ANALYSES AND ASSESSMENTS OF SPAN WISE GUST GRADIENT DATA FROM NASA B-57B AIRCRAFT

WALTER FROST

HO-PEN CHANG
ERIK A. RINGNES

FWG ASSOCIATES,INC.
Tullahoma, TN. 37388

Contract NAS1-17989
AUGUST 1987

N/SA

- .at:ora' Ferorealics arc

Scace icmaniract
Langley Research Center
rampton Virgin:a 23665-5225

ACKNOWLEDGEMENTS

This research was supported under NASA Contract NAS1-17989. The authors are grateful for the support of A. Richard Tobiason of the Office of Aeronautical and Space Tennology, NASA Headquarters, Washington, D.C. Special thanks go to Harold N. Murrow and Robert K. Sleeper of the Loads and Aeroelasticity Division, NASA Langley Research Center, Hampton, Virginia, who monitored the research program and made many useful suggestions. Also, the authors want to thank L. Jack Ehernberger, NASA Dryden Research Center, for his valuable inputs and suggestions, and Dennis W. Camp, NASA Marshall Space Fl.ght Facility, for directing and managing the overall program.

PRECEDING PAGE BLANK NOT FILN=D

TABLE OF CONTENTS

SECTION
PAGE
1.0 INTRODUCTION 1
2.0 STATISTICAL ANALYSIS OF DATA 9
2.1 Flight Altitude and Horizontal Wind Velocity Along the Flight Path 14
2.2 Time Histories of Gust Velocities, Gust Velocity Differences Between Wing Tips, and the Aircraft's Normal Acceleration 18
2.3 Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficient of Gust Velocities 25
2.4 Probability Density Function for Gust Velocities and Gust Velocity Differences 31
2.5 Normalized One- and Two-Point Correlation Functions of Gust Velocities 35
2.6 Normalized One- and Two-Point Spectral Density Functions of Gust Velocities 46
2.7 List of All Parameters Measured and the Range of Their Extreme and Average Values 62
3.0 SPECTRAL ESTIMATICN 67
3.1 Graphical Iifustration of the Discrete Fourier Transform 68
3.2 Aliasing 71
3.3 Bias Error 78
3.4 Smooining the Spectrum 87
3.5 Window Selection 88
3.6 Variance Error 89
3.7 Spectrum Calculation from a Finite Turbulence Time History 93
3.8 Lag Windows for Reducing Bias Error 98
4.0 INSTRUMENTATION ERROR ANALYSIS 103
4.1 Instrumentation Problems 103
4.2 Wind and Gust Velocity Equations 105
6,
\because 4.3 Sources of Inaccuracy in Data Reduction 107
4.4 Inertial Velocity and Position Errors 108
4.5 Flow Vane Errors 119
4.6 Airspeed Errors 119
4.7 Gust Velocity Corrections 120
4.8 Horizontal Wind Vector Correctton 122
4.9 Effects of Non-Level Flight 126
5.0 CONCLUSIONS 142
REFERENCES 146
APPENDIX A: RESULTS OF STATISTICAL ANALYSIS OF FLIGHT 31 152
APPENDIX B: DERIVATION OF EQUATIONS 326

LIST OF TABLES

TABLE
PAGE
1.1 NASA B-57-B Gust Gradient Flight Record 3
2.1 Terrain Category for Flight 31 16
2.2 Time Duration and Mean Wind Direction 17
2.3 Mean Airspeed (m / s) for Flight 31, November 29, 1982 26
2.4 Standard Deviation (m / s) of Gust Velocity and Gust Velocity Difference for Flight 31 27
2.5 Turbulence Length Scales for Flight 31 29
2.6 Two-Point Correlation Coefficient of Gust Velocity for Flight 31 30
2.7 Values of r (Equation 2.4) Which Represent a Measure of the Degree of Departure from a Gaussian Probability Distribution of the Gust Velocities 36
3.1 Comparison of Aliased Spectrum Values with True Analytical Values at $f=15 \mathrm{~Hz}$ and 20 Hz (see Figure 3.4) 74
3.2 Comparison of Aliased Values for Two-Point Spectra with True Analytical Value 78
3.3 Values of $1 / 2 \pi \int_{\infty}^{\infty} S(\omega-y) W(y) d y$ for $S(\omega)$ Given by Equations 3.4 and 3.6, Respectively, and a Triangular Spectral Window ($N=512$, $\Delta \tau=0.025$) 91
4.1 Turbulence Intensit.ies for Total Time History and Each Segment Individually for Run 3 141

LIST OF FIGURES

FIGURE PAGE
2.1 Examples of Nonstationary Data 10
2.2 Map of the Vicinity Near Edwards AFB, California, Showing Ground Tracks of 16 Runs from Flight 31, November 29, 1982 12
2.3 Atmospheric Temperature Profile at Edwards AFB, California, November 29, 1982, with Flight Data Superimposed 13
2.4 Potential Temperature Profiles from Flight 31 15
2.5 Time Histories of Gust Velocities, Gust Velocity Differences, and the Aircraft's Normal Acceleration for Run 3 in Flight 31, November 29, 1982 19
2.6 Comparison of Probability Density Functions for Gust Velocities and Gust Velocity Differences (normalized with the standard deviation) with Theoretical Models, Flight 31, Run 3 ($r=$ degree of non-Gaussian) 33
2.7 Definition of the Longitudinal and Transverse Velocity Correlation Coefficients 38
2.8 Terminology of the Two-Point Auto-Correlation Relationship (the lateral velocity components are similarly resolved) 40
2.9 Comparison of Normalized One- and Two-Point Correlation Functions for Gust Velocities with Theoretical Models, Flight 31, Run 3 42
2.10 Normalized One- and Two-Point Cross-Correlation Functions of Gust Velocities, Flight 31, Run 3 45
2.11 Comparison of Normalized One- and Two-Point Spectral Censity Functions for Gust Velocities with Theoretical Models, Flight 31, Run 3 50
2.12 Two-Point Spectra for the Longitudinal Velocity Component 52
2.13 Two-Point Auto-Spectra for the Lateral Velocity Component 53
2.14 Two-Point Auto-Spectra for Velocity Velocity Component 54
2.15 Ratio of $2 \mathrm{~K}_{5 / 6}(Z) /\left(\mathrm{Z} \mathrm{K}_{1 / 6}(Z)\right)$ Versus Wave Number 56
2.16 Normalized One- and Two-Point Cross-Spectral Density Flinctions of Gust Velocities, Flight 31, Run 3 58
2.17 Comparison of Cross-Spectral Density Function for u and w Components with Theoretical Model. Fiight 31, Run 12
$\left(A=1.25 L_{U} / \bar{V} ; B=L_{U} / \bar{V} ;\right.$ and $\left.r=1.25\right)$ 61
3.1 Graphical Development of the Discrete Fourier Transform (Brigham, 1974) 69
3.2 Illustration of Aliasing Problem 73
3.3 von Karman One-Point Auto-Spectrum with a Triangular Spectrum Window 75
3.4 Comparison of Aliased One-Point Auto-Spectrum with True Analytical Values 76
3.5 Comparison of Theoretical Two-Point Spectrum (Equation 3.6) with the DFT of the Correlation Function (Equation 3.5) 77
3.6 Rectangular and Triangular Lag Window and Their Respective Fourier Transform 80
3.7 Comparison of the Theoretical von Karman One-Point Auto-Spectrum with the DFT Computed Values Using a Square Lag Window 32
3.8 Comparison of the Analytical Two-Point Spectrum (Equation 3.6) with the DFT Values Computed from Digitizing Equation 3.5 and Employing a Rectangular Lag Window 83
3.9 Comparison of One-Point and Two-Point Analytical Correlations for Vertical Turbulence Fluctuations (Equations 3.3 and 3.5) 85
3.10 Results of Applying Minfmum-Bias Window (Equation 3.34) to the DFT Computation of the Two-Point Spectrum from Equation 3.5 as Compared with the Analytical Value 92
3.11 Smoothing Procedures for Spectrum Estimates (Bendat and Piersol, 1971) 97
3.12 Segment-Averaged Two-Point Auto-Spectrum Using Equation 3.47 99
3.13 Segment-Averaged Two-Point Auto-Spectrum Using Equation 3.48 ¢9
3.14 Two-Point Spectrum Computed Directly from Data with a Rectangular Lag Window 100
3.15 Two-Point Spectrum with Minimum Amplitude Window, Equation 3.35 102
4.1 Characteristics of the B-57B 104
4.2 Event Marker Location of B-57B on Box Pattern Flights 1:0
4.3 In-Flight Schuler Position Error, Flight 63 112PAGE
4.4 In-Flight Schuler Position Error, Flight 66 113
4.5 In-Flight Schuler Inertial Speed Error, Flight 63 115
4.6 Error in East Inertial Speed on Flight 74 117
4.7 Error in North Inertial Speed on Flight 74 118
4.8 Effect of Instrumentation Errors on the Three Turbulence Components on F1ight 63, Run 16 121
4.9 Horizontal Wind Vectors on Flight 63 without Corrections (Runs 9 through 12) 123
4.10 Horizontal Wind Vectors on Flight 63 with Beta Corrections (Runs 9 through 12) 124
4.11 Horizontal Wind Vectors on Flight 63 after Airspeed, Beta, and Inertial Velocity and Position Corrections (Runs 9 through 12) 125
4.12 Horizontal Wind Vectors on Flight 63 without Corrections (Runs 13 through 16) 127
4.13 Horizontal Wind Vectors on Flight 63 after Airspeed, Beta, and Inertial Velocity and Position Corrections (Runs 13 through 16) 128
4.14 Horizontal Wind Vectors on Flight 63 without Corrections (Runs 17 through 20) 129
4.15 Horizontal Wind Vectors on Flight 63 after Airspeed, Beta, and Inertial Velocity and Positioin Corrections (Runs 17 through 20) 130
4.16 Comparison of Turbulence Time Histories Calculated from NASA Langley's Equation and FWG's Equation (descending segment of Run 2; Flight 31) 132
4.17 Comparison of Turbulence Time Histories Calculated from NASA Langley's Equation and FWG's Equation (climbing segment of Run 2; Flight 31) 136
4.18 Comparison of Turbulence Spectra Computed for Individual Segments of Run 3 139
4.19 Illustration of Terrain-Induced Turbulence 140

NOMENCLATURE

ASL
b
$B_{L}(\zeta), B_{T}(\zeta)$
$B_{x y}(\vec{\zeta}, \tau)$
c
$c_{x}(\vec{\zeta}, f), c_{x y}(\vec{\zeta}, f)$
$\mathrm{e}_{\mathrm{i}}(\xi), \mathrm{e}_{\mathrm{j}}(\xi+\zeta)$
f
g
$H(f) \quad$ Fourier transform of $h(\tau)$
k
$K_{n}(z)$
2
$\ell_{x C}$

L
M
$B_{x}(\vec{\zeta}, \tau) \quad$ Normalized for two-point correlation function $=$ $R_{x}(\vec{\zeta}, \tau) / \sigma_{x} \sigma_{x}{ }^{\prime}$
$B_{X}(\tau), B_{X}(\ell) \quad$ Normalized one-point correlation function in temporal/ spatial domain
$B_{x y}(\tau) \quad$ Normalized one-point cross-correlation function $=$ $R_{x y}(\tau) / \sigma_{x} \sigma_{y}$
$h(\tau) \quad$ An example function for any correlation function
Above sea level
Bias error
Normalized von Karman one-point auto-correlation functions for longitudinal and transverse velocity components, respectively

Normalized two-point cross-correlation function $=$ $R_{x y}(\vec{\zeta}, \tau) / \sigma_{x} \sigma_{y}$
Constant $=2^{2 / 3 / \Gamma(1 / 3)}$
Coincident spectral density functions (co-spectra)
Direction cosines of the velocity vectors at positions ξ and $\xi+\zeta$ with respect to ith and j th axes, respectively

Frequency, Hz (cycle per second)
Gravitational acceleration

A constant between 0.5 and -
nth order of a modified Bessel function of the second kind
Spatial lag used in correlation functions $=V_{\tau}$
Distance parallel to airplane x-axis from INS measuring element to α, β, or q_{C} measuring station at nose boom

Turbulence integral length scale
A specific lag time for a correiation function to reduce variance error in calculating the corresponding spectral function

Probability density function of a time history record $x(t)$ Pacific standard time
$Q_{x}(\vec{\zeta}, f), Q_{x y}(\vec{\zeta}, f)$
r Quadrature spectral density functions (quad-spectra) Degree of non-Gaussian in an analytical function of the probability density function

Distance between a flying airplane and center of the earth

An estimate of a correlation function, $R(\bar{i})$
Tensor form of a general non-isotropic velocity correlation between velocity fluctuations $u_{j}(\xi)$ and $u_{j}(\xi+\zeta)$ at positions ξ and $\xi+\zeta$, respectively
Correlation function between common velocity components at two positions separated by a vector distance, $\vec{\zeta}$

One-point auto-correlation function
One-point cross-correlation function
Cross-correlation function between the different velocity components at two positions separated by a vector distance, $\overrightarrow{\boldsymbol{\zeta}}$.

$S(\omega)$		An estimate of a spectral function, $S(\omega)$
$S_{x}(i)$		One-point two-sided auto-spectral density function
$S_{x}(\vec{\zeta}, f)$		Two-sided spectral density function between conmon velocity components at two positions separated by a vector distance, $\vec{\zeta}$
$S_{x y}(f)$		One-point two-sided cross-spectral density function
$S_{x y}(\vec{\zeta}, f)$	-	Two-sided cross-spectral density function between the different velocity components at two positions separated by a vector distance, $\vec{\zeta}$
T		Duration of a time history record; oscillation period of a specific Schuler-adjusted system $T=k \cdot 2 x \sqrt{k / g}$
u,v,w		Derived gust velocity components (longitudinal, lateral, and vertical)
URUL		Two-point correlation function

1.0 INTRODUCTION

Spatial variation of turbulence over aircraft is known to strongly influence the structural and control design of the aircraft (Houbolt, 1973; Etkin, 1972; Bisplinghoff and Ashley, 1957). Techniques for computing rclling and pitching moments and other aerodynamic forces, which are influenced by spatial turbulence, have been developed theoretically and, in general, utilize isotropic homogeneous turbulence (Diederich and Drischler, 1957; Eichenbaum, 1972; Eggleston and Diederich, 1956; Houbolt, 1973; Lichtenstein, 1978; Kordes and Houbolt, 1953; Houbolt and Sen, 1972; Paste1, et al., 1981; Akkari and Frost, 1982; Diederich, 1957; Ringnes and Frost, 1985; Frost and Lin, 1983). It is normally accepted, however, that the turbulence in the atmospheric toundary layer close to the earth's surface, which is encountered by an aircraft during approach and takeoff, and turbulence associated with thunderstorms and clear-air roll waves is generally not isotropic. Additionaliy, turbulence shed jy orographic features can also create relatively large-scale turbulence that is typically not isotropic nor homogeneous.

Spatial turbulence statistics have been computed from data measured with single tower to heights not exceeding much more than 100 m . Towers, however, provide spatial turbulence information only in the vertical (Davenport, 1961; Brook, 1975), which is uninteresting to aircraft design. Some studies have been carriec out with tower arrays based on two or three towers located at various horizontal separation distances. The data normally reported from these studies is the coherence function for longitudinal velocities (Panofsky and Mizuno, 1975; Panofsky, et al., 1974; Kristensen and Jensen, 1979; Pielke and Panofsky, 1970; Frost and Lin, 1983). These towers are normally less than
\therefore 就 m in height. Due to the fact that turbulence information required for aircraft design is at much higher altitudes (even in the terminal area data to heights of roughly 500 m are required), tower data are somewhat limited in their application.

For this reason a NASA program has been underway to determine time histories and various statistical characteristics of three components of gust velocity measured similtaneously at the wing tips and at the nose of a specially instrumented $B-57 B$ airplane. The instrumentation system has been designed and installed on the airplane and several flights have been carried out (see Table 1.1). The flights include turbulence samples taken near storms in the Denver-Boulder, Colorado, area. Results from Fliglits 21, 22, and 26* are reported in considerable detail in Frost, et al. (1985a), Camp, et al. (1984), Frost (1983), Campbell, et al. (1983), and Chang, et al. (1986). Turbulence measurements with the aircraft during Flights $40,44,64$, and 65 have been compared with data obtained using remote radar sensing techniques (Frost, et a1., 1985b; Huang, et a1., 1985; Frost and Huang, 1983). Also, measurements of turbulent fluxes of momentum, heat, and moisture relative to orographic features were made during Flights $60,61,63$, and 66 . Analyses are presented in Chang and Frost (1985), Theon, et al. (1986), and Frost, et al. (1985c).

The purpose of the present study is threefold:

1. Perform statistical analyses of the acquired flight data with emphasis on long data runs in continuous turbulence and glide slope runs for simulated takeoffs and landing approaches. Flight 31 flown at NASA Dryden was carried out specifically for this purpose.
*Flights 21, 22, and 26 were originally numbered 6, 7, and 10 respectively, and are so referred to in the references cited.

Study, develop, and/or modify statistical models, as necessary, from the standpoint of providing an analytical expression for
3. Analyze effects of instrumentation characteristics and data processing effects on reduced gust velocity data.
Flight 31 contained runs over sufficiently long distances at level flight to provide turbulence time histories long enough to assure a high statistical degree of freedom and to determine spectral characteristics for wavelengths as great as $10,000 \mathrm{ft}(3000 \mathrm{~m})$. The meteorological correlations and statistical analyses of data from Flight 31 is the primary thrust of this report. Plans for flight 31 were also to include takeoff and touch-and-go runs to investigate non-stationary turbulence along the glide slope associated with the vertical variation of the horizontal wind in the atmospheric boundary layer (Panofsky and Dutton, 1984; Haugen, 1973). Non-stationary data calls for statistical ensemble analysis techniques (see Frost and Moulden, 1977; Wang and Frost, 1982). Ensemble statistics requires a collection, or ensemble, of sample records of the turbulence process. Wang and Frost (1982) have shown that a minimum of six flights down the glide slope under similar prevailing meteorological conditions are required to assure meaningfur results. Unfortunately, ensemble analyses could not be carried out because during Flight 31 only one touch-and-go and one takeoff run were recorded. Thus, insufficient approaches or takeoffs were made under similar prevailing meteorological conditions to permit ensemble averaging.

Another problem associated with the turbulence measurements carried out along non-level flight paths is that the system of equations presently utilized to remove the airplane motions from the recorded data are based on a linearized model which assumes only small perturbations about wing level, horizontal flight. Analysis using the full non-linear system of equations
cen carried out for typical data and compared with the computations from the linearized system (Frost, et al., 1983). In general, the effects of a glide slope or climb-out angle less than 10° are negligible on the computed turbulence gust velocities.

Data for all runs in Flight 31 including the touch and go are provided in Appendix A. Details of the flight path, the time histories, and selected statistical analyses including probability distributions, correlations, spectra, etc. are given in this appendix. The statistical analyses described in Section 2 were applied to the turbulence measurements for all runs. Although these analyses are strictly applicable to statistically stationary data, little evidence of non-stationary effects is observed in any of the data except for Run 10 as described later. This observation is true for the touch-and-go runs and takeoff run, also.

The philosophy asscciated with Appendix A is to provide the data after applying sufficient statistical analysis to allow the reader to distinguish data sets which are of interest to his specific application. The complete data can then be obtained on magnetic tape from NASA Langley Research Center (LaRC) for conducting the reader's own analysis. With this in mind, the complete data from Runs 1 through 16 of Flight 31 have been given in the appendix. Selected runs, however, are analyzed in more detall throughout Section 2 and compared with theoretical and empirical models currently avallable for correlating turbulence data. In general, it was not necessary to develop new theoretical models because the data fit existing models quite well, as also described in Section 2. There were, however, a few exceptions where modifications to two-point correlation and spectrum models were required. These are also deseribed in Section 2. correlation and the commonly used term "cross-correlation." The terminology cross-correlation in this report is reserved for a correlation between different velocity components; for example, between the lateral and longitudinal components or the vertical and longitudinal components, etc. The terminology "two-point" spatial correlation refers to a correlation between velocity components measured at stations separated in space (e.g., at different probe locations on the aircraft). This can be either a two-point cross-correlation between dissimilar velocity components separated spatially or it can be a two-point correlation between like velocity components separated spatially.* A single-point spatial correlation termed an auto-correlation is defined as a correlation between like velocity components measured at the same location (e.g., with the same wing tip probe) but separated in time. Note that a two-point spatial correlation can also be separated in time (i.e., time dependent or lagged in time).

Procedures for estimating two-point spectra from finite digitized time histories are not straigntforward. Considerable insight to these procedures which is not readily accessible in the literature was gained during this study. This insight is described in detail in Section 3.

The von Karman analytical correlation and spectrum model for atmospheric turbulence frequently referred to in the literature (Hinze, 1975; Houbolt,

[^0]
ORIGINAL PAGE IS OF POOR QUALITY

1964; Etkin, 1972; Panofsky and Dutton, 1984) is used extensively in this study. In Section 2, comparison of this model ${ }^{-1}$ is made with the experimental data. In general, agreement with the von Karman autocorrelation and the one-point auto-spectrum is good. This is surprising in view of the fact that von Karman's model is generally assumed valid only for isotropic homogeneous turbulence. It should be noted in this regard that for the long duration, level runs of Flight 31 analyzed in the current study, the turbulence is not expected to be isotropic nor even homogeneous. Most runs were carried out over boih flat desert and mountainous regions (peaks of 6000 ft ASL) at low altitude (2500 to $10,000 \mathrm{ft}$ ASL) or during touch-and-go flights at the airport. It was therefore surprising that a model based on the assumption of homogeneous isotropic turbulence correlated the data well.

Although one-point spectra are addressed in some detail, emphasis in this report is on the two-point spectra and correlation functions. Comparison of the two-point correlations and spectra with a theoretical model (based on the von Karman model) originally proposed by Houbolt and Sen (1972) is made in some detail. Correction to this model was required and made as described in Section 2. In general, the experimental data agree with the theoretical model after the corrections. Appropriate care must be exercised, however, in computing the two-point spectra from the digitized data. This issue is described in-depth in Section 3.

During analysis of several of the flights, a number of instrumentation characteristics were uncovered which influenced the accuracy of the data. Although significant effort in the past has been devoted to evaluating effects of instrumentation characteristic and of data reduction procedures on the accuracy of the measured turbulence data, some additional factors were wind speeds as contrasted to fluctuations about the mean wind were, in general, responsible for the new instrumentation problems. These problems along with recommended correction or removal procedures are discussed in Section 4. In particular, the INS Schuler position and velocity drift errors and the suspected flow vane sensor misalignment problems are addressed.

Data from Flights 63, 66, 73, and 74 were used for analyzing the instrumentation errors. Data from these flights are used only for purposes of analyzing errors in this study. Also, a discussion of the influence of departure from straight and level flight on the computed turbulence when the data are reduced using the linearized equations which are strictly valid only for level flight is given in Section 4 and in Appendix B.

2.0 STATISTICAL ANALYSIS OF DATA

A statistical aralysis of the $B-57 B$ aircraft data for 16 runs (Runs 1 through 16) of Flight 31 on November 29, 1982, is described in this section. The procedures for analyzing the turbulence data as well as interpreting the analyzed rejults are strongly influenced by the stationarity of the data. Non-stationary or non-homogenous data represent all classes of data whose statistical properties change with time or with position. Figure 2.1 illustrates three different examples of non-stationary data; these include data with a time-varying mean, data with a time-varying mean square, and data with a time-varying frequency structure (Bendat and Piersol (1971)). The vast majority of physical data actually fall into the former category.

The theoretical ideas and processing techniques for the stationary data do not, for the most part, apply to data which are non-stationary. A totally adequate methodology does not exist yet for the analysis of all types of non-stationary data. In general, an .nsemble-averaging technique (Bendat and Piersol, 1971) provides a method to analyze the statistical properties of the non-stationary data (see application of this by Frost and Huang (1983)). By inspecting the time histories of the aircraft-measured turbulence data (shown in Section 2.2), one can easily see considerable patchiness and nonstationarity in these data sets. However, only one sample record of turbulence over common terrain and similar prevailing meteorological conditions is available for analys is from each run of the B-57B aircraft data. Therefore, through necessity the statistical properties of the data presented in this report are calculated by assuming that the measured data are stationary.

General information and statistical values for each of the 16 runs are given in Appendix A. The analysis for each run presented in the appendix consists of seven parts as follows:

1. Flight altitude and horizontal wind velocity along the flight path.
2. Time histories of gust velocities, gust velocity differences between wing tips, and the aircraft's normal acceleration.. .
3. Average turbulence parameters, integral length scales, and correlation coefficients of gust velocities.
4. Probability density functions for gust velocities and gust velocity differences.
5. Normalized one- and two-point correlation functions of gust velocities.
6. Normalized one- and two-point spectral density functions of gust velocities.
7. List of all parameters measured and the range of their extreme and average values.
A map fllustrating all ground tracks for flight 31 over terrain as recorded by the INS during the flight is provided in Figure 2.2. The cross section of the vertical profile of the terrain beneath the flight path is given for each run in Appendix A.

The atmospheric stability is of importance in turbulence considerations. The temperature gradient in the atmospheric boundary layer is a measure of the stability of the atmosphere. Figure 2.3 shows the temperature recorded for all runs of flight 31 superimposed on the temperature profile measured by the weather balloon. Each " \star " represents a 5 -second averaged temperature. A scattering of the averaged temperature at different altitudes is seen in the figure. This scattering is believed to represent the spatial temperature variations along a flight path which usually covers more than 10 miles horizontally. Temperature profiles measured during the takeoff run and during the touch-and-go run, Run 2, were converted to potential temperature profiles

Figure 2.2. lap of the vicinity near Edwards AFB, California, showing ground tracks of 16 runs from Flignt 31, November 29, 1982.

Figure 2.3. Atmospheric temperature profile at Edrards AFB, California, November 29, 1982, with flight data superimposed.

ORIGINAL PACE is
 OF POOR QUALITY

and are-plotted in Figure 2.4. The arrows indicate climb or descent. The strong negative temperature-gradient near 3700 ft , characteristic of an unstable boundary layer, as shown in the second half of Run 2 is believed to be associated with wake flow generated by a mountain peak up-wind of the flight path (see the terrain contours in Figure 2.2).

The methods and results of the statistical analyses given in Appendix A are described and discussed in detail in the following subsections. The experimental data are also compared with theoretical models.

2.1 Flight Altitude and Horizontal Wind Velocity, - ong the Flight Path

The first part of the analysis for each run in Appendix A includes flight altiture (ASL), the corresponding terrain height (ASL), the flight direction, and five-second averaged horizontal wind vectors recorded along the flight path. The terrain height is obtained from digitizing a large-scale contour map along each ground track of the flight as shown in Figure 2.2. Also, tabulated are the date, the time (PST) at which the run began, and the duration of the run in seconds.

Run 1 is the takeoff leg of the flight. Run 2 started with an approach and then made a go-around at approximately 100 ft above the ground. The approach and go-around flight path were at a glide slope angle of approximately three degrees. The terrain features over which the majority of the B-57B Flight 31 experiment was flown are characterized by regions of low and high mountainous terrain (Runs 1 and 2 were over flat terrain).

Cata from these two runs, however, cannot be expected to be statisticaliy stationary since they represent ascent and descent through variable wind conditions associated with the atmospheric boundary layer. There is no clear evidence in the results of the statistical analysis of these data sets, however, that suggest non-stationary or even non-isotropic effects.

Figure 2.4. Potential temperature profiles from flight 31.

ORIGINAL PAGE TS
 OF POOR QUALITY

Note also in Runs 3, 4, 8, 9, and 11 there are what appear to be relatively large excursions from level filight. This is primarily an illusion due to the exaggeration of the vertical scale in the plot. The apparent climb and descent paths are in all cases less than seven degrees, elevational angle.

Inspection of the flight paths given in Figure 2.2 shows that they may be categorized as occurring over a flat region, a low mountainous regions, and a high mountainous regions. The low mountainous region is further subdivided into two subregions. The first, subregion is that for which the underlying terrain includes gradual and monotonic increase or decrease in elevation. The second subregion is one which includes terrain having more than one peak or valley. Table 2.1 categorizes the type of terrain associated with each run.

TABLE 2.1. Terrain Category for Flight 31.

Terrain Category	Run Number
Flat Region	1, 2
Low Mountain Region	
Single Peak	10, 15, 16
Multi-Peak	$\begin{aligned} & 5,6,9,{ }_{11}^{11}, \\ & 12,13,14 \end{aligned}$
High Mountain Region	3, 4, 7, 8

The flight paths plotted from the INS data for Runs 4, 8, 11, 13, and 14 shown in Figures A.16, A.36, A. 51 , A. 61 and A. 66 suggest that the aircraft flew through mountain peaks. The cause of this obviously impossible result is associated with an INS drift problem which is discussed in Section 4. Errors in the recorded longitude and latitude measurements result in an incorrect aircraft position relative to the fixed terrain features (see figure 2.2). However, only when the influence of terrain on the turbulence is to be assessed does the error influence the data analysis.

Table 2.2 shows the time duration of each run and the effective mean wind direction relative to the airplane. In most runs the effective mean wind direction is nearly perpendicular to the flight path. The measured mean wind speed in Flight 31 ranges from $5 \mathrm{~m} / \mathrm{s}$ to over $20 \mathrm{~m} / \mathrm{s}$. Run 3 is the longest of the 17 runs making up Flight 31. The landing leg of the flight was recorded as Run 17. This run was only 47 seconds, which is not statistically meaningful and, therefore, is not analyzed in this report.

TABLE 2.2. Time Duration and Mean Wind Direction.
$\left.\begin{array}{ccl}\hline \begin{array}{c}\text { Run } \\ \text { Number }\end{array} & \begin{array}{c}\text { Length of } \\ \text { Record } \\ \text { (sec) }\end{array} & \end{array} \begin{array}{l}\text { Wind Direction Observed } \\ \text { by the Airplane }\end{array}\right]$

2.2 Time Histories of Gust Velocities, Gust Velocity Difierences Between Wing Tips, and the Aircraft's Normal Acceleration

The second part of the analysis for each run recorded in Appendix A shows the gust velocity time histories for the three probes located at the aircraft's nose and wing tips. The left, center, and right probes are designated with subscripts L, C, and R, respectively. The time histories of the spatial velocity differences between the right and left probes are plotted for the longitudinal (u), lateral (v), and vertical (w) velocity components. The definition of longitudinal, lateral, and vertical are along and perpendicular to the mean flight path, respectively. Also plotted with the vertical velocity time histories is the time history of the aircraft's normal acceleration along its flight path. The sampling rate is 40 samples per second.

Figure 2.5 shows a plot of the time histories for Run 3 of Flight 31. Run 3 was the longest record lasting 694 seconds. The velocity fluctuations are typical of the measured data. One observes from the data that there are no significant variations between velocities measured at the three probes. Therefore, one can surmise that length scales assoclated with these turbulence data are typically larger than the wing span (19.5 m). In Run 3, the aircraft encountered significantly more intense turbulence from 560 seconds to 640 seconds. The turbulence was encountered at approximately 11:00 a.m. (PST) just after the aircraft had climbed from 5600 ft to 6600 ft at an approximate 7• climb angle. During the climb, which started at 530 seconds, visual inspection shows no discernable change in the turbulence during the climb and for roughly a half mile after leveling off at 547 seconds. During the period from 560 seconds to 640 seconds, however, the aircraft encountered much stronger turbulence as it flew over a high mountailous area with well

\because
 41
 3 Natwith

\because

a

pronounced peaks reaching up to 6500 ft . The wind was blowing over the mountains perpendicular to the aircraft flight path (see Figure 2.2). It is believed that the intense turbulence encountered by the aircraft during this time period was associated with the disturbed air flow from the nearby mountain peaks. The strong vertical turbulence induced an increased fluctuation to the aircraft's normal accelerations.

2.3 Average Turbulence Parameters, Integral Length Scales, and Correlatior: Coefficient of Gust Velocities

The third part of the analysis for each run in Appendix A is a tabulated listing of the average values of several important turbulence parameters for the left, center, and right probes. The statistical parameters include mean airspeed, standard deviation of gust velocity, standard deviation of gust velocity difference, integral length scale, and the correlation coefficient of the gust velocity. The mean airspeed and the standard deviations of the gust velocities and their differences are calculated on the basis of the total time history. However, in analyzing the data to obtain the correlation coefficient and the integral length scale, the total time history is segmented such that the total record is a multiple of segments of 1024 datum points. In computing the correlation coefficients and the length scales, (modify: scales, the spectrum was first computed by a technique which applied the Fourier transform directly to the original digitalized data. The correlation is then). The approach first computes the spectrum directly from the turbulence time history. The correlation is then computed from the inverse Fourier transform of the spectrum. Finally, the length scale is computed by integrating the normalized correlation function as described later.

Table 2.3 lists the mean airspeed for all 16 runs in Flight 31. The average mean airspeed for all runs is $102 \mathrm{~m} / \mathrm{s}$. The mean airspeeds at the 25

TABLE 2.3. Mean Airspeed (m/s) for Flight 31, November 29, 1982.

Run Number	\bar{V}_{L}	\bar{V}_{C}	\bar{V}_{R}	Run Number	∇_{L}	∇_{C}	∇_{R}
1	81.13	78.92	81.21	9	103.15	100.84	102.84
2	87.82	85.79	87.51	10	117.27	115.20	116.70
3	104.21	102.52	104.60	11	107.01	104.47	106.49
4	104.78	102.62	104.32	12	101.03	98.55	100.56
5 -	105.79	103.53	105.33	13	103.30	101.40	103.30
6	104.31	102.19	104.01	14	103.38	101.07	102.99
7	101.47	99.23	100.93	1.5	107.74	105.40	107.23
8	103.22	101.05	102.86	16	109.41	107.07	108.82

individual right, center, and left probes are $102.8 \mathrm{~m} / \mathrm{s}, 100.6 \mathrm{~m} / \mathrm{s}$, and 102.5 m / s. The mean airspeeds measured at the right and left probes are larger than that at the nose by about $2 \mathrm{~m} / \mathrm{s}$. This difference can possibly be due to flow deceleration in front of the aircraft nose and/or flow acceleration over the wingtips. Approximate potential flo: analysis for a Rankine body (Karmacheti, 1966) suggests the former mechanisms. Similar velocity differences were also found by Frost, et al. (1985a) in the analysis of Flight 21 for the same experimental aircraft.

Table 2.4 lists the standard deviation of gust velocities for all 16 runs of flight 31. The standard deviation of the gust velocities varies from 1.68 to $7.46 \mathrm{~m} / \mathrm{s}$ for the longitudinal component, and from 1.42 to $5.57 \mathrm{~m} / \mathrm{s}$ for the lateral component. The vertical gust component standard deviation ranges from 1.08 to $3.45 \mathrm{~m} / \mathrm{s}$. Table 2.4 also lists the standard deviations of the gust velocity differences between the right and left probes. The standard deviation of the gust velocity differences has a high of $1.75 \mathrm{~m} / \mathrm{s}$ for the longitudinal component, $1.68 \mathrm{~m} / \mathrm{s}$ for the lateral component, and $2.00 \mathrm{~m} / \mathrm{s}$ for the vertical component. The standard deviation of the gust velocity, itself,

TABLE 2.4. Standard Deviation (m/s) of Gust Velocity and Guet Velocity Difference for Flight 31.

Kun Number	$\sigma_{u R}$	${ }^{\circ} \mathrm{VR}$	$\sigma_{w R}$	$\sigma_{u C}$	$\sigma_{v C}$	$\sigma_{W} C$
1	2.12	2.11	2.31	1.69	1.99	2.33
2	3.23	2.03	1.16	3.20	2.01	1.08
3	3.17	5.25	2.36	3.15	5.20	2.18
4	3.73	4.07	2.80	3.73	4.09	2.61
5	2.49	4.06	2.76	2.47	4.04	2.66
6	3.64	3.67	3.41	3.54	3.65	3.00
7	3.03	3.00	2.23	3.03	3.03	2.15
8	3.93	5.17	2.52	3.89	5.18	2.36
9	4.10	5.12	2.40	4.10	5.10	2.21
10	2.04	4.57	2.40	1.99	4.58	2.34
11	3.74	2.10	2.25	3.76	2.15	1.99
12	1.68	1.43	1.66	1.68	1.47	1.54
13	2.49	5.57	2.43	2.48	5.57	2.29
14	2.51	3.54	2.37	2.47	3.50	2.12
15	7.46	2.84	3.45	7.31	2.89	3.29
16	5.68	3.21	3.21	5.59	3.44	3.02
Run Number	$\sigma_{u L}$	$\sigma_{V L}$	$0_{W} \mathrm{~L}$	${ }^{\text {o }}$ UuRL	$\sigma_{\Delta v R L}$	$\sigma_{\Delta w R L}$
1	1.74	2.05	2.58	1.20	1.10	0.77
2	3.20	2.09	1.17	0.94	0.77	0.87
3	3.19	5.31	2.31	1.29	1.23	1.37
4	3.75	4.04	2.79	1.59	1.39	1.62
5	2.56	4.10	2.85	1.41	1.38	1.42
6	3.54	3.42	3.12	1.74	1.68	1.92
7	3.07	3.06	2.22	0.85	0.80	0.89
8	3.89	5.20	2.42	1.22	1.08	1.31
9	4.18	5.12	2.34	1.35	1.16	1.45
10	2.02	4.61	2.33	0.41	0.31	0.38
11	3.77	2.18	2.13	1.12	1.01	1.26
12	1.70	1.42	1.59	0.90	0.74	0.91
13	2.59	5.56	2.41	1.53	1.39	1.59
14	2.52	3.42	2.28	1.29	1.12	1.37
15	7.32	2.87	3.35	1.45	1.24	1.49
16	5.74	3.29	3.14	1.75	1.61	2.00

is always larger than the standard deviation of the gust velocity difference between probes.

