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ABSTRACT

The plane strain problem of adhesively bonded structures whach
consist of two different- isotropic adherends is considered. By
expressing the x-y components of the displacements in terms of
Fourier integrals and using the corresponding boundary and
continuity conditions, the system of integral equations for the
general problem is obtained. Then , these integral equations are

solved numerically by applying Gauss-Chebyshev integration scheme.

The shear and the normal stresses in the adhesive are
calculated for various geometries and material properties for a
stiffened plate under uniaxial tension L Also the numerical
results involving the stress intensity factors and the strain energy
release rate are presented. The closed-form expressions for the
Fredholm kernels are provided, so that the solution for an arbitrary

geametry and material properties can easily be obtained.

The numerical solution of the integral eqwmtions indicates that
as (h1/a), (hn/a) and (h2/a.) decrease the convergence becomes slower
and hence computations become costlier. For the general gecmetry,
the contribution of the normal stress is quite significant. For the
symmetric geometries, however, the dominant stress is the shear
stress. More specifically, the normal stress vanishes if the
adherends also happen to be of the same material and the same

thickness.

OS2 09 ¥e



1. INTRODUCTION

In order to optimize performance and fuel consumption,
aerospace and marine industries have been turning to the use of
advanced (fiber-reinforced organic) composites, more and more in
commercial aireraft, military aircraft and marine systems. These
materials offer very good strength-to-weight and stiffness-to-weight
ratios., However, one major drawback is the strength and fatique
penalty dintroduced by mechanical Cfasteners at Jjoints. So more

sophisticated joining methods are required.

Adhesive bonding, on the other hand, provides a desirable

altermative to mechanical fastening because of;

1. Load being carried over a larger area, thus reducing the
stress concentration,

2. Higher joint efficiency (relative strength-to-weight of
the joint region),

3. No decrease in strength due to fastener holes,
4, Less expensive and simpler fabrication techniques, and

5. Lower maintenance costs.

However, adhesive bonding has its own disadvantages. The load
is not carried uniformly over the entire bond area, but instead is
confined to a =mall region along the bond edge. Though not as mlgh
as the stresses at a ravet, this highly stressed region, can lead to

failure.



The past forty years have witnessed the expenditure of
considerable analytic effort in an attémpt to describe stress-strain
distributions in composite structures forped by. the adhesive bonding
of materials. The efforts of Goland and Reissner [1], have been
extended by the computerised and experimental analyses of numerous

investigators.

To gain some 1insight and to provide criteria for fuwrther
development of bonding materials and bonding techniques, assumptions
have been introduced which are justified only by the anmalytic tools
available to the investigator. Goland and Reissner [1], for-example,
restrict themselves to adherends of the same material having
identical length and thickness, with no stress variation within the
adhesive film. With progress in analytic techniques, each succeeding
investigator has been able to relax the number of assumptions

previously required to obtain a solution.

However, because of the rmonhomogeneous matwe and of the
geametrical complexity of the medium, even for the linearly elastic
materials the exact analytical treatment of the problem regarding
the stress analysis of the structure is, in general, hopelessly
complicated. The exaisting analytical studies are, therefore, based
on certain simplyfying assumptions with regard to the modeling of

the adhesive and the adherends. The adherends are usually modeled as

an isotropie or orthotropic membrane [2], a plate [1,3,4,5] or an



elastic continuum [5,6]. The adhesive on the other hand, is uswlly
treated as a shear spring [2,6], a tension shear-spring [1,7], or is
neglected [8]. In this report the adhesively bonded joint problem is
considered by assuming both the adhesive and the adherends as

elastic layers.

In order to design adhesively bonded structures with high
degree of reliability, one needs to recognize that thelr failuwre
mode 1is characterized by flow growth and progressive crack

propogation.

The energy balance criterian for fracture,based on works of
Griffith [9] and Irwin [10] is adopted. It supposes that fracture
occurs when sufficient energy is released from the stress field to
generate new fracture surfaces at the instant of crack propagation.
This strain energy release rate provides a measwre of the energy
required to extend a crack over a unit area, and is termed the
fracture energy. In this report, the fracture energy of an adhesive
layer yill be determined, since this property has been widely

recognized as the appromriate criterion for adhesive failure as in

[5,11,12,13,14].



