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FOREWORD

This report presents the results of Phase II of a study entitled, "Definition 	 of
'D Technology Development Missions for Early Space Stations - Large Space Structures".

``
The study was conducted for the NASA George C. Marshall Space Flight Center,

- Huntsville, Alabama by The Boeing Aerospace Company, Seattle, Washington. 	 The work
was performed under contract NAS8-35043 during the period from July 1, 1983 through
November 30, 1984, and was monitored by James K. Harrison of NASA. Mr. Richard M.

%i Gates of Boeing was the Study Manager for 	 the program.	 Detailed design of the
technology development mission concepts was accomplished by Mr. Kenneth P. Hernley.
The operations trade studies and operational analyses were performed by Mr. George
Reid. HP and Mr. D. C. Akers conducted the programmatics tasks. 	 Mr. K. B. VerGowe
provided the cost analyses for each of the technology development missions.

The authors of this report, Mr. R. M. Gates and Mr. G. Reid, wish to express their

i, thanks to each of the contributors mentioned above for their technical contributions as
well as their support to the program.
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1.0 INTRODUCTION

The ever increasing thirst for knowledge of the Universe and our planet Earth has

led to the necessity for larger, more accurate space systems. The development and
implementation of the Space Shuttle to provide transportation to low Earth orbit has

provided an important step in the development of these large systems. The next step is

to provide a place in low Earth orbit to construct these systems and to determine the

technical needs for space construction. The costs involved in larger, more precise

instruments are too. great to accept the all-or-nothing philosophy of launching an

automatically deployable satellite system which cannot be fully tested and checked out

on Earth.

The use of the Space Station as a construction site will not only reduce the risks

involved by providing on-the-spot test and checkout but also allow the design to be less

complicated through the use of assemblable structures instead of the more complex

automated systems. Advancements in space suit technology will make human involve-

ment in the construction of large space systems more routine. The Space Station crew

will be able to react to contingencies and make adjustments and repairs before the

spacecraft becomes operational.

The objectives of this study were to define the testbed role of an early Space
>	 Station for the construction of large space structures. This was accomplished by

defining, in more detail, the LSS technology development missions (TDMs) identified in
>	 Phase 1 of this program. Design and operations trade studies were used to identify the

best structural concepts and procedures for each of the TDMs. Details of the TDM

designs were then developed along with their operational requirements. Space Station
>

resources required for each mission, both human and physical, were identified. The costs

and development schedules for the TDMs provide an indication of the programs needed to

'	 develop these missions.

y	 The results of this study point out the need to rely on the resources of the Space

a, Station in the design of large space structures so that they can be constructed and

,.	 checked out at the Space Station. It also identifies the need to design into the Space

Station the necessary resources to accommodate LSS construction.

1
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2.0 MISSION SELECTION

The first step in the design of large space structures (LSS) technology development

missions (TDMs) is the determination of mission requirements. This was accomplished in
Phase I of this study by identifying future missions which require large space structures,

the timing of those missions and the objectives which must be demonstrated to advance

the technologies necessary to bring them to reality. Then, objectives were used to

define TDM requirements. Four TDMs were identified which demonstrate the objectives

and requirements of future LSS missions.

The resulting LSS mission objectives and requirements were reviewed and amended

in Phase 11. The final selection of large space structures TDMs to be studied in detail in

Phase 11 was made following an evaluation of candidates, including the TDMs identified

in Phase 1, against this criteria. The criteria used to.select these missions and a

description of t:ach TDM are documented in the following sections.

2.1 Selection Criteria

The criteria used for TDM selection includes the technology development mission

objectives identified in Phase 1. Additional criteria include the benefits of long term

missions to engineering and science, the demonstration of Space Station capabilities and

the desirability of high technical return on the investment. The selection criteria is

summarized in figure 2.1-1.

First, the missions must demonstrate the technology advancements which are

needed to satisfy the objectives of future spacecraft requiring the use of large space

structures. These objectives include large space systems construction which encompasses

the techniques required for structural deployment, assembly and fabrication. This

includes the development of advanced materials for use in future space systems. Many

future space systems will require high precision and high stiffness to fulfill their mission

requirements. Following the construction of the structural assembly, the subsystems and

utilities which are not an integral part of the structure must be installed. One of the

tasks which is common to a variety of large space systems, particularly antennas, is the

installation of membrane reflector surfaces. Subsystem installation will be a time
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I Demonstrate technology development mission objectives
Specs deployment or assembly of laal)s space structures
Specs essembly of rigid, high-precision structures
Installation and checkout of subsystems on LSS
Installation of membrane surfaces on large aperture
antennas
Recision control of LSS (pointing and figure control)
Adaptive optics; assembly, test, calibration and
control of large multi-mirror surface
Demonstrate man's role and capabilities in space
Materials development

Provide long term benefit
As a scientiV#; instrument
As a technology development test bed
As a permanent space station facility

Emphasize the benefit of a Space Station
Stable construction base
Longtimeline capability
TOM checkout and .adjustmem
Orbit maintenance

Accomplish TDMs at a reasonable cost

I

1

i

Figure 2.1-1	 TDM Selection Criteria

Another requirement which must be demonstrated is the precision control of large

?dace systems. This not only involves the overall pointing and attitude control of the

space system but also the figure control of critical surfaces such as antenna reflector

surfaces and multi-faceted reflectors such as those envisioned for optical and IR
telescopes.

The use of -the Space Station as a construction site brings another valuable resource

to the developme >.1t of large space structures --- human involvement. The TDMs must be

designed to demonstrate the role which humans will play in the process of space system

construction and checkout.

Second, the TDM should provide a long term benefit to the development of large

space systems or the Space Station, and not be a "dead-ended" experiment. This

objective can be accomplished in several ways. The TDM can be designed to be a usable

scientific instrument following its use as a technology demonstration mission, or it can

be used as a testbed for the development of new and advanced technology, or it can

become a permanent Space Station facility which satisfies a need.

^i
Third, the selection of the TDMs must emphasize the need for a Space Station. The

attributes of a Space Station which would enhance large space structures development
"r`-
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include the ability to provide a stable construction base and the resources necessary for

projects which require a longer time than can be provided with the space shuttle. The

ability to provide the personnel, instrumentation and materials for system construction,
checkout and maintenance will reduce the costs and risks involved with large, expensive
systems.

Finally, the TDMs should be capable of demonstrating the required LSS technology
at a reasonable cost.

2.2 Selected Missions

This section gives an overview of the technology development missions which will
satisfy the mission objectives and other criteria discussed in the previous section.

2.2.1 Co;sstn=tion/Storage/Hangar Facility, LSS-1

Since most mission objectives require a storage locat ion for structure, subsystems
and other equipment and a location for assembly and checkout of spacecraft, the
construction and storage facility shown in figure 2.2-1 was chosen as a TDM configura-
tion.1t consists of a deployable 'truss pl.!tform attached to a transfer tunnel located at a

I
i

i

i
P
h

'T1	

i

N

^i

h	

'^

i

1

Figure 2.2-1	 Construction/Storage/Hangar Facility, LSS-1
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docking/berthing port on a Space Station module. A pair of rails supported by truss
	 j

members would duplicate the orbiter bay longerons for the a;torage of large modules
delivered to the Space Station. Compartments could be installed within the truss

s.

	

	 members to provide storage for small items such as tools, hold-down mechanisms,
auxiliary .lights, etc. Segments of the platform could have floor panels installed to

x.	 provide storage areas for small modules and other equipment. This TDM was combined
with a lightweight protective hangar (previously designated as TDM LSS-2) designed to

k., protect EVA astronauts whsle performing tasks such as satellite servicing and refurbish-
ment. It would protect the crew and equipment from solar heating, would provide
containment in the event a small object floated free, and would provide untethered
freedom for the crew when fully enclosed. Some of the panels would be permanently
attached to the platform while the "roof' is retractable using extendable masts. The
hangar would contain lights for illumination during EVA activity.

This TDM will satisfy several of the LSS technology development objectives:
deployment and assembly, subsystem installation and checkout, and demonstration of the
role of man in space. It is also designed to become a permanent Space Station facility, 	 i

providing a needed location for future storage and construction.
r

Further details of the Construction /Storage/Hangar facility are discussed in Section
3.3, Mission Design.

2.2.2 Passive Microwave Radiometer, LSS-3

A large antenna system can be used to demonstrate a variety of mission objectives.

The antenna system may serve as a test bed used to evaluate membrane surface
	

I

installation techniques anti various reflector shape control systems. It can also provide
maximum benefit by being a functional antenna system upon completion of the
technology demonstration. Construction of the antenna system will require both deploy-
able structures and space assembled structures and subsystems. 	

r	 i

The antenna system selected is a version of a microwave radiometer spacecraft
(MRS) which can provide Earth resources measurements for soil moisture sensing and
global crop forecasting. The microwave radiometer was selected as a TDM for several
reasons: ( 1) a MRS of large, but reasonable size ( 100 meter diameter) can be functionally
operated in LEO after the addition of electronic sensing equipment, (2) it doesn't require
a gimballed pointing system since both the Space Station and the .MRS are Earth

6
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Figure 2.2-2	 Passive Microwave Radiometer, LSS-3

The configuration and design details of the radiometer are discussed f
Section 4.3.

2.2.3 Precision Optical System, LSS-4

The precision optical system shown in figure 2.2-3 is a TDM which can b
demonstrate a number of LSS mission objectives. The optical system require

7

i

D180-27677-2

oriented, and (3) fallowing its use as a TDM, it can be equipped with control and

propulsion subsystems and placed in a higher orbit (600-700 km) to continue its use as a
f,	 scientific instrument.

The basic configuration of the microwave radiometer spacecraft is shown in figure
2.2-2. The reflector is a spherical segment, 100 meters (328 feet) in diameter, Nvith a
spherical radius of 158.6m (520 ft). A 104 meter diameter torroidal ring provides support
to the reflector surface control cables as well as continuity between the dish surface and
the support columns. The ring will also provide mounting support at nodal attachment
points for subsystem modules and the construction fixture. The support ring is of
pentahedral truss construction, utilizing 18 meter tapered columns as the structural
elements. The deployable feed array truss beam is supported by deployable truss
columns and sta-)ilized by four cables attached to the truss ring.
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Figure 2.2-3	 Precision Optical System, LSS-4

stiffness, accurately shaped truss structure to support a segmented mirror surface. The
primary mirror system is envisioned as a modular assembly with each set of seven mirror
segments attached on the ground to a deployable/assemblable backing truss. The backing
truss is semi-deployable for efficient packaging in the Orbiter. Each module is then
assembled at the Space Station and connected to the adjacent module to form the
primary mirror array. The secondary mirror is supported by a tripod structure attached
to the primary mirror backing truss. The whole instrument is then surrounded whir a
cylindrical light shield. This TDM demonstrates the deployment and assembly of a rigid,
high precision structure and the role of man in this process. The structure can b ' used to

advance the technologies involved with the precision control of segmented surfaces, the
inclusion of damping augmentation, and the thermal control of optical systems.

Although the detailed development of this TDM was curtailed half way through the
study, more details of this mission are included in Scction 5.3.

8
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3.0 CONSTRUCTION/STORAGE/HANGAR FACILITY, LSS-1

This section is a self-contained description of the tasks relating to the development
of the Construction/Storage/Hangar Facility, LSS-1. Included in the study are design and
operations trades, detailed structural design of the mission, an analysis of the operations
required to perform the mission, precursor technology developments which can be
accomplished on Earth or with Shuttle flights, and the programmatics of the mission. In
addition to these topics, the accommodations which the Space Station must provide to
the TDM are identified and, conversely, some of the problems and concerns which the
TDM may impose on the Space Station are considered.

3.1 Design Trade Studies

The design issues relating to LSS-1 which were subjected to trade studies relate to

the configuration, the materials used and the interfaces with the Space Station. Each
will be discussed individually in this section.

3.1.1 Truss Type

\, I	 Several options exist for the type of truss which can be used for a construction and
storage platform- a tetrahedral truss, a pentahedral truss or a hexahedral truss. Plan

views of each of these trusses are shown in figure 3.1-1. The tetrahedral truss consists

of a repeating pattern of pyramids whose base is triangular in shape. The repeating

pattern for the pentahedral truss is also a pyramid, but with a square base. The

hexahedral truss is made up of a series of cubes.

Physical characteristics of each type of truss such as mass, stiffness and number of
structural elements were calculated to assess their relative advantages and disadvant-

ages. To base the assessment on an equal basis, the physical parameters were calculated
per unit area or, in some cases, per unit length. Other characteristics such as the shape
of the repeating pattern, the accessibility of the volume within the truss, and the overall
complexity, which don 't lend themselves to qualitative comparisons were considered in a
qualitative assessment.

Figure 3.1-2 gives a summary of trade study results used to determine the type of

truss to use for LSS-1. The flexual rigidity is an equivalent plate bending stiffness per

unit length, and the frequency parameter is the square root of the bending stiffness

9
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Figure 3.1-1	 L55-1 Truss Type Options
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CHOSEN

TETRAHEDRAL PENTAHEDRAL HEXAHEDRAL
TRUSS TRUSS TRUSS

1.21 1.22 1.31
1.19 2 107 1.04 R 107 1.17 2 107

3093. 2920. 2989.

2.9 2.4 3.9
.66 ,97 .63
1.60 1.44 1.62

TRADE ITEMS

MASS PER UNIT AREA, M (KG/M2)
FLEXURAL RIGIDITY, D IM-N)

FREQUENCY PARAMETER, jT
NUMBER OF ELEMENTS PCR M2
NUMBER OF CLUSTER JOINTS PER M2

NUMBER OF KNEE JOINTS PER M2

1

i

OTHER CONSIDERATIONS:
SHAPE OF REPEATING PATTERN TRIANGLE	 SQUARE	 SQUARE
ACCESSIBILITY OF INTERIOR VOLUME FAIR	 GOOD	 POOR
COMPLEXITY LOW	 MEDIUM	 HIGH

Figure 3.1-2	 LSS-1 Truss Type Comparisons

divided by the mass per unit area which is a relative measure of the structural vibration
frequency. Based on these comparisons, the tetrahedral and pentahedral trusses are

lighter than the hexahedral truss, the tetrahedral and hexahedral trusses are stiffer than
the pentahedral truss, but the frequency parameters are within 6 percent of each other.

10
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The pentahedral truss has fewer elements and joints per unit area than the other two

trusses. The square repeating pattern in the truss surface for both the pentahedral and
hexahedral trusses is considered an asset because it results in a linear truss edge. The
requirement for diagonal shear ties in all faces of the hexahedral truss makes access to
the interior of the truss very difficult, while the pentahedral truss provides the easiest

	

s t	 access. Because the tetrahedral truss does not require extra shear ties for stability, it is
judged to be the lowest in complexity.

r
The pentahedral truss type was chosen for LSS-1 because it has the lowest number

of members and joints, it has low weight, its square repeating pattern is better than a
y

triangular pattern, and it is judged to be less complex than the hexahedral truss pattern.

3.1.2 Truss. Configuration

The two candidate truss configurations considered are shown in figure 3.1-3. The
choice between a planar configuration and a "winged" configuration is primarily based on
qualitative reasoning. Although the planar configuration is somewhat simpler and
provides a large flat surface, the storage of modules or equipment on its surface may
impair its ability to support construction of large space structures unless the construc-
tion fixture was high enough so that stored items were out of the way. The winged
configuration reduces this problem by providing a raised attachment point for LSS
construction projects. This configuration also has higher overall stiffness and provides a
variety of attachment opportunities.

CHOSEN

PLANAR
WINGED

i	
Figure 3.1-3	 LSS-1 Truss Configuration Trade Study
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`	 3.1.3 Space Station Interface

The options identified for the attachment of LSS-1 to the Space Station, shown in
figure 3.1 -4, include three methods of berthing port attachment and one for attachment

to a Space Station module. The latter is the preferred method of attachment since the

	

-	 platform loads induced by disturbances such as orbiter docking are distributed to many

attachment points. This method also results in higher stiffness. Attaching to two or
I

more berthing ports helps to distribute the loads. The single berthing port attachment

BETTER

HERMEM
MULTIPLE PORTS

Figure 3.1 -4	 LSS-1 Space Station Interface Trade Study

scheme results in the highest loads and may require additional bracing to reduce the

interface loads.

Since the Space Station is in its design infancy, the center mounted concept with

auxiliary bracing (if required) was selected for this study. This design could easily be

modified to a different attachment concept at a later date.

12
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3.1.4 Structural Materials

Graphite/epoxy composites were chosen for the structural elements of LSS-1 and
invar was chosen for the structural joints and fittings becaus- of their low coefficient of

thermal expansion (CTE) and their high specific strength. Annough traditional materials
such as aluminum are less expensive, the dimensional stability of graphite/epoxy makes
it more desirable. Advanced composite materials such as metal matrix composites are
also high strength, low CTE materials, but are currently being developed and are

expensive. The recent discovery that organic materials may be significantly degraded

when exposed to atomic oxygen in low Earth orbit may affect the choice of

graphite/epoxy unless a means of protecting it from atomic oxygen can be devised.

Aa,3i:ional research in this area is required to quantify this effect.

Thin aluminum sheets were selected for the hangar panels because of the lower cost
and ease of manufacture. These panels do not need to carry structural loads and can be

attached to the truss so that thermal expansion does not affect the truss. They can also
be polished or coated to reflect solar heat.

3.1.5 Hangar Configuration

Figure 3.1-5 shows two candidate configurations for the hangar. The choice of the

planar configuration was based primarily on qualitative assessments. Although the cylin-

^T

T

1V \/I\/\/
Figure 3.1-5	 LSS- 1 Hangar Configuration Trade Study
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drical shape deployable roof maximizes the interior volume for a given roof height, the
deployment of a curved extendable beam is technology not currently available. The
planar configuration which uses deployable panels similar to the deployment of solar
arrays was, therefore, selected for the hangar.

3.2 Operations Trade Stu&wi

This section summarizes the operations trade studies completed during the LSS TDM
contract.

3.2.1 EVA Crew Schedule

To the extent that a high level of LSS EVA construction performance will be
required on what will approach a twenty-four hour per day basis, serious consideration
must be given to the selection of the work-rest schedule. 1-G work-rest-sleep cycle data
may not be a 1 for 1 application to 0-G work-rest-slrrep cycles. Shifts should be limited
to a duration that will preclude the development of task-specific fatigue or boredom.
With the anticipated exposure to specific EVA construction tasks on a day-after day
basis, shifts that seem to be suitable at the beginning of a mission may become long
after a period of several weeks or months. In addition, the sleep periods should be
arranged so that they will come at essentially the same time each day so that adjustment
to (or in) the circadian rhythms will be facilitated. These two factors considered
together are simply a trade-off between the necessary or desirable duration and numbers
of sleep periods and the duration of the LSS EVA construction shifts.

The primary factors to be considered in the selection of the length and timing of the
EVA construction shift relate to the nature of the activity required of the operators in
the performance of their duties. Account must be taken of both the levels and varieties
of the demands placed on operators in carrying out their tasks.

An important psychological factor underlying this distinction is the effect that
different kinds of tasks exert on the operator's level of alertness. Passive tasks produce
or contribute to decreased alertness whereas, at least up to s^me level of workload,
active tasks tend to sustain or increase alertness. The variety of tasks also tends to
promote alertness. However, moderately high workloads on tasks that require the
simultaneous performance of psychologically disparate functions (mental calculations
and code solving) tend to make operations vulnerable to losses in alertness. This is
especially true for task combinations in which timing is critical.

14
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If tt,e operators have control over their rate of activity, they typically work at or

near maximum rate for a period; they then take either an official or unofficial rest
break, after which they resume their original rate. Thus the period of continuous work in

most jobs is typically about two hours and is seldom longer than four hours.

This suggests that shifts on the order of four hours represent the duration of

performance that should be expected as a matter of routine without encroaching on the
maximum efficiency of the operator. When the level of performance necessary to
satisfy the LSS mission requirements is substantially below the operators maximum
capabilities, this figure can be increased. But, in determining how much it can be
increased, the probability that an emergency might arise that would require maximum
capabilities and the speed with which the operator would have to be able to exercise
those capabilities becomes an important consideration.

Fortunately, except when their condition has reached a point of extreme deteriora-

tion, they can rather quickly rise to most any situation. The critical questions are, "How
rapidly must they rise? how far? and for how long?"

In earth bound shift work it has been found that a deterioration in performance

occurs during the night shift. Performance has been found to be slower, less accurate,
and accidents are likely to be more frequent.

The ideal shift cycle would be one in which the total "daily" periodicity equals 24

hours, distributed in a manner to which humans are already adapted. The 90 minute day-
night cycle of orbital flight makes this ideal rather difficult to attain in the operational

situation.

