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LIST OF SYMBOLS

Symbol Definition

( )T a quantity subscripted by T pertains to the entire system

( )p a quantity subscripted by P pertains to the instrument (body P)

( )„ a quantity subscripted by G pertains to the gondola (body G)

( ' ) a dot over a quantity denotes its time derivative

(~~) an overbar denotes a vector quantity

g the acceleration due to gravity

m mass

W weight

i . unit vectors — the subscript a denotes the coordinate frame and the
a subscript b denotes the axis direction, b = 1,2,3

&„„ coarse elevation angle traversed by the coarse elevation gimbal axisun
9 . Euler angles — subscript a denotes the coordinate frame and subscript
a b denotes the axis about which the angle is measured, b = 1,2,3

n , magnitude of the Euler angle rates (first time derivatives of 6 , )

aB acceleration of the balloon attach -point

rp position vector of the center-of-mass of body P

~,. position vector of the center-of-mass of the system
U1VJ

position vector of the center-of-mass of body G

position vector of the centei

force in the cable f,-, = f~ i,-,.,
^^ ^^ ^^ -I

vector representing the cable I,-, = a* !„.,
\s L/ \s 1

force on body G due to gravity (weight of G), fG /e) =

fp(g) force on body P due to gravity, fp(g) = - Wp fL g l

Pr vector from_origin of C frame to center-of-mass of body G,
PG = " PG Vl

pp vector from origin of C frame to center-of-mass of body P,

PP = ' PP !G1

vector from origin of C frame to center-of-mass of the system,
PCM JGI
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p_ p denotes the scalar quantity PG ~ Pp

IF . sum of external forces acting on the system

, sum of moments about the center-of-mass of a body (the character in
' the subscript parenthesis denotes the body)

, angular momentum about the center-of-mass of a body

( P") sutn °^ t*ie ^orces acting °n body P

angular rate of body P, uip = ajpl ipl + aip2 ip2 + u>p3 ip3

angular rate of body G, UQ = u>G1 fQ1 + "G2 iG2 + u)G3

torque on body P due to body G, (note Tp»G =

TP/G = TP/G(P1) JP1 + TP/G(P2) 1P2 + TP/G(P3) J

torque on gondola due to cable torsion, TG ,c = - K

KG ,„ torsional spring constant of the cable

force on body P due to body G, (note fp^Q = -

fP/G = fP/G(LSl) i(LSl) + fP/G(LS2) ^82 + fP/G(LS3) JLS3

T. output torque of the azimuth torque motor

T_ output torque of the fine elevation torque motor
£i

Tj> output torque of the roll torque motor

T»A resistance torque due to azimuth bearing friction

T~_ resistance torque due to fine elevation axis flex pivot

T-_ resistance torque due to roll axis flex pivot

T\ azimuth torque less bearing friction

T' elevation torque less flex pivot stiffness effects

T^ roll torque less flex pivot stiffness effects

X denotes vector of state variables

U denotes vector of input variables

6., i=l,2,3 pointing angles - Euler angles between the P and S reference frames

KRi' i=1»2'3 rate ^n in tne control law

Kp., i=l,2,3 proportional gain in the control law
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., i=l,2,3 integral control gain in the control law

, inertia tensor for the P body

JP12 JP13

P23

1G

P21

*P31 *P32 JP33

inertia tensor for the G body

IG = 1G21 1G22 JG23

JG32 JG33

vu



TECHNICAL MEMORANDUM

MODELING, DESIGNING, AND SIMULATING A POINTING CONTROL
SYSTEM FOR BALLOON-BORNE SOLAR EXPERIMENTS

INTRODUCTION

The objective of this effort is to mathematically model a balloon-borne pointing-
system for solar instruments and use the math model to develop a computer simulation -
of the system. The pointing system is one proposed by the Space Sciences Division
of the Perkin-Elmer Corporation [1]. The concept is shown in Figure 1.

The gimbal system provides four angular motions: azimuth, fine elevation,
coarse elevation, and fine roll (cross-elevation). The azimuth bearing allows unlimited,
360-deg rotation. Flexure pivots (bearings) are used on the fine elevation and roll
axes and provide about ±3.5 deg of rotation. The coarse elevation axis provides 80
deg of rotation.

SUSPENSION
SHROUD LINES

SOLAR
INSTRUMENT

UNIVERSAL JOINT

VERTICAL SHAFT

COUNTER
WEIGHT

GONDOLA WHEEL

SUPPORTING
EQUIPMENT

PYLON

Figure 1



A universal joint is located between the gondola and the balloon suspension cable
to reduce bending moments between the gondola and the cable.

Using the gondola and gimbal system configuration outlined above, a math model
of the system can now be developed.

MODELING THE SYSTEM

The system is modeled as two rigid bodies connected together by a gimbal sys-
tem. Figure 2 shows the simplified model and the coordinate systems used to derive
the equations of motion. The instrument and its counter-weight form body P, which
is connected through the gimbal system to the gondola structure (body G). The
gondola is suspended from the balloon-attach-point by a cable.

LOCAL VERTICAL
(POINTING AWAY FROM EARTH)

SUN

\
LS1.B1 .

LS2.S2

C2

p.: FROM ORIGIN OF C FRAME
TOC.M. OFQBODY

p.: FROM ORIGIN OF C FRAME
TOC.M.OFPBODY

.: FROM ORIGIN OF C FRAME
" TO C.M. OF SYSTEM

Figure 2



The LS, S, and B coordinate systems all have their origins fixed at the balloon-
attach-point. The LSI axis points away from the Earth along the local vertical. The
LS3 axis is directed so that the Sun lies in the LSI to LS3 plane. The SI axis
points to the Sun and the S2 axis is aligned with LS2.