2. FORMIULATION OF THE PROBLEM

2.1 Equilibrium Equations

The problem considered is a stiffened plate shown in Figure 1,

under the following assumptions;

- The medium is composed of homogeneous, lsotropic, elastic
layers with different mechanical properties,

- The problem is one of plane strain, that i1s, the bonded
joint 1s very "wide",

- The only external load acting on the medium 4is the

uniaxial tension, 6'1x = @, away from the reinforcement
region,

In the plane theory of elasticity the equations of equilibrium
in terms of displacements for the isotropic materials can be

expressed as;

Qe
(A +p) — +NV2u+X=O,
Ox
de
(A + M) + P8 var=zo0, (1a,b)
RY;

where u,v are the x,y-components of the displacement vector, X-Y are

the x~y components of the body force vector,



Au Ov

* — s

Ox Oy

e =

v E
A

(1 +2)(1 - 2p)

and P, ¥ are the shear modulus and the Poisson's ratio,

respectively.

For each of the layers shown in Figure 1, and for no body

forces, the equations (1a,b) read as,

Ae
( Ny +Fy) +H1V2u=0 ,
Ox
Qe
(A +W; )— +MV%v=0 , i=1,..,4 (2a,b)
Qy

2.2 Solutions Uy, Vi c;-y, ciy

As it is seen from Figure 1, the medium possesses a geametric
symmetry with respect to x=0 plane, so the problem is solved for

x > 0 . Also note that, the x-y components of the displacements may
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be expressed as Fourier integrals, since the displacements as well
as their derivatives decrease sufficiently rapidly as |x}—oc0 , S0

that the requirement of absolute integrability is: satisfied.

Therefore, assuming the x-y components of the displacements in

the i'th layer in the form,

2 co
uy(x,y) =——f¢i(¢,y) Sin(&x) da ,
s

2 o0

vilx,y) =— f’&i(a.y) Cos(ax) dax (3a,b)

%5

and using the field equations (2a,b), one obtains,

2 loo]
ui(x!y) =—ﬁ (Ai1 -+ Aiz}’) e-ay -+

"5

(A13 + Ayy) e%*Y 1 sin(ax) d&t ,

@
2 Ki a
vi(x,y) =— [[Ai‘l + (— + y)AiZ] e~y 4
« X
o

K
["Ai3 + (:i -y Aill] eay:] Cos(&x) da (4a,b)



Where A:L;j's are functions of &« which will be determined from the
continuity and the boundary conditions. Afterwards, the stresses are

evaluated by Hooke's Law, and expressed as,

0

1

2
i . - - -
= o S

+ [-G(Ai3 + Ayy) + 2(1-p) Ay ] e“y} Cos(ax) da

o o]

+ [ G(Ai3 + Ailly) - (1-291) Ayy ] e“y] Sin(ax) da .

(5a,b)

2.3 The Boundary and the Continuity Conditions

On the boundaries y=h1, y=-hu, the medium possesses the

following homogeneous boundary conditions;

c;y(x,h.,) =0 , 0<x oo (6a)



13, (x/hy) = 0 , 0¢ x <® (6b)

4 =

1
o

0& x <o (6c)

n
o
-

qléy(x,-hu) 0§ x <o, (6d)

The continuity conditions require that on the interfaces the
stress and the displacement vectors in the adjacent layers be equal,

that is,

61y (x,hy) - 6L .(x,hp) =0, 0< x <@ (6e)
11,05 m) - 13 (x,hy) 20, 0 x <00 (6£)
uq(x,hy) - us(x,hy) = 0 y 0K x <o (6g)
vq(x,hy) = vy(x,hy) = 0 , 0L x <™ (6h)
R cl;,y(x,-h3) - c?,y(x,-hS) =0 , 0g&x <o (61)
1§y(x,-h3) - *r;’;y(x,-h3) =0 , 0{x<® (6 3)
uu(x,-h3) - u3(x,—h3) =0 y 0 ¢ x <co (6k)
vu(x,-h3) - v3(x,-h3) =0 , 0& x <@ (61)

~



The above conditions (6a-l) provide 12 linear homogeneous
algebraic equations in terms of 16 unknowns. So U4 more equations are

needed. Those are obtained from the surface which has the crack,

62,(x,0) - 63.(x,0) = 0 , 0 x <o (7a)
qiy(x,O) - 13.(x,0) = 0 , 0§ x <00 (7b)
62,(x,0) = €3 .(x,0) = g(x) , x€L (8a)
12,(x,0) = 13 (x,0) = £f(x) , x€L. T (8v)