Human ability to adapt to an atypical (non-earth) work-rest cycle has been found to
take one week or more. Average times required are in the range of 2-3 weeks for
complete adaptation. All reports seem to agree on the wide degree of variation in the

-C rate and completeness of adaptation and the work out-put after adaptation. Experienced
shiftworkers show some long-term adjustment as a result of prolonged experience with a
particular shift system. It is possible that as little as a five day adaptation period may

i	 be required for these crewmembers to reach their normal functional level.

Efficiency during task performance is a major concern. Efficiency of performance
follows a 24-hour rhythm. It is low upon arising, shows an initial ascent phase, a plateau

IL 	 in the middle of the day, and a terminal descent phase. Performance immediately upon

15
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getting up from a period of sleep is often poorer than it was just before retiring and is

worse immediately after deeper stages of sleep. Over a long period of time these
circadian periodicities in efficiency have direct implications on the performance revels
to be expected of Space Station EVA personnel. In addition individual differences may
affect operator shift performance by affecting the subjective health and motivation of
the shift worker.

Initially, it would appear that a schedule should be selected that would require the
operators to perform only during the high portion of their daily curve of efficiency. This
would, in theory, provide on the order of 10 to 12 hours per day of high-level
performance. However, the literature suggests that ten hours represents too long a
period of work at one stretch to expect performance to be maintained without at least
an increase in the probability of errors and/or decrements in performance.

Other factors affecting the work rest cycle include:
a. The number of crew members on board the Space Station.
b. The duty assignments or responsibilities of each crew member.
c. The need for time sharing of work ;pace and facilities.
d. The need for equal division of task loading, rest, and sleep time.
e. The operator's observed pressure to complete the EVA mission.
f. The level of risk as perceived by the crew members.
g. Emergencies situations.
h. Recharge requirements for EVAS.
i. Mobility and dexterity of the EVAS.
j. Ease of EVAS operation.
k. Suit comfort.
1. Number of crew members involved in the EVA tasks.

The best work rest cycle should be one adjusted to duties, independent of the
ambient sun-shadow cycle and not necessarily corresponding to the time pattern of the
earth day-night cycle. 'this non-earth cycle should be one to which the astronaut should
be able to adapt in a reasonable amount of time and with which they can maintain
synchronization of their metabolic clock to ensure their best psychological and phy io-
logical performance.

The general conclusion reached is that humans are fairly well accustomed to a
sleep-wakefullness cycle of a 24-hour duration and that they have diurnal variations in
both performance and physiological functioning that coincide with this rhythm. When an

16
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atypical cycle is imposed, their physiological rhythms may be expected to show some

	

_	 adaptation to the non-earth periodicity, but adaptation is not likely to be complete nor

to be uniform for all individuals. Concomitant decrements in performance, however,

may not occur, especially if the sleep -wakefulness ratio is held constant. The
performance decrement, whatever its degree, is precipitated by the imposition of

	

` e v	 itvoical work-rest -sleep cycles and can be minimized in the following ways:

1) Avoid any non 24-hour work -rest-sleep cycle.

2) Establish permanent shift systems that maximize both short and long term crew

adjustment. Where this is impossible, empio^ pre-flight, presynchronization

periods for crews using the ncn 24-hour cycle proposed.

3) Coordinate pre-flight pre-synchronization with the abilities of the individual

	_	 crew members to adapt (those who adapt least well should be kept close to their

	

_	 typical schedule).

	

J	 I	 'I
Local (orbital adaptation can be accomplished by new crew members as they are

(	 rotated to the Space Station if they are not required to go on duty immediately upon	 j

\	 arrival.	 1
!	 t

The results of this analysis indicates that the crew should follow a normal 24 hour

(work-rest-sleep) cycle. The crew workday should be nominally 6 actual EVA hours as

shown in figure 3.2-1. Suit care and work review will require several additional hours
i	 -

each day. The EVA crew should also average 10 minutes rest per hour of work, with a

longer (15 min) lunch break in the middle of the work period.
i

Three operators per shift (2-EVA and 1-IVA) will be required, full time, during LSS

II	 EVA construction activities. The ability to operate more than 1 shift per day will be

dependent on the Space Station crew size and other scheduled Space Station activities.

Two or three shift operation could result in conflicts in the use of facilities and high

noise levels while other crewmembers are trying to sleep. For the LSS TDM EVA

construction activities it is recommended that I shift per day be utilized.

r Operators are accustomed to working five days a week with short bursts of six or

seven day activity. Requiring six or seven day weeks on a sustained basis will result in

operator fatigue and a loss of efficiency. It is recommended that a 5 day LSS EVA

17
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Figure 3.2-1	 Typical Daily EVA Schedule

construction schedule, as shown in figure 3.2-2; be utilized allowing 1 IVA work day per

week for paperwork and suit care and maintenance.

I^	

#

it

k

7
i

e ^

Figure 12-2	 Typical Weekly EVA Schedule

3.2.2 EVA Personnel Restraints

1	 ''

In order to optimize efficiency during LSS EVA construction tasks, adequate

restraint devices or systems must be provided. The LSS TDM EVA operators need 	 I.
adequate restraints to enable them to maintain their position, counteract torque, and aid
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y	 in translation while accomplishing mission assembly, deployment, test, and operation.
_	 Currently on STS missions, in addition to the tethers used, the EVA operators stabilize
f

	

	 themselves with one hand or try to wedge themselves into position with their feet. They
also need to counteract the reactive torque that results from their EVA activities, and
counteract the forces generated during torque requiring tasks (i.e., torquing nuts .and

Rr	 bolts, hand cranking, parts alignment, and the application of force).

i

	

	 The Space Station must provide a restraint system for EVA personnel. The

crewmembers need a restraint system to help counteract /provide torque and stabilize
' the EVA crewmembers at their work stations. During translation astronauts need a

syv em to aid them while spanning long distances, plus a safety device (i.e., inertia reel)
it case their tether fails or they loose their grip. The design of the restraint system will
have a large impact on the final LSS TDM construction time lines. Restraint
attachment, methods of restraint between work locations, number, and type of restraints

y	 all have an impact.

'	 Strap tethers are simple to use and fairly inexpensive. Flexible tethers also tend tor
flop around during translation and other work activities. In addition they could be a
hazard or damage delicate equipment if they strike it or get tangled in the equipment.

strap tethers don't provide adequate restraint to counteract the torque forces generated

during mission activities.
'C r

4	 Wrist tethers are fast, convenient, and easy to use, see and reach. They, however
.^

	

	 restrict arm movement when attached to the Space Station or work area. They also get
tangled up in equipment or closed in equipment or storage cabinets doors. This causes a
safety hazard as doors and lids could get warped or broken from being closed on the

restraint. Figure 3.2-3 shows an example of the type of wrist tethers used on STS
flights.ii

L

	

	
Flexible waist tethers are attached close to the operator's CG. They require that

the operator use at least one hand during construction activities to hold their position

and counteract torque. Waist tethers are generally difficult for the operator to see and

x'
attach. They do not stabilize the operator because of the flexible straps.

^^	 Rigid waist tethers are also attached close to the operator's CG. They allow the
l'	

operator to use both hands during construction activities rather than using them to hold

his position and/or counteract torque. Rigid waist tether harnesses are generally
difficult for the operators to see and secure. They do not stabilize the operator well as

19
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Wrist and waist Tethers are u%ed to attach a crew member to a worksite or to tether
tools which are not capable of be+n4 stowed during the work penod.

Figure 3.2-3	 Wrist and Waist Tethers

the attach point is at the waist. This allows the operator to rotote around the wais'

when trying to apply torque or position himself. -this type of tether mechanism requires

mare storage space and needs to be transported to tl.e work site. Figure 3.2-4 shows an

example of one type of waist restraint.

Safety lines are currently used on the STS EVA. missions to keep the astronauts from

drifting off during their EVA activities. The current safety line systeri could be

problem. Crewmembers could get tangled when translating long distances, when near

other safety lines, or when around equipment and/or experiments. C".'rrently on STS

missions an inertia reel (see figure 3.2-5) is used to take up the slack in the safety line.

During the STS-6 flight EVA the lire get bound up when a test was conducted to
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C'
	 Figure 3.2-4	 Restraint Belt

determine its retrieval capability. The current system is cumbersome. The large bulky
reel has -to be near the operator so that he can reach it and see it. The reel is attached

	" 3 	 to the operator by a snap. Tension from-the reel keeps the safety line out toward the

attach point on ,the work station. EVA operators have to be careful when passing or
working near one another so that safety lines do not get crossed and/or tangled. The

EVA crewmember also has to be careful so as mit to become tangled in his own safety
line.

r

^r
Volv 

a^

E
}

Velcro holds well in shear but is not adequate in peel. However, when trying to

apply torque it tends to work loose. The use of lots of velcro on the EVA suit creates a

problem because crewmembers could inadvertently become secured when bumping into

matching velcro. Also, loose tools, with velcro attachment patches, could stick to the

suit in hard to reach places. There is also a contamination problem because of the

outgassing of the adhesive that is used to secure the velcro to the desired surfaces. In

addition long term usage causes hooks to break off resulting in loss of holding power and

additional contamination from the small hook particles. Velcro is easy to attach in

additional areas if needed at the work site. The use of velcro allows adding a variety of

work positions to the construction area and facilitates the adding of temporary work

stations.
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The Fitty-foot Safety Tether attaches the extravehicular rrew memoer to the Cargo Bav
door slidewrre at all times when he is in the Cargo Bay.

Figure 3.2-5	 Fifty-foot Safety Tether for Crew .Member

During the STS-6 flight a foot restraint was tested during work at the tool cabinet

and during the hand cranking experiment. While the restraint was adequate for work at

the tool cabinet, it did not appear to be rigid enough to provide a solid platform while

hand cranking. The operator had trouble getting his feet into the foot restraint and had

to have help in securing his heels in the foot restraint. In order to be effective, this type

of platform for foot restraint would need to have attach points at the different work

stater; and be adjustable for the 5th to 95th percentile operator.

Shoe restraints, such as those used on skylab flights, are fairly expensive and

complex. Using them for EVA would require mating gridwork at all assembly locations.

This would increase the weight requirement for EVA work stations. An emergency
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breakaway provision would be required in case they got hung up. Shoe restraints provide

one of the best restraint methods for counteracting torque and maintaining operator

position during assembly tasks. With a rigid gridwork they would free both hands for

accomplishing tasks that required the use of both hands. One major major problem in the

use of shoe restraints is the astronaut 's inability to see his feet so that he can position

them into the foot restraints. The requirement to meet the 5th percentile female to

95th percentile male anthropomotry for work stations requires that the grid work have a

large adjustment range.

C
The shoe restraint design should be such that one or both feet can be secured while

working at a task. Permanent grid work would be required at each work station with

portable grid work 'available for temporary work areas. Addition of grid work at every

	

-"	 work station would impose a weight penalty. The design would need to take into account

all tasks to be accomplished as well as grid work location and adjustment. Mobile grid
e	 work would provide the operator flexibility in accomplishing construction tasks. It would
r —

'`s

	

	 require a quick and easy attachment method for the grid work. The grid work would

need a storage location near the work station. This would increase operator timelines in
a	 ^

`s

	

	 that they would have to obtain the grid work, attach it to the work area, and then stow

the grid work when the task was completed.

Providing a T-bar or other mechanical system that the operator wraps his legs

around to stabilize himself during construction• tasks would be fairly inexpensive. The

problem with this method is that for long term usage the operator would experience

fatigue in the muscles utilized to maintain this position. In addition the operator needs

to concentrate on holding his position and if he relaxes his muscles or concentrates on

the task he is working on to the exclusion of his restraint he would then drift away from

his work and have to reposition himself.

Providing no restraint other than crewmembers holding on with their hands or

wedging pars of their body into available crevices or wrapping around projections in the

area is unacceptable. There will not always be adequate restraint locations with this

method. In addition the operators will experience fatigue from holding their positions

	

ti a3 	
with rnuscle power and they have to provide a minimal co,sentration to maintain their

	

y 6̂ 	 position. Tasks requiring two hands would be impossible without some other restraint

	

j	
method.t

The use of safety enclosures would enable the astronauts to work part of the time

without tethers and/or safety lines. This would help speed up the completion of some
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tasks but would require the crewmembers stabilize themselves with the manual means
described above. If the operator were in the middle of the open space it would be hard
to get momentum to return to the work area or to where he could once again propel
himself.

A rigid assemblable hangar would provide sunshade but could only be used for the

construction of items small enough to fit inside the enclosed volume. If made of
adequate materials it could also serve as a micro-meter-,id shield. Time required for
assembly or deployment of structure would add to operator timeline. It would require
auxiliary lighting even during the sunny part of the orbit.

An inflatable rigidized hangar or work space should be light in weight for volume

enclosed and easy to pressurize and rigidize. It could be hard to attach to the Space 	 i

Station and could require auxiliary lighting even during the light part of the orbit. Again
only items small enough to fit inside the hangar could be constructed. A box shape may

b
be hard to achieve, however a cylinder should be easy to attain but would need to be
large to provide adequate construction and storage space.

A safety net would provide an inexpensive method of keeping crewmembers and
tools and/or equipment from drifting off. It would require deployment for each
construction task, but could be made large enough to cover large space structures. It
would not provide adequate sunshade and would create shadows on the work area during

r
the sunny part of the orbit. The net could get tangled when operators try to deploy or

stow it. In addition the operators could get tangled in the net depending on the mesh

size. The net would require a storage area when not in use.
F y

1

The restraint methods selected for the LSS-1 TDM construction activities are: 	 I
—	 i

1. The flexible tethers that are currently used for the STS missions (figure 3.2-3).

2. The current safety line as shown in figure 3.2-5.

3. A shoe restraint with matching grid work.

4. The hangar that is part of LSS-1 will also serve as an operator restraint.
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This section presents a description of some of the design details for the Construc-
tion/Storage/Hangar Facility (LSS-1). A more complete set of design drawings and parts
list are contained in Appendix A.

3.3.1 Truss Platform

The top and end view of the LSS-1 truss structure are shown in figure 3.3-1. The

truss is a deployable pentahedral truss (whose repeating elements are pentahedrons)

made of graphite/epoxy tubes 50.8 mm. (2.0 in.) in diameter and with a wall thickness of
3.175 mm ( . 125 in.). The typical strut length is 2.0 meters (78.74 in.) which results in a
truss whose planform dimensions are 18.0 by 28.0 meters (59.04 by 91 .84 ft.). The
diagonal truss elements which form the pyramid of each pentahedron ore 2.236 meters
(88.03 in.) long, resulting in a truss depth of 1.73 meters (68.19 in.). The truss is
attached to the Space Station at a berthing port using a transfer tunnel which is also

used for access to the platform. Also shown in the figure are support struts for a pair of
structural rails which duplicate the longerons in the Orbiter payload bay for the storage
of large payloads that are transported to the Space Station.

i	
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Figure 3.3- 1	 LSS-1 Pentahedral Truss Platform
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The top view and side view of a typical pentahedral element of the truss is shown in
figure 3.3-2 in both the deployed and stowed configurations. The numbers (e.g., -23)

shown in the figure are part numbers. Knee joints in the center of each surface strut and
pin joints at the cluster fitting end of each strut allow the truss to fold compactly for

transport to orbit. The 2.0 by 2.0 meter truss element folds into a bundle whose
dimension is 0.194 meters square. This results in a packaged truss whose dimensions are
2.72 by 1.75 by 2.24 meters (107.24 by 68.94 by 88.03 inches). Figure 3.3-3 shows the top

view of the square base of one of the pentahedrans with the pulltruded graphite rods

which form an "X" to provide shear stiffness. These rods are also hinged for packaging

as shown in the stowed view with some of the struts removed for clarity.

VICW D*-1 (DEVLOYED)
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Figure 3.3-3	 LSS-1 Truss Shear Ties
r

An end view of the platform truss at the junction of the planar truss with the "wing"

[ is shown in figure 3.3-4 in both the deployed and stowed positions. The complex

geometry of this area'complicates the folding of the truss somewhat, but results in a

stowed configuration which is only slightly skewed.
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3.3.2 Transfer Tunnel

The truss structure for the construction platform is attached to a transfer tunnel, as
shown in figure 3.3-5, which serves as the interface with the Space Station. it is
packaged separately from the truss and attached to the Space Station first. Then the
truss is deployed and attached to the transfer tunnel. It is 2.03 meters (80 in.) long and
1.788 meters (70 in.) in diameter (the diameter would be compatible with the diameter of
the Space Station berthing port) and is made of aluminum with a thickness of 6.35 mm
(.25 in.) for micrometeoroid and debris protection. Attachment points are built into the
cylinder to accommodate the truss cluster joints in four places and the diagonal rods in
four different places.

Figure 3.3-5	 LSS-1 Transfer Tunnel

3.3.3 Payload Support Rails

A set of rails supported by three tripod support assemblies each are attached to the
construction platform to provide a location for the storage of large objects transported
to the Space Station. The rails duplicate the function and interface of the Orbiter
payload bay longerons. The rails are equipped with standard Orbiter longeron attach-
ment mechanisms. With the low g-levels anticipated at the Space Station, keel fittings
are not required. For additional clearance between the payload and the platform, the
payload can even be mounted in an inverted position on the platform rails.

r
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3.3.4 Hangar

Figure 3.3-6 shows the LSS-1 platform with the hangar panels attached. The sines

and bottom of the platform are fitted with fixed, lightweight panels which are attached

to the truss via EVA to provide shielding from sunlight. The panels which form the

"roof" and ends of the hangar are articulated and attach to coilable longeron deployable

masts which are used to extend and retract the hangar in a manner similar to deployable

solar arrays. This allows access to the interior of the construction platform using the

Space Station remote manipulator. The hangar not only provides protection to the EVA

crew from solar heat and light, but also contains the crew and equipment so that they

will not drift away when working without tethers or other restraints. Hangar panels are

made of thin corrugated aluminum sheets with a reflective surface on the outside for the

reflection of solar light and heat.

w —.I
ex

m^	 +
J.M

11

F	 am	 am 
I—em	 tti^x.m	 ,.m

M.44

VIEW 02

4 
8

j 2

-1 PLATFORM ASY

Figure 3.3-6	 LSS-1 With Hangar Panels Attached

3.4 Operations Analysis

This section summarizes the analysis of the requirements for constructing the LSS-1
TDM on the Space Station.
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3.4.1 Cant ruction Method

In order to demonstrate all construction methods during the Space Station LSS TDM

activity, different construction methods were considered for each mission.

Of the three construction methods considered deployment takes the least operator

involvement but incurs the highest engineering and manufacturing costs. It also requires

larger packaging and greater weight than individual components. Manual assembly of

large space structures is labor intensive. This drives the on-orbit costs up (due to the

high cost of EVA) while not reducing the engineering costs significantly.

A combination of deploy and manual assembly was chosen for construction of the

LSS-I TDM. This allows quick deployment of the platform with manual EVA addition of

the hangar, floor, holding fixtures,and sunshield.

3.4.2 Functional Flow Analysis

Functional flow diagrams were prepared to identify the LSS TDM system organiza-

tion and function. Utilizing preliminary design information, drawings, and mission data

forms, a scenario of construction tasks was identified for each mission. This scenario

was prepared to provide the first picture of the functions required to accomplish the LSS

TDM objectives. As shown for LSS-1 in figure 3.4-1, it begins with the attachment of

the transfer tunnel to a berthing port. The truss is then deployed and connected to the

transfer tunnel. The payload support rails, floor panels, utilities, fixed and deployable

hangar panels, etc. are then installed. Tests are conducted throughout this construction

sequence to determine the dynamic characteristics, structural accuracy and thermal

deformations of the structure. This construction scenario was then upgraded to a

functional flow diagram in order to define the end to end construction and test

operations for the LSS-1 mission. It was necessary to examine each of the proposed

functions in terms of specifics regarding sublevel requirements for each function and in

terms of the possible constraints that would affect the way in which each function was

accomplished. The LSS-1 functional requirements analysis was thoroughly documented
as seen in figure 3.4-2. In this analysis, each function was keyed to a specific

construction objective. This made it easier to relate the functional flow diagrams to the

LSS mission requirements.
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ATTACH HANGAR
PANELS

	

7	
I 1H

ASSEMBLE EURSYETEMS

MOUNT TRUSS TO
TRANSFER TUNNEL

	

Figure 14-1	 LSS-1 Construction Scenario

Start up and Tea ^^
rest
complete

Yes	 Attach
deploy truss truss

No

Install Test truss Test Yes	 Install
utilities complete floor

No

Install solar Test Text Yes	 Remove end End
shield hangar complete stow equipment

No

Figure 3.4-2	 Construction/Storage/Hangar Facility (LSS-1) Functional Flow
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3.4.3 Task Analysis

As the functional flow diagrams were being prepared, a preliminary task analysis
was begun, to further define the LSS TOM construction tasks. These were refined and
updated as more detailed design data was generated. As the detailed time lines were
evolved, tas!< duration was considered. This combination generated a detailed timeline
analysis.

