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ABSTRACT

In this study various through and part-through crack problems in

plates and shells are considered. The line-spring model of Rice and

Levy is generalized to the skew-symmetric case to solve surface crack

problems involving mixed-mode, coplanar crack growth. New compliance

functions are introduced which are valid for crack depth to thickness

ratios at least up to .05. This includes expressions for tension and

bending originally used by the model for symmetric loading as well as

new expressions for in-plane shear, out-of-plane shear, and twisting

for the skew-symmetric case. Transverse shear deformation is taken

into account in the plate and shell theories and this effect is shown

to be important in comparing stress intensity factors obtained from

the plate theory with three-dimensional surface crack solutions.

Stress intensity factor results for cylinders obtained by the line-

spring model also compare well with the three-dimensional solutions.

By using the line-spring approach, for a given crack length to

thickness ratio, stress intensity factors can be obtained for the

through crack and for part-through cracks of any crack front shape,

without need for recalculating integrals that take up the bulk of the

computer time. Therefore, parameter studies involving crack length,

crack depth, shell type, and shell curvature are made in some detail.

The results presented are believed to be useful in brittle fracture,

and more importantly, in fatigue crack propagation studies.

The llne-spring

in plate bending.

model is also used to solve the contact problem

Investigations into stress intensity factors for

1



crack growth in the length direction (as opposed to growth in the

thickness direction), are also made by using the model. The endpoint

behavior of the results given by the line-spring model is considered

in detail.

In addition to part-through crack problems, some results for

single and double through cracks are presented. The thin plate

bending limit of Reissner's theory and its relationship to the

classical theory are reconsidered.

All problems considered in this study are of the mixed boundary

value type and are reduced to strongly singular integral equations

which make use of the finite-part integrals of Hadamard. These

equations are obtained by using displacement quantities as the

unknowns, rather than the more commonly used displacement derivatives

which lead to integral equations with Cauchy singularities. The

equations are solved numerically in a manner that is believed to be

very efficicnt.

2



CHAPTER1

Introduction, Literature Survey and Overview

1.1 Introduction

Pressure vessels, pipelines, containers, ship hulls, etc. are all

shell-like structures which can fail by fracture. The designers of

these components must take this into account as such failures are

often catastrophic, endangering lives and the environment. The

fracture process typically starts with a small material defect or weld

imperfection that grows in fatigue which is driven by mechanical or

environmental conditions. Eventually the flaw may be characterized as

a macroscopic surface crack. This surface or part-through crack then

continues its growth through the thickness, leading to failure by

leaking or to unstable fracture.

In the discipline of fracture mechanics one usually assumes an

initial flaw configuration, and then seeks to obtain certain fracture

parameters that are believed to govern the tendency of the crack to

grow. In the case of brittle fractures and more importantly,

fractures by fatigue, the stress intensity factor (SIF) is the most

commonly used parameter.

The analysis of through cracks in thin structures was first

performed within the theory of plates and shells, which allows for a

straightforward analytical solution for practical geometries such as

cylinders, spheres, and pipe elbows. The problem is of the mixed

boundary value type and is reduced to a system of dual integral

equations or a system of singular integral equations (SIE), most often

3



the latter. It is usually assumed that the curvatures are constant

and the shell has constant thickness, the material is homogeneous,

isotropic, or perhaps specially orthotropic, and behaves in a linear

elastic manner. Three-dimensional effects due to the interaction

between the free surface and the crack plane are neglected. Benthem

[1] has investigated these effects for a crack in a half space. To

date no research has included this surface layer behavior in a problem

with a practical geometry.

The surface crack has a three-dimensional geometry which seems

accessible only to either analytical or numerical techniques from the

theory of elasticity. Rice in 1972 [2,3] introduced the so-called

line-spring model (LSM) which transformed the part-through crack into

a through crack problem by making use of the edge-cracked strip plane

strain solution. This model has been shown to give very good results

in spite of its simplicity. Therefore, within the limitations of this

model, both through and part-through crack problems can be solved with

the same plate or shell theory formulation.

It is important to point out that for a through crack the primary

interest is in the behavior of the stress state at and near the crack

tip. Whereas, for surface cracks the most important point is the

deepest penetration point of the crack front. The model in its

original form is ]imited to symmetric (mode 1) fracture, and cannot

predict behavior at the endpoint where the crack front meets the free

surface (again neglecting the free surface effect).

4



1.2 Literature Survey

The problem of determining

infinitely

half-length

1957. In

the singular stress field in an

large plate of thickness h, containing a finite crack of

a, subjected to tension was studied by Williams [4] in

a 1960 paper [5] Williams also investigated the problem of

plate bending by using the classical plate theory. Although in the

bending problem the stress singularity was observed to be the same as

in the plane elasticity case, (namely r-l/2), the angular variation of

the stresses around the crack tip was found to be different. Shortly

after this paper was published, gnowles and Wang [6] showed that this

discrepancy could be removed if the 6th order Reissner plate theory

[7,8], which includes transverse shear deformation, was used. This

theory allows for the satisfaction of all three crack surface boundary

conditions (Mxy=O , Yx=O, Nxy=O), instead of combining these three

conditions into two as did the previous theory by use of the Kirchhoff
8M

condition, (Nxy=O , Vx+ Xysy =0). The work of Knowles and Wang was

later made more complete by Hartranft and Sih [9] and by Wang [10].

In these papers the SIF solution is given for various crack length to

plate thickness ratios, i.e. (a/h).

In the paper by Knowles and Wang it was observed that Reissner's

theory approaches classical theory in the limit as h/a*O, or as the

plate gets thin. This limit is well behaved except at the crack tip

where boundary layer behavior in the SIF is indicated by graphical

solutions [9,10]. This "discontinuous w behavior was discussed by

Civelek and Erdogan [11] with the aid of more complete and more

precise numerical results, but not proven. Also it was pointed out by

5



Hartranft [12] that this limit should not he used. For more

discussion of this problem see Sih [13].

In all of the preceeding papers the solution was limited to

symmetric (mode 1) loading, which includes tension and bending. Wang

in 1970 [14] was the first to consider twisting, again with Reissner's

plate theory. The asymptotic stress field was shown to he compatible

with 2-D elasticity, therefore mode 2 and 3 SIFs had the same

elasticity definition. This problem is not approachable by the

classical theory for the same reasons that apply to plate bending.

The results of Wang [14] were extended by Delale and Erdogan [15] to

include specially orthotropic materials.

The first analysis of cracks in shells was presented by Folias in

1965 for a cracked sphere [16,17] and for an axially cracked cylinder

[18]. The circumferentially cracked cylinder was investigated in 1967

[19]. The results in these papers are asymptotic in nature for short

cracks. A shallow shell theory was also used which linearizes the

governing equations. The full curvature problem is non-linear and has

not yet been solved by analytical techniques although Sanders [20,21]

has used a thin shell theory which is linear yet valid for a complete

cylinder to obtain energy release rates (not SIFs) for long cracks.

The validity of shallow shell analysis can be summarized as follows:

for a given shell radius, the smaller the thickness h, the more

appropriate the shell assumption; the shorter the crack length 2a, the

more appropriate the shallow shell assumption.

In the ]ate 1960's Erdogan and Kibler [22] and Copley and Sanders

[23] provided a more complete solution to the problems studied by

6



Folias.

employed,

integral

Although the same approximate, shallow shell equations are

the numerical techniques for the solution of the singular

equations are exact (to any reasonable specified degree of

accuracy).

The major shortcoming of these early shell solutions, including

the work of Sanders [20-21], was the neglect of transverse shear

deformation as in the early plate bending problem. In shells, since

extension and bending are coupled, the elasticity concept of the SIF

cannot be used with these 8th order theories without redefinition. As

bending becomes more of a factor in the geometry and loading

considered, the results become less accurate. Also the contribution

from extension is affected. It was Sih and Hagendorf [24] in 1974 who

first solved cracked shell problems with transverse shear accounted

for; see also a second paper by Sih [25]. Later papers, which used

the shallow shell governing equations due to Naghdi [26], provided

more exact and extensive results for the axially cracked cylinder, see

Krenk [27], and for the circumferentially cracked cylinder, see De]ale

and Erdogan [28]. It was shown in these papers that the asymptotic

stress field obtained is compatible with the solution from the theory

of elastic fracture mechanics; therefore standard fracture parameters

such as the SIF could be used. The skew-symmetric shell problem was

studied by Delale [29] and it was shown that the mode 2 and 3 stress

intensity factors also have the same elasticity definition. Therefore

it appears that

cracks in plates and shells

transverse shear deformation,

the simplest shell theory that may be used to study

to obtain

[7,8,26].

7

SIFs is one that includes

In 1983 Yashi and Erdogan



[30] solved the shallow shell problem for a crack arbitrarily oriented

with respect to a principal line of curvature. They used the same

formulation as was used by Delale and Erdogan [28], but the analysis

involved ten unknowns instead of two [28] or three [29] because of the

loss of symmetry.

In all the previous shell solutions which included transverse

shear deformation, the assumption of shallowness has been applied.

Barsoum, Loomis, and Stewart [31] were the first to publish results to

the complete through crack problem in a cylinder by using finite

elements which took into account transverse shear deformation. There

is good agreement between these results and the results from the

shallow shell theories [22,2?], even for relatively long cracks. More

recent finite element calculations by Ehlers [32] disagree with the

work of Barsoum, et. al. However these calculations are limited to

a/R>.5, which for a "shallow shell", is a very long crack. More work

must be done to determine the error due to the shallow shell

assumption for increasing a/R. This theory may be regarded as an

asymptotic solution for small a/R.

The study of surface cracks in plates and shells has a more

detailed history involving three-dimensional numerical techniques

because it is both more important and more difficult. In addition to

the finite element method [33,34], there is the alternating method

[35,36], the boundary integral equation method [37], the finite

element alternating method [38-40], the method of weight functions

[41,42], and the body force method [43]. The standard solution for

plates is that of Newman and Raju [33]. The more recent work of

8



Isida, Noyuchi, and Yoshida [43] have verified these results and

perhaps slightly improved upon them. For reviews of the various

solutions and methods see [44-46].

The previous studies for surface cracks deal only with mode1

loading, which is the most important mode for crack extension.

However there are situations that involve twisting and shearing that

cannot be neglected. For instance, depending on the geometry, when

these loadings are primary, a secondary mode 1 contribution can

result. The body force method [47] has recently been applied to an

inclined surface crack in a half space which involved all modesof

fracture. This problem has not received much attention in the

literature, because it is less important than mode1, and also more

expensive to solve.

As mentioned previously the line-spring model allows for the

solution of the 3-D surface crack problem within the 2-D theory of

plates and shells. This reduces the computational effort

considerably. Therefore more extensive parameter studies can be made

once the model has been verified by the more accurate three-

dimensional methods.

Since the introduction of the model in 1972 [2], there have been

numerous papers suggesting improvementsand modifications. As with

the through crack problem the use of a Reissner plate theory has

improved the results [48,49], especially for realistic crack lengths

on the order of a/h=l. The classical theory gives good results for

a/h_2, and in the limit as a/h_® the two theories are the same(for

the LSM). The initial suggestions of Rice [3] concerning the use of

9



the model to study plasticity effects have been advanced by Parks [50]

and more recently by _iyoshi, Shiratori, and Yoshida [51] who used the

model with thick shell finite elements to predict crack growth. Other

researchers [49,52] have devised techniques that implement a numerical

plate or shell solution instead of the original singular integral

equation procedure. This is an advantage in shell analysis, because

to date, the analytical techniques are limited to the shallow shell

theory which is not valid for long cracks. _owever the long surface

crack is not a practical geometry, and if needed, can usually be

approximated by a plane strain solution.

Yang in a recent paper [53] has considered crack surface loading

in the form of a polynomial to solve problems of residual or thermal

stress. The original LS_ used only the constant and linear terms

associated with tension and bending plate variables respectively.

Theocaris and Wu [54,55] have suggested a way to determine the SIF at

the corner of a surface crack. This method seems inappropriate since

they have used the classical theory of plate bending which is unable

to predict this value for the much simpler through crack case. The

finite width plate has bcen solved by Boduroglu and Erdogan [56,57].

All previous LS_ solutions were for an "infinitely large" plate.

Erdogan and Aksel have considered the cavity in a plate [58] and Wu

and Erdogan have extended the LSM to an orthotropic plate [59].

Delale and Erdogan [60] have used the model with a shallow shell

formulation to predict SIFs for surface cracks in cylinders for axial,

circumferential, inner and outer cracks.

10



1.3 Overview

The primary interests in this study are to extend the LS_ to the

mixed-mode case and to use the model to approximate crack growth

tendencies in the length direction as opposed to the depth direction

for which it already applies. In Chapter 2 the line-spring model for

mixed-mode loading conditions is derived. Furthermore, the mode 1

compliance relations [61-63,48] are improved by using the recent edge-

cracked strip solution of Kaya [64]. The curves are fit to data for

O_(Lo/h)_.95 and may be used for the entire range of values as the

curves have the proper asymptotic behavior for (Lo/h)_l [65]. Also

the necessary solutions for modes 2 and 3 are obtained.

In Chapter 3 some unsolved through crack problems in plates are

considered and the thin plate limit for Reissner's theory is

investigated to better understand the validity of the classical plate

theory when applied to the LSM. In Chapter 4 the LSM, with and

without including the transverse shear deformation, is compared to

finite element surface crack solutions. SIF comparisons are also made

for the corner of a semi-elliptical surface crack. The contact

bending or crack closure problem, a difficult unsolved 3-D problem, is

solved in a straightforward manner. Also extensive SIF results are

given for both rectangular and semi elliptical crack shapes under all

five loading conditions, i.e. tension, bending, out-of-plane shear,

in-plane shear, and twisting.

Crack problems in shells are considered in Chapters 5 and 6.

Comparisons of surface crack solutions obtained with the model are

made with 3-D solutions from the literature [34,40]. Various unsolved

ll



through and

curvature is

cases.

All

part-through problems are considered and the effect of

studied for both the symmetric and the skew-symmetric

integral equations are derived with displacement quantities

as unknowns. The resulting equations are, therefore, strongly

singular and make use of the finite-part integrals of Hadamard [66],

see also Kaya [67]. Finite-part integrals as used in this study are

defined in Appendix B. The numerical techniques used to solve these

equations are presented in Appendix E.

The definition of stress intensity factors (SIFs) that are

referred to throughout this dissertation is given in Appendix C.

12



CHAPTER 2

The Line-Spring Model

2.1 Introduction.

A surface or part-through crack in a pipe, pressure vessel, or

any other shell-like structure is a common and important flaw geometry

to analyze, see Fig. 2.1. Because the elasticity problem is three-

dimensional, many solutions involve expensive numerical techniques

such as the Finite Element Method [33,34], the Alternating Method

[35,363, the Boundary Integral Method [37], the finite element

alternating method [38-40], the method of weight functions [41,42],

and the body force method [43]. This problem has also been formulated

analytically for a flat plate or strip in terms of two-dimensional

integral equations, but has not been solved [67].

The line-spring model, proposed by Rice and Levy [2], and

incorporated in a plate or shell theory that allows for transverse

shear deformation [7,8,26], competes with these methods because of its

simplicity and surprising accuracy. See Figs. 4.1-4, 6.1,2, for

comparisons with the Finite Element Method and for the effect of

transverse shear for various geometries in mode 1 loading.

Briefly, the model allows one to use a plate or shell theory to

formulate the problem by removing the "net ligament", and replacing it

by unknown, thickness averaged stress resultants which are treated as

crack surface loads in a through crack problem. See Fig. 2.2 for a

mode 1 i11ustration of this process. This reduces by one dimension

the complexity of the analysis. The force resultant and displacement

13



variables used in both plates and shells are given below and are

defined in Figs. 2.3a-c. Also the corresponding fracture modes are

included in the figures.

{F} T: (F1,F2,F3,F4,F5) , (2.1)

= (Nxx,t_xx,Vx,Nxy,Mxy) , (2.2)

h 2 2h h 2
= ( hal, g 02 , -_--a3 ' ha4, g o 5 } , (2.3)

(u} T = (Ul,U2,U3,U4,U5)= (Ux,flx,Uz,Uy,fly) ' (2.4)

+ - (2.5)6. = u. - u. i=1,...,5
1 1 1

The two dimensional formulation of through and part-through crack

problems in plates and shells as a mixed boundary value problem makes

use of the superposition illustrated in Fig. 2.4. With regard to

these figures, _. are the constant applied loads at "infinity" or away
1

from the crack region and N and M are unknown stress resultants which

are due to the net ligament of the part-through crack. In the case of

a through crack, the crack surfaces are stress-free so N=_=O. For the

so]ution of the mode 1 perturbation problem in a plate shown in Fig.

2.4, the following singular integral equations must be solved:

,jb __u_.(_ dt = (_xx (2 6)
1
2--_ 2 - -Nxx) '

a (ty)

b

1 I K22 (y't)fl(t) dt = --(_xx-_lxx) (2.7)7(1_u2) _b _ dt _ a
2_ a (t-y) 2 +

For the derivation of Eqns. 2.6,7 and for the expression for K22(Y,t),

14



7, and _ see Chapter 3.

the strongly

unknowns in

unknowns and

Also see Appendix B for the interpretation of

singular integrals appearing in these equations. The

the equations are N, M, u, and p. Since there are four

only two equations more information is needed. In the

derivation that follows N and M are linearly related to u and p in the

manner of a spring. After substitution of these relationships into

Eqns. 2.6,7, u and _ can be numerically determined from which all

quantities of interest can be calculated.

2.2 Derivation of the Compliance Relationships.

The line-spring model is based on two assumptions. The first,

previously stated, and illustrated in Fig. 2.2, involves replacing the

net ligament (in which the state of stress is two-dimensional), by

resultant forces which are functions of y only. The second assumption

is that the stress intensity factors along the crack front may be

obtained from these resultant forces as though the stress state were

one of plane strain. The restriction at the ends of the crack and the

crack front curvature, both act against this assumption. Therefore

the model is most accurate in the center of the crack and improves :_s

the crack gets longer for a given _,_ck depth, i.e. as plane strain

conditions are approached.

In order to make use of this analogy, the plane strain stress

intensity factor solution for an edge-cracked strip must be available

for the five possib]e loading conditions in a shell on a given

surface, see Eqns. 2.2,3 and Fig. 2.3a-c. These solutions are

presented in Appendix C along with a curve fit in the form,

15



k. K. n. 1

gi({) - n_ _ _a 1 _ Cik{k ,
o._[-L o._-L- (1-())' k=l

1 1

where

depth

L is the

(2.8)

crack depth, and the variable _ is the ratio of the

L to the strip thickness h, i.e. _=L/h. From Fig. 2.3a-c, when

i=l or 2, j=l, when i=3, j=2 and when i=4 or 5, j=3. The exponent X

is 3/2 when i=1,2 (mode 1), and 1/2 when i=3,4,5 (modes 2,3). The

constants n.1 and Cik are given in Appendix C. From this follows

K1 : _-h{h [ olg 1 + o2g 2 ] ,

K2 = _h o3g 3 ,

K3 = _h [ o4g 4 + osg 5 ]

In these expressions °i=°'1 (y)

according to the relations given in Fig. 2.3.

The derivation

fracture along the

generalize Irwin's

rate,

d(w-v)L= o -

(2.9)

(2.10)

(2.11)

represents the net ligament stresses

Note that _=_(y).

is based on expressing the energy available for

crack front in two different ways. First we

relation [68,69] for the potential energy release

(2.12)
l u2r - 2 2 1

E _ K1 + K2 + _ K32 ) ,

where U is the work done by external loads and V is the strain energy.

The use of the relation,

(l-v2)Kg

E

the assumption

This would

(2.13)

that the crack will grow in its own plane.

apply to structures that are made of composite materials

16



that mayhave a weak cleavage plane [70]. If the crack deviates from

a straight path, 02 in Eqn. 2.13 is not the energy dissipated by

incremental crack growth, and therefore Eqn. 2.12 would not be valid.

With the assumption of coplanar crack growth, Eqns. 2.9-11 are

substituted into Eqn. 2.12 to obtain,

= olg 1 + 2ala2glg 2 + a2g 2 + o3g 3 +

1-----_ a4g4 + 2a4a5g4g5 + a5g5 (2.14)

Next consider the crack to extend from L to L+^L under "fixed

load" conditions. The changes in U and V are as follows (refer to

Fig. 2.5 for the notation used),

AU = F.AS. , (2.15)
i 1

1Fi(6i÷A6i) 1 .6. 1AV = _ - 2 Fx x = 2 Fi6i ' (2.16)

where F. and 6. are defined in Eqns. 2.1-5.
1 1

After writing

86.

i AL (2.17)hSi- aL

due to the force F.,
1

d (U-V) 1d-L = 2 Fi b-L (2.18)

The sum of all five load_ngs is,

d(u_v ) 1 _ _6i (2.19)

Define the following matrices,

, h 2 h
{6'} T = { 61'69.'63'64'6; )= (61, g 82, _ 63,64, g 65 } , (2.20)

17



[G] =

2

gl gl_2 0 0 0

_)Ig2 g2 02 0 0
102 _o

0 0 g4 1i. gigs
0 0 0 _ g4g 5 1----v g5

(2.21)

Now equate Eqn. 2.14 to 2.19 using Eqns. 2.3,20,21 for substitution to

obtain,

1-v2{o}T 1 T 8h [C]{a} = _ h {a} _ {6'} , (2.22)

or

{6'} 2(1-v2)E = E [G]{o}

Integrate and observe that o _ o(L),

{6'} 2(1_v2) { fL ._ 6 0= [G] dl ) {a} + { }IL= 0 .
E 0

Next define

In] = [q-]j = _h[.- [c] [c] d{ , ( = L/h ,
0 0

where

and

(2.23)

(2.24)

(2.25)

aij :: f(ogig j d( , i,j=I,2,3 (2.26)

h_

1 )o['gig j d_ , i j.4,5 (2.27)aij :: -1--u

form chosen for the functions gi (see Eqn. 2.8), aij

numerically. When the matrix [B] is substituted into

Because of the

are determined

Eqn. 2.24 and the equation is solved for the stresses, the result is
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{o) - (2.28)

where

[B] -1=

E [B]-1{6,) ,
2h(1-v 2)

a22/A 1 -al2/A 1 0 0 0

-a120/hl aIIO_A1 0 0 0

10/a33 0 0
0 0 ass/A 2 -a45/A 2

0 0 0 -a45/A2 a44/A 2

, (2.29)

and

2 a2 2 (2.30)A1 = alla22- a12 , = a44a55- a45 .

Eqn. 2.28 has the information that is needed for substitution

into integral equations of the form of Eqns. 2.6,7. First it must be

non-dimensionalized. This is done according to the definitions in

Appendix A. Since all problems in this dissertation are either

symmetric or skew-symmetric we have _i = 2ui' i.e. ]u+l= ]u-I= u..
i

The final non-dimensional result is:

a 1 = 711Ul + 712u2 ,

a 2 = 61721u I + 722u 2] ,

5

03- 8(l+v) 733u3 '

a 4 = 744u4 + 745u5 ,

°

a 5 = 61754u 4 + 755u 5] ,

u 1 = (l-v2) [ alla 1 + a12a2 ] ,

u 2 = 6(1-v2) [ al2a 1 + a2202 ] ,

(2.31)
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30_v2)u 3 = _ a33a3 ,

u4 = (1-v2)[ a4404 + a45a 5 ] ,

u 5 -- 6(1-v2)[ a4504 + a55o 5 ] , (2.32)

where

711

1 a22 -1 a12

- 1_ 2 51 712 6(l_v 2) 51

721 = 712 ,

1 all

722 - 36(1_v2) A1

16 1

733- 15(1-v) a33 '

1 a55 -1 a45

744 - l-v 2 h 2 745 6(l-v 2) 52

754 = 745 , 755 =

1 a44

36 (1-v 2) A2

(2.33)

If these equations are now substituted into Eqns. 2.6,7, the

result is,

2-_ - 711 u xx
a (t-y) 2

(2.34)

ifbdt + 2_ K22(Y,t)#(t) dt
a

- '}'21 u - "1'22# : _xx ---_2/6 (2.35)

The compliance coefficients 7i j are indirectly functions of y
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through the variable _ which is the non-dimensional crack depth. Note

that for a through crack the 7i j are zero. In this case the equations

uncouple and respectively correspond to tension and bending loadings.

Since the model is most accurate in the central portion of the

crack, it is best applied to problems where failure occurs whenthe

surface crack grows through the thickness leading either to leaking or

to the development of a through crack which then grows in length to

critical size. Because of the plane strain assumption, the model

becomes less applicable near the ends of the crack. Although the

model unexpectedly gives reasonable results here (see Figs. 4.1-4 and

6.1,2 where curves are drawn up to y/a = .98), the use of the solution

in this region for anything other than general trends is not

justified. Even though the so]ution at the ends is not used, the

behavior of the solution here p]ays a role in the convergence of the

method over the entire range, and therefore should be examined.

2.3 Enidoint behavior.

In the case of the through crack it is known that the behavior of

the displacement quantities are of the form (see Appendix D),

ui(t) = fi(t)(1-t 2)1/2 , (2.36)

where the square root is referrcd to as the weight function (of the

integral equation) and fi(t) is a simple function which can be

represented by a polynomial that is easily obtained numerically. Note

that the crack domain has been normalized to (-1,1). If ui(t ) were

determined without extracting the endpoint behavior given by the
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weight function, convergence

would be unacceptably slow.

stress intensity factors are

of ui(t ) towards the ends (i.e. -1,1)

Also in the through crack problem the

proportional to f(-1) and f(+l), and

therefore can only be found if the weight is extracted. The addition

of the line-spring terms into the integral equation has an effect on

this asymptotic analysis only if the net ligament stresses are

unbounded, which is unreasonable. If these stresses are assumed to be

finite at the ends, Eqns. 2.32 and 2.36 show that,

u 1 = (1-_2)[ ella 1 + a12a2 ] = fl(t)(1-t2)l/2 ,

u 2 = 6(1-_2)[ a12o 1 + a22a 2 ] = f2(t)(1-t2) 1/2 ,

3 (l_v2) = f3(t ) (1_t2)1/2u 3 = _ a33a3

u 4 = (l-p2)[ a44a4 + a45a 5 ] = f4(t)(l-t2) 1/2 ,

u5 = 6(1__2)[ a45o 4 + a55a 5 ] = f5(t)(1-t2) 1/2 (2.37)

For finite, non-zero net ligament stresses, a.. in Eqns. 2.32 must
1j

carry the square root behavior as t approaches -1 and 1. Recall that

a.. are functions of t through the crack shape variable 4- If the
1j

crack depth of the surface crack is non-zero at the ends as in the

ease of a rectangular crack, a.. will be constant at the endpoints.
1j

The solution will then require a. to be zero at the endpoints, a1

condition that does not seem reasonable. If the crack depth, { is

zero at the ends, the behavior of a.. will depend on how { goes to
1j

zero. For small _ we may write
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N

_- _cij_J , (2.38)gi

from which we obtain from Eqns. 2.26,27,

2 2 2_ clOCll_3all - 2 c10_ + _ + 0(_4) '

f c10c20_2 • + _3 0(_4)a12 = a21 = _ + _ [ c20cli ci0c21] + ,

Ir 2 2 21r c20c21_3 + 0(_4)a22 = _ c20_ + --_

f 2 4 o(_S) ,a33 = _ c31_ +

Ir 2 2 21r c40c41_3(1-v)a44 = _ c40( + _ + 0(_ 4) ,

= :f c40c50_2 + _" 3(l-v)a45 (l-u)a54 - 2 3 [ c40c51 + c50c41]_ + 0(_4)'

7 2 2 2f c50c51_3(1-v)a55 = _ Cso _ + --_ + 0(_ 4) , (2.39)

where from Eqn 2.8 the c.. in terms of the O.. are,
xj 1j

Cio = Cio ,

Cil = Cil + kCio (2.40)

More terms in this series are given in Appendix F.

In order for Eqn. 2.37 to be true for bounded, non-zero stresses,

Eqn. 2.39 (except for a33 ) suggest that:

aij ~ (l_t 2) 1/2 , (2.41)

or

_2 ~ (1_t2) 1/2

Therefore if the crack shape is chosen in the form

(2.42)
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=  oO_t 2) I/4 ,

convergence

other crack

behavior on

(2.43)

will be good for Itl _ 1. Rice [2] made this point. Any

shape will impose either unbounded or zero endpoint

the net ligament stresses and the solution wilt not

converge at the endpoints in a satisfactory manner. If one considers

the semi-ellipse for example, o. will be of the order (l-t2) -1/2 as
1

ILl approaches 1.

There is one exception. In the case of a33 in Eqn. 2.37 the

stress e 3 will be zero. This should be expected because the assumed

form of the out-of-plane shear stress is parabolic, i.e. zero at the

of the shell. Therefore as the crack depth goes to zero sosurface

does a 3 .

It

crack

should be pointed out that regardless of what form of the

is chosen, satisfactory convergence can be obtained in the

central portion where the line-spring model is most applicable. The

results in this dissertation were thus obtained for the semi-ellipse.

But if a solution is desired for (-1,1), it is necessary to have the

crack shape at the ends asymptotically behave like Eqn. 2.43. A

procedure to get this function utilizes a simple expansion about zero

and for some typical shapes is as follows. Let

= _0 (1-t2)n (2.44)

be

semi-ellipse results from n=l/2. Next we write

= {0 (1-t2)n _ {0 (1-tl)l/4g(t) '

the desired shape. Note that a rectangle is given by n=O, and a

(2.45)
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where

M
g(t) -_ (l-t2) n-l/4 ~- _a4t 2i

i=O"
(2.46)

M is chosen so that an adequate representation of the crack front is

given over most of the domain, and the coefficients ai, are given as

follows,

a0 = 1

a 1 = -(n-l/4)

(n-l/4) [ (n-1/4)-l]
a2 = 2!

a3 (n-l/4) [(n-1/4)-l] [(n-1/4)-2]= - 3! , etc. (2.47)

The convergence of Eqn. 2.46 is demonstrated for n=O and n=I/2 in

tables 2.1,2, respectively. Stress intensity factor results of Eqns.

2.6,7 for the crack shapes in these tables are given in tables 2.3-6.

The stress intensity factors in Eqns. 2.9-11 are normalized with

respect to the value of K from Eqn. 2.8 for _ in the center of the

crack and for the corresponding loading, see section C.4 of Appendix

C. This technique however, is of limited use.

Semi-elliptic crack shapes are chosen for most mode 1 analysis

because of their general resemblance to surface cracks. Most

experiments however show that clacks grown by fatigue tend to have a

blunter shape at the ends, see for example [55,71]. Note that the 1/4

power represents this better than 1/2.
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One further point to make before concluding this chapter is that

for small { the inverse of the B matrix (Eqn. 2.29) is singular and

the asymptotic behavior of relations 2.32 is of the form,

7ij = (constant) {-4 + 0(4-3)

The constants are defined in Appendix F.

(2.48)

It would seem that the

contribution of the stress terms (Eqn. 2.31) for the case of a semi-

ellipse where u~{~(1-t2) 1/2 would be unbounded and to the -3/2 power

rather than -l/2 as predicted by Eqn. 2.37. However when the terms of

Eqn. 2.31 are combined, the two leading order terms cancel and we are

left with the singular nature predicted by Eqn. 2.37, see Appendix F.
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Table 2.1 Crack profiles approximating a constant
depth using Eqns. 2.46,47.

Rectangular Profile ({ = .6)

t
•0
•1
.2
.3

.4

.5

.6

.7

•8
.9
.95
.98

1 3 5 10 20 exact

.6000 •6000 .6000
• 5985 •6000 •6000
.5939 .6000 .6000
.5860 .6000 .6000
.5744 .5997 .6000

5584 .5987 .5999

5367 .5958 .5996
5070 •5882 .5980
4648 .5689 .5906
3961 .5170 .5579
3353 .4536 .5037
2677 .3705 .4200

6000 .6000 .6000

6000 .6000 .6000
6000 .6000 •6000
6000 .6000 .6000
6000 .6000 .6000
6000 .6000 .6000
6000 .6000 .6000
6000 •6000 .6000

.5993 •6000 .6000

.5900 .5992 .6000

.5585 •5898 .6000

.4862 .5440 •6000

Table 2•2 Crack profiles approximating a semi-
ellipse using Eqns. 2.46,47.

Semi-Elliptic profile, ({ = •6(1-t 2) 1/2)

1 3 5 10 20 exact
t
•0 •6000
• 1 .5985
•2 .5939
•3 .5860
•4 .5744
•5 .5584
•6 .5367
•7 .5070
•8 .4648
.9 .3961
• 95 .3353
• 98 .2677

.6000

.5970

.5879

.5724

.5501
•5202
4818
4335
3726
2915
2304
1802

6000
5970
5879
5724
5499
5196

.4801

.4292

.3630
.2736
.2122
.1587

.6000
5970
5879
5724
5499
5196
4800
4285
3601
2636
1954
1387

6OOO
5970
5879
5724
5499
5196
4800
4285
3600
2617
1888
1267

6OOO
5970
5879
5724
5499
5196
4800
4285
3600
2615
1873
1194
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Table 2.3 Normalized stress intensity factors for

the crack profiles given in table 2•I for applied
tension.

Rectangular Profile (_ = .6), Tension

M 1 3 5 I0 20 ®
t
0 •258
1 .258

2 .256
3 .253
4 .249
5 •243
6 .236
7 .225
8 .210
9 .185
95 .163
98 .138

.271
270
268
263
256
246

235
219
199
172
151
128

272 •273 .273
272 .272 .272
269 .270 .270
265 .265 .266
258 .259 .259
250 .249 .249
237 .238 .238
220 .221 .222
197 .197 .198
166 .161 .161
145 .136 .130
124 .117 .107

273
273
270
266
259
250
239
222
199
163
132
098

Table 2.4
the crack

bending.

Normalized stress intensity factors for

profiles given in table 2.1 for pure

Rectangular Profile ({ = .6), Bending

t
0
1
2
3
4
5
6
7
8
9
95
98

}d 1 3 5 10 20 ®

144 •152
145 .151
146 •148
148 •144
151 .136
154 .126
158 .116

162 .103
165 .093
166 .087
161 .089
]50 .091

153
152
149
144
137
126

114
097
077
060
060
066

153
152
149
145
137
126
114

958
•071
•040
•029
•034

.153 153

.152 152

.149 149

.145 145

.137 137

.126 128

.114 114

.096 096

.071 .071

.034 .033

.012 .006

.009 -.013
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Table 2.5 Normalized stress intensity factors for
the crack profiles given in table 2.2 for applied
tension.

Semi-elliptic Profile ({0 = .6), Tension

M 1 3 5 i0 20 ®

t
0 .258 .246
1 .258 .246
2 .256 .245
3 .253 .243
4 .249 .241
5 .243 .238
6 .236 .234
7 .225 .228
8 .210 .218

9 .185 .201
95 .163 .184
98 .138 .162

245
245
244
243
240
236

232
226
218
206
193
173

• 245 .244 .244
244 .244 .244
243 .243 .243

242 •242 .242
240 .239 .239
236 .236 .236
231 .231 .231
225 .225 .225
217 .217 .217
208 .208 .207
201 .204 .203
189 .200 .205

Table 2.6
the crack

bending•

Normalized stress intensity factors for

profiles given in table 2.2 for pure

Semi-elliptic Profile (_0 = .6), Bending

t
.0
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

M 1 3 5 I0 20 ®

144 .135 •134
145 .136 .135
146 .141 •140
148 .149 .148
151 .160 .159
154 .176 .175
158 .191 .190
162 .209 .210
165 .227 .233
166 .239 .253
161 .236 .257
150 .219 .244

•133
135
139
147
158
174
189
209
233
261
274
273

133
135
139
147
158
174
189

• 209
.232
.261
• 281
• 293

133
134
139
147
158

172
189

•2O8
.231
• 259
• 280

•302
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Figure 2.1 The shell geometry.
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Figure 2.2 Representation of the two-dimensional
stress state in the net ligament with stress
resultants for the mode 1 problem.
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Figure 2.3a Force and Displacement quantities as

defined by plate or shell theory that are used in

the mode 1 line-spring model.
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Figure 2.3b Force and Displacement quantities as
defined by plate or shell theory that are used by
the line-spring model for mode 2 loading.
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Figure 2.3c Force and Displacement quantities as

defined by plate or shell theory that are used by

the line-spring model for mode 3 loading.
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Figure 2.4 The superposition used to solve part-

through crack problems with the line-spring model.
All solutions are obtained for the problem in the

lower right (the perturbation problem) where the

only loads are applied to the crack surfaces.
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CHAJ_TER3

Through Cracks in Plates

In this chapter the singular integral equations for a cracked

plate under both symmetric (mode 1) and skew-symmetric (modes 2,3)

loadings will be derived. The plate theory includes transverse shear

deformation. For mode 1 loading there is very little to add to the

existing literature [6,9-13]. The thin plate limit examined in these

papers will be reconsidered. For the skew-symmetric case stress

intensity factor solutions found in Refs. [14,15] for a single crack

will be supplemented. Also some results for the double crack case

will be presented.

3.1 Formulation

The governing equations, both dimensional (Eqns. 3.1a-16a, 18a,

19a) and non-dimensional (Eqns. 3.1b-16b,18b,19b) are listed below.

The dimensional relationships are defined in Appendix A. From

equilibrium

aNt1 _NI2 aN aN
.... xx ---_= 0 (3.1a,b)
5x I + _x2 - 0 , 8x + ay

_N12 aN22 aN aN
x_ __Y_Z= 0

_x I + Ox2 - 0 , 8x + ay
(3.2a,b)

av I av2 _

ax I + _ + q(xl,x2) = 0 ,

av av
x _y_ 12(1+v)

Ox + _y + 5 q(x,y) = 0 , (3.3a,b)
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8MlI 8M12
8xI + _ - V1 = 0

8M 8M
xx xy 5

8x + 8y 12(1+v) Vx = 0 , (3.4a,h)

8M12 8M22

8xI + 8x2
-V2=O ,

8M 8M

xy + __Y_Z 5 V = 0 , (3.5a,b)
8x 8y 12(1+v) y

where q(x,y) is normal loading to the plate surface. The other

vur_a.bles are standard plate quantities (see Fig. 2.3). From

kinematical considerations,

8UlD 8u

ell - 8x 1 ' exx - 8x ' (3.6a,h)

8U2D 8v

e22 - 8x2 , eyy - 8y ' (3.7a,b)

1 8UlD 8U2D 1 [ 8u 8v
el2 = 2 [ 8x2 _-_1 ] ' exy 2 ++ :- ] , (3.8a,h)

8U3D 8w

01 : 8x-_ + #1 ' Ox - 8x + fix ' (3.9a,b)

8"3D 8w

02 --8x2 + #2 ' 8y - 8y + #y , (3.10a,b)

where 81 and 82 are the total rotations of the normals. For classical

plate theory they are zero showing that normals to the plate surface

stay normal, i.e. there is no deformation transversely. The

constitutive relations (Booke's law) are,
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1 { =N - uN
hell = E (_11 - vN22) ' xx xx yy

1 _ vN 1 ) e : N uN ,he22 = _ (N22 1 ' yy YY xx

he12 = _ N12 , exy = (l+V)Nxy ,

where E is Young's modulus and v is Poisson's ratio.

bending,

Mll = D [ Dpl aft2

M = 1 [ B& _p

M22 D [ BP2 BPl

Myy 12 ( 1-u 2)

M12 =

_xy 24(1+v) [ _flx

(3.11a,b)

(3.12a,b)

(3.13a,b)

From plate

(3.14a,b)

(3.15a, b)

(3.16a,b)

where,

Eh 3

D- 12(1_v2)

The linear transverse shear stress-strain relationships are,

1¥ 1 0 =VO1 - hB ' x x '

1 ¥2 0 :V02 - hB ' Y Y '

(3.17)

(3.18a,b)

(3.19a,b)
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where

B - 5E (3.20)
12(l_u)

From here on only the non-dimensional variables will be used. Define

¢(x,y) such that

N a2¢ N 82_ N _ (3.21)

xx - _y2 ' yy - 5x2 ' xy : -axSy '

and Eqns. 3.1b,2b are satisfied. Next combine Eqns. 3.6b,7b with

3.llb,12b to obtain,

_V5u N - uN - N - uN (3.22)
_x - xx yy ' 8y yy xx

Next use Eqns. 3.8b,13b to write,

1 [ _u 8v ] (3.23)(1+U)Nxy - 2 _yy + _xx '

or

62 1 + __ ](l+u)B_yNxy : _ [ 83u _3 v
_x_y2 ayBx 2

(3.24)

After substituting 3.22 into 3.24 we obtain,

a 2 1 {[ 82Nxx 52N
(l+v)_-_yNxy - 2 _y2 8U_y2 ]

+

i_2N a2N

8x 2 8x
(3.25)

Using 3.21 this becomes,

V4¢ : 0 , (3.26)

where
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V2 _ 82 82

8x 2 8y 2
(3.27)

Next using 3.3b-5b we can write,

82M 82M 82M

xx + 2xY + yy q(x,y) = 0
8x2 8xSy 8y2 +

(3.28)

Substitute Eqns. 3.14b-16b into 3.28 to obtain,

03f____x 03fy _ 03fx

8x3 + 8x2---_y+ 8y3 + 8y28x
-- + 12(1-u)2q(x,y) = 0 (3.29)

Look at the following expression from the first two terms of Eqn.

3.29,

83fx

8x 3
83fy 82 [ 8fx+ -- = -- _ ] (3.30)

8x28y 8x2 +

Substitute for fix and fly according to Eqns. 3.9b,lOb together with

3.18b,19b,

83fix 83fly 82 [ 8Vx 82w 8Vv 82w ]
-- T --

8x 3 * 8x28y - 8x 2 [ 8x Ox2 8y 8y2 J
(3.31)

Next use Eqns. 3.3b and 3.27 for substitution into 3.31 to obtain,

83fix 83fy = 82 [ 12(l+v)8x-- + a\2 y 2 s - v2, ] (3.32)

Similarly,

83fy 83fx 82
[ 12(l+u) q(x,y).- V2w ]

+ 8y28x - 8y2 58y 3
(3.33)

Eqns. 3.32,33 are now substituted back into Eqn. 3.29 to obtain,

V4w = { 12(1+___)_5V2 + 12(l_u2)}q(x,y) (3.34)
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Next

3.9b t.o wr_te,

aw i v2px 
fix + 8x - 12(i_v)2

Similar substitutions with Eqn. 3.5b leads to,

8w I {12(i+v) V2fy 1+u a [ aflx
ply * 8y- 12(1_v)2 5 + 2 8x 8y

After defining the constants,

1 I

- 5(I-v) ' 7- 12(1-u 2)

and the new unknowns,

_f_ 8f z
fl(x,y) - _y _x '

,(x,y) : _[ aflx _Zvb-x-+ ]j -w ,

Eqns. 3.26,34,35,36 become,

v4_ : o ,

V4w = 0 ,

•V2_ - _t- w : 0 ,

l-v
• -_- V2fl - fl : 0 ,

where q(x,y) has been assumed to be zero.

introduce the Fourier transform,

_(x,a) = I O(x'y)eiaYdY '
-00

use Eqn. 3.4b with substitutions from 3.14b,3.16b and 3.18b with

2 8y 8x 8y
(3.35)

8xall[]} (3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

To solve Eqns. 3.40-43 we

(3.44)
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+00

¢(x,y) = _ (x,a)e-laYda
-00

(3.45)

with identical definitions for w(x,y), #(x,y) and fl(x,y). After

making use of the relationships,

I+[V2f (x,y) eiaYdy 82f a 2
_ - Dx2

(+®v4f (x 84_ a2_ 4,y)eiaYdy _ 2a 2 _ + a f (3.46)
J®_ 8x4 8x2 '

Eqns. 3.40-43 are reduced to the following ordinary differential

equations,

9--

- 2a 2 _ + a4_ = 0 ,
8x 4 ZSx

(3.47)

{_4_ 2a2 _2_ + a4_w = 0 (3.48)

_x 4 _x 2 '

_x 2

1-/]

Dx2
a2_ } - _ = 0 (3.50)

Assuming symmetry of loading and geometry with respect to x, the

transformed solution for x>O of Eqns. 3.47-50 is,

_(x,y) = _-_ Al(a)e -{a}x + A2(a)xe }alx e iaYda ,
--00

(3.51)

w(x,y) = _ _® A3(a)e . A4(a)x e {alx e-iaYda
(3.52)

(x,y) = _ _ -A3(a) + (21a{_ - x)A4(a) e +
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'05(_(x,y) _ (_)e -Rx= e-iaYda ,

(3.53)

(3.54)

where

[ 2 ]1/2R = a2 + (3.55)
_(1-v)

For either the symmetric or the skew-symmetric problem there are five

conditions with which to determine six constants, Ai(a), i=1,...,5,

and C(a). This shows that one constant is extra and we take

c(a)= o ,

and proceed to

it. Now that

(3.56)

show that the problem can be uniquely solved without

the four unknowns, w,_,_, and flare known in terms of

the five unknown coefficients, the other plate variables are expressed

in terms of them.

form in Eqn. 3.21.

Nxx , Nyy, and Nxy are already expressed in this

The other important expressions are,

fx l-v _fl: 2 8y + 8x
(3.57)

1 v 80
fly = -g 2 8x + By

(3.55)

xx 2 DxSy + 8x 2 + '
(3.59)

M
YY = _ 8x_y + 8y2 +

(3.60)

Mxy : 24(1+v) 8y2
82fl] . O__+ _xx_y }
8x 2

(3.61)

8w 1-v 8fl 8@
V - + _ +
x 8x 2 By 8x

(3.62)
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Now

is,

V Ow 1-v O_ a__
-- - 6' +

y 8y 2 8x 8y (3.63)

= (2+,.,)a2__
8y 2 8y 8x 8x3

(3.64)

(3.68)

£f Eqns. 3.51-54 are substituted into Eqns. 3.21,57-65 the result

Nxx = -2-_ _ Al(a) + xA2(a) e-lalXe-iay da , (3.66)

N I f+'[a2A1 ]- (a) + A2(a)(a2x-2lal) e-lalxe-iaY da ,yy 2g _® (3.67)

Nxy-21r _® lalAl(a) + (l-xlal)A2(a) e e da , (3.68)

_-i I+®Px = _ 2-_ ®aA5 (a) e-Rx e-laYda +

27r _® (3.69)

f ®RA5(a ) -Rx_y a;12V 1 +oo _"= 2_ _ e e laYda-

i f'a[_A3(a) + (21als- x)A4(a)]e-lalxe-iaYda (3.70)

M = :L_ f (2_lal-x)A4(a) - A3(tt) +xx 21t _ (1-v) a2

21alA4(a))e-lalx -iaye da +
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4.O0

l_yy =

e-RXe- _aY da ,

2_ I+*®_(1-v)a2I(2glal-x)!_4(a) - A3Ca)l *

2vlalk4(a)_e-lalXe-iaY da-

2 i "I+o0aRAs(a) e-Rxe-iay
da

)

_txy

i (xlal-2_
--_O-v)_ _

)1 _la/x -_.aylalA3( a e e

dot

(3.73)

I÷® _A4(a ) e- I a l x e- Lay da -

.+® -Rx da

_ _(1-v)2_ _

_y

iI

C3.75)

-/a_Xe-_-aY da +

"_ I ®alalA4(a)e

,+® -RXe-iaY da

I RASCa)e+ (1-v)-_ _®

(l+V) la_Al(a) _'2(a) (-l÷v-lalx(l+V))_e-lalXe-_aYda"_+ (3.76)

- I alXe-iaYda
e

C3.77)
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3.2 Symmetric loading, Mode I.

The symmetry conditions are,

N (O,y) = 0 , (3.78)
xy

M (O,y) = 0 , (3.79)
xy

V (O,y) = 0 (3.8O)
x

After using this information in Eqns. 3.68,73,74 we obtain

1
AI( ) -Jal A2(") ' (3.81)

(a2+R2)+I
A3 (a) = Ia I A4 (a) , (3.82)

4ai A4 (a) (3.83)AS(a) - l-v

This eliminates three of the five unknown constants leaving only A2(a )

and A4(a ) . The following two mixed boundary conditions will determine

them.

N (O+,y) = -fl(y).. y in L (3.84)xx ' n '

u(O +,y) = 0 y outside of L , (3.85)
' n

M (O+'Y) = -f2 (y) y in L (3. 86)xx ' n '

- .._x(O+,Y) = 0 y outside of L (3.87)' n '

where

L = ,bl) (an, (3.88)n (al ' (a2'b2)' "'" ' bn) '

each section (ai,bi) defining a crack on x=O. Note that since all

length quantities are normalized with respect to the plate thickness

h, each section is actually (ai/h,bi/h) . After using Eqns. 3.81-83 in
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Eqns. 3.66,76,71 and 69 we obtain the following,

= lim -I _+® - -layNxx (O'y) x_O 2--'_ lalA2(a)e lalxe da , (3.89)
--W

8y21x=O x-_O 2-'-__ e da ,

(3.90)

Mxx(O,y) =
lira'ys(1-v)[+®[[ a (3+v)_]-lalx

J t[2a21al+lal_(l-v)J e
x-_O 21r _,0

2a2Re-RX} -iay- A4(a)e da , (3.91)

px (O,y) : x-_O 2---_ (a) 2_a2e-RX-_ (a2+R2) e- da
_ (3.92)

Note that Eqns. 3.89,90 are uncoupled from 3.91,92 for simple fi(y ) in

the mixed boundary conditions 3.84,86.

3.2.1 Tension.

The singular integral equation for tension will be derived first.

Consider Eqn. 3.90.

_2u[ _ I _+®_2A2(a)a2e-iay da (3.93)
_y21 x=O- 2-_ _®

From Eqns. 3.44,45 we invert 3.93,

_2a2A2(a) = I_ 02u I eiatdt , (3.94)
- Bt 2 x:O

and then integrate by parts twice noting that u(t) is zero at

infinity.

-2a2A2(a) = -ia I+®-®_-tBUlx=oeiatdt , (3.95)
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2 _+® (t) eiatdt= -a u , (3.96)
-W

or

I I u(t)eiatdt ' (3.97)A2( ) : 2 L
n

where use has been made of Eqn. 3.85. Now A2(a ) is substituted into

Bqn. 3.89 and the displacement u(t) becomes the only unknown in the

problem. After defining

ul(t ) = u(t) ,

we have,

N (O,y) =
xx

lira -1 [+®lal f ul(t)eiatdt -lal "-- e Xe-iaYda
x*O 2_ J® 2 L

n

, (3.98)

or

+Go

lira-1 f ul(t)_ !_ e-
Nxx(O,y) = x+O _ L -®

lalx ia (t-y)e da dt (3.99)

Next using

® -2x*O ac°sa(t-y)e-aXda- (t_y)2 '
(3. 100)

Eqn. 3.99 becomes,

N CO,y) 1 f UlCt)- dt

xx 2f L _j(t-y _2 '
n

for all y (3.101)

or

1 )_ u 1 (t)
-fl (y) = 2-_ LnCt_y)2

dt , for y in L
n

(3. 102)
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For a single crack in tension Eqn. 3.102 becomes,

1 _+[ __--ul(t)dt : fl(y ) : _ _ _11 _ _12-_ _ (t_y)2 xx hE E (3. 103)

The solution is

o 1/2 (3 104)
ul(Y ) = 2 _ (a2-y 2)

If we substitute this back into Eqn. 3.101, the stress in front of the

crack is,

°l(Y) 1 [+a 2 _ (a2-y2)l/2dt - _ ( 'Y' 1) (3.108)
E - 2_ -a _ (t-y) 2 E (y2_a2)l/2

To determine the stress intensity factor, we use Eqn. G.IO,

kl = lim [2(y_a)]l/2al(y) (3.106)y+a

1/2
lira oy [2(y-a) ]

y+a (y+a) 1/2 (y_a) 1/2

_ (3.107)

Therefore

k 1
- 1 (3. 108)

Now determine the stress intensity factor using Eqn. G.11.

4_/£- lim ul(t)

kl = K+I y+a ]2(y-a)

E lim 2 _ (a2-y2)l/2 - _ _a , (3. lO9)

where the following substitutions have been made,

3-v E (3.11o)
K - l+v ' _ - 2(1+v)

Therefore using either stress or displacement the result is the same.

This should not be taken for granted because the equations predicting
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stress and displacement are

intensity factor is defined

important to note that the

from plate theory, while the stress

in terms of elasticity theory. It is

classical plate theory is identical to

Reissner's theory for tension, Eqn. 3.101.

In Fig. 3.1a at the end of the chapter the stress intensity

factors for two identical cracks with a/h=l are plotted for varying

separation distance.