Table 2.5 lists the integral scales L for 16 runs of fiight 31. The turbulence integral length scale is usually estimated by integrating a normalized one-point auto-correlation function from zero to infinity with respect to temporal or spatial lag. The normalized correlation function (also called the correlation coefficient), $B_{X}(\tau)$, is given by
$B_{x}(\tau)=\overline{x(t) x(t+\tau)} / \sigma_{x} \sigma_{x}$
where x is any of the velocity components. Due to noise in the measured data, the auto-correlation coefficient, however, nearly always oscillates about zero due to either real physical effects but most probably due to aliasing and other digitizing effects. Therefore, in this report the integral length scale is obtained by integrating the normalized auto-correlation function to the point where it first crosses zero ($\ell=S=\overline{\mathrm{V}} \boldsymbol{T}$ or $\tau=T$):
$L=\int_{0}^{S} B_{X}(l) d \ell=\bar{\nabla} \int_{0}^{T} B_{x}(\tau) d \tau$
Detailed study of different definitions of the integral length scales is given in Frost and Lin (1983) (also see Houbolt, et al. (1964)). Frost and Lin (1983) suggest that using the L as defined in Equation 2.1 in theoretical models gives best agreement with experimental results. This length scale is therefore used throughout this report.

In addition to the integral scales calculated from the normalized values of one-point auto-correlation functions, $U_{R} V_{R}, V_{R} V_{R}$, and $W_{R} W_{R}$, the integral length scales are also estimated with Equation 2.1 using the normalized values of the two-point correlation functions, $\quad U_{R} L, V_{R} V_{L}$, and $W_{R} V_{L}$. These two integral scales have the same order of magnitude for each corresponding

TABLE 2.5. Turbuience Length Scales for Flight 31.

Run Number	Integral Length Scale (m)					
	LuR	$L_{\text {vR }}$	$L_{\text {wR }}$	$L_{\text {uRL }}$	$L_{\text {vRL }}$	$L_{\text {wRL }}$
1	297.7	149.7	255.1	248.4	35.3	254.5
2	325.9	250.1	79.1	322.4	251.8	89.3
3	234.0	425.6	116.9	258.4	422.8	115.3
4	419.8	350.8	66.9	408.0	344.7	61.9
5	333.9	168.6	189.7	317.5	173.5	204.0
6	364.7	92.0	51.7	344.5	104.2	47.5
7	562.8	249.6	287.6	532.2	242.9	283.5
8	306.7	364.4	232.9	302.5	380.7	249.6
9	327.8	338.0	93.9	341.5	338.0	83.9
10	641.8	729.7	832.2	638.3	742.9	863.8
11	370.0	246.1	203.3	375.6	241.7	193.1
12	127.7	252.6	202.4	137.5	250.1	190.8
13	156.0	428.8	83.7	148.6	424.4	82.6
14	174.9	204.4	66.8	161.3	205.4	64.5
15	540.0	225.8	526.1	526.5	225.3	494.0
16	348.1	362.2	95.0	347.5	336.5	115.3

turbulence velocity component (see Table 2.5). The individual velocity component characteristics do not vary appreciably across the wing span which is in agreement with the fact that the calculated length scales are much larger than the 19.5 m wing span of the aircraft. This implies that the energy-containing turbulence fluctuations essentially engulf the total airfoil.

Finally, Table 2.6 shows the two-point correlation coefficients of the gust velocities computed for 16 runs of Flight 31. The symbols $U_{R} V_{L}, V_{R} V_{L}$, and $W_{R} W_{L}$ represent the two-point common velocity component correlation functions for longitudinal, lateral, and vertical components, respectively, whereas $U_{R} V_{R}, V_{R} W_{R}$, and $W_{R} U_{R}$ represent the one-point cross-correlation functions, and $U_{R} V_{L}, V_{R} W_{L}$, and $W_{R} V_{L}$ represent the two-point cross-correlation functions. Although several other correlations of the gust velocities could

TABLE 2.6. Two-Point Correlation Coefficient of Gust Velocity for Flight 31.

Run Number	$\frac{\bar{u}_{R} ण_{L}}{\sigma_{v_{R} v_{L}}^{\sigma_{L}}}$	$\frac{\nabla_{R} V_{L}}{\sigma_{w_{R}}^{\sigma_{w_{L}}}}$		$\frac{\sigma_{V_{R} V_{R}}}{\sigma_{v_{R} \sigma_{W R}}}$	$\frac{\sigma_{R} w_{R}}{\sigma_{W_{R} \sigma_{R}}}$	$\frac{\omega_{R} U_{R}}{\sigma_{U_{R} v_{R}}}$	$\frac{u_{R} v_{L}}{\delta_{v_{R}{ }^{\sigma_{w}}}}$	$\frac{\sigma_{R} W_{L}}{\sigma_{W_{R} \sigma_{L}}}$	$\frac{W_{R} U_{L}}{{ }^{\sigma_{W_{R}} \sigma_{u}}}$
1	0.75	0.34	0.80	0.08	0.14	0.52	-0.40	0.11	0.45
2	0.80	0.81	0.82	0.00	-0.05	0.11	-0.02	-0.03	0.10
3	0.80	0.91	0.75	0.09	-0.19	0.06	0.04	-0.19	0.05
4	0.88	0.91	0.80	-0.19	0.20	0.09	-0.19	0.20	0.06
5	0.87	0.90	0.90	-0.09	-0.10	-0.17	-0.08	-0.09	-0.20
6	0.82	0.90	0.81	-0.18	0.60	-0.10	-0.18	0.61	0.00
7	0.92	0.90	0.90	0.02	-0.21	0.39	0.01	-0.21	0.32
8	0.89	0.81	0.80	-0.20	0.15	0.00	-0.19	0.10	0.03
9	0.80	0.90	0.80	0.30	0.20	0.19	0.30	0.20	0.18
10	0.98	0.99	0.98	0.08	0.00	-0.47	0.09	-0.01	-0.45
11	0.83	0.81	0.78	-0.21	-0.09	0.48	-0.28	-0.10	0.40
12	0.66	0.81	0.78	0.00	0.30	-0.22	0.01	0.31	-0.20
13	0.80	0.91	0.79	-0.18	-0.32	0.25	-0.19	-0.32	0.22
14	0.79	0.90	0.77	0.18	0.19	0.10	0.13	0.27	0.07
15	0.90	0.88	0.88	0.32	0.06	0.02	0.30	0.01	0.00
16	0.85	0.86	0.85	0.49	0.05	-0.10	0.49	0.02	-0.10

be estimated, the combinations shown in Table 2.6 are sufficient to detect any trends or physical effects associated with the normalized spatial correlation computed from these data. Note that the appreciable difference in value between the one-point auto-correlation evaluated at zero lag, (shown in Table 2.4) and the two-point correlations evaluated at zero lag (shown in Table 2.6) is that correlation coefficients (i.e., normalized values) are tabulated in Table 2.6 whereas non-normalized correlations are given in Table 2.4. It is clear from inspection of Table 2.6 that the correlation between like components of turbulence has a roughly uniform decrease in value of 20 percent over the wing span of the aircraft.

All of the two-point correlation coefficients between common velocity components are larger than 0.75 except the value of $\nabla_{R_{V}} / \sigma_{v_{R}} \sigma_{v_{L}}$ for Run 1 and

पRणL/ $\sigma_{u_{R}} \sigma_{U_{L}}$ for Run 12. The former may be associated with Run 1 being a takeoff flight path (see Figure A.1). No explanation is evident for Run 12. The one-point cross-correlation coefficients are the Reynolds stresses (Frost and Moulden, 1977; Hinze, 1975) and are thus a measure of momentum transfer. For isotropic turbulence the cross-correlation terms theoretically are zero. The very low values shown in Table 2.6 suggest that the atmospheric turbulence is indeed nearly isotropic. It is believed that the large value of $\nabla_{R} W_{R} / \sigma_{v}$ σ_{W} and
$R \quad R$ $\mathrm{V}^{W}{ }^{W} / \sigma_{\mathrm{v}_{R}} \sigma_{W_{L}}$ for Run 6 is caused by the very short averaging time of 63 seconds associated with the run. It therefore does not represent a meaningful statistical average. Similar arguments can be made for other unjustifiably large values of the cross-correlation coefficient.

2.4 Probability Density Function for Gust Velocities and Gust Velocity Differences

The fourth part of the analysis for each run in Appendix A contains the probability density function of the turbulent wind velocities. Data measured by the B-57B aircraft for all three different probe positions and for all three velocity components (longitudinal, lateral, and vertical) are plotted. The degree of or lack of normality of the turbulent wind velocities is illustrated by comparing the experimental probability density distributions with the theoretical normal distribution and the theoretical non-Gaussian probability density model (modified Besse' function distribution see Reeves, et al. (1974)).

The probability density function for the turbulence wind velocities is defined as:

$$
\begin{equation*}
P(x)=\lim _{\Delta x \rightarrow 0} \frac{\operatorname{Prob}[x<x(t)<x+\Delta x]}{\Delta x} \tag{2.2}
\end{equation*}
$$

where $x(t)$ may be $u, v, w, \Delta u, \Delta v$, or Δw and where $\operatorname{Prob}[x<x(t) \leqslant x+\Delta x]$ is the probability that the turbulence wind velocity at time t lies within a specified speed interval. The Gaussian probability density function is given by:
$p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}}$
where \bar{x} is the mean value of $x(t)$ and σ is the standard deviation of $x(t)$. In calculating the probability density distributions in Appendix A, the gust velocity and the gust velocity differences are normalized with their standard deviations.

The non-Gaussian probability density distribution is given by Reeves, et a1. (1974) as:
$p\left(\frac{x}{\sigma}\right]=\frac{1}{\sigma} \frac{\left(1+r^{2}\right)^{1 / 2}}{x} \int_{0}^{\infty}\left[\frac{2}{1+2 \ell^{2} r^{2}}\right]^{1 / 2} \exp \left[-\ell^{2}-\frac{1}{2}\left[\frac{x}{\sigma}\right]^{2} \frac{\left(1+r^{2}\right)}{\left(1+2 \ell^{2} r^{2}\right)}\right] d \ell$
where r is an adjustable parameter which is a measure of the degree to which the distribution is non-Gaussian and $\&$ is the dumy variable of integration. If $r=0$, the function is exactly the Gaussian function; however, as r increases, the distribution departs from the Gaussian probability density function and approaches a modified Bessel function distribution as $r \rightarrow \infty$.

Figure 2.6 shows typical probability density distributions for Run 3 of Flight 31. The upper half of the figure shows the probability density distributions of the three individual gust velocity components and the bottom half of the figure shows the probability density distributions of the gust velocity differences between the right and left probes. These probability density calculations for the measured turbulence do not fit the normalized Gaussian distribution very well. Fitting the individual probability

Figure 2.6. Comparison of probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation) with theoretical models, Flight 31, Run 3 ($r=$ degree of non-Gaussian).
distributions to Equation 2.4 by adjusting r, a non-Gaussian form which provides a closer fit to the experimental data is found. Inspection of Figure 2.6 and similar figures in Appendix A shows the non-Gaussian distribution gives a very good fit of the gust velocity difference probability distribution. The individual gust velocity probability distribution however, in many cases, appears to be bimodal. This is associated with trends in the mean velocity that have not been removed from the data.

Runs 1 and 9 are clear examples of the effects of trends in the mean wind on the probability distribution. For Run 1 during climb-out, the longitudinal mean wind which is essentially a headwind (see figure A.1, Appendix A) will increase from zero at the surface to the value aloft. This vertical variation in the mean wind will typically vary logarithmically (Panofsky and Dutton, 1984). By simply assuming the mean wind speed is uniform and removing a constant value from the data (as was done in this study) causes the velocity fluctuations about the mean at low levels to be mainly negative and at higher levels mainly positive fluctuations (see Figure A.2, Appendix A). Thus, there is a bimodal distribution in the probability density function of the velocity fluctuations. This bimodal effect can probably be eliminated by removing a logarithmic velocity profile* trend. However, this was not done.

Now consider Run 9. The quasi-steady horizontal wind speed along the flight path is shown in Figure A.41. For the initial part of this flight, the winds were partially headwinds with a dominate northward direction. During the latter part, the winds became partially tailwinds with a westerly

[^1]direction. Again, removing a uniform average wind speed from the data results in the longitudinal velocity fluctuations being mainly negative during the initial part of the flight and positive during the latter part (see figure A.42). Again, this results in a strong bimodal distribution in both the longitudinal and lateral wind speed gust distributions as shown in Figure A. 43 .

Returning to the discussion of the analytical models which best fit the data, it is c lear that Equation 2.4 fits the experimental data considerably better than the Gaussian distribution. The value of r which gives the best fit of the data changes for different velocity components and from run to run. Table 2.7 lists values of r determined from "eye-ball" fits of the data for the three components of the gust velocity and gust velocity differences. The variation in r might be expected to be a result of the underlying surface roughness. Inspecting of the terrain features beneath each flight path, however, suggests no apparent relationship between surface rouginess and the value of r, nor is there an obvious correlation between r and altitude. Further work is required to associate the degree of non-Gaussianness of the atmospheric turbulence with physical causes.

2.5 Normalized One- and Two-Point Correlation Functions of Gust Velocities

The fifth part of the aralysis for a given run in Appendix A is the normalized one- and two-point correlation functions of the turbulent wind velocities at the right and left wing tips. The correlation function between the same velocity comporients at two different positions separated by a vector distance $\vec{\zeta}$ is defined as (Panchev, 1971; Hinze, 1975):

$$
\begin{equation*}
R_{x}(\vec{\zeta}, \tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(\vec{\xi}, t) x^{\prime}(\vec{\xi}+\vec{\zeta}, t+\tau) d t \tag{2.5}
\end{equation*}
$$

where τ is the lag time, x and x^{\prime} designate any one of the velocity components u, v, and w, and $\vec{\xi}$ is the position vector at which the velocity x is measured.
TABLE 2.7. Values of r (Equation 2.4) Which Represent a Measure of the Degree of Departure from a Gaussian Probability Distribution of the Gust Velocities.

Run Number	$\underline{U_{R}, U_{C}, U_{L}}$	$\underline{v_{R}, v_{C}, v_{L}}$	w_{R}, w_{C}, w_{L}	Δu_{R-L}	Δv_{R-L}	Δw_{R-L}
1	1.5	1.5	1.5	3.5	3.5	0.5
2	2.5	1.0	1.0	1.5	1.5	1.5
3	0.5	1.5	1.5	1.5	1.5	2.5
4	2.5	1.0	2.5	2.5	2.5	3.5
5	3.5	3.5	3.5	4.5	7.5	6.5
6	3.5	4.5	4.5	4.5	6.5	7.5
7	2.5	2.5	2.5	4.5	6.5	6.5
8	4.5	1.5	1.5	2.5	2.5	6.5 3.5
9	2.5	1.0	1.0	2.5	2.5	2.5
10	1.5	3.5	2.5	2.5	4.5	2.5
11	2.5	1.5	1.5	2.5	2.5	2.5
12	1.5	1.0	1.0	1.5	1.5	1.5
13	1.5	2.5	1.0	1.5	1.5	2.5
14	3.5	3.5	3.5	4.5	4.5	2.5
15	4.5	4.5	1.5	7.5	7.5	4.5
16	1.5	1.5	1.5	1.5	1.5	1.5

The normalized correlation function:
$B_{x}(\vec{\zeta}, \tau)=\frac{R_{x}(\vec{\zeta}, \tau)}{\sigma_{x} \sigma_{x}{ }^{\prime}}$
is called the correlation coefficient, σ_{x} and σ_{x} ' are the standard deviations of $x(\vec{\xi}, t)$ and $x^{\prime}(\vec{\xi}+\vec{\zeta}, t)$, respectively. If $\vec{\zeta}$ is not equal to zero, and x and x^{\prime} are the same velocity component, the correlation function is called the two-point common component correlation function in this report. The absolute value of $B_{x}(\vec{\zeta}, \tau)$ is always less than one. At $\vec{\zeta}=0, R_{x}(\vec{\zeta}, \tau)$ reduces to the one-point auto-correlation function given by:
$R_{x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) x(t+\tau) d t$
The correlation function may be evaluated using a time history summation technique or by using the direct Fourier transformation method for computing spectra. Steely and Frost (1981) and Frost and Lin (1983) have compared the direct method with the summation technique and found they give identical results. The direct method is therefore used throughout this report unless otherwise stated.

Theoretical models of the one-point auto-correlation and of the two-point correlation are the von Karman model (Hinze, 1975) and the Houbolt and Sen (1972) extension of the von Karman model, respectively. The von Karman theoretical model for the normalized one-point auto-correlation functions for longitudinal and transverse velocity components is expressed as: $B_{L}(\zeta)=c\left(\frac{5}{a L_{L}}\right)^{1 / 3} \operatorname{li}_{1 / 3}\left(\frac{5}{a L_{L}}\right)$
$B_{T}(5)=c\left(\frac{5}{a L_{T}}\right)^{1 / 3}\left[K_{1 / 3}\left[\frac{5}{\mathrm{aL} T}\right)-\left(\frac{5}{2 \mathrm{a} L_{T}}\right) \mathrm{K}_{2 / 3}\left(\frac{5}{\mathrm{aL} T}\right)\right]$
where $c=2^{2 / 3} / \Gamma(1 / 3), a=1.339, K$ is a modified Bessel function of the second k ind, r is the gamma function, L is the integral length scale, and 5 is the spatial lag distance. The subscripts L and T refer to longitudinal and transverse, respectively. The longitudinal and transverse velocity correlation are defined as shown in Figure 2.7.

The von Karman correlation is in principle only valid for isotropic turbulence. The more general non-isotropic velocity correlation is a second order tensor given by (Hinze, 1975) as:

$$
\begin{equation*}
R_{i j}(\xi, \zeta)=\overline{u_{i}(\xi) u_{j}(\xi+\zeta)} e_{i}(\xi) e_{j}(\xi+\zeta) \tag{2.9}
\end{equation*}
$$

Transverse

Figure 2.7. Definition of the langitudinal and transverse velocity correlation coefficients.
\because
38
where $e_{f}(\xi)$ represents the direction cosines of the velocity vector at the position ξ with respect to the ith axis and $\mathrm{e}_{\mathrm{j}}(\xi+\zeta)$ is similarly defined at a distance 5 from the josition ξ. The symbol $u_{i}(\xi)$ is the instantaneous component of the velocity fluctuation with respect to the mean at the position ξ and $u_{j}(\xi+\zeta)$ is similarily defined. The general correlation, $R_{i j}(\xi, \zeta)$, is thus described in terms of nine components. When the turbulence is isotropic and homogeneous it can be shown that the correlation can be expressed solely in terms of the longitudinal and transverse correlations shown in Figure 2.7.

In the present investigation the velocity components are expressed relative to the axis of the aircraft (the assumption of small angles is evoked (see Appendix B)). For the longitudinal and transverse correlations the velocity components must be resolved parallel and perpendicular to the line between the two measuring points as illustrated in Figure 2.8. Therefore, to transform the longitudinal and transverse correlations to the aircraft frame of reference, the cosines in Equation 2.9 must be taken into account.

Frost, et al. (1985a) have shown following Hinze (1975) that for isotropic turbulence (see Figure 2.8):
$R_{U}(\zeta)=\frac{s^{2}}{\xi^{2}+s^{2}} \sigma T^{2} B_{T}(\zeta)+\frac{\xi^{2}}{\xi^{2}+s^{2}} \sigma L^{2} B_{L}(\zeta)$
$R_{V}(\zeta)=\frac{s^{2}}{\xi^{2}+s^{2}} \sigma_{L}^{2} B_{L}(\zeta)+\frac{\xi^{2}}{\xi^{2}+s^{2}} \sigma^{2} B_{T}(\zeta)$
The vertical velocity correlation is, of course:
$R_{W}(\zeta)=\sigma T^{2} B_{T}(\zeta)$
This model is referred to as the Houbolt and Sen model since Houbolt and Sen (1972) utilized it with Equations 2.7 and 2.8 early on to develop a two-point spectrum for use in design analyses. (It should be noted that in actual fact, Houbolt and Sen did not account for the direction cosines and hence their

longitudinal spectrum is incorrect.) Fcr isotropic turbulence, $\sigma_{T}=\sigma_{L}=\sigma$ which is not the case for the experimental data as is apparent fren Table 2.4.

Figure 2.9 shows normalized one- and two-point correlation functions. The correlations are from Run 3, flight 31. All comrelation coefficients are plotted versus the spatial lag distance, $5=V_{\tau}$, in the direction of fight. The normalized one-polnt auto-correlation functions are plotted in the upper part of the figure, and the normalized two-point correiation functions in the lower part. The two-point correlations have both negative and positive time lags. Only the positive lag is given in the figure. Negative lags behave similarly but are not symmetric. The influence of negative lag appear in the phase angle of the two-point spectrum which is discussed in a later section of this report. The area obtained by integrating the one-point auto-correlation coefficient from zero spatial lag to the point where the correlation coefficient first crosses zero is defined as the integral length scale (see Table 2.5). Comparisons of the experimental data with the von Karman theoretical one-point auto-correlation coefficient and with the Houbolt and Sen (1972) theoretical two-point correlatior, function are shown in the figure. The integral length scale, L, used in the theoretical models was that determined as described above. Using length scales determined from other definitions (see Frost and Lin, 1983) gave no better and, in most cases, poorer agreement with the experimental data.

In general, auto-correlations are expected to decay faster for the vertical and lateral components than for the longitudinal component. Results of Run 3 shown in Figure 2.9 appear to be an exception to this rule since similar plots of correlations for other runs given in Apjendix A behave as expected. However, employing the length scales, computed as described in the theoretical model, results in the one-point auto-correlation coefficient

$\begin{array}{llllllll}O & \infty & 0 & \sigma & N & 0 & N & \underset{O}{\circ} \\ - & \dot{O} & \dot{O} & \dot{O} & 0 & \underset{1}{1} & \dot{1}\end{array}$
$\begin{array}{ll}\infty \\ > & \infty \\ >\infty \\ 0^{\infty}\end{array}$

\square	∞	0	σ	N	0	N	0
	\dot{O}	\dot{O}	\dot{O}	\dot{O}	$\dot{1}$	$\dot{1}$	

$$
\begin{aligned}
& \text { Data } \\
& \text { and Sen's model } \\
& \frac{u_{R} u_{L}}{{ }^{0} u_{R}{ }^{\sigma} u_{L}}
\end{aligned}
$$

1000.
 2000.

fitting the measured data quite well (see for example Runs 8,14). The experimental correlation coefficient does depart, however, from the theory. It is higher than the value predicted by the von Karman model at the larger spatial lags.

It is interesting that poorer agreement with von Karman's theoretical models occurs for the high altitude flight Run 10 than for the others. This is surprising since it is generally assumed that turbulence at higher altitudes is isotropic. The wind at the higher level, however, may have been stratified with embedded gravity waves. This is suggested by the high degree of correlation shown in Figure A. 49 and inspection of the time history in Figure A. 47 which suggests Run 10 encountered a wave pattern.

Consideration of F igures 2.7 and 2.8 shows that $R_{U}(5)$ defined by Equation 2.10 converges to $\sigma T^{2} \mathrm{~B}_{\mathrm{T}}(\zeta)$ at $\xi=0$. Inspection of the correlation coefficients plotted in Appendix A shows this to be approximately true in most cases. In turn, as ξ becomes large $R_{U}(\zeta)$ approaches the longitudinal correlation $\sigma_{L}{ }^{2} B_{L}(5)$. This is also approximately true based on inspection of the experimental results. The above observation suggests that the turbulence is reasonably isotropic for all runs except Run 10. Run 10 at high altitude as noted appears to be associated with wave motion. This is even more apparent in the cross-correlation coefficients described nexi.

The cross-correlation function of two sets of random data describes a general dependence between the variations of the sets. The two-point cross-correlation function is given by:
$R_{x y}(\vec{\zeta}, \tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(\vec{\xi}, t) y(\vec{\xi}+\vec{\zeta}, t+\tau) d t$
where x and y are time histories of any two of the turbulence velocity components u, v, and w, τ represents the lag time, and $\vec{\xi}$ indicates the position 43
vector. For a given $\vec{\zeta}$, the function $R_{x y}(\vec{\zeta}, \tau)$ is always a real-valued function which may be efther positive or negative. Furthermore, $R_{x y}(\vec{\zeta}, \tau)$ does not necessarily have a maximum at $\tau=0$, nor is $R_{x y}(\vec{\zeta}, \tau)$ an even function as was true for the one-point auto-correlation functions. However, $R_{x y}(\vec{\zeta}, \tau)$ does display the symmetric relation (Bendat and Piersol, 1971):
$R_{x y}(\vec{\zeta},-\tau)=R_{y x}(\vec{\zeta}, \tau)$
where x and y are finterchanged.
The normalized cross-correlation function is then defined as:
$B_{x y}(\vec{\zeta}, \tau)=\frac{R_{x y}(\vec{\zeta}, \tau)}{\sigma_{x} \sigma_{y}}$
where σ_{x} and σ_{y} are the standard deviations of $x(\vec{\xi}, t)$ and $y(\vec{\xi}+\vec{\xi}, t)$, respectively. At $\overrightarrow{\boldsymbol{\zeta}}=0, \mathrm{R}_{\mathrm{xy}}(\tau)$ and $\mathrm{B}_{\mathrm{xy}}(\tau)$ are called the one-point crosscorrelation and the normalized one-point cross-correlation functions, respectively.

Figure 2.10 shows typical normalized one- and two-point crosscorrelation functions for Run 3 in Flight 31. The upper half of the figure shows the one-point cross-correlation coefficients for three combinations of the turbulent velocity components measured with respect to the right wing tip of the aircraft. The lower half of the figure shows the two-point crosscorrelation coefficients for three corresponding combinations of the turbulent velocity components measured from the right and left wing tips. Since the wing span is much smaller than the characteristic length scale of the turbulence, the two-point cross-correlation coefficients are quite similar to those of the one-point cross-correlation for all runs.

The cross-correlation coefficients, shown in Appendix A, are, with the exception of Run 10, generally small and almost constant with spatial lags.

The cross-correlations for Run 10 increases with spatial lag having a maximum at $c=1500 \mathrm{~m}$. Inspection of the time histories suggests a wave phenomenon at the high altitude at which Run 10 was made. The first wave occurs at roughly 17 seconds which corresponds to $\zeta=V_{\tau}$ of approximately 1700 m . The u and v components are approximately 180° out of phase resulting in a strong cross-correlation at $\zeta=1500 \mathrm{~m}$.

In contrast to Run 10, the cross-correlations for the other runs have values on the order of 0.5 or less but show no pronounced peak. The value of these correlations (i.e., approximately 0.5) are higher than exp, ted but the high values may be due to the short time records. For best results, the cross-correlation function of Equation 2.13, requires the sample record length to approach infinity. However, this is not well approximated for several of the runs. The cross-correlation coefficient for Run 3, which has the longest sample record is very small and is expected to be the best representative of the true cross-ccrrelation coefficients.

2.6 Normalized One- and Two-Point Spectral Density Functions of Gust

Velocities

The sixth part of the analysis for each run in Appendix A is the spectral analyses of the turbulence velocity components. The spectral analysis includes the normalized one- and two-point spectral density functions of the gust velocity components measured with respect to the right and left wing tips of the aircraft. In addition, the auto-spectrum and the one-point cross-spectrum are compared with predictions from theoretical models. The spectra presented in this report are one-sided spectra (see Bendat and Piersol, 1971).

The definition of spectral density functions in terms of Fourier transforms of the correlation functions yields two-sided spectral density 46
functions which are defined for both positive and negative frequencies ($-\infty,-$) and are denoted by $S(f)$. Assume that the auto- and cross-correlation functions $R_{x}(\vec{\zeta}, \tau)$ and $R_{x y}(\vec{\zeta}, \tau)$ exist, as defined in Equations 2.5 and 2.13. At $\vec{\zeta}=$ zero, $R_{x}(\tau)$ and $R_{x y}(\tau)$ represent the one-point auto- and crosscorrelation functions, respectively. The two-sided auto- and cross-spectral density functions are given by:
$S_{x}(\vec{\zeta}, f)=\int_{-\infty}^{\infty} R_{x}(\vec{\zeta}, \tau) e^{-j 2 \pi f \tau} d \tau$
and
$S_{x y}(\vec{\zeta}, f)=\int_{-\infty}^{\infty} R_{x y}(\vec{\zeta}, \tau) e^{-j 2 \pi f \tau} d \tau$
respectively. The letter j denotes the imaginary number $\mathrm{j}=\sqrt{-1}$ and f is the irequency.

From the symmetry properties of the correlation functions, it follows that:
$S_{x}(-f)=S_{X}(f) ; \quad \vec{\zeta}=0$
$S_{x}(\vec{\zeta},-f)=S_{x}^{*}(\vec{\zeta}, f) ; \quad \vec{\zeta} \neq 0$
$S_{x y}(\vec{\zeta},-f)=S_{x y}^{*}(\vec{\zeta}, f)=S_{j x}(\vec{\zeta}, f)$
where "*" designates the complex conjugate. These equations state that the two-sided one-point auto-spectral density functions are real, non-negative, and even functions of f, whereas the two-sided two-point spectral density functions and the one- and two-point cross-spectral density functions are complex-valued functions of f.

The one-sided spectral density functions, $\Phi_{x}(\vec{\zeta}, f)$ and $\Phi_{x y}(\vec{\zeta}, f)$ where f vartes only over the frequency range $(0,-)$ are defined by:
$\Phi_{x}(\vec{\zeta}, f)=2 S_{x}(\vec{\zeta}, f) \quad 0 \leqslant f<-\quad$ otherwise zero
$\Phi_{x y}(\vec{\zeta}, f)=2 S_{x y}(\vec{\zeta}, f) \quad 0 \leqslant f<\infty \quad$ otherwise zero
In terms of the correlation function, the one-sided one-point auto-spectral density function becomes:
$\Phi_{X}(f)=4 \int_{0}^{\infty} R_{X}(\tau) \cos 2 x f \tau d \tau \quad 0 \leqslant f<\cdots$
The one-sided two-point spectral density function is:

$$
\begin{align*}
\Phi_{x}(\vec{\zeta}, f) & =2 \int_{-\infty}^{\infty} R_{x}(\vec{\zeta}, \tau) e^{-j 2 \pi f \tau} d \tau \\
& =C_{x}(\vec{\zeta}, f)-j Q_{x}(\vec{\zeta}, f) \tag{2.21}
\end{align*}
$$

and the one-sided one- and two-point cross-spectral density function is:

$$
\begin{align*}
\Phi_{x y}(\vec{\zeta}, f) & =2 \int_{-\infty}^{-} R_{x y}(\vec{\zeta}, \tau) e^{-j 2 x f \tau} d \tau \\
& =C_{x y}(\vec{\zeta}, f)-j Q_{x y}(\vec{\zeta}, f) \tag{2.22}
\end{align*}
$$

where $C_{x}(\vec{\zeta}, f)$ and $C_{x y}(\vec{\zeta}, f)$ are called the coincident spectral density functions (co-spectrum) and are even functions of f, and where $Q_{x}(\vec{\zeta}, f)$ and $Q_{x y}(\vec{\zeta}, f)$ are called the quadrature spectral density functions (quad-spectrum) and are odd functions of f. An alternative way to describe the complexvalued spectral density functions is with the polar form, $\Phi(\vec{\zeta}, f)=$ $|\Phi(\vec{\zeta}, f)| e^{\theta}(\vec{\zeta}, f)$, defined in terms of an absolute magnitude and a phase angle: $\left|\Phi_{x}(\vec{\zeta}, f)\right|=\sqrt{C_{x}^{2}(\vec{\zeta}, f)+Q_{x}^{2}(\vec{\zeta}, f)}, \quad \theta_{x}(\vec{\zeta}, f)=\tan ^{-1} \frac{Q_{x}(\vec{\zeta}, f)}{C_{x}(\vec{\zeta}, f)}$

$$
\begin{equation*}
\left|\Phi_{x y}(\vec{\zeta}, f)\right|=\sqrt{C_{x y}{ }^{2}(\vec{\zeta}, f)+Q_{x y}{ }^{2}(\vec{\zeta}, f)}, \quad \theta_{x y}(\vec{\zeta}, f)=\tan ^{-1} \frac{Q_{x y}(\vec{\zeta}, f)}{C_{x y}(\vec{\zeta}, f)} \tag{2.24}
\end{equation*}
$$

The magnitude of the complex-valued spectral density functions represents the energy associated with fluctuations at specific frequenctes within the turbulent flow. For each run of flight 31 , only the magnitude of the normalized spectral density functions are presented in Appendix A. A segment-averaging technique was used to compute and smooth the raw spectral estimates obtained from the direct Fourier transform of the indiridual data segments. Data smoothing procedures for two-point spectra are discussed in Section 3.

Figure 2.11 shows a typical plot of the normalized spectral density functions for Run 3 in Flight 31. The upper half of figure 2.11 shows the normalized one-sided one-point auto-spectral density functions for the three respective turbulence velocity components measured at the right wing tip. The theoretical von Karman spectral density functions are also plotted for comparisons. The comparisons show good agreement between the experimental results and those predicted by the theoretical models. The integral length scales, L_{u}, L_{v}, and L_{w}, which were computed from the longitudinal, lateral, and vertical correlation functions, respectively, were used in the theoretical models. The experimental data is higher than the von Karman predictions at high frequencies. The spectra have been corrected for variance error but not for aliasing nor blas error. These effects are discussed in Section 3.

The lower half of figure 2.11 shows the normalized one-sided two-point spectral density functions for three respective turbulence velocity components measured at the right and left wing tips of Run 3. Also plotted for comparison are the Houbolt and Sen tneoretical models. This two-point spectrum model is derived from the Fourier transform of Equations 2.10 and 49
3

2.11 where $B_{L}(\varsigma)$ and $B_{T}(\varsigma)$ are the von Karman longitudinal and transverse correlations (Equation 2.8), respectively. The form of the theoretical spectra is:
$\Phi_{u}(s, f)=C_{\sigma_{u}} 2\left(\frac{L_{u}}{\bar{v}}\right)\left[2 \frac{\left(\frac{s}{L_{u}}\right)^{5 / 3}}{Z^{5 / 6}} K_{5 / 6}(Z)-\left(s / L_{u}\right)^{5 / 3} z^{1 / 6} K_{1 / 6}(Z)\right]$
for the longitudinal component, and
$\Phi_{v}(s, f)=C \sigma_{v} 2\left[\frac{L_{v}}{\frac{V}{V}}\right]\left[\frac{8}{3} \frac{\left(\frac{s}{L_{v}}\right)^{5 / 3}}{Z^{5 / 6}} K_{5 / 6}(Z)-\frac{\left(\frac{s}{L_{v}}\right)^{11 / 3}}{a^{2} Z^{11 / 6}} K_{11 / 6}(Z)+\left(s / L_{v}\right)^{5 / 3 Z} 1 / K_{1 / 6}(Z)\right]$
for the lateral component. For the vertical component, the spectrum is given by:
$\Phi_{w}(s, f)=C \sigma_{w} 2\left(\frac{L_{w}}{\bar{V}}\right]\left[\frac{8}{3} \frac{\left(\frac{s}{L_{w}}\right)^{5 / 3}}{z^{5 / 6}} K_{5 / 6}(Z)-\frac{\left(\frac{s}{L_{w}}\right)^{11 / 3}}{a^{2} Z^{11 / 6}} K_{11 / 6}(Z)\right]$
where
$C=\frac{\sqrt{2 x}}{\Gamma(1 / 3)}\left(\frac{2}{a}\right)^{2 / 3}$,

$$
Z=\frac{s}{L a} \sqrt{1+\left(a \frac{2 \pi f L}{\bar{V}}\right)^{2}}, \quad a=1.339
$$

where L is any integral length scale of L_{u}, L_{v}, and L_{w}, ∇ is the mean airspeed, and K is a modified Bessel function of the second k ind.

Equations 2.25, 2.26, and 2.27 are plotted in Figures 2.12, 2.13, and 2.14 for different s / L values, respectively. The termination of the curves in Figure 2.12 for the two-point spectra for the longitudinal velocity component are not arbitrary. At this point, the spectra based on Equation 2.25 takes on negative values. Negative values occur when the last term in the brackets of

Figure 2.12. Two-point spectra for the longitudinal velocity component.
-

Figure 2.13. Two-point auto-spectra for the lateral velocity component.

Figure 2.14. Two-point auto-spectra for vertical velocity component.

