
Adjusted Char * 25 ± 1 25ac	A N N	N A N A	V N N N	A N N	V N V N	A N	A N	A N	A N	• • •	°.	<u>ີ</u> ີ.
RSRM Min Liner Thickness	1.417	1.499	1.577	1.655	1.733	1.811	1.889	1.963	1.597	1.675	1.687	
Margin of Safety	NA	NA	NA	NA	NA	NA	VN	NA	NA	6.	8 .	₿.
	* Measured	char	adjusted	to end	of actio	n time						
			-	anaini	liner th							
	Margin of	f Safety				1	1					

Table 14 STS-26B Cowl/OBR Erosion and Char Data (continued)

TWR-17272

244

Angular Location							Stations					
	o	1	2	£	4	ŝ	9	L	•0	6	10	11.3
	N N	NA	NA	N N	NA	NA.	NA	NA	N.N.	0.00	0.00	00.0
Measured Erosion Measured Erosion	N.N.	NA	N N	NA	NA	NA	NA	N N	V 8 7	ъ. г	יי	
198011911111111111111111111111111111111	N N	NA	N N	NA	NA	NA	V N	4 H		. •	. •	
	NA	NA		NA	NA	NA.	۲°	70	1 597		9	
RSRM Min Liner Thickness	1.417	1.499	1.577	1.655 Wb	1.733 NA	1.811 NA	L. 007	NA.	N N	.82	79	٢.
Margin of Safety	VN	4		4								
270 degrees												
		0 7 0	<u> </u>	<u>م</u>	. 2	~	. 2	۲.	NA	٩.	0.04	00.00
Measured Erosion	090	0.73	9	٢.	٩.	80	•0	•	V N	ຸ່	1 0	•
easured Char	0.48	0.58	<u>م</u>	ŝ	9.	e.		9.	V N	. '	. •	•
	0.86	1.11	. 25	.32	. 30	. 26	?'	20		<u>ч</u>		• •
۰ X	1.417	1.499	1.577	1.655	1.733	1.811	1.603	1.303 0.64	N.N.	0.71	.74	•
Margin of Safety	0.65	0.35	~	7	•	r	י י	•				
280 degrees												
	N N	NA	NA	NA	NA	NA	NA	NA	NA N	NA	0.00	0.0
Measured Eroston	NA	NA	NA	NA	AN	NA	NA	NA	A N		9 Y	•
	NA	NA	NA	NA	NA	NA	N N	V N		C 4	° «	
AC	NA	NA	NA	NA	A N	NA.		1 963	1.597	1.675	9	•
RSRM Min Liner Thickness	1.417	1.499	1.577	1.605		770-7) (M	N.N.	NA	٧N	۴.	•
Margin of Safety	NA	AN	4	4	6							
300 degrees												Ċ
	0.16	0.22		۲.	۳.	0.18	0.15	0.16	N N	0.07	0.04	
	0.60	0.65	0.67	0.63	0.64	0.77	<u>،</u>	<u>ہ</u>	< 2 × 2	o 4		
Jepsuret (1921) Advincted (Ther *	0.48	0.52	ŝ	ŝ	ŝ	•••	<u>،</u> م	9-			. n	
лијизста сила Эк + 1.25АС	0.92	1.09	. 17	. 21	. 26	. °	. °	• •	1.597		9	н. Т
RSRM Min Liner Thickness	1.417	1.499	ŝ	<u>،</u>	. '	о ч •			NA	. 69	٢.	0
Margin of Safety	0.54	0.38	<u>,</u>		n	•						
315 degrees												1
Konstad Frasion	0.20	0.18	. 2	•	3	0.22	0.18	0.20	N N	NA	A N N	5 25
Measured Char	0.66	0.67	. 6	9.	9	. "	. '	• •	Y N	NN	NA	Z
	0.53	0.54	ŝ	ŝ	n, i	Û.	• -		NA	NA	NA	Z
2E + 1.25AC	1.06	1.03	1.11	1.09	- f	. •	• •	۰ ۰	1.597	1.675	1.687	1.7
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.417	1.499	Ŷ,	0.4		о и	69	9	NA	<b>N</b> A	NA	Z
Margin of Safety	0.34	0.46	4	•	r •	2						
	30540W *	Measured char	adjusted	to end	of actio	n time						
					liner thi	a i r k n e s s						
				1								

Table 14 STS-26B Ccwl/OBR Erosion and Char Data (continued)

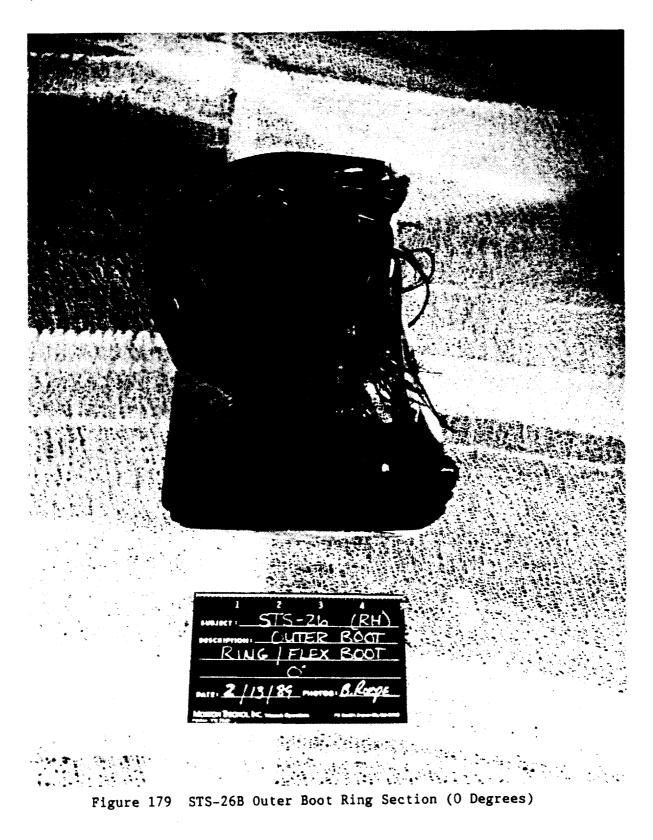
(continued)
Data
Char
and
Erosion
Cov1/0BR
STS-26B
Table 14

Angular Location							Stations					
320 degrees	o	1	2	3	-	ŝ	ę	٢	80	6	10	11.3
Measured Erosion Measured Char Adjusted Char * 2E + 1.25AC RSRM Min Liner Thickness Margin of Safety	87 87 87 87 87 1.417 1.417	NN NN NN NN 1.499 NN	NA NA NA NA 1.577 NA	NA NA NA NA 1.655 NA	мл Мл Мл Nл 1.733 Nл	NA NA NA NA 1.811 NA	NA NA NA NA NA 1.889 NA	NA NA NA NA NA 1.963 NA	NA NA NA NA NA 1.597 NA	0.03 0.83 0.66 0.89 1.675 0.88	0.03 0.83 0.66 0.89 1.687 0.90	0.04 0.83 0.66 0.91 1.704 0.87
340 degrees Measured Erosion Measured Char Adjusted Char * 2E + 1.25AC RSRM Min Liner Thickness Margin of Safety	NA NA NA NA NA NA NA NA NA NA 1.417 1.499 NA NA Surad Chaf		NA NA NA NA 1.577 NA Adjusted	NA NA NA NA NA 1.655 1 NA to end of	NA NA NA NA NA 1.733 NA Action	NA NA NA NA NA 1.811 NA 1.811 NA	КИ КИ КИ КИ 1.889 КИ	ИА ИА ИА ИА 1.963 ИА	МА ИА ИА ИА 1.597 ИА	NA NA NA NA 1.675 NA	0.07 0.84 0.67 0.98 1.687 0.72	0.02 0.90 0.72 0.94 1.704

Margin of Safety = ----- minimum liner thickness 2 X erosion + 1.25 X adj char*

Aerospace Group

Space Operations




REVISION

MORTON THIOKOL. INC. Aerospace Group

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations



REVISION ____

Aerospace Group

#### Space Operations

### ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

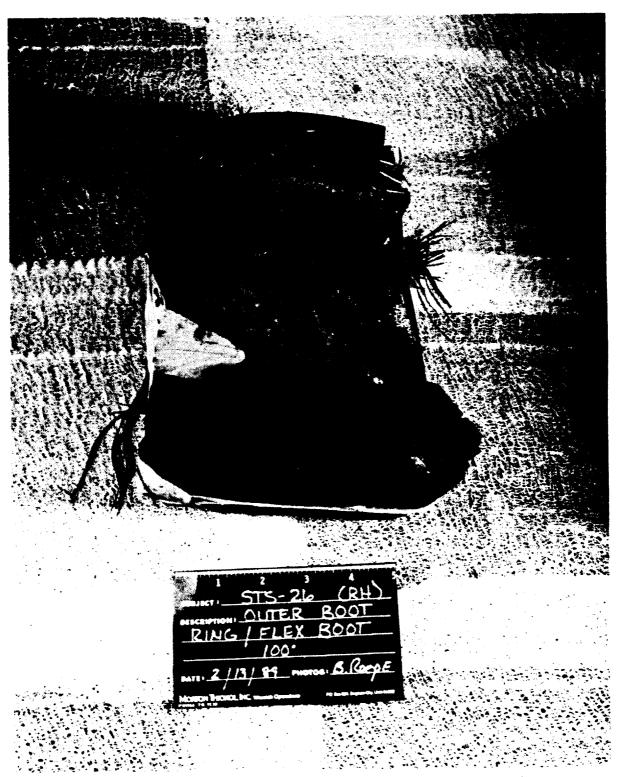



Figure 180 STS-26B Outer Boot Ring Section (100 Degrees)

DOC NO.	TWR-17272		VOL	
SEC		PAGE	249	

REVISION _____

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

Aerospace Group



Figure 181 STS-26B Outer Boot Ring Section (160 Degrees)

DOC NO.	TWR-17272		VOL
SEC		PAGE 2	50

REVISION __

Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH




Figure 182 STS-26B Outer Boot Ring Section (280 Degrees)

REVISION ____

FORM T	C 7994	-310	REV	2-88)

DOC NO.	TWR-17272		VOL
SEC		PAGE 2	51

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Aerospace Group Space Operations



DOC NO.	TWR-17272		VOL
SEC	Pi	AGE	252

REVISION ____

Aerospace Group

Space Operations

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



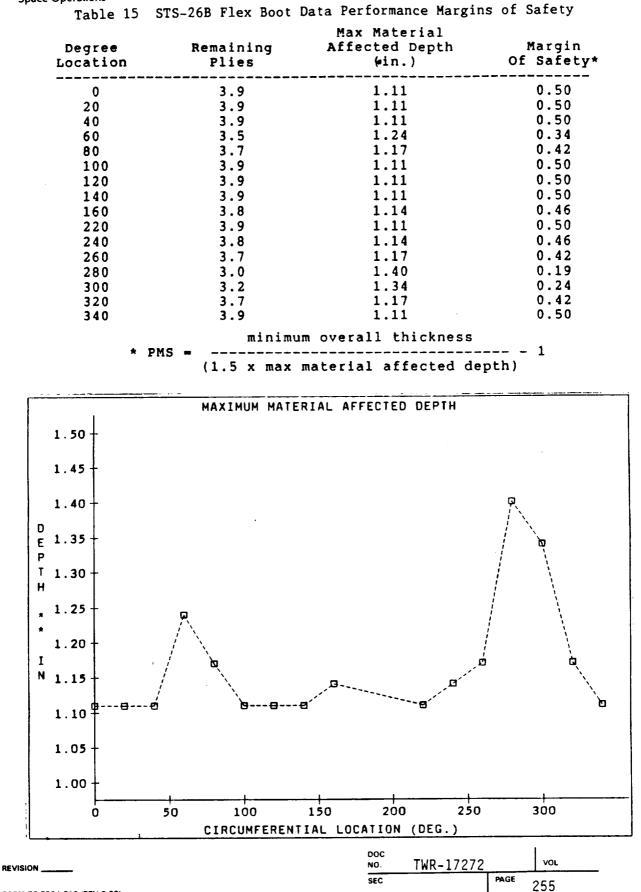
Figure 184 STS-26B Flex Boot (Cavity Side - 120 Degrees)

DOC NO.	TWR-17272		VOL
SEC		PAGE	253

Aerospace Group

Space Operations

# BLACK AND WHITE PHOTOGRAPH






	DOC NO.	TWR-17272		VOL
FORM TC 7994-310 (REV 2-88)	SEC		PAGE	254

Aerospace Group

#### **Space Operations**



Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



DOC TWR-17272 VOL SEC PAGE 256

REVISION _____

Aerospace Group

Space Operations

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

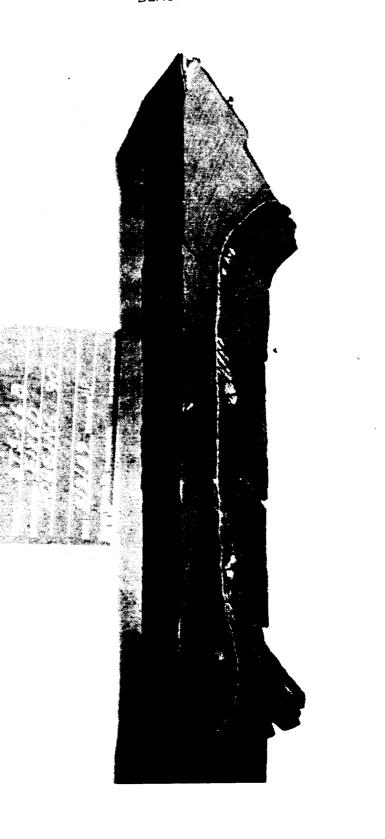
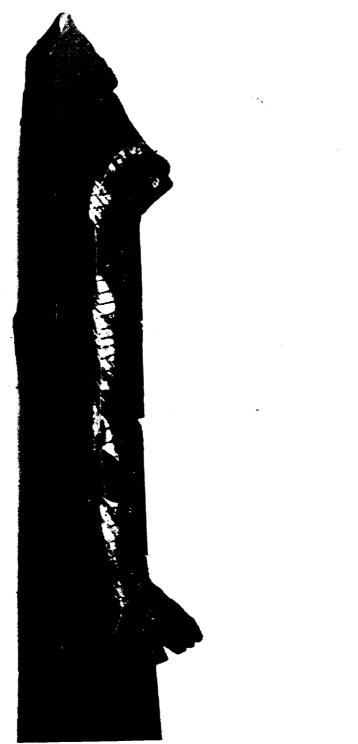



Figure 187 STS-26B Fixed Housing Section (90 Degrees)


.

DOC NO. TWR-17272 VOL SEC PAGE 257

Aerospace Group

Space Operations

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



STS-26B Fixed Housing Section (180 Degrees)

Pigure 188

1 575-268 EXED HOUSING 180

DOC NO.	TWR-17272		VOL
SEC		PAGE	258

Aerospace Group

Space Operations

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 189 STS-26B Fixed Housing Section (270 Degrees)

DOC NO.	TWR-17272		VOL	
SEC		PAGE	259	

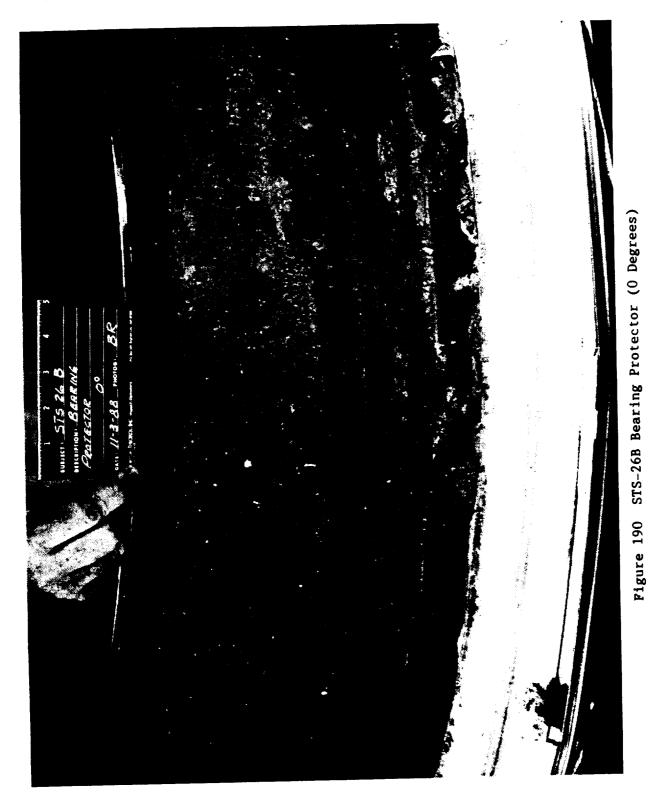
REVISION _____

MORTON	THIOKOL.	INC.
--------	----------	------

Space Operations

0       1       2       3       5       5       7       8         0       4097001       0.01       0.01       0.01       0.00       0.00       0.00       0.00         Xenured Exer       0.01       0.01       0.01       0.01       0.01       0.00       0.00       0.00         Xenured Exer       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01         Xenured Exer       0.01       1.03       1.11       1.11       1.11       1.11       0.11       0.11       0.01       0.01         Xenured Exer       0.11       1.12       1.12       1.12       1.12       1.12       1.12       1.12       1.12       1.13       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11	Stations	Stations	
<pre>Froston 0.04 0.04 0.01 0.00 0.00 0.00 0.00 0.00</pre>	•	Q	9 11
Ereston         0.04         0.01         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00			
Control       1:01       1:10       1:10       1:01       1:01       0.01       0.04         Control       1:11       1:10       1:12       1:12       1:12       1:10       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11	.00 0.00 0	00 0.00 0.00 0.	0.0 0.0
Chart         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <th0.01< th="">         0.01         0.01         <th< td=""><td>.14 1.07 1</td><td>07 1.07 1.05 1.</td><td>.84 0.88 1.6</td></th<></th0.01<>	.14 1.07 1	07 1.07 1.05 1.	.84 0.88 1.6
ACC       1.11       1.13       1.12       1.14       1.07       1.05       1.01       0.044         Lisser Phickness       3.107       2.03       0.53       0.60       0.71       0.71       0.73       0.03       1.01         Safety       2.03       0.73       0.63       0.60       0.71       0.71       0.74       0.02         Safety       2.03       0.73       0.63       0.60       0.01       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.02       0.03       0.02       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0	.91 0.86 0	86 0.86 0.84 0.	.67 0.70 1.3
<pre>Main Timer Thickness 3.007 2.001 1.025 1.027 1.020 0.71 0.71 0.73 0.02 1.103 degrees degrees degrees aured Erosion 1.22 1.29 1.16 1.11 1.12 1.12 1.12 1.10 0.09 aured Char 1.12 1.29 1.10 1.10 1.12 1.12 1.12 1.12 1.10 0.09 aured Char 1.12 1.20 1.10 0.01 0.00 0.00 0.00 0.00 0.00 0.0</pre>	.14 1.07 1	07 1.07 1.05 1.	.84 0.88 1.6
gin of safety       2.43       0.75       0.63       0.60       0.71       0.71       0.74       0.82       1         degrees       sured Erosion       0.055       0.00       0.00       0.01       0.03       0.02       0.03       0.02       0.03       0.02       0.02       0.03       0.02       0.03       0.02       0.03       0.02       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       <	1.827 1.829 1	<b>829 1.831 1.832 1.</b>	.836 2.426 3.0
degrees       degrees       0.05       0.00       0.03       0.03       0.02       0.03       0.02       0.03       0.02       0.03       0.02       0.03       0.02       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03	.60 0.71 0	71 0.71 0.74 0.	.19 1.76 0.8
0.05       0.00       0.00       0.02       0.02       0.03       0.03         1:22       1:29       1:16       1:17       1:12       1:12       1:04       0         1:21       1:29       1:65       1:17       1:12       1:12       1:13       0.03         1:21       1:29       1:65       1:17       1:16       1:12       1:23       0.03         1:21       1:29       1:61       0.57       0.56       0.53       0.63       0.70       0         1:26       1:15       1:01       0.56       0.56       0.53       0.69       0.70       0         1:26       1:15       1:01       0.94       0.99       0.99       0.79       0.77         1:26       1:15       1:01       0.96       0.99       0.99       0.79       0.77         1:26       1:15       1.01       0.96       0.79       0.79       0.79       0.79         1:26       1:15       1.01       0.96       0.99       0.99       0.99       0.79         1:26       1:15       1.01       0.96       0.96       0.99       0.79       0.79         1:21       1.01			
hickness       1:22       1:29       1:16       1:13       1:12       1:12       1:16       1:04       0         hickness       1:20       1:25       1:25       1:16       1:12       1:12       1:16       1:04       0         hickness       1:03       0.57       0.56       0.59       0.50       0.53       0.63       0.63         1:00       0.61       1.257       1:26       1:16       1:22       1:04       0         1:01       0.57       0.56       0.59       0.59       0.50       0.50       0.70       0         1:01       0.10       0.04       0.00       0.00       0.00       0.00       0.00       0.00         1:01       0.92       0.91       0.79       0.79       0.79       0.77         1:01       0.92       0.81       0.78       0.79       0.77       0.70       0.70         1:01       0.92       0.91       0.79       0.79       0.79       0.72       0.70         1:01       0.92       0.91       0.79       0.79       0.79       0.72       0.70         1:01       1.01       0.78       0.79       0.79       0.79	.02 0.02 0.0	.02 0.00 0.03 0.0	.00 0.03 0.0
hickness       1.03       0.93       0.93       0.93       0.93       0.83       0.83         hickness       1.32       1.16       1.17       1.16       1.12       1.22       1.03         1.18       0.61       0.57       0.55       0.53       0.63       0.50       0.70         1.18       0.61       0.57       0.55       0.53       0.63       0.50       0.70         1.18       0.10       0.00       0.00       0.00       0.00       0.00       0.70         0.10       0.10       0.01       0.00       0.00       0.00       0.00       0.70         1.126       1.15       1.01       0.79       0.79       0.79       0.79         1.01       0.79       0.79       0.79       0.79       0.79       0.70         1.01       0.95       0.96       0.99       0.99       0.79       0.79         1.05       1.01       0.79       0.79       0.79       0.79       0.79         1.06       1.23       1.01       0.79       0.79       0.79       0.79         1.06       1.23       1.01       0.96       0.96       0.99       0.99       <	.13 1.12 1.1	.12 1.12 1.16 1.0	.93 0.97 1.
hickness       1.32       1.29       1.16       1.17       1.16       1.12       1.22       1.03       0         hickness       3.807       2.081       1.825       1.827       1.829       1.831       1.832       1.833       1.833       1.834       1         1.18       0.61       0.57       0.56       0.53       0.50       0.70       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	.0 06.0 06.0	.90 0.90 0.93 0.8	.74 0.78 1.5
hickness       3.007       2.001       1.825       1.827       1.629       1.631       1.632       1.634       1         1.88       0.61       0.57       0.56       0.58       0.63       0.50       0.70       0         0.10       0.010       0.00       0.00       0.00       0.00       0.00       0.70       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<	.17 1.16 1.1	.16 1.12 1.22 1.0	.93 1.03 1.9
1.88       0.61       0.57       0.56       0.58       0.63       0.50       0.70       0         0.10       0.004       0.00       0.00       0.00       0.00       0.00       0       0         1.26       1.15       1.01       0.98       0.99       0.99       0.99       0.99       0.90         1.101       0.91       0.91       0.91       0.99       0.99       0.99       0.90         1.146       1.23       1.01       0.98       0.94       0.99       0.99       0.90         1.466       1.23       1.01       0.98       0.94       0.99       0.99       0.90         1.461       1.23       1.01       0.98       0.94       0.99       0.99       0.90         1.461       1.23       1.01       0.98       0.99       0.99       0.99       0.99         1.461       1.23       1.827       1.829       1.831       1.833       1.834       1         1.61       0.69       0.99       0.99       0.99       0.99       0.99       0.99         1.61       1.107       1.182       1.182       1.183       1.03       1.03         1.	1.827 1.829 1.63	.629 1.631 1.632 1.83	1.836 2.426 3.0
0.10       0.04       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01	.56 0.58 0.6	.58 0.63 0.50 0.7	.97 1.36 0.5
0.10 0.04 0.00 0.00 0.00 0.00 0.00 0.00			
1.26       1.15       1.01       0.98       0.94       0.99       0.99       0.99       0.90       0         1.01       0.92       0.81       0.75       0.79       0.72       0       0         1.46       1.23       1.01       0.98       0.99       0.99       0.99       0.72       0         1.46       1.23       1.01       0.98       0.99       0.99       0.90       0       0         1.46       1.23       1.825       1.827       1.831       1.831       1.833       1         1.61       0.69       0.81       0.86       0.995       0.85       0.85       1.04       1         1.61       0.69       0.81       0.86       0.99       0.99       0.90       0         0.00       0.00       0.81       0.86       0.95       0.85       0.85       1.03       0         1.07       1.19       1.12       1.19       1.16       1.17       1.08       1.03       0         1.07       1.09       1.12       1.19       1.16       1.17       1.08       1.03       0       0       0       0       0       0       0.103       0	0.0 0.00 0.0	0.00 0.00 0.0	0.0 60.0 00.
Chart 1.01 0.92 0.81 0.75 0.79 0.79 0.72 AC 1.23 1.01 0.98 0.99 0.99 0.99 0.90 Liner Thickness 3.807 2.081 1.825 1.827 1.829 1.831 1.832 1.834 1 Safety 1.61 0.69 0.81 0.86 0.95 0.85 0.85 1.04 1 E Safety 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0 Erosion 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0 Erosion 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0 Erosion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	98 0.94 0.9	<b>6.0 66.0 66.0</b>	.62 0.69 1.9
Thickness 1.46 1.23 1.01 0.98 0.94 0.99 0.99 0.99 0.90 0.90 0.90 0.90	78 0.75 0.7	0.79 0.79 0.7	
Thickness 3.807 2.081 1.825 1.827 1.829 1.831 1.832 1.04 1 Y 1.61 0.69 0.81 0.86 0.95 0.85 0.85 1.04 1 n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.98 0.94 0.99		
Safety 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.827 1.529 1.83 2.25 0.05 0.65		
<pre> ************************************</pre>			
Erosion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.			
Char Char Char Char Char Char Char Char 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.08 1.07 1.08 1.07 1.08 1.07 1.08 1.07 1.08 1.07 1.08 1.07 1.08 1.07 1.08 1.07 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08	0.00 0.00	0.00 0.00	0.00 0.03 0.00
Char* 0.86 0.95 0.90 0.95 0.93 0.94 0.86 0.82 0 AC 1.07 1.19 1.12 1.19 1.16 1.17 1.08 1.07 0 Liner Thickness 3.807 2.081 1.825 1.827 1.829 1.831 1.832 1.834 1 Safety 2.56 0.75 0.63 0.54 0.58 0.56 0.70 0.71 1 * Measured char adjusted to end of action time	1.19 1.16	1.17 1.08	.91 0.91
.AC 1.17 1.08 1.07 1.19 1.12 1.19 1.16 1.17 1.08 1.07 0 Liner Thickness 3.807 2.081 1.825 1.827 1.829 1.831 1.832 1.834 1 : Safety 2.56 0.75 0.63 0.54 0.58 0.56 0.70 0.71 1 * Measured char adjusted to end of action time	0.95 0.93	0.94 0.86	. 73 0. 73
M min Liner Thickness 3.807 2.081 1.825 1.827 1.829 1.831 1.832 1.834 1 gin of Safety 2.56 0.75 0.63 0.54 0.56 0.70 0.71 1 * Measured char adjusted to end of action time	1.19 1.16	1.17 1.08	.91 0.97
2.56 0.75 0.63 0.54 0.58 0.56 0.70 0.71 1 * Measured char adjusted to end of action time	1.827 1.829	9 1.831 1.832	.836 2.426
Measured char adjusted to end of action tim	0.54 0.58	0.56 0.70	.02 1.50
	to end of action tim	action tim	
minimum liner thickness	inimum line	n⊕r thickness	