3.4.4 Timeline Analysis

Timeline analysis was used to derive human performance requirements by showing
the functional relationships between tasks as well as task loadings for the combinations
of tasks.

Design details were coordinated with Boeing designers and used as a basis for the

detailed task analysis and timelines.

The analysis indicates the estimated amo;mt of operator 's time which is occupied
throughout the LSS construction tasks. These operator task load estimates were derived
from neutral buoyancy simulation, task times from previous missions, and analysis of
NASA video tape of STS -6, STS-11, and STS -13 missions. In addition, interviews with
previous and current astronauts were reviewed for pertinent EVA data. A summary of
the LSS- 1 timeline is presented in figure 3.4-3 with the complete detailed timeline being
presented in Appendix B.

Hours

Start up and deploy truss 11.4
Test truss 5.0
Attach truss 1.5
Install utilities 7.0
Test thus 10.5
Install floor 7.0
Install solar shield 10.5
Test hangar 10.3

Remove and stow test equipment 4.8

Total 88.0

Figure 3.4-3	 LSS-1 Timeline Summary
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1

C3.5 Development Activities

f
The technology development missions defined in this report will demonstrate the

ability to construct large space structures on an ea y Space Station. However,
precursor developments are required to advance the necessary technology and opera-

tional procedures required for on-orbit assembly or construction. These precursor
activities involve the design, manufacture and test of structural components for the

TDMs and the development of detailed procedures for their construction in space.
Several testing arenas and types of tests can be used for these developments: ground

tests in the laboratory, neutral buoyancy tests in a water tank and tests in space using

the Space Shuttle.

Figure 3.5-1 summarizes the general areas where development activities for large
space structures need to be conducted and the locations for each. In all cases, ground
testing is the primary development testing arena, but all developments need to be
demonstrated in apace to verify the ground tests. Zero-g simulations which involve
human interaction are most economically conducted in a neutral buoyancy simulator,

subject to the limitations of the physical dimensions of the facility.

DEVELOPMENTS NECESSARY FOR LSS TOM
TESTS

GROUND NEUTRAL SHUTTLE
BUOYANCY

ASSEMBLABLE JOINT X X X

FOLDING DEPLOYABLE JOINT	 - X X X

MRS REFLECTIVE MEMBRANE SURFACE X X

MRS MEMBRANE SURFACE CONTOUR MEASURING SYSTEM X X

MRS MEMBRANE TENSIONING SYSTEM X X

MIRROR POSITIONING CONTROLS X X

DEPLOYABLE TRUSS BEAMS X X X

TENSION STABILIZED BEAMS X X

CHERRYPICKER FINS X X

EVA ASSEMBLY OPERATIONS CAPABILITY X X X

DYNAMICTESTING X X

SURFACE ACCURACY MEASUREMENT X X

MODAL IDENTIFICATION TECHNIQUE X X

1

0

Figure 3.5- 1	 precursor Technology Development

For the Construction/ Storage/Hangar Facility in particular, a list of development
tests was established for each type of test facility and is shown in figure 3.5-2. The
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Ground Tests:
— Deployment (functional test)
— Accuracy measurements
— Dynamic tests
— Static Tests

Neutral Buoyancy Simulator (NBS) Taste:
— Deployrrd ir, (operational test)
— Utilities routing and installation
— Install hangar panels
— Attach "floor" panels
— Simulate attachment of equipment or modules
— Replace interior member (simulation of repair)

Shuttle Flight Tests:
— Repeat NBS tests in spa.ss
— Measure structural accuracy (e.g., flatness)
— Measure thermal deformations
— Retract and stow structure

Figure 3.5-2	 LSS-1 Development Tests

tests listed are designed to be conducted on a portion of the deployable truss so that

hardware costs can be minimized while the basic characteristics of the structure can be
determined.

3.5.1 Ground Tests

Ground tests conducted in 1-g can be used to determine the static, dynamic and

thermal behavior of structural components and assemblies. For Example, the nonlinear

stiffness and damping of deployable joints must be determined because they may

significantly affect the dynamic characteristics of the truss. Also, for some assembly

level dynarnic and functional tests, techniques for simulating zero-g are advisable (ie.

air bearings or other distributed suspension systems). These sus pension systems will
more accurately represent the conditions in orbit and will also allow the measurement of

the dimensional accuracy of the structure.

3.5.2 Neutral Buoyancy Simulator (NBS) Tests

Another technique for simulating zero-g is through the use of s neutral buoyancy

X,	 simulator which relies on the buoyancy forces on an object submerged in water to
ii	 counteract the force of gravity. These :ailities are particularly useful for simulating

tasks which must be accomplished by EVA astronauts and for developing assembly

techniques. Manual or automatic deployment of a representative portion of the platform

truss can be demonstrated. Once the truss is deployed, the installation of utilities,
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hangar panels and floor segments can be accomplished. Another task which will be
important to the maintenance of large space structures is the replacement of com-
ponents and structural elements in the event that they fail or become damaged. These
maintenance and repair tasks ca^ be demonstrated in a NBS.

3.5.3 Shuttle Flight Tests

Once the structural components and assemblies have been tested on Earth and the
construction procedures and te,hniques have been developed and simulated, the next step
is to demonstrate the functional aspects of the construction process in space. Structural
assemblies of modest size can be constructed on orbit from the Shuttle cargo bay to

yverify the results of the Earthbound tests and simulations. To determine the accuracy
and adequacy of these tests, it is advisable to duplicate the I-g and NBS simulations ar

_-

	

	 closely as possible in orbit so that the differeisCLs can be identified. It may be possible
to compensate for these differences in future tests on Earth.

3.6 Programmatics

The LSS-1 programmatic analysis provides the necessary plans, schedules, and cost
analysis to support the definition of this technology development mission. This is
necessary to insure that the plans, schedules, and costs are given proper consideration in
the development and analysis of the missions. Programmatic analysis was performed in
two subtasks: (1) plans and schedules and (2) cost analysis.

3.6.1 Plans and Schedules

Our study of LSS TDM programmatics included considerations of program structure,
hardware commonality, schedules, and program phasing. An important dimension of
program structure is Program phasing. Schedules for LSS development were laid out
using analogous experience with programs of similar size and complexity. Certain
assumptions are implicit in these schedules:

(1) Significant technology advances will be carried at least to the proof-of-concept
r stage by technology advancement activities prior to initiation of phase C/D for

°

	

	 each of the LSS TDM's. If the technology advancement is critical, a full
technology demonstration may be required.

;1 >

(2) Accordingly, program delays to solve technology immaturity problems will not
be encountered.
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(3) Shuttle launch service will be available on a timely basis for LSS buildup.

(4) End item fabrication and test activities are phased so that one set of tooling for

each end item type, and one test crew, can accompffi` , the required fabrication

and testing.

The schedule analyses keyed on the fabrication, test, and integration schedules

incorporating assumptions (3) and (4).

Because the LSS TDM's will have their final assembly on the Space Station, it is seen

as very important to validate, both mechanically and functionally on the ground before

launch. This leads to the concept of a Ground Test Vehicle (GTV) All subsystems in the

GTV will be flight or flight prototype hardware.

The GTV will initially serve in an integration role to prove out the proper operation

of the subsystems, later it will serve to validate flight hardware interfaces at KSC

before each flight article is launched. Finally, after the flight system is fully built up

and in orbit, the GTV will serve as a "hangar queen" for simulation, training, and
checkout of procedures, subsystems updates, and software changes before these are

implemented in the flight system.

The program master schedule for LSS-1 was updated to reflect the Space Station

1992 IOC, and the combination of LSS TDM's 1 and 2. The expanded preliminary 1.55-1

TDM program master schedule is shown in figure 3.6-1. The anticipated go-ahead is

shown with design and development, fabrication and assembly, test and launch opera-

tions, and on orbit construction operations. The scheduled launch date for LSS-1 is

shown in 1992. Facility availability, along with test plan submittal, is also shown. The

LSS-1 TDM schedule reflects the start and completion dates for key milestone events,

key reports, and customer reviews.

i
i

1 ,

We have developed the LSS-1 master schedule that our analysis indicates will reduce

risk to a minimum. This schedule has been formulated to ensure a timely flow. The

scheduled task interrelationships are also shown in figure 3.6-1.
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1987 1988 1989 1990 1991 1992 1993

GO
AHEAD FOR CDR

DESIGN Iff SUSTAINING

START START	 FAB
TOOLING FAB	 COMPLETE

FAB AASSEMBLY

FINAL
LAUNCH REPORT

TESTBLAUNCN
OPERATIONS

ASSEMBLY
COMPLETE

FLIGHT	 TEST
MANUFACTURING TESTPLAN	 FACILITY LAUNCH
FACILITY AVAILABLE SIL SUBMITTED	 AVAILABLE FLIGHTSUPPORT

GROUND TEST
PLANSUBMITTED

Figure 3.6-1	 LSS-1 TOM Program Master Schedule

3.6.2 Cost Analysis

t
An analysis of the Construction/Storage/Hangar Facility was conducted during

Phase 1 of this study (Reference 1) to determine the costs associated with its design,

development, and manufacture. These costs were updated in Phase II to reflect maturity

in the details of the design.

„y

)

TOM costs were determined using the cost data base we have developed from

experience with previous spacecraft. New equipment, hardware and development costs

were defined using the Boeing Parametric Cost Model (PCM) cost analysis computer

model and the RCA PRICE hardware acquisition. model.

The groundrules provided by MSFC are:

o	 Cost estimates are in FY-84 dollars, including fiscal year funding requirements.

o Space Station ATP are FY-86 with initial launch in FY-90 and IOC in FY-91.

o Cost estimates include all requirements unique to demonstrating the technology

feasibility.
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The additional groundrules and assumptions used are:

o The Boeing PCM hardware cost model was used to estimate all structural/
mechanical items and all support costs i.e., SEW, system ground test, tool do
test equipment, program management, etc.

o PCM was used to estimate all integration costs.

o Design costs reflect the highly repetitive nature of the hardware.

o The extendable masts for the hangar are 100% off-the- shelf.

o Learning was assumed (88% of structural items).

o Development quantity = 2

The development costs for the Construction/Storage/Hangar Facility are summa-
rized in figure 3.6-2.

PLATFORM HANGAR

ENGINEERING (SM) 47.7 S

TOTAL HARDWARE (2 UNITS) 33.8 8_7

TOTAL DEVELOPMENT ISM) 81.5 9.2

FLIGHT UNIT COST ISM) 7.81 2.77

1984 DOLLARS

T _

Figure 3.6-2	 LSS-1 Development Costs

3.7 Space Station Resources Required

3.7.1 Accommodations

EVA activities require special equipment and/or procedures. These in turn will
require accommodations in the basic space station design. The accommodation needs of
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the LSS TDM 's were defined by analysis of both mission and space station require-
ments/capabilities. A detailed list of the space station architectural features, required
for LSS-1 EVA construction activities are provided in figure 3.7-1.

Architectural Features
EVA crew transfer corridors and work areas must be
compatible with the dimensions and mobility of the EVA&
Proper storage and maintenance areas for EVAS items, spares
and support equipment are necessary.
Adequate handholds, translation raib, safety wires, and
tether attachments to support egress, ingress, transfer, and
other EVA construction activities are necessary.
Crew safety from electrical, fluid, mechanical, and other
station hazards must be considered.

Viewing ports are required so that IVA crewmembers can
observe all LSS EVA construction activities.
All sharp edges, comers, and protrusions should be designed
to meet EVA criteria,
Floodlights to aid the EVA crewmembers visibility in areas
of high EVA activity, such as the airlocks, LSS construction
areas, etc., should be provided.
Electrical power outlets must be avaidab!a at EVA
construction sites.

Airlock
Provide two airlocks and support equipment that will handle
a minimum of two crewmembers.
One airlock shall have the capability of serving as a hyperbaric
chamber for two crewmen.
Provide an equipment airlock for the transfer of EVA tools,
parts, and equipment.

Figure 3.7-1	 Space Station Accommodation Needs

3.7.2 Operations

Scheduling of the Space Station facilities, activities, and personnel is of prime
importance to minimize conflicts during LSS EVA construction activities. Communica-
tions, data equipment, and links required for EVA will need to be available and
operational. All other missions and space station facility usage will require close
coordination during EVA activity. Three crewmembers will need to be trained and
available (2 EVA and I IVA) during construction activities. Figure 3.7-2 shows the Space
Station operations that need to be scheduled to avoid conflict with LSS-1 construction

activities.
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Scheduling
Communications

CCTV
Intereomm
Links

Deft
Processing
Handling

Missions
Limited constructions or servicing without
platform
RMS usage
Facilities (briefing room)

Crew members
2 EVA
1 1VA

Figure 3.7-2	 Space Station Operations LSS-1

1

I

I

3.7.3 Crew Support

The operations analysis data from previous NASA studies was examined to define

the necessary crew skills for performing basic Space Station operations. . The studies

identified 7 basic crew skills. The seventh skill (spacecraft systems) was further defined,

as shown in figure 3.7-3, to breakout the skills required to accomplish the Space Station

missions.

1. No special skill required
2. Medical/biological research
3. Physical sciences research
4. Earth and ocean sciences research
5. Engineering
6. Astronomy research
7. Spacecraft systems

a) Spacecraft systems operations—data
b) Spacecraft systems operations--electronics
c) Spacecraft systems operations—mechanisms
d) Spacecraft system: operations—fluids
e) Space Station subsystems operation and

maintenance
f) EVA MRMS operations
g) EVA work station operations
h) MOTV and OMV piloting
i) Teleoperator piloting

Skill Levels
1) Task trainable
2) Technical
3) Professional

Figure 3.7-3	 Space Station Skill Type
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The operations analysis data from the LSS TDM studies was examined to define the

necessary crew skills for performing the LSS construction and testing operations. It was

y	 determined that six of those skills identified in figure 3.7-3 are required for LSS

construction and testing activities. These six skills are shown in figure 3.7-4.

Engineering
Spacecraft systems operetion"ate
Spacecraft system operations—electronics
Spacecraft system operations—mechanism
Space Station subsystems operation and maintenance
EVA MRMS operations

Figure 3.7-4	 LSS TDM Skills Required

These six skill requirements were then further refined as shown in the example in

figure 3.7-5. This figure identifies the crew skill title, the Space Station location where

this skill is most often utilized, and the LSS TDM tasks that the person with this skill

would be expected to perform, and the basic requirements for this skill.

	

Job Title	 Work Location

	

Engineering	 IVA in command center
EVA LSS construction areas

Basic Tasks
Primary function is to supervise construction and test of LSS
Technology Development missions.
Maintain voice and visual contact with other EVA and IVA
crewmembers as required.
Requirements
Supervisory skills
Advanced training in properties of metals and composites for
LSS TDMs
Advanced skills in mechanical, and electrical, diagnostics,
troubleshooting and repair.
Training in computer hardware and software.
EVA proficient.

Figure 3.7-5	 Crew Skill Descriptions

At this point in time, it is too early to define the skill mix required for each of the
LSS Technology Development mission crewmembers. During the early missions, no

doubt, each crew person will be cross-trained for more than one crew skill. As the Space

41
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Station activity and number of crewmembers increases with time, it is likely that some
of the crewmembers can become more and more specialized to the point to where they
would be trained for only one skUL

To facilitate the generation of crew skill utilization statistics, it was necessary to
create a set of tables that allocated the various crew skills to the various LSS TDM

operations.

The numbers shown in the crew skills allocations represent the percent of operation
duration time each skill is required. These percentages were estimated from the data
used to calculate the operation time. Particular attention was paid to the crew skill
descriptions in figure 3.7-5 in making sure that the proper crew skills were utilized for
each operation. Figure 3.7-6 gives a summary of the crew skills applied to the LSS-1
construction/storage/hangar facility.

0

•	 o

OPERATIONS ENGINEERING
MECHANISMS 36%

22% -

OPERATIONS
ELECTRONICS

10% OPERATIONS
DATA OO	 RMS OPERATIONS-4%
14%

O+	 SPACE STATION
SUBSYSTEMS -6%

Figure 3.7-6	 LSS-1 Crew Skill Support

3.7.4 Special Equipment

During the definition and analysis of the LSS-1 TDM, special equipment require-
ments were considered. The required support equipment, instrumentation, data systems,
and small tools identified during this study are listed in figure 3.7-7. Some common
equipment is envisioned to remain on the Space Station for use with other missions.

I<	 _

I
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Support Equipment
Docking tunnel
Miscellaneous constraints and hold-downs
Articulated test equipment holding fixture

Instrumentation
Structural dynamics (acceleration, strain, loads, etc.)
Thermal response (thermocouples)
Position/deflection (precision laser ranging, comer reflectors)

Data System
Recording
Storage and retrieval
Manipulation (EDP)

Small Toob
LSSS 1 construction tool kit

Figure 3.7-7	 LSS-1 Special Equipment

3.8 Potential Problems and Concerns

Several areas of concern must be considered when constructing the Construction/

_	 Storage/Hangar facility at the Space Station. The additional mass and inertias of the
structure as well as its structural dynamic characteristics must be accommodated by the

\	 Space Station control system. The dynamic loads resulting from events such as Orbiter

( docking and thruster firings must also be accounted for. Large Space Structures

attached to the Space Station will also increase the drag due to their size. The large

size of the structures may also influence the thermal balance of the Space Station and

interfere with communication paths.

These and other concerns raised by the construction of large space structures affect

a wide range of technologies and subsystems and need to be carefully considered in the

J: design of the Space Station as well as in the design of the construction project. The

results of initial investigations of some of these concerns are presented in the following

sections.Cl
s	 3.8.1 Mass and h wtia

The control system of the Space Station must be designed to accommodate growth

from the earliest configuration to the most advanced configuration. The mass and

inertias of each Space Station component and any large space structures construction

projects must be calculated to assess their contribution to the total mass and inertias.
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The mass properties of the Construction/Storage/Hangar Facility witt and without
the hangar panels are shown in figure 3.8-1. The center of mass location is given in
relation to the Space Station interface which is at the center of the platform. The
inertias are given relative to the center of gravity. The location of the platform will
determine to what extent the additional mass and inertia will affect the Space Station.
Since the mass of LSS-1 is less than 1/3 of the mass of a single Space Station module, it
is unlikely that it will cause a major influence on the total mass and inertia.

z
t

WITHOUTHANGAR
MASS = 3300kg
Z-C.G. - .4 m
Ixx - 78,000 kg-m2
Ivv = 130,000kg-m2
la = 201,000 kg-m2

WITH HANGAR
MASS - 7000kg
Z-C.G. - 4.1 m
Ixx = 231,000 kg-m2
Iyy - 441,000 kg-m2
la - 485,000 kg-m2

Figure 3.8-1	 LSS-1 Mass Properties

3.8.2 Dynamic Loads

An analysis was conducted to determine whether the accelerations imposed on the
Space Station by such events as Orbiter docking, attitude control or station keeping
thrust would cause excessive loads of deflections. A NASTRAN finite element model of
the construction platform including a 14,500 kg "payload" attached to the payload rails
was exposed to a unit acceleration in the x, y and z directions. The structure was
cantilevered from a rigid transfer tunnel at the center of the truss and the payload was
kinematically supported on the payload rails.
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The loads in the truss members near the transfer tunnel showed them to be buckling

s^	 critical. The maximum acceleration which this platform configuration can withstand is
0.48 g 's. The maximum deflections which occur with this acceleration level are shown in

figure 3.8 -2. The maximum deflections which occur at the corner of the platform are

15 mm GS7 in) or less. These deflections are judged to be acceptable. However, the

`.	 "weak link" is probably the Space Station module wall near the berthing port to which the

F-'	 transfer tunnel is attached. On the other hand, the low thrust propulsion systems and

F
A
	soft docking techniques proposed for the Space Shuttle will produce accelerations well

..' below the 0.48 g's used in this analysis (probably on the order of 0.01 g 's). if the Space

Station module loads are stil! too high, additional bracing members can be used to

distribute the loads.

