NASA Technical Memorandum 100686

A Computer Code to Calculate Line by Line Atmospheric Transmission Spectra on a Microcomputer

H. G. Safren

JULY 1987

Goddard Space Flight Center Greenbelt. Maryland 20771

CONTENTS

	Page
INTRODUCTION	1
WHAT THE PROGRAM DOES	2
HOW TO USE THE PROGRAM	4
STRUCTURE OF THE PROGRAM	5
MEMORY REQUIREMENTS AND OPERATING SPEED	7
SOME EXAMPLES OF COMPUTED TRANSMISSION SPECTRA	7
TESTING OF PROGRAM	8
PROGRAM LISTINGS	11
MICTRA Driver Routine and Subroutines	11
Auxiliary Routines and Command Files	45
Atmosphere and Aerosol Models	64
REFERENCES	71

PRECEDING PAGE BLANK NOT FILMED

INTRODUCTION

To support work being done in the Instrument Electro-Optics Branch in remote sensing a decision was made to set up an in-house capability to compute line by line atmospheric transmission spectra.

An available DEC 11/23 microcomputer was dedicated to this task; its VT100 terminal had been modified by another manufacturer to greatly enhance its graphics capability, so that plots of the computed spectra could be displayed directly on the screen.

The computer program, called MICTRA (for MICrocomputer TRAnsmission calculations) is based on the LASER code published by the Air Force Geophysics Laboratory in 1978 (Reference 1); it uses the 1982 edition of the AFGL Atmospheric Absorption Line Parameters Compilation (Reference 9).

The Air Force code was extensively reworked to allow execution on a desk top microcomputer and to generate transmission spectra rather than tables of extinction coefficients. The program treats absorption due to lines of water vapor, carbon dioxide and ozone throughout the spectrum, from the visible to the microwave region, plus certain "continuum" absorption effects, Rayleigh (molecular) scattering and aerosol absorption and scattering. The program does not include radiance calculations.

The program described in this report, along with another program and a plot package developed by the author (to be published — see References 2 and 3) have proven useful in supporting work being done by the Branch in the development of a submillimeter heterodyne radiometer, in lidar studies in the five micrometer region and in feasibility studies for near infrared laser communications.

The MICTRA program was developed by the author from a previous MICTRA routine developed in the Instrument Electro-Optics Branch; this earlier routine was based on the Air Force LASER routine. For clarity these three routines will be referred to as the "new" MICTRA routine, the "old" MICTRA routine and the Air Force routine, respectively.

The old routine was constructed primarily by deleting unneeded portions of the Air Force routine. The most important deletions were:

- 1. Restriction of the atmosphere and aerosol models to a maximum altitude of 15 km (as compared to the original 100 km) and deletion of the Voigt profile calculation;
- 2. Restriction of the aerosol models, as functions of wavelength, to a small wavelength range centered at 5 micrometers;
- 3. Deletion of four of the seven atmospheric absorbing species handled by the Air Force routine only water vapor, carbon dioxide and ozone were retained;
- 4. Deletion of molecular (Rayleigh) scattering;
- 5. Deletion of the 3.5-4.2 micrometer water vapor continuum and the 4-5 micrometer nitrogen continuum.

These changes were made because MICTRA was needed primarily to support lidar work in the 5 micrometer region of the spectrum, at altitudes not exceeding about 15 km and involving water vapor, carbon dioxide and ozone. Below 15 kilometers, and for wavelengths of 1 micrometer or more, the lines are mainly pressure broadened (so the Voigt profile is not needed for a reasonably accurate calculation), and Rayleigh scattering is significant only in the visible part of the spectrum. In the new version of MICTRA all but the first and third of the above features have been restored.

It should be noted that, for wavelengths shorter than 5 micrometers, the use of the Lorentz line profile in place of the Voigt profile becomes less accurate. At 5 micrometers, the ratio of the Voigt halfwidth to the Lorentz halfwidth (V/L) ranges from about 1.02 at 15 km altitude to 1.0006 at sea level. At 1 micrometer the V/L ratio ranges from 1.38 at 15 km to 1.02 at sea level, and at 0.5 micrometers it ranges from 2.02 at 15 km to 1.06 at sea level. (All of these ratios hold to a good approximation for any of the three species included in the program: water vapor, carbon dioxide or ozone.) Because of this decrease in accuracy of the Lorentz approximation at shorter wavelengths it is planned to include the Voigt profile in the transmission calculation in the near future.

Neither the old routine nor the Air Force routine calculated transmission spectra; rather, they calculated and printed out tables of absorption and extinction coefficients for all of the atmospheric layers and for the various atmosphere and aerosol models.

The author's main purpose in modifying the old MICTRA routine was to make it capable of calculating transmission spectra over some given range of wavelength or frequency.

The basic strategy used to accomplish this was to use the old MICTRA routines as subroutines called by a newly-created executive routine, which directs the calculation of the spectrum. The executive routine was also given extensive capability to prompt the user to type in information at the keyboard which is used to set up the run.

In addition, the full tables of aerosol coefficients as functions of wavelength were restored, because new Branch uses for the program involved other regions of the spectrum than just the 5 micrometer region. It is planned to replace the aerosol models by newer models which take account of the effect of condensation of water vapor on the haze particles, as a function of relative humidity. The full 100 km atmosphere and seven absorbing species may also be restored. As mentioned above, several effects included in the Air Force routine but deleted in the old MICTRA routine were also restored: Rayleigh scattering and the continuum absorption effects for water vapor at 3.5-4.2 micrometers and for nitrogen at 4-5 micrometers.

An auxiliary plotting routine (PLOTSP) was written to display the spectra computed by the new MICTRA; this routine uses a plot package designed and written by the author specifically for the microcomputer configuration used to run MICTRA (see Reference 3).

Numerous other changes connected with the coding of the routines, were made, but these are too detailed to merit description here. (The various line files used in the calculation of the spectrum are described in the section of this report dealing with the structure of the program.)

WHAT THE PROGRAM DOES

The program calculates atmospheric transmission spectra on a line-by-line basis over a variety of paths, spanning an arbitrarily chosen wavelength or frequency range. Radiance effects are not included in the calculation.

The path may be chosen to be horizontal, vertical or slanted at any zenith angle, and may extend between any two altitudes contained in the atmosphere model, which is a layered, flat model.

The range covered by the spectrum may be chosen freely and may be specified in angstroms, micrometers, hertz or wavenumbers, depending on the preference of the user.

The atmosphere models used are three of the models used in the original Air Force program: the U.S. Standard Atmosphere, 1962 and two mid-latitude models for average summer and average winter conditions. The aerosol models used are those devised by Shettle and Fenn in 1976 (Reference 4). (A more recent version of these models is available, which includes the effects of relative humidity on the size of the aerosol particles; it is planned to include these models in the future.) The atmosphere models, which originally extended up to 100 km altitude, were modified to extend only to 15 km altitude, because higher altitude effects either were not needed for our work or were not significant. Also, of the seven main atmospheric absorbing species included in the original program, only three were retained: water vapor, carbon dioxide and ozone, because the other species were not essential for our work.

The absorption line data used by the program are taken from the 1982 edition of the main tape compiled by the Air Force Geophysics Laboratory, which lists all the known absorption lines for the seven most important atmospheric absorbing species, from the visible to the microwave region (References 5-9). Segments of line data needed are read from the Air Force tape, preprocessed into the form used by the program and stored on floppy disks.

MICTRA computes a transmission spectrum by computing the transmission over a net of points spanning the chosen wavelength or frequency range; at each point the extinction coefficients are computed by adding up several effects:

- The absorption due to all atmospheric lines (of water vapor, carbon dioxide and ozone) in a neighborhood of the current wavelength, chosen so that absorption due to the tails of more distant lines is negligible;
- Molecular continuum absorption: the 3.5-4.2 and the 8-14 micrometer water vapor continua and the nitrogen continuum at 4-5 micrometers;
- Rayleigh (molecular) scattering;
- Aerosol absorption and scattering (at present the 1976 models of Shettle and Fenn are used; their newer models, which include the effects of relative humidity, will be incorporated in the near future).

All these effects are computed for each of the atmospheric layers (there are fifteen 1 km-thick layers) which the chosen path traverses, and are combined to form the total extinction for the given wavelength, over the given path. The transmission values thus calculated over the chosen wavelength or frequency range are then stored in a disk file, for later display by the auxiliary plotting routine PLOTSP.

The plotting routine allows the user the option of displaying the computed transmission values vs wavelength in either angstroms or micrometers or vs frequency in either hertz or wavenumbers, depending on the region of the spectrum and on the preference of the user. Further, whatever scale is chosen may be displayed as increasing toward either the right or the left of the plot.

Two types of spectral plots may be computed by MICTRA and displayed by the plotting routine: a "continuous" spectrum which consists of the transmission over an equally-spaced net of points, joined by line segments to give a continuous appearance, or an "overview" spectrum in which the transmission is computed only at the exact center of each line in the chosen range. In the overview type of spectrum the plot shows the continuous background transmission due to aerosol and molecular continuum effects as a straight line (a good approximation over small wavelength ranges), with the line-center values displayed as vertical lines coming downward from the continuum; the value at the bottom of each line is, of course, the correct total transmission at that wavelength. To avoid the problem of the equally-spaced grid of points in a continuous spectrum skipping over the centers of absorption lines, thus not showing the true depth of the line or even missing it entirely, the line-center wavenumbers are intercalated into the equally spaced grid; thus the bottoms of all lines are correctly shown.

The overview type of spectrum is intended to give a picture of the gross properties of the spectrum over a large range (but small enough to contain at most a few hundred lines, and to ensure that the linear approximation to the background continuum is good), while the continuous type of spectrum is intended to show the detailed structure of the spectrum, including the shapes of the lines, over a smaller range.

The program allows the user to interactively control or select (at the terminal keyboard) many of the parameters and data sets used by the program and many of the functions provided by the program. For example, the user may: select any of the three atmosphere models and any of the aerosol models provided; select the path; change the sea-level values of temperature, pressure or other parameters in the program; specify the wavelength or frequency range of the spectrum; specify the fineness of the grid for a continuous spectrum; etc. The program also allows the user to interactively retain or reject any or all of the extinction effects, in order to see clearly how great each effect is, taken by itself. For example, the user may decide to compute a spectrum showing only the absorption due to lines, with no aerosol or molecular extinction considered; to see just how strong each line is by itself, the user could choose the neighborhood of surrounding lines to be so small that only the absorption due to each line by itself is computed. Further, any or all lines in the chosen range may be independently selected or rejected; this is accomplished by commanding the program to display each line on the screen, and telling the program whether to include it. Provision is made to accept or reject not just individual lines, but also all lines of a given species or all lines in a freely chosen wavelength range; thus a spectrum could be computed which shows only ozone lines, for example, or even a single line.

Any number of spectra may be set up and computed in a single run; this is made possible by the BATCH compiler, which functions for the microcomputer used as a kind of simplified job control language. Each spectrum is stored in its own disk file, and may later be displayed by the plotting routine.

HOW TO USE THE PROGRAM

The program was designed to use the interactive capability of microcomputers; the user communicates with the program through the terminal keyboard and the video screen.

The user only needs to execute the command file RNMICB (which stands for "run the batch version of MIC-TRA"), which then takes over and directs the user to execute other command files, depending on the type of run. Three types of runs are provided: create a BATCH file which can be executed later to compute a spectrum; compute a spectrum by executing a previously created BATCH file; or both create and execute a BATCH file.

If one of the last two run types is selected, the command file will automatically call MICTRA, after instructing the user to mount the proper floppy disk in the proper device; MICTRA will then take over and lead the user step-by-step through the run setup and execution.

All data sets needed by the program are stored internally, with one exception: the line file must be supplied by the user. The line file is a segment of data condensed from the Air Force Geophysics Laboratory main tape, which is a compilation of about 190,000 atmospheric absorption lines spanning the spectrum from the visible to the microwave region. Because MICTRA is implemented on a microcomputer with no tape drive, it is necessary to take the needed segment of data from the Air Force tape and store it on a floppy disk. The segment of data also must be "condensed" before MICTRA can use it; this is accomplished by using the auxiliary routine LNEDIT. The condensing process consists of taking the lines from the tape, which are coded as character strings in ASCII, stripping away certain parameters not needed by MICTRA (primarily quantum identifications), and converting the remaining numbers from character strings to binary form. The resulting file is about one fourth the size of the unprocessed file; this allows rather large segments of line data to be stored on a floppy disk.

Each computed spectrum is stored in a disk file, specified by the user upon prompting by MICTRA. The spectrum may be displayed by using the auxiliary routine PLOTSP, which instructs the user how to use it and prompts for any needed information or choices.

Because MICTRA leads the user through the run setup process, it is not necessary to list the required input here; the information and choices required by MICTRA may be clearly seen by examining the listing, which is well documented with explanatory comments. It might be noted that the sequence of items needed for setting up a run is not fixed; many choices are provided, and different choices will result in different sequences of input items.

To eliminate the possibility that the user might wait for a long run to finish without any knowledge of what is going on, the program types each spectrum point (wavelength or frequency and transmission) on the screen as it is computed; thus the user can abort a run that looks useless, instead of waiting blindly for it to finish.

STRUCTURE OF THE PROGRAM

The basic organization of the program is shown in Figure 1. MICTRA is the driver and main computing module; it leads the user through the run setup process and directs the calculation of the spectrum.

The logical flow of the spectrum calculation involves several nested loops. The outside loop steps through the sequence of frequency points at which the transmission is to be calculated. For a continuous type spectrum this will be an equally-spaced grid of frequency points, spanning the desired frequency range; for an overview (line-center) type of spectrum the set of frequency points will be the exact centers of all the absorption lines contained in the frequency range.

The next inner loop steps through the atmospheric layers contained within the altitude range spanned by the chosen atmospheric path. The innermost loop steps through the absorption lines contained in the frequency range of the spectrum.

Thus, for each frequency the program calculates the total absorption coefficient for all the lines in each atmospheric layer, as well as the continuum absorption coefficients, the Rayleigh scattering coefficient and the aerosol absorption and scattering coefficients for each layer. These are all added up to give the total extinction coefficient for each layer. Then the transmission for each layer is computed using the usual decreasing exponential law for extinction (e**-depth, where depth is the product of the total extinction coefficient and the path length through the layer), and finally the transmission over the entire path is computed by multiplying together the transmissions for the various layers.

The subroutines communicate with one another through the three COMMON blocks, which hold variables needed by more than one routine, as well as by arguments in the call sequences.

The program needs two external data sets: a file containing the atmosphere and aerosol models and a file containing a segment of data from the Air Force line tape. The atmosphere model file is located on a floppy disk along with the program load module; it is automatically read into the program by subroutine SETUP and stored in one of the COMMON blocks. The line file must be supplied by the user; it is created by taking the needed segment of data from the Air Force tape and using the auxiliary routine LNEDIT to condense it into the form used by MICTRA.

After the MICTRA routine has obtained the required information from the user (via the keyboard), it forms the run line file, which consists of the lines needed for the current run, by taking from the line file only those lines selected by the user in the run setup process. The run line file may contain all of the lines in the line file, some of them or none of them; the lines to be included may be selected individually, by species or by sub-ranges of the spectrum frequency range.

Figure 1. Basic Flow of MICTRA Program

During the calculation of the spectrum subroutine RDTAPE forms a "window" line file for each frequency at which the transmission is to be computed; this consists of all the lines in the run line file which are contained in a window of specified frequency width centered at the current frequency (the width is chosen by the user during the run setup process). The purpose of the window line file is to include, for the calculation of the absorption coefficient at the current frequency, all those lines within some neighborhood of the current frequency which will affect the absorption appreciably. If the user wants to calculate the absorption due to a single line as if it were isolated (even though it may actually have close neighbors which affect it), the window width may be chosen small enough to exclude all nearby lines.

In the implementation of MICTRA used by the author on the DEC 11/23 microcomputer, the line file is located on a floppy disk, while the run file and the window file are located in a part of the computer memory which is treated as a disk (logically) by the system software; thus, the operation of the program is much faster than it would be if these files were located on floppy disks. (In the event that the run file or the window file is too large to fit into that part of the memory, it is automatically put in a file located on a DEC RL02 disk drive, which holds 10.4 megabytes and is much faster than a floppy disk drive.)

MEMORY REQUIREMENTS AND OPERATING SPEED

The entire program (i.e., the load module) requires about 42 kilobytes of memory; this includes all the atmosphere and aerosol models, which are read into the program and stored internally. The line files should be small enough to fit onto a floppy disk. In the DEC computer being used by the author, which handles 8-inch double density floppy disks which hold 512 kilobytes, this allows the line files to hold up to about 20,778 lines, in the condensed form used by MICTRA; this should be large enough for most purposes. The auxiliary programs LNEDIT and PLOTSP, which respectively construct condensed line files and display the spectra, require about 13 and 32 kilobytes of memory, respectively.

The time required to compute a spectrum varies greatly, depending on the type of spectrum (continuous or only line centers) and on other factors such as the wavelength or frequency range covered, the number of absorption lines contained in the range, the width of the window of lines which significantly affect the absorption at the current frequency, the fineness of the frequency grid, etc. In general, the calculation of a line-center plot is much faster than the calculation of a continuous plot; the times may range from a few seconds for a line-center plot over a small interval to several hours for a continuous plot over a large interval with many lines and a wide window.

SOME EXAMPLES OF COMPUTED TRANSMISSION SPECTRA

In this section, several examples of transmission spectra are shown exactly as they appear on the terminal screen when displayed by the auxiliary plotting routine PLOTSP; the plots were copied directly from the screen by a TEKTRONIX hardcopy device.

Figure 2 shows a line-center spectrum in the near infrared, from 8250 to 8300 angstroms. The spectrum was computed for a slanted path extending from the ground to the top of the atmosphere model (at 15 km altitude); the zenith angle was taken to be 51 degrees. The midlatitude summer atmosphere model was used, along with a very hazy aerosol model; many of the lines show complete absorption (all the lines in this region happen to be water vapor lines). The plot gives a very clear overall picture of the absorption by water vapor and aerosols in this region. Figure 3 shows a continuous plot of a part of the region, from 8270 to 8280 angstroms; from this plot it is clear that the lack of line shapes in Figure 2 does not detract much from the qualitative picture of the spectrum, at least in this region. Both of these plots were computed with a window halfwidth of 20 wavenumbers (i.e., all lines within 20 wavenumbers to each side of the current frequency were taken into account in computing the absorption), which gives a very accurate spectrum.

Figure 4 shows a line-center spectrum in the submillimeter region, from about 180 to 200 micrometers. This spectrum was computed for a vertical path extending from 10 to 15 km altitude (if computed from the ground up, the water vapor absorption is so strong and the lines so broadened that the spectrum is virtually flat — almost everything gets absorbed). The midlatitude summer atmosphere model was used; the aerosol model does not extend to the submillimeter region, because the effect is negligible. To allow a very quick look — i.e., a fast (about 10 seconds) calculation of the spectrum — the lines were effectively considered separately by taking the window halfwidth to be only 0.001 wavenumbers; thus each line is shown as it would appear if no other lines were present. In this region both water vapor and ozone lines appear, but only water vapor lines were included in the spectrum. For comparison, the spectrum in Figure 5 was computed. This shows the same spectrum as Figure 4 does, but in a continuous form, to show its actual appearance. Also, the window halfwidth for this spectrum was taken to be 10 wavenumbers, so that it is more accurate. Because of this, and because a fine grid of points was used to span the spectral range, this spectrum took about 2 hours to compute. (It should be recalled that the exact line centers of all lines are intercalated into the grid, so that the line depths are accurately shown — there is no skipping over line bottoms due to grid points missing the line.)

It is interesting to note, from Figure 5, that the water vapor line at about 187 micrometers is extremely strong; the plot clearly shows other, weaker lines extending down from its very broad wing on the high wavelength side; on its low wavelength side there is another very strong line, which is mostly off the plot. Inspection of the line file shows that the strong line at 187 micrometers is in fact unusually strong; its intrinsic line strength is about 45 times greater than the strength of the next strongest line near it (except for the line only partly shown, which is even stronger), and is from two to six orders of magnitude greater than the strength of most of its neighboring lines.

Lastly, Figure 6 shows a spectrum in which only the aerosol effects were computed, over the entire range of the aerosol model from 0.2 to 40 micrometers. This continuous plot shows very clearly how the aerosol absorption and scattering effects decrease markedly outside the visible region of the spectrum. The spectrum was computed over a vertical path extending from the ground to the top of the atmosphere, with a midlatitude summer atmosphere model and rather clear visibility (not much haze). The wavelength grid used was very fine, so that the spectrum shows all details clearly.

TESTING OF PROGRAM

The MICTRA routine was initially tested by comparing its computed transmission values at selected wavelengths with hand calculated points; in all cases the results agreed very closely.