REVISION _

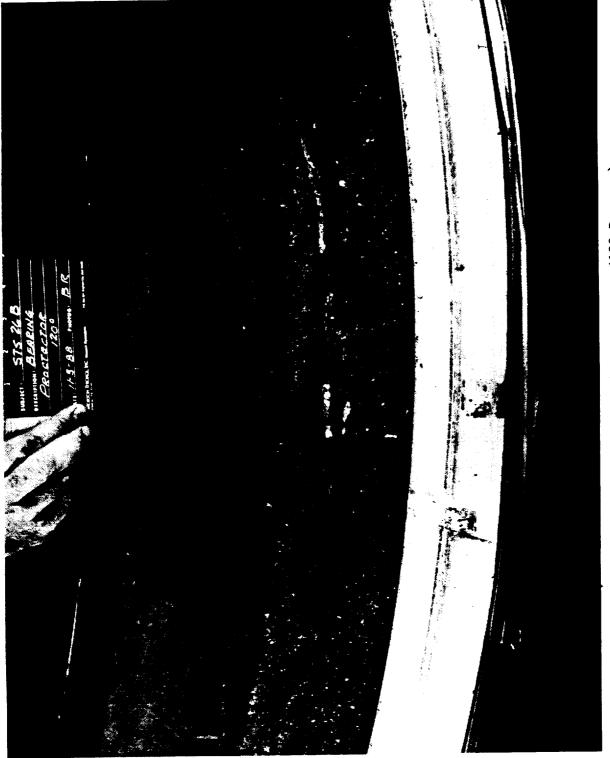

DOC NO. TWR-17272 VOL SEC PAGE 260 Refer to Figure 70 for Station Locations

Aerospace Group

Space Operations

FORM

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



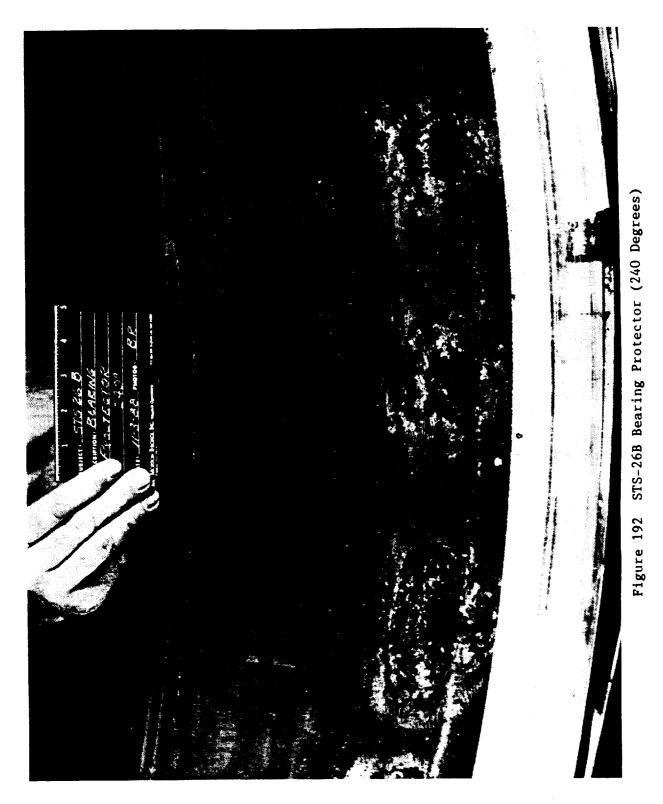

	DOC NO.	TWR-17272	VOL	_
REVISION	SEC		PAGE 261	
FORM TC 7994-310 (REV 2-68)		•		

Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH






DOC NO.	TWR-17272		VOL
SEC	PAC	^{БЕ} 2	262

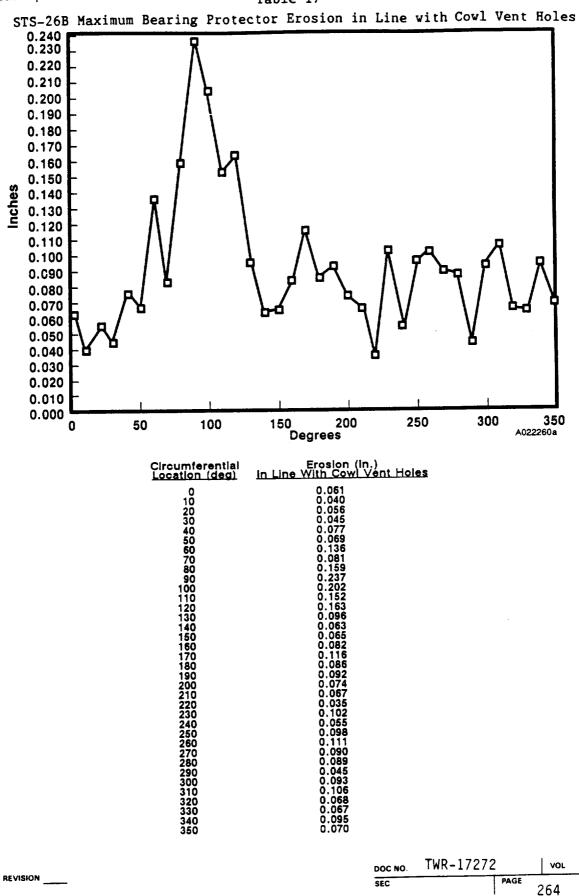
Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



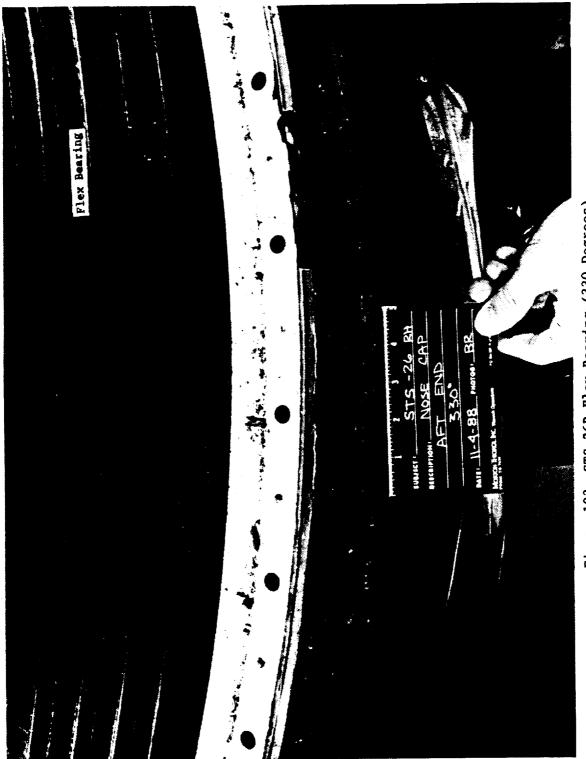
NO. TWR-17272 VOL SEC PAGE 263

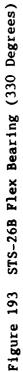

REVISION ____

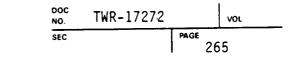
r






Table 17





Aerospace Group

Space Operations

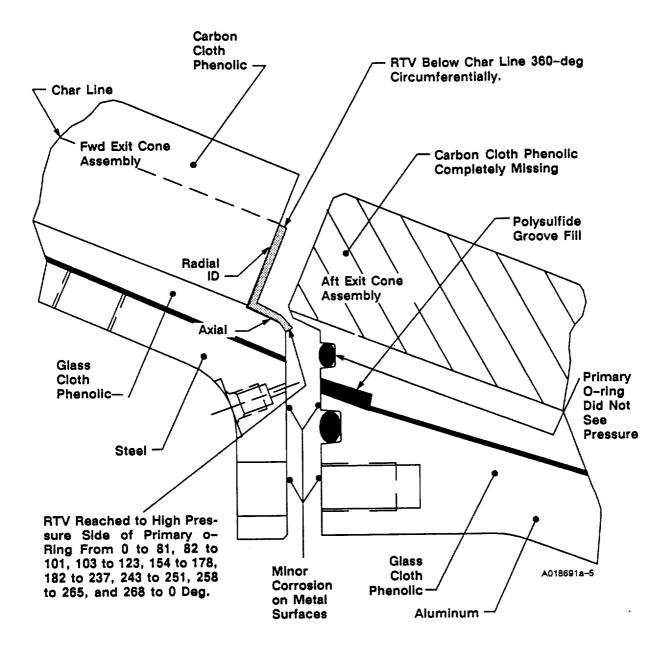
## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

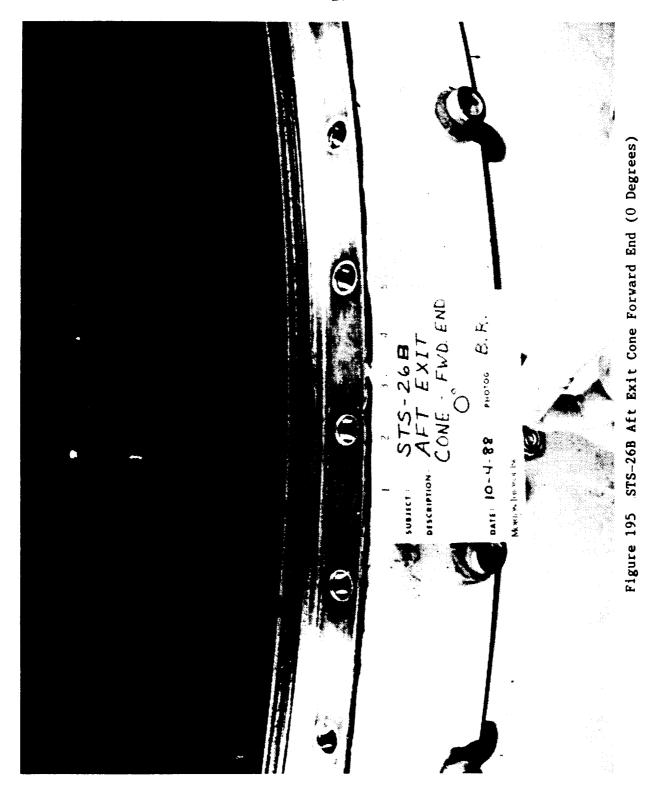






Thickol CORPORATION SPACE OPERATIONS





Figure 194 STS-26B-Aft Exit Cone-to-Forward Exit Cone Joint Interface

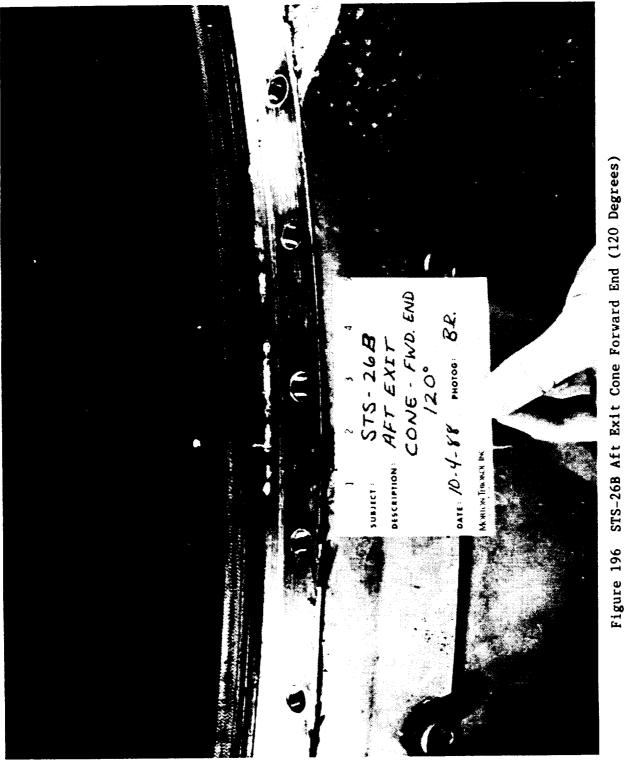
DOC NO.	TWR-17272	VOL
SEC	PAGE	266

Aerospace Group

Space Operations

CHAINAL PAGE BLACK AND WHITE PHOTOGRAPH




DOC TWR-17272 VOL SEC PAGE 267

REVISION _____

Aerospace Group

Space Operations

## CONCINAL PAGE BLACK AND WHITE PROTOGRAPH



DOC NO.

SEC

TWR-17272

VOL

268

REVISION _____


Aerospace Group

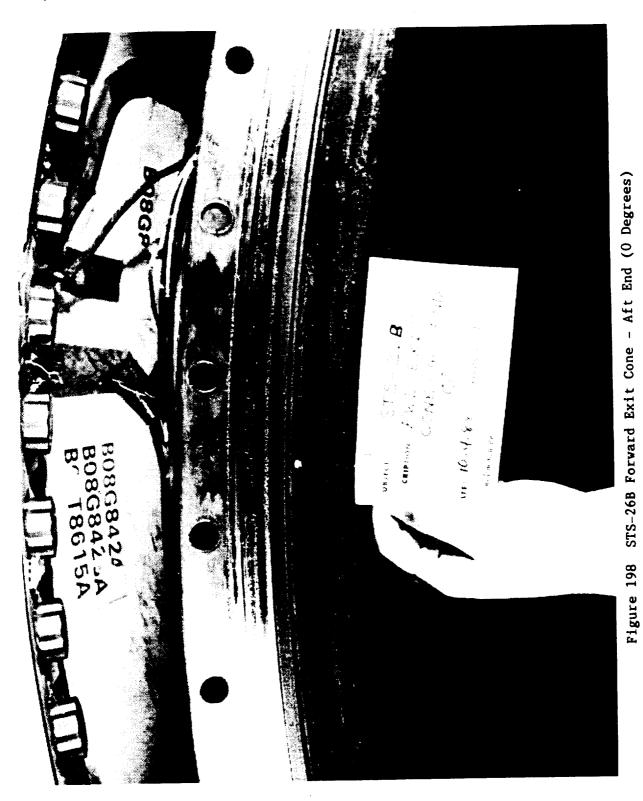
**Space Operations** 

k

REVISION

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH




DOC NO. TWR-17272 VOL SEC PAGE 269 FORM TC 7994-310 (REV 2-88)

Aerospace Group

Space Operations

REVISION

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

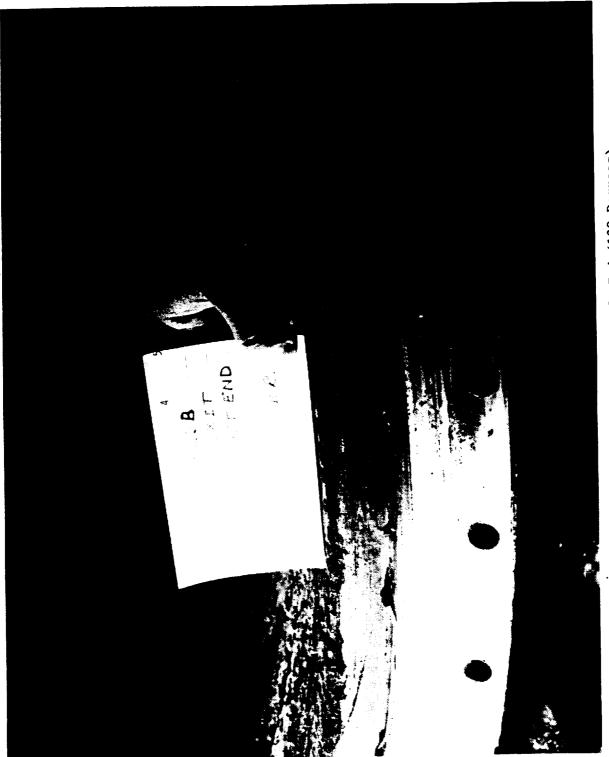


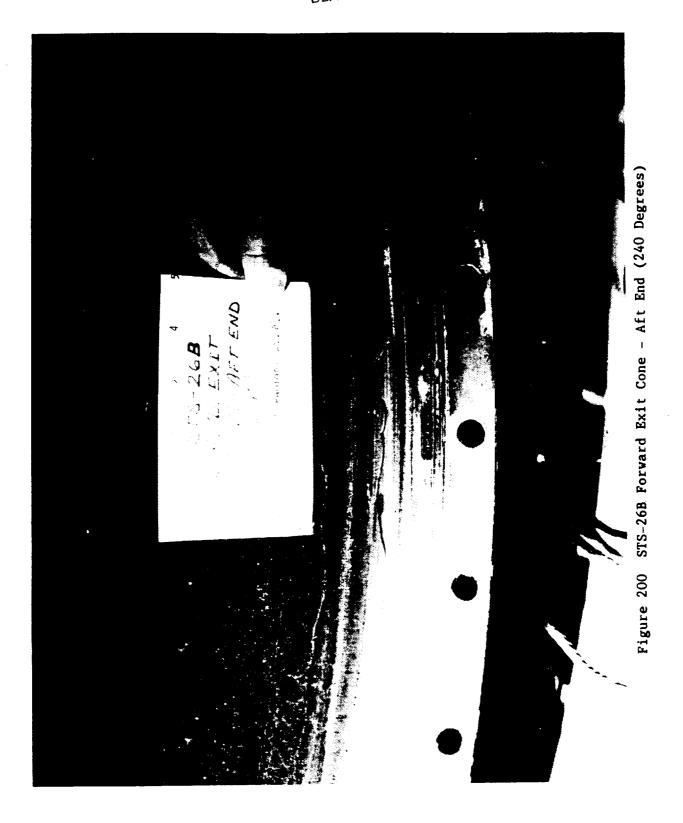
DOC NO. TWR-17272 VOL SEC PAGE 270 FORM TC 7994-310 (REV 2-88)

Aerospace Group

Space Operations

# BLACK AND WHITE PHOTOGRAPH





Figure 199 STS-26B Forward Exit Cone - Aft End (120 Degrees)

DOC NO.	TWR-17272			VOL
SEC		PAGE	27	71

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



REVISION ____

Aerospace Group

Space Operations



DOC TWR-17272 VOL SEC PAGE 273

Aerospace Group

Space Operations

### ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 202 STS-26B Forward Exit Cone Aft End Scuff Mark

 
 DOC NO.
 TWR-17272
 VOL

 SEC
 PAGE
 274

REVISION ____

Thickol CORPORATION SPACE OPERATIONS

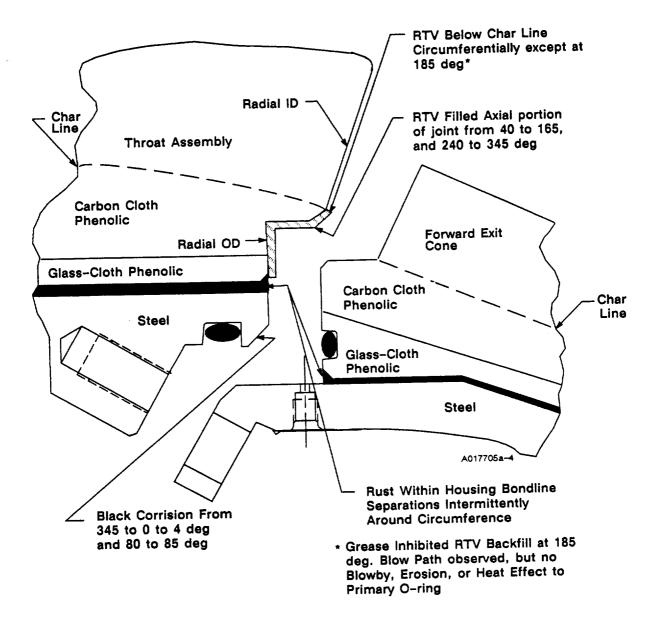



Figure 203 STS-26B Throat/Forward Exit Cone Joint

DOC NO.	TWR-17272		VOL
SEC		PAGE	275

Aerospace Group

Space Operations

### ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH




Figure 204 STS-26B Forward Exit Cone - Forward End (0 Degrees)

DOC NO.	TWR-17272		VOL
SEC		PAGE	276

REVISION ____

MORTON THIOKOL. INC. Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations



Figure 205

DOC NO.	TWR-17272		VOL	
SEC		PAGE	277	

REVISION

Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations



DOC NO.	TWR-17272		VOL	
SEC		PAGE	278	

Aerospace Group

Space Operations

### ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



DOC NO.	TWR-17272		VOL
SEC	<u> </u>	PAGE	279

REVISION _____

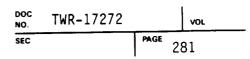
Aerospace Group ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH Space Operations 9

Figure 208 STS-26B Throat Aft End (120 Degrees)

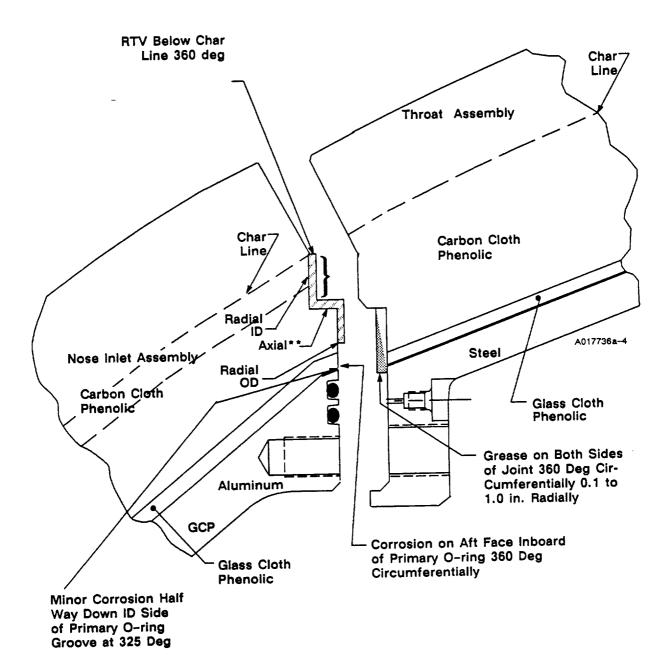
NO. TWR-17272 VOL SEC PAGE 280

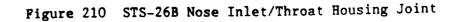
REVISION ___

FORM TC 7994-310 (REV 2-88)


MORTON THIOKOL, INC.

