Program LRCDM2, Improved Aerodynamic Prediction Program for Supersonic Canard-Tail Missiles With Axisymmetric Bodies

Marnix F. E. Dillenius

N/S^

Program LRCDM2, Improved Aerodynamic Prediction Program for Supersonic Canard-Tail Missiles With Axisymmetric Bodies

Marnix F. E. Dillenius
Nielsen Engineering \& Research, Inc.
Mountain View, California

Prepared for
Langley Research Center under Contract NAS1-16770

N/SA
National Aeronautics
and Space Administration
Scientific and Technical Information Branch

TABLE OF CONTENTS
Section
Page
No.

1. INTRODUCTION 1
2. METHODS OF APPROACH 3
2.1 Afterbody Vortex-Shedding Model 4
2.2 Program BDYSHD 5
2.3 Use of Programs LRCDM2 and BDYSHD in Stepwise Procedure 7
2.4 Fin Leading- and Side-Edge Vorticity Characteristics 10
2.5 Reduction in Computation Time for Program LRCDM2 15
2.6 Shock-Expansion/Linear Theory and Newtonian/ Linear Theory Combinations for Pressure Distributions 17
2.6.1 Two dimensional nonlinear and linear pressure coefficients 19
2.6.2 Procedure for calculating corrected nonlinear pressure coefficients on the fins and body 22
3. COMPARISONS 30
3.1 Forces and Moments Acting on Triform Fin Configuration 31
3.2 Forces and Moments Acting on TF-4 Wind Tunnel Model 34
3.2.1 Normal force on afterbody 36
3.2.2 Roll control 40
3.3 Pressure Distributions Acting on $A R=2$ Rectangular Wing 46
3.4 Pressure Distributions and Normal Force Acting on $A R=1$ Delta Wing 51
3.5 Pressure Distributions on Ogive Cylinder 65
4. CONCLUSIONS 70
REFERENCES 74
Section No.
APPENDIX A - DESCRIPTION OF PROGRAM LRCDM2 Al
APPENDIX B - DESCRIPTION OF PROGRAM BDYSHD BI
APPENDIX C - FIN-EDGE VORTICITY, EFFECTS OF EXTERNAI VORTICES, BODY FORCES AND MOMENTS Cl
APPENDIX D - PRESSURE COEFFICIENTS CALCULATED BY SHOCK-EXPANSION THEORY DI

$\mathrm{b} / 2$	exposed fin semispan
C	fin local chord
${ }^{\text {c }}$	fin root chord
$\mathrm{c}_{\text {s.e. }}$.	fin side edge or tip chord
Cc_{n}	span loading
C_{ℓ}	rolling-moment coefficient about x_{B}-axis, positive right fin down, looking forward, moment/($q_{\infty} S_{r e f} L_{r e f}$)
C_{m}	pitching-moment coefficient about \bar{y}_{B}-axis, nose up positive, moment/($\left.q_{\infty} S_{r e f}{ }^{L}{ }_{r e f}\right)$
C_{n}	yawing-moment coefficient about z_{B}-axis, nose to right positive, moment/ ($q_{\infty} S_{r e f}{ }^{\mathrm{L}} \mathrm{ref}$)
C_{N}	normal-force coefficient, $C_{N}=\sqrt{C_{Z}^{2}+C_{Y}^{2}}, C_{N}=C_{Z}$ when $\phi=0$
C_{P}	pressure coefficient, ($\mathrm{p}-\mathrm{p}_{\infty}$)/ q_{∞}
C_{X}	force coefficient along x_{B}-axis, force/ ($q_{\infty} \mathrm{S}_{\text {ref }}$)
C_{Y}	force coefficient along Y_{B}-axis, force/($q_{\infty} S_{r e f}$)
C_{z}	force coefficient along z_{B}-axis., force/ ($q_{\infty} S_{r e f}$)
$\mathrm{K}_{\mathrm{v}, \mathrm{LE}}$	proportionality factor relating normal force to suction along leading edge
$\mathrm{K}_{\mathrm{v}, \mathrm{SE}}$	proportioanlity factor relating normal force to suction along side edge
ℓ	body length
$L_{\text {ref }}$	reference length
M_{∞}	free-stream Mach number
p	local static pressure
P_{∞}	free-stream static pressure
q_{∞}	free-stream dynamic pressure

$S_{\text {ref }}$	reference are
u,v,w	axial, lateral, and upward velocity components along body coordinates ($\mathrm{X}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{B}}, \mathrm{z}_{\mathrm{B}}$)
V_{R}	magnitude of resultant velocity
V_{∞}	free-stream velocity
x	distance along local chord measured from leading edge
Y	distance along span measured from root chord
Y_{V}	lateral position of fin-edge vortex measured from root chord, Section 2.4
${ }^{\mathrm{z}}$ ¢, Г	distance of fin-edge vortex above plane of the fin Section 2.4
$\mathrm{x}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{B}}, \mathrm{z}_{\mathrm{B}}$	body-axis coordinate system with origin at nose tip, x_{B} along body longitudinal axis, see sketches in Sections 2.1 and 2.4
x_{M}	axial coordinate of moment center in body axis system
$\mathrm{x}_{\mathrm{W}}, \mathrm{Y}_{\mathrm{W}},{ }^{\text {z }}$ W	wing coordinate system parallel to $\mathrm{x}_{\mathrm{B}}, \mathrm{yB}_{\mathrm{B}}, \mathrm{z}_{\mathrm{B}}$ system but with origin on body longtudinal axis at axial location of leading edge of root chord of finned section, see sketch in Section 2.4
α	angle of pitch, Equation (3), degrees
${ }^{\alpha_{c}}$	included angle of attack, degrees; angle between free-stream velocity vector and body longitudinal axis, x_{B}
α_{ℓ}	angle of attack seen by a fin including effects of free stream and deflection angle, Equation (l), degrees
$\alpha_{F, \ell}$	local flow angle of attack at fin leading edge, includes body and external-vortex effects
B	angle of sideslip, Equation (3), degrees
γ	ratio of specific heats, $\gamma=1.4$ for air
δ	fin deflection angle, degrees; flow deflection angle, Section 2.6

Subscripts and Abbreviations
[AIC] matrix containing Aerodynamic Influence Coefficients FVN

AR
Bern
corr
CP center of pressure measured from root chord leading edge

F
fin
ℓ
lower, ℓ
LE
min
SE
TE
upper, u

2D, 2-D

3D, 3-D
local
bottom surface of an airfoil
leading edge
minimum value
side edge
trailing edge
top surface of an airfoil
two-dimensional
three-dimensional

1. INTRODUCTION

Designs of new air-to-air and other tactical missiles are aimed at high maneuverability, low structural weight, and conformal or submerged carriage. The speed range includes the low and high supersonic Mach numbers. Angles of attack can be high enough to cause formation of body and fin shed vorticity. The missiles may be equipped with planar and cruciform fin layouts, monoplane wing/interdigitated tail fins, or low profile finned sections all with various planform shapes. Accurate prediction of loading distributions and component loadings are required for stability and control and for aeroelastic analyses.

In response to the above needs, program LRCDM2 was developed for supersonic missiles with axisymmetric bodies and up to two finned sections. The fin planforms may have breaks in sweep but must be flat. This program is capable of predicting pressure distributions and component loads acting on the entire configuration including effects of body and fin vorticity. It is the result of an evolutionary process starting with the set of programs DEMON2 (Ref. l) which was automated and specialized to configurations with bodies of revolution in program NSWCDM (Ref. 2). These analytic programs make use of supersonic paneling and line-singularity methods coupled with vortex-tracking theory. DEMON2 was developed under sponsorship of NASA/Langley Research Center and the Air Force Flight Dynamics Laboratory; NSWCDM was sponsored by the Naval Surface Weapons Center.

The work described in this report is concerned with improvements and extensions to NSWCDM in connection with fin- and afterbody-shed vorticity, reducing computation time, and extending the Mach number and angle of attack ranges. The resulting computer program is called LRCDM2. This work was supported by the Supersonic Aerodynamics Branch of

NASA/Langley Research Center under Contract NASl-16770 with Mr. Jerry Allen as Technical Representative.

On the basis of recent user experience with programs DEMON2 and NSWCDM (for example, Refs. 3 and 4), the following specific tasks were performed to improve and extend the usable range of program NSWCDM.

Task 1.- Add an afterbody vortex-shedding model; the afterbody and tail-fin pressure and loading calculations shall include afterbody vorticity effects.

Task 2.- Add routines for determining fin leadingand/or side-edge vorticity characteristics in a form compatible with the vortex tracking routines; these vortices are to be included in the vortex trajectory calculations along the afterbody and tail section.

Task 3.- Reduce computer time by saving the influence coefficient matrix and other characteristics associated with the forward- and tail-finned sections; modify the program to run multiple angles of attack and roll for one Mach number.

Task 4.- Extend range of applicability in terms of Mach number (up to Mach 6) and angles of attack (up to 25°) by investigating practical means for combining two-dimensional nonlinear hypersonic and shock expansion theories with threedimensional linear theory to account for interference.

As part of the above tasks, predictions were compared with available measurements in order to evaluate the improvements and extensions. In addition, fin layouts were made more flexible and may include low-profile quadriform and triform layouts. Program modifications for the latter were carried out for the U.S. Army Missile Command*.

[^0]The updated program LRCDM2 treats a complete missile configuration from nose tip to body base in a series of steps. Fins and wings alone can also be analyzed by this program. A special program designated BDYSHD models afterbody vortex shedding and can be used with LRCDM2 and vortex tracking module VPATH2 to account for the effects of afterbody vortices on the tail fin pressures and loads.

In this report, the methods of approach to accomplish the tasks are given. Comparisons between predictions and experiment are described. Limitations and recommendations are given in the concluding remarks. The appendices contain user-oriented program documentation including a description of program flow, input and output, program limitations and a sample case. Additional analytical details are described in the remaining appendices.

2. METHODS OF APPROACH

This section contains brief descriptions of the nature of and the need for an afterbody vortex-shedding model, the basic underlying theoretical approach of an existing vortexshedding program NOSEVTX, and the modifications and improvements required for use with program LRCDM2 resulting in companion program BDYSHD. The use of programs LRCDM2 and BDYSHD in the automated stepwise treatment of a complete missile configuration is described. This is followed by a discussion of the updated treatment for fin-edge vorticity and the modifications performed to reduce computer running time. A description is given of preliminary methods to extend the Mach number range of applicability of LRCDM2. Where necessary, additional details are given in appendices.

2.1 Afterbody Vortex-Shedding Model

Configurations with long afterbody sections (length between forward and tail fins ≥ 10 diameters) will shed afterbody vortices for angles of attack in excess of 10°. The following sketch depicts two vortex feeding sheets on the afterbody of an unrolled missile at included angle of attack α_{C}. The body coordinate system (x_{B}, Y_{B}, Z_{B}) with origin at the nose tip is indicated but the tail fins are not shown. The actual shape and starting locations of the feeding sheets are influenced by the flow conditions and external vortices (if present) generated by the forebody and the canard fins.

Only two fin trailing edge vortices are shown but more may exist. In the afterbody vortex model, the growing vortex sheets will be represented by a multitude of vortices called vortex clouds.

It is mentioned in Reference 3 that the lack of afterbody vorticity in program DEMON2 (on which NSWCDM and LRCDM2 are based) may affect predicted rolling moment for angles of attack in excess of about 12° for a forward control canard-tail wind tunnel model. Similar observations are listed in Reference 2 in connection with overall normal forces in pitch. Afterbody vortices will affect the forces and moments
acting on the afterbody. In addition, the vortices will induce effects on the tail fins with the attendant modifications to the fin loadings. Thus, an afterbody vortex shedding module was developed from an existing program called NOSEVTX and adapted for optional use with LRCDM2.

The supersonic vortex shedding program NOSEVTX was developed for application to forebodies. The basic features are described in Reference 5 and program details are given in Reference 6. The method is essentially based on a modified Stratford separation criteria applied to circumferential pressure distributions on the body which are calculated with potential flow methods including effects of external vortices. Strengths of the shed or separated vortices are related to the square of the resultant flow velocity calculated at points on the body. The shed vortices form a vortex cloud.

2.2 Program BDYSHD

Program NOSEVTX (Ref. 6) was modified and arrangements made to suit the needs of program LRCDM2 and to decrease running time in the application to axisymmetric bodies. The new afterbody vortex shedding program is called BDYSHD. Useroriented program details are given in Appendix B. Program BDYSHD has the following new features.

1. The body source-paneling method is replaced with the source and doublet line-singularity method described in References 1 and 7 in order to decrease computation time appreciably; the allowable body cross-sectional shapes are limited to axisymmetric cross sections and the bodies consist of a nose followed by a cylinder.
2. Files are created to exchange calculated forces and moments between programs LRCDM2 and BDYSHD at the beginning and end of the afterbody section.
3. Files are created to exchange external vortex strengths and lateral locations between LRCDM2 and BDYSHD at the beginning and end of the afterbody section.
4. Effects of included angle of attack and angle of roll are incorporated and afterbody loads are calculated in rolled and unrolled body coordinate systems.
5. The latest modifications and improvements to NOSEVTX, performed under Contract NASI-17027 since its description in Reference 6, have been incorporated in BDYSHD. These include refinements in the determination of the flow separation locations based on the Stratford criteria described in Reference 6 and an improved vortex core model. In the application to treatment of afterbodies (length of body between forward and tail-finned sections), program BDYSHD starts the analysis with a set of forebody vortices (if present) and forward finedge vortices.

The resulting program BDYSHD can be run as a stand-alone program to treat bodies of revolution at supersonic speeds. Additionally, it can be employed as a companion to LRCDM2 to model vortex shedding from axisymmetric afterbodies as an option. If the latter is the case, the stepwise calculation procedure used in LRCDM2 is interrupted by the job control cards at the end of the first three steps that treat the forebody and the canard section. Program BDYSHD is then called to handle the afterbody. After completion, program LRCDM2 is called again to treat the tail section. The procedure is described in more detail below.

> 2.3 Use of Programs LRCDM2 and BDYSHD in Stepwise Procedure

The stepwise series or sequence of calculations employs the following program or modules.

Program or Module

LRCDM2 (contains executive routine)

VPATH2 (module of LRCDM2)

BDYSHD (separate program)

Purpose

Compute pressures and loads acting on axisymmetric forebody or afterbody (neglecting afterbody vortices) and one finned section; LRCDM2 makes use of line singularities and paneling methods as summarized in References 2 and 4 and described with more details in Reference 1 ; latest modifications are given elsewhere in this report.

Calculate vortex paths and vortex induced effects for cases with or without cruciform fins mounted on axisymmetric bodies; method is based on slender body theory and makes use of path integration scheme as described in References 1,2 , and 4.

Over length of afterbody (i.e., between forward- and tail-fin sections), generate body-shed vortices and compute loads acting on afterbody; if this program is used, the afterbody calculations in LRCDM2 are not used; details of the vortex shedding method are given in References 5 and 6.

In the application to a complete configuration consisting of a forward set and tail set of fins mounted on an axisymmetric body, program LRCDM2 performs the following six steps in conjunction with module VPATH2 and optionally with program BDYSHD. Except for step 3a, the executive routine in LRCDM2 performs the stepwise procedure and arranges for the appropriate data exchanges. The optional step 3a, engagement of program BDYSHD, is performed with job control language. Also note that in the treatment of a tail finner (one finned section at body base), program LRCDM2 is set to perform the first three steps only.

Step l.- Analyze forebody and forward-finned section or wing; effects of forebody shed vorticity (determined from built-in data base) are included up to finned section; compute and save control point coordinates and calculate loads on forward fins without vortex effects.

Step 2.- Using module VPATH2, track vortices through forward-finned section, compute and save their effects on the fins; in this process the vortex paths may move in a crossflow plane or their paths can be made to lie parallel to body centerlines (the latter scheme is recommended).

Step 3.- Include effects of forebody vortices in loadings acting on forward-finned section and determine fin-edge vorticity characteristics; add force and moment coefficients for the configuration up to the canard trailing edge.

Step 3a.- (OPTIONAL) Stop program LRCDM2 and continue with program BDYSHD to treat afterbody from forward-finned section to leading edge of tail-finned section; data sets containing loading and vortex information are exchanged at the start and the end of this run between programs LRCDM2 and BDYSHD.

Step 4.- Continue with LRCDM2 to compute and save control point coordinates and calculate loads on tail fins without effects of forebody, canard, or afterbody vortices; if step 3 a is not exercised, coordinates of points on the afterbody at which pressures will be calculated are also calculated and stored.

Step 5.- If step 3a is not performed, track forebody and forward-fin vortices from forward-finned section along afterbody and through the tail section; compute and save vortex effects on afterbody and tail fins by another application of VPATH2; if program BDYSHD (step 3a) was used to treat the afterbody, VPATH2 tracks all (including afterbody) vortices through the tail section; along the tail fins, the vortex paths may move in the crossflow plane or their paths can be made to lie parallel to the body centerline (the latter scheme is recommended).

Step 6.- Include effects of external vortices in the loadings acting on tail fins; if step 3a was not used, compute afterbody loads including effects of forebody and forward-fin vorticity; compute and list forces and moments acting on complete configuration.

In the above steps, program LRCDM2 has been arranged to exchange data sets containing control point coordinates and vortex path information between fin-geometric and fin-load calculation routines and module VPATH2 without user intervention. When program BDYSHD is engaged, however, indices in the input data for LRCDM2 and BDYSHD arrange for data set exchanges between the two programs. Actual program running details are given in Appendices A and B describing program LRCDM2 and program BDYSHD, respectively.

The following sketch depicts the stepwise procedure superimposed on a typical configuration with and without the application of program BDYSHD. The scheme without the use of the latter program is indicated on the side of the configuration. The optional sequence shown at the top includes

program BDYSHD to treat the afterbody. The body coordinate system is als© shown. Note that steps l, 3, 4, and 6 involve the body and fin routines of program LRCDM2 and steps 2 and 5 are performed by the vortex tracking module VPATH2. Step 3a involves the afterbody vortex-shedding program BDYSHD. If the configuration of interest is a tail finner (one finned section at the base), steps 1 through 3 only are engaged.

2.4 Fin Leading- and Side-Edge Vorticity Characteristics

Fins can develop leading- and side-edge separation vorticity as the angle of attack is increased. If the side edges are long, vorticity can be generated along the edge for
angles of attack as low as 5°. Along the leading edges, vorticity can be generated at supersonic speeds provided the edge lies aft of the Mach cone from the root leading edge (subsonic leading edge). In any event, the leading- and sideedge vortices may combine and form a pattern of strong vorticity located above the trailing edge. In the case of a missile, the forward fins may generate leading- and/or side-edge vortices which stream aft along the afterbody and tail section and influence the pressures on those components.

For fins with leading- and/or side-edge flow separation, program LRCDM2 is capabie of determining the augmentation to fin normal force from the suction distributions along those edges. This approach is based on the Polhamus suction analogy discussed in Appendix C of Reference l. The actual method has been updated to account for arbitrary fin dihedral (or cant) angle and fin location on the body. The modifications are described in Section C. 2 of Appendix C in this report. In addition, along the leading and/or side edges the growing vorticity strength is calculated as a function of spanwise distance by means of lifting line theory and the distribution of suction. Only a portion of the suction, determined by vortex lift factor $\mathrm{K}_{\mathrm{v}, \mathrm{LE}}$ for the leading edge and factor $K_{v, S E}$ for the side edge, is converted to normal force. Estimates for these factors are given in Reference 8. These factors are required as input by program LRCDM2 and have default values $K_{v, L E}=0.5$ and $K_{v, S E}=1.0$. The leading- and side-edge forces are included in the overall force and moment calculation for a given configuration. At the trailing edge of the fin, the leading and/or side edge vortex is elevated above the fin plane as illustrated in the following sketch. One fin of the forward-finned section is shown attached to a body. The body coordinate system $\left(X_{B}, y_{B}, z_{B}\right)$ and wing coordinate system (x_{W}, y_{W}, z_{W}) are also indicated. The dihedral or cant angle for a horizontal fin is zero. The fin leading edge

lies aft of the Mach cone (it is subsonic) and the side edge has nonzero length. The angle of pitch seen by the fin is high enough to cause formation of strong leading- and sideedge vorticity. A vortex feeding sheet forms and at the fin trailing edge it is fully developed. At this position, the vortex system can be represented by a concentrated discrete vortex. The lateral position Y_{V} is taken as the center of gravity or the moment center of the suction distributions along the leading and side edges. This distance, as measured from the fin root chord, is given by Equation ($\mathrm{C}-9$) in Appendix C of this report. Its position above the fin plane can be represented by considering the concentrated vortex to emanate
from the forward corner of the side edge along a straight line directed by one-half of the angle of pitch α_{ℓ} seen by the fin. In this process, the upward motion of the vortex is in a plane normal to the fin. This is an approximation often made for a fin attached to a body in accordance with a concept originated by Bollay (Ref. 9). For a vertical fin, one half of the angle of sideslip is applied to determine the displacement of the leading- and/or side-edge vortex from the fin plane. For rolled fins, the upwash due to angle of pitch α, angle of sideslip β, and fin deflection angle δ is determined first and recast into a local fin angle of attack α_{ℓ}. One half of this angle is then used in the vortex displacement calculation. Thus, for a fin with nonzero side edge the elevation of the vortex is given by

$$
\left.\begin{array}{c}
z_{\ell, \Gamma_{L E+S E}}=c_{\text {s.e. }} \tan \frac{\alpha_{\ell}}{2} \\
\alpha_{\ell}=\sin ^{-1}\left(\sin \delta+\sin \alpha \cos \phi_{f}-\sin \beta \sin \phi_{f}\right) \tag{1}
\end{array}\right\}
$$

where $c_{\text {s.e. }}$ is the tip or side-edge chord and ϕ_{f} is the dihedral or cant angle of the fin as shown in Section C. 2 of Appendix C.

For a fin with zero side-edge length (one half of a delta wing), the lateral location of the leading-edge vortex is assumed to correspond to the center of gravity or moment center of the suction along that edge. As a first approximation, the displacement (elevation) of the vortex is based on the root chord c_{r} of the fin

$$
\begin{equation*}
z_{\ell, \Gamma_{L E}}=c_{r} \tan \frac{\alpha_{\ell}}{2} \tag{2}
\end{equation*}
$$

Angles α and β are related to the included angle of attack α_{c} and angle of roll ϕ in accordance with the pitch-roll tranformation

$$
\begin{align*}
& \sin \alpha=\sin \alpha_{C} \cos \phi \tag{3}\\
& \sin \beta=\sin \alpha_{C} \sin \phi
\end{align*}
$$

described on page 5 of Reference 10. Angles $\alpha_{C}, \alpha, \beta$, and ϕ are indicated in the previous sketch. Program LRCDM2 has been arranged to read in multiple sets of α_{c} and ϕ as described in the next section.

In addition to the leading-edge and/or side-edge vortex, the sketch also shows one trailing-edge vortex. This vortex is associated with the attached-flow span loading (also described in Appendix C) as opposed to the separated-flow edge load augmentation. Presently, program LRCDM2 computes the leading- and/or side-edge vortex and retains the one or more trailing edge vortices calculated from the fin span-load distribution for attached flow. It would be better to compute a total span-load distribution including the leading-edge force augmentation and the side-edge force augmentation spread out over some distance inward from the tip. Such a span load distribution may look as follows on a fin. Coordinate y is the lateral distance from the root chord and b/2 is the semispan.

Based on the total span load distribution, Cc_{n}, several concentrated discrete vortices can be computed. The number will depend on the extrema in the span load distribution in accordance with the method described in Appendix C. This procedure is presently not sufficiently developed for inclusion in LRCDM2.

In any event, the strengths and positions of the fin leading- and/or side-edge vortex and the one or more trailing-edge vortices are now known. They will be included either in the vortex tracking step 5 (VPATH2) or they will be included in step 3 a (BDYSHD) if afterbody vortex shedding is to be considered as an option. For a configuration with a tail-finned section, all of the vortices (body nose vortices if present, forward-fin edge vortices and afterbody vortices if generated) are included in the tail-fin loading calculations in step 6.

2.5 Reduction in Computation Time for Program LRCDM2

When program LRCDM2 is applied to a complete configuration consisting of a forward-finned section (canard or wing) and tail-finned section mounted on an axisymmetric body, an aerodynamic influence coefficient matrix is calculated for the forward fins and interference shell, and in general a different matrix is generated for the tail fins and interference shell. The aerodynamic influence coefficient matrix [AIC] contains coefficients FVN. In the sketch below, the forward- and tailfinned sections are covered with a sparse layout of constant u-velocity panels. Only one fin and one-quarter of the interference shell are shown covered with panels. As described in Reference 1 , the aerodynamic influence coefficient FVN represents the normal velocity per unit strength induced by one panel at the control point of its own or another panel.

The matrix build-up for the forward fins and interference shell is performed in step 1 of the stepwise procedure described in Section 2.3. For the tail section, the operation is performed in step 4.

The aerodynamic influence coefficients are functions only of the configuration geometry and free-stream Mach number. In order to facilitate use of program LRCDM2 and to reduce computation time the following features have been incorporated. In the process of performing calculations for multiple included angles of attack α_{c} and/or angles of roll ϕ at one Mach number, the aerodynamic influence coefficients are saved during the calculation for the first combination of α_{c} and ϕ. Specifically, in step l the triangulated [AIC] for the forward fins and interfernece shell is saved on temporary storage device

TAPE9. In step 4, the triangulated [AIC] for the tail fins and interference shell is saved on temporary storage device TAPEl0. The triangulating procedure is performed by subroutine PASO01 of LRCDM2. The respective triangulated [AIC]'s for the forward- and tail-finned sections are then read in during the calculation for the next set of α_{c} and ϕ and so forth until all combinations have been run. The included angles of attack α_{c} and/or the angles of roll ϕ for which computations are to be made are read in all at once at the beginning of a multiple run.
2.6 Shock-Expansion/Linear Theory and Newtonian/ Linear Theory Combinations for Pressure Distributions

In an effort to investigate practical methods for extending the applicable range of Mach number of program NSWCDM (Ref. 2), two schemes were developed and implemented as pressure calculation options in LRCDM2 for preliminary testing. At present, the two methods are limited to cases with attached shocks. The methods have been tested only on a rectangular wing, a delta wing, and an ogive cylinder body. The two methods will now be summarized. Further details are given later in this section.

The first scheme, first suggested by Carlson in
Reference ll for wings, involves shock-expansion (tangent wedge) theory for calculating pressure coefficients along chordwise or longitudinal strips on the surfaces of a fin or body, respectively. The nonlinear shock-expansion theory is valid for all supersonic Mach numbers provided the shock is attached. The flow deflection angles, δ, required by this two-dimensional nonlinear theory and shown for a fin in the sketch below, are determined from the geometry of the surface (streamwise slope θ) and then modified by correction angles

determined from two- and three-dimensional linear theory. With two-dimensional linear theory, the pressure is proportional to the flow deflection angle. In program LRCDM2, the three-dimensional linear theory is made up of the supersonic paneling method on the fins and the interference shell on the body, and the supersonic line singularity method used to model the body. The correction angles can be viewed as a correction to account for mutual interference effects between the individual strips on a given fin, between the fin and other fins and between the fin and the body. In addition, the correction angles may include effects induced by external vortices. The modified flow deflection angles then include a geometric component and an interference component based on local interference flow velocities. The updated angles are then used to compute corrected pressure coefficients by means of the shock-expansion formulation. This method is limited to cases when the shock is attached to the wing leading edge or body nose.

In the second scheme, the pressure coefficients are calculated with the simplest form of Newtonian or impact theory. This nonlinear theory is valid only for high supersonic Mach numbers ($M_{\infty}>5$). The flow angles, δ, required by this theory are modified in the same manner as used with shock-expansion (tangent wedge) theory. Corrected pressures are then calculated with the updated angles used in the impact pressure formulations.

The essential differences between the nonlinear and linear theories and the optional combined theory pressure calculation procedures implemented in program LRCDM2 will now be described in more detail.
2.6.1 Two dimensional nonlinear and linear pressure coefficients.- The differences in pressure coefficients predicted by two-dimensional shock-expansion and linear theories can be illustrated as follows for a planar surface inclined to the free stream.

Expansion

In the above sketch, the pressure coefficient calculated for the compression case ($\delta>0$) with two-dimensional oblique shock relationships (Appendix D) increases nonlinearly with deflection angle δ up to shock detachment. The pressures are appreciably higher than those obtained with two-dimensional linear theory which relates the pressures directly to the deflection angle. For negative deflection angles, the pressures calculated with two-dimensional expansion relationships (Appendix D) are also higher than the two-dimensional linear theory pressures. For large expansion angles, the expansion (Prandtl-Meyer) formulation will automatically limit the pressure coefficient to

$$
\begin{equation*}
\left.C_{P}\right|_{\min }=\frac{p-p_{\infty}}{q_{\infty}}=-\frac{2}{\gamma M_{\infty}^{2}} \tag{4}
\end{equation*}
$$

which corresponds to zero static pressure ($p=0$).
The simplest linear theory (two-dimensional) relates the pressure coefficient directly to the flow deflection angle as indicated in the sketch. For Mach numbers larger than 1 , there are no bounds on the pressure coefficient calculated this way. However, the three-dimensional linear theory imbedded in program LRCDM2 provides three components of perturbation or interference velocities u, v, and w aligned with the body coordinate system $\left(X_{B}, y_{B}, z_{B}\right)$. The velocities can be used in a linear pressure-velocity relationship

$$
\begin{equation*}
\left.\mathrm{c}_{\mathrm{P}}\right|_{\operatorname{lin}}=-\frac{2 \mathrm{u}}{\mathrm{~V}_{\infty}} \tag{5}
\end{equation*}
$$

or the isentropic Bernoulli pressure-velocity formulation

$$
\begin{equation*}
\left.C_{P}\right|_{\text {Bern.,3D }}=\frac{2}{\gamma M_{\infty}^{2}}\left\{\left[1+\frac{\gamma-1}{2} M_{\infty}^{2}\left[1-\frac{V_{R}^{2}}{V_{\infty}^{2}}\right)\right]^{\frac{\gamma}{\gamma-1}}-1\right\} \tag{6}
\end{equation*}
$$

where $\gamma=1.4$ for air. The resultant velocity ratio is given by

$$
\begin{align*}
\frac{\mathrm{v}_{\mathrm{R}}^{2}}{\mathrm{v}_{\infty}^{2}} & =1+\frac{2 \mathrm{u}}{\mathrm{~V}_{\infty}} \cos \alpha_{\mathrm{c}}-\frac{2 \mathrm{v}}{\mathrm{~V}_{\infty}} \sin \alpha_{\mathrm{c}} \sin \phi \\
& +\frac{2 \mathrm{w}}{\mathrm{~V}_{\infty}} \sin \alpha_{\mathrm{c}} \cos \phi+\frac{\mathrm{u}^{2}+\mathrm{v}^{2}+\mathrm{w}^{2}}{\mathrm{v}_{\infty}^{2}} \tag{7}
\end{align*}
$$

where α_{c} is the included angle of attack and ϕ is the angle of roll as defined earlier in Equation (3) of Section 2.4. The perturbation or interference velocity components due to three-dimensional linear theory can be unduly large in magnitude and cause the term in the square brackets in Equation (6) to become negative. In program LRCDM2, the pressure coefficient is set equal to $\left.C_{P}\right|_{\text {min }}$, Equation (4), when the following condition holds.

$$
\begin{equation*}
1+\frac{\gamma-1}{2} M_{\infty}^{2}\left(1-\frac{V_{R}^{2}}{v_{\infty}^{2}}\right) \leq 0 \tag{8}
\end{equation*}
$$

Therefore, Bernoulli pressure coefficients obtained with the three-dimensional linear theory built into LRCDM2 have some nonlinear character by virtue of its formulation, Equation (6), and they are artificially limited with regard to the minimum pressure. Later we will consider only the Bernoulli pressures in connection with linear theory.

Finally, the simplest form of the Newtonian or impact theory pressure coefficient is given by $(\gamma=$ ratio of specific heats)

$$
\begin{equation*}
\left.\mathrm{C}_{\mathrm{P}}\right|_{\text {Newtonian }}=2 \sin ^{2} \delta, \mathrm{M}_{\infty} \gg 1 \tag{9}
\end{equation*}
$$

Portions of the fins and/or body that do not "see" the oncoming stream experience zero pressure coefficient (Ref. 12) or more correctly zero pressure (Ref. 13). In the treatment presently implemented in program LRCDM2, the pressure coefficient is set equal to zero for negative flow deflection angles δ (expansions). For such cases, in the limit for high Mach numbers ($M_{\infty}>5$), both the pressure coefficient as well as the static pressure approach the value zero.

A comparison between the Newtonian and two-dimensional
linear pressure coefficient is schematically shown above for a planar surface inclined to the free stream.
2.6.2 Procedure for calculating corrected nonlinear pressure coefficients on the fins and body. - The optional computation of pressures acting on the fins in accordance with combined nonlinear/linear theory is accomplished by means of a modified version of strip theory. This option is selected by setting index $N 2 D P R F=2$ in Namelist \$INPUT of program LRCDM2.

The actual procedure, implemented in subroutine SPECPR for the fins, consists of the following stages. The procedure followed on the body is very similar and is described later.

In essense, the procedure consists of the following stages.
l. Apply nonlinear two-dimensional strip theory on fins and body, compute local Mach numbers, pressure ratios, etc.
2. Perform three-dimensional linear analysis of the fins and body; that is, solve for panel and line singularity strengths used to model the fins and body.
3. Update local Mach numbers calculated in the first stage using results from the second stage.
4. Recompute the two-dimensional pressure coefficients using the updated local Mach numbers.

The details of this procedure will now be described.
Nonlinear two-dimensional strip theory is performed on the top and bottom of the fin airfoil using shock-expansion and Newtonian theory. The former is described in Appendix D and the latter simply uses Equation (9). The spanwise locations of the strips coincide with the chordwise rows of control points of the constant u-velocity panels distributed over the fin. At the leading edge of each strip, a local angle of attack, $\alpha_{F, \ell}$, is calculated in a manner similar to Equation (1) including effects of free stream, body linesingularities and external vortex effects if present. The actual fin profile is approximated by straight line segments at each spanwise strip as shown in Figure D.l of Appendix D. An asymmetric airfoil is broken up into equal longitudinal segments as shown below.

Angles $\delta_{1, u}, \delta_{1, \ell}$, and $\delta_{2, u}, \delta_{2, \ell}$ etc. are used directly with the Newtonian formulation. Two control points are shown for the case of two chordwise constant u-velocity panels. For shock expansion, the analysis starts with angles $\delta_{1, u}$ and $\delta_{1, \ell}$ for conditions on segment 1 . For the case shown, there is an oblique shock attached to the leading edge on the bottom and an expansion wave on the top. Beyond this station Prandtl-Meyer expansion theory is employed using the actual profile angles θ_{1}, θ_{2} etc. input by the user. If index N2DPRF is set equal to 1 , the two kinds of nonlinear pressure coefficients are computed in this way and no further corrections are made. In any event, the value of the Prandtl-Meyer flow angle v associated with the two-dimensional expansion flow and the value of the flow deflection angle δ for Newtonian theory are saved at the control point locations for the top and bottom surface of the fin. In addition, the ratio of total pressure behind the oblique shock to the free stream total pressure is also saved for each strip for use later in the computation of the corrected shock-expansion pressure coefficients.

The two-dimensional interference-free pressure coefficients based on the shock-expansion relationships and the Newtonian theory valid at high Mach numbers will be corrected for three-dimensional interference effects on the top and bottom surfaces of the fin at the panel control points. The essential idea of defining a new effective deflection angle was originated by Carlson in Reference ll for the shockexpansion method. Here, the effective deflection angle concept is also applied to the Newtonian pressure method. First, an equivalent flow turning angle is calculated as follows. It is based on the notion of approximating the difference between the interference-free two-dimensional nonlinear theory (shock expansion or Newtonian) and three-dimensional nonlinear theory including interference effects by the difference between inter-ference-free two-dimensional linear theory and three-dimensional linear theory including interference effects.

In equation form, this statement can be expressed as

$$
\begin{align*}
& {[2-D \text { nonlinear theory }]+[(3-D \text { linear theory })} \\
& -(2-D \text { linear theory })] \cong[3-D \text { nonlinear theory }] \tag{10}
\end{align*}
$$

The local longitudinal or axial perturbation velocity in accordance with two-dimensional, linear theory is given by

$$
\begin{equation*}
\frac{u_{2 D}}{V_{\infty}}=-\frac{1}{\sqrt{M_{\infty}^{2}-1}} \delta \tag{11}
\end{equation*}
$$

where δ is the angle (in radians) between the oncoming stream and the top or bottom surface of the fin (or body) at the control point of a constant u-velocity panel. This relationship is based on the pressure coefficient for two-dimensional flow (shown in the first sketch of Section 2.6.1) and the two-dimensional relationship given by Equation (5). The
corresponding local Mach numbers for interference-free, twodimensional flow as formulated by Carlson in Reference ll is expressed as

$$
\begin{equation*}
M_{2 D}=M_{\infty}\left(1+\frac{u_{2 D}}{v_{\infty}}\right) \tag{12}
\end{equation*}
$$

and the Prandtl-Meyer angle $\nu_{2 D}$ associated with this Mach number is calculated with Equation (D.7) of Appendix D. In subroutine $S P E C P R$, this equation is programmed as function FNU. The local Mach number for three-dimensional flow on the top and bottom of the fin at the panel control points includes inteference effects and is given in Reference ll as follows.

$$
\begin{equation*}
M_{3 D}=\frac{M_{\infty}\left(1+\frac{u_{3 D}, \ell}{V_{\infty}}\right)}{\cos \varepsilon} \tag{13}
\end{equation*}
$$

The angle ε is the lateral flow angle measured in a plane tangent to the local surface at the panel control point as shown in the sketch below. It is the angle between the local streamline or flow direction and the streamwise direction on the fin.

The local axial perturbation velocity component $u_{3 D, \ell}$ is obtained from three-dimensional linear theory and includes contributions from all constant u-velocity panels on the fin(s) and interference shell, source panels for fin thickness, and the line singularities modeling the body. Component $u_{3 D, \ell} / V_{\infty}$ is parallel to the mean plane and is calculated as UTOTA and UTOTB in routine SPECPR for the upper and lower fin surfaces, respectively. Therefore, by using Equation (13), the Mach number $M_{3 D}$ is made to correspond to the three-dimensional flow determined from linear theory calculated at the panel control points for the upper (and lower) surfaces of the fin. The tangent plane shown in the sketch corresponds to one of the strip segments inclined at angle δ with respect to the free stream. Lateral deflection angle ε can be determined from

$$
\begin{equation*}
\varepsilon=\tan ^{-1} \frac{\mathrm{~V}_{\mathrm{F}, \ell}+\mathrm{v}_{3 \mathrm{D}, \ell}}{\mathrm{U}_{\mathrm{F}, \ell}+\mathrm{u}_{3 \mathrm{D}, \ell}} \tag{14}
\end{equation*}
$$

Quantity $V_{F, l}$ is the lateral velocity component parallel to the fin mean plane calculated as VFINL in routine SPECPR and represents effects of free stream including fin deflection angle. The perturbation lateral velocity component $v_{3 D}, \ell$ in the fin local coordinate system (also parallel to fin mean plane) includes contributions from all constant u-velocity panels, planar source panels for fin thickness, body singularities and external vortices if present. Component $U_{F, \ell}$ (UFINL) is the axial component due to free stream parallel to the fin mean plane. The axial or longitudinal component $u_{3 D, \ell}$ is discussed above in connection with Equation (13). The Prandtl-Meyer angle $\nu_{3 D}$ is related to Mach number $M_{3 D}$ by means of Equation (D.7) shown in Appendix D.

The equivalent turning angle (or flow correction angle) is now defined as

$$
\begin{equation*}
\Delta v=v_{2 D}-v_{3 D} \tag{15}
\end{equation*}
$$

where $\nu_{2 D}$ and $\nu_{3 D}$ are related to the Mach numbers $M_{2 D}$ and $M_{3 D}$, Equations (12) and (13), respectively. The values of Prandtl-Meyer angles v calculated and saved at the panel control points during the first stage are then corrected as follows.

$$
\begin{equation*}
\nu_{\text {corr }}=v-\Delta v \tag{16}
\end{equation*}
$$

The flow deflection angles δ calculated and saved during the first stage for the Newtonian theory are also corrected to give an effective deflection angle

$$
\begin{equation*}
\delta_{\text {corr }}=\delta+\Delta \nu \tag{17}
\end{equation*}
$$

The shock-expansion pressure coefficient is now recomputed in accordance with the method described in Appendix D using the updated local Mach number, Equations (D.10) and (D.23). It is based on $v_{\text {corr }}$ given by Equation (16). The saved total pressure ratios are included in this process. Likewise, the Newtonian pressure coefficients are recalculated in accordance with Equation (9) using $\delta_{\text {corr }}$ from Equation (17). Because the flow is usually accelerated, both of the corrections should generally tend to lower the nonlinear pressure coefficients calculated in the first stage.

In the application of three-dimensional linear theory (i.e., constant u-velocity and source panel methods) to delta wings, the perturbation velocities can become large in magnitude near the wing tip. In order to keep the lateral perturbation velocity component $v_{3 D}, \ell$ within reasonable bounds, the sidewash is arbitrarily limited to

$$
\left.\begin{array}{l}
\left.\mathrm{v}_{3 \mathrm{D}, \ell}\right|_{\text {limit }}=\left|\frac{\mathrm{v}_{3 \mathrm{D}, \ell}}{\mathrm{u}_{3 \mathrm{D}, \ell}}\right| \mathrm{u}_{2 \mathrm{D}} \tag{18}\\
\text { for } \mathrm{v}_{3 \mathrm{D}, \ell} \geq 0.5 \mathrm{v}_{\infty}
\end{array}\right\}
$$

with the order of magnitude of the two-dimensional axial component given by Equation (11). This process is also performed in subroutine SPECPR of program LRCDM2. If subroutine SHKEXP (Appendix D) detects a strip with a detached shock at the leading edge, the linear and Bernoulli pressure coefficients calculated from linear theory at the panel control points in the strip are used instead in the subsequent fin loading calculation.

On the body, the optional computation of pressure coefficients with combined nonlinear/linear theory is selected by setting index $N 2 D P R B=2$ in Namelist \$INPUT of program LRCDM2. In essence, the same procedure employed on the fins is repeated along longitudinal strips on the surface of the body from the nose tip to the base. A layout of longitudinal strips is indicated schematically below. Each segment or

panel in a strip makes angle θ_{i} (shown out of plane) with the body centerline. These angles are input by the user. Subroutine BDYPR of program LRCDM2 defines a local angle of attack, α_{ℓ}, for each segment by computing the velocity component normal to the plane of the segment. This normal component, w_{ℓ}, includes a contribution of free stream and effects of external vorticity if present. Flow deflection angles δ are then defined as the angle between the local flow velocity vector and the plane of the segment. For each longitudinal strip, the pressure coefficients are determined in accordance with shock expansion (tangent wedge) and Newtonian theory during the first stage as described above for the fins. If $N 2 D P R B$ is set equal to l, the nonlinear pressure coefficients are not corrected as described above. For $\mathrm{N} 2 \mathrm{DPRB}=2$, the perturbation velocity components involved in the determination of the equivalent turning angle Δv include contributions from the body line singularities, external vortices, and for the portions of the body next to the fins, effects of constant u-velocity panels on the fins and interference shell are also included. Equation (18) is used for the body as well to limit the local lateral velocity component.

3. COMPARISONS

In order to make an assessment of the accuracy of the updates and extensions to program NSWCDM (Ref. 2), some comparisons between results predicted with the new program LRCDM2 and experimental data are given in this section. First, results obtained for a triform configuration are discussed. A calculation example showing the effects of vortex shedding on afterbody load is discussed. Overall forces and moments acting on a forward control canard-tail wind tunnel model are calculated with and without afterbody vortex shedding
and compared with measurements for a case with roll control. The nonlinear/linear combined theories are tested against measured pressure distributions on a rectangular and delta wing and on an ogive cylinder forebody.
3.1 Forces and Moments Acting on Triform

Program LRCDM2 has been arranged to handle a variety of fin layouts including a new option for triform fins. Figure 1 shows an example comprising one set of triform tail fins attached to an ogive-cylinder body. Forces and moments measured on this configuration were taken from Reference 14 and are shown in Figure 2 by the open symbols. Results predicted by LRCDM2 using the linear theory Bernoulli pressure coefficient option are indicated by the solid symbols. Data are shown for two roll angles, $\phi=0^{\circ}$ and 90°. Note that for $\phi=0^{\circ}$, the configuration is actually rolled 180° relative to the orientation shown in Figure 1. The orientations of the free-stream velocity component in the crossflow plane are shown at the top of the figure for the two roll angles. Positive directions of the normal force coefficient, C_{Z}, and side force coefficient, C_{Y}, are also indicated.

At zero roll and for the range of angles of attack shown, the measured normal force and pitching moment (positive nose up) are almost linear although the former shows a nonlinear increment most likely due to forebody vortices for α_{c} greater than 8°. Agreement between experiment and prediction is quite good. It should be noted here that program LRCDM2 is equipped with a data base containing symmetric forebody separation characteristics described in Reference l. Effects of these vortices are included in the fin loads. On the forebody, only the lateral velocity components induced by the vortices are included in the pressure calculations resulting

Figure 1.- Triform ogive-cylinder configuration.