The routine was then tested against an independent program developed by another group at the Goddard Space Flight Center (Reference 10). This program takes account of all lines within 20 wavenumbers of the frequency at which the transmission is being computed, and it uses a Voigt line profile. Transmission spectra were calculated, using both programs, in the 5 micrometer region of the spectrum, from 2045 to 2057 wavenumbers, using the 1982 version of the Air Force absorption line tape. Both programs computed the spectrum with good resolution: every 0.01 wavenumber for the other program and every 0.04 wavenumber for MICTRA. The two calculated spectra were virtually identical; any slight differences in transmission values, at most a few percent, could be attributed to the fact that the two programs were completely independent and thus could not give identical results.

Figure 2. Line Center Spectrum in Near Infrared.

Figure 3. Continuous Plot of Sub-region of Figure 2.

Figure 4. Line Center Spectrum in Submillimeter Region; Water Vapor Lines Only.

Figure 5. Continuous Plot of the Spectrum in Figure 4.

Figure 6. Aerosol Absorption and Scattering Over a Vertical Path Through the Atmosphere, From the Visible to 40 Micrometers.

PROGRAM LISTINGS

PROGRAM MICTRA

C

С

С

C

C C

С

C

C

C

С

C

C

C

C

C

C

C

C C

С

С

C

C

C

С

С

C

C

C

C

C

C

C

C

С

C

This version of the MICTRA routine is designed to run in the BATCH mode; the purpose is to be able to calculate many transmission spectra with no operator attention.

Three modes of operation are provided:

- 1. Setup mode the routine is run interactively to create a control file for the BATCH program. The file includes all input to MICTRA which is normally input interactively at the keyboard, using ACCEPT statements.
- 2. Batch mode the routine is run under the control of the BATCH program to calculate the spectra, using the control file set up in a previous run in the setup mode.
- Combined mode the routine creates a BATCH file and executes it to compute any number of spectra, all in one run.

This routine is mainly a driver for the subroutines that actually do the calculations of the transmission spectrum. It contains the following options:

- * The following data, options and parameters may be specified:
 - * Atmosphere and aerosol models;
 - Sea-level temperature and pressure;
 - * Sea-level concentrations of water vapor, CO2 and ozone;
 - * Absorption line file;
 - Spectral range of the calculated transmission spectrum;
 - * "Overview" spectrum (large spectral range) showing transmission at line centers only, with aerosol and molecular continuum effects also shown, or "continuous" spectrum (small spectral range) showing line shapes;
 - Wavenumber increment between calculated points (may be as small as 0.01 cm-1, or even less);
 - Width of the "window" over which absorption lines are included in the calculation of the absorption at the window center.
- * The spectra are not plotted as they are calculated, because BATCH takes so much space. (The spectra can be later plotted from the disk spectrum files, using PLOTSP.)
- * The computed spectra are saved on disk files.
- * A separate routine (PLOTSP) is available to plot the spectra.

```
C
                               SPECIFICATION STATEMENTS
C
C
       BYTE
                 reply, linfil, spcfil, edmode, disp, ff,
                 htunit, pthtyp, batmod, batmd,
                 grdmod, eqspce, centrs, replys, replyp
                 speces, pcount
      INTEGER
      REAL*4
                 lownu, lastwn, molnam
      DIMENSION
                 linfil(15), spcfil(15), keepsw(9), molnam(3)
C
      COMMON
                 z(16),p(3,16),
                 t(3,16),w(3,3,16),cay(3,16),wg(3,3),
                 ta2(16), fa(6,61), asc(6,61), aab(6,61),
                 has (16)
C
      COMMON/BLK1/
                     dnu(16), chi(16), hz1(16), hz2(16), itp, jt, ksam
С
      COMMON/RSETUP/ bound, lownu, highnu, delnu, v,
                     iatmod, iarmdg, iarmdt, iarmds,
                     numpts, nlines, keepsw, iblayr, itlayr,
                     irsize, hzint(16), iaermd
С
                 molnam(1)/'H2O '/, molnam(2)/'CO2 '/, molnam(3)/'O3 '/
      DATA
                 ff/"014/, linfil/15*"000/, spcfil/15*"000/, batmd/'C'/
      DATA
                 eqspce/'E'/, centrs/'C'/
      DATA
      DATA
                 C/2.997925E10/
C *
С
                                      RUN SETUP
C
                                   *****
С
C
   SET UP MODE OF OPERATION: COMMAND FILE SETUP OR CALCULATION UNDER BATCH
   C
C
   4 format(//t2,'Is this run to set up a BATCH command file'/
          t2, 'or to calculate spectra under BATCH control? (F or C) ',$)
      accept 5, batmod
      format(a1)
C
      IF (batmod .eq. 'F') go to 6
      IF (batmod .eq. 'C') go to 9
С
C
       Open BATCH command file for input
C
С
   6 OPEN (unit=9, name='SDO:BATFIL.BAT', type='NEW', disp='KEEP',
            form='FORMATTED', initialsize=200)
С
      write (9,8)
     format('$JOB'/'$RUN SD2:MICTRA.SAV'/'$DATA')
      write (9,5) batmd
     OPEN FILE TO HOLD CALCULATED TRANSMISSION SPECTRUM
С
C
     C
   9 type 2
    2 format(//t2,'Type name of file (including device) to store'/
               t2, 'the computed transmission spectrum: '.$)
      accept 3, spcfil
      format(15a1)
      IF (batmod .eq. 'F') write(9,3) spcfil
```

```
IF (BATMOD .EQ. 'C')
     * OPEN (unit=8, name=spcfil, type='NEW', disp='KEEP',
             access='SEQUENTIAL', form='UNFORMATTED', recordsize=2,
             initialsize=300)
С
C
     CHOOSE PATH OVER WHICH TRANSMISSION IS TO BE COMPUTED
C
C
     r
       type 210
  210 format(//t2,'Set up path over which transmission is to',
               t44, be calculated: 1//)
C
C
        Heights and path length in feet or meters?
C
C
  214 type 211
  211 format(t10, 'Specify heights above sea level and path',
             t51,'length'/
             t10,' in feet or meters? (F or M): ',$)
      accept 212, htunit
      format(a1)
      IF (batmod .eq. 'F') write(9,212) htunit
C
      IF (htunit .eq. 'F') htconv = 3.048E-04
                                                 ! convert ft to km
      IF (htunit .eq. 'M') htconv = 1.E-03
                                                 ! convert m to km
C
      IF (htunit .ne. 'F' .and. htunit .ne. 'M') go to 214 ! error corr.
C
C
       Is the path horizontal, vertical or slanted?
C
 215 type 213
 213 format(/t10,'Is the path horizontal, vertical or slanted?',
              t54,' (H,V or S): ',$)
      accept 212, pthtyp
      IF (batmod .eq. 'F') write(9,212) pthtyp
C
          IF (pthtyp .eq. 'H') go to 220
         IF (pthtyp .eq. 'V' .OR. pthtyp .eq. 'S') go to 240
         go to 215
                                                            ! error corr.
C
      Setup for horizontal path
   220
         type 221
   221
         format(/t15,'The path is horizontal;'/
                 t15, we need the following information: 1//
                 t20, 'Height of path (ft or m, <15 km): ',$)
         accept 222, pathht
   222
         format(f10.3)
         IF (batmod .eq. 'F') write(9,222) pathht
         phtkm = htconv * pathht
                                                     ! path height in km
C
         type 223
         format(/t20,'Length of path (ft or m): ',$)
   223
         accept 222, pathin
         IF (batmod .eq. 'F') write(9,222) pathln
         plnkm = htconv * pathin
                                                     ! path length in km
C
         call laynum (phtkm, layer, delht)
                                                     ! get atm. layer number
         iblayr = layer
         itlayr = layer
                                                     !, (top and bottom same)
         go to 12
```

```
С
       Setup for vertical or slant path
С
C
    240
          type 241
   241
          format(/t15,'The path is vertical or slanted;'/
                 t15, we need the following information: '//
                 t20, 'Height of lower end of path (ft or m, <15 km): ',$)
          accept 222, phtbot
          IF (batmod .eq. 'F') write(9,222) phtbot
С
          type 242
    242
          format(/t20, 'Height of upper end of path (ft or m, <15 km): ',$)
          accept 222, phttop
          IF (batmod .eq. 'F') write(9,222) phttop
ε
          secant = 1.0
                                              ! set sec to 1 for vert. path
          IF (pthtyp .eq. 'V') go to 245
C
         type 243
                                              ! define sec for slant path
   243
          format(/t20,'Zenith angle of path, in degrees: ',$)
          accept 244, zenang
   244
          format(f7.3)
          IF (batmod .eq. 'F') write(9,244) zenang
         zangrd = (3.141593/180.) * zenang! zenith angle in radians
         secant = 1./cos(zangrd)
C
   245
         phbkm = htconv * phtbot
                                              ! ht. of bottom of path (km)
         phtkm = htconv * phttop
                                              ! ht. of top of path (km)
         call laynum (phbkm, layer, delht)
                                              ! bottom layer no. and segment
         iblayr = layer
         botseg = 1. - delht
         IF (delht .eq. 0.) botseg = 0.
C
         call laynum (phtkm, layer, delht)
                                             ! top layer no. and segment
         itlayr = layer
         topseg = delht
         IF (delht .eq. 0.) topseg = 1.
C
C
    READ IN ALL ATMOSPHERIC MODELS, INCLUDING AEROSOL MODELS, FROM DATA SET 2
    C
С
    12
         call setup
                                            ! set up all atmosphere models
С
   CHOOSE ATMOSPHERE AND AEROSOL MODELS
С
    С
С
C
       Atmosphere Model
С
       _____
С
         type 20
   20
         format('0',t2,'which of the 3 atmosphere models do you want?'/
                     t10, 'type: 1 for midlatitude summer model:'/
                     t17, '2 for midlatitude winter model;'/t17, '3 for U.S. Standard model: ',$)
      *
         accept 21, iatmod
    21
         format(i1)
         IF (batmod .eq. 'F') write(9,21) iatmod
```

```
C
        Aerosol Model
С
C
         TYPE 4000
 4000
         FORMAT(//T2, 'The sea-level meteorological range for the'/
                  t2, 'aerosol models may be chosen from 5 km'/
                   t2,'(very hazy) to 50 km (very clear);'/
                   t2, 'type the desired range in km: ',$)
         ACCEPT 4001, SLVIS
 4001
         FORMAT(F6.2)
         IF (BATMOD .EQ. 'F') WRITE(9,4001) SLVIS
C
         DO 4010 I=7,16
                                                        ! construct interpolated
         FINT = (50.-SLVIS)/45.
                                                       ! altitude scaling fac-
         HZINT(I) = HZ1(I) + FINT*(HZ2(I)-HZ1(I))
                                                        ! tors for aer. models
 4010
         CONTINUE
                                                        ! (Only below 9 km)
C
C
                            Note: HZ1 = clear (50 km) scaling factors
C
                                   HZ2 = hazy (5 km) scaling factors
C
                                   (stored in COMMON/BLK1/)
        type 22
    22 format(//t2, 'Does any part of the path lie between'/
                  t2, '0 km (sea-level) and 2 km altitude? (Y or N): ',$)
         accept 23, reply
        format(a1)
    23
         IF (batmod .eq. 'F') write(9,23) reply
         IF (reply .eq. 'Y') go to 24
         go to 27
C
    24 type 25
    25 format('0',t2,'which boundary-layer (0-2 km)',
                    t32, 'aerosol model do you want?'/
                     t10, 'type: 1 for rural model;'/
                               '2 for tropospheric model;'/
                     t16,
                    t16,
                               '3 for maritime model;'/
                    t16,
                               '4 for urban model: ',$)
        accept 26, iarmdg
        format(i1)
         IF (batmod .eq. 'F') write(9,26) iarmdg
C
    27
       type 28
    28 format(//t2, 'Does any part of the path lie between'/
                 t2,'2 and 9 km altitude? (Y or N): ',$)
        accept 23, reply
IF (batmod .eq. 'F') write(9,23) reply
IF (reply .eq. 'Y') go to 29
        go to 31
C
    29
       IARMDT = 2
С
    31 type 32
    32 format(//t2,'Does any part of the path lie above 9 km altitude?',
                 t53,'(Y or N): ',$)
        accept 23, reply
IF (batmod .eq. 'F') write(9,23) reply
IF (reply .eq. 'Y') go to 33
        go to 39
```

```
33 type 34
    34 format(//t2,'Which stratospheric aerosol model do you want?'/
                 t10, 'type: 5 for clear (background stratospheric)'/
                 t16,
                            '6 for hazy (aged volcanic):
        accept 26, iarmds
        IF (batmod .eq. 'F') write(9,26) iarmds
С
        IF (IARMDS .EQ. 5) GO TO 4020 IF (IARMDS .EQ. 6) GO TO 4030
       DO 4025 I=1,6
 4020
        HZINT(I) = HZ1(I)
 4025
        CONTINUE
        GO TO 39
 4030
       DO 4035 I=1,6
        HZINT(I) = HZ2(I)
 4035
        CONTINUE
С
C
    MODIFY ATMOSPHERIC MODEL (AT SEA LEVEL ONLY)
С
С
    С
   39 type 40
    40 format(//t2,'The following are sea-level values of some parameters'/
        t2,'in the atmosphere model chosen; any of them may be changed:'//)
С
C
       Modify Sea-level Temperature
С
        tfahr = (9.0/5.0) * t(iatmod, 16) - 459.67! convert t to Fahr.
C
       type 41, tfahr
    41 format(t2, Temperature (deg. F) - ',t30, f7.2,
               t45, 'change? (Y or N): ',$)
        accept 42, reply
       format(a1)
        IF (batmod .eq. 'F') write(9,42) reply
С
        IF (reply .eq. 'N') go to 45
C
        type 43
   43 format(t15, 'New value:', t29,' ',$)
       accept 44, tfahr
       format(f7.2)
        IF (batmod .eq. 'F') write(9,44) tfahr
C
        t(iatmod, 16) = (5./9.)*(tfahr+459.67) ! convert back to deg. K
C
    Modify Sea-level Pressure
C
С
С
    45 type 46, p(iatmod, 16)
    46 format(/t2, 'Pressure (millibars) - ',t30,f8.3,
               t45, 'change? (Y or N): ',$)
       IF (batmod .eq. 'C') write (8,47) p(iatmod,16)
С
        accept 42, reply
        IF (batmod .eq. 'F') write(9,42) reply
С
        IF (reply .eq. 'N') go to 48
С
        type 43
        accept 47, p(iatmod, 16)
    47 format(f8.3)
        IF (batmod .eq. 'f') write(9,47) p(iatmod,16)
```

```
C
      Modify Sea-level Concentration of Water Vapor
C
C
    48 type 49, wg(iatmod,1)
    49 format(/t2,'Water vapor conc. (molecules/cm**2/km) - ',
               t46,e10.2,t61,'change? (Y or N): ',$)
C
        IF (batmod .eq. 'C') write (8,51) wg(iatmod,1)
        accept 42, reply
        IF (batmod .eq. 'F') write(9,42) reply
C
        IF (reply .eq. 'N') go to 52
C
        type 50
    50 format(t33,'New value:',t45,' ',$)
        accept 51, wg(iatmod,1)
    51 format(e10.2)
       If (batmod .eq. 'F') write(9,51) wg(iatmod,1)
C
С
      Modify Sea-level Concentration of Carbon Dioxide
С
C
    52 type 53, wg(iatmod,2)
    53 format(/t2,'Carbon dioxide conc. (molecules/cm**2/km) - ',
               t46,e10.2,t61,'change? (Y or N): ',$)
       accept 42, reply
        IF (batmod .eq. 'F') write(9,42) reply
C
       IF (reply .eq. 'N') go to 54
C
       type 50
       accept 51, wg(iatmod,2)
       IF (batmod .eq. 'F') write(9,51) wg(iatmod,2)
C
C
      Modify Sea-level Concentration of Ozone
C
C
    54 type 55, wg(iatmod,3)
   55 format(/t2, 'Ozone conc. (molecules/cm**2/km) - ',
               t46,e10.2,t61,'change? (Y or N): ',$)
       accept 42, reply
       IF (batmod .eq. 'F') write(9,42) reply
C
       IF (reply .eq. 'N') go to 69
C
       type 50
       accept 51, wg(iatmod,3)
       IF (batmod .eq. 'F') write(9,51) wg(iatmod,3)
C
    SET UP MASTER LINE FILE FOR THIS RUN (Unformatted, sequential access)
C
    C
C
      This master line file should contain ONLY H2O, CO2 and O3 lines (all
С
    isotopes) in the region of the spectrum being investigated.
C
C
    Each record in the file should contain the following quantities, in
C
    UNformatted (i.e., binary) form:
С
C
               Wavenumber
                                       real*4
                                         ..
C
               Line strength
                                         11
C
               Line half-width
                                        "
C
               Lower state energy
               Isotope identification integer (coded)
С
C
               Molecular species
                                      integer (1, 2 or 3)
```

```
The exact definitions and units of these quantities are given in the
C
C
     documentation for the Air Force Line Catalogue.
C
     A line file in this format is called a "condensed" line file, to
С
С
     distinguish it from the original segment of line data taken from the
     AFGL tapes, which list the lines in ASCII (i.e., formatted) form.
C
     A linefile editing routine is available to "condense" desired
C
C
     segments of AFGL line data.
       type 70
       format('0',t2,'Type the name of the line file to be used: ',$)
        accept 71, linfil
       format(15A1)
        IF (batmod .eq. 'F') write(9,71) linfil
С
        OPEN (unit=4, name=linfil, type='OLD', form='UNFORMATTED',
              disp='KEEP')
С
     COUNT NUMBER OF LINES IN MASTER LINE FILE,
C
     NOTE FIRST AND LAST WAVENUMBERS AND
C
     DISPLAY THIS INFORMATION ON SCREEN
С
     (in both frequency and wavelength units)
C
     C
   710 format(//t2,'Is this LINFIL the same as the one used for the'/
                 t2, 'immediately preceding spectrum? (Y or N; type N'/
                 t2, 'if this is the first spectrum for this run):
        accept 711, reply
   711
       format(a1)
        IF (batmod .eq. 'F') write(9,711) reply
С
        IF (reply .eq. 'Y') go to 726
        read(4) wavnum, strnth, hwidth, energy, isotop, speces
        frstwn = wavnum
        rewind 4
C
        DO 722 linct=1,30000
       read(4, end=725) wavnum, strnth, hwidth, energy, isotop, speces
   722
С
   725
       lastwn = wavnum
        mlines = linct-1
        rewind 4
С
        end1hz = c*lastwn
        end2hz = c*frstwn
        end1a = 1.e8/lastwn
        end2a = 1.e8/frstwn
        end1mc = 1.e4/lastwn
        end2mc = 1.e4/frstwn
C
   726 type 727, mlines, lastwn, frstwn, end1hz, end2hz,
                          end1a, end2a, end1mc,end2mc
        format(//t2, 'This line file contains', t34, I5, t40, 'lines;'/
   727
                 t2, 'it covers the frequency-wavelength range: '//
                 t30, 'FROM', t60, 'TO'//
                 t5, 'wavenumbers:', t25, f14.4, t53, f14.4//
                 t5,'freq. in hertz:',t24,e16.9,t52,e16.9//
                 t5, 'angstroms:', t24, f15.4, t52, f15.4//
                 t5, 'micrometers:', t26, f12.4, t54, f12.4///)
```

```
SPECIFY WAVENUMBER RANGE OVER WHICH TRANSMISSION IS TO BE CALCULATED
С
     C
        type 730
       format(//t2,'Type the endpoints, in either order, of the'/
t2,'spectral range over which the transmission is'/
   730
                 t2, 'to be computed; the endpoints may be expressed'/
                 t2, 'in wavenumbers, hertz, angstroms or micrometers;'/
                 t2.'use the E format (real).'//