ANALYSIS
	

DEFLECTIONS .48
• BUCKLING CRITICAL
	

LOAD DIRECTION	 MAX. DEFLECTION
• ALLOWABLE LOAD FACTOR a 0.488

	
X	 13. mm (.S1 in).
Y	 12.mm(.48In)
2	 IS. mm (.57 in)

Figure 3.8-2
	

LSS-1 Truss Deflections

3.8.3 Structural Dynamic Characteristics

	

_	
The same NASTRAN finite element model used in the loads and deflection analysis

was reduced to 120 dynamic degrees of freedom and used to determine the dynamic

t _ characteristics of the Construction/Storage/Hangar Facility (without hangar). The

resulting frequencies listed in figure 3.8-3 show that the truss is very stiff, even with a

14,500 kg payload attached. With the hangar panels attached, the first mode frequency

will be approximately 2.0 Hz. As mentioned in the discussion of the truss loads in

Section 3 .8.2, the flexibility of the Space Station side of the interface could contribute

significantly to the overall flexibility of the platform system.
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ANALYSIS
• 120 DYNAMIC O.O.F.
• 14.S00ka(72.00DIb)'PAYLOAD'

FACNEO TO RIGID TRANSFER TUNNEL

FREQUENCIES

MODE	 FREQ.tHz
1	 3.1
2	 4.0
3	 9.2
4	 12.9

X•DIR Y-DIR 2.DIR

LSS-1 AREA (0) 102. 303. SO4.

AREAIMASS RATIO (rr2/k9) .015 .043 .072

% INCREASE FOR SPACE STATION .1 7 16.4

ASSUMPTION: TDM AREA ADDS TO SPACE STATION AREA

Figure 3.8-4	 LSS-! Drag Effects
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Figure 3.8-3	 LSS-1 Dynamic Characteristics

3.9.4 Drag

Another concern created by LSS construction is the increased frontal area which

Increases the rate of orbital decay due to drag. The orientation of the structure can

have a pronounced effect on the drag. For instance, if the planform of the platform is

oriented perpendicular to the flight path, the frontal area of the Space Station will be
increased more than if it was oriented with the end of the platform toward the flight

path.

The drag force on a body in low Earth orbit is a function of its ballistic coefficient
(area per unit mass). Figure 3.8-4 shows the area of LSS -! in the x, y and z directions

and the corresponding area /mass ratio treating the platform as an isolated body. The

Important thing, however, is the effect that the additional area and mass have on the
Space Station drag. Using an estimate of the maximum exposed area and mass of the
Space Station, the influence of LSS-1 was estimated in terms of the percent increase in

area/mass ratio as shown in the figure. For these calculations, it was assumed that the
two areas are additive, when in reality, some shadowing may occur.
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4.0 PASSIVE MICROWAVE RADIOMETER, LSS-3

This section is a self-contained description of the tasks relating to the development
of a Passive Microwave Radiometer technology development mission, LSS-3. Included in
the study are design and operations trades, detailed structural design of the mission, an

analysis of the operations required to perform the mission, precursor technology

developments which can be accomplished on Earth or with Shuttle flights, and the

programmatics of the mission. In ac'dition to these topics, the accommodations which

the Space Station must provide to the TDM are identified and, conversely, some of the

problems and concerns which the TDM may impose on the Space Station are considered.

4.1 Design Trade Studies

The design topics relating to the microwave radiometer which were subjected to

trade studie- include the configuration, the type of members and joints, and the reflector

surface material and its control. Each trade is discussed individually in this section.

4.1.1 Tress Ring Configuration

The three types of reflector support structure shown in figure 4.1-1 were considered

for this TDM. Two ring trusses, one made up of trapezoidal elements (box ring truss) and

t	 r

TRAPEZOIDAL ELEMENTS 	 TETRAHEDRAL TRUSS

CHUSEN

C 

	
►ENTAHEDRALELEMENTS.

Figure 4.1-1	 LSS-3 Reflector Support Structure Concepts
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one consisting of pentahedral elements, and a continuous tetrahedral truss were

evaluated based on characteristics such as mass, stiffness and number of structural ele-

ments and joints. Additional factors such as ease of on-orbit construction were also used
to evaluate the configurations.

Figure 4.1-2 summarizes the results of the trade study. Under the assumption that

the tetrahedral iruss is a deployable concept, the length and diameter of the members

was varied to arrive at a baseline configuration. Packaging dimensions and the
requirement for a sufficiently large number of "hard points" for proper reflector control

led to the 12 ring baseline configuration. The resulting weight and complexity (number

of elements and joints) quickly eliminated it from further consideration.

OPTIONS

BOX RING PENTAHEORAL TETRAHEDRAL
TRADEITEMS TRUSS RING TRUSS

(12 RINGS]
MASS (XG) 887. 774. 3486.
STIFFNESS (1STMODE FREO., HZ) 1.08 .86 2.26
NUMBER OF ELEMENTS 144 144 3862
NUMBER OF JOINTS 72 64 801CLUSTER

2668 KNEE
DIAMETER (M) 103. 116.

OTHER CONSIDERATIONS
EASE OF CONSTRUCTION FAIR GOOD COWLEX

CHOSEN

Figure 4.1-2	 LSS-3 Reflector Support Structure Trade Study

The two ring configurations are comparable in mass, stiffness and complexity. The

pentahedral truss ring is 13 percent lighter than the box truss using similar structural

elements. The stiffness of the box truss is higher based on a NASTRAN analysis of the
dynamic characteristics of each configuration. However, the stiffness of the penta-

hedral truss ring can be increased by increasing the diameter of the cables va:.ich provide

shear stability in the square faces of the pentahedral truss elements. The pentahedral

truss is smaller in overall diameter since the reflector can be attached at the outside
diameter while it must be attached to the inside diameter of the box ring truss. The

biggest advantage of the pentahedral truss, however, is in the ease of on-orbit

construction. It is significantly easier to construct a pyramid truss module (from a fixed

base) than it is to construct a cubic module. The tip of a pyramid aligns itself while

shear ties must be added and adjusted to stabilize and align a cube (or trapezoidal

element). For these reasons, the pentahedral ring truss was selected for LSS-3.
48
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	 Three types of truss members were considered for the truss elements: cylindrical
tubes, nestable. tapered tubes and deployable beams. The factors which led to the

*!	 selection of nestable tapered tubes for the truss ring are packaging (cylindrical tubes are
j	 very inefficient for packaging) and complexity (deployable beams are complex and,
jl

-	 therefore, expensive). Nestable tapered tubes require on -orbit assembly of the two
halves but can be packaged efficiently for delivery to orbit.

`	 4.13 Truss Member End Joints

Figure 4.1 -3 shows the four truss member end joint concepts evaluated for the ring
truss elements. Truss assembly requires the use of "side entry" joints for both assembly

and for potential replacement of members. All four candidates are "side entry" joints.
The strengths and weaknesses of each are discussed individually in the following

paragraphs.

j

GJGNT^	 tiAr
uNN[

JOINT

JOIN	 /

SLE[V[

LOCIIIM
ru

WIIM

CODU NJOINT

LsRC SNAP—MINT UNION	 CLUSTER`	 I

CI+osEN	 FLOTATION	 I
MIT CLUSTER SLIP-JOINT

	

r	 /ALL

	

. •	 NLpMN
FNGAOOVE^-	 J N

-Gu

CLOETU	 LOCKING	 ^•' r
ArnNG	 MIT	

COLIAIN

GALS mmNO

AUTOMATIC COUPLER

SAC SALL AND SOCKET	 VOUGNT QUICK-CONNECT COUPLER

Figure 4.1-3	 L5S-3 Truss Member End Joint Trade Study
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Snap-joint union -• This joint requires complex machining and, to minimize joint

"slop", it must be machined very accurately. Accurate strut alignment is required for
latching and opposite ends of the strut must be accurately aligned with respect to each

other to permit truss assembly.

Cluster slip-Joint - The cluster slip-joint also requires precision machining to

minimize joint slop. High alignment accuracy is required to slide the joint sleeve into
place, and high end-to-end alignment accuracy is required to allow truss assembly.

Quick-connect coupler - This joint can be assembled from the side, from the end, or
from other angles. Although the slop accommodation is potentially better than the
previous two concepts, the fit of the pin within its hole determines the amount of slop in
the joint. As in the previous joints, the end-to-end alignment must be accurate.

Ball and socket - The geometry of the ball and socket joint does not require high
alignment accuracy for latching or for end-to-end alignment. The slop in the joint is
eliminated by the locking nut. Although strut length is pre-set on the ground, it is

feasible to adjust the strut length on-orbit.

The bail and socket joint was selected for the LSS-3 truss ring because of its ability
to eliminate all joint slop, its tolerance to slight strut misalignment for initial latching,
and its potential for being manufactured from low CTE (coefficient of thermal
expansion) materials such as invar or graphite/epoxy. The ball ends of the struts also

eliminate the necessity to index the strut torsionally before latching. The biggest

deterrent is the necessity for a tool (wrench) to lock the joint.

Is.1.4 Truss Member Center Joint

To achieve high packaging density, the use of nestable tapered struts Is proposed for
the truss members. The center joint which joins the two halves is the subject of this
trade study. The two concepts which were considered for this trade are shown in figure
4.1-4. The interlocking joint consists of a series of interlocking fingers on each half of
the strut which rely on the flexing of the fingers to slide over and latch to a machined

ring on tha opposite half of the strut. The ring clamp concept is similar to those
commonly used in the aerospace industry to join cylindrical structures.

The interlocking joint is operationally simpler since there are no extra parts
required. It does, however, require high alignment accuracy and an axial force to latch.

50
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Figure 4.1-4	 LSS-3 Truss Member Center Joint Trade Study

The manufacturing process is fairly complex and requires accurate machining to assure

proper fit and minimum joint slop. The disassembly of this joint is also very inconvenient
since all of the latched fingers must be lifted simultaneously to disengage the two halves
of the joint.

Although the ring clamp is an extra part to contend with in she assembly process,
the manufacturing simplicity, off-the-shelf technology, self-aligning ability, joint slop
elimination and ease of disassembly make it our choice for the center joint for LSS-3
truss members.

4.1.5 Feed Array ' Supports

C The three types of masts shown in figure 4.1-5 were considered for use as feed array
support beams: a coilable longeron (Astromast-type) deployable mast, a cable-stiffened
mast (consisting of a structural central tube which carries axial loads and outrigger

cables which provide increased bending stiffness), and a deployable mast with folding
longerons.

r, Figure 4.1-6 gives a quantitative and aualitative comparison of the three types of

masts. The coilable longeron mast has high packaging efficiency, but is the heaviest of

51
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Figure 4.1-5	 LSS-3 Feed Array Support Mast Concepts

CHOSEN

TENSION- FOLDING
STIFFENED LONGERON

ASTROMAST MAST MAST

320. 150. SB.

.14 Z5-.40 .32
HIGH LOW HIGH
HIGH LOW HIGH

TRADE ITEM

MASS, KG
BENDING FREQUENCY (PIN-PIN), HZ
PACKAGING EFFICIENCY
COMPLEXITY

Figure 4.1-6	 LSS-3 Feed Array Support Mast Trade Study

the three and has the lowest bending frequency based on pinned end conditions. The

cable stiffened mast is somewhat less complex than the other two but has poor packaging
efficiency since it consists of seven hinged sections which fold into a 11.5 meter long

bundle after the cable spreaders are folded along the central tube. Its bending stiffness

depends upon the cable parameters and spreader length. The folding longeron mast made
of graphite/epoxy material is the lightest, has good frequency characteristics and is

efficiently packaged for delivery to orbit. This type of mast was, therefore, selected for
use as the feed array supports.
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4.1.6 Feed Array Truss Beam

The three generic types of deployable beams considered for the feed array truss

beams are shown in figure 4.1-7. Two of the concepts have a . triangular cross-section
while the third has a square cross-section. Comparisons were made on the basis of
weight, stiffness, number of elements and joints, and other intangible factors such as the
ability to accommodate the microwave sensor assemblies.

Figure 4.1-7	 LSS-3 Feed Array Truss Beam Concepts

Figure 4 . 1-8 shows a comparison of the characteristics of the three deployable truss
beam types. Ignoring the weight of the joints, a mathematical expression was derived
for a stiffness-to-weight parameter (P). This non-dimensional parameter involves the
equivalent area moment for the beam (I), -the material density (p), the length of a typical

i

member (L) and the weight per unit length (w). The stiffness -to-weight parameter shown

	

. 
i	

is:	
V = I*p/(W*1-2)

Although the hex-truss beam is the heaviest, it has the highest stiffness -to-weight

t
ratio (.a measure of its bending frequency-squared). Its square modular shape also
provides good accommodation for the feed horn assemblies, while the triangular cross-
section of the other two truss beams would require the feed assemblies to be mounted

	

?,)	 externally. This causes the mass to be offset from the elastic axis of the beam and
would result in undesirable lateral/torsional coupling. Therefore the hex-truss configura-

tion was selected for the feed array truss beam.
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CHOSEN

PENTA DELTA HEXA

NUMBER OF ELEMENTS PER BAY
W/O DIAGONALS 9 6 8
W/ DIAGONALS (1) 10 9 13

NUMBER OF JOINTS PER BAY 3 3 4

STIFFNESS/WEIGHT PARAMETER
h-L

W/O DIAGONALS .0749 .1069 .128
W/ DIAGONALS AM AM .0664

WEIGHT/UNIT LENGTH
W/O DIAGONALS 8.90AP 624AP BAP
W/ DIAGONALS 10J2 AP 10.66 AP 18.07 AP

FEED HORN ASSEMBLY ACCOMMODATION POOR POOR GOOD

Figure 4.1-8	 LSS-3 Feed Array Truss Beam Trade Study

4.1.7 Reflector Surface

A review of the literature indicates that there are two basic types of flexible
reflector surfaces: mesh and membrane. Mesh types include woven metallic mesh and
knitted me—zaUic mesh. Membranes include materials such as aluminized kapton or
aluminized mylar. based on articles in Reference 2, a knitted metallic mesh system was
selected. The mesh consists of gold-plated molybdenum wire with an areal density of
0.043 kg per square meter.

4.1.8 Reflector Shape Control Mechanism

Three types of reflector control schemes were considered for LSS=3r The bootlace
catenary system, the distributed control catenary system and the electrostatic control
method. These three schemes are shown schematically in figure 4.1-9. The distributed
control catenary system was somewhat arbitrarily selected for use as the reflector
control. method. The electrostatic control method appears to be complex and heavy,
while the bootlace system is judged to be intolerant of local variations in reflector
shape.

i
P
f

I
i
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Reflector

Pulley	
Hub

/	 Structure

T^

Cable
Bootlace Catenary

I
Linear actuators

Reflector

Structure

Cable
Distributed Control

ReflectorControl	 membrane	 Structuresegments	 Control
voltages

Voltage
V V V V vv V V V V V V	 Vo SOUrce

Electrostatic Control

Figure 4.1-9	 LSS-3 Reflector Control Options
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C2 Operations Trade Studies

This section summarizes the trade studies completed during the LSS-3 construction

analysis.

	

4.2.1	 EVA Crew Schedule

The results of our analysis indicates that the workday should be 6 actual EVA hours.

Three operators per shift (2-EVA and 1-IVA) will be required, full time, during LSS
EVA construction activities. The ability to operate more than 1 shift per day will be
dependent on the Space Station crew size and other scheduled Space Station activities.
Two or three shift operation could result in conflicts in the use of facilities and high
noise l;vels while other crewmembers are trying to sleep. For the LSS TDM EVA
construction activities it is recommended that 1 shift per day be utilized.

It is recommended that a 5 day LSS-3 EVA construction week be adopted with I IVA
day for paperwork and suit maintenance and care.

	

4.2.2	 EVA personnel Restraints

The restraint methods selected for the LSS-3 TDM construction activities are:

1.The flexible tethers that are currently utilized for the STS missions.

2. The current safety line.

3. A shoe restraint with matching grid work.

4. ThP hangar that is part of LSS-1 will also serve as an operator restraint.
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4.3 Mission. Design

.,,

lA,

Some of the design details for the Passive Microwave Radiometer (LSS-3) are
discussed in the following paragraphs. The detailed design drawings can be found in
Appendix A.

4.3.1 Reflector Support Structure

The 103 metes diameter reflector support structure is a truss ring made of tapered
strut elements i8 meters in length, forming a series of pentahedral truss elements as
shown in figure 4.3-1. The struts are made of graphite/epoxy material and use a unique
method of manufacture. 260 graphite/epoxy fiber bundles run longitudinally and are
evenly spaced around the circumference, resulting in a structural element which has a
constant cross sectional area even though it tapers from .305 meters (12. inches) in
diameter at the center to .025 meters (1.0 inch) diameter at the end. Then a single
helical wrap bundle is used to stabilize the longitudinal fibers. The Centel , joint and the
end joint are bonded with the longitudinal fibers during manufacture. With the joints
included, the mass of each 18. meter strut is 5.7 kg (12.5.lbs) and can be efficiently
nested for transport to orbit.

Figure 4.3-1	 LSS-3 Reflector Support Structure

The center and end joints are shown in figure 4.3-2. The center joint is a ring clamp
joint which produces a no-slop connection which does not require accurate angular
alignment about the strut axis during assembly. The end joint is a ball and socket joint
which also allows all slop to be eliminated and does not require angular alignment. The
primary adjustment nut is designed to allow an astronaut to accomplish the initial
connection and tightening with a gloved hand. Final tightening of the lock nut requires a
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Fil-ure 4.3-2	 LSS-3 Ring Truss Member Joints

wrench. The cluster fittings, shown in figure 4.3-3, are made of Invar investment

castings with final machining to provide the accuracy necessary in the socke.s.

58



0180-27677-2

4.3.2 Feed Array Structure

The feed array structure is a deployable box beam truss as shown in figure 4.3-4.

The elements are .0508 m (2.0 in.) in diameter and are made of graphite/epoxy laminate.
Although the longeron tubes are all the same length, the hinge fittings on the bottom of
the truss are approximately .1016 meters (4.0 in.) longer than those on the top so that

the box beam curves in a 79.3 meter circular arc. The "tee" plates and "angle" p!ates in
the joints are made of laminated graphite /epoxy and the tube end fittings are injection

molded graphite/epoxy.

ID3 203 ,

i— 3D3	 i
r I D2.,

^.^.. -.^ OD3
yJO.."W 4. L

".n wnu

-3 ARRAY ASSY

1	 ! C3„

VIEW ID2.

Figure 4.3-4	 LSS-3 Feed Array Structure

Figure 4.3-5 shows the packaging scheme for the box truss. The diagonal members

on the sides of the truss beam telescope to allow the truss to fold at the hinged joints.

The packaged dimensions of the feed truss are 2.0 x 4.0 x 2.1 meters.

E

4.3.3 Feed Support Structure

The feed support masts are deployable truss beams with a triangular cross section as
shown in figure 4.3-6. As in the feed array truss, the structural elements are
graphite/epoxy tubes .0508 meters (2.0 in.) in diameter.

Figure 4.3-7 shows the packaging method for these masts. The longeroc tubes are
hinged at the center of each bay and fold inward as shown. The cross section of the

r
packaged mast A triangular with a base of 2.0 meters and a height of 2.0 meters. The

79.3 meter length becomes 4.5 meters when packaged.
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Figure 4.3-6	 LSS-3 Feed Support Mas?

4.3.4 Reflector System

e reflector surface is a light weight knitted wire mesh made of gold plated

molybdenum wire embedded in a plastic film. It is divided into 18 gores with 25 panels

each (fig. 4.3-8) with reinforcing cables at the boundary of each panel and gore. The

mesh is attached to the top of the truss ring at eac of the 18 cluster joints around the

circumference. The radial reinforcing cables are mirrored by radial control cables. The

radial reinforcing cables are mirrored by radial control cables attached to the corre-

sponding cluster fittings around the bottom of the truss ring. Between the mesh surface
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Figure 4.3-7	 LSS-3 Feed Support blast Packaging Concept
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and the radial control cables are vertical drop cables, as shown in figure 4.3-9, which

control the shape of the reflector surface. Each drop cable and radial cable contains a

linear actuator which can apply tension to its cable in response to the surface control

system. A typical linear actuator capable of a .0508 m (2.0 in.) stroke is shown in figure
4.3-10. The control of the surface contour will require a sophisticated measurement and
control system to orchestrate the many actuators.

VIEW183-13	
`+..•^•n

.ar
	 VIEW ZBI.13

VIEW ISI.13

Figure 4.3-10	 LSS-3 Reflector Control Linear Actuator
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4.3.5 Construction 1"DrtUCe 	
OF POOR QUALiTV

The construction of the radiometer structure will require a fixture to provide
stability and alignment for the structural components. The construction fixture shown in
figure 4.3-11 attaches to the "wings" of the construction platform and consists of a pair

of tee-section rails supported by a series of quadrupods along their length. The rails are

LSS•3T°w7°	 CONSTRUCTION
TRUSS FIXTURE

RING
RING UNDER

/CONSTRUCTION	 CONSTRUCTION
AND STORAGE
FACILITY

TYPICAL
SPACE STATION
MODULE
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Figure 4.3-11	 LSS-3 C =nstruction Fixtuie
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curved in a circular arc compatible with the radius of the radiometer truss ring
structure. Attached to the rails are wheeled carriages (fig. 4.3-12) to which the truss

ring cluster fittings can be attached. The rails are long enough to support two bays of

the truss ring so that one bay can be anchored to the platform while another bay is under
construction. Upon completion of the second bay, the truss ring is allowed to move
circumferentially until it is supported by the newly constructed bay. The next bay can
then be constructed in the area vacated. Thus the construction of the truss ring always

occurs in one area of the construction platform which Is convenient to the stored struc-

tural components and reduces the translations required for both structural components

and personnel. This concept also supports the use of fixed and mobile, work stations

which ease the construction tasks.
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Figure 4.3-12	 LSS-3 Construction Fixture Rails and Carriage

4.4 Operations Analysis

This section summarizes the analyses of the requirements for constructing the LS-0-3
on the Space Station.