Equation 2.25 becomes negative. This corresponds to the ratio $2 \mathrm{~K}_{5 / 6}(2) /(2$ $K_{1 / 6}(Z)$) becoming unity. A plot of this ratio versus wave number for different valuas of s / L is shown in Figure 2.15. The value of wave number for which the ratio becomes unity is indicated ty the solid circles. Inspection of this figure shows that these values of wave number correspond to wavelengths of approximately one half the separation distance- s. - ...

The idea of a negative spectrum is initially inconsistent with one's normal thinking. However, after further consideration, it is totally consistent with physical reasoning that the energy contained in fluctuations of wavelengths smaller than one-half the separation distance s would be zero or even negative. It is aiso very likely that values of the lateral and vertical spectrum shown in Figures 2.13 and 2.14 should be truricated at corresponding values of reduced frequency for which the longitudinal spectrum is truncated. The energy contained in eddies of size smaller than the separation distance predicted by the model for the lateral and vertical spectra is not likely meaningful.

Equations 2.25 through 2.27 were derived analytically in this study. Campbell (1984) obtained results consistent with those shown in Figures 2.12, 2.13 , and 2.14 by numerically integrating equations similar to Equations 2.10 and 2.11. Campbell obtained negative values for the longitudinal spectrum, however, he erroneousily contributed them to round-off errors in his numerical integration (Campbell, 1986). Further work is needed to fully resolve the meaning of the two-point spectrum at high frequencies for which it becomes negative. However, it is believed that it is consistent with physical principles to simply truncate the two-point spectrum at these negative values.

Returning to a consideration of Figure 2.11, the two-point spectral density functions, calculated from the experimental data, are consistent with

$$
\left((z)^{9 / 1} x z\right) /(z)^{9 / 5} x z
$$

)
the theoretical model until a mid-range frequency value. Above that frequency, the theoretical model drops off rapidly compared with the experimental data. Since the spectral estimate is calculated from a digitized turbulence time history with a finite record length, the departure of the data from the theory is due to aliasing and truncation error. This will be discussed further in Section 3.

The normalized one- and two-point cross-spectral density functions for three combinations of the three respective turbulence velocity components measured at the right and left wing tips in Run 3 are shown in Figure 2.16. As mentioned earlier, the spectral density functions plotted in this report are magnitude only. The shape of the normalized magnitude of the spectral density functions are observed to be very similar for both the auto-spectral density functions and the cross-spectral density functions. This would not intuitively be expected because the normalized auto-correlation and crosscorrelation functions, Figures 2.9 and 2.10 respectively, are very different. However, the non-normalized or absolute value of the auto-spectral density function (i.e., ϕ as contrasted to ϕ / σ^{2}) is about one order of magnitude larger than the value of the cross-spectral density function. The above observations suggest that the eddies of a given frequency contain cross-component energy profortionate to the distribution of common component energy; however, the cross-components are out of phase and have little correlation. Phase relationships for the spectra are dictated by the magnitude of quadspectra (see Equations 2.23 and 2.24). The quadspectra for the two-point common component suectra are very small; however, for the cross-spectra, both one-point and two-point, the quadspectra are of the same magnitude as the co-spectra. The former result indicates little phase shift between common-components displaced spatially whereas the latter result

indicates significant phase shift between uncommon components regardless of spatial displacement.

Similar analyses on the turbulence velocities gathered by the NASA B-57B aircraft (Frost, et al., 1985a) for the two-point common component spectra have shown that the quadrature spectra have values near zero (<0.1) for all frequencies. Emphasizing that the phase shift between the same turbulence components measured at the different probes are negligible. Again, this is probably because the wing span of the airplane is much smaller than a characteristic length scale and significant phase shift would not occur for most of the turbulent eddy sizes involved. Therefore, the shapes of the one-point and two-point correlation functions will be similar to each other. However, as noted for the one- and two-point cross-spectra, the quadrature spectra are comparable with the corresponding coincident spectra, which means the phase angles are significant. Thus, when utilizing turbulence crossspectral functions to assess the influence of the gust gradient on an aircraft's response, the phase angle of the spectral function is an important parameter.

There is little information on theoretical or empirical models for one-point cross-spectra and virtually no information on two-point crossspectra in the literature. Reeves, et al. (1974) suggests the following two-sided one-point cross-spectral density function to relate the u and w gust components at low altitudes:
$S_{x y}(f)=\frac{\sigma_{u} \sigma_{w} \sqrt{2}}{r^{2}+1}\left\{\frac{2 r^{2}}{A^{2}}\left\{\frac{L_{w}}{\bar{V}}\right]^{2}\left[\frac{L_{u}}{\bar{V}}\right\}\left[\frac{\left[1+3(\pi A f)^{2}\right]-j(2 \pi A f)}{\left[1+(\pi A f)^{2}\right]^{2}}\right]\right.$

$$
\begin{equation*}
\left.+\sqrt{\frac{L_{u} L_{w}}{\bar{v}^{2}}}\left[\frac{\left\{1+j \sqrt{3}\left[2 \pi \frac{L_{w}}{\bar{v}}\right] f\right]-}{\left\{1+\left\{\left[2 x \frac{L_{w}}{\nabla} f\right]\right\}\left[1+(2 \pi B f)^{2}\right]\right.}\right]\right\} \tag{2.28}
\end{equation*}
$$

where r, A, and B are arbitrary parameters satisfying the inequalities:
$r>0$,
$A>\frac{2 L_{w}}{\bar{V}}, A>\frac{2 L_{u}}{\bar{V}}$,
$B>\frac{L_{w}}{\bar{V}}, B>\frac{L_{u}}{\bar{V}}$
In this equation, r is the parameter defined in Equation 2.4. The model developed by Reeves, et al. (1974) is basically for low-altitude applications. Therefore, the lowest flight level was chosen for comparison of the experiment with the theory. Inspection of the flight altitude of all runs of Flight 31 shows that Run 12 was flown at the lowest average altitude of approximately 400 ft above the ground. The normalized one-point cross-spectral density function, $\Phi_{u w}(f) / \sigma_{u} \sigma_{w}$, for the turbulence velocity components u and w at the right wing tip in Run 12 was calculated from Equation 2.28 and the results are shown in Figure 2.17.

The parameters A and B for Run 12 are chosen to best fit the experimental data. The value of r is taken as 1.25 the average value for u and w tabulated in Table 2.7. Figure 2.17 shows good agreement between the experimental results (symbol "x") and the results predicted by the Reeves model (solid line) except in the high-frequency regions. As discussed earlier for the one-point auto-spectrum, the higher experimental values in the high-frequency region are probably due to aliasing and truncation error.

Figure 2.17. Comparison of cross-spectral density function for u and w components with theoretical model, Flight 31, Run $12\left(A=1.25 L_{u} / \bar{V} ; B=L_{u} / \bar{V}\right.$; and $r=1.25$).

- - 1
 \because

2.7 List of All Parameters Measured and the Range of Their Extreme and

 Average ValuesFinally in Appendix A, a table is presented for each run which lists all parameters recorded during a flight: the units, the maximum and minimum values, the mean value, the root mean square value, and the number of data points for each parameter. These parameters are stored on magnetic tapes in the following order (the symbols used to represent the variable are appended in brackets):

1. Mountain Daylight Time (MDT) in seconds for each record [t].
2. Roll rate measured by body-mounted roll-rate transducer (positive with right wing going down), rad/s [d $\phi / \mathrm{dt}]$.
3. Normal acceleration at c.g. (positive up) g units [a_{n}].
4. Pitch rate measured by body-mounted pitch-rate transducer (positive with nose going up), rad/s [de/dt].
5. Pitch attitude measured in the vertical plane (positive with nose up), $\operatorname{rad}[\theta]$.
6. Roll attitude of airplane with reference to horizontal (positive with right wing down), rad [ϕ].
7. Airplane heading measured in a horizontal plane clockwise from true north (always positive), 0 to 360° rarge [ψ_{1}].
8. Sensitive airplane heading obtained from ψ_{1} with arbitrary zero at the instant the data switch is turned on (positive with nose right) $\pm 15^{\circ}$ range $\left[\psi_{1}\right]$.
9. Airplane heading measured in a horizontal plane clockwise from true north (always positive) 240° to 600° range [ψ_{2}].
10. Sensitive airplane heading obtained from ψ_{2}, with arbitrary zero at the instant the data switch is turned on (positive with nose right) $\pm 15^{-}$range $\left[\Delta \psi_{2}\right]$.
11. Normal acceleration at the left wing tip (positive up), g units
$\left[a_{n L}\right]$.
12. Normal acceleration at the right wing $t i p$ (positive up), g units
$\left[a_{n R}\right]$.
13. Longitudinal acceleration at the c.g. (positive fcrward), g units [a_{x}].
14. Lateral acceleration at the c.g. (positive toward right wing), g units [ay].
15. Angle of attack measured at the airplane nose boc: (positive with flow vane trailing edge up), rad [ac].
16. Angle of sideslip measured at the airplane nose boce (positive with flow vane trailing edge toward right as viewed frca the aircraft), rad [BC C .
17. Temperature of the INS pallet, ${ }^{-F}$ [$\left.T_{I}\right]$.
18. Temperature of the instrument pallet, $\cdot F\left[T_{p}\right]$.
19. Vertical acceleration of the INS stable element (positive up), g units [a_{z}].
20. Angle of attack measured at the right wing tip boca (positive with flow vane trailing edge up), rad [aR].
21. Angle of sidesilp measured at right wing tip boon (positive with flow vane trailing edge toward right as viewed frce the aircraft), $\mathrm{rad}\left[\beta_{R}\right]$.
22. Angle of attack measured at the left wing tip boos (positive with flow vane trailing edge up), rad [α_{L}].
23. Angle of sideslip measured at the left wing tip boom (positive with flow vane trailing edge toward right as viewed from the aircraft), $\operatorname{rad}\left[B_{L}\right]$.
24. Yaw rate measured by a body-mounted yaw-rate transducer (positive with nose going right), rad/s [dy/dt].
25. Total temperature, ${ }^{\circ} \mathrm{C}\left[\mathrm{T}_{0}\right]$.
26. Impact pressure measured at the left wing tip boom, Pa_{a} [GCL].
27. Impact pressure measured at the airplane nose boom, P_{a} [$\left.\mathrm{q}_{\mathrm{C}}\right]$].
28. Impact pressure measured at the right wing tip bcom, $\mathrm{P}_{\mathrm{a}}\left[\mathrm{q}_{\mathrm{CR}}\right]$.
29. Free-stream static pressure measured at the airplane nose boam, KPa [p].
30. Temperature of IRT, ${ }^{\circ}$ [[$\left.{ }^{\text {IRT }}\right]$.
31. Wet-bulb temperature, ${ }^{\circ} \mathrm{C}\left[\mathrm{T}_{\mathrm{wb}}\right]$.
32. Turbulent fluctuation of impact pressure at the left wing tip bocm, $P_{a}\left[q_{c t L}\right]$.
33. Tirbulent fluctuatior of impact pressure at the airplane nose boon, $F_{a}\left[q_{c t c}\right]$.
34. Turbulent fluctuation of impact pressure at the right wing tip boom, $P_{a}\left[q_{c t R}\right]$.
35. Deflection angle of the right alleron, $\operatorname{deg}\left[\varepsilon_{a R}\right]$.
36. Deflection angle of the left aileron, deg [δ_{aL}].
37. Deflection angle of the elevator, deg [δ_{e}].
38. Deflection angle of the stabilizer, deg [δ_{s}].
39. Deflection angle of the rudder, deg [δ_{r}].
40. Thrust ratio of the right engine to the maximum thrust, percent [T_{R}].
41. Thrust ratio of the lefi engine to the maximum thrust, percent [T_{L}].
42. Deflection position of the flap system [δ_{f}].
43. Deflection position of the spoed brake system [$\delta_{s b}$].
44. Distance to go from the present position of the aircraft to the next waypoint set on the INS (always positive), m [Δl].
45. Bearing to destination, i.e., bearing from the aircraft's present position to the next waypoint set on the INS, measured in a horizontal plane clockwise from true north (always positive), deg [YB].
46. Longitude of aircraft as measured by INS, deg [LONG].
47. Latitude of afrcraft as measured by INS, deg [LAT].
48. Track angle of airplane measured in a horizontal plane clockwise from tive north (always positive), deg [rा].
49. Airplane heading, measured in a horizontal plane clockwise from true north, rad [ψ].
50. East-west component of the airplane inertial velocity as measured by INS (positive toward east), m/s [VE].
51. North-south component of the airplane inertial velocity as measured by the INS (positive toward north), m / s [$\left.V_{i N}\right]$.
52. Pressure-derfived altitude based on standard atmosphere tables, km [h_{p}].
53. Computed free-stream temperature, ${ }^{\circ} C\left[T_{C}\right]$.
54. Computed east-west wind component (positive toward east), knots [WE].
55. Computed north-south wind component (positive toward north), knots [W_{N}].
56. Computed magnitude of wind vector, knots [W].

57-60. Computed direction of wind vector, deg [wW].
61. True airspeed computed from impact pressure measurement at right wind tip boom, $\mathrm{m} / \mathrm{s}\left[\mathrm{V}_{\mathrm{R}}\right]$.
62. True airspeed computed from impact pressure measurement at the airplane nose boom, m / s [V_{C}].
63. True airspeed computed from the impact pressure measurement at left wing tip boom, m/s [$\left.\mathrm{V}_{\mathrm{L}}\right]$.
64. Incremental pressure-derived altitude with reference to value at beginning of run (positive when altitude increases), m [Δh_{p}].
65. Computed corrected inertial displacement, m $\left[\Delta h_{c}\right]$.
66. Computed longitudinal component of gust velocity at right wing tip boom (positive in direction of filight path), m / s [uR].
67. Computed longitudinal component of gust velocity at airplane centerline nose boom (positive in direction of flight path), m / s [Cl].
68. Computed longitudinal component of gust velocity at left wing tip boom (positive in direction of flight path), m / s [L_{L}].
69. Computed lateral component of gust velocity at right wing tip (positive toward right), $\mathrm{m} / \mathrm{s}\left[\mathrm{v}_{\mathrm{R}}\right]$.
70. Computed lateral component of gust velocity at airplane centerline nose boom (positive toward right), m/s [vc].
71. Computed lateral component of gust velocity at leit wing tip Loom (positive toward right), $\mathrm{m} / \mathrm{s}\left[\mathrm{v}_{\mathrm{L}}\right]$.
72. Computed vertical component of gust velocity at right wing tip boom (positive up), m/s [wR].
73. Computed vertical component of gust velocity at airplane centerline nose boom (positive up), m / s [w/].
74. Computed vertical component of gust velocity at left wing tip boom (positive up), m/s [ml].

3.0 SPECTRAL ESTIMATION

Spectral analysis of atmospheric turbulence generally invoives the Fourier transform of a digitized finite-duration velocity fluctuation time history. The digitization process and the truncation associated with the finite time increment of the time history result in both aliasing and bias errors; while the random nature of turbulence results in variance errors. Although these errors cannot be totally eliminated, appropriate filtering will reduce their magnitudes. It was found that the magnitudes of the respective errors and the effects of the filtering process are quite different for two-point spectra than they are for one-point spectra. Because of the significance of the difference, a detailed discussion of the effect of aliasing, bias, and variance errors on the one-point and two-point spectra is given in this section. The magnitude of the errors are also estimated for typical data such as that reported in Appendix A.

To illustrate the magnitude and nature of the errors, an analytical von Karman one-point correlation and the Houbolt and Sen (1972) two-point correlation are used to investigate aliasing and the bias error (also called truncation error or spectral leakage) assocfated with discrete Fourfer transforms. Spectrum for each of these correlations has been computed analytically. The analytical spectra is then compared graphically with the spectrum estimate calculated from the discrete Fourfer transform (DFT) of the digitized analytical correlation functions. This comparison, based on analytical models, fllustrates the allasing and blas errors occurring simply from the digitization and truncation process.

The DFT of the actual turbulence data is then computed. The resulting spectra which are now based on a random signal are then compared with the spectra calculated analytically from the digitized continuous correlations
functions. It is shown that the spectra calculated from the random data contain not only aliasing and bias errors but also variance errors. The use of segment- averaging (Bendat and Piersol, 1971) to reduce the variance error of the spectra computed from the random turbulence data time histories is then discussed.

3.1 Graphical Illustration of the Discrete Fourier Transform

The generation of errors associated with the Fourier transform of a digitized function can be conceptually explained by a graphical illustration. Following closely the development of Brigham (1974), consider some function $h(\tau)$ and its Fourier transform $H(f)$ illustrated in Figure 3.1a. To determine the Fourier transform of $h(\tau)$ by means of digital analysis techniques, it is necessary to digitize $h(\tau)$ at discrete increments in time.

Digitizing $h(\tau)$ in increments of $\Delta \tau$ is equivalent to multiplying it by the comb function shown in Figure 3.1b. The comb function, $\Delta_{0}(\tau)$, has the four fer transform, $\Delta_{0}(f)$, shown in the corresponding figure. The Fourier transform of the product $h(\tau) L_{0}(\tau)$ is given by the convolution integral of $H(f)$ and $\Delta_{0}(f)$ designated by $H(f) \star \Delta_{0}(f)$, i.e.
$H(f) \star \Delta_{0}(f)=\int_{-\infty}^{\infty} H\left(f^{\prime}\right) A_{0}\left(f-f^{\prime}\right) d f^{\prime}$
Figure 3.1c illustrates $H(f) \star \Delta_{0}(f)$.
Note that the transform $H(f)_{\star \Delta_{0}}(f)$ differs from the analytical transform by the appearance of images of the analytical spectrum $H(f)$ displaced along the frequency axis at a spacing of $=11 / \Delta r^{\prime}$. Each of the images contribute some energy to the true spectrum centered about $f=0$. This effect is called aliasing which occurs due to working with a digitized function.

Figure 3.1. Graphical development of the discrete Fourier transform (Brigham, 1974).

The Fourier trarsform pair in Figure 3.1c is still not suitable for machine computation, however, because an infinity of digitized values of $h(\tau)$ is considered; it is necessary to truncate the sampled function $h(\tau)$ so that only a finite number of points, say N, are considered. The rectangular or truncation function, $w(\tau)$, and its Fourier transform, $W(f)$, are illustrated in Figure 3.1d. The product of the infinite sequence of impulse functions representing $h(\tau)$ and the truncation function (i.e., $h(\tau) \Delta_{0}(\tau) w(\tau)$) yields the finite length time function illustrated in Figure 3.1e. The Fourier transform of the truncated, digitized function is given by the convolution of $H(f) \star \Delta_{0}(f)$ with $W(f)$ or $\left[H(f) * \Delta_{0}(f)\right] \star W(f)$.

As illustrated in Figure 3.1e, the frequency transform now has a ripple to it; this effect has been accentuated in the illustration for emphasis. The form of $W(f)$ for the rectangular function of unit magnitude is: $W(f)=2 T \sin (2 \pi T f) / 2 \pi T f$
Hence, if the truncation (rectangular) function is increased in length, then the $\sin (f) / f$ function will approach an impulse; the more closely the $\sin (f) / f$ function approximates an impulse, the less ripple or error due to truncation will be introduced by the convolution. Therefore, it is desirable to choose the length of the truncation function as long as possible.

The effect of digitization and truncation on typical turbulence correlation/spectrum Fourier transform pairs is discussed in the following sections. The discussion is presented in terms of an example for the one- and two-point correlations and spectra, \bar{r} espectively. For the one-point correlation, assume the function $h(t)$ in Figure 3.1 represents the theoretical von Karman transverse correlation function given by Equation 2.8 and repeated here in lag time domain ($\zeta=\bar{\nabla}_{\tau}$) for conventence:

$$
\begin{equation*}
R_{w}(\tau)=\sigma_{w} 2 \frac{2^{2 / 3}}{\Gamma\left(\frac{1}{3}\right)}\left[\frac{\bar{V}_{\tau}}{a L_{w}}\right)^{1 / 3}\left[K_{1 / 3}\left(\frac{\bar{V}_{\tau}}{a L_{w}}\right)-\frac{1}{2}\left(\frac{\bar{V}_{\tau}}{a L_{w}}\right) K_{2 / 3}\left(\frac{\bar{V}_{\tau}}{a L_{w}}\right)\right], a=1.339 \tag{3.3}
\end{equation*}
$$

and the function $H(f)$ corresponds to the spectrum given by an anatytical Fourier transform of Equation 3.3, i.e.:

$$
\begin{equation*}
\Phi_{w}(f)=\sigma_{w}{ }^{2} \frac{2 L_{w}}{\bar{V}} \frac{1+\frac{8}{3}\left(\frac{2 x a L_{w}}{\bar{V}}\right)^{2} f^{2}}{\left(1+\left(\frac{2 \pi a L_{w}}{\bar{V}}\right)^{2} f^{2}\right)^{11 / 6}} \tag{3.4}
\end{equation*}
$$

For the theoretical two-point correlation, the Houbolt and Sen (1972) model is used, f.e.:
$R_{w}(s, 5)=\sigma_{w} 2 \frac{2^{2 / 3}}{\Gamma\left(\frac{1}{3}\right)}\left(\frac{5}{a L_{w}}\right)^{1 / 3}\left[K_{1 / 3}\left[\frac{5}{a L_{W}}\right]-\frac{1}{2}\left(\frac{5}{a L_{W}}\right)\right], a=1.339$
where
$\zeta=\sqrt{s^{2}+\left(\bar{V}_{\tau}\right)^{2}}$
and the theoretical spectrum is given by:
${ }_{\Phi w}(f)=\sqrt{2 \pi} \sigma_{w} \frac{2^{2 / 3}}{\Gamma\left[\frac{1}{3}\right]} \frac{L_{w}}{\bar{V}} \frac{1}{a^{8 / 3}}\left\{\frac{8}{3} a^{2} \frac{\left(\frac{s}{L_{w}}\right)^{5 / 3}}{Z^{5 / 6}} K_{5 / 6}(Z)-\frac{\left(\frac{s}{L_{w}}\right)^{11 / 3}}{Z^{11 / 6}} K_{11 / 6}(Z)\right]$
$Z=\frac{s}{L_{w}{ }^{a}} \sqrt{1+\left(a \frac{2 \pi f L_{w}}{\sigma}\right)^{2}}$

3.2 Aliasing

Consider first the problem of aliasing. - Aliasing can be described by considering a continuous record which is sampled such that the time interval between sample values is $\Delta \tau$ seconds. The sampling rate is then $1 / \Delta \tau$ samples per second. However, at least two samples per cycle are required to define a frequency component in the original data as illustrated by the sketch in

Figure 3.2. Hence, the highest frequency which can be defined by sampling at a rate of $1 / \Delta \tau$ samples per second is $1 / 2 \Delta \tau \mathrm{~Hz}$. Frequencies in the original data above $1 / 2 \Delta x \mathrm{~Hz}$ will be folded back into the frequency range from 0 to $1 / 2 \Delta \tau \mathrm{~Hz}$, and be confused ,ith data in this lower range, as illustrated in Figure 3.1. The cutoff frequency $f_{C}=1 / 2 \Delta \tau$ is called the Nyquist frequency or folding frequency. For any frequency f in the range $0 \leqslant f \leqslant f_{c}$, the higher frequencies which are allased with f are given by (see Bendat and Piersal, 1971):

$$
\begin{equation*}
\left(2 f_{c} \pm f\right),\left(4 f_{c} \pm f\right), \ldots,\left(2 n f_{c} \pm f\right), \ldots \tag{3.7}
\end{equation*}
$$

To demonstrate the magnitude of aliasing, we have digitized Equation 3.3 representing $h(\tau)$ in Figure 3.1 for values of $L=300 \mathrm{~m}$ and $\bar{V}=100 \mathrm{~m} / \mathrm{s}$ and we have used a discrete Fourier transform (DFT) to compute $H(f)$. The resulting value, $H(f)_{D F T}$, is plotted along with the analytical $H(f)$ in Figure 3.3. The analytical function can be computed to as high a value of frequency as desired by integrating Equation 3.3 methematically to give Equation 3.4 (i.e., mathematically f can approach infinity). However, to employ a DFT method to compute the spectra from Equation 3.3 a finite record length, T, must be used. Spectra computed for two different values of $T=12.8 \mathrm{sec}$ and $T=51.2 \mathrm{sec}$ as contrasted to infinity for the theoretical model are shown in Figure 3.3. Considerable departure of the theoretical spectrum curve from the DFT determined spectrum curve is observed. The reason for this departure is associated with both aliasing and truncation errors as discussed in the following.

Since the theoretical value of $H(f)$ is known, the turbulence energy aliased into a given frequency f can be computed by inputting the values from Equation 3.7 into Equation 3.4, i.e.:

Figure 3.2. Illustration of aliasing problem.

Aliased energy at frequency $f=\sum_{n=0}^{\infty} H\left(2 n f_{C} \pm f\right)$
Table 3.1 illustrates the magnitude of aliasing for the case $f=15 \mathrm{~Hz}$ and 20 Hz , respectively. The values in the table are obtained by summing Equation 3.8 for $0 \leqslant n \leqslant 20$ with $H(f)$ given by $\Phi_{W}(f)$ from Equation 3.4.

TABLE 3.1. Comparison of Aliased Spectrum Vaiues with True Analytical Values at $f=15 \mathrm{~Hz}$ and 20 Hz (see Figure 3.4).

	$f=15 \mathrm{~Hz}$		$f=20 \mathrm{~Hz}$
	0.8075×10^{-3}		0.5000×10^{-3}
Alfased value	1.579×10^{-3}	1.424×10^{-3}	

Figure 3.4 is an enlargement of Figure 3.3 for the 1 to 100 Hz frequency range. (The variance error bars shown on the figure are described later.) The aliased values for the 15 and 20 Hz frequencies in Table 3.1 are plotted on the figure. The plot clearly shows that the major portion of the difference between the theoretical curve and the DFT curves is due to aliasing. This is evident from the fact that when the aliased energy is added to the theoretical curve, the results almost coincided with the $H(f)_{\text {DFT }}$ functions. There remains a small difference which is attributed to bias error. Note that this small difference decreases with increasing record length.

Table 3.2 shows a similar aliasing calculation for the two-point spectra (Equation 3.6). The energy aliased into the 15 Hz frequency is almost zero and in the 20 Hz frequency is only doubled.

Figure 3.5 is a comparison of the two-point spectrum computed from a DFT of Equation 3.5 digitized at $\Delta \tau=0.025 \mathrm{sec}$ with the analytical value from Equation 3.6. (The solid circles and variance bars are described later.)

Figure 3.3. The theoretical von Karman one-point auto spectrum compared with the DFT computed values (triangular spectrum window).

Figure 3.4. Comparison of aliased one-point auto-spectrum with true analytical values.

Figure 3.5. Comparison of theoretical two-point spectrum (Equation 3.6) with the DFT of the correlation function (Equation 3.5).

Significant difference between the analytical $H(f)$ and the DFT, $H(f)_{\text {DFT }}$, is observed. The difference in this case, however, is not due to aliasing as is evident from the aliased values plotted on the figure. The significant departure of the DFT value from the analytical value is due to bias error.

TABLE 3.2. Comparison of Aliased Values for Two-Point Spectra with True Analytical Value.

	$f=15 \mathrm{~Hz}$	$f=20 \mathrm{~Hz}$	
	$f r u e$ analytical value	0.1764×10^{-10}	

3.3 Truncation Error

Bias error occurs due to truncation of the time history and appears as ripples in the DFT curve as fllustrated in Figure 3.1e. Bias error and truncation error are in effect the same thing and are referred to interchangeably throughout the remainder of this Chapter. Bias error is influenced by the use of the lag window $w(\tau)$. In Figure 3.1d the function $W(\tau)$ is a rectangular lag window.

The spectra shown in Figures 3.3 and 3.5 have beer corrected for bias errors with a triangular or Bartlett lag window, $w(\tau)$, defined as:
$w(\tau)=1-\frac{|\tau|}{2 T},|\tau|<2 T$
The Fourier transform of $W(\tau)$ is called the spectral window, $W(\omega)$. The Bartlett spectral window is given by:
$W(\omega)=\frac{\sin ^{2} T \omega}{\pi T \omega^{2}}$
Bias or truncation errors occur when attempting to compute the power spectrum $S(\omega)$ of a real, stationary process, $x(t)$, from a single realization of $x(t)$
available only over a finite interval ($-T, T$). To demonstrate the generation of blas error when computing turbulence spectra, consider first the calculation of the spectrum from the Fourfer transform of the $R(\tau)$ function. This development closely follows the excellent presentation in Papoulis, 1977. We will use as an estimate of $R(\tau)$ the time average:
$\tilde{R}(\tau)=\frac{1}{2 T} \int_{-T+|\tau| / 2}^{T-|\tau| / 2} x\left[t+\frac{\tau}{2}\right] \times\left[t-\frac{\tau}{2}\right] d t$
where the function is defined as above for $|\tau|<2 T$; and, for $|\tau|>2 T$, it is assumed to be zero. The estimate of the spectrim, $S(\omega)$, is then given by the transform of $\tilde{R}(\tau)$:
$\tilde{S}(\omega)=\int_{-2 T}^{2 T} \tilde{R}(\tau) e^{-j \omega \tau} d \tau$
It follows from Equation 3.11 that the expected value of $\tilde{R}(\tau)$ in terms of the true $R(\tau)$ is:
$E\{\tilde{R}(\tau)\}=R(\tau)\left[1-\frac{|\tau|}{2 T}\right] P_{2 T}(\tau)=R(\tau) q_{2 T}(\tau)$
where $\mathrm{P}_{2} \mathrm{~T}(\tau)$ and $\mathrm{q}_{2 \mathrm{~T}}(\tau)$ are a pulse and a triangle lag wina. w, respectively (see Figure 3.6). Thus the estimated autocorrelation function is biased, because its mean is rot the true autocorrelation function at lag τ. We can say, however, that this $R(\tau)$ is asymptotically unbiased because the $1 \tau 1 / 2 T$ term vanishes at $T \rightarrow \ldots$. We could easily get unbiased estimates by using $2 T-$ $|\tau|$ to divide the integral in Equation 3.11 rather than $2 T$. The form used here is preferred for the reason that $\vec{R}(\tau)$ in this form can be expressed in terms of the given $x(t)$ as a convolution.
$\tilde{R}(\tau)=\frac{1}{2 T} X(\tau) * X(-\tau)$

Figure 3.6. Rectangular and triangular lag window and their respective Fourier transform.

From Equation 3.12 the expected value of the spectrum is:
$E\{\tilde{S}(\omega)\}=\int_{-2 T}^{2 T} R(\tau) a_{2 T}(\tau) e^{-j \omega \tau} d \tau=S(\omega) \star \frac{\sin ^{2} T \omega}{\pi T \omega^{2}}$
where "*" designates the convolution integration as defined in Equation 3.1. Thus, tne estimate $S(\omega)$ equals the convolution of $S(\omega)$ with the kernel $\sin ^{2}(T \omega) / \pi T \omega^{2}$ (i.e., Bartlett window). The estimator is therefore biased. However,
$E\{\tilde{S}(\omega)\} \underset{T \rightarrow \infty}{ } S(\omega)$
The effect of a rectangular versus triangular lag window is illustrated in the following. Figure 3.7 shows the spectrum computed from a discrete Fourier transform of Equation 3.3 without a lag window (or in other words with a rectangular lag window, see Figure 3.6). Figure 3.7 should be compared with the spectrum in Figure 3.3 which was computed with a triangular lag window. The two curves are not appreciably different in terms of departure from the analytical spectrum except they do show some dissimilarity in shape near the cutoff frequency.

It should be observed that the magnitude of aliasing for the spectrum in Figure 3.7 is of the same magnitude as that given in Table 3.1, for Figure 3.3. One may conclude then for the one-point spectrum the primary source of error is due to aliasing and that the bias errors are negligible.

For the two-point spectrum, however, one cannot draw this conclusion. Figure 3.8 shows the spectrum computed from Equation 3.6 by the DFT using a rectangular lag window. This figure should te compared with Figure 3.5 which shows the two-point spectrum computed with a triangular window. Notice that the curves behave considerably different in Figure 3.8 than they do in Figure 3.5. A ripple in the spectrum curve at high frequencies appears in Figure

Figure 3.7. Comparison of the theoretical von Karman one-point autospectrum with the DFT computed values (square lag window).

Figure 3.8. Comparison of the analytical two-point spectrum (Equation 3.6) with the DFT values computed from truncating Equation 3.5 with a rectangular lag window.
3.8. This is the same ripple as indicated in rigure 3.1e due to the truncation or application of the rectangular lag window to $h(t)$. Thus the graphical illustration in Figure 3.1e clearly reveals how the rectangular spectrum window $W(\omega)$ convolved with the theoretical spectrum results in a truncation or bias error shown in Figure 3.8. Emplcying the triangular lag window results in a much smoother spectral curve (Figure 3.5) but there is still appreciable error between the DFT and the theoretically computed spectra.

The order of magnitude of alfasing associated with digitization of Equation 3.5 is the same as given in Table 3.2. The aliasing error is very small. It can, therefore, be concluded that the bias error contributes significantly to the error produced from computing two-point spectra with discrete Fourier transforms. The fact that the bias error for the one-point spectrum is small compared to aliasing whereas the bias error for the two-point spectra is very large compared to aliasing is a very striking observation when one considers that the correlations functions from which these two spectrum are computed differ only by just a miniscule amount near the zero lag value (see Figure 3.9).

Figure 3.9 illustrates the very small difference between the one-point correlation function and the two-point correlation function from which the spectra in Figures 3.3, 3.5, 3.7, and 3.8 were computed. A very small change in the correlation near zero lag causes the very large differences observed in the spectra. The effects of blas error generally not significant for autospectra must, however, be carefully considered when computing or interpreting two-point spectra.

In addition to abiasing and bias error, there is a third form of error called variance error. Varlance error occurs when computing spectra and

84

$$
C \cdot 2
$$

Figure 3.9. Comparison of one-point and two-point analytical correlations for vertical turbulence fluctuations (Equations 3.3 and 3.5).
correlations from random data. The analyses described to this point have dealt with deterministic correlation functions which do not cause any variance error in the spectral calculation. The aliasing and truncation error discussed occur because of the digitization of the function and because of the finite length of the record required for application of the DFT. The variance error occur because of the random nature of the gust velocities. In attempting to minimize both the bias and variance error, there are conflicting requirements on record length. These requirements result in accepting certain tradeoffs between resolution and accuracy. A more detailed look at the bias and variance errors will shed some light on these tradeoffs.

Consider initially the method of computing the spectrum by first calculating the correlation $R(\tau)$ and then Fourier transforming $R(\tau)$ to obtain $\Phi(f)$ as we have done for the deterministic functions in the previous discussions. It follows from Equation 3.14 and 3.15 that if T is sufficiently large, then:
$E\{S(\omega)\}=S(\omega)$
for analytical functions.
However, even for analytical functions with large T the variance of $\tilde{S}(\omega)$ will not be small for random data. In fact, for any T,
$\operatorname{var}[\tilde{S}(\omega)] \geqslant E^{2}\{\tilde{S}(\omega)\}$
Therefore, $\tilde{S}(\omega)$ is not a good estimator of $S(\omega)$, no matter how large T is. The reason is that with random data the values of the integrand, $\tilde{R}(\tau)$, in Equation 3.12 are not reliable (have large variance) for τ close to $\pm 2 \mathrm{~T}$. Thus, the power spectrum $S(\omega)$ of a process $x(t)$ cannot be determined from a single sample, no matter how large the sample is. To reduce the variance of
the estimate, we must accept only a smoothed version of $S(\omega)$; that is, we must sacrifice resolution.

3.4 Smoothing the Spectrum

The variance of the integral in Equation 3.12 can be reduced by deemphasizing the contribution of $\tilde{R}(\tau)$ for τ near $\pm 2 T$. For this purpose, the est fmator:

$$
\begin{equation*}
\bar{S}_{W}(\omega)=\int_{-2 T}^{2 T} \tilde{R}(\tau) \omega(\tau) e^{-j \omega \tau} d \tau \tag{3.18}
\end{equation*}
$$

is formed where $w(\tau)$ is a lag window vanishing for $|\tau|>2 T$. In this section, we examine the properties of $\tilde{S}_{W}(\omega)$ and the factors affecting the selection of the window $w(\tau)$.

The estimator $\tilde{S}_{W}(\omega)$ is the Fourier transform of the product $\tilde{R}(\tau) W(\tau)$; hence,

$$
\begin{equation*}
\dot{S}_{W}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{S}(\omega-y) W(y) d y=\frac{1}{2 \pi} \tilde{S}(\omega) * W(\omega) \tag{3.19}
\end{equation*}
$$

From the above and Equation 3.14, it follows that:

$$
\begin{equation*}
E\left\{\tilde{S}_{W}(\omega)\right\}=\frac{1}{2 \pi} E\{\tilde{S}(\omega)\} \star W(\omega)=\frac{1}{2 \pi} S(\omega) * \frac{\sin ^{2} T \omega}{\pi T \omega^{2}} \star W(\omega) \tag{3.20}
\end{equation*}
$$

For a reliable estimation, the duration of $W(\omega)$ must be large compared to $1 / \mathrm{T}$. This leads to the approximation:

$$
\begin{equation*}
\frac{\sin ^{2} T \omega}{\pi T \omega \omega^{2}} \pm W(\omega)=W(\omega) \tag{3.21}
\end{equation*}
$$

Inserting this approximate expression into Equation 3.20 gives:
$E\left\{\tilde{S}_{w}(\omega)\right\}=\frac{1}{2 \pi} S(\omega) \star W(\omega)$
It can be shown that under certain general conditions (Papoulis, 1977) the variance of $\tilde{S}_{W}(\omega)$ is given by:
$\operatorname{var}\left[\tilde{S}_{W}(\omega)\right] \approx \frac{E_{W}}{2 T} S^{2}(\omega) \quad \omega \neq 0$
where
$E_{W}=\int_{-2 T}^{2 T} w^{2}(\tau) d \tau=\frac{1}{2 \pi} \int_{-\infty}^{-} W^{2}(\omega) d \omega$
Equations 3.22 and 3.23 dictate the factors affecting the selection of the window pair $W(\tau)$ and $W(\omega)$. For the bias error,
$b=E\left\{\bar{S}_{W}(\omega)\right\}-S(\omega)$
to be small, $W(\omega)$ must be of short duration. For the variance to be small, E_{w} must be small. We shall presently see that if T is sufficiently large, then both requirements can be reasonably satisfied.