Aerospace Group


Space Operations


# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH





Thickol CORPORATION SPACE OPERATIONS





C - 4

DOC NO.	TWR-17272		VOL
SEC		PAGE	282

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



DOC TWR-17272 VOL NO. PAGE 283

REVISION _____

Aerospace Group

Space Operations

### ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 212 STS-26B Throat-Forward End (120 Degrees)

REVISION _____

DOC NO. SEC TWR-17272 VOL PAGE 284

Aerospace Group

Space Operations

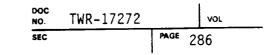
# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



 
 DOC NO.
 TWR-17272
 VOL

 SEC
 PAGE
 285

REVISION ___


Aerospace Group

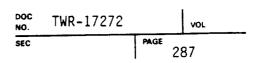
Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 214 STS-26B Aft Inlet (-504) Ring-Aft End (0 Degrees)




REVISION _____

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

Aerospace Group

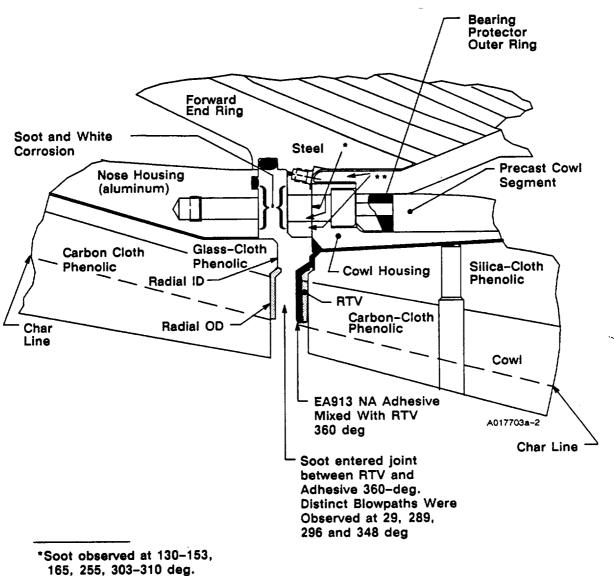




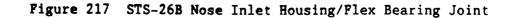
REVISION ____

Aerospace Group

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


Space Operations




NO. TWR-	17272	VOL
SEC	PAGE	^e 288

REVISION ____

Thickol CORPORATION SPACE OPERATIONS



**Intermittent White Corrosion



DOC N	<b>0</b> .	TWR-17272		VOL
SEC			PAGE	289

REVISION

Aerospace Group

Space Operations

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

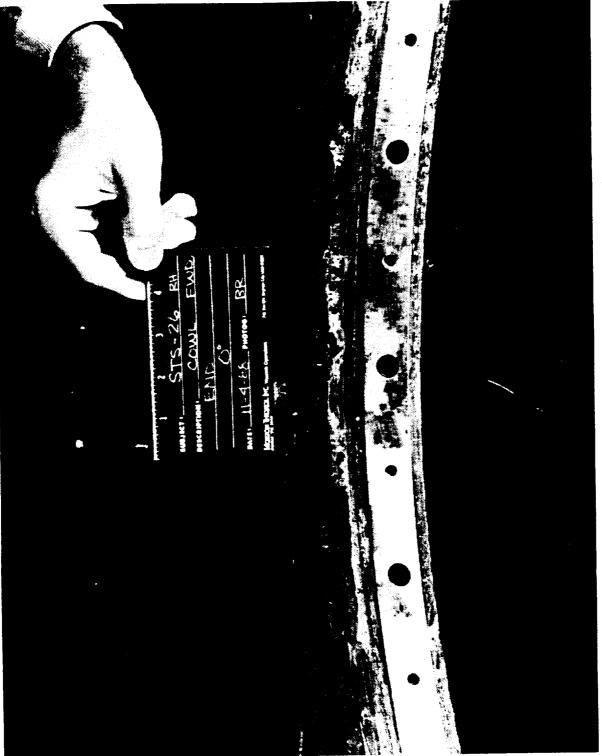



Figure 218 STS-26B Cowl-Porward End (0 Degrees)

 
 DOC NO.
 TWR-17272
 VOL

 SEC
 PAGE
 290

REVISION ____

Aerospace Group

Space Operations

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



Figure 219 STS-26B Cowl-Forward End (120 Degrees)

DOC NO.	TWR-17272	_		VOL
SEC		PAGE	2	91

REVISION ____

Aerospace Group

Space Operations

# 2(~ P) E wD 25 101 01 TL-4-28 PHOTOG 240 575 COLDE NOUN PORT NO. CINH 122.14

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

STS-26B Cowl-Forward End (240 Degrees)

Figure 220

REVISION _____

FORM TC 7994-310 (REV 2-88)

DOC TWR-17272 VOL SEC PAGE 292

Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

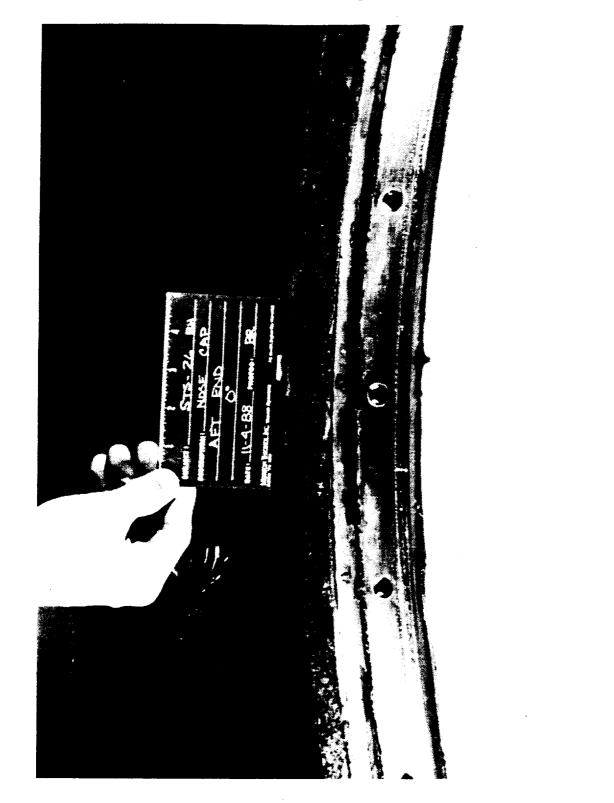
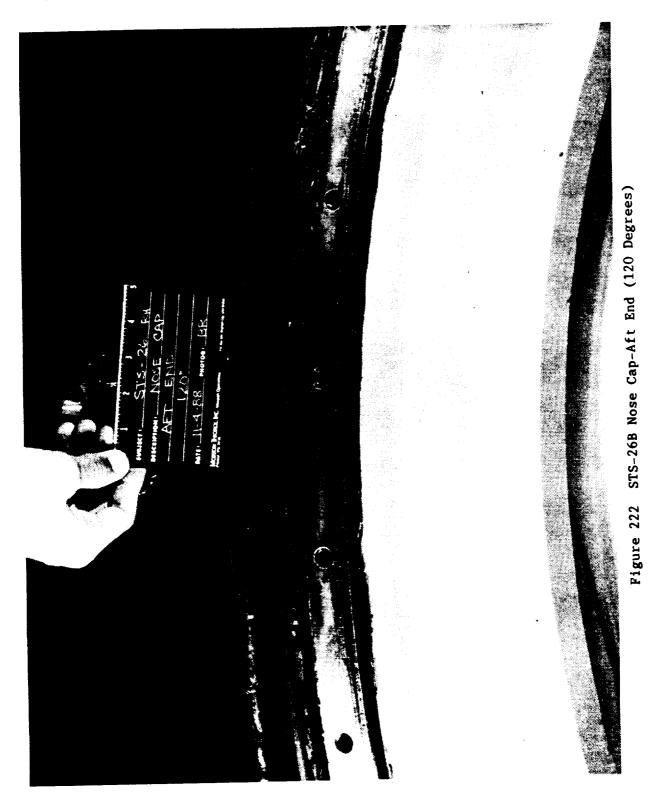
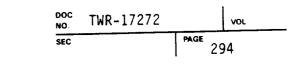



Figure 221 STS-26B Nose Cap-Aft End (0 Degrees)


DOC NO.	TWR-17272			VOL
SEC		PAGE	2	93

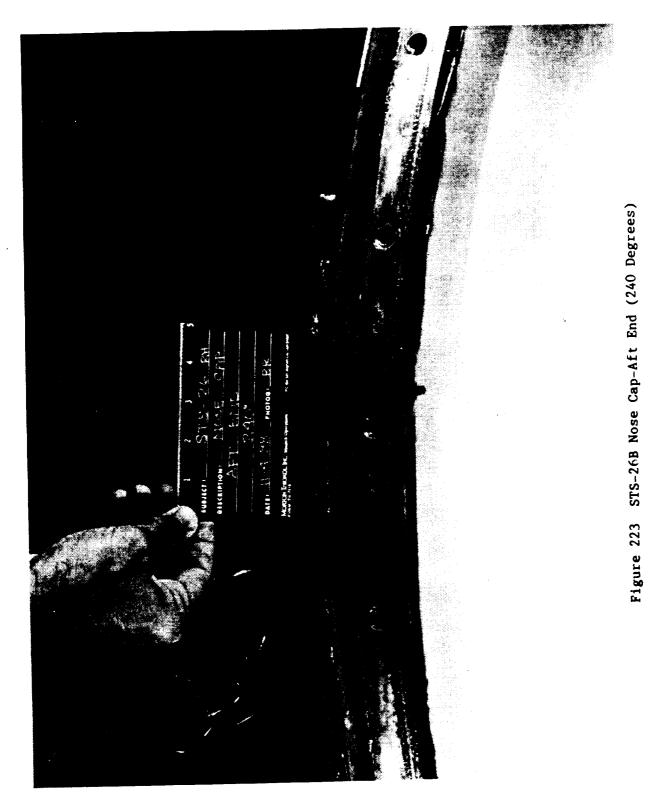

REVISION ___

Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



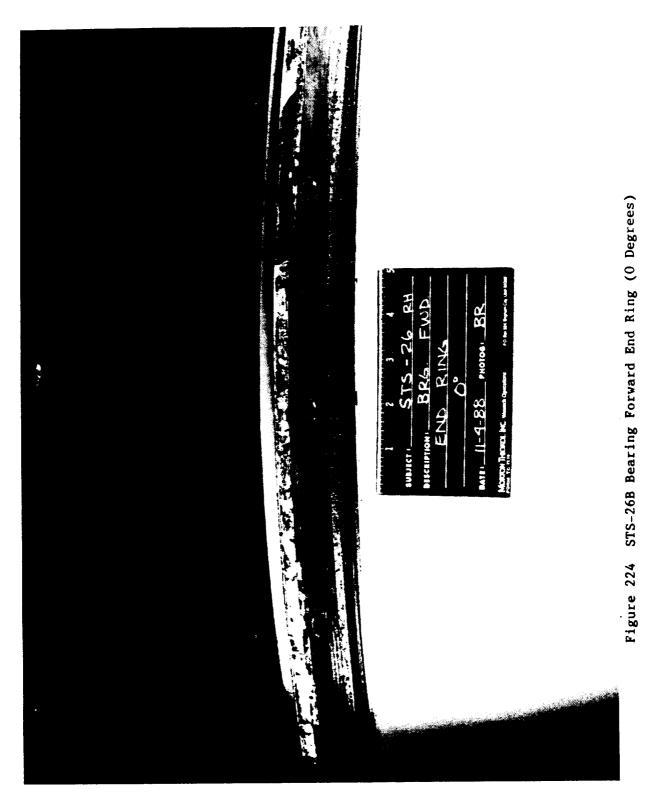



REVISION _____

Aerospace Group

#### Space Operations

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

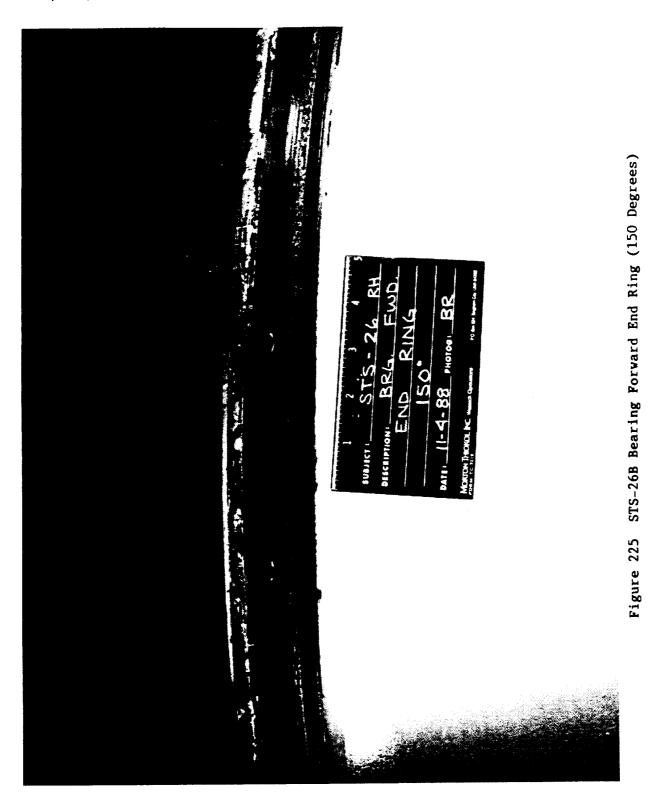





### ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations

Aerospace Group




DOC NO.	TWR-17272		VOL
SEC	<u> </u>	PAGE	296

REVISION ____

Aerospace Group

Space Operations



 
 DOC NO.
 TWR-17272
 VOL

 SEC
 PAGE
 297

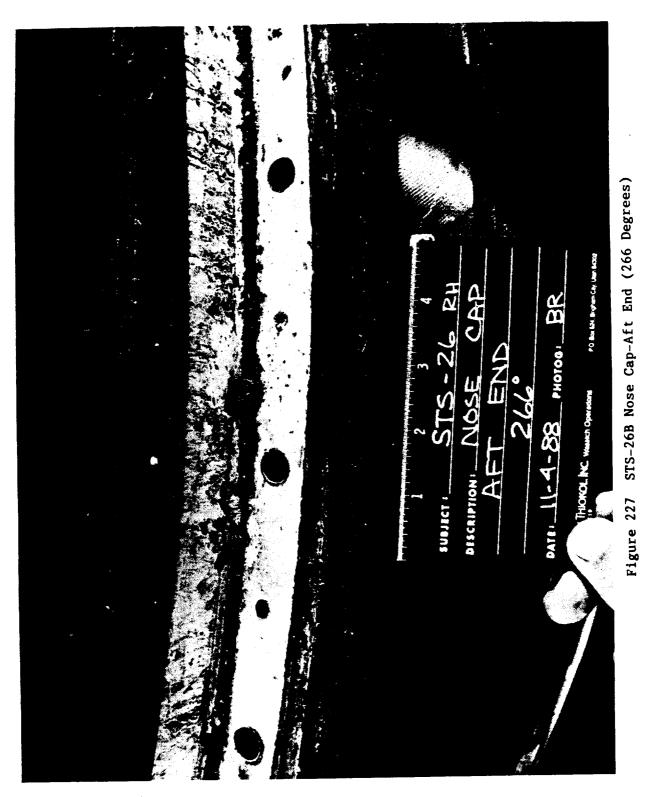
REVISION _____

STS-26B Bearing Forward End Ring (240 Degrees) 26 RH BR TUNT TUNT RING PHOTOG: BRG. 240. STS A DATE: 11-4-85 MORTON THIOKOL INC. DESCRIPTION: SUBJECT : ... Figure 226 a states Q

# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

REVISION .____

DOC NO.	TWR-17272			VOL	
SEC		PAGE	2	98	

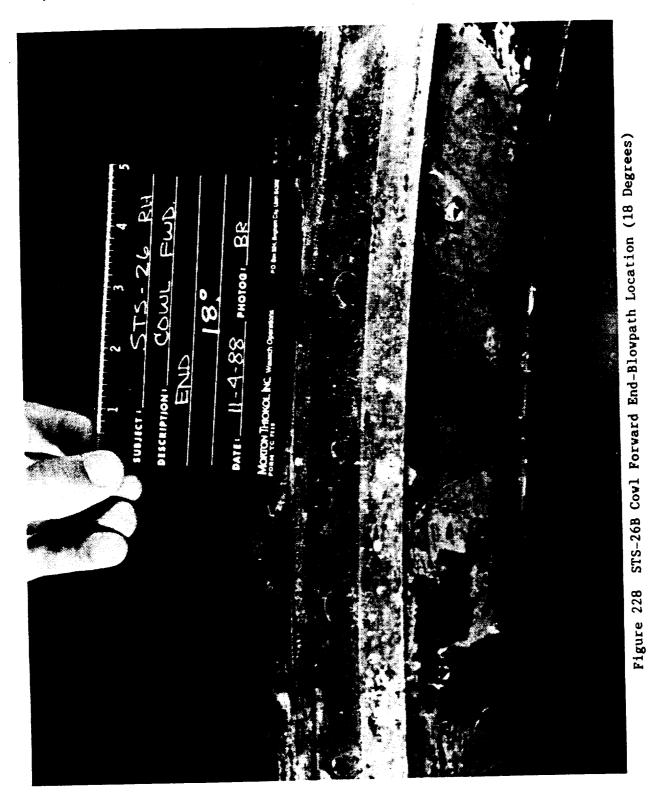

FORM TC 7994-310 (REV 2-88)

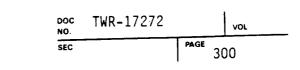
MORTON THIOKOL. INC. Aerospace Group Space Operations

Aerospace Group

Space Operations

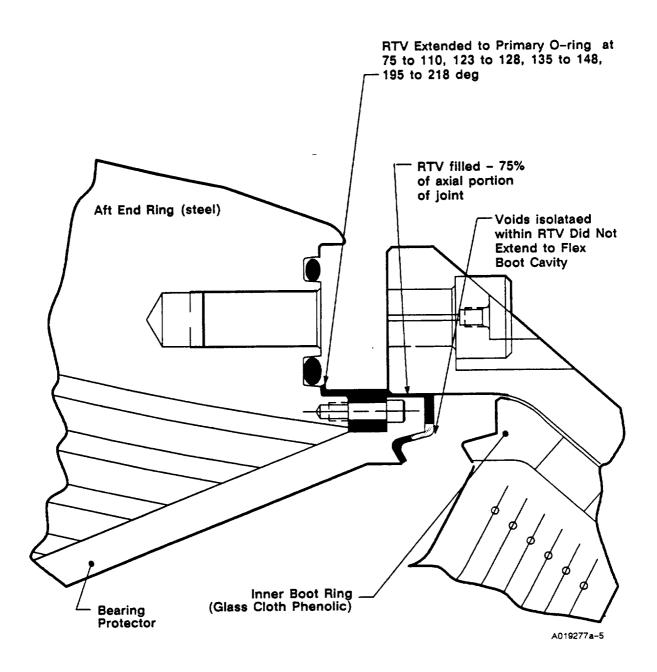
# ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH





DOC NO.	TWR-17272		VOL	
SEC		PAGE	299	

Aerospace Group

Space Operations


## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH





REVISION ____

Thickol CORPORATION SPACE OPERATIONS



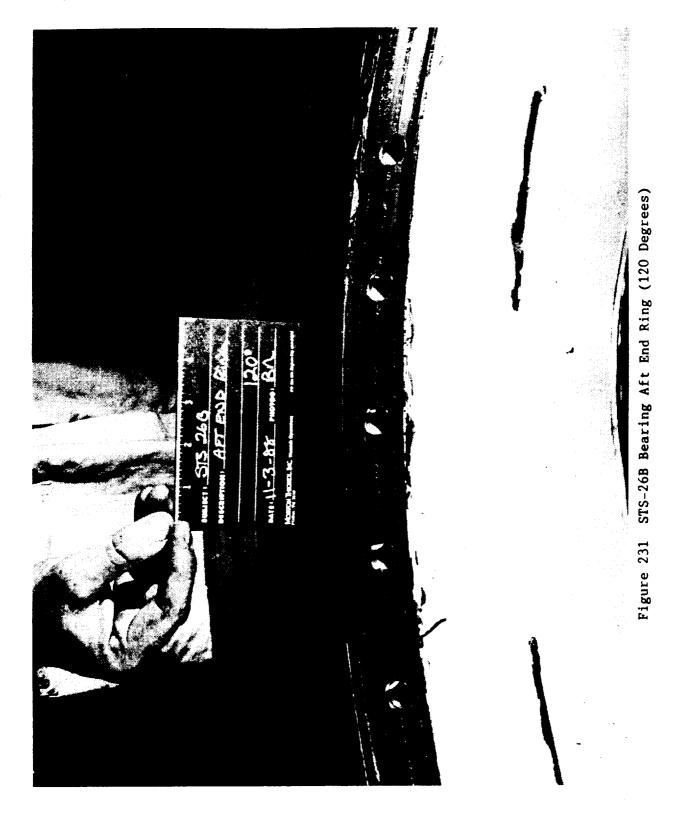

#### Figure 229 STS-26B Flex Bearing/Fixed Housing Joint

REVISION	DOC NO.	TWR-17272	VOL
	SEC	PAGE	301
			501

Aerospace Group

Space Operations

# SATCHAR PACE BLACK AND WHITE PHOTOGRAPH






Aerospace Group

Space Operations

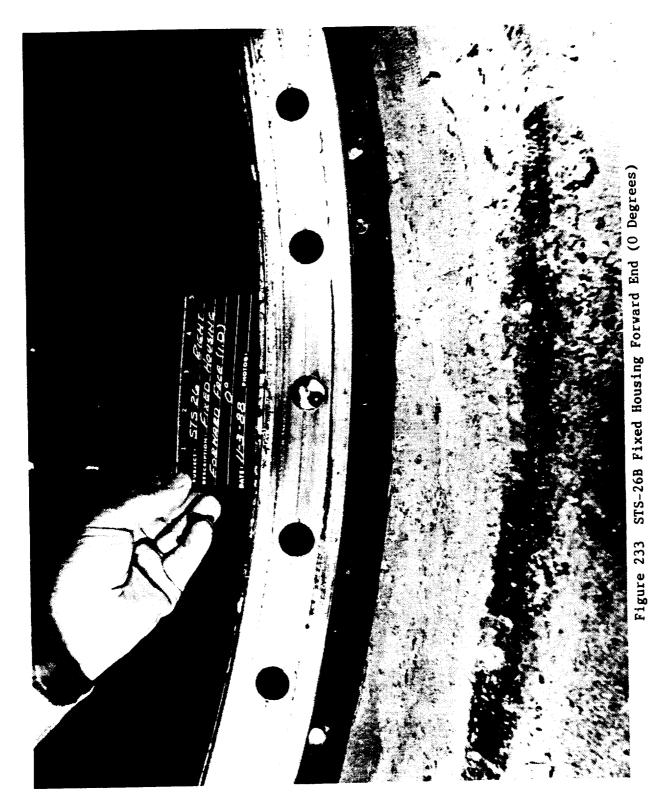
CAMERAL PALL' BLACK AND DEALE DESTRICTERAFTE

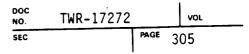


REVISION _____

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH





DOC NO TWR-17272 VOL SEC PAGE 304

Aerospace Group

#### ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Operations





REVISION ____

Aerospace Group

**Space Operations** 



ORIGINAL PAGE

STS-26B Fixed Housing Forward End (120 Degrees) Figure 234

DOC TWR-17272 VOL NO. SEC PAGE 306

REVISION _

Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH



рос TWR-17272 vol sec раде 307

REVISION ____

Aerospace Group

Space Operations

## ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

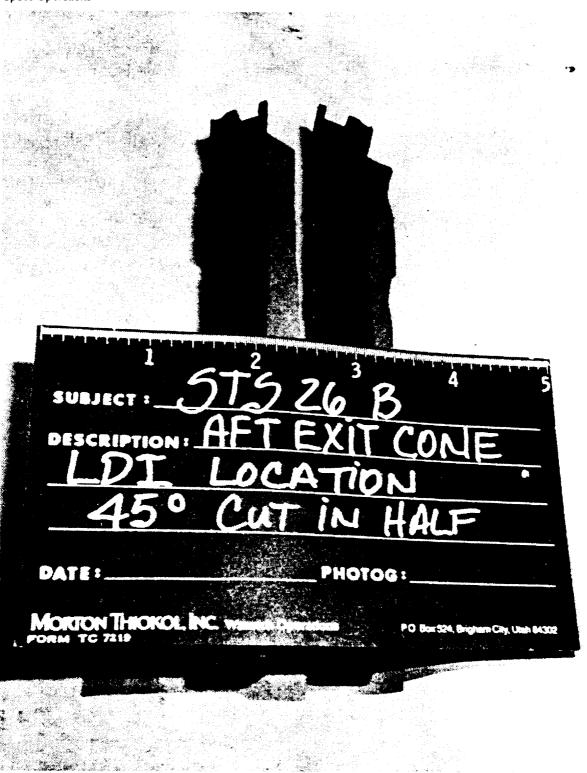
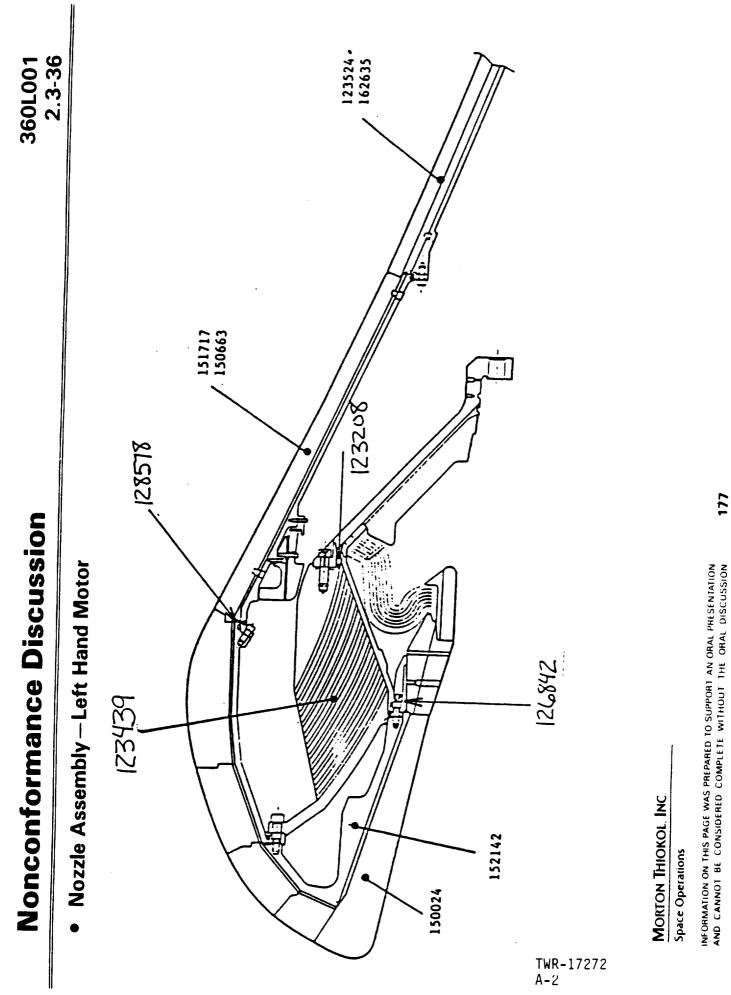



Figure 236 STS-26B Aft Exit Cone LDI Location (45 Degrees)

REVISION	
----------	--

50044		7004 040	-	
runn	10	7994-310	IREV	2-88)


DOC NO.	TWR-17272			VOL
SEC		PAGE	30	8

Space Operations

Appendix A

DOC NO.	TWR-17272			VOL	
SEC		PAGE	A.	-1	

REVISION



۰.

177

z
<u>ה</u>
Ĩ
SS
S
S
5
<u> </u>
S
DI
Δ
ш
E.
0
Z
<
5
7
1
Q
Ξ.
z
5
×
Ŷ
_ I _
z
0
ž
-

DR 123524-01 Aft Exit Cone Second Machine

LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW 404

Discrepancy

- None SB: Low density indications within the glass cloth phenolic. None greater than 2.5 in. width, 1.9 in. long. length and 0.020 in. radial depth of ply.
- IS: At 240 degrees, 54 in. aft of fwd end and 0.29 in. from 0.D. of glass checks 4.00 in. long. length and 0.040 in. radial depth.

Disposition

**USE-AS-IS** 

Justification

Thermal-structural analysis shows:

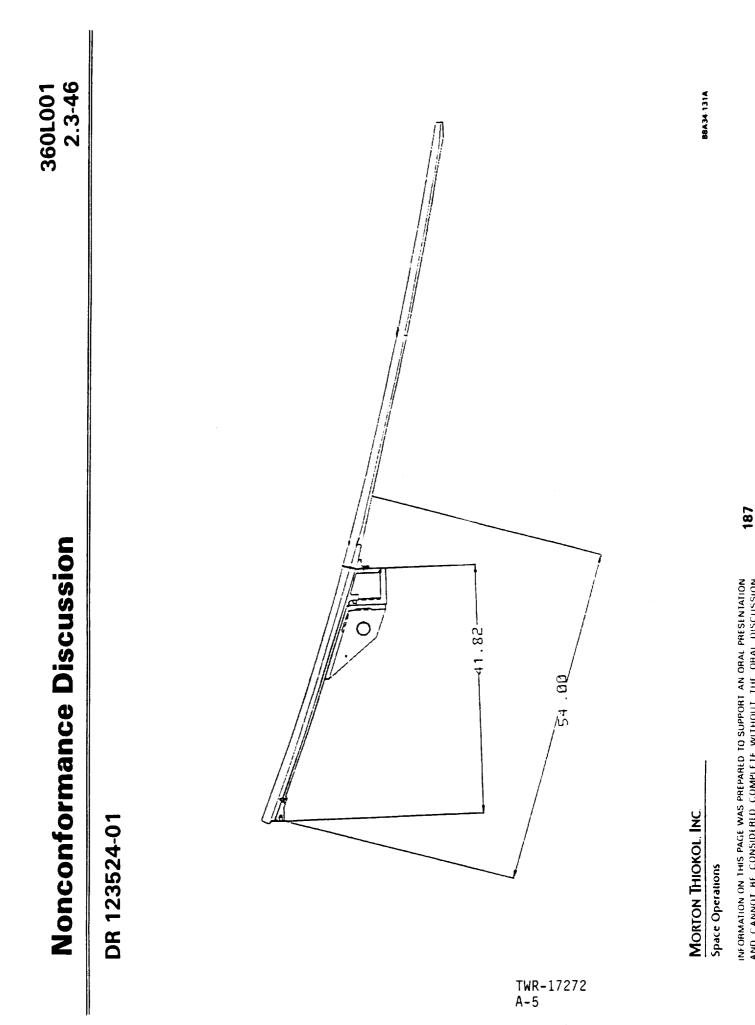
Area of defect is in across ply compression during motor operation.

delamination propagation and 10.9 for fiber breakage (including The minimum margin of safety for the area of defect is 15.4 for a 1.4 factor of safety). Across ply and interlaminar shear state for the defect area are 59 psi respectively including actuator stall. 81 and

The The nominal fiber stress in area of defect is 2730 psi. fiber strength of glass is 45600 psi.

77
õ
-
H
<u> </u>
S
D
C)
š
H
Δ
ы
61
ž
7
2
2
H
õ
브
ž
0
Q
1
Z
0
Ż

DR 123524-01 Aft Exit Cone Second Machine


LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW 404

Waiver Status

Submitted to MSFC: 22 Dec 1987

Closed: 10 Mar 1988



INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

NON-CONFORMANCE DISCUSSION 360L001 2.3-47	0L001 2.3-47
DR 162635-01 Exit Cone Sub-Assembly - LEFT HAND MOTOR Nozzle, Aft	OTOR
SENIOR MRB CRITERIA: 9 WAIVER #: RWW-405	
Discrepancy	
SB: Low density indications within the glass cloth phenolic. None greater than 2.5 in. width, 1.9 in. long. length and 0.020 in. radial depth of ply.	
IS: At 240 and 243 degrees, 4 in. aft of Compliance Ring and 0.224 in from part 0.D., checks 0.745 in. long. length by 0.224 radial depth.	in.
Note: Glass thickness at this location = .706 in.	
Disposition	
USE-AS-IS	
Justification	
Thermal-structural analysis shows:	
The area of defect is in across ply compression during motor operation (approximately 50 psi).	
Minimum margin of safety for the area of defect is 19.43 (fiber breakage). Includes a 1.4 factor of safety.	er
The maximum interlaminar shear stress is approximately 60 psi. Interlaminar shear capability of glass cloth phenolic is 4000 psi.	

188

•

LEFT HAND MOTOR Exit Cone Sub-Assembly -Nozzle, Aft 162635-01 DR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW-405

Justification (cont.)

The Maximum fiber stress in areas of defect are 2620 psi. fiber strength of glass cloth phenolic is 45600 psi.

Waiver Status

Date to MSFC: 30 Dec 1987

Closed: 10 Mar 1988

<b>Z</b>
~
0
Ĥ
SO.
CUSS
<b>=</b>
<u> </u>
C)
<u>v</u>
H
Δ
-
EL L
S
$\mathbf{\nabla}$
z
3
3
2
H.
0
Cr_
_
~
0
ŏ
Ý
5
-
0
÷
<b>_</b>

Exit Cone Sub-Assembly -	Nozzle, Aft
EX	No
162635-02	
DR	

LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW-405

Discrepancy

- None greater than 2.5 in. width, 1.9 in. long. length and 0.020 in. SB: Low density indications within the glass cloth phenolic. radial depth of ply.
- IS: At 222 degrees, 39.5 in. aft of Compliance Ring and 0.133 in. from part 0.D., checks 0.979 in. long. length by 0.031 radial depth.

Disposition

USE-AS-IS

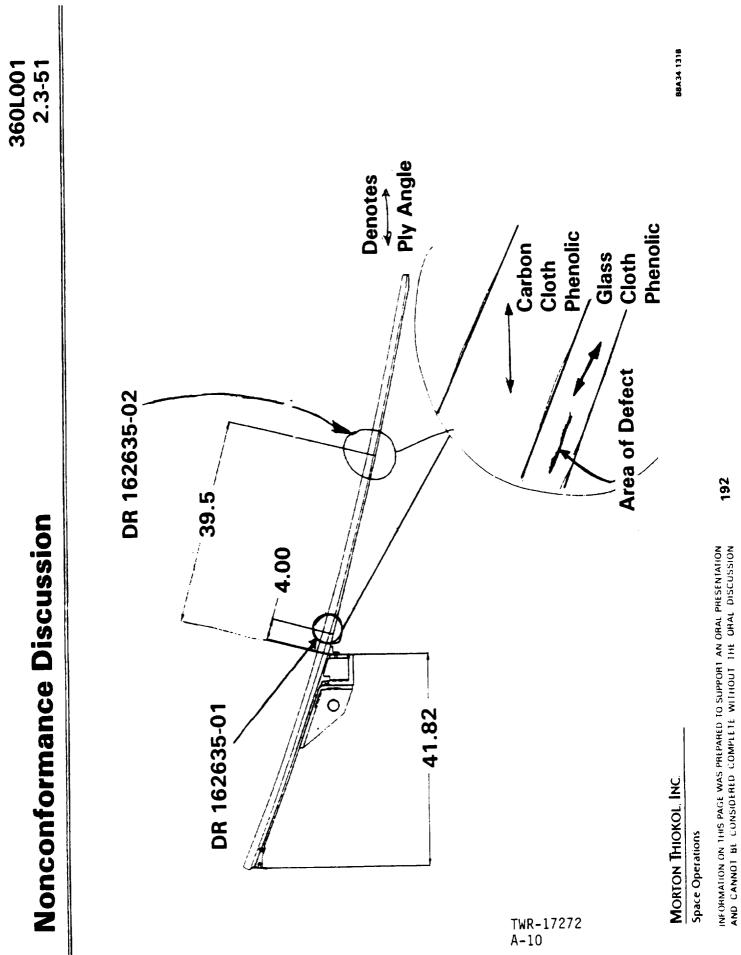
Justification

Thermal-structural analysis shows:

The area of defect is in across ply compression during motor operation (approximately 50 psi). Minimum margin of safety for the area of defect is 11.43 (fiber breakage). Includes a 1.4 factor of safety.

The maximum interlaminar shear stress is approximately 60 psi. Interlaminar shear capability of glass cloth phenolic is 4000 psi. Maximum fiber stress in areas of defect is 1610 psi. The fiber strength of glass cloth phenolic is 45600 psi.

DR 162635-02 Exit Cone Sub-Assembly -Nozzle, Aft


LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW-405

Waiver Status

Date to MSFC: 30 Dec 1987

Closed: 10 Mar 1988



-
4
$\mathbf{O}$
$\sim$
H
S
<u>S</u>
Ċ)
ñ
DI
Ξ
6-3
ш
<u>S</u>
7
-
Σ
2
$\mathcal{O}$
Ē
7
2
0
U
ĩ
_ <u>_</u>
- 2
ō
-

DR 151717-01 Fwd Exit Cone 2nd Machine

LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW 387R1

Discrepancy

- SB: Low density indications in glass cloth phenolic, none greater than 5.00 in. circum width, 0.025 in. radial depth and full longitudinal length of a ply.
- 8 Eight low density indications exist in glass cloth phenolic. :SI

Run 360 degree circumference

Full ply length

Disposition

**USE-AS-IS** 

Justification

Minimum margin of safety for area of defect is 7.72 at T = 20 S. Normal and shear stresses at the minimum M.S. are + 50 psi and 300 psi respectively (includes a 1.4 factor of safety).

Normal Minimum M.S. for interface failure is 75.0 at T = 120 S. Not and shear stresses at minimum M.S. location are - 80 psi and 60 psi respectively (includes a 1.4 factor of safety).

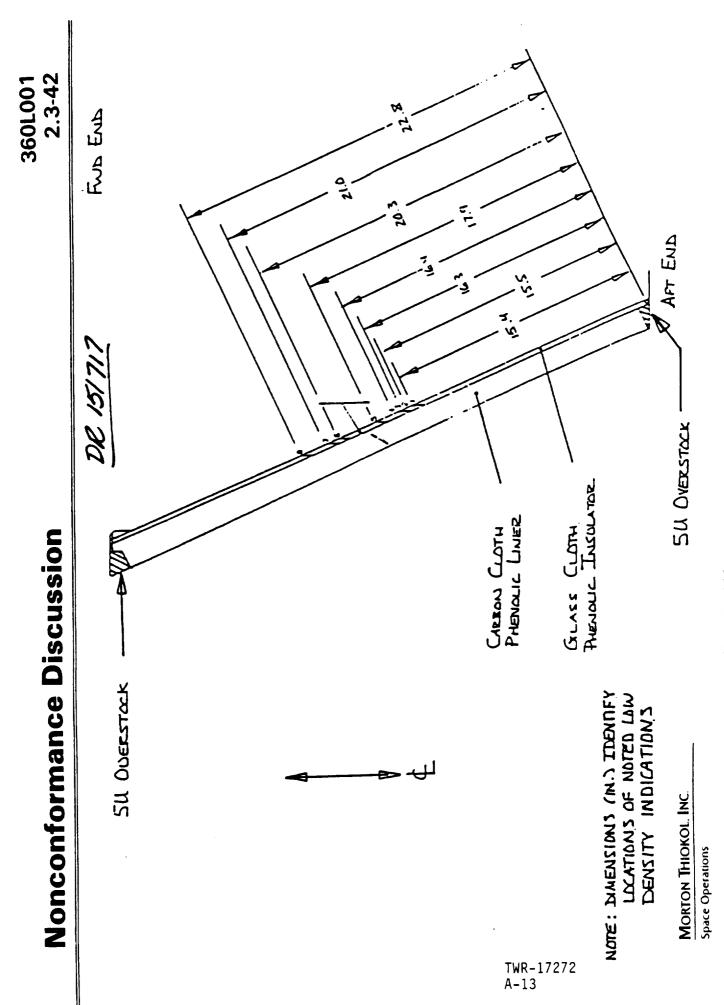
Carbon-to-glass interface is in normal compression thru motor operation.

DR 151717-01 Fwd Exit Cone 2nd Machine

LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW 387R1

Justification (cont.)


Due to low stress states, any delaminations present will not propagate during motor operation.

Visual and alcohol wipe inspection of OD surface shows no wetlines or porous areas

Waiver Status

Date to MSFC: 24 Feb 1988

Waiting approval, MSFC



INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION

PD 150663-01 Exit Cone Assembly, Fwd Section

LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: NONE

Discrepancy

- White stripe on phenolic liner to be in alignment with 90 degree reference on Housing within +/- 1 in. SB:
- Max condition IS: Alignment between Housing and Liner was incorrect. is 1.75 in. from 90 degree reference.

Disposition

Acceptable Departure

Justification

Liner was bonded at the same radial location as dry fit, no effect on bondgaps.

Common orientation is to correlate post-test performance with any pre-test anomalies. The 0.75 in. oversize misalignment will not interfere with this process.

during radiographic inspection. Location is used to identify X-ray The white stripe is identified randomly as 90 degrees on phenolic film.

DR 128578-01 Throat Support Housing

LEFT HAND MOTOR

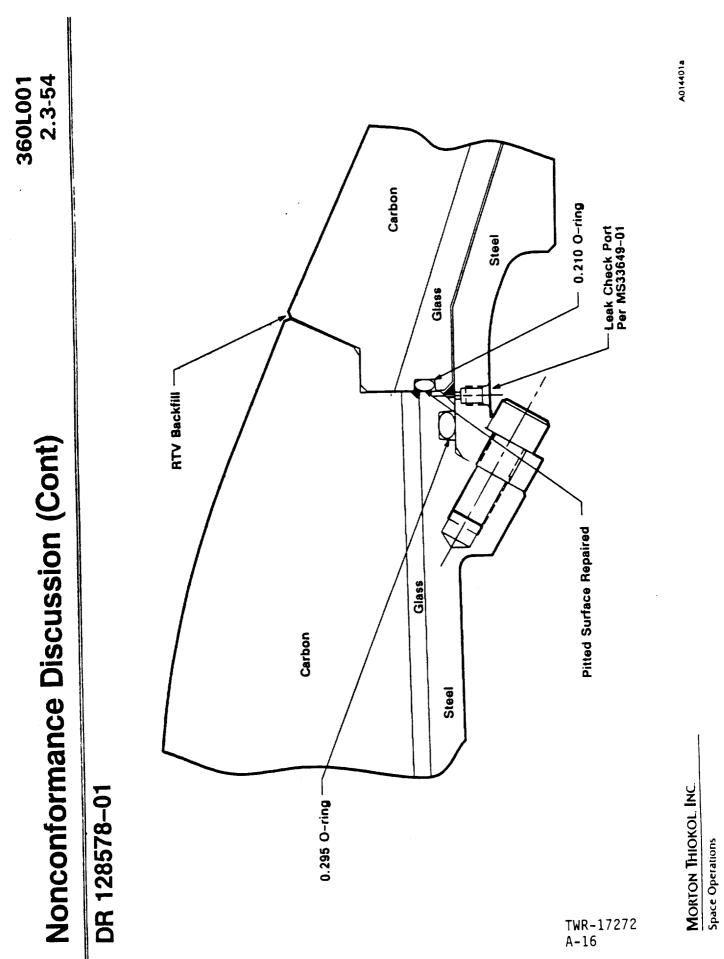
#### CRITICALITY 1/1R

Discrepancy

SB: No pitting allowed on aft sealing surface.

IS: Pits intermittently around entire circumference, max condition checks 0.002 in. depth.

