ULTRAVIOLET SPECTROMETER AND POLARMETER
 (UVSP) SOFTWARE DEVELOPMENT AND HARDWARE
 TESTS FOR THE SOLAR MAXIMUM MISSION

```
(NASA-CR-177889) UITRAVICLET SPECTROMETEB N86-30806
AND ECLABIMETEE (UVSP) SOFTWAFE LEVELOPMENT
AND HARDWARE TESTS FOE THE SOLAG MAXIMUM
MISSION Final Eefort (Lockheed Missiles and Unclas
Space Co.) 2<3 p CSCL 14B G3/19 4.3195
```


ULTRAVIOLET SPECTROMETER AND POLARMETER (UVSP) SOFTWARE DEVELOPMENT AND HARDWARE TESTS FOR THE SOLAR MAXIMUM MISSION

FINAL REPORT
January 31, 1986
Contarct NAS5-24119

M.E. Bruner, Project Leader B.M. Haisch
Lockheed Palo Alto Research Laboratory 3251 Hanover Street
Palo Alto, California 94304

UVSP PROGRAM

FINAL REPORT

Table of Contents
PART I HARDWARE PROGRAM 1
o Lockheed Role in UVSP Hardware Development. 1
o Initial Evaluation of OSO 8 Engineering Model Hardware. 1

- Optical System. 2
- Mechanical System. 3
o Wavelength Drive. 4
o Stray Light Problem. 5
o Modifications Required for Use on the SMM Mission. 6
PART II. UVSP SYSTEM SOFTWARE. 12
o Software Systems Approach. 12
o UVSP Test Interpreter Language. 13
- Flight Software Package. 14
- Command Generation System. 20
- Data Acquisiton Package. 21
o Data Reformatting Package. 23
- Data Analysis Languages. 23
PART III. THE LOCKHEED SCIENTIFIC PROGRAM. 26
o Discovery and study of C IV Post Flare Loops. 26
o Transition Zone Signature of Ephemeral Regions. 26
- Density Enhancements of Flare Footpoints. 27
o The April 8 Flare - a Critical Review
of the Experimental Results. 28
o Energy Flux Transportable by Sound Waves. 28
- Radiating Properties of Solar Plasmas. 29
- Absolute Wavelengths of Solar Lines. 31
o Comparison of Photospheric Electric Currents and Ultraviolet and X-ray Emission in a Solar Active Region. 35

Table of Contents (Cont'd)

- Directions for Future Investigations. 36
- Flare Filling Factors. 36
- Radiated Power Study. 37
- Preflare Oscillation Study. 38
- Chromospheric Depression Study. 38
- Prominence \& Filament Studies. 39
APPENDIX 1 - INDEX OF QUARTERLY REPORTS, Prepared under Contract NAS5-24119
APPENDIX 2 - UVSP COMMAND GENERATION, Updated $21 J A N 80$
APPENDIX 3 - FLIGHT SOFTWARE PACKAGE LISTING
APPENDIX 4 - EXPERIMENT OPERATIONS FACTILITY INTERFACE UNIT (EOFIU)
APPENDIX 5 - ACQ
APPENDIX 6 - DATA TAPE FORMATS

UVSP PROGRAM
 CONTRACT NAS5-24119

 FINAL REPORT

 FINAL REPORT

 PART I

 PART I

 HARDWARE PROGRAM

 HARDWARE PROGRAM}

The Lockheed Role in UVSP

The Ultraviolet Spectrometer / Polarimeter Instrument (UVSP) for the Solar Maximum Mission was based on re-use of the engineering model of the high resolution ultraviolet spectrometer developed at the University of Colorado for the OSO-8 mission. Lockheed became involved in the UVSP program when Dr. Bruner, who had been the principal investigator on the OSO-8 program, joined the Space Astronomy Group at the Lockheed Palo Alto Research Laboratory. Lockheed assumed four distinct.responsibilities in the IVSP program; technical evaluation of the OSO-8 engineering model. technical consulting on the electronic, optical and mechanical modifications to the OSO-8 engineering model hardware. design and development of the UVSP software system, and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during post launch operation of the SMM observatory. Appendix 1 to this report contains an index to the quarterly reports delivered under the contract. and serves as a useful capsule history of the program activity.

Initial Evaluation of the OSO-8 Hardware

The initial evaluation of the OSO-8 engineering instrument was carried out at the Lockheed Palo Alto Research Laboratory prior to delivery of the instrument to General Electric, the prime contractor in preparing the UVSP hardware. This initial evaluation established a performance baseline for the spectrometer. and revealed some problems with the existing electronic hardware. These tests focused on the performance of the wave-
length drive, particularly the computer controlled slew mode, which had given problems in operation of the OSO-8 instrument in orbit.

We also performed resolution tests on the spectrometer, using a mercury 198 lamp as a narrow line source. The resonance line at 2537 Angstroms was observed in first order. and found to have a width of about 0.025 A , a value consistent with its original performance whan assembled at the University of Colorado.

Once the instrument had been delivered to GE, we supported the disassembly and inspection of the spectrometer with the specific objective of discovering the source of stray light that had affected the OSO-8 performance. This study revealed a design problem in the baffle system which, when coupled with certain misalignment conditions. would allow extreme off-axis rays from the entrance slit to be reflected by the Ebert mirror directly into the exit slit. The misalignment cannot be discovered when the instrument is fully assembled, as it is automatically compensated by adjusting the grating shaft angle during wavelength calibration. Laboratory calibration sources are too weak to reveal the stray light, and the condition only became known after the OSO- 8 spectrometer had been launched. Our recommendations for correcting the condition were followed by the GE design team and were successful in controlling stray light in the UVSP instrument.

Optical System

In order to facilitate an understanding of the stray light problem and to serve as background for the discussion of the hardware modifications, we will briefly discuss the OSO-8 instrument hardware and optical system. A diagram of the OSO-8 instrument is shown in Figure 1. The OSO-8 spectrometer was an Ebert-Fastie system with a 1 meter focal length. It had an aperture ratio of $f / 19$ in the plane of dispersion, and $f / 15$ in the orthogonal direction. It was fed with a cassegrainian telescope of 12 cm aperture and 1.8 meter focal length. Dispersion was produced by a diffraction grating with a ruling frequency of 3600 grooves per millimeter operating in the second order for the range 1200

Figure 1. OS0-8 Instrument Diagram
to 1800 Angstroms. The spectrometer had fixed, straight entrance and exit slits of 8 micron width. corresponding to a wavelength interval of 0.01 Angstroms, again in second order. A movable slit mask. or dekker, was provided to allow the effective length of the slit to vary between about 40 microns and 8 millimeters, corresponding to an angular range of about 5 arcsec to 15 arc minutes on the sun. The wavelength passed by the spectrometer could be varied by rotating the grating about a shaft parallel to the grating grooves. Radiation emerging from the exit slit of the spectrometer was detected by a sealed photomultiplier tube operating in the pulse counting mode.

The control system for the OSO-8 spectrometer was based on a small, dedicated. general purpose computer which performed all of the primitive instrument functions under control of a flight software package. OSO-8 was the first such instrument to be flown in the NASA space program. and paved the way for the wide scale use of microprocessor control that characterizes contemporary instruments.

Mechanical System

The OSO-8 optics were supported by a modular structural system consisting of six major assemblies; the telescope, the spectrometer case. the master metering bracket. the wavelength drive, the detector assembly, and the Ebert mirror cell. The heart of the system was the master metering bracket. The grating assembly. which included the grating. the grating cell and its precision bearings and the grating arm. was built into the master metering bracket. The master metering bracket was kinematically mounted to the central wall of the instrument case. The grating drive was supported from three posts on the master metering bracket that protruded through holes in the central wall between the spectrometer compartment and the wavelength drive compartment. The telescope was also cantilever mounted to the master metering bracket via a set of three posts that passed through holes between the telescope cavity and the spectrometer compartment. The slit assembly was fastened to the front of the master metering bracket, just behind the telescope.

In this way, all major optical components except for the Ebert mirror were maintained in strict alignment through a single compact and extremely stiff structural element that was not subject to externally induced distortions of the instrument case. Moreover, this master bracket and the modules it carried could be assembled outside of the instrument case so that critical alignment could be done on a surface plate with standard mechanical metrology techniques.

Wavelength Drive

The wavelength drive was based on a screw and follower nut of a type that is manufactured by the Moore Special Tool Co. for use in their line of ultra-high precision machine tools and measuring engines. The screw was supported by multiple ball bearing races in a titanium housing whose thermal expansion coefficient closely matched that of the nitrided steel screw. The screw was coupled by a flexible metal bellows universal joint to the output of a precision spur gear reducer which, in turn, was driven by a 48 step brushless four phase DC stepping motor. A precision flat carried by the follower nut assembly contacted a steel ball mounted on the end of the grating arm, causing the latter to rotate the grating when the flat was moved by rotating the screw. Each step of the motor moved the flat approximately 15 microinches, altering the spectrometer wavelength setting by 5 milliangstroms. Our tests at Palo Alto demonstrated that the reproducibility of the drive for multiple settings of the screw was of the order of 5 microinches (1 sigma) or about 2 milliangstroms. The geometry of the arm, ball and flat was arranged so that they functioned as a sine-bar. forcing a linear relationship between wavelength setting and the screw position.

Since the screw had to be oil lubricated in order to function, the entire screw drive system was enclosed in a hermetically sealed housing. A stainless steel bellows allowed the nut assembly and flat to travel longitudinally and also prevented the nut assembly from rotating about the screw axis. The enclosure was fitted with redundant pressure relief valves to bleed the air out of the interior of the drive when the instrument entered the
vacuum of space. These pressure relief valves were spring loaded so as to close after the initial venting was complete.

Stray Light Problem

The optical condition that let to the stray light problem may be understood in terms of the diagram in Figure 2. which shows the effect of rotating the Ebert mirror through a small angle E about the vertex. This rotation causes the center of curvature to move up in the figure by an amount $2 \times E \times F$ where F is the focal length. This, in effect, redefines the axis of symmetry, since the spherical Ebert mirror has no unique axis. The new axis of symmetry. which passes through the center of curvature and the midpoint between the slits. will be displaced from the old one by an angle 2 E . If the grating is rotated b . this same amount. then the image will again fall on the exit slit. Thus, an initial angular alignment error of the Ebert mirror cannot be discovered in the assembled instrument since the grating shaft angles are initially determined by scanning the spectrum and identifying lines. The error 2 E will be absorbed in the calibration constants.

Notice that the new axis of symmetry of the system no longer intersects the Ebert mirror in its physical center as it would have in the case of nominal alignment. This means that a ray from the entrance slit to the displaced vertex will be reflected through the exit slit without ever striking the grating. These direct rays are normally blocked in an EbertFastie spectrometer by a series of 3 stops, $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 as shown. Due to a design error in the OSO-8 system, the stop Sl was too far from the chief ray. allowing radiation from the entrance slit to strike the Ebert mirror below the original axis of symmetry. Although the stop $S 2$ would normally have blocked the undesirable central ray. the misalignment condition discussed above made S 2 ineffective. Existence of this misalignment condition and of the improper location of the stop 51 were confirmed during the instrument disassembly at GE. Once the condition was understood, the corrective measures were clear. S1 was placed in its proper location. the Ebert mirror was carefully aligned to center the axis

Figure 2 Effect of Ebert Mirror Misalignment
of symmetry, and stop $S 2$ was redesigned to provide superior blocking of the central ray.

Modifications Required for the UVSP Mission

The UVSP instrument differed from its OSO-8 incarnation in four important ways: it used a gregorian telescope with an articulated secondary mirror instead of the original fixed cassegrainian telescope, it had a polarimeter capability, it had five detector channels instead of the two of OSO-8 and finally, it had a mechanism to interchange slits. It also featured a second generation operating system in the instrument computer. The polarimeter has . been described by Calvert. et al., 1979, Opt. Engin., 18, 287). Addition of the polarimeter represented a major new capability with respect to OSO-8. The articulated telescope secondary was required both because the SMM spacecraft lacked a raster capability, and because rastering the spacecraft would be incompatible with several of the other SMM instruments. The multiple detector array and the interchangable slits allowed us to define polychromatic positions for which two or more lines could be observed simultaneously. A diagram of the UVSP configuration is given in Figure 3.

Control of Sensitivity Loss

Many of the changes introduced into the l'V'SP instrument were designed to control a severe sensitivity loss experienced in orbit by the OSO-8 instrument. OSO-8 lost nearly two decades of sensitivity during the first week after launch, and the sensitivity at H-lyman alpha continued to drop by a factor of two every two weeks for the next few months. The cause of this severe and continuing loss was postulated to be the polymerization of outgassing contaminants onto the surfaces of the optics. especially in the telescope. Tests conducted at GSFC had showed that the degradation rate on test mirrors subjected to UV radiation under vacuum was controlled both by the concentration of outgassing effluent in the vicinity of a surface, and by the level of V irradiance on that surface. The contamination rate in a cassegrainian instrument will be most severe on the secondary

Figure 3. Layout of Ultraviolet Spectrometer and Polarimeter
mirror because of its proximity to the prime focus. Here, the irradiance is concentrated by the ratio of the unocculted area of the primary to the area of the illuminated portion of the secondary mirror. In OSO-8, this concentration factor was nearly twenty to one.

Use of gregorian, rather than cassegrainian optics allowed us to put a field stop at the prime focus of the UVSP telescope. This stop served to intercept most of the flux collected by the primary, passing only an 8×8 arc minute field to the secondary. In this way, most of the heat load from the incoming solar beam was captured by the stop and conducted away from the instrument structure by a system of copper bars and heat pipes. A more important effect of the field stop was to reduce the flux load on the secondary mirror so as to reduce the rate of sensitivity loss due to polymerization of outgassing contaminants. By carefully sizing the field stop, it was possible to make it large enough to intercept the solar disk for all pointing positions on the sun, yet small enough to fall completely within the shadow cone formed by the secondary mirror and its mount. The field stop reduced the flux load on the secondary mirror to less than 1.5 solar constants, and allowed a field of 256×256 arc seconds to be scanned by the secondary without vignetting.

Other measures taken to reduce the sensitivity loss due to contaminants were based on the philosophy of treating the instrument as an ultra-high vacuum system that needed to be baked out prior to being placed into service. An aperture door was added to the front of the instrument to keep solar radiation from entering until after the bakeout was complete. The existing structure heaters were replaced with heaters of higher capacity, and heaters were added to the backs of the two telescope mirrors. Personnel assembling and handling the instrument wore cotion or nylon gloves. rather than the vinyl gloves that had been used on OSO-8, as the rinyl had been shown to contaminate surfaces with plasticizers.

An in-orbit bakeout procedure was defined in three stages. In the first. the instrument heaters would be operated for several days with the aperture door closed during the
daylight portion of each orbit. The aperture door would be opened during each eclipse in order to assist in venting the payload cavity. This phase was designed to remove the bulk of the water vapor and other condensables from the main structure. In the second phase, the structure heaters would be turned off, but the mirror heaters left on so as to drive away residual contaminants left on the mirror surfaces. In the third phase, the structure heaters would be turned on as needed to maintain the instrument at its operating temperature, which was to be several degrees below the bakeout temperature. After the system was stabilized at the operating temperature, the telescope door would be opened and scientific observations started.

This philosophy was generally successful in lowering the sensitivity loss rate substantially below that of its OSO-8 predecessor. Some loss was noted, however, a few weeks after launch, and has been tentatively traced to a failure to carryout the bakeout procedure fully through the cool-down phase. The case heaters were left on to continue the outgassing in parallel with early operations of the instrument. When the satellite's orbit precessed into an orientation that provided a longer exposure to the sun during each orbit, the case temperature rose above the bakeout limit. We have postulated that this caused the residual internal pressure in the wavelength drive enclosure to rise. forcing the pressure relief valves to open. venting oil laden air into the instrument case. The case temperature was lowered as soon as the effect was noted. but it was. of course, too late to stop the degredation of reflectivity that had already occurred. Armed with the wisdom of hindsight. we now recognize that it would have been a good idea to provide for overboard dumping of the air vented from the wavelength drive mechanism. It is also clear that the bakeout procedure was fundamentally sound, and should have been followed more strictly.

Other Modifications

Another modification made to the OSO-8 baseline instrument was in the Ebert mirror cell. The OSO-8 version of the cell was provided with a focussing mechanism based on the
proving ring principle used in many Ebert-Fastie slit mechanisms. Although conceptually sound, the OSO-8 mechanism was found to have an undesirable flexure mode that reduced the position stability of the Ebert mirror. We modified the cell to remove the focus capability in favor of a much stiffer structure. Final focus and alignment were set in the laboratory by adjusting the thicknesses of spacers between the Ebert mirror cell and the spectrometer case. The only in-orbit focus capability lay in our ability to set the operating temperature of the instrument by controlling the case heaters.

The final modification that should be mentioned was the addition of a co-alignment system (the CAS) that supported the UVSP instrument in the SMM instrument support plate. This system was added at the suggestion of the SMM program manager, as it allowed him to delete what would have otherwise been a very expensive environmental test to assure that the UVSP would remain co-aligned with the other SMM instruments during and after launch. The CAS was a two axis gimbal system that fastened to the narrow edge of the UVSP case in the vicinity of the master metering bracket. Structural analysis of the case and CAS attachment was performed by GE and showed that the scheme would not degrade the mechanical integrity or stability of the case.

Optical Performance Evaluation

Lockheed performed an advisory and assistance role during the optical alignment performance evaluation and testing of the UVSP. Our work on the alignment of the telescope is discussed in our progress report for the first quarter of 1978 . and will not be treated at length here. The performance evaluation of the completed instrument began in the first quarter of 1979 and was carried out at the Goddard Space Flight Center. Here, we were concerned with evaluating the focus and resolving power of the telescope and of the spectrometer. Telescope focus was assessed with a foucault test, using an incandescent lamp to backlight the entrance slit. The knife edge was placed at the focus of an auxiliary telescope which had previously been set to the infinity focus by autocollimation. Visual inspection
of the aperture illumination pattern suggested the presence of residual aberrations (principally coma), but at a level that was within the UVSP performance requirments. The focus was judged to be acceptable.

Focus of the spectrometer was assessed with a modified form of the Hartmann test, discovered accidentally during the course of performance evaluation. In this test, the telescope was illuminated with a "Pen Ray" mercury lamp, oriented such that its long dimension was parallel to the rulings on the diffraction grating. The lamp was uncollimated, and was placed a few centimeters in front of the telescope aperture. The lamp was mounted on a rack and pinion mechanism so that it could be translated in a direction perpendicular to the rulings. The optics of the telescope, together with the entrance slit. acted to admit to the spectrometer, a single fan of rays that was parallel to the grating rulings; i.e. a sagittal fan. Motion of the lamp with the rack and pinion mechanism swept this fan across the grating. If the spectrometer was in focus, then the position of the spectrum in the focal plane would be independent of where the fan struck the grating. If. however, the focus was incorrect, as proved to be the case, then the image of the spectrum would appear to move when the lamp position was changed. By measuring the position of a spectrum line on the wavelength drive as a function of the position of the lamp, we were able infer both the amount and the direction of the focus error in the spectrometer. The focus error was corrected on the first attempt by re-shimming the Ebert mirror cell.

In the calibration of the completed UVSP spectrometer, Lockheed played primarily a supporting role, assisting in the operation of the instrument in a calibration system designed and prepared by GSFC personnel. Lockheed personnel were in residence at GSFC during the calibration activity, helping both with the installation and checkout of instrument control software and with the collection of the primary calibration data set. Responsibility for the reduction and analysis of the calibration data lay with the GSFC project scientist, and will not be discussed here.

During the post launch checkout of the SMM instruments, Lockheed personnel were in residence at GSFC. Mr. R. Rehse, who developed the flight software package for the instrument, carried the responsibility of verifying the operation of the instrument under software control, identifying and correcting logic problems that came to light as a result of in-orbit experience. Dr.'s Bruner and Schoolman each spent periods of time in the SMM Experiment Operations Facility (EOF). taking part in the observatory operation: developing quick-look data inspection procedures as required by the newly acquired data. These procedures were typically written. checked out. and installed in the PDP-11/34 computer in the EOF when complete. Schoolman also supported the command generation software package, making modifications as needed to improve its operation. Subsequent analysis codes. developed during the course of scientific investigations carried out by the Lockheed experimenters, have been included in the relevant quarterly reports when they were felt to be of general utility. The software system will be discussed in Part II of this report, and the program of scientific investigations is treated in Part III.

PART II

UVSP SYSTEM SOFTWARE

Software Systems Approach

The UV'SP software system was based on experience with the UV spectrometer experiment on OSO-8. and many of the elements of that system were carried over directly to the UVSP system. The software system has two major components; ground test software, and mission software. The ground test software included a test interpreter language which operated the instrument in its primitive modes, and a set of hardware test procedures written in the test interpreter language that were used to test individual instrument components. The test interpreter was also used to operate the instrument during performance evaluation and calibration.

The mission software system includes a Command Generation System, a Flight Software Package. a Data Acquisition Package, a Data Reformatting Package, and three data analysis languages. The heart of the UVSP mission software system is the flight computer software package, which contains all of the control logic required for making solar observations. The computer executes observing sequences defined by an observing list contained within its memory. This list is loaded from the ground on a daily basis, according to the needs of the overall SMM observing strategy. Contents of the observing list are prepared with another software package called the Command Generation System, which translates the observing requirements from human readable form into the bit packed format required by the flight software package. When an experiment is executed by the computer, the data stream is tagged with identifying information so that it can later be automatically sorted into logical data files.

The data stream from the entire SMM observatory is transmitted to the experiment operations facility via high speed data lines either in real time during ground contacts with the spacecraft, or as tape recorder playback data that has been recorded at the
ground tracking stations and then re-transmitted at later times. The incoming telemetry stream is scanned by the Data Acquisition Package, which captures the relevant portion and stores it in a large disk memory. Once the data is resident on the disk, it is processed by the Reformatting Package which uses the identifying information to block the data into logical experiment. sequences, arrange it into formats convenient for analysis, append record headers containing the identifying information and other pertinent spacecraft data, and store the results in disk files. The data analysis languages allow an experimenter to readily access experiment data files to inspect the results in tabular or graphic form, or as images where appropriate. The languages are also general purpose computational tools that can be used to mathematically manipulate the data in order to extract its physical information content.

UVSP Test Interpreter Language

This software package was prepared and delivered under a previous contract, but is discussed briefly here for completeness. It was originally written for the OSO-8 program at the liniversity of Colorado. The purpose of the package was to provide an easy-touse system that could be used to operate the mechanisms of the spectrometer during instrument development and testing, and to inspect the resulting telemetry stream. The software is written in Macro, the PDP-11 assembly language, and operated under the DOS disk operating system. It permitted one to send commands via any of the command interfaces, accepting its input in the form of mnemonics that were abbreviations of the respective command functions. Commands that required the transmission of a numerical value would have the value appended to the mnemonic. Commands could be transmitted directly from the keyboard, or could be grouped together into a procedure and transmitted as part of an automated sequence. When a procedure was being run, the package would accept telemetry data from the instrument, loading it into a buffer that could be accessed by instructions in the test language. It was also possible to capture and store data on
disk files for more extensive later analysis. The language was provided with rudimentary programming instructions, including loop and branch capability, and simple arithmetic operations. Subroutine jumps were not implemented as such, though we found that they could be made through an indirect jump to a numerical label. Lockheed work on the software package consisted of implementing the new set of mnemonic instructions required by the revised electronic package, accomodating the new telemetry format and rate, and interfacing it to the new spacecraft simulator. Ideally, the package would have been rewritten so that it would operate under the RSX-11M operating system rather that DOS. We elected to use it in the DOS environment both 10 save cost and to assure that the schedule would be met, although this decision left us with a somewhat awkward situation in which we had to translate the data files and change operating systems in order to evaluate the data with one of the more powerful data analysis languages.

Flight Software Package

The flight computer for the OSO-8 instrument has, for historical reasons, been known as "Junior" or Jr for short. We followed this notation throughout the UVSP program, and will use it in this document. The architecture of the Jr mission software was studied early in the development effort to determine its optimum form. Parts of the code, including wavelength drive and double precision arithmetic subroutines and the monitor section, were taken directly from the OSO-8 code. We added an extensive conditional response facility called the command mode. which allows the scient ist to specify a flexible experiment whose actual execution will depend on the conditions detected from the sun. A sequence to locate the brightest point in a field and use it as a target for subsequent observations is an example of the use of the command mode. This type of sequence was heavily used during the mission.

The parameters that specify the sequence of device motions and other operations needed to define an observing mode were packed into a nine word parameter block con-
taining twenty different parameters. New control software was written to unpack the parameter block, configure the electronics and mechanisms, and load the appropriate loop counters. Goals defined for the flight software package were to accomodate the new hardware, to implement the new observing modes that it made possible, and to provide at least the same level of control as allowed by the OSO-8 software.

The following discussion of the UVSP flight software package is taken from the paper by Woodgate et al. (Solar Phys. 1980, 65, 73) discussing the instrument. The software system for UVSP is similar to that of the OSO-8 instrument from which it was derived. The OSO-8 operating system was described by Hansen and Bruner (Space Science Instrumentation, 1979, 5, 3). The overall organization of the flight software package is shown in Figure 4. Control of the program is directed by th monitor which processes normal instrument and timing interrupts. initiates and terminates observing sequences, and controls auxiliary functions such as operation of instrument heaters. etc. Important sub-functions of the monitor are the DMA interrupt processor, which accepts and interprets the one-word messages from the spacecraft through which the instrument operation is externally directed: and the command mode processor, which decodes the pseudo-instructions of the command mode language and calls up the appropriate subroutines implied by each command code.

The remainder of th code consists of three parts: the control subroutines, a set of utility subroutines, and the observing list. The control subroutines contain the control loops for each of the mechanisms. The ordering of the control loops as well as the extent and increment size for each is set by the nine word parameter block discussed above. The utility subroutine section contains the subroutines for the operation of all of the instrument mechanisms and for the control of the data flow to the telemetry system. Approximately 75 percent of the 4096 word memory is devoted to the monitor and the various subroutines.

Most of the remaining quarter of the memory is set aside as an observing list for the storage of the parameter blocks corresponding to the observing modes needed for a day:s

Figure 4．JR FLIGHT SOFTWARE

CONTROL
SUBROUTTINES

Wavelength
－drive
loop control

UTIITIV
SJBROUTITNES

Varaleajut
まごロ
vant＝0：

Faster control

Polarimater centrol

Arithmetic pactage

7700
DY： buifiea
observations. Contents of the observing list is divided into three major sectors, called the A, B, and C lists respectively. Each list is further divided into 16 sub-sectors, each with its own entry point. The A and B lists were each intended to hold the set observing modes that would typically be required to carry out a single day's operation, with the B list being loaded while the A list was running, and vice-versa. The C list was intended to hold a set of resident operating modes that could be loaded and held in readiness for use in observing rare events for which a quick response would be needed. The last 64 words of memory are a software status buffer which is read out synchronously into the telemetry system. This status buffer provided much the additional information needed to identify the operating mode of the instrument and its current state. The structure of the observing list is shown in Figure 5.

The command mode, which provides for data dependent control of the instrument, consists of a set of pseudo-instructions that can be entered in the observing list along with the experiment parameter blocks. These pseudo-instructions are one word coded subroutine calls to the master program. Through them, the experimenter has access to a block of 32 words of storage which is set aside as a user memory. User memory locations are allocated for the raster mechanism position, a wavelength drive reference position, flare coordinates from the Hard X-ray Imaging System instrument (HXIS), spacecraft flare status, and a number of critical parameters derived from the observations. Eight of the words are assigned as general use registers. Pseudo instructions are defined to move data from one place in user memory to another, to initiate an observing mode (parameter block), to transfer control to another pseudo-instruction or group of instructions, and to insert messages into the telemetry stream. A timekeeping function is also available. A list of pseudo-instructions and their corresponding bit patterns is given in Figure 6. Contents of the parameter block are given in Figure 7.

During the execution of an observing sequence. the monitor continually scans the

UVSP EXPERDMRNT COTTROL

Figure 5.
OBSERVIIG LIST

COMMAND MODE INSTRUCTIONS

0 ExECUTE WAT PARIMETERLIJT INDEX, Use paraizzeters in specified list to do an experiment $0<N<1617_{0}$

$R=0$ Transfer control to the start of a segment in the current list $R=1$ Transfer control to the start of a segment in the ' C ' list.

2 SOTO

Transfer control! to a command within the current segment $\quad P C<P C i l+i$
N is a 2 is conoflement number and is non-zero.

3. COMPARE

$C \quad A \quad B$

1 O. dst Immediate value compared to RW or RO location as (E) \leq then shit ... O ste dst RWor RO value compared to RW or RO location as (5) (A) then sci;

4 ADD

O. sire dst Add $R W$ or RO value to $R W$ location

$(B)<(B)-6, i$

6 MOVE

Pass user inessage data into TM data stream.

Figure 7a. SMM OBSERVING LIST PARAMETER BLOCK STRUCTURE

Cal Interval

- O disables calibration offset stepping
, defines $2^{n}-1$ as the calibration interval
Control Sequence Word
12 bit field 18 subdivided into four 3 bit fields
Each 3 bit field uges MS bit as calibration internal count flag Only one 3 bit field may have the calibration flag bit aet. No calibration flag bita is legal
Low 2 bits of each 3 bit field specifies the device control loop equence Bits $1-3$ are assigned to WLD
Bits $4-6$ are assigned to Raster Y (outer gimbal)
Bits 10 are asslgned to Rolarimeter Rotation
Bits $10-12$ are assigned to Polarimeter Rotation
Sequence codes in the least aignificant 2 bits of each 3 bit field 0 Inner nested loup
1 Next to Inner nested loop
2 Next to outer nested loop
3 Outer nested loop

Paraiter block

Interval $1 / 2$ Detectors contuli... . int code for detector routing and power

0	none
1	Det. 1
2	Det. 2
3	Det. 3
4	Det.
5	Det. 5
6	none
7	clock.
10	Det. $1 / 2$
11	Det. $2 / 1$
12	Det. $1 / 4$
13	Det. $4 / 1$
14	Det. $2 / 3$
15	Det. $3 / 2$
16	Det. $3 / 4$
17	Det. $4 / 2$

For detector pair ordering, the first detector sliould be on blue alde of line, eecond detector on red aide of line.

PARAMETER BLOCR, WORD 2 (CONTINUED)

- bit controls experiment number incrementing for multiline scans

0 surpresses incrementing experiment number
1 experiment number increments - normal condition
bit is unused
Data Format is a 6 bit code related to experiment type. Not used for concrol purposes.

PARAMETER BLOCK
HORD 3
NUMBER OP WAVELENGTH DRIVE INCREMENTS

OFS is a bit apecifying an offset from a previoua wavelength position
0 Wavelength is direct from parameter block worde 4 and 5
1 Wavelength is an of fset from a local or global maximum resule offset is 16 bits in word 4
Local/global selection bit is in word 5
Number of Wavelength Drive Increments
0 disables operation of WLD control loop - constant λ used
>0 n+1 observations are made in control loop

For OFS bit (offset) $=0$ this is 16 bits of WhD position
For OFS bit $=1$ this is 16 bit WLD offset (2's complement). offset base value may be selected - see word s
 WLD* is dual purpose field.

For ofs - 0 (no offset) this isthemost oignificant bit of wh position
 selected
0 selects the global wavelength base for of foet experiment
1 selects the local wavelength base for offset experiments
Figure 7b

PARAMETER BLOCK
WORD 6

POLR STEP QUAN.	WLD STEP SIZE	PL STEP SIZ	TACH INTRVL	
16	12	7	6	4

Polarimeter Step Quantity
0 disables polarimeter control loop
$n>0 \quad n$ cycles of polarimeter control loop are made Lld Step size

Simple count of WLD steps for each pass of WLD control loop PL Step Size
n +1 steps are made for each pass of enabled polarimeter loop Tach'Interval

0 disables tachogram servo loop
>0 causes $2^{\text {n }}$ control loop. passes to occur between WLD servo corrections.

WORD 7

RASTER X STEP QUAN	RASTER Y STEP Quan

Raster X Stop Quan'
0 disables X raster control loop
0 causes n raster positions before next control loop level Raster Y Step Quan. sume as X Step Quan.

X STEP SIZE	Y STEP SIZE	CAL. WLD OFFSET
16	${ }^{6}$	

X Step Size determines change of raster position for each control loop call when enabled.
Y Step Size determines change of Y raster position for each control loop call when exccuted.

Cal. WLD Offset detervines quantity of WLD steps for calibration offset if callbration is enabled.

Value used to set gate time count down register

Det. Balance

signed 4 bit value applied to balance detector output for tachogram ervo conkrol and user mode velocity values.
The equation for lst detector is:
$((30+$ Det. Bal) * Blue Counts)/30
The equation for 2nd detector is:
((30 - Det. Bal.) * Red Counts)/30
This has the effect of differential correctiona of up to $\pm 3 X$ with steps of about .07 X .

- Clock determines period of puises which decrement the gate time count register $062.5 \mu \mathrm{sec}$
$1500 \mu \mathrm{sec}$
8 msec
$3 \quad 32 \mathrm{msec}$
128 msec
5-7 not used

Figure 7c.
data stream and maintains a record in the 32 word user memory of critical data elements; including the locations and intensities of the brightest and faintest elements of each raster. the most red-shifted and most blue-shifted elements of each raster, and the most intense wavelength of each spectral scan. After completion of a raster or spectral scan, command mode instructions may be used to test the critical data elements against pre-determined thresholds and alter the observing program accordingly, to adjust the instrument pointing so as to view one of the identified spatial elements, or to select a spectral line for subsequent observations.

Suitable parameter blocks together with appropriate groups of command mode instructions define the identified observing modes of the UVSP. The basic modes are the spectroheliogram, the dopplergram, the spectrogram, the polargram, and the magnetogram. Command mode instructions are not required by these modes, except to initiate their execution by activating the appropriate parameter block. In these basic modes; either the wavelength drive or the raster mechanism is scanned. but not both. Combined operation of the two mechanisms is provided in two modes: the profile matrix, in which an entire line profile is measured at each point in the raster. and the raster-over-line mode (RL) in which a complete raster is made at each of several wavelengths in a line profile. The basic observing modes are supplemented with command mode instructions to form another class of combined modes which includes a bright point finder, a faint point finder (useful for locating sunspots in the continuum), a flare finder (bright point finder plus threshold test), an upflow (blue shift) finder, a downflow (red shift) finder, and a spectrum line finder. These modes are useful for identifying targets and initiation times for subsequent observations. Within each mode, the sampling frequency and ranges of spatial and spatial scanning, the integration time, and the number of observations are all parameters that may be adjusted in order to optimize the observing program.

Experiment modes may be linked in memory by short programs of command mode
instructions to form more complex observing sequences. Each such sequence occupies one of the 48 observing list sub-sectors. Since the sector boundaries are defined by a vector table, the sector sizes may be adjusted from day to day to accommodate changing observing requirements. Initiation of an observing sequence is under control of the spacecraft and requires only one command, designating which sector is to be used. This command is identified by the DMA interrupt processor, which passes the appropriate vector label to the monitor. As shown in Figure 5, the vector points to the starting address of the memory sector containing the command mode instructions for that sequence. The instruction sector will, in turn, contain one or more command mode instructions that call for execution of observations under control of a parameter block, and will contain a pointer to that block. Note that parameter blocks do not need to be in any particular order, that a given sector may call up two or more parameter blocks, and that a parameter block may be called from more than one sector.

Once a parameter block has been identified, its contents are unpacked by the monitor and used to load the various loop counters and to set all required internal parameters and switches appropriate to the observations to be made. The nesting order of the control subroutine loops is also set at this time, and then execution begins. When the observing sequence specified by the parameter block is complete. control returns to the monitor, which fetches and processes the next command mode instruction. The last command mode instruction in each sector contains a flag signalling the end of the entire experiment sequence, whereupon control passes back to the monitor and the system waits for a new DMA interrupt command from the spacecraft.

An important aspect of the flight software package is that it makes the telemetry stream self-identifying. This is done in two steps. The first is to place the parameter block being executed into the software status buffer so that it is present in every major frame of telemetry. A unique serial number is assigned to each sequence by the master
program, permitting the telemetry stream to be divided into logical experiment sequences on the ground. These logical sequences become separate files in the data base after they are processed by the ground based reformatting program.

In the second step, the progress of execution of an experiment sequence is reported by having the computer inject messages into the spectrometer data stream at the conclusion of each pass through each of the control subroutine loops. Mode initiation is flagged by a unique message word, followed by the nine word parameter block defining the mode. This feature also permits the identification of experiments shorter than one major frame.

The most significant bit of each pair of spectrometer data words is used as a flag to permit the ground software to discriminate between messages and intensity data. Fill data is distinguished from intensity information by a hardware feature that resets the pulse counters to unity rather than zero. Fill data enters the telemetry stream as a string of zeros, while a zero intensity count enters the stream as a one. In two's complement arithmetic, messages will be negative numbers, fill will be zero, and valid intensity measurements will be non-negative; allowing the different data types to be rapidly and efficiently sorting during the reformatting operation.