3.5 Window Selection

For a satisfactory estimation of $S(\omega)$, the variance of the estimator $\bar{S}_{w}(\omega)$ must be small compared to $s^{2}(\omega)$ or, equivaiently, the variance ratio. $B=\frac{\operatorname{var}\left[\tilde{S}_{W}(\omega)\right]}{S^{2}(\omega)}$
must be very small compared to 1 :
$B \ll 1$
This is the case if E_{W} (see Equation 3.23) is very small compared to $2 T$: $E_{W}=2 T \beta \ll 2 T$

The above requirement leads to the conclusion that $w(\tau)$ must take on significant values only in an interval ($-M, M$) such that ${ }^{-} M \ll 2 T$. We shall assume that $|W(\tau)| \leqslant 1$ for all τ and that, for $|\tau|>M$, it is not just small but it vanishes:
$w(\tau)=0$ for $|\tau|>M$
From these assumptions, it follows that

$E_{W} \leqslant 2 M$ so that $\beta \leqslant M / T$

Thus, to satisfy the variance requirement (Equation 3.27), we must choose M such that
$M \ll T$
With M so determined, the shape of the window is selected so as to minimize the bias
$b=\frac{1}{2 x} \int_{-\infty}^{\infty} S(\omega-y) W(y) d y-S(\omega)$
The bias b depends not only on $W(\omega)$ but also on he shape of $S(\omega)$. Therefore, there is no well-defined opt imum window. However, if T is sufficiently large and $W(\omega) \geqslant 0$, it can be shown (Papoulis, 1977) that:
$b=\frac{S^{\prime \prime}(\omega)}{4 \pi} \int_{-\infty}^{\infty} \omega^{2} W(\omega) d \omega$
The problem is to find a positive function $W(\omega)$ for a specified value E_{W} (Equation 3.24) which minimizes the integral in Equation 3.31 or 3.32 . We will now consider some estimates of the bias and variance errors which may be expected to occur in the computation of turbulence spectra.

3.6 Variance Error

The variance error associated with atmospheric turbulence spectra which follow Equations 3.4 and 3.6 can be estimated from Equations 3.23 and 3.24. The lag window for these figures is $w(\tau)=1-|\tau| / 2 T_{m}$ where $T_{m}=T / M$. Hence,
$E_{w}=\int_{-2 T_{m}}^{2 T_{m}}\left[1-\frac{1 \tau 1}{2 T_{m}}\right)^{2} d t$
$E_{w}=\frac{4 T}{3 M}$
Substituting into Equation 3.23 gives:
$\operatorname{var}\left[\bar{S}_{w}(\omega)\right] \approx \frac{2}{3 M} S^{2}(\omega)$
The magnitude of the variance errors estimated from Equation 3.34 is indicated on Figures 3.4 and 3.5 by the variance error bars. The variance is computed from Equation 3.34 at $f=15 \mathrm{~Hz}$ and 20 Hz and at $f=10 \mathrm{~Hz}$ and 15 Hz , for Figures 3.4 and 3.5 , respectively, with $M=5$ which is the typical number of segments used in computing the spectra shown in Appendix A. It should be noted that the spectra shown in Figures 3.3 and 3.5 have no actual variance error since they are computed from deterministic functions. However, the error bars do indicate the one standard deviation error which can be expected in analyses of random turbulence signals which physically obey the analytical Equations 3.4 and 3.6.

Now consider the magnitude of the bias error. Equation 3.31 can be used to compute the bias error. Values for the convolution of $S(\omega)$ (given by Equation 3.4 for the one-point spectrum and by Equation 3.6 for the two-point spectrum, respectively) with $W(\omega)$ for a triangular spectral wincow (see Figure 3.6) are given in Table 3.3 for frequency values of 10,15 , and 20 Hz . The values of the convolution integral which includes bias error given in the table for the two-point spectrum are plotted on Figure 3.5 (as marked by the solid circles). They coincide very closely with the DFT curves clearly fllustrating that the departure of the DFT curves from the theoretical curve for the two-point spectral is due almost entirely to bias error.

The important conclusion from Table 3.3 is that a two-point spectrum computed with truncated digitized turbulence data with no prior knowledge of the actual form of the spectrum may show appreciable energy in the high frequency range whereas in reality there is no energy at those frequencies. The blas error in the two-point spectrum is approximately 385,400 percent at

TABLE 3.3. Values of $1 / 2 \pi \int_{-\infty}^{\infty} S(\omega-y) W(y) d y$ for $S(\omega)$ Given by Equations 3.4 and 3.6 , Respectively, and a Triangular Spectral Window ($N=512, \Delta \tau=0.025$).

f	One-Point Spectrum			Two-Point Spectrum	
	Bias	Error	True	Bias Error	True
10	0.8000	$\times 10^{-3}$	1.5731×10^{-3}	0.6286×10^{-4}	0.1631×10^{-7}
15	0.4011	$\times 10^{-3}$	0.8075×10^{-3}	0.1789×10^{-4}	0.1764×10^{-10}
20	0.2460	$\times 10^{-3}$	0.5000×10^{-3}	0.1568×10^{-4}	0.2218×10^{-13}

10 Hz as contrasted to only about 50 percent for one-point spectrum. The remarkable phenomenon, however, is that the two spectra are computed from correlations which are almost identical except for a very small difference at zero lag (see Figure 3.9). These factors have strong implication when computing spectra from turbulence time histories where the true spectrum is rot known a priorf. With this in mind, improved windows for reducing bias errors in two-point spectra were investigated.

Considerable study of computing spectra for random data has been carried out in the communication engineering field. Several alternate windows for smoothing the spectra estimates have been proposed. Papoulis (1977) gives the expression:
$w(\tau)=\frac{1}{\pi}\left|\sin \frac{\pi}{T} \tau\right|+\left[1-\frac{|\tau|}{T}\right] \cos \frac{\pi}{T} \tau, 0 \leqslant|\tau| \leqslant T$
and
$H(\omega)=4 T x^{2} \frac{(1+\cos T \omega)}{\left(x^{2}-T^{2} \omega^{2}\right)^{2}}$
This spectral window is called the minimum-bias window because it minimizes the value of the integral in Equation 3.32. When this window is applied to the two-point correlation, the results shown in Figure 3.10 are achieved. The

Figure 3.10. Results of applying minimum-bias window (Equation 3.34) to the DFT computation of the two-point spectrum from Equation 3.5 as compared with the analytical value.
bias error is almost completely eliminated to frequencies as high as 15 Hz . The fluctuation in the curve at higher frequencies is belleved to be a computer-generated numerical roundoff error. Although this window has not been used in computing the turbulence spectra in this report further consideration of its use is recommended.

Attention is now directed toward calculation of spectra from the turbulence time histories. The spectra discussed will now not only contain aliasing and bias error but aiso variance error.

3.7 Spectrum Calculation from a Finite Turbulence Time History

Consider the variable $x(t)$ as a velocity fluctuation in the interval $(-T, T)$. The correlation estimator is then given by:

$$
\tilde{R}(\tau)=\frac{1}{2 T} \int_{-T+|\tau| / 2}^{T-|\tau| / 2} x\left[t+\frac{\tau}{2}\right] x\left[t-\frac{\tau}{2}\right] d t, \quad|\tau|<2 T
$$

The integral in Equation 3.37 is the convolution
$\tilde{R}(\tau)=\frac{1}{2 T} \quad x^{\prime}(\tau) * x^{\prime}(-\tau)$
where
$x^{\prime}(\tau)=x(\tau) p_{2 T}(\tau)= \begin{cases}x(\tau) & |\tau| \leqslant T \\ 0 & |\tau|>T\end{cases}$
equals the truncated time record of $x(t)$.
It follows from Equation 3.39 and the convolution theorem that the Fourier transform of $\tilde{R}(\tau)$ gives the estimate of the spectrum:
$\bar{S}(\omega)=\int_{-2 T}^{2 T} \tilde{R}(\tau) e^{-j \omega \tau} d \tau=\frac{1}{2 T}\left|\int_{-T}^{T} x(t) e^{-j \omega t} d t\right|^{2}$
Thus, $\tilde{S}(\omega)$ can be determined directly from the given sample or turbulence time history $x(t)$. This approach was used in computing all spectra in Appendix A and those discussed in Section 2.

It is interesting to consider now three numerical methods for estimating the power spectrum $S(\omega)$ in terms of the given segment, $X^{\prime}(\tau)=x(\tau) P_{2 T}(\tau)$. All three methods are statistically identical but differ only in the computational procedures.

1. Determine the sample auto-correlation $\tilde{R}(\tau)$ by convolving $X^{\prime}(\tau)$ with $x^{\prime}(-\tau)$ as in Equation 3.36:
$\tilde{R}(\tau)=\frac{1}{2 T} x^{\prime}(\tau) \star x^{\prime}(-\tau)$
Multiply $R(\tau)$ by the window $W(\tau)$ and compute the Fourier transform of the product as in Equation 3.18 to get $\tilde{S}_{W}(\omega)$. The required operations are one convolution, one multiplication, and one Fourier transform.
2. Compute the Fourier transform of $\mathrm{X}^{\prime}(\tau)$ to get $\mathrm{X}^{\prime}(\omega)$. Multiply $\mathrm{X}^{\prime}(\omega)$ by its conjugate and form the sample spectrum $\vec{S}(\omega)$:
$\tilde{S}(\omega)=\frac{1}{2 T}\left|X^{\prime}(\omega)\right|^{2}$
Convolve $\tilde{S}(\omega)$ with the window $W^{\prime}(\omega)$ to get:
$\tilde{S}_{W}(\omega)=\frac{1}{2 \pi} \tilde{S}(\omega) \star W(\omega)$
The required cperations are one Fourier transform, one multiplication, and one convolution.
3. Compute $X^{\prime}(\omega)$ and $\tilde{S}(\omega)$ as in method 2. Find the inverse Fourier transform $\tilde{R}(\tau)$ of $\tilde{S}(\omega)$. Form the product $\tilde{R}(\tau) w(\tau)$ and compute its Fourier transform $\tilde{S}_{W}(\omega)$ as in method 1 . The required operations are two multiplications, two Fourier transforms, and one inverse Fourier transform.

Method 3 has been used for computing spectra from the turbulence time histories discussed in this report. In most cases, however, the lag window operation has not been performed for reasons described later. The varfance error for spectrum estimates cbtained by a direct Fourier transform operation
on the digitized time history (Method 3) may be determined differently from that given by Equation 3.23.

Consider the spectrum function of a stationary (ergodic) Gaussian random process $X^{\prime}(\tau)$. An estimate of $\tilde{S}(\omega)$ can be obtained from Equation 3.42. The narrowest possible bandwidth resolution from Equation 3.42 is $B_{e}=(1 / T)$. To determine the variance of the estimate of $\tilde{S}(\omega)$, observe that the Fourier transform $X(\omega)$ is defined by a series of components at frequencies $f=k / T ; k$ $=1,2,3$, etc. Further observe that $X^{\prime}(\omega)$ is a complex number where the real and imaginary parts, $X^{\prime} R(\omega)$ and $X^{\prime} I^{\prime}(\omega)$, can be shown to be uncorrelated random variables with zero means and equal variances (Bendat and Piersol, 1971). Since a Fourier transformation is a linear operation, $X^{\prime} R(\omega)$ and $X_{I} I^{\prime}(\omega)$ will be Gaussian random variables if $x(t)$ is Gaussian. The random variable $x(t)$ is not strictly Gaussian as discussed in Section 2; however, the variance error to be described is expected to be representative of the error associated with atmospheric turbulence. It follows then that the quantity
$\left|X^{\prime}(\omega)\right|^{2}=X^{\prime}{ }_{R}^{2}(\omega)+X_{I}^{\prime}(\omega)$
is the sum of the squares of two independent Gaussian variables. It can be shown that each frequency component of the estimate $\tilde{S}(\omega)$ will have a sampling distribution given by
$\frac{\tilde{S}(\omega)}{S(\omega)}=\frac{x_{2}{ }^{2}}{2}$
where $X_{2}{ }^{2}$ is the chi-square variable with $n=2$ degrees of freedom.
Note that the result in Equation 3.45 is independent of the record length T, that is, increasing the record length does not alter the distribution function defining the random error of the estimate. It only increases the number of spectral components in the estimate. The variance error of the estimate is substantial. The mean and variance of the chi-square variable are
n and $2 n$, respectively. Thus the normalized standard error, which defines the variance error of the estimate is:
$B=\frac{\operatorname{var}^{2}[\tilde{S}(\omega)]}{S^{2}(\omega)}=\frac{2}{n}$
For the case at hand, $n=2$ si $\beta=1$, which means that the standard deviation of the estimate is as great as the quantity being estimated. This is an unacceptable error for most applications.

In practice, the variance error of an estimate, fuced by Equa_ion 3.4? is reduced by smoothing the estimate in one of two ways. The first way is to smooth over an ensemble of estimates. This can be done by computing individual estimates from M independent sample records, $x_{i}(t) ; 1=1,2,3, \ldots M_{\text {, }}$ and then averaging the M estimates at each frequency of a spectral component as illustrated in Figure 3.11a from Bendat and Piersol (1971). The second way is to smooth over frequency. This can be done by averaging together the results for $\&$ contiguous spectral compor:ents in the estimate from a single sample record as illustrated in Figure 3.11b. In either case, the smoothing technique approximates the expectation operation in Equation 3.42.

For smoothing the spectra presented in Appendix A, ensemble averaging has been used throughout this study. Care must be used when ensemble averejing, however. Each spectrum from the M segments of the total time history is gonerally complex. To estimate the mean (or magnitude) of the spectrum from the segments some authors imply ensemble-averaging of the absolute values:

$$
\begin{equation*}
\left|\Phi_{x y}(s, f)\right|=\frac{1}{N_{m}} \sum_{i=1}^{N_{m}}\left|c_{x y, f}(s, f)-j Q_{x y, f}(s, f)\right| \tag{3.47}
\end{equation*}
$$

where N_{m} is the number of segments. However, few authors deal with two-point spectra. Jenkins and Watts (1969) correctly defined the mean of the complex two-point spectral function as:

(b) Frequency smoothing procedure

Figure 3.11. Smoothing procedures for spectrum estimates. (Bendat and Piersol, 1971).

$$
\begin{equation*}
\left|\Phi_{x y}(s, f)\right|=\left|\frac{1}{N_{m}} \sum_{i=1}^{N_{m}} c_{x y, i}(s, f)-j \frac{1}{N_{m}} \sum_{i=1}^{N_{m}} Q_{x y, i}(s, f)\right| \tag{3.48}
\end{equation*}
$$

wherein the real and imaginary parts of the spectral function are segmentaverag̣ed separately.

Figures 3.12 and 3.13 demonstrate the difference between the two-point spectrum estimations from Equations 3.47 and 3.48 , respectively. Both cases are compared with the Houbolt and Sen theoretical model. Equation 3.48 gives better agreement with the theoretical model. It is also important to note that when smoothed by the Equation 3.47 technique, the two-point spectrum in Figure 3.12 is almost indistinguishable from the one-point spectra as shown in Figure 2.11. Notice the variance is larger for a two-point spectrum than for a one-point spectrum. Also, one- and two-point cross-spectra have apparent higher variance levels. The increase in variance is due to the fact that variability is introduced by two separate processes rather than one (i.e., averaging $C_{x y}$ and $Q_{x y}$ separately as contrasted to averaging $C_{x y}$ itself which is the only contribution to the one-point auto-spectrum).

3.8 Lag Wirdows for Reducing Bias Error

A number of data windows for reducing bias errors are described in the literature. No single window has been identified as most appropriate for an atmospheric turbulence signal. A cosine tapered data window to smooth the data at each end of the record is commonly used in the literature but was found to have no effect on spectra calculated and was not used in this report.

Lag windows (as contrasted to data windows) are applied to the correlation function as defined in Case 3, page 94. Figure 3.14 shows the two-point spectrum for a turbulence measurement and a digitized deterministic model with a rectangular lag window. The shape of the spectrum from the data deviates

Figure 3.12. Segment-averaged two-point auto-spectrum using Equation 3.47. (Heavy solid line designates Houbolt and Sen's theoretical model.)

Figure 3.13. Segment-averaged two-point auto-spectrum using Equation 3.48. (Heavy solid line designates Houbolt and Sen's theoretical model.)

Figure 3.14. Two-point spectrum computed directly from data with a rectangular lag window.
significantly from the values predicted by the model even at low frequencies. The minimum amplitude window Equation 3.35 was also used with the direct FFT of the turbulence time history as shown in Figure 3.15. The window does not correct the random data input to the same degree it corrects the deterministic input. It does, however, give a better correction of the bias error than any of the other windows used in this study. Further investigation of the effect of lag windows on two-point spectra computed directly from the turbulence is recommended.

Figure 3.15. Two-point spectrum with minimum amplitude window, Equation 3.35 .

4.0 INSTRUMENTATION ERROR ANALYSIS

4.1 Instrumentation Problems

The instrumentation platform is the B-57B aircraft. This aircraft is a U.S. Air Force (USAF) version of the English Electric Canberra and was built under license by the Martin Company. The B-57B, designed as a tactical bouber, first flew in 1954 but is no longer in use by the USAF. NASA uses the aircraft as a flight research tool to measure wind velocity, turbulence, temperature, and other properties of the atmosphere. The aircraft is equipped to gather data on gust gradients across the 19.5 m (64 ft) wing span. Characteristics and dimensions of the $B-57 B$ are given in Figure 4.1. Additional information about aerodynamic coefficients and stability derivatives can be obtained from Ringnes and Frost (1985). The Instrumentation on the B-57B include three airspeed probes located at the nose section and at each wing tip. The flight angles, sideslip angle, and angle-of-attack are measured at the same three locations. Also, accelerometers are placed at both wing tips and at the center of gravity (c.g.) for use in studying wing vibrations. Ground speed, Euler angles and angular rates, acceleration components, and geographical location are provided by the Inertial Navigation System (INS).* Details on the instrumentation and its accuracy is given in Meissner (1976), Rhyne (1980), and Murrow and Rhyne (1981).**
*Carousel IV made by AC Electronics, Division of General Motors Corporation.
**The INS and pressure transducers used in the flights are different from reported in these references.

Figure 4.1. Characteristics of the B-578.

During previous research (Chang and Frost, 1985; Frost, et al., 1985a; Ringnes and Frost, 1985) using data gathered with the B-57B afrcraft, various uncertainties in the measured wind velocities and turbulence measurements were traced to instrumentation characteristics. Frost, et a1. (1985a) have pointed out irregularities in the total pressure measurements and postulated that water droplets may have occasionally been ingesied in the pitot tubes. These caused spikes in the turbulence spectrum at approximately 15 Hz . No similar spikes were observed for the data from Run 31 which is analyzed in this report. Chang and Frost (1985) and Frost and Huang (1983) also noted that there are, in some cases, discrepancies in the calculation of the total wind vectors. These were attributed to problems with boom alignment and with the INS. In this section, the data reduction procedures of the quasi-steady wind vector and of the turbulence are reviewed in detail to pinpoint how instrumentation errors might affect the wind measurements. The magnitude of the errors are estimated and methods of correcting for them suggested.

4.2 Wind and Gust Velocity Equations

The velocity of a moving airmass with respect to earth, in this study, is obtained by vectorially subtracting aircraft velocity with respect to the air mass from aircraft velocity with respect to earth. These velocities are referred to as airspeed and ground speed, respectively. Since airspeed is measured in a body-axis (airplane fixed) reference system, it is necessary to rotate the airspeed vector into the inertial (earth fixed) frame of reference. The governing equations are derived in detail in Appendix B (see also Frost (1981); Crooks, et a1. (1967); Houbolt, et al. (1964); Lenschow (1972); and Axford (1968)). The present assumptions used in the equations for removing the aircraft motions from the wind vector are straight and level fiight
without large perturbations. Therefore, small angle assumptions are made for the roll, pitch and yaw angles, and for the angle of attack and sideslip angle. Furthermore, it is assumed that the product of sines of any of the small angles mentioned above vanishes and the cosines of small angles are unity. The application of these linearized equations to computing gust velocities for touch-and-go flights and during excursions from level flight during a run (e.g., Run 9 at 7 to 11 miles, see Figure A.41) is discussed later. Based on the small angle, level flight assumptions, the following expressions are used for computing the horizontal wind velocity components from the measured parameters:
$W_{E}=V_{E}-V_{C} \sin \left(\psi-B_{C}-\frac{\ell_{X} \dot{\psi} \dot{\psi}}{V_{C}}\right)$
$W_{N}=V_{N}-V_{C} \cos \left(\psi-B_{C}-\frac{\ell_{X} \dot{\psi}}{V_{C}}\right)$
where ψ is aircraft heading and B_{C} is sidesilip angle. V_{C} is the true airspeed of the aircraft, V_{E} and V_{N} are east-west and north-south components of the airplane inertial velocity, and $\ell_{x C}$ is the longitudinal distance measured parallel to the x-axis of the airplane from the INS to the centerline measuring station. The higher order term containing $\dot{\psi}$ arise because the airspeed and ground speed are measured at different locations.

Wind speed and direction are derived directly from two independent components and are given by:
$W=\left(W_{E}{ }^{2}+W_{N}{ }^{2}\right)^{1 / 2}$
$W_{N}=\tan ^{-1}\left[\frac{W_{E}}{W_{N}}\right\}+\pi$ for $\pi / 2 \geqslant \tan ^{-1}\left|\frac{W_{E}}{W_{N}}\right\rangle \geqslant-\pi / 2$

Positive wind is defined as a wind blowing towards the east, W_{E}, and north, W_{N}, .hich in meteorology is referred to as west and south winds, respectively.

The turbulence components are calculated in the aircraft-fixed coordinate system. A complete derivation of the equations has been carried out both by NASA Langley Research Center and by FWG Associates in the past. The FWG derivation is also restated in Appendix B. The linearized equations for the center probe are:
$u_{C}=\hat{v}_{E} \sin \bar{\psi}+\hat{V}_{N} \cos \bar{\psi}-\hat{v}_{C}$
$v_{C}=V_{C B} \hat{B}_{C}-V_{C} \hat{\psi}+\hat{V_{E}} \cos \bar{\psi}-\hat{V}_{N} \sin \bar{\psi}+\ell_{x C} \hat{\dot{\psi}}+\hat{V}_{C} \hat{\alpha_{C} \phi}$
$w_{C}=V_{C} \hat{\alpha}_{C}-V_{C} \hat{\theta}+\hat{V}_{a z}+\ell_{x} \hat{C} \hat{\dot{\theta}}-V_{C} \hat{\beta}_{C} \phi$
where ϕ, θ, and ψ are roll, pitch, and yaw angles of the aircraft. Those for the wing tip probes are straightforward modifications of those for the center probe. It is assumed that the average pitch angle of the average pitch angle of the average flight path, $\overline{9}$, is zero. The caret (${ }^{\wedge}$) symbol indicates deviation from the mean value and the overbar ($(\rightarrow$) indicates average value.

4.3 Sources of Inaccuracy in Data Reduction

Instrumentation errors influence the quantities appearing on the right-hand side of Equations 4.1 and 4.2 and thus the accuracy of the computed wind velocities. Instrumentation errors in the INS ground speed components, the airspeed, and the sides 1 ip angle have been identified and studied. Errors in the yaw rate are negligible, and the yaw angle is believed to be accurate. A test to verify yaw angle accuracy is suggested since yaw angle errors could significantly contribute to errors in the calculation of horizontal wind.

Of these sources of instrumentation errors, the most difficult to correct is the dynamic error in the velocity inherent in the INS, termed the Schuler error to which aircraft motions contribute. All other errors can be removed by careful calibration. The effects on the magnitude of the measured wind and also turbulence calculations due to the sources of error in the instrumentation are presented next.

4.4 Inertial Velocity and Position Errors

The accuracy of the calculations of horizontal winds deperds upon the performance of the INS and its capability to provide correct measurements of the inertial (ground) speed of the aircraft. In recent years mecnanical and electronic advances have greatly improved INS accuracy. However, a cumulative oscillation in the INS stable platform element called the Schuler drift effect, first pointed out in the famous paper by Schuler (1923), can be quite significant. Inertial navigation theory including derivation of the Schuler pendulum effects is explained in many textbooks (see for example, Boxmeyer, 1964). The Schuler error is essentially periodic with a period near that of an earth radius pendulum, 84.4 minutes.* The error behaves sinusoidally and

[^2]will thus change polarity. The error caused by a slow oscillation of the INS stable platform causes the two horizontal accelerometers to detect a part of the gravity vector. This false indication of acceleration is carried through the integration for velocity and produces errors in the W_{E} and W_{N} values. Distance traveled or geographical position is obtained from a second integration of the measured accelerations. Thus the Schuler oscillations will create errōs in acceleration, velocity, and position. The following procedures were used to estimate the velocity errors associated with Schuler drift.

Position error can be computed from afrcraft data during overflight of lardmarks where exact geographical locations are known. Since acceleration, velocity, and position errors are all interrelated the Schuler error can experimentally be investigated by obtaining data on either one of the three parameters having a Schuler oscillation induced error. The velocity error is generally small but increases witn time, e.g., after several hours of operation it can be on the order of 3 to $5 \mathrm{~m} / \mathrm{s}$ (Rhyne, 1980; Lenschow, 1983). The magnitude of the position errors for the IV INS used in B-747 airacraft reported by Weber (1975) normally are on the order of 10 nautical miles or less even after transatlantic flights. These errors are not critical for pure navigation purposes. But, when the objective is to calculate wind velocity, the Schuler error can be quite important.

In an attempt to model in-flight Schuler error, data from Flight 63 have been analyzed. Specifics about the flight can be found in Table 1.1. A box pattern flight plan as shown in Figure 4.2 was flown sequentially at 1000 ft levels over Boulder, Colorado, in February 1984. Details of the flight and results are given in Chang and Frost (1985). Each time the B-57B flew the leg

heading east, an event marker on the ground was activated to record the moment a north-south running road lined up perpendicular to the flight path (see Figure 4.2). INS recorded longitude at the time of the event marker can thus be compared with the known longitude of the road to construct the Schuler position error (see Figure 4.3a). The exact latitude of the aircraft at the time of the event markers is less certain. In fact, it depends upon the ability of the pilot to fly the intended flight path. But, since the flight paths were flown toward a fixed landmark, only small deviations in the latitude position of the east test runs are expected. A similar indication of position errors has also been plotted for the latitude, Figure 4.3b. In both cases, the error appears to have a sinusoidal behavior. Curve fits by simple trial and error techniques are also plotted on the two figures. The curve fits suggest the latitude error has a 77 -minute period of oscillation, and the longitude has an 111-minute period. The latitudinal period is reasonably close to the Schuler constant of 84 minutes, but the longitudinal period does not conform to that for the latitude. Since longitude and latitude errors are two components derived from the same stable platform oscillation, equal period lengths differing only by a phase angle wculd be expected. Thus, additional investigation of the discrepancy is needed.

Flight 66 (see Table 1.1) followed the same flight pattern as Flight 63, and the same technique for marking geographical position by event markers was used. Figure 4.4 has been constructed similarly to Figure 4.3. The dashed lines outline sinusoidal trends but are not represented by mathematical equations. The latitude oscillation in Flight 66 seems to have a period of approximately 110 minutes which is similar to the longitude oscillation of Flight 63. The longitude error of Flight 66 contains more scatter in the

Figure 4.3. In-flight Schuler position error, Flight 63.

Figure 4.4. In-flight Schuler position error, Flight 66.
data, although the period seems to be of roughly the same length as the latitude oscillation on this flight.

The magnitude iNS position e-rors identified are within a range of less than 15 km or 10 nautical mfles . From a conmercial aircraft operation standpoint, these errors are not a large problem, particularly in the proximity of an airport where other means of navigation are available in the proximity of an airport. However, Schuler position errors are of significance for wind measurements. Exact ground tracks are needed to determine terrain effects on turbulence such as wake regions behind mountains, etc. An error on the order of several kilometers can drastically distort the picture.

The INS velocity errors are especially important in the wind measurements. Horizontal wind components are calculated based on Equations 4.1 and 4.2. As will be demonstrated, the velocity errors can be of the same order of magnitude as the wind speed, which will greatly alter the calculation of the wind vector. An estimate of these errors is presented in Figure 4.5. The velocity error curves are calculated by taking the derivative of the position error curve fits illustrated in Figure 4.3. The magnitude of the velocity errors determined is within the range of that quoted in the literature (Rhyne, 1980; Lenschow, 1983). The influence of these errors is demonstrated in Sections 4.7 and 4.8.

To further investigate the Schuler error Flights 73 and 74 were carried out where the aircraft was tracked by the NASA EPS $-16 \$ 34$ tracking radar. The radar track provided the location and the ground speed of the aircraft throughout the flight. The investigation of Schuler velocity errors for Flight 73 and 74 has not been completed due to the late reception of flight data for flight 73 and of the need to correct the radar tracking. However,

Figure 4.5. In-flight Schuler inertial speed error, Flight 63.
data on post-flight Schuler velocity errors recorded on the ground have been received from NASA/LaRC along with data from Flight 74. The north-south and east-west velocity errors of Flight 74 and the ensuing post-flight velocity measurements are plotted in Figures 4.6 and 4.7. The in-flight velocity errors are obtained by comparing aircraft and radar data assuming the radar indications are free of error. The data recorded on the ground is a direct measure of the indicated velocity from the INS while the aircraft was parked and hence not moving. This velocity fluctuation is attributed to the Schuler error. The INS was left on during the entire time span covered in the plots. The magnitude of the errors are within expected limits. Both figures show one complete cycle of a near perfect 84 -minute Schuler oscillation in the post-flight data in the latter part of the test period. This is in keeping with Huber and Bogers (1983) who noted that near the ground without accelerations involved the Schuler oscillations will have an 84.4-minute periud. But, in the first half of Flight 74 the errors are more random in their behavior and the oscillation is an irregular period. This complicates attempts to model or predict the error in advance. Lenschow (1972) suggests that post-flight data recorded with a stationary aircraft be used to back out the error. He proposed to simply trace back a recorded post-flight error oscillation with an 84 -minute period constant amplitude sinusoidal curve. The present study shows, however, that both the period and the amplitude of the velocity error are altered substantially during flight and thus the Lenschow (1972) approach would not be successful here. This observation is in keeping with Huber and Bogers (1983) physical description of the Schuler effects. Additional investigation of F1ight 74 is needed to determine if the INS errors are accurately described in Figures 4.6 and 4.7. While the inertial velocity

$$
\text { Figure 4.7. Error in north inertial speed on Filght } 74 \text {. }
$$

$$
\ddot{i}
$$

B
measurement errors strongly influence the horizontal wind vector calculations, they generally have little effect on the gust velocity computatinns because the effect of the slow variations in velocity is greatly diminished or eliminated when the average velocity is removed.

4.5 Flow Vane Errors

Ringnes and Frost (1985) observed in analyzing the B-57B data that constant differences existed between the angles of attack measured at the three different stations along the wing. The constant offset from the true value again has little influence on the computed turbulence since the mean value is removed during the computation. The angle of attack terms have negligibly small effect on the computed values and therefore the inaccuracies cause no problems of the total horizontal wind vector. The cause of the angle of attack difference, however, were attributed to misalignment of the wing tip booms.

The average sidesip angles were aiso found to be different from the expected value. All aircraft are designed directionally stable and will fly with zero average sideslip angle unless forcefully kept in a sideslip flight condition. The average sideslip angle of 2.23 degrees, for example, recorded at the centerboom on Flight 63 is therefore attributed to error. The source of the error is not clear but boom misalignment or problems with the data acquisition system are suspected causes. Again, the average sideslip error is removed in the turbulence calculations, but it does affect the computed value of the horizontal wind vector noticeably as will be demonstrated.

4.6 Airspeed Errors

Frost, et al. (1985a) observed a difference in airspeed measured by the three separate wing probes. They compared average values for all runs on

Fifght 21 and reported an average difference between the right and center boom measured velocites of $1.82 \mathrm{~m} / \mathrm{s}$. The difference between the right and left wing tip measured airspeed was $0.79 \mathrm{~m} / \mathrm{s}$. The overall averaged airspeed was about $105 \mathrm{~m} / \mathrm{s}$. In Flight 31, the airspeed difference between the right and left probes is $0.3 \mathrm{~m} / \mathrm{s}$ at an average airspeed of $102 \mathrm{~m} / \mathrm{s}$. The accuracy of the horizontal wind vector calculations depends upon the quality of airspeed measurements. Possible instrument calibration, position errors, or conversion from indicated to true airspeed can cause these inaccuracies. Also, the lack of separate static pressure transducers at the wind tips could have contributed to the inconsistances. A test flight conducted with the B-57B also revealed a value of horizontal wind speed of $2.5 \mathrm{~m} / \mathrm{s}$ lower at the center boom than at the wing tip booms at a relative airspeed of roughly $122 \mathrm{~m} / \mathrm{s}$ (Ehernberger, 1987). An approximate analysis based on a potential flow solution for a Rankine body (Karamcheti, 1966) predicted a 6 percent error. This is expected to be high because the $B-573$ is a more streamlined body than a Rankine body, but the results do support the hypothesis that the airspeed may be retarded sufficiently by the aircraft body to produce the relative airspeed difference a boom's length from the nose. This 2 percent error is accounted for in the following investigation of the influence of instrumentation errors on horizontal wind calculations.

4.7 Gust Velocity Corrections

The only instrumentation errors of those reported above which would noticeably effects the gust velocity calculation based on inspection of Equations 4.5, 4.6, and 4.7 is airspeed. The magnitude of correction to the gust velocities due to airspeed corrections is illustrated in Figure 4.8. Uncorrected turbulence is plotted directly from the tapes received from NASA

Figure 4.8. Effect of instrumentation errors on the three turbulence components on Flight 63, Run 16.
:2:

Langley Research Center. The "corrected" turbulence has been computed with the predicted inertial velocity, airspeed, and sidesilip angle errors removed. The differences between the two computations are small and only detectable for the lateral and vertical components where total airspeed enters the Equations 4.5 and 4.7. It is apparent that even the airspeed error is of little significance in gust velocity calculations.

4.8 Horizontal Wind Vector Correction

The INS velocity and position indication, sideslip angle, and airspeed errors identified as described above have been removed from the recorded data on some runs of flight 63. The influence these errors have on the calculation of horizontal winds are demonstrated in this subsection. A series of wind vectors are plotted before and after corrections have been made along the filight path recorded by the INS. Each vector represents a one-second average from the 40 samples per second data tapes.

In Figure 4.9 one of the box patterns flown on Fiight 63 is plotted. In this figure, no corrections have been made. There are some obvious inconsistencies in the wind vectors, particularly, at the corners where it is expected that the wind would agre: closer between the two runs. The aircraft made 270 -degree turns between runs which take less than two minutes. The wind direction is not expected to change significantly during that short of an interval. Instrumentation errors are, therefore, the probable cause for the discontinuities in wind direction. Figure 4.10 differs from Figure 4.11 only by removal of the 2.23 -degree sidesilp error in the calculation of the wind vectors. It is debatable whether this correction alone has improved the win vectors but it clearly demonstrates that seemingly small errors have significant effect on the wind vectors. In Figure 4.11 corrections have been

8
-

;igure 4.9. Horizontal wind vectors on Flight 63 without corrections (Runs 9 through i2).

Figure 4.16. Horizontal wind vectors on Flight 63 with beta corrections (Runs 9 through 12).

Fiç.e 4.1:. Horizontal wind vectors on Flight 63 after airspeed, beta, and inertial velocity and position corrections (Runs 9 through 12).
made for the known errors. The discontinuities in the wind vectors at the corners have all but vanished except for the bottom left-hand corner. However, as the numerical order of the runs indicates the box pattern was flown in a clockwise direction; thus, the beginning of Run 9 and the end of Run 12 are separated in time by approximately 15 minutes. Therefore, it is conceivable that the wind could have changed in that time span. The position errors are not severe for this box pattern but still noticeable.

Figüre 4.12 is similar to Figure 4.9 except Runs 13 through 16 on Flight 63 have been plotted. No corrections have been made. Only the discontinuities in the direction of the wind in the upper left-hand corner and in the magnitude of the wind in the upper right-hand corner appear questionable. Figure 4.13 illustrates the effect of removing the errors on wind vectors and INS indicated locations. The horizontal wind vectors are more consistent and also the loration of the runs are in better agreement with the flight plan.