3.2.2 Bending.

For the bending problem from Eqn. 3.91

Px(O'Y) = u2(y) - 1 f+_2x A4 (a)¢(a2-R2)e-layda (3.111)

After inversion, making use of Eqn. 3.55, A4(a ) in terms of the new

unknown, u2(t ) is,

1-v _ u2(t)eiatdtA4(") - -2
L

n

(3.112)

This is substituted into Eqn. 3.91,

Mxx(O,y) =

+o0

lira v_(l-v)2f u2(t ) 2a2lal lal_(1-u) e
x-O 2x JL -®

n

- 2a2Re-Rx}eia(t-Y)da dt (3.113)

After using Eqn. 3.100 and the following integrals,

lim f_a3cosa(t_y)e-aXda _ 6x-O (t-y)4 '
(3.114)

x-olim f_®a2Re-RXcosa(t_y) da - 1
27_ (l-v)

2{4-_ [K2 (Pl t-y ] ) -
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Ko(#lt_yl) ] + 127(1-u)K (_(t_y)2-2
(3.115)

where

I 2 ] 1/2 1/2
P = t_(--V_-v)J = (10) ,

(3.116)

we obtain

Mxx (O'y) - 2,1 IL u2 (_)''f-12_(1-v)2_ (t-y) 4 + 7(1-v)(3+v)(t_y)2 +
n

, (3.117)

which is valid for all y. K2 and K0 are modified Bessel functions of

the second kind. If y is in Ln, we use Eqn. 3.87 to write,

u2(t)

_ (l-u2) _Ln (t_y)-f2 (y) = 2_ 2 dt + _ u2(t)K22(Y,t) dt , (3.118)
L

n

where

K22(Y,t ) = _ln(pit-yl) [2_(1-u) 127_(1-u) 2....
+ [ (t_y) 2 - (t-y) 4

Ko(flEt_yi) ] + 127(1-Y)g (fllt-yl) - 71n(pit-yl))
(t_y) 2 "'2 'r

(3.119)

It is convenient to write this Fredholm kernel in terms of a single

variable,

SK(_)
K22(y't) - 12(1+_)

(3 120), z = flit-y{ ,

where

4 _ 4Ko(z) + 4K2(z) + ___ K2(z )K(_) = +
z z Z

(3. 121)
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To show that K(z) is a Fredholm kernel, the small z expansions for the

Bessel functions are,

Ko(z) ~ -In(z/2) - 7e - (z/2)21n(z/2) + O(z2) (3.122)

K2(z) ~ 2/z 2 -1/2 -I/2 (z/2) 21n(z/2) - 1/2(z/2) 2(7e+5/4)

- I/6(z/2)41n(z/2) + O(z4) , (3.123)

where Euler's constant, 7e = .5772157 .... Substitution of these

expansions into Eqn. 3.121 leads to the following behavior for K(z),

lira K(z) ~ {In(z/2)+(Te-23/4)+(z/2)21n(z/2)+ ) (3.124)
Z_ 0 " . .

For simple plate bending,

re(y) = - _
xx h2E 6E (3.125)

The log singularity has been separated from the Fredholm kernel,

see Eqn. 3.119. In such a case it was found helpful to handle this

part in closed form. However it is possible that the contribution of

the log term is nearly equal to, but of opposite sign as the rest of

the kernel. Separate treatment here could lead to convergence

problems especially for geometries (a/h approaching ® for Eqn. 3.118)

where the coefficient of the log term gets large. In many problems

this coefficient is small and a closed form analysis of the log is not

necessary. See Appendix I for the effect of this log behavior on the

numerical convergence. It should be noted that if the unknown were

the derivative of the rotation, this log term would be replaced by,

(t-y) In (pl t-y I) , (3.126)
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which is non-singular and easier to integrate (see. Appendix I). This

is the least desirable feature of the strongly singular formulation.

TheFredholm kernel is essentially divided by (t-y), or alternatively,

the infinite integrals which determine the Fredholm kernel decay more

slowly by a factor of a, see Appendix J, section 4. This means more

asymptotic analysis for equal decay between the two methods. For

example the infinite integral for the tension problem, Eqn. 3.100

would be replaced by,

lim sina(t_y)e-aXda _ 1 (3.127)
x_O t-y

In most problems the infinite integrals must be evaluated numerically

so this factor of a becomes important, see Chapter 5.

For a single crack of half length a, Eqn. 3.118 may be written as

h _+1 u2(_r) 12h(l+v)5a 2,1 I_idr+ u2( r Z#Blr-sl 'n"-n- - dr
243x -I (r-s)2 xx'

-l<s<l (3.128)

If we define

a fllt-yl (3.129)24a _ g(r) , g = _plr-sl = z =u 2(t) - h xx

the equation becomes,

1 _(r) dr + (a/h) g(r)K(ff) dt = -1 , (3.130)
(r_s)2 _(l+v) --1

This equation must be solved numerically, see Appendix E for an

explanation of the collocation method. From section 2 of Appendix G,

and Eqn. 3.130 the stress intensity factor (actually the maximum value

at the plate surface) will be given by,
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k 1
- f(1) : f(-1) , (3.131)

where

gCr) = fCr) (l-r2) 1/2 , -l_<r_<l (3.132)

The stress intensity factor of Eqn. 3.131 is predicted by either

stresses (Eqn. G.IO) or displacements (Eqn. G.11).

The governing equations for classical plate bending are identical

to 3.1-20 with the exception that the transverse shear deformation,

8. in Eqns. 3.18,19 are zero, or B (Eqn. 3.20) is infinite. The
1

symmetry conditions, Eqns. 3.78-80, cannot be separately satisfied.

For classical plate bending,

Nxy(O,y ) : 0 , (3. 133)

8M
xz

ay + Vx(O'Y) = 0 (3.134)

The result of this formulation for the determination of the rotation

iS,

3+v h 1 (+1 u2(_r )
.... _ dr = -_ -l<s<l (3. 135)
l+v 24a • -1 (r-s) 2 xx ' '

or in terms of g(r),

6+i _ dt = -I
3+v 1

l+v • -I (r-s) 2
(3. 136)

This equation can be solved in closed form.

°2(Y) a2 lyl - 1} , (3.137)
6E - 6E ( [y2_ (a/h) 2] 1/2
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u2(Y) - 3+p h 6E 1 - y

Eqn. 3.137 predicts

k1
- 1

_2_a

while Eqn. 3.138 predicts

kl l+v

_2_7-a - 3+v

, -a/h<y<a/h (3.138)

(3. 139)

(3. 140)

This inconsistency shows that the classical plate theory is inadequate

to solve for crack tip SIFs for bending. It is also true for out-of-

plane shear and for twisting.

In Fig. 3.2 the normalized stress intensity factor as a function

of crack length to plate thickness ratio is plotted for Reissner's

theory. Table 3.1 lists somevalues. Note that for large h/a the

limit is one, the sameas the classical prediction using the stress

intensity factor defined in terms of stress, Eqn. 3.139. The other

limit, the thin plate limit, is not so clear. It has been reported by

[6] that in the limit as h/a goes to zero, the stress intensity factor

for the Relssner plate, (Eqn. 3.131) approaches the value (l+v)/(3+v)

as predicted by Eqn. 3.140 from the classical theory, (note that h=O

is not valid for Reissner's theory). Another way of putting this is

that Eqn. 3.130 becomes3.136. The evidence provided by table 3.1 for

a/h = 1000 seems to indicate that this is not the case. Numerically

it is very difficult to obtain convergent results in the long

crack/thin plate domain using the methods of Appendix E, and for
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further results some kind of asymptotic analysis with a specially

suited numerical scheme seems appropriate. As an aside, for this

geometry, a power series (Eqn. E.29) was not adequate using single

precision (14 digits). The coefficients were as high as 1.×lO 15, for

example see table E.I. The problem was solved using Chebychev

polynomials. The following analysis is provided to support the claim

that the curve in Fig. 3.2 does not "reach" the value (l+u)/(3+u).

3.2.3 Thin Plate Bending.

We consider the large a/h limit of Eqn. 3.130. Only the Fredholm

kernel need be analyzed. First define

I(s,a/h) - ,(l+u)(a/h)2 g(r)g(D dr

sll- 2,(1+u) g(r)K(g) dr , (3.141)

where p=p(a/h) is introduced for convenience. From Appendix H,

lim 2 f+l_g//__dr
#+® I(s a/h) _ 7-1 _(l+v) J 1r-s2 f_+lg//Xl dr ,Isl<l,

' _(l+u) (r-s)2 - - (3.142)

;:: 2 f+lg'(r)dr ' Isl>l ,2 _ dr ,(l+u) J-1 r-s
- _(l+u) (r-s) 2 - (3.143)

= ? , y "near" 1, ie. #(l-y) = 0(1) (3.144)

If Eqn. 3.142 were valid for Isl=h/alyl_l then in the limit as #

approaches infinity, Eqn. 3.130 would be identical to Eqn. 136 and

therefore the stress intensity factor would be (l+u)/(3+v). But this

is not the case. Figs. 3.3a-c compare I(s,a/h) to the limiting
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integrals above. The numerically determined function for g(r) was

used to compute these integrals. See Figs. 3.4-5 for plots of

g(r),f(r) as defined in Eqn. 3.132, and Fig. 3.6 for the ratio of g(O)

from Reissner's theory to g(O) from the classical theory. Also see

table 3.2 for numerical values of this ratio. This table shows that

in the limit as h_O, Reissner's theory behaves like the classical

theory away from the crack tip.

difference between I(s,a/h)

I(s,a/h) is continuous at s=l.

With regard to Fig. 3.3, the distinct

and the limiting integrals is that

The "spike" created when I(s,a/h) goes

from 1- to 1 + gives a contribution to the stress intensity factor that

makes it different from (l+p)/(3+v). This contribution is of

significance because it is located at the crack tip. In order to

proceed further in the analysis, the area of the spike, which would

represent a normalized force (or couple), must be determined.

Consider the following:

f+l, p2 2 )lira (2_(l+v)I(s,a/h) + _-_ ds , (3.145)M = p.® 0

p*® 2_(l+v) g(r) K(_)ds dr + 3+---v '

= fl: ( 6 4 8 ) 2 u=p(1-r)lim p g(r) -1_1_ + _ + _ K2(u) dr + 3+---v '
u u

#*® 2z(l+v) u (3. 147)

Again the behavior of this integral near r=l makes it difficult to

analyze. Note that the order one contribution to _ coming from the

"outer solution" of g(r), Eqns. 3.129,138, drops out.
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The

but we can make the following conclusion.

has the behavior of Eqn. 3.143,

lim lim I

P*® s.1 + I(s,a/h) ~ _-s '

where from Eqn. 3.143, it may be stated that

This

limiting value of the stress intensity factor was not found

Since I(s,a/h) for {s{>l

(3.148)

lira lira I(s a/h) ~ _-p
#,® s-,1+

order analysis is supported by Fig. 3.3.

(3. 149)

This tells us that the

magnitude of the integrated Fredholm kernel, i.e. I(s,a/h), which

represents a normalized stress resultant term, (actually a couple),

becomes infinite according to Eqn. 3.149. Again since we are dealing

with a region where p(1-s) is of order one, the nthicknessn or support

-1
of the spike is of order (l-s) or p Therefore the area under the

spike, given by eqn 3.147, which represents normalized force, should

go to zero as p-l/2 In order to determine the stress intensity

factor for h/a approaching zero the coefficient of this leading order

term must be known. If the area were of order one, the contribution

to the stress intensity factor would be of order (l-s) -1/2, see Sih

[72]. If the value of stress resultant were of order one, the area

would be zero and there would be no contribution. But the limit is

between these two cases and the contribution is finite, probably

resulting in a stress intensity factor that can be drawn within the

space provided by the lower plot of Fig. 3.2.

Some other results for the bending problem are given at the end of

the chapter. In Fig. 3.7 the normalized bending stresses ahead of the

crack tip are plotted for a/h=l and 10 (Eqn. 3.117). In table 3.3
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some results for crack interaction are listed for four different crack

length ratios, (this table may also be found in [59]). Fig. 3.1

provides a plot of the interaction of equal length cracks where a/h=l

for tension, bending, out-of-plane shear and twisting to compare how

strong the interaction is for the various loadings. In-plane-shear is

identical to tension, (shown later in this chapter).

This eliminates

A2(a),A4(a ) and

determine them.

3.3 Skew-Symmetric loading, Modes 2 & 3

The symmetry conditions are

Nxx(O,y) = 0 ,

M CO,y) =0
xx

After using this information in Eqns. 3.66,71 we obtain,

AI(5)= o ,

{ 2) i_ (l_u)RAs(a)A3(a) = 2_lal+(l-v) lal A4(a) +

two of

A5Ca) •

(3. 150)

(3.151)

(3.152)

(3.153)

the five unknown constants leaving only

The fo]]owing mixed boundary conditions will

Vx(O+,y) = -f3(y ) , y in Ln '

w(O+,y) = 0 , y outside of L
n

(3.154)

, (3.155)

Nxy(O+,y) ---f4(y ) y in L' n '

v(O+,y) = 0 , y outside of L
n

(3.156)

(3.157)

MxyCO+'Y) = -f5 (y) , yinL ,n
(3.158)

6O



_y(O+,y) = 0 y outside of L' n

If Eqns. 3.152,153 are substituted into Eqns.

the quantities appearing in 3.154-159 may be

unknowns as follows:

v (x,x)
X

+_

-6 f ®a2A4 [a[ "= --_ (a)e- Xe-laYda

(3.159)

3.52,68,70,73,74 and 77,

expressed in terms of the

. +_

_ _ _ ®aA5(a) -Rxe-iaYda- ,(1-I/) e y (3. 160)

w(x,y)
= _-_ A4(a ) 2glal+ (1-u) lal + x

im }e-lal "+ A5(a)_-a(1-p)R Xe-laYda ,

i f+® -lalx "= a(l-x{a{)A2 (a)e e-laYdaNxy (x'Y) _ _®

(3.161)

, (3. 162)

_v 1 _+® [ ] -{a{Xe-iaYda-- e_y 2_ _®A2(a) a2x-21 a I+uxa2 (3.163)

Mxy(X,Y) = -7(1-u)_-_ A4(a ) xalal-a+
-00

i_ ( 1 -u) R I a IA5 (a) } e - I - Ix e- iaYda

--00

(3.164)

_y(X,y) = _ A4(a ) X+ (1+//){a{ +

_ ___(i__)RAs(a)i_ }e- }a{Xe-iaYda + _(l-y)__1 __+®®RAs(a)e-RXe-iaYda

(3. 165)
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Note that Nxy is uncoupled from Mxy and Vx. The integral equatAon for

N can be seen to be the same as for tension, compare F,qns. 3.89,90
xy

with 3.162,163. The result for

u4(t) : v(O +,t) , (3.166)

is

1 f u4(t) dt for all y (3.167)
Nxy(O'Y)- 2_ L (t-y) 2 '

n

or

1 _ u4(t)= dt for y in L
-f4(Y) _ L (t-y)2 ' n

n

(3. 168)

For in-plane-shear,

912 _4 (3.169)
f4 (y) = _xy - hE - E

All through crack results for tension are also valid for in-plane-

shear. To solve the coupled problem of Mxy and Vx, first define

u3(t ) = w(O+,t) , u 5(t) = fly(O +,t) (3. 170)

The unknowns A4(a ) and h5(a ) can then be expressed as,

-i(1-y) lal u5(t)elat dt ,
A4 (a) = 2a L

n

(3.171)

-2ia I u 3(t) e iat dt
A5(a) - _R(1-y) L

n

+ + _R(I-_)] L
n

(3.172)
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It remains only to substitute these expressions into Eqns. 3.160 and

164 and to evaluate the infinite integrals in a way similar to the

bending problem. The equations become,

Vx(O'Y) = _ Ln (t-y) 2 u5(t)K35 (3.173)

M
xy (O,y)= _ fL L (t-y)2 + K55 K53 (z)

n

where

K33(_.) = fl2(_ln(z)+ [K2(z) - 2 } + [Ko(z) + ln(z)]} ,
z

(3.175)

Z

(3.176)

5 + [4_KS5(_') - 12(1+_){ in(_)
z

4 + 4Ko(z) _ 4K2(z) 242 - --2 K2(z)
z 7,

+ ln(z)]- [2Ko(z)+ 21n(z)] } , (3.177)

5p {-8 _Ko(_))K53(z) - 12(I+u) --3[z4]+ + zjK2 (z) -
z

(3.178)

If Eqns. 3.154,158 are applied to 3.173,174 the singular integral

equations become,

1 2u3(t) 1
-- dt + _-_f (u3(t)K33(z) +

_L (t-y) 2 L
n n

u5 (t)K35 (z)}dt : -f3(y )

(3. 179)

1 u5(t)

7 (1-u2)_ _Ln (t_y) 2
1 (u5(t)K55(z) + u3(t)K53(z))dtdt + _L

n

: -f5(y ) (3.880)

The through crack loading for out-of-plane shear is,

63



f3(y ) : _ 12(l+u) _1 _ 53x = 5Eh = 5E (3.181)

and for twisting,

_12 _5

f5 (y) : _xy h2E 6E
(3.182)

For small z,

K33(z) ~ _2{_ln(z/2)-(1/2 + 7e)-3/2(z/2)21n(z/2)+...} , (3.183)

K35(z) ,,, fl{-z/21n(z/2)+(9/8-Te/2)z-2/3(z/2 )3In(z�2)+...) ,(3.184)

K55(z) ~ 12(1+u)5 {ln(z/2)+(Te+23/4)_(z/2)21n(z/2)+...} , (3.185)

Ks3(Z ) ~ 5_ ((z/2)ln(z/2)+(Te/2_9/8)z+2/a(z/2)31n(z/2)+..}12(1+v)
(3. 186)

The effect of this behavior on convergence is shown in Appendix I.

The collocation method was used to solve Eqns. 3.179,180 with

f(y) given by 3.181,182 for a single crack, (tables 3.4-6, see also

Ref. [15]), for two identical interacting cracks, (Figs. 3.1c,d), and

for two interacting cracks of different size, (table 3.7a,b). The

notation for the double crack is given in Fig. 3.8a,b. For a single

crack, the stresses ahead of the crack tip are plotted in Figs.

3.ga,b.
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Table 3.1 The effect of Poisson's ratio v and

crack length to plate thickness ratio a/h on the
normalized bending stress intensity factor.

See also Figure 3.2. a=6M/h 2.

k 1 (h/2)

a/h
•05
.1
.25
.5
1.
2.
4.
6.
10.
100.
200.
1000.

v=O
9851
9583
8735
7804
7020
6518
6211
6091
5984
5803

V:. 3

•9885
•9676
.8992
.8193
•7475
•6997
•6701
•6446
•6481
•6306
•6292
•6276

_-.5
99O0
9717
9111
8383
7707
7247
6960
6847
6746
6575
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Table 3.2 The ratio of crack surface rotation for

Reissner's theory to that of the classical theory

at the center of a cracked plate subjected to

bending, u=.3. See also Figure 3.6.

a/h PR (0)/Pc (0)

*0 2.538* (3*u) /(l+u)
.5 1.892

1.0 1.551

1.5 1.394

2.0 1.309

2.5 1.255

3.0 1.219

4.0 1.172

5.0 1.142

6.0 1.122

7.0 1.107

8.0 1.095

10.0 1.079

100.0 1.011

200.0 1.006
1000.0 1.000

_ 1.
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Table 3.3 Bending stress intensity factors for a

plate with two collinear cracks, o=6_/h 2, v=.3

bl-al b2-a2 d : a2-b 1 )a - 2 - 1, c - 2 '

PLATE BENDING

d/a 0.1 0.25 075 1
c/a

O0

1 .8799 .8551 .8313 .8045 .7798 .7475

kl(al) 0.5 .8071 .7938 .7821 .7698 .7593 .7475
0.25 .7711 .7647 .7598 .7551 .7513 .7475

o_a'a 0.I .7532 .7512 .7500 .7490 .7482 .7475

kl(b 1)

o,W

1 1.294 1.076 .9599 .8697 .8049 .7475
0.5 1.063 .9143 .8458 .7995 .7698 .7475
0.25 .9161 .8220 .7863 .7663 .7550 .7475
0.1 .8088 .7678 .7563 .7514 .7498 .7475

k1(a2)
1 1.294 1.076 .9599 .8697 .8049 .7475

0.5 1.012 .8405 .7498 .6786 .6261 .5794
0.25 .7990 .6595 .5867 .5297 .4872 .4496
0.1 .5647 .4577 .4037 .3627 .3325 .3060

1 .8799 .8551 .8313 .8045 .7798 .7475

kl(b2) 0.5 .7395 .7071 .6771 .6434 .6132 .5794
0.25 .6275 .5867 .5507 .5135 .4816 .4496

o_Z 0.1 .4817 .4293 .3917 .3577 .3308 .3060
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Table 3.4 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting, o3=3V/(2h), o5=6M/h 2, v=.3.

OUT-OF-PLANE SHEAR TWISTING

k2 (h/2) k 3 (0) k 2 (h/2) k 3 (0)

osUZ 

.01
•05
.1
.25
.5

1.0

1.5
2.0
3.0
4.0
5.0
6.0
8.0

10.0

.0000

.0007

.0039
.0336
.1400
.4656
.8510

1 2615

2 1201
3 0067
3 9100
4 8249
6 6784
8 5539

1.0009
1.0138
1.0398
1.1402
1.3223
1.6760
2.0142
2.3425
2 9800
3 6007
4 2O99
4 8107
5 9938
7 1592

9991 -.0000
9862 -.0003
9587 -.0018
8557 -.0121
7056 -.0359

5218 -.0697
.4186 -.0850
.3527 -.0913
.2732 -.0934
.2268 -.0910
.1961 -.0876
.1742 -.0840
.1448 -.0776
.1257 -.0722
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Table 3.5 The effect of crack length to plate
thickness ratio a/h on the normalized stress

intensity factors for out-of-plane shear and for

twisting, o3=3V/(2h), as=6M/h2 , v=O.

OUT-OF-PLANE SHEAR TWISTING

k 2 (h/2) k 3 (0) k 2 (h/2) k3 (0)

o3_a o3_a a5_ OS_-aa

a/h
.01
.1
.5

1.0
1.5
2.0
3.0
4.0
5.0
6.0
8.0

10.0

0000
0039
1368
4442
8005

1 1765
1 9578
2 7609

3 5770
4 4022
6 0709
7 7568

1.0009
1.0397
1.3232
1.6831

2.0321
2.3739
3.0431
3.6992
4.3463
4.9867
6.2529
7.5048

9989
9471
653O
4669
3696
3095
2388
1982
1716
1527
1274
1109

- 0000
- 0022
- 0422
- 0770
- 0910
- 0959
- 0960
- 0925
- 0883
- 0843
- 0773
- 0716
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Table 3.6 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting, a3=3V/(2h), a5=6M/h 2, u=.5

OUT-OF-PLANE SHEAR TWISTING

k 2 (h/2) k 3 (0) k 2 (h/2)

o3_a-"a a3_-'_ o5_a

k3(O)

a/h
.01 .0000
.1 .0039
.5 .1414

1.0 .4761
1.5 .8765
2.0 1.3051
3.0 2.2049
4.0 3.1364
5.0 4.0870
6.0 5.0506

8.0 7.0049
10.0 8.9840

1.0009
1.0397
1 3219
1 6725
2 0051
2 3263
2 9470
3 5486
4 1372
4 7164
5.8542
6.9720

.9992

.9640

.7326

.5523
.4469
.3782
.2939
.2441
.2111
.1874
.1555
.1348

-.0000
-.0015
-.0327
-.0655
-.0814
-.0884
-.0916
-.0899
-.0869
-.0836
-.0775
-.0724
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Table
with
plane shear loading, a = 3V/(2h), u=.3.

3.7a Stress intensity factors for a plate
two collinear cracks subjected to out-of-

bl-a I b2-a 2 )tl a- 2 - 1, c - 2 ' d : a2-b 1

PLATE, 0UT-0F-PLANB SHEAR
d/a 0.1 0.25 0.5 1

c/a

k3(a 1)

aF

1 1.763 1.702 1.675 1.669 1.673 1.676
0.5 1.736 1.699 1.682 1.675 1.675 1.676
0.25 1.708 1.688 1.679 1.676 1.676 1.676

0.1 1.687 1.680 1.677 1.676 1.676 1.676

k3(b 1)

oF

1 2.909 2.124 1.812 1.694 1.677 1.676
0.5 2.349 1.906 1.745 1.687 1.677 1.676
0.25 2.028 1.783 1.706 1.680 1.676 1.676
0.1 1.804 1.707 1.684 1.677 1.676 1.676

1 2.909 2.124 1.812 1.694 1.677 1.676

k3(52) 0.5 1.348 .9231 .7425 .6719 .6613 .6611
0.25 .6723 .4362 .3319 .2908 .2849 .2850

o_--'a 0.1 .2835 .1741 .1254 .1065 .1039 .1040

1 1.763 1.702 1.675 1.669 1.673

k3(bo)_ 0.5 .7705 .7059 .6722 .6596 .6598
0.25 .4039 .3387 .3020 .2863 .2846

a,[_a 0.1 .2015 .1474 .1180 .1056 .1039

1.676

.6611

.2850

.1040

k2(a 1)

oF

1 -.5879 -.5348 -.5040 -.4844 -.4739 -.4656

0.5 -.5214 -.4936 -.4791 -.4711 -.4676 -.4656
0.25 -.4906 -.4767 -.4703 -.4672 -.4661 -.4656
0.1 -.4731 -.4684 -.4667 -.4659 -.4657 -.4656

1 .0737 .1550 .2512 .3596 .4333 .4656

k2(bl) 0.5 .4199 .3945 .4087 .4365 .4573 .4656
0.25 .4979 .4566 .4521 .4579 .4635 .4656

a_a 0.1 .4914 .4677 .4639 .4643 .4653 .4656

k2(a 2)

oF

1 -.0737 -.1550 -.2512 -.3596 -.4333
0.5 .2489 .1600 .0827 .0035 -.0480
0.25 .2065 .1438 .0917 .0391 .0056
0.1 .1052 .0739 .0483 .0225 .0062

-. 4656
-. 0700
-. 0084
-. 0004

1 .5879 .5348 .5040 .4844 .4739 .4656

k2(b2) 0.5 .2177 .1717 .1352 .1028 .0818 .0700
0.25 .1442 .1087 .0748 .0409 .0189 .0084

a_--'a 0.i .0839 .0628 .0419 .0202 .0063 .0004
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Table
with

o = 6M/h 2, v=.3.

[ bi-al b2-a2 1a =" 2 - 1, c - 2 , d = a2-b 1

PLATB, TWISTING

d/a 0.1 0.25 0.5 1 2

c/a

3.7b Stress intensity factors for a plate

two co]linear cracks subjected to twisting.

O0

1 .5058 .5081 .5110 .5147 .5181 .5218

k2(al) 0.5 .5131 .5144 .5160 .5182 .5200 .5218
0.25 .5183 .5188 .5195 .5204 .5212 .5218

o_-_a 0.1 .5210 .5211 .5213 .5215 .5217 .5218

1 .6748 .5826 .5432 .5239 .5192 .5218

k2(bl) 0.5 .6526 .5726 .5404 .5252 .5210 .5218
0.25 .6104 .5524 .5322 .5238 .5216 .5218

o_ 0.1 .5590 .5319 .5248 .5224 .5218 .5218

1 .6748 .5826 .5432 .5239 .5192 .5218

k2(a2) 0.5 .4484 .3878 .3631 .3521 .3503 .3527
0.25 .2737 .2349 .2195 .2130 .2122 .2139

o_a 0.1 .1269 .1065 .0986 .0955 .0951 .0959

1 .5058 .5081 .5110 .5147 .5181 .5218

k2(b2) 0.5 .3532 .3505 .3490 .3489 .3502 .3527
0.25 .2253 .2184 .2141 .2121 .2123 .2139

o_-_a 0.1 .1105 .1019 .0973 .0953 .0951 .0959

1 .1035 .0958 .0877 .0792 .0732 .0697

k3(al) 0.5 .0905 .0856 .0805 .0752 .0716 .0697
0.25 .0792 .0768 .0744 .0720 .0704 .0697

o_-'a 0.1 .0721 .0714 .0708 .0702 .0699 .0697

1 .0054 -.0052 -.0234 -.0462 -.0619 -.0697
0.5 -.0349 -.0337 -.0424 -.0559 -.0655 -.0697
0.25 -.0605 -.0554 -.0580 -.0638 -.0680 -.0697
0.1 -.0702 -.0669 -.0671 -.0684 -.0693 -.0697

1 -.0054 .0052 .0234 .0462 .0619 .0697
0.5 -.0304 -.0192 -.0073 .0057 .0141 .0179
0.25 -.0266 -.0177 -.0103 -.0032 .0012 .0030
0.1 -.0137 -.0089 -.0054 -.0023 -.0005 .0002

k3(b 2)

1 -.1035 -.0958 -.0877 -.0792 -.0732 -.0697
0.5 -.0452 -.0387 -.0320 -.0250 -.0203 -.0179
0.25 -.0221 -.0172 -.0124 -.0076 -.0045 -.0030
0.1 -.0106 -.0076 -.0049 -.0024 -.0008 -.0002
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Figure 3.1a-d Normalized stress intensity factors
in a plate with two identical collinear cracks of

half length a/h=l loaded in tension (a), bending

(b), out-of-plane shear (c), and twisting (d).

u=.3, Ol=Nxx/h, o2=6Mxx/h2, a3=3Vx/(2h), o4=6Mxy/h2
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Figure 3.2 Normalized stress intensity factors in

a plate for bending, u=.3, o=6Mxx/h2.
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Figure 3.3a-c Plots of the Fredholm integral term
from Reissner's theory of plate bending (Eqns.
3.129, 140) for a/h=lO (a), a/h=lO0 (b), a/h=lO00
(c), (solid lines), compared to the limit from

Appendix E, (dashed lines).
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Figure 3.4 plots of the normalized rotation for
plate bending for a/h=lO,lO0,1000 from Reissner's
theory compared to classical theory, p=.3,

p(y/a) : (a/h)(Y/V,) gCy/a).

78



I •

I
_.5 m/h-fo, to

C Lamm f, om /.

I I I I I , I I I

O. 1.
l !

.5

v/=

•

%

t
a/,'L,- I Oo 100, 1000

C&ss:4os&

: I I I I I I I 1 |

• 99 .995 1.

Figure 3.5 plots of the normalized rotation

divided by the weight function, [1-(y/a)2] 1/2- for

plate bending for a/h=lO, lO0,1000 from Reissner's

theory compared to classical theory, v=-.3

p(y/a) = (a/h) (_/E) f(y/a) [1-(y/a) 2] 112
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Figure 3.6 The ratio of crack surface rotation for

Reissner's theory to that of the classical theory

at the center of a cracked plate subjected to

bending, v=.3. See a]so Table 3.2.
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Figure 3.7 Bending stresses in front of the crack

tip for a/h=.5,10, v=.3
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Figure 3.8a,b fieometry of the double crack for (a)
unequal length and (b) equal length cracks.
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CHAPTER 4

Part-Through Cracks in Plates

The singular integral equations for part-through crack problems

are obtained directly from the corresponding through crack equations

combined with the compliance relations of Chapter 2. The edge crack

SIFs needed for these relations are derived and presented in Appendix

C. All line-spring model (LSM) solutions presented in this section

are normalized with respect to the edge crack solution for the

corresponding loading and crack depth at the center of the given part-

through crack, see section C.4 of Appendix C.

4.1 Mode 1.

From Eqns. 3.102,118, 2.31, and from the superposition of Fig.

o .=,A the _.._6.;"+.... _ _._,._+;_"° ._,_ the oy_+._11y ._l_ad_Av_p_+-+h_,,gh_,v .......

crack are,

L f u I (t)

2_ _L (t-y) 2
n

7(1 -v2) _ u2(t) -dr+

2_ bn(t_y)2

dt 711u1(Y) '}'12u2 (y) = -_x '.... _1 (4.1)

s 1 f
12(l+u) 2_ L u2(t)K(z) dt

n

-712ul(Y) - 722u2 (y) = -_x : -_2/6 , (4.2)

where

z = _It-yl ,

K(z) = (L4_ + --24 _ 4Ko(z)+ 492(z) + --224K2(z ))
z z z

(4.3)

(4.4)
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This problem has already been solved for a Reissner plate [48].

The early line-spring model stress intensity factor solutions utilized

the classical plate bending theory which in Chapter 3 was shown to be

inadequate for through crack stress intensity factor determination.

Recall that the LSM provides stress intensity factors along the crack

front of a surface crack such that -a(y(a, while the solution to a

through crack gives the SIF at y=*a. For the classical formulation,

Eqn. 4.2 is replaced with,

3+v 7(1-u 2) _ u2(t) dt - 712ul(Y) - 722u2(Y) = -_ (4 5)
l+v 2_ L (t-y) 2 x ' "

n

while Eqn. 4.1 stays the same. It was also shown in Chapter 3 that

for large a/h the Reissner plate bending rotation approaches that of

the classical solution except at the endpoints, see Figs. 3.4-6 and

table 3.2. Since the LSM does not use the solution at the endpoints,

it is expected that for long cracks, the classical and Reissner

theories become identical. This is shown in Figs. 4.1-4 where the LSM

for both theories is compared to the 3-D Finite element solution of

Newman and Raju, [33], see also [43]. In these figures Kit and Klb

correspond to the edge-cracked strip SIF solution for tension and

bending respectfully. For a/h smaller than about 2, which is the

realistic geometry range for part-through cracks, the transverse shear

theory shows significant improvement over the classical theory. For

larger a/h it seems that the extra expense of integrating the Fredholm

kernel, Eqn. 4.4, is unnecessary. Also as a/h gets larger, the

numerical solution of 4.1,2 gets more difficult. With regard to table
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3.2, it is rather surprising that the classical theory gives such good

results for a/h as small as 2. Probably the reason is that tension,

which is the same for both theories, dominates the behavior of the

solution. Otherwise the difference would be of the order of 10_ for

a/h as high as 7.

In tables 4.1-10a,b the normalized SIFs along the crack front for

both rectangular (a) and semi-elliptical (b) cracks are listed for

tension and bending. The value of the normalized SIF at the center of

a semi-elliptical crack for various crack lengths and depths is given

in table 4.11 and the effect of Poisson's ratio on this quantity is

shown in table 4.12. The only difference between this solution and

the previous solutions which use Reissner plate theory [48] is the

compliance functions, i.e. 7i j of Eqns. 4.1,2. For {_.8 the curves

used here, Eqns. C.102 with coefficients listed in table C.2, are

slightly more accurate, see Eqns. C.108,109. This improved accuracy

is minimized after going through the solution process because of

normalization such that the results of tables 4.1-10 differ from those

using Eqns. C.102 by at most .002, an insignificant amount considering

the approximate nature of the model. The contribution given here is

for deep cracks, i.e.

compliance curves can

match the asymptotic

.8<{g.95. As noted in Appendix C, the

actually be extrapolated to {=1 because they

behavior given by Benthem and Koiter [65].

Although the values in these tables for crack depths of .9 and .95 are

small, the normalization factor, which is the corresponding stress

intensity factor for the edge-cracked strip, is very large. Tables

4.13,14 list the stress intensity factors at the maximum penetration
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point of a

solution of

(4.13a,14a) and

.2 (4.13b,14b).

semi-elliptical crack normalized with respect to the

the edge-cracked strip for both the corresponding depth

for comparative purposes, with respect to a depth of

The results for tension, table 4.13, show that the

driving force, (dimensional SIF), does not simply increase with crack

depth like the solution for the edge crack. For bending, table 4.14,

the driving force is maximum for shallow cracks because of the

constraining effect of the ends which actually causes interference and

negative SIFs for deep cracks as discussed in the next section.

4.1.1 Contact Bending

The boundary conditions of the

®
specify the crack surface loading, a 2.

tension is applied (superimposed) to

bending through crack problem

This can only be satisfied if

open the crack to prevent

interference due to bending rotation. The crack opening displacements

due to tension and bending loads are such that contact will first

occur at the ends of the crack, therefore the condition for no contact

is satisfied if the combined stress intensity factor (tension plus

bending

is zero.

component) at the corner on the compressive side of the plate

The necessary ratio of tension to bending is

o 1 kl (h/2)
-- > (4 s)

- ,

0 2 _2D _-_a

where the subscript D refers to dimensional.

There is a similar problem with bending of a part-through crack.

As can be seen from tables 4.1-10a,b, the stress intensity factors due
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to bending changesign as the crack gets deeper. Since a negative SIF

has no meaning, these solutions require a superposition of a tensile

solution to make K/gob_O. The contact curve for the through crack

®
case where a 1 is zero in Eqn. 4.6, can be obtained from the line-

spring model by finding the K/Kob=O curve. Along this curve, imagined

to be a crack front, the crack opening displacement is cusp shaped.

This solution is obtained by an iterative process where the Mcrack

depth" L(y)/h, is the unknown and the condition

K = _-h'[Olgl(y ) + a2g2(y)] = 0 , (4.7)

is used to determine it. These curves for various a/h values are

given in table 4.15. A more useful problem is to determine the

reduction in the stress intensity factor at the corner for bending

with interference, see Fig. 4.5. The line-spring model can be used to

approximate this quantity as shown in the next section.

4.1.2 Usin_ the LSM to Calculate SIFs at the Corners

In the development of the line-spring model, the net ligament of

the part-through crack is replaced with "net ligament _ stresses. In

solving the problem these strcsses are determined. There is no

difference between this problem and a through crack prob]em with these

net ligament stresses applied as additional crack surface loads.

Therefore in the same way that SIFs are calculated for a through

crack, SIFs at the corners of a surface crack, i.e. y=_a, z=h/2 can be

calculated and with no extra work. The problem with this idea is that

close to the endpoints the net ligament stresses as provided by the

89



model are not accurate and this has a significant effect on the crack

tip stress intensity factors.

As discussed in Chapter 2, section 2.3 and in Appendix C, the

crack shape controls the endpoint behavior. For example the net

ligament stresses are forced to zero at the ends of a rectangular

crack yet have a square root singularity in the case of a semi-

ellipse. In Appendix F it is shown that for the ellipse the stress

intensity factor at the corner as predicted by the LSM is zero.

Numerically this could not be shown but the results indicate a

diminishing value as more terms are taken in solving the integral

equation. The only crack profile that will make the net ligament

stresses finite is the I/4 power curve, i.e.

L(y)/h = { = {0(1-s2)I/4 (4.8)

The technique of section 2.3, presented again in Eqns. 4.9,10, where

this behavior is imposed at the ends of the crack profile in order to

get well behaved net ligament stresses, did not work. The corner

stress intensity factor was too sensitive to M, the number of terms in

the series giving the crack profile:

= (o(l_s2)n _ (O(1-s2)l/4h(s) , (4.9)

where

h(s) -_ (1-s2) n-I/4 ~_ _-_ais2i (4.10)
i--O

Probably the best geometry for approximating the corner stress

intensity factor is one for which crack depth at the end is non zero.

In this case as noted previously the net ligament stresses as
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predicted by the line-spring model go to zero at the endpoints. Since

the net ligament stresses restrict the crack from opening, the error

of the method should overestimate the correct value of the SIF. Note

that the WactualU net ligament stresses (normalized with respect to

the stress at ninfinity w) are probably between zero (for deep cracks)

and one (for shallow cracks), while the normalized applied

perturbation load is negative one.

The simplest problem that satisfies this geometry condition is

the rectangular crack. The tension and bending cases are given in

Fig. 4.6 as a function of the crack depth for a/h=l. Note that as the

crack depth goes to one, the through crack value is approached in a

manner similar to the case when two collinear cracks approach each

other where behavior at the outer crack tip resembles that of one long

crack instead of two, see Figs. 3.1a-d. In Fig. 4.7 plots similar

to those of Fig. 4.6 are presented for the crack shape given in Eqn.

4.8. This figure is included only for purposes of comparison.

The contact problem of the last section also satisfies the

condition of non--zero crack depths at the ends. Results for the

_corrected w bending stress intensity factor are presented in Fig. 4.8.

This plot shows how the interference of bending reduces the stress

intensity factor from the value calculated when Eqn. 4.6 is assumed to

be satisfied.

This method is of course very approximate. From the results of

Fig. 4.6 it seems as though the tension case is wrong because the

stress intensity factor exceeds the through crack value of one. This

is due to the contribution from induced bending. It is conceivable
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that at the corner opposite the constraint, crack growth is more

likely than without the constraint although total failure of the plate

is less likely. In Newman's finite element results, [33], there are

some geometries where this occurs but only by about 2_ ( k(h/2)/a_

=1.023 for a/h=.4, Lo/h=.8 ), not the 20_ that is calculated here,

although it should be noted that the semi-ellipse has a constraining

effect on the corner that the rectangle does not. I believe that the

trend is correct, however the result should be considered only

approximate.

Perhaps a method for approximating the value of the SIF at the

corner of a semi-ellipse, or for any other profile, is to use the

rectangular crack that has an equal amount of net ligament as the

shape being considered. This simply results in a shift along the Lo/h

axis of Fig. 4.6. For the semi-ellipse this shift factor which

results from equating the area of an ellipse to that of a rectangle

is:

(Lo/h) rectangle = (,/4) (Lo/h) semi-ellipse (4.11)

In Fig. 4.9 this shifted curve is presented along with some

corresponding values from Ref. [33]. These results are quite close

but for some other geometries the method does not predict such good

agreement. One would think that the model would predict an upper

bound because the material is redistributed away from the ends and

placed in the central portion. This should al]ow the crack to open

more therefore increasing the SIF. This is observed in most, but not

a]l cases. Especially for shorter crack ]engths, say a/h_l, does this
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reasoning fail. For large a/h the approximation in some cases

overestimates the finite element value by as much as 50_.

Part of the problem with this method is in the interpretation of

the SIF obtained. In a plate theory the stress distribution, and

therefore, the stress intensity factor distribution, through the

thickness is assumed, see Appendix G. The value of the SIF that is

being attributed to the corner is actually the sum of the tension

component (constant through the thickness) and the bending component

(linear). To expect good results for a semi-elllpse is wishful

thinking. In fact, the elasticity solution of Benthem [1] indicates

that at a free surface, the SIF is zero for mode 1. It is interesting

to note that the values obtained from this method compare rather well

to the results by Mattheck et. al. [41] where the "corner" SIF is

averaged in order to get a general idea of the surface crack to grow

outwards. Comparison is good for all geometries given in this

reference. Perhaps the interpretation of the LSM approximation should

also be regarded as an average, especially taking into account the

results from Benthem. More work needs to be done to use the model to

ii_vestigate this problem.

Theocaris and Wu [53,54] have devised a technique which uses the

LSM and classical plate theory to obtain the SIF distribution over the

entire range, including the corner. To obtain the value at the

corner, they equate the SIF from the LSM (which is in a plane

perpendicular to the plate surface) to the SIF from the plate with a

through crack (which is in a plane parallel to the plate surface).

Thcy assume the semi-elliptical crack profile has some small, non-zero
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depth at the endpoint which is measured experimentally. The

shortcoming of this method, besides assuming that there is a

displacement at the endpoint, is that the classical plate theory is

used which is inadequate to solve for through crack SIFs that involve

bending as the part-through crack problem always does. This same

technique cannot be applied to the Reissner plate because of

convergence problems. Theocaris and Wu have solved the integral

equations in closed form so this difficulty is overcome [53].

4.1.3 Double Cracks

Crack interaction introduces more of a three-dimensional nature

to the problem. For through cracks the plate theory should be

accurate for crack tip separations of the order of the plate

thickness. The justification for letting the cracks get closer

together comes from asymptotic properties of the theory that for

example are correct in terms of elasticity theory for small cracks,

i.e. a/h approaching zero. The part-through crack problem is

different. The model is inaccurate near the end, both along the crack

front, and in terms of its influence on the solid at [yl>a as shown in

the last section. Note that essentially the singular stress field

causes the interaction. The contribution from the Fredholm kernel is

secondary, especially at small separations where the problem is most

interesting.

For the semi-ellipse, the most studied geometry in the

literature, it was shown in Appendix F that a singular stress field

does not exist, although numerically this is nearly impossible to show
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because of convergence difficulties. This means that numerically

there will be a singular stress field. Therefore the crack

interaction problem for this crack shape cannot be properly solved.

In table 4.16 the tension solution to two symmetrically positioned

surface cracks is presented. The geometry of the problem is shown in

Fig. 3.8b. Results for both the semi-ellipse and the 1/4 power curve

of Eqn. 4.8 are included in this table. The difference in the

behavior of the solution for two nearly similar crack shapes, for -.98

<s<O, shows that the line-spring model does not predict the correct

trends. The semi-ellipse has a SIF that is nearly constant, whereas

the other curve varies considerably. For a larger separation it

should not be expected to be nearly as accurate as for a single crack.

Perhaps the SIF in the center of the crack will be reasonably

accurate. Results for a semi-elliptical crack under both tension and

bending are given in table 4.17. These results can also be found in

Ref. [59].

4.2 Modes 2 and 3

From Eqns. 3.168,179,180, 2.31, and from the superposition of

Fig. C.1, the integral equations for the skewsymmetrically loaded

part-through crack are:

1 _b 2u3(t )2_ 2
a (t-y)

ifb{dt + _ u3(t)K33(z) + u5(t)K35(z)} dt -
a

- 733u3 (y) = -_x : -8(1+y)/5 _3 , (4.12)
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1 _b u4(t ) =-_4
a (t_-_ dt - 744u4(Y) - 745u5(Y) = -_xy '

(4.13)

2 1 u5(t)
7( 1-y )2-_ _b

a (t-y)2
1 <u5(t)K55(z ) + u3(t)K53(z)} dtdt + _-_ ;b

a

-_xy ®- 754u4(Y) - 755Us(Y) = = -05/0 , (4.14)

where

z=_lt-yl, a<y<b , (4.15)

K33(z) : fl2(_ln(z)+ [K2(z) - 2 ] + [Ko(z) + ln(z)]} ,
z

(4.1s)

z

(4.17)

K55(z) = 12(1+v) In(z) + 4
z

4 + 4Ko(z) _ 4K2(z) 242 - -2 K2(z)
z Z

(4.18)

5p
K53(z) - 12(l+u)(

4 K-8 [z z] 2 (z) zKo(z) } (4.19)-_+ +
Z

Again it is noted that in crack propagation studies this solution may

be used only if the crack grows in its own plane. Results for crack

lengths of a/h = .5, 1., 2., 4., and crack depths of Lo/h = .2, .4,

.6, .8, .9, .95 are given in tables 4.19-21a,b for rectangular (a) and

semi-elliptical (b) cracks for out-of-plane shear, in-plane-shear and

for twisting. Because there are two stress intensity factors (modes

2,3), normalization will be with respect to the primary value obtained

from the edge-cracked strip at the maximum depth, see section C.4 of

Appendix C. In the tables and figures this normalization factor will

be denoted by K20, K3IO, and K3TO for out-of-plane shear, in-plane
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shear, and twisting, respectively. Profiles of the SIFs for a/h=l,

_=.3 are given in Figs. 4.10-15. Note that because of the symmetry of

the problem the secondary stress intensity factor at the center of the

crack is zero. When the primary loading is mode 3, (twisting or in-

plane shear), out-of-plane crack growth which results from mode 2

contributions is minimized in the central portion of the crack front.

The model also shows that the secondary value is insignificant

throughout the range. For the rectangular crack this is expected, but

for the semi-ellipse this should not be the case. As in the mode 1

problem for which the model works well, it can only be hoped that the

inaccuracies towards the ends do not significantly affect the solution

in the center. The value of the SIF at the center of a semi-

elliptical crack is listed in table 4.22 for various crack lengths and

depths for all loading cases. The closer the value in these tables is

to one, the closer the conditions are to plane strain. For the

loading case of out-of-plane shear, plane strain conditions are more

easily met than in the mode 1 cases of tension and bending, which are

4.11. The opposite is true for inplane shear and

effect of Poisson's ratio on the solution is shown in

shown in Table

twisting. The

table 4.23.

The method

semi-elliptical

applied here.

of approximating the value of the "corner n SIF of a

crack used in Sec. 4.1.2 for the mode 1 case is

The results are given in table 4.24. As discussed in

Appendix G, the work of Benthem [1] shows that at a free surface the

stress singularity for shear (modes 2 and 3) is greater than .5. The

plate theory used predicts a zero value for the mode 3 SIF at the
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surface because of the assumed parabolic shear distribution, when in

fact it should be infinite. Therefore as with the mode 1 prediction

the numbers obtained from this method should be regarded as an average

value that gives some idea of outward crack growth.
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Table 4.1a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=.5, v=.3

Rectangular crack, Tension•

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

.784 .428 .193 .0595 .0206

.783 .427 .192 .0594 .0205

.779 .423 .190 .0588 .0203
773 .417 .187 .0579 .0199
762 .407 .183 .0565 .0194
747 .393 .177 .0545 .0186
724 .374 .169 .0519 .0176
688 .348 .158 .0484 .0162
631 .311 .142 .0432 .0143

.523 .253 .118 .0345 .0111

.417 .205 .096 .0267 .0083

.301 .157 .071 .0182 .0055

•00767
.00765
.00756
00741
00719
O0689
00648
00593
00515
00392
00290
00190

Rectangular crack, Bending.

y/a
O.
.1
.2
3
4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

.765
•764
• 760
• 752
.741
• 724
•699
• 660
.598
•480
•366
.239

• 339
• 338
.333
•326
314
298
277
247
205
139
087
038

0620
0614
0594
0561
0513
0447
0361
0249
0102

-.0091
-. 0201
-. 0237

-.0308
-.0309
-.0312
-.0316
-.0322
-.0329
-.0337
-.0342

-.0339
-.0308
-.O258
-.0187

- 0236 - 0121
- 0236 - 0121
- 0235 - 0120
- 0234 - 0119
- 0232 - 0117
- 0229 - 0113
- 0223 - 0109
-.0214 -.0102
-.0196 -.0091
-.0161 -.0072
-.0125 -.0054
-•0085 -.0O36

99



Table 4.1b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=.5, v=.3

Seml-elllptlcal crack_ Tension.

y/a
O.

1
2
3
4
5

6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8

.729 .390

.728 .390

.724 .388

.717 .385

.708 .381
.695 .376
.677 .369
.654 .361
.622 .351
.571 .342
.526 .340
.474 .347

174 .0499
174 .0500
174 .0503
173 .0507
172 .0512
169 .0515
166 .0514

.162 .0506

.157 .0484

.152 .0452

.153 .0440

.163 .0460

.9 .95

.0158 .00547
.0159 .00546
.0160 .00547
.0163 .00554
.0166 00567
.0170 00583
.0173 00598

.0173 00603

.0166 00584

.0151 00525

.0142 .00485

.0145 .00484

Seml-elllptlcal crack_ Bending.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8

.709 .306

.709 .307

.709 .310

.708 .316

.706 .324

.704 .335
.699 .348
.692 .364
.678 .385
.649 .413
.616 .437
.569 .467

.9 .95

.053 -.0281 -.0198 -.00960

.055 -.0273 -.0194 -.00934

.059 -.0249 -.0182 -.00867
.066 -.0208 -.0164 -.00776
.076 -.0151 -.0139 -.00667
.089 -.0077 -.0107 -.00539
.105 .0018 -.0067 -.00383
.124 .0132 -.0017 -.00189
.147 .0269 .0044 .00054

.178 .0432 .0117 .00347

.202 .0542 .0162 .00519

.233 .0661 .0205 .00675
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y/a
O.

1
2
3
4
5
6
7
8
9

.95

.98

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Table 4.2a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=l , v=.3

Rectangular crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

•864
•863
•861
•857
850
840

825
800
755
655
541
399

561 •273
559 •273
555 .270
549 .266
538 .259
523 .251
502 .239
471 .222
425 .199
347 .163
279 .132
208 .098

.0844

.0841

.0833

.0819
•0798
0769
0731
0679
0605

0487
0382
0266

0293 .0112
0292 .0112
0289 .0111
0284 .0109
0277 .0106
0266 .0101
0252 .0095
0233 .0088

.0205 .0077

.0161 .0059

.0123 .0044

.0083 .0030

Lo/h

Rectangular crack, Bending.

.2 .4 .6 .8 .9 .95

852 .492
851 .490
848 .486
844 .478
837 .466
826 .448
809 .424
782 .389
733 .336
624 .246

.500 .169

.345 .091

.153 -.0101 -.0210 -.0128

.152 -.0104 -.0210 -.0128

.149 -.0111 -.0211 -.0128
•145 -.0122 -.0213 -.0128
•137 -.0140 -.0216 -.0128
•127 -.0162 -.0218 -.0127
•114 -.0192 -.0221 -.0125
.096 -.0227 -.0222 -.0121
.071 -.0267 -.0218 -.0114
•033 -.0297 -.0195 -.0096
•006 -.0283 -.0161 -.0076

-.013 -.0227 -.0115 -.0052
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Table 4.2b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l , v=.3

Seml-elllptlcal crack, Tension.

y/a
O.

1
2
3
4
5
6

.7

.8

.9
.95
.98

Lo/h .2 .4 .6 .8

.817 .507 .244

.816 .506 .244

.810 .503 .243
.800 .498 .242
.786 .491 .239
.766 .481 .236
.740 .469 .231

.706 .452 .225

.657 .431 .217

.581 .401 .207

.513 .379 .203
.438 .359 .205

.0725
0726
0727
0730
0731
0731
0725

.0712

.0687

.0654

.0644

.0665

.9 .95

.0235 .00833

.0235 .00830

.0236 .00825

.0238 00825

.0240 00830
.0242 00838
.0243 00842
.0240 00835

.0232 00807

.0218 O0752

.0213 .00726

.0219 .00742

Seml-elllptlcal crack, Bending.

O.
.I
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.804 .441
.804 .441
.802 .444
.798 .449
.792 .455
.783 .463
.771 .472
.752 .482
.722 .492
.665 .499
.606 .500
.531 .496

.133 -.0114 -.0186 -.01064

.134 -.0102 -.0180 -.01023

.139 -.0068 -.0161 -.00914

.147 -.0012 -.0131 -.00763
.158 .0065 -.0093 -.00585
.172 .0163 -.0045 -.00382
.189 .0280 .0010 -.00152
.208 .0415 .0073 .00107
.231 .0568 .0145 .00398
.259 .0747 .0225 .00719

.280 .0867 .0275 .00911
.302 .0996 .0325 .01096
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Table 4.3a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=l , _:-.0

Rectangular crack, Tension•

y/a
O.

1
2
3
4
5
6
7

8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

838
837
835
831
824

814
799
774
729
630
519
381

•521 .254
520 .253
516 .251
510 •247
500 .241
487 •233
468 .222
440 .208
398 .186
326 .153
262 .124
197 .092

0815
0813
0804
0791
0771
0743
0705
0654
0582
0467
0365
0253

0290 .0112
0289 .0111
0286 .0110
0281 .0108
0273 .0105
0262 .0100
0247 .0094
0228 .0086
0200 .0075
0156 .0057
0119 .0043
0080 .0028

Rectangular crack, Bending.

y/a
O.