                 t2, 'Type: 1 for endpoints in wavenumbers'/
                          2 "
                 t2,1
                                   . . .
                                           " hertz'/
                 t2,1
                                   11
                                           **
                                             angstroms'/
                 t2,'
                             ..
                                   ...
                                           ..
                                             micrometers: ',$)
C
        accept 731, iunit
   731
       format(i1)
        IF (batmod .eq. 'F') write(9,731) iunit
C
        type 732
       format(//t10,'One endpoint: ',$)
   732
        accept 733, highnu
        FORMAT(E18.6)
   733
        IF (batmod .eq. 'F') write(9,733) highnu
        IF (iunit .eq. 1) highnu = highnu ! convert to wavenumbers
        IF (iunit .eq. 2) highnu = highnu/c
        IF (iunit .eq. 3) highnu = 1.E8/highnu
        IF (iunit .eq. 4) highnu = 1.E4/highnu
C
        type 734
   734 format(/t10,'Other endpoint: ',$)
       accept 733, lownu
IF (batmod .eq. 'F') write(9,733) lownu
C
        IF (iunit .eq. 1) lownu = lownu
                                            ! convert to wavenumbers
        IF (iunit .eq. 2) lownu = lownu/c
        IF (iunit .eq. 3) lownu = 1.E8/lownu
        IF (iunit .eq. 4) lownu = 1.E4/lownu
С
        IF (lownu .lt. highnu) go to 1999
                                          ! interchange endpoints
        hghnu = highnu
                                            ! (if necessary)
        highnu = lownu
        lownu = hghnu
C
С
     CHOOSE EQUALLY SPACED OR LINE CENTER GRID OF WAVELENGTH PTS
C
    C
   1999 TYPE 2000
   2000 FORMAT(/T2, 'Do you want to compute the spectrum: '//
          t5,'o Over an equally spaced grid of wavenumbers (type E)'/
                Only at the absorption line centers (type C)'//
          t2,'(If no absorption lines are to be used, you MUST type E): ',$)
        ACCEPT 2001, GRDMOD
   2001 FORMAT(A1)
       IF (BATMOD .EQ. 'F') WRITE(9,2001) GRDMOD IF (GRDMOD .EQ. EQSPCE) GO TO 79 IF (GRDMOD .EQ. CENTRS) GO TO 89
```

```
79 type 80
    80 format('0',t2,'Type the wavelength increment (in wavenumbers)'/
                  t2, 'to be used in computing the transmission'/
                  t2,'spectrum: ',$)
        accept 81, delnu
       format(f15.4)
       IF (batmod .eq. 'F') write(9,81) delnu
С
       xnmpts = (highnu-lownu)/delnu + 1.
                                                  ! corr. no. of points
        IF (xnmpts .lt. 32000.) numpts = xnmpts
       IF (xnmpts .gt. 32000.) numpts = 32000
       type 82, numpts
     82 format(//t2,'This wavelength increment corresponds to'/
                  t2, 'a total of ', t14, i5, t20, 'points;'/
                  t2, 'is this number of points okay? (Y or N): ',$)
                  accept 83, reply
    83 format(a1)
                  IF (batmod .eq. 'F') write(9,83)
                  IF (reply .eq. 'N') go to 79
С
C
    SPECIFY WIDTH OF WAVENUMBER WINDOW IN WHICH LINES ARE CONSIDERED
C
    TO CONTRIBUTE TO THE ABSORPTION AT THE WINDOW CENTER
C
    С
С
    89
       type 90
    90 format('O',t2,'Type the HALF-width, in wavenumbers, of the window'/
                  t2, over which you want lines to be included in calcu'/
                  t2, 'lating the absorption at the window center: ',$)
С
       accept 91, bound
    91
       format(f12.4)
       IF (batmod .eq. 'F') write(9,91) bound
C
    EXAMINE WAVENUMBER RANGE AND WINDOW WIDTH:
С
C
    IF RANGE, EXTENDED ABOVE AND BELOW BY WINDOW HALF-WIDTH,
    IS NOT CONTAINED IN MASTER LINE FILE,
C
    GO BACK AND RE-DEFINE THEM (UNLESS this spectrum is to show
C
    ONLY aerosol and/or molecular continuum effects, with NO
С
C
    absorption lines included - query user for this information)
    С
С
       ibotsw = 0
       itopsw = 0
C
       IF ((lownu-bound) .lt. frstwn)
                                       ibotsw = -1
       IF ((highnu+bound) .gt. lastwn) itopsw = -1
       isumsw = ibotsw + itopsw
С
       IF (isumsw .eq. 0)
                           go to 94
С
       IF(ibotsw .eq. -1)
                           type 92
   92 format(/t2,'lownu-bound falls below the first line'/
               t2, of the master line file - ')
       IF(itopsw .eq. -1)
                          type 93
       format(/t2, 'highnu+bound falls above the last line'/
               t2,'of the master line file - ')
       type 935
   935 format(/t2,'Is this spectrum to show ONLY aerosol and/or'/
               t2, 'molecular continuum effects, with NO absorption'/
               t2, 'lines included? (Y or N): ',$)
       accept 936, reply
  936 format(a1)
```

```
IF (batmod .eq. 'F') write (9,936) reply
IF (reply .eq. 'Y') go to 94
        type 931
   931
       format(/t2,'re-define lownu, highnu and/or bound:')
        go to 726
       IF (GRDMOD .EQ. CENTRS) PLTCOD = 1.
        IF (GRDMOD .EQ. EQSPCE) PLTCOD = 0.
C
        ANGMIC = 0.
                                                ! output in angstroms or microns
        IF (1.E8/LOWNU .GE. 1.E4) ANGMIC = 1.
        IF (BATMOD .EQ. 'C')
                                   WRITE(8) PLTCOD, ANGMIC
        IF (BATMOD .EQ. 'C'
                             .AND.
            ANGMIC .EQ. O.)
                                   WRITE(8) 1.E8/HIGHNU,1.E8/LOWNU! ang
        IF (BATMOD .EQ. 'C' . AND.
            ANGMIC .EQ. 1.)
                                   WRITE(8) 1.E4/HIGHNU, 1.E4/LOWNU! mic
C
C
C
     "NON-PHYSICAL" SELECTION OF LINE, CONTINUUM OR AEROSOL EXTINCTION
     C
        type 121
   121 format(//t2,'The user may want to arbitrarily select or eliminate'/
                 t2,'the molecular absorption lines of a given species,'/
                 t2, 'Rayleigh (molecular) scattering, any of the three'/
                 t2, 'molecular continua, aerosol absorption or aerosol'/
                 t2,'scattering; to allow this, the following options'/
                 t2, 'are provided; provision is made later for more'/
                 t2, 'flexible selection of absorption lines.'//)
                 type 122
   122 format(t2, 'Eliminate or retain all water lines (E or R): ',$)
        accept 123, reply
       format(a1)
        IF (batmod .eq. 'F') write(9,123) reply
        keepsw(1) = 1
        IF (reply .eq. 'E') keepsw(1) = 0
C
        type 124
   124
        format(t2.
           'Eliminate or retain all carbon dioxide lines (E or R): ',$)
        accept 123, reply
        IF (batmod .eq. 'F') write(9,123) reply
        keepsw(2) = 1
        IF (reply .eq. 'E') keepsw(2) = 0
C
        type 125
       format(t2,'Eliminate or retain all ozone lines (E or R): ',$)
   125
        accept 123, reply
        IF (batmod .eq. 'F') write(9,123) reply
        keepsw(3) = 1
        IF (reply .eq. 'E') keepsw(3) = 0
C
        type 126
   126 format(t2, 'Eliminate or retain Rayleigh scattering (E or R): ',$)
        accept 123, reply
        IF (batmod .eq. 'F') write(9,123) reply
        keepsw(4) = 1
        IF (reply .eq. 'E') keepsw(4) = 0
```

```
type 127
   127
       format(t2,
          'Eliminate or retain 3.5-4.2 micron H2O continuum (E or R): ',$)
        accept 123, reply
        IF (batmod .eq. 'f') write(9,123) reply
        keepsw(5) = 1
        IF (reply .eq. 'E') keepsw(5) = 0
С
        type 128
   128 format(t2,
          'Eliminate or retain 8-14 micron H2O continuum (E or R): ',$)
        accept 123, reply
        IF (batmod .eq. 'F') write(9,123) reply
        keepsw(6) = 1
        IF (reply .eq. 'E') keepsw(6) = 0
C
        type 129
   129
       format(t2,'Eliminate or retain nitrogen continuum (E or R): ',$)
        accept 123, reply
        IF (batmod .eq. 'F') write(9,123) reply
        keepsw(7) = 1
        IF (reply .eq. 'E') keepsw(7) = 0
C
       type 130
   130 format(t2,'Eliminate or retain aerosol absorption (E or R): ',$)
        accept 123, reply
        If (batmod .eq. 'F') write(9,123) reply
        keepsw(8) = 1
        IF (reply .eq. 'E') keepsw(8) = 0
C
       type 131
  131
       format(t2,'Eliminate or retain aerosol scattering (E or R): ',$)
        accept 123, reply
        If (batmod .eq. 'F') write(9,123) reply
        keepsw(9) = 1
        IF (reply .eq. 'E') keepsw(9) = 0
   SET UP THE LINE FILE FOR THIS RUN, BY TAKING THE APPROPRIATE LINES
   FROM THE MASTER LINE FILE ENTERED ABOVE
   С
С
       Open the run line-file (unformatted, sequential access)
C
C
C
       OPEN (unit=3, name='SCR:RUNFIL.DAT', type='NEW', disp='DELETE',
             form='UNFORMATTED', recordsize=6, initialsize=974)
С
      Set up interactive screening of lines
C
C
       type 961
   961
      format(//t2,'Do you want to interactively screen the lines'/
                t2, before they are written to RUNFIL? (Y or N): ',$)
       accept 962, reply
       format(a1)
        IF (batmod .eq. 'F') write(9,962) reply
C
       iusedt = 0
       IF(reply .eq. 'Y') iusedt = 1
C
C
       Initialize line counts
С
      nlines = 0
                                    ! init. count of lines read to RUNFIL
                                                     **
                                      - 11
                                                         " from LINFIL
       iread = 0
                                             **
                                                11
```

```
C
       Read a line from LINFIL
C
C
   110 READ(4, end=200) wavnum, strnth, hwidth, energy, isotop, speces
С
        ******
C
C
       Automatic screening
C
        IF (wavnum .lt. (lownu-bound)) go to 110
IF (wavnum .gt. (highnu+bound)) go to 200
        IF (keepsw(speces) .eq. 0)
                                          go to 110
C
       Interactive screening
        IF (iusedt .eq. 0) go to 990
C
        iread = iread + 1
        IF (iread .eq. 1) go to 970
        go to 975
C
   970 type 971
   971 format(//t2,'Which mode do you want to use up to the next stop?'//
                  t12,'R - reject all lines up to next stop'/
                  t12,'I - include " " " " " '/
t12,'E - examine each line " " " '//
                  t2, 'Type R, I or E: ',$)
        accept 962, edmode
        IF (batmod .eq. 'f') write(9,962) edmode
C
        type 972
   972 format(/t2,'Type next wavenumber stop: ',$)
        accept 973, wnstop
   973
       format(f10.4)
        IF (batmod .eq. 'F') write(9,973) wnstop
C
        go to 980
C
   975 IF (wavnum .le. wnstop) go to 980
C
        type 971
                                                                   ! succeeding stops
        accept 962, edmode
        IF (batmod .eq. 'F') write(9,962) edmode
        type 972
        accept 973, whstop
        IF (batmod .eq. 'F') write(9,973) wnstop
C
   980 IF (edmode .eq. 'R') go to 110
        IF (edmode .eq. 'I') go to 990
C
        type 385, molnam(speces), isotop, wavnum, strnth, hwidth, energy
         type 981
   981 format(/t2,'Type R to reject this line'/
        t2,'Type I to include it: ',$) accept 962, disp
        IF (batmod .eq. 'F') write(9,962) disp
C
        IF (disp .eq. 'R') go to 110
```

```
С
        Write this line (which is retained if this point is reached)
С
        into RUNFIL
C
   990
       write(3) speces, isotop, wavnum, strnth, hwidth, energy
C
C
        Keep a running count of the number of lines:
C
        go back and read the next line
C
        nlines = nlines + 1
C
        go to 110
С
C
С
        If RUNFIL contains no lines, decide whether to continue the run
C
C
   200 IF (nlines .eq. 0) go to 201
        go to 380
C
   201
       type 202
   202 format(///t2,'No absorption lines in RUNFIL;'/
                  t2, continue run? (Y or N): ',$)
        accept 203, reply
   203
        format(a1)
        IF (batmod .eq. 'F') write(9,203) reply
C
        IF (reply .eq. 'N') STOP
        go to 399
        If RUNFIL contains any lines, do you want to display them
С
        on the screen and/or print them?
        type 381, nlines
       format(//t2,'There are',t12,I5,t18,'lines in RUNFIL;'/
        t2,'do you want to display them on the screen? (Y or N): ',$)
        accept 382, replys
       format(a1)
        IF (batmod .eq. 'F') write(9,382) replys
        type 386
   386 format(t2,'do you want to print them?'/
               t2, '(Turn on the printer!)
                                                (Y or N): ',$)
        accept 382, replyp
        IF (batmod .eq. 'F') write(9,382) replyp
С
        IF (replys .eq. 'N' .AND.
      * replyp .eq. 'N')
                               go to 399
C
        Display and/or print lines in RUNFIL
С
        rewind 3
С
        DO 384 I=1, nlines
        read(3) speces, isotop, wavnum, strnth, hwidth, energy
        IF (replys .eq. 'Y' .and. I .eq. 1) type 388
IF (replyp .eq. 'Y' .and. I .eq. 1) print 388
        IF (replys .eq. 'Y')
      * type 385, molnam(speces), isotop, wavnum, strnth, hwidth, energy
        IF (replyp .eq. 'Y')
      * print 385, molnam(speces), isotop, wavnum, strnth, hwidth, energy
   384 continue
С
        rewind 3
```

```
388 format(//t2,'species',t10,'isotope',t18,'wavenumber',
                t33, 'strength', t48, 'halfwidth', t60, 'l.s. energy')
   385 format(/t2,a4,t10,i4,t18,f10.4,t33,e10.3,t48,f8.4,t60,f10.3)
C
        Compute number of blocks required to store RUNFIL
С
C
C
       irsize = IFIX((FLOAT(nlines)/512.)\star24.) + 1 ! no. of blocks
С
        If RUNFIL size is less than 164 blocks, put RUNFIL in VM
C
С
C
        IF (irsize .GT. 164) go to 1507
С
        OPEN (unit=1, name='VM:RUNFIL.DAT', type='NEW', disp='KEEP',
             form='UNFORMATTED', recordsize=6, initialsize=irsize)
C
        IF(nlines .eq. 0) go to 1509
        rewind 3
C
        DO 1508, II=1, nlines
        read (3) speces, isotop, wavnum, strnth, hwidth, energy
        write(1) speces, isotop, wavnum, strnth, hwidth, energy
 1508
        continue
C
 1509
        CLOSE(unit=3, disp='DELETE')
        CLOSE(unit=1, disp='KEEP')
        OPEN (unit=3, name='VM:RUNFIL.DAT', type='OLD', disp='DELETE',
              form='UNFORMATTED', recordsize=6)
C
        Close LINFIL
C
 1507
        CLOSE(unit=4, disp='KEEP')
C
C
        Comments
C
        The line file for this run is now set up; it contains only those
C
C
        lines for which the concentration is non-zero; the total number of
        lines in RUNFIL is nlines; the wavenumber range contained in the
C
       file is lownu-bound to highnu+bound.
C
C
                           ***********
       IF (batmod .eq. 'F') go to 800
C
                                    CALCULATION
C
C
                                   ********
C
         To compute the absorption coefficient at each of the net of points
C
       of separation delnu spanning the wavenumber range (lownu, highnu),
C
       we compute, at each point of wavenumber v, the sum of the contri-
С
С
       butions from all lines which lie in the window (v-bound, v+bound);
C
       for an overview spectrum the net of points consists of just the
С
       line centers.
C
C
      COMPUTE AEROSOL-ONLY TRANSMISSION AT HIGHNU AND LOWNU
С
      (for use by PLOTSP in drawing the aerosol line
С
      for a line-center plot)
C
      IAERMD = 1
        ATL = -1.
       ATU = -1.
```

```
V = HIGHNU
       GO TO 300
 2900
       IF (ATL .LT. 0.) GO TO 2910
       IF (ATU .LT. 0.) GO TO 2920
2910
       ATL = TRANS
       V = LOWNU
       GO TO 300
2920
       ATU = TRANS
       WRITE(8) ATL, ATU
       IAERMD = 0
С
С
    LOOP OVER NET OF POINTS SPANNING THE SPECTRUM
C
    С
       IF (GRDMOD .EQ. EQSPCE) GO TO 3000
       IF (GRDMOD .EQ. CENTRS) GO TO 3100
C
3000
                                         ! start at low end of spectrum
       v = lownu
                                         ! index for net of points
       i = 1
       itopsw = 0
                                         ! switch to jump out of loop
       GO TO 300
С
3100
       REWIND 3
       LNINDX = 0
  310 READ(3) SPECES, ISOTOP, WAVNUM, STRNTH, HWIDTH, ENERGY
       LNINDX = LNINDX + 1
       IF (WAVNUM .LT. LOWNU) GO TO 310
       FRSTLN = LNINDX
       I = 1
       V = WAVNUM
C
  300 call rdtape
                                              ! loop over net of points
С
       ******
                                                ********
C
C
     Go to section of code for given path type
Ç
C
       IF (pthtyp .eq. 'H') go to 1000
       IF (pthtyp .eq. 'V' .OR. pthtyp .eq. 'S') go to 1100
С
C
       Horizontal path
C
       ______
C
1000
       layer = iblayr
                                                   ! ext. coeff.
       extcof = cay(iatmod, layer) + aersol(layer)
                                                      ! transmittance
       trans = exp(-extcof*plnkm)
                                                      ! wavenumber
       waveno = v
       go to 1400
C
     Vertical or slant path
С
С
C
1100 depth = 0.
```

```
DO 1110 layer=itlayr, iblayr
C
         l = layer
         extcof = cay(iatmod, l) + aersol(l)
         pathl = secant
         IF (l .eq. iblayr) pathl = botseg*secant
IF (l .eq. itlayr) pathl = topseg*secant
         depth = depth + extcof*pathl
 1110
         continue
С
         ****
C
         trans = exp(-depth)
         waveno = v
C
      Store this point in spectrum file (formatted, seq. access)
 1400
         IF (IAERMD .EQ. 1) GO TO 2900
C
         IF (angmic .eq. 0.) write(8) 1.e8/waveno, trans ! conv. to ang.
IF (angmic .eq. 1.) write(8) 1.e4/waveno, trans ! conv. to mic.
C
C
      Type this point on the screen to show the user
      the progress of the calculation
C
C
         type 1401, waveno, trans
 1401
        format(t2,e12.5,t18,f8.4)
C
C
      Test wavenumber to see if high end of range has been reached
C
         IF (GRDMOD .EQ. EQSPCE) GO TO 350
C
         REWIND 3
         LNINDX = 0
   351 READ(3, END=800) SPECES, ISOTOP, WAVNUM, STRNTH, HWIDTH, ENERGY
         LNINDX = LNINDX + 1
         IF (LNINDX .EQ. FRSTLN+I) GO TO 355
         GO TO 351
   355 I = I + 1
         V = WAVNUM
         WAVNOP = WAVENO
         TRANSP = TRANS
        IF (V .LE. HIGHNU) GO TO 300
         I = I - 1
         GO TO 800
C
   350 rewind 3
        read(3,end=358) speces, isotop, wavnum, strnth, hwidth, energy
         IF (wavnum .gt. v .and. wavnum .lt. v+delnu) go to 357
         go to 356
   357
        v = wavnum
        go to 359
   358
        v = v + delnu
   359 i = i + 1
C
         wavnop = waveno
                                      ! store these as "previous" values
         transp = trans
С
        IF (v .gt. highnu) go to 3355
         go to 300
C
         *****
```

```
3355
      IF (itopsw .eq. 1) go to 3356
       itopsw = 1
       v = highnu
       go to 300
C
       *****
C
                                      ! correct the line count
3356
       i = i-1
800 close(unit=3,disp='DELETE')
       IF (batmod .eq. 'C') close(unit=8,disp='KEEP')
C
       type 1560
       format(//t2,'Do you want to compute another spectrum? (Y or N): ',$)
accept 1561, reply
1560
1561
       format(a1)
С
       IF (batmod .eq. 'F') write(9,1561) reply
IF (reply .eq. 'Y') go to 9
C
       IF (batmod .eq. 'F') write(9,1562)
1562
       format('$EOD'/'$EOJ')
       IF (batmod .eq. 'F') CLOSE (unit=9, disp='KEEP')
C
       STOP
       END
```