L is the part of the x-axis without the crack and f(x), g(x)
are respectively, shear and normal stresses at the very same region.
The mixed boundary conditions at y=0 , and the process of
superposition as shown in Figure 2, give rise to the integral

equations for the problem. Those are,

D x <

"
b4

lim _ [uz(x,y) - u3(x,y)]

y—=o0

0 x <o (9a,b)

"
o

R
limg o 5 [vz(x,y) - v3(x,y)]
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Note that the integral equations have been expressed in terms
of the first derivatives of the displacement differences with
respect to x. Also note, A appearing in equation (9a), has the

following values depending on the gecmetry of the medium,

A= — for plane stress

for plane strain .

2.4 Application of the Boundary and the Continuity Conditions

In equations (8a) and (8b), it has been assumed that

5 0 ’ x>a
. 1'xy(x,0) = <
£q(x) , x<£ a
\
{
> 0 ’ X > a
ny(x,O) =
f‘?_(x) , xS a (10a,b)
\

where "a" is the bond length as shown in Figure 1. Also note ‘that

1"



equations (5a,b) at y=0 gives,

o)
1 2

2

—_— FS (x,0) =— [— o« + 2(1=-p,)A

2“2 yy p [A21 2 22]
°

o
1 2
— ‘riy(x, 0) =— J[—[QAZ.! + (1-21’2)}\22]
2"2 n S

+ [¢A23 - (1-23‘2)1\24]] Sin(&x) d& , 0 x <o, (11a,b)

The above equations with the conditions stated in (10a,b), read as,

1 2 ®
— fz(x) R Fz(a) Cos(ax) dee |, 0 x<a
2w, L&
1 2 r®
— f‘.l(x) = e F1(G) Sin(&x) de& |, 0 x<a (12a,b)
292 ‘ll’o
with,
F1 () = - ¢A21 - 2( 1-'2)A22 - QA23 + 2(1-’2)A2u

12



Conditons (6), (7) and (12 c,d) provide 16 algebraic equations
to be solved for the same number of unknowns in terms of F1 and Fa .

Writing these equations in matrix form,

-~ - r A11 - > 0 -
| 5
Coefficient i ;
Matrix Aij = 0 (13)
: !
£( & , hy, Wy, ¥;) j '
; Fq(a)
Ajm L Fp(&)
L o L - .
(16x16) (16x1) (16x1)

and multiplying each side with the inverse of the coefficient

matrix, gives Aij's'

e e
Coef. : :E : '
Ayy|= :Qiaulsiji 6 (14)
Matrix ! :: :
] e
1 IS |F2(®)]

13



where Qij's and Sij's (4,3 =1,..,4) are the 15'th and 16'th coloumns
of the inverse coefficient matrix, respectively. After performing

the matrix multiplication,

it may easily be shown that Aij's can be solved in the following

general form,

These when substituted in (13) give two systems of equations to

solve for Qi_j's and Sij's as follows,

Coef. Coef.
Q F (&) + S,.| Fo(&) =

Matrix & ! Matrix +J 2

row -O-

: !

i i

| Fq(&) + |0 | Fo(a) (17)

0 0

1 0

0] L1

14



Which leads to;

. 17 7 .0-
!
Coef. :
Q = = (18)
Matrix y 0
1
0
- - b . L -
[ 1T 7 i 0 i
|
Coef. !
S = : (19)
Mtrix & 6 .
0
i J L L1

(18) and.(19) are solved first numerically for every desired
value of & . It is definitely much easier and less time consuming
process rather than trying to solve them analytically. However, it
has its own shortcomings. It has to be kept in mind that certain
combination of these Qij's and Si;j's (envelope functions) will
actually be integrated from zero to infinity at every x and t (see
Section 2.5-6). This requires (18) and (19) to be solved at
sufficiently many &'s. This is obviously a very costly and time
consuning job. Especially for the thinner gecmetries, where the
convergence of the envelope functions is very slow,(18) and (19) has

to be solved at even more &'s, in order to achieve certain

15



significant figure accuracy in the evaiuation of the infinite

integrals.