4.4.1 Construction

In order to demonstrate all construction methods during the space station LSS TDM
activity, different methods were considered for each mission.
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EVA assembly was chosen for construction of the LSS-3 TDM. Of the three
construction methods considered, manual assembly requires the most operator EVA. This
drives up the on -orbit construction costs due to the high cost of supporting EVA

activities. These costs, plus the fact that engineering costs are not significantly
reduced, makes this type of construction as expensive as the other methods (even though

there are lower fabrication costs).

4.4.2 Functional Flow Analysis

Functional flow diagrams were prepared to identify the LSS TDM system organiza-

tion and function. Utilizing preliminary design information, drawings, and mission data

forms, a scenario of construction tasks was prepared for the microwave radiometer, LSS-

3. This scenario was prepared to provide a picture of the construction tasks required to

accomplish the LSS-3 TDM objectives, Figure 4.4-1 shows the microwave radiometer

construction sequence. First, the construction holding fixture is assembled on the

PASSIVE MICROWAVE RADIOMETER

Figure 4.4-1	 LSS-3 Construction Sequence

platform. Then each pentahedral module is assembled and indexed on the fixture until

the truss ring is completed. Next ; the feed array beam and its support beams and

bracing cables are deployed and attached. The reflector mesh and its control cables are

65



i{

D180-27677-2

then installed. During construction, structural accuracy, dynamic characteristics and

thermal deflections tests are planned to verify the characteristics of the structure and

construction techniques. The LSS-^ functional flow diagrams were then prepared and are

documented as shown in figure 4.4-2.

START ASSEMBLE TEST TEST
UP CONSTRUCTION TRUSS COMPLETE

FIXTURE

ASSEMBLE TEST TEST ASSEMBLE

PARTIAL TRUSS COMPLETE PARTIAL

RING RING

TEST
TEST

COMPLETE LOMPL_ETE TEST

TRUSS TRUSS RING TRUSS

TE57 DEPLOY FEE, TEST TEST

COMPLETE SUPPORTS TRUSS COMPLETE

INSTALL TEST 6 END
MEMBRANE STOW

Figure 4.4-2	 L55-3 Functional Flow
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4.4.3 Task Analysis
i

As the functional flow diagrams were being prepared, a preliminary task analysis

r	 was begun to further define the LSS TDM construction tasks. These were refined and

updated as more detailed design data was generated. As the detailed timelines were
t	 evolved, task duration .vas considered. This combination generated a detailed thmetine

analysis.

4.4.4 Timeline Analysis

IC

Timeline analysis was used to derive human performance requirements by showing
the functional relationships between tasks as well as task loadings for the combinations
of asks. Design details and operator requirements were coordinated with Boeing

designers and were used as a basis for the detailed task analysis and timelines.

The analysis indicates the estimated amount of operator ' s time which is occupied
throughout the LSS -3 construction tasks. These operator task load estimates were
derived from neutral buoyancy simulations, task times from previous missions, and
analysis of NASA video tapes of STS-6, STS-11, and STS-13 missions. In addition,
interviews with previous and current astronauts were reviewed for pertinent EVA data.
A summary of the LSS-3 timeline is presented in figure 4.4-3 with the complete detailed
timeline being presented in Appendix B.

Task Hours
Start up 8.7
Assemble construction fixture 9.7
Test construction fixture 14.8
Assemble partial truss ring 15.5
Test truss 13.7
AAsseei-able partial truss ring 14.0
Test tnsss 13.7
Complete truss ring 2.0
Test truss 13.9
Deploy feed supports 14.6
Test taus 12.3
Install membrane 8.5
Final test and stow 14.9
Elapsed hours 156.3
25% contingency 39.1
Total hours 195.4

Figure 4.4-3	 LSS-3 Construction Timeline Summary
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4.5 Development Activities

The technology development missions defined in this report will demonstrate the

ability to construct large space structures on an early Space Station. However,
precursor developments are required to advance the necessary technology and oper-
ational procedures required for on-orbit assembly or construction. These precursor
activities involve the design, manufacture and test of structural components for the
TDMs and the development of detailed procedures for their construction in space.
Several testing arenas and types of tests can be used for these developments: ground

tests in the laboratory, neutral buoyancy tests in a water tank and tests In space using

the Space Shuttle.

Figure 4.5-1 summarizes the general areas where development activities for large
space structures need to be conducted and the locations for each. In all Cases, ground
testing is the primary development testing arena, but all developments need to be
demonstrated in space to veri ^e ground tests. Zero-g simulations which involve
human interaction are most ecum,;,Aically conducted in a neutral buoyancy simulator,
subject to the limitations of the physical dimensions of the facility.

DEVELOPMENTS NECESSARY FOR LES TOM
TESTS

GROUND NEUTRAL SHUTTLE
BUOYANCY

ASSEMBLABLE JOINT X X X

FOLDING DEPLOYABLE JOINT X X X

MRS REFLEC:'IVE MEMBRANE SURFACE X X

MRS MEMBRANE SURFACE CONTOUR MEASURING SYSTEM X X

MRS MEMBRANE TENSIONING SYSTEM X X

MIRROR POSITIONING CONTROLS X X

DEPLOYABLE TRUSS BEAMS X X X

TENSION STABILIZED BEAMS X X

CHERRYPICKER RMS X X

EVA ASSEMBLY OPERATIONS CAPABILITY X X X

DYNAMIC TESTING X X

SURFACE ACCURACY MEASUREMENT X X

MODAL IDENTIFICATION TECHNIQUE X X

Figure 4.5-1	 Precursor Technology Development

For the Passive Microwave Radiometer in particular, a list of development tests was
established for each type of test facility and is shown in figure 4.5-2. The test program
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Ground Tests
Full scale test

— Assembly (1 or 2 bays)
— Packaging
— Static, dynamic and thermal

Scale model tests
— Assembly (full ring truss)
— Static and dynamic
— Install reflector and control cables

Neutral Buoyancy Simulator (NOS) Tests—(scale model)
Assemble ring truss
Install mesh reflector surface
Deploy section of feed truss
Install feid :assembly in truss

Shuttle flight tests:
Ring tnrss:

— Repeat NBS tests in space
— Measure structural accuracy
— Measure thermal deformations
— Dynamic tests

Feed truss and feed support bearns:
— Deploy
— Accuracy measurements
— Dynamic tests
— Install feed modules in feed truss

Figure 4.5-2	 LSS-3 Development Tests

outlined makes use of full scale tests to provide data on structural components, and
subscale model tests to determine the characteristics of larger assemblies. Many of the

tests and assembly demonstrations can be accomplished first in a 1-g environment, again
in a neutral buoyancy simulator and, finally in space.

4.5.1 Ground Tests

Static, dynamic and thermal tests of full scale components are required to
determine their behavior in response to the expected environment of space. Many of

these tests can be conducted in 1-g laboratory conditions. portions of the assembled

structure can also be tested in full scale to determine the effect of joints, cable

pretension, etc. on the behavior of the stk ucture. However, because of the large size of
the complete structure, the overall static, dynamic and thermal characteristics of the
radiometer structure will initially have to be determin ed analytical y. Verification of
the analytical tools can be accomplished through the use of scale model test /analysis
correlation. The scale models will also provide data on the assembly procedures and

techniques which are required for on-orbit construction.
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To reduce the effect of gravitational forces, special suspension systems will be
required to distribute the forces over the structure. They may take the form of air
cushions, air bearings, soft springs or an active suspension system which is computer
controlled. Thrie suspension systems will more accurately represent the conditions in
orbit and will also allow the measurement of the dimensional accuracy of the structure.

4.5.2 Neutral Buoyancy Simulator (NBS) Tests

Zero-g activities which require human involvement are best simulated in a neutral
buoyancy simulator which uses the buoyant forces on objects submerged in water to
simulate the weightless conditions of space. Within the dimensional limitations of the
NBS facility, several radiometer assembly tasks can be demonstrated. The deployment
of a section of both the feed array truss beam and the feed support beam, the joining of
these two beams and the attachment of the support beam to the ring truss can be
accomplished. Procedures necessary for the deployment of mesh reflector surfaces and
their control cables can be developed. Due to the length of the ring truss members (18
meters), demonstration of the assembly of the truss ring will require the use of scaled
structural elements and construction fixture (perhaps 1/5th scale). The NBS facility can
also be used, to demonstrate the installation of subsystem components and the routing of
utilities.

4.5.3 Shuttle Flight Tests

After the structural components and assemblies have been tested on Earth and the
construction procedures and techniques have been developed and simulated, the next
step is to demonstrate the functional aspects of the construction process in space.
Structural assemblies of modest size can be constructed on orbit from the Shuttle cargo
bay to verify the results of the Earthbound tests and simulations. To determine the
accuracy and adequacy of these tests, it is best to duplicate the 1-g and NBS simulations
as closely as possible in orbit so that the differences can be identified. It may then be
possible to compensate for these differences in future tests on Earth.

4.6 Programmatics

The LSS-3 programmatic analysis provides the necessary plans, schedules and cost
analysis to support the definition of this technology development mission. This is
necessary to insure that plans, schedules, and costs are given proper consideration in
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the development and analysis of the missions. Programmatic analysis was performed in

two subtasksr (1)plans and schedules and (2) cost analysis.

4.6.1 Plans and Schedules

The program master schedule for LSS-3 was updated to reflect the Space Station

1992 10C and TDM launch date in 1994. The expanded preliminary LSS-3 TDM program

master schedule is shown in figure 4.6-1. The anticipated go-ahead is shown in 1988,.

along with the design and development, fabrication and assembly, test and launch

operations, and on orbit construction operations. Facility availability, along with test

plan submittal., is also shown. This schedule reflects the start and completion dates for

key milestones, key reports, and customer reviews.

We have developed the LSS-1 master schedule that our analysis indicates will reduce

risk to a minimum. This schedule has been formulated to ensure a timely flow. The

scheduled task interrelationships are also shown in figure 4.6-1.

cT.l

C,

C

Figure 4.6-1	 LSS-3 Master Program Schedule
4.6.2 Cost Analysis

An analysis of the Passive Microwave Radiometer was conducted during Phase I of

this study (Referencle i) to determine the costs associated with its design, development,

and manufacture. These costs were updated in Phase II to reflect maturity -in the details

of the design.
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TDM costs were determined using the cost data base we have developed from
experience with previous spacecraft. New equipment, hardware and development costs
were defined using the Boeing Parametric Cost Model (PCM) cost analysis computer
model and the RCA PRICE hardware acquisition model.

The ground rules provided by MSFC are:

o Cost estimates are in FY-84 dollars, including fiscal year funding requirements.

o Space Station ATP are FY-86 with initial launch in FY-90 and IOC in FY-91

o Cost estimates incline all requirements unique to demonstrating the technology
feasibility.

The additional ground rules and assumptions used are:

o The Boeing PCM hardware cost model was used to estimate all
structural/mechanical items and all support costs, i.e. SE&I, system ground
test, tool do test equipment, program management, etc.

o PCM was used to estimate all integration costs.

o	 Design costs reflect the highly repetitive nature of the hardware.

o The electronics package for the Passive Microwave Radio-meter was not
priced.

o Learning was assumed (88% of structural items).

1

	

.	 )	 j
I

	

t	
3	 sl

o Development quantity = 2

The development costs for the Passive Microwave Radiometer are summarized in
Figure 4.6-2.
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ENGINEERING (SM)	 20.2

Ir

r
7

11

R	 ..,
u, LW	 -.. ,

TOTAL HARDWARE (2 UNITS)	 100.7

TOTAL DEVELOPMENT ($M)	 120.9

FLIGHT UNIT COST ($M) 	 37.86

DOES NOT INCLUDE MICROWAVE SENSORS AND ELECTRONICS
DOES NOT INCLUDE CONSTRUCTION FIXTURE

1984 DOLLARS

4A

Figure 4.6-2
	

LSS-3 Development Costs

4.7 Space Station Resarces Required

4.7.1 Accommodations

LSS TDM EVA activities require special equipment and/or procedures. These in

turn will require provisions for accommodations in'the basic Space Station design. The

accommodation needs of the LSS-3 TDM were defined by analysis of both mission and

Space Station requirements/capabilities. A detailed list os 'the Space Station architec-

tural features, required for LSS-3 EVA construction and test activities is provided in

figure 3.7-1 previously shown in section 3.7.

4.7.2 Operations

Scheduling of the Space Station facilities, activities, and personnel is of prime
1

importance to minimize conflicts during LSS EVA construction activities. Communica-

tions, data equipment, and links required for EVA will need to be available and

operational. All other missions and space station facility usage will require close

coordination. This scheduling could be critical during the LSS-3 truss ring construction.

Figure 4.7-1 shows the Space Station operations that need to be scheduled to avoid

conflict with LSS-3 construction activities.
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Scheduling
Communications

CCTV
Intencomm
Links

Data
Processing
Handling

Missions
Shuttle, OTV, and OMV docking and operations
RMS usage
Facilities (briefing room)

Crew Members
2 EVA
1 I VA

Figure 4.7-1
	

LSS-3 Space S tation Operations

4.7.3 Crew Support

The LSS-3 crew skills were identified as explained in Section 3.7.3. The numbers
shown in the crew skill support (fig. 4.7-2) represent the percent of operation duration
time each skill is required. These percentages were estimated from the data used to
calculate the operation time. Particular attention was paid to the crew skill descriptions
in figure 3.7-5 in making sure that the proper crew skills were utilized for each

operation.

U

EVA ENGINEERING
WORKSTATION 27%
OPERATIONS

11%

OPERATIONS
DATA
12%

OPERATIONS
MECHANISMS

19% OPERATIONS
ELECTRONICS O	 RMS OPERATIONS-12%

15%
O	 SPACE STATION

SUBSYSTEMS-7%

Figure 4.7-2	 Crew Skill Support

i

1
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4.7.4 Special Equipment

During the definition and analysis of the LSS-3 TDM, special equipment require-

ments were considered. The required support equipment, instrumentation, data systems,

and small tools identified during this study are listed in figure 4.7-3. The construction

Support Equipment
Construction fixtures
Miscellaneous constraints and hold-downs
Articulated test equipment holding fixture
Si.rut alignment and assembly fixture

Instrumentation
Structural dynamics (acceleration, strain, loads, ate.)
Thermal response (thermocouples)
Position/deflection (precision laser ranging, comer reflectors)

Data Systems
Recording
Storage & retrieval
Manipulation (EDP)

Small Tools
LSS3 construction tool kit

{	 Figure 4.7-3	 LSS-3 Special Equipment

fixtures and strut alignment and assembly fixture are good examples of special

equipment that will need to be supplied with the LSS-3 mission hardware. Some common

equipment is envisioned to remain on the Space Station for use with other missions.

4.3 Potential Problems and Concerns

Several areas of concern must be considered when constructing the Passive

Microwave Radiometer at the Space Station. The additional mass and inertias of the

structure as well as its structural dynamic characteristics during and following its

construction must be accommodated by the Space Station control system. The dynamic

loads resulting from events such as Orbiter docking and thruster firings must also be

accounted for. Large S pace Structures attached to the Space Station will also increase

the drag due to their size. The large size of the structures may also influence the

thermal balance of the Space Station and interfere with communication paths.

	

These and other concerns raised by the construction of large space structures affect	 j

a wide range of technologies axid subsystems and need to be carefully considered in the

	

design of the Space Station as well as in the design of the construction project. The	 !
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results of initial investigations of some of these concerns for LSS-3 are presented in the
following sections.

4.&1 Mass and Inertia

The mass properties of the Microwav^ Radiometer structure are shown in figure
4.8-1. Although all the structural components are delivered in one Shuttle flight, the
distribution of the mass will change as the strur..ture is assembled. The location and
orientation of the radiometer will determine to what extent the additional mass and
inertia will affect the Space S ,.ation. The center of mass and inertias shown in the figure
are measured relative to the coordinate origin located at the center of the bottom plane

of the truss ring.

MASS v 2846 kg

Z-C.G. = 27.5 m

I xx	 = 4.64 x 10 6 kg-ml

lyy	 = 5.6 x 106 kg -mz

Ig	 a 4.93 x 106 kg-m2

z

^.+Y

X

a

I

i
j

i

Figure 4.914	 LSS-3 Mass Properties

Although the radiometer structure is light, the distance between the center of mass
and the point where the truss ring is attached to the construction platform is large 01.5
meters). Therefore the contribution of the radiometer to the Space Station inertias can

be significant.

4.8.2 Loads and Deflections

One of the analyses performed was to'determine the structural deformation of the
ring truss due to the pretension in the guywires which support the feed array stricture.

A NASTRAN finite element model of the radiometer structure 'was used to determine
these deflections. It was determined that a pretension of 500 Newtons is required in

each of the guywires to prevent them from becoming slack under an acceleration of
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0.1 g's in the lateral direction. With this pretension, the truss ring deforms approxi-
mately 0.1 meters (3.9 in) and varies around the circumference of the ring as shown in
figure 4.8-2. The deflections shown are measured relative to the base of the feed

support masts. Although these deflections are more than the accuracy required by the

reflector surface, they can be reduced by increasing the shear stiffness of the ring. The
linear actuators which control the reflector surface contour can also be used to provide

the required surface accuracy.

Figure 4.3-2	 LSS-3 Ring Deflection Due to Guywire Pretension

e — 1

4.8.3 Structural Dynamic Characteristics

One of the primary concerns relating to the construction of large space structures

on the Space Station is the flexibility of the structure both during and after

construction. Therefore a NASTRAN finite element model was used to assess this
concern for LSS-3. Mode shapes and frequencies were calculated at several stages

during the assembly of the truss ring. As more and more segments of the ring are
constructed, the modal frequencies of the cantilevered structure get lower and lower as
shown in figure 4.8-3. After 17 of the 18 bays are constructed, the first mode frequency
of the truss (whose mode shape is shown In the figure) is less than 0.1 fiz. Upon
completion of the f8th bay, the frequency increases to approximately 0.25 Hz. bee_rese
the ring is now continuous. The curves plotted show the trends associated w'iiil differevit
types of motion, therefore they cross over each other as more bays are complete,
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The frequencies of the radiometer structure after the feed system and reflector are
added are shown in figure 4.8-4. The tension-only characteristics of the guywires were

modeled by using half of their cross-section properties. The first column shows the
cantilevered frequencies of the completed structure without the reflector installed. The
ring was cantilevered at the four points adjacent to one of the feed support rlasts (point
A on the figure) for the- results. The next two columns contain the structural

a. s
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Figure 4 .8-3	 LSS-3 Structural Dynamics During Build-up '

FREQUENCY, Ha

NO REFLECTOR	 W/REFLECTOR W/REFLECTOR
MODE A	 A 8

1 .197	 .19S .191
';	 ^'" ;*,• 2 .236 .217 .281

~ •
3 .378	 .326 .287

^^ --s 4 .493	 .475 .433
5 .668	 .602 .661

A,	 - CANTILEVERED AT POINT 
8	 - CANTILEVERED AT POINT B

B•

A

Figure 4.8-4	 LSS-3 Structural Dynamics After Build-up

frequencies with the mass of the reflector included. The.reficctor mass was distributed

around the ring, therefore the membrane modes are not included in the analysis. The

first of these two columns use point A as the cantilever location while the second of
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C"',
 y these two columns uses point B (midway between the feed support mast attachment

points) which is a more flexible mounting position.

4.a4 Drag

Another concern created by LSS construction is the increased frontal area which
increases the rate of orbital decay due to drag. The orientation of the structure can
have a pronounced effect on the drag. For instance, if the plane of the ring is oriented
perpendicular to the flight path, the frontal area of the Space Station will be increased
more than if it was oriented with the edge of the ring toward the flight path.

