Contractor report 178288

ANALYSES AND ASSESSMENTS OF SPAN WISE GUST GRADIENT DATA FROM NASA B-57B AIRCRAFT

WALTER FROST HO-PEN CHANG ERIK A. RINGMES

FWG ASSOCIATES, INC. Tullahoma, TN. 37388

Contract NAS1-17989 AUGUST 1987 (NASA-CR-178288) ANALYSES AND ASSESSMENTS N88-10007 OF SPAN WISE JUST JEADIENT DATA PROM MASA B-57B AIRCRAFT Final Report (FWG Associates) 350 p Avail: NTIS HC A15/MF Unclas A01 CSCL 01A 33/02 0103504

NASA Viational Aeronautics and Space Administration

Langley Research Center Hampton, Virgin:a 23665-5225

ACKNOWLEDGEMENTS

This research was supported under NASA Contract NAS1-17989. The authors are grateful for the support of A. Richard Tobiason of the Office of Aeronautical and Space Tennology, NASA Headquarters, Washington, D.C. Special thanks go to Harold N. Murrow and Robert K. Sleeper of the Loads and Aeroelasticity Division, NASA Langley Research Center, Hampton, Virginia, who monitored the research program and made many useful suggestions. Also, the authors want to thank L. Jack Ehernberger, NASA Dryden Research Center, for his valuable inputs and suggestions, and Dennis W. Camp, NASA Marshall Space Fl.ght Facility, for directing and managing the overall program.

PRECEDING PAGE BLANK NOT FILMTD

TABLE OF CONTENTS

SECTION -	P	AGE
1.0 INTRO	ODUCTION	1
2.0 STAT	ISTICAL ANALYSIS OF DATA	9
2.1	Flight Altitude and Horizontal Wind Velocity Along the Flight Path	14
2.2	Time Histories of Gust Velocities, Gust Velocity Differences Between Wing Tips, and the Aircraft's Normal Acceleration	18 -
2.3	Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficient of Gust Velocities	25
2.4	Probability Density Function for Gust Velocities and Gust Velocity Differences	31
2.5	Normalized One- and Two-Point Correlation Functions of Gust Velocities	35
2.6	Normalized One- and Two-Point Spectral Density Functions of Gust Velocities	46
2.7	List of All Parameters Measured and the Range of Their Extreme and Average Values	62
3.0 SPE	CTPAL ESTIMATION	. 67
3.1	Graphical Illustration of the Discrete Fourier Transform	. 68
3.2	Aliasing	. 71
3.3	Bias Error	. 78
3.4	Smoothing the Spectrum	. 87
3.5	Window Selection	. 88
3.6	5 Variance Error	. 89
3.7	7 Spectrum Calculation from a Finite Turbulence Time History .	. 93
3.8	B Lag Windows for Reducing Bias Error	. 98
4.0 INS	STRUMENTATION ERROR ANALYSIS	. 103
4.1	1 Instrumentation Problems	. 103
4.2	2 Wind and Gust Velocity Equations	. 105

•

4.3 Sources of Inaccuracy in Data Reduction 107 4.4 Inertial Velocity and Position Errors 108 4.5 Flow Vane Errors 119 4.6 Airspeed Errors 119 4.7 Gust Velocity Corrections 120 4.8 Horizontal Wind Vector Correction 122 4.9 Effects of Non-Level Flight 126 5.0 CONCLUSIONS 142 REFERENCES 146 APPENDIX A: RESULTS OF STATISTICAL ANALYSIS OF FLIGHT 31 152 APPENDIX B: DERIVATION OF EQUATIONS 326			PAG	Ę
4.5 Flow Vane Errors		4.3	Sources of Inaccuracy in Data Reduction	7
4.6 Airspeed Errors		4.4	Inertial Velocity and Position Errors	8
 4.7 Gust Velocity Corrections		4.5	Flow Vane Errors	9
 4.8 Horizontal Wind Vector Correction		4.6	Airspeed Errors	9
4.9 Effects of Non-Level Flight1265.0 CONCLUSIONS142REFERENCES146APPENDIX A: RESULTS OF STATISTICAL ANALYSIS OF FLIGHT 31152		4.7	Gust Velocity Corrections	0
5.0 CONCLUSIONS		4.8	Horizontal Wind Vector Correction	2
REFERENCES		4.9	Effects of Non-Level Flight	5
APPENDIX A: RESULTS OF STATISTICAL ANALYSIS OF FLIGHT 31 152	5.0	CONCL	USIONS	2
	REFER	ENCES	5	5
APPENDIX B: DERIVATION OF EQUATIONS	APPEN	IDIX A	RESULTS OF STATISTICAL ANALYSIS OF FLIGHT 31	2
	APPEN	DIX B	E DERIVATION OF EQUATIONS	5

iv

LIST OF TABLES

TABLE		PA	GE
1.1	NASA B-57-B Gust Gradient Flight Record	•	3
2.1	Terrain Category for Flight 31	•	16
2.2	Time Duration and Mean Wind Direction	•	17
2.3	Mean Airspeed (m/s) for Flight 31, November 29, 1982	•	26
2.4	Standard Deviation (m/s) of Gust Velocity and Gust Velocity Difference for Flight 31	•	27
2.5	Turbulence Length Scales for Flight 31	•	29
2.6	Two-Point Correlation Coefficient of Gust Velocity for Flight 31	•	30
2.7	Values of r (Equation 2.4) Which Represent a Measure of the Degree of Departure from a Gaussian Probability Distribution of the Gust Velocities		36
3.1	Comparison of Aliased Spectrum Values with True Analytical Values at f = 15 Hz and 20 Hz (see Figure 3.4)	•	74
3.2	Comparison of Aliased Values for Two-Point Spectra with True Analytical Value	•	78
3.3	Values of $1/2\pi \int_{\infty}^{\infty} S(\omega - y)W(y)dy$ for $S(\omega)$ Given by Equations 3.4 and 3.6, Respectively, and a Triangular Spectral Window (N = 512, $\Delta \tau$ = 0.025)	•	91
4.1	Turbulence Intensities for Total Time History and Each Segment Individually for Run 3	•	141

LIST OF FIGURES

É

-	FIGUR	Ε	P	AGE
	2.1	Examples of Nonstationary Data	•	10
	2.2	Map of the Vicinity Near Edwards AFB, California, Showing Ground Tracks of 16 Runs from Flight 31, November 29, 1982	•	12
	2.3	Atmospheric Temperature Profile at Edwards AFB, California, November 29, 1982, with Flight Data Superimposed	•	13
-	2.4	Potential Temperature Profiles from Flight 31	•	15
	2.5	Time Histories of Gust Velocities, Gust Velocity Differences, and the Aircraft's Normal Acceleration for Run 3 in Flight 31, November 29, 1982	•	19
	2.6	Comparison of Probability Density Functions for Gust Velocities and Gust Velocity Differences (normalized with the standard deviation) with Theoretical Models, Flight 31, Run 3 (r = degree of non-Gaussian)	•	33
	2.7	Definition of the Longitudinal and Transverse Velocity Correlation Coefficients		38
	2.8	Terminology of the Two-Point Auto-Correlation Relationship (the lateral velocity components are similarly resolved)		40
	2.9	Comparison of Normalized One- and Two-Point Correlation Functions for Gust Velocities with Theoretical Models, Flight 31, Run 3		42
	2.10	Normalized One- and Two-Point Cross-Correlation Functions of Gust Velocities, Flight 31, Run 3	•	45
	2.11	Comparison of Normalized One- and Two-Point Spectral Density Functions for Gust Velocities with Theoretical Models, Flight 31, Run 3	•	50
	2.12	Two-Point Spectra for the Longitudinal Velocity Component	•	52
_	2.13	Two-Point Auto-Spectra for the Lateral Velocity Component	•	53
	2.14	Two-Point Auto-Spectra for Velocity Velocity Component	•	54
	2.15	Ratio of $2K_{5/6}(Z)/(Z K_{1/6}(Z))$ Versus Wave Number		56
	2.16	Normalized One- and Two-Point Cross-Spectral Density Functions of Gust Velocities, Flight 31, Run 3		58

Comparison of Cross-Spectral Density Function for u and w .17 Components with Theoretical Model. Flight 31, Run 12 3.1 Graphical Development of the Discrete Fourier Transform 69 3.2 Illustration of Aliasing Problem 73 3.3 von Karman One-Point Auto-Spectrum with a Triangular Spectrum 75 Window Comparison of Aliased One-Point Auto-Spectrum with True 3.4 76 Comparison of Theoretical Two-Point Spectrum (Equation 3.6) with 3.5 3.6 Rectangular and Triangular Lag Window and Their Respective Fourier Transform 80 3.7 Comparison of the Theoretical von Karman One-Point Auto-Spectrum with the DFT Computed Values Using a Square Lag Window 32 Comparison of the Analytical Two-Point Spectrum (Equation 3.6) with 3.8 the DFT Values Computed from Digitizing Equation 3.5 and Employing a Rectangular Lag Window 83 3.9 Comparison of One-Point and Two-Point Analytical Correlations for Vertical Turbulence Fluctuations (Equations 3.3 and 3.5) 85 3.10 Results of Applying Minimum-Bias Window (Equation 3.34) to the DFT Computation of the Two-Point Spectrum from Equation 3.5 as Compared 92 3.11 Smoothing Procedures for Spectrum Estimates (Bendat and Piersol, 97 1971) 3.12 Segment-Averaged Two-Point Auto-Spectrum Using Equation 3.47 . . . 99 3.13 Segment-Averaged Two-Point Auto-Spectrum Using Equation 3.48 ... 99 3.14 Two-Point Spectrum Computed Directly from Data with a Rectangular Lag Window 100 3.15 Two-Point Spectrum with Minimum Amplitude Window, Equation 3.35 . . 102 4.1 Characteristics of the B-57B 104 4.2 Event Marker Location of B-57B on Box Pattern Flights 110

PAGE

		PAGE
4.3	In-Flight Schuler Position Error, Flight 63	112
4.4	In-Flight Schuler Position Error, Flight 66	113
4.5	In-Flight Schuler Inertial Speed Error, Flight 63	115
4.6	Error in East Inertial Speed on Flight 74	117
4.7	Error in North Inertial Speed on Flight 74	118
4.8	Effect of Instrumentation Errors on the Three Turbulence Components on Flight 63, Run 16	
4.9	Horizontal Wind Vectors on Flight 63 without Corrections (Runs 9 through 12)	123
4.10	Horizontal Wind Vectors on Flight 63 with Beta Corrections (Runs 9 through 12)	124
4.11	Horizontal Wind Vectors on Flight 63 after Airspeed, Beta, and Inertial Velocity and Position Corrections (Runs 9 through 12)	125
4.12	Horizontal Wind Vectors on Flight 63 without Corrections (Runs 13 through 16)	127
4.13	Horizontal Wind Vectors on Flight 63 after Airspeed, Beta, and Inertial Velocity and Position Corrections (Runs 13 through 16)	128
4.14	Horizontal Wind Vectors on Flight 63 without Corrections (Runs 17 through 20)	129
4.15	Horizontal Wind Vectors on Flight 63 after Airspeed, Beta, and Inertial Velocity and Positioin Corrections (Runs 17 through 20) .	130
4.16	Comparison of Turbulence Time Histories Calculated from NASA Langley's Equation and FWG's Equation (descending segment of Run 2; Flight 31)	132
4.17	Comparison of Turbulence Time Histories Calculated from NASA Langley's Equation and FWG's Equation (climbing segment of Run 2; _Flight 31)	. 136
4.18	Comparison of Turbulence Spectra Computed for Individual Segments of Run 3	. 139
4.19	Illustration of Terrain-Induced Turbulence	. 140

Na kilo

NOMENCLATURE ASL Above sea level b Bias error $B_{L}(\zeta), B_{T}(\zeta)$ Normalized von Karman one-point auto-correlation functions for longitudinal and transverse velocity components, respectively $B_{x}(\vec{\zeta},\tau)$ Normalized for two-point correlation function = $R_{x}(\vec{\zeta},\tau)/\sigma_{x}\sigma_{x}'$ $B_{\chi}(\tau), B_{\chi}(\ell)$ Normalized one-point correlation function in temporal/ spatial domain $B_{XY}(\tau)$ Normalized one-point cross-correlation function = $R_{XY}(\tau)/\sigma_X\sigma_Y$ $B_{XY}(\vec{\zeta},\tau)$ Normalized two-point cross-correlation function = $R_{XY}(\vec{\zeta},\tau)/\sigma_X\sigma_Y$ Constant = $2^{2/3}/\Gamma(1/3)$ С $C_{\chi}(\vec{z},f), C_{\chi\gamma}(\vec{z},f)$ Coincident spectral density functions (co-spectra) $e_i(\xi), e_j(\xi+\zeta)$ Direction cosines of the velocity vectors at positions $\boldsymbol{\xi}$ and $\xi+\zeta$ with respect to ith and jth axes, respectively f Frequency, Hz (cycle per second) Gravitational acceleration g An example function for any correlation function $h(\tau)$ H(f)Fourier transform of $h(\tau)$ k A constant between 0.5 and nth order of a modified Bessel function of the second kind $K_n(z)$ 2 Spatial lag used in correlation functions = V_{τ} Distance parallel to airplane x-axis from INS measuring 1xC element to α , β , or q_C measuring station at nose boom Turbulence integral length scale L М A specific lag time for a correlation function to reduce variance error in calculating the corresponding spectral function ix

Probability density function of a time history record x(t)Pacific standard time $Q_x(\vec{z},f), Q_{xy}(\vec{z},f)$ Quadrature spectral density functions (quad-spectra) Degree of non-Gaussian in an analytical function of the r probability density function Distance between a flying airplane and center of the earth R An estimate of a correlation function, $R(\bar{\tau})^{-1}$ $R(\tau)$ Tensor form of a general non-isotropic velocity correlation $R_{ij}(\xi, \varsigma)$ between velocity fluctuations $u_j(\xi)$ and $u_j(\xi+\zeta)$ at positions ξ and $\xi+\zeta$, respectively Correlation function between common velocity components at $R_{x}(\vec{\zeta},\tau)$ two positions separated by a vector distance, \vec{z} $R_{x}(\tau)$ One-point auto-correlation function One-point cross-correlation function $R_{XY}(\tau)$ $R_{XY}(\vec{\zeta},\tau)$ Cross-correlation function between the different velocity components at two positions separated by a vector distance, An estimate of a spectral function, $S(\omega)$ S(ω) One-point two-sided auto-spectral density function $S_{x}(\bar{\tau})$ Two-sided spectral density function between common velocity $S_x(\vec{\zeta},f)$ components at two positions separated by a vector distance, ż $S_{xy}(f)$ One-point two-sided cross-spectral density function $S_{XY}(\vec{\zeta},f)$ Two-sided cross-spectral density function between the different velocity components at two positions separated by a vector distance, ζ Duration of a time history record; oscillation period of a т specific Schuler-adjusted system T = $k \cdot 2\pi \sqrt{R/g}$ Derived gust velocity components (longitudinal, lateral, u,v,w and vertical) Two-point correlation function URU х

One-point auto-correlation function Two-point cross-correlation function One-point cross-correlation function URVR Normalized two-point common velocity component correlation u<u>R</u>uL/σ_{uR}σ_{uL} function Normalized one-point auto-correlation function URUR/OUR Normalized two-point cross-correlation function -URVL/GUDQNI Normalized one-point cross-correlation function ugvg/ougovg ۷ True airspeed at nose boom East-west component of airplane inertial velocity measured ٧E at INS (positive toward east) North-south component of airplane inertial velocity VN measured at INS (positive toward north) Mean aircraft airspeed at left wing tip, nose, and right $\overline{V}_L, \overline{V}_C, \overline{V}_R$ wing tip, respectively A truncation function (window) w(τ) $(W_{\rm F}^2 + W_{\rm N}^2)^{1/2}$ W W(f)Fourier transform of $w(\tau)$ Spectral window W(ω) East-west and north-south components of horizontal mean WE, WN wind speed, W x Mean value of a time history record, x(t)x(t)Random variable, a time history record Greek Symbols Angle of attack and sideslip angle measured at nose boom ας,βς Variance ratio 8 Gamma function Г

「見な

1

Δτ Time-lag increment

χi

A comb function ∆_o(f) Fourier transform of $\Delta_0(\tau)$ Spatial lag used in the normalized von Karman one-point ζ auto-correlation functions ζ A vector distance used in expression of two-point correlation functions $\theta_{\chi}(\vec{\zeta},f), \theta_{\chi\gamma}(\vec{\zeta},f)$ Phase angles of spectral density functions $\Phi_{x}(\zeta, f)$ and $\Phi_{XV}(\vec{z},f)$, respectively Standard deviation of a random variable σ Temporal lag used in correlation functions τ $\Phi_{U}(s,f), \Phi_{V}(s,f),$ Houbolt and Sen theoretical (one-sided) spectral density functions for longitudinal, lateral, and vertical compo- $\Phi_W(s,f)$ nents at two positions separated by a distance, s $\Phi_{\rm X}(f)$ One-point one-sided auto-spectral density function $\Phi_{\rm X}(\vec{\zeta},f)$ One-sided spectral density function between common velocity components at two positions separated by a vector distance. 2 $\Phi_{XY}(f)$ One-point one-sided cross-spectral density function $\Phi_{XY}(\vec{\zeta},f)$ One-sided spectral density function between the different velocity components at two positions separated by a vector distance, \vec{z} xn² Chi-square variable with n degrees of freedom Aircraft heading, measured from true north Ð Aircraft yaw rate Ù Direction from which wind is blowing, measured clockwise ΨW from true north, $\tan^{-1}(W_F/W_N) + \pi$ $= 2\pi f$ ω

xii

() Deviation from the mean value
 (⁻) Average value
 [] Ensemble average
 * Convolution integration; complex conjugate
 Δ Difference
 var[] Variance

<u>Subscripts</u>

I

L,T	Longitudinal and transverse components
L,C,R	Left, center, and right probes
u,∨,₩	Velocity components in longitudinal, lateral, and vertical directions

1.0 INTRODUCTION

Spatial variation of turbulence over aircraft is known to strongly influence the structural and control design of the aircraft (Houbolt, 1973; Etkin, 1972; Bisplinghoff and Ashley, 1957). Techniques for computing rolling and pitching moments and other aerodynamic forces, which are influenced by spatial turbulence, have been developed theoretically and, in general, utilize isotropic homogeneous turbulence (Diederich and Drischler, 1957; Eichenbaum, 1972; Eggleston and Diederich, 1956; Houbolt, 1973; Lichtenstein, 1978; Kordes and Houbolt, 1953; Houbolt and Sen, 1972; Pastel, et al., 1981; Akkari and Frost, 1982; Diederich, 1957; Ringnes and Frost, 1985; Frost and Lin, 1983). It is normally accepted, however, that the turbulence in the atmospheric boundary layer close to the earth's surface, which is encountered by an aircraft during approach and takeoff, and turbulence associated with thunderstorms and clear-air roll waves is generally not isotropic. Additionally, turbulence shed by orographic features can also create relatively large-scale turbulence that is typically not isotropic nor homogeneous.

Spatial turbulence statistics have been computed from data measured with single tower to heights not exceeding much more than 100 m. Towers, however, provide spatial turbulence information only in the vertical (Davenport, 1961; Brook, 1975), which is uninteresting to aircraft design. Some studies have been carried-out with tower arrays based on two or three towers located at various horizontal separation distances. The data normally reported from these studies is the coherence function for longitudinal velocities (Panofsky and Mizuno, 1975; Panofsky, et al., 1974; Kristensen and Jensen, 1979; Pielke and Panofsky, 1970; Frost and Lin, 1983). These towers are normally less than

for aircraft design is at much higher altitudes (even in the terminal area data to heights of roughly 500 m are required), tower data are somewhat limited in their application.

For this reason a NASA program has been underway to determine time histories and various statistical characteristics of three components of gust velocity measured simultaneously at the wing tips and at the nose of a specially instrumented B-57B airplane. The instrumentation system has been designed and installed on the airplane and several flights have been carried out (see Table 1.1). The flights include turbulence samples taken near storms in the Denver-Boulder, Colorado, area. Results from Flights 21, 22, and 26* are reported in considerable detail in Frost, et al. (1985a), Camp, et al. (1984), Frost (1983), Campbell, et al. (1983), and Chang, et al. (1986). Turbulence measurements with the aircraft during Flights 40, 44, 64, and 65 have been compared with data obtained using remote radar sensing techniques (Frost. et al., 1985b; Huang, et al., 1985; Frost and Huang, 1983). Also, measurements of turbulent fluxes of momentum, heat, and moisture relative to orographic features were made during Flights 60, 61, 63, and 66. Analyses are presented in Chang and Frost (1985), Theon, et al. (1986), and Frost, et al. (1985c).

The purpose of the present study is threefold:

 Perform statistical analyses of the acquired flight data with emphasis on long data runs in continuous turbulence and glide slope runs for simulated takeoffs and landing approaches. Flight 31 flown at NASA Dryden was carried out specifically for this purpose.

*Flights 21, 22, and 26 were originally numbered 6, 7, and 10 respectively, and are so referred to in the references cited.

Table 1.1. NASA B57-B Gust Gradient Flight Record.*

Comments	JAWS-8; 11ght to mod. turb.	Fam. flight; no data	JAWS-9; light to mod. turb.	JAWS-10; mod. to severe	turb.	mod. turb.	ferry flight; no data	Mod. to severe turb.; high winds	Mod. to severe turb.; high winds	Mod. to severe turb.; strong winds	Instrumentation ground		Instrumentation ground run; check	Instrumentation flight check	Instrumentation ground	Instrumentation ground	run; check Instrumentation check-	out maneuver Light turb.; maneuvers for instrumentation
Flight Duration (hrs)	1.5	0.8	2.3	2.0		D . 1	2.7	2.3	2.3	2.1	<u> </u>	c	ο,	1.3	0		1.7	- ~
Flight Site	Denver	Denver	Denver	Denver		Deliver	Denver- Edwards	Edwards	Edwards	Edwards	Edwards		Edwards	Edwards	Edwarcis	Edwards	Edwards	Edwards
Date	17Ju 182	19Ju182	20Ju 182	281 nC 12	01.100	701 NC 77	23Ju 182	070ct82	19Nov82	29Nav82	20Dec82	50016	21Dec82	04Jan83	05Jan83	07 Ja n83	31Mar 83	20Apr 83
F11ght No.	23	24	25	26	5	3	58	29	90	31	Ground	Ground	หาน	32	Ground run	Ground run	EE	34
Connents	Functional check flight; No data	functional check flight; no data	-	ferry flight; no data	Functional check flight; no data	Instrumentation check	Instrumentation check flight: ferry flight	Forry fitable and the	Instrumentation check	-	Ferry flight; mo data JAVS-1 fam. flight;	light turb.	JAWS-2; Hight to mod. turb.	JAWS-3; 11ght to mod. turb.	JAWS-4; light to mod. turb.	JAWS-5; light to mod. turb.	JAWS-6; Night to mod. turb. severe	JAWS-7; light to severa turb.
Flight Duration (hrs) Comments	1.6 Functional check flight; no data	1.6 functional check flight; no data			0.8 Functional check flight; no data	1.8 Instrumentation check	5.6 Instrumentation check filght; ferry filght	3 4 Earry 61table an Asta			1.6 Ferry flight; no data 1.3 JAWS-1 fam. flight;		I.B JANS-2: Night to mod. turb.	light to	4; light to	1.4 JAWS-5; light to mod. turb.	2.3 JAWS-6; Night to mod. turb. severe	2.3 JAWS-7; light to severa turb.
				4.9		1.8			1.3		1.6 1.3	a -	-	JAWS-3; 11ght to turb.	JAWS-4; light to turb.	JAWS-5; light to turb.		Denver 2.3 JANS-7; light to severa turb.
Flight Duration (hrs)	1.6	1.6		Langley 4.9	0.8	Langley 1.8	5.6	4 E	1.3		1.6 1.3	a -	Uenver 1.8	2.5 JAWS-3; light to turb.	2.3 JAWS-4; light to turb.	1.4 JAWS-5; 11ght to turb.	2.3	

:

·····

Table 1.1. (continued).

3A

Study, develop, and/or modify statistical models, as necessary, from the standpoint of providing an analytical expression for use in design analysis.

3. Analyze effects of instrumentation characteristics and data processing effects on reduced gust velocity data.

Flight 31 contained runs over sufficiently long distances at level flight to provide turbulence time histories long enough to assure a high statistical degree of freedom and to determine spectral characteristics for wavelengths as great as 10,000 ft (3000 m). The meteorological correlations and statistical analyses of data from Flight 31 is the primary thrust of this Plans for Flight 31 were also to include takeoff and touch-and-go report. runs to investigate non-stationary turbulence along the glide slope associated with the vertical variation of the horizontal wind in the atmospheric boundary layer (Panofsky and Dutton, 1984; Haugen, 1973). Non-stationary data calls for statistical ensemble analysis techniques (see Frost and Moulden, 1977; Wang and Frost, 1932). Ensemble statistics requires a collection, or ensemble, of sample records of the turbulence process. Wang and Frost (1982) have shown that a minimum of six flights down the glide slope under similar prevailing meteorological conditions are required to assure meaningful results. Unfortunately, ensemble analyses could not be carried out because during Flight 31 only one touch-and-go and one takeoff run were recorded. Thus, insufficient approaches or takeoffs were made under similar prevailing meteorological conditions to permit ensemble averaging.

Another problem associated with the turbulence measurements carried out along non-level flight paths is that the system of equations presently utilized to remove the airplane motions from the recorded data are based on a linearized model which assumes only small perturbations about wing level, horizontal flight. Analysis using the full non-linear system of equations

cen carried out for typical data and compared with the computations from the linearized system (Frost, et al., 1983). In general, the effects of a glide slope or climb-out angle less than 10° are negligible on the computed turbulence gust velocities.

Data for all runs in Flight 31 including the touch and go are provided in Appendix A. Details of the flight path, the time histories, and selected statistical analyses including probability distributions, correlations, spectra, etc. are given in this appendix. The statistical analyses described in Section 2 were applied to the turbulence measurements for all runs. Although these analyses are strictly applicable to statistically stationary data, little evidence of non-stationary effects is observed in any of the data except for Run 10 as described later. This observation is true for the touch-and-go runs and takeoff run, also.

The philosophy associated with Appendix A is to provide the data after applying sufficient statistical analysis to allow the reader to distinguish data sets which are of interest to his specific application. The complete data can then be obtained on magnetic tape from NASA Langley Research Center (LaRC) for conducting the reader's own analysis. With this in mind, the complete data from Runs 1 through 16 of Flight 31 have been given in the appendix. Selected runs, however, are analyzed in more detail throughout Section 2 and compared with theoretical and empirical models currently available for correlating turbulence data. In general, it was not necessary to develop new theoretical models because the data fit existing models quite well, as also described in Section 2. There were, however, a few exceptions where modifications to two-point correlation and spectrum models were required. These are also described in Section 2.

5

: 1

this study, a distinction is made between a two-point spatial correlation and the commonly used term "cross-correlation." The terminology cross-correlation in this report is reserved for a correlation between different velocity components; for example, between the lateral and longitudinal components or the vertical and longitudinal components, etc. The terminology "two-point" spatial correlation refers to a correlation between velocity components measured at stations separated in space (e.g., at different probe locations on the aircraft). This can be either a two-point cross-correlation between dissimilar velocity components separated spatially or it can be a two-point correlation between like velocity components A single-point spatial correlation termed an separated spatially.* auto-correlation is defined as a correlation between like velocity components measured at the same location (e.g., with the same wing tip probe) but separated in time. Note that a two-point spatial correlation can also be separated in time (i.e., time dependent or lagged in time).

Procedures for estimating two-point spectra from finite digitized time histories are not straightforward. Considerable insight to these procedures which is not readily accessible in the literature was gained during this study. This insight is described in detail in Section 3.

The von Karman analytical correlation and spectrum model for atmospheric turbulence frequently referred to in the literature (Hinze, 1975; Houbolt,

b

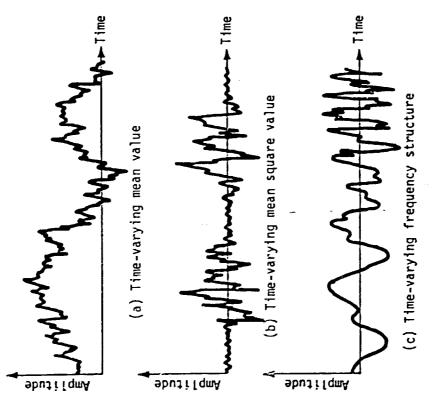
^{*}The authors prefer the terminology two-point auto-correlation for a correlation between like velocity components measured at spatially separated positions. In deference to the reviewers, however, who found this terminology confusing and concluded that an auto-correlation must be a correlation of a signal with itself, the correlation between the same velocity components measured at different positions in space is called a two-point common component correlation or, where no confusion exists, simply a two-point correlation in this report.

ORIGINAL PAGE IS OF POOR QUALITY

1964; Etkin, 1972; Panofsky and Dutton, 1984) is used extensively in this study. In Section 2, comparison of this model is made with the experimental data. In general, agreement with the von Karman autocorrelation and the one-point auto-spectrum is good. This is surprising in view of the fact that von Karman's model is generally assumed valid only for isotropic homogeneous turbulence. It should be noted in this regard that for the long duration, level runs of Flight 31 analyzed in the current study, the turbulence is not expected to be isotropic nor even homogeneous. Most runs were carried out over both flat desert and mountainous regions (peaks of 6000 ft ASL) at low altitude (2500 to 10,000 ft ASL) or during touch-and-go flights at the airport. It was therefore surprising that a model based on the assumption of homogeneous isotropic turbulence correlated the data well.

Although one-point spectra are addressed in some detail, emphasis in this report is on the two-point spectra and correlation functions. Comparison of the two-point correlations and spectra with a theoretical model (based on the von Karman model) originally proposed by Houbolt and Sen (1972) is made in some detail. Correction to this model was required and made as described in Section 2. In general, the experimental data agree with the theoretical model after the corrections. Appropriate care must be exercised, however, in computing the two-point spectra from the digitized data. This issue is described in-depth in Section 3.

During analysis of several of-the flights, a number of instrumentation characteristics were uncovered which influenced the accuracy of the data. Although significant effort in the past has been devoted to evaluating effects of instrumentation characteristic and of data reduction procedures on the accuracy of the measured turbulence data, some additional factors were


ed (Rhyne, 1980; Murrow and Rhyne, 1981; Meissner, 1976; Crooks, et al., 1967). The addition of the wing tip booms and the interest in measuring wind speeds as contrasted to fluctuations about the mean wind were, in general, responsible for the new instrumentation problems. These problems along with recommended correction or removal procedures are discussed in Section 4. In particular, the INS Schuler position and velocity drift errors and the suspected flow vane sensor misalignment problems are addressed.

Data from Flights 63, 66, 73, and 74 were used for analyzing the instrumentation errors. Data from these flights are used only for purposes of analyzing errors in this study. Also, a discussion of the influence of departure from straight and level flight on the computed turbulence when the data are reduced using the linearized equations which are strictly valid only for level flight is given in Section 4 and in Appendix B.

2.0 STATISTICAL ANALYSIS OF DATA

A statistical analysis of the B-57B aircraft data for 16 runs (Runs 1 through 16) of Flight 31 on November 29, 1982, is described in this section. The procedures for analyzing the turbulence data as well as interpreting the analyzed results are strongly influenced by the stationarity of the data. Non-stationary or non-homogenous data represent all classes of data whose statistical properties change with time or with position. Figure 2.1 illustrates three different examples of non-stationary data; these include data with a time-varying mean, data with a time-varying mean square, and data with a time-varying frequency structure (Bendat and Piersol (1971)). The vast majority of physical data actually fall into the former category.

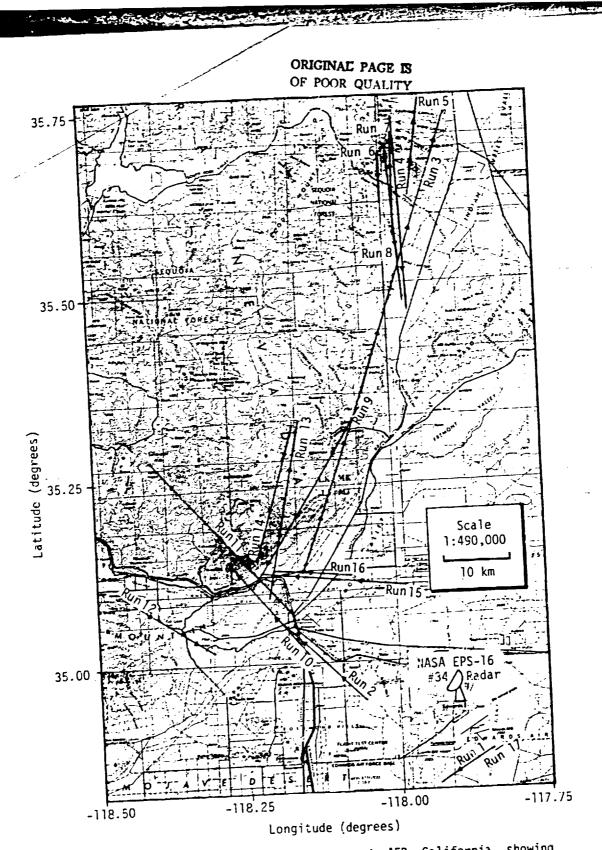
The theoretical ideas and processing techniques for the stationary data do not, for the most part, apply to data which are non-stationary. A totally adequate methodology does not exist yet for the analysis of all types of non-stationary data. In general, an 'nsemble-averaging technique (Bendat and Piersol, 1971) provides a method to analyze the statistical properties of the non-stationary data (see application of this by Frost and Huang (1983)). By inspecting the time histories of the aircraft-measured turbulence data (shown in Section 2.2), one can easily see considerable patchiness and nonstationarity in these data sets. However, only one sample record of turbulence over common terrain and similar prevailing meteorological conditions is available for analysis from each run of the B-57B aircraft data. Therefore, through necessity the statistical properties of the data presented in this report are calculated by assuming that the measured data are stationary.

•____

Figure 2.1. Examples of nonstationary data (Bendat & Piersol, 1971).

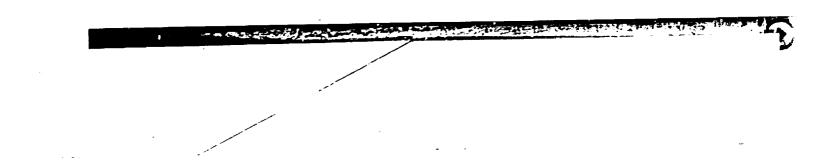
10

General information and statistical values for each of the 16 runs are given in Appendix A. The analysis for each run presented in the appendix consists of seven parts as follows:


- Flight altitude and horizontal wind velocity along the flight path.
- 2. Time histories of gust velocities, gust velocity differences between wing tips, and the aircraft's normal acceleration.
- 3. Average turbulence parameters, integral length scales, and correlation coefficients of gust velocities.
- Probability density functions for gust velocities and gust velocity differences.
- Normalized one- and two-point correlation functions of gust velocities.
- Normalized one- and two-point spectral density functions of gust velocities.
- 7. List of all parameters measured and the range of their extreme and average values.

A map illustrating all ground tracks for Flight 31 over terrain as recorded by the INS during the flight is provided in Figure 2.2. The cross section of the vertical profile of the terrain beneath the flight path is given for each run in Appendix A.

The atmospheric stability is of importance in turbulence considerations. The temperature gradient in the atmospheric boundary layer is a measure of the stability of the atmosphere. Figure 2.3 shows the temperature recorded for all runs of Flight 31 superimposed on the temperature profile measured by the weather balloon. Each " \star " represents a 5-second averaged temperature. A scattering of the averaged temperature at different altitudes is seen in the figure. This scattering is believed to represent the spatial temperature variations along a flight path which usually covers more than 10 miles horizontally. Temperature profiles measured during the takeoff run and during the touch-and-go run, Run 2, were converted to potential temperature profiles


5

รี

ir E

Figure 2.2. Hap of the vicinity near Edwards AFB, California, showing ground tracks of 16 runs from Flight 31, November 29, 1982.

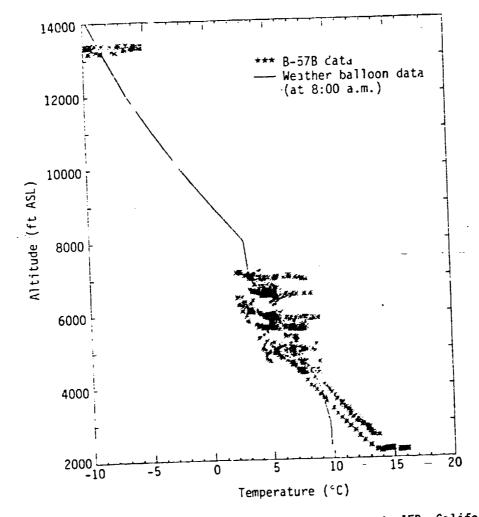
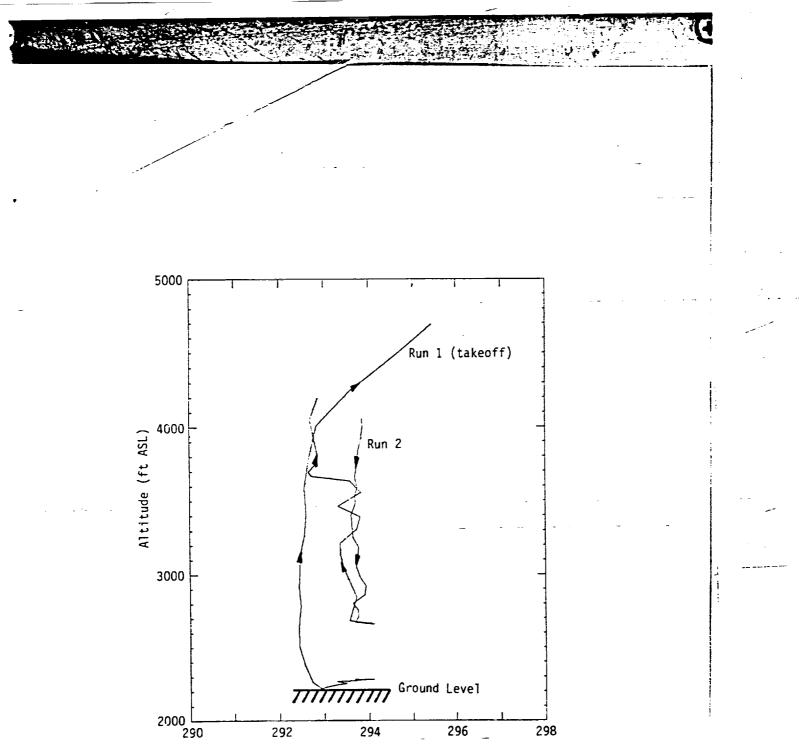


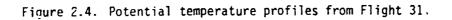
Figure 2.3. Atmospheric temperature profile at Edwards AFB, California, November 29, 1982, with flight data superimposed.

ORIGINAL PAGE IS OF POOR QUALITY

and are plotted in Figure 2.4. The arrows indicate climb or descent. The strong negative temperature gradient near 3700 ft, characteristic of an unstable boundary layer, as shown in the second half of Run 2 is believed to be associated with wake flow generated by a mountain peak up-wind of the flight path (see the terrain contours in Figure 2.2).


The methods and results of the statistical analyses given in Appendix A are described and discussed in detail in the following subsections. The experimental data are also compared with theoretical models.

2.1 Flight Altitude and Horizontal Wind Velocity , ong the Flight Path


The first part of the analysis for each run in Appendix A includes flight altitude (ASL), the corresponding terrain height (ASL), the flight direction, and five-second averaged horizontal wind vectors recorded along the flight path. The terrain height is obtained from digitizing a large-scale contour map along each ground track of the flight as shown in Figure 2.2. Also, tabulated are the date, the time (PST) at which the run began, and the duration of the run in seconds.

Run 1 is the takeoff leg of the flight. Run 2 started with an approach and then made a go-around at approximately 100 ft above the ground. The approach and go-around flight path were at a glide _lope angle of approximately three degrees. The terrain features over which the majority of the B-57B Flight 31 experiment was flown are characterized by regions of low and high mountainous terrain (Runs 1 and 2 were over flat terrain).

Data from these two runs, however, cannot be expected to be statistically stationary since they represent ascent and descent through variable wind conditions associated with the atmospheric boundary layer. There is no clear evidence in the results of the statistical analysis of these data sets, however, that suggest non-stationary or even non-isotropic effects.

Temperature (°K)

ORIGINAL PAGE IS OF POOR QUALITY

Note also in Runs 3, 4, 8, 9, and 11 there are what appear to be relatively large excursions from level flight. This is primarily an illusion due to the exaggeration of the vertical scale in the plot. The apparent climb and descent paths are in all cases less than seven degrees, elevational angle.

Inspection of the flight paths given in Figure 2.2 shows that they may be categorized as occurring over a flat region, a low mountainous regions, and a high mountainous regions. The low mountainous region is further subdivided into two subregions. The first, subregion is that for which the underlying terrain includes gradual and monotonic increase or decrease in elevation. The second subregion is one which includes terrain having more than one peak or valley. Table 2.1 categorizes the type of terrain associated with each run.

TABLE 2.1.	Terrain	Category	for	Flight	31.
------------	---------	----------	-----	--------	-----

Terrain Category	Run Number
Flat Region	1, 2
Low Mountain Region	
Single Peak	10, 15, 16
Multi-Peak	5, 6, 9, 11, 12, 13, 14
High Mountain Region	3, 4, 7, 8

The flight paths plotted from the INS data for Runs 4, 8, 11, 13, and 14 shown in Figures A.16, A.36, A.51, A.61 and A.66 suggest that the aircraft flew through mountain peaks. The cause of this obviously impossible result is associated with an INS drift problem which is discussed in Section 4. Errors in the recorded longitude and latitude measurements result in an incorrect aircraft position relative to the fixed terrain features (see Figure 2.2). However, only when the influence of terrain on the turbulence is to be assessed does the error influence the data analysis.

16

Table 2.2 shows the time duration of each run and the effective mean wind direction relative to the airplane. In most runs the effective mean wind direction is nearly perpendicular to the flight path. The measured mean wind speed in Flight 31 ranges from 5 m/s to over 20 m/s. Run 3 is the longest of the 17 runs making up Flight 31. The landing leg of the flight was recorded as Run 17. This run was only 47 seconds, which is not statistically meaningful and, therefore, is not analyzed in this report.

TABLE 2.2. Time Duration and Mean Wind Direction.

Run Number	Length of Record (sec)	Wind Direction Observed by the Airplane
_	135	Head wind
1 2 3 4	213	Cross wind (left to right)
3	694	Cross wind (left to right)
4	283	Cross wind (right to left)
_		Cross wind (left to right)
5	144	Cross wind (right to left)
6 7	63	Cross wind (left to right)
7	203	Cross wind (night to left)
8	226	Cross wind (right to left)
_	224	Cross wind (right to left)
9	334	Cross wind (left to right)
10	172	Cross wind (left to right)
11	333	
12	138	Tail wind
	270	Cross wind (left to right)
13		Cross wind (right to left)
14	209	Head wind
15	233	Tail wind
16	100	
17	47	Head wind

17

7

Z

2.2 <u>Time Histories of Gust Velocities, Gust Velocity Differences Between Wing</u> <u>Tips, and the Aircraft's Normal Acceleration</u>

5. S. A.

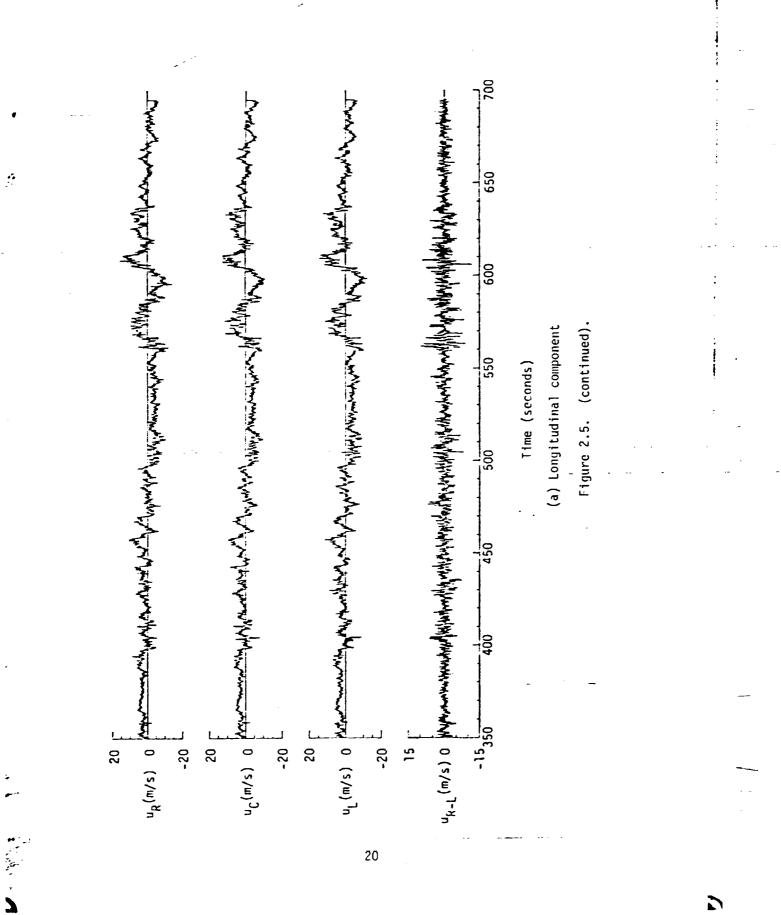
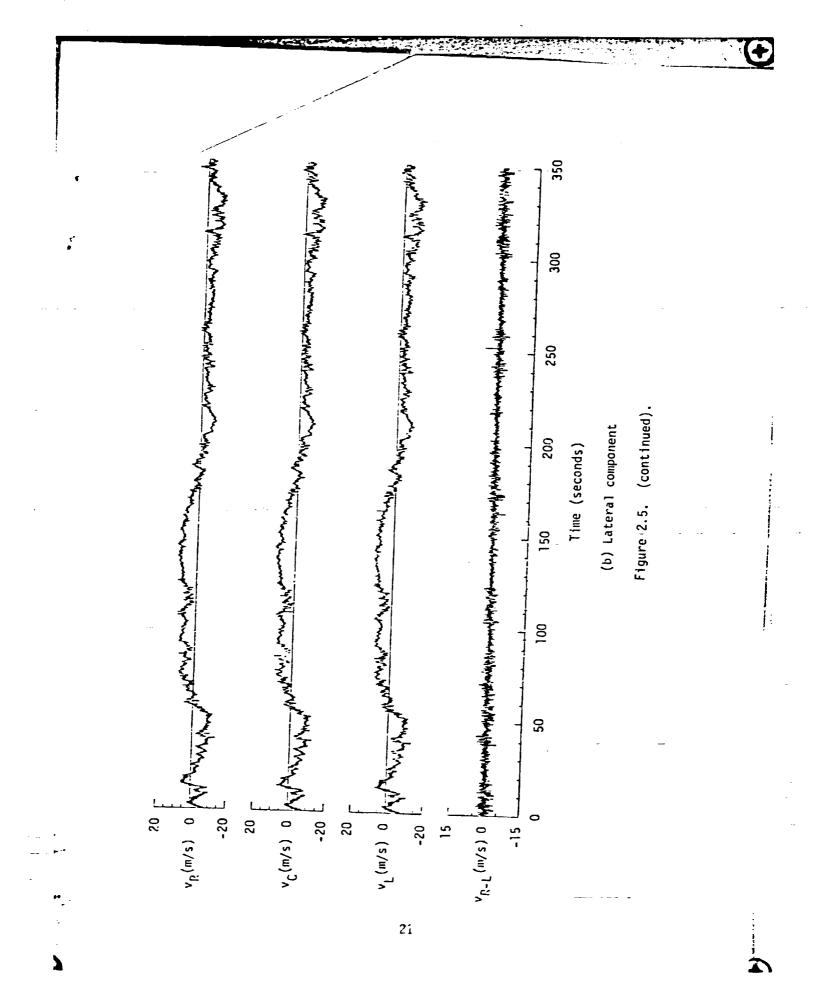
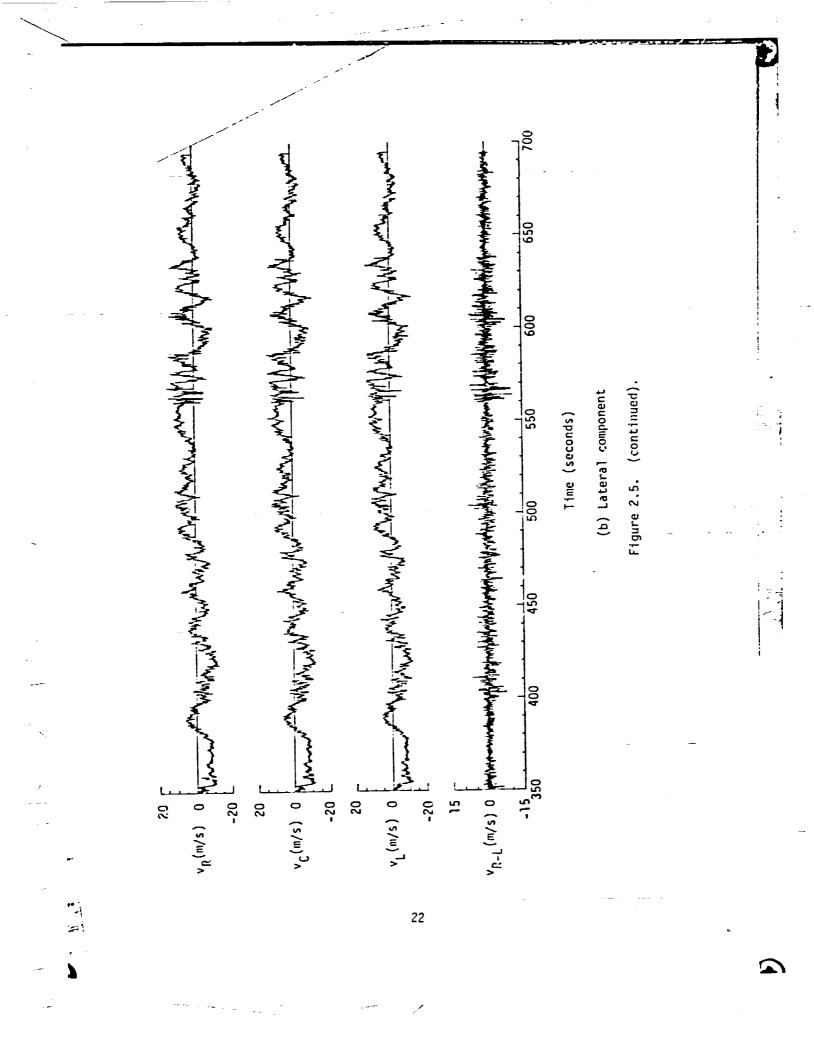

The second part of the analysis for each run recorded in Appendix A shows the gust velocity time histories for the three probes located at the aircraft's nose and wing tips. The left, center, and right probes are designated with subscripts L, C, and R, respectively. The time histories of the spatial velocity differences between the right and left probes are plotted for the longitudinal (u), lateral (v), and vertical (w) velocity components. The definition of longitudinal, lateral, and vertical are along and perpendicular to the mean flight path, respectively. Also plotted with the vertical velocity time histories is the time history of the aircraft's normal acceleration along its flight path. The sampling rate is 40 samples per second.

Figure 2.5 shows a plot of the time histories for Run 3 of Flight 31. Run 3 was the longest record lasting 694 seconds. The velocity fluctuations are typical of the measured data. One observes from the data that there are no significant variations between velocities measured at the three probes. Therefore, one can surmise that length scales associated with these turbulence data are typically larger than the wing span (19.5 m). In Run 3, the aircraft encountered significantly more intense turbulence from 560 seconds to 640 The turbulence was encountered at approximately 11:00 a.m. (PST) seconds. just after the aircraft had climbed from 5600 ft to 6600 ft at an approximate During the climb, which started at 530 seconds, visual 7º climb angle. inspection shows no discernable change in the turbulence during the climb and for roughly a half mile after leveling off at 547 seconds. During the period from 560 seconds to 640 seconds, however, the aircraft encountered much stronger turbulence as it flew over a high mountainous area with well


350 and a second and a s $n^{k-\Gamma}(m/s) = 0$ さく Time histories of gust velocities, gust velocity differences, and the aircraft's normal acceleration for Run 3 in Flight 31, November 29, 1982. 300 and the second 250 まっていていていていていていていていていてい (a) Longitudinal component 200 Time (seconds) 150 hinter a construction of the second s Yuk warder and the second and the second states 100 Figure 2.5. 50 0 u_R(n/s) 0 🛃 u_C(m/s) O -15 15 20 -20 -20 20 -20 20


19

シ

D

350 くちょううちょうくろうろう עראון אויי לאיי אלאייר אייר אייר אייר אייר いたまたいとうちょうちょうろう 300 (c) Vertical component and aircraft's normal acceleration そうでいっかいなないでいっていいいちちょうちょうかんいいいいいいいいいいいいいいしょうしょう afrankanan annon ann sintaineas anna 250 Figure 2.5. (continued). 200 Time (seconds) 150 and brighter and the states of the base of the states of t ٣٩٩ ما ٢٠٠٠ ما المحمد المعلمة المعاملة المعامل والمعالية والمعالمة والمروانة والمروانية والمراولة المرازية والمرومة والمرورة والمرارية 100 50 0 w_{R-L}(m∕s)O w_C(m/s) 0 15 07 -20 20 -20 -15 -20 20 20 (s,6)^Ze

23

١

700 - ما المان من المان الم ma (m/s) 0 (m/s) 0 https://www.energian.energia 650 mc (m/s) 0 / minumenterreterenterreterender and som of the second filling with a new state of the second production of the second states (c) Vertical component and aircraft's normal acceleration. 100 الله المالي من عند من من من المالية المالية المالية المالية المالية المالية المالية المالية المالية من (ru) ال Figure 2.5. (continued). 550 Time (seconds) 500 450 400 -20 -20 15 20 20 -20 50 50 -15 az (g's) I

Ð

pronounced peaks reaching up to 6500 ft. The wind was blowing over the mountains perpendicular to the aircraft flight path (see Figure 2.2). It is believed that the intense turbulence encountered by the aircraft during this time period was associated with the disturbed air flow from the nearby mountain peaks. The strong vertical turbulence induced an increased fluctuation to the aircraft's normal accelerations.

2.3 <u>Average Turbulence Parameters, Integral Length Scales, and Correlation</u> Coefficient of Gust Velocities

The third part of the analysis for each run in Appendix A is a tabulated listing of the average values of several important turbulence parameters for the left, center, and right probes. The statistical parameters include mean airspeed, standard deviation of gust velocity, standard deviation of gust velocity difference, integral length scale, and the correlation coefficient of the gust velocity. The mean airspeed and the standard deviations of the gust velocities and their differences are calculated on the basis of the total time history. However, in analyzing the data to obtain the correlation coefficient and the integral length scale, the total time history is segmented such that the total record is a multiple of segments of 1024 datum points. In computing the correlation coefficients and the length scales, (modify: scales, the spectrum was first computed by a technique which applied the Fourier transform directly to the original digitalized data. The correlation is then The approach first computes the spectrum directly from the .). turbulence time history. The correlation is then computed from the inverse Fourier transform of the spectrum. Finally, the length scale is computed by integrating the normalized correlation function as described later.

Table 2.3 lists the mean airspeed for all 16 runs in Flight 31. The average mean airspeed for all runs is 102 m/s. The mean airspeeds at the

Run Number	V∟	C	R	Run Number	VL	VC	VR
1	81.13	78.92	81.21	9	103.15	100.84	102.84
2	87.82	85.79	87.51	10	117.27	115.20	116.70
3	104.21	102.52	104.60	11	107.01	104.47	106.49
4	104.78	102.62	104.32	12	101.03	98.55	100.56
5`	105.79	103.53	105.33	13	103.30	101.40	103.30
6	104.31	102.19	104.01	14	103.38	101.07	102.99
7	101.47	99.23	100.93	15	107.74	105.40	107.23
8	103.22	101.05	102.86	16	109.41	107.07	108.82

TABLE 2.3. Mean Airspeed (m/s) for Flight 31, November 29, 1982.

Toran a Dear March

individual right, center, and left probes are 102.8 m/s, 100.6 m/s, and 102.5 m/s. The mean airspeeds measured at the right and left probes are larger than that at the nose by about 2 m/s. This difference can possibly be due to flow deceleration in front of the aircraft nose and/or flow acceleration over the wingtips. Approximate potential flow analysis for a Rankine body (Karmacheti, 1966) suggests the former mechanisms. Similar velocity differences were also found by Frost, et al. (1985a) in the analysis of Flight 21 for the same experimental aircraft.

Table 2.4 lists the standard deviation of gust velocities for all 16 runs of Flight 31. The standard deviation of the gust velocities varies from 1.68 to 7.46 m/s for the longitudinal component, and from 1.42 to 5.57 m/s for the lateral component. The vertical gust component standard deviation ranges from 1.08 to 3.45 m/s. Table 2.4 also lists the standard deviations of the gust velocity differences between the right and left probes. The standard deviation of the gust velocity differences has a high of 1.75 m/s for the longitudinal component, 1.68 m/s for the lateral component, and 2.00 m/s for the vertical component. The standard deviation of the gust velocity, itself.

Kun Number	σ _{uR}	σ _{vR}	owk	σuC	σνC	σwC
1	2.12	2.11	2.31	1.69	1.99	2.33
2	3.23	2.03	1.16	3.20	2.01	1.08
3	3.17	5.25	2.36	3.15	5.20	2.18
4	3.73	4.07	2.80	3.73	4.09	2.61
5	2.49	4.06	2.76	2.47	4.04	2.66
6	3.64	3.67	3.41	3.54	3.65	3.00
7	3.03	3.00	2.23	3.03	3.03	2.15
8	3.93	5.17	2.52	3.89	5.18	2.36
9	4.10	5.12	2.40	4.10	5.10	2.21
10	2.04	4.57	2.40	1.99	4.58	2.34
11	3.74	2.10	2.25	3.76	2.15	1.99
12	1.68	1.43	1.66	1.68	1.47	1.54
13	2.49	5.57	2.43	2.48	5.57	2.29
14	2.51	3.54	2.37	2.47	3.50	2.12
15	7.46	2.84	3.45	7.31	2.89	3.29
16	5.68	3.21	3.21	5.59	3.44	3.02
Run Number	σ _{uL}	σvL	ď₩Ĺ	σΔuRL	σΔvRL	σ _{ΔwRL}
1	1.74	2.05	2.58	1.20	1.10	0.77
2	3.20	2.09	1.17	0.94	0.77	0.87
3	3.19	5.31	2.31	1.29	1.23	1.37
4	3.75	4.04	2.79	1.59	1.39	1.62
5	2.56	4.10	2.85	1.41	1.38	1.42
6	3.54	3.42	3.12	1.74	1.68	1.92
7	3.07	3.06	2.22	0.85	0.80	0.89
8	3.89	5.20	2.42	1.22	1.08	1.31
9	4.18	5.12	2.34	1.35	1.16	1.45
10	2.02	4.61	2.33	0.41	0.31	0.38
11	3.77	2.18	2.13	1.12	1.01	1.26
12	1.70	1.42	1.59	0.90	0.74	0.91
13	2.59	5.56	2.41	1.53	1.39	1.59
14	2.52	3.42	2.28	1.29	1.12	1.37
15	7.32	2.87	3.35	1.45	1.24	1.49
16	5.74	3.29	3.14	1.75	1.61	2.00

TABLE 2.4.	Standard Deviation (m/s) of Gust Velocity and Gust Velocity Difference for Flight 31.
------------	---

į

is always larger than the standard deviation of the gust velocity difference between probes.

An and the Martin State of the State of the

Table 2.5 lists the integral scales L for 16 runs of Flight 31. The turbulence integral length scale is usually estimated by integrating a normalized one-point auto-correlation function from zero to infinity with respect to temporal or spatial lag. The normalized correlation function (also called the correlation coefficient), $B_X(\tau)$, is given by

$B_{X}(\tau) = \overline{x(t)x(t+\tau)}/\sigma_{X}\sigma_{X}$

where x is any of the velocity components. Due to noise in the measured data, the auto-correlation coefficient, however, nearly always oscillates about zero due to either real physical effects but most probably due to aliasing and other digitizing effects. Therefore, in this report the integral length scale is obtained by integrating the normalized auto-correlation function to the point where it first crosses zero ($\& = S = \overline{VT}$ or $\tau = T$):

$$L = \int_{0}^{S} B_{X}(\ell) d\ell = \overline{V} \int_{0}^{T} B_{X}(\tau) d\tau$$
(2.1)

Detailed study of different definitions of the integral length scales is given in Frost and Lin (1983) (also see Houbolt, et al. (1964)). Frost and Lin (1983) suggest that using the L as defined in Equation 2.1 in theoretical models gives best agreement with experimental results. This length scale is therefore used throughout this report.

In addition to the integral scales calculated from the normalized values of one-point auto-correlation functions, $U_{R}U_{R}$, $\nabla_{R}\nabla_{R}$, and $w_{R}w_{R}$, the integral length scales are also estimated with Equation 2.1 using the normalized values of the two-point correlation functions, $U_{R}U_{L}$, $\nabla_{R}\nabla_{L}$, and $w_{R}w_{L}$. These two integral scales have the same order of magnitude for each corresponding

	Integral Length Scale (m)									
Run Number	LuR	LvR	LwR	LuRL	LvRL	LwRL				
1	297.7	149.7	255.1	248.4	35.3	254.5				
2	325.9	250.1	79.1	322.4	251.8	89.3				
3	234.0	425.6	116.9	258.4	422.8	115.3				
4	419.8	350.8	66.9	408.0	344.7	61.9				
5	333.9	168.6	189.7	317.5	173.5	204.0				
6	364.7	92.0	51.7	344.5	104.2	47.5				
7	562.8	249.6	287.6	532.2	242.9	283.5				
8	306.7	364.4	232.9	302.5	380.7	249.6				
9	327.8	338.0	93.9	341.5	338.0	83.9				
10	641.8	729.7	832.2	638.3	742.9	863.8				
11	370.0	246.1	203.3	375.6	241.7	193.1				
12	127.7	252.6	202.4	137.5	250.1	190.8				
13	156.0	428.8	83.7	148.6	424.4	82.6				
14	174.9	204.4	66.8	161.3	205.4	64.5				
15	540.0	225.8	526.1	526.5	225.3	494.0				
16	348.1	362.2	95.0	347.5	336.5	115.3				

TABLE 2.5. Turbulence Length Scales for Flight 31.

turbulence velocity component (see Table 2.5). The individual velocity component characteristics do not vary appreciably across the wing span which is in agreement with the fact that the calculated length scales are much larger than the 19.5 m wing span of the aircraft. This implies that the energy-containing turbulence fluctuations essentially engulf the total airfoil.

Finally, Table 2.6 shows the two-point correlation coefficients of the gust velocities computed for 16 runs of Flight 31. The symbols $\overline{u_R}u_L$, $\overline{v_R}v_L$, and $\overline{w_R}w_L$ represent the two-point common velocity component correlation functions for longitudinal, lateral, and vertical components, respectively, whereas $\overline{u_R}v_R$, $\overline{v_R}w_R$, and $\overline{w_R}u_R$ represent the one-point cross-correlation functions, and $\overline{u_R}v_L$, $\overline{v_R}w_L$, and $\overline{w_R}u_L$ represent the two-point cross-correlation functions. Although several other correlations of the gust velocities could

29

Run Number	<u>urur</u> ^σ vr ^σ vr	VRVL ^o wR ^o wL	WRWL ^σ uR ^σ vL	URVR ^σ VR ^σ WR	VRWR ^o wR ^o uR		<u>urv</u> ovrowi	<u>vrwL</u> _{owrouL}	
1	0.75	0.34	0.80	0.08	0.14	0.52	-0.40	0.11	0.45
2	0.80	0.81	0.82	0.00	-0.05	0.11	-0.02	-0.03	0.10
3	0.80	0.91	0.75	0.09	-0.19	0.06	0.04	-0.19	0.05
4	0.88	0.91	0.80	-0.19	0.20	0.09	-0.19	0.20	0.06
5	0.87	0.90	0.90	-0.09	-0.10	-0.17	-0.08	-0.09	-0.20
6	0.82	0.90	0.81	-0.18	0.60	-0.10	-0.18	0.61	0.00
7	0.92	0.90	0.90	0.02	-0.21	0.39	0.01	-0.21	0.32
8	0.89	0.81	0.80	-0.20	0.15	0.00	-0.19	0.10	0.03
9	0.80	0.90	0.80	0.30	0.20	0.19	0.30	0.20	0.18
10	0.98	0.99	0.98	0.08	0.00	-0.47	0.09	-0.01	-0.45
11	0.83	0.81	0.78	-0.21	-0.09	0.48	-0.28	-0.10	0.40
12	0.66	0.81	0.78	0.00	0.30	-0.22	0.01	0.31	-0.20
13	0.80	0.91	0.79	-0.18	-0.32	0.25	-0.19	-0.32	0.22
14	0.79	0.90	0.77	0.18	0.19	0.10	0.13	0.27	0.07
15	0.90	0.88	0.88	0.32	0.06	0.02	0.30	0.01	0.00
16	0.85	0.86	0.85	0.49	0.05	-0.10	0.49	0.02	-0.10

TABLE 2.6. Two-Point Correlation Coefficient of Gust Velocity for Flight 31.

be estimated, the combinations shown in Table 2.6 are sufficient to detect any trends or physical effects associated with the normalized spatial correlation computed from these data. Note that the appreciable difference in value between the one-point auto-correlation evaluated at zero lag, (shown in Table 2.4) and the two-point correlations evaluated at zero lag (shown in Table 2.6) is that correlation coefficients (i.e., normalized values) are tabulated in Table 2.6 whereas non-normalized correlations are given in Table 2.4. It is clear from inspection of Table 2.6 that the correlation between like components of turbulence has a roughly uniform decrease in value of 20 percent over the wing span of the aircraft.

All of the two-point correlation coefficients between common velocity components are larger than 0.75 except the value of $v_R v_L / \sigma_{v_R} \sigma_{v_L}$ for Run 1 and

 $U_{R}U_{L}/\sigma_{U_{R}}\sigma_{U_{L}}$ for Run 12. The former may be associated with Run 1 being a takeoff flight path (see Figure A.1). No explanation is evident for Run 12. The one-point cross-correlation coefficients are the Reynolds stresses (Frost and Moulden, 1977; Hinze, 1975) and are thus a measure of momentum transfer. For isotropic turbulence the cross-correlation terms theoretically are zero. The very low values shown in Table 2.6 suggest that the atmospheric turbulence is indeed nearly isotropic. It is believed that the large value of $V_{R}W_{R}/\sigma_{V}$ σ_{W} and

 $\nabla RWE/\sigma_{VR}\sigma_{WL}$ for Run 6 is caused by the very short averaging time of 63 seconds associated with the run. It therefore does not represent a meaningful statistical average. Similar arguments can be made for other unjustifiably large values of the cross-correlation coefficient.

RR

2.4 Probability Density Function for Gust Velocities and Gust Velocity

<u>Differences</u>

The fourth part of the analysis for each run in Appendix A contains the probability density function of the turbulent wind velocities. Data measured by the B-57B aircraft for all three different probe positions and for all three velocity components (longitudinal, lateral, and vertical) are plotted. The degree of or lack of normality of the turbulent wind velocities is illustrated by comparing the experimental probability density distributions with the theoretical normal distribution and the theoretical non-Gaussian probability density model (modified Besse¹ function distribution see Reeves, et al. (1974)).

The probability density function for the turbulence wind velocities is defined as:

$$p(x) = \frac{\lim_{\Delta x \to 0} \frac{\operatorname{Prob}[x < x(t) < x + \Delta x]}{\Delta x}}{\Delta x}$$
(2.2)

where x(t) may be u, v, w, Δu , Δv , or Δw and where $Prob[x < x(t) \le x + \Delta x]$ is the probability that the turbulence wind velocity at time t lies within a specified speed interval. The Gaussian probability density function is given by:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-x)^2}{2\sigma^2}}$$
(2.3)

where x is the mean value of x(t) and σ is the standard deviation of x(t). In calculating the probability density distributions in Appendix A, the gust velocity and the gust velocity differences are normalized with their standard deviations.

The non-Gaussian probability density distribution is given by Reeves, et al. (1974) as:

$$p\left(\frac{x}{\sigma}\right) = \frac{1}{\sigma} \frac{(1+r^2)^{\frac{1}{2}}}{\pi} \int_{0}^{\sigma} \left(\frac{2}{1+2\ell^2 r^2}\right)^{\frac{1}{2}} \exp\left[-\ell^2 - \frac{1}{2} \left(\frac{x}{\sigma}\right)^2 \frac{(1+r^2)}{(1+2\ell^2 r^2)}\right] d\ell \qquad (2.4)$$

where r is an adjustable parameter which is a measure of the degree to which the distribution is non-Gaussian and \mathfrak{L} is the dummy variable of integration. If r = 0, the function is exactly the Gaussian function; however, as r increases, the distribution departs from the Gaussian probability density function and approaches a modified Bessel function distribution as $r \rightarrow =$.

Figure 2.6 shows typical probability density distributions for Run 3 of Flight 31. The upper half of the figure shows the probability density distributions of the three individual gust velocity components and the bottom half of the figure shows the probability density distributions of the gust velocity differences between the right and left probes. These probability density calculations for the measured turbulence do not fit the normalized Gaussian distribution very well. Fitting the individual probability

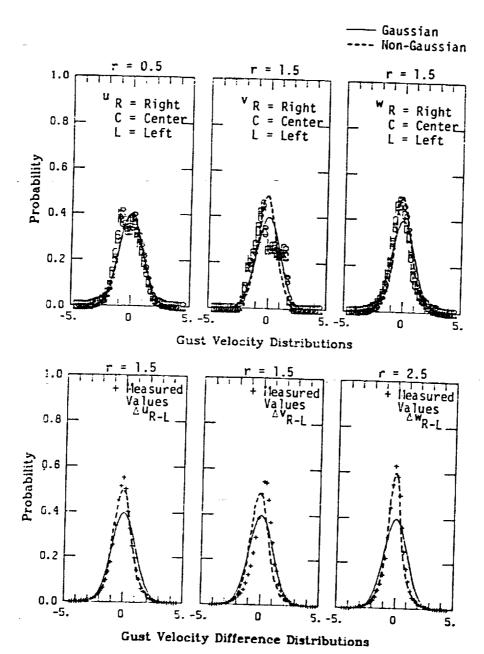


Figure 2.6.

二十二十二

2.6. Comparison of probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation) with theoretical models, Flight 31, Run 3 (r = degree of non-Gaussian).

distributions to Equation 2.4 by adjusting r, a non-Gaussian form which provides a closer fit to the experimental data is found. Inspection of Figure 2.6 and similar figures in Appendix A shows the non-Gaussian distribution gives a very good fit of the gust velocity difference probability distribution. The individual gust velocity probability distribution however, in many cases, appears to be bimodal. This is associated with trends in the mean velocity that have not been removed from the data.

Runs 1 and 9 are clear examples of the effects of trends in the mean wind on the probability distribution. For Run 1 during climb-out, the longitudinal mean wind which is essentially a headwind (see Figure A.1, Appendix A) will increase from zero at the surface to the value aloft. This vertical variation in the mean wind will typically vary logarithmically (Panofsky and Dutton, 1984). By simply assuming the mean wind speed is uniform and removing a constant value from the data (as was done in this study) causes the velocity fluctuations about the mean at low levels to be mainly negative and at higher levels mainly positive fluctuations (see Figure A.2, Appendix A). Thus, there is a bimodal distribution in the probability density function of the velocity fluctuations. This bimodal effect can probably be eliminated by removing a logarithmic velocity profile* trend. However, this was not done.

Now consider Run 9. The quasi-steady horizontal wind speed along the flight path is shown in Figure A.41. For the initial part of this flight, the winds were partially headwinds with a dominate northward direction. During the latter part, the winds became partially tailwinds with a westerly

*Note vertical variation of horizontal wind with height is typically logarithmic (Panofsky and Dutton, 1984).

direction. Again, removing a uniform average wind speed from the data results in the longitudinal velocity fluctuations being mainly negative during the initial part of the flight and positive during the latter part (see Figure A.42). Again, this results in a strong bimodal distribution in both the longitudinal and lateral wind speed gust distributions as shown in Figure A.43.

Returning to the discussion of the analytical models which best fit the data, it is clear that Equation 2.4 fits the experimental data considerably better than the Gaussian distribution. The value of r which gives the best fit of the data changes for different velocity components and from run to run. Table 2.7 lists values of r determined from "eye-ball" fits of the data for the three components of the gust velocity and gust velocity differences. The variation in r might be expected to be a result of the underlying surface roughness. Inspecting of the terrain features beneath each flight path, however, suggests ro apparent relationship between surface roughness and the value of r, nor is there an obvious correlation between r and altitude. Further work is required to associate the degree of non-Gaussianness of the atmospheric turbulence with physical causes.

2.5 Normalized One- and Two-Point Correlation Functions of Gust Velocities

The fifth part of the analysis for a given run in Appendix A is the normalized one- and two-point correlation functions of the turbulent wind velocities at the right and left wing tips. The correlation function between the same velocity components at two different positions separated by a vector distance \vec{z} is defined as (Panchev, 1971; Hinze, 1975):

$$R_{X}(\vec{c},\tau) = \frac{\lim_{T \to \infty} \frac{1}{T}}{\int_{0}^{T} x(\vec{\xi},t) x'(\vec{\xi}+\vec{c},t+\tau)dt}$$
(2.5)

where τ is the lag time, x and x' designate any one of the velocity components u, v, and w, and $\vec{\xi}$ is the position vector at which the velocity x is measured.

TABLE 2.7. Values of r (Equation 2.4) Which Represent a Measure of the Degree of Departure from a Gaussian Probability Distribution of the Gust Velocities.

Run Number	uR,uC,u	v _R ,v _C ,v _L	WR,WC,WL	Δu _{R-L}	Δv _{R-L}	∆w _{R-L}
1 2	1.5	1.5 1.0	1.5 1.0	3.5 1.5	3.5 1.5	0.5
1 2 3 4	0.5 2.5	1.5 1.0	1.5 2.5	1.5 2.5	1.5 2.5	1.5 2.5 3.5
5 6 7 8	3.5 3.5 2.5 4.5	3.5 4.5 2.5 1.5	3.5 4.5 2.5 1.5	4.5 4.5 4.5 2.5	7.5 6.5 6.5	6.5 7.5 6.5
9 10 11 12	2.5 1.5 2.5 1.5	1.0 3.5 1.5 1.0	1.0 2.5 1.5 1.0	2.5 2.5 2.5 2.5 1.5	2.5 2.5 4.5 2.5 1.5	3.5 2.5 2.5 2.5 1.5
13 14 15 16	1.5 3.5 4.5 1.5	2.5 3.5 4.5 1.5	1.0 3.5 1.5 1.5	1.5 4.5 7.5 1.5	1.5 4.5 7.5 1.5	2.5 4.5 7.5 1.5

The normalized correlation function:

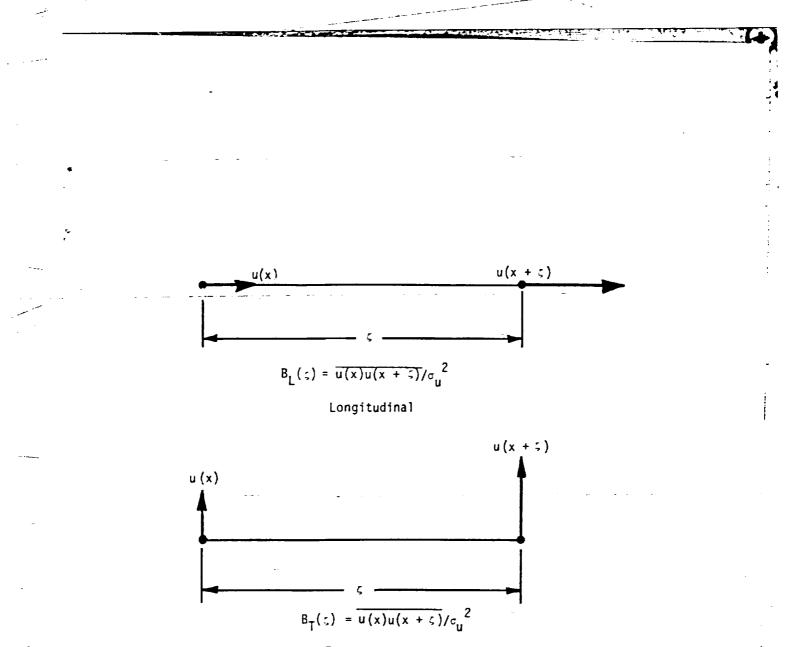
$$B_{X}(\vec{\zeta},\tau) = \frac{R_{X}(\vec{\zeta},\tau)}{\sigma_{X}\sigma_{X}^{-1}}$$
(2.6)

is called the correlation coefficient, σ_X and σ_X' are the standard deviations of $x(\vec{\xi},t)$ and $x'(\vec{\xi}+\vec{\zeta},t)$, respectively. If $\vec{\zeta}$ is not equal to zero, and x and x' are the same velocity component, the correlation function is called the two-point common component correlation function in this report. The absolute value of $B_X(\vec{\zeta},\tau)$ is always less than one. At $\vec{\zeta} = 0$, $R_X(\vec{\zeta},\tau)$ reduces to the one-point auto-correlation function given by:

$$R_{X}(\tau) = \frac{\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t) x(t + \tau) dt$$
(2.7)

The correlation function may be evaluated using a time history summation technique or by using the direct Fourier transformation method for computing spectra. Steely and Frost (1981) and Frost and Lin (1983) have compared the direct method with the summation technique and found they give identical results. The direct method is therefore used throughout this report unless otherwise stated.

Theoretical models of the one-point auto-correlation and of the two-point correlation are the von Karman model (Hinze, 1975) and the Houbolt and Sen (1972) extension of the von Karman model, respectively. The von Karman theoretical model for the normalized one-point auto-correlation functions for longitudinal and transverse velocity components is expressed as:


$$B_{L}(\zeta) = c \left(\frac{\zeta}{aL_{L}}\right)^{1/3} \kappa_{1/3} \left(\frac{\zeta}{aL_{L}}\right)$$

$$B_{T}(\varsigma) = c \left[\frac{\varsigma}{aL_{T}}\right]^{1/3} \left[K_{1/3}\left[\frac{\varsigma}{aL_{T}}\right] - \left[\frac{\varsigma}{2aL_{T}}\right] K_{2/3}\left[\frac{\varsigma}{aL_{T}}\right] \right]$$
(2.8)

where $c = 2^{2/3}/\Gamma(1/3)$, a = 1.339, K is a modified Bessel function of the second kind, Γ is the gamma function, L is the integral length scale, and ς is the spatial lag distance. The subscripts L and T refer to longitudinal and transverse, respectively. The longitudinal and transverse velocity correlation are defined as shown in Figure 2.7.

The von Karman correlation is in principle only valid for isotropic turbulence. The more general non-isotropic velocity correlation is a second order tensor given by (Hinze, 1975) as:

$$R_{ij}(\xi,\zeta) = \overline{u_i(\xi) \ u_j(\xi+\zeta)} \ e_i(\xi) \ e_j(\xi+\zeta)$$
(2.9)

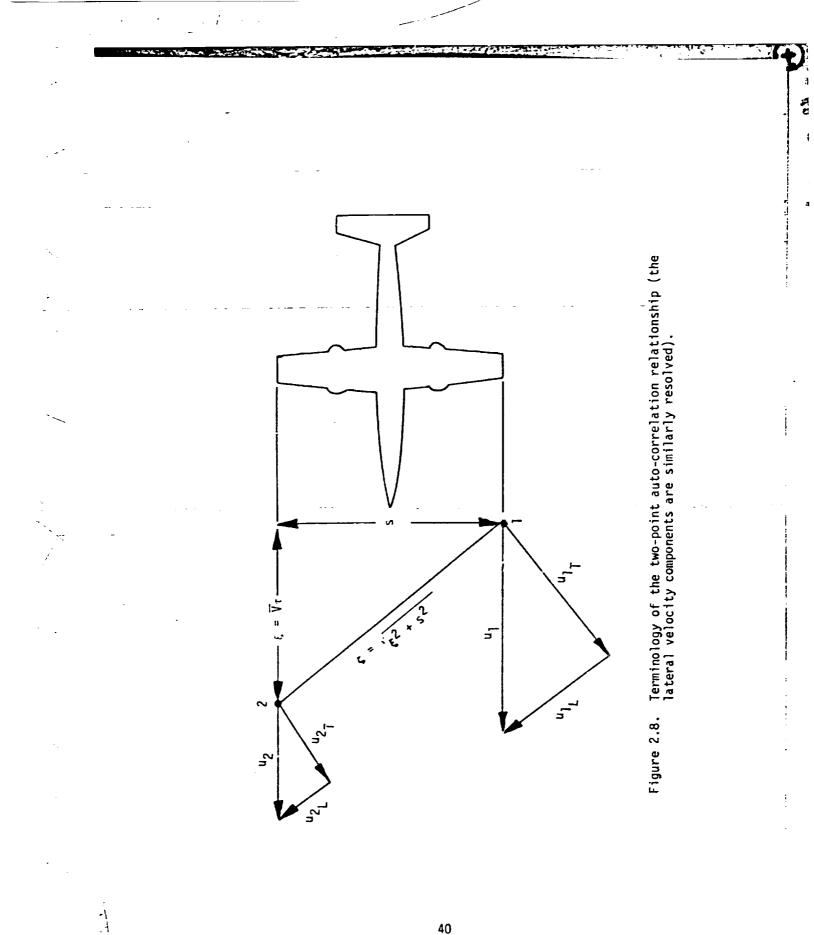
Transverse

Figure 2.7. Definition of the longitudinal and transverse velocity correlation coefficients.

where $e_i(\xi)$ represents the direction cosines of the velocity vector at the position ξ with respect to the ith axis and $e_j(\xi + \zeta)$ is similarly defined at a distance ζ from the position ξ . The symbol $u_i(\xi)$ is the instantaneous component of the velocity fluctuation with respect to the mean at the position ξ and $u_j(\xi + \zeta)$ is similarly defined. The general correlation, $R_{ij}(\xi, \zeta)$, is thus described in terms of nine components. When the turbulence is isotropic and homogeneous it can be shown that the correlation can be expressed solely in terms of the longitudinal and transverse correlations shown in Figure 2.7.

In the present investigation the velocity components are expressed relative to the axis of the aircraft (the assumption of small angles is evoked (see Appendix B)). For the longitudinal and transverse correlations the velocity components must be resolved parallel and perpendicular to the line between the two measuring points as illustrated in Figure 2.8. Therefore, to transform the longitudinal and transverse correlations to the aircraft frame of reference, the cosines in Equation 2.9 must be taken into account.