The combination of the injected messages in the data stream and the information in the software status buffer, permit the ground software to completely identify each bit of data, including the experiment sequence that produced it. the implied data format, the dimensions of all matrices in the format, the location of each datum within its matrix, and the file name that will be assigned to the sequence in the final data archive. Furthermore, this information can be completely developed from a segment of telemetry as short as one major frame (about. 8 seconds in the SMM system), making it very easy to evaluate data received during short real time passes or from partial orbits.

Additional discussion of the UVSP software system is given by Rehse, et al. (Journal of Spacecraft and Rockets, 1982, 19, 186). A complete listing of a recent version of the Jr
code is included in Appendix 3 of this report.

Command Generation System

The command generation system provides the software interface through which the scientist can design and execute an experiment in readily understandable terms. It frees one from the requirement to know the internal details of the instrument, a general knowledge of the basic instrument modes being sufficient for most purposes. The command generation system is composed of a two programs, an experiment generator (or compiler), and an experiment assembler. The experiment generator portion is known as Phase 1. This program allows the scientist or daily planner to design an experiment sequence and create readable text files that serve as input to the assembler, Phase 2, which prepares the actual memory load for the flight computer. Phase 1 was designed to provide the user with maximum convenience and flexibility. In the intermediate text file produced by Phasel. only those parameters that are relevant to the type of experiment being created will appear in the readable parameter block text. Phasel also provides facilities for correcting inputs, and inspecting results before output.

The experiment assembler, Phase 2 takes the various experiments requested for the day in the form of intermediate output files from Phase 1 and creates a new memory image for the instrument control computer. Input to Phase 2 may include several Phase 1 files, making it easy to combine observing requirements of several different investigations into one computer load. The output from Phase 2 consists of three files and a listing. The first file contains the complete instrument computer memory image and is retained in the ground computer's storage. The second file contains the data required to create the instrument computer load. The third file associates vectored entry points with experiment descriptor filenames and is used to annotate the daily timeline print. The listing includes octal values for all memory locations loaded by the current command generation, as well as resolved listings of all command mode statements and breakdowns of each parameter
block into its component bit fields with a verbal description.

A complete discussion of the Command Generation System is given in the UVSP command generation handbook, which is included as Appendix 2 of this report.

Data Acquisition Package

The data acquisition package was developed by Dr. R. Shine of the GSFC staff in collaboration with Lockheed personnel. Although the preparation of this code was not a Lockheed responsibility, a brief overview of its operation is included here for the sake of completeness. The purpose of this code is to capture the incoming data stream as it arrives in the Experiment Operations Facility EOF at GSFC. The data flow from the SMM satellite into the EOF is illustrated schematically in Figure 8. In the early part of the mission, our primary contact with SMM was via the Satellite Tracking and Data Network (STDN) and the NASCOM communications system. Later in the mission when TDRSS became available, this system took over part of the STDN workload. In either case, data transmitted to GSFC over NASCOM arrived both in the EOF and at the Information Processing Division (IPD). At IPD, the data were recorded for later processing and error correction, and eventually resulted in the production of final data tapes. The data arriving at the EOF entered a PDP-11/34 computer through an electronic interface called the EOF Interface Unit (EOFIU). The EOFIU was developed at Lockheed for the SMM mission, and served both the UVSP and the XRP instruments. Additional information on the EOFIU is contained in Appendix 4 of this report. The data from the EOFIU entered the PDP-11 memory via a Direct Memory Access (DMA) channel, where it was captured and processed by the Data Acquisition System.

The operating philosophy of the Data Acquisition System was to allocate a very large block of storage in a disk memory system, map this block so that each word in the block corresponded to a particular word in the anticipated telemetry stream, and then to load each received datum into its predetermined storage location when it arrived. The disk

Figure 8. DATA ACQUISITION
memory system selected for the task was large enough to accomodate roughly one day's data from the two instruments after extracting that portion of the entire telemetry stream that was pertinent. On a daily basis, the contents of the disk would be transferred to tape for storage in a quick-look archive, and the memory re-mapped for the next period of observing. Since the mapping for each period was predetermined, the order in which the telemetry from the different orbits arrived in the EOF was not critical. It was possible for the system to handle three data sources simultaneously by using multiple buffering to interleave operations on the data from different sources. This allowed us, for example, to simultaneously receive playback data from the spacecraft's tape recorder and real time data from the telemetry transmitter. Data in the disk were, of course, on line and available to the computer for processing by the data reformatting task.

As shown in Figure 9, the data entered the PDP-11 memory via a DEC DR-11B direct memory access interface. Data were initially captured in one of two "burst buffers" of 257 word capacity each. Each burst held one minor frame of data together with some overhead and ancillary data. Since not all of each minor frame was relevant to either the UVSP or the XRP instrument, an initial sorting was done at this stage to discard all unwanted words. This was done by extracting the desired words information from each burst buffer using a table-lookup algorithm. Two burst buffers were used so that one could be processed while the other was being loaded. The retained fraction of each minor frame was placed in the proper place in one of six major frame buffers in memory. These buffers were also arranged in pairs, so that loading and processing were asynchronous. Two major frame buffer pairs were allocated to playback data, and a third pair to real time data, so that a total of three simultaneous data sources could be captured. Spacecraft clock data, contained in each minor frame, determined the location of each minor frame in the major frame buffer and later, the location of each major frame in the "Today's Data" buffer in the disk memory. Major frames whose spacecraft clock data fell outside the boundries of the "Today's Data" buffer were stored in an "Oddball file" to be handled separately. Once

the data were resident in the disk, they could be accessed by the reformatting program for conversion to the science file format for inspection and analysis. Additional information on the Data acquisition program is given in Appendix 5.

Data Reformatting Package

The reformatter software converts nearly raw data from the instrument and SMM spacecraft into a data format compatible with the data analysis language SOL. The functions of the reformatter are to strip out the fill data, block the data stream into logical experiments, identify the experiment in progress and determine the appropriate file format, intercept computer messages that identify the proper location of each datum in the format, load the intensity data into the format, create file header information, and write the results as a logical file on the disk. Ground reception of the data is sometimes noisy or occasionally drops out, so the reformatter allows for gaps in the data. The reformatter can also reconstruct the experiment parameters if the initial parameter information is missing. The initial version of the reformat code was an adaptation of the one developed at the University of Colorado for the OSO-8 instrument. It was prepared at Lockheed and delivered in a single detector version as discussed in the quarterly report for the period 1 January to 31 March 1980. Work on the extended version of the reformatter which could handle multiple detector experiments and accomodate a variety of data anomalies was suspended at the request of GSFC so that additional effort could be devoted to refinements in the flight software package and the consequential modifications required in the command generation system. The final version of the reformatter code was prepared by Dr. R. A. Shine of GSFC. A discussion of the final data file formats is given in Appendix 6.

Data Analysis Languages

The format of the files in the data archive followed the convention established for the OSO-8 spectrometer in order to make the data immediately and easily accessible to the

SOL data analysis language developed during the OSO-8 program. SOL, which stands for Spectrum Oriented Language, was written by D. M. Stern of the University of Colorado. It was a general purpose language that had several features that made it particularly convenient for use in the analysis of spectroscopic data. Procedures for opening, closing, reading, and writing data files were embedded within the language, and a graphics package operating a Tektronics 4010 terminal was included. The language handled vectors and arrays automatically in ordinary arithmetic operations so that loops over array indices did not have to be explicitly written. As part of this contract, Lockheed modified and delivered a. version of SOL for use by the UVSP team. The modifications affected primarily the internal workings of the program and removed several unused sections that were relevant only to the original OSO-8 hardware configuration. The program remains functionally the same as the original, and is fully documented in the SOL language manual written at the University of Colorado.

Two other languages were also available for UVSP data analysis in the EOF. The first of these was IDL (Interactive Data Language), which was written by D.M. Stern after leaving the University of Colorado to form Research Systems, Inc. IDL used many of the ideas embodied in SOL, but added many extensions. Automatic handling of arrays was retained, and generalized to handle arrays with more than two dimensions. IDL also featured a greatly enhanced string handling ability, and the graphics package was improved. There are a number of detailed differences between the two languages, such as the range of array indices, which run from 1 to N in SOL but from 0 to $\mathrm{N}-1$ in IDL. IDL did not have the built-in OSO-8 file reading procedures of SOL, although Stern provided a rudimentary read procedure for these files for our use. A disadvantage of Stern's file read procedure was that it gave no access to logical record header information. Lockheed wrote and delivered an improved procedure that retained the logical record header as part of this contract. We also provided a number of other utility procedures that were developed during the course of our scientific study of SMM data. These procedures are discussed in the appropriate
quarterly reports, and will not be treated here.

The final language that was prepared for UVSP is called ANA, and was developed by Dr. R. M. Shine of GSFC. It was designed to make the manipulation of UVSP image arrays particularly convenient, and features some powerful array manipulation commands. This language, though available to us, was not extensively used in the Lockheed data analysis program and will not be treated here. It is fully discussed in a manual prepared by Dr. Shine.

PART III

THE LOCKHEED SCIENTIFIC PROGRAM

Discovery and study of C IV Post Flare Loops

The discovery of post flare loops seen in C IV was one of the early results to which LMSC has made substantial contributions. The so-called 'Logo Raster' observation, carried out at the west limb on March 27, 1980, was planned by M. Bruner during an early period of residence at GSFC. The image, made during the rising part of the soft X-ray time history, shows a system of loops rising above the limb. clearly guided by the influence of the magnetic field. The observation was made in the dopplergram mode and shows that the northern legs of the loops are redshifted, while the southern ones were blueshifted.

The loops appear to have originated in NOAA region 2339, which was on the west limb at the time of the observation. Magnetograms are available from the Kitt Peak National Observatory for March 23rd, 25th, and 28th. There were two groups of spots seen in the Mt Wilson drawings. The leader spots (showing black polarity on the magnetograms) were approximately 10 degrees west and 5 degrees north of the trailer spots. On the basis of this, it appears that the most likely orientation of the loop system we observed was with the northern footpoints further from the Earth than the southern ones. If this interpretation is correct, then the observed doppler shifts correspond to downflowing material at transition zone temperatures in both legs of the loop system, rather than a syphon flow. The loops were transient in nature, as shown by a time series of smaller rasters made immediately after completion of the 'Logo Raster' observation. The lifetimes of individual loops in the system (as defined by their visibility in C IV) was of the order of a few minutes. This set of observations has been the subject of a detailed study by a team including M. Bruner. G. Poletto, R. Kopp, and G. Noci. A paper on the results of the study has been accepted for publication in Solar Physics.

Transition Zone Signature of Ephemeral Regions

An investigation arising from our participation in the FBS activity was a study of the growth of ephemeral regions and their signature in the transition zone lines. This study was coordinated by F. Tang, and concentrated on observations made on 11 Sept. 1980. The UVSP observations were made in the dopplergram mode in C IV. Magnetic field observations were made at Kitt Peak national observatory, Big Bear Solar Observatory, and the Mount Wilson Observatory. Ephemeral regions were identified in the magnetograms, which were then compared to the UVSP dopplergrams to search for cospatial signatures in the transition zone. Of the 31 bipolar ephemeral regions that were observed in the magnetograms. three were in the field of view covered by the UVSP. Study of the UVSP images showed two regions, co-spatial with the ephemeral regions, that both brightened and expanded in area during the period of observations. The results of the study were presented at the COSPAR meeting in Canada in the summer of 1982. and are published in the proceedings.

Density Enhancements of Flare Footpoints

An early investigation of flare observations on the disk concerned the 1980 April 8 flare. The observations of this flare were made in the LVSP density diagnostic line set, consisting of the Si IV, O IV, and S IV lines. Measurements were made in the RL mode, in which a series of rasters is made with the wavelength drive being advanced between rasters. Each raster represents a different position in the line profile, with the entire profile being covered in a series of five rasters. Data taken in this mode may be analyzed to determine the line intensities, widths, and positions (with respect to some global average) for each of the lines and for each pixel in the raster pattern. Electron densities may be estimated from the ratio of the Si IV and O IV lines. At the time of the impulsive phase, the 8 April flare showed a sudden brightening at the flare footpoint, accompanied by an increase in derived electron density. A preliminary presentation of the observations were made by Bruner et al. at the AAS Solar Division meeting at the Liniversity of Maryland. A more definitive
paper by Cheng, et al. appeared in the Astrophysical Journal.

The April 8 Flare - a Critical Review of the Experimental Results

The 1980 April 8 flare became the object of an extended investigation during the SMM workshop; one of five selected for study by the energetics team, of which M. Bruner was a member. Density diagnostics for this flare were available both from the UVSP results, and from concurrent P78-1 measurements, allowing us to derive the total thermal energy content of the flaring plasma and its evolution with time. This was the only data set available to us for which this was possible. By the time of the workshop, a considerable body of analysis of this event was in existence. M. Bruner prepared a critical review of the results, that was subsequently incorporated into the energetics chapter of the forthcoming monograph on the workshop. The complete text of the review was included in the quarterly report on this program for the period 1 April to 30 June 1984.

Energy Flux Transportable by Sound Waves

Another early investigation involved the study of $\mathrm{N} V$ dopplergram sequences in an attempt to estimate the energy flux transported across the transition zone by acoustic waves. This study was done in collaboration with Dr. G. Poletto of the Arcetri Astrophysical Observatory in Florence, Italy. The observations were made in the dopplergram mode in a series of $21 \times 21 \mathrm{arc} \sec$ rasters. The results were generally consistent with earlier studies conducted by Bruner who had analyzed C IV and Si IV observations made with the UV spectrometer on OSO 8; finding that the inferred flux of energy that could be carried by the waves was inadequate by two or three orders of magnitude to explain the heating of the corona. A short contribution discussing the $\mathrm{N} V$ work has appeared in Memoria della Societa Astronomica Jtaliana. A more extended paper including a new theoretical treatment of wave propagation was prepared and submitted to Solar Physics. This paper met difficulties with a referee who raised several objections to the theoretical treatment, and is now awaiting revision.

Radiating Properties of Solar Plasmas

A more recent investigation that was partially inspired by the SMM workshop activities was a study of the radiating properties of solar plasmas. In this study, which was initiated by and carried out in collaboration with Dr. R.W.P. McWhirter of the Rutherford-Appleton Laboratory, we compared the total power radiated by an atmosphere with the power in a single spectral line. The calculations were based on a carefully selected set of atomic data and were carried out for a series of empirical emission measure distributions taken from the literature. The object of the study was to discover to what extent the intensity of a single line could be used as a diagnostic to estimate the total radiated power from an unknown atmosphere. Such an implied relationship is not unreasonable, since the general shapes of emission measure distributions tend to be very similar.

In a preliminary test. McWhirter found that for the several distributions tested. the total radiated power was directly proportional to the intensity of the $\mathrm{C} I V$ resonance lines at 1548 and 1550 A, with an uncertainty of about 20 percent. We extended this study to incorporate a larger set spectral lines that are commonly observed by SMM, and added several more emission measure distributions to the empirical data base. The final data base included sample distributions for both quiet and active regions as well as for flares. The results of the extended study confirmed the existence of an apparent systematic relationship between the two quantities, but with a larger uncertainty. We confirmed the approximately linear relationship between total radiated power and the intensity of the C IV line, but found that a power law with an exponent of 1.1 (e.g. a linear relationship in the logarithms of the quantities) gave a slightly better fit to the data. The power law relation held for the C IV, N V, and O V lines observed by UVSP, though with different exponents. For the O VIl and Ne IX lines observable by the XRP experiment, we found that the data were well represented by a quadratic relationship between the logarithms of the two quantities. These relationships are illustrated in Figure 10.

Figure 10

Another aspect of the radiated power study was the computation of effective values of the so-called $G(T)$ functions for each spectral line considered. To illustrate the concept, we consider the conventional expression for the intensity of a spectral line in the effectively thin case. The intensity is given by

$$
l=\frac{1}{4 \pi} \int_{0}^{\infty} n_{\epsilon}^{2} \frac{n(H)}{n_{e}} \frac{n(z)}{n(H)} \frac{n(g, z)}{n(z)} \chi(g, T) \frac{d h}{d T} d T
$$

where Ne is the electron density, $n(H) /$ Ne represents the ionization balance of hydrogen, $n(z) / n(H)$ is the abundance of the element z with respect to hydrogen, $n(g, z)$ is the fraction of the element z that is in ionization state g. T is the absolute temperature, and h is a unit of distance along the line of sight. This expression may be written as

$$
I=\frac{1}{4 \pi} \int_{0}^{\infty} n_{\epsilon}^{2} G(T) \frac{d h}{d T} d T
$$

where the abundance and the temperature dependent terms depending on the physics of the particular ion have been combined in the function $G(T)$. We now define an average, or effective value of G through the expression:

$$
I \equiv \frac{1}{4 \pi} \frac{n(z)}{n(H)} \bar{G}\left(T_{m}\right) \int_{\frac{T_{m}}{\sqrt{2}}}^{\sqrt{2} T_{m}} n_{e}^{2} \frac{d h}{d T} d T
$$

where Tm is the median temperature below which exactly half of the intensity of the line arises. Note that this integral is carried out over a finite range in T , amounting to a factor of two between the lower limit and the upper limit, and with Tm being the geometric mean of the two limiting values. This is the convention used. for example, by Jordan (ref.). Combining the first and third expressions. we may compute G (Tm) as

$$
\bar{G}\left(T_{m}\right) \equiv \frac{\frac{1}{4 \pi} \frac{n(z)}{n(H)} \int_{O}^{\infty} n_{i}^{2} \frac{n(H)}{n \cdot} \frac{n(g, z)}{n(z)} x(g: T) \frac{d h}{d T} d t}{\frac{1}{4 \pi} \frac{n(z)}{n}(H)} \int_{\frac{T_{1}}{\sqrt{2}}}^{\sqrt{2} T_{n}} n_{\epsilon}^{2} \frac{d h}{d T} d T
$$

We see that $G(T m)$ is a special kind of weighted average, where the emission measure is used as the weighting function. It is not the usual weighted average, because the normalization and averaging integrals are carried out over different ranges in T .

We computed values of $G(T m)$ for each spectrum line and for each of the emission measure models considered for the radiated power study. For the transition zone lines, we found the $G(T m)$ and $T m$ values to vary only slightly from one model to the next, suggesting that the mean values could be used to compute a very good first approximation to the emission measure distribution, given a set of line intensity measurements. In the case of the O VII and Ne IX lines, the values varied considerably between flaring and nonflaring models, being influenced by the slope of the high temperature part of the emission measure distribution. A summary of these results is given in Table 1. The entries marked in the tables with asterisks represent cases where the high temperature end of the emission measure model did not completely cover the range of formation of the ion in question.

The utility of the $\mathrm{G}(\mathrm{Tm})$ averages is that they permit us to quickly estimate values for the emission measure at temperatures in the vicinity of Tm, with the assurance that the derived values will represent something better than a zeroth order approximation. A possible extension of this utility will be discussed in the next section. An oral paper covering some the results of the radiated power study was presented at the 1985 summer meeting sponsored by NSO at the Sacramento Peak Observatory. A definitive paper on the results is in preparation.

Absolute Wavelengths of Solar Lines

Another research topic that was recently addressed is the question of the absolute wavelengths of solar lines that have been observed with the UVSP. This observing program had as its objective, the measurement of the wavelengths of several chromospheric lines with respect to the geocoronal absorption line in O l, which is taken as a reference wavelength. The significance of the program is as follows: ln the study of velocity fields
on the sun, all past experiments have suffered from the fact that none of the available instruments have been equipped with on-board wavelength reference sources. Since velocity measurements are based on the measurement of doppler shifts, this has meant that there was effectively no rest frame to which velocity measurements could be referred. In order to study problems such as mass balance in the transition zone and corona. investigators have had to assume that some observable quantity such as the wavelength position averaged over a large field represented a reproducible working standard of wavelength, and that this wavelength represented material that was at rest with respect to the center of the sun. Although these assumptions are plausable, they lacked experimental confirmation. A systematic red or blueshift of the reference wavelengths would have been undetectable.

By measuring a set of chromospheric wavelengths with respect to a non-solar reference, the question of possible systematic motions or wavelength shifts originating in the solar atmosphere is avoided. The geocoronal absorption lines in the O I triplet near 1302 A provide such a reference. The OI line profile is very similar to that of the much broader H-Lyman alpha line. and shows two quite distinct regions of line reversal in the vicinity of the core. The broad. shallow core is caused by non-LTE radiative transfer effects in the solar chromosphere. which is optically thick at these wavelengths. The narrow central part of the core, however. is an absorption line formed in the Earth's upper atmosphere, which is at a much lower temperature. The geocorona is substantially at rest with respect to the center of mass of the Earth, affected at most by the effects of diffusion related to the gradual escape of atoms in the high energy tail of the outer layers of the oxygen geocorona. The physics of the escape process in the geocorona is well understood so that this effect can be evaluated with confidence. Similarly, the radial velocity of the Earth with respect to the sun is a function of orbital mechanics, and can be accurately computed. Thus, the O I line can serve very well as a standard of absolute wavelength for solar UV observations.

In applying the method, the UVSP instrument was used to carefully measure the
positions of several UV emission lines formed in the solar chromosphere with respect to absorption cores in the resonance emission triplet of atomic oxygen. The selected lines were close in wavelength to the O I triplet in order to minimize the required motion of the wavelength drive and consequently, the uncertainty introduced by any non-linearities in the drive performance. Steps in the analysis included the determination of the observed line positions in step numbers on the wavelength drive, conversion these position numbers to apparent wavelengths, correction of the apparent wavelengths for systematic effects (principally the orbital motion of the spacecraft) and finally, computing the corrected wavelengths of the solar lines from the observed offsets from the geocoronal O I absorption lines.

Computation of the line-of-sight component of the spacecraft velocity vector was based on a complete solution of the spherical triangle defined by the position vectors from the center of the Earth to the sun, the spacecraft velocity vector, and the geocentric pole. Input data to the computation were the time of the observation; the times of spacecraft sunset, sunrise, and ascending node passage taken from the orbit predictions on the SMM planning charts; and the right ascension and declination of the Sun from the American Ephemeris and Nautical Almanac.

The analysis showed very good internal consistency among the several measured positions of the O J lines at 1302.169 and 1304.858 , based on the pre-launch values for the polynomial coefficients in the wavelength drive position prediction formula. The results of the wavelength measurements of the solar lines were very surprising. Both the 1300.91 line of S I and the 1318.998 line attributed to N I were found to be blue shifted with respect to their rest positions. The observed blueshifts corresponded to upflow velocities of about $3 \mathrm{~km} / \mathrm{sec}$, and the shift exceeded $3>$ sigma. In our first observing run, we had also observed the 1318.998 line which was classified as arising from N I in the NRL atlas of L. Cohen (NASA publication 1069, 1981). This line showed a considerable departure from
its expected position based on the pre-launch calibration of the UVSP wavelength drive. If this departure is attributed to doppler shift due to motion in the sun's atmosphere, an upward velocity of about $8 \mathrm{~km} / \mathrm{sec}$ is implied. In the second run, the C I line at 1311.404 was observed in lieu of the 1318.998 line since it is closer to the nearest reference line. To our surprise, we found this line to the red of its rest position by about $8 \mathrm{~km} / \mathrm{sec}$. The line profiles are well developed in all cases, and display good signal to noise ratios, so that the displacements cannot be attributed to statistical errors. There is a pos- sibility that the identification of the 1318.998 is in error, since the 1319.67 line which arises from the same multiplet is not observed in any of the UVSP spectra. The 1319.67 line is expected to be nearly twice as bright as the 1318.998 line (Kelly and Palumbo - NRL report 7599).

We have considered a number of possibilities apart from a systematic velocity in the chromosphere that could be advanced to explain the observations. The effect of solar rotation, which can be as high as $1.9 \mathrm{~km} / \mathrm{sec}$, is not a problem for these observations, since they were carried out at sun center. The radial velocity of the Earth was computed from ephemeris data for the day of the measurement to be about $0.19 \mathrm{~km} / \mathrm{sec}$, which is a decade too low to explain the observations. The effect of the Earth's motion about the Earth-Moon barycenter is even smaller; about $12 \mathrm{~m} / \mathrm{sec}$. There is a possibility that one or both of the lines have been mis-identified. The line at 1300.91 angstroms is not listed in the Kelly and Palumbo table, but has been classified by Tondello (1972, Ap. J. 172 , 771) as arising from S I. It was identified in the solar spectrum by Chipman and Bruner (1975, Ap. J. 200, 765), who also reported most of the other nearby S I transitions. The other S I transitions are also seen in the UVSP spectrum. Thus this identifi- cation seems fairly secure. The 1318.917 line is classified in the NRL ATLAS (L. Cohen, 1981, NASA Publication 1089) as arising from N I. Kelly and Palumbo list a N I doublet whose fainter component lies close to our observed wavelength. The other component, however, has not been observed either in the Chipman and Bruner spectrum or in the UVSP spectrum. Thus this identification is suspicious and may be wrong.

These results were presented during the 1985 annual meeting of the Solar Physics Division of the American Astronomical Society. An abstract of the paper has been published in Bull. Am. Astron. Soc. Vol 17, 630, (1985).

Comparison of Photospheric Electric Currents and Ultraviolet and X-ray Emission in a Solar Active Region

Recently it has become possible to infer the presence of electric currents in the solar photosphere using vector magnetograph measurements. An important question that can now be addressed is whether heating of the upper solar atmosphere takes place via electric current dissipation. This can be studied empirically by comparing regions of inferred Jz (vertical component of the photospheric electric current density) with areas of enhanced emission in the chromospheric, transition region and coronal structure. Recently deLoach et al. (1984) used MSFC vector magnetograms and UVSP raster maps in Lyman alpha and N V to investigate spatial correlations of Jz and enhanced emission within an active region. A marginal correlation was found.

As summarized in a paper to appear in the Astrophysical Journal (1 January 1986: *A Comparison of Photospheric Electric Current and Ultraviolet and X-ray Emission in a Solar Active Region" by Haisch, Bruner, Hagyard and Bonnet) we have completed a more comprehensive intercomparisons of vector magnetograph, UVSP, XRP and highresolution UV rocket images and filtergrams to search for evidence of heating by current dissipation. Specifically, we used UVSP spectroheliograms in C IV, Si IV and O IV. Empirical correlations between Jz and bright emission regions in Lyman-alpha and in the 1600 A UV continuum (rocket data) were found. There appeared to be a lesser degree of correlation between Jz and the UVSP transition region emission. However none of these correlations were consistent with expected scaling relations between simple ohmic heating and radiative losses. The present status of this approach for empirically investigating the nature of the heating mechanism of the structures in the upper solar atmosphere is that
there are suggestive correlations involving electric currents, but further correlative studies are necessary.

Directions for Future Investigations

In this section, we discuss some research topics that have been identified as logical extensions to the investigations performed under the present contract. Some of these topics are logical extensions of work that we have already done or that is in progress. Others have been identified in the past, but postponed in favor of the work discussed above, while still others are new. We anticipate that additional topics will present themselves as the study of the existing data base continues.

Flare Filling Factors

This project has been treated in several of the progress reports on this contract. It is an outgrowth of studies done for the SMM Flare Workshop, specifically with respect to the April 8 flare. A striking result of the compilation of observations of this flare was the comparison of estimates of the flaring volume as functions of time using different methods. In one method, based on atomic physics computations, line ratios are used to estimate the electron density. These densities are combined with values of the volume emission measure determined from line intensities to determine the effective emitting volume. A second method uses an analysis of the HXRBS data combined with radio observations to determine an effective area for the optically thick radio emitting region, which, in turn is used to estimate the volume. A third method rests on the apparent area observed with one of the imaging instruments such as UVSP: XRP; HXIS, or P78-1. This area is again used to infer a volume.

In the case of the April 8 flare, we found agreement between the two volume estimates based on area measurements, but a large discrepancy between these values and the effective volume estimated from the density / emission measure analysis. This result is in accordance
with previous findings by others, who attributed the differences to the incomplete filling of the emitting volume with plasma. The new result from the April 8 study was that as the flare developed, the volumes based on atomic physics estimates approached those estimated from areas until they were in substantial agreement at the end of the gradual phase. The result is illustrated in Fig. 11, which was prepared for Chapter 5 of the SMM Flare Workshop monograph. It is seen that the volume estimates based on areas rise during the impulsive phase of the flare, and then gradually decrease with time. The volumes derived from the spectroscopic diagnostics, however, show a large (though uncertain) initial decrease, followed by a gradual rise. This seems to imply a time evolution of the filling factor, which would be an important result, if confirmed. This idea could be followed by examining both the SMM and the P78-1 data bases for other flares where this type of comparison can be made. Our preliminary checks have revealed a number of candidate events that could be examined as an extension to the present study.

Radiated Power Study

The basis of this study was discussed at some length earlier in this report. There are two directions in which the study could be extended. The first of these is to broaden the empirical data base by identifying and adding more examples of emission measure distributions derived from observations, and to incorporate more of the ions for which we have good atomic data. The emphasis in this extension should be to add more examples of flaring plasmas to the set of emission measure distributions; and to include more of the lines that are typically used by the SMM instruments, particularly UVSP and XRP.

The second extension emphasizes the effective values for the $G(T)$ functions, and their utility in computing emission measure distributions. As discussed previously, the quantity $\mathrm{G}(\mathrm{Tm})$ may be used to derive a good estimate of the emission measure at temperatures in the vicinity of Tm . If we were to do this for several lines spanning the desired temperature range, the result would be a first order emission measure distribution. The method is

Figure 11
similar to the original method of Pottasch (Space Science Rev. 3, 816, 1964; Bull Astron. Inst. Neth., 19, 113, 1967), but with atomic data that are more realistically weighted. If these derived emission measure values are now connected by some reasonable technique such as cubic spline interpolation, we may use the methods developed in this study to recompute the $\mathrm{G}(\mathrm{Tm})$ functions for this particular emission measure distribution. The new $G(T m)$ functions would, in turn, be used to compute a second approximation to the emission measure distribution, and the iterative process continued until convergence is obtained. Since, as we have already shown, the $G(T m)$ values are insensitive to the shape of the emission measure distribution, we may expect convergence to come very quickly, probably within one or two iterations.

Preflare Oscillation Study

This project is based on a suggestion by E. Antonucci that it might be possible to observe oscillatory behavior in the transition zone lines during the last few minutes before onset of the impulsive phase of a flare. We have found some observations that are suggestive of oscillations in the TRANSVEL and TRANSMAP observations that were made in the N V line during the early part of the mission in 1980. These data sets should be studied more carefully, subjecting them to power spectrum analysis to discover the extent to which they display quasi-periodic behavior. There appears to be an adequate data base in the existing UVSP archives, so that additional observations will probably not be needed.

Chromospheric Depression Study

The process of chromospheric evaporation or ablation is, by now, a widely accepted idea. Observations made with the XRP instrument; particularly the bent crystal spectrometer, have revealed the blue shifted material that would be expected on the basis of the model. The question to be addressed here is the fate of the region from which the material is ablated during and immediately after the impulsive phase. Since chromospheric
material is removed from a relatively restricted area. we may logically expect to find a depression, or region of low density, in the vicinity of the footpoints of the flare. Presumably, the higher temperature in this region would provide the pressure necessary to prevent the depression from being filled by material flowing in laterally from the surroundings for as long as the strong chromospheric heating persists. Such a depression is expected whether the heating mechanism is thermal conduction, as suggested by Hyder during the SMM workshops, or by non thermal electrons, as discussed by Woodgate during the 1985 NSO summer workshop at the Sacramento Peak Observatory.

It may be possible to find evidence for chromospheric depressions by examining the maximum transition zone densities seen at flare footpoints as a function of the position of the flare on the disk. What we are seeking is a simple geometric effect. If the footpoint is near disk center, then we expect to see all the way to the bottom of the depression (assuming that the hot ejecta are transparent to the transition zone radiation), while for a footpoint near the limb, the bottom may be obscured by the intervening wall. Since the density is expected to be highest at the bottom of a depression, we may expect to find that flares observed near the disk center show systematically higher maximum densities than those observed near the limb. This idea could be tested by surveying the UVSP data base for flares and sub flares observed with the O IV - Si IV density diagnostic line pair. A correlation plot of maximum observed density as a function of distance from disk center should reveal the effect if it is present, provided that a sufficiently large set of samples can be found.

Prominence and Filament Studies

The object of this investigation would be to study the formation of and evolution filaments by examining them in as many temperature regions as possible. The question that would be addressed is their mechanism of formation. Some schools of thought contend that prominences are formed by cooling and condensation (recombination) of hot coronal
material, while others postulate a direct formation from cooler material coming from the chromosphere. Observations of the higher temperature regions should allow this question to be resolved in a straightforward way. Much of the effort would be focussed on ground based observations. A systematic survey of the existing data set could be made to search for examples of UVSP observations that are cospatial with filaments that have been observed from the ground. Of particular interest is the period of time from May, 1984 through September, 1984 when the wavelength drive was inoperative. Subsequent work by Bruner and later by Henze showed that the spectrometer was tuned to the C II lines during this period. C II is interesting for the study of filaments and prominences, as it is formed at a temperature of about 30000 deg K ; only slightly higher than the 10000 deg typical of prominences. It will also be interesting to conduct a similar search for signatures of prominences in the C IV lines.
APPENDIX 1
INDEX OF QUARTERLY REPORTS
Prepared Under Contract NAS5-24119

INDEX OF QUARTERLY REPORTS
Prepared Under Contract NAS5-24119
The purpose of this index is to identify the topics discussed in the various quarterly reports prepared during the course of this contract it is intended to assist the interested reader in locating additional information pertinent to topics discussed in the final report it also serves as a convenient short-form history of the work performed under the contract.

Quarter 1

- Completion of first phase of work under contract NAS5-23691
- Installation and modification of S/C simulator software in PDP-11/34
- Hardware interface definition for PDP-11 to SCI interface drawer

1977 Quarter 2

- Integration of S/C simulator interface drawer and PDP-11
- Wavelength drive performance test completed
- JR Cross-assembler written and tested
- Instrument test procedures for use in JR defined

1977 Quarter 3

- JR software architecture defined, including new command mode
- Command generator compiler input specifications defined
- Science meetings at Culham Lab and UCL attended
- Design review of Electronic system at SCl systems
- OSO-8 hardware failures found

1977 Quarter 4

- Mission flight software work (Revision A) completed
- Parameter blocks defined
- Field support of test software
- Phase 2 command generator coding
- Investigator's Working Group (IWG) meeting in Sunnyvale
- JOS Working Group formed
- Data acquisition codes defined
- R. A. Shine detailed to LMSC from GSFC
- PDP-11/34 sysgen (V 3)
- PDP-11/34 Tape drive specifications defined
- EOF computer load analysis

1978 Quarter 1

- Huntsville test support
- Electronics breadboard / SC simulator software development tool defined
- Mission software installed and tested
- Phase 2 command generator completed
- Phase 1 command generator conceptual design complete, and coding started
- Preliminary version of data acquisition code completed by R. A. Shine
o UVSP telescope alignment at GE.
- JR flight software package installed and tested at GE.
- Phase 1 command generator coding
- IWG meeting in Huntsville, Ala.

Quarter 3

- Analysis of "missed interrupt" problem, development of redundant timer operation as work-around
- Completion of Phase 1 Parameter Block Generator code
- IWG meeting at Culham Laboratory
o SSO. 007 Coronal Bright Point program defined
Quarter 4
- Continued JR software checkout at GSFC
- Instrument calibration at GSFC
- Phase 1 command mode section complete and integrated with Phase 1 parameter block generator
- IWG meeting at GSFC
- Development of coronal heating SSO

Quarter 1

- Enhanced baseline JR software package completed and tested on software development tool
- Diagnostic work on JR hardware
- Performance Evaluation of completed instrument
- Definition and execution of modified Hartmann test for setting
- Ebert mirror focus
- Telescope focus and resolution tests
- IWG meeting in Bouider, Colo. (High Altitude Observatory)

Quarter 2

- Reformatter defined and work started
- Flight software modified to add three level priority interrupt
- Baseline revisions to SOL defined
- JWG, IWG meeting in Durham, New Hampshire

1979 Quarter 3

- Reformatter development continued
- New flight software package delivered with two level flare priority interrupt response
- Flare test series package delivered
- Baseline SOL conversion completed and tested
- Command generation Phase 1. Phase 2 package completed
- User's manual for command generation in preparation
- JWG meeting at GSFC
- FBS meeting in Montreal, Ca.

Quarter 4

- Updated flight software package delivered and installed
- Further flight software package enhancements defined, coded, and tested on software test tool
- Reformatter work deferred in favor of work on JR software at the direction of GSFC program scientist
- Command generator package modified to reflect JR software changes
- Final performance evaluation of completed UVSP at GSFC
- JWG meeting at GSFC
- IWG meeting at Huntsville. ALa.