Disposition


REPAIR

Justification

Raised metal and sharp edges have been removed.

Noted condition results in an 0-ring squeeze of 11.43% using 15.7 compressive set and maximum tolerances. Worst case squeeze based on Minimum design goal for % squeeze = 10 %. max - min part tolerances = 12.28%.

Joint passed leak test requirements.



INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

DISCUSSION
NON-CONFORMANCE

DR 152142-01 Housing Assy- Nose/Inlet, Nozzle

LEFT HAND MOTOR

SENIOR MRB CRITERIA: 8 WAIVER #: NONE

Discrepancy

EA-9228 Primer surface applied to Nose Inlet Housing bond surfaces. Variation in uniformity of phosphoric acid anodization (PAA) and (Dark streaks and spots)

Disposition

Repair - Grit blast housing to remove PAA and Primer.

Justification

PAA and Primer system has been deleted from the Engineering (Design change). Phenolics were bonded using 51-L surface prep techniques (grit blast - methyl chloroform wipe - blacklight inspection).

2.3-38 360L001

> Nose-Inlet Assembly, Nozzle 150024-01 ΡD

LEFT HAND MOTOR

WAIVER #: NONE σ CRITERIA: SENIOR MRB

Discrepancy

- SB: Completion of EA-946 Adhesive application to housing shall occur within 6 hrs. of end of grit blast.
- IS: Adhesive was not applied within the 6 hour from grit blast requirement for nose cap bond.

Disposition

Part reworked to blue print requirements.

Justification

Housing was regrit blasted and methyl chloroform wiped.

Nose Cap was bonded using standard bonding procedures.

PD 150024-02 Nose-Inlet Assembly, Nozzle

LEFT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: NONE

Discrepancy

SB: Application of adhesive to begin within 1 hr of "dry time in" of methyl chloroform wipe.

IS: 1 hr requirement was not met.

Disposition

Part reworked to blue print requirements.

Justification

Housing was methyl chloroform wiped and reinspected for cleanliness.

Nose cap was bonded using standard bonding procedures.

DR 126842-01 Cowl Housing

LEFT HAND MOTOR

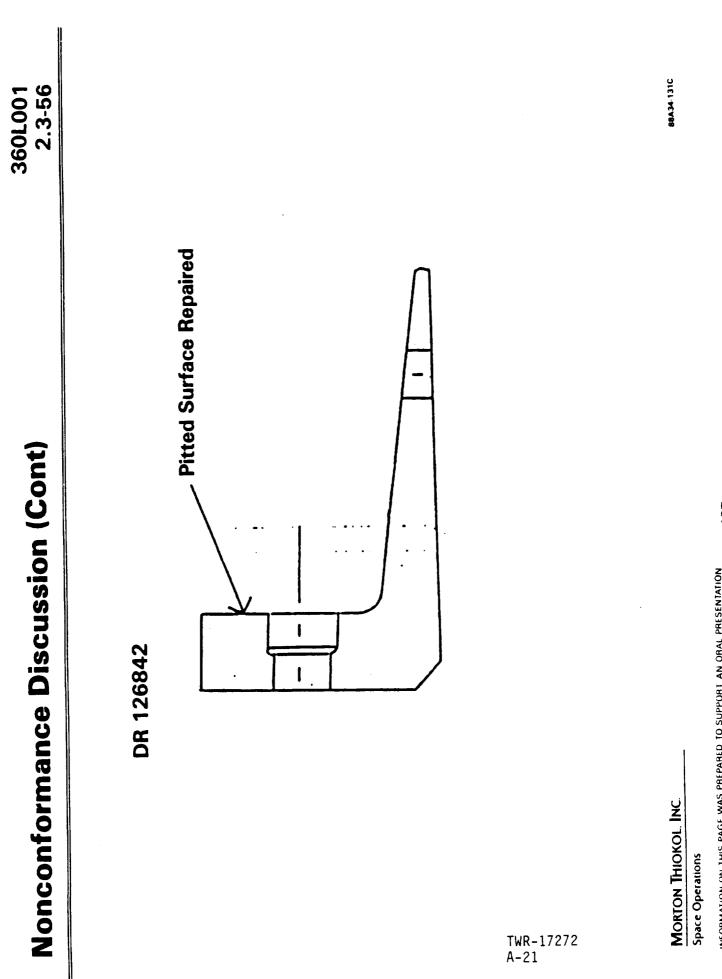
#### CRITICALITY 1/1R

Discrepancy

- SB: Pits less than 0.100 inch dia. and less the 0.020 inch depth are acceptable
- IS: Intermittent pits on entire part, worst case condition is .180 dia. x .039 depth on I.D. flange

Disposition

REPAIR


Justification

Pits have been honed out to remove sharp edges.

A worse case condition was flown on SRM-11, 8.50 in. x .350 in. x .085 in. depth.

analysis showed the M.S. was reduced from 5.26 to 4.91 using a 1.4 structural A worse case condition existed on S/N 27 Housing in an adjacent location with pits checking .075 in. depth. Thermal - structure factor of safety.

(Note: This housing has not been flown since refurbishment.)



INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

•

DR 123208-01 Aft End Ring

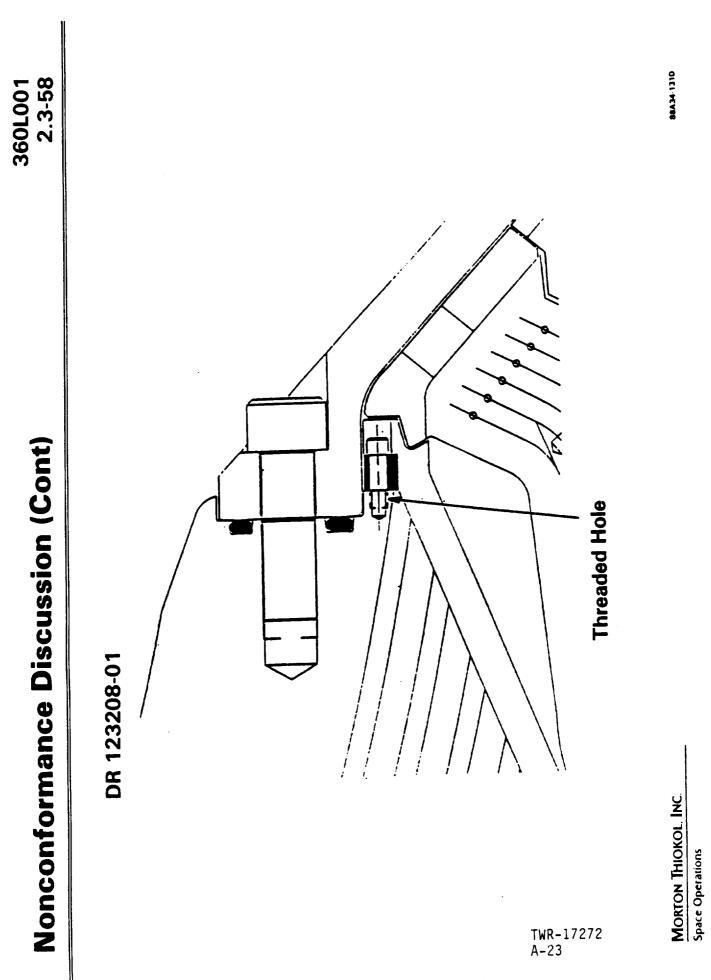
LEFT HAND MOTOR

### CRITICALITY 1/1R

Discrepancy

SB: The .190-32 UNF threaded hole shall not accept the NO-GO Threaded Plug Gage (TPG) more than 3 full turns

IS: 1 of 60 holes accepts the NO-GO TPG for 6.5 turns


Disposition

**USE-AS-IS** 

Justification

Proper torque was verified by installing and torquing an acceptable bolt, with the hole showing no damage.

Ring and carries no pressure or thermal loads from motor operation. This bolt attaches the Inner Bearing Protector Ring to the Aft End



INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

DR 123439-01 Flex Bearing

LEFT HAND MOTOR

CRITICALITY 1/1R

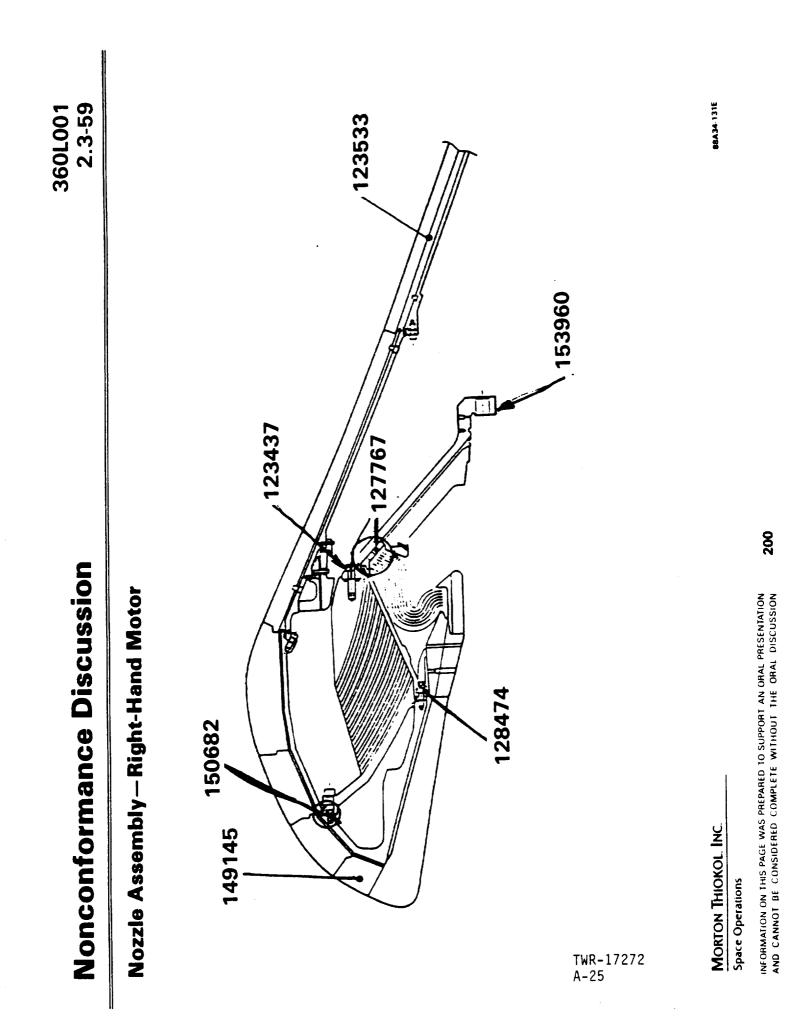
Discrepancy

SB: Max. allowable unbond area per pad = 9 sq. in.

IS: Pad 11 (next to fwd end ring) checks with a total of 23.158 sq. in. of unbond area.

Disposition

**USE-AS-IS** 


Justification

vectored more than 7 degrees under load and passed tensile leak test. Bearing was successfully acceptance tested during which it was

Bearing will be in compression during flight which will impede unbond propagation.

Limits have since been changed to 20 sq. in. per pad for refurbished bearings. The noted unbond area represents 0.36% of total bond area of pad 11.

1U51060-12, S/N 13 was successfully flown on SRM-15A with 72.1 sq. in. of unbond on a single pad and 103.7 sq. in. total assembly.



DR 153960-01 Nozzle - Aft Segment Assembly

RIGHT HAND MOTOR

SENIOR MRB CRITERIA: 8 WAIVER #: NONE

Discrepancy

Broken girth gage wire between Aft Dome Boss and Nozzle Assembly

Disposition

**USE-AS-IS** 

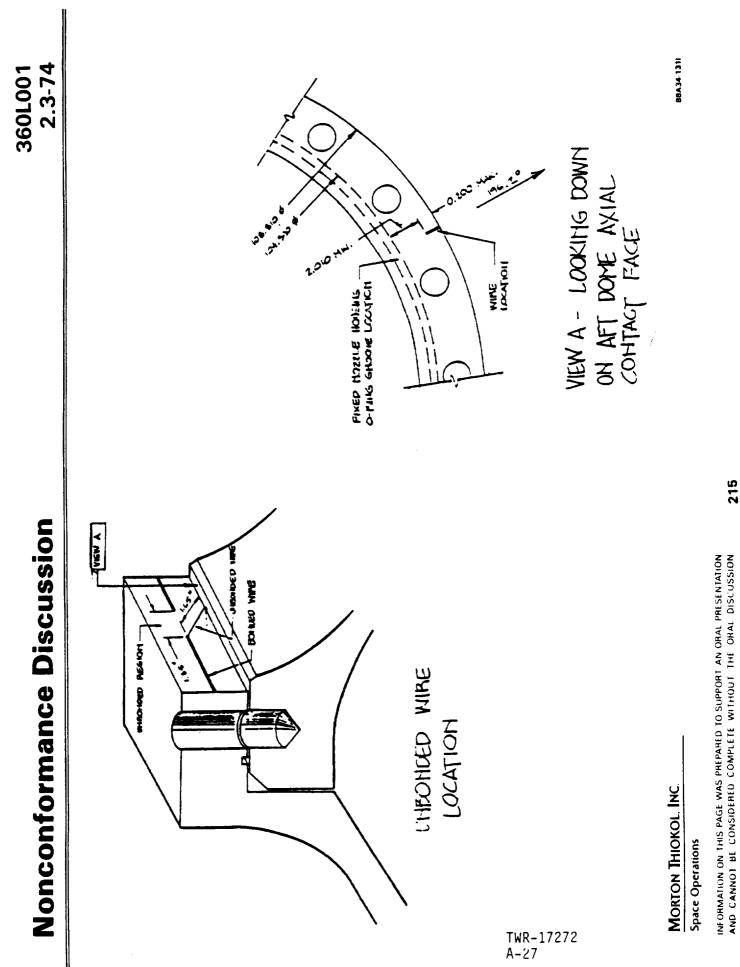
Justification

Joint passed leak check (both high & low pressure).

Wire is located at outboard side of joint.

Joint would require disassembly to remove wire.

Testing indicates wire is compressed to 0.002 inch thickness.


0.002 is less than housing and dome flatness requirement.

Will not affect O-ring groove gap opening.

Wire is located in low stress area (<110 ksi).

Structural integrity is not affected.

Note: Disposition submitted to MSFC 11 Mar 1988



DR 123533-01 Aft Exit Cone, Second Machine

RIGHT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW 406

Discrepancy

- SB: Low density indications in glass cloth phenolic none allowed within 0.75 inches from the forward end of the component.
- IS: Low density indication in glass cloth phenolic at 45 degrees; 0.393 in. from forward end 50 configuration.

Measures 2.35 in. circum. width (3 deg), 1.20 in. long. length, and 0.131 in. radial depth.

Indication measures from 0.126 to 0.173 in. from glass 0.D. surface.

machining (primary o-ring and polysulfide grooves) indicates that the low density indication is a resin rich area located Note: Visual examination of defect area after interface and final between the two grc oves.

Disposition

USE-AS-IS

DR 123533-01 Aft Exit Cone, Second Machine

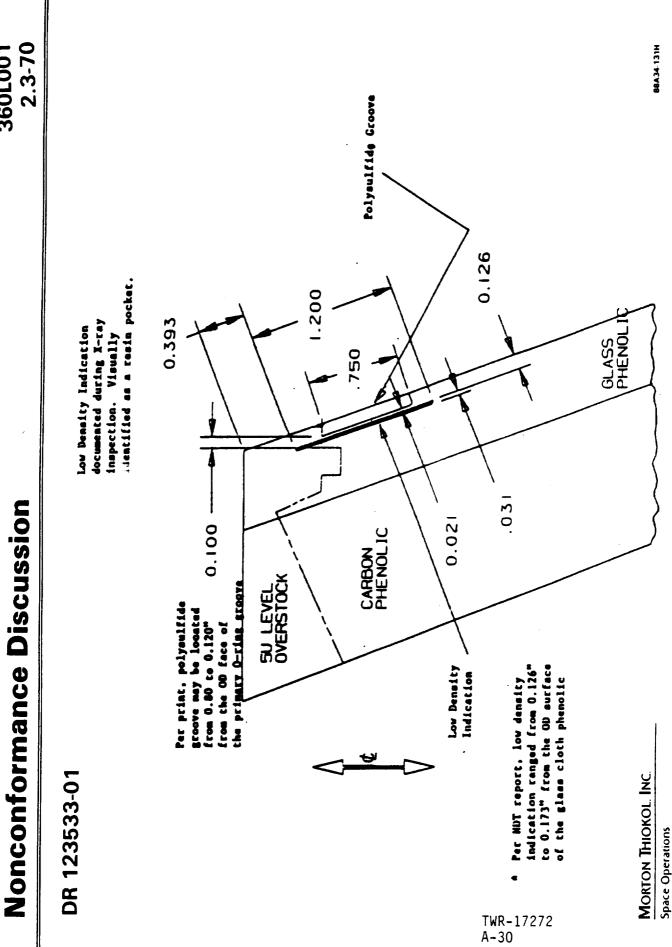
RIGHT HAND MOTOR

SENIOR MRB CRITERIA: 9 WAIVER #: RWW 406

Justification

Visual and alcohol wipe inspection of resin rich area indicates no ply separations, wetlines or delaminations within material.

Thermal - strucutral analysis shows:


Area of defect is in across ply compression during motor operation. Maximum delamination stress yields a margin of safety of 4.5 at T = 80 seconds (Includes a 1.4 factor of safety). Normal and interlaminar shear stress at minimum margin of safety is -410 and 690 psi respectively.

to be 100% resin, with no fibers present. (Strength reduced from 12300 psi to 4000 psi for margin of safety calculation.) Inplane shear strength reduced for resin rich condition assumed

Waiver Status

Submitted to MSFC: 8 Mar 1988

Waiting approval, MSFC



360L001

INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

DR 150682-01 Nose-Throat Assembly Nozzle

RIGHT HAND MOTOR

SENIOR MRB CRITERIA: 8 WAIVER #: NONE

Discrepancy

- SB: Pressurize the primary to secondary seal cavity to 740 +/- 15 psig (high pressure joint check)
- IS: Primary to secondary seal cavity was pressurized to 1020 1040 psig

Disposition

USE-AS-IS

Justification

This is a double face seal with metal to metal contact

Not a phenolic seal, thus no concern about adhesive bondline damage The joint passed leak check requirements at the elevated pressure

DR 150682-02 Nose-Throat Assembly Nozzle

RIGHT HAND MOTOR

SENIOR MRB CKITERIA: 8 WAIVER #: NONE

Discrepancy

SB: Pressurize the primary to secondary seal cavity to 30 +/- 3 psig (low pressure joint check)

IS: Primary to secondary seal cavity was pressurized to 40 psig

Disposition

USE-AS-IS

Justification

This is a double face seal with metal to metal contact

Not a phenolic seal, thus no concern about adhesive bondline damage The joint passed leak check requirements at the elevated pressure

1	Fwd First cure)	Nose Ring, hvdroclave	149145-01	ΔJ	D 149145-01 Nose Ring, Fwd First Wrap (Carbon - RIGHT HAND MOTOR	hydroclave cure)
---	--------------------	--------------------------	-----------	----	------------------------------------------------------------------	------------------

SENIOR MRB CRITERIA: 9 WAIVER #: NONE

Discrepancy

- While holding at 310 +/- 10 degree F, decrease pressure to 200 250 psig and hold at this level until the end of cooldown SB:
- Note: Overall average pressure decrease not to exceed rate of 50 psig/min
- IS: While decreasing pressure, pressure dropped to 168 psig for 4 minutes

Pressure remained within tolerance for the remainder of cure

Disposition

Acceptable departure

Justification

Reduction rate was Did not violate the rate change of 50 psig/min. 17.5 psig/min

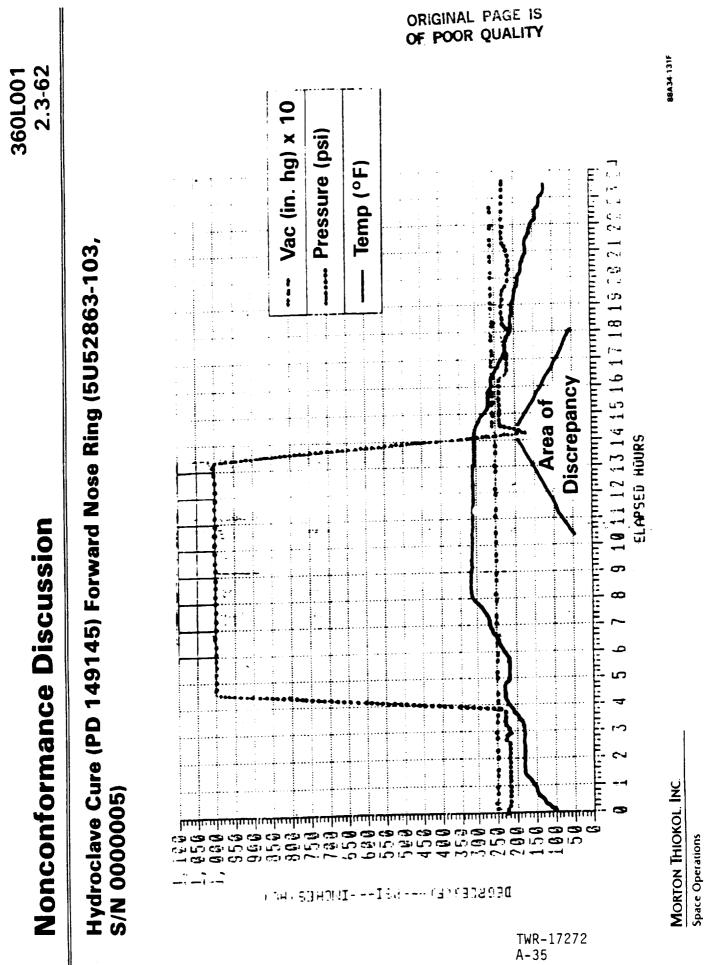
Excursion was minor (4 minutes) when compared to overall cooldown time (9 hrs)

cooldown thermal stresses. Positive pressure was maintained (168 Positive pressure is desired to preclude possible affects from psig minimum) Tag end properties fall within fired HPM Forward Nose Ring database

RIGHT HAND MOTOR Nose Ring, Fwd First Wrap (Carbon hydroclave cure) 149145-01 PD

SENIOR MRB CRITERIA: 9 WAIVER #: NONE

Justification (cont.)


•

Alcohol wipe inspection met acceptance criteria

100% radiographic (x-ray) inspection was acceptable with no low density indications or anomalies in carbon phenolic liner

Specification Limits

	Measured	Minimum	Maximum
Specific Gravity	1.48	1.40	1.55
Residual Volatiles (%)	1.77	E 1 1	3.00
Resin Content (%)	32.27	30.0	40.0
Compressive Strength (psi)	28515	18000	55000



203

INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

0
H
S
ŝ
5
_
C)
S
Ĥ
H
ω
щ
<b>C )</b>
×
z
است.
3
5
-
24
-
0
Ē
z
~~
$\circ$
e٦
Ý
- 1
÷.
2
0
N

DR 128474-01 Cowl Housing

RIGHT HAND MOTOR

### CRITICALITY 1/1R

Discrepancy

SB: No interconnecting pits or irregular surfaces deeper than 0.030 in

IS: I.D. pits, maximum depth is 0.049 in

O.D. pits, maximum depth is 0.041 in

Disposition

REPAIR - Pits have been blended out to remove sharp edges and raised metal.

Justification

A worse case condition existed on S/N Cowl Housing (has not flown since refurbishment). Thermal - structural analysis shows the maximum pit depth was 0.065 with a M.S. reduced from 3.35 to 3.15 (includes 1.4 factor of safety).