The B coordinate system is fixed in the balloon and rotates with it. Only
balloon rotation about LSI is considered, so Bl remains aligned with LSI as the
balloon rotates.

The C coordinate frame has its origin fixed at the universal joint where the
cable and gondola connect. The Cl axis remains aligned with the cable. The origin
of the G coordinate frame is at the center-of-mass of the gondola and the Gl axis
points along the vertical pylon of the gondola as shown. The origin of the P coor-
dinate system is fixed at the center-of-mass of the P body. The Pi axis is aligned
with the line-of-sight of the instrument.

Any friction in the balloon-cable and cable-gondola connections is neglected, as
is any internal cable friction. The dynamics of the balloon are limited to a transla-
tional acceleration, a^, applied to the balloon-attach-point, and an angular rotation
about the B1 axis.

Several other general assumptions apply to the model. Any aerodynamic dis-
turbances on bodies P and G are neglected. The cable has a torsional stiffness, but
is assumed to be massless and extensionless. The center-of-mass of each body lies
along the Gl axis. Finally, it is assumed that the dynamics of the cable, body P,
and body G do not affect the balloon motion.

DERIVING THE EQUATIONS OF MOTION

The orientation of the system at any time can be described by the Euler angles
between the coordinate systems. Two angles are needed to express the transforma-
tion from the B frame to the C frame, e „ and 6 „. Three angles are required from
the C frame to the G frame, 6G1> 6G2> and 6G3. Finally, epl, 6p2, and 8p3 define
the transformation from the G frame to the P frame. Eight equations of motion, con-
taining these angles and time derivatives of these angles, are required to express the
motion of the system relative to the B coordinate frame.

Several more assumptions are made in order to simplify the equations. First,
it is assumed that the Euler angles will be small, so that cos 6 % 1 and sin 6 % 6.
Also, higher order terms in products of state variables and/or inputs are neglected.
During the initial derivation of the equations, the azimuth bearing friction and the
flex pivot stiffnesses are neglected. The friction and stiffnesses will be modeled and
included in the equations later in the derivation.

These equations can be derived in four basic steps. The first step is to solve
the equation

EFext = mT <



• •

TCM is defined relative to the LS coordinate frame. Since this frame accelerates with

respect to inertia! space, the addition of the term aB is necessary. The external
forces acting on the G body and the P body are the cable force, fc, the gondola

weight, ?Q'/~Y» *nd tne instrument weight, fp, ,; therefore,

EFext ~ ?C " fG(g) " fP(g)

In terms of unit vectors, equation (2) can be written as

ext = fC {C1 - < W fLSl -

The vector r,,,. can be expressed in terms of the physical dimensions «,„ and PCM as

rCM = " £C *C1 " PCM JG1 '

••

From this expression rCM can be obtained. The acceleration of the balloon-attach-

point, E, can be expressed as

+ aB(LS2)

Notice that the components of equations (3), (4), and (5) are expressed in different
coordinate systems. Coordinate transformations are needed to express all of the com-
ponents in a common coordinate frame. Transforming all of the quantities in the
above equations to the LS frame, and substituting the results into equation (1), the
following equations result.

fc = WT + mT aB(Lgl) (6a)

~mT (PCM+£C) 8C3 " mT PCM §G3 = (WT + mT aB(LSl)) 6C3 " i0T aB(LS2)

(6b)

mT (PCM+£C ) &C2 + mT PCM 8G2 = " (WT + mT aB(LSl)) 9C2 " mT ^(LSS) '

(6c)



Equation <6a) gives an expression for the force in the cable. Equations (6b) and
(6c) are equations of motion containing Euler angles and second time- derivatives of
the Euler angles.

The next step is to sum the moments about the center-of-mass of the P body
and equate this to the time derivative of the angular momentum,

•

ZMCM(P) = HCM(P) '

The time derivative of the angular momentum is given by the expression

X

where Ip is the inertia tensor for the P body and. Up is its angular velocity. The
term cop x (IpU>p) consists entirely of second-order quantities and can be neglected
since higher-order terms are assumed to be negligible. The sum of the moments
acting on body P is the torque applied to the instrument by the gimbal torque motors.

To express Tp ,G in terms of the gimbal axis torques, the transformation from the G
coordinate system to the P coordinate system must be considered. Appendix A shows

• •

how Tp /G is expressed in terms of the gimbal torques. Substituting HC M ,pv = Ipu>p

and the expression for Tp ,G from Appendix A into equation (7), the following three
equations of motion are obtained.

'pll V + 'P12 V + 'Pl3 "P3 = V cos 9CE - TR' Sin 6CE (10a)

'P21 "pi + Jp22 *P2 + Jp23 *P3 = TE? (10b)

Jp31 "pi + !
P32 V + J

P33 V = TA' sin 9CE + TR* COS 6CE ' (10c)

The above equations do not contain any Euler angles or their time derivatives expli-
citly, but they could be obtained through the relationship between u>p and the Euler
angle rates. The equations are retained in the above form because the rates ov,.,,
cjp2, and ojp3 will later be used as state variables. They are quantities that are
measured by the rate gyros.