A third box pattern on Flight 63 (Runs 17 through 20) does not show the same improvement with corrections. Figure 4.14 shows the uncorrected wind vector and Figure 4.15 the corrected version. The INS indicated location is improved but not the wind vectors. After correction, the wind directions on Runs 18 and 20 are in sharp contrast to each other and additional or better corrections are needed.

4.9 Effects of Non-Level Flight

The algorithms used by NASA Langley computer facility to compute the turbulent gust velocities from the measured aircraft data are based on the assumption of straight, level flight. The more complete generalized system of equations which will allow for departure from level flight are derived in Appendix B. Questions arose during the study as to whether those portions of

Figure 4.12. Horizontal wind vectors on Flight 63 without corrections (Runs 13 through 16).

Figure 4.13. Horizontal wind vectors on Flight 63 after airspeed, beta, and inertial velocity and position corrections (Runs 13
through 16).

1

Figure 4.14. Horizontal wind vectors on Flight 63 without corrections (Runs 17 througn 20).

Ficure 4.15. Horizontal wind vectors on Flight 63 after airspeed, beta, and inertial velocity and position corrections (Runs 17 through 20).
flights for which the aircraft climbed or descended should be removed from the data. For example, during Run 3 at approximately 536 seconds (34 miles) into the flight the aircraft climbed approximately 1000 ft (see Figure A.11). In turn, during flight 9 the aircraft climbed roughly 1000 ft beginning at $\mathrm{t}=80$ secords (7 miles) and descended again at $t=135$ seconds (8.4 mfles), see Figure A.41. Also, Runs 1 and 2 where the aircraft took off or made touch-and-go's. This sectfon shows that algor ithms to reduce the data based on small angles and perturbations have no significant effect on the computed turbulence for runs where departures from straight and level flight occur.

First it should be noted that because of the exaggerated vertical scale in, say for example, Figures A.11, A.41, and all other plots of this nature given in Appendix A, the departure from level flight appears to be severe. It should be noted, however, that in no cases is the climb or descent angle greater than 7°. This size angle adequately satisfies the small angle requirement defined in the algorithms presently used in the data reduction process. However, this statement is further supported by quantitative analyses in the following.

To investigate the effects of climb and descent angles on the computed gust velocities, Equation B.27, which are used in the NASA Langley algorithms and Equation B. 15 which FWG has derived and programmed to investigate the effect of "large ang les" where compared. The FWG equation still assumes the mean roll angles, $\bar{\phi}$, is zero. Equation B .27 was programned and the turbulence time histories at central probe for the descending ($\bar{\theta}=-2.83^{\circ}$) and climbing ($\bar{\theta}=2.9^{\circ}$) segments of Run 2 were computed separately. Figure 4.16 shows the comparison of the descending segment. Figures 4.16a, 4.16b, and 4.16c are for the longitudinal (u), lateral (v), and vertical (w) components, respectively.
$-$
-

(a) Longitudinal Component

Figure 4.16. Comparison of turbulence time histories calculated from HASA Langley's equation and FHG's equation (descending
segment of Run 2; Flight 31).

Figure 4.16. (cont'd).

Figure 4.16. (cont'd).

The standard deviation of each time history is also shown in the figure. Similar comparison for the climbing segment is shown in Figure 4.17. An abnormal spike occurs in the lateral turbulence component at $t=201$ seconds. It is believed that the attitude of the aircraft at this moment probably deviated from the small angle assumptions significantly. Therefore, the maximum difference of the turbulence calculations from Equations B. 15 and B. 27 occurs at this point. Although the complete equation (Equation B.15; calculates turbulence more accurately, Equation 3.27 saves a lot of computer tfme and still holds an acceptable accuracy for small angles considered here. For all practical purposes, the two calculations will introduce only negligible difference in the turbulence analyses presented in this report.

To further investigate the departure from level flight, the turbulence time history for Flight 3 was divided into two segments. Segment 1 is from 0 to 512 seconds (0 to 32 miles) and segment 2 from 512 to 691 seconds (32 to 44 miles). The turbulence statistics were computed for the total run and for each segment individually. .The spectra for the two individual legs of the flight are compared with the total run in Figure 4.18; no apparent difference is observed. The turbulence intensity for each segment of the flight are listed in Table 4.1. Difference in turbulence intensity for each leg of the filght are apparent. These differences, however, are not attributable to departure from level flight but rather due to patchiness of the turbulence associated with terrain features beneath the flight path. Figure 4.19 shows the turbulence time history and the approximate location relative to the underlying terrain at which the measurement was made. This figure, in view of the fact that the mean wind is essentially out of the plane of the paper at approximately 15°, clearly suggests that strong turbulence is associated with

Figure 4.17. Comparison of turbulence time histories calculated from iJASA Langley's equation and FWG's equation (climbing segment of Run 2; Flight 31).

(b) Lateral Component

Figure 4.17. (cont'd).

(c) Vertical Component

Figure 4.17. (cont'd).

(c) Segment 2, 512-691 sec

Figure 4.18. Comparison of turbulence spectra computed for individual segments of Run 3. Segment 2 contains an approximate 7° climb during a 536 to 555 second interval.

年
年:

Time (seconds)

Figurs 4.19. Illustration of terrain-induced turbulence.

TABLE 4.1. Turbulence Intensities for Total Time History and Each Segment Individually for Run 3.

| Component | Total | Segment 1 | Segment 2 |
| :--- | :--- | :---: | :---: | :---: |
| σ_{UR} | 3.17 | 2.64 | 2.87 |
| $\sigma_{\mathrm{V}_{R}}$ | 5.25 | 5.29 | 4.27 |
| σ_{WR} | 2.36 | 2.10 | 4.55 |

flow over the mountain peaks. Thus, it is concluded that the patchiness of the turbulence is due to terrain effects and not associated with any departure of the aircraft from straight and level fiight.

5.0 CONCLUSIONS

The results of the analysis of flight 31 coupled with experience from previous analysis of flight data from the NASA B-57 aircraft gust gradient program, lead to the following conclusions and recommendations:

1. The probability density distribution of gust velocities in the atmosphere are not Gaussian. The distribution of velocity differences across the airfoil which filters out trends in the quasi-steady wind have a definite modified Bessel function type distribution, f.e., a higher percentage of small and large velocity differences and lower percentage of intermediate values than is predicted by a Gaussian distribution. The parameter r of the modified Bessel function distribution however could not be related to the existing meteorology or to specific terrain features. It is recommended that additional work to establish a physical meaning of the parameter r be carried out. The probability density distribution of the gust components themselves, i.e., not the difference, were rather 111 behaved in this study and in many cases showed bimodal distributions. This is belleved to be due to the fact that a trend due to spatially varying mean wind along the fiight path, caused by terrain features or other factors, were not removed from the gust velocities when computing the probability density functions.
2. The theoretical von Karman spectrum fits the turbulence data well over the frequency range investigated in this study (0.04 to 20 Hz). The theoretical models were computed with length scales determined from integration of the correlation coefficient from zero lag to the point where the correlation first becomes zero. 142

The results of the study strongly suggest that the turbulence behaves relatively consistent with the assumption of isotropic, homogeneous turbulence despite the fact that fights were made over mountainous terrain and during touch-and-go's through the atmospheric boundary layer.
3. The two-point common component theoretical spectra (that is, the spectra for the same velocity component for spatially separated positions) proposed by Houbolt and Sen (1972) for the vertical fluctuations and the spectra for longitudinal and lateral velocity fluctuations derived in this report, agree with the experimental flight data provided the care described in Chapter 3 is exercised in computing the two-point spectra from the truncated, digitized gust velocity time histories.
4. In calculating one-point auto-spectra and two-point common component spectra from a direct Fourler transform of the data can result in large errors due to aliasing and truncation estimator bias. Aliasing is the major source of error in the auto-spectrum whereas bias is the major source of error in the two-point common component spectra. This is physically evident since the energy contained at high frequencies in two-point spectra vanishes significantly faster than that in ons-point spectra. What is not evident is that a very small departure of two-point correlation coefficient from unity at zero lag can cause high bias errors. To remove bias error from two-point spectra it is recommended that the minimum-bias lag window be utilized.
5. To reduce the variance error associated with a two-point common component as well as all cross-spectra it is important to carry
out segment averaging of the co- and quad-spectra $C(s, f)$ and $Q(s, f)$ separately as contrasted to averaging the absolute value, i.e., $\sqrt{C^{2}(s, f)+} \overline{Q^{2}(s, f)}$.
6. The small values (0.07) of the ratio of the spanwidth separation distance of 20 m to the typical turbulence integral length scale was found to have a relatively significant effect on the two-point spectra in terms of spectrum dropoff at high frequencies. However, for other statistical parameters; ie, cross correlations, there were indications that the separation distance of 20 m is too small to resolve some of the statistical issues of interest. It is reconmended that experiments be carried out with larger separation distances than 20 m for a firmer understanding of two-point statistical pamameters.
7. The one-point and two-point cross-correlations between uncommon velocity components shows. almost zero correlation (further supporting the assumption of isotropic turbulence). However, close examination of the complex phase angle associated with the cross-spectra indicate there is significant phase difference between various frequencies. The one-point cross-spectrum appears to agree well with the model proposed by Reeves, et al. (1974). No empirical expression or analytical model of two-point crossspectra is available. Further work is required in this area.
8. The instrumentation system and data processing algorithms for the NASA B-57B aircraft provides highly accurate measurements of turbulent gust velocities. The measurements of the total instantaneous wind speed, however, may contain certain errors induced by some of the present characteristics of the measuring 144
system. In particular the INS Schuler drift problem causes significant uncertainty in the position of the flight path and of the magnitude of the mean wind speed (i.e., ± 2 to $5 \mathrm{~m} / \mathrm{s}$). This uncertainty in velocity coupled with small inaccuracies in the flow vane measurements (possibly due to boom misalignment or other factors), while having insignificant effect on the gust velocity measurement, can result in major errors in the wind field. These errors can be corrected if appropriate data other than that measured by the on-board instrumentation system is gathered during the flight. For example, visual observed position recorded with a designation marker utilized can be used to estimate INS Schuler position drift from post-analysis of the data. Since the Schuler drift does not appear to have a constant amplitude nor period of oscillation, procedures to correct for this error by backing cut the inertial winds and position from measurements made with the aircraft stationary on the runways are not feastble.

REFERENCES

Akkari, S. H., and W. Frost (1982): "Analysis of Vibration Induced Error in Turbulence Velocity Measurements from an Aircraft Wing Tip Boom," NASA CR 3571.

Axford, D. N. (1968): "On the Accuracy of Wind Measurements Using an Inertial Platform in an Aircraft, and an Example of a Measurement of the Vertical Mesostructure of the Atmosphere," J. of Applied Met., 7:645-666.

Bendat, J. S., and A. G. Piersol (1971): Random Data: Analysis and Measurement Procedures. New York: John Wiley \& Sons, Inc.

Bisplinghoff, R. L., and H. Ashley (1957): Aeroelasticity. Menlo Park, Calif.: Addison-Wes ley Pub. Co.

Brigham, E. 0. (1974): The Fast Fourier Transform. Englewood Cliffs, N. J.: Prentice-Ha11, Inc.

Boxmeyer, C. (1964): Inertial Navigation Systems. New York: McGraw-Hill Book Co.

Brook, R. R. (1975): "A Note on Vertical Coherence of Wind Measured in an Urban Boundary Layer," Eoundary-Layer Met., 9:11-20.

Camp, D. W., W. Campbell, C. Dow, M. Phillips, R. Gregory, and W. Frost (1984): "Visualization of Gust Gradients and Aircraft Response as Measured by the $!A_{A S A} \bar{B}-57 B$ Aircraft, "Paper presented at the AIAA 22nd Aerospace Sciences Meeting, Reno, Nev., Jan. 9-12.

Campbe11, W., D. W. Camp, and W. Frost (1983): "An Analysis of Spamise Gust Gradient Data," Paper presented at the Ninth Conference on Aerospace and Aeronautical Meteorology of the AMS, Omaha, Neb., June 6-9.

Campbell, W. C. (1984): "A Spatial Model of Wind Shear and Turtulence for Flight Simulation," NASA TP 2313.

Campbell, W. (1986): Private communication.
Chang, H. P., and W. Frost (1985): "NASA B-578 Orographic Data Reduction and Analysis Relative to PBL Parameterization Models," Final report for NASA Goddard Space Flight Center under Contract NAS5-28558.

Chang, H. P., D. W. Camp, and H. Frost (1986): "Analysis of Aircraft Data Measured Near Microbursts," Interim report under Contract NAS5-29302 for NASA Goddard Space Flight Center, Dec.

Crooks, W. M., F. M. Hoblit, D. T. Prophet, et al. (1967): "Project Hicat an Investigatioin of High Altitude Clear Air Turbulence," Technical Report AFFDL-TR-67-123, Vo1. I, Wright-Patterson Air Force Base, OH, Nov.

Davenport, A. G. (1961): "The Spectrum of Horizontal Gustiness Near the Ground in High Winds," Quarterly Journal of the Royal Met. Soc., 87:194-211.

Diederfch, F. W. (1957): "The Response of an Airplane to Random Turbulence," NACA TN 3910.

Diederich, F. W., and J. A. Drischler (1957): "Effect of Spanwise Variation in Gust Intensity on the Lift Due to Atmospheric Turbulence," NACA TN 3920.

Eggleston, J. M., and F. W. Diederich (1956): "Theoretical Calculation of the Power Spectra of the Rolling and Yawing Moments on a Wing in Random Turbulence," NACA TH 3864.

Ehernberger, L. J. (1987): NASA Dryden Flight Test Facility; Personnel Communications

Eichenbaum, F. D. (1972): "Response of Aircraft to Three-Dimensional Random Turbulence," AFFDL-TR-72-28.

Etkin, B. (1972): Dymamics of Atmospheric Flight. New York: John Wiley \& Sons, Inc.

Frost, W., and T. H. Moulden (1977): Handbook on Turbulence. New York: Plenum Press.

Frost, W. (1981): FWG Associates, Inc. Internal Memo.
Frost, W. (1983): "Spanwise Turbulence Modeling," Paper presented at the Ninth Conference on Aerospace and Aeronautical Meteorology of the AMS, Omaha, Neb., June 6-9.

Frost, W., and K. H. Huang (1983): "Doppler Lidar Signal and Turbulence Study," Final Report for NASA/MSFC under Contract NAS8-35185, by FWG Associates, Inc., Tullahoma, Tenn.

Frost, W., and M. C. Lin (1983): "Statistical Analysis of Turbulence Data from the NASA Marshall Space Flight Center Atmospheric Boundary Layer Tower Array Facility," NASA CR 3737.

Frost, W., M. C. Lin, and H. P. Chang (1983): FWG Associates, Inc. Internal Memo.

Frost, W., M. C. Lin, -H. P. Chang, and E. A. Ringnes (1985a): "Analys is of Data from NASA B-57B Gust Gradient Program," Final report for NASA Marshall Space Flight Center under Contracts NAS8-36177 and NAS8-35347.

Frost, W., K. H. Huang, and J. S. Theon (1985b): "Comparison of Winds and Turbulence Measurements from Doppler Lidar and Instrumented Aircraft," Paper presented at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications, Worchestershire, England, July 7-11.

Frost, W., J. S. Theon, K. H. Huang, and R. E. Turner (1985c): "Field Study of the Effects of Orographic Features on Planetary Boundary Layer Models," Paper presented at the WMO/ICSU/IAMAP Scientific Conference on the Results of the Alpine Experiment (ALPEX), Venice, Italy, Oct. 29-Nov. 2.

Haugen, D. A., ed. (1973): Workshop on Micrometeorology. Boston, American Meteorological Society.

Hinze, J. O. (1975): Turbulence. New York: McGraw-Hill.
Houbolt, J. C., R. Steiner, and K. G. Pratt (1964): "Dynamic Response of Airplanes to Atmospheric Turbulence Including Flight Data on Input and Response," NASA TR R-199.

Houbolt, J. C., and A. Sen (1972): "Cross-Spectral Functions Based on von Karman's Spectral Equation," NASA CR 2011.

Houbolt, J. C. (1973): "Atmospheric Turbulence," AIAA Journal, 4:421-437.
Huang, K. H., W. Frost, and E. A. Ringnes (1985): "Comparison of Wind and Turbulence Measurements from Doppler Lidar and Instrumented Aircraft," Final report under NASA Marshall Contract NAS8-36188.

Huber, C., and W. J. Bogers (1983): "The Schuler Principle: A Discussion of Some Facts and Misconceptions," EUT Research Report 83-E-136 (ISBN 90-6144-136-6), Eindhoven University of Technology, Dept. of Electrical Eng ineering, Eindhoven, The Netherlands, May.

Jenkins, G. M., and D. G. Watts (1969): Spectral Analysis and Its Applications. San Francisco: Holden-Day.

Karamcheti, K. (1966): Principles of Ideal-Fluid Aerodynamics. New York: John Wiley and Sons, Inc.

Kordes, E. E., and J. C. Houbolt (1953): "Evaluation of Gust Response Characteristics of Some Existing Aircraft with Wing Bending," NACA TN 2897.

Kristensen, L., and N. O. Jensen (1979): "Lateral Coherence in Isotropic Turbulence and in the Natural Wind, "Boundary-Layer Met., 17:353-373.

Lenschow, D. H. (1972): "The Measurement of Air Velocity and Temperature Using the NCAR Buffalo Aircraft Measuring System," NCAR-TN/EDD-74.

Lenschow, D. H. (1983): "Aircraft Measurements in the Boundary Layer," in Probing the Atmospheric Boundary Layer originally prepared for the AMS short-course, Aug. 8-12, 1983, Boulder, Colorado.
$\because 1$

Lichtenstein, J. H. (1978): "Comparison of Wing-Span Averaging Effects Rolling Moment, and Bending Moment for Two Span Load Distributions and for Two Turbulence Representatives," NASA TM-78699.

Meissner, C. W., Jr. (1976): "A Flight Instrumentation System for Acquisition of Atmospheric Turbulence Data," NASA TN D-8314.

Murrow, H. N. and R. H. Rhyne (1981): Filight Instrumentation for Turbulence Measurements in the Atmosphere," Presentation at The University of Tenn. Space Institute Short Course on Turbulence Measurements.

Panchev, S. (1971): Random Functions and Turbulence. New York: Pergamon Press.

Panofsky, H. A., D. W. Thomson, D. A. Sullivan, and D. E. Moravek (1974): "Two-Point Velocity Statistics Over Lake Ontario," Boundary-Layer Met., 7:301-321.

Panofsky, H. A., and T. Mizuno (1975): "Horizontal Coherence and Pasquill's Beta," Boundary-Layer Met., 9:247-256.

Panofsky, H. A., and J. A. Dutton (1984): Atmospheric Turbulence. Models and Methods for Engineering Applications. New York: John Wiley and Sons,

Papoulis, A. (1977): Signal Analysis. New York: McGraw-Hill Book Co.
Paste1, R. L., J. E. Caruthers, and W. Frost (1981): "Airplane Wing Vibrations Due to Atmospheric Turbulence," NASA CR 3431.
Pielke, R. A., and H. A. Panofsky (1970): "Turbulence Characteristics Along Severai Towers," Boundary-Layer Met., 1:115-130.

Reeves, P. M., G. S. Campbel1, V. M. Ganzer, and R. G. Joppa (1974): "Development and Application of a Non-Gaussian Atmospheric Turbulence Model for Use in Flight Simulators," NASA CR-2451.

Ringnes, E. A., and W. Frost (1985): "Analysis of Aerodynamic Coefficients Using Gust Gradient Data: Spanwise Turbulence Effects on Airplane Response," NASA CR 3961.
Rhyne, R. H. (1980): "Accuracy of Aircraft Velocities Obtained from Inertial Navigation Systems for Application to Airborne Wind Meaurements," NASA TM-81826.

Schuler, M. (1923): "Die Störung von Pendelund Kreiselapparaten durch die Beschleunigung des Fahrzeuges, Physik Z., Vol. 24, July. A translation appears in Inertial Guidance (G. R. Pittman, Jr., ed.). New York: John W1 ley \& Sons, Inc., 1962.

Steely, S. L., and W. Frost (1981): "Statistical Analysis of Atmospheric Turbulence About a Simulated Block Bullding," NASA CR 3366.

Theon, J. S., W. Frost, K. H. Huang, and R. E. Turner (1986): "Field Study of the Effect of Orographic Features on Planetary Boundary Layer Models," to be published in the Journal of Atmospheric and Oceanic Technology.

Wang, S. T., and W. Frost (1982): "Data Cataloging and Analysis Plan for B-57b F1ight Facility Turbulence Measurement Program," Final report for NASA Marshall under Contract NAS8-33458 by FWG Assoctates, Inc.

Weber, 0. (1975): "Statistical Studies on the Accuracy of Carousel IV Inertial Navigation System after Flight over the North Atlantic," European Space Research Organization (ESRO) Technical Transiation (TI) ESRO TT-136.

APPENDICES

APPENDIX A

RESULTS OF STATISTICAL ANALYSIS OF FLIGHT 31

General information, ground track terrain features, and statistical values for all runs (except landing operation, Run 17) of Flight 31 on November 29, 1982, are presented in this appendix. The analysis of each run is given in two tables and five figures. The first table shows the turbulence average parameters, integral length scales, and correlation coefficients and the second one lists all parameters measured and their range of values. Five figures show the flight altitude, time history, probability density function, normalized correlation function, and normalized spectral density function of gust velocities, respectively.
Flight 31, Run 1 (Take-off)
Date: Nov. 29,1902
Start Time: $10: 32: 40$ (PST)
Duration: 135.9 seconds

Figure A.2. (continued).

TABLE A. 1. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 1.

1. Mean Airspeed (m/s):
$\frac{\bar{V}_{L}}{81.13} \frac{\bar{V}_{C}}{78.92} \frac{\bar{V}_{R}}{81.21}$
2. Standard Deviation of Gust Velocities (m/s):
$\frac{\sigma_{\mathrm{uR}}}{2.12} \frac{\sigma_{\mathrm{VR}}}{2.11} \frac{\sigma_{\mathrm{WR}}}{2.31}$
$\frac{\sigma_{u C}}{1.69} \frac{\sigma_{v C}}{1.99} \frac{\sigma_{W C}}{2.33}$
$\frac{\sigma_{\mathrm{uL}}}{1.74} \frac{\sigma_{\mathrm{VL}}}{2.05} \frac{\sigma_{\mathrm{WL}}}{2.58}$
3. Standard Deviation of Gust

Velocity Differences (m/s):
4. Integral Length Scale (m):
$\frac{L_{u R}}{297.7} \frac{L_{v R}}{149.7} \frac{L_{W R}}{255.1}$
$\frac{L_{u R L}}{248.4} \frac{L_{V R L}}{35.3} \frac{L_{w R L}}{254.5}$
5. Correlation Coefficient of Gust Velocities:

$\frac{\mathrm{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{-0.40} \frac{{ }^{V_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{0.11} \frac{{ }^{W_{R} U_{L}} / \sigma_{W_{R}} \sigma_{u_{L}}}{0.45}$
$\frac{\sigma_{\Delta u R L}}{1.20} \frac{\sigma_{\Delta V R L}}{1.10} \frac{\sigma_{\Delta w R L}}{0.77}$

Figure A.3. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 1 ($r=$ degree of non-Gaussian).

ORIGINAL PAGE IS OF POOR QUALITY

TABLE A. 2. List of All Parameters Measured and Their Range of Values, Flight 31, Run 1.

Figure A.7. Time histories of gust velocities, gust velocity differences, and aircraft's normal accelerations, Flight 31, Run 2.

Figure A.7. (continued).

TABLE A.3. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 2.

1. Mean Airspeed (m/s):

$$
\frac{\bar{V}_{L}}{87.82} \frac{\bar{V}_{C}}{85.79} \frac{\bar{V}_{R}}{87.51}
$$

2. Standard Deviation of Gust Velocities (m / s):
$\frac{\sigma_{\mathrm{UR}}}{3.23} \frac{\sigma_{\mathrm{VR}}}{2.03} \frac{\sigma_{\mathrm{WR}}}{1.16}$
$\frac{\sigma_{u C}}{3.20} \frac{\sigma_{v C}}{2.01} \frac{\sigma_{W C}}{1.08}$
$\frac{\sigma_{\mathrm{UL}}}{3.20} \frac{\sigma_{\mathrm{VL}}}{2.09} \frac{\sigma_{\mathrm{WL}}}{1.17}$
3. Standard Deviation of Gust Velocity Differences (m/s):
4. Integral Length Scale (m):

$$
\frac{L_{u R}}{325.9} \frac{L_{v R}}{250.1} \frac{L_{w R}}{79.1}
$$

$$
\frac{L_{u R L}}{322.4} \frac{L_{\mathrm{VRL}}}{251.8} \frac{\mathrm{~L}_{w R L}}{89.3}
$$

5. Correlation Coefficient of Gust Velocities:
$\frac{\overline{U R}_{R} / \sigma_{u_{R}} \sigma_{U_{L}}}{0.80} \frac{{ }^{{ }_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.81} \frac{{ }^{W_{R}{ }^{W} L} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.82}$
$\frac{\overline{U R}_{R} V_{R} / \sigma_{U_{R}} \sigma_{V_{R}}}{0.00} \frac{{ }^{v_{R} W_{R}} / \sigma_{V_{R}} \sigma_{W_{R}}}{-0.05} \frac{{ }^{W_{R} U_{R}} / \sigma_{W_{R}} \sigma_{U_{R}}}{0.11}$ $\frac{\mathrm{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{-0.02} \frac{{ }^{V_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{-0.03} \frac{{ }^{W_{R} U_{L}} / \sigma_{W_{R}} \sigma_{U_{L}}}{0.10}$
$\frac{\sigma_{\Delta u R L}}{0.94} \frac{\sigma_{\Delta v R L}}{0.77} \frac{\sigma_{\Delta w R L}}{0.87}$

Figure A.8. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 2 ($r=$ degree of non-Gaussian).

ORIGINAL PAGE IS

OF POOR QUALITY

TABLE A. 4. List of All Parameters Measured and Their Range of Values, Flight 31, Run 2.

Figure A.12. Time histories of gust velocities, gust velocity differences, and aircraft's

Time (seconds)
Figure A.12. (continued).

Figure A.12. (continued).

1
${ }_{500}^{1}$
Time (seconds)
Figure A.12. (continued).

TABLE A.5. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 3.

1. Mean Airspeed (m / s):
$\frac{\bar{V}_{L}}{104.21} \frac{\bar{V}_{C}}{102.52} \frac{\bar{V}_{R}}{104.60}$
2. Standard Deviation of Gust Velocities (m / s):
$\frac{\sigma_{\mathrm{uR}}}{3.17} \frac{\sigma_{\mathrm{vR}}}{5.25} \frac{\sigma_{\mathrm{WR}}}{2.36}$
$\frac{\sigma_{u C}}{3.15} \frac{\sigma_{v C}}{5.29} \frac{\sigma_{\mathrm{wC}}}{2.18}$
$\frac{\sigma_{\mathrm{uL}}}{3.19} \frac{\sigma_{\mathrm{vL}}}{5.31} \frac{\sigma_{\mathrm{WL}}}{2.31}$
3. Standard Deviation of Gust Velocity Differences (m / s):
4. Integral Length Scale (m):

$$
\frac{\mathrm{L}_{\mathrm{uR}}}{234.0} \frac{\mathrm{~L}_{\mathrm{VR}}}{425.6} \frac{\mathrm{~L}_{\mathrm{WR}}}{116.9}
$$

$$
\frac{\mathrm{L}_{\mathrm{uRL}}}{238.4} \frac{\mathrm{~L}_{\mathrm{VRL}}}{422.8} \frac{\mathrm{~L}_{\mathrm{wRL}}}{115.3}
$$

5. Correlation Coefficient of Gust Velocities:

$\frac{\mathrm{u}_{R} v_{R} / \sigma_{u_{R}} \sigma_{v_{R}}}{0.09} \frac{{ }^{\mathrm{R}} \mathrm{w}_{\mathrm{R}} / \sigma_{v_{R}} \sigma_{W_{R}}}{-0.19} \frac{{ }^{W_{R} U_{R}} / \sigma_{w_{R}} \sigma_{u_{R}}}{0.06}$
$\frac{\overline{U R}_{R} / \sigma_{u_{R}} \sigma_{V_{L}}}{0.04} \frac{{ }^{V_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{-0.19} \frac{W_{R} U_{L} / \sigma_{w_{R}} \sigma_{u_{L}}}{0.05}$
$\frac{\sigma_{\Delta u R L}}{1.29} \frac{\sigma_{\Delta V R L}}{1.23} \frac{\sigma_{\Delta w R L}}{1.37}$

$$
C-3
$$

Figure A.13. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 3 ($r=$ degree of non-Gaussian).

b. One- and two-point cross-correlations.
Figure A.14. (continued).

ORIGINAL PAGE 历S OF POOR QUALITY

TABLE A. 6. List of All Parameters Measured and Their Range of Values, Flight 31, Run 3.

ORIGINAE PAGE 15
 ? POרR QUALITY

(TABLE A. 6. continued)

 Longitude (degrees)
Figure A.16. Flight altitude and horizontal wind along flight path, Flight 31 , Kun $\check{\succ}$.

Figure A.17. (continued).

TABLE A.7. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 4.

1. Mean Airspeed (m / s):
$\frac{\bar{V}_{L}}{104.78} \frac{\bar{V}_{C}}{102.62} \frac{\bar{V}_{R}}{104.32}$
2. Standard Deviation of Gust Velocities (m/s):
$\underline{\sigma_{\mathrm{UR}}} \sigma_{\mathrm{VR}}^{\sigma_{\mathrm{WR}}}$
$\stackrel{{ }^{\sigma_{u C}}}{ } \xrightarrow{\sigma_{\mathrm{vC}}}{ }^{{ }^{\sigma} \mathrm{WC}}$

3. Standard Deviation of Gust Velocity Differences (m / s):
$\underline{\sigma_{\Delta u R L}}{ }^{\sigma_{\Delta V R L}} \sigma_{\Delta w R L}$
4. Integral Length Scale (m):

$$
\frac{L_{U R}}{419.8} \frac{L_{V R}}{350.8} \frac{L_{W R}}{66.9}
$$

$$
\frac{L_{u R L}}{408.0} \frac{L_{V R L}}{344.7} \frac{L_{W R L}}{61.9}
$$

5. Correlation Coefficient of Gust Velocities:

$$
\frac{\overline{U R}_{R} \sigma_{L} / \sigma_{u_{R}} \sigma_{U_{L}}}{0.88} \frac{{ }^{V_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.91} \frac{{ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.80}
$$

$$
\frac{\mathrm{u}_{R} v_{R} / \sigma_{u_{R}} \sigma_{v_{R}}}{-0.19} \frac{{ }^{v_{R} W_{R}} / \sigma_{v_{R}} \sigma_{W_{R}}}{0.20} \frac{{ }^{W_{R} U_{R}} / \sigma_{W_{R}} \sigma_{u_{R}}}{0.09}
$$

$$
\frac{\bar{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{-0.19} \frac{{ }^{{ }^{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{0.20} \frac{{ }^{W_{R} U_{L}} / \sigma_{W_{R}} \sigma_{u_{L}}}{0.06}
$$

Figure A.18. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 4 ($r=$ degree of non-Gaussian).

ORIGINAL PAGE E
OF POOR QUALITY

$(\text { วอs })^{7} M_{0}{ }^{y_{n}}{ }_{\rho /(\downarrow) \Phi}$
b. One- and two-point cruss-spectra.

Figure A.20. (continued).

ORIGINAL PAGE ES OF POOR QUALITY

TABLE A．8．List of All Parameters Measured and Their Range of Values， Flight 31，Run 4.

CHARAiTL	UNITS	HIGH	104	MEAN	KMS	STD	POISTS
1 －TME	stcotins		3555x．59］	39647．EC5FO	25647． 50847	ED．944C4	11354
2 Fपा कृt	QAT／SFC	－ 70	－．27t	－．00304	．05479	－C＊20	11354
3 ACCL \because ¢	C L＇MIT	3.177	． 144	－ccith	1.01726	．19836	113！4
¢ Tirta nat．	ranisic	－13	－． 113	－CC2E：	．02114	．0200：	11354
5 TIIETA	－an	－${ }^{50}$	－． 0004	－ 6758	．0617E	． 04 C 0	11354
6 － 47	Rat	． 74	－． 250	－．CCOPA	．045t4	．04563	11354
7 PSI	440	$193.1{ }^{\text {m }}$	175．0．0	184．EtCt？	1P4．543C7．	2．94239	11354
8 ¢rL DSJ1	CE	11.10 ？	－ .6 .677	7．76tA 3	4.07734	7．9976？	11354
9.55	84	580.450	F34．313	542.59203	542.00627	2．2156	11354
10MEL PrI？	DFG	11.758	－5．3P9	2． 5.573 F	4.2155	2．5ca76	11354
	c．InIte	4.152	－1．477	1．「0．610	1．075．7	． 37761	11334
12ACCO N FY	E HMITS	6.007	－1．478	1．00fet	1.09234	－363t0	11354
13 ACrL．Y Pr	CMNITS	．473	－． 051	－CFCat	－ 00458	－0：ct3	1175
14 drri y ref	G Hayt？	.117	－． 041	－．00311	．02tc7	． 02609	113：4
15mpatarto	Qat	．0口 ${ }^{\text {a }}$	－． 246	－．c10RE	．0297\％	． 02221	11344
16．EETATO	DIT	．153	－．1p6	－CCEt2	．03745	．0376？	1136
17 YFM	CFG F	P）．074	－42．332	7F．tF240	79．70¢c2	2．c6713	11354
18 pras	nfe F	61．4．01	－ 70.510	t1． 31423	61．32967	－ceel 3	117：6
19 Accl． 7 tris	G 1＋4］T5	？．7？	\rightarrow－PRA	$1 . \operatorname{Co311}$	1．c2zもz	． 1508	11354
	can	.177	－． 741	－．ces？${ }^{\text {cos }}$	－ 02 E15	－025E9	11354
2）RETM Ot	cas	．187	－． 141	，11：71	． 03 ＋67	．03147	11354
22．ALP4 ${ }^{\circ}{ }^{\circ}$ ．	DAC．	－127	－． 219	－12124	．03173	． 02357	11354
23 atialt	Pat	．154	－． 154	－0c7e0	.03499	． 03347	117：4
	－An／SEP．		－．71A	．06．750	．03159	． 03149	11354
25．7em0．tn	П¢¢	14．1．t	－43， 33.	10．47000	10．52¢22	1．cı13t	11354
26 OR LT	Pern	1.045	－bit	－11451	－A1527	－0t713	11354
27 ¢r	PSTA	1．71＊	－ 329	． 7 E235	．74463	－ 0 C3to	11354
2Bre ${ }^{\text {cou }}$	P510	1.061	．$\times 43$	－fCEIC	． 81177	．063F4	11354
24.95	PSIA	11.701	11．414	11．5713	11.57763	． 14485	11354
30 ¢0pp Tot	Vots	5.779	－194．171	4.5011 h	$4.77 C C E$	1．8．7ACG	11354
31 ¢YGPAM	OR．C 6	1.774	－177．277	－4．f7E25	5.05961	2．855P5	11354
$320 r ? 1 T$	petit	．n7s	－． 119	－ 17004	． 07 CCE	． $0 ¢ 230$	11354
33 AF．${ }^{\text {cta }}$	nsin	．176	－17？	.14300	．14ttl	． 02050	11356
34．8C？PT	Pry	．155	－． 104	－12510	12027	－61791	11354
35 na	ПF	9.477	－0．910	－0．63358	9．44278	.41677	11354
35 n 11	nec	9.740	－4．449	－5．74．1A	A． 79545	． 24692	11354
37 nriry	nfr	2．443	－13．474	2.03011	2．atccs	－340EF	11354
38 กera	NFe	－ 70	$=.702$	－． 17104	．17250	． 07254	11354
39 nolm	AF\％	5.771	－19．560	4．et314	4.94444	－¢tte？	11354
40 пт明	FPC．MAX	5.7 .913	17.913	5 Cr 27776	$56.28 t 40$	－9642P	11354
41 TTHPL	Pritmar	57.071	14．4月2	55．54＋54	E5．55530	－9t430	11354
$42 n=10$	PMCTTTA	2.747	． 730	－7E9？1	－70¢12	－0375	11354
43 п¢\％	Dחडitima	．＾9？	－．756	－6：243	－05564	．01951	11554
$44 n v 0 n$	mitas	75767911．047	753n147．520	＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊	2333．3A458	11354
45\％TM	mroores	73．700	17．780．	72．84164	77，A4145	． 03212	11394
4 ¢ I TNe．	MrEafes	－117．975	－117．0A1	－117．47512	117．57512	．0C154	11354
47 LAT	MFPRFES	75.746	3＊．472	72．t．1c7t	35．61CE：	－ 07574	J1？ 5
48．TPY．All ${ }^{\text {cou }}$	DFFPEES	1P3．0？？	175．145	179．3623F	179．37c13	1．67003	11354
$49 . \mathrm{HDS}$	RADTAMS	3.787	3．0日	3．2？525	3．2356A	．0577t	11354
50.15	－／5ic．	7.400	－5，5P5	1．？772t	3.43374	3.28751	113：4
51 V4	M／SFC．	－n？．4？n	－117．37E	－107．14515	107．16110	4.96351	11354
52 ALTTInf	${ }^{\prime}$	3.070	1．764	1.9651%	1．07672	． 10600	1175
53 TFUTC	Oferfesc	7.457	－47．030	5.22871	$5.312: 1$	1.04710	11314
54FW UMT EDA	K1．7TS	47.65	-17.710	10.03073	71．34131	7.0 ette	1136
55 NS WNT SDO	mints	？． 1.671	－ 90.708	－0．11：51	12．0tEEA	7.78915	11354
	－MECTS	5）．1．9	． 070	23．26414	74．51cc4	7．64360	11354
57 WYNT MYOFC	TFCDFEF	359．750	1．46C	253．29133	2c5．01750	30.594 .13	11354
58 WTNM nios	MFCPFES	171．74n	－170．540	117．26129	117．53：36	$30 . c 9 t 15$	11315
59．YNN＿NTOS	तFGREF	$3 \mathrm{~F}+75$	1.400	243．35179	2C5．c！7e5	90．95A15	11356
60．Wyun nipa	DFCDFE	－6173．433	－1273．t6h	－1！69．35311	1114．50457	107．57105	11354
61 ／JPSPFFN	M／SES	119.534	52.737	164.37^{2+1}	$1 \mathrm{CH.4ctat}$	4.15876	11354
62 Aloearen	mers．	110.745	91.777	102.17656	102．70512	4.07675	11354
63 ATOEDFFA	meft	115.777	24．51：	152．7F731	144.47175	4.26774	117：4
64 NE1T4 AT	Mrtios	777.394	－1．099	217．77120	239．8377t	¢0．c476	11354
	－mFtepe	325．734	－13．602	215．6AC11	243.14419	104．35129	$113: 4$
66^{1+6}	M／5ir	15407	－14．701	－ 50060	3．735 ${ }^{\text {¢ }}$	3.73054	1195
67 Mr PEWiro	M／くな	11．4．47	－1F．757	－ COCO	3.73026	3.73042	11354
GR．UFT．LEFT．	M／SEC	7．${ }^{60}$	－11．340	－ cccco	3.7526	3.75986	117：4
69 V「 OTCHT	MACEC	19．408	－17． 371	－r743F	$4 . C 7246$	4.67331	11354
70Vfrempeo	MsFC	70．0％	－14．40F	－6．tice	4.05477	4.05364	11354
	M／CFC	10.527	－75．507	－CECO4	4.0447%	$4 . \mathrm{Ca35e}$	11354
72 NR OTPHT	M／SEC	17．744	－24．117	－．n7645	7．e6154	2.85156	11354
73 werminfe	M／EF	11．34\％	－ 27.169	－． 23337	2． $\mathrm{CH}+4 \mathrm{~A}$	$2.61+45$	113：4
	－15s\％	17.504	－3t．11t	－．01777	2.70 ¢54	2．750C1	113＊4

Flight 31, Run 5
Date：Nov．29，1932
Start Time：11：08：55（PST）
Duration： 145.0 seconds

岗
8000.
7000.
号
（7S甘7t）746！래

| $\dot{8}$ |
| :--- | :--- |
| $\stackrel{\circ}{8}$ |
| 8 |

$\stackrel{\stackrel{\rightharpoonup}{C}}{\text { ¢ }}$

Figure A.22. (continued).