SUBROUTINE SETUP

_	20860011	NE SEIUP
C		DICTIONARY OF CYMROLC
C		DICTIONARY OF SYMBOLS
C C		****
C	AAB	AEROSOL, ABSORPTION COEFFICIENT - INPUT DATA
C	ABSOR	8 - 14 MICRON CONTINUUM ABSORPTION COEFFICIENT
Č	AKCL	CLEAR AEROSOL ABSORPTION COEFFICIENT INTERPOLATED AT
Č	AK02	FREQUENCY V
Č	AKHZ	HAZY AEROSOL ABSORPTION COEFFICIENT INTERPOLATED AT
Č		FREQUENCY V
Č	ALFAO	LINE HALF WIDTH - INPUT FROM TAPE
Ċ	ALPHAL	LORENTZ HALF-WIDTH
C	ASHZ	HAZY AEROSOL SCATTERING COEFFICIENT INTERPOLATED AT
C		FREQUENCY V
С	ARSMOD	AEROSOL MODEL - INPUT DATA
С	ASC	AEROSOL SCATTERING COEFFICIENT - INPUT DATA
С	ATMODL	ATMOSPHERIC MODEL - INPUT DATA
C	BOUND	LIMIT OUTSIDE OF WHICH LINE CONTRIBUTIONS ARE NOT
С		CONSIDERED - INPUT DATA
С	CAS	CLEAR AEROSOL SCATTERING COEFFICIENT (50 KM SEA LEVEL
С		VISIBILITY) - OUTPUT DATA
C	CAY	MOLECULAR ABSORPTION COEFFICIENT - OUTPUT DATA
С	CHI	MODIFICATION TO THE LORENTZ LINE SHAPE FOR CO2
С		- INPUT DATA/BLK DATA
C	CNCS	NITROGEN-BROADENED WATER VAPOR CONTINUUM ABSORPTION
C		COEFFICIENT
C	CONST	(R*1.0E-03)/(A*1.0E+05). WHERE R IS GAS CONSTANT AND A
C		IS AVOGADRO'S NUMBER
C	CS2	PARTITION FUNCTION TEMPERATURE CORRECTION
C	DELP	PRESSURE DIFFERENCE BETWEEN ATMOSPHERIC LEVELS
C	DELTAZ	DIFFERENCE BETWEEN TWO ADJACENT LAYERS
C	DNU	FREQUENCY INCREMENT ASSOCIATED WITH LORENTZ MODIFICATION
C	EDD	- INPUT DATA
C C	EPP EVH1	ENERGY OF LOWER STATE OF TRANSITION -INPUT FROM TAPE CLEAR VERTICAL SCALING FACTOR
C	EVH2	HAZY VERTICAL SCALING FACTOR
C	FA	AEROSOL MODEL FREQUENCY - INPUT DATA
Č	FAC	INTERMEDIATE INTERPOLATING DATA FOR THE AEROSOL
C	170	FREQUENCY DATA
Č	GNU	LINE FREQUENCY - INPUT FROM TAPE
Č	HAS	HAZY: AEROSOL SCATTERING COEFFICIENT (5 KM SEA LEVEL
Ċ		VISIBILITY) - OUTPUT DATA
С	HCONV	O.1*3.34E+22 MOLECULES/CM2
C	HZ1	VERTICAL SCALING FACTOR FOR CLEAR AEROSOL MODEL
С		- INPUT DATA /BLK DATA
C	HZ2	VERTICAL SCALING FACTOR FOR HAZY AEROSOL MODEL
C	H20LAY	WATER VAPOR CONCENTRATION
C	IK1	ATMOSPHERIC MODEL INDEX
С	ITI	MOLECULAR SPECIES IDENTIFICATION (1=H2O, 2=CO2,
С		3=OZONE) - INPUT FROM TAPE
C	ITP	NUMBER OF ATMOSPHERIC LAYERS - INPUT DATA/BLK DATA
C	11	NUMBER OF ABSORPTION LINES
C	JT	NUMBER OF ELEMENTS IN THE LORENTZ MODIFICATION FACTOR
C		- INPUT DATA/BLK DATA
C	KSAM	NUMBER OF MODEL ATMOSPHERES - INPUT DATA/BLK DATA
C	LC	CLEAR AEROSOL MODEL INDEX
C	LH	HAZY AEROSOL MODEL INDEX
C	MOL	MOLECULE IDENTIFIER (1= H2O, 2= CO2, 3= O3)-INPUT FROM
C C	03 C O N	TAPE CONVERSION FACTOR FROM GM/M**3 TO MOLECULES/CM**2
C	P	ATMOSPHERIC LEVEL PRESSURE - INPUT DATA
L	r	AIMOSPHERIC LEVEL PRESSURE - INPUL DATA

```
OPTICAL DEPTH AT LINE CENTER FOR 1 - KM SEA LEVEL PATH
C
      PATH
C
      PBAR
                  AVERAGE LAYER PRESSURE
      PH20
                 WATER VAPOR PRESSURE
C
C
      PΙ
                 RATIO OF CIRCUMFERENCE OF A CIRCLE TO ITS DIAMETER
C
      S
                  ABSORPTION LINE INTENSITY - INPUT FROM TAPE
С
      SEC
                  SECANT ANGLE - INPUT DATA
                 TEMPERATURE CORRECTED LINE INTENSITY
C
      ST
                 ATMOSPHERIC LAYER TEMPERATURE - INPUT DATA
C
      Т
С
      TA1
                  CLEAR: AEROSOL ABSORPTION COEFFICIENT - OUTPUT DATA
                 HAZY: AEROSOL ABSORPTION COEFFICIENT - OUTPUT DATA
C
      TA2
C
                  AVERAGE LAYER TEMPERATURE
      TBAR
                  FREQUENCY AT WHICH THE EXTINCTION COEFFICIENT ARE BEING
С
                  CALCULATED - INPUT DATA
C
C
      VBOT
                 LOWER FREQUENCY LIMIT FOR THE LINE CONTRIBUTIONS.
C
                 VBOT= V-BOUND
C
      VTOP
                 UPPER FREQUENCY LIMIT FOR THE LINE CONTRIBUTIONS.
                 VTOP= V+BOUND
C
                 ABSORBER CONCENTRATION
C
                 MEAN WATER VAPOR CONCENTRATION FOR A LAYER
C
      WBAR
С
      WG
                 SEA LEVEL VALUES OF MOLECULAR ABUNDANCES - INPUT DATA
                 WATER VAPOR CONCENTRATION AT A SPECIFIC LEVEL-INPUT DATA
      WH
C
      WH1
                 SCALE HEIGHT ASSOCIATED WITH WATER VAPOR
                 SCALE HEIGHT ASSOCIATED WITH OZONE
C
      WH3
                 OZONE CONCENTRATION AT A SPECIFIC LEVEL - INPUT DATA
C
      WO
                 MEAN OZONE CONCENTRATION FOR A LAYER
C
      W03
                 WAVELENGTH CORRESPONDING TO FREQUENCY, V
C
      W۷
                 INTERMEDIATE QUANTITY ASSOCIATED WITH COMPUTING
C
      W1D
                 INTEGRATED WATER AMOUNT
C
C
      W3D
                 INTERMEDIATE QUANTITY ASSOCIATED WITH COMPUTING
C
                  INTEGRATED OZONE AMOUNT
                 LORENTZ LINE MODIFICATION VARIABLE
С
      X 1
                 ATMOSPHERIC HEIGHT (KM) - INPUT DATA
C
      7
С
      ZDIST
                 ABSOLUTE DISTANCE FROM THE LINE CENTER FREQUENCY V
            ***********
C *
C
                          SPECIFICATION STATEMENTS
С
С
      IMPLICIT
                 INTEGER*2 (I-N)
      REAL*4
                 LOWNU
      DIMENSION ATMODL(3,5), ARSMOD(6,5), WH(3,16), WO(3,16), KEEPSW(9)
C
      COMMON
                 Z(16).
                 P(3,16),T(3,16),W(3,3,16),CAY(3,16),WG(3,3),
                 TA2(16), FA(6,61), ASC(6,61), AAB(6,61),
                 HAS (16)
C
                     DNU(16), CHI(16), HZ1(16), HZ2(16), ITP, JT, KSAM
      COMMON/BLK1/
      COMMON/RSETUP/ BOUND, LOWNU, HIGHNU, DELNU, V,
                      IATMOD, IARMOG, IARMOT, IARMOS.
                      NUMPTS, NLINES, KEEPSW, IBLAYR, ITLAYR,
                      IRSIZE, HZINT(16), IAERMD
C
                     HCONV, 03CON/3.34E+21,1.255E+21/
      DATA
C
C *
С
```

```
C
    READ ATMOSPHERIC MODELS FROM DATA SET 2 AND PROCESS THEM
    C
C
        OPEN DATA SET 2 (formatted, sequential access)
C
C
         OPEN (UNIT=2, NAME='SD2:ATMMOD.DAT', TYPE='OLD',
             DISP='KEEP', FORM='FORMATTED')
С
C
        READ SEA LEVEL VALUES OF MOLECULAR ABUNDANCES FROM DATA SET 2;
C
        STORE THEM IN ARRAY WG
C
         DO 1 I=1.3
                                              ! I = atm. model
         READ (2,19) (WG(I,M),M=1,3)
                                              ! M = molecule (H2O,CO2,O3)
        CONTINUE
    1
C
   19
       FORMAT (3E10.3)
C
       READ THE NAMES OF THE ATMOSPHERIC MODELS AND THE DATA
C
           ._____
       DO 300 J=1,3
                                                              ! read names
C
       ******
       READ (2,21) (ATMODL(J,M),M=1,5)
¢
            DO 200 L=1, ITP
                                        ! read data (L=1-16)
C
            ******
            K=ITP-L+1
                                        ! reverse numbering of layers
C
                                          (K=16-1)
            READ (2,22) Z(K), P(J,K), T(J,K), WH(J,K), WO(J,K)
   200
            CONTINUE
C
   300
       CONTINUE
C
       ******
C
C
                             Z = height in kilometers
C
                             P = pressure
С
                             T = temperature
C
                             WH = water vapor concentration
C
                             WO = ozone concentration
    21 FORMAT (5A4)
   22 FORMAT (F6.1, E10.3, F6.1, 2E10.1)
C
C
            NOTE: The order of the atmospheric layers is reversed;
                  i.e., K = 1-16 runs layers from top to ground.
C
                  (K = 1 AT 15 KM, ..., K = 16 at sea level.)
С
C
C
C
      COMPUTE THE AVERAGE LAYER CONCENTRATIONS OF H2O, CO2 AND O3
C
C
            NOTE: Molecular densities are assumed to decrease expo-
C
                  nentially between consecutive levels; we compute
C
                  the average layer value by integrating the expo-
C
                  nential over the layer. If W1D or W3D approach
C
                  zero, the log is poorly defined, so in this case
Ç
                  we use just a simple average.
       K1 = ITP - 1
                   ! (= 16-1 = 15)
C
```

```
DO 7 I=1.3
                               ! atmospheric model loop (3 models)
        DO 7 K=1,K1
                               ! layer loop - from level 15 at top (K=1)
                                                ! to level 1 at 1 km (K=15)
С
        *****
С
        WBAR = (WH(I,K) + WH(I,K+1))/2.0
        W03 = (W0(I,K) + W0(I,K+1))/2.0
        DELTAZ=Z(K)-Z(K+1)
C
        W1D=WH(I,K)/WH(I,K+1)
        IF (ABS(W1D-1.00).LT.0.1) GO TO 3
        WH1=-DELTAZ/ALOG(W1D)
        W(I,1,K)=WH1*HCONV*(WH(I,K+1)~WH(I,K))
                                                    ! water vapor conc.
        GO TO 4
C
     3 W(I,1,K)=WBAR*HCONV*DELTAZ
C
     4 W3D=WO(I,K)/WO(I,K+1)
C
        IF (ABS(W3D-1.00).LT.0.1) GO TO 5
        WH3=-DELTAZ/ALOG(W3D)
        W(I.3,K) = WH3 * O3CON * (WO(I,K+1) - WO(I,K))
                                                      ! ozone conc.
        GO TO 6
C
                                                        **
     5 W(I,3,K)=W03*03CON*DELTAZ
C
С
            NOTE: THE MOLECULAR DENSITY IN A GIVEN LAYER OF CO2,
                   A UNIFORMLY MIXED GAS, IS DIRECTLY RELATED TO THE PRESSURE INCREMENT BETWEEN THE LAYER BOUNDARIES.
С
C
С
                   THE CONSTANT IN THE FOLLOWING EXPRESSION IS THE
C
                   UNIFORMLY MIXED GAS CONSTANT FOR CO2.
С
     6 W(I,2,K)=((P(I,K+1)-P(I,K))/1013.0)*7.102E+21 ! CO2 conc.
С
     7 CONTINUE
С
        *****
С
C
      READ AEROSOL MODELS FROM DATA SET 2
С
      AND STORE THEM IN COMMON
С
C
                          Aerosol models: rural
С
                                            tropospheric
С
                                            maritime
                                                           - 3
C
                                            urban
С
                                            background
C
                                            stratospheric - 5
С
                                            aged volcanic - 6
C
        DO 10 I=1,6
        READ (2,25) (ARSMOD (I,M),M=1,5)
                                                            ! read model names
        READ (2,26) (FA(I,J),ASC(I,J),AAB(I,J),J=1,61)
                                                            ! read data
    10
        CONTINUE
С
    25 FORMAT(5A4)
    26 FORMAT (F8.3,2F7.5)
С
        DO 11 I=1,6
                                                            ! convert from microns
        DO 12 J=1,61
                                                            ! to wavenumbers
        FA(I,J) = 1.0E+04/FA(I,J)
        CONTINUE
    12
        CONTINUE
```

```
C
    50 CLOSE (UNIT=2)
C
       RETURN
       END
     SUBROUTINE RDTAPE
C
C
       This routine selects, from RUNFIL, those lines in the range
C
C
                   (v-bound, v+bound)
C
C
     and stores them in the (unformatted) file VM:WINDOW.DAT.
C
C
     The number of retained lines, LINECT, is sent to subroutine ATMOS.
C * *
     *****************
C
C
                        SPECIFICATION STATEMENTS
C
C
       IMPLICIT
                  INTEGER*2 (I-N)
       INTEGER
                  SPECES, SWITCH
       REAL*4
                  LOWNU
       DIMENSION
                  KEEPSW(9)
C
       COMMON
                  Z(16),
                  P(3,16),T(3,16),W(3,3,16),CAY(3,16),WG(3,3),
                  TA2(16), FA(6,61), ASC(6,61), AAB(6,61),
C
       COMMON/BLK1/
                      DNU(16), CHI(16), HZ1(16), HZ2(16), ITP, JT, KSAM
       COMMON/RSETUP/
                      BOUND, LOWNU, HIGHNU, DELNU, V,
                      IATMOD, IARMDG, IARMDT, IARMDS,
                      NUMPTS, NLINES, KEEPSW, IBLAYR, ITLAYR,
                      IRSIZE, HZINT(16), IAERMD
       DATA
                  SWITCH/O/
С
C
     OPEN THE VIRTUAL MEMORY FILE FOR THE WINDOW OF LINES
C
     (unformatted, sequential access)
C
       IF(IRSIZE .LE. 164)
         OPEN (UNIT=10, NAME='VM:WINDOW.DAT', TYPE='NEW', DISP='DELETE',
             FORM='UNFORMATTED', RECORDSIZE=6, INITIALSIZE=IRSIZE)
С
       IF(IRSIZE .GT. 164)
         OPEN (UNIT=10, NAME='SD3:WINDOW.DAT', TYPE='NEW', DISP='DELETE',
             FORM='UNFORMATTED', RECORDSIZE=6, INITIALSIZE=650)
C
C
     READ, FROM RUNFIL, ALL LINES IN THE RANGE (V-BOUND, V+BOUND)
     AND STORE THEM IN VM:WINDOW.DAT
C
C
     C
       LINECT = 0
                                     ! initialize line count
       IF (NLINES .EQ. 0) GO TO 20
                                    ! no lines, so no window file
       REWIND 3
                                     ! position pointer to beginning of 3
```

C

CLOSE ATMOSPHERE MODEL FILE

```
READ(3, END=20) SPECES, ISOTOP, WAVNUM, STRNTH, HWIDTH, ENERGY
С
C
       IF (WAVNUM .LT. V-BOUND)
                               GO TO 1
       IF (WAVNUM .GT. V+BOUND) GO TO 20
C
       LINECT = LINECT + 1
C
       WRITE(10) SPECES, ISOTOP, WAVNUM, STRNTH, HWIDTH, ENERGY
C
       GO TO 1
C
C
C
     SEND THIS ''WINDOW'' OF LINES TO SUBROUTINE ATMOS
С
¢
     С
   20 CALL ATMOS (LINECT)
C
       RETURN
       END
       SUBROUTINE ATMOS (LINECT)
С
С
                        SPECIFICATION STATEMENTS
C
                       *********
C
       IMPLICIT INTEGER*2 (I-N)
                LOWNU
       REAL*4
       DIMENSION CS2(3), KEEPSW(9)
С
С
                         NOTE: ST
                                 = temp. corrected line intensity
С
                              CS2 = partition func. temp. correction
C
       COMMON
                P(3,16),T(3,16),W(3,3,16),CAY(3,16),WG(3,3),
                TA2(16), FA(6,61), ASC(6,61), AAB(6,61),
                HAS (16)
C
                      DNU(16), CHI(16), HZ1(16), HZ2(16), ITP, JT, KSAM
       COMMON/BLK1/
                      BOUND, LOWNU, HIGHNU, DELNU, V,
       COMMON/RSETUP/
                      IATMOD, IARMDG, IARMDT, IARMDS,
                      NUMPTS, NLINES, KEEPSW, IBLAYR, ITLAYR,
                      IRSIZE, HZINT(16), IAERMD
C
                      CONST, PI/1.380258E-24,3.141593/
       DATA
С
             NOTE: CONST= (R*1.0E-03)/(A*1.0E+05)
C
                        = (8.3144E+07*1.0E-03)/(6.0238E+23*1.0E+05)
C
                    (R = GAS CONST; A = AVOGADRO'S NUMBER)
C
```

```
C
      DO 18 IS THE MAJOR COMPUTATIONAL LOOP ON ATMOSPHERIC LAYERS
      WITHIN WHICH MONOCHROMATIC MOLECULAR ABSORPTION COEFFICIENTS
C
C
      ARE COMPUTED.
C
        IK1=IATMOD
                                    ! (use only this atm. model)
C
        DO 18 K=ITLAYR, IBLAYR
                                    ! Loop over atm. layers
C
                                       ******
         IF (K.EQ.ITP) GO TO 2
C
         PBAR = (P(IK1,K) + P(IK1,K+1))/2.0
                                                        ! av. layer pressure
         TBAR = (T(IK1, K) + T(IK1, K+1))/2.0
                                                        ! av. layer temp.
         PH2O=CONST*TBAR*W(IK1,1,K)/ABS(Z(K)-Z(K+1)) ! water vapor pressure
         GO TO 3
C
    2
         PBAR=P(IK1, ITP)
                                                        ! av. pressure AT GROUND
         TBAR=T(IK1, ITP)
                                                        ! av. temp. at ground
         PH20=CONST*TBAR*WG(IK1,1)
                                                        ! water vapor press. at ground
C
    3
         CONTINUE
C
        DETERMINE CORRECT TEMPERATURE DEPENDENCE OF ROTATIONAL PARTITION
C
        FUNCTION
C
C
           CS2(2) = 296.0/TBAR
           CS2(1) = CS2(2)**1.5
           CS2(3) = CS2(1)
C
           DO 17 LOOP CYCLES THRU ALL ABSORPTION LINES
C
C
           AND ADDS THEIR CONTRIBUTIONS TO THE ABSORPTION
           COEFFICIENT AT THE WAVENUMBER V.
C
C
           CAY(IK1.K) = 0.0
                                 ! initialize for loop over LINES
           IF (LINECT .EQ. 0)
IF (IAERMD .EQ. 1)
                                 GO TO 18
                                 GO TO 18
           REWIND 10
                                  ! position pointer to beginning of 10
C
           DO 17 I=1, LINECT
                                  ! Loop over absorption lines in window
C
C
           READ(10) MOL, ISOTOP, GNU, S, ALFAO, EPP
C
           M = MOL
                                         ! Molecular species:
C
                                               1 - H20
                                               2 - CO2
C
                                               3 - 03
C
C
           ST = S*CS2(M)*EXP(-EPP*
                                                   ! temp. corrected line int.
                 (296.-TBAR)/(296.*TBAR*.6951)) ! (Boltzmann temp.
C
                                                     correction factor)
C
           INSERT THE ISOTOPIC RELATIVE ABUNDANCE FACTOR
C
C
           IF (M .EQ. 1) GO TO 100
           IF (M .EQ. 2) GO TO 200
           IF (M .EQ. 3) GO TO 300
```