Frost, et al. (1985a) have shown following Hinze (1975) that for isotropic turbulence (see Figure 2.8):

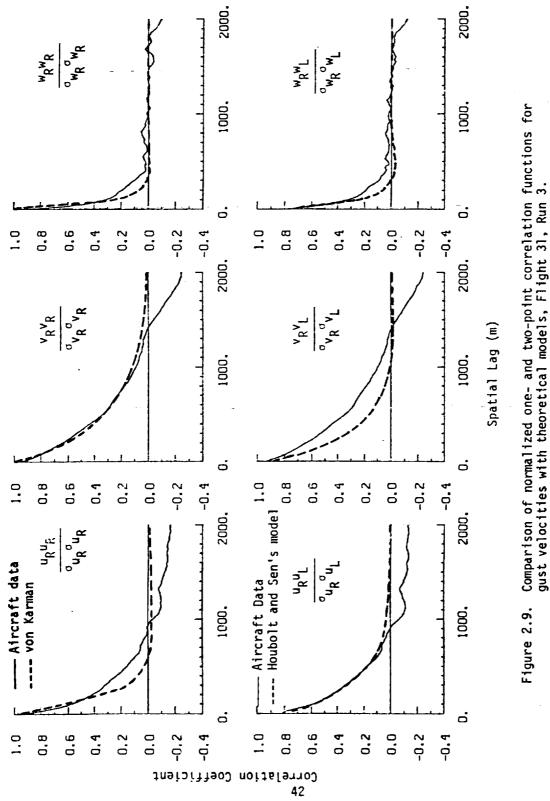

$$R_{u}(\zeta) = \frac{s^{2}}{\xi^{2} + s^{2}} \sigma_{T}^{2}B_{T}(\zeta) + \frac{\xi^{2}}{\xi^{2} + s^{2}} \sigma_{L}^{2}B_{L}(\zeta)$$
(2.10)

$$R_{v}(\varsigma) = \frac{s^{2}}{\xi^{2} + s^{2}} \sigma_{L}^{2}B_{L}(\varsigma) + \frac{\xi^{2}}{\xi^{2} + s^{2}} \sigma_{T}^{2}B_{T}(\varsigma)$$
(2.11)

The vertical velocity correlation is, of course:

 $R_{w}(\zeta) = \sigma_{T}^{2}B_{T}(\zeta) \qquad (2.12)$

This model is referred to as the Houbolt and Sen model since Houbolt and Sen (1972) utilized it with Equations 2.7 and 2.8 early on to develop a two-point spectrum for use in design analyses. (It should be noted that in actual fact, Houbolt and Sen did not account for the direction cosines and hence their



り

longitudinal spectrum is incorrect.) For isotropic turbulence, $\sigma_T = \sigma_L = \sigma$ which is not the case for the experimental data as is apparent from Table 2.4.

Figure 2.9 shows normalized one- and two-point correlation functions. The correlations are from Run 3, Flight 31. All correlation coefficients are plotted versus the spatial lag distance, $\zeta = V\tau$, in the direction of flight. The normalized one-point auto-correlation functions are plotted in the upper part of the figure, and the normalized two-point correlation functions in the lower part. The two-point correlations have both negative and positive time lags. Only the positive lag is given in the figure. Negative lags behave similarly but are not symmetric. The influence of negative lag appear in the phase angle of the two-point spectrum which is discussed in a later section of this report. The area obtained by integrating the one-point auto-correlation coefficient from zero spatial lag to the point where the correlation coefficient first crosses zero is defined as the integral length scale (see Comparisons of the experimental data with the von Karman Table 2.5). theoretical one-point auto-correlation coefficient and with the Houbolt and Sen (1972) theoretical two-point correlation function are shown in the figure. The integral length scale, L, used in the theoretical models was that determined as described above. Using length scales determined from other definitions (see Frost and Lin, 1983) gave no better and, in most cases, poorer agreement with the experimental data.

In general, auto-correlations are expected to decay faster for the vertical and lateral components than for the longitudinal component. Results of Run 3 shown in Figure 2.9 appear to be an exception to this rule since similar plots of correlations for other runs given in Appendix A behave as expected. However, employing the length scales, computed as described in the theoretical model, results in the one-point auto-correlation coefficient

X

fitting the measured data quite well (see for example Runs δ , 14). The experimental correlation coefficient does depart, however, from the theory. It is higher than the value predicted by the von Karman model at the larger spatial lags.

It is interesting that poorer agreement with von Karman's theoretical models occurs for the high altitude flight Run 10 than for the others. This is surprising since it is generally assumed that turbulence at higher altitudes is isotropic. The wind at the higher level, however, may have been stratified with embedded gravity waves. This is suggested by the high degree of correlation shown in Figure A.49 and inspection of the time history in Figure A.47 which suggests Run 10 encountered a wave pattern.

Consideration of Figures 2.7 and 2.8 shows that $R_{\rm U}(\varsigma)$ defined by Equation 2.10 converges to $\sigma_{\rm T}^{2}B_{\rm T}(\varsigma)$ at $\xi = 0$. Inspection of the correlation coefficients plotted in Appendix A shows this to be approximately true in most cases. In turn, as ξ becomes large $R_{\rm U}(\varsigma)$ approaches the longitudinal correlation $\sigma_{\rm L}^{2}B_{\rm L}(\varsigma)$. This is also approximately true based on inspection of the experimental results. The above observation suggests that the turbulence is reasonably isotropic for all runs except Run 10. Run 10 at high altitude as noted appears to be associated with wave motion. This is even more apparent in the cross-correlation coefficients described next.

The cross-correlation function of two sets of random data describes a general dependence between the variations of the sets. The two-point cross-correlation function is given by:

$$R_{xy}(\vec{z},\tau) = \frac{\lim_{T \to \infty} \frac{1}{T}}{\int_{0}^{T}} x(\vec{z},t) y(\vec{z}+\vec{z},t+\tau) dt \qquad (2.13)$$

where x and y are time histories of any two of the turbulence velocity components u, v, and w, τ represents the lag time, and $\vec{\xi}$ indicates the position 43

vector. For a given $\vec{\xi}$, the function $R_{XY}(\vec{\xi},\tau)$ is always a real-valued function which may be either positive or negative. Furthermore, $R_{XY}(\vec{\xi},\tau)$ does not necessarily have a maximum at $\tau = 0$, nor is $R_{XY}(\vec{\xi},\tau)$ an even function as was true for the one-point auto-correlation functions. However, $R_{XY}(\vec{\xi},\tau)$ does display the symmetric relation (Bendat and Piersol, 1971):

 $R_{XY}(\vec{z},-\tau) = R_{YX}(\vec{z},\tau)$ (2.14)

where x and y are interchanged.

The normalized cross-correlation function is then defined as:

$$B_{XY}(\vec{z},\tau) = \frac{R_{XY}(\vec{z},\tau)}{\sigma_X \sigma_Y}$$
(2.15)

where σ_X and σ_y are the standard deviations of $x(\vec{\xi},t)$ and $y(\vec{\xi}+\vec{\zeta},t)$, respectively. At $\vec{\zeta} = 0$, $R_{XY}(\tau)$ and $B_{XY}(\tau)$ are called the one-point crosscorrelation and the normalized one-point cross-correlation functions, respectively.

Figure 2.10 shows typical normalized one- and two-point crosscorrelation functions for Run 3 in Flight 31. The upper half of the figure shows the one-point cross-correlation coefficients for three combinations of the turbulent velocity components measured with respect to the right wing tip of the aircraft. The lower half of the figure shows the two-point crosscorrelation coefficients for three corresponding combinations of the turbulent velocity components measured from the right and left wing tips. Since the wing span is much smaller than the characteristic length scale of the turbulence, the two-point cross-correlation coefficients are quite similar to those of the one-point cross-correlation for all runs.

The cross-correlation coefficients, shown in Appendix A, are, with the exception of Run 10, generally small and almost constant with spatial lags.

44

_ _ _

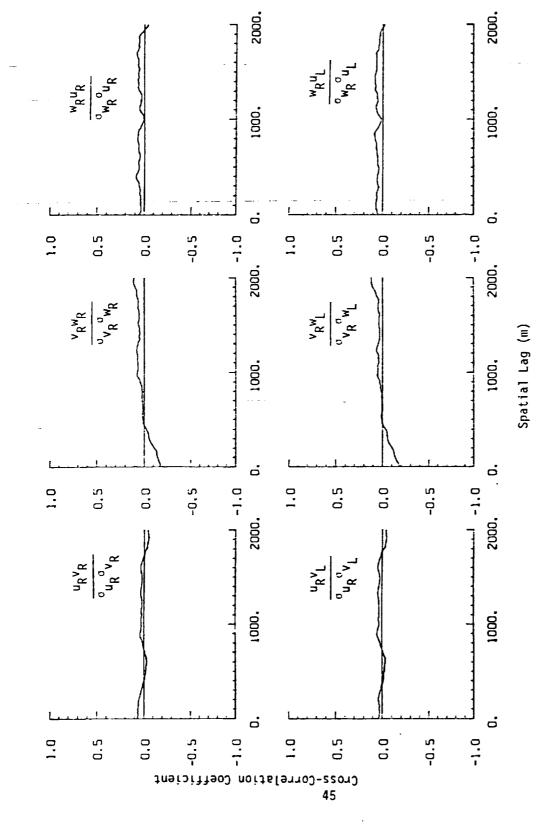


Figure 2.10. Normalized one- and two-point cross-correlation functions of gust velocities. Filght 31, Run 3.

The cross-correlations for Run 10 increases with spatial lag having a maximum at $\zeta = 1500$ m. Inspection of the time histories suggests a wave phenomenon at the high altitude at which Run 10 was made. The first wave occurs at roughly 17 seconds which corresponds to $\zeta = V\tau$ of approximately 1700 m. The u and v components are approximately 180° out of phase resulting in a strong cross-correlation at $\zeta = 1500$ m.

In contrast to Run 10, the cross-correlations for the other runs have values on the order of 0.5 or less but show no pronounced peak. The value of these correlations (i.e., approximately 0.5) are higher than exp. ted but the high values may be due to the short time records. For best results, the cross-correlation function of Equation 2.13, requires the sample record length to approach infinity. However, this is not well approximated for several of the runs. The cross-correlation coefficient for Run 3, which has the longest sample record is very small and is expected to be the best representative of the true cross-correlation coefficients.

2.6 Normalized One- and Two-Point Spectral Density Functions of Gust

Velocities

т. •

The sixth part of the analysis for each run in Appendix A is the spectral analyses of the turbulence velocity components. The spectral analysis includes the normalized one- and two-point spectral density functions of the gust velocity components measured with respect to the right and left wing tips of the aircraft. In addition, the auto-spectrum and the one-point cross-spectrum are compared with predictions from theoretical models. The spectra presented in this report are one-sided spectra (see Bendat and Piersol, 1971).

The definition of spectral density functions in terms of Fourier transforms of the correlation functions yields two-sided spectral density

functions which are defined for both positive and negative frequencies (--,-) and _are denoted by S(f). Assume that the auto- and cross-correlation functions $R_X(\vec{z},\tau)$ and $R_{XY}(\vec{z},\tau)$ exist, as defined in Equations 2.5 and 2.13. At \vec{z} = zero, $R_X(\tau)$ and $R_{XY}(\tau)$ represent the one-point auto- and crosscorrelation functions, respectively. The two-sided auto- and cross-spectral density functions are given by:

$$S_{X}(\vec{\zeta},f) = \int R_{X}(\vec{\zeta},\tau)e^{-j2\pi f\tau} d\tau$$
 (2.16)

and

٤.

$$S_{xy}(\vec{\zeta},f) = \int R_{xy}(\vec{\zeta},\tau) e^{-j2\pi f\tau} d\tau$$
 (2.17)

respectively. The letter j denotes the imaginary number $j = \sqrt{-1}$ and f is the frequency.

From the symmetry properties of the correlation functions, it follows that:

$$S_{x}(-f) = S_{x}(f); \quad \vec{\zeta} = 0$$

$$S_{X}(\vec{z},-f) = S_{X}^{*}(\vec{z},f); \quad \vec{z} \neq 0$$

(2.18)

 $S_{XY}(\vec{\zeta},-f) = S_{XY}^{\star}(\vec{\zeta},f) = S_{YX}(\vec{\zeta},f)$

where "*" designates the complex conjugate. These equations state that the two-sided one-point auto-spectral density functions are real, non-negative, and even functions of f, whereas the two-sided two-point spectral density functions and the one- and two-point cross-spectral density functions are complex-valued functions of f.

The one-sided spectral density functions, $\Phi_X(\vec{z},f)$ and $\Phi_{XY}(\vec{z},f)$ where f varies only over the frequency range (0,-) are defined by:

 $\Phi_X(\vec{\xi},f) = 2S_X(\vec{\xi},f)$ $0 \le f \le -$ otherwise zero $\Phi_{XY}(\vec{\xi},f) = 2S_{XY}(\vec{\xi},f)$ $0 \le f \le -$ otherwise zero (2.19) In terms of the correlation function, the one-sided one-point auto-spectral density function becomes:

$$\Phi_{X}(f) = 4 \int R_{X}(\tau) \cos 2\pi f \tau \, d\tau \qquad 0 \leq f < -$$
(2.20)

The one-sided two-point spectral density function is:

$$\Phi_{X}(\vec{z},f) = 2 \int_{-\infty}^{\infty} R_{X}(\vec{z},\tau) e^{-j2\pi f\tau} d\tau$$

= $C_{X}(\vec{z},f) - jQ_{X}(\vec{z},f)$ (2.21)

and the one-sided one- and two-point cross-spectral density function is:

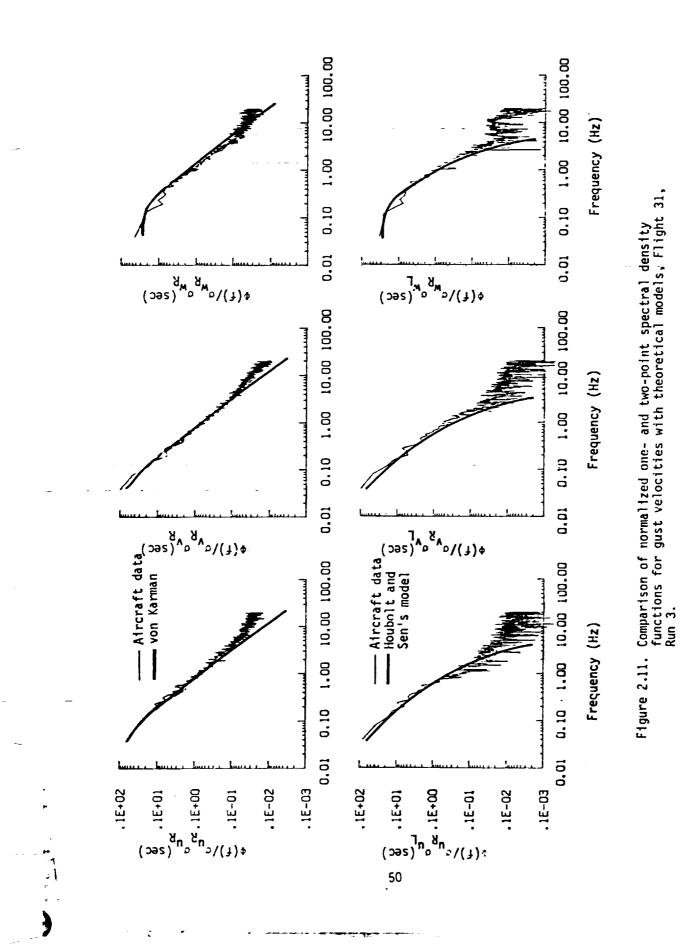
$$\Phi_{XY}(\vec{z},f) = 2 \int_{-\infty}^{\infty} R_{XY}(\vec{z},\tau) e^{-j2\pi f\tau} d\tau$$

= $C_{XY}(\vec{z},f) - jQ_{XY}(\vec{z},f)$ (2.22)

where $C_X(\vec{\xi},f)$ and $C_{XY}(\vec{\xi},f)$ are called the coincident spectral density functions (co-spectrum) and are even functions of f, and where $Q_X(\vec{\xi},f)$ and $Q_{XY}(\vec{\xi},f)$ are called the quadrature spectral density functions (quad-spectrum) and are odd functions of f. An alternative way to describe the complexvalued spectral density functions is with the polar form, $\Phi(\vec{\xi},f) =$ $\Phi(\vec{\xi},f) = \Phi(\vec{\xi},f)$, defined in terms of an absolute magnitude and a phase angle:

$$|\Phi_{X}(\vec{z},f)| = \sqrt{C_{X}^{2}(\vec{z},f) + Q_{X}^{2}(\vec{z},f)}, \quad \Theta_{X}(\vec{z},f) = \tan^{-1}\frac{Q_{X}(\vec{z},f)}{C_{X}(\vec{z},f)}$$
 (2.23)

and


48

$$\Phi_{XY}(\vec{z},f) = \sqrt{C_{XY}^2(\vec{z},f) + Q_{XY}^2(\vec{z},f)}, \quad \theta_{XY}(\vec{z},f) = \tan^{-1} \frac{Q_{XY}(\vec{z},f)}{C_{XY}(\vec{z},f)}$$
(2.24)

The magnitude of the complex-valued spectral density functions represents the energy associated with fluctuations at specific frequencies within the turbulent flow. For each run of Flight 31, only the magnitude of the normalized spectral density functions are presented in Appendix A. A segment-averaging technique was used to compute and smooth the raw spectral estimates obtained from the direct Fourier transform of the individual data segments. Data smoothing procedures for two-point spectra are discussed in Section 3.

Figure 2.11 shows a typical plot of the normalized spectral density functions for Run 3 in Flight 31. The upper half of Figure 2.11 shows the normalized one-sided one-point auto-spectral density functions for the three respective turbulence velocity components measured at the right wing tip. The theoretical von Karman spectral density functions are also plotted for comparisons. The comparisons show good agreement between the experimental results and those predicted by the theoretical models. The integral length scales, L_{U} , L_{V} , and L_{W} , which were computed from the longitudinal, lateral, and vertical correlation functions, respectively, were used in the theoretical models. The experimental data is higher than the von Karman predictions at high frequencies. The spectra have been corrected for variance error but not for aliasing nor bias error. These effects are discussed in Section 3.

The lower half of Figure 2.11 shows the normalized one-sided two-point spectral density functions for three respective turbulence velocity components measured at the right and left wing tips of Run 3. Also plotted for comparison are the Houbolt and Sen theoretical models. This two-point spectrum model is derived from the Fourier transform of Equations 2.10 and

-

2.11 where $B_L(\varsigma)$ and $B_T(\varsigma)$ are the von Karman longitudinal and transverse correlations (Equation 2.8), respectively. The form of the theoretical spectra is:

ł

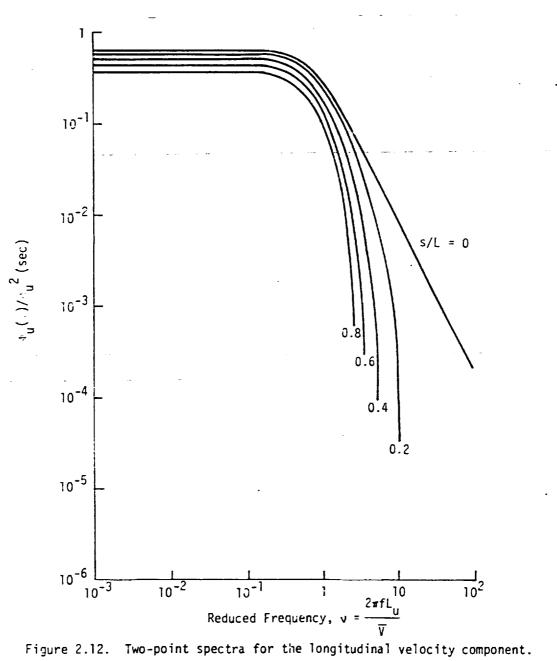
$$\Phi_{u}(s,f) = C\sigma_{u}^{2} \left[\frac{L_{u}}{\overline{v}} \right] \left[2 \frac{\left(\frac{s}{L_{u}} \right)^{5/3}}{z^{5/6}} K_{5/6}(Z) - (s/L_{u})^{5/3} Z^{1/6} K_{1/6}(Z) \right]$$
(2.25)

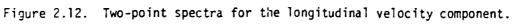
for the longitudinal component, and

$$\Phi_{V}(s,f) = C\sigma_{V}^{2} \left[\frac{L_{V}}{V} \right] \left[\frac{8}{3} \frac{\left(\frac{s}{L_{V}}\right)^{5/3}}{z^{5/6}} \kappa_{5/6}(z) - \frac{\left(\frac{s}{L_{V}}\right)^{11/3}}{a^{2}z^{11/6}} \kappa_{11/6}(z) + (s/L_{V})^{5/3}z^{1/6}\kappa_{1/6}(z) \right]$$
(2.26)

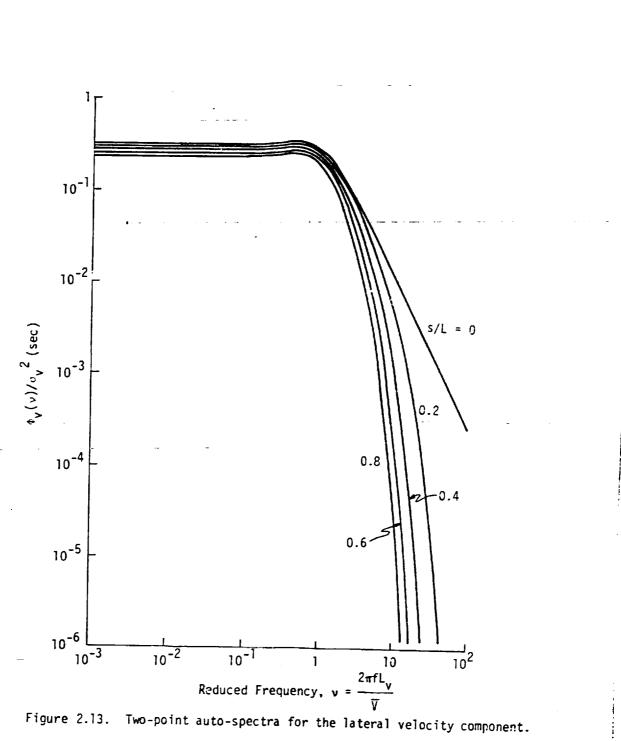
for the lateral component. For the vertical component, the spectrum is given by:

$$\Phi_{W}(s,f) = C\sigma_{W}^{2} \left[\frac{L_{W}}{V} \right] \left[\frac{8}{3} \frac{\left[\frac{S}{L_{W}} \right]^{5/3}}{z^{5/6}} K_{5/6}(Z) - \frac{\left[\frac{S}{L_{W}} \right]^{11/3}}{a^{2}Z^{11/6}} K_{11/6}(Z) \right]$$
(2.27)

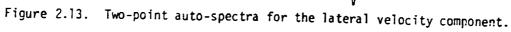

where

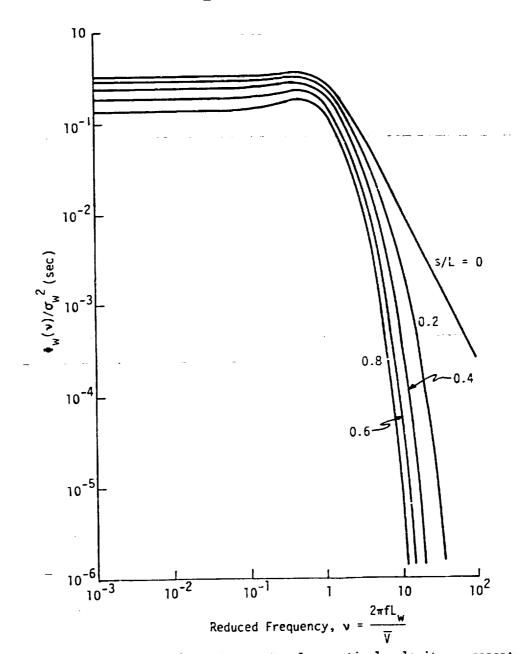

$$C = \frac{\sqrt{2\pi}}{\Gamma(1/3)} \left[\frac{2}{a}\right]^{2/3},$$

$$Z = \frac{S}{La} \sqrt{1 + \left[a \frac{2\pi f L}{V}\right]^2}, \quad a = 1.339$$


where L is any integral length scale of L_u , L_v , and L_w , \overline{V} is the mean airspeed, and K is a modified Bessel function of the second kind.

Equations 2.25, 2.26, and 2.27 are plotted in Figures 2.12, 2.13, and 2.14 for different s/L values, respectively. The termination of the curves in Figure 2.12 for the two-point spectra for the longitudinal velocity component are not arbitrary. At this point, the spectra based on Equation 2.25 takes on negative values. Negative values occur when the last term in the brackets of




24

Ŧ

53

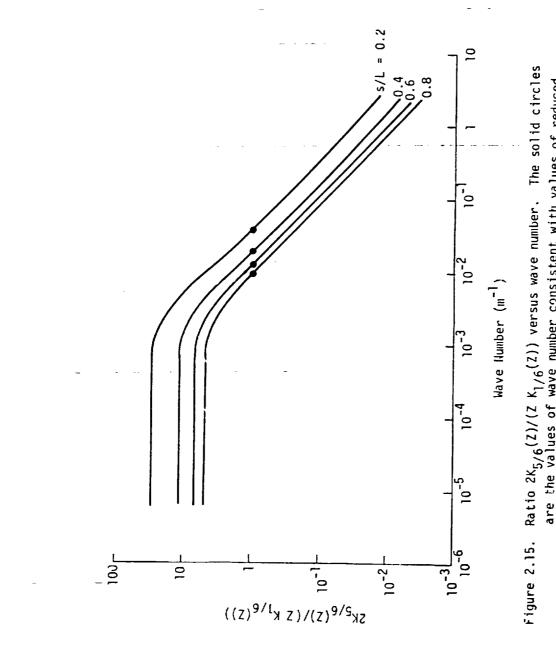
A DOWNER

A State of the second second

Figure 2.14. Two-point auto-spectra for vertical velocity component.

54

)


. ...

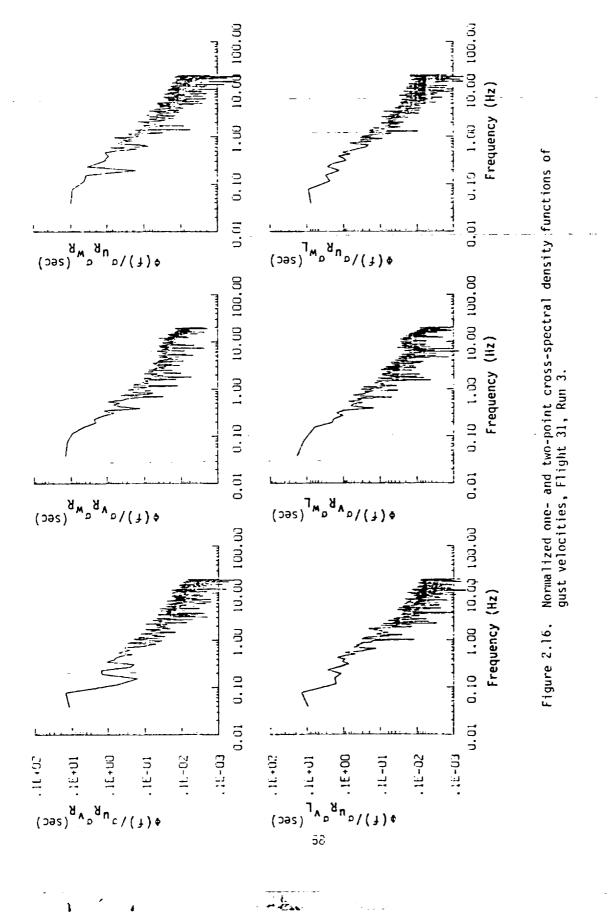
Equation 2.25 becomes negative. This corresponds to the ratio $2K_{5/6}(2)/(2 K_{1/6}(2))$ becoming unity. A plot of this ratio versus wave number for different values of s/L is shown in Figure 2.15. The value of wave number for which the ratio becomes unity is indicated by the solid circles. Inspection of this figure shows that these values of wave number correspond to wavelengths of approximately one half the separation distance-s:

The idea of a negative spectrum is initially inconsistent with one's normal thinking. However, after further consideration, it is totally consistent with physical reasoning that the energy contained in fluctuations of wavelengths smaller than one-half the separation distance s would be zero or even negative. It is also very likely that values of the lateral and vertical spectrum shown in Figures 2.13 and 2.14 should be truncated at corresponding values of reduced frequency for which the longitudinal spectrum is truncated. The energy contained in eddies of size smaller than the separation distance predicted by the model for the lateral and vertical spectra is not likely meaningful.

Equations 2.25 through 2.27 were derived analytically in this study. Campbell (1984) obtained results consistent with those shown in Figures 2.12, 2.13, and 2.14 by numerically integrating equations similar to Equations 2.10 and 2.11. Campbell obtained negative values for the longitudinal spectrum, however, he erroneously contributed them to round-off errors in his numerical integration (Campbell, 1986). Further work is needed to fully resolve the meaning of the two-point spectrum at high frequencies for which it becomes negative. However, it is believed that it is consistent with physical principles to simply truncate the two-point spectrum at these negative values.

Returning to a consideration of Figure 2.11, the two-point spectral density functions, calculated from the experimental data, are consistent with

Katlo $2K_5/6(2)/(2 K_{1/6}(2))$ versus wave number. The solid circle are the values of wave number consistent with values of reduced frequency for which the longitudinal two-point spectral model (Equation 2.25) becomes negative.


!

-

56

the theoretical model until a mid-range frequency value. Above that frequency, the theoretical model drops off rapidly compared with the experimental data. Since the spectral estimate is calculated from a digitized turbulence time history with a finite record length, the departure of the data from the theory is due to aliasing and truncation error. This will be discussed further in Section 3.

The normalized one- and two-point cross-spectral density functions for three combinations of the three respective turbulence velocity components measured at the right and left wing tips in Run 3 are shown in Figure 2.16. As mentioned earlier, the spectral density functions plotted in this report are magnitude only. The shape of the normalized magnitude of the spectral density functions are observed to be very similar for both the auto-spectral density functions and the cross-spectral density functions. This would not intuitively be expected because the normalized auto-correlation and crosscorrelation functions, Figures 2.9 and 2.10 respectively, are very different. However, the non-normalized or absolute value of the auto-spectral density function (i.e., ϕ as contrasted to ϕ/σ^2) is about one order of magnitude larger than the value of the cross-spectral density function. The above observations suggest that the eddies of a given frequency contain cross-component energy proportionate to the distribution of common component energy; however, the cross-components are out of phase and have little Phase relationships for the spectra are dictated by the correlation. magnitude of quadspectra (see Equations 2.23 and 2.24). The quadspectra for the two-point common component spectra are very small; however, for the cross-spectra, both one-point and two-point, the quadspectra are of the same magnitude as the co-spectra. The former result indicates little phase shift between common-components displaced spatially whereas the latter result

4

, M

indicates significant phase shift between uncommon components regardless of spatial displacement.

Similar analyses on the turbulence velocities gathered by the NASA B-57B aircraft (Frost, et al., 1985a) for the two-point common component spectra have shown that the quadrature spectra have values near zero (<0.1) for all Emphasizing that the phase shift between the same turbulence frequencies. components measured at the different probes are negligible. Again, this is probably because the wing span of the airplane is much smaller than a characteristic length scale and significant phase shift would not occur for most of the turbulent eddy sizes involved. Therefore, the shapes of the one-point and two-point correlation functions will be similar to each other. However, as noted for the one- and two-point cross-spectra, the quadrature spectra are comparable with the corresponding coincident spectra, which means the phase angles are significant. Thus, when utilizing turbulence crossspectral functions to assess the influence of the gust gradient on an aircraft's response, the phase angle of the spectral function is an important parameter.

There is little information on theoretical or empirical models for one-point cross-spectra and virtually no information on two-point crossspectra in the literature. Reeves, et al. (1974) suggests the following two-sided one-point cross-spectral density function to relate the u and w gust components at low altitudes:

 $S_{XY}(f) = \frac{\sigma_{u}\sigma_{w}\sqrt{2}}{r^{2}+1} \left\{ \frac{2r^{2}}{A^{2}} \left(\frac{L_{w}}{\overline{v}} \right)^{2} \left(\frac{L_{u}}{\overline{v}} \right) \left[\frac{[1+3(\pi Af)^{2}] - j(2\pi Af)}{[1+(\pi Af)^{2}]^{2}} \right] \right\}$

$$+ \int \frac{L_{U}L_{W}}{\nabla^{2}} \left\{ \frac{\left[1 + j\sqrt{3} \left[2\pi \frac{L_{W}}{\nabla}f\right] - \right]}{\left\{1 + j\left[2\pi \frac{L_{W}}{\nabla}f\right]\right\} \left[1 + (2\pi Bf)^{2}\right]} \right\}$$
(2.

28)

where r, A, and B are arbitrary parameters satisfying the inequalities: r > 0.

$$A > \frac{2L_{w}}{\overline{v}}, \quad A > \frac{2L_{u}}{\overline{v}},$$
$$B > \frac{L_{w}}{\overline{v}}, \quad B > \frac{L_{u}}{\overline{v}}$$

De la companya de la comp

In this equation, r is the parameter defined in Equation 2.4. The model developed by Reeves, et al. (1974) is basically for low-altitude applications. Therefore, the lowest flight level was chosen for comparison of the experiment with the tneory. Inspection of the flight altitude of all runs of Flight 31 shows that Run 12 was flown at the lowest average altitude of approximately 400 ft above the ground. The normalized one-point cross-spectral density function, $\Phi_{UW}(f)/\sigma_U\sigma_W$, for the turbulence velocity components u and w at the right wing tip in Run 12 was calculated from Equation 2.28 and the results are shown in Figure 2.17.

The parameters A and B for Run 12 are chosen to best fit the experimental data. The value of r is taken as 1.25 the average value for u and w tabulated in Table 2.7. Figure 2.17 shows good agreement between the experimental results (symbol "x") and the results predicted by the Reeves model (solid line) except in the high-frequency regions. As discussed earlier for the one-point auto-spectrum, the higher experimental values in the high-frequency region are probably due to aliasing and truncation error.

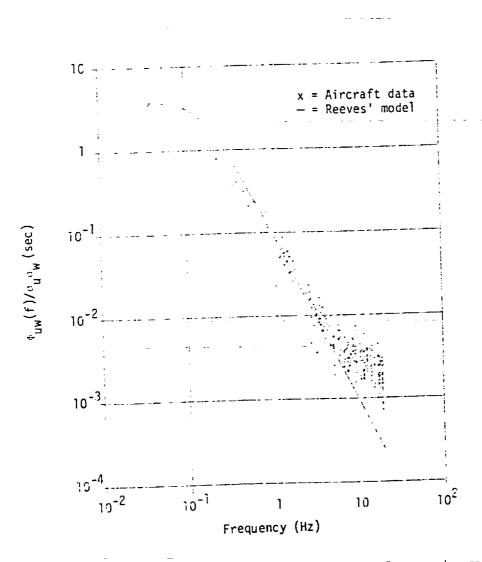


Figure 2.17. Comparison of cross-spectral density function for u and w components with theoretical model, Flight 31, Run 12 (A = $1.25 L_u/\overline{V}$; B = L_u/\overline{V} ; and r = 1.25).

S..

2.7 List of All Parameters Measured and the Range of Their Extreme and

Average Values

)

Finally in Appendix A, a table is presented for each run which lists all parameters recorded during a flight: the units, the maximum and minimum values, the mean value, the root mean square value, and the number of data points for each parameter. These parameters are stored on magnetic tapes in the following order (the symbols used to represent the variable are appended in brackets):

- 1. Mountain Daylight Time (MDT) in seconds for each record [t].
- 2. Roll rate measured by body-mounted roll-rate transducer (positive with right wing going down), rad/s [d ϕ /dt].
- 3. Normal acceleration at c.g. (positive up) g units $[a_n]$.
- 4. Pitch rate measured by body-mounted pitch-rate transducer (positive with nose going up), rad/s $[d\theta/dt]$.
- 5. Pitch attitude measured in the vertical plane (positive with nose up), rad [θ].
- 6. Roll attitude of airplane with reference to horizontal (positive with right wing down), rad $[\phi]$.
- 7. Airplane heading measured in a horizontal plane clockwise from true north (always positive), 0 to 360° range [ψ_1].
- 8. Sensitive airplane heading obtained from ψ_1 with arbitrary zero at the instant the data switch is turned on (positive with nose right) $\pm 15^{\circ}$ range [ψ_1].
- 9. Airplane heading measured in a horizontal plane clockwise from true north (always positive) 240° to 600° range [ψ_2].
- 10. Sensitive airplane heading obtained from ψ_2 , with arbitrary zero at the instant the data switch is turned on (positive with nose right) $\pm 15^{\circ}$ range [$\Delta \psi_2$].
- 11. Normal acceleration at the left wing tip (positive up), g units $[a_{nL}]$.
- 12. Normal acceleration at the right wing tip (positive up), g units $[a_{nR}]$.

13. Longitudinal acceleration at the c.g. (positive forward), g units [a_X]. ţ

- 14. Lateral acceleration at the c.g. (positive toward right wing), g units $[a_y]$.
- 15. Angle of attack measured at the airplane nose bocm (positive with flow vane trailing edge up), rad $[\alpha_C]$.
- 16. Angle of sideslip measured at the airplane nose bocm (positive with flow vane trailing edge toward right as viewed from the aircraft), rad $[\beta_{C}]$.
- 17. Temperature of the INS pallet, *F [T_I].
- 18. Temperature of the instrument pallet, $F[T_p]$.
- 19. Vertical acceleration of the INS stable element (positive up), g units $[a_z]$.
- 20. Angle of attack measured at the right wing tip bocm (positive with flow vane trailing edge up), rad $[\alpha R]$.
- 21. Angle of sideslip measured at right wing tip boom (positive with flow vane trailing edge toward right as viewed from the aircraft), rad $[\beta_R]$.
- 22. Angle of attack measured at the left wing tip boom (positive with flow vane trailing edge up), rad $[\alpha_L]$.
- 23. Angle of sideslip measured at the left wing tip boom (positive with flow vane trailing edge toward right as viewed from the aircraft), rad $[B_L]$.
- 24. Yaw rate measured by a body-mounted yaw-rate transducer (positive with nose going right), rad/s $[d\psi/dt]$.
- 25. Total temperature, °C [T₀].
- 26. Impact pressure measured at the left wing tip boom, P_a [q_{CL}].
- 27. Impact pressure measured at the airplane nose boom, P_a [q_{CC}].
- 28. Impact pressure measured at the right wing tip bcom, Pa [qcR].
- 29. Free-stream static pressure measured at the airplane nose boom, KP_a [p].
- 30. Temperature of IRT, *C [TIRT].
- 31. Wet-bulb temperature, *C [T_{wb}].

- 32. Turbulent fluctuation of impact pressure at the left wing tip bocm, P_a [qctL].
- 33. Timbulent fluctuation of impact pressure at the airplane nose boom, F_a [qctC].
- 34. Turbulent fluctuation of impact pressure at the right wing tip boom, P_a [qctR].
- 35. Deflection angle of the right aileron, deg $[\delta_{aR}]$.
- 36. Deflection angle of the left aileron, deg [δ_{al}].
- 37. Deflection angle of the elevator, deg $[\delta_{e}]$.
- 38. Deflection angle of the stabilizer, deg [δ_s].
- 39. Deflection angle of the rudder, deg $[\delta_r]$.
- 40. Thrust ratio of the right engine to the maximum thrust, percent $[T_R]$.
- 41. Thrust ratio of the left engine to the maximum thrust, percent $[T_L]$.
- 42. Deflection position of the flap system [δ_f].
- 43. Deflection position of the speed brake system [δ_{sb}].
- 44. Distance to go from the present position of the aircraft to the next waypoint set on the INS (always positive), $m [\Delta t]$.
- 45. Bearing to destination, i.e., bearing from the aircraft's present position to the next waypoint set on the INS, measured in a horizontal plane clockwise from true north (always positive), deg [YB].
- 46. Longitude of aircraft as measured by INS, deg [LONG].
- 47. Latitude of aircraft as measured by INS, deg [LAT].
- 48. Track angle of airplane measured in a horizontal plane clockwise from true north (always positive), deg [YT].
- 49. Airplane heading, measured in a horizontal plane clockwise from true north, rad $[\psi]$.
- 50. East-west component of the airplane inertial velocity as measured by INS (positive toward east), m/s [V_E].
- 51. North-south component of the airplane inertial velocity as measured by the INS (positive toward north), m/s [V_N].

- 52. Pressure-derived altitude based on standard atmosphere tables, km [h_p].
- 53. Computed free-stream temperature, $C[T_C]$.
- 54. Computed east-west wind component (positive toward east), knots [WF].
- 55. Computed north-south wind component (positive toward north), knots $[W_N]$.
- 56. Computed magnitude of wind vector, knots [W].

57-60. Computed direction of wind vector, deg [W].

- 61. True airspeed computed from impact pressure measurement at right wind tip boom, m/s [V_R].
- 62. True airspeed computed from impact pressure measurement at the airplane nose boom, m/s [Vc].
- 63. True airspeed computed from the impact pressure measurement at left wing tip boom, m/s [VL].
- 64. Incremental pressure-derived altitude with reference to value at beginning of run (positive when altitude increases), m [Δh_p].
- 65. Computed corrected inertial displacement, $m [\Delta h_c]$.
- 66. Computed longitudinal component of gust velocity at right wing tip boom (positive in direction of flight path), m/s [ug].
- 67. Computed longitudinal component of gust velocity at airplane centerline nose boom (positive in direction of flight path), m/s [uc].
- 68. Computed longitudinal component of gust velocity at left wing tip boom (positive in direction of flight path), m/s [u_L].
- 69. Computed lateral component of gust velocity at right wing tip (positive toward right), m/s [v_R].
- 70. Computed lateral component of gust velocity at airplane centerline nose boom (positive toward right), m/s [vc].
- 71. Computed lateral component of gust velocity at left wing tip boom (positive toward right), m/s [v_].
- 72. Computed vertical component of gust velocity at right wing tip boom (positive up), m/s [wR].
- 73. Computed vertical component of gust velocity at airplane centerline nose boom (positive up), m/s [wc].

74. Computed vertical component of gust velocity at left wing tip boom (positive up), m/s [wL].

3.0 SPECTRAL ESTIMATION

V

Spectral analysis of atmospheric turbulence generally involves the Fourier transform of a digitized finite-duration velocity fluctuation time history. The digitization process and the truncation associated with the finite time increment of the time history result in both aliasing and bias errors; while the random nature of turbulence results in variance errors. Although these errors cannot be totally eliminated, appropriate filtering will reduce their magnitudes. It was found that the magnitudes of the respective errors and the effects of the filtering process are quite different for two-point spectra than they are for one-point spectra. Because of the significance of the difference, a detailed discussion of the effect of aliasing, bias, and variance errors on the one-point and two-point spectra is given in this section. The magnitude of the errors are also estimated for typical data such as that reported in Appendix A.

To illustrate the magnitude and nature of the errors, an analytical von Karman one-point correlation and the Houbolt and Sen (1972) two-point correlation are used to investigate aliasing and the bias error (also called truncation error or spectral leakage) associated with discrete Fourier transforms. Spectrum for each of these correlations has been computed analytically. The analytical spectra is then compared graphically with the spectrum estimate calculated from the discrete Fourier transform (DFT) of the digitized analytical correlation functions. This comparison, based on analytical models, illustrates the aliasing and bias errors occurring simply from the digitization and truncation process.

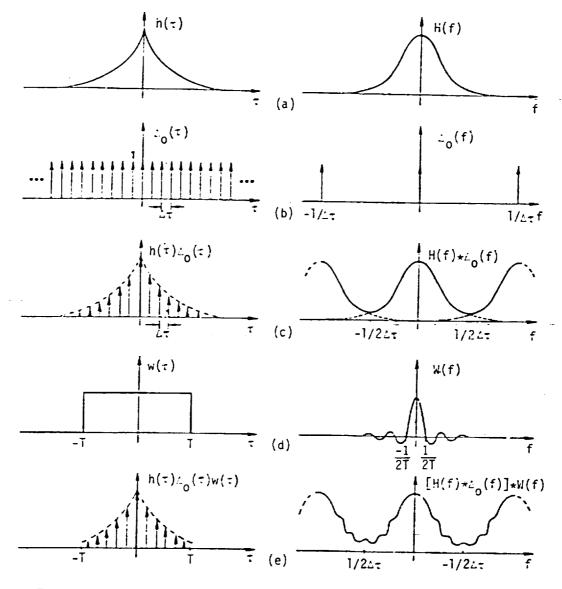
The DFT of the actual turbulence data is then computed. The resulting spectra which are now based on a random signal are then compared with the spectra calculated analytically from the digitized continuous correlations

67

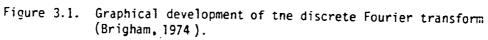
functions. It is shown that the spectra calculated from the random data contain not only aliasing and bias errors but also variance errors. The use of segment- averaging (Bendat and Piersol, 1971) to reduce the variance error of the spectra computed from the random turbulence data time histories is then discussed.

3.1 Graphical Illustration of the Discrete Fourier Transform

The generation of errors associated with the Fourier transform of a digitized function can be conceptually explained by a graphical illustration. Following closely the development of Brigham (1974), consider some function $h(\tau)$ and its Fourier transform H(f) illustrated in Figure 3.1a. To determine the Fourier transform of $h(\tau)$ by means of digital analysis techniques, it is necessary to digitize $h(\tau)$ at discrete increments in time.


Digitizing $h(\tau)$ in increments of $\Delta \tau$ is equivalent to multiplying it by the comb function shown in Figure 3.1b. The comb function, $\Delta_0(\tau)$, has the Fourier transform, $\Delta_0(f)$, shown in the corresponding figure. The Fourier transform of the product $h(\tau)\Delta_0(\tau)$ is given by the convolution integral of H(f) and $\Delta_0(f)$ designated by $H(f)*\Delta_0(f)$, i.e.

$$H(f)_{\star}\Delta_{0}(f) = \int_{-\infty}^{\infty} H(f')\Delta_{0}(f - f')df'$$
(3.1)


Figure 3.1c illustrates $H(f) \star \Delta_0(f)$.

Note that the transform $H(f) \star \Delta_0(f)$ differs from the analytical transform by the appearance of images of the analytical spectrum H(f) displaced along the frequency axis at a spacing of $\pm (1/\Delta \tau)$. Each of the images contribute some energy to the true spectrum centered about f = 0. This effect is called aliasing which occurs due to working with a digitized function.

•}

J

ვი

Ľ

D

The Fourier transform pair in Figure 3.1c is still not suitable for machine computation, however, because an infinity of digitized values of $h(\tau)$ is considered; it is necessary to truncate the sampled function $h(\tau)$ so that only a finite number of points, say N, are considered. The rectangular or truncation function, $w(\tau)$, and its Fourier transform. W(f), are illustrated in Figure 3.1d. The product of the infinite sequence of impulse functions representing $h(\tau)$ and the truncation function (i.e., $h(\tau)\Delta_0(\tau)w(\tau)$) yields the finite length time function illustrated in Figure 3.1e. The Fourier transform of the truncated, digitized function is given by the convolution of $H(f)*\Delta_0(f)$ with W(f) or $[H(f)*\Delta_0(f)]*W(f)$.

As illustrated in Figure 3.1e, the frequency transform now has a ripple to it; this effect has been accentuated in the illustration for emphasis. The form of W(f) for the rectangular function of unit magnitude is:

 $W(f) = 2T \sin(2\pi T f)/2\pi T f$

(3.2)

Hence, if the truncation (rectangular) function is increased in length, then the $\sin(f)/f$ function will approach an impulse; the more closely the $\sin(f)/f$ function approximates an impulse, the less ripple or error due to truncation will be introduced by the convolution. Therefore, it is desirable to choose the length of the truncation function as long as possible.

The effect of digitization and truncation on typical turbulence correlation/spectrum Fourier transform pairs is discussed in the following sections. The discussion is presented in terms of an example for the one- and two-point correlations and spectra, respectively. For the one-point correlation, assume the function h(t) in Figure 3.1 represents the theoretical von Karman transverse correlation function given by Equation 2.8 and repeated here in lag time domain ($\zeta = \nabla \tau$) for convenience:

$$R_{W}(\tau) = \sigma_{W}^{2} \frac{2^{2/3}}{r\left(\frac{1}{3}\right)} \left[\frac{\overline{V}\tau}{aL_{W}}\right]^{1/3} \left[K_{1/3}\left(\frac{\overline{V}\tau}{aL_{W}}\right) - \frac{1}{2}\left(\frac{\overline{V}\tau}{aL_{W}}\right) K_{2/3}\left(\frac{\overline{V}\tau}{aL_{W}}\right)\right], a = 1.339 \quad (3.3)$$

and the function H(f) corresponds to the spectrum given by an analytical Fourier transform of Equation 3.3, i.e.:

$$\Phi_{W}(f) = \sigma_{W}^{2} \frac{2L_{W}}{\overline{V}} - \frac{1 \div \frac{8}{3} \left[\frac{2\pi a L_{W}}{\overline{V}}\right]^{2} f^{2}}{\left[1 + \left(\frac{2\pi a L_{W}}{\overline{V}}\right)^{2} f^{2}\right]^{11/6}}$$
(3.4)

For the theoretical two-point correlation, the Houbolt and Sen (1972) model is used, i.e.:

$$R_{W}(s,\varsigma) = \sigma_{W}^{2} \frac{2^{2/3}}{r\left(\frac{1}{3}\right)} \left(\frac{\zeta}{aL_{W}}\right)^{1/3} \left[K_{1/3}\left(\frac{\zeta}{aL_{W}}\right) - \frac{1}{2}\left(\frac{\zeta}{aL_{W}}\right)\right], a = 1.339$$
(3.5)

where

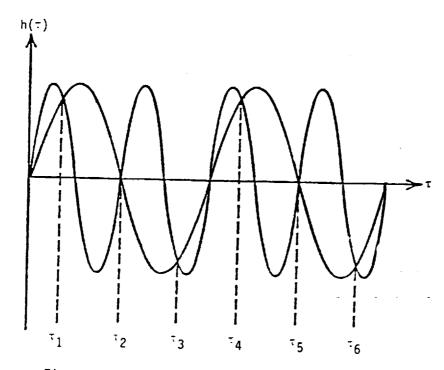
$$\zeta = \sqrt{s^2 + (\overline{V}\tau)^2}$$

and the theoretical spectrum is given by:

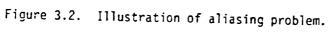
3.2 Aliasing

Consider first the problem of aliasing. – Aliasing can be described by considering a continuous record which is sampled such that the time interval between sample values is $\Delta \tau$ seconds. The sampling rate is then $1/\Delta \tau$ samples per second. However, at least two samples per cycle are required to define a frequency component in the original data as illustrated by the sketch in

Figure 3.2. Hence, the highest frequency which can be defined by sampling at a rate of $1/\Delta \tau$ samples per second is $1/2\Delta \tau$ Hz. Frequencies in the original data above $1/2\Delta \tau$ Hz will be folded back into the frequency range from 0 to $1/2\Delta \tau$ Hz, and be confused with data in this lower range, as illustrated in Figure 3.1. The cutoff frequency $f_c = 1/2\Delta \tau$ is called the Nyquist frequency or folding frequency. For any frequency f in the range $0 \leq f \leq f_c$, the higher frequencies which are aliased with f are given by (see Bendat and Piersol, 1971):


 $(2f_{c} \pm f), (4f_{c} \pm f), \dots, (2nf_{c} \pm f), \dots$ (3.7)

To demonstrate the magnitude of aliasing, we have digitized Equation 3.3 representing $h(\tau)$ in Figure 3.1 for values of L = 300 m and \overline{V} = 100 m/s and we have used a discrete Fourier transform (DFT) to compute H(f). The resulting value, H(f)_{DFT}, is plotted along with the analytical H(f) in Figure 3.3. The analytical function can be computed to as high a value of frequency as desired by integrating Equation 3.3 mathematically to give Equation 3.4 (i.e., mathematically f can approach infinity). However, to employ a DFT method to compute the spectra from Equation 3.3 a finite record length, T, must be used. Spectra computed for two different values of T = 12.8 sec and T = 51.2 sec as contrasted to infinity for the theoretical model are shown in Figure 3.3. Considerable departure of the theoretical spectrum curve from the DFT determined spectrum curve is observed. The reason for this departure is associated with both aliasing and truncation errors as discussed in the following.


Since the theoretical value of H(f) is known, the turbulence energy aliased into a given frequency f can be computed by inputting the values from Equation 3.7 into Equation 3.4, i.e.:

72

, ,

B The second sec

73

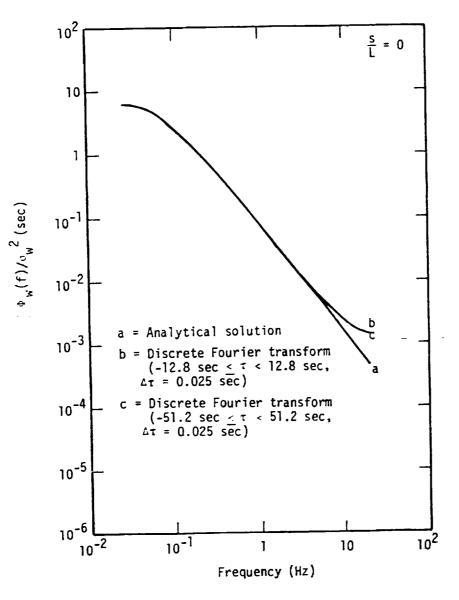
Aliased energy at frequency $f = \sum_{n=0}^{\infty} H(2nf_{c} \pm f)$ (3.8)

Table 3.1 illustrates the magnitude of aliasing for the case f = 15 Hz and 20

Hz, respectively. The values in the table are obtained by summing Equation 3.8 for $0 \le n \le 20$ with H(f) given by $\Phi_{W}(f)$ from Equation 3.4.

TABLE 3.1. Comparison of Aliased Spectrum Values with True Analytical Values at f = 15 Hz and 20 Hz (see Figure 3.4).

	f = 15 Hz	f = 20 Hz
True theoretical value	0.8075 x 10-3	0.5000 x 10-3
Aliased value	1.579 x 10-3	1.424×10^{-3}


Figure 3.4 is an enlargement of Figure 3.3 for the 1 to 100 Hz frequency range. (The variance error bars shown on the figure are described later.) The aliased values for the 15 and 20 Hz frequencies in Table 3.1 are plotted The plot clearly shows that the major portion of the on the figure. difference between the theoretical curve and the DFT curves is due to aliasing. This is evident from the fact that when the aliased energy is added to the theoretical curve, the results almost coincided with the $H(f)_{DFT}$ There remains a small difference which is attributed to bias functions. Note that this small difference decreases with increasing record error. length.

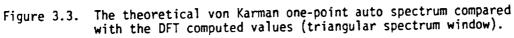
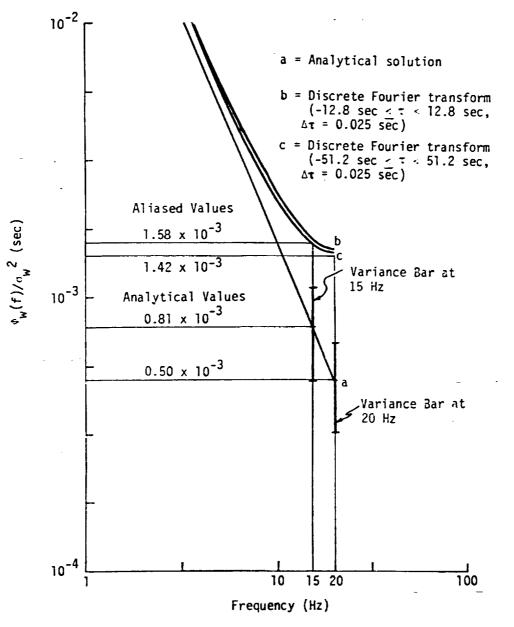
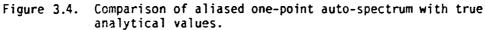

Table 3.2 shows a similar aliasing calculation for the two-point spectra (Equation 3.6). The energy aliased into the 15 Hz frequency is almost zero and in the 20 Hz frequency is only doubled.

Figure 3.5 is a comparison of the two-point spectrum computed from a DFT of Equation 3.5 digitized at $\Delta \tau$ = 0.025 sec with the analytical value from (The solid circles and variance bars are described later.) Equation 3.6.

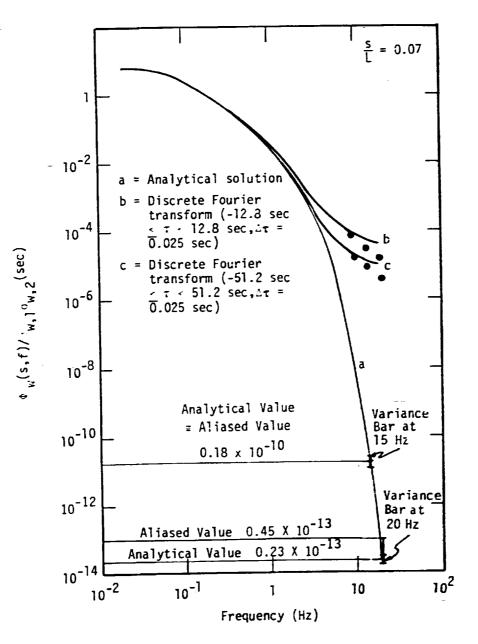
74


A States of



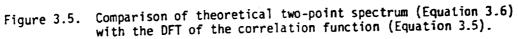
÷.

Ţ



75

274


•

ł

5

4

-

77

(<

Significant difference between the analytical H(f) and the DFT, $H(f)_{DFT}$, is observed. The difference in this case, however, is not due to aliasing as is evident from the aliased values plotted on the figure. The significant departure of the DFT value from the analytical value is due to bias error.

TABLE 3.2. Comparison of Aliased Values for Two-Point Spectra with True Analytical Value.

	f = 15 Hz	f = 20 Hz
True analytical value	0.1764 x 10 ⁻¹⁰	0.2239 x 10 ⁻¹³
Aliased value	0.1764 x 10 ⁻¹⁰	0.4478 x 10 ⁻¹³

3.3 Truncation Error

Bias error occurs due to truncation of the time history and appears as ripples in the DFT curve as illustrated in Figure 3.1e. Bias error and truncation error are in effect the same thing and are referred to interchangeably throughout the remainder of this Chapter. Bias error is influenced by the use of the lag window $w(\tau)$. In Figure 3.1d the function $w(\tau)$ is a rectangular lag window.

The spectra shown in Figures 3.3 and 3.5 have been corrected for bias errors with a triangular or Bartlett lag window, $w(\tau)$, defined as:

$$W(\tau) = 1 - \frac{1\tau}{2T}, \ |\tau| \le 2T$$
 (3.9)

The Fourier transform of $w(\tau)$ is called the spectral window, $W(\omega)$. The Bartlett spectral window is given by:

$$W(\omega) = \frac{\sin^2 T\omega}{\pi T \omega^2}$$
(3.10)

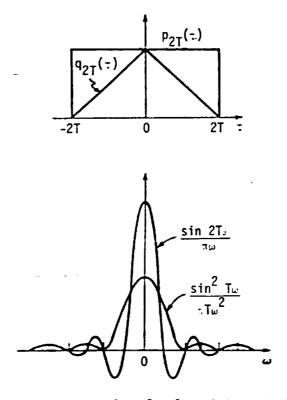
Bias or truncation errors occur when attempting to compute the power spectrum $S(\omega)$ of a real, stationary process, x(t), from a single realization of x(t)

available only over a finite interval (-T,T). To demonstrate the generation of bias error when computing turbulence spectra, consider first the calculation of the spectrum from the Fourier transform of the $R(\tau)$ function. This development closely follows the excellent presentation in Papoulis, 1977.

We will use as an estimate of $R(\tau)$ the time average:

$$\bar{R}(\tau) = \frac{1}{2T} \int_{-T+|\tau|/2}^{T-|\tau|/2} x\left[t + \frac{\tau}{2}\right] x\left[t - \frac{\tau}{2}\right] dt$$
(3.11)

where the function is defined as above for $|\tau| < 2T$; and, for $|\tau| > 2T$, it is assumed to be zero. The estimate of the spectrum, $S(\omega)$, is then given by the transform of $\tilde{R}(\tau)$:


$$\tilde{S}(\omega) = \int_{-2T} \tilde{R}(\tau) e^{-j\omega\tau} d\tau$$
(3.12)

It follows from Equation 3.11 that the expected value of $R(\tau)$ in terms of the true $R(\tau)$ is:

$$\tilde{E}\{\tilde{R}(\tau)\} = R(\tau) \left[1 - \frac{|\tau|}{2T}\right] p_{2T}(\tau) = R(\tau) q_{2T}(\tau)$$
(3.13)

where $p_{2T}(\tau)$ and $q_{2T}(\tau)$ are a pulse and a triangle lag wind w, respectively (see Figure 3.6). Thus the estimated autocorrelation function is biased, because its mean is not the true autocorrelation function at lag τ . We can say, however, that this $R(\tau)$ is asymptotically unbiased because the $|\tau|/2T$ term vanishes at $T \rightarrow =$. We could easily get unbiased estimates by using 2T - $|\tau|$ to divide the integral in Equation 3.11 rather than 2T. The form used here is preferred for the reason that $\bar{R}(\tau)$ in this form can be expressed in terms of the given x(t) as a convolution.

$$\tilde{R}(\tau) = \frac{1}{2T} X(\tau) \star X(-\tau)$$

1

5

Figure 3.6. Rectangular and triangular lag window and their respective Fourier transform.

(A) /

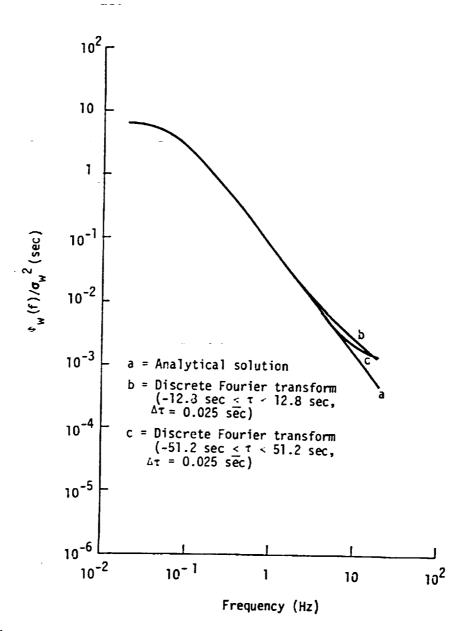
Ì

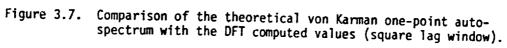
•

¢

From Equation 3.12 the expected value of the spectrum is:

$$E\{\overline{S}(\omega)\} = \int_{-2T}^{2T} R(\tau) a_{2T}(\tau) e^{-j\omega\tau} d\tau = S(\omega) \star \frac{\sin^2 T\omega}{\pi T\omega^2}$$
(3.14)

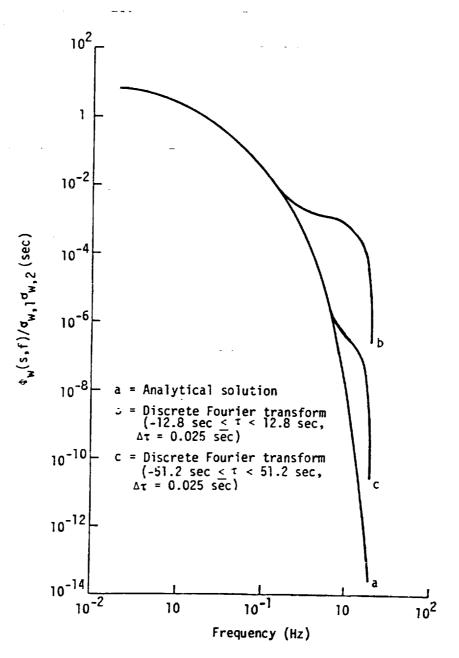

where "*" designates the convolution integration as defined in Equation 3.1. Thus, the estimate $S(\omega)$ equals the convolution of $S(\omega)$ with the kernel $\sin^2(T\omega)/\pi T\omega^2$ (i.e., Bartlett window). The estimator is therefore biased. However,


 $E\{S(\omega)\} \xrightarrow{T \to \omega} S(\omega)$ (3.15)

The effect of a rectangular versus triangular lag window is illustrated in the following. Figure 3.7 shows the spectrum computed from a discrete Fourier transform of Equation 3.3 without a lag window (or in other words with a rectangular lag window, see Figure 3.6). Figure 3.7 should be compared with the spectrum in Figure 3.3 which was computed with a triangular lag window. The two curves are not appreciably different in terms of departure from the analytical spectrum except they do show some dissimilarity in shape near the cutoff frequency.

It should be observed that the magnitude of aliasing for the spectrum in Figure 3.7 is of the same magnitude as that given in Table 3.1, for Figure 3.3. One may conclude then for the one-point spectrum the primary source of error is due to aliasing and that the bias errors are negligible.

For the two-point spectrum, however, one cannot draw this conclusion. Figure 3.8 shows the spectrum computed from Equation 3.6 by the DFT using a rectangular lag window. This figure should be compared with Figure 3.5 which shows the two-point spectrum computed with a triangular window. Notice that the curves behave considerably different in Figure 3.8 than they do in Figure 3.5. A ripple in the spectrum curve at high frequencies appears in Figure



82

A.

Š,

-

}

· _ -

Figure 3.8. Comparison of the analytical two-point spectrum (Equation 3.6) with the DFT values computed from truncating Equation 3.5 with a rectangular lag window.

83

- 1993 - -

Sea.

3.8. This is the same ripple as indicated in Figure 3.1e due to the truncation or application of the rectangular lag window to h(t). Thus the graphical illustration in Figure 3.1e clearly reveals how the rectangular spectrum window $W(\omega)$ convolved with the theoretical spectrum results in a truncation or bias error shown in Figure 3.8. Employing the triangular lag window results in a much smoother spectral curve (Figure 3.5) but there is still appreciable error between the DFT and the theoretically computed spectra.

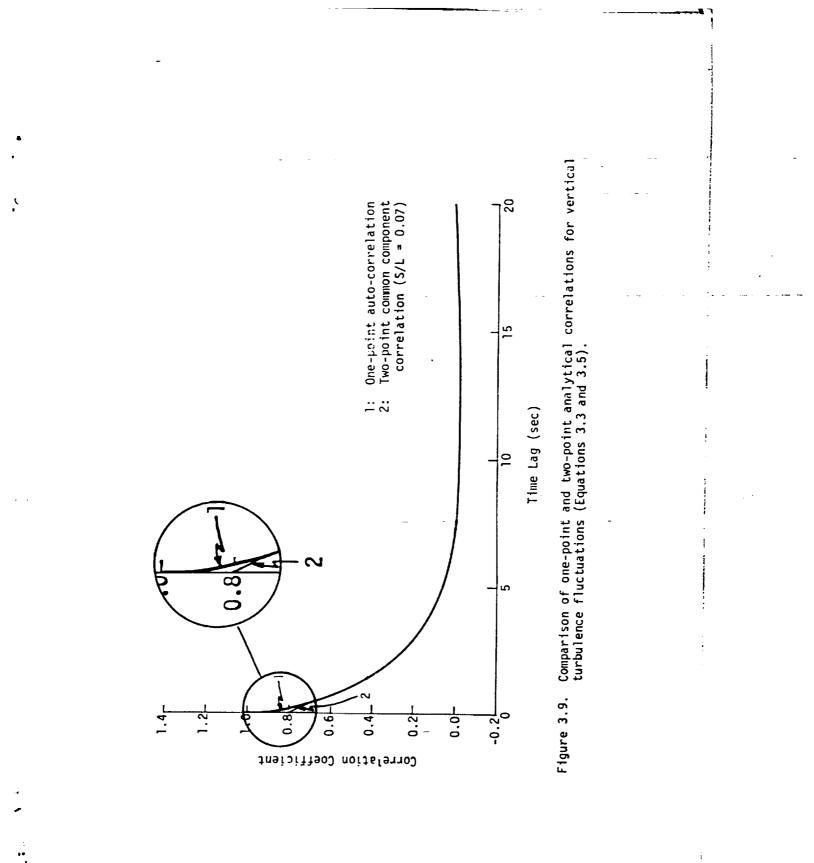

The order of magnitude of aliasing associated with digitization of Equation 3.5 is the same as given in Table 3.2. The aliasing error is very small. It can, therefore, be concluded that the bias error contributes significantly to the error produced from computing two-point spectra with discrete Fourier transforms. The fact that the bias error for the one-point spectrum is small compared to aliasing whereas the bias error for the two-point spectra is very large compared to aliasing is a very striking observation when one considers that the correlations functions from which these two spectrum are computed differ only by just a miniscule amount near the zero lag value (see Figure 3.9).

Figure 3.9 illustrates the very small difference between the one-point correlation function and the two-point correlation function from which the spectra in Figures 3.3, 3.5, 3.7, and 3.8 were computed. A very small change in the correlation near zero lag causes the very large differences observed in the spectra. The effects of bias error generally not significant for autospectra must, however, be carefully considered when computing or interpreting two-point spectra.

In addition to abiasing and bias error, there is a third form of error called variance error. Variance error occurs when computing spectra and

⁸⁴ C-2

- ALL

85

Y

T

e

correlations from random data. The analyses described to this point have dealt with deterministic correlation functions which do not cause any variance error in the spectral calculation. The aliasing and truncation error discussed occur because of the digitization of the function and because of the finite length of the record required for application of the DFT. The variance error occur because of the random nature of the gust velocities. In attempting to minimize both the bias and variance error, there are conflicting requirements on record length. These requirements result in accepting certain tradeoffs between resolution and accuracy. A more detailed look at the bias and variance errors will shed some light on these tradeoffs.

Consider initially the method of computing the spectrum by first calculating the correlation $R(\tau)$ and then Fourier transforming $R(\tau)$ to obtain $\Phi(f)$ as we have done for the deterministic functions in the previous discussions. It follows from Equation 3.14 and 3.15 that if T is sufficiently large, then:

 $E{S(\omega)} = S(\omega)$

for analytical functions.

However, even for analytical functions with large T the variance of $\tilde{S}(\omega)$ will not be small for random data. In fact, for any T,

 $var[S(\omega)] \ge E^2{S(\omega)}$

(3.17)

(3.16)

Therefore, $\tilde{S}(\omega)$ is not a good estimator of $S(\omega)$, no matter how large T is. The reason is that with random data the values of_the integrand, $\tilde{R}(\tau)$, in Equation 3.12 are not reliable (have large variance) for τ close to $\pm 2T$. Thus, the power spectrum $S(\omega)$ of a process x(t) cannot be determined from a single sample, no matter how large the sample is. To reduce the variance of

the estimate, we must accept only a smoothed version of $S(\omega)$; that is, we must sacrifice resolution.

3.4 Smoothing the Spectrum

The variance of the integral in Equation 3.12 can be reduced by deemphasizing the contribution of $\tilde{R}(\tau)$ for τ near ±2T. For this purpose, the estimator:

$$\tilde{S}_{w}(\omega) = \int_{-2T} \tilde{R}(\tau)w(\tau)e^{-j\omega\tau} d\tau$$
(3.18)

is formed where w(τ) is a lag window vanishing for $|\tau| > 2T$. In this section, we examine the properties of $\tilde{S}_{w}(\omega)$ and the factors affecting the selection of the window w(τ).

The estimator $\tilde{S}_w(\omega)$ is the Fourier transform of the product $\tilde{R}(\tau)w(\tau);$ hence,

$$\tilde{S}_{W}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{S}(\omega - y)W(y)dy = \frac{1}{2\pi} \tilde{S}(\omega) \star W(\omega)$$
(3.19)

From the above and Equation 3.14, it follows that:

$$E\{\widetilde{S}_{W}(\omega)\} = \frac{1}{2\pi} E\{\widetilde{S}(\omega)\} \star W(\omega) = \frac{1}{2\pi} S(\omega) \star \frac{\sin^{2} T\omega}{\pi T\omega^{2}} \star W(\omega)$$
(3.20)

For a reliable estimation, the duration of $W(\omega)$ must be large compared to 1/T. This leads to the approximation:

$$\frac{\sin^2 T\omega}{\pi T\omega^2} \star W(\omega) \simeq W(\omega)$$
(3.21)

Inserting this approximate expression into Equation 3.20 gives:

$$E\{\widetilde{S}_{W}(\omega)\} = \frac{1}{2\pi} S(\omega) \star W(\omega)$$
(3.22)

It can be shown that under certain general conditions (Papoulis, 1977) the variance of $\tilde{S_w}(\omega)$ is given by:

87

U

$$var[\tilde{S}_{w}(\omega)] \simeq \frac{E_{w}}{2T} S^{2}(\omega) \qquad \omega \neq 0$$

where

$$E_{W} = \int_{-2T}^{2T} w^{2}(\tau) d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} W^{2}(\omega) d\omega$$
(3.24)

Equations 3.22 and 3.23 dictate the factors affecting the selection of the window pair w(τ) and W(ω). For the bias error,

$$b = E\{S_w(\omega)\} - S(\omega)$$
(3.25)

to be small, $W(\omega)$ must be of short duration. For the variance to be small, E_W must be small. We shall presently see that if T is sufficiently large, then both requirements can be reasonably satisfied.

3.5 <u>Window Selection</u>

For a satisfactory estimation of $S(\omega)$, the variance of the estimator $S_w(\omega)$ must be small compared to $S^2(\omega)$ or, equivalently, the variance ratio

$$\beta = \frac{\operatorname{var}[S_w(\omega)]}{S^2(\omega)}$$
(3.26)

must be very small compared to 1:

β « 1

(3.27)

(3.23)

This is the case if E_w (see Equation 3.23) is very small compared to 2T: $E_w\simeq 2T\beta\ll 2T$

The above requirement leads to the conclusion that $w(\tau)$ must take on significant values only in an interval (-M,M) such that $M \ll 2T$. We shall assume that $|w(\tau)| < 1$ for all τ and that, for $|\tau| > M$, it is not just small but it vanishes:

$$W(\tau) = 0$$
 for $|\tau| > M$

(3.28)

From these assumptions, it follows that

88

-

$$E_W \leq 2M$$
 so that $\beta \leq M/T$ (3.29)

Thus, to satisfy the variance requirement (Equation 3.27), we must choose M such that

M « T (3.30)

With M so determined, the shape of the window is selected so as to minimize the bias

$$b = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega - y)W(y)dy - S(\omega)$$
(3.31)

The bias b depends not only on $W(\omega)$ but also on he shape of $S(\omega)$. Therefore, there is no well-defined optimum window. However, if T is sufficiently large and $W(\omega) \ge 0$, it can be shown (Papoulis, 1977) that:

$$b = \frac{S''(\omega)}{4\pi} \int \omega^2 W(\omega) d\omega$$
 (3.32)

The problem is to find a positive function $W(\omega)$ for a specified value E_W (Equation 3.24) which minimizes the integral in Equation 3.31 or 3.32. We will now consider some estimates of the bias and variance errors which may be expected to occur in the computation of turbulence spectra.

3.6 Variance Error

The variance error associated with atmospheric turbulence spectra which follow Equations 3.4 and 3.6 can be estimated from Equations 3.23 and 3.24. The lag window for these figures is $w(\tau) = 1 - |\tau|/2T_m$ where $T_m = T/M$. Hence,

$$E_{w} = \int_{-2T_{m}}^{2T_{m}} \left(1 - \frac{i\tau}{2T_{m}}\right)^{2} dt$$
$$E_{w} = \frac{4T}{3M}$$

A IN COLOR

(3.33)

Substituting into Equation 3.23 gives:

$$\operatorname{var}[\tilde{S}_{W}(\omega)] \simeq \frac{2}{3M} S^{2}(\omega)$$
 (3)

.34)

The magnitude of the variance errors estimated from Equation 3.34 is indicated on Figures 3.4 and 3.5 by the variance error bars. The variance is computed from Equation 3.34 at f = 15 Hz and 20 Hz and at f = 10 Hz and 15 Hz, for Figures 3.4 and 3.5, respectively, with M = 5 which is the typical number of segments used in computing the spectra shown in Appendix A. It should be noted that the spectra shown in Figures 3.3 and 3.5 have no actual variance error since they are computed from deterministic functions. However, the error bars do indicate the one standard deviation error which can be expected in analyses of random turbulence signals which physically obey the analytical Equations 3.4 and 3.6.

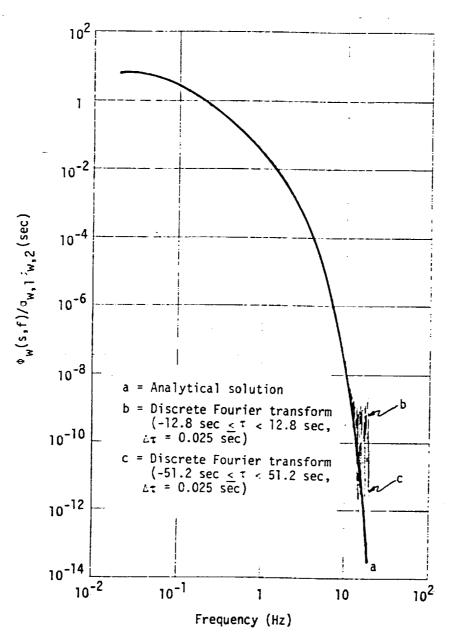
Now consider the magnitude of the bias error. Equation 3.31 can be used to compute the bias error. Values for the convolution of $S(\omega)$ (given by Equation 3.4 for the one-point spectrum and by Equation 3.6 for the two-point spectrum, respectively) with $W(\omega)$ for a triangular spectral window (see Figure 3.6) are given in Table 3.3 for frequency values of 10, 15, and 20 Hz. The values of the convolution integral which includes bias error given in the table for the two-point spectrum are plotted on Figure 3.5 (as marked by the solid circles). They coincide very closely with the DFT curves clearly illustrating that the departure of the DFT curves from the theoretical curve for the two-point spectral is due almost entirely to bias error.

The important conclusion from Table 3.3 is that a two-point spectrum computed with truncated digitized turbulence data with no prior knowledge of the actual form of the spectrum may show appreciable energy in the high frequency range whereas in reality there is no energy at those frequencies. The bias error in the two-point spectrum is approximately 385,400 percent at

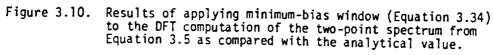
TABLE 3.3. Values of $1/2\pi \int S(\omega - y)W(y)dy$ for $S(\omega)$ Given by Equations 3.4 and 3.6, Respectively, and a Triangular Spectral Window (N = 512, $\Delta \tau$ = 0.025).

One-Point Spectrum		Two-Point Spectrum		
<u>f</u>	Bias Error	True	Bias Error	True
10	0.8000×10^{-3}	1.5731 x 10 ⁻³	0.6286×10^{-4}	0.1631 x 10 ⁻⁷
15	0.4011×10^{-3}	0.8075 x 10-3	0.1789 x 10 ⁻⁴	0.1764 x 10-10
20	0.2460×10^{-3}	0.5000×10^{-3}	0.1568×10^{-4}	0.2218 x 10 ⁻¹³

10 Hz as contrasted to only about 50 percent for one-point spectrum. The remarkable phenomenon, however, is that the two spectra are computed from correlations which are almost identical except for a very small difference at zero lag (see Figure 3.9). These factors have strong implication when computing spectra from turbulence time histories where the true spectrum is not known *a priori*. With this in mind, improved windows for reducing biaserrors in two-point spectra were investigated.


Considerable study of computing spectra for random data has been carried out in the communication engineering field. Several alternate windows for smoothing the spectra estimates have been proposed. Papoulis (1977) gives the expression:

$$w(\tau) = \frac{1}{\pi} \left| \sin \frac{\pi}{T} \tau \right| + \left[1 - \frac{|\tau|}{T} \right] \cos \frac{\pi}{T} \tau, \quad 0 \le |\tau| \le T$$
(3.35)


and

$$W(\omega) = 4T\pi^2 \frac{(1 + \cos T\omega)}{(\pi^2 - T^2\omega^2)^2}$$
(3.36)

This spectral window is called the minimum-bias window because it minimizes the value of the integral in Equation 3.32. When this window is applied to the two-point correlation, the results shown in Figure 3.10 are achieved. The

r

ï

92

L

bias error is almost completely eliminated to frequencies as high as 15 Hz. The fluctuation in the curve at higher frequencies is believed to be a computer-generated numerical roundoff error. Although this window has not been used in computing the turbulence spectra in this report further consideration of its use is recommended.

Attention is now directed toward calculation of spectra from the turbulence_time histories. The spectra discussed will now not only contain aliasing and bias error but also variance error.

3.7 Spectrum Calculation from a Finite Turbulence Time History

Consider the variable x(t) as a velocity fluctuation in the interval (-T,T). The correlation estimator is then given by:

$$\tilde{R}(\tau) = \frac{1}{2T} \int_{-T+|\tau|/2}^{T-|\tau|/2} x \left[t + \frac{\tau}{2}\right] x \left[t - \frac{\tau}{2}\right] dt, \quad |\tau| < 2T$$
(3.37)

The integral in Equation 3.37 is the convolution

$$R(\tau) = \frac{1}{2T} x'(\tau) \star x'(-\tau)$$
(3.38)

where

$$x'(\tau) = x(\tau)p_{2T}(\tau) = \begin{cases} x(\tau) & |\tau| \leq T \\ 0 & |\tau| > T \end{cases}$$
(3.39)

equals the truncated time record of x(t).

It follows from Equation 3.39 and the convolution theorem that the Fourier transform of $\tilde{R}(\tau)$ gives the estimate of the spectrum:

$$\tilde{S}(\omega) = \int_{-2T} \tilde{R}(\tau) e^{-j\omega\tau} d\tau = \frac{1}{2T} \left| \int_{-T}^{T} x(t) e^{-j\omega t} dt \right|^2$$
(3.40)

Thus, $\tilde{S}(\omega)$ can be determined directly from the given sample or turbulence time history x(t). This approach was used in computing all spectra in Appendix A and those discussed in Section 2.

It is interesting to consider now three numerical methods for estimating the power spectrum $S(\omega)$ in terms of the given segment, $x'(\tau) = x(\tau)p_{2T}(\tau)$. All three methods are statistically identical but differ only in the computational procedures.

1. Determine the sample auto-correlation $\tilde{R}(\tau)$ by convolving $x'(\tau)$ with $x'(-\tau)$ as in Equation 3.36:

$$\bar{R}(\tau) = \frac{1}{2\bar{1}} x'(\tau) \pm x'(-\tau)$$
(3.41)

Multiply $R(\tau)$ by the window $w(\tau)$ and compute the Fourier transform of the product as in Equation 3.18 to get $\tilde{S}_{w}(\omega)$. The required operations are one convolution, one multiplication, and one Fourier transform.

2. Compute the Fourier transform of $x'(\tau)$ to get $X'(\omega)$. Multiply $X'(\omega)$ by its conjugate and form the sample spectrum $\tilde{S}(\omega)$:

$$\tilde{S}(\omega) = \frac{1}{2T} \left| X'(\omega) \right|^2$$
(3.42)

Convolve $S(\omega)$ with the window $W(\omega)$ to get:

$$\tilde{S}_{W}(\omega) = \frac{1}{2\pi} \tilde{S}(\omega) \star W(\omega)$$
 (3.43)

The required operations are one Fourier transform, one multiplication, and one convolution.