1
2
3

4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

•824
•823
•820
.816
•809
•798
.781
•754
•705
•597
•476
•326

446
444
440
433

422
406
384
352
303
221
150
079

130
129
127
122
116
I07

.095

.079
•056
•023

- .001
- .017

- 0123
- 0125

- 0132
- 0143
- 0159
- 0180
- 0207
-.0239
-.0275
-.0298
-.0280

-.0221

- 0198
- 0199
- 0200
- 0202
- 0204
- 0207
- 0210
- 0211
-.0207
-.0185

-.0153
-.0109

- 0118
- 0118
- 0118
- 0118
- 0117
- 0117
- 0115
- 0112
- 0105
- 0089
- 0070
- 0048
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Table 4.3b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l , p=.O

Seml-elllptlcal crack, Tension.

y/a
O.
.I
.2
.3

.4

.5

.6

.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

.791 .473 .228 .0699 .0232

.790 .472 .228 .0699 .0232

.785 .470 .227 .0699 .0232

.776 .466 .225 .0699 .0233
764 .460 .222 .0697 .0236
747 .451 .219 .0692 .0234

724 .441 .214 .0682 .0232
693 .428 .208 .0663 .0227
649 .410 .200 .0635 .0217
578 .387 .192 .0600 .0201
515 .369 .190 .0591 .0195
442 .355 .194 .0613 .0200

00829
00825
00817
00813
00814
00815
00812
00797
00759
00695
00665
00678

Seml-ell]ptlcal crack, Bending.

y/a
O.
.I
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.776 .401

.776 .402

.774 .405

.771 .410 .126 -

.768 .417 .137

.762 .427 .150

.752 .438 .166

.737 .450 .186

.712 .465 .209

.661 .479 .239

.607 .486 .261
.535 .488 .286

.113 -.0129 -.0174 -.00966

.115 -.0119 -.0168 -.00931

.119 - 0089 -.0152 -.00838
0039 - 0127 -.00710
0029 -
0116 -
0222 -
0347
0491
0665
0785

.0914

0094 -.00558

0052 -.00383

0003 - 00182

0054 00052

0121 00320

.0197 00625

.0246 00812

.0295 00992
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Table 4.4a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=l , v=.5

Rectangular crack, Tension.

y/a
O.
.1
.2
.3
.4
.5
.6
.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

.891 .615

.890 .613

.888 .609

.885 .602

.879 .591

.870 .575

.856 .552

.833 .519

.791 .469

.695 .383

.580 .307

.431 .228

.308 .0927 .0314 .0119
307 .0924 .0313 .0119
304 .0915 .0310 .0118
300 .0899 .0305 .0116
292 .0876 .0297 .0113
282 .0844 .0286 .0108

268 .0802 .0271 .0102
249 .0744 .0251 .0094
223 .0664 .0222 .0083
181 .0536 .0176 .0065

.146 .0423 .0136 .0049

.109 .0297 .0092 .0033

y/a
O.
.1
2
3
4
5
6
7
8
9
95
98

Lo/h

Rectangular crack, Bending.

.2 .4 .6 .8 .9 .95

.881 .554

.881 .553

.879 .548

.874 .540

.868 .527

.858 .508

.843 .482

.819 .444

.773 .387

.667 .288

.542 .201

.380 .113

194 -.0024 -.0206 -.0136

193 -.0027 -.0207 -.0136
189 -.0035 -.0208 -.0136
184 -.0049 -.0210 -.0136
175 -.0070 -.0214 -.0136
164 -.0097 -.0219 -.0135
148 -.0133 -.0223 -.0134
127 -.0177 -.0226 -.0131
098 -.0229 -.0225 -.0123
053 -.0279 -.0206 -.0105
020 -.0280 -.0173 -.0084
006 -.0234 -.0126 -.0058
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Table 4.4b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l , v=.5

Seml-elllptlcal crack, Tension•

y/a
O.
.1
.2
.3
.4
.5
.6
.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8

.848 .554 .273 .0789

.845 .553 .273 .0799

.839 .549 .272 .0802
.828 .543 .270 .0807
.811 .534 .268 .0811
.789 .522 .264 .0814
.759 .506 .259 .0812
.720 .485 .251 .0801
.666 .457 .241 .0778
.582 .417 .227 .0742
.509 .387 .219 .0727
.429 .358 .217 .0741

• 9 .95

.0254 •00895
•0255 •00892
.0256 .00888
.0259 .00891
.0263 .00900
.0266 •00912

.0269 .O0924

.0268 .00924

.0262 .00904

.0249 •00855

.0242 •00830

.0248 .00846

Seml-elllptlcal crack, Bending•

y/a
O.
.1
.2
.3
.4
.5

.6

.7

.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

•837
•836
.833

•828
•820
•809
•793
•769
.733
• 667
•602
•521

•496
.496
•499

502
507
512

518
523
527

.523
.513
•497

167 -.0052 -•0188 -.01147
169 -.0039 -•0180 -•01097
174
182
193
208
225
244
265

289
305

•322

.0001 -.0157 -.00964
.0066 -.0122 -.00782
.0154 -.0076 -.00567
0263 -.0022 -.00326
0392 .0041 -.00061
0538 .0112 .00231
0699 .0188 .00545
0880 .0271 .00881
0996 .0322 .01078

.1119 .0372 .01266
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Table 4.5a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=1.5 , v=.3

Rectangular crack, Tension.

y/a
O.
.1
.2
.3
.4
.5
.6
.7

.8

.9

.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.899
•898
•897
•893
•888
• 880
• 868

• 849
.813
•727
.617
•465

639
638
634
627
616
601

• 580
.549
• 500
.413
•332

•246

333 .1037 •0357 .0137
332 .1034 .0355 .0136
329 •1024 •0352 •0135
324 .1006 .0346 .0132
317 .0981 .0337 .0129
307 .0946 .0324 .0124
292 .0898 .0307 .0117
272 .0832 .0283 .0107

•244 .0739 .0250 .0094
•198 .0592 .0196 .0073

•159 .0465 .0151 .0055
•118 .0327 .0103 .0037

Rectangular crack, Bending.

O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.890 .582
•889 .581
•887 •576
.884 .568
.878 .556
.870 .539
.857 .514
.836 .478
.797 .422
.702 .322
.582 .230
.417 .133

222
221
218
212
203
192
175
153
121

.071

.032
-. 000

•0084 -.0173 -.0126
•0081 -.0174 -•0126
•0072 -•0176 -•0126
•0056 -.0179 -•0127
•0032 -.0184 -.0127
•0000 -.0191 -.0128

-.0042 -•0199 -.0128
-•0098 -•0207 -.0127
-•0169 -•0214 -.0123
-.0251 -.0208 -•0109
-.0276 -.0182 -.0090
-.0245 -•0136 -.0064
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Table 4.5b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=l.5 , v=.3

Seml-elllptlcal crack9 Tension•

y/a
O.
.i
.2
.3
4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

858
856
849
837
820
797
767
726
670
582
506

•422

• 577
• 576
.571

564
554
541
523
5OO
469
424
389
352

.295 .0895 .0291 .0104

.294 .0895 .0291 .0103

.293 .0897 .0292 .0102

.291 .0899 .0294 .0102
287 .0900 .0296 .0102
282 .0898 .0298 .0103
276 .0890 .0298 .0103
267 .0873 .0295 .0102
254 .0844 .0286 .0099
238 .0801 .0271 .0094
227 .0781 .0264 .0091
221 .0786 .0268 .0092

Seml-elllptlcal crack_ Bending.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.848 .521 .191 .0040

.847 .522 .193 .0054

.844 .524 .198 .0095

.838 .527 .206 .0161

830 .531 .217 .0251
818 .535 .231 .0362

801 .540 .247 .0491
776 .543 .265 .0636
738 .544 .285 .0795
669 .535 .307 .0974
600 .519 .320 .1087
513 •493 .331 .1200

-.0162
- 0153
- 0129
- 0092
- 0044

0013
0077

.0148

.0224

.0307

.0358

.0407

-.01078
-.01025
-.00884
-.00690
-.00463
-.00211

.00063

.00358

.00673

.010O9

.01207

.01394
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Table 4.6a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=2 , v=-.3

Rectangular crack, Tension•

y/a
O.
.i
.2
.3
.4
.5
.6
.7
.8

.9

.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.920 .693 .382

.920 .692 .381

.918 .688 .378

.915 .681 .373

.910 .671 .364

.903 .656 .353

.893 .635 .337

.877 .604 .314

.847 .555 .282

.772 .464 .228

.669 .375 .182

.515 .277 .134

• 120
120

119
117
114
110
104
097
086
068
053
038

.0408 .0155
.0407 .0155
.0403 .0153
.0396 .0151
.0386 .0147
.0372 .0141

0353 .0134
0326 .0123
0287 .0108

0225 .0083
0173 .0063
0118 .0042

Rectangular crack, Bending.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.913 .645
912 .644
910 .639
907 .631
902 .619
895 .602
884 .577
866 .542

.834 .485

.752 .380

.640 .279

.472 .168

.279
278
274
267
258
245
226
201

.0254 -.0136 -.0121

.0250 -.0137 -.0121

.0239 -.0140 -.0121

.0220 -.0144 -.0122

.0192 -.0151 -.0123

.0152 -.0159 -.0124

.0100 -.0171 -.0126

.0029 -.0185 -.0127
164 -.0066 -.0202 -.0126
105 -.0193 -.0210 -.0117
056 -.0254 -.0194 -.0100

.013 -.0252 -.0151 -.0073
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Table 4.6b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=2 , _-.3

Seml-el]iptlcal crack_ Tension.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8

.883 .627 .336 .104

.880 .625 .335 .104

.873 .620 .333 .104

.860 .611 .330 .104
.841 .598 .326 .104
.815 .581 .319 .104
.781 .558 .310 .103
.737 .530 .298 .101
.676 .491 .281 .097
.582 .435 .258 .091
.501 .390 .241 .088
.413 .344 .227 .086

.9 .95

.0336 .0120

.0337 .0119

.0338 .0118

.0340 .0118

.0343 .0118

.0346 .0119
.0346 0119
.0342 0119
.0332 0115
.0314 0109
.0304 0105
.0303 0105

Seml-elllptlcal crack9 Bending.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.875 .578 .239

.874 .579 .241

.870 .580 .245
.863 .581 .253
.852 .582 .264
.838 .584 .277
.818 .584 .291
.789 .582 .307
.746 .575 .323

.670 .553 .338

.595 .525 .343

.503 .485 .344

.0180 -.0135 -.01066

.0196 -.0125 -.01002
0242 -.0097 -.00834
0316 -.0054 -.00604
0416 .0001 -.00338
0536 .0066 -.00481
0672 .0136 .00259
0822 .0212 .00580

.0981 .0291 .00911

.115 .0374 .0125

.125 .0422 .0144

.133 .0465 .0162
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y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8

.9

.95

.98

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Table 4.7a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=3 , _=-.3

Rectangular crack_ Tension•

Lo/h .2 .4 .6 .8 .9 .95

.944
•944
•942
•940
•936
• 930
•922
.909
•886
•827
•738
•588

• 766 •461
•765 •460
•761 •456
•754 •449
•743 •430
729 .426
708 .407
678 .382
630 .343
537 .279
440 .222
327 .162

150 •0495
149 •0493
148 •0489
146 .0481
142 •0470
137 .0453
130 .0431
121 .0399

.107 .0351

.085 .0274

.066 .0209

.046 .0142

•0184
•0183
0182
0179
0175
0169
0160
0148
0130

.0100
•0075
•0051

Rectangular crack, Bending.

Lo/h .2 .4 .6 .8 .9 .95

.939
•939
.937
.934
•930
•924
.915
• 901
.875
.811
.715
.551

•729
• 727
•723
.715
•703
.686
662
627
572
465
354
224

•370
369
365
357
346
330
308

•279
•235
•162
•099
•038

•0565
.0560
.0545
.0520

.0484

.0433

.0364

.0270
•0138

-•0060
-.0188
-.0245

-.0065
-.0066
-.0069
-.0075
-.0084
-.0096
-.0112
-•0135
-•0165
-.0199
-.0203
-.0172

-•0108
-.0108
-•0109
-.0110
-.0111
-•0114
-.0117
-•0121
-.0125
-.0125
-•0113
-•0087
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Table 4.7b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate

under tension or bending loads, a/h=3 , /,I=.3

Seml-elllptlcal crack, Tension.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8

913
910
901
886
865
836

•798
• 749
•682
.581
•495
•402

695
693
685
673
656
633
6O3

• 565
.515
•444
•387
•330

.400
•399
•396

392
384
374
360
341
316

.281
•254
•228

• 128
128
128
129
130
128
127
123
117
108
101
O95

.9 .95

.0411 .0144

.0412 .0144

.0415 .0143

.0419 .0144

.0424 .0145
.0428 .0147
.0429 .0148

.0424 .0147

.0410 .0143

.0383 .0134

.0362 .0127

.0348 .0123

Seml-elllptlcal crack, Bending•

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.907 .657

.905 .657

.900 .656

.891 .654

.879 .651

.861 .647

.837 .639
.803 .628
.754 .608
.670 .569
.589 .527
.492 .470

.315
316
320
327
226
346

357
•367
• 374
•375
•367
.351

•0434 -.0081 -.01004
.0452 -.0069 -•00924
.0506 -.0034 -•00713
.0591 .0019 -.00424
.0703 .0086 -•00095
.0834 .0161 .00254
0977 .0241 .00611
113 .0323 •00966
127 .0403 .0131
140 .0479 .0164
146 .0516 .0179
149 .0542 .0192
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Table 4.8a,b Normalized stress intensity factors

for a rectangular (a), or semi-ellipt_cal (b),

surface crack in a plate under tension or bending
loads, a/h=4 , v=.3

Rectangular crack, Tension.

y/a
O.
.1
2
3
4
5
6
7
8

9
95
98

Lo/h .2 .4 .6 .8 .9 .95

•957
•957
•956
•954
•950
•946
•938
•927

•907
•858
•782
•639

812 .523 .176
811 .521 •176
807 .517 .174
800 .510 .171
790 .499 .167
776 .484 .161
756 .463 .153
726 .434 .142
680 .392 .126
588 .321 .099
489 .255 .076
366 .185 .053

0571
0569
0564
0555
0542
0524
0499
0463
0408

0318
0240
0162

0207
0206
0205
0202
0197
0191
0182
0169
0149

0114
0085
0057

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h

Rectangular crack, Bending.

.2 .4 .6 .8 .9 .95

•954
•953
•952
•950
.946
•941
933
920
899
846
762
607

782 .442
781 .440
776 .435
769 .427
757 .414
741 .397
717 .373
683 .340
629 .291
524 .209
410 .136
268 .062

0852
0846

0828
0797

0752
0690
0607
0493
0332
0078

- 0107
- 0223

•00057 -.0093
.00043 - 0093

-.00001 - 0094
-•00077 - 0096
-.00188 - 0098
-•00340 - 0101
-.00545 - 0106
-.00825 - 0111
-•0122 - 0119
-.0177 - 0126
-.0201 - 0121
-•0185 - 0098
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Table 4.8b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=4 , v=.3

Seml-elllptlcal crack, Tension.

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

•930 .741 .450 .149
•927 .738 .449 .149
•918 .729 .445 .150
•901 .715 .439 .150
• 878 .693 .429 .150
• 847 .665 .415 .149

807 .630 .396 .146
755 .584 .371 .141
685 .526 .338 .133
579 .445 .292 .119
491 .382 .258 .109
397 .319 .224 .099

.0475
0477
0481
0487
0494
0500
0502

0495
.0474
.0434
.0402
.0375

0165
0164
0164
0165
0168
0171

0173
0172
0166

.0154

.0143

.0135

Seml-elllptlcal crack, Bending.

y/a
O.

1
2
3
4
5
6
7
8
9

95
98

Lo/h .2 .4 .6 .8 .9 .95

926
924
918
9O8
894
874
847

.810
.758
.669
•585
•486

710
709
707
7O2
696
687
673
654
626
575

•523
.459

374
375
379
384
390
397
403
407
406
395
377
350

.0663

.0683

.0742

.0834

.0952

.109
123
137
149
158
159
157

-.0027
-.0013

.0027

.0088

.0163

.0247

.0333

.0417

.0494

.0557

.0580

.0588

-.00918
-.00824
-.00577
-.00241

.00137

.00531
00924
0130
0164
0193
0205
0211
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Table 4.9a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=6 , v=-.3

Rectangular crack, Tension.

y/a
O.
.1
.2
.3
.4

.5

.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

.971 .866

.971 .865

.970 .862

.969 .856
966 .848
962 •835
957 .816
948 .789
931 .744
893 .657
834 .558
709 .425

.613 .224 .0710 .0246
612 .223 .0708 .0246
607 •221 .0702 .0244
599 .217 .0690 .0240
586 .212 .0674 .0235
569 .204 .0651 .0228
546 .194 .0619 .0218

.514 .180 .0575 .0203

.466 .160 .0511 .0181

.385 .126 .0398 .0140

.309 .096 .0297 .0103

.224 .066 .0196 .0067

_ectangular crack, Bending.

y/a
O.

.1

.2

.3

.4
5
6
7
8
9
95
98

Lo/h •2 .4 .6 .8 .9 .95

969 .845 .548
968 .844 .546
968 .840 .540
966 .834 .531
963 .823 .516
959 .809 .497
953 .787 .469
943 .755 .432
925 .704 .377
884 .603 .284
819 .489 .196
683 .336 .102

137
137

134
130
124
116
104

•090
•069
•035
•007

-.015

.0143

.0141

.0135

.0124

.0108

.0087

.0058

.0020
-.0035
-.0121
-.0179
-.0196

-.00622
-.00626
-.00641
-.00665
-.0O700
-•00748
-.00812
-.00899
-.0102
-.0120
-.0126
-.0112
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Table 4.9b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=6 , v=-.3

Seml-elliptlcal crack, Tension.

y/a
O.
.1
.2
.3
.4
.5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8

.950 .800 .526

.947 .796 .524

.936 .785 .518

.919 .766 .508

.893 .740 .493
860 .705 .472
817 .661 .444
761 .606 .408
687 .537 .362
577 .443 .300
486 .373 .256

.390 .304 .215

• 186

• 186
• 186
.186

186
183
178
169
155
133
117
102

.9 .95

.0588 0199

.0590 0199

.0597 0200

.0607 0203
•0619 0209
.0627 0214
.0627 .0217
.0613 .0215

.0576 .0205
.O507 .0183
.0452 .0164

,0402 .0148

Seml-elllptlcal crack, Bending•

y/a
O.
.1
.2
.3

.4

.5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

.947 .777 .463

.945 .775 .463

.938 .771 .465
927 .763 .467
911 .751 .467
888 .735 .469
858 .713 .468
818 .683 .459
761 .642 .443
667 .576 .412
580 .515 .381

.478 .442 .341

.107 .0078 -.00713
.109 .0095 -•00597
.115 .0144 -.00292
.125 .0217 .00188

138 .0305 .00574
151 .0400 .0104
164 .0491 .0148
175 .0573 .0187
181 .0636 .0218
180 .0667 .0237
173 .0661 .0239

.163 .0636 .0233
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Table 4.10a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending

loads, a/h=lO , v=.3

Rectangular crack, Tension.

y/a
O.

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9 .95

983 .917 .723
983 .916 .721
982 .914 .717
981 .910 .708
980 .903 .695
n_,, .893 _.u|#

973 .880 .652
967 .855 .617
955 .815 .564
926 .735 .472
883 .642 .385

788 .506 .281

.305 .0966 .0315

.304 .0963 .0314

.300 .0953 .0312

.295 .0937 .0307
287 .0912 .0300

262 .0834 .0278

242 .0774 .0260
215 .0688 .0233
171 .0541 .0183
131 .0403 .0134

.088 .0257 .0083

Rectangular crack, Bending.

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9 .95

981 .904 .676
981 .903 .674
980 .901 .568
979 .895 .659
978 .888 .544
975 .876 .623
971 .859 .593
964 .832 .552
951 .786 .490
919 .694 .384
873 .586 .283
769 .429 .166

226
225
222
216
207
195
179
158
129
082
041
002

.0406

.0403

.0393
.0376
.0351
.0317
.0273
.0214
.0133
.0003

-.0106
-.0186

.00012

.00000

-.00020

-.00061

-.00120

-.00201

-.00306

-.00447

-.00641

-.00954

-.0120

-.0126
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Table 4.10b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=lO , p=.3

Seml-elllptical crack_ Tension•

y/a
O.
.1
.2
.3

.4

.5

.6

.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

968
965
953
935
907
871

• 825
•766
•688
•574
•481
• 383

•862
•857
•843
819
786
743
689
623
542

• 436
•360
•287

•624
•621
•611
• 595
•571
538
497

445
381
300
246
197

•245 •0780 •0255
•245 •0784 •0256
• 244 .0796 .0261
.244 .0813 .0269
.241 .0830 .0279
235 .0839 .0288
224 .0830 .0292
207 .0793 .0285
181 .0716 .0262
145 .0587 .0218
120 .0493 .0185

.098 .0410 .0155

Seml-elllptlcal crack_ Bending•

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

•966 .846
.964 .844
•957 •837
.944 .824

•926 .806
.901 .781
.868 .749
.824 .708
.763 .653
.664 •572
.575 .502
.471 .422

576
576
574
570
564
553
537
512

•475
•419
•373
•322

.173
.176

182

192
204
215
223
225

.219
•200
• 182
.161

.0274

.0296

.0357
.0445
.0549
.0653
.0745
.0810
.0832
.0792
.0733
.0661

-.00266
-•00116

•00275
•00797
.0136
.0191
•0240
.0277
.0296
.0290
.0272
.0248
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Table 4.11 Normalized stress intensity factor at
the center of a semi-elliptical crack subjected to
tension and bending, v=.3

a/h .5 1. 1.5

Lo/h

.1 910 •945 •959

.2 729 .817 •858

.3 545 •662 •724

.4 390 •507 .577

.5 268 •365 •430

.6 174 •244 •295
.7 102 •146 .179

8 n_n n_o 089
•85 •031 .045 •055

•9 .012 .024 .029
.95 •005 •008 .010

Tension

2. 3. 4. 5. 6.

967 •976 .981
883 .913 .930
765 .817 .850
627 •695 .741
479 .552 .605
336 .400 .450
207 .253 .291
104 1_.lzo .149

.064 .079 .092

.034 .041 .048
.012 .014 .016

•984
•942
.873
•774
• 646
491
324
168
104
053
018

•

987 .990
950 .961
889 .912
800 .837
679 .728
526 .581
353 .402
186 .217
115 .135

.059 .069

.020 .023

i0.

.992
•968
•927
•862
•763

624
443
245
153
078
025

a/h .5

Lo/h

.1 .907 .943

.2 .709 .804

.3 .495 .626

.4 .306 .441

.5 .157 .271

.6 .053 .133

.7 -.O07 .038

.8 -.028 -.011

Bending
1. 1.5 2. 3. 4.

•957 .966 .975 981
•848 .875 .907 926
•696 .741 .799 836
•521 .578 .657 710
•346 .404 .490 552
•191 .239 .315 374
.074 .105 .157 201
•004 .018 .043 .066

•85 -.027 -.020 -.012 -.005 .009 .022
-.020 -.019 -.016 -.014 -.008 -.003.9

5. 6. 8. 10.

•984
•938
•861
•748
•599
• 422
• 240
•087
•035
•003

.986
•947
.879
777
637
463
273
107
046
078

.990 .992
959 .966
904 .921
818 .846
693 .734
527 .576
331 .378
142 .173

.068 •088

.018 .027
.95 -.005 -.011 -.011 -.011 -•010 -.009 -.008 -.007 -.005 -.003
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Table 4.12 The effect of Poisson's ratio on the
normalized stress intensity factor at the center
of a semi-elliptical crack subjected to tension
and bending, a/h=l.

Lo/h
1
2
3
4
5
6
7
8
85
9

.95

Tension Bending
O. .3 .5 O. .3 .5

.935 .945

.791 .817

.628 .662

.473 .507

.339 .365
228 .244
138 .146
070 .073
O44 .045
023 .024
008 .008

.956
848
707
554
406
273
163
080
049
025
009

.933 .943 .954

.776 .804 .837

.587 .626 .676

.401 .441 .496

.239 .271 .319

.113 .133 .167

.029 .038 .056
-.013 -.011 -.005
-.019 -.020 -.017
-.017 -.019 -.019
-.010 -.011 -.011
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a/h
.5
1.
1.5
2.
3.
4.
5.
6.
8.

10.

Table 4.13a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack
subjected to tension. In 13a the normalization

factor is for the corresponding depth edge crack

given by Lo/h. The data in 13b is normalized with

respect to a crack depth of .2 for all Lo/h , u=.3

Lo/h .2 .4 .6 .8 .9 .95

.729

.817
•858
•883
.913
•930
•942
•950
.961
•968

390 .174
507 .244
577 .295
627 .336
695 .400
741 •450
774 .491
800 .526
837 .581
862 .624

.0499 .0158

.0725 .0235

.0895 .0291
104 .0336

149 .0475
168 .0534
186 •0588
217 .0688
245 .0780

.00547

.00833

.0104

.0120
0144
0165
0182
0199
0228
0255

a/h
.5

1.
1.5
2.
3.
4.
5.
6.
8.

10.

Table 4.13b

Lo/h .2 .4 .6 .8 .9 .95

.729 .852 .890

.817 1.107 1.248 1

.858 1.261 1.506 1

.883 1.368 1.714 1

.913 1.518 2.044 2

.930 1.618 2.301 2

.942 1.691 2.511 2

• 950 i•747 2.687 3

873 •849 .864
268 1.263 1•317
564 1.563 1.638
814 1.806 1•889
240 2.209 2.283
608 2.554 2.603
941 2.867 2•884
245 3.158 3.139

•961 1•827 2.969 3•792 3•695 3•603
•968 1•882 3.185 4.276 4.190 4.025
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a/h
.5
I.
1.5
2.
3.
4.
5.
6.
8.

10.

Table 4.14a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack

subjected to bending. In 14a the normalization
factor is for the corresponding depth edge crack

given by Lo/h. The data in 14b is normalized with

respect to a crack depth of .2 for all Lo/h , v=.3

Lo/h .2 .4 .6 .8 .9 .95

.709 .306

.804 •441

.848 .521

.875 .578

.907 .857

.926 .710

.938 .748

.947 .777

.959 .818

.966 .846

•0532 -.0281 -.0198 -.00960
133 -.0114 -.0186 -.0106
191 -.0400 -.0162 -.0108
239 -.0180 -.0135 -.0107
315
374
422
463
527
576

.0434 -.00813 -.0100

.0663 -.00273 -•00918

.0873 .00258 -.00819

.107 .00779 -.00713

.142 .0178 -.00492
.173 .0274 -.00266

.5
I.
1.5
2.
3.

4.
5.
6.
8.

I0.

Table 4.14b

Lo/h .2

•709
.804
•848
.875
.907 1
• 926 1
.938 1
.947 1
•959 I
•966 I

.4 .6 .8 .9 .95

516
774 .417 -•101 -
881 •601 -.0355 -
836 .751 -.190 -
110 .989 .385 -
199 1.175 .588 -
263 1.326 .774
312 1.453 .947
382 1.655 1.259
430 1.810 1.536

.167 -.249 - 496 -.680
466 -.754
405 -.764
339 -.755
204 -.712
0685 -.650
0647 -.580
195 -.505

447 -.348
687 -.188
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Table 4.15 Contact curve for through crack
bending without addition of tensile field to
prevent interference as approximated by the line-
spring model, v=.3

a/h .5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0

y/a

0
1
2
3
4

51
6
7
8
9

690 .774 818 .846 .881 .902 916 927 .941 950
689 .774

687 .772
683 .768
678 .763
669 .754
659 .744
645 .729
622 .706
584 .665

818 .846 .880 .901
816 .844 .879 .900
813 .841 .877 .898
808 .837 .873 .895
800 .830 .868 .891
791 .822 .861 .885
776 .808 .849 .875
753 .786 .829 .857
712 .745 .790 .821

916
915
913
911
906
901
892
877
844

926 .941
925 .940
924 .939
922 .937
918 .934
913 .930
905 .924
892 .912
861 .886

95O

95O
949
947
944
941
936
926
903
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Table 4.16 Normalized stress intensity factors
are listed at positions along the crack front of
two collinear, symmetric part-through cracks
subjected to tension such that *b defines the inner

crack tip and *c refers to the outer tip. Two
different crack shapes are used for four different
values of the separation distance, b. results are
given for the crack from b to c.

u=. 3, (c-b) / (25) =a/h, s=2/(c-b) [y- (c+b)/2]

_=_O(1-s2) 1/2 {={O(1-s2) 1/4

s b=.l b=.5 b=l. b*® b=.l b=.5 b=l. b*®

-.98 .279 .230 .218 .205
-.95 .266 .224 .213
-.90 .262 .226 .216
-.80 .262 .233 .225
-.70 .264 .240 .232
-.60 .265 .244 .238
-.51 .265 .248 .242
-.40 .266 .250 .245
-.30 .265 .252 .247
-.20 .265 .253 .248

-.10 .264 .253 .249
.0 .263 .253 .249
.10 .262 .252 .249
.20 .261 .251 .248
.30 .259 .250 .246
.40 .256 .247 .244
.51 .252 .244 .240
.60 .248 .239 .236
.70 .241 .233 .230
.80 .233 .225 .221
.90 .224 .216 .212
.95 .221 .212 .209
.98 .226 .217 .213

203
207
217
225
231
236
239

242
243
244
244
244
243
242
239
236
231
225
217
207
203
2O5

186 .153
212 .178
234 .200
255 .225
266 .240
273 .250
278 .256
281 .262

145 .138
170 163
192 .185
217 210
232 225
242 236
249 243
256 249

283 .266 .260
284 .268 .262
284 .269 .264
283 .269 .264
281 .268 .263
278 .266 262
274 .263 259
269 .259 254
262 .252 248
254 .244 240
242 .233 230
226 .217 .214
199 .192 .189
176 .170 .167
151 .145 .142

253
256
258
258
258
256

253
249
243
236
225
210
185
163
138
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Table 4.17 The normalized stress intensity

factor at the maximum penetration point of two
interacting semi-elliptical surface cracks for

both tension and bending loads, u=.3

b2-a 2 10 bl+a I b_+ap]

- 1, c- 2h ' d = a2-bl, h - .5, A - 2 , B

c/a

PLATE TENSION

d/a 0.1 0.25 0.5 1 2 ®

1

Kt(A) 0.5
0.25

Kto O. 1

•397 .392 .386 .379 .374 .366
•382 .378 .375 .371 .368 .366
•373 .371 .369 .368 .366 .366
•367 .367 .366 .366 .366 .366

1

Kt(s) 0.5
0.25

Kto O. 1

•397 .392 .386 .379 .374 .366
•300 .293 .286 .279 .274 .269
•217 .209 .203 .198 .194 .190
• 136 .130 .126 .124 .124 .123

PLATE BENDING

1

Kb(A) 0.5
0.25

Kbo 0.1

.313 .306 .299 .290 .283 .272

.292 .287 .282 .278 .274 .272

.280 .275 .275 .273 .272 .272

.273 .273 .272 .272 .272 .272

1

Kb(B) 0.5
0.25

Kbo 0.1

.313 .301 .299 .290 .283 .272

.197 .188 .179 .171 .164 .272

.101 .091 .083 .076 .072 .069

.012 .0045 -.0004 -.0038 -.0057 -.0058
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Table 4.18a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=.5 , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2]K20

Lo/h .2 .4 .6 .8 .9

y/a
O. •998 •960 •810
• I •997 •959 .807
• 2 .997 •956 •799
• 3 .997 .950 •786
•4 .996 .942 .766
•5 .995 .928 .738
•6 .994 .909 .699
•7 .991 .877 .645
•8 .985 .823 .566
•9 .968 .706 .438
•95 .932 .575 .328
•98 .858 .409 .217

•568
•566
•557
.544
• 524
•497

461
415
352
260
189
122

•429
•427
•420
•408
392
370
341
304
256
186
134
086

Mode 3, K3]K20 (x 100)

y/a
O.
.1
.2
.3

.4

.5

.6

.7
.8
.9
.95
.98

Lo/h

.95

•344
•342
•336
327
313
295
271
241
201
146
104
066

.2 .4 .6 .8 .9 .95

.000 .000 .000 .000 .000 .000
•026 .057 -.027 -.204 -.234 -.209
.051 .112 -.056 -.404 -.463 -.413
.076 .163 -.089 -.598 -.680 -.605
.099 .207 -.127 -.780 -.879 -.779

120 .241 -.173 -.946 -1.05 -.926
138 .261 -.229 -1.09 -1.18 -1.04
149 .261 -.296 -1.19 -1.26 -1.09
151 .230 -.378 -1.23 -1.26 -1.08
132 .146 -.465 -1.13 -1.09 -.914
104 .063 -.483 -.941 -.869 -.714

.067 -.022 -.426 -.673 -.597 -.484
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Table 4.18a continued, Normalized stress intensity
factors for a rectangular surface crack in a plate
under in-plane shear loading, a/h=.5 , v=.3

Rectangular crack, In-plane shear

Mode 3, K3/K3IO

y/a
O.

1
2
3
4
5
6

.7

.8

.9
.95
.98

Lo/h .2 .4 .6 .8 .9 .95

• 780 .584 .513 .420 •316 .240
• 779 •582 .512 .418 •314 .239
• 776 .578 .508 .414 .311 .236

• 769 .571 .502 .408 .305 .231
.7_0 .560 4g_ :397 296 .224
• 746 .545 .478 .383 .283 .213
• 725 .524 .460 .364 .266 .199
• 692 .495 .434 .337 .243 .181
• 638 .451 .396 .299 .211 .155
• 534 .379 .333 .235 .161 .116
•430 .316 .272 .179 .119 .085
• 321 .251 .199 .121 .078 .055

y/a
O.
.i
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2

•000
-.091
-.181
-. 269
-. 354
-. 435
-.510
-.576
-. 629
-. 657
-. 644
-.596

Mode 2, K2/K3IO(xlO0)

.4 .6 .8 .9 .95

•000
- 274
- 540
- 788

-1 01
-1 19
-1 32
-1 38
-1 33
-1 10

- 847
- 567

.000
-.135
-. 265
-. 384
-. 487
-. 568
-.619
-. 633
-. 594
-. 475
-. 355
-. 233

•000
-. 067
-. 132
-•191
-. 241
- 280
- 304
- 308
- 287
- 227
- 169
- 110

•000

-.279

-.553

-.816

-i. 06

-I .28

-I .46

-i .58

-i .62

-I. 47
-1.22

-. 879

000
- 038
- 075
- 108
- 136
- 158
- 171
- 173
- 160
- 126
- 093
- 061
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Table 4.18u cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=.5 , v=.3

Rectangular crack, Twisting

_ode 3, K3/K3TO

y/a
O.
.1
.2
.3
.4
.5

6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9

• 754
• 753
.749
.743
.732
.716
693
656
596
480
366
235

•443 •124 -.723 -2.61
.441 .122 -.725 -2.61
•436 •115 -.730 -2.61
.426 .105 -.740 -2.61
.412 .089 -.752 -2.60
.392 .068 -.767 -2.58

364 .040 -.782 -2.53
326 .002 -.791 -2.45
268 -.046 -.782 -2.28
176 -.109 -.709 -1.90
100 -.138 -.592 -1.50
027 -.136 -.426 -1.03

.95

-7 45
-7 44
-7 41
-7 37
-7 29
-7 16
-6.95
-6.62
-6.03
-4.89
-3.76
-2.54

_ode 2, K2/K3TO

O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2

00000
- 00101
- 00202
- 00301
- 00396
- 00487
-.00571
-.00644
-.00703
-.00734
-.00720
-.00666

.4 .6 .8 .9 .95

.00000 .0000
-.00381 -.0058
-.00755 -.0114
-.0111 -.0167
-.0145 -.0214
-.0175 -.0253
-.0199 -.0281
-.0217 -.0294
-.0222 -.0284

-.0202 -.0236
-.0168 -.0182
-.0121 -.0122

.0000
-.0096
-.0189
- 0275
- 0350
- 0410
- 0450
- 0463
- 0438
- 0352
- 0265
- 0174

.0000
- .0217

-. 0425
-.0618
-. 0785
-.0916
- I001
- 1024
- 0962
- O767
- 0523
- 0374

.000
-. 057
-.iii

-. 162
-. 205
-.239
-.261
-.266
-. 249

-.198
-. 147

-. 096
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Table 4.18b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or

twisting loads, a/h=.5 , _=.3

Seml-elllptlcal crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2 .4 .6 .8 .9

y/a
O. .988 .883 .685 •467
.1 •982 •880 .684 .466
.2 .963 .871 .683 .465
.3 .931 .855 .680 .464
.4 .884 .830 .675 .464
.5 .821 .795 ._68 .465

•6 •740 •745 .657 .469
•7 .636 .672 .637 .476
.8 .501 .564 •596 .485
.9 .319 .387 .487 .478
.95 .i98 .249 .354 .423
.98 •103 .132 .200 .295

•350
•348
343
337
332
330
332
340
355
374

•362
•288

Node 3, KS/K20(×lO0)

y/a
O.

1
2
3
4
5
6
7

.8

.9

.95
.98

Lo/h .2 .4 .6 .8

•000
•024
•048
• 070
•090
• 108
• 123
• 134
•141

• 142
•139
• 132

•000
.171
336
489
623
736
825
891

.943
1.01
1.12
1.30

.9

.95

•277
.273
• 262
.251
•242
•237
•236

• 241
•254
•275
•277
•234

.95

.(DO .000 .000 .000
-.027 -.143 -.155 -.133
-.049 -.274 -.300 -.256
-.044 -.379 -.426 -.363
-.015 -.d43 -.520 -.447

.048 -.449 -.568 -.499

.151 -.376 -.546 -.500
.295 -.203 -.423 -.420

.482 .086 -.160 -.220

.722 .496 .262 .134

.898 .767 .540 .371
1.07 1.01 .765 .555
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Table 4.18b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a

plate under in-plane shear loading, a/h=.5 , v=.3

Seml-elllptlcal crack, In-plane shear

Mode 3, K3/K3IO

y/a
O.

1
2
3

4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9

•738
•737
•734
•730
723
714
702

685
661
622

583
540

•547
•546
.542
537
529
518
506
492
477

• 465
•467
•480

•467
•465
.462
•455
•446
•433
.415
•393
•367
•340
•336
•348

•350
•350
.350
•349
•348
344
335
319
290
248
228
226

• 249
• 249
•250
•250
•252
•254
•253
•247
.228
• 190
• 166
• 157

Mode 2, K2/K3IO(XlO0)

y/a
O.
.1
.2
.3
.4
.5

6
7
8
9
95
98

Lo/h .2

.95

184
183
181
179
180
182
184
182
171
142
121
III

.4 .6 .8 .9 .95

.000 .000 .000 .000 .000 .000
-.087 -.229 -.207 -.107 -.058 -.037
-.168 -.450 -•412 -.213 -.116 -.071
-.239 -.656 -.614 -.320 -.172 -.103
-.295 -.838 -.809 -.428 -.229 -.135
-.331 -.984 -.994 -.539 -.288 -.169
-.341 -1.08 -1.16 -.654 -.352 -.206
-.323 -1.10 -1.30 -.777 -.427 -.252
-.270 -1.01 -1.36 -.904 -.515 -.309
-.177 -.732 -1.22 -1.00 -.618 -.385
-.110 -.477 -.924 -.937 -.638 -.415
-.057 -.254 -.534 -.677 -.528 -.367
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Table 4.18b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under twisting loads, a/h=.5 , v=.3

Semi-elllptlcal crack, Twisting

Mode 3, K3/K3TO

y/a
O.
.1
.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

Lo/h .2 .4 .6 .8 .9

712 .411
713 .413
714 .419
717 .431
720 .447
724 .468
729 .496
733 .531
734 .577
724 .645
702 .703
667 .765

.95

103 -.636 -2.17 -6.01
108 -.625 -2.15 -5.92
124 -.592 -2.08 -5.70
149 -.533 -1.97 -5.39
186 -.445 -1.79 -4.99
235 -.320 -1.53 -4.44

.297 -.149 -1.16 -3.63

.375 .078 -.628 -2.40

.472 .370 .124 -.578

.604 .741 1.13 1.98

.713 .994 1.76 3.59

.831 1.23 2.30 4.87

Mode 2, K2/K3TO

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h .2

00000
- 00097
- 00189
- 00269
- 00333
- 00373
- 00386
-.00366
-.00307
-.00202
-.00126
-.00065

.4 .6 .8 .9 .95

00000
00320

- 00631
- 00922
- 0118
- 0139
- 0153
- 0156
- 0144
- 0105

- 00686
- 00365

•0000
-.0046
- •0093
- .0138
- .0182
-. 0224
-. 0262
-. 0293
-. 0308
-. 0277
-. 0209
-.0121

.0000
-.0080
-.0160
--.0238
-.0316
--.0394
-.0473
-.0554
-.0638
-.0698
-.0650
-.0468

.0000
-.0179
-•0351
-.0516
-.0674
-.0831
-•0994
-.117
-,138
-.161
-.164
-.135

•000
-. 045
- .087
-. 124
-.159
-.193
-. 229
-. 269
-.319
-. 383
-. 405
-. 354

131



Table 4.19a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=l. , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2

y/a
O. 1.00
.i 1.00
.2 1.00
•3 .999
•4 .999
.5 .999
.6 .998
•7 .997
•8 .994
.9 .985
.95 .968
.98 .919

.4 .6 .8 .9 .95

.994 .957 .839 .730 .644

.994 .955 .836 .727 .640

.993 .949 .825 .715 .629

.990 .939 .807 .696 .610

.986 .923 .780 .668 .583

.979 .899 .744 .630 .547
969 .864 .694 .581 .501
950 .812 .628 .517 .443
915 .731 .537 .434 .367
826 .587 .401 .315 .263
709 .452 .293 .226 .187
534 .306 .190 .145 .119

Hode 3, K3/K20(XlO)

Lo/h .2

y/a
O. .0000
.1 .0031
.2 .0063
.3 .0095
.4 .0127
.5 .0160
.6 .0192
.7 .0221
.8 .0240
.9 .0229
.95 .0192
.98 .0134

.4 .6 .8 .9 .95

.0000 .0000 .0000 .000 .000

.0212 .0060 -.0298 -.052 -.056

.0427 .0115 -.0599 -.103 -.112
.0646 .0157 -.0905 -.153 -.165
.0870 .0180 -.122 -.201 -.215

.110 .0177 -.153 -.245 -.260
132 .0136 -.184 -.284 -.297
153 .0044 -.212 -.313 -.322
169 -.0119 -.234 -.325 -.326
174 -.0385 -.236 -.299 -.290
167 -.0562 -.211 -.249 -.235
151 -.0626 -.161 -.178 -.164
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Table 4.19a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=1. , v=.3

Rectangular crack, In-plane shear

y/a
O.

1
2
3
4
5
6
7
8
9
95

98

Mode 8, K3/K3IO

Lo/h .2 .4 .6 .8 .9

•826
• 826
•824
• 821
•816
• 809
.796

• 775
• 736
• 646
.540
•405

.669 •625
.668 624
.665 620
•659 613
•651 603
.639 589
.621 570
.593 541
.549 .498
.468 .424
.392 .354
.308 .268

.95

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h .2

.0000
- 0105
- 0211
- 0320
- 0432
- 0548
- 0665
- 0780
-- 0882
-- 0950
- 0951
- 0905

.570 .472 .384

.568 .470 .382

.564 .466 .378

.555 .457 .370

.543 .445 .359

.526 .428 .344

.502 .404 .323

.469 .372 .295

.421 .327 .255

.340 .254 .194

.265 .191 .144

.183 .128 .095

ilode 2, K2/K3IO(xlO)

.4 .6 .8 .9 •95

.000

- 063
- 125
- 185
- 240
- 289
- 327

- 349
- 346
- 296
- 232
- 158

.000
-. 049
-. 096
-. 140
-. 178
-. 209
-. 229
-. 236
-. 222
-. 178
-. 133
-. 873

•000
-. 031
-. 060
-. 088
-.111
-. 129
-. 140
-. 142
-.131
-. 103

.076
-. 049

000
043
O86
128
170

211
248
279

298
286
249
188

.0000
-•0200
-.0392
-•0567
-.0715
-.0827
-•0893
-.0898
-.0825
-.0639
-.0468
-.0302
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Table 4.19a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=l. , v=.3

Rectangular crack, Twlstlng

_ode 3, K3/K3TO

y/a
O.

1
2
3
4
5
6
7
8

.9
.95
.98

Lo/h .2 .4 .6 .8 .9

.806 •555

.805 .554
804 .550
800 .543
795 .532
786 .515

773 .491
749 .455

.705 .397

.605 .291

.487 .193

.336 .091

•310
•308
302

291
274

251
218
172

.104
•004

- .073
-.116

.95

Node 2, K2/K3TO

-.354 -2.01 -6.48
-.358 -2.02 -6.49
-.369 -2.03 -6.51
-.389 -2.06 -6.55
-.417 -2.10 -6.59
-.455 -2.15 -6.63
-.504 -2.20 -6.66
-.564 -2.24 -6.62
-.630 -2.24 -6.40
-.673 -2.07 -5.63
-.628 -1.75 -4.60
-.497 -1.27 -3.25

Lo/h .2 .4 .6 .8 .9 .95

y/a
O. .00000 .0000 .0000 .0000 .000 .000
• I -.00117 -.0058 -.0126 -.0267 -.063 -.171
.2 -.00236 -.0116 -.0250 -.0527 -.125 -.337
• 3 -.00357 -.0174 -.0369 -.0770 -.182 -.491
• 4 -.00483 -.0231 -.0480 -.0989 -.233 -.625
• 5 -.00612 -.0286 -.0579 -.117 -.274 -.733
•6 -.00743 -.0337 -.0658 -.130 -.301 -._04
•7 -.00871 -.0380 -.0705 -.135 -.310 -.824
•8 -.00985 -.0405 -.0702 -.129 -.293 -.774
.9 -.0106 -.0390 -.0603 -.105 -.234 -.613
•95 -.0106 -.0339 -.0475 -.0791 -.175 -.454
.98 -.0101 -.0256 -.0325 -.0522 -.114 -.295
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Table 4.19b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=l. , v=.3

Seml-elllptlcal crack, Out-of-plane shear

Mode 2, K2/K20

y/a
O.

1
2
3
4
5
6
7

8
9
95
98

Lo/h .2 .4 .6 .8 .9

.996
989
969
939
888
823
740
634
499
318
197
102

953 •851 •693 .576
949 •848 .690 .571

935 •840 •682 .557
910 .826 .670 .538
875 .805 .655 .518
826 .776 .637 .498
760 .736 .616 .479
671 .680 .590 .462
548 .593 .551 .442
366 .437 •466 .398
232 .295 .356 .328
123 .161 .213 .212

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h

Mode 3, K3/K20(XlO)

.2 .4 .6 .8 .9 .95

0000

0048
0094
0135
0170
0197
0215
0221
0216
0196
0176
0153

.0000

.0125

.0250

.0375

.0498

.0616

.0726

.0823

.0907

.0964

.0989
.101

0000
0031
0080
0165
0299
0489
0733
102
135
170
193
217

0000

- 0283

- 0523

- 0680

- 0712

- 0583

- 0266

0245

0924

173

223

272

0000
- 0405
- 0766
- 104
- 119
- 116
- 0914
-- 0410

0351
131
187
239

.95

487

477
453
425
399
377
360
346
333
308
263
178

.000
-. 040
-. 075
-. 102
-.118
-. 120
-. 102
-. 062

•005
•092
•144
• 188

135



Table 4.19b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=l. , v=.3

Seml-elllptlcal crack, In-plane shear

Mode 3, K3/K3IO

y/a
O.
.I
.2
.3

.4
5
6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9

.800
•799
.795
•789
780
767
750
726

690
627

.567
•493

635
634
629
622
612
598

•582
.563
•541
.513
• 496
.483

577
575
568
557
542
521
496

.466
•433
.399
• 387
•393

•489
487
483
475

463
446
421
389
346

•297
.277
•277

•382
381
376
370
362
352
336

311
275
227

204
•200

Mode 2, K2/K3IO(xlO)

y/a
O.

1
2
3
4
5
6
7
8

.9
• 95
.98

Lo/h .2

.0000
-.0133
-.0259
-.0368
- 0452
- 0503
- 0514
- 0478
- 0390
- 0246
- 0148
- 0075

.95

•299
295
288
279
271
263
253
236
209
170

.149
• 144

.4 .6 .8 .9 .95

•000
-. 031
-.063
-. 094
- 124
- 155
- 184
- 210
- 228
- 218
-.175
-. 107

.0000
-.0174
-.0347
-.0519
-.0695
-.0878
-.107
-.127
-.146
-.154
-.136
-.916

•000

-.043

-.083

-.121

- 153

- 176

- 188

- 186

- 162

- 110

- 069
-. 036

.000
-. 050
-. 099
-. 145
-. 189
-. 227
-. 257
-. 273

-. 265
-. 208
-.142
-. O77

.0000
-.0101
-.0199

-.0296
-.0396
- 0506
- 0630
- 0769
- 0915
- 1019
- 0948
-.0675
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Table 4.195 cont• Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under twisting loads, a/h=l. , v=.3

Seml-elllptlcal crack, Twisting

y/a
O.
.I
.2
.3
.4
.5
.6
.7
.8
.9

.95

.98

Mode 3, K3/K3TO

Lo/h .2 .4 .6 .8 .9

.779
• 780
.781
•782
•784
.786

.786
•783
.771
•737
.690
.618

.523 .277

.525 282

.532 297

.543 323

.559 359

.581 408

.608 470

.642 547

.684 644

.739 779

.774 884

.800 1.00

-. 335
-. 322
-. 281
- 212
- 109

030
213
445
734

1 II
1 37
1 65

-1.71
-I. 68
-I .59
-I .43
-1.19

-. 863
-.413
•186
•957
I .93
2.58
3.23

Mode 2, K2/K3TO

.95

-5.27
-5.16
-4.88
-4.45
-3.88
-3. I0
-2.03

-. 567
1.38
3.86
5.46
6.99

.4 .6 .8 .9 .95

•000
-. 050
-. 098
-. 143

-. 184
-. 222
-. 259
-. 292
-. 321
-. 325
-. 281
-. 187

y/a
O. .00000 ,0000 .0000
.I -.00147 -.0057 -.0103
.2 -.00285 -.0112 -.0204
.3 -.00407 -.0163 -,0302
.4 -.00502 -.0207 -.0394
.5 -.00561 -.0241 -.0476
.6 -.00577 -.0260 -.0543
.7 -.00540 -.0259 -.0581
.8 -.00443 -.0229 -.0571
.9 -.00281 -.0158 -.0455
.95 -.00170 -.0100 -.0313
.98 -.00086 -.0052 -.0107

0000
- 0210
- 0417
- 0618

- 0810
- 0991
- 116
- 130
- 140
- 132
- 106
- 0644

•000
-. 133

-. 253
-. 358
-. 449
-. 533
-.613
-. 690
-.761
-.791
-.712
-. 497
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Table 4.20a,b Normalized stress intensity factors

for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under out-of-plane shear,

in-plane shear, or twisting loads, a/h=2. , v=.3

Rectangular crack, Out-of-plane shear

y/a
O.