DR 123437-01 Aft End Ring

RIGHT HAND MOTOR

### CRITICALITY 1/1R

Discrepancy

- SB: The .750-16 UNF threaded hole shall not accept the Threaded Plug Gage (TPG) for more than 6 full turns
- IS: 1 of 72 holes accepts the NO-GO TPG for 8 turns

Disposition

REPAIR - Hole was drilled and tapped for a helical coil insert.

Justification

Tapped hole was inspected with .750-16 UNF Screw Thread Insert (STI) GO/NO-GO gage and was acceptable.

Helical coil inserts are a standard repair of threaded holes.

RIGHT HAND MOTOR Bearing Protector, Inner Ring (Glass autoclave cure) 127767-01 PD

SENIOR MRB CRITERIA: 9 WAIVER #: NONE

Discrepancy

- SB: Maintain 15 in. HG vacuum minimum for 2 hrs minimum into 310 +/- 10 degree F hold period
- 8 minutes prior to start of 310 degree F hold, vac dropped to 14.8 in. HG :si

Vac continued to decline to a minimum level of 13 in. HG, 48 minutes into 310 degree F hold

hold, and remained above 15 in. for the remainder of the cure Vac increased to 15 in. HG at 2 hrs 49 min into 310 degree F

Disposition

Acceptable departure

Justification

Minor vacuum drop below required level not detrimental to part integrity

Vacuum bag integrity was maintained

Alcohol wipe inspection met acceptance criteria

Tag end properties are within specification limits

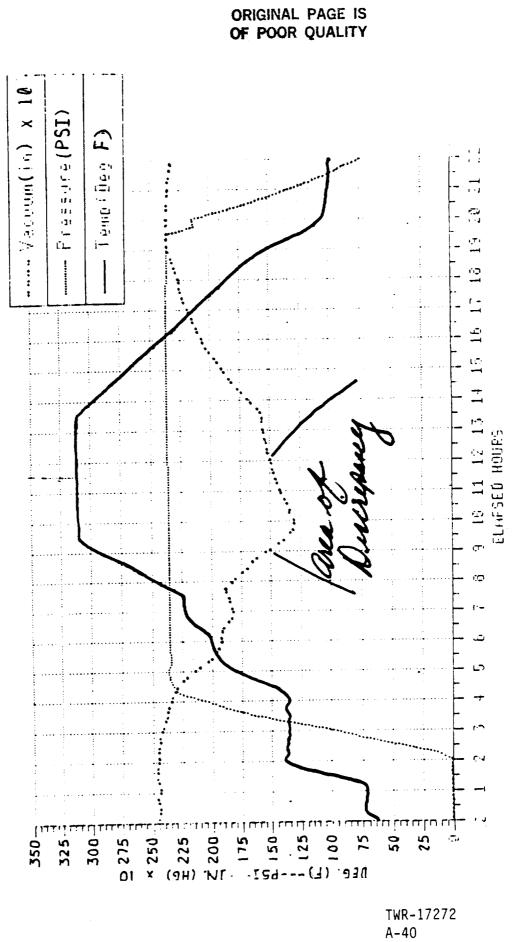
-
~
0
<u></u>
S.
ก
Ď.
0
SC
щ,
2
<b>_</b>
ы
NCE
0
2
5
$\overline{a}$
별.
0
Ē.
Ξ.
z
0
ň
Ŷ
Ż
~
C)
Z

RIGHT HAND MOTOR Bearing Protector, Inner Ring (Glass autoclave cure) 127767-01 PD

SENIOR MRB CRITERIA: 9 WAIVER #: NONE

Justification (cont.)

Worst case condition flew on SRM-20A. Throat Inlet Ring S/N 33, 48 minutes after 220 degree hold, lost vacuum down to 0 in. HG for remainder of the cure (ref DR 116193).


Specification Limits

	Measured	Minimum	Maximum
specific Gravity	1.97	1.70	2.15
pecifications (\$)	0.87		3.25
Resin Content (\$)	28.16	24.0	38.0
Compressive Strength (psi)	57303	16630	60000

360L001 2.3-65

# **Nonconformance Discussion**

## Autoclave Cure (PD 127767) Bearing Protector, Inner Ring (5U51130-105 S/N 0000118)



88A34 1658

INFORMATION ON THIS PAGE WAS PHEPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

MORTON THIOKOL. INC.

**Space Operations** 

MORTON THIOKOL. INC.

Space Operations

Appendix B

.

TWR	-17272	
DOC NO.	VOL	_
SEC	PAGE	
	B-1	

REVISION

POSTFIRE ANOMALY	RECORD	(PFAR)
------------------	--------	--------

----

. PFAR NUMBER 5601001A-11		ION LOCATION T-24/T-97	4. REFERENCE S	WUAWK NUMBER	5. REFERENCE PR NUMBER PV6-111293	` 
SRM MOTOR NUMBER	 н-7 	A-2	6. REFERENCE	LFA NUMBER	7. REFERENCE SPR NUMB N/A	ER
TITLE CORROSION BETWEEN PRIMAR	Y AND SECONDARY	AFT EXIT CONE O	RINGS			
CLASSIFICATION OBSERVATION	MINOR ANO	••••	MAJOR ANOMAL	Y	CRITICAL ANOMALY	-
0. PART NUMBER 1076039-01	11. SERIAL NU 0000001	MBER   12. AF1	PART DESCRIPTION EXIT CONE ASSY			
3. REPORTED BY (NAME / C K. B. NIELSEN / N	RGANIZATION / OB	SERVATION DATE)	/ 10	/07/88		
4. RESPONSIBLE COMPONENT NOZZLE / E. L. DIE	TEAM / PROGRAM	MANAGER				
	ENGINEER (NAME / NOZZLE/FLEX BEARI	ORGANIZATION )				
	NGINEER (NAME / C NOZZLE/FLEX BEAR)	ORGANIZATION) ING DESIGN ENGIN	EERING			
7. DESCRIPTION (ATTACH Aluminum oxide corrosio o-ring in the 360L001A poted that grease in bo	n was observed by (LH) aft exit con th joints appear	ne field joint. ed lighter than	No pitting was of required on STW7-	2999.		ectors
Minor corrosion has bee	n observed within	n past flight af	t exit cone field	joints, but ha	is not been documented.	
		TELOS ENCLINEED	IG EVALUATION LIMI	 TS)		
	SSIFICATION (POS sue. It is beli observed. This owed.	is potentially a	a reuse issue if t	TS) the primary o- he grease appl	ring at splashdown, resu ication specification	
18. JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll	SSIFICATION (POS sue. It is beli observed. This owed.	is potentially a	a reuse issue if t	TS) the primary o- he grease appl	ring at splashdown, resu ication specification	ulting
<ul> <li>18. JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll</li> <li>19. CAUSE Sea water entering page</li> </ul>	SSIFICATION (POS sue. It is beli observed. This owed. t the primary o-r	is potentially a	a reuse issue if t	he grease appl		ilting
18. JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll	SSIFICATION (POS sue. It is beli observed. This owed. t the primary orr	is potentially a	wn.	he grease appl	APPROVAL SIGNATURE ARY: DATE:	
<ul> <li>18. JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll</li> <li>19. CAUSE Sea water entering pass</li> <li>20. RECOMMENDED CORRECT</li> <li>1. Train and certify</li> </ul>	SSIFICATION (POS isue. It is beli observed. This owed. t the primary o-r IVE ACTION SPC operators on	is potentially a	ion per	21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT	APPROVAL SIGNATURE ARY: DATE: OHNSON 11/1	0/88 GNATURES
<ul> <li>18. JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll</li> <li>19. CAUSE Sea water entering pass</li> <li>20. RECOMMENDED CORRECT</li> <li>1. Train and certify STW7-2999.</li> </ul>	SSIFICATION (POS isue. It is beli observed. This owed. t the primary o-r IVE ACTION SPC operators on	is potentially a	ion per	21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT	APPROVAL SIGNATURE ARY: DATE: OHNSON 11/1	0/88 GNATURES 6/27/82
<ol> <li>JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll</li> <li>CAUSE Sea water entering pass</li> /ol>	SSIFICATION (POS sue. It is beli observed. This owed. t the primary o-r IVE ACTION SPC operators on minor corrosion minor corrosion	is potentially a ning at splashdo grease applicat up as a PR in th	ion per	21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: AU. PM: Suppose	APPROVAL SIGNATURE ARY: DATE: OHNSON 11/1 TION/ANOMALY APPROVAL SI WARAA DATE:	0/88 GNATURES 6/27/83
<ol> <li>JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll</li> <li>CAUSE Sea water entering pass</li> <li>CAUSE</li> <li>RECOMMENDED CORRECT</li> <li>Train and certify</li> <li>STW7-2999.</li> <li>Do not write this</li> </ol>	SSIFICATION (POS isue. It is beli observed. This owed. t the primary orr IVE ACTION SPC operators on minor corrosion minor DED CORRECTIVE A	grease applicat up as a PR in th CTION in this joint of	n the aft exit	21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: AU. PM: SECRET 24. REPORT 25. RPRB CL (REGUIRED RPRB SECRE	APPROVAL SIGNATURE ARY: DATE: OHNSON 11/1 TION/ANOMALY APPROVAL SI DATE: DATE: CESULTS TO RPRB? YES X DSURE SIGNATURE DALY IF BLOCK 24 CHECKED DATE: DATE:	0/88 GNATURES 6/27/83 6/25/83 NO
<ol> <li>JUSTIFICATION OF CLA This is not a flight is in the minor corrosion (STW7-2999) is not foll</li> <li>CAUSE Sea water entering past</li> /ol>	SSIFICATION (POS isue. It is beli observed. This owed. t the primary orr IVE ACTION SPC operators on minor corrosion minor DED CORRECTIVE A	grease applicat up as a PR in th CTION in this joint of	n the aft exit	21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: AU. PM: E. 24. REPORT 25. RPRB CL (REQUIRED RPRB SECRE	APPROVAL SIGNATURE ARY: DATE: OHNSON 11/1 TION/ANOMALY APPROVAL SI Ward DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE:	0/88 GNATURES 6/27/85 6/27/85 NO NO

#### ORIGINAL PAGE IS OF POOR QUALITY

PFAR NUMBER	3. INSPECTION LOCA	/1-97	26-0046		5. REFERENCE P PV6-111290	
60L001A-12 SRM MOTOR NUMBER 60L001A	 H-7 A-2		6. REFERENCE IF	A NUMBER	7. REFERENCE S	PR NUMBER
TITLE	AND SECONDARY AFT EXI	T CONE O-	RINGS			
CLASSIFICATION OBSERVATION	MINOR ANOMALY	X	MAJOR ANOMALY		CRITICAL ANO	
0. PART NUMBER 1052839-01	0000005	FOR	PART DESCRIPTION RWARD EXIT CONE ASS	Y 		
3. REPORTED BY (NAME /		TOM DATES	/ 10/		•••••	
NOZZLE / E. L. DIE	A REPORTED AND MANAGE	8				
5. RESPONSIBLE PROJECT	ENGINEER (NAME / ORGANI NOZZLE/FLEX BEARING PRO	TATION )				
	NGINEER (NAME / ORGANIZ NOZZLE/FLEX BEARING DES	ATION			•••••••••••••••••••••••••••••••••••••••	
7. DESCRIPTION (ATTACH Aluminum oxide corrosi o-ring, in the 360L001	PFOR, FIGURES, PHOTOGRA on was observed between A (LH) aft exit cone fie presse in both joints an	APHS, ETC. the prima eld joint. opeared li	) Try and secondary o No pitting was of ighter than required	d on STW7-299	У.	
	en observed within past					
Minor corrosion has be						
	ASSIFICATION (POSTFIRE ssue. It is believed t	ENGINEERI hat sea w	NG EVALUATION LIMIT ater entered past t a reuse issue if th	S) he primary o he grease app	ring at splashdo lication specific	wn, resulting ation
	ASSIFICATION (POSTFIRE ssue. It is believed t	ENGINEERI hat sea w	NG EVALUATION LIMIT	S) he primary o he grease app	ring at splashdo lication specific	wn, resulting ation
18. JUSTIFICATION OF CL This is not a flight i in the minor corrosion (STW7-2999) is not fol	ASSIFICATION (POSTFIRE ssue. It is believed t	ENGINEERII hat sea w entially	NG EVALUATION LIMIT ater entered past t a reuse issue if th	S) he primary o he grease app	ring at splashdo lication specific	wn, resulting ation
18. JUSTIFICATION OF CL This is not a flight i in the minor corrosion (STW7-2999) is not fol	ASSIFICATION (POSTFIRE sue. It is believed t observed. This is pot lowed.	ENGINEERII hat sea w entially	NG EVALUATION LIMIT ater entered past t a reuse issue if th	S) he primary o he grease app	ring at splashdo lication specific	wn, resulting ation
<ol> <li>18. JUSTIFICATION OF CL This is not a flight i in the minor corrosion (STW7-2999) is not fol</li> <li>19. CAUSE Sea water entering page</li> </ol>	ASSIFICATION (POSTFIRE sue. It is believed to observed. This is pot lowed. at the primary o-ring at	ENGINEERII hat sea w entially	NG EVALUATION LIMIT ater entered past t a reuse issue if th	5) he primary o le grease app 	ring at splashdo lication specific	wen, resulting ation
<ol> <li>JUSTIFICATION OF CL This is not a flight i in the minor corrosion (STW7-2999) is not fol</li> <li>CAUSE Sea water entering part</li> <li>CAUSE Sea water entering part</li> <li>RECOMMENDED CORRECT 1. Train and certify STW7-2999.</li> </ol>	ASSIFICATION (POSTFIRE sue. It is believed t observed. This is pot lowed. at the primary o-ring at TIVE ACTION SPC operators on grease	ENGINEERI hat sea w entially splashdo	NG EVALUATION LIMIT ater entered past t a reuse issue if th 	5) he primary o le grease app 	APPROVAL SIGNAT	wn, resulting
<ol> <li>JUSTIFICATION OF CL This is not a flight i in the minor corrosion (STW7-2999) is not fol</li> <li>CAUSE Sea water entering part</li> <li>CAUSE Sea water entering part</li> <li>RECOMMENDED CORRECT 1. Train and certify STW7-2999.</li> </ol>	ASSIFICATION (POSTFIRE ssue. It is believed to observed. This is pot lowed. at the primary o-ring at	ENGINEERI hat sea w entially splashdo	NG EVALUATION LIMIT ater entered past t a reuse issue if th 	S) he primary o e grease app 21. ANOMALY RPRB SECRE /S/T. L.	APPROVAL SIGNAT	URE DATE: 11/10/88 PROVAL SIGNATURE DATE: 6/27/6_
<ol> <li>JUSTIFICATION OF CL This is not a flight i in the minor corrosion (STW7-2999) is not fol</li> <li>CAUSE Sea water entering part</li> <li>CAUSE Sea water entering part</li> <li>RECOMMENDED CORRECT 1. Train and certify STW7-2999.</li> </ol>	ASSIFICATION (POSTFIRE sue. It is believed t observed. This is pot lowed. at the primary o-ring at TIVE ACTION SPC operators on grease	ENGINEERI hat sea w entially splashdo	NG EVALUATION LIMIT ater entered past t a reuse issue if th 	S) he primary o e grease app 21. ANOMALY RPRB SECRE /S/T. L.	APPROVAL SIGNAT TAPY: JOHNSON	URE DATE: 11/10/88
<ol> <li>JUSTIFICATION OF CL This is not a flight i in the minor corrosion (STW7-2999) is not fol</li> <li>CAUSE Sea water entering part</li> <li>CORRECTION CORRECTION</li> <li>CORRECTION CORRECTION</li> <li>CAUSE Sea water entering part</li> <li>CORRECTION CORRECTION</li> <li>CORRECTION CORRECTION</li> <li>CORRECTION CORRECTION</li> <li>CORRECTION CORRECTION</li> <li>CAUSE Sea water entering part</li> <li>CORRECTION CORRECTION</li> <li>CORRECTION CORRECTION CORRECTION</li> <li>CORRECTION CORRECTION CORRECTION CORRECTION</li> <li>CORRECTION CORRECTION CORREC</li></ol>	ASSIFICATION (POSTFIRE sue. It is beliaved to observed. This is pot lowed. at the primary orring at TIVE ACTION SPC operators on grease minor corrosion up as	ENGINEERII hat sea w entially c splashdo e applicat a PR in t	NG EVALUATION LIMIT ater entered past t a reuse issue if th 	S) he primary o e grease app 21. ANOMALY RPRB SECRE /S/T. L. 22. OBSERV/ PE: AU.S PM: 200	APPROVAL SIGNAT TAPY: JOHNSON	URE DATE: 11/10/88 PROVAL SIGNATURE DATE: 6/22/2 DATE: 6/22/2
<ol> <li>JUSTIFICATION OF CL This is not a flight i in the minor corrosior (STW7-2999) is not fol</li> <li>CAUSE Sea water entering particular Sea water entering particular 20. RECOMMENDED CORRECT 1. Train and certify STW7-2999.</li> <li>Do not write this</li> <li>23. RESULTS OF RECOMMINE 1. Effective</li> <li>24. Minor corrosion</li> </ol>	ASSIFICATION (POSTFIRE ssue. It is believed to observed. This is pot lowed. at the primary o-ring at TIVE ACTION SPC operators on grease minor corrosion up as ENDED CORRECTIVE ACTION	ENGINEERII hat sea w entially c splashdo e applicat a PR in t is joint c	NG EVALUATION LIMIT ater entered past t a reuse issue if th 	S) he primary o le grease app 21. ANOMALY RPRB SECRE /S/T. L. 22. OBSERVI PE: AU.S PM: 24. REPORT	APPROVAL SIGNAT TAPPROVAL SIGNAT TARY: JOHNSON ATION/ANOMALY APP AUAA RESULTS TO RPRB LOSURE SIGNATURE ONLY IF BLOCK 2	URE DATE: 11/10/88 PROVAL SIGNATURE DATE:6/27/6 DATE:6/22/6
<ol> <li>JUSTIFICATION OF CL This is not a flight i in the minor corrosior (STW7-2999) is not fol</li> <li>CAUSE Sea water entering particular Sea water entering particular 20. RECOMMENDED CORRECT 1. Train and certify STW7-2999.</li> <li>Do not write this</li> <li>23. RESULTS OF RECOMMINE 1. Effective</li> <li>24. Minor corrosion</li> </ol>	ASSIFICATION (POSTFIRE sue. It is believed to observed. This is pot lowed. at the primary orring at TIVE ACTION SPC operators on grease minor corrosion up as ENDED CORRECTIVE ACTION	ENGINEERII hat sea w entially c splashdo e applicat a PR in t is joint c	NG EVALUATION LIMIT ater entered past t a reuse issue if th 	S) he primary o le grease app 21. ANOMALY RPRB SECRE /S/T. L. 22. OBSERV/ PE: W.S PM: 22. 24. REPORT 25. RPRB CC (REQUIRED RPRB SECR	APPROVAL SIGNAT TAPPROVAL SIGNAT TARY: JOHNSON ATION/ANOMALY APP AUAA RESULTS TO RPRB LOSURE SIGNATURE ONLY IF BLOCK 2	URE DATE: 11/10/88 PROVAL SIGNATURE DATE: DATE: CATE: CATE: DATE: DATE: DATE: DATE:

REV. 3/28/89

• :

PFAR NUMBER 601001A-43	3. INSPECTION KSC	T-24/T-97	4. REFERENCE SC N/A		5. REFERENCE PR NUMBER
SRM MOTOR NUMBER	H-7 X	A-2	6. REFERENCE II N/A	FA NUMBER	7. REFERENCE SPR NUMBER N/A
TITLE TV/EA913 ADHESIVE MIXING	IN JOINT 2				
CLASSIFICATION OBSERVATION	MINOR ANON	•••	MAJOR ANOMALY		CRITICAL ANOMALY
0. PART NUMBER N/A	11. SERIAL NUM   N/A	18ER   12.   CO	PART DESCRIPTION L/NOSE INLET JOINT	(JOINT 2)	
3. REPORTED BY (NAME / O R. J. GEORGE / N	OZZLE/FLEX BEAKIN		ERING / 10/	30/88	
4. RESPONSIBLE COMPONENT NOZZLE / E. L. DIEH	L 				
5. RESPONSIBLE PROJECT E D. J. WAGNER / N	OZZLE/FLEX BEAKIN	NG PROJECT CNGT	NEERING		
6. RESPONSIBLE DESIGN EN S. A. MEYER / N	OZZLE/FLEX BEARIN	NG DESIGN ENGIN			
7. DESCRIPTION (ATTACH F See continuation sheet.	FOR, FIGURES, PH	OTOGRAPHS, ETC.	)		
barrier. The eroded EA	SSIFICATION (POST tween the RTV and 913 NA adhesive b	TFIRE ENGINEERII d EA913 adhesiv has not previou	G EVALUATION LINIT , reducing the cap sly been observed (	S) Bability of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant of the significant o	he RTV to act as a thermal departure from the historical
There is no adhesion be barrier. The eroded EA data base).	tween the RIV and 913 NA adhesive b	has not previou	IG EVALUATION LINIT e, reducing the cap aly been observed (	'S) mability of th significant of	he RTV to act as a thermal departure from the historical
There is no adhesion be barrier. The eroded EA data base).	tween the RIV and 913 NA adhesive b	has not previou	G EVALUATION LINIT , reducing the cap sly been observed (	S) ability of th significant o	he RTV to act as a thermal departure from the historical
There is no adhesion be barrier. The eroded EA data base).	tween the RIV and 913 NA adhesive b	has not previou	IG EVALUATION LINIT e, reducing the cap aly been observed (	significant (	
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECTI	tween the KIV and 913 NA adhesive h nt assembly proci	edures.	ozzie Joint #2	significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a significant of a signif	APPROVAL SIGNATURE TARY: DATE:
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECT At the time this was pu had just been examined	tween the KIV and 913 NA adhesive h nt assembly proce IVE ACTION resented to the R It was recomme	edures.	ozzle Joint #2 her evaluate her be	21. ANOMALY RPRB SECRE	APPROVAL SIGNATURE TARY: DATE: Mahren 6 June 89
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECT At the time this was pi	tween the KIV and 913 NA adhesive h nt assembly proce IVE ACTION resented to the R It was recomme	edures.	ozzle Joint #2 her evaluate her be	21. ANOMALY RPRB SECRE Dacy 2	APPROVAL SIGNATURE TARY: DATE: Contract 6 June 39 ATTON/ANOMALY APPROVAL SIGNATUR MILIO 42 DW DATE: 6-3-
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECTI At the time this was pi had just been examined the new assembly procee determined if the new i	tween the KIV and 913 NA adhesive h nt assembly proce IVE ACTION resented to the R It was recomme	edures.	ozzle Joint #2 her evaluate her be	21. ANOMALY RPRB SECRE Dacy 2	APPROVAL SIGNATURE TARY: DATE: Conser 6 June 89 ATTON/ANOMALY APPROVAL SIGNATUR MINIMUM 42 WW DATE: 6-3-
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECT At the time this was pi had just been examined the new assembly proceed determined if the new i flight nozzles. 23. RESULTS OF RECOMMEN	tween the KIV and 913 NA adhesive h nt assembly proce IVE ACTION resented to the R LI was recomme dure change on GM assembly process DED CORRECTIVE AM	edures.	ozzle Joint #2 her evaluate her be	21. ANOMALY RPRB SECRE Hacy A 22. OBSERVA PES PM: E	APPROVAL SIGNATURE TARY: DATE: Constant 6 June SP ATTON/ANOMALY APPROVAL SIGNATUR MILIO 42 DW DATE: 6-2
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECT At the time this was pi had just been examined the new assembly process determined if the new i flight nozzles.	tween the KIV and 913 NA adhesive h nt assembly proce IVE ACTION resented to the R LI was recomme dure change on GM assembly process DED CORRECTIVE AM	edures.	ozzle Joint #2 her evaluate her be	21. ANOMALY RPRB SECRE Hacy A 22. OBSERVA PES PM: E 24. REPORT 25. RPRB C (REQUIRED PDBE SECP	APPROVAL SIGNATURE TARY: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECT At the time this was pi had just been examined the new assembly proces determined if the new i flight nozzles. 23. RESULTS OF RECOMMEN	tween the KIV and 913 NA adhesive h nt assembly proce IVE ACTION resented to the R LI was recomme dure change on GM assembly process DED CORRECTIVE AM	edures.	ozzle Joint #2 her evaluate her be	21. ANOMALY RPRB SECRE HULLY 22. OBSERVA PES PM: EJ 24. REPORT 24. REPORT 25. RPRB C (REQUIRED RPRB SECR LIALY 26. OBSERV	APPROVAL SIGNATURE TARY: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE
There is no adhesion be barrier. The eroded EA data base). 19. CAUSE Current bonding and joi 20. RECOMMENDED CORRECT At the time this was pi had just been examined the new assembly proces determined if the new i flight nozzles. 23. RESULTS OF RECOMMEN	tween the KIV and 913 NA adhesive h nt assembly proce IVE ACTION resented to the R LI was recomme dure change on GM assembly process DED CORRECTIVE AM	edures.	ozzle Joint #2 her evaluate her be	21. ANOMALY RPRB SECRE Macy A 22. OBSERVA PES PM: E 24. REPORT 25. RPRB C (REQUIRED REAB SECR Macy 26. OBSERV PM: E	APPROVAL SIGNATURE TARY: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE

### CONTINUATION SHEET FOR PFAR NUMBER 360L001A-43

#### 17. DESCRIPTION (continuation)

The EA913 adhesive used to bond the cowl insulation to the cowl housing extruded into the radial RTV bondline between the cowl ring and nose cap 360-deg. circumferentially. The adhesive that extruded into the radial bondline was typically sandwiched between two layers of RTV. Soot was observed over a majority of the joint circumference and up to the primary orring. A distinct blowpath was observed at 216 deg. Heat affected GCP and SCP were observed at the blowbath location. The charred material was approximately 0.01 in. deep. The EA913 NA adhesive adjacent to the cowl housing was eroded approximately 0.1 in. axially x 0.7 in. wide circ. at the blowbath location. There was no blowby, erosion or heat effect to the primary orring. Electrical conductivity measurements on the cowl and nose inlet housings showed no heat damage.