The third step in deriving the equations of motion is to solve the vector
equation

_ •

ZMCM(G) = HCM(G) '

• i

As for the P body, H,V = I^- The moments acting on the G body are given by

x !G/P + TGIP + f G/C

The torque TG ,p is the torque applied to the gondola by the gimbal torquers. It is
equal to the negative of Tp ,G derived in Appendix A. T G /C *s tne torque applied
to body G due to the torsion in the cable. TQ/r; is derived in Appendix B. The
force fQ ,p is the interconnection force between the G body and the P body. When
summing moments on body P, this force did not cause a moment because the center-of-
mass of the P body is at the center of the gimbals, which is the point of application
of the force f r ; /p« This force does, however, cause a moment about the center-of-
mass of the gondola. By transforming each element of equation (12) into the G coor-
dinate frame and substituting these results into equation (11), three more equations
of motion can be obtained. However, one element in equation (12) is still unknown.
The force fQ ,p must be determined. By solving a fourth basic equation, the force
f p / G > which is the negative of f G / p » can be found. Solving the equation

ZF (p ) = mp (rp + afi) (13)

will yield the force f p / G - The sum of the forces on body P can be expressed as

Ef (P) = !P/G + !P(g) U4)

where fp, . is simply the weight of body P. As with equation (1), all the elements
in equation (13) are transformed to the LS frame. This results in three equations
that give the three components of the force f p / G » which is the negative of f/-./p
needed for equation (12). These expressions are transformed to the G coordinate
frame where they are substituted into equation (12). The resulting equations of
motion from equation (11) are

JG12 *G2 + rG13 ^GS = ' V ' KG/C 6G1 (15a)



JG21 "Gl + JG22 "G2 + *G23 "V " PG mT aB(LSl)) 6G2

(PG-PP) (WP+mP aB(LSl)

m B(LS3) PP (8G2+8C2)]

(15b)

!G31 "Gl + *G32 "G2 + JG33 * ~ PG mT aB(LSl))

- (PG-PP) (WP+mP aB(LSl)}

+ mP (aB(LS2) " m

P PP
(15c)

The above equations contain the components of the angular rate vector WQ.
These components can be eliminated from the equations by expressing them in terms
of the Euler angle rates. Appendix C shows how this substitution is derived.

DEFINING THE STATE VARIABLES

Most of the equations of motion that were derived are second-order differential
equations. These equations can be transformed to first-order equations by defining
eight additional state variables. Let n denote the time rate of change of an Euler
angle, or

n = e (16)

Then the time derivative of ft will be

n = e (17)

and the substitution can be used to transform the equations of motion to first-order
form. Equation (16) will give additional state equations needed to find the time-
histories of the Euler angles 9C2, 6C3> 0G1, 6G2, and 0G3.



Since ajp was not eliminated from equations (lOa), (lOb), and (lOc), equation
(16) cannot be used to express the time histories of 0p.., 6p2> and 8p3. The relation-
ship between cjp and the time derivatives of these three Euler angles must be derived.
The details of developing this relationship are explained in Reference 3. The final
three state equations that result from this relationship are

0P1 = ov>1 cos 0pp. + ujp, sin epT., - n_1 - flR1 (18)
iJ- iJL ^tl-t IrO V/ d \j X D j.

(19)

sin e + u> cos e - n - n . (20)

The other 13 state equations previously derived, with all substitutions and sim-
plifications included, are given below.

- - 6G3 = (WT + mT -

(21)

mT (AC + PCM} hC2 + mT PCM ̂ G2 = ' (WT + mT aB(LSl)} 8C2 ' mT aB(LS3)

(22)

Vll ^Pl + ^12 *P2 + !P13 "P3 = TA* COS 6CE - TR' Sin 9CE (23)

JP21 "PI + !P22 "P2 + JP23 S3 = TE? (24)

JP31 "PI + JP32 «P2 + JP33 "P3 = TA' sin 9CE + V COS 9CE (25)

QG2 + JG12 ^C2 "*" JG13 ^G3 + JG13 ^C3 = " TA' " KG/C 8G1

h (26)



1G21 hGl + (IG22 ' PG-P mP PP) ^G2 + [IG22 " PG-P mP (£C + PP}1 "c2 + JG23

+ JG23 ^C3 = ' TE* + [PG-P (WP + mP ̂ (LSl)^ 6C2 + PG-P mP aB(LS3)

[ ~ P G WT " PG mT

+ PG.p (Wp + mp aB(Lgl))] eQ2 (27)

JG31 "ci + !G32 ^G2 + JG32 ^C2 + [IG33 " PG-P mP PP]

UG33 " PG-P mP (PP + £C)] ^C3 = ' V + PG-P (WP + mP aB(LSl)) 6C3

pG_p mp aB(LS2) - IG31-ftB1 + [PG.p (Wp + mp aB(Lgl))

( W T + m a ) ] 6 (28)

eC2 = nC2 (29)

(30)

(31)

(32)

(33)

The eight second-order differential equations have now been replaced by 16 first- order
differential equations. Using matrix notation, these equations are in the form

M X = K X + C U . (34)



This can be easily transformed to the common state variable form,

X = A X + B U (35)

by inverting the M matrix. This inversion is easily performed in the computer simula-
tion, so it is not necessary to perform it analytically.

The state vector X is defined as

X =

ft'C2

ftC3

'Gl

ft'G2

ft'G3

'PI

o>

e,

P2

P3

PC2

9C3

9G1

9G2

9G3

(36)

It contains the eight Euler angles that were originally sought to define the position of
the system. The Euler rates of the C and G coordinate transformations, and the body
rates of the instrument, are also state variables.