TABLE A.9. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 5.

1. Mean Airspeed (m/s):

$$
\frac{\bar{V}_{L}}{105.79} \frac{\bar{V}_{C}}{103.53} \frac{\bar{V}_{R}}{105.33}
$$

2. Standard Deviation of Gust Velocities (m/s):
$\frac{\sigma_{\mathrm{UR}}}{2.49} \frac{\sigma_{\mathrm{VR}}}{4.06} \frac{\sigma_{\mathrm{WR}}}{2.76}$
$\frac{\sigma_{u C}}{2.47} \frac{\sigma_{v C}}{4.04} \frac{\sigma_{w C}}{2.66}$
$\frac{\sigma_{u L}}{2.56} \frac{\sigma_{v L}}{4.10} \frac{\sigma_{W L}}{2.85}$
3. Standard Deviation of Gust Velocity Differences (m/s):
4. Integral Length Scale (m):
$\frac{L_{U R}}{333.9} \frac{L_{V R}}{168.6} \frac{L_{W R}}{189.7}$
$\frac{L_{U R L}}{317.5} \frac{L_{V R L}}{173.5} \frac{L_{W R L}}{204.0}$
5. Correlation Coefficient of Gust Velocities:
$\frac{\mathrm{UR}_{R}{ }_{L} / \sigma_{u_{R}} \sigma_{U_{L}}}{0.87} \frac{{ }^{{ }_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.90} \frac{{ }^{W} W_{L} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.90}$
$\frac{\mathrm{U}_{R} V_{R} / \sigma_{U_{R}} \sigma_{V_{R}}}{-0.09} \frac{{ }^{{ }_{R} W_{R}} / \sigma_{V_{R}} \sigma_{W_{R}}}{-0.10} \frac{W_{R} U_{R} / \sigma_{W_{R}} \sigma_{u_{R}}}{-0.17}$
$\frac{\bar{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{-0.08} \frac{{ }^{V_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{-0.09} \frac{{ }^{W_{R} U_{L}} / \sigma_{W_{R}} \sigma_{U_{L}}}{-0.20}$
$\frac{\sigma_{\Delta U R L}}{1.41} \frac{\sigma_{\Delta V R L}}{1.38} \frac{\sigma_{\Delta W R L}}{1.42}$

Figure A.23. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 5 ($r=$ degree of non-Gaussian).

$$
\begin{array}{lllll}
0 & 10 & 0 & 0 & 0 \\
- & 0 & 0 & i & \div \\
- & 1 & 0
\end{array}
$$

$\stackrel{\dot{-}}{-}$
and two-point cross-correlations.
Figure A. 24 . (continued).

 $\begin{array}{llll}10 \quad 1.00 \quad 10.00 & 100.00 \\ \text { Frequency }(\mathrm{Hz})\end{array}$

 $\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 & 100.00\end{array}$

Frecuency (Hz)
Aircraft data
Houbolt and
Sen's model
$\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 & 100.00\end{array}$
Frequency (Hz)
Frequency (H_{2}

[^3]
$(2 \partial s)^{y_{M_{D}}{ }^{y_{\Lambda}} A_{\rho} /(t) \Phi}$

$$
(\partial \partial s)^{7_{M}} y_{n} n_{0} /(t) \Phi
$$

b. One- and two-point cruss-spectra.

Figure A.25. (continued).

TABLE A.10. List of All Parameters Measured and Their Range of Values, Flight 31, Run 5.

CHAKNEL	UNITS	HIGH	10W	MEAN	P015	ST0	POINTS
1 TIME	5ECDNDS	40270.553	40134.576	40207.06540	40207.08719	41.86150	3800
2 PHI DOT	RADISEC	. 208	-. 195	-. 00218	.04443	. 04438	5800
	G UNITS	2.327	.230	. 90249	1.00915	.15907	5800
4 THETA OJT	RADISEC	.153	-. 151	. 00264	.01892	.01813	5800
5 THETA	R 4 D	. 154	-. 033	.04342	. 05090	. 02655	5800
5 PHI	RAO	.133	-. 184	. 00088	.04024	. 04023	5800
7 PSI 1	R40	339.118	-. 155	299.84552	326.65102	130.06294	3800
8 DELPSİ	DEG	7.929	-9.556	-. 29505	2.35956	2.34113	5800
9 P5! 2	RAD	363.571	346.672	355.57109	355,57842	2.28427	5800
100ELPSI 2	DEG	2.138	-15.092	-2.84581	6.26277	5.57933	5800
llacel n it	6 UNITS	4.881	-2.620	1.00522	1.06613	. 35524	5000
12 ACCL N RT	6 UNITS	4.993	-2.651	1.00395	1.07230	. 37674	5400
13 ACCL \times CG	G UNITS	. 202	. .013	. 04563	. 05809	. 03595	5800
14ACCL Y CG	G UNITS	.143	-. 109	-. 00165	. 02553	. 02548	3800
15 ALPHA CTR	RAO	. 128	-. 106	-. 02076	. 02707	. 01739	5800
16 BETA CTR	RAD	. 178	-. 268	.00413	.03957	. 03533	5800
17 TEMP I	OEG F	76.497	74.878	78.76907	75.77078	. 35062	3800
18 TEMP	DEG F	61.781	61.425	61.61107	61.61108	. 03676	5800
19 ACCL 2 INS	G UNITS	2.272	- 202	.99627	1.00934	. 16193	5800
20 AlPHA RT	RAD	.140	-. 105	-. 0.01016	.02160	. 01906	9800
21 BETA MT	RAD	.190	-. 163	. 01321	. 03486	. 03227	5800
22 ALPHALT.	RAD	. 133	-. 086	.61899	. 02658	. 01857	5800
23-ETALT	RAD	.142	-. 161	. 00764	. 03341	. 03253	5800
24PS: ODT	QADISEC	. 105	$-.204$. 00271	. 03135	. 03123	5000
25 TEAP TOT	OEG 6	14.259	8.057	11.50846	12.38680	1.33665	5800
26 OC LT	PSID	1.121	. 004	. 02579	. 82801	. 06055	5800
27 OC CTR	-SID	1.003	. 578	. 78997	. 79214	. 05861	5800
	P510	1.023	+.588	9.81840	1.82065	. 06070	5600
29 Ps	PSIA	11.581	11.376	11.82128	11. 32138	. 04622	5800
3^{30} TEAP TRT	VOLTS	7.371	2.638	6.51844	6.54428	. 58078	5000
31 HYGRDM -	DEGC	-1.547	-9.759	-5.86794	6.15471	1.85697	5800
32 OCZ LT -	PSID	. 070	. 068	. 06965	. 06965	$.00042$	5800
33 OC2 CTR	PSID	.177	.267	. 17330	. 17333	.00303	5800
34 OCZ RT.	PSID	.163	-.039	-15367	. 19364	. 00727	5800
35 DAR	OEG	1.169	-8.916	-8.76417	8.76534	.14316	5800
36 DAL	OEG	1.513	-8.596	-8.476.92	8.47811	.14203	5800
37 DELEV	DEG	3.395	-23.431	3.27645	3.28624	-25345	5800
3805148	DEG ${ }^{\text {- }}$. 764	-. 267	-. 23796	-25836	. 01427	5800
39 DRU0 -	$O E G$	7.612	-14.981	7.36517	7.37639	$.32644$	5800
40 OTHRR -	PCT Max	61.328	23.376	60.84641	60.84900	- 36216	5000
41 DIMRL	PCT MAX	60.938	23.288	60.44340	60.44805	. 56550	5000
42 DFLP	P9SITION	1.988	. 559	. 57880	$.57922$	$.02204$	5000
43050	POSITION	. 174	. 058	.16219	.16234	. 00704	5000
440706	HETERS	7531600.000	7525273.037	**********	*********	1070.13318	9000
45,010 0	degrees	72.836	72.79\%	72.81743	72.61743	.01070	5800
46. LDNG	DEGREES	-117.053	-117.976	-117.96300	117.96500	. 00681	5000
4714	DEGREES	35.763	35.629	35.69585	35.69587	. 03898	3800
48 TRK 46	DEGREES	20.653	5.074	7.73819	7.87254	1.44033	5800
49 NDG	RaOIANS	. 19.12	-. 204	$=.03712$	$.05631$	$.04235$	5800
SOV VE	M/SEC	19.468	8.599	13.92568	14.19303	2.75239	5800
51 VN	M/5EC	105.408	92.895	102.33217	102.37126	2.82896	5400
52 ALTITUOE	KM	2.108	1.964	2.00800	2.00626	. 03237	5800
53 TEAPC	DEGREES C	0.949	3.293	6.16760	6.27034	1.13273	5800
${ }_{54} 5$ EV WND SPD	KHOTS	50.684	5.746	35.36690	36.22351	7.63171	5800
55 NS UND SPD	KHOTS	14.845	-29.404	-2.01583	3,26163	4.06080	\$100
56 WIND SPEED	KNOTS	51.366	7.565	35.81271	36.60369	7.56906	5800
57 WIND DIREC	OEGREES	334.159	218.077	273.11739	273.87670	9.34098	3000
5B WIND DIR2	DEGREES	154.159	38.017	93.71744	94.10172	0. 34099	5800
59 WIND DIR3	DEGREES	334.159	216.077	273.71744	273.67675	9.34099	5800
60WIND DIR4	DEGREES	334.159	216.077	273.71744	273.07675	9.34099	5800
61 AIRSPEEDR	M/SEC	117.187	89.826	105.33378	105.40679	3.92291	5800
62 IRSPEEO 6.	M/SEC	115.976	09.111	103.53102	103.60331	3.84657	5800
63 AIRSPEEDL*	M/SEC	122.810	90.975	105.79945	105.87652	3.87892	5800 3000
64 DELTA ALT	HEIERS	59.411	-04.477	-42.43732	53.37152	32.36932	3800
ES INRTL DISP.	METERS	37.737	-82.204	-41.49407	52.29241	31.82511	5000
66 U6 116HT	M/SEC	9.156	-11.101	. 00000	2.49780	2.49801	5000 5800
67 UG EENTER	M/SEC	A. 546	-14.081	. 00.600	2.47382	2.47403	5800
EBUG LEFT	M/SEC	0.844	-18.166	. 00000	2.56178	2.58200	5800
GYVG RIGHT	M/SEC	t. 832	-17.989	-.01423	4.06130	4.06163	5800
70VG CENTER	M/SEC	8.216	-15.520	-.01413	4.04630	4.04662	5800
7VG LEFT	M/SEC	7.272	-13.953	-. 01740	4.10714	4.10750	3600
72 WG RIGHT	M/SEC	13.841	-10.461	. 01471	2.76231	2.76258	5600
73VG CEMTER	M/SEC	13.351	-9.627	. 02609	2.66078	2.68093	5000
74 46 LEF\%	M/SEC	13.921	-9.047	.02031	2.85228	2.65245	5000

Flight 31, Run 6
Date: Nov. 29,1982
Start Time: $11: 14: 12$ (HST)
Duration: 62.3 seconds

 $\begin{array}{cccc}\dot{\circ} & \dot{8} & \dot{\circ} & \dot{\circ} \\ \infty & \text { 号 } & \text { 号 } \\ & & & (7 S \forall \text { 7f) }\end{array}$

TABLE A.11. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 6.

1. Mean Airspeed (m/s):
$\frac{\bar{V}_{L}}{104.31} \frac{\bar{V}_{C}}{102.19} \frac{\bar{V}_{R}}{104.01}$
2. Standard Deviation of

Gust Velocities (m/s):
$\frac{\sigma_{\mathrm{UR}}}{3.64} \frac{\sigma_{\mathrm{VR}}}{3.67} \frac{\sigma_{\mathrm{WR}}}{3.41}$
$\frac{\sigma_{u C}}{3.54} \frac{{ }^{\sigma} v C}{3.65} \quad \frac{{ }^{\sigma} w C}{3.00}$
$\frac{\sigma_{\mathrm{UL}}}{3.54} \frac{\sigma_{\mathrm{VL}}}{3.42} \frac{\sigma_{\mathrm{WL}}}{3.12}$
3. Standard Deviation of Gust

Velocity Differences (m/s):
4. Integral Length Scale (m):
$\frac{L_{u R}}{364.7} \frac{L_{V R}}{92.0} \frac{L_{W R}}{51.7}$
$\frac{L_{u R L}}{344.5} \frac{L_{V R L}}{104.2} \frac{L_{W R L}}{47.5}$
5. Correlation Coefficient of Gust Velocities:
$\frac{\overline{U R}_{R} U_{L} / \sigma_{U_{R}} \sigma_{U_{L}}}{0.82} \frac{{ }^{{ }_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.90} \frac{{ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.81}$
$\frac{\bar{u}_{R} v_{R} / \sigma_{u_{R}} \sigma_{v_{R}}}{-0.18} \frac{{ }^{v_{R} W_{R}} / \sigma_{v_{R}} \sigma_{W_{R}}}{0.60} \frac{{ }^{W_{R} प_{R}} / \sigma_{W_{R}} \sigma_{u_{R}}}{-0.10}$
$\frac{\mathrm{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{-0.18} \frac{{ }^{V_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{0.61} \frac{{ }^{W R} U_{L} / \sigma_{W_{R}} \sigma_{u_{L}}}{0.00}$
$\frac{\sigma_{\Delta u R L}}{1.74} \frac{\sigma_{\Delta v R L}}{1.68} \frac{\sigma_{\Delta w R L}}{1.92}$

Figure A.28. Probability density functions for gusi velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 6 ($r=$ degree of non-Gaussian).

$$
y_{M_{D}} y_{\Lambda_{0} /(f) \Phi}
$$

$y_{\wedge_{\rho}} y_{n_{\rho /(t)}}$

b. One- and two-point cruss-spectra.

Figure A. 30 . (continued).

TABLE A.12. List of All Parameters Measured and Their Range of Values, Flight 37, Run 6.

Flight 31, Run 7
Date Nov. 29,1982
Start Time: $11: 17: 36 \quad$ (PST)
Duration: 203.9 seconds

$\begin{array}{llll}-118.1 & -118.0 & -117.9 & -117.8\end{array}$

Figure A. 32. Time histories of gust velocities, gust velocity differences, and aircraft's

Figure A.32. (continued).
\because

Figure A.32. (continued).

TABLE A.13. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 7.

1. Mean Airspeed (m/s):

$$
\frac{\bar{V}_{L}}{101.47} \frac{\bar{V}_{C}}{99.23} \frac{\bar{V}_{R}}{100.93}
$$

2. Standard Deviation of Gust Velocities (m / s):

$$
\begin{array}{llll}
\frac{\sigma_{U R}}{3.03} & \frac{\sigma_{V R}}{3.00} & \frac{\sigma_{W R}}{2.23} \\
\frac{\sigma_{U C}}{3.03} & \frac{\sigma_{V C}}{3.03} & \frac{\sigma_{W C}}{2.15}
\end{array}
$$

$$
\frac{\sigma_{\mathrm{UL}}}{3.07} \frac{\sigma_{\mathrm{VL}}}{3.06} \frac{\sigma_{\mathrm{WL}}}{2.22}
$$

3. Standard Deviation of Gust Velocity Differences (m/s):

$$
\frac{\sigma_{\Delta U R L}}{0.85} \frac{\sigma_{\Delta V R L}}{0.80} \frac{\sigma_{\Delta W R L}}{0.89}
$$

4. Integral Length Scale (m):
$\frac{L_{U R}}{562.8} \frac{L_{V R}}{249.6} \frac{L_{W R}}{287.6}$
$\frac{L_{u R L}}{532.2} \frac{L_{V R L}}{242.9} \frac{L_{w R L}}{283.5}$
5. Correlation Coefficient of Gust Velocities:
$\frac{\mathrm{u}_{R} U_{L} / \sigma_{u_{R}} \sigma_{u_{L}}}{0.92} \frac{\overline{ }_{R} V_{L} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.90} \frac{{ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.90}$
$\frac{\bar{u}_{R} V_{R} / \sigma_{u_{R}} \sigma_{V_{R}}}{0.02} \frac{{ }^{{ }_{R} W_{R}} / \sigma_{V_{R}} \sigma_{W_{R}}}{-0.21} \frac{{ }^{W_{R} U_{R}} / \sigma_{W_{R}} \sigma_{u_{R}}}{0.39}$
$\frac{{ }^{U_{R} V_{L}} / \sigma_{u_{R}} \sigma_{V_{L}}}{0.01} \frac{{ }^{{ }_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{-0.21} \frac{{ }^{W} V_{R}{ }_{L} / \sigma_{W_{R}} \sigma_{U_{L}}}{0.32}$

Figure A.33. Probability density functions for gust velocities and gust velocity differences (normalized with tiee standard deviation), F1ight 31, Run 7 ($r=$ degree of non-Gaussian).

$$
0 \quad \operatorname{con}_{0}
$$

 0. 1000.2000.

 Spatial Lag (m)
One- and two-point cross-correlations.
Figure A.34. (continued).

$\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 & 100.00\end{array}$
 a. One- and two-point common component spectra.
Figure A.35. Comparison of normalized one- and two-point spectral density functions
for gust velocities with theoretical models, Flight 31 , Run 7.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE A.14. List of All Parameters Measured and Their Range of Values, Flight 31, Run 7.

	CHANAEL	UNITS		H16H	10w	MEAN	RMS	STD	POINTS
1	TIME	SECONDS		40859.502	40655.627	40757.54410	40757.60660	50.86447	156
2	PHI DOT	RAO/SEC		.160	-. 143	-. 00271	. 02918	$.02906$	0156
3	ACCL N CE	G UNITS		2.067	. 159	. 99544	1.00084	. 10381	8150
4	IMETA DOT	RADISEC		. 099	-. 110	. 03306	. 01370	. 01336	8156
5	Theta	RAD		. 119	-. 009	. 06305	. 06569	. 01643	8156
6	PHI	RAD		. 140	-. 084	. 00142	. 02966	. 02763	0156
7	PSI 1	RAD		354.891	275.719	349.38821	349.39191	1.00740	8156
8	OEL PSİ	OEG		3.057	-5.842	-2.21736	2.61189	1.38040	9156
9	PSI 2	RAD		353.009	344.286	347.99832	348.00093	1.34844	8156
10	DEL PSI 2	DEG		3.638	-5.376	-1.64475	2.14194	1.37220	8156
11	ACCL CLT	G UNITS		3.249	-. 680	1.60864	1.02644	. 19034	8136
12	ACEL N R \dagger	G Units		3.891	-1.336	1.00569	1.03030	. 22385	56
13	ACEL XCG	6 UNITS		.230	. 011	. 06404	. 07038	.02920	0150
14	ACCL Y CG	6 UNITS		. 124	-. 079	. 00096	. 01780	.01787	0156
15	ALPHA CTR	RAD		. 133	-. 110	-. 01274	. 01018	.61297	8156
16	BETACTR	RAD		. 175	-. 149	. 00689	.02546	. 02452	8156
17	TEAP I	DEG F-		79.016	77.576	78.47828	78.47957	. 45001	8156
18	TEMP P	DEG F		61.961	61.605	61.77457	61.77957	. 01328	0156
19	ACCL 2 INS	G UNITS		2.062	. 133	1.06037	1.00562	. 10264	0156
20	ALPHA RT	Rad		.160	-. 128	. 00053	. 31438	. 11437	1156
21	BETA RT	RAD		.174	-. 129	. 01674	. 02606	.02252	1156
22	ALPHA 11	RAD		. 217	-. 078	. 02315	.03163	. 01442	8156
23	3 日ETA LT	RAD		. 151	-. 153	. 01.100	. 02465	. 02233	456
24	4 PSI DOT	RADISEC		. 085	-. 0.175	10.00266	10.01892	$.01873$	8156
25	TEAP TOT	DEG C		13.570	7.170	10.24486	10.40512	1.51067	8150
26	OC IT	PS10		. 903	. 627	.74751	.74855	. 03939	8150
27	OC CTR	PS10		.840	- 391	-71422	. 71521	. 03759	8156
28	OC-RT	PSIO		+870	. 812	. 73949	. 74053	.03936	9156
29	$9 \mathrm{PS}^{-}$	PSIA		11.383	11.282	11.33648	11.33649	. 01311	0136
30	TEHP IRT	VOLTS		7.140	4.794	5.91822	5.94657	.37995	0136
31	1 HYGROM	OFG C		-1.938	-8.759	-7.40488	7.60921	1.47513	8156
32	2 OC2 LT	PSID		. 076	. 073	. 07456	.07457	. 00065	0136
33	3 OC2 CTR	PSID		.166	. 069	-13343	.13618	. 02722	6156
34	OCZ_RT	PSID		. 140	. 101	-11580	-11646	- 23281	6198
35	5 DAR	DEG		-8.750	-9.351	-9.17613	$9.17961{ }^{\circ}$	- 25281	8130
36	6 DAL	DEG		-8.678	-9.092	-8.94551	8.94639	.12568	8156
37	O DELEV	DEG		4.710	3.308	4.35243	+55381 +33099	- 11232	8.156
38	\%STAE	DEG		. 022	-. 350	-.33067	-33099	-00895	8156
39	9 ORUD	DEG		9.548	. 705	9.16363	8.16672	-23797	8156
40	Otimra	PCT MAX		64.531	49.841	63.89792	63.80119	- 36006	
41	1 DIHPL	PCT HAX		64.348	49.825	63.61769	63.61872	.38006	8156
42	DIIP	POSITIDN		1.162	. 428	-44116	. 44146	.01591	8156 8156
43	DSB	POSITIDN		. 408	-52006			1083.47666	8156 8156
44	0 OTOG	METERS		7529228.222	7522746.854	*****4*** 72.81739	+4*****4**	1883.47668 .01834	8156 8156
45	5 CTO	DEGREES		72.849 -117.918	72.786 -117.986	72.81735 -117.98276	72.81736 117.98270	. 00249	8156
46	5 LOnG	OESREES		-117.918 35.754	-117.986 35.579	-117.88276 35.06524	117.98270 35.66528	.050日0	8156
47	7 L4T	OEGREES		35.754 359.961	35.379 .028	55.66524 5.70641	36.00202	35.53582	8156
48	8 TPK ANG	OEGREES RIOIANS		359.961 6.200	.028 6.039	$\begin{aligned} & 5,78641 \\ & 6,10577 \end{aligned}$	6.10582	. 02489	0156
49	9 HUG	RLOIGNS		6.200 7.474	-. 8.876	3.06820	4.16317	1.97233	0156
50	VE	M/SEC $M / S E C$		7.474 101.162	$8 \mathrm{8}$.	95.43015	93.31802	4.09644	4156
51	1 VN	M/SEC		201.162 2.175	2.103	2.13595	2.13597	. 00929	8156
52	2 ALTITUDE	K/		2.175 8.464	2.357	5.39005	5.56526	1.38553	0156
53	3 TEFPC	OEGREES C		8.464 60.593	2.357 19.506	42.50633	42.84876	5.39092	8156
54	4 EW YND SPD	KHOTS		60.593 20.659	19.506 -21.728	-4.07377	7.57962	6.30219	A15t
55	5 NS WND SPD	KHOTS		20.659 81.124	- 19.863	43.23778	43.51399	4.89530	0158
56	6 WIND SPEED	KNOTS		61.124 303.845	19.863 245.044	273.89681	276.03272	9.27708	0150
57	7 WIND DIMEC	DEGREES		303.645 123.845	69.044	95.89686	96.34450	-. 27710	8156
58	8 WIND DIRZ	DEGREES		123.845 303.845	245.044	275.89686	276.05277	9.27710	1256
59	9 WIND DIR3	DEGREES		303.845	245.044	275.89686	270.05277	9.27710	0156
60	0 WIND DIR4	DEGREES		303.845 109.065	245.0450	100.93810	100.97547	2.74716	1156
61	1 AIRSPEED R	M/SEC H/SEC		109.065 107.536	90.222	99.23685	97.27276	2.87067	8236
62	2 AIRSPEED 6	$H / S E C$ $M / S E C$		107.536 111.063	92.927	101.47274	101.50925	2.72263	6256
63	3 AIRSPEED	M/SEC		111.063 71.366	-82.927	32.43872	33.74127	9.20912	8156
64	4 DELTA ALT	HETERS		71.366 36.331	. .879 .000	34.36776	35.54321	0.98441	8136
65	5 INRTL DISP	MEYERS		12.332	-9.102	- 10000	3.03782	1.03801	1156
66	6 UG TIGHT	M/SEC H/SEC		12.332 12.289	-8.184	. 00000	3.03101	5.03120	8156
67	7 UG CENTER	H/SEC		12.288 11.994	-8.184	. 00000	3.07700	3.07718	1156
68	B UG LEFT	M/SEC		11.994	-9.408	. 00988	3.00277	3.00294	8156
69	9 VG RIGHI	M/SEC		9.833 10.724	-10.307	. 00890	3.03692	3.03910	8156
70	0 VG GENTER	M/SEC		10.724	10.367	.00956	3.06967	3.06984	4256
71	1 VG LEFT	M/SEC		8.488	118.420	.00345	2.23950	2.23969	4156
72	2 VG RIGNT	M/SEC		12.808 11.708	-0.8.297	. 00106	2.15312	2.15313	4156
73	3 WG CENTER	M/SEC		11.798	-8.046	.00092	2.22691	2.22704	415t

Flight 31, Run 3
Date: Nov. 29,1922
Start Time: $11: 22: 59$ (PST)
Duration: 225.9 seconds

Figure A. 37. Time histories of gust velocities, gust velocity differences, and aircraft's
normal accelerations, Flight 31, Run 8.

TABLE A.15. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 8.

1. Mean Airspeed (m / s):
$\frac{\bar{V}_{L}}{103.22} \frac{\bar{V}_{C}}{101.05} \frac{\bar{V}_{R}}{102.86}$
2. Standard Deviation of

Gust Velocities (m/s):
$\frac{\sigma_{U R}}{3.93} \frac{\sigma_{V R}}{5.17} \frac{\sigma_{W R}}{2.52}$
$\frac{\sigma_{u C}}{3.89} \frac{\sigma_{v C}}{5.18} \frac{\sigma_{W C}}{2.36}$
$\frac{{ }_{\mathrm{uLL}}}{3.89} \frac{\sigma_{\mathrm{VL}}}{5.20} \frac{{ }_{\mathrm{WL}}}{2.42}$
3. Standard Deviation of Gust

Velocity Differences (m/s):
4. Integral Length Scale (m):
$\frac{L_{U R}}{306.7} \frac{L_{V R}}{364.4} \frac{L_{W R}}{232.9}$
$\frac{L_{u R L}}{302.5} \frac{L_{\text {vRL }}}{380.7} \frac{L_{w R L}}{249.6}$
5. Correlation Coefficient of Gust Velocities:

$\frac{{ }_{U_{R} V_{R}} / \sigma_{U_{R}} \sigma_{V_{R}}}{-0.20} \frac{{ }_{V_{R} W_{R}} / \sigma_{v_{R}} \sigma_{W_{R}}}{0.15} \frac{{ }^{W_{R} \sigma_{R}} / \sigma_{W_{R}} \sigma_{U_{R}}}{0.00}$

$\frac{\sigma_{\Delta U R L}}{1.22} \frac{\sigma_{\Delta V R L}}{1.08} \frac{\sigma_{\Delta W R L}}{1.31}$

Figure A. 38. Probability density functions for gust velucities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 8 ($r=$ degree of non-Gaussian).

 Frequency (Hz)
Figure A.40. Comparison of normalized one- and two-point spectral density functions
a. One- and two-point common component spectra.

$\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 & 100.00\end{array}$

Frequency (Hz)

- Aircraft data
lapous s,uas

00.00100 .00

$(\text { วas })^{7 n_{0}} y_{n} n_{\text {n/(1) }}$:

ORIGINAL PAGE IS OF POOR QUALITY

$$
(\partial \partial s)^{y_{M_{0}}}{ }^{y} \wedge_{D /(\lrcorner) \Phi}
$$

$\left.(\partial \partial s)^{y_{\wedge}} \wedge_{0} n_{0} /(\not)\right)_{\phi}$
0.01 U.UU \&.0U 10.00 lư.00
 $(\partial \partial s)^{7_{M}}{ }^{y_{n}}{ }_{0 /(t) \Phi}$

b. One- and two-point cruss-spectra.

Figure A.40. (continued).

ORIGNAL PAGE is OF POOR QUALITY

TAELE A.16. List of All Parameters Measured and Their Range of Values, Flight 31, Run 8.

Figure A.41. Flight altitude and horizontal wind along flight path, Flight 31, Run 9.

Figure A.42. (continued).

TASLE A. 17. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 9.

1. Mean Airspeed (m/s):

$$
\frac{\bar{V}_{L}}{103.15} \frac{\bar{V}_{C}}{100.84} \frac{\bar{V}_{R}}{102.84}
$$

2. Standard Deviation of Gust Velocities (m/s):
$\frac{\sigma_{u R}}{4.10} \frac{\sigma_{V R}}{5.12} \frac{\sigma_{W R}}{2.40}$
$\frac{\sigma_{u C}}{4.10} \frac{\sigma_{v C}}{5.10} \frac{\sigma_{W C}}{2.21}$
$\frac{\sigma_{\mathrm{UL}}}{4.18} \frac{\sigma_{\mathrm{VL}}}{5.12} \frac{\sigma_{\mathrm{WL}}}{2.34}$
3. Standard Deviation of Gust Velocity Differences (m/s):
4. Integral Length Scale (m):
$\frac{L_{U R}}{327.8} \frac{L_{V R}}{338.0} \frac{L_{W R}}{93.9}$
$\frac{L_{U R L}}{341.5} \frac{L_{V R L}}{338.0} \frac{L_{w R L}}{83.9}$
5. Correlation Coefficient of Gust Velocities:
$\frac{\overline{U R}_{R}{ }_{L} / \sigma_{u_{R}} \sigma_{U_{L}}}{0.80} \frac{{ }^{v_{R} V_{L}} / \sigma_{V_{R}} \sigma_{v_{L}}}{0.90} \frac{{ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.80}$
$\frac{\overline{U R}^{V_{R}} / \sigma_{u_{R}} \sigma_{V_{R}}}{0.30} \frac{{ }^{{ }_{R} W_{R}} / \sigma_{V_{R}} \sigma_{W_{R}}}{0.20} \frac{{ }^{W_{R} V_{R}} / \sigma_{W_{R}} \sigma_{U_{R}}}{0.19}$ $\frac{{ }^{\mathrm{C}_{R} V_{L}} / \sigma_{u_{R}} \sigma_{v_{L}}}{0.30} \frac{{ }^{{ }_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{0.20} \frac{{ }^{W_{R} U_{L}} / \sigma_{W_{R}} \sigma_{u_{L}}}{0.18}$

$$
\frac{\sigma_{\Delta u R L}}{1.35} \frac{\sigma_{\Delta v R L}}{1.16} \frac{\sigma_{\Delta W R L}}{1.45}
$$

Figure A.43. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 9 ($r=$ degree of non-Gaussian).

and two-point cross-correlations.
Figure A.44. (continued).

$\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 & 100.00\end{array}$
 $\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 & 100.00\end{array}$ Frequency (Hz) a. One- and two-point common component spectra.
Figure A.45. Comparison of normalized one- and two-point spectral density functions

0.0

C0

Frequency (Hz)
Frequency (Hz)
$\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 \quad 100.00\end{array}$

$0.10 \quad 1.00 \quad 10.00 \quad 100.00$
00.00100 .01 OO.I OT. O TO. O Frequency (Hz) (zH) Kวuanbay

ค
density functions
1, Run 9 .
heoretical models, Flight 3

ORIGNAL PAGYE DS
OF POOR QUALITY

$(\partial \partial s){ }^{y_{M_{0}}}{ }^{y_{\wedge_{0}} /(t) \Phi}$

b. One- and two-point cruss-spectra.

Figure A.45. (continued).

ORIGINAL PAGE IS OP POOR QUAIITY

TABLE A.18. List of All Parameters Measured and Their Range of Values, Flight 31, Run 9.