C

```
C
            Water Vapor Isotopes
С
  100
            RELBUN = 0.
            IF (ISOTOP .EQ. 161) RELBUN = 0.9976
            IF (ISOTOP .EQ. 171) RELBUN = 0.0004
            IF (ISOTOP .EQ. 181) RELBUN = 0.002
            GO TO 400
C
         Carbon Dioxide Isotopes
С
  200
        RELBUN = 0.
         IF (ISOTOP .EQ. 626)
                                RELBUN = 0.98418
        IF (ISOTOP .EQ. 636) RELBUN = 0.01103
IF (ISOTOP .EQ. 627) RELBUN = 0.00079
IF (ISOTOP .EQ. 628) RELBUN = 0.00394
         GO TO 400
C
        Ozone Isotopes
С
  300
        RELBUN = 0.
        IF (ISOTOP .EQ. 666) RELBUN = 1.
С
С
        Modify Molecular Abundance
C
         IF (K .EQ. ITP) CONC = RELBUN*WG(IK1,M)
  400
         IF (K .NE. ITP) CONC = RELBUN*W(IK1,M,K)
С
         INSERT IN PBAR THE WATER VAPOR BROADENING FACTOR
C
C
        PEFF=PBAR
         IF (M. EQ. 1) PEFF=PBAR + 4.0*PH20
         SQRT(296./TBAR) IS THE HALF-WIDTH TEMPERATURE CORRECTION FACTOR
С
С
         ALPHAL=ALFAO*PEFF*SQRT(296./TBAR)/1013.0
         ZDIST=ABS(V-GNU)
        X1 = 1.0
С
                               GO TO 15
         IF (M .NE. 2)
С
              X1 = 0.0
              JT1=JT-1
C
              DO 9 L=1,JT1
C
                                                                 GO TO 8
              IF (ZDIST.GE.DNU(L).AND.ZDIST.LE.DNU(L+1))
              GO TO 9
C
              X1=((CHI(L+1)-CHI(L))/(DNU(L+1)-DNU(L)))*(ZDIST-DNU(L))
    R
                  +CHI(L)
              GO TO 15
C
              CONTINUE
              ******
C
С
```

```
SINCE PBAR .GT. 10 MB, LORENTZ SHAPE APPLIES.
С
             NOTE ALSO THAT SINCE WE NEVER CONSIDER PRESSURE LESS THAN 10 MB,
C
             NEITHER VOIGT SHAPE NOR DOPPLER BROADENING APPLY.
C
C
   15
             IF (K .EQ. ITP) GO TO 16
                                            ! (ITP=16 AT ground)
C
             CAY(IK1,K) = CAY(IK1,K)
                        + ST*ALPHAL*CONC*X1/(PI*(ZDIST**2+ALPHAL**2))
             GO TO 17
C
   16
             CAY(IK1,K) = CAY(IK1,K)
                        + ST*ALPHAL*CONC*X1/(PI*(ZDIST**2+ALPHAL**2))
C
                                     IK1 = atmosphere model index
C
С
                                         = atmosphere layer index
                                         = molecule (1=H2O, 2=CO2, 3=O3)
C
C
                                             ! End of absorption line loop
             CONTINUE
   17
C
             *****
                             NOTE: CAY now is the total abs. coeff.
C
                                  (ALL lines) for this atm model
C
                                  and this layer.
C
   18
       CONTINUE
                                             ! End of layer loop
C
        *******
C
      CLOSE WINDOW FILE AND DELETE IT
C
      C
        CLOSE (UNIT=10, DISP='DELETE')
C
      COMPUTE CONTINUUM ABSORPTION AND AEROSOL EXTINCTION COEFFICIENTS
      C
      CALL CONT (V)
C
      RETURN
      END
         SUBROUTINE CONT
C
                        SPECIFICATION STATEMENTS
C
C
C
         IMPLICIT INTEGER*2 (I-N)
                 LOWNU, CON(20), FN2(91), CN2(91)
         DIMENSION KEEPSW(9)
         COMMON Z(16),
         P(3,16),T(3,16),W(3,3,16),CAY(3,16),WG(3,3),TA2(16),
         FA(6,61), ASC(6,61), AAB(6,61), HAS(16)
C
         COMMON/BLK1/
                        DNU(16), CHI(16), HZ1(16), HZ2(16), ITP, JT, KSAM
                        BOUND, LOWNU, HIGHNU, DELNU, V,
         COMMON/RSETUP/
                        IATMOD, IARMDG, IARMDT, IARMDS,
                        NUMPTS, NLINES, KEEPSW, IBLAYR, ITLAYR,
                        IRSIZE, HZINT(16), IAERMD
C
```

```
CON/0.230, 0.187, 0.147, 0.117, 0.097, 0.087,
           DATA
                        0.100, 0.120, 0.147, 1.174, 0.200, 0.240,
                        0.280, 0.330, 6*0.000/
C
           DATA
                   FN2/2000., 2050., 2075., 2100., 2125., 2150., 2155., 2160.,
                        2165., 2170., 2175., 2180., 2185., 2190., 2195., 2200.,
                        2205., 2210., 2215., 2220., 2225., 2230., 2235., 2240.,
                        2245., 2250., 2255., 2260., 2265., 2270., 2275., 2280.,
                        2285., 2290., 2295., 2300., 2305., 2310., 2315., 2320.,
                        2325., 2330., 2335., 2340., 2345., 2350., 2355., 2360.,
                        2365., 2370., 2375., 2380., 2385., 2390., 2395., 2400.,
                        2405., 2410., 2415., 2420., 2425., 2430., 2435., 2440.,
                        2445., 2450., 2455., 2460., 2465., 2470., 2475., 2480.,
                        2485., 2490., 2495., 2500., 2505., 2510., 2515., 2520.,
                        2525., 2530., 2535., 2540., 2545., 2550., 2575., 2600.,
                        2625., 2650., 2800./
C
           DATA CN2/1.00E-21, 1.20E-07, 1.80E-07, 6.30E-07, 2.00E-06,
                        9.00E-06, 1.13E-05, 1.36E-05, 1.66E-05, 1.96E-05,
                        2.16E-05, 2.36E-05, 2.63E-05, 2.90E-05, 3.15E-05,
                        3.40E-05, 3.66E-05, 3.92E-05, 4.26E-05, 4.60E-05,
                        4.95E-05, 5.30E-05, 5.65E-05, 6.00E-05, 6.30E-05,
                       4.75E-03, 3.30E-03, 3.63E-03, 6.00E-03, 6.30E-03, 6.60E-05, 6.89E-05, 7.18E-05, 7.39E-05, 7.60E-05, 7.84E-05, 8.08E-05, 8.39E-05, 8.70E-05, 9.13E-05, 9.56E-05, 1.08E-04, 1.20E-04, 1.36E-04, 1.52E-04, 1.60E-04, 1.51E-04, 1.37E-04, 1.28E-04, 1.19E-04, 1.16E-04, 1.14E-04, 1.12E-04, 1.14E-04, 1.14E-04, 1.14E-04, 1.14E-04, 1.14E-04, 1.12E-04, 1.07E-04
                       1.14E-04, 1.12E-04, 1.10E-04, 1.07E-04, 1.02E-04,
                       9.90E-05, 9.50E-05, 9.00E-05, 8.65E-05, 8.20E-05,
                       7.65E-05, 7.05E-05, 6.50E-05, 6.10E-05, 5.50E-05, 4.95E-05, 4.50E-05, 4.00E-05, 3.75E-05, 3.50E-05, 3.10E-05, 2.65E-05, 2.50E-05, 2.20E-05, 1.95E-05, 1.75E-05, 1.60E-05, 1.40E-05, 1.20E-05, 1.50E-06, 9.50E-06, 6.00E-06, 3.50E-06, 2.00E-06, 1.50E-06,
                       1.00E-20/
C
С
       INITIALIZE AEROSOL ABSORPTION AND SCATTERING COEFFICIENTS
С
       C
           DO2 K=1, ITP
                                                   ! loop over 16 atm. layers
C
           *****
           TA2(K) = 0.0
           HAS(K) = 0.0
     2
           CONTINUE
С
C
C
       COMPUTE MOLECULAR CONTINUUM ABSORPTION
C
       AND RALEIGH (MOLECULAR) SCATTERING,
C
       AND ADD TO MOLECULAR LINE ABSORPTION
C
       C
           J = IATMOD
                                                   ! (use only this atm. model)
C
C
           DO 17 K=ITLAYR, IBLAYR
                                                   ! Loop over atm. layers
C
C
           TBAR = T(J, ITP)
                                                   ! Temp. at ground
           PBAR = P(J, ITP)
                                                   ! Press. at ground
           IF (K .EQ. ITP) GO TO 100
```

```
PBAR = (P(J,K) + P(J,K+1))/2.0 ! av. layer pressure
         TBAR = (T(J,K) + T(J,K+1))/2.0 ! av. layer temperature
C
C
C
         RAYLEIGH SCATTERING
C
C
  100
         IF (KEEPSW(4) .EQ. 0) GO TO 200
         IF (V .GE. 2740.) GO TO 110
                                       ! waveno. range for this effect
         GO TO 200
  110
         IF (K .EQ. ITP) GO TO 120
         IF (K .NE. ITP) GO TO 130
         EVM = (273./1013.) * P(J,ITP) / T(J,ITP)
  120
                                                              ! ground layer
         GO TO 140
C
  130
         HM = 1./ALOG((P(J,K+1)*T(J,K))/(P(J,K)*T(J,K+1))) ! other layers
         EVM = (273./1013.) * HM * ((P(J,K+1)/T(J,K+1)) - (P(J,K)/T(J,K)))
  140
         TM = 9.807E-20 * EVM * V**4.0117
         CAY(J,K) = CAY(J,K) + TM
С
С
C
         3.5-4.2 MICRON H20 CONTINUUM
C
         IF (KEEPSW(5) .EQ. 0) GO TO 300
  200
         IF (V .GE. 2350. .AND. V .LE. 2800.) GO TO 210 ! range of effect
         GO TO 300
  210
         XI = (V-2350.)/50. + 1.
         MH = XI + 1.001
         XH = XI - FLOAT(MH)
         TX5 = CON(MH)
         TX5 = TX5 + XH*(CON(MH)-CON(MH-1))
         CCONT = TX5/3.34E22
         TDEP = EXP (4.56*(296./TBAR-1.))
         CNCS = 0.12 * TDEP
C
         IF (K .EQ. ITP) GO TO 220
         IF (K .NE. ITP) GO TO 230
         H2OLAY = WG(J,1)
  220
                                                           ! ground layer
         PH20 = 1.38E-24 * H20LAY * T(J,ITP)
         GO TO 240
C
         H2OLAY = W(J,1,K)
  230
                                                            ! other layers
         PH20 = 4.712E-23 \bullet H20LAY / ALOG(P(J,K+1)/P(J,K))
         ABSOR = (CCONT * (PH20*TDEP + CNCS*(PBAR-PH20))/1013.) • H20LAY
  240
         CAY(J,K) = CAY(J,K) + ABSOR
C
C
```

```
С
         8-14 MICRON H20 CONTINUUM
C
C
  300
         IF (KEEPSW(6) .EQ. 0) GO TO 400
         IF (V .GE. 700. .AND. V .LE. 1250.) GO TO 310
                                                            ! range of effect
         GO TO 400
                                                             ! (8-14 microns)
С
  310
         TDEP = EXP (6.08*(296.0/TBAR-1.0))
         CNCS = 0.002
         CCONT = (4.18 + 5578.*EXP(-7.87E-3*V))/3.34E+22
C
         IF (K .EQ. ITP) GO TO 320
         IF (K .NE. ITP) GO TO 330
  320
         H2OLAY = WG(J,1)
                                                             ! ground layer
         PH20 = 1.38E-24 \cdot H20LAY \cdot T(J,ITP)
         GO TO 340
  330
         H2OLAY = W(J,1,K)
                                                             ! other layers
         PH20 = 4.712E-23 * H20LAY / ALOG(P(J,K+1)/P(J,K))
C
  340
         ABSOR = (CCONT * (PH20*TDEP + CNCS*(PBAR-PH20))/1013.) * H20LAY
         CAY(J,K) = CAY(J,K) + ABSOR
С
С
C
         NITROGEN CONTINUUM
         ______
С
C
         IF (KEEPSW(7) .EQ. 0) GO TO 17
IF (V .GE. 2000. .AND. V .LE. 2800.) GO TO 410 ! range of effect
  400
         GO TO 17
C
         DO 413 I=1,90
  410
C
         IF (V .GE. FN2(I) .AND. V .LE. FN2(I+1)) GO TO 412
         GO TO 413
         DELN2 = (CN2(I+1)-CN2(I))/(FN2(I+1)-FN2(I))
  412
         CCONT = DELN2*(V-FN2(I)) + CN2(I)
         GO TO 414
C
  413
         CONTINUE
С
         ******
С
         IF (K .EQ. ITP) GO TO 415
  414
C
         DELP = P(J,K+1) - P(J,K)
         TN2 = 0.781 * CCONT * (PBAR/1013.) * 29.24 * TBAR * (DELP/1013.)
         GO TO 416
С
         TN2 = 0.781 * CCONT * (PBAR/1013.)**2 • 1.000*296./T(J,ITP)
  415
C
  416
         CAY(J,K) = CAY(J,K) + TN2
C
                                            ! end of loop over atm. layers
   17
         CONTINUE
C
C
C
```

C

```
COMPUTE AEROSOL ABSORPTION AND SCATTERING COEFFICIENTS
С
     C
C
        IF (KEEPSW(8) .EQ. O .AND. KEEPSW(9) .EQ. O)
C
C
        TEST WHETHER V LIES WITHIN RANGE OF AEROSOL MODEL
C
C
        IF (V .LT. FA(1,1) .OR. V .GT. FA(1,61))
                              RETURN
                                            ! v out of range of table
С
        DO 19 J=1,60
        IF (V .GE. FA(1,J) .AND. V .LE. FA(1,J+1)) GO TO 20
        CONTINUE
  19
C
                                             ! v above range of table
        RETURN
C
  20
        FAC = (V-FA(1,J))/(FA(1,J+1)-FA(1,J))
                                            ! interpolating factor
                                              (for v not in table)
C
С
C
        IF IT DOES, COMPUTE THE COEFFICIENTS
C
C
        DO 32 K=ITLAYR, IBLAYR
                                             ! Loop over atm. layers
        ******
                                               *******
С
С
C
        Compute Scaling Factors for Clear and Hazy Aerosol Models
C
        .......
С
              HZ1 = vertical scaling factor for clear aerosol model
С
              HZ2 = "
                            " hazy
C
C
C
                         HZ1 and HZ2 are given in the block data routine,
                         for each of the 16 atmospheric layers;
C
                         EVH1 is just a local variable for this loop.
C
C
        IF (K .EQ. ITP)
                        GO TO 24
        IF (HZINT(K) .EQ. HZINT(K+1)) GO TO 21
C
        HA1=1.0/ALOG(HZINT(K+1)/HZINT(K))
        EVH1=HA1*(HZINT(K+1)~HZINT(K))
                                               ! effective value
        GO TO 25
C
  21
        EVH1=HZINT(K)
        GO TO 25
C
  24
        EVH1=HZINT(ITP)
C
        Aerosol model to be used depends on the height Z
C
C
C
                  L = aerosol model index
C
        IF (Z(K) .LT. 9.0 .AND. Z(K) .GE. 2.0) GO TO 28
  25
        IF (Z(K) .LE. 2.0) GO TO 29
C
C
        Above 9 km: Use background stratospheric (clear)
                   or aged volcanic (hazy)
C
        IF (IARMDS .EQ. 5) L=5
        IF (IARMDS .EQ. 6) L=6
        GO TO 30
```

```
Between 2 and 9 km, use tropospheric model
С
C
   28
         GO TO 30
C
        Below 2 km, use rural, tropospheric, maritime or urban model
C
C
   29
         L = IARMDG
C
C
C
        Compute aerosol extinction coefficients for this layer
C
         С
C
                   AK = aerosol absorption coeff. at v
                   AS = aerosol scattering coeff. at v
Ç
C
                   (These are local variables, for this loop.)
С
C
   30
        AK = AAB(L,J) + FAC*(AAB(L,J+1)-AAB(L,J))
        AS = ASC(L,J) + FAC*(ASC(L,J+1)-ASC(L,J))
C
C
C
        Multiply these coefficients by the proper vertical scaling
        factors and store them in the proper arrays in COMMON
C
C
         C
C
             TA2(atm. layer) - aer. abs. coeff.
             HAS( "
C
                        " ) - aer. scatt. coeff.
C
  31
        TA2(K) = EVH1*AK
        HAS(K) = EVH1*AS
C
        IF (KEEPSW(8) .EQ. 0)
                               TA2(K) = 0.
                               HAS(K) = 0.
        IF (KEEPSW(9) .EQ. 0)
C
  32
        CONTINUE
C
C
        RETURN
        END
     BLOCK DATA
С
      IMPLICIT
                INTEGER*2 (I-N)
C
                    DNU(16), CHI(16), HZ1(16), HZ2(16), ITP, JT, KSAM
     COMMON/BLK1/
C
            DNU(1), DNU(2), DNU(3), DNU(4), DNU(5), DNU(6), DNU(7), DNU(8),
     DATA
            DNU(9), DNU(10), DNU(11), DNU(12), DNU(13), DNU(14), DNU(15),
            DNU(16)/0.0,.5,.6,.7,.8,.9,1.0,1.2,1.5,2.0,2.5,3.0,5.0,8.0,
                   10.0,15.0/
C
            CHI(1), CHI(2), CHI(3), CHI(4), CHI(5), CHI(6), CHI(7), CHI(8),
     DATA
            CHI(9), CHI(10), CHI(11), CHI(12), CHI(13), CHI(14), CHI(15),
            CHI(16)/1.00,1.00,.96,.89,.82,.77,.70,.60,.50,.41,.34,.31,
                   .29,.23,.19,0.00/
```

```
HZ1(1), HZ1(2), HZ1(3), HZ1(4), HZ1(5), HZ1(6), HZ1(7), HZ1(8),
      DATA
             HZ1(9), HZ1(10), HZ1(11), HZ1(12), HZ1(13), HZ1(14), HZ1(15), HZ1(16)
             /6.43E-04,6.45E-04,6.22E-04,6.63E-04,7.14E-04,
             7.87E-04,9.80E-04,1.41E-03,2.30E-03,3.54E-03,
             4.85E-03,6.43E-03,8.19E-03,9.70E-03,2.85E-02,6.95E-02/
C
      DATA
             HZ2(1), HZ2(2), HZ2(3), HZ2(4), HZ2(5), HZ2(6), HZ2(7), HZ2(8), HZ2(9),
             HZ2(10), HZ2(11), HZ2(12), HZ2(13), HZ2(14), HZ2(15), HZ2(16)
             /2.92E-03,2.89E-03,2.80E-03,2.45E-03,2.11E-03,
             1.85E-03,1.81E-03,3.36E-03,6.22E-03,7.71E-03,
             9.30E-03,1.85E-02,3.46E-02,6.21E-02,7.57E-01,7.57E-01/
C
      DATA
             ITP, JT, KSAM /16, 16, 3/
C
      END
         SUBROUTINE LAYNUM (Z, LAYNO, DELHT)
C
C
      This subroutine accepts the altitude Z (above sea-level) in km;
С
    it returns the atmospheric layer number (layno) and the height
С
    (in km) above the bottom of the layer (delht).
C
      The layers are numbered as follows:
C
C
C
                HEIGHT Z
                                                    LAYER NUMBER
C
               *****
                                                   . . . . . . . . . . . . . .
C
C
            14 < Z <= 15 \text{ km}
                                                         1
C
            13 < Z <= 14
                                                         2
C
C
C
C
             0 < z <= 1
                                                        15
Ç
                 z = 0
                                                        16
C
C*
        **********
С
         IF (Z . GT. 15.) Z = 15.
C
         IZ = INT(Z)
                                         ! height of bottom of layer
         DELHT = Z - FLOAT(IZ)
                                         ! height above bottom of layer
C
         LEVELZ = IZ + 1
                                         ! layer number, numbering from ground up
         IF (DELHT .EQ. O.) LEVELZ = IZ
C
         LAYNO = 16 - LEVELZ
                                         ! layer number, numbering from top down
C
         RETURN
```

END

FUNCTION AERSOL(LAYNUM)

С

end

```
This subroutine accepts the atmosphere layer number and returns
C
   the total aerosol extinction coefficient for that layer; the
   extinction coefficient is the sum of the aerosol absorption and
   scattering coefficients. The layers are defined as follows:
C
C
     Height (above sea-level)
                                    Layer Number
С
                                   *********
С
           height <= 15 km
С
                                                      :
     14 <
                                         2
С
     13
        <
            height
                   <=
С
                                                      : Stratosphere
С
С
                    <=
                        10
С
            height
C
С
C
         <
            height
                         9
                                         7
                                                      :
С
                                                      : Troposphere
С
C
                                        13
С
            height
С
С
                                        14
                         2
C
        <
            height
                    <=
                                        15
                                                      : Boundary layer
     Ω
        <
            height
                    <=
                         1
C
            height
                         0
                                        16
С
      The aerosol models to be used for the various regions are specified
С
     by the integer variables iarmdg, iarmdt and iarmds; these variables
С
     are defined interactively by the user and are stored in the common
     block RSETUP.
    ***********
C * * *
С
         REAL*4
                    lownu
         DIMENSION
                   keepsw(9)
С
                    z(16),p(3,16),t(3,16),w(3,3,16),cay(3,16),wg(3,3),
         COMMON
                    ta2(16), fa(6,61), asc(6,61), aab(6,61),
                    has(16)
C
         COMMON/RSETUP/ bound, lownu, highnu, delnu, v,
                         iatmod, iarmdg, iarmdt, iarmds,
                         numpts, nlines, keepsw, iblayr, itlayr,
                         irsize, HZINT(16), iaermd
С
         IF (V .LT. FA(1,1) .OR.
             V .GT. FA(1,61))
                                 go to 400
                                               ! out of aerosol model range
         aersol = ta2(laynum) + has(laynum)
         return
C
  400
         aersol = 0.
         return
C
```