Quarter 4

- In-residence work in EOF by Bruner, Schoolman
- Initiation of N V sound wave study with Poletto at Arcetri Obs.
- Paper on SMM control system presented to AIAA
- Development and installation of Command Generator enhancements
- Preparation and execution of spicule observing program
- Contribution to HXIS study of Hard X-ray imaging of post flare radio burst

1981 Quarter 1

- Analysis of UVSP data supporting NASA sounding rocket 27.036
- Continuation of $N V$ sound wave study
- Flare Buildup Study (FBS) meeting at GSFC
- Bright point study initiated under FBS; one region identified
- Bright point study continues - codes developed to mask images and develop light curves
- Development of blinking color table for identification of image elements
- Continued analysis of rocket support data, velocity computation, normalization for absolute intensities
- NV preflare study begun with E. Antonucci
- Continuation of $N V$ sound flux project - modification of analysis codes to correct problems

Quarter 3

- Rocket support data analysis continued by L.W. Acton
- G Poletto visit to Palo Alto, discussion of theoretical results
- Beginning of Noci, Antiochos loop model project

Quarter 3

- Walker et al. study continues
- Kopp and Poletto visit re: 27 March loop analysis
- Loop lifetimes determined to be 15-30 minutes in C IV
- Antiochos suggests formation is due to cutoff of heating to a pre-existing loop so that C IV loop is result of a cooling process
- Comprehensive review of loop models completed by B. Haisch
- Analysis of 27 March loop observation continues, R. Kopp joins analysis team
- A. Walker and students begin a new loop study
- Fe XXI limb scan survey initiated
- Presentation of N V work at AAS meeting in Boulder, Co
- Bright Point study continues with determination of background levels
- Bright Point project with M. Kundu defined.
- Test of Hyder Vortex model of flares
- Development of 48 level pseudo-grey scale for Ramtek

Quarter 2

ata

Quarter 4

- Problem discovered with velocity computation algorithm in N V program. Results are re-computed
- NV paper in final preparation
- Walker et al. work continues, finding a number of Fe XXI loops
- Paper on "Transport and containment of plasma, particles and energy
within flares" presented in Japan and accepted for publication in workshop proceedings

Quarter 1

- Wavelength drive reference method developed for analysis of 27 March flare loop system. Time development of velocity fields determined
- Shell model of post flare loop system developed and applied to 13 July. 1982 flare
- Paper on 13 July flare presented to AAS Solar Phys. Div. meeting in Pasadena, Ca.
- SMM workshop begins, M. Bruner joins energetics group

Quarter 2

- Sept, 1980 active region study continues
- Initial study of limb flares showing ejecta begins at Culham Lab
- Initiation of radiated power study (RADPWR) with RWP McWhirter
- SMM workshop at GSFC. M. Bruner accepts responsibility to prepare complete presentation of April 8 flare
- UVSP data for Team E (Energetics) analyzed and presented to team members
- Codes to analyze limb flares prepared and checked out on Rutherford "Starlink" computer (IDL procedures)
- SOL version of radiated power code written and checked

Quarter 3

- RADPWR project continued in Palo Alto - effective collision rate concept developed for $\mathrm{O} V$ line at 1371.2 Angstroms, also applied to Fe XXI line
- Effective G(T) values computed for major UVSP lines and used to derive emission measure conversion constants for UVSP observations
- April 8 study continues with collection of available observations and published results

Quarter 4

- NV sound wave study continues - Paper returned by critical referee
- NV flux computation procedures reviewed; small discrepancies corrected, and results re-computed - no substantial change in results
- 23 Sept Active Region Study continues. Current density maps received from MSFC to be compared with UVSP data, rocket filtergraph data

Quarter

- April 8 critical review of all observations completed and presented to Team E at SMM workshop
- Critical discussion of UVSP data from Team E flares completed and submitted to Team E leader. Complete text is included in this quarterly report
- Magnetic field plotting capability developed to display MSFC magnetic field models on Lockheed HP-1000 system
- Critical discussion of April 8 data set completed and submitted to Team E leader. Full text is included in this quarterly report

Quarter 2

- Second observing run of WZERO experiment is analyzed
- WZERO paper presented to AAS meeting in Tucson, Ariz.
- Major wavelength drive anomaly analyzed - test procedures defined and tested. WLD problem shown to be apparently due to lubrication failure between WLD screw and follower nut Recovery procedures defined
- Corrected IDL procedures for computing line of sight velocity of S/C from planning sheets completed and included in this quarterly report
- RADPWR work continues - FORTRAN version of the code is prepared

Quarter 3

- UVSP wavelength drive problem diagnosed and corrected - a discussion of the hardware, its problem, and the analysis of the problem is given in this quarterly report
- Post-recovery data analyzed to show that the UVSP had been observing the C II lines at 1334.5 and 1335.7 Angstroms during the time when the wavelength drive was inoperative
- Radiated power study continues with expansion of the atomic physics data base
- 23 Sept active region study continues, concentrating on comparison of inferred electric current and images in H-Lyman alpha, 1600 A continuum, and C IV. Results do not support a current heating hypothesis

Quarter 4
o No work performed in October due to a gap in funding

- WZERO program to determine absolute wavelength reference for UVSP defined by M. Bruner and run at GSFC
- Bruner and Crannel initiate project resulting from 8 April study.

Quarter 1

- 23 Sept active region study completed. Paper submitted to Ap J for publication. Preprint of paper contained in this quarterly report
- Data analysis methods developed for WZERO data. Wavelength drive system shown to be remarkably accurate
- Bruner / Crannel study continues with identification of Feb 26 event for which both SMM and P78-1 data are available
- IDL utility procedures developed for analysis of WZERO experiment will be widely applicable to UVSP data analysis. Procedures and documentation submitted to NASA in this quarterly report
uarter 3
- Results of RADPWR study presented to 1985 National Solar Observatory conference at the Sacramento Peak Observatory. Methodology and results are given in this quarterly report
- Wavelength drive tests show that the WLD motor is now free to run, but the WLD does not move. Failure determined to be most probably in the flexible coupling between the gear box and the WLD screw. In-orbit recovery from this failure is not possible, and the instrument will beed to be returned to the laboratory for repair.

1985 Quarter 4

- SMM observing program defined to support launch of NASA sounding rocket 27.090. Successful flight develops new data base for active region studies
- Work initiated on contract final report

APPENDIX 2

UVSP COMMAND GENERATION
Updated 21 JAN 80

UVSP COMMAND GENERATION

Updated 21-JAN-80

NOTICE

By popular demand, the formats for specifying the motions of the four harduare mechanisms of UVSP which are controlled within an experiment (X and Y rasters, polarimeter, wavelength drive) have been changed. Instead of indicating the number of STEPS which the mechanism will take, the user now specifies the number of POSITIONS it will occupy. Thus, a 3×5 raster is now created with the numbers 3 and 5 instead of 2 and 4, as was the case with the version of Phase-1 delivered in Dctober, 1979. Note that previously created Experiment Definition Files will not be accepted by the new version of Phase-2.

CHAPTER 1

INTRODUCTION

Command Generation is the process by which the daily observing program is loaded into the UVSP's onboard computer, named JR. Command Generation has been divided into two parts, called Phase-1 and Phase-2. In Phase-1, the user is led through the procedures required to create Experiment Definition files. These are text files which contain all of the instructions which permit the UVSP to carry out scientific observing programs. In Phase-2, a number of Experiment Definition files are compiled into a JR memory load to be uplinked to the spacecraft. This memory load will control the operations of the UVSP instrument during a day's observations.

Each of these daily memory loads is called an "observing list". The control area in JR^{\prime} s memory is divided logically into three areas, called A-list, B-list, and C-list. The basic operations philosophy is that A-list and B-list will be used on alternate days, so that each of them can be re-loaded on the day during which the other is active. C-list will contain experiments which will remain resident for an extended period of time, either because they are used repeatedly or because they are held in reserve for special occasions like super flares. Because of a quirk in the software, a new C-list JR load can only be uplinked on a day when A-list is active.

Although Phase-1 and Phase-2 are both parts of Command Generation, they are obviously very different processes. Phase-1 gives the user the opportunity to use a considerable amount of imagination and flexibility in creating experiments. Phase-e, on the other hand, creates an actual memory load for JR, so it must do extensive error checking and will reject any input which is not perfect. Phase-1 and Phase-2 of Command Generation will typically be done at different times, and perhaps by different people. Any knowledgeable user can use Phase-1 to create Experiment Definition files at any time he/she finds convenient. These files are simply stored on a disk for inclusion in some future JR load. Phase-2, on the other hand, will generally be once per day in the late afternoon, following the daily planning meeting, to prepare the JR load which is to uplinked before the beginning of the next observing day.

Chapter 2 of this manual describes in detail the uses of the two types of text which go into the Experiment Definition files, namely Command Mode text and Experiment Parameter Blocks. Chapter 3 describes how the Phase-1 processor is used to create the Experiment Definition files. Chapter 4 describes how the Phase-2 processor. is used to compile a number of Experiment Definition files into a single JR load.

CHAPTER 2
EXPERIMENT DEFINITION FILES

An Experiment Definition File is the output of Phase-1 Command Generation and the input to Phase-2. The file is a fully readable ASCII file which can be printed on a terminal or printer and can be modified with any of the RSX editors.

Each Experiment Definition File has two sections. The first section contains the Command Mode text, while the second contains the Experiment Parameter Blocks. Command Mode is a simple language with which the flow of scientific operations is controlled. Experiment Parameter Blocks contain the parameters which control the actual data-taking operations of the UVSP. These two types of text are described in detail in the following sections.

There are two basic rules governing any Experiment Definition File which is input into the Phase-2 processor. The first is that all Command Mode text must precede all Experiment Definition Blocks; the sections are separated by a line containing the symbol ". PBLK". The second is that the corresponding Experiment Parameter Blocks must exist within the file for all experiments referenced by the EXECUTE command, even if the experiment has been declared global. Any file created by the Phase-1 processor will of course meet these requirements. However, since the files are ordinary ASCII text files, the user cannot be prevented from generating them with an editor, or altering those created by Phase-1. Such a procedure may at times be quite useful, but these restrictions as well as the syntax rules of the two sections must be kept in mind if this is to be done successfully.

There is no requirement that an Experiment Definition File contain any Command Mode text. While it makes no sense to input a file having only Parameter Blocks into Phase-2, there is a good reason for creating such files with Phase-1. When the dialog through which a Parameter Block is created begins, the user is first asked whether this will be a new experiment. If the answer is NO, he/she is then asked for a file name. The program will search the named file to find a Parameter Block having the same label (symbolic name) as the one about to be created. If such a Block is found, it is simply copied by Phase-i and the need for the dialog is eliminated. Thus, if there are experiments which will be run from many Command Mode sequences, the user may wish
to create an appropriately named file containing that parameter Block and simply reference the file whenever the Block is needed thereafter.
"Command Mode" is a pseudo assembly language which allows the user to control the flow of an orbit's operation, do simple arithmetic, test results, and make real-time decisions on how to use the UVSP instrument based on the results of the previous experiment and the state of the Sun.

The Command Mode instructions may reference a 32 word "user buffer" which contains status information as well as scratch memory. Some of these words are "read-only"; the user can read the contents of the word but cannot modify it. Others are "read-write" and can be altered as desired. Each word in the buffer has a symbolic name by which it is referenced. The buffer is defined as follows:

Read-Write Memory

XRASTR - X-raster coordinate
The X-raster position within the UVSP's field of view to be used as the center for the next experiment. Range 0-255.

YRASTR - Y-raster coordinate
The Y-raster position within the UVSP's field of view to be used as the center for the next experiment. Range 0-255.

ITHRSH - Intensity threshold for Dopplergram servo correc-
tion
The Dopplergram experiment has an option which allows a drift correction to be applied to the wavelength. The points used in calculating the correction must exceed this threshold to prevent statistical noise and roundoff errors at low intensity levels from unduly affecting the result.

FLAG - Flare Flag
When the HXIS flare flag is issued, the SMM spacecraft computer (OBC) sets the top bit (bit 15) of this word to 1, thereby making the word negative. If bit 14 was previously set to 1 , the experiment in progress is terminated; otherwise, it runs to completion. Thus, the user can cho-
ose to respond immediately to the flare flag or to finish his current observation first. If HXIS reports a "super flare", the OBC will set both bits 13 and 15 , and the experiment in progress will automatically terminate.

GLMAXH - Global Lambda-max (high)
The high order 2 bits of the wavelength drive position as determined by the last Global Lambda-max experiment.

GLMAXL - Global Lambda-max (low)
The low order 16 bits of the wavelength drive position as determined by the last Global Lambda-max experiment. The user should not normally write into these two locations. However, they are defined as Read-Write because they are loaded by some internally generated Command Mode code and must therefore be legal destinations for the MOVE instruction.

R1, R2, R3, R4, R5, RG, R7, R8 - User scratch registers The user may use these words as he wishes.

Read-Only Memory

LLMAXH - Local Lambda-max (high)

The high order 2 bits of the wavelength drive position as determined by the last Local Lambda-max experiment.

LLMAXL - Local Lambda-max (low)
The low order 16 bits of the wavelength drive position as determined by the last Local Lambda-max experiment.

FLAREX - X-coordinate of flare
When the flare flag is issued, its X-position as determined by HXIS is loaded into this word. If the user wishes to look at the HXIS location, he simply moves this word to XRASTR.

FLAREY - Y-coordinate of flare
The Y coordinate of the HXIS flare location.

IMIN - The intensity measured at the darkest point during the previous raster.

IMINX - X-coordinate of darkest point measured during the previous raster.

IMINY - Y-coordinate of darkest point measured during the previous raster.

IMAX - The intensity measured at the brightest point during the previous raster.

IMAXX - X-coordinate of brightest point measured during the previous raster.

IMAXY - Y-coordinate of brightest point measured during the previous raster.

BMAX - The wavelength shift measured at the most blue shifted point during the previous raster.

BMAXI - The intensity measured at the most blue shifted point during the previous raster.

BMAXX - X-coordinate of most blue shifted point measured during the previous raster.

BMAXY - Y-coordinate of most blue shifted point measured during the previous raster.

RMAX - The wavelength shift measured at the most red shifted point during the previous raster.

RMAXI - The intensity measured at the most red shifted point during the previous raster.

RMAXX - X-coordinate of most red shifted point measured during the previous raster.

RMAXY - Y-coordinate of most red shifted point measured during the previous raster.

The set of Command Mode instructions contained in a file is called a "Command Mode sequence". A special label, called an "entry point", is used to indicate places where the execution of a sequence can be initiated. Entry point labels are distinguished from other labels by the fact that the first character in an entry. point label must be a dollar sign (क). : Each sequence must contain at least one entry point.

Each line of Command Mode text may contain up to five fields. Except that they must be in the proper order, there are no rules as to where the fields must be located on the line. Tabs and spaces are ignored, except that they serve as terminators for opcodes and operands and may not be imbedded within fields.

The first field, which is optional, is the label. A label consists of one to six alphanumeric characters, the first of which must be a letter, and it is terminated with a colon (:). If the label is preceded by a dollar sign (\$), it becomes an entry point. (The $\$$ is not actually part of the label. Thus, SENTRY: is an entry point label, but references to it are written as ENTRY, not कENTRY. For example, use GOTD ENTRY to branch to its line., If an entry point label is terminated with two colons (e.g... कENTRY: :), it becomes globally defined and can be referenced from other Command Mode sequences. That is, when several Experiment Definition files are combined during Phase-e to create a single JR loadi a START command in one file can cause a transfer to a globally defined entry point in a different file.

Examples:

\$EINAR:	An entry point label
OGRANT: :	A global entry point label
ELMO:	An ordinary label, usable for GOTO ELMO
BRUCE: :	Illegal. Only entry points can be global.
JACQUES:	Legal, but the 7 th letter will be ignored.

The second field (which may be the first on the line) is the opcode field. The opcodes represent the set of legal instructions which the Command Mode language is capable of executing. Only the first three characters of the opcode are checked for validity, but the user may type the whole word if he desires. Thus, the "start" command may be shown as START or STA, etc. The opcode field is terminated with a space or tab (or semicolon or RETURN, if no operand is required). The legal opcodes are described in the next section.

The third and fourth fields contain the operands, the parameters which the opcode requires in order to function. If two op-
codes are required, they must be separated by a comma. Operands may be either symbols (statement labels, parameter block names, or user buffer locations) or numbers. A number may optionally be preceded by a number sign (\#). A number will be interpreted as decimal unless it is preceded by a double quote. mark ("), in which case it is treated as octal. : (The \# must precede the "if both are present.) A trailing decimal point is NOT permitted. The last operand can be terminated with a space, tab, semicolon, or RETURN. The last possible field is the comment field. The comment field is initiated with a semicolon (;). Anything after a semicolon is assumed to be a comment and is ignored. The semicolon is only required when the comment is the only text on the line. If the comment follows Command Mode text, processing of the line ends when the fields required by the opoode have been verified, so the use of the semicolon becomes optional.

To prevent accidental transfer to an undefined location, the last statement in any command mode sequence should be a START, GOTO, or STOP, or the last required field should be terminated with an exclamation point (!) which forces a stop. If this is not done, the PHASE2 compiler will insert a stop bit in the last instruction.

Opcodes

STOP (STO)
Operands: None
Terminates execution of the command mode sequence.

START (STA)

Operand: Entry point name
Causes a jump to an entry point. The entry point name does NOT include the dollar sign ($\$$). If the entry point is not found within this Command Mode sequence, it must be globally defined in another sequence included in the PHASE2 command generation. Note that, if the entry point IS found in this sequence, there is no effective difference between the START and the GOTO commands.

There is a special form for starting C-list sequences from either A-list or B-list. Instead of using an entry point name as the operand for START, use a backslash ($\$) followed immediately by a number between 1 and 16 . This will transfer control to the n-th C-list entry point. Note that there is no way within Command Mode to return to the
original list once the transfer to $C-1$ ist has oceurred. It requires a command from the $O B C$ to accomplish that.

GOTO (GOT)

Operand: Any label found in this file, including entry points.

GOTO is the "branch" instruction and works in the same way - as the Fortran GOTO.

EXECUTE (EXE)

Operand: Experiment parameter block name
This command causes the UVSP instrument to actually take data in the manner specified in the experiment parameter block referenced by the command. When the experiment is completed, processing of Command Mode statements resumes on the following line.

MOVE (MOV)
First operand: Any user buffer location or a number. Second operand: Any read-write location in the user buffer.

The MOVE command copies requested data from one place to another. It can only write into a word for which the user has write access.

ADD
First operand: Any user buffer location or a number. Second operand: Any read-write location in the user buffer.

The ADD command performs 16 -bit signed integer addition, adding the first operand to the second and storing the sum in the second operand location.

SUBTRACT. (SUB)

First operand: Any user buffer location or a number. Second operand: Any read-write location in the user buffer.

The SUBTRACT command performs 16-bit signed integer subtraction, subtracting the first operand from the second and storing the difference in the second operand location.

COMPARE (COM or CMP)

Operands: Any user buffer locations or a user buffer location and a number.

The COMPARE command compares the two operands, treating them as 16 -bit signed integers. If it finds that the first operand is greater than or equal to the second operand, the next Command Mode line is skipped; otherwise, it is executed. Note that the order of the operands is important. COMPARE A, B should be thought of as

IF(A. GE. B) SKIP
CDMPARE is the only opcode which can aceept a number as its second operand.

AND
First operand: Any user buffer location or a number. Second operand: Any read-iwrite location in the user buffer.

The AND command performs a 16 -bit Boolean "and" of the two operands and leaves the result in the second operand location.

SLIT (SLI)
Operand: A number between 1 and 22 or letter between "A" and "V"

The SLIT command causes the UVSP spectrograph slit to change. There is a dual designation system in which each slit can be identified either by a letter or a number; the SLIT command will accept either type of identifier.

MESSAGE (MES or MSG)
Operand: An unsigned number not exceeding 4095.
The MESSAGE command inserts the designated number into the telemetry stream, encoded in such a way that the receiving software on the ground will recognize it as a message rather than UUSP data. A list of standard messages will be developed at some future date.

TIME (TIM)
Operand: Any read-write location in the user buffer (but should be one of the scratch registers Ri through R8).

JR keeps a count of the number of spacecraft telemetry minor frames which have occurred since sunrise. Since a minor frame takes. 064 seconds, this counter can be used as an elapsed time clock. The TIME command copies the minor frame counter into the designated user word.

EXPERIMENT PARAMETER BLOCKS

The Experiment Parameter Blocks are placed at the end of the input file. All of the command mode statements must preceed the parameter blocks. The parameter block section is introduced with the line:
. PBLK
This is the only occurrance of this symbol within the file. The first line of each parameter block must begin with the symbolic name of the experiment. It must contain 1 to 6 alphanumeric characters, beginning with a letter, and it must be terminated with one or two colons, depending on whether it is to be a local or globally-defined name. The parameter block consists of a subset of the following lines:

```
EXPER TYPE =
SLIT =
LOOP CONTROL =
INTVL-1 =
INTVL-2 =
WAV POSITION =
WAV OFFSET =
# OF WAULENS =
WAV STEP SIZ =
POL POSN NUM =
POL STEP SIZ =
X POSN NUM =
X STEP SIZ =
Y POSN NUM =
Y STEP SIZ =
OBSERVATIONS =
DISABLE INCR
SERVO INTRVL =
CALIB INTRVL =
CALIB AFTER
CALIB STPSIZ =
GATE TIME =
```

Some of the lines are manditory. Others are optional depending on the type of experiment being defined. However, the lines which do appear must occur in the indicated order.

EXPER TYPE $=$.
EXPER TYPE = must be followed by a number between 1 and 21, corresponding to one of the 21 defined types of experiments. They are:

1. SPECTROHELIOGRAM
2. DOPPLERGRAM
3. POLARGRAM
4. MAGNETOGRAM
5. I-MAX
6. I I-MIN
7. FLASHWATCH
8. RED-MAX
9. BLUE-MAX
10. SPECTROGRAM
11. LAMBDA-MAX (GLOBAL)
12. LAMBDA-MAX (LOCAL)
13. LAMBDA-MIN (GLOBAL) (Not implemented)
14. LAMBDA-MIN (LOCAL) (Not implemented)
15. SPECIAL
16. PROFILE MATRIX
17. MULTI-LINE PROFILE MATRIX
18. .. RASTERS THRU THE LINE
19. POLARIZED PROFILE MATRIX
20. POLARIZED MULTI-LINE PROFILE MATRIX
21.. POLARIZED RASTERS THRU THE LINE

SLIT =
The slit is designated by a letter between A and V. This line is advisory only, since the experiment control block in JR contains no reference to the slit. However, since the wavelength drive setting for any given wavelength is determined by the slit in use, the Phase-2 processor requires the information. Note that the experiment may not work properly if the wrong slit is in the beam when the experiment is run.

LOOP CONTROL =
JR operates the UVSP through a set of nested DO loops. The order of the nesting and the number of repetitions per loop determine the function of an experiment. The user has control of 4 loops: the X and Y rasters, the wavelength drive, and the polarimeter. The control order is always specified from inner loop to outer loop. Thus, for example, the loop control XYPW would cause a line to be scanned in the X-direction, then the Y raster would be stepped and another X line would be scanned, etc., until the entire raster has been built uf. Then the polarimeter wheel would be rotated
and another full raster made. Finally, when an entire set of polarized spectroheliograms had been taken, the wavelength drive would be stepped and the whole process repeated. Of course, the repeat count on some of the loops could be set to 1 , effectively removing the operation from the experiment.

Once the experiment type has been chosen, only certain of the operations are relevant. For example, a spectroheliogram requires an X and Y raster only, with neither the wavelength drive nor the polarimeter participating (except for the initial wavelength setting). Only the relevant loop identifiers (X, Y, W, and P) can appear on the line, and all of the relevant ones MUST appear.

INTVL-1 =
The UVSP instrument contains 5 detectors (numbered 1 through 5) and two pulse counters. . Because there are only two counters, only two of the detectors can be taking data at any one time. Since it will often be desirable to use four detectors in an experiment $\langle 4$ lines, or the two wings of 2 lines), each position within an experiment can be divided into two data gathering intervals, with.different detectars connected to the counters during each interval. For each interval, one or two detectors may be specified <or, for In-terval-2, none). There are two rules governing how detectors can be combined. The first is that, if. detector-5 is specified, it must be used alone during that interval. The other is that, if two detectors are specified for an interval, they must be an even- and an odd-numbered detector. Thus, 1 and 2 can be combined, or 1 and 4 , but not 1 and 3.

INTVL-2 =
Same as for INTVL-1, except that the Interval-2 detectors may be set to OFF; which means that Interval-2 is not used. When Interval-a is OFF, all data taking time is used by In-terval-2; when both intervals are used, each has a 50 percent duty cycle.

WAV POSITION =

This line indicates an absolute wavelength setting, in Angstroms, at which the experiment is to be started.

WAV OFFSET =
If this line appears, the wavelength drive will be moved to the specified distance (in Angstroms) from the position identified by a previously run Lambda-Max experiment. The offset is followed by the field (LCL) if it is to be interpreted as a local offset (that is, the offset is to calculated from the position stored in the Local Lambda-Max position contained in the words LLMAXH and LLMAXL in the user buffer) or by (GBL) if it is to be interpreted as a global offset (i.e., using GLMAXH and GLMAXL). Note that the WAV POSITION and WAV DFFSET lines are mutually exclusive; one but not both must appear.
\# OF WAVLENS =
If the wavelength drive is to move during this experiment, i.e. it is to be a spectral scan of some type, this line contains the number of different wavelengths to be sampled. If the wavelength drive does not move during the experiment, this and the following line do not appear.

WAV STEP SIZ =
This line contains the number of wavelength drive increments which the grating is to be moved for each spectral step. If the grating is being used in 2nd order, which will be the case for most of the slits, one drive increment corresponds to about 50 mA .

POL POSN NUM $=$
If the polarimeter is to move, this is the number of positions at which polarimetry measurements will be taken. If the polarimeter does not move, this and the following line do not appear.

POL STEP SIZ =
The polarimeter wheel moves in steps of 22.5 degrees (1/16 rotation). This line shows the number of these 22.5 degree steps the waveplate is to be moved between each measurement. Since the retardation of the waveplate is highly wavelength dependent, one cannot automatically associate a given rotation with a corresponding retardation without knowing the wavelength.

This is the number of points which the X-raster mechanism will take along each X-line. If the X-raster mechanism does not move, this and the next line do not appear.

X STEP SIZ $=$
This is the size of each raster step in the X-direction. The UVSP rastering mechanism has been designed so that each step is equivalent to one arcsec on the Sun.
Y POSN NUM $=$
This is the number of points which the Y-raster mechanism will take along each Y-line. If the Y-raster mechanism does not move, this and the next line do not appear.

Y STEP SIZ =
This is the size of each raster step in the Y-direction. The UVSP rastering mechanism has been designed so that each step is equivalent to one arcsec on the Sun.

OBSERVATIONS =

This is the number of times the complete operation is repeated in order to constitute the experiment. For example, a
 times.

DISABLE INCR

This line commands $J R$ not to increment the experiment sequence number on the second and subsequent times the EXECUTE of this experiment is preformed from Command Mode (the sequence number is always incremented on the first EXECUTE). This will allow multiple executions of the experiment to be formatted into a single data file for ground analysis. The DISABLE will remain in effect until one of several conditions, usually the START command or its OBC equivalent, is encountered.

SERVO INTRUL
After N repetitions of a velocity-type experiment, the grating drive can automatically be moved to center the slits on the mean line position found during those measurements. This line shows the number of complete repetitions of the experiment which must occur before this "servo" balancing is done. The number must be such that $N=(2 * * I-1)$, where I is an integer. If this line does not appear, servo balancing will not be done.

CALIB INTRVL =
Calibration involves offsetting the grating drive by some amount and repeating the measurement cycle. This would generally involve either moving to the nearby continuum to provide a null signal or shifting a spectral by some amount to provide a known signal level.. This line shows the number of complete repetitions of the experiment which must be completed before making a calibration run. The number must be of the form $N=(2 * *$ - 1). If no calibration is to be done, either because this is not a velocity-type experiment or because it was not requested, this and the next two lines will not appear.

CALIB AFTER

Calibration is performed after the completion of a specified loop in the loop control. The loop letter can either be one of those shown on the LOOP CONTROL line above, or it can be an S for Servo loop, which is always the outermost loop.

CALIB STPSIZ $=$
This is the number of wavelength drive steps by which the grating is to be offset to make the calibration number. Steps correspond to 50mA for wavelengths between 1000A and 1850A, and to 100 mA for longer wavelengths.

GATE TIME =
This is the integration time per measurement, in seconds.

\#ENTRY:	EXE LMAX
	MOV LLMAXH, GLMAXH
	MOU LLMAXL, GLMAXL
	EXE MOUIE
	STOP

```
    . PBLK
LMAX: EXPER TYPE = 11 ....LAMBDA-MAX (GLOBAL)
    SLIT = M
    LOOP CONTROL = W
    INTVL-1 = 1
    INTVL-2 OFF
    WAV POSITION = 1234.567
    # OF WAVLENS = 128
    WAU STEP SIZ = 3
    OBSERVATIONS = 1
    gate TIME = 1
```

MOVIE: : EXPER TYPE $=1$ SPECTROHELIOGRAM
SLIT. = M
LOOP CONTROL $=X Y$
INTVL-1 $=1-2$
INTVL-2 $=3-4$
WAV OFFSET $=-2.004$ (LCL)
X POSN NUM $=16$
X STEP SIZ $=3$
Y POSN NUM $=16$
Y STEP SIZ $=3$
OBSERVATIONS = 30
GATE TIME $=0.064$

FILE DEMO2. DEF
\$START: : EXE FLASH COM IMAX. 8000
GOTO START
MOV IMAXX, XRASTR
MOV IMAXY, YRASTR
COM 20000, IMAX
START \4
EXE MTRX!
THIS IS A GLOBAL ENTRY POINT
. PBLK
FLASH: EXPER TYPE $=7$
SLIT = B
LOOP CONTROL $=X Y$
INTVL-1 $=1$
INTVL-2 OFF
WAU OFFSET $=0$. (LCL)
\times POSN NUM $=8$
X STEP SIZ $=3$
Y POSN NUM $=8$
Y STEP SIZ $=3$
OBSERVATIONS = 1
DISABLE INCR
GATE TIME $=0.128$
MTRX: EXPER TYPE $=16$
SLIT = B
LOOP CONTROL = WXY
INTVL-1 = 1-2
INTVL-2 $=3-4$
WAV OFFSET = 0. (LCL)
\# OF WAVLENS $=11$
WAV STEP SIZ $=3$
X POSN NUM $=8$
X STEP SIZ $=3$
Y POSN NUM $=8$
Y STEP SIZ $=3$
OBSERVATIONS $=1$
GATE TIME $=1$

CHAPTER 3

PHASE-1

PHASE1. TSK is an RSX-iIM task which is initiated with the usual RUN PHASEI command to MCR (or simply PHi if the task has been installed). After Phase-1 identifies itself, it asks what type of terminal it is being run from. There are three legal answers: answer T if the terminal is a Tektronix 4000-series terminal; answer L if the terminal is a Lear-Siegler ADM-3A; answer Dif the terminal is a Decuriter or other printing terminal. (A simple RETURN will default to a T.). The answer allows the program to provide the proper control characters to erase the video terminals and to provide a suitable number of lines per page on the terminal screen. After the terminal question has been answered, the program will prompt with PH1> and wait for a Phase-1 command. The commands are described in the next section.

Phase-1 is program designed to facilitate the creation of Experiment Definition Files. It contains two basic sections, corresponding to the two types of text contained in the Experiment Definition Files: Command Mode text and Experiment Parameter Blocks. The former is handled by a very basic editor capable of inserting, deleting, and listing lines. It also does some simple syntax checking. Homever, it is by no means idiot-proof. The user can easily create Command Mode text which will be rejected by the Phase-2 processor, which demands perfection. The text will generally be syntactically legal as long as the lines are entered sequentially. However, if lines are deleted or are inserted in the middle of existing text, Phase-1 bears no responsibility for the results, and the user must depend on his/her oun proper understanding of the rules for Command Mode instructions. On the other hand, the dialog which creates Experiment Parameter Blocks IS idiot-proof (we hope) and will always produce a legal block.

Some of the experiment types are not completely defined by their Parameter Blocks, but rather require accompanying Command Mode instructions to implement their action. For example, a FLASH WATCH experiment is actually an I-MAX (Intensity Maximum) experiment. The I-Max value is compared to the threshold with Command Mode instructions to determine whether a "flash" has occurred and requires special action. Phase-1 will automatically insert these needed lines of Command Mode text, but to do so it must know the experiment type. Therefore, whenever the user in-
serts a line containing the EXECUTE instruction followed by a Parameter Block name which has not been previously defined, Phase-1 will immediately jump into the Parameter Block dialog. This tends to be annoying, so the user is advised to create all of the Parameter Blocks needed for the file before beginning to insert Command Mode text. . This is, however, only a suggestion and not a requirement.

The Experiment Definition Files created as output from Phase-1 can be used directly as input to Phase-2. In particular, Phase-1 automatically provides the . PBLK statement which must separate Command Mode text from Parameter Blocks. The file name is also added as a comment line at the beginning of the text, so that listings can be placed in a documentation file (notebook) without additional identification.

Any Experiment Definition File created by Phase-1 can contain up to 60 lines of Command Mode text and up to 32 Parameter Blocks. Each text line can hold up to 72 characters. (Only 64 columns are printed with the list commands, but all characters are written into the output file. Note that a $T A B$ is a single character but may account for up to 8 columns.) Blank lines are permitted to improve readability, but they count as part of the 60 line limit.

There are no defaults for the names of output files from Phase-1. However, Phase-2 accepts. DEF as the default file type for inputs to it, so the user may find it convenient to use that type unless other naming conventions are developed.

When the Phase-1 processor prompts with PHI>, the user must enter a command. Each command consists of a single letter which may or may not be followed by a number. All commands are terminated with a RETURN. Only one command can be entered in response to a prompt. There are nine defined commands. They are:

```
A - Abort and restart.
D - Delete.
E - Write output file, then exit.
I - Insert.
L - List.
P - Create Parameter Block.
R - Review Parameter Block.
T - List top of buffer.
W - Write output file.
Z - Exit.
```

A - Abort and restart.
The A command cancels all of the input received to that point, both Command Mode text and Parameter Block definitions, and allows the user to begin again.

Dn - Delete line-n.
The Delete command requires that a line number be included as part of the command. The command deletes the specified line from the Command Mode buffer. All following lines are immediately re-numbered to reflect their new position in the text. Note that, if you wish to delete a number of successive lines, you must either do it from the bottom up or you must specify the SAME line number for each Delete command, since the following lines get re-numbered each time. For example, to delete lines 4, 5, and 6, use either

E - Write output file, then Exit

The E command provides a convenient means of terminating a Phase-1 command generation session. Phase-1 will first ask for the output filename (see the "W" command below for details), then exit after creating the file.

I or In - Insert
The I command allows the user to insert lines of Command Mode text. If the command is used by itself, the text is placed at the end of buffer, following all previously entered lines. If a number is associated with the command, the text will be inserted ahead of the line which currently bears that line number. All lines are terminated with the RETURN key. Command Mode input will continue until the user types the ALTMODE or ESCAPE.key. (The exception occurs when a text line includes the EXECUTE opcode for an experiment which has not been previously defined. The program will automatically terminate insert mode and transfer the user to the parameter Block definition dialogue.)

When Phase-1 is in insert mode, it will automatically place the start of each line 8 spaces from the terminal's left hand margin. This is done to allow room for the line numbers provided by the listing commands (L and T) and then to align new input with the listed text. This spacing is NOT part of the inserted line, and the user will normally want to start the line with a TAB unless it contains a label.
L. Ln, and T - List

The listing commands cause up to 30 lines of Command Mode text (20 lines on a Lear-Siegler terminal) to be displayed. The L command lists the last 30 lines. The T (top) command lists the first 30 lines. The Ln command (where n is a number) lists 30 lines beginning at line-n. If the total Command Made text does not exceed 30 lines, the L and T com-
mands produce identical results.

P - Create Parameter Block
he command initiates the dialogue required to define an experiment parameter block.

R - Review Parameter Block.
After entering the R command, you will be asked for a Parameter Block name. If the name you specify is that of a Block which has been defined, Phase-1 will list the block on the terminal.
W - Write output file
Once an experiment has been completely defined, it must be written into a disk file. Phase-1 asks for a filename, which the user must fully enter; there are no defaults for either name or type. Once the file is written out, the phase-i buffers are cleared, allowing a new experiment to be defined.
z - Exit
The Z command causes the Phase-1 processor to exit. No output is created at that time, although files previously written out are of course preserved.

PAGE 3-6

PARAMETER BLOCK DIALOG

The Experiment Parameter Block section of Phase-1 is constructed as an interactive dialog which leads the user through the steps required to create a Parameter Block. The harduare controls which are needed in any given Parameter Block depend on the experiment being defined. For example, if you have specified a spectroheliogram as your experiment type, you will NOT be asked for a wavelength step size, since a spectroheliogram is by definition a single-frequency experiment. All inputs to the program are terminated with a RETURN.