So as a result, (18) and (19) are required to be solved
analytically. After rather 1lengthy manipulations, the closed-form

expressions for Qij's and Sij's are found.

Note that, it is most convenient to retain Q22 and Qzu as the
final two unknowns in equations (6a,b,e,f,g,h) and (12e,d).
Equations (12c,d) actually provide two equations for Qij's and

S:Lj's’ namely;

by substituding (16) into above equations we find,

- QQZ.] - 2( 1-92)Q22 - GQ23 + 2(1-'2)Q211 =1

- 0;021 - (1-2P5)Qpp + @Qp3 = (1-2P5)Qyy = O (20a,b)
and

- &S, - 2(1--v2)S22 - &Sy3 + 2(1-p5)S5, = 0

- “821 - (1-292)822 - 6823 - (1-292)524 =1. (21a,b)

16



Solving (6a,b,e,f,g,h), (20a,b) one gets;

Qo

G,G: - G,G,
3Y5 2Y6 (22)
GGy = G564
G.G: - G,G
176 4
3 (23)
G206y - G564
| ]
— =1 = K,Q,, + Q (24)
oa 2722 24
_1._[1 - Qp + "2024] (25)
2
-2a8 (c-1) -2af (c=1) (hy + K, /2&)
1+K1 1+K1
¢ + K2
+ [ ] 0214 (26)
1 + K1
c + K, 2% (1-¢c)
[—] Qs + [———— 7 0Q
1+K1 22 3(1+K1) 23
L [ 1
Qo+ [ - ho +—14Q
o 12 2 o 14

17



-k B Ky

+ [ ] o + Qyy +[ hy =—1Q (28)
o 22 23 2 Py 24
K1 -“
Q-” s [ - h2 - ?&-] Q12 + [ zap } Q1u
KZ K
+ 021 + [ h2 +—] 022 + [ ] QZ’-& . (29)
2 2ap

Similarly, retaining Q32 and 031, in equwmations (6e,d,4,J,k,1), (7a,b)

is the easiest way to obtain,

GqyCq - Gy,C
1479 12711
Qgp = (30)

Gy 0Gyp = Gq30g

- _ G381 = GG

Qay = (31)
34
Gq0G12 - Gy3G
Q31 S - -1— [1 + “3Q32 - qu] (32)
2a
|
Q = {1 =0Q + K,Q (33)
33 oo 32 + K3 3u]
K3+ d —2ag *(1-4)
Qi = [————] Qs + [ ] Q

-20:.8'(d-1)(h3 + Ky /2)
. [ 1 Qg (34)
1 + Ru

18



~2&(d-=1) (=hg + K3 /2)

.l ] (35)
81 + Ky 2
s = [ b - 214 ['3'“”1
1 37 5o e - 1Y
Qas + [=hy +31 @ [B'“"’] (36)
+ + (- + —— + Q 3
31 3 28 32 2 34
L [ e
Q = Q + [h, + Q
B i R
(3, [ "3, (37)
+ Qyp + Qs + [=hy = —] Qyy 37
zap 32 %3 37 oo %y

Gy , (i=1,....,16) , B, B' are defined in Appendix II.

Similarly using equations (6a,b,c,d,e,f,g,h,1,3,k,1)

(21a,b), one obtains,

(38)

19
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543

11

1

—_—[-1 - ®,S,, +
py- 2520 + Soy

1
—[=1 = S,p + K58
- 22 + K252y

-2aB (e=-1)

1

1

~2aB (c-1) (hy, + K, /2Q )

[—————1 S5y + [
‘|+l(1 21

+ [

c+l£2

1+u1

1+K1

1 5y

[————1 Syp + I

1 + Ky 21 +l(1)

-:acx(1--c)(h2 - Ky /2& )

+ [

1 Sp3

BK,

[

Ky

2a 2Q

[-(hy +—) ] Sqo + [
2a

-K

2as

20

1845 + [=by + — 1 8y,

1 54y

18y

(39)

(40)

(31)

1 855

(42)

(43)

(4%)



Ko K>
# S0, + [ By + —1 8 4 [——1 S (45)
Sp4 2% o S22 2ap 2!