1
2
3
4
5
6
7
8
9
95
98

Lo/h .2

1.00
1.00
1.00
1.00
1.00
1.00
1.00

.999

.998

.994

.977

.995

Mode 2, K2/K20

.4 .6 .8 .9 .95

1.00 1.00
1. O0 .999
1. O0 .998
1. O0 .995

•999 .989
•997 979
•994 961
•987 929
.969 867
.915 733
•826 587
•670 414

.984 .955 .921

.983 .952 .917

.976 .942 .905
965 .925 .885
947 .899 .853
919 .860 .809
877 .806 .749
813 .730 .668
714 .621 .557
548 .456 .399
407 .329 .283
268 .212 .180

y/a
O.
.I
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h

Mode 3, K3/K20(XlO)

.2 .4 .6 .8 .9 .95

.0000

.0016

.0034

.0054

.0078

.0108

.0145

.0191

.0241

.0275

.0257

.0197

.0000

.0072

.0148

.0232
.0327
.0435
.0556
.0678
.0768
.0725
.0556
.0291

0000
0114
0227
0339
0445
0535
0591
0579

.0443

.0070
-.0279
-.0585

0000
- 0066
- 0151
- 0274
- 0456
- 0718
- 108
- 155
-.211
-.263
-.267
-.229

•000
- 034
- 071
- 112
- 159
- 214
- 276
- 341
- 400
- 421
- 381
- 294

.000
-. 052
-. 106
-. 163
-. 224
-. 290
-. 359
-. 424
-. 472
-. 467
-. 405
-. 300
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Table 4•20a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=2. , u=.3

Rectangular crack, In-plane shear

Mode 3, K3/K3IO

Lo/h .2 .4 .6 .8 .9

y/a
O. .841 .709 .699 .706
.1 .841 .709 .698 .704
.2 .841 .707 .695 .700
.3 .840 .705 .691 .692
.4 .838 .700 .684 .680
.5 .835 .693 .673 .663
.6 .830 .683 .657 .639
.7 .820 .664 .633 .604
.8 .799 .631 .592 .551
•9 .738 •556 .515 •457

•95 .646 .472 .437 .367
•98 •512 •381 .345 •263

641
640
634
625
611
591
563

• 525
• 468
• 372
• 287
• 196

Mode 2, K2/K3IO(xlO)

y/a
O.
.I
.2
3
4
5
6
7
8
9
95
98

Lo/h

.95

•559
•558
•552
•542
•528
•508
•481
•444
•390
•303
•228
• 153

•2 .4 .6 .8 .9 .95

.000 .000 .000
-.054 -.070 -.061
-.II0 -.140 -.122
-.170 -.210 -.180
-.236 -.278 -.235
-.306 -.343 -.282
-.380 -.399 -.317
-.447 -.435 -.334
-.490 -.435 -.320
-.463 -.365 -.256
-.383 -.279 -.189
-.272 -.185 -.123

0000
- 0053
- 0110
- 0176
- 0256
- 0357
- 0484
-.0643
-.0829
-.101
-.106
-.109

.(XX)
- 026
- 054
- 085
- 122
- 165
- 216
-. 273
-. 329
-. 359
-. 337
-. 274

.000
-. 049
-. 098
-. 143
-. 184
-.219
-. 242
-. 250
-. 234
-. 182
-. 133
-. 085
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Table 4.20a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate
under twisting loads, a/h=2. , u=-.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2 .4 .6 .8 .9

.823 .608 .434 .012 -1.15
823 .607 .433 -.008 -1.16
822 .605 .428 -.004 -1.19
821 .602 .421 -.025 -1.23
819 .596 .409 -.057 -1.30
816 .587 .391 -.101 -1.39
810 .573 •364 -•163 -1•51

.799 .549 .323 -.250 -1.67

.776 .504 .256 -.370 -1.85

.708 .406 .132 -.532 -1.99

.607 .300 .023 -.597 -1.88

.448 .165 -.077 -.551 -1.51

Mode 2, K2/K3TO

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
•95
.98

Lo/h .2

.00000
-.00059
-.00123
-.00197
-.00287
-.00399
-.00541
-.00718
-.00926
-.0113
-.0118
-.0121

.95

-4.53
-4.55
-4.61
-4.71
-4.85
-5.03
-5.26
-5.54
-5.81
-5.78
-5.18
-3.96

.4 .6 .8 .9 .95

.0000 .0000 .000 .000 .000
-.0035 -.0103 -.031 -.086 -.251
-.0073 -.0211 -.063 -.172 -.502
-.0115 -.0326 -.095 -.258 -.748
-.0164 -.0453 -.128 -.342 -.986

-.0223 -.0592 -.160 -.421 -1.20
-.0292 -.0737 -.190 -.489 -1.38

-.0369 -.0874 -.212 -.534 -1.49
-.0446 -.0967 -.218 -.534 -1.47
-.0488 -.0923 -.189 -.448 -1.21
-.0458 -.0767 -.147 -.340 -.906
-.0373 -.0546 -.098 -.224 -.591
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y/a
O•
•1
.2

•3
.4
•5
•6
•7
•8
•9
•95
•98

y/a
O.
.1
.2
.3
.4
.5
6
7
8
9
95

98

Table 4.205 Normalized stress intensity factors

for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=2. , v=.3

Seml-elllptlcal crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2 .4 .6 .8 .9

•999
•992
.972
.938
• 889
• 824
.740

•634
•498
•317
.196
•102

.986 .950
.981 .946
.964 .931
.935 .906
.893 .871
.837 .823
762 •761
665 .680
536 .568
354 .395
224 .259
119 .140

876
870

852
823
786
741
687
623

•538
•403
.281
• 159

799
789
76O
718
670
619

.567

.512

.446
•347
.252
• 147

Mode 3, K3/K20 (x10)

.95

•723
•704

.658
• 601
•544
.491
•442
.395
•344
•271
•201
•120

Lo/h .2 .4 .6 .8 .9 .95

.000

.015

•032
052
076
103
134
163
189

•207
.214
.218

.0000
-.0257
-.0446
-.0504

-•0383
-.0515

•0489
.119
.197

.271

.309

.340

.000
-.055
-. I01
-. 129
-.131
-. 105

.046
.039
• 142
•244
•296
•338

.0000

.0060

.0116
.0166
.0206
.0232
.0243
.0237
.0213
.0170
.0140
.0113

.0000
•0189
.0373
0550
0712
0851
0959
1023
1031

.0970
•0901
•0828

•000
-.065

-.I18
-.151
-. 160
-. 139
-. 087
-.006

•094
.196
.247
•284
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Table 4.20b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a

plate under in-plane shear loading, a/h=2. , u=.3

Seml-elllptlcal crack, In-plane shear

Mode 3, K3/K3IO

Lo/h .2 .4 .6 .8 .9 .95

y/a
O. .829 .687 .659 .623 .532 .442
.1 .828 .686 .656 .619 .528 .434
.2 .824 .681 .647 .608 .516 .417
.3 .817 .672 .631 .590 .497 .395
.4 .807 .660 .610 .564 .474 .371
.5 .792 .644 .583 .531 .444 .346
.6 .772 .625 .550 .489 .407 .317
.7 .744 .602 .513 .440 .362 .281
.8 .701 .573 .472 .384 .309 .237
.9 .624 .530 .428 .325 .251 .188
.95 .549 .493 .403 .298 .224 .166
.98 .467 .453 .387 .287 .213 .157

y/a
O.

1
2
3
4
5
6
7
8

.9

.95

.98

Lo/h .2

.0000
- 0125
- 0243
- 0349
- 0436
- 0493
- 0512
- 0482
- 0393
- 0241
- 0141
-.0068

Mode 2, K2/K3IO (XlO)

.4 .6 .8 .9 .95

.000
- 059
- 116
- 172
- 226
- 274
- 310
- 326
-. 308
-. 226
-. 146
-. 076

.000 .0000 .0000
-.041 -.0181 -.0038
-.083 -.0384 -.0106
-.127 -.0626 -.0224
-.174 -.0919 -.0403
-.222 -.127 -.0646
-.268 -.165 -.0943
-.306 -.204 -.127
-.320 -.233 -.156
-.275 -.223 -.160
-.197 -.173 -.131
-.110 -.102 -.0806

000
- 043
- 084
- 123
- 157
- 183
- 199
-. lt28
-.172
-.114

- .069
- .035

142



Table 4.205 cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=2. , _,=-.3

Seml-elliptlcal crack, Twisting

Mode 3, K3/K3TO

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
,9
,95
.98

Lo/h .2 .4 .6 .8 .9 .95

.811 .587 .401 -.020 -1.03 -3.75
•811 .589 .406 -,006 -.999 -3.65
.812 .596 .421 .035 -.895 -3.34
•813 .607 .445 .106 -.719 -2.87
.814 .624 .481 .208 -.463 -2.23
.815 .646 .528 .345 -.115 -1.37

.813 ,673 .588 .521 .343 -.228

.806 .706 .665 .743 .927 1.24

.788 .745 .763 1.02 1.66 3.11

.738 .784 .893 1.39 2.60 5.48

.673 .792 .980 1.65 3.25 7.07
• 590 .776 1.05 1.89 3.84 8_48

Mode 2, K2/K3TO

.4 .6 .8 .9 .95

y/a
O. .00000 .0000 .0000 .0000 .000 .000

•1 -.00133 -.0052 -.0104 -.0245 -.065 -.187

•2 -.00261 -.0103 -.0208 -.0490 -.128 -.354
•3 -.00376 -.0153 -.0312 -.0732 -.186 -.496
•4 -.00473 -.0198 -.0416 -.0973 -.240 -.618
.5 -.00540 -.0237 -.0514 -.121 -.291 -.729
.6 -.00568 -.0264 -.0600 -.144 -.340 -.833
.7 -.00541 -.0270 -.0655 -.163 -.384 -.928
.8 -.00447 -.0242 -.0643 -.173 -.412 -.994
•9 -.00277 -,0165 -.0494 -.152 -.383 -.941
•95 -.00163 -.0102 -.0325 -.111 -.296 -.749
.98 -.00079 -.0052 -.0172 -.0624 -.176 -.458
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Table 4.21a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=4. , v=-.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

Lo/h .2 .4 .6 .8 .9 .95

y/a
O. 1.00 1.00 1.00 1.00
.I 1.00 1.00 1.00 1.00
.2 1.00 1.00 1.00 1.00
.3 1.00 1.00 1.00 1.00
.4 1.00 1•00 1.00 •999
.5 1.00 1.00 I .00 •993
.6 1.00 1.00 •997 •978
•7 1. O0 .999 .988 .947
•8 1. O0 .994 .961 .876
.9 •998 •967 •866 •713
• 95 . 982 . 914 . 732 . 547
• 98 1.03 . 799 . 543 . 368

1.00
1.00
1.00

•998
•992
•978
952
902
8O6
620
455
295

Mode 3, X3/K20(XlO0)

Lo/h .2 .4 .6 .8

y/a
O. .0000 .000
.1 .0044 .021
.2 .0094 .044
.3 .0157 .074
.4 .0245 .115
.5 .0378 .175
.6 .0594 •268
.7 .0960 .411
.8 .158 .616
.9 .250 .809
.95 .283 .760
.98 .249 .493

.000
•047
•098
.161

241
346
479
627
720
526

.131
-. 380

•000
•066
• 130
.186
•221
• 207
•085

-. 240
-.910

-2.01
-2.57
-2.60

.9

•000
• 027
•036
•004

-. 106

-. 348
-. 803

-I .57
-2.70
-3.97
-4.23
-3.64

1.00
1.00

.999
•993
•982
•962
•925
•862
•752
•558
• 399
•254

.95

•000
-. 038
- 104
- 234
- 473
- 879

-1 53
-2 47
-3 70
-4 81
-4.77
-3.88
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Table 4.21a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=4. , u--.3

Rectangular crack, In-plane shear

Mode 3', K3/X3IO

Lo/h .2 .4 .6 .8 .9

y/a
O. .844 .722
.1 .844 .722
.2 .844 .722

.3 .844 .721
.4 .844 .720
.5 .843 .717
.6 .842 .713
.7 .838 .704
.8 .830 .686
.9 .799 .633
.95 .737 .556
.98 .621 .458

735

734

733

731

727

722

713

697

668

6O0

521

424

.95

Lo/h .2

797 .782 .728
796 .781 .726
793 .776 .720
788 .768 .711
779 .755 .696
766 .737 .675
747 .711 .646

718 .672 .604
669 .611 .541
573 .502 .432
474 .398 .334
354 .281 .229

Mode 2, K2/K3IO (XlO)

.4 .6 .8 .9 .95

y/a
O. .0000 .0000 .000 .000 .000 .000
• 1 -.0014 -.0068 -.016 -.031 -.038 -.041
•2 -.0029 -.0146 -.034 -.064 -.080 -.083
•3 -.0049 -.0247 -.058 -.105 -.126 -.129
•4 -.0077 -.0388 -.090 -.156 -.181 -.181
•5 -.0120 -.0604 -.136 -.222 -.245 -.236
•6 -.0191 -.0946 -.205 -.306 -.317 -.293
•7 -.0313 -.150 -.303 -.404 -.388 -.343
•8 -.0526 -.237 -.429 -.493 -.435 -.364
•9 -.0860 -.345 -.526 -.499 -.399 -.316
•95 -.103 -.372 -.491 -.411 -.310 -.238
•98 -.114 -.336 -.373 -.282 -.204 -.153
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Table 4.21a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=4. , v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

Lo/h .2 .4 .6 .8 .9

y/a
O. .826 •624 .492 •259 -.405

.1 .826 .624 .491 .257 -.413

.2 .826 .624 .490 .248 -.438

.3 .826 .623 .486 .233 -.483

.4 .825 .621 .480 .210 -.551

.5 .825 .618 .471 .175 -.648

.6 .823 .612 .456 .123 -.785

.7 .820 .601 .430 .044 -.979
.8 .810 .577 .381 -.085 -1.26
•9 .776 .507 .269 -.311 -1.67
•95 .708 .411 .145 -.484 -1.85
•98 .570 .261 -.006 -.570 -1.72

Mode 2, K2/K3TO

y/a
O.

1
2
3

4
5
6

.7

.8

.9

.95
.98

Lo/h .2 .4 .6 .8 .9

00000
- 00015
- 00033
- 00055
- 00086
- 00134
- 00214
- 00350
- 00587
-.00961
-.0115
-.0127

.00000
-.00092
-.00197
-.00331
-.00522
- 00812
- 0127
- 0202
- 0319
- 0467

- 0505
- 0457

.0000
-.0030
-.0064
-.0107
-.0167
-.0255
-.0387
-.0578
-.0828
-.1031
-.0973
-.0745

•000
-.012
-. 024
-. 040
-. 061
- 090
- 127
- 175
- 224
- 240
- 205
- 144

.95

-2.48
-2 51
-2 58
-2 70
-2 88
-3 13
-3 47
-3•92
-4.54
-5.28
-5.39
-4.65

.95

.000 .000
-.037 -.122

-.079 -•255
-•128 -.412
-.191 -•606
-.271 -.845
-.372 -1.13
-.488 -1.45
-.593 -1.70
-.599 -1.66
-.492 -1.34
-.335 -.895
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Table 4.21b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=4. , v=.3

Seml-elllptical crack, Out-of-plane shear

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8

.9

.95

.98

Lo/h .2

1.00
• 993

973
939
890

824
740
633

•497
•316
•196
• 102

Mode 2, K2/K20

.4 .6 .8 .9 .95

.997 .988

.991 982

.973 964

.943 935

.899 893

.840 838

.763 767

.663 675

.532 553
•349 376
.221 244
.117 132

965 .932 .889
956 .916 .860
930 .872 .788
890 .809 .699

838 .737 .612
776 .662 .531
703 .586 .458
618 .507 .390
513 .419 .319
362 .301 .230

244 .206 .159

136 .117 .092

y/a
O.
.I
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2

.0000

.0049

.0095

.0135

.0167

.0188

.0194

.0183

.0154

.0108

.0097
-.0030

Mode 3, K3/K20(XlO)

.4 .6 .8 .9 .95

.0000

.0170

.0336

.0492

.0632

.0750
.0826
.0850
.0800
.0660
.0585
.0244

.000 .0000 .0000 .000

.020 -.0077 -.0408 -.063

.040 -.0097 -.0700 -.I07

.062 -.0144 -.0790 -.123

.086 .0201 -.0638 -.109

.110 .0553 -.0246 -.068
134 .102 .0344 -.007
153 .154 .105 .065
162 ..201 .173 .134
156 .230 .223 .186
145 .228 .230 .196
120 .254 .280 .244
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Table 4.21b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a

plate under in-plane shear loading, a/h=4. , v=.3

Seml-elliptlcal crack, In-plane shear

Mode 3, K3/K3IO

y/a
O.
.1
.2
.3
.4
.5

6
7
8
9
95
98

Lo/h .2 .4 .6 .8 .9

•840
•839
•835
•828
•817
• 802
•781

•751
•705
•622
• 540
•451

.95

.712 •709 •728 .672 •590
•710 .705 .722 •664 •577
.704 .693 .704 .640 .545
.695 .675 .675 .606 .503
.682 .649 .635 .562 .458

666 •616 .586 •511 •411
645 .579 .529 .453 .360
620 .537 .466 .390 .306
587 •491 .400 •323 •249
535 .439 .334 .257 .193
485 .403 .301 .226 .166
427 .370 .279 .208 .156

Mode 2, K2/K3IO(XlO)

O.
1
2
3

4
5
6
7
8

.9

.95

.98

Lo/h .2
.4 .6 .8 .9 .95

.0000 .000 .000 .000 .0000 .0000
-.0079 -.027 -.039 -•025 •0021 •0237
-.0156 -.053 -.078 -.053 -.0031 .0349
-.0227 -.079 -.117 -.087 -•0206 .0279
-•0290 -.103 -.158 -.128 -•0524 .0283
-•0338 -.125 -.197 -.176 -.0971 -•0369
-.0365 -.142 -.233 -.227 -.151 -.0863
-•0360 -.149 -.257 -.273 -.205 -.138
-.0306 -.137 -.254 -.295 -.242 -.178
-•0190 -.094 -.191 -.249 -.222 -.174
-•0132 -.062 -.126 -.172 -.161 -.130

.0064 .000 -.039 -.079 -•0810 -.0675
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Table 4.21b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=4. , v=-.3

Semi-e11iptical crack_ Twisting

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95

.98

Mode 3, K3/K3TO

Lo/h .2 •4 .6 .8 .9 .95

•822
•822
.823
•824
•826
.826
•824
.816

•795
•738
•664
•572

615 .470 .211
617 .475 .224
624 .489 •263
636 .513 .330
653 .548 .427
676 .594 .557
704 .655 .724
738 .733 .936
776 .832 1.21
806 .960 1.58
794 1.03 1.83
749 1.06 2.02

-.425 -2•21
- 391 -2.11
- 290 -1.82
- 119 -1.37

129 -.736
464 ".107
898 1.20

1 45 2.59
2 15 4.34
3 08 6.65

3 72 8.24
4 24 9.53

Mode 2, K2/K3TO

y/a
O.
.1
.2
.3
.4
.5
.6
.7
.8
.9
.95
.98

Lo/h .2

00000
- 00082
- 00161
- 00237
- 00306
- 00363
- 00399
-.00401
-.00350
-.00222
-.00155

.00068

.4 .6 .8 .9 .95

.0000
- 0029

- 0058
- 0088
- O119
- 0150
- 0179
-.0198
-.0194
-.0141
-. 0095
-. 0004

.0000
-. 0052
-. 0107
-.0167

-.0235
- .0313
- .0399
-.0480
-. 0522
- .0434
-. 0297
- .0104

0000
- 0116
- 0238
- 0372
- 0529
- 0719
- 0949
- 121
-.144
-•136
-.I00
-.0480

000
- 033
- 066
- 098
- 133
- 173
- 223
- 284
- 344
- 345
- 265
-. 138

000
106
199
281
357
442
547
680
822
844
664
360
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Table 4.22 Normalized stress intensity factor at

the center of a semi-elliptical crack subjected to

out-of-plane shear, in-plane shear, and twisting

loads, v=.3

a/h .5

Lo/h

.1

.2

.3

.4

.5
6

Out-of-plane shear, Mode 2, K2/K20
1. 1.5 2. 3. 4. 5. 6. 8. I0.

7

8
85 .410
9 .350

95 .277

.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.998 .996 .998

.952 .982 .991

.883 .953 .976

.790 .909 .952

.685 851 .918

.576 780 .873

.467 693 .811
640 .769
576 .714
487 .629

999 .999 1.00 1.00 1.00 1.00 1.00
995 .998 .999 .999 .999 1.00 1.00
986 .994 .997 .998 .999 .999 1.00
972 .987 .993 .996 .997 .998 .999

95O
920
876
844
799

723

978 .988 .992 .995 .997 .998
963 .979 .987 .991 .995 .997
938 .965 .978 .985 .992 .995
919 .952 .969 .979 .988 .993

889 .932 .954 .968 .982 .988
832 .889 .921 .942 .965 .977

In-plane shear, Mode 3, K3/K3IO
a/h .5 1. 1.5 2. 3. 4. 5. 6.

'Lo/h

.899 .927 .935 .939 .942 .943 .943 .943

.738 .800 .820 .829 .837 .840 .842 .843

.619 698 .727 740 .752 .758

.I

.2

.3

.4

.5
6
7
8

.547 635 .670

.503 600 .642

.467 577 .629

.420

.350
85 .304
9 .249
95 .184

688 .704 .712
665
659

8. 10.

760 .762
716 .719
706 .710
720 .727

944 .944
843 .844
764 .765
722 .724

688 .699 716 .719
692 .709 736 .741

743 .755 .770 .780

754 .773 .799 .815
744 .767 .800 .821
711 .740 .781 .809

530 .590 .635 .670 .721 .757

547 .613 653

489 .570 623
443 .529 .588
382 .470 .532
299 .380 .442

700 .726
688 .728
664 .711
617 .672

Twisting, Mode 3, K3/K3TO
a/h .5 1. 1.5 2. 3. 4. 5. 6. 8. 10.

Lo/h

.1

.2

.3

.4

.5

.6

.895 .924 .932 .936 .939 .940 .940 .941 .941 .941

.712 .779 .801 .811 .819 .822 .823 .824 .825 .826

.550 .642 .674 .689 .702 .708 .710 .712 .714 .715

.411 .523 .566 .587 .606 .615 .619 .622 .626 .628
.273 .410 .467 .497 .526 .539 .547 .552 .559 .562
.103 .277 .357 .401 .447 .470 .484 .493 .504 .511

.7 -.152 .074 .193 .263 .341 .382 .408 .425 .447 .460

.8 -.636 -.335 -.144 -.020 .128 .211 .264 .300 .347 .377
.85 -1.13 -.766 -.508 -.330 -.109 .020 .103 .162 .238 .286
.9 -2.17 -1.71 -1.32 -1.03 -.654 -.425 -.273 -.165 -.021 .071
.95 -6.01 -5.27 -4.43 -3.75 -2.81 -2.21 -1.79 -1.49 -1.09 -.823
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L0/h

.i

.2

.3

.4
.5
.6
.7
.8
.85
.9
.95

Table 4.23 The effect of Poisson's ratio on the

normalized stress intensity factor at the center
of a semi-elliptical crack subjected to out-of-

plane shear, in-plane shear, and twisting loads,
a/h=1.

Out-of-plane shear

Kode 2, K2/K20
In-plane shear

Mode 3, K3/K3IO
Twisting

Lode 3, K3/K3TO

v O. .3 .5 O. .3 .5 O. .3 .5

1.00
•994
•974
.936
•878
8O6
721
624
569
503
416

1.00 1.00
996 .997
982 .987
953 .966
909 .932
851 .886
780 .827

693 .751
640 .703

.576 .643

.487 .554

• 935

•820
•725
•666
634
615
591
541
498
437
350

.927 .921
800 .787
698 .682
635 .617
940 .580
577 .555
547 .521
489 .460
443 .414
382 .353
299 .273

.932 .924 .918

.801 .779 .766

.673 .642 .623

.562 .523 .500

.457 .410 .382

.337 .277 .242

.155 .074 .028
-.216 -.335 -.398
-.613 -.766 -.844
-1.50 -1.71 -1.82
-4.85 -5.27 -5.44
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Table 4.24 The LSM approximation to the stress

intensity factor at the corner of a semi-

elliptical surface crack subjected to out-of-plane

shear, in-plane shear, and twisting loads, a/h=l,
_=.3.

OUT-OF-PLANE SHEAR IN-PLANE SHEAR TWISTING

k 2 (h/2) k 3 (0) k 2 (h/2) k 3 (0) k 2 (h/2) k 3 (0)

o3,_'-"a 03,,1_-"a a4,[a'a a4_a a5,_a'a o5,_'-'a

Lo/h

.1

.2

.3

.4
5
6

.000 .005 .124 -.000 .I16 -.000

.000 .033 .237 -.0005 .206 -.0005

.001 .074 .336 -.002 .272 -.002

.004 .125 .421 -.005 .317 -.004

.009 .186 .496 -.009 .348 -.006

.017 .256 .563 -.014 .368 -.009
7 .028 .332 .625 -.020 .380 -.012
8 .042 .416 .682 -.025 .387 -.014
85 .050 .461 .709 -.028 .389 -.015
9 .059 .507 .735 -.030 .390 -.016
95 .069 .556 .761 -.032 .390 -.017
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Figure 4.1 Comparison of mode 1 line-spring model

with and without transverse shear deformation to

Newman's and Raju's finite element solution, Ref.
[33], for a/h=2/3, u=.3
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element results are from Ref. [33].
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CHAPTER5

Through Cracks in Shallow Shells

In this chapter the singular integral equations for a series of

collinear cracks in a shallow shell which allows for transverse shear

deformations will be derived. The crack will be assumed to lie along

a principal line of curvature which uncouples the symmetric (mode 1)

from the skew-symmetric (modes 2,3) formulation. The emphasis will be

on crack interaction for some common geometries. Also the equations

are needed for the part-through crack problem of the next chapter.

5.1 Formulation

The governing equations, both dimensional (Eqns. 5.1a-18a,18a,

19a) and non-dimensional (Eqns. 5.1b-16b,18b,19b) are listed below.

The dimensional relationships are defined in Appendix A. From

equilibrium,

8NIl 8N12 8N 8N
xx xy = 0

8x I + 8x 2 - 0 , 8x + 8y
, (5.1a,b)

8N12 8N22 8N 8N

8x I + 8x 2 - 0 , XYsx + _Sy = 0
, (5.2a,b)

DVl 8V2 D.__fSZ N 1 8 rSZ N 1

8x I + _ + 8xl[Sx 1 11) + _1x118x2 12)

__['SZ N 1 O___SZ N 1
+ 8x2[Sx 1 12) + 8x2(Sx 2 22) 4 q(xl'x2) = 0 ,

8V 8V

x ___ + 12(1+v) { 8 ['SZN 1 8 ['SZN 1
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_---[OZN 1 _[SZ N ]+ 8y[Sx xyJ + [_ yyJ + q(x,y) } = 0 , (5.3a,h)

8Mll 8M12

8x I + 8x 2 ¥1 = 0 ,

8M 8M
xx _ 5 V = 0

_x + oy 12(1+u) x , (5.4a,b)

8M12 _M22

8x I + _ - V2 = 0 ,

8M 8M

xy + __Y_Z 5 = 0 (5.5a,b)
Bx 8y 12 (1+u) Vy ,

where q(x,y) is normal loading to the plate surface and Z(x,y) is the

equation of the mid-plane of the shell. The other variables are

standard shell quantities (see Figs. 2.1,2.3). From kinematical

considerations,

8UlD 8Z 8U3D 8u 8Z %w

ell - 8x I + 8x I 8x I ' exx - 8x + 8x 8x '
(5.6a, b)

8U2D 8Z 8U3D 8v 8Z 8w

e22 - 8x2 + 8x2 8x2 , eyy - 8y + 8y 8y '
(5.7a,b)

1 8UlD 8U2D 8Z 8U3D 8Z 8U3D]

el2 = _ [ 8--_2 + 8-_--1+ 8xI 8x2 + 8x2 _ J ,

1 [ 8u 8v 8Z 8w 8Z 8w ]Exy - 2 _ + _ + 8x 8y + 8y 8x
(5.8a, b)

8U3D 8w

81 - ax I + Pl ' 8x - 8x + Px '

8U3D 8w

82 = 8x2 + _2 ' 8y - 8y + _y '

(5.9a,b)

(5. lOa, b)
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where 81 and 82 are the total rotations of the normals. For classical

theory they are zero showing that normals to the shell surface stay

normal, i.e. there is no deformation transversely. The constitutive

1
hell =_ (Nll - vN22) , E = N - vN , (5.11a,b)

xx xx yy

1 , = N - vN ,
he22 = _ (N22 - VNll ) Cyy YY xx (5.12a,b)

1 = (l+V)Nxyhc12 - 2# N12 ' exy
(5.13a,b)

where E is Young's modulus and v is Poisson's ratio. From bending,

_11 = D [ _Xl + v_x2 ]8pl 8P2

M 1 [SPx _- -+ 1
xx 12 (1-v 2)

(5.14a, b)

M22 = D [ _x2 + b_Xl ]8_2 D_I

M
YY

1 [
12(1_v2) _ + 8y

(5.15a,b)

D(1-v) [ 8'81 8P2MI2 = 2 +

Mxy 24 (l+v)- 8--_-- + 8x
(5.16a,b)

where

Bh 3
D-

12(l-v 2)

The linear transverse shear stress-strain relationships are,

(5.17)
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1Vl 0 = V (5.18a,b)O1 - hB ' x x '

1
02 - hB V2 0 = V (5.19a,b)' y Y '

where

B - 5E (5.20)
12(1+u)

From here on only non-dimensional variables will be used. Define

#(x,y) such that

xx - 8y2 ' yy - 8x 2 ' xy = - 8xSy
(5.21)

Introduce the new unknowns fl(x,y) and _(x,y) defined as follows,

8Px
fi(x,y) - Oy Ox '

(5.22)

_-x+_y
, (5.23)

where

: 5(l-v)
(5.24)

Also it will be assumed that Z(x,y) is limited to the following,

_2Z -I 82Z -I 82Z -I

8x2 - R1 , 8y2 - R2 ' bxSy - RI2 '

(5.25)

thus making the curvatures constant. For convenience the following

constants are introduced,

4 = 12(1_v2) 4 = 12(l_v2)(h/R2)2X1 (h/R1)2 , X2 ,

X124 = 12(1_u2)(h/R12)2 , X2 = 12(l-v2) , 7 = X-2 (5.25)

If all but X1 are zero, an axially cracked cylinder results; if X2 is

171



the only

see Fig.

principal

non-zero quantity, then the crack will be circumferential,

2.1. R12 is needed when the crack does not lie along a

line of curvature. After some algebra Eqns. 5.1-19 are

reduced to the following equations,

1 .2 82

t)'l-¢V2" ( "2 B2 2 8 2 .2 a2V4w X2+

(5.27)

X4(1-_y2)q(x,y) , (5.28)

_V2_ - ¢ - w = 0 , (5.29)

V2fl - fl = 0 (5 30)
2

Now

curvature by setting X12 = O. This reduces Eqns. 5.27,28 to

1 .2 82

a

V4w + k2(l__y2)( .2 82 .2 _2
^l_y2 + ^2a-9) $(x,y) = 0

let q(x,y) = 0 and also confine the crack to a principal line of

(5.31)

(5.32)

These

First Eqns. 5.31,32 are reduced to one equation in _(x,y),.

2 22
V4V45 + (1-_V)V)V),$ = 0 ,

where

2 .2 82 .2 _2

VX = ^18---y2+ ^28_

The Fourier transform is defined for any function as

last four equations will be solved by using Fourier transforms.

(5.33)

(5.34)
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+_

1 I F(x,a) e-iya daF(x,y) = _
--00

"+® elYa
F(x,a) = J F(x,y) dy

_00

(s.35)

The transforms of the various operators of gqn. 5.33 are

FT[ V2F ] - d2_ a2F

d2x

FT[ V4F ] d4F 2a 2d2_ a4F
- d4x d2x +

FT[ V4V4F ] - dSP

d8x

4a2d6----_-_6a4d4_ 4a 6d2_ aSP
d6x + d4--_ - d2 x + ,

FT [ 2 2 .4d4F ^, 2. 2 2d2F ),14a4_
V)V)F ] = ^2d---_x - zAI^2 a _d x +

• 4d6F 2 2 2 2. 4. d4F
= (2),I),2a+ +FT[ V2V_V_F ] ^2_ x - a ^2)d-T- x

4 4 ^,2,2 4,d2F afiX_
(Xla + zA1A2a )d--_x -

(5.36)

The Fourier transform of Eqn. 5.33 is

d__ (4a2+ .4,_ (6a4+ 4 ^ ,2.2 2 ,4 2, d__
d8 x - _^2)d6 x + ),2 + Z_^lA2a + _^2 a )d4x

_ (4a6+ ^,2,2 2 _),14a4+ Z_hlA2a^,2,2 4,d__)2 (a8+ ,4 4 6,4,-;
Z^l^2a + d x + ^ia +_a ^2)_ = 0 ,

(5.37)

which has the solution

4 m.x

_(x,a) = _R.(a)e J x > 0
j=l J ' '
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8 m.x

_(x,a) : j=_sRj(a)e J
, x < o , (5.38)

where

mj = -(pj+a2) 1/2 , j=1,2,3,4

m. = +(pj 4+a 2) I/2J _ , j=5,6,7,8
(5.39)

The roots pj, j=1,2,3,4 are obtained from the solution of the

following characteristic equation,

4 43 222 42 4 2- + (2_),1),2a - 2_;k2a + ), )pP _),2 p

2 2 2 4 2 4 2 2X4 2 2 22Xlk2)a P+ (2_lX2a - _X2 a - _X1 a + - +

+ (X_- X2)2a4=O (5.40)

This quartic is solved numerically. For large and small a an

asymptotic expansion for the roots is given in section J.1 of Appendix

J. Since the crack has been assumed to lie on a principal line of

curvature, only the portion of the shell for x>O need be considered.

The transformed solutions of the other unknowns appearing in Eqns.

5.29-32 are:

flCx,a) = ACa)e -rx , x ) 0 , (5.41)

4 m,x

_(x,a) = _--_R. (a)e JCa)K_. , x > 0 ,
J Jj=l

(5.42)

4 m,x

w(x,a) = j=I_--_R'J(a)Kj (a) (_pj_-l)e J
, x>O , (5.43)

where
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2 2 -)1/2
r--- a + ,_(1-_,) J ' (5.44)

22

Kj (a) - pjX,2, 2,2 2. (5.4s)
(_pj-1) tmj^2-^lO )

The next step is to express the shell quantities in terms of h(a) and

Rj(a), j=1,2,3,4, which are unknowns in the problem to be determined

by boundary conditions as yet unspecified. These expressions are

t+® 2 4
-a / ,, ZR. (,,)

Nxx- 2t j ® j=l J

m.x

e J e -lay da
(5.46)

t+ ® 4 2 m.x
1 / _":.m.R.(a)e J e -ioy da

Nyy- 2_ J-®j=l 3 J (5.47)

t+ _ 4

i | a_m.R. (a)
Nxy- 2_ J-® j=l J J

m.x

e 3 e-lay da (s.48)

= l-v -i f+®fix _ 5; aA(a)erX e-laYda +
--®

1 (+® 4 m.x .
+ j _.m.K.R. (a) e I e-laYda
5; _® j=1 j jj

fly _12___u_1 f+oo rXe-iaYda= 2"-_ rA (a)e -
-®

(5.4g)

t+ ® 4

i / a_.K.R.(a)
- 5; "-® j=l J _I

m.x

e J e-laYda

+® 4 m.x .

M = 1__ 1__ f ® _.(m2 ua2)K.R.(a) e j e_laYda
xx )4 27 _ j=l J J J

(1-u) 2 __i f÷® e da__+
2X4 2x -®arA(a) erx -iay

(s.so)

(5.51)
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M
YY

1 1
+oo 4 m.x .

f _-. (vm_-a2)KjRj (a)e 3 e-laYda
_0o j=l

• (1-v) 2 i [+® rx -lay
+ -- j arA(a)e e da + (5.52)

2X4 2x -®

M
xy

,+® 4 m.x

= -(l-u) _i [ a_-_m.K.R.(a)e J e-iay da

),4 2x __® j=1 J J J

g(l-v) 2 I___ f+® rx -iay
4X4 2_ _®(a2+r2)A(a)e e da , (5.53)

V _ -i f+®x = 2 2-"_ aA(a)erXe -xay da +
--00

+® 4 m .x

f _.m.p.K.R.(a)e J e-lay da
+ 2-_ _® j=l J J J J

(5.54)

V
Y (l-v)-1 ;+irA(a)rx-iay2k4 2x _ e e da +

1 i (+® 4 m.x •
aT_p.K.R.(a)e J e -xay da

X4 2_ J_® j=l J J J
(s.55)

i C!{ '_--_R.(a) [mjKj (gpj-1) - 3
-2_J_®a j=l J mj] } e-laYda

(5.$6)

,+® 4 2 e-iay

- 2_r -®j=l J J

Y(X2/X)2 -i ;+® 4+ _ a_.R. ) e -iay
-® j:1 j (a)Kj (gpj-1 da , (5.57)

,+® 4 2 8w
_ i 1 7_m.R.(_)e-i_yd_ + y(_2/X)2 _yl_O

2x #-®j:l J J

(5.55)
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5.2 Symmetric Loading, Mode l

There are currently five unknowns in the problem, A(a) and R. (a)
, ]

for j=1,2,3,4. The first step is to reduce these to two unknowns by

using the symmetry conditions,

Nxy(O,y) = 0 , (5.591

Mxy(O,y)= o , (5.6o)

v (O,y)= o (5.61)
x

Then replace the remaining two unknowns with the crack surface

displacements,

u l(y) = u(x2)/h = u(O +,x2)/h , (5.62)

u2 (Y) = Px (x2) = Px (O+'x21 (5.63)

The equations that relate ui(Y ) to the original unknowns are:

4

2 j_l (5"641A(a) - ia(1-u) mjpjKjRj ,
"_

4

: o
j=lJ3 J

4

Z:o.K.,.{ , }:-'-a q2 (a) (5. 661
j=l J J J _PJ-

4

_-_m.R. = 0
j:lJ3

= 2j X2 j '

where

(5.67)

(5.68)
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+W

qk(a) = .__®Uk(t)eiat dt , k=1,2 (5.69)

The solution to Bqns. 5.65-68 is

2
R.(_) = _ 7kJqk j=1,2,3,4 (5.70 /

J k=l mjD(a) '

where

D(a) : (KIK2 + KsK4)(Pl- P2 ) (P4- P3 ) +

+ (KIK3 + K2K4)(Pl- P3 ) (P2- P4 ) + (K2K3 + KIK4)(Pl- P4 ) (P3- P2 ) '

711 = a[K2K3(P3- P2 ) + K2K4(P 2- P4 ) + K3K4(P 4- P3 )] ,

712 =-a[KiK3(P3- Pl ) ÷ KIK4(p l- P4 ) ÷ K3K4(P 4- P3 )]

713 = a[KiK2(P2- Pl ) + KIK4(P l- P4 ) + K2K4(P 4- P2)] ,

714 = -a[KIK2(P2- Pl ) + KIK3(p I- P3 ) ÷ K2K3(P 3- P2 )]

2

-711)'2 aK2(p4- P3 ){[_(1-v)a2+ 1]P2- a2(1-v)}-
721 - a2), 2

](3
_(P2- P4)(E'(1-_)"2+11p3-.2(1-_)}

K4
_(P3- P2)IE'(1-_)"2+11p4-_2(I-_)} ,

2

-712X2 + _-(p4-K1 p3 ){[_(1-v)a2+ 1]Pl- a2(1-v)} +
722 - a2A2

K3
+ a--(Pl- P4){ I_(1-v)a2÷ 1]P3- a2(1-v)) +

(5.71)
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K4 a 2
+ a---(P3- Pl){ [_(1-v)a2+ 1]P4- (l-v)}

723 -

2
713_2

a2k 2
K1 {[_(1-v)a2+ 1] 2a (P4- P2 ) Pl- a (l-v)} -

K2
- a(Pl- p4)([_(1-v)a 2+ lip 2- a2(1-v)} -

K4
- a(P2- pl)([_(1-v)a 2+ lip 4- a2(1-v)}

724 -

2
-714X2 K1

a2X2 + a--(P3- P2)( [_(1-v)a2÷ 1]Pl- a2(1-v)} +

K2
+ a--(Pl- P3)( [_(l-v)a2+ 1]P2- a2(1-v)} +

K3

+ a-(P2- Pl)( [_(1-v)a2+ 1]P3- a2(1-v)} (5.72)

The following two mixed boundary conditions will produce two singular

integral equations for the determination of the crack opening

displacements :

Nxx(O+,y) = -fl(y) , y in Ln , (5.73)

+

ul(Y ) = u(O ,x2)/h = 0 , y outside of L (5.74)
n

Mxx(O+'Y) = -f2 (y) ' y in Ln , (5.75)

u2(Y ) = Px(O+,x2 ) = 0 , y outside of L n , (5.76)

where

n (al'bl) (a2'b2) "' (an'bn) ' (5.77)
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each section (ai,bl) , defining a crack on x=O.

46,51,64 for y in L become,n

r+® 2 4 m.x .
-1 lira | a _-_R.e J e -may da

-fl (y) - 2_ x*O J_® j=l J

Eqns. 5.73,75 with

(5.78)

l+v lim;+® { 42_ x_O -_rerX _--_m'P'g'R" +
_® j=13 3 3 3

4 m.x 2 4 m.x)1 _p.K.R.e 3 + a _K.R.e J e -lay
+ _2_ j=l j j J J =1J J da

(5.79)

After making use of the odd/even nature of the infinite integrals,

Eqns. 5.78,79 may be written as follows,

t+® 2 4 m.x
1 liraI a 7_.R.e 3 cosa(t-y) da

-fl (y) = - _ x*O JO j=l J
(s.8o)

-k4 l+u liraf:® ( rX_m"_=-J2 (y) - _ x_O -_re +
j=l 3pjKjRj

4 m.x

1 _p.K.R.e 3
+_j=13aa

247_K.R.em'Xj
+ a j_ cosa(t-y) da

j=laa
(5.81)

Next Bqns. 5.69,70,74,76 are substituted into Eqns. 5.80,81 to obtain

1 lira u k(t))O D-_) .= ]-fl (y) = - _ x-"O L m.
n

m.x

e J cosa(t-y) da dt +

(5.82)

l+u liraf k_ 1 ;:® a j_l 7-_mkj." (-'rmjpjerX +
7 x*O Ln = u k(t) D(a) .= j

m.x

+ _ (m e "] cosa(t-y) da dt (5.83)

The infinite integrals must now be analyzed. These integrals may not

exist without the exponential decay in x. In the limit as x gets
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small, the leading order term at a approaching infinity provides the

integral that must be interpreted in the finite-part sense or perhaps

in the Cauchy principal value sense, see Appendix B. Also the large a

behavior must be determined so that the infinite integrals will

numerically converge. The more terms that are known, the more

accurate/less expensive the numerical integration. This analysis is

presented in section J.2 of Appendix J. The form of the equations

after using these results is,

1 r ul(t)
dt +

-fl (y) - 2_ Ln(t_y)2

f 12 1 f lnJt_ylu2(t)dt ++plll _L1 lnlt-ylul(t)dt + Pl f L
n n

- _ fL ul(t) )0 ID-_ j=l mj
n

- _ L u2(t) JO D_-_) 72Jm. cosa(t-y) da dt +
"= ]

n

- ; ul(t ) Ill(t,y ) dt -7 u2(t) I12(t'Y) dt , (5.84)
L L

n n

-k 4 l+u u2(t---_) dt +
i_f2CY) - 2f _L (t-y)2

n

f 22 1 f ln,t_ylu2(t)dt +- p121 _1 Llnlt-ylu l(t) dt - Pl _ L
n n

k a j_l 71J K (__rmj+ ;fLlul(t) foD a).= mj j Pj +
n
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+ _ (m -va2) cosa(t-y) da dt +

+ x L u2(t) 0 D-_ .= ]m. J

n

+ _ (m cosa(t-y) da dt +

I - 1 f u2(t ) _22(t,y ) dt+ ! ul(t ) 121(t,y) dt + _ LL
n n

All quantities not defined in this chapter are given in Appendix J.

(5.85)

5.3 Symmetric Loadin_ Mode i_ results.

As mentioned at the start of this chapter, the primary motivation

for this analysis is to study the effect of shell curyature on crack

interaction as seen through the SIFs. This problem has been

considered by Erdogan and Ratwani [73], by using the classical shell

theory. As with the single crack solution, the theory used here that

includes transverse shear deformations is better suited for this

problem.

The results presented in Figs. 5.1-4, show the effect of cylinder

radius on the stresses ahead of a single crack (both axial, Figs.

5.1,2, and circumferential, Figs. 5.3,4) of length a/h=1 subjected to

crack surface tension and bending loads. It is observed that although

the primary stresses are not considerably different from those of the

plate solution (R/h*®), the secondary values are now non-zero and

increase with decreasing radius. These effects would be magnified for

larger a/h. The results for axial cracks seem to be more sensitive to
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curvature in tension than for the circumferential crack and the

reverse is true for bending.

The out-of-plane displacement w(O+,y), or bulging of a single

crack has been examined in [28], and has been used as an

interpretation for the trends observed in the crack interaction

problem [73]. In Fig. 5.5 the tension and bending results for an

axially cracked cylinder with radius R/h=lO are presented for various

crack lengths. Fig. 5.6 gives the results for a circumferential

crack. In these plots the zero is fixed at y/a=O in the deformed

state. Again it is observed that the axial crack has more complicated

behavior in tension, while the circumferential orientation shows a

similar trend in bending. For these loadings the w displacement in

the region ahead of the crack tip has more of a tendency to become

negative.

The symmetric double crack SIF solutions are presented in tables

5.1-8. The geometries are again the axially cracked cylinder, a/h=l

in 5.1 (tension) and 5.2 (bending), a/h=2 in 5.3 (tension) and 5.4

(bending), and the circumferentially cracked cylinder where these four

cases are repeated in tables 5.5-8. For both geometries the primary

stress intensity factor increases for decreasing radius in tension,

and decreases for decreasing radius in bending. Again the axial crack

is more sensitive to curvature than the circumferential crack in

tension and the circumferential crack is similarly more sensitive to

curvature in bending. The secondary SIFs decrease with increasing

cylinder radius except for the outer crack tip of the circumferential

crack, a/h=2 loaded in tension presented in Fig. 5.7. Also the
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secondary values have fluctuations for increasing separation. This

type of behavior was not observed with the primary SIFs as it was by

Erdogan and Ratwani [73]. It is possible that for larger a/h the

curvature effect is strong enough that there can be regions of

increase of the SIFs as the cracks get farther apart. The shortest

crack for which this trend was observed in Ref. [73] was a/h=2.5 for

R/h=5. Because of convergence difficulties and the shallow shell

assumption, longer cracks were not investigated.

5.4 Skew-Symmetric Loudin_, Modes 2_3

There are currently five unknowns in the problem A(a) and R.(a)
, , J

for j=1,2,3,4. The first step is to reduce this to three unknowns by

the remaining unknowns with the crack

using the symmetry conditions,

N (O,y)=O ,
xx

(0,y)= 0
xx

Then replace

displacements,

g3(y) : u3CY) = wCx2)/h : wCO+,x2)/h ,

g4 (y) : u4 (y)- (X2/_) 2yu3 (y) : v(x2)/h- (X2/X)2x2wCx2)/h2 ,

= v (0+,x2)/h- (X2/X)2x2w(0+ ,x2)/5 2 ,

u4(Y) = v(x2) = g4(y) + (X2/X)2yg3(y) ,

g5 (y) = Us(y) = Py(x2) = Py CO+'x2) '

(5.88)

(5.87)

surface

(5.88)

(s.89)

(5.9o)

(5.01)

where ui(y ) are the crack opening displacements and gi(y ) are the

184



unknowns to be used. The in-plane displacement component, i=4,

determines this, see Eqns. 5.57,58. If u 4 were used as an unknown the

resulting matrix would not be diagonally dominant and there may be

numerical problems.

unknowns are:

The equations that relate gi(y) to the original

4

A(a) = 2 _ (m__va2)KjRj
ia_(1-v)2r j=l

4

ll-!=_-_.p.K.R.= qs(a)
-v j=1 J 3 3

4

_R. = 0
j=l 3

j4__lm_Rj q4 '

4
i a

7_R.K.(_pj-I) = aq3( )
j=l j J

, (5.92)

(5.93)

where

+00

qk(a) = -iaf_®gk(t)aeiat dt ,

The solution to Eqns. 5.93-96 is

5

Rj(a) = _ ?kJqk j:1,2,3,4
k=3 D(a) '

(5.94)

(s.gs)

(s.96)

k:3,4,5 (5.97)

, (5.98)

where D(a) is the same as Eqn. 5.71 and 7k j are as follows:

= -i K731 a{ 3Pz(P4-P2) + K4P4(P2-P3) + K2P2(P3-P4)} '

i
732 = _(K3P3(P4-p 1) + K4P4(Pl-P 3) + KlP I(p3-p4)} ,
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:  (K2p2 p4+K4p4%+ 1p1%p4 }
=i

734 aIK2P2(P3-Pl ) + K3P3(Pl-p 2) + K1Pl(P2-P3) ) ,

741 = IK3K4(P4-P3) + K2K4(P2-p 4) + K2K3(P3-P2) 1 ,

742 =-IK3K4(P4-P3) + K1K4(pl-p 4) + K1K3(P3-Pl) ) ,

743 = IK4K2(P4-P2) + K1K4(pl-p 4) + K2KI(P2-Pl) 1 ,

744 = -IK3K2(P3-P2) + K1K3(pl-p3) + K2Kl(p2-pl)) '

751

752

753

754

The following mixed

integral equations for

displacements:

-(l-Y) (K4(mP4-1)(P3-P2)+K3 (raP3-1)(P2-P4)+K2 (raP2-1)(P4-P3)),

(l-v) (K4(gP4-1)(P3-Pl)+K3(_P3-1)(PI-P4) +K1 (mPl-1)(P4-P3)},

-(l-v) (K4(_P4-1)(P2-Pl)+K2 (_P2-1)(Pl-P4) +K1 (mPl-1)(P4-P2)),

(l-v) (K3(_P3-1)(P2-Pl)+K2(_P2-1)(Pl-P3) +K1 (_Pl-1)(P3-P2))

(5.gg)

boundary conditions will produce three singular

the determination of the crack opening

Vx(O+,y) = -f3(y ) , y in Ln ' (5.100)

w(O+,y) = 0 , y outside of L , (5.I01)
n

= -f4(y) , y in Ln , (5.102)

g3(y) =

Nxx (0 + , y)

g4 (y)=v (0+ ,y)-(_t_l)t)2yw (0+,y) = 0 , y outside of L , (5.103)
n
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Mxy(O+,y) : -f5(y ) , y in Ln ' (5.104)

+

g5 (y) = py(O ,y) = 0 , y outside of Ln (5.io5)

See Eqn. 5.77 for the definition of L . Eqns. 5.100,102,104 with
n

5.48,53,54,92 become:

1 lira f+-[ 4 __va2)KjRj
-f3 (y) - 27 x-_O )_®[r(1-v)j_l(m.= erX +

4 mix} e_iay+ (_-_m.p.K.R.(a)e da
j=l J J .I .1

(5.ios)

t+oo 4 m.x

2_i x_olim| a_-[m.R.(a)e J e-iay da
-f4(Y) - :-® j=l J J

(5.107)

-2),4f , , l+v lira e+®{j_l [-erX(a2+r2)(m_-va2) -5ty) - 2x x*O J ® KjRjt Jar(l-v)

..
J

(5.1o8)

After asymptotic analysis, see section J.3 of Appendix J, these three

equations may be expressed as,

1 g3(t) 2 1 2 2 1 g4(t)

-f3(y) = ; _Ln(t_y)2 dt + _)_ [_(X2-_1)-1_21 ; fL n t-y
dt +

1
-[fl133 + (X2/X)2p34] ; f lnlt-ylg3(t)dt "

L
n

1 tAt 1 4

fL+ g3(t) JO(D-_yj__IKj [ia73j - (X2/_) 274j ]
n

- (m_-va2)
X[ + _m.p.] + a} cosa(t-y) da dt +

r(l-u) j j

187



" g4(t) J (D-_ Kj74j[ r(l-p)

_x2[_ 2 2 12- (X2-X1)- 2_2]} sina(t-y) da dt +

1

+ ; gs ( ) D(a) _ KjTsj r(1-v) + j j
n

+ _ g3(t) I33(t,y) dt + -_ g4(t) I34(t,y) dt +

n n

+ ; gs(t) Ias(t,y) dt , (S. loo)
I1

-f4 (y) =
1 _L g4(t) 2 2 fL
-- [3X2+Xll 1 g3 (t)

2_ n(t-y) 2 dt + t---_X2 j _ t-y
n

dt +

- '144 lfL 45 1SLlnlt-ylg4(t)dt - fll _ lnlt:ylg5(t)dt +

n n

,A.a 4 2 2+ ; [3x2+x_]"
l fL n g3 (t)Jo(Dj --_lmJ fia73j- (X2/X) 274j ] - t--_ 2 ])sina(t-y)dadt ÷

+- =g4(t) D-_ mj74 j + _ cosa(t-y) da dt +
n

1 t a_q__
+ - g5 ( ) mj 75 jlr 0 D(a) _ cosa(t-y) da dt +

n

'S,. - -+ _ g3(t) 143(t,y) dt + -_ g4(t) 144(t,y) dt +

n n

+_ g5(t) I45(t,y ) at , (5.1io)
n
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g_(t)
2), 4 . l+u )_(L- YY_Is(Y)- • 2

(t-y)
n

dt ÷

I 55 1 I lnlt-ylg5(t) dt +- fl154 _L1 lnlt-ylg4(t)dt - Pl _ L
n n

1 rat I 4

+ _ fL g3(t)Jo(Dj_:l Kj[ia73j-(k2/k)274j]
n

[ a2+r2 (m__ua2)_2amj])sina(t_y)dadt+x La_--_--_)

tAaj_ 1 [ __2+r2 (m__va2)_2amj+ ;i'Ll g4(t) JO _ = Kj74jLar(1_u) ] cosa(t-y)da dt +
n

tat a 4

1 _L =+-, gs(t)Jo(D-_ZjTsj rt_7_i(l_)a2+r2(m_-ua2)-2am'] +3
n

+ a(l+u)) cosa(t-y) da dt +

+ 1 _ g3(t) i53(t,y ) dt + _I_ g4(t) T54(t,y ) dt +
T. 1F L

n n

if -+- gs(t) I55(t,y ) dt ,
L

n

(5.111)

5.5 Skew-Symmetric Loading, Mode 2 and 3_ results.

The results for the interaction of two equal length (a/h=1)

cracks in a cylinder are presented in tables 5.9-11 (axial) and 5.12-

14 (circumferential). The three possible loadings, in-plane shear,

twisting, and out-of-plane shear are included. The effect of

curvature is not as strong as for the symmetric problem of Sec. 5.3.
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Also the difference between the axial and the circumferential crack is

minimal, especially for twisting, see tables 5.10,13. Both primary

and secondary values of the SIFs change very little. The only trends

that can be observed

component of the SIF

circumferential crack,

with respect to curvature are the mode 3

for in-plane shear loading is greater for the

see tables 5.9,12, and for out-of-plane shear

there is a notable difference in the in-plane shear component of the

SIF, again greater for the circumferential crack, 5.11,14.
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Table 5.1 Mode 1 normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to membrane

loading. The inner and outer crack tips are

located at y/a=_b, Ic respectively where a/h=(c-

b)/(2h)=l, Ol=Nx/h, v=.3, M*Nx, B*M x.

MEIIBRANELOADING

b/a 0.05 0.125 0.25 0.5 1

R/h

@00

kM(b)

alPa

5 2.074 1.634 1.431 1.318 1.265 1.158
10 1.889 1.489 1.299 1.188 1.139 1.081
20 1.825 1.439 1.252 1.139 1.082 1.041
50 1.802 1.420 1.234 1.118 1.056 1.016
_® 1.795 1.414 1.229 1.112 1.048 1.000

5 1.392 1.341 1.304 1.274 1.244 1.158

kM(c ) 10 1.241 1.199 1.169 1.144 1.128 1.081
20 1.182 1.143 1.113 1.087 1.069 1.041

al_'_'a 50 1.158 1.119 1.089 1.060 1.039 1.016
• ® 1.115 1.112 1.081 1.052 1.028 1.000

5 .248 .169 .124 .093 .084 .103

kB(b ) 10 .192 .136 .103 .076 .060 .071
20 .139 .i00 .077 .058 .045 .046

al_ 50 .081 .080 .047 .037 .028 .025
_® .000 .000 .000 .000 .000 .000

5 .106 .096 .089 .087 .093 .103

kB(C ) 10 .087 .076 .068 .061 .059 .071
20 .088 .059 .052 .045 .040 .046

al_"_ 50 .043 .038 .033 .029 .025 .025
_® .000 .000 .000 .000 .000 .000
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Table 5.2 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to bending. The

inner and outer crack tips are located at y/a=*_,

• c respectively where a/h=(c-b)/(2h)=l, o2=6Mx/h" ,

v=.3, M_Nx, B_Mx.