$\phi=0^{\circ}$

- $\phi=90^{\circ}$

$$
S_{\text {ref }}=0.442, \text { ref }=0.75
$$

Figure 2.- Forces and moments acting on triform ogivecylinder configuration, $M_{\infty}=1.5$.
in underpredicted forebody loads when vortices are present (also refer to Appendix C, Section C.4). This deficiency in the present version of LRCDM2 shows up for α_{c} in excess of about 8°.

When the triform configuration is in pure sideslip $\left(\phi=90^{\circ}\right)$, it is seen that the measured normal force, C_{Z}, and pitching moment, C_{m}, are nonzero and are predicted well by LRCDM2. For this condition, the side force, C_{Y}, and yawing moment, C_{n} (positive nose to right), are dominant and also show the effects of the aforementioned forebody vortices. Rolling moment is negligible. These lateral characteristics are also predicted well by the present version of LRCDM2. The calculations were performed with a sparse layout of three chordwise and five spanwise constant u-velocity panels on the fins. A layout of three lengthwise with 12 circumferential panels was used on the interference shell covering the body along the length of the fin root chord.
3.2 Forces and Moments Acting on TF-4 Wind Tunnel Model

The geometrical details of the NASA/LRC canard-controlled model designated TF-4 are shown in Figure 3. Here, only the king-size tail fin will be considered because of its pronounced effects on the overall longitudinal and lateral aerodynamic characteristics. Comparisons between extensive experimental data supplied by J. M. Allen and A. B. Blair, Jr. of the Supersonic Branch at the NASA/Langley Research Center and the earlier program NSWCDM are shown in Reference 4. The results discussed below are aimed at showing the effects of afterbody vortex shedding on the afterbody loads with zero control, and on the overall lateral characteristics for the case with roll control.

Figure 3.- NASA/LRC wind tunnel model TF-4 with different tail fins.
3.2.1 Normal force on afterbody.- In order to illustrate program operation and to assess the magnitude of the loading acting on the l3-caliber afterbody, program LRCDM2 was applied to the unrolled TF-4 configuration with and without afterbody vortex shedding. For this calculation, the included angle of attack α_{c} is 20° and the Mach number M_{∞} equals 1.6 .

At this angle of attack, the data bases built into subroutine BDYVTX of program LRCDM2 generate two symmetric forebody vortices. In addition, for this case, the wake of the horizontal canard fins consist of four (two for each fin) discrete vortices as calculated by subroutine SPNLD at the end of step 3 of the stepwise procedure described in Section 2.3. Thus, at the axial location of the trailing edges of the canard, program LRCDM2 has generated six vortices. Typically, the set of discrete vortices are positioned in the crossflow plane as shown below. For this case with zero roll angle and zero fin deflection angles, the vertical fins are unloaded. The trailing-edge vortices are determined from

the attached flow span loading and the side-edge vortices (Section 2.4) are related to the Polhamus vortex-lift analogy as described in Appendix C.

The set of vortices can be tracked down the afterbody without shedding of afterbody vortices in accordance with step 5. The determination of the vortex paths and the calculation of the velocities induced by the vortices as they stream aft and above the afterbody is performed by module VPATH2 of LRCDM2. The calculation of pressures at points on the afterbody surface as well as the pressure integration for forces and moments is implemented in subroutine BDYPR of program LRCDM2. On the other hand, companion program BDYSHD (Section 2.2 and Appendix B) can be employed to compute the loads acting on the afterbody including effects of afterbody vortex shedding. This operation is schematically indicated as step 3a in the sketch of Section 2.3. In this process, program BDYSHD reads in the strengths and lateral locations of the set of vortices at the canard trailing edge. The rate of vortex shedding, the pressure distributions and the vortex paths determined by BDYSHD are thus influenced by the vortices generated by the forebody and canard fins. At the end of the afterbody, the six canard-section vortices and the additional vortices shed by the afterbody are positioned as shown below. Note that in this symmetric picture, the body-nose vortices are "captured" by the many afterbody vortices in the two vortex clouds. However, the canard fin vortices have traveled a fair distance above the afterbody.

The distributions of normal force acting on the TF-4 afterbody calculated with and without vortex shedding are shown in Figure 4. The upper curve represents the normal force distribution calculated by BDYSHD using the laminar option for afterbody vortex shedding under the influence of canard-section vorticity. If the turbulent option is used, the calculated normal force will be lower in magnitude. Most of the added normal force is generated towards the aft portion of the afterbody. Simple constant crossflow-drag coefficient calculations do not include effects of upstream vortices and would result in a constant distribution of normal force of higher magnitude. The lower curve is generated by LRCDM2 and reflects the download effects of the forebody and canard

fin vortices. The net effect of accounting for afterbody vortex shedding by the optional inclusion of step 3a (BDYSHD) is to add about 1.7 to the normal force acting on the entire configuration. This amount is about 10% of the total normal force acting on the TF-4 with small tails.

3.2.2 Roll control.- Data were also obtained on the

 TF-4 for roll control. The right horizontal canard fin of the TF-4 configuration shown in Figure 3 is deflected 5° trailing edge down and the left horizontal canard fin is deflected -5° trailing edge up. Comparisons between experimental data taken at the Supersonic Branch of NASA/LRC and results calculated by program LRCDM2 are shown in Figure 5. The Mach number is 2.5 and the configuration is unrolled, $\phi=0^{\circ}$.Normal-force coefficient, C_{N}, and pitching-moment coefficient, C_{m}, are given in Figure $5(a)$ as a function of included angle of attack, α_{c}. The measured normal force (open symbols) shows some nonlinear behavior throughout the range of α_{c}. Measured pitching moment (open symbols) is somewhat nonlinear for α_{c} up to about 6°. For low angles of attack, the oppositely deflected horizontal canard fins produce vortices of the same sense (or direction) which travel aft along the afterbody and produce an asymmetric flow field at the tail section. At the higher angles of attack, afterbody vortex shedding can occur and add to the vortex field as described later.

Program LRCDM2 was applied with (for $\alpha_{C}=10^{\circ}$, and 15°) and without (for $\alpha_{c}=0^{\circ}, 5^{\circ}, 10^{\circ}$, and 15°) the optional afterbody vortex shedding companion program BDYSHD. The difference between the two predictions (solid symbols) are neglible and both results match the experimental data well. Note that in this case the increment in normal force coefficient acting on the afterbody due to vortex shedding is considerably smaller than that for the undeflected canard fin

[^1]
(b) Yawing moment, rolling moment and side force coefficients

Figure 5.- Concluded.
case described in the previous section. This is due in part to the asymmetric vortex field generated by the canard section for roll control. In addition, the forces and moments for this case are mostly due to the lifting surfaces (including the king-size tails).

The lateral aerodynamic characteristics are shown in Figure $5(b)$ with and without roll control. Measured yawing moment, C_{n}, rolling moment, C_{ℓ}, and side force, C_{Y}, indicate strong nonlinearities. The experimentally measured tail-off rolling moment is also indicated. It is seen that the effect of adding the king-size tail fins is to cancel the roll control of the canard fins up to about α_{c} equal to 6°. For higher angles of attack, the measured rolling moment exhibits nonlinear behavior and actually exceeds the rolling moment generated by the canards alone for α_{c} greater than 11°. In addition, some yawing moment is generated with roll control which changes sign as the angle of attack is increased. Little side force is measured. For low angles of attack, the vortices generated by the oppositely deflected canard fins induce unbalanced (asymmetric) loads on each of the king-size tail fins resulting in an adverse rolling moment. For angles of attack above 10°, the induced tail-fin rolling moment changes direction and actually adds to the canard rolling moment.

The negative tail-off rolling moment is predicted well by the tail-off results (indicated by the crosses) calculated by LRCDM2. At the lower angles of attack $\left(\alpha_{c}=0^{\circ}, 5^{\circ}\right)$, the overall rolling moment calculated without afterbody vortex shedding is near zero and as such the interactions between the canard fins and the king-size tail fins are handled well by LRCDM2. However, the predictions without afterbody vortex shedding fail to predict the nonlinear behavior above 6° angle of attack. Afterbody vortex shedding becomes important at angles of attack in excess of 10° for the length of afterbody (13 calibers) under consideration. The predicted vortex field
at the end of the afterbody (i.e., at the leading edge of the tail section) for $\alpha_{c}=15^{\circ}$ including effects of afterbody vortex shedding is indicated below.

The afterbody vortex clouds are represented in the sketch by their centroids in the upper left quarter near the upper tail fin. The lower vertical canard fin trailing-edge vortex $\left(\Gamma_{T E} / V_{\infty}=-0.16\right)$ has come up around the body and is trapped by the afterbody vortices. The actual crossflow vortex picture can be found in the sample case output of companion program BDYSHD in Appendix A and the vortex strengths and locations are also specified at the beginning of the output for step 5. The important point is that the sums of the strengths of the
afterbody vortices (centroid strengths) are of same order of magnitude as the trailing-edge vortices of the deflected horizontal canard fins. The afterbody vortices tend to induce a side force (to the left) on the upper tail fin and to unload the left horizontal tail fin more than the right horizontal tail fin.

The calculated rolling moment, including the afterbody vortex shedding option (flagged solid symbols) using laminar separation, definitely follows the nonlinear trend. However, the predicted departure from the near zero level lags the experimental data by about 4° in angle of attack. Furthermore; the predicted side force also appears to benefit from the afterbody vortex shedding option. The predicted yawing moment is a little erratic with the afterbody vortex shedding option. Note that the maximum measured yawing-moment coefficient magnitude is only about 5% or less of the maximum measured pitching moment coefficient. The side-force coefficient magnitude is also about 5% of the measured normal-force coefficient. Furthermore, for zero canard fin deflection ($\delta_{\text {roll }}=0^{\circ}$), the measured yawing- and rolling-moment coefficients and the side-force coefficients indicated by the open circles should be zero for all angles of attack. This is an indication of some experimental error especially for α_{c} greater than 10°. A small error in measured and predicted side force either on the tail fins or afterbody can cause an appreciable contribution to the yawing moment.

Presently, the normal force acting on a deflected fin is not resolved into the z_{B} and x_{B} directions to give contributions to the C_{Z} and C_{X} force coefficient components. The axial $\left(C_{X}\right)$ component would also generate a contribution to the yawing moment. Since the normal forces on the right and left horizontal fins are not equal in this case involving roll control, an additional net yawing moment would result from the canard section as the included angle of attack is increased from
zero degrees. This contribution to the overall yawing is not accounted for in the present version of LRCDM2. In any event, the change in sign of the yawing moment as α_{c} is increased is presently not predicted. Note again that the magnitude of the yawing moment is but a few percent of the pitching moment shown in Figure 5(a).

All of the above predictions were obtained with a relatively sparse paneling layout (four chordwise by six spanwise on canard and tail fins). The actual calculation for $\alpha_{c}=15^{\circ}$ is given as the sample case in Appendix A and the results based on linear theory and the Bernoulli pressure method are used in all of the predictions shown here. On a CDC 7600, time required by LRCDM2 to perform this calculation including the optional engagement of companion program BDYSHD is 65 CPU sec.

3.3 Pressure Distributions Acting on
 AR $=2$ Rectangular Wing

In support of an effort aimed at developing numerical methodologies for analysis of wing/body configurations at supersonic speeds (Ref. 15), the Bernoulli and one of the nonlinear/linear pressure calculation methods implemented in program LRCDM2 were applied to the rectangular wing shown in Figure 6. This aspect ratio 2 wing was mounted on a dogleg sting and one side of the bevelled wing was instrumented with pressure orifices. The attitude of the assembly could be rotated 180° to enable measurement of pressures on the windward and leeward surfaces of the wing. The tests were performed by Stallings and Lamb at NASA/LRC and the results for this and other wings are contained in Reference 16.

Pressure distributions acting on the upper and lower surfaces of the wing are shown in Figure 7. Angle of attack is 10.3° and the Mach number equals 2.86. In Figure $7(a)$, the variation of pressure coefficients with spanwise distance is

(a) Pressure tap layout (Ref. 16)

(b) Geometrical details and 10×10 paneling layout for prediction.

Figure 6.- AR $=2$ rectangular wing, bevelled on the edges.

(a) Spanwise pressure distributions on upper and lower surfaces, $x / c=0.5$

Figure 7.- Pressure distributions acting on $A R=2$.

0.53
\cdots
(b) Chordwise pressure distribution on upper and lower surfaces,
Figure 7.- Concluded.
indicated at the midchord position on the wing. The effects of the bevel near the side edge can be most clearly seen in the measured windward pressures (open symbols). The bevelled portion spans from $y /(b / 2)=0.78$ to the side edge. Inboard of this region, the measured pressures are practically constant.

The predictions generated by LRCDM2 are based on a l0-chordwise by 10 -spanwise layout of constant u-velocity panels to model lift and the same layout of source panels are used to model thickness as shown in Figure 6(b). In addition, 10 spanwise strips with 10 segments in each were employed for the shock-expansion analysis. All predictions were performed for 10° angle of attack. The results marked Bernoulli in Figure 7(a) are based on linear theory. Thus, the perturbation velocities substituted in the Bernoulli pressure coefficient, Equation (5), are induced by all the panels distributed over the wing. The panel strengths were obtained from satisfying the flow-tangency boundary condition at the constant u-velocity control points (see Ref. l for details). In this instance, the calculated Bernoulli pressure coefficients are within 10% of the experimental data. The predicted results designated shock expansion, corrected, are based on shock-expansion strip theory with the flow angles corrected for interference by linear theory as described in Section 2.6.2. The pressure coefficients predicted this way match the measured values even better especially inboard of the bevelled section. Note that in terms of loading pressures $\left(\Delta C_{P}=C_{P_{\ell}}-C_{P_{u}}\right)$, both methods give about the same answers except on the bevel.

The chordwise pressure distributions indicated in Figure $7(\mathrm{~b})$ show the strong effects of the bevelled portion from the leading edge up to chordwise location x / c equal to 0.22. The spanwise station of this pressure distribution is approximately at half semi-span. On the upper and lower sides, the pressures are positive on the leading-edge bevel with half angle 15°. For 10.3° angle of attack both surfaces
of this bevelled portion are compression surfaces. Near the trailing edge, only the lower or windward side is affected by the bevelled edge. On account of the presence of a strong oblique shock attached to the leading edge, the Bernoulli pressure method based on linear theory underestimates the pressure coefficients on the upper and lower surface by about 40% up to the flat portion of the wing. The corrected shockexpansion pressure method matches the experimental data much better near the leading edge. On the flat portion, both methods match the measured pressure level well. On the bevel at the trailing edge, both methods predict lower than measured pressure coefficients on the upper or suction surface. This is most likely due to boundary layer separation effects. On the lower or windward side, the corrected shock-expansion method matches experiment somewhat better. It should be mentioned that the flow correction angles calculated in accordance with Section 2.6 .2 are small due to the two-dimensional nature of the flow in this case. However, the corrected shock-expansion method consistently provides the better predictions for pressure coefficients.

3.4 Pressure Distributions and Normal Force Acting on $A R=1$ Delta Wing

In order to compare in detail the differences between pressure coefficients calculated with the linear, nonlinear and combined nonlinear/linear theory methods, program LRCDM2 was applied to the aspect ratio 1 delta wing shown in Figures 8 , 9, and l0. This delta wing has a 4 percent circular arc (biconvex) streamwise airfoil.

Figures 8 and 9 contain pressure distributions used in Reference 11 to test the shock expansion/linear theory concept originated by Carlson. The Mach number is 4.6 for all cases shown here so that the leading edge of the delta wing is just supersonic. The dashed line just inside the leading edge of
Figure 8.- Chordwise pressure distributions on upper and lower surfaces of $A R=1$ delta wing, $M_{\infty}=4.6, \alpha_{c}=5.56^{\circ}$.

Figure 8.- Continued.

Figure 8.- Concluded.

Figure 9.- Chordwise pressure distributions on upper and lower surfaces of $A R=1$ delta wing, $M_{\infty}=4.6, \alpha_{c}=20.56^{\circ}$.

Figure 9.- Continued.

Figure 9.- Concluded.
the delta wing corresponds to the Mach cone associated with the free-stream Mach number. Therefore, the attached shock condition required by the shock-expansion method built into LRCDM2 is satisfied. In Figures $8(a, b)$ and $8(c, d)$, the pressure distributions are given for a low angle of attack of 5.56° at the 40 percent and 80 percent semispan stations, respectively. Pressure distributions at the same stations are shown in Figures $9(a, b)$ and $9(c, d)$ for a high angle of attack of 20.56°.

The results predicted by LRCDM2 were obtained with a layout of l0-chordwise by 5-spanwise constant u-velocity panels to model linear theory lift and 10 chordwise by 5-spanwise planar source panels to account for linear theory thickness. The nonlinear and combined theories are applied to five chordwise strips on the top and bottom surfaces with 10 segments on each strip. The results are categorized as follows.

1. Shock expansion: pressure coefficients calculated with shock-expansion theory uncorrected for interference effects, refer to Section 2.6 .1 and Appendix D. (solid line)
2. Bernoulli (linear theory) : pressure coefficients calculated in accordance with Equation (6) and with the required perturbation velocities induced by the linear theory paneling method (s). (dashed line)
3. Newtonian: pressure coefficients determined from Equation (9) on the windward side with $C_{P}=0$ on the leeward side. (long dash, short dash line)
4. Shock expansion, corrected: category 1 pressure coefficients are corrected for interference effects with combined nonlinear/linear theory as described in Section 2.6.2. (solid triangles)
5. Newtonian, corrected: category 3 pressure coefficients are corrected for interference effects with combined nonlinear/linear theory as described in Section 2.6.2. (solid rectangles)

The Bernoulli and Newtonian results are indicated on Figures 8(a), 8(c) and 9(a), 9(c). The Bernoulli results are shown again with the shock expansion results on Figures 8(b), 8(d) and 9(b), 9(d).

In Figures $8(a)$ and $8(b)$, the measured chordwise pressure distributions (open symbols) on the upper and lower surfaces at the 40 percent midspan station do not exhibit any irregularities. The magnitudes of the pressure coefficients are low due to the low angle of attack and high Mach number. On the windward side, the Newtonian pressure predictions shown in Figure $8(a)$ appears to match the data best while the Bernoulli and shock-expansion methods shown in Figure 8 (b) overestimate the measured pressure coefficients slightly. The corrected nonlinear pressures are not much different from the uncorrected ones. On the upper surface, the experimental data is only slightly above the value of the minimum pressure coefficient, Equation (4), and still below the zero level. The uncorrected and corrected Newtonian pressure coefficients are both zero by definition. The Bernoulli, uncorrected and corrected shock-expansion pressure coefficients match the data well. Nearer the wing tip, the levels of the measured pressure (open symbols) shown in Figures $8(c)$ and $8(d)$ are about the same as those at the 40 percent semispan location. On the windward or lower side, the Bernoulli pressures based on linear theory definitely overestimate the experimental data except near the leading edge. The uncorrected and corrected shock expansion and Newtonian pressure calculation methods agree well with the data. On the upper surface, the Newtonian based predictions are zero again whereas the experimental pressure coefficients approaches the minimum
value especially near the trailing edge. The Bernoulli, uncorrected and corrected shock expansion pressure coefficients all appear to match the data well. Note that the surface area near the wing tip rapidly diminishes and that the inboard pressures have larger effect on the overall normal force. Also, as far as the linear theory is concerned, the calculated pressures become infinite at the wing tip. This characteristic will be more pronounced at the high angle of attack.

The effect of high angle of attack is shown in Figure 9. At the 40 percent semispan location, Figures $9(a)$ and $9(b)$, the measured pressure coefficients (open symbols) almost lie on straight lines. On the lower surface, the Bernoulli pressure coefficients are much higher than the experimental pressure coefficients except near the leading edge where the Bernoulli prediction approaches the zero level. This behavior is due to unrealistic (high) values of resultant flow velocity calculated with linear theory and substituted into the Bernoulli Equation (6). In Figure $8(a)$ and $8(b)$, this behavior was not evident because the angle of attack is low. The corrected shock-expansion method shown in Figure $9(b)$ definitely improves agreement with experiment but the uncorrected Newtonian results shown in Figure $9(\mathrm{a})$ matches the windward data best. On the suction or upper surface, the level of the measured pressure coefficients is at the minimum. The Bernoulli, uncorrected and corrected shock-expansion pressure coefficients are also at the minimum level. Note that the Bernoulli pressure coefficients derived from linear theory are limited to the minimum value in accordance with Section 2.6.1. Again, the uncorrected and corrected Newtonian pressure coefficients are set at zero.

Near the wing tip, Figures $9(c)$ and $9(\mathrm{~d})$, the effect of angle of attack is felt even more by the linear theory for the Mach number under consideration. On the lower or windward surface, the Bernoulli method actually predicts negative values for pressure coefficient. The resultant flow velocity
predicted by linear theory is very large near the leading edge and decreases too rapidly towards the trailing edge. This is mostly due to the high angle of attack and partially due to the high Mach number. The uncorrected and corrected Newtonian pressure method shown in Figure 9 (c) match the data best on the lower surface. The corrected shock-expansion pressure coefficients indicated on Figure $9(d)$ are now affected by the arbitrary limitation on sidewash set by Equation (18) in that the calculated correction is not effective. On the upper surface the measured pressure coefficients are at their minimum and so are the calculated Bernoulli, uncorrected and corrected shock-expansion pressure coefficients. The uncorrected and corrected Newtonian pressure coefficients are at zero.

The chordwise pressure distributions, some of which are discussed above, were integrated over the upper and lower surfaces of the $\boldsymbol{R}=1$ delta wing to give the normal force coefficients as a function of angle of attack. In Figure 10 the normal-force coefficient and the location of the center of pressure measured from the wing apex and normalized by the root chord are shown as a function of angle of attack. The experimental data (open symbols) was taken from Reference 11. For angles of attack up to 12°, the Bernoulli method based on linear theory matches the normal force data well. However, the center of pressure calculated by that method lies aft of the measured location and the error grows larger with α_{c}. This is typical of linear theory in the application to wings at high Mach number, the total normal force often is estimated well but the distribution of that force is faulty. The uncorrected and corrected Newtonian normal-force predictions (open and solid rectangles) are low at the low and high angles of attack for which results were calculated. This is due to the forced zero pressure coefficient value on the upper surface of the wing. This "shadow flow" approximation holds better at Mach

Figure lo.- Normal-force coefficient and center of pressure location for $A R=1$ delta wing as a function of angle of attack, $\mathrm{M}_{\infty}=4.6$.
numbers in excess of 5. The center of pressure predicted by the Newtonian method is far forward of the measured level at the low angle of attack and matches the data coincidentally at the high anqle. The uncorrected and corrected shock-expansion method (open and solid triangles) match the normal force and center of pressure data well at the low angle of attack. At the high angle, the agreement in normal force is definitely better with the corrected shock expansion method. Center of pressure is not affected much by the correction. In summary, the corrected shock-expansion pressure coefficient method appears to give the best results for the delta wing under consideration at $M_{\infty}=4.6$ for both low and high angles of attack. On the windward side only, the pressure coefficients are predicted well by the Newtonian pressure methods. At the Mach number under consideration, the Bernoulli results agree fairly well with measured pressures and normal force at low angle of attack only.

3.5 Pressure Distributions on Ogive Cylinder

In addition to applying the Bernoulli (linear theory), nonlinear and nonlinear/linear pressure coefficient prediction methods to a rectangular and delta wing, program LRCDM2 was applied to the ogive cylinder with pointed nose shown in Figure 11.

Experimental pressure coefficients are shown for the upper and lower meridians of the pointed ogive-cylinder by the open symbols. At zero angle of attack, the pressures should be the same. It can be seen that the pressures overshoot the zero level past the tangency point.

The predictions were obtained with a distribution of 50 line source/sinks to model the linear volume effects of the body. Presently, LRCDM2 cannot treat a body alone. Therefore, a wing with a one-chordwise by one-spanwise panel layout is positioned at the body base. The circumferential number of
 Figure 11.- Pressure distributions $=2.96$.
strips is determined by index NBDCR in namelist \$INPUT. For this symmetric case there were NBDCR (=4) plus one equals 5 strips laid out as shown below. This downstream view shows

the first segments in each strip. The numbers correspond to the sequence of pressure point locations actually printed in the program output. Each strip had 20 segments in it to cover the body from the nose to the base. For the case at hand at zero angle of attack, the pressures will be the same along all strips. Before discussing the comparisons between the predicted and measured pressure coefficients, the locations of the conical shock and Mach cone will be indicated. This is followed by some general comments regarding the effects of shock location on the pressures acting on the body.

For the case at hand, the following conditions exist.

$$
\begin{array}{rlrl}
\theta_{\text {nose }}= & 18.93^{\circ} \text { at } x_{B}=0 & M_{\infty} & =2.96 \\
\mu= & 19.75^{\circ}, \mu=\sin \left(1 / M_{\infty}\right) & \theta_{\text {shock }} & =29^{\circ} \text { from conical } \\
& & \text { shock tables }
\end{array}
$$

At zero angle of attack, the Mach cone associated with linear theory (also indicated in Figure ll) lies close to the body contour. For Mach numbers higher than 3.08, the body slope will exceed the Mach cone semi-vertex angle. In that case, subroutine BDYGEN of program LRCDM2 will replace the portion of the nose contour lying outside of the Mach cone with a conical portion with slightly smaller semi-vertex angle than the Mach cone so that the linear body analysis can be performed. For the conditions shown above, the conical shock lies within one radius of the body surface up to about 20% body length behind the pointed nose.

The methods using shock expansion (Sections 2.6.1, 2.6.2, and Appendix D) require the condition of an attached shock. Whether the shock is attached or not, the pressures near the nose of any body in supersonic flow are generally not predicted well by linear theory. This characteristic is a function of how close the body surface is to the shock. For slender bodies at zero angle of attack, the Mach number can be relatively high before linear theory breaks down and nonlinear theory takes over. As the angle of attack is increased, the windward side of the body is affected first by the nonlinear shock properties. Under these conditions, the linear theory will underpredict the pressures acting on the windward portion of any body.

In Figure 11, the Bernoulli pressure coefficients (dashed line) based on linear theory underestimate the experimental data up to about 20% body length. From there on to the body base, the Bernoulli pressure match the data very well including the overshoot.

The uncorrected shock-expansion method (solid line) definitely overestimates the pressure coefficients and approaches the zero level just about at the tangency point. The corrected shock-expansion pressure coefficients (solid triangles) are closer to the experimental data but are still high. Note that for this case involving zero angle of attack,
the correction as determined by the method described in Section 2.6.2 is due to the difference in the Mach numbers $M_{2 D}$ and $M_{3 D}$ with the lateral flow angle ε equal to zero. The overestimation is not unexpected since the shock-expansion method used here is actually based on a tangent-wedge solution applicable to wing type configurations. The tangent-cone solution is better for applications to axisymmetric bodies and will generate lower pressure coefficients on the body surface immediately behind the conical shock. As a matter of fact, for Mach number equal to 2.96 and using nose tip half angle ${ }^{\theta}$ nose $=18.93^{\circ}$, the tangent-cone pressure coefficient is about 0.26 compared to 0.41 for the tangent-wedge pressure coefficient. These values of pressure coefficients are valid at the body nose or wing leading edge, respectively.

The Newtonian predictions generally underestimate the pressure coefficients on the nose. In this case, the uncorrected and corrected Newtonian methods are definitely not applicable due to the low Mach number under consideration.

In summary, for the application to an ogive cylinder and probably to other body shapes as well, the Bernoulli method based on linear theory gives good agreement except for approximately one-half of the nose length in this case. The distance from the nose tip to good agreement with data is a function of the proximity of the nose shock to the surface. If the shock lies within about one body radius from the body surface, the Bernoulli predictions will underestimate the pressure coefficients. The shock-expansion methods presently employed in LRCDM2 overestimate the pressure coefficients. The agreement with experimental data will be improved by replacing the tangent-wedge with a tangent-cone approach. The Mach number at hand is too low for simple Newtonian theory.
4. CONCLUSIONS

Program LRCDM2 was developed from an existing computer program NSWCDM for detailed static aerodynamic loading analysis of supersonic missiles with axisymmetric bodies and up to two finned sections (tail or canard-tail configurations). The extensions and improvements incorporated in LRCDM2 include an optional afterbody vortex-shedding method, handling of canard fin leading- and/or side-edge vortices in the vortex tracking scheme, and the capability for analyzing a given configuration in one run for a set of included angles of attack and roll angle for the same Mach number. In addition, two combinations of nonlinear/linear theories for extending the range of applicability in terms of Mach number are built into program LRCDM2.

Comparisons with experimental data and a calculative example involving afterbody loads are given to assess the new features. The program is tested successfully against measured overall forces and moments acting on a triform tail-finned configuration. The new afterbody vortex-shedding option is applied to a canard-controlled configuration with a long afterbody. The results indicate that accuracy has been substantially improved for total rolling moment for the case with roll control. Initial tests of the nonlinear/linear approaches give good agreement for pressures acting on a rectangular wing and a delta wing with attached shocks for Mach numbers up to 4.6 and angles of attack up to 20°. In particular, the axial center-of-pressure location is predicted well with the corrected shock-expansion pressure method for the delta wing at $M_{\infty}=4.6$. On bodies, the methods need further assessment and the tangent-wedge theory should be replaced with the tangent-cone method.

To the extend that program LRCDM2 has been tested, the following sets of recommendations are listed. The first set is concerned with theoretical aspects and the second set involves improvements to the structure of the computer program to make it more efficient and user friendly. The third set of recommendations are neither theoretical nor program-structure oriented but extend the capabilities of LRCDM2.

With regard to improvements to the present theoretical methods built into LRCDM2, the following should be considered.

1. The methods used to compute Bernoulli pressures on the forebody at high angles of attack under the influence of external vortices should be improved (refer to Section 3.1 and Appendix C, Section C.4).
2. At high angles of attack, the fin trailing-edge vorticity associated with attached flow and the leading- and/or side-edge vorticity due to flow separation need to be reconsidered in relation to each other. This will require an accurate and fast method for calculating span loading under the influence of moving vortices (refer to Section 2.4).
3. The representation of the canard-fin wake in terms of a limited number of concentrated, discrete vortices is not accurate for cases involving tail fins positioned a short distance (e.g., one to two canard-fin chords) behind the canard section; in these cases the canard fin wakes are not fully rolled up and are better modeled by a distribution of vortices lying in a nonplanar vortex-wake sheet allowed to deform (roll up) between the canard section and the tail section.
4. The vortex tracking scheme and the vortex effects calculation method (module VPATH2) should be enhanced with a simple vortex-core model to improve the vortex-path calculations and vortex-induced velocities when vortices are close together or close to the body surface or fins; companion
program BDYSHD used optionally for afterbody vortex-shedding effects is already equipped with a vortex-core model. In addition, a study should be made of the effects of including the center vortex in the image scheme that is used in both programs.
5. The combined nonlinear/linear pressure coefficient methods must be tested further for fins on a body; on the body, the tangent-cone solution should be incorporated.

The following computer program oriented modifications will reduce computation time and make program LRCDM2 more user friendly.
l. Save aerodynamic influence coefficients for velocity and pressure calculations at the panel control points and body pressure calculation points; similar coefficients for the panel strength calculations are already saved; additional computer time reduction will result with the saving of the influence coefficients for use with the pressure calculations especially when performing calculations for a set of included angles of attack and/or roll angle.
2. In addition to the above, the following geometrical quantities can be saved for multiple included angles of attack and/or roll calculations:
a. panel corner coordinates
b. panel control point coordinates
c. panel leading- and trailing-edge sweep angles
3. In order to reduce core storage requirements, the present panel strength calculation scheme should be modified to an out-of-core solution method employing a blocked matrix and an iterative solution approach.
4. Program LRCDM2 should be equipped with warnings in the program output to indicate:
a. number of constant u-velocity panels selected for modeling fin lift and interference on body is out of bounds
b. number of planar source panels selected for modeling fin thickness is out of bounds
c. excessive number of pressure points on the body surface
5. Input to LRCDM2 can be simplified further and a common input module should be incorporated.
6. Additional computer time can be saved by eliminating the forward-fin loading calculations performed in step 1 for cases without formation of forebody vortices. The forward fin loadings are calculated in step 3 and included in the overall force and moment calculation.

The following two items would extend the capabilities of program LRCDM2.

1. Presently the fin-thickness model can only handle planar or cruciform fins; the source paneling layout routines need to be updated to handle arbitrary fin location on the body and arbitrary fin dihedral (or cant) angle.
2. The normal force acting on a deflected fin needs to be resolved into the directions of the rolled body-axis coordinate system; the overall axial force and the yawing moment will receive added contributions.

REFERENCES

1. Dillenius, M. F. E. and Nielsen, J. N.: Computer Programs for Calculating Pressure Distributions Including Vortex Effects on Supersonic Monoplane or Cruciform Wing-BodyTail Combinations With Round or Elliptical Bodies. NASA CR-3122, Apr. 1979.
2. Dillenius, M. F. E. and Smith, C. A.: Final Report - Program NSWCDM, Aerodynamic Prediction Program for Cruciform CanardAxisymmetric Body-Cruciform Tail Missiles at Supersonic Speeds. NEAR TR 217 (Contract NO. N70921-79-C-A365), Nielsen Engineering \& Research, Inc., Apr. 1980.
3. Allen, J. M.: Comparison of Analytical and Experimental Supersonic Aerodynamic Characteristics of a Forward Control Missile. AIAA Paper No. 81-0398, 19th Aerospace Sciences Meeting, St. Louis, MO, Jan. 1981.
4. Dillenius, M. F. E., Hemsch, M. J., Sawyer, W. C., Allen, J. M., and Blair, A. B., Jr.: Comprehensive Missile Aerodynamics Programs for Preliminary Design. AIAA Paper No. 82-0375, 20th Aerospace Sciences Meeting, Orlando, FL, Jan. 1982.
5. Mendenhall, M. R.: Predicted Vortex Shedding from Noncircular Bodies in Supersonic Flow. J. Spacecraft and Rockets, Vol. 13, No. 5, Sept.-Oct. 1981, pp. 385-392.
6. Mendenhall, M. R. and Perkins, S. C., Jr.: Prediction of Vortex Shedding from Circular and Noncircular Bodies in Supersonic Flow. NASA CR-3754, Jan. 1984.
7. Dillenius, M. F. E., Goodwin, F. K., and Nielsen, J. N.: Prediction of Supersonic Store Separation Characteristics. Vol. I - Theoretical Methods and Comparisons with Experiment. AFFDL-TR-76-41, Vol. I, May 1976.
8. Mendenhall, M. R. and Nielsen, J. N.: Effect of Symmetrical Vortex Shedding on the Longitudinal Aerodynamic Characteristics of Wing-Body-Tail Combinations. NASA CR-2473, Jan. 1975.
9. Bollay, w. A.: Nonlinear Wing Theory and Its Application to Rectangular Wings of Small Aspect Ratio. ZAMM, 19, 1939.
10. Nielsen, J. N.: Missile Aerodynamics. McGraw-Hill Book Co., 1960.
11. Carlson, H. W.: A Modification to Linearized Theory for Prediction of Pressure Loadings on Lifting Surfaces at High Supersonic Mach Numbers and Large Angles of Attack. NASA TP-1406, Feb. 1979.
12. Truitt, R. W.: Hypersonic Aerodynamics. Ronald Press Co., New York, 1959, p. 5.
13. Chenyi, G. G.: Introduction to Hypersonic Flow. Translated and Edited by R. F. Probstein, Academic Press, New York and London, 1961, p. 41.
14. Goodwin, F. K., Dillenius, M. F. E., and Mullen, J., Jr.: Prediction of Supersonic Store Separation Characteristics Including Fuselage and Stores of Noncircular Cross Section. Vol. I - Theoretical Methods and Comparisons with Experiment. AFWAL-TR-80-3032, Vol. I, Nov. 1980.
15. Nielsen, J. N. and Kuhn, G. D.: Final Report - Studies of Vorticity Effects by the Euler Equations with Emphasis on Supersonic Flow Fields. NEAR TR 310 (Contract N00014-82-C-0391), Nielsen Engineering \& Research, Inc., Oct. 1983.
16. Stallings, R. L., Jr. and Lamb, M.: Wing-Alone Aerodynamic Characteristics for High Angles of Attack at Supersonic Speeds. NASA TP-1889, July 1981.
17. Landrum, E. J.: Wind-Tunnel Pressure Data at Mach Numbers From 1.6 to 4.63 for a Series of Bodies of Revolution at
Angles of Attack from -40° to 60°. NASA TM X-3558, Oct. 1977 .

APPENDIX A

PROGRAM LRCDM2

TABLE OF CONTENTS

Page
Section No.
A. 1 INTRODUCTION A-1
A. 2 CONFIGURATION GEOMETRICAL CHARACTERISTICS A-2
A. 3 FLOW CONDITIONS A-4
A. 4 AUTOMATED STEPWISE CALCULATION PROCEDURE WITH DATA EXCHANGES A-5
A. 5 PROGRAM OPERATION A-13
A. 6 LIMITATIONS AND PRECAUTIONS A-15
A. 7 DESCRITPION OF INPUT A-20
A. 8 DESCRIPTION OF OUTPUT A-59
A. 9 SAMPLE CASE A-78
FIGURES A. 1 THROUGH A. 7

APPENDIX A
PROGRAM LRCDM2

A. 1 INTRODUCTION

The purpose of this appendix is to describe computer program LRCDM2 with emphasis on the information the user must supply and the general understanding of the program. In essence, program LRCDM2 computes pressure distributions at points on the surfaces of a complete supersonic configuration comprising a forward- (canard) and tail-finned section attached to an axisymmetric body. The analysis embodied in the computer program is based on supersonic paneling and line singularity methods coupled with vortex-tracking theory. Details of the theoretical methods are given in References l and 2, and the latest modifications and extensions are given in this report.

For a complete configuration, the program proceeds through an automated series of six steps to analyze the forebody and forward-finned section, the afterbody, and the tail-finned section. If the configuration consists of a body with a set of tail fins, only the first three steps are employed.

The use of LRCDM2 and optional afterbody vortex-shedding program BDYSHD (Appendix B) in the stepwise procedure is described in Section 2.3 of the main part of this report. An executive routine organizes this procedure and also manages the exchanges of data sets containing point coordinates, vortexinduced velocity components, component loads, etc. In this process, effects of forebody and forward-fin vortex wakes are included in the pressure distributions and loads. Effects of afterbody vortex shedding on the afterbody loads and tail-fin loads can be included by the optional engagement of program BDYSHD described in Appendix B. Detailed components loadings
and overall forces and moments are obtained from the calculated pressure distributions. On the fins, the Polhamus suction-tonormal force conversion is included in the fin force and moment calculations as described in Appendix C of this report.

In the following, descriptions are given of the types of geometry and flow conditions that can be treated by LRCDM2. The calculation procedure is listed in accordance with the automated stepwise procedure described in Section 2.3. Details of the internal data exchanges are specified. Program operation, including types of computer machines the program has actually been run on, is discussed. Known program limitations and precautions are listed. Input and output descriptions are keyed to specific steps of the stepwise procedure. Finally, a sample case is given including the use of optional afterbody vortex-shedding program BDYSHD.

The text in the main part and the appendices of this report refer to subroutine names used in connection with the procedures implemented in LRCDM2. The calling sequence of all the subroutines of program LRCDM2 is shown in Figure A.l. The source listings of the subroutines contain comment cards, following the subroutine name card, stating their purpose. Throughout most of the subroutines, additional comment cards point out the flow of calculations and/or operations performed in the particular subroutine.

A. 2 CONFIGURATION GEOMETRICAL CHARACTERISTICS

The bodies must have (or are assumed to have) circular cross sections. In general, the body is composed of a nose section with varying radius followed by a cylindrical section with constant radius. The nose section may have the following shapes (the choice is set by control index BCODE in namelist \$BODY, read in by subroutine BDYGEN as described in Section A.7):

BCODE	Forebody Shape	
0		Parabolic
1		Sears-Haack*
2	Tangent-ogive	
3	Ellipsoidal	
4	Conical	

If the body nose is not pointed and/or if the Mach number is high enough to cause the body-nose contour or a portion thereof to lie outside the Mach cone with its apex at the nose tip, subroutine BDYGEN will replace that forebody portion with a conical portion. The surface of this conical replacement is made to lie just inside the Mach cone so that the body solution can proceed.

The effects of the following fin geometrical and other characteristics can be accounted for:

- Up to four planar (flat) fins in a given finned section in planar, triform, cruciform, and low-profile layouts
- Control deflection angle
- Fin location on body contour and fin dihedral (or cant) angle arbitrary
- Leading-edge shape: Straight line which may be swept or it can be composed of straight line elements with different sweeps
- Trailing-edge shape: Straight line which may be swept or it can be composed of straight line elements with different sweeps
- Thickness: Accounted for by specifying streamwise slopes

[^2]- Taper: Uniform or broken
- Mean camber surface: Planar
- Side edges: Straight but not necessarily streamwise

In the stepwise procedure of Section 2.3, program LRCDM2 treats one finned section at a time. If the configuration of interest has only a tail-finned section (tail finner), steps 1 through 3 are used to analyze the body and tail fins.

A. 3 FLOW CONDITIONS

The executive routine of program LRCDM2 reads in a series of included angles of attack, α_{c}, and angles of roll, ϕ, for one Mach number*. The approximate ranges of applicability of the present version of LRCDM2 are given in the following table.

Ranges of Flow Parameters
 Symbol

Parameter
Mach number
Angle of attack
M_{∞}

$$
1.05-6.0
$$

$0-25^{\circ}$
$0-360^{\circ}$
$\pm 20^{\circ}$

The high Mach number capability is due to the incorporation of combined nonlinear/linear pressure coefficient calculation methods described in Section 2.6 of this report. However, these methods are preliminary in nature in their present form. The linear theory Bernoulli pressure method is valid up to $M_{\infty}=2.5$. For configurations with long afterbodies (length of body between forward fins and tail fins in excess of 10 calibers) effects of afterbody vortex shedding become
*If program BDYSHD for optional afterbody vortex-shedding modeling is engaged, calculations are performed for one α_{c} and one ϕ only.
important for included angles of attack in excess of 10°. The afterbody vortex shedding companion program BDYSHD (Appendix B) can be optionally run in conjunction with LRCDM2. It is applicable up to the onset of supercritical crossflow Mach number and/or unsteady vortex formation.

A. 4 AUTOMATED STEPWISE CALCULATION PROCEDURE WITH DATA EXCHANGES

The present version of program LRCDM2 contains routines for computing pressures and loads acting on the forebody, the fins, and the portion of body of either the forward- or tail-finned sections, and on the afterbody in the absence of afterbody shed vortices. In addition, program LRCDM2 contains routines called collectively module VPATH2 for calculating vortex paths along the configuration and for determining vortex-induced effects at points on the components. The calling sequence of all subroutines of program LRCDM2 is shown in Figure A.l. A cross reference map of all the common blocks is given in Figure A. 2 and the subroutines themselves are cross-referenced in Figure A.3. References will be made later to the fixed or rolled body coordinate system $\left(x_{B}, Y_{B}, z_{B}\right)$ shown in Figure $A .4$.

Optionally, program LRCDM2 can call separate program BDYSHD (Appendix B) by means of job control and program organized data exchanges to model the effects of afterbody vorticity. A complete configuration is treated as follows by multiple applications of program LRCDM2 and its module VPATH2 as managed by the executive routine. The optional use of program BDYSHD is also described.

The following sketch depicts the stepwise procedure superimposed on a typical configuration with and without the application of program BDYSHD. The scheme without the use of the latter program is indicated on the side of the configuration. The optional sequence shown at the top includes program

$$
A-5
$$

BDYSHD to treat the afterbody. Note that steps 1, 3, 4, and 6 involve the body and fin routines of program LRCDM2, and steps 2 and 5 are performed by the routines of vortextracking module VPATH2. Step 3 a involves the afterbody vortex-shedding program BDYSHD. If the configuration of interest is a tail finner, steps 1 through 3 only are employed.

The executive routine of program LRCDM2 reads in the included angles of attack and angles of roll. Input associated with the forward fins, tail fins, and body are transferred to and saved in a data set on TAPE2. The executive routine then proceeds to manage the stepwise procedure as follows. References are made to certain control indices described later in the input description, Section A.7.

Step 1

Consider the forward fins mounted on the body. The body is modeled from its nose to the base by line singularities along the body longitudinal axis. Lifting-surface routine DEMON2 is called by the executive routine with index NCPOUT in namelist \$INPUT set equal to one. This step first generates the coordinates of the control points associated with the constant u-velocity panels distributed on the forward fins and the body-interference shell. The cylindrical interference shell has constant cross section and covers the body from the leading edge to the trailing edge of the forwardfinned section. The number of control points and the sets of coordinates are stored in a data set on TAPE4. There are NWBP sets of coordinates where NWBP is the total number of control points on the forward fins and interference shell.

The program proceeds to compute the pressure distributions on the body up to the forward-finned section. If the included angle of attack is sufficiently high and the forebody is long enough, the effects of forebody vorticity will be accounted for in the body pressures*. The forces and moments acting on the forebody portion are obtained from integrating the pressure distributions. They are expressed in the unrolled and rolled body coordinate systems shown later in the output description.

The forebody force and moment coefficients computed at this stage serve as the first values in the summing procedure for overall force and moment coefficients acting on the complete configuration. This operation is performed by subroutine TOLDS.