The input vector U is defined as

10



U = <

TA

TE
TR'
aB(LS2)

SB(LS3)

Bl

Bl

(37)

which contains the gimbal torques and the balloon motions.

Notice that the A matrix in equation (35) will be a function of time whenever
the balloon has a nonconstant acceleration. This is because the component
is present in the A matrix.

Until now, the azimuth bearing friction and the stiffness of the flex pivots have
been neglected. Modeling these parameters will now be considered.

MODELING THE GIMBAL BEARINGS

In the present effort, a very simple model is used for the gimbal bearings.
This model is sufficient for the preliminary control system design, but a more accu-
rate model may be desired if a more precise analysis is needed.

The azimuth bearing is modeled using a Dahl friction model, which is explained
in detail in Reference 2. Using small angle assumptions and neglecting higher-order
terms, the following equation for the resistance torque of the bearing results.

9P1 (38)

The parameters y and T. are constants that depend on the physical properties
of the bearing. Using values given in Reference 2 as guidelines, values are chosen
for y and T- that will yield reasonable values for T-. relative to the azimuth gimbal
torque, TA. Again, for a more precise analysis, these values would have to be
determined for the particular azimuth bearing.

Equation (38) can be integrated directly to give the .resistance torque

TfA ~ JA 6P1 (39)

11



where J. is a constant,

The flex pivot bearings act as torsional springs and are , therefore , modeled as
linear torsional springs with a resistance torque given by

Tres = J e <40)

where J is the spring constant. Values for J are available from Reference 1. The
resistance torques of the two flex pivots are expressed as

TfE = JE 6P2 <41>

TfR = JR ^3 <42>

for the fine elevation and roll axes, respectively. To include the bearing models into
equations (18) through (33), the following substitutions are made in those equations

TA' = T A + J A e P l <43>

T E ' = T E + J E e P 2 (44)

TR' = TR +- JR ^3 <45>

where TA, T_, and T_ now represent the actual torque applied by the torque motors
on the gimbal system.

This completes the development of the equations of motion. The equations^ can
now be used to simulate the motion of the system for the various inputs in the U
vector. The next step is to develop a control law to point the instrument at the Sun.
This control law will determine the gimbal axis torques required to point the instru-
ment .

12



DEVELOPING THE CONTROL LAW

Since the objective is to point the instrument at the Sun, a relationship between
the S reference frame and the P reference frame must be developed. If it is assumed
that azimuth and coarse elevation axes motions have pointed the instrument relatively
close to the Sun, the small angle assumption can be used when defining a
transformation between the S and the P reference frames. Using this assumption and
neglecting the second-order terms, an Euler transformation can be developed.

PI

P2

P3

LS1

S2

S3

(46)

Another transformation matrix can be developed between the S and P frames by
making successive Euler transformations from the S to LS, LS to B, B to C, C to G,
and G to P coordinate frames. This transformation matrix will be a function of the
Euler angles of the system that result from the equations of motion. By equating this
matrix to that of equation (46), the angles 6.., 82, and 63 can be determined in terms
of the other Euler angles. The following expressions are found for these angles.

91 = G1 cos 6CE - <9C3 + 6G3+ 9P3> Sin 6 CE (47)

92 ~ 9C2 + 9G2 + 9P2 (48)

63 = (6C3 G3 COS 6CE (6B G1 sin 9CE (49)

Angles 8p On, and e« are the Euler angles between the P and S reference
frames. When these angles are zero, the two frames will be essentially colinear and
the instrument will be essentially pointing at the Sun, because the distance to the
Sun is much greater than the distance between the origins of the P and S reference
frames. Now that the pointing angles 8^ 8,, and 8, have been determined in terms
of the Euler angles of the system, a control law can be developed which will maintain
these angles close to zero.

The control law for each axis is defined to be

T(Pi)com ~ KRi [KPi (e(i)com (50)

13



The command angle 9/i)Com
 is included so that the instrument can be pointed

at a source slightly different from the center of the Sun. Figure 3 shows a single
axis block diagram of the control law along with a simplified model for the plant
dynamics. The intergral control is required to remove any steady- state offset in the
response. The rate commands ui . and 01 p must be limited due to the limited control
torque T,p.vco_. These limiters are shown in the block diagram. The limiter on
u) j must be such that the integrator stops integrating while u> , is at its limit.

The commanded torques obtained from equation (50) are the commanded torques
to be applied to the instrument along the axes of the P coordinate system (body axes),
These commanded torques must be transformed as shown in Appendix A to determine
the commanded gimbal torques T(A)com, T(E)com, and T(R)cQm.

In the present analysis, the gains K,., Kp., and KR. were chosen to yield a
phase margin of 65 deg and a gain crossover frequency of 1 Hz for the system in
Figure 3 when linearized.

•B—t1s ^ KI

»ci

>KR
Tpc(»]

J
LT Tp(8) 1 |«»

_LJ

I
S

(0(t) 1
S

Figure 3

SIMULATION RESULTS

A computer simulation of the system was written using equations (18) through
(33) and the control scheme developed in the previous section. The sampling rate of
the digital flight computer, 10 samples per second, was included. The sensors and
torque motors were assumed to be ideal, except for a limit on the maximum torque
available from the torque motors. A listing of the simulation code is included in
Appendix D.