3. Compute $X'(\omega)$ and $S(\omega)$ as in method 2. Find the inverse Fourier transform $\tilde{R}(\tau)$ of $\tilde{S}(\omega)$. Form the product $\tilde{R}(\tau)w(\tau)$ and compute its Fourier transform $\tilde{S}_w(\omega)$ as in method 1. The required operations are two multiplications, two Fourier transforms, and one inverse Fourier transform.

Method 3 has been used for computing spectra from the turbulence time histories discussed in this report. In most cases, however, the lag window operation has not been performed for reasons described later. The variance error for spectrum estimates obtained by a direct Fourier transform operation

on the digitized time history (Method 3) may be determined differently from that given by Equation 3.23.

Consider the spectrum function of a stationary (ergodic) Gaussian random process x'(τ). An estimate of $\tilde{S}(\omega)$ can be obtained from Equation 3.42. The narrowest possible bandwidth resolution from Equation 3.42 is $B_e = (1/T)$. To determine the variance of the estimate of $\tilde{S}(\omega)$, observe that the Fourier transform X(ω) is defined by a series of components at frequencies f = k/T; k = 1,2,3, etc. Further observe that X'(ω) is a complex number where the real and imaginary parts, X'_R(ω) and X'_I(ω), can be shown to be uncorrelated random variables with zero means and equal variances (Bendat and Piersol, 1971). Since a Fourier transformation is a linear operation, X'_R(ω) and X'_I(ω) will be Gaussian random variables if x(t) is Gaussian. The random variable x(t) is not strictly Gaussian as discussed in Section 2; however, the variance error to be described is expected to be representative of the error associated with atmospheric turbulence. It follows then that the quantity

$$|X'(\omega)|^{2} = X'^{2}_{R}(\omega) + X'^{2}_{T}(\omega)$$
(3.44)

is the sum of the squares of two independent Gaussian variables. It can be shown that each frequency component of the estimate $\tilde{S}(\omega)$ will have a sampling distribution given by

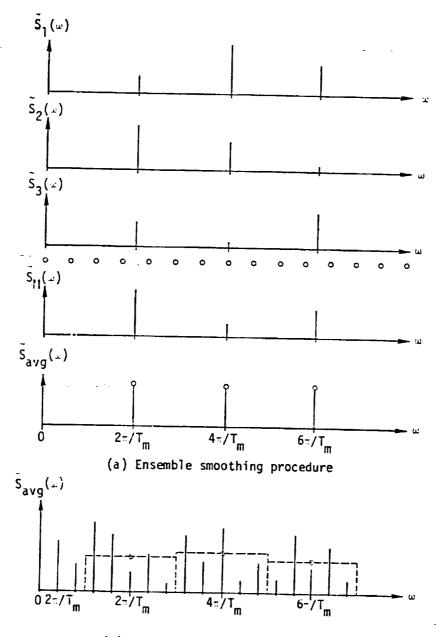
$$\frac{\tilde{S}(\omega)}{S(\omega)} = \frac{x_2^2}{2}$$
(3.45)

where x_2^2 is the chi-square variable with n = 2 degrees of freedom.

Note that the result in Equation 3.45 is independent of the record length T, that is, increasing the record length does not alter the distribution function defining the random error of the estimate. It only increases the number of spectral components in the estimate. The variance error of the estimate is substantial. The mean and variance of the chi-square variable are

n and 2n, respectively. Thus the normalized standard error, which defines the variance error of the estimate is:

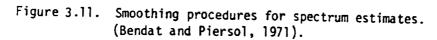
$$\beta = \frac{\operatorname{var}^2[\widetilde{S}(\omega)]}{S^2(\omega)} = \frac{2}{n}$$
(3.46)


For the case at hand, $n = 2 \sin \beta = 1$, which means that the standard deviation of the estimate is as great as the quantity being estimated. This is an unacceptable error for most applications.

In practice, the variance error of an estimate fuced by Equation 3.42 is reduced by smoothing the estimate in one of two ways. The first way is to smooth over an ensemble of estimates. This can be done by computing individual estimates from M independent sample records, $x_i(t)$; i = 1,2,3,...M, and then averaging the M estimates at each frequency of a spectral component as illustrated in Figure 3.11a from Bendat and Piersol (1971). The second way is to smooth over frequency. This can be done by averaging together the results for ℓ contiguous spectral components in the estimate from a single sample record as illustrated in Figure 3.11b. In either case, the smoothing technique approximates the expectation operation in Equation 3.42.

For smoothing the spectra presented in Appendix A, ensemble averaging has been used throughout this study. Care must be used when ensemble averaging, however. Each spectrum from the M segments of the total time history is generally complex. To estimate the mean (or magnitude) of the spectrum from the segments some authors imply ensemble-averaging of the absolute values:

$$|\Phi_{XY}(s,f)| = \frac{1}{N_m} \sum_{i=1}^{N_m} |C_{XY,i}(s,f) - jQ_{XY,i}(s,f)|$$
 (3.47)


where N_m is the number of segments. However, few authors deal with two-point spectra. Jenkins and Watts (1969) correctly defined the mean of the complex two-point spectral function as:

- 1

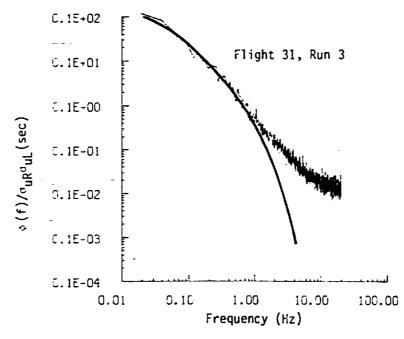
.

(b) Frequency smoothing procedure

יין אין אין

)

$$|\Phi_{XY}(s,f)| = \left| \frac{1}{N_m} \sum_{i=1}^{N_m} C_{XY,i}(s,f) - j \frac{1}{N_m} \sum_{i=1}^{N_m} Q_{XY,i}(s,f) \right|$$
(3.48)


wherein the real and imaginary parts of the spectral function are segmentaveraged separately.

Figures 3.12 and 3.13 demonstrate the difference between the two-point spectrum estimations from Equations 3.47 and 3.48, respectively. Both cases are compared with the Houbolt and Sen theoretical model. Equation 3.48 gives better agreement with the theoretical model. It is also important to note that when smoothed by the Equation 3.47 technique, the two-point spectrum in Figure 3.12 is almost indistinguishable from the one-point spectra as shown in Figure 2.11. Notice the variance is larger for a two-point spectrum than for a one-point spectrum. Also, one- and two-point cross-spectra have apparent higher variance levels. The increase in variance is due to the fact that variability is introduced by two separate processes rather than one (i.e., averaging C_{XY} and Q_{XY} separately as contrasted to averaging C_{XY} itself which is the only contribution to the one-point auto-spectrum).

3.8 Lag Windows for Reducing Bias Error

A number of data windows for reducing bias errors are described in the literature. No single window has been identified as most appropriate for an atmospheric turbulence signal. A cosine tapered data window to smooth the data at each end of the record is commonly used in the literature but was found to have no effect on spectra calculated and was not used in this report.

Lag windows (as contrasted to data windows) are applied to the correlation function as defined in Case 3, page 94. Figure 3.14 shows the two-point spectrum for a turbulence measurement and a digitized deterministic model with a rectangular lag window. The shape of the spectrum from the data deviates

< La

Segment-averaged two-point auto-spectrum using Equation 3.47. (Heavy solid line designates Houbolt and Sen's theoretical model.) Figure 3.12.

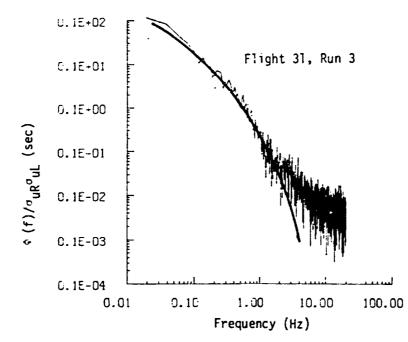
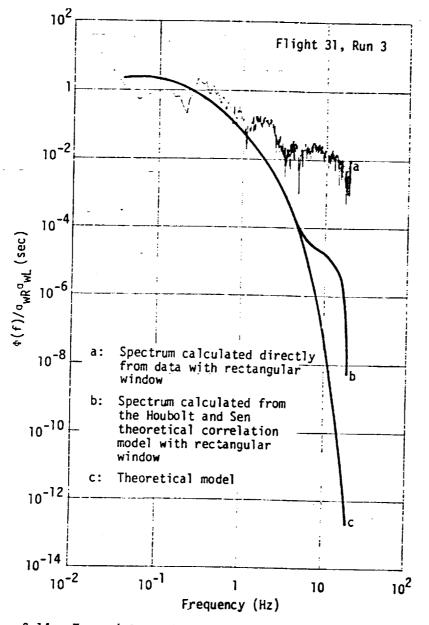
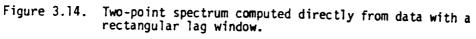
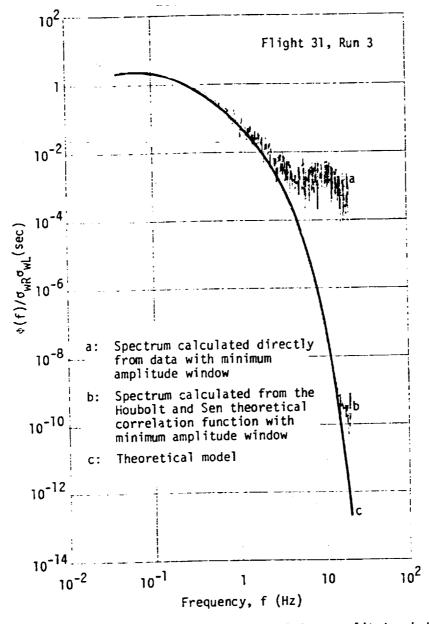




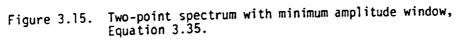
Figure 3.13. Segment-averaged two-point auto-spectrum using Equation 3.48. (Heavy solid line designates Houbolt and Sen's theoretical ______ model.) 99 99

¢

Ð



significantly from the values predicted by the model even at low frequencies. The minimum amplitude_window Equation 3.35 was also used with the direct FFT of the turbulence time history as shown in Figure 3.15. The window does not correct the random data input to the same degree it corrects the deterministic input. It does, however, give a better correction of the bias error than any of the other windows used in this study. Further investigation of the effect of lag windows on two-point spectra computed directly from the turbulence is recommended.


bries I want a provide the

4

いたいであっつ

ヒ

4.0 INSTRUMENTATION ERROR ANALYSIS

4.1 Instrumentation Problems

A . A REAL TANK

The instrumentation platform is the B-57B aircraft. This aircraft is a U.S. Air Force (USAF) version of the English Electric Canberra and was built The B-57B, designed as a tactical under license by the Martin Company. bomber. first flew in 1954 but is no longer in use by the USAF. NASA uses the aircraft as a flight research tool to measure wind velocity, turbulence, temperature, and other properties of the atmosphere. The aircraft is equipped to gather data on gust gradients across the 19.5 m (64 ft) wing span. Characteristics and dimensions of the B-57B are given in Figure 4.1. aerodynamic coefficients and stability information about Additional derivatives can be obtained from Ringnes and Frost (1985). The instrumentation on the B-57B include three airspeed probes located at the nose The flight angles, sideslip angle, and section and at each wing tip. angle-of-attack are measured at the same three locations. Also, accelerometers are placed at both wing tips and at the center of gravity (c.g.) for use in studying wing vibrations. Ground speed, Euler angles and angular rates, acceleration components, and geographical location are provided by the Inertial Navigation System (INS).* Details on the instrumentation and its accuracy is given in Meissner (1976), Rhyne (1980), and Murrow and Rhyne (1981).**

*Carousel IV made by AC Electronics, Division of General Motors Corporation.

**The INS and pressure transducers used in the flights are different from reported in these references.

19.5 m 19.97 m 19.97 m 19.97 m	Main plane incidence 2" Ulhedral, inner plane 2° Outer plane and elevator 4°21' Tail plane and elevator 15,90 m ² Area, cross 15,90 m ² Incidence, normal +1° Maximum -3°52' Minimum -3°52' Fin and rudder area, gross 6.60 m ²
	Fin and rudder chord, Root 3.87 m Tip Luselage ground Clearance, normal 0.61 m clearance, normal 0.61 m Alng area, gross 89.10 m ² Alng area, gross 89.10 m ² Alng area, gross 89.10 m ² Alng area, gross 89.10 m ² Tip Tip
B. 35 m 3.12 m C. 36 m	19.50 m 4.57 m 7.75 m 19.57 m 19.57 m 19.97 m 19.50
	Wing span Hean aerodynamic chord Poot chord Tip chord Length, fuselage Length, overall Height Tail plane span Root chord Tip chord

10

6

B

Figure 4.1. Characteristics of the B-57B.

/

į

73755 (A

7

104

During previous research (Chang and Frost, 1985; Frost, et al., 1985a; Ringnes and Frost, 1985) using data gathered with the B-57B aircraft, various uncertainties in the measured wind velocities and turbulence measurements were traced to instrumentation characteristics. Frost, et al. (1985a) have pointed out irregularities in the total pressure measurements and postulated that water droplets may have occasionally been ingested in the pitot tubes. These caused spikes in the turbulence spectrum at approximately 15 Hz. No similar spikes were observed for the data from Run 31 which is analyzed in this report. Chang and Frost (1985) and Frost and Huang (1983) also noted that there are, in some cases, discrepancies in the calculation of the total wind vectors. These were attributed to problems with boom alignment and with the INS. In this section, the data reduction procedures of the quasi-steady wind vector and of the turbulence are reviewed in detail to pinpoint how instrumentation errors might affect the wind measurements. The magnitude of the errors are estimated and methods of correcting for them suggested.

4.2 Wind and Gust Velocity Equations

The velocity of a moving airmass with respect to earth, in this study, is obtained by vectorially subtracting aircraft velocity with respect to the air mass from aircraft velocity with respect to earth. These velocities are referred to as airspeed and ground speed, respectively. Since airspeed is measured in a body-axis (airplane fixed) reference system, it is necessary to rotate the airspeed vector into the inertial (earth fixed) frame of reference. The governing equations are derived in detail in Appendix B (see also Frost (1981); Crooks, et al. (1967); Houbolt, et al. (1964); Lenschow (1972); and Axford (1968)). The present assumptions used in the equations for removing the aircraft motions from the wind vector are straight and level flight without large perturbations. Therefore, small angle assumptions are made for the roll, pitch and yaw angles, and for the angle of attack and sideslip angle. Furthermore, it is assumed that the product of sines of any of the small angles mentioned above vanishes and the cosines of small angles are unity. The application of these linearized equations to computing gust velocities for touch-and-go flights and during excursions from level flight during a run (e.g., Run 9 at 7 to 11 miles, see Figure A.41) is discussed later. Based on the small angle, level flight assumptions, the following expressions are used for computing the horizontal wind velocity components from the measured parameters:

$$W_{\rm E} = V_{\rm E} - V_{\rm C} \sin\left[\psi - \beta_{\rm C} - \frac{\ell_{\rm XC}\dot{\psi}}{V_{\rm C}}\right] \tag{4.1}$$

$$W_{\rm N} = V_{\rm N} - V_{\rm C} \cos\left[\psi - \beta_{\rm C} - \frac{\ell_{\rm XC} \dot{\Psi}}{V_{\rm C}}\right]$$
(4.2)

where ψ is aircraft heading and β_{C} is sideslip angle. V_{C} is the true airspeed of the aircraft, V_{E} and V_{N} are east-west and north-south components of the airplane inertial velocity, and ℓ_{XC} is the longitudinal distance measured parallel to the x-axis of the airplane from the INS to the centerline measuring station. The higher order term containing $\dot{\psi}$ arise because the airspeed and ground speed are measured at different locations.

Wind speed and direction are derived directly from two independent components and are given by:

$$W = (W_{\rm E}^2 + W_{\rm N}^2)^{1/2} \tag{4.3}$$

$$\psi_W = \tan^{-1} \left(\frac{W_E}{W_N} \right) + \pi \quad \text{for } \pi/2 \geqslant \tan^{-1} \left(\frac{W_E}{W_N} \right) \geqslant -\pi/2$$
 (4.4)

Positive wind is defined as a wind blowing towards the east, W_E , and north, W_N , thich in meteorology is referred to as west and south winds, respectively.

The turbulence components are calculated in the aircraft-fixed coordinate system. A complete derivation of the equations has been carried out both by NASA Langley Research Center and by FWG Associates in the past. The FWG derivation is also restated in Appendix B. The linearized equations for the center probe are:

$$u_{\rm C} = \hat{V}_{\rm E} \sin \bar{\psi} + \hat{V}_{\rm N} \cos \bar{\psi} - \hat{V}_{\rm C}$$
(4.5)

$$v_{C} = V_{C}\hat{\beta}_{C} - V_{C}\hat{\psi} + V_{E}\cos\bar{\psi} - \hat{V}_{N}\sin\bar{\psi} + \ell_{X}C\hat{\psi} + V_{C}\hat{\alpha}_{C}\phi \qquad (4.6)$$

$$w_{C} = V_{C}\hat{\alpha}_{C} - V_{C}\hat{\theta} + \hat{V}_{az} + \ell_{xC}\hat{\theta} - V_{C}\hat{\beta}_{C}\phi \qquad (4.7)$$

where ϕ , θ , and ψ are roll, pitch, and yaw angles of the aircraft. Those for the wing tip probes are straightforward modifications of those for the center probe. It is assumed that the average pitch angle of the average pitch angle of the average flight path, $\overline{9}$, is zero. The caret (^) symbol indicates deviation from the mean value and the overbar (-) indicates average value.

4.3 Sources of Inaccuracy in Data Reduction

٩

Instrumentation errors influence the quantities appearing on the right-hand side of Equations 4.1 and 4.2 and thus the accuracy of the computed wind velocities. Instrumentation errors in the INS ground speed components, the airspeed, and the sideslip angle have been identified and studied. Errors in the yaw rate are negligible, and the yaw angle is believed to be accurate. A test to verify yaw angle accuracy is suggested since yaw angle errors could significantly contribute to errors in the calculation of horizontal wind.

Of these sources of instrumentation errors, the most difficult to correct is the dynamic error in the velocity inherent in the INS, termed the Schuler error to which aircraft motions contribute. All other errors can be removed by careful calibration. The effects on the magnitude of the measured wind and also turbulence calculations due to the sources of error in the instrumentation are presented next.

4.4 Inertial Velocity and Position Errors

55 This 4 Sheet

The accuracy of the calculations of horizontal winds depends upon the performance of the INS and its capability to provide correct measurements of the inertial (ground) speed of the aircraft. In recent years mechanical and electronic advances have greatly improved INS accuracy. However, a cumulative oscillation in the INS stable platform element called the Schuler drift effect, first pointed out in the famous paper by Schuler (1923), can be quite significant. Inertial navigation theory including derivation of the Schuler pendulum effects is explained in many textbooks (see for example, Boxmeyer, 1964). The Schuler error is essentially periodic with a period near that of an earth radius pendulum, 84.4 minutes.* The error behaves sinusoidally and

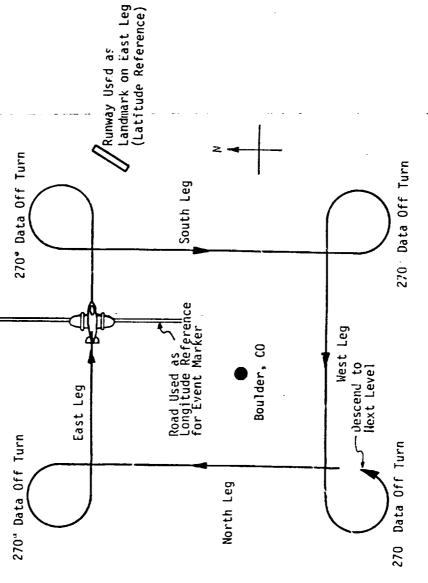
 $T = k \cdot 2\pi \sqrt{R/g}$

where k will always have a value between 0.5 and -.

^{*}Huber and Bogers (1983) point out that a platform used in an airplane cannot strictly be kept tuned to $T_0 = 84.4$ minutes after takeoff since R (distance between the airplane and center of the earth) and g (gravitational acceleration) change with altitude. They propose to define $T_0 = 84.4$ minutes as the Schuler constant (for the earth). The actual period of oscillation proposed by these authors for a specific Schuler-adjusted system takes into account the gravity gradient, the mass distribution in the system, and the centrifugal forces due to the velocity of the carrying vehicle. This is called the actual oscillation period. The actual oscillation period of a specific Schuler-adjusted system (acceleration insensitive system) under specific circumstances is given by them as:

will thus change polarity. The error caused by a slow oscillation of the INS stable platform causes the two horizontal accelerometers to detect a part of the gravity vector. This false indication of acceleration is carried through the integration for velocity and produces errors in the W_E and W_N values. Distance traveled or geographical position is obtained from a second integration of the measured accelerations. Thus the Schuler oscillations will create errors in acceleration, velocity, and position. The following procedures were used to estimate the velocity errors associated with Schuler drift.

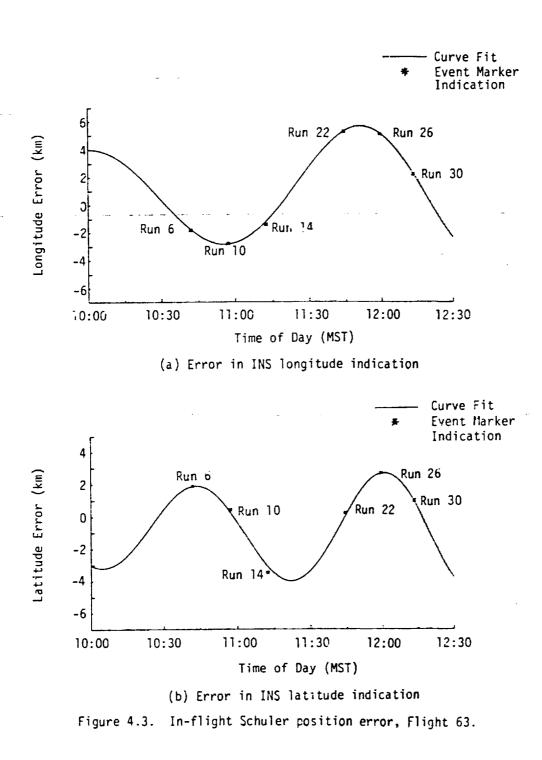
٤


Position error can be computed from aircraft data during overflight of landmarks where exact geographical locations are known. Since acceleration, velocity, and position errors are all interrelated the Schuler error can experimentally be investigated by obtaining data on either one of the three parameters having a Schuler oscillation induced error. The velocity error is generally small but increases with time, e.g., after several hours of operation it can be on the order of 3 to 5 m/s (Rhyne, 1980; Lenschow, 1983). The magnitude of the position errors for the IV INS used in B-747 airacraft reported by Weber (1975) normally are on the order of 10 nautical miles or less even after transatlantic flights. These errors are not critical for pure navigation purposes. But, when the objective is to calculate wind velocity, the Schuler error can be quite important.

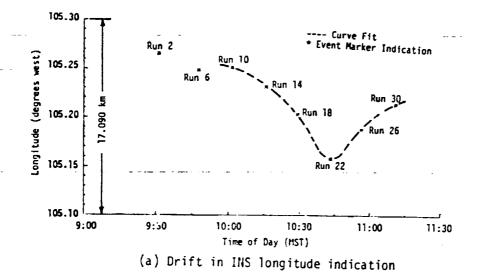
In an attempt to model in-flight Schuler error, data from Flight 63 have been analyzed. Specifics about the flight can be found in Table 1.1. A box pattern flight plan as shown in Figure 4.2 was flown sequentially at 1000 ft levels over Boulder, Colorado, in February 1984. Details of the flight and results are given in Chang and Frost (1985). Each time the B-57B flew the leg

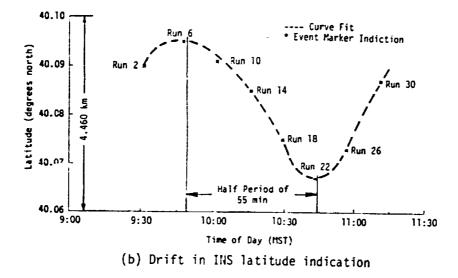
Figure 4.2. Event marker location of $B_{-}57R$ on box pattern flights.

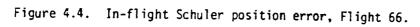
ા (🖓


¥

110


heading east, an event marker on the ground was activated to record the moment a north-south running road lined up perpendicular to the flight path (see Figure 4.2). INS recorded longitude at the time of the event marker can thus be compared with the known longitude of the road to construct the Schuler position error (see Figure 4.3a). The exact latitude of the aircraft at the time of the event markers is less certain. In fact, it depends upon the ability of the pilot to fly the intended flight path. But, since the flight paths were flown toward a fixed landmark, only small deviations in the latitude position of the east test runs are expected. A similar indication of position errors has also been plotted for the latitude, Figure 4.3b. In both cases, the error appears to have a sinusoidal behavior. Curve fits by simple trial and error techniques are also plotted on the two figures. The curve fits suggest the latitude error has a 77-minute period of oscillation, and the longitude has an 111-minute period. The latitudinal period is reasonably close to the Schuler constant of 84 minutes, but the longitudinal period does not conform to that for the latitude. Since longitude and latitude errors are two components derived from the same stable platform oscillation, equal period lengths differing only by a phase angle would be expected. Thus, additional investigation of the discrepancy is needed.

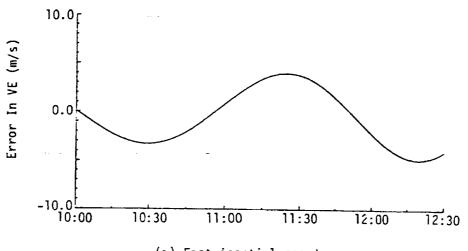

Flight 66 (see Table 1.1) followed the same flight pattern as Flight 63, and the same technique for marking geographical position by event markers was used. Figure 4.4 has been constructed similarly to Figure 4.3. The dashed lines outline sinusoidal trends but are not represented by mathematical equations. The latitude oscillation in Flight 66 seems to have a period of approximately 110 minutes which is similar to the longitude oscillation of Flight 63. The longitude error of Flight 66 contains more scatter in the

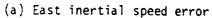


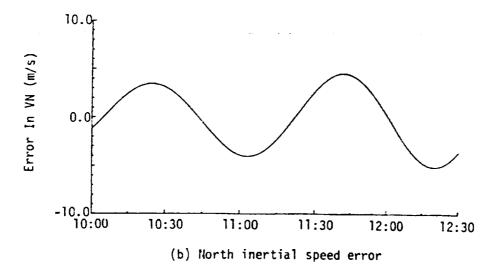
112

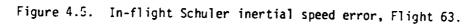
• .

113

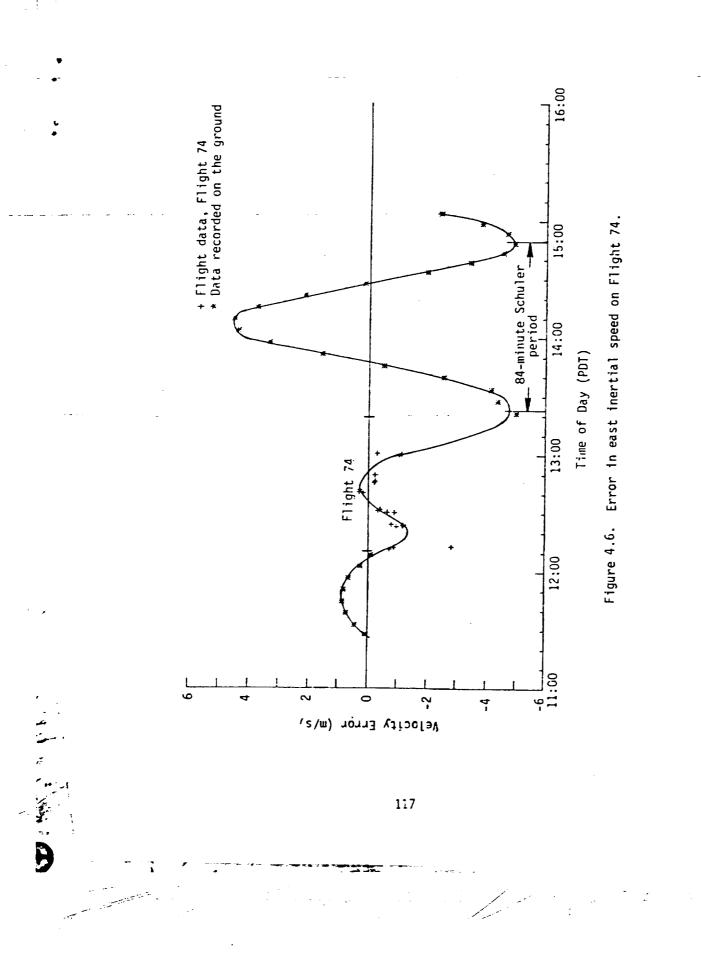

(1

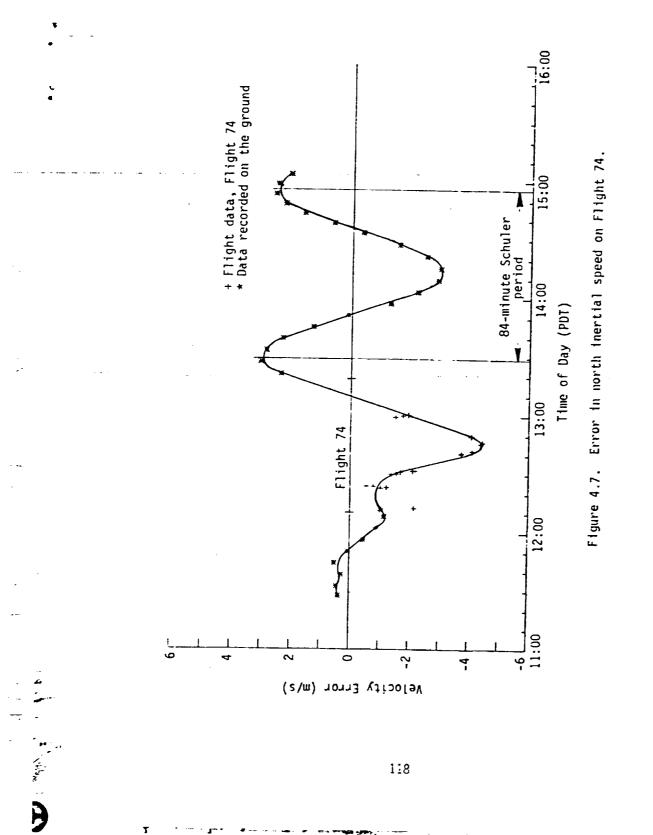

data, although the period seems to be of roughly the same length as the latitude oscillation on this flight.


The magnitude INS position errors identified are within a range of less than 15 km or 10 nautical miles. From a commercial aircraft operation standpoint, these errors are not a large problem, particularly in the proximity of an airport where other means of navigation are available in the proximity of an airport. However, Schuler position errors are of significance for wind measurements. Exact ground tracks are needed to determine terrain effects on turbulence such as wake regions behind mountains, etc. An error on the order of several kilometers can drastically distort the picture.


The INS velocity errors are especially important in the wind measurements. Horizontal wind components are calculated based on Equations 4.1 and 4.2. As will be demonstrated, the velocity errors can be of the same order of magnitude as the wind speed, which will greatly alter the calculation of the wind vector. An estimate of these errors is presented in Figure 4.5. The velocity error curves are calculated by taking the derivative of the position error curve fits illustrated in Figure 4.3. The magnitude of the velocity errors determined is within the range of that quoted in the literature (Rhyne, 1980; Lenschow, 1983). The influence of these errors is demonstrated in Sections 4.7 and 4.8.

To further investigate the Schuler error Flights 73 and 74 were carried out where the aircraft was tracked by the NASA EPS-16 #34 tracking radar. The radar track provided the location and the ground speed of the aircraft throughout the flight. The investigation of Schuler velocity errors for Flight 73 and 74 has not been completed due to the late reception of flight data for Flight 73 and of the need to correct the radar tracking. However,




::5

data on post-flight Schuler velocity errors recorded on the ground have been received from NASA/LaRC along with data from Flight 74. The north-south and east-west velocity errors of Flight 74 and the ensuing post-flight velocity measurements are plotted in Figures 4.6 and 4.7. The in-flight velocity errors are obtained by comparing aircraft and radar data assuming the radar indications are free of error. The data recorded on the ground is a direct measure of the indicated velocity from the INS while the aircraft was parked and hence not moving. This velocity fluctuation is attributed to the Schuler error. The INS was left on during the entire time span covered in the plots. The magnitude of the errors are within expected limits. Both figures show one complete cycle of a near perfect 84-minute Schuler oscillation in the post-flight data in the latter part of the test period. This is in keeping with Huber and Bogers (1983) who noted that near the ground without accelerations involved the Schuler oscillations will have an 84.4-minute period. But, in the first half of Flight 74 the errors are more random in their behavior and the oscillation is an irregular period. This complicates attempts to model or predict the error in advance. Lenschow (1972) suggests that post-flight data recorded with a stationary aircraft be used to back out the error. He proposed to simply trace back a recorded post-flight error oscillation with an 84-minute period constant amplitude sinusoidal curve. The present study shows, however, that both the period and the amplitude of the velocity error are altered substantially during flight and thus the Lenschow (1972) approach would not be successful here. This observation is in keeping with Huber and Bogers (1983) physical description of the Schuler effects. Additional investigation of Flight 74 is needed to determine if the INS errors are accurately described in Figures 4.6 and 4.7. While the inertial velocity

116

ā.

measurement errors strongly influence the horizontal wind vector calculations, they generally have little effect on the gust velocity computations because the effect of the slow variations in velocity is greatly diminished or eliminated when the average velocity is removed.

4.5 Flow Vane Errors

Ringnes and Frost (1985) observed in analyzing the B-57B data that constant differences existed between the angles of attack measured at the three different stations along the wing. The constant offset from the true value again has little influence on the computed turbulence since the mean value is removed during the computation. The angle of attack terms have negligibly small effect on the computed values and therefore the inaccuracies cause no problems of the total horizontal wind vector. The cause of the angle of attack difference, however, were attributed to misalignment of the wing tip booms.

The average sideslip angles were also found to be different from the expected value. All aircraft are designed directionally stable and will fly with zero average sideslip angle unless forcefully kept in a sideslip flight condition. The average sideslip angle of 2.23 degrees, for example, recorded at the centerboom on Flight 63 is therefore attributed to error. The source of the error is not clear but boom misalignment or problems with the data acquisition system are suspected causes. Again, the average sideslip error is removed in the turbulence calculations, but it does affect the computed value of the horizontal wind vector noticeably as will be demonstrated.

4.6 Airspeed Errors

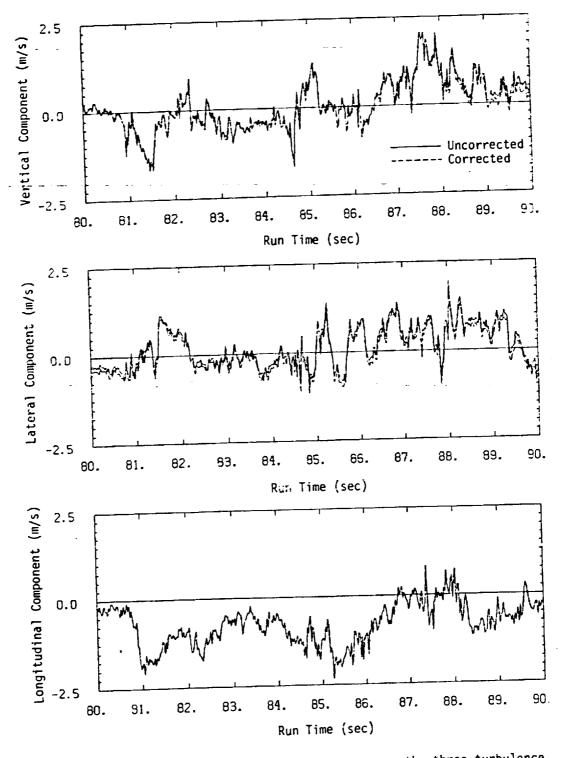
· Jelle

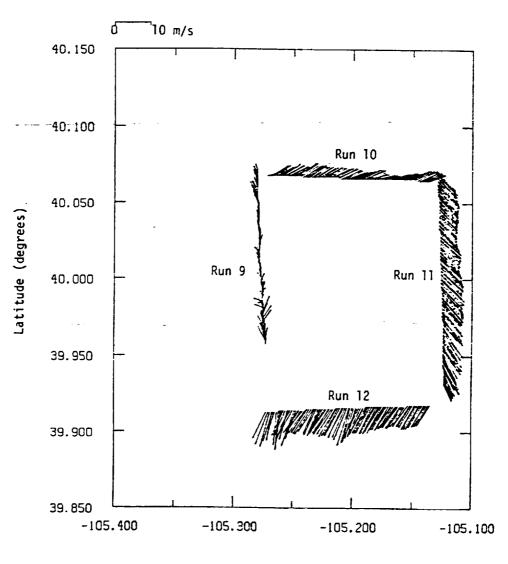
Frost, et al. (1985a) observed a difference in airspeed measured by the three separate wing probes. They compared average values for all runs on

Flight 21 and reported an average difference between the right and center boom measured velocites of 1.82 m/s. The difference between the right and left wing tip measured airspeed was 0.79 m/s. The overall averaged airspeed was about 105 m/s. In Flight 31, the airspeed difference between the right and left probes is 0.3 m/s at an average airspeed of 102 m/s. The accuracy of the horizontal wind vector calculations depends upon the guality of airspeed measurements. Possible instrument calibration, position errors, or conversion from indicated to true airspeed can cause these inaccuracies. Also, the lack of separate static pressure transducers at the wind tips could have contributed to the inconsistances. A test flight conducted with the B-57B also revealed a value of horizontal wind speed of 2.5 m/s lower at the center boom than at the wing tip booms at a relative airspeed of roughly 122 m/s (Ehernberger, 1987). An approximate analysis based on a potential flow solution for a Rankine body (Karamcheti, 1966) predicted a 6 percent error. This is expected to be high because the B-57B is a more streamlined body than a Rankine body, but the results do support the hypothesis that the airspeed may be retarded sufficiently by the aircraft body to produce the relative airspeed difference a boom's length from the nose. This 2 percent error is accounted for in the following investigation of the influence of instrumentation errors on horizontal wind calculations.

4.7 <u>Gust Velocity Corrections</u>

The only instrumentation errors of those reported above which would noticeably effects the gust velocity calculation based on inspection of Equations 4.5, 4.6, and 4.7 is airspeed. The magnitude of correction to the gust velocities due to airspeed corrections is illustrated in Figure 4.8. Uncorrected turbulence is plotted directly from the tapes received from NASA




Figure 4.8. Effect of instrumentation errors on the three turbulence components on Flight 63, Run 16.

Langley Research Center. The "corrected" turbulence has been computed with the predicted inertial velocity, airspeed, and sideslip angle errors removed. The differences between the two computations are small and only detectable for the lateral and vertical components where total airspeed enters the Equations 4.5 and 4.7. It is apparent that even the airspeed error is of little significance in gust velocity calculations.

4.8 Horizontal Wind Vector Correction

The INS velocity and position indication, sideslip angle, and airspeed errors identified as described above have been removed from the recorded data on some runs of Flight 63. The influence these errors have on the calculation of horizontal winds are demonstrated in this subsection. A series of wind vectors are plotted before and after corrections have been made along the flight path recorded by the INS. Each vector represents a one-second average from the 40 samples per second data tapes.

In Figure 4.9 one of the box patterns flown on Flight 63 is plotted. In this figure, no corrections have been made. There are some obvious inconsistencies in the wind vectors, particularly, at the corners where it is expected that the wind would agreal closer between the two runs. The aircraft made 270-degree turns between runs which take less than two minutes. The wind direction is not expected to change significantly during that short of an interval. Instrumentation errors are, therefore, the probable cause for the discontinuities in wind direction. Figure 4.10 differs from Figure 4.11 only by removal of the 2.23-degree sideslip error in the calculation of the wind vectors. It is debatable whether this correction alone has improved the winu vectors but it clearly demonstrates that seemingly small errors have significant effect on the wind vectors. In Figure 4.11 corrections have been

CM

•)

Longitude (degrees)

Figure 4.9. Horizontal wind vectors on Flight 63 without corrections (Runs 9 through 12).

Figure 4.10. Horizontal wind vectors on Flight 63 with beta corrections (Runs 9 through 12).

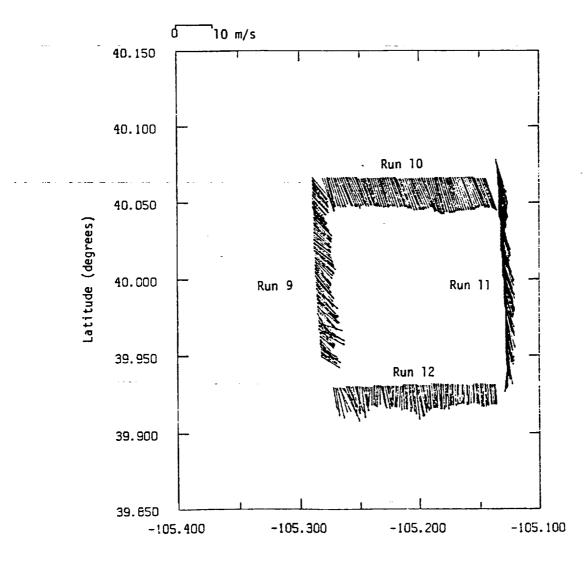


Figure 4.11. Horizontal wind vectors on Flight 63 after airspeed, beta, and inertial velocity and position corrections (Runs 9 through 12).

made for the known errors. The discontinuities in the wind vectors at the corners have all but vanished except for the bottom left-hand corner. However, as the numerical order of the runs indicates the box pattern was flown in a clockwise direction; thus, the beginning of Run 9 and the end of Run 12 are separated in time by approximately 15 minutes. Therefore, it is conceivable that the wind could have changed in that time span. The position errors are not severe for this box pattern but still noticeable.

Figure 4.12 is similar to Figure 4.9 except Runs 13 through 16 on Flight 63 have been plotted. No corrections have been made. Only the discontinuities in the direction of the wind in the upper left-hand corner and in the magnitude of the wind in the upper right-hand corner appear questionable. Figure 4.13 illustrates the effect of removing the errors on wind vectors and INS indicated locations. The horizontal wind vectors are more consistent and also the location of the runs are in better agreement with the flight plan.

A third box pattern on Flight 63 (Runs 17 through 20) does not show the same improvement with corrections. Figure 4.14 shows the uncorrected wind vector and Figure 4.15 the corrected version. The INS indicated location is improved but not the wind vectors. After correction, the wind directions on Runs 18 and 20 are in sharp contrast to each other and additional or better corrections are needed.

4.9 Effects of Non-Level Flight

1

The algorithms used by NASA Langley computer facility to compute the turbulent gust velocities from the measured aircraft data are based on the assumption of straight, level flight. The more complete generalized system of equations which will allow for departure from level flight are derived in Appendix B. Questions arose during the study as to whether those portions of

126

Total .

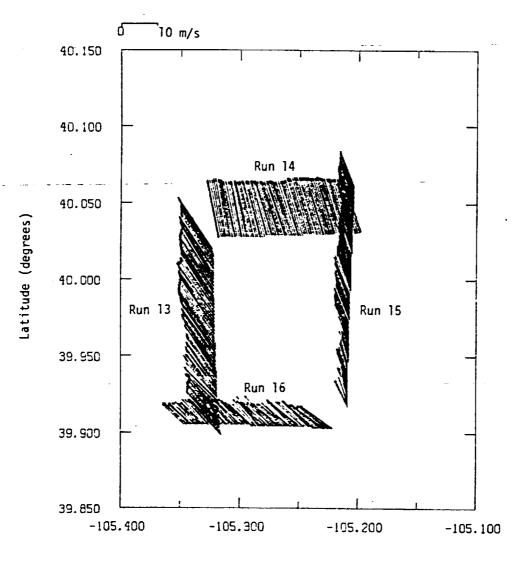


Figure 4.12. Horizontal wind vectors on Flight 63 without corrections (Runs 13 through 16).

127

P

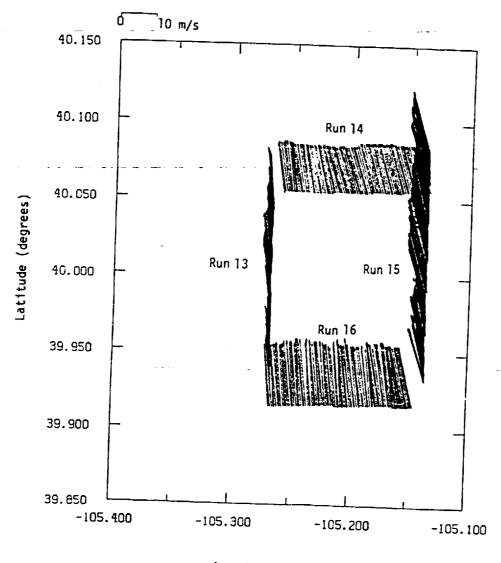


Figure 4.13. Horizontal wind vectors on Flight 63 after airspeed, beta, and inertial velocity and position corrections (Runs 13 through 16).

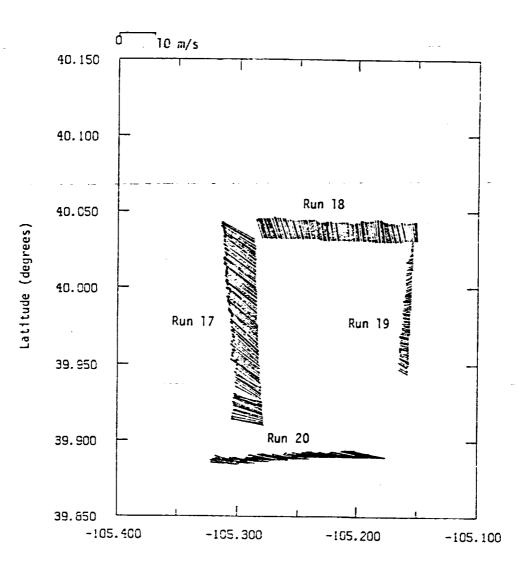


Figure 4.14. Horizontal wind vectors on Flight 63 without corrections (Runs 17 through 20).

129

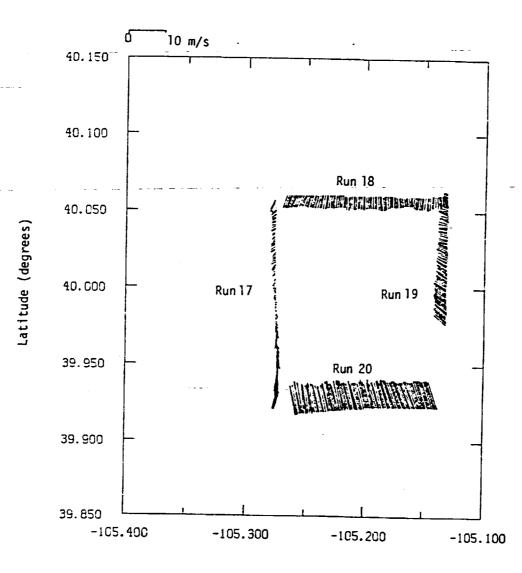
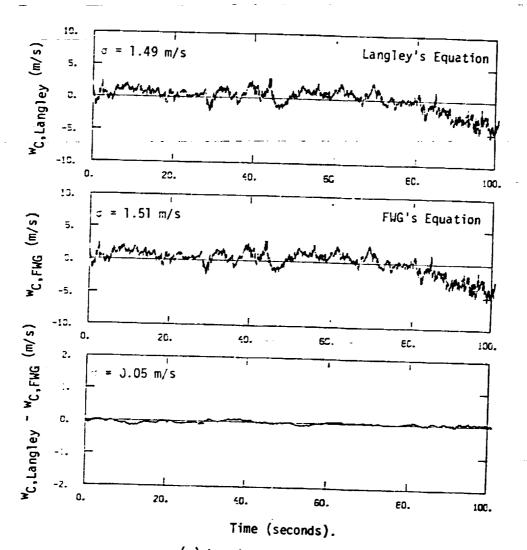


Figure 4.15. Horizontal wind vectors on Flight 63 after airspeed, beta, and inertial velocity and position corrections (Runs 17 through 20).

130

.

بينا ه

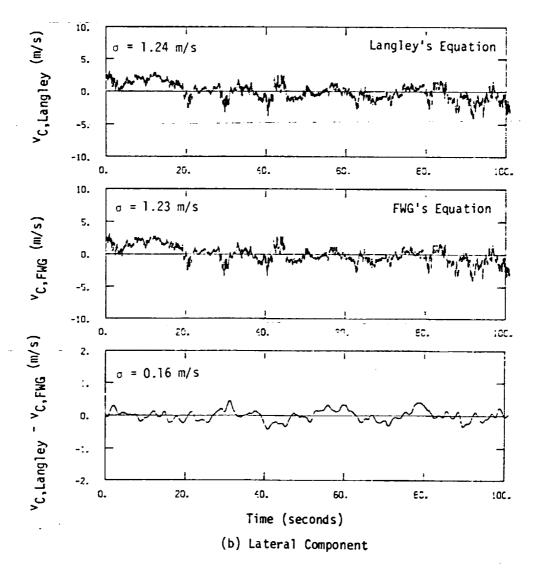

flights for which the aircraft climbed or descended should be removed from the data. For example, during Run 3 at approximately 536 seconds (34 miles) into the flight the aircraft climbed approximately 1000 ft (see Figure A.11). In turn, during Flight 9 the aircraft climbed roughly 1000 ft beginning at t = 80 seconds (7 miles) and descended again at t = 135 seconds (8.4 miles), see Figure A.41. Also, Runs 1 and 2 where the aircraft took off or made touch-and-go's. This section shows that algor thms to reduce the data based on small angles and perturbations have no significant effect on the computed turbulence for runs where departures from straight and level flight occur.

First it should be noted that because of the exaggerated vertical scale in, say for example, Figures A.11, A.41, and all other plots of this nature given in Appendix A, the departure from level flight appears to be severe. It should be noted, however, that in no cases is the climb or descent angle greater than 7°. This size angle adequately satisfies the small angle requirement defined in the algorithms presently used in the data reduction process. However, this statement is further supported by quantitative analyses in the following.

To investigate the effects of climb and descent angles on the computed gust velocities, Equation B.27, which are used in the NASA Langley algorithms and Equation B.15 which FWG has derived and programmed to investigate the effect of "large angles" where compared. The FWG equation still assumes the mean roll angles, $\overline{\phi}$, is zero. Equation B.27 was programmed and the turbulence time histories at central probe for the descending ($\overline{\theta} = -2.83^{\circ}$) and climbing ($\overline{\theta} = 2.9^{\circ}$) segments of Run 2 were computed separately. Figure 4.16 shows the comparison of the descending segment. Figures 4.16a, 4.16b, and 4.16c are for the longitudinal (u), lateral (v), and vertical (w) components, respectively.

131

Contraction of the second seco



(a) Longitudinal Component

Figure 4.16. Comparison of turbulence time histories calculated from NASA Langley's equation and FWG's equation (descending segment of Run 2; Flight 31).

132

ľ,

Praises Prive Barrier and States and the second

Figure 4.16. (cont'd).

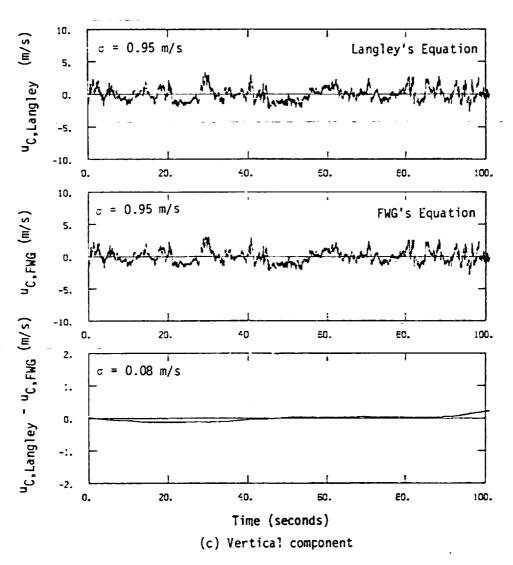
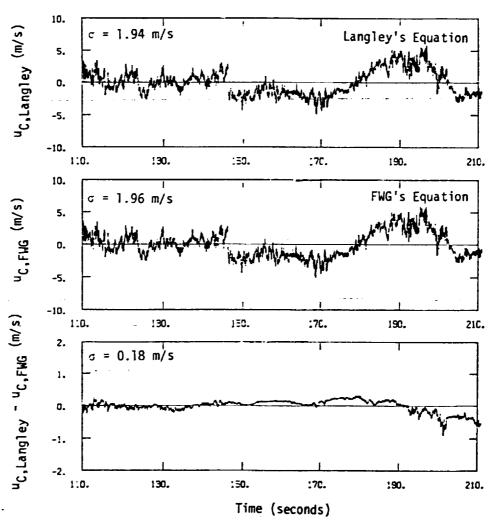



Figure 4.16. (cont'd).

The standard deviation of each time history is also shown in the figure. Similar comparison for the climbing segment is shown in Figure 4.17. An abnormal spike occurs in the lateral turbulence component at t = 201 seconds. It is believed that the attitude of the aircraft at this moment probably deviated from the small angle assumptions significantly. Therefore, the maximum difference of the turbulence calculations from Equations B.15 and B.27 occurs at this point. Although the complete equation (Equation B.1^F) calculates turbulence more accurately, Equation 3.27 saves a lot of computer time and still holds an acceptable accuracy for small angles considered here. For all practical purposes, the two calculations will introduce only negligible difference in the turbulence analyses presented in this report.

To further investigate the departure from level flight, the turbulence time history for Flight 3 was divided into two segments. Segment 1 is from 0 to 512 seconds (0 to 32 miles) and segment 2 from 512 to 691 seconds (32 to 44 miles). The turbulence statistics were computed for the total run and for each segment individually. The spectra for the two individual legs of the flight are compared with the total run in Figure 4.18; no apparent difference is observed. The turbulence intensity for each segment of the flight are listed in Table 4.1. Difference in turbulence intensity for each leg of the flight are apparent. These differences, however, are not attributable to departure from level flight but rather due to patchiness of the turbulence associated with terrain features beneath the flight path. Figure 4.19 shows the turbulence time history and the approximate location relative to the underlying terrain at which the measurement was made. This figure, in view of the fact that the mean wind is essentially out of the plane of the paper at approximately 15, clearly suggests that strong turbulence is associated with

(a) Longitudinal Component

Figure 4.17. Comparison of turbulence time histories calculated from NASA Langley's equation and FWG's equation (climbing segment of Run 2; Flight 31).

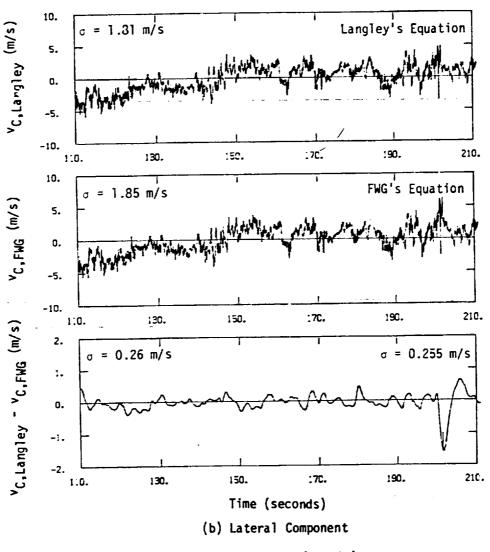
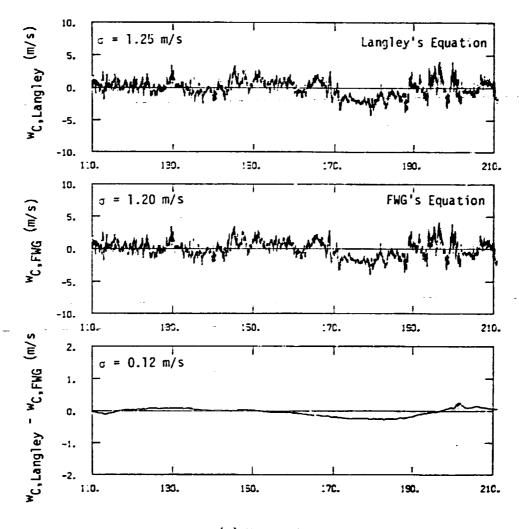
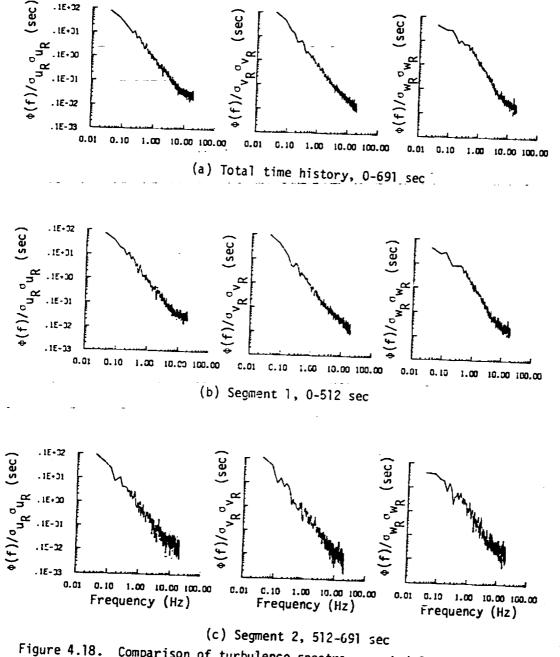
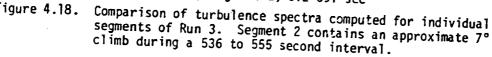
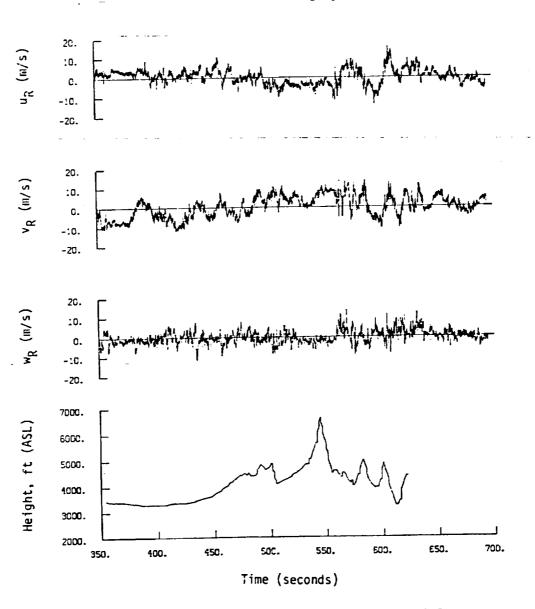
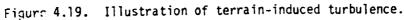




Figure 4.17. (cont'd).




(c) Vertical Component
Figure 4.17. (cont'd).


138

X

)

Component	Total	Segment 1	Segment 2
σuR	3.17	2.64	2.87
σ _{vR}	5.25	5.29	4.27
σ _{wR}	2.36	2.10	4.55

TABLE 4.1. Turbulence Intensities for Total Time History and Each Segment Individually for Run 3.

flow over the mountain peaks. Thus, it is concluded that the patchiness of the turbulence is due to terrain effects and not associated with any departure of the aircraft from straight and level flight.

5.0 CONCLUSIONS

The results of the analysis of Flight 31 coupled with experience from previous analysis of flight data from the NASA B-57 aircraft gust gradient program, lead to the following conclusions and recommendations:

- 1. The probability density distribution of gust velocities in the atmosphere are not Gaussian. The distribution of velocity differences across the airfoil which filters out trends in the quasi-steady wind have a definite modified Bessel function type distribution, i.e., a higher percentage of small and large velocity differences and lower percentage of intermediate values than is predicted by a Gaussian distribution. The parameter r of the modified Bessel function distribution however could not be related to the existing meteorology or to specific terrain features. It is recommended that additional work to establish a physical meaning of the parameter r be carried out. The probability density distribution of the gust components themselves, i.e., not the difference, were rather ill behaved in this study and in many cases showed bimodal distributions. This is believed to be due to the fact that a trend due to spatially varying mean wind along the flight path, caused by terrain features or other factors, were not removed from the gust velocities when computing the probability density functions.
- 2. The theoretical von Karman spectrum fits the turbulence data well over the frequency range investigated in this study (0.04 to 20 Hz). The theoretical models were computed with length scales determined from integration of the correlation coefficient from zero lag to the point where the correlation first becomes zero. 142

∽. `

C

キシーでに、「

The results of the study strongly suggest that the turbulence behaves relatively consistent with the assumption of isotropic, homogeneous turbulence despite the fact that flights were made over mountainous terrain and during touch-and-go's through the atmospheric boundary layer.

- 3. The two-point common component theoretical spectra (that is, the spectra for the same velocity component for spatially separated positions) proposed by Houbolt and Sen (1972) for the vertical fluctuations and the spectra for longitudinal and lateral velocity fluctuations derived in this report, agree with the experimental flight data provided the care described in Chapter 3 is exercised in computing the two-point spectra from the truncated, digitized gust velocity time histories.
- 4. In calculating one-point auto-spectra and two-point common component spectra from a direct Fourier transform of the data can result in large errors due to aliasing and truncation estimator bias. Aliasing is the major source of error in the auto-spectrum whereas bias is the major source of error in the two-point common component spectra. This is physically evident since the energy contained at high frequencies in two-point spectra vanishes significantly faster than that in ong-point spectra. What is not evident is that a very small departure of two-point correlation "coefficient from unity at zero lag can cause high bias errors. To remove bias error from two-point spectra it is recommended that the minimum-bias lag window be utilized.
- 5. To reduce the variance error associated with a two-point common component as well as all cross-spectra it is important to carry

143

out segment averaging of the co- and quad-spectra C(s,f) and Q(s,f) separately as contrasted to averaging the absolute value,

i.e., $C^2(s,f) + Q^2(s,f)$.

- 6. The small values (0.07) of the ratio of the spanwidth separation distance of 20 m to the typical turbulence integral length scale was found to have a relatively significant effect on the two-point spectra in terms of spectrum dropoff at high frequencies. However, for other statistical parameters; ie, cross correlations, there were indications that the separation distance of 20 m is too small to resolve some of the statistical issues of interest. It is recommended that experiments be carried out with larger separation distances than 20 m for a firmer understanding of two-point statistical parameters.
- 7. The one-point and two-point cross-correlations between uncommon velocity components_shows_almost zero correlation (further supporting the assumption of isotropic turbulence). However, close examination of the complex phase angle associated with the cross-spectra indicate there is significant phase difference between various frequencies. The one-point cross-spectrum appears to agree well with the model proposed by Reeves, et al. (1974). No empirical expression or analytical model of two-point crossspectra is available. Further work is required in this area.
- 8. The instrumentation system and data processing algorithms for the NASA B-57B aircraft provides highly accurate measurements of turbulent gust velocities. The measurements of the total instantaneous wind speed, however, may contain certain errors induced by some of the present characteristics of the measuring

144

BALL MALE B

In particular the INS Schuler drift problem causes system. significant uncertainty in the position of the flight path and of the magnitude of the mean wind speed (i.e., ± 2 to 5 m/s). This uncertainty in velocity coupled with small inaccuracies in the flow vane measurements (possibly due to boom misalignment or other factors), while having insignificant effect on the gust velocity measurement, can result in major errors in the wind field. These errors can be corrected if appropriate data other than that measured by the on-board instrumentation system is gathered during the flight. For example, visual observed position recorded with a designation marker utilized can be used to estimate INS Schuler position drift from post-analysis of the data. Since the Schuler drift does not appear to have a constant amplitude nor period of oscillation, procedures to correct for this error by backing cut the inertial winds and position from measurements made with the aircraft stationary on the runways are not feasible.

and a state of the state of the

REFERENCES

Akkari, S. H., and W. Frost (1982): "Analysis of Vibration Induced Error in Turbulence Velocity Measurements from an Aircraft Wing Tip Boom," NASA CR 3571.

Axford, D. N. (1968): "On the Accuracy of Wind Measurements Using an Inertial Platform in an Aircraft, and an Example of a Measurement of the Vertical Mesostructure of the Atmosphere," <u>J. of Applied Met.</u>, 7:645-666.

Bendat, J. S., and A. G. Piersol (1971): <u>Random Data: Analysis and</u> <u>Measurement Procedures</u>. New York: John Wiley & Sons, Inc.

- Bisplinghoff, R. L., and H. Ashley (1957): <u>Aeroelasticity</u>. Menlo Park, Calif.: Addison-Wesley Pub. Co.
- Brigham, E. O. (1974): <u>The Fast Fourier Transform</u>. Englewood Cliffs, N. J.: Prentice-Hall, Inc.
- Boxmeyer, C. (1964): <u>Inertial Navigation Systems</u>. New York: McGraw-Hill Book Co.
- Brook, R. R. (1975): "A Note on Vertical Coherence of Wind Measured in an Urban Boundary Layer," <u>Boundary-Layer Met.</u>, 9:11-20.
- Camp, D. W., W. Campbell, C. Dow, M. Phillips, R. Gregory, and W. Frost (1984): "Visualization of Gust Gradients and Aircraft Response as Measured by the NASA B-57B Aircraft," Paper presented at the AIAA 22nd Aerospace Sciences Meeting, Reno, Nev., Jan. 9-12.
- Campbell, W., D. W. Camp, and W. Frost (1983): "An Analysis of Spanwise Gust Gradient Data," Paper presented at the Ninth Conference on Aerospace and Aeronautical Meteorology of the AMS, Omaha, Neb., June 6-9.
- Campbell, W. C. (1984): "A Spatial Model of Wind Shear and Turbulence for Flight Simulation," NASA TP 2313.

Campbell, W. (1986): Private communication.

Ţ

Chang, H. P., and W. Frost (1985): "NASA B-578 Orographic Data Reduction and Analysis Relative to PBL Parameterization Models," Final report for NASA Goddard Space Flight Center under Contract NAS5-28558.

Chang, H. P., D. W. Camp, and W. Frost (1986): "Analysis of Aircraft Data Measured Near Microbursts," Interim report under Contract NAS5-29302 for NASA Goddard Space Flight Center, Dec.

Crooks, W. M., F. M. Hoblit, D. T. Prophet, et al. (1967): "Project Hicat an Investigation of High Altitude Clear Air Turbulence," Technical Report AFFDL-TR-67-123, Vol. I, Wright-Patterson Air Force Base, OH, Nov.

1 (juli - E.).

- Davenport, A. G. (1961): "The Spectrum of Horizontal Gustiness Near the Ground in High Winds," <u>Quarterly Journal of the Royal Met. Soc</u>., 87:194-211.
- Diederich, F. W. (1957): "The Response of an Airplane to Random Turbulence," NACA TN 3910.
- Diederich, F. W., and J. A. Drischler (1957): "Effect of Spanwise Variation in Gust Intensity on the Lift Due to Atmospheric Turbulence," NACA TN 3920.
- Eggleston, J. M., and F. W. Diederich (1956): "Theoretical Calculation of the Power Spectra of the Rolling and Yawing Moments on a Wing in Random Turbulence," NACA TN 3864.
- Ehernberger, L. J. (1987): NASA Dryden Flight Test Facility; Personnel Communications
- Eichenbaum, F. D. (1972): "Response of Aircraft to Three-Dimensional Random Turbulence," AFFDL-TR-72-28.
- Etkin, B. (1972): <u>Dynamics of Atmospheric Flight</u>. New York: John Wiley & Sons, Inc.
- Frost, W., and T. H. Moulden (1977): <u>Handbook on Turbulence</u>. New York: Plenum Press.

Frost, W. (1981): FWG Associates, Inc. Internal Memo.

- Frost, W. (1983): __"Spanwise Turbulence_Modeling," Paper presented at the Ninth Conference on Aerospace and Aeronautical Meteorology of the AMS, Omaha, Neb., June 6-9.
- Frost, W., and K. H. Huang (1983): "Doppler Lidar Signal and Turbulence Study," Final Report for NASA/MSFC under Contract NAS8-35185, by FWG Associates, Inc., Tullahoma, Tenn.
- Frost, W., and M. C. Lin (1983): "Statistical Analysis of Turbulence Data from the NASA Marshall Space Flight Center Atmospheric Boundary Layer Tower Array Facility," NASA CR 3737.
- Frost, W., M. C. Lin, and H. P. Chang (1983): FWG Associates, Inc. Internal Memo.

Frost, W., M. C. Lin, H. P. Chang, and E. A. Ringnes (1985a): "Analysis of Data from NASA B-57B Gust Gradient Program," Final report for NASA Marshall Space Flight Center under Contracts NAS8-36177 and NAS8-35347.

Frost, W., K. H. Huang, and J. S. Theon (1985b): "Comparison of Winds and Turbulence Measurements from Doppler Lidar and Instrumented Aircraft," Paper presented at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications, Worchestershire, England, July 7-11.

- 20

- Frost, W., J. S. Theon, K. H. Huang, and R. E. Turner (1985c): "Field Study of the Effects of Orographic Features on Planetary Boundary Layer Models," Paper presented at the WMO/ICSU/IAMAP Scientific Conference on the Results of the Alpine Experiment (ALPEX), Venice, Italy, Oct. 29-Nov. 2.
- Haugen, D. A., ed. (1973): <u>Workshop on Micrometeorology</u>. Boston, American Meteorological Society.

Hinze, J. O. (1975): Turbulence. New York: McGraw-Hill.

- Houbolt, J. C., R. Steiner, and K. G. Pratt (1964): "Dynamic Response of Airplanes to Atmospheric Turbulence Including Flight Data on Input and Response," NASA TR R-199.
- Houbolt, J. C., and A. Sen (1972): "Cross-Spectral Functions Based on von Karman's Spectral Equation," NASA CR 2011.

Houbolt, J. C. (1973): "Atmospheric Turbulence," AIAA Journal, 4:421-437.

- Huang, K. H., W. Frost, and E. A. Ringnes (1985): "Comparison of Wind and Turbulence Measurements from Doppler Lidar and Instrumented Aircraft," Final report under NASA Marshall Contract NAS8-36188.
- Huber, C., and W. J. Bogers (1983): "The Schuler Principle: A Discussion of Some Facts and Misconceptions," EUT Research Report 83-E-136 (ISBN 90-6144-136-6), Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, The Netherlands, May.
- Jenkins, G. M., and D. G. Watts (1969): <u>Spectral Analysis and Its</u> <u>Applications</u>. San Francisco: Holden-Day.
- Karamcheti, K. (1966): <u>Principles of Ideal-Fluid Aerodynamics</u>. New York: John Wiley and Sons, Inc.
- Kordes, E. E., and J. C. Houbolt (1953): "Evaluation of Gust Response Characteristics of Some Existing Aircraft with Wing Bending," NACA TN 2897.
- Kristensen, L., and N. O. Jensen (1979): "Lateral Coherence in Isotropic Turbulence and in the Natural Wind," <u>Boundary-Layer Met.</u>, 17:353-373.
- Lenschow, D. H. (1972): "The Measurement of Air Velocity and Temperature Using the NCAR Buffalo Aircraft Measuring System," NCAR-TN/EDD-74.

Lenschow, D. H. (1983): "Aircraft Measurements in the Boundary Layer," in <u>Probing the Atmospheric Boundary Layer</u> originally prepared for the AMS short-course, Aug. 8-12, 1983, Boulder, Colorado.

....

7**4** .

٩.

Ţ

Lichtenstein, J. H. (1978): "Comparison of Wing-Span Averaging Effects Rolling Moment, and Bending Moment for Two Span Load Distributions and for Two Turbulence Representatives," NASA TM-78699.

Meissner, C. W., Jr. (1976): "A Flight Instrumentation System for Acquisition of Atmospheric Turbulence Data," NASA TN D-8314.

Murrow, H. N. and R. H. Rhyne (1981): "Flight Instrumentation for Turbulence Measurements in the Atmosphere," Presentation at The University of Tenn. Space Institute Short Course on Turbulence Measurements.

Panchev, S. (1971): <u>Random Functions and Turbulence</u>. New York: Pergamon Press.

Panofsky, H. A., D. W. Thomson, D. A. Sullivan, and D. E. Moravek (1974): "Two-Point Velocity Statistics Over Lake Ontario," <u>Boundary-Layer Met.</u>, 7:301-321.

Panofsky, H. A., and T. Mizuno (1975): "Horizontal Coherence and Pasquill's Beta," Boundary-Layer Met., 9:247-256.

Panofsky, H. A., and J. A. Dutton (1984): <u>Atmospheric Turbulence. Models and</u> <u>Methods for Engineering Applications</u>. New York: John Wiley and Sons, Inc.

Papoulis, A. (1977): <u>Signal Analysis</u>. New York: McGraw-Hill Book Co.

- Pastel, R. L., J. E. Caruthers, and W. Frost (1981): "Airplane Wing Vibrations Due to Atmospheric Turbulence," NASA CR 3431.
- Pielke, R. A., and H. A. Panofsky (1970): "Turbulence Characteristics Along Several Towers," <u>Boundary-Layer Met.</u>, 1:115-130.

Reeves, P. M., G. S. Campbell, V. M. Ganzer, and R. G. Joppa (1974): "Development and Application of a Non-Gaussian Atmospheric Turbulence Model for Use in Flight Simulators," NASA CR-2451.

Ringnes, E. A., and W. Frost (1985): "Analysis of Aerodynamic Coefficients Using Gust Gradient Data: Spanwise Turbulence Effects on Airplane Response," NASA CR 3961.

Rhyne, R. H. (1980): "Accuracy of Aircraft Velocities Obtained from Inertial Navigation Systems for Application to Airborne Wind Meaurements," NASA TM-81826.

Schuler, M. (1923): "Die Störung von Pendelund Kreiselapparaten durch die Beschleunigung des Fahrzeuges, <u>Physik Z</u>., Vol. 24, July. A translation appears in <u>Inertial Guidance</u> (G. R. Pittman, Jr., ed.). New York: John Wiley & Sons, Inc., 1962.

Steely, S. L., and W. Frost (1981): "Statistical Analysis of Atmospheric Turbulence About a Simulated Block Building," NASA CR 3366.

149

Sex.

Theon, J. S., W. Frost, K. H. Huang, and R. E. Turner (1986): "Field Study of the Effect of Orographic Features on Planetary Boundary Layer Models," to be published in the <u>Journal of Atmospheric and Oceanic Technology</u>.

Wang, S. T., and W. Frost (1982): "Data Cataloging and Analysis Plan for B-57b Flight Facility Turbulence Measurement Program," Final report for NASA Marshall under Contract NAS8-33458 by FWG Associates, Inc.

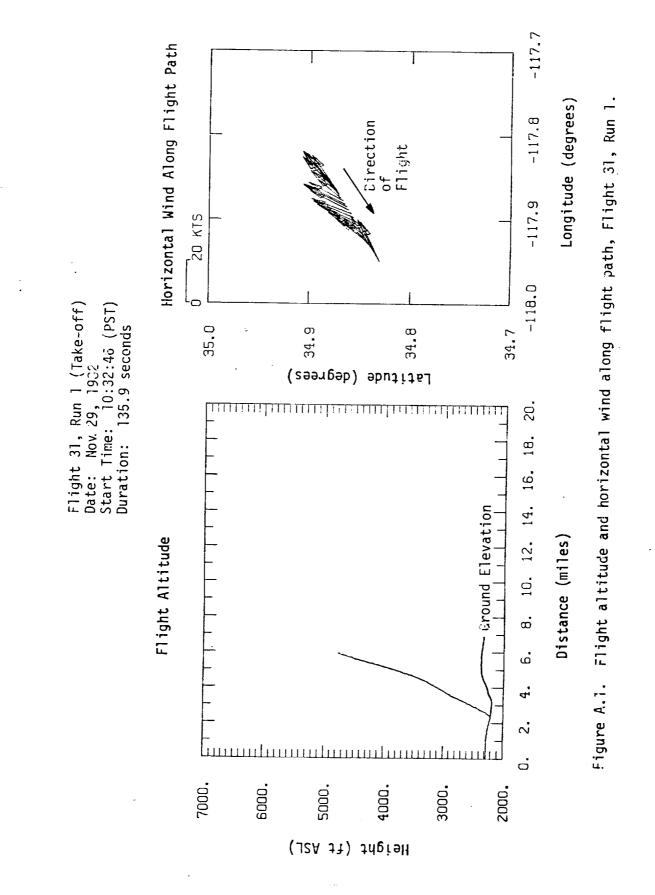
Weber, O. (1975): "Statistical Studies on the Accuracy of Carousel IV Inertial Navigation System after Flight over the North Atlantic," European Space Research Organization (ESRO) Technical Translation (TT) ESRO TT-136.

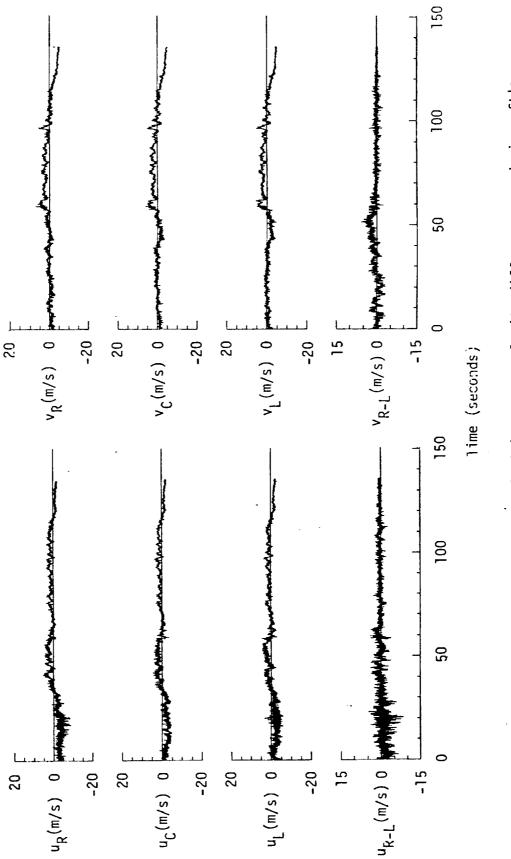
÷

150

751

Į


APPENDICES


÷

APPENDIX A

RESULTS OF STATISTICAL ANALYSIS OF FLIGHT 31

General information, ground track terrain features, and statistical values for all runs (except landing operation, Run 17) of Flight 31 on November 29, 1982, are presented in this appendix. The analysis of each run is given in two tables and five figures. The first table shows the turbulence average parameters, integral length scales, and correlation coefficients and the second one lists all parameters measured and their range of values. Five figures show the flight altitude, time history, probability density function, normalized correlation function, and normalized spectral density function of gust velocities, respectively.

Ţ

Figure A.2. (continued).

TABLE A.1.	and a second of an amore of a strong of a congent of a co	
	Correlation Coefficients of Gust Velocities, Flight 31, Run 1	L.

1.	Mean Airspeed (m/s):		(m/s):	4.	Integral Length Scale (m):			
	VL	V_C	V_R		LuR	L _{vR}	L _{wR}	
	81.13	78.92	2 81.21		297.7	149.7	255.1	-
2.	 Standard Deviation of Gust Velocities (m/s): 				L _{uRL} - 248.4	L _{VRL} L _{wRL} 35.3 254.5		
	σuR	σvR	σwR					
	2.12	2.11	2.31	5.	Correlation Coefficient of Gu Velocities:			f Gust
	∽uC	σvC	σwC				_	
	1.69	1.99	2.33		<u>uRu</u> [/σ _{uR} σι	UL VRVL	ʹ/ _{σνR} σ _{νL}	<u>wRw</u> E/σ _{WR} σ _{WL}
	۳uL	σvL	σwL		0.75		0.34	0.80
	1.74	2.05	2.58		<u>urvr</u> /ourov	<u>R VRWR</u>	/ _{σvR} σ _{wR}	WRUR/owRour
					0.08	l	0.14	0.52
3.	3. Standard Deviation of Gust				<u>urv</u> L/σurσv	<u>vrw</u> L	/ _{°vR} ° _{wL}	₩ <u>ŖŮ</u> /ơ _{₩Ŕ} ơ _{ŮL}

Standard Deviation of Gust Velocity Differences (m/s): 3.

σ∆uRL	°∆vRL	∽۵wRL
1.20	1.10	0.77

-÷

·. -.