For every question you are asked, there will be a default answer. The default will usually be shown between square brackets, i.e. []. You can accept the default by simply typing a RETURN. (Note that you can't use a RETURN to enter a zero unless the default happens to be 0 ; you must type an explicit 0. ' The program contains an internal set of defaults for each experiment type. Whenever you specify a new type, the program resets the defaults accordingly. However, if you are creating an experiment of the same type as the previous one, your values from last time in general become the current defaults.
facility has been built into the dialog to allow the user to back up any time he decides he has made a mistake. To back up, type CTRL-P when the next question is asked. The program will echo ap on the terminal and then repeat the previous ques tion. Note that your previous answer has become the new default. You may back up as many steps as you like.

This section describes the prompts and responses needed to create an Experiment Parameter Block. When the dialogue is completed, the entire Parameter Block is printed on the terminal، and the user is asked whether it is OK. If the response is positive, the Block is stored for inclusion in the next output file created. If the user responds with an N, the Block is not saved. However, the user could rapidly step through the dialog to create a slightly different Block because his answers have become the defaults unless a different experiment type is specified. It is also still possible to back up from the OK question using CTRL-P.

PARAMETER BLOCK SYMBOLIC NAME

This question is only asked if you have arrived here by using the Phase-1 "P" command. If you entered the dialog by inserting an EXECUTE line, the Parameter Block name was specified as the operand, so this question is skipped. The default is EXPn, where n is a number which increments automatically if you accept the default. If you specify a name of your own, it must consist of one to six alphanumeric char-
acters (letters and numbers) beginning with a letter.

NEW EXPERIMENT?

A new experiment is one which has to be defined by means of the dialog. However, you may wish to pick up an experiment which was previously defined in a different Experiment Definition File. If your answer is YES, the dialog continues. If your answer is NO you will be asked for a file name. Phase-i scans the file for a Parameter Block having the correct name. If it finds the block, it copies it in and skips the dialog entirely. The user is shown the contents of the Elock by Phase-1.

DECLARE BLOCK NAME GLOBAL?

If identical Parameter Blocks with the same global symbolic names exist in two or more files input to pHASE2 during the creation of a. JR load, the Phase-2 processor will only create one copy of the corresponding Experiment Parameter Block in the $J R$ load, thereby saving JR memory. Global symbols will - appear in the Parameter Block followed by two colons, while local symbols are followed by a single colon. (Note: you do NOT specify the colon(s) as part of the symbol. The prograin adds them automatically.)

EXPERIMENT TYPE

The program next prints a numbered list of the possible experiment types with an arrow pointing to the default, and asks for your type selection. It then erases the screen and proceeds with the questions which determine the physical control of the instrument.

SLIT

The answer must be a letter between A and V or a number between 1 and 2 . There are two naming systems in use for designating slits, one using letters and the other using numbers. Phase-i will accept either system. The slit you select determines some of the defaults for other parameters. In particular, the slit width becomes the default value for x step size and for wavelength step size, while the slit length becomes the Y step size. The slit must also be known so that the requested wavelength can be converted to wavelength drive position, which is highly slit dependent. Note, however, that this will NOT cause the selected slit to be moved into
the optical path in the UVSP when the experiment is run. The slit mechanism can only be changed with the Command Mode SLIT command or by a command from the OBC. If the wrong silit is in place, the experiment may not produce usable data.

LOOP CONTROL

The experiment control program in JR operates as a set of nested DO loops whose order can be specified. There are five loops to be considered: X-raster, Y-raster, polarimeter step, wavelength step, and Doppler servo. Servo is always the outer loop, but the other four can be put in any order. The first function specified will be the inner loop, the next will be the 2nd loop, etc. All of the loops are not relevant to all types of experiments, and you are only allowed to specify the required ones.

INTVL-1 DETECTOR(S)

The UVSP instrument contains 5 detectors (numbered 1 through 5), and two pulse counters. Because there are only two pulse counters, only two of the detectors can be taking data at any one time. Since it will often be desirable to use four detectors in an experiment (4 lines, or the two wings of 2 lines), each position within an experiment can be divided into two data gathering intervals, with different detectors connected to the counters during each interval. For each interval, one or two detectors may be specified cor, for Inter-val-2, none). There are two rules governing how detectors can be combined. The first is that, if detector-5 is specified, it must be used alone during that interval. The other is that, if two detectors are specified for an interval, they must be an even- and an odd-numbered detector. Thus, 1 and 2 can be combined, or 1 and 4, but not 1 and 3. To specify two detectors, the user can either type the two numbers consecutively or can separate them with a dash (-). That is, detectors 1 and 4 can be entered either as 14 or as i-4.

INTVL-2 DETECTOR(S)

Same as for INTVL-1, except that the Interval-2 detectors may be set to OFF, which means that no data is taken during In-terval-2. Enter either o or OFF to specify the OFF condition.

WAVELENGTH

The user must respond to this query with a floating point number which gives the wavelength in Angstroms. The number will be interpreted in one of two ways. depending on its value. If the number is at least 1000.. it will be interprated as an absolute wavelength. However, if it lies between -1000 . and 1000 . (exclusive), it will be used as a wavelength offset. In either case, only three places to the right of the decimal point are significant, and trailing zeros may be omitted. The decimal point is optional if a whole number is being entered.

LOCAL OR GLOBAL OFFSET?

If an absolute wavelength was specified in the preceding question, this one will not be asked. If an offset was seelected, you must specify whether the offset is to be calculated with respect to the wavelength found by the most recent Local or Global Lambda-Max experiment.

NUMBER OF WAVELENGTHS

This is the number of different equally spaced wavelengths at which data will be taken. The acceptable range of answers is 1-32767. This and the next question are only asked for experiment types which require motion of the grating, not inclouding the initial wavelength setting.

WAVELENGTH STEP SIZE

Your response to this question must be the number of mechanical steps of the grating drive mechanism which you desire. If the grating is being used in End order, each step caresponds to 50 mA. The range of acceptable responses is $1-31$.

NUMBER OF POLARIMETER POSITIONS

The acceptable range is $1-32$. This will be the number of measurements you wish to take in different polarization states at a given point.

Each polarimeter step is a 22.5 degree rotation, or $1 / 16$ of a full circle. The acceptable range of responses is i-8.

X-POSITION NUMBER

This is the number of points in a line along the x-direction. Answers in the range $1-256$ are acceptable. The initial default will be the maximum range (255) divided by the width of the selected slit.

X-STEP SIZE
This question controls the size of the raster step in the X-direction. The default value is the width of the selected slit, unless a velocity type experiment (Dopplergram). is being done. In that case, the default X-step is 1 arcsec, so that measurements can be averaged to supress spurious velocity signals due to intensity inhomogeneities across the slit (the Beckers effect). The legal range is 1-255. However, the product of the number of steps and the step size cannot exceed 255.

Y-PDSITION NUMBER

This is the number of points in a line along the Y-direction. The acceptable range is $1-256$. The default is set such that a Y -step size equal to the slit length will produce a square raster.

Y-STEP SIZE
The default value is the length which will produce a square raster. Answers in the range 1-255 are legal, but step size times step number cannot exceed 255.

NUMBER OF OBSERVATIONS

This is the total number of repetitions of the experiment, including the first, but excluding servo and calibration cycles. The answer must be in the range $1-16383$. Certain types of experiments, those which are looking for a minimum or maximum value within the scan, are by their nature restricted to a single execution. For these experiment types.
this question is skipped.

DISABLE SEQUENCE INCREMENT?

In normal operation, the "sequence" number which is internally generated by $J R$ is incremented at the beginning of each experiment. When the data stream is processed on the ground. the reformatter program will use this number to determine when a new data file should be started. If the sequence number does not change, more than one experiment will be placed in a single file. Some types of experiments (flash-watch, multi-line profile matrix) are intrinsically designed to have multiple observations in a single file, so the sequence increment will be automatically disabled. Other types (Lambda-max, I-max, etc.) are by their nature single measurements, so the number always increments. For the remaining types, the user is offered the option of disabling the automatic incrementation. Note that this feature only affects the re-using of an experiment after first returning - to Command Mode; multiple observations as specified in the answer to the OBSERVATIDNS question are always placed in a single data file.

SERVO INTERVAL

After N repetitions of a velocity-type experiment, the grating drive can be automatically moved to center the slits on the mean line position found during those measurements. The desired number of complete experiment repetitions (including the first) which must occur before this balancing is done is called the "servo interval". Legal responses range from 0 (to suppress the operation) to the number of observations previously specified, but must satisfy the equation $N=\{2 * *$ 1).

CALIBRATION INTERVAL

Calibration involves offsetting the grating drive by some distance and repeating the previous measurement cycle. It generally involves moving the spectrograph to a nearby continuum position to provide a null signal or shifting the spectral line by a set amount to inject a known signal level. The legal range is the same as for the servo interval.

CALIBRATE AFTER

Calibration is performed after the completion of a specified loop in the loop control. The legal responses. (given with a single letter) are the loops used in this type experiment or "S", which refers to the servo loop and is always the outermost loop.

CALIBRATION STEP SIZE

Respond with the number of grating steps by which the spectrometer must be offset to do the calibration measurement. The grating will automatically be returned to its previous position after completion of the calibration cycle.
gATE TIME
The gate time is specified in seconds, and is a floating point number (although the decimal point is optional for a whole number). Any value greater than zero is legal, although anything less than. O64 sec will merely waste photons, since that is the telemetry period between data values.

CHAPTER 4

PHASE-2

OPERATION

The Phase-2 Command Generation processor is the program which compiles the desired Experiment Definition Files into a JR load. Phase-2 will normally be run once per day by the daily planner or his/her appointee. Before Phase-2 can be rung the entire load must have been planned. Because Phase-2 is generating an actual memory load for JR, it is extremely intolerant of er rors. If you specify an Experiment Definition File which it can't find, it will notify you and let you try again. ALL OTHER ERRORS ARE CONSIDERED FATAL, and Phase-2 exits after issuing an error message.

From the user's point of view, the operation of Phase-2 is extremely simple. The program is initiated with RUN PHASE? (or simply PH2 if the task has been installed). Phase-2 first informs the user of the load which is to be replaced by the one about to be created. For example:
$-->$ SUPERCEDING A-LIST LOAD CREATED AT 11:29AM ON 18-OCT-79
The operator should verify that this was indeed the previous load uplinked to JR. If it was not, Phase-2 will have incorrect knowledge of what part of JR memory is available to it, and unpredictable results may occur. (If this message does not match reality, the operator should exit from Phase-2 and, using PIP, find the version of the file JRMAP which was created at the time and date of the previous load creation, then copy that file using the /NV switch to make it the latest version of JRMAP.)

Phase-2 then types LIST ($A, B, \quad O R C$): and the operator responds with the observing list to be created. (RETURN with no letter causes a clean exit.) If the answer is C, the program types
*** WARNING - CURRENT B-LIST WILL BE DESTROYED *** DO YOU WANT TO PROCEED? [Y/N]

Any answer other than Y will cause an exit. Due to the way in which Phase-e manages JR's memory, a C-list load can only be
uplinked on a day on which $B-1 i s t$ is not active (i.e., an A-day). The B-list load which will normally be sent up on the same day must be created after the C-list load.

Finally, Phase-2 will ask for a FILENAME, and the operator responds with the name of an Experiment Definition File. Phase-2 accepts. DEF as its default file type, but there is no filename default. After Phase-2 has processed that file, it will prompt for another one, and will continue the process until the operator responds to a FILENAME prompt with a simple RETURN. Phase-2 then completes the creation of the JR load and exits.

OUTPUT FILES

The Phase-2 processor creates a number of files. In the discussions which follow, we will assume that an A-list load has been created. If it had been a B-list or $C-1$ ist load, those filenames which are shown beginning with an "A" would begin with a "B" or "C" instead.

ALOAD. JRO

This is the actual binary load file. It or a derivative of it must be passed to the SMM Command Management System for uplink to the spacecraft. The file is in a format compatible with the JR Test Interpreter designed by Roger Rehse.

ALIST
This is the listing file which will be used during the observing day to monitor the action of the UVSP and should be retained as part of the archival record of mission operations.

The listing contains two columns. The left hand side shows all of the Command Mode text contained in the load, along with the absolute address and octal contents of each word. Entry points are flagged with their appropriate letter and number, followed by a right angle bracket (e.g., A4>). References to entry points via START instructions have the corresponding entry point flag shown between angle brackets (e.g., START FLARE <A12〉). Parameter Blocks are similarly referenced, except that A-list Parameter Blocks are flagged with an X, B-list Blocks with a Y , and C-list Blocks with a Z, and they are enclosed in square brackets (e.g., EXECUTE BLOCK [×3]).

The right hand column shows the symbolic and flag names of each Parameter Block, along the address and contents of each word in JR memory. The meanings of the sub-fields (bit patterns) within each word are verbally described beside the word. This display is better suited to showing what JR will do with the UVSP mechanisms than what the scientific intent of the experiment is, and it should therefore be a useful tool for trouble-shooting if necessary.

This is the "Vector Association" file. It is a readable text file which lists, for each entry point, the symbolic label of that entry point and the name of the Experiment Definition File in which the entry point is defined.

JRMAP
JRMAP is a file which maintains a record of the 923 words of JR memory to which Phase-2 has access. The file contains three records. The first contains the list, date, and time of the load creation. The second record contains two 923-byte arrays. Each byte in the first array contains one of the characters A, B, C, X, Y, or Z, or a zero. A, B, and C refer to A-list, B-list, and C-list Command Mode words respectively, while X, Y, and Z refer to $A-1 i s t, B-1 i s t$, and C-list Parameter Blocks. A byte containing a zero is not assigned to any of the observing lists. For each byte which contains a letter, the corresponding byte in the other array contains the number of the entry point or Parameter block within that list. Thus, if the bytes corresponding to a given JR word contain "B" and 4, the word is part of the Command Mode code following entry point B4, while Zil would belong to the leth Parameter Block in C-list. (The first 49 bytes in each array, which correspond to the observing list vectors, are not filled in.) The third record is a 923 word array containing the JR memory image, that is, the actual contents of JR's memory after this load has been uplinked.

The records can be read and the heading typed with the following Fortran code:

DIMENSION JRIMAG(923), JRMAP (923)
BYTE MAP (2, 923), LIST, AMPM, TIM(8), DAT (9)
EQUIVALENCE (MAP, JRMAP)
CALL ASSIGN(1, 'JRMAP')
READ (1) LIST, TIM, AP، DAT
READ (1) JRMAP
READ (1) JRIMAG
TYPE 201, LIST, (TIM(I), I=1,5), AMPM, DAT
FORMAT(' 'A1,'-LIST LOAD CREATED AT 'SA1,A1,'M ON '9A1)

APPENDIX 3

FLIGHT SOFTWARE PACKAGE LISTING
*** TF SOFTHARE: FOST LAUNCH, PATCHED **名
** WLD 'FLYBAEK' DISABLED
小* ULD STEFFED AT UAIFORM 100-H2 FATE

: JUNIGR AS5EMBLY * GE-AFF-S5 1E: EZ PAGE E

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 45 & 115774 & & SAC \({ }^{\text {a }}\) & TEMF ; & : SAYES WOng \\
\hline 46 & 045700 & & LAC⿷ & SCI & FASE [SCI! IN AC RES \\
\hline 47 & 075774 & & LINE & TEMP : & : CREATE INDEYED TUMF \\
\hline 50 & 140944 & & JMP & TNTMF & \\
\hline \multicolumn{6}{|l|}{;} \\
\hline 51 & 134004 & OTHER: & A5R 4 & ; SFEEIAL & QPEFATION AC=(SCT) \\
\hline 52 & 011715 & & AND & THREE : & CMD TYFE IS EITE 10-S \\
\hline 53 & 130644 & & J ST & INTMF ; & INDEXED IUMP TO TVFE \\
\hline \multicolumn{6}{|c|}{} \\
\hline 54 & 140514 & & JMF & JFLOAD & TR LOAII UFCOMING: WATT \\
\hline 55 & 141753 & & JMF & ENDMT & WATT \\
\hline 56 & 140060 & & JMP & CFUDMF & HEMOFY DUMF \\
\hline 57 & 148057 & & JMF & + 4 & \\
\hline
\end{tabular}
```



```
CFUDMP: JST HALT
LSA
    LACE SCI : FENEH INSTRUCTION
    LACE SCI THREE : GENEH INETRUCTION
    ASL 10. ; MOVE TO FOSITION
    E& 2
    ; SET ADDRESS REG
    JMF MEMLHF: FEFFORM DUHF
    JMF .to : WHAT NCW?
INLINE: LACG SCI ; INLINE OFERATION - DON:T FESET FHANTOM
INLINE: LACG SEI SGNEIT ; SNLINE OFERATION - DON:T FET COMMANN PROCESSED FLAG
    SACE ECT
    ASL 4
    TAN
    JMF INLHTF; DG IN LINE HEATER SWITEHING
    ASL 5
    ASF 13. : EITS F-E INDICATE GPERATION
        JST THJMP ; FESTGFE INDEN: AC, SA
```



```
                            FLFLAG ; EET FLbFE FLAG 70G%: X=0:E
        JHF FLFLAG; EET FLAFE FLA
    TMP BLIST ; SELECT LIST B
    JMP FINWL : CHANGE WLD POSN COUNTER.
    IMP FIMNL : CHANGE WLDD POSN COUNTER.
    EXI M&S
    M&SH
    INFTN ; FETUFN AFTER MASHING
FLFI.AG: ASL IE. ; INLINE FLAFE FLAG AC=(5CI)
    OFRD FLAG
    ORF SGGNEIT
    ORF SGNEIT
    SACE FLAG
ALIST: LAE DIE ; SET FOINTEF OFFSET TO NEW LIST
    1401Ei IMF ELIST+1
ELIST: LAC ISE ; EET ADDFESE INCFEMENT TO 40 OLTAL
            5AC& LIET
INRTN: LINE TEMPI . ; FESTOFE INDEN FEGISTER
    IMP SAVEP ; FESTORE FEST DF FEGISTERS AND FIETURN
```



```
    206 001734
    207 139400
    210 140253
    211 045702
    211 045702
    213 171403
            **k:k
            *水水
            JST SNDMSG : SEND COMMAND HODE MESSAGE
    215 137003 
    215 075702
    216 066061
    220 171253
    2こ1 137003
    2ここ 045701
    2こ3 011742
    224 115776
    225
    227 0.5702
    こう6 6-1%i引
    231 115705
    232 14ここ33
    233 150000:
        IUMP TAELE IG FQSSIELE ENTFVS NOP COHMAND INSTRUCTIONS ARE ERFORS
        SMF EYECUT ; 10EETT PAFAM LIST INDEN: 
    ll
    236 141664
    237 141674
```



```
    241
    24.2 141703
    243
    245 151512
    243
```



```
    251 134000
    252 {34000
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & And & M1616 & ：TEST FQR UPPER LIMIT \\
\hline & TAN & & ：HUST EE ．LT．END OF FAFAMM TAELE \\
\hline & JMF & EADHOD & ：ILLEGAL ADERE5S \\
\hline & LACI & LFE & \\
\hline & ORR & 0150\％： & \\
\hline \multicolumn{4}{|l|}{＊\({ }^{\text {k }}\) ：\(k\)} \\
\hline & JST & SNDMSG & ：SENL COMMAND MODE MESSAGE \\
\hline \multicolumn{4}{|l|}{水水} \\
\hline & L5A & \(三\) & \\
\hline & LINE． & LFC & ；GET INEEX TO OBS．LIST \\
\hline & LIGEI & OESLST & ：UFDATE INSTRG．REG FROM OES．LIST \\
\hline & 5109 & LIF & \\
\hline & J5T & USMSG & ；SEND THE CMD INSTRC \\
\hline & L5A & 3 & \\
\hline & LACI & LIF & \\
\hline & AND & O1TE17 & ：SAVE EIGN AND LOW 4 EITS \\
\hline & SACS & TEMPT & ：MASKED INSTRUCTION \\
\hline & LINE & TEAFT & ；USE AS INEE\％ \\
\hline & AND & SGNEIT & ；SAVE SIGN EIT FDR WAIT FLAG \\
\hline & Offit & LPC & \\
\hline & 就iji & Give &  \\
\hline & SAC\％ & LFE & \\
\hline
\end{tabular}
        JMF GOTOO ; EEIT FEL OFFSET/GOIO
        JMF COMFAA; EFIP IF A/IMED.GE. E
        OMF ADDD : IMED PIT/E E-EIT FIELNS/GO100
        SUEE ; IMEN EIT/ E 5-BIT FIELDS/OI苗
        MOUEE: IMEI EIT, 2 S-EIT FIELIS, GIIO
        MOUEE : IMEI EIT/E S-EIT FIE
        CNPR ; SHIP IF A/IMEN.LE. E
        MONITR : UNUSEH BITS ARE A MESSAGE 
        MITIM: MINOF FF CLKSINCE IF ON OF LOADED
        SIIE
        IANIS :EIT ANLI FUNCTION
            NOF ; FOFMERL'`'ADD OVFL EIT TO 'B':
            NOF
            END GF TAELE
    33 1714#5 ; ATMMOD: JST
    S514こ5 EALMOD: JST UEFROR
            JST UEFROF FMT : ILIEGAL CMD MOLE OF LIST ADIRESS
    E53}17142
    54}14030
    255
    255
        EALLST:}\begin{array}{c}{\mathrm{ JMF UST UEFFOF}}\\{\mathrm{ JSAI}}\\{\mathrm{ LSA % %}}
                                HMT
        EALMOD: JST UEFROF
            JHF NXTCHI ; TFY NEXT CMD
    2&0 1\Xiち561 F
        FGWRUP:
            ; &** GST GTEUSY : SET EUSY=NEG SO SCI CMDS WON'T DISRUFT
            TST GTEUSY : SET EUSY=NEG 50
            TST
                UHTE
```


LONCH
*** JUNIOR ASSEMBLY ***

PAGE 1G:

1	782	130000		TAZ		
2	7\＆3	Q417ご		LAC	Hi	：EISAESE WLD LOQF
3	764	115741		SAC ${ }^{\text {S }}$	WLCYSz	：SET ts OF INCREMENTS
4	785	115742		SACE	NLEYC	
5	766	105774		SIOE	COUNT	
6			；			
7	767	045774		LACI	COUNT	：SET TALH SERVO INTEFVAL
8	770	011729		AND	SEVEN	
9	771	130000		TAE		
10	772	149774		JMF	45	；こEFO SPECIFIED TURNS OFF SERVO
11	773	170250		J5T	EXPONZ	：RETURNS YALUE OF NONSERO EXPON．OF 2
12						；CHOICES－－1Eる：b4，ふ己，ib，E，4，己
13	774	115736	4．5：	SACs	TCYCSS	
14	775	115737		5AC $\$$	TGYC	
15			；			
16	776	045774		LACT	CGUNT	；SET FOLF INCREM SIEE
17	777	134003		A5F	3	
18	1000	0117 こ0		AND	SEVEN	
19	1001	001713		ADD	ONE	
20	1002	1 ± 5734		S乐㻊	QSTFEE	；STEF ETEE IS ALHAMS EET ．GT．©
21	1003	045774		LAC玉	COUNT	：SET FOL．F STEF OUAN
22	1004	134013		ASA	11.	
23	1005	130000		TAE		；If EEfQ Sperifien，EET TO NEG：HHICH
24	1006	0017ごさ		ADI	M1	；DISARLES LOOF CONTROL FUNCTION
25	1007	115732		SACE	QCYCSE	；STEF QUANT．IS ALSO LOOP SIEE
26	1010	115733		5MCl	Pficicl	
27			；			
28	1011	137003		LSA	3	；SETUF OF ROSTLY RASTER ITEMS
29	1012	132000		CAC		
30	1013	115766		SACE	CNCYCL	；SET \％CYCLE COUNTER
31	10.14	115767		SACE	CyCycl	；EET Y Cicle countef
32	1015	115765		SACE	CPFCYG	：SET FOLF CYCLE COUNTER
33			；			
34	1016	045712		LAC：	OL＋6	：RAETEF \therefore STEF QUAN／RASTEF Y STEF QUAN
35	1017	065713		LIOG	OL＋7	：XSTEP SİE／Y STEF SİE／CAL HLD OFFSET SIIE
डb	1020	137002		L5A	\bar{E}	
37	$10 . \geq 1$	115774		SALE	count	；SET FAS Y STEF QUAN
38	102 L	011747		AND	0377	
39	1023	$1 こ 0000$		TAE		：TEST IF DISAELEN
40	1024	901722		ADD	M1	；SET DISAELED FLAG
41	1025	115731		SALE	RYCYCL	
42	1026	115730		SACE．	ycycse	
43			；			
44	1027	245774		LAC：	COUNT	：SET RAS Y STEP OUAN
45	1030	134010		ASF	6.	
46	1031	011747		AND	■こ77	
47	10.32	130000		TAS		；TEST IF DISAELED
48	1033	0017 E2		ADI	M1	；SET IISABLED FLAG
49	1034	1157 ご		SACI	R×CyCL	
50	1035	1157ご6		SACE	XCYC5E	
51			；			
52	1036	1057 ご 4		SIGE	DELTX	；SET CALIERATION STEP SİE
53	1037	045724		LACE	DELT C	；FFOM OLT7
54	1040	011746		ANI	077	
55	10 ± 1	115753		SACE	CALSİ	
56			：			
57	1042	137003		LSA	3	

1	1043	065717		LIOE	RAYCEN	
2	1044	137002		LSA．	E	
3	1045	105765		5108	EIfECT	：EENTEF Of RASTEF
4			；			
5	1046	045730		LACE	ycresz	
6	1047	130400		TAN		；TEST IT DISABLEE
7	1050	141052		JMF	5%	
6	1051	141061		JHF	6T ：SETS	DIEAELED FQSITION
9			；			
10	1052	0917 2こ	5\＄：	Ant	Hi	
11	1053	115773		SACm	MTS	；NOT DISAELED
12	1854	045724		LACg	DELTX	：SET RAS Y STEP SIZE
13	1055	134006		A5R	6	；AND INITIAL DIRECTION
14	1056	011745		AND	037	；PASE \because STEP SIEE
15			；			
16	1057	071713		LIN	ONE	；INDEX FGF Y RASTER
17	1060	171054		JST	PASLME	
18			；			
19	1061	105717	6．5：	5109	FOSNY	
20	1083	136614		EXI	Fi＇ld	
21	1063	$045 ¢ 34$		LAC4．	Gこ777	：FQF GE MS WAIT
2 2	1064	170360		IST	UWTX	
E3			；			
24	1085	137033	FAYPGS：	L5A	3	
25	1066	065716		LIOX	RAXCEN	：FOINTING POSN
E6	1067	137002		L5A	E	
こ7	1070	105765		510\％	DIFECT	；USED LATEF IN CALC
28			；			
29	1071	045726		LACI	XCYCSZ	；SEtup fof calculating \therefore Limits
30	1075	130400		TAN		：．．IF NEEDED
31	1073	141075		JMF	14	
32	1074	141103		JMF	ご	；UNNEEDED，DISAELED
33			：			
34	1075	0017Eこ	1玉：	ADD	Hz	
35	1076	115773		SACq	MTS	；PASE STEF QUAN．FOR LIM CHECRING
36			；			
37	1077	0457E4		LACE	DELT\％	；UNFACF X STEF DUAN
38	1100	1ミ4013		$\mathrm{A}=\mathrm{F}$	11	；FASS ETEF SIEE IN AC
39			，			
40	1141	071712		LIN	ZERO	；\therefore VARIABLE INDEX
41	1102	171054		JこT	FASLMC	；CALCULATE LIMITS
42	1103	105716	24：	SIOT	POSN：	
43	1104	1こもヒ10		EXI	T：LD	．
44	1105	$045 ち 54$		LACE	03777	
45	1106	170560		JST	UWT：	； 95 HIS WAIT
46			；			
47	1107	170216		J5T	DETLIM	；Find max allowed ctr vial．
48			；			
49			DET	CTOF	SETUP FOLLO	OW5
50	1110	137093		L5A	$三$	
51	1 ± 11	045705		LACま	OLT 1	；FICF fuf hi mite
52	1112	13780 C		LSA．	2	
53	1113	134014		A5F：	\己．	；GET HI 4 EITS OF O．L．HOFD
54	1114	115774		SmC ${ }^{\text {a }}$	HTb	；TKANSFEF AS INDEX ANG．
55	1115	134403		ASL	3	；SET EITS FOR LG HALF UF ACONFG
56	1116	021713		ORF	OHE	：SET INTERYAL $=1$
57	1117	170004		JST	DETFH	；GET DETS FGWEFED UP

 小 ${ }^{}$

1	2365	045761		LACT AWLDHI		OR WANT－AWLD： 50 THAT DOWN I	15
2	2366	0657 ¢ट		LIOT AWLDLO	：	PQSITIVE	
3	2367	137005		LSA ᄅ			
4	2370	115767		SACT MTI			
5	2371	105770		SIOE MTE			
6	2372	045763		LACE WANTHI			
7	2373	065764		LIOE WANTLO			
8	2374	115771		SAC．MT3			
9	2375	10577 2		SIUs HT4			
10	2376	165572		JST MIFS			
11	2377	050173		LAN ONEI	；	IIfECTION WAS ASSUHED FIEVEFSE	
12	2400	115765		SACE HIfECT			
13	2401	045772		LACE MT4	；	SEF IF TIOWN IS 工EFU	
14	2402	0 05771		OFRE MT3	；	INCLUDE HI FAFt	
15	2403	130000		TAZ			
16	2404	14．4560		JHF NOHOV	；	YES－EXIT MOVWLI	
17			；				
18	2405	137003	RUNWLD：	L5A 3			
19	2406	045772		LACE FFWD			
ET	2407	W1917t		AND CIETELT3	：	$=$ O1这	
21	2410	15400こ		ASF E			
ここ	2411	115776		SACE TEMPJ	；	CONDITIONAL JUMF INDEX	
23	2412	075776		LING TEMFT			
24	2413	040176		LAE CLFETEL＋3		$=0 \pm 0$	
25	2414	184232		IST RHENAB		STEF PUIR ON	
26				；			
27	2415	146416		TMFI 15			
28	2416	0414.75	15	LAE UND420	；	CONLITIONAL EXECUTIUN	
29	2417	170360		JET UWT：	；	HAIT 20 MS	
30	2420	157062		LSA E			
31	2421	045771		LACS MT3	；	NOH EEE IF DOWN IS＋	
32	2422	130400	．	TAN			
33	ご2ころ	144 AE7		JHF E玉．	；	YES－DIFECTION IS REV	
34	2424	040173		LAC ONE 1	；	FWD．HEGATE DONN	
35	2425	115765		SACE IIIRECT			
36	24ご	1656こ5		JST MDFNOT			
37	2427	045771	2．	Lact MTz	：	STORE DOWN	
38	2430	655772		LIGE HTA			
39	2431	115711		SACE LOWNHI			
40	2432	105．776		SIOE DOWNLO			
4.1	2433	045765		LAEE TIPELT	；	LOAD ETEF COMMANDE ACCOFDING T	tu difec
42	2434	130400		TAN			
43	2435	144441		THP 25		Fwn	
44	2436	136b4．		EXI SLWR		SET FEVERSE	
45	2437	051こ70		LAN STEPR			
46	244.6	144443		JMF 4．			
47	2441	13」641	35：	EXI SLHF		EET FOFWARD	
48	2442	051367		LAN STEPF			
49	2443	154607	45：	JET LDCMD			
50	2444	137003		LSA ミ	；	MOVE AWLD TO MT3／4	
51	2445	045751		LACE AWLDHI			
52	2446	$0 \leq 5782$		LIĠ AWLDLO			
53	24.47	137002		L三A 己		．	
54	2450	115771		SACE MT3			
55	2451	105772		5IOq HT4			
56	2452	065765		LIGE HIRELT	；	MOVE DIRECT TG MTI／E FOR UFDA	ATING
57	2453	645765		LACE IIFECT	；	AWLI AFTEF EACH STEF	

2454	130400		TAN	If Lij EYTE ．LT．©，Hi BYTE MUST EE
2455	132000		CAC	－1，AND JERO IF LO EYTE ．GT．（
2456	115767		SACE HT1	
2457	105770		SIOE MTE	
2460	079241		LIN こEFil	\therefore INDEX INITIAL FFERUENCY
2461	135403		EXI FANS	：DISAELE L3 INTEFFUFTS
24，32	－¢ 3 こころ		LIOI FGTG	
24.53	136710		E×I TELD	
2464	150714		EXI TSLD	
2465	061364		LIO GTGWAV	；．0\＆ES H5 AUTG STEF／SYNG 181
24．56	135711		E×I CEL】	
2467	0 © © 246		LIG04i	；EET SAME FOR GTE．NO STEF
2470	136715		EXI CJLD	
2471	043536		LACI FICOUNT	：GET NUMEER OF STEFS FOR THIS SPEEI
2472	11576t		SACE SCOUNT	
		；		
2473	124666	STEPI：	JミT POLL ；FOLL	INTEFFUPTS FOR MEASURED INTEFVAL
2474	04575 こ		LACy \＃SOLD	；THIS STEF USES OLD NULL DATA．
2475	115751		SACE DSLAT	
こ47b	$1647 E 4$		JST UESSTP	：DG ETEF ACCOUNTING
こ477	025776		DH5゙	；IEE LOWN LOUNT．．．TET IF DONE
2500	144521		TMF LOOPEB	；NOT DONE，CONTIN
2501	045711		LACE DOWNHI	：COULD EE DONE．．．TST HI COUNT
2562	130308		TAE	
こ503	144556		TMP THERE	；DONE NOW
2504	144516		JHF LODFEA	：HOT DONE CONTIMUE WITH RAMF
		；		
2565	115766	Lagif 1	SACE ECOUNT	
2506	1645．7e	LOGFE：	JET DNCHET：	；ANY ETEFS AT THIS SFEED？
2507	063323		LIOI FGTG	；YES－LOAD TIME fEGISTER
2510	$15 ¢ 710$		EXI TELD	
2511	$1 \equiv 6714$		EXI TELD	
2512	i¢466b		JST FOLL	，
2513	$1247 E 4$		JST YESSTP	
E514	055776		Ihse juwhis	：EECFEMENT DEWh
2515	1445 21		JMF LOOFCE	
2516	0こ5711	LOOPこA：	［MS9 LCWINHI	：DECFEMENT OF HIGH HORD DONE 1 EARL ${ }^{\prime}$
2517	144507		JHF LOGPE＋1	：FOF EMEE OF FFGGGAMPIING
2520	144507		JMF LOUPE＋1	
2521	$0 こ 5766$	LGGF2S：	DMSE SCOUNT	
$25 こ 2$	144506		JMF LOOF2	SEE IF SHOULD FANP DOWN YET
2523	137401		EIN	；INCFEHENT INDEY TG NEXT SPEED
2524	043336		LACI RCOUNT	；SEE IF NE：CT SFEED IS TOP SFEED
2525	$1 こ 0400$		TAN	
25こ6	144505		JMF LOOFI	：NO－STILL ACCELERATING
		；		
2527	124572	LOOF 3 ：	JST DNCHEK：	：TOF SPEED REACHED－GO AT THIS RATE
2530	あもうここう		LIGI FGTG	；UNTIL TIME TO STAFT SLOWING DOWN
2531	136710		E×I TELD	
2532	1357士4		E®I TELD	
2533	164tb6		JET FOLL	
2534	164724		JST YESSTF	
2535	055776		DMSE DOWNLO	；LECFEMENT DOWN AS EEFORE
2536	1445 こ7		JMF LOOP3	；du more steps
E537	0こ5711		DMSE DOWNHI	
2540	144530		TMF LOOF3＋1	
2541	144530		JMP LOOP3＋1	

2542	137404	LOOF4：	TIN	：	RAMF DOHN
2543	144545		JMF 1 \％	；	IF INLEX IS OF i：FINISH REST［FF
2544	144547		TMP Es	：	STEFE AT 100 HZ
2545	137402	14：	DIN		
2546	144530		TMP Loop 3＋1	：	STILL AT INTERMEDIATE SPEED
2547	0と1玉こ3	已里：	LIO EGTG	：	LOAD LOWEST SFEED
2550	136710		E×I TELD		
2551	136714		EXI TSLD		
2552	164666		JST FGLL		
2553	184724		J5T YESSTP		
2554	025776		DMSE DOWHLO	；	STEF UNTIL DOWN GOES TO zERO
2555	144547		JMF 2 E		
		；			
2556	060173	THERE：	LIO ONEI	；	LOHN＝\％STOF GTE AFTEF FEGULAF
2557	132711		EXI CELD	；	Stef interval：no restart
2530	136715		EXI ESLD		
2561	165073		JST GTEUSY	；	RETURN TO INTRFT SEFVICING
2562	040354		LAC Oibris	；	LO EQG MS WAIT
ごっ3	17935年		TST UnTX		
2564	135440		EXI RES	；	GET NULL FROM EIP STAT
25 65	105752		SIOE DSOLD	：	SAVE NULL FOF NEMT MOVE
25b6	165103	NOMOV：	JST SMWLD	；	SET HARDWARE FOSN COUNT TO AULD
2557	121641		JडT ESYCLR	；	ON WITH LE INTRFTS
2570	137002		LSM 2		
2571	1443 23		TMF MOVWLD	：	RETURN
2572	$14457 E$	DNEHEF：	JMF	；	IF EOMN ．LT．FAMFIT：GO TO LOOF4
2573	045711		LACF ICWWHI	；	ELSE：FETURN
2574.	130000		TAS	：	IF IOWH ） $65: 535$ ，IS ALSO ？fiAMf
2575	144577		JMF 15		
2576	144572		JMF ENCHEK		
2577	05577t	1生：	LANS DOWNLO	；	IF PGIdN ，ミ2，767，IS ALS0 ）FAMF
2600	130400		TAN	；	SO FETURN TO ADDR＋E
2601	14457E		JMP DNCHEF：		
こb0e	05ここ51		LANI FAMP	；	ESLEULATE DOWN－FAMF
2683	0.95776		AIDE POWNLO		
2604	130400		TAN	；	IF FQEITIVE：IOWN ，FAMF AND FETURN
2605	144572		JMF DNEHEF：	；	TO ADDF＋こ
2606	14454 E		JMP LGGF4		
		；			
2607	144607	LDCHiD：	JMF ．；气ET	UF	STEF COMMAND
2610	$005 こ 50$		ADDE CMD	；	SEE IF SAME AS LAST DIfECTION
2611	130000		TAE	；	
2612	144607		JHF LICMD	；	YES－FETUFN
2613	045 E50		LACE CMD	；	STORE CHANGE OF DIRECTION
E614	（1）EE52		LIEs XCMD	；	MOYE EMD TO XCME AND YEME TG EMD
ご15	105250		5IGE CHJ		
こ61b	115 E5こ		5ACE XCHD		
ご17	045745		LACq FFion	；	SEE IF LAST STEF HAS NULL
2620	130400		TAN		
26マ1	144650		JMF LDNUL	；	YES
2622	055750		LANE MOTOR	，	SET MOTOR AND NULL 50 THAT DRTVE
2623	000551		ADD D56	；	AFPEAFS TO HAVE COME FROM NEW Difectio
2624	115750		SACE MOTOR		
こらこら	045746	PENULL：	LAEE NULLHI	；	CALCULATE POSH OF VIFTUAL NULL
ごらこ6	B65747		liof nulllo	；	IE，ADE 48 TO NULL IF NEW DIFECTION IS

	1	2337	115767		SACT	MTi		REVERSE：AND SUETRACT 48 IF NEW IS FWD
	$己$	2630	105770		SIOE	HT 2		
	3	2631	152000		Cac			
	4.	2632	060250		LIO			
	5	2633	115.771		SACE	MT3		
	6	2634	$10577 \pm$		SIUE	MT4		
	7	2635	045765		LACs	IIRECT	；	TEST IIRECTION
	8	2636	130400		TAN			
	9	2637	14464 E		JMP	15		
	10	2640	165542		J5T	mDPa	；	REVERSE，SO ADD 4 S
	11	2641	144643		JMP	ご		
	12	2642	165572	15：	JST H	maps	；	FOFBARI：SO SUETRAET
	13	2643	045771	29	LACE	MT3		
	14	2644	065772		LIOE	MT4		
	15	2645	115746		5AC5	NULLHI	；	feflace last null hith virtual null
	16	2646	105747		5109	NULLLO		
	17	2¢47	144697		JMF	LDCMD		
	18	2650	045752	LINUL：	LACE	DSOLD	；	LAST STEF WAS NULL，SEE ABUUT THIS
	19	2651	135001		FSF	1	；	GET NILL FROM DIFECT STATUS
	20	2652	130400		TAN		；	SET ？
	21	2653	144630		JMF	15	，	NO
	22	2654	055750		LANE	Hotor	；	YES－Multiple null stofen null is or：
	ここ	2655	09024		ADD	nee	，	FEEET NILL COUNTEF
	24	2656	115750		SALs	motar		
	25	2657	144607		JMP L	LDCMD	；	FETURN
	26	2660	055750	$15:$	LANE	MOTOR	；	TURNING JUST EEYOND NULL
	27	2661	005621		ADDS	TWOD 15	；	FOOL MOTOF INTO THINY：ING IT IS COMING
	28	2662	115750		SACE	MOTUR	；	FFOM CUFFENT DIFECTION
	29	2663	050173		LAN	ONE1	；	EACE：TO NULL FFOM NOT－NULLS
	30	2664	115745		SAC5	FFIOR		
	31	2645	144625		TMF F	RENULL	：	CALCILATE POSN OF VIFTUAL NULL
	3 C							
	33	2666	144636	PGLL：J				UPIATE AWLD AT EGET AND CHECF：NULLS
	34	2667	056715		LAN	ACETF		CODE TIME－こ＝ib
	35	2670	0935 E3		A．DDI	FigTg		FIND FFEE TIME TO NEXT STEP
	36	2671	115774	SETFFi：	SACE			
	37	E67E	136146		EXi	ISFC		
	38	2673	144717		JMF	UOHI		
	39	2574	1こも141		E：f	IHI		FOLL b4 Mis cle
	40	2675	1447ご		JHF	IMIF		
	41			；				
	42	2676	050716		LAN	LUFTIE		HINUS CLOCK TICKS FER PASS
	43	2677	00.0574		S．TDI	HTó		TEST IF TIME FEMAINS
	44	2700	130400		TAN			
	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	．2701	144671	；	TMP	SETFFi		
	47	2702	$1 こ こ ゙ 000$	SAMPLT：	：CAC			
	48	2703	136440	1玉：	E $\because 1$	Fids		IIFECT STATUS FOF NULL
	49	2704	105774		SIOE	MT6		
	50	2705	$0 \cdot 5774$		OfFE	MT6		COHEINE NULL SIGNAL
	51	2706	1うもこここ		EXf	IFCE		TEST IF STEP MADE
	52	2707	144713		JMF	ご，		
	53	2710	1363 こ3		EXR	IPC：		EAEt：UP ELOEF：TEST
	54	2711	144713		JMP	こも		
	55	2712	144703		JMF	$1 \pm$		NO STEP YET
／	56	2713	1：5751	こ5：	SACま	DSLAT		SAve dull eit
	57	2714	i445s		JMF	PüLL		NO LIMITS

1	2776	005772		AUDE MT4	；	MTE IS DIREET，MT4 IS LS 1A EITS OF A
E	2777	155772		SALE MT4	；	AHLD．ADD THEN FIRET，THEN TEST FESSULT
3	3000	130050		TAE	；	IF IERO，MTコ＝MT3＋MT1＋1
4	3001	145007		JHF 15		
5	3002	000173		ADD ONE 1	；	IF MINUS 1，MTE＝MT3＋MT1
6	3003	130000		TAE		
7	3004	145010		JMP ご		
8	3005	045771		LaCe mt 3	；	OTHERHISE，MT3＝MTコ
9	3006	145013		JMP 3 ¢		
10	3007	000173	1ヵ：	ADD ONEI		
11	3010	005771	2\％：	ADDE MT3		
12	3011	005757		ADDS MTL		
13	3012	115771		SACE MT3		
14	3013	$0 \leq 5772$	3£：	LIOE MT ${ }^{\text {d }}$	；	ETURE MT3：4 INTO ANLD
15	3014	1370 ¢3		LSA 3		
16	3015	$1157 \in 1$		SACT AWLDHI		
17	3016	1057 ¢		SIOE AHLDLO		
18	3017	157002		LSA 2		
19	30こ0	144724		JMP YESSTP	；	STEP DATA WAS GOOD－－RETURN
20			；			
21	3021	06bi73	HELP4：	LIO DNEI	；	DETVE STUCF：ON NULL
こ2	3022	136711		EKI CELD	；	STOP SENDING EOMMANDS
23	30 E 3	13.5715		EXI C3LD	；	STOP Backup gTG
24	3024	051365		LIO WMSG4	；	OUTPUT MSG $=133334$
25	3025	171353		JST USMSG		
es	302．6	145052		JMP SETNUL	；	SET AWLD＝LAST NULL POSN AND RETRY
こ7			；			
28	3027	060173	HELFS：	LIO ONEI	；	DRIVE STUCK：OFF NULL
25	3030	136711		EXI CEld	；	STOP SENDING STEF COMMANDS
36	3031	13 ¢715		EXI E3LD		
31	3032	051366		LIO WMSG5	；	OUTFUT MSG＝ 133335
32	3033	171353		JST USMSG		
33	3834	046175		LAC FDUR1	；	SET STEP COUNTER
34	3035	115750		SACF MOTOR		
35	30.36	170371		JडT UNTONE	；	HAIT 1 SEC EEFDRE CHANGING DIRECTION
36	3037	035750	LOUPF：	DHEE MOTOR	；	STEF IN OTHER EIRECTION AT 50 HE
37	3010	151252		JMP KCHD	；	UNTIL NULL，EEEEF TRAEK：OF ELOCF：S
39	3041	151252		TMP XGHD	；	DEEREMENT STEF COUNT FOR EACH STEP
37	3042	341475	RECOVR：	LAC UND 420	；	WAIT 20 MS
40	3043	170360		JST UWTK		
11	3044	135440		EKI RDS	；	CHECE：NULL
42	3045	105752		SIO\＃D50LD		
43	3046	045752		LACE DSOLD		
44	3047	010173		AND DNE 1		
45	3050	130000		TAZ	；	EET ？
46	3051	145375		JMP LIMIT1	；	NO－AND MAFE SURE NULL HITHIN 300 STEPS
47			；			
48	305こ	055750	SETNULL	LANE MDTOR	；	IF MOTOR GT．EERD，DIDNT HAVE TO STEP
49	3053	130400		TAN	；	FAR EAEF：TO NULL－ASSUME NULL MISEED
50	3054	145057		JMP 13	；	FATHER THAN DRIVE STUCE：
51	3055	055 こ52		LANE XCMD	；	Su Set last null 43 Steps neafer
52	3056	164507		JडT LDCMD		－
53	3057	040243	1馬	LAC Dio		
54	3060	115750		SACF MOTOF		
55	3061	132000		EAL		
53	3062	115745		SACJ．FRIOR		
57	3063	045746		LACB NuLLHI	；	NJLL－SET AWLD＝LASt NuLL