BENDING

b/a 0.05 0.125 0.25 0.5 1
R/h

5 1.205 1.006 .902 .824 .771 .725
10 1.240 1.033 .924 .841 .783 .735
20 1.262 1.051 .939 .853 .791 .740
50 1.279 1.064 .950 .862 .798 .745
*® 1.294 1.076 .960 .870 .805 .747

5 .828 .809 .790 .770 .751 .725

kB(C ) 10 .847 .825 .804 .781 .761 .735
20 .860 .837 .815 .790 .768 .740

a2,I'-aa 50 .870 .846 .823 .797 .774 .747
*® .880 .855 .831 .805 .780 .747

5 .089 .069 .060 .055 .049 .033

kM(b ) 10 .048 .038 .033 .031 .030 .022
20 .025 .020 .018 .017 .018 .014

o2_a 50 .011 .008 .008 .007 .008 .007
_® .000 .000 .000 .000 .000 .000

5 .063 .059 .055 .051 .045 .033

kM(C ) 10 .036 .034 .033 .031 .030 .022
20 .020 .019 .018 .018 .018 .014

e2_'a 50 .009 .008 .008 .008 .008 .007
÷® .000 .000 .000 .000 .000 .000
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Table 5.3 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to membrane

loading. The inner and outer crack tips are

located at y/a=*b, *c respectively where a/h=(c-

b)/(2h)=2, Ol=Nx/h , v=.3, M+Nx, B*Mx.

I_]_mAl_ LOADING

b/a 0.05 0.125 0.25 0.5 1
R/h

_W

5 3.904 2.924 2.464 2.117 1.779 1.480
I0 2.442 1.917 1.683 1.553 1.456 1.267
20 2.019 1.593 1.397 1.290 1.245 1.144
50 1.850 1.459 1.272 1.161 1.109 1.033
*® 1.795 1.414 1.229 1.112 1.048 1.000

5 2.553 2.305 2.109 1.889 1.668 1.480

kM(C ) 10 1.674 1.596 1.539 1.480 1.401 1.267
20 1.359 1.311 1.278 1.251 1.227 1.144

al_a"a 50 1.208 1.168 1.139 1.114 1.099 1.033
• ® 1.115 1.112 1.081 1.052 1.028 1.000

5 .371 .206 .140 .140 .175 .166

kB(b ) 10 .305 .196 .136 .107 .119 .135
20 .251 .170 .122 .088 .080 .099

al_I-_-_a 50 .176 .124 .092 .067 605_

_® .000 .000 .000 .000 .000 .000

5 .197 .189 .189 .193 .188 .166

kB(C ) 10 .130 .122 .121 .127 .139 .135
20 .103 .092 .085 .082 .089 .099

al_[-_a 50 .078 .068 .060 .052 .049
• 05_

• ® .000 .000 .000 .000 .000 .000
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Table 5.4 Mode 1 normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to bending. The

inner and outer crack tips are located at y/a=*_,

*c respectively where a/h=(c-b)/(2h)=2, o2=6Mx/h',

u=.3, M+Nx, B_Mx.

BENDING

b/a 0.05 0.125 0.25 0.5 1
R/h

5 1.111 .922 .812 .735 .690 .648

kB(b ) I0 1.167 .966 .846 .757 .708 .668
20 1.211 1.000 .872 .776 .721 .681

o2_-'a 50 1.250 1.030 .896 .793 .733 .691
4® 1.291 1.060 .920 .813 .748 .700

5 .745 .726 .709 .690 .673 .648

kB(C ) 10 .768 .747 .727 .708 .692 .668
20 .789 .765 .743 .721 .704 .681

a2_'__a 50 .809 .782 .758 .733 .713 .691
4® .833 .803 .776 .749 .726 .700

5 .321 .224 .173 .128 .086 .059

kM(b ) 10 .148 .111 .093 .079 .063 .042
20 .079 .060 .052 .047 .042 .029

a2_-'a 50 .035 .027 .024 .022 .022 .016
4® .000 .000 .000 .000 .000 .000

5 .190 .158 .130 .100 .075 .059

kM(C ) 10 .098 .088 .079 .068 .055 .042
20 .056 .052 .048 .044 .039 .029

o2_'a_a 50 .026 .025 .024 .023 .022 .016
4® .000 .000 .000 .000 .000 .000
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Table 5.5 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to
membrane loading. The inner and outer crack tips
are located at y/a=ib, *c respectively where

a/h=(c-b)/(2h)=l, Ol=Nx/h , v=.3, M+Nx, B_M x.

MEMBRANELOADING

b/a 0.05 0.125 0.25 0.5 1 +®
R/h

5

kM(b ) 10
2O

alJ_-'a 50

1.827 1.440 1.252 1.138 1.079 1.036
1.806 1.423 1.237 1.121 1.059 1.018
1.798 1.417 1.231 1.115 1.052 1.009
1.796 1.415 1.229 1.113 1.049 1.003
1.795 1.414 1.229 1.112 1.048 1.000

5

kM(C ) 10
2O

al_"a 50
,-I.®

1.182 1.142 i. III 1.083 1.064 1.036

1.162 1.122 1.091 1.063 1.041 1.018
1.154 1.115 1.084 1.055 1.033 1.009
1.152 1.113 1.082 1.052 1.029 1.003
1.115 1.112 1.081 1.052 1.028 1.000

5

kB(b ) 10
2O

al J-_'a 50

• 200 .143 .II0 .081 .062 .076
• 154 .113 .088 .068 .051 .052
• 107 .079 .063 .050 .038 .033
•058 .044 .035 .028 .022 .018
.000 .000 .000 .000 .000 .000

5

kB(C ) 10
2O

alJ'_a 50

•086 .077 .069 .061 .057 .076
•076 .067 .059 .051 .044 .052
•056 .050 .044 .038 .033 .033
•033 .029 .026 .023 .020 .018
.000 .000 .000 .000 .000 .000
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Table 5.6 _ode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to

bending. The inner and outer crack tips are
located at y/a=_b, _c respectively where a/h=(c-

b)/(2h)=l, o2=6Mx/h 2, u=.3, M*Nx, B_Mx.

BBNDING

b/a 0.05 0.125 0.25 0.5 1
R/h

-4.00

kB(b)

5 1.013 .854 .773 .713 .676 .675
I0 1.125 .942 .847 .775 .725 .707
20 1.199 1.001 .897 .816 .759 .725
50 1.253 1.043 .932 .846 .785 .740
*® 1.294 1.076 .960 .870 .805 .747

5 .704 .693 .683 .673 .667 .675

kB(C)__ 10 .770 .755 .739 .722 .708 .707
20 .817 .798 .778 .757 .738 .725

a2_-'a 50 .852 .830 .808 .783 .761 .740
• ® .880 .855 .831 .805 .780 .747

5 .042 .033 .030 .029 .030 .024

kM(b)__ I0 .024 .019 .017 .017 .018 .016
20 .013 .010 .009 .009 .010 .010

a2_a 50 .006 .004 .004 .004 .004 .005
• ® .000 .000 .000 .000 .000 .000

5 .032 .031 .030 .030 .030 .024

kM(c)__ 10 .019 .018 .018 .018 .018 .016
20 .011 .010 .010 .010 .011 .010

a2_a-'a 50 .005 .004 .004 .004 .005 .005
*® .000 .000 .000 .000 .000 .000
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Table 5.7 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to
membrane loading. The inner and outer crack tips
are located at y/a=_b, _c respectively where

a/h= (c-b) / (2h)=2, Ol=Nx/h, v=-. 3, M*Nx, B*Mx.

ifl_MBRANI_LOADING

b/a 0.05 0.125 0.25 0.5 1
R/h

5 1.992 1.569 1.372 1.261 1.211 1.124
i0 1.868 1.472 1.283 1.171 1.118 1.066
20 1.821 1.435 1.248 1.134 1.075 1.034
50 1.801 1.419 1.234 1.118 1.055 1.014
_® 1.795 1.414 1.229 1.112 1.048 1.000

5 1.325 1.278 1.244 1.216 1.193 1.124

kM(c)_ _ I0 1.221 1.180 1.149 1.123 1.106 1.066
20 1.177 1.138 1.107 1.080 1.061 1.034

al_ 50 1.157 1.118 1.087 1.059 1.037 1.014
_® 1.115 1.112 1.081 1.052 1.028 1.000

5 .212 .133 .084 .055 .061 .112

kB(b ) 10 .236 .163 .117 .081 .065 .099
20 .207 .148 .110 .080 .060 .073

al_a 50 .140 .102 .078 .059 .045 .043
_® .000 .000 .000 .000 .000 .000

5 .056 .058 .062 .073 .093 .112

kB(C)__ 10 .082 .075 .070 .067 .072 .099
20 .087 .077 .068 .060 .056 .073

al_a-'a 50 .068 .060 .053 .045 .039 .043
*® .000 .000 .000 .000 .000 .000
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Table 5.8 Mode 1 normalized stress intensity

factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to

bending. The inner and outer crack tips are

located at y/a=*b, *c respectively where a/h=(c-

b)/(2h)=2, o2=6Mx/h2 , v=.3, M*Nx, B_M x.

BENDING

b/a 0.05 0.125 0.25 0.5 1
R/h

-4®

5 .714 .612 .555 .520 .516 .530

kB(b)__ 10 .884 .746 .665 .607 .583 .593
20 1.030 .860 .758 .681 .641 .637

o2_a-'a 50 1.163 .963 .841 .748 .894 .673
*® 1.291 1.060 .920 .813 .748 .747

5 .517 .516 .517 .519 .525 .530

kB(C)__ 10 .599 .592 .587 .583 .584 .593
20 .677 .664 .651 .639 .632 .637

o2_"a 50 .754 .733 .713 .693 .677 .673
*® .833 .803 .776 .749 .726 .747

5 .091 .072 .063 .059 .053 .038

kM(b )_ 10 .061 .048 .043 .041 .040 .029
20 .038 .030 .026 .025 .026 .021

o2__-'a 50 .018 .014 .012 .012 .013 .012
*® .000 .000 .000 .000 .000 .000

5 .063 .060 .057 .053 .048 .038

kM(C)__ 10 .045 .043 .041 .040 .038 .029
20 .029 .028 .027 .026 .026 .021

a2_-a_a 50 .014 .013 .013 .013 .013 .012
*® .000 .000 .000 .000 .000 .000
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Table 5.9 Modes 2_3 normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to in-plane
shear. The inner and outer crack tips are located

at y/a=*b, *c respectively ,here a/h=(c-b)/(2h)=l,

o4=Nxy/h , v--.3, l*Nxy, M_Mxy , O*Vx.

IN-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 i

R/h

5 1.912 1.495 1.290 1.159 1.082 1.031
10 1.860 1.460 1.265 1.141 1.069 1.016
20 1.829 1.439 1.249 1.128 1.061 1.008
50 1.809 1.425 1.237 1.120 1.054 1.003
*® 1.795 1.414 1.229 1.112 1.048 1.000

5 1.208 1.161 1.123 1.087 1.058 1.031

k2i(c ) 10 1.186 1.142 1.107 1.074 1.046 1.016
20 1.171 1.129 1.096 1.065 1.039 1.008

a4_'_"a 50 1.160 1.120 1.088 1.058 1.033 1.003
_® 1.115 1.112 1.081 1.052 1.028 1.000

5 -.068 -.044 -.030 -.019 -.014 -.020

k2T(b ) I0 -.049 -.034 -.025 -.018 -.013 -.014
20 -.032 -.023 -.018 -.013 -.010 -.009

O4,['_s 50 -.017 -.013 -.010 -.008 -.006 -.005
_® .000 .000 .000 .000 .000 .000

5 -.006 -.008 .009 -.012 -.014 -.020

k2T(C ) I0 -.008 -.009 .009 -.009 -.010 -.014
20 -.008 -.008 -.008 -.008 -.007 -.009

a4J'_-'a 50 -.006 -.006 -.005 -.005 -.005 -.005
_® .000 .000 .000 .000 .000 .000

5 -.008 -.017 -.028 -.039 -.047 -.050

k30(b ) 10 -.002 -.007 -.012 -.018 -.022 -.026
20 -.001 -.003 -.005 -.008 -.011 -.014

a4_-"a 50 -.000 -.001 -.002 -.003 -.004 -.006
_® .000 .000 .000 .000 .000 .000

5 .090 .078 .068 .059 .052 .050

k30(c ) 10 .051 .045 .039 .034 .029 .026
20 .028 .024 .022 .019 .016 .014

a4J'_'a 50 .012 .011 .009 .008 .007 .006
_® .000 .000 .000 .000 .000 .000
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Table 5.10 Modes2&3 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to twisting. The
inner and outer crack tips are located at y/a=*_,

*c respectively where a/h=(c-b)/(2h)=l, a5=6_xy/h_ ,

v=.3, I*Nxy , T_Mxy, O_Yx.

TWISTING

b/a 0.05 0.125 0.25 0.5 1
R/h

-_®

5 .666 .576 .537 .519 .516 .519

k2T(b ) 10 .670 .579 .540 .521 .517 .520
20 .672 .581 .541 .522 .518 .521

o5_-'a 50 .674 .582 .542 .523 .519 .521

*® .675 .583 .543 .524 .519 .522

5 .503 .505 .509 .512 .516 .519

k2T(C ) 10 .504 .506 .509 .513 .517 .520
20 .504 .507 .510 .514 .517 .521

as_'a 50 .505 .507 .510 .514 .518 .521

_® .506 .508 .511 .515 .518 .522

5 -.019 -.013 -.010 -.007 -.006 -.007

k2i(b) 10 -.014 -.010 -.007 -.005 -.004 -.005
20 -.009 -.006 -.005 -.004 -.003 -.003

o5_'a 50 -.005 -.004 -.003 -.002
_® .000 .000 .000 .000 .000 .000

5 -. 006 -. 006 -. 006 -. 006 -. 006 -. 007

k2i(c ) 10 -.005 -.005 -.004 -.004 -.004 -.005
20 -. 004 -. 004 -. 003 -. 003 -. 003 -. 003

a 5,]'a"a 50 -. 002 -. 002 -. 002 -. 002 -. 002 -. 002
*® .000 .000 .000 .000 .000 .000

5 -.004 .007 .025 .047 .062 .069
I0 -.005 .006 .024 .047 .062 .069
20 -.005 .005 .024 .046 .062 .070
50 -.005 .005 .023 .046 .062 .070
_® -.005 .005 .023 .046 .062 .070

k30(c)

a5_

5 -.100 -.092 -.085 -.077 -.071 -.069
10 -.102 -.094 -.086 -.078 -.072 -.069
20 -.103 -.095 -.087 -.079 -.073 -.070
50 -.103 -.096 -.088 -.079 -.073 -.070
_® -.104 -.096 -.088 -.079 -.073 -.070
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Table 5.11 Modes2&3 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to out-of-plane
shear. The inner and outer crack tips are located
at y/a=_b, _c respectively where a/h=(c-b)/(2h)=l,
a3=3Vx/(2h), v=.3, I_Nxy , W+Mxy, O+Vx.

OUT-OF-PLAI_ SHEAR

b/a 0.05 0.125 0.25 0.5 1
R/h

k30 (b)

a3_

5 2.876 2.103 1.797 1.682 1.665 1.661
10 2.897 2.116 1.806 1.689 1.672 1.671
20 2.905 2.121 1.810 1.692 1.675 1.674
50 2.908 2.123 1.812 1.694 1.676 1.676
_® 2.909 2.124 1.812 1.694 1.677 1.676

5 1.748 1.689 1.664 1.658 1.661 1.661

k30(c ) 10 1.757 1.697 1.671 1.665 1.669 1.671
20 1.761 1.701 1.674 1.667 1.671 1.674

a3_a"a 50 1.762 1.702 1.675 1.668 1.672 1.676
+® 1.763 1.702 1.675 1.669 1.673 1.676

5 .016 .024 .031 .040 .049 .053

k2i(b ) 10 .008 .011 .014 .019 .024 .028
20 .004 .005 .007 .009 .011 .014

a3_a 50 .001 .002 .003 .003 .004

_® .000 .000 .000 .000 .000 .000

5 -.075 -.067 .062 -.057 -.054 -.053

k2i(c ) 10 -.042 -.038 -.034 -.032 -.029 -.028
20 -.023 -.020 -.019 -.017 -.016 -.014

a3_a 50 -.009 -.008 -.008 -.007 _ _ 007
_® .000 .000 .000 .000 .000 .000

5 -.074 -.155 -.251 -.358 -.429 -.455

k2T(b ) 10 -.074 -.155 -.251 -.359 -.433 -.462
20 -.074 -.155 -.251 -.360 -.433 -.465

a3_-_a 50 -.074 -.155 -.251 -.360 _ _ 433
+® -.074 -.155 -.251 -.360 -.433 -.466

5 .568 .518 .489 .471 .462 .455

k2T(C ) 10 .580 .528 .498 .479 .469 .462
20 .585 .532 .502 .482 .472 .465

a3_ 50 .587 .534 .503 .484 .473 .465
*® .588 .535 .504 .484 .474 .466
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Table 5.12 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to

in-plane shear. The inner and outer crack tips are

located at y/a=*b, *c respectively where a/h=(c-

b)/(2h)=l, a4=Nxy/h , u= 3, I*N T_M O*V• xy' xy ' x"

IN-PLANB SHEAR

b/a 0.05 0.125 0.25 0.5 1

R/h

5

k2i(b ) 10
20

o4_-'a 50

1.979 1.539 1.322 1.182 1.098 1.036
1.880 1.474 1.275 1.149 1.077 1.018
1.835 1.443 1.252 1.131 1.064 1.009
1.810 1.425 1.238 1.120 1.055 1.003
1.795 1.414 1.229 1.112 1.048 1.000

5

k2i(c) I0
20

o4_a'a 50

1.223 1.174 1.135 1.098 1.066 1.036
1.192 1.148 1.113 1.079 1.051 1.018
1.173 1.132 1.099 1.067 1.042 1.009
1.160 1.120 1.089 1.058 1.034 1.003
1.115 1.112 1.081 1.052 1.028 1.000

5

k2T(b ) 10
2O

o4,[_a 50

-.142 -.093 -.063 -.040 -.025 -.025
-.089 -.061 -.044 -.031 -.021 -.017
-.053 -.037 -.028 -.021 -.015 -.011
-.025 -.018 -.014 -.011 -.009 -.006

.000 .000 .000 .000 .000 .000

5

k2T(C ) I0
2O

o4,,[-a-'a 50

•013 .007 .001 -.004 -.011 -.025
- .001 - .003 - .005 -.007 - .009 -.017

-.005 -.006 -.007 -.007 - .007 -.011
-. 005 -. 005 -. 005 -. 005 -. 005 -. 006

•000 .000 .000 .000 .000 .000

5

k30(b ) 10
20

o4J-_a 50

-. 018 -. 041 -. 067 -. 098 -. 125 -. 150
-.005 -.015 -.028 -.043 -.057 -.075
-.002 -.006 -.013 -.020 -.027 -.038
-.000 -.002 -.005 -.008 -.011 -.015

.000 .000 .000 .000 .000 .000

5

k30(c ) 10
2O

o4_a 50

.296 .260 .230 .199 .173 .150

. 156 . 138 . 122 . 107 .093 . 075

.080 .071 .063 .056 .049 .038

.033 .029 .026 .023 .020 .015

.000 .000 .000 .000 .000 .000
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Table 5.13 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential

cracks in a cylinder of radius R/h subjected to

twisting. The inner and outer crack tips are

located at y/a=*b, *c respectively where a/h=(c-

b)/(2h)=l, a5=6Mxy/h2, _-.3, I+Nxy , T*Mxy , O*Vx.

TWISTINC

b/a 0.05 0.125 0.25 0.5 1
R/h

5

k2T(b ) 10
2O

Oaf_a 50

•665 .574 .535 .517 .514 .519
.670 .578 .539 .520 .516 .520
• 672 .580 .541 .522 .518 .521
•674 .582 .542 .523 .518 .521
• 675 .583 .543 .524 .519 .522

5

k2T(C ) 10
2O

Osg  50

.502 .505 .508 .512 .516 .519
.503 .506 .509 .513 .516 .520
.504 .507 .510 .513 .517 .521

.505 .507 .510 .514 .517 .521
.506 .508 .511 .515 .518 .522

5

k2i(b ) 10
2O

5o

-.035 - .023 -.017 - .011 -.008 - .010
-.022 -.015 -.011 -.008 -.006 -.006
-.014 -.010 -.007 -.005 -.004 - .004
-.007 -.005 -.004 -.003 -.002 -.002

.000 .000 .000 .000 .000 .000

5

k2i(c ) 10
20

asJ_-'a 50

5

k30(b ) 10
20

o5/_a 50

-.003 .009 .028 .050 .065 .069
-.004 .006 .025 .047 .063 .070
-.005 .006 .024 .047 .062 .070
-.005 .005 .023 .046 .062 .070
-.005 .005 .023 .046 .062 .070

5

k30(c ) I0
2O

as_'a 50

-.098 -.090 -.083 -.075 -.070 -.069
-.102 -.094 -.086 -.077 -.072 -.070

-.103 -.095 -.087 -.078 -.073 -.070
-.103 -.096 -.088 -.079 -.073 -.070
-.104 -.096 -.088 -.079 -.073 -.070
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Table 5.14 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to

out-of-plane shear. The inner and outer crack tips
are located at y/a=_b, _c respectively where

a/h=(c-b) / (2h) =1, o3=3Vx/(2h), v=.3, I*Nxy , T_Mxy ,

O*V
X"

OUT-OF-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1
R/h

.4W

5

k30(b ) 10
2O

o3,1-7" 5o

2.565 1.897 1.632 1.537 1.532 1.547
2.793 2.047 1.751 1.641 1.628 1.635
2.873 2.100 1.793 1.678 1.661 1.664
2.902 2.119 1.809 1.691 1.673 1.674
2.909 2.124 1.182 1.694 1.677 1.676

5

k3o(C ) 10
2O

o3,l-_a 50

1.561 1.526 1.514 1.518 1.532 1.547
1.694 1.643 1.621 1.618 1.626 1.635
1.742 1.684 1.659 1.653 1.658 1.664
1.759 1.699 1.672 1.666 1.670 1.674
1.763 1.702 1.675 1.669 1.673 1.676

5

k2i(b ) 10
2O

o3_-'a 50

.040 .058 .076 .099 .124 .152
.021 .030 .039 .050 .063 .081
.010 .015 .019 .025 .031 .042
.004 .006 .008 .010 .012 .017
.000 .000 .000 .000 .000 .000

5

k21(c ) 10
2O

o3,_-'a 50

-.222 -.201 -.187 -.176 -.164 -.152
-.127 -.114 -.106 -.099 -.093 -.081
-.067 -.060 -.056 -.052 -.049 -.042

-.027 -.025 -.023 -.022 -.020 -.017
.000 .000 .000 .000 .000 .000

5

k2T(b ) 10
20

e3_a 50

-.067 -.141 -.230 -.331 -.400 -.422
-.071 -.151 -.244 -.350 -.423 -.452
-.073 -.154 -.249 -.357 -.430 -.462
-.074 -.155 -.251 -.359 -.433 -.465
-.074 -.155 -.251 -.360 -.433 -.466

5

k2T(C ) 10
20

o31_-'a 5o

.500 .460 .437 .424 .418 .422

.557 .509 .480 .463 .454 .452

.578 .526 .496 .477 .467 .462

.586 .533 .502 .483 .472 .465

.588 .535 .504 .484 .474 .466
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Figure 5.1 Stresses ahead of an axial crack
(a/h=l) in a cylinder subjected to membrane
loading, _=.3.
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Figure 5.2 Stresses ahead of an axial crack

(a/h=l) in a cylinder subjected to bending. The

dashed line corresponds to R/h+®, u=.3.
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Figure 5.3 Stresses ahead of a circumferential
crack (a/h=l) in a cylinder subjected to membrane
loading, u=.3.
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5.4 Stresses ahead of a circumferential

(a/h=l) in a cylinder subjected to bending,
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Figure 5.5 Out-of-plane displacement w(O+,y) as
measured from y=O in the deformed position for a

cylinder with an axial crack subjected to either

membrane loading (o==_x/h) or bending (Ob=6_x/h2),

v=. 3.
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Figure 5.6 Out-of-plane displacement w(O+,y) as
measured from y=O in the deformed position for a
cylinder with a circumferential crack subjected to

either membrane loading (am=_x/h) or bending

(Ob=6_/h2), u=.3.
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CHiPTBk 6

Part-Through Cracks in Shells

The singular integral equations for part-through crack problems

are obtained directly from the corresponding through crack equations

given in Chapter 5. The compliance relations of Chapter 2 and

Appendix C are used even though they correspond to the strip solution

which does not take into account shell curvature. The plane strain

problem for an edge cracked cylinder [74], and the axisymmetric case

of a circumferentially cracked cylinder [75], could be used to obtain

these coefficients, but there are convergence problems for shell-like

geometries, and also a different set of constants would be required

for each curvature. Since the assumption of shallowness has already

been applied, neglect of this curvature effect should not be too

significant, see [60]. The line-spring model solutions are normalized

with respect to the edge crack solution as explained in section C.4 of

Appendix C. Perhaps if the solution is considered to be normalized

with respect to the actual "long crack" shell solution instead of the

plane strain strip value, the accuracy of the result will improve.

This idea is similar to what happens when a compliance curve that is

not too accurate is used. The resulting ratio is more accurate than

the actual value of the SIF.

There are some basic differences between plate and shell problems

besides the mathematical complication that shell curvature introduces.

In a plate, loading at "infinity' for any of the five loads of tension
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(Nxx), bending (Mxx), out-of-plane shear (Yx) , in-plane shear (Nxy),

and twisting (Mxy), results in an "uncracked" solution that is

constant throughout the plate. Therefore, in the perturbation

problem, the solution to the various loading cases is obtained by

simply applying the negative of these loads to the crack surfaces.

The process of determining the perturbation loads in shells for a

given external loading is not as easy. In a cylinder, for example,

any loading at infinity can result only in membrane or in-plane shear

at the crack region, (excluding minor secondary contributions). The

loading cases of bending, out-of-plane shear and twisting become

important when an external force is applied near the crack region. To

make use of the various shell solutions, the solution to the shell

without a crack must first be obtained. This will in general require

numerical techniques.

With the present formulation the surface crack can lie along any

principal line of constant curvature of a shell. This uncouples the

symmetric mode 1 loading, from the skew-symmetric loading that couples

modes 2 and 3. If the crack were positioned at an arbitrary angle,

then all three fracture modes interact, see [30]. The most practical

problem represented here would be a mode 1 contribution resulting from

torsion of a cylinder.

The different geometries that are considered include the sphere,

cylinder and circular pipe elbow, which is represented by a toroidal

shell. Also the crack may lie on the outside or inside of the shell

by imposing positive or negative curvature, respectively. The
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emphasis in the results will be the effect of curvature on the SIF at

the maximum penetration point of a semi-elliptical surface crack.

6.1 Mode 1.

From Eqns. 5.84,85, 2.31, and from the superposition of Fig. C.1,

the integral equations for the symmetrically loaded part-through crack

are found to be:

l__ I b Ul (t)

2f Ya (t-y) 2

1 2 tb

dt+ ui(t)Ki1(z) dt

- 711Ul (y) - 712u2(Y) = -_x = -_1 '

(1_V2) _b u2(t ) 1 2 tb

dt+ ;.ZJat=' ui(t)Ki2(z)dt_42I I (t-y) ia

(6.1)

- 712u1(Y) - 722u2 (y) = -_x = -_2/6 ' (6.2)

kerne]s may be obtained from Eqns. 5.84,85 and Appendix J.where the

The LSM for inner surface cracks _n a pressurized cylinder is compared

to solutions from Raju and Newman [34] in Fig. 6.1, and to solutions

from O'Donoghue et. al. [40] in Fig. 6.2. The only case where

agreement is poor is for the semi-circular crack with a/h=Lo/h=.2 ,

which is a rather severe geometry for the model. Outward bulging of

the shell surface along the line of the crack is presented in Fig. 6.3

for an outer circumferential crack in a cylinder. Fig. 6.4 shows the

inner crack case where the bulging is inward. The tension case of 6.4

shows that the depression does not always increase as the crack gets

deeper (i.e. increasing Lo/h ) because of the tendency of the crack to
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bulge outward when there is no net ligament. The net ligament causes

a bending component that forces the surface inward and these two

effects oppose each other. Therefore it would be difficult to predict

crack depth by a measurement from the back surface.

To date, as far as I know, the LS_ has only been applied to

cracked cylinders, see for example [49,60]. In tables 6.1-5 the

solution to the spherical shell is presented for both inner and outer

cracks of varying depths and lengths. It is noted that the results

are sensitive to curvature. Also for a given geometry the SIFs are

higher for the external crack than for the internal crack. In table

6.6 the SIF distribution along the contour of a semi-elliptical crack

located at different positions in a toroidal shell is presented. The

four locations, denoted A through D, are shown in Fig. 6.5. Also the

crack may be internal or external, making a total of eight cases that

are given in this table, and in the tables that follow. It is noted

that the functional behavior of the SIF does not vary much from

position to position. This supports giving only the value of the SIF

at the center of the crack. Therefore, the plate results may be used

to get an idea about this distribution given the crack size and

maximum penetration value. These results are given in Chapter 4 for a

wide range of crack lengths and depths. The toroidal shell results

for mode 1

the cylinder

R/h=lO. The

Ri/R,

loading are presented in tables 6.7-22. In these tables

radius to shell thickness ratio is held constant at

main parameter study is the elbow curvature given by

see Fig. 6.5. Values of crack length to shell thickness (a/h),
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of .5, 1., 2., 4., are used. As expected, the longer the crack, the

more the influence of elbow curvature. The results given in the

tables are for constant crack surface membrane and bending loads. It

should be noted that in order to obtain the solution to the practical

case of an internally pressurized toroidal shell, or to any other

external loading, the uncracked shell solution must first be obtained.

In general this solution will not be constant over the length of the

crack. This is not a concern with either the sphere or cylinder

because the uncracked solution is constant due to symmetry. However,

it is most likely the case that the variation is not considerable and

that the results in the tables may be directly applied once the actual

crack surface loading is determined.

6.2 _odes 2 and 3

From Eqns. 5.109-111, 2.31, and from the superposition of Fig.

C.1, the integral equations for the skew-symmetrically loaded part-

through crack may be expressed as:

1 _b g3(t) 1 2 2 1 g4 (t)

-" _a (t-y) 2 dt + _2[_(_2-_1)-1_2] _ fL n t-y
dt

1+- gi(t)Ki3(z) dt - 733Us(Y) = -_
_i=3a x

-- -8 ' (6.3)

1 Y ----dt + _i=_3J a gi(t)Ki4(z ) dt

_b g4(t) 1 5 ,b

a (t-y) 2

- '}'44u4 (y) - 745u5 (y) = -_xy -_4 ' (6.4)
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(l_v2) _b g5(t)
X42_ a (t-y) 2

2 2

[3X2*X1] 1 g3 (t)

n

dt

1 3 tb

+ gi(t)Ki5(z) dt - 754u4(Y) - 755u5(Y )
D= -[Ixy  sle,

(6.5)

where,

g3(y) : w(0+,y) = u3(Y ) , (6.6)

g4(Yl:v(O+,y)-(X_/kl2yw(O+,y) = u4(Y)-(k_/_12yu3(Y ) , (6.71

u4(Y) = g4(y) + (X]/k)2yg3(y) , (6.8)

g5(Y) = _yCO+,y) = usCY ) (6.9)

The Fredholm kernels may be obtained from Chapter 5 and Appendix J.

Because of the assumption made in Eqn. 2.12 (see Eqn. 6.10)

concerning self-similar crack growth under mode 2 loading, solutions

to these equations apply only to cases where crack growth is coplanar.

There are no solutions to compare with as in the mode 1 problem. If

the results can be verified, then the mixed-mode solution involving

all three modes should give good results. However the solution is not

expected to be as accurate as for mode l, since it was observed in

Chapter 4 that there is very little difference in the value of the

secondary SIF between the rectangular and the semi-elliptical

profiles. In the latter case the secondary value should become of

primary importance as the ends are approached because of changing

crack front curvature. Physically the problem with the model is that

everything is calculated in a plane perpendicular to the plate
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surfaces, while the SIF is defined in a plane normal to the crack

front. Considering this it is remarkable that the comparisons with

the finite element solutions are so close for mode 1, see Figs. 4.1-4,

6.1,2. Perhaps the mechanism of the model is such that the energy

release rate, the expression for which is repeated below,

= - K1 + K2 + _U_ K3 ,

is more accurate than the individual values of the SIFs. If this is

true, then it may explain why the secondary value of the line-spring

SIF does not behave as expected, i.e. the above combination of K2 and

K3 is more accurate. In the mode 1 case, it doesn't matter because

there is only one non-zero value. Since the secondary value is zero

in the center of the crack due to symmetry, the primary SIF may not be

too affected by the rest of the curve. This of course is the most

dependable value calculated by the LSM.

The results in tables 6.23-34 are for axial and circumferential

semi-elliptical cracks in a cylinder of varying radius. Crack lengths

and depths are also varied. The value at the center of the crack is

reported. In the case of twisting, as can be seen from the plate

results of Chapter 4, the maximum is typically at the ends. This is

because of the strip results from Appendix C, table C.1 (a5) , where

the SIF decreases as the crack goes deeper into the plate. As with

the mode 1 results, the plate solutions may be used to get an idea of

the character of the distribution. The results for out-of-plane shear

are nearly insensitive to radius, except for long and deep cracks.

The in-plane shear, the most important loading case, behaves in a more
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reasonable way. More results for the toroidal shell are presented in

tables 6.35-46 for a/h=l,2, and R/h=lO. As with the mode 1 tables,

the elbow curvature is the parameter that is of most interest. Again

these results are not very sensitive to curvature. This should be

expected from the results of the cylinder.
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Table 6.1 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=.5, u=.3.

MRMIRRA_ LOADING

External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

K1 (0) 10
20

Klm 50

.735 .400 .182 .0525 .00566

.733 .396 .179 .0512 .00554

.731 .394 .177 .0506 .00549

.730 .392 .175 .0502 .00547
_® .729 .390 .174 .0499 .00547

Internal crack

5 .718 .380 .172 .0514 .00594

KI(O ) I0 .723 .384 .173 .0506 .00571
20 .725 .386 .173 .0502 .00559

Klm 50 .727 .388 .174 .0500 .00552

*® .792 .390 .174 .0499 .00547

BENDING

External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

K1 (0) 10
20

Klb 50

.716 .318

.713 .313

.712 .310

.710 .308
*® .709 .306

Internal crack

•0630 -.0244 -.00910
.0586 -.0262 -.00935
•0562 -.0271 -.00947
•0546 -.0276 -.00955
•0532 -.0281 -.00960

5 .698 .294

K1(0) 10 .702 .298
20 .705 .301

Klb 50 .707 .303

_® .709 .306

.0501 -.0270 -.00925

.0508 -.0277 -.00943

.0516 -.0280 -.00951
e

.0524 -.0281 -.00957

.0532 -.0281 -.00960
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Table 6.2 Mode l normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=l, v=.3.

Lo/h

R/h

iiBMBRANB LOADING
External crack

.2 .4 •6 .8 .95

K1 (0)

Klm

5 .824 •527 •267 •0834
10 •822 •520 .258 .0784
20 .821 .515 .252 .0756
50 .819 .511 .248 .0739
_® •817 •507 •244 •0725

.00967
•00895
•00862
•00844
.00833

Internal crack

KI(O)

Klm

5 •798 •481 •236 •0762 •00999
10 .805 .490 .237 .0739 .00921
20 .810 .496 .239 .0729 .00879
50 .814 .501 .242 .0725 .00852
• ® •817 •507 •244 •0725 •00833

Lo/h

R/h

BBNDING
External crack

• 2 •4 .6 .8 .95

K1 (0)

Klb

5 .812 .464 •160
I0 .810 .456 .150

20 .808 •450 .143
50 .807 .447 .138
_® •804 •441 .133

-•0022
-•0039

-•0073
-•0096
-•0114

-.0086
-•0096
-•0101
-•0104
-•0106

Internal crack

K1 (0)

Klb

5
10
2O
5O
"4OO

•782
.791
.796
•801
•804

•409
.419
• 427
• 434
.441

•121
• 123
.126
• 129
• 133

-•0087
-.0107
-•0114
-•0116
-.0114

-.0093
-.0100
-.0103
-.0105
-.0106

220



Table 6.3 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=2, v=.3.

MEIIBRANE LOADING

External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

K1 (0) 10
20

Klm 50

.882 .643 .375 .136 .0180

.886 .644 .366 .124 .0152

.886 .641 .356 .116 .0136

.885 .635 .347 .109 .0126
*® .883 .627 .336 .104 .0120

Internal crack

5 .851 .572 .310 .III .0169

KI(O ) 10 .862 .589 .315 .106 .0147
20 .870 .602 .320 .104 .0134

Klm 50 .876 .613 .326 .103 .0126

*® .883 .627 .336 .104 .0120

BENDING
External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

K1 (0) 10
2O

KIb 50

.873 .595 .284

.878 .598 .275
.879 .595 .264
.878 .589 .253

*® .875 .578 .239

Internal crack

.0545 -.0034

.0421 -.0065

.0326 -.0084

.0251 -.0097

.0180 -.0107

5 .839 .513 .204

K1 (0) I0 .852 .533 .212
20 .861 .549 .219

Klb 50 .868 .563 .227

_® .875 .578 .239

.0231 -.0064

.0188 -.0083

.0170 -.0094

.0166 -.0102

.0180 -.0107
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Table 6.4 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=4, v=.3.

MBMB_ANB LOADING

External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

K1 (0) 10
2O

Klm 50

.907 .708 .458 .193 .0316

.922 .739 .480 .191 .0273

.929 .751 .484 .182 .0232

.932 .753 .475 .168 .0196
• ® .930 .741 .450 .149 .0165

Internal crack

5 .884 .645 .384 .154 .0274

KI(O)__ 10 .900 .674 .400 .151 .0237
20 .911 .695 .413 .147 .0208

Klm 50 .920 .715 .426 .146 .0184

_® .930 .741 .450 .149 .0165

BENDINg

External crack

gO/h .2 .4

R/h

.6 .8 .95

5

K1 (0) 10
2O

Klb 50

.899 .665 .372

.916 .704 .404

.925 .720 .412

.928 .723 .403
_® .926 .710 .374

Internal crack

.109 -.00620

.119 -.00281

.104 -.00130
.0888 -.00533
.0663 -.00918

5 .875 .595 .287

K1(0) 10 .892 .629 .309
20 .904 .655 .326

Klb 50 .914 .678 .343

*® .926 .710 .374

.0646 -.00005

.0634 -.00274

.0614 -.00528

.0608 -.00747

.0663 -.00918

222



Table 6.5 Mode i normalized stress intensity

factors at the center of a semi-elliptical surface

crack in a spherical shell, a/h=lO, m=-.3.

MEMB_NBLOADING
External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

K1 (0) 10
2O

Klm 50

.932 .771 .537 .243 .0429

.950 .820 .598 .272 .0429

.963 .856 .642 .288 .0391
*® .968 .862 .624 .245 .0255

Internal crack

.....

KI(O ) I0 .923 .741 .487 .207 .0373
20 .939 .779 .526 .219 .0355

Klm 50 .952 .813 .562 .227 .0318

_® .968 .862 .624 .245 .0255

BBNDING
External crack

Lo/h .2 .4 .6

R/h

.8 .95

5

K1 (0) 10
20

Klb 5O

.926 .735 .455 .154 .0122

.945 .793 .533 .194 .0144

.960 .838 .592 .219 .0120
*® .966 .846 .576 .173 -.00266

Internal crack

_ _ _

KI(O ) 10 .917 .702 .403
20 .934 .748 .453

Klb 50 .948 .788 .499

*® .966 .846 .576

.119 .00664

.136 .00605

.149 .00319

.173 -.00266
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Table 6.6 Distribution of the mode 1 normalized

stress intensity factor along a semi-elliptical
surface crack in a toroidal shell located at

different positions, see Fig. 6.5, a/h=l, R/h=lO,

R.1/R=3, Lo/h=.4, u=.3.

MEMBRANE LOADING

Position+ A

y/a
O.

.I

.2

.3

.4

.5

6

7

Internal External

B C D A B C

8
9
95
98

•493 .497 •499 •501
•492 •496 •498 .500
•489 •493 •495 .497
•484
•477
•468
•455
•439
.418
•389
•367
•348

489 .490 .492
482 .483 .485
472 .473 .476
460 .461 .463
444 .445 .447
423 .423 .426
394 .393 .397
373 .371 .375
353 .352 .355

D

.512 .521 .505 .517

.511 .519 .504 .516

.507 .516 .501 .513

.502 .511 .496 .508

.495 .503 .489 .500

.484 .493 .479 .490

.471 .479 .466 .477

.454 .462 .450 .460

.432 .439 .428 .437

.401 .408 .398 .406

.379 .385 .376 .384

.358 .364 .355 .363

BENDING

Internal

B C DPosition_ A

y/a
O. •423 .429

1 .424 .430
2 .427 .433
3 .432 .437
4 438 .444
5 446 .452
6 456 .461
7 466 .472
8 476 .482
9 484 .491

.95 485 .492

.98

431 •433
432 •434
435 •437
439 .442
446 .448
453 •456
462 .466
472 .476
482 .486
490 .494
490 .495

481 .488 .486 .491

External

A B C D

.446 .457

.447 .458

.449 .460

.454 •464

.459 .470

.467 .477

.475 .485

.484 .493

.493 .502

.499 .507

.499 .507

.494 .502

439 .453
439 .454
442 .456
447 .461
453 .466
460 .473
469 .482
478 .490
488 .499
495 .505
495 .505
491 .500
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Table 6.7 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=.5, R/h=lO, u=.3.

i_MBRANE LOADING
External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

KI(O) 1 .731 .393 .177 .0506 .00550
3 .730 .393 .176 .0505 .00549

Klm 5 .730 .392 .176 .0505 .00549

*® .729 .391 .175 .0503 .00549

Internal crack

KI(O ) 1 .724 .385 .173 .0502 .00561
3 .724 .385 .173 .0502 .00559

Klm 5 .725 .386 .173 .0501 .00559

*® .725 .386 .173 .0501 .00556

BBNDING
External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

K1 (0) 1 .711 .309
3 .711 .308

Klb 5 .710 .308

*® .710 .307

.0561 -.0270 -.00943

.0556 -.0271 -.00945

.0554 -.0272 -.00945

.0548 -.0274 -.00947

Internal crack

KI(O ) 1 .704 .290
3 .704 .300

Klb 5 .704 .300

*® .705 .301

.0510 -.0280 -.00948

.0511 -.0280 -.00949

.0512 -.0280 -.00950

.0514 -.0280 -.00950
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Table 6.8 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface

crack in a toroidal shell. The crack is located at

position B of Fig. 6.5, a/h=.5, R/h=lO, v=.3.

MBMBRANg LOADING

External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

KI(O)__ 1 .733 .396 .178 .0509 .00551
3 .733 .396 .178 .0509 .00551

Klm 5 .733 .396 .178 .0509 .00551

_® .732 .395 .178 .0508 .00550

Internal crack

KI(O)__ I .725 .386 .173 .0504 .00565
3 .725 .386 .173 .0504 .00564

Klm 5 .725 .387 .173 .0504 .00564

*® .726 .387 .174 .0504 .00562

BENDING

External crack

gO/h .2 .4

Ri/R

.6 .8 .95

KI(O)__ 1 .713 .312
3 .713 .312

Klb 5 .713 .312

*® .713 .312

.0578 -.0266 -.00943

.0576 -.0267 -.00945

.0576 -.0267 -.00945

.0574 -.0268 -.00947

Internal crack

K1 (0) 1 .705 .300
3 .705 .301

Klb 5 .705 .301

*® .706 .302

.0516 -.0278 -.00949

.0518 -.0278 -.00950

.0519 -.0278 -.00951

.0521 -.0279 -.00952
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Table 6.9 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position C of Fig. 6.5, a/h=.5, R/h=lO, v=.3.

Lo/h

R./R
1

MBMBmANBLOADING

External crack
• 2 .4 •6 .8 .95

K1 (0)

Klm

1 .727 .388 .174 .0505 .00560
3 .728 •390 .175 •0503 .00551

5 .729 .391 .175 .0503 .00550
*® .729 •391 .175 .0503 .00549

Internal crack

K1 (0)

Klm

1 .729 .392 .176 .0506 .00555
3 .726 .388 .174 .0502 .00554
5 .726 .387 .173 .0501 .00555

*® .725 .386 .173 .0501 .00556

Lo/h

Ri/R

BBNI)ING
External crack

.2 .4 .6

KI(O ) 1 •707 .303 .0532
3 .708 .305 .0539

Klb 5 •709 .306 .0542

*® .710 •307 .0548

.8 .95

Internal crack

K1 (0)

Klb

1
3
5

-bW

•710
•707
•706
•705

•307
•303
•302
•301

-.0275 -.00946
-.0275 -.00948
-.0275 -.00948
-.0274 -.00947

•0551 -.0271 -.00944
.0525 -.0278 -.00950
.0520 -.0279 -.00950
.0514 -.0280 -.00950
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Table 6.10 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position D of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANELOADING
External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

KI(O)__ 1 .729 .392 .176 .0506 .00555
3 .732 .394 .177 .0507 .00551

Klm 5 .732 .395 .177 .0507 .00551

+® .732 .395 .178 .0508 .00550

Internal crack

KI(O)__ 1 .727 .388 .174 .0505 .00560
3 .726 .388 .174 .0504 .00561

Klm 5 .726 .388 .174 .0504 .00561

*® .726 .387 .174 .0504 .00562

BBNDINC
External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

K 1 (0) 1 .710 .307
3 .712 .311

Klb 5 .713 .311

*® .713 .312

.0551 -.0271 -.00944

.0567 -.0270 -.00948

.0570 -.0269 -.00948

.0574 -.0268 -.00947

Internal crack

K1 (0) 1 .707 .303
3 .706 .303

Klb 5 .706 .302

+® .706 .302

.0532 -.0275 -.00946

.0525 -.0278 -.00952
.0523 -.0278 -.00952
.0521 -.0279 -.00952

228



Table 6.11 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=1, R/h=lO, u=.3.

Lo/h

R./R
1

MEMBRANE LOADING

External crack
.2 .4 .6 .8 .95

K1(0)

Klm

1 .819 .513 .252 .0757 •00866
3 .819 .512 •250 .0752 .00861
5 .818 .511 .250 .0749 .00859

• ® .817 .509 .248 .0743 .00854

Internal crack

KI(O)

K1m

1 .807 .492 .237 •0727 .00885
3 .808 .493 .237 .0725 .00878
5 .808 .493 .238 .0724 .00875

*® .810 •494 •238 •0723 .00867

Lo/h

Ri/R

BBNDING
External crack

.2 .4 .6 .8 .95

K1 (0) 1 .807 .448 .142
3 .806 .446 .140

Klb 5 .805 .445 .139

_® .804 .443 .137

-.0071
-.0078
-.0081
-.0089

-.0100
-.0100
-.0101
-.0102

Internal crack

KI(O)

Klb

1

3

5

.793

.794

.794

.795

•422
•423

•424
•425

.123
• 124
.124
• 124

-•0117
-.0119

-.0119
-.0120

-.0102
-.0103
-.0103
-.0103
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Table 6.12 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position B of Fig. 6.5, a/h=l, R/h=lO, v=•3.

Lo/h

Ri/R

nMBRANE LOADINg
External crack

.2 .4 .6 .8 .95

KI(0)

Klm

1 .823 •520 .257 .0773 .00879
3 •824 .521 .257 •0771 .00875
5 .884 .520 .256 .0770 .00874

_® •824 •520 •256 •0768 .00871

Internal crack

KI(O)

K1m

1 .809 .496 .240 .0738 .00901

3 .810 •497 .241 .0738 .00897
5 .811 .498 .241 .0738 .00895

*® .812 •499 •242 •0738 .00890

Lo/h

Ri/R

BENDING

External crack

•2 .4 .6

KI(O ) 1 •811 •457 •148
3 .811 .457 .148

Klb 5 .811 •457 •148

*® •811 .457 .147

K1 (0)

K1b

.8 .95

-.0052
-.0055
-.0056
-.0060

Internal crack

1
3
5

.-I._@

•796
•797
•797
•798

• 427
• 429
.429
.431

.127
• 128
.128
• 129

-.0107
-.0107
-.0107
-.0106

-•0099
-.0099
-.0100
-.0100

-.0102
-.0102
-.0102
-.0103
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Table 6.13 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position C of Fig. 6.5, a/h=l, R/h=lO, u=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O) 1 .813 .502 .244 .0744 .00888
- 3 .815 .505 .245 .0739 .00859

Klm 5 .816 .506 .246 .0739 .00855

*® .817 .509 .248 .0743 .00854

Internal crack

KI(O ) 1 .817 .509 .249 .0753 .00880
3 .812 .499 .241 .0730 .00865

Klm 5 .811 .497 .240 .0726 .00864

*® .810 .494 .238 .0723 .00867

BBh_ING
External crack

Lo/h .2 .4 .6

R /R

.8 .95

K1 (0) 1 .799 .434 .132
3 .802 .439 .134

Klb 5 .803 .440 .135

÷® .804 .443 .137

-.0094 -.0101
-.0096 -.0102
-.0094 -.0102
-.0089 -.0102

Internal crack

K1 (0) 1 .804 .442 .138
3 .798 .431 .129

Klb 5 .797 .429 .127

*® .795 .425 .124

-.0080 -.0100
-.0109 -.0103
-.0115 -.0103
-.0120 -.0103
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Table 6.14 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position D of Fig. 6.5, a/h=l, R/h=lO, _=-.3.

Lo/h

Ri/R

MEMBRANELOADING
External crack

.2 .4 .6 .8 .95

K1 (0) 1 .817 .509 .249
3 •822 .517 .254

Klm 5 .823 .519 .255

_® .824 .520 .256

•0753 .00880
.0762 .00871
.0764 .00870
.0768 .00871

Internal crack

K1 (0) 1 .813 .502 .244
3 •813 .501 .243

Klm 5 .813 .501 .242

_® .812 •499 .242

.0744 .00888

.0739 .00886

.0739 .00887

.0738 .00890

Lo/h

R./R
1

BENDING
External crack

.2 .4 .6 .8 .95

K1 (0) 1 .804 .442 .138
3 .810 .453 .145

Klb 5 .811 .455 .146

*® .811 .457 .147

-.0080
-.0067
-.0064
-•0060

-.0100
-.0101
-.0101
-.0100

Internal crack

K1(0)

Klb

1
3
5

-t®

• 799
.799
• 799
• 798

•434
.433
.433
.431

.132

.131

.130
•129

-.0094
-.0103

-.0104
-.0106

-.0101
-.0103
-.0103
-.0103
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Table 6.15 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=2, R/h=lO, u=.3.

uRIIB_ANB LOADING
External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

KI(O ) 1 .883 .633 .351 .115 .0138
3 .882 .630 .348 .113 .0135

Klm 5 .881 .629 .346 .112 .0133

*® .880 .625 .341 .109 .0130

Internal crack

KI(O ) 1 .864 .591 .313 .1024 .0136
3 .865 .592 .312 .1017 .0133

Klm 5 .865 .592 .313 .1014 .0132

*® .867 .594 .313 .I008 .0129

BBNDING
External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

K1 (0) 1 .874 .586 .258
3 .873 .582 .253

Klb 5 .873 .581 .251

*® .871 .576 .245

.0318 -.00803
.0293 -.00838
.0282 -.00853
.0251 -.00893

Internal crack

K1 (0) 1 .854 .535 .209
3 .855 .537 .209

Klb 5 .855 .537 .209

_® .857 .539 .210

.0151 -.00920

.0144 -.00939

.0141 -.00948

.0136 -.00968
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Table 6.16 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell• The crack is located at

position B of Fig. 6.5, a/h=2, R/h=lO, v=.3.

Lo/h

R./R
1

MEMBRANE LOADING
External crack

•2 .4 .6 •8 .95

KI(O)__ 1 •890 .650 .368 •122 •0145
3 •891 .652 .369 .122 •0143

Klm 5 •891 •652 •369 .121 .0142

*® •892 •653 .369 .121 .0141

Internal crack

() 1 .870 .604 .324 •107 •0142
KI-O- 3 •872 •607 .326 .107 .0141

Klm 5 .873 .609 .327 .107 .0140

_® •875 .613 .330 •108 .0139

Lo/h

R./R
1

BENDING

External crack

.2 .4 .6 .8 .95

K1 (0) 1 •882 •606 •279
3 •883 .608 •279

Klb 5 .884 .608 .279

*® •884 •610 .279

•0400 -.00745
.0394 -•00767
.0391 -•00777
•0384 -.00803

Internal crack

K1 (0)

Klb

1
3
5

•861
•863
•864
•866

• 551
• 555
• 557
•562

• 224
• 227
•228
•232

.0202 -.00884

.0206 -.00896

.0208 -.00901

.0214 -.00914
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Table 6.17 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position C of Fig. 6.5, a/h=2, R/h=lO, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O ) 1 .875 .614 .333 .110 .0140
3 .877 .618 .335 .108 .0131

Klm 5 .878 .620 .336 .108 .0130

• ® .880 .625 .341 .109 .0130

Internal crack

KI(O) 1 .879 .623 .342 .1122 .0140
3 .871 .605 .322 .1037 .0130

Klm 5 .869 .600 .318 .1022 .0129

*® .867 .594 .313 .1008 .0129

BBNDING
External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

K1 (0) I .866 .563 .235
3 .868 .568 .237

Klb 5 .869 .570 .239

*® .871 .576 .245

.0243 -.00849

.0228 -.00905

.0231 -.00909

.0251 -.00893

Internal crack

KI(O ) 1 .870 .574 .245
3 .862 .552 .222

Klb 5 .860 .547 .217

*® .857 .539 .210

.0275 -.00829

.0174 -.00941

.0155 -.00958

.0136 -.00968
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Table 6.18 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position D of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANELOADING
External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

KI(O ) 1 .879 .623 .342 .112 .0140
3 .889 .645 .361 .118 .0139

Klm 5 .890 .650 .365 .119 .0139

*® .892 .653 .369 .121 .0141

Internal crack

KI(O ) 1 .875 .614 .333 .110 .0140
3 .876 .616 .333 .108 .0138

Klm 5 .876 .615 .332 .108 .0138

*® .875 .613 .330 .108 .0139

BENDING
External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

K1 (0) 1 .870 .574 .245
3 .881 .601 .270

Klb 5 .883 .605 .274

*® .884 .610 .279

.0275 -.00829

.0346 -.00827

.0363 -.00822

.0384 -.00803

Internal crack

K1 (0) 1 .866 .563 .235
- 3 .867 .565 .235

Klb 5 .867 .565 .234

*® .866 .562 .232

.0243 -.00849

.0224 -.00906

.0220 -.00913

.0214 -.00914
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Table 6.19 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=4, R/h=lO, *=-.3.