CKAKNEL	UNITS	WIGH	L0w	MEAN	K0. 5	STD	POINTS
1 TIAE	SECONDS	41704.552	41369.602	41537.07670	41537.18926	96.70255	13399
? PHI DOT	RADISEC	. 318	-.435	-.00239	.05126	. 05120	13394
\because ACCL CG	6 UNITS	1.921	-. 927	1.00123	1.01562	.17035	13398
- THETA DOT	RAD/SEC	.112	-.089	. 00301	. 01688	.01661	13399 13399
5 THETA	RAD	.188	-. 0.036	. 05660	.06526	. 03248	13399
6 HI	R\&D	.152	-. 260	-. 00262	.04819	.04612	13399
7 PSJ 1	RAD	220.340	207.660	213.51567	213.52714	2.21339	13399
E OEL PSİ1	DEG	5.255	-7.264	-1.33276	2.55017	2.17427	13399
9 OSI 2	RAD	581.839	569.517	575.30539	575.30928	2.11560	13399 13399
100EL PSI 2	DEG	5.696	-6.888	-. 92423	2.37529	2.18819	13399
11 ACCL N TT	G UNITS	3.334	-1.148	1.01390	1.06483	. 32540	13399
12ACCL N R	G UNITS	4.001	-1.443	1.01099	1.06704	. 34128	13399 13399
13ACCL \times C6	G UNITS	.178	-. 012	. 05691	. 06568	. 03279	13309
14ACCL Y C6	6 UHITS	. 102	-. 104	-. 00127	. 02394	. 02392	13399
15alpha cta	RAO	. 087	-. 174	-. 02678	. 03247	.01835	13399
16BETA CTR.	810	. 166	-.141	. 01160	. 03349	. 03142	13399
17tEMP 1	DEG F	76.857	16.821	76.52245	76,52426	. 52620	13399
12tEMP ${ }^{\text {a }}$	DEG F	61.981	47.322	61.87709	61.87728	.15120	13399
19ACCL 2 INS	G UNITS	1.931	-. 390	1.00521	1.01953	.17030	13390
2OALPHA RT	R 40	. 085	-. 286	-. 00018	. 02268	.02072	13399
21BETA ${ }^{\text {a }}$	R1D	.170	-. 120	. 02015	. 03524	. 02681	13399
22ALPHA LT	RAD	. 144	-. 152	. 01115	. 02246	. 01950	13399
23-ETA LT	R1D	. 143	-. 123	. 01432	.03243	. 02910	13399 13390
24PSI OUT	HAD/SEC	. 097	-. 093	.00253	. 02480	. 02473	13390
25 TEAP TOT	DEG C	14.653	10.203	12.68530	12.71776	. 90524	13399
260 Cl	PSID	1.074	. 651	. 83864	. 84041	. 05450	13390 13390
2106 CTR	PSID	. 986	. 618	. 800057	. 80228	. 05240	13398
289C RT	PSIO	1.039	.642	.83345	. 83524	. 05464	13399
29Ps	PSIA	12.509	12.119	12.39236	12.39270	. 09177	13399
39 TEMP IRT	VOLTS	6.063	4.319	7.15658	7.17453	.50722	13399
31 HYGROM	DEG C	4.123	-2.329	1.63444	2.15294	1.40139	13398
$320 C 2$ LT	PSID	. 079	. 074	. 07689	. 07691	. 00150	13399
$33062 C T R$	PSID	.179	. 141	. 16947	. 16976	. 01004	13399
$340 C 2$ RT.	PSID	.169	. 134	. 155502	. 15543	. 01115	13399
$350 A R$ -	DEG	-9.910	-10.242	-10.00441	10.00472	.07667	13399
36046	DEG	-9.202	-9.575	-9.40686	9.40722	+08209	13399
37 OELEV	DEG	6.088	5.345	5.76361	5.76764	- 21015	13390
33 DSTAB	DEG	-. 374	-.422	-. 40008	. 40033	-C1387	13399
39 ORUD	DEG	11.463	10.402	10.91013	10.91478	+31864	13399
40 DTMAR	PCT MAX	67.969	66:406	67.12432	67.12593	. 46708	13390
41 DTHRL	PCT MAX	67.773	66.406	67.02022	67.02126	. 37408	13399 1339
42 DFLP	POSITIDN	- 320	- 273	-29930	-29959	-01310	13399 13390
43058	POSITIDN	. 324	. 299	. 31140	-31147	. 00676	13399 13399
440 T0 G	HETERS	7500823.590	7484351.008		- $0+6+818$	11.66726	13399
158T0	DEGREES	72.886	72.861 -118.248	72.87323 -118.15379	72.87323	. 00.0719	13390
46 LOMG	DEGREES	-118.062 35.355	-116.248 35.103	-116.15379 35.23129	116.15380 35.23237	. .07257	13397
47LAT	DEGREES	35.355	35.103		211.18406	2.19175	13390
SSTRK ANE	DEGREES	216.361	207.822	$\begin{array}{r} 211.17269 \\ 3.75056 \end{array}$	211.18406	2.03810	13399
49 HDG	RADIANS	3.869 -42.084	3.644 -60.999	3.75056 -50.55699	50.71865	4.04835	13399
50 VE	M/SEC	-42.954	-80.999	-83.45350	03.53606	3.71142	13399
51 VN	M/SEC	-76.290 1.597	-90.818 1.338	-03.431511	1.41642	. 08068	13399
S2ALTITUOE	KH DEGREES	1.597 9.502	5.153	7.61940	7.67039	. 88298	13390
53 TEMPC	KEGRES	39.790	-18.404	11.90531	16.43143	12.32521	13399
54EM YHD SPD	KNOTS KMOTS	23.496	-24.192	-. 25178	5.88026	5.67509	13399
55 NS WNO SPD	KNGTS	44.252	. 125	15.95477	17.45192	7.07238	13399
S6MIMD SPEED.	KNGTS	359.936	. 142	240.11268	251.21831	73.07116	13399 13999
57HIMD OIREC	DEGREEES	179.936	-179.850	60.11270	85.23098	73.87120	13399
S6WIND DIR2 59 WIND DIRI	DEGREES	359.936	- 17.142	240.11270	251.21834	73.67120	$\begin{array}{r}13399 \\ \hline 1399\end{array}$
	DEGREES	843.479	-333.217	178.96187	281.19140	216.89803	13399
6) AIRSPEEO.	M/SEC	114.681	90.490	102.84471	102.80615	3.25334	13309 13399
62AIRSPEED	M/SEC	111.755	88.836	100.04102	100.89187	3.18411	13399 13300
63 AIRSPEED	M/SEC	116.488	91.024	103.15.51	103.20907	60.67753	13390
64 OELTA ALT	HETERS	251.146	-7.522	69.33534	92.13310	60.38935	13390
65 INTIL OISP.	HETERS	240.544	-10.792	65.39001 .00000	9.00817 4.10906	60.30932 4.10921	13399
66 UG AIGHT	M/SEC	11.496	-11.949	. 00000	4.10739	4.10755	13399
67 UG CENTER	H/SEC	11.356	-11.386	- 10000	4.18736	4.18732	13399
68 UG LEFI	M/SEC	11.399	- 21.1000	. 012121	5.12140	3.12150	13399
69 VG RIGHT	M/SEC	13.853 12.866	-22.090	-. 00555	5.10793	5.10612	13399
70 VG CENTER	M/SEC	12.868 13.763	-10.901	-.00266	5.12151	5.12170	13309
11 VG LEFT	M/SEC	13.763 13.700	-14.120	. 12373	2.46782	2.40779	13399
72 WG RIGHT	M/SEC	13.700 13.996	-10.785	.02626	2.21551	2.21576	13399
73 Y6 CENTER	MISEC	13.990 15.640	-13.421	.02633	2.34181	2.34875	13399
74WG.LEFT-	H/SEC	15.640	-13.421	. 02633	2.3410	2.3 318	

Flight 31, Run 10
Date: Nov. 29, 1982
Start Time $11: 39: 4$ (PST)
Duration: 172.0 seconds

Flight Altitude
Figure A. 46.

- Figure A.47. Time histories of gust velocitics, gust velocity differences, and aircraft's normal accelerations, Flight 31, Run 10.

Figure A.47. (continued).

Figure A.47. (continued).

TABLE A.19. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 10.

1. Mean Airspeed (m/s):

$$
\frac{\bar{V}_{L}}{117.27} \frac{\bar{V}_{C}}{115.20} \frac{\bar{V}_{R}}{116.70}
$$

2. Standard Deviation of Gust Velocities (m/s):

$$
\begin{array}{cccc}
\frac{\sigma_{u R}}{2.04} & & \sigma_{v R} & \frac{\sigma_{W R}}{4.57} \\
\frac{\sigma_{U C}}{2.40} & \frac{\sigma_{v C}}{1.99} & \frac{\sigma_{W C}}{4.58} & \\
\frac{\sigma_{U L}}{2.34} \\
\frac{\sigma_{u L}}{2.02} & \frac{\sigma_{V L}}{4.61} & \frac{\sigma_{W L}}{2.33}
\end{array}
$$

3. Standard Deviation of Gust Velocity Differences (m / s):
4. Integral Length Scale (m):

$$
\begin{aligned}
& \frac{L_{U R}}{641.8} \frac{L_{V R}}{729.7} \frac{L_{W R}}{832.2} \\
& \frac{L_{U R L}}{638.3} \frac{L_{V R L}}{742.9}
\end{aligned} \frac{L_{W R L}}{863.8}
$$

5. Correlation Coefficient of Gust Velocities:

$\mathrm{u}_{\mathrm{R}} \mathrm{UL}_{L} / \sigma_{u_{R}} \sigma_{u_{L}}$	${ }^{V_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}$	${ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}$
0.98	0.99	0.98
$\underline{u_{R} V_{R} / \sigma_{u_{R}} \sigma_{v_{R}}}$	${ }^{{ }_{R} W_{R} /} / \sigma_{V_{R}} \sigma_{W_{R}}$	${ }^{W_{R} U_{R}} / \sigma_{W_{R}}{ }^{\sigma_{u R}}$
0.08	0.00	-0.47

$$
\frac{\mathrm{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{0.09} \frac{{ }_{R^{W} L_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{-0.01} \frac{{ }^{W_{R} U_{L}} / \sigma_{W_{R}} \sigma_{u_{L}}}{-0.45}
$$

$\frac{\sigma_{\Delta u R L}}{0.41} \frac{\sigma_{\Delta v R L}}{0.31} \frac{\sigma_{\Delta w R L}}{0.38}$

Figlre A.48. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run $10(r=$ degree of non-Gaussian).

$$
\underset{\sim}{\circ} \text { ! }
$$

$\begin{array}{ccccc}0 & n & 0 & n & 0 \\ \therefore & 0 & 0 & 0 & i\end{array}$ $\begin{array}{ccc} & \text { (ui) 6ef Le!feds } \\ -0002 & -0001 & 0\end{array}$

- and two-point cross-correlations.
Figure A.49. (continued).

1000. 2000.

0
b. One-

$(\partial \partial s){ }^{y} \wedge_{0}{ }_{0}{ }_{n_{0}} /(\downarrow) \Phi$
b. One- and two-point cruss-spectra.

$\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 & 100.00\end{array}$ $\stackrel{\ominus}{\square}$

ORIGINAL PAGTE OF POOR QUALYTY:

TABLE A.20. List of All Parameters Measured and Their Range of Values, Flight 31, Run 10.

Flight 31, Run 11
Start Time: $11: 46: 61$ (PST)
Duration: 334.0 seconds
 $\begin{array}{llllll}\dot{8} & \dot{8} & \dot{8} & \dot{8} & \dot{8} & \dot{8} \\ \dot{O} & \dot{8} & \dot{8} & 8 & \text { ~ }\end{array}$
(7S甘 7f) $746!$ 하

rigure A.52. (continued).

TABLE A. 21. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 11.

1. Mean Airspeed (m/s):

$$
\frac{\bar{V}_{L}}{107.01} \frac{\bar{V}_{C}}{104.47} \frac{\bar{V}_{R}}{106.49}
$$

2. Standard Deviation of Gust Velocities (m/s):
$\frac{\sigma_{\mathrm{uR}}}{3.74} \frac{\sigma_{\mathrm{vR}}}{2.10} \frac{\sigma_{\mathrm{WR}}}{2.25}$
$\frac{\sigma_{u C}}{3.76} \frac{\sigma_{v C}}{2.15} \frac{\sigma_{W C}}{1.99}$
$\frac{\sigma_{u L}}{3.77} \frac{\sigma_{v L}}{2.18} \frac{\sigma_{W L}}{2.13}$
3. Standard Deviation of Gust Velocity Differences (m/s):
$\frac{\sigma_{\Delta \mathrm{URL}}}{1.12} \frac{\sigma_{\Delta v R L}}{1.01} \frac{\sigma_{\Delta W R L}}{1.26}$
4. Integral Length Scale (m):
$\frac{L_{U R}}{370.0} \frac{L_{V R}}{246.1} \frac{L_{W R}}{203.3}$
$\frac{L_{u R L}}{375.6} \frac{L_{V R L}}{241.7} \frac{L_{w R L}}{193.1}$
5. Correlation Coefficient of Gust Velocities:

$\frac{U_{R} V_{R} / \sigma_{U_{R}} \sigma_{V_{R}}}{-0.21} \frac{{ }^{V} W_{R}}{} / \sigma_{V_{R}} \sigma_{W_{R}}{ }_{-0.09}^{{ }^{W_{R} U_{R}} / \sigma_{W_{R}} \sigma_{U_{R}}}$ $\frac{\bar{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{-0.28} \frac{{ }^{V_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{-0.10} \frac{{ }^{W R U_{L}} / \sigma_{W_{R}} \sigma_{u_{L}}}{0.40}$

Figure A.53. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 11 (r = degree of non-Gaussian).

$\begin{array}{ccccc}\square & n & 0 & 10 & 0 \\ - & 0 & \dot{0} & \dot{0} & \dot{1}\end{array}$

$\begin{array}{llllllllll}0 & \Pi & 0 & n & 0 & 0 & 0 & 0 & 0 & 0 \\ - & 0 & 0 & 0 & i & i & 0 & 0 & 0 & i\end{array}$

270

> b. One- and two-point cruss-spectra.

> Figure A.55. (continued). $(\partial \partial S)^{y_{M_{D}}}{ }^{y_{\Lambda_{D}} /(f) \Phi}$

 Frequency (Hz)

$(\partial \partial s)^{y} \wedge_{0} y_{n} n_{0 /(t) \Phi}$

$(\text { วəs })^{7} \wedge_{0}{ }^{y_{n}} n_{0 /(t) \Phi}$

ORIGINAE: PAGE IS OF POOR QUALITYY

TABLE A.22. List of All Parameters Measured and Their Range of Values, Flight 31, Run 11.

「igure A.57. (continued).

TABLE A. 23. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 12.

1. Mean Airspeed (m/s):
$\frac{\bar{V}_{L}}{101.03} \frac{\bar{V}_{C}}{98.55} \frac{\bar{V}_{R}}{100.56}$
2. Standard Deviation of

Gust Velocities (m/s):
$\frac{\sigma_{\mathrm{UR}}}{1.68} \frac{\sigma_{\mathrm{VR}}}{1.43} \frac{\sigma_{\mathrm{WR}}}{1.66}$
$\frac{\sigma_{u C}}{1.68} \frac{\sigma_{v C}}{1.47} \frac{\sigma_{W C}}{1.54}$
$\frac{\sigma_{\mathrm{uL}}}{1.70} \frac{\sigma_{\mathrm{VL}}}{1.42} \frac{\sigma_{\mathrm{WL}}}{1.59}$
3. Standard Deviation of Gust

Velocity Differences (m / s):
4. Integral Length Scale 1 (m):

$$
\begin{array}{lll}
\frac{L_{U R}}{127.7} & \frac{L_{V R}}{252.6} & \frac{L_{W R}}{202.4} \\
\frac{L_{U R L}}{137.5} & \frac{L_{V R L}}{250.1} & \frac{L_{W R L}}{190.8}
\end{array}
$$

5. Correlation Coefficient of Gust Velocities:
$\frac{\overline{U R}_{R}{ }_{L} / \sigma_{U_{R} \sigma_{U_{L}}}}{0.66} \frac{{ }^{V_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.81} \frac{{ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.78}$

$\underline{u_{R} V_{R} / \sigma_{u_{R}} \sigma_{v_{R}}}$	${ }^{V_{R} W_{R}} / \sigma_{V_{R}} \sigma_{W_{R}}$	${ }^{W}{ }^{\prime} u_{R} / \sigma_{W_{R}} \sigma_{u_{R}}$
0.00	0.30	-0.22

$\frac{\mathrm{UR}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{0.01} \frac{{ }^{{ }_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{0.31} \frac{W_{R U_{L}} / \sigma_{W_{R}} \sigma_{U_{L}}}{-0.20}$
$\frac{\sigma_{\Delta U R L}}{0.90} \frac{\sigma_{\Delta V R L}}{0.74} \frac{\sigma_{\Delta W R L}}{0.91}$

Figure A.58. Probability densiry functions for gust velocities and gust velocity dirferences (normalized with the standiard deviation), Flight 31, Run 12 ($r=$ ciegree of non-uaussian).

$.1 \mathrm{E}+02$
$.1 \mathrm{E}+01$
$.1 \mathrm{E}+00$
$.1 \mathrm{E}-01$
$.1 \mathrm{E}-02$
$.1 \mathrm{E}-03$
$\left(\right.$ دәs) $y^{y_{n}} y_{0}^{y_{n}}{ }_{s /(t)}$

 $\begin{array}{lllll}0.01 & 0.10 & 1.00 & 10.00 \quad 100.00\end{array}$

Frequency (Hz)

Figure A.60. Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 12.
$.1 E+02$
$.1 E+01$
$.1 E+00$
$.1 E-01$
$.1 E-02$
$.1 E-03$

rrequency (Hz)

$\begin{array}{lllll}0.10 & 1.00 & 10.00 & 100.00\end{array}$ 0.01

$$
(\partial \partial s)^{y_{M}}{ }_{D}^{y_{n}}{ }_{\rho /(t)_{\Phi}}
$$

$(\partial \partial s)^{y_{M}}{ }^{y_{\nu}} \wedge_{0 /(f) \Phi}$

 $(\operatorname{\partial \partial s})^{y} \wedge_{0}{ }^{y_{n}}{ }_{0 /(t) \phi}$

$0.01 \quad 0.10 \quad 1.00 \quad 10.00 \quad 100.00$

b. One- and two-point cruss-spectra.

CAGCNAD PAGE ES
 OF POAR QUIALITY

TABLE A．24．List of All Parameters Measured and Their Range of Values， Flight 31，Run 12.

CHANMEL	UNITS	HIGH	LOH	MEAN	RMS	STD	POINTS
1 PIME	SECONOS	43146．508	43009.608	43070.05820	43074.07633	39.53645	5477
2 PमI OUf	AAO／SEC	－． 088	$=.127$	－． 00254	$\cdots .03036$	03025	5477
？AEELN	G UNITS	I． 361	654	$.99 \bar{A} \bar{B}$	1.00374	009762	5477
4 THETA D	KAO／SEC	－ 040	$=.045$	． 000352	． 00997	． 000933	5477
5_{6} THETA	RAD	000	． 019	．04671	05036	． 01278	5477
6 PMI	RAO	． 079	． 115	.00130	$.02959^{\circ}$	-02951	5477
7 PSi I	R40	125.590	128． 898	123.04541	123.04938	$.98659$	5477
8 DEL PSI	DEC	－．684	-6.618	-2.50441	2.69251	－93878	5477
9 P 5	RAD	481.491	481.154	484.99578	484．99675	． 96953	5477
10 DEE － 5	OEG	． 253	－6． 241	－2．14914	$2.36\}$ \％	．98165	5477
11 ACCL	6 UNITS	． 095	－ 291	1.01263	1．03066	19181	3477
12 ACCL	6 GNITS	1.985	118	1：00737	1.02931	$.21142$	54777
13 ACEEX	G UNits	－6A4	$\bigcirc 019$	． 05120	． 05215	.00901	5477
14 ACET	6 UNITS	.077	． 089	－． 00260	．01A31	． 01821	5677
15 Alpha	Ma 0	.017	－． 064	．02879	． 03050	.01006	5477
16 atta	RAD	.091	－． 058	． 0.0713	． 01935	． 01799	5477
17 TEMP	DEGF	76．317	75.777	75.98189	75.98298	.11839	5477
ie最品P	DEGF	55.023	59.264	59.37962	50.37667	0832	5471
19ACCL	G UNITS	1.429	－． 634	1.00272	1.00777	． 10075	3477
20 ALPNA	R4D	． 040	． 045	－． 00789	． 01387	.01141	5677
21 exia	RAD	.093	－． 050	.01628	． 02313	$\text { —. } 01646$	5477
$22.0 L^{\text {a }}$	RAD	． 054	$=.024$	． 00978	0.01453	-01975	5477
23 QETAL	RAO	.089	－．057	． 010202	0.02421	.01701	7
24－5 ${ }^{\text {5 }}$－5	RAOJSEC	.062	－0．039	． 00275	． 01470	.01373	
25 T 4 MF	OES C	12.290	10.420	1． 36615	11．37100	.73193	77
26 WET1	－510	． 890	． 724	.79400	－．79845	$.02679$	5477
270 Cla	PSIO	－ 145	－ 65	－7504j	13	$.92617$	3477
2 SOC R ${ }^{\text {d }}$	PSIO	． 878	（14）	． 79230	$.79079$	$.02774$	5477
$29 \square 5$	PSIA	12．288	12．210	12．20645	12.76466	0.01582	3417
JPGEMP I	VOLIS	1．371	6． 441	6.83768	6， 83772	－ 26.243	5677
31 HरGRDi	$0 \mathrm{C} G 6$	5.492	$=5.031$	1.67550	2.36224	1.66535	5477
32 CL 2 LT	－ 510	.061	． 058	． 06018	－04019	.05096	5477
330 E？ 5	PSID	.148	．05	． 11009	－11349	102725	5477
$340 C 2 \mathrm{RI}$	PSID	－ 10	． 536	． 07379	． 07525	． 01478	5477
35049	DEG	－7．153	－8．391	－7．83437	7．04320	.37219	5477
$35^{\circ} \mathrm{0} 4 \mathrm{~L}$	DEG	7． 3 A4	－7． 7 AS	－7．58950	7．5日R04	108270	5477
3）DELES	DEE	5.173	5.345	5.59463	5.59577	111281	5479
39 DJTAS	DEG	＝．369	－． 397	－ 38415	－38423	.00777	5477
23 ORu0	OEG	10.800	10.402	10.56419	10.56483	． 11703	5477
	PCTMAX	67.090	66.797	68， 89781	66． 69867	． 09180	5477
41 Ofतl		67.570	67． 285	67.30736	67．39738	． 05194	5477
42 OFIP	PISITIT	． 262	.242	－25200	－25288	． 00574	5477
43056	PQSITID	.355	． 346	.3505	－35c15	． 05260	5477
440 TJ 6	HETERS	476017．357	486219.860	＋4＊＊＊＊6＊＊＊	64606444＊	2832．84466	5477
45 B TOO	DEGREES	72.849	72． 121	72.78431	72.78432	0.03700	5477
46 TONG	DESREFS	－210．314	－118．436	－11日．38336	118.38338	.04115	5477
41 LAT	DEGREES	35.100	35.022	35.06193	35.06194	． 02271	5477
48 TRX	DEGREES	225，725	122．180	123．77760	－123．74055	－85450	5477
$49 \mathrm{HEG}{ }^{-}$	MADIANS	2．215	2.499	2．17235	2.17242	． 01771	5477
50 VE	－／Scic	90．407	90.972	94．8179	94．82539	1.19670	5477
51 TN	प／5EC	－5， 341	－67．331	－63．3843	63.42055	352	5178
52 CTITU	RH	2． 336	43_{4}	1．499	1.4694	－8	5477
53 TEMPC	DEGREES	7.652	5． 859	6.33056	B．538 5	－32108	3671
54 EW WNO	xNOTS	36.734	15．49A	75.6059	25.79823	3.14730	3477
55 NS WNO	KNUTS	－6．464	－24．517	－15．9000	16.23665	2.98432	5477
56－IAD	kints	37.577	18.278	30.30926	10.48241	3． 24470	5477
57 WIND	UEGREES	319.429	283.223	302.91326	301．9654	$5: 50373$	5677
58 WHO	DEGEEES	139.429	175.22	$\frac{12}{3} 1.9555$	122.0354	5.50373	5477
$59+140$	DEGTEES	319.429	285．223	301.9153	301.9654	5.50373	5477
60 W10	DEGREES	317.429	285.223	301.9153	－301．96540	5.50373	5677 3677
61.4 矿戸它	Misec	105.825	94.100	100．5695	100．57522	1.11 .902	5677
62 AIESP	4 ¢ 5 E	103.401	91.850	98．3350	102．453	1.65438	5677
63 TIRSPE	RJSEC	106．555	90.61	101.0398	101.4532	10．64619	5477
64 DECTA	HETERS	42.825	－9．43	6.0933	12.1556 12.97560	10．51905	$54 \frac{17}{17}$
65 INRTE	METEPS	37.675	-6.731	6．4316	$\frac{12.87560}{1.68865}$	9.98 .409	$34 \frac{17}{77}$
66 U6 PIC	H75c	5.091	－5．619	－0000	1．68865	1.6858	\％
67 UG CEN	N7SEC	4.720	－6．361	－ 0000	－ 7106	． 6834	417
68 UG LEF	M／SEC	$4: 886$	－6．301	．0000	1．7063	1.70649	3417
69 VGT16	AJSEC	4.307	－3．980	－0020	1.434	1.43302	
10 VG CEV	M／SEC	4.764	－3．920	＝．0012	－－1．47317	$1: 47330$	5477
11 VGLEF	W／SEC	4.193	-3.940	－． 0014	1，4231	1．42324	5477
72 WGkI	M15EC	C． 515	$=4.36$	＝． 0057	1.564	1.06435	5477
73 WG EEN	M／SEC	5.134	＝4．002				
74 WE LEF	－1／5 5 C	5．061	－4．071	－．0036	1.5950	1.5959	547

F1ight 31, Run 13
Date: Nov. 29,1982
Start Time: $12: 01: 21$ (PST)
Duration: 269.1 seconds

(75甘 7f) 745!əН

Figure A.62. Time histories of gust velocities, gust velocity differences, and aircraft's normal accelerations, Flight 31, Run 13.

Figure A.62. (continued).

TABLE A.25. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 13.

1. Mean Airspeed (m/s):
$\frac{\bar{V}_{L}}{103.30} \frac{\bar{V}_{C}}{101.40} \frac{\bar{V}_{R}}{103.30}$
2. Standard Deviation of

Gust Velocities (m/s):
$\frac{\sigma_{U R}}{2.49} \frac{\sigma_{V R}}{5.57} \frac{\sigma_{W R}}{2.43}$
$\frac{\sigma_{U C}}{2.48} \frac{\sigma_{V C}}{5.57} \frac{\sigma_{W C}}{2.29}$
$\frac{\sigma_{U L}}{2.59} \frac{\sigma_{\mathrm{VL}}}{5.56} \frac{\sigma_{\mathrm{WL}}}{2.41}$
3. Standard Deviation of Gust Velocity Differences (m / s):
$\frac{\sigma_{\Delta u R L}}{1.53} \frac{\sigma_{\Delta v R L}}{1.39} \frac{\sigma_{\Delta W R L}}{1.59}$
4. Integral Length Scale 1 (m):

$$
\frac{L_{u R}}{156.0} \frac{L_{v R}}{428.8} \frac{L_{W R}}{83.7}
$$

$$
\frac{L_{u R L}}{148.6} \frac{L_{v R L}}{424.4} \frac{L_{w R L}}{82.6}
$$

5. Correlation Coefficient of Gust Velocities:
$\frac{\overline{U R}_{R} / \sigma_{u_{R}} \sigma_{U_{L}}}{0.80} \frac{{ }^{{ }_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.91} \frac{{ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.79}$
$\frac{\bar{u}_{R} v_{R} / \sigma_{U_{R}} \sigma_{V_{R}}}{-0.18} \frac{{ }^{V_{R} W_{R}} / \sigma_{V_{R}} \sigma_{W_{R}}}{-0.32} \frac{W_{R} U_{R} / \sigma_{W_{R}} \sigma_{u_{R}}}{0.25}$
$\frac{\mathrm{u}_{R} V_{L} / \sigma_{u_{R}} \sigma_{V_{L}}}{-0.19} \frac{{ }^{{ }_{R}{ }^{W}}{ }_{L} / \sigma_{V_{R}} \sigma_{W_{L}}}{-0.32} \frac{{ }^{W_{R} U_{L}} / \sigma_{W_{R}} \sigma_{u_{L}}}{0.22}$
---- Nonssian

Figure A.59. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 13 ($r=$ degree of non-âaussiçn).

$$
\begin{array}{l|l}
>\infty \\
> & 0_{0}^{\infty} \\
>\infty
\end{array}
$$

-0002

O	∞	0	$サ$	N	O	N	$\ddot{\vdots}$
	\dot{O}	\dot{O}	\dot{O}	\dot{O}	\dot{O}	$\dot{1}$	$\dot{1}$

$$
\begin{aligned}
& 1.0 \\
& 0.8 \\
& 0.6
\end{aligned}
$$

1000.

a. One- and two-point common component correlations.
Spatial Lag (m)

$$
\begin{array}{llllllll}
0 & \infty & 0 & \dot{O} & \underset{0}{0} & 0 & \sim & \dot{O} \\
- & \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{i} & \dot{i}
\end{array}
$$

$\cdot 0002$
-0002

呙

$$
(\partial \partial s)^{y_{M}}{ }^{y_{\wedge_{0}} /(t) \Phi}
$$

$$
(\partial ə s)^{y} \wedge_{D} y_{n_{0}}(\nmid) \Phi
$$

[^4]
ORIGNAL NAGE IS DR EOOK QUALITY

TABLE A.26. List of All Parameters Measured and Their Range of Values, Flight 31, Run 13.

Flight 31，Run 14
Date：Nov． 29,1982
Start Time：12：07：41（PST）
Duration：208．9 seconds
Flight Altitude

（75甘 7f）745！⿰丬⿳⿻コ一冖又丶

Figure A.67. Time histories of gust velocities, gust velocity differences, and aircraft's

TABLE A.27. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 14.

1. Mean Airspeed (m / s):
$\frac{\bar{V}_{L}}{103.38} \frac{\bar{V}_{C}}{101.07} \frac{\bar{V}_{R}}{102.99}$
2. Standard Deviation of

Gust Velocities (m / s):
$\frac{\sigma_{u R}}{2.51} \frac{\sigma_{\mathrm{VR}}}{3.54} \frac{\sigma_{\mathrm{wR}}}{2.37}$
$\frac{\sigma_{U C}}{2.47} \frac{\sigma_{V C}}{3.50} \frac{\sigma_{W C}}{2.12}$
$\frac{\sigma_{u L}}{2.52} \frac{\sigma_{\mathrm{VL}}}{3.42} \frac{\sigma_{\mathrm{wL}}}{2.28}$
3. Standard Deviation of Gust

Velocity Differences (m/s):
$\frac{\sigma_{\Delta u R L}}{1.29} \frac{\sigma_{\Delta v R L}}{1.12} \frac{\sigma_{\Delta w R L}}{1.37}$
4. Integral Length Scale (m):

$$
\frac{L_{u R}}{174.9} \frac{L_{\mathrm{VR}}}{204.4} \frac{\mathrm{~L}_{\mathrm{wR}}}{66.8}
$$

$$
\frac{L_{u R L}}{161.3} \frac{L_{v R L}}{205.4} \frac{L_{w R L}}{64.5}
$$

5. Correlation Coefficient of Gust Velocities:
$\frac{\bar{u}_{R} U_{L} / \sigma_{u_{R}} \sigma_{U_{L}}}{0.79} \frac{{ }^{V_{R} V_{L}} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.90} \frac{W_{R} W_{L} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.77}$
$\frac{\overline{U R}_{R} v_{R} / \sigma_{u_{R}} \sigma_{v_{R}}}{0.18} \cdot \frac{{ }^{V_{R} W_{R}} / \sigma_{v_{R}} \sigma_{W_{R}}}{0.19} \frac{{ }^{W_{R} U_{R}} / \sigma_{W_{R}} \sigma_{U_{R}}}{0.10}$
$\frac{\overline{U R}_{R}{ }^{2} / \sigma_{U_{R}} \sigma_{V_{L}}}{0.13} \frac{{ }^{{ }_{R} W_{L}} / \sigma_{V_{R}} \sigma_{W_{L}}}{0.27} \frac{{ }^{W} R_{R} / \sigma_{W_{R}} \sigma_{U_{L}}}{0.07}$

Figure A.68. Probability density functions for gust velocities and gust velocity differences (normalized with the ständard deviation), Flight 31, Run 14 (r = degree of non-Gaussian).

One- and two-point cross-correlations.
 Figure A.69. (continued).

ORIGINAL PAGE IS OF POOR CUMIITY

TABLE A.28. List of All Parameters Measured and Their Range of Values, Flight 31, Run 14.

(75甘75) 745!래

Figure A.72. Time histories of gust velocities, gust velocity differences, and aircraft's

Figure A.72. (continued).

TABLE A.29. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 15.

1. Mean Airspeed (m/s):
$\frac{\bar{V}_{L}}{107.74} \frac{\bar{V}_{C}}{105.40} \frac{\bar{V}_{R}}{107.23}$
2. Standard Deviation of

Gust Velocities (m / s):
$\frac{\sigma_{\mathrm{uR}}}{7.46} \frac{\sigma_{\mathrm{VR}}}{2.84} \frac{\sigma_{\mathrm{wR}}}{3.45}$
$\frac{{ }^{\sigma_{u C}}}{7.31} \frac{{ }^{\sigma_{v C}}}{2.89} \frac{\sigma_{W C}}{3.29}$
$\frac{\sigma_{\mathrm{uL}}}{7.32} \frac{\sigma_{\mathrm{VL}}}{2.87} \frac{\sigma_{\mathrm{WL}}}{3.35}$
3. Standard Deviation of Gust Velocity Differences (m/s):
4. Integral Length Scale (m):

$$
\frac{L_{u R}}{540.0} \frac{L_{v R}}{225.8} \frac{L_{W R}}{526.1}
$$

$$
\frac{L_{U R L}}{526.5} \frac{L_{V R L}}{225.3} \frac{L_{W R L}}{494.0}
$$

5. Correlation Coefficient of Gust Velocities:

$\frac{\sigma_{\Delta u R L}}{1.45} \frac{\sigma_{\Delta v R L}}{1.24} \frac{\sigma_{\Delta w R L}}{1.49}$
_-- Gaussian

Figure A.73. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 15 ($r=$ degree of non-Gaussian).

a. One- and two-point common component spectra.
Figure A.75. Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 15.

$.1 E+02$
$.1 E+01$
$.1 E+00$
$.1 E-01$
$.1 E-02$
$.1 E-03$

$$
(3 \partial s)^{y_{n}}{ }_{0}^{y_{n}}{ }_{0 /(t) \Phi}
$$

$\underset{315}{(\text { วəs })^{7} \wedge_{0}}{ }^{y_{n}} n_{\rho /(\downarrow) \Phi}$

TABLE A.30. List of All Parameters Measured and Their Range of Values, Flight 31, Run 15.

Flight 31, Run 16
Date: Nov. 29,1932
Start Time: $12: 22: 31$
Duration: 99.3 seconds

$\cdot 02$

Abstract

-81

-91
$\cdot 9 \quad . \quad$ •2 •0
3000.
2000.

(75甘7f) $746!2 H$

TABLE A. 31. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 16.

1. Mean Airspeed (m/s):
$\frac{\bar{V}_{L}}{109.41} \frac{\bar{V}_{C}}{107.07} \frac{\bar{V}_{R}}{108.82}$
2. Standard Deviation of

Gust Velocities (m/s):
$\frac{\sigma_{\mathrm{UR}}}{5.68} \frac{\sigma_{\mathrm{VR}}}{3.21} \frac{\sigma_{\mathrm{WR}}}{3.21}$
$\frac{\sigma_{u C}}{5.59} \frac{\sigma_{v C}}{3.44} \frac{{ }^{\sigma_{w C}}}{3.02}$
$\frac{\sigma_{u L}}{5.74} \frac{\sigma_{V L}}{3.29} \frac{\sigma_{W L}}{3.14}$
3. Standard Deviation of Gust

Velocity Differences (m / s):
4. Integral Length Scale (m):

$$
\frac{L_{u R}}{348.1} \frac{L_{v R}}{362.2} \frac{L_{W R}}{95.0}
$$

$$
\frac{L_{u R L}}{347.5} \frac{L_{V R L}}{336.5} \frac{L_{w R L}}{115.3}
$$

5. Correlation Coefficient of Gust Velocities:
$\frac{\overline{u r}_{R}{ }_{L} / \sigma_{U_{R}} \sigma_{U_{L}}}{0.85} \frac{\overline{v R}_{R} / \sigma_{V_{R}} \sigma_{V_{L}}}{0.86} \frac{{ }^{W_{R} W_{L}} / \sigma_{W_{R}} \sigma_{W_{L}}}{0.85}$
$\frac{{ }_{u_{R} v_{R}} / \sigma_{u_{R}} \sigma_{v_{R}}}{0.49} \frac{{ }_{R} W_{R} / \sigma_{V_{R}} \sigma_{W_{R}}}{0.05} \frac{{ }^{W} V_{R}{U_{R}} / \sigma_{W_{R}} \sigma_{u_{R}}}{-0.10}$
$\frac{u_{R}{ }^{V} /}{} / \sigma_{u_{R}} \sigma_{V_{L}} \frac{{ }^{V_{R} W_{L}} / \sigma_{v_{R}} \sigma_{W_{L}}}{0.49} \frac{{ }^{W R} V_{L} / \sigma_{W_{R}} \sigma_{u_{L}}}{-0.10}$
$\frac{\sigma_{\Delta u R L}}{1.75} \frac{\sigma_{\Delta v R L}}{1.61} \frac{\sigma_{\Delta w R L}}{2.00}$

Figure A.78. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 16 ($r=$ degree of non-Gaussian).

$\begin{array}{llllllll}0 & \infty & 0 & \sigma & N & 0 & N & 4 \\ - & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & \infty & 0 & 世 & N & 0 & N & 4 \\ \therefore & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\left.\stackrel{\alpha}{>}\right|_{0^{>}} ^{\infty}$

[^5]
ORIGINAE PAGE E
 nE POOR QUALITY

TABLE A．32．List of All Parameters Measured and Their Range of Values， Flight 31，Run 16.