P,.P,, - P, P
S35 = 1311 = P14Pq0 ()

P1oF12 = P3Py

PyyPo = Py, P
Sy, = 149 = Pq2Pqy o

P1oP12 = Py3fy

1
Soq == —[ 1+K - Sy 1 (48)
31 - 3532 = S3y

1 (
Sog = ==[ =1 = Sop + K585y, ] 49)
33 oa 32 3V34

K3+ d -2ap *(1-d)
Syo = [—2—] S0 + [ ]s
42 1 +Ku 32 1 +“n 33

-2«3'(d-1)(h3 + Ky /2Q)
+ [ 1 55, (50)
1 +“4

- -2 (d=-1) d + l(3
Syp = [ ———————1 Son 4 [ ——=] S
411 3*(1 +“u) 31 1 + Ru 34

=2 (d=1)(-h, + K, /2&)
. [ 3 3

] (51)
8 (1 +ky) 32

21



Ku B*“u

SIH =[ h3 - -;—G—-] Sua + [~ - ] S).M
+ 531 + [-hg + R Sgp + [ £y 1 S (52)
2« 2«
Ky Ky
Sy = [ 2«3’] Syz + [ by + -;-;] Suy
I S S B Y (53)
sap 32t i3t by - —=1 sy,

Py(®) , (i=1,0....,16) , B, B", ¢, d are defined in Appendix III .

2.5 Integral Equations

Integral equations for the problem are derived from (9a,b),

that is,

o

lmy-»o'a_x' [uz(xry) - UB(X’Y)] =X , 0 x <K@
3]

limy—»o_a—x' [vz(x,y) - V3(X’Y)] =0 , 0&£ x <@

22



where, ore might recall

®o

N = for plane stress
Ey
¢ (1-¥2)

Nz o— for plane strain .

Ey

Substituding (4a) into above equations, and then replacing the

corresponding As:'s with (16), the following equations are obtained,
13

e
5 .
limy_’o;J'“[ [(021(6) + Qp(a)y) e~ %Yy (Qpz(&) + Qu(&)y) edy]
°

. F1(a) Cos(ttx) da

2

Qo

(]

- [(s31¢@) + s3pt@)y) e™Fu (S33(a) + Sy(@)y) <%V] ]

. Fo(&) Cos(axx) dat = A (54)

a3



(e0]

2
limy_.o';J"“ [ [(°21(“) + Qy(Ky /& + y)) =&Y

o

+ (-Q33(c) + Qg (&) (K4 /& - y)) e“Y} ] Fy(&) Sin(ax) d«

o
2

n
o

- [(531(c) + Sgo(@)(Ky /& + y)) e~®Y

(55)

Fy, F, must be replaced by Fourier inversion of (12a,b)

24
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@

£4(t)
Fq(a) = Sin(at) dt
7
(o]
@
£5(t)
Fo(a) = Cos(at) dt . (S6a,b)
22
o
Noting that,
£4(t) = £5(t) = 0 ’ teL! ’ y=0 (51)

where L' is the part of the x-axis containing the crack. Therefore,

(55a,b) with (57) would read as follows ,

- a
(£t
Fq (&) = Sin(a«t) dt
J e
o]
a
[ £,
Fo(a) = Cos(at) dt . (58a,b)
2 W

Replacing F,(&) and Fy(&) in (54), (55) with (57a,b) give two

equations of the form ;

Q
2 2

a5



a

2 2
lim, —J thj(x,y,t) £y(t)dt = 0. (5%,b)
«) 39
o
Here,
©
h”(x,y,t) = f RE1(e&,y) Cos(&x) Sin(&t) da , (60a)
o
o)
h12(x,y,t) = f TE1(&,y) Cos(&x) Cos(&t) d& , (60b)
o
(o)
h21(x,y,t) = f RE2(&,y) Sin(&x) Sin(&t) da , (60c)
o
fo's)
h22(x,y,t) = fTEZ(G,y) Sin(&x) Cos(&t) d& , (60d)
- o)

where,

RE1(&,y) = a[[(om(a) + Qp(®)y) e™*Ve (Qo3(@) + Qu(&)y) e“y]

- [(Q31(a) + Q32(G)Y) %Y, (Q33(“) + Q34(¢)Y) ecy]:l '

- [(831(0:) + S3o(&)y) e~ %Y, (S33(&) + Sgy(&)y) e“y]} ,

RE2(a,y) = -& [[[021(0:) + (&) (K, /& + ) ] e~y

26



- [ [Q31(¢) + Q32(¢)(K2 /€ +y) ] =%y

TE2(&,y) = -& [[321(a) + Szz(c)(ua /X + y) e-cy

+ :-523«:) + Sy (@) (ky /& - v | e“Y]

- r[331(«:)

S35(@) (K3 /@ + ) | ™%

y)] e“y] .