_BI[BRANB LOADINC

External crack

Lo/h .2 .4 .6

Ri/R

.8 .95

KI(O ) 1 .921 .732 .463 .174 .0232
4 .920 .727 .455 .168 .0219

Klm 7 .920 .725 .452 .165 .0214

*® .919 .720 .443 .159 .0203

Internal crack

K1 (0) 1 .900 .672 .392 .141 .0208
4 .901 .672 .390 .138 .0199

Klm 7 .901 .672 .389 .137 .0196

*® .902 .674 .389 .135 .0189

BENDING
External crack

Lo/h .2 .4 .6

R./R
1

.8 .95

KI(O )_ 1 .916 .696 .385
4 .915 .692 .376

Klb 7 .914 .689 .372

• _ .013 .684 .362

.0943 -.00107

.0870 -.00245

.0841 -.00297

.0770 -.00416

Internal crack

K1 (0) 1 .893 .627 .300
4 .893 .627 .297

Klb 7 .894 .627 .296

*® .895 .628 .296

.0538 -.00509

.0507 -.00587

.0496 -.00615

.0477 -.00673

237



Table 6.20 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position B of Fig. 6.5, a/h=4, R/h=10, //--.3.

Lo/h

Ri/R

MEMBRANELOADINC
External crack

•2 •4 .6 •8 •95

KI(O) _ 1 •933 .763 •503 .197 •0260
4 •935 •769 .509 •198 •0255

Klm 7 .936 .771 .511 .198 .0253

*® .938 .775 •515 •199 •0249

Internal crack

KI(O)__ 1 •913 •703 •425 •156 .0227
4 .917 •713 .434 .159 .0224

Klm 7 .918 .716 .437 .159 .0223

*® .921 •723 .444 •162 •0222

Lo/h

Ri/R

BBNDING
External crack

•2 •4 .6 .8 .95

KI (o)

Klb

1 .928 •734 .435 .120 •00142
4 .931 .742 .443 .122 .00088

7 •932 .744 •445 .123 •00068
*® •934 •749 •451 •124 .00021

Internal crack

KI(O)

Klb

1
4
7

• 907
.911
.913
.916

•665
• 676
• 680
• 689

.341
• 352
• 356
• 365

.0713 -.00363

.0744 -.00387
.0756 -.00395
.0783 -.00410
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Table 6•21 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at

position C of Fig. 8.5, a/h=4, R/h=lO, v=.3.

Lo/h

R./R
1

MEMBL_rE LOADING

External crack
.2 .4 .6 .8 .95

K1 (0) 1 .915 •712 .437 .162 •0228
4 .917 .714 .435 .155 .0202

Klm 7 .917 .715 .437 .156 .0200

_® •919 .720 .443 •159 .0203

Internal crack

KI(O) 1 .916 .715 •439 .162 •0225
4 •907 .686 .402 .141 .0193

Klm 7 •905 .680 •395 .138 •0190

*® •902 .674 •389 .135 •0189

Lo/h

Ri/R

BBNDING
External crack

.2 .4 .6 •8 •95

K1 (0) 1 .909 .674 .355
4 •910 •676 .352

Klb 7 .911 •678 .354

*® .913 •684 •362

•0789 -•00259
•0724 -.00453
•0728 -.00462
.0770 -.00416

Internal crack

K1 (0)

Klb

1
4
7

-_oo

•910
.900
•897
•895

.676
• 643
• 636
• 628

•356
.312
• 304
• 296

.0784 -.00283

.0542 -.00615
•0507 -.00655
•0477 -.00673
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Table 6.22 Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell• The crack is located at

position D of Fig. 6.5, a/h=4, R/h=lO, v=.3.

Lo/h

R./R
1

I[BMBRANE LOADING

External crack

.2 .4 •6 .8 .95

KI(O ) 1 .916 .715 .439 .162 .0225
4 .935 .766 .500 .190 .0239

Klm 7 .937 .772 .509 .195 .0243

• ® .938 .775 .515 .199 .0249

Internal crack

KI(O ) 1 .915 .712 .437 .162 .0228
4 .922 .726 .448 .163 .0221

Klm 7 .923 .726 .448 .163 .0221

*® .921 .723 .444 .162 .0222

Lo/h

Ri/R

BENDING
External crack

.2 .4 .6 .8 .95

K1(0) 1 .910 .676 .356
4 .931 .738 .432

Klb 7 •933 .745 •443

+® .934 .749 .451

•078 -.00283

.112 -.00103

.118 -.00051

•124 .OOO21

Internal crack

K1 (0)

Klb

1
4
7

.-l,O0

•909
.917
.917
•916

• 674
•692
•692
•689

• 355
• 370
• 369
• 365

.0789 -.00259
•0803 -.00394
.0800 -.00407
.0783 -.00410
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Table 6.23 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to in-plane
shear, a/h=.5, m=.3.

IN-PLANE SHEAR

Lo/h

R/h

Outer axial crack

.2 .4 .6 .8 .05

5 .736 .545 .466 .351 .186

K3(O ) 10 .737 .546 .466 .350 .185
20 .737 .546 .466 .350 .185

K3I 50 .738 .547 .466 .350 .184

_® .738 .547 .467 .350 .184

Inner axial crack

5 .740 .550 .470 .352 .185

K3(O ) 10 .739 .549 .468 .351 .184
20 .739 .548 .467 .350 .184

K31 50 .738 .547 .467 .350 .184

_® .738 .547 .467 .350 .184

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K3(O)

K3I

5 .736 .545 .466 .351 .186
i0 .737 .546 .466 .350 .185
20 .737 .546 .466 .350 .185
50 .738 .547 .466 .350 .184
_® .738 .547 .467 .350 .184

Inner circumferential crack

K3(O)

g3I

5 .740 .550 .470 .352 .185
I0 .739 .549 .468 .351 .185
20 .739 .548 .468 .350 .184
50 .738 .548 .467 .350 .184
_® .738 .547 .467 .350 .184
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Table 6.24 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=.5, y=.3.

OUT-OF-PLANE SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .988 .883 .684 .466 .277

K2(O ) 10 .988 .883 .685 .467 .277
20 .988 .883 .685 .467 .277

K20 50 .988 .883 .685 .467 .277

*® .988 .883 .685 .467 .277

Inner axial crack

5 .988 .883 .685 .467 .277

K2(O ) 10 .988 .883 .685 .467 .277
20 .988 .883 .685 .467 .277

K20 50 .988 .883 .685 .467 .277

_® .988 .883 .685 .467 .277

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K2(O)

K2O

5 .988 .882 .682 .463 .274
10 .988 .883 .684 .466 .276
20 .988 .883 .685 .467 .277
50 .988 .883 .685 .467 .277
_® .988 .883 .685 .467 .277

Inner circumferential crack

K2(O)

K20

5 .988 .882 .683 .464 .275
10 .988 .883 .684 .466 .277
20 .988 .883 .685 .467 .277
50 .988 .883 .685 .467 .277
_® .988 .883 .685 .467 .277
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Table 6.25 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=.5, u=.3.

TWISTING

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .710 .408 .102 -.637 -6.01

K3(O ) 10 .711 .409 .102 -.637 -6.01
20 .711 .410 .103 -.637 -6.01

K3T 50 .712 .410 .103 -.637 -6.01

*® .712 .411 .103 -.636 -6.01

Inner axial crack

5 .714 .415 .110 -.624 -5.94

K3(O ) 10 .713 .413 .107 -.630 -5.97
20 .713 .412 .105 -.633 -5.99

K3T 50 .712 .411 .104 -.635 -6.00

*® .712 .411 .103 -.636 -6.01

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K3(O)

K3T

5 .710 .408 .101 -.637 -6.01
10 .711 .409 .102 -.638 -6.01
20 .711 .410 .102 -.637 -6.01
50 .712 .410 .103 -.637 -6.01
*® .712 .411 .103 -.636 -6.01

Inner circumferential crack

K3(O)

K3T

5 .714 .415 .111 -.622 -5.93
10 .713 .413 .107 -.629 -5.97
20 .713 .412 .106 -.632 -5.98
50 .712 .411 .104 -.634 -6.00
*® .712 .411 .103 -.636 -6.01
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Table 6.26 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=l., v=.3.

IN-PLANE SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .797 .632 .576 .492 .304

K3(O)__ 10 .798 •633 .576 .490 .301
20 .799 .634 .576 .489 .300

K3I 50 .799 .635 .576 .489 .299

• ® .800 .635 •577 •489 .299

Inner axial crack

5 •803 •641 .585 .496 .303

K3(O)_ _ 10 .802 .639 .581 .493 .301
- 20 .801 .637 .579 .491 .300
K3I 50 .800 .636 .578 .490 .299

• ® .800 •635 .577 .489 •299

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K3(O)

K3I

5 .797 .631 .575 .492 .305
10 .798 .633 •575 .490 .302
20 .799 .634 .576 .489 .300
50 .799 .634 .576 .489 .299
_® .800 .635 •577 .489 •299

Inner circumferential crack

K3(O)

K3i

5 .803 •642 .586
I0 .802 •639 .582
20 .801 .638 .580
50 .800 .636 .578
_® .800 •635 .577

•498
•494
•491
•490
•489

• 304
•301
•300
•299

•299
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Table 6.27 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to out-of-
plane shear, a/h=l., v=.3.

OUT-OF-PLANE SHBAR

Lo/h

R/h

Outer axial crack

.2 .4 .6 .8 .95

5 .996 .953 .850 .691 .485

K2(O ) I0 .996 .953 .851 .692 .486
20 .996 .953 .851 .693 .487

K2O 50 .996 .953 .851 .693 .487

*® .996 .953 .851 .693 .487

Inner axial crack

5 .996 .953 .851 .693 .486

K2(O ) 10 .996 .953 .851 .693 .487
20 .996 .953 .851 .693 .487

K20 50 .996 .953 .851 .693 .487

• ® .996 .953 .851 .693 .487

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K2(O)

K20

5 .995 .951 .844 .679 .472
10 .996 .953 .849 .688 .482
20 .996 .953 .850 .691 .485
50 .996 .953 .851 .693 .487
*® .996 .953 .851 .693 .487

Inner circumferential crack

K2(O)

K20

5 .995 .952 .846 .685 .477
10 .996 .953 .850 .691 .485
20 .996 .953 .851 .693 .487
50 .996 .953 .851 .693 .487
• ® .996 .953 .851 .693 .487
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Table 6.28 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=l., v=.3.

TWISTING

Outer axial crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .776 .519 .273 -.334

K3(O ) 10 .777 .520 .274 -.337
20 .778 .521 .275 -.337

K3T 50 .779 .522 .276 -.336

*® .779 .523 .277 -.335

Inner axial crack

-5.25
-5.27
-5.27
-5.27
-5.27

5 .783 .531 .292 -.298

K3(O ) 10 .781 .528 .286 -.314
20 .780 .526 .282 -.324

K3T 50 .780 .525 .279 -.330

*® .779 .523 .277 -.335

-5.05
-5.15
-5.20
-5.24
-5.27

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .776 .517 .271 -.336

K3(O ) I0 .777 .519 .273 -.339
20 .778 .521 .274 -.338

K3T 50 .779 .522 .275 -.337

*_ .779 .523 .277 -.335

inner circumferential crack

-5.27
-5.28

-5.28
-5.28
-5.27

5 .783 .533 .296 -.289 -4.99

K3(O ) I0 .782 .529 .287 -.310 -5.12
20 .781 .526 .283 -.322 -5.19K_

ol 50 .780 .525 .280 -.329 -5.23

*® .779 .523 .277 -.335 -5.27
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Table 6.29 Lode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=2., v=.3.

IN-PLANE SHEAR

Lo/h

R/h

Outer axial crack

.2 .4 .6 .8 .95

5 .826 .684 .659 .631 .457

K3(O ) 10 .827 .684 .658 .626 .449
20 .828 .685 .658 .624 .445

K3I 50 .829 .686 .658 .623 .443

_® .829 .687 .659 .623 .442

Inner axial crack

5 .833 .696 .673 .641 .458

K3(O ) 10 .832 .693 .668 .633 .451
20 .831 .691 .664 .629 .447

K3I 50 .830 .689 .662 .625 .444

_® .829 .687 .659 .623 .442

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K3(O)

K3I

5 .825 .682 .657 .632 .463
10 .827 .683 .657 .626 .451
20 .828 .685 .657 .623 .446
50 .828 .686 .658 .623 .443
_® .829 .687 .659 .623 .442

Inner circumferential crack

K3(O)

K31

5 .834 .699 .677 .647 .463
10 .832 .694 .670 .636 .452
20 .831 .692 .665 .630 .447
50 .830 .689 .662 .626 .444
_® .829 .687 .659 .623 .442
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Table 6.30 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to out-of-

plane shear, a/h=2., v=.3.

OUT-OF-PLANE SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .999 .986 .948 .871 .716

K2(O)__ 10 .999 .986 .950 .874 .720
20 .999 .986 .950 .875 .722

K20 50 .999 .986 .950 .875 .723

_® .999 .986 .950 .876 .723

Inner axial crack

5 .999 .986 .950 .876 .722

K2(O)__ 10 .999 .986 .950 .876 .723
20 .999 .986 .950 .876 .723

K20 50 .999 .986 .950 .876 .723

• ® .999 .986 .950 .876 .723

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K2(O)

K20

5 .998 .982 .936 .845 .678
I0 .999 .985 .946 .865 .707
20 .999 .986 .949 .872 .717
50 .999 .986 .950 .875 .721
4® .999 .986 .950 .876 .723

Inner circumferential crack

K2 (0)

K2O

5 .998 .983 .942 .857 .695
I0 .999 .985 .948 .872 .716
20 .999 .986 .950 .876 .722
50 .999 .986 .950 .876 .723
• ® .999 .986 .950 .876 .723
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Table 6.31 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to

twisting, a/h=2., u=.3.

TWISTING

Outer axial crack

Lolh .2 .4 .6

R/h

.8 .95

5 .807 .581 .398 -.007

K3(O ) 10 .808 .583 .397 -.018
20 .809 .584 .398 -.022

K3T 50 .810 .585 .399 -.022

+® .811 .587 .401 -.020

Inner axial crack

-3.63
-3.72
-3.75
-3.76
-3.75

5 .815 .598 .427 .057 -3.21

K3(O ) 10 .813 .594 .417 .027 -3.43
20 .812 .591 .411 .008 -3.56

K3T 50 .812 .589 .406 -.007 -3.66

+® .811 .587 .401 -.020 -3.75

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .806 .579 .395 -.009

K3(O ) 10 .807 .581 .395 -.022
20 .809 .583 .396 -.025

K3T 50 .810 .585 .398 -.024

_® .811 .587 .401 -.020

Inner circumferential crack

-3.63
-3.74
-3.77
-3.78
-3.75

5 .816 .602 .436 .084 -3.00

K3(O ) 10 .814 .596 .422 .039 -3.34
- 20 .813 .592 .413 .013 -3.52

K3T 50 .812 .590 .407 -.005 -3.65

*= .811 .587 .401 -.020 -3.75
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Table 6.32 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to in-plane

shear, a/h=4., u=.3.

IN-PLANE SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 .837 .709 .712 .745 .625

K3(O ) 10 .838 .709 .709 .737 .610
20 .838 .709 .708 .732 .601

K3I 50 .839 .710 .708 .729 .594

*® .840 .712 .709 .728 .590

Inner axial crack

5 .843 .720 .726 .757 .627

K3(O ) I0 .843 .718 .721 .747 .613
20 .842 .716 .717 .740 .604

K3I 50 .841 .714 .713 .734 .597

*® .840 .712 .709 .728 .590

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K3(O)

K3I

5 .836 .707 .711 .750 .643
10 .837 .707 .708 .737 .616
20 .838 .708 .707 .731 .602
50 .839 .710 .707 .728 .594
*® .840 .712 .709 .728 .590

Inner circumferential crack

K3(O)

K3I

5 .845 .725 .733 .771 .645
I0 .844 .721 .725 .754 .620
20 .843 .718 .719 .743 .606
50 .841 .715 .714 .735 .597
• ® .840 .712 .709 .728 .590
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Table 6.33 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a cylindrical shell subjected to out-of-
plane shear, a/h=4., v=.3.

OUT-OF-PLANE SHEAR

Lo/h

R/h

Outer axial crack
.2 .4 .6 .8 .95

5 1.00 .996 .986 .959 .879

K2(O ) 10 1.00 .996 .987 .962 .884
20 1.00 .997 .987 .963 .886

K20 50 1.00 .997 .988 .964 .888

_® 1.00 .997 .988 .965 .889

Inner axial crack

5 1.00 .996 .987 .963 .886

K2(O ) 10 1.00 .997 .988 .965 .888
20 1.00 .997 .988 .965 .889

K20 50 1.00 .997 .988 .965 .889

÷® 1.00 .997 .988 .965 .889

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

K2(O)

K20

5 .999 .992 .968 .916 .805
10 1.00 .995 .981 .947 .858
20 1.00 .996 .985 .958 .877
50 1.00 .997 .987 .963 .885
• ® 1.00 .997 .988 .965 .889

Inner circumferential crack

K2 (0)

K20

5 .999 .993 .973 .929 .828
10 1.00 .995 .984 .955 .872
20 1.00 .996 -.987 .963 .885
50 1.00 .997 .988 .965 .889
_® 1.00 .997 .988 .965 .889
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Table 6.34 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to

twisting, a/h=4., p=.3.

TWISTING

Outer axial crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .819 .611 .473 .251

K3(O ) 10 .819 .611 .469 .229
20 .820 .611 .467 .216

K3T 50 .821 .612 .467 .210

*® .822 .615 .470 .211

Inner axial crack

-I. 80
-2.00
-2.12
-2.19
-2.21

5 .825 .626 .499 .314 -1.33

K3(O ) 10 .825 .623 .491 .284 -1.60
20 .824 .621 .484 .259 -1.81

K3T 50 .823 .618 .478 .236 -2.00

_® .822 .615 .470 .211 -2.21

Outer circumferential crack

Lo/h .2 .4 .6

R/h

.8 .95

5 .817 .609 .472 .261

K3 (0) I0 .818 .609 .466 .227
20 .819 .610 .465 .212

K3T 50 .820 .612 .466 .207

÷® .822 .615 .470 .211

Inner circumferential crack

-1.64
-1.98
-2.14
-2.21
-2.21

5 .827 .631 .513 .367 -.854

K3(O ) 10 .826 .627 .499 .311 -1.36
20 .825 .622 .489 .272 -1.70K _

"'3T 50 .823 .619 .479 .241 -1.96
*® .822 .615 .470 .211 -2.21
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Table 6.35 Mode 3 normalized stress intensity

factor at the center of a semi-elliptica! surface

crack in a toroidal shell subjected to in-plane

shear. Crack is at position A of Fig. 6.5, R/h=lO,
_=.3.

IN-PLANE SHEAR

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O ) 1 .798 .632 .575 .490 .303
3 .798 .632 .575 .490 .302

K3I 5 .798 .632 .575 .490 .302

+® .798 .633 .575 .490 .302

a/h=l, Internal

K3(O ) 1 .802 .640 .583 .495 .302
3 .802 .640 .583 .494 .302

K3I 5 .802 .640 .583 .494 .302

+® .802 .639 .582 .494 .301

Lo/h

R /h

a/h=2, External
.2 .4 .6 .8 .95

K3(O ) 1 .826 .683 .657 .627 .454
4 .826 .683 .656 .626 .453

K3I 7 .826 .683 .656 .626 .452

+® .827 .683 .657 .626 .451

a/h=2, Internal

K3(O ) 1 .833 .696 .672 .639 .455
4 .833 .695 .671 .638 .454

K3I 7 .833 .695 .670 .637 .453

+® .832 .694 .670 .636 .452
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Table 6.36 Mode 2 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to out-of-

plane shear. Crack is at position A of Fig. 6.5,

R/h=lO, v=.3.

OUT-OF-PLANE SHEAR

a/h=l, External

Lo/h .2 .4 .6

R./h
1

.8 .95

K2(O)__ 1 .996 .953 .848 .688 .482
3 .996 .953 .848 .688 .482

K20 5 .996 .953 .849 .688 .482

*® .996 .953 .849 .688 .482

a/h=l, Internal

K2(O)__ 1 .996 .953 .850 .691 .485
3 .996 .953 .850 .691 .485

K20 5 .996 .953 .850 .691 .485

_® .996 .953 .850 .691 .485

a/h=2, External

Lo/h .2 .4

Ri/h

.6 .8 .95

K2(O)__ 1 .999 .985 .945 .864 .706
4 .999 .985 .945 .865 .706

K20 7 .999 .985 .945 .865 .707

• ® .999 .985 .946 .865 .707

a/h=2, Internal

K2(O)__ 1 .999 .985 .948 .872 .716
4 .999 .985 .948 .872 .716

K20 7 .999 .985 .948 .872 .716

• ® .999 .985 .948 .872 .716
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Table 6.37 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.
Crack is at position A of Fig. 6.5, R/h=lO, v=.3.

TWISTING

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O ) 1 .777 .519 .272 -.339 -5.28
3 .777 .519 .272 -.339 -5.28

K3T 5 .777 .519 .272 -.339 -5.28

_® .777 .519 .273 -.339 -5.28

a/h=l, Internal

K3(O ) 1 .782 .530 .290 -.304 -5.08
3 .782 .530 .289 -.306 -5.10

K3T 5 .782 .529 .289 -.308 -5.10

_® .782 .529 .287 -.310 -5.12

Lo/h

R./h
1

a/h=2, External
.2 .4 .6 .8 .95

K3(O ) 1 .807 .580 .395 -.019 -3.71
4 .807 .581 .395 -.021 -3.73

K3T 7 .807 .581 .395 -.021 -3.73

*® .807 .581 .395 -.022 -3.74

a/h=2, Internal

K3(O ) 1 .815 .598 .426 .052 -3.24
4 .814 .597 .424 .046 -3.29

K3T 7 .814 .597 .423 .044 -3.30

_® .814 .596 .422 .039 -3.34
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Table 6.38 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to in-plane

shear. Crack is at position B of Fig. 6.5, R/h=lO,
y=.3.

IN-PLANE SHEAR

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O ) 1 .798 .632 .575 .490 .302
3 .798 .633 .575 .490 .302

K3I 5 .798 .633 .575 .490 .302

*® .798 .633 .576 .490 .301

a/h=1, Internal

K3(O ) 1 .802 .640 .583 .494 .302
3 .802 .639 .582 .494 .301

K3I 5 .802 .639 .582 .494 .301

*® .802 .639 .581 .493 .301

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .95

K3(O)_ 1 .826 .683 .657 .627 .453
4 .827 .684 .657 .626 .451

K3I 7 .827 .684 .657 .626 .450

*® .827 .684 .658 .626 .449

a/h=2, Internal

K3(O ) 1 .833 .695 .671 .637 .454
4 .832 .694 .669 .635 .452

K3I 7 .832 .694 .669 .635 .452

÷® .832 .693 .668 .633 .451

256



Table 6.39 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear• Crack is at position B of Fig. 6.5,
R/h=lO, v=.3.

OUT-OF-PLANB SHEAR

a/h=l, External

Lo/h .2 .4 .6

R./h
1

.8 .95

K2(O ) 1 •996 .953 •850 .691
3 .096 .953 .850 .692

K20 5 .996 .953 .850 .692

_® •996 •953 •851 •692

•485

•486
•486
•486

a/h=l, Internal

K2 (0) 1 .996 .953 .851 .693 .487
3 .996 .953 .851 .693 .487

K20 5 .996 .953 .851 .693 .487

*® .996 .953 .851 .693 .487

a/h=2, External

Lo/h .2 .4 .6

Ri/h

.8 .95

K2(O ) 1 .999 .986 •948 .871 .716
4 .999 .986 .949 .873 .719

K20 7 .999 .986 .949 •873 .719

÷® .999 .986 .950 .874 .720

a/h=2, Internal

K2 (0) 1 .999 .986 .950 .876 .722
4 .999 .986 .950 .876 .723

K20 7 .999 .986 .951 .876 .723

*® .999 .986 .950 .876 .723
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Table 6.40 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to twisting.

Crack is at position B of Fig. 6.5, R/h=lO, y=.3.

TWISTING

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O)__ 1 .777 .519 .273 -.337 -5.27
3 .777 .520 .273 -.337 -5.27

K3T 5 .777 .520 .273 -.337 -5.27

*® .777 .520 .274 -.337 -5.27

a/h=l, Internal

K3 (0) 1 .782 .529 .289 -. 307 -5.10
3 .782 .529 .288 -.310 -5.12

K3T 5 .782 .529 .287 -.311 -5.13

*® .781 .528 .286 -.314 -5.15

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .95

K3(O)__ 1 .807 .581 .396 -.017 -3.70
4 .808 .582 .397 -.018 -3.71

K3T 7 .808 .582 .397 -.018 -3.71

4® .808 .583 .397 -.018 -3.72

a/h=2, Internal

K3(O)__ 1 .814 .597 .423 .044 -3.31
4 .814 .596 .420 .036 -3.37

K3T 7 .814 .595 .419 .033 -3.39

4® .813 .594 .417 .027 -3.43
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Table 6.41 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position C of Fig. 6.5, R/h=lO,
/]=-.3.

IN-PLANS SHEAR

Lo/h

R./h
1

a/h=1, External
.2 .4 .6 .8 .95

K3(O ) 1 .800 .635 .578 .491 .301
3 .799 .633 .576 .490 .301

K3I 5 .798 .633 .575 .490 .301

_® .798 .633 .575 .490 .302

a/h=l, Internal

K3(O ) 1 .800 .636 .579 .492 .301
3 .801 .638 .581 .492 .301

K3I 5 .802 .639 .581 .493 .301

*® .802 .639 .582 .494 .301

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .95

K3(O ) 1 .829 .687 .661 .628 .450
4 .827 .684 .657 .625 .449

K3I 7 .827 .684 .657 .625 .450

_® .827 .683 .657 .626 .451

a/h=2, Internal

K3(O ) 1 .830 .690 .664 .630 .449
- 4 .832 .693 .668 .633 .450

K3I 7 .832 .694 .669 .634 .451

_® .832 .694 .670 .636 .452
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Table 6.42 Mode 2 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to out-of-

plane shear. Crack is at position C of Fig. 6.5,

R/h=lO, v=-.3.

OUT-OF-PLANE SHEAR

a/h=l, External

Lo/h .2 .4

R./h
1

.6 .8 .95

K2(O )_ 1 .996 .953 .849 .689 .483
3 .996 .953 .849 .689 .483

K20 5 .996 .953 .849 .689 .482

4® .996 .953 .849 .688 .482

a/h=l, Internal

K2(O ) 1 .996 .953 .850 .691 .485
3 .996 .953 .850 .691 .485

K20 5 .996 .953 .850 .691 .485

_® .996 .953 .850 .691 .485

a/h=2, External

Lo/h .2 .4

R./h
1

.6 .8 .95

K2(O ) 1 .999 .985 .946 .867 .710
4 .999 .985 .946 .866 .708

K20 7 .999 .985 .946 .865 .708

4® .999 .985 .946 .865 .707

a/h=2, Internal

K2(O )_ 1 .999 .985 .948 .871 .716
4 .999 .985 .948 .872 .716

K20 7 .999 .985 .948 .872 .716

_® .999 .985 .948 .872 .716
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Table 6.43 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to twisting.
Crack is at position C of Fig. 6.5, R/h=lO, _=.3.

TWISTING

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O ) 1 .779 .523 .278 -.330 -5.23
3 .778 .521 .274 -.337 -5.28

K3T 5 .777 .520 .273 -.337 -5.27

+® .777 .519 .273 -.339 -5.28

a/h=l, Internal

K3(O) 1 .780 .525 .281 -.323 -5.19
3 .781 .527 .285 -.316 -5.16

K3T 5 .781 .528 .286 -.314 -5.14

+® .782 .529 .287 -.310 -5.12

Lo/h

R./h
1

a/h=2, External
.2 .4 .6 .8 .95

K3(O ) 1 .810 .586 .403 -.006 -3.64
4 .808 .582 .396 -.022 -3.75

K3T 7 .808 .582 .395 -.023 -3.75

*® .807 .581 .395 -.022 -3.74

a/h=2, Internal

K3(O ) 1 .811 .590 .410 .011 -3.53
4 .813 .594 .418 .028 -3.41

K3T 7 .814 .595 .419 .033 -3.38

+® .814 .596 .422 .039 -3.34
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Table 6.44 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroidal shell subjected to in-plane

shear. Crack is at position D of Fig. 6.5, R/h=lO,
_=.3.

IN-PLANE S_AR

Lo/h

R./h
i

a/h=l, External
.2 .4 .6 .8 .95

K3(O ) 1 .800 .636 .579 .492 .301
3 .799 .634 .576 .490 .301

K3I 5 .799 .634 .576 .490 .301

*® .798 .633 .576 .490 .301

a/h=l, Internal

K3(O ) 1 .800 .635 .578 .491 .301
3 .801 .637 .580 .492 .300

K3I 5 .801 .638 .580 .492 .301

*® .802 .639 .581 .493 .301

Lo/h

Ri/h

a/h=2, External
.2 .4 .6 .8 .95

K3(O ) 1 .830 .690 .664 .630 .449
4 .828 .686 .659 .626 .448

K3I 7 .828 .685 .658 .626 .448

*® .827 .684 .658 .626 .449

a/h=2, Internal

K3(O ) I .829 .687 .661 .628 .450
4 .831 .691 .665 .631 .449

K3I 7 .831 .692 .666 .632 .449

*® .832 .693 .668 .633 .451
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Table 6.45 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position D of Fig. 6.5,
R/h=lO, y=-.3.

OUT-OF-PLANE SHEAR

a/h=l, External

Lo/h .2 .4

Ri/h

.6 .8 .95

K2(O)

K20

1 .996 .953 .850
3 .996 -..953 .851
5 .996 .953 .851

*® .996 .953 .851

.691 .485

.692 .486

.692 .486

.692 .486

a/h=l, Internal

K2(O ) 1 .996 .953 .849 .689 .483
3 .996 .953 .851 .692 .486

K20 5 .996 .953 .851 .693 .487

*® .996 .953 .851 .693 .487

a/h=2, External

Lo/h .2 .4

Ri/h

.6 .8 .95

K2(O)_ 1 .999 .985 .948 .871 .716
4 .999 .986 .950 .875 .721

K20 7 .999 .986 .950 .875 .721

_® .999 .986 .950 .874 .720

a/h=2, Internal

K2(O ) 1 .999 .985 .946 .867 .710
4 .999 .986 .950 .875 .722

K20 7 .999 .986 .950 .876 .723

_® .999 .986 .950 .876 .723
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Table 6.46 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface

crack in a toroldal shell subjected to twisting.

Crack is at position D of Fig. 6.5, R/h=lO, v=.3.

TWISTING

Lo/h

Ri/h

a/h=l, External
.2 .4 .6 .8 .95

K3(O)__ 1 .780 .525 .281 -.323 -5.19
3 .778 .522 .276 -.334 -5.26

K3T 5 .778 .521 .275 -.336 -5.26

+® .777 .520 .274 -.337 -5.27

a/h=l, Internal

K3 (0) 1 .779 .523 .278 -. 330 -5.23
3 .780 .526 .282 -.322 -5.19

K3T 5 .781 .527 .284 -.319 -5.17

+® .781 .528 .286 -.314 -5.15

Lo/h

R./h
1

a/h=2, External
.2 .4 .6 .8 .95

K3(O)__ 1 .811 .590 .410 .011 -3.53
4 .809 .584 .400 -.015 -3.70

K3T 7 .809 .583 .398 -.017 -3.71

*® .808 .583 .397 -.018 -3.72

a/h=2, Internal

K3(O)__ 1 .810 .586 .403 -.006 -3.64
4 .813 .592 .413 .014 -3.52

K3T 7 .813 .592 .415 .019 -3.48

+® .813 .594 .417 .027 -3.43
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CHAPTER 7

Conclusions and Future Work

The severity of the underlying assumptions of the line-spring

model are such that verification with three-dimensional solutions is

necessary. Such comparisons, in this study as well as in others, show

that the model is quite accurate, and therefore, its use in extensive

parameter studies is justified. It was shown in Chapter 4 that for

practical crack length to plate thickness ratios of about a/h=l, a

plate theory that includes transverse shear deformation gives better

results than the classical theory. The higher order plate theory does

not seem to he necessary for a/h greater than about 2. When using the

LSM with shallow shell theory it is more important to include

transverse shear effects, because this theory is asymptotically

correct for short cracks. The validity of the shallow shell theory

for long cracks is not fully known, however, for surface cracks of

practical dimensions it is expected to 5e accurate. Comparison of LSK

solutions obtained in this study with three-dimensional solutions for

semi-elliptical internal cracks in cylinders are also quite accurate.

It is still not understood why the model works as well as it does

close to the crack ends. This is a rather curious problem. Since the

stress intensity factors are defined by the model to be in a plane

perpendicular to the plate surfaces, and not perpendicular to the

crack front as they should be defined, the results at the ends of a

semi-elliptical crack should be poor, but

factors apparently act to cancel each other out.
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understood, and separately accounted for, the extension of the model

to other crack problems will be better achieved.

This has special importance

mixed-mode line-spring model

Unfortunately, there are no

verification; only the success of the symmetric

in the proposed skew-symmetric or

investigated in this study.

three-dimensional solutions for

case can give

confidence that the results will be of some use. There are additional

assumptions involved that do not have to be made in the mode 1 case.

The first restricts the model to coplanar crack growth. The results

may be considered as upper bounds for materials which have a weak

cleavage plane. Of course, cracks along these planes would be of

concern. The next assumption relates to the previously discussed

problem in mode 1 which involves the crack front curvature and the

plane in which the SIF is defined. Although in the mode 1 case this

problem is somehow overcome, this effect is more critical in the skew-

symmetric case because there are two stress intensity factors as

opposed to one for the symmetric case. To illustrate this problem,

consider that for a semi-elliptical crack in which a primary mode 3

loading in the center will become a primary mode 2 loading towards the

ends, and vice versa. This is not observed in the results. There is

no built in mechanism in the model that accounts for this, (but there

isn't for the mode 1 case either). Perhaps the combination of K2 and

K3 in the following generalized energy release rate equation is more

accurate than the individual K values.

1-u2 f 2 2 2
K1 + K2 J (7.1)_(U-V) :G- Z +_K3
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If the model can be verified, and improved, the shell with a crack at

an arbitrary angle with respect to a principal line of curvature would

be an important problem for future research.

Investigations into the endpoint behavior of the line-spring

model have led to important conclusions about the ability of the model

to predict stresses in front of the "crack tip n. This also has

applications to the crack interaction problem, and to possible uses of

the model to study crack propagation in the length direction, in

addition to the depth direction.

crack profile behaves like

= _O(1-t2) 1/4

near the endpoints, does the

It was found that only when the

(7.2)

numerical procedure easily converge.

However, for rectangular profiles, convergence is acceptable. For the

semi-ellipse, it is not.

An important application of the LS_ was to solve the contact

plate bending problem. Here the flexibility of the model to allow for

any crack shape is exploited. Future work in this area includes

predicting crack shapes for mode 1 crack growth assuming a constant K

condition. Solution of this problem would involve the same iterative

procedure that was used for the contact case.

It should be emphasized that all solutions presented in this

study correspond to the perturbation problem, where constant loading

along the length of the crack has been assumed. To make use of the

results, the solution to the uncracked shell must first be obtained

along the plane of the crack. Then superposition principles apply.

272



There may be cases where the solution to this problem varies

considerably along the crack length, and studies into this effect may

be necessary. This may be done in a straightforward manner.

The use of displacement quantities as unknowns in the formulation

of the problem leads to strongly singular integral equations, rather

than singular integral equations which result from using displacement

derivatives. Although it is more convenient to deal directly with the

displacement quantities, this formulation introduces log singularities

into the equations which require more asymptotic analysis in order to

have acceptable numerical convergence. In this study it was necessary

to evaluate these log integrals in closed form. Sometimes log terms

of the form (t-y)nlnlt-yl can be extracted from the Fredholm kernel

and calculated in closed form to slightly improve convergence, but in

general it is not worth the extra effort. The collocation method of

solving the integral equations was found to be better and more

convenient than the quadrature technique. It has been my experience

that orthogonal polynomials should be used as fitting functions when

using the LSM as opposed to simpler functions such as power series.
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APPENDII A

Non-Dimensional Variables and Useful Formulae

A.I Non-Dimensional Plate and Shell _uantities

x = Xl/h , y = x2/h , z = x3/h ,

u : ux = uI : UlD/h , Px = u2 = Pl ' w = uz : us : usD/h

(A.1)

v = Uy u4 U2D/h ' _y = u5 _2 ' (A.2)

#i = #iD/E ' q : _E ,

Nxx = Nll/(hE ) , Nyy = N22/(hE ) , Nxy N12/(hE ) ,

Mxx = M11/(h2E ) , Mxy = M12/(h2E ) , Myy : M22/(h2E ) ,

Vx = 12(1+v)V1/(ShE ) , Vy = 12(1+v)V2/(5hE ) ,

)`4 = 7-1 : 12(1_v2) , • _ 5(11v) ,

)_14 = )4(h/R1)2 ' )'24 = )4(h/R2)2 ' )'124 = )4(h/R12)2

(A.3)

(A.4)

(A.S)

A.2 Some Useful Properties of Modified Bessel Functions

Kl(z) : _ [K2(z ) - Ko(z)] ,

d--z Ko(z) : -KI(Z) : --2 K2(z) - Ko(Z) '

(A.S)

(A.7)

__ _ :-z [Z2(z) - Ko(z)] 2d 2 K2(z ) --2 _dz K2(z) : -Kl(Z) - z z Z2(z)" (A.8)

If z = plt-yl,

d dz d dd-t : _ dz - _sign(t-y) (A.9)
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For small z,

Kofz) ~ -infzl2) - _e - C_12)2in(_12) + °C'2) '

K2C z) ~ 2/z 2 -1/2 -1/2(z/2)21nCz/2) - 1/2Cz/2) 2CTe+5/4)

- 1/6(z/2)41nCz/2) + OCz 4) ,

where Euler's constant, 7e = .57721566490153 ....

(A.IO)

(A.11)

A.3 Chehychev Polynomials

-1
Of the first kind: T (x) = cosne , 0 = cos x ,

n

Of the second kind: Un(X ) =
sin(n+l)# -1

sin6 , 0 : cos x .

Some expressions needed to integrate

are,

+l(r-s)iUj(r) 1-_72 inlr-s[ dr , i--I,2,3 ,
-1

(A.12)

(A.13)

An

second kinds when using the line-spring model

derivatives as the unknowns is,

Tn(X) dx 1
(1-x2)1/2Un l(X) + constant

I (i_x2)1/2 - n - "

(A. 14)

l[u ]rUj(r) : _ +l(r) + Uj_lCr ) ,

r2Uj(r) = _1 [Uj+2(r) + 2Uj (r) + Uj_2(r)]

1 [Uj+s(r) ]r3Uj(r) = _ + 3Uj+iCr) + 3U._Ij(r) + U.j_3Cr)

important

(A. 15)

relation between Chehychev Polynomials of the first and

with displacement

(A. 16)
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The following integrals are useful for calculating stresses ahead of

the crack tip,

+I Un(t) (l-t2) 1/2

f-I x-t dt =-[x-(x2-1)1/2] n+l [x[ > 1 (X. 17)

f_l I Tn (t)
dt=-

(1-t2) l/2(t-x)

rx_(x2_l) 1/21n

(x2_1)1/2
, Ixl > 1 , (A.18)

_11 Un(t) (1-t2)1/2
(x-t) 2

dt = -(n+1)[x-(x2-1)1/2]n[1 x ]
(x2_l) '1/2

{x{ > 1 (A.19)

A.4 Finite-Part t Cauchy Principal Value t and LoS Integrals

Except for the log integrals, these expressions are copied from E67].

_i (l-t)a(l+t)#Pn(a'#)(t)t-xdt = fcotCar)Cl-x)a(l+x)#P Ca'#) (x) -
n

2a+ r (a)r (n+.8+1)
- r(n+a+#+l) F(n+l,-n-a-#; l-a, !_),

(a > -1, # > -1, a # 0,1,2...) , (A.20)

+I Pn(t)
-I t----_dt = -2qn(X) ,

(A.21)

_i I Tn (t) dt : IrUn_ l(x) ,
(l-t2) I/2(t-x)

(A.22)

+1 Un(t ) (1-t2) 1/2

_-I t-x dt : -_Tn+ l(x) , (A.23)

_-1+1Pn(t)(t_x)_ dt = -2(n+1)1_x2 [ XQn(X) _ Qn+l(X ) ]
(A.24)
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(l_t2)l/2(t_x) 2 l__ 2 +

(A.25)

_11 Un(t)(1-t2)1/2
(t-x) 2

dt = -1(n+l)U n(x) , (A.2S)

where P (a'#)(t) axe Jacobi Polynomials, F(a,b;c;z) are Bypergeometric
n

functions, Pn(t) are Lagendre Polynomials, Qn(t) are Lagendre

Polynomials of the second kind, and rCa ) is the gs_nna function.

Some integrals that can be used with Eqn. B.27 are:

+I 1

_it--_ dt = In [ l_+x ]'l-x
(A.27)

_+1 dt - (A.28)
1 -1 1

-i (t-x)2 l-x l+x '

_+I dt = 0 ,
1

-1 (1-t2)1/2(t-x)
(A.29)

_+I dt = 0
1

-1 (l-t2)I/2(t-x) 2
CA.30)

S_11 (1-t2) 1/2t-x dt = -_x , (A.al)

_11 (1-t2)I/2(t_x)2 dt = -_
, (A.32)

S_11 (1-t)l/2t-x 1 _-_ln(B)]dt=-2gg'{ 1- , (A.aa)

(t-x) 2
, (A.34)
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+1 1 ,. dt = In(B_
-I (l-t)ll2ct-x)

+1 _- -I
_-1- 1 dt :_ [ + 1 l__x In(B) ](l_t)l/2(t-x) _

where

B=

There are similar formulas for power series.

1 [+ltJ-1(1_t2)1/21nlt_y I dt = _ _k yk-1
"-I k=l

1 _+1tJ-l(1-t2) 1/2 dt = _ bkY k-1
)-1 t-y k=l '

1 _+1tJ-1(1-t2) 1/2 at = _ Ckyk-I

_-1 (t-y) 2 k=l

where

k = 1,2,...,j+l, for j = 1,2,3,...

and j-k odd,

b k = 0 , j-k even ,

Ck = kbk+ 1 , k = 1,2,3,...,j ,

-bk-1 k = 2,3,4,...,j+2
ak = k-1

a 1 = 0 , j = 2,4,6,... ,

(A.ZS)

(A.36)

(A.ST)

(X.38)

(A.39)

(A.40)

(A.41)

(A.42)
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2JlI }, M' kl k 1 ln(2) }j+l
j = 3,5,7,..

a I = -(I14 + 112 In(2)) , j=l (A.43)

And for the weight in the denominator,

+1 t n n-1 kdt = _ dkX
-1 (l-t2) 1/2 (t-x) k=O

(A 44)

dk = 0 , n-k even,

rM
dk = , n-k odd , (A.45)

(l_t2) 1/2(t_x) 2

n-2

dt = _ ek xk , (A.46)
k=O

ek = 0 , n-k odd ,

ek = f_ rM (k+l) , n-k even (A.47)

For integration of logs with Chebychev Polynomials [76] (with

corrections) of the second kind that are typical when using the

strongly singular formulation,

I_llUj(r) 1-_72 lnlr-sl dr = VjCs) , -1 <_ s < 1 ,
(A.48)

where

vj (s) = -_ J
T j+ 2 (s)

j+2 ] ,j>O

-_[-s 2 ]- 2 + 1/2 + ln2 , j = 0 (A.49)
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APPBNDIIB

Finite-part Integrals

Singular integral equations result naturaUy from the formulation

of two-dimensional crack problems in mechanics when the crack opening

displacement derivative is used as the unknown. The theory is well

established due principally to the work of Muskhelishvili [78]. If

the displacement is used as the unknown, the resulting singular

integral equation takes on a new form and is referred to as strongly

singular. To illustrate the differences consider the two-dimensional,

half-space crack problem of Fig. B.1 with boundary conditions given by

Eqns. B.1-4. This simple geometry produces all of the important

mathematical features of the geometries studied in this dissertation.

Y

Figure B.1

The resulting integral equation is

axy(O,z) = o (B.t)

axx(O,y) = 0 (S. 2)

a.. is bounded at infinity. (B.3)
ij

v(x,y) = v(y) = 0 , x -< a , x _> b

o (x,O) =-p(x) , a<x<b. (B.4)
Y
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b b

2/_ ' '
a a

where the non-singular Fredholm kernel,

(s.s)

K(x,t) - -I + 6x 4x2 (B.6)
t+x (t+x) 2 (t+x) 3 '

and _(t)

v(t),

is the unknown derivative of the crack opening displacement

is the shear modulus of the material, and • is defined in

terms of Poisson's ratio v for both

3-/I

plane stress: _ - l+v '

and for plane strain: • = 3-4v (B.7)

The first integral in Eqn. B.5 is singular and is interpreted in

Cauchy principal value sense, specified as such by a line through

One way to define a Cauchy principal value

the

the integral sign.

integral is as follows,

b x-e b

f {I •I}.0
a a X+E

By using the standard interpretation of an integral as the area under

a curve, note that individually the integrals on the right hand side

of Eqn. B.8 do not exist in the limit, but when added together the

"infinite areas w will be of opposite sign and will cancel giving a

finite result. When the problem in Fig. B.1 is formulated by using

the displacement v(t) as the unknown instead of the derivative _(t),

the resulting integral equation is found to be,
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b b

a (t-x) 2 t 8t - 2_
a

p(x) ,

a<x<b , (B.9)

where the first integral no longer exists in the Cauchy principal

value sense and requires a special interpretation. Throughout the

dissertation these integrals are identified by a double dash through

the integral sign.

Consider a direct integration by parts of the integrals in Eqn.

B.5.

(B.10)

b b

_ t_C_tdt _ __-_A_tIb + f _--_l-dt..
a a a tt-x]2

@ (B.11)

Here again the same "strongly singular w integral appears. For

Eqn. B.11 to be an equality, this integral must be finite just as it

must be in Eqn. B.9, so we write,

b b

f t__l_tdt = __-_A_tIb + _ _--_l-dt..
a a a [t-x)2

@ (B.12)

Note that Eqn. B.9 is obtained if Eqns. B.lO,12 are substituted into

Eqn. B.5. The integrated terms cancel for either an internal crack

(O<a<b) where

v(a) =v(b) =o, (B. 13)

or for an edge crack (O=a, O<b) where
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v(o) [n._x K(_,o)] = o, v(b)=o. (B.14)

The fact that a special interpretation of the strongly singular

integral in Eqns. B.9,12 is necessary apparently reveals that a

"mistake" has been made in the derivation of each equation. This

mistake in Eqn. B.II is corrected when Eqn. B.8 is used when

integrating by parts as follows,

b x-E

S_ d__" ([_Ix-°
a a a (t-x) 2

b

• [_I _ •J"_.. d_]}
x+e x+e tt-x)2

X-6

6-0 + [_x-_ +f J-_l-dt ]
a -6 (t_x)2

a

b

. [ vx__.f _-_ dt]}
6 x+6 (t-x)2

(B.15)

From Eqns. B.12 and B.15 we obtain a result similar to Eqn. B.8 but

for strongly singular integrals:

b x-6

_ dt = lira {[ v(x-6) + f v(t)dt ]
a (t-x)2 c-O -6 a (t-x)9

b

6 (t_x)2 "
X+6

(B.IS)

With this definition Eqns. B.9,12 are correct. Consider for example

v(t):1.
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1 1] 1 111E._O + - + -- + + -E a-x b-x _

1 1

a-x b-X "
(B. 19)

Note that this would he the result obtained if Eqn. B.17 is integrated

directly as though the singularity were not present.

Integrals of this type were studied by Hadamard in 1923 [66] and

were referred to as finite-part integrals, a name which describes Eqn.

B.16 where the infinite part is subtracted out. For more information

on finite-part integrals and their use for problems of the type

studied in this dissertation see Kaya [67].

To derive a property that is more useful than eqn B.16 for

evaluating finite-part integrals, differentiate Eqn. B.8 with respect

to x as follows.

b
8

8x f _-_xt dt-

a

Next differentiate

integration,

b

x-e b

81im(f__-_A_xtxtdt+ft--_xtxt dt }8x e_O
a X+E

(B.20)

on the right before the limit is taken and before

X-_

_x J--_ ........ _+-o-_ ..... :_ .... (t-x)
a a

b

e (t_x)2
X+E

(B.21)
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From Eqn. B.16 we conclude,

b h

dt = a
a (t-x)2 O_x _ _---_xt dt "

a

(B.22)

By expanding v(t) near the point t=x, another method for the

evaluation of finite-part integrals is obtained,

b b

v_ dt = _ v(t)-(v(x)+(t-x)v'(xJ)+(v(x)+(t-x)v'(x)) dt

a (t-x) 2 a (t-x) 2 (B. 23)

h h

: vCt)-v(x)-(t-x)v'(t_x)2 (x) dt + v(x) (t_x)2
a a

dt

h

+ v'(x)_ _lx dt ,

a

(B.24)

where

dv

v' (x) - dx " (B.25)

If

v(t) = f(t)w(t) , (B.26)

b b b

f(t)w(t) dt = f f(t)-f(x)-(t-x)f'(x)w(t)dt + f(x)_ w_
(t-x) 2 (t-x) 2 (t-x) 2

a a a

dt

b

+ f'(X)f __-_Xt_Xtdt .

a

(B.27)

See Appendix A for finite-part and Cauchy principal value integrals

with various weight functions and with some commonly used forms of

f(t).
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APPENIHIC

The Compliance Functions

As indicated in chapter two, the mixed-mode line-spring model

requires stress intensity factor solutions of the edge cracked strip

for each of the five loadings shown in Fig. 2.3. Three separate two-

dimensional problems must be solved to obtain these results. The

tension and bending solut_ions come from symmetric (mode 1) loading,

out-of-plane shear results come from skew-symmetric (mode 2) loading,

and the anti-plane (mode 3) results are obtained from twisting and

from in-plane shear loading. Note that in-plane for a plate

corresponds to out-of-plane for plane strain and vice versa.

C.1 Governing equations for in-plane loading.

The governing equations for the mode 1 and 2 cases are from plane

elasticity where all field quantities are independent of z.

Equilibrium of the solid requires,

8e 8r

xx xy = 0 (C.1)8x + 8y

8T 8a

xz . (c.2)
8x + 8y

For plane strain, Hooke's law relates stresses to strains in terms of

the material constants # are u which are respectively the shear

modulus and Poisson's ratio,

-_ [(l-v)ex + ve ] (C.3)°xx - 1-2v y '
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= _ + Vex] (C.4)Oyy 1-2V [ (l-v) ey

(c.s)
rxy = _Txy •

The plane stress solution csn be obtained by replacing v by v/(l+v).

The strain-displacement relations for linear elasticity are,

8u 8v 8u 8v

ex - 8x ' ey - 8y ' 7xy - 8y 8x '
(c.s)

where u and v are the x and y components of displacement respectively.

If the relations in Eqn. C.6 are substituted into Eqns. C.3-5 and

if the resulting expressions are then substituted into Eqns. C.1,2,

Navier's equations for the displacements are obtained:

V2u + l-2----v8xtax + = 0 , (C.7)

V2v + 1-2v 8y + = 0 . (0.8)

The geometry of the cracked strip and the method of superposition

are shown in Fig. C.1. Any field quantity on the left of this figure,

say f(x,y), is given by,

fCx,y) = fiCx,y) + f2Cx,y) , (c.o)

where the subscripts correspond to the geometries on the right. Eqn.

C.9 is used for all relations including the boundary conditions. The

preceeding information will be used for mode 1 and for mode 2.

C.1.1 Mode I.

The boundary conditions for the symmetric problem are:

r (x,O) = 0 , (C.10)
xy

r CO,Y) = 0 ,
xy
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Txy(h,y ) = 0

Oxx(O,y) = 0 ,

Oxx(h,y) = 0 ,

v(x,O) = 0 , x<a , byx ,

a =-p(x) , a<x<b .
YY

To solve problem 1 of Fig.