14



Simulation results are shown in Figures 4 through 8. These results were
generated with zero initial conditions for all of the state variables. This means the
instrument is initially pointing at the Sun. A step input for the command angles 6^,
02, and 63 of 0.003 radians is introduced at time t = 0. A limit of 0.0006 rad/sec in
each axis was placed on the rate command in the integral control path. A limit of
this same value was also placed on the rate command in each axis in the proportional
control path. These limits resulted in a desirable response. Figures 4, 5, and 6
show the gimbal axis torques and the response of the angles 01, 62, and 0q to the
step input. The elevation and roll torques saturate at times. Figure 7 shows the
components of the angular rate of the instrument.

Figure 8 shows the G0 components of the pendulous motion of the gondola rela-o
tive to the C coordinate frame. This behavior is typical of the cable motion relative
to the balloon also.

CONCLUSIONS

The balloon-pointing-system was modeled as a two rigid-body system. Equa-
tions describing the motion of the system were derived and a control law was adopted
to point the science instrument at the Sun. A simulation program was developed and
results from the simulation indicate that the instrument can be pointed with favorable
response characteristics.

Some simplifying assumptions were made during the derivation of these equa-
tions of motion. The equations, however, are sufficient for a practical analysis of
the control system.

15
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APPENDIX A

The commanded torques from the control law are commanded torques in the body
axes of the instrument. That is,

TP/G TP/G(P1) P/G(P2) P/G(P3) (A.-1)

The commanded gimbal torques, however, are commanded torques along the Euler
axes of the transformation between the G and P frames. Four rotations are used to
define this transformation: azimuth, fine elevation, fine roll, and coarse elevation.
The transformation is expressed mathematically as

PI

L P2

L P3

cos 0 -sin 0CE

sin cos

i ep3 o

-ep3 i o

0 0 1

1 0 -6p2

0 1 0

6p2 0 1

1 0 0

0 1 Qpl

0 -0pl 1^

,

<
G2

G3

(A-2)

where small angles are assumed except in the case of the coarse elevation angle 0 .

The commanded torque on body P can be expressed in terms of the commanded
gimbal torques for the azimuth, fine elevation, and fine roll axes as,

T = T '1P/G LA
+ T '1E

+ Tr (A-3)

The coarse elevation gimbal is assumed to be mechanically locked in this develop-
ment. The primes are put on T., TE, and TR here because the effects of the gimbal
bearings have not yet been_iricluded in the model. This notation will avoid confusion
later on. The unit vector ip2' is the unit vector along the new 2-axis that results
after the rotation of 8pl about the G^ axis in equation (A-2). The unit vector ip3"
is the new 3-axis that results from the rotation through angle 6^. Using equation
(A-2), the relationships between iQ1, ip 2 '» *p3 t f» and tne unit vectors of the P
reference frame can_be determined.. Equation (A-3) can then be expressed in terms
of the unit vectors i.'PI' ip'2, and ip3. Equating this result to equation (A-l) gives
the relationship between the control torques and the gimbal.axis torques. These
relationships are, in matrix form,
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COS 6CE

cos 0

sin eCE

eP3

•(sin 9CE + 6p2 cos 9CE)

CE

0 (cos 9CE sin OCE)

LP/G(P1)

P/G(P2)

•P/G(P3)

(A-4)
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APPENDIX B

The torsion in the cable can be expressed as

fG/C = " KG/C a 1C1 ' ^"^

where a is the angle of twist in the cable. For the small angle assumption, the angle
a will be about the same as the Euler angle 6G1,

a * eQ1 . (B-2)

i

From the Euler transformation between the C and the G frames, icl can be expressed
in terms of the G frame unit vectors as,

1CI = *Gl ~ 6G3 *G2 + 6G2 *G3 (B'3)

assuming small angles for e^ an(* 9Q3« Substituting equations (B-2) and (B-3) into
equation (B-l) and neglecting second-order terms, the cable torsion becomes

= " KG/C 6G1 JG1 ' (B"4)
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APPENDIX C

The vector ujp. is the angular rate of the gondola. Referring to Figure 2, this
can be expressed as

"G = &B1 {B1 + *C2 {B2 + ®C3 TC3 + °G3 f C3 + ®G2 (cos 6G1 {G2 ' sin *G1 {G3)

Gl

Let

eC2 = nC2 (c-3)

(C'4)

eG1 = nG1 (C-5)

(C-6)

(C-7)

Substituting equations (C-2) through (C-7) into equation (Cjl), expressing the
unit vectors in equation (C-l) in terms of the unit vectors ( I G J » ^ Q O * ^ G 3 ^ ' ^ssum"1S
sin 6=6 and cos 9 = 1 for all the 0's in the resulting equation for (C-l), and neglect
ing the higher order terms in the fl's, the 6fs and their product yields

^G = WG1 fGl + WG2 {G2 + WG3 fG3 (C'8)

where

UGI = nGl + QB1 (C'9)
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"G3 = "G3 + QC3 • (C"U)

Taking the time derivative of equation (C-8) and neglecting higher order terms in
(!)„., i = 1,2,3 and their product produces

"G = "Gl {G1 + "G2 {G2 + "G3 fG3 (C

where

Equations (C-13>> through (C-15) follow from equation (C-9) through (C-ll)
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APPENDIX D. LISTING OF COMPUTER PROGRAM