The strengths of the constant u-velocity panels and subsequently the pressure distributions and loadings on the forward fins are calculated in this step without the effects

[^3]of forebody vorticity. These fin loadings are not included in the summing procedure. At the end of this step, the strengths and positions of the forebody vortices in the crossflow plane at the leading edge (beginning) of the forwardfinned section are stored in a data set on TAPE8.

Step 2

Vortex path module VPATH2 is now employed by the executive routine to track the nose vortices over the forward-finned section. In the input for this step, indices NCPIN and NVLOUT should both be set equal to one. The former causes the data set on TAPE4 containing the control points of the forward fins and interference shell to be entered, and the latter generates a velocity data set which will be described shortly. The input to this step also includes the strengths and positions of the forebody vortices from the data set on TAPE8 generated in step 1 . These vortices are tracked back to the trailing edge (end) of the forward-finned section. It is possible to make the vortices lie parallel to the body centerline as described in the input section (recommended procedure, refer to Limitations and Precautions Section A.6).

After the vortex paths have been calculated, the perturbation velocities induced by the forebody vortices are determined at the control points of the forward fins and interference shell. These velocity components are stored on a data set on TAPE7 when index NVLOUT is set equal to one, as mentioned earlier. The vortex-induced velocities are calculated as if the forward fins are not present in accordance with the procedure described in Section C. 4 of Appendix C.

Step 3

Subroutine DEMON2 is called again by the executive routine which sets NVLIN=1 and NCPOUT=0 in namelist \$INPUT. The value of the first index instructs the program to read in
velocity components induced by the forebody vortices at the control points on the forward fins and the interference shell. This information was generated in step 2 by module VPATH 2 and stored in a data set on TAPE7. The strengths of the constant u-velocity panels are then recalculated as well as the pressure distributions, forces and moments on the forward fins and on the body covered by the interference shell. The force and moment coefficients acting on the forward-finned section are added to those calculated for the forebody in step 1.

At this stage, the output also contains specifications for the concentrated vortices associated with the fin edges. Trailing-edge vortex strengths and positions calculated from the span load distribution using Bernoulli-type loading pressures and the characteristics of vortices from the fin leading- and/or side-edge calculated from the linear pressure loading are stored in a data set on TAPE8 and will be used later in either step 3 a or step 5.

Step 3a (Optional)

When index NBSHED in namelist \$INPUT is set equal to 1 , the force and moment coefficients summed over the forebody and forward-finned section are printed in the output of program LRCDM2 at the end of step 3 and stored on TAPE9. Without this optional step, TAPE9 is used exclusively for storage of the aerodynamic influence coefficient array for the forward fins and interference shell.

Program BDYSHD (Appendix B) is called by the job control commands and besides reading its own input, the vortex data stored in TAPE8 is read in. This vortex data was generated by LRCDM2 and includes forebody and fin-edge vortex strengths and locations at the trailing-edge of the forward-finned section. These vortices form the initial vortex field for BDYSHD.

Under the influence of the upstream vortices, program BDYSHD computes pressure distributions at many axial stations from the forward-finned section up to the tail section. The Stratford criteria is applied to determine the location and strengths of additional vortices shed by the afterbody. In this process, many vortices are generated and form two vortex clouds. Incremental afterbody forces and moments are also computed.

At the end of the afterbody (corresponding to the leading edge of the tail-finned section), the vortex information on TAPE8 is expanded by the addition of afterbody vortices. If the number of afterbody vortices exceeds a number NVTRNS specified in the input for BDYSHD, the afterbody vortices are represented by two equivalent vortices at the two centroid locations of the afterbody vortex clouds. One will be in the counterclockwise (positive) sense and the other will be in the clockwise (negative) sense. The vortex data associated with the forebody and forward fins are stored separately from the afterbody vorticity on TAPE8. At the end of step 3a, the force and moment data on TAPE9 are updated and contain the sums of the force and moment coefficients calculated for the forebody, the forward-finned section (steps 1 through 3) and the afterbody.

Step 4

If step 3a was not exercised, the executive routine of program LRCDM2 calls subroutine DEMON2 to treat the tail-finned section as well as the afterbody. The body is flow modeled again from the nose to its base. In this step, effects of external vortices are not accounted for. Indices NCPOUT=1, NVLIN=0, and ITAIL=1 in namelist \$INPUT for this step. In addition, quantity XSTART must be set equal to the axial location of the trailing edge of the forward-finned section. The first index causes routine DEMON 2 to generate a data set, saved on TAPE4, which contains the number and sets of
coordinates associated with control points on the tail fins and interference shell. Additionally, this data set contains the sets of coordinates specifying points on the afterbody surface between the forward fins and tail section at which pressures will be calculated. The tail-fin loadings calculated in this step do not include effects of forebody and canardfin vorticity. No contributions are made to the summing procedure.

For the case with step $3 a$, program LRCDM2 is called by the job-control stream and reinitializes the force and moment coefficients in subroutine TOLDS by reading in the data on TAPE9. Subroutine DEMON2 reads input stored on TAPE2 at the start of the run. In the tail-section portion of this data, index ITAIL=l. In this case, only the calculated control point coordinates on the tail fins and interference shell are stored on TAPE4. Loadings are calculated on the tail-finned section excluding effects of any upstream vorticity. No contributions are made to the overall forces and moments.

Step 5

If step 3 a was not performed, the executive routine calls VAPTH2 for the purpose of tracking the forebody and forward fin-edge vortices along the afterbody and through the tail-finned section. It is recommended to select VPATH2 input such that the vortex paths are made to lie parallel to the body centerline over the length of the tail section (refer to Section A.7). The strengths and positions of the vortices at the end of the forward-finned section are read in automatically from the data set on TAPE8 generated in step 3. Indices NCPIN=1 and NVLOUT=1 for this step. The value given to the first index causes the program to read in the data set on TAPE4 containing control and body pressure point coordinates generated in the previous step. Velocity components induced by the external vortices are calculated at the points given
in this data set. The value given to the second index results in the generation of a data set stored on TAPE7 containing the vortex-induced velocity components.

If program BDYSHD (step 3a) was used to treat the afterbody, module VPATH2 tracks all vortices (including afterbody vortices) through the tail section only. Again, it is recommended to arrange the input to make the vortex paths be parallel to the body centerline. Vortex induced velocities are computed at the control points of the fins and interference shell of the tail section and stored on TAPE7. In this process, the velocity components induced by the external vortices are calculated with the tail fins not present in accordance with the description given in Section C. 4 of Appendix C.

Step 6

Finally, the executive routine calls subroutine DEMON2 to compute loads acting on the tail fins including effects of upstream vortices. Indices NCPOUT and NVLIN are set equal to 0 and 1 , respectively, by the executive routine, and $I T A I L=1$ in namelist \$INPUT for the tail section stored on TAPE2. Therefore, subroutine DEMON2 reads in the data set stored on TAPE7 containing vortex effects calculated in the previous step.

If step 3a was not used, pressure distributions and loads acting on the afterbody are calculated by routine BDYPR of program LRCDM2. They will include effects of forebody and forward-fin vorticity.

The loads acting on the tail fins and interference shell are added to the loads acting on the afterbody, forwardfinned section and forebody. The final sums represent the forces and moments acting on the complete configuration.

For the case with step 3a, the forces and moments calculated for the tail fins and interference shell in step 6 are added to the summed quantities read in from TAPE9 and transferred to subroutine TOLDS at the beginning of step 4. The final sums represent the loadings acting on the complete configuration. The loadings consist of normal force and side force coefficients, pitching moment, yawing moment, and rolling moment coefficients. The axial force coefficient due to the forebody only is also calculated. The loads are expressed in the rolled (or fixed) body coordinate system (x_{B}, y_{B}, z_{B}) and in the unrolled body coordinate system (x_{B}, y, z) shown in the output description.

A. 5 PROGRAM OPERATION

Program LRCDM2 is written in FORTRAN IV language. The present version has been run on the following computer machines.

> CDC CYBER 173
> CDC CYBER 175
> CDC CYBER 176
> CDC 760 CYBER
> CDC 7600
> VAX $11 / 780$

There is no overlay structure. Core requirement is about 270 K octal words to load with array FVN dimensioned 24000 in blank COMMON of subroutine DEMON2 (also refer to the next section for possibility of adjusting the FVN dimension).

In addition to the standard input and output tapes (TAPE5=INPUT, TAPE6=OUTPUT), the program employs the following temporary storage devices.

TAPE2: input for steps 1 through 6 for a complete configuration

TAPE4: control point coordinates
TAPE7: vortex induced velocity components
TAPE8: body and fin vortex strengths and positions
TAPE9: aerodynamic influence coefficients for forwardfinned section, or sums of force and moment coefficients acting on forebody and forwardfinned section if program BDYSHD is used.

TAPE10: aerodynamic influence coefficients for tailfinned section

The aerodynamic influence coefficient data stored on TAPE9 and TAPEIO for a complete configuration are used repeatedly during calculations for multiple included angles of attack and/or roll.

Execution time is influenced by several factors. The primary influence is the number of constant u-velocity panels laid out on the lifting surfaces and interference shells of the forward- and tail-finned sections. Execution time in the vortex-tracking process is related to the length over which the vortex paths are to be calculated, the number of vortices, and the permissible error E 5 allowed in these calculations. In addition, the number of included angles of attack and/or roll angle affects running time. Note that in the multiple angles case, running time is sharply reduced by saving the triangulated form of the aerodynamic influence coefficient matrix as presently arranged by LRCDM2 (refer to Section 2.5 of this report).

A representative execution time is provided by the sample case described at the end of this appendix. The case involves a complete configuration with canard control.

The angle of attack is sufficiently high to form afterbody vortices which influence the overall forces and moments as described in Section 3.2.2 of this report. With a reasonable number of panels and including the engagement of companion program BDYSHD, total running time on a CDC 7600 is about 65 seconds for one angle of attack and one Mach number.

A. 6 LIMITATIONS AND PRECAUTIONS

Program LRCDM2 makes a number of assumptions about the missile configuration and flow field. Certain options have not been fully tested. In addition, there are input and program calculated variables that have maximum values which should not be exceeded. These matters are described below. References are made to namelists and variables described in the input descriptions, Section A.7.

1. The optional nonlinear/linear pressure coefficient methods based on shock-expansion and Newtonian theories have been tested only on wings and on an ogive cylinder. At the time of this writing, complete configurations have not been treated with the optional pressure coefficient calculation methods.
2. The Bernoulli pressure coefficient distributions calculated by subroutine BDYPR on the forebody and afterbody under the influence of external vortices suffer from a deficiency described in Section C. 4 of Appendix C. In the aresent method, the external vortices only induce lateral velocity components and no axial velocity component. This problem does not exist in the afterbody loads calculated by optional program BDYSHD under the influence of shed and other external vortices. In the absence of afterbody shed vortices, subroutine BDYPR of
program LRCDM2 gives approximately the same results as program BDYSHD. Therefore, the deficiency mainly affects the loads on the forebody where the body nose vortices run close to the surface.
3. The body cross section inscribed by the interference shells associated with the forward-finned and tail-finned sections is assumed to have constant cross-sectional area. This shell is placed on the body from the leading edge to the trailing edge of each finned section. If the forward fins are attached to the nose of the configuration, the shell should match the layout radius ($R A=R B$ specified in namelist \$INPUT) as shown in the sketch below. The exposed fin semispan $b / 2$, also specified in \$INPUT, is indicated. In a case such as this

one, some care is required with regard to the forebody vortices if they are formed. Their lateral positions at the leading edge of the finned section must lie outside the radius of the interference shell. In this case, it may be better to alter the forebody contour so that the tangency point lies ahead or coincides with the axial location of the leading edge. An example of a modified contour is indicated by the curved dashed line.
4. The vortex tracking module VPATH2 cannot handle expanding or contracting body cross sections. Therefore, the body must be constant in radius over the $f i n$ sections and the afterbody.
5. In the specification of the number of constant u-velocity panels to be distributed on the forward or on the tail fins and respective interference shells in namelist \$INPUT, the following limits must be kept in mind. For all fins and the interference shell, a maximum of 150 panels are available for either the forward or tail section. In the spanwise direction, the maximum number of panels is 19 for a fin. The number of panels on one interference shell must not exceed 100 .

In the present version of program LRCDM2 the total number of panels on the fins and interference shell for a given finned section is set at 150 with the dimension of array FVN in blank COMMON set at 24,000 in subroutine DEMON2. Depending on available core storage, this dimension can be increased to a maximum of 62,000. The corresponding total number of panels is then 250. In namelist $\$ B O D Y$, the number of line sources/sinks and the number of line doublets (both specified by NXBODY) must not exceed 100.
6. The program has a symmetry option that considerably reduces the execution time for cases in which the flow field is symmetric relative to the configuration's vertical plane of symmetry. In the program, this situation exists only when the angle of roll, ϕ, is exactly zero and if the fins are undeflected*. Necessary input requirements to select this option are described in Section A.7. When this option is selected for a cruciform fin layout, loads are calculated on the right-hand side forward and tail fins only. Loads on the left fins are set equal to those on the right symmetric fins.

It is necessary to impose a small but finite angle of roll ($\phi=0.001^{\circ}$) when treating an asymmetric case such as the following. Consider a cruciform canard-body-cruciform-tail

[^4]configuration at zero sideslip but with the forward fins deflected asymmetrically. When calculating loads on the tail fins it is necessary to include and panel all the fins even though the free-stream velocity vector lies in the vertical plane of symmetry of the configuration. This is because the asymmetric deflection of the forward fins produces an asymmetric flow field at the tail section giving rise to loads on all four tail fins.
7. The number of stations at which vortex coordinates are printed (index NIP in input for steps 2 and 5) cannot exceed 50.
8. A maximum magnitude is set by the program for the perturbation velocities induced by external vortices at the control points in the flow tangency condition and pressure calculations. Since these velocities are based on potential vortex theory, their values could assume large magnitudes if the vortices run close to the fins or body surface and cause undue influence. Consequently, their magnitude is limited to $0.35 \mathrm{~V}_{\infty}$. This value can be overridden by setting variable VRTMAX in namelist \$INPUT and in the input to VPATH2 equal to the desired value.
9. Accuracy in the vortex trajectory calculation is controlled through a variable, E5, which specifies the permissible error in these calculations. Some care must be exercised in the choice of a value for $E 5$. If its value is much smaller than 10^{-4}, computation time may become unduly long.

Subroutine DASCRU will reduce automatically the initial integration interval in attempting to track the vortex paths to the accuracy specified by the value of E 5 . The initial integration interval (distance between first two axial stations XIP) can be reduced by as much as a factor of 100 in order to provide results of the accuracy desired. If, after
reducing the integration interval by 100 , a solution to the specified accuracy is still not obtained by DASCRU, the program will stop and register STOP40. A faulty crossflow plane flow field can cause this problem. For example, specifying an initial vortex field with coordinates inside the body contour will definitely cause problems.
10. Vortex trajectory calculations may suffer from slight numerical errors when the body length is long. These are suspected to be caused by errors introduced by the integration scheme in subroutine DASCRU. This behavior can be observed when chasing a set of vortices, initially located symmetrically relative to the free-stream vector in the crossflow plane, along an axisymmetric body of considerable length (in excess of 25 body radii).
11. A further limitation occurs when a vortex comes very close to the plane of a fin. Module VPATH2 either will tend to move the vortex away from the lifting surface, or it may move it along the contour in an unrealistic fashion. The latter constitutes a limit to the theory. In reality, a vortex is made up of distributed vorticity with a core in which the lateral velocity component goes to zero towards the core center. Such a vortex structure passes right over (and/or under) the lifting surface in question. In a case such as this, it is recommended to make the vortex paths lie parallel to the body centerline as described in the input for module VPATH2 in steps 2 and 5.
12. Care must be taken with the use of control indices NOUT and NPR. A very large amount of diagnostic output is generated when these indices are set equal to one. This output should only be used for debugging purposes employing a minimum number of constant u-velocity panels such as two per fin and four on the circumference of the body interference shell.

On the other hand, setting output control index MINPRN nonzero results in minimum print containing only the input and the overall force and moment coefficients.
13. Subroutine BDYPR computes a number JCPT equal to the number of pressure points defined on the forebody in step 1 or on the afterbody in step 4. The number is set by NBDCR in \$INPUT and the number of body rings calculated by the program. The number of control points (or constant u-velocity panels) on the fins and interference shell in a given finned section is NWBP. The sum of JCPT and NWBP must not exceed 500. The program will fail to run if the sum exceeds 500. The easiest remedy is to reduce the number of body singularities NXBODY in namelist \$BODY.
14. If a portion of the forebody contour lies outside the Mach cone with its vertex at the nose tip, subroutine BDYGEN will change that contour portion to a conical contour lying just inside the Mach cone. In this way, the body solution will proceed and the pressure distribution on the first body ring will be calculated on the conical portion instead of the actual body contour. The body solution cannot proceed if the Mach cone from the nose tip lies inside the entire length of the body. In such a case, a message to that effect will appear in the output.

A. 7 DESCRIPTION OF INPUT

This section describes the input required by program LRCDM2 for treating the forebody and forward-finned section (steps 1 through 3) and for treating the afterbody and tailfinned section (steps 4 through 6). The same variable names are used for steps 1 and 4 and for steps 2 and 5. The values required in steps 4 and 5 are those redevant to the afterbody and tail section. A control index and optional input only are required for step 3. Optional input and the END card constitute the input for step 6. The stepwise
procedure is described earlier in Section A. 4 of this appendix and in Section 2.3 in the main text of this report.

The steps are shown again in the above sketch. If companion program BDYSHD is employed as an option in step 3a, the input for steps 1 through 3 and the input for steps 4 through 6 is altered slightly. Input for BDYSHD is described in Appendix B.

For clarity, the input required for all runs and the input requirements for each step are described. All input variables are listed at the end of this section in their
order of appearance for the first three steps. Most of the variable names are used again for the remaining steps. To run a complete configuration the inputs for each step are stacked in order and read in together.

A sample input is given in Figure A. 5 in connection with the sample case which employs program BDYSHD. The details of this sample case are described later. It is concerned with a forward-control configuration with a cruciform set of forward fins and cruciform tail fins mounted on a slender axisymmetric body.

Description of First Cards Required for All Single

 Runs, Multiple Runs or Restart Runs
Item 1

This card is entered regardless of the step at which calculations start. It specifies the starting (NSTART) and ending (NSTOP) step desired. There are two possible choices for NSTART:

> NSTART=l; calculations begin with step l
> NSTART=4; calculations begin with step 4

In particular, the latter choice is employed (with $N S T O P=3$) when companion program BDYSHD is used to treat the afterbody in step 3 a thereby interrupting the LRCDM2 run at the end of step 3 and restarting LRCDM2 at step 4.

Cases with one finned section at the body base (tail finner) are treated with NSTART=1 and NSTOP=3.

The value of NSTOP should be given a value of 6 to ensure that the forward- and tail-finned sections of a complete configuration are examined completely. Calculations cease after the forward-finned section is examined when NSTOP=3. If NSTOP is given a value of 6 , calculations stop after the tail-finned section is examined.

Item 2

This card contains the number of included angles of attack for multiple calculations.

Item 3

These cards contain the values of included angles of attack for which calculations are to be done.

Itefn 4
The number of angles of roll for each included angle of attack for which calculations are to be done are specified on this card.

Item 5

These cards contain the values of angles of roll for each included angle of attack for which calculations are to be done.

The included angle of attack, ALFS, is the angle α_{c} between the free-stream velocity vector and the body centerline (x_{B}-axis in Fig. A.4). Angle of roll, FEE, is also indicated by ϕ in the sketch below. The program computes pitch and sideslip angles in accordance with the pitch-roll transformation mentioned in Section 1-4 of Reference 10.

Description of Input Requirements for Step 1
Body nose with vortex effects and forward-finned section without vortex effects

Item 1 (step 1)
This first card serves as identification and may contain any alphanumeric information desired. This information is printed on the second page of the output.

Item 2 (step 1)

The second and following cards form the namelist \$INPUT which specifies the geometrical parameters of the fins and interference shell associated with the forward-finned section. These parameters include the fin leading-edge and trailingedge sweeps, semispan and root chord. For a planar or cruciform fin alone, the root chord is the wing centerline or the cruciform fin junction. In the case of a fin-body combination, the root chord is the straight line formed by the junction of the fin and the body. This line must be parallel to the body centerline. The semispan is measured from the root chord. The root chord leading edge is at the same axial station for all fins.

This namelist also contains the fin-deflection angles and the number of chordwise and spanwise constant u-velocity panels for each fin. The spanwise number, MSWR etc., may differ from one fin to another but the chordwise number NCW is the same for all. Similar information is specified for the layout of planar source panels*. The number of body interference panels on the circumference, NBDCR, is also included in this namelist. The specification of the latter also determines

[^5]whether or not a body is present. The number of body interference panels in the axial direction is specified by NCWB. The total number of constant u-velocity panels, NWBP, for one finned section is given by the relation
$$
\text { NWBP }=[N C W(M S W R+M S W L+M S W U+M S W D)+N C W B(N B D C R)]
$$
and cannot exceed 150 unless the dimension of array FVN in blank COMMON is increased in subroutine DEMON2. The dimension equals the square of NWBP.

The body cross section must be circular with constant radius where the fins are attached. The value of the body cross-sectional radius must be given to both $R A$ and $R B$. Furthermore, the value of ERATIO must be set equal to one. The body interference length, BIL, is the body length spanned by the fins. Fin interference loading is calculated over this length. Length BIL is taken equal to the fin root chord CRP.

Control index NDRAG must equal 1 . This result in the calculation of in-plane forces for the suction distributions and consequently the fin normal-force augmentations and fin-edge vorticity characteristics. Index NBSHED controls the optional use of companion program BDYSHD for handling afterbody vortex shedding.

In addition, more control indices including a minimum output option set by MINPRN, free-stream Mach number, and reference quantities SREF and REFL are read in. Breaks in leading-edge and/or trailing-edge sweeps are also allowed if the configuration is a wing or cruciform wing alone at zero sideslip or if the configuration consists of a fin-body combination. This option is governed by control index LVSWP. Angles SWLEP, SWTEP, SWLEV, and SWTEV need not be specified if LVSWP $\neq 0$.

Control indices N2DPRB and N2DPRF activate the optional nonlinear pressure coefficient calculation methods. Indices NCPOUT, NVLIN, and ITAIL play an important part in the calculation
procedure built into the program as described earlier in this appendix and inSection 2.3 of this report. The axial location of the moment center, x_{M}, must be specified in the body coordinate system ($\mathrm{X}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}, \mathrm{z}_{\mathrm{B}}$) with origin at the nose as shown in Figure A. 4.

Angles PHIDIH ($=\phi_{f}$) and THETIT ($=\theta$) apply to cases involving four interdigitated or low-profile fin layouts with a vertical plane of symmetry. For cruciform or triform layouts, the default values are to be used. In the latter case, the fin root location angle and fin cant angles must be specified. Angles THETR, THETL, etc. locate the fin root chords on the body contour. Programmed default values correspond to planar or cruciform fin layouts. In addition, angles PHIFR, PHIFL, etc. correspond to the fin dihedral or cant angles. Default values correspond to planar or cruciform cases. For an interdigitated or lowprofile fin layout, nonzero input angles PHIDIH and THETIT automatically determine the fin root location and fin can angles.

Special notes are given at the beginning and at the end of the namelist \$INPUT description with regard to input setups for symmetric flow conditions and for cases with fin deflections.

Item 3 (step 1)
This item pertains only to a wing alone or cruciform wing alone at zero sideslip. This optional input is required when there are breaks in the wing sweep or if the constant u-velocity panel side edges are to be laid out with user-determined unequal stepwise spacings. Variable YR is the distance from the root chord to the outboard panels side edges. Therefore, the first value for Y_{R} is zero. The last value for $Y R$ must equal wing semispan, B2, specified in the namelist \$INPUT. In effect, this specification positions the panel outboard side edges on the right wing. The sweep angles are positive for wings with sweptback leading and trailing edges.

In the following Items 4, 5, 6, and 7, references are made to right, left, upper, and lower fins of a planar or cruciform fin layout. A sketch shown later in the itemized list of input variables relates the fin designations for the cruciform case to the fin designations for an arbitrary (interdigitated or low profile) fin layout.

Item 4 (step 1)

The optional input of this item is associated with a fin-body combination with breaks in leading-edge and/or trailing-edge sweeps. Also, this input is used for the configuration if the constant u-veiocity panel side edges are to be laid out with user-determined unequal spacings. Variable YRT is the distance from the fin root chord to the outboard constant u-velocity panel edges on the right fin. The first value should equal 0.0 and the last value for YRT equals the exposed fin semispan, B2; the latter is specified in the namelist \$INPUT. The sweep angles are positive for right fins with sweptback leading and trailing edges.

Item 5 (step 1)
This optional input accompanies Item 4 and is associated with the left fin. Variable YLT is the distance from the wing root chord to the outboard constant u-velocity panel edges on the left fin. The first value should equal 0.0 and the last value for YLT equals the negative exposed fin semispan, -B2. The sweep angles are negative for left fins with sweptback leading and trailing edges.

Item 6 (step 1)
The information in this optional item accompanies Items 4 and 5 if the configurationis a cruciform fin-body combination. Again, this input should only be used if there are breaks in the fin sweep or if the panel side edges are
to be laid out with user-determined unequal spacings. Variable ZUT is the distance from the fin root chord to the outboard constant u-velocity panel edges on the upper fin. The first value should equal 0.0 and the last equals the exposed fin semispan, B2V. The latter is specified in namelist \$INPUT. The sweep angles are positive for upper fins with sweptback leading and trailing edges.

Item 7 (step 1)
This optional information is the last of the four inputs associated with a cruciform fin-body combination if there are breaks in sweep or if the constant u-velocity panel side edges are to be laid out with user determined spacings; see Items 4 through 6. Variable ZDT is the distance from the fin root chord to the outboard constant u-velocity panel edges on the lower fin. The first value should equal 0.0 and the last value for $Z D T$ must equal $-B 2 V$. The sweep angles are negative for lower fins with sweptback leading and trailing edges.

Item 8 (step 1)

This item is concerned with the specification of the layout and strengths of the planar source panels employed to model thickness of the lifting surfaces. This item is required only when NTDAT in Item 2 of step 1 (\$INPUT) is set equal to 1 . Basically, the planar source panels are laid out in the same manner used to layout the constant u-velocity panels. However, in this case the distance out to the outboard panel edge is now measured from the body centerline and not the root chord of the fin under consideration. Presently, the fin thickness option can only be selected for cases with planar or cruciform fin layouts. Breaks in sweep are handled by control index LVSWT in the same way control index LVSWP handles breaks in sweep in the layout of constant u-velocity panels.

The strengths of the planar source panels are related directly to the streamwise slopes which are specified in Item 8 c of this step. Note that quantity THET is the tangent of the streamwise thickness envelope angle, THET=tanθ_{s}. For fins without or with breaks in sweep or user-specified distances to the outboard edges, the thickness slopes must be specified for all fins unless the flow conditions give rise to the symmetric (right to left) case. In the latter case, only the right horizontal fin of a planar or cruciform fin layout needs to be modeled for thickness. The present version of LRCDM2 cannot handle thickness effects for arbitrary fin layouts.

Item 9 (step 1)

The input cards for this item form the namelist \$BODY which contains information for the body with circular cross section of the configuration under consideration. If the integer NBDCR in namelist \$INPUT under Item 2 for this step is specified to be nonzero, a body must be present. The information in this input includes specification of body geometry parameters and it is read in by subroutine BDYGEN. The length of the nose, LNOSE, determines the body length over which the radius is changing as a function of the body axial coordinate. The actual nose configuration is governed by control index, BCODE, which selects preprogrammed forebody shapes described earlier in connection with geometrical characteristics, Section A. 2 of this appendix.

Normally the body length, LBODY, should at least equal the axial distance from the body nose to the trailing edges of the finned section under consideration. If the trailing edges are swept back, length LBODY should be taken to include the trailing edge of the tip chords or side edges of the fins at hand. For a complete configuration with two finned sections, quantity $L B O D Y$ is set equal to the entire body length.

The minimum number of body modeling singularities NXBODY can be determined as follows. Let the density (line sources and line doublets/unit body length) be determined by the number of constant u-velocity panels in the chordwise direction on the fins divided by the root chord (or length of fin-body junction). Then, number NXBODY equals the density times body length. Number NXBODY should never exceed 100.

Item 10 (step 1)
This input is concerned with the optional strip theory approach for calculating shock-expansion and Newtonian pressure coefficients along longitudinal strips on the surface of the body. Refer to Section 2.6 .2 of this report. Each strip is composed of segments (100 maximum) making angle THETA relative to the body centerline. Near the nose, these angles are nonzero and positive. Segment slope angles need to be specified for one strip only since the body is axisymmetric.

Item 11 (step 1)
This optional input is required only when variable NVRTX, specified in namelist \$INPUT, is nonzero. In fact, NVRTX is the number of external, two-dimensional vortices whose influences are to be included in the pressure and loading calculations. Each vortex is assumed to be infinite in length and to be parallel to the body centerline. Therefore, with each vortex there is associated a nondimensional strength, GAMMA, and nondimensional crossflow plane coordinates, YVRTX,ZVRTX, given in the body or wing coordinate system shown in Figure A.4. These quantities are input in subroutine VRTVEL. Note: This optional external vortex input is used for research purposes only. Normally, program LRCDM2 employs module VPATH2 to account for the presence of external vortices.

This new input is concerned with the optional strip theory approach for calculating shock-expansion and Newtonian pressure coefficients along longitudinal strips on the upper and lower surfaces of the fins. Refer to Section 2.6 .2 of this report. The number of strips on the upper and lower exposed fin surfaces is equal to the number of constant u-velocity panels in the spanwise direction of each fin (MSWR, MSWL, etc. in namelist \$INPUT). Each strip has 100 segments maximum. Angles THETA are the angles of the segments in the upper surface strips measured relative to the fin mean plane. Angles THETAB are the angles of the lower surface strips measured relative to the mean plane. Near the leading edge both angles are nonzero and positive. Near the trailing edge, these angles are usually negative. The segment-angle data is to be specified for each fin of a finned section unless the case at hand is symmetric, i.e., zero roll and cruciform or planar fins are under consideration.

Description of Input Requirements for Step 2

Track vortices past forward-finned section

Item 1 (step 2)
The first card serves as identification and may contain any alphanumeric information desired. This information is printed on the first page of the output.

Item 2 (step 2)
The second card contains indices concerning the body and fin geometry, control indices governing the input of controlpoint coordinates, the generation of velocity components, the amount of output, and the option to print plots for debugging purposes in the program generated output.

Item 3 (step 2)
This card contains the end points for each body section for which coefficients describing a meridian will be given (Item 4). Usually, only one end point is required; that is, one body section with constant radius cylindrical cross section will be considered.

Item 4 (step 2)

For each body section, a set of coefficients (7 maximum) are specified on this card. They are members of the polynomial shown below and programmed in subroutine SHAPE.

$$
r=c_{1}+c_{7} \sqrt{c_{2} x^{2}+c_{3} x+c_{4}}+c_{5} x+c_{6} x
$$

Here C_{1} through C_{7} are the coefficients, and r is the local body radius. In the present program, bodies of constant radius only are considered. Consequently, only coefficient C_{1} is nonzero. It equals the radius ($R A=R B$ specified in \$INPUT, Item 2 of step l) of the cylindrical cross section body.

Item 5 (step 2)
The coordinates of the fin planform corner points are read in if a set of cruciform or planar fins is present. Only one fin needs to be described. The XF and YF coordinates are shown in the example shown below; XF is measured from the body nose and YF is measured from the body centerline.

In the application of vortex tracking module VPATH2 to a finned section (with constant radius body), the fin layouts are limited to planar (for zero angle of roll) and cruciform. In addition, the fin planform is limited to delta or cropped delta shapes. Swept-back trailing edges cannot be treated.

Note: The axial coordinate of the trailing edge of the root chord must be slightly larger than the axial coordinate of the trailing edge of the side edge. That is, the trailing edge must be swept forward slightly.

If the finned section has an arbitrary fin layout and/or fin planform, the vortices cannot be tracked through the section. In such a case, the paths of the vortices should be taken parallel to the body centerline by proper selection of the variables in Items 7 and 8 for this step.

Item 6 (step 2)

This card contains the permissible error, E5, used in a criterion on the integration scheme programmed in subroutine DASCRU. This card also reads in the upper bound, VRTMAX, imposed on the magnitude of the external vortex-induced velocity components.

Item 7 (step 2)

Quantity NIP is the number of axial stations over the length of the configuration along which the vortices are tracked. Vortex positions will be printed out at these stations. Module VPATH2 actually determines the axial positions of these stations. In addition, the vortex lateral coordinates computed at these stations are used for
calculating vortex-induced effects at body and fin control points.

Item 8 (step 2)
The beginning (XBEGIN) and ending (XEND) axial locations of the length of configuration along which the vortices are to be tracked are listed on this card. These distances are measured from the body nose. In step 2 , it is possible to "freeze" the paths of the forebody vortices through the forward-finned section in a direction parallel to the body centerline (recommended procedure). This is accomplished by setting NIP=l in Item 7 and setting XBEGIN=XEND=leading edge of forward-finned section (XWLE in \$INPUT, Item 2 for step 1).

Item 9 (step 2)

This optional input is specified when NCPIN of Item 2 is read in as zero. The number NCP is the number of field points at which vortex-induced velocity components are to be computed on the basis of the vortices being in the presence of the body only (refer to Section C. 4 of Appendix C).

Item 10 (step 2)
If the value of NCP in Item 9 is nonzero, these cards contain the coordinates, in the body coordinate system (x_{B}, Y_{B}, z_{B}), shown in Figure A. 4 , of the field points at which vortex-induced effects are to be computed. Note: In normal operation index NCPIN of Item 2 is set equal to 1 and the information of Items 9 and 10 is read in by means of a data set stored on TAPE4.

Forward-finned section with vortex effects

Item 1 (step 3)

The integer variable NVORT is used to control the influence of the nose vortices. It has been observed that nose vorticity may disperse over the forward-finned section. Since the present model for nose vorticity is incapable of representing such a situation, the user has the option of ignoring the existence of nose vorticity downstream of the forward-finned section. The options are:

> NVORT $=0:$ Nose vortices, if present, are tracked over the entire configuration. $N V O R T=1: \quad$ Nose vortices are ignored downstream of the trailing edge of the root chord of the forward

Item 2 (step 3)

The optional input concerned with the optional strip theory approach for calculating nonlinear pressure coefficients on the forward fins, Items $12(a), 12(b), 12(c)$, and $12(d)$ for step 1 , are repeated here if the option is used.

Description of Input Requirements for Optional Step 3a
(Program BDYSHD)
Afterbody with vortex shedding

The input for this optional step is described in Appendix B concerned with the companion program BDYSHD. If this program is engaged as described in Section A. 4 (with NBSHED=1 in namelist $\$$ INPUT for step 1), care must be taken with the inputs for steps 4 and 5 described below. As mentioned later, XSTART in namelist $\$ I N P U T$ for step 4 should be set equal to
the axial location of the tail-section leading edge. Quantity XBEGIN in Item 8 of step 5 should also be set equal to the axial location of the tail-section leading edge.

Description of Input Requirements for Step 4
Afterbody and tail section without vortex effects

Input values required for step 4 are associated with the same variable names as the input values for step 1 and they are entered in the same order. The particular values required are those relevant to the afterbody and tail section. Namelist $\$ B O D Y$ need not be repeated for a full configuration provided the body length LBODY is set equal to the entire body length in Item 9 of step 1 . If companion program BDYSHD is employed to treate the afterbody including vortex shedding effects, set NBSHED=1, and quantity XSTART should equal quantity XWLE (axial location of tail-fins root chord leading edge) in namelist \$INPUT.

Description of Input Requirements for Step 5
Track vortices along afterbody and tail section

Input values required for step 5 have the same variable names and are entered in the same order as the input values for step 2. The particular values required are those relevant to the afterbody and tail section.

If companion program BDYSHD is employed to treat the afterbody including vortex shedding effects, set XBEGIN in Item 8 equal to the axial location of the leading edge of the tail section. In addition, by setting NIP=1 in Item 7 and XBEGIN=XEND=axial location of leading edge of tail section, the paths of all the vortices through the tail section are made to lie parallel to the body centerline (recommended procedure).

If BDYSHD is not used, XBEGIN should be set equal to the axial location of the trailing edge of the forward-finned section. The paths of the vortices along the afterbody are calculated and the vortex positions are printed at a number of stations given by index NIP. The vortex paths are made to lie parallel to the body through the tail section by setting XEND = axial location of the tail section leading edge.

Description of Input Requirements for Step 6
Afterbody and tail section with vortex effects

Item 1 (step 6)
The optional input concerned with the strip theory approach for calculating nonlinear pressure coefficients on the tail fins, Items $12(\mathrm{a})$ through $12(\mathrm{~d})$ for step 4 are repeated here if the option is used.

Item 2 (step 6)
This item contains the required final card with END in the first three columns.

All input will now be listed in order of appearance including the format and algebraic symbols if applicable.

INPUT VARIABLES FOR PROGRAM LRCDM2

Program
Variable
Format

Comments

List of Input Variables Required for All Runs
Item 1
(2I5)

NSTART

NSTOP

Beginning and ending steps in calculation.

Step at which calculations are started.

Step after which calculations are stopped.

Item 2 (I5)

NALF

Item 3

ALFS (N)

Item 4
NFEE

Item 5
FEES (N)
α_{c}

Number of values to be used in included angle of attack sweep.
(8F10.4)

Number of values to be used in roll angle sweep.
Values to be used in included angle of attack sweep ($\mathrm{N}=1$ through NALF), degrees.

Values to be used in roll angle sweep ($N=1$ through NFEE), degrees.

Note: For unrolled configurations, set FEES (N) equal to 0.001 for following cases.

1. For a set of planar or cruciform tail fins subjected to asymmetric oncoming flow such as that induced by asymmetrically deflected canard fins.
2. For any triform fin layout.

List of Input Variables for Step 1

The following four variables are used below in the description of the input variables for step 1 . The terms "right" and "left" refer to an observer looking forward.

MSWRP: Number of panels in spanwise direction on right fin +1 ; MSWRP $=$ MSWR +1

MSWLP: Number of panels in spanwise direction on left fin +1 ; MSWLP $=$ MSWL +1

MSWUP: Number of panels in spanwise direction on upper fin +1 ; MSWUP $=$ MSWU +1

MSWDP: Number of panels in spanwise direction on lower fin $+1 ;$ MSWDP $=$ MSWD +1

Also see notes at the end of namelist \$INPUT for variables marked with "*".

Program
Variable
Item 1

Item 2
BIL

B2

B2V

CRP

CRPV

DELD*

DELL*

DELR*
(namelist)
Format
(20A4)
b/2
c_{r}
δ_{d}
δ_{ℓ}
δ_{r}

Comments

Any alphanumeric information may be put on this card for identification of the calculation.

Namelist \$INPUT.
Length of body influenced by fins to account for interference. For fins with unswept trailing edges and for wing-alone cases, BIL=CRP, default $=0.0$.

Exposed fin semispan of horizontal or upper right or lower left fins, dimensional.

Exposed fin semispan of vertical or upper left or lower right fins, dimensional, default is 0.0 .

Root chord of horizontal or lower left or upper right fins, dimensional.

Root chord of vertical or upper left or lower right fins, dimensional, default is 0.0 .

Deflection angle of vertical lower or upper left fin. Postive: trailing edge to right or down, degrees, default is 0.0 .

Deflection angle of horizontal left or lower left fin. Positive: trailing edge down, degrees, default is 0.0 .

Deflection angle of horizontal right or upper right fin. Postive: trailing edge down, degrees, default is 0.0 .

DELU*	δ^{\prime}	Deflection angle of vertical upper or lower right fin. Positive: trailing edge to right or down, degrees, default is 0.0.
ERATIO		Ratio of RB over RA, specify equal to 1.0 , default $=1.0$.
FAC		FAC $=0.95$ Fraction of the constant u-velocity panel chord (which contains the centroid) where the control point is located.
FKLE	$\mathrm{K}_{\mathrm{V}, \mathrm{LE}}$	Fraction of leading-edge suction converted to normal force, default is 0.5.
FKSE	$\mathrm{K}_{\mathrm{V}, \mathrm{SE}}$	Fraction of side-edge suction converted to normal force, default is 1.0 .
FMACH	M_{∞}	Free-stream Mach number.
ITAIL		```ITAIL=0 Treat forebody and canards, steps l and 3, default value.```
		ITAIL=1 Treat afterbody and tail section, steps 4 and 6.
JCPT		JCPT=0 Later calculated by program
LVSWP		LVSWP $=0$ No breaks in fin leading or trailing edges, or equal spanwise spacings of panel side edges, default value.
		LVSWP $\neq 0$ Up to 19 breaks in fin leading or trailing edges or up to 19 unequal spanwise spacings.

MSWD*

MSWL*

MSWR*

MSWU*

NBDCR*

NBDYPR

NBSHED

MINPRN=0 No print suppression,
default value.

MINPRN>0 Input and final results
only are printed.
No print suppression,

Number of spanwise constant uvelocity panels on the vertical lower or upper left fin; $1 \leq M S W D \leq 19$, default is 0 .

Number of spanwise constant uvelocity panels on the horizontal left or lower left fin; $1 \leq M S W L \leq 19$, default is 0 .

Number of spanwise constant uvelocity panels on horizontal right or upper right fin; $1 \leq M S W R \leq 19$.

Number of spanwise constant uvelocity panels on vertical upper or lower right fin; $1 \leq M S W U \leq 19$, default is 0 .

Number of constant u-velocity panels on the circumference of the body in the interference shell.

NBDCR=0 No body present, default value.

NBDCR>0 Body present (see Item 9). Note: select value divisible by 4. NBDCR will be halved by the program for symmetric cases.

NBDYPR=1 Pressures to be calculated along body meridians, default is 0 , use value 1 .

NBSHED=0 Afterbody vortex shedding companion program BDYSHD is not used, default $=0$.

	NBSHED $=1$	Companion program BDYSHD to be engaged after completion of step 3 for treatment of afterbody.
NCPOUT	NCPOUT $=0$	No control point coordinates written, default value.
	NCPOUT $=1$	Write coordinates (in body system) of control points on fins and body interference shell in data set (TAPE4), and continue the run.
	NCPOUT $=$	Write coordinates (in body coordinate system) of control points on fins and body interference shell in data set (TAPE4), and stop the run (STOP 77).
NCRX*	$\mathrm{NCRX}=0$	Horizontal fins only resent, default value.
	$\mathrm{NCRX}=1$	ertical fins in addition o horizontal fin surfaces present.
NCW*	Number velocit	chordwise constant upanels on the fins.
NCWB*	Number panels tion on over th length	constant u-velocity the longitudinal directhe surface of the body body interference IL, default is 0.
NCWT	Number panels default	```fin thickness (source) a chordwise row, is 0.```
NDRAG	NDRAG=1	Include calculation of in-plane forces and fin trailing-edge vorticity, default $=0$, set NDRAG=1.

NFVNPR	NFVNPR $\neq 0$	Print influence coefficient matrix FVN for debugging, default is 0 .
NOLINP	NOLINP=0	Loadings calculated on the basis of linear pressures only, default value.
	NOLINP=1	Loadings calculated on the basis of linear and Bernoulli pressures, default $=0$, set NOLINP=1.
NOUT	$\text { NOUT } \neq 0$	Print large amount of output for debugging, default is 0.
NPR	Same as NOUT, default is 0 .	
NPRESS	NPRESS $=0$	This value ensures that loadings are computed on the basis of the linear pressure relationship in addition to the Bernoulli pressure relationship. A value of zero is fixed in the program.
NTDAT	Number of sets of thickness data to be input in Item 8 below. (Presently applicable to planar or cruciform fin layouts only.)	
	$\mathrm{NTDAT}=0$	No thickness input data, default value.
	NTDAT=1	For horizontal fin, symmetric layout; or for cruciform fin, symmetric layout with layout on vertical fins same as on horizontal fins.
NTPR	$\mathrm{NTPR}=1$	Print debug output from subroutine THKVEL, default s 0 .
NVLIN	NVLIN $=0$	(for steps 1 and 4)

NVRTPL

NVRTX

N 2 DPRB

N2DPRF

Applicable to fixed external vortices only.

NVRTPL=0 Component of velocity parallel to fin induced by vortices not included in Bernoulli loading pressures.

NVRTPL=1 Loading pressure calculated including parallel component of vortex induced velocity, default value.

Number of external vortices with fixed positions present, NVRTX ≤ 10 (see Item ll), default is 0. This option is to be used for special purposes only.

Index governing type of loading calculation performed on the body surface.
$\mathrm{N} 2 \mathrm{DPRB}=0$ Linear and Bernoulli pressure coefficients, default value.
$\mathrm{N} 2 \mathrm{DPRB}=1$ Shock expansion and impact (Newtonian) pressure coefficients.

N2DPRB=2 Shock expansion and impact (Newtonian) pressure coefficients corrected with linear theory.

For $N 2 D P R B>0$, further input is required (Item 10).

Index governing type of loading calculation performed on fin surfaces.

N2DPRF=0 Linear and Bernoulli pressure coefficients, default value.

N2DPRF=1 Shock expansion and impact (Newtonian) pressure coefficients.