156

-0.40

0.11

0.45

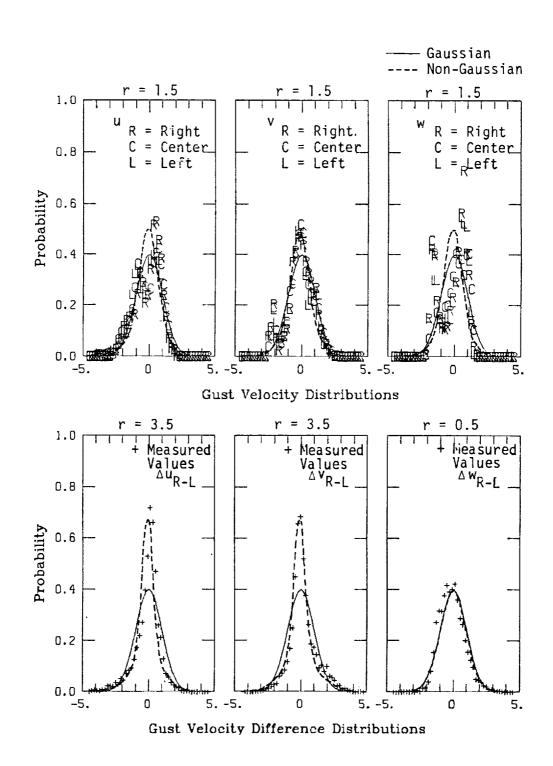
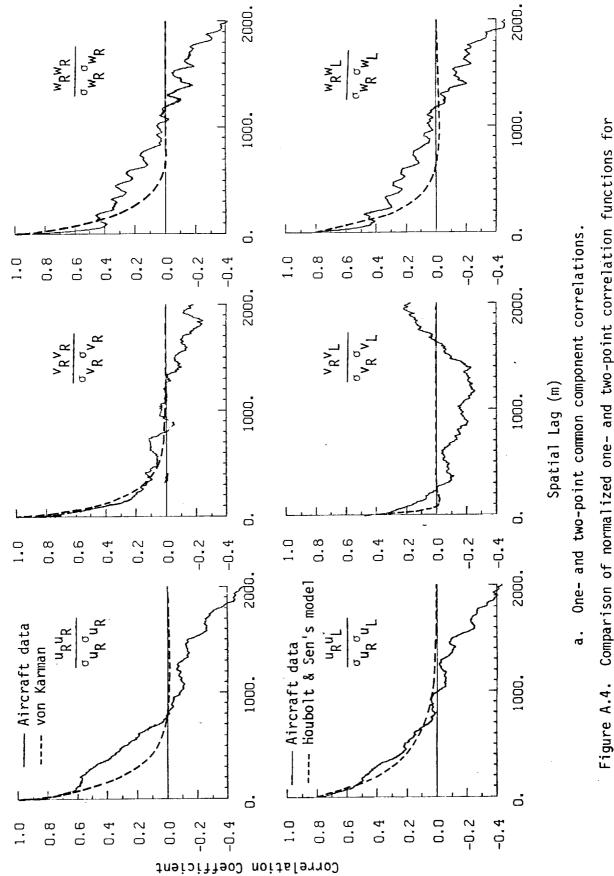
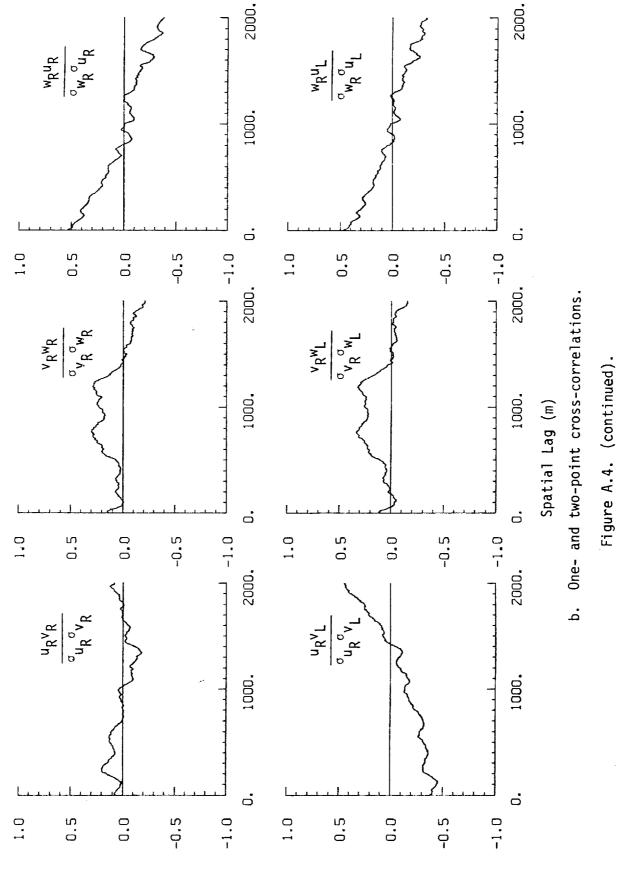
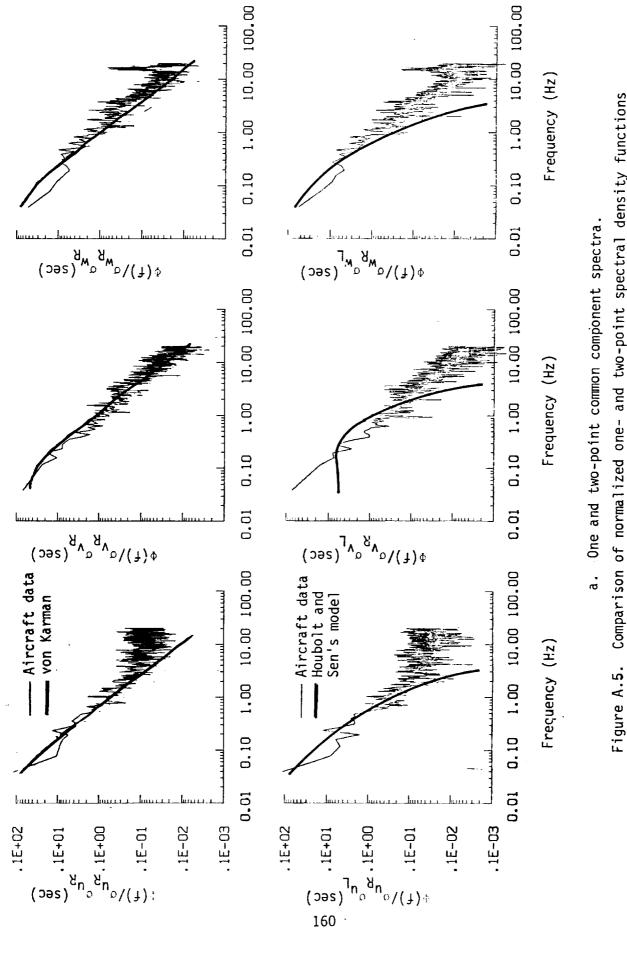




Figure A.3. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 1 (r = degree of non-Gaussian).


Comparison of normalized one- and two-point correlation functions for gust velocities with theoretical models, Flight 31, Run 1.

tneicitieol noits[errol-zzor)

È

3. F

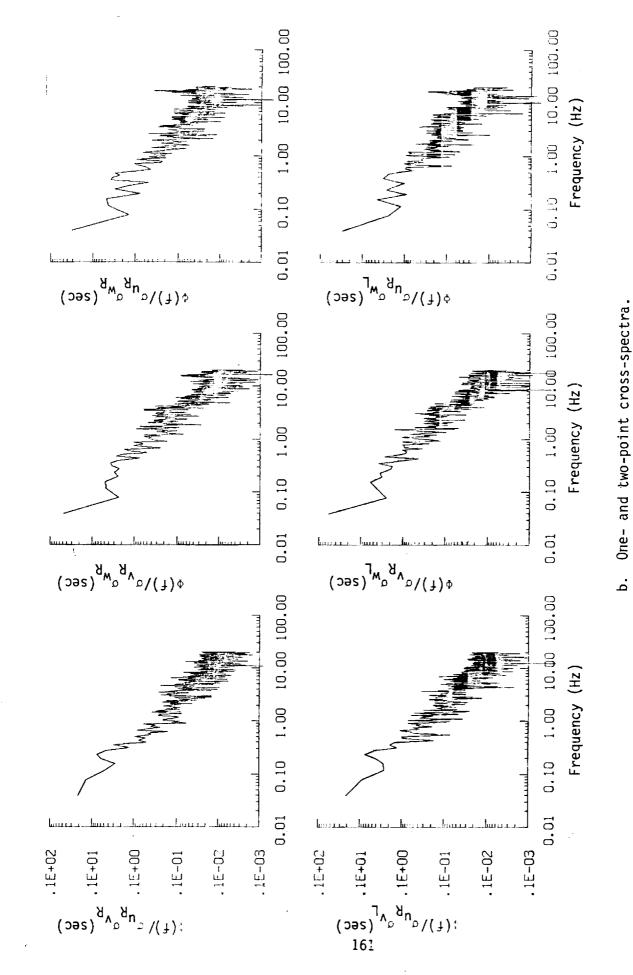
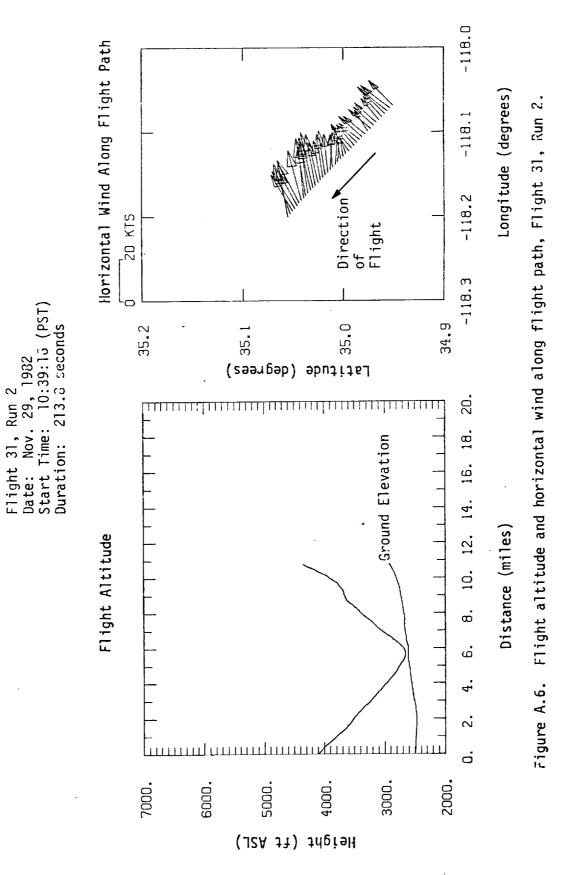
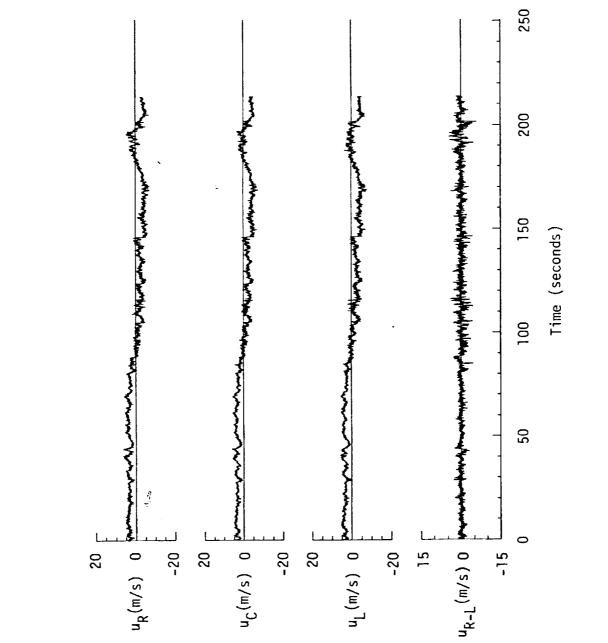
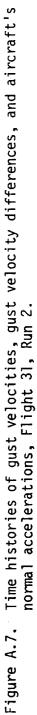



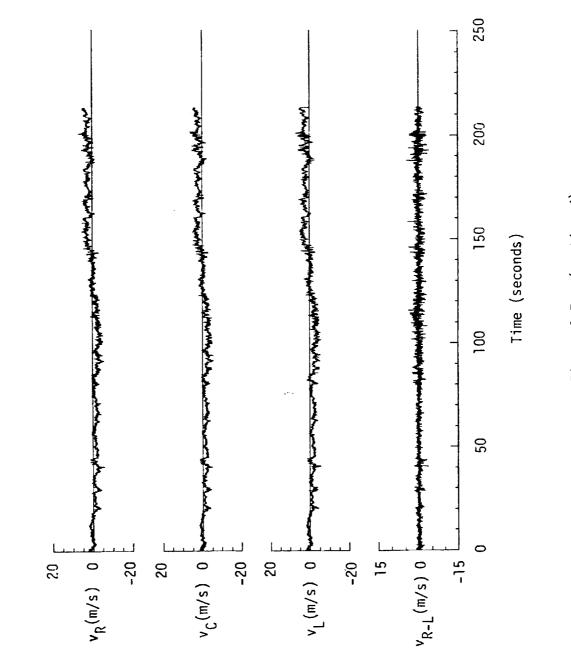
Figure A.5. (continued).

TABLE A. 2. List of All Parameters Measured and Their Range of Values, Flight 31, Run 1.

CHANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD	POINTS
1 IIME	SECONDS.	38101.502	_ 37965 627	38033.56410	38033.58433		5436
2 PH1 DOT	G UNITS			1.000222	1.00266	.06676	5436
4 THETA DOT	RAU/SEC		- 562		.03273_	.03246	5436
5 THETA	RAD		036			.07065	
6 <u>PHI</u>	RAQ	240,065			01779	.017791.10419	5436
7 PSI 1	RAD DEG	240,005	-15.041	- 45010	23/032382	1.39721	5436
9 PSI 2	RAD	549,075	719.651	595.15164	1,46304	21.27894	5436
10 DEL PSI 2		2.647	-4.448	,03810	1.04320	1.09264	5436
11 ACCL N LT.	GUNITS	2.667 1.973 2.204 3.325 .504 .091 .198 .092 .059 .053 .054 .054 .054 .054 .054 .054 .054 .054 .055 .0	*004	1.01136	1.02151		5436
12 ACCL N RT		2.204		1.01246	1.02615	.16705	
13 ACCL Y CG 14 ACCL Y CG				.00019	.02839	.02839	5436
15 ALPHA CTR	RAD	.061	216	04731	.06159	.0 39 43	5436
16 BETA CTR	RAD	.148	177	.01564	.03842	.03510	5436
17'TEMP_1	DEC F	62.059		81,72687	81,72778	38591	
18 TEMP P 19 ACCL 7 TNS							
20 ALPHA RT	RAD	1.899	160	03694	1.01844	.04516	5436
21 BETA RT	RAD	.169	163	.02222	.03814	.03100	5436
22'ALPHA LT	KAD	•110	166.	01399			5436
23 BETA LT		, U81 .169 .110 .150 .041		.00282	.01265	.01223	5436
24 PSI 00T 25 TEMP TOT	DEG C	.041 17.402 1.342	14.458	16.52312	.01255 16.55116 .85341	96314	5436
26 DC LT	PSID	1.342	.005	.68927	.85341	.50325	5436
27 QC CTR	PSID	1.266	.005	.65867			5436
28 QC_RT	PS10 PS1A	1.342 1.266 1.334 13.561 11.453	.009				5436
29 PS 30 TEMP 1RT		11.453	4.557	1.72675	7.84881	1.37893	5436
31 HYGROM	DEGC	11.453 6.860 022 .144	-5.262	5.10541	5.80571	2.76451	
32 QC2 LT	PSID	022	113	04365	.045d1	.01565	5436
33 0C2 CTR	<u>P510</u>	.144 .005 047	039	.10623		.02815	5436
34 QC2_RT 35 DAR		047	428	18086	.05010	06591	5436
36 DAL	DEG	5.947 5.947 -4.171 -541	.193	.25455	.26718 4.23001 .17228	.08117	5436
37 DELEV	DEG	-4.171	-11.012	-4.22889	4.23001	.09730	5436
R DSTAB	DEG		.170_	.17220	+17228	00521	5436
39 DRUD 40 DTHRR	DEG PCT HAX	-2.861 -2.861 44.141 45.824	-12.747	-2.00370	2.86658 44.04648 44.74704 1,17623		5436
41 DTHRL	PCT NAX	44.624	28.305	44.74639	44.74704	.24173	5436
42 DFLP	POSITION	1,100	. 433	1,17618	1.17623	.01015	5436
43 058	POSITION	.245	- 345	11524	+11538		5436
44 D TD C	NETERS	1.100 .245 7510442.668 73.210	501274.304	73.19680	73-14680	-01295	5436
45 8 TO D	DEGREES	-117.664	-117.952	-117.84282	117.89282	.02789	5436
47 LAT			34.829		34.86008	-01440	5436
48 TRK ANG	QEGREES	240.331	236.367	237.86041	237.06162		
49 HDG	RADIANS	4,148		4 14165	4.14170	-01960	5436
50 YE	M/SEC	09Z	96.318.		69.82182		
51 VN 52 ALTITUDE	<u>₩/</u> \$EC	<u> </u>	<u></u>	<u></u>			5436
53 TEMPC	DEGREES C	-,092 .0 <u>6</u> 3 1,474 15,501 21,709 22,473	B 283.	12.51436	12.71989	2.27754	
54 EH WND SPD	KNOTS	21.709	2,913	12,20000	12+89115		5436
55 NS WND_SPD	KNOTS	22.473		11.85215_		3.05078	
56 HIND SPEED 57 HIND DIREC	DEGREES	25.701	157,065	225.22768	225.63187	13.49727	5536
57 HIND DIREC 58 WIND DIRE	DEGREES	252,836	7.065	45.22788	47.19856	13.49727	
59 NIND_DIR3_	DEGREES	252.838	187.065	225.22768_	225.63187_	13.49727	
60 WIND DIR4	DEGREES	252.638	187.065	225.22788	225.63187	13.49727	
61 AIRSPEED R	<u>M/SEC</u>	127.753	7.500	81,21330	91.59170	42.74518	5436
62 ATRSPEED C	M/SEC	72.838 252.638 252.638 1.30.060 127.753 1.30.357 778.557 778.394	7.647		91.59170 89.74789 91.74510 304.21726 305.09925 2.11541 1.68975 1.73837	42,86170	5436
64 DELTA ALT	METERS	778.398	-22.915	104.47034	304.21726	238.03268	5436
65 INRILDISP	/ L ! ! ! ! ! ! ! ! ! . !	778.398_	-14.794	189.76276_	_ 305.09925		
66 NG RIGHT	M/SEC	5_128		00000	<u>211291</u> 1.68075		5436
57 UG_CENTER_	M/SEC M/SEC	4.417	-5,742			1.73853	5430
69 VG RIGHT	M/SEC	6,740	-5,126	.11583	2.11639	2.11341	5436
70 VG CENTER	M/SEC	6.007	-4.856		2.05717	2,05371	5436
71 VG LEFT	M/SEC	5.578		-1.712248	2.67291	7.30686	5436
72 NG RIGHT	M/SEC	2,510	-7.344	-1.81065	2.45271	2.33245	5436
73 WG LEFT	M/SEC	2.007	-6,705	-1.51645	2.99.012	2.57700	5436
/ •							

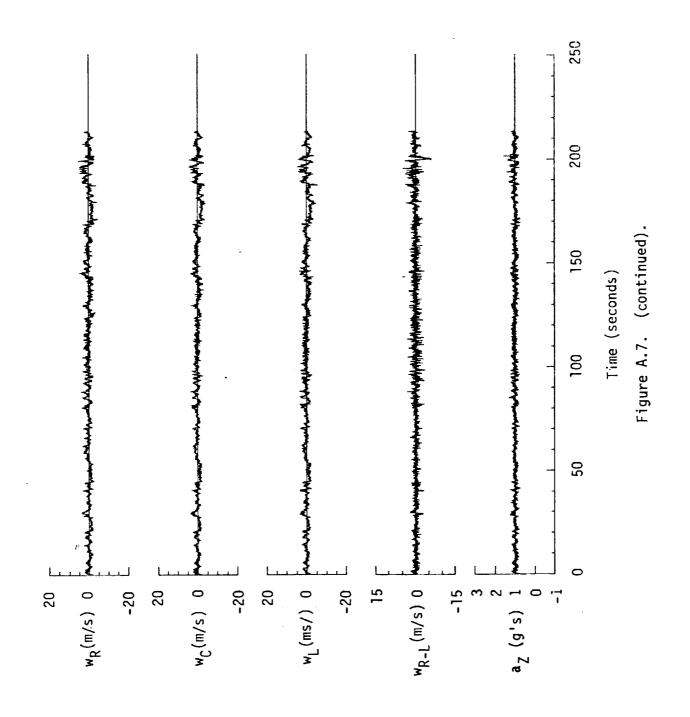



31, Run 2


١

Ŧ

÷



è

Figure A.7. (continued).

1.	Mean Ai	Mean Airspeed (m/s):			Integral Length Scale (m):			
		C	R		L _{uR}	L _{vR}	L _{wR}	
	87.82	85.79	87.51		325.9	250.1	79.1	
2.	Standar	d Doviat	ion of		L _{uRL}	L _{vRL}		
	Standard Deviation of Gust Velocities (m/s):			322.4	251.8	89.3		
	σuR	σvR	∽wR					

TABLE A.3. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 2.

5. Correlation Coefficient of Gust Velocities:

<u>^{uRuL}/_{ouR}o_{uL}</u>	<u>ν_Rν</u> [/σ _{νR} σ _{νL}	<u>wRw</u> L/σ _{wR} σ _{wL}
0.80	0.81	. 0.82
^{URVR} / _{^oUR} ^o VR	<u>vrwr</u> /g _{vr} g _{wr}	<u>wRuR</u> /o _{wR} o _{uR}
0.00	-0.05	0.11
<u>uRvL</u> /σ _{UR} σ _{vL}	<u>vrw</u> / _{σvr} σ _{wL}	<u>wRuL</u> /o _{wR} ouL
-0.02	-0.03	0.10

3.	Standard	Deviation o	f Gust
	Velocity	Differences	(m/s):

σ∆uRL	σΔvRL	σΔwRL		
0.94	0.77	0.87		

2.03

σvC

2.01

σvL

2.09

1.16

σwC

1.08

σwL

1.17

3.23

σuC

3.20

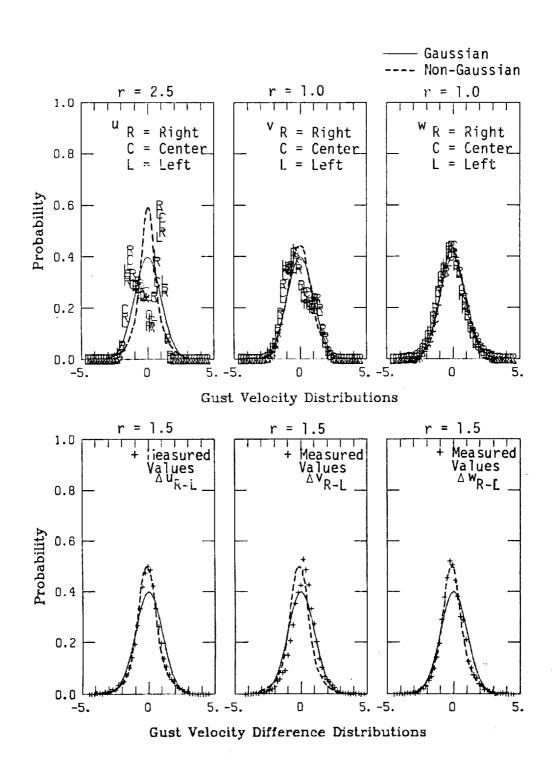
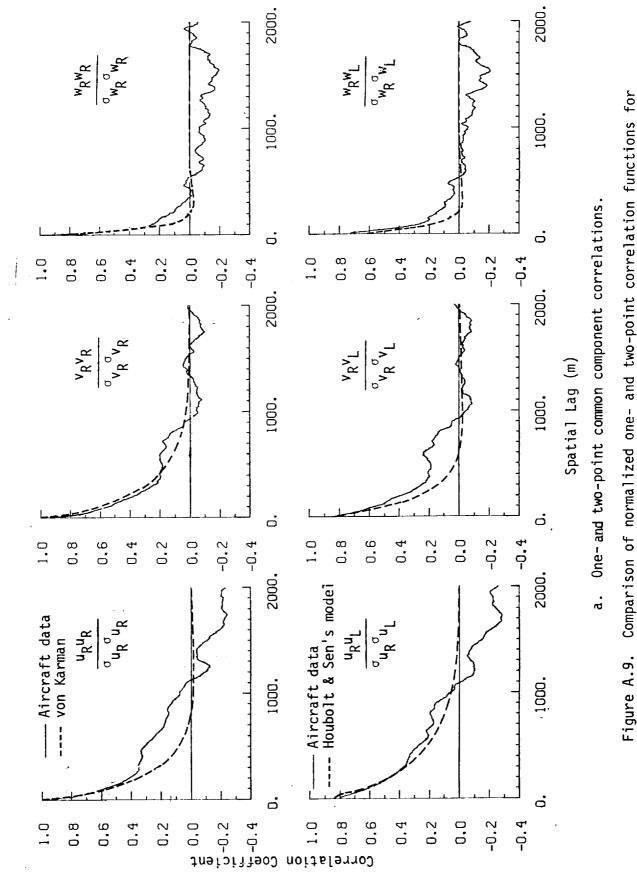
σuL

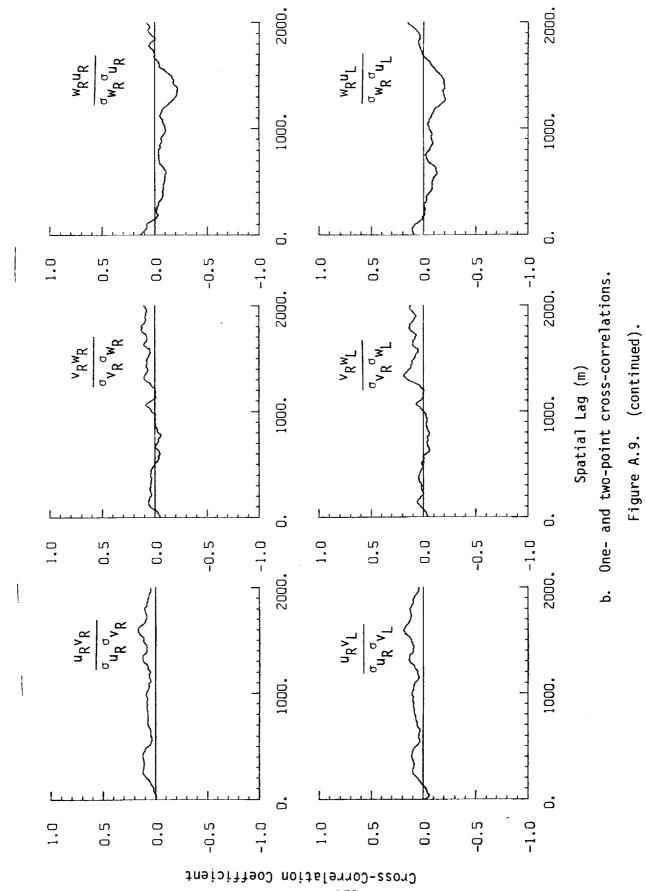
3.20

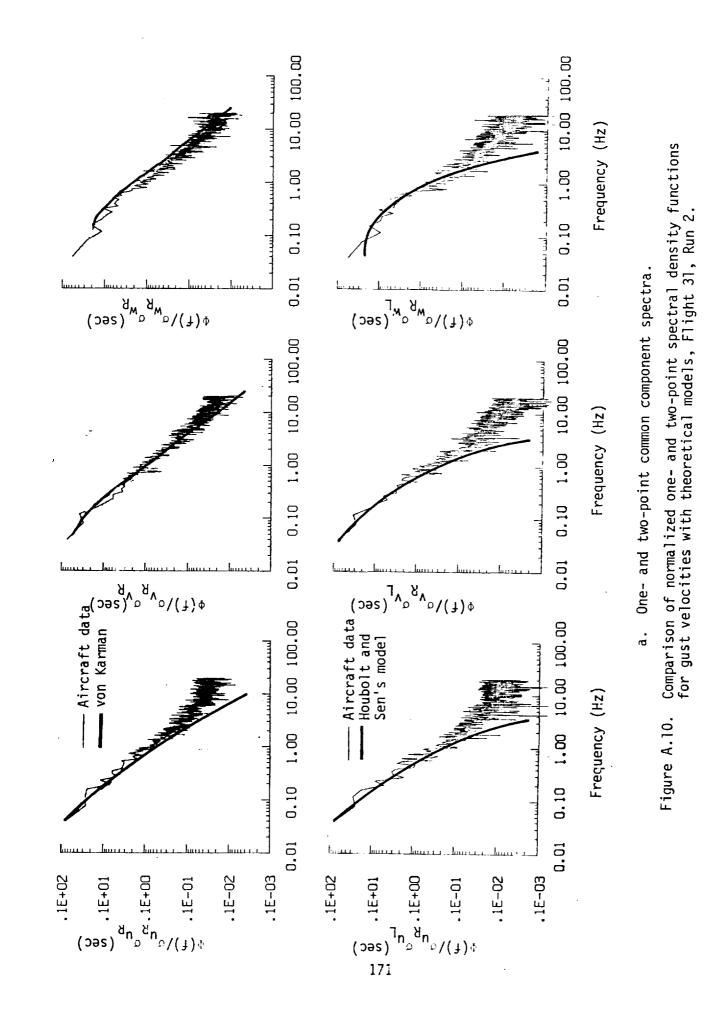
-

167

-


Figure A.8. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 2 (r = degree of non-Gaussian).


Comparison of normalized one- and two-point correlation functions for gust velocities with theoretical models, Flight 31, Run 2.

169

Ξ

.

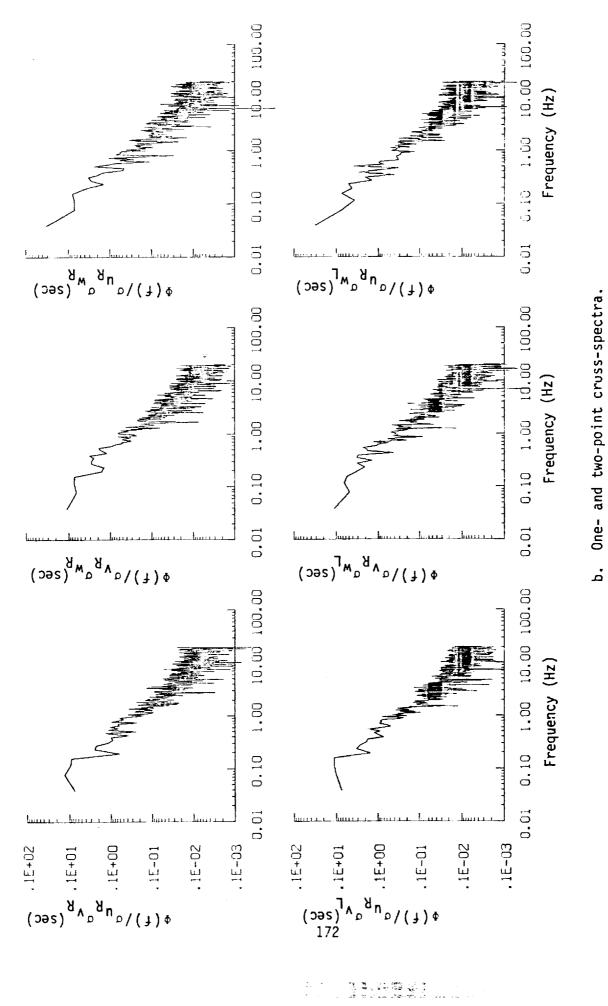
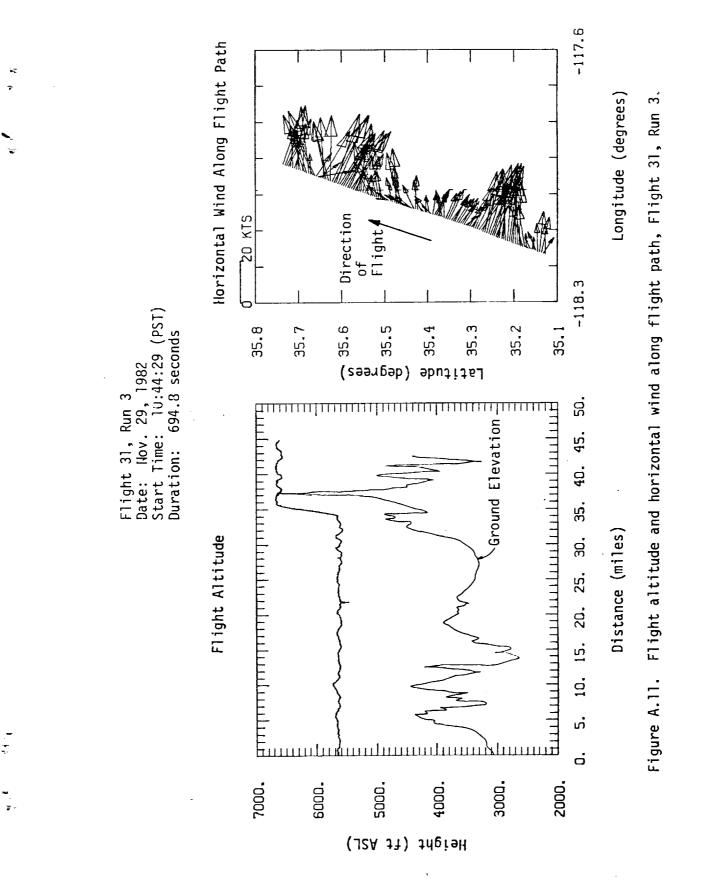
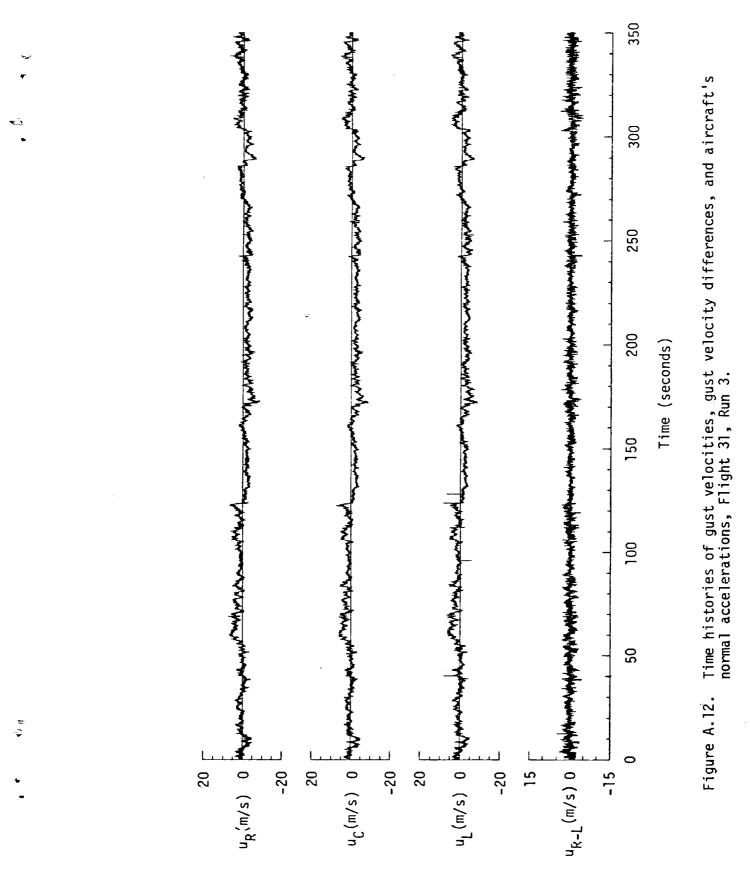


Figure A.10. (continued).


ORIGINAL PAGE IS

OF POOR QUALITY

TABLE A. 4. List of All Parameters Measured and Their Range of Values, Flight 31, Run 2.


HANNEL	UNITS	HIGH 38569,480 227 1,346 057 205 199 311,567 3551 324,559 4,020 2,139 1,994 2255 118 0070 84,053 59,564 1,556 1556 1556 1556 1556 112 062 4,070 84,053 59,564 15,135 724,579 702 13,338 15,135 724,579 13,338 15,135 724,579 038 15,135 724,579 13,338 15,135 724,579 13,338 15,135 724,579 13,338 15,135 724,579 13,338 15,135 724,579 13,338 15,135 724,579 13,338 15,135 724,579 13,338 15,135 724,579 13,338 15,492 5,492 5,492 5,492 1,149 1,158 3,158 1,158 3,158 1,158	LOW	HEAN	RMS	STD	POINTS
11/1E	SECUNDS			.38462+57960	10402.02913.	D1+/2920 07840	. 855 ASI
ACCUN CG	GUNITS	1.346		1.00315	1.00549	.06859	
THETA DOT_	RAU/SEC	.057	300	.00303	.01359	013 64	
THETA	RAD		.017	09551			85
PH1	RAD						
PSI 1	. RAD			307.23980	.307.25309.	Z+85/96	85
DEL_PSI_L_ nel 3	UEG	3,001			109.01289	2.777+0	_ 02 H5
DE1 851 2	DEG	4,020	-7.585	17968	2.82493	7.81938	85
ACCI N LT	GUNITS	2.139		1.01329	1.02488		
ACCL N RT	G UNITS	1,994	.105	1.01543	1.02855	.16375	85
ACCL X CC	C UNITS	.255	057	.08842	. 10989	.06526	. 85
ACCL Y CG	_ G UNITS	.118	274	00606	.02688	.02619	85
ALPHA CTR	<u></u>			+01408			12
BETA CTR	RAU		080		,02184 		. 87
		59.566	38.178	59.27732	59.27793		
ACCI Z THS	GUNITS	1,556	730	1.01160	1.01433	.07439	65
ALPHA RT	RAD	+112	042	,03470	.03832	.01626	85
BETA RT	RAU	.062	-,057			.01977	65
ALPHA LT	RAD	,132	012	.05993	.06183		. 85
BETA LT	RAD	,075	• 0/5				85
PSI DOT	RAU/SEC			00744			
IEMP TUT	_ DEG C			12112241	- 12+21103	1+04534 .	. 85
00 L1			. 47.8				
OC RT		.702	.457	.62016		.04106	85
PS	PSIA	13.538	12.507	12.44476	12.99661	.21950	85
TENP JRT	VULTS	15 153	-41.227	1.00530		l.63734	
HYGROM	DEG C	5,492		3.67547	3.83721_	1,10070	. 85
9C2 LT	PSID	03B			.01318		. 85
OC2_CTR	P SID	<u>158</u>			12401_		
OCZ RT				-1.0//42	3.03044		. 67
DAL			-1.416	~2.84371	2.47141		
DELEY	DEG	3.838	-4.120	-2.95363	2.97594	. 36371	85
DSTAB	DEC	.142	257	.12607	.12749	.01897	85
DRUD	DEG	6.952	-2.690	-2.24048	2,26445_	32518	
DTHRR	PCT_HAX	59.561	37.110	44.56779	44.56930_		85
DTHRL	PCT_HAX	59.561_		44.88212	44.08200_		
			- 170			.00325	
	METERS	7495236.826	7486780.454	********	********	2394.01216	85
8 TO D	DEGREES	73,045	72,408	72.97401	72.97482	03913	
LONG	DEGREES	-118.066	-115.204	-118.13623	118.13623	.03929	. 85
LAT	DEGREES	35.058	34.949	35,00627	35,00628	.03163	85
TPK ANG	DEGREES	315.901	309,309	313.81002	313.01420	1.62051	
HDG	RADIANS	5.465.		5.38919			
YE	M/SEC		63.700			3.09695	
VN	M/SEC	67.297	48.391			<u>40070</u>	<u> </u>
ALTITUDE	K1			11 446 17	++V3576-	1 60740	
EU UND COD		31.457		15-846/7	17,09024		92 "
NS WND SPD	KNUTS	16.271	-4.922	5.46742	6,62977	3.72072	
WIND SPEED	KNOTS	32.250	5.069	17.51617	18.33112	5.40529	85
WIND DIREC	DEGREES	207.974	200.321	248.07574	248.67848	17.30453	<u> </u>
WIND DIRZ	DEGREES	107.974	28.321	68,07575	70,24044	17.30454	
WIND DLR3_	DEGREES	287.974	ZOH , 323	240.07575	248.67858_	17_30454	
WIND DIR4	DEGREES	287.474	208.321	248.07575	248.67848	17.30454	
AIRSPEED R	M/SEC	<u> </u>	78,052	<u>0/101776</u>	<u> </u>	2,70437	
AIRSPELU C			77.714	87,82003	H7 . 87441		#2 #5
			-438.875	-222.37870	262. 1931 5	139.28442	
DELTA ALT	METERS	40.800		-224.03475	263.75437	139.20152	
DELTA ALT	METERS		-438,569				85
DELTA ALT INRTL DISP	METERS METERS M/SEC	40.800 90.043 6.320	-438,569 -7,157	,00000	3.23504	3.23523	
ATRSPEED L DELTA ALT INRTL DISP UG RIGHT UG CENTER	METERS METERS M/SEC M/SEC	40.000 90.043 6.320	-438,569 -7.157 -7.558	.00000	3,23504	3,23523	
ATRSPEED L DELTA ALT INRTL DISP UG RIGHT UG CENTER UG LEFT	METERS METERS M/SEC M/SEC M/SEC	40.800 90.043 6.320 6.010 5.846	-438,569 -7,157 -7,558 -7,891	.00000 .00000 .00000	3,23504	3,23523 3,20713 3,20466	
ATRSPEED L DELTA ALT INRTL DISP UG RIGHT UG CENTER UG LEFT VG RIGHT	METERS METERS M/SEC M/SEC M/SEC M/SEC	40.800 90.043 6.320 6.010 5.846 6.063	-438,569 -7,157 -7,558 -7,891 -6,975	.00000 .00000 .00000 .07647	3.23504 3.20694 3.20447 2.03826	3.23523 3.20713 3.20466 2.03694	
ATRSPEED L DELTA ALT INRTL DISP UG RIGHT UG CENTER UG LEFT VG RIGHT LVG CENTER	METERS METERS M/SEC M/SEC M/SEC M/SEC	90.600 90.043 6.320 6.010 5.846 6.663 9.016	-438,569 -7,157 -7,558 -7,851 -6,975 -5,251	, UDQUQ , OQQUQ .00000 -, 07647 -, 07645	3,23504 3,20694 3,20694 2,03826 2,01446 2,01446 2,01446	3,23523 3,20713 3,20466 2,03694 2,01333 2,09249	85 85 85
ATRYPEED L DELTA ALT INRTL DISP UG RIGHT UG CENTER UG LEFT VG RIGHT VG CENTER VG CENTER VG CENTER	METERS METERS M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC	40,800 90,043 6,320 6,320 6,040 6,063 6,063 6,016 6,074 6,044	-438,563 -7,157 -7,558 -7,891 -6,974 -5,251 -5,567 -5,567	.00000 .00000 .00000 .07647 	3,23504 3,20694 3,20694 2,01826 2,01846 2,09369 1,16498	3,23523 3,20713 3,20466 2,03694 2,01333 2,09269 1,16310	85 85 85 85 85 85
ATRYFEED L DELTA ALT INRTL DISP UG RIGHT UG CENTER UG LEFT VG RIGHT VG RIGHT UG CENTER VG RIGHT UG RIGHT	METERS METERS M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC	90.600 90.093 90.093 6.320 6.010 6.663 6.016 6.679 	-438,563 -7,563 -7,594 -7,594 -6,975 -5,251 -5,542 -4,561 -3,497	.00000 .00000 07647 07647 076850 .06850 .067158	3,23504 3,20694 3,20447 2,03826 2,01446 2,09369 1,16448	3,23523 3,20713 3,20466 2,03694 2,01333 2,00269 1,16310 1,08672	85 85 85 85 85 85 85 85
AIRSPEED L DELTA ALT INRTL DISP UG RIGHT UG CENTER UG LEFT VG RIGHT VG CENTER VG RIGHT NG RIGHT MG RIGHT MG CENTER	METERS METERS M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC	$\begin{array}{c} 31 + 923 \\ 16 + 271 \\ 32 + 250 \\ 207 + 974 \\ 107 + 974 \\ 287 + 974 \\ 287 + 974 \\ 287 + 974 \\ 287 + 974 \\ 31 + 376 \\ 91 + 900 \\ 94 + 511 \\ 90 + 500 \\ 94 + 511 \\ 90 + 500 \\ 94 + 511 \\ 90 + 500 \\ 94 + 511 \\ 90 + 500 \\ 94 + 511 \\ 90 + 500 \\ 64 + 320 \\ 64 + 320 \\ 64 + 679 \\ 64 + 679 \\ 64 + 941 \\ 44 + 405 \\ 64 + 705 \\ 84 + 705 $	-438,563 -7,554 -7,554 -7,554 -6,974 -5,251 -5,542 -4,561 -3,947 -5,577		3.23504 3.20694 3.20694 2.03826 2.01446 2.09369 1.16498 1.08901 1.12453	3,23523 3,20713 3,20466 2,03694 2,01333 2,00269 1,16310 1,08672 1,17258	85

. . .

ense ng i

... च्याः कः भाषाः न्येक्लर्ज्ञ्य

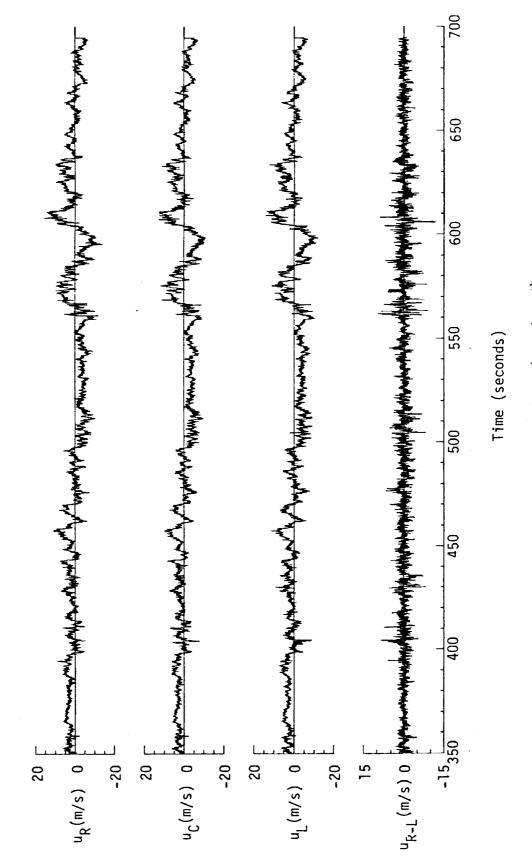
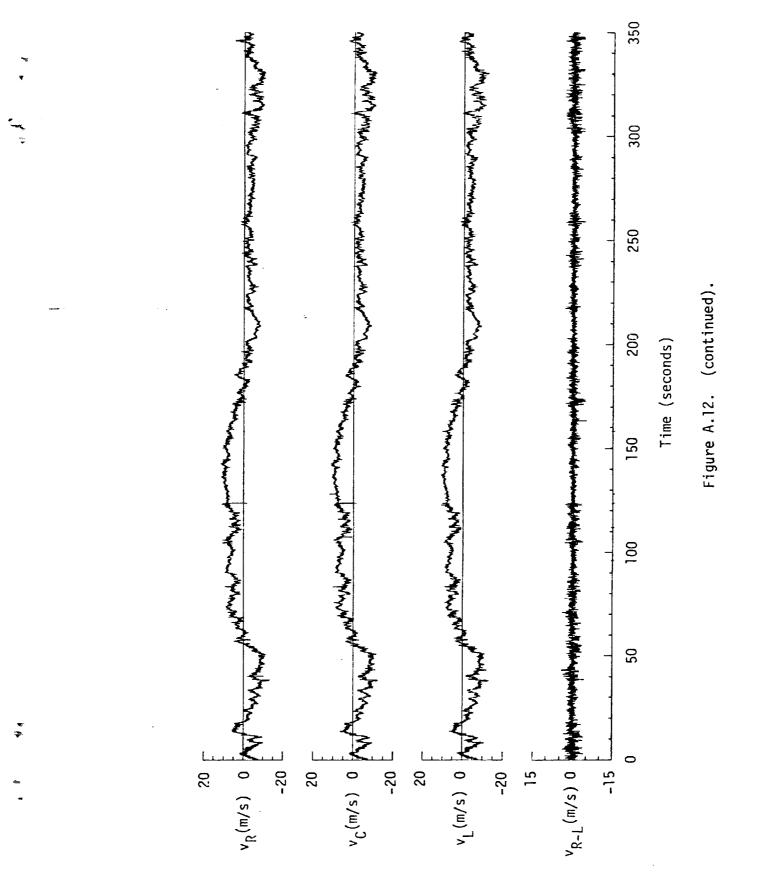
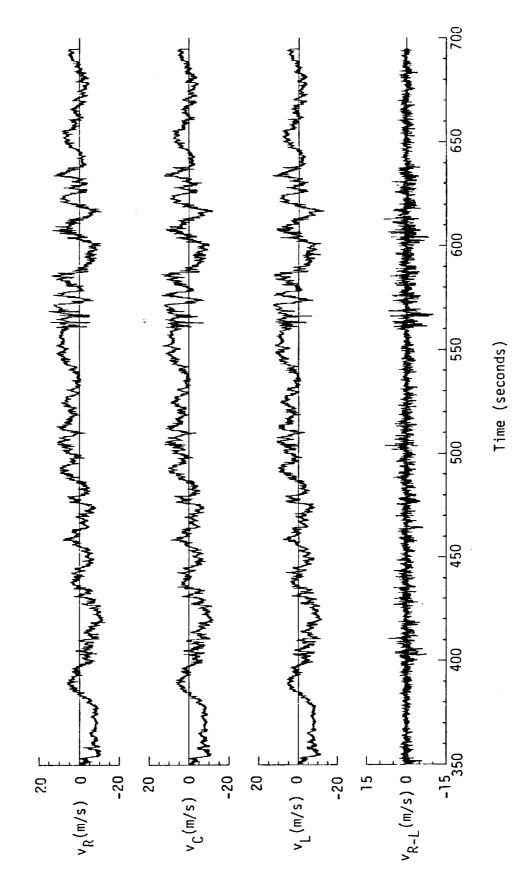
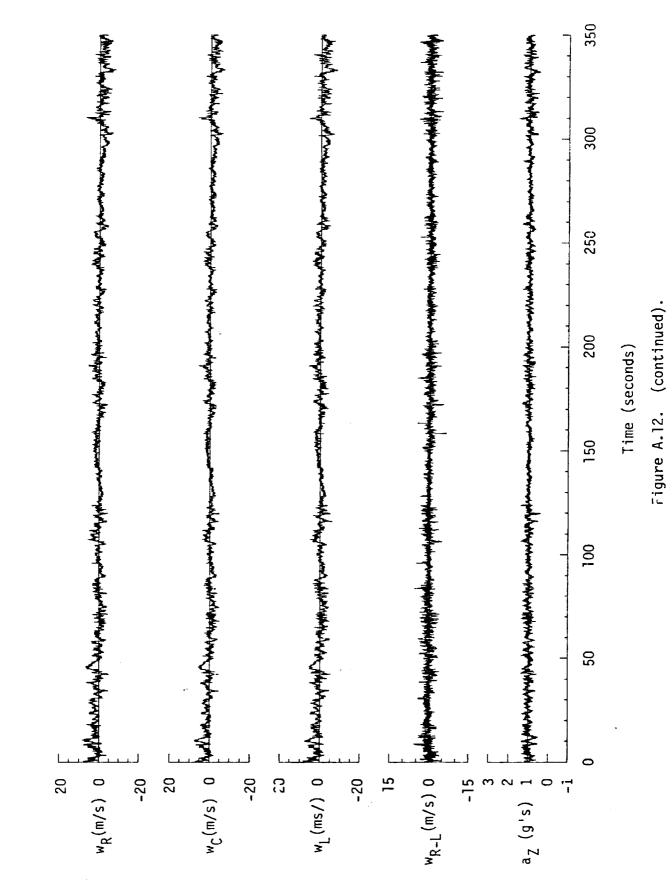





Figure A.12. (continued).

	the provide and the provided of the second of the second of the provide second of the		-	- when we have a start of the s										0 400 450 500 550 600 650 700	Time (seconds)	Figure A.12. (continued).
20	w _R (m/s) O	-20	20	w _C (m/s) 0	-20	20	w _L (ms/) 0	-20	15	w _{R-L} (m/s)0	-15	n a	a _z (g's) 1 0			

÷

TABLE A.5.	Average Turbulence Parameters, Integral Length Scales, and	
	Correlation Coefficients of Gust Velocities, Flight 31, Run 3	

- 1. Mean Airspeed (m/s): $\frac{\overline{V}_L}{104.21} \frac{\overline{V}_C}{102.52} \frac{\overline{V}_R}{104.60}$
- Standard Deviation of Gust Velocities (m/s):

uR	_ ^σ vR_	_ ^σ wR
3.17	5.25	2.36
σuC	σvC	wC
3.15	5.29	2.18
°uL	σvL	σwL
3.19	5.31	2.31

3. Standard Deviation of Gust Velocity Differences (m/s):

σ∆uRL	σΔvRL	σ∆wRL	
1.29	1.23	1.37	

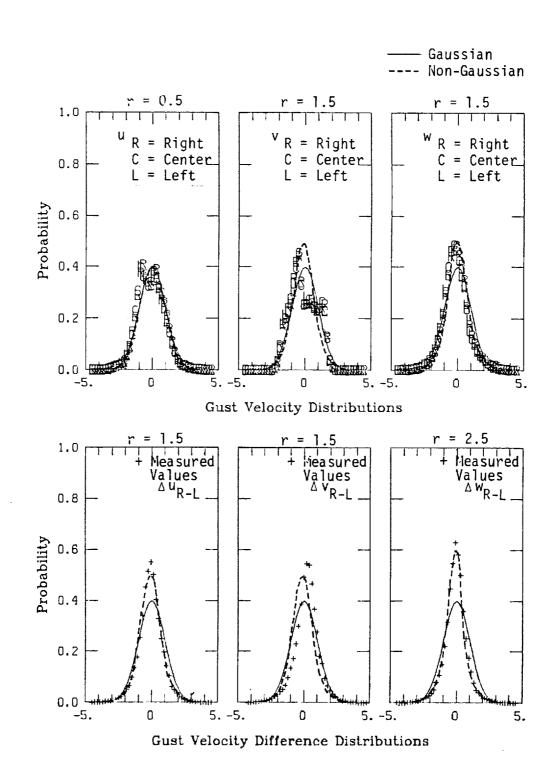
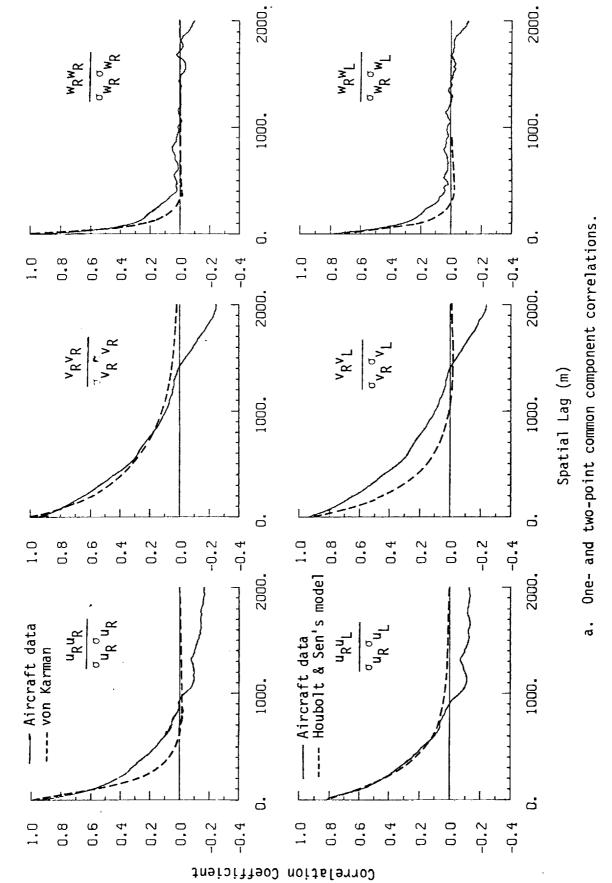
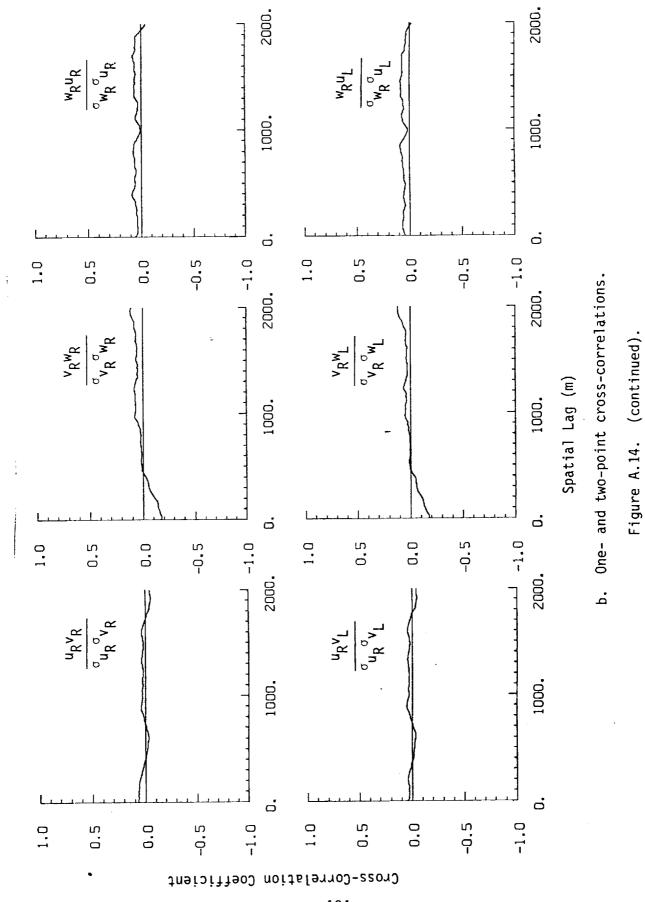
4.	Integral	Length	Scale (m):		
	L _{uR}	L _{vR}	L _{wR}		
	234.0	425.6	116.9		
	L _{uRL}	Lvrl	LwRL		
	238.4	422.8	115.3		

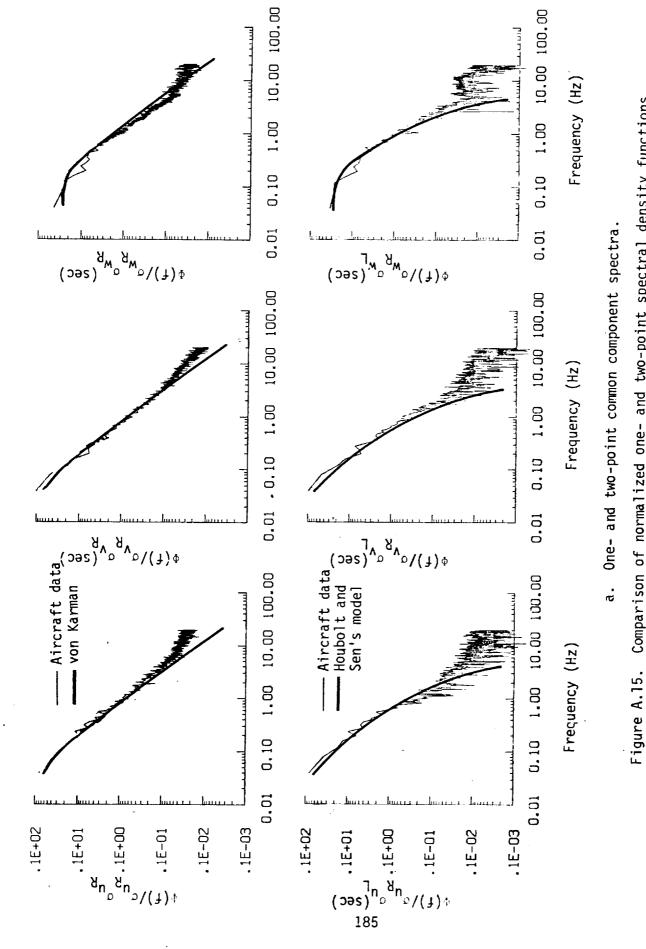
5. Correlation Coefficient of Gust Velocities:

<u>uRu</u> L/σ _{UR} σ _{UL}	<u>νϝν</u> μ/σ _{νR} σ _{νL}	<u>WRWL</u> /σ _{WR} σ _{WL}
0.80	0.91	0.75
<u>uRvR</u> /σ _{UR} σ _{VR}	<u>vRWR</u> /o _{VR} o _{WR}	<u>wRuR</u> /o _{wR} ouR
0.09	-0.19	0.06
<u>^uR^vL</u> /σ _{uR} σ _{vL}	<u>v_RwL</u> /σ _{VR} σ _{WL}	<u>wRu</u> L/ _{owR} ouL
0.04	-0.19	0.05

C - 3

181


Figure A.13. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 3 (r = degree of non-Gaussian).

Comparison of normalized one- and two-point correlation functions for gust velocities with theoretical models, Flight 31, Run 3. Figure A.14.

183

•

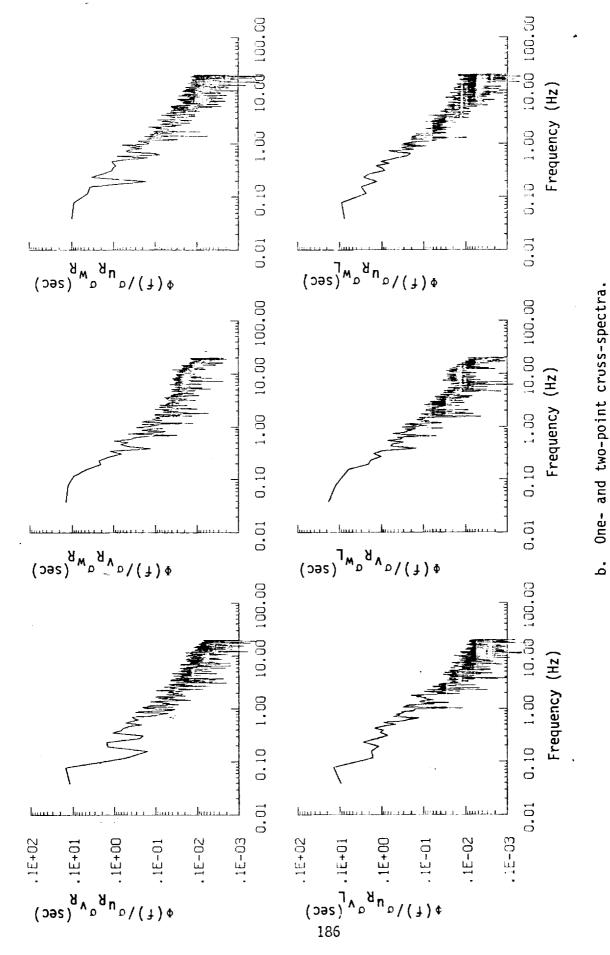


Figure A.15. (continued).

ORIGINAL PAGE IS OF POOR QUALITY

TABLE A. 6. List of All Parameters Measured and Their Range of Values, Flight 31, Run 3.

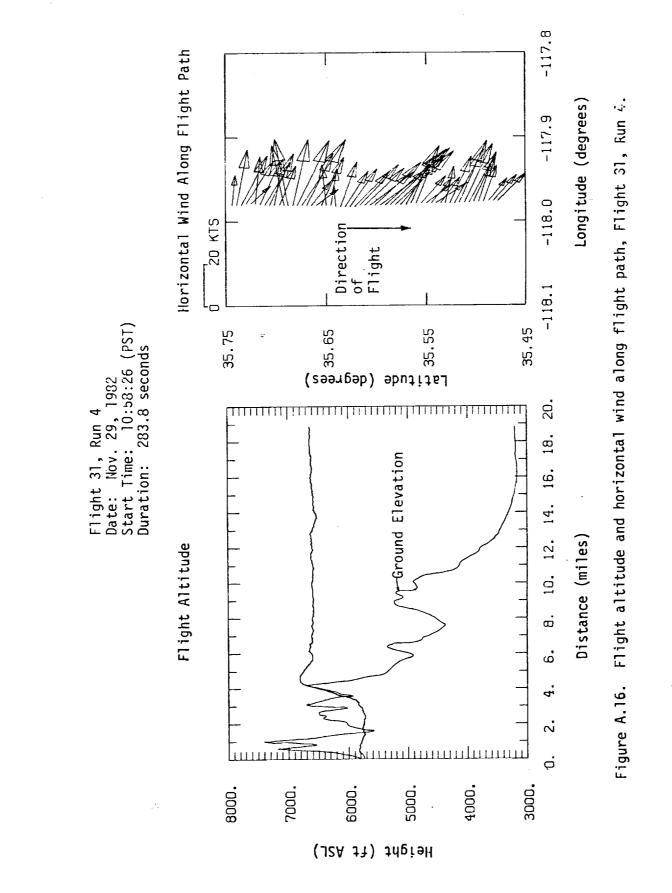
CHARNEL	UNITS	NIGH	LOW	MEAN	RMS	STD	POINTS
1 TIME	5EC0105	39106.672	30600.057 3	10.0.1.6.2920 4	<u>6537+74210</u>	<u>- 47.59023</u>	13522
2 PHI DOT	1.1.3/576	.147	123	(10234	.03028 1.00304	.03019	13522
3 ACCL N CG	6 01:175	1.435		- 97534 - 03344		.01491	13522
S THETA DUT	RAU		. 36 F	. 00 31 7	.0:523	.01627	13522
6 PHI	RAU	• £ 11 \$	057	-00450	03189	,03151	13522
7 PST 1	R.A.U	158.157	7.742	12.75517	13.62139	5.32219	13522
B DFL PS1 1	DEC	13.244	-15.051 239.515	371.41518	371.43505	4.12502	13522
9 PS1 2 10 DEL PS1 2	<u>NAU</u> DéG	410.27*	-12-34	-7.08116	7. 10434	1.70347	1352.
11 ACCL H LT	G UPITS	1.977	-2.266	1.01165	1.03601	.22471	13255
12 ACCL N PT	2 11110 2	3,935		1.011.4	1.04075	.02700	13522
13ACCL × CC	6 04115	.205		05973		02055	13522
147CC Y CC	5 0'1115	. 17 1			02070	.01351	13522
16 HETA CTF		120-	104	00170	.02353	.02352	13522
17 TEMP 1	DECF	81.714	-34.55/	70.52695	76.63347	3.46752	13522
18 TEMP P	DIG F		650	60.00250	1.00408	2.05203	13522
19 ACCL 2 INS	G ONITS EAU	2.599		00157	01544	.01538	13522
21 TIFTA RT	EXU			;eonut		.02105	13522
22 ALPHA LT	KAU	.188	10.2	.021.1	.03022	.01496	13522
23 IFTA UT	EAU		1.3	.04275	.02205	.02364	13522
24 751 001	EAU7SEC	14.326	604	~ 11.74237	11.80331	T.19794	
25 TEAP TOT				.815-8	046184	.04801	13522
27UC CTR			.001	.17934	.73070	.04616	15525
274C CTR 284C RT	9310	. 452	• 6u5	11.93477	.80747 11.43478	.04753	13522
29 P S	PSIA	11.vol 33.197	-169.190		6+27501	- 3.17141_	
SUTEMP INT	ULTS				4.45476	3.30541	13522
32 902 11			130	03416	.03477	.03650	13522
33 ut 2 CTK	PSTD	.1/1		+14983	10159	02246 01544	13522
34 GC2 RT	P 510		1 30	-6,33655	12769 5.37121	.66373	13522
35 DAR 36 DAL		9.001	-6.337		5.2.701	71675	13522
37 DELEV	DEG	2.146	-18.430	-1.39958	1.50754	.56025	13522
38 DSTAR	010	. 192	165	-,05020	.04394	.03054 .72359	13522
39 01.00	566	24.416	-18.300 		47.82411		13522
40 DTHPR 41 DTHRL	PCT MAX	67.501	21. 049	47.34052	47. 35410	1.13408	13522
42 DFLP	- POST I (UT	1.995	504	1.100.47	1.10726	.04164	13522
43 DSB			517	09434	.0.1626	01918	13522
44 D TO 6	ALTERS	7572401.0057	442210.001. 4	72.84061	72.89001	.00411	13522
45 B TU D	DEGREES	-110.007	-110.106	-110-10429	110.10429	.03642	13522
46 LONG	DEGREES	37.419	15.125	35.21307	35.2/318	.08476	13524
48 TER ANG	Druki IS	(1 + H)		18.747.10	La, 160 30	2.06153	13522
49 HDG	EADTANS	• 460		.23466	24 <u>201</u> 	3,82850	
50 VF	MISEC	41.095	24.317	32.63017	46,71767	2.61346	13522
51 VA	H7SEC	1,751	1.704_	1.72164	1.72106	.00836	13522
53 TEMPE	DESETES C	6.658	4.174	1.64051	6.7-617	1.14249	13522
54 EL WHID SP	D. K160T5	22.635	-1/.1.4	-2.99624	5.56724	10.3.021	13522
55 NS KND SP	D KHUTS	10.843	-19.524	17.82851	20.48723	-10.04349-	13522
56 HIND SPEE		157.556	499	274.7401.6	717.96924	30.88118	13522
58 HIND DIRZ	DICREES	177.554	-179.501	GA. 24871	101.03111	30.88120	13522
SOWIND DIP3	DEGREES	ふつてい かかりに	-1576.557	276.24971	277. +6429		13522
60 HIND DIF4	R FISTC	510.776	45.146	102.00778	102.92912	2.91646	13522
61 ATRSPELO	C E7SEC		505	767.2655	101.74664	2.88388	T3522
63 ATRSPEED	L P/SEC	113.145		103+20648	103.32823	2,93690	13522
64 TIPETA ALT	RETERS	53,823		45.39428	53.01185	27.36013	13522
65 INRTL UIS	P PETERS	107.477	-3.544	- 4 5 1 2 4	2.32914	2.28743	13522
66 UG PTGILT		1.261	-1.434	446.68	2.32914	2.20434	13522
AN UC LEFT	MISEC	6.381	-7.375	4+076	2.34676	2.30354	
ASTE PICIT	MISTC	11.300	-20.32	31020	5.35914	5.35000	13522
70 VC CENTER	K75EC M75FC	19.627	-1-21.509		5.41140	5.39872	13522
71 VG LEFT	M/SFC M/SFC		-35.377	.12712	1.00715	1.86284	13522
STAR CENTER	342 (H	7.373	-35.746	05366	1.69161	1.64041	
HANG LEFT	E/SEL	17.432	- 34.047	.04533	1,030,13		

ORIGINAL PAGE IS

OF POOR QUALITY

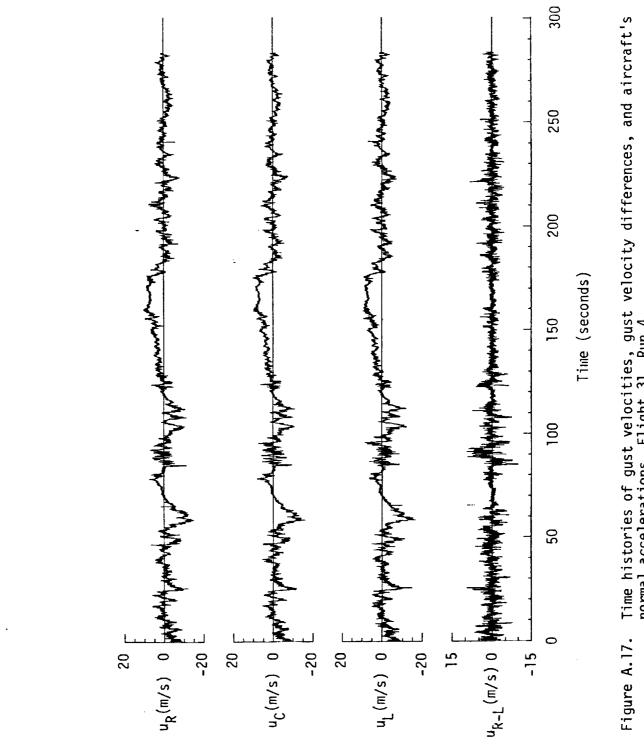
(TABLE A. 6. continued)

CHANNEL	UNITS	NIGH	LOW	MEAN	RMS	STD	POINTS
<u>1146</u>	SECONDS		34006+647	34165.07200	34135+29735	_102.99560	15271 14271
2 PH1 D0T	C UNITS		214	00265	1.01331	.04774	14271
ACCE I CG	RAU/SEC	.087	140	.00294	.01861	.01037	14271
5 THETA	NAD	.216	012	.00547	.07620	.03814	14631
6 PH1	RAD	- 167	-,161	.00424	.04772	.04753	
7 <u>PST 1</u>	RAU	74.206	4.77e	12.25660	11.61774	3.74374	
8 DEL PSI 1	RAU	-2.599 379.765	344.407	371.29741	371.01766	3.91779	14271
9 PSI 2 10DEL PSI 2	DEC	-2.406	-14.911	-7.40715	7.7.945	2.27701	142.71
11ACCL H LT	G UNITS	3.063	943	1.012-4	1.07117	.34839	14271
12ACCL N PT	G UNITS	3,160	-1.486	1.01124	.07993	.03544	
IJACCL X CG	"a"uhits"""	.104	-,250	• 0h 31 4 • 002 a 8	.02354	.0/336	14271
15 ALPHA CTH	RAD	.074	- 1 4 7		.02839	.01472	14271
IERETA CTR	KAD	.105	171	.00138	.03421	.03419	14271
17TEMP I		<u> </u>	31.094	2.37248	87.37535	.62386	<u> </u>
18TEMP P	DEG F G UNITS	<u> </u>	071	0.71895 1.003.9	1.01892	.17762	14271
20 ALPHA RT	RAD						14271
21 BETA RT	RAD	.104	150 156	- 01141	7 خ 2 د 0 .	.03061	14271
22 ALPHA LT	RAD		106	.01977	.02413_	.02167	14271
23BFTA LT 24PS1 DOT	RAD RAD/SEC	.165	-,374		.02754	.02748	
25TENP TUT	DEG C	19.328	9.133	11.67404	11.7.1217	1.16651	14221
260C LT 270C CTR 280C RT	PSID	1.025	.603	14157	.84507	.06233	14271
27QC_CTR	PS10 PS10			. 81005 .83740	.81225	.06017	14271
280 <u>C RT</u>	PSIA	11.969	573	11.74802	11,74992	.21547	19271
JOTEMP INT	VOLTS	6.075	-44.221	2403231	5,79809_	1.36342	
31 HYGROM	DEGC	176	-11.543	-4-61734	4.94175	1.70768	14271
320C7 LT	PSID	.061		.05256	.05782	.00507	14271
330C2 CTR 340C2 RT	P_10	.164	09k		.16074_	00570	14271
35DAR	P510 ()EG	.035	-9.356		5.43202	.57712	14271
36 DAL	DEG	-6.337	-4.310	-7.24662	7,26303	.45740	14271
37 DELEV	DEG	. 436	-6.148	.16314	.47460	.44569	14271
38 D STAB	DEG DEG	. 364	164	2.112.74	2.21015	66847	14271
39 DRUD 40 DTHRR	PCT MAX	53.320	30.209	51,41143	51,42439	1,13162	14271
41 DTHPL	PCT MAX	66,951	42.710	50.73657	50.74h10	1.08203	14271
42 OFLP	POSITION	1.307	.266		.04433	.04168	14271
43058 440 TD G	METERS	7534421,914	145		********	6396.54532	14271
458 TO D	DEGREES	12.077	17.935	72.85261	72.45201	.01048	14271
46 L 0NG	DEGREES	-117.913	-118.044	-117.98051	117.48052	.03860	14271
47 LAT	DEGREES	35.742	35.419	35.50122	35, 591 44	.09313	14271
48 TRK ANG	DEGREES	21.374	14.027	.23797	18.529.02	1.66079	16271
49 HDG 50 VE	PADTANS	+ 1:53 34+642	.097	33.42048	33.56104	3.06846	14271
A1 VN	MISEC	105.239	43.406	100.146.04	100.171.22	2.24572	14271
52 ALTITUDE	K.M	2.056	1.648	1.84901	1.05577	.14855	
53 TEMPC	DEGRETS C	8.594	3.605		6,40066	1,13042	14271
54 EN HID SPD	KNUTS	46,350	-4.720	-1.62659	7.40304	7,73415	14271
56 WIND SPEED		46.513	.925	20.51705	22.47767	9.17983	14271
57 WIND DIREC	DEGREES	354.016	.014	267.70529	270.10718	35.94241	14271
58 WIND DIP2	DEGREFS	1/4,816	-179.901	67.70533	270,10722	35.94243	
59 WIND DIR3	DEGREES	-641.176	-1261.930		895.73756	160.51931	14271
ATRSPECO P	H7SEC	118.420	08.606	105.54417	105.61017	3.73326	14271
ATRSPEED C	TTTSEC	113.784	89.314	103.84731	103.41240	3.87774	14271
63 ATRSPEED L	H7SEC	116.331	90.850 -19.041	133.10607	105.48480	-148,34738	
64 DELTATALT	METERS	311.725	-59.510	104.00174	164.15849	148.39615	14271
66 UG PICHT	K/SFC	15.707	-13.600	.41619	3.79880	3.77613	
STUG CENTER	MISEC	17.656	-10.773	.42324	3.76874	3.74503	
68 UG LEFT	M/SEC	14.130	-11./74	.24665		5.13877	14271
69 VC PICHT	H/SEC	14,901	-12.700	37467	5.14853	5.10523	14271
70 VG LEFT		13.056	-12.744	.35260	5.21467	5.20811	14271
22 WG RIGHT	M/SEL	13.623.	-11.574	19605	2.75694	2.75000	14271
THE CENTER	m/src	11.865	-11.073	01750	2.64502	2.68350	14271
74 HG LEFT	MISEC				ملا کی دون جن ہے ہے		

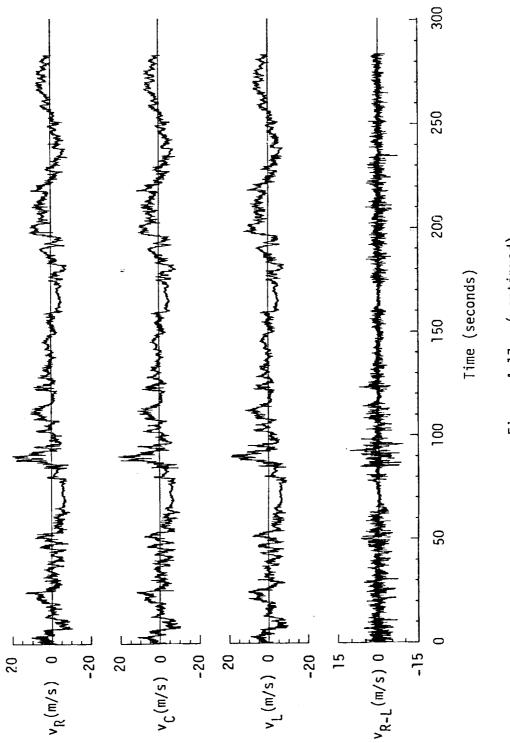

-

, J ,

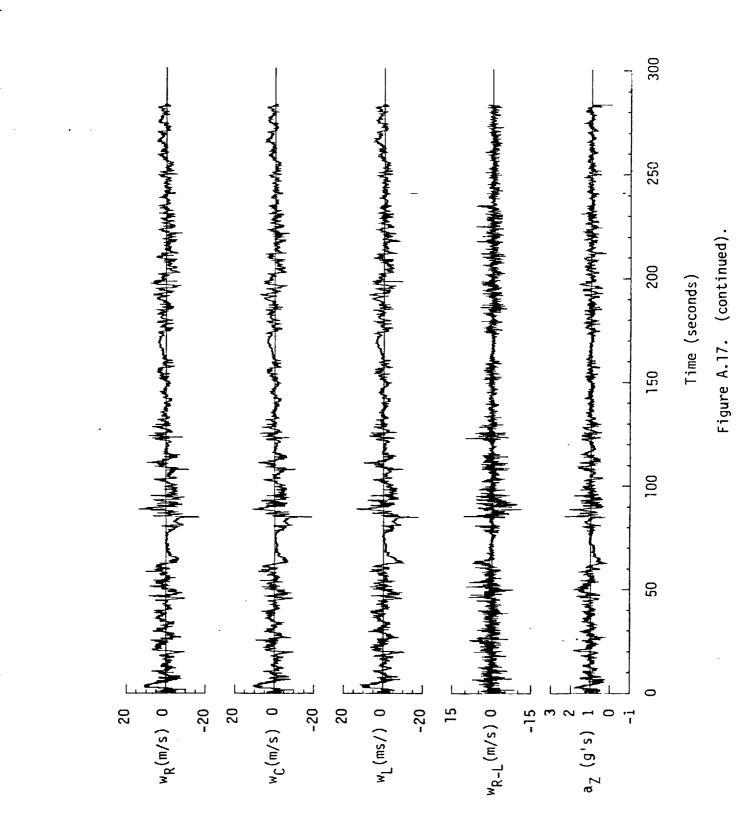
¥


Ŧ

188


一下 题 透着我在一

--



THE DO MA

TABLE A.7.	Average Turb	ulence Para	meters,	Integral L	ength Sca	les, and
	Correlation	Coefficient	s of Gus	t Velociti	es, Fligh	t 31, Run 4.