C PROGRAM TO SIMULATE P.E.'S PROPOSED GONDOU CONCEPT AND +
C GIMBAL SYSTEM FOR THE BALLOON POINTING SYSTEM +
C THIS CODE CONTAINS THE SIMULATION OP THE EOM'S WITH THE +
C CONTROL LAW, INTEGRAL CONTROL, AND THE SAMPLE & HOLD OF THE +
C DIGITAL COMPUTER INCLUDED. ALSO, LIMITS ARE IMPOSED ON THE +
C TORQUE OF THE CIMBAL TORQUERS.THE RATE COMMAND DUE TO THE +
C INTEGRAL. CONTROL, AND THE RATE COMMAND DUE TO THE ANGLE ERROR. +
C IMSL ROUTINES ARE USED FOR MATRIX INVERSION, MATRIX +
C MULTIPLICATION, AND INTEGRATION OF THE STATE EQUATIONS. +
C BILLY LIGHTSEY +
C POINTING CONTROL SYSTEMS BRANCH/CONTROL SYSTEMS DIVISION +
C APRIL 1988 +

IMPLICIT REAL (I, K)
REAL M(16, 16) ,A(16, 16) ,8(16,7) ,X(16) ,U(7) ,Z(16. 16) .MT.LC.MP.MG,
ill , 12, 13, IM1 , IM2, IM3, UMAX, I2MAX, I3MAX
DIMENSION P ARAM (50)
INTEGER IDO
EXTERNAL FCN.IVPRK
COMMON /SUB I/ A,B,Z,HT,MT,RG,RGP,WP,U,AB1,MP
COMMON /SUB2/ AB10,AB11,AB20,AB21,AB30,AB31,OMBO,OMB1,OMGAB,TB10.
&TB1
COMMON /TIMES/ TAB11,TAB12,TAB21,TAB22,TAB31,TAB32,TOMB1,TOMB2
NAMELIST /INPUT/ LC,RP,WG,KGC,RG,WP,TCE,IP11, IP12, IP13,
iIP21,IP22,IP23,IP31,IP32,IP33,ICll,IG12,IG13,IG21,IC22,IG23,IG31,
iIC32,IG33.AB10,ABll.AB20,AB21.AB30,AB31,OMBO,OMBl,OMGAB,TB10,
S,DELT,TI,TF,TAB11,TAB12,TAB21.WC,PM1.PM2,PM3.IPRT,X,
S,TAB22,TAB31,TAB32,TOMB1,TOMB2,TFA.TFE,TFR.TC1,TC2,TC3,TQMAX,
i,WCTl,WCT2,WCT3,WCIl,WCI2,WCI3
READ (5, INPUT)
MG-WG/32.2
MP-WP/32.2
MT-MG+MP
WT-WG+WP
CTCE-COS (TCE)
STCE-SIN(TCE)
RCM- (MP*RP+MG*RG) /MT
RGP-RG-RP

C CONVERT PHASE MARGINS TO RADIANS
PM1-PM1*3. 14159266/180.
PM2-PM2*3. 1 A 159266/180.
PM3-PM3*3. 14159266/180.

C COMPUTE CORNER FREQUENCIES TO CORRESPOND TO THE PHASE MARGINS
WC2-WC**2
TNP-TAN(PMl)
Wl 1-WC* (SQRT (TNP*TNP+1) -TNP)
TNP-TAN(PH2)
Wl 2-WC* (SQRT (TNP*TNP-H) -TNP)
TNP"TAN(PM3)
W13-WC* (SQRT (TNP*TNP-H) -TNP)
W21-WC2/H11
W22-WC2/W12
W23-WC2/M13

C COMPUTE THE GAINS KI.KP.KR
KI 1- (WC2*SQRT (1+WC2/H21**2) ) /SQRT (H-WC2/W1 1**2)
KI2- (WC2*SQRT (l-»-WC2/W22**2) ) /SQRT (1*WC2/W12**2)
KI3-(WC2*SQRT(H-WC2/W23**2))/SQRT(1+WC2/W13**2)
KP1-KI1/W11
KP2-KI2/W12
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KP3-KI3/W13
KR1-H21*IP11
KR2"W22*IP22
KR3"W23*IP33

C INITIALIZE M.A.AND B MATRICES TO ZERO
DO 1 N-1,16
DO 2 J-1.16
M(N,J)-0.0

2 A(N,J)-0.0
DO 3 L-1,7

3 B(N,L)-0.0
1 CONTINUE

C CREATE THE M MATRIX
M(l,2)— MT*(RCM+LC)
M(l,5)—MT*RCM
M(2,1)-MT*(LC+RCM)
M(2,4)-MT*RCM
M(3,6)-IP11
M(3,7)-IP12
M(3,8)-IP13
M(4,6)-IP21
M(4,7)-IP22
M(4,8)-IP23
M(5,6)-IP31
M(5,7)-IP32
M(5,8)-IP33
M(6,3)-IG11
M(6,4)-IG12
M(6,5)-IG13
M(6,1)-IG12
M(6,2)-IG13
M(7,3)-IG21
M(7,A)-IG22-RGP*MP*RP
M(7,5)-IG23
M(7,1)-IG22-RGP*MP*(LC+RP)
M(7,2)-IG23
M(8,3)-IG31
M(8,4)-IG32
M(8,5)-IG33-RGP*MP*RP
M(8,1)-IG32
M(8,2)-IG33-RGP*MP*(RP+LC)
DO 4 N-9,16

4 M(N,N)-1.0
C INVERT THE M MATRIX

CALL LINRG(16,M,16,Z,16)
C CREATE NEEDED ELEMENTS OF K MATRIX.THE TIME-DEPENDENT ELEMENTS ARE
C CALCULATED IN SUBROUTINE FCN