AUXILIARY ROUTINES AND COMMAND FILES

PROGRAM LNEDIT

```
C
C
        This program reads lines one-by-one from an ''original'' line file
     (AFGL format), retains only water, carbon dioxide and ozone lines (all
C
C
     isotopes), strips away the quantum identification numbers and writes
С
     the processed lines out to a ''master'' line file for use by the
C
     MICTRA routine.
С
C
        The disk containing this program may be run from any drive;
C
     the drives and filenames for the input and output files will be
C
     typed in by the user upon prompting by the program, which will halt
C
     to allow mounting of the input and output disks.
С
C
                      SPECIFICATION STATEMENTS
C
                     *******
C
                 qntmid, outfil, infil, reply, go
        DIMENSION qntmid(35), outfil(14), infil(14)
C
C
    SPECIFY WAVENUMBER RANGE TO BE INCLUDED IN OUTPUT FILE
C
C
    C
        type 1
   1
        format(//t2, 'Specify wavenumber range to be included',
                t42, 'in output file:'/
                t10, type minimum wavenumber: ',$)
        accept 2, wnmin
        format(f10.4)
        type 3
   3
        format(t10,'type maximum wavenumber: ',$)
        accept 2, wnmax
C
   OPEN THE OUTPUT LINE FILE (for MICTRA; Unformatted, seq. access)
C
   r
        type 10
  10
        format(//t2,'Type name of output file in DLO:'/
                t2,'(i.e., the master file, unformatted,'/
                t2,' to be used by the MICTRA routine): ',$)
        accept 11, outfil
  11
        format(14A1)
C
C
  12
        format(//t2,'Mount disk containing output file,'/
C
                t2, 'then type ''G'' for ''GO'': ',$)
C
        accept 13, go
  13
C
        format(A1)
C
        OPEN (unit=8, name=outfil, type='NEW',
             disp='KEEP', form='UNFORMATTED', initialsize=974,
             recordsize=6)
C
```

```
С
     OPEN THE INPUT LINE FILE (formatted, sequential access)
C
      С
С
        This file should be one of the AFGL files;
С
        specify the file name:
С
  100
        type 120
C ***
  120
        format(//t2,'Type name of input file'/
                 t2, '(one of the AFGL files): ',$)
        accept 11, infil
С
        type 126
        format(//t2,'Mount disk containing input file,'/
  126
                 t2, 'then type ''G'' for ''GO'': ',$)
        accept 121, go
  121
        format(A1)
C
        OPEN (unit=4, name=infil, type='OLD',
              disp='KEEP', form='FORMATTED')
С
С
     OPEN TEMPORARY VM FILE
     С
С
        OPEN (unit=3, name='VM:TEMP.DAT', type='NEW', disp='DELETE', form='UNFORMATTED',
  199
              initialsize=300, recordsize=6)
С
   LOOP - READ LINES ONE AT A TIME, PROCESS AND WRITE TO OUTPUT FILE
          (via temporary VM file, in groups of 6000 lines)
   С
С
С
       Read a line
С
       --------
C
        linect = 0
C
        READ(4,230,end=300) wavnum, strnth, hwidth, energy,
 200
                          qntmid, idate,
                                                          ! strip these
                          isotop, molcul
C
 230
        FORMAT(f10.4, e10.3, f5.4, f10.3, 35a1, i3, i4, i3)
C
C
      Reject this line if it is below the minimum wavenumber
C
      or if it is other than H2O, CO2 or O3
С
C
        IF (wavnum .LT. wnmin) go to 200
        IF (molcul .GT. 3)
                               go to 200
        linect = linect + 1
C
C
     Write stripped-down line into temporary VM file (unformatted)
C
         WRITE(3) wavnum, strnth, hwidth, energy, isotop, molcul
C
C
     Branch to appropriate code for given 'end' condition
C
         IF (wavnum .GT. wnmax) go to 400
         IF (linect .GT. 6000)
                                go to 500
         go to 200
                                       ! read another line
```

```
C
      End of input file reached
C
  300
          wnlast = wavnum
          IF (linect .EQ. 0) go to 320
C
          rewind 3
          DO 310 I=1, linect
          READ (3) wavnum, strnth, hwidth, energy, isotop, molcul
          WRITE(8) wavnum, strnth, hwidth, energy, isotop, molcul
  310
          continue
C
  320
          CLOSE (unit=3, disp='DELETE')
          CLOSE (unit=4, disp='KEEP')
C
          type 330, wnlast, wnmax
  330
          format(//t2, Last wavenumber in this input file is: ',F10.4/
                    t2, 'Max. wavenumber desired for output file is: ',F10.4/
                    t2, 'Is the output file complete? (Y or N): ',$)
          accept 331, reply
  331
          format(A1)
          IF (reply .EQ. 'N') go to 100
          CLOSE (unit=8, disp='KEEP')
C
      Maximum wavenumber reached
C
  400
          REWIND 3
          DO 410 I=1, linect
          READ (3) wavnum, strnth, hwidth, energy, isotop, molcul WRITE(8) wavnum, strnth, hwidth, energy, isotop, molcul
  410
          continue
С
          CLOSE (unit=3, disp='DELETE')
          CLOSE (unit=4, disp='KEEP')
          CLOSE (unit=8, disp='KEEP')
          STOP
C
С
      Temporary (VM) file is filled
C
      _____
  500
          REWIND 3
          DO 510 I=1, linect
          READ (3) wavnum, strnth, hwidth, energy, isotop, molcul
          WRITE(8) wavnum, strnth, hwidth, energy, isotop, molcul
  510
          continue
C
          CLOSE (unit=3, disp='DELETE')
          GO TO 199
C
          END
```

```
PROGRAM PLOTSP
C
C
         This routine plots the spectra computed by MICTRA.
¢
С
         It automatically plots on an angstrom scale up to 10,000
         angstroms, and on a micrometer scale for wavelengths greater
C
         than 10,000 angstroms.
C
C
         The user has the option of overriding this default to plot
C
C
         on an angstrom, micrometer, hertz or wavenumber scale, with
С
         the scale increasing either to the left or right.
c
         The routine handles the total range of the Air Force line tapes.
C
         from 2,000 angstroms to 3 cm.
C
C
               C 4
C
         BYTE
                     SPCFL1(15), GO, MAPTYP(10), BPARAM(10), BOTTOM(2),
                     LONG, BRIGHT, ARCLIN, LINTYP(2), SHORT, LEFT(2),
                     NORMAL(2), YES, NO, PLOT, COMPAR, STOPP, LHEDNG(21),
                     BHDNGA(23), ZERO(4), TEN(4), TWENTY(4), THIRTY(4),
                     FORTY(4), FIFTY(4), SIXTY(4), SEVNTY(4), EIGHTY(4),
                     NINETY(4), HUNDRD(4), MAPTPE(10), STDWIN(2), AXIS,
                     BASE, USER, LFTNUM(9), RGTNUM(9), BHDNGM(25)
                     WLUNIT (12), UNTDES (41), ANGST (11), MICRON (11),
                     REPLY, SCALE, SENSE, BHDNGH(18), BHDNGW(24),
                     BEGNUM(12), ENDNUM(12), HERTZ(11), WAVENM(11),
                     A,M,R, FTBTCK,FTETCK,F,E
С
                     IPARAM(10), PARAM(10), FNX, FNY, FNSPCE, IILNY(11),
         INTEGER*2
                     HPARAM(10)
C
                     LOWERW, RPARAM(10), USRWIN(4), SCRWIN(4), LOWERT,
         REAL*4
                     LOWVAL, LOWW
C
                         MAPTPE,
         COMMON/CMAP/
                         UXMIN, UXMAX, UYMIN, UYMAX,
                         TXMIN, TXMAX, TYMIN, TYMAX,
                         STOWIN.
                         SXMIN, SXMAX, SYMIN, SYMAX,
                         AXIS, BASE
С
         COMMON/COORDS/ UX,UY, TX,TY, SX,SY
C
               SPCFL1/15*''000/, MAPTYP/'L', 'I', 'N', 7*' '/,
                BPARAM/'D',9*' '/,BOTTOM/'A','B'/,LONG/'L'/,BRIGHT/'B'/,
                ARCLIN/'L'/, LINTYP/'U', 'S'/, SHORT/'S'/, PARAM/2,5,8*0/,
                LEFT/'0','L'/,NORMAL/'N','R'/,YES/'Y'/,NO/'N'/,PLOT/'P'/,
                COMPAR/'C'/,STOPP/'S'/,
               COMPAR/'C'/,SIOPP/'S'/,
LHEDNG/'P','E','R',' ','C','E','N','T',' ',
'T','R','A','N','S','M','I','S','S','I','O','N'/,
BHDNGA/'W','A','V','E','L','E','N','G','T','H',' ',
'I','N','','A','N','G','S','T','R','O','M','S'/,
BHDNGM/'W','A','V','E','L','E','N','G','T','H',' ',
'I','N','','M','I','C','R','O','M','E','T',
                        'E', 'R', 'S'/
               ZERO/' ',' ',' ','0'/,TEN/' ',' ','1','0'/,
```

```
TWENTY/' ',' ','2','0'/,THIRTY/' ',' ','3','0'/,
FORTY/' ',' ','4','0'/,FIFTY/' ',' ','5','0'/,
SIXTY/' ',' ','6','0'/,SEVNTY/' ',' ','7','0'/,
EIGHTY/' ',' ','8','0'/,NINETY/' ',' ','9','0'/,
              HUNDRD/' ','1','0','0'/,USER/'U'/,LCPLT/'L'/,
              CONPLT/'C'/, GODARD/'G'/, MTHOPK/'H'/, CLEAR/'C'/,
              HAZY/'H'/, HPARAM/1,6,8*0/,
              LFTNUM/9*' '/, RGTNUM/9*' '/,
             A/'A'/, M/'M'/, R/'R'/, F/'F'/, E/'E'/
C
        DATA C/2.997925E10/
C
С
        SET UP PLOT SYSTEM
C
C
        ******
        CALL BEGPLT
C
C
        INSTRUCT USER HOW TO USE THIS ROUTINE
C
        ******************
        CALL TYP100
        TYPE 10
   10
        FORMAT(//T5, 'The following options are provided: '//
                 t15, 'Type P to plot a spectrum; '//
                 t15,'Type S to stop this program.'///
                 t5, 'FIRST type G, RETURN to remove this message.'/
                 t5, '*****'//)
        CALL ECHO(YES)
        ACCEPT 11, GO
  11
        FORMAT(A1)
        CALL CLR100
        CALL ECHO(NO)
        CALL ALPMOD(1)
C
       USE ITTING TO RECEIVE USER'S INSTRUCTIONS
С
1000
       ICHAR = ITTINR()
        IF (ICHAR .EQ. PLOT)
                                 GO TO 2000
        IF (ICHAR .EQ. STOPP)
                                 GO TO 4000
        GO TO 1000
C
       PLOT MODE
C
2000
        CALL TYP100
        CALL ECHO(YES)
        TYPE 2010
2010
        FORMAT(//T5, 'Spectrum file? ',$)
        ACCEPT 2011, SPCFL1
2011
        FORMAT(15A1)
        TYPE 2020
2020
        FORMAT(//T5, 'Mount file; when ready, type G: ',$)
        ACCEPT 2021, GO
2021
        FORMAT(A1)
```

```
OPEN THE SPECTRUM FILE; READ THE FIRST THREE RECORDS
C
С
C
        OPEN (UNIT=1, NAME=SPCFL1, TYPE='OLD', DISP='KEEP',
              FORM='UNFORMATTED', RECORDSIZE=2)
C
        READ(1) PLTCOD, ANGMIC
                                           ! line-center or continuous plot,
                                             in angstroms or microns
C
                                            ! bounding wavelengths
                 LOWERW, UPPERW
        READ(1)
                                             (in angstroms or microns)
C
        READ(1)
                 ATL, ATU
                                            ! bounding aerosol+continuum
                                             transmission
C
C
C
        MORE USER'S INSTRUCTIONS
С
        *******
С
        TYPE 2022
 2022
        FORMAT(////T2,'The spectrum may be plotted on an angstrom,'/
                   t2, 'micrometer, hertz or wavenumber scale,'/
                   t2, 'increasing either to the right or left;'/)
C
        IF (ANGMIC .EQ. O.) TYPE 2023
        IF (ANGMIC .EQ. 1.) TYPE 2024
        FORMAT(/T2, 'this spectrum is set up to be plotted on an'/
 2023
                t2, angstrom scale, increasing toward the right; '/
                t2, 'do you want to change this? (Y or N): ',$)
        FORMAT(/T2, 'this spectrum is set up to be plotted on a'/
 2024
                t2, 'micrometer scale, increasing toward the right;'/
                t2, 'do you want to change this? (Y or N): ',$)
C
        ACCEPT 2025, REPLY
2025
        FORMAT(A1)
C
        IF (REPLY .EQ. 'Y') GO TO 2026
        CALL CLR100
        CALL ECHO(NO)
        CALL ALPMOD(1)
        IF (ANGMIC .EQ. 0.) SCALE = A
        IF (ANGMIC .EQ. 1.) SCALE = M
        SENSE = R
        GO TO 2032
C
 2026
        TYPE 2027
 2027
        FORMAT(//T2, 'Angstrom, micrometer, hertz or wavenumber scale?'/
        t2,'(A,M,H or W): ',$)
ACCEPT 2025, SCALE
С
        TYPE 2028
        FORMAT(/T2, 'Increasing toward right or left?'/
 2028
                t2,'(R or L): ',$)
        ACCEPT 2025, SENSE
C
        CALL CLR100
        CALL ECHO(NO)
        CALL ALPMOD(1)
C
```

```
C
                                                                ! unit con-
С
                                                                  version
C
                                                                  factor
                             .AND. SCALE .EQ. 'A')
                                                    CNVFAC = 1.
 2032
        IF (ANGMIC .EQ. O.
                             .AND. SCALE .EQ. 'M')
        IF (ANGMIC .EQ. O.
                                                    CNVFAC = 1.E-4
                             .AND. SCALE .EQ. 'H')
        IF (ANGMIC .EQ. O.
                                                    CNVFAC = -1.E8*C
        IF (ANGMIC .EQ. O
                             AND. SCALE .EQ. 'W')
                                                    CNVFAC = -1.E8
C
        IF (ANGMIC .EQ. 1
                             AND. SCALE .EQ. 'A')
                                                    CNVFAC = 1.E4
                             AND. SCALE .EQ. 'M')
AND. SCALE .EQ. 'H')
        IF (ANGMIC .EQ. 1
                                                    CNVFAC = 1.
        IF (ANGMIC .EQ. 1
                                                    CNVFAC = -1.E4*C
        IF (ANGMIC .EQ. 1
                             AND. SCALE .EQ. 'W')
                                                    CNVFAC = -1.E4
C
        IF (CNVFAC .GT. 0.) GO TO 2029
                                                          ! convert wave-
        IF (CNVFAC .LT. 0.) GO TO 2030
                                                         ! length bounds
 2029
        LOWERW = CNVFAC * LOWERW
        UPPERW = CNVFAC * UPPERW
        GO TO 2031
C
        LOWERW = -CNVFAC/LOWERW
 2030
        UPPERW = -CNVFAC/UPPERW
C
 2031
       IF (LOWERW .LT. UPPERW) GO TO 2035
C
        TEMP
             = LOWERW
                                                          ! interchange if
        LOWERW = UPPERW
                                                          ! necessary to
        UPPERW = TEMP
                                                          ! keep order
C
С
C
        PLOT THE SPECTRUM (on the file just opened)
C
        ***********
С
C
        Compute appropriate wavelength or frequency unit
C
        to use on plot and number of units required to span plot
С
 2035
        WRANGE = UPPERW - LOWERW
        ORDMAG = ALOG10 (WRANGE)
        IF (ORDMAG .GE. O.) WUNIT = 10.**(AINT(ORDMAG))
        IF (ORDMAG .LT. O.) WUNIT = 10.**(AINT(ORDMAG)-1.)
C
        UPPERW = UPPERW/WUNIT
                                                 ! upper and lower wave-
        LOWERW = LOWERW/WUNIT
                                                 ! lengths in wunits
С
        UPPVAL = UPPERW
        LOWVAL = LOWERW
        DIFF = UPPVAL - AINT(UPPVAL)
        UPPVAL = AINT(UPPVAL)
        IF (DIFF .GT. 0.) UPPVAL = UPPVAL + 1.
        LOWVAL = AINT(LOWVAL)
C
C
        IUPVAL = INT(UPPVAL)
С
        ILWVAL = INT(LOWVAL)
C
C
       Set up the mapping
C
        USRWIN(1) = LOWERW
                                                 ! define user window
        USRWIN(2) = UPPERW
        USRWIN(3) = 0.
        USRWIN(4) = 100.
```

```
SCRWIN(1) = 150.
                                                  ! define screen window
        SCRWIN(2) = 1000.
        IF (SENSE .EQ. 'L') SCRWIN(1) = 1000. ! scale increasing to left
        IF (SENSE .EQ. 'L') SCRWIN(2) = 150.
        SCRWIN(3) = 170.
        SCRWIN(4) = 770.
¢
        CALL SETMAP (MAPTYP, BPARAM, IPARAM, RPARAM, USRWIN, SCRWIN)
C
С
        Draw a box around the screen window
C
        CALL BOXWIN
C
С
        Draw tick marks and grid lines
C
        BTICK = 0.
                                               ! draw long vertical ticks
        ANGSTR = LOWVAL- 1.
                                               ! and grid lines every
2040
        ANGSTR = ANGSTR + 1.
        IF (ANGSTR .GT. UPPERW) GO TO 2045
                                              ! wunit
        IF (ANGSTR .LT. LOWERW) GO TO 2040
        CALL TICK (BOTTOM, LONG, ANGSTR, BRIGHT)
        IF (BTICK .EQ. O.) BTICK = ANGSTR
        ETICK = ANGSTR
        IF (ANGSTR .NE. LOWERW .AND. ANGSTR .NE. UPPERW)
       CALL DRWLIN (ANGSTR,O.,ANGSTR,100.,ARCLIN,BRIGHT,LINTYP,PARAM)
        GO TO 2040
 2045
        ISWETK = 1
        IF (ETICK .EQ. BTICK) ISWETK = 0 ! eliminate unneeded end tick
 2050
                                               ! draw short vertical ticks
        ANGSTR = LOWVAL - 0.1
        ANGSTR = ANGSTR + 0.1
                                               ! every 1/10 th wunit
2051
        IF (ANGSTR .GT. UPPERW) GO TO 2060
        IF (AMOD(ANGSTR,1.) .EQ. 0.) GO .TO 2051
        IF (ANGSTR .GE. LOWERW) CALL TICK (BOTTOM, SHORT, ANGSTR, BRIGHT)
        GO TO 2051
C
2060
        TRANS = -10.
                                               ! draw long hor. ticks and
        TRANS = TRANS + 10.
                                               ! grid lines every 10%
2061
        IF (TRANS .GT. 100.) GO TO 2070
         CALL TICK (LEFT, LONG, TRANS, BRIGHT)
        IF (TRANS .GT. O. .AND.
            TRANS .LT. 100.)
            CALL DRWLIN (USRWIN(1), TRANS, USRWIN(2),
                         TRANS, ARCLIN, BRIGHT, LINTYP, PARAM)
        GO TO 2061
С
2070
        TRANS = TRANS - 1.
                                               ! draw short hor. ticks
                                               ! every 1%
2071
        TRANS = TRANS + 1.
        IF (TRANS .GT. 100.) GO TO 2200
        IF (AMOD(TRANS, 10.) .EQ. 0.) GO TO 2071
        CALL TICK (LEFT, SHORT, TRANS, BRIGHT)
C
        GO TO 2071
C
```

```
C
        Plot the spectrum
C
 2200
        IF (PLTCOD .EQ. 1.) GO TO 2300
        IF (PLTCOD .EQ. O.) GO TO 2400
C
        The aerosol+continuum extinction is given precisely enough
C
        (over a small wavelength band) by a straight line,
C
C
        having the general form:
C
          AT = AT1 + (AT2-AT1)/(W2-W1) * (W-W1).
C
C
C
        where AT = aerosol+continuum transmission in %
C
        and
               W = wavelength in angstroms or microns
C
C
        (W1,AT1) and (W2,AT2) are the two endpoints of the range.
 2300
        W1 = LOWERW
                                                             ! LINE-CENTER PLOT
        W2 = UPPERW
                                                             ! (overview)
C
        AT1 = ATL*100.
        AT2 = ATU*100.
C
        LOWERT = AT1 + (AT2-AT1)/(W2-W1) \times (LOWERW-W1)
                                                            ! draw aer/con line
        UPPERT = AT1 + (AT2-AT1)/(W2-W1) \bullet (UPPERW-W1)
        CALL DRWLIN (LOWERW, LOWERT, UPPERW, UPPERT,
                      ARCLIN, BRIGHT, NORMAL, PARAM)
C
        WIDTH = UPPERW - LOWERW
                                                 ! draw hatched area above line
        HATCHS = WIDTH/50.
C
        W = LOWERW - WIDTH
        DO 2340 I=1,100
        W = W + HATCHS
        AT = AT1 + (AT2-AT1)/(W2-W1) \bullet (W-W1)
        CALL DRWLIN (W,AT, W+WIDTH,AT+100.,
                      ARCLIN, BRIGHT, LINTYP, HPARAM)
2340
        CONTINUE
C
        W = UPPERW + WIDTH
        DO 2350 I=1.100
        W = W - HATCHS
        AT = AT1 + (AT2-AT1)/(W2-W1) * (W-W1)
        CALL DRWLIN (W, AT, W-WIDTH, AT+100.,
                      ARCLIN, BRIGHT, LINTYP, HPARAM)
2350
        CONTINUE
        2360 READ (1, END=2100) WAVLEN, TRANSM
                                                       ! draw absorption lines
        IF (CNVFAC .GT. O.) WAVLEN = CNVFAC * WAVLEN IF (CNVFAC .LT. O.) WAVLEN = -CNVFAC/WAVLEN
        WAVLEN = WAVLEN/WUNIT
        IF (WAVLEN .GT. UPPERW) GO TO 2360
        IF (WAVLEN .LT. LOWERW) GO TO 2100
        AT = AT1 + (AT2-AT1)/(W2-W1) + (WAVLEN-W1)
        CALL DRWLIN (WAVLEN, AT, WAVLEN, TRANSM*100.,
                      ARCLIN, BRIGHT, NORMAL, PARAM)
        GO TO 2360
C
```

```
2400
                                                              ! CONTINUOUS PLOT
        IPTCT = 1
        READ (1, END=2100) WAVLEN, TRANSM
 2410
        IF (CNVFAC .GT. O.) WAVLEN = CNVFAC * WAVLEN IF (CNVFAC .LT. O.) WAVLEN = -CNVFAC/WAVLEN
        WAVLEN = WAVLEN/WUNIT
        IF (IPTCT .EQ. 1) GO TO 2420
        CALL DRWLIN (WAVLNP, TRANSP * 100., WAVLEN, TRANSM * 100.,
                       ARCLIN, BRIGHT, NORMAL, PARAM)
 2420
        WAVLNP = WAVLEN
        TRANSP = TRANSM
        IPTCT = IPTCT + 1
        GO TO 2410
C
C
        Label the plot
          CALL MOVSEQ (LHEDNG, 21, 2, 1,700, -90., 20,
                                                               ! left heading
C2100
                        FNX, FNY, FNANGL, FNSPCE)
С
         PRINT 2110.
                        FNX, FNY, FNSPCE
C
          FORMAT(/T10, 'Left heading: '//
C2110
                  t15,'X: ',t20,I4//
C
                  t15, 'Y: ', t20, I4//
C
                  t15, 'spacing:', t25, I3///)
С
2100
        CALL DISPSQ (LHEDNG, 21, BRIGHT, 2,
                       42,742,-90.,33)
C
                                                          ! bottom heading
C
        IF (ANGMIC .EQ. O.)
        CALL MOVSEQ (BHDNGA, 23, 2, 1, 10, 0., 20,
C
                       FNX, FNY, FNANGL, FNSPCE)
C
С
        IF (ANGMIC .EQ. 1.)
С
        CALL MOVSEQ (BHDNGM, 25, 2, 1, 10, 0., 20,
                       FNX, FNY, FNANGL, FNSPCE)
С
        PRINT 2120, FNX, FNY, FNSPCE
С
C2120
        FORMAT(/T10, 'Bottom heading: '//
                       t15,'X: ',t20,I4//
t15,'Y: ',t20,I4//
С
С
                       t15, 'spacing:', t25, I3///)
C
        IF (SCALE .EQ. 'A') CALL DISPSQ (BHDNGA, 23, BRIGHT, 2,
                                             239,35,0.,28)
        IF (SCALE .EQ. 'M') CALL DISPSQ (BHDNGM, 25, BRIGHT, 2,
                                             239,35,0.,28)
        IF (SCALE .EQ. 'H') CALL DISPSQ (BHDNGH, 18, BRIGHT, 2,
                                             239,35,0.,28)
        IF (SCALE .EQ. 'W') CALL DISPSQ (BHDNGW, 24, BRIGHT, 2,
                                             239,35,0.,28)
C
               Note: MOVSEQ and DISPSQ are two routines from the author's
С
                      plot package, which he wrote to provide acceptable
С
                     plotting capability for the DEC 11/23 microcomputer,
C
                      with a DEC VT100 terminal enhanced with another
С
C
                      manufacturer's board to give it better plotting
                      capability. MOVSEQ allows the user to display any
C
                      string of characters on the screen and move the entire
С
                      string about at will, including changing the angle at
C
                     which the string is displayed, by using the arrow keys
C
                      and other keys on the terminal keyboard; when the
C
C
                      desired position and orientation of the string have
                     been found, MOVSEQ can be commanded to return those
C
C
                      values, which may then be permanently coded into the
C
                      plot routine. This gives the user a very easy way of
                      labelling the plot.
C
```

```
C Comment out after get x-value:
C.....
                                                           ! left numbers
С
        DSPLFT = (UPPERW-LOWERW)/20.
C
        UX = LOWERW - DSPLFT
        UY = 0.
C
        CALL MAP(USER)
C
C
        ILNX = INT(SX)
C
        ILNY = INT(SY)
C
C
        CALL MOVSEQ (ZERO, 4, 1, ILNX, ILNY, 0., 5,
C
                      FNX, FNY, FNANGL, FNSPCE)
С
C
         PRINT 2130, FNX, FNY, FNSPCE
         FORMAT(/T10, 'Left numbers:'//
t15,'X: ',t20,I4//
t15,'Y: ',t20,I4//
C2130
C
C
                  t15, 'spacing:', t25, I3///)
С
C......
C
C
         IILNX = printed x-value for 'left numbers'
         IILNX = 87
C
         ISPNG = printed spacing for 'left numbers'
         ISPNG = 15
C
        DO 2150 I=1,11
        UX = LOWERW
        UY = 0. + FLOAT((I-1)*10)
        CALL MAP(USER)
        IIX = INT(SX)
        IILNY(I) = INT(SY)
 2150
        CONTINUE
C
        CALL DISPSQ (ZERO, 4, BRIGHT, 1, IILNX, IILNY(1)-6, 0., ISPNG)
        CALL DISPSQ (TEN, 4, BRIGHT, 1, IILNX, IILNY(2)-6, 0., ISPNG)
        CALL DISPSQ (TWENTY, 4, BRIGHT, 1, IILNX, IILNY(3)-6, 0., ISPNG)
        CALL DISPSQ (THIRTY, 4, BRIGHT, 1, IILNX, IILNY(4)-6, 0., ISPNG)
        CALL DISPSQ (FORTY, 4, BRIGHT, 1, IILNX, IILNY(5)-6, 0., ISPNG)
        CALL DISPSQ (FIFTY, 4, BRIGHT, 1, IILNX, IILNY(6)-6, 0., ISPNG)
        CALL DISPSQ (SIXTY, 4, BRIGHT, 1, IILNX, IILNY(7)-6, 0., ISPNG)
        CALL DISPSQ (SEVNTY, 4, BRIGHT, 1, IILNX, IILNY(8)-6, 0., ISPNG)
        CALL DISPSQ (EIGHTY, 4, BRIGHT, 1, IILNX, IILNY(9)-6, 0., ISPNG)
        CALL DISPSQ (NINETY, 4, BRIGHT, 1, IILNX, IILNY(10)-6, 0., ISPNG)
        CALL DISPSQ (HUNDRD, 4, BRIGHT, 1, IILNX, IILNY(11)-6, 0., ISPNG)
C
C
        UX = BTICK
                                                       ! map bottom numbers
        UY = 0.
                                                       ! to screen
        CALL MAP(USER)
        IXBTCK = INT(SX)
        IYBTCK = INT(SY)
C
        UX = ETICK
        UY = 0.
        CALL MAP(USER)
        IXETCK = INT(SX)
        IYETCK = INT(SY)
C
```

```
BTICK = BTICK * WUNIT
                                                         ! encode bottom numbers
        ETICK = ETICK • WUNIT
С
        FTBTCK = E
        IF (BTICK .GE. 1.E-4 .AND. BTICK .LE. 99999.) FTBTCK = F
        FTETCK = E
        IF (ETICK .GE. 1.E-4 .AND. ETICK .LE. 99999.) FTETCK = F
С
        IF (FTBTCK .EQ. F) ENCODE (12,2162,BEGNUM) BTICK
        IF (FTBTCK .EQ. E)
                             ENCODE (12,2161,BEGNUM) BTICK
                             ENCODE (12,2162,ENDNUM) ETICK
        IF (FTETCK .EQ. F)
        IF (FTETCK .EQ. E)
                              ENCODE (12,2161, ENDNUM) ETICK
        FORMAT(E12.5)
 2161
        FORMAT(F12.4)
2162
C
        IF (SENSE .EQ. 'R') GO TO 2500
                                                         ! adjust positions
        IF (SENSE .EQ. 'L') GO TO 2600
                                                         ! of bottom no's
        IF (FTBTCK .EQ. F) IXBTCK = MAXO(IXBTCK-7*15,85)
2500
                             IXBTCK = MAXO(IXBTCK-6*15,85)
        IF (FTBTCK .EQ. E)
        IF (FTETCK .EQ. F)
                             IXETCK = MINO(IXETCK-7*15,1024-12*15)
        IF (FTETCK .EQ. E)
                              IXETCK = MINO(IXETCK-6*15,1024-12*15)
        GO TO 2610
C
2600
        IF (FTETCK .EQ. F)
                              IXETCK = MAXO(IXETCK-7*15,85)
        IF (FTETCK .EQ. E)
                             IXETCK = MAXO(IXETCK-6*15,85)
        IF (FTBTCK .EQ. F)
                             IXBTCK = MINO(IXBTCK-7*15,1024-12*15)
        IF (FTBTCK .EQ. E) IXBTCK = MINO(IXBTCK-6*15,1024-12*15)
C
2610
        CALL DISPSQ (BEGNUM, 12, BRIGHT, 1, IXBTCK, 100, 0., 15)
                                                                ! display bottom
        IF (ISWETK .EQ. 1)
                                                                 ! numbers
        CALL DISPSQ (ENDNUM, 12, BRIGHT, 1, IXETCK, 100, 0., 15)
C
        IF (WUNIT .LT. 1.E-4 .OR. WUNIT .GT. 99999.)
                                                                 ! encode scale
     * ENCODE (12,2161,WLUNIT) WUNIT
                                                                 ! unit
        IF (WUNIT .GE. 1.E-4 .AND. WUNIT .LE. 99999.)
        ENCODE (12,2162, WLUNIT) WUNIT
C
        DO 2165 I=1,12
        UNTDES(I+17) = WLUNIT(I)
2165
        CONTINUE
        DO 2166 I=1,11
        IF (SCALE .EQ. 'A') UNTDES(1+30) = ANGST(1)
        IF (SCALE .EQ. 'M') UNTDES(I+30) = MICRON(I)
        IF (SCALE .EQ. 'H') UNTDES(I+30) = HERTZ(I)
        IF (SCALE .EQ. 'W') UNTDES(I+30) = WAVENM(I)
2166
        CONTINUE
C
        IF (SCALE .EQ. 'A') IXUNT = 250
IF (SCALE .EQ. 'M') IXUNT = 265
IF (SCALE .EQ. 'H') IXUNT = 230
IF (SCALE .EQ. 'W') IXUNT = 260
                                                              ! display scale
        CALL DISPSQ (UNTDES, 41, BRIGHT, 1, IXUNT, 1, 0., 15)
```

```
C
C
        CLOSE THE SPECTRUM FILE, CLEAR THE SCREEN
        AND TAKE NEXT INSTRUCTION AT USER'S CUE
С
        CLOSE (UNIT=1,DISP='KEEP')
        CALL ECHO(YES)
        ACCEPT 2180, GO FORMAT(A1)
 2180
        CALL ECHO(NO)
        CALL CLR640
        GO TO 1000
C
C
С
        STOP THE PROGRAM
C
        ******
 4000
        CALL ENDPLT
        STOP
        END
```

```
!EDMICB.COM
                   COMMAND FILE TO EDIT, DEVELOP AND DEBUG MICTRA
                  **********
  This command file directs the editing, compilation and linking of
  the MICTRA routines. Any or all of the routines may be edited;
  the edited routines are then compiled and linked with the unedited
  routines to form an updated load module. The user is prompted to
  mount any needed floppy disks, and housekeeping chores (deleting
  unneeded files, squeezing disks, etc) are done automatically.
           LOAD FLOPPIES: OPERATING DISK IN DRIVE O
                         DEVELOPMENT DISK IN DRIVE 1
                         (Scratch disk is SD3)
RUN COM: EDMICB.SV1
                            ! Tell user to save files
INIT/NOQ SD3:
RUN COM: EDMICB.SV2
                            ! Mount floppies in DYO.
              HOUSEKEEPING
              *********
COPY/NOQ DY1:*.LST SD3:
DELETE/NOQ DY1:*.LST
SQUEEZE/NOQUERY DY1:
           EDIT AND RECOMPILE MICDRB
EDIT DY1:MICDRB.FOR
COPY DY1:MICDRB.BAK SD3:MICDRB.BAK
DELETE/NOQUERY DY1:MICDRB.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:MICDRB.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:MICDRB
                                                         DY1:MICDRB.FOR
I -----
           EDIT AND RECOMPILE SETUP
           *******
EDIT DY1:SETUP.FOR
COPY DY1:SETUP.BAK SD3:SETUP.BAK
DELETE/NOQUERY DY1:SETUP.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:SETUP.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:SETUP
                                                          DY1:SETUP.FOR
           EDIT AND RECOMPILE ROTAPE
           *******
EDIT DY1:RDTAPE.FOR
COPY DY1:RDTAPE.BAK SD3:RDTAPE.BAK
DELETE/NOQUERY DY1:RDTAPE.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:RDTAPE.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:RDTAPE
                                                           DY1:RDTAPE.FOR
          EDIT AND RECOMPILE ATMOS
          *******
EDIT DY1:ATMOS.FOR
COPY DY1:ATMOS.BAK SD3:ATMOS.BAK
DELETE/NOQUERY DY1:ATMOS.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:ATMOS.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:ATMOS DY1:ATMOS.FOR
```

```
EDIT AND RECOMPILE CONT
          *******
EDIT DY1: CONT. FOR
COPY DY1: CONT.BAK SD3: CONT.BAK
DELETE/NOQUERY DY1:CONT.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:CONT.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:CONT DY1:CONT.FOR
|-----
          EDIT AND RECOMPILE BLOCK
          ******
EDIT DY1:BLOCK.FOR
COPY DY1:BLOCK.BAK SD3:BLOCK.BAK
DELETE/NOQUERY DY1:BLOCK.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:BLOCK.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:BLOCK DY1:BLOCK.FOR
          EDIT AND RECOMPILE LAYNUM
         *********
EDIT DY1:LAYNUM.FOR
COPY DY1:LAYNUM.BAK SD3:LAYNUM.BAK
DELETE/NOQUERY DY1:LAYNUM.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:LAYNUM.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:LAYNUM DY1:LAYNUM.FOR
1-----
          EDIT AND RECOMPILE AERSOL
         *********
EDIT DY1: AERSOL. FOR
COPY DY1:AERSOL.BAK SD3:AERSOL.BAK
DELETE/NOQUERY DY1:AERSOL.BAK
SQUEEZE/NOQUERY DY1:
FORT/OBJ:DY1:AERSOL.OBJ/CODE:THR/EXT/U:10/WA/LIST:SD3:AERSOL DY1:AERSOL.FOR
              HOUSEKEEPING
SQUEEZE/NOQUERY DY1:
    LINK ENTIRE PROGRAM, THEN DELETE OBJECT MODULES
            (to save space on disk)
     **********
LINK/EXECUTE: DY1: MICTRA.SAV/PROMPT DY1: MICDRB.DY1: SETUP
DY1:RDTAPE, DY1:ATMOS, DY1:CONT, DY1:BLOCK, DY1:LAYNUM
DY1:AERSOL,SY:FORLIB//
DELETE/NOQUERY DY1: (MICDRB.OBJ, SETUP.OBJ, RDTAPE.OBJ)
DELETE/NOQUERY DY1: (ATMOS.OBJ, CONT.OBJ, BLOCK.OBJ)
DELETE/NOQUERY DY1: (LAYNUM.OBJ, AERSOL.OBJ)
SQUEEZE/NOQUERY DY1:
           COPY MICTRA TO OPERATING DISK (DYO)
             AND SHOW BOTH DIRECTORIES
         *********
COPY DYO: MICTRA. SAV SD3: MICBBK. SAV
DELETE/NOQ DYO:MICTRA.SAV
SQUEEZE/NOQ DYO:
COPY DY1:MICTRA.SAV DY0:MICTRA.SAV
DELETE/NOQ DY1:MICTRA.SAV
COPY/NOQ SD3:*.LST DY1:
DIR/ORDER/FULL DYO:
DIR/ORDER/FULL DY1:
```

```
This command file, to run the batch version of MICTRA,
      does nothing but run a FORTRAN program which types on the screen
      instructions to the user on which further command files to run
      in order to run the MICTRA batch routine in its various modes.
RUN COM: RNMICB. SV1
!RMICB1.COM
         COMMAND FILE TO RUN MICTRA FROM THE RLO2
         IN THE MODE WHICH GENERATES A BATCH FILE
         *************
! Initialize the RLO2 simulated disks
! Make sure user has a condensed linefile on hand.
RUN COM: RNMICB.LF
RUN COM:RNMICB.SVO
                      ! Tell user to save files before initializing disks.
INIT/NOQ SDO:
INIT/NOQ SD1:
INIT/NOQ SD2:
INIT/NOQ SD3:
INIT/NOQ SCR:
! Instruct user to load operating MICTRA floppy on DYO:
! and a floppy containing condensed line files on DY1:
RUN COM: RNMICB.SV2
! Copy appropriate files from floppy to simulated disk on RLO2
COPY DYO: MICTRA. SAV SD2: MICTRA. SAV
COPY DYO: ATMMOD. DAT SD2: ATMMOD. DAT
COPY DY1: * . * SD1:
! Instruct user how to run MICTRA
  *********
RUN COM: RNMICB. SV3
! Run the batch MICTRA routine from the RLO2
RUN SD2:MICTRA.SAV
!RMICB2.COM
        COMMAND FILE TO RUN MICTRA FROM THE RLO2
        IN THE MODE WHICH EXECUTES A BATCH FILE
       *********
! Initialize the RLO2 simulated disks
                   ! Make sure the user has a condensed linefile on hand.
RUN COM:RNMICB.LF
RUN COM: RNMICB. SOO
                    ! Tell user to save files on disks to be initialized.
INIT/NOQ SD1:
INIT/NOQ SD2:
INIT/NOQ SD3:
INIT/NOQ SCR:
```