RA

RB
REFL

SREF
$S_{\text {ref }}$

SWLEP

SWLEV

SWTEP

Radius of cylindrical part of body, dimensional, default $=0.0$.
$R B=R A$, default $=0.0$.
Reference length used in moment calculations, dimensional, default is 1.0 .

Reference area used in load calculations, dimensional, default is 1.0 .

Horizontal or upper right and lower left fin leading-edge sweep angle measured in fin planform, positive for sweep back, degrees, default is 0.0.

Vertical or lower right and upper left fin leading-edge sweep angle measured in fin planform, positive for sweep back, degrees, default is 0.0 .

Horizontal or upper right and lower left fin trailing-edge sweep angle measured in fin planform, positive for sweep back, degrees, default is 0.0 .

SWTEV

THETIT

THETR

THETL

THETU

THETD

TOLFAC

VRTMAX

XM

Vertical or lower right and upper left fin trailing-edge sweep angle measured in fin planform, positive for sweep back, degrees, default is 0.0 .

Location angle associated with interdigitated or lowprofile four fin layouts, default is 0.0 for cruciform or triform fin layouts, $0 \leq \theta \leq 90^{\circ}$ 。

Polar angle of right upper fin in degrees, default is 0.0 .

Polar angle of left lower fin, in degrees, default is 0.0 .

Polar angle of right lower fin, in degrees, default is 90.0 .

Polar angle of left upper fin, in degrees, default is 90.0 .

TOLFAC=1 Multiplication factor used in the evaluation of the tolerance, TLRNC, used in subroutine VELO.

Maximum magnitude of vortex induced velocities included in flow tangency condition and pressure calculations, default is 0.35 .
x_{B}-coordinate of moment center in body-coordinate system, default is 0.0 .

Axial station (x_{B}-coordinate) aft of which body pressures are to be calculated, default is 0.0. Note: For steps l-3 set XSTART $=0.0$. For steps $4-6$ set XTART=canard T.E. location and if NBSHED=l, set XSTART=tail L.E. location.

XWLE

ZM
Axial location (x_{B}-coordinate) of fin root chord ${ }^{B}$ leading edge measured from body nose, default is 0.0.
z_{B}-coordinate of moment center in body coordinate system, default is 0.0 .
*The following relations must hold:

1. $\operatorname{NWBP}=[\mathrm{NCW}(M S W R+M S W L+M S W U+M S W D)+\mathrm{NCWB}($ NBDCR $)] \leq 150$.
2. Also, MSWR, MSWL, MSWU, and MSWD should be at least five for valid fin trailing-edge vorticity characteristics.
3. When running symmetric case, $\operatorname{FEES}(\mathrm{N})=0.0$ in Item 5 preceding step 1 input, and if fins are deflected symmetrically, set MSWL, MSWU, MSWD, and DELL, DELU, DELD as follows:
a. for cruciform fins, MSWR $\neq 0$, set DELR $\neq 0.0$,
set $\mathrm{NCRX}=0$

$M S W L=0$	DELL=DELR
$M S W U=0$	DELU $=0$
$M S W D=0$	DELD $=0$

b. for arbitrary fin layout, MSWR $\neq 0$, MSWU $\neq 0,2$ cases:

- no fin deflection
set $\mathrm{NCRX}=1$
MSWL=0
MSWD $=0$
- with fin deflection, set DELRキ0.0, DELUキ0.0 set $N C R X=1$
MSWL=MSWU
DELD=DELR
MSWD=MSWR DELL=DELU

Item 3	(3F10.5)	Optional input for planar or cruciform wing alone at zero sideslip (if LVSWP $\neq 0$). (Not used with fin-body combinations.)
YR (KJ)		Distance from wing root chord to the constant u-velocity panel outboard side edge on right wing, $1 \leq K J \leq M S W R P, ~(M S W R P \leq 20), ~ Y R(1)=0.0$, $\mathrm{Y} \overline{\mathrm{R}}(\mathrm{MS} \mathrm{WRP})=\mathrm{B} 2$.
VSWLER(KJ)		Leading-edge sweep of wing between YR(KJ-1) and YR(KJ), positive for sweep back, degrees, $1 \leq K J \leq M S W R P$, ($\operatorname{MSWRP} \leq 20$), VSWLER (1) $=0.0$.
VSWTER(KJ)		Trailing-edge sweep of wing between YR(KJ-1) and YR(KJ), positive for sweep back, degrees, $1 \leq K J \leq M S W R P$, ($\operatorname{MSWRP} \leq 20)$, $\mathrm{V} \overline{\mathrm{S}} \mathrm{WTER}(\mathrm{l})=0.0$.
Item 4	(3F10.5)	Optional input for fin-body combination (if LVSWP $\neq 0$).
YRT (KJ)		Distance from fin root chord to the constant u-velocity panel outboard side edge on right horizontal or upper right fin, $1 \leq K J \leq M S W R P$, (MSWRP ≤ 20) , $\mathrm{YRT}(1)=0.0, \operatorname{YRT}(\mathrm{MSWR} \overline{\mathrm{P}})=\mathrm{B} 2$.
VSWLER(KJ)		Leading-edge sweep of fin between YRT (KJ-1) and YRT (KJ), positive for sweep back, degrees, $1 \leq K J \leq M S W R P$, $(M S W R P \leq 20)$, VSWLER(1)=0.0.
VSWTER(KJ)		Trailing-edge sweep of fin between YRT (KJ-l) and YRT (KJ), positive for sweep back, degrees, $1 \leq K J \leq M S W R P$, (MSWRP ≤ 20), $\operatorname{VSWTER}(1)=0.0$.
Item 5	(3F10.5)	Optional input for fin-body combination (if LVSWP $\neq 0$).

VSWLEL (KJ)

VSWTEL (KJ)

Item 6

ZUT (KJ)

VSWLEU (KJ)

VSWTEU (KJ)

Item 7
(3F10.5)

ZDT (KJ)

Distance from fin root chord to the constant u-velocity panel outboard side edge on left horizontal or lower left fin, $1 \leq K J \leq M S W L P, \quad(M S W L P \leq 20)$, $\operatorname{YLT}(1)=0.0, \quad \operatorname{YLT}(M S W L P)=-B 2$.

Leading-edge sweep of fin between YLT (KJ-1) and YLT (KJ), negative for sweep back, degrees, $1 \leq$ KJ < MSWLP, $\quad($ MSWLP $\leq 20)$, VSWLEL (1) $=0.0$.

Trailing-edge sweep of fin between YLT (KJ-1) and YLT(KJ), negative for sweep back, degrees, $1 \leq K J \leq M S W L P, ~(M S W L P \leq 20)$, $V \bar{S} W T E L(1)=0.0$.

Optional input for cruciform finbody combination (if LVSWP $\neq 0$).

Distance from fin root chord to the constant u-velocity panel outboard side edge on upper vertical or lower right fin, $1 \leq K J \leq M S W U P$, (MSWUP ≤ 20), $\operatorname{ZUT}(1)=0 . \overline{0}$, ZUT (MSWUUP) $=\mathrm{B} 2 \mathrm{~V}$.

Leading-edge sweep of fin between ZUT (KJ-1) and ZUT(KJ), positive for sweep back, degrees, $1 \leq K J \leq M S W U P$, (MSWUP $\leq 20)$, $V \operatorname{SWLEU}(1)=0.0$.

Trailing-edge sweep of fin between ZUT (KJ-l) and ZUT(KJ), positive for sweep back, degrees, $1 \leq$ KJ $\leq M S W U P, ~(M S W U P \leq 20)$, $\operatorname{VSWTEU}(1)=0.0$

Optional input for cruciform finbody combination (if LVSWP $\neq 0$).

Distance from fin root chord to the constant u-velocity panel outboard side edge on lower fin, $1 \leq K J \leq M S W D P, ~(M S W D P \leq 20)$, $Z \bar{D} T(\overline{\mathrm{I}})=0.0, \quad \mathrm{ZDT}(\mathrm{MSW} \overline{\mathrm{W}})=-\mathrm{B} 2 \mathrm{~V}$

VSWLED (KJ)		Leading-edge sweep of fin between ZDT (KJ-1) and ZDT(KJ), negative for sweep back, degrees, $1 \leq K J \leq M S W D P,(M S W D P \leq 20)$, $\operatorname{VSWLED}(1)=0.0$.
VSWTED (KJ)		Trailing-edge sweep of fin between ZDT (KJ-l) and ZDT (KJ), negative for sweep back, degrees, $1 \leq K J \leq M S W D P, ~(M S W D P \leq 20)$, $\operatorname{VSWTED}(1)=0.0$.
Item 8		Optional thickness input data when NTDAT $\neq 0$. (presently applicable to planar or cruciform fin layouts only.)
Item 8(a)	(1015)	Information in Items $8(a), 8(b)$, and 8 (c) are read in by subroutine THKIN for the right horizontal fin.
MSWT		Number of source panels in the spanwise direction, $1 \leq M S W T \leq 19$.
LVSWT		LVSWT=0 No breaks in fin leading or trailing edges, or equal spanwise spacings of source panel sides, default is 0 .
		LVSWT=1 Up to 19 breaks in f in leading or trailing edges or up to 19 unequal spanwise spacings.
NUNIS		NUNIS $=0$ Thickness distribution varies over the span.
		NUNIS=1 Thickness distribution constant over the span.
Item 8 (b)	(3F10.5)	Optional input for LVSWT=1.
YTH ($1, ~ J)$		Distance from body centerline to the source panel outboard side edge, $1 \leq J \leq M S W T+1$.

SWLET (J)

SWTET (J)

Item $8(\mathrm{c})$

THET (K)

Item 8(e)

Item 8(f)

Item 9

NXBODY

Leading-edge sweep of fin between YTH ($1, J-1$) and YTH ($1, J$), positive $1 \leq J \leq M S W T+1$.

Trailing-edge sweep of fin between YTH ($1, J-1$) and YTH ($1, J$), positive for sweep back, degrees, $1 \leq J \leq M S W T+1$.

Optional input specifying streamwise thickness slopes read in by subroutine THETIN in groups of NCWT values.

NUNIS=1: $K=1$, NCWT
NUNIS=0: K=1, (NCWT*MSWT)
Note: $\quad l \leq K \leq 400$

Optional thickness input for left fin. All input same as for right fin above, Items 8(a), (b), and (c).

Optional thickness input for upper fin when $N C R X=1$ in namelist \$INPUT. Same input as for right fin, Items 8(a), (b), and (c).

Optional thickness input for lower fin when $N C R X=1$ in namelist \$INPUT. All inputs same as for right fin, Items 8(a), (b), and (c).

Namelist \$BODY read in by subroutine BDYGEN. Required input when body with circular cross section is present, NBDCR $\neq 0$. Note: This input required for step 1 only.

Number of line source/sinks and line doublet singularities distributed along body centerline.

LNOSE	
LBODY	Length of nose part of body measured from nose tip, dimen- sional (real variable).
BCODE	Length of body, dimensional (real variable).
Control index (integer) for specifying forebody shape over length LNOSE.	
$\mathrm{BCODE}=0$ Parabolic	
$\mathrm{BCODE}=1$ Sears-Haack	
$\mathrm{BCODE}=2$ Tangent ogive	
$\mathrm{BCODE}=3$ Ellipsoidal	
$\mathrm{BCODE}=4$ Conical	

Item 10

Item 10(a)
(F10.5)
CONSTK

Item $10(\mathrm{~b})$
(I5)
NSEG

Item $10(\mathrm{c})$
(8F10.5)
THETA (J)

Constant used in Newtonian pressure coefficient, normally CONSTK=2.

Number of 2-D segments used to describe body shape $2 \leq$ NSEG ≤ 100.

Slope angles of $2-D$ segments on body measured relative to body centerline in degrees. Eight values per card $1 \leq J \leq N S E G$.

Item 11

GAMMA (I)

YVRTX (I)

ZVRTX(I)

Item 12

Item 12(a)
CONSTK

Item 12 (b)
NSEG

Item $12(\mathrm{c})$
THETA (J)

Optional input read by subroutine VRTVEL when the effect of fixed external vortices are considered, normally not used, $1 \leq N V R T X \leq 10$.

Vortex strength divided by
$\left(2 \pi V_{\infty} a\right)$ where a is body radius RA, $1 \leq I \leq$ NVRTX.
Y_{B}-coordinate of vortex, normalized by body radius, $l \leq I \leq N V R T X$.
z_{B}-coordinate of vortex, normalized by body radius, $1 \leq I \leq N V R T X$. There will be NVRTX sets of vortex inputs.

Optional input for calculation of 2-D nonlinear pressures on fins. Read when N2DPRF>0.

Constant used in Newtonian pressure coefficient, normally CONSTK=2.

Number of $2-\mathrm{D}$ segments used to describe fin profile, $2 \leq N S E G \leq 100$.

Slope angles of $2-\mathrm{D}$ segments on upper surface of fin measured relative to fin chordal plane, degrees, $1 \leq J \leq$ NSEG.

Slope angles of $2-D$ segments on lower surface of fin measured relative to fin chordal plane, degrees. $1 \leq J \leq$ NSEG.

Note: Items $12(\mathrm{~b})$ through $12(\mathrm{~d})$ are repeated for each chordwise row of control points on each fin. That is, there are MSWR+MSWL+MSWD+MSWU repetitions of Items 12 (b) through $12(\mathrm{~d}), 1 \leq \mathrm{J} \leq$ NSEG.

List of Input Variables for Step 2

Track body nose vortices along forward-finned section

Item 1 (20A4)
(8Il0)

Item 2

NS

NF

NCPIN

NVLOUT

NOUTT

IPLT

Number of body sections for which coefficients C(I,J) are required, $1 \leq \mathrm{NS} \leq 7$.

Number of corner points used to define fin geometry, $1 \leq N F \leq 7$.

NCPIN=1 Read in control point and body pressure points from data set (TAPE4).

NCPIN $=0$ Control points are not input via TAPE4.

NVLOUT=1 Write velocities induced by moving vortices (and calculated in this program) on data set (TAPE7).

NVLOUT=0 No such output.
NOUT=1 Print additional output.
NOUT=0 Minimum output.
IPLT=0 No plots showing vortex positions in the output.

IPLT=l Vortex positions shown in crossflow planes.
$X E(I)$

Item 4
$C(I, J)$

Item 5

XF (I)

YF (I)

Item 6
(8F10.5)
E5

VRTMAX

Item 7

(8Il0)
NIP

Item 8
(8F10.5)

XBEGIN
 XBEGIN

(8F10.5)
(8Fl0.5)
specify in
pairs
(8E10.5)

Axial coordinates of the end of each body section, $1 \leq I \leq N S$.

Error allowed in integration subroutine DASCRU. Use the value 0.01 or less.

Maximum magnitude of vortex induced velocities, use the value 0.35 .

Number of axial stations to be printed in output, $1 \leq N I P \leq 50$. Note: If XBEGIN=XEND set NIP=1.

Axial location of vortex-tracking starting station. Note: If vortices are assumed to lie parallel to body centerline through forwardfinned section in step 2 , set XBEGIN=XEND and NIP=1 in Item 7. For step 5 refer to general description of input for that step given earlier.

XEND

Item 9
(8I10)

NCP

Item 10

CPX

CPY

CPZ
(3F10.5)

List of Input Variables for Step 3
Forward-finned section with vortex effects

Axial location of end station for vortex tracking.

Next two items are optional input for NCPIN=0, only.

Number of control points and body pressure points or field points at which vortex induced velocities are to be calculated.

Optional input when $\mathrm{NCP} \neq 0$ specifying field point coordinates.

Body x_{B}-coordinate of field point, dimensional.

Body YB-coordinate of field point, dimensional.

Body z_{B}-coordinate of field point, dimensional.

Item 1
NVORT

> Integer flag read in by routine DEMON2 indicating how far along body the paths and influence of nose vortices are calculated. NVORT=0 $\begin{aligned} & \text { Paths and influence cal- } \\ & \text { culated along entire } \\ & \text { body. }\end{aligned}$ $\begin{aligned} & \text { NVORT=1 } \\ & \begin{array}{l}\text { Paths and influence cal- } \\ \text { culated to trailing edge } \\ \text { of canard root chord }\end{array} \\ & \text { only. }\end{aligned}$ $\begin{aligned} & \text { Optional input for nonlinear } \\ & \text { Itessure calculation on fins. If } \\ & \text { specified for step } 1, \text { they are } \\ & \text { repeated here. }\end{aligned}$

Item 2

Input Variables for Step 4

Same as for step l except this input is applied to the afterbody and tail section, Item 9 (NAMELIST \$BODY) is excluded. Note: Set ITAIL=1. Also if NBSHED=l in namelist \$INPUT set XSTART=XWLE in $\$$ INPUT.

Input Variables for Step 5

Same as for step 2, applied to afterbody and tail section. Note: If NBSHED=1 in namelist \$INPUT for step 4, set XBEGIN= axial location of the leading edge of the tail section; also refer to general description of input for this step given earlier with regard to running upstream vortices parallel to the body centerline through the length of the tail seciton (NIP $\neq 0$, XBEGIN=axial location of forward-finned section trailing edge, XEND=axial location of tail section leading edge).

List of Input Variables for Step 6

Item 1

Optional input for nonlinear pressure calculation on the fins. If items $12(\mathrm{a})$ through $12(\mathrm{~d})$ were specified in step 4, they are repeated here.

Item 2
End card with "END" punched in first three columns.

The input deck must be terminated by a card with "END" punched in the first three columns.

A. 8 DESCRIPTION OF OUTPUT

This section contains a description of the output generated by program LRCDM2 for a typical case involving a complete forward-fin, body, tail-fin combination. Hence, this output corresponds to a case where NSTART has a value of 1 and NSTOP has a value of 6 . The output control index MINPRN specified in namelist $\$ I N P U T$ equals 0 . If it is set equal to 1 , only the input data and the overall force and moment coefficients are printed.

A sample output is shown in Figure A.7. It is the program output for the forward-controlled configuration used as the sample case discussed in Section A. 9 of this appendix. This sample case includes output generated by program BDYSHD described in Appendix B. Thus, program LRCDM2 first runs steps 1 through 3, program BDYSHD runs optional step 3a, and LRCDM2 resumes to run steps 4 through 6.

Large amounts of additional output are generated if print control indices NOUT and NPR are set nonzero. This additional output is provided as an aid in finding input and/or program problems. For the benefit of the user, references are made to specific subroutines from which portions of the output are printed. The subroutine names are shown in the subroutine calling sequence, Figure A.l. For clarity, the output is described separately for each step of the stepwise procedure described in Section A. 4 of this appendix and in Section 2.3 of this report. The output generated by companion program BDYSHD for optional step 3 a is discussed in Appendix B.

The following descriptions are concerned with the linear and Bernoulli pressure coefficient calculation methods. If the optional shock-expansion and Newtonian pressure coefficients are used, the pertinent headings in the output will indicate that fact.

The following coordinate systems will be mentioned in output descriptions.

1. Body coordinate system $\left(x_{B}, y_{B}, z_{B}\right)$ with origin at the nose, Figure A.4; this system is also called rolled or bodyfixed coordinate system.
2. Unrolled body coordinate system (x_{B}, y, z) also with origin at the nose and z in the plane formed by the free-stream velocity vector and the body centerline; lateral coordinate y is normal to this plane and points to the right as will be shown in a later sketch.
3. Wing coordinate system (X_{W}, Y_{W}, z_{W}) parallel to $\left(x_{B}, y_{B}, z_{B}\right)$ with origin on the body centerline at the axial location of the root chord leading edge of either the forwardor tail-finned section, Figure A.4.
4. Local fin coordinate system (x_{F}, y_{F}, z_{F}) with origin at the root chord leading edge, x_{F} directed aft along the root chord, y_{F} in the plane of the fin (inboard or outboard), and z_{F} normal to the fin plane (also refer to Appendix C, Section C.2).

A.8.1 Output From Step 1

The first page is the title page and the second page identifies both the step and the particular run. For this step the title "LOADS ON FORWARD FINS WITHOUT EFFECTS OF NOSE VORTICES" is printed at the top of the second page followed by the run descriptor entered in input Item 1 for this step.

Values of the variables in namelist \$INPUT read in by subroutine DEMON2 are printed on the second and possibly third page. The values of the variables pertain to the forwardfinned section. All dimensions in the output are the same as in the input. Any dimensional system is acceptable to the program as long as it is used consistently.

Fin-section geometry and the number of constant u-velocity panels in the chordwise (NCW) and spanwise (MSWR, MSWL, MSWU, MSWD) directions are listed on the next page. Fin geometry is
repeated on the following page with flow conditions. Quantities ALFA and BETA correspond to angles of pitch, α, and sideslip, β, respectively, calculated by the program in accordance with Equation (3) in this report. They are calculated from the included angle of attack, α_{c}, and angle of roll, ϕ, specified singly or multiply in Items 3 and 5 required for all runs. Information concerning the geometrical layout of the planar source panels used to model thickness of the fins is then shown if the thickness option is used. On the next page, the specified fin streamwise thickness slopes are printed.

Coordinates of the control points generated by subroutine DEMON2 and associated with the constant u-velocity panels are printed next. These panels are distributed on the fins and the body-interference shell of the forward-finned section. The number of control points and the coordinates, expressed in the $\left(x_{B}, y_{B}, z_{B}\right)$ system, are stored on a data set on TAPE4 for later use in step 2. There are NWBP sets of coordinates where NWBP is the number of control points on the forward fins and interference shell. The value of NWBP is given by the following relation.

$$
\text { NWBP }=\mathrm{NCW}(M S W R+M S W L+M S W U+M S W D)+N C W B(N B D C R)
$$

Namelist \$BODY, which is read in by subroutine BDYGEN, appears next. It is followed by the cylindrical coordinates and streamwise slopes of the body definition points. These coordinates are calculated by the program. The origin of each semi-infinite line singularity (linearly varying line source/ sink and linearly varying line doublet) used to represent the body is given under the heading TX. All axial coordinates are given in the body-coordinate system with origin at the nose, as shown in Figure A.4. The strengths of the singularities are related to coefficients $T(I)$ for the line sources or sinks, and by $T C(I)$ for the line doublets.

On the next pages, the output shows the surface pressures calculated on the circumference of the forebody. The forebody is the length of body up to the forward-finned section. The first page of the body loading output is marked ***STEPI on the upper right hand corner. The pressures are calculated by subroutine BDYPR on rings centered on the axial locations listed under the heading $X B$ in the body coordinate system. The ring at each axial location is given a BODY RING number which is written above the pressure point coordinates, perturbation velocity components involved, pressure coefficients, meridional body slopes, and pressure ratios. The pressures are calculated by subroutine BDYPR on the basis of both the linear and Bernoulli pressure-velocity relationships. The former is given by Equation (5) and the latter is given by Equation (6) in this report. Pressures based on shock expansion and Newtonian theories can be optionally calculated (refer to Section 2.6 of this report). If this is the case, the pressure headings are changed accordingly in all of the following output.

At the given axial station on the forebody, body-nose shed vorticity characteristics can appear ahead of the body pressure output if the included angle of attack is in excess of about 5 degrees and if the forebody length is sufficiently long. The vorticity is represented by two concentrated vortices located symmetrically with respect to the crossflow component of the free-stream velocity vector as shown in the sketch below. The vortex coordinates are specified in the unrolled body coordinate system and in the fixed body-coordinate system (rolled coordinates) nondimensionalized by the local body

radius. The coordinate systems are discussed below. The vortex characteristics will change from one station to the next. The calculated pressures include effects of the bodynose vortices, if present*.

At the end of the output for each ring, the integrated loads on that ring are given in the unrolled body-axis and in the fixed or rolled body-axis coordinates for both linear loading and Bernoulli loading pressures. In addition, the cumulative body loads up to and including that ring are given. The relationship between the unrolled $\left(x_{B}, y, z\right)$ and the rolled body-coordinate $\left(X_{B}, y_{B}, z_{B}\right)$ system is shown above at a given body cross section. The x_{B}-axis is the same for both systems. If the angle of roll ϕ is zero, the two coordinate systems are the same.

[^6]If body-nose vortices are generated on the forebody, their number, strengths and positions at the end of the forebody (i.e., at the beginning of the forward-finned section) are printed after the last forebody ring pressure distribution and loadings output. Positions are given in the body coordinate system (x_{B}, y_{B}, z_{B}) in dimensional units. Vortex strengths are divided by the free-stream velocity. This information is stored in a data set on TAPE8 for later use in step 2.

The accumulated body loads calculated in step l, including the last ring on the forebody, are used as the first values in the summing procedure for the force and moment coefficients acting on the entire configuration. In program LRCDM2, the values for the force and moment coefficients are expressed in the unrolled body coordinate system $\left(x_{B}, y, z\right)$ and in the rolled or fixed body coordinate system (x_{B}, y_{B}, z_{B}).

The next page in the output lists the calculated control point coordinates X, Y, Z for the constant u-velocity panels distributed on the fins. These coordinates are expressed in the wing-coordinate system $\left(x_{W}, Y_{W}, z_{W}\right)$ shown in Figure A.4. Perturbation velocities, induced at these points by the body sources/sinks and doublets, and lateral velocity components induced by vortices with their characteristics specified optionally in the input are also shown. The quantities $B U, B V, B W$ are due to the body line singularities and VVRTX,WVRTX are due to the vortices specified in optional Item 10 of the input for step l. These velocity components are also expressed in the wing coordinate system (x_{W}, Y_{W}, z_{W}). Normally, velocities induced by moving vortices are calculated by module VPATH2 and printed later. Velocity components induced by the body singularities are calculated by subroutine VELCAL.

Coordinates of the control points associated with the body interference panels are given on the next page. They are also expressed in the wing coordinate system (x_{W}, Y_{W}, z_{W}).

Velocity components THU, THV, and THW are induced by the planar source panels distributed on the fins to model thickness as an option.

The next pages are concerned with the Bernoulli pressure distributions acting on the fins calculated by subroutine SPECPR. In step 1 , the fin pressures do not include effects of forebody vortices, if present. Perturbation velocity components UTOTA, VTOTA, and WTOTA and the pressure coefficient PRESSA $\left(=C_{P}\right)$ act on the upper side of the horizontal fins. Perturbation velocity components UTOTB, VTOTB, and WTOTB and the pressure coefficient PRESSB $\left(=C_{P}\right)$ act on the lower side of the horizontal fins. Coordinates X, Y, and Z correspond to the control points of the constant u-velocity panels on the fins and are expressed in the wing-coordinate system (x_{W}, Y_{W}, z_{W}) shown in Figure A.4. The perturbation velocity components act along directions parallel to the wing- or body-coordinate systems. The Bernoulli pressure coefficient information is then given for the left (PRESSA) and right (PRESSB) sides of the vertical fins, looking forward.

For cases with interdigitated or low-profile fin layouts, the pressures acting on the surfaces of each fin are still given by PRESSA and PRESSB. The designation of the fins in an arbitrary layout is related to the designation of the fins in a cruciform layout as shown below.
(Looking Forward)

Pressure coefficients PRESSA and PRESSB are shown in the sketch on the sides of the fins where they act. The lateral fin local coordinate (y_{F}, z_{F}) are indicated for each fin for the cruciform case and for one fin for the arbitrary fin layout. Note that for the arbitrary case the fin planes do not coincide with $\mathrm{y}_{\mathrm{B}}, \mathrm{y}_{\mathrm{W}}$ or $\mathrm{z}_{\mathrm{B}}, \mathrm{z}_{\mathrm{W}}$. However, the perturbation velocities are still expressed in the body- or wing-coordinate systems.

The Bernoulli loading pressures shown on the next pages are computed as PRESSB minus PRESSA ($\Delta \mathrm{C}_{\mathrm{P}}=$ DELTP, BERN.) for all fins, and the linear loading pressures ($\Delta C_{p}=$ DELTP, LIN.) are proportional to the strengths of the constant u-velocity panels on the fins.

Fin loading information is printed on the next pages. The first page is marked ***STEPI. First, the loadings calculated by subroutine SPECLD are based on the linear pressure loadings DELTP, LIN. The force and moment coefficients, spanwise loading and suction distributions are given for each fin as follows.

The heading specifies flow conditions and reference quantities including the moment center coordinates in the body system. It is followed by a list of the fin deflection angles, thrust coefficient, CTHR, acting in the negative x_{W} (or x_{B}) direction, force coefficient $C Z$ in the z_{W} (or z_{B}) direction, force coefficient $C Y$ in the y_{W} (or y_{B}) direction, pitching moment $C M$ (nose-up positive), yawing moment CLN (nose-to-right positive) and rolling-moment CLL (right-findown positive) coefficients. Values for the various loads, printed in the first column under the title "TOTAL" are the sum of the loads on the fins only. They do not include the carryover loads on the interference shell.

Force coefficients $C Z, C Y$ and moment coefficients CM,CLN are also printed for the interference shell. which covers the body over the length covered by the fins. They are only representative of the lift carryover or interference from the fins. The actual loads acting on this section of body are computed by integrating the appropriate pressure distributions printed out later as part of step 3.

For convenience, the positive directions of the forces and moments expressed in the rolled or body-fixed system are indicated in the following sketch together with the rolled body- and wing-coordinate systems. So far, the loading coefficients have been expressed in the rolled body-axis system. The fin loading information is also specified in the unrolled body-axis system discussed earlier in connection with the forebody loads. For cases with zero roll angle ($\phi=0^{\circ}$), the two sets of force and moment coefficients are the same.

Under the heading SPANWISE DISTRIBUTIONS, the quantities of interest are the span loading $C N * C /(2 * B)$, and the suction distribution $C S * C /(2 * B)$ given as a function of the fraction of exposed fin semispan. These quantities are calculated in subroutine SPNLD. Parameter B is twice the exposed fin semispan. Other important quantities are the leading- and sideedge augmentations CNADD to fin-normal force calculated from the suction distributions along those edges in accordance with Polhamus' suction-to-normal force conversion (refer to Appendix C, Section C.2). Proportion factors KVLE and KVSE are specified in namelist \$INPUT. If the fin leading edge is supersonic, the suction and therefore the normal-force augmentation along that edge is zero. The contributions from the additional leading- and/or side-edge normal force(s) acting on the fin to the force and moment coefficients in the rolled and unrolled coordinates are printed (CYADD, CZADD, etc.). The points of action of the additional leading- and side-edge forces are indicated by XCG, YCG, and ZCG. On the leading edge, the additional force is located at the spanwise center
of pressure of the suction distribution. On the side edge, the axial location is assumed to be at mid-chord.

The strengths and lateral positions of the vortices associated with the fin leading- and/or side-edge normal force augmentations are printed next. Coordinates Y, C.G. and Z, C.G. are given in the local fin system $\left(y_{F}, z_{F}\right)$ shown in an earlier sketch and in the rolled body-coordinate system. These coordinates represent the lateral vortex locations at the trailing edge of the fin.

All of the above information is repeated for each fin in the finned section under consideration (forward section in step 1). Note again that for step 1 , the effects of forebody vortices (if present) are not included. These effects will be included later in the output associated with step 3.

All loading computations are repeated by subroutine SPCLD on the basis of the Bernoulli loading pressures printed earlier. However, in this instance the characteristics of trailing-edge vorticity represented as one or more concentrated vortices are specified under the heading "T.E. FIN VORTICITY DUE TO ATTACHED FLOW." This vorticity is determined from the spanload distribution based on Bernoulli pressure loading (Appendix C, Section C.3) and is not related to the vorticity due to the force augmentations along the leading and side edges.

None of the loading or vortex information calculated during step 1 is included in the summing or storing of data. This will be done in step 3 when the effects of forebody vortices are included.

A. 8. 2 Output From Step 2

At the top of the first page of output from this step, the title "PATHS OF NOSE VORTICES OVER FORWARD FINS" is printed. This is followed by the run identifier entered as input Item 1 for step 2.

The next output appears only if body-nose vortices have been formed as part of step 1. Fin planform geometry (if specified) and flow conditions are given. The permissible error, E 5 , in the vortex path integration scheme is printed. This output is followed by a list of vortex strengths and lateral positions at the initial axial station (beginning of forward-finned section). Coordinates $Y, V R T X$ and $Z, V R T X ~ a n d ~$ the axial locations are expressed in the rolled body-coordinate system (X_{B}, y_{B}, z_{B}). Vortex strengths are divided by the magnitude of the free stream and as such GAMMA/VINF is dimensional (unit of length). If the input specified in Items 7 and 8 allow the vortices to move in the crossflow plane, the vortex coordinates are given at a number (NIP) of axial stations. If the vortices are assumed to travel aft parallel to the body centerline (by setting NIP=1 and XBEGIN=XEND), the vortex coordinates are given for the first station only.

The next item in the output for step 2 is a listing of the coordinates of field points (or control points), read in be means of a data set on TAPE4, and the velocity components induced by the vortices at those points. If no body vortices were generated, the vortex effects will be zero. The coordinates and the velocity components are given in the rolled body-coordinate system $\left(x_{B}, Y_{B}, z_{B}\right)$. The vortex effects are calculated on the basis of the vortices in the presence of the body only (refer to Appendix C) and are stored in a data set on TAPE7. Finally, the updated body-nose vortex positions and strengths are shown and stored on TAPE8.

A.8.3 Output From Step 3

In step 3, as in step 1, loads are calculated on the forward-finned section. The only difference between the two steps is that the effects of nose vortices (if present) on the fins and interference shell are included in step 3 while
they are omitted in step l. Much of the output in step 3 appears similar to that in step l. To the extent possible, repeat calculations are avoided in order to decrease program execution times. For example, the body singularity strengths and the loads on the forebody are calculated in step 1 only while the loads acting on the portion of body in the forwardfinned section are determined only in step 3.

The title "LOADS ON FORWARD FINS WITH EFFECTS OF NOSE VORTICES" marks the beginning of the output for step 3. This is followed by the run identifier entered in input item 1 of step 1.

Values of the variables in namelist \$INPUT are printed on the following pages. These values are the same, with the exception of NVLIN and NCPOUT, as used in step 1 . These latter two variables have been set by the executive routine to read in the vortex-induced velocities, calculated in step 2 , from a data set (NVLIN=1) and to not write the control point coordinates onto a data set (NCPOUT=0).

Immediately below the list of namelist \$INPUT is a statement specifying whether or not the nose vortices are tracked past the forward-finned section. This is controlled by the variable NVORT entered as input to step 3. Body-nose vortex effects are calculated along the afterbody and tail section when NVORT has a value of zero. When NVORT is assigned a value of one, effects of nose vortices are neglected downstream of the trailing edge of the forward-finned section.

The fin section geometry characteristics, and flow conditions are printed again. Vortex-induced velocities at the panel control points (XCP,YCP, ZCP) are printed next. These velocity components are designated VVEL and WVEL and were calculated in step 2. The values should agree with the V and W values printed at the end of that step. In step 3 , the point coordinates and velocity components are expressed in the wing coordinate system $\left(\mathrm{x}_{\mathrm{W}}, \mathrm{y}_{\mathrm{W}}, \mathrm{z}_{\mathrm{W}}\right)$.

Pressure coefficients based on the Bernoulli expression, Equation (6), calculated at the control points of the panels on the fins are printed on the next pages. The meaning of above and below are discussed in the corresponding output description for step 1. This time, in step 3, the pressure coefficients (PRESSA, PRESSB) and pressure loadings (DELTP,LIN., DELP, BERN.) include contributions from the forebody vortices if present.

Fin loading information for step 3 is printed on the next pages. These loads are presented in the same manner as in step l. The first set of loads is based on linear pressure loading, and the first page shows ***STEP3 in the right upper corner. The difference between the fin loads printed during step 1 and those printed during step 3 is that the former loads do not include effects induced by any nose vortices while the loads given in step 3 do include these vortex effects.

The leading- and side-edge fin normal-force augmentations and the associated fin-edge vortex characteristics are printed after the spanwise distributions for each fin of the forwardfinned section. These quantities are calculated as part of the linear pressure loading method in accordance with Appendix C of this report and Appendix C of Reference 1. During step 3, the fin force and moment augmentations are added to the forebody force and moment coefficients calculated during step l. In addition, the leading- and side-edge vortex characteristics are added to the data set on TAPE8.

The second set of loading information is based on the Bernoulli loading pressures. It is printed on a page marked ***STEP3. During step 3, the fin loads are added to the accumulated force and moment coefficients. The total load acting on a fin of a forward-finned section is given by the sum of the force or moment coefficient listed under the heading "BERNOULLI PRESSURE LOADS IN BODY SYSTEM" or "FOLLOWING ARE IN UNROLLED BODY-AXIS COORDINATE SYSTEM" and
the corresponding additional force and moment coefficients due to leading- and/or side-edge normal-force augmentations calculated with the linear pressure loadings*. This information is printed a few pages earlier under the spanwise distributions output generated with linear pressure loading.

The trailing-edge vorticity characteristics shown under the heading "T.E. VORTICITY DUE TO ATTACHED FLOW" are added to the table of vortex strengths and positions on TAPE8 as listed at the end of the fin load output. Coordinates Y and Z under the heading "VORTEX INFORMATION WRITTEN ON TAPE8 FROM SUBROUTINE SPNLD" correspond to the rolled body coordinates y_{B} and z_{B} of the vortices at the trailing edge of the forward-finned section. The vortex strengths, GAMMA, are divided by free stream.

Finally, pressures and loads acting on the rings of the body interference shell are printed under the heading "PRESSURE COEFFICIENTS AT POINTS ON BODY MERIDIANS." This set of rings covers the length of body next to the fins of the forward-finned section and follows the rings on the forebody. The widths of the rings of the interference shell are set by body interference length BIL and axial paneling number NCWB both specified in namelist \$INPUT, Item 2 for step 1. Coordinates $X B, Y B$, and $Z B$ are expressed in the rolled body coordinate system ($\mathrm{x}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{B}}, \mathrm{z}_{\mathrm{B}}$). Perturbation components UTOT, VTOT, and WTOT are also in that system and include contributions from body singularities, fin thickness panels, constant u-velocity panels on the fins and interference shell and external (forebody) vortices if present.

The final accumulated ring loads are added to the overall force and moment coefficients accumulated so far. If optional

[^7]afterbody vortex shedding program BDYSHD is engaged (step 3a), the forces and moments accumulated for the forebody and forward-finned section are printed under the heading "SUMMARY OF TOTAL LOADS" at the end of step 3. The output for optional step 3 a is described in Appendix B.

A. 8.4 Output From Step 4

If optional step 3 a was engaged to handle the afterbody, the output for step 4 commences with a list of accumulated force and moment coefficients for the configuration up to the tail section. Without step $3 a$, this step marks the beginning of calculations on the afterbody and tail fins. The same type of information is printed in steps 4 through 6 as in steps 1 through 3 with minor differences. The output will be described in short.

Following the title "LOADS ON TAIL FINS WITHOUT VORTEX EFFECTS" the run descriptor, entered as input item 1 for this step, is printed. Namelist \$INPUT is printed next followed by tail-section geometry, flow conditions, tail-fin planform and thickness information and namelist \$BODY. The body parameters include the entire body length and should be the same as printed out for step 1.

Body dimensions and line-singularity information are printed next. This information is identical to that in step 1 and is repeated for convenience.

The next portion of the output shows the coordinates, in the rolled body-axis system, of the constant u-velocity panel control points distributed on the tail fins and interference shell. If optional step 3 a was not engaged, this output is continued for points on the afterbody at which pressures will be calculated. These coordinates are stored on TAPE4 for later use in step 5. At the beginning of this output, the total number of coordinate sets is given and this number should not exceed 500 .

Control point coordinates of the constant u-velocity panels distributed on the tail-fin surfaces are printed next, followed by the coordinates of the control points associated with the body interference panels. The formats of both of these are the same as for the corresponding output in step 1 and are accompanied by body induced velocities, fixed external vortex effects (normally not used here) and fin thickness effects, respectively.

The next pages contain the pressures acting at the control points of the constant u-velocity panels on the fins. The meanings of the headings are described earlier under output for step 1. In this step 4, effects of external vortices (from the forebody, forward-finned section, and optionally the afterbody) are not included.

Fin loading information for linear and Bernoulli loading pressures follow. The format is the same as used for steps 1 and 3. These tail-fin loads are without external vortex effects. None of the tail-fin loads and vortex information are either added to the accumulated forces and moments or saved.

A.8.5 Output From Step 5

The information shown in the output for step 5 is concerned with the tracking of and the effects induced by the forebody vortices (if present and if NVORT is set equal to zero in step 3) and the vortices originating from the fins of the forward-finned section. The kind of information given and the formats used are identical to those described for step 2.

Two cases are possible. In the first case, optional step 3 a is not used and the output for step 5 covers the length of body from the trailing edge of the forward-finned section up to the tail section as a minimum. Vortex effects induced at points on the afterbody and tail section are printed at the
end of this step. In the second case, optional step 3 a is engaged and companion program BDYSHD tracks the forebody vortices (if present and if NVORT is set equal to zero in step 3) and the forward-fin vortices together with afterbodyshed vortices up to the tail section. In this case, the effects induced by the vortices at points on the tail section only are printed at the end of this step. In either case, the vortices can be allowed to move laterally through the tail section or the vortex paths can be made to lie parallel to the body centerline as described in the input for step 2 and step 5. In the latter case, the last body x_{B}-station listed corresponds to the leading edge of the tail section.

A.8.6 Output From Step 6

As a minimum, the output for this step is concerned with the loadings, including vortex-induced effects, acting on the tail section. This is the situation when optional step 3 a is engaged in which case afterbody loads are calculated by program BDYSHD. If step $3 a$ is not used, the loads are calculated on both the afterbody and tail section by program LRCDM2 in step 6 including vortex-induced effects. In both cases the output is similar to that described in step 3.

Input relevant to the tail section appears on the first few pages. This is followed by a list of vortex-induced perturbation velocities calculated in step 5. The coordinates $\mathrm{XCP}, \mathrm{YCP}, \mathrm{ZCP}$ correspond to the control points of the constant u-velocity panels on the tail fins and interference shell and are expressed in the rolled body coordinate system (x_{B}, y_{B}, z_{B}).

If optional step 3 a is not used, this list also includes vortex-induced velocity components at points on the afterbody, and the surface pressures and body ring loads are presented next at program determined axial locations $X B$. The format is the same as that used for presenting the surface pressures
on the forebody in step l. These pressures and the integrated loads acting on the rings include vortex induced effects calculated in step 5.

For cases with optional step $3 a$, the next portion of output gives the Bernoulli pressures acting on both sides of the fins. This is followed by a list of the linear and Bernoulli loading pressures acting on the fins. The format of the pressure distribution output is described in detail for the output of step l. In this step, effects induced by upstream vortices are included.

Tail-fin loads are given next, first using linear pressure loading and then Bernoulli pressure loading. These loads are presented in the same manner as the forward-finned section loads printed in step l so that comments made there apply here also. Again, these loads now include effects due to the upstream vortex flow field. The total load acting on one tail fin of the tail section is given by the sum of the force or moment coefficient listed under the heading "BERNOULLI PRESSURE LOADS IN BODY SYSTEM" or "FOLLOWING ARE IN UNROLLED BODY-AXIS COORDINATE SYSTEM" and the corresponding additional force and moment coefficients due to leading- and/or side-edge normal-force augmentations calculated with the linear pressure loading*. This latter information is printed a few pages earlier following the spanwise distributions output generated for linear pressure loading. The additional quantities appear under the headings "L.E. AUGMENTATION OF FIN NORMAL FORCE...ETC" and/or S.E. AUGMENTATION OF FIN NORMAL FORCE...ETC." The fin forces and moments are added to the forces and moments accumulated up to the tail section.

The next item of information printed in this step is the surface pressure distribution acting at the control points x_{B}, y_{B}, z_{B} of the body interference shell for the tail section. This shell covers the portion of the body from the leading

[^8]edge of the tail section to the trailing edge. The pressures are integrated to obtain loads acting on the rings centered at x_{B}. The loads summed over all the rings in the tail section are added to the accumulated force and moment coefficients.

Finally, the executive routine directs subroutine TOLDS to print the summary of total loads. Note that in the summing or accumulation process, only loads which include vortex effects are included (i.e., results from step 1 for the forebody, results from steps 3 and 6 for the finned sections and afterbody, or from optional step 3a for the afterbody). After printing the flow conditions, the total force and moment coefficients valid for the complete configuration under consideration are listed in the rolled and unrolled body-axis coordinate systems. These coordinate systems are described at the beginning of this section. The loads are calculated with the linear pressure/velocity relationship, Equation (5), and with the Bernoulli pressure/velocity relationship, Equation (6), respectively. Onthe basis of comparisons with experimental data, the Bernoulli results are considered the better of the two. It is also possible to employ optional nonlinear pressure coefficient calculation methods described in Section 2.6 of this report. The pressure headings will change accordingly.

A. 9 SAMPLE CASE

In order to illustrate the use of program LRCDM2 and optional program BDYSHD, the input and output are supplied in this appendix for a case involving a canard-tail missile with forward roll control. References will be made to the stepwise procedure described in Section A. 4 of this appendix.

The geometry of the sample case is associated with the TF-4 wind tunnel model with $A R=2$ canard fins and $A R=1.06$ "king" tail fins shown in Figure 3 of this report. The included angle of attack is high enough to cause formation of afterbody vortices. Thus, in this calculation companion program BDYSHD is engaged to account for afterbody-shed vortex effects on the afterbody loads under the influence of canard vortices, and BDYSHD will also generate the vortex field at the beginning of the tail section.

As shown in Figure 3, the configuration consists of an ogive nose followed by a cruciform canard section, cylindrical afterbody with constant radius and a cruciform tail section. The essential geometrical and modeling details are listed below together with the corresponding input variable names for the body, canard section and tail section.