```
2
7 3542 145542 MDPA: JMP
3543 137002
9 3514 045772
1 3545 130400
11 3546 1455557
13 3547 MaS770
3 5550 115772
14 3551 130400
5 3552 145535
6
17 3554 130400
8 3555 145543
17 3556 145555
# 3556 145555
# 3557 Na577\pi
3 3560 ii5772
3 35.41 130450
3 35.42 145553
35&7 135000
5 35%3 132000
$5
4 3565 040173
27
28
27 3570 115771
30 3571 145542
30
```



```
35
33
34
35
36
37
```



```
4
42
```

```
    ENTPY POINTS: MDPA, MDPS, MDPNOT
```

 ENTPY POINTS: MDPA, MDPS, MDPNOT
 ARGUMENTS: FOR OPERATION DF THE FORM E=A+E, E=A-B, OR B=-B
 ARGUMENTS: FOR OPERATION DF THE FORM E=A+E, E=A-B, OR B=-B
 MTI*MTE = 32 EITS DF A
 MTI*MTE = 32 EITS DF A
 MTE*MT4 = 3E BITS DF E
 MTE*MT4 = 3E BITS DF E
 MDDPA: JMP ; ENTRY - DF ADLITION
MDDPA: JMP ; ENTRY - DF ADLITION

```
DOU日LE PRECISION ADDITION, SUETRAETION, AND COMPLEMENTATION
```

DOU日LE PRECISION ADDITION, SUETRAETION, AND COMPLEMENTATION
LSA
LSA
LALT MT4
LALT MT4
TAN
TAN
TAN =-
TAN =-
JMP E\#
JMP E\#
JMP EE MTE [NO
JMP EE MTE [NO
SACE MT4 ; STORE IN LS HALF OF B
SACE MT4 ; STORE IN LS HALF OF B
SALE MT4 ; STORE IN LS HALF OF E
SALE MT4 ; STORE IN LS HALF OF E
TAN ; NEW RESULT NEGATIVE ?

```
        TAN ; NEW RESULT NEGATIVE ?
```



```
        TAN
```

 TAN
 JMP 3f
 JMP 3f
 JINP 4E
 JINP 4E
 こ\Xi: ADNI MTE
こ\Xi: ADNI MTE
; NEGATIVE
; NEGATIVE
NÖ - DONT CARR'i
NÖ - DONT CARR'i
YES - EARRY ONE
YES - EARRY ONE
ADD LS HALF OF A TO E
ADD LS HALF OF A TO E
; ADL LS HALF OR A TO E
; ADL LS HALF OR A TO E
; ETORE IN LS HALF OF E
; ETORE IN LS HALF OF E
SALE HT4; ; ETOREINLS
SALE HT4; ; ETOREINLS
TAN : NEGATIVE ?
TAN : NEGATIVE ?
3玉: JMP 14
3玉: JMP 14
: NO - TEST LS HALF OF A
: NO - TEST LS HALF OF A
3玉: EAE 5. JMP 5m

```
3玉: EAE 5. JMP 5m
```



```
4E: LAL ONEI 
```

4E: LAL ONEI
55: ADDF MT3 ; ADD MS HALF OF B
55: ADDF MT3 ; ADD MS HALF OF B
ADDS MT3 ; ADD MS HALF OF B
ADDS MT3 ; ADD MS HALF OF B
ADDE HT1 ; ADD HE HALF OF A
ADDE HT1 ; ADD HE HALF OF A
SACTMT3 ; STORE IN MS HALF OF B
SACTMT3 ; STORE IN MS HALF OF B
SAES MDPA ; SONE
SAES MDPA ; SONE
MDFS: JHP; ; ENTRY D P SIJETFALTION
MDFS: JHP; ; ENTRY D P SIJETFALTION
MDFS: JHP
MDFS: JHP
LSA 2
LSA 2
LSA 2-5M4
LSA 2-5M4
TAN
TAN
JHF jit
JHF jit
JMP 3F
JMP 3F
LANE MTA
LANE MTA
AAND MT\&
AAND MT\&
ADDI HTE
ADDI HTE
SACE MT4
SACE MT4
TAN
TAN
TAN
TAN
JMP 5年
JMP 5年
LACF HTE
LACF HTE
TAN
TAN
JMF 4I
JMF 4I
JMF 4im
JMF 4im
LANE MT4
LANE MT4
ADDE HTZ
ADDE HTZ
ADDE MTZ
ADDE MTZ
5AET HT4
5AET HT4
SARN
SARN
TAN
TAN
LAE ONEI
LAE ONEI
ADDG HTZ
ADDG HTZ
SAES MT3
SAES MT3
SACS MTS
SACS MTS
ADDE MTI
ADDE MTI
SACE HTJ
SACE HTJ
TEST LS HALF UF E
TEST LS HALF UF E
NEST LS RAL
NEST LS RAL
NEGATIVE ?
NEGATIVE ?
NEO
NEO
NO NOT
NO NOT
; NO-EARR'V GNE TE HE HALF
; NO-EARR'V GNE TE HE HALF
- YES - TEST LS HALF OF A
- YES - TEST LS HALF OF A
NEGATIVE ?
NEGATIVE ?
; EET EARRY = \#
; EET EARRY = \#
5玉: LAE UNEI
5玉: LAE UNEI
SMCS MT3
SMCS MT3
14:
14:
TEST LS HALF OF B
TEST LS HALF OF B
NEGATIVE ?
NEGATIVE ?
ND
ND
'VS
'VS
; SUETRACT LOW ORDER BYTES FIRET
; SUETRACT LOW ORDER BYTES FIRET
: STORE RESULT IN LS HALF OF B
: STORE RESULT IN LS HALF OF B
; NEN PESULT NEGATIYE ?
; NEN PESULT NEGATIYE ?
; NEW RESULT NEGATIYE ?
; NEW RESULT NEGATIYE ?
:NO- NO BORROW
:NO- NO BORROW
TES - TEST LS HALF OF A
TES - TEST LS HALF OF A
NEGATTVE?
NEGATTVE?
; NO -- DORROW ONE
; NO -- DORROW ONE
NO EORROW
NO EORROW
DD SUBTRACT ON LS WORDS
DD SUBTRACT ON LS WORDS
; STORE IN LS HALF DF B
; STORE IN LS HALF DF B
; RESULT NEGATIVE
; RESULT NEGATIVE
RES
RES
; EOFROW ONE
; EOFROW ONE
; ADD EORROW TO MS HALF OF E.
; ADD EORROW TO MS HALF OF E.
; DU SINTRAET ON ME WURDS
; DU SINTRAET ON ME WURDS
; sTORE FESULT IN E

```
; sTORE FESULT IN E
```

i

1			；		DATA	FETURNED IN AC，IG，AND LOCN	SMVAL
2	4050	041776	SMR1：	LaC	SHVAL		
3	4051	150051	U5MF：	JHP			
4	4052	101775		510	CHAN		
5	4053	125500		E¢I	STAT	：fequest rean	
6	4054	132000		CAC		：SET TIMER	
7	4055	111776		SAC	SMVAL		
8	4056	13604.1	19：	EXF	TSM	；FEAL DONE S	
9	4057	150065		TMF	35	：VES	
10	4050	031776		DM5	SMVAL	；WAITED 3 SEC FOR RESFONSE ？	
11	4061	150056		Jif	15	：FEEEF CHECFING	
12	4062	171425		J5T	UEFROR	；NG RESFONSE IN 3 SECONDS	
13	4063	061775	こモ：	LIO	CHAN		
14	4064	150053		JMF	USMFtre	－TRY＇AGAIN	
15	4065	10177t	35：	510	SMVAL	；STGFE thata	
16	4066	0.11776		LAC	SMUPL	：COMFAFE CHAN RETND	
17	4067	134012		ASF	10.	：SHOULI＝FEQUESTED	
18	4070	132400		NOT			
19	4071	001611		ADD	ONEZ		
20	4072	Q91775		ADD	CHAN		
21	4073	130000		TAZ			
こ2	4074	150050		JMF	SMR 1		
23	4975	± 5 순ㅈㄹ		IMP	こ【		
¢ 4							
25	4076	136404		E×I	FANR		
26	4077	150102		JHP	LEVEL3		
27	4190	041572		LAC	SAVAC		
28	4101	133400	RETN3：	CIL			
er	4102	150102	LEVEL3：	TMF	－		
30	4103	136010		E \times ¢	IFAN	；FIRST TEST LEV E INHIEIT	
31	4104	150076		JMP	LEVELS－4	：ON：FETURN IMHEDIATELY	
3 E			；				
33	4105	11157E		SAL	SAVAC		
34	4106	1ぶこここ		EXf	IPCE	；GTE INTEFVAL	
35	4107	151ご7		TMF	GTEFIN		
36	41 ± 0	13もこころ	В三A：	EXf	IFCS	；GTE INTEFVAL	
37	4111	151こ72		JMF	GT3FIN		
38	411こ	135140	LこE：	Exif	ISPC		
39	4113	$150 \geq 51$		JMF	OTFMIN		
40	4114	1ミb141		EXR	IMI		
41	4115	159566		TMF	HINFRM		
$4 E$			；＊＊：¢\％				
4	4116	136143		E：AF	IMA	：PiAstof ffiche intr．	
44	4117	150100		JHF	FETN3－1	：NO METGR FRAME INTF．SHOULD	HAPPEN！
45			：＊れ				
45	4120	15．146		E $\because \mathrm{K}$	IDEN	；DAV＇／VIGHT TRANEITION	
47	4121	140314		JMF	DEN		
48	412 L	13 ここち		$E \times R$	ILTA		
49	4123	151206		JMP	LIMCHE		
0	4124	$136 \overline{51}$		$E \times \mathrm{F}$	ILTE		
1	4125	151206		JMF	LIMCHE		
2	4126	13 L 45		$E \therefore$ R	IPGC	：FOIC－E	
3	4127	150375		TMF	VFADLT		
5	4130	136147		$E \times$ R	IMF		
5	4131	151450		JMP	MP		
56	4132	136142		$E \times \mathrm{F}$	IFLA		
57	4133	150ごく3		JMF	FLAINT	：OBC ：OK：SIGNAL	

1			：4＊＊				
2	4134	136144		EXR	ISCM	：Sc Mone	
3	4135	150109		JMF	RETNE－1		
4	4136	156056		EXR	ISIM		
5	4137	151262		JMP	SIMCLR	：FOR GSt USE ONLY	
6	4146	136ご5		EXF	IELK		
7	4141	150109		JMF	FETN3－1		
8	4142	$13625 E$		ESK	ISTF		
9	414.3	150100		JMF	FETN3－1		
10	4144	150100		JMF	FETNE－1		
11			；				
12	4145	134000	IPWTEL：	NOF			
13	4146	136565		EMI Di			
14	4147	136567		EXI DE			
15	4150	136571		EXI 口̇N			
16	4151	136573		EXI 14			
17	4152	136577		，EXI DS			
18			；				
19			DETTEL：	；DET	INTRVL 1 ＇	DET INTRVL 2 ／FOUTING WOFD／	
ごす			ZEFUE：				
己1	4153	008000	000000	；GFF			
ここ	4154.	010001	010201	； 1			
23	4155	020001	020001	；E			
24	4156	030202	050202	； 3			
25	4157	040902	040002	； 4			
26	4150	050940	050040	； 5			
こ7	4161	000000	000000	；NOT	USED		
E8	4162	000100	000100	；TEST	CLF：－ 16	H Hz	
29	4163	01ここ01	Q1E221	； 1 ；	を		
30	4164	012001	012001	；E／	i		
31	4165	014204	014264	； 1 ／	4		
32	4136	014004	014004	； 4 ；	1		
33	4167	OE3010	0 03010	；「 ${ }^{\text {c }}$	3		
34	4170	－こうご0		； 3 ＇	z		
35	4171	034202	9342a2	；$こ$／	4		
36	4172	034002	05400 E	； 4 ／	Ξ		
$\Xi 7$			，				
38	4173	150173	DETON：	TMP			
39	4174	135405		R5L	3	；SHIFT 亏 EITS TO INDEX PQSN	
40	4175	111774		SAC	MTb		
41	4176	071774		LIN	NTb	：LOAD 3 EIT INDEX TO DET INSTA	tasle
42	4177	062145		LIGI	DPWTBL	：LOAD INSTRUCTION	
43	4200	100201		510	13	：STORE INSTK．IN FLACE	
44.	4201	134000	1玉：	Nof		：EXEEUTE DET PHR UP	
45	4202	011150		PiND	M5G170	；MASE OUT USED INLES EITS	
46	4203	150173		JMF	DETON		
47			；				
48	4204.	158204	DETFU：	JMP			
49	4205	137003		L5A	3		
50	4206	115771		SAC7	mCONFG	；STGFE IMA FOUTINE HORD	
51	4207	071774		LIN	MTb	；TAELE INDEX	
52	4210	042153		LACI	DETTEL	；FICF POWER CODE BITS	
53	4211	154611		A．5R	9.		
54	4212	134412		ASL	10.	；MASF：AND MOVE FOR INDEX	
55	4213	179173		JST	DETON	：FASS A．EG．IN ATC	
56	4214	170173		JST	DETON	；TURN UF TO 2 Dets ON	
57	4215	$150{ }^{\text {coba }}$		JMF	DETPW	；FETURN	

DETLIM: JHF . ; SET MAX ALLOWED DET COUHTS

4216		DETLIM：	JHF	；SET MAX	ALLOWEI LET COUNTS	
4217	137003		LSA	3	：FOR SFECIFIED GATE TIME	
4220	045714		LAC．	$\mathrm{OL}+8$ ．		
4221	011616		AND	SEVENE		
4 2こ2	111774		SAC	MT6		
4223	071774		LIN	MTE		
4224	04 Eこ43		LACI	CTLIHT		
4225	11177E		SAC	HT4		
4226	045714		LACE	$\mathrm{OL}+5$.		
4227	134010		ASR	8.		
4230	111773		SAL	HTS		
4231	165654		Jst	MLTPLY		
4232	141771		LAC	MT 3	；MS HOFI OF FESULT	
4 こ33	130000		TAZ		；IF NOT 0，limt must ee ovfl	
4234	150237		JMP	15		
4235	041610		LAC	NEG1		
4236	$150{ }^{\text {ce }} 40$		JMF	$2 \pm$		
4237	041772	1玉：	LAE	MT4		
4240	134001	こ玉：	ASR		：HIVIDE TO EYPASS SIGN EOMFLICATIONS	
4241	111676		SAC	LTDCTS		
4242	150216		JMP	DETLIM		
4243	000076	CTLIMT：	62.	；FOR 62．	5 MIGRO SEC PERIOD	
4244	000764		500.			
4245	017500		8000.			
4246	076400		32006.			
4247	i77777		1777\％			
		－				
4250	150550	EXFONE：	JMF	．	：ARGUMENT IN AC $1 \pm$ EITS	
4251	130206		TAZ		；TEST IF EERO	
4252	1502 E －		JHP	$2 \pm$	：PEFO SO SET IT NEG．	
4253	のE0ごE	．	ORF 35		；AFG．${ }^{\text {\％}} 0$	
4254	110こ56		SAE	15		
4255	641611		LAC	ONE		
4256	134400	1禹：	ASL	0	；THIS INSTR GETS MODIFIER SHIFT EİE	
4257	吅気こ色		J ${ }^{\text {WF }}$	EMifotic		
4260	环1も11	ご	LAN	ONEE		
4こら1	150こ50		JHF	EXFONE		
42¢2	134400	こき：	ASL			
		，				
		；	Flare coin	OMHAND $=$	OEC ：OF：$:-\mathrm{CLEAF}$ COUNTER	
4263	132000	FLATNT：	CAC			
4こん4	1115こ？		SAT	CNTEET		
4265	150100		JMF	FETN3－1	：EXIT LEVEL 3 INTR．ROUTINE	
4ご6	041 こも5	MINFRM：	LAC	SAV5A	；SAVE SEG ADDR	
4267	$1 こ 1400$		TSA			
4210	111265		SAC	SAVSA．	；LOC＇N EXECUTED ON E\％IT	
4271	041037		LAC	CNTOES	：CHECF：HOW LING SINCE LAST ORC ：Of：	SIGNAL
4272	$001 \leq 11$		ALI	QNEE		
4273	111637		SAC	cntobe	：COUNT GF Ffinmes since last ：Dis：	
4E゙す	001607		ADI	TOF10H	；SEE HOH LONG SINCE LAST	
4275	130400		TA．N		：＇GE：FFOM OBC	
4276	141647		TMP	CLOSE		
4277	170301		J5T	MIFRM		
4300	151ご5		JMF	SAVSA		

1	4644	041717		LAC	FOSNY	；
2	4645	115745		5AC9	カACIY	
3			；			
4	4646	055705		LANE	OLT 1	：TEST IF L．MIN EMFT
5	4647	021607		Off	TOP10H	
6	4650	001620		A．LD	TWODIE	
7	4651	130400		TAN		
B	4652	15025t		JMP	15	：NOT MIN：UFDATE
9	4853	$001 も 12$		ADI	Thoe	
10	4654	130409		TAN		
11	4655	1506 ± 1		JMF	CrINTN	：L．Mtn．No UFDATE AT MAX
12	4656	045761	19：	LAC ${ }^{\text {a }}$	AWLDHI	；UPDATE LAMEDA
13	4557	115741		SACE	MASIWH	：EXFEFIMENT I．LAMEDA
14	4660	045752		LACs	AWLDLD	；CAN EE TfANSFERFET TO PERMANENT
15	4661	115742		SACE	MAYIWL	；OFFSET EASE WORDS W／e CONTROL MOYES．
16	4662	150631		JMF	CriINTN	
17			；			
18	4663	055736	35：	LANE	MINIC	：TEST LO INTENSITY
19	4664	001765		ADD	DIFECT	
20	4635	120400		TAN		
21	4656	150631		JMF	CKINTN	：NOT MINIMA SO RETUFN
22			；			
23	4667	041765		LAC	DIfECT	
24	4670	115736		5AC ${ }^{\text {a }}$	MINIE	
25			，			
26	4671	041716		LAE	Posme：	
27	4672	115757		5ACs．	HINIX	；UPGATE FOSITIONS OF MINIMA
28	4673	041717		LAC	POSNY	
29	4674	115740		SAC 5	MINIV	
30			；			
31	4675	055705		LANE	OL＋1	
32	4676	0 01607		OFFi	TOP10H	
33	4677	001620		ALIL	TWODtE	
34	4700	150400		T＊N		
35	4701	150t？ 1		TMP	EtTNTM	：NOT MTN EYPT
36	479 C	001612		ADI	THOE	
37	4705	130400		TAN		
38	4704	150656		JMF	14	；L．MIN EXFT
39	4705	150631		JMF	CRINTN	
40			；			
41	4706	150706	GETPRF：	JMF	－	
42	4707	041もここ		LAE	THODis	
43	4710	111774		SAL	MT6	；EET ミTEFPING LIMIT
44			；			
45	4711	136765	1玉：	$E \times I$	ORS	；TARE ONE STEP
46	4712	041631		LAC	05153	；1E8 His MAIT
47	4713	170360		ЈラT	UWTX	
48			，			
49	4714	Gも1もご		LIO	0こうとこ	：Chandel to test plate fef
50	4715	170051		ЈこT	USMF	：GET ETATUS MON DATA
51	4716	134406		ASL	6	
52	4717	130400		TAN		：SRIF IF FEF IS SET
53	4720	150724		JMP	2\％	
54	4721	13 1000		CAC		
55	4722	111735		SAC	PRREFC	；CLEAR FEF STEP COUNTER
56	4723	150706		JMF	GETPFF	


```
LONEH
*** JUNIOR ASSEMBLY 中**


```

5774 000000 EOUNT.
EOUNT: O
MT7:
CHAN:
5776 000000 SMWNLO:
5777 ODOODD PFFLAG:
:

* =6050
6000 000000 VECTOR: 0
6036 000400 400 . = 4036 ; VECTOR O'1S'
60S0 000020 LIST: is. :LIST A
60S1 110040 OESLST: 11004G ;OBEERVING LIETE EESTN HERE
6461 110040 110040
6462 002013 002013
6464 120205 120255
6463 120205 120205
6464 100000 100500
6465 000000 0
6466 000004 4

```


```

6472 077001 07700゙1
; 扣米
= 7.55:
7651 041700 GETSCI: LAG i\& MS INTEFRUPT TEST FOR SEI EHD

```

```

7653
JडT
7556 i4WOZD JHF NONITI ; LOO\& AT SEI EHD
7657 13.440 DEVED: FNTPE 1' ECI: DOOR/SLIT/POLF EOMMAND TO JR
7660 136520 EVI - O20 :EOOR
ENI E20 : ELIT
7662 1366.50 EKI 260 ;HEATR + INSTR PWR INVERTER
7663 137002 DVISE: LSA
7634 13400S ASR ASR S S SERIES EODE(I.E. DODF/SLIT/POLR)
76C5 015s13 AND\Psi THREEE
766 121774 SAL TEMP
7667 071774 LIN TEMP
7670 041700 LAC SCI
7b71 015.5こ1 ANDF THOU15 ; SUE-SERIES LODE
7672 OE3557 ORFI DEVED :GET FULL COMMAND
7\&73 111575 ORT O
7.73 111575 EAT +2