K611—KGC
K146-CTCE
K148-STCE
K166—STCE
K168-CTCE
K314—TFA*CTCE
K316-TFR*STCE
K415—TFE
K514—TFA*STCE
K516—TFR*CTCE
K614-TFA
K715-TFE
K816-TFR
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C CREATE THE NEEDED ELEMENTS OF C MATRIX
C14—MT
C25—MT
C31-CTCE
C33—STCE
C66—IG11
C76— IG21
C51-STCE
C53-CTCE
C86—IG31
C75-RGP*MP
C84—RGP*MP

C GET THE A AND B MATRICIES.SINCE K AND C CONTAIN MOSTLY ZEROS,IT IS
C BENEFICIAL TO MULTIPLY ONLY THE NECESSARY ELEMENTS INSTEAD OF THE
C ENTIRE MATRICES

DO 5 J-1,16
A(J,1)-Z(J,9)-Z(J,15)
A(J,2)-Z(J,10)-Z(J,16)
A(J,3)-Z(J,ll)-Z(J,14)
A(J,4)-Z(J,12)-Z(J,15)
A(J,5)-Z(J,13)-Z(J,16)
A(J,6)-Z(J,U)*K146+Z(J,16)*K166
A(J,7)-Z(J,15)
A(J,8)-Z(J,14)*K148+Z(J,16)*K168
A(J,11)-Z(J.6)*K611
A(J,14)-Z(J,3)*K314+Z(J,5)*K514+Z(J,6)*K614
A(J,15)-Z(J,4)*K415+Z(J,7)*K715
A(J,16)-Z(J.3)*K316+Z(J,5)*K516+Z(J,8)*K816
B(Jfl)-Z(Jt3)*C31+Z(J,5)*C51-Z(J,6)
B(J,2)-Z(J,4)-Z(J,7)
B(J,3)-Z(J,3)*C33+Z(J,5)*C53-Z(J.8)
B(J,4)-Z(J,1)*CU+Z(J,8)*C84
B(J,5)-Z(J,2)*C25+Z(J,7)*C75
B(J,6)-Z(J,6)*C66+Z(J,7)*C76+Z(J,8)*C86

5 B(J,7)—Z(J,1A)
C SET UP THE INTEGRATION PROCEDURE

T-TI
TOL-.0005
IDO-1

C SET UP THE PARAM ARRAY REQUIRED BY IMSL ROUTINE IVPRK
DO 6 J-1,50

6 PARAM(J)-0.0
PARAM(4)-3000.0
PARAM(10)-1.0

C GET INITIAL VALUES OF INPUT VECTOR U FOR PRINTING AT TIME-0
CALL UCALC(T,U,AB1,X)

C SET I.C.'S OF INTEGRAL CONTROL PARAMETER I
11-0.0
12-0.0
13-0.0
IPT-IPRT

C SET LIMITS ON INTEGRAL AND ANGLE RATE COMMANDS
I1MAX-WCI1/KI1
I2MAX-WCI2/KI2
I3MAX-MCI3/KI3
TE1MAX-WCT1/KP1
TE2MAX-WCT2/KP2
TE3MAX-WCT3/KP3

C BEGIN ITERATION LOOP FOR INTEGRATION
7 TEND-T+DELT
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IH1-I1
IM2-I2
IH3-I3
THETAl-CTCE*(TBH-X(ll)+X(14))-STCE*(X(lO)+X(13)+X(16))
THETA2-X(9)+X(12)+X(15)
THETA3=CTCE*(X(10)+X(13)+X(16))+STCE*(TB1+X(11)+X(14>)
IF(T.EQ.TO) GOTO 9

C IMPOSE LIMIT ON RATE COMMAND DUE TO ANGLE ERROR
TERR1-TC1-THETA1
TERR2-TC2-THETA2
TERR3-TC3-THETA3
ATERRl-ABS(TERRl)
ATERR2-ABS(TERR2)
ATERR3-ABS (TERR3)
IF(ATERRl.GT.TElMAX) TERR1-TE1MAX*SIGN(1..TERR1)
IF(ATERR2.GT.TE2MAX) TERR2"TE2MAX*SIGN(1..TERR2)
IF(ATERR3.GT.TE3MAX) TERR3-TE3MAX*SIGN(1.,TERR3)

C IMPOSE LIMIT ON RATE COMMAND DUE TO INTEGRAL CONTROL
I1-IM1+DELT*TERR1
I2-IM2+DELT*TERR2
I3-IM3+DELT*TERR3
AIl-ABS(ll)
AI2-ABS(I2)
AI3-ABS(I3)
IF(AIl.GT.IlMAX) I1-I1MAX*SIGN(1.,I1)
IF(AI2.GT.I2KAX) I2»I2MAX*SIGN(1.,12)
IF(AI3.GT.I3MAX) I3-I3MAX*SIGN(1.,I3)

9 CONTINUE
C NOW FIND THE CONTROL TORQUES

TP1=KR1*(KI1*I1+KP1*TERR1-X(6))
TP2-KR2*(KI2*I2+KP2*TERR2-X(7))
TP3=KR3* (KI3*I3+KP3*TERR3-X(8) )

C CONVERT CONTROL TORQUES TO GIMBAL AXIS TORQUES TA.TE.AND TR
U(1)-CTCE*TP1-X(16)*TP2+STCE*TP3
U(2)-X(16)*CTCE*TP1+TP2+X(16)*STCE*TP3
U(3) — (STCE+X(15)*CTCE)*TP1+(CTCE-X(15)*STCE)*TP3