(61a,b, c’d)

+

+

+ [-533(8) + S3y(@) (k5 /@

For the physical problem under consideration, the displacement
differences on the bond surface are known and the stresses, fi(t)
are unknown, which may be determined from the integral equations
given by (59a,b). After determination of f;(t), all the desired
quantities, 1like the stress intensity factor, the strain energy

release rate and stresses can easily be evaluated.

Here it should be clearly noted that in deriving (59a,b), the
derivatives of the displacements, rather than displacements
themselves, have been used. Also note that the integral equations

should be solved under the following equilibrium conditions

27



|
o

a
J’f.l(t) dt =

-a

L]
o

a
ff‘z(t) at (62a,b)
-Q

The inf'inite integrals éiving h11 and h22 can be expressed as a
sum of two integrals, the integrands of which, respectively, are of
0(e~%Y) and 0(e~2%h2, ¢ 2®h3) ron @ — w»o. The first leads to a
Cauchy Kernel and the second to a Fredholm Kernel. On the other
hand, the integrands of the infinite integrals giving h12 and h21
are of O(e'zahZ, e'2“h3) for & —»00 , hence leading to Fredholm

Kernels only (see Section 2.6) .

2.6 Cauchy and Fredholm Kernels

After performing asymptotic expansion as X—s 0, Gi's and Pi's

(Appendix II, Appendix III) are found to be ;

Gy =0 ’ Gqq = =bp P, =0 ’ Pyq = =by, ,
G, = -ag , Gyp = b3 y P, = -2 ’ Pyy = b3 ’
G3 =0 ’ G13 =0 R P3 =0 ’ P13 = 0 ’
Guz-a2 ’ Gqy = 0] ’ Pu=-a2 ’ Pﬂl: 0 R
G =

= 2“34 y G15 = b2b3 ’ PS = ZGau ’ P15 = b2b3 ’

28



G = a3 » G =0

G7 =0 '
G8 = 333y
G9 = -2aby ,
Gig = bp

v Fg=-ay . Pg=0

Py = 0 ,
Pg = -asa, ,
Py = 24D, ,
Pig = by

where (ai, i=1,..,4), (bi’ i=1,..,4) are given in Appendix I. Using

them in (22):(23)1(24);(25)1(30)’(31);(32)3(33) and

(38),(39),(40),(41), (46),(47),(48),(49) gives the following results

as «—=00,

Q21(“) = "'(1 + “2) / 2
—Qaz(a) = 1.0
QZB(Q) = 0.0
Qzu(a) = 0.0
and

823(3) = 0.0

Q31(G) - 0.0
Q32(c) = 0.0
Q33(o:) = (1 + u3) / 2&

Q3ll(“) 1.0 ’

(63a,b,c,d,e,f,g,h)

831(6) = 0.0
332“!) = 0.0
333(6) = (=1 + K3) / 2&«

29



S,y(&) = 0.0 Sgy(@) = 1.0

(64a,b,c,d,e,f,g,h)

Substituting them into equations (64a,b,c,d), and noting K3=Ky,

give ,

RE1(& —=00,¥") = RElco

=(1 + K,) (1 + ®s5)
=a[__..___2_ +y-____§_+y]e'“y
2 2a
RElco= [ =(1 + Ky) + 2ay ] e~y (65a)

TE1(&—=0,y") = TE1cO

-(1 + ®,) -1 + K
=& ————2— -y-__.—3—+y]e"cy
2< 2

TE1co= 0.0 (65b)
RE2(&—=0,y") = RE2c

— Y F —— -

-(1 + K ) “2 (1 + K ) K
- [__.____2 3 3 ] e~y
24 L+ 4 2 Lo 4

RER2o= 0.0 (65¢)
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TE2 (& ~—»00,y") = TE2

-1 + K K -1 + ¥ K
- -& 2_ 2_y+ 3_ 3_ye-cy
2a « 2a «
TE2co= [ (1 + K,) +2ay 1 ™%V | (654)