- 1. Mean Airspeed (m/s): $\frac{\overline{V}_{L}}{104.78} \frac{\overline{V}_{C}}{102.62} \frac{\overline{V}_{R}}{104.32}$
- Standard Deviation of Gust Velocities (m/s):

σuR	_ ^σ vR_	_ ^σ wR
σuC	σvC	^σ wC
σuL	σvL	σ _w L

 $\frac{L_{uR}}{419.8} \frac{L_{vR}}{350.8} \frac{L_{wR}}{66.8}$

4. Integral Length Scale (m):

419.0	330.0	00.9
L _{uRL}	L _{vRL}	LwRL
408.0	344.7	61.9

5. Correlation Coefficient of Gust Velocities:

<u>uru</u> / _{our} our	<u>vrvL</u> /σ _{vR} σ _{vL}	<u>₩R₩L</u> /σ _{₩R} σ _{₩L}
0.88	0.91	0.80
<u>urvr</u> /ơ _{uR} ơ _{vr}	<u>vrwr</u> /o _{vr} owr	<u>wRuR</u> /owRouR
-0.19	0.20	0.09
^ͺͷϗν ͺ/σ _{ͷϗ} σ _ν ͺ	VRWE/ JUR SWL	<u>wRuL</u> /σ _{wR} σuL
-0.19	0.20	0.06

σδuRL σδνRL σδωRL

3. Standard Deviation of Gust Velocity Differences (m/s):

193

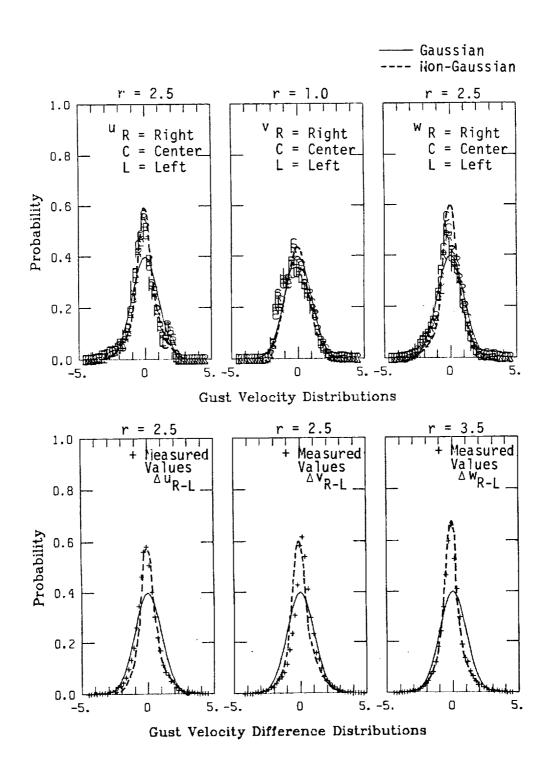
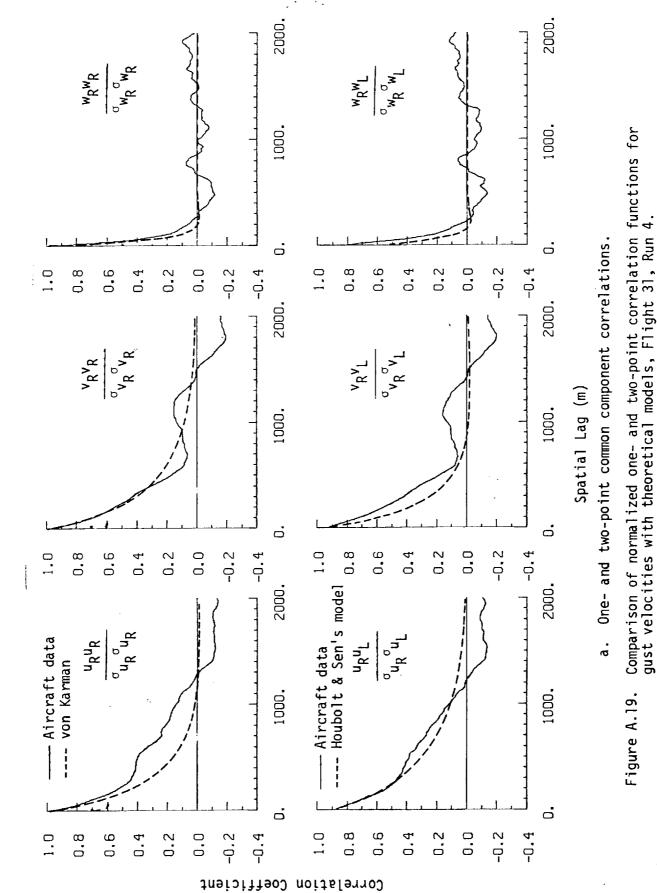
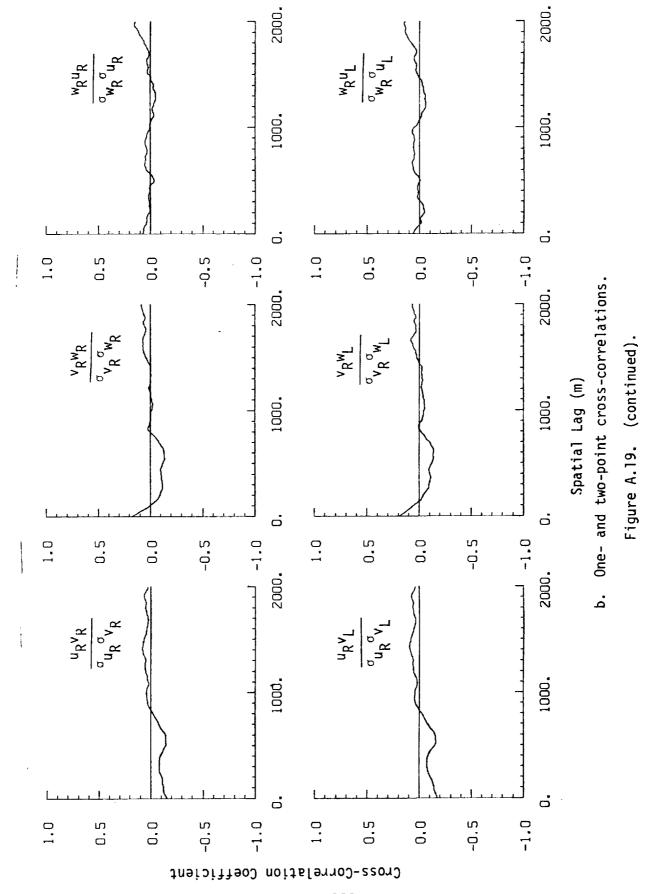
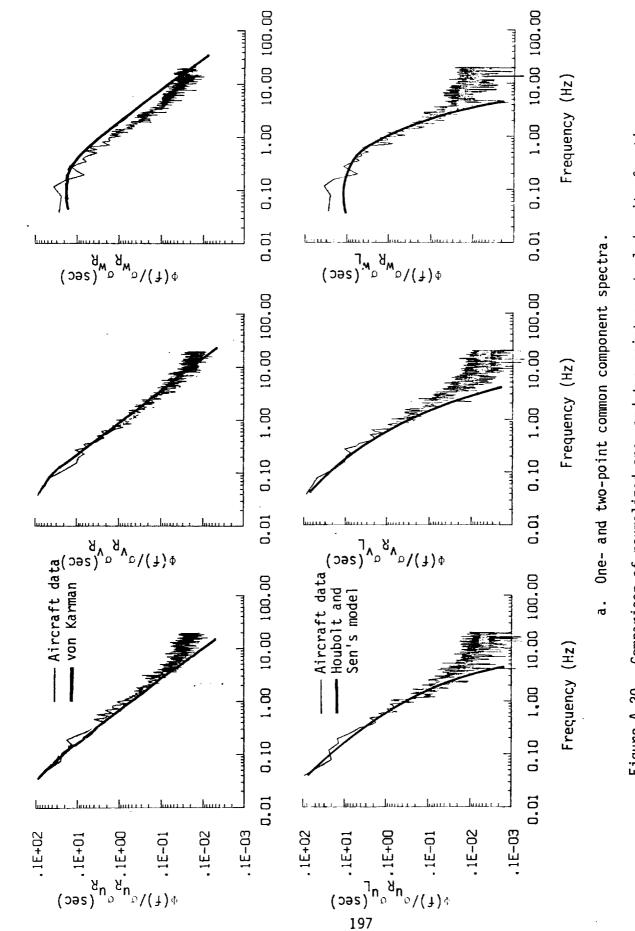
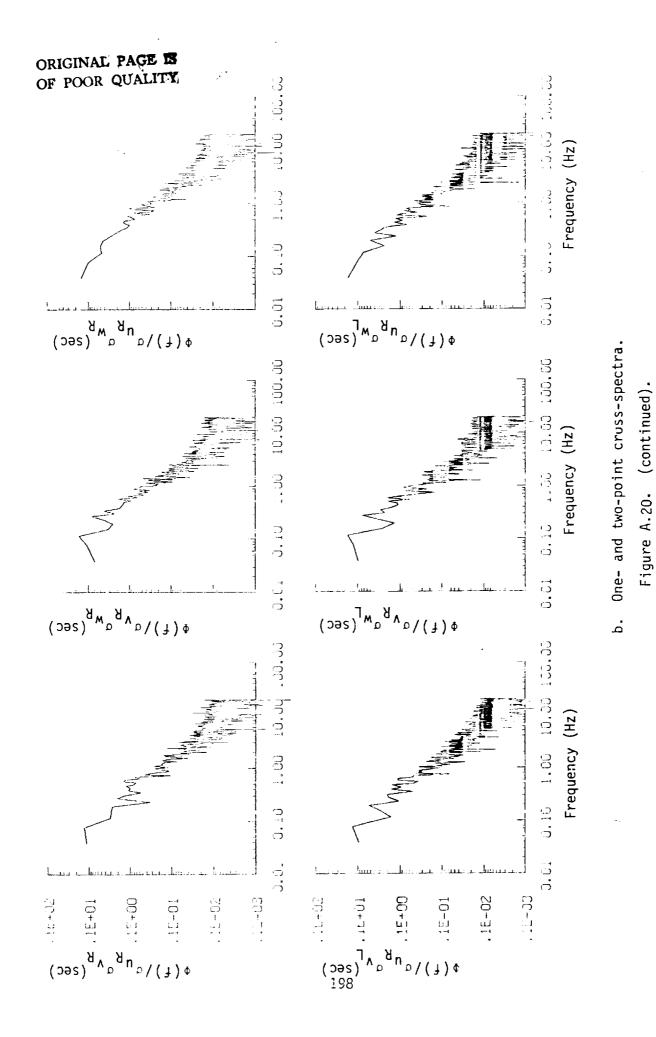




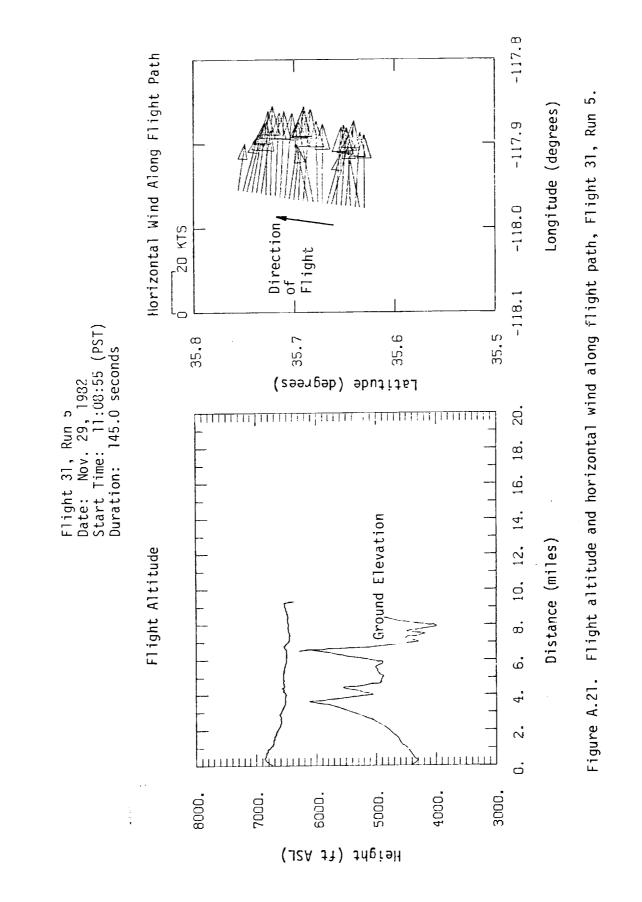
Figure A.18. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 4 (r = degree of non-Gaussian).

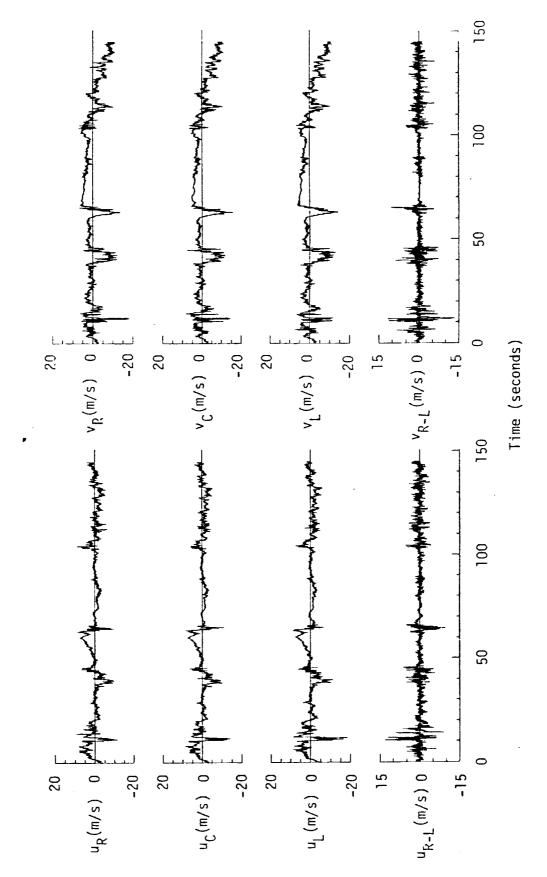


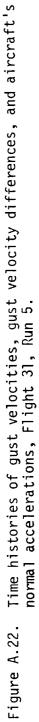
主要的 建苯基苯基基

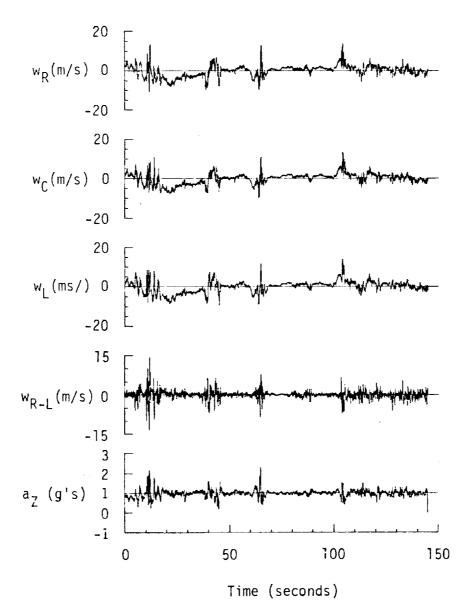

-

ç


Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 4. Figure A.20.


ORIGINAL PAGE IS OF POOR QUALITY


TABLE A. 8. List of All Parameters Measured and Their Range of Values, Flight 31, Run 4.


CHANNEL	UNITS	HIGH	ŁOW	MEAN	RMS	STD	POINTS
1 .TIME		34780.418		39647.505FD	35647.59047	e1.94404	11354
				00364	.05479		11314
Z PHI DOT	G UNITS	2.177	.144	GC 774	1.01726	.19436	11354
4 THETA DOT	RADISTC	.176	113	.00285	.02114	.02095	11354
5 THETA	PAD	.250	004	.C753P	.0917E	.04469	11354
6 PHT	RAD	.734	250	0006	.04564	.04963	11354
/ PSL_1	- RAD	,770 7,177 ,126 ,250 ,234 193,172 11,103 ,550,459 11,378 4,152	175.959	184.54562	104.59307.		
B PEL PST. 1.	010	11.103	-5-677	2.79ER3	4.07734	7.85762	11354
9.057.2		510,859	34,313	542.59293 3.05736	542.60027	2.*21#6	
10 DEL PN1 /	_ U* G	4.152	-1.677	1.06410	1.07557		11354
12 ACCL N ET	G HUTTS	6,007	-1.429	1.00624	1.07234	.35360	11354
13 ACCE Y CC	CUNITS	493	- 051	.CFC36	09458	.0:063	1174
14 ACCL Y CG	G HAITTS	.113	941	06111	02697	.02695	
15 ALPHA CTO	RAD	,0P6	244	01005	.0292E	.02221	11354
16 BET & FTO	RID		1P6	.00562	.03745		11354
17 YEMP 7	OFG F	82.074	-40.332	76.69240	79.70902	2.04713	11354
18 TEHD P	NFG F	61.601	-39.510	61.21623	61.32367	.96613	11244
19 ACCL 7 THS	_G_UNITS	2.322		1.00311	1.02262	.15985	113*4
ZU AL MILA DY	PAN	•127	- 241	00527	.02615 .03697	62559	11354 11354
ZC BETA PT	9 g m	• 1 • •	141	62124	+03EV/	.03347	11354
24.AL***A L*	PAU	.154		.00740	.03173 .03429	.02347	11274
24 PCT 00T	PADISEC	.956	716	00250	03160	03160	113*4
25 7 6 40 7 77	OFG C	.734 1931192 11.103 550,450 11.308 4,053 .076 .075 72,074 .173 .173 .173 .127 .154 .127 .127 .154 .14,161 1.015 .1.914 .14,161 1.015 .1.914 .14,161 1.0161 .1.901 .730 .1344 .1455 .1.914 .740 .740 .740 .740 .740 .747 .7578794,043 .740	-42.333	10.47960	10, 52522	1.02136	11354
26 00 11	PSTR	1.065	.666	.F1651	.P1527	.06713	11354
27 66 6 70	PSTD .	1.015	. 529	.76235	.7:453		11354
ZBSS RT	_PSID	1.061		FC910	.81177.		. 11354
29 p s	PSIA	11.901	. 11.416	11.57/13	11.57763	.14469	
30 TEMP TOT	VOLTS.	5,710	-104.176	4,50116	4.17000	1///44	11354
31 HY GR DR	_DEG C	1.396	-13/.2/7	-4.82625	5.65941 .07CCE		11354 11354
32 002 11	DETD	174	- 122	.C7C04 .14300	14601	.02950	11354
34 0C2 PT	PETD	155	106	.12510	12627	.01791	11354
35 0 4 0	_ F ' J V	9.411	-9.910	-9.43358	9.44276	41677	11354
36 D A1	DEC	9.749	-4.699	-1.79618	A.79515	.24692	11354
37 05154	0Fr	2.443	-13.434	2.03011			11354
38 0	DFG	.709	?^z	17106	.17259		11354
39 PPIIN	D.F.G	5.701	-14.569	4,0*714	4.98444	456662	11354
40 PTHPP	_ PCT MAX	57,013	17.913	56.27775	56.28640	•0E42P	11354
41 DTH91	PCT PAX	57.011	10.488	55.54684	55.55530 .79C12	.0.754	11354
42 D = 1 P	POSITION	2. (h) / AB3	- 766	.6.243		.01951	11154
43,0 70 0	NETER	7578798,943	7520147.520	**********			11354
42 n 51 n 43 n 58 44 n 70 n 46 n 70 n 46 t 70 n 47 t 47 48 T 62, Abc	DECREFS	73,300	72.789	72.P4144		.03212	11354
461.050	DEFREES	-117.975	-117.981	-117,97912		.00154	11354
AT LAT	PERPES	35.746	31.672	35.61076	35.61085	.07574	11354
48.T. 84. ANG	DEGREES	103.022 3.3"7 7.400 -92.428	174,145	179.36238	179.37015	1.67003	11354
		3.307	3.002	3.27525	3,2356A	.05274	11354
50.YE	MY210	7,400	-*.589	3.77726	3.43376		31354
50 YE	HVZEC	-92, 128 2,080	-117,375	-107.(4515	107.16110	4.98391	11354
52 ALTITURE 53.TEMPC	DEGREES (2.080		1.96418	1.97072 5.33211	.1000	11354
53.TF ##C	DEPORTES 4		- 47.030	5.22671	2.32621	1.04710	
24 1 4 4 7 1 2 2 4 1	81.07°	17 103				7.00667	11367
SE NE UND EDD	KNOTS	47.403	-17,718	19.03073	71,34131	7.88662	11344
55 NS WND SPD	ККОТБ	23.471	-17,718 -27,306		71,34131 12.06566	7.77915	11354 11354 11354
55 NS WND 5PD 56.WTMD 5PEED 57.WTND DTPEE	KROTS VECTS DECREES	23.471 53.149 358.950	-19,718 -29,306 -090 1,460	19.P3073 -9.61551 23.25414 263.39173	71,34131		11354
55 NS WND SPD 56.WT30 SPEED 57 WIND DTPEC 68 WIND DTP2	KNOTS - KHOTS DEOPEES DEOPEES	23.471 53.149 358.950	-19,718 -29,306 -090 1,460	19.P3073 -9.61551 23.25414 263.39173	21,34131 12.06566 24.51664 245.01759 137.53530	7.28915 7.64360 30.43613 30.43613	11354 11354
55 NS WND 590 56 WTHD 59750 57 WTND D7950 58 WTND D797 58 WTND D797	KKOTS KKOTS DECREES DECREES DECREES	2).471 5).149 358.950 171.950	-17.718 -20.306 .090 1.460 -178.540	19.P3073 -9.(1151 23.25414 293.39173 113.35129 293.36129	71,34131 12.06584 24.51664 25.01759 117.53530 255.01765	7.77915 7.64360 30.43613 30.53615 30.93615	11354 11354 11354 11354 11354
55 NS WND SPD 56 WIND SPEED 57 WIND DIPF 58 WIND DIPF 59 WIND DIPF 60 WIND DIPF	KKOTS KKOTS DEOPEES DEOPEES DEOPEES DEOPEES	2).47] 50.149 358.050 17].040 353.070 -603.933	-17,718 -20,306 -090 1,460 -178,540 -1272,466	19.P3073 -9.(1551 23.25414 263.39133 113.35129 293.35129	71,34131 12.06584 24.51664 265.01759 117.53530 265.61765 1114.59457	7.28915 7.64360 30.93613 30.92615 20.93615 107.97105	11354 11354 11354 11354 11354 11354 11354
55 NS WAD SPE 56 WIND SPEED 57 WIND DIPS 58 WIND DIPS 59 WIND DIPS 60 WIND DIPS 61 KIND PEED P	KNOTS - KPCTS DECPEES DECPEES DECPEES M/SEC	23.471 57.149 358.950 173.950 350.970 -603.933 119.534	-19.718 -20.306 .090 1.460 -178.540 .1460 -1273.646 92.737	19.P3073 -9.61551 23.25414 293.39173 13.39129 293.39129 -1105.35311 164.32761	71,34131 12.00584 24.51004 205.01759 117.53530 205.01765 1114.59457 104.40644	7.78915 7.64360 30.63613 30.62615 70.93615 167.67105 4.15876	11354 11354 11354 11354 11354 11354 11354
55 NS WAN SPE 56 WINN NIPS 58 WINN NIPS 59 WINN NIPS 59 WINN NIPS 60 WINN NIPS 60 WINN NIPS 61 FIRSPEEN P	KNDTS - KFCTS - DECREES - NECREES - DECREES - DECREES - M/SEC - M/SEC - M/SEC	2).471 50.149 358.050 171.050 350.050 171.050 350.050 -603.933 110.534 110.534	-19.718 -20.306 .090 1.460 -179.540 -1273.646 -1273.646 -1273.737 -12.737	19.P3073 -9.61551 23.25414 253.39173 113.25129 293.35129 -1109.35311 164.32261 102.77251	71,34131 12.00584 24.5501759 117.53530 24.501755 1114.59457 104.40644 102.70542	7.7 4915 7.64360 30.63413 36.63413 36.93415 107.57105 4.15476 4.07675	11354 11354 11354 11354 11354 11354 11354 11354
55 NS WNN SPR 56 WINN NYPER 57 WINN NYPE 59 WINN NYPE 59 WINN NYPE 60 WINN NYPE 60 WINN NYPE 61 WINSPER 62 AIOSPER 62 AIOSPER	KINTS - KICTS DECPEES DECPEES M/SEC M/SEC M/SEC	2),471 5),1/9 354,050 17),040 353,970 -603,933 110,534 110,749 110,777 329,334	-10,718 -20,306 .090 1.460 -179,540 -1273,546 52,737 91,773 94,515 -4,099	19.P3073 -9.61551 23.26414 263.39173 113.36129 293.36129 -1109.35311 164.32261 102.67251 104.76721	71,34131 12.00564 74.517(4 205.01759 117.53530 205.01765 1114.59457 104.60644 104.60644 104.7175	7.74915 7.64360 30.63413 30.92415 107.57105 4.15476 4.07625 4.20774	11354 11354 11354 11354 11354 11354 11354 11354 11354
55 NS NAN SPE 56 NTM SPEED 57 NTM NTP5 58 NTM NTP5 59 YTM NTP5 60 NTM NTP6 61 ATOSPEED P 62 ATOSPEED F 63 ATOSPEED F 64 NEITA AIT	KIINTS - FFCTS - FFCTS - FFCPFFS - FFCPFFS - FFCPFFS - FFCC - FFCC - FFFS - FFCC - FFFS - FFCC - FFFS - FFCC - FFFS - FFC -	2),471 5),1/9 354,050 17),040 353,970 -603,933 110,534 110,749 110,777 329,334	-10,718 -20,306 .090 1.460 -179,540 -1273,546 52,737 91,773 94,515 -4,099	19.P3073 -9.61551 23.25414 253.39173 113.25129 293.35129 -1109.35311 164.32261 102.77251	71,34131 12.00584 24.5501759 117.53530 24.501755 1114.59457 104.40644 102.70542	7.7 4915 7.64360 30.63413 36.63413 36.93415 107.57105 4.15476 4.07675	11354 11354 11354 11354 11354 11354 11354 11354
55 NS NAN SPE 56 NTM SPEED 57 NTM NTP5 58 NTM NTP5 59 YTM NTP5 60 NTM NTP6 61 ATOSPEED P 62 ATOSPEED F 63 ATOSPEED F 64 NEITA AIT	KIINTS - FFCTS - FFCTS - FFCPFFS - FFCPFFS - FFCPFFS - FFCC - FFCC - FFFS - FFCC - FFFS - FFCC - FFFS - FFCC - FFFS - FFC -	2),471 50,179 358,050 171,050 374,070 -603,433 110,534 110,747 110,777	-10,716 -20,306 090 1,460 -179,460 -12,737 4,400 -12,737 91,773 94,517 -4,099 -17,602	19. P3073 - G. (1551 23. 22414 293. 20173 113. 34120 - 1109. 35311 104. 37261 102. /7456 104. 77731 217. 77229	71,34131 12,005564 74,51704 205,01750 117,53530 205,01750 1114,50457 104,40044 102,70572 104,47175 234,6376	7.7 4915 7.64360 30.63413 30.03415 107.67105 4.15476 4.07675 4.07675 4.07675 4.07675	11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354
55 NS WAN SPR 56 MTM SPREN 57 WINN NTPPE 59 WINN NTPP 59 WINN NTPP 60 WINN NTPP 61 ATOSPEEN P 62 ATOSPEEN L 64 PEITA AIT 65 MAPL NTEP 66 MG PTCHT	KINTS FFRTS NFCDFFT NFCDFFTS DFCDFFTS DFCDFFTS M/STC HFTCDS HFTCDS MF	23,471 53,179 354,050 171,040 364,070 -603,433 110,734 110,734 110,777 729,384 325,038 15,077 13,472	-10,716 -20,306 090 1,460 -179,40 1,460 -1273,464 9,2737 91,773 94,511 -4,099 -17,602 -14,702 -14,705	10. P1073 - c.(151 23.26414 263.30173 113.26120 263.30173 - 1106.35311 164.32741 102.47456 104.77732 215.48611 .6000 .6000	21,34131 12,04564 24,51464 25,01759 117,53530 25,61765 1114,56457 164,6744 162,70572 164,67175 230,63276 243,15419 3,73526	7,28915 7,44360 30,63613 30,02615 90,93615 107,67105 4,15876 4,20774 4,20774 104,32129 3,73042	11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354
55 NS WAN SPR 56 MTM SPREN 57 WINN NTPPE 59 WINN NTPP 59 WINN NTPP 60 WINN NTPP 61 ATOSPEEN P 62 ATOSPEEN L 64 PEITA AIT 65 MAPL NTEP 66 MG PTCHT	KINTS FFRTS NFCDFFT NFCDFFTS DFCDFFTS DFCDFFTS M/STC HFTCDS HFTCDS MF	2).471 5).1/9 53.050 17).050 -603.4730 -603.4733 110.734 110.777 723.344 325.034 15.097 1).472 0.2672	-19,718 -20,306 090 1,460 -174,540 -1773,646 62,737 94,515 -6,009 -17,602 -14,701 -11,957	10. P3073 -0. (1551 23. 26414 263. 30173 113. 36120 293. 35120 -1166. 35311 162. 7456 104. 777320 217. 77320 217. 77320 . 600C0 . 60CC0	71,34131 12,00,524 74,51,004 255,01759 117,73530 255,61765 1114,55457 104,6064 102,70572 104,7175 239,63276 239,63276 3,73528 3,73526 3,75262	7,27915 7,44360 30,63613 30,03615 107,67105 4,15774 4,07627 4,20774 90,00727 104,3120 3,73042 3,73042 3,73042	11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354
55 NS WAN SPR 56 MTM SPREN 57 WINN NTPPE 59 WINN NTPP 59 WINN NTPP 60 WINN NTPP 61 ATOSPEEN P 62 ATOSPEEN L 64 PEITA AIT 65 MAPL NTEP 66 MG PTCHT	KINTS FFRTS NFCDFFT NFCDFFTS DFCDFFTS DFCDFFTS M/STC HFTCDS HFTCDS MF	23.471 53.4750 173.450 173.450 -603.433 110.734 110.746 110.746 110.746 12.77 72.334 15.477 13.472 4.780	-10,716 -20,306 000 1,460 -178,460 -173,466 -1773,466 -1773,466 -1773,466 -1773,467 -17,409 -17,409 -17,409 -17,409 -17,409 -17,409 -17,409 -17,470	19. P 3073 -0.(1)51 23.26414 263.30173 113.26120 243.36129 -1166.35311 164.32741 162.7254 215.46611 .000CC .000CC .000CC	21.34131 12.67567 24.51764 25.61759 11.4.59457 16.4.6646 162.70572 243.16419 3.73628 3.73628 3.73628	7,27915 7,44360 30,62613 30,62613 10,92615 107,67105 4,15777 4,20774 4,20774 99,66777 104,33129 3,73054 3,73054 3,75256 4,67321	11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354
55 NS WAN SPR 56 MTM SPREN 57 MTM NTPFC 59 MTM NTP7 60 MTM NTP7 61 MT05PEEP P 62 AT05PEEP P 63 AT05PEEP L 64 PEITA ALT 65 MAPL NTP 66 NG PTGMT 67 NG FENTF 68 NG FENTF 68 NG FENTF 69 VE PTGMT 70 VG CENTF	KNDTS - KYCTS DFCDFFFT DFCDFFFT DFCDFFFT MYSTC MYSTC MYSTC MYSTC MYSTC MYSTC MYSTC MYSTC	23.471 53.179 353.050 173.450 -603.433 110.734 110.734 110.777 323.344 325.734 154.777 13.477 13.477 13.477 23.479	-10,716 -20,306 -3090 1,460 -179,460 -1273,466 (2,737 94,511 -4,099 -17,602 -14,701 -14,701 -14,701 -14,701 -14,405	10. P3(73 -0.(155) 23.26414 263.30173 113.20120 243.30127 -1166.35311 164.37241 162.72456 104.777320 215.68011 .60006 .60006 .60006 .77436 .6136	21,34131 12,04564 24,517(4 25,01759 117,53530 25,61765 1114,56457 164,6646 162,70572 174,87175 230,63776 243,15419 3,73526 3,77262 4,67356	7,27915 7,44360 30,62613 30,62615 107,67105 4,15974 4,07627 4,2774 90,66767 104,32120 3,73042 3,7526 4,67331 4,06364	11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354
55 NS WAN SPE 56 WIN NFFE 57 WIN NFF 58 WIN NFF 60 WIN NFF 61 AFFSPEEP F 62 AFFSPEEP F 63 AFFSPEEP F 64 NEITA AIT 65 INFL NTEP 66 NG FEAT 67 NG FEATFF 68 NG LEFT 70 VG FEATFF 70 VG FEATFF 70 VG FEATFF	KNDTS - FYDTS DECOPERS DECOPERS DECOPERS MASEC MASEC MASEC MASEC	2).471 5).1/9 354.050 17).940 -603.973 119.534 119.777 729.384 325.734 15.077 1).472 9.472 1.9472 1.9472 1.9472	-10,718 -20,306 -20,306 -170,460 -170,460 -1773,466 (2,737 9(1,773 9(1,773 9(1,773 9(1,773 9(1,773 -17,602 -14,701 -17,957 -17,640 -10,231 -14,450 -75,507	10. P3073 -0. (1551 23. 26414 263. 30173 113. 36129 -1166. 35311 164. 37561 164. 77579 217. 77320 217. 77320 216. 4611 .600C0 .60C00 .743F .64745 .64745	71,34131 12,00,524 74,51,004 25,01,759 117,73530 25,50,765 1114,55457 104,60246 102,70542 104,70375 230,63276 243,03276 3,73026 3,73026 3,73026 4,00477 4,00477	7,27915 7,44360 30,62613 30,03415 107,67105 4,15774 4,07627 4,20774 90,00777 104,3120 3,73042 3,73054 3,73054 3,73054 3,73054 4,00314 4,00314	11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354
55 NS WAN SPE 56 WIND SPEED 57 WIND NIPS 58 WIND NIPS 50 WIND NIPS 60 WIND NIPS 61 AIDSDEED P 62 AIDSDEED P 63 AIDSDEED P 64 DEITA ALT 65 INFL ALT 65 INFL ALT 66 MG FENTE 68 UG LEFT 70 VG CENTED 71 VG LEFT 71 VG CENTED 71 VG CENTED 71 VG CENTED 71 VG CENTED	KNDTS - WKCTS DECOPERS DECOPERS DECOPERS MASEC MASEC MASEC	2),471 5),179 354,950 17),950 -603,933 110,534 110,734 110,734 110,737 729,384 325,736 15,977 10,472 0,693 19,479 20,693 19,744	-10,716 -20,306 090 1,460 -179,40 1,460 -1273,446 (1,477 9,477 9,477 9,477 9,477 -1,409 -12,609 -14,409 -14,409 -14,409 -27,507 -2,4117	19. P 1073 -0.(1151 23.26414 263.30173 113.26120 243.36129 -1166.35311 164.32741 162.7256 104.77731 217.77329 215.64011 .60005 .00055 .6136 .6436 .6436 .6445 .64555 .64555 .64555 .645555 .645555 .6455555 .64555555555555555555555555555555555555	21,34131 12,04564 24,51474 255,01759 117,53530 255,01755 114,56457 174,4644 172,70575 234,69276 243,15419 3,73026 3,71262 4,07250 4,06477 4,04477 7,F0154	7,28915 7,44360 30,62613 30,62613 107,67105 4,15874 4,07675 4,26774 90,66774 3,73054 3,73054 3,73054 3,73054 4,06324 4,06324 4,06324	1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354 1)354
55 NS WAN SPE 56 WIN NFFE 57 WIN NFF 58 WIN NFF 60 WIN NFF 61 AFFSPEEP F 62 AFFSPEEP F 63 AFFSPEEP F 64 NEITA AIT 65 INFL NTEP 66 NG FEAT 67 NG FEATFF 68 NG LEFT 70 VG FEATFF 70 VG FEATFF 70 VG FEATFF	KNDTS - FYDETS DECOPERS DECOPERS DECOPERS MASEC	2).471 5).1/9 354.050 17).940 -603.973 119.534 119.777 729.384 325.734 15.077 1).472 9.472 1.9472 1.9472 1.9472	-10,716 -20,306 090 1,460 -179,40 1,460 -1273,446 (1,477 9,477 9,477 9,477 9,477 -1,409 -12,609 -14,409 -14,409 -14,409 -27,507 -2,4117	10. P3073 -0. (1551 23. 26414 263. 30173 113. 36129 -1166. 35311 164. 37561 164. 77579 217. 77320 217. 77320 216. 4611 .600C0 .60C00 .743F .64745 .64745	71,34131 12,00,524 74,51,004 25,01,759 117,73530 25,50,765 1114,55457 104,60246 102,70542 104,70375 230,63276 243,03276 3,73026 3,73026 3,73026 4,00477 4,00477	7,27915 7,44360 30,62613 30,03415 107,67105 4,15774 4,07627 4,20774 90,00777 104,3120 3,73042 3,73054 3,73054 3,73054 3,73054 4,00314 4,00314	11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354 11354

.≽ ⇒

.

Figure A.22. (continued).

- TABLE A.9. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 5.
- 1. Mean Airspeed (m/s): $\frac{\overline{V}_{L}}{105.79} \frac{\overline{V}_{C}}{103.53} \frac{\overline{V}_{R}}{105.33}$
- 2. Standard Deviation of Gust Velocities (m/s):

σuR	_ ^σ vR_	_ ^σ wR
2.49	4.06	2.76
_ ^σ uC	σvC	σwC
2.47	4.04	2.66
°uL	σvL	_∽wL
2.56	4.10	2.85

3. Standard Deviation of Gust Velocity Differences (m/s):

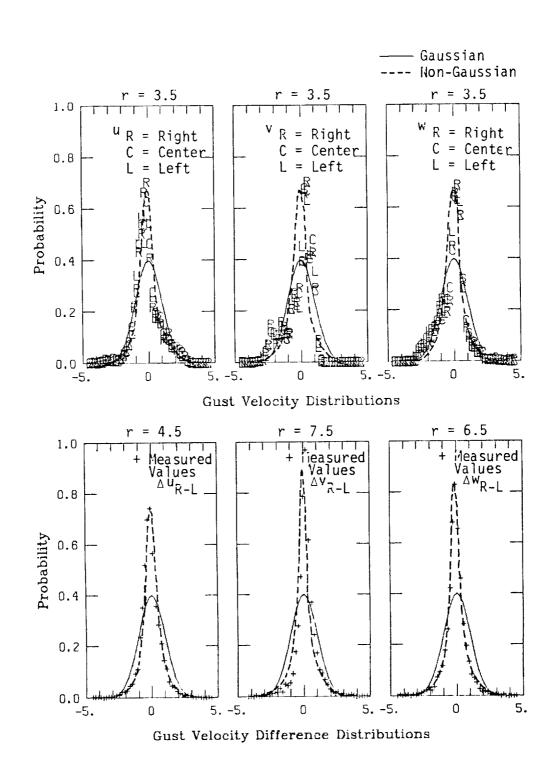
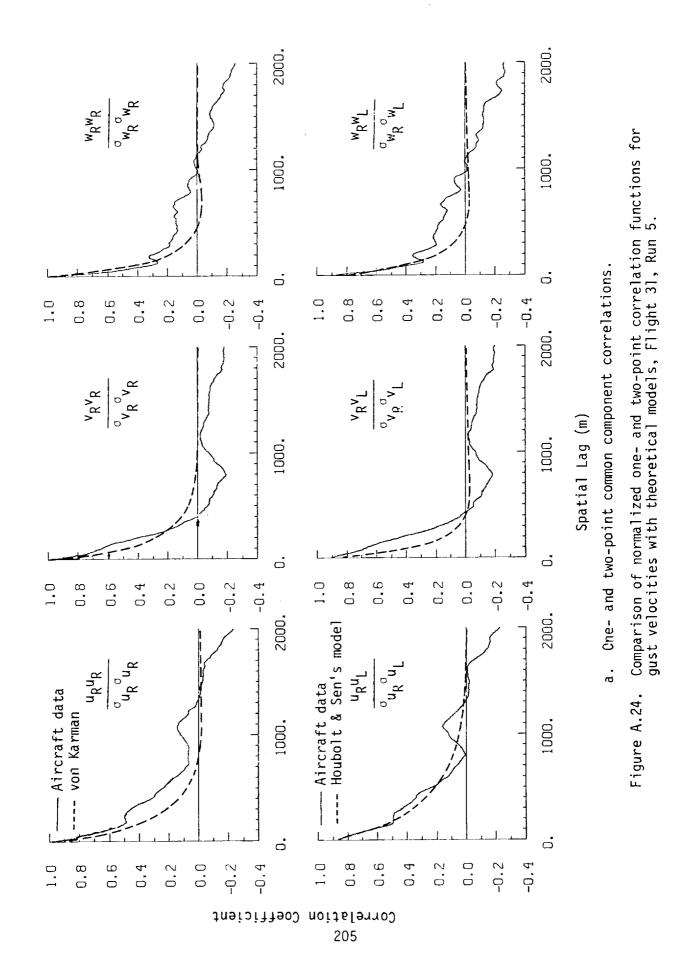
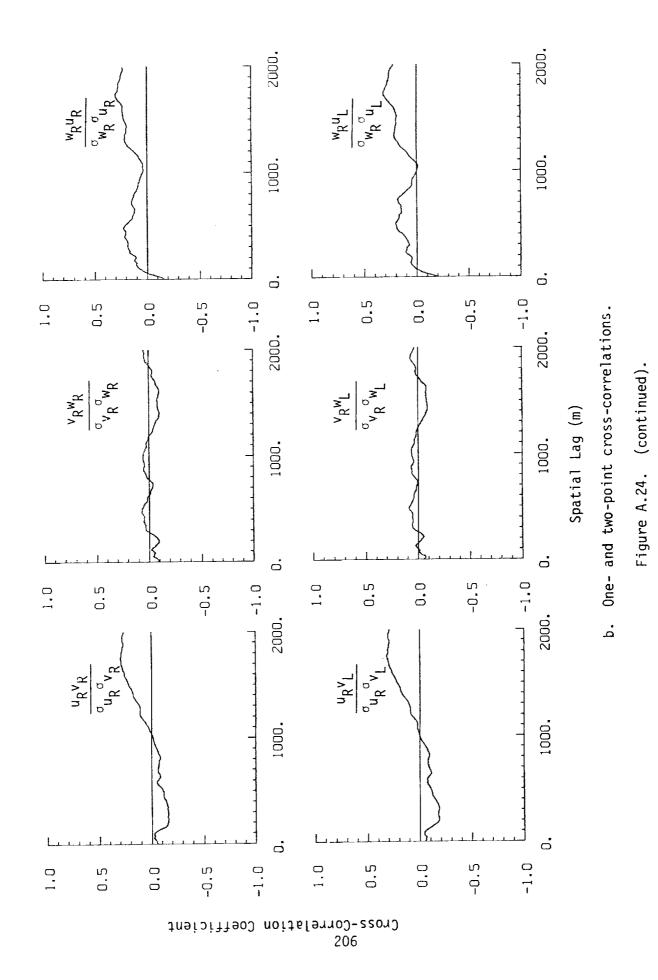
∽∆uRL	°∆vRL	σ∆wRL
1.41	1.38	1.42

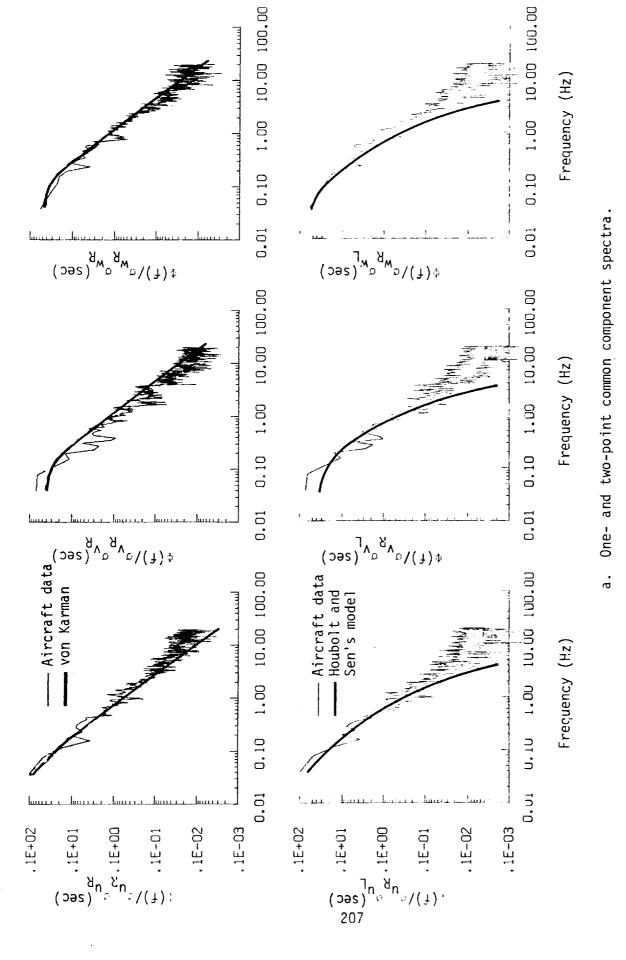
4. Integral Length Scale (m):

L _{uR}	L	L _{wR}
333.9	168.6	189.7
L _{uRL}	L _{vRL}	LwRL

5. Correlation Coefficient of Gust Velocities:

<u>uRu</u> L/σ _{uR} σ _{uL}	<u>vrv</u> /σ _{vr} σ _{vL}	<u>WRWL</u> /σ _{WR} σ _{WL}
0.87	0.90	0.90
^{u_Rv_R/_{σuR}σ_{vR}}	<u>vrwr</u> /o _{vr} o _{wr}	<u>wRuR</u> /owRouR
-0.09	-0.10	-0.17
<u>urv</u> [/ơ _{ur} ơ _{vL}	<u>vrw</u> / _{σvr} σ _{wL}	<u>wru</u> L/ơ _{wr} ơuL
-0.08	-0.09	-0.20

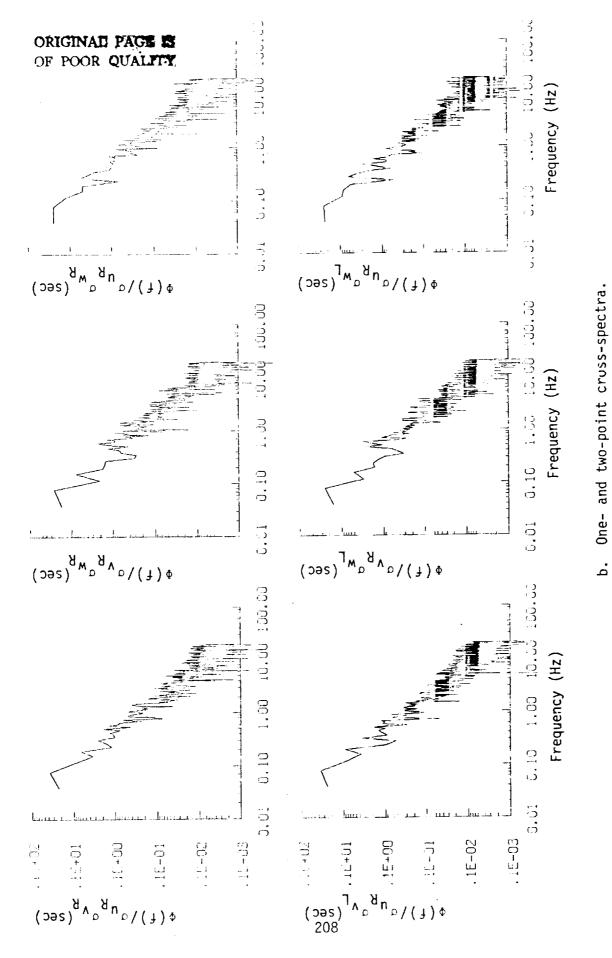




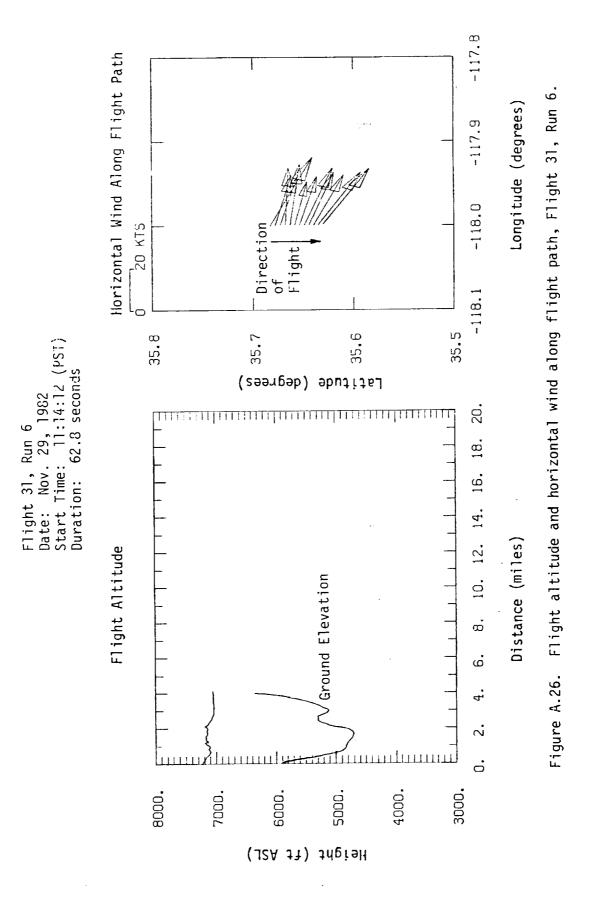

Figure A.23. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 5 (r = degree of non-Gaussian).

-

Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 5.

Figure A.25.




Figure A.25. (continued).

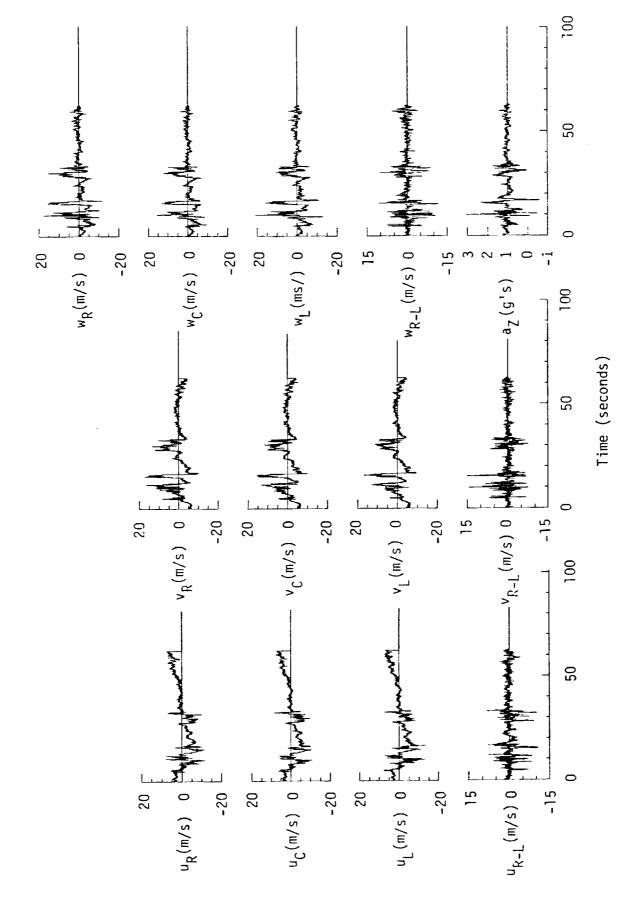

.

TABLE A.10. List of All Parameters Measured and Their Range of Values, Flight 31, Run 5.

CHANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD	POINTS
TIME	SECONDS	40279.553	40134.578	40207.06540	40207.08719	41.86150	5800
2 PHI DOT	RAD/SEC	.208	195	00218	.04443	.04438	5600
		2.327	.230	.99249	1.00515	.15907	5800 5800
4 THETA DOT_	RAD/SEC	.153	- 151	.00264 .04342	.01892	.02655	5800
	RAD	.154	033	.00088	.04024	.04023	5800
6 PHI 7 PSI 1	R AD R AD	.133 359.118	155	299.64552	326.65102	130.06294	5800
8 DEL PSI 1	DEG	7.929	-9.556	29595	2.35956	2.34113	5800
9 PSI 2	RAD	363.571	346.672	355.57109	355.57842	2.28427	5800
	DEG	2.138	-15.092	-2.84581	6.26277	5.57933	3800
10 DEL PSI 2_ 11 ACCL N LT	G UNITS	4.681	-2.620	1.00522	1.06613	. 35524	5000
12 ACCL N RT	G UNITS	4.993	-2.651	1.00395	1.07230	. 37674	5800
13 ACCL X CG	G UNITS	. 202	013	.04563	.05809	.03595	5800 5600
14 ACCL Y CG	G UNITS RAD	.143 .128	109 106	00165 02076	.02707	.01739	5800
15 ALPHA CTR 16 BETA CTR	RAD	.178	-,168	.00413	.03557	.03533	5800
17 TEMP I	DEG F	76.497	74.878	75.76997	75.77078	.35062	5800
18 TEHP P	DEG F	61.781	61.425	61.61107	61,61108	.03676	5800
19 ACCL 2 INS	GUNITS	2.272	• 202	.99627	1.00934	.16193	5800
ZU ALPHA RT	RAD	.140	105	01016	.0216 0	.01906	5800
2) BETA RT	RAD	.190	165	.01321	.03486	.03227	5800
22 ALPHA LT	RAD	.133	086	.61899	.02656	.01857 .03253	5800 5800
23 BETA LT	RAD	.142	161 204	.00764 .00271	.03341 .03135	.03123	5800
24 PS1 00T 25 temp tot	RAD/SEC DEG C	14.259	8.057	11.50946	11.58680	1.33665	5600
ZG QC LT	PSID	1.121	. 604	.82579	.82801	.06035	5800
27 OC CTR	PSID	1,003	. 578	.78997	.79214	.05861	5800
r≎ac rt	PSID	1.023	.588	.81840	.82065	.06070	5600
	PSIA	11.581	11.376	11.52128	11.52138	.04622	5800
30)TEMP IRT	VOLTS	7.371	2.638	6.51844	6.54426	.58078	5800
31 HYGROM	DEGC	-1.547	-9.759 .068	-5.86794 .06965	6.15471 .06965	1.85697	5800 5800
32 QC2 LT 33 QC2 CTR	PSID PSID	.070 .177	.167	.17330	.17333	.00303	5800
34 QCZ RT	PSID	.163	035	,15347	.15364	.00727	5800
35 DAR	DEC	1.169	-8.916		8.76534	.14316	5600
36 DAL	DEG	1.513	-8.596	-8.47692	8.47811	.14203	5800
37 DELEV	DEG	3.395	-15,431	3.27645	3.28624	-25345	5800 5800
38 DSTAB	DEG	.764 7.612	267 -14.981	25796 7.36917	7.37639	.32644	5800
39 DRUD 40 DTHRR 41 DTHRL 42 DFL P	PCT HAX	61.328	23.376		60.84900		
41 DTHRL	PCT MAX	60.938	23.288	60.44540	60.44805	.56558	5800
42 DFLP		1.968	.559	. 57880	.57922	.02204	2900
43 D S B	POSITION	+174	.058	.16239	.16234	.00704 1870.13318	5800 5800
44 D TO 6	METERS	7531608.000 72.836	72.799	72.61743	72.61743	.01070	5800
45,8 TO D 46.LONG	DEGREES	-117.953	-117.976		117.96500	.00681	5800
47 LAT	DEGREES	35.763	35.629		35.69587	.03898	5800
AS TRK ANG	DEGREES	10.653	5.074	7.73819	7.87254	1.44833	5800
AG HDG	RADIANS	.112	204	03712	.09631	.04235	5600
AN VE	H/SEC	19.468	8.599 91.895	13.92568 102.33217	14.19503 102.37126	2.75239 2.82896	5800 5800
51 VN 52 ALTITUDE	H/SEC _	105.408 2.108	1.964		2.00626	.03237	5800
wh TERPE	DEGREES C	8.949	3.293		6.27054	1.13273	5800
54 EW WND SPD	KNOTS	50.684	5.746	35.36690	36.22351	7.63171	5800
ECNS WHD SPD) KNUTS	14.845	-29.404	-2.01583	5,26183	4.86080	5800
EK WIND SPEED	D KNOTS	51.566	7.565		36.60369	7.56906	5800
57 WIND DIREC	DEGREES	334.159	218.077		273.87670	9,34098	5800 5800
58 WIND DIRZ	DEGREES	154.159	38.077 218.077	93.71744 273.71744	94.18172 273.87675	9.34099 9.34099	5800
59 WIND DIR3 60 WIND DIR4	- DEGREES DEGREES	334.159 334.159	218.077	273.71744	273.87675	9.34099	5800
. ATREPERD B	N/SEC	117.107	89.826		105.40679	3.92291	5800
61 AIRSPEED C	M/SEC	115.996	89.111		103.60331	3.84857	5800
	M/SEC	122.810	90.975		105.87652	3.87892	5800
TOFITA ALT	HETERS	59.411	-84.477		53.37152	32.36932	5800
CE INETL DISE	HETERS	37.737	-82.204	-41.49497	52.29241	31.82511 2,49801	5800 5800
KK UG RIGHT	M/SEC	9.156	-11.101		2.49780 2.47382	2.47403	5800
CTTIG CENTER	H/SEC	8.546 8.844	-14.081 -18.166		2.96178	2.56200	5800
68 UG LEFT 69 VG RIGHT	M/SEC M/SEC	6.832	-17.989		4.06130	4.06163	5600
70 VG CENTER	M/SEC	8.216	-15.520	01413	4.04630	4.04662	5800
NVG LEFT	N/SEC	7.272	-13.953	01740	4.10718	4.10750	3600
SS WG RIGHT	M/SEC	13.841	-10.461		2.76238	2.76258	5800 5800
73 WG CENTER	MASEC.	13.351	-9.627		2.66078 2.85228	2.66093 2.85245	5800
9ã₩G LEFT _	H/SEC	13.921	-9.047				

Time histories of gust velocities, gust velocity differences, and aircraft's normal accelerations, Flight 31, Run 6. Figure A.27.

TABLE A.11. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 6.

4.

- 1. Mean Airspeed (m/s): $\frac{\overline{V}_{L}}{104.31} \frac{\overline{V}_{C}}{102.19} \frac{\overline{V}_{R}}{104.01}$
- Standard Deviation of Gust Velocities (m/s):

_σuR	R	∽wR
3.64	3.67	3.41
_σuC	σvC	σwC
3.54	3.65	3.00
σuL	σvL	σwL
3.54	3.42	3.12

3. Standard Deviation of Gust Velocity Differences (m/s):

σ∆uRL	σ∆vRL	σ۵wRL
1.74	1.68	1.92

Integral	Length	<pre>Scale (m):</pre>
L _{uR}	L _{vR}	L _{wR}
364.7	92.0	51.7
L _{uRL}	LvRL	L _{wRL}
344.5	104.2	47.5

5. Correlation Coefficient of Gust Velocities:

u<u>R</u>u L/σ _{uR} σ _{uL}	<u>vRvL</u> /σ _{vR} σ _{vL}	<u>₩R₩L</u> /σ _{₩R} σ _{₩L}
0.82	0.90	0.81
<u>urvr/_{σur}_{σvr}</u>	<u>√R₩R</u> /ơ _{VR} ơ _{₩R}	₩RUR/σ _{WR} σ _{UR}
-0.18	0.60	-0.10
<u>uRvL</u> /σ _{uR} σ _{vL}	VRWL∕σ _{VR} σ _{WL}	₩RUE/σ _{WR} σuL
-0.18	0.61	0.00

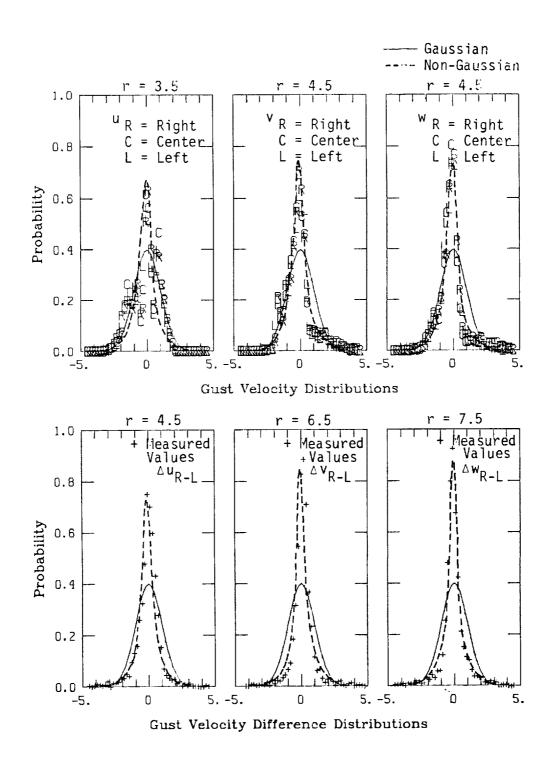
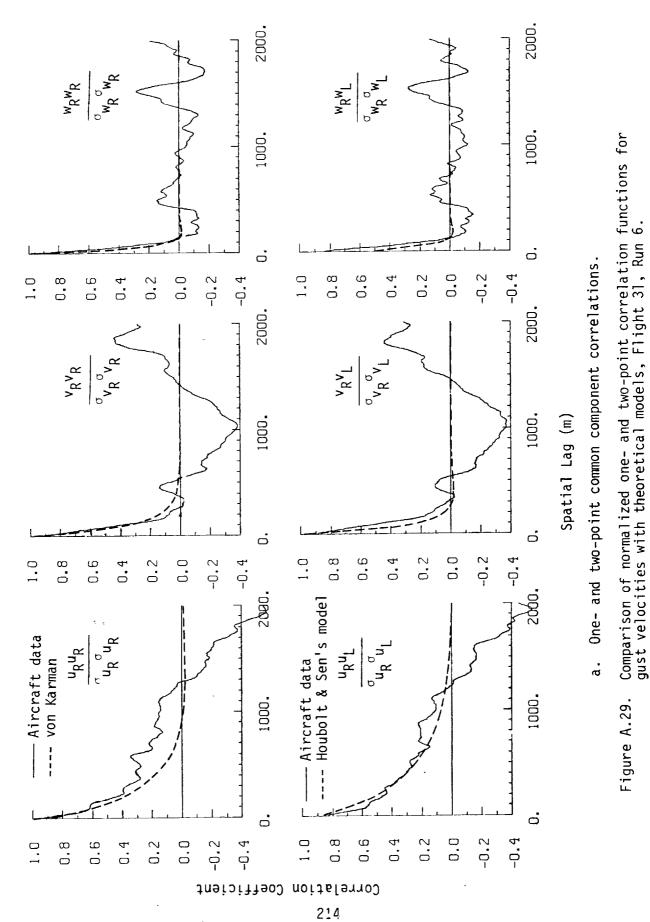
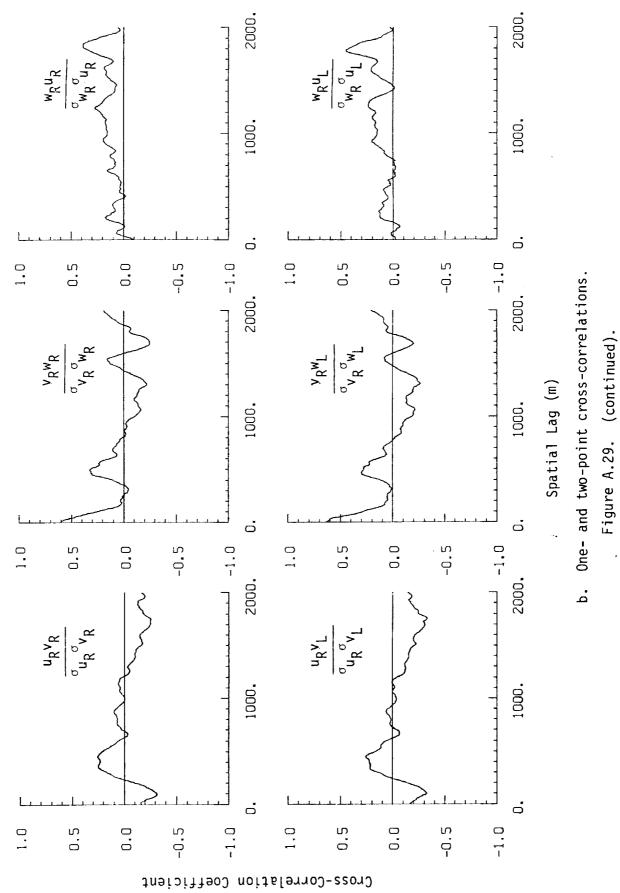
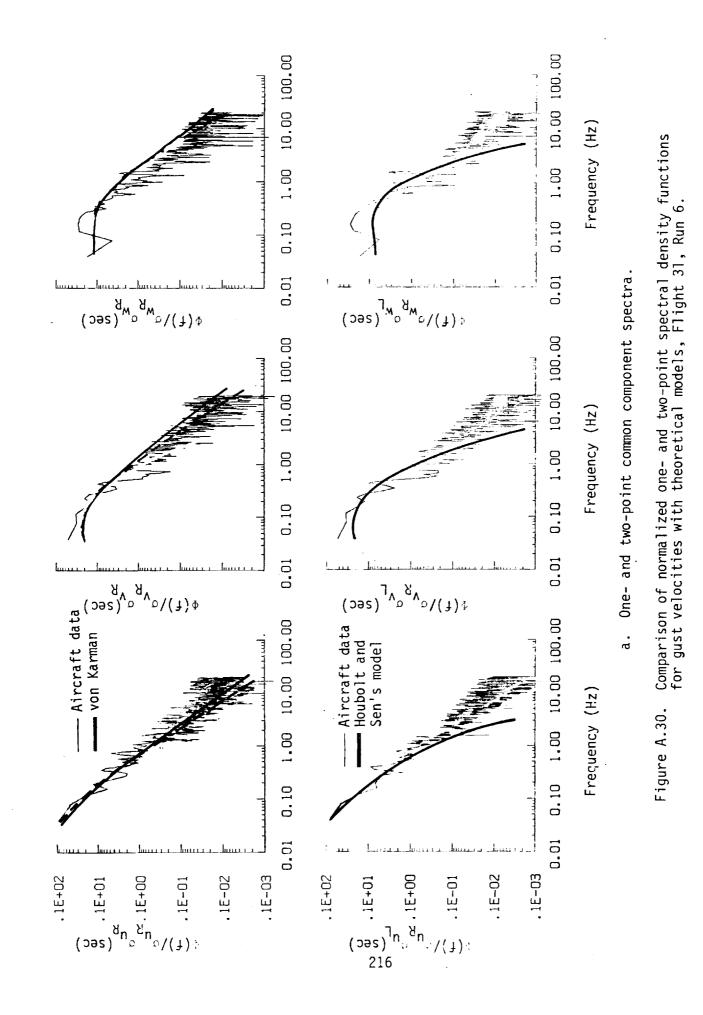




Figure A.28. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 6 (r = degree of non-Gaussian).


-

-

-

-

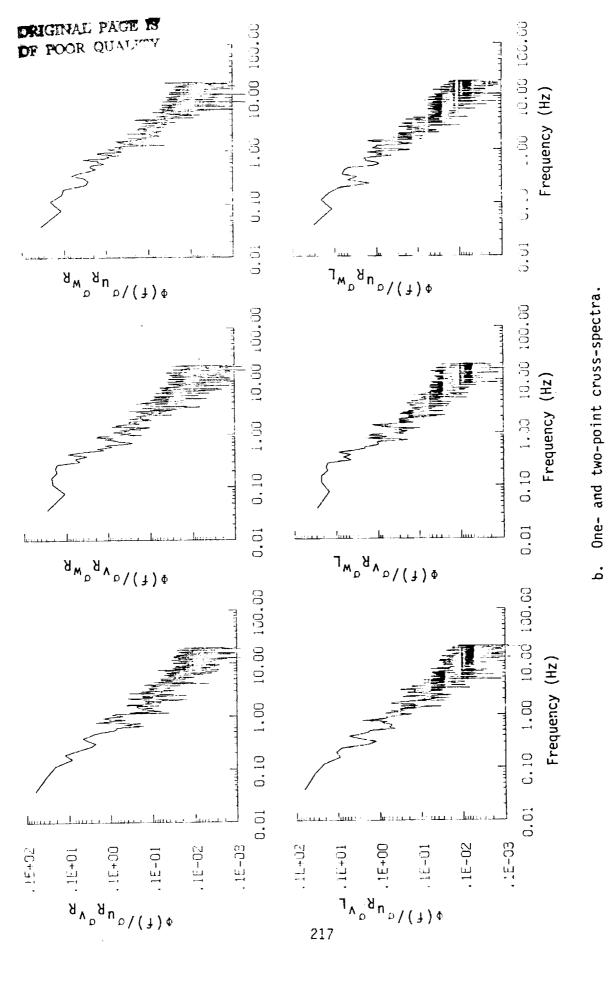
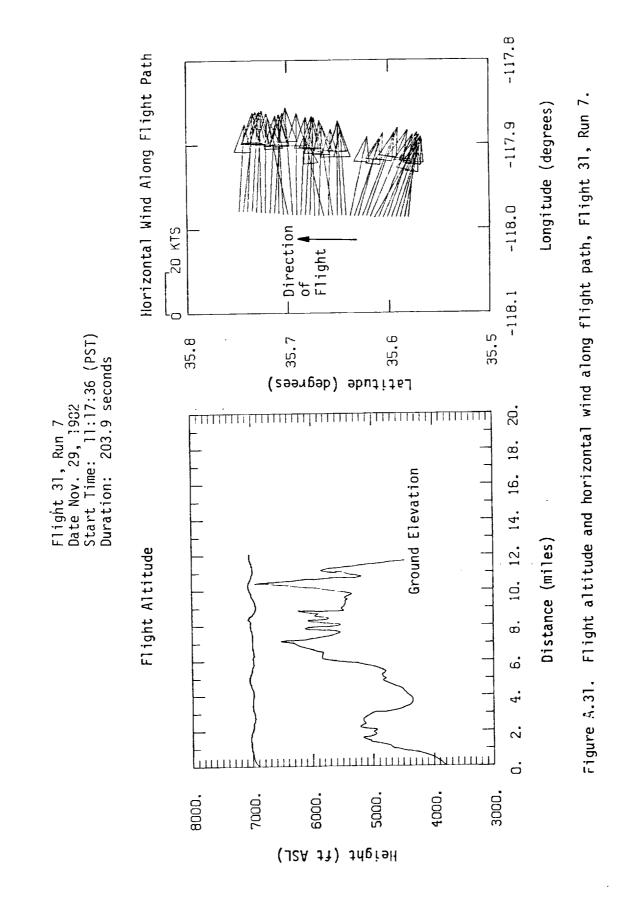
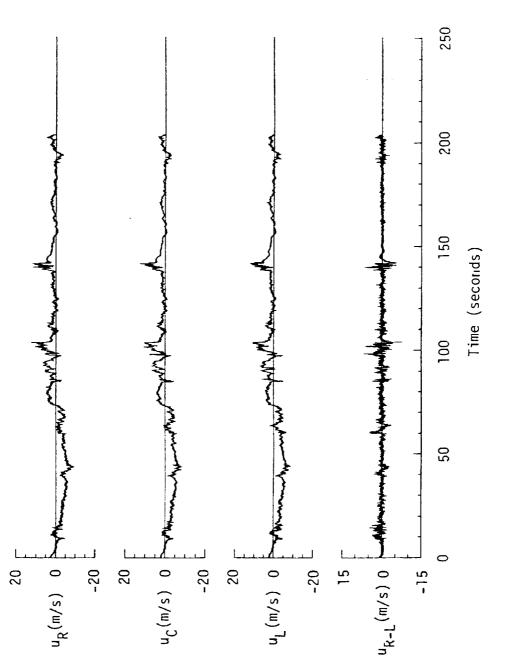
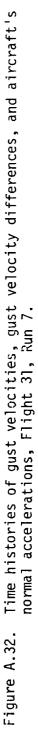
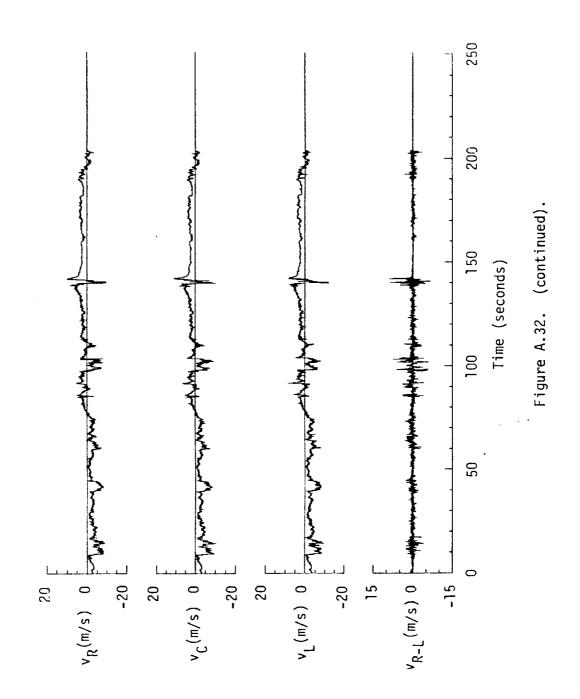



Figure A.30. (continued).


ORIGINAL PAGE IS OF POOR QUALITY


TABLE A.12. List of All Parameters Measured and Their Range of Values, Flight 31, Run 6.


CHANNEL 1 TIME 2 PHI DUT 3 ACCL N CG 5 THETA DOT 6 PHI 7 PSI 1 8 DEL PSI 2 11 ACCL N CG 12 ACCL N RT 13 ACCL X CG 14 ACCL N RT 15 ALPHA CTR 16 BETA CTR 17 TEMP J 18 IEMP P 19 ACCL Z INS 20 ALPHA RT 21 BETA RT 22 ALPHA LT 23 BETA LT 24 PSI DUT 25 TEMP TOT 26 GC LT 27 QC CTR 28 QC_RT 29 PS 30 TEMP IRT 31 HYGROM 32 GC2 CT 35 DAR 36 DAL 37 DELEV 38 DSTAB 39 DRUD 40 DT 41 DTHRL 42 DFLP 43 DSB 44 D TO 45 B TO D 46 LONG 57 WIND DIRZ 58 WIND SPED 57 WIND DIRA 61 AIRSPEED L	UNITS	HIGH	LOW	MEAN	RMS	STD	POINTS
TINE	SECONDS	40514.445	40451.620	46483.03270	40483.03677	18.14684	2514
Z PHI DOT	RADISEC	,456	235	00310	.06217	.06210	2514
ACCL N CG	GUNITS	2.781	523	1.01156	1.04299	+23412	2214
	RADISEC.		190	+00333	.02708		- 2514
6 BUY		243	- 107	00172	.05970	.05969	2514
7 857 1	8 A D	196.388	179.129	184.51265	184.53591	2.93071	2514
B DEL PST 1	DEG	14.983	-2.562	2.80766	4.09430	2.98058	2514
9 PSI 2	RAD	558.604	537.481	542.62956	542.63938	3.26409	2514
10 DEL PSI 2	DEG	14.841	-2.213	3.10556	4.24230	2.89066	2514
ACCE N LT	G UNITS	5.024	-2.819	1.02459	1.16053	.54511	2514
12 ACCL N RT _	G UNITS	4.993	-2.960	1.01898	1.17818	.59156	2514
ACCL_X_CG_	GUNITS	+233	020	- 00353	.04300	03530	2514
15 41 644 678	PAD	.118	160	01681	.03148	.02663	2514
16 BETA CTR	RAD	.208	165	.00400	.04819	.04803	2514
17 TEMP I	DEG F	78.476	77.397	77.96893	77.96927	.22974	2514
18 TEMP P	DEG F	61.781	61.601	61.74117	61.74122	.07356	2514
19 ACCL Z INS	G UNITS	3.045	562	1.01599	1.04685	.25236	2514
20 ALPHA RT	RAD	.150	194	00244	.03131	.03122	2314
CIBETA RT	RAD	.203	- 10/	-01407	+ D4 (02 A 36 8 2	07741	2514
23 ACTA 17	RAU		131	.02202	.04307	.04273	2514
24 PST DOT	RADISEC	.159	-,128	.0019B	.04015	.04011	2514
25 TEMP TOT	DEG C	10.715	7.072	8.67362	8.70365	.72253	2514
26 QC LT	PSID	1.110	.641	.79533	.80003	+05656	2514
27 QC CTR	PSID	1.037	.565	.76269	.76735	.08445	2514
28 QC_RT	PSID	1.081	+618	.79085	.79568	.08761	2014
29 05	PSIA	11.324	11.237	11.24200	11.24204	- 46300	2514
JUTEMP IKI	VULIS	-1,042	-A.121	-5.40948	5.63063	1.56212	2514
32 012 11	0124	.072	.072	.07180	.07180	.00025	2514
33 ocz ctr	PSID	.158	.137	.14859	.14870	.005B8	2514
34 9C2 RT	PSID	.137	.126	.13074	.13076	.00301	2514
35 DAR	DEG	-9.689	-9.717	-9.68945	9.66946	.00261	2519
JO DAL	DEG	-8.899	- 4.03/	3.07100	3.92268	-04743	2514
37 DELEV	DEG "	- 283	-,794	28861	.28863	00328	2514
39 0 210	DEG	8.295	8.068	8.15400	8.15421	.05977	2514
40 DTHRR	PCT HAX	62.590	62.207	62.38175	62.38182	+09379	2514
41 DTHRL	PCT HAX	62.305	62.012	62.16127	62.16136	.10322	2514
42 DFLP	POSITION	.512	+496	.50417	.30418	-00113	2514
43 0 58	PUSILIUN	7525058.458	7523312.563	*********	*********	524.55013	2514
45 A TO D	DEGREES	72.824	72.798	72.81079	72.81079	.00720	2514
46 LONG	DEGREES	-117.997	-118.000	-117.99856	117.99856	.00061	2514
47 LAT	DEGREES	35.686	, 35.625	35.65489	35.65489	.01733	2514
48 TRK ANG	DEGREES	182.249	174.899	177.83402	177.84529	2.00259	2214
49 HDG	RADIANS	3.447	3,138	3.23308	3+23711	1.83800	2514
50 VE	M/SEC	9,799	-112 041	-104.007413	166.96891	3.79957	2514
51 VN	KN KN	2.206	2.145	2.16746	2.16753	.01698	2514
53 TENPC	DEGREES C	4.802	2.085	3.46107	3.51936	.63802	2514
54 EW WND SPD	KNOTS	42.305	-1.321	25.54551	26.42022	6.74336	2514
55 NS WND SPD	KNOTS	11.402	-25.054	-10.14093	12.20832	6.40340	2514
56 WIND SPEED	KNDTS	42:407	3,007	201270810	291.71767	17.55703	2514
57 WIND DIREC	DEGREES	177.798	-173.699	110.70825	112.09123	17.55705	2514
59 WIND DIKC	DEGREES	357.798	6.301	290.70825	291.23773	17.55705	2514
60 HIND DIR4	DEGREES	368.755	181.166	290.99465	291.42208	15.78111	2514
61 AIRSPEED R	M/SEC	121.266	92.271	104.01912	104.16727	5.55470	2514
62 AIRSPEED C	H/SEC	118.709	89.929	102.14401	102+33403	5.45344	2514
63 AIRSPEED L	MISEC	122.780	45.407	-37,81934	41.45465	16,97942	2514
64 DELTA ALT	METERS	.000	-52.813	-30.60195	34.32676	15.55452	2514
66 HG BTGHT	H/SEC	8.054	-11.346	.00000	3.64237	3.64309	2514
57 UG CENTER	M/SEC	8.341	-10.706	.00000	3.54397	3.54467	2514
68 UG LEFT	H/SEC	7.622	-13.375	.00000	3.54621	3.54042	2514
69 VG RIGHT	M/SEC	17.341	-9.902		3.65269	3.65247	2514
70 VG CENTER	M/SEC	12.190	-9.308	10410	3.42577	3.42487	2514
/ _VG_LEPI	M/SEC	17.793	-11.422	10907	3,42058	3.41952	2514
73 WG CENTER	MISEC	15.330	-9.243	09851	3.00378	3.00277	2514
74 WG LEFT	M/SEC	20.597	-12.016	09179	3.12148	3.12015	E 2 4 4

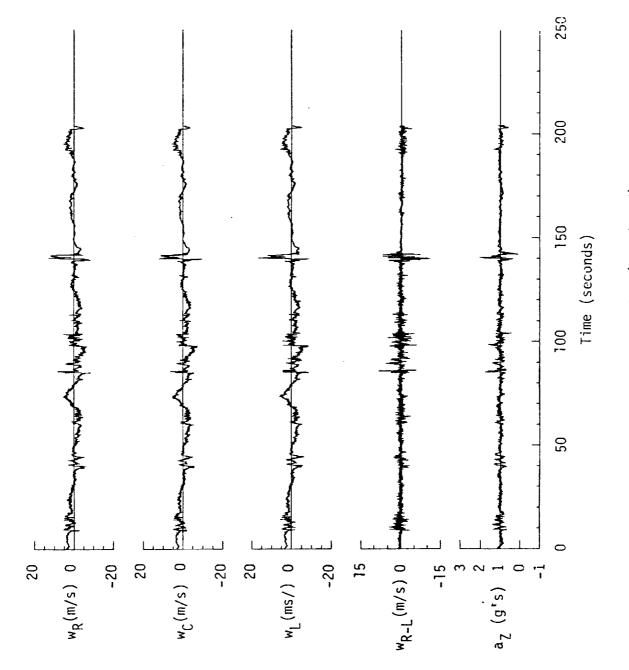


Figure A.32. (continued).

TABLE A.13.	
	Correlation Coefficients of Gust Velocities, Flight 31, Run 7.

4.

- 1. Mean Airspeed (m/s): $\frac{\overline{V}_{L}}{101.47} \frac{\overline{V}_{C}}{99.23} \frac{\overline{V}_{R}}{100.93}$
- 2. Standard Deviation of Gust Velocities (m/s):

ouR	<u>σvR</u>	_σwR_
3.03	3.00	2.23
°uC	σvC	σwC
3.03	3.03	2.15
σuL	σνL	σwĹ
3.07	3.06	2.22

3. Standard Deviation of Gust Velocity Differences (m/s):

σ∆uRL	σΔvRL	σΔwRL	
0.85	0.80	0.89	

Integral	Length	<pre>Scale (m):</pre>
L _{uR}	L _{vR}	L _{wR}
562.8	249.6	287.6
L _{uRL}	L _{vRL}	L _{wRL}
532.2	242.9	283.5

5. Correlation Coefficient of Gust Velocities:

u<u>R</u>u L/σ _{uR} σ _{uL}	<u>vRvL</u> /σ _{vR} σ _{vL}	<u>wRwL</u> /gwRgwL	
0.92	0.90	0.90	
$\frac{\mathbf{u}_{\overline{\mathbf{R}}} \mathbf{v}_{\overline{\mathbf{R}}}}{0.02}$	<u>√R₩R</u> /σ _{VR} σ _{₩R} -0.21	₩R ^U R/σ _{WR} σ _{UR} 0.39	
<u>^uRvL</u> / _{σuR} σ _{vL}	<u>vrwr</u> /g _{vr} g _{wr}	wRuL/owRouL	
0.01	-0.21	0.32	

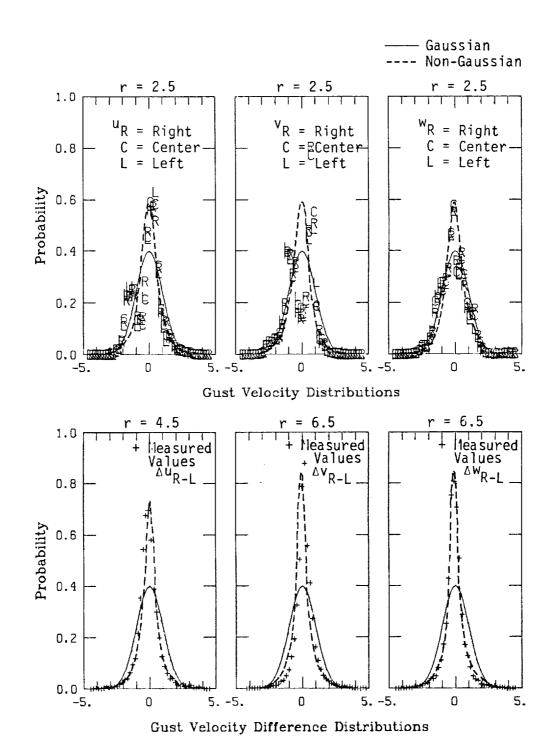
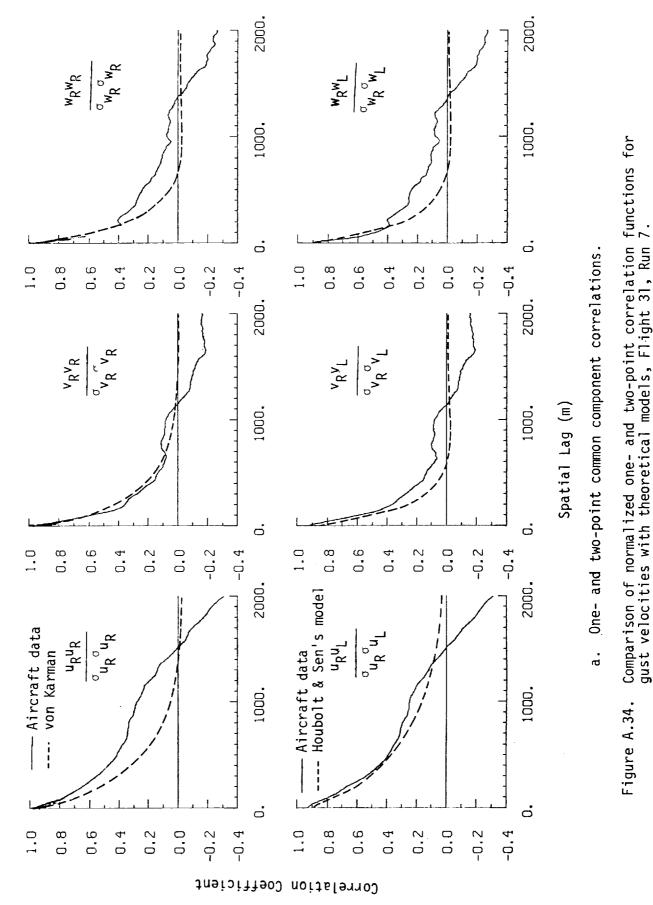
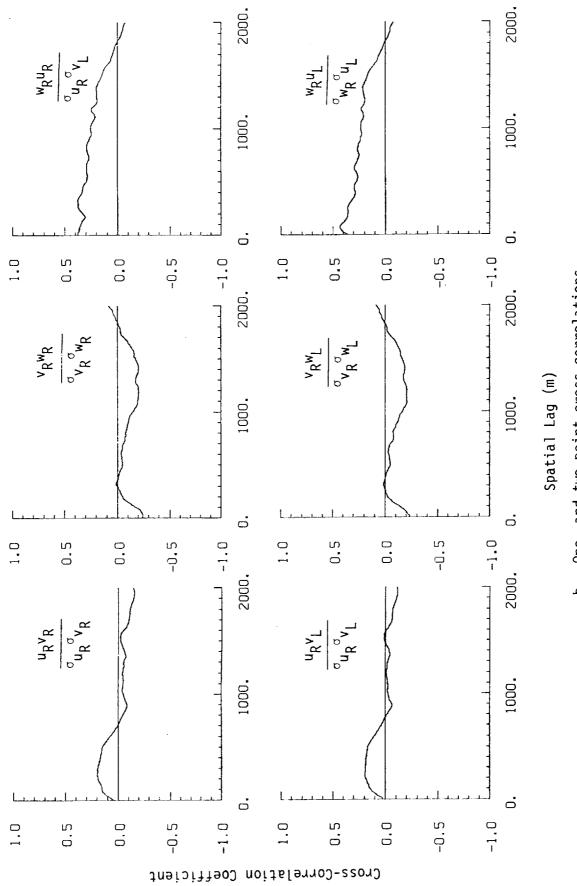
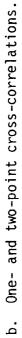
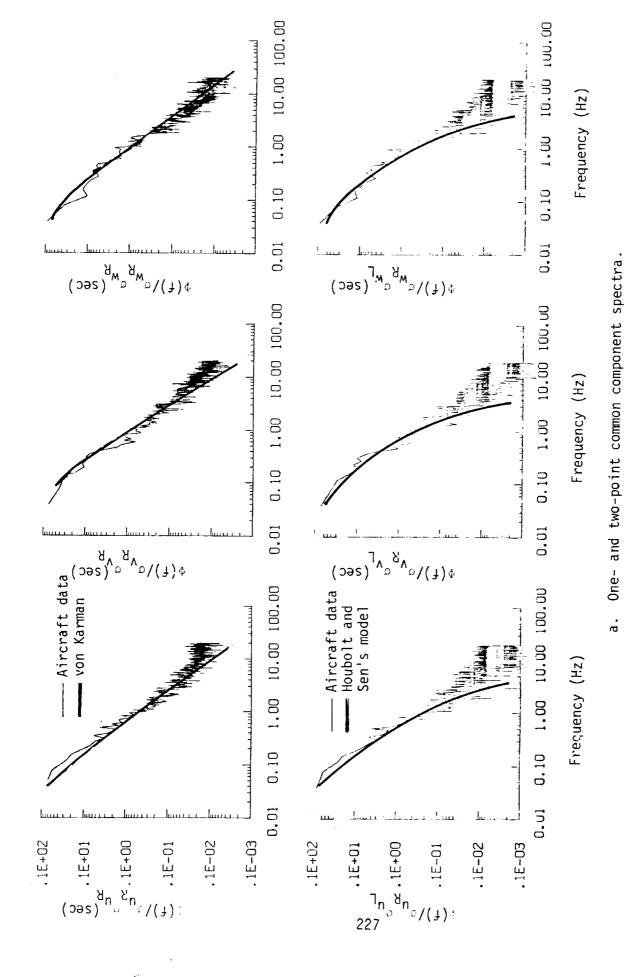




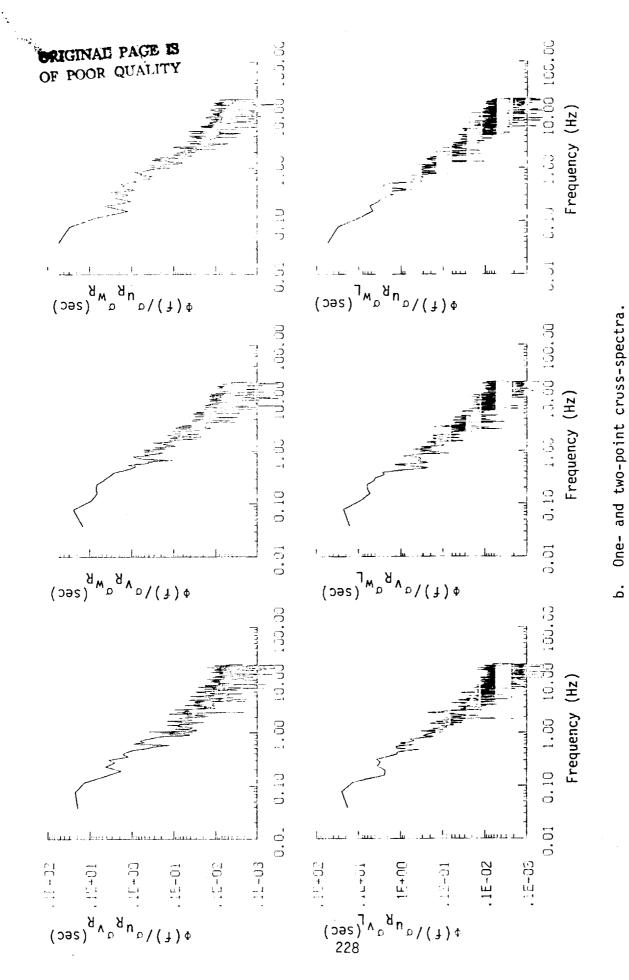
Figure A.33. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 7 (r = degree of non-Gaussian).