The mixing of the adhesive in the cowl/nose cap bondline and the presence of soot was documented on ETM-1A, DM-8, DM-9, QM-6 and QM-7. It is believed that the mixing has occurred on all previous nozzles due to assembly procedures. Charred GCP and SCP insulators have been observed at blowpath locations in the QM-6, and PV-1 nozzle internal Joint #2. Eroded EA913 NA adhesive has not previously been observed.

### 23. RESULTS OF RECOMMENDED CORRECTIVE ACTION (continuation)

1. The new assembly procedure was tested on PV-1 and QM-8 Joint #2's. Post-test inspections of these joints prompted the decision to further evaluate and refine the new assembly procedure on TEM motors.

As of 360L002, there has never been primary o-ring blowby, erosion or heat effect, or metal heat damage with Joint #2. In the 360L002 RPR8, it was decided to close out all "minor anomalies" similar to this on all previous static tests and flights. All future occurrences, including 360L002, would be considered "observations".

TWR-17198 Vol. V has been updated to include accept/reject criteria for RTV in nozzle joints. The condition noted in this "minor anomaly" is now an "acceptable" condition per this criteria.

PFAR NUMBER	3. INSPECTION LOCATION KSC X T-24/T-97	4. REFERENCE S 26-0043	WAWK NUMBER	5. REFERENCE PR PV6-111312	
SRM MOTOR NUMBER	H-7 A-2	6. REFERENCE I N/A	FA NUMBER	7. REFERENCE SPR N/A	NUMBER
	AND SECONDARY AFT EXIT CONE O	-RINGS			
CLASSIFICATION OBSERVATION	MINOR ANOMALY X	MAJOR ANOMALY	·	CRITICAL ANOMA	LY
). PART NUMBER 1076039-03	11. SERIAL NUMBER 12. 0000001 AF	PART DESCRIPTION T EXIT CONE ASSY			
	RGANIZATION / OBSERVATION DATE:	/ 10			
4. RESPONSIBLE COMPONENT NOZZLE / E. L. DIEH	TEAM / PROGRAM MANAGER				
	NGINEER (NAME / ORGANIZATION ) OZZLE/FLEX BEARING PROJECT ENG				
S. A. MEYER / N	GINEER (NAME / ORGANIZATION) OZZLE/FLEX BEARING DESIGN ENGI				
Aluminum oxide corrosion	FOR, FIGURES, PHOTOGRAPHS, ETC was observed between the prim (RH) aft exit cone field joint ease in both joints appeared l	No oitting was o	erings, and o bserved. Struct ad on STW7-299	utboard of the seco uctural Application 9.	ondary IS
Inspectors noted that a	observed within past flight a	ft exit cone field	joints, but h	as not been documen	nted.
Minor corrosion has been	observed within past it give a				
Minor corrosion has been	ooserved within past reisite				
18 UNSTIFICATION OF CLAS	SSIFICATION (POSTFIRE ENGINEER) sue. It is believed that sea b observed. This is potentially	NG EVALUATION LIMI		ring at splashdown	. resulting
18. JUSTIFICATION OF CLAS This is not a flight is in the minor corrosion ( (STW7-2999) is not follo	SSIFICATION (POSTFIRE ENGINEER) sue. It is believed that sea b observed. This is potentially	NG EVALUATION LIMI Water entered past a reuse issue if t		ring at splashdown	. resulting
18. JUSTIFICATION OF CLAS This is not a flight is in the minor corrosion ( (STW7-2999) is not follo	SSIFICATION (POSTFIRE ENGINEER) sue. It is believed that sea to beserved. This is potentially owed.	NG EVALUATION LIMI Water entered past a reuse issue if t	rS) the primary o- he grease appl	ring at splashdown ication specificat	, resulting ion
<ul> <li>18. JUSTIFICATION OF CLAS This is not a flight is in the minor corrosion of (STW7-2999) is not follo</li> <li>19. CAUSE Sea water entering past</li> <li>20. RECOMMENDED CORRECTI</li> <li>1. Train and certify S STW7-2999.</li> </ul>	SSIFICATION (POSTFIRE ENGINEERI sue. It is believed that sea to observed. This is potentially owed. the primary o-ring at splashde VE ACTION PC operators on grease applica	NG EVALUATION LIMI ater entered past a reuse issue if the own.	rS) the primary o- he grease appl	ring at splashdown ication specificat APPROVAL SIGNATURE TARY:	, resulting ion
<ul> <li>18. JUSTIFICATION OF CLAS This is not a flight is in the minor corrosion of (STW7-2999) is not follo</li> <li>19. CAUSE Sea water entering past</li> <li>20. RECOMMENDED CORRECTI</li> <li>1. Train and certify S STW7-2999.</li> </ul>	SSIFICATION (POSTFIRE ENGINEER) sue. It is believed that see to observed. This is potentially owed. the primary o-ring at splashde	NG EVALUATION LIMI ater entered past a reuse issue if the own.	21. ANOMALY RPRB SECRE /S/T. L.	ring at splashdown ication specificat APPROVAL SIGNATURE TARY:	, resulting ion DATE: 11/10/88 VAL SIGNATURE
<ul> <li>18. JUSTIFICATION OF CLAS This is not a flight is in the minor corrosion of (STW7-2999) is not follo</li> <li>19. CAUSE Sea water entering past</li> <li>20. RECOMMENDED CORRECTI</li> <li>1. Train and certify S STW7-2999.</li> </ul>	SSIFICATION (POSTFIRE ENGINEERI sue. It is believed that sea to observed. This is potentially owed. the primary o-ring at splashde VE ACTION PC operators on grease applica	NG EVALUATION LIMI ater entered past a reuse issue if the own.	21. ANOMALY RPRB SECRE /S/T. L.	ring at splashdown ication specificat APPROVAL SIGNATURE TARY: JOHNSON	, resulting ion DATE: 11/10/88 VAL SIGNATURE DATE: 6/27/8
<ul> <li>18. JUSTIFICATION OF CLAS This is not a flight iss in the minor corrosion of (STW7-2999) is not follo</li> <li>19. CAUSE Sea water entering past</li> <li>20. RECOMMENDED CORRECTI 1. Train and certify S STW7-2999.</li> <li>2. Do not write this manual continues</li> <li>23. RESULTS OF RECOMMENDED</li> </ul>	SSIFICATION (POSTFIRE ENGINEER sue. It is believed that sea to beserved. This is potentially owed. the primary o-ring at splashed VE ACTION PC operators on grease applica ninor corrosion up as a PR in t	NG EVALUATION LIMI ater entered past a reuse issue if the own.	21. ANOMALY RPRB SECRE /S/T. L. 22. OBSERVA PE: J. PM: Secre	ring at splashdown ication specificat APPROVAL SIGNATURE TARY: JOHNSON	, resulting ion DATE: 11/10/88 VAL SIGNATURE DATE: 6/27/2 DATE: 6/27/2
<ul> <li>18. JUSTIFICATION OF CLAS This is not a flight iss in the minor corrosion of (STW7-2999) is not follo</li> <li>19. CAUSE Sea water entering past</li> <li>20. RECOMMENDED CORRECTI</li> <li>1. Train and certify S STW7-2999.</li> <li>2. Do not write this m</li> <li>23. RESULTS OF RECOMMENDING</li> <li>1. Effective</li> <li>2. Minor corrosion has</li> </ul>	SSIFICATION (POSTFIRE ENGINEER sue. It is believed that sea to beserved. This is potentially owed. the primary o-ring at splashed VE ACTION PC operators on grease applica ninor corrosion up as a PR in t	NG EVALUATION LIMI a reuse issue if the own. tion per he future.	21. ANOMALY rprease appl 21. ANOMALY RPRB SECRE /S/T. L. 22. OBSERVA PE: //. PM: // 24. REPORT	ring at splashdown ication specificat APPROVAL SIGNATURE TARY: JOHNSON TION/ANOMALY APPRO Warr RESULTS TO RPRB7 COSURE SIGNATURE ONLY IF BLOCK 24 C	, resulting ion DATE: 11/10/88 VAL SIGNATURE DATE: $\frac{24}{27/2}$ DATE: $\frac{24}{2}$
<ul> <li>18. JUSTIFICATION OF CLAS This is not a flight iss in the minor corrosion of (STW7-2999) is not follo</li> <li>19. CAUSE Sea water entering past</li> <li>20. RECOMMENDED CORRECTI</li> <li>1. Train and certify S STW7-2999.</li> <li>2. Do not write this m</li> <li>23. RESULTS OF RECOMMENDING</li> <li>1. Effective</li> <li>2. Minor corrosion has</li> </ul>	SSIFICATION (POSTFIRE ENGINEER) sue. It is believed that sea u observed. This is potentially owed. the primary o-ring at splashed VE ACTION PC operators on grease applica ninor corrosion up as a PR in t DED CORRECTIVE ACTION 	NG EVALUATION LIMI a reuse issue if the own. tion per he future.	21. ANOMALY RPRB SECRE /S/T. L. 22. OBSERVA PE: J., PM: SPM: 24. REPORT 25. RPRB CI (REQUIRED RPRB SECRI	ring at splashdown ication specificat APPROVAL SIGNATURE TARY: JOHNSON TION/ANOMALY APPRO Warr RESULTS TO RPRB7 COSURE SIGNATURE ONLY IF BLOCK 24 C	, resulting ion DATE: 11/10/88 VAL SIGNATURE DATE: $\frac{24}{27/2}$ DATE: $\frac{24}{2}$ YES X NO 

TWR-17272 B-6

-----

36010018-38	KSC X T-24/T-97	26-0048		PV6-111292
SRM MOTOR NUMBER 360L001B	H-7 A-2	6. REFER	ENCE IFA NUMBER	5. REFERENCE PR NUMBER PV6-111292 7. REFERENCE SPR NUMBER N/A
TITLE DING ON FWD EXIT CONE AFT F				
CLASSIFICATION OBSERVATION	MINOR ANOMALY X	MAJOR A		CRITICAL ANOMALY
	11. SERIAL NUMBER 0000006	12. PART DESCRIP FORWARD EXIT CO	TION INE ASSY	
3. REPORTED BY (NAME / ORGA	NIZATION / OBSERVATION U	AIEJ	4 10 107 199	
4. RESPONSIBLE COMPONENT TE NOZZLE / E. L. DIEHL	AM / PROGRAM MANAGER			
5. RESPONSIBLE PROJECT ENGI D. J. WAGNER / NOZZ	NEED (NAME / OPGANIZATIO	N )		
6. RESPONSIBLE DESIGN ENGIN S. A. MEYER / NOZZ	EER (NAME / ORGANIZATION	) NGINEERING		
7. DESCRIPTION (ATTACH PFOR During the 360L0018 (RH) at flange. The ding was appro	it exit come demate, 8 94	nge bin gingera n	ne edge of a hole or	n the forward exit cone aft
Damage has occurred during	KSC aft exit cone demate	es on previous fl		15A and 23A forward exit cone LH) forward exit cone aft
	not inches deep during	demate by a guid	e pin.	
aft flange sealing surfact flange was also scratched (	1,002 Inches deep our ma			
flange was also scratched (			1 11115)	reuse of hardware.
flange was also scratched (	FICATION (POSTFIRE ENGINI one demating procedure/t	EERING EVALUATION poling could caus	LIMITS) e damage preventing	reuse of hardware.
flange was also scratched ( 18. JUSTIFICATION OF CLASSI The current KSC aft exit co	FICATION (POSTFIRE ENGING one demating procedure/to but has no impact on mo	EERING EVALUATION poling could caus tor performance o	LIMITS) e damage preventing	reuse of hardware.
flange was also scratched ( 18. JUSTIFICATION OF CLASSI The current KSC aft exit of Requires corrective action	FICATION (POSTFIRE ENGING one demating procedure/to but has no impact on mo	EERING EVALUATION poling could caus tor performance o	LIMITS) e damage preventing	reuse of hardware.
flange was also scratched ( 18. JUSTIFICATION OF CLASSI) The current KSC aft exit co Requires corrective action 19. CAUSE Current KSC aft exit cone	FICATION (POSTFIRE ENGIN one demating procedure/to but has no impact on mo demating procedures and	EERING EVALUATION boling could caus tor performance o tooling.	LIMITS) e damage preventing r program schedule.	reuse of hardware.
flange was also scratched ( 18. JUSTIFICATION OF CLASSI) The current KSC aft exit con Requires corrective action 19. CAUSE Current KSC aft exit cone	FICATION (POSTFIRE ENGIN one demating procedure/to but has no impact on mo demating procedures and	EERING EVALUATION boling could caus tor performance o tooling.	LIMITS) e damage preventing r program schedule. i 21. ANOMALY	reuse of hardware. APPROVAL SIGNATURE ARY: DATE:
flange was also scratched ( 18. JUSTIFICATION OF CLASSI) The current KSC aft exit con Requires corrective action 19. CAUSE Current KSC aft exit cone 20. RECOMMENDED CORRECTIVE	FICATION (POSTFIRE ENGIN one demating procedure/to but has no impact on mo demating procedures and	EERING EVALUATION boling could caus tor performance o tooling.	LIMITS) e damage preventing r program schedule. 21. ANOMALY RPRB SECRET /S/T. L. J	reuse of hardware. APPROVAL SIGNATURE ARY: DATE:
flange was also scratched ( 18. JUSTIFICATION OF CLASSI) The current KSC aft exit con Requires corrective action 19. CAUSE Current KSC aft exit cone 20. RECOMMENDED CORRECTIVE	FICATION (POSTFIRE ENGIN one demating procedure/to but has no impact on mo demating procedures and	EERING EVALUATION boling could caus tor performance o tooling.	LIMITS) e damage preventing r program schedule. 21. ANOMALY RPRB SECRET /S/T. L. J	APPROVAL SIGNATURE ARY: DATE: OHNSON 11/10/88 TION/ANOMALY APPROVAL SIGNATURES MAAJU DATE: 6/27/6
flange was also scratched ( 18. JUSTIFICATION OF CLASSI) The current KSC aft exit con Requires corrective action 19. CAUSE Current KSC aft exit cone 20. RECOMMENDED CORRECTIVE	FICATION (POSTFIRE ENGIN one demating procedure/to but has no impact on mo demating procedures and ACTION	EERING EVALUATION boling could caus tor performance o tooling.	LIMITS) e damage preventing r program schedule. 21. ANOMALY RPRB SECRET /S/T. L. J 22. OBSERVAT PE: AU, PM:	reuse of hardware. APPROVAL SIGNATURE ARY: DATE: OHNSON 11/10/88 TION/ANOMALY APPROVAL SIGNATURES
flange was also scratched ( 18. JUSTIFICATION OF CLASSI) The current KSC aft exit con Requires corrective action 19. CAUSE Current KSC aft exit cone 20. RECOMMENDED CORRECTIVE See continuation sheet. 23. RESULTS OF RECOMMENDED	FICATION (POSTFIRE ENGIN one demating procedure/to but has no impact on mo demating procedures and ACTION	EERING EVALUATION boling could caus tor performance o tooling.	LIMITS) e damage preventing r program schedule. 21. ANOMALY RPRB SECRET /S/T. L. J 22. OBSERVAT PE: AU PM: 24. REPORT F 24. REPORT F	reuse of hardware.         APPROVAL SIGNATURE         ARY:       DATE:         OHNSON       11/10/88         'ION/ANOMALY APPROVAL SIGNATURES         WART       DATE:         DATE:       6/27/2         DATE:       6/15/5         RESULTS TO RPRB?       YES X         DSURE SIGNATURE       ONLY IF BLOCK 24 CHECKED "YES")
flange was also scratched ( 18. JUSTIFICATION OF CLASSI) The current KSC aft exit con Requires corrective action 19. CAUSE Current KSC aft exit cone 20. RECOMMENDED CORRECTIVE See continuation sheet. 23. RESULTS OF RECOMMENDED	FICATION (POSTFIRE ENGIN one demating procedure/to but has no impact on mo demating procedures and ACTION	EERING EVALUATION boling could caus tor performance o tooling.	LIMITS) e damage preventing r program schedule. 21. ANOMALY RPRB SECRET /S/T. L. J 22. OBSERVAT PE: AU, PM:	reuse of hardware.         APPROVAL SIGNATURE         ARY:       DATE:         OHNSON       11/10/88         'ION/ANOMALY APPROVAL SIGNATURES         WART       DATE:         DATE:       6/27/2         DATE:       6/15/5         RESULTS TO RPRB?       YES X         DSURE SIGNATURE       ONLY IF BLOCK 24 CHECKED "YES")

REV. 3/28/89

### CONTINUATION SHEET FOR PEAR NUMBER 360L0018-38

#### 20. RECOMMENDED CORRECTIVE ACTION (continuation)

1. Eliminate guide pins. These just add more possibilities of scratching the forward exit cone aft flange after the joint separates and recoils. Eliminating the guide pins leaves only the joint alignment pin to worry about.

2. Near term: Use anti-recoil tools to eliminate the recoil of the aft exit cone after joint separation. This would not allow the alignment pin to contact the forward exit cone aft flange.

ASAP: Design and incorporate a rail system disassembly tool similar to that used at MTI Wasatch T-24 and T-97. This tool supports the aft exit cone assembly so that there is no load on the joint alignment pin during separation. The tool also does not recoil, eliminating any possibility of damage to the forward exit cone aft flange by the alignment pin.

23. RESULTS OF RECOMMENDED CORRECTIVE ACTION (continuation)

- 1. Effective: RSRM Flight 2 (360L002)
- 2. Anti-recoil tools effective: ____

Rail system tool effective:

KSC has incorporated a load cell into the existing aft exit cone stub removal tool. This load cell allows operators to monitor the load that is being supported by the fork lift. If used correctly, the load on the joint alignment pin can be minimized during separation. This would eliminate relative vertical displacements between the aft exit cone and forward exit cone after joint separation. The load cell was used on the aft exit cone demates of RSRM flights 2 and 3 (360L002 and 360L003). Only minor raised metal was observed on the forward exit cone 91.8 degree alignment pin holes on the four joints where the load cell was used. This does not violate refurbishment requirements.