Body

Nose length	LNOSE	9.518
Overall length	LBODY	102.32
Nose type	BCODE	2 (ogive)
Constant body radius	RA,RB	2.115
Number of singularities (line sources/sinks and line doublets)	NXBODY	50

Forward-Finned Section

(four fins in cruciform layout)

Fin root chord	CRP, CRPV	11.13
Leading-edge sweep angle	SWLEP, SWLEV	47.1°
Trailing-edge sweep angle	SWTEP,SWTEV	0.0°
Exposed fin span	B2,B2V	7.23
Interference shell length	BIL	11.13
Root chord L.E. location	XWLE	15.8
Deflection angles of left and right horizontal fins	DELL,DELR	$-5.0,+5.0^{\circ}$
Number of constant u-velocity panels in chordwise direc- tion	NCW	4 on each fin
Number of constant u-velocity panels in spanwise direc- tion	MSWR,MSWL, MSWU,MSWD	6 on each fin
Number of constant u-velocity panels in longitudinal direction on interference shell	NCWB	4
Number of constant u-velocity panels on circumference of interference shell	NBDCR	12

Tail Finned Section
(four fins in cruciform layout)

Fin root chord
Leading-edge sweep angle
Trailing-edge sweep angle
Exposed fin span
Interference shell length
Root chord L.E. location

CRP, CRPV 21.59

SWLEP,SWLEV 45.0°
SWTEP,SWTEV 0.0°
B2, B2V
9.04

BIL
XWLE
21.59
80.73

The constant u-velocity paneling layout is the same as for forward-finned section.

Flow Conditions and Reference Quantities

Included angle of attack	ALFS $\left(\alpha_{c}\right)$	15°
Angle of roll*	FEES (ϕ)	0.001
Free-stream Mach number	FMACH	2.5
Reference area	SREF	14.12
Reference length	REFL	4.23
Moment center	XM	46.04

All of the above information is included or used to generate the input shown in Figure A.5(a), A.5(b), and A.5(c) for the roll control case. All of the input data shown in these figures are read in together. The information listed in A. 5 (a) actually covers the geometry and other input for the canard and tail section. This data is stored on TAPE2 for later use. However, since NSTART=1 and NSTOP=3 (see Item l required for all runs), the calculations will be interrupted at the end of step 3. Index NBSHED is set equal to 1 signifying engagement of companion program BDYSHD. Figure A.5(b) shows the input for optional step 3 a required by program BDYSHD described in Appendix B. This input also includes the body characteristics and number of singularities listed above except that LNOSE was chosen 15.8. This will not make any difference insofar as calculations on the afterbody are concerned. Finally, the remaining input required by LRCDM2 to perform steps 4 through 6 is indicated in Figure A.5(c).

[^9]Note that the portion of input in Figure A.5(a) read in by module VPATH2 does not contain any canard or tail fin corner coordinates. This information is not required if the vortices are assumed to lie parallel to the body centerline over the length spanned by the canard section and tail section, respectively (refer to input descriptions for steps 2 and 5).

The job control card stream suitable for use on a CDC 7600 computer is shown in Figure A.6. Basically, program LRCDM2 is run first with the first half of the data of Figure A.5(a) to handle the forebody and the canard section. Upon completion of step 3, program BDYSHD is called to perform step 3a concerned with afterbody vortex shedding using the data of Figure A.5(b). Finally, LRCDM2 is called again with the second half of the data of Figure A.5(a) stored on TAPE 2 together with the data shown in Figure A.5(c) to treat the tail section. Data set transfers are organized automatically by the two programs.

The output generated by program LRCDM2 (with print control MINPRN=0 in \$INPUT, Item 2 of input for steps 1 and 4) and by optional companion program BDYSHD (with print controls NPRNTS=NPRNTV=1 and program output plot control NPLOTV=3;) is shown in Figures A.7(a), A.7(b), and A.7(c). A detailed description of LRCDM2 output is given in Section A. 8 of this appendix. Output generated by BDYSHD is discussed in Appendix B.

The first figure contains the output for steps 1 through 3 containing information calculated by LRCDM2 for the forebody and canard section. The right and left horizontal fins are deflected asymmetrically for roll control. For the included angle of attack and forebody length, no forebody vortices are formed. Therfore, module VPATH2 computes zero vortex-induced vortex effects and the fin loading results calculated in step 1 are the same as those printed under step 3.

Since optional program BDYSHD is engaged to treat the afterbody, Figure A.5(a) concludes with a summary of the loads acting on the forebody and canard fins. The forebody loads are determined in step 1 and the canard section loads are calculated in step 3. The basic total load on a canard fin based on Bernoulli loading pressure is given in the output for step 3 under the heading "FIN LOADING INFORMATION" (with ***STEP3 in upper right corner) and subheading "BERNOULLI PRESSURE LOADS..." If the fin has a subsonic leading edge and/or nonzero length side edge, additional loads acting on those edges are calculated with the linear pressure loading and printed a few pages earlier under the heading "L.E. AUGMENTATION..." and/or "S.E. AUGMENTATION..." For example, the total force coefficient acting on the deflected right horizontal fin (Fin l or R) in the z_{B}-direction is made up of the following contributions:
basic: $\left.C Z\right|_{\text {Bernoulli }}=2.7760$ from fin loading information based on Bernoulli loading pressure
$+$
additional: CZADD| S.E. $=0.02325$ from fin loading information based on linear loading pressure

$$
\left.\mathrm{CZ}\right|_{\mathrm{TOTAL}}=2.79925
$$

The basic fin loadings can be calculated with linear or Bernoulli pressure loadings, the additional loadings are always calculated with linear pressure loadings. This procedure holds for all force and moment coefficients acting on fins of a finned section.

The output of Figure A.7(b) contains pressure distribution and vortex field information generated by companion program BDYSHD. Only a subset of the actual output is shown. The analysis starts at the canard trailing edge ($X \equiv X_{B}=26.93$) with a set of vortices associated with the forebody and canard section. The vortex characteristics are specified next to the heading "INITIAL VORTICITY DISTRIBUTION." Vortex coordinates Y and Z are specified in the Y_{B} and z_{B} directions, respectively (see Figure A.4). This information is generated by subroutine SPNLD in step 3 and transferred by means of a data set on TAPE8 to BDYSHD. The output includes optional crossflow plane plots showing the upstream and additional vortices shed from the afterbody in a schematic manner. These plots only serve to visualize the vortex field in the vicinity of the circular cross section afterbody shown as a collection of asterisks. At the end of this output, the final vortex field is indicated and the portion associated with the shed vortices is represented by the two centroids of shed vorticity. The listed force and moment coefficients acting on the afterbody are calculated on the basis of the Bernoulli pressure Equation (6) only. A list of the vortex field data set at the beginning of the tail section ($X=x_{B}=80.73$), is printed. It is headed by the two afterbody vortex centroids. Note that this vortex field is not symmetric left to right. The loading and vortex field information is automatically transferred to program LRCDM2 for steps 4 through 6 by means of data sets stored on TAPE9 and TAPE8, respectively.

The printout shown in Figure A.7(c) is generated by program LRCDM2 for steps 4 through 6 of the stepwise procedure described in Section A. 4 of this appendix. Because optional step 3 a is exercised, the output for step 4 opens with the force and moment coefficients accumulated up to the tail section. This means that the afterbody loads calculated with companion program BDYSHD are added to the accumulated force and moment coefficients for the forebody and canard section.

For example, the force coefficients calculated with Bernoulli pressures and acting in the z_{B}-direction, CZB, as it appears in the list at the beginning of step 4 is obtained as follows.

$$
\begin{gathered}
\left.\mathrm{CZB}\right|_{\text {step } 3}=6.026 \\
+ \\
\frac{\left.\mathrm{CZ}\right|_{\text {step }} 3 \mathrm{a}}{}=0.40995 \\
\hline \begin{array}{c}
\left.\mathrm{CZB}\right|_{\mathrm{up}_{\text {uection }} \text { tail }}=6.436
\end{array}
\end{gathered}
$$

For this sample case, the output for step 4 (and step 6) is concerned with the tail section only since the afterbody is treated by companion program BDYSHD in step 3a. In step 4, 144 sets of control point coordinates are written onto TAPE4 for use in step 5. Coordinates XCP, YCP, and ZCP are expressed in the rolled body coordinate system x_{B}, y_{B}, and z_{B}, and they are associated with the control points of the constant u velocity panels on the four tail fins and the interference shell. The total number, NWBP, of panels in the tail section is given by

$$
\begin{aligned}
\text { NWBP } & =\text { NCW }(M S W R+M S W L+M S W U+M S W D) ~ \\
& + \text { NCWB }(\text { NBDCR }) \\
& =4(6+6+6+6)+4(12) \\
& =144
\end{aligned}
$$

where NCW, MSWR etc. are listed earlier in this section. The fin loading results printed in the remaining output for step 4 are calculated without the effects of canard-section and afterbody vorticity. Therefore, this calculation is for a set of tail fins mounted on a body with no flow asymmetry other than the fact that the roll angle is set equal to 0.001 as
described earlier in this section. Thus, the fin loads are symmetric left to right and the vertical fin loads are near zero. Rolling moment coefficient for the tail fins, CLL, is near zero. None of these loadings are added to the accumulated force and moment coefficients.

In step 5, the effects at points on the tail section due to the vortex field transferred from step 3a (program BDYSHD) are calculated and printed by module VPATH2. In this instance, the paths of the vortices through the tail section are made to lie parallel to the body centerline. This is accomplished by setting NIP=1 and XBEGIN=XEND=80.73 in the input to step 5 [last portion of input shown in Figure A.5(a)]. The list of lateral vortex coordinates and vortex strengths at $\mathrm{X}=80.73$ is the same as the list printed at the end of step 3a, Figure A.7(b).

In order to enlighten the program user, the vortex strengths and vortex numbers are given below together with the source of each vortex.

Vortex GAMMA/VINF

1

2

3

4

5

6 -2.2259
$7 \quad-0.093338$
$8 \quad-0.16236$

Source
$\left.\begin{array}{l}\text { Afterbody } \\ \text { Afterbody }\end{array}\right\}$ centroid representation
Right horizontal canard side edge
Left horizontal canard side edge
Right horizontal canard trailing edge
Left horizontal canard trailing edge
Upper vertical canard trailing edge
Lower vertical canard trailing edge

The next pages show the perturbation velocity components V and W (along $Y_{B^{-}}$and z_{B}-directions) induced by the set of vortices at the 144 control points on the interference shell and tail fins of the tail section. They are stored on TAPE 7 for use in the final step 6. Note that the magnitude of the velocity components never exceeds 0.35 , the default input value.

In step 6, program LRCDM2 computes the tail section loads including the effects of canard and afterbody vortices. The vortex-induced velocity components are printed under the heading "POINT COORDINATES AND PERTURBATION VELOCITIES CALCULATED BY PROGRAM VPATH2." They are the same as the ones printed at the end of step 5.

The calculated pressures and loads acting on the tail fins are now affected by the asymmetric vortex field. Consequently, in contrast with the results of step 4 the fin loads are no longer symmetric left to right, and the vertical fins now show nonzero loading. The basic tail-section rolling-moment coefficient, CLL, based on Bernoulli pressures is listed as -0.12915. In accordance with the description of output, Section A.8, the contributions due to tail-fin leading- and/or side-edge normal-force augmentations calculated on the basis of linear pressure loading must be added. In this case, the tail-fin leading edge is supersonic (as printed on the fin loading information page), and only the side edges add appreciable contributions. They are printed under the spanwise distributions of the linear pressure loads. The total rolling moment acting on the tail section including fin side-edge effects is obtained as follows.

$$
\begin{aligned}
& \text { CLL }\left.\right|_{\text {Bernoulli }}=-0.12915 \begin{array}{l}
\text { basic rolling moment coefficient } \\
\text { for four fins }
\end{array} \\
& \text { CLLADD }\left.\right|_{\text {right fin S.E. }}=-0.84428 \text { appreciable contribution } \\
& \text { CLLADD }\left.\right|_{\text {left fin } S . E . ~}=0.93415 \text { appreciable contribution } \\
& \text { CLLADD }\left.\right|_{\text {upper fin S.E. }}=-0.00447 \\
& \text { CLLADD }\left.\right|_{\text {lower fin }} \text { S.E. }=0.0 \text { (not printed) }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{CLL}\right|_{\text {total, fin tail }} ^{\text {section }}
\end{aligned}
$$

The loads acting on the portion of body next to the fins is then printed. These loads include fin-lift carryover. Since the bodies are assumed circular in LRCDM2, no additional rolling moment is generated.

Finally, the overall force and moment coefficients acting on the entire configuration are listed. As stated earlier at the conclusion of Section A. 8 , the Bernoulli-pressure based results are considered most valid at least up to Mach number 2.5 or thereabouts. As an example, the tail-section rolling-moment coefficient calculated above ($C L L=-0.04375$) is added to the rolling moment coefficient listed at the beginning of step 4 (CLL=-1.1351) to give the listed overall value of -1.394. The other force and moment coefficients are added in the same manner. This concludes the output for the sample case. The calculated results are indicated by the flagged solid squares in Figures $5(\mathrm{a})$ and $5(\mathrm{~b})$ of this report.

Figure A.l.- Subroutine calling sequence of program LRCDM2 including module VPATH2.
(pages 90 through 94)

$$
1
$$

Figure A.2.- Common Block cross reference map
for program LRCDM2.
(pages 96 through 99)
CROSS REFERENCE MAP

Figure A.3.- Subroutine cross reference map for program LRCDM2. (pages 102 through 107)

PRECCDING PAGE BLANK NOT FTLMED

A-101
CROSS REFERENCE MAP

PRIRCEDING PAGE BCANK NOT FTEMED

Figure A.5.- Input for TF-4 with king tails, roll control. (pages 112 through ll3)

Preceding page blank not fumed

D POCP

```
        1 3
            l
15.0
        1
0.001
    NASA/LRC TF-4 WITH KING TAIL, FOPEBODY AND CANARD SFCTION (POLL CONTPIL)
    SINPUT
    CRP=11.13,CRPV=11.13, SWLFP.47.1, SWLEV=47.1., B2=7.?3, R2V=7.23,
    DELR=5.0, DELL=-5.0,
    RA=2.115,RB=2.115,
    NOLINP=1, NDRAFm1, NCRX=1, NBDYPP=1,
    FMACH=2.5,
    SREF=14.12, PEFL=4.23, NCPOUT=1,
    XM=46.04, XWLE=15.3,
    NCM=4, MSWR=t, MSWL=6, MSWlj=6, MSWD=6,
    NCWB=4, NRDCP=12, BIL=11.13,
    NBSHED=1,
    SEND
    SBODY
    NYBODY=50, LNOSE=9.518, LSDDY=102.32, BCODE=2,
    SFND
    TRACK BODY NOSF VORTICEP OVER CANARN SECTION, TF-4, KING TATL
26.93
2.115
0.001 0.35
            1
15.8 15.8
    NASA/LRC TF-4 UITH KING TAIL, AFYFRAOCY AND TAIL SFPTION
    SINPUT
    CRP=21.59, CPPV=21.59, SWLFP=45.0, SWLFV=45.0. 82=9.04, P2V=0.04,
    NCH=4, MSWR=6, MSWL=6, MSWU=6, MSWD=6,
    RA=2.115,RB=2.115,
    NCWR=4, NADCR=12, AIL=21.59,
    NDLINP=1, NDRAG=1, NCRX=1,
    FMACH=2.5,NBSHFN=1,
    SREF=14.12, REFL=4.23,
    NBOYPR=1, NCPOUT=1, ITAIL=1,
    XH=46.04, XHLE=R0.73, XSTART=80.73,
    SEND
    TRACK VORTICES ALONG AFTERBDOY ANO TAIL SFCTION, TF-4, KINE TAIL
102.32
2.115
0.001 0.35
    6.73
    80.73
END
```

(a) Steps 1-3 and steps 4-6 for later use

(b) Step 3a, input for program BDYSHD

$$
\begin{array}{r}
4 \\
15 \\
15.0^{1} \\
0.001
\end{array}
$$

(c) Remaining input for steps 4-6

Figure A.6.- Typical job control language for use of program LRCDM2 with companion program BDYSHD.

(a) Steps 1-3, program LRCDM2

Figure A.7.- Sample case output for $T F-4$ with king tails, roll control.
(pages 118 through 168)

PRECEDING PAGE BLANX NOT mTEMED
$c-3$

$$
\begin{aligned}
& \text { XM }=.4604 E+02 . \\
& \text { XSTART }=0.0, \\
& \text { XWLE }=.15 E E * 02, \\
& \text { ZM }=0.0, \\
& \text { SE^D }
\end{aligned}
$$

L

FIN SECTION GEOMETRY DESCRIPTION
NO. OF CHORDWISE PANELS ON FINS PRESENT (NCW) $=4$

FIN GEOMETRY	
TIP CHORD	$=3.34959$
ROOT CHORD	$=11.13000$
FIN SEMISPAN	$=7.23000$
LEADING EDGE SWFEP	$=47.10000$ DEGREES
TRAILING EDGE SWEEP	$=0.00000$ DEGREES

FLOW CONDITIONS
MACH $=2.50000 \quad$ ALPHAC $=15.00000$ PHI $=.00100 \quad$ ALFA $=15.00000 \quad$ BETA $=00026$
$\begin{aligned} \text { CRPT } & =11.13000 \\ \text { CRPTV } & =11.13000\end{aligned}$
1.9733

¢

 N

pressure coefficients at points on body meridians

DR/0X

.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785
.14785

.02626 .08516	$\begin{array}{r} .13638 \\ .09115 \end{array}$	$\begin{array}{r} .07124 \\ .01506 \end{array}$
OR ROLLED BOOY-AXIS COORDINATES		
EAR LOADING	BERNOULL	Loading
.04691 .30418		
-. 00001	-. 0	
2.86267	3.6	
-.00005	-. 0	

N

vTOT

BOOY RING:

5.00000
0.00000 888
088
088
0.810
0 8 80
80
08
08
Ni
Ni 105.00000
 80
8.8
88
80
0.
0.
$i n g$
0

 88
888
888
08
08 88 88
88
80
 88
88
88
0.
0. BODY LOADS ON RING 2 AT $X=6.23104$
UNROLLED BODY-AXIS COORDINATES LINEAR LOADING BERNOULLI LOAOING $\begin{array}{lrr}C X & & \\ C Z & .30418 & .38650 \\ C Y & -.00000 & .00000 \\ C M & 2.86267 & 3.63736 \\ C L N & -.00000 & .0000\end{array}$
LINEAR LOADING BERNOULLI LOADIIVG

\qquad 000 CUMULATIVE BOOY LOADS TO THIS STATION

75.010000	14.44675	. 54740	2.04293	. 03149	-. 13412	-. 22586	-. 06298	-. 01362
590.00000	14.49675	-. 00000	2.11500	. 03231	-. 00000	-. 210190	-. 06461	.00354
7105.00000	14.49675	-.54740	2.04293	.03149	. 13411	-.22586	-. 06298	-.01361
A 120.00000	14.49675	-1.05150	1.83164	. 02910	. 23230	-. 12768	-. 05820	-.05560
9135.00000	14.49675	-1.49553	1.49553	. 02530	. 268824	.00643	-. 05060	-.10235
10150.00000	14.49675	-1.83154	1.05750	.02035	-23230	. 14055	-.04070	-.13814
11 165.00000	14.49675	-2.04793	. 54740	.01458	-13412	. 23874	-. 02916	-. 15747
12180.00000	14.49675	-2.11500	-.00000	.00839	-.00000	. 27467	-.01678	-.16045
13195.00000	14.49675	-2.04293	-. 54740	.00220	-.13411	. 23874	-.00441	-. 14643
14.210 .00000	14.49675	-1.83104	-1.05750	-. 00356	-. 23230	. 14056	.00713	-. 11175
15225.00000	14.49675	-1.49553	-1.49553	-.00852	-. 26824	.00644	.01703	-.05372
16240.00000	14.49675	-1.05750	-1.83164	-.01232	-. 23230	-. 12768	.02464	-02007
17 255.00000	14.49675	-.54740	-2.04293	-. 01471	-.13412	-. 22586	.02941	-08559
18 270.00000	14.49675	.00000	-2.11500	-. 01552	-.00000	-. 26180	.03104	-11224
19285.00000	14.49675	. 54740	-2.04293	-. 01471	.13411	-. 22586	.02941	.08560
20300.00000	14.49675	1.05750	-1.83164	-.01232	.23230	-.12768	.02464	.02008
21315.00000	14.49675	1.49553	-1.49553	-.00852	.26824	.00643	. 01704	-.05371
22330.00000	14.49675	${ }_{1.83164}$	-1.05750	-.00357	.23230	. 14055	.00713	-. 111175
23345.00000	14.49675	2.04293	-.54740	.00220	. 13412	. 23874	-.00440	-. 114643
360.00000	14.49675	2.21500	.00000	.00839	.00000	.27467	-.01678	-. 16045
boor loads on ring - at $\mathrm{X}=14.49675$								
Unrolled roor-axis coordinates					Fixed or rolled boor-axis coordinates			
linear loading bernoulli loading					linear loading bernoulli londin			
cx						00000		
cz	. 09399		. 08718			09399		
${ }_{\text {cr }}^{\text {cr }}$.00000		.00000			00000		
$\mathrm{CLM}_{\text {cin }}$	-70091		. 65010			70091		
CLN	-00000		.00000			.0001		
cumulative boor loads to this station								
UNROLLEO BOOY-AXIS COOROINATES					FIXED OR ROLLED GODY-AXIS COORDINATES			
linear loadin		g bernoulli loading			linear loading		bernoulli loading	
${ }_{c}^{\text {cx }}$						19113		
${ }_{C}^{C 2}$	-77948 -.00000		.93378			77948		
cm	7.08096		8.64568					
cln	-.00000		. 00000			00012		
vortex information mritten on taper from subroutine demonz								
- r	z	gamma/	vinf					

 NNMNJNNNZ (いい)

 0
1
1
0
0
0
0
0
0
0
0
0
 O
 n
1
4
4
4
4
4
4

$\underset{7}{2}$

$2(J)$

$\rightarrow \infty$
∞
0
α
\vdots
\vdots
0
0
0
$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0\end{aligned} 0_{0}=$

[^10]

CONTROL POINT COORDINATES FOR BIP*S (FIN FRAME)

ORIGINAL PAGL
 OF POOR QUALIT:

 N
N
N
N
$=0$ 0
0
0
0
0
0
0
0
0 0
N_{0}
0
0
0
0 80
0
0
0
08
08
08 \sim
\sim
~ 0
\sim
\sim
0
0
 0
000
$N 0$
0
0
0
0
0
0

ㅇㅇOOOOONNNNMMMNM

```
N
```


[^11]

nnn

 응ㅇㅇ으응

-** STEP 1

DEFL. ANGLE		total	FIN 1 OR R	FIN 2 OR L	FIN 3 OR U	FIN 4 OR D	INTERF. SHELL
			5.00000	-5.00000	-.27064E-03		
	CTHR = $c z=$	${ }_{4}^{48327 E-01}$	${ }_{2}^{4.5707}{ }^{\text {a }}$. $19533 \mathrm{E}-01$	$-.27064 E-03$. 58154
	Cr ${ }^{\text {che }}$	-.69007E-04	0.5707	0.0	.29987E-01	-.30056E-01	. 510138 Cl -04
	cm $=$	22.666	14.176	8.4905	0.	0.	3.2168
	CLN $=$	-.38198E-03	0.	0.	-15075	-. 15113	-. 5608BE-04
	CLL $=$	-1.2724	-3.1676	1.8489	-23113E-01	.23196E-01	. $34388 \mathrm{E}-15$
	following are in unrolled body-axis coordinate system						
	c2u =	4.1038	2.5707	1.5331	-.52338E-06	.52458E-06	. 58154
	cris $=$	-26187E-05	-448675-04	- 2675958504	-29987E-01	-.30056E-01	-11440E-07
	CMU $=$	22.666	14.176	8.4905	-.26310E-05	.26377E-05	3.2168
	CLNU $=$.13620E-04	.24742E-03	.14819E-03	. 15075	-.15113	.55927E-07

THRUST- AND SIDE-FORCE COEFFICIENTS IN PLANE OF THE FIN SUMF $X=C X \ldots A C T S$ ON LEADING EOGE
SUMFY $Y=C Y \ldots A C T S$ ON LEADING EDGE SUMFY2xCY..ACTS ON LEADING AND SIDE EDGE
SUMFT2xCY.AACTS ON SIDE EDGE

SHOEEDGE OISTRIBUTION

JTIP	JSE	DISTANCE FROM LE /TIPCHORD	SUCTION FORCE PER UNIT LENGTH /(Q*TIPCHORD)	GAMMA,SE /VINF	YBAR	X $\mathrm{SE}^{\text {E }}$
1	1	.25000	-. 00110	. 00020	7.23000	7.78041
2	2	.50000	-. 00398	. 00092	7.23000	8.61780
3	3	.75000	. 01211	. 00313	7.23000	9.45520
4	4	1.00000	.09984	. 02130	7.23000	10.29260

$$
\begin{array}{ll}
09262 \cdot 01 & 000 \varepsilon 2 \cdot L \\
025 S^{\circ} 6 & 000 \varepsilon 2 \cdot L \\
08 \angle 19^{\circ} 8 & 000 \varepsilon 2{ }^{\circ} L
\end{array}
$$

S.E. AUGMENTATION OF FIN NORMAL FORCE FRUM SUCTION CONVERSION IN PROPORTION WITH FACTOR

$$
\begin{aligned}
& \text { (UNROLLED BODY-AXIS) } \\
& \text { CYADD }=\begin{array}{r}
00000
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\text { CYADD } & =.00000 \\
\text { CZADD } & =.02325 \\
\text { CMADD } & =.11425 \\
\text { CLNADD } & =.00000
\end{aligned}
$$

BAMMADLE/VINF XLE

GAMNET (1)

thrust- and side-fopce coefficients in plane of the fin
SUMFX $=C X \ldots A C T S$ ON LEADING EDGE
SUMFY $1=C Y \ldots A C T S$ ON LEADING EOGE
SUMFY $2=C Y$.AATS ON LEADNG ANO SIDE EOGE
SUMFT $2=C Y$.ACTS ON $C I O E$ EDGE.
SIOE EDGE OISTRIBUTION
XSE
7.78041 0
0
0
0
0
0
0
0 09262.01
0255500

SUMFX $=0$.
SUMFY1 $=0$.
SUMFYZ $=-.18233 E-01$
SUMFTZ $=-.50575 E-02$
JTIP JSE DISTANCE SUCTION FORCE

S.E. AUGMENTATION OF FIN NORMAL FURCE FROM SUCTION CONVERSION IN PROPORTION WITH FACTOR

thrust- and side-force coefficients in plane of the fin

SUMF $X=C X \ldots A C T S$ ON LEADING EDGE
SUMFY $1=C Y$..ACTS ON LEADING EDGE SUMFX $=$ CX..ACTS ON LEADING EDGE

SUMFY $1=C Y \ldots A C Y S$ ON LFADING EDGE
SUMFY $\cap=C Y$ AACTS ON IEADNG AND SIDE EDGE
SUMFT $2=C Y$.ACTS ON SIDE EOGE Sumber.oActs on Sioe EOGE

*** STEP 1
bernoulli pressure loads in body system

$$
\begin{aligned}
\text { DEG. } & =0 \\
\text { CTHR } & =0.68327 E-01 \\
\text { CZ } & =4.4827 \\
C Y & =-.16859 E-01 \\
C M & =-24.663 \\
C L N & =-1.0453 \mathrm{E}-01 \\
C L L & =-1.3137
\end{aligned}
$$

fin loading information

$$
\begin{aligned}
& \text { FIN } 2 \text { OR L } \\
& -5.00000 \\
& 119533 \mathrm{E}-01 \\
& 1.7066 \\
& 0 . \\
& 9.4297 \\
& 0.0 .0623
\end{aligned}
$$

$$
\begin{aligned}
& \text { NATE SYSTEM } \\
& 1.7066 \\
& .29786 E-04 \\
& 9.4297 \\
& .16458 E-03
\end{aligned}
$$

FIN 3 OR U
0000000
$-.27064 E-03$
$0.026190 E-01$
0.013226
$.20344 E-01$

$-.45711 E-06$
$.26190 E-01$
$-.23084 E-05$
-13226

$$
\begin{aligned}
& -.45711 \mathrm{E}=06 \\
& \therefore .26190 \mathrm{E}-01 \\
& -.23084 \mathrm{E}-05 \\
& .13226
\end{aligned}
$$

GAMNET(1) GAMMA.LE/VINF XLE

-3.15103	0.00000	.63500
.05282	0.00000	1.92985
.19480	0.00000	3.22407
.35559	0.00000	4.51731
.51857	0.00000	5.80884
.65163	0.00000	7.09699
1.37763		

$\begin{aligned} & 09262^{\circ} 01 \\ & 0255^{\circ} 6 \\ & 08219^{\circ} \% \\ & \text { I } 408 L^{\circ} \angle \end{aligned}$		$\begin{aligned} & 88500^{\circ}- \\ & 21000^{\circ}- \\ & 15000^{\circ}- \\ & 11000^{\circ}- \end{aligned}$	$00220^{\circ}-$ $21100^{\circ}-$ 60200° 15000°	$\begin{aligned} & 00000^{\circ} \mathrm{I} \\ & 00052^{\circ} \\ & 0000 \mathrm{~S}^{\circ} \\ & 000 \mathrm{~S} 2^{\circ} \end{aligned}$	$\begin{aligned} & b \\ & b \\ & 9 \\ & b \end{aligned}$	¢ ¢ I
35x	4V8人	$\begin{aligned} & \text { INIM/ } \\ & 3 S^{\circ} \text { VWHVO } \end{aligned}$	$\begin{array}{r} (080 H J d I * O) \prime \\ \text { HI9N37 IINN 甘3d } \\ 3 J 80 y \text { NOI } \end{array}$	$\begin{gathered} \text { OAOHJOII' } \\ 37 \text { WO甘A } \\ \text { 3ONVISIO } \end{gathered}$	3 Sr	dlir
			NOILCBIalsio 3903 30Is			
			$\begin{aligned} & 20- \\ & 10- \end{aligned}$			

＊＊＊＊T．E．FIN VORTICITY DUE TO ATTACHED FLOW＊＊＊＊＊

$4 \quad-2 . ? 2595 \quad-5.41287 \quad-7.52787 \quad-.0 n 000$

$00000^{\circ} 0$ $\begin{array}{ll}-.04248 & 0.00000 \\ -.00912 & 0.00000 \\ -00169 & 0000000 \\ -.00017 & 0.00000\end{array}$ 0.00000
0.00000
0.00000
0.00000 응응

thrust- and side-fopce coefficients in plane of the fin SUMFX $=C X . . A C T S$ ON LEADING EDGE SUMFY $=$ CY.AACTS ON LEADING ANO SIOE EOGE SUMFT? $=$ CY..ACTS ON SIDE EDGE

****T.E. FIN VORTICITY DUE TO ATTACHED FLOW*****

$\dot{0} \dot{0} \dot{0} \dot{0} 0000000000000000000$

Sten 3 Loads on formard fins with effects of nose vortices
Nasa/lerc tf-4 with king tail (D), forebody and canard section

$$
\begin{aligned}
& \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=.1113 \mathrm{~F}+02 . \\
=.723 \mathrm{E}+01 . \\
=.723 \mathrm{E}+01 .
\end{array} \\
& =.1113 E+02 \text {. } \\
& \begin{array}{l}
=.1113 \mathrm{~F}+02 . \\
=0.0 .
\end{array}
\end{aligned}
$$

NOILdIEJS30 人al3wo39 Nollo3s NIy

BETA =
FIN 3OR U
6
11.130
47.100
0.000
7.230
90.000
90.000
0.000
2.000
2.115

$\mathrm{MACH}=$

2.50000 ALPHAC=
 $A L F A=15.00000$

.00100
\square
"
$\begin{aligned} \text { CRPT } & =11.13000 \\ \text { CRPTV } & =11.13000\end{aligned}$
point coordinates ann perturbation velocities calculated by program vpathz

$\dot{0} \dot{0} \dot{0}$

VTOTB

 －． 2287

ミ
\therefore

ORIGINAL PAGE IS OF POOR QUALITY

fin loading information
LINEAR PRESSURE（U／vinf）loads in boor system
FIN $30 R U$
0.00000
$-.27064 E-03$
9.
$.29987 E-01$
0.
.15075
$-23113 E-01$

$-.52338 E-06$
$-29987 E-01$
$-.26310 E-05$
-15075
92051°
$50-301 \varepsilon 92^{\circ}-$
$10-328662^{\circ}$
$90-38 \varepsilon \varepsilon 25^{\circ}-$

		$\begin{array}{r} 70-3029 E 10 \\ 499^{\circ} \mathrm{C} 2 \\ 50-3 \angle 8192^{\circ} \\ 8 E 01^{\circ} \end{array}$	$\begin{aligned} & =\cap N 7 J \\ & =n w J \\ & =n A J \\ & =n \angle J \end{aligned}$
W3ISAS $31 \forall \mathrm{~N}$	SIXV－A008	NI 3av 9n	
$68 \vee 0^{\circ}!$	$919{ }^{\circ} \mathrm{E}$	$\begin{array}{r} +2 \angle 2^{\circ} \mathrm{I}- \\ \varepsilon 0-38618 \varepsilon^{\circ}- \end{array}$	
S06＊＊	911＊ 1	－999．22	＝WJ
Tccs．${ }^{\circ}$	${ }^{\circ} 0$	－0－320069－	
IEES＊！	L0LS＊2	8E0I＊＊	$=2 \mathrm{~J}$
$\begin{aligned} & 10-3 E E 561 * \\ & 00000^{\circ} \mathrm{S} \end{aligned}$	10－3SEE6＊＊	10－3L2E89＊	$=$ OH1J
$70000{ }^{\circ} \mathrm{S}$－	$00000^{\circ} \mathrm{S}$	70101	$=\cdot 930$

ORIGINAL PAGE IS OE POOR QUALITY

$.52458 E-06$
$-.30056 \mathrm{E}-01$
$.26377 \mathrm{E}-05$
-.15113
SPANWISE DISTRIAUTIONS
GAMMA•LEJVINF XLE

THRUST- AND SIDE-FORCE COEFFICIENTS IN PLANE OF THE FIN SUMFX $=C X$..ACTS ON LEADING EDGE

[^12]
$00000^{\circ} 0$
$00000^{\circ} 0$
$000000^{\circ} 0$
$00000^{\circ} 0$
$00000^{\circ} 0$
$00000^{\circ} 0$
INISO

-

TMRUST- and SIDE-FORCE COEFFICIENTS IN PLANE OF THE FIN SUMFX $=$ CX..ACTS ON LEADING EDGE
SUMFY $=$ CY..ACTS ON LEADING EDGE SUMFY $=$ CY. .ACTS ON LEADING FDGE
SUMFY $2=C Y \ldots A C T S$ ON LE.ADING AND SIDE EDGE
SUMF $?=$ CY. ACTS ON SIDE EUGE

SIOE EDGE distribution

[^13]| $\begin{aligned} & 09262 \cdot 01 \\ & 02555^{\circ} 0 \\ & 08 \angle 190^{\circ} 8 \\ & 14082^{\circ} \mathrm{L} \end{aligned}$ | | | | $000000^{\circ} \mathrm{I}$ 9 I
 00002° SI
 00005° ПI
 0002° $\varepsilon \mathrm{I}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\varepsilon} \\ & \underset{\imath}{2} \\ & \mathfrak{l} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3Sx | 4VAA | 3S・シWINV' | (OyOHJdIL.O)/
 h+ongl linn tad 3コyos NoliJns | OBOHJdII/
 37 Woyd 3JNVLSIO 35 r | didr |
| | | | NOILSHIALSIO 3903 301s | | |
| | | | $\begin{aligned} 11-3 \angle 2892^{\circ} & =213 \mathrm{WnS} \\ -0-392299^{\circ} & =2 \wedge \text { Whns } \end{aligned}$ | | |

*** STEP 3 ster

fin loading information
bernoulli pressure loads in booy system

SPANWISE DISTRIBUTIONS
GAMMA-LETVINF XLE

CSINT
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

I	Y/(A/2)	CN*C/(?*B)	$C T * C /(2 * B)$	$\mathrm{CY} 1{ }^{*} \mathrm{C} /(2 * B)$	CYTOT*C/(2*R)	CS* ${ }^{(12 * B)}$
1	. 08162	. 2.3373	0.00000	0.00000	. 00250	0.00000
$?$.24804	.22936	0.00000	0.00000	. 000460	0.00000
3	. 41438	.21605	0.00000	0.00000	.00530	0.00000
4	.58060	.19066	0.00000	0.00000	. 00435	0.00000
5	. 74660	. 15210	0.00000	0.00000	.00363	0.00000
6	.91216	. 10289	0.00000	0.00000	0.00000	0.00000
7	1.00000	0.00000				

THRUST- AND SIDE-FORCE COEFFICIENTS IN PLANE OF THE FIN
SUMFX $=C X . . A C T S$ ON LEADING EOGE
SUMFY $=C Y . . A C T S$ ON IEADING FDGE
SUMFYZ=CY..ACTS ON IEAUING AND SIDE EDGE
SUMFT $?=C Y$..ACTS ON SIDE EDGE.

$09262^{\circ} 01$	$000 \varepsilon 0^{*} 2$	OE120*	-8660*	00000*1	\#	†
02SS**	000E2*	EIE00*	11210	ouosi**	E	ε
$081{ }^{\text {c }}$	$000 \varepsilon 2^{\circ} \mathrm{L}$	26000°	B6E00*-	$0000{ }^{\text {c }}$	c	2
[\$081*	000E2*L	02000°	$01100{ }^{\circ}-$	00052 -	I	1
35x	\%V8d	$\begin{aligned} & \text { JNIA' } \\ & 35 \cdot \forall W W \forall O \end{aligned}$	(0yOHJdILOO)/ h19N37 11N H 3 d 3JyOf Nollons	O4OH2dI/ 37 WOHy 3JNVISIO	3Sr	dll
			NOILIEIaISIO 3903 3015			
			$10-$	$\begin{aligned} & =21 \mathrm{sh} \\ & =2 \lambda h h \end{aligned}$		

T.E. FIN VORTICITY DUE TO ATTACHED FLOW**
IVOT GAMMA/VINF Y.C.G. Y.C.G. Z.C.G.
0.00000
3.37977 5.79RA7
7.91387
3 3.37977 5.79RA
gamma,Le/VINF XLEgamnet (i)

CSINT	YBAR
0.00000	$0.000 n 0$
0.00000	0.00000
0.00000	0.00000
0.00000	0.00000
0.00000	0.00000
0.00000	0.00000

Y/(B/2)	CN*C/(?*B)	$\mathrm{CT} \times \mathrm{C} /(2 *)^{\text {a }}$	$\mathrm{Cr1*C/(208)}$	CYTOT*C/(2*B)	CS* $\mathrm{C} /(2 * 8)$
-.0816?	. 15394	0.00000	0.00000	-. 00192	0.00000
-.24804	. 14719	0.00000	0.00000	-.00182	0.00000
-. 41438	. 13373	0.00000	0.00000	-. 00166	0.00000
-. 58060	. 11355	0.00000	0.00000	-.00211	0.00000
-. 74660	- 08656	0.00000	0.00000	-.00087	0.00000
-. 91216	. 05652	0.00000	0.00000	0.00000	0.00000
-1.00000	0.00000				
thrust- and side-force coefficients in plane of the fin					
SUMFX $=C X .$. ACTS ON LEADING EDGE SUMFY $=$ CY...ACTS ON IEADING EDGE					
SUMFYZ 2 CY...ACTS ON LEADING AND SIDE EDGESUMFT?					
SUMFT? $=$ CY..	CTS ON SIDE	enge			

べへへへ

$$
\begin{aligned}
& \text { SUMFX }=0 \cdot \\
& \text { SUMFY1 }=0 \cdot \\
& \text { SUMFYZ }=0.65226 E-04 \\
& \text { SUMFTZ }=.26827 E-11
\end{aligned}
$$

side edge distribution

YBAR	XSE
0.00000	7.78041
0.00000	8.61780
0.00000	9.45520
0.00000	10.29260

PRESSURE COEFFICIENTS AT POINTS ON BOOY MERIDIANS

 0.
0.
0.
0 $-.13947$.00857

 $\begin{array}{rr}3 & 45.00000 \\ 2 & 75.00000 \\ 4 & 105.00000 \\ 5 & 135.00000 \\ 4 & 185.00000 \\ 7 & 195.00000 \\ 2 & 225.00000 \\ 0 & 255.00000 \\ 10 & 285.00000 \\ 11 & 315.00000 \\ 17 & 345.00000\end{array}$ BODY LOADS ON RING 2 AT $X=21.22588$
bernoulli loading linear loaning
linear loading bernoulli loading
FixED or ROLLED bODY-AXIS COOROINATES
0.00000
-10012
-.05295
-.58733
-.31063

$$
\begin{array}{r}
0.00000 \\
.11876 \\
-.00000 \\
.69668 \\
-.00001
\end{array}
$$

 .00599
-.09595 $\stackrel{9}{2}$
 .12247
.27223 .06670
$.03986 \quad .27223$
응ㅇㅇㅇㅇㅇㅇ응 108
0880
080
0.8 $\stackrel{\circ}{\circ}$
.66962°
-

$$
\begin{aligned}
& \text { FIXED OR ROLLED BODY-AXIS COORDINATES } \\
& \text { LINEAR LOADING BERNOULLI LOADING }
\end{aligned}
$$

$$
\begin{array}{r}
0.00000 \\
.17911 \\
-.00000 \\
1.09042 \\
-.00002
\end{array}
$$

38980
.96205

Cumulative body loads to this station

$$
\begin{aligned}
& \text { UNROLLED BOOY-AXIS COORDINATES } \\
& \text { linear loaning gernoulli loading }
\end{aligned}
$$

(b) Step 3a, program BDYSHD Figure A.7.- Continued.
(pages 170 through 210)
2
$\frac{2}{n} 0$
2
2
$\sum_{2}^{4} 0$
2°

INITIAL CONDItIONS				$\begin{gathered} x_{1} \\ 26.930 \end{gathered}$	$\begin{gathered} \text { XF } \\ \mathbf{8 0 . 7 3 0} \end{gathered}$	$\begin{gathered} D x \\ 2.115 \end{gathered}$		$\begin{gathered} \text { YOL } \\ .10000 \end{gathered}$	$\begin{aligned} & \text { EMKF } \\ & 1.050 \end{aligned}$		$\begin{aligned} & \text { RGAM } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { RCORE } \\ & .25000 \end{aligned}$			
OPTIONS...															
NCIR_{0}	NFC 0	ISYM	NRLSEP	$\underset{0}{\text { NSEPR }}$	$\underset{0}{\text { NSMOTH }}$	$\underset{1}{\text { NDFUS }}$	$\underset{2}{\mathrm{NDPHI}}$	INP	NXFV 0	${ }_{0}^{\mathrm{NFV}}$	NVP	$\underset{0}{\text { NVR }}$	NVM	NVA	$\begin{gathered} \text { NASYM } \\ 0 \end{gathered}$

0. ${ }^{C A}$

	INITIAL	CONDITIO		$\begin{gathered} x_{1} \\ 26.930 \end{gathered}$	$\begin{gathered} x F \\ 80.730 \end{gathered}$		$\begin{aligned} & 0 x \\ & 2.115 \end{aligned}$	$\begin{gathered} \text { TOL } \\ .10000 \end{gathered}$			$\begin{aligned} & \text { RGAM } \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { RCOR } \\ & .250 \end{aligned}$			
OPTIONS...															
$\underset{0}{\text { NCIR }}$	NFC	$\begin{array}{\|c} 15 M \\ 1 \end{array}$	$\underset{1}{\text { NRLSEP }}$	$\underset{0}{\text { PSEPR }}$	$\underset{0}{\text { NSMOTH }}$	NDFUS 1	$\underset{2}{\mathrm{NDPHI}}$	$\begin{gathered} \text { INP } \\ 1 \end{gathered}$	$\underset{0}{\text { NXFV }}$	$\begin{gathered} N F V \\ 0 \end{gathered}$	$\underset{0}{\text { NYP }}$	$\underset{0}{\text { NVR }}$	$\underset{0}{\text { NVM }}$	$\underset{0}{\text { NVA }}$	$\begin{gathered} \text { NASYM } \\ 0 \end{gathered}$

$\times \stackrel{n}{i}$

$\begin{array}{ccccc}\text { NCIR } & \text { NFC } & \text { ISYM } & \text { NRLSEP NSEPR } & \\ 0 & 0 & 1 & 1 & 0\end{array}$

$\stackrel{-}{\circ}$

$$
\begin{aligned}
& \begin{array}{l}
\text { SBIDY } \\
\text { NXLOOY } \\
\text { LNOSE } \\
\text { LAODY } \\
\text { BCCIDE } \\
\text { SENI }
\end{array}
\end{aligned}
$$

 ẵoño

2.1150

$26 .{ }_{2}^{x} 0300$

 -

c
0
0
\vdots
$:$
-4.800
-q.non

SUMMARY OF PRESCHPE DISTPIRHTITN ANO SEPARATION POTNTE NN RTMY ... $x=20.03$

$8 \stackrel{m}{m}$
$\stackrel{y}{c}$
c
0
0
0
0
0
$-i$

1.73425

$$
\text { +Y SIDEY CTAGNATIJNPT. } \quad \text { - } 184
$$

$$
\begin{aligned}
& \text { CTAGNATIJN PT. } \\
& \text { MIN. DOFSSIIRF } \\
& \text { CEPARATITN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { STAGNATION DT. } \\
& \text { MIN. PRFSSIIRE } \\
& \text { SEPARATIDN }
\end{aligned}
$$

-r SIDFY STAGNATION DT.

$$
\begin{gathered}
r \\
.184 \\
2.083 \\
1.255 \\
Y \\
.367 \\
-2.115 \\
-1.633
\end{gathered}
$$

$$
\begin{gathered}
7 \\
-2.107 \\
-.367 \\
1.700 \\
7 \\
2.083 \\
-.000 \\
1.343
\end{gathered}
$$

INITIAL PCSITIONS AND STRFNGTHS DF SHEO VORTI

$$
G A M(V \quad M(K) \quad Y
$$

$$
.0401 \quad 1.3198
$$

$$
\begin{array}{ccccc}
-Y S I D E: \quad 8 & -.1235 \quad .1204 & -1.7266
\end{array}
$$

$$
\begin{array}{r}
\text { QFTA } \\
5.00 n \\
80.000 \\
143.540 \\
957 \Delta \\
170.000 \\
770.000 \\
270.570 \\
Y A T Y \\
7 \\
1.7858 \\
1.4197
\end{array}
$$

$$
230.5704
$$ $C P$

.055
.004
.046
$C P$
.070 .077
-.083
-.047
VTIV
.1394
.335 E
VC
1.31 AR
$-1.726 R$

$$
R G / R
$$

1.05994

1.06827

	mar	Y DF VJRT	TFL? ${ }^{\text {a }}$	$x=29.0$?.11500
	NV	TSAM/V	v	7	XSHET	META
1	1	. 02127	1.17594	1.90850	26.02000	148.2 R ?
1	2	. 02130	8.05489	1.70166	0.00000	100.790
?	3	-. 005 Fa	-9.2H1R4	1.25614	0.00000	76?. 293
3	4	3.77980	7.9153 A	-48343	n.0nono	93.405
4	5	-2.??590	-7.50703	. 56090	$0.0 n 000$	265.7ア7
5	6	-.07334	.06147	4.37242	0.00000	170.105
6	7	-.14236	-.05502	-3.685an	9.0000n	2×9.989
1	8	-. 12345	-1.44819	1.73425	$96.0300 n$	219.964

CSL
$-4.049 \mathrm{~F}-17$

	nv	f.amiv	m(k)	r	7	bfta	Vt/V	re.	T	RG/R
+Y SIDEP	7	. 0213	. 0401	1.3198	1.78ba	143.5695	. 1394	1.31 AB	1.7968	1.0500
-r SIDEP	8	-. 1235	. 1204	-1.7266	1.4197	230.5704	. 3358	-1.726	1.4197	1.0569

(SEPARATION POINTS)
$\begin{array}{rcr}Y & 2 & 8 E T A \\ 1.060 & 1.830 & 149.9 \\ -1.731 & 1.216 & 234.9\end{array}$

$$
\lambda 11 J
$$

Yc	18	er	RG/R
-86841	2.24409	2.40638	1.13777
. 60796	P.147Ea	2.31326	1.09374
.70trb	2.17821	2.34753	1.06030
6.44785	3.14085	7.18093	3.39524
-8.09033	4.54707	9.29059	4.38799
7.86366	3.41923	8.22738	3.89001
-7.38233	2.78¢\%	7.89030	3.73064
. 25459	5.49927	5.50516	2.60291
-.45761	-7.73411	2.77217	1.31072
-.88676	2.03?30	T.21734	1.04839
-. 92635	2,23850	2.47260	1.14544
-1.30721	2.73974	2.4?267	1.14547
-1.59190	1,77553	2.34768	1.11001
-1.85701	1.3 ?n84	?. 27884	1.07747

$x c$

[^14]
oñay

\&が

-

h. 000

ORIGINAL PAGE IS
OF POOR QUALITY
STRATFDOD SEPARATITN CRITERITN (LAMINAK) E(S) * .O2?5?