!RNMICB.COM

```
! Instruct user to load operating MICTRA floppy on DYO:
! and a floppy containing condensed line files on DY1:
RUN COM: RNMICB.SV2
! Copy appropriate files from floppy to simulated disk on RLO2
COPY DYO: MICTRA. SAV SD2: MICTRA. SAV
COPY DYO: ATMMOD. DAT SD2: ATMMOD. DAT
COPY DY1: * . * SD1:
! See if batch file is on SDO:
RUN COM:RNMICB.SV4
DIR/ORDER/FULL/VOLUMEID SDO:
! If not, load a floppy with the batch file into DYO:
! *****************
RUN COM: RNMICB.SV5
! Run the BATCH compiler
| ************
acom: BATCH. COM
!RMICB3.COM
         COMMAND FILE TO RUN MICTRA FROM THE RLO2
         IN THE MODE WHICH GENERATES A BATCH FILE
         AND THEN EXECUTES IT
        ********
! Initialize the RLO2 simulated disks
 *******
RUN COM:RNMICB.LF! Make sure the user has a condensed linefile on hand.
RUN COM: RNMICB. SVO! Tell user to save files on disks to be initialized.
INIT/NOQ SDO:
INIT/NOQ SD1:
INIT/NOQ SD2:
INIT/NOQ SD3:
INIT/NOQ SCR:
! Instruct user to load operating MICTRA floppy on DYO:
! and a floppy containing condensed line files on DY1:
! *************
RUN COM: RNMICB.SV2
! Copy appropriate files from floppy to simulated disk on RLO2
        *********
COPY DYO: MICTRA. SAV SD2: MICTRA. SAV
COPY DYO: ATMMOD. DAT SD2: ATMMOD. DAT
COPY DY1: * . * SD1:
! Instruct user how to run MICTRA
. *************
RUN COM: RNMICB.SV3
```

```
! Run the batch MICTRA routine from the RLO2,
! to create a batch file to be executed
  ********
RUN SD2:MICTRA.SAV
! Instruct the user how to respond to BATCH's prompt
! for a file to be executed (the file is SDO:BATFIL.BAT)
  _____
RUN COM: RNMICB. SV6
! Run the BATCH compiler
acom: BATCH. COM
! BATCH.COM
! This command file runs the BATCH compiler
LOAD TT
!LOAD LP
LOAD BA
ASSIGN TT LOG ! (or LP)
ASSIGN TT LST
R BATCH
!EDLPLT.COM
  This command file edits, compiles and links the plot routine PLOTSP,
  which displays spectra computed by MICTRA
RUN COM: EDLPLT.SAV
                          ! tell user to save any important files on SDO
                            and to mount the MICTRA operating disk in DYO
                            and the development disk in drive DY1.
INIT/NOQ SDO:
EDIT DY1:PLOTSP.FOR
FORT/OBJ:SDO:PLOTSP.OBJ/CODE:THR/EXT/WA/LIST:SDO:PLOTSP.LST DY1:PLOTSP.FOR
SQUEEZE/NOQ DY1:
LINK/EXE:SDO:PLOTSP.SAV SDO:PLOTSP.OBJ,PLT:PLTLIB,SY:FORLIB
DELETE/NOQ DYO:PLOTSP.SAV
SQUEEZE/NOQ DYO:
COPY SDO:PLOTSP.SAV DYO:PLOTSP.SAV
DIR/ORDER/FULL/VOLUMEID DYO:
DIR/ORDER/FULL/VOLUMEID DY1:
!RNLPLT.COM
  This command file runs the auxiliary plotting routine PLOTSP,
  which displays spectra computed by MICTRA.
RUN COM: RNLPLT. SAV
                          ! Tell user to mount MICTRA operating disk
                            in drive DYO.
RUN DYO:PLOTSP.SAV
```

!EDLLIN.COM This command file edits, compiles and links the line editing routine LNEDIT, which processes an Air Force line file in ASCII characters into the condensed binary form used by MICTRA. RUN COM: EDLLIN. SAV ! tell user to save any important files on SDO and to mount the MICTRA operating disk in DYO and the development disk in drive DY1. INIT/NOQ SDO: EDIT DY1: LNEDIT. FOR FORT/OBJ:SDO:LNEDIT.OBJ/CODE:THR/EXT/WA/LIST:SDO:LNEDIT.LST DY1:LNEDIT.FOR SQUEEZE/NOQ DY1: LINK/EXE:SDO:LNEDIT.SAV SDO:LNEDIT.OBJ,PLT:PLTLIB,SY:FORLIB DELETE/NOQ DYO: LNEDIT. SAV SQUEEZE/NOQ DYO: COPY SDO: LNEDIT. SAV DYO: LNEDIT. SAV DIR/ORDER/FULL/VOLUMEID DYO: DIR/ORDER/FULL/VOLUMEID DY1:

!RNLLIN.COM

! This command file runs the auxiliary line editing routine LNEDIT, ! which processes Air Force line files in ASCII characters into ! the condensed binary form used by MICTRA.