Fourier transform defined as follows,

1 I+_f(,,y)e-i'x d,fC ,y) = _

= roof dx .(x,y)eipX
J

--M

(C.11)

(c.12)

C.1 we introduce the exponential

(C.13)

(c. 14)

When the Fourier transforms of Eqns. C.7,8 are taken, the following

ordinary differential equations result,

Oy2 + By

82v _2 v 1 _ ] (C. 16)By'--_ - + 1_--_ [ i_ + a2v
Oy . Oy2

These equations are solved for u and v, inverted according to C.13 and

then substituted into Eqns. C.3-5 to obtain,

• - " sS_ )_ookt I """

[ A3(,0) + yA4(,0) ]e +' ply} e -i"x dp , (C.17)

Vl(X,y ) = _-_ -® (#0) - ('_l + Y)A2(P) e +
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I_- _- _4_p_]_'P'Yl_-_P__p,

f" {t ] -'P'_Olxx(X,y ) = i/J21 _®P -2AI(P) + A2(P)(:_-_- 2y) e +

[-2_3(P)- A4(P)(_ _ 2Y)] o+'PiY} o-iPx dp,

O_y_,,y_: _ f:,{I_l__ _p__ 2,_1o-'_',•

-1+, + 2y)] e +I_Iy} e -i_x dp[2A3(P) + A4(P)_- _

where • = 3-4v.

For bounded behavior at infinity

A3(p) = A4(p) --0 .

For problem 2 of Fig.

following Fourier sine and cosine transforms to be used,

(C. 18)

(C.lO)

(c.2o)

(c.21)

(c.22)

0.I there is symmetry which allows the

u 2(x,a) = _oU2(x,y) cosay dy ,

u2(x,y) = _ 2(_,a)co_,,y da ,

_(x,a) = _ov2(x,y)sinay dy ,

W

_. (x,y) = _ 9.(x,

(C.23)

((].24)

(c.2s)

(c.26)
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After

obtain,

x,1.-'Xu2Cx,Y ) = _ [ BIC a ) + B2Ca) Ca +

[ S3(a ) - S4Ca)( _ - x)]eaXlcosay da ,

2 I {[SlCa)+ xS2(a)]e -ax +
V2(x,y) = _ 0

[B3(a) + xB4(a)]eaX}sinay da ,

I"(I } -"02xx(X,y ) = -2/J (1+_ + 2x) •, 0 a 2Bl(a)+ B2(a),-- _-

1+_ 2x)] eaX)cosay da ,[2B3(a) + B4(a)( _ +

02yy(X,y) =-2__ _® {{_2B1 B2(a ) ]• °a (,,,)+ (-%_- 2x) e-ax

[-2B3(a ) - B4Ca)(-_-+ 2x)] eaXlcosay da ,

"r2xy(X,Y) : _ ¢_{[-9"aBl(a) + B2(a)(1-l-2ax) ] e-aX +

[2aB3(a) + B4(a)(1-.+2ax)] eaX}sinay da .

performing an identical analysis as was done with problem 1, we

Now the

Eqn. 0.9.

l-&

AI(_)- 21#lA2(P)

Now introduce a new unknown,

_(x) : _(x,O) ,

and express A2(_)._. in terms of it.

(0.97)

(0._8)

(0.20)

(C.30)

(0.31)

boundary conditions, Eqns. 0.10-12 are applied making use of

First Eqn. 0.10 rel_tes AI(P) to A2(P) as _ollows,

(0.32)
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fbv t A2(#) 1+: v(t)el#tat= _ ei#tdt .
-

The unknowns in the problem are v(x) and Bi(a), i=1,...,4. Eqns. C.11

produce a linear system of four equations that determine Bi(a ) as

follows,

j=l

where

A = e2ah - (4a2h 2 + 2) + e -2ah

711 = -(:-l)e 2ah + [-4a2h 2 - 2ah(:-l) + (:-1)] ,

712 = eah [2ah_ + • - I] + e-ah [-2ah - • + I] ,

713 = -(_+l)e 2ah + [4a2h2 + 2ah(_+l) + (_+1)] ,

ah -ah [-2ah • 1] ,714 = e [-2ah_ + • + 1] + e - -

721 = 2ae 2ah + (4a2h - 2a) ,

ah [_4a2h _ 2a] + 2ae -ah ,722 = e

723 = 2ae2ah - (4a2h + 2a) ,

ah [4a2h _ 2a] + 2ae -ah ,
724 = e

731 = [-4a2h2 + 2ah(_-l) + (_-1)] - e-2ah(_-l) ,

= ah [2ah- (_-I)]+ e732 e -ah[-2ah_ + (_I)] ,

733 = [-4a2h2 + 2ah(_+l) - (_+1)] + (_+l)e-2ah ,

(C.33)

(C.34)

(c.ss)
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and

ah [-2ah + (_+I)] -e -ah [2ah_ + (_+1)] ,734 = e

741 = [4a2h + 2a] - 2ae -2ah ,

742 = -2ae ah + [-4a2h + 2a] e -ah ,

743 = [4a2h - 2a] + 2ae -2ah ,

744 = 2ae ah + [-4a2h - 2a] e -ah ,

-1 fbI1 - 2(I+_) (1-at)e-air(t) dt ,
a

-i fbI2 : 2(T_+()" [1-aCh-t)]e-a(h-t)vCt) dt ,
_t

-i fbI3 - 2(T_+() (2-at)e-atv(t) dt ,
a

(C.36)

1 Sb14- 2(I+_) [2-a(h-t)]e-a(h-t)v(t) dt
a

The mixed

vCx), a<x<b.

_bv(t){_
a

where

and

(c.3z)

boundary condition gives a singular integral equation for

1 + Ko(x,t)} dt +
(t-x)2

b

fa KIl(x't)v(t) at : -_(1+_}4pp(x) ,
(0.38)

KO = 1 12xt 1
(t+x)2 + (t+x)4 (2h-x-t) 2

12 (h-x) (h-t)+ (c.3g)
(2h-x-t) 4 '
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Kll(X,t) : ]_0[ Sl(x,t,a) + Sl(h-x,h-t,a)

+ S2(x,t,a ) + S2(h-x,h-t,a ) ] da ,

Sl(X,t,a) - A

4a2h 2 -2ahA = e2ah - ( + 2) + e

For an edge crack a=O.

p(x) = oI ,

and for bending,

2o2 [ -xl

The loading for tension £s,

(C.40)

(0.41)

(c.42)

(C.43)

(C.44)

(C.45)

C.I.2 Mode 2.

The boundary conditions for the skew-symmetrlc case are,

#yy(X,O) = 0 ,

_xy(O,y) = 0

_xy(h,y) = 0 J

a (O,y)= o ,
XX

o (h,y)=o,
XX

3O0

(0.46)

(C.47)



u(x,O) = 0 , x<a , b>x ,

r =-p(x) , a<x<b
xy

(C.48)

The symmetry of problem 2 in Fig. C.1 for the above boundary

conditions suggests the following Fourier transforms of the

displacements,

- Cu2Cx,a ) = u2Cx,y)sinay dy , (C.49)

2 oU2(x,a)sinay dau2(x,y) = _ S®- Cc.so)

Cv2(x,a ) = v2(x,y)cosay dy ,
CC.Sl)

2 | - a)cosay dav2(x,y ) = _ j'®
or2 (x,

(c.s2)

When these expressions are used to solve C.7,8 the result is,

u2(x,y ) : _ - Cl(a) + C2(a )(_ + +

[ C3(a) - C4(a)(_- x) ]eaX}slnay da , (c.s3)

®

2 y {[Ol(a)+ xC2(a)]e-aX +
v 2(x,y) : _ 0

[03(a) + xC4(a)]eaX}cosay da , (C.54)

O@

a2x x(x,y) = _ 0a 2C l(a) + C2(a).T + 2x) e +

[ I+___+ 2x)] eaX}sinay da ,2C3(a) + C4(a)( -a (c.ss)
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[-2c3(a ) - C4(a) +  "al  n.y (c.56)

r2xy(X,y) = _ f:{[-2aC 1 (a)+ C2(a ) (1-6-2ax)] e-aX+

[2aC3(a ) + C4(a ) (1-6+2ax)] eaX}cosay da (c.57)

The solution to problem 1 in the superposition of Fig. C.1 is the same

as for mode 1 (Eqns. C.17-21). Bqn. C.46 gives,

A2(fl)AI(P) = 2[p[ (c.ss)

After defining

u(x) = u(x,0) (c. 59)

as a new unknown we can express,

= (6+1) u(x)e ipX dx = (6+1) dx
- a

(c.80)

The C. (a) are determined from Eqns. C.47 to be
1

j=l
(C.61)

where 7i j and A are the same as for mode 1 (Eqns. C.35,36) and the

I.'s are found to be,
J

I1 = 2(1+6)" ate-atu(t) dt
a

1 I b -a(h-t)I2 - 2(1+6) afh-+_]e,...j u(t) dt
a
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1 _b (1-at)e-atu(t) dt
I3 - 2(1+_) a

-a (0.82)1 b [1-a(h-t)]e (h-t)u(t) dt
I4 = 2(1+() a

The mixed boundary condition, Bqn. 0.48, gives a singular integral

equation for u(x), _(xKb.

-(t_x)2 + Ko(x,t ) dt + a Ki2(x,t)u(t) dt =-_41-_ _ _(x)3j

where

KC = _ 1 12xt I 12(h-x) (h-t) (0.64)
(t+x)2 + (t+x)4 (2h-x-t) 2 + (2h_x_t)4 '

and

KI2(x't) = _[ S3(x't'a)+ S3(h-x,h£t,a)

+ S4(x,t,a ) + S4(h-x,h-t,a ) ] da , (c.6s)

S3(x't'a) = e-(X+t)aA (e-2ah[ -2a3Xt+a2(x+t)-a]+8aSh2Xt

-4a4h2 (x+t)+a3 [2hx+2h2+2xt+2ht] -a2 [x+t+2h] +a) , (c.6e)

ae (t-x)a (e-2ah [a(t_x)+1]+a3 [4h2x_4hxt]S4(x't'a) = A

+a2 [-2h2-2hx+2ht] +a [-t+x+2h] -1) (0.o7)

A = e2ah - (4a2h2 + 2) + e-2ah (c.s8)

For an edge crack a=O. To obtain the mode 2 stress intensity factor

for parabolic shear loading we let
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p(x)= a3(21h)2x(h-x) (C.SO)

C.2 Anti-plane shear.

The governing equation for anti-plane shear is,

V2w = 0 ,

where w is the z-component of displacement.

can be written in terms of w,

8w_W

8w 8w

7xz - 8x ' 7yz - By

All other components are zero.

together with Eqn. C.9 are used.

(c.70)

The stresses and strains

(C.71)

(c.72)

Again the superposition of Fig. C.1

The general solution for w(x,y) in

terms of the Fourier transforms of Eqns. C.13,14 and C.25,26 is,

wCx,y) = _ _ dp+

oo

f[ -o- ]2 Bl(a)e + B2(a)e ax sinay da . (C.73)o

above equation and the followingThere are three unknowns in the

conditions will determine them,

r (O,y) = 0 ,
xz

r (h,y) = 0 ,
xz

r (x,o)=-pCx) , a<x<b ,
yz

w(x,O) = 0 , x<a, xYb .

After defining

(C.76)
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(0.77)

Eqn. 0.73 becomes,

(c.78)

Inversion (Eqns. 0.13,14) and Eqn. C.76 give,

+® b¢(t)eiDt-ipAI(P) = f #(t)e ipt dt = f dt
-m a

(C.79)

In order to apply boundary conditions C.74.75, Eqns. 0.71,73 and 79

are used to express,

_x_(X,y) = _ f b 24(t) dt
a y2+ (t-x)2

m

f0[ ]-aBl (a)e-aX + aB2(a)e ax slnay da . (c.8o)

Eqns. C.74,75 give the following two inverted equations,

Bl(a) e-ah - B2(a) eah =_1 rjb

a

#(t) e-a(h-t)dt = I1, (c.8i)

1 fb -atBl(a) - B2(a) = _ #(t) e
a

dt = 12 , (c.82)

where the following integral has been used,

f • -a(h-t)® ysinay dy _ e
0 y2+(h_t) 2 =

(0.83)

The solution is,

Bl(a) =
-Ile-aY+ 12

-2ah
-e + 1

(0.84)

305



_ile-aY+ I2e-2ah

B2_=J''= -2ah (c.8s)
-e + 1

where I1 and 12 are defined in Eqns. C.81,82. Next we apply the mixed

boundary condition C.76. Eqns. C.71 and C.73 must be used to express

T

yz
(x,O) = -p(x) =

b +w

f o-,p,y
y+O 2f a

y+olim_ _a(t)_o__b ® { e-a (x+2h-t) +e-a(x+t)-e -a(-x+2h-t')+e-a(-x+2h+t)) da ,f "(0.86)

where

D = 1-e-2ah (C.87)

After using the following integrals,

+®_ii__e-l#lyei#(t-x)d#= 2(t-x)
_® # y2+(t-x)2 '

(C.SS)

= _ cot_®1 {e-a(x+t)_e-a(-x+2h-t)} daJ'O_ (c.sg)

Eqn. C.87 becomes,

1 _b_(t) { _x [cot_- cot_])dt =-1_ p(x)
a

(c.90)

This kernel is equivalent to the following,

X

t-x
(Cauchy kernel)

f

cotX_ (generalized Cauchy kernel)

1 Ir .(x-t)_ (Fredho!m kernel) (C.91)
+ x-t _co_ 2h

This same problem formulated in a different way has been solved in

closed form (see [77]). The solution for an edge crack is,
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. 7a

J . 2,1x, . 2,_sln t_j-szn t_-_)

where

and

g(x) --g(-x),

2 2 fr"

f+a g(r)ll-k sin (_--_) dr ,

-a sin_(1--x) (C.92)

(C.93)

,. ,a,-1
k = tsxn_-]_) (C. 94)

The stress intensity factor is defined as,

k3 = lira _ _.(x,O)x-+a

so

(c.gs)

•a" +I g(at) J 2 2 ,a1-k sin (_t)

k3= _ ]-_ tan_ f-1 sin,(t-I)

For in-plane shear,

dt , (C.98)

g(x) = # 4 , (C.97)

SO

= a/h . (c.g8)
k3

Because of this simple expression a44 (Eqn. 2.27) can be determined in

closed form,

-4

a44 - ,(l-u) in [cos (_{)] (C.99)

For twisting,

(c.100)
205
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SO

k 3

"o
(C.lO1)

C.3 Edge Crack SIF Curve Fitting

The five solutions are listed in table C.1. In addition to the

solutions required by the line-spring model, constant out-of-plane

shear (a6) is also included.

The line-spring model requires stress intensity factors at any

value of { = a/h, so a curve is fit to each solution appearing in

table C.1. For mode 1 the asymptotic analysis of Benthem and Koiter,

[65] suggests that as { approaches 1 the stress intensity factor goes

to infinity with a power of 3/2. Therefore for gl(_) and g2({1 we use

12

- 1 E
(1-{) 3/2 K--v- Cik{k , i = 1,2 (C.102)gi

For all other cases a 1/2 power is used,

8

gi({) _ 1 k_O Cik {k , i = 3,4,5,6. (C.103)(1-4/1/2 =

Although the singular behavior for mode 2 seems to be the same as for

mode 1, (see Eqns. C.38,39 vs. 63,641, the form given in Eqn. C.103

produced a better fit than did 102. For twisting and in-plane-shear

the form of 103 is correct as can be seen by Eqns. C.98,101. The C..
x3

are given in tables C.2,3. These curves reproduce the numbers in

table C.1. The most difficult curves to obtain and to fit are the

mode 1 curves. The limiting values for { approaching 1 are given in
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[65] to be 1.122 and .374 for tension and for bending respectively.

The curve given by Bqn. 0.102 produces 1.1229 and .3735 which shows

both good data and a good curve fit.

For reference the compliance curves that have been used in the

literature to date are listed below. They are for tension and bending

only.

1. Gross and Srawley, 1965, [61], used in Refs. [2,3].

kl 1 1 7_2-38.48_3+53.85_41 ,
Ol _ - ___( .99-.41_+18.

(0.104)

k 1
_ 1 (1.99_2.47_+12.97_2_23.17_3+24.8_4} (c.105)

2. Tada, Paris, Irwin, 1973, [62], used in Refs. [50,51,53,55].

k 1
_  osCfU2) (0.106)

kl 1/2 199 [l-sin(_/2)]fl

02 _'a = (_tan___2) (.923+. cosCx_/2) J
(c. 1o7)

3. Kaya and Erdogan, 1980, [63], used in Refs. [54,56-60].

k 1
--___ = 1.1216+6.5200_2-12.3877_4+89.0554_6

o1_

-188.6080_8+207.3870_10-32.0524_12 , (O.lO8)

k I
_ 1.1202-I.8872_+18.0143_2-87.3851_ 3

+241.9124_4-319.9402_5+168.0105_6 (0.109)
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C.4 Line-Sprin_ Model SIF Normalization

The stress intensity factor solutions for the line-spring model

are normalized with respect to the corresponding plane strain value at

the center of the crack. This shows how the constraining effect of

force. The dimensional SIFsthe ends affects the crack driving

provided by the LSM are

K1 = _[ °ig I + o2g 2 ] ,

K2 = _-h_h o3g 3 ,

Ks : _h-'_h [ a4g 4 + o5g 5 ]

These are normalized with respect to

m

KjO = ,_f_--_Oho'kgk(,_O ) ,

(C.110)

(C.111)

(C.112)

(C. 113)

where k corresponds to the loading and j=l when k=1,2, j=2 when k=3,

and j=3 when k=4,5. Note that the primary SIF is used for all modes

given in Eqns. C.110-112.
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a/h

Table C.1 Stress intensity factors for an edge
cracked strip for tension, bending, constant in-
plane-shear, parabolic out-of-plane shear ,
twisting, and constant out-of-plane shear.

STRESS INTENSITY FACTORS

kI kI k2 k3 k3 k2

.0 1.1215 1.1215

.025 1.1264 1.0921

.05 1.1399 1.0708

.1 1.1892 1.0472

.15 1.2652 1.0432

.2 1.3673 1.0553

.25 1.4975 1.0822

.3 1.6599 1.1241

.35 1.8612 1.1826

.4 2.1114 1.2606

.45 2.4253 1.3630

.5 2.8246 1.4972

.55 3.3428 1.6747

.6 4.0332 1.9140
.65 4.9843 2.2459
.7 6.3549 2.7252
.725 7.2838 3.0500

75 8.4532 3.4582
775 9.9596 3.9830
8 11.955 4.6764
825 14.694 5.6248
85 18.628 6.9817
875 24.634 9.0444
9 34.632 12.462
91 40.659 14.515
92 48.632 17.225
925

93 59.559 20.932
94 75.23 26.236
95 99.14 34.306

O.

0.0670
0.1313
0.2522

0.3628
0.4638
0.5556
0.6392
0.7156
0.7859
0.8512
0.9131
O. 9733
1.0339
1.0980
1.1700
1.2111
1.2572
1.3102
1.3726
1.4482
1 5429
1 6664
1 8368
1 9251
2 0304
2 0911
2 1584
2.3185
2.5260

1
1 0003
1 0010
1 0041
1 0094
1 0170
1 0270
1 0398
1.0558
1.0753
1.0992
1.1284
1. 1642
1. 2085
1. 2642
1.3360
1. 3801
1.4315
1.4922
1. 5650
1. 6541
I.7663
1.9125
2.1133

2.4114

2.9180

1
0 9684
0 9373
0 8765
0 8172
0 7594
0 7030
0 6477
0 5935
0 5403
0 4881

0 4368
0.3864
0.3369
0.2883
0.2408

0.2174
0.1943
0.1715
0.1491
0.1272
0.1057
0.0848
0.0646

0.0453

0.0273

1.1215
1.1215
1.12155
1 1219
1 1233
1 1264

1 1323
1 1419
1 1562
1 1763
1 2034
1 2391
1 2854
1 3450
1 4221
1 5229
1 5852
1 6578
1 7435
1 8459
1 9708
2 1269
2 3289
2 6037
2.7448
2.9116
3.0074
3.1132
3.3634
3.6854
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Table C.2 The compliance coefficients for gl({)

and g2(_) for tension and bending respectively.

COMPLIANCE COEFFICIENTS

Mode 1

k Clk C2k

0 1.12152 1.12152
1 -1.67890 -3.04507
2 8.43058 10.49184
3 -29.46644 -36.66780
4 84.43442 110.09900
5 -182.95329 -255.68184
6 274.45012 421.97167
7 -252.12029 -440.50866
8 92.30672 199.37326
9 62.66657 123.93056

10 -88.30652 -237.97164
11 37.54045 136.17068
12 -5.30201 -28.91005

Table C.3 The compliance coefficients for gi(_) ,

i=3,4,5,6, for parabolic in-plane-shear, constant

out-of-plane shear, twisting and constant
in-plane-shear respectively.

COMPLIANCE COEFFICIENTS

Modes 2 and 3

k C3k C4k Csk C6k

0 0.0 1.0 1.0 1.12152
1 2.73069 -0.4999949 -1.773760 -0.55939
2 -3.44019 0.2860705 0.937496 -0.18069
3 0.33305 -0.2661996 -0.602894 0.39478
4 2.80514 0.2193511 1.176914 2.07787
5 -2.94406 -0.1731221 -2.183231 -5.40893
6 0.74775 0.1047768 2.906943 5.82745
7 0.63860 -0.0418068 -2.121964 -3.11784
8 -0.32028 0.0075456 0.659759 0.67088
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Figure C.1 The geometry and superposition for the
cracked strip.
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APPBNDIX D

Determination of the Weight Function

The solution of a singular integral equation such as Eqn. B.5 or

the strongly singular version, Eqn. B.9 involves obtaining #(x) or

v(x) for a<x<b. Before attempting the numerical solution, the

behavior or weight of the unknown at the endpoints, a and b, should be

determined that will force the singular or dominant integral to be of

the same order as the other terms in the equation. Without this

asymptotic behavior an accurate solution near the ends is difficult to

obtain, although in the central portion convergence is acceptable (at

least for the integral equations studied in this dissertation). We

then seek to obtain a and p defined as,

#(t) = f(t)wl(t ) = f(t)(b-t)a-l(t-a) #-1 , (D.1)

v(t) = g(t)w2(t ) = g(t)(b-t)a(t-a) _

for finite

g(a), g(b), f(a), f(b) # 0 ,

, (D.2)

(D.3)

where w.(x) are known as weight functions for the integral equation.
1

The typical integral equation studied in fracture mechanics has a

right-hand side (p(x) in Eqns. B.5,9) that is of order one. _ere the

weight function must be such that the singular term in these equations

is finite. All through crack problems are in this category. However

for the part-through crack case, only when the crack shape, ((x) is of

the form,
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=  0(1-x2) 7 , 7 I/4 , (D.4)

is this condition met. If 7 > 1/4 the line-spring terms will be

unbounded and for 7 < 1/4 they will be zero (see Chapter 2). If 7 >

1/4, such as for a semi-ellipse (7 = 1/2), a solution for a<x<5 can

only be obtained if a weight is chosen that will duplicate this

unbounded behavior. For the special case where K(x,t) is zero (see

Eqn. B.5,9) and 7 < 1/4, the weight function should be chosen such

that the singular integral matches the 7 dependent zero behavior of

the line-spring contribution. In both of these cases the weight

function will be such that the displacement profile will be physically

unacceptable. If this matching is ignored and the through crack

weight is used for all 7, a convergent solution to the part-through

crack problem can still be obtained for about 98_ of the domain, a<x<b

without too much extra computer time. Of course this is well beyond

the expected range of validity of the line-spring model, and therefore

all crack shapes will be treated as though the resulting line-spring

terms are of order one. One way to deal with this problem, shown in

Chapter 2, is to force 7 = 1/4 behavior at the endpoints.

First consider the internal crack case of an equation of the form

of B.5. From the basic theory of Muskhelishvili [78], and from Eqn.

B.22 to extend this theory to finite-part integrals (see Kaya [67]),

we have,

b v-_ dt =-#cot,# limv__ + 0(1) (D 5)
lira!

x_a f a (t-x) 2 x*a x-a ' "
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rb v___ dt _ -acot_a
lira!

x*b 7 a (t-x)2

where

v(t) = g(t)(h-t)a(t-a) # ,

For Eqns. D.5,6 to be of order one,

cotT_ = cotfa = 0

This gives,

# = a = 1/2,3/2, ....

lira vCx) 0(1)x'*b b-x + (D.6)

g(a),g(h) # 0 (D.7)

(D.8)

(D.g)

As a

Kaya

derivatives remain

take,

and

rule for deciding what form to take for finite-part integrals,

[79] states that all roots should be used such that g(x) and its

bounded at x approaching a and b. Therefore we

a = fl = 1/2 , (D.IO)

v(t) = g(t) (b-t) lz2(t-a)/ 1/2 (D.11)

In order to obtain the compliance functions used in the line-

spring model, the edge cracked strip (Appendix C) must be solved. The

crack opening displacement, v(x) will have a different weight function

than Eqn. D.11. From Eqn. C.39 note that there are integrals which

become singular when both t and x go to zero simultaneously, so these

terms must be included in the limit as x*O.

! b v(t) dt + Z b -v(t) dt + 12xt v(t) dt ~ 0(1) ,
0 (t-x) 2 f 0 (t+x) 2 _ 0 (t+x) 4 (D.12)

_or

v(t) = g(t)(b-t)at # , g(O),g(b) # 0 . (D. 13)
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The analysis for x at b is the same as for the internal crack.

Ref. [67] we have,

_b _ dt = -#cotxp lirav(x) + 0(1)
lira 1

x_O_ 0 (t-x)2 x_O x '

_b v(t_ dt =sinx# x_O x
lim _1 ___ lira v(x) + 0(1)

x*O x 0 (t+x)2

f !2(_+1)#(#-1) lira v(x) + 0(I)1 b 12xt v(t) dt =

0 (t+x)4 3!sin,(#+l) x-O x

Therefore the characteristic equation for # is,

-#cot,# - --_ 2(#+1)#(#-1)
sin,# + sin,(#+l) = 0 ,

which reduces to,

[cos,#-1 + 2#2] = 0
sin,#

which has the root # = O. Therefore for an edge crack,

vCt) = gCt)(b-t) 1/2

From

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

(D.1@)
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APPENDIXE

Numerical Methods for the Solution of Singular Integral Equations

In this section the two most common numerical methods for solving

singular integral equations of the following form will be considered:

b b

_ dt + _ #(t)K(x,t)dt = p(x) ,
a a

b aK
_b v(t) dt - I v(t)_ at = p(x)
a (t-x)2 a

These two equations are equivalent for

av

v(t)=v +(t)-v-(t) , ¢(t)-at,

with the condition

v(a)=v(h) :0 ,

which for Eqn. E.I is expressed as,

a<x<b , (E.1)

a<x<b (E.2)

(E.3)

(E.4)

b

#(t) dt = 0 . (Z.5)
a

solution methodsBoth

unknowns and multiple cracks, so for simplicity will be left out.

can easily be generalized to include multiple

E.1 _uadrature.

Here we consider the solution of Eqn. E.1 for the case of an

internal crack. The first step is to express the unknown in terms of

its weight function given in Eqn. D.11. We have,

f(t) (E.6)
#(t) = (t_a)i/2(b_t)i/2
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This is substituted into Eqn. E.I using the following definitions:

b-a b+a

t- 2 r + -_-
(E.7)

b-a b+a
x=-_--s+ 2 '

(z.s)

p(x)= p(s) , (z.9)

_(t) = (l_t2)l/2

b-a _i_
, f(t)- 2 _rj

(_,.10)

b-a K(x,t) ,L(r,s)- 2
(z.n)

to obtain,

(l-r2) 1/2 (r-s)
+ f+l _(r) L(r,s) dr = p(s) ,

-1 (l-r2) 1/2

We now make use of the quadrature formula

h(r) dr = _--:w.h(rj)
(l-r2) 1/2 j=l 3 '

(s.13)

where

. ,N (E 14)
rj. = cos N_lx , j = 1, .. ,

which are roots of the Chebychev polynomial TN(r), and

wj - N-I ' J = 2,...,N-I ,

_" (E. 15)
Wl = WN - 2(N-I)

This quadrature is exact when the function h(t) is a polynomial of

degree (2N-I) or less and therefore has good convergence when

integrating the well behaved Fredholm kernel L(r,s) in Eqn. E.12 as N

is increased. However the integration of the singular term in this
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equation introduces

be proportional to

values of

integration

values are,

a relatively large error which has been found to

the Chebychev polynomial UN(r ). Therefore when

s are chosen to make UN zero, the error is reduced and the

is exact for polynomials of degree 2N or less. The s

2i-1
i = 1,...,N-1 (E.16): COSsi N-I 2 '

It is this information that makes the method work. Applying the

quadrature formula to Eqn. E.11, we obtain,

N [1_--':w.f ) r.-s.
j=l J (rj j 1

-- . L(rj,si) ] = P(Si) , i = 1,...,N-1 , (E.17)

which is a system of N unknowns (g(rj) , j=l, ...,N) and N-1 equations.

Recalling Eqn. E.5 we supplement Eqn. E.17 with

N

_-_w.f(r.) : 0 (E.18)
j=l J J

which can then be solved as a system of linear algebraic equations.

Convergence is obtained as N is increased.

In the case of an edge crack where a = O, the weight function

changes (see Eqn. D.19) and _(t) becomes,

(t) : f(t) (E 19)
(b_t) 1/2 "

After substitution using Eqns. E.7-11 with a=O, the singular integral

equation, E.1 becomes,

S:: f(r) dr
(l-r) 1/2(r-s)

[+I ?(r)÷

"-1 (l-r) 1/2 L(r,s) dr = p(s)

The necessary quadrature for this weight function is,

, -l<s<l .
(Z.20)
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N
,j÷l _ dr : _-_w.h(r.) (E.21)

-i i_-r _=i J J '

where now the values of w. and r. must be obtained numerically as
J J

roots of the following Jacobi polynomials:

pN(-I/2,-I) (E.22)(tj) = 0 , j = 1,...,N

=o, :
It is easier to use Eqns. E.12-16 and include (l+t) 1/2 in the function

f(r). For the edge crack however, Eqn. E.18 is replaced with

h(-i) : h(tN) = 0 (E.24)

The quadrature method is not a good choice for the solution of

strongly singular integral equations such as Eqn. E.2 because the

existing quadrature formulas for finite-part integrals involve

operations that make solving the integral equations far more

complicated than solving the equivalent equation with a Cauchy

singularity, (see [67]). Perhaps in time a more convenient

quadrature will be developed. A better and simpler approach to

solving Eqn. E.2 is the expansion method, or more specifically, the

collocation method.

as

E.2 Collocation.

First consider the internal crack where the unknown is expressed

v(t) = g(t) (t-a) l/2(b-t) 1/2 (F..25)
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Note

displacement as the unknown which leads to a

integral equation. Again use Eqns. E.7-9 with

v(t) b-a v(r) (l-r2) 112
- 2

L(r, s)= [_-_) 28KSt

Substituting into Eqn. E.2 we obtain,

(r-s)2

Next we choose

N

that Eqn. E.4 is satisfied which shows an advantage of using the

strongly singular

+1

dr + __lv(r)(1-r2)l/2L(r,s) dr = p(s) ,
-l<s<l

v(r) = j_l'= ajfj-l(r) '

(Z.26)

(E.27)

(z.28)

(z.29)

where fj(r) are linearly independent functions chosen to "fit the

curve w and the a. are coefficients to be determined. I believe that
3

it is best to choose orthoganol polynomials so that the coefficients

show convergence as N is increased. The proper choice for the weight

of Eqn. E.28, is the Chebychev polynomial of the second kind, Uj_l(r ).

With other functions such as a simple power series r j-l, convergence

can only be seen by calculating the sum (Eqn. E.29) as the

coefficients themselves do not converge. Also as N gets large the

coefficients of r j-1 can get large enough to cause round off error as

was experienced with the thin plate limit in Chapter 3. This problem

is avoided when using orthoganol polynomials. These convergence

characteristics are shown in table E.1 where the coefficients, a. are
J
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listed for N = I0 and 20, using both U(2j_2)(r ) and r (2j-2) for the

fitting function, f(2j_2)(r) (see Eqn. 29). The problem is symmetric

in r so only even functions have non-zero coefficients. This shows

slow convergence typical of part-through crack problems. Although the

numbers for N = 20 and r(2j-2) are large, they give the same result as

the Chebychev polynomials. Mostly all problems can be solved with

power series, but the orthoganol polynomials, I believe, are better.

Next substitute Eqn. E.29 into Eqn. E.28 to obtain,

N ,,+1 fj (r) (1-r2) 1/2 +1

j_l dr + _ fj(r)(1-r2)l/2L(r,s)dr)= p(s)= aJ_-I (r-s) 2 -1 -1<s<1 (E.30)

With this method there is no restriction on the choice of s as long as

it does not coincide with r in Eqn. E.30. Roots of Chebychev

polynomials which concentrate points near -1 and +1 are a good choice

when information near the endpoints is needed such as the

determination of stress intensity factors for through cracks. Table

E.2 lists the coefficients for N = 3 and 6 and the resulting stress

intensity factor to show how good convergence is for this type of

integral equation.

A more uniform spacing of points has been found to be a better

choice for convergence of the line-spring model where information in

the central portion is more important (see Table E.3 ). In this table

equally spaced points improve convergence by about one order of

magnitude. Another reason to prefer this choice of s. is that the
J

solution is most accurate there (recall that the collocation method

gives the solution for all s) and it is more convenient to know the
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solution

polynomial.

For a

Eqn. E.30.

at these points than at the roots of an orthoganol

given value of s there are two integrations to perform in

Any standard technique can be used, for example Gauss-

Chebychev quadrature which takes advantage of the weight,

+I M

; h(r)(1-r2) 1/2 dr = k_lWkh(rk ) ,
-1 =

where

(E.31)

• kf 2
" Is_n_-f ] (E.32)Wk - M+I

k_
rk = cosM-_ . (E.33)

The first integral can be determined by using Eqn. B.27 or for certain

expansion functions fj(r) such as Uj(r), there are closed form

expressions• For example,

+I Uj (r) (l-r2) 1/2

_-I dr = -z(j+l)Uj(s) (E.34)(r-s) 2

See Appendix A or Ref. [67] for similar formulas for other functions

and other weights. Therefore if Eqn. E.30 is evaluated at N different

points, the coefficients, aj , j=I,...,N can be determined. Also a

least squares technique can be applied if more than N values of s are

selected.

Both numerical methods have been used in this dissertation, and

the collocation method has been found to be better. One important

advantage of this method is that the number of unknowns is unrelated

to the way in which the integrations are performed. This makes for
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better efficiency. Another advantage is that the function is given at

all points instead of at discrete values of s as in the quadrature

method (Eqns. E.16,24). This makes convergence easier to check

because with quadrature, as N is increased, the stations at which the

function is given, shift. The only common points from one value of N

to another are the endpoint, the most difficult to converge, and the

midpoint which is the easiest. With collocation either the same

values of s can be used for successive N values, or the function can

simply be evaluated at any point according to Eqn. E.29. I have found

the collocation method to be most accurate when N unknowns and N

equations are used as opposed to using the before mentioned least

squares method. This is similar in principle to curve fitting.

For the edge crack the technique is similar except the singular

integral in Eqn. E.30 must be solved numerically because expressions

such as Eqn. E.34 are not available for a (l-r) 1/2 weight. Kaya [67]

has developed a scheme which gets around this. Instead of normalizing

from -1 to +1, he normalizes from 0 to +1 as follows,

t=br,

X = bs ,

v(t) = b (r) ,

L(r,s) = b 2 81(
at "

Then Eqn. E.2 becomes,

1 _Cr) dr-flov(r)L(r,s ) dr = p(a) O<s<l
0 (r-s) 2

(F,.3s)

(E.36)

(E.37)

(E.38)

(E.39)

Now we can use
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;Cr) = gCr) (1_r2)1/2
Also if

sO _ dr

-I (r-s) 2 ,

is added and subtracted from Eqn. E.3g we have,

('r_s) 2 +

s°
(r-s) 2 dr--p(s) , O<s<i

Now the singular term can be evaluated in closed form.
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N=IO

N = 20

Table E.I Coefficients for expansion functions,

Uj_l(r ) sad rj-1 for a part-through crack to show

convergence for coefficients of U for increasing N

and to show how power series coefficients get

large.

= .6(1-s2) 1/4 , tension.

U(2j_2) (r) r (2j-2)

alj a2j alj a2j

1 .602954e00
2 -.353661e-1
3 -.633608e-2

4 -.238970e-2
5 -.115589e-2
6 -.672035e-3
7 -.448539e-3
8 -.336133e-3
9 -.280330e-3

10 -.128226e-3

201102e01 .633626e00 .197755e01
357367e-1 -.995538e-1 .124094e00
297401e-2 .991316e-1 -.204339e00
120856e-2 -.223967e01 .373660e01
878486e-3 .170071e02 -.275699e02
658983e-3 -.676896e02 .107146e03
514599e-3 .150545e03 -.234331e03
429394e-3 -.188716e03 .289774e03
389471e-3 .124487e03 -.188933e03
192492e-3 -.336138e02 .504607e02

1 .602962e00
2 -.353528e-1
3 -.631705e-2

4 -.236433e-2
5 -.112297e-2
6 -.629824e-3
7 -.394573e-3
8 -.266935e-3
9 - 191184e-3

10 - 143206e-3
11 - 111307e-3
12 - 893108e-4
13 - 737318e-4
14 - 624979e-4
15 - 543247e-4

16 - 483900e-4
17 - 441540e-4

18 - 412504e-4
19 - 393969e-4
20 - 190835e-4

.201104e01

.357469e-1

.297507e-2

.119822e-2

.854624e-3

.618609e-3

.453260e-3

.340355e-3

.262485e-3

.207703e-3

.168386e-3

.139685e-3

.118478e-3

.102717e-3

.910346e-4

.825134e-4

.765362e-4

.726940e-4

.706965e-4

.349693e-4

.633599e00 .197746e01
-.981042e-1 .124878e00

.127104e00 -.752523e00
-.116577e02 .472852e02

.413200e03 -.145520e04
-.841220e04 .265618e05

.109143e06 -.315897e06
-.963774e06

.605181e07
-.278436e08

.957704e08
-.249352e09

.494303e09
-.745521e09

.848642e09
-.716454e09

.434607e09
-.179004e09

.448065e08
-.514322e07

259884e07
-.153958e08

674988e08
-.223025e09

561471e09
-.108197e10

159325e10
-.177709e10

147440e10
-.881107e09

358246e09
-.886709e08

.100789e08
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Table E.2 Convergence of expansion function

coefficients a. and normalized stress intensity
J

factor kl/(a2_ ) for a through crack, a/h=1, u=-.3

• a.j sj J kl/

N=3

N=6

1 .00000 .255900e01
2 .58779 .126237e00
3 .95106 .103953e-1

1 .00000 .255883e01
2 .28173 .125167e00
3 .54064 .103724e-1
4 .75575 .508637e-3
5 .90963 .159547e-4
6 .98982 .334089e-6

.74742

.74748
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Table E.3 The effect of the choice of the

collocation points, s. on convergence for a part-
J

through crack loaded in tension.

= .fi(l_s 2) 1/2 = .6(1-s2) 1/4

j S.
J alj a2j alj a2j

N=12
1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

I0
Ii
12

0
1
2
3
4
5
6
7
8

.9

.95

.98

.517675e00
-.826466e-1
-.862004e-2
- 320951e-2
- 154063e-2
- 816275e-3
- 454261e-3
- 249781e-3

- 125213e-3
- 514386e-4
- 148252e-4
- 217783e-5

.179305e01
-.932252e-1
-.478427e-1

-.163700e-1
-.772860e-2
-.413912e-2
-.232331e-2
-.128652e-2
-.650011e-3
-.269770e-3
-.787855e-4
-.117624e-4

.0 .517492e00

.13617 -.828914e-1

.26980 -.891617e-2

.39840 -.353796e-2

.51958 -.188429e-2

.63109 -.116178e-2

.73084 -.796345e-3

.179224e01
-.945347e-1
-.494622e-1
-.181809e-1
-.963221e-2
-.605954e-2
-.422672e-2

.81697 -.590135e-3 -.317589e-2

.88789 -.465276e-3 -.253009e-2

.94226 -.386326e-3 -.211617e-2

.97908 -.334534e-3 -.184705e-2

.99767 -.149021e-3 -.840827e-3

.602986e00
-.353093e-1
-.625598e-2

-.228765e-2
-.103516e-2
-.535729e-3
-.296962e-3
-.165651e-3
-.858241e-4
-.372392e-4
-.116721e-4
-.192020e-5

.602958e00
-.353590e-1
-.632578e-2
-.237578e-2
-.113751e-2
-.647982e-3
-.417042e-3
-.294652e-3
-.225401e-3
-.185580e-3
-.163903e-3
-.767395e-4

.201108e01

.357855e-1

.298601e-2

.117540e-2

.799027e-3

.535892e-3

.349407e-3
.218096e-3
.123060e-3
.571948e-4
.189765e-4
.327248e-5

201103e01
357420e-1
297444e-2
120271e-2
864942e-3
635656e-3
478286e-3
375106e-3
309416e-3
270293e-3
251536e-3

.124182e-3
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KPPBN1)II F

Short Crack Analysis of the Compliance Functions

For small _ (small crack depths) we write,

gl(_) = c O + Cll _ + c12 _2 + c13 _3 + c14 _4 + c15 _5 + ... , (F.1)

g2(_ ) = cO ÷ c21 _ + c22 _2 + c23 _3 + c24 _4 + c25 _5 + ... , (F.2)

where

Cio = Cio , CIO = C20

Cil = 3/2Ci0 + Cil ,

ci2 = 15/8Ci0 + 3/2Cil + Ci2 ,

ci3 = 35/16Ci0+ 15/8Cii+ 3/2Ci2 + Ci3 ,

ci4 = 315/128Ci0+ 35/16Cil + 15/8Ci2 + 3/2Ci3 + Ci4

ci5 = 693/256Ci0+ 315/128Ci1÷ 35/16Ci2+ 15/8Ci3 ÷ 3/2Ci4 ÷ Ci5(_.3)

where C.. are listed in table C.2. From Eqn. 2.26,
13

+ + 2 +i/5 512c0cls 2cnc12] ÷ I/6(S[2c0 14 c12 2cncls] +

I/7_712c0c15 + 2CliC14 + 2c12c13 ] + 0(_8)) , (F.4)

a22 = ,{ I/2c_ 2 + 2/3c0c21 _3 + I/4_4[c_i + 2c0c22] +

+ + _ +1/s_S[2cOc23 2c21c22 ] + 1/6_612c0c24 c22 2c21c23] +

I/7_712c0c25 + 2c21c24 + 2c22c23 ] + 0(_8)I , (F.5)
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_,2 : _2, = "( 1/2c02_2+ 1/3_3[c0_11+ _0_21] +

1/4_4[CllC21 + c0c22 + c0c12] +

1/5_5[c0c23 + c0c13 + c11c22 + c21c12] +

1/6_6[c0c24 + c0c14 + c11c23 + c21c13 + c12c22] +

1/7_7[c0c25 + c0c15 + c11c24 + c21c14 + c12c23 + c22c13]1F]6 )

Eqn. 2.33 relates 7i j to aij as follows

_-2[1/4(c_1 + 2c0c22)51 + 2/3c0c2152 + 1/2c253 ] +

(1 + +[2/5(c0c23 c21c22)61 + 1/4(c221 + 2c0c22)_ 2

2/3c0c2153 + 1/2c0254 ] + 0(1)) ,

36(1-v2)722 = lr( _-41/2c251 + _-312/3c0c1151 + 1/2c0252 ] +

2 +_-2[1/4(Cll + 2c0c12)_ 1 + 2/3c0c1152 1/2c253 ] +

_-112/5(c0c13 + c11c12)51 + 1/4(c21 + 2c0c12)52 +

2/3c0c116 3 + 1/2c254 ] + 0(1)} ,

-6 (1-v 2) 712 = -6 (1 _2) 712 = lr(_-41/2c2t51

(F.7)

(F.8)

+ F-311/3c0(Cll + c21)51

+ 1/2c0252] + _-2[1/4(CllC21 + c0c22 + c0c12)61 +

1/3c0(cl 1 c21)62 1/2c253 ] _-1+ + + [1/5(c0c23 + c0c13 +
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c11c22 + c21c12)_1 + 1/4(CllC21 + c0c22 + c0c12)62 +

1/3c0(Cll + c21)63 + 1/2c264] + 0(1)) ,

where

1

61 - A1 '

A2
62 = -_ ,

A1

A2-A1A 3

63- 3 '
A1

(F.9)

and

3 2

A2-2AIA2A3+AIA4 (F.IO)
64 = 4 '

A1

2 2 2 2
A1 • (1/8c0(c21+2c0c22+c11+2c0c12) + 2= 4/9C0CllC21 -

2 2 1/4e_ (elle21+eOe22+eOe12))1/9c0(c11+c21 ) -

= 2 2
A2 • I1/5c0(c0c13+CllC12+c0c23+c21c22 ) -

(c c +2c c c +c c +2c c c ) -1/6c 0 2 2 1/5c_11 21 0 11 22 21 11 0 21 12 (c0c23+c0c13 +

t

c11c22+c21c12 ) - 1/6c0(c11+c21)(CllC21+c0c22+c0c12)1 ,

A3 = 2{1/12c_(2c c +c +2c c +2c c +c +2c c )+2 20 24 22 21 23 0 14 12 11 13

4/15c (c cl,c,o+c c c +c c c +c c c ) +
" 0 0 11 _o II 21 22 0 21 13 21 II 12

2 2 2 + +
1/16(c11+2c0c12)(c21+2c0c22 ) - 1/6c0(c0c24+c0c14 c21c13+c12c22
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c11c23) - 1/16(CllC21+c0c22+c0c12 )2 -

2/15c0(c11+c21 ) (c0c23+c0c13+CllC22+c21c12)} ,

= 2 2
A4 f {2/14c0(c0c25+c21c24+c22c23+c0c15+CllC14+c12c13 ) +

2 2
1/9c0(2C0CllC24+CllC22+2c21CllC23+2c0c21c14+c21c12+2CllC21C13 ) +

2
1/20(c11+2c0c12)(2c0c23+2c21c22 ) +

2 2
1/20(c21+2c0c22)(2c0c13+2CllC12 ) - 1/7c0(c0c25+c0c15+CllC24 +

c21c14+c12c23+c22c13 ) - 1/9c0(c11+c21)(c0c24+c0c14+CllC23 +

c21c13+c12c22 ) - 1/10(CllC21+c0c22+c0c12)(c0c23+c0c13 +

c11c22+c21c12)) • (F.11)

Now I have

711 : Sl_-4 + s2_-3 + s3_-2 + s4_-I + 0(I) ,

722 : ql _-4 + q2 _-3 + q3 _-2 + q4 _-1 + 0(1) ,

712 = 721 = tl_-4 + t2_-3 + t3_-2 + t4_-I + 0(I) ,

where si, t i and qi' i=1,2,3,4 can be obtained from Eqns. F.7-9.

consider the stresses (recall Eqn. 2.31),

al : uCs) 11( )+ pCs)712( ),

a2 : u(s)721(( ) + p(s)722({) ,

where for the remaining analysis,

{ : {0(1-s2)1/2

(F.12)

(F.13)

(F. 14)

Now

(F.15)

(F.16)

(F. 17)
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I will also assume that the loading is symmetric

following expressions for u(s) and p(s) are used,

N

u(s): (1-s2) 1/2 j__lalju(2j_2) (s) ,

N

p(s) = (l-s2) 1/2 _a2jU(2j_2)(s)

For small 4 or for s near 1,

N

u(s) =-_-40 j_lalj{= bj + 42cj)+ 0(44 )

N

in s, so the

(F. 18)

(F.19)

(F.20)

(F.21)

where

b. = (2j-1) , (F.22)
J

-4 _ 2
"- 2 i (F.23)

cj 40 i=1

The following expressions result for Eqns. F.15,16,

N

1 _. alj{4-3bjSl + 4-2bjs2 4-1
al(4) - 40 j=l + (bjs3 + cjsl) +

(bjs4 + cjs2) ) +

1 N 4_3bjt 1 4_2bjt 2+ _0 Z a2j { + 4-1j=l + (bit3 + cjtl) +

(bit4 + cjt2) ) + 0(4 ) , (F.24)

N

1 _. alj(4-3bjtl + 4-2bjt2 4-I
a2(4) - _0 j:l + (bit3 + cjtl) +
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(bjt4 + cjt2) } +

+ _01 _.N a2j( _3bjql + {_2bjq 2 + _l(bjqs + cJql) +
j=l

(bjq4 + cjq2) ) + 0(_) (F.25)

Using the prediction of Chapter 2 that the stresses must have a square

root singularity at the ends, i.e. _-1, we must have,

1 N {_3bjs 1 {_2bjs 2

_01 j=l_ a2j(_-3bjtl + _-2hjt2) = 0 , (F.26)

_0 j=l

1 _. _-3bjql _-2bjq2

which is true if

N

j=l alibi '

and

This

N

j_l a2jbj = 0 ."_

(F.28)

(F.29)

is equivalent to saying that the through crack stress intenslt_

factor is zero, because

(F.30)
kI N

a _. a..b. , i=1,2 .
#_a j=l zj j
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APPENDIX G

Stress Intensity Factors

G.1 Elasticity Theory.

The study of the static stress distribution near the tip of a

crack in a linear, elastic solid has been reduced to the determination

of constants called stress intensity factors (see Irwin [68,69]). To

illustrate this consider the two-dimensional plane geometry where

Williams [4] and Sih [80] have given the asymptotic form of the

stresses of in-plane and anti-plane loading, respectively. These

solutions, presented below, are obtained by use of eigenfunction

expansions which satisfy the crack surface boundary conditions. The

coordinate system is chosen to duplicate the through crack geometry

used in this dissertation where the crack lies in the yz-plane with z

tangent to the crack front. The polar coordinates r,O are measured

from the crack tip and lie in the xy-plane.

kl 8 _ . 38 k2 8cos_ [1-sin ] - -- "
Oy _ --2_r sln-_ _ sln_

2n-1

n=l

kl 8 _ . 38~- cos_ [l+sin sln-_ ]
ax 2_r

[2 + cos_ cos3-_82]+

(C.1)

k2 . 8 8 38
-- COS"_ ++ Sln_ COS_

2n-1
W

+ aOx + _ [b3n r 2
n=l

f3n(8) + b4nrnf4n(/_)] , (G.2)

336



0
z

T
xy

-_ 2u
k 2

2n-1
QO

+ _. [b5nr 2
n=l

w

0]sln_ + VOOx +

tSn(S)+ Ssnrntsn(e)],

kl . 8 8 38 k2 8
s_._ cos_ cos-_ + -- _o_

2n-I
O0

+ _ [b7n r 2
n=l

[1-sin_ . 38sin--_ ] +

f7n(e) + bsnrnfsn(O)] ,

2n-I

k3 O ® [-_-- sin_ + _. b9nr 2_yz _ n=l

2n-1

k3 8 ® [ "
Txz -_ --2_r cos_ + n=l_ blln r 2

f9n(8) + blOnrnflon(8)] ,

((].3)

(C.4)

(c.s)

flln(8) + b12nrnf12n(8)] (C.6)

The stress

the opening

plane) modes of fracture shown in figure G.1.

(].1-6 exist for displacement as follows,

k 1

k2

+ sln_ +

k1

u(r,O) -_ _ 2_-_r [(2s+l)sln_-sinai

[..- _ (2,-3) cos 2 + cos

intensity factors are kl, k2, and k3 which correspond to

(symmetric), sliding (skew-symmetric) and tearing (anti-

Equations similar to

, (c.7)

, (C.S)
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k 3
w(r,O) 2_r . 0_ sln_

where

plane

, (c.o)

is the shear modulus, v is Poisson's ratio, and _=4-3v for

strain and _=(3-_)/(l+u) for plane stress. Clearly the stress

intensity factors play the important role in the expansion near the

crack tip and have been shown to play an important role in fracture

[68] or more recently [70].

The singular terms in the stresses have also been shown to apply

to geometries other than plane strain. Irwin [68] examined Sneddon's

solution [81] of a circular shaped crack in an infinite solid under

mode 1 loading and found that in a plane normal to the crack front the

definition of k1 is the same as for the straight crack front of plane

strain. Since then Kassir and Sih [82] have proven this to apply for

a plane elliptical crack under general, or mlxed-mode loading

conditions. It may be assumed that this result will hold for any

plane crack with a smooth crack front, see Ref. [83].

From Eqns. G.1-9 we define the stress intensity factors in terms

of stress and displacement below.

kl = lira _2(y-b) a (0 y,z) (g.lO)
y+b x '

= _+1 y÷b 12(y-b) u(O+,y,z) - u(O-,y,z) , (G.11)

k2 = y*blimJ2(y-b) rxy(O ,y,z) , (G.12)

2/t_ lira 1 [ + - ]- _+1 y+b _ v(O ,y,z) - v(O ,y,z) ,
(G.13)

k3 = lim _2(y-b) r (O,y,z) (G.14)y+b yz '
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__lim 1 [ - ]- 2 y_b 42(y-b) _(O+,y,z)- _(0 ,y,z) (G.IS)

These expressions are not valid at the point where a crack front

meets a free surface. Benthem [I] has found that the stress

singularity

equal to .5.

table G. 1.

and 3

of .5

[33].

at this point is dependent on Poisson's ratio and is not

The values for the order of the singularity are given in

For mode 1 the exponent is less than .5 and for modes 2

it is greater than .5. In most theoretical work a singularity

is assumed along the entire crack front, see for example Ref.

G.2 Plate and Shell Theory.

The typical expression for stress resultants in either plates or

shells is of the non-dimensional form

ci fb ui(t)
Fi(O,y) = _- j -- dt + 0(1) y<a, b<y i=1 ,5 (G.16)

a (t-y) 2 ' ' '"" '

from which the singular integral equations are obtained

c i _b ui(t )
-_kSik - _ a (t---_ _ dt +

5 h u
Y_. _ .(t)Kij(y,t) at a<y<b i=l,...,S
j=l a J ' ' '

where k

for i=k.

"a" represents the dimensional form, and 'b" the non-dimensional.