+ Y Stines		y	7	QETA	ARC	CP	$C^{\circ}{ }^{*}$	ncomer	
	STAGNATITN PT.	0.000	-2.11*	n.orn	. 050	. 012			
	MIN. PRTSSIJRF	1.997	-.72*	7n.non	9.507	-. 047	0.000	0.000	
	efraratitn	0.000	0.000	0.000	0.700	0.000	0.000	0.000	
-Y SIDF?		r	7	peta	ADC.	CP	¢O*	n ncomonx	
	STAGNATITN DT.	-. 547	2.04.	105.000	. 1756	-. 013			
	MIN. PRESSIPE	-2.043	-. 547	$\rightarrow 8 \times .010$	2.7 MA	-. 115	0.000		
	SEPARATITN	-1.955	- H 01	247.714	4.144	-.081	. 031	$.053$	
INITIAL POSITIDNS AND STRENGTHS TF CHED VORTICITY ATX X (37.505									
	NV GAMM	$4(k)$	r	7	BETA	VT/V	vr	7 C	$R G / R$
-Y SIDEX	$15-.1079$.1123	-2.0600	19447	247.7134	. 3140	-2.0609	. 8447	1.0531

	NV	f, AM/V	Y	2	XSHET	beta
1	1	.02197	. 73754	2.54914	26.07000	143.85
?	2	-00F91	.7275?	2.39051	23.04500	167.183
3	3	-00??6	-6659?	2.2377	$31.1400 n$	159.47
1	4	.02170	7.483	2.78594	0.00000	110.419
2	5	-.005ar	-6.33608	6.56114	0.00000	224.000
3	6	3.77980	7.81982	4.36317	0.00000	119.160
4	7	-?.22590	-7.22099	4.96015	n.nnoon	235.515
5	ค	-. 09334	. 39734	-.60621	3.nonon	175.558
6	9	-. 16236	-1.41951	-1.82656	n.000~0	372.147
1	10	-. 12345	-1.29707	2.1224)	24.9300n	211.332
$?$	11	-.11374	-1.78186	1.87219	70.04500	214.399
3	12	-. 10674	-. 78220	2.17689	31.150n0	100.744
4	13	-. 10560	-. 72 A02	2.45044	32.27500	196.547
5	14	-. 10094	-1.10795	2.36154	35.79010	205.174
6	15	-. 10794	-1.47735	2.37177	37.50500	211.918
	16	-. 11986	-1.75574	1.80784	39.azonn	224.162
	17	-.17293	-1.94857	1.46940	41.73500	23?.979
	18	-. 13256	-2.0075h	. 99754	43.85000	244.635

CENTRIID TF Shed VIRTICITY

r
.72843
-1.41399
$\begin{array}{r}\text { MF SHED VIRTICITY } \\ \text { GAM/V } \\ +Y \text { BODY } \\ \text {-Y BODY } \\ \hline-1.03243 \\ \hline\end{array}$

 N － －～が 范 \rightarrow N
N_{0}
N_{0}^{2}
0
0
0
0 N－1
0
0
0
0 Mo －号品
griv
1197
48

ORIGINAL PAGE IS OF POOR QUALITY

:
8
8
8
8

45.96

vc.	? C	RG	$R \mathrm{G} / \mathrm{R}$
. 59288	2.85824	$2.9270 ?$	1.38393
. 60482	2.67470	2.74232	1.29660
. 51 A29	?.41920	2.47409	1.16978
-2.00259	2.14077	?. 05234	1.39591
-1.91397	1.R0930	?.69633	1.27486
-1.60969	1.75154	2.3788h	1.12476
9.36145	3.39644	11.33804	5.36078
-5.73910	7.21491	9.91645	4.21582
7.78047	5.27602	9.09621	4.72634
-7.03760	7.07972	9.98250	4.71986
. 51539	7.5月170	7.67911	3.63078
-2.32476	. 35511	?.3517?	1.11193
-1.25200	?.25017	2.57499	1.21749
-1.42120	2.4755 A	2.P5453	1.34966
-1.71419	7.34144	2.90186	1.37204
-1.76190	1.96013	?.63560	1.24615
-1.58457	1.07073	2.53579	1.19895
-.86768	?.?4170	2.40376	1.13653
-.89885	2.51308	2.66984	1.26233
-1.05079	2.01441	3.09805	1.46480
-1.59343	2.73005	3.16104	1.49458
-2.09458	?.3月216	3.17205	1.49979
-2.08429	1.43511	2.53057	1.19649
-2.23561	1.03447	2.45916	1.16272
-2.16729	. 32409	2.19130	1.03612

Esion ~Non

So

ORIGINAL PAGE IS OF POOR QUALITX

8
8
0
0

\circ
\vdots

-

-4.800

tr SIDF?		\checkmark	z	pfita	ner
	Stagnatinn pr.	.184	-2.107	5.000	. 062
	MIN. PRISSIIRE	2.107	-. 184	85.000	2.952
	SFDARATINN	-1.292	1.670	?17.347	7.037
-r SIDE:		\checkmark	2	peta	ARC
	stagnatifn pt.	-1.832	1.057	240.000	. 068
	MIN. PRESSIJPE	-1.987	-.727	san.onn	$\bigcirc .768$
	Sfoaration	-2.073	. 414	259.71)	3.972
INITIAL POSITITNS AND StPEngths df shad virticity at x 54.425					
	nv gamiv	M(k)	Y	7	RETA
+Y SIDEP	26.0323	. 0807	-1.3477	1.7651	217.3818
-r SIDE?	$27 \quad-.0222$. 0502	-2.177\%	. 4347	25A.7110

ir SIDF:

$$
\begin{aligned}
& \text { STAGNATITN DT. } \\
& \text { MIN. PRTSSMRE } \\
& \text { SEPAPATINN }
\end{aligned}
$$

$$
\begin{array}{ll}
.0807 & -1.3477 \\
.0502 & -2.1770
\end{array}
$$

$$
x=54.42
$$

$\underset{\sim}{\infty}$	○mosmにのmさo	omnnor	
		＋0．0．08	
	－sy	下二mou	
	¢mbonsNmNo		
		いいがくが	
$\stackrel{4}{4}$		のーロッド	－mmm
		Cmosion	
		¢ ¢ ¢ ¢－	
	0		
	mnNmmmnñ	\sim	
－		nromera	
	Nomajo	くが品気	
	$\bigcirc \bigcirc$		
¢			
		－M M－－N	
		～Nmヶ心号	
		NG「が品	
			－

SUMMARY TE VOPTEX FIFLT AT $X=$ bZ．eras						
	NV	GAM／V	y	2	xCHET	9FTA
1	1	． 02127	－3002R	3.08424	26.93000	174．430
2	2	． 01891	． 29 ？ 06	2.88030	27.04500	174.210
3	3	．00？ 26	－．00493	2.46821	31.14003	180.115
4	4	． 00539	－． 72297	3.47347	48.08070	191.758
5	5	.01237	－1．12306	3.17096	50.10500	199．5n7
b	6	．09896	－2．27944	2.156 RA	59．21000	295．593
7	7	.03220	－2．05407	1.63970	54．4．750n	231.401
B	8	．09291	－2．11124	1.79365	56．5400n	29．650
9	9	．0476？	－1．79781	1.81310	5R．4550n	274．757
0	10	－ 0 ¢\％ 218	－1．4236t	1.83873	60.77000	217．749
1	11	．07130	7.22200	0.69045	0.00000	143.301
2	12	－． 005 A ${ }^{\text {a }}$	－5．59573	7.74297	0.00000	？ 15.855
3	13	3.37980	7.77353	8.18205	0.00000	136.467
4	14	－2．29．590	－6．84751	9.15290	0.00000	21A．POL
5	15	－． 09334	－t355？	$8.6674{ }^{5}$	0.10000	175．Ant
6	16	－． 16236	－2．4796U	2．3056 ${ }^{\circ}$	0.00000	2？7．092
1	17	－． 12345	$-1.2821^{\text {P }}$	3.39654	26.93000	00．691
2	18	－． 11374	－1．5250h	2.94497	29.04500	？ 07.391
3	19	－． 10374	－1．25187	2.69174	31.14000	704．947
4	20	－． 10560	－1．19121	3.21035	33.77500	200.357
5	21	－． 10994	－．98583	3.50117	25．70non	105.726
6	2.2	－． 10794	－1．92601	2．P4185	37.50500	214.177
7	23	－．11986	－2．11571	2.35131	39．670nn	？ 21.981
8	24	－． 12293	－1．63265	2.50225	$41.7350 n$	213.123
0	25	－．13256	－1．4021A	2.36440	43．A5000	210.669
10	26	－． 13576	－． 86526	3.2442 ？	45.04500	104.934
11	27	－． 15777	－2．30731	2.09474	49.09000	279.794
12	28	－． 15944	－1．00505	3.17367	50.19500	210.975
13	29	－．10112	－2．34953	2.38635	52.31900	224.542
14	30	－． 02216	－2．24412	1.54159	54.42500	235.513
15	31	－． 14577	－2．310？0	1.36510	5月．54000	239.471
16	32	． 14717	－2．33047	． 934689	5A．65500	248.145
17	33	－． 14067	－2．30052	．45317	40.77000	75月．05

[^15]| |
| :---: |
| | |
| | |
| | |
| | |
| | |

. 0973	. 0473	-. 0500
.1105	. 0627	-.0483
. 1041	. 0658	-. 0403
. 1056	. 0655	-. 0402
. 1071	. 0650	-.0421
. 1086	. 0649	-. 0437
. 1090	. 0×644	-. 0446
. 1042	. 0614	-. 0428
. 1099	. 0550	-. 0549
. 0977	. 0402	-. 0575
. 0430	. 0003	-. 0426
. 0202	-. 0450	-.0652
. 0170	-. 0751	-. 0871
. 0085	-. 0924	-. 1009
. 0069	-. 1009	-. 1078
. 0061	-. 1030	-. 1090
. 0057	-. 0997	-.1054
. 0056	-. 0921	-. 0976
. 0056	-. 0809	-. 0866
. 0058	-. 0671	-. 0729
. 0060	-. 0513	-. 0573
. 0063	-. 0343	-. 0406
.0067	-. 0169	-.0236
. 0071	. 0002	-. 0069
. 0075	. 0164	. 0088
. OORO	. 0309	. 0229
. 0085	. 0434	. 0349
. 0091	. 0534	. 0443
. 0007	. 0605	. 0508
. 0104	. 0646	. 0542

0

 べ

8.000

4.000
-
-4.000

$8850 \cdot 1$	ヵ590－－	のひとでて－	89ヶを．	$0 と<9 \cdot 1<6$	2990－－	かもとでで	かっで゚	91ET＊－	¢	83015	1－
0050．1	$8910 \cdot 2$	1020－	＊ 0 ¢＊	20s $2 \cdot \sqrt{\text { ² }}$	＊910＊2	2026－	$02 \because 0^{\circ}$	E日su＊	ヶ¢	$x_{3} 015$	$\lambda+$
－19 a	31	J＾	A／1＾	－1）${ }^{\text {d }}$	2	\wedge	（ x ） w	M／Wvo	$\wedge N$		
				$5080 \cdot 9$	－x1val	J1ty0n da	5 SH	dals Onv	NOIII	S0． 7	IHINI
	$2 \times 0^{\circ}$	5200	$590 \cdot$	カッグと	とく9．1く2	くッ0－	21102－	NuI	vodas		
	000°	$000 \cdot 0$	200\％－	$892^{\circ} \mathrm{C}$	$000 \cdot 006$	と220	280．7－	jarlssidy	－NIW		
			－ $0^{\circ}-$	540°	$000^{\circ} \mathrm{sco}$	90\％＊	409＊＊－	－ 1 d NuI	novis		
	$x 010000$	＊${ }^{\text {d }}$	dJ	ग『	－130	2	A			23015	A－
	UE 0°	010.	T20．－	1 $\angle 8.2$	0s $2 \cdot$－ 0 c	$020^{\circ} \mathrm{T}$	588．－	NuII	avdas		
	$000 \cdot 0$	$000 \cdot 0$	$260{ }^{\circ}-$	2500°	000．56	$38 \mathrm{I}^{\circ}-$	L01． 2	3xilssay	－NIW		
			－50＊	$540{ }^{\circ}$	000＊s	く01＊2－	78I＊		Novis		
	xal＊djo	＊ 0	d）	ग0V	－1ay	2	\wedge			2 ± 015	
			－29	－ably	SInIO。	ullvavas	onv nus	Iassio	Sら3yd	נu 10	Owhns
					てらく20＊	い口（ay	Wvol NO	IaJ Nul	avajs	0.001	vals

ORIGINAL PAGE IS －EDORR QUALITY

 n
\vdots
\vdots
\vdots
\vdots
n $+\infty \infty$
$n_{n} M$
$N \sim$
$0=1$
$c \infty$

$\stackrel{\approx}{\approx}$

\approx

y

1500

$$
\stackrel{\Sigma}{\stackrel{\rightharpoonup}{\oplus}}
$$

－告

$$
x<H E n
$$

n
m
n
\vdots
\cdots
\cdots

E．

$$
N
$$

$\underset{E}{2}$

 or N | 0 |
| :---: |
| Ñ |
| Ñ |

范

-

I
$\stackrel{-}{4}$ ज̃
$\stackrel{\circ}{2}$

n
n
n
n
n

：c
8
0
0
0

n
\sim
\sim
\sim
0
0$\begin{array}{rr}.02127 & -.00440 \\ .00891 & -.73491 \\ .00226 & -1.57299 \\ .00539 & -1.92647\end{array}$

6.52378
-6.73423
7.76467
-6.65663
.78464
-1.72297

ざのがの

 z
ホーッ゙

andon

 a

 5

$$
\cong
$$

ORIGINAL PAGE IS OF POOR QUAIITY.

$$
71.34
$$

$$
x
$$

+Y SIDE\%		\checkmark	7	gifta	tre
	stagnation pt.	c.000	-2.115	0.000	. Ohk
	min. Prfssure	2.115	0.000	9n.000	2.and
	STPARATION	-. 505	2.02 F	10 . 758	
-r sider		r	2	hata	$\triangle D^{\circ} \mathrm{C}$
	StAgnation dt.	-1.359	1.670	720.000	.066
	Min. dressure	-1.987	-.727	290.910	? 0 ¢ 2
	separation	-2.100	-.13?	273.571	3.189
initial positions and strengths of shen vor					
	NV GGM/V	M(k)	Y	7	P ETA
+Y SIDE:	41 . 0992	. OR70	-.6254	2.1300	106.3577
-r SIDE,	$42-1176$. 1174	-2.239n	-. 1300	773.5706

TRTMTAAE PAGE IS

0
n
7
\vdots
\vdots
0

YCHFR
RFTA

Ccc응ㄷㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

N

 HNmsintwoonnmsuer

 － $0^{\circ} 0^{\circ} 0^{\circ}$

トべが絽か

moN～N
$\rightarrow N m+n c$

CENTROID OF SHED VIRTICITY

ORIGINAL PAGE IS
 OF POOR QUAUTY

Mi,

8 0 0

:
:
:
$\dot{\circ}$
-4.800
$R G / R$
1.0533
1.0532

$x=79.80$
STPATFOR S SPAPATION CRITERION (LAMINAR) FISI - .ORz5?
sumary df prfssure distpibution and sfparatinn ominte on bidy
ar SIDFZ
STAGNATION PT.
MIN DRESSIIRE
MIN. PRESSU
SFPARATITN

$\stackrel{\bar{c}}{\stackrel{\rightharpoonup}{c}}$
$\begin{array}{r}\text { acta } \\ 0 . j 0 n \\ \hline\end{array}$

7
1.939 h
-.1200
-2.2747
y
$c .007$
2.107
1.052
Y
-1.406
-1.987
-2.110
$\underset{\sim}{x} \underset{\sim}{\underset{\sim}{7}}$
.1125

$\stackrel{\text { ※ }}{\text { ※ }}$
≥ 00
ty SIDEY
-y SIDEZ

ORiginal page is
 of POOR QUALITY

$\stackrel{c}{-}$

$\underset{\sim}{\circ}$

t z

が品が

ㅇㅇㅇㄷㅇㅇㅇㅇㅇㅇㅇㅇ등ㅇㅇㅇㅇㅇㄷㄷㄷㅇㄷㄷㄷㄷㅇㅇㅇ

－ONNNが

\rightarrow NMOMO

天

 0.7300

$\begin{array}{cccc}\mathrm{X} & \mathrm{R} & \text { ALPHA } & \text { aETA } \\ \text { 9C.73C } & 2.115 & 15 . \operatorname{COD} & .000\end{array}$
$\begin{array}{cccc}\mathrm{X} & \mathrm{R} & \mathrm{ALPHA} & \text { QETA } \\ \text { RC.73C } & 2.115 & 15.000 & .000\end{array}$
$x=R 0.730$
$C D(n)$
$6.565 E-02$
$-2.0{ }^{C y}$
$C y(x)$
$x \rightarrow O E-02$
CP(180)
$-4.138 \mathrm{E}-02$
$C S L$
$-3.3 R 1 E-17$

$C N(x)$
$5.1 R 1 E-02$
4.090F-01

$$
\begin{aligned}
& m \\
& \stackrel{m}{\dot{x}}
\end{aligned}
$$

STRATFIRD SEPARATITN CRITERIOF (LAMINAR) F(S) - .OPAE?
SUMMARY OF PRESSURT DISTRIBUTIUN AND SEPARATTINN POTNTS ON RINY ... $X=80.73$

FORCE AND MOMENT CDEFFICIFNTS
0.00000
.40995
-.20136
RETA
bernoulli lianing pressilie
ROLLEN RODY COORDINATES
n. NONOO
$n .00000$
.40094
-.20137
Nㅓ을
$\begin{array}{lr}\text { CM } & -2.37453 \\ \text { CLH } & 2.35015 \\ \text { CLL } & -.0000 \text { ? }\end{array}$
(c) Steps 4-6, program LRCDM2

Figure A.7.- Concluded.
(pages 212 through 259)
*** STEP

NASA/LRC TF-4 WITh king tail (0). AFTERBODY and TAIL SECTION

fin geometry											
TIP CHORD $=12.55000$											
ROOT CHORD $=21.59000$											
FIN SEMISPAN $=9.04000$											
LEADING EDGE SWEEP $=45.00000$ degrees											
trailing eoge swep $=0.00000$ degrees											
Flow conoitions											
MACH	=	2.50000	ALPHAC $=$	15.00000	PHI		. 00100	ALFA $=$	15.00000	BETA $=$.00026
$\begin{aligned} \text { CRPT } & =21.59000 \\ \text { CRPTV } & =21.59000 \end{aligned}$											
LNOSE $=.9519 \mathrm{PE}$ (11.											
LA*DY $=.10232 E+03 \cdot$											
$B C \cap D E=2$.											
SENO											

$.19733 E+01$
$.19733 E+01$

号 $100+35 \angle \mathrm{szs}$.

 80
0
4
4
4
4
0
0

 3
0
0
0
0
0
0
0 30.

 an

conrdinates at points on bouy meriuians

ORIGINAL PAGE IS

HV(J) BW(J)

$\frac{\overline{3}}{\bar{\circ}}$ $.18448 E-03$
$.16205 E-03$
$.14340 E-03$
$.12783 E-03$
$.18075 E-03$
$.16032 E-03$

 N

 0
0
0
0
0
0
0
0
0
0

 $-n$
n
0
0
0
0
$i n$
$i n$

 n
\hat{N}
$\tilde{\alpha}$
$\dot{\alpha}$
$\dot{\alpha}$
$\dot{\alpha}$
$\dot{\alpha}$
$\dot{\alpha}$

N

ORIGINAL: PAGE ES OF POOR QUALJTY:

$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$

[^16]

ORIGINAL PAGE IS
 OF POOR QUALITY

$\begin{gathered} \sim_{6}^{2} \\ 0 \end{gathered}$

nnnnnnnnninnnnnnninnnnnnnnnnnnnnninnnninnn

伿

- 0315 ***
Linear pressure ru/vinfi loads in goor system
INTERF. SHELL

1.5129
$-.25725 E-04$
-16.953
$.28780 \mathrm{E}-03$
$.34202 \mathrm{E}-15$

1.5129
$.68036 \mathrm{E}-06$
-16.953
$-.80887 E-05$

$$
\begin{aligned}
& \begin{array}{r}
154.31280 \\
14.12000 \\
4.23000 \\
9.04000 \\
46.04000 \\
0.0000
\end{array}
\end{aligned}
$$

fin loading information

DEG.	total	$\begin{gathered} \text { FIN } 1 \text { OR R } \\ 0.00000 \end{gathered}$	$\begin{aligned} & \text { FIN } 2 \text { OR } \\ & 0.00000 \end{aligned}$
CTHE	. 193 3 3	.96815E-01	.96815E-01
C2	9.0285	4.5143	4.5143
CY	-.150R3E-03	0.	0.
CM	-9R.93?	-49.466	-49.466
CLN	-16519E-02		
	.7145?E-13	-6.5648	6.5648
FOL	WINg Are in	UNROLLED BOOY-AXIS	COORDINATE SYSTEM
czu	9.0285	4.5143	4.5143
Cru	.674BgE-05	.78789E-04	.78789E-04
CMU	-94.932	-49.466	-49.466
CLNU	-.74B4?E-04	-.86335E-03	-.86335E-03

SPANWISE DISTRIBUTIONS
thrust- and sidf-force coefficients in plane of the fin
SUMFX $=C X$..ACTS ON LEAUING EOGE
SUMFY $2=C Y . . A C T S$ ON LEADING AND SIDE EDGE

side edge oistribution

JTIP	JSE	OISTANCE FROM LE /TIPCHORD	SUCTION FORCE PEH UNIT LENGTH /(OATIPCHORD)	$\begin{aligned} & \text { GAMMA, SE } \\ & \text { /VINF } \end{aligned}$	YAAR	XSE
1	1	.25000	. 00078	. 00165	9.04000	9.04000
2	$?$. 50000	.02282	. 04965	9.04000	12.17750
3	3	.75000	.05391	.16305	9.04000	15.31500
4	4	1.00000	. 05305	. 27465	9.04000	18.45250

S.E. AUGMENTATION OF FIN NORMAL FORCE FROM SUCTION CONVERSION IN PROPORTION WITH FACTOR

[^17]

10
0.8
0.8
0.8
0.0

[^18]| | $\begin{aligned} & 000 \geqslant 0^{\circ} 6- \\ & 000 \geqslant 0^{\circ} 8- \\ & 000 \geqslant 0^{\circ} 6- \\ & 000 \geqslant 0^{\circ} 6- \end{aligned}$ | | SOES $0^{\circ}-$ $10850^{\circ}-$ $2 甘 2200^{\circ}-$ $\forall 20000^{\circ}-$ | $\begin{aligned} & 00000^{\circ} 1 \\ & 00051^{\circ} \\ & 00005^{\circ} \\ & 00052^{\circ} \end{aligned}$ | $\begin{aligned} & x \\ & y \\ & y \\ & b \end{aligned}$ | $\begin{aligned} & \eta \\ & \varepsilon \\ & \tau \\ & t \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35x | 甘V8人 | tNIA／
 35•VWWVS | （OyOH）dIL＊O）／ HIONG7 JIN K Mad 3Jy0s Nollons | geonjall／
 37 WOHy 3JNVISIO | 3 Sr | aldr |
| | | | NOILN日Ialsio 3903 7015 | | | |
| | | | $\begin{aligned} 00+380 \geqslant 9 \varepsilon & =21 \operatorname{swnS} \\ 10-3 \angle 2509 \cdot- & =2 \lambda \operatorname{swnS} \\ \bullet 0 & =1 \lambda \operatorname{sWnS} \\ \bullet 0 & =x \operatorname{sWnS} \end{aligned}$ | | | |

S.f. augmentatiun of fin nohmal forcf fhom suction convehsion in proportion with factur
KVSE $=1.000$

(UNROLLED BOOY-AXIS)

(RULLED BODY-AXIS)
CYADD $=0.00000$
$\begin{array}{rlr}\text { CrADD } & =0.00000 \\ \text { CZADD } & = & .36408 \\ \text { CMADO } & =-4.30397\end{array}$
$\begin{aligned} \text { CMADD } & =-4.30397 \\ \text { CLAADD } & =0.00000 \\ \text { CLLADD } & =.95012\end{aligned}$
$\begin{aligned} \text { CLLACD } & = \\ \text { XCG } & =9.96012 \\ \text { YCG } & =-11.0450 \\ \text { XCG } & =-.1500 \\ & =-0000\end{aligned}$
*** t.e. fin vorticity due to side-edge force augmentation

 (emer fin vorticirr 1

	$\begin{gathered} \text { IVRT } \\ 2 \end{gathered}$	gamma/vinf $-.27465$	$\begin{aligned} & \text { Y.C.G. }{ }_{C 10 C A L} \\ & -9.04000 \end{aligned}$	$\begin{aligned} & \text { 2,C.G. } \\ & \text { FINi } \\ & 1.65224 \end{aligned}$	$\begin{gathered} \text { r.c.G. } \\ \text { i800r AXt } \\ -11.15500 \end{gathered}$	$\begin{gathered} \text { XES) } \\ \text { X.C.G. } \\ 1.65224 \end{gathered}$					
	r/(8/2)	$\mathrm{CN*C/(2*H)}$	$C T * /(2 * B)$	$\mathrm{Cr1*} /{ }^{(2+8)}$	CrTOT*C/(2*8)	CS* ${ }^{(12 * *)}$	CSINT	YBAR	gamnetil)	GAMMA,LE/VINF	F XLE
15	. 08233	$.00000$	$0.0 n 000$	0.00000	. 00000	0.00000	0.00000	0.00000	-. 00007	0.00000	. 74425
16	. 24892	.0n000	$0.0 n 000$	0.00000	-.00000	0.00000	0.00000	0.00000	.00000	0.00000	2.25021
17	. 41549	- 00000	0.00000	0.00000	. 00000	0.00000	0.00000	0.00000	. 00000	0.00000	3.75605
18	. 58205	.00000	0.00000	0.00000	. 00000	0.00000	0.00000	0.00000	.00001	0.000005	5.26174
19	. 74859	.00000	$0.0 n 000$	0.00000	. 00000	0.00000	0.00000	0.00000	. 00001	0.000006	6.76723
20	. 91509	. 00000	$0.0 n 000$	0.00000	0.00000	0.00000	0.00000	0.00000	. 00002	0.00000	8.27245
21	1.00000	0.00000							. 00004		

> thrust- ano side-force coefficients in plane of the fin
> SUMFX $=C X \ldots A C T S$ ON LEADING EOGE
SUMFY $1=C Y$..ACTS ON LEADING FOGE
> SUMF Y ? $=C Y$ OACTS ON LEADING AND SIUE EDGE
SUMFT? $=$ CY..ACTS ON SIDE EOGE

$$
\begin{aligned}
& \text { SUMFX }=0 . \\
& \text { SUMFY }=0 . \\
& \text { SUMFYZ }=\cdot 14602 E-10 \\
& \text { SUMFT2 }=.10179 E-09
\end{aligned}
$$

SIDE EDGE distriaution

- d315 ***

fin loading information
beanoulli pressure loads in body system

FIN 3 OR U
0.00000
$.27469 E-10$
$0.0 .60925 E-04$
$0.66454 E-03$
$-.87655 E-04$
$-.1159 E E-07$
$.66454 \mathrm{E}-03$

OEG.	TOTAL	$\begin{aligned} & \text { FIN } 1 \text { OR R R } \\ & 0.000000 \end{aligned}$	$\begin{aligned} & \text { FIN } 2 \mathrm{OR}_{\mathrm{OR}}^{\mathrm{L}} \\ & 0.00000 \end{aligned}$
CTHR	. 19363	.96815E-01	.96815E-01
C2	10.416	5.2081	5.2080
cr	-.16347E-03	0.	0.
CM	-114.38	-57.188	-57.187
CLN	. 17940 E-02	0	0
CLL	-. $10219 \mathrm{E}-04$	-7.5738	7.5738
following are in unrolled body-axis coordinate system			
czu	10.416	5.2081	5.2080
cru	-18323E-04	.90898E-04	-9089RE-04
CMU	-114.38	-57.188	-57.187
CLNU	-.20225E-03	-.99812E-03	-.99811E-0

SPANWISE DISTRIBUTIONS

$$
\begin{aligned}
& \begin{array}{r}
008080 \\
8888888 \\
8888880 \\
08080 \\
000000
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
.80888 \\
8888888 \\
880888 \\
08080 \\
0.0000
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\text { a }} \\
& 0000^{\circ}
\end{aligned}
$$

GAMNET(I) GAMMA,LE/VINF XLE

$C /(2 * B)$	$C T * C /(2 * R)$	$C Y 1 * C /(2 * B)$	$C Y T O T * C /(2 * B)$	$C S * C /(2 * B)$
.268666	0.00000	0.00000	-.00084	0.00000
.26201	0.00000	0.00000	-.00202	0.00000
.25182	0.00000	0.00000	-.00331	0.00000
.23152	0.00000	0.00000	-.00439	0.00000
.19794	0.00000	0.00000	-.00513	0.00000
0.12983	0.00000	0.00000	0.00000	0.00000
0.00000				

THRUST-AND SIDF-FOPCE COEFFICIENTS IN PLANE OF THE FIN
SUMFX $=C X$. .ACTS ON LEADING EDGE
SUMFYI $=C Y$. ACTS ON IEADING EDGE
SUMFY $=C Y . . A C T S ~ O N ~ L E A D I N G ~ A N D ~ S I D E ~ E D G E ~$
SUMFTZ=CY..ACTS ON SIDE EDGE

****te. fin vorticity nue to attached flow*****

$-9.74133 \quad-.00000$
$4 \quad-4.82130 \quad-7.62633$

7.75605
5.26174
5.76723
8.27245

0.00000
0.00000
0.00000
0.00000
0
0
0
0
0
0
0
0
0

$00000^{\circ} 0$	$00000^{\circ} 0$	$00000^{\circ} 0$
$00000^{\circ}-$	$00000^{\circ} 0$	$00000^{\circ} 0$
$00000^{\circ-}$	$00000^{\circ} 0$	000000°
$00000^{\circ}-$	$00000^{\circ} 0$	$00000^{\circ} 0$

.00001
.00000
.00000
.00000
0.00000
-.41549
-.54205
-.74859
-.91509
-1.00000
ざ じ～～N N
thrust－and side－fopce coefficients in plane of the fin
SUMFX $=C X \ldots A C T S$ ON LEADING EDGE
SUMFY $1=C Y . . A C T S$ ON I．EADING EDGE
SUMFY $=C Y . . A C T S$ ON LEADING AND SIDE EDGE
SUMFT $=C Y . . A C T S$ ON SIDE EOGE
CUMFX $=0$.
CUMFY1 $=0$.
SUMFYZ $=-.14602 E-10$
SUMFT2 $=-.10179 E-09$
SIDE EDGE DISTRIRUTION

STFP
TRACK VORTICES ALONG AFTERBODY ANO TAIL SECTION. TF-4, KING TAIL (O)

INCLUDED ANGLE OF ATTACK(DEG) $=15.00000$ ROLL ANGLE(DEG) PANEL DEFL.(DEG)
DELTAI $=0.000$ DELTA2 $=0.000$ DELTA3 $=0.000$ DELTA4 $=0.000$
***PERMISSIBLE RELATIVF ERROQ.E5.USED IN INTEGRATION SCHEME $=0.10000 E-02$
VORTEX COORDINATES IN CHOSS-FLOW PLANE

LOCAL	BOOY RADIUS $=$	2.11500	LOCAL SEMI SPAN	$\mathrm{S}=2.11500$
	VORTEX	Y-VRTX	Z. VRTX	GAMMA/VINF
	1	-. $13334 \mathrm{E}+01$. $32200 \mathrm{E}+01$. $86923 \mathrm{~F}+00$
	2	-. $21351 \mathrm{E} \cdot 01$. $39206 \mathrm{E}+01$	~.311.34E.01
	3	.91845F-01	. $1152 \mathrm{RE}+02$. 21299F-01
	4	-. AO755E-01	. $12641 E+02$	-. 5R798E-02
	5	$.77439 \mathrm{E}+01$. $12190 \mathrm{E}+02$	-33798E 01
	6	-. $64480 \mathrm{FF}+01$. $13430 \mathrm{E}+02$	-. 22259 F -01
	7	. 1 ก185F+01	-10705E+02	-.93338E-01
	A	-. 246655 + 01	.42869E+01	-. $16.3 .36 \mathrm{E}+00$

[^19]\mp@subsup{x}{B}{}-station
specified by Item l2 below.
= l, pressure distribution at
each }\mp@subsup{x}{B}{}\mathrm{ -station calculated
by the progam.

``` \\
\hline NPRNTS & ```
Vortex separation print index.
=0, no output
=1, output at each }\mp@subsup{\textrm{x}}{\textrm{B}}{}\mathrm{ -station.
    Preferred.
=2, detailed separation
    calculation output. For
    debugging purposes only.
``` \\
\hline NPRNTV & ```
Vortex cloud summary output index.
=0, no vortex cloud output.
= 1, vortex cloud output.
 Preferred.
``` \\
\hline NPLOTV & \[
\begin{aligned}
& \text { Vortex cloud printer-plot option. } \\
& =0, \text { no plot } \\
& =1, \quad \begin{array}{l}
\text { plot full cross section on a } \\
=2, \\
\text { plot upper half cross } \\
=3, \\
\text { section on a constant scale. } \\
\text { variable scale. }
\end{array}
\end{aligned}
\] \\
\hline NPLOTA & ```
Plot frequency index.
= 0, no plots
= 1, plot vortex cloud at
    specified x }\mp@subsup{\textrm{B}}{\textrm{B}}{}\mathrm{ -stations. See
    Item l2.
= 2, plot vortex cloud at each
    x
``` \\
\hline NPRTVL & \\
\hline
\end{tabular}

NVTRNS

Item 3

TITLE

Item 4

REFS

REFL

XM

SL

SD

Item 5
ALPHAC

Maximum number of body-shed and specified vortices transferred to program LRCDM2 on TAPE8. If NVTRNS \(=0\), the afterbody vortices are represented by centroids of vorticity, preferred value (NEW).
(20A4) A series of cards containing Hollerith information identifying the run.

NHEAD cards of identification. Information to be printed at top of output.
(8F10.5) Reference information used in forming aerodynamic coefficients.

Reference area. REFS \(>0\); set equal to reference area SREF of LRCDM2 input in Item 2 of step 1 , Appendix A.

Reference length. REFL \(>0\); set equal to reference length REFL of LRCDM2 input in Item 2 of step 1 , Appendix A.

Moment center; set equal to moment center XM of LRCDM2 input in Item 2 of step 1, Appendix A.

Body length (L), same as LBODY in item 19 below.

D Body maximum diameter
(8F10.5) Flow condition parameters
Angle of incidence, degrees \(\left(0^{\circ}\right.\) If \(\left.\quad \alpha_{C}<90^{\circ}\right)\). 1.

Note: Value for ALPHAC should be the same as the (one) value for ALFS input for LRCDM2, Appendix A, item 3 of input required for all runs.

B-8
\begin{tabular}{|c|c|c|}
\hline PHI & \(\phi\) & Angle of roll, degrees. \\
\hline & & Note: Value for PHI should be the same as the (one) value for FEES input for LRCDM2, Appendix \(A\), item 5 of input required for all runs. \\
\hline RE & & Reynolds Number (\(\left.\mathrm{V}_{\infty} \mathrm{D} / \nu\right)\) \\
\hline VISR & & Viscosity ratio (\(\nu / v\)). To be used to increase diffusion effect of vortex model. Preferred value \(=\) 1.0 . \\
\hline XMACH & & Mach number, \(M\); set equal to Mach number FMAC̊H of LRCDM2 input in Item 2 of step 1, Appendix A. \\
\hline Item 6 & (8F10.5) & A single card containing the specification of the axial extent of the run and certain parameters associated with the vortex wake. \\
\hline XI & & Initial \(x_{B}\)-station. \(X I>0\), use axial location of canard trailing edge. \\
\hline XF & & Final \(x_{B}\)-station. \(X F \geqslant X I\), use axial location of tail-section leading edge. \\
\hline DX & & Increment in \(x_{B}\) for vortex shedding calculation. Typical value, DX \(\approx \mathrm{D} / 2\) \\
\hline EM KF & & ```
Minimum distance of shed-vortex
starting position from body
surface.
=1.0, vortices positioned such
that separation point is a
stagnation point in the
crossflow plane.
> 1.0, minimum radii away from
body surface for shed
vortices. Typical value,
EMKF = 1.05.
``` \\
\hline RGAM & & \[
\begin{aligned}
& \text { Vortex combination factor. } \\
& =0.0, \quad \begin{array}{l}
\text { vortices not combined. } \\
\\
\text { Preferred. } \\
>0.0, \\
\text { radial distance within } \\
\\
\text { which vortices are } \\
\\
\text { combined. Typical value, } \\
\\
\text { RGAM }=0.05 \mathrm{D}
\end{array}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline VRF & & \begin{tabular}{l}
Vortex reduction factor to account for observed decrease in vortex strength. \\
\(=6.0\), for subsonic flow, not applicable to BDYSHD \\
= 1.0, for closed bodies, or supersonic flow. Use this value.
\end{tabular} \\
\hline RCORE & & Vortex core radius, normally use 0.25 (NEW). \\
\hline Item 7 & (8F10.5) & Contains only one variable that is of general use in program BDYSHD, and that is the integration error tolerance, E5. The next three variables concern the use of forced asymmetry for bodies at very high angles of attack in subsonic flow, not applicable to BDYSHD \\
\hline E5 & & \begin{tabular}{l}
Error tolerance for vortex trajectory calculation. \\
Typical range, \(\mathrm{E} 5=0.01\) to 0.05
\end{tabular} \\
\hline XTABL & & \(\mathrm{XTABL}=0.0\) \\
\hline XASYMI & & Initial \(\mathrm{x}_{\mathrm{B}}\)-location at which forced asymmetry of separation points is used. Typical value, XASYMI \(=0.0\) \\
\hline XASYMF & & Final \(\mathrm{x}_{\mathrm{B}}\)-location at which forced asymmetry of separation points is used. Typical value, XASYMF \(=0.0\) \\
\hline DBETA & & ```
Amount of forced asymmetry for
separation points on body,
degrees. Typical value, DBETA =
0.0
``` \\
\hline
\end{tabular}

Items 8, 9, 10, and 11 provide a table of geometric characteristics that must be input for the afterbody.

Item 8
NX R

Number of entries in body table. (l < NXR < 50); normally \(N X R=1\) for constant radius afterbody.

Item 9
(8F10.5)

\section*{Item 10}

R

Item 11

DR

Item 12

XFV

Item 13

YFV, ZFV

Item 14

CN
CY
CM
CR
CSL
CA
\(\mathrm{x}_{\mathrm{B}}\)-stations for geometry table (NXR values, 8 per card)

Body radius at \(x_{B}\)-stations (NXR values, 8 per card)

Body slope, \(d r_{o} / d x\) at \(x_{B}-s t a t i o n s\) (NXR values, 8 per card). For constant radius afterbody \(\mathrm{DR}=0.0\).

This item is included only if NXFV \(>0\) in Item 1 above
\(X_{B}\)-stations at which field point velocities are calculated or at which optional output is generated, 8 stations maximum.

This item is included only if NFV > 0 , Item 1 above
\(Y_{B}, z_{B}\) coordinates of field points at which velocity field is calculated. These are expressed in terms of local body radius, \(y / r_{o}\), \(z / r_{0}\). (NFV cards with one set of coordinates per card)
(8F10.5) Contains the nose force and moment coefficients at the first axial station upstream of the restart point. When program BDYSHD is used in conjunction with program LRDCM2, these values are set to zero.

Normal force coefficient
Side force coefficient
Pitching moment coefficient
Yawing moment coefficient
Rolling moment coefficient
Axial force coefficient

Item 15

GAMP

YP, ZP

XSHEDP

Item 16

GAMR

YR, 2R

XSHEDR

Item 17

GAMM

YM, 2M

XSHEDM

Item 18

GAMA
(8F10.5) A block of NVP cards to specify the positive separation vorticity on the right side of the body. Omitted if NVP \(=0\), Item 1 above
\(\Gamma / V^{\prime}\), positive separation vorticity on right side of body. Coordinates of discrete vortices on right side of body at XI.
\(\mathrm{x}_{\mathrm{B}}\)-location at which vortex was
shed.
(8F10.5) A block of NVR cards to specify the secondary vorticity on the right side of the body. Omitted if NVR = 0 , item 1 above
\(r / V_{\varphi^{\prime}}\) reverse flow or additional vorticity on right side of body.

Coordinates of discrete vortices on right side of body at starting point (XI).
\(\mathrm{x}_{\mathrm{B}}\)-location at which individual vortex was shed (may be 0.0).
(8F10.5) Specifies the negative separation vorticity on the left side of the body, analogous to Item 15 . Omitted if NVM \(=0\) or ISYM \(=0\), Item 1 above.
\(\Gamma / V_{\varphi^{\prime}}\), negative separation vorticity on left side of body.