```


```

7677 000051 EKPADV: 1
7700 1050こ0 SEI: 10\&520

```
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 7761 & 000030 & LIR： & \(\square\) \\
\hline 2 & 7702 & 000000 & LPC： & 0 \\
\hline 3 & 7703 & 000000 & OL5： & 0 \\
\hline 4 & 7704 & 0ち0すぁす & OL： & 0 \\
\hline 5 & & & ； & \\
\hline 6 & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { EXPNUM }=7715 \\
=771 \mathrm{~S}
\end{gathered}
\]}} \\
\hline 7 & & & & \\
\hline 8 & 7716 & 000177 & RAKCEN： & 177 \\
\hline 9 & 7717 & 000177 & RAYCEN： & 177 \\
\hline 10 & 7720 & 000005 & THRSHI： & 5 \\
\hline 11 & \(77 さ 1\) & 000000 & MAXHI： & 0 \\
\hline 12 & 77ご & 000000 & MAXLO： & 0 \\
\hline 13 & & & ： & \\
\hline 14 & & & \multicolumn{2}{|l|}{\(=.1 .11\) ．} \\
\hline 15 & & & \multicolumn{2}{|l|}{FLAG＝7733} \\
\hline 16 & & & ； & \\
\hline 17 & 7736 & 000000 & MINJC： & 0 \\
\hline 18 & 7737 & 000000 & MINIK： & 0 \\
\hline 19 & 774 & 000000 & MINIY： & 0 \\
\hline 20 & 7741 & 000000 & MAXIWH： & 0 \\
\hline 21 & 7742 & 000000 & MAXIWL： & 0 \\
\hline 22 & 7743 & 000000 & MAXIE： & 0 \\
\hline 23 & 7744 & 000000 & MA：IX： & 0 \\
\hline 24 & 7745 & 000000 & MAKIY： & 0 \\
\hline 25 & 7746 & 000000 & MAKBV： & 0 \\
\hline 26 & 7747 & 000000 & MAXEI： & 0 \\
\hline 27 & 7750 & 000000 & HA \(\because 8 \%\) ： & 0 \\
\hline こ8 & 7751 & 000000 & MAXBY： & 0 \\
\hline 29 & 7752 & 000000 & MAXRV： & 0 \\
\hline 30 & 7753 & 0000000 & MAKRI： & 0 \\
\hline 31 & 7754 & 000000 & MAKRK： & 0 \\
\hline 32 & 7755 & 000000 & MAXRY： & 0 \\
\hline 33 & & & ； & \\
\hline 34 & 7754 & 003000 & OFFTTL： & 0 \\
\hline 35 & 7757 & 000000 & FIX： & 0 \\
\hline 36 & 7760 & 000000 & LASTFK： & 0 \\
\hline 37 & & & AWLDHI \(=\) & 77.1 \\
\hline 38 & & & AWLDLO＝ & 7763 \\
\hline 39 & & & ＝\(=775\) & \\
\hline 40 & 7763 & 000050 & WLSCAN： & 0 \\
\hline 41 & 7764 & 000000 & ERRWRD： & 0 \\
\hline 42 & 7765 & 080050 & EFRCVE： & 0 \\
\hline 43 & 7764 & 000000 & EXCYCL： & 0 \\
\hline 44 & 7767 & 000000 & EYEソCL： & 0 \\
\hline 45 & 7770 & 000000 & REPEAT： & 0 \\
\hline 46 & 7771 & 006050 & ACONFG： & 0 \\
\hline 47 & 7772 & 000000 & RPWD： & \(\square\) \\
\hline 43 & 7773 & 008008 & MIELK： & 0 \\
\hline 49 & 7774 & 000000 & TEMP： & 0 \\
\hline 50 & 7775 & 030030 & TEMPI： & 3 \\
\hline 51 & 7776 & 000000 & TEMFJ： & 0 \\
\hline 52 & 7777 & 000020 & ESYON： & 15. \\
\hline 53 & & & ； & \\
\hline 54 & & & \multicolumn{2}{|l|}{END} \\
\hline
\end{tabular}
＊＊＊S＇MMEOL TABLE＊＊
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A 25 HZ & 5416 & － \(0-27\) & 60－3こ\＃ & & & & & & & & & & & & \\
\hline \(A E\) & 5701 & こーこコ & 7－7 & 7－i3 & \(7-14\) & 14－33 & 45－41 & \(49-45\) & \(4 \overline{7}-54\) & 45－57 & 57－2 & 57－17 & 57－3i & ら3ー5ご & \\
\hline ABHI & 401 & 5－45 & 7－ら\＃ & & & & & & & & & & & & \\
\hline ABLO & 406 & 3－48 & 7－12\＃ & & & & & & & & & & & & \\
\hline AEETP & 2715 & 31－34 & コ2ー ご & & & & & & & & & & & & \\
\hline ALONFG & 7771 & 5－15 & 14－13 & Ė－io & こヨーミ1 & こコーご & こコーご & ミ3－41 & \(4 \pm-50\) & －s－4i\＃ & & & & & \\
\hline ADLD & 1374 & 4－32 & こ1－54 & 44－45 & 44－50 & & & & & & & & & & \\
\hline AD．JPE & 4565 & 50－17 & 50－25 & 5き－\({ }^{\text {¢ }}\) & 5こーこ7 & & & & & & & & & & \\
\hline AHI & 3371 & 35－44 & 37－50\＃ & & & & & & & & & & & & \\
\hline ALIST & 116 & こ－37 & こ－504 & & & & & & & & & & & & \\
\hline ALLOFF & 327 & 1－2ら & 5－44 & ここ－51 & & ． & & & & & & & & & \\
\hline ALO & 33\％ & 35－45 & 37－51\＃ & & & & & & & & & & & & \\
\hline ASSMBL & 4416 & 7－25 & 49－3才年 & 49－51 & \(5 \cdot 5-53\) & 57－57 & & & & & & & & & \\
\hline AHAY & 3235 & 35－50 & コと－4\＃ & & & & & & & & & & & & \\
\hline AHLDHI & 7761 & 18－44 & 19－こ7 & 20－3 & ごー日 & こヨ－1 & 25－51 & 33－16 & 34－3 & \(34-20\) & 35－47 & 35－57 & 36－43 & \(39-46\) & 39－48 \\
\hline & & 39－30 & 39－31 & 53－12 & 66－37 & & & & & & & & & & \\
\hline AHLDLO & 7762 & 19－45 & 19－23 & 20－4 & こ7－4． & こア－コ & 29－5 & 23－17 & 34－4 & 34－31 & 35－49 & 3s－1 & 35－43 & 39－36 & 39－39 \\
\hline & & 39－17 & 34－20 & 37－ご & 53－14 & 55－39 & & & & & & & & & \\
\hline BEBUF & 5757 & 49－36 & 59－17 & 64－44 & & & & & & & & & & & \\
\hline EこうT & 5315 & 59－13 & 59－16\＃ & 59－21 & 60－3 & & & & & & & & & & \\
\hline B3EUF & 5760 & 43－31 & 59－43 & 64－454 & & & & & & & & & & & \\
\hline B3IT & 5345 & 57－39 & 59－42\＃ & 57－47 & 50－10 & & & & & & & & & & \\
\hline BADLET & 255. & 4－47\＃ & & & & & & & & & & & & & \\
\hline EADHOD & 253 & 3－47 & 3－53 & 4－3 & 4－47年 & 44－11 & 44－16 & & & & & & & & \\
\hline RHI & 3373 & 35－54 & 37－52共 & & & & & & & & & & & & \\
\hline 日LI5T & 120 & こージ & こ－5i & こ－5 これ & & & & ． & & & & & & & \\
\hline ELO & 3374 & 35－55 & 37－5ジ & & & & & & & & & & & & \\
\hline BOOT & 341 & －－¢ \(\ddagger\) & 7－10 & 7－15 & 7－20 & 7－23 & & & & & & & & & \\
\hline BOOT： & 333 & 6－17\＃ & 7－34 & 58－12 & & & & & & & & & & & \\
\hline BUTH & 5654 & 23－4 & 2．4－7 & ご－57 & －3－45\＃ & & & & & & & & & & \\
\hline ESYCLR & 1641 & 5－E1 & こイーころ\＃ & こ1－こ3 & 30－24 & 3ヶ－5 & 3i－5i & & & & & & & & \\
\hline PEYGN & 7777 & 1．42 & 15－30 & 21－25 & ごーこ7 & 34－11 & 34－13 & 5 ¢－5 \({ }^{\text {a }}\) & & & & & & & \\
\hline CALETC & 5756 & 10－45 & 19－40 & \(17-43\) & 17－5こ & 54－43 & & & & & & & & & \\
\hline CALLAM & 5755 & 10－5 & 19－17 & 17－29 & 17ーコこ & 1－755 & 64－42\＃ & & & & & & & & \\
\hline CALEİ & 5753 & 12－55 & 17－53 & 64－40\＃ & & & & & & & & & & & \\
\hline EGALIE & 1476 & 1可－24 & 11－2 & 17－15\＃ & 17－30 & 17－44 & 17－47 & & & & & & & & \\
\hline Eヒ「こEス & 5754 & 10－44 & 17－51 & 64－41\＃ & & & & & & & & & & & \\
\hline EHAN & 5775 & 7－10 & 9－11 & テ－き7 & テーシ1 & 7－4i & 45－4 & 45－13 & \(45-20\) & 55－4共 & & & & & \\
\hline EHR：こ5 & 5414 & 57－ & 59－19 & 57－31 & 57－45 & 59－5．5 & 30－この年 & 60－35 & 60－35 & & & & & & \\
\hline EFEINTN & 4631 & こヨー こ & 52－4号 & 53－11 & 53－15 & 53－71 & 53－35 & 53－ミ7 & & & & & & & \\
\hline CLEAR & 343 & b－3 & －－この\＃ & 7－4 & & & & & & & & & & & \\
\hline ELINT & 1523 & 1．9－17 & 19－40 & & & & & & & & & & & & \\
\hline ELF：TEL & 2173 & 23－54 & 25－33\＃ & 25－10 & 28－20 & 23－24 & & & & & & & & & \\
\hline ELLET & 2020 & 23－1 & 23－2コ & こコー3ご & & & & & & & & & & & \\
\hline Close & 1647 & 21－31\＃ & 47－54 & & & & & & & & & & & & \\
\hline CMD & 5250 & 30－43 & 30－45 & 30－49 & シャー 7 & \(30-11\) & 30－15 & \(35-17\) & \(30-30\) & 35－13 & 38－21 & 5アーこと & & & \\
\hline CHFP & 1703 & 4－35 & 2こ－5\＃ & & & & & & & & & & & & \\
\hline CHTOES & 5637 & 5－1．3 & 47－43 & 47－49 & 47－51 & 53－34\＃ & & & & & & & & & \\
\hline COLFIN & 2029 & 33－36\＃ & 25－2 & 25－35 & & & & & & & & & & & \\
\hline EDMPAA & 16.54 & 4－31 & こ1－45\＃ & & & & & & & & & & & & \\
\hline EDMT EDUNT & \[
\begin{aligned}
& 1687 \\
& 5774
\end{aligned}
\] & \[
\begin{gathered}
31-43 i \\
9-5
\end{gathered}
\] & \[
\begin{gathered}
2 \overline{9}-8 \\
9-15
\end{gathered}
\] & 9－34 & 9－3． & 7－55 & 12－5 & コこー7 & 12－15 & 12－コ1 & 12－37 & 12－44 & 57－21 & 57－22 & 55－ご \\
\hline EOUT & 1307 & 15－3う華 & こう－34 & & & & & & & & & & & & \\
\hline EOUTER & 1364 & 10－こ6 & 16－304a & & & & & & & & & & & & \\
\hline CFRCMC & 7765 & 12－32 & 16－45． & 20－25 & 20－25 & ららー43れ & & & & & & － & & & \\
\hline EPIJDMP & ch & 2－13 & こーシも & & & & & & & & & & & & \\
\hline ctical & E4． 0 & 7－50 & 10－14 &  & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CTLEHK & 543 & ¢－13\＃ & 9－32 & & & & & & & & & & & & \\
\hline CTLFND & 573 & 9－18 & ¢－404 & & & & & & & ： & & & & & \\
\hline CTLIMT & 4243 & 47－ E & 47－23\＃ & & & & & & & & & & & & \\
\hline CTLINS & 634 & 9－4．1 & 10－15\＃ & & & & & & & & & & & & \\
\hline CTLMCF & 56b & 9－34\＃ & 10－1 & & & & & & & & & & & & \\
\hline CTLN：T & 557 & \(9-\) こと & 9－ご我 & & & & & & & & & & & & \\
\hline ETLOTR & 642 & 19－19 & 10－2¢ & & & & & & & & & & & & \\
\hline CTLFST & 540 & 9－94 & 5－3E & & & & & & & & & & & & \\
\hline CTLSLT & \(5 \$ 40\) & 9－43 & 9－51 & 10－3 & 10－11 & 10－15 & 23－29 & 23－33 & 57－43 & 63－364 & & & & & \\
\hline ctltac & 641 & 10－2 & 10－こ5\＃ & & & & & & & & & & & & \\
\hline CTR1 & 13.16 & 1㦹ご & 1s－41\＃ & & & & & & & & & & & & \\
\hline CXCYCL & 7766 & 1ご30 & \(16-4.3\) & 17－41 & 17－4E & 66－43 & & & & & & & & & \\
\hline cicycl & 7767 & 12－31 & 16－44 & 17－11 & 17－12 &  & & & & & & & & & \\
\hline D10 & こ243 & 25－55 & ことー304 & SE－41 & 33－53 & 3¢－47 & & & & & & & & & \\
\hline －1137 & 5623 & 3－27 & 63－21\＃ & & & & & & & & & & & & \\
\hline 11b & 1735 & こ－50 & 14－34 & ここー35 & & & & & & & & & & & \\
\hline D209 & 2253 & 26－38\＃ & 36－15 & & & & & & & & & & & －2 & ． \\
\hline Degse & 5 bご 4 & 61－56 & 6ミーごれ & & & & & & & & & & & & \\
\hline Dごこ & こ244 & こと－31\％ & 31－E3 & & & & & & & & & & & 気 & \\
\hline DEN & 314 & 5－31\＃ & 45－47 & & & & & & & & & & & 0 & \\
\hline 口こご & \(173 t\) & 2－53 & ここ－36も & & & & & & & & & & & 0 \％ & \\
\hline 1340 & 224．7 & こ6－34\＃ & 3こ－54 & & & & & & & & & & & & \\
\hline 1447 & 43こ & i－35 & フーラ゙も年 & & & & & & & & & & & 0 & \\
\hline D48 & 2こ50 & 2b－35\＃ & 31－4 & & & & & & & & & & & Com & \\
\hline 口5t & 2E51 & 2t－36\＃ & 30－54 & & & & & & & & & & & \(\bigcirc\) & \\
\hline －100 & 56 ？ 5 & 54－10 & 63－234 & & & & & & ． & & & & & 5 & \\
\hline H\＆E & 1737 & 5－35 & ここー374 & & & & & & & & & & & \(\cdots 3\) & \\
\hline DATA & 1797 & 7－19 & 7－23 & フ－E゙4 & ごー 104 & 49－45 & & & & & & & & & \\
\hline IATAHI & 412 & 6－5i & 7－17\％ & & & & & & & & & & & & \\
\hline DATALO & 416 & b－54 & フーごされ & & & & & & & & & & & & \\
\hline Dercina & 5130 & 14－36 & 56－44\＃ & 57－4 & & & & & & & & & & & \\
\hline DELAY & 5646 & セラージ㕩 & & & & & & & & & & & & & \\
\hline IELCOT： & こ341 & こ7－18 & 27－35 & & & & & & & & & & & & \\
\hline deltal & 5740 & 11－50 & 18－50 & Eも－55 & 27－16 & E7－17 & 27－49 & 64－E． & & & & & & & \\
\hline DELTK & 57 こ4 & 1ご5こ & 1ごっこ & 1こーリ2 & 12－37 & 55－1ジ & 55－53 & 64－15 & & & & & & & \\
\hline \＃ELTi & 5725 & 5．5－34 & 64－1穣 & & & & & & & & & & & & \\
\hline DETFF & こ261 & E4－45 & 24－5́ & ごージ & 25－34 & 25－4．4 & 25－5こ & & & & & & & & \\
\hline DETLIM & 4 216 & 15－47 & 47－己゙ & 47－らを & & & & & & & & & & & \\
\hline DETON & 4173 & 46－384 & 46－4b & 42－5．5 & \(46-5 t\) & & & & & & & & & & \\
\hline DETFW & 4204 & 13－57 & 14－14 & 42－48\＃ & 4 4 \(6-5.7\) & & & & & & & & & & \\
\hline EETTEL & 4153 & こ4－11 & 46－19\％ & 4へ－5 & & & & & & & & & & & \\
\hline DEVEU & 7657 & 65－384 & 65－49 & & & & & & & & & & & & \\
\hline DEVOFF & 1632 & \(3-40\) & 5－4 & \(5-45\) & こ1－15 & 21－ご1 & 57－4E & 61－47 & & & & & & & \\
\hline DFALT & 630 & 10－ 9 & 10－14共 & & & & & & & & & & & & \\
\hline EIFEET & 5765 & 9－9 & 9－15 & 5－2． 5 & 9－28 & 9－49 & 13－3 & 15－こ7 & 15－17 & 15－37 & 23－43 & 24－5． & 28－12 & 28－35 & 28－41 \\
\hline ． & & をe－st & 2e－57 & 31－7 & 34－32 & 34－37 & 34－3¢ & 34－E7 & 35－1 & 35－4 & 51－10 & 51－15 & 5．1－玉 & 51－ミコ & E：－45 \\
\hline & & 51－45 & 5ご－48 & 5ご－50 & 5 \(=-15\) & 5こーご & \(5 t-12\) & A4－5． 1 \＃ & & & & & & & \\
\hline DIREEL & 5702 & 48－7 & 48－10 & 4E－17 & 48－23 & 5t－45 & 57－13 & 5E－57 & 59－9 & 59－18 & 59－25 & 59－33 & 59－44 & 57－51 & b3－53 \\
\hline DIVIDE & 3665 & 15－15 & 15－E7 & 15－39 & 41－49\＃ & 41－5．こ & 4ござ & 4ご32 & 51－21 & & & & & & \\
\hline DLYF & 5647 & 7－2 & 4E－48 & 4E－49 & 45－53 & 48－57 & 55－48 & 60－53 & 60－57 & 6玉ー40\＃ & & & & & \\
\hline HLYTST & 5047 & 18－18 & 18－42 & 54－14 & 55－5 & 55ーシ7 & 55－47\％ & 55－50 & & & & & & & \\
\hline DMIF & 2721 & 31－40 & 3ご 7 H & & & & & & & & & & & & \\
\hline LNCHE\％： & 2572 & ご－ご9 & 25－47 & このージ阶 & \(30-ミ \sum\) & 30－25 & 30－35 & & & & & & & & \\
\hline DONE & 3473 & こち－1ご & 39－53 & & & & & & & & & & & & \\
\hline DOWNHI & 5711 & こと－こ¢ & 29－を3 & 29－37 & ¢5－55 & 36－29 & 64－3世 & & & & & & & & \\
\hline DCWNLO & 5776 & こと－40 & 29－こ1 & E¢－35 & E5－53 & 30－12 & 30－33 & 30－37 & 56－20 & \(50-43\) & 51－玉 & \(51-12\) & 65－5 & & \\
\hline DFWTEL & 4145 & 4ヒー12み & 4t－42． & & & & & & & & & & & & \\
\hline DOMI & 2717 & 31－38 & ここー4 & & & & & & & & & & & & \\
\hline USLAT & 5751 & c9－19 & 31－5b & ミ゙－ 16 & 3こーご &  & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DTIM & 1612 & 1－27 & 5－3 & 5－44 & 8－40 & 20－55\＃ & 21－13 & 25－47 & 57－47 & 61－49 & \\
\hline DUALP & 4433 & 16－38 & 24－22 & 50－3\＃ & 5ご－4 & & & & & & \\
\hline DUMP & 425 & －5．5 & 7－304 & & & & & & & & \\
\hline DVISE & 7663 & 1－53 & 65－4E号 & & & & & & & & \\
\hline UWLDHI & 5743 & 11－44 & 16－19 & 17－8 & こ7－10 & ごージ4 & ごーシ5 & ごフ－50 & 64－314 & & \\
\hline EWLDLO & 5744 & 11－4 & 1t－21 & 17－9 & ごー こ & ごーシ5 & シアージ & ET－5i & －4ーミごら & & \\
\hline DWFOS & 2274 & 11－51 & 18－25 & 17－10 & こ6－53年 & こ7－12 & 27－53 & & & & \\
\hline DWSFIN & 1415 & 18－104 & 18－37 & & & & & & & & \\
\hline DHSTP & 1434. & 10－15 & 18－2．4 & 1E－この＊ & 15－54 & & & & & & \\
\hline EDELO & 1756 & 14－31 & ここ－46゙ & & & & & & & & \\
\hline ENDSTP & 2775 & 3ご－31 & 32－43 & 3E－47 & ごー574 & & & & & & \\
\hline ENDWT & 1753 & E－11 & ここー4「4 & & & & & & & & \\
\hline EFFFMSG & 5602 & 60－47 & ③－4＊ & & & & & & & & \\
\hline ERFWRD & 7764 & 60－54 & 61－1 & 61－4 & 6i－5 & －6－4さt & & & & & \\
\hline EXECUT & 4000 & 4－28 & 44－3\＃ & & & & & & & & \\
\hline EMOFF & 325 & 5－4で & 57－41 & & & & & & & & \\
\hline EXPADV & 7577 & 3－6 & 10－51 & 10－52 & 14－20 & 14－25 & 14－29 & 65－564t & & & \\
\hline EXPNUM & 7715 & 14－23 & 14－ご 4 & 6t－b & & & & & & & \\
\hline EXPONE & 4250 & 10－42 & 12－11 & 47－29＊ & 4．7－36 & 47－34 & & & & & \\
\hline FIELI & 434 & 7－434 & 8－7 & 8－45 & & & & & & & \\
\hline FIELE & 440 & 7－4を暒 & 8－12 & & & & & & & & \\
\hline FIELUE & 447 & 7－55\％ & 8－3゙ & Ei－45 & Ei－54 & Eご & 44－47 & 44－47 & 48－41 & & \\
\hline FILSLT & \(6 ? 3\) & 10－10\＃ & 16－17 & & & & & & & & \\
\hline FINAL & 2357 & こ7－50\％ & & & & & & & & & \\
\hline FIVEe & 5615 & ¢3－154 & & & & & & & & & \\
\hline FIX & 7757 & 38－38 & 38－53 & 37－11 & 39－15 & 35－36 & 39－52 & 66－35\＃ & & & \\
\hline FİAWL & 3427 & 2－39 & 38－32 & & & & & & & & \\
\hline Flag & 7733 & 2－45 & E－47 & E－47 & 2－47 & ここーご & 25－43 & 25－50 & st－15 & & \\
\hline FLAINT & \(4 \overrightarrow{263}\) & 45－57 & 47－4E！ & & & & & & & & \\
\hline FLFLAG & 111 & 2－36 & こ－44 & & & & & & & & \\
\hline FLFTST & 2010 & こミー19 & ここーご7\＃ & & & & & & & & \\
\hline Four & 1716 & 3－15 & ここー184 & & & & & & & & \\
\hline FOUF1 & 2175 & 25－404 & 3ミ－33 & ジ－ & & & & & & & \\
\hline FGUR2 & 5614 & 6E－14\＃ & & & & & & & & & \\
\hline GETS & 4401 & － & 7－6 & 7－12 & 7－17 & 7ージ & 35－7 & 35－17 & \(35-2 \mathrm{E}\) & 4¢－31\＃ & 45－37 \\
\hline GETPRF & 4706 & 3－32 & 20－30 &  & 5．3－56 & 54－4 & 54－47 & & & & \\
\hline GETSCI & 7651 & 48－55 & 49－1 & 65－ラ1\＃ & － & & & & & & \\
\hline G0N & 506 & E－30 & Eーラ゙ら & ごー5ご & & & & & & & \\
\hline GONEW & 127 & Э－4\＃ & & & & & & & & & \\
\hline Gotor & 476 & 4－30 & 8－244 & & & & & & & & \\
\hline GTEFIN & 5267 & 45－35 & 58－47\＃ & & & & & & & & \\
\hline GTEFIN & 5272 & 45－37 & 5E－51\＃ & & & & & & & & \\
\hline GTEUSV & 3073 & 4－55 & 30－1E & ミご－32 & ここー50 & 34－9\＃ & 34－16 & \(3 \Sigma-4 \sum\) & \(35-5\) e & 38－2 & \\
\hline ETGHAV & 3364 & 29－16 & 37－41\＃ & & & & & & & & \\
\hline HALT & 12 & 1－ご徃 & 1－33 & E－16 & 5－こ己 & 5－42 & 36－57 & & & & \\
\hline HEATP & 5463 & 5－25 & 16－5t & 61－E1\＃ & 51－39 & 31－33 & 61－35 & \(\leq 1-4.2\) & & & \\
\hline HEATHI & 5677 & 5－2う & 16－54 & も1－こさ & 61－24 & b1－36 & \(63-564\) & & & & \\
\hline HELF4 & 3021 & ミごミミ & 33ーセ1\＃ & & & & & & & & \\
\hline HELPS & 3027 & こご51 & 33－2EH & & & & & & & & \\
\hline HELFEF & 3071 & 34－6 \({ }^{\text {4 }}\) & & & & & & & & & \\
\hline HIEIT & 56.05 & 41－53 & 41－56 & \(4 \bar{c}-51\) & 44－32 & 58－47 & 58－51 & 6ミーブ & & & \\
\hline HIFAST & 5103 & 5t－15 & 56－2可 & & & & & & & & \\
\hline IAND & 4044 & 4－37 & 44－474 & & & & & & & & \\
\hline INCAB & 4425 & 7－27 & 49－5 \({ }^{\text {\＃}}\) & 50－1 & 56－54 & 57－2E & & & ， & & \\
\hline INJMP & 44 & 1－50 & 1－57\％ & こ－4 & ご－8 & こ－こ4 & & & & & \\
\hline INLHTR & 5501 & 2－31 & 61－37 & & & & & & & & \\
\hline INLINE & 71 & 1－4．1 & こーご年 & E－5 & & & & & & & \\
\hline IHFTN & 122 & こ－4E & 2－4官 & E－5 \({ }^{\text {H }}\) & \(57-13\) & \(61-43\) & & & & ． & \\
\hline IFS 3 & 5 264 & 5E－13 & 5E－43号 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TRLOAD & 514 & E－10 & 8－4．0\＃ & & & & & & & ： & & & & & \\
\hline L．3A & 4110 & 45－36\＃ & 58－45 & & & & & & & & & & & & \\
\hline L3B & 4112 & 45－3E\＃ & 58－53 & & & & & & & & & & & & \\
\hline LAST & 5700 & 14－35 & 57－1 & 63－514 & & & & & & & & & & & \\
\hline LASTF\％ & 7760 & 37－12 & b6－36\＃ & & & & & & & & & & & & \\
\hline LIICMD & 2687 & こE－4F & 30－4ご & 30－45 & 31－17 & 34ーこ5 & 33－52 & 36－5 & & & & & & & \\
\hline LDNLL & 2650 & 30－52 & 31－184 & & & & & & & & & & & & \\
\hline LEVEL 1 & 7 & 1－15 & 1－24 & & & & & & & & & & & & \\
\hline LEVEL 3 & 4103 & 1－17 & 45－2． & 45－こワ4 & 45－31 & 61－ 9 & 61－14 & & ． & & & & & & \\
\hline LIMCHE： & 5206 & ここーご0 & 45－49 & 45－51 & 57－464 & & & & & & & & & & \\
\hline LIMITI & 3375 & 33－46 & 37－55 \({ }^{\text {\％}}\) & & & & & & & & & & & & \\
\hline LIMITE & 3404 & 3ヵ－26 & 38－ 6 \＃ & & & & & & & & & & & & \\
\hline LIMIT3 & 3416 & 36－39 & 38－17\％ & & & & & & & & & & & & \\
\hline LIMITA & 3214 & 35－4ご & 5E－E3 & & & & & & & & & & & & \(\therefore\) \\
\hline LIMITB & 3225 & 35－52\＃ & 58－22 & & & & & & & & & & & & \\
\hline LIODLF & 2255 & 26－41才 & 56－5E &  & & & & & & & & & & & \\
\hline LIf & 7701 & 4－12 & 4－15 & 7－45 & 7－56 & 8－14 & 5－24 & 44－3 & 61－51 & 6b－ 1 \＃ & & & & & \\
\hline LIST & 6060 & 2－54 & 3－3 & 44－ご4 & b5－14 4 & & & & & & & & & & \\
\hline LOOP1 & 2505 & 29－こと品 & 29－45 & & & & & & & & & & & & \\
\hline LOGFE & 2506 & 29－29\＃ & 29－38 & 27－39 & 25－41 & & & & & & & & & & \\
\hline LOGPEA & 2516 & ご「ご & 2¢－374 & & & & & & & & & & & & \\
\hline LOOPEL & ごご： & こケーこき & こアーラ &  & & & & & & & & & & & \\
\hline LGOFE & 2527 & 29－47品 & 29－54 & 25－56 & \(2 ¢-57\) & 36－b & & & & & & & & & \\
\hline LOOP4 & 2542 & 30－ご & 30－40 & & & & & & & & & & & & \\
\hline LOOPF & 3037 & 33－364 & 3e－1 & & & & & & & & & & & & \\
\hline LOOFW & 3165 & 35－17\＃ & 35－55 & & & & & & & & & & & & \\
\hline LOWE & 5576 & 45－36 & 56－ころ & 56－32 & 81－23 & ¢ミーシャ & 52－5A\＃ & & & & & & & & \\
\hline LPC & 7702 & こ－b & 3－37 & 3－5 5 & 3－5．7 & 4－4 & 4－10 & \(4-70\) & \(4-22\) & 5－20 & 7－43 & \(7-46\) & \(8-32\) & 8－33 & 68－2\＃ \\
\hline L510HI & 5633 & 5．5－ここ & 61－16 & 6ミ－29\＃ & & ． & & & & & & & & & \\
\hline LSAWFD & 5600 & 49－43 & 63－1H & & & & & & & & & & & & \\
\hline LERET1 & 3245 & 3ヵ－ 6 & 36－12\＃ & & & & & & & & & & & & \\
\hline LSfETE & 3253 & 36－16 & 36－18 & & & & & & & & & & & & \\
\hline LSFET3 & 3270 & 36－こ9 & 36－3E\＃ & & & & & & & & & & & & \\
\hline LTECTS & 5676 & こ4－5き & 25－31 & 47－玉゙ & 6s－45\＃ & & & & & & & & & & \\
\hline LUFTIE & 2716 & 31－4E & ミご 3 & & & & & & & & & & & & \\
\hline Mi \({ }^{\text { }}\) & 172゙と & b－46 & 6－49 & 10－43 & シミー & 1ごご & 12－40 & 1ミー4日 & \(13-10\) & 13－34 & 14－48 & 15－40 & 17－24 & 17－54 & 18－39 \\
\hline & & 19－41 & 20－46 & こごこご何 & & & & & & & & & & & \\
\hline M1t1t & 1734 & 4－1 & ここー34＊ & & & & & & & & & & & & \\
\hline Mé & 1723 & t－EE & こごージか & & & & & & & & & & & & \\
\hline M4 & 1724 & \(6-55\) & ここーごら4 & & & & & & & & & & & & \\
\hline M4EI & 1733 & \(3-50\) & ここーここれ & & & & & & & & ． & & & & \\
\hline MAXEI & 774.7 & 51－36 & かもーごも & & & & & & & & & & & & \\
\hline MAXEV & 7746 & 8－5 & 51－E¢ & 51－33 & 6も－こ5 & & & & & & & & & & \\
\hline HA\％E\％ & 7750 & 51－37 &  & & & & & & & & & & & & \\
\hline MAXEY & 7751 & 51－41 & 66－28 & & & & & & & & & & & & \\
\hline MAXHI & 7721 & 11－ご4 & bも－11出 & & & & & & & & & & & & \\
\hline MȦIIC & 7743 & \(8-51\) & 5ご51 & 5こ－54 & 66－こご & & & & & & & & & & \\
\hline MANIWH & 7741 & 11－ぞ1 & 53－13 & 6e－こ0\＃ & & & & & & & & & & & \\
\hline MAXIWL & 7742 & 11－え゙こ & 53－15 & t6－E1\％ & & & & & & & & & & & \\
\hline MASI\％ & 7744 & 5ご57 & 66－こう & & & & & & & & & & & & \\
\hline MA） M Y & 7745 & 5ご E & 66－E゙4 & & & & & & & & & & & & \\
\hline MASLO & 7722 & 11－25 & b6－12\＃ & & & & & & & & & & & & \\
\hline MAXRI & 7753 & 51－5 & 66－30斿 & & & & & & & & & & & & \\
\hline MASFV & 7752 & E－5 3 & 51－46 & 51－50 & 66－29\＃ & & & & ， & & & & & & \\
\hline MAXRY & 7754 & c1－56 & 66－31年 & & & & & & & & & & & & \\
\hline MA：AFY & 7755 & 52－ 1 & 66－らご生 & & & & & & & & & & & & \\
\hline MDFA & 3542 & 1i－34． & 15－14 & 1ヶ－ころ & ご－8 & ごーご & 27－43 & ミ1－10 & 40－7\＃ & 40－30 & 51－6 & 52－39 & & & \\
\hline MITFLS & 3764 & \(4 \bar{E}-11\) & 43－3稆 & \(4 ミ-14\) & & & & & & & & & & & \\
\hline MIEFNOT & 3625 & ご®－玉́ & 34－36 & 41－34 & 41－9 & \(4 \vec{E}-9\) & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MIPS & 3572 & 15－24 & 18－53 & 15－52 & 28－10 & 31－1E & 34－ご & 46－3E4 & 41－1 & 41－\(\quad\)－ & & & & & \\
\hline MDWPS & 1467 & 16－25 & 19－54 & 1\％－11 & 17－54 & E6－10 & & & & & & & & & \\
\hline MEASUR & 1756 & 1t－57 & 17－30 & 15－4 & 15－1 & EG－14 & 20－50 & Eア－1\％ & & & & & & & \\
\hline MEMDMP & 5151 & こーころ & 7－33 & 57－1ご & 57－33 & & & & & & & & & & \\
\hline MICLE & 7773 & 5－16 & 48－ & 4E－5 & 48－42 & くごーご & ¢こ－34 & 66－4．8\＃ & & & & & & & \\
\hline MIFRM & 4301 & こ2－7 & 47－55 & 48－1\＃ & 48－11 & & & & & & & & & & \\
\hline MINFRM & 4266 & 45－41 & 47－46\＃ & & & & & & & & & & & & \\
\hline MINIC & 7736 & 8－4．6 & 53－12 & 53ーシ4 & 66－17\％ & & & & & & & & & & \\
\hline MINI： & 7737 & 5シージ & St－1EH & & & & & & & & & & & & \\
\hline MINİ & 7740 & 55－29 & 66－19t & & & & & & & & & & & & \\
\hline MITIM & 4340 & 4－37 & 4E－41年 & & & & & & & & & & & & \\
\hline MLTFLY & 3634 & 15－35 & 41－16 & 41－40 & 47－13 & 51－1．7 & 5さ－10 & 55－53 & & & & & & & \\
\hline MMI 620 & 5601 & 44－14 & 63－3\＃ & & & & & & & & & & & & \\
\hline MONITI & 20 & 1－35\＃ & 55－3t & & & & & & & & & & & & \\
\hline MUNITR & 162 & ミ－31 & 3－34＊ & 4～ジ & E－34 & e－3E & 9－ご 4 & 10－37 & 16－39 & こ1－50 & こごー 3 & 4E－44 & 56－6 & 6こ－40 & \\
\hline MOTOR & 5750 & 30－5 & 30－55 & 31－22 & 31－24 & 31－26 & 31－20 & こE－30 & こミー42 & 32－49 & 32－53 & \(32-55\) & 35－34 & ここーラ4 & 3 － 48 \\
\hline & & こ5－54 & 36－4．8 & 37－55 & SE－ 9 & ミ®ーィ7 & 3E－15 & 64－374 & & & & & & & \\
\hline MDVEE & 511 & 4－34 & E－3¢ & & & & & & & & & & & & \\
\hline MOVIT & E315 & E7－1 & 27－7 & こう－14\＃ & & & & & & & & & & & \\
\hline MOVLOW & E216 & 18－56 & こもー 4 \＃ & ござざ & こ7－5こ & & & & & & & & & & \\
\hline MOVFR & 4734 & E0－4．8 & 54－13\＃ & 54－51 & & & & & & & & & & & \\
\hline MOVWLD & ころヶ3 & こ6－7 & 27－33 & こ7－48 & 27－564 & 30－Et & 34－7 & & & & & & & & \\
\hline MF & 54.50 & 45－55 &  & & & & & & & & & & & & \\
\hline MPERR & 5795 & b1－11 & b1－16 & 61－18 & \(63-564\) & & & & & & & & & & \\
\hline MSG1 & 1751 & 14－1t & 22－47\％ & & & & & & & & & & & & \\
\hline MSG10P & 1 171 & E0－33 & 20－534 & & & & & & & & & & & & \\
\hline M5G12 & 1752 & 1t－7 & ここー48\＃ & & & & & & & & & & & & \\
\hline H5G12\％ & 1414 & 17－44 & 12－弗 & & & & & & & & & & & & \\
\hline  & 1336 & 16－52 & 17－1年 & & & & & & & & & & & & \\
\hline MSG16Y & 1365 & 17－14 & 17－32゙ & & & & & & & & & & & & \\
\hline MSG170 & 5150 & 4b－45 & 57－11年 & 57－E9 & & & ． & & & & & & & & \\
\hline MSGE & 1436 & 18－16 & \[
19-37
\] & & & & & & & & & & & & \\
\hline MSGE & 1727 & 1－31 & 16－ご & ごこーこタ4 & ここ－4ら & & & & & & & & & & \\
\hline McGこき1 & 5001 & 54－27 & 54－5 4 \＃ & & & & & & & & & & & & \\
\hline MSGこうこ & 5005 & 54－45 & 54－57\＃ & & & & & & & & & & & & \\
\hline MSGE & 1556 & 29－1ご & 26－1拺 & & & & & & & & & & & & \\
\hline ME67 & 1557 & 15－36 & Ea－17\％ & & & & & & & & & & & & \\
\hline MTi & 57 ¢7 & \[
\begin{aligned}
& 11-27 \\
& 46-56
\end{aligned}
\] & \[
\begin{aligned}
& 15-11 \\
& 41-6
\end{aligned}
\] & \[
\begin{aligned}
& 16-20 \\
& 50-57
\end{aligned}
\] & \[
\begin{aligned}
& 19-47 \\
& 5 \sum-32
\end{aligned}
\] & \[
\begin{aligned}
& 15-30 \\
& 5=-55
\end{aligned}
\] & \[
\begin{aligned}
& 20-1 \\
& 55-57
\end{aligned}
\] & \[
\begin{aligned}
& 27-2 b \\
& 2 A-53 t
\end{aligned}
\] & 27－37 & 28－4 & 29－3 & ミ1－1 & \(33-12\) & 3－4－23 & 40－28 \\
\hline HTE & 5770 & 11－28 & 15－12 & 12－Eご & 18－45 & 17－玉\％ & 20－7 & ごプこ？ & こ7－38 & こを－5 & この－4 & 31－2 & 32－57 & 34－こ4 & 40－12 \\
\hline & & 46－16 & 40－E0 & 49－35 & 46－43 & 40－43 & 41－7 & 51－3 & 5ご30 & 6E－8 & 6ご－14 & 6こーご边 & －¢－ご & 6E－E9 & 64－54 4 \\
\hline MT3 & 5771 & 11－14 & 11－33 & 11－37 & 15－6 & 15－21 & 16－1 & 18－51 & 18－54 & 19－6 & 19－24 & 19－57 & 27－23 & 27－29 & 27－41 \\
\hline & & E7－44 & 2E－8 & ここ－14 & こe－31 & ここ－37 & こ8－54 & 31－5 & 31－13 & 3ご35 & 33－8 & 33－11 & 33－13 & 34－27 & 34－33 \\
\hline & & 34－40 & 35－11 & 35－12 & 35－3コ & 35－35 & 35－37 & 40－27 & 40－29 & 40－53 & 40－54 & 40－55 & 40－57 & 41－20 & 41－35 \\
\hline & & 41－36 & 41－55 & 4E－6 & 4 \(\overrightarrow{\text {－}}\) & 4ごー15 & 42－20 & 4ご54 & 4こ－47 & 4こ－52 & 42－54 & 4ट゙－57 & 43－4 & 43－ 0 & \[
4 \overline{5}-9
\] \\
\hline & & 4こ－10 & 47－14 & 51－ 1 & 5E－1t & Eこーテ9 & 5こーここ & ᄃこー35 & 52－40 & \(5 \pm-16\) & 5t－2e & \(56-29\) & 5t－34 & 60－53 & 60－57 \\
\hline & & くごご1 & ヒこーごも & 64－5 5 \＃ & & & & & & & & & & & \\
\hline MT4 & 5772 & 11－15 & 11－玉？ & 11－36 & 15－7 & 15－12 & 15－2e & 15－41 & 15－48 & 15－52 & 15－57 & 16－2 & 16－9 & 18－52 & 18－55 \\
\hline & & 19－7 & 19－25 & 20－1 & E4－31 & 24－41 & 24－49 & 25－11 & 25－19 & E5－26 & 27－21 & 27－30 & 27－42 & こ7－45 & 28－9 \\
\hline & & 2E－13 & 28－38 & CE－55 & 31－6 & 31－14 & こごず & \(35-1\) & 35－ & 33－14 & 34－2E & 34－4E & 34－52 & 34－55 & \(34-56\) \\
\hline & & 35－5 & 35－14 & ごージ & 55－34 & 35－35 & 40－7 & 40－13 & 40－21 & 40－34 & 40－36 & 40－40 & 40－47 & 40－49 & 41－2゙ \\
\hline & & 4E－25 & 4E－E゙它 & 4E－30 & 4E－31 & \(4 \overline{C-35}\) & 42－37 & 4こ－44 & 4ご－4も & 4E－45 & 42－50 & 4ラー7 & 43－11 & \(4 ミ-13\) & 47－ 5 \\
\hline & & \[
47-19
\] & \[
51-5
\] & \[
51-9
\] & \[
51-14
\] & \[
51-\ddot{\partial} 4
\] & \[
\text { 5こー } 9
\] & 5ご－1̇ & 52－15 & 52－18 & 5e－19 & 5こ－26 & 52－37 & 5シー4こ & 55－54 \\
\hline & & 56－1 & 5b－8 & 5もーご & \[
6 \cdot \vec{E}-\bar{e}
\] & ¢E－E5 & \[
64-56 \#
\] & & & & & & & & \\
\hline MTS & 5773 & 15ー11 & 13－35 & 15－\({ }^{\text {c }}\) & 15－E¢ & 15ーミこ & 15－35 & 20－25 & 20－31 & E4－35 & 25－1ご & 36－9 & 36－14 & ごーごさ & 3 －セ3 \\
\hline & & 41－31 & 41－34 & 41－50 & 4ご 己 & 42－5 & 42－13 & 4c゙－13 & 47－12 & 51－16 & 51－19 & 52－6 & 5b－10 & 5e－11 & 60－20 \\
\hline & & 60－21 & 64．－57 & & & & & & & & & & & & \\
\hline MTb & 5774 & 15－54 & 14－b & 22－5 \({ }^{2}\) & 2こ－53 & 『4－5 & 24－10 & & 31－43 & & & 35－18 & 35－20 & 35－23 & \[
4 \sum-1
\] \\
\hline & & 4ごご & 4．E－53 & 4E－56 & 44－19 & 44－E5 & 44－ご & 46－40 & 46－41 & \(46-51\) & 47－6 & \[
47-7
\] & 49－33 & & \[
52-13
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MT7 & 5775 & \[
\begin{aligned}
& \Xi 3-45 \\
& \Delta 5-3 \sharp
\end{aligned}
\] & 23－46 & 4i－10 & 41－24 & 41－2．7 & \(4 \pm\)－ 90 & 41－33 & 41－54 & \[
41-57
\] & 44－13 & 44－23 & 44－27 & 49－11 & 49－12 \\
\hline NEG1 & 5610 & 47－17 & 54－30 & 54－41 & 61－17 & ¢ \(3-104\) & & & － & & & & & & \\
\hline NEW & 125 & 1－5こ & 3－2\＃ & & & & & & & & & & & & \\
\hline NEWFL & 126 & きー 3\＃ & 8－こ1 & & & & & & & & & & & & \\
\hline NIHES & 5617 & 35－30 & 44－12 & 44－18 & \(63-174\) & & & & & & & & & & \\
\hline homov & 25， 6 & 28－16 & 30－234 & & & & & & & & & & & & \\
\hline NONULL & 27b2 & 3こーご & 3ご－454 & & & & & & & & & & & & \\
\hline NOFRNL & 47bこ & 54－23 & 54－3¢れ & & & & & & & & & & & & \\
\hline notcal & 6.11 & 9－49 & 9－55 & & & & & & & & & & & & \\
\hline NTAEH & 5675 & 14－56 & 15－え5 & 1¢－17 & 44－36 & 56－45 & 50－5： & 6．3－484 & & & & & & & \\
\hline NULLHI & 5746 & 30－56 & 31－15 & こE－57 & 53－5． 7 & 30－45 & 5\％－7 & 55－5 & \(35-45\) & 30－59 & 64－54 & & & & \\
\hline NULLLO & 5747 & 30－57 & 31－13 & ごー36 & 34－1 & 36－46 & 38－50 & 38－55 & 37－33 & 57－36 & 35－37 & \(64-35\) & & & \\
\hline N：TCMI & 205 & 5－45 & 3－574 & 4－51 & & & & & & & & & & & \\
\hline 01 Ot & 5644 & 60－56 & \＆3－ b \(^{\text {d }}\) & & & & & & & & & & & & \\
\hline 010 Cl & 2254 & E5－49 & 26－354 & 30－19 & & & & & & & & & & & \\
\hline 01052 & 5603 & 58－19 & 63－54 & & & & & & & & & & & & ． \\
\hline 013 & 1663 & 21－36 & ごー43\＃ & & & & & & & & & & & & \\
\hline 01504 & 172． & 4－5 & こコーご\＃ & & & & & & & & & & & & \\
\hline 017 & 174.4 & 3－1 & 3－2 & 8－20 & ここー4ご島 & & & & & & & & & & \\
\hline 0177 & 17.0 & E－12 & ここー3を\＃ & & & & & & & & & & & & \\
\hline 017750 & 1741 & E－29 & ここージサ & & & & & & & & & & & & \\
\hline 01777 & 17 こ1 & 15－31 & \[
17-13
\] & 17－43 & ごつ－ミご & こi－4 & ご－ご & ごーごら & & & & & & & \\
\hline 01 Tこ17 & 1742 & 4－1t & ここー4年 & & & & & & & & & & & & \\
\hline 020 & 2245 & ことーミこれ & 32－17 & & & & & & & & & & & & \\
\hline \(0 ミ 7\) & 1745 & 7－50 & 8－5 & 11－4．8 & 1 \(3-14\) & Eこー4ご & & & & & & & & & \\
\hline 0377 & 1747 & E－40 & b－19 & 7－ᄅ & 8－4 1 & 1こーSE & 12－4」 & こ1－33 & ここー45\＃ & & & & & & \\
\hline 03777 & 5634 & \(3-\) こ3 & 13－21 & 1こ－44 & 50－10 & もこー304 & & & & & & & & & \\
\hline \(0 ミ 75\) ご & 5626 & \(53-47\) & 54－10 & cs－sb & \(6.1-5\) & 6こーご4 & & & & & & & & & \\
\hline 041 & 2246 & ごーラご & 29－1E & & & & & & & & & & & & \\
\hline 047777 & 1725 & 2－45 & ここーごも & & & & & & & & & & & & \\
\hline 05 & 1743 & 10－7 & シアー4゙ & & & & & & & & & & & & \\
\hline 050000 & 5630 & 48－9 & 49－ごさ & 57－14 & もアーご我 & & & & & & & & & & \\
\hline O5153 & 5631 & E－18 & \(5 \Xi-4 t\) & 54－52 & ヒミージサ & & & & & & & & & & \\
\hline 057330 & 5632 & ヒミーご\＃ & & & & & & & & & & & & & \\
\hline 076 & 2252 & E4－3E & ごー3フ号 & & & & & & & & & & & & \\
\hline 077 & 1746 & 1或－54 & ごご－44 & & & & & & & & & & & & \\
\hline 0777 & 4344 & 48－4と\＃ & 54－E & & & & & & & & & & & & \\
\hline 07777 & 5635 & 45－56 & 55－44 & らこーご\＃ & & & & & & & & & & & \\
\hline 077777 & 5636 & 11－57 & 24－30 & E¢－10 & セヨーミご & & & & & & & & & & \\
\hline 07702 & 5627 &  & & & & － & & & & & & & & & \\
\hline OESLST & 6061 & 4－1．1 & 7－44 & 65－15\＃ & & & & & & & ． & & & & \\
\hline OFFTTL & 7756 & 8－54 & 16－4 & 1b－5 & 66－34\＃ & & & & & & & & & & \\
\hline OL & 7704 & \[
\begin{array}{r}
8-5 t \\
14-E
\end{array}
\] & \[
\begin{aligned}
& 10-31 \\
& 14-26
\end{aligned}
\] & \[
\begin{aligned}
& 10-37 \\
& 23-40
\end{aligned}
\] & \[
\begin{aligned}
& 10-4 E \\
& 44-26
\end{aligned}
\] & \[
\begin{aligned}
& 11-7 \\
& 47-4
\end{aligned}
\] & \[
11-6
\] & \[
\begin{aligned}
& 1 i-17 \\
& 50-8
\end{aligned}
\] & \[
\begin{aligned}
& 11-40 \\
& 52-4
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1-46 \\
& 53-31
\end{aligned}
\] & \[
\begin{aligned}
& 11-54 \\
& 65-51
\end{aligned}
\] & \[
\begin{aligned}
& 11-55 \\
& \text { bt- } 4 月
\end{aligned}
\] & 12－34 & 1E－35 & \(13-51\) \\
\hline OLI & 5763 & 9－14 & 9－15 & 35－8 & 25－15 & 35－E4 & 64－47\％ & & & & & & & & \\
\hline OL5 & 7703 & 3－4 & 3－46 & E－5 3 & E1－ 3 & ごー 5 & 44－31 & 44－33 & bt－ご & & & & & & \\
\hline OHE & 1713 & 3－7 & 4－21 & E－3 & E－15 & \(9-\overline{7}\) & 9－35 & 10－35 & 10－50 & 11－32 & 12－19 & 13－16 & 13－56 & 1b－5 & 17－9 \\
\hline & & 17－35 & 18－1过 & この－ら4 & E0－57 & ご－1E & E1－51 & ごど－15 \＃ & & & & & & & \\
\hline ONE 1 & 2173 & \[
\begin{aligned}
& 25-37 ش \\
& 3 E-32
\end{aligned}
\] & \[
\begin{aligned}
& 28-11 \\
& 38-47
\end{aligned}
\] & \[
2 \mathrm{E}-34
\] & \[
\begin{aligned}
& 36-15 \\
& 35-29
\end{aligned}
\] & \[
\begin{aligned}
& 31-29 \\
& 37-45
\end{aligned}
\] & \[
\begin{aligned}
& 32-23 \\
& 40-26
\end{aligned}
\] & \[
\begin{aligned}
& 33-5 \\
& 42-52
\end{aligned}
\] & \[
\begin{aligned}
& 3 \overline{3}-10 \\
& 42-24
\end{aligned}
\] & \[
\begin{aligned}
& 33-21 \\
& 42-36
\end{aligned}
\] & \(33 \cdots 28\) & 3ミ－44 & 34－31 & 34－47 & 34－51 \\
\hline OHEE & 5611 & \[
\begin{aligned}
& 15-21 \\
& 60-5
\end{aligned}
\] & \[
\begin{aligned}
& 45-17 \\
& 63-11
\end{aligned}
\] & 47－34 & 47－37 & 47－5 i4 & 48－4 & 4 \(4-27\) & 45－55 & 50－50 & 5－2－25 & 58－16 & 59－10 & 59－12 & 59－38 \\
\hline QTHER & 51 & 1－55 & 2－ & & & & & & & & & & & & \\
\hline OUT & 3300 & 三t－4．14 & & & & & & & & & & & & & \\
\hline FASCHT & 5703 & 10－36 & 16－3i & 18－Eら & 6こ－544 & & & & & & & & & & \\
\hline FCTOV & 2200 & こ4－38 & 25－16． & こ5－444 & & & & & & & & & & & \\
\hline FFFLAG & 5777 & 1－2゙5 & 65－74 & & & & & & & & & & & & \\
\hline FIND： & 5766 & 6ご574 & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline POSNX & 5716 & 13－42 & 23－11 & 52－5 \({ }^{\text {c }}\) & 53ーズ & \(55-8\) & 55－11 & 55－13 & 55－16 & 55－21 & 64－9\＃ & & & & \\
\hline FOSN＇ & 5717 & 13－19 & 25－13 & 53－1 & 53ーゼ & \(55-30\) & 55－33 & 55－35 & 55－36 & 55－43 & 64－104 & & & & \\
\hline FOMRUP & 260 & 1－1E & 4－53＊ & \(5-32\) & 37－1 & & & & & & & & & & \\
\hline Pfi & 4740 & 54－18\＃ & 54－5．4 & & & & & & & & & & & & \\
\hline PFiCFNS． & 1560 & こ0－ご\＃ & 20－44 & & & & & & & & & & & & \\
\hline PRCTRL & 1575 & 10－22 & 20－36\＃ & 20－41 & & & & & & & & & & & \\
\hline FFiCicl & 5733 & 1ごーご & 20－こと & EQ－ミ日 & E0－4．7 & －4ーシゔ & & & & & & & & & \\
\hline PFIGF & 5745 & 30－56 & 31－3m & ここーご & \(32-40\) & 3 こー45 & 32－56 & ここー5 & 3t－50 & 30－ & \(35-10\) & 24－334 & & & \\
\hline FFMTST & 4773 & 54－36 & 54－43 & 54－49\＃ & & & & & & & & & & & \\
\hline Pfifite & 5735 & 3－29 & 53－55 & 54－24 & 54－29 & \(54-31\) & 54－35 & 54－30 & 54－42 & 44－25\＃ & & & & & \\
\hline FWFEFF & 5704. & ¢9－26 & 49－28 & 6ミ－55\＃ & & & & & & & & & & & \\
\hline Plupz & 2ヶ5 & 1－22 & 5－3\＃ & & & & & & & & & & & & \\
\hline QCOEES & 5732 & 12－25 & 20－ご & ¢4－玉ご & & & & & & & & & & & \\
\hline GMIFAM & 4317 & ここー 4 & 48－204 & 4E－5こ & 60－52 & & & & & & & & & & \\
\hline OHTIM & 4345 & 48－474 & 48－56 & 54－0 & 55－15 & 55－57 & & & & & & & & & \\
\hline QडTFS2 & 5734 & 1ご20 & 54－16 & 6．4－24\＃ & & & & & & & & & & & \\
\hline OTFMIN & 4351 & 45－39 & 48－5これ & & & & & & & & & & & & \\
\hline RAMP & 3351 & 30－36 & 34－12 & 37－304 & & & & & & & & & & & \\
\hline FASHI： & 5720 & 55－7 & 56－Eこ & ᄃっ－ご & 5b－3 & 64－i土 & & & & & & & & & \\
\hline RAEHIY & 5721 & 55－ご & 64－12\＃ & & & & & & & & & & & & \\
\hline FASLMC & 5054 & 13－17 & 13－41 & 55－5これ & & & & & & & & & & & \\
\hline FAELOM & 57E2 & 55－20 & 56－12 & \(5 \leq-18\) & 56－Eか & \(56-30\) & 5t－31 & ¢e－se & －4－士 & & & & & & \\
\hline FASLOY & 57 53 & 55－4E & ¢ 4 －14 & & & & & & & & & & & & \\
\hline FAXCEN & 7716 & 1ミー25 & 2こ－30 & 5．-36 & 5 － 37 & Et－Eti & & & & & & & & & \\
\hline FAXPOS & 1035 & 13ーご4 & & & & & & & & & & & & & \\
\hline FAKUND & 5003 & 17－35 & \[
18-2
\] & 55－4\＃ & 55－19 & & & & & & & & & & \\
\hline FAYCEN & & 1こー1 & \[
\text { sd- } 9
\] & & & & & & & & & & & & \\
\hline RAYUND & 5025 & 17－7 & 17－29 & 55ーご曲 & 55－40 & & & & & & & & & & \\
\hline FCOUNT & 3336 & ご¢14 & 27－43 & 3フ－17\＃ & & & & & & & & & & & \\
\hline RDIFCT & 4314 & 48－1先\＃ & 48－3 \({ }^{\text {3 }}\) & 48－38 & 4E－39 & & & & & & & & & & \(\cdots\) \\
\hline FDSiz & ここ10 & 25－54\＃ & 26－ᄅ & t．E－7 & bごご & & & & & & & & & & \\
\hline FECHEF： & 3184 & 34－194 & 35－22 & & & & & & & & & & & & \\
\hline FECOUR & 3042 & こミーラ¢\＃ & 58－\({ }^{5}\) & & & & & & & & & & & & \\
\hline FED & 3476 & 38－34． & 39－17\＃ & & & & & & & & & & & & \\
\hline FENULL & ことご5 & 30－56\＃ & 31－31 & & & & & & & & & & & & \\
\hline FEFEAT & 7770 & 10－30 & 16－49 & 1b－51 & 6e－45\＃ & & & & ． & & & & & & \\
\hline FEFMSG & 1324 & 14－シこ & 14－37 & 1も－484 & & & & & & & & & & & \\
\hline FETH2 & 4101 & 45－ご号 & 45－44 & 4．t－3 & 4t－7 & 46－9 & 4－19 & 47－44 & 45－E9 & 55－45 & 61－15 & 65－34 & & & \\
\hline HETS & 3323 & こ9－7 & 25－30 & 25－43 & 30－7 & 31－35 & こ7－54 & & & & & & & & \\
\hline FFub & 7772 & 21－19 & 2t－1E & ごく－13 & 2t－14 & Et－F：1 & ごっこう & ごージ & EE－19 & 57－38 & 61－39 & 66－47 & & & \\
\hline FUNWLD & こ405 & 2E－1E\＃ & & & & & & & & & & & & & \\
\hline FWEUF & 1731 & 7－51 & 6－8 & こごー304 & & & & & & & ． & & & & \\
\hline FHENAE & こころ2 & E－16 & \(3-21\) & ごくー194 & 2t－55 & こら－きら & 58－20 & & & & & & & & \\
\hline FXOFIN & 士こちら & 17－3¢\＃ & 17－5 6 & & & & & & & & & & & & \\
\hline FXETRL & 1400 & 10－ご & 17－47 & 17－52 & & & & & & & & & & & \\
\hline FXCVEL & 5727 & 12－49 & 17－玉7 & 17－47 & 12－1 & ＊4－17＊ & & & & & & & & & \\
\hline FOCFIN & 1337 & 17－5\＃ & 17－玉゙b & & & & & & & & & & & & \\
\hline FigThl & 1351 & 10ージ0 & 17－174 & 17－こえ & & & & & & & & & & & \\
\hline Fycicl & 5731 & \(1 \bar{c}-41\) & 17－6 & 17－19 & 17－E® & －4－玉10 & & & & & & & & & \\
\hline SACILR & 433 & 7－ご5 & 7－37 & & & & & & & & & & & & \\
\hline SAMFLT & 2702 & 31－47\％ & コご 5 & ぶー 9 & & & & & & & & & & & \\
\hline EAVAL & 5572 & 45－27 & 4．5－33 & 6E－42．4 & & & & & & & & & & & \\
\hline SAVIO & 5573 & 48－18 & 48－ご & 5ごこ6 & 5E－43 & \[
\therefore \Xi-4 \geq \#
\] & & & & & & & & & \\
\hline SAVSA & 5 ごら & 1－44 & 2－56 & 47－46 & 47－40 & \[
47-56
\] & 57－44 & \(58 \cdot 33\) & 58－35 & 58－44お & & & & & \\
\hline ECI & 7700 & 1－37 & 1－4．5 & 1－47 & ご こ & こ－15 & こーご & こーごB & 81－37 & 85－31 & 65－47 & 65－574 & & & \\
\hline SCOUNT & 5766 & \[
\begin{gathered}
5-7 \\
51-1 \frac{7}{3}
\end{gathered}
\] & \[
\begin{array}{r}
5-4 \vec{E} \\
54-17 .
\end{array}
\] & \[
\begin{array}{r}
5-45 \\
54-45
\end{array}
\] & \[
\begin{gathered}
5-5 \overline{3} \\
64-5 \ddot{C}
\end{gathered}
\] & 10－5 & 10－ & 29－15 & こ¢－26 & ご－40 & 50－16 & 50－さこ & 50－26 & 50－47 & 51－4 \\
\hline SET1UF & 520 & E－45 & 44－41 & & & & & & & & & & & & \\
\hline SETFF & 2671 & 31－364 & 31－45 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SETOTS & 64.3 & 10－12 & 1\％－28\％ & & & & & & & & & & & & \\
\hline SETUPW & 675 & 10－54．4 & & & & & & & & ： & & & & & \\
\hline SEVEN & 1720 & 1ご 8 & 1E－18 & ご̇ーご呂 & & & & & & ． & & & & & \\
\hline SEVENE & 5616 & 47－5 &  & & & & & & & & & & & & \\
\hline SFTEIR & 4313 & 48－15\＃ & 4E－2旨 & & & & & & & & & & & & \\
\hline SGNEIT & 1730 & 1－46 & こ－ご & 2－46 & 4－19 & \(5-19\) & 2こ－294 & & & & & & & & \\
\hline SIGHA & 4613 & 50－4．4 & 50－48 & ここーご戠 & 5．2－44． & & & & & & & & & & \\
\hline SIMCLF & 5ごこ & 4t－5 & 5E－40年 & & & & & & & & & & & & \\
\hline EI\％ & 1717 & 15－44 & 15－47 & 15－53 & 15－5 & こモーイ7サ & & & & & & & & & \\
\hline SİE & 5512 & 4－55 & 61－4．7 \({ }^{\text {H }}\) & & & & & & & & & & & & \\
\hline SIEGFF & 5570 & くご & \＆ごー1品 & 6E－17 & 6こー394 & & & & & & & & & & \\
\hline Slact： & 332 2 & ご－14 & 27－20 & ミ7－4\＃ & & & & & & & & & & & \\
\hline SLSF & 5510 & 61－45 \({ }_{\text {－}}\) & 6ご12 & & & & & & & & & & & & \\
\hline SLSF & 5511 & b1－46帾 & 6こ－16 & & & & & & & & & & & & \\
\hline SMASF＊ & 1732 & 1－亏¢ & ここー31\＃ & & & & & & & & & & & & \\
\hline SMFGSN & 3176 & 34－こ5 & 35－27萁 & 35－49 & & & & & & & & & & & \\
\hline SMFi & 4050 & 45－ご佺 & 45－こを & & & & & & & & & & & & \\
\hline SMVAL & 5776 & 45－2 & 45－7 & 45－16 & 45－15 & 45－16 & 65－ 64 & & & & & & & & \\
\hline SMWLD & 3103 & 5－16 & 30－23 & 34－18 & 34－30 & ミもーミ1 & & & & & & & & & \\
\hline SNDMSG & 5403 & 4－7 & 16－5 3 & 17－15 & 17－45 & 18－17 & 20－34 & 65－194 & 60－こう & & & & & & \\
\hline SFCI & 5650 & 5－ 3 & 16－55 & ここー & こ4－17 & 5017 & 53－きこ & ᄃi－35 & 5ご & 3 \(3-414\) & & & & & \\
\hline SPCE & 5651 & 23－10 & 50－23 & 50－27 & 51－E2 & もミー4き\＃ & & & & & & & & & \\
\hline EF\％ & 5652 & こう－1こ & 51－38 & 51－55 & くこー43\＃ & & & & & & & & & & \\
\hline 5 FY & 5653 & ここー14 & 51－40 & 51－57 & ここー444 & & & & & & & & & & \\
\hline Efvocf & 5574 & 5ご 7 & とご534 & & & & & & & & & & & & \\
\hline START & 466 & 4－2？ & 8－14 4 & & & & & & & & & & & & \\
\hline ETEPI & 2473 & 29－17\＃ & & & & & & & & & & & & & \\
\hline STEPA1 & 2771 & ここ－47 & ここー「ご & & & & & & & & & & & & \\
\hline STEFF & 3367 & こと－48 & 3ムー ᄅ & ご－4E\＃ & & & & & & & & & & & \\
\hline STEFOR： & 2751 & 3こーこの & ここ－35\＃ & & & & & & & & & & & & \\
\hline STEFF & 3370 & 2e－45 & 35－47 & ごー474 & & & & & & & & & & & \\
\hline STPHA\％ & 3425 & 37－5b & 3E－19 &  & & & & & & & & & & & \\
\hline ETFHXL & 3426 & 3e－11 & 3セージも & & & & & & & & & & & & \\
\hline EUEE & 40.1 & 4－32 & 44－43\＃ & & & & & & & & & & & & \\
\hline TEMILI & 5577 & 49－17 & もEー57\＃ & & & & & & & & & & & & \\
\hline TANDM & 1774 & こうー t & こ3－15\＃ & & & & & & & & & & & & \\
\hline TC：C & 5737 & 1こー14 & 14．－44 & 14－5 1 & 14－55 & 56－30 & 64－27\＃ & & & & & & & & \\
\hline TCVESE & 5736 & 1ごーシ & 14－54 & 64－2¢\＃ & & & & & & & & & & & \\
\hline TEMF & 7774 & E－1 & ご & 57－55 & 57－5． & 65－45 & c5－4 6 & 68－4．74 & & & & & & & \\
\hline TEMPE & 1710 & もージ & 6－52 & Eご11号 & & & & & & & & & & & \\
\hline TEMFI & 7775 & 1－ミも & ご－5 & \(6 \leq-504\) & & & & & & & & & & & \\
\hline TEMFJ & 7776 & 4－17 & 4－1E & 7－52 & 7－5．3 & 7－54 & 8－9 & \[
5-10
\] & 21－47 & \[
21-55
\] & こえー & \[
28-22
\] & ことージ & 38－37 & \(35-43\) \\
\hline & & 38－5 & 39－3 & ミ5－13 & 3\％－24 & こヲージ & 35－43 & \[
44-4!
\] & 44－43 & \[
61-54
\] & \[
61-55
\] & \[
12-13
\] & \[
66-51 \#
\] & & \\
\hline THEFE & 2556 & ごら－ご5 & 36－15 & & & & & & & & & & & & \\
\hline THFEE & 1715 & 1－49 & ご 7 & 2－19 & 7－1 & 11－42 & ここー 17 ¢ & & & & & & & & \\
\hline THFEE 1 & 2242 & ごーご年 & 35－38 & \(36-55\) & & & & & & & & & & & \\
\hline THFEEE & 5613 & 48－ 8 & 61－12 & もごさ3 & 65－44 & & & & & & ． & & & & \\
\hline THFSHI & 7720 & 50ージ & 50－34 & 6 6 －1㐌 4 & & & & & & & & & & & \\
\hline TIHTH & 4563 & 51－31 & 51－43 & 51－43 & ここーご & & & & & & & & & & \\
\hline THEWI & 5761 & ジー 7 & こ4－こ & ご－E゙4 & ごージ® & ごーそら & E4－42 & c4－5 & こ4－5 & E．4－54 & 5ご47 &  & 64－46年 & & \\
\hline TM34D & 5.762 & ミこー ¢ & 24－\({ }^{\text {3 }}\) & ご5－4 & ES－E & 玉5－\({ }^{\text {¢ }}\) & ご－ご & ご¢ - E & こ5－30 & E5－32 & 5セ－5こ & －4－47 & & & \\
\hline TOF10H & 5607 & 47－5こ & 53－5 & 5こーラさ & 63－9\％ & & & & & & & & & & \\
\hline TGFFOF & \(560 t\) & E0－55 & 63－84 & & & & & & & & & & & & \\
\hline TGTELH & 5712 & 1．5－9 & 1t－15 & 4．4－इ¢ & 5ごア4 & 5E－41 & 64－5 & & ， & & & & & & \\
\hline TOTELL & 5713 & 15－10 & 1t－1t & 44－40 & 5モーシ6 & 5ミ－43 & c4－ \(\mathrm{SH}_{4}\) & & & & & & & & \\
\hline TOTFDH & 5714 & 15－4 & 15－19 & 1t－13 & 44－37 & 64－7\＃ & & & & & & & & & \\
\hline TOTFIL & 5715 & 1．5－5 & 15－20． & 18－14 & 44－38 & 64－E\％ & & & & & & & & & \\
\hline TSCTEL & 1150 & 10－25 & 14－4ご稆 & 14－4b & 14－5 2 & 15－1 & 1ヵーご & & & & & & & & \\
\hline TSTE & 316 & 1－戸う & 5－31 & c－34\＃ & \(5-40\) & & & & & & & & & & \\
\hline
\end{tabular}