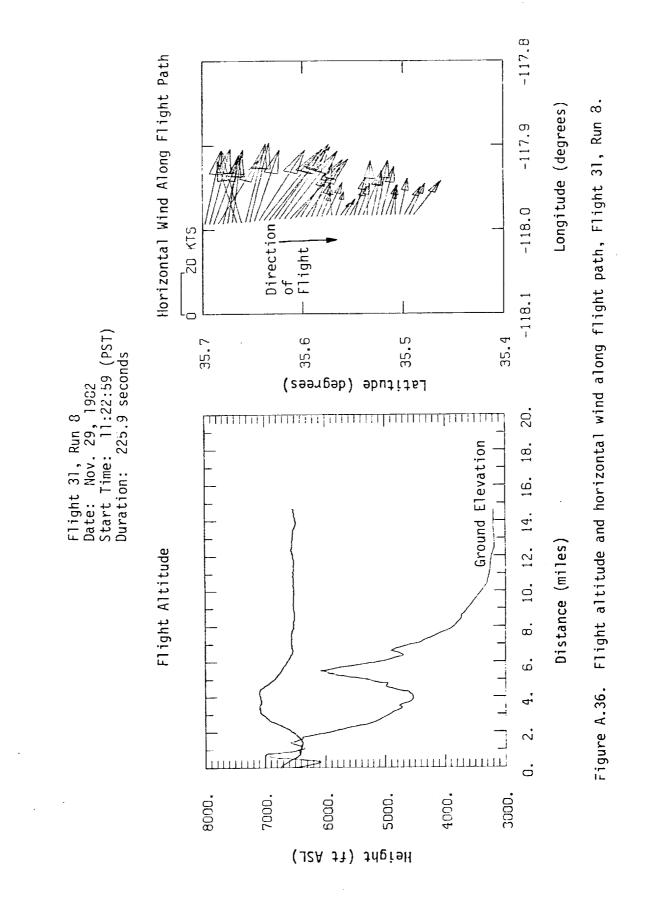




Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 7. Figure A.35.

• •




Figure A.35. (continued).

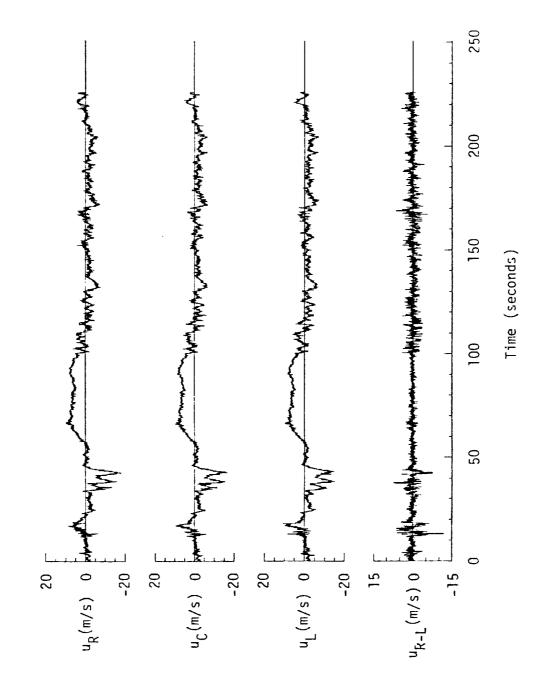
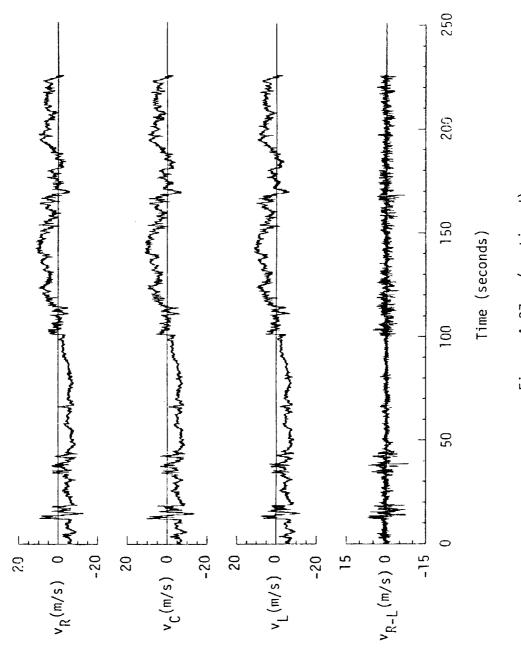
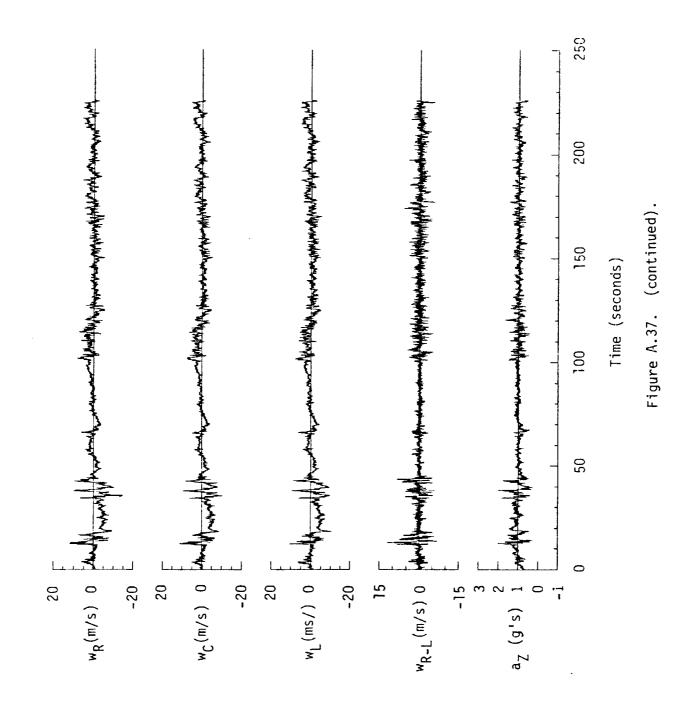

ORIGINAL PAGE IS OF POOR QUALITY


TABLE A.14. List of All Parameters Measured and Their Range of Values, Flight 31, Run 7.


- .

CHANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD	POINTS
TIME	SECONDS	40859.502	40655.627	40757.56410	40757.60660	58.86447	8156
PHI DOT	RAD/SEC	.160	143	00271	.02918	.02905	8156
		2.067	.159	.99544	1.00084	.10381	8156
4 THETA DOT	RAD/SEC	.099	-,110	.03306	.01370	.01336	8156
P THETA	RAD	.119 .140 354.891	009	.06305	.06569	.01843	8156 8156
O PHI	RAD	.140	084	.00142	.02966	.02963	8156
7 PST 1 8 DEL PST 1	RAD	354.891	275.719	349.38821	349.39191	1.38040	8156
B DEL PSI 1	DEG	3.057 353.009 3.638 3.249 3.891 .230 .124 .133 .175 79.016 61.961 2.062 .160 .174 .217	-5.942	-2.21736	2.61189 348.00093	1.34844	8156
9 PSI Z	RAD	353.009	344.286	347.99832	2,14194	1.37220	8156
O DEL PSI 2	DEG	3.638	-5.376	1.00864	1.02644	.19034	8136
ACEL N LT	GUNITS	3.249	650 -1.336			.22385	8156
2 ACCL N RT	GUNITS	31041	.011			.02920	8156
3 ACEL X CG	GUNITS	+230	079	.00095	.01789	.01787	8156
ACCL Y CG	G UNITS	117	116	01274	.01818	.01297	6156
6 BETA CTR	RAU DAD	.175	149	.00689	.02546		8156
7 TEMP T	DEE E	79.016	77.576	78.47828 61.77957	78.47957	.45001	8156
7 TEMP 1 В ТЕМР Р	DEGE	61.961	61.605	61.77957	61.77957	.01328	8156
9 ACCL 2 INS	GUNITS	2.062	.133	1.00037	1.00562	.10264	8156
O ALPHA RT	RAD	.160	128	.00055	.01438	.01437	8156
BETA RT	RAD	.174	129	.01674	.02806	.02252	8156
Z ALPHA LT	RAD	.217	078	.02815	.03163	.01442	8156
3 BETA LT	RAD	. •151			.02465	.02253	8156
4 PST 00T	RAD/SEC	151 .085 13.570	095		.01892	.01873	8156
5 TEMP TOT	DEG C	13.570	7.170		10.40512	1.51067	8156
6 QC LT	PSID	.903	.627	.74751		.03939	8156
27 OC CTR	PSID	.840	. 591	.71422	.71521	.03759	8156 8156
28 CC_RT	PSID	. 670	.612	.73949	.74053 11.33649	.03936 .01311	8156
29 PS	PSIA	.670 11.383 7.140 -1.938 .076 .166 .140 -8.750 -8.678 4.710	11.282			.57999	8156
SU TEMP IRT	VOLTS	7.140	4.794 -9.759	-7.46488		1.47513	6156
SI HYGROM	DFGC	-1.935	.073	.07456		.00065	8155
	PSID	•010	.069	.13343		.02722	8156
	PS10	.166 .140	.101	.11580		.01235	8156
35 D.C.2_ R.I	P310 .	-8.750	-9.551				8156
75 DAK 36 DAL	066	-8.678	-9.092			.12566	8156
37 DELEV	DEG	4.710	3.306	4.55243	4,55381	.11232	8156
BE DELEV	DIG	.022	350	33087	.33099	.00895	8156
39 DRUD	DEG	9.548		9.16363	9.16672	.23797	8156
	PCT MAX	64.551	49.841	63.89992	63.90119	.40372	8156
И рінрі	PCT HAX	64.348	49.825		63.61871		8156
2 DILP	POSITION	1.182	.418	.44116	.44144	.01591	8156 8156
3 DSB	POSITION	.408	.006		.23548	.00781	8156
O TO G	METERS	7529228.122	7522746.854		***************************************	1883.47666 .01834	8156
	DEGREES	72.849	72.786			.00249	8156
tong	DEGREES	-117.978	-117.986 35.579	35.66524		.05080	8136
7 LAT	DEGREES	35.754	.026		36.00202	35.53582	8156
B TPK ANG	DEGREES	359.961 6.200	6.039	6.10577		.02499	8156
IS HUG	RADIANS	7.474	876		4,16317	1.97253	8156
OVE	H/SEC	101.162	87.945	95.43015	95.51802	4.09544	8156
I VN	HISEC	2.175	2.103		Z.13597	.00929	8156
ALTITUDE	KM Degrees C	8.464	2.357	5.39005	5,56526	1.36553	6156
53 TEHPC 54 EW WND SPD	KNOTS	60.593	19.506	42.50833	42.84876	5.39092	8156
		20.659	-21.728	-4.07377		6.39219	8156 8156
6 WIND SPEED		41 194	19,863	43.23778	43.51399	4.89530	8156
57 WIND DIREC	KNOTS KNOTS DEGREES	303.845	245.044		276.05272	9.27708	8156
SE WIND DIR2	DEGREES	113:042	65.044			9.27710 9.27710	8156
59 WIND DIR3_	DEGREES	303.845 303.845 109.065	245.044			9.27710	8156
50 WIND DIR4	DEGREES	303.845	245.044	275.89686	100.97547	2.74714	8156
ST AIRSPEED R	M/SEC	109.065	91.750			2.67067	6156
52 AIRSPEED C	M/SEC	107.536	90.222			2.72263	6156
AIRSPEED L	N/SEC	111.063	92.927			9.28512	8156
54 DELTA ALT	RETERS	71.366	779	34.34776	35.5u321	8.98441	8156
5 INRTL DISP	HETERS	56.331 12.332			3.03782	3.03801	8156
GG UG RIGHT	M/SEC	12.332	-8.184			3.03120	8156
57 UG CENTER	HISEC	12,289	-8.519			3.07718	8156
68 UG LEFT	HISEC	9.833	-9.465			3.00294	8156
69 VG RIGHT	MISEC	10.724	-10.387	.00890	3.03892	3.03910	8156
70 VG CENTER	H/SEC H/SEC	8.489			3.06967	3.06984	8156 8156
71 VG LEFT	M/SEC	12.808	-8.420	.00545	2.23956	2.23969	8156
72 WG RIGHT	N/SEC	11.798	-9.29	7 .00860		2,15323 2,22704	8156
73 WG CENTER			-8.044	6 °0095	2.22691	C+ C C I W4	4170
74 WG LEFT	H/3EC	101001					



v i

-

Ē

TABLE A.15.	Average Turbulence Parameters, Integral Length Scales, and
	Correlation Coefficients of Gust Velocities, Flight 31, Run 8.

4.

- 1. Mean Airspeed (m/s): $\frac{\overline{V}_{L}}{103.22} \frac{\overline{V}_{C}}{101.05} \frac{\overline{V}_{R}}{102.86}$
- 2. Standard Deviation of Gust Velocities (m/s):

_∽uR	<u> </u>	wR
3.93	5.17	2.52
σuC	σvC	_∽wC
3.89	5.18	2.36
∽uL	σvL	σwL
3.89	5.20	2.42

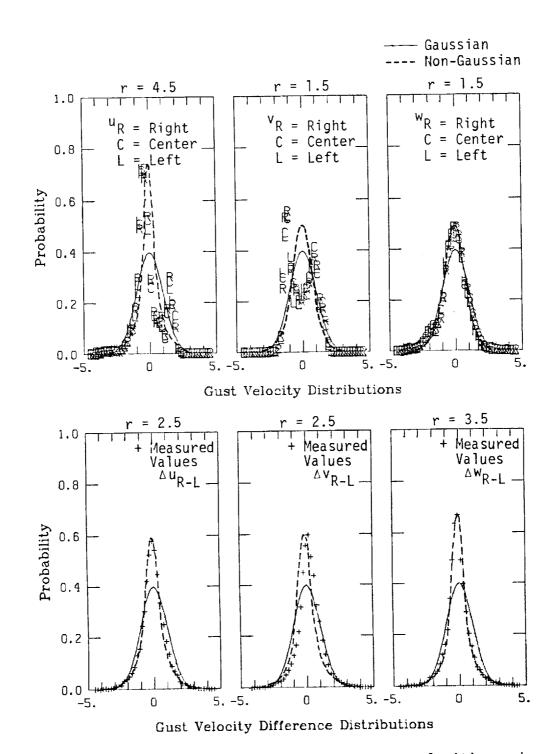
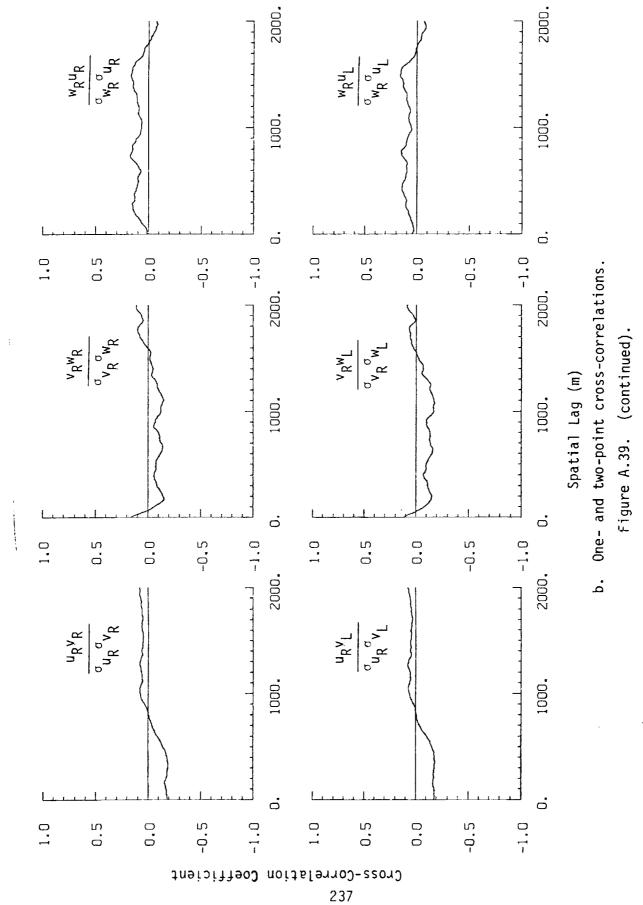
3. Standard Deviation of Gust Velocity Differences (m/s):

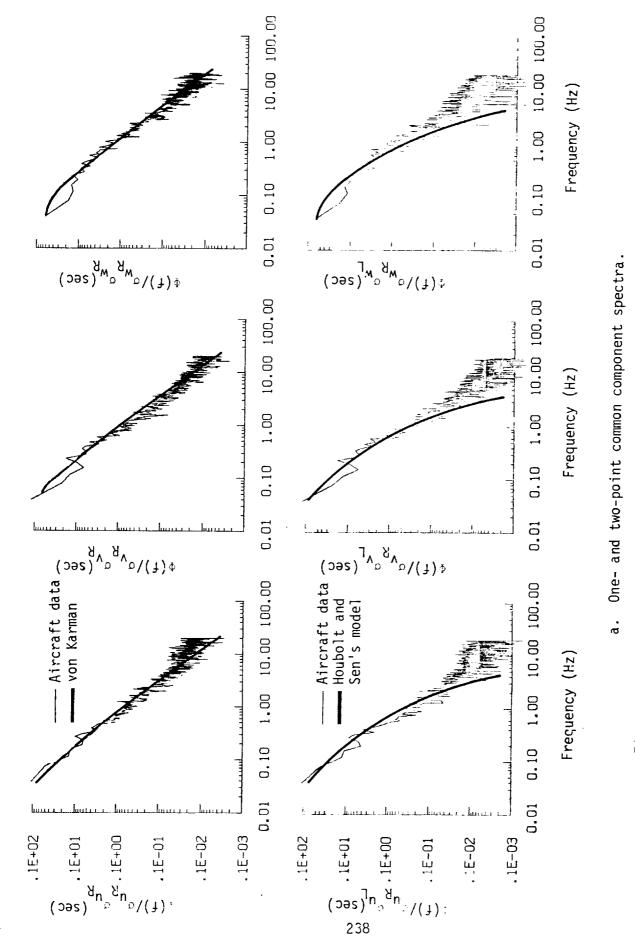
σ∆uRL	₫۵vRL	₫۵wRL
1.22	1.08	1.31

Integral	Length	Scale (m):
L _{uR}	LvR	LwR
306.7	364.4	232.9
LuRL	Lvrl	LwRL
302.5	380.7	249.6

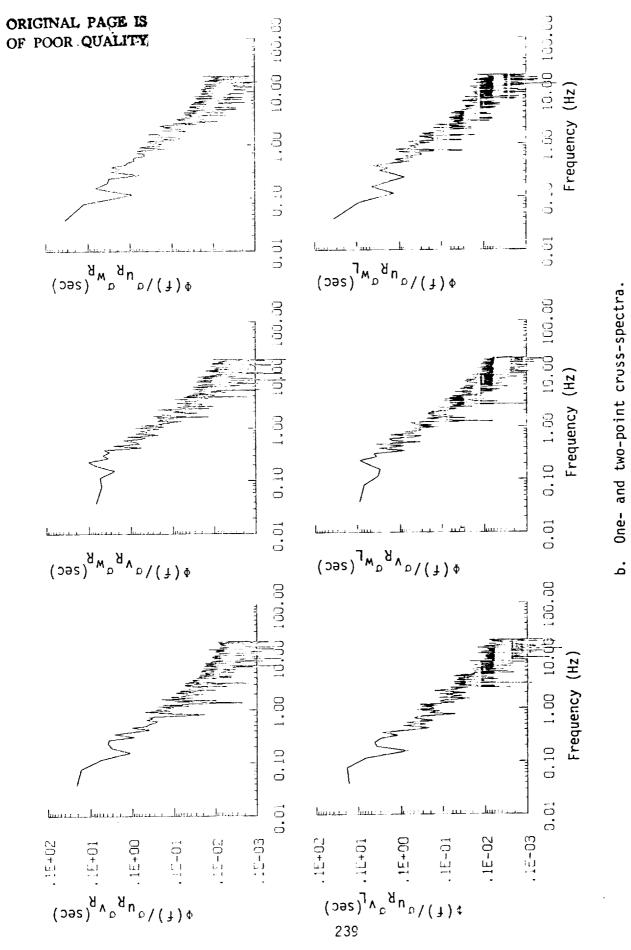
5. Correlation Coefficient of Gust Velocities:

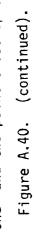
^{URUL} /σ _{UR} σ _{UL}	<u>νϝν</u> μ/σ _{νR} σ _{νL}	<u>WRW</u> [/σ _{WR} σ _{WL}
0.89	0.81	0.80
$\frac{u_R v_R}{-0.20}$	$\frac{\nabla_{R} \overline{W}_{R}}{\sigma_{VR} \sigma_{WR}}$	WRUR/OWROUR
-σ.20 u _R v _L /σ _{uR} σ _{vL}	0.15 VRWE/ _{gvR} gwF	0.00 w <u>Ru</u> [/ơ _{wR} ơ _{uL}
-0.19	0.10	0.03

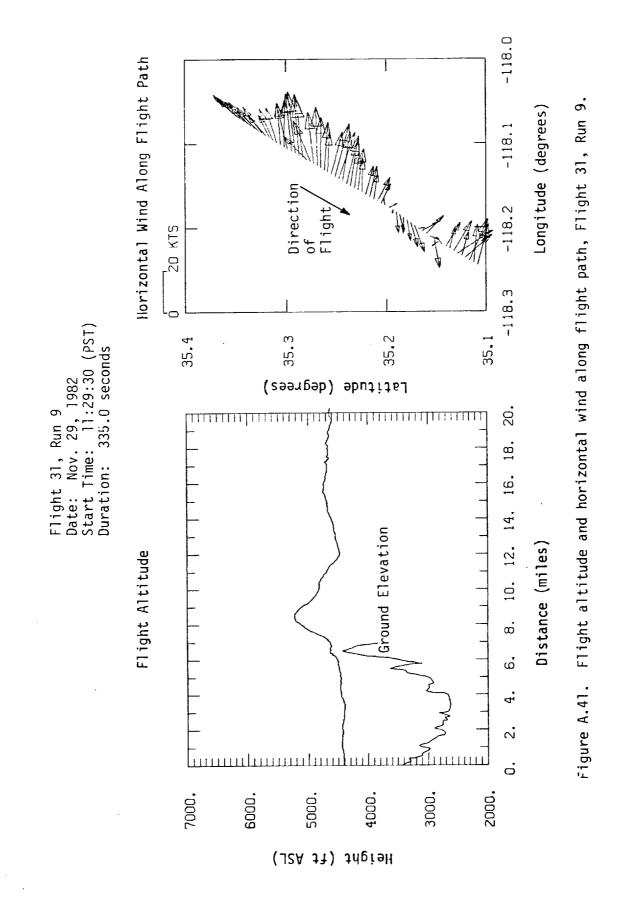

Figure A.38. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 8 (r = degree of non-Gaussian).

Comparison of normalized one- and two-point correlation functions for gust velocities with theoretical models, Flight 31, Run 8.




--

-



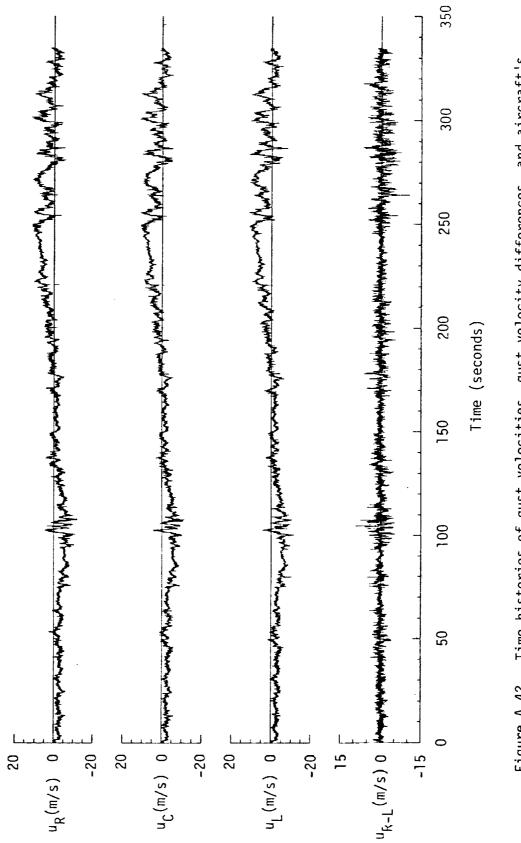
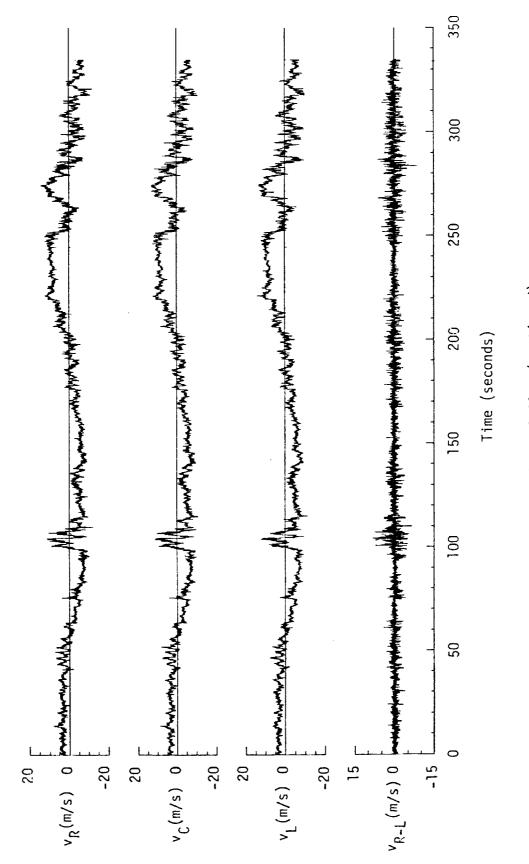

ORIGINAL PAGE IS OF POOR QUALITY

TABLE A.16. List of All Parameters Measured and Their Range of Values, Flight 31, Run 8.


Ŧ

CHANNEL 1 TIME 2 PHI DOT 3 ACCL N CG 5 THETA.DOT 6 PHI 7 PSIL 7 DEL PSI 2 10 DEL PSI 2 11 ACCL N LT 12 ACCL N LT 13 ACCL N LT 14 ACCL Y CG 15 ALPH CTR 16 BETA CTR 17 TEMP P 19 ACCL Z TMS 20 ALPHA CTR 21 BETA RT 22 BETA ALT 23 BETA LT 24 PSI DOT 25 TEMP TOT 26 C TR 27 BCCRT 29 PS 30 TEMP TRT 31 MYGROM 32 OC2 LT 33 DRUD 34 OC2 RT 35 DAR 30 DCUD 34 DC2 CTR 35	ENITS	HIGH	LOW	MEAN	RMS	STD	POINTS
1 TIME	SECONDS	41204.439	40978.539	41091.48890	41091.54066	65.22255	9037
PHI DOT	RAD/SEC	.311	284	00291	.04454	•04444	9037
ACCL N CG	G UNITS	1.965	.336	1.00164	1.01212	.14526	9037
THETA DOT	RAD/SEC	105	101	.00347	.01625	.01588	9037
5 THETA	RAD	• 245	059	.06134	.08022	.05170	9037
• PHI	RAD	• 115	190	.00355	.03407	2 08404	9037
/ .PSI_1		. 190.048	179.129	103-90902	2.05172	2.05055	9037
E DEL PSI 1		547 401	527.283	542.02722	562.03089	1.99686	9037
9 PSI 2	NAU	6.284	-4.448	40391	2.09569	2.05651	9037
11 ACCI N IT	GUNTTS	3.488	-2.048	1.01449	1.05546	.29122	9037
12 ACCL N RT	G UNITS	4.347	-1.631	1.01139	1.05700	.30717	9037
13 ACCL X CG	G UNITS	.234	072	.06389	.08153	.05066	9037
14 ACCL Y CG	G UNITS	.110	129	00294	+02241	.02222	9037
15 ALPHA CTR	RAD	.103	106	01855	.02592	.01795	9037
16 BETA CTR	RAD	.187	190	.00385	• • • • • • • • • • • • • • • • • • • •	24403	9037
1/ TEMP_1	DEG F	76.497	75.418	10.00702	10.00002	.02734	9037
IE TEMP P	DEG F	01.901	288	1.60677	1.01739	.14657	9037
THACCE Z INS	G GNILD	-126	108	00610	02196	.02109	9037
21 ALFRA RI 21 ALFRA RI		-192	175	.01325	.03237	.DZ954	9037
22 41 044 17	PAD	.131	064	.02118	.02615	.01855	9037
23 AFTA 1 T	RAD	.161	168	.00708	.02982	.02897	9037
24 PSI DOT	RAD/SEC	.089	103	.00229	+02379	.02368	9037
25 TEMP TOT	DEG C	12.192	8.057	10.24093	10.28370	.93706	9037
26 QC LT	PSID	1.033	.619	.78896	.79234	.07306	9037
27 QC_CTR	PSID	.986	.601	.75379	.75707	.07038	9037
78.QC_RT	_ PSI0	1.019	.622	./81/2	+/0010 11 60186	.0/300	9037
29.PS	_PSIA	11.613	11+241	5.78043	5.86605	.99750	9037
JU TEMP IRT	VULIS	- 178	-8.976	-6.30606	6.46187	1.41052	9037
37.002 17	DEG C		068	.06942	.00942	.00044	9037
33 002 018	PS10	.177	.140	.16480	.16511	.01011	9037
34 0C2 RT	PSID	.163	.132	.14798	.14830	.00973	9037
35 DAR	DEG	-8.722	-9.330	-8.97011	8.97170	.16850	9037
36 DAL	DEG	-8.403	-8.651	-8.47336	8.47367	.07261	9037
37 DELEV	DEG	4.955	4.682	4.79274	4.79341	.07993	9037
38 DSTAB	DEG	347	360	35328	•3033U	.00331	9037
39 DRUD	DEG	10.11/	4.172	45 43407	65.63645	. 22374	9037
40 DTHRR	PCT_MAX	60.ULD	66.866	65.46687	65-46751	.29866	9037
41 DIHKL	BOSTITA	.395	.348	.36829	.36853	.01324	9037
42 0767	POSTTION	.285	. 260	.27283	.27293	.00721	9037
44 D TO 6	HETERS	7526165.491	7520103.629	*********	*********	1751.03911	9037
45 8 TO D	DEGREES	72.889	72.797	72.84398	72.84399	.0Z706	9037
46 LONG	DEGREES	-117.981	-117.992	-117.96549	117.98549	.00364	9037
47 LAT	DEGREES	35.700	35.487	35.59327	32.24333	.00272	****
40 TRK ANG	DEGREES	181.966	174.296	177.68239	177.69231	1.87781	9037
47 HDG	RADIANS	3.331	3.137	3.22910	3+62431 . 5 48080	3.50760	9037
50 VE	H/SEC	10.753	-118.049	-104.88967	105.09696	6.59786	9037
51 VN	M/SEC	-94.703	1.942	2.01994	2.02084	.06023	9037
52 ALTITODE	DEGREES C	6.914	3.293	5.14864	5.19791	.71407	9037
SAFY WND SPD	KNOTS	49.366	2.533	23.79845	25.75772	9.83417	9037
55 NS WND SPD	KNDTS	23.820	-27.249	-8.19980	11.33378	7.82462	9037
56 WIND SPEED	KND TS	51.412	3.724	25.99354	28.14098	10.78257	9037
57 WIND DIREC	DEGREES	330.181	225.791	288.65429	289.01675	14.51050	9037
58 WIND DIR2	DEGREES	150.101	42.791	200.02432	289.01880	14.51059	9037
59 WIND_DIR3_	DEGREES	330.181	223.791	288.65435	289.01680	14.51059	9037
60 WIND DIR4	DEGREES	114.033	92.210	102.86079	102.96626	4.65956	9037
61 AIRSPEED R	_ N/SEC	115.066	90.199	101.05040	101.15233	4.54017	9037
67 AIRSPEED L	N/SEC	117.624	91.603	103.32909	103.43172	4.60668	9037
DELTA ALT	METERS	109.099	-113.141	-35.17826	69.74513	00.2268	9037
AL INRTL DISP	HETERS	97.056	-117.254	-39.27849	70.64242	36.71910	···· ·· ••••••
66 UG RIGHT	M/SEC	9.631	-18.056	.00000	3.893072	3.89225	9037
67 UG CENTER	M/SEC	9.630	-16.490	.00000	3.80010	3.89041	9037
68 UG LEFT		10,558	-13,004	-07236	5.17998	5.17977	9037
69 VG RIGHT	N/SEC	11.207	-13.431	.07506	5.18544	5.18518	9037
70 VG CENTER		11.347	-12.009	.06833	5.20477	5.20461	9037
71.00 LEPT	N/SEC	11.509	-14.749	.00751	2.52506	2.52519	9037
72 WG CENTER	H/SEC	10.991	-10.188	-01268	2.36776	2.36786	9037
TANG LEFT	H/SEC	10.205	-10.885	.01106	2.42446	Z.42457	4037
· · · · · · · · · · · · · · · · · · ·							

are and the fight the and the water and and and and are servered and and an an and all the water of the or a property of	A ALMAN A MARKAN A M	And we are a set of the stand of the set of		- verifytet were and see and more and see and at a second and the second and the second second and the second s	300 350	
Stander Phil State Stat		And a second field for the second		annendet fragterense	250	
an Antonio Carlos and an Antonio Carlos				والمردمة والمرجعة والمرجعة المحاجمة والمحاجمة والمحاجمة والمحاجمة والمحاجمة والمحاجمة والمحاجمة والمحاجمة والمح	200	Time (seconds) A.42. (continued).
and the second		and the second		وجهار والمحامدة المحامدة والمحامة	150	Time (s Figure A.42.
and fill	A A A A A A A A A A A A A A A A A A A	1			100	
مدينيونيونيونيونيونيونيونيونيونيونيونيونيو		man de ser al providente de ser al com	and the state of the second	mado and the state of the state	50	
20 F 1/s) 0 E	-20 [- 20 [- 1/s) 0 [- [-		-20 [-]5 - m/s) 0 [-15 - 3 - 2	-i -	
20 w _R (m/s) 0	-20 20 wc(m/s) 0	-20 20 w _L (ms/) 0	-20 15 w _{R-L} (m/s) 0	31- 22 31- 22	Ϋ́,	

÷

•

Average Turbulence Parameters, Integral Length Scales, and
Correlation Coefficients of Gust Velocities, Flight 31, Run 9.

- 1. Mean Airspeed (m/s): $\frac{\overline{V}_L}{103.15} \frac{\overline{V}_C}{100.84} \frac{\overline{V}_R}{102.84}$
- 2. Standard Deviation of Gust Velocities (m/s):

	∽vR	∽wR
4.10	5.12	2.40
°uC	_ ^σ νC	σwC
4.10	5.10	2.21
σuL	σνL	σwL
4.18	5.12	2.34

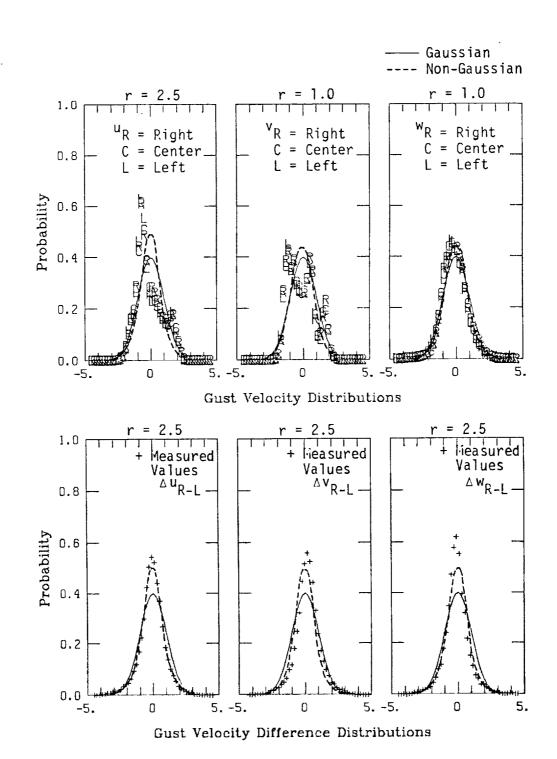
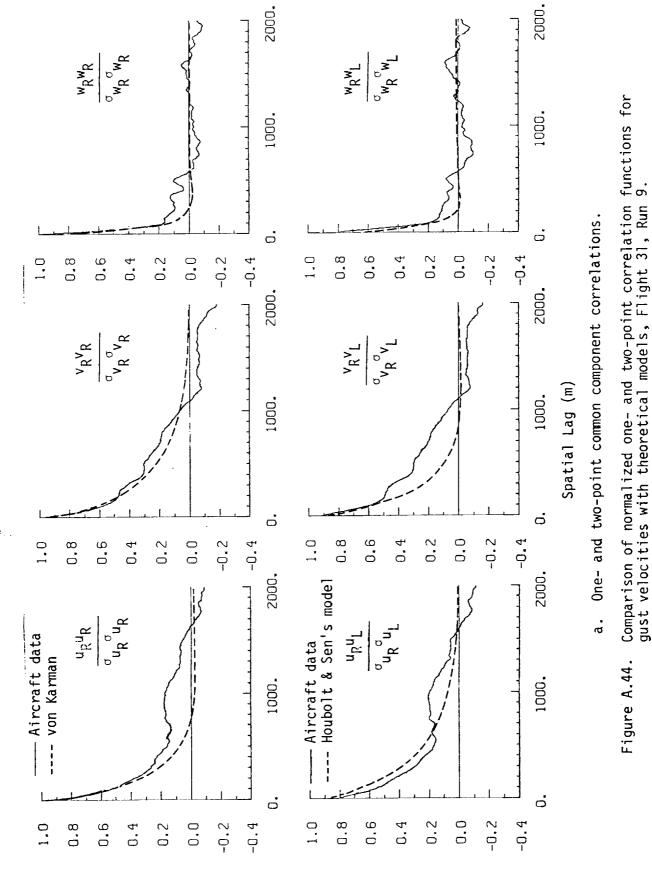
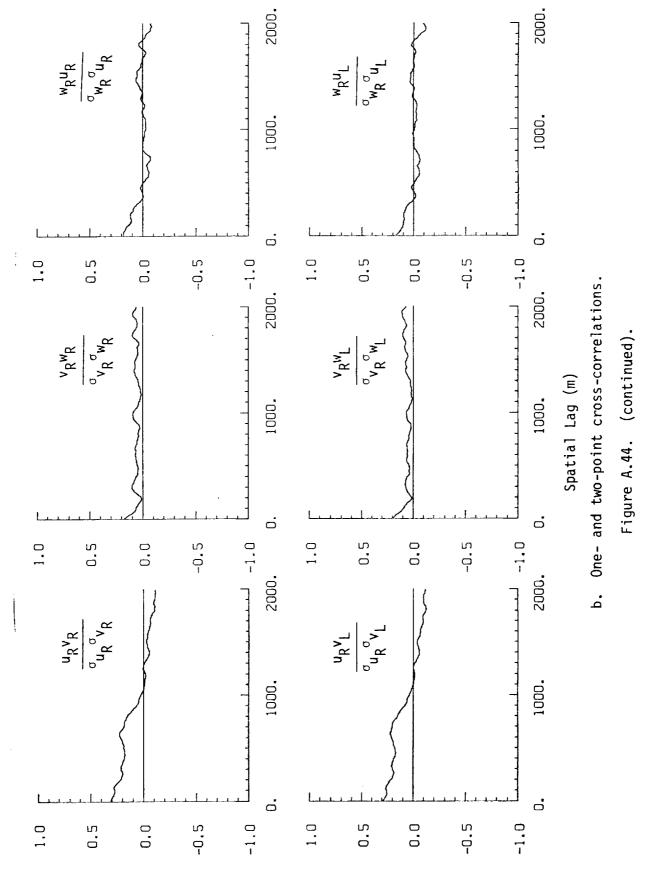
3. Standard Deviation of Gust Velocity Differences (m/s):

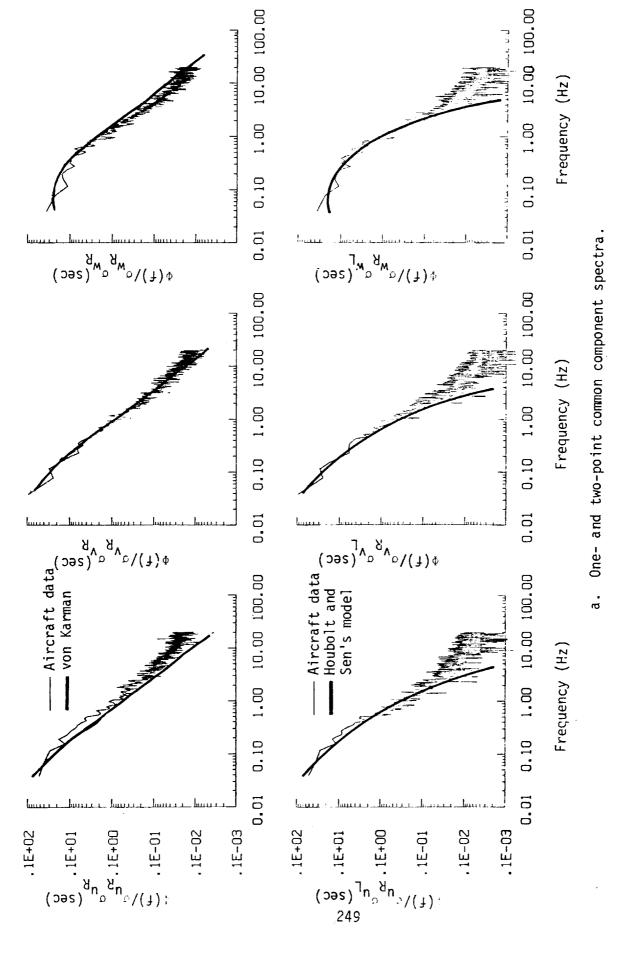
σ∆uRL	σ∆vRL	°∆wRL
1.35	1.16	1.45

۰.

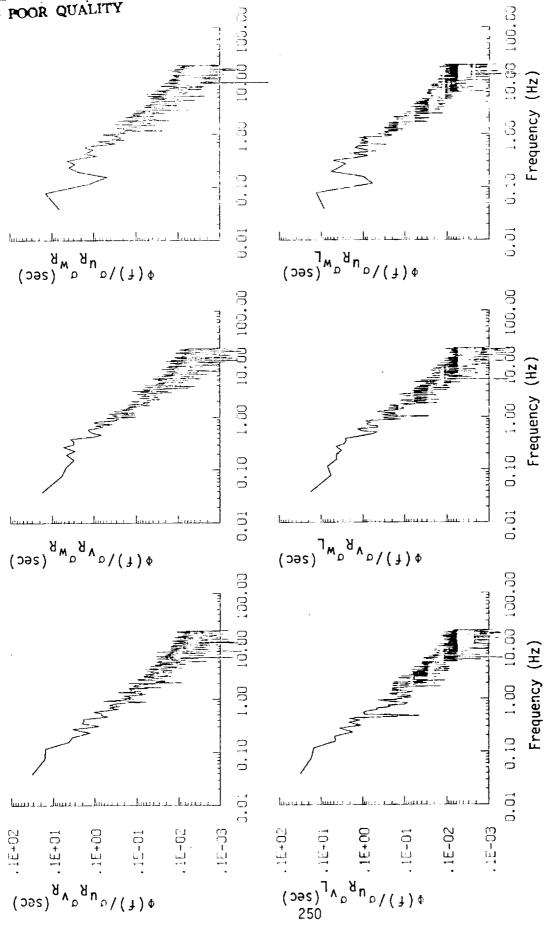
- 4. Integral Length Scale (m): $\frac{L_{uR}}{327.8} \frac{L_{vR}}{338.0} \frac{L_{wR}}{93.9}$ $\frac{L_{uRL}}{341.5} \frac{L_{vRL}}{338.0} \frac{L_{wRL}}{83.9}$
- 5. Correlation Coefficient of Gust Velocities:

<u>^uR^uL</u> / _a ^a n ^L	<u>vRvL</u> /σ _{vR} σ _{vL}	<u>wrw</u> _/ _{σwr} σ _{wL}
0.80	0.90	0.80
$\frac{\overline{u_R v_R} / \sigma_{u_R} \sigma_{v_R}}{0.30}$	<u>vRWR</u> /σ _{VR} σ _{WR} 0.20	<u>₩RUR</u> /σ _{WR} σ _{UR} 0.19
<u>uRvL</u> /σ _{UR} σ _{VL} 0.30	<u>νRwL</u> /σ _{VR} σ _{wL} 0.20	WRUL∕σ _{WR} σUL 0.18

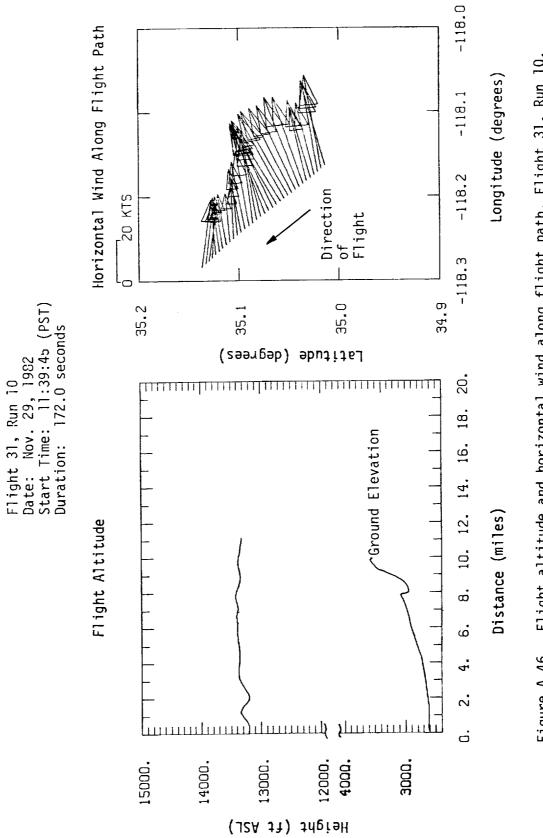

Figure A.43. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 9 (r = degree of non-Gaussian).

Jusicition Coefficient


tnaipittaol noitafarrol-scorl

-

ORIGINAL PAGE IS OF POOR QUALITY


One- and two-point cruss-spectra. Figure A.45. (continued).

þ.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE A.18. List of All Parameters Measured and Their Range of Values, Flight 31, Run 9.

	s HIGH	LOW	MEAN	RMS	STD	POINTS
CHANNEL UNIT	S Hilun (DS 41764.552 EC 318 (TS 1.921 EC 112 186 152 220.340 5.255 581.839 5.696	61369.60Z	41537.07670		96.70255	13399
2 PHT DOT RAD/S	SFC .318	435	00239	.05126	.05120	13399
ACCI N CG G UNI	1.921	517	1.00123	1.01562	.17035	13399
4 THETA DOT RAD/S	EC .112	089	.00301	.01688	.01661	13399
5 THETA RAD	.188	036	.05660	.06526 .04819	.03248	13399 13399
6 PHI RAD	+152	260	00262 213.51567		2.21339	13399
/ PSI 1 RAD	5.255	-7.264		2.55017	2.17427	13399
	581,839	569.517	575.30539	575.30928	2.11500	13399
9 FSI 2 RAD 10 DEL PSI 2 DEG	5.696	-6.888	92423	2.37529	2.18819	13399
ITACCE N LT G UNI	5.696 ITS 3.334	-1,148	1,01390	1.06483	.32540	13399
12 ACEL N RE G UNI	115 4.001	-1.443	1.01099	1.06704	.34128	13399 13399
TRACEL X CG_ G UNI	.178	012	.05691 00127		.03279 .02391	13399
TAACCL Y CG G UN	115 .102	104 174				13399
ISALPHA CTR RAD	- 164	141	.01160	.03247 .03349 76.52426 61.87728	.03142	13399
17 TEMP T DEG 1	F 76.857	18,821	76.52245	76.52426	.52620	13399
18 TEMP P DEG	F 61.961	47.322	61.87709		.15120	13399
19ACCL Z INS G UN	1.931	390		1.01953	.17030	13399 13399
ZUALPHA RT RAD	.085	186		.02266 .03524	.02072 .02891	
ZIBETA RT RAD	.170	120 152		.02246	.01950	13399
22 ALPHA LI RAD	.143	123	.01432	63543	.02910	13399
24 PST DOT RAD/	SEC .097	093	.01432 .00253	.02486	.02473	13399
25 TEMP TOT DEG	C 14.653	10.203	12.68550	12.71776	.90524	13399
26 QC LT PSID	1.074	+ 651	.83864	.84041	.05450	13399
270C CTR PSID	.986	.618	.80057	• 80ZZ9	+05240 +05464	13399 13399
ZBQC_RTPSID	1.039	.642 12.119	.83345	.83524 12.39270	.09177	
29PS P31A	E B-063	4.319		7.17453	.50722	13399
	4.123	-2.329	2.63444	2.15294	1.40139	13399
17 GCZ LT PSID	.079	.074	.07689	.07691	.00150	
33QC2 CTR PSID	-179	.141	.16947	.16976	.01004	13399 13399
34QC2_RTPSID	-169		.15502	.15543 10.00472	.01115	13399
35 DAR DEG	-9.910	-10.242	-9.40686	9.40722	.08209	13399
36 DAL DEG	-4.202	5.345		5.76764	- 21015	13300
32 DSTAB DEG	374	422	40008	5.76764	444301	13399
30 DRUD DEG	11.483	10.402		10.91478	.31864	13399 13399
40DTHAR PCT	MAX 67.969	66.406	67.12432	67.12595	.46708	- 13399
41 DTHRL PCT	MAX 67.773	66.406		.29959	.37408	13399
42 DFLP PUS1	TIUN • 320	.299	.31140	.31147	.005/6	13344
43050 FUST	PS 7508823.590	7484351.808	*********	*********	7011.66724	13399
ASB TO D DEGR	EES 72.886	72.861	72.87323	72.07323	.00/14	13399
46 LONG DEGR	EES -118.062	-118.248	-116.15379	118.15380	.05331	13399 13399
47 LAT DEGR	EES 35.355	35.103				
45 TRK ANG DEGR	EES 216.361	207.622			2.19175 .03910 4.04635	13399
49 HDG RADI	ANS 3.869	3.644 -60.999			4.04635	13399
50 VE H/SE	C -92.909	-90.819	-83.45358		3.71141	13399
51 VN H/SE	5.255 581.839 5.696 175 3.334 175 1.78 175 .102 .007 .164 F 76.857 F 61.961 175 1.931 .085 .170 .144 .143 SEC .097 C 14.653 .1.074 .986 .1.039 .12.509 5 8.063 C 4.123 .079 .12,509 5 8.063 C 4.123 .079 .164 .039 .170 .170 .170 .190	1.338	1.41511	1.41641	.06068	13399
LATEMPC DEGR	EES C 9.502	5.153	7.61940	7.67039	.88298	13399 13399
SAEW WHD SPD KNOT	\$ 39.790	-18.404	11.90551	16.43143 5.88026	11.32521 5.87509	
55 NS WND SPD KNOT	\$ 23.456	-24.192	25178	17.45102	7.07238	13399
SEWIND SPEED KNOT	5 44.252	.125	240.11268		73.87116	13399
57 WIND DIREC DEGR	EES 374.430	-179.655	60.11270	95.23699	73.87120	13399
58 WIND DINZ DEGR	EES 359.936	.142	240.11270	251.21834	73.87120	
COWIND DIR4 DEGR	EES 843.475	-533.217	178.96187	281.19140	216.89805 3.25334	13399 13399
ATRSPEED R HISE	C 114.681	90.490		102.89615		
62 AIRSPEED C H/SE	c 111.755	86.830	100.04162		3.23036	13399
63 AIRSPEED L MISE		-7.522	69.33534	92.13510	60.67753	13399
64 DELTA ALT METE	183 E244240 186 240-844	-10.79	65.39001	89.00817	60.38933	13399
65 INRIL DISP. HEIR	C 11.490	-11.949		4.10986	4.10921	
ST HG CENTER HISE	c 11.356	-11.386		4.10739	4.10755 4.18752	
68 UG LEFT M/SE	C 11.359	-11.150			5.12150	
69 VG RIGHT M/SE	C 13.65	-22.090			5.10012	13399
70 VG CENTER H/SE	C 12.060	-17,501				13399
71 VG LEFT M/SE	te 13.70	-14.12	.02313	2.40782	2.40779	
72 86 R16HT H73	C 13.99	-10.78	,02626	2.21583	2.21210	13399 13399
73 WG LEFT H/SI	EES C 9.302 S 30.700 S 23.456 S 44.822 EES 359.936 EES 179.936 EES 179.936 EES 179.936 EES 179.936 EES 843.475 C 114.681 C 114.681 C 114.681 C 11.356 C 11.356 C 12.865 C 12.865 C 13.761 EC 13.762 EC 13.996 EC 15.640	-13.42	.02631	2.34881	£+370/3	
	-					

Flight altitude and horizontal wind along flight path, Flight 31, Run 10. Figure A.46.

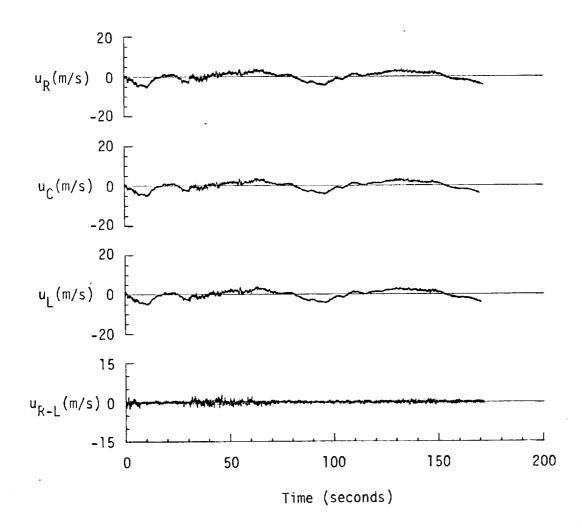
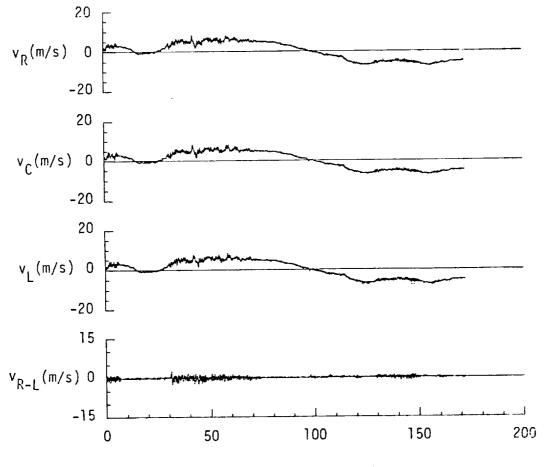



Figure A.47.

Time histories of gust velocities, gust velocity differences, and aircraft's normal accelerations, Flight 31, Kun 10.

Time (seconds)

Figure A.47. (continued).

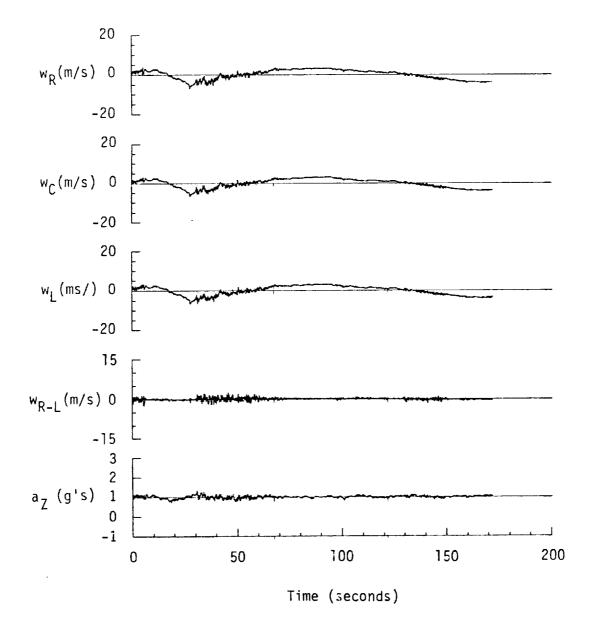
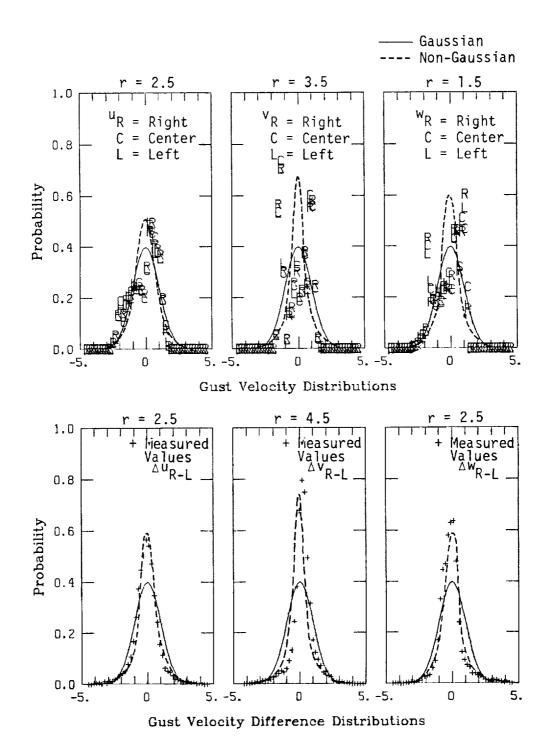
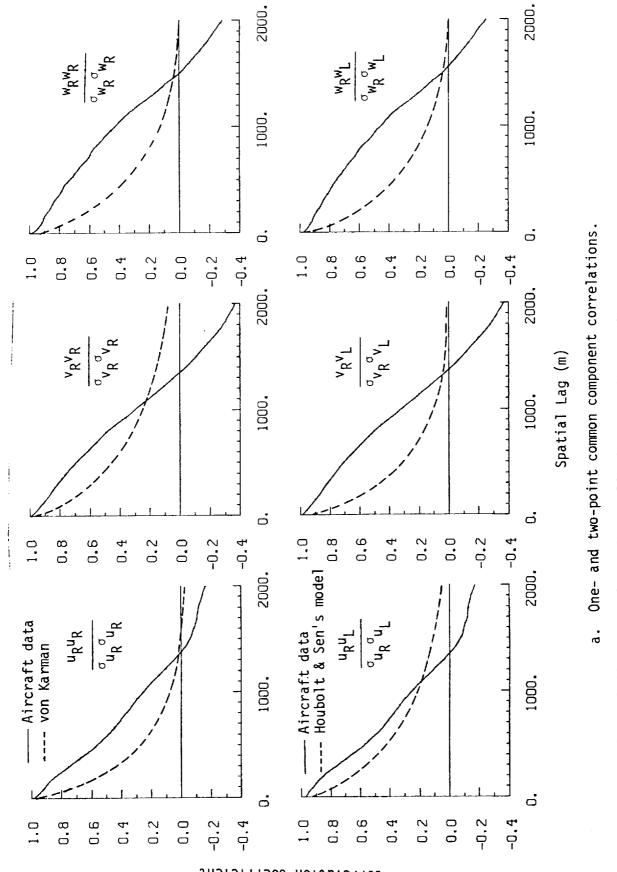


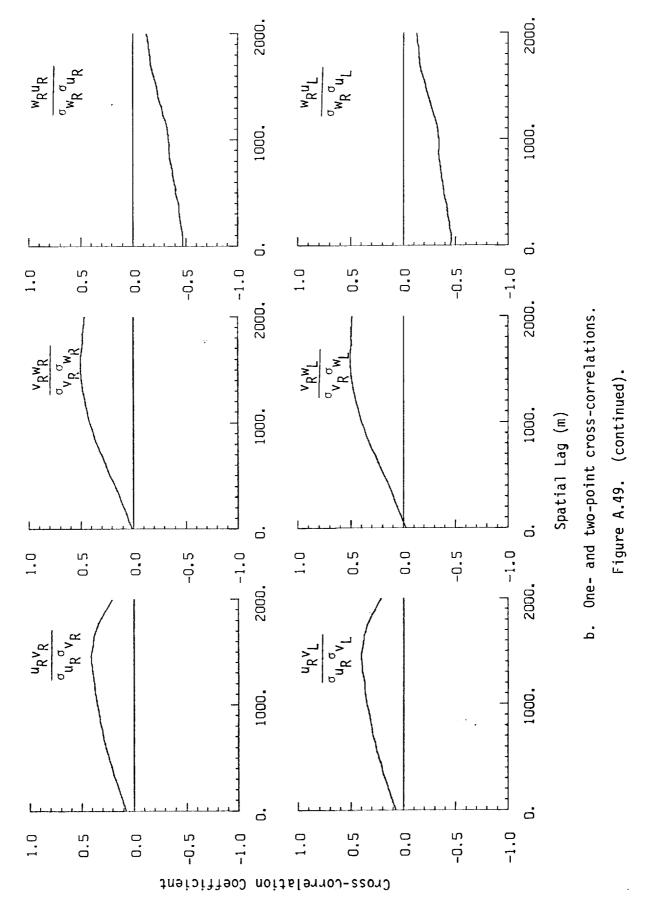
Figure A.47. (continued).

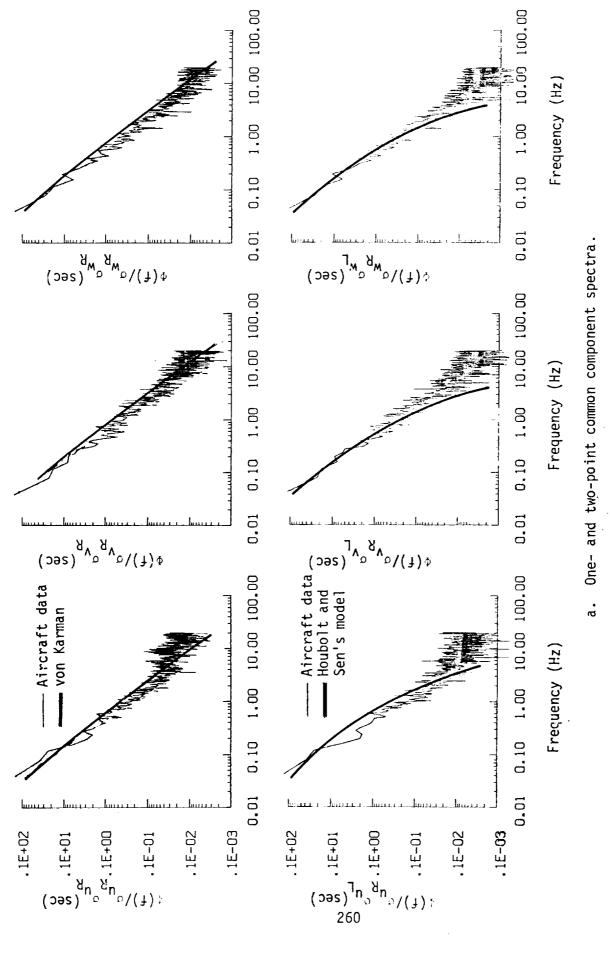
ч Т

- TABLE A.19. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 10.
- Mean Airspeed (m/s): 1. 4. Integral Length Scale (m): ٧I \overline{V}_{C} \overline{V}_R LuR L_{vR} L_{wR} 117.27 115.20 116.70 641.8 729.7 832.2 LuRL LwRL LVRL 2. Standard Deviation of 638.3 742.9 863.8 Gust Velocities (m/s): σuR σvR σwR 5. Correlation Coefficient of Gust 2.04 4.57 2.40 Velocities: σuC σvC σwC <u>uRu</u>L/o_{uR}o_{uL} ៴_៝៴៹៸_{σν}β_{αν} WRWL/GWRGWL 4.58 1.99 2.34 0.98 0.99 0.98 σuL σvL σwL URVR/OUROVR <u>v_Rw_R</u>∕σ_{vR}σ_{w_R} WRUR/OWROUR 2.02 4.61 2.33 0.08 0.00 -0.47 <u>wRu</u>L/gwRguL ^uR^vL/_{σuR}σ_{vL} VRWE/GVRGWI 3. Standard Deviation of Gust Velocity Differences (m/s): 0.09 -0.01 -0.45

مەRL	مvRL	°∆wRL
0.41	0.31	0.38

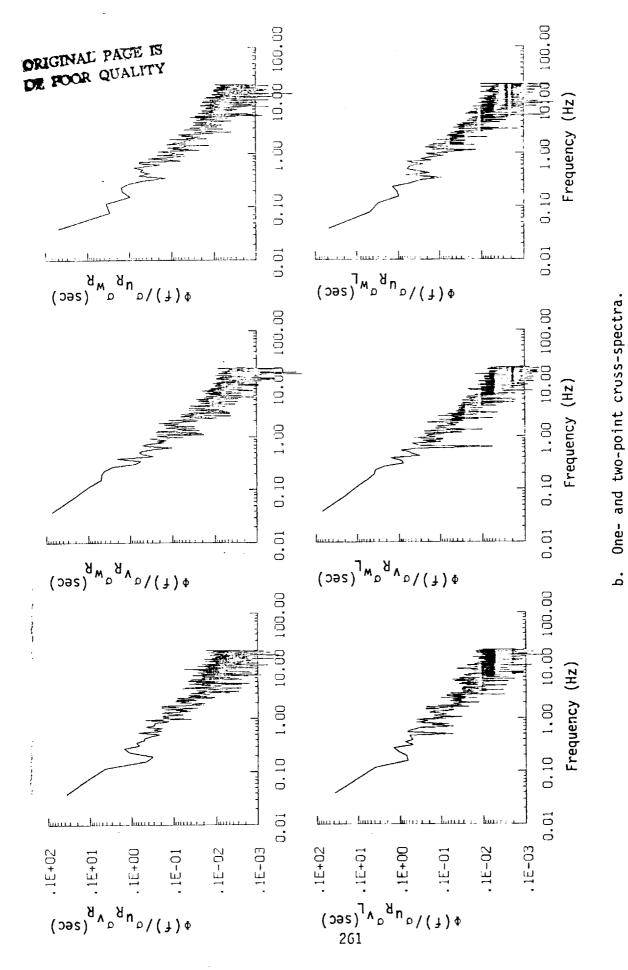



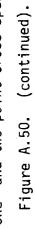

Figure A.48. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 10(r = degree of non-Gaussian).



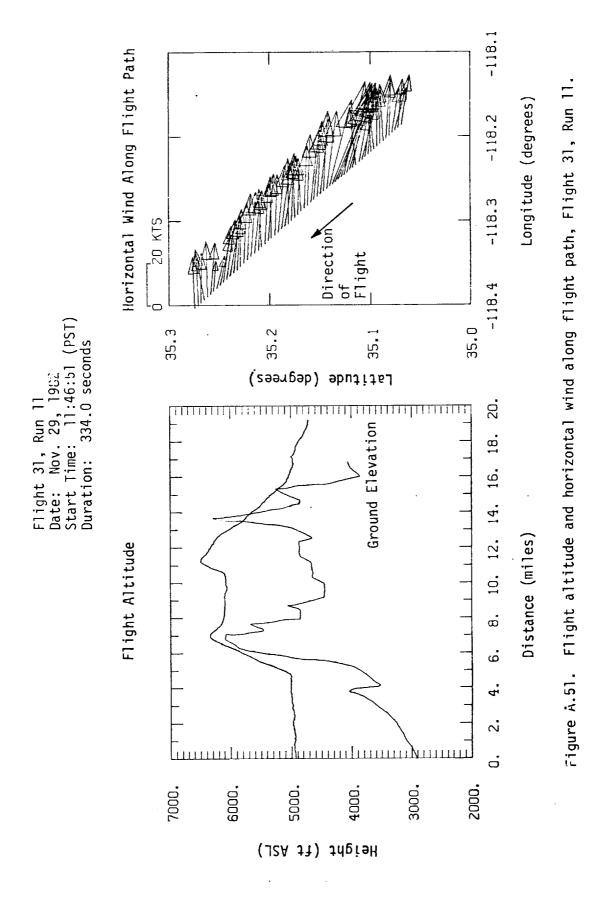
Comparison of normalized one- and two-point correlation functions for gust velocities with theoretical models, Flight 31, Run 10. Figure A.49.

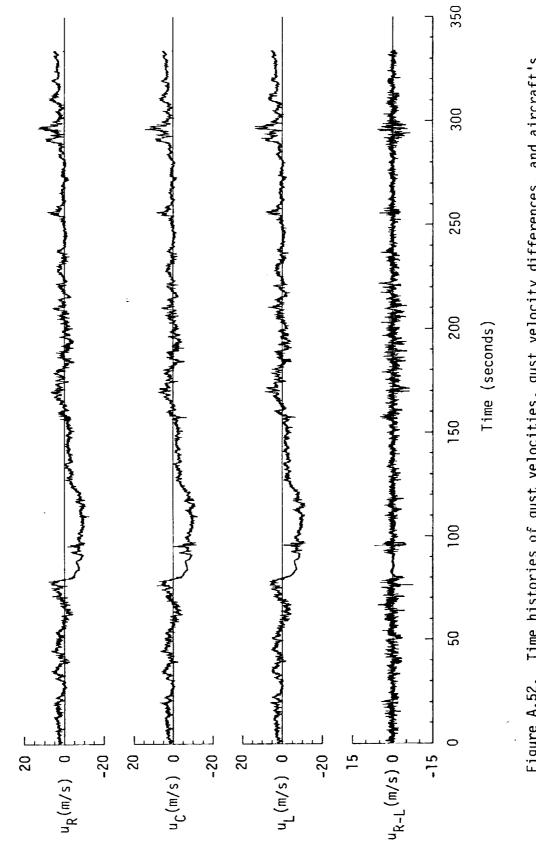
tneisilleol noitsferrol

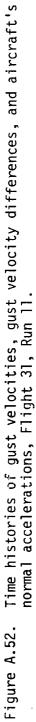

-

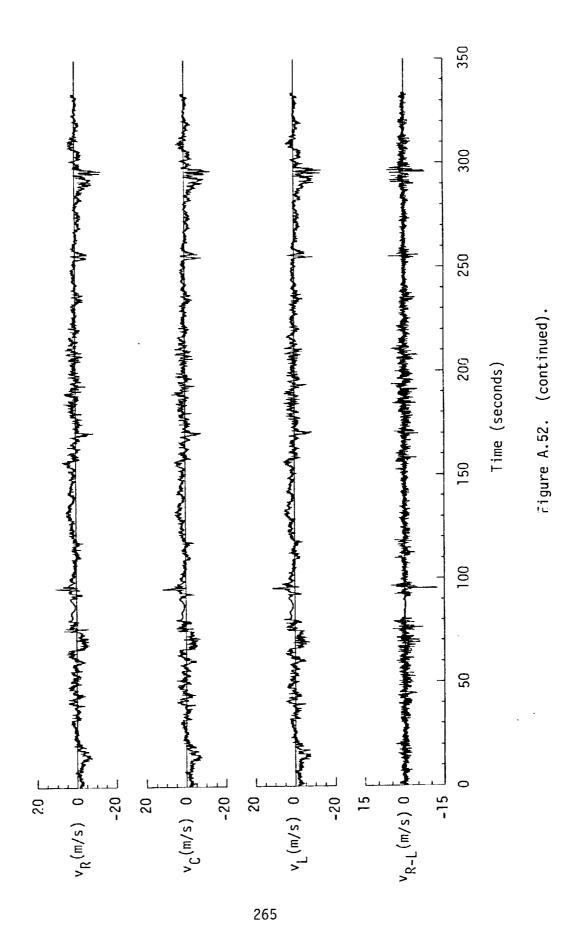


v

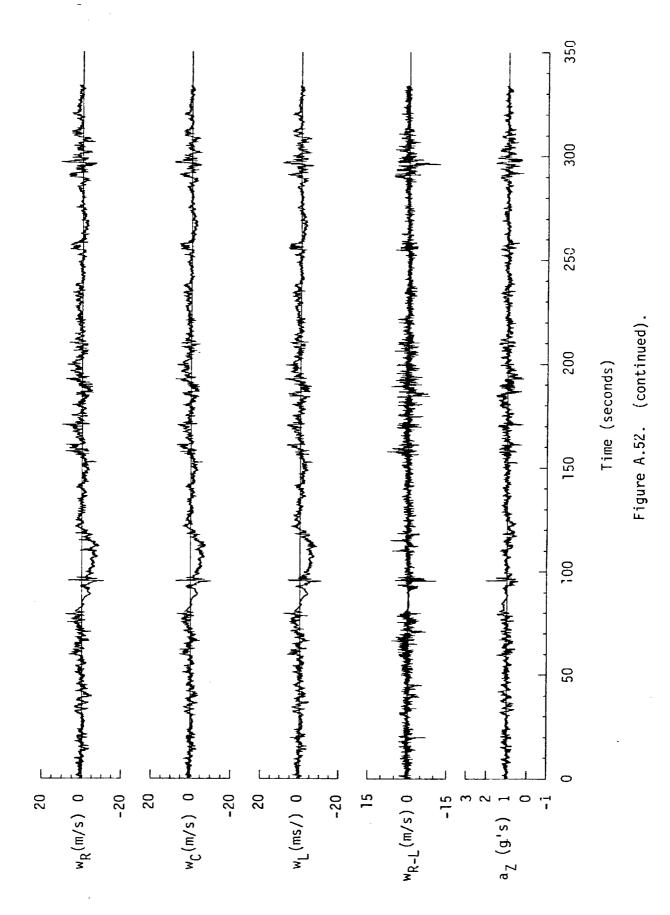



-


ORIGINAL PAGE IS OF POOR QUALITY


TABLE A.20.	List of All Parameters Measured and Their Range of Values,	
	Flight 31, Run 10.	

CHANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD 49.67740	POINTS 6883
2 PAL DOT	RADISEC	42157.541	- 064	42071.51600	01224	.01200	6883
3 ACCL N CG	UNITS	1.305	.729	1.00190	1.00349	.05664	6883
17174 321	RADISES	.033	011	e4169.	.32735	fts65.	1843
5 THETA	RAD	.103	. 004	62685.	.9:514	.05999	6663
C PHI	RAD	.062	0+6	00109	.01970	.01967	6883
7 151 1	RAD	316.794	309.102	312.00796	312.01274	1.72723	6883
8 DEL PSI 1 9 PSI 2	DEG RAD	316.045	-4.355	-1.84339 313.42351	-313.42576	1.18716	6883
10 DEL PST 2	DEG	1.230	-6.153	-3.39606	3.80657	1,71965	6883
11 ACCL N LT	G UNITS	1.535	.412	1.01990	1.02288	.09014	6883
12 ACCL N RT	G UNITS	1.539	. 450	1.01124	1.01594	.09761	6883
13 ACCL X CG	GUNITS	.)+60	004	.04012	+04533	02109	6883
14 ACCE Y CG 15 ALPHA CTR	G UNITS	.071	672	02907	.01545	• 01 536	6883
16BETA CTR	RAD	.000	022	.00801	.01156	.00 834	
17TEMP I	DEG F	70.317	75.418	75.90996	75.91019	.18593	6983
18TEMP_P	DEGF	61.421	60.862	61.12074	61.12089	.13491	6883
ITACLE 2 INS	GUNITS	1.324	.767	1,00543	1.00703	.05663	6863
20 ALPHA RT 21 BETA RT	RAD	•016 •066	036	01265	.01841	.00756	6883
22 ALPHA LT	RAD	.033	015	.01.321	.01267	.00750	6183
23 BETA LT	RAD	. 058	017	.01201	.01441	.00797	6883
24 PSI DOT	RAD/SEC	.020	027	-0025A	.00731	.03684	6883
25 TENP TOT	DEGC	1.657	-3.453	65032	1.73559	1.60926	6883
26 QC LT	PSID PSID	.943	.735	.79555	79105-	.04 867	6883
26 QC CTR 27 QC CTR 28 QC PT	•510	.937	724		.81874	.05080	6483
25 P S	PSIA	8,916	8.831	8,86108	A. 06111_	.02153	6883
3GTENP IRT	VOLTS	3.362	1.911	2.604 BZ	2.61531	.23404	6883
31 HYGROM	DEG C	-12.105	-17.970	-14.51836	14.65984	2.03197	6883
32 902 LT	PSID	•063	.075	.07948	.07952	.00237	6883
33 9CZ CTR 34 9CZ RT	6210 6210	•155 •110	.014	.11109	.11613	.01 953	6883
35 DAR	DEG	-7.230	-9.772	-8.47994	8.51409	.76181	6883
36 DAL	DEG	-0.127	-9.753	-9.05152	9.06433	.48181	6883
37 DELEV	DEG	6.476	6.242	6.41465	6.41501	.06770	6883
38 USTAB	DEG	443	-,452	44994	.44995	.03245	6883
39 DRUD	DEG	12.394	12.109	12.27735	12.27767	.19775	6883
40 DTHRE	PET MAX	69.629	69.141	69.29368	69.29390	.17517	6883
42 DFLP	POSITION	.219	.191	.20560	.20572		6883
43 0 58	POSITION	.363	.345	.35490	.35493	.00490	6883
440 10 6	METERS		7482269.414	*********	*********	1913.22435	6883
45 8 TO D	DEGREES	72.956	72.820	72.88784	72.48785	.03942	6883
46 LDRG 47 LAT	DEGREES	-118.141 35.141	35.013	35.07726	35.07728	.03752	6883
48 TRK ANG	DEGREES	323.643	317.862	321.06322	371.06890	1.91006	6883
49 H0G	RADIANS	5.518	5.425	5.46979	5.46993	.02167	6883
50 V E	H/SEC	-52.543	-71.163	-66.41174	66.44590	2.13040	6883
51 VA	AV2EC	88.517	74.356	82.31304	32.41661	4.13089	6883
52 ALTITUDE	DEGREESC	4.094 -4.817	4.021	4.06812	4.06816	.01861	6883
53 TEAPC		45.717	22.132	-7.26067 34.76081	35.45660	6.89004	6883
55 NS WND SPO	KNOTS	22.154	-4.692	7.47755	10.15382	6.86974	6883
56 WIND SPEED	KNUTS	48.612	22.179	36.04983	34.88185	7.79030	6883
57 WIND DIREC	DEGREES	278.713	240.538	259.30237	259.47243	9 40 6 96	6883
58 WIND DIRZ	DEGREES	98.713	60.535	79.30236	259.47243	9.40697	6883
59 WIND DIR3	DEGREES	278.713	240.538	259.30238	239.47293	9.40697	6883
61 AIRSPEED R	H/SEC	124.637	110.705		116.75483	3.37265	6883
67 AIRSPEED C	H/SEC	122.071	109.565	115.20051	115.24745	3.28933	6883
63 AIRSPEED L	M/Sec	125.041	111.504	117.27489		3.35074	6883
64 DELTA ALT	RETERS	65.084	-7.890	39.26590	43.47144	18.61274	6883
65 INRTL DISP	METERS A/SEC	59.877	-6.515 -5.219	36.30609	40.34817	17.60363	6883
66 UG RIGHT	MISEC	3.694	-5.032	.00000	1.09506	1.04520	6883
68UG LEFT	MISEC	4.109	-4.923	.00000	2.01994	2.02009	6883
69VG RIGHT	A/SEC	8.122	-7+089	02885	4.57587	4.57611	6883
70VG CENTER	H/SEC	8.388	-7.052	02784	4.30571	4.59596	6883
11VG LEFT	47520	8.381	-7.164	62447	4.61476	4.61531	6883
72 WG RIGHT 73 WG CENTER	A/SEC N/SEC	3.673	-6.661	.03815	2.40404	2.40391	6883
73 76 CENTER 74 76 LEFT	4/3FC	3.328	-6.552	-03587	2.35520	2.33309	6415



ĩ

-

- TABLE A.21. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 11.
- 1. Mean Airspeed (m/s): $\frac{\overline{V}_{L}}{107.01} \frac{\overline{V}_{C}}{104.47} \frac{\overline{V}_{R}}{106.49}$
- 2. Standard Deviation of Gust Velocities (m/s):

_σuR	_ ^σ vR_	wR
3.74	2.10	2.25
σuC	σvC	_σwC
3.76	2.15	1.99
∽uL	σvL	σwL
3.77	2.18	2.13

3. Standard Deviation of Gust Velocity Differences (m/s):

σ∆uRL	σ∆vRL	₫۵wRL
1.12	1.01	1.26

- 4. Integral Length Scale (m): <u>LuR</u> <u>LvR</u> <u>LwR</u> 370.0 246.1 203.3 <u>LuRL</u> <u>LvRL</u> <u>LwRL</u> 375.6 241.7 193.1
- 5. Correlation Coefficient of Gust Velocities:

<u>^{uRuL}/_{auk}an^T</u>	<u>៴៝៴</u> ៹៸៰ _{៴៝} ៰៴	<u>wRwL</u> /σ _{wR} σ _{wL}
0.83	0.81	0.78
$\frac{\overline{u_R v_R} / \sigma_{u_R} \sigma_{v_R}}{-0.21}$	<u>√R₩R</u> /σ _{VR} σ _{₩R} -0.09	<u>₩R^{UR}/σ_{WR}σ_{UR}</u> 0.48
<u>uRvL</u> /σ _{uR} σvL -0.28	<u>√R₩</u> /σ _{VR} σ _{₩L} -0.10	^{₩RUL} /σ _{WR} σ _{UL} 0.40

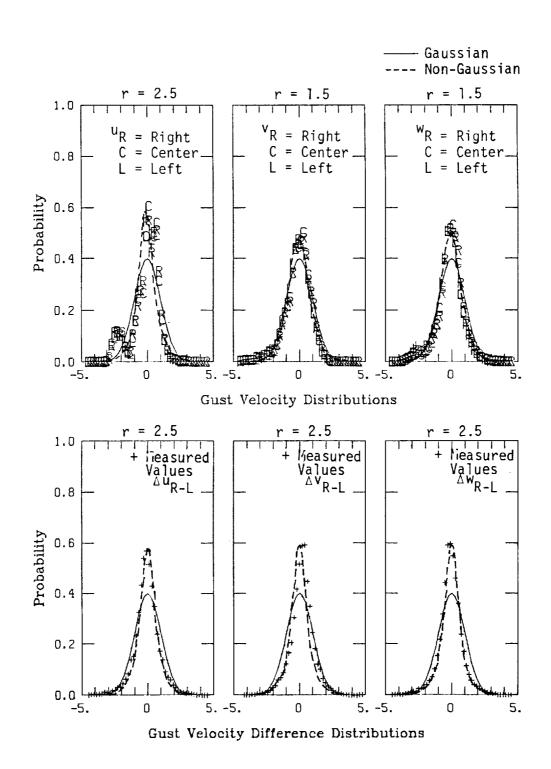
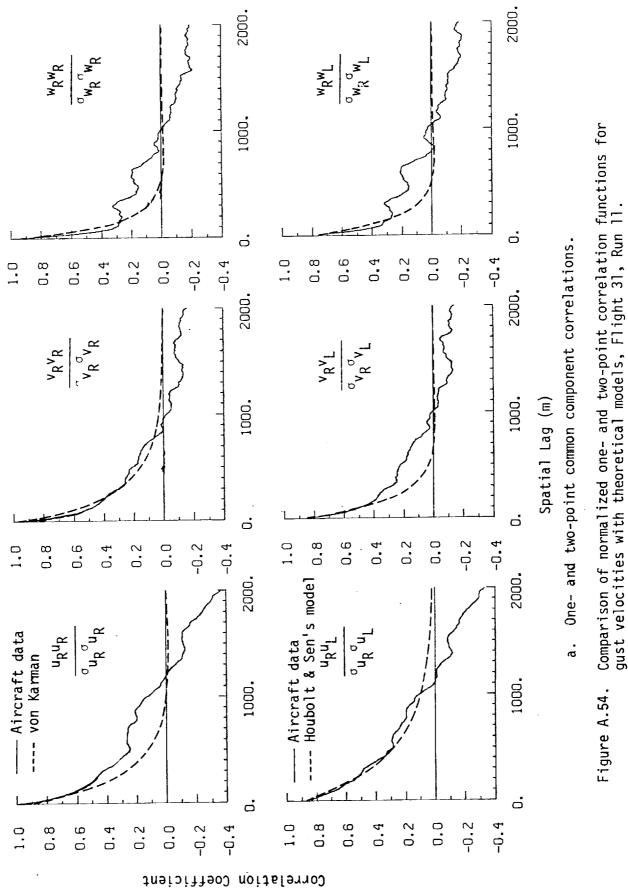
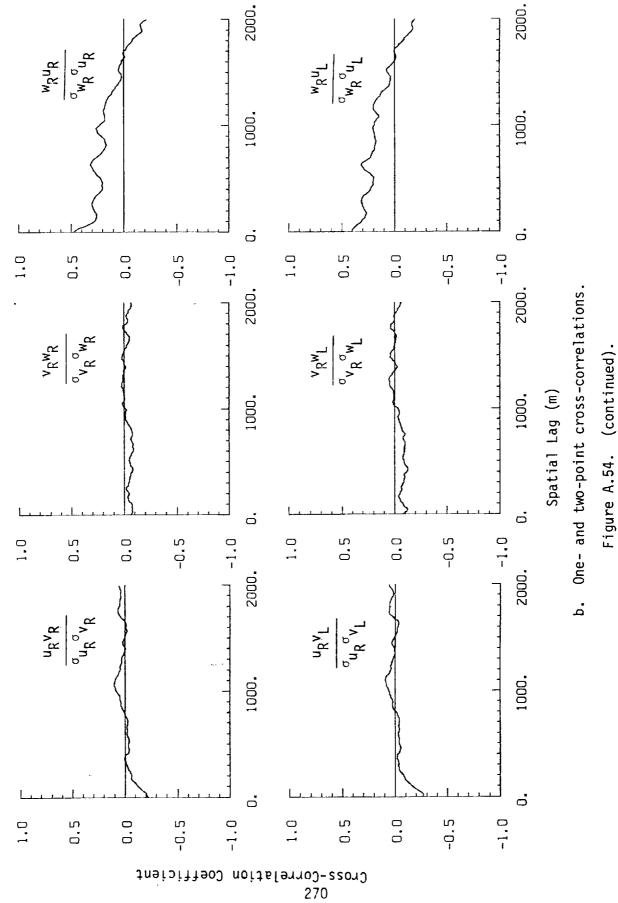
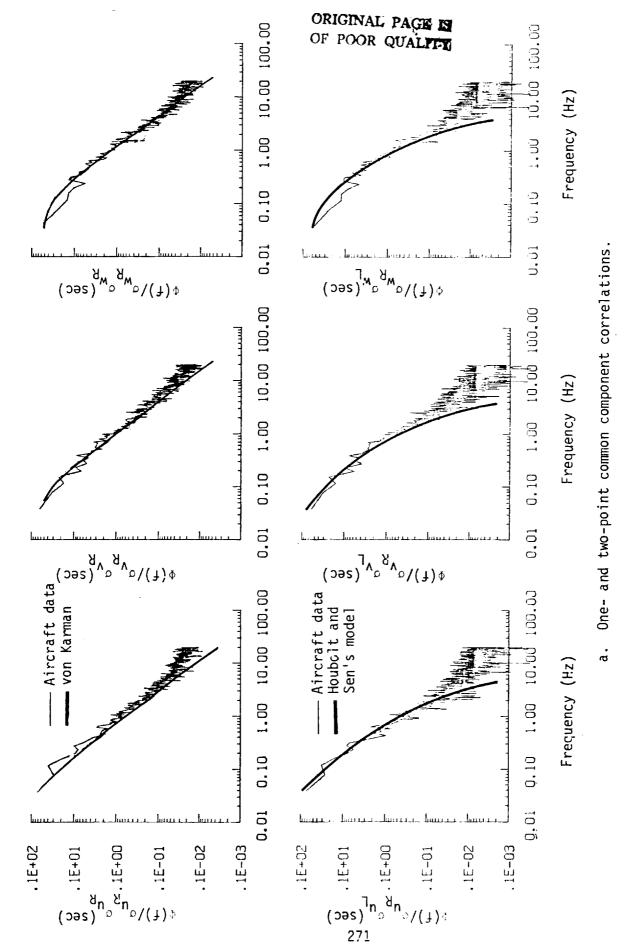




Figure A.53. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 11 (r = degree of non-Gaussian).



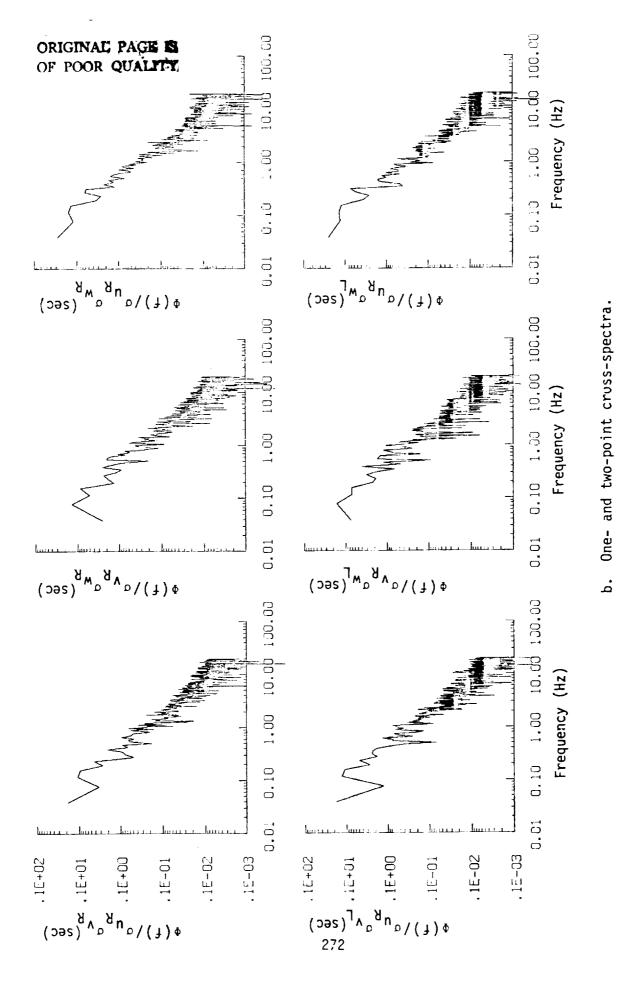
₹

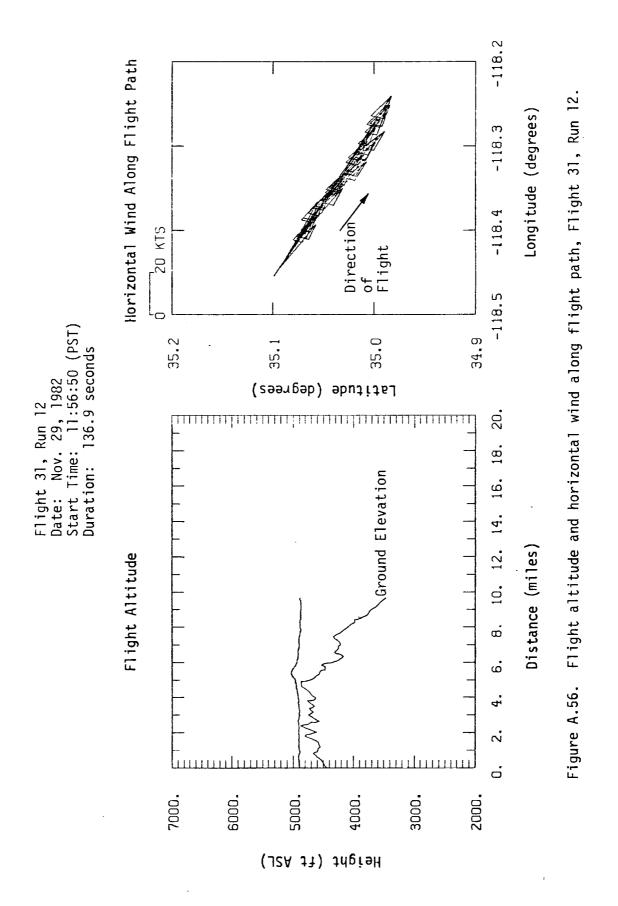
Ę

in I I I I I

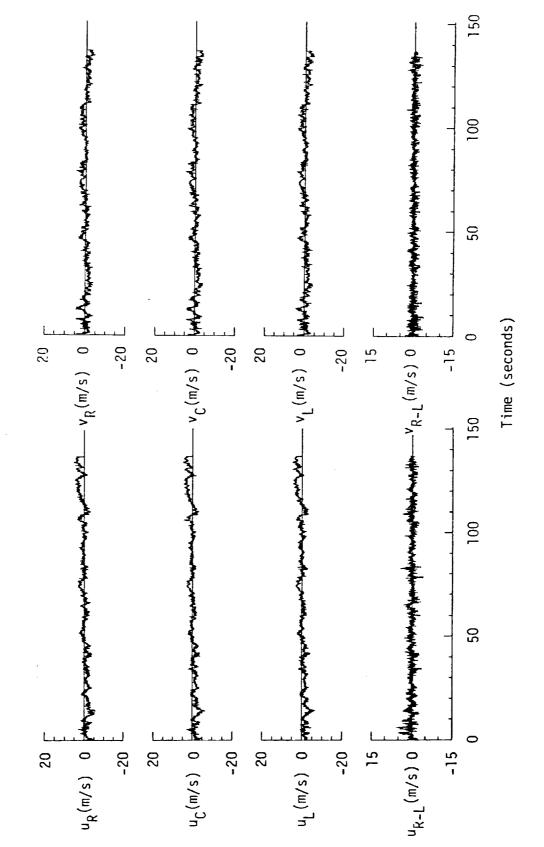
-

ž



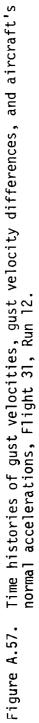

Figure A. 55. (continued).

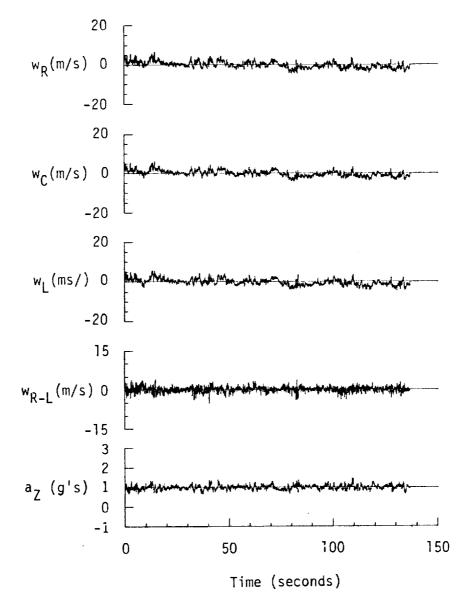
ORIGINAL PAGE IS OF POOR QUALITY


TABLE A.22. List of All Parameters Measured and Their Range of Values, Flight 31, Run 11.

CHANNEL	UNITS	HIGH	LOW	MEAN	KMS	STD	POINTS
TIME	SECONDS		42410.524 4	2577.52400		96.42831	13361
Z PHI GOT	GUNITS	.243	297	00258	.04193	.04185	13361
A THETA DOT	RADISEC	1.921	069	.00323	.01449	.01413	13361
5 THETA	RAD	.231	060	.04493	.07771	.06340	13361
6 PHI	RAD	.191	060	.00474	.03775	.03745	13361
7 PS1 1	RAD	317.907	308.045	312.03280	312.03064	1.90 474	13361
8 DEL PSI 1	DIG	1.758	-5.939	-2.20345	2.59711	1.37475	13361
9 PST 2 10DEL PST 2	DEG	317.446	309.708	313.41944	3,93773	1.87889	13361
HACCE N LT	GUNITS	2.315	570	1.01478	1.04608	.25 397	13361
12 ACCL N PT	Ğ ÜNITS	3.031	992	1.00930	1.04798	. 28 21 2	13361
13 ACCT # CG	GUNITS	.277	048	.04825	.07276	.05447	13361
IAACCL Y EG	GUNITS	.079	067	00582	. 02027	.01942	13361
15 ALPHA CTR 16 BETA CTR	RAD	.093	099	03402	.03726	.02305	13361
17TEMP I	DEG F	77.936	75.418	76.33933	76.34215	. 65 622	13361
107780 8	DEGF	60.522	59.803	60.12133	60.12158	.17651	13361
19ACCL Z INS	GUNITS	2.026	.212	1.00458	1.01391	.13727	13361
20 ALPHA RT	RAD	117	103	02010	.02656	.01736	13361
21 BETA RT	RAD	.102	111	.00396	.01739	.01 693	
ZALFIA LI				.00587	.02247	.07170	13361
24PSI DOT	RAD/SEC	.062	072	.00247	.01883	.01 867	13361
25TEAP TOT	DEGC	14.838	7.761	10.42264	10.50134	1.28327	13361
2600 LT	2510	1.131	697	.88530	.89059	09692	13361
2790 CTR	PSIO	1.073	.678	.87661_	.88197	.09713	13361
2905	PSIA	12.360	11.555	11.99907	12.00186	. 25 857	13361
JOTEMP IRT	VOLTS	6.937	2.154	5.86314	5,91347	.76 992	13361
31 HYGRD4	DEG C	5.296	-12.105	-1.28782	3,83293	3.61024	13361
320C2 LT 330C2 CTR	PS10	.055	.046	.04946 .141P3	.04953	.00270	13361
340C2 RT	-PSID		.048	10622	.11192	.03527	
35DAR	DEG	-5.581	-6.595	-5.95484	5.96258	.30362	13361
36DÁL	DEG	-5.455	-6.474	-5.86257	5.87255	.34235	13361
37DELEV	DEC	5.150	4.721	4.94840	4.95045	.14219	13361
3805148	DEG	- 365	401	38076	.38084	.00980	
39DRUD 40ptie	- PC T-HAX	11.768	67.773	68.66135	68.66343	.53496	— <u>i</u> iii
41DTHRL	PCT HAX	70.020	68.535	69.34502	69.34635	.42844	13361
42DFLF	POSITION	.199	.160	.17571	.17610	.01173	13361
43028	POSITION	.385	.377	.38130	.38130	.00195	13361
440 TU G 458 TO D	NETERS DEGREES	7488731.174 74	76295.334	72.10349	72.80352	.05844	13361
458 10 0 461046	DEGREES		-116.406	-118.20142	118.29185	.05476	13361
47 L AT	DEGREES	35.279	35.068	35.17133	35.17138	.06122	13361
48TRK ANG	DEGREES	323.287	315.629	319,11203	319.11605	1.60058	13361
49HDG	RADIANS	5.540	5.403	5.46971	5.46976	.02472	13361
50 VE	MISEC	-48.801	-70.119	-6(.83340	61.12096	5.92217 3.84730	13361
51 VN	- H73EC	78.008	61.576	70.05216	1.68811	.17527	
52 ALTITUDE 53 TEHPC	DEGREES	¥,358	2.050	4.97288	5,19533	1.50402	13361
54 EW WHO SPD	KNOTS	50.745	783	29,72031	30.54943	7.06926	13361
55NS WHO SPD	KNOTS	13.282	-20.941	-2.04523	5.43256	4 . 62 866	13361
SEWIND SPEED	KNOTS	51.255	1.561	30.15062 274.81485	11.02870	7.32968 8.81949	13361
57 WIND DIREC 58 WIND DIRE	DEGREES	351.415	-179.486	94.81491	95.22418	8.91951	13361
SOWIND DIRS	DEGREES		.514	274,81491	274.95638	8,81951	13361
60 VIND DIR4	DEGREES	360.514	170.629	274.94186	274.97407	8.52648	13361
ATAIRSPEED 9	MISEC	119.933	93.356	106.49303	106.66015	5.86239	13361
62 AIRSPEED C	MISEC	117.8AA 123.976	91.089 94.575	104.47815	104.64248	5.90453	13361
63 AIRSPEED L	MISEC HETERS	479.601	-66.303	176.23442	248.54684	175.26792	13361
ESTARIE DISP	METERS		-65.140	176.29089	249.21271	176.15566	13361
66 UG RIGHT	MISEC	12.725	-12.248	.00000	3.74045	3.74059	13361
67 UG CENTER	NISEC	14.045	-11.984	.00000	3.76809	3.76823	13361
68 UG LEFT	N/SEC	13.679	-11.644 -13.391	.06674	2.10268	2.10170	13361
69 <u>VG RIGHT</u> 70VG CENTER	MISEC	11.621	-12,951	.07479	2.15170	2.15048	13361
71 VG LEFT	47520	11.150	-13.614	.07134	2.14210	2.10101	13361
HC BIGHT	M/SEC	10.645	-10.846	.12791	2.26216	2.25862	13361
33 WG CENTER	KISEC	4.463	-10.727	.13005	2.00237	2.13001	13361
74 WG LEFT	H/SEC	7+363					

×.




ł

=

Ï

=

-

.

Figure A.57. (continued).

TABLE A.23.	Average Turbulence Parameters, Integral Length Scales, and	nd
	Correlation Coefficients of Gust Velocities, Flight 31, I	Run 12.

1. Mean Airspeed (m/s): $\frac{\overline{V}_L}{101.03} \frac{\overline{V}_C}{98.55} \frac{\overline{V}_R}{100.56}$

=

=

÷

 Standard Deviation of Gust Velocities (m/s):

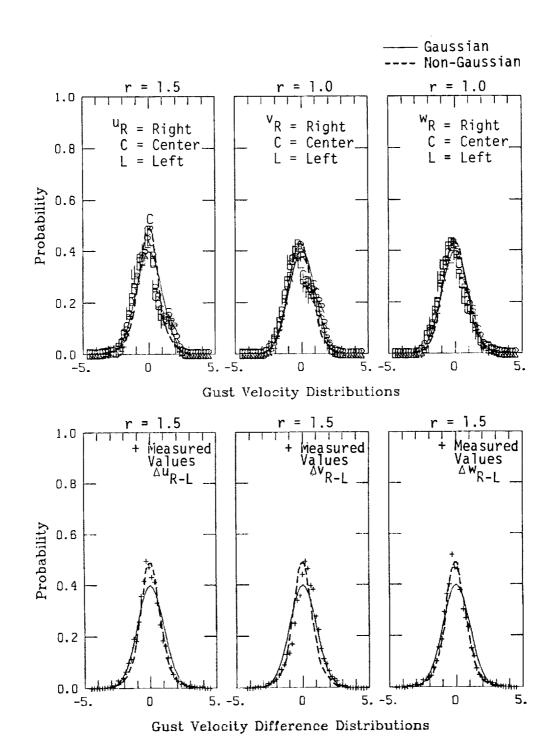
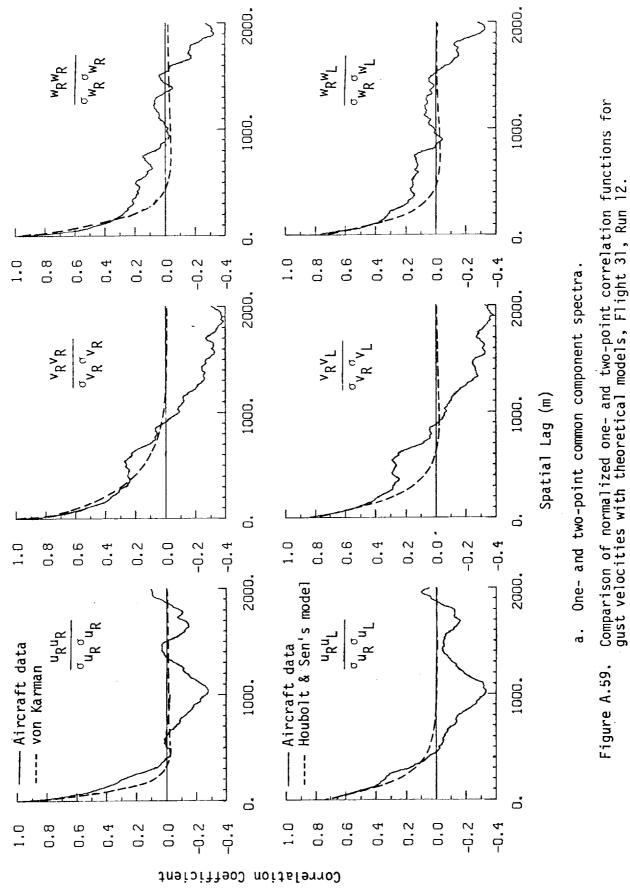
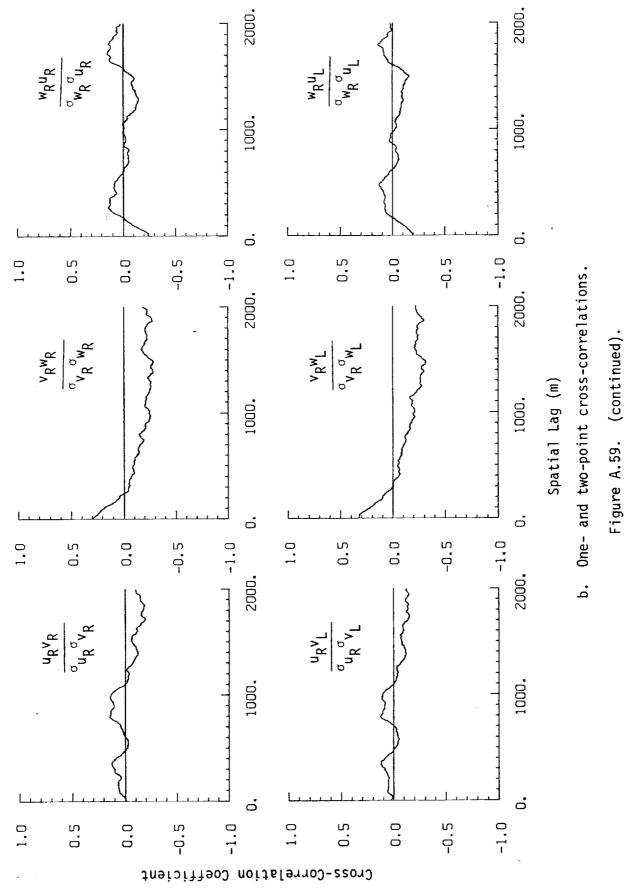
uR	_σvR_	_σwR_
1.68	1.43	1.66
°uC	σvC	σwC
1.68	1.47	1.54
°u∟	σνL	σwL
1.70	1.42	1.59

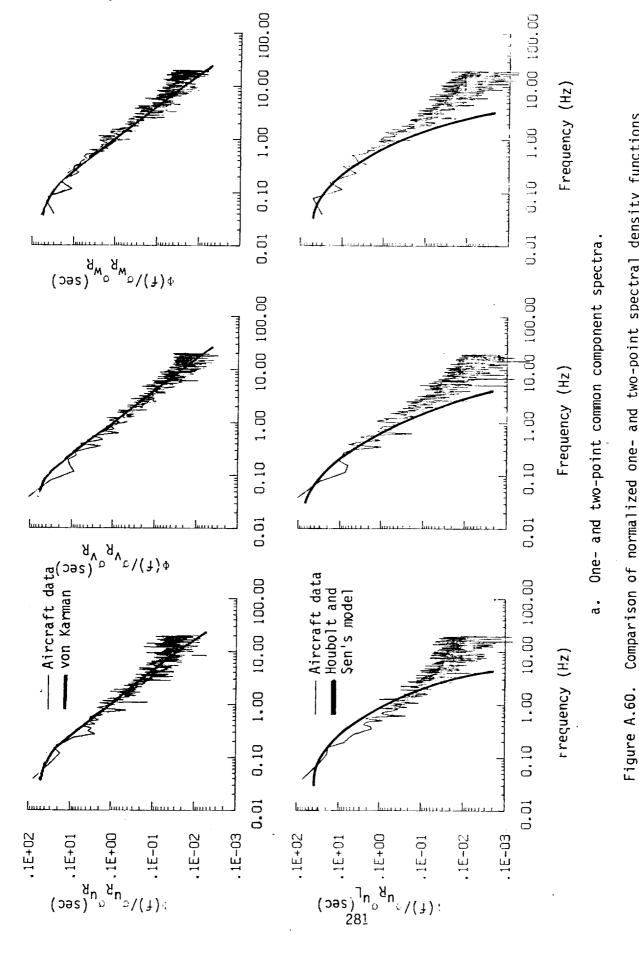
3. Standard Deviation of Gust Velocity Differences (m/s):

σ∆uRL	σΔVRL	σ∆wRL
0.90	0.74	0.91

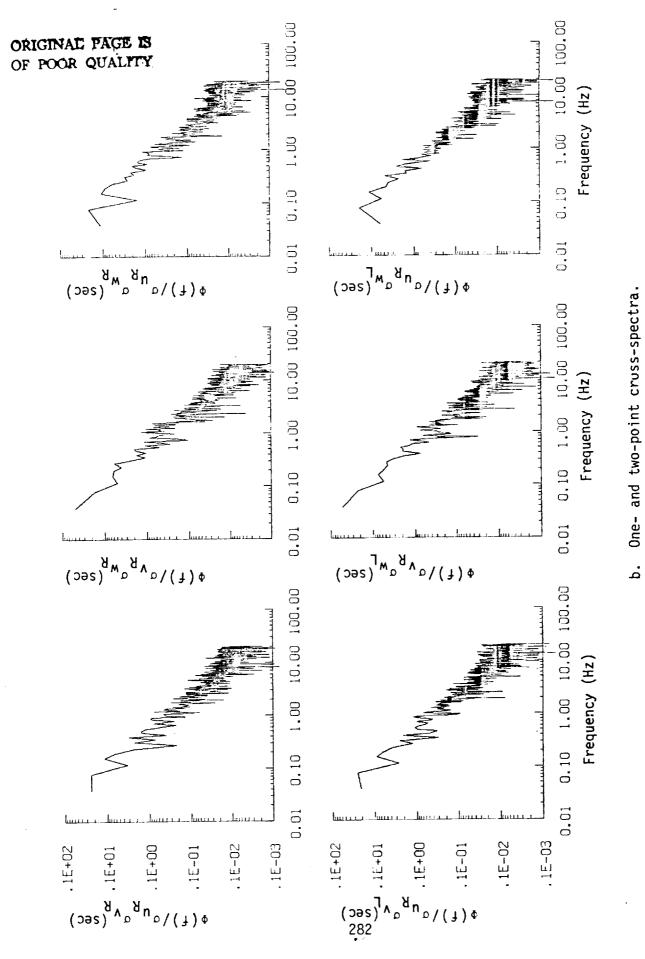
- 4. Integral Length Scale #1 (m): <u>LuR</u> <u>LvR</u> <u>LwR</u> 127.7 252.6 202.4 <u>LuRL</u> <u>LvRL</u> <u>LwRL</u> 137.5 250.1 190.8
- 5. Correlation Coefficient of Gust Velocities:

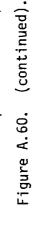
<u>uRuΓ</u> /σ _{UR} σ _{UL}	<u>vRvL</u> /σ _{vR} σ _{vL}	<u>wRwL</u> /σ _{WR} σ _{WL}
0.66	0.81	0.78
^u RvR/ _{ouR} ovR	<u>vrwr</u> /o _{vr} o _{wr}	<u>wRuR</u> /o _{wR} ouR
0.00	0.30	-0.22
^u R ^v L/σ _{uR} σ _{vL}	<u>vrw</u> [/ _{σvr} σ _{wL}	^{₩RU} L/ ^σ ₩R ^σ UL
0.01	0.31	-0.20

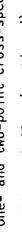





Figure A.58. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 12 (r = degree of non-Gaussian).

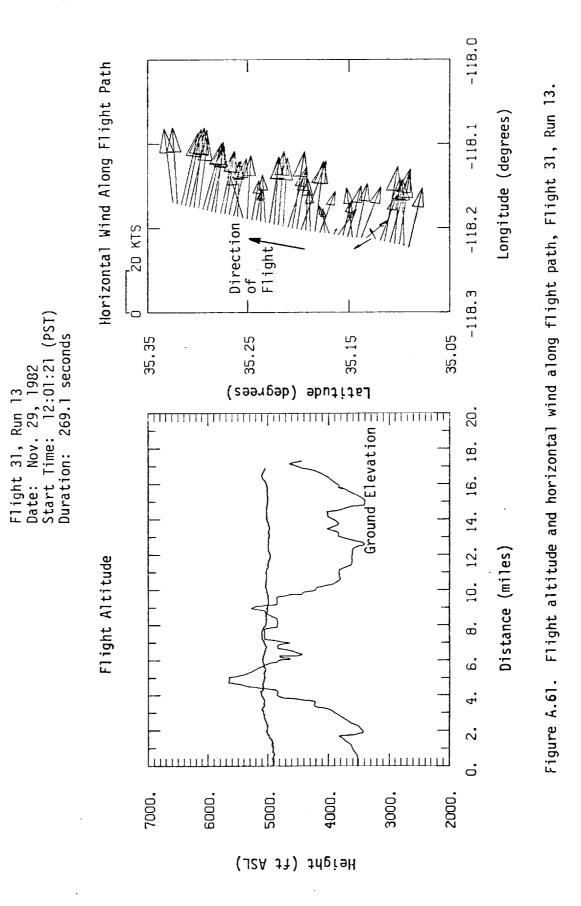
C. 4




. *



Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 12.



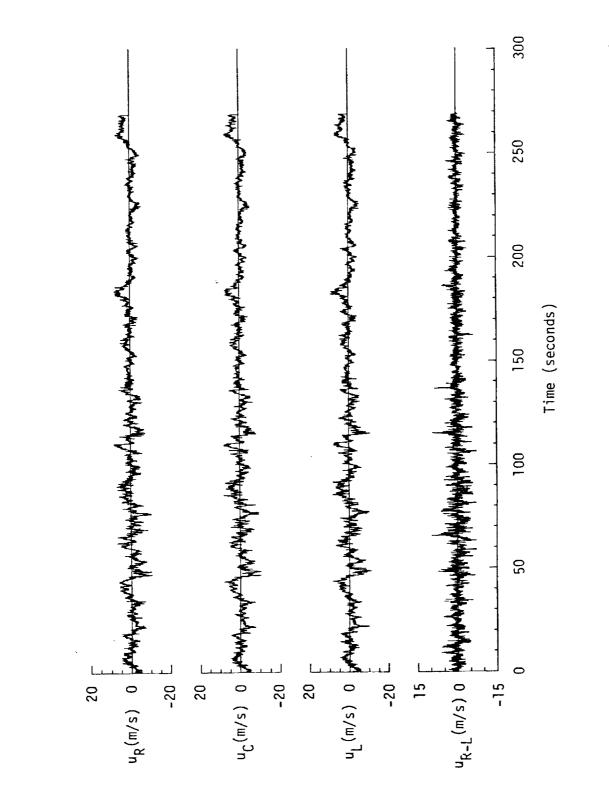
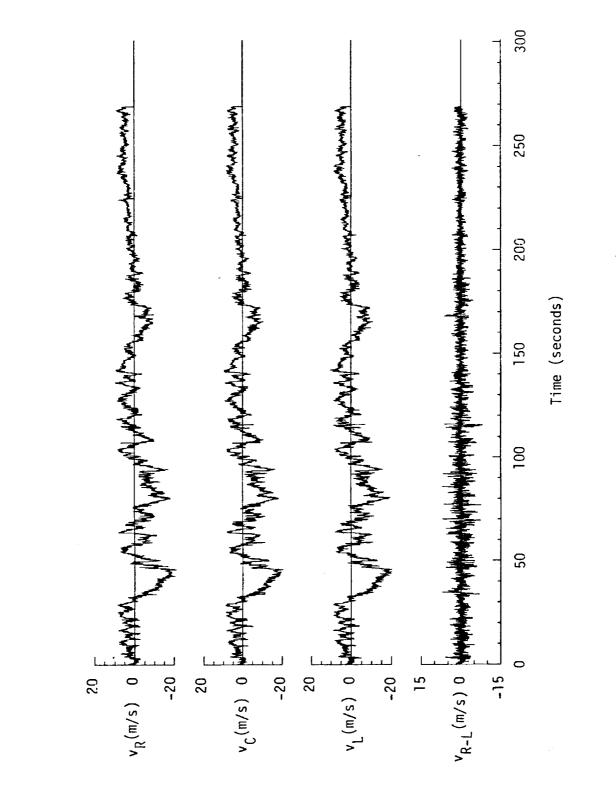
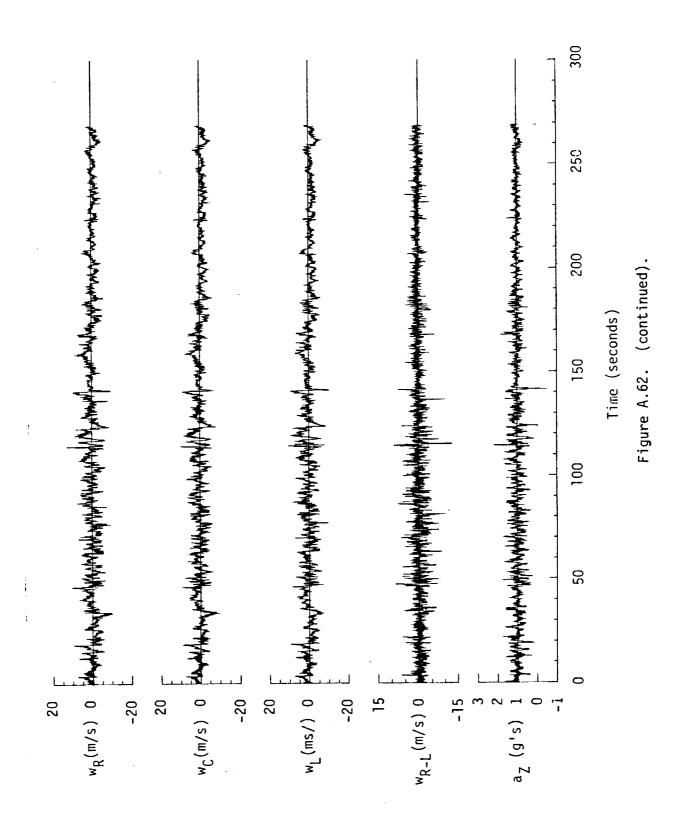

OF POOR QUALITY

TABLE A.24. List of All Parameters Measured and Their Range of Values, Flight 31, Run 12.


CHANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD	POINTS
TINE	SECONDS	43146.508	43009.608	43078.05820	43078.07633	39.53645	5477
Z PHI DUT	RADISEC	.085	127	00254	.03036	.03025	<u>5477</u> 5477
THETA DOT	G UNITS RAD/SEC	1.361	045	00352	.00997	.00933	5477
5 THETA	RAD	.080	.019	.04871	-05036	.01278	5477
6 PHI 7 PST	RAD	.079	115	.00130	.02959	.02 957	<u> </u>
7 PST 1 B DEL PST 1	DEG	(84	-6.618	-2.50441	2.69251	.93878	5477
9 951 2		487.491	481.154	484.99578	484.99675	. 96 95 3	5477
TO DEL PSI 2	DEG	.253	-6.741	-2.14914	2.36268	.98165	<u>5477</u> 5477
11 ACCL N LT	G UNITS	1.985	.291	1.01263	1.02931	.21142	5377
13 ACEL X CG	G UNITS	.084	• • • • •	.05120	.05215	.03 993	5477
14 ACC 1 7 CG	G UNITS	.077	089	00200	.01831 .03050	.01821	5477
15 ALPHA CTR	RAD	.017	064	02879	.03030	.01799	
16 BETA CTR 17 TEMP 1	DEGF	76.317	75.717	75.98189	75.98198	.11839	5477
18 TEMP P	DEG F	59.623	59.264	59.37962	59.37867	.10075	<u> </u>
19 ACCL Z INS		1.429	045	1.00272	1.00777	.01141	5477
20 ALPHA RT 21 BETA RT		.093	020	.01628	.02315	,01646	5477
22 ALPHA LT	RAD	.054	024	,00979	.01453	.01075	5477
23 BETA LT	RAD	.089 .062 12.290	057	.01392 .00275	.02021	.01701	5477
24 PST 031 25 TEMP TOT	DFG C	.062	039	11.36615	11.37100	.33193	3411
26 02 1	N210	.040	• 724	.79400	.79845	.02679	5477
27 OC CTR 28 OC RT	PSTO	,844		.75843.	,75848	.02617	5477
29 0 <u>0 RT</u> 29 PS	PSIO PSIA	.078 12.238	12.210		12.26466	01562	2477
30 TEMP INT	VOLTS	7.371	6.441	6.83268	6.83772	.26243	5477
31 HYGROM	DEG C	5.492	-5,031	1.67559	2.36224	.03096	<u> </u>
32 GC2 LT 33 GC2 CTR	PSID PSID	.061	.058	.06018 .11009	.04019	.02755	
34 0C2 RT	PSID	102		.07379	.07525	.01478	5477
35 DAR	DEG	-7.153	-8,391	-7.83437	7.84320	.37219	5477
35 DAL	DEG	-7.384 5.735	-7.645	-7.58950	7.58894	.08170	
37 DELEV 39 DSTAD	DEG	369	397	38415	.38423	.00777	5477
23 DRUD	DEG	10.800	10.402	10.56419	10.56483	.11703	5477
40 DTHER	PCT HAX	67.090	66.797	66.89461	66.89867 67.39738	.09199 .05194	5477
41 DTHRL 42 DFLP	PCT HAX	67.578	67.285	.25280	- 25286	.00574	5477
43 05 8	POSITION	.355	, 345	.35014	.35615	.05260	5477
44 D TO G	METERS	7476017.357	466219.866	72.78431	72.78432	2831.84466	5477
45 B TO D 46 LONG	DEGREES	72.849	72.721	-118.38538	118.38936	.04115	5477
47 LAT	DEGREES	35.100	35.022	35.06193	35.06194	. 02 271	. 5477
48 TRK ANG	DEGREES	125.725_	122.180	123.77760	123.78055	.85450 _	5477
49 806	RADIANS	2.215	2.099	2.17235	2.17242	01771	
50 VE 51 VN	4/520	-53.341	-57.331	-63.38432	63.42055	2.14352	5477
52 ALTITUDE	RH	1.536	1.484	1.49943	1.49947	.01652	5477
ED TEMPE	DEGREES C	7.652	5.859	6.53056		3.14750	
54 EW WHO SPO	KNOTS	36.730	15.49A -24.517	-15.96008		2.98432	5477
56 WIND SPEED		, 37.577	18.278	30.30926	30,48241	3.24470	5477
ET WIND DIREC	DEGREES	319.429	265.223	301.91526	301.96541 122.03947	5.50373	5477
58 WIND DIP2 59 WIND DIP3	DEGREES DEGREES	139.429	105.223	301.01517	301.96548	5,50373	
59 WIND OIP3	DEGREES	317.429	285.223	301.91532	301.96548	5.50373	5477
ATRSPEED P	MISEC	105.025	94.100	100.56952	100.57521	1.71901	
ATRSPEED C		103.801	91.856	98.55595	101.05322	1.64616	
63 ATRSPEED L	HETERS	106.555	96.417	6.09335	12.15562	10.51905	3417
AS INRIE DISP	HETEPS	37.675	-6,733	6.43163	11.87560	9.98409	<u> </u>
22 UG PIGHT	H752C	5.091	-5.619	.00000	1.68865	1.68880	
67 UG CENTER	H7SEC	4.720	-6.301	.00000		1.70649	5477
68 VG PIGAT	-7/522	4.886	-3.960	- 00207	1.43489	1.43502	3477
70 VG CENTER	M/SEC	4.764	-3,920	00122	1.47317	1.47330	5477
71 VG LEFT	1/5EC	6.193	-3.940	00148	1196311	1.66435	
72 WG RIGHT		£.515 6.134		00464	1.54299	1.54303	5477
73 WG LEFT		5.001	-4.071			1.50505	3477
• ••••							

а Т



ĩ

Figure A.62. (continued).

TABLE A.25.	Average Turbulence Parameters, Integral Length Scales, and
	Correlation Coefficients of Gust Velocities, Flight 31, Run13.

1.	 Mean Airspeed (m/s): 			4.	Integral	Length S	Scale 1	(m):
	∇ L 103.30	∇ _C 101.4	$\frac{\overline{\mathbf{V}_{R}}}{103.30}$		LuR 156.0	428.8	L _{wR} 83.7	-
2.			ation of es (m/s):		L _{uRL} 148.6	424.4	L _{wRL} 82.6	-
	σuR	σvR	σwR					
	2.49	5.57	2.43	5.	Correlat Velociti	ion Coeff es:	ficient o	of Gus
	σuC	σvC	σwC		/		- /	
	2.48	5.57	2.29		u <u>Ru</u> [/σ _{UR}		ʹʹϭ _{ϒϗ} ϭ _{ϒϹ}	WRWL
					0.80	l	0.91	i
	uL	_∽vL	σwL				-/	Welle-
	2.59	5.56	2.41		uRVR/ouR	<u>vr</u> vrwr	۶ ^۲ / ^م ۷۳ ^م ۳۳	WRUR
					-0.18	. -	0.32	(

3. Standard Deviation of Gust Velocity Differences (m/s):

σ∆uRL	σ∆vRL	σ⊿wRL
1.53	1.39	1.59

Ť

<u>uRu</u> _/o _{uR} o _{uL}	<u>vRvL</u> /σ _{vR} σ _{vL}	<u>wrw</u> /σ _{wR} σ _{wL}
0.80	0.91	0.79
$\frac{u_{\overline{R}}v_{\overline{R}}/\sigma_{u_{\overline{R}}}\sigma_{v_{\overline{R}}}}{-0.18}$	<u>√R₩R</u> /σ _{VR} σ _{₩R} -0.32	<u>₩RUR</u> /σ _{WR} σ _{UR} 0.25
<u>uRv</u> [∕σ _{uR} σvL -0.19	<u>√R₩L</u> /ơ _{VR} ơ _{₩L} -0.32	₩R ^U L/σ _{WR} σ _{UL} 0.22

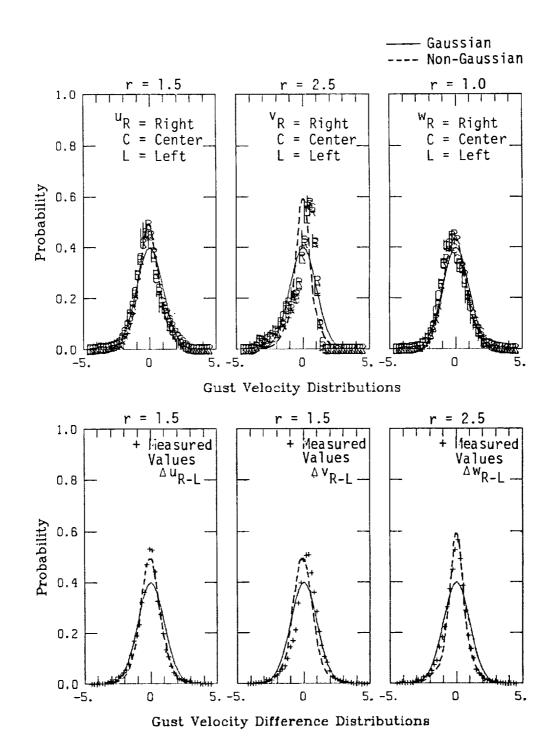
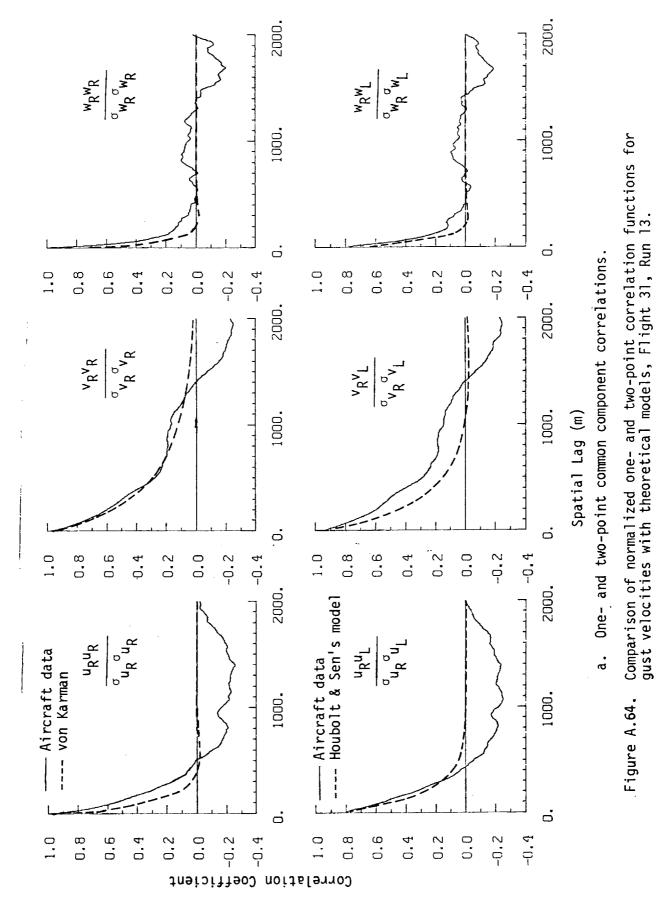
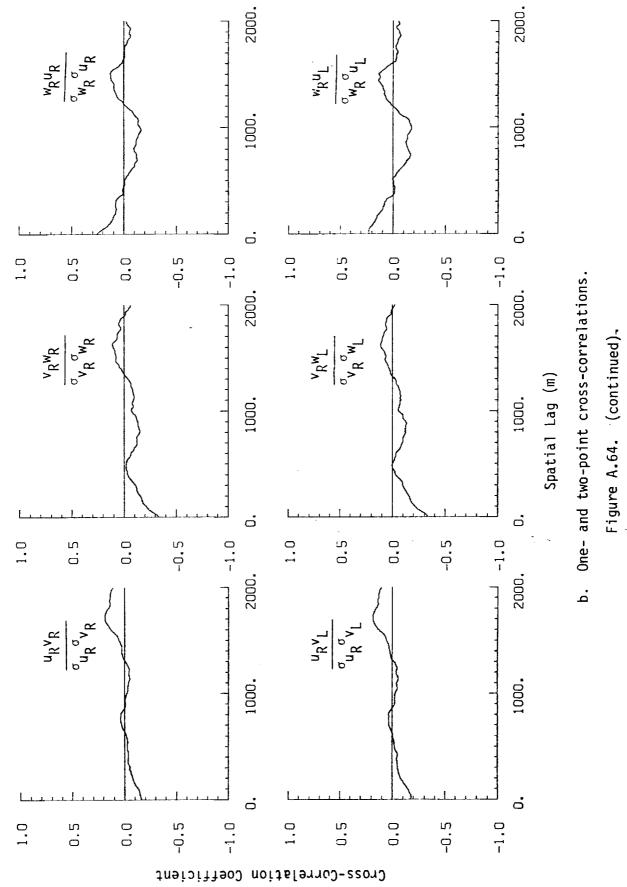
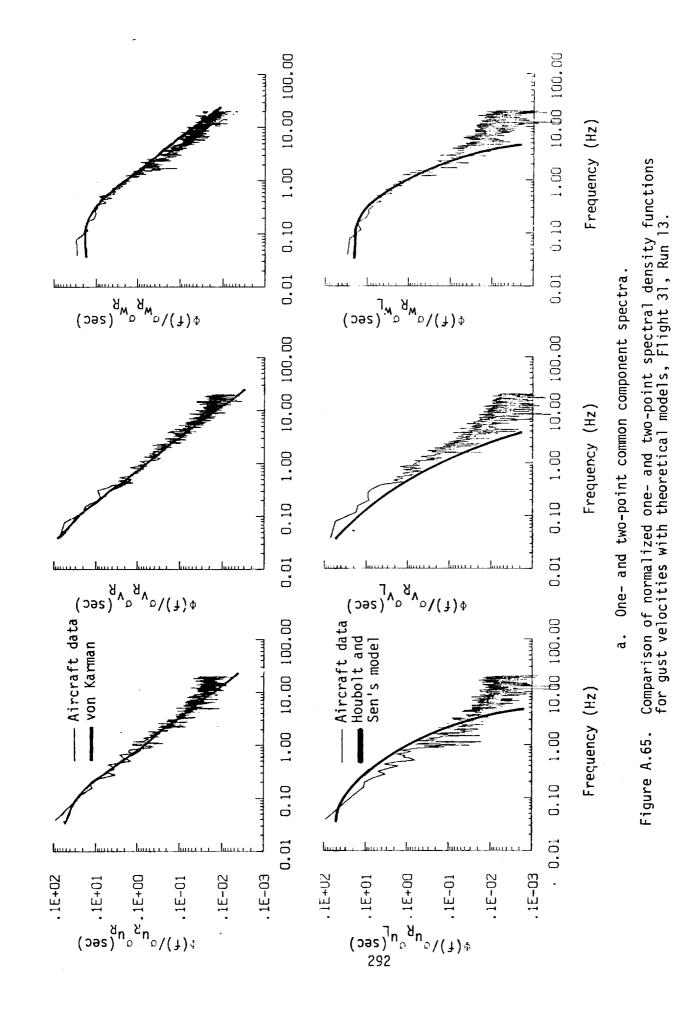
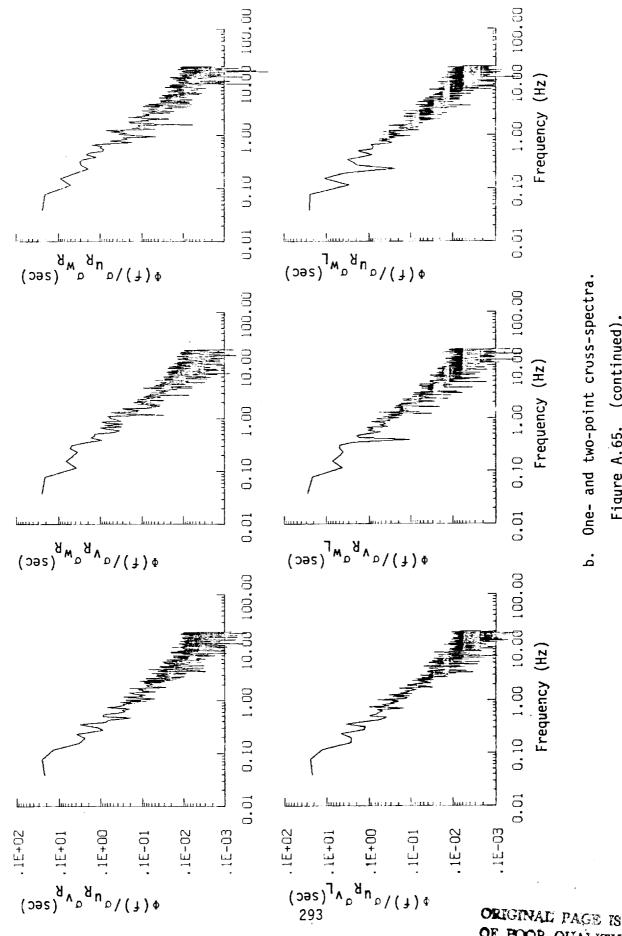




Figure A.59. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 13 (r = degree of non-Gaussian).



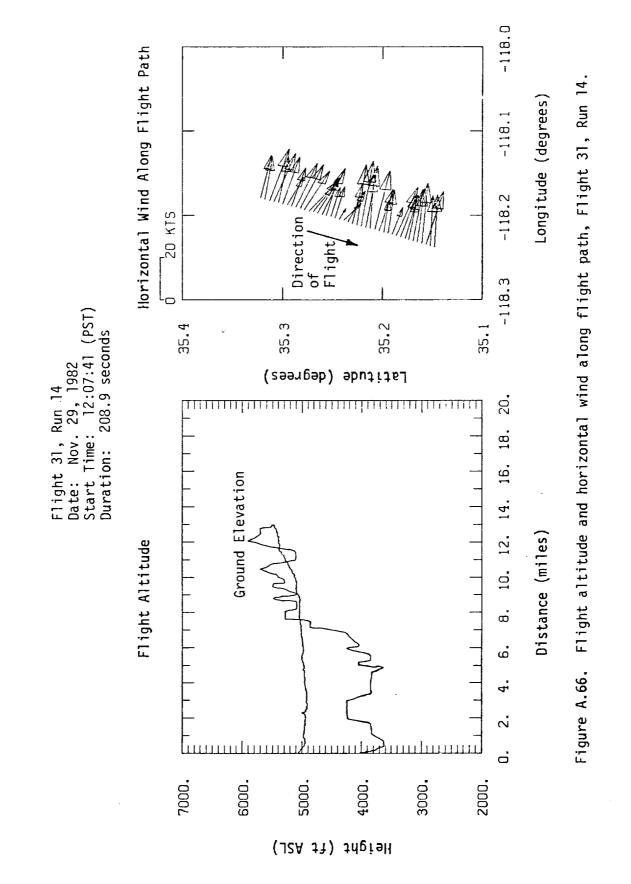

Ŧ

.

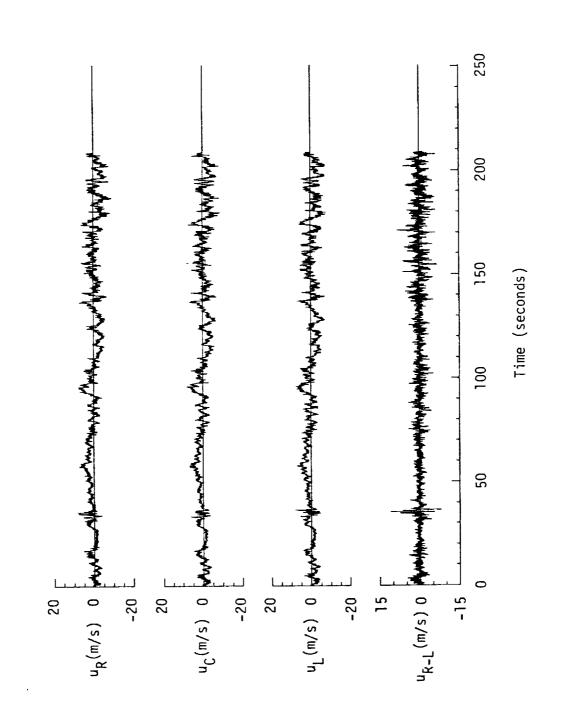
.

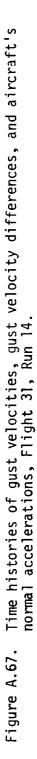
ş

OF POOR QUALITY

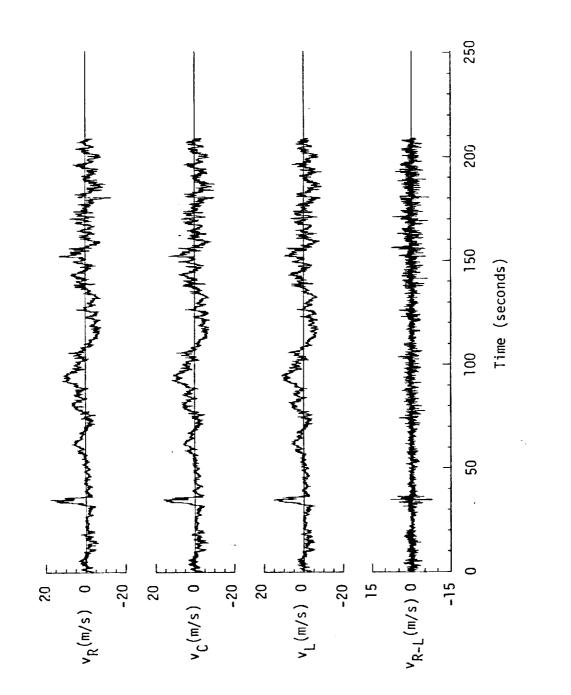

ORIGINAL PAGE IS

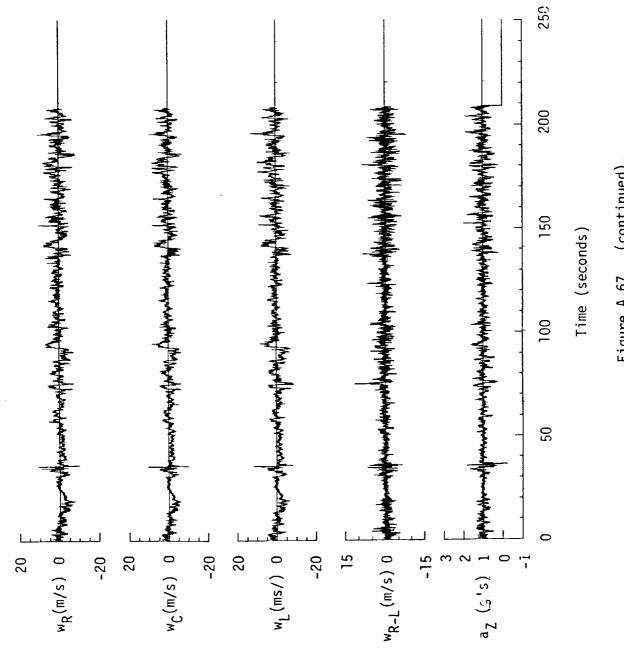
Ŧ


÷


TABLE A.26. List of All Parameters Measured and Their Range of Values, Flight 31, Run 13.

HANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD 77.67165	POINT 107
THE	SECONDS	43549.560	43283.535	43415.04760	• 3415.11707	. 35 37u	- 107
HI DUT	RAD/SEC	.379	2?3	00?37	.05375	.13681	
CCL N CG	J DAITS	2.088	458	1.00261	1.01986	.01 .43	-107
HETA DOT	RAD7SEC	.093		.00310		.01932	107
HETA	RAD	.102	021	.05351	.05408		
H)	CAS	.193	171	00542	.04822	106.59617	
51-1-	RAD	359.118	155	38,481.82	113.32492	2.45887	- 137
EL P31 1	DEG	5.049	-10.815	-1.72432	3.00313		
SI 2 EL PSI 2	RAD	367.091	351.601	360.46659	365.47449	2.38697	107
EL PSI 2	DEG	14.988	-4.242	.78272	5.16699	5,10760	107
CCL N LT	G UNITS	3.175	-1.167	1.01563	1.07715	.35889	107
CCL N RT	"G"UN1TS	3.304	-1.348	1.01105	1.08550	. 39 508	107
201 2 26	GUNITS	.156	039	.04595	.04904	.01714	107
CCL Y CG	GUNITS	.126	163	00693	.03096	.03618	107
LPHA CTR	RAD	.061	155	03120	.03653	.01899	107
ETA CTR	RAD	.156	166	00317	.037A2	.03769	107
FND I	DEG F	76.137	75.418	75.86306	75.86326	.17615	107
C W D . D	DEG F	59.264	59.084	54.12621-		.06 929	107
CCL 2 INS	GUNITS	2.154	495	1.00539	1.02288	.15836	107
LLL LINS				01016	.02875	.02143	107
LPHA RT	RAD	.093	156				
ETA RT	RAD	•145	-,136	.00490	.03390	.03 354	
LPHA LT	RAD	.110	138	,00570	.02117	.02 038	107
ETA LT	RAD	÷ 151	149	.00102	.0346P	.03467	107
51 DUT	RAD/SEC	.136	-,113	.00244	.03692	.03682	107
EMP TOT	DEG C	14.358	10.518	12.02362	12.05910	.92444	101
C I I	PSID	1.116	.626	.84037	.84324	.06952	107
C CTR	-PS10	1.035	. 586	.80597	. 40369	.06610	101
Č ŘT		1.68	.619	,83201	.83477	.05785	107
3	PSIA	12.282	12.152	12.21016	12.21616	.02 351	101
ENP IRT	VOLTS	9.433	7.140	8.24400	9.26329	.56427	101
ITGRO4	DEG C	3.928	-8.202	37809	2.51954	2.49112	ī
		3.745			.05194	.00125	101
C2 LT	PSID	.056	.050	.05193	.07144		
CZCTR	PSID	.175	.091	.14999	.15172	• U2 266	10
CZ AT	5212	.156	.097	.12547	.17694	.01 925	10
	DEG	-6.595	-7.479	-6.87790	6.88219	.24311	101
AL.	- DEG	-6.342	-6.667	-6.48720	6.48759	.07194	101
DELEV	DEC	5.384	4.994-	5.15201	5.15328	.11417	10
051A8	DEG	376	300	38791	.38797	. 30 653 -	101
RUD	DEG	11.144	10.857	11.06301	11.06335	.08669	101
THEF	PCT HAX	67.969	67.578 67.578		67.08410	.10500	101
THRE	PCT MAX	68.164	67.578	67.89650	67.89669	.15867	10
FLF	POTITION	.262	.242	.25235	.25241	.03520	10
58	POSITION	.346	. 338	.34137	.34138	.00154	103
ם מודב	METERS	7498923.686 7	486146.470	*********	**********	3633.20453	10
Ta o	DEGREES	72.883	72.824	72.05235	72.85236	.01749	10
เซนธ์	DEGRÉES	-118.167	-118.223	-118.19586	118,19586	.01547	10
LAT	DEGREES	35.331	35.089	35.21185	35.21192	.06 982	10
TRK ANG	DEGREES	14.560	4.724	10.67592	10.94058	2.39241	10
HDG	RADIANS	+173	112	.05671	.05747	.04450	10
VE	MISEC	27.040	8.476	18.75663	19.21691	4.18092	10
/N	A/SEC	105.977	92.267	99.60717	99.65539	3.11914	15
LITITUSE	RH	1.575	1.438	1.53037	1.53045	.01566	10
TEMPC	DEGREES C	9,576	5.479	6.89803	6.95030	.85081	10
W WND SPD	KNDIS	44.353	-12.830	25.87646	28,02785	10.76940	10
IS UND SPD	KNDTS	15.266	-22.245	-2.99359	5.78682	4.95258	10
IND SPEED	KNOTS	44.732	. 359	26.98911	28.61901	9.52072	10
IND DIFEC	DEGREES	354.810		271.19586	273.26223	33.54312	10
IND DIFE	DEGREES	178.810	-179.917	91.19593	97.16859	33.54314	10
					273.26228		
			104			33.54314	10
	DEGREES	358.810	.683	271.19593		E03 /0304	
TIND DIR4	DEGREES	341.948	-1241.685	-774.05127	975.34834	592.40399	
IND DIR4	DEGREES DEGREES M/SEC	341.94A 110.577	-1241.685 89.678	-774.05127 103.30451	975.34834 103.38603	4.10504	10
IND DIRG IRSPEED P IRSPEED C	DEGREES DEGREES M/SEC M/SEC	341.948 110.977 114.795	-1241.665 89.678 87.497	-774.05127 103.30451 101.40045	975.34834 103.38603 101.40244	4.07872	10
IND DIRA IRSPEED P IRSPEED C IRSPEED L	DEGREES DEGREES M/SEC M/SEC M/SEC	341.948 110.977 114.795 119.158	-1241.665 89.678 87.497 96.161	-774.05127 103.30451 101.40045 103.60750	975.34834 103.38603 101.40244 103.89158	4.10504	10 10 10
ITNU DIRA AIRSPEED P (IRSPEED C TIRSPEED L DELTA ALT	DEGREES DEGREES M/SEC M/SEC M/SEC M/SEC METERS	341.948 110.977 114.795 119.158 75.037	-1241.665 89.678 87.497 96.161 -11.843	-774.05127 103.30451 101.40045	975.34834 103.38603 101.40244 103.89158	4.07872	10 10 10 10
ITNU DIRA IRSPEED P IRSPEED C IRSPEED L DELTA ALT INRTE DISP	DEGREES DEGREES M/SEC M/SEC M/SEC M/SEC METERS	341.948 110.577 114.795 119.158 75.037 55.596	-1241.665 89.678 87.497 96.161 -11.843	-774.05127 103.30451 101.40045 103.60750 30.82562	975.34834 103.38603 101.40244 103.89158 34.57617	4.10504 4.07872 4.17934 15.66255	10 10 10 10
ITNU DIRA ARSPEED P ARSPEED C ARSPEED C ARSPEED C DELTA ALT INRTE DISP DE RIGHT	DEGREES DEGREES M/SEC M/SEC M/SEC METERS HETERS	341.948 110.577 114.795 119.158 75.037 55.596	-1241.685 89.678 87.497 96.161 -11.843 -9.398	-774.05127 103.30451 101.40045 103.60750 30.82562 30.16986	975.34834 103.38603 101.40244 103.89158 34.57617 33.21885	4.10504 4.07872 4.17934 15.66255 13.90286	10 10 10 10 10 10
NIND DIRA AIRSPEED P AIRSPEED C AIRSPEED L DELTA ALT INRTE DISP DE RIGHT	DEGREES DEGREES M/SEC N/SEC H/SEC HETERS METERS V/SEC	341.948 110.577 114.795 119.158 75.037 55.598 8.232	-1241.685 89.678 47.497 96.161 -11.843 -9.398 -10.262	-774.05127 103.30451 101.40045 103.06750 30.0750 30.16986 .00000	975.34834 103.38603 101.40244 103.89158 34.57617 33.21885 2.49445	4.10504 4.07872 4.17934 15.46255 13.90286 2.49456	
NIND DIRA AIRSPEED P AIRSPEED C AIRSPEED L DELTA ALT INRTL DISP JG AIGHT JG CENTER	DEGREES DEGREES M/SEC M/SEC H/SEC HETERS HETERS T/SEC X/SEC	341.94A 110.577 114.795 119.157 75.037 55.996 8.232 4.216	-1241.685 89.678 #7.497 96.161 -11.843 -9.398 -10.262 -10.157	-774.65127 103.30451 101.40045 103.60750 30.82562 30.16986 -00000	975.34834 103.38603 101.40244 103.89158 34.57617 33.21885 2.49455 2.48049	4.10504 4.07872 4.17434 15.66255 13.90286 2.49456 2.4856	
NINU DIRA AIASPEED P AIRSPEED L DELTA ALT INRTC DISP UG AIGHT JG CENTER JG LEFT	DEGREES DEGREES M/SEC M/SEC M/SEC METERS NETERS V/SEC M/SEC M/SEC	341.04A 110.977 114.795 119.157 75.037 55.596 8.232 8.216 9.032	-1241.685 89.678 47.497 96.161 -11.843 -9.398 -10.262 -10.157 -10.957	-774.65127 103.30451 101.40045 103.60750 30.42562 30.16986 -00000 -00000	975.34834 103.38603 101.40244 103.89158 34.57617 33.21885 2.4945 2.4945 2.48049 2.59710	4.10504 4.07872 4.17434 15.66255 13.00286 2.49456 2.49456 2.48060 2.59722	
NIND DIP4 AIRSPEED C KIRSPEED C DELTA ALT INRTC DISP UG AIGHT UG CENTER UG RIGHT	DEGREES DEGREES M/SEC K/SEC N/SEC NETERS V/SEC N/SEC N/SEC N/SEC	341.048 110.677 114.705 119.158 75.037 55.996 6.232 8.216 0.032 9.241	-1241.685 89.678 97.497 96.161 -11.843 -9.398 -10.262 -10.157 -20.865	-774.65127 103.30451 101.40045 103.60750 30.42562 30.16986 .00000 .00000 .00000 00163	975.34834 103.38603 101.40244 103.89158 34.57617 33.21885 2.49445 2.49445 2.59710 5.57721	4.10504 4.07872 4.1744 15.6255 13.00286 2.40456 2.40456 2.48060 2.59722 5.57947	
NTAD DIP4 AIRSPEED C AIRSPEED C ATRSPEED C DELTA ALT INRTC DISP UG AIGHT UG CENTER UG RIGHT VG RIGHT VG CENTER	0EGREES DEGREES H/SEC H/SEC H/SEC HETERS NETERS V/SEC H/SEC H/SEC H/SEC H/SEC	341.04A 110.477 114.705 75.037 55.036 8.232 8.216 0.032 0.254 0.5241 0.560	-1241.663 89.678 87.497 96.161 -11.843 -9.308 -10.262 -10.157 -10.957 -20.865 -20.014	-774.85127 103.30451 101.40045 103.60750 30.82562 30.16986 .00600 .00600 .00000 00192 00032	975.34834 103.38603 101.4024 103.89158 34.57617 33.21885 2.49455 2.49455 2.48049 2.59710 5.57921 5.57528	4.10504 4.07872 4.17936 15.66255 13.00286 2.40456 2.40456 2.59722 5.57947 5.57554	10 10 10 10 10 10 10 10 10 10 10
NIND DIRA AIRSPEED C AIRSPEED C DELTA ALT INRTE DISP DG AIGHT DG CERTER VG RIGHT VG RIGHT VG CERTER	DEGREES DEGREES H/SEC H/SEC H/SEC RETERS NETERS V/SEC H/SEC H/SEC H/SEC H/SEC H/SEC	341.04A 110.477 114.705 119.15P 75.037 55.596 8.232 8.216 9.032 9.241 9.569 10.411	$\begin{array}{c} -1241.683\\ 89.678\\ 97.497\\ 97.161\\ -11.843\\ -9.398\\ -10.262\\ -10.157\\ -10.957\\ -20.865\\ -20.014\\ -23.161\end{array}$	-774.85127 103.30451 101.40045 103.60750 30.82562 30.16986 .00600 .00600 .00000 00192 00032	975.34834 103.38603 101.4024 103.89158 34.57617 33.21885 2.49455 2.49455 2.48049 2.59710 5.57921 5.57528	4.10504 4.07872 4.17936 15.66255 13.00286 2.49456 2.49456 2.59722 5.57947 5.57554 5.57554	
VIND DIR AIRSPEED P AIRSPEED L DELTA ALT INRTC DISP UG AIGHT UG CENTER UG LEFT VG RIGHT VG CANTER VG LEFT	0EGR2ES 0EGR2ES M/SEC N/SEC NET2AS NET2AS NET2AS NSEC N/SEC N/SEC N/SEC N/SEC N/SEC N/SEC	341.04A 110.677 114.705 119.15F 75.037 55.906 8.232 8.216 9.032 9.241 9.569 10.411 12.526	$\begin{array}{r} -1241.663\\ 89.678\\ 89.678\\ 96.161\\ -11.843\\ -96.398\\ -10.262\\ -10.157\\ -20.855\\ -20.014\\ -23.954\end{array}$	-774.65127 103.30451 101.40045 103.60750 30.82562 30.16986 .00000 .00000 .00000 -00109 -00199 -004570	975.34634 103.38603 101.4024 103.89158 34.57617 33.21885 2.49445 2.49445 2.49445 2.59710 5.57921 5.57921 5.57922 5.5625 2.43192	4.10504 4.07872 4.17934 15.66235 2.46456 2.46456 2.46466 2.59722 5.57947 5.57547 5.57547 2.4651 2.463191	
WIND DIRA MIND DIRA AIRSPEED C DELTA ALT DELTA ALT DIG RIGH UG RIGH UG RIGH UG RIGH VG RIGH VG RIGH VG RIGH WG RIGH WG RIGH WG RIGH MG RIGH MG RIGH MG RIGH MG RIGH MG RIGH MG RIGH	DEGREES DEGREES H/SEC H/SEC H/SEC RETERS NETERS V/SEC H/SEC H/SEC H/SEC H/SEC H/SEC	341.04A 110.477 114.705 119.15P 75.037 55.596 8.232 8.216 9.032 9.241 9.569 10.411	$\begin{array}{c} -1241.683\\ 89.678\\ 97.497\\ 97.161\\ -11.843\\ -9.398\\ -10.262\\ -10.157\\ -10.957\\ -20.865\\ -20.014\\ -23.161\end{array}$	-774.65127 103.30451 101.40045 103.60750 30.42562 30.16986 .00000 .00000 .00000 00163	975.34834 103.38603 101.4024 103.89158 34.57617 33.21885 2.49455 2.49455 2.48049 2.59710 5.57921 5.57528	4.10504 4.07872 4.17936 15.66255 13.00286 2.49456 2.49456 2.59722 5.57947 5.57554 5.57554	



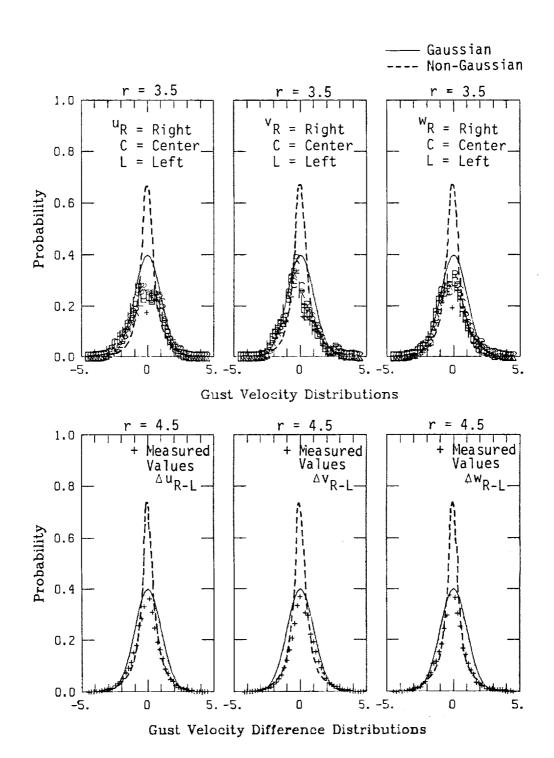
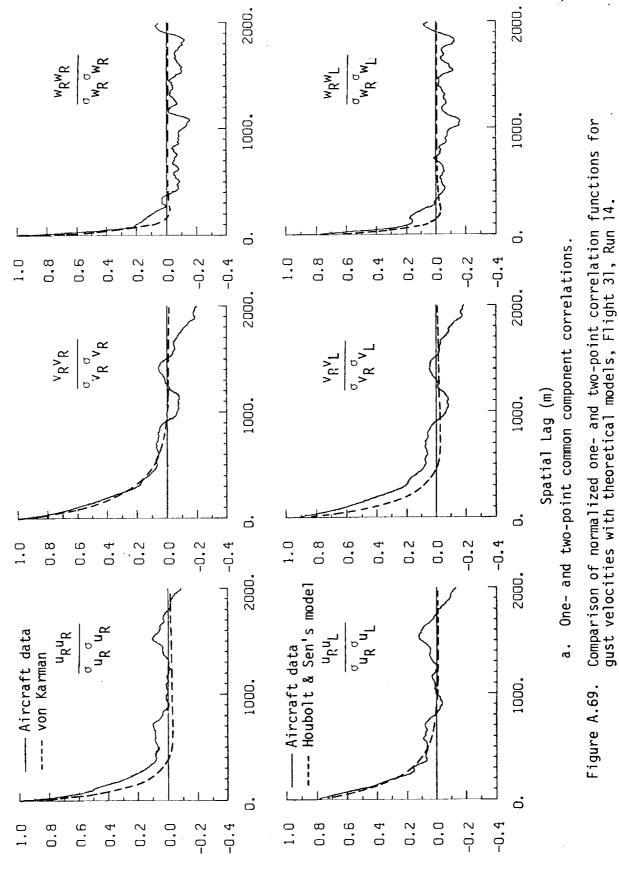
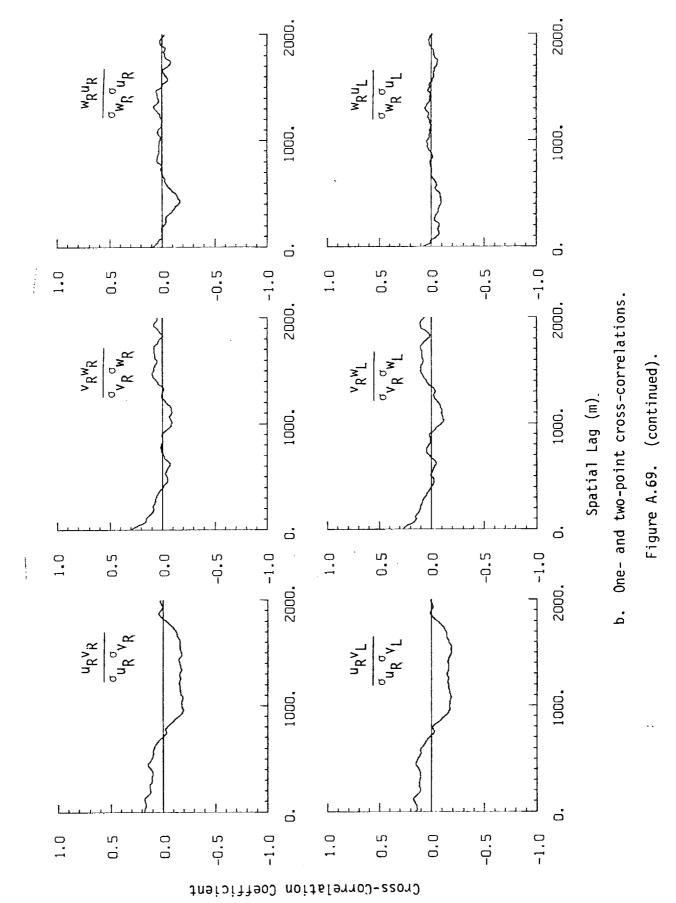


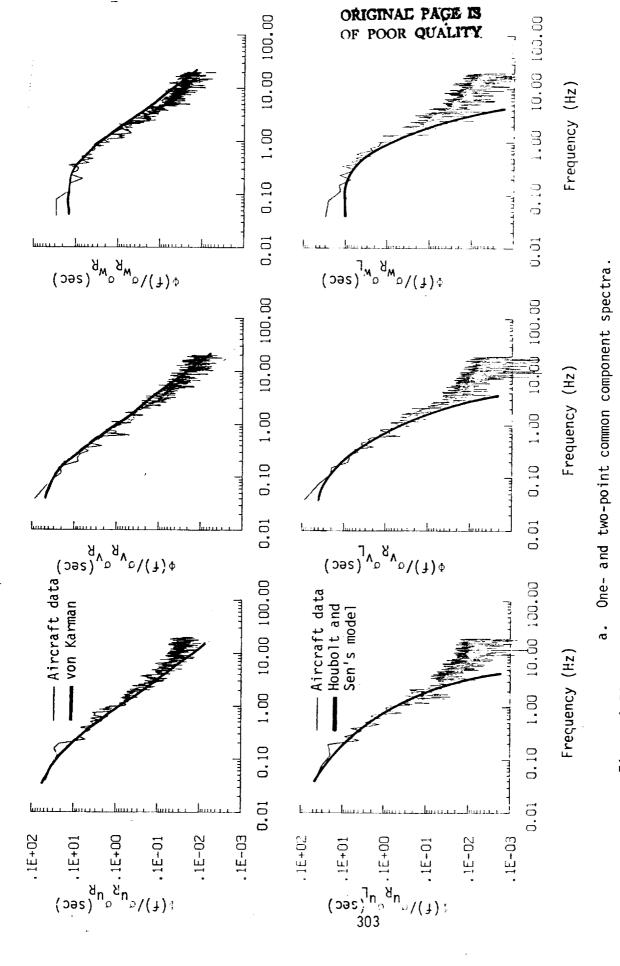
ŕ -

1.	Mean Airspeed (m/s):			4.	Integral Length Scale (m):			
	VL	VC	\overline{v}_{R}		L _{uR}	L _{vR}	LwR	
	103.38	101.07	102.99		174.9	204.	4 66.8	-
2.		rd Devia elocitie	tion of s (m/s):		L _{uRL} 161.3	L _{VR} 205.		-
	∽uR	<u></u> vR	σwR					
	2.51	3.54	2.37	5.	Correlat Velociti		efficient c	of Gust
	σuC	σvC	σwC		u <u>Ru</u> /ơ _{uR} ơ	J., V	<u>ˈᠷᢦ</u> ᠘/ᢦ _{ᢦᠷ} ᢦ _{ᢦ᠘}	₩ <u>₽₩</u> _/σ _{₩R} σ _{₩I}
	2.47	3.50	2.12		0.79		0.90	0.77
	σuL	σvL	σwL					
	2.52	3.42	2.28		uRVR/ouR	<u>v</u> R	<u>RWR</u> /o _{VR} o _{WR}	wRUR/owRouk
					0.18		0.19	0.10
3.	Standa	nd Dovia	. +	<u>urv</u> /o _{ur} o	ν <u>Γ</u> Δ	RWE/ _{σvR} σwL	₩ <u>ŖŪ</u> [/σ _{₩R} σ _{UL}	
٥.			ition of Gus erences (m/s		0.13		0.27	0.07
	σ⊿uRL	σ∆vRL	°∆wRL					
	1.29	1.12	1.37					

TABLE A.27. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 14.