The drag on a body in low Earth orbit depends on its ballistic coefficient (area per
unit mass). Figure 4.8-5 shows the area of LSS-3 in the x, y and z directions and the
corresponding area/mass ratio for the radiometer alone. The effect that the radiometer
has on total Space Station drag properties is shown in the last line of the table, expressed
as the percent increase of the Space Station area/mass ratio due co LSS-3. For these
calculations, the shadowing effects which may occur were neglected, and the areas were
assumed to be additive. Due to the size and light weight of the radiometer, it has a
significant effect on Space Station drag properties, particylarly when the reflector is
broadside to the flight path. This orientation results in a 455. , percent increase in the
area/mass ratio and must be avoided if at all possible.

X-DIR. Y-DIR Z-DIR

LSS-3 AREA (m2) 885. 898. 7854.

AREA/MASS RATIO (m 2/kg) .311 .316 2.76

% INCREASE FAIR SPACE STATION • 38. 38„ 455.

ASSUMPTION: TOM AREA ADDS TO SPACE STATION AREA

Figure 4.8-5	 LS-S-3 Drag Effects
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5.0 PRECISION OPTICAL. SYSTEM, LSS-4

This section is a self-contained description of the tasks relating to the development

of a Precision Optical System, LSS-3. Included in the study are design, operations and

cost trades, preliminary structural design of the mission, an analysis of the operations

required to perform the mission, precursor technology developments which can be

accomplished on Earth or with Shuttle flights, and the programmatics of the mission. In

addition to these topics, the accommodations which the Space Station must provide to

the TDM are identified and, conversely, some of the problems and concerns which the

TDM may impose on the Space Station are considered.

5.1 Design Trade Studies

The design considerations which were subjected to trade studies for the Precision

Optical System include the structural configuration, the size and shape of the primary

mi.or segments, and the method of assembly. Each trade is discussed individually in

this secticn.

i
Îj

S

i

j

5.1.1 Primary Mirror Support Truss

The most efficient planar truss and one which accommodates a segmented mirror

configuration very well is the tetrahedral truss. It can also be made to provide a

spherical or parabolic surface. The tetrahedral truss was, therefore, selected as the

primary mirror support truss. The subject of this trade study is to determine the method

which will be used to construct the primary mirror support structure on-orbit.

Figure 5.1-1 shows the three candidate construction techniques considered for the

precision optical system primary mirror support truss. The assemblable concept relies on

in-space assembly while the deployable concept requires on-Earth assembly and

checkout with little human intervention on-orbit. The modular content combines these

two methods by high precision manufacture of the mirror support i'rame with mirrors

attached on the ground. The primary mirror support truss is divided into seven modules

which support seven hexagonal mirror segments each. The individual modules are sized

so that they fit within the Orbiter bay diameter with the mirrors attached. Truss

elens tints in the upper surface of each module (called the mirror support frame) are

PRECEDING PAGE BLANK NOT FIUUf D
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Figure 5.1-1	 LSS-4 Primary Mirror Structure Concepts

rigidly bonded together on the ground and the mirrors are attached to it. The backing
truss (the bottom surface of the truss and the diagonal elements) is semi-deployable for
efficient packaging in the Orbiter. The bottom truss surface elements are also rigidly

bonded together on the ground with the diagonal elements made so that they deploy from
the bottom truss surface. Each module is deployed and assembled at the Space Station
and then connected to the adjacent module, as shown in the figure, to form the primary
mirror array. The outlines of the mirror support frames are shown as a solid lines in the
figure while the outlines of the bottom truss frames are dotted. The size of the mirror
array can be easily increased by adding more mirror modules.

i

^	 t

^t

r

The trade study results in the form of quantitative and qualitative comparisons of

each assembly concept are shown in figure 5.1-2. A NASTRAN ;trite element analysis of
each of the concepts was conducted to determine their dynamic characteristics. In this
analysis, all joints were assumed to have no slop. Therefore, the analysis of the
assemblable and deployable concepts are identical. The first mode frequency of the
modular truss is somewhat lower than the other two because each module is attached to
the adjacent module at three points. The I;iass of each truss concept is nearly equal. A

qualitative comparison of the time required to assemble the primary mirrors and their
support structure shows that the modular approach takes less time than the other two.

82



DieO-27677-2

CHOSEN

ASSEMBLABLE DEPLOYABLE MODULAR
TRUSS TRUSS TRUSS

15.0 18.0 OS
189.0 189.0 161.0
HIGH MEDIUM LOW

MEDIUM MEDIUM HIGH
• SIDE LATCH • DEPLOYABLE • SOME DEPLOYABLE
• SELF ALIGNING (AUTO) IMANUAL)
• ZERO SLOP • LOCK-ABLE • SELF ALIGNING

• ZERO SLOP

393 305 VA

TRADE ITEM

PRIMARY FREQUENCY (TRL=-- s MIRRORS) (Nil
TRUSS MASS (Ky)
EVA ASSEMBLY TIME (TRUSS + MIRRORS)
ACCURACY !AS ASSEMBLED{

JOINT REQUIREMENTS

COST ON-ORBIT ISM)

^ 
c,T

Figure 5.1-2	 LSS-4 Primary Mirror Structure Trade Study

This is based on the fact that much of the assembly and adjustment work for the modular
concept is accomplished on the ground. The assemblable concept requires a large
amount of EVA to build the structure and attach the mirrors. For the deployable
concept, the time required to deploy the structure is short, but the attachment of the
mirrors to the .structure is not only time consuming but also risky. The as-built accuracy
of the modular concept is judged to be higher than the other concepts. The results of the
assemblable vs. deployable vs. modular cost trade (discussed in more detail in Section
5.3) are also summarized in the table, with the modular concept being the least

expensive. Based on these trade study comparisons, the modular concept was chosen for
the precision optical TDM.

5.1.2 Primary Mirror Segment Size

Using the modular support structure concept, two sizes of mirror segments can be
accommodated as shown in figure 5.1-3. With seven mirror segments per module, the
size of each mirror segment is approximately 1.5 meters in diameter. A single mirror
approximately 4.0 meters in diameter can also be used.

The size of the segmented mirrors was determined by both mirror manufacturing
technology and cost. Large mirrors are more difficult to manufacture. but the smaller
mirrors will require more position control mechanisms which will add to the total cost.
Also, based on the design goal of 15 to 25 kg per square meter for lightweight mirrors,

large diameter mirrors would be too fragile to withstand the boost environment and may
not retain their proper shape. A report on mirror technology (NASA CR 166493)
applicable to the Large Deployable Reflector (LDR) concludes that the "optimum size
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MOM

MIRROR

• -....OPTIMAL SIZE FOR THE REFLECTOR
PANELS IS BETWEEN 1b AND 2.0 METERS"
PERKIN-ELMER CORPORATION

• DESIGN GOAL OF 1646 KG/M 2 ATTAIN.
ABLE

• FEWER MANUFACTURING PROBLEMS

• LIGHT WEIGHT MIRRORS THIS SIZE ARE
TOO FRAGILE

• MAY NOT MAINTAIN PROPER SHAPE

• MISTAKES ARE TOO COSTLY

Figure 5.1-3	 LSS-4 Primary Mirror Size Options

for the reflector panels is between 1.5 and 2.0 meters." Therefore the 1.5 meter mirrors
were selected for LSS-4.

5.1.3 Secondary Mirror Supports and Light Shield

i'
Two candidate secondary mirror support concepts are shown in figure 5.1-4. The

LSS-4 configuration defined in Phase I of this study is shown on the left. The secondary
mirror is supported by radial truss beams attached to a hexagonal truss ring which, ir.
turn, is supported by six extendable masts attached to the primary mirror support truss.
These masts also support the light shield panels. The figure on the right shows NASA's
strawman LDR (Large Deployable Reflector) concept which employs a tripod secondary
mirror support structure and a separate light shield.

r

	

	
The configuration of the secondary mirror support structure was changed from the

initial LSS-4 concept to the tripod support structure concept. The purpose of the

	

secondary mirror support structure is to provide accurate alignment of the secondary 	 I

	

mirror with respect to the primary mirror. The inherent stiffness of the tripod support is 	
,I

a definite advantage over the parallel support beam concept. It is also lighter and much
less complex. The fact that the light shield is separate from the secondary mirror
supports is also an advantage since disturbances which may affect the light shield will
not be transmitted directly to the secondary mirror.
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LSS4	 NASA/ARC STRAWMAN LDR
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5.1.4 Cost Trade Study

Although the choice of space system designs can be based on considerations such as

structural efficiency, weight, performance, simplicity, etc., the cost of the system is a
very important item. Many factors contribute to the overall cost of a large space

system. Design, development, test and manufacturing are some of the items which
immediately come to mind when costs are being determined. However, the cost of
transportation to orbit and, in the case of the T DM s defined in this study, the costs

involved in the on orbit construction need to be considered.

With this in mind, it is not immediately obvious whether it is less costly to

manufacture an automatically deployable spacecraft on the ground and deploy it in orbit,
to assemble the whole system in orbit, or to use deployable modules which can be
assembled in orbit.

A trade study was performed to evaluate these options using the primary mirror

system of the Precision Optical System as the system to be evaluated. The costs
associated with the development, transportation and on-orbit assembly for each of the

three construction options previously identified in Section 5.i.1 were determined and are

85



LSS4 PRIMARY MIRROR SUPPORT TRUSS

40.0

® DEVELOPMENT COST'

Q
TRANSPORTATION
CHARGES

2
30.0- STATION

CHARGES

Z

5 20A 
J
S

10.0

-PR ICE OF MIRRORS NOT INCLUDED
0.0

ASSEMBLABLE DEPLOYABLE MODULAR

f

r

D180-27677-2

compared in bar chart form in figure 5.1-5. The development costs are nearly equal.
The cost of the mirrors is not included in the total cost of the system. However, mirror
costs do influence system integration costs and are, therefore, included for that calcu-
lation. The high packaging efficiency of the assemblable concept results in the lowest
transportation charges. Transportation charges for the other two concepts are nearly
equal. The largest differences in cost between the three, concepts comes from the
charges associated with on-orbit construction. The modular concept requires signifi-
cantly less assembly since the structure is modularized and the mirrors are integrated
with the structure on the ground. These results were a major contributor to the decision
to -rse the modular concept for LSS-4.

Figure 5.1-5	 Cost Trade Study Results
5.2 Operations Trade Studies

This section summarized the trade studies completed during the LSS-4 TDM
construction analysis activity.

5.2.1 EVA Crew Schedule

The results of our analysis indicates that the workday should be 6 actual EVA hours.

Three operators per shift (2-EVA and 1-IVA) will be required, full time, during LSS
EVA construction activities. The ability to operate more than I shift per day will be
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dependent on the Space Station crew size and other scheduled Space Station activities.
Two or three shift operation could result in conflicts in the use of facilities and high

noise levels while other crewmembers are trying to sleep. For the LSS TDM EVA
construction activities it is recommended that 1 shi.lt per day be utilized.

It is recommended that a 5 day LSS-3 EVA construction week be adopted with I IVA
day for paperwork and suit maintenance and care.

5.2.2 EVA i'ersonnel Restraints

The restraint methods selected for the LSS-4 TDM construction activities are:

1

1. The flexible tethers that are currently utilized for the STS missions.
2. The current safety line.
3. A shoe restraint with matching grid work.

4. The hangar that is part of LSS-1 will also serve as an operator restraint.

5.3 Mission Design

This section and Appendix A present a description of some of the design details for
the Precision Optical System. The design of this TW4 was not carried to the same level 	 {
as the other two so that more effort could be directed to the

k

Construction/Storage/Hangar Facility and Microwave Radiometer. This section will he s
limited to a discussion of the primary mirror support structure for the Precision Optical
System.	 ~

The primary mirror assembly consists of ,even structural modules, each with seven

hexagonal mirror segments. Each of the structural modules (fig. 5.3-1) is a tetrahedral
truss constructed using a combination of deployable and assemblable techniques. The

upper surface of each module is a rigid framework manufactured to high precision, with
the seven mirror segments attached on the ground. The lower surface is also a rigidly

fabricated frame with the deployable diagonal.struts attached to it. This allows the
upper and lower components of each module, which are sized to fit within the 4.5 meter
Orbiter bay diameter, to be packaged efficiently and still be made stiff. The trade
study, discussed in the previous section, comparing the costs (including DDT&E,
manufacture, transportation and on-orbit construction) of this modular construction
method compared with deployable and assemblable concepts showed this to be a more
economical construction method.
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At the Space Station, each module is assembled by, first, deploying the diagonal
members from the lower truss frame and then attaching the upper truss frame (with
mirrors) to it. The modules are then attached together, as shown in figure 5.3-2, to form
the primary mirror assembly. The secondary mirror and supports are then attached

followed by the light shield.

5.4 Operations Analysis

This section summarizes the analysis of the requirements for constructing the LSS-4

TDM on the Space Station.

5.4.1 Construction Method

In order to demonstrate various construction methods during the Space Station LSS

TDM activity, different methods were considered for each mission.

A combination of prefabrication and assembly was chosen for construction of the
LSS-4 TDM. Prefabrication and EVA assembly of modules can minimize on-orbit
assembly time and, therefore, costs. Transportation size, weight, and packaging
becomes a major consideration with this type construction.
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MIRROR MODULE

Figure 5.3-2	 LSS-4 Construction Scenario

5.4.2 Functional Flow Analysis

Functional flow diagrams were prepared to identify il;e LSS TDM system organiza-

tion and function. Utilizing preliminary design information, drawings, and mission data

forms, a scenario of construction tasks was prepared for the precision optical system

LSS-4. The first scenario was prepared to provide a picture of the manual assembly

functions required to accomplish the LSS-4 TDM objectives. As shown in figure 5.4-1,

LSS-4 begins with the attachment of the instrument housing to the platform. 'rhe

primary mirror truss is then manually assembled. The extendable masts, secondary

mirror truss ring, secondary mirror, light shield, etc. are then installed. Tests are

conducted throughout this construction sequence to determine the dynamic character-

istics, structural accuracy and thermal deformations of the structure. This construction

scenario was then upgraded to a functional flow diagram in order to define the end to

end manual assembly and test operations for the LSS-4 mission. It was necessary to

examine each of the proposed functions in terms of specifics regarding sublevel

requirements for each function and in terms of the possible constraints that would affect

the way in which each function was accomplished.
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Figure 5.4-1	 LSS-4 Manual Truss Assembly Construction Sequence

Then utilizing the preliminary design information, drawings, and mission data forms,
a second construction scenario was prepared. This scenario was prepared to provide a

picture of the modular assembly functions required to accomplish the LSS-4 TDM
objectives. As shown in figure 5.4-2 the sequence begins by first deploying the diagonal
members from the lower truss frame and then attaching the upper truss frame (with
mirrors) to it. The modules are then attached together to form the primary mirror
asc;^mbly. The secondary mirror and supports are then attached followed by the light

shield. Dynamic tests and accuracy measurements were included during the construction
activities to verify the characteristics of the structure and construction methods.
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MIRROR MODULE

Figure 5.4-2	 LSS-4 Modular Construction Sequence

The LSS-4 functional flow diagrams were then prepared and documented as seen in

figure 5.4-3.

5.4.3 Task Analysis

As the functional flow diagrams were being prepared, preliminary task analysis 	
G

was begun to further define the LSS-4 TDM construction tasks. These were refined and
	

v

updated as more detailed design data was generated. As the detailed time lines were
evolved, task duration was considered. This combination generated a detailed timeline

analysis.

5.4.4 Timeline Analysis

i	 These Timeline analyses were used to derive human performance requirements by
showing the functional relationships between tasks as well as task loadings for the

combinations of tasks. Design details and enperator requirements were coordinated with
Boeing designers and were used as a basis for updating the detailed task analyses and

timelines.
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Figure 5.4-3	 LSS-4 Functional Flows
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The ana:lysfs indicates the estimated amount of operator 's time, for each type of
construction, which is occupied throughout the LSS construction tasks. These operator
task load estimates were derived from neutral buoyancy simulation, times from previuus
missions, and analysis of NASA video tape of STS -6, STS -11, and STS -13 missions. In
addition, interviews with previous and current astronauts were reviewed for pertinent

EVA data. A summary of the LSS -4 manual assembly and modular assembly timelines is
presented in figu:ie 5.4-4.

LSS-4 Elapsed 25% Total
'	 Concept Hours Contingency Hours

Assemblable 229.3 57.3 286.6

Modular 169.63 42.4 212.0

Figure 5.4-4	 LSS-4 Timeline Summary

5.5 Development Activities

The technology development missions defined in this report will demonstrate the
ability to construct large space structures on an early Space Station. However,
precursor developments are required to advance the necessary technology and opera-

ticnal . procedures required for on-orbit assembly or construction. These precursor

activities involve the design, manufacture and test of structural components for the
TDMs and the development of detailed procedures for their construction in space.
Several testing arenas and types of tests can be used for these developments: ground

tests in the laboratory, neutral buoyancy tests in a water tank and tests in space using

the Space Shuttle.

Figure 5. 5-1 summarizes the general areas where development activities for large
space structures need to be conducted and the locations for each. In all cases, ground
testing is the primary development testing arena, but all developments need to be
demonstrated in space to verify the ground tests. Zero-g simulations which involve
human interaction are most economically conducted in a neutral buoyance simulator,
subject to the limitations of the physical dimensions of the facility.

For the Precision Optical System in particular, a list of development tests was
established for each type of test facility and is shown in figure 5.5-2. The development
program outlined uses full size structural components, including at least two primary
mirror support structure modules with dummy mirrors, to determine the behavior of the
structure and to develop techniques for its construction. Because of the high stiffness of
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DEVELOPMENTS NECESSARY FOR LSS TOM
TES'- rS

GROUND NEUTRAL SHUTTLE
BUOYANCY

ASSEMBLABLE JOINT X % X

FOLDING DEPLOYABLE JOINT X X X

MRS REFLECTIVE MEMBRANE SURFACE X X

MRS MEMBRANE SURFPwE CONTOUR MEASURING SYSTEM X X

MRS MEMBRANE TEKIONING SYSTEM X X

MIRROR POSITIONING CONTROLS % X

DEPLOYABLE TRUSS BEAMS X X X

TENSION STABILIZED BEAMS X %

CHERRYPICKER RMS K X

EVA ASSEMBLY OPERATIONS CAPABILITY X X %

DYNAMIC TESTING X X

SURFACE ACCURACY MEASUREMENT X X

MODAL IDENTIFICATION TECHNIGW X X

Figure 5.5-1	 Precursor Technology DevQlopmen:

Ground Tab:
Deploy and assemble primary mirror assembly
Structuraltests

— accuracy measurement
— dynamic
— thermal
— static

Mirror tests
— alignment measurement system
— adjustment mechanism (coarse and fine)
— dynamic
— static
— remove and replace mirror segment

Neutral Buoyancy Simulator (NBS) Tests:
Deploy and assemble primary mirror assembly
Remove and replace mirror segment

Shuttle Flight Tests:
Deploy and assemble'primary mirror assembly
Assemble secondary mirror system
Measure accuracy
Dynamic tests
Measure thermal deformations
Replace a mirror segment
Perform mirror alignment tests (coarse and fine)

Figure 5.5-2	 LSS-4 Development Tests
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the structure, most of the tests can be accomplished on the ground in a 1-g environment.
Neutral buoyancy simulations will help to determine operational procedures and tech-

niques, and final verification will be done in space.

5.5.1 Ground Tests

The determination of the structural characteristics of the precision opti al system

design can be accomplished using ground tests. Structural deformations due to the
effect of gravity will be small because the structural stiffness must be high. Therefore,
conventional ground test methods for spacecraft will apply to this TD(vi. The determina-
tion of the effect of joint slop on the structural dynamics and damping of the structure,
however, may require special suspension systems to negate the effects of gravity.

In addition to the thermal and structural ground tests, development of the precision
measurement and control system for the primary mirror segments will be accomplishedr	 _.
on the ground. The precision alignment of the mirror segments requires the accurate
knowledge of the behavior of the structure to control system forces as well as to
externel disturbances.

Ground tests can also be used to develop the procedures and techniques required for

the construction and checkout of the structural components of the precision optical
system and to verify the mechanical systems which are required to attach the various
assemblies together.

5.5.2 Neutral Buoyancy Simulator (NBS) Tests

Zero-g activities which require human involvement are best simulated in a neutral

buoyancy simulator which uses the buoyant forces on objects submerged in water to
simulate the weightless conditions of space. This test facility can be used in the
development of the precision optical system to demonstrate the procedures and
techniques for the assembly of the primary mirror modules, the attachment of several

modules together, the assembly of the secondary mirror and its support, the routing of
utilities, and the attachment of the light shield panels.