C IMPOSE TORQUE LIMIT OF TQMAX FT-LBS
AU1-ABS(U(1))
IF(AUl.GT.TQMAX) U(1)-TQMAX*SIGN(1. ,U(1))
AU2-ABS(U(2))
IF(AU2.GT.TQMAX) U(2)-TQMAX*SIGN(1. ,0(2))
AU3-ABS(U(3))
IF (AU3.GT. TQMAX) U(3)=TQHAX*SIGN (1. ,U(3))
IF(IPT.EQ.IPRT) THEN
WRITE(7) T,X,U,ABl,THETAl,THETA2,THETA3
IPT-0
ENDIF
IPT-IPT+1

C CALL IMSL ROUTINE TO INTEGRATE
CALL IVPRK(IDO,16,FCN,T,TEND,TOL,PARAM,X)
IF(T.GE.TF) STOP

C SET LIMIT ON INTEGRATION STEPS TO AVOID CHANCE OF AN INFINITE LOOP
IF(T.GE.3600) STOP
IF(T.LT.O.O) STOP
GOTO 7
END

f*̂ _, ••• i — - — -rii__» -i n _i - -m- m I !_—•••.

C SUBROUTINE TO CALCULATE THE R.H.S. OF THE DIFFERENTIAL EQUATIONS
SUBROUTINE FCN(N,T,X,DX)
IMPLICIT REAL(K)
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REAL X(16) ,DX(16) ,U(7) ,A(16,16) ,Z(16,16) ,B(16,7) ,AX(16) ,BU(16) .
UIT.HP
COMMON /SUB1/ A,B,Z,WT,MT,RG,RGP,WP,U,AB1,MP

C CALCULATE THE TIME-DEPENDENT INPUTS
CALL UCALC(T,U,AB1,X)

C CALCULATE TIME DEPENDENT ELEMENTS IN K AND A MATRICES
K110-WT+MT*AB1
K29—WT-MT*AB1
K712—RG*(WT+MT*AB1)+RGP*(HP+MP*AB 1)
K813-K712
K79-RGP* (WP+MP*AB1)
K810-K79
DO 1 J-1,16
A(J,9)-2(J,2)*K29+Z(J,7)*K79
A(J,10)-Z(J,1)*K110+Z(J,8)*K810
A(J,12)=Z(J,7)*K712

1 A(J,13)-Z(J,8)*K813
C MULTIPLY A*X AND B*U USING IMSL ROUTINE MURRV

CALL MURRV(16,16,A,16,16,X,1,16.AX)
CALL MURRV(16,7,B,16,7,U,1,16,BU)
DO 2 J-1,16

2 DX(J)-AX(J)+BU(J)
RETURN
END

/*______ — _______»—-_ — ____—— — —____— — — ____________—__.____—________•_________

C SUBROUTINE TO CALCULATE TIME DEPENDENT INPUTS
SUBROUTINE UCALC(T,U,AB1,X)
IMPLICIT REAL (K)
COMMON /SUB2/ AB10.AB11.AB20.AB21.AB30.AB31.OMBO.OMBl,OMGAB,TB10,

6.TB1
COMMON /TIMES/ TAB11,TAB12,TAB21,TAB22,TAB31,TAB32,TOMB1,TOMB2
REAL U(7) ,X(16)

C BALLOON ACCELERATIONS ARE ZERO EXCEPT DURING TIME INTERVAL
C DEFINED BY TAB1 AND TAB2

AB1-0.0
TB1-0.0
DO 2 1-4,7
U(I)-0.0

2 CONTINUE
IF(T.GE.TAB11.AND.T.LE.TAB12) AB1°AB10+AB11*T
IF(T.GE.TAB21.AND.T.LE.TAB22) U(4)-AB20+AB21*T
IF(T.GE.TAB31.AND.T.LE.TAB32) U(5)-AB30+AB31*T

C ANGULAR MOTION OF BALLOON
IF(T.LT.TOMB1.0R.T.GT.TOMB2) GOTO 5
U(6)-OMBO+OMB1*T
U (7) -OMBO*T+. 5*T*T*OMBH-OMGAB
TBl-.5*OMBO*T**2+T**3*OMBl/6.0-*-OMGAB*T+TB10

5 RETURN
END
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DATA FILE

{.INPUT
TI-0.0,
TF-15.,
TC1-0.003,
TC2-0.003,
TC3-0.003,
WCT1-.000645.
WCT2-.000645,
WCT3-.000645,
WCI1-.000645,
HCI2-.000645,
WCI3-.000645,
TQMAX-10.,
DELT-0.05,
IPRT-2,
TCE-0.500,
WC-6.28,
PM1-65.0.PM2-65.0.PM3-65.0,
KGC-1.0E02.
RP-15.0,
RC-25.0.
LC"350.0,
W02205.0.
HP-1765.0,
X-16*0.0,
IP11-79.0,
IP22-1830.0.
IP33-1830.0,
IP12-0..IP13-0.,IP21-0.,IP23-0.,IP31-0.,IP32-0.,
IC11-3425.0,
IG22-1713.0,
JG33-1713.0,
IG12-0.,IG13-0..IG21-0..IG23-0..IG31-0.,IG32-0..
AB10-O.O.AB11-0.0,
AB20-O.O.AB21-0.0,
AB30-O.O.AB31-0.0,
OMBO-O.O.OMB1-0.0,
OMGAB-0.0,
TB10-0.0.
TAB11-O.O.TAB12-0.0,
TAB21-O.O.TAB22-0.0,
TAB31-O.O.TAB32-0.0,
TFA-11.0,
TFE-4.5,
TFR-4.5,
iEND
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