It 1s obvious that if the infinite parts are substracted from
the integrands, the integrals will be uniformly convergent and give
bounded kernels, that is, Fredholm kernels, so limy_,o, can be put

under the integration sign. We then obtain,

R1(&x,0) = limy_.o [RE1(¢,Y) - RE1m(¢,y)]

= & [ Q21(a) + Q23(a) - Q31(a) - Q33(c) ] + (1 + Kz) ’
TH(&,0) = lm, [Tm(a,y) - TE1co(a,y)]

= & [ S51(&) + Sp3(&) - Sgq(&) = Sza(&) 1, (66a,b)
R(&,0) = lm, o [Raz(a.y) - REzm(a,y)]

P K,
= - [ 021(C) +‘——Q22(c) - Q23(a) + Qzu(c)
L+ 4

x
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T2(&,0) = lim, . [Tr::z(c,y) - TEzcga,y)]
K 7

- 531(Q) - —832(C) + 833(‘:) - —S3u(a) ]
L+ 4 L« 4

-1+ Ky . (66c,d)

Integral equations (59a,b) with (66a,b,c,d) would then become ;

2 9 ©
limy_.o, —ff1(t) [RE‘lco(GyY) Cos(&x) Sin(&t) d& dt
n o

-~

2 [« }

oo
+— [£,() [R1(&) Cos(ax) Sin(at) da dt

.
) o

2 r© o
+—[f2(t) f’N(a) Cos(xx) Cos(a«t) des dt = 2mMon (67a)
n o)
o

32



Qa

2 0
limy_’o‘ —_— fz(t)f TE2(&,y) Sin(&x) Cos(&t) d& dt

‘l’o o
2 9 oo

+ — fz(t)frz(a) Sin(&x) Cos(&t) d& dt
s o]
2 9 ©

+— [£,(t) [ R2(@) sin(ax) Sin(&t) a& at = 0.0 . (67b)
n o

(o]

In (67a,b) the kernels in the first terms are Cauchy type
wht—areas the remaining kernels are bounded in the closed interval
0 £ (x,t) £ a . Next we change the integration limits from (zero-to-
a), to (-a to +a). From the physics of the problem, we note that

7(x,y) is odd, ®(x,y) is even, therefore,

f1(t) -f1(-t) -a <t< +a

f2(t) = fy(-t) ~a<t< +a . (68a,b)

and the integral equations (6Ta,b) become
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(=)

1

o
limy__d.. — | £4(t) jRE1 (&,y) Cos(&x) Sin(&t) da dt
S .

1S
-
a Q
[ £1(t) Kypxed at o [ 15060 Kypx,t) dt = 2Mpn
-0 -a

a o
1
limY—oo"’ _sz(t) fTEZ (&,y) Sin(Qx) Cos(@t) d&x dt
n
0

-Qa

(] a

-Q -G

(69a,b)
where the fredholm kernels are given by,
©
1
K”(x,t) = [ R1(&) Cos(&x) Sin(ett) da ,
T
o

©

- 1

K12(x,t) =_..f'r1(cc) Cos(&x) Cos(&tt) d&x ,
™

(o]

(o)
1
K21(x,t) =—IR2(<X) Sin(®x) Sin(&t) da |,
n
o}
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Kaz(x, t)

o)
1
.-:.._J’TZ(Q) Sin(&x) Cos(at) d& . (70a,b,c,d)
b 4
o

The first parts of (69a,b) are reduced to Cauchy integrals as

follows ;

limy-o o*

and

lmy-— or

+q
-(1 + u2) @
— f1(t)j e-dy Sinx(t-x) d& dt
n
-a o

+Qa
(1 + Ky) J (t-x)
—_— 1lim fo(t) —m———— o dt
- y—-o* T ex)2 4 g2
-a
+Q
=(1 + K,) f.(t) dt
2 J’ ! (71a)
L4 (t=x)
-
+Q
(1 + Ky) ©
_— fz(t)f =&Y (=Sinx(t-x)) d&x dt
n 2 3
+Q
-(1 +K2) ( : (t-x)
—_— lim o+ | fo(t) —————— dt
o Yo 2 (t-x)2 + y2
-a
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+a