Coordinates of discrete vortices on left side of body at starting point (XI).
\(\mathrm{X}_{\mathrm{B}}\)-location at which individual vortex was shed (may be 0.0).
(8F10.5) Specifies the secondary vorticity on the left side of the body. This item is analogous to Item 16, and is omitted if NVA \(=0\) or ISYM \(=0\)
\(\Gamma / V_{\infty}\), reverse flow or additional vorticity on left side of body

Coordinates of discrete vortices on left side of body at starting point (XI)

XSHEDA

Item 19
(namelist) Namelist SBODY read in by subroutine BDYGEN. Consists of four variables describing the body. (NEW).

Number of line sources/sinks and line doublet singularities distributed along body centerline.

Length of nose part of body measured from nose tip, dimensional (real variable).

Length of body, dimensional (real variable).

BCODE
Control index (integer) for specifying forebody shape over length of LNOSE
\(=0\), Parabolic
\(=1\), Sears-Haack
\(=2\), Tangent ogive
\(=3\), Ellipsiodal
\(=4\), Conical

\section*{B. 4 DESCRIPTION OF OUTPUT}

The output of program BDYSHD is essentially the same as the output of program NOSEVTX described in detail in reference 6. In that output description, however, any references to source panels do not apply to BDYSHD. In what follows, the output of BDYSHD will be summarized for the normally used output options NPRNTP=0, NPRNTS \(=1\), NPRNTV=1, NPLOTV=3, NPLOTA=1 and NPRTVL=0 specified in Item 2 of the input for this program. Output for a sample case is shown in figure A. 7 of Appendix A.

The output of BDYSHD opens with reference quantities, flow conditions, initial conditions and options chosen in the input. Of importance is the list of vortex strengths and locations transferred from LRCDM2 at the end of step 3 on TAPE8. This is followed by the input supplied to flow model the afterbody which in fact starts at \(x_{B}=26.93\) and ends at \(x_{B}=80.73\) inches in the sample case. Program BDYSHD distributes line singularities from the body nose, \(x_{B}=0.0\), to the body base, \(x_{B}=102.32\) inches. The solution for the complete body follows, and it is characterized by the linearly varying line source strength constants, \(T\) (I), the linearly varying line doublet strength constants, TC (I), and the line singularity starting locations \(X\) (\(\equiv \mathrm{x}_{\mathrm{B}}\)).

The following pages of the output contain pressure distributions, vortex positions in the cross flow plane, separation data and integrated forces and moments at the first station XI specified in Item 6 of the input. Detailed descriptions are given on pages 52 through 55 of reference 6 . The same information is given at many axial locations along the afterbody. In particular, the pressure distributions are given at axial stations closest to the stations XFV specified in Item 12 of the input. These axial locations do not coincide necessarily since the program-calculated stations depend on an
integration step \(\Delta x_{B}\) set by the integration routine DASCRU. At the end of the output, \(x_{B}=80.75\) in the sample case, the important information includes the total forces and moments acting on the afterbody calculated on the basis of Bernoulli pressures listed under the heading "CONTRIBUTION OF BODY SECTION TO TOTAL LOADS". In addition, the body-shed vortex strengths and lateral locations at the end of the afterbody are given in nondimensionalized form. The output concludes with a list of all the vortices (including body-nose vortices, if present, and the fin-wake vortices), their locations in the crossflow plane (\(y\) \(Y_{B}, Z \equiv z_{B}\)) and strenghts (\(\Gamma\) divided by free stream). This information is transferred back to LRCDM2 on TAPE8 prior to analysis of the tail section.
Figure B.l -
SUBROUTINE CALLING SEQUENCE OF PROGRAM BDYSHD
(Pages 1 through 4)

FLDG CHALT OF PROGPAM - BDYSMO
```

MOYCHO
1-- 1NPMT
1-- outrut
1-- tabfin
I-- TAPEE
1-- TAPFA
l-- TAPF7
1-- TAPFA
1-- TAPEG
I-- INPT ---- IAPFS
I-- TAPFG
1-- TAPFA
1-- EOF
1-- SiN
1-- ros
1-- ASIN
I-- ELNOSE

-- Bmap	---- tapeg	
1	1-- cos	
1	1-- SIN	
1	1-- ATAN2	
1	1-- SOHT	
1	1-- SUM	---- CEXP
1-- atanz		
1-- DMAP	---- SIN	
1	1-- cos	
1-- CMAP	---- CSORT	
1	1-- SOMT	
1	1-- ATANZ	
1	1-- cos	
1	1-- SIN	
1	1-- SUM	---- CEXH
1-- VELCAL	---- SORT	
1 吅	1-- ATANZ	
1	1-- SOURCE	--.- Tapfo
1	,	1-- SOHT
1	1	1-- alog
1	I-- DOUBLT	---- tapeg
1	1	1-- SOHT
1	,	1-- ALOG
1	1-- cos	
1	1-- Sin	
1-- varriy	---- tapeb	
	1-- Sum	- -- CFxp
	1-- SMOOTH	--.- CLUF;
	1	1-- cans
	1	1-FXP

```
(a) Page 1

Figure B.l - Subroutine calling sequence of program BDYSHD.

\section*{ORIGINAL PAGQE E OE POOR QUALITY}
\begin{tabular}{|c|c|c|c|}
\hline 1 & & 1-- asima & \\
\hline 1 & & 1-- SUAT & \\
\hline 1-- SiN & & & \\
\hline 1-- Cos & & & \\
\hline 1-- SORT & & & \\
\hline 1-- Stare & & & \\
\hline 1-- mmad & ---- tapfo & & \\
\hline 1 & 1-- \(\cos\) & & \\
\hline 1 & 1-- SIN & & \\
\hline 1 & I-- ATANC & & \\
\hline 1 & I-- SOR & & \\
\hline 1 (1 & 1-- Sum & -.-- CEXP & \\
\hline 1-- ATAMP & & & \\
\hline 1-- OMAP & ---- SIN & & \\
\hline 1 & 1-- cos & & \\
\hline 1-- CMAL & ---- CSORT & & \\
\hline 1 & 1-- Sijpt & & \\
\hline 1 & 1-- ATANE & & \\
\hline 1 & 1-- \(\cos\) & & \\
\hline 1 & I-- Sin & & \\
\hline 1 & 1-- sum & ---- CEXP & \\
\hline I-- ROYGEN & ---- TANFS & & \\
\hline 1 & 1-- Tapfo & & \\
\hline 1 & \(1-2 \sin\) & & \\
\hline 1 & 1-- SOMt & & \\
\hline 1 & 1-- ASIN & & \\
\hline 1 & 1-- mourh & ---- SORT & \\
\hline 1 & 1-- SDUnCE & ---- TAPEG & \\
\hline 1 & 1 & I-- SORT & \\
\hline 1 & 1 & \(1-2 \mathrm{ALOG}\) & \\
\hline 1 & I-- DOUAL \({ }^{\text {P }}\) & -.-. TAPES & \\
\hline 1 & & 1-- SIJRT & \\
\hline 1 monve & & I-- ALOG & \\
\hline 1-- hoork & ---- SOAT & & \\
\hline I-- viocitr & --.- Tapeg & & \\
\hline 1 & I-- SUM & ---- CFXP & \\
\hline 1 & 1-- sanontr & --.- CLOg & \\
\hline 1 & 1 & 1-- Cars & \\
\hline 1 & , & 1-- EXP & \\
\hline 1 & 1-- FXP & & \\
\hline 1 & 1-- ASUm & & \\
\hline 1 & 1-- SJNT & & \\
\hline I-- vflral & ---- SIJRT & & \\
\hline 1 & 1-- ATAN? & & \\
\hline 1 & 1-- smuace & ---- Tapen & \\
\hline 1 & 1 & 1-- SOM & \\
\hline 1 & , & 1-- ALOG & \\
\hline 1 & 1-- DoIjal t & --- TAPEn & \\
\hline 1 & 1 & 1-- SART & \\
\hline 1 & , & 1-- alog & \\
\hline 1 & 1-- cos & & \\
\hline 1 100 & 1-- Sin & & \\
\hline I-- DPATDT & --- velcal & ---- 50ht & \\
\hline 1 & 1 & 1-- ATAN? & \\
\hline 1 & 1 & 1-- SUUACF & tanfo \\
\hline 1 & 1 & 1 & 1-- Sont \\
\hline 1 & 1 & 1 & 1-- alor; \\
\hline 1 & 1 & 1-- DOUALI & ... TAMES \\
\hline 1 & 1 & , & 1-- Snot \\
\hline 1 & 1 & 1 & 1-- alor, \\
\hline
\end{tabular}
(b) Page 2

Figure B.l - Continued.

(c) Page 3

Figure B.1 - Continued.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 1 & 1-- cos & \\
\hline 1 & 1 & 1-- SIN & \\
\hline 1 & 1 & 1-- SUM & -.-. CEXP \\
\hline 1 & 1-- velcal & --- SOMt & \\
\hline 1 & 1 & 1-- Atanz & \\
\hline 1 & 1 & 1-- SOURCE & --.- TAPEG \\
\hline 1 & 1 & 1 1 & 1-- Sohit \\
\hline 1 & 1 & 1 & 1-- ALOG \\
\hline 1 & 1 & I-- DOURLT & --.- tapeg \\
\hline 1 & , & 1 & 1-- SORT \\
\hline 1 & 1 & , & 1-- ALOG \\
\hline 1 & 1 & 1-2 cos & \\
\hline 1 & 1 & 1-- SIN & \\
\hline 1 & 1-- VLOCTY & ---- TAPEG & \\
\hline 1 & & 1-- SUM & -.-. CEXP \\
\hline 1 & & 1-- SMOOTH & --- CLOG \\
\hline , & & - 5MOOTH & 1-- CAHS \\
\hline 1 & & 1 & 1-- EXP \\
\hline 1 & & 1-- EXP & \\
\hline 1 & & 1-- ASUm & \\
\hline 1 & & 1-- SORI & \\
\hline 1-- VCEMTR & & & \\
\hline 1-- COMMIN & & & \\
\hline & & & \\
\hline
\end{tabular}
(d) Page 4

Figure B.l - Concluded.

\title{
Figure B. 2 - \\ COMMON BLOCK CROSS REFERENCE MAP FOR PROGRAM BDYSHD (Pages 1 through 2)
}
CHOSS WEFERENCE MAD

(a) Page 1
Figure B. 2 - Common block cross reference map for program BDYSHD.
CPOSS WEFERENCE MAP

(b) Page 2
Figure B. 2 - Concluded.

\title{
Figure B. 3 - \\ SUBROUTINE CROSS REFERENCE MAP FOR PROGRAM BDYSHD \\ (Pages 1 through 2)
}
CDOSS REFEHENCE MAP

CROSS RFFERENCE MAP

(b) Page 2
Figure B. 3 - Concluded.

\section*{APPENDIX C}

FIN-EDGE VORTICITY, EFFECTS OF EXTERNAL VORTICES, BODY FORCES AND MOMENTS

\section*{C.l INTRODUCTION}

This appendix contains descriptions of the updated analytical treatment of leading- and side-edge force augmentations and vorticity characteristics. This is followed by the updated calculation of fin trailing-edge vorticity for a fin with arbitrary dihedral or cant angle. The updates refer to improvements and changes since the descriptions of the above characteristics in Appendices \(C\) and \(B\), respectively, in Reference l. The updates are related to the formulation of the spanwise loading distributions in the local fin coordinate system in order to allow for arbitrary fin location and cant angle.

A short description is given of the approach used to account for external vortex effects on the body and fin loads. Finally, the expressions used to integrate the pressures acting on the axisymmetric body for obtaining the body forces and moments are discussed. References are made to variable names and routines of program LRCDM2 (refer to Appendix A of this report for routine calling sequence chart).

> C. 2 ANALYTICAL TREATMENT OF LEADING- AND SIDE-EDGE VORTICITY CHARACTERISTICS

For fins with sharp edges and subjected to sufficiently high angles of attack, lift augmentation and vortex formation occurs at those edges due to flow separation. The vortices due to the forward-finned section are introduced into the flow along the afterbody and tail fins. It is therefore necessary to
estimate these vortex characteristics and to include effects induced by these vortices on the afterbody and tail fins.

One of the simplest approaches is to relate the strength and location of the leading- and side-edge vortices to the suction distributions by means of the Polhamus analogy (refer to Appendix \(C\) of Ref. 1). The suction distributions are related to the in-plane forces calculated as an extension to the constant u-velocity panel theory. Effects of leadingedge sweep breaks in the vortex formation and effects of vortex bursting are presently not accounted for.

The basic methods involved in the determination of leading- and side-edge vortex characteristics are described in Appendix \(C\) of Reference \(l\) for cruciform or planar fins. In program LRCDM2, geometrical restrictions concerning fin dihedral angle and position on the body circumference have been relaxed. In essence, the fin plane does not have to be a radial plane passing through the body centerline. This means that span-load and suction distributions need to be computed as a function of the local fin spanwise coordinate, \(y_{F}\). The following sketch shows the lateral components (\(y_{F}, z_{F}\)) of the fin local coordinate system for all fins of a cruciform fin layout and for one fin of an arbitrary layout. Note that fin location angle THETR or THETL etc. need not be equal to fin dihedral or cant angle PHIFR or PHIFL, etc. The local fin \(y_{F}\)-coordinate lies in the plane of the fin and is measured normal from the fin root chord. The directions can be outboard or inboard depending on the location of the fin (or equivalently its number designation).
(Looking forward)

The updated method for calculating the normal force and lift augmentation and the attendant vortex characteristics associated with the leading and/or side edge will now be described. For the leading edge the integration of suction in the spanwise direction is specified as CSINT.
\[
\begin{equation*}
\operatorname{CSINT}=\left.2 b \sum_{i=1}^{M S W} \frac{c_{s} c}{2 b}\right|_{i} \Delta y_{F, i} \tag{C-1}
\end{equation*}
\]
where MSW is the number of constant u-velocity panels in the spanwise direction. The moment with respect to the fin root is calculated as
\[
\begin{equation*}
\text { CSMOM }=\left.2 b \sum_{i=1}^{M S W} y_{F, i} \frac{c_{S}{ }^{c}}{2 b}\right|_{i} \Delta y_{F, i} \tag{C-2}
\end{equation*}
\]

The meanings of the terms appearing in the above equations are shown in the sketch below. This sketch shows a fin in planform with root chord \(c_{r}\) mounted on a body. A two-chordwise (\(\mathrm{NCW}=2\)) by three-spanwise (MSW=3) paneling layout is indicated on the fin planform. Also depicted are the distributions of suction along the leading and side edges. In routine SPNLD of

program LRCDM2, variables CSINT and CSMOM are computed as positive (or zero for supersonic edge) quantities. The spanwise center of gravity (or pressure) of the suction distribution is designated CGLOC. In the fin coordinate system it is given by the ratio of the moment over the suction force.
\[
\begin{equation*}
\left.Y_{\text {C.g.suction }}\right|_{L E}=C G L O C=\left(\frac{\text { CSMOM }}{\text { CSINT }}\right)(S I G N) \tag{c-3}
\end{equation*}
\]

Quantity SIGN equals positive one (+l) for fins 1 or \(R\) and 3 or \(U\), and equals negative one (-1) for fins 2 or \(L\) and 4 or D. In this way, the c.g. location is consistent with the fin coordinate system.

In accordance with Polhamus' analogy relating the augmentation of normal force on the leading edge to suction, the added normal force in coefficient form is given by
\[
\begin{equation*}
\left.\mathrm{C}_{\mathrm{N}}\right|_{\text {LE suction }}=\mathrm{K}_{\mathrm{v}, \mathrm{LE}} \frac{(\text { CSINT })}{\mathrm{S}_{\text {ref }}} \tag{C-4}
\end{equation*}
\]
where \(K_{v, L E}\) is the vortex-lift factor for the leading edge and \(S_{\text {ref }}\) is the reference area. Factor \(K_{V, L E}\) has default value 0.5 in program LRCDM2. Refined values on the basis of experimental data can be obtained from Figure 9(a) in Reference 8 as a function of Mach number and aspect ratio. The additional lift can be related approximately to the normal force in accordance with
\[
\begin{equation*}
\left.C_{L}\right|_{\text {LE suction }}=\left.C_{N}\right|_{\text {LE suction }} \cos \left(\alpha_{F}+\delta\right) \tag{C-5}
\end{equation*}
\]

Here \(\alpha_{F}\) is the angle of attack seen by the fin and \(\delta\) is the angle of deflection of the fin. The quantity \(\alpha_{F}\) is related to angle of pitch \(\alpha\) and angle of sideslip \(\beta\) defined in
Equation (3) in this report as follows.
\[
\begin{equation*}
\alpha_{F}=\sin ^{-1}\left(-\sin \beta \sin \phi_{F}+\sin \alpha \cos \phi_{F}\right) \tag{C-6}
\end{equation*}
\]

Angle \(\phi_{F}\) is the dihedral angle (PHIFR, etc.) of the fin.
If the fin has a side edge with nonzero length, additional normal force is produced that is related to the suction along the side edge. If this is the case, the integration of suction is continued from the leading edge onto the side edge using quantity CSINT and suction forces FT2it shown in the previous sketch.
\[
\begin{equation*}
\left.\operatorname{CSINT}\right|_{T O T A L}=\left.\operatorname{CSINT}\right|_{L E}+\underbrace{\sum_{i t=1}^{N C W} \mathrm{FT} 2_{i t}}_{\left.\operatorname{CSINT}\right|_{S E}} \tag{c-7}
\end{equation*}
\]

Similarly, the moment associated with the side-edge suction is added to the moment determined for the leading edge (b/2 is the exposed fin semispan).
\[
\begin{equation*}
\left.\operatorname{CSMOM}\right|_{\text {TOTAL }}=\left.\operatorname{CSMOM}\right|_{L E}+\underbrace{\sum_{i t=1}^{\mathrm{NCW}}\left(\frac{\mathrm{~b}}{2}\right) \mathrm{FT} 2_{i t}}_{\left.\mathrm{CSMOM}\right|_{\mathrm{SE}}} \tag{C-8}
\end{equation*}
\]

The suction forces acting on each panel outboard aft corner of the panels nearest the fin side edge are designated FT2it. Two are shown in the previous sketch.

The spanwise center of gravity (or pressure) of the total distribution of the suction along the leading and side edges is given by
\[
\left.\mathrm{Y}_{\mathrm{C} . \mathrm{g} ., \text { suction }}\right|_{\text {LE }+\mathrm{SE}}=\mathrm{CGSELC}=\frac{\left.\mathrm{CSMOM}\right|_{\text {TOTAL }}}{\left.\operatorname{CSINT}\right|_{\text {TOTAL }}}(\mathrm{SIGN}) \quad(\mathrm{C}-9)
\]
with SIGN having the meaning given previously in connection with Equation (\(\mathrm{C}-3\)). If the fin does not develop suction along the leading edge (i.e., when the leading edge is supersonic), the above treatment is to be applied to the side edge only. In that case,
\[
\begin{align*}
\left.\operatorname{CSINT}\right|_{L E} & =0.0 \tag{c-10}\\
\left.\operatorname{CSMOM}\right|_{L E} & =0.0
\end{align*}
\]
and the spanwise center of gravity is located at the fin side edge. By another application of Polhamus' analogy, the total increment in normal and lift force acting on the fin with
leading- and side-edge suction can be expressed as
\[
\left.\begin{array}{l}
\left.C_{N}\right|_{\text {LE+SE suction }}=\left.K_{v, L E} \frac{C S I N T}{}\right|_{\text {LE }}+K_{V, S E} \frac{\left.\operatorname{CSINT}\right|_{S E}}{S_{r e f}} \\
\left.\quad C_{L}\right|_{\text {LE }+S E \text { suction }}=\left.C_{N}\right|_{\text {LE+SE suction }} \cos \left(\alpha_{F}+\delta\right)
\end{array}\right\}(C-11)
\]
where \(K_{v, S E}\) is the vortex lift factor for the side edge. In program LRCDM2, factor \(\mathrm{K}_{\mathrm{v}, \mathrm{SE}}\) has default value l.0. For supersonic flow, there are few experimental data from which side-edge normal force or lift augmentation can be deduced. For sharp side edges, it is assumed that all of the suction is converted to additional normal force.

The vorticity associated with the total lift augmentation for the fin can be represented as follows. A horseshoe vortex is positioned with its bound leg in the plane of the fin and the outboard trailing leg at the center of gravity of the suction distribution. The inboard leg lies along the fin root as shown in the following sketch. Assuming that

\footnotetext{
*In any event, the incremental force on the side edge is assumed to act at mid chord.
}
the additional (augmented) lift generated on (or actually near) the leading and side edges acts on the bound leg of the representative horseshoe vortex, the Kutta-Joukowski law for lift provides the following expression for the vortex strength
\(y_{C . g ., s u c t i o n} \frac{\Gamma_{L E+S E}}{V_{\infty}}=\left[\left.K_{v, L E} \operatorname{CSINT}\right|_{L E}+\left.K_{v, S E} \operatorname{CSINT}\right|_{S E}\right] \cos \left(\alpha_{F}+\delta\right)\)
or
\[
\begin{equation*}
\frac{\Gamma_{\mathrm{LE}+\mathrm{SE}}}{\mathrm{~V}_{\infty}}=\left[\frac{\left.\mathrm{K}_{\mathrm{V}, \mathrm{LE}} \mathrm{CSINT}\right|_{\mathrm{LE}}+\left.\mathrm{K}_{\mathrm{V}, \mathrm{SE}} \mathrm{CSINT}\right|_{\mathrm{SE}}}{\mathrm{Y}_{\mathrm{C} . g ., \text { suction }}}\right] \cos \left(\alpha_{\mathrm{F}}+\delta\right) \tag{C-13}
\end{equation*}
\]

The elevation of this vortex above the fin plane is related to angle \(\alpha_{F} / 2\left(=\alpha_{\ell} / 2\right)\) as described in Section 2.4 in this report.

In summary, the above method provides a simple model for the vorticity associated with leading- and side-edge flow separation. In reality a rolled up sheet of vorticity appears on top of the fin at its trailing edge. It is represented here by a concentrated, discrete vortex.

The force and moment augmentations due to leading- and side-edge flow separation are included in the summing of overall forces and moments acting on the complete configuration.

\section*{C. 3 CALCULATION OF FIN TRAILING-EDGE VORTEX CHARACTERISTICS FOR FINS WITH ARBITRARY CANT (OR DIHEDRAL) ANGLE AND ARBITRARY LOCATION ON THE BODY}

This section is concerned with the changes to the method described in Appendix \(B\) of Reference 1 for cruciform and planar cases. The purpose of the method is to represent the trailing-edge wake of the fin by discrete, concentrated
vortices. In this account, the vortices emanating from the trailing edge are related to the span-load distribution associated with attached flow on the fin. Leading- and side-edge flow separation and the attendant augmentation to normal force and moments acting on the fin are not included. A separate analysis, given in the previous section, describes the representation of the vortices associated with the leading and side edges.

The principal modification to the original method consists of referring all calculations relative to the fin-body junction instead of the body centerline. This allows for arbitrary fin location and cant angle. Thus, coordinate transformations will be added to account for the fact that the fins may be in planes other than the major planes.

Consider a fin with exposed semispan \(b / 2\) attached to \(a\) body as shown in the following sketch. An external vortex

passes over the fin. The resulting span load distribution is indicated. The distribution of the vorticity at the trailing edge is also shown. It is desired to determine the strength(s) and location(s) of the concentrated vortex (vortices) representing the wake.

In the preceeding section, the fin local coordinate system \(\left(x_{F}, y_{F}, z_{F}\right)\) was introduced with the \(y_{F}\)-axis in the plane of the fin and directed outboard or inboard depending on the fin designation. The \(z_{F}\)-axis is normal to the plane of the fin and \(x_{F}\) extends aft along the fin root. Origin \(O_{F}\) is at the leading edge of the root chord. The spanwise load distribution will be calculated as a function of coordinate \(\mathrm{y}_{\mathrm{F}}\).

It can be shown* that under the assumptions of no sideslip and the pressure being linearly related to the potential, the trailing-edge vorticity \(\Gamma_{T E}\) can be related to the span loading as follows.
\[
\begin{equation*}
\frac{1}{V_{\infty}} \frac{\partial \Gamma_{T E}}{\partial Y_{F}}=-\frac{1}{2} \frac{\partial}{\partial y_{F}}\left(\mathrm{cc}_{\mathrm{n}}\right) \tag{C-13}
\end{equation*}
\]

This relationship will be used here for fins with sideslip as an approximation. The approximation is valid provided the actual span loading is used (i.e., \(\mathrm{cc}_{\mathrm{n}}\) is representative of the fin load including effects of sideslip).

In order to represent the distributed trailing-edge vorticity by concentrated vortices, the spanwise load distribution based on the Bernoulli pressure expressions is calculated first in routine SPNLD. For the case when this distribution exhibits extrema in between the root and side

\footnotetext{
*Nielsen, J. N., Spangler, S. B., and Hemsch, M. J.: A Study of Induced Rolling Moments for Cruciform-Winged Missiles. Nielsen Engineering \& Research, Inc. TR 61, Dec. 1973, p. 36.
}
edge, as in the previous sketch, the number of concentrated vortices is given by number of extrema plus l. The trailingedge vortex strength and spanwise position for the inboard portion of the span load distribution are then given by
\[
\begin{equation*}
\frac{\Gamma_{T E, I}}{V_{\infty}}=-\frac{1}{2} \int_{0}^{Y_{F_{\max }}} \frac{\partial}{\partial y_{F}}\left(c c_{n}\right) d y_{F}=-\frac{1}{2} \int_{0}^{Y_{F_{\max }}} d\left(c c_{n}\right) \tag{C-14}
\end{equation*}
\]
\[
y_{F_{I}}=\frac{-\frac{1}{2} \int_{0}^{Y_{F_{\max }}} Y_{F} \frac{\partial}{\partial y_{F}}\left(c c_{n}\right) d y_{F}}{-\frac{1}{2} \int_{0}^{Y_{F_{\max }}} \frac{\partial}{\partial y_{F}}\left(c c_{n}\right) d y_{F}}
\]

Integrating Equation (C-14) yields
\[
\begin{equation*}
\frac{\Gamma_{\mathrm{TE}, 1}}{\mathrm{~V}}=-\frac{1}{2}\left[\left.\mathrm{cc}_{\mathrm{n}}\right|_{\mathrm{y}_{\mathrm{F}_{\max }}}-\left.\mathrm{cc}_{\mathrm{n}}\right|_{0}\right] \tag{C-16}
\end{equation*}
\]

Equation (C-15) is integrated by parts with the following result.
\[
\begin{equation*}
\bar{y}_{\mathrm{F}_{1}}=\frac{-\frac{1}{2}\left[\left.\left.\mathrm{y}_{\mathrm{F}} \mathrm{cc}\right|_{\mathrm{n}}\right|_{0} ^{\mathrm{Y}_{\max }}-\int_{0}^{\mathrm{Y}_{\mathrm{F}}} \mathrm{max}\left(\mathrm{cc}_{\mathrm{n}}\right) \mathrm{dy} \mathrm{y}_{\mathrm{F}}\right]}{-\frac{1}{2} \int_{0}^{\mathrm{Y}_{\mathrm{F}_{\max }}} \mathrm{d}\left(\mathrm{cc}_{n}\right)} \tag{C-17}
\end{equation*}
\]
or
\[
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{F}_{1}}=\frac{\left.\mathrm{y}_{\mathrm{F}_{\max }}{ }^{\mathrm{cc}} \mathrm{n}_{\mathrm{n}}\right|_{\mathrm{Y}_{\mathrm{F}_{\max }}}-\int_{0}^{\mathrm{Y}_{\mathrm{F}_{\max }}\left(\mathrm{cc}_{\mathrm{n}}\right) \mathrm{d} \mathrm{y}_{\mathrm{F}}}}{\left.\mathrm{cc}_{\mathrm{n}}\right|_{\mathrm{y}_{\mathrm{F}_{\text {max }}}}-\left.\mathrm{cc}_{\mathrm{n}}\right|_{0}} \tag{C-18}
\end{equation*}
\]

In routine SPNLD, the integral in Equation (C-18) is designated VALNUM and the denominator is DIFMAX. Quantity \(\left.{ }^{c c_{n}}\right|_{Y_{F_{\max }}}\) is called VALMAX.

The strength and position of the outboard vortex is obtained in the same fashion with a change in the limits of integration.
\[
\begin{align*}
\frac{\Gamma_{\mathrm{TE}, 2}}{\mathrm{~V}_{\infty}} & =-\frac{1}{2} \int_{\mathrm{Y}_{\mathrm{F}_{\max }}}^{\mathrm{b} / 2} \mathrm{~d}\left(\mathrm{cc}_{\mathrm{n}}\right) \\
& =-\frac{1}{2}\left[\left.\mathrm{cc}_{\mathrm{n}}^{\prime}\right|_{\frac{\mathrm{b}}{2}} ^{0}-\left.\mathrm{cc}_{\mathrm{n}}\right|_{\mathrm{Y}_{\mathrm{F}_{\max }}}\right] \tag{C-19}
\end{align*}
\]

Since the span load vanishes at the side edge (not accounting for side-edge lift augmentation), Equation (C-19) simplifies to
\[
\begin{equation*}
\frac{\Gamma_{\mathrm{TE}, 2}}{\mathrm{~V}_{\infty}}=\left.\frac{1}{2} \mathrm{cc}_{\mathrm{n}}\right|_{\mathrm{Y}_{\mathrm{F}_{\max }}} \tag{C-20}
\end{equation*}
\]

The spanwise location of the outboard vortex on the trailing edge is given by Equation (\(\mathrm{C}-15\)) with the proper limits of integration.
\[
\begin{equation*}
\bar{y}_{\mathrm{F}_{2}}=\frac{-\frac{1}{2} \int_{y_{F_{\max }}}^{\mathrm{b} / 2} \mathrm{y}_{\mathrm{F}} \frac{\partial}{\partial y_{F}}\left(\mathrm{cc} \mathrm{c}_{\mathrm{n}}\right) d y_{F}}{-\frac{1}{2} \int_{y_{F_{\max }}}^{\mathrm{b} / 2} \alpha\left(\mathrm{cc}_{n}\right)} \tag{c-21}
\end{equation*}
\]

After integration by parts, the result is
or
\[
\begin{equation*}
\bar{y}_{F_{2}}=\frac{-\left.c c_{n}\right|_{y_{F_{\max }}} \mathrm{y}_{\mathrm{F}_{\max }}-\int_{y_{F_{\max }}}^{b / 2}\left(\mathrm{cc}_{n}\right) d y_{F}}{-\left.\left.\mathrm{cc}\right|_{\mathrm{n}}\right|_{\mathrm{y}_{\mathrm{max}}}} \tag{C-22}
\end{equation*}
\]
and finally,
\[
\begin{equation*}
\bar{y}_{\mathrm{F}_{2}}=\mathrm{y}_{\mathrm{F}_{\max }}+\frac{\int_{\mathrm{F}_{\max }}^{\mathrm{b} / 2}\left(\mathrm{cc}_{n}\right) \mathrm{dy}}{\mathrm{~F}} \tag{C-23}
\end{equation*}
\]

In the above equation, the integral is called VALINT in routine SPNLD.

If the span load distribution exhibits additional extrema, Equations (C-l6) through (18) must be applied again with the appropriate limits of integration \(Y_{F_{\max , 1}}\) to \(Y_{F_{\max , 2}}\). For the outboard vortex, Equations (C-19) through (C-23) hold. The vorticity for a fin with fully attached flow always leaves from the fin trailing edge.

It should be noted here that the span load distribution \(\mathrm{cc}_{\mathrm{n}} / 2 \mathrm{~b}\) need not be limited to the attached flow type loading. The above treatment holds for any distribution. However, the position above the fin for a vortex (or vortices) representing leading- and/or side-edge flow separation requires further consideration (see Section 2.4 in this report).

\section*{C. 4 INCLUSION OF EXTERNAL VORTEX INDUCED EFFECTS IN BODY AND FIN LOADING CALCULATIONS}

This section describes the approaches used to account for the influence of external vortices (i.e., body nose and/ or wake vortices from the forward fins) on body and fin loadings. The description of the treatment will cover the body first and the fin next. Certain approximations are pointed out. The treatment only applies to program LRCDM2 and not to the methods by which vortex effects are calculated in companion program BDYSHD. Refer to References 5 and 6 for the latter.

Consider first the portions of the body without the fins (i.e., the axisymmetric forebody and afterbody). For the forebody, program LRCDM2 is equipped with a data base (in subroutine BDYVTX) containing strengths and lateral locations of a symmetrical pair of concentrated vortices as a function of distance from the nose. These vortices are representative of forebody flow separation. Over the length of the afterbody,
canard wake and forebody vortices influence the body loadings. If afterbody vortex shedding is to be considered, program BDYSHD is engaged as an option.

Thus, on the forebody the vortex locations are supplied as a function of axial distance by the built-in data base and vortex tracking is not required. Vortex induced effects are therefore determined directly from standard crossflow plane theory (employing vortex images inside the body contour) implemented in the routines of module VPATH2. A typical situation for a case involving nonzero roll angle is shown in the sketch below. The external forebody vortices

are always symmetrically positioned relative to the crossflow plane flow vector. The lateral body coordinates (\(y_{B}, z_{B}\)) are also shown. The actual crossflow plane solution for this case is a degenerate version (body without fins) of the theory discussed in Section 1 of Appendix I of Reference 1.

The flow-tangency condition due to the presence of the symmetrical vortex pair is satisfied in the slender-body-theory sense at any point on the surface of the forebody. Therefore, on the basis of the superposition principle associated with linear or potential theory, the vortex induced perturbation velocities can be added to those induced by the line-source and line-doublet singularities used to flow model the axisymmetric body. These supersonic line singularities are described in Appendix I of Reference 7. The sum of the perturbation velocities are then substituted in the compressible (isentropic) Bernoulli pressure/velocity relationship, for example, as in Equation (6) in this report. Loads are obtained from integrating the pressures over the body surface as described in the next section. In this treatment the vortices are assumed to be parallel to the body centerline and therefore only induce lateral velocity components. Within the framework of this simplest crossflow analysis, the effects of the external vortices on the axial perturbation flow component are not accounted for. Note that in the computation of the Bernoulli pressure coefficient, the \(u / V\) component is the most important one [refer to Equations (6) and (7) of Section 2.6.1 of this report]. Consequently, the Bernoulli pressures on the leeward side of the body are not predicted well. In fact, the present scheme usually overpredicts these pressures. On the windward side where the flow is attached, the calculated Bernoulli pressures are valid provided the Mach number and/or angle of attack are within the range for linear supersonic theory (also refer to Section 2.6 in this report). The normal force acting on the forebody is based on the pressure distributions and is underestimated when vortices are present. Without vortices (low angles of attack), the predicted forebody loads are valid.

In reality, the external vortices are inclined with respect to the body centerline and induce an axial flow component. The present method does not include this contribution which may be most important when the vortices lie close to the body.

Over the length of the afterbody, the paths of the external (body nose and/or canard vortices) vortices are first determined by module VPATH2, the vortex tracker. Once the lateral vortex positions are known as a function of axial distance, the procedure described above for the forebody is employed to compute pressure coefficients at points on the afterbody. These calculations are performed in subroutine BDYPR. Again, only vortex-induced lateral velocity components are included and the contribution to the axial component is neglected. The same remarks made above apply to the afterbody loads under the influence of external vortices. Note that if companion program BDYSHD is engaged, the afterbody pressure distributions and loads include all effects of external vortices including the axial flow components induced by afterbody vortices.

The paths of external vortices over the finned portions of a configuration are calculated by module VPATH2. The vortices will move from one axial station to the next in accordance with crossflow plane theory for external vortices in the vicinity of a finned body, at angle of pitch and sideslip. Details are given in Appendix \(I\) of Reference l. When a vortex lies close to the surface of the body or a fin, an unrealistic vortex path may result. At the present time, this is due in part to the absence of a vortex-core model in the routines of VPATH2. In a case such as this, it is better to make the vortices act as if their paths lie parallel to the body centerline throughout the length of the finned section by means of the input to VPATH2
for steps 2 and/or 5 of the stepwise procedure (Section 2.3). In any event, the flow-tangency condition due to the presence of the external vortices is satisfied in the slender-body theory (two-dimensional) sense at any point on the body or fin surfaces. Then, in order to satisfy the flow-tangency condition in the three-dimensional linear theory sense, the effects of the vortices with their paths known from the slenderbody theory calculation are determined at the control points of the constant u-velocity panels distributed over the fins. In this process, the vortices are assumed to be in the presence of the body without the fins (i.e., as shown for two vortices in the previous sketch). In this way, the vortex-induced flow components normal to the fins are included in the fin flowtangency condition and directly influence the strengths of the constant u-velocity panels on the fins. The Bernoulli pressure calculations on the fins include effects of all the panels on the fins and interference shell, body line singularities and also the velocity lateral components from the external vortices calculated with the vortices in the presence cf the finned body. On the body surface next to the fins, the slender-body-theory flow-tangency boundary condition is retained and the Bernoulli pressure calculations receive contributions from body line singularities, all panels on fins and interference shell and the lateral velocity components from the external vortices calculated with the vortices in the presence of the finned body.

\section*{C. 5 BODY LOADS CALCULATED FROM PRESSURE DISTRIBUTIONS}

In this section, expressions are given for the three components of force acting on axisymmetric bodies in the body coordinate system \(\left(x_{B}, y_{B}, z_{B}\right)\) shown in the sketch below. The circumferential pressure-coefficient distributions are
integrated to give loads acting on a body ring. The forces and moments acting on the rings are added over all body rings to give overall body forces and moments.

Consider an axisymmetric body as shown in the sketch below. At points on body meridians, pressure coefficients are computed in subroutine BDYPR in accordance with the linear and Bernoulli expressions, Equations (5) and (6) in Section 2.6.1, respectively. The geometrical layout of the pressure points provides for a circumferential distribution of calculated pressures at many axial stations from the body nose to the base including the body portions of the forward-and tailfinned sections.

A shaded area is indicated on which pressure \(p\) is exerted resulting in elemental force \(\Delta F\)
\[
\begin{equation*}
\Delta F=p(r \Delta \theta) d s \tag{C-24}
\end{equation*}
\]

This elemental force has the following components in the \(x_{B}, y_{B}\), and \(z_{B}\) directions.
\[
\begin{align*}
\Delta F_{x_{B}} & =p(r \Delta \theta) \Delta s \sin \delta \\
\Delta F_{y_{B}} & =-p(r \Delta \theta) \Delta s \cos \delta \cos \theta \tag{C-25}\\
\Delta F_{z_{B}} & =-p(r \Delta \theta) \Delta s \cos \delta \sin \theta
\end{align*}
\]

Noting that
\[
\begin{equation*}
\Delta s=\frac{\Delta x_{\mathrm{B}}}{\cos \delta} \tag{c-26}
\end{equation*}
\]
and integrating around the circumference gives the forces acting on a ring. with thickness \(\Delta \mathrm{x}_{\mathrm{B}}\).
\[
\left.\begin{array}{l}
\left.\Delta F_{x_{B}}\right|_{\Delta x_{B}}=\frac{r\left(x_{B}\right) \Delta x_{B}}{\cos \delta}\left[\int_{0}^{2 \pi} p d \theta\right] \sin \delta \\
\left.\Delta F_{y_{B}}\right|_{\Delta x_{B}}=\frac{r\left(x_{B}\right) \Delta x_{B}}{\cos \delta}\left[\int_{0}^{2 \pi} p \sin \theta d \theta\right] \cos \delta \tag{C-27}\\
\left.\Delta F_{z_{B}}\right|_{\Delta x_{B}}=\frac{r\left(x_{B}\right) \Delta x_{B}}{\cos \delta}\left[\int_{0}^{2 \pi} p \sin \theta d \theta\right] \cos \delta
\end{array}\right\}
\]

It is clear that
\[
\left.\begin{array}{l}
\int_{0}^{2 \pi} p_{\infty}\left\{\begin{array}{c}
\sin \\
\text { or } \\
\cos
\end{array}\right\} d \theta=0 \tag{C-28}\\
\frac{\sin \delta}{\cos \delta}=\tan \delta=\frac{d r}{d x_{B}}
\end{array}\right\}
\]

Thus, the pressure \(p\) can be replaced with the pressure coefficient \(C_{P}\). With the pressure coefficients known, the following expressions are employed to calculate force and moment coefficients acting on a body ring with length \(\Delta x_{B}\).
\[
\begin{align*}
& \Delta C_{X}=\frac{r\left(x_{B}\right)}{S_{r e f}} \frac{d r\left(x_{B}\right)}{d x_{B}}\left[\int_{0}^{2 \pi} C_{P} d \theta\right] \Delta x_{B} \\
& \Delta C_{Z}=-\frac{r\left(x_{B}\right)}{S_{r e f}}\left[\int_{0}^{2 \pi} C_{P} \sin \theta d \theta\right] \Delta x_{B} \\
& \Delta C_{Y}=-\frac{r\left(x_{B}\right)}{S_{r e f}}\left[\int_{0}^{2 \pi} C_{P} \cos \theta d \theta\right] \Delta x_{B} \tag{C-29}\\
& \Delta C_{m}=-\frac{x_{B}-x_{M}}{L_{r e f}} \Delta C_{Z} \\
& \Delta C_{n}=-\frac{x_{B}-x_{M}}{L_{r e f}} \Delta C_{Y} \\
& \Delta C_{l}=0.0
\end{align*}
\]

The terms inside the brackets are integrated numerically. Program BDYPR sums these quantities based on the linear and Bernoulli pressure coefficients to give the loads on the forebody, body portion of the forward finned section, afterbody (unless optional program BDYSHD is engaged) and the body portion of the tail section.

\author{
APPENDIX D \\ PRESSURE COEFFICIENTS CALCULATED BY SHOCK-EXPANSION THEORY
}

\section*{D. 1 INTRODUCTION}

This appendix contains a description of a method for calculating pressure coefficients based on two-dimensional nonlinear shock-expansion (or tangent wedge) theory. It is applied to the calculation of chordwise pressure distributions on an airfoil using strips on the top and the bottom. This method can also be applied to "strips" laid out along the meridians of a body. However, in the application to a body, the two-dimensional tangent wedge theory is only a first approximation. As an improvement, the tangent-cone method can be applied to the body nose tip and Prandtl-Meyer expansion theory used on the rest of the ogive cylinder type bodies.

In the main body of this report, the nonlinear shockexpansion (tangent wedge) method described below is modified to account for three-dimensional interference effects.
D. 2 CALCULATION OF PRESSURE DISTRIBUTIONS ON AN AIRFOIL USING SHOCK-EXPANSION THEORY*

The method of calculating the pressure distribution on an airfoil using shock-expansion theory will be described. This method is valid up to the angle of attack at which the leadingedge shock wave becomes detached.

\footnotetext{
*This portion of the work is due to Mr . F. K. Goodwin at Nielsen Engineering \& Research, Inc. and is described in Reference D.l.
}

Figure D.l shows an airfoil section whose surface is approximated by a series of straight line segments. The number of segments on the upper or lower surface equals \(N\). The value of x at which a given segment ends, \(\mathrm{x}_{\mathrm{n}}\), is specified as is its surface angle, \(\theta_{n}\), measured from the chordal plane. Near the leading edge of the airfoil, \(\theta_{n}\) is positive. Downstream of the point of maximum thickness \(\theta_{\mathrm{n}}\) is negative.

On the lower surface, the flow in each region is characterized by
\[
\begin{aligned}
\mathrm{C}_{\mathrm{P}_{\ell}} & =\text { pressure coefficient, }\left(\mathrm{p}_{\ell_{n}}-p_{\infty}\right) / q_{\infty} \\
{ }^{M_{\ell_{n}}} & =\text { Mach number } \\
v_{\ell_{n}} & =\text { local Prandtl-Meyer angle }
\end{aligned}
\]

Similarly, the flow in each region on the upper surface is characterized by
\[
\begin{aligned}
C_{p_{u_{n}}} & =\text { pressure coefficient, }\left(p_{u_{n}}-p_{\infty}\right) / q_{\infty} \\
M_{u_{n}} & =\text { Mach number } \\
\nu_{u_{n}} & =\text { local Prandtl-Meyer angle }
\end{aligned}
\]

The calculation of the \(N\) values of \(C_{P_{\ell}}\) and the \(N\) values of \(C_{P_{u}}\) will now be described for the lower surface and for the upper surface, respectively. Most of the equations used are taken from Reference D.2.

\section*{D.2.1 Lower Surface}

Region 1 (behind shock)

On the lower surface in region \(l\) shown in figure D.l, the free-stream flow is deflected through an angle \(\delta\) where
\[
\begin{equation*}
\delta=\alpha+\theta_{1} \tag{D-1}
\end{equation*}
\]

Angle \(\alpha\) is the angle of attack seen by the airfoil section at its leading edge.