{ F } = { Nil/hE , Mll/h2E, Vll2(l+v)/5hE , N12/hE , M12/h2E }

(G.17)

corresponds to the loading where 6ik is zero for i#k and one

F£, ci,and ui are defined in the following equations where
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= { Nxx, Mxx, Vx, Nxy, Mxy } ,

{ Nll, Mll, V1, N12, M12 } =

{ halD, h2/(6)a2D , 2h/(3)a3D, ha4D, h2/(6)O5D }

{ Nxx, Mxx, Vx, Nxy, Mxy } =

{ °I, e2/6, a38(1+v)15, e4, aS/6 } ,

oi = OiD/E ,

{ c } = { 1/2, 1/24, 1, 1/2, 1/24 } ,

{ u } = { ux/h, fix' uz/h' Uy/h, py }

= { u 1, u 2, u 3, u 4, u 5 } ,

with only one exception for the shell,

where

(G. 18a,b)

(G.19a,b)

(¢.20)

(G.21)

(G. 22a, b)

Uy(t) = hu 4(t) + (k2/k)2tu3(t)

k2 and _ are shell parameters defined in Appendix A.

(G.23)

To obtain

the

using G.IO-15 we first convert G.17 to

1 _:: fi (r)(1-t2)l/2
-1/Pk6ik = _ (r_s)2 dr

5 +lf. (r) (l-r2) 1/2Lij (s,r) dr
j=l _j I-1 j

stress intensity factors (both primary and secondary) from G.17

,-l<s<l, i=1,...,5 , (G.24)

where

b-a b+a b-a b+a (G.25)
t - 2 r + -_- ' Y - 2 s + -_- ,

Lij(s,r) = ((b-a)/2)2Kij(y,t) , (G.2S)
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uj(t) = (b-t)i/2(t-a)I/2gj(t)

b-a gj (r) (l_r2) 1/2- 2

= 1c. _k _-_ fj (r)(l-r2)1/2 , (G.27)
J

Ok : PkFk , (G.28)

{ P } : { I, 6, 5/(8(I+v)), i, 6 } . (0.29)

To calculate stress intensity factors we require the three-dimensional

stress in dimensional form. From Eqn. G.16 with substitutions from

O.25-27,

Fi(o, s)
m

a k

dr + 0(1) , i=I,...,5 (0.30)

From Eqn. 0.28, using G.25 to convert functions of y to s denoted as

such by a bar, we obtain,

 i(O,s) Fi(O,s)
W

a k a k

p. ((1.31)
I

In terms of this stress ratio, (dimensional and non-dimensional are
,

equivalent, see Eqn. G.20), the stress expressions needed for Eqns.

0.10,12,14 are,

ax(O'Y'Z) : _kD hl(Z) ' _k
for tension, (mode I),

[ ]
= _kD h2(z) _k

for bending, (mode I),
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(_3(O's) )
ryz(O'Y'Z) : _Id) h3(z) _k

for out-of-plane shear,
(mode 3),

a4 (0's) )
rxy(O'Y'Z) = _kD h4(z) _k

for in-plane shear,
(mode 21,

[ 5(0,s)
= _kD hs(z) _k

for twisting, (mode 2),
(fi.321

where hi(z I are

{ hl(Z), h2(z), hs(z), h4(z), hs(z) } =

= (1, 2z/h, [1-(2z/h)2], 1, 2z/h ) (fi.33)

Next we use the following result from the asymptotic analysis of

singular integrals,

+1 fi(r) (l-t2)1/2

s*llim1_ I_ 1 (r-s)2

lim fi (s)
dr ~ + 0(11 ,[s[>l (fl.34)

s*l _2(s-l)

From Eqns. G.I0,12,14 we can write

k.

J
lira_2(y-b) a(O y,z)
y_b

(fl.35)

which becomes after using fi.25,30,31,32,34,

J
lira [b__] 1/2 ® fi(s)
s*l 2(s-l) akDh i (z)Pii 2 (s-l)

, (fi.36)

IV}akDh£ (z)Pifi (1) ,
(fl.37)

where j=l for i=1,2, j=2 for i=4,5 and j=3 for i=3. Because the

functional z dependence is known for each of the loading cases, it is

sufficient to use the maximum value of h.(z) which is one. After
1

342



normalizing,

k.

_I

_kUi_.a) 1/2 - Pifi (1) ,

(G.38)

for the crack tip at y=b and similarly for y=a

k.

,J

_kDI_]l/2 - Pifi(-1)

(G.39)

In solving the integral equation, the function fi(r) is

determined on the interval -l_r_l. It is therefore a simple matter to

determine the value at the endpoints for substitution into G.38,39.

Next the stress intensity factors will be calculated in terms of

the displacement. From Eqns. G.lOa,b

u(O,y,z) = hu l(O,y) * (2z/h) h/2u 2(O,y) ,

v(O,y,z) = hu4(O,y ) + (2z/h)h/2u5(O,y) (G.40)

The expression for the out-of-plane displacement w, is not known as a

function of z and will be dealt with later. For modes 1 and 2 we

proceed as follows. Eqn. G.27 is substituted into the above

displacement expressions and then Eqns. G.11,13,15 are used to write,

k. --

J
hE lim 1 hi(z)1 _k _ f i(s) l_-s 2
7j5 i y+b _2(y-b) z

hi(Z)_kD I/2

7jSic i I_] fi (I) '
, (G.41)

where

ti-

n. = U -- -U
z i i'

E 3-V
2p- l+u ' Z- l+v '
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7j = 2, j=1,2 (i.e. i=1,2,4,5)

6. = I, i=I,3,4 and 6. = 2, i=2,5
1 i

Therefore the normalized stress intensity

displacement are,

and

k. fi(1)J

® [_]1/2- 7j6ici°kD

k. fi(-l)J

_kD[_1112 - 7j6ic i

From Eqns. G.38,39 and 43,44 we should have,

, 73 = 2(l+v) ,

(G.42)

factors calculated from

(G.43)

((].44)

i/Pi : 7j6ic i (G.45)

First note that if the primary stress intensity factors for both

stress and displacement are the same, the secondary SIFs will also be.

The four cases (i=1,2,4,5), are shown below to be equivalent when

defined in terms of stress or displacement indicating a compatibility

between this plate theory, which includes transverse shear

deformation, and elasticity theory for modes 1 and 2:

i=l, lIP 1 = 1

7161c 1 = (2) (1) (1/2) = 1 , (G.46)

i=2, 1/P 2 = 1/6

716_c_ = (2)(2)(1/24) : 116 , (G.47)

i:4, lIP 4 : 1
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3

is

as follows, see Timoshenko [84],

7264c 4 = (2)(1)(112) = 1 , (G.48)

i=5, lIP 5 = 116

7265c 5 = (2)(2)(1124) = 116 (G.49)

As mentioned above, for out-of-plane shear which represents mode

loading, there is a problem. The displacement plate variable u
Z'

an average quantity defined in terms of the actual displacement w

3 f+hI2

uzCx,y) = "_ J_hl2WCx,y,z)[1 - (2z/h) 2] dz
(G.SO)

The z dependence of u cannot be determined because of the plate
Z

assumption concerning ez, i.e. a z = O. Therefore the stress intensity

factor cannot be defined in terms of displacement. It can only be

shown that the stress intensity factor obtained from u is equal to
Z

the weighted average using G.50.

First assume that the actual out-of-plane displacement can be

expressed as,

q

w(x,y,z) ~ w(x,y) = hu (x,y) (G.51)

Then by an analysis similar to that used for i=l and 4 above,

k3avg f3 (1) f3(1)
(c.s2)

The stress intensity factor from stress is given by G.37 to be,

k3(z) 5f3(1) [1- (2z/h) 2]

_kD {_b__} 1/2-8 (l+v)

(G.53)
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Whenthis is substituted into Eqn. G.50, we obtain,

2h3r+h/2 [ 2]k3avg _ J h/2k3(z)t 1 - (2z/h) ,

i/2® • i (G.s4)
:[_) °kDf3(1)2(l+v ) ,

which is the same as predicted by Eqn. G.52.

The shell displacement component of Eqn. G.23 also is only known

as an average quantity because of its association with u z. Here

v(O,y,z) = hu4(O,y) + (k2/k)2(y/h)hu3(O,y) +

+ (2z/h) h/2u 5 (O,y) (G. 55)

Again only in the average sense does this form comply with the theory

of elasticity so stress is used for the SIF calculation.

It should be noted that a stress singularity of .5 is assumed at

the free surface for all fracture modes. In mode 3 the parabolic

shear assumption forces k 3 equal to zero at the plate surface when in

fact Benthem [1] predicts it to be infinite. However the surface

effects are not believed to greatly influence the value of the SIF

away from the surface and in most work a singularity of .5 is assumed,

see for example Refs. [33,43].
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Table G.1 Strength of stress singularity for the
intersection of a straight crack front with a free
surface in a half-space, Refs. [1,85].

Poisson's Stress Singularity
ratio mode 1 modes 2 and 3

O. +-.5 *-.5
.15 -.4836 -.5668
.3 -.4523 -.6073
.4 -.4132 -.6286
.5 -.3318 -.6462
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Mode I

Mode III

Figure ft.1 Crack surface displacement for the
different modes of loading.
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APPENDIX H

Thin Plate Bending Limit of Fredholm Kernel

We consider the behavior of the Fredholm kernel of Eqn. 3.130 for

a/h approaching infinity. Define

5 Ca/h) 2 f+l- KCz)g(t ) dt , (H.1)
ICy,a/h) ,(l+v) -1

where

K(z) - -484 + -24 _ 4Ko(z ) + 4K2(z ) + 2-_K2(z ) , (H.2)
z z Z

_.= plt-yl, p = Clo)l/2(a/h)= p(_./h) (u.3)

First consider the limit for y outside of the crack. This case is

simple because as a/h gets large, z gets large. The only contribution

from K(z) comes from the 4/z 2 term. For lyl>l,

limit 2 I +1 _(t) dt CH 4)
a/h*- ICy,a/h) - tCl+v) -1 Ct-y) 2

For y inside of the crack domain the variable z can be of order one at

t near y so it is not clear that these terms are negligible even for

large a/h. Rewrite ICy,a/h) as follows,

: (z)g(t)dt ,(n.s)
ICy,a/h) = K(z)g(t) dt 2t(l+v) --I

p2 fy +I- K(z)g(t) dt + _ KCz)g(t) dt )
- 2x(l+v) { -1 y

, (H.8)

P (_pCl+Y) fpCl-y) I
= KCu)gCy-u/#) du + KCu)gCy+u/p ) du

2,r(l+v) -0 -0 II.7)
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- P (IP(l+Y)K(u)g(y-u/p) du +

- 2_ (l+v) p (l-y)

ip(1-y) ]
K(u) [g(y+u/p)+g(y-u/p)] du

0

(H.8)

Next write Taylor expansions for g(t) as follows,

O0

g(y-u/p) = _.(-1)n_v. (u/p)ngn(y) , (H.9)
n=O

g(y+u/p) = _. _1. (u/P) ngn(y) ' (H.IO)
n=O

where gn(y) denotes the nth derivative of g(y). These expressions are

substituted into the second integral of Eqn. B.8. Because of symmetry

only y>O will be considered. After rewriting the first integral using

a simple substitution, Eqn. H.8 becomes,

2
P

l(y,a/h) = 2_(l+y)
-1+2_

[ [p(y-t)]g(t) dt +
__l

__p___ n_O i p-2n (P(1-Y)2n+ _'(l+v) = (2n)! g2n(y) Jo u K(u) du
(H.11)

Now consider the limit of these two terms separately. Since the first

integral is not singular for y<l, as p gets large all terms of K(z) go

to zero except the 4/z 2 term. Therefore we have,

limit p2 r-l+2y

a/h_® 2_'(l+v) J-1 K[p(y-t)]g(t) dt-

2

_r(l+v)

- I +2_(___ dt

-I (t-y) 2
(H.12)

Now for the second integral of Eqn. H.11. For large u

Kn (u) ~ ["/(2u) ] 1/2 e-u ( 1 +a/u+... ) ,
(H.13)

where Kn(U ) is a Bessel function and a is a constant. The important
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feature is the exponential decay. It can be shownthat,

00 n

f u -u -ue du ~ e (H.14)

Now divide the second integral in Eqn. H.11 into two integrals,

J p(1-y)2n J': u0 u K(u) du = u2nK(u) du + fP(1-Y)2nK(u)e du , (H.15)

where e is sufficiently large such that the exponentially decaying

Bessel functions may be neglected when integrated from e to infinity,

(here we assume that e<p(1-y)). The first term in the series, (n=O)

requires special treatment.

j.,<,-,>j.[< - , (H.16)

where

(u) du = -- + - + - (u) = 0
U Uu 0

(H.17)

Now we make use of Eqn. H.14 to evaluate

00 00

p(1- p(1-y)

4

p(1-y)
, (H. 18)

to leading order. The second integral in Eqn. H.15 for n_l including

the coefficient of fl-2n from Eqn. H.11 becomes,

fP(1-Y)2n p-2n fP (l-Y) 2n 2-2n j u K(u) du ~ u (4/u) du -_p
£ C

4 ( 1,, ,2n-I e2n-i/p2n) ~ 4 _ 2n-I2n-I 2n-1 (l-y)_t_-y) -
(H.19)

Now for the first integral in Eqn. H.15. For n_l this integral with

the p-2n coefficient from Eqn. H.11 is,
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-2n S# u2nK(u) du < O(p-1) (H.20)
0

In the limit as p gets large, this term will not have an order one

contribution to I(y,a/h) because e<<p and therefore it is neglected.

Now we substitute Bqns. I1.12,16,18,19,20 into H.11 and obtain,

a/h) - 2 /[ -1+2_A_ dt +limit,,

a/h*® l_y' _(l+v) U_I (t_y) 2

" 2n } ¢.2,)+ _ g(y) + 2 _ (2n) t g (y) 2n-1
n_ 1

Now look at the first integral of Bqn. 1t.21.

dt = dt - dt (It 22)
"-I (t-y)2 (t-y)2 Jl (t-y)2 "

Substitute the expansion,

O0

g(t) = _(-1) n 1 ngn_. (t-y) (y) , (H.23)
n=O

into the second integral of H.22 and after some algebra,

_-I+2y g(t)_:l+2Yn___O n I(t_y)2 dt = (-I) _T. ( ))-t-y-n-2gn(y- dt =1

® 1 _ _ (l-y) 2n-1
(2n)'g2n yj 2n-1_ 2 _

n=O

When this is combined with Eqns. B.21 and 22 we obtain,

-1

limit T 2 _ g(t) dt
a/h.®-(Y,a/h) - ,(l+u) +I (t-y) 2 '

which is perhaps the expected result considering Bqn. H.4.

for

(H.24)

(H.25)

The reason

going through this algebra (and there is probably a better way),
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is to show that this derivation fails for y sufficiently close to one.

Eqns. H.12,18 and 19 are valid only for,

1
p(1-y) - o(1) (H.26)

In the limit as p goes to infinity, the quantity (l-y) must be such

that the product p(1-y) still goes to infinity. Otherwise Eqn. H.25

is not valid. For more information, see Chapter 3.
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APPBNI)II I

Log integrals

The major expense in solving an integral equation on the computer

is in the evaluation and the integration of the Fredholm kernels. In

the shell problem for each point used to integrate the Fredholm kernel

an infinite integral must he determined. The plate kernels are known

in closed form hut involve evaluation of Bessel functions.

Log integrals and integrals of the form,

;_i(t-y)nlnlt-yl(l-t2)I/2 dt , -l<y<+l ,
(1.1)

which appear in both the plate and the shell equations, (and in many

other problems) may be the determining factor for convergence of the

integration of the Fredholm kernels. Gauss-Chebychev integration (see

Eqns. E.31-33) is used to show this difficulty for small n in table

1.1. The number of points used to integrate Eqn. 1.1 is N. The

closed form expression used may be found in Appendix A. The value of

y does not have a significant effect on these results. Because of

this slow convergence log terms were separated from the kernels for

n_3 with the option of doing them in closed form. The following

asymptotic analysis of the log terms for z = p(t-y) approaching zero

is given for the plate kernels where the subscripts 2,3 and 5

respectively correspond to bending (Mxx), out-of-plane shear (Vx) , and

twisting (Mxy) .

K22(z ) ~ ]_ lnCz) + c 1 + _ (_)21nCz) + OCz41nCz)) , (I.2)
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3
_2(_)21n(z)_ + OCz41n(z)) (1.3)K33(z ) ~ -_21n(z) + c 2 - _

2
, (Z.4)K35(z) ~ -pC )lnC ) ÷ - § P +

Kbs(z) ~ ]_3v(l_u)[ 1 z c4z 1 z 3 1_(_)ln(z) + + _(_) lnCz) + o(zbln(z)) I.bi

K55(z ) ~ _ lnCz) + c 5 + _ C_)21n(z) + o(zalncz)) , (I.61

where the c.'s are constants. In the shell problem these types of
1

terms come from the large a behavior of the infinite integrals, see

section J.4 of Appendix J.

To show how these terms affect the convergence of the stress

intensity factors, table 1.2 lists results for the plate bending

problem solved in three different ways. First both log(t-y) and

(t-y)21og(t-y) terms of Eqn. 1.2 are evaluated in closed form. Then

only the log term is evaluated in closed form. Finally both terms are

integrated numerically. In the case where the log term was integrated

numerically, convergence was unstable for increasing N The table

shows improved convergence when the z21nz term is evaluated in closed

form. It should be noted however, that as a/h gets large the

coefficient of this term is proportional to (a/h) 2, and it becomes

unwise to separate it from the rest of the Fredholm kernel. This is

generally the case when doing part of the Fredholm kernel in closed

form. For certain parameters the two separate terms become

increasingly equal and opposite and consequently big numbers are added

to small numbers and accuracy is lost. This typically occurs for the

most interesting/difficult geometries. Table 1.3 is similar to 1.2
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but for out-of-plane shear and for twisting. Here there are five

different cases as can be seen from Eqns. 1.3-6. Again it is

necessary to factor out the log term. The other terms are not so

important. My conclusion is that for other than the log term, a

closed form solution should only be used when repeated calculations

are necessary for an "expensive w problem.
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Table 1.1 - Convergence of log integrals (see Eqn.
1.1) using Gauss-Chebychev integration N--_
corresponds to closed form.

Convergence of Log Integrals

y=.49

n=O n=l n=2

N
20 -.1578327285023e01
40 -.1492930970972e01
60 -.1470627952900e01
80 -.1482919042609e01

100 -.1531715634235e01
200 -.1492468021175e01
300 -.1491702663902e01

8493750878678e-1
8768209651665e-1

8713681420222e-1
8693758759624e-I
8700300152495e-1

8708543360460e-1
8705949644705e-1

-.4311621931347e-1
-.4319761807491e-1
-.4320566456916e-I
-.4320296083838e-1
-.4320130620737e-1

-.4320230905703e-1
-.4320231744712e-I

® -.1497043010486e01
n=3

N
20 -.5934890759307e-1
40 - 5935358973931e-1
60 - 5935323791180e-1
80 - 5935318085722e-1

100 - 5935320220412e-1
200 - 5935320644195e-1
300 - 5935320568158e-1

.8706261970927e-I -.4320228921493e-1
n=4 n=5

.I070779572998e00 -.1692569091885e00
I070783355533e00 -.1692568662971e00
1070783468198e00 -.1692568670579e00
1070783448821e00 -.1692568671124e00
1070783444628e00 -.1692568670990e00
1070783446586e00 -.1692568670976e00
1070783446588e00 -.1692568670977e00

® -.5935320573115e-1 .1070783446580e00 -.1692568670977e00
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Table 1.2 The effect of log terms on convergence

of SIF's for a cracked plate, u=.3, a/h=1

subjected to bending.
closed form closed form numerical

N Inz & z21nz inz Inz & z21nz

I0 .747480 .747002 .803520
20 .747475 .747434 .764523
30 .747475 .747473 .748220
40 .747475 .747475 .748087
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Table 1.3 The effect of log terms on convergence

of SIFts for a cracked plate, u=-.3, a/h=1

subjected to out-of-plane shear and twisting.

out-of-plane shear twisting

Closed form (t-y)nln(t-y), n_3.

N mode 3 mode 2

10 1.676091 .4656783

20 1.675977 .4656280

30 1.675978 .4656283

40 1.675978 .4656283

Closed form (t-y)nln(t-y), n_2.
N mode 3 mode 2

10 1.676091 .4657690
20 1.675977 .4656276
30 1.675977 .4656284
40 1.675978 .4656283

Closed form (t-y)nln(t-y), n_l.

N mode 3 mode 2

10 1.668236 .4622265

20 1.676051 .4656858
30 1.675995 .4656386
40 1.675984 .4656324

Closed form ln(t-y) only.

mode 3
-.06969634
-.06969737
-.06969736
-.06969736

mode 3
-.06972434
-.06969702
-.06969738
-.06969735

mode 3
-.06976822
-.06969392
-.06969702
-.06969720

mode 2
.5218047
.5218052
.5218053
.5218053

mode 2
.5218006
.5218053

.5218052

.5218053

mode 2
.5218403
.5218064
.5218054
.5218053

N mode 3 mode 2 mode 3 mode 2
10 1.668817 .4554824 -.06769097 .5221562
20 1.676039 .4655730 -.06971322 .5218015
30 1.676022 .4655065 -.06965142 .5218123
40 1.675970 .4655034 -.06972230 .5218015

All numerical.

N mode 3 mode 2 mode 3 mode 2

10 2.846719 1.020734 -.06166954 .5240765
20 1.594647 .4349318 -.07014928 .5244262
30 1.654414 .4506305 -.07051167 .5214280
40 1.660155 .4547331 -.07034780 .5215313

100 1.662201 .4583573 -.06995209 .5216891
200 1.666864 .4626725 -.06966782 .5220058
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APPENDIXJ

Asymptotic Analysis of the Shell Infinite Integrals

There are two reasons why the large a behavior of the infinite

integrals must he determined. First the singular behavior of the

integral equation comes from the leading order term in the large a

expansion of the integrand. The second reason is simply for numerical

simplification. The numerical technique used divides the integral

into two parts, 0 < a < A performed numerically, and a > A which is

evaluated in closed form. The more terms in the expansion, the

smaller need he A.

The complication in the integrand is its dependence on the roots

of the quartic polynomial,

4 43 2 2 2

(_1__2)a ]g + [ 2 2 (J.1)l
One need only trace through Chapter 5 to see that the kernels in

question are heavily dependent on these roots.

J.l Asymptotic Expansions for the Roots of the Characteristic

Equation

A straightforward asymptotic analysis of the integrands of the

infinite integrals of Chapter 5 would start with the large a expansion

of the roots of Eqn. J.l. They have been found to he
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1 1 1 1 2X 22

=-+-4 5 2 22 +
Pl • a • (XI_X2) a6 _6t^1-^2)"2.2.3

1 4+3_2)'4
[¥ c_'t

+ 8 9 + "'" ' _""_J

Pj = a4/3plj + a2/3p2j + P3j + "'" , j = 2,3,4 , (J.3)

where

P12 (_f)1/3 [ 1= PI3 = PI2 - 2 + ' P14 = P12 - 2 - i

-bp_j

P2j - 3
4Plj+ d

, j=2,3,4 ,

P3j = -

2 2 3

6PljP2j+aPlj+2bPljP2j + f
3

4Plj+ d

, j=2,3,4 , (J.4)

2_X2(_1- 2) 4 d = -_(_12- X22)2a = -_X 4 , b = 2 2 _ , c = _2 '

e = -2X 2(XI- (3.s)

By using these roots one can obtain all the quantities found in the

various kernels, for example for large a

D(a) : a43i_-3"),4#,2()_ 2- _2)2 + O(a2) (J.6)

This method is good enough to determine the leading order term but

there is a better way which is shown in section 3.2. It is also

2 2 2
useful to have the small a (XI-X2) expansion of the roots of Eqn. J.l.

They are:

z272 3 O(z 4)Pl,2 = 70 + ZTl + + z 73 + , (J.7)
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P3-

2
z + i z_/___ -4+_i 3
2 6 + _z

X2 )'2 2X2

+ O(z 4)

2

P4 - )`_ )`2
-4-t_-_z3 + O(z 4) , (3.8)

2), 2

-2-
b_]o+e70

' _]1 =- 3 2 '
4_]0+3a70+2c70

_]2 = -

22 2 2 - - -
6_O_l+3a_O_l+C_l÷2b_o_l+d_o+eTl +I

3 2
470+3a70+2c70

2 3 3-2 - - -
12 +4 +6a +a +b +2b +2c +d +e707172 7071 707172 71 71 7072 71_2 _I 72

3 2
470+3a_0+2c_0

(3.9)

2 2 2
z = a (kl-)`2) , (J.10)

g = 2_)` , d = -_ , e = -2)` , (J.11)

where Pl is obtained from using the plus sign for 70 and P2

corresponds to the minus sign.

J.2 Symmetric Asymptotic Analysis

First recall Eqns. 5.39,65,66,67,68,80,81 from Chapter 5.

m. = -(pj+a2) I/2 j=1,2,3,4

j_lmjKjRj{ [_(1-v)a2+ llPj- a2(1-v)} = 0 ,

-1
j=l J J JL _Pj = -a q2(a) ,

4

_--_.m.R. = 0
j=l J J

(J.12)

(J.13)

(J.14)

(J.15)
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'-:.m.R.( ,, sp.-1

j=l .1 J_ J '
(J.18)

"+® 2 4 m.x
1 li, | J cost(t-y) ,

-fl (y) = - _ x-_O -0 j=l J
(J.17)

Io-X4 l+v lim ( _zrerX_.m.p.K.R. +
_-_f2 (y) - f x_O j=l J _ J J

4 m.x

1 _.p.K.R.e J
+ I-Uv j=1 J J 2

2 4 m.xj
+ a >-_.K.R.e } cosa(t-y) da

j=l -I-I
(J.18)

Instead of determining the behavior of the individual quantities of

Eqns. J.17,18, Eqns. J.13-16 are used to determine the behavior of the

entire sum. First Eqn. J.12 is expanded for large a.

2

mj = -(pj+ a2) 1/2 -~ -a 1 + _ a2 - _ a4 ...

- , a n = (binomial coef.) (J.19)

This expansion is valid because (pj/a 2) ~ a -2/3 which goes to zero for

large a. Also the following expression will be needed,

r = -[a2+ _(12 ) ']1/2 ,

w n

Note that for either r or mj, the large a and small x behavior of the

exponentials may be simplified as follows,

rx [( lfl__ lp 2 )] -ax
e ~ exp -ax 1 + [ a2 - _ a4 + ... ~ e ,

(J.21)
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2

[( )]m.x !h lh+
e J ~ exp -ax 1 + 2 a2 - 8 a4 "'"

The kernels of Eqns. J.17,18 are defined for large a:

4
11 = Illql(a)/a + Ii2q2(a)/a = a2> R{ ,

j=l J

4

12 = Ii2ql(a)/a + I22q2(a)/a : -_r_-_m.j=ljpjKjRj +

4 2 4
1 _-_.p.K.R. + a 7_.K.R.

+i_-_j=iJ J J j=iJ J

Therefore the following expressions are needed,

4

_qS.
j=l 3 '

4

_-_K. R.
j=lJj '

4

_.p.K.R.
j=lJ j j '

4

_m.p .K.R.
j_-lJ3 J J

From Eqns. J.13-16, Eqn. J.28 can be easily determined,

4

_-_.m.p.K.R. = ia(1-_)q2(a)
j=lJJJJ

Also from these equations we can write

4
i

_m.K.R. = ia_(1-V)q2(a ) + aq2(a)
j=1333

(J.22)

(J.23)

(J.24)

(J.25)

(J.26)

(J.27)

(J.2S)

(J.29)

(J.30)
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2
4 .)`2 1

--_ mjpjRj = 1)`2 _q2(a) + iaql(a)
(J.31)

Next express Kj in terms of pj. The characteristic equation, J.1 is

first used to write

4 2)`2()`2_)`i)2 2 a2 ..2 .2,2 41 )`2 (^2-^i) a
-- + +

•
(J.32)

K. can then be written as
3

22

K. - PJ)`
3 ,2.2 .2 2.

tmjA2-^la )(_pj-l)

)`2 2)`2 2 2 a 2 ,,2 ,2,2 4
()`2-)`I) +

- 2 2 2 {)'_ + (A2-^1) a ) x

a (),2-),1) pj p_

® 2

x _ (-l)nfPjln6n 6 )'2
n--O La2J ' - 2 2

)`2-)`1

(J.33)

This expression is used to obtain

4
Z_.KItx--'".-.= 2 2 2 2 4 -2 + )`2),24X-4p-lR.,.2.
j=l J J a )` ()`2-)`l)j___--_.lp j Rj zJ =1 J J ,

(J.34)

4 = a2)`2.)`2 )`2. 4x_ -1R ),2)`,,_--_.R.24
j=_lPjKjRj t 2- 1 } X_..P- • +j=l J J _j=l J

(J.35)

Therefore we can find all that is needed (Eqns. J.25-27), if the

following three sums are known,

4

j=_lPjIRj
, i--O,1,2 (J.36)
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In

shown that

_p:lm. R = i (l-v)
j=l J J j 2 2 2 q2 (a) '_x (x2-x I)

4 2
_--_p: m.R. = " (a)( _I r,(1-v)
j-1 J j 1 lq2 a )2 2 2- (X2-Xl)

a similar way in which Eqns. 3.34,35 were found, it may also be

(J.37)

(1-V))'22 ])
2 2 22

X (X2-X1)

1 1 (J 38)
+_[x222

(x2-x1)

From Eqns. 3.15,31,37,38, the characteristic equation, 3.1 can be used

to determine

4

'_.p_m.R. (J.39)
j=lJJJ'

for any n because these four equations represent four consecutive

values of the integer n. By making use of Eqn. J.19, Eqn. J.39 can he

(J.40)

in particular n = 0,-1,-2, see Eqn. J.36. This involves

amount of which is determined by how many terms in the

converted into

4

_-_p_R.

j=l J J

for any n,

algebra, the

expansion are desired. The result is

. _ _on -(2k-1)
- _ + A_P2k_l a + O(a -11)Ill

k_

_-_A12 -(2k-1)
112 2 _.._r2k_ I- + O(a -11) ,

, (J.41)

(J.42)
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_21 - (2k-1

I21 " k_=lP2k_l a ) + O(a -13 ) , (J.43)

_r2k_l.,, +

W

+ _"-.-(2k-1)_;(l_v)alc+l(_l)kpk+l + 0(u-13 )
k=7

(J.44)

where,

2k+l

11 k+j-172k+1-J{_1P2k-1 = _ (-1) (k, ])c(3k+2-j)
j=l

, k = 1,...,5

12 1 2k . .

P2k-1 = X'2 _'-'_-(-1)k+']÷172k-Jq2(k,j)d(3k+1-J)j=l
, k = 1,...,5 ,

21 = )2 1 1.2

21 = )`2 _I
P2k+l j:l (-1)k+']72k+l-Jql(k'J)[I1----7"_v-v +A2]c(3k+3-J) -

- 1---vc(3k+2-j) - 7c(3k+4-j)] , k = 1,...,5 ,

22 -1

_1 - _) ,

22 = {_ k+l k+2 2kP2k+l (l-L')ak+2(-1) p + _>".(-l)k+J72k-JQ2(k,j ) x
j=l

2

: , ,,
(J.45)
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co = 1 , c 1 = a 1 ,

d o = c (l-v) -= (l-v) ' dn n Cn-1 '

"1(1'I):" "1(1'2):2")_2' "1(1'3)=')_:'

(J.46)

n-1

= a + _'_'a .c. , (J.47)
Cn n i=1 n-x I

(J.48)

ql (2, I)=, 2 , ql (2' 2):4"2X22' "1 (2' 3)=6"2X: -1 ' "I (2,4) =)_22(4,2X2-2),4

"I (2' 5) =)': ('2k: -I)'

"1 (3'1)='3' "1 (3'2)=6_3X22' "1 (3'3)='(15"2)': -2)'

"1(3 ' 4) :')'22 (20"2X: -8)' "1(3'5)='X:(15"2X: -12)'

"I (3'6) =')'96. (6"2)': -8) ' Q1 (3,7) =,),2 (,8 2)_2_2),4

"1 (4'1)='4' "1 (4'2)=S'4X2' "1 (4'3)='2(2S'2)': -3)'

"1(4'4)='2X2(56"2)': -18)' "1(4'5)=(70m4)'8-45"2)': 51)'

"1(4'6)=X22(56"4X8-60"2X: 54) "1(4 4 48 24, ,7) :)'2 (28m),2-45, ),2+6),

8 48 24
"]'1(4'8)=X26(8"4)'8-18"2X: +4)' "1(4'9)=)'2(" )'2 -3` )'52+1)'

"1 (5'1)='5' Q1 (5'2)=10"5)'2' "1(5 ' 3) ='3 (45"2_': -4)'

Q1(5'4)='3)_2(120"2)': -32)' "1(5'5)='(210"4)'8-112"2)'4+3) '

2 48 24
"1 (5,6) =')'2 (252,),2-224, ),2518),
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Q2(I,I)=I,

Q1 (5,7) =_)'24 (210_ 4 ),2_280_8 2 ),2+45)4 ,

Q1 (5' 8) :_X 26( 120_4X 8_ 2242), 4 +60 ),

Q1 (5' 9)=_X8 (45_4X8-112_2X_ +45)'

=_)_2 (I0_)_2-32_ )_2+18),Q1(5'10) i0 4 8 2 4

=_X 2 (_ _2-4_ X2+3),Q1(5'11) 12 4 8 2 4

Q2(1,2)=x 2,

_2(2,1)=_, Q2(2,2)=3_X2, Q2(2,3)=3_)_4, Q2(2,4)=_),6,

{_2(3,1)=_2, _2(3,2):5_2X2, {_2(3,3)=(10_2X4-1),

{_2(3,4)=)2(10 2X4 3 ) {_2( 3 4 2 4, ,5)=X2 (5_)_2-3),

6 24
_2 (3,6)=)_2(_ X2-1),

Q2(4,1)=_3, {_2(4,2)=7_3X 2, Q2(4,3)=_;(21_2),4-2),

2 2 4 5) =_X4 (35_2X__20)Q2(4,4)=_2(35_ X2-10), Q2(4,

, =_X2(7_ ),2-10)=_X2(21_ X2-20) q2(4,7)Q2(4,6 ) 6 2 4 8 2 4

10 2 4
Q2(4'8)=_X 2 (_ X2-2),

, 4 2 (36_2_4_3),Q2(5,1)=_4 Q2(5,2)=9_ X2, Q2(5,3) =_2

48 24
Q2(S,4)=_2X2(84_2X4-21), {_2(5,5)=(126, X2-63_ X2+l),

Qg..(5,6)--)_2 (126,4)_ 8-105"2), 4+5),
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=_2(84_ X2-I05_ X2+IO),{_2(5,7) 4 4 8 2 4

6 48 24
{_2(5,8)=X2(36_X2-63_ X2+I0),

{_2(5 ,9)=X2(9_8 4 X2_21_8 2 X2+5),4

q2(5 ,lo)=xlo 48 24x2-3 X2+l)

As mentioned at the beginning

integrals are divided into two parts.

is integrated in closed form. This part can be written as,

This

(J.49)

of this appendix, the infinite

The portion from A to infinity

®I
IA ijc°sa(t-y)da ' i,j=l,2 (J.50)

integral for I.. of the form given by Eqns. J.41-44 is evaluated
13

in section J.4 of this appendix. The following expressions are used

in Eqns. 5.84,85.

- n_2 (t-y)2n-21. IIlj : _l_-l(-1)n (2n-2)! ....t-yl +

5 •

+ 1] n+l (t-y)2n-2p (1_ _ "n__l_2n-I(-I) (2n-2)! "a' '+ = _lJn_iFc(2n-l), j=1,2 , (J.51)

_21 . -2n-2- = n (t-y) In
I21 n_Z=2P2n_1 (-1) (2n-2) ! I t-yl +

6 21 n+l (t-y)2n-2 6 21n _
+ n___l_2n-1(-11 (2n-2)! Fc(1)+nZ2_ -iFc (2n-l) ' (J.52)

® - -2n-2

- [_o22 >-_pn+l na } n (t-y)., ln[t-ym += ] - .+g(1-u) (-1) n+l (-1) (2n-2).I22 _n=2 _'2n-1 n=7

{n_l ® (t-y) 2n-2Fc+ = p22n-l+_(l-U)n=7_-_pn+l(-l)nan+l)(-l)n+l (2n-2), (i) +
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+ _--_.pn+l (- I) nan+l Fc(2n-1)_22n-I+_(l-V)n--2 n=7
(J.53)

J.3 Skew-Symmetric Asymptotic Analysis

The same procedure that was used in section J.2 is used here.

The necessary equations are 5.93-96,10B-108, which are repeated below,

1 4

_=--_--_p.K.R = q5(a) (J.54)
j=iJ j j

4

j___IRj= 0 ,

 m2"R"= q4( )
j:l J J

4
i

_.R.K. (_pj-1) = _q3(a)
j=iJ J

1 lira f+'{ (____1 j_ l(m_-va2)KjRje rx-f3 (y) - 2_ x+O -= r__v.
+

4 m.x

+ s_m. (a)e J ) e-iay da
j=l jpjKjRj

t+m 4 m.x .

2,i x*olimJ a_-_m.R. (a)e J e-lay da
-f4(Y) - -® j=l J J

-2k 4. l+v lira r+_r 4 [_erX(a2+r2)2, J_®{,j IKjRj[= £ar(1-u) (m-va 2) -

_ 2iam.emjX]) e-iay da
J

Eqns. J.19-22 are again used.

defined as follows for large a,

(J.55)

(J.56)

(J.57)

(J.58)

(J.59)

(J.60)

The kernels in Eqns. J.58-60 are
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13 = I33q3(a)/a + I34q 4(a)/a + I35q 5(a)/a =

a2 4 4

-1 j_l -_--j_IK.R. + _-_m.p.K.R_(a)r(l--_) = pjKjSj "= 2 J J=l _ J J J

14 = I43q3(a)/a + I44q 4(a)/a + I45q 5(a)/a =

4

: i  m.R. (.)
j=l J J

15 = Issqs(a)/a + I54q4(a)/a + I55q5(a)/a =

_K.R. [-(a2+r2) a(a2+r2) - 2iamj]= [iar (I-v)Pj - irj:iJ J

From Eqns. J.54-57 we find:

.,f • (l-u) __-_p-2R" = q5 ta) _ 2. 2.. 2 .2.

j=l J J a A th2-A1)

X_(1-u) ,_
4_ 2.2) -

a ^ t^2-^l)

i

- q3(a)aS_2(),22X 2) '

j4___iP;iR j (l-v) qs (a): 22 2 2 '

4

j___IRj= 0 ,

4

j=_pjRj = q4(a)

Combined with Eqn. J.l the following may be determined,

(J.61)

(J.62)

(J.S3)

(J.64)

(J.S5)

(J.66)

(J.67)

(J.68)
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{or any n

obtained to any order of a. The result is:

® (_l)k(p/a2)kek4_-._33 -(2k-l)_ia_- _ + O(a -9)

133 -ia + i_P2k_l a"- k=5

from which all of the expressions in Eqns. J.61-63 may be

(j.e0)

4 .34 -(2k)

4 .35 - (2k) oo 0 (a -10)

I35 "-k___lP2k a + __..(-1)k(p/a2)k[ek-2ek+l ] + ,k=5

(X2_), 2) 3._ 34-(2k) + O(a -8)

St 2 - + ik_=iP2ka

~ -. 4__ -44 - (2k- 1) 0 ( a -9 )

I44 - _ + k=/=l]_2k_la + ,

4-i- -45 - (2k-l) O(a -9)

I45 -" k_/=lP2k_la + ,

W

3_-,.53-(2k)+ a2__.(_l)k(pla2)k[ek_l-2ek ] + O(e-8) '

I53 " kL__lp2ka k=5

4 -54 - (2k-l)

154-':' ik___=l]32k_la + O(a -9)

_a5 - (2k-l)

i55 __ -ia(l+v) + ik=/=lP2k_la

- i-_ (-1) k+i (P/a2)k [ek-l-4ek +4ek+l] * 0 (a -9)

k=5

0.70)

(J.71)

(J.72)

(J.73)

(J.74)

0.75)

(J.76)

(J.77)

where

33
Pl

1 e 4 4
- _(i_ + 1_(x2-xl) '
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= 2 6 4 22 3p33 -P e2+_7[_a3ek2+a43_A27_a53ek27 +a6_ 7 ] ,

3 6
33 P e3+_7[a4)` 2 2 4 4 2 4 2 2 2 4= (5z),2.-3)+a6),27 (I0_ k2-3 )-P5 (_)'2-1) -a5)'27

3 2 4 2 2 4 a9_;275 ] ,-a77 (10_),2-1)+a85_ ),27

33 = [_as_;),lO 2 4 8 (7 2)`4_i0)_P7 -p4e4+_7 (_),2 -2) +_'6_),2 7

6 2 (21 _2)`4 20) +a.8,) 473 (:35r,.2)`4_20) 24 24-a.gr,.),27 (35_),2-10) +-a.7_),27

2 4 3 2 6 377 ] ,+a10_75(21_ ),2-2)-a117_ ),27 +a12_

24 =

p344

6 4 22 3
_),2[a2_),2_a33_7),2+a43_),27 _a5_ 7 ] ,

2 6 24 4
= _), [_a3),2( _ ),2_i) +a47)`2(52)`4_3 ) _a5),2722 (10_2),2-3)4 +

3(i0 2)`4_i) . 2.2 4 2 5]+a67 -a7_ ^27 +a8_ 7 J ,

p34 _),2 [ s,4,¢,)`10 (,v,2)`__2) 8 24 62 24= +a6_),27 (21_;)`2-20)--a5_)`27 (7_)`2-10)

43 24 24 24 5 24
-a7_),27 (35_),2-20)+a8_)`27 (35_)`2-10)-a9_7 (21_)`2-2)+

.3.26 37]
+alO [_ ^27 -all_ 7 J ,

= lO 48 24 8 48 24_34 _)`2[__.5),2 (_),2_3_ ),2+1)+a67),2(9_ ),2_21 z ),2+5)_

6 2 4 8 2 4 3 4(84_4),8_i05_2),4+10)_-a7),27 (36_),2-63_ ),2+i0)+a87 ),2

4 4 4 8 2 4 +a1075(126_;4),8 63_;2)`4+1)_-a9)`27 (126_),2-105_ ),2+5)

-all_ 2.2^276(842)`__21) +a12_277 (36_2)`4_3) _a139_4)`278+a14_479]
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35
P2 --

4 2 2
-P(el-2e2)+#,(1-v) [-a2),2+a32),27-a47] ,

8 6 42 23 4
= p2(e2_2e3)+#,(l_v)[a3#,),2-a44_X27+a56#,),27 -a64#,),27 +aT#, 7 ],

8 24
]t35 = _p3 (e3_2e4) +#.(l_v) [_a4),2 (#,),2_1) +a5),27 (6#,6 2),2_4)_4

4 2(15#.2),4_6) 2 3 2 4 _a874 (15#2) 4_1)-a6),27 +a7),27 (20#,),2-4) +

^2.25 26]
+a9°#, ^27 -alO#, 7 J ,

12 2 4 10
p35 = p4(e4_2e5)+#,(l_v) [a5#,),2 (#,),2_2)_a6#,),2 7(8#,2),24_12)+

25 24 6 (28#,2) 4 2) _a128#,3)_2277+a13#,378]-a10#,),27 (56#.),2-12) +all#, 7

43
P2 =

/143

4 2 2

: (7/;X2) [a4),_ (#,2)_4-1)-as2)<27(2#,2),4-1)+,:<672(6#,2;X4-1)-

• 2.2 3+a8#274 ]-a74#, ^27

8 24 6 24 42
: (7/), 2) [-a5#,)12(#, )12-2)+a62#,)t27(3#, ),2-4)-a7#,)127 (15#,2)t4-12)+

2 3 24 4 24 _ 3.2 5 3 6]
+a8#,_27 (20#,)_2-8)-a957 (15#, _2-2)+a10o#, ^27 -all#, 7 J ,

5 2 2 2 1.2.2]_44 #, _0t2__,1 ) += i^l^2J ,

44 4 2 4 2 (4#2)4_2)_a572(6#,2),__1)P3 = -a3)'2 (e)'2 -1) +a4)'27 +

223 24
+a64#, )'27 -a7#, 7 ,
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p44 8 2 4 6 2 4 4 2(15_;2),__12)_= a4_), 2 (_)`2-2)-a5_),27 (6_),2-8) +a6_),27

_a72_k273 (102k4_4) +a8_74 (152)`4_2) -a9°_ 3.25^27+alO _367

p44 = 8 4 8 2 4 6 4 8 2 4-a5)`2(_; ),2-3r., ),2+1)+a6),27(8 r., ),2-18_ ),2+4) -

42 48 24 23(56_4)8_60_2),4+4)_-a7),27 (28_)_2-45_ ),2+6)+a8)`27

4 48 24 225 24
-a97 (70_)`2-45_ ),2+l)+alO _ )`27 (56_)`2-18)-

_all 276(282)`43 ) _ 4.27 48+a12 _ A27 -a13_ 7 ,

22
)`^+),.

_15= -(l-u) _-16)----_ ,

= 6 4 22 3_45 (l_u)/)`2 [ a31_)`2_a43_)`2,},+a5311)`2,1 _a6_,,# ] ,

p45 (l_v)/)`2 [_ a4),_ (ii;2)`4_ i) 4 24 2 2(i01_2k4_3) += +a5k27 (St),2-3)-a6),27

+a773(10 2)`4_1)_ . 2.2 4 2 5]-a8_ ^27 +ao_ 7 ] ,

-a6),2_7 (7_),2-10) +a7_),27

43 24 24 24 5 24
-a8),2_7 (35_),2-20)+a9_),27 (35_),2-10)-a10_7 (21_),2-2)+

_3.26 37]
+alll_ ^27 -a12 _ 7 ] )

_53= p2 (el_2e2) _2,}, I a3)`2_a4,#] '

= 6 4 22 3
_3 _p3(e2_2e3)_27[_a4_),2+a53_),27_a63_),27 +a7_ 7 ] ,
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53 4 (52),4_3) 22 24,,06= ,,o4(e3-2e4)-27[Ss)`26(_.2)`4-1)-s6)`27 +a7),27 (10_),2-3)-

_a873(i0 2)`4_i) . 2.2 4 2 5]+a9°_ ^27 -alO_ 7 J ,

= lO 2 4 8
_853 -p5(e4-2e5)-2,[-a6,X 2 (,)`2-2)+a7,)`2,(7,2)`4-i0)-

6 2 2 4 4 3(352),4_20) 2 4 2 4-a8¢)`27 (21¢)`2-20)+a9¢)`27 -a10¢)`27 (35¢ k2-10 )+

5 24 326 37
+all¢7 (21¢)`2-2)-a127¢ )`27 +a13¢ 7 ] ,

2 2

54 = _)`2 )`2+)`1
_i 8 '

;354 = 2)`2 [a3_),2_a436),27+a53e),2764 2 2_a6673] ,

2 6 24 4 24 -a6),27 (10_)`2-3),,0554 = 2)` [-a4),2(6 )`2-1)-,-a.5),27(56 ),2-3) 22 24 +

3 24 224 25
+aT7 (106)`2-I)-a856 )`27 +a9_ 7 ] ,

2 lO 24 8 24 62
p54 = 2), [a56), 2 ("),2-2)-a6,'r.),27(7,'r. )`2-10)+a76),2", / (2162),4-20)-

_a86)473(3562)4_20) 24 24 ,5 24+a9_)`27 (356)`2-I0)-ai067 (216)`2-2)+

.3.26 37]
+allf6 ^27 -a12 _ 7 ] ,

55Pl - '

,55 4 2 2
,,03 = ,,o2(el-4e2+4e3)+2(1-u)[-a3),2+a42)`27-a,57 ] ,

8 6 42
p5,5 +2(1-//)[a4_X2-a,546)`27+a66_X27 -= _p3 (e2_4e3+4e4)
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23 4
-a74_),27 +a8_7 ] ,

55 = p4 8 2 4 6_7 (e3-4e4+4e5)+2(1-v) [-a5)_2 (_)'2-1)+a6)'27(6_2)'4-4)-

4 2 2 4 2 3 2 4 _a974(15 2),4_1)+-a7X27 (15_ _2-6)+a8X27 (20_),2-4)

_2.25 26]
+alO °z ^27 -all& 7 ]

The constants defined in section J.2

Other constants that are introduced are:

r = - a2+
• (1 )

n

r -_ ,_ en a2 , p - £ (I-v)
n--O

(J.78)

also apply to this section.

As mentioned at the beginning

integrals are divided into two parts.

is integrated in closed form. This part can be written as,

_ I..cosa(t-y)da j=3; i=4,5, j=4,5 ,i=3
A Ij ' '

hlijsina(t-y)da i=3, j=4,5; i=4,5, j:3
)

This

in

111.

(J.79)

of this appendix, the infinite

The portion from A to infinity

(J.80)

integral for I.. of the form given by Eqns. J.61-63 is evaluated
1j

section J.4. The following expressions are used in Eqns. 5.109-

_ 4 33 2.34 ] ® npn}
I33= {n__2[P2n_l+(_2/_ ) P2n_2]+n___5-en(-1) X

- ,2n-2

X{(_l)n (t-y] , _c(2n_1) }(2n-2) ! in[ t-y ] + +
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;i

l

4 33 + X X 2 4 _en(_l)npn+ = n-1 ( 2 / ) n-2 + x

x (-1)n+l (t-y)2n-2
(2n-2)! Fc(1) ' (J.81)

-n_134{ n+l (t-Y) 2n-1 t ,_ n (t-y) 2n-11n [ t_y [}I34 : = #2n (-1) (2n-l)! Fc(1)+Fs(2n)+_-_J (2n-l)!

(J.82)

-{n_1_2n5 n.._:5 npn [en-2en+l] }I35 = + n(-1) X

× {(-1) n (t-y)2n-ll (1) n+l Ct-y) 2n-1
(2n-l)! ln[t-yl+Fs(2n) + - (2n-1)! Fc(1)} '

(J.83)
3

X43 {n_l[ 43+'_ "_'2A44]_2/ - .jj--- _2n t ) P2n_.[_ X

X {(-1) n- (t-y)2n-11n[t_y [ - n+l (t-y) 2n-I )(2n-l)! + Fs(2n) + (-17 (2n-l)[ Fc(1)

(3.84)

.

I4j : n__2_Jn-l{ (-1)n (_2Y'):_ -2"lnlt-y[ +_' c(2n-l)} +

4

n=_l 24J_1(-1) n+l (t-y) 2n-2+ # (2n-2)! Fc(1) , j=4,5 , (3.85)

] - )_ 4 53 2 54 +]>-:(-l)npn(en_l-2en) x
I53 : _- _2n-(_2/k) _2n-I n:5

X t{t 1_n (t-y) 2n-1 - r I_n+l (t-y)2n-Ip t1_
k-_J (2n-1) ! In[t-yl+F (2n) +k

s k-'J (2n-1) ! "ct_#J '

(J.86)

- n.._2 54 {-(2n-I)+( 1' n_t-y)2n-2 }154 = = P2n-1 Fc t--J (2n-2) i lnlt-yl +
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_54 n+l (t-y)2n-2Fc (I)
+ n___P2n_ 1 (-1) (2n-2) !

(J.87)

- [J--.ss =
I55 = [n--_P2n-l= +n=5_ (-1)npn(en-l-4en+4en+l)} X

n(t-y)2n-21 t-y [}X (Fc(2n-1)+(-1) (2n-2)! ±hi +

+ /_.55 ® (2n-2)! Fc(1)[n=_p2n-1 +n=5_(-1)npn(en-l-4en+4en+l)} (-1)n+l(t-y)2n-2

(J.88)

J.4 Integrals From A to Infinity

We need expressions for

®cosa(t-y) da (J.89)

A a2n-I

®sina(t-y) da A>O, n>O (J.90)

A a2n

These integrals come from the large a expansion of the Fredholm

kernels. Note that for n>O the limit for x*O has been taken under the

integral sign. The n=O cases of Eqns. J.89,90, for which the limit

must be taken after integration, are respectively demonstrated below,

lim f® -ax -I

x*O Joae cosa(t-y) da- (J.91)(t_y) 2 '

®

lira_ e-aXsina(t_y) da = _ (J.92)t-yx*O 0
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The 1/a case of gqn. J.89 has a log singularity, the 1/a 2 term of J.90

becomes (t-y)inlt-y[ and so on. This is shown in the general

expressions presented below:

®cosa(t-y) da = F (2n-l) + (-I)n+l (t-y)2n-2F c
A a2n-1 c (2n-2) ! (1) +

(t-y)2n-21n[t-yl (J.93)
+ (-1)n (2n-2)!

®sina(t-y) da = F (2n) + (-I)n+l (t-y)2n-l_ t1_

A a2n s (2n-l) ! "c _j +

+ (-1)n (t-y)2n-1
(2n-1) ! ln lt-y[ , (J.94)

where

AIt-yl

Fc(l ) = -Te - ln(A) - _ cosx -1
-0 x

dx , (J.05)

n-1
(2n-l) = _--_.(-1) j+l (t-Y)2J-2(2n-l-2J)!

c j=l (2n-2) tA2n-2j
cosA(t-y) +

n-1

+
j=l

(t-y)2j-l(2n-2-2J)! sinA(t-y)

(2n_2)!A2n-2J -1
(a.0s)

n j+l (t-y)2j-2(2n-2j) !

Fs(2n) = _-_.(-1) IA2n_2j+1 sinA(t-y) +j=l (2n-1).

n-1
+ _.(-I) j+l (t-y)2j-l(2n-l-2j)! cosA(t-y)

j=l (2n-l) !A2n-2j
(J.97)

The constant in Eqn. J.95 is Euler's constant, 7e =.57721566490153.

This expression is a cosine integral, Ci[Ait-y[], with the log term

taken out.
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