RUN COM: RNLLIN.SV1

! Make sure user has an Air Force ASCII line file at hand

RUN COM: RNLLIN. SAV

! Tell user to mount MICTRA operating disk in drive DYO.

RUN DYO: LNEDIT. SAV

ATMOSPHERE AND AEROSOL MODELS

(These models are on a disk file, in exactly the form shown below; the first three lines are the sea-level molecular abundances of H2O, CO2 and O3, in molecules/sq cm/km, for the three atmosphere models.)

4.69E+22 8.24E+20	7.53E+16		Explanation	
1.17E+22 8.95E+20	7.53E+16		*****	*
1.97E+22 8.41E+20	6.78E+16			
MIDLATITUDE SUMMER	4 /5.04	/ OF OF	Atmosphere	
0.0 1.013E+03 294.0	1.4E+01	6.0E-05	*****	****
1.0 9.020E+02 290.0 2.0 8.020E+02 285.0	9.3E+00 5.9E+00	6.0E-05 6.0E-05	Column	Quantity
3.0 7.100E+02 279.0	3.3E+00	6.2E~05		
4.0 6.280E+02 273.0	1.9E+00	6.4E-05	1	height (km)
5.0 5.540E+02 267.0	1.0E+00	6.6E-05	ż	pressure (mb)
6.0 4.870E+02 261.0	6.1E-01	6.9E-05	3	temp. (K)
7.0 4.260E+02 255.0	3.7E-01	7.5E-05	4	density of
8.0 3.720E+02 248.0	2.1E-01	7.9E-05	•	water vapor
9.0 3.240E+02 242.0	1.2E-01	8.6E-05		(g/cubic m)
10.0 2.810E+02 235.0	6.4E-02	9.0E-05	5	density of
11.0 2.430E+02 229.0	2.2E-02	1.1E-04		ozone
12.0 2.090E+02 222.0	6.0E-03	1.2E-04		(g/cubic m)
13.0 1.790E+02 216.0	1.8E-03	1.5E-04		-
14.0 1.530E+02 216.0	1.0E-03	1.8E-04	(The dens	ity of CO2 is calcu-
15.0 1.300E+02 216.0	7.6E-04	1.9E-04	lated in	the program.)
MIDLATITUDE WINTER				
0.0 1.018E+03 272.2	3.5E+00	6.0E-05	Aerosol mod	
1.0 8.973E+02 268.7	2.5E+00	5.4E-05	******	
2.0 7.897E+02 265.2	1.8E+00	4.9E-05	1	wavelength
3.0 6.938E+02 261.7	1.2E+00	4.9E-05	_	(micrometers)
4.0 6.081E+02 255.7	6.6E-01	4.9E-05	2	aerosol scatter-
5.0 5.313E+02 249.7	3.8E-01	5.8E-05	_	ing coeff.
6.0 4.627E+02 243.7	2.1E-01	6.4E-05	3	aerosol absorp-
7.0 4.016E+02 237.7	8.5E-02	7.7E-05		tion coefficient
8.0 3.473E+02 231.7	3.5E-02	9.0E-05		
9.0 2.992E+02 225.7	1.6E-02	1.2E-04	The	l coefficients are
10.0 2.568E+02 219.7 11.0 2.199E+02 219.2	7.5E-03 6.9E-03	1.6E-04 2.1E-04		to 1.00 per km
12.0 1.882E+02 218.7	6.0E-03	2.6E-04	at 0.55 mi	
13.0 1.610E+02 218.2	1.8E-03	3.0E-04	at 0.33 min	crometers.
14.0 1.378E+02 217.7	1.0E-03	3.2E-04		
15.0 1.178E+02 217.2	7.6E-04	3.4E-04		
U.S.STANDARD	7.00 04	3.46 04		
0.0 1.013E+03 288.1	5.9E+00	5.4E-05		
1.0 8.986E+02 281.6	4.2E+00	5.4E-05		
2.0 7.950E+02 275.1	2.9E+00	5.4E-05		
3.0 7.012E+02 268.7	1.8E+00	5.0E-05		
4.0 6.166E+02 262.2	1.1E+00	4.6E-05		
5.0 5.405E+02 255.7	6.4E-01	4.6E-05		
6.0 4.722E+02 249.2	3.8E-01	4.5E-05		
7.0 4.111E+02 242.7	2.1E-01	4.9E-05		
8.0 3.565E+02 236.2	1.2E-01	5.2E-05		
9.0 3.080E+02 229.7	4.6E-02	7.1E-05		
10.0 2.650E+02 223.2	1.8E-02	9.0E-05		
11.0 2.270E+02 216.8	8.2E-03	1.3E-04		
12.0 1.940E+02 216.6	3.7E-03	1.6E-04		
13.0 1.658E+02 216.6	1.8E-03	1.7E-04		
14.0 1.417E+02 216.6	8.4E-04	1.9E-04		
15.0 1.211E+02 216.6	7.2E-04	2.1E-04		

RURAL		
40.000	.02311	.04972
35.000	.02601	.04885
30.000 27.900	.02807	.04817
27.900	.03505	.04713
22.500	.03883	.04856
21.300	.03988	.04959
20.000	.04175 .04276	.04857
18.500 18.000	.04276	.04280
17.200	.04512	.04857
16.400	.04353	.04407
15.000 14.800	.03376	.05278
14.000	.04733	.03407
13.000	.05164	.03310
12.500	.05370 .05823	.03269
11.500 11.000	.05972	.03607
10.591	.05749	.04301
10.000	.05722	.05123
9.800 9.500	.05774 .05477	.05266
9.200	.05289	.08719
9.000	.05719	.07649
8.700	.05497	.07125
8.500 8.200	.03319	.07937
7.900	.03074	.03904
7.200	.05216	.04713
6.500 6.200	.05488 .05696	.03354
6.000	.05870	.02921
5.500	.06904	.02455
5.000 4.500	.07672 .08011	.02033
4.000	.09001	.01465
3.750	.09394	.01357
3.500	.09598	.01583
3.392 3.200	.09251	.01979
3.000	.08330	.03696
2.700	.07835	.06559
2.500 2.250	.1016 .1140	.02932
2.000	.1312	.02763
1.800	.1535	.04432
1.536 1.300	.2057 .2697	.05907
1.060	.3802	.06775
0.860	.5122	.06694
0.694 0.633	.7023 .7900	.06129
0.550	.9307	.06928
0.515	1.008	.06748
0.488 0.400	1.068 1.311	.07050
0.337	1.537	.09620
0.300	1.673	.1335
0.250 0.200	1.856 1.916	.2317 .5029
0.200	1.710	

TROPOSP 40.000 35.000 30.000 27.900 25.000 21.300 21.300 21.300 18.000 18.000 11.000 14.000 14.000 14.000 11.000 11.000 11.000 9.200 9.200 9.200 9.200 9.200 9.200 9.200 6.200	.00006 .00009 .00012 .00017 .00026 .00049 .00061 .00056 .00072 .00088 .00046 .000122 .00185 .00275 .00275 .00375 .00428 .00484 .00620 .00847 .00785 .00121 .00017 .00055 .00294 .00611 .00849 .01564 .0159 .01564 .0159 .01564 .02174 .02133 .02350 .02394 .02394 .02670 .0379 .05005 .050	.01807 .01730 .01732 .01608 .01553 .01616 .01553 .01616 .01536 .01344 .01378 .01488 .02378 .01036 .010376 .010376 .01044 .01895 .01966 .02700 .04812 .03750 .04847 .02920 .03451 .02920 .016997 .011080 .02700 .03419 .02920 .03451 .02920 .03451 .0346 .03750 .0346 .03750 .016997 .01769 .01895
0.694 0.633 0.550	.7028 .7983 .9528 1.037	.03916 .03985 .04716 .04589

MARITIME		
40.000	.02533	.1336
35.000	.03006	.1119
30.000	.04085	.1123
27.900 25.000	.05367	.1198 .1299
22.500	.06128	.1433
21.300	.06514	.1509
20.000	.07033	.1606
18.500 18.000	.07484	.1752 .1795
17.200	.07504	.1858
16.400	.06689	.1876
15.000 14.800	.05950 .05801	.1866 .1832
14.000	.05448	.1789
13.000	.04841	.1629
12.500	.04623	.1490
11.500	.05652	.1052
10.591	.09447	.06893
10.000	.13066	.06245
9.800 9.500	.14392	.06222
9.200	.16085	.07218
9.000	.19546	.07085
8.700	.1996	.07051
8.500 8.200	.1848 .1869	.07119
7.900	.1988	.05840
7.200	.2415	.05965
6.500 6.200	.2879 .28860	.07387
6.000	.19840	.14880
5.500	.34310	.03207
5.000 4.500	.40720 .45200	.03660
4.000	.52890	.01985
3.750	.56450	.01718
3.500 3.392	.5849 .5670	.04164
3.200	.4594	.2208
3.000	.3271	.3328
2.700 2.500	.4399	.09134
2.500	.6093 .6772	.02125
2.000	.7159	.01380
1.800	.7534	.00918
1.536 1.300	.7951 .8288	.01207
1.060	.8682	.01210
0.860	.9013	.01084
0.694 0.633	.9396 .9556	.00979
0.550	.9882	.01179
0.515	.9975	.01147
0.488 0.400	1.014	.01221
0.337	1.063 1.115	.01858
0.300	1.142	.02800
0.250	1.181	.05471
0.200	1.188	.13000

URBAN 40.000 35.000	.02037	.04028
30.000 27.900	.02422 .02601	.04226
25.000 22.500 21.300	.02861 .03099 .03174	.04374 .04552 .04672
20.000 18.500 18.000	.03298 .03376 .03499	.04691 .04505
17.200 16.400	.03524	.04911
15.000	.02985 .03275 .03713	.05336 .04621 .04476
14.000 13.000 12.500	.03961	.04562
11.500 11.000	.04350	.04842
10.591 10.000 9.800	.04350 .04365 .04400	.05493 .06037 .06161
9.500 9.200	.04262	.06802
9.000 8.700 8.500	.04318	.07610 .07416 .07916
8.200 7.900	.02199 .03118 .04271	.06560 .06030 .06784
6.500 6.200	.04496	.06393
6.000 5.500 5.000	.04767 .05386 .05900	.06472 .06613 .06824
4.500 4.000	.06220	.07474
3.750 3.500 3.392	.07258 .07500 .07383	.08063 .08610 .08966
3.200 3.000	.07572 .07209	.09346 .1075
2.700 2.500 2.250	.07286 .08758 .09833	.1288 .1157 .1240
2.000 1.800	.1129 .1302	.1339 .1524
1.536 1.300 1.060	.1670 .2131 .2896	.1753 .1964 .2256
0.860 0.694	.3828 .5110	.2545 .2866
0.633 0.550 0.515	.5706 .6657 .7167	.3027 .3343 .3482
0.488 0.400	.7567 .9171	.3591 .4036
0.337 0.300 0.250	1.065 1.154 1.251	.4417 .4792 .5474
0.200	1.287	.6767

```
BACKGR STRATOSPHERIC
40.000 0.
                       .00592
35.000
                       .00580
           0.
             .00001 .00632
30.000
27.900
             .00001 .00680
             .00001 .00836
25.000
             .00002 .01530
22.500
21.300
             .00002 .01617
             .00002 .01343
20.000
             .00002 .01343
.00004 .01710
.00005 .02321
.00005 .04147
.00004 .03661
.00005 .01948
18.500
18.000
17.200
16.400
15.000
14.800
             .00005 .01890
14.000
             .00007 .01860
             .0001 .01930
.00013 .01962
13.000
12.500
             .00013 .01762
.00026 .03549
.00026 .05710
.00027 .04041
.00049 .04971
.00067 .07256
11.500
11.000
10.591
10.000
 9.800
             .00071 .09987
 9.500
 9.200
             .00058 .08722
 9.000
             .00072 .09217
             .00072 .09217
.00096 .1264
.00095 .1448
.00077 .1463
.00050 .1182
.00019 .04437
.00055 .03283
.00088 .04304
 8.700
 8.500
 8.200
 7.900
 7.200
 6.500
 6.200
 6.000
             .00105 .05263
 5.500
             .00103 .05704
 5.000
             .00145 .04132
             .00242 .04522
 4.500
             .00242 .04522
.00403 .05391
.00510 .06019
.00623 .07917
.00627 .08300
.00600 .07671
 4.000
 3.750
 3.500
 3.392
 3.200
 3.000
             .00632 .05878
 2.700
             .00931 .00403
 2.500
             .01560 .00289
 2.250
             .02570 .00157
             .04055 .00128
.05817 .00064
.09972 .00020
 2.000
 1.800
 1.536
                       .00002
 1.300
             .1642
             .2886
 1.060
                       .00000
 0.860
             .4685
                       .00000
 0.694
             .7063
                        .00000
                        .00000
 0.633
             .8224
                        .00000
 0.550
            1.000
            1.087
                        .00000
 0.515
                        .00000
 0.488
            1.150
            1.376
                        .00000
 0.400
            1.515
 0.337
                        .00000
 0.300
            1.555
                        .00000
                        .00000
 0.250
            1.553
           1.487
                        .00000
 0.200
```

```
AGED VOLCANIC
          .00002 .01328
40.000
35.000
          .00003 .01192
          .00006 .01124
.00008 .01072
.00014 .01038
.00020 .01104
30.000
27.900
25.000
22.500
21.300
          .00023 .01054
20.000
          .00026 .01390
18.500
          .00031 .01741
18.000
          .00031 .01826
17.200
          .00029 .01706
16.400
          .00028 .01620
          .00032 .01635
.00033 .01532
.00046 .01447
15.000
14.800
14.000
          .00071 .01530
13.000
          .00090 .01623
12.500
          .00191 .02282
11.500
11.000
          .00260 .02511
          .00322 .02859
10.591
          .00449 .03009
10.000
          .00475 .02979
9.800
          .00518 .02871
 9.500
          .00573 .02658
.00602 .02506
.00481 .02438
9.200
 9.000
 8.700
          .00257 .02218
8.500
          .00099 .02180
8.200
7.900
          .00136 .01652
7.200
          .00250 .01112
6.500
          .00378 .00665
          .00467 .00525
.00570 .00451
6.200
 6.000
5.500
          .00869 .00396
          .01204 .00335
5.000
4.500
          .01775 .00319
4.000
          .02394 .00349
3.750
          .02913 .00488
3.500
          .03435 .00654
3.392
          .03761 .00743
3.200
          .04262 .00936
3.000
          .05126 .00949
2.700
          .06343 .00842
          .07792 .00843
2.500
2.250
          .1021
                   .00867
          .1353
                   .01019
2.000
          .1849
1.800
                   .01191
          .2648
1.536
                   .01490
          .3693
 1.300
                   .01881
 1.060
          .5057
                   .02452
          .6570
0.860
                   .03178
          .8079
                   .04084
0.694
                   .04532
0.633
          .8676
          .9473
0.550
                   .05271
0.515
          .9799
                   .05651
0.488
         1.0030
                   .05962
0.400
         1.0680
                   .07244
0.337
         1.0950
                  .06497
0.300
         1.0790
                  .1126
0.250
          .9009
                  .2818
0.200
          .7006
                   .4482
```

REFERENCES

- 1. R.A. McClatchey and A.P. D'Agati, "Atmospheric Transmission of Laser Radiation: Computer Code LASER," AFGL-TR-78-0029, 31 January 1978.
- 2. H.G. Safren, "A Computer Code to Calculate the Emission or Absorption Spectra of Atmospheric Water Vapor, Carbon Dioxide, Ozone, Nitrous Oxide, Carbon Monoxide, Methane or Oxygen Lines," NASA TM, to be published.
- 3. H.G. Safren, "A Plot Package for the DEC 11/23 Microcomputer, Using the DEC VT100 Terminal with the Digital Engineering Retro-Graphics Enhancement," NASA TM, to be published.
- 4. E.P. Shettle and R.W. Fenn, "Models of the Atmospheric Aerosols and their Optical Properties," AGARD Conference Proceedings No. 183, Optical Propagation in the Atmosphere, pp. 2.1-2.16, 1976.
- 5. R.A. McClatchey, W.S. Benedict, S.A. Clough, D.E. Burch, R.F. Calfee, K. Fox, L.S. Rothman and J.S. Garing, "AFCRL Atmospheric Absorption Line Parameters Compilation," AFCRL-TR-73-0096, 26 January 1973.
- 6. L.S. Rothman and R.A. McClatchey, "Updating of the AFCRL Atmospheric Absorption Line Parameters Compilation," Applied Optics letter, Vol. 15, No. 11, November 1976.
- 7. L.S. Rothman, "Update of the AFGL Atmospheric Absorption Line Parameters Compilation," Applied Optics letter, Vol. 17, No. 22, 15 November 1978.
- 8. L.S. Rothman, "AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version," Applied Optics, Vol. 20, No. 5, 1 March 1981, pp. 791-795.
- 9. L.S. Rothman, R.R. Gamache, A. Barbe, A. Goldman, J.R. Gillis, L.R. Brown, R.A. Toth, J.-M Flaud and C. Camy-Peyret, "AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition," Applied Optics, Vol.22, No 15, 1 August 1983, pp. 2247-2256.
- 10. C. Weng, private communication.

NAIONAI Aeronaulics and Space Administration	Report Docume	entation Page		
1. Report No.	2. Government Accession	n No.	3. Recipient's Catalog	No.
nasa tm-100686				
4. Title and Subtitle			5. Report Date	
A Computer Code to Calculate Line by Line Transmission Spectra on a Microcomputer		Atmospheric	July 1987	
riansmission spectra on a	Microcomputer		6. Performing Organiz	ation Code
		•	702 0	
7. Author(s)			723.0 8. Performing Organiz	ration Report No.
7. Admons			o. renoming organiz	ation report no.
H. G. Safren			86B0201	
			10. Work Unit No.	
Performing Organization Name and Addi	ess		11. Contract or Grant	No.
Goddard Space Flight Cent	er		Tr. Contract of Grant	140.
Greenbelt, Maryland 207	71			
			13. Type of Report and	d Period Covered
12. Sponsoring Agency Name and Address				_
National Aeronautics and	-	tion	Technical Me	
Washington, D.C. 20546-0	0001		14. Sponsoning Agenc	y Code
16. Abstract A computer program is des mission spectra on a micr				
The program is written in other than the one on whi would have to be replaced Laboratory LASER routine, the AFGL Atmospheric Absoline data are taken from and stored on floppy disk variety of paths and spanthe path may be chosen to and may extend between an are included, presently be molecular continuum effects	Fortran and could the it was implement. The program is and uses absorpt the tape, preproduces. The program of the tape, preproduces. The program of the tape, preproduces and arbitrarials be horizontal, by two altitudes is assed on the 1976.	ented, except to based on the cion line data meters Compilate cessed into the calculates transity chosen wave vertical or slapetween 0 and 1 Shettle and Fe	to run on a min hat the plotting large from the 1982 ion; segments form used by smission spectage from the at any zero.	crocomputer ing routine Geophysics update of of needed the program cra over a quency range; enith angle, effects
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Atmospheric Transmission;		Unclassifie	d - Unlimited	
Computer Program; Microcomputer				
		Sub	ject Category	17
		İ		
19. Security Classif. (of this report)	20. Security Classif. (of the	nis page)	21. No. of pages	22. Price
Unclassified	Unclassified			

Unclassified