To calculate the flow quantities in region 1 , the shock wave angle, \(\theta_{s}\), which is a function of \(M_{\infty}\) and \(\delta\) must be determined. This angle can be determined by an iterative solution of the following equation (\(\gamma=1.4\) for air).
\[
\begin{equation*}
\operatorname{ctn} \delta=\tan \theta_{s}\left[\frac{(\gamma+1) M_{\infty}^{2}}{2\left(M_{\infty}^{2} \sin ^{2} \theta_{s}-1\right)}-1\right] \tag{D-2}
\end{equation*}
\]

This equation [Equation (138) in Ref. D.2] is double-valued in \(\theta_{s}\). Also, for a given value of \(M_{\infty}\), there is a value of \(\delta\) above which no solution can be found, this is the case of a detached shock wave. The maximum value of the wedge angle, \(\delta\), which will allow an attached shock occurs when, from Equation (D.2),

\[
\begin{equation*}
\frac{\mathrm{d} \delta}{\mathrm{~d} \theta_{\mathrm{s}}}=0 \tag{D-3}
\end{equation*}
\]

Therefore, the maximum value of \(\theta_{s}\) for an attached shock wave for \(a\) given \(M_{\infty}\) can be found by differentiating Equation (D.2) and setting the derivative, \(\mathrm{d} \delta / \mathrm{d} \theta_{\mathrm{s}}\), to zero. If this is done, the result is
\(\sin { }_{S_{\max }}=\left[\frac{-\left[4-(\gamma+1) M_{\infty}^{2}\right]+\sqrt{(\gamma+1)^{2} M_{\infty}^{4}+8(\gamma+1)(\gamma-1) M_{\infty}^{2}+16(\gamma+1)}}{4 \gamma M_{\infty}^{2}}\right]^{1 / 2}\)
which is the same as Equation (168) in Reference D. 2 for the shock wave angle for maximum stream deflection. Using \(\theta_{s_{\text {max }}}\) and \(M_{\infty}\), Equation (\(D-2\)) can be used to find the maximum value of \(\delta\) for an attached shock wave.

The procedure to be used in solving Equation (D-2) for \(\theta_{s}\) for given values of \(M_{\infty}\) and \(\delta\) is:
1. Determine \({ }^{{ }^{s_{\max }}}\) using Equation (D-4).
2. Using \(\theta_{S_{\max }}\) in Equation (\(D-2\)) compute \(\delta_{\text {max }}\).
3. If \(\delta<\delta_{\text {max }}\) solve Equation (D-2) for the value of \(\theta_{s}\) which will be less than \(\theta_{s_{\text {max }}}\).

With \(\theta_{s}\) determined, the following quantities in region \(l\) on the lower surface of the airfoil can be calculated.

Pressure Coefficient [Eq. (145), Ref. D.2]
\[
\begin{equation*}
C_{P_{\ell_{1}}} \equiv \frac{p_{\ell_{1}}-p_{\infty}}{q_{\infty}}=\frac{4\left(M_{\infty}^{2} \sin ^{2} \theta_{s}-1\right)}{(\gamma+1) M_{\infty}^{2}} \tag{D-5}
\end{equation*}
\]

Mach Number [Eq. (132), Ref. D.2]
\(M_{\ell_{1}}=\left\{\frac{(\gamma+1)^{2} M_{\infty}^{4} \sin ^{2} \theta_{s}-4\left(M_{\infty}^{2} \sin ^{2} \theta_{s}-1\right)\left(\gamma M_{\infty}^{2} \sin ^{2} \theta_{s}+1\right)}{\left[2 \gamma M_{\infty}^{2} \sin ^{2} \theta_{s}-(\gamma-1)\right]\left[(\gamma-1) M_{\infty}^{2} \sin ^{2} \theta_{s}+2\right]}\right\}^{1 / 2}\)
Prandtl-Meyer Angle \(v_{\ell_{1}}\) for \(M_{\ell_{1}}\) [Eq. (17lc), Ref. D.2]
\[
\begin{equation*}
v_{\ell_{1}}=\sqrt{\frac{\gamma+1}{\gamma-1}} \tan ^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}\left(M_{\ell_{1}}^{2}-1\right)}-\tan ^{-1} \sqrt{M_{\ell_{1}}^{2}-1} \tag{D-7}
\end{equation*}
\]

\section*{Ratio of Total Pressure to Free-Stream Total Pressure}
[Eq. (142), Ref. D.2]
\[
\begin{equation*}
\frac{p_{t_{\ell}}}{p_{t_{\infty}}}=\left[\frac{(\gamma+1) M_{\infty}^{2} \sin ^{2} \theta_{s}}{(\gamma-1) M_{\infty}^{2} \sin ^{2} \theta_{s}+2}\right]^{\frac{\gamma}{\gamma-1}}\left[\frac{\gamma+1}{2 \gamma M_{\infty}^{2} \sin ^{2} \theta_{s}-(\gamma-1)}\right]^{\frac{1}{\gamma-1}} \tag{D-8}
\end{equation*}
\]

\section*{Region n :}

The procedure used to calculate the pressure coefficients in regions \(2,3, \ldots \mathrm{~N}\) on the lower surface is identical so that the following equations are written for region \(n\) where \(\mathrm{n}=2,3, \ldots \mathrm{~N}\).

The calculation is repeated sequentially for all these regions as described next.

The flow, in going from region \(n-1\) to region \(n\), expands through angle \(\left(\theta_{n-1}-\theta_{n}\right)\). Therefore, the Prandtl-Meyer angle is
\[
\begin{equation*}
v_{\ell_{n}}=v_{\ell_{n-1}}+\left(\theta_{n-1}-\theta_{n}\right) \tag{D-9}
\end{equation*}
\]

With this angle known, the Mach number in region \(n\) can be calculated using equations given in Reference D. 3 and repeated below.
\[
\begin{equation*}
M_{\ell_{n}}=\frac{1+1.3604 \bar{v}+0.0962 \bar{v}^{2}-0.5127 \bar{v}^{3}}{1-0.6722 \bar{v}-0.3278 \bar{v}^{2}} \tag{D-10}
\end{equation*}
\]
where
\[
\begin{equation*}
\bar{v}=\left(\frac{v_{l_{n}}}{v_{\max }}\right)^{2 / 3} ; v_{\max }=\frac{\pi}{2}\left(\sqrt{\frac{\gamma+1}{\gamma-1}}-1\right) \tag{D-ll}
\end{equation*}
\]

The ratio of static pressure to total pressure in region \(n\) is then [Eq. (44), Ref. D.2]:
\[
\begin{equation*}
\frac{p_{\ell_{n}}}{p_{t_{\ell}}}=\left(1+\frac{\gamma-1}{2} m_{\ell_{n}}^{2}\right)^{-\frac{\gamma}{\gamma-1}} \tag{D-12}
\end{equation*}
\]
and the pressure coefficient is
\[
\begin{equation*}
c_{p_{\ell}} \equiv \frac{p_{\ell_{n}}-p_{\infty}}{q_{\infty}}=\frac{\left(\frac{p_{\ell}}{p_{t_{\ell}}}\right)\left(\frac{p_{t_{\ell_{1}}}}{p_{t_{\infty}}}\right)-\frac{p_{\infty}}{p_{t_{\infty}}}}{\frac{q_{\infty}}{p_{t_{\infty}}}} \tag{D-13}
\end{equation*}
\]

This expression uses the fact that \(p_{t_{\ell_{n}}}=p_{t_{\ell_{1}}}\), i.e., the total pressure is constant behind the oblique shock. The ratio \(\mathrm{p}_{\mathrm{t}_{\ell_{1}}} / \mathrm{p}_{\mathrm{t}_{\infty}}\) is given by Equation (D-8) and
\[
\frac{p_{\infty}}{p_{t_{\infty}}}=\left(1+\frac{\gamma-1}{2} M_{\infty}^{2}\right)^{-\frac{\gamma}{\gamma-1}}
\]
\[
\begin{equation*}
\frac{q_{\infty}}{p_{t_{\infty}}}=\frac{\pi}{2} m_{\infty}^{2}\left(\frac{p_{\infty}}{p_{t_{\infty}}}\right) \tag{D-15}
\end{equation*}
\]
from Equations (44) and (3la) in Reference D.2, respectively.
After the calculations given by Equations (D-9) through (\(\mathrm{D}-15\)) have been done sequentially for \(\mathrm{n}=2,3, \ldots \mathrm{~N}\), the twodimensional pressure distribution on the lower surface has been determined.

\section*{D.2.2 Upper Surface}

Region 1:
Two separate methods are used in calculating the pressure coefficient, \(C_{P_{u_{1}}}\), in region \(l\) shown in Figure D.l on the upper surface depending on whether the angle of attack, \(\alpha\),
is less than or greater than the surface angle, \(\theta_{1}\), shown also in Figure D.l. The two methods will now be discussed.

Method for \(\alpha<\theta^{\theta}\)

If \(\alpha<\theta_{1}\) the free-stream flow is deflected through an angle \(\delta\) where
\[
\begin{equation*}
\delta=-\left(\alpha-\theta_{1}\right) \tag{D-16}
\end{equation*}
\]
and a shock wave exists on the upper surface. For this case the procedure described for region 1 on the lower surface is followed. The value of \(\delta\) given by Equation (\(D-16\)) is used along with the free-stream Mach number, \(M_{\infty}\), in Equation (D-2) to find the shock-wave angle, \({ }^{\theta_{s}}\). Analogous to Equations (D-5), (\(D-6\)) , (\(D-7\)), and (\(D-8\)) the following expressions hold.

\section*{Pressure Coefficient}
\[
\begin{equation*}
C_{P_{u_{1}}} \equiv \frac{p_{u_{1}}-p_{\infty}}{q_{\infty}}=\frac{4\left(M_{\infty}^{2} \sin ^{2} \theta_{s}-1\right)}{(\gamma+1) M_{\infty}^{2}} \tag{D-17}
\end{equation*}
\]

\section*{Mach Number}
\[
\begin{equation*}
M_{u_{1}}=\left\{\frac{(\gamma+1)^{2} M_{\infty}^{4} \sin ^{2} \theta_{s}-4\left(M_{\infty}^{2} \sin ^{2} \theta_{s}-1\right)\left(\gamma M_{\infty}^{2} \sin ^{2} \theta_{s}+1\right)}{\left[2 \gamma M_{\infty}^{2} \sin ^{2} \theta_{s}-(\gamma-1)\right]\left[(\gamma-1)\left(M_{\infty}^{2} \sin ^{2} \theta_{s}+2\right]\right.}\right\}^{1 / 2} \tag{D-18}
\end{equation*}
\]

Prandtl-Meyer Angle for \(M_{u}\)
\[
v_{u_{1}}=\sqrt{\frac{\gamma+1}{\gamma-1}} \tan ^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}\left(M_{u_{1}}^{2}-1\right)}-\tan ^{-1} \sqrt{M_{u_{1}}^{2}-1} \quad(D-19)
\]

Ratio of Total Pressure to Free-Stream Total Pressure
\[
\frac{p_{t_{u_{l}}}}{P_{t_{\infty}}}=\left[\frac{(\gamma+1) M_{\infty}^{2} \sin ^{2} \theta_{s}}{(\gamma-1) M_{\infty}^{2} \sin ^{2} \theta_{s}+2}\right]^{\frac{\gamma}{\gamma-1}}\left[\frac{\gamma+1}{2 \gamma M_{\infty}^{2} \sin ^{2} \theta_{s}-(\gamma-1)}\right]^{\frac{1}{\gamma-1}}
\]

Method for \(\alpha>{ }^{\theta} 1\)

If \(\alpha>\theta_{1}\) the flow expands through angle \(\left(\alpha-\theta_{1}\right)\) in going from the free stream to region \(l\) on the upper surface and the procedure for the expansion flow on the lower surface is repeated. Therefore, the Prandtl-Meyer angle in
region 1 is
\[
\begin{equation*}
v_{u_{1}}=v_{\infty}+\left(\alpha-\theta_{1}\right) \tag{D-21}
\end{equation*}
\]
where
\[
\begin{equation*}
v_{\infty}=\sqrt{\frac{\gamma+1}{\gamma-1}} \tan ^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}\left(M_{\infty}^{2}-1\right)}-\tan ^{-1} \sqrt{M_{\infty}^{2}-1} \tag{D-22}
\end{equation*}
\]
and the Mach number is
\[
\begin{equation*}
M_{u_{1}}=\frac{1+1.3604 \bar{v}+0.0962 \bar{v}^{2}-0.5127 \bar{v}^{3}}{1-0.6722 \bar{v}-0.3278 \bar{v}^{2}} \tag{D-23}
\end{equation*}
\]
where
\[
\begin{equation*}
\bar{v}=\left(\frac{v_{u_{1}}}{v_{\max }}\right)^{2 / 3} ; v_{\max }=\frac{\pi}{2}\left(\sqrt{\frac{\gamma+1}{\gamma-1}}-1\right) \tag{D-24}
\end{equation*}
\]

The ratio of static pressure to total pressure in region 1 is
\[
\begin{equation*}
\frac{p_{u_{1}}}{p_{t_{u_{1}}}}=\left(1+\frac{\gamma-1}{2} m_{u_{1}}^{2}\right)^{-\frac{\gamma}{\gamma-1}} \tag{D-25}
\end{equation*}
\]
and the ratio of total pressure in region 1 to free-stream total pressure, since in this case (\(\alpha>\theta_{1}\)) there is no shock wave, is given by
\[
\begin{equation*}
\frac{\mathrm{p}_{\mathrm{t}_{u_{1}}}}{\mathrm{p}_{\mathrm{t}_{\infty}}}=1.0 \tag{D-26}
\end{equation*}
\]

The pressure coefficient in region 1 on the upper surface is given by
\[
\begin{equation*}
c_{p_{u_{1}}}=\frac{\left(\frac{p_{u_{1}}}{p_{t_{u_{1}}}}\right)\left(\frac{p_{t_{u_{1}}}}{p_{t_{\infty}}}\right)-\frac{p_{\infty}}{p_{t_{\infty}}}}{\frac{q_{\infty}}{p_{t_{\infty}}}} \tag{D-27}
\end{equation*}
\]
the quantities \(p_{\infty} / p_{t_{\infty}}\) and \(q_{\infty} / p_{t_{\infty}}\) are obtained from Equations (D-14) and (D-15).

\section*{Region n :}

The procedure for calculating the pressure coefficients in regions \(2,3, \ldots \mathrm{~N}\) on the upper surface is the same as that described previously for the expanding flow regions on the lower surface. The following equations are written for region \(n\) where \(n=2,3, \ldots N\).

The flow in going from region \(n-1\) to region \(n\) expands through the angle \(\left(\theta_{n-1}-\theta_{n}\right)\). The Prandtl-Meyer angle in region \(n\) is
\[
\begin{equation*}
v_{u_{n}}=v_{u_{n-1}}+\left(\theta_{n-1}-\theta_{n}\right) \tag{D-28}
\end{equation*}
\]

If \(n=2\), either Equation (\(D-19\)) or (\(D-21\)) is used to determine \(\nu_{u_{n-1}}\) depending on whether \(\alpha\) is less than or greater than \(\theta_{1}\).

With \(\nu_{u_{n}}\) known, the Mach number in region \(n\) is
\[
\begin{equation*}
M_{u_{n}}=\frac{1+1.3604 \bar{v}+0.0962 \bar{v}^{2}-0.5127 \bar{v}^{3}}{1-0.6722 \bar{v}-0.3278 \bar{v}^{2}} \tag{D-29}
\end{equation*}
\]
where
\[
\begin{equation*}
\bar{v}=\left(\frac{\nu_{u_{n}}}{\nu_{\max }}\right)^{2 / 3} ; \nu_{\max }=\frac{\pi}{2}\left(\sqrt{\frac{\gamma+1}{\gamma-1}}-1\right) \tag{D-30}
\end{equation*}
\]

The ratio of static pressure to total pressure in region \(n\) is
\[
\begin{equation*}
\frac{p_{u_{n}}}{p_{t_{u_{n}}}}=\left(1+\frac{\gamma-1}{2} M_{u_{n}}^{2}\right)^{-\frac{\gamma}{\gamma-1}} \tag{D-31}
\end{equation*}
\]
and the pressure coefficient is
\[
\begin{equation*}
c_{p_{u_{n}}}=\frac{\left(\frac{p_{u_{n}}}{p_{t_{u_{n}}}}\right)\left(\frac{p_{t_{u_{1}}}}{p_{t_{\infty}}}\right)-\frac{p_{\infty}}{p_{t_{\infty}}}}{\frac{q_{\infty}}{p_{t_{\infty}}}} \tag{D-32}
\end{equation*}
\]

Since the total pressure is constant behind the oblique shock (if there is a shock), \(p_{t_{u_{n}}}=p_{t_{u_{1}}}\). The ratio \(p_{t_{u_{1}}} / p_{t_{\infty}}\) is given by Equation (\(D-20\)) if \(\alpha \leq \theta_{1}\), or by Equation (\(D-26\)) if \(\alpha>\theta_{1}\). Quantities \(p_{\infty} / p_{t_{\infty}}\) and \(q_{\infty} / p_{t_{\infty}}\) are specified by Equations (\(D-14\)) and (\(D-15\)), respectively. After the calculations given by Equations (\(D-28\)) through (\(D-32\)) have been repeated sequentially for \(n=2,3, \ldots N\), the twodimensional pressure distribution on the upper surface of the airfoil has been determined.

All of the above is programmed in subroutines SHKAGL and SHKEXP of program LRCDM2.

\section*{REFERENCES}
D.l Nielsen, J. N. and Goodwin, F. K.: Preliminary Method for Estimating Hinge Moments of All Movable Controls. Nielsen Engineering \& Research, Inc. TR 268, Mar. 1982.
D. 2 NACA Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Report ll35, 1953.
D. 3 Hall, I. M.: Inversions of the Prandtl-Meyer Relation. Aero. Jour., Roy. Aero. Soc., UK, Sept. 1975, pp. 417-418.

Figure D.l.- Symmetric airfoil section made up of straight line segments.
```


[^0]:    *Work performed for Mr. Dave Washington, DRSMI-RDK, Redstone Arsenal, Alabama, under Purchase Order No. DAA H01-82-P-1224.

[^1]:    (a) Normal force and pitching moment coefficients.

    Figure 5.- Aerodynamic forces acting on $T F-4$ model, $M_{\infty}=2.5, \phi=0^{\circ}$. Forward fins with roll control, king-size tail fins.

[^2]:    *Ashley, H. and Landahl, M.: Aerodynamics of Wings and Bodies. Addison-Wesley Publishing Co., Inc. 1965, pp. 180-181.

[^3]:    *Refer to Limitations and Precaution Section A. 6 in connection with a deficiency in the forebody loading when body nose vortices are present.

[^4]:    Fins can be deflected symmetrically as in the case for pitch control.

[^5]:    *Present version of LRCDM2 handles thickness effects only for planar or cruciform fin layouts.

[^6]:    *Refer to Limitations and Precaution Section A. 6 in connection with a deficiency in the forebody pressures when under the influence of forebody vortices.

[^7]:    The NASA/LRC version of LRCDM2 prints the total fin forces under the Bernoulli pressure loads as CZFT,CYFT...etc. and CZFTU,CYFTU...etc. The sample case output shown later does not show these quantities.

[^8]:    ${ }^{*}$ See footnote on page A-73.

[^9]:    *See note in input variable description following Item 5 required for all runs; in this case, the horizontal canard fins are deflected asymmetrically so $\phi=0.001^{\circ}$.

[^10]:    7

[^11]:    

[^12]:    SUMFX $=0$.
    SUMFY1 $=0$.
    SUMFYZ $=.50274 E-01$
    SUMFT2 $=.21231 E-01$
    SIDE EDGE DISTRIRUTION
    S.E. AUGMENTATION OF FIN NDRMAL FORCE FROM SUCTION CONVERSION IN PROPORTION WITH FACTOR
    (UNROLLED BODY-AXIS)
    CYADD $\quad .00000$
    
    $\stackrel{N}{\sim} \underset{\sim}{\sim}$
    8
    0
    0
    0
    111
    08
    0
    4
    4
    4
    $\begin{aligned} \text { IROLLED } & \text { BODY-AXISI } \\ \text { CYADN } & =0.00000 \\ \text { CZADD } & =0.02325 \\ \text { CMADD } & =0.11423 \\ \text { CLNANO } & =0.00000\end{aligned}$

[^13]:    thrust- and side-force coefficients in plane of the fin SUMFX $=C X \ldots$..ACTS ON LEADING EOGE
    SUMFY $=C Y$ ACYS ON LEADING EDGE
    SUMFY? $=C Y$ AACTS ON LEEDING AND SUMFY $2=C Y \ldots A C T S$ ON LEADING AND SIDE EDGE
    SUMFT $2=C Y$..ACTS ON SIDE EDGE.

[^14]:    

[^15]:    

    C
    $\times+$
    +
    
    

[^16]:    

[^17]:    (UNROLLED BOOY-AXIS)
    CYADD $=\quad .00001$
    
    $\begin{aligned} \text { CMADD } & =-4.30395 \\ \text { CLNADD } & =-.0000 \mathrm{~B}\end{aligned}$
    (ROLLED BOOY-AXIS)
    $\begin{array}{ll}\text { CROLLED } & \text { BOOY-AXIS) } \\ \text { CYADO } & = \\ \text { CZADO } & =0.00000 \\ \text { CMADO } & = \\ \text { COA. } & -46408 \\ \end{array}$
    $\begin{aligned} \text { CMADO } & =-4.30397 \\ \text { CLNADD } & =0.00000\end{aligned}$

[^18]:    thrust－and side－force coefficients in plane of the fin
    SIJMFX $=C X$ ．．ACTS ON LEADING EDGE
    SUMFY $=$ CY．．ACTS ON LEADING EOGE SUMFY $2=C Y \ldots A C T S$ ON LEADING AND SIDE EDGE
    SUMFT $P=C Y \ldots A C T S$ ON SIOE EDGF

[^19]:    
    
    

    ## ORIGINAL PAGE ES of POOR QUAITTA

    
    
    
    
    
    
    
    step a l-gans on tail fins with vortex efffcts
    nasa/ler tr-4 with king tail (D), afterbody and taill section

    $$
    \begin{aligned}
    & \dot{\tilde{0}} \\
    & \vdots \\
    & \dot{\vdots} \\
    & \vdots \\
    & \vdots \\
    & \hline
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & =.2159 E+02 \\
    & =.904 E+01 \\
    & =.904 E+01 \\
    & =.2159 E+02
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & =.423 E+010 \\
    & =.1412 E+02 .
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \dot{0} \\
    & \vdots \\
    & \vdots \\
    & \vdots \\
    & \vdots \\
    & u
    \end{aligned}
    $$

    $$
    =.2159 E+02
    $$

    $$
    \begin{array}{ll}
    \dot{0} & \dot{0} \\
    \dot{0} & \dot{~} \\
    \text { " } & \text { " }
    \end{array}
    $$

    $$
    \begin{aligned}
    & =.1 E+01 \\
    & =.95 E+00 \\
    & =.5 E+00 .
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & =. S E+00 . \\
    & =.1 E+n 1 .
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & =.1 E+01 . \\
    & =.25 E+n 1
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & =.2115 E * 01 . \\
    & =.423 E+01 .
    \end{aligned}
    $$

    
    
    

    | 영영ㅇㅇㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응응ㅇㅇㅇㅇ <br>  |
    | :---: |
    |  |  |
    |  |  |
    |  |  |
    |  |  |

    
    
    
    
    
    
    
    

    # ORITMAEX PAGE E OF POOE Grazity 

    | تِّ تِ تِ |
    | :---: |
    |  |  |
    |  |  |
    |  |  |


    | Ben |
    | :---: |
    |  |  |
    |  |  |
    |  |  |
    |  |  |

    

    |  |
    | :---: |
    |  |  |
    |  |  |

    
    
    
    
    
    


    
    
    

    |  <br>  <br>  |
    | :---: |
    |  |  |
    |  |  |
    |  |  |


    |  |
    | :---: |
    |  |  |
    |  |  |

    

    |  |
    | :---: |
    |  |  |
    |  |  |

    
    
    
    
    
    
    
    
    
    -** STEP 6
    
    FIN 0 OR D
    0.00000
    $-.56527 E-05$
    0.
    $-.26898 E-01$
    0.
    .35156
    $.33023 E-01$
    
    fin loading information
    linear pressure (u/vinf) loads in body system

    |  | total | FIN 1 OR R | FIN 2 OR |
    | :---: | :---: | :---: | :---: |
    | DEG. $=$ |  | 0.00000 | 0.00000 |
    | CTHR = | -15764 | .81136E-01 | .68580E-01 |
    | c. 7. | 8.0215 | 3.9198 | 4.1017 |
    | $\mathrm{Cr}=$ | -. 32411 | 0 | 0. |
    | $\mathrm{CM}^{\text {M }}=$ | -R8.030 | -42.837 | -45.193 |
    | $\mathrm{CL} \mathrm{N}=$ | 3.3999 | n. | 0. |
    | CLL $=$ | .10050 | -5.7583 | 6.0537 |
    | FOLL | WING ARE | O BODY-AXIS | NATE SYSTEM |
    | C7U $=$ | 8.0215 | 3.9198 | 4.1017 |
    | Cru = | -. 32797 | . $68413 E-04$ | . 7158 AE-04 |
    | CMU $=$ | -88.030 | -42.837 | -45.193 |
    | CLNU $=$ | 3.3874 | -. 74765E-03 | -.78877E-03 |

    SHANWISE DISTRIRUTIONS

    | ! | Y/(H/Z) | $\mathrm{CN} * \mathrm{C} /(2 * \mathrm{~B})$ | CT*C/(2*R) | $C Y 1 * C /(2 * R)$ | CrTOT*C/(2*R) | $\mathrm{CS*} /(12 * B)$ | CSINT | YBAR | GAMNET (1) | GAMMA.LE/ | NF XLE |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | .08233 | .19490 | 0.00000 | 0.00000 | . 00020 | 0.07000 | 0.00000 | 0.00000 | -3.52541 | 0.00000 | . 74425 |
    | 7 | . 24892 | .19312 | 0.00000 | 0.00000 | . 00076 | 0.07000 | 0.00000 | 0.00000 | .03203 | 0.00000 | 2.25021 |
    | 3 | .41549 | .18808 | 0.00000 | 0.00000 | . 00168 | 0.00000 | 0.00000 | 0.00000 | . 09080 | 0.00000 | 3.75605 |
    | 4 | . 58205 | . 17559 | 0.00000 | 0.00000 | . 00291 | 0.00000 | 0.00000 | 0.00000 | . 22559 | 0.00000 | 5.26174 |
    | 4 | . 74859 | .15369 | 0.00000 | 0.00000 | .00423 | 0.00000 | 0.00000 | 0.00000 | - 39582 | 0.00000 | 6.76723 |
    | 6 | .91509 | .11050 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | . 78117 | 0.00000 | 8.27245 |
    | 7 | 1.00000 | 0.00000 |  |  |  |  |  |  | 2.00000 |  |  |

    ThRUST- AND SIDE-FORCE COEFFICIENTS IN PLANE OF THE FIN
    
    SUMFX $=0$.
    SUMFY1 $=0$.
    SUMFYZ $=0.37733 E-01$
    SUMFTZ $=0.32015 E .00$
    SUMFX $=C X$. ACTS ON L.EADING EUGE
    SIDE EDGE DISTRIHUTION

    | JTIP | SIDE EDGE DISTRIHUTION |  |  | $\begin{aligned} & \text { GAMMA•SE } \\ & \text { /VINF } \end{aligned}$ | YBAR | XSE |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | JSE | DISTANCF <br> FROM LF <br> /TIPCH(OPD | $\begin{aligned} & \text { SUCTION FORCE } \\ & \text { PER UNIT LENGTH } \\ & \text { /OOTPCHOHDI } \end{aligned}$ |  |  |  |
    | 1 | 1 | .25000 | .00093 | . 00195 | 9.04000 | 9.04000 |
    | ? | $?$ | .50000 | .02075 | .04560 | 9.04000 | 12.17750 |
    | 3 | 7 | .75000 | .04773 | .14600 | 9.04000 | 15.31500 |
    | 4 | 4 | 1.00000 | . 04540 | .24151 | 9.04000 | 18.45250 |

    S.F. AUGMENTATION IOF FIN NHRMAL FURCF FROM SUCTION CONVERSION IN PROPORTION WITH FACTOR
    KVSE $=1.000$
    (UNROLLED BODY-AXIS)
    
    $\begin{array}{rr}\text { CMADD } & =-3.78470 \\ \text { CLNADD } & =0.00000 \quad \text { CLNADO }\end{array}=-.00007$
    

    |  |  |  |
    | :---: | :---: | :---: |
    | GAMNET(I) | GAMMA,LE/VINF | XLE |
    | -.85371 | 0.00000 | .74425 |
    | -.32203 | 0.00000 | 2.25021 |
    | .38344 | 0.0000 | 3.75605 |
    | .169996 | 0.00000 | 5.26174 |
    | -0.0350 | 0.0000 | 6.76723 |
    | -.01259 | 0.00000 | 8.27245 |

    
    S.e. aurmentation of fin nommal furce from suction conversion in proportion with factor

    | lunrolle | BODY-ax(S) |
    | :---: | :---: |
    | crado | . 00001 |
    | C.2ADD | . 35423 |
    | cmado | -4.18755 |
    | CLNado | -.00007 |
    | Cllado | .93415 |
    | $\times \mathrm{CG}$ | 96.0450 |
    | rcG | $=-11.1550$ |
    | LCG | . 0002 |

    $$
    \begin{aligned}
    \text { YROLLED } & \text { BOOY-AXIS) } \\
    \text { CYADD } & = \\
    \text { CZADD } & =0.00000 \\
    \text { CMADD } & = \\
    \text { CLNADD } & =95423 \\
    \text { CLLAOD } & =0.00757 \\
    \text { XCG } & =0.93415 \\
    \text { YCG } & =96.0450 \\
    \text { ZCG } & =-11.1550 \\
    & -.0000
    \end{aligned}
    $$

    *** t.e. fin vorticity due to side-edge force augmentation
    
    
    
    ThRUST- and SIDE-FORCE COEFFICIENTS IN PLANE OF THE FIN
    SUMFX $=C X \ldots$..ACTS ON LEADING FOGE
    SUMFY? $=$ Cr..ACTS ON LEADING AND SIDE EOGE
    SUMFT $P=C Y . . A C T S$ ON $\angle I D E$ EDGE
    SIDE EDGE DISTRIRUTION
    SUMFX $=0$.
    SUMFY1 $=0$.
    SUMFYZ $=0.58546 \mathrm{E}-01$
    SUMFTZ $=.16360 \mathrm{E}-02$
    PER UNII LENGTH
    IOWT1HCHONO)
    FHOM LF
    $\stackrel{4}{2}$
    $\stackrel{2}{5}$
    


    SUMFYI $=0$.
    SUMFYZ $=0.89140 E-05$
    SUMFT? $=.39271 t-06$xSE

    9.04000
    12.17750
    15.31500
    18.45250
    
    YBAR
    side edge nistribution
    GAMMA.SE
    VINF
    0.00000
    0.00000
    0.00000
    0.00000

    | Jtip | JSE | distance from le ITIPCHORD | suction force per unit lengit /(GetIPCHORD) |
    | :---: | :---: | :---: | :---: |
    | 1 | 13 | . 25000 | -.00000 |
    | ? | 14 | -5n000 | .000n0 |
    | 3 | 15 | . 75000 | .000n0 |
    | 4 | 15 | 1.00nno | .00000 |

    fin loading information
    9 d315 *."
    
    FIN 3 OR U
    0.00000
    $.79303 F-02$
    0.
    -.32165
    0.
    3.2018
    -.24931

    $. .56139 E-05$
    -.32165
    $-.55882 E-04$
    3.2018
    
    gamnetill gammarlenvinf xLe
     .80808
    8888888
    888888
    08080
    0.00000
    
    YBAR
    
    

    | $Y /(R / 2)$ | $C N * C /(? * R)$ | $C T * C /(2 * B)$ | $C Y I * C /(2 * B)$ | $C Y T O T * C /(2 * B)$ | $C S * C /(2 * B)$ |
    | ---: | ---: | ---: | ---: | ---: | ---: |
    |  |  |  |  |  |  |
    | .08233 | .27918 | 0.00000 | 0.00000 | .00020 | 0.00000 |
    | .24892 | .27581 | 0.00000 | 0.00000 | .00076 | 0.00000 |
    | .41549 | .21751 | 0.00000 | 0.00000 | .00168 | 0.00000 |
    | .58205 | .27104 | 0.00000 | 0.00000 | .00291 | 0.00000 |
    | .74859 | .17472 | 0.00000 | 0.00000 | 0.00423 | 0.00000 |
    | .91509 | .17539 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
    | 1.00000 | 0.00000 |  |  |  |  |

    SNOIINYIZISIO 3SIMNVAS
    thrust- and sidf-force coefficients in plane of the fin SIMMFX $=C X$..ACTS ON LEADING EDGE SIMFY Y =CY..ACTS ON LEADING ANO SIDE EDGE

    SUMFYP=CY..ACTS ON LEADING ANO SIDE EDGE
    SUMFT $P=C Y$..ACTS OH SIDE EOGF. S
    
    ***T.E. FIN VOHTICITY DUE TO ATTACHED FLOW*****
    
    9.83081 0.00000
    IVRT GAMMANVINF Y.C.G. $4.14350 \quad 7.71581$
    GAMMADLE／VINF XLE
    

    |  |  |
    | :---: | :---: |
    |  |  |
    | ¢ |  |


    |  |
    | :---: |
    |  |  |


    | 1 | Y／（R／2） | CN＊C／（2＊B） | CT＊C／（2＊B） | $\mathrm{CY} \mathrm{C}^{*} \mathrm{C} /\left(\mathrm{P}^{* *} \mathrm{~A}\right)$ | CYtot＊$/(2 * 8)$ | CS＊C／（2＊B |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | A | －．0R233 | ．21620 | 0.00000 | 0.00000 | －．0005 | 0.00000 |
    | 9 | －． 24892 | ． 21689 | 0.00000 | 0.00000 | －．00008 | 0.00000 |
    | 10 | －． 41549 | ． 21849 | 0.00000 | $0.0 n 000$ | －．00204 | 0.00000 |
    | 11 | －． 58205 | ．20812 | 0.00000 | 0.00000 | －．0n387 | 0.00000 |
    | 17 | －． 74859 | ．18087 | 0.00000 | 0.00000 | －．00497 | 0.00000 |
    | 13 | －． 91509 | ． 12904 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
    | 14 | －1．00000 | $0.0 n 000$ |  |  |  |  |

    

    | 092S＊＊＊I | 00050＊6－ | 22292＊＊ | 1ヵ8カ0•－ | $00000^{\circ} \mathrm{I}$ | $\forall$ | $\rangle$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $0051 E^{\circ} \mathrm{SI}$ | 000ヶ0＊6－ | 8E591＊－ | 09ES0＊－ | 000s， | 2 | $E$ |
    | 051210 I | 000\％0．6－ | E9250＊－ | 26E20＊－ | $0000{ }^{\text {c }}$ | 9 | 2 |
    | $000 \div 0^{\circ} \mathrm{b}$ | 000ッ0＊6－ | 1を200＊－ | $01100^{\circ}-$ | 00052 ＊ | b |  |
    |  |  | dNIN／ | （080hJallaO）／ <br> H19N37 11 NH y．7a | $\begin{aligned} & \text { O8OHJdII/ } \\ & \exists 7 \text { WOAs } \end{aligned}$ |  |  |
    | $35 x$ | AVAA | 35＊VWWV9 | 3J00」 NOLIJNS | $33 N \mathrm{CSIO}$ | 3 Sr | dIdr |

    ＊＊＊＊t．e．fin vorticity nue to attached flow＊＊＊＊＊
    roc．g．
    （BOOU AXES）
    $-10.26569 \quad-.00000$
    IVRT GAMMANVINF YOC．G．
    （LOCAL FIN）
    $5 \quad-3.90897 \quad-2.15049$

    | GAMNETIII | GAMMA.LE/VINF XLE |  |
    | ---: | ---: | ---: |
    | -.85371 | 0.00000 | .74425 |
    | .32203 | 0.00000 | 2.25021 |
    | .38344 | 0.00000 | 3.75605 |
    | .16996 | 0.00000 | 5.26174 |
    | .03450 | 0.00000 | 6.76723 |
    | -.01259 | 0.00000 | 6.27245 |
    | -.04364 |  |  |

    $\qquad$
    
    
    

    $$
    \begin{aligned}
    & \text { SUMFX }=0 . \\
    & \text { SUMFY1 }=0 . \\
    & \text { SUMFYZ }=0.58546 E-01 \\
    & \text { SUMFT }=.16360 E-02
    \end{aligned}
    $$

    
    
    
    
    .00001
    .00000
    . .00000
    .00000
    0.00000
    thqust－and side－force coefficients in plane of the fin
    
    $-.2489 ?$
    -.41549
    -.58205
    -.74859
    -.91509
    -1.00000
    ～でべ～～～～～
    

    | YGAR | XSE |
    | :---: | ---: |
    |  |  |
    | 0.00000 |  |
    | 0.04000 |  |
    | 0.00000 | 12.17750 |
    | 0.00000 | 15.31500 |
    | 0.00000 | 18.45250 |


    
    P/PINF.
    LIN.
    .21977
    .80103
    1.34671
    .67807
    .57009
    .38677
    1.61621
    1.28306
    .99987
    1.96881
    1.33928
    1.77071
    

    ## ORIGINAD PAGS A OF POOR QUAIFTM

    
    
    

    # APPENDIX B <br> COMPANION PROGRAM BDYSHD 

    TABLE OF CONTENTS
    Page
    Section No.
    B. 1 INTRODUCTION.......................................... B-1
    B. 2 GENERAL DESCRIPTION................................ B-2
    B. 3 DESCRIPTION OF INPUT.............................. B-4
    B. 4 DESCRIPTION OF OUTPUT.............................. B-14

    FIGURES B. 1 THROUGH B. 3

    ## APPENDIX B

    ## PROGRAM BDYSHD

    ## B. 1 INTRODUCTION

    This appendix provides user-oriented information for the optional application of vortex-shedding program BDYSHD to the afterbody of a complete supersonic configuration consisting of a set of forward fins and a set of tail fins mounted on an axisymmetric body. The afterbody is the length of body between the forward- and tail-finned sections.

    Program BDYSHD has been specifically designed to be used as a companion program in an optional step (step 3a) of the stepwise procedure of program LRCDM2 as described in section 2.3 and in Appendix $A$ of this report. Program BDYSHD should be engaged for cases with included angles of attack in excess of $10^{\circ}$ and for afterbody lengths longer than about 10 diameters.

    In essence, BDYSHD is a modified version of forebody vortexshedding program NOSEVTX referred to in reference 5 and described in detail in reference 6. The major differences between program BDYSHD and program NOSEVTX are listed in section 2.2 of this report.

    A general description of the method of analysis and the optional use of program BDYSHD in conjunction with program LRCDM2 will be given. This is followed by descriptions of the program input and output. A sample case involving program LRCDM2 and companion program BDYSHD is given in section A. 9 of Appendix A.

    ## B. 2 GENERAL DESCRIPTION

    Program BDYSHD calculates pressure distributions and forces and moments acting on axisymmetric afterbodies under the influences of vortices generated by the forebody and the forward fins and additional vortices shed from the afterbody surface (step 3a). The development of the afterbody shed vortices is the main feature of this program and the essential theoretical methods are summarized next. Detailed descriptions are provided in reference 6. A subroutine calling sequence chart for BDYSHD is shown in figure B.l. The common block cross reference map and subroutine cross reference map are given in figure B. 2 and figure B. 3 respectively.

    Immediately aft of the trailing edge of the forward-finned section, the circumferential pressure distribution is computed on the afterbody on the basis of the compressible Bernoulli pressure calculation method. In this calculation, velocities induced by linearly varying line sources/sinks and line doublets used to model axisymmetric bodies in supersonic flow are added to contributions from the body-nose vortices (if present) and forward-fin wake vortices. Program BDYSHD performs the body modeling (it is the same as used in LRCDM2) and the vortex information at the beginning station is transferred on TAPE8 from LRCDM2 to BDYSHD at the completion of step 3. Once the circumferential pressure distribution is determined, program BDYSHD applies a modified Stratford criteria to the pressure profile. If certain conditions related to the circumferential pressure gradient and pressure coefficient are satisfied (details in ref. 6), separation points on the circumference of this axial station are computed and vortices shed from these points. All the vortices are tracked to the next axial location and the circumferential pressure distribution is calculated again including effects of the body singularities, body-nose, fin-wake vortices and the additional shed vortices if they were formed at the previous station.

    The above process is repeated at many axial stations along the afterbody length up to to the leading edge of the tail-finned section. Note that the vortex paths are calculated on the basis of vortex tracking methods involving slender body theory for vortices in the presence of one another and the afterbody. At each axial station, the circumferential pressure distribution is integrated to obtain force and moment coefficients for a body ring, and the accummulated values are calculated up to the axial station under consideration. Towards the tail section, the vorticity shed from the afterbody forms two vortex clouds which can be asymmetric depending on the lateral locations and strengths of the upstream vorticity at the beginning station as transferred from LRCDM2.

    At the last axial station immediately ahead of the tail section, program BDYSHD transfers the vortex strengths and crossflow coordinates to LRCDM2. In this transfer on TAPE8, the body-shed vorticity in the vortex clouds are represented by their centroids of vorticity if the number of shed vortices exceeds number NVTRNS specified in the input of BDYSHD. However, the forebody vortices (if any) and the forward-fin wake vortices are kept separate from the additional afterbody-shed vortices. Finally, at the conclusion of step 3a, program BDYSHD computes the forces and moments acting on the afterbody and these loads are added to the total forces and moments calculated by LRCDM 2 up to the end of the forward-finned section. This information is stored on TAPE9.

    Program BDYSHD has internal error messages. In most cases, they are self explanatory. In addition, there are execution stops at numbered STOP locations within the program. They are described on page 26 of reference 6. Messages concerned with the body paneling scheme do not apply to program BDYSHD.

    ## B. 3 DESCRIPTION OF INPUT

    The input for program BDYSHD is a simplified version of the input for NOSEVTX described in detail in reference 6. The simplifications are the result of eliminating the body-paneling scheme used in NOSEVTX which is applicable to various body cross sectional shapes. The paneling method is replaced with the much simpler line singularities distributed along the body centerline for bodies with axisymmetric cross section and pointed noses. Therefore, the amount of input has been decreased appreciably.

    The program user can refer to reference 6 for the original NOSEVTX input description. New items in the input for program BDYSHD are indicated with (NEW) in the list of variables given below. References are made to the body coordinate system ( $x_{B}$, $Y_{B}, z_{B}$, ) which has its origin at the body nose, refer to figure A. 4 in Appendix A. Note that new input Item 19, namelist \$BODY, is the same as the step 1 , Item 9 input for LRCDM2, Appendix A.

    Program
    Variable
    Item 1

    NCIR

    NFC

    ISYM

    NBLSEP

    NSEPR

    NSMOTH

    NDFUS

    NDPHI

    Format Comments
    (16I5) Single card containing 16 integers, each right justified in a five column field.

    NCIR $=0$
    $\mathrm{NFC}=0$
    Symmetry index.
    $=0$, right-left flow symmetry
    $=1$, no symmetry
    Body vortex separation index.
    $=0$, no separation (required if $\alpha_{c}=0$ in item 5) .
    $=1$, laminar separation, preferred.
    $=2$, turbulent separation.
    Reverse flow separation index.
    $=0$, no separation
    $=1$, laminar separation in reverse flow region

    Vortex induced velocity smoothing index.
    $=0$, no smoothing
    $=1$, vortex smoothing in pressure calculation
    $=2$, vortex smoothing in velocity field calculation
    $=3$, combination
    Vortex core model index.
    $=0$, potential vortex
    $=1$, diffusion core model. preferred.

    Unsteady pressure term index.
    $=0$, omit $\delta \phi / \delta t$ from $C_{p}$ calculation
    $=1$, include $\delta \phi / \delta t$ term
    $=2$, include $\delta \phi / \delta t$ term at all axial stations except first station XI, item 6 below, use $\mathrm{NDPHI}=2$ (NEW)

    NXFV

    NFV

    NVP

    NVR

    NVM

    NVA

    NASYM

    Item 2

    NHEAD

    Nose force index
    $=0$, slender body theory force on portion of nose ahead of starting point (XI)
    $=1$, zero force on nose ahead of XI. Use this value

    Number of $\mathrm{x}_{\mathrm{B}}$-stations at which flow field is calculated or special output is generated. See Item 12, below. 0 < NXFV < 8

    Number of field points for flow field calculation See Item 13, below. 0 \} NFV < 200; set NFV=0

    Number of $+\Gamma$ vortices on $+y_{B}$ side of body to be input for restart calculation. See Item 15, below. 0 < NVP < 70 ; normally not used, set NVP=0.

    Number of $-\Gamma$ vortices on $-y_{B}$ side of body to be input for restart calculation. See Item 16 , below. $0 \leqslant N V R \leqslant 30 ; ~ n o r m a l l y ~ n o t ~ u s e d, ~$ set NVR=0.

    Number of $-\Gamma$ vortices on $-y_{B}$ side of body to be input for restart calculation. See Item 17. $N V M=0$ if ISYM $=0$. 0 < NVM < 70; normally not used, set NVM $=0$

    Number of $+\Gamma$ reverse flow vortices on $-y_{B}$ side of body to be input for restart calculation. See Item 18. NVA $=0$ if ISYM $=0$. 0 < NVA < 30; Normally not used, set NVA $=0$.

    Asymmetric vortex shedding index. see Item 7.
    $=0$, no forced asymmetry. Use this value.
    $=1$, forced asymmetry.
    (16I5) A single card defining seven integer output option indices.

    Number of title cards in Item 3. NHEAD $\geqslant 1$

    \begin{tabular}{|c|c|}
    \hline NPRNTP \& ```
    Pressure distribution print index.
    = 0, no pressure output except at
    special