Ŧ


Figure A.68. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 14 (r = degree of non-Gaussian).

tneicitteol noitelerrol

÷

Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 14.

Figure A.70.

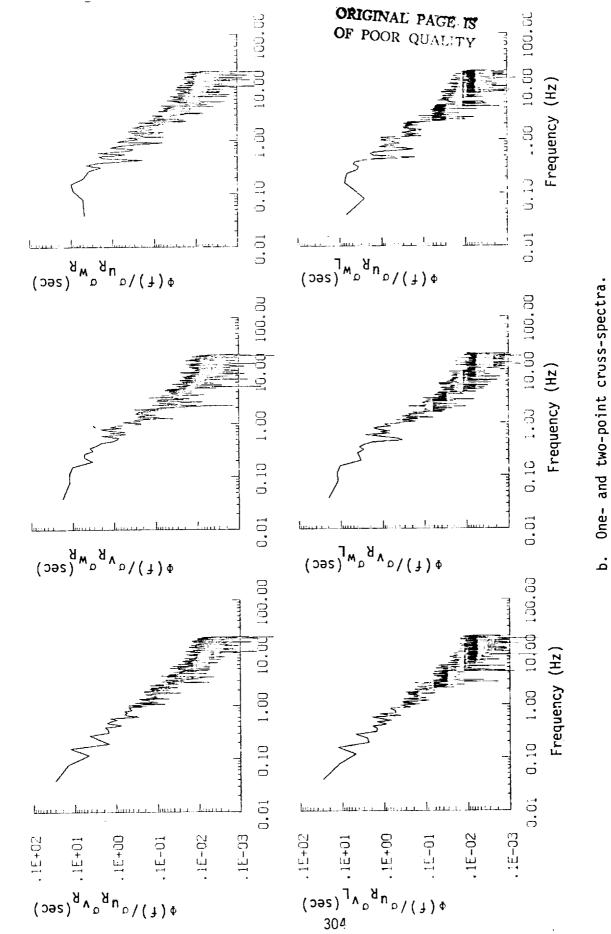
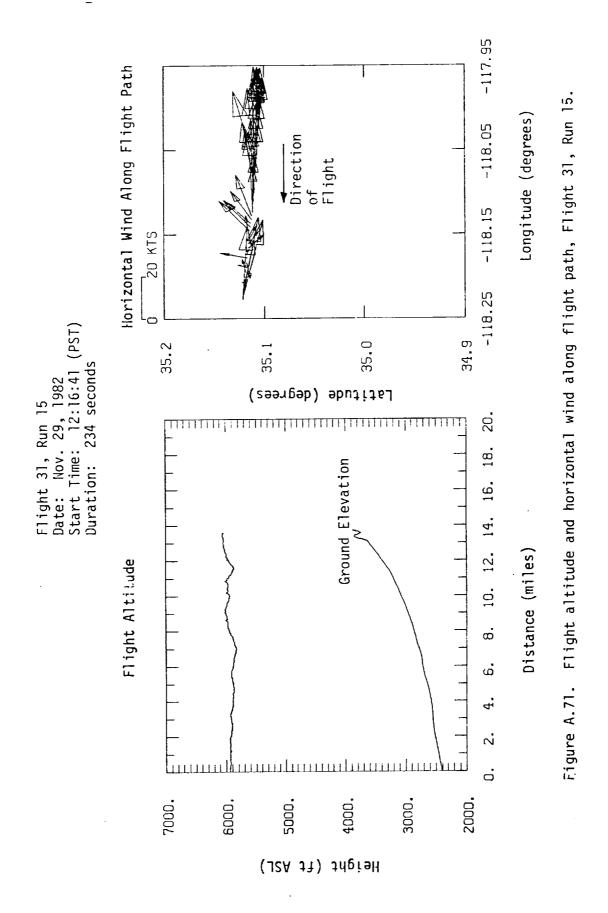
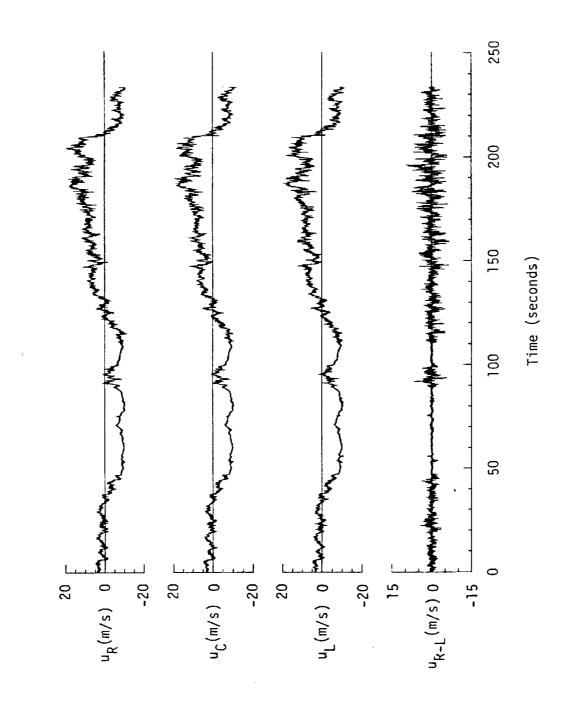


Figure A.70. (continued).


ORIGINAL PAGE IS

OF POOR CUALITY


TABLE A.28. List of All Parameters Measured and Their Range of Values, Flight 31, Run 14.

CHANNEL	INTE	HIGH - 43569.423. - 195 - 195 - 196 - 197 - 197 - 1122 - 200. - 200.681 - 5.020 - 568.413 - 5.020 - 568.413 - 5.020 - 3.651 - 4.004 - 117 - 107 - 0.73 - 146 - 107 - 0.73 - 146 - 111 - 146 - 111 - 146 - 111 - 147 - 127 - 165 - 14.356 - 947 - 122.69 - 8,293 - 346 - 121 - 0.65 - 14.356 - 947 - 122.69 - 8,293 - 348 - 372 - 10.914 - 5.978 - 348 - 372 - 10.914 - 64.066 - 7.301 - 5.978 - 348 - 372 - 10.914 - 64.578 - 358 - 348 - 372 - 118.178 - 35.25 - 148.178 - 35.453 - 179.435 - 35.435 - 179.435 - 35.435 - 179.435 - 35.435 - 179.435 - 35.435 - 10.401 - 22.074 - 22.077 - 3.757 - 3.757 - 3.757 - 3.757 - 3.7	LOW	NEAN	RMS	STD	POINTS
TIME	SECOUDS .	43969.443	43660.573 4	3764.99780	43765.03934	60.30063	8 355
2 PHI DOT	RAD/SEC	.195			.05322	.05315	8355
3 ACCL N CC	G UNITS	1.082					
4 JHETA	FADZSEC	087	107			.01926	6355
5 JHETA	RAD			-00128	.04365		
	PATI	246-681	190 753	200.87019.	200.88491	2.43183	
	DEG	5.020	-15.081	78389	2.73068	2.61540	8355
9 P51 2	PAD	568.813	548.147	<u>563.09995</u>	563.10573	2.55352	
10 DEL PS1 2.	DEG	5.379		40259			A355
11 ACCL N LT.	G_UNITS		-1.016	1.01049	1.04022	.36704	8355
12 ACCL N RT		1.70		.05634	.06047	.02148_	8355
IJACCL X CG	U UNITS	.107	156	.00031	.02915	.02915_	8355
15 ALPHA CTR	RAD	.073	153	03215	.0:720		
16 BETA CTR	RAD	•146	191	.01173	.03989	03811	
17 TEMP 1	DEG F	20. 497	75.957		78.30200 59.11206	.06051	8355
18,7£ MP_P	DEG_F	1.076		1.01012	1.02673	.18395	
19ACCL 2 145	00 UN113	.111	- 1 10	01649	.02763	. 02179	8355
21 RETA RT	RAD	.148		.01941	.03976		
22 ALPHA LT	FAU	. 112	044	.0046A	01950	+01893	8355 8355
23 BETA LT	NAD	+129	1/7	01401	.03/29	.03184	8355
24 PS1 DDT	RAU/SFC			1) (64764	11.66879	.76576	8355
25 TEMP TUT	UEG_C			.83168	.83326	.04760	8355
2700 018				.74435	79563_		
ZBOC RT	0510	.947	.682	.82555	.82686	.04654	8355 9366
29 P 5	PSTA	12.269	11.993	12.19375	12-14347	-25746	8355
30 TEMP, 1RT	V0LTS		61,907	/+Jii/9. _ 18003	3.14476	3.13871	8355
31 HYGROM	DEG_C			.06153	.06161	.00307	8355
32002 018	PS10	.169	.084	.14043	.14243	.02375	
14 OC2 RT	PSID	.147	.117	.12796	.12831	.00960	
35 DAR	DEG	-8.440	-9.054	-8.90240	8,90402	.16993	8357
36 DAL	DTC			-7,96148	7. 96819		8355
37 DELEV	DEG			- 5.43606		.00782	8355
38 05148	DEG	10.914	10.686	10.75424	10.75447	.07044	8355
39 0 0 0	PCT HAN	67.578	67.383	67.44859	67.44862	.05991	
AT OTHEL	PCT MAX	68.000	67.773	67.89629	67.89634	<u></u> .08283	8355
42 DFLP	PUSITION		.2.38		24310_		
43 DSB	POSITION		4346.	-34722	. 34722	3265.93300	8355
44 D TO G	METERS		77 810	72-83578	72 83578	.00908	8355
45 8 10 0		-118,178	-118.239	-118.20802	118.20802	.01767	8355
46 2000			36 14 2	25 23301	15.21305	.05267	8355
47 LAT	DEGREES	198-163	197.659	195.25335	145.25736	1.25075.	
49 HDG	RADIANS.	3.630	3.347	3.52647	3.5.2674	04334	
50 VE	M/SEC	-22.074	-31.592	-20.46176	26.54089	2.04811	
51 VN	#/SEC	-92.662	-190.765		1		8355
52 ALTITUDE	KM	<u>1.687</u> .	1.496	1.540/0	6.59134		8355
53 TEMPC	_ DEGREES C	4.036	9.144	20.14629	21.36764	7.12102	8355
54 EW WAD 3P	оц <u>— лана ан</u> — — — — — — — — — — — — — — — — — — —	10,379	-18.023	-5.49680	6.99665	4.32904	
56 HIND SPEE	D	43.370	328	21.51710	22.49347	6.52271	
57 WIND DIRE	C DEGREES	3594435		283.62071	285,11087	29.11350	8355
58 HIND DIP?	DEGREES		-1/4.954	283-62073	285.11043	29.11359	8355
59 WIND 0183			37.990	486.2204	517.76474	177.98612	8355
ALRSPEED	R #/SEC	110.401	94.382	102.4997	103.03887	2.84003	8355
52 ALPSPEED	C #/STC	108.415	91.123	101.0771	101.11596	2.79987	
63 AIRSPEED	L_ #/SEC	111.076		103.3030	103.42360	48-71526	8355
64 DELTA ALT	METERS				47.72420	47.72696	8355
65 INKIL DIS	N/SEC	L37+307	-9.114	.00000	2.51904	2.51919	#355
66 UC CENTER	M/SEC	7.811	-8.818	.00000	2.47656	2.47671	
6R UG_LEFT	M/SEC	8.272	-7.712	.0000	2.52441	2.52456	
69 VG PIGUT	M/SEC	17.830	-17,509	0226	7	J. 54838	
70 VG CENTER		15.810	-4.840	0229	2 3.20220	3-47448	8355
71 VG LEFT	N/SEC	15.304	-4.201	-00233	y y y y y y y y y y y y y y y y y y y	2.37158	
72 WG_RIGHT		10.708	774967 -9.684	.0023	2.12435	2.12447	8355
73 HG LENIER	M/SEC	12.575	-8.528	.0067	7 2.28809	2.28822	8355
A no cort							

Ť

-

z P

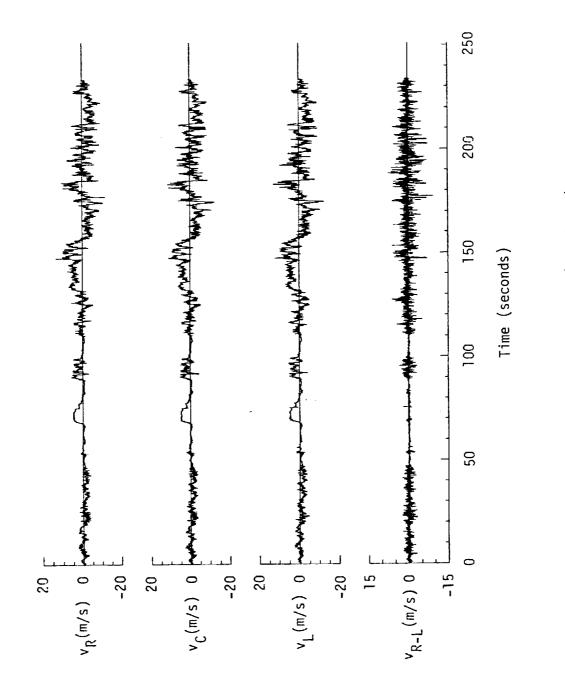
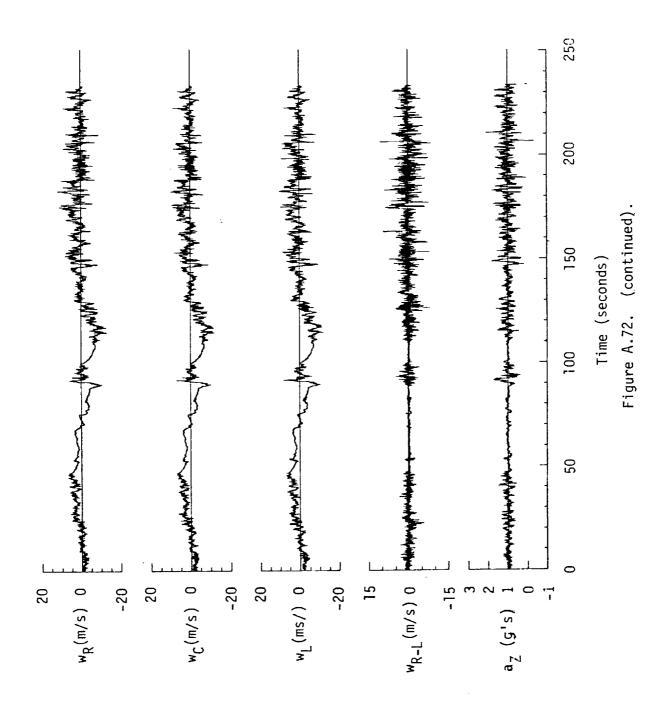



Figure A.72. (continued).

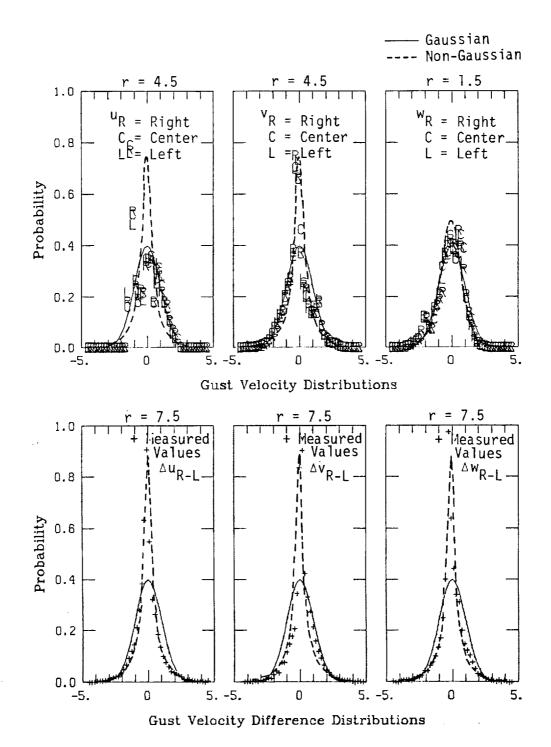
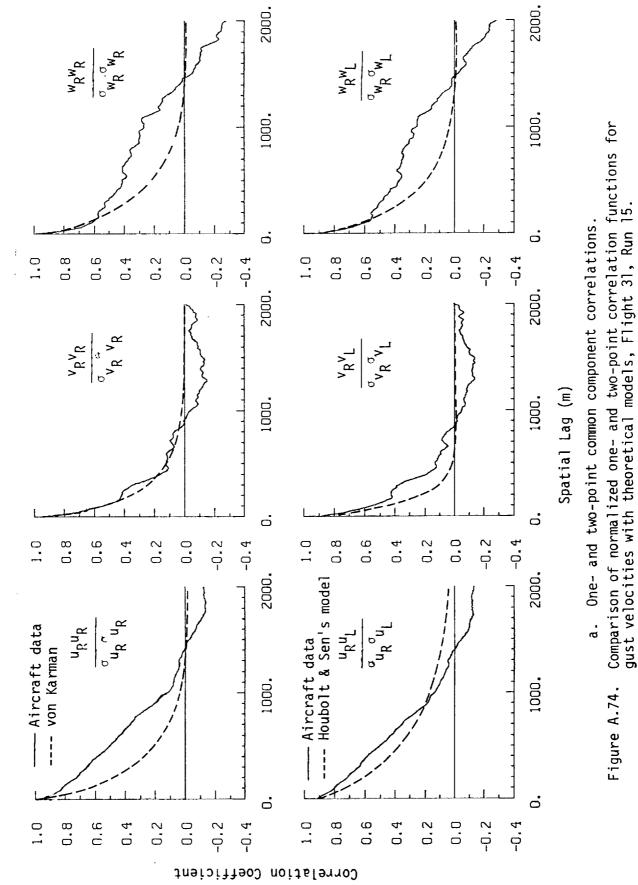
ŝ

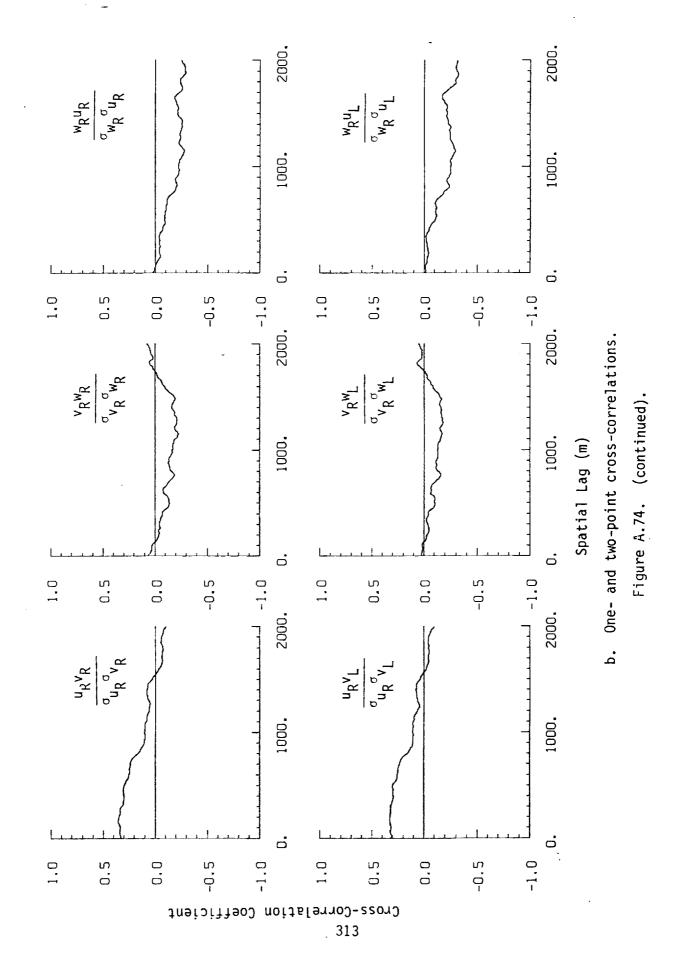
1.	Mean Airspeed (m/s):		4.	Integral Length Scale (m):			
	$\frac{\nabla_{L}}{107.74} \frac{\nabla_{C}}{105.4}$	$\frac{\overline{V}_{R}}{107.23}$		L _{uR} 540.0	L _{vR} 225.8	L _{wR} 526.1	
2.	Standard Dev Gust Velocit			LuRL 526.5	L _{vRL} 225.3	L _{WRL} 494.0	
	ouR ovR 7.46 2.84	 3.45	5.	Correlat Velociti		ficient o	f Gust
	σuC σvC 7.31 2.89	σwC 3.29		<u>uRuL</u> /o _{uR} 0.90		<u>[/_{σvR}σvL</u> 0.88	<u>WRWL</u> /σ _{WR} σ _{WL} 0.88
	σuL σvL 7.32 2.87	σwL 3.35		<u>urvr</u> /g _{ur} 0.32	^o vr VRW	0.08 <u>R/_σv_R^σw_R0.06</u>	<u>wRUR</u> /σ _{wR} σ _{UR} 0.02
		iation of Gust Ferences (m/s):		<u>urv</u> _/ơ _{ur} 0.30		^{/σ} vR ^σ ₩L 0.01	<u>₩RUL</u> /σ _{WR} σ _{UL} 0.00
	$\frac{\sigma_{\Delta} uRL}{1.45} \frac{\sigma_{\Delta} vRL}{1.24}$	σ∆wRL 1.49					

TABLE A.29. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run 15.

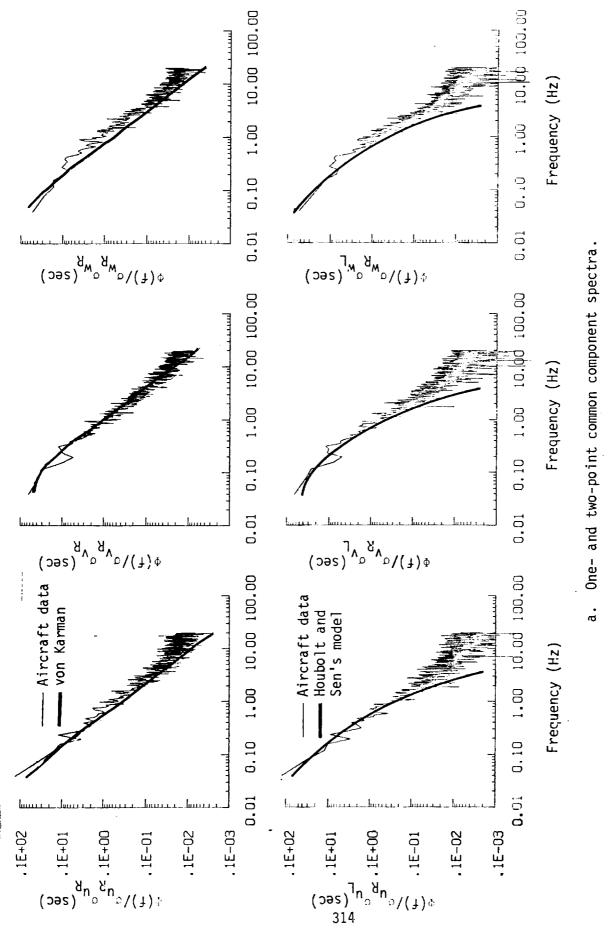
310

Ŧ


Figure A.73. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 15 (r = degree of non-Gaussian).

Ę

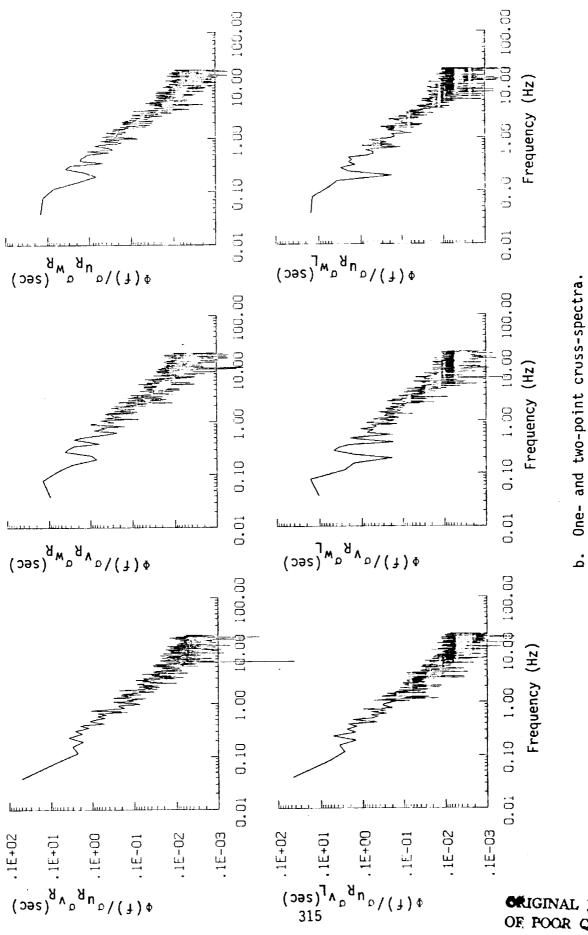

312

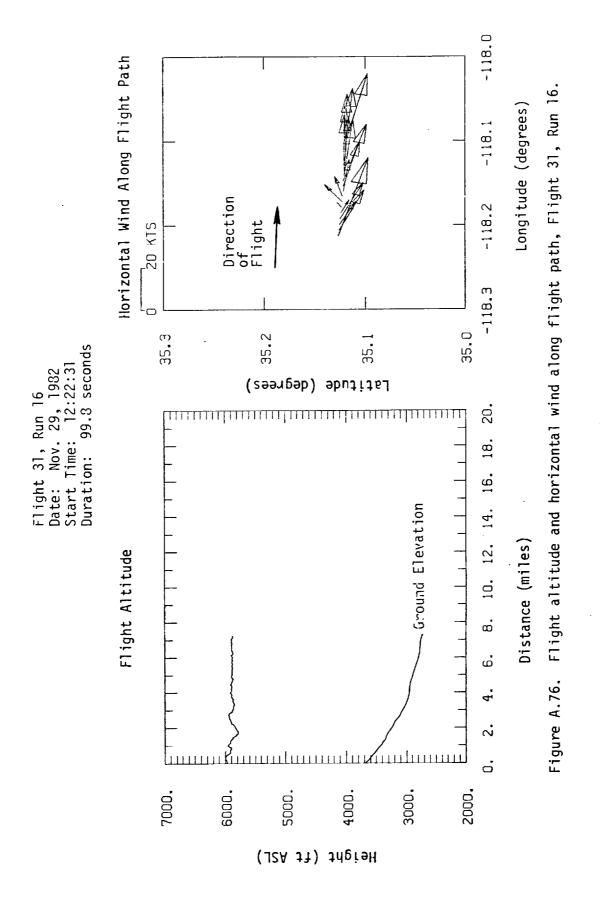
-

憲法 既 作 較美 (1993) の 四論の「一部字 (1993)

-

Comparison of normalized one- and two-point spectral density functions for gust velocities with theoretical models, Flight 31, Run 15. Figure A.75.




Figure A.75. (continued).

ORIGINAL PAGE IS OF POOR QUALITY

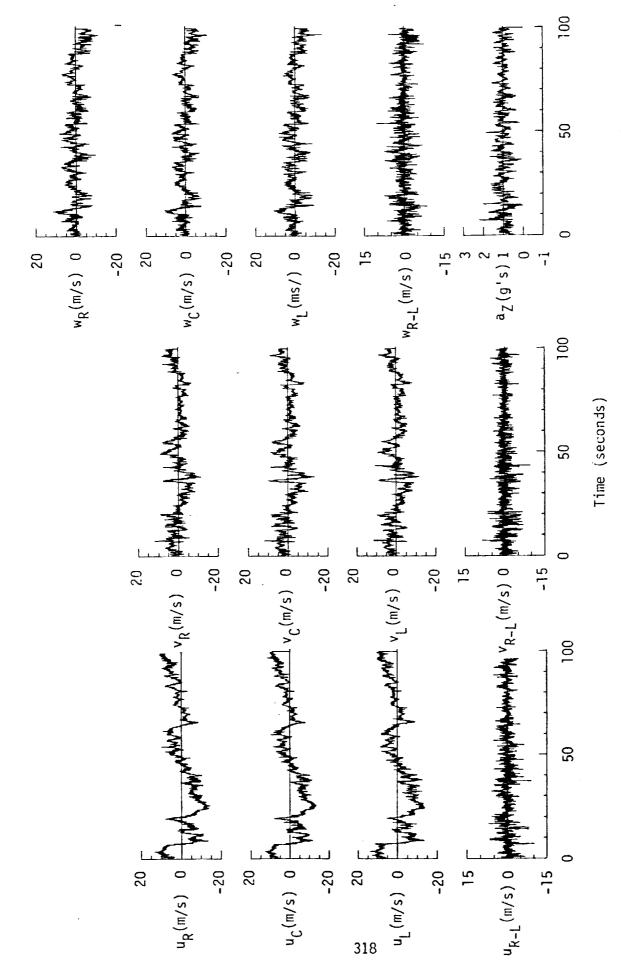
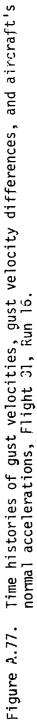

ORIGINAL PAGE IS OF POOR QUALITY

TABLE A.30.	List of All Parameters Measured and Their Range of Values,	
	Flight 31, Run 15.	


CHANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD	POINTS
TIME	SECONDS	44434,407	44200.497 4	4317.49660	4317.54809	67,54081	
2 PHT DDT	RADISEC	.258	-,259	00252	.04122	.04619	9361
3 ACCL N CG	G UNTTS	1.973	176	1.00100	1.01600		9361
5 74674	PAD		018	.04794	.05645	.03665	9361
6 PH1	RAD	,148	162	.00541	.04198	+04091	9361
7 PCT 1	PAP	200.571	264.947	273.98499	273,99249	2.02717	9361
8 AFL PET 1	DEG	279.375	-5.765	725#8	271.88473	1.96342	9361
9 PTT 7	DEG		-5.271	26305_	2.02320	2.00341	9361
11 ACCL H IT	GUNITS	2.459	-1.796	1.01475	1.06420	.32064	9361
12 ACCL P RT	G UNITS	2.004	-1.476	1.01099	.06782	.34097	9361
13 ACCL Y CG	G UNITS	.215	133			.02509	9361
IC ALOUA CTE	- 0 Y D	.071	142	03523	.0417e	.02246	9361
16 RETA CTR	RAN	.135	- 146	.00151	76.60825	.11384	9361
17 TENP 1 18 TENP P	DIG F	76.857 59.264	74.317	76.60017	59.16940	0e270	4361
18 TEMP P 19 ACCL 7 THS	GUNITS	2.045	326	1.00465	1.02000	.17630	9361
20 41 944 91	RAD	.091	150	03062	86560	.02547	9361
91 #FTA PT	RAD	.147 .107	130	.00751	.02 £36	.02737	9361
22 1 941 1	RAD		124	.00500	.07869	.02765	9361
23 PST DOT	"PAR/SEC "		093	.00275	.02273	.02257	9361
25 7548 707	DEG C	· ···· ···· ··························	A. R44	11.52154	12.10293	15995	9361
26 77 17	PSID	1.100	553	.88423	.89658	.15409	
27 0F FTR	PS10 PS10	1.179				.15944	9361
29 95	PSIA	11,850	11.746	11.00425	11.00427	.02289	9361
30 1 5 8 9 1 8 1	VOLTS	9,433	6.208	7.67652	7.71504	2.21213	9361
31 HY CO 1M	PEC C	-2.329	-13.473	-6,82922	7.17853 .06429	.00515	9361
32 0C2 LT		.166	.029	.12254	.12823	.03777	9361
33 0C2 PT	PSID	.129	.073	.07827	.00415	.03090	9361
35 040	DFG	-5.340	-8.032	-6.41164	6.46690	.84367	9361
36 0 ML	DEG DEG	-5.868	-*.375	-7.14971 5.77688	5.78245		9361
3/ 33915	- 016		431	42535	-42537	.00568	9363
39 DRUD	PFG		11.768	" 11.8P148	11.#P157	-04574	9361
40 htup	PCT MAX	69.238	6P.555	69.00506	49.00131 68.84321	.14624	9361
41 DTHEL	PCT HAX POSITION	69.141	68.457	6F. #4243 +21732	21742		9361
42 DFLP	POSITION	.361	.348	.35429	. 35431	,00340	9361
AA TO YOU A	HETERS	7506561.672	7496274.900	*********		5776.44551	9361
45 8 TO D	DERVEFS	73.032	77.842	77.94796	72.94798	.04834	4361
46 LANG	DFGFEES	-117.004	35.105	35.11276		.00544	9361
•/	DEGREES	279.086	277.356	275.50516		1.73247	9361
48 TR4 ANG 49 HDG	RADIANS	4.011	4.704	4.79411	4.79425	.03620	936)
50 VF	HISFC	-77.6P3	-105,444	-93.57270	93.86247	7,97973	9361
51 VH	MISEC	14.439	4.101			2.68733	9361
52 ALTITUNE	KM DEGREES C	1.450	1.779	6,34655	6.51964	1.45277	9361
54 FV WHO TP	D KNOTS	45.671	-14-828	22.29207	26.43351	14.20620	9361
55 N. VNN . CP		24.118	-21.547	1.09625		5.66517 12.05343_	9361
56 WIND SPIF	D KNOTS C DEGREES	45.421	.158	254.44940		49.74980	9361
58 WTND DTP2	T DECREES	179.977	-179,004	74.44943	E9.5404P	49.74983	4361
59 WIND DIRS	DEGREES	159.027	.006	254.44943	259.26664	493.55067	9361
60 WIND DIP4	P MASEC	2351.430	574.319		996.87545	9.75021	9361
61 ATPSPEED	P M/SEG	124.426	*3.074	105.40077	105.83824	9.61467	9361
AT ATESPEED	L HISEC	125.371	96.019	107.74866	108.18E68	9.74821	9361
64 DELTA ALT	HFTERS	40.025	- 30 - 373	GR776		15.69818	9361
65 THETE MTS	P HETERS	15,362	-31.592		7.46476	7.46516	9361
66 LIG CENTER			-17,000	.00000	7.310:0	7,31889	9361
68 UN LEFT	M/SFC	19.566	-11.267			7.32537 2.04732	9361
69 VA BIAHT	H/SEC	13.160	-11,909	.01067		2.49621	9361
TO VE CEPTER	W/SEC	12.740	-12.380	.02179	2.07713	2.87720	9361
THAT & AV	NITEC	11.645	-12.865	.04385	3.45700	3.45591	9363
73 VG CENTER	H/SFC	9,409	-11.746	1164	3,30030	3.29042	9361
74 VALEET	MAREC	9,441	-11,933	.10281			

Ŧ

÷

1.	Mean A	irspeed	(m/s):	4.	Integral	Length	Scale (m)	:
	\overline{v}_{L}	VC	∇_{R}		L _{uR}	L _{vR}	L _{wR}	
	109.41	107.0	7 108.82		348.1	362.2	95.0	-
•	Chau day				LuRL	L _{vRL}	L _{wRL}	_
2.			ation of es (m/s):		347.5	336.5	115.3	
	σuR	^σ vR	∽wR		_			
	5.68	3.21	3.21	5.	Correlat Velociti		fficient c	of Gust
	σuC	σvC	σwC		uRuL/ouR	σ <u>V</u> σ	ᢦᢅ <u>᠆</u> /σ _{VR} σ _{VI}	₩ <u>₽₩</u> _/σ _{₩₽} σ _{₩Ι}
	5.59	3.44	3.02		0.85		0.86	0.85
	σuL	σvL	σwL					
	5.74	3.29	3.14		uRvR/ouR		WR/ JVR JWR	WRUR/JWR
					0.49		0.05	-0.10
3.	Standar	rd Devi	ation of Gust		<u>^uRvL</u> /o _{uR}		۳ <u>۲</u> /σ _{VR} σ _{WL}	<u>wRuL</u> /owRouL
J.			erences (m/s):		0.49		0.02	-0.10
	σ∆uRL	₫۵vRL	σ∆wRL					
	1.75	1.61	2.00					

TABLE A.31. Average Turbulence Parameters, Integral Length Scales, and Correlation Coefficients of Gust Velocities, Flight 31, Run16.

÷....

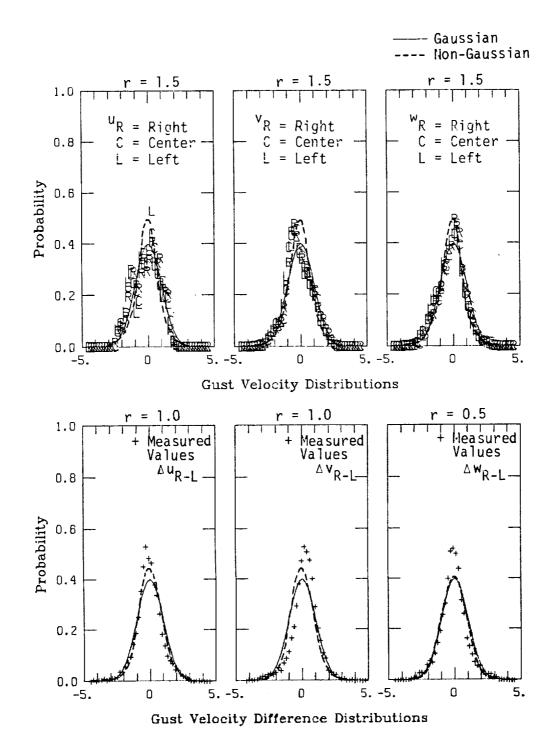
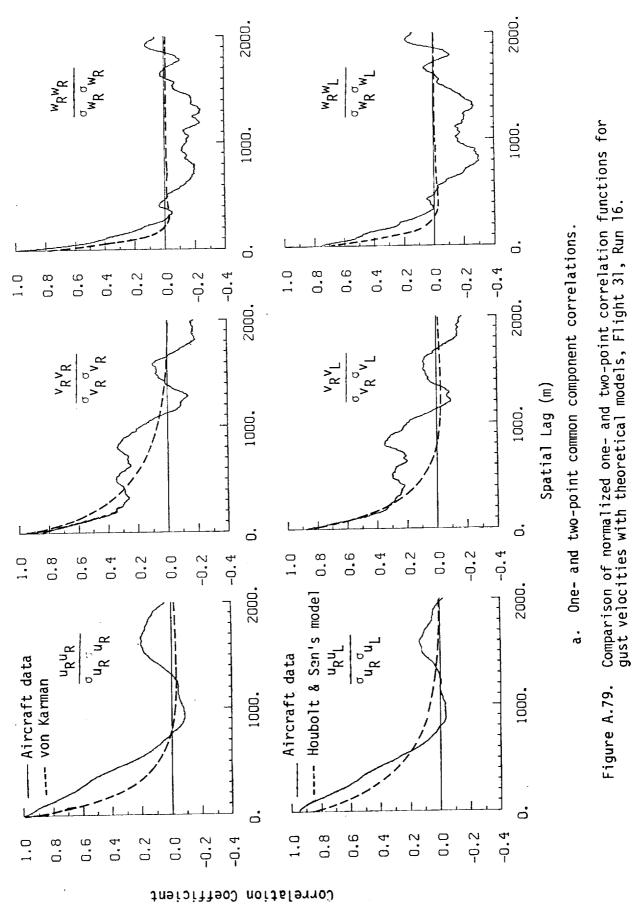



Figure A.78. Probability density functions for gust velocities and gust velocity differences (normalized with the standard deviation), Flight 31, Run 16 (r = degree of non-Gaussian).

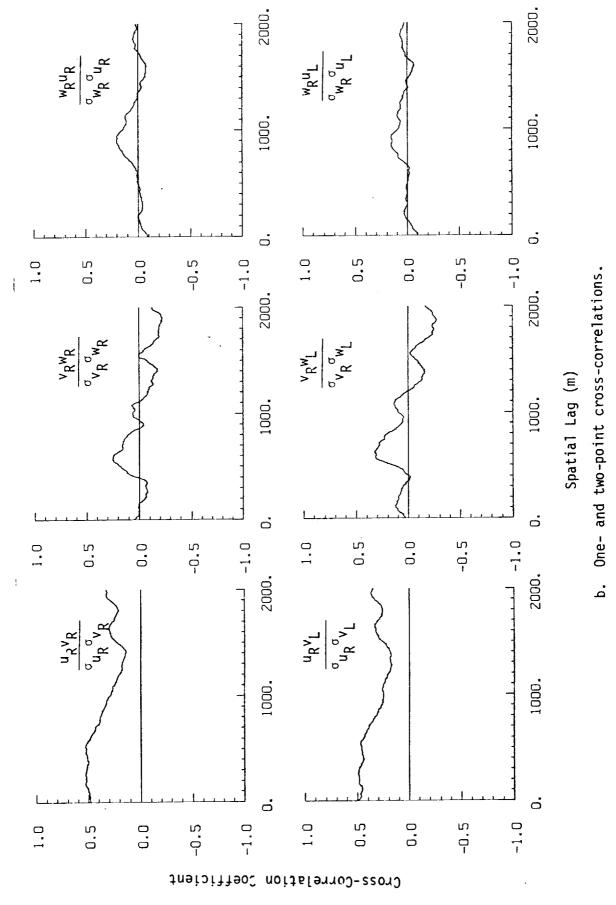
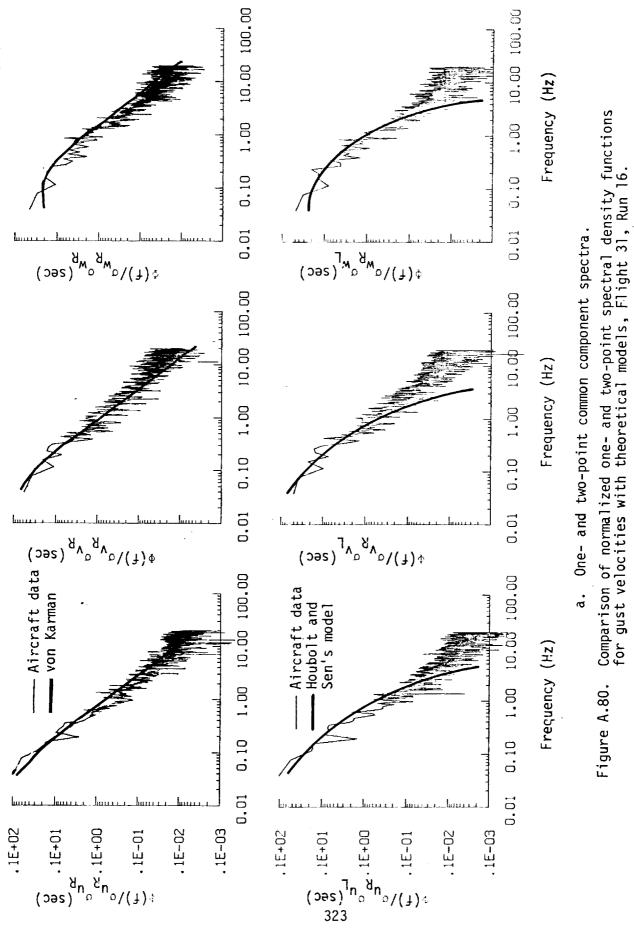
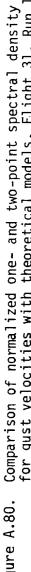




Figure A.79. (continued).

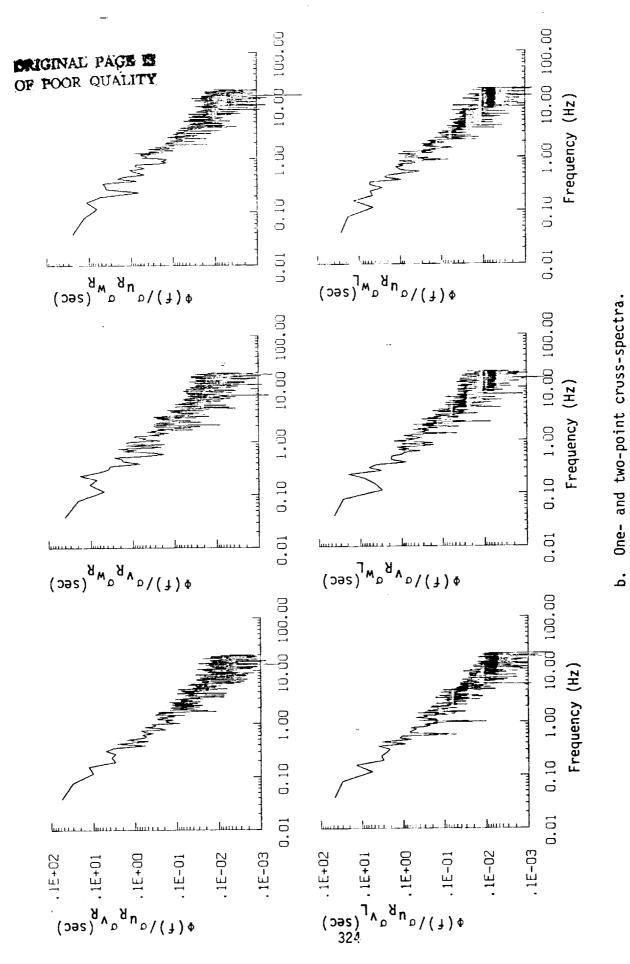


Figure A.80. (continued).

OF POOR QUALITY

TABLE A.32. List of All Parameters Measured and Their Range of Values, Flight 31, Run 16.

CHANNEL	UNITS	HIGH	LOW	MEAN	RMS	STD	POINTS
<u>1 7788</u>	SECONDS	44650,419	44550.619	44600.51910	44600.52741	28.62063	3993
PHT DOT	RAD/SEC	.173	170	00219	.05469_		3993
APCL N CG	G UNTTS RAD/SEC	1.436	-184	.99295	07160_	.02132	3993
5 THETA	PAD	.093				- 0 26 0 7	3993
6 PHT	RAD	•124 98.621	141			.05242	3993
8 DFL PST 1		98.8217.048	87+224_ -3+444	2.57783	3.36447	2.16232	3993
9 9 9 7 9	RAD	456.511	446.301	452.21091	452,21583	2.11081	3993
10 PFL PST 2	DEG	7.402	-1.037	2.94148	3.04007	<u></u>	3993
11 ACTL H LT_	G_UNITS	3,8402,939	-1.764	1.00539	1.09894	+42480	3993
12 ACCL N PT 13 ACCL Y CR	C HNTTS	.138	~.079	.07342	.05700	.05198	3993
144CC1 Y CC	G UNITS	.212	308	00651	.05113	.05072	3993
1531 PHA CTP	PAD		127	04022	.04610	.04257	3903
17	DEG F	.126	76.677	76.99361	76.99375	.14330	3993
1Berna a	0F6 F	274767	375004	59.26035	59.26035	.02375	3993
19ACCL 7 1HS 20ALPHA PT	6 UNITS	2,197	114	.99566		.02520	3993
21BFTA PT		.043	146	.00732	.03064	.03814	3993
2211 5111 1 7	RAN	.069	083	00486	.02410	107361	3003
238 FTA LT 24957 007			153		.03507	.03813	
25TENP TOT	DEG C	.063 .123 .069 .118 .141 .141 .1372 	10.124		.035C7 11.38193	.70577	3993
2607 LT 2706 CT	PSID	1.372	. 699	.91431	.92597	_14649	3993
2706 CT# 2805 #T	PSID	1.209	.460	.87481	.916C9	.14142 .14579	3993
299 4	_PSIA	11.874	11.774	11.82186_	11.02147	.01712	3993
JUTENP TRT	VOLTS	8.293	6.407	7.74091	7.74587	.27715	3993
31476204	DEG C	-2.720	-11.519	-5.65175	6.04169	2.13560	3993
320C2 LT	PS10 PS10	.049	.046	.12450	#12556	.01626	3993
33662 CTR 34062 RT	P\$10	.121	.108	.11176	-11183	.00406	3003
350 40	DFG DFG	-6.715	-6.788	-6.42209	<u> </u>	.22842	3003
360 AL 370 FL FV	OFG	4.643	L. 868		A.58030	.02000	3993
3977 473 4	DEG	360	379	36745	24 340		3993
3910116 400 THE R	DEG MAX	11.112	10.751	11.04139	11.04252 68.61509	.15799	3993
4 DTHRL	PCT HAX	40.220	68.262	69.11436		.08580	3993
42051	POSTTION	.100	.191	.19540	19541	.00088	3993
43054 440 TO G	POSITION	7498835.904	.365	.36728	136728-	.00145	3993
45A TO D	NETERS DEGREES	72.963	72.673	72.91892	72.91892	.02572	3993
46 L 1946	DEGREES	-118.008	-118.216	-118.15034	118.15035	.03649	3993
47L AT	DFGREES			35,12240	- 35 J 224P	00266	3993
4 <u>5 t PR ANG</u> 49 H D G	RADITANS	97.616	92.672	95.36264	95.37241	1.36528	3993
50 VF	B/SEC	129,476	110.605	116,93289	117.06536	5.56814	3993
51'VN	MISEC	-5.153	-17.078 1.763	-11.05970	11.54155	3,30188	3993
52 ALTITUNE 53 TEMPC	ERPEES C			1.75805	1.79809	.01172	3993
54 FW WND SPD	KNOTS	43.718	-5.148	20.03804	22.67758	10.61968	3993
54 FW WHD SPD 55WS VHD SPD	KNOTS	£20-VE		-3.83615	7.09222	7+01227	3993
56 WTHO SPEEN		46,577 358,531	.2A9	21.62644 272.94353	24.04471	10.07862	3 6 9 3
58 VTNN NTP7	DEGPEES	174.531	-179.346	92.94357	101.40453	40.55694	3993
59 VTHN NTPT	DEGREES	358,531	.654	272.94357	275.93557	90,22049	3903
60 VIND 0104	DEGPFES M/SEC	2721.902	1867.900	2079.79556	2020.33.1	47.4000	3993
62 4 10 5 0 E F D C	W/SEC	133.746	93.661	10/.0//51	107.36788	8.15965	3993
ATRSPEED L	H/SFC	133.483	\$6.364	109.41262	109.72337 23.31478	8.25302	3993
64 DELTA ALT 65 THATE PTSP	HETERS	12.694	- 30, 025	-20.15336	23.31478	11.72414	3993
66 UG PTCHT	M/SFC	13.174	-14.235	.00000	5.68429	5.68510	3993
67 116 CENTER 68 116 LECT	HITEC	13.174	-13,457	.00000	5, 59419	5.59489	3993
68 HG LECT	MISEC	13.018	-13.629		3.22170	5.74149 3.21850	3993
69VG PICHT 7GVG CENTER 71VG LEFT 72VG TGHT	M/SEC	11.799 12.004	-11.170 -13.296		3.44382	3.44175	3993
71VG LEFT	HISEC	11.329	-11.407	-12924	3,30171	3.25960	3993
72 VG . TGHT	MISEC	11.274	-11.269	.06866	3.21670	3.21637	3993
71 VG CENTER	H/SEC H/SEC	10.461 10.864	-10.769		3.14724	3.14666	3093
					فالمرمة ومصفحهم		

.....

APPENDIX B

DERIVATION OF EQUATIONS

This appendix contains a more complete derivation of the gust equations to compare with the specialized form of those used by the NASA Langley Research Center (LaRC) and to show the significance during certain manuevers, of terms which are not present in the specialized form. The wind velocity vector components at some position \bar{r} measured from the c.g. of a rigid aircraft are designated ug, vg, and wg. These are measured in the coordinate system with the x axis pointing north, the y axis pointing east, and the vertical axis pointing along the local vertical (gravity vector; positive downward). The coordinate system is called the true north coordinate system and is taken as the inertial system in this analysis (however, see Rhyne, 1976).* The ug, vg, and wg components point north, east, and vertical, respectively, and are given by:

$$\begin{pmatrix} u+u_g \\ v+v_g \\ w+w_g \end{pmatrix} = \begin{pmatrix} V_N \\ V_E \\ V_{AZ} \end{pmatrix} + \begin{pmatrix} u_R \\ v_R \\ w_R \end{pmatrix}$$
(B.1)

The symbols u, v, and w designate the components of the aircraft velocity vector relative to the air mass measured in the true north coordinate system; V_{N} , V_{E} , and V_{AZ} are the inertial velocity vector components of the c.g. of the aircraft; and u_{R} , v_{R} , and w_{R} are the velocity components of the position \vec{r}

^{*}Grid north is true north at the platform alignment location, but as the platform moves east or west from its initial alignment point, its north-south axis is not torqued to point at true north but remains parallel to a vertical plane through the meridian at which it was aligned. (The north-south and east-west axes are torqued to be perpendicular to the local vertical at all times, however.) For all practical purposes, the inertial-platform axis system can be assumed to be aligned with true north, considering the latitudes of operation and the east-west distances flown in a preceding project.

relative to the c.g. of the aircraft due to rotation of the frame of reference fixed in the airplane, i.e., the body coordinate system.

The matrix L_{AI} transforms the velocity components in the true north coordinate system to the average flight path coordinates. This transform matrix has the following form: bank angle $(\overline{\phi})$, track angle $(\overline{\psi})$, and elevational angle $(\overline{\theta})$.

$$L_{AI} = \begin{pmatrix} \cos \overline{\Theta} \cos \overline{\Psi} & \cos \overline{\Theta} \sin \overline{\Psi} & -\sin \overline{\Theta} \\ \sin \overline{\Phi} \sin \overline{\Theta} \cos \overline{\Psi} & \sin \overline{\Phi} \sin \overline{\Psi} & \sin \overline{\Phi} \cos \overline{\Theta} \\ -\cos \overline{\Phi} \sin \overline{\Psi} & +\cos \overline{\Phi} \cos \overline{\Psi} \\ \cos \overline{\Phi} \sin \overline{\Theta} \cos \overline{\Psi} & \cos \overline{\Phi} \sin \overline{\Psi} & \cos \overline{\Phi} \cos \overline{\Theta} \\ +\sin \overline{\Phi} \sin \overline{\Psi} & -\sin \overline{\Phi} \cos \overline{\Psi} \end{pmatrix}$$
(B.2)

The velocity components u_R , v_R , and w_R in Equation B.1 are derived as follows. The velocity of a point $\vec{r} = l_{X\vec{i}} + l_{Y\vec{i}} + l_{Z\vec{k}}$ measured in the airplane frame of reference (i.e., body coordinates) which is rotating relative to the fixed frame of reference (i.e., inertial frame taken as the true north coordinates in this report) is given by $\vec{\Omega} \times \vec{r}$, where $\vec{\Omega}$ is the angular velocity of the airplane frame of reference relative to the inertial frame of reference. $\vec{\Omega}$ has the components p, q, and r and $\vec{\Omega} \times \vec{r}$ has the components u_R^i , v_R^i , and w_R^i expressed in body coordinates, i.e.:

$$\vec{\Omega} \times \vec{r} = \begin{pmatrix} \vec{1} & \vec{j} & \vec{k} \\ p & q & r \\ \ell_{x} & \ell_{y} & \ell_{z} \end{pmatrix} = u_{R}^{\dagger}\vec{1} + v_{R}^{\dagger}\vec{j} + w_{R}^{\dagger}\vec{k}$$
(B.3)

Note l_z measured down is positive and l_y measured to the right is positive. Expanding Equation B.3 gives:

$$\begin{pmatrix} u_{R}^{1} \\ v_{R}^{1} \\ w_{R}^{1} \end{pmatrix} = \begin{pmatrix} q \ell_{Z} - r \ell_{y} \\ r \ell_{x} - p \ell_{z} \\ p \ell_{y} - q \ell_{x} \end{pmatrix}$$
(B.4)

In terms of the Euler angles (ψ, θ, ϕ) of the body axis relative to the true north or inertial frame of reference:

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\sin \theta \\ 0 & \cos \phi & \sin \phi \cos \theta \\ 0 & -\sin \phi & \cos \phi \cos \theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(B.5)

hence

$$\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} \dot{\phi} - \dot{\psi} \sin \theta \\ \dot{\theta} \cos \phi + \dot{\psi} \sin \phi \cos \theta \\ -\dot{\theta} \sin \phi + \dot{\psi} \cos \phi \cos \theta \end{bmatrix}$$
(B.6)

Thus, the components of the rotational velocity of the position \vec{r} about the c.g. measured in the body coordinate system are:

$$\begin{bmatrix} u_{R}^{i} \\ v_{R}^{i} \\ w_{R}^{i} \end{bmatrix} = \begin{bmatrix} \ell_{Z}(\dot{\theta} \cos \phi + \dot{\psi} \sin \phi \cos \theta) + \ell_{y}(\dot{\theta} \sin \phi - \dot{\psi} \cos \phi \cos \theta) \\ -[\ell_{Z}(\dot{\phi} - \dot{\psi} \sin \theta) + \ell_{x}(\dot{\theta} \sin \phi - \dot{\psi} \cos \phi \cos \theta)] \\ \ell_{y}(\dot{\phi} - \dot{\psi} \sin \theta) - \ell_{x}(\dot{\theta} \cos \phi + \dot{\psi} \sin \phi \cos \theta) \end{bmatrix}$$
(B.7)

Now since these are velocity components in the body coordinate system they must be transformed to the average flight path coordinates.

$$L_{AB} = \begin{bmatrix} \cos \hat{\theta} \cos \hat{\psi} & \sin \hat{\phi} \sin \hat{\theta} \cos \hat{\psi} & \cos \hat{\phi} \sin \hat{\theta} \cos \hat{\psi} \\ & -\cos \hat{\phi} \sin \hat{\psi} & +\sin \hat{\phi} \sin \hat{\psi} \\ \cos \hat{\theta} \sin \hat{\psi} & \sin \hat{\phi} \sin \hat{\theta} \sin \hat{\psi} & \cos \hat{\phi} \sin \hat{\theta} \sin \hat{\psi} \\ & +\cos \hat{\phi} \cos \hat{\psi} & -\sin \hat{\phi} \cos \hat{\psi} \\ -\sin \hat{\theta} & \sin \hat{\phi} \cos \hat{\theta} & \cos \hat{\phi} \end{bmatrix}$$
(B.9)

where \hat{u}_R , \hat{v}_R , and \hat{w}_R are the components of the rotation vector expressed in the average flight path coordinates; $\hat{\psi}$, $\hat{\theta}$, and $\hat{\phi}$ are the Euler angles of the body axis relative to the average flight path axis.

The north, east, and vertical inertial velocity components expressed in the average flight path coordinates are denoted with capital letters having a (^) are:

$$\begin{bmatrix} \hat{V}_{N} \cos \overline{\Theta} \cos \overline{\psi} + V_{E} \cos \overline{\Theta} \sin \overline{\psi} - V_{AZ} \sin \overline{\Theta} \\ V_{N}(\sin \overline{\phi} \sin \overline{\Theta} \cos \overline{\psi} - \cos \overline{\phi} \sin \overline{\psi}) + V_{E}(\sin \overline{\phi} \sin \overline{\Theta} \sin \overline{\psi}) \\ + \cos \overline{\phi} \cos \overline{\psi}) + V_{AZ} \sin \overline{\phi} \cos \overline{\Theta} \\ V_{N}(\cos \overline{\phi} \sin \overline{\Theta} \cos \overline{\psi} + \sin \overline{\phi} \sin \overline{\psi}) + V_{E}(\cos \overline{\phi} \sin \overline{\Theta} \sin \overline{\psi}) \\ - \sin \overline{\phi} \cos \overline{\psi}) + V_{AZ} \cos \overline{\phi} \cos \overline{\Theta}$$

$$(B.10)$$

The values of \hat{u} , \hat{v} , and \hat{w} which are the true airspeed velocity components in the average frame of reference are not measured directly in the flight experiments. Rather the true airspeed of the aircraft, V, is measured. Therefore, \hat{u} , \hat{v} , and \hat{w} must be expressed in terms of this variable. The velocity components u', v', and w' (i.e., measured in body coordinates) are related to the true airspeed by the relationship:

$$\begin{pmatrix} u^{\prime} \\ v^{\prime} \\ w^{\prime} \end{pmatrix} = L_{BW} \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix}$$
 (B.11)

where

$$L_{BW} = \begin{cases} \cos \alpha \cos \beta & -\cos \alpha \sin \beta & -\sin \alpha \\ \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & -\sin \alpha \sin \beta & \cos \alpha \end{cases}$$
(B.12)

and α and β are the angle of attack (= tan⁻¹ w'/u') and sideslip angle (= sin⁻¹ v'/V), respectively. L_{BW} transforms the velocity components measured in a frame of reference for which the x axis is located along the relative velocity vector (Etkin (1972) calls this the "wind" coordinate system) to the body coordinate system. Thus:

329

$$\begin{pmatrix} u' \\ v' \\ w' \end{pmatrix} = \begin{pmatrix} V \cos \alpha \cos \beta \\ V \sin \beta \\ V \sin \alpha \cos \beta \end{pmatrix}$$
(B.13)

The above assumes that the pitot tube measures actual magnitude of the relative velocity or true airspeed and not some fractional component.

The above values must be rotated into the average flight path frame of reference with the transform L_{AB} , i.e.,

$$\begin{pmatrix} \hat{u} \\ \hat{v} \\ \hat{w} \end{pmatrix} = L_{AB} \begin{pmatrix} u' \\ v' \\ w' \end{pmatrix}$$
 (B.14)

The wind velocity measured in the flight path coordinate system is thus given by:

$$\begin{bmatrix} \hat{u}_{g} \\ \hat{v}_{g} \\ \hat{w}_{g} \end{bmatrix} = \begin{bmatrix} \hat{U} \\ \hat{v} \\ \hat{w} \end{bmatrix} + \begin{bmatrix} \hat{u}_{R} \\ \hat{v}_{R} \\ \hat{w}_{R} \end{bmatrix} - \begin{bmatrix} \hat{u} \\ \hat{v} \\ \hat{w} \end{bmatrix} = L_{AI} \begin{bmatrix} V_{N} \\ V_{E} \\ V_{az} \end{bmatrix} + L_{AB} \begin{bmatrix} u_{R}^{\dagger} - u^{\dagger} \\ v_{R}^{\dagger} - v^{\dagger} \\ w_{R}^{\dagger} - w^{\dagger} \end{bmatrix}$$
(B.15)

Consider the transform L_{AB} (Equation B.9). The angles $\hat{\phi}$, $\hat{\theta}$, and $\hat{\psi}$ are not measured in the flight program; therefore, L_{AB} must be expressed in terms of ϕ , θ , and ψ which are measured and $\overline{\phi}$, $\overline{\theta}$, and $\overline{\psi}$ which may be determined in post-flight analysis. This is achieved as follows:

$$\vec{V}_{A} = L_{AI}\vec{V}_{I}$$
 and $\vec{V}_{I} = L_{IB}\vec{V}_{B}$ (B.16)

hence

$$\vec{v}_{A} = L_{AI} L_{IB} \vec{v}_{B}$$
(B.17)

and thus

$$L_{AB} = L_{AI}L_{IB} = L_{AI}L_{BI}^{T}$$
(B.18)

where the superscript T denotes the transpose. The terms of L_{AB} for the general case are very complex; however, assuming wings level flight, i.e., $\overline{\phi} = 0$, which does not lose any generality for the present problem, results in:

$$L_{AB} = \begin{cases} \cos \theta \cos \overline{\theta} \cos (\psi - \overline{\psi}) & \sin \phi \sin \theta \cos \overline{\theta} & \cos \phi \sin \theta \cos \overline{\theta} \\ + \sin \theta \sin \overline{\theta} & \cos (\psi - \overline{\psi}) - \cos \overline{\theta} & \cos (\psi - \overline{\psi}) + \sin \phi \\ & \cos \phi \sin (\psi - \overline{\psi}) & \cos \overline{\theta} \sin (\psi - \overline{\psi}) \\ - \cos \theta \sin \phi \sin \overline{\theta} & - \cos \theta \cos \phi \sin \overline{\theta} \\ - \cos \theta \sin \phi \sin \overline{\theta} & - \cos \theta \cos \phi \sin \overline{\theta} \\ + \sin \phi \sin \theta & + \cos \phi \sin \theta \\ \sin (\psi - \overline{\psi}) & \sin \phi \sin \theta \sin \overline{\theta} & \cos \phi \sin \theta \sin \overline{\theta} \\ - \sin \theta \cos \overline{\theta} & \cos (\psi - \overline{\psi}) - \cos \phi & \cos (\psi - \overline{\psi}) + \sin \phi \\ & \sin \overline{\theta} \sin (\psi - \overline{\psi}) & \sin \overline{\theta} \sin \overline{\theta} \sin \overline{\theta} \sin \overline{\theta} \sin \overline{\theta} \sin \overline{\theta} \\ - \sin \theta \cos \overline{\theta} & \cos (\psi - \overline{\psi}) - \cos \phi & \cos (\psi - \overline{\psi}) + \sin \phi \\ & \sin \overline{\theta} \sin (\psi - \overline{\psi}) & \sin \overline{\theta} \sin \overline$$

Now assuming ϕ , $\psi - \overline{\psi}$, and $\theta - \overline{\theta}$ are small angles and neglecting high order terms, Equation B.19 reduces to:

$$L_{AB} = \begin{pmatrix} 1 & -(\psi - \overline{\psi}) \cos \overline{\theta} & \theta - \overline{\theta} \\ (\psi - \overline{\psi}) \cos \theta & 1 & -\phi \\ -(\theta - \overline{\theta}) & \phi - (\psi - \overline{\psi}) \sin \overline{\theta} & 1 \end{pmatrix}$$
(B.20)

Substituting L_{AB} from above into Equation B.15 and similar assuming small angles (or angle differences) with second order terms neglected in the expressions $u_R^{\prime} - u^{\prime}$, $v_R^{\prime} - v^{\prime}$, and $w_R^{\prime} - w^{\prime}$ (see Equations B.7 and B.13) the second term on the right-hand side of Equation B.15 becomes:

$$L_{AB} \begin{bmatrix} u_{R}^{\dagger} - u^{\dagger} \\ v_{R}^{\dagger} - v^{\dagger} \\ w_{R}^{\dagger} - w^{\dagger} \end{bmatrix} = \begin{bmatrix} \ell_{Z}\dot{\theta} - \ell_{y}(-\dot{\theta}\phi + \dot{\psi}\cos\theta) - V - (\psi-\overline{\psi})\cos\overline{\theta}[\ell_{X}\dot{\psi}\cos\theta - VB] \\ - \ell_{Z}(\dot{\phi} - \dot{\psi}\sin\theta)] + (\theta-\overline{\theta})[\ell_{y}(\dot{\phi} - \dot{\psi}\sin\theta) - \ell_{X}\dot{\theta} - V\alpha] \\ (\psi-\overline{\psi})\cos\theta[\ell_{Z}\dot{\theta} - \ell_{y}\dot{\psi}\cos\theta - V] + \ell_{X}(-\theta\dot{\phi} + \dot{\psi}\cos\theta) \\ - V\beta - \ell_{Z}(\dot{\phi} - \dot{\psi}\sin\theta) - \phi[\ell_{y}(\dot{\phi} - \dot{\psi}\sin\theta) - \ell_{X}\dot{\theta} - V\alpha] \\ - (\theta-\overline{\theta})[\ell_{Z}\dot{\theta} - \ell_{y}\dot{\psi}\cos\theta - V] + [\phi - (\psi-\overline{\psi})\sin\overline{\theta}][\ell_{X}\dot{\psi}\cos\theta \\ - V\beta - \ell_{Z}(\dot{\phi} - \dot{\psi}\sin\theta)] + \ell_{y}(\dot{\phi} - \dot{\psi}\sin\theta) \\ - \ell_{X}(\dot{\theta} + \dot{\psi}\phi\cos\theta) - V\alpha \end{bmatrix}$$

(B.21)

The derivation of the equations currently used in the data reduction algorithms at the NASA Langley Research Center computer laboratory treats the values of $\dot{\phi}$, $\dot{\theta}$, and $\dot{\psi}$ as small. Moreover, assuming the position vector $\vec{r} = \ell_{x\vec{i}} + \ell_{y\vec{j}} + \ell_{z}\vec{k}$ lies in the x-y plane of the body coordinate system, i.e., $\ell_{z} = 0$ and introducing these assumptions into Equation B.21 gives upon neglecting higher order terms:

$$L_{AB} \begin{bmatrix} u_{R}^{\prime} - u^{\prime} \\ v_{R}^{\prime} - v^{\prime} \\ w_{R}^{\prime} - w^{\prime} \end{bmatrix} = \begin{bmatrix} -\ell_{y} \dot{\psi} \cos \theta - V + (\psi - \overline{\psi}) V\beta \cos \overline{\theta} - (\theta - \overline{\theta}) V\alpha \\ -(\psi - \overline{\psi}) V \cos \theta + \ell_{x} \dot{\psi} \cos \theta - V\beta + V\phi\alpha \\ (\theta - \overline{\theta}) V + [\phi - (\psi - \overline{\psi}) \sin \overline{\theta}] V\beta + \ell_{y} \dot{\phi} - \ell_{x} \dot{\theta} - V\alpha \end{bmatrix}$$
(B.22)

Recalling that we have assumed wings level flight, i.e., $\overline{\phi} = 0$, the first term on the right-hand side of Equation B.15 becomes:

$$\hat{\begin{bmatrix} U \\ V \\ W \end{bmatrix}} = \begin{bmatrix} V_{N} \cos \overline{\Theta} \cos \overline{\psi} + V_{E} \cos \overline{\Theta} \sin \overline{\psi} - V_{AZ} \sin \overline{\Theta} \\ -V_{N} \sin \overline{\psi} + V_{E} \cos \overline{\psi} \\ V_{N} \sin \overline{\Theta} \cos \overline{\psi} + V_{E} \sin \overline{\Theta} \sin \overline{\psi} + V_{AZ} \cos \overline{\Theta} \end{bmatrix}$$
(B.23)

Therefore, under the following assumptions:

- 1. Wing level flight, i.e., $\overline{\phi} = 0$.
- 2. ϕ , $\theta \overline{\theta}$, $\psi \overline{\psi}$, α , and β are small (<10 deg, cos () = 1, sin () = (); error <2%) and high order terms of the products of these angles are negligible (error <3%).
- 3. The wind velocity probe is measured at a given point in the x-y plane of the body coordinate system (i.e., $\ell_z = 0$).
- 4. The values of $\dot{\phi}$, $\dot{\theta}$, and $\dot{\psi}$ are small (<10 deg/sec, error <2%) and high order terms of the products of these values are negligible (error <3%).

The wind velocity vector components expressed in the average flight path coordinate system is given by adding Equation B.22 and Equation B.23:

332

$$\begin{bmatrix} \hat{\mathbf{u}}_{g} \\ \hat{\mathbf{v}}_{g} \\ \hat{\mathbf{w}}_{g} \end{bmatrix} = \begin{bmatrix} V_{N} \cos \overline{\Theta} \cos \overline{\psi} + V_{E} \cos \overline{\Theta} \sin \overline{\psi} - V_{AZ} \sin \overline{\Theta} - \mathbf{L}_{y} \dot{\psi} \cos \Theta \\ - V + (\psi - \overline{\psi}) V_{B} \cos \overline{\Theta} - (\Theta - \overline{\Theta}) V_{\alpha} \\ - V_{N} \sin \overline{\psi} + V_{E} \cos \overline{\psi} - (\psi - \overline{\psi}) V \cos \Theta + \mathbf{L}_{x} \dot{\psi} \cos \Theta - V_{B} + V_{\phi\alpha} \\ V_{N} \sin \overline{\Theta} \cos \overline{\psi} + V_{E} \sin \overline{\Theta} \sin \overline{\psi} + V_{AZ} \cos \overline{\Theta} + (\Theta - \overline{\Theta}) V \\ - [\phi - (\psi - \overline{\psi}) \sin \overline{\Theta}] V_{B} + \mathbf{L}_{y} \dot{\phi} - \mathbf{L}_{x} \dot{\Theta} - V_{\alpha} \end{bmatrix}$$
(B.24)

The NASA LaRC algorithm assumes level flight given by $\theta = \overline{0}$ which implies the angle θ is small, Equation B.24 then becomes:

$$\begin{bmatrix} \hat{u}_{g} \\ \hat{v}_{g} \\ \hat{w}_{g} \end{bmatrix} = \begin{bmatrix} V_{N} \cos \overline{\psi} + V_{E} \sin \overline{\psi} - \ell_{y}\dot{\psi} - V + (\psi - \overline{\psi}) V_{B} - V_{\theta\alpha} \\ V_{E} \cos \overline{\psi} - V_{N} \sin \overline{\psi} - (\psi - \overline{\psi}) V + \ell_{x}\dot{\psi} - V_{B} + V_{\phi\alpha} \\ V_{AZ} + V_{\theta} - V_{\phi\beta} + \ell_{y}\dot{\phi} - \ell_{x}\dot{\theta} - V_{\alpha} \end{bmatrix}$$
(B.25)

These equations represent the total wind velocity components, however, interest is generally in the fluctuations about the mean, hence the terms in Equation B.25 are expressed as a mean quantity plus a fluctuation quantity, i.e., $A = \overline{A} + \widetilde{A}$

$$\begin{bmatrix} \hat{\vec{u}}_{g} \\ \vdots \\ \hat{\vec{v}}_{g} \\ \vdots \\ \hat{\vec{w}}_{g} \end{bmatrix} + \begin{bmatrix} \hat{\vec{u}}_{g} \\ \vdots \\ \hat{\vec{v}}_{g} \\ \vdots \\ \hat{\vec{w}}_{g} \end{bmatrix} = \begin{bmatrix} \hat{\nabla}_{N} \cos \overline{\psi} + \hat{\nabla}_{E} \sin \overline{\psi} - \hat{\nabla} \\ - \hat{\nabla} \stackrel{+}{\Theta} \stackrel{+}{\alpha} \\ \vdots \\ \hat{\nabla}_{E} \cos \overline{\psi} - \hat{\nabla}_{N} \sin \overline{\psi} \\ \vdots \\ \hat{\nabla}_{AZ} + \hat{\nabla} \stackrel{+}{\Theta} - \hat{\nabla} \stackrel{+}{\alpha} \end{bmatrix} + \begin{bmatrix} \tilde{\nabla}_{N} \cos \overline{\psi} + \tilde{\nabla}_{E} \sin \overline{\psi} - \hat{\nabla} - \hat{v}_{y} \hat{\psi} \\ + \hat{\psi} \nabla_{\beta} - \nabla_{\Theta} \alpha \\ \tilde{\nabla}_{E} \cos \overline{\psi} - \tilde{\nabla}_{N} \sin \overline{\psi} - \hat{\nabla}_{\psi} + \hat{v}_{z} \hat{\psi} \\ - \nabla_{\beta} + \nabla_{\Theta} \alpha \\ \tilde{\nabla}_{AZ} + \nabla_{\Theta} + \nabla_{\Theta} - \nabla_{\Theta} \beta + \hat{v}_{y} \hat{\phi} \\ - \hat{v}_{x} \hat{\theta} - (\nabla \alpha + \nabla \alpha) \end{bmatrix}$$
(B.26)

Note $\dot{\psi} = \overline{\psi}$, $\ddot{\dot{\psi}} = \dot{\psi}$, $\ddot{\dot{\theta}} = \dot{\theta}$, $\ddot{\dot{\phi}} = \dot{\beta}$, $\dot{\phi} = \dot{\beta} = 0$ (thus, $\tilde{\beta} = \beta$ and $\tilde{\phi} = \phi$): $\dot{\theta}$ and $\dot{\alpha}$ are not necessarily zero. The right-hand most term is the velocity fluctuation about the mean where the mean is given by the expression immediately following the equal sign.

The equations used in the NASA LaRC algorithm for the fluctuating gust velocities are given by:

$$\begin{bmatrix} \hat{\tilde{u}}_{g} \\ \tilde{\tilde{v}}_{g} \\ \tilde{\tilde{w}}_{g} \end{bmatrix} = \begin{bmatrix} \tilde{V}_{N} \cos \overline{\psi} + \tilde{V}_{E} \sin \overline{\psi} - \mathfrak{L}_{y} \dot{\psi} - \tilde{V} \\ \tilde{V}_{E} \cos \overline{\psi} - \tilde{V}_{N} \sin \overline{\psi} - V \tilde{\psi} + \mathfrak{L}_{x} \dot{\psi} - V \beta + V \phi \tilde{\alpha} \\ \tilde{V}_{AZ} + V \tilde{\theta} - V \phi \beta + \mathfrak{L}_{y} \dot{\phi} - \mathfrak{L}_{x} \dot{\theta} - V \tilde{\alpha} \end{bmatrix}$$
 (B.27)

In the NASA LaRC algorithm, the signs of β , \tilde{V}_{AZ} , and $\tilde{\tilde{w}}$ are defined opposite to those used in the previous derivation. Therefore, to obtain the exact form of the NASA LaRC equations, one has to change the signs of β , \tilde{V}_{AZ} , and $\tilde{\tilde{w}}_{g}$ in Equation B.27. Also, it must be noted that the values of α and β in Equation B.12 are measured relative to the body axis of the aircraft whereas α and β measured in the NASA Gust Gradient Program are relative to the axis of the boom. To obtain the angle of attack, α , in Equation B.12 one must add the angle between the projection of the boom in the body x-z plane and the body x-axis to the measured α . Since for the full equations α must be the value relative to the body axis, the angle between the boom and the body x-axis was estimated by subtracting the average measured value of α from the average value of pitch angle for the total number of straight and level runs of Flight 31 and Flight 21. This value was determined to be approximately 4.4 degrees for the center probe.

There are some differences in Equation B.26 and B.27 that can be explained as follows. The terms $\tilde{\Psi}V\beta$ and $\tilde{V}\theta\alpha$ in Equation B.26 are neglected in Equation B.27. This is consistent with the assumption that second-order small terms are negligible. However, based on this reasoning, the terms $V\phi\alpha$ and $V\phi\beta$ should also be neglected but it is not. The reason is that in early studies, $V\phi\alpha$ and $V\phi\beta$ were found not to be small compared to the other terms in the equation (Rhyne, 1976) and have therefore been retained. Also, the expressions $V\alpha + V\alpha$ and $V\theta + V\theta$ in Equation B.26 are simply written $V\alpha$ and $V\theta$ in Equation B.27. Justification for this is that

since $\dot{\alpha}$, in $V\alpha + V\dot{\alpha}$ for example, is a small angle even on the average, then $V\dot{\alpha}$ is negligible compare to $V\alpha$. This is reasonable in view of the fact that $V\alpha$ may be 1 to 2 orders of magnitude larger than $V\dot{\alpha}$ because V is typically two orders of magnitude larger than \tilde{V} whereas $\dot{\alpha}$ is probably of the same order of magnitude as α . Finally, if second-order terms are strictly neglected, then $V\alpha$ should actually be $V\alpha$; however, there is no saving in computing $V\alpha$ since it is just as easy to compute $V\alpha$. This is true of $V\theta$ and VB as well.

Standard Bibliographic Page

I. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
NASA CR-178288	<u> </u>	5. Report Date
Analyses and Assessments of S	August 1987	
Data from NASA B-57B Aircraft	6. Performing Organization Code	
7. Author(s)		8. Performing Organization Report No.
Walter Frost, Ho-Pen Chang, E	rik A. Ringness	10. Work Unit No.
9. Performing Organization Name and Address		
FWG Associates, Inc.		11. Contract or Grant No.
Rt. 2, Box 271-A Tullahoma, TN 37388		NAS1-17989
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address	- Administration	Contractor Report
National Aeronautics and Spac Washington, DC 20546	e Administration	14. Sponsoring Agency Code
15. Supplementary Notes		
Langley Technical Monitor: H Final Report	al Murrow	
aircraft are reported. The ai wind at both wing tips and at Statistical properties of the standard deviations of standard deviations and probal measured between probes an spectra.	the nose. the turbulence are re turbulence measured b bility distribution of d auto-and two-point	ported. These consist of v each individual probe,
spatial correlations and sp correction procedures for assu also described.	uring the accuracy of a	ircraft measured winds are
Results are found, in gen- literature. The velocity s probability distribution. turbulence correlation and wi the von Karman correlation.	The turbulence agree	rrelations existing in the t a Gaussian/Bessel type es with the von Karman orrelations developed from
17. Key Words (Suggested by Authors(s))	18. Distribution Sta	atement
Gust Gradient, atmospheric tu spectral analysis	urbulence, Unclassif	ied - Unlimited
19. Security Classif.(of this report) Unclassified	20. Security Classif. (of this page Unclassified	21. No. of Pages 22. Price 335

For sale by the National Technical Information Service, Springfield, Virginia 22161

.

-

L

-