TR MESSAEES

TACHOMETER SERVO CURRECTION
END OF WIA SLAN \(x\)

END of RASTERX CYCLE \(n \quad 112000+n\)
END DE RASTER Y CYCLE \(x \quad 116000+x\)
END 0: \(=\) EXP: REPEAT CYCLE \(n \quad 160000+n\)
END OF EXPERIMI=NT 155003
STAKT OF EXPERIMENT 155001
(Fricenita by ib-nicrd Exp jeranticin ibcica)

ORIGIMAL PREE : 3 OF POOR QUALITY
\(\qquad\)
\[
\begin{aligned}
& 114000+x(56: t s) \\
& 120000+n \\
& 110000+n \\
& 112000+n \\
& 116000+n \\
& 160000+n \\
& 155003 \\
& 155001
\end{aligned}
\]
\(\qquad\)
Commend PMODE InSTRUCTION DONE \(-\overline{150000}+P C\) (REL. TO 6060 \()\)
(Fulluwed By The fmstriction) \(\qquad\)

CALIBANTION =N
: OUT 155007

ERROR DETELCED -
(ERRUN
OVERFLON (ON DRTA BL:S)
\[
155555
\]

4-hit courti, 12-bitadfress
155550
133334
- 133335

13333 ;
133332

MEincery Duon
(T. Ulioud hy)

17 xunn -address ann \(x_{8}\) \(x x x+x x\)-contents of allans

\section*{ORIGINAL PRGE S OF POOR QUALITY}


\section*{APPENDIX 4}

EXPERIMENT OPERATIONS FACILITY
INTERFACE UNIT (EOFIU)

The following is a sumnary of the format in which data will be provided to the SMM Principal Investigators (experiments) in the Experiment Operations Facility ( \(\equiv O F\) ) at the output of the EOF Interface Unit (EOFIU):
a. Three lines will be provided to the experimenters (Figure 1). The signals will be output to the user irom line drivers. The schematic for these line drivers is shown in Figure 2.
(1) clock (continuous, with transitions in the middie of each data bit) (Figure 3)
(2) data (bursted)
(3) block envelope
b. Minor frame synchronized Sim data mill be bursted to the experimenters four contiguous minor frames at a
time at 22 f hbps (13.3 ms). The interval between
blocks of bursted data will vary from a minimum of 3 ms to a nominal maximum of 238 ms .
c. The averase data rate from the output of the EOFIU to the experimenters will vary from 16 to 191 kbps.
d. Data within the four minor frame blocks from SM? Irtegration and Test (I\&T) will be convisuous and the same type from block to block. The kursted data within each biock will be the same number of morcs and in the seme format as during operations. The averase data rate from the output of the EOFIU to the experimeaters will be 16 kbps .
e. During operations, the data within the four minor frame blocks will be contiguous and the same type. Each block, however, could be different and be comins in from a different Space Tracking ard Data Netiot: (STDi) site. Two types of data can be received at a time from block to block from any one STDN site, and data irom up to three sites can be receivec from bloct to block [i.e., one block would be real-time (for:ard) telemetry data


from the first site, the next block could be on board. computer ( \(O B C\) ) data dump from the first site, the next block could be playback (reverse) telemetry data from a second site, and the fourth block could be playback High Altitiude Observatory (HAO) data from a third sitel. Any combination of data types (maximum of four) could be received.
f. In order that the experimenters may distinguish between: data types, forward/reverse, and end of data, four words will be used.
(1) SMM telemetry word 3 bits 3 and 4 each will be 0 during HAO data. The other bits can be 1 or 0.
(2) SM telemetry word 3 bits 3 and 4 will be 01 for engineering telemetry format. The other bits can be 0 or 1 .
(3) SM telemetry word 3 bits 3 and 4 will be 10 for science telemetry format. The other bits can be
\(\cdots: 0\) or 1.
(4) SM telemetry word 3 bits \(0,1,2,3\), and 4 will be -- .... -...-. 10011 during flexible format telemetry. The other bits can be 1 or 0 .
(5) SMi byte 3 (3 bit byte) will be 00011000 during OBC dump:. The EOFIU will add the ones to the OBC third byte. Bytes 0,1 , and 2 will be Smin sync.
(6) SM telemetry word 3 will be 11111111 for the EOFIU test pattern.
(7) SM telemetry word 67 bit 0 will be a 1 during dwell mode. Bits \(1-7\) will be dwell identification.
(8) SMM telemetry words 3 and 9 will be modified except during HAO data, dwell mode, anc OBC dumps.
g. Word 8 will be source identification (STDiN site ID), word 9 will contain flags, words 0,1 , and 2 will be SMM telemetry minor frame sync and words 3, 4, 5, 6, 7, 10-127 will be SMM data.
h. Word 8 will allow the experimenters to keep track of each data source (possible two data types per source) and by also using word \(\mathcal{E}\), the Principal Investijator (PI) will be able to determine the type of data from that source.
i. Vord 9 will be set up by the EOFIU such that bits 0,1 , \(2,3,4,5\), and 6 will be flags. Bits 6 and 7 have not been designated at this time. For each block that is transmitted to the experimenters, word 9 bits \(0, .1,2\), 3,4 , and 5 will be set by the EOFIU as follows:

Designation
Not end of data

Forward data
Reverse data
EOFIU self-test mode
S/C I\&T and operations mode
Polynomial check good
Polynomial check bad
Full NASCOM block
Bit \(0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5\)
\(\begin{array}{lllll}\text { Partial NASCOn block } & - & - & - & - \\ \text { Real-time telemetry } & - & - & - & -\end{array}\)
Playback telemetry - - - - 1
j. Bit 0 in word 9 will be set up to zero in all blocks bursted to the experimenters except for the last block. In the last block of that transmission for that data type from that STDN site, bit 0 or word 9 will be set to a one.
k. The word order and number of words in each block bursted to each experimenter will be as follows:
(1) Words \(0,1,2,3-127\)
(2) Words \(0,1,2\), '3-127
(3) Words \(0,1,2,3-127\)
(4) Words \(0,1,2,3-127\)

There will be a total of 512 words in each block bursted to each experimenter. Each word will have 8 bits and be in bit order 0 (MSB), 1, 2-7.'
1. \(\therefore\) Data can be received by the EOFIU in fornard or reverse order (spacecraft realtime or tape recorder playback). In both cases, blocks bursted to the experimenters will be sent word order and bit order in the forward direction as per above. Minor frame order, however, will be different. iDuring forward data, minor frame order will be \(0,1,2,3,4-127\). During reverse data minor frame order will be 127, 126, 125, 124, 123-0.
m. The EOFIU has a self-test mode which will generate two test patterns. These will be two fixed-dummy NaSCO: iblocks. One will simulate forward data, and the other will simulate reverse data. These blocks will be bursted to the experimenter just like real data at 224 kbps. The details of these patterns are provided in Tables 1 and 2. The experimenter will use these patteras to check out and. verify the EOFIU/experimenter interface during equipment installation and checkout and during trouble analysis. During operations, the experimenter may want to reject these patterns or use them for an automatic test whenever these patterns are on the line for troubie analysis.
n. The NASCON data blocks from STDN have polynomial error control checkbits within each block. The EOFIU wili perform a poly-check on each NASCOM block, corpare this check with the STDN error control checkbits and provide the experimenter with the results of this comparison. If this polynomial check is bad, any data within that block can be bad and the experimenter may reject it.
o. If there is any data dropout at the STDN site, that site will send partial blocks to the users. This means that a block can include one, two, three and a partial fourth minor sini frame or a partial of any sin minor frame. During a data dropout, any combination of partial. SMM minor frames can be received. The rest of the data within that. block can be random bits, old data, or someone elses data. The experimenter may want to reject these data.
p. Some experimenters may want to process the SBI: real-time telemetry in near realtime and the playback telemetry at a later date. !iord 9 bit. 5 wil! allow the experimenter to automatically distinguish between these data.

Table 1
EOFIU Test Pattern Normal Forward Output


Table 2
EOFIU Test Pattern Normal Reverse Output

q. The clock envelope will be activated at the beginning of the transmission of the first bit in that block (bit zero of word 0 ) and will end with the end of the last data bit in the last word of the fourth minor frame (bit 7 of word 127). This envelope will be the same signal level as a clock: bit.

\section*{APPENDIX 5}

ACQ
\[
c-3
\]

\section*{Running ACQ}

Starting up

It \(1 s\) first necessary to install the various tasks that interact with each other in the data acquisition process if this has not already been done. Type the following:

LOG 200. 204
ASN DBO:=SY: OINSACO

The command file INSACO installs the tasks and insures that the disk files MAJORS.RAW and ODDBALL.RAW are unlocked. Now type

RUN ACO
ACO should respond with the following question:
ENTER S FOR SCIENCE ONLY, f fOR FLEX ALSO, E FOR ENG.,FLEX, \& SCI.
The answer determines the type of data that will be accepted for processing. An. S response allows only sclence mode data, an \(F\) allows both sclence and flexible format, and an \(E\) allows science, flexibie, and engineering. After you respond, the next question'is:

DO YOU WANT TÓ BYPASS SOURCE CHECKING [Y OR N]
You would normally answer \(N\). A yes response may be necessary to record some types of \(I\) \& \(T\) data since the interface unit does not insert a source code in this mode and the source byte may therefore not be constant. A yes response should never be made if more than one source is expected. The next question:

DO YOU WANT STASH (POSITIONAL MODEI?
should be answered with a \(Y\) to choose the posttional recorder. If you answer \(N\), the following question appears:

DO YOU WANT THASH (SEQUENTIAL MODE) ?
Enter \(Y\) for the sequential recorder. Enter \(N\) only if you want no recording at all.

The next question to be answered depends on your cholce of mode made above If STASH was chosen you should see:

ENTER FIRST LEGAL FRAME (2I BITS MAX) ?)