5.5.3 Shuttle F1.6*A Tests

After the structural components and assemblies for the precision optical system
have been tested on Earth and the construction procedures and techniques have been
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developed and simulated, they must be also be demonstrated in space. Orbiter flight
tests of. the construction of the precision optical system can be used to verify the
measurement and control systems for the alignment of the optical reflector segments as
well as the mechanical systems. Dynamic measurements taken during these tests can
also be used to verify ground tests results, analytical models and predictions. Assembly
procedures and techniques developed in the neutral buoyancy simulator can be duplicated
in space to determine the accuracy of NBS testing.

5.6 Programatics

The study of LSS-4 included preliminary considerations of program structure, cost,
schedules and phasing. This programmatic analysis was performed on two subtasks . (1)
plans and schedules and (2) cost analysis.

5.6.1 Plans and Schedules

The preliminary program master schedule for LSS-4 was not updated due to the
change in the statement of work by NASA direction. Figure 5.6-1 shows the preliminary
master schedule.

Figure 5.6-1	 LSS-4 Master Schedule
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5.6.2 Cost Analysis

An analysis of the Precision Optical System was conducted during Phase I of this
study (Reference 1) to'determine the costs associated with its design, development, and
manufacture. These costs were updated in Phase II to reflect maturity In the details of
the design.

TDM costs were determined using the cost data base we have developed from
experience with previous spacecraft. New equipment, hardware and development costs
were defined using the Boeing Parametric Cost Model (PCM) cost analysis computer
model and the RCA PRICE hardware acquisition model.

The Ground Rules Provided by MSFC are:

•	 Cost estimates are in FY-84 dollars, including fiscal year funding requirements.
• Space Station ATP are FY-86 with initial launch in FY-90 and IOC in FY-91.
• Cost estimates include all requirements unique to demonstrating the technology

feasibility.

The Additional Ground Rules and Assumptions used are:

o The Boeing PCM hardware cost model was used to estimate all
structural/mechanical items and all support costs, i.e. SE&I, system ground x
test, tool do test equipment, program management, etc.

• PCM was used to estimate all integration costs.

• The RCA PRICE hardware cost model was used to estimate the cost of one set 	 j
of primary mirrors and secondary mirror assembly.

o Design costs reflect the repetitive nature of the hardware.

o The electronics package for the Precision Optical System was not priced.

o Learning was assumed (88% of structural items).

o Development quantity = 2
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The development costs for the precision Optical System are summarized in figure
5.6-2.

Engineering ($M)	 154.6
Total Hardware (2 Units) 	 118.8
Total Development ($M)	 273.4

Flight Unit Cost ($M)	 59.4

Does not include focal plane electronics
and mirror control electronic
1884 dollars

Figure 5.6-2
	 LSS-4 Development Costs

5.7 Space Station Resources Required

5.7.1 Accommodations

LSS TDM EVA activities require special equipment and/or procedures. These in
turn will require provisions for accommodations in the basic Space Station design. The
accommodation needs of the L55-3 TDM were defined by analysis of both mission and
Space Station requirements/capabilities. A detailed list os the Space Station architec-
turai features, required for LSS-4 EVA construction and test activities is provided in
figure 3.7-1 previously shown in section 3.7.

5.7.2 Operations

Scheduling of the Space Station facilities, activities, and personnel is of prime
importance to minimize conflicts during LSS EVA construction activities. Communica-
tions, data equipment, and links required for EVA will need to be available and
operational. All other missions and Space Station facility usage will require close
coordination. Figure 5.7-1 shows the Space Station operations that need to be scheduled
to avoid conflicts with LSS-4 construction activities.

5.7.3 Crew Support

The LSS-4 crew skills were identified as explained in section 3.7.3. The numbers
shown in the crew skill support (figure 5.7-2) represent the percent of operation duration
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Figure 5.7-1	 LSS-4 Space Station Operations
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Figure 5.7-2	 Crew Skill Support

time each skill is required. These percentages were estimated from the data used to
calculate the operation time. Particular attention was paid to the crew skill descriptions
in figure 3.7-5 in making sure that the proper crew skills were utilized for each
operation.
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5.7.4 Special Equipment

During the definition and analysis of the L5S-5 TDM, special equipment require•=
ments were considered. The required support equipment, instrumentation, data systems,
and small tools identified during this study are listed in figure 5.7-3. The articulated
holding fixture is an example of the special equipment that will need to be supplied with

the LSS-4 mission hardware. Some common equipment is envisioned to remain on the
Space Station for use with other missions.

5.8 Potential Problems and Concerns

Several areas of concern must be considered when constructing the Precision
Optical System at the Space Station. The additional mass and inertias of the structure
as well as its structural dynamic characteristics must be accommodated by the Spacer
Station control system. The dynamic loads resulting from events such as Orbiter
docking and thruster firings must also be accounted for. Large Space Structures
attached to the Space Station will also increase the drag due to their size. The large size
of the structures may also influence the thermal balance of the Space Station and
interfere with communication paths. For the Precision Optical System there is the
added concern of handling and protecting the fragile mirror segments.

These and other concerns raised by the construction of large space structures affect
a wide range of technologies and subsystems and need to be carefully considered in the
design of the Space Station as well as in the design of the construction project. The 	 c _

results of initial investigations of some of these concerns are presented in the following
sections.

5.8.1 Mass and Inertia

The mass and inertia of LSS construction projects must be accommodated by the
1

Space Station attitude control system. Therefore the inertia properties of the Precision	 -
Optical System structure including the mirrors were estimated and are shown in figure
5.8-1. The instrument module which contains the focal plane instruments and other
equipment is nut included in these estimates. The center of mass location and the
inertia properties are given in relation to its interface with the Space Station which is at
the center of the bottom surface of the primary mirror support truss. Primary and
secondary mirror weights are based on an areal density of 25 kg/m2.
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Man1880.k9
Z-c.g.	 1 A9m
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IXX	 11738.k2
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Prirr!ry mirror support structure
and mirror only.

Figure 5.8-1	 LSS-4 Mass Properties

5.8.2 Stnsctural Dynamic Characteristics

The calculation of the structural dynamic characteristics for LSS-4 was accom-

plished during the design trade studies conducted to determine which primary mirror
support structure concept would be used. A NASTRAN finite element model was used to
determine the free-free mode shapes and frequencies of the primary mirror support

structure with the mass of the segmented mirrors included. As shown in figure 5.8-2, the
first free-free frequency is 9.5 Hz. Even with the structure attached to the Space
Station and the secondary mirror system attached, the frequencies will probably be
higher than the primary frequencies of the Space Station itself, and, therefore will not
be of significant concern for the control system.

• Unconstrained modes
• Primary mirror support

structure and mirror

Mode	 Freq. (Hz)

1	 951

3	 14.66
4	 1536

Figure 5.8-2	 LSS-4 Dynamic Characteristics
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X-Dir Y-Dir Z•Dir

LSS-4 area (m2) 156 156 123
Area/mass ratio (m2/kg) .031 .031 .024
% increase for Space Station 2.6 2.6 1.0

Assumption: TDM area adds to Space Station area

Figure 5.8-3	 LSS-4 Drag Effects
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5.8.3 Drag

Another concern created by LSS constructi ii is the increased frontal area which
increases the rate of orbital decay due to drag. The orientation of the structure can
have a pronounced effect on the drag.

The drag on a body in low Earth orbit depends on its ballistic coef itient (area per
unit mass). The drag areas for LSS-4 were calculated and are shown in figure 5.8-3 along
with the area/mass ratio. The effect that the optical system has oil the total Space
Station drag properties is shown in the last line of the table, expressed in terms of the
percent increase in area/mass ratio of the Space Station. These calculations are based

e	
on the assumption that the areas as well as the mass are additive. In actuality, somec
shadowing may occur which will help to reduce the area/mass ratio.
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9	 6.0 INITIAL SPACE STATION CAPABILITY

The current Space Station concepts (IOC 1992), as defined by the Space Station
Needs, Attributes, and Architectural Options studies and the NASA CDG meetings were
analyzed to determine the extent to which the early Space Station can support the LSS
technology development missions.

6.1 Review of Current Concepts

- , The first step in the review process was to collect the documented results of the
eight Space Station Needs, Attributes, and Architectural Options Studies and the NASA
CDG Space Station concept. The next step was to review the results of these studies and
select a:;et of representative Space Station concepts for further evaluation. A complete
set of rho Space Station study concepts with a list of pertinent resources as identified
are fisted in Appendix C.

In analyzing the early Space Station configurations, it was determined that all the
configuration designs fell i nto one of four configuration philosophies. These four
configurations: Radial Hub, Tunnel Hub, SOC (Space Operations Center) type, and Raft
are shown in figure 6.1-1

Figure 6.1-1	 Space Station Configurations
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6.2 LSS TDM Accommodation Assessment

In selecting a representative set of Space Station concepts for further evaluation,

we decided to evaluate these four configuration types. Each type is uni que enough to

make it important to understand each concepts ability to support the construction of LSS

technology development missions.

It was determined that all four configurations would adequately support construction

of the LSS technology development missions. The LSS-1 TDM design was changed to

insure adequate Space Station mounting. In order to accomplish this a docking tunnel

attachment method was incorporated.
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7.0 CONCLUSIONS

Future space systems will require the development of the facilities and techniques

needed for the on-orbit construction of large space structures. The logical place for this

task is the Space Station which can supply the needed human and physical resources. We

need to start now to design into the Space Station the facilities and accommodations

required for these projects. Space system designs must also reflect the availability of a

construction site in low Earth orbit and the valuable human resource which can reduce

the complexity and expense of future systems.

The large space structures technology development missions described can serve to

advance the design and operational techniques for LSS construction at the Space Station.

These missions provide a logical progression from ground tests and Orbiter flight tests.

They can also be used as testbeds to support the technology advancement of other

disciplines.
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LSS-1 TIMELINE ANALYSIS

TASK

*	 '1
Review assembly procedure
Don suit
Pump down airlock

'	 Exit airlock
Obtain area lights
install lighting
turn on and adjust
Obtain. CCTV, equipment
Break
Mount CCTV
turn on and adjust
Prepare tool kit
Inspect berthing port
Activate RMS
Translate RMS to transfer tunnel
Secure RMS to transfer tunnel
Release transfer tunnel hold downs

€

	

	 Remove transfer tunnel from storage/orbiter bay
Translate transfer tunnel to berthing port
Berth transfer tunnel
Verify transfer tunnel berthed
Release RMSt	 Translate RMS to storage area/orbiter bay
Attach RMS to basic truss module
Release basic truss module hold downs

i	 Remove basic truss module from storage/orbiter bay
l	 Break

Deploy basic truss
Verify truss braces latched
Lunch
Verify truss braces latched

/	
** SUBTOTAL **

R	 2
TEST TRUSS

-	 Obtain vibration excitation equipment
Install vibration excitation equipment

1P C

	

	 Connect vibration excitation equipment
Test vibration excitation and data system
Stow tool kit
Enter air lock and pressurize
Doff suit
Conduct modal survey

}	 ** SUBTOTAL **

MIN

480.0
15.0
15.0
5.0
5.0

10.0
4.0
5.0

10.0
8.0
4.0
5.0
5.0
5.0
2.0
1.0
1.0
2.0
4.0
2.0
5.0
1.0
2.0
1.0
1.0
3.0

10.0
25.0
12.0
15.0
23.0

686.0
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LSS-1 TIMELINE ANALYSIS

TASK	 MIN

PAGE NO. 00002
12/18/84

f V^ G

+	 3

ATTACH TRUSS 0.0
Don suit 15.0	 )
Pump down airlock 15.0
Exit airlock 5.0
Prepare	 tool kit 5.0	

)Align basic truss with transfer tunnel 10.0
Position truss on transfer tunnel 5.0
Attach top braces 2.0
Attach bottom braces 2.0
Attach tangent braces 4.0
Break 10.0
Verify braces secure 10.0
Release RMS 1.0
Stow RMS 5.0

** 51713TOTAL **
89.0	 }

*	 4

INSTALL UTILITIES 0.0
Translate RMS to utilities package 2.0
Secure RMS to utilities package 1.0
Release utilities package h»ld downs 1.0
Translate utilities package to platform 2.0
Secure utilities package to platform 2,0
Release RMS 1.0
Prepare utilities package for assembly 5.0
Remove utilities box 5.0
Attach utilities box to platform 15.0
Break 10.0
String and attach electrical and data lines 10.0
Remove utilities box 5.0
Attach utilities box to platform 15.0
String and attach electrical and data lines 10.0
remove utilities box 5.0
Attach utilities box to platform 15.0
Lunch 15.0
String and attach electrical and data lines 10.0
Remove utilities box 5.0
Attach utilities box to platform 15.0
String and attach electrical and data lines 10.0
Break 10.0
Remove utilities box 5.0
Attach utilities box to platform 15.0
String and attach electrical and data lines 10.0
Remove utilities box 5.0
Attach utilities box to platform 15.0
Break 10.0
String and attach electrical and data lines 10.0

B-3
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12/18/84

LSS-1 TIMELINE AMYSIS

TASK

*	 4
Remove utilities box
stow tool kit
Enter airlock and pressurize
Doff EVA suit
Don EVA suit
Pump down airlock
Exit airlock
Prepare LSS-1 tool kit
Attach utilities box to platform
Break
String and attach electrical and data lines
Remove utilities box
Attach utilities box to platform
String and attach electrical and data lines
Connect electrical utility and data lines to SS
Break
Test lines
** SUBTOTAL **

*	 5
TEST TRUSS
Obtain instrumentation (accel., thermal, corner ref.
Install instrumentation on truss
Connect instrumentation to SS test subsystem
Lunch
Test instrumentation
Obtain laser measurement equipment
Install laser assembly on transfer tunnel
Connect laser to test subsystem
Test laser
Stow equipment containers
Break
Connect vibration excitation equipment
Test vibtration excitation equipment
Stow tool kit
Enter air lock and pressurize
Doff suit
Conduct flatness and thermal deformation tests
Conduct modal survey
** SUBTOTAL **

*	 6
INSTALL FLOOR
Don EVA suit
Pump down airlock

MIN

5.0
5.0

15.0
15.0
15.0
15.0
5.0
5.0

10-10
10.0
10.0
5.0

15.0
10.0
15.0
10.0
15.0

419.0

0.0
5.0

20 .0
5.0

15.0
15.0
5.0

10.0
5.0
5.0

10.0
10.0
5.0
5.0
5.0

15.0
15.0

240.0
240.0

630.0

0.0
15.0
15.0

M



,[1,61

.	 I

MIN

5.0
5.0 1
5.0
8.0
5.0 )
8.0

'

10.0
5.0 -
8.0 I
5.0
8.0
1.0

14.0 {
10.0 i
16.0 `<

5.0 ^^15.0
15.0

240.0 y '_
418.0

0.0
15.0
15.0
5.0 tF
5.0
5.0 (	 "^ ^..2.0
1.0
1.0
2.0
4.0
2.0
1.0
5.0

10.0
5.0 I

10.0
5.0

10.0
5.0

10.0
5.0

10.0
10.0
5.0

....... _.....	 .
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LSS-1 TIMELINE ANALYSIS

TASK

*	 6

Exit airlock
Prepare LSS tool kit
Obtain panel for platform floor
Install panel
Obtain panel for platform floor
Install panel
Break
Obtain panel for platform floor
Install panel
Obtain panel for platform floor
Install panel
Obtain payload support rail assembly
Install payload support rail # 1 assembly
Break
Install payload support rail A2 assembly
Stow tool kit
Enter airlock and pressurize
Doff EVA suit
Conduct modal survey
** SUBTOTAL **

INSTALL SOLAR SHIELD
Don EVA suit
Pump down airlock
Exit airlock
Prepare tool kit
Activate RMS
Translate RMS to storage/orbiter bay
Attach RMS to solar shield package
Release solar shield holddowns
Remove solar shield from storage/orbiter bay
Translate solar shield to platform
Secure solar shield to platform
Release RMS
Stow RMS
Break
Obtain solar shield
Install solar shield R1
Obtain solar shield
Install solar shield R2
Obtain solar shield
Install solar shield R3
obtain solar shield
Install solar shield R4
Break
obtain solar shield

B-^
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LSS-1 TIMELINE ANALYSIS

PAGE NO. 00005
12/18/84

7

i

e^r

E^x

C I(\i

y`

}

MINTASK

r	 7
Install solar shield R5
Obtain solar shield
Install solar shield R6
Obtain solar shield
Install solar shield R7
Lunch
Obtain solar shield
Install solar shield R8
Obtain solar shield
Install solar shield R9
Obtain solar shield
Install solar shield Ll
Obtain solar shield
is reak
Install solar shield L2
Obtain solar shield
Install solar shield L3
Obtain solar shield
Install solar shield L4
Break
Obtain solar shield
Install solar shield L5
Obtain solar shield
Install solar shield L6
Stow tool kit
Enter air lock and pressurize
Doff Suit
Don suit
Pump down airlock
Exit airlock
Prepare tool kit
Obtain solar shield
Install solar shield L7
Break
Obtain solar shield
Install solar shield L8
Obtain solar shield
Install solar shield L9
Obtain botton solar shield
Install botton solar shield
Extend bottom solar shield
Secure solar shield
Obtain bottom solar shield
Install bottom solar shield
Break
Extend bottom solar shield
Activate RMS-
Translate RMS to storage area
Attach RMS to extendable mast assembly

10.0
5.0

10 .0
5.0

10.0
15.0
5.0

10.0
5.0

10 .0
5.0

10.0
5.0

10.0
10.0
5.0

10.0
5.0

10.0
10 .0

5.0
10.0

5.0
10.0
5.0

15.0
15.0
15.0
15.0

5.0
5.0
5.0

10.0
10.0
5.0

10.0
5.0

10.0
5.0
5.0
5.0
2.0
5.0
5.0

10.0
10.0
5.0
2.0
1.0

B- 6
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LSS-1 • TIMELINE ANALYSIS

TASK MIN

*	 7

Release extendable mast hold downs 1.0
Translate mast assembly into position 2.0
Align mast solar shield assembly 2.0
Attach ends of mast assembly to platform 10.0
Release RMS 1.0
Translate RMS to storage area 2.0
Attach RMS to extendable mast assembly 1.0
Release extendable mast hold downs 1.0
Translate mast assembly into position 2.0
Align mast assembly with platform 2.0
Attach ends of mast assembly to platform 10.0
Release RMS 1.0
Translate RMS to storage area 2.0
Lunch 15.0
Deploy R extendable mast and sunshield 10.0
Deploy L extendable mast and sunshield 10.0
Latch masts at peak 10.0
Secure sunshields at peak 10.0
Break 10.0
** SUBTOTAL **

630.0

b

*	 8 k^

TEST HANGAR 0.0
Obtain instrumentation ( accelerometers, reflectors) 15.0
Install instrumentation on hangar 5.0
Install instrumentation on hangar 25.0
Connect instrumentation to test subsystem 5.0
Break 10.0
Test instrumentation 15.0
Test laser 5.0
Stow equipment containers 5.0
Test vibration excitation equipment 15.0
Stow tool kit 5.0
Enter Airlock and pressurize 15.0
Doff EVA suit 15.0
Conduct flattness and thermal deformation tests 240.0
Conduct modal survey 240.0 -
** SUBTOTAL **

615.0 -

*	 g

f,_

REMOVE AND STOW TEST EQUIPMENT 	 0.0	 -
Don EVA suit	 15.0	 -
Pump down airlock	 15.0	

j

Exit airlock	 5.0	 -
prepare tool kit	 5.0

B-7
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LSS-1 TIMELINE ANALYSIS

TASK
	

MIN

PAGE NO. 00007
12/18/84

\T

B-.B

*	 g
Disconnect vibration excitation equipment
Remove vibration equipment from masts
Break
Stow vibration excitation equipment
Disconnect instrumentation from test subsystem
Remove instrumentation test cable
Stow instrumentation
Break
Disconnect laser meassurement equipment
Remove laser measurement equipment
Stow laser measurement equipment
Lunch
Stow laser measurement equipment
Remove accelerometers and reflectors
Stow tool kit
Enter air lock and pressurize
Doff EVA suit
Inspect platform and hangar
Turn off CCTV
Turn off lights
** SUBTOTAL **

** TOTAL **

5.0
20.0
10.0
30.0
5.0
5.0

10.0
10.0
5.0

30.0
15.0
15.0
15.0
30.0
5.0

15.0
15.0

5.0
1.0
1.0

287.0

4078.0
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LSS-3 TIMELINE ANALYSIS

TASK	 MIN

*	 1
START UP	 0
Review assembly procedures	 480
Don EVA suit	 15
Pump down airlock	 15
Activate platform lights	 1
Activate remote CCTV	 1
Exit airlock	 5
Prepare LSS tool kit	 5	 -
** SUBTOTAL **

522

*	 2

ASSEMBLE CONSTRUCTION FIXTURE 0
Activate RMS 5 -
Translate RMS to construction fixture storage area 2 y