-

360L001B-42	KSC X	T-24/T-97		26-0044		PV6+111324	
PFAR NUMBER 560L001B-42 SRM MOTOR NUMBER 360L001B	н-7 	A-2		6. REFERENCE 1 N/A	FA NUMBER	7. REFERENCE SPR NU N/A	MBER
TITLE CORROSION BETWEEN PRIM	IARY AND SECONDARY	FORWARD EXIT	CONE	O-RINGS			
CLASSIFICATION OBSERVATION						CRITICAL ANOMALY	
···						• • • • • • • • • • • • • • • • • • • •	
0. PART NUMBER 1U52839-01	11. SERIAL N 0000006		12. PAR FORWAR	RT DESCRIPTION RD EXIT CONE ASS	Y	•••••	• • • • • • • • •
3. REPORTED BY (NAME / K. B. NIELSEN	/ ORGANIZATION / O / MTI GA	DESERVATION DA	TE)	/ 10/	07/88		
4. RESPONSIBLE COMPONE NOZZLE / E. L. DI	ENT TEAM / PROGRAM	MANAGER				•••••	
15. RESPONSIBLE PROJECT	T ENGINEER (NAME / / NOZZLE/FLEX BEAR	CORCANIZATION	4 3				
6. RESPONSIBLE DESIGN S. A. MEYER	ANALYTER (NAME /	ORCANIZATION	<b>۱</b>				
17. DESCRIPTION (ATTAC Aluminum oxide corros o-ring, in the 360L00 inspectors noted that	H PFOR, FIGURES, F	PHOTOGRAPHS, E	ETC.) rimary	and secondary o	rings, and ou	utboard of the seconda	
inspectors noted that Minor corrosion has b	grease in Doin ju	othes appeared	a cigire				۱.
Minor corrosion has b	een observed with	in pase reign					
18 UISTIFICATION OF C	CLASSIFICATION (PO	STFIRE ENGINE	ERING B	EVALUATION LINIT	S)	ning at splashdoup. D	sultin
18 UISTIFICATION OF C	CLASSIFICATION (PO issue. It is bel	STFIRE ENGINE	ERING B	EVALUATION LINIT	S)	ning at splashdoup. D	sultin
18. JUSTIFICATION OF C This is not a flight	issue. It is del erved. This is po	STFIRE ENGINE ieved that se stentially a r	ERING E a water euse is	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, ro n specification (STW7	sultin
18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.	issue. It is del erved. This is po	STFIRE ENGINE ieved that se stentially a r	ERING E a water euse is	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, ro n specification (STW7	sultin
18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.	issue. It is bet prved. This is po	STFIRE ENGINE ieved that se otentially a r	ERING E na water reuse is	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, ro n specification (STW7	sultin
18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.	issue. It is bet prved. This is po	STFIRE ENGINE ieved that se otentially a r	ERING E na water reuse is	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, ro n specification (STW7	sultin
18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.	issue. It is bet prved. This is po	STFIRE ENGINE ieved that se otentially a r	ERING E na water reuse is	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, ro n specification (STW7	sultin
18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.	issue. It is bet arved. This is po 	STFIRE ENGINE ieved that se ptentially a r fring at splas	ERING E a water reuse is	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, ro n specification (STW7	sultin
<ul> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering pa</li> </ul>	issue. It is bet arved. This is po ast the primary o-	STFIRE ENGINE ieved that se ptentially a r fring at splas	ERING E a water reuse is	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, ro n specification (STW7	sulting
<ul> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering particular sea water engering</li></ul>	ast the primary or	STFIRE ENGINE ieved that se prentially a r	ERING E a water euse is shdown.	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se applicatio	ring at splashdown, re n specification (STW7 APPROVAL SIGNATURE ARY: DAT	E:
<ol> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering pa 20. RECOMMENDED CORREC 1. Train and certify</li> </ol>	ast the primary or	STFIRE ENGINE ieved that se prentially a r	ERING E a water euse is shdown.	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se application	ring at splashdown, ro n specification (STW7 APPROVAL SIGNATURE ARY: DAT	esulting 2999)
<ol> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering pa</li> <li>20. RECOMMENDED CORRECT 1. Train and certify STW7-2999.</li> </ol>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or	STFIRE ENGINE ieved that se otentially a r ring at splas	ERING E a water euse is shdown.	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. J	ring at splashdown, ro n specification (STW7 APPROVAL SIGNATURE ARY: DAT JOHNSON 11	E: /10/88
<ul> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE See water engering pa</li> <li>20. RECOMMENDED CORRE(</li> <li>1. Train and certification</li> </ul>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or	STFIRE ENGINE ieved that se otentially a r ring at splas	ERING E a water euse is shdown.	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. J	ring at splashdown, re n specification (STW7 APPROVAL SIGNATURE ARY: DAT IOHNSON 11	E: /10/88
<ul> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE See water engering pa</li> <li>20. RECOMMENDED CORREL</li> <li>1. Train and certify STW7-2999.</li> </ul>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or	STFIRE ENGINE ieved that se otentially a r ring at splas	ERING E a water euse is shdown.	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. J	APPROVAL SIGNATURE ARY: DAT OHNSON 11 ION/ANOMALY APPROVAL UCACOME DAT	E: /10/88 SIGNATU E: (4 ²⁷ )
<ol> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering pa</li> <li>20. RECOMMENDED CORRECT 1. Train and certify STW7-2999.</li> </ol>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or	STFIRE ENGINE ieved that se otentially a r ring at splas	ERING E a water euse is shdown.	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. J	APPROVAL SIGNATURE ARY: DAT OHNSON 11 ION/ANOMALY APPROVAL UCACOME DAT	E: /10/88 SIGNATU E: 4/27/
<ol> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering pa</li> <li>20. RECOMMENDED CORREC 1. Train and certify STW7-2999.</li> <li>2. Do not write this</li> <li>23. RESULTS OF RECOMMENDED CORRECT</li> </ol>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or s minor corrosion HENDED CORRECTIVE	STFIRE ENGINE ieved that se otentially a r ring at splas n grease appli up as a PR in	ERING E a water euse is shdown.	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: A. PM: S.	APPROVAL SIGNATURE ARY: DAT OHNSON 11 ION/ANOMALY APPROVAL UCACOME DAT	E: (10/88) SIGNATL E: $(27)$ (2)/28 (2)/28
<ol> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering pa</li> <li>20. RECOMMENDED CORREC 1. Train and certify STW7-2999.</li> <li>2. Do not write this</li> <li>23. RESULTS OF RECOMM 1. Effective</li> </ol>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or s minor corrosion HENDED CORRECTIVE	STFIRE ENGINE ieved that se otentially a r ring at splas n grease appli up as a PR in ACTION	ERING E a water euse is shdown. ication n the f	EVALUATION LIMIT r entered past t ssue if the grea	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: A., PM: S- PM: S- 24. REPORT 1	APPROVAL SIGNATURE ARY: DAT OHNSON 11 TION/ANOMALY APPROVAL UCACYEL DAT COLORING DAT COLORING DAT COLORING DAT	E: (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/88) (10/8
<ol> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE See water engering pa 20. RECOMMENDED CORREC 1. Train and certify STW7-2999.</li> <li>2. Do not write this</li> <li>23. RESULTS OF RECOMM 1. Effective</li> <li>2. Minor corrosion</li> </ol>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or s minor corrosion MENDED CORRECTIVE has been observed 6 250 002 and 360	STFIRE ENGINE ieved that se otentially a r ring at splas n grease appli up as a PR in ACTION	ERING E a water euse is shdown. ication n the f	EVALUATION LIMIT r entered past t ssue if the grea  n per future. he aft exit	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: A., PM: S- PM: S- 24. REPORT 1	APPROVAL SIGNATURE ARY: DAT OHNSON 11 TION/ANOMALY APPROVAL Wagne DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT	E: /10/88 SIGNATL E: 4/27/ IE: 6/24 X NO
<ol> <li>18. JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>19. CAUSE Sea water engering pa</li> <li>20. RECOMMENDED CORREL 1. Train and certify STW7-2999.</li> <li>2. Do not write this</li> <li>23. RESULTS OF RECOMM 1. Effective</li> </ol>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or s minor corrosion MENDED CORRECTIVE has been observed 6 250 002 and 360	STFIRE ENGINE ieved that se otentially a r ring at splas n grease appli up as a PR in ACTION	ERING E a water euse is shdown. ication n the f	EVALUATION LIMIT r entered past t ssue if the grea  n per future. he aft exit	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: A. PM: SECRET 24. REPORT 25. RPRB CL (REQUIRED RPRB SECRE	APPROVAL SIGNATURE ARY: DAT OHNSON 11 TION/ANOMALY APPROVAL Wagne DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT	E: /10/88 SIGNATL E: 4/27/ IE: 4/27/ X NO CED "YE: SIGNATU
<ol> <li>JUSTIFICATION OF C This is not a flight in the corrosion obse not followed.</li> <li>CAUSE See water engering pa 20. RECOMMENDED CORREC 1. Train and certify STW7-2999.</li> <li>Do not write this</li> <li>Z3. RESULTS OF RECOMM 1. Effective</li> <li>Minor corrosion</li> </ol>	issue. It is bet arved. This is po ast the primary o- CTIVE ACTION y SPC operators or s minor corrosion MENDED CORRECTIVE has been observed 6 250 002 and 360	STFIRE ENGINE ieved that se otentially a r ring at splas n grease appli up as a PR in ACTION	ERING E a water euse is shdown. ication n the f	EVALUATION LIMIT r entered past t ssue if the grea  n per future. he aft exit	S) he primary o- se application 21. ANOMALY RPRB SECRET /S/T. L. 22. OBSERVAT PE: A. PM: SECRET 24. REPORT 25. RPRB CL (REQUIRED RPRB SECRE	APPROVAL SIGNATURE ARY: DAT OHNSON 11 TION/ANOMALY APPROVAL Wagne DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT	E: /10/88 SIGNATU E: 4/27/ IE: 6/26 X NO CED "YES TE:

PFAR NUMBER SOLCO18-44	3. INSPECTION KSC	T-24/T-97	N/A	SQUAWK NUMBER	N/A
SRM MOTOR NUMBER	H-7 X	A-2	6. REFERENCE N/A		7. REFERENCE SPR NUMBER N/A
TITLE V BACKFILL IN JOINT 4	INVIRITED BY EXCES	SIVE GREASE			
CLASSIFICATION OBSERVATION	MINOR ANOMA	NLY X	MAJOR ANOMA	.Y 	CRITICAL ANOMALY
. PART NUMBER	11. SERIAL NUME	DER I I			
. REPORTED BY (NAME / . J. GEORGE /	ORGANIZATION / OBSUNCTION / OBS	ERVATION DATE G DESIGN ENGI	) NEERING / 1	1/03/88	
RESPONSIBLE COMPONEN	NT TEAM / PROGRAM M	ANAGER			
5. RESPONSIBLE PROJECT D. J. WAGNER /	NOZZLE/FLEA DEANIN	RGANIZATION ) G PROJECT ENG	) SINEERING		
6. RESPONSIBLE DESIGN	ENGINEER (NAME / OR NOZZLE/FLEX BEARIN	GANTZATION)			
7. DESCRIPTION (ATTACH See continuation sheet	PFOR, FIGURES, PHO	TOGRAPHS, ET	c.)		
	ACCELERATION (POST	FIRE ENGINEER	ING EVALUATION LIM	115)	
See continuation sneet	ASSIFICATION (POST	FIRE ENGINEER	ING EVALUATION LIM	115)	
See continuation sneet	ASSIFICATION (POST	FIRE ENGINEER	ING EVALUATION LIM	115)	
See continuation snear 19. CAUSE Excess grease applied	ASSIFICATION (POST t. during joint assem	FIRE ENGINEER	ING EVALUATION LIM	ITS) 	were in place.
See continuation snear 19. CAUSE Excess grease applied 20. RECOMMENDED CORREC 1. Set up TRACS clas grease application.	ASSIFICATION (POST t. during joint assem TIVE ACTION is to train and qual	FIRE ENGINEER	ing EVALUATION LIM because no applica ans, QA and AF on	1TS) Ition standards	were in place. APPROVAL SIGNATURE TARY: DATE:
See continuation snear 19. CAUSE Excess grease applied	ASSIFICATION (POST t. during joint assem TIVE ACTION is to train and qual	FIRE ENGINEER	ing EVALUATION LIM because no applica ans, QA and AF on	1TS) Ition standards	were in place.
See continuation shear 19. CAUSE Excess grease applied 20. RECOMMENDED CORREC 1. Set up TRACS clas grease application. 2. Continue inspecti	ASSIFICATION (POST t. during joint assem TIVE ACTION as to train and quai ing future post-tes ms.	FIRE ENGINEER mbly resulted lify technici t and flight	ing EVALUATION LIM because no applica ans, QA and AF on	21. ANOMALY RPRB SECRE 22. OBSERV	were in place. Y APPROVAL SIGNATURE TTARY: DATE: ATION/ANOMALY APPROVAL SIGNATU DATE: DATE:
See continuation sheat 19. CAUSE Excess grease applied 20. RECOMMENDED CORREC 1. Set up TRACS clas grease application. 2. Continue inspecti excess grease problem 3. Release and Incom 23. RESULTS OF RECOMM	ASSIFICATION (POST t. during joint assem TIVE ACTION is to train and qual ing future post-tes me. 	FIRE ENGINEER mbly resulted lify technici t and flight TW7-2999.	ing EVALUATION LIM because no applica ans, QA and AF on	1TS) ition standards 21. ANOMALY RPRB SECRE 22. OBSERV/ PE: PM: 24. REPORT	Were in place. Y APPROVAL SIGNATURE TARY: DATE: ATION/ANOMALY APPROVAL SIGNATU DATE: DATE: RESULTS TO RPRB? YES X NO
See continuation shear 19. CAUSE Excess grease applied 20. RECOMMENDED CORREC 1. Set up TRACS clas grease application. 2. Continue inspecti excess grease problem	ASSIFICATION (POST t. during joint assem TIVE ACTION is to train and qual ing future post-tes me. 	FIRE ENGINEER mbly resulted lify technici t and flight TW7-2999.	ING EVALUATION LIM because no applica ans, QA and AF on nozzle joints for	1TS) tion standards 21. ANOMALY RPRB SECRE 22. OBSERV/ PE: PM: 24. REPORT 25. RPRB C (REQUIRED RPRB SECR	WERE IN PLACE. Y APPROVAL SIGNATURE TARY: DATE: ATION/ANOMALY APPROVAL SIGNATU DATE: DATE: RESULTS TO RPRB? YES X NO CLOSURE SIGNATURE ONLY IF BLOCK 24 CHECKED "YES DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DATE: DAT
<ol> <li>CAUSE Excess grease applied</li> <li>RECOMMENDED CORRECTING</li> <li>Set up TRACS class grease application.</li> <li>Continue inspection</li> <li>Release and Incom</li> <li>Release and Incom</li> </ol>	ASSIFICATION (POST t. during joint assem TIVE ACTION is to train and qual ing future post-tes me. 	FIRE ENGINEER mbly resulted lify technici t and flight TW7-2999.	ING EVALUATION LIM because no applica ans, QA and AF on nozzle joints for	1TS) Ition standards 21. ANOMALY RPRB SECRE 22. OBSERV/ PE: PM: 24. REPORT 25. RPRB C (REQUIRED RPRB SECR 26. OBSERV PM:	WERE IN PLACE. Y APPROVAL SIGNATURE TARY: DATE: ATION/ANOMALY APPROVAL SIGNATU DATE: DATE: RESULTS TO RPRB? YES X NO LOSURE SIGNATURE ONLY IF BLOCK 24 CHECKED "YES

REV. 3/28/89

# CONTINUATION SHEET FOR PFAR NUMBER 360L001B-44

17. DESCRIPTION (continuation)

The 360L0018 nozzle forward exit cone/throat joint (Joint #4) showed excessive grease. Grease was observed on the radial 0.D. and on the axial portions of the joint interface. It is believed that the presence of the grease at 185 racial U.D. and on the axial portions of the joint interface. It is betreved that the presence of the grease at degrees inhibited the backfill of RTV. A blowpath was located at the 185 degree location. There was no blowby, erosion or heat effect to primary o-ring.

Joint #4 on the DM-9, QM-6, QM-7 and PV-1 tests showed excessive grease on phenolic interfaces. It was believed that the excess grease inhibited the RTV backfill in these joints (classified as Minor Anomalies).

Previous flight and static test forward exit cone/throat joints have shown grease on the phenolic joint interfaces. In order to hold the primary orring on the orring groove during assembly, a thicker layer of grease is applied to the o-ring and groove.

STW7-2999 was released to control amounts of grease applied to the nozzle internal joint orrings and orring grooves. This specification was added to engineering assembly drawings and will be effective RSRM flight 4 (360T004).

18. JUSTIFICATION OF CLASSIFICATION (continuation)

The excess grease in joint #4 required corrective action but has no impact on motor performance or program schedule. The excess grease inhibited the RTV backfill at the 185 degree location.

Grease on the joint phenolic interfaces could prevent the adhesion of the RTV to the phenolic. This would reduce the capability of the RTV to act as a thermal barrier.

23. RESULTS OF RECOMMENDED CORRECTIVE ACTION (continuation)

STW7-2999 was incorporated into nozzle joint assembly planning; effective QM-8 and RSRM flight 4 (360T004).

2. QN-8 showed excess grease inhibiting RTV backfill in joint #4. The grease application specification did not reduce the excess grease in this joint. Joint #4 will be monitored by structural applications until proper grease applications are being followed. Also, TRACS classes are being set up to train/qualify nozzle joint assembly personnel (effective ١.

360L001A showed no excess grease in nozzle joints.

360L002A showed no excess grease in nozzle joints.

360L002B showed no excess grease in nozzle joints.

360L003A showed no excess grease in nozzle joints.

360L003B showed no excess grease in nozzie joints.

-----

PFAR NUMBER	3. INSPECTION LOCATION KSC T-24/T-97	4. REFERENCE SQU	AWK NUMBER	5. REFERENCE PR NUMBER
360L0018-45 . SRM MOTOR NUMBER 360L0018	H-7 X A-2		NUMBER	7. REFERENCE SPR NUMBER N/A
. TITLE RTV/EA913 ADHESIVE MIXING IN				
CLASSIFICATION OBSERVATION	MINOR ANOMALY X	MAJOR ANOMALY		CRITICAL ANOMALY
0. PART NUMBER 1 N/A	1. SERIAL NUMBER   12. N/A   CON	PART DESCRIPTION L/NOSE INLET JOINT (		
	HIZATION / OBSERVATION DATE)			
4. RESPONSIBLE COMPONENT TEA NOZZLE / E. L. DIEHL	MM / PROGRAM MANAGER			
5. RESPONSIBLE PROJECT ENGIN D. J. WAGNER / NOZZL	SEP (NAME / ORGANIZATION )	CEDING		
	LE/FLEX BEARING DESIGN ENGIN			
The EA913 adhesive used to be between the cowl ring and no	, FIGURES, PHOTOGRAPHS, ETC. bond the cowl insulation to ose cap 360-deg. circumferen tween two layers of RTV. So les. There was no blowby, e	the cowl nousing extr tially. The adhesive of was observed over	a maiority	of the joint circumference
The minimum of the otherive	in the coul/nose cap bondlin	e and the presence o	f soot was o	documented on ETM-1A, DM-8,
DN-9, QN-6 and QM-7. It is procedures.	believed that the mixing ha	s occurred on all pro	evious nozzl	es due to assembly
DM-9, QN-6 and QM-7. It is procedures. 18. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier.	Delieved that the mixing ha ICATION (POSTFIRE ENGINEERIN In the RIV and EA913 adhesive	G EVALUATION LIMITS) , reducing the capab	ility of the	e RTV to act as a thermal
DM-9, QM-6 and QM-7. It is procedures. 18. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier.	Delieved that the mixing ha ICATION (POSTFIRE ENGINEERIN In the RIV and EA913 adhesive	G EVALUATION LIMITS) , reducing the capab	ility of the	e RTV to act as a thermal
DM-9, QN-6 and QM-7. It is procedures. 18. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier. 19. CAUSE Current bonding and joint a	believed that the mixing ha ICATION (POSTFIRE ENGINEERIN in the RIV and EA913 adhesive issembly procedures.	G EVALUATION LIMITS) , reducing the capab	ility of the	e RTV to act as a thermal APPROVAL SIGNATURE
DM-9, QN-6 and QM-7. It is procedures. 18. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier. 19. CAUSE Current bonding and joint a 20. RECOMMENDED CORRECTIVE A 1. At the time this was pr had just been examined. It the procedure	ICATION (POSTFIRE ENGINEERIN in the RTV and EA913 adhesive assembly procedures. ACTION resented to RPRB, the PV-1 not t was recommended that we fun change on QM-8. It would th	G EVALUATION LIMITS) , reducing the capab ozzle Joint #2 ther evaluate en be capated into	ility of the 21. ANOMALY RPRB SECRET	APPROVAL SIGNATURE ARY: DATE: Jahnson Churce S
DM-9, QM-6 and QM-7. It is procedures. 8. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier. 19. CAUSE Current bonding and joint a 20. RECOMMENDED CORRECTIVE A 1. At the time this was pr had just been examined. It	ICATION (POSTFIRE ENGINEERIN n the RTV and EA913 adhesive assembly procedures. ACTION resented to RPR8, the PV-1 not	G EVALUATION LIMITS) , reducing the capab ozzle Joint #2 ther evaluate en be capated into	ility of the 21. ANOMALY RPRB SECRET LIACULX 22. OBSERVAT	APPROVAL SIGNATURE ARY: DATE: Jahnson Chune S IQN/ANOMALY APPROVAL SIGNATI
DM-9, QN-6 and QM-7. It is procedures. 18. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier. 19. CAUSE Current bonding and joint a 20. RECOMMENDED CORRECTIVE A 1. At the time this was pr had just been examined. It the new assembly procedure determined if the new assem flight nozzles. 23. RESULTS OF RECOMMENDED 0	believed that the mixing ha ICATION (POSTFIRE ENGINEERIN In the RIV and EA913 adhesive Assembly procedures. ACTION resented to RPRB, the PV-1 no t was recommended that we fun change on GM-8. It would the mbly process would be incorpo	G EVALUATION LIMITS) , reducing the capab ozzle Joint #2 ther evaluate orated into	ility of the 21. ANOMALY RPRB SECRET LLACU PH:	APPROVAL SIGNATURE ARY: DATE: Jahnson Chune S IQN/ANOMALY APPROVAL SIGNATI
DM-9, QN-6 and QM-7. It is procedures. 18. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier. 19. CAUSE Current bonding and joint a 20. RECOMMENDED CORRECTIVE A 1. At the time this was pr had just been examined. It the new assembly procedure determined if the new assem flight nozzles.	believed that the mixing ha ICATION (POSTFIRE ENGINEERIN In the RIV and EA913 adhesive Assembly procedures. ACTION resented to RPRB, the PV-1 no t was recommended that we fun change on GM-8. It would the mbly process would be incorpo	G EVALUATION LIMITS) , reducing the capab bzzle Joint #2 ther evaluate borated into	ility of the 21. ANOMALY RPRB SECRET LIACULY PH: 22. 24. REPORT R 25. RPRB CLC	APPROVAL SIGNATURE ARY: DATE: Juliuson Grane S IGN/ANOMALY APPROVAL SIGNATU Mark D D DATE: Juliuson DATE: Juliuson DATE: Mill DATE J DATE J SURE SIGNATURE DALY IF BLOCK 24 CHECKED "YES TARY: DATE:
DM-9, QM-6 and QM-7. It is procedures. 18. JUSTIFICATION OF CLASSIF There is no adhesion betwee barrier. 19. CAUSE Current bonding and joint a 20. RECOMMENDED CORRECTIVE A 1. At the time this was pr had just been examined. It the new assembly procedure determined if the new assem flight nozzles. 23. RESULTS OF RECOMMENDED 0	believed that the mixing ha ICATION (POSTFIRE ENGINEERIN In the RIV and EA913 adhesive Assembly procedures. ACTION resented to RPRB, the PV-1 no t was recommended that we fun change on GM-8. It would the mbly process would be incorpo	G EVALUATION LIMITS) , reducing the capab ozzle Joint #2 ther evaluate orated into	ility of the ility of the 21. ANOMALY RPRB SECRET <i>liacy</i> PH: 22. OBSERVAT PE: 24. REPORT R 24. REPORT R 25. RPRB CLC (REQUIRED C RPRB SECRET <i>liacy</i> A	APPROVAL SIGNATURE ARY: DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: Julius DATE: J

### CONTINUATION SHEET FOR PEAR NUMBER 360L0018-45

23. RESULTS OF RECOMMENDED CORRECTIVE ACTION (continuation)

1. The new assembly procedure was tested on PV-1 and QM-8 Joint #2's. Post-test inspections of these joints prompted the decision to further evaluate and refine the new assembly procedure on TEM motors.

As of 360L002, there has never been primary o-ring blowby, erosion or heat effect, or metal heat damage within Joint #2. In the 360L002 RPR8, it was decided to close out all "minor anomalies" similar to this on all previous staic tests and flights. All future occurrences, including 360L002, would be considered "observations".

TWR-17198 Vol. V has been updated to include accept/reject criteria for RTV in nozzle joints. The condition noted in this "minor anomaly" is now an "acceptable" condition per this criteria.

### DISTRIBUTION

Recipient	No. of Copies	<u>Mail Stop</u>
Recipient K. Baker D. D. Bright F. W. Call M. Clark J. Donat E. L. Diehl T. Freston J. E. Fonnesbeck R. J. George S. Graves D. Harris J. D. Leavitt R. Loevy S. A. Meyer G. Nielson D. Nisonger C. Olsen S. Olsen B. E. Phipps R. B. Roth	No. of Copies  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>Mail Stop</u> 287 L22 E05 427 L62A E14 242 L62A L62A L52 L34 E14 L62A L62A L62A 811 M31 411E L35 L22 L10
R. B. Roth G. Snider R. K. Wilks Print Crib Vault	1 1 1 5 5	L10 411 L23 K23B K23E

.

;