Vour answer determines the smallest major frame that STASH will consider for recording to disk. The value must not exceed 2097151 , which is the maximum possibie major frame number. The next question for STASH lis:

\section*{LAST}
7)

\section*{ORIGMAL PRAE:ES \\ OF POOR QUALITY}
```

The answe, o ermines the last major frame to be considered. In S..jH the
actual record used for legal (i.e.. Within the above limitsi major frame

* Is the major frame modulus 110E\& plus l or, REC E Mod(mfG,11080)+1.
Hence if limits are set from 1g\& to 2ggg\&, frames 2gg and ll2g\& would be
candidates for the same record.
If THASH is used the following question appears:
ENTER OFFSET FOR DISK
7)
Your response determines the first record to use for the first recefved major frame. Subsequent major frames are recorded in order of reception in the following records.

```

\section*{Run Time Commands}

While ACO is running, it can accept several commands to allow operator interaction. Each of these options is initiated by a ingle input character (without carriage returni). Depending on the option, there may then appear some questions to answer. The options are listed below under the initiater character.

L - change limits. This works only when STASH is running, When accepted, the questions concerning the first and last legal major frame appear. Your answers change them.

T - change time between status reports. The following query appears:
enter status interval in minutes
?)
Your answer must be in integer minutes (fractions are not allowed).
2 - give an immediate status report. The program will also check for expired sources.

A - change acceptance mask. The science, flex, engineering question will reappear, allowing you to enter a new answer.

C - clear a section of the major map. Normally when data is recorded the records are write protected via a map in core. Hence, a retransmission or a wraparound would not be recorded. The map is always cleared when ACO is restarted. The C command allows run time clearing (or unprotecting) of a portion of this map. You must answer the following:

ENTER FIRST MAJOR TO CLEAR
?
LAST
7)

Modulus 11088 of your answer 1 is used.
\(p\) - protect a section of the major map. This is the complement to the C command. Similar questions are asked. This could be used to protect previously recorded data.

ESCAPE KEY - kill current messages. The message buffer is forced empty, f. stopping any accumulated messages. Subsequent messages will be message command below.

CONTROL \(K\) - \(k i l l\) all current and future messages. Type a CONTROL \(K\) when the clattering of the terminal is driving you crazy. It is also useful if you ran out of paper, or for overnight. Status reports are still printed. To reactivate messages, type ESCAPE KEY.
```

 Stopping ACO
 ACQ will perform an orderly exit, closing files and aborting tasks, when you type control z. If this doesn't work try typing ODBg: $208,204 j A B O$ on any terminal. If the system can't get this command file started, try to abort the installed tasks individually starting with SNAT as follows:
ABO SNAT
ABO STASH
ABO THASH
ABO ACO
Then unlock the files:
PIP DBø:[288,284]*.RAW/UN
If all falls, re-boot the computer and start over with ©iNSACQ when you need ACQ again.

```

\subsection*{3.3 PROJECT DATA FORMLATS}

The project data formats (PDF's) for SMM-A are as follows:
PDF-A is designed to contain real-rime 16 kbps data in a forward direction.
- PDF-B handles the 22 kbps onboard computer data dump, and is sent simultancously with format \(A\) in a forward direction to GSFC.
- PDF-C hanoles High Altitude Observatory (ilaO) real-time data at 250 kbps , as a backup mode of operation in the event that the HiAO recorder becomes inoperative. These data will be input to the Disital Data Processing System (DDPS) at 128 kbps and transmitted to GSFC in the forward direction.
- PDF-D contains spacecraft recorder dump data at 512 kbps (hese data will be analog recorced and input to the DDPS at 128 libps, and transmitted to CSFC in reverse order).
- PDF-E contains HAO recorder cump data at 512 hbps (these data will be analos recorded and input to the DDPS at 123 kbps , and transmitted in reverse order).


PDr-F contains spacecrafi recorder dump data, with the same characteristics as PDF-D except the transfer to DDPS is at 256 kbps .
- PDF-G's HiAO recorder dump data have the same characteristice as PDF-E except the transfer to DDPS is at 250 hbps:-
- PDF-H will contain spacecraft rccorder dump data at 512 labps (data will be analog recorled and played back in reverse orcer at a 12:1 reduced speed from the recorder). The playback data rate of the analog tape will be 42.660 kbps.
- PDF-I contains IAAO recorder dump data at 512 Hjps (data will be analog recorded and played back in severse order at 12:1 reduced speed from the recorder; the playback data rate of the analog thpe will be \(42.6 G 6 \mathrm{hbps})\).
- PDF-J coat-ins spacecraft recorcicr cump data at 512 lidps (data will be analog recordel and played back in reverse order at \(6: 1\) reduced speed from the recorder). The playback data rate of the analog tape will be 55.333 libps.
- PDF-K contains HAO recorder dump data at 512 libes (data will be analoy recorded and played back in reverse order at 6:1 reduced speed from the recorder). The playback data rate of the analog - Lape will be 85.335 kbps .
- PDF-L will be real-time data at 1 llbps. This is an emerrency format and will be used to syne the OnC dump in the event it gets out of main frame syme with the real-time 16 hbjs data (data will be in a formard iirection and shouid be transmitted off station of 1 block per second).

PDF's C, D, and E can be direct from an analos tape or from dicital tapes.


Figure 5-5. SMM-A Project Data Formats D, F, H and J. Playback Data 512 kbps from Observatory

Tible 3－1
SMM－A Minor Frame Telemetry Format Mode 2 （sctence format）
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
： 1 NCH \\
flinate \\
जroms \\
ล1月．
\end{tabular} & neschirfion & ID & \begin{tabular}{l}
Minor \\
Finame womb NH．
\end{tabular} & descmiption & m \\
\hline 00 & Flname sysc wold & COH 01 & \(41^{*}\) & SCIENCE DATA & nxis \\
\hline 01 & FHANE SYCC WOHD & Cini 01 & 42 & SCIENCE DATA & Nin \\
\hline 02 & Flasie ssiec woms & Cilil 01 & 43 & SCIfisce，bata & Xhr \\
\hline 03 & TISI FOMSAT，HATE \＆ID & Clail 50 & 45 & Dara Sommee 1 & CRE 20 \\
\hline 04 & schence mata & HiNIS 01 & 46 & SCIENCE DATA & ixis 0 \\
\hline 05 & scurace mata & IINIS 0.4 & 47 & SCIFHCE DATA & IINIS 0 \\
\hline \(00^{0}\) & SCIE：CEL DATA & HATHBS 22 & 48 & FPSS 2 WORI 1 & SACS \\
\hline 07 & SCIESCE DATA & WNubs 23 & 49 & Fliss 2 wohl 2 & SACS \\
\hline 08 & Uロ入ssicalo & Smin & 50 & Fbss 2 woun 3 & SACS \\
\hline 05 & UNASM（bNLT） & SM1M & 51 & Flis 2 wount & SACS \\
\hline 10 & Scunatio bata & Sup 01 & 52 & science mata & HNIS \\
\hline 11 & SCH：CCE J，ATA & X11P 01 & 53 & SCIENCE DATA & II． 175 \\
\hline 12 & Dard smonele 1 & GHE 26 & 54 & SCIENCE Data & IINIns 20 \\
\hline 13 & nate Solmee 1 & Gilfe 26 & 55 & scirnce：data & Hxums 2 \\
\hline 11 & scwece mith & IINIS Of & 56 & SCIT：NCE Data & Mxis \\
\hline 15 &  & IINIS 04 & 57 & SCITNCE DATA & 11：1s \\
\hline 15 & Flss 1 Wrollo 1 & SACS 01 & 58 & SCIENCF：DATA & N115 \\
\hline 17 & FיSS 1 W（mb） 2 & SACS 02 & 59 & schince data & xup 0 \\
\hline 18 & Frss 1 W（）ld 3 & SAc： 03 & 60 & & ，XIr \\
\hline 19 & FSS 1 U＇OnD 4 & SACS 04 & 61 & & \\
\hline 29 & scur：ces bira & HSIS 04 & 62 & data nus 3 & UVSP \\
\hline 21 & Sthatce Data & IISIS 04 & 0.3 & data bus 3 & UVSP \\
\hline 22 & Imotoniont 1 & \(\begin{array}{ll}\text { IIXIS } & 24 \\ \text { HXIS } & 07\end{array}\) & 64） & S／C ClOLK Brrs 7－0 & CIIH \\
\hline 23 & Ane sintug 3 & HXIS 07 & （65） & fliame counter & CDII \\
\hline 24 & Scleticl：mita & IINIS 04 & \({ }^{66}\) & CMid Countel（SEIIFCTED CU） & Cnil \\
\hline 25 & scus：Cl：bata & \({ }^{\text {IINIS }} 04\) & 67 & DWFILI MODE：\＆CIIANNEL ID & Clil 0 \\
\hline 26 & Scluacte bata & XIIP 01 & 68 & SChince data & IIXIS \\
\hline 27 & bxin ampuess & UvSP 05 & 69 & scifince data & IIXIS \\
\hline 28 & Da入 DATA & UVSP 06 & 70 & SCIENCE：bata & uxums 2 \\
\hline 23 & stimes akmton & UVSP 07 & 71 & SCIENCL DATA & Hxulss 2 \\
\hline 30 & DaTi Bus 2 & UVSP 01 & \(\bigcirc 72\) & science：bata & IINTS \\
\hline 31 & Dara bus 2 \％ & UVSP 01 & 73 & science mata & Hxis 0 \\
\hline 32 & Sumcomamuraton NT 1 & CWH OG & 74 & SCH：NCE：DATA & Nup \\
\hline 33 & suHComsurators NR 2 & Clll 07 & 75 & Scimice mata & XIIP 0 \\
\hline 3.1 & mecriven status & （：） 12 & 76 & DATA Soulices 2 & Glis： \\
\hline 35 & OnC bata womb id & OHC 01 & 77 & DATA somuce： 3 & GRE \\
\hline 3 r & Schince mata & ISXIS 01 & 78 & SCHLNCE／H：4 DG SUIMCOM & wicp \\
\hline 37 & schenere nata & IIXIS 04 & 79 & SCHINCE Data & 11.75 \\
\hline 39 & scha：c：IdATA & \begin{tabular}{l}
IlNums 24 \\
lixims 25
\end{tabular} & 80 & OhC bata wond i & Onc 0 \\
\hline 39 & \begin{tabular}{l}
SCHONCE DATA \\
SCIL：CE DATA
\end{tabular} & \[
\begin{aligned}
& \text { ILXIRS } 25 \\
& \text { IIXIS 0. }
\end{aligned}
\] & & & \\
\hline
\end{tabular}

Table 3－1（continued）

\section*{，}

DATA IUM
DARA
bane counter CMU）COUNTER（SEITFCTED CU） DOFILI，MODE：\＆CIIANNEL ID SCIFACE DATA SCLENCE DATA scmencl：bara science data scrince：DAta DATA soulles： 2 min sotmer： SCHENCE／H：NDG SUBCOM SCI：NCE：DATA onc mata woud

All76TO yOOd 10 gis syd

Table 3－1（conttnucd）
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
amnon \\
FRAME： \\
wolld \\
NIR．
\end{tabular} & DESCRIPTION & ID \\
\hline \({ }^{81}\) & OBC DATA WORD 2 & OnC \\
\hline 82 & ODC DATA WOLU 3 & OUC \\
\hline 183 & OBC DATA WORD 4 & OBC \\
\hline 84 & SCIENCE：DATA & IIXIS \\
\hline 85 & SCIENCF．DATA & HINTS \\
\hline ：80 & －S／C CIOOCK brrs 15－8 & S．mat \\
\hline 87 & －S／C Clock nrrs 23－16 & Smat \\
\hline 88 & SCIENCE dATA & HxTs \\
\hline 89 & scirince data & HATS \\
\hline 90 & SCIENCE DATA & hixis \\
\hline 31 & SCHENCE：bara & unis \\
\hline 92 & science data & Hxis \\
\hline 93 & SLLHA（COMP SIILD） & Immbs \\
\hline 94 & Data mus 2 & UvSP \\
\hline 95 & Data bus 2 & uvsp \\
\hline 96 & Suncommuraton nr 3 & CDII \\
\hline 97 & SUBCOMmuta＇toll Mi 4 & CDII \\
\hline 98 & SUDCOMMUTATOLI NR 5 & CDII \\
\hline 99 & SUBCOMmiltatoll MR 6 & CDII \\
\hline 100 & SCIENCE DATA． & Hxis \\
\hline 101 & Science data & HNLS \\
\hline 102 & gCiENCE Data & uximos \\
\hline 103 & science data & mxans \\
\hline 104 & SCIENCE DATA & HxTS \\
\hline 105 & Scifince data & 11.75 \\
\hline 106 & scifnce data & XIIP \\
\hline 107 & SCIF．NCE DATA & XIPP \\
\hline 108 & Science mata & Acrim \\
\hline 109 & Suncon womd & xnp \\
\hline 110 & science data & fixis \\
\hline 111 & science data & IIN： \\
\hline 112 & OHC data wolld 5 & OnC \\
\hline 113 & OLIC DATA WOLD 6 & OnC \\
\hline 114 & OBC DATA WOLD 7 & OBC \\
\hline 115 & onc data wond a & OBC \\
\hline 110 & science data & IIXIS \\
\hline 117 & －science mata & ILSIS \\
\hline 118 & scifince data & Instibs \\
\hline 110 & science data & IIsties \\
\hline 120 & SCIENC：DATA & Hxis \\
\hline 121 & sciencr data & Hxis \\
\hline 122 & scitincti data & Xir \\
\hline 123 & SCIENCT．DASA & SH1 \\
\hline 124 & & \\
\hline 125 & & \\
\hline 126 & DATA BUS 9 & UVSP \\
\hline 127 & data bus 3 & uvsp \\
\hline
\end{tabular}

Telemetry Words saved for UVSP
minor byte.
\[
30,31,62,63
\]
\[
94,95,126,127
\]

27,28

29
\[
35,80,81,82,83
\]
\[
112,113,114,115
\]

32,99
\(33,96,97,98\)
\(\qquad\)
total \(=27\)
contents
data busses fan wat
\(D M A\)
status monitor

OBC messages \(\because \cdots, \cdots, \cdots\)
subcom - includes CAS info
subcom - includes FP SS Fix punter ane

\(\therefore\) DATA FROM EOO INTEGEACE WNIT
4 minor trames


\[
\begin{aligned}
\text { rate }= & 24 \text { kleps } \\
& =\ldots, i, i,
\end{aligned}
\]
Tj

\section*{and Status Bytes}

Mord 3 - Source 10


\section*{Word 9 - Flags}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline flag / bit \% & 7 & 6 & 5 & 4 & 3 & 2 & 1 & \(\varnothing\) \\
\hline forward & - & \(\omega\) & - & - & - & - & - & \\
\hline backuards & - & 1 & - & - & - & - & - & \\
\hline solf test & - & - & ๑ & \(\cdots\) & - & - & - & \\
\hline oporitions & - & - & 1 & い-0tr & & & & \\
\hline good poly. & - & - & - & Ø & - & - & - & \\
\hline bad poly. & - & - & - & 1 & - & & & \\
\hline full block & - & - & - & - & \(\varnothing\) & - & \(\div\) & - \\
\hline partial block & - & - & - & - & 1 & & & \\
\hline real tilic & - & - & - & - & - & 0 & - & - \\
\hline playbiack & - & - & - & - & - & 1 & - & \(\rightarrow\) \\
\hline
\end{tabular}

Vord 07 - Dwoll didy int

an mas:


a) Stripped Major Frame Format

BYTE \#

\(8 \rightarrow 39\)

CONTENTS
4761. (synch)
clock 2 , clock 3
16 bit major frame counter
source ID (word 8)
status flags (word 9)
Shows a : Now R
minor frame map - 2 bits/minor
\(00 \Rightarrow\) missing \(01 \Rightarrow\) bad polynomial check \(10 \Rightarrow\) bad synch \(\quad 11 \Rightarrow\) good
\(40 \rightarrow 55\) date \(\{\) time of reception

56
data format (word 3)
57
\(58 \rightarrow 127\)
\# of minor frame bytes stored
not used
\(128 \rightarrow 154\)
\[
\begin{array}{r}
\text { minor } \# 0 \quad \text { bytes } 30,31,62,63,94,95,124,127 \\
27,28,29,35,80,81,82,83,112, \\
113,114,115,32,33,96,97,98,99,65
\end{array}
\]
\(155 \rightarrow 181\)
minor *1
\(\xi\)

1766-1792wi minor \(\# 127\)


\section*{ACQ MESSAGES}


\begin{tabular}{|c|c|c|}
\hline ：EC & najor & DATE \\
\hline 85.0 & B49 & 19／15／79 \\
\hline 851 & 850 & 10／15／79 \\
\hline 852 & 851 & 10115／79 \\
\hline 453 & 852 & 10／15／79 \\
\hline 651 & 853 & 10／15／79 \\
\hline 855 & 854 & 10／15／79 \\
\hline 850 & 855 & 10／15／79 \\
\hline 857 & 856 & 10／15／79 \\
\hline 0513 & X By\％ & 10／15／79 \\
\hline US9 & \(\times 850\) & 10／15／79 \\
\hline 460 & \(\times 859\) & 10／15／79 \\
\hline 361 & 860 & 10／15／79 \\
\hline 862 & 061 & 10115179 \\
\hline 863 & OG2 & 10／15／79 \\
\hline 064 & 063 & 10／15／79 \\
\hline 465 & 064 & 10／1！／79 \\
\hline 066 & 1365 & 10／15／79 \\
\hline 467 & 366 & 1011！179 \\
\hline 360 & 067 & 10115／79 \\
\hline U69 & 868 & 10115／79 \\
\hline 87以 & 469 & 10／15179 \\
\hline 871 & 87.0 & 18／15／79 \\
\hline 372 & 871 & 10115／79 \\
\hline 073 & 072 & 10／15／79 \\
\hline 374 & 873 & 10／15／79 \\
\hline 875 & 874 & 10／1！179 \\
\hline 876 & 875 & 1）／15／79 \\
\hline 077 & 876 & 19／1！179 \\
\hline 8713 & 077 & 10／15／79 \\
\hline 879 & 878 & 10／！！フフ9 \\
\hline 43\％ & H79 & 10115179 \\
\hline บ11 & 030 & 1011！179 \\
\hline ט82 & 8U1 & 10／15／79 \\
\hline 883 & 002 & 10／15／79 \\
\hline 8144 & リ13 3 & 1511！179 \\
\hline 105 & 084 & 10115179 \\
\hline 8BG & 035 & 10／1！／7 \\
\hline 037 & 9ู6 & 1）／1！／73 \\
\hline 103 & ロu7 & 10115179 \\
\hline 089 & 438 & 10／1！5／79 \\
\hline いう0 & B49 & 10／1！5／79 \\
\hline 191 & U30 & 10／1！／79 \\
\hline 1192 & はリ1 & 1011！579 \\
\hline \リ＇3 & 1392 & 1ヵ／1！／\％ \\
\hline 3り4 & 3！ 3 & 11／1！ 1 リ！ \\
\hline （1）！ & U！ 1 & 1サ11！／7！ \\
\hline 1！！ & 11：3 & 10／1！\％\％ \\
\hline いり＂ & \％！\({ }^{6}\) & 11／1！\％ブ \\
\hline （1〕） & 1197 & 11／1！／7！ \\
\hline 499 & 093 & 10／15／79 \\
\hline
\end{tabular}
\(F P\)


为

393 MAJOR FRAMES


1364
305 MAJOR FRAMES
\(\because \because \quad n\)
\(+++t++++\) \(++++++++\) \(+\begin{aligned} & ++ \\ & ++ \\ & +\end{aligned}\)
\begin{tabular}{|c|}
\hline + + + + + + + + \\
\hline + + + + + + + + \\
\hline + + + + + + + + \\
\hline + + + + + + + + + \\
\hline +t+t+t+++ \\
\hline \(t++++++t\) \\
\hline + + + + + + + + + \\
\hline \(t-++++t++\) \\
\hline ++1+1+t+ \\
\hline ++++++++ \\
\hline \(t++++++++\) \\
\hline + +t+t++++ \\
\hline \(t+t+++t+\) \\
\hline +++++t++ \\
\hline +t+t+t+t+ \\
\hline + + + + + + + + \\
\hline \(t++t+t++\) \\
\hline \(t++t+t+t\) \\
\hline +t+t+t+++ \\
\hline \(t+t+t+++\) \\
\hline +t+tいな+t \\
\hline + + + + + + + + \\
\hline \(t+t+t+t+\) \\
\hline +++t+t++ \\
\hline \(t+t+t+t+\) \\
\hline +t+++t++ \\
\hline \(t+t++t++\) \\
\hline ++++t+++ \\
\hline \(t+1+t++t\) \\
\hline +t+t++t++ \\
\hline + + + + + + + + + \\
\hline + + + + + + + + \\
\hline + + + + + + + + \\
\hline + + + + + + + + + + + \\
\hline \(t++t+t+++\) \\
\hline + + + + + + + + + \\
\hline + + + + + + + + + + \\
\hline + + + + + + + + + + + \\
\hline + + + + + + + + + + + + \\
\hline \(++1++++++\) \\
\hline \(++++1 \cdot++++\) \\
\hline \(\cdots+1+1++\) \\
\hline + + + + + + + + + + \\
\hline + + + + + + + + + + \\
\hline +1+t+t+t+ + + \\
\hline t+t+t+t+t+t \\
\hline
\end{tabular}
\(+++++++++++++++++1+t++t+\)

\section*{\(++++++++++++++++t\)}
HAJOR = \(10 \dot{1} 1\) REC \% 1002
MAJOR \(=1\) IGG2 REC \(F 1003\)
MAJOR \(=1003\) REC \(F \quad 1064\)
HAJOR \(=\quad .1064\) REC 4 10G5
HAJOR = 1OGS REC \# . \(10 G G\)
MAJOR = 10GO REC \(\ddagger\). 1067

HAJOR = \(10 G 0\) REC \% \(10 G 9\)
HAJOR = 10G9REC: \(; 107.0\)
MAJOR = 107.9 REC 1 107
HAJUR = 1071 REC \# 1072
HAJOR = 107 ? REC \% 1073
MAJOR = 1073 KEC \% 107
HAJOR = 1071 REC ; \(\quad .1075\)
MAJOR \(=1075\) REC \(\# 1076\)
MAJOR = 107G REC f 1077
MAJOR \(=1077\) REC \(\because \quad 1070\)
RIAJUR = 1070 REC \(\{1079\)
\(\operatorname{HAJUR}=\quad 1.079\) REC ; 1000
MAJUR = 10Qd REC* 100!
MAJOR \(=1001\) REC ; 1002


\section*{APPENDIX 6}

DATA TAPE FORMATS

Reading UVSF Data Tape

\section*{1 QVERVIEW}

The data from the Ultraviolet Spectrometer and Polarimeter (UVSF; on board the Solar Maximum Mission satellite are organized as experiments uhich are archived on magnetic tapes. The format for these experiments was chonsen to be consistent with that of the Colorado experiment on OSO-8 in order to allow easy adjptation of software already uritten for the earlier mission. The processing of the data was done using a PDP \(11 / 34\) computer running the RSX-1IM operating system which determines some of the physical organization of the tapes. Users of either PDP's running RSX or VAX's running UMS should have easy access to the data tapes using software developed by the UVSP experiment team. Such users may have no need of this document.

Those interested in accessing UVSP without a machine that accepts the already developed software are advised to read both sections 2 and 3 . Section 2 describes the physical format of the tapes and how to organize the data into experiments consisting of logical blocks of 512 bytes. Section 3 descrites the contents and organization of each logical block in an experiment. Those who are able to easily copy the tape files onto disk may only need information from this section. Section 3 would also be necessary for anyone interested in developing independent software for manipulating UUSP data.

\section*{2 fhísical tape files and recorde}

The tapes will generally be labeled with the experiment numbers contained en the tape. About 16,700 experiments have been run but not all are available because of telemetry gaps, etc. The tapes are 9 track 1600 bpi but other formats may be available on request.

The tapes are supposed to de a levei 3 impiementation of the jure \(i 9\), 1974 Froposed Revision of the ANSi Standard Magnetic Tape Labeis and File Etructure for Information Interchange (X3. 27-i969). If software is availacle to hancle such structures, you may consider using it. If not, use the following guide to read the tapes and strip out the actual data contents. The tape siructure is as follows:

ORIGINARL PASE ! 15
OF POOR QUAEITY

terminated by double end of file

Ail of the tape records which actuaily contain the experiment information have a length of 512 bytes. (This is not true of all ANSI tapes but is the standard for UVSP tapes;. The EO byte records just contain various labels. The oniy information in these iabels of interest for UVSF tanes is the file name which is ASCII encoded in bytes 5 through 21 of the first record in each file label (butes 1 through 4 contain the characters HDRI). This file name would be useful if severai files were read from a tape and stored on dist but it is not necessary to identify the experiment.

There are possible excepiions to the structure shoun above. Sometimes a tape mey appear to have extra fileis; at the beginning, usuallu because gf an error in positioning the start of tape. Anything before the first go bite recara should be ignored. Gometimes a tape may have errors resultirg in recoris with i byte more than they shouid have. Usuaily it is safe to just ignare the last byte.

To read the tapes on an aridtrary system, the programmer should have a routine which can read a tape record of length 512 bytes or less and return the actual length as a parameter. The experiments can then be easily identified as files which contain records of 512 bytes each. Any file which contains such records is a data file, any other file is a label file and can be ignored or used as desired. The number of records in an experiment file should always be 3 or more. The largest files can reach 800 or more recoras. The data is interpreted as lé bit words (exeept for a few items in the headers) which may require byte swapping. On these tapes the first byte alyays represents the least significant bits of the 16 bit word while the second is the most significant bits. Many non-DEC machines have the reverse convention (IBM for example) which implies that you must swap the bytes in each pair. Often there is a flag on the tape read routine which will handle this problem. It may even be possible that some machines interpret the bit order in the bytes backwards although l've never seen this.

Once you have the experimert file records stashed somewhere (on disk or another tape) with the bytes in the proper order, the parameters of the experiment and the counts can be decoded as described below.

\section*{3 EXPEFIMENT. DATA STRUCTURE}

Some knowledge of the type of data obtained by the UVSP may be helpfisl in understanding how the data is stored and how to extractit. Refer to Woodgate, et al, (Solar Píysics. 65. p. 73, 1980) for some basic information.

The UVSP experiment files use 512 byte records as a basic building biack. This is the size of a physical disi record on many computers and is theretore the basic I/0 unit for reading and uritting data. Each 512 bute consists of 25 b 16 bit words. The structure of a file is illustrated below:
\begin{tabular}{|c|c|}
\hline block number & contents \\
\hline 1 & file header biock \\
\hline 2 & record header block for logical record \\
\hline 3 & data for logical record 1 \\
\hline & n biocks (last block may not \\
\hline & \(b e\) entirely filled) \\
\hline & where \(n\) is defined in record header \\
\hline & \(n \mathrm{i}\) ( the same for all logical recoris \\
\hline \(n+3\) & record header for logical record 2 \\
\hline \(n+4\) & data for logical rerord 2 \\
\hline
\end{tabular}

The first block of each file is an experiment header which contains information about that experiment including a unique experiment number (the experiment numbers are strictly chronological uith no known exceptions). Table 1 shows all the items in this file header. Item 20 is the number of logical records in the file. Note that not all of the 256 words are used.

A logical record (not to be confused with the tape records discussed above: consists of 2 or more blocks. All logical records for a given file have the same length. The first block in the logical record is a record header. The information format of a record header is shown in Table II. Nate that the first two items are fixed values which can be used to verify that a given biock is a record header. Following this is the actual data. Each data value is a 16 bit number representing the UUSP count. The number of blocks in a iogical data record is always an integer. It can be computed fromeither the file header or the record header. The product of file header items 98 and 99 represents the number of data points in the record. This number rounded up to the next integer multiple of 25 can be used to obtain the number of blorks used for the data. Adding 1 for the record header results in the total blocks per record. The same dimension values are also contained in the record header in items 3 and 4.

Each logical record contains the photons counted by a particular UUSP detector in chronological order. The detector number and the time for the first data point are in the header. If more than one detector is on, their records are consecutive. Often, the experiment data for a given detector is split up into many logical records. If, for example, there are 3 detectors turned on, then the data for a given detector is contained in every third logical record. This detector nesting order is always consistent within a given file and directiy corresponds to the nesting during the experiment.

The structure and length of the data records is related to the lengiths and nesting oriers of the mechanism loops. The following list snows where to find these in the file header:
\begin{tabular}{|c|c|c|}
\hline mechanism & parameter & location in hearer \\
\hline \multirow[t]{2}{*}{\(x\) raster} & \# of vaives & 142 \\
\hline & incremert & 75 \\
\hline \multirow[t]{2}{*}{\(y\) raster} & \# of vaiues & 143 \\
\hline & incremerit & 76 \\
\hline \multirow[t]{2}{*}{wavelength} & \# of vaiues & 78 \\
\hline & increment & 79 \\
\hline \multirow[t]{2}{*}{folarimeter} & \# of vaiues & 84 \\
\hline & increment & es \\
\hline
\end{tabular}

The nesting order is availabie in items 56 through 59 . Gnce the order is knoun, the data collected from all the records for a given detector can be considered a 5 dimensional array with the fifth dimension the repeat count (the last repeat may not be complete because of termination by night. ete). The size of the first 4 dimensions is determined by the loop lengths and the nesting. The number of points in each record uililbe a multiple of some of these loop lengths. This can always be determined by the entries in the file header, but the rule used may be of some use. When generating thesefiles, the program examined the first 2 non-trivial inner loops. If their product was greater than 127, they are used to define each record "array". If net, the next loop length is included until the total product is greater than 127 and this becomes the record size. If the product never reaches i2g, the repeat count is used. However, not all the repeats are necessarily used. They may be divided up among several records in order to keep the size 4096 woris or iess. (This restriction does not apply to cases not using the repeat counti. Any non-triviai dimensions not included in the record array uill be impiicit in the sequence of records for a given detector. The motivation for this scheme was to insure that data blocks are at least haif full (to avaid wasted spacel and to divide the data. into pieces that can usually fit into memory along with the analysis software. When this data is processed on the VAX, the first thing usually done is to clump all the data in the file into one big 6 dimensional array (the sixth dimension is the detectors\}. In the future the data may also be distributed in this form which will greatly simplify loading it into machines that can memory map the entire file.
- version - it amo earliert

RECORD MEADER BLOCROESRIPTIOM REV. MARCH 12. 198
```

 NOND CONTENTS ;
 l ll4444(OCTAL) SYMCH PATTERN
 DIMENSION'
 DIMENSION'
 GAJJ7 (OCTAL) INTEGER CODE (I.E.. DATA IS INTEGER TYPE)
 - Of DATA POINTS (NOT INCLUDING EMPTY LOOPS)
 DETECTOR -
 13-2! RECORD CLOCX FOR FIRST DATA POINT IN RECORD (I-4)
 22 YEAR (E.G. 88)
 24 MONTH DIY OF MONTH
 25 HOUR
 HOUR
 MINUTE
 MESON
 MS
 29-79 OTYTUS MONITOR AT START OF REC {CHANS. 63.8-381
 BI% TVG OF ACTUAL DATA POINTS FOUND
 181-102 MEAN TIME BETUEEN DATA POINTS IN INNER LOOP IN UNITS OF IG MS (FL)
    ```
    193.156 MAXIMUM TIME GAP FOUND (FL.PT)
    103.106 MAXIMMM
\(.105-106\) MINIMUM
\(197-108\) STANOARD SEVIATION (SAMPLE) (FL PT
    \(187-18 \mathrm{STANOARD}\) :OEVIATIO
\(109 \quad\) OF INNER LOOPS
    109 OF INNER LOOPS
    111 COUNT OF :NEXT LOOP
    112 COUNT OF NEXT LOOP
    113 COUNT OF :EXECUTIONS IN THIS RECORD (OFTEN E)
    114-115 MEAN TIME BETUEEN INNER LOOPS
116-117 MEAN TIME: BETUEEN 2NO LOOPS
    118-119 MEAN TIME ' BETVEEN ORO LOOPS
    12I-121 MEAN TIMEIBETVEEN OUTER LOOPS
    122-123 MEAN TIME: BETVEEN EXECUTIONS
    1126-127 MAX FOR NEXT
    128-129 MAX FOR NEXT
    139-131 MAX FOR OUTER
\(132-133\) MAX FOR EXECUTIONS
    132-133 MAX FOR EXECUTIONS
    :134-135 MIM TIME BETUEEN INNER LOOPS
    \(136-137\) M1N FOR NEXT
\(1138-139\) MIN FOR NEXT
    14E-141 MIN FOR OUTER
    \(\therefore 112-143\) MIN FOR EXECUTIONS
    \(1 \cdot 144-145\) STANDARD DEVIATION FOR INNER LOOP MEAN TIME
        \(146-147\) :
        \(\begin{aligned} & 158-149 \\ & 158-151\end{aligned} \quad: \quad\) NEXT LOOP
        152-153 • • EXECUTIONS
    \({ }_{i}^{159}\) MINOR FRAME
    268-223 DMA AT START OF RECORD (7788-7777) (MAY INCLUOE
    INFO. FROM PREVIOUS EXPERIMENT) (CHANS. 31-62)
    note - status monitor data in two segments
-..... .. . . . ...

\section*{VERSION 7 \\ OESCRIPTION REV. MARCH \(12 / 7 / 88\)}

EXPERIMENT HEADER BLOCK
varo
CONTENTS \(\vdots\)
- 1 RE-FORMATTER VERSIOH
-5
- OF CHAINED EXPS. OR \(B\) IF NON
a if complete 1 IF geginning missing. 2 If end missing START TIME(DAY,HR,MIH,SEC)
STOP TIME
NO. OF LOGICAL RECORDS
HO.VORDS PER LOG. REC.
MO. WITIOS PER LOG.REC.
PITCH (ARC.SEC=: YAW )
ROLL (DEG.-1gg)
XCEN- RASTER X CENTER
YCEN- RASTER Y CENTER
TOTAL OF DATA POINTS (I* 4 )
RAN FPSS WORDS
STARTIIG MAJOR FRAME (I*A)
ENDING MAJOR FRAME (I\#4)
YEARIE MINOR.
NO. OF DETECTORS IN INTERVAL 1
NO. OF. DETECTORS IN INTERVAL 2
DETECTOR BALANCE FACTOR
LOOP NEST CODE FOR POLARIMETER(G=INNER)
RASTER \(X\)
RASTER \(Y\)
\(\vdots \quad \vdots \quad \because \quad \vdots \quad\) RASTER
EXPERIMENT:TYPE
HO: OF DETECTORS USED
SCI * OETECTOR WÓRD(B BITS)
DETECTOR YORD(B BITS)
POLR. STATUS ( \(g=O U T, ~ I=A-I N, ~ 2=B-I N)\)
SLIT. STATUS (g=OUT, IEA-IN,
STARTING WLid STEP * (INTEGER*A)
ENOING GATE TIME(SEC.) (FL.PT.)
RASTER DX -
RASTER DY N
NO. OF WLD:STEPS
NO. OF VLD:STEPS
REPEAT COUNT( O OF TIMES TO DO EXP.)
RASTER SIZE(NX=NY).
NO. OF POLR. POSITIONS
NO. OF POLR. POSITIONS
POLR. STEP SIZE
THRESHOLD LEVEL(DMA 7728)
SLIT LETTER CO
TACHOMETER:(SERVO) INTERVAL (-I FOR NO SERVO)
CAL. LOOP CODE (4-SERVO)
EXPERIMENT NO
FIRST DIMEKSIOH OF DATA ARRAY
FIRST DIMENSIOH OF DATA ARRAY
SECOND DIHENSION.
99
\(183-117\)
\(155-1185\)
SECOND DIHENSION
(FD FILES) ERROR SUMMARY
185-117 (FD FilES) ERROR SUMMARY
* 187-121 (PB FILES) ERROR-SUHIMARY

9
\(i\)
\(i\)


\[
\stackrel{M}{\stackrel{M}{i}} \underset{\sim}{i}
\]
\(\omega\)
\(\frac{1}{4}\)
4


\(\stackrel{\#}{m}\)
\[
\begin{aligned}
& \text { 霍 } \\
& \stackrel{y}{\hat{1}}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { \# } \\
4 \\
4 \\
4 \\
4
\end{array} \\
& \begin{array}{l}
7 \\
1 \\
4 \\
4
\end{array} \\
& \begin{array}{c}
m \\
\substack { m \\
\begin{subarray}{c}{m \\
m{ m \\
\begin{subarray} { c } { m \\
m } } \\
{n} \\
\hline 1
\end{array} \\
& \begin{array}{c}
\text { M } \\
\text { M } \\
\text { M } \\
\text { M } \\
\text { M }
\end{array}
\end{aligned}
\]
\(m\)
\(m\)
10
\(i\)
\(i=1\)
M
\(\mathbf{H}\)
B
M

0
0
0
0

号

\(\stackrel{n}{n}\)
\(n\)
0
0
0
0
\[
\sum_{k}^{\frac{1}{2}}
\]


\(\stackrel{n}{\infty}\)
\[
\frac{\mathfrak{a}}{\frac{1}{2}}
\]

\footnotetext{
ORIGNAL PAGEG
OF POOR QUAEITY
}```