Secure RMS to construction fixture package 1
Release package hold downs 1
Translate construction fixture package to platform 2
Position package at platform hold downs 1
Secure package to hold downs 1
Release RMS 1 -
Break 10 4	 )
Remove 2 # 1 rail segments 8 -
Latch rail segments together 4
Remove and attach 25 truss members 50 F^
Break 10
Remove 2 # 1 rail segments 8
Latch rail segments together 4

l,)Remove and attach	 25 truss members 50 v_
Lunch 15
Perform # 1 rail alignment 60
Break 10
Remove 2 # 2 rail segments 8 --
latch rail segments together 4
Remove and attach 25 rail segments 50
Break 10
Remove 2 # 2 rail segments 8
Latch rail segments together 4
Break 10

j

Remove and attach	 8 truss members 16 -
Stow tool kit 5
Enter airlock and pressurize 15
Doff suit 15
Don suit 15
Pump down airlock 15
Exit airlock 5^
Prepare toolkit 5 -
Remove and attach 17 truss members 34

B-9.:
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^k. LSS-3 TIMELINE ANALYSIS

7 TASK MIN

.: *	 2
Break 10

f Perform # 2 rail alignment 60
\. Translate RMS to storage area 2

Secure RMS to LSS -3 construction fixture motor 1
Release motor package hold downs 1
Translate motor package to platform 2
Position motor package 2
Attach motor package to platform 20

C
Release RMS 1
Release motor wiring from housing 2
String motor wiring to electrical , data bus 5

- Break 10
Connect to bus 2
** SUBTOTAL **

580

*	 3
TEST CONSTRUCTION FIXTURE	 0
Obtain instuumentation electrical lines	 5
Install electrical lines	 15
Obtain data lines	 5

(	 Connect electrical utility, and data lines to bus 5
Obtain instrumentation ( accelerometers, reflectors) 5
Install instrumentation on fixture 20
lunch 15
Connect instrumentation to test subsystem 20
Obtain laser measurement equipment 5
Install laser 10

tTest laser 5
-	 Break 10

Connect laser to test subsystem 5
(-	 Obtain vibration excitation equipment 5
l	 Install vibration excitation equipment 60

Break 10
Connect vibration excitation equipment 5^-	
Test vibration excitation equipment 5

-	 Stow equipment containers 10
Stow tool kit 5

(-	 Enter airlock and pressurize 15
l	 Doff suit 15
y	 Conduct flatness . .ad thermal deformation tests 240

Conduct modal survey 240^-	
Don EVA suit 15

-	 Pump down airlock 15
Exit airlock 5
Prepare tool kit	 5
Disconnect vibration excitation equipment 	 5
Remove vibration excitation equipment from fixture	 26

B-10
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TASK	 MIN

*	 3
Break 10
Disconnect instrumentation from the test subsystem 5
Remove instrumentation test cable 1
Stow instrumentation 15
Disconnect laser measurement cable 1
Remove laser measurement equipment 30
Break 10
Stow laser measurement equipment 10
** SUBTOTAL **

888

*	 4
ASSEMBLE TRUSS RING 0
Activate RMS 5
Translate RMS to MWR beam storage 2
Attach RMS to MWR beam package 1
Release MWR package hold downs 1
Translate beams to construction plaform 2
Prepare beams for assembly 5
Assemble 8 basic and 1 connecting beams and position 18
Lunch .15
Install 4 base members 8
Translate to peak 2
Install 4 peak members 8
1- 3*.p 11 1 connecting member l
translate back to base 2
Obtain corner reflectors and accelerometers 2
Mount corner reflectors and accelerometers 4
Install X braces 4
Obtain beam parts 3
Assemble 7 basic and 1 connecting beam and position 16
Break 10
Install 3 base members 6
Translate to peak 2
Install 4 peak members 8
Install 2 connecting members 3
Translate back to base 2
Obtain corner reflectors and accelerometers 2
Mount corner reflectors, and accelerometers 4
Rotate ring 5
Break 10
Install wiring 10
Install X braces 4
Stow tool kit 5
Enter airlock and pressurize 15
Doff EVA suit 15
Don EVA suit 15
Pump down airlock 15

B-11
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LSS-3 TIMELINE ANALYSIS

TASK

*	 4
Exit airlock
Prepare tool kit
Obtain beam parts
Assemble 7 basic and 1 connecting beams and position
Install 3 base members
Translate to peak
Break
Install 4 peak members
Install 2 connecting members
translate back to base
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Stow tool kit
Enter airlock and pressurize
Doff EVA suit
Don EVA suit
Pump down airlock
Exit airlock
Rotate ring
Install wiring
Install X braces
Obtain beam parts
Assemble 7 basic and 1 connecting beam and position
Break
Install 3 base members
Translate to peak
Install 4 peak members
Install 2 connecting members
Translate back to base
Obtain corner rcflectors and accelerometers
Mount corner reflectors and accelerometers
Rotate ring
install wiring
Break
Install X braces
Obtain beam parts
Assemble 7 basic, and 1 connecting beams and position
Install 3 base members
Translate to peak
Install 4 peak members
Install 2 connecting members
translate back to base
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Rotate ring
Lunch
Install wiring
Install X brace
Obtain beam parts

MIN

5
5
2

16
6
2

10
8
4
2
2
4
5

15

15
15
5
5

10
4
3

16
10
6
2
8
3
2
2
4
5

10
10
4
2

16
6
2
8
4
2
2
4
5

15
10
4
3
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,t	
LSS-3 TIMELINE ANALYSIS

TASK	 MIN

*	 4
Assemble 7 basic and 1 connecting beam and position 16
Install 3 base members 6
Break 10
Translate to peak 2
Install 4 peak members 8
Install 2 connecting members 3
Translate back to base 2
Obtain corner reflectors and accelerometers 2
Mount corner reflectors and accelerometers 4 ?
Rotate ring 5
Install wiring 10
Install X braces 4
Obtain beam parts 2
Assemble 7 basic and 1 connecting beam and position 16
Install	 3 base members 6
Stow tool kit 5
Enter airlock and pressurize 15
Doff EVA suit 15
Don EVA suit 15 i
Pump down airlock 15 !
Exit airlock 5
Prepare tool kit 5 -	 l
Translate to peak 2`^^
Install 4 peak members 8
Install 2 connecting members 4
translate back to base 2
Obtain corner reflectors and accelerometers 2,
Mount corner reflectors and accelerometers 4
Rotate ring 5 -
Break 10
Install wiring 10 +_
Install X brace 4
Obtain beam parts 3
Assemble 7 basic and 1 connecting beam and position 16
Install 3 base members 6
Translate to peak 2
Install 4 peak members 2
Install 2 connecting members 3
Translate back to base 2
Obtain corner reflectors and accelerometers 2 ^)f
Mount corner reflectors and accelerometers 4 -
Rotate ring 5
Install wiring 10
Install X braces 4
Obtain beam parts 2
Assemble 7 basic and 1 connecting beams and position 16
Break 10
Install	 3 base members 6
Translate to peak 2

B-13^^
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-'	 LSS-3 TIMELINE ANALYSIS

TASK MIN

*	 4
Install 4 peak members 8
Install 2 connecting members 4
translate back to base 2
Obtain corner reflectors and accelerometers 2

q Mount corner reflectors and accelerometers 4
l Rotate ring 5

Install wiring 10
- Install X brace 4

Lunch 15
** SUBTOTAL **

931

*	 5
TEST TRUSS 0
Obtain electrical lines 5
Install electrical lines 35
Obtain data lines 5

f	 Break 10
Install data lines 35
Stow tool kit 5
Enter airlock and pressurizer - 15
Doff EVA suit is
Don EVA suit 15

_	 Pump down airlock 15
Exit airlock 5
Prepare tool kit 5
Connect electrical utility and data lines to SS 15
Break 10
Test lines 15

-	 Obtain instrumentation (accelerometers, reflectors) 5
Install instrumentation on truss 20
Connect instrumentation on test subsystem 5
Test instrumentation 15
Break 10

5
r-_

Obtain laser measurement equipment
I	 Install laser on transfer tunnel 10

-	 Connect laser to test subsystem 5
Test laser 5

(-	 Stow equipment containers 10
\._	 Connect vibration excitation equipment 5

Test vibtration excitation equipment 5
Stow tool kit 5(

1T )	 Enter air lock and presssurize 15
w	 Doff suit 15

Conduct flatness and thermal, deformation tests 240
Conduct modal survey	 240
** SUBTOTAL **

820

C)	 B-14
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MIN

15
15
5
5
3

16
10
6
2
8
3
2
2
4
5

10
4

10
2

16
6
2
8
4
2
2
4

15
5

10
4
3

16
6

10
2
8
3
2
2
4
5

10
4
2

16
10
6
2

LSS-3 TIMELINE ANALYSIS

TASK

*	 6
Den EVA suit
Pump down airlock
Exit airlock
Prepare tool kit
Obtain beam parts
Assemble 7 basic and 1 connecting beam
Break
Install 3 base members
Translate to peak
Install 4 peak members
Install 2 connecting members
Translate back to base
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Rotate ring
Install wiring
Install X braces
Break
Obtain beam parts
Assemble 7 basic and 1 connecting beams
Install 3 base members
Translate to peak
Install 4 peak members
Install 2 connecting members
translate back to base
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Lunch
Rotate ring
Install wiring
Install X brace
Obtain beam parts
Assemble 7 basic and 1 connecting beam
Install 3 base members
Break
Translate to peak
Install 4 peak members
Install 2 connecting members
Translate back to base
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Rotate ring
Install wiring
Install X braces
Obtain beam parts
Assemble 7 basic and 1 connecting beams
Break
Install 3 base members
Translate to peak

B-15
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LSS-3 TIMELINE ANALYSIS

TASK

*	 6
Install 4 peak members
Install 2 connecting members
translate back to base
Stow tool kit
Enter airlock and pressurize
Doff EVA suit
Don EVA suit
Pump down airlock
Exit airlock
Prepare tool kit
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Rotate ring
Install wiring
Break
Install X brace
Obtain beam parts
Assemble 7 basic and 1 connecting beam
Install 3 base members
Translate to peak
Install 4 peak members
Install 2 connecting members
Translate back to base
Break
Obtain ccrner reflectors and accelerometers
Mount corner reflectors and accelerometers
Rotate ring
Install wiring
Install X braces
Obtain beam parts
Assemble 7 basic an" 1 connecting beams
Install 3 base members
Lunch
Translate to peak
Install 4 peak members
Install 2 connecting members
translate back to base
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Rotate ring
Install wiring
Install X braces
Obtain beam parts
Break
Assemble 7 basic and 1 connecting beams
Install 3 base members
Translate to peak
Install 4 peak members
Install 2 connecting members

MIN

8
4
2
5

15
15
15
15

5
5
2
4
5

10
10
4
3

16
6
2
8
3	 j
2

12
4
5

10
4
2	 k

16

615
2
8
4
2
2	 I
4
5

10
4
2

10
16

6	 @
2 s
8
4
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LSS-3 TIMELINE ANALYSIS

TASK MIN

*	 6

translate back to base 2
Obtain corner reflectors and accelerometers 2 }
Mount corner reflectors and accelerometers 4
Rotate ring 5
Break 10
Install wiring 10
Install X brace 4
Stow tool kit 5 -
Enter airlock and pressurise 15
Dorf EVA suit 15
Din EVA suit 15
Pump down airlock 15 }
Exit airlock 5
Prepare tool kit 5
Obtain beam parts 3
Assemble 7 basic and 1 connecting beam 16

_.^	 )
y

Break 10
Install 3 base members 6
Translate to peak 2 -
Install 4 peak members 8 )
Install 2 connecting members 3
Translate back to base 2
Obtain corner reflectors and accelerometers 2
Mount corner reflectors and accelerometers 4 -
Rotate ring 5
Install wiring
Install • X braces

0
4

Break 10 t
** SUBTOTAL **

840

*	 7
TEST TRUSS 0 i

Obtain electrical lines 5
Install electrical lines 35 -
Obtain.data lines 5
Break 10
Install data lines 35
Stow tool kit 5 !
Enter airlock and pressurize 15
Doff EVA suit 15
Don EVA suit 15
Pump down airlock 15
Exit airlock 5
Prepare tool kit 5

TConnect electrical utility and data lines to SS 15 r
Break 10
Test lines 15

R

B-17
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LSS-3 TIMELINE ANALYSIS

TASK

PAGE NO. 00010
12/18/84

MIN

it

i 7
Obtain instrumentation (accelerometers, reflectors)
Install instrumentation on truss
Connect instrumentation on test subsystem
Test instrumentation
Break
Obtain laser measurement equipment
Install laser on transfer tunnel
Connect laser to test stlhsystem
Test laser
Stow equipment containers
Connect vibration excitation equipment
Test vibtraticn excitation equipment
Stow tool kit
Enter air lock and presssurize
Doff suit
Conduct flatness and thermal deformation tests
Conduct modal survey
** SUBTOTAL **

*	 8
COMPLETE TRUSS RING
Don EVA suit
Pump down airlock
Exit airlock
Prepare tool kit
Obtain beam parts
Assemble 6 basic and 1 connecting beams
Break
Install 2 base members
Translate to peak
Install 4 peak members
Install 2 connecting members
translate back to base
Obtain corner reflectors and accelerometers
Mount corner reflectors and accelerometers
Install wiring
Break
Install R brace
** SUBTOTAL **

*	 g
TEST TRUSS
Obtain electrical lines
Install electrical lines
Obtain data lines

5
20

5
15
10

5
10

5
5

10
5
5
5

15
15
240
240

820

0
15
15

5
5
2

16
10
6
2
8
4
2
2
4

10
10
4

120

0
5

35
5

---



i

^^ I

1

15
35
15
10
15
5
5

15
15
15
15
5
5

20
10

5
15
5

10
5
5

10
10
5
5
,5
15
15•

240
240

835

15
15
5
5
0
5
2
1
1
2
5

10
10
5
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LSS-3 TIMELINE ANALYSIS

TASK

*	 9

Lunch
Install data lines
Connect electrical utility aid data lines to SS
Break
Test lines
Obtain instrumentation ( accelerometers, reflectors)
Stow tool kit
Enter airloc 6 and pressurize
Doff EVA suit
Don EVA suit
Pump down airlock
Exit airlock
Prepare tool kit
Install instrumentation on truss
Break
Connect instrumentation on test subsystem
Test instrumentation
Obtain laser measurement equipment
Install laser
Connect laser to test subsystem
Test laser
Stow equipment containers
Break
Connect vibration excitation equipment
Test vibtration excitation equipment
Stow tool kit
Enter air lock and presssurize
Doff suit
Conduct flatness and thermal deformation tests
Conduct modal survey
** SUBTOTAL **

MIN

*	 10
Don EVA suit
Pressurize airlock
Exit airlock
Prepare tool kit
DEPLOY FEED SUPPORTS
Activate RMS
Translate RMS to feed support package
Secure RMS to feed support package
Release package hold downs
Translate feed support to construction area
Remove covers
Break
Deploy feed supports
Position feed support on truss

B-19

-Imp}



PAGE N0. 00012	 D180-27677-2

12/18/84

LSS-3 TIMELINE ANALYSIS

^C
t

TASK	 MIN

K-)

E ^ '

i

i

*	 10

Secure feed support to truss 5
Release RMS I
Translate nMS to feed support package 2
Secure RMS to feed support package 1
Release package hold downs 1
Translate feed support to construction area 2
Remove covers 5
Deploy feed supports 10
Position feed support on truss 5
Secure feed support to truss 5
Release RMS 1
Translate RMS to feed truss package 2
Secure RMS to feed truss package 1
Release package hold downs 1
Translate feed truss to construction area 2
Break 10
Remove covers 5
Deploy feed truss 10
Position feed truss on feed supports 5
Secure feed support to truss 5
Release RMS 1
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns 15
Lunch	 1 15
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns 15
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Break 10
Install feed horns 15
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns 15
Break 10
Translate RMS to feed horn package 2
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TASK	 MIN

*	 10
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns In
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Stow tool kit 5
Enter airlock and pressurize 15
Doff EVA suit 15
Don EVA suit 15
Pump down airlock 15
Exit airlock 5
Prepare tool kit 5
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns 15
Break 10
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns 15
Translate RMS to feud horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns 15
Break 10
Translate RMS to feed horn. package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install feed horns 15
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Remove covers 5
Install geed horns 15
Translate RMS to feed horn package 2
Secure RMS to feed horn package 1
Release package hold downs 1
Translate feed horn to construction area 2
Lunch 15
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c	 TASK
	

MIN

*	 10
Remove covers
Install feed horns
Translate RMS to feed horn package
Secure RMS to feed horn package
Release package hold downs
Translate feed horn to construction
Remove covers
Install feed horns
Break
Translate RMS to feed horn package
Secure RMS to feed horn package
Release package hold downs
Translate feed horn to construction
Remove covers
Install feed horns
Translate RMS to feed horn package
Secure RMS to feed horn package
Release package hold downs
Translate feed horn to construction
Remove covers
Install feed horns
Break
Translate RMS to feed horn package
Secure RMS to feed horn package
Release package hold downs.
Translate feed horn to construction
Remove covers
Install feed horns
Stow tool kit
Enter airlock and pressurize
Doff EVA suit
Don EVA suit
Pump down airlock
Exit airlock
Prepare tool kit
Translate RMS to feed horn package
Secure RMS to feed horn package
Release package hold downs
Translate feed horn to construction
Remove covers
Install feed horns
Break
Attach 4 cables to feed truss
Attach 2 cables to truss
Position other 2 cables

area

area

area

area

area

5
15
2
1
1
2
5

15
10
2
1
1
2
5

15
2
1
1
2
5

15
10
.2
1
1
2
5

15
5

15
15
15
15

5
5
2
1
1
2
5

15
10
10
10
10
10

5
10

877

Tension 2 cables to position feed truss
attach 2 cables to truss

` }	 Break

4	

** SUBTOTAL **
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.	 i

i

}

i
t

0
5

35
5

15
35
15
15
5

20
5

15
10
5

10
5
5

10
5
5
5

15
15

240
240

740

0
15
15
5
5
2
1
1
2

10
10
10

180
180

5
15
15
15
15

}

4

TASK

*	 1 ].
TEST TRUSS
Obtain electrical lines
Install electrical lines
Obtain data lines
Lunch
Install data lines
Connect electrical utility and data lines to SS
Test lines
Obtain instrumentation (accelerometers, reflectors)
Install instrumentation on truss
Connect instrumentation on test subsystem
Test instrumentation
Break
Obtain laser measurement equipment
Install laser
Connect laser to test subsystem
Test laser
Stow equipment containers
Connect vibration excitation equipment
Test vibtration excitation equipment
Stow tool kit
Enter air lock and presssurize
Doff suit
Conduct flatness and thermal.deformation tests
Conduct modal survey
** SUBTOTAL **

MIN

*	 12
INSTALL MEMBRANE
Don EVA suit
Pump down airlock
Exit airlock
Prepare tool kit
Translate RMS to membrane package
Secure RMS to membrane package
Release membrane package holddowns
Translate membrane package to truss
Remove membrane package covers
Attach fittings to truss
Break
Deploy membrane
Attach membrane tensioning cables
Stow tool kit
Enter airlock and pressurize
Doff EVA suit
Don EVA suit
pressurize airlock
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TASK

*	 12
Exit airlock
Prepare tool kit
** SUBTOTAL **

t

*	 13
TEST
Obtain electrical lines
Install electrical lines
Break
Obtain data lines
Install data lines
Connect electrical utility and data lines to SS
Lunch
Test lines
Obtain instrumentation (accelerometers, reflectors)
Install instrumentation on truss
Break
Connect instrumentation on test subsystem
Test instrumentation
Obtain laser measurement equipment

t1 Install laser
Connect laser to test subsystem
Test laser

JJ Break
1. Stow equipment containers

Connect vibration excitation equipment
Test vibtration excitation equipment
Stow tool kit
Enter air lock and presssurize
Doff suit
Conduct flatness and thermal deformation tests
Conduct modal survey
Don EVA suit
Pump down airlock^-
Exit airlock

- Prepare tool kit
Remove laser
Stow laser
Remove instrumentation
Stow instrumentation
Break
Stow tool kit and equipment

- Inspect platform to insure equipment stowed
Enter airlock and pressurize
Dofff EVA suit
Inspect platform with CCTV
Turn off CCTV

MIN

5
5

511

0
5

35
10
5

35
15
15
15
5

20
10
5

15
5

10
5
5

10
10
5
5
5

15
15

240
240
15
15
5
5
5
5
5
5

10
15
10
15
15
5
5

;i
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TASK
	

MIN

*	 13
Turn off lights
	

1
** SUBTOTAL **

896

** TOTAL **
9380

H
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