CHAKNEL	UNITS	HIGH	LOW	HEAN	RMS	510	POINTS
1 Fitif 5	SECOWS	$44+50.419$	44550.619	44600.51910	$44600.52 \% 41$	2月， 82083	3993
	AInISEC	－ 173	－$=170$	－$=00219$	$\ldots .05480$	． 05485	3993
3 cric ¢ Prec	c untts	I． 136	． 174	． 99295	1．02c51	． 23560	3993
${ }_{5}$ Yuria ony R	RADESEC	． 114	$=1$.00353	－．02160	，02132	3993
	An	.093	－． 02	． 0356	．04473		3
6－4y ．－．．．		． 124	－ 14	． 00810	．053C3	． 05242	3993
8 ¢5	QEA	－ 7.21	8P． 25	94．18252	94.20765	2.16232	3963
90FL PST 1 O－		7.048		2.51781	3．3644	2.11081	3995
10 in		7.402	－ 3.037	2.9414%	－3．84665	2.15567	3993
11 ictinite	O＿UNTT5	1.940	－1．764	1．00539	1.09143	．42420	3993
	GUNITS	2.939	＝1． 190	1.00248	1.09894	－48026	3993
13arci yeam	HNITS	． 130	$=.079$	． 0.07342	－．05700	－ $0 \% 198$	3993
14 arcirec	GUNITS	－212	$=.308$	－． 00651	.05113	． 05072	3
151204i cto	$0 \mathrm{O}^{\text {i }}$	． 035	127	－． 04022	． 04610	$.02253$	3993
17AFTi PTR E	80	－126	$=-181$	7．．00199	－04261	-04257	3903
17\％下的 10	OEG	71.217	76.677	6.99361	76.09375	． 14330	993
18¢をw－	OE	59.429	39.084	59．26035	50．26C35	． 02375	993
19 Arcijins f	6 IINITS	2.197	． 0318	－99566	1.02411	123972	3993
20 ALPMA PT PA	PAO－－－	－．043	$=.114$	－．03255	． 04116	$.02520$	3993 3093
	AD	.123	$\therefore 146$	． 00732	－03684	-03814	3093 309
	可	－ 016	$\cdots .083$	＝．00486	．02410	．02361	3993
	10	118	－． 153	．0CE21	． 03648	． 03813	03
24psi ที่า		．141	． 099	.00216	．035c7	.03501	3993
	DFS ${ }^{\text {c }}$	13.275	10.124	11.36003	11.38193	.70577	3993
260 TT	DSID	1.372	． 696	－．91431	＿． 92547	.14649	3993
27nctic		1.369	460	．87421	．88616	14142	3993
280p－	－10	1.377	． 667	．90437	.01609	．14979	3993
29p ${ }^{\circ}$	PSTA	11．074	11.774	11.82186	11．82187	.01712	3993
30renplet	volys	H．？93	6.907	7.74091	7．74587	．27715	3493
31givign－－	DEC	＝2． 220	－11．5i	－5．65175	$6.041+9$	2.12560	3993
320¢，it	PSIO	.049	． 046	.04736	．04739	.00077	3993
	¢it	．14	.041	12450	－12356	.81626	3993
	510	121	106	． 11176	． 1116	.00406	3993
35 可 \ldots	OF＇6	－6．515	－6．788	$=6.42209$	6.42615	－ 2 2－	396
36nal	OFG	－5．4\％3	－5．896	－5．65123	5.65245	．11733	3993
310FtFv—	तह ${ }^{\text {c }}$	4.643	4． 565	4.50025	4.50030	． 020 00	5993
3日下゙「斤可	HEG	－．360	． 379	－．36745	． 36749	．00536	985
	施	11．312	10．751	11.04139	11．04252	.15799	3493
40¢T40\％－		6 ¢， 645	EA． 262	68.61489	$6 \mathrm{Cb18CQ}$	18471	3993
		69.238	63.943	69.11436	69.11441	－ 0850	3993
42がi	CbsTIT0	.190	.191	．19540	．18441	． 00048	3993
43SG－P	POSITION	.369	－ 365	－36728	－ 3 4720	.00145	3993
	METERS	7496835.904	8 AO 9.66		＋4467676	3066．10698	3003
45 T ¢	OEGREES	－72．663	42．＇¢73	72.01892	72.91692	． 03572	3993
	DEGREES	－118．078	－11月．216	－118．15034	118.15035	.03649	3993
47LAT－．．．D	DFGREES	－35．120	35.118	$\therefore 3512240$	－ 35.1224 F	000266	3993
	VFGFEE	97.616	92.672	95.36264	55．37241	1.36520	3093
49 MSG	MADIAMS	1.737	12.549	1．65t60	$1.657 C 5$	$.03894$	399.
$30 \mathrm{YF}^{-1} \mathrm{~N}$	M／SEC	120．476	110.605	116.93289	117．065 36	5．5te14	3993
51.	M／SEC	－3．153	－17．078	-1209970	11.54155	－3：3018	3993
	$\underline{1}$	1.731	1.763	1．7505	$1.798 C 9$	－－01172	3993
53＋EMDF－－	DETAEES	7.254	4.521	3.67056	5.6458	．51272	3993
54FMV4n SPD K	KNOTS	43.71 H	－5．148	20．03804	22.6775	10.61968	3993
55NS Y WD Eink	KNTTS	22.602	－26．946	－ 3.83615	7.69222	？．01227	3993
56О ${ }^{\circ} \mathrm{MD}$ SPFFD K	K＋17T5	$4 \mathrm{~h}, 577$	－ 249	21.62644	24．04471	10．088t？	3993
57ETNO HTEFC	DFGREES	350.531	． 654	272.94353	275.63452	＿－ 40.55692	3993
	OFGDFES	17月．531	176.346	92．94357	1014．404¢3	40.55694	3993
	DFGREFS	3720．331	1847．954	2079.94357	$2075,93557$	-49.58694	3903
$60 \cup$ Mr ming ob	DEGOFES	2721.902	1867.900	2079.79558	2080.3311	47.4000	3993
61．ióarpo	M／SEC	$13 \frac{3}{0} 976$	84.18	10682734	-109.14090	－8．26021	$\begin{array}{r}3993 \\ 3993 \\ \hline\end{array}$
62íiospeŕt c	W／SEC	127.618	43.661	107．07731	107．3E78	8．15965	3993
	M／SFC	133.663	56.364	109．4126？	109.72337	8． 25302	3995
640FIT ATT	MFTET	12.694	－55．642	－-20.15336	73．31478	－ 11.72414	3993
65 ¢ndith his	Heictis	96	－ $30.62{ }^{2}$	－-6.6798 H	－19，74140	－ 10.56163	3983
66110 TRU	M／SFC	13.17 A	－14．235	－．$\quad .00000$	5.68499	－ 5.68510	993
6711 Cicifo	Misec	12729	－13．457	－	5.50478	－－5． 59479	3993
	R／SFC	13.91	－13，629	－－00000	3.74977	－ 5.74149	3993
$69 \overline{\mathrm{~V}}$ ITMT	W／SEC	11.799	－11．170	－$=15232$	3.22170	－$\quad 3.21850$	3993
	H／5EC	12.004	-13.296	－＿－ 1313	3.443 Cz	－－3．44175	3993
1VPAFFP	M 15 E	11.329	－11．407	－＝12924	3，30171	－	3993
	M $5 E C$	11.274	-11.26	－ 06686	3.21870	＿＿＿ 3.21637	3993
	H／SEC	10.461	－10．760	－ofe361	3.02294	－＿ 3.02216	3943
74UA IECT	M／SEC	10.766	－13．718	－．07P31	3.14724	－-3.14664	3093

APPENDIX B

DERIVATION OF EQUATIONS

This appendix contains a more complete derivation of the gust equations to compare with the specialized form of those used by the NASA Langley Research Center (LaRC) and to show the significance during certain manuevers, of terms which are not present in the specialized form. The wind velocity vector components at some position \bar{r} measured from the c.g. of a rigid aircraft are designated u_{g}, v_{g}, and W_{g}. These are measured in the coordinate system with the x axis pointing north, the y axis pointing east, and the vertical axis pointing along the local vertical (gravity vector; positive downward). The coordinate system is called the true north coordinate system and is taken as the inertial system in this analysis (however, see Rhyne, 1976).* The $\mathrm{u}_{\mathrm{g}}, \mathrm{v}_{\mathrm{g}}$, and w_{g} components point north, east, and vertical, respectively, and are given by:

$$
\left(\begin{array}{l}
u+u_{g} \tag{B.1}\\
v+v_{g} \\
w+w_{g}
\end{array}\right)=\left(\begin{array}{l}
v_{N} \\
v_{E} \\
v_{A Z}
\end{array}\right)+\left(\begin{array}{c}
u_{R} \\
v_{R} \\
w_{R}
\end{array}\right)
$$

The symbols u, v, and w designate the components of the aircraft velocity vector relative to the air mass measured in the true north coordinate system; V_{N}, V_{E}, and $V_{A Z}$ are the inertial velocity vector components of the c.g. of the aircraft; and U_{R}, v_{R}, and W_{R} are the velocity components of the position \vec{r}

[^6]relative to the c.g. of the aircraft due to rotation of the frame of reference fixed in the airplane, i.e., the body coordinate system.

The matrix LAI transforms the velocity components in the true north coordinate system to the average flight path coordinates. This transform matrix has the following form: bank angle $(\bar{\phi})$, track angle $(\bar{\psi})$, and elevational angle ($\bar{\theta}$).
$L_{A I}=\left[\begin{array}{cll}\cos \bar{\theta} \cos \bar{\psi} & \cos \bar{\theta} \sin \bar{\psi} & -\sin \bar{\theta} \\ \sin \bar{\phi} \sin \bar{\theta} \cos \bar{\psi} & \sin \bar{\phi} \sin \bar{\theta} \sin \bar{\psi} & \sin \bar{\phi} \cos \bar{\theta} \\ -\cos \bar{\phi} \sin \bar{\psi} & & +\cos \bar{\phi} \cos \bar{\psi} \\ \cos \bar{\phi} \sin \bar{\theta} \cos \bar{\psi} & \cos \bar{\phi} \sin \bar{\theta} \sin \bar{\psi} & \cos \bar{\phi} \cos \bar{\theta} \\ +\sin \bar{\phi} \sin \bar{\psi} & -\sin \bar{\phi} \cos \bar{\psi} & \end{array}\right]$
The velocity components u_{R}, v_{R}, and W_{R} in Equation B. 1 are derived as follows. The velocity of a point $\vec{r}=\ell_{x} \vec{i}+\ell_{y} \vec{i}+\ell_{z} \vec{k}$ measured in the airplane frame of reference (i.e., body coordinates) which is rotating relative to the fixed frame of reference (i.e., inertial frame taken as the true north coordinates in this report) is given by $\vec{\Omega} \times \vec{r}$, where $\vec{\Omega}$ is the angular velocity of the airplane frame of reference relative to the inertial frame of reference. $\vec{\Omega}$ has the components p, q, and r and $\vec{\Omega} \times \vec{r}$ has the components $u_{R}^{\prime}, v_{R}^{\prime}$, and w_{R}^{\prime} expressed in body coordinates, i.e.:
$\vec{\Omega} \times \vec{r}=\left(\begin{array}{lll}\vec{i} & \vec{j} & \vec{k} \\ p & q & r \\ \ell_{x} & \ell_{y} & \ell_{z}\end{array}\right)=u_{R}^{\prime} \vec{i}+v_{R}^{\prime} \vec{j}+w_{R}^{\prime} \vec{k}$
Note ℓ_{z} measured down is positive and ℓ_{y} measured to the right is positive. Expanding Equation B. 3 gives:

$$
\left(\begin{array}{c}
u_{R}^{\prime} \tag{B.4}\\
v_{R}^{\prime} \\
w_{R}^{\prime}
\end{array}\right]=\left(\begin{array}{l}
q \ell_{z}-r \ell_{y} \\
r \ell_{x}-p \ell_{z} \\
p \ell_{y}-q \ell_{x}
\end{array}\right]
$$

In terms of the Euler angles (ψ, θ, ϕ) of the body axis relative to the true north or inertial frame of reference:

$$
\left(\begin{array}{l}
p \tag{B.5}\\
q \\
r
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & -\sin \theta \\
0 & \cos \phi & \sin \phi \cos \theta \\
0 & -\sin \phi & \cos \phi \cos \theta
\end{array}\right]\left[\begin{array}{l}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]
$$

hence

$$
\left[\begin{array}{l}
p \tag{B.6}\\
q \\
r
\end{array}\right)=\left(\begin{array}{l}
\dot{\phi}-\dot{\psi} \sin \theta \\
\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \cos \theta \\
-\dot{\theta} \sin \phi+\dot{\psi} \cos \phi \cos \theta
\end{array}\right)
$$

Thus, the components of the rotational velocity of the position \vec{r} about the c.g. measured in the body coordinate system are:

$$
\left[\begin{array}{l}
u_{R}^{\prime} \tag{B.7}\\
v_{R}^{\prime} \\
w_{R}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\ell_{z}(\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \cos \theta)+\ell_{y}(\dot{\theta} \sin \phi-\dot{\psi} \cos \phi \cos \theta) \\
-\left[\ell_{z}(\dot{\phi}-\dot{\psi} \sin \theta)+\ell_{x}(\dot{\theta} \sin \phi-\dot{\psi} \cos \phi \cos \theta)\right] \\
\ell_{y}(\dot{\phi}-\dot{\psi} \sin \theta)-\ell_{x}(\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \cos \theta)
\end{array}\right]
$$

Now since these are velocity components in the body coordinate system they must be transformed to the average flight path coordinates.

$$
\left(\begin{array}{l}
\hat{u}_{R} \tag{B.8}\\
\hat{v}_{R} \\
\hat{w}_{R}
\end{array}\right]=L_{A B}\left[\begin{array}{c}
u_{R}^{\prime} \\
v_{R}^{\prime} \\
w_{R}^{\prime}
\end{array}\right]
$$

$L_{A B}=\left[\begin{array}{ccc}\cos \hat{\theta} \cos \hat{\psi} & \sin \hat{\phi} \sin \hat{\theta} \cos \hat{\psi} & \cos \hat{\phi} \sin \hat{\theta} \cos \hat{\psi} \\ & -\cos \hat{\phi} \sin \hat{\psi} & +\sin \hat{\phi} \sin \hat{\psi} \\ \cos \hat{\theta} \sin \hat{\psi} & \sin \hat{\phi} \sin \hat{\theta} \sin \hat{\psi} & \cos \hat{\phi} \sin \hat{\theta} \sin \hat{\psi} \\ & +\cos \hat{\phi} \cos \hat{\psi} & -\sin \hat{\phi} \cos \hat{\psi} \\ -\sin \hat{\theta} & \sin \hat{\phi} \cos \hat{\theta} & \cos \hat{\phi} \cos \hat{\theta}\end{array}\right]$
where \hat{u}_{R}, \hat{v}_{R}, and \hat{w}_{R} are the components of the rotation vector expressed in the average flight path coordinates; $\hat{\psi}, \hat{\theta}$, and $\hat{\phi}$ are the Euler angles of the body axis relative to the average flight path axis.

The north, east, and vertical inertial velocity components expressed in the average flight path coordinates are denoted with capital letters having a (${ }^{\wedge}$) are:

$$
\left[\begin{array}{l}
\hat{U} \tag{B.10}\\
\hat{V} \\
\hat{W}
\end{array}\right]=\left[\begin{array}{l}
V_{N} \cos \bar{\theta} \cos \bar{\psi}+V_{E} \cos \bar{\theta} \sin \bar{\psi}-V_{A Z} \sin \bar{\theta} \\
V_{N}(\sin \bar{\phi} \sin \bar{\theta} \cos \bar{\psi}-\cos \bar{\phi} \sin \bar{\psi})+V_{E}(\sin \bar{\phi} \sin \bar{\theta} \sin \bar{\psi} \\
+\cos \bar{\phi} \cos \bar{\psi})+V_{A Z} \sin \bar{\phi} \cos \bar{\theta} \\
V_{N}(\cos \bar{\phi} \sin \bar{\theta} \cos \bar{\psi}+\sin \bar{\phi} \sin \bar{\psi})+V_{E}(\cos \bar{\phi} \sin \bar{\theta} \sin \bar{\psi} \\
-\sin \bar{\phi} \cos \bar{\psi})+V_{A Z} \cos \bar{\phi} \cos \bar{\theta}
\end{array}\right]
$$

The values of \hat{u}, \hat{v}, and \hat{w} which are the true airspeed velocity components in the average frame of reference are not measured directly in the flight experiments. Rather the true airspeed of the aircraft, V, is measured. Therefore, \hat{u}, \hat{v}, and \hat{w} must be expressed in terms of this variable. The velocity components u^{\prime}, v^{\prime}, and w^{\prime} (i.e., measured in body coordinates) are related to the true airspeed by the relationship:

$$
\left[\begin{array}{c}
u^{\prime} \tag{B.11}\\
v^{\prime} \\
w^{\prime}
\end{array}\right]=L_{B W}\left(\begin{array}{l}
v \\
0 \\
0
\end{array}\right]
$$

where
$L_{B W}=\left(\begin{array}{lll}\cos \alpha \cos \beta & -\cos \alpha \sin \beta & -\sin \alpha \\ \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & -\sin \alpha \sin \beta & \cos \alpha\end{array}\right)$
and α and β are the angle of attack ($=\tan ^{-1} \mathrm{w}^{\prime} / \mathrm{u}^{\prime}$) and sidesilp angle (= $\left.\sin ^{-1} V^{\prime} / N\right)$, respectively. L $L_{B W}$ transforms the velocity components measured in a frame of reference for which the x axis is located along the relative velocity vector (Etkin (1972) calls this the "wind" coordinate system) to the body coordinate system. Thus:
$\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ w^{\prime}\end{array}\right)=\left(\begin{array}{l}V \cos \alpha \cos \beta \\ v \sin \beta \\ v \sin \alpha \cos \beta\end{array}\right)$
The above assumes that the pitot tube measures actual magnitude of the relative velocity or true airspeed and not some fractional component.

The above values must be rotated into the average flight path frame of reference with the transform $L_{A B}$, i.e.,
$\left(\begin{array}{l}\hat{u} \\ \hat{v} \\ \hat{w}\end{array}\right)=L_{A B}\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ w^{\prime}\end{array}\right)$
The wind velocity measured in the flight path coordinate system is thus given by:

$$
\left[\begin{array}{l}
\hat{u}_{g} \tag{B.15}\\
\hat{v}_{g} \\
\hat{w}_{g}
\end{array}\right]=\left(\begin{array}{l}
\hat{U} \\
\hat{v} \\
\hat{w}
\end{array}\right]+\left(\begin{array}{l}
\hat{u}_{R} \\
\hat{v}_{R} \\
\hat{w}_{R}
\end{array}\right]-\left(\begin{array}{l}
\hat{u} \\
\hat{v} \\
\hat{w}
\end{array}\right]=L_{A I}\left(\begin{array}{l}
v_{N} \\
v_{E} \\
v_{a z}
\end{array}\right)+L_{A B}\left[\begin{array}{l}
u_{R}^{\prime}-u^{\prime} \\
v_{R}^{\prime}-v^{\prime} \\
w_{R}^{\prime}-w^{\prime}
\end{array}\right]
$$

Consider the transform $L_{A B}$ (Equation B.9). The angles $\hat{\phi}, \hat{\theta}$, and $\hat{\psi}$ are not measured in the flight program; therefore, $L_{A B}$ must be expressed in terms of ϕ, θ, and ψ which are measured and $\bar{\phi}, \bar{\theta}$, and $\bar{\psi}$ which may be determined in post-flight analysis. This is achieved as follows:
$\vec{V}_{A}=L_{A I} \vec{V}_{I}$ and $\vec{V}_{I}=L_{I B} \vec{V}_{B}$
hence
$\vec{V}_{A}=L_{A I} L_{I B} \vec{V}_{B}$
and thus
$L_{A B}=L_{A I} L_{I B}=L_{A I} L_{B I}^{\top}$
where the superscript T denotes the transpose. The terms of $L_{A B}$ for the general case are very complex; however, assuming wings level flight, i.e., $\bar{\phi}=$ 0 , which does not lose any generality for the present problem, results in:
$L_{A B}=\left(\begin{array}{ccc}\cos \theta \cos \bar{\theta} \cos (\psi-\bar{\psi}) & \sin \phi \sin \theta \cos \bar{\theta} & \cos \phi \sin \theta \cos \bar{\theta} \\ +\sin \theta \sin \bar{\theta} & \cos (\psi-\bar{\psi})-\cos \bar{\theta} & \cos (\psi-\bar{\psi})+\sin \phi \\ & \cos \phi \sin (\psi-\bar{\psi}) & \cos \bar{\theta} \sin (\psi-\bar{\psi}) \\ & -\cos \theta \sin \phi \sin \bar{\theta} & -\cos \theta \cos \phi \sin \bar{\theta} \\ \cos \theta \sin (\psi-\bar{\psi}) & \cos \phi \cos (\psi-\bar{\psi}) & -\sin \phi \cos (\psi-\bar{\psi}) \\ & +\sin \phi \sin \theta & +\cos \phi \sin \theta \\ & \sin (\psi-\bar{\psi}) & \sin (\psi-\bar{\psi}) \\ \cos \theta \sin \bar{\theta} \cos (\psi-\bar{\psi}) & \sin \phi \sin \theta \sin \bar{\theta} & \cos \phi \sin \theta \sin \bar{\theta} \\ -\sin \theta \cos \bar{\theta} & \cos (\psi-\bar{\psi})-\cos \phi & \cos (\psi-\bar{\psi})+\sin \phi \\ & \sin \bar{\theta} \sin (\psi-\bar{\psi}) & \sin \bar{\theta} \sin (\psi-\bar{\psi}) \\ & +\cos \bar{\theta} \sin \phi \cos \theta & +\cos \phi \cos \theta \cos \bar{\theta}\end{array}\right]$

Now assuming $\phi, \psi-\bar{\psi}$, and $\theta-\bar{\theta}$ are small angles and neglecting high order terms, Equation B. 19 reduces to:
$L_{A B}=\left(\begin{array}{lll}1 & -(\psi-\bar{\psi}) \cos \bar{\theta} & \theta-\bar{\theta} \\ (\psi-\bar{\psi}) \cos \theta & 1 & -\phi \\ -(\theta-\bar{\theta}) & \phi-(\psi-\bar{\psi}) \sin \bar{\theta} & 1\end{array}\right)$
Substituting $L_{A B}$ from above into Equation B. 15 and similar assuming small angles (or angle differences) with second order terms neglected in the expressions $u_{R}^{\prime}-u^{\prime}$, $v_{R}^{\prime}-v^{\prime}$, and $w_{R}^{\prime}-w^{\prime}$ (see Equations B. 7 and B.13) the second term on the right-hand side of Equation B. 15 becomes:
$L_{A B}\left[\begin{array}{l}u_{R}^{\prime}-u^{\prime} \\ v_{R}^{\prime}-v^{\prime} \\ w_{R}^{\prime}-w^{\prime}\end{array}\right]=\left[\begin{array}{c}\ell_{z} \dot{\theta}-\ell_{y}(-\dot{\theta} \phi+\dot{\psi} \cos \theta)-V-(\psi-\bar{\psi}) \cos \bar{\theta}\left[\ell_{x} \dot{\psi} \cos \theta-V_{B}\right. \\ \left.-\ell_{z}(\dot{\phi}-\dot{\psi} \sin \theta)\right]+(\theta-\bar{\theta})\left[\ell_{y}(\dot{\phi}-\dot{\psi} \sin \theta)-\ell_{x} \dot{\theta}-V_{\alpha}\right] \\ (\psi-\bar{\psi}) \cos \theta\left[\ell_{z} \dot{\theta}-\ell_{y} \dot{\psi} \cos \theta-V\right]+\ell_{x}(-\theta \dot{\phi}+\dot{\psi} \cos \theta) \\ -V_{B}-\ell_{z}(\dot{\phi}-\dot{\psi} \sin \theta)-\phi\left[\ell_{y}(\dot{\phi}-\dot{\psi} \sin \theta)-\ell_{x} \dot{\theta}-V_{\alpha}\right] \\ -(\theta-\bar{\theta})\left[\ell_{z} \dot{\theta}-\ell_{y} \dot{\psi} \cos \theta-V\right]+[\phi-(\psi-\bar{\psi}) \sin \bar{\theta}]\left[\ell_{x} \dot{\psi} \cos \theta\right. \\ \left.-V_{B}-\ell_{z}(\dot{\phi}-\dot{\psi} \sin \theta)\right]+\ell_{y}(\dot{\phi}-\dot{\psi} \sin \theta) \\ -\ell_{x}(\dot{\theta}+\dot{\psi} \phi \cos \theta)-V_{\alpha}\end{array}\right]$

The derivation of the equations currently used in the data reduction algorithms at the NASA Langley Research Center computer laboratory treats the values of $\dot{\phi}, \dot{\theta}$, and $\dot{\psi}$ as small. Moreover, assuming the position vector $\vec{r}=$ $\ell_{x} \vec{i}+\ell_{y j}+\ell_{z} \vec{k}$ lies in the $x-y$ plane of the body coordinate system, i.e., $\ell_{z}=0$ and introducing these assumptions into Equation B. 21 gives upon neglecting higher order terms:
$L_{A B}\left(\begin{array}{l}u_{R}^{\prime}-u^{\prime} \\ v_{R}^{\prime}-v^{\prime} \\ w_{R}^{\prime}-w^{\prime}\end{array}\right]=\left[\begin{array}{l}-\ell_{y} \dot{\psi} \cos \theta-V+(\psi-\bar{\psi}) V B \cos \bar{\theta}-(\theta-\bar{\theta}) v_{\alpha} \\ -(\psi-\bar{\psi}) V \cos \theta+\ell_{x} \dot{\psi} \cos \theta-V_{B}+V_{\phi \alpha} \\ (\theta-\bar{\theta}) V+[\phi-(\psi-\bar{\psi}) \sin \bar{\theta}] V_{B}+\ell_{y} \dot{\phi}-\ell_{x} \dot{\theta}-V_{\alpha}\end{array}\right)$
Recalling that we have assumed wings level flight, i.e., $\bar{\phi}=0$, the first term on the right-hand side of Equation $B .15$ becomes:
$\left(\begin{array}{l}\hat{U} \\ \hat{V} \\ \hat{W}\end{array}\right)=\left(\begin{array}{l}V_{N} \cos \bar{\theta} \cos \bar{\psi}+V_{E} \cos \bar{\theta} \sin \bar{\psi}-V_{A Z} \sin \overline{\bar{\theta}} \\ -V_{N} \sin \bar{\psi}+V_{E} \cos \bar{\psi} \\ V_{N} \sin \bar{\theta} \cos \bar{\psi}+V_{E} \sin \bar{\theta} \sin \bar{\psi}+V_{A Z} \cos \bar{\theta}\end{array}\right)$
Therefore, under the following assumptions:

1. Wing level flight, i.e., $\bar{\phi}=0$.
2. $\phi, \theta-\bar{\theta}, \psi-\bar{\psi}, \alpha$, and β are $\operatorname{small}(<10 \operatorname{deg}, \cos ()=1, \sin ()=() ;$ error $<2 \%$) and high order terms of the products of these angles are negligible (error <3\%).
3. The wind velocity probe is measured at a given point in the $x-y$ plane of the body coordinate system (i.e., $\ell_{z}=0$).
4. The values of $\dot{\phi}, \dot{\theta}$, and $\dot{\psi}$ are small ($<10 \mathrm{deg} / \mathrm{sec}$, error $<2 \%$) and high order terms of the products of these values are negligible (error $<3 \%$).

The wind velocity vector components expressed in the average flight path coordinate system is given by adding Equation B. 22 and Equation B.23:

$$
\left[\begin{array}{l}
\hat{u}_{g} \tag{B.24}\\
\hat{V}_{g} \\
\hat{w}_{g}
\end{array}\right]=\left[\begin{array}{l}
V_{N} \cos \bar{\theta} \cos \bar{\psi}+V_{E} \cos \bar{\theta} \sin \bar{\psi}-V_{A Z} \sin \bar{\theta}-\ell_{y} \dot{\psi} \cos \theta \\
-V+(\psi-\bar{\psi}) V_{B} \cos \bar{\theta}-(\theta-\bar{\theta}) V_{\alpha} \\
-V_{N} \sin \bar{\psi}+V_{E} \cos \bar{\psi}-(\psi-\bar{\psi}) V \cos \theta+\ell_{x} \dot{\psi} \cos \theta-V_{B}+V_{\phi \alpha} \\
V_{N} \sin \bar{\theta} \cos \bar{\psi}+V_{E} \sin \bar{\theta} \sin \bar{\psi}+V_{A Z} \cos \bar{\theta}+(\theta-\bar{\theta}) V \\
-[\phi-(\psi-\bar{\psi}) \sin \bar{\theta}] V_{B}+\ell_{y} \dot{\phi}-\ell_{x} \dot{\theta}-V_{\alpha}
\end{array}\right]
$$

The NASA LaRC algorithm assumes level flight given by $\theta=\overline{0}$ which implies the angle θ is small, Equation B. 24 then becomes:
$\left[\begin{array}{l}\hat{u}_{g} \\ \hat{v}_{g} \\ \hat{w}_{g}\end{array}\right]=\left[\begin{array}{l}V_{N} \cos \bar{\psi}+V_{E} \sin \bar{\psi}-\ell_{y} \dot{\psi}-V+(\psi-\bar{\psi}) V_{B}-V_{\theta \alpha} \\ V_{E} \cos \bar{\psi}-V_{N} \sin \bar{\psi}-(\psi-\bar{\psi}) V+\ell_{x} \dot{\psi}-V_{B}+V \phi \alpha \\ V_{A Z}+V \theta-V_{\phi B}+\ell_{y} \dot{\phi}-\ell_{x} \dot{\theta}-V_{\alpha}\end{array}\right]$
These equations represent the total wind velocity components, however, interest is generally in the fluctuations about the mean, hence the terms in Equation B. 25 are expressed as a mean quantity plus a fluctuation quantity, i.e., $A=\bar{A}+\tilde{A}$

Note $\bar{\psi}=\bar{\psi}, \tilde{\psi}=\dot{\psi}, \tilde{\dot{\theta}}=\dot{\theta}, \tilde{\dot{\phi}}=\dot{\phi}, \frac{1}{\phi}=\frac{1}{\beta}=0 \quad$ (thus, $\tilde{\beta}=\beta$ and $\tilde{\phi}=\phi$): $\frac{1}{\theta}$ and $\frac{1}{\alpha}$ are not necessarily zero. The right-hand most term is the velocity fluctuation about the mean where the mean is given by the expression immediately following the equal sign.

The equations used in the NASA LaRC algorithm for the fluctuating gust velocities are given by:

$$
\left[\begin{array}{l}
\tilde{\hat{u}}_{g} \tag{B.27}\\
\tilde{\hat{v}}_{g} \\
\tilde{\hat{w}_{g}}
\end{array}\right]=\left[\begin{array}{l}
\tilde{V}_{N} \cos \bar{\psi}+\tilde{V}_{E} \sin \bar{\psi}-\ell_{y} \dot{\psi}-\tilde{V} \\
\tilde{V}_{E} \cos \bar{\psi}-\tilde{V}_{N} \sin \bar{\psi}-V_{\psi}+\ell_{x} \dot{\psi}-V_{B}+V \phi \alpha \\
\tilde{v}_{A Z}+v_{\theta}-V_{\phi B}+\ell_{y} \dot{\phi}-\ell_{x} \dot{\theta}-V_{\alpha}
\end{array}\right]
$$

In the NASA LaRC algorithm, the signs of $B, \tilde{V}_{A Z}$, and $\tilde{\hat{w}}$ are defined opposite to those used in the previous derivation. Therefore, to obtain the exact form of the NASA LaRC equations, one has to change the signs of β, $\tilde{V}_{A Z}$, and $\tilde{\hat{w}}_{g}$ in Equation B.27. Also, it must be noted that the values of α and β in Equation $B .12$ are measured relative to the body axis of the aircraft whereas α and B measured in the NASA Gust Gradient Program are relative to the axis of the boom. To obtain the angle of attack, α, in Equation B. 12 one must add the angle between the projection of the boom in the body $x-z$ plane and the body x-axis to the measured α. Since for the full equations α must be the value relative to the body axis, the angle between the boom and the body x-axis was estimated by subtracting the average measured value of α from the average value of pitch angle for the total number of straight and level runs of Flight 31 and Flight 21. This value was determined to be approximately 4.4 degrees for the center probe.

There are some differences in Equation B. 26 and B. 27 that can be explained as follows. The terms $\tilde{\psi} V \beta$ and $\tilde{V} \theta \alpha$ in Equation $B .26$ are neglected in Equation B.27. This is consistent with the assumption that second-order small terms are negligible. However, based on this reasoning, the terms $V \phi \tilde{\alpha}$ and $V \phi B$ should also be neglected but it is not. The reason is that in early studies, $\tilde{V_{\phi \alpha}}$ and $V \phi \beta$ were found not to be small compared to the other terms in the equation (Rhyne, 1976) and have therefore been retained. Also, the expressions $V_{\alpha}+\tilde{V}_{\alpha}$ and $\tilde{V}+\tilde{V_{\theta}} \frac{1}{\theta}$ in Equation $B .26$ are simply written $V \tilde{\alpha}$ and $\tilde{V} \tilde{\theta}$ in Equation B.27. Justification for this is that
since $\frac{1}{\alpha}$, in $\tilde{V \alpha}+\tilde{V} \frac{1}{\alpha}$ for example, is a small angle even on the average, then $\tilde{V} \frac{1}{\alpha}$ is negligible compare to $V \tilde{\alpha}$. This is reasonable in view of the fact that V_{α}^{α} may be 1 to 2 orders of magnitude larger than \tilde{V}_{α} because V is typically two orders of magnitude larger than \tilde{V} whereas $\frac{1}{\alpha}$ is probably of the same order of magnitude as $\tilde{\alpha}$. Finally, if second-order terms are strictly neglected, then $\tilde{V_{\alpha}}$ should actually be $\tilde{V} \tilde{\alpha}$; however, there is no saving in computing $\tilde{V_{\alpha}}$ since it is just as easy to compute $\tilde{V \alpha}$. This is true of $\tilde{V \theta}$ and $V B$ as well.

1. Report No. NASA CR-178288 Government Accession No.	3 Recipient's Catalog No.
	$\begin{aligned} & \text { 5. Report Date } \\ & \text { August } 1987 \\ & \text { C. Performing Organization Code } \end{aligned}$
7. Author (s) Walter Frost, Ho-Pen Chang, Erik A. Ringness	- Performing Organization Report No.
9. Performing Organization Name and Address FWG Associates, Inc. Rt. 2, Box 271-A Tullahoma, TN 37388	$\begin{aligned} & \text { 11. Contract or Gram No. } \\ & \text { NAS1-17989 } \\ & \text { 13. Type of Repori and Period Covered } \end{aligned}$
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546	Contractor Report 14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: Hal Murrow
Final Report
16. Abstract

Analysis of turbulence measured across the airfoil of a Cambera B-57 aircraft are reported. The aircraft is instrumented with probes for measuring wind at both wing tips and at the nose.

Statistical properties of the turbulence are reported. These consist of the standard deviations of turbulence measured by each individual probe, standard deviations and probability distribution of differences in turbulence measured between probes and auto-and two-point spatial correlations and spectra.

The report addresses procedures associated with calculation of two-point spatial correlations and spectra utilizing digitized data. Methods and correction procedures for assuring the accuracy of aircraft measured winds are also described.

Results are found, in general, to agree with correlations existing in the literature. The velocity spatial differences fit a Gaussian/Bessel type probability distribution. The turbulence agrees with the von Karman turbulence correlation and with two-point spatial correlations developed from the von Karman correlation.
17. Key Words (Suggested by Authors(s))

Gust Gradient, atmospheric turbulence, spectral analysis
18. Distribution Statement

Unclassified - UnTimited

[^0]: *The authors prefer the terminology two-point auto-correlation for a correlation between like velocity components measured at spatially separated positions. In deference to the reviewers, however, who found this terminology confusing and concluded that an auto-correlation must be a correlation of a signal with itself, the correlation between the same velocity components measured at different positions in space is called a two-point common component correlation or, where no confusion exists, simply a two-point correlation in this report.

[^1]: *Note vertical variation of horizontal wind with height is typically logarithmic (Panofsky and Dutton, 1984).

[^2]: *Huber and Bogers (1983) point out that a platform used in an airplane cannot strictly be kept tuned to $T_{0}=84.4$ minutes after takeoff since R (distance between the airplane and center of the earth) and g (gravitational acceleration) change with altitude. They propose to define $T_{0}=84.4$ minutes as the Schuler constant (for the earth). The actual period of oscillation proposed by these authors for a specific Schuler-adjusted system takes into account the gravity gradient, the mass distribution in the system, and the centrifugal forces due to the velocity of the carrying vehicle. This is called the actual oscillation period. The actual oscillation period of a specific Schuler-adjusted system (acceleration insensitive system) under specific circumstances is given by them as:
 $T=k \cdot 2 x \sqrt{k / g}$
 where k will always have a value between 0.5 and -.

[^3]: a. One- and two-point common component spectra.

 Figure A.25. Comparison of normalized one-and two-point spectral density functions
 for gust velocities with theoretical models, Flight 31 , Run 5 .

[^4]:

[^5]: b. One- and two-point cruss-spectra.

 Figure A.80. (continued).

[^6]: *Grid north is true north at the platform alignment location, but as the platform moves east or west from its initial alignment point, its north-south axis is not torqued to point at true north but remains parallel to a vertical plane through the meridian at which it was aligned. (The north-south and east-west axes are torqued to be perpendicular to the local vertical at all times, however.) For all practical purposes, the inertial-platform axis system can be assumed to be aligned with true north, considering the latitudes of operation and the east-west distances flown in a preceding project.