-(1 + &,) £,(t) dt
- 2* -] 2 . _ (71b)
o (t=-x) ’

2.7 Normalization of the Integral Equations

To solve the integral equations, it is convenient to define the

following dimensionless variables and functions ;

r = x/a y =agxg+a , =1&r +
s = t/a y =atg+a , -1 8K +1
.9 = &a , 0§ & <o , 0K 8 <

fy(s.a) / &,

g4(s)

go(s) fo(s.a) / &, . (72)

With (72), (69) and (62) can be written as,

+]
g.(s) ds
_I ! +fg1(s) Kqq(r,s) ds
(s-r)

+|

+f g2(s) Kqo(r,s) ds = P4 (73a)
=1
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with, ~]

J/g1(s) ds = 0.0 , (73b)
-1
and
1 +] o as +l
g~(s
- L‘_ + j’gz(s) Kzz(rvs) ds
w (s-r) I
-1 -
+|
+ [g1(s) Kyq(r,s) ds = 0.0 (73c)
-1
with,
+]
J’gz(s) ds = 0.0 . (73d)
-1
Here,
: ®
Kyq(ry8) = =« ——— JR1(5/a) Cos(dr) Sin(bs) dd ,
(1 + “2) 3
: o
Kyp(r,s) = - ———— I’H(ﬁ/a) Cos(dr) Cos(bs) db ,
w1+ Ky) 5
: ©
Kyy(r,s) = « —— R2(8/a) Sin(dr) Sin(8s) 48 ,
«(1 + Kz) o
: ©
Kyo(r,s) = = ———— | T2(8/2) Sin(dr) Cos(bs) ab
w(1 + K2) 4

(74a,b,c,d)
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and,

2
2”2(1 - '4)

2.8 Evaluation of the Infinite Integrals in the Fredholm Kernels

The integrands of the infinite integrals (74b,d) go to infinity
as 8-=0, that is, they have a pole at $=o0 . Hence, those integrals,
if treated separately, will be divergent and their evaluation
requires special care. |

As ® approaches to zero, Cos(ds) goes to unity, therefore the
integrands become independent of "s" thus, because of the single
valuedness condition, (73d), the coefficient of the unbounded

integrals would vanish. Equations (74b,d) could then be replaced by

oo
J-T1(6/a) Cos(dr) (Cos(ds) - 1.0) d& ,

e

1

K12(r‘,3) = -

(1 + K2)

(e o)
1
Kyo(r,s) = =« ————— jTZ(S/a) Sin(dr) (Cos(ds) - 1.0) d& .

o
(75a,b)
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3. SOLUTION OF THE SINGULAR INTEGRAL EQUATIONS

3.1 Solution of the Integral Equations

The solution of the singular integral equation

+1]

11
[ —_ — k(x,t)] $(t) dt = g(x) , =1< x & +1 (76)
7! t=x

subject to the single valuedness condition
+]

f@(t) dt = 0 ’ (17
- -l

is given in [15]. The method has been summarized in Appendix IV .

However, the singular integral equations (73a,c¢), that appear
in this report, have two unknown functions g; and go. So the
solution method that has been described in Appendix IV, should be
modified accordingly. Also note that, since gi(s) has a power
singularity 1/2 at the end points, the solution will be socught in

the form ;

gi(s) = (1 -52)"V2 ¢,(s) (78)
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where ¢i(s) is a function defined in the interval -1 ¢ s  +1 and

the indices of the singular integral equations are +1.

Following the procedure described in [13], the integral

equations may be expressed as

w1, N-L
— | = ky1(rgssq) @q(s9) + ) kyq(ry,sy) &q(s4)
N-1 | 2 =

1 i
+ " k:1(rk,sN) ®,(sy) |+

o 1 . M- .
— | = kpp(res'y) 9a(s')) ) Kkpalry,s'y) $p(sty)
M-1 | 2 {=2

1 ]
-+ ; k12(rk,S'M) OZ(S'M) = P1 y
k=1,eeee,(N=1)  (792)
with

1 N-) 1

— ®,(s9) +L @4(sy) +— &y(sp) =0 (79b)

2 i=2 2

4o



and

w LI N-| .
— —k21(1‘j131) $®4(sq) +z kpq(ry,s4) $4(sy)
N-1 2 =2

*

1
- kg j’sN) 01(51@] +
2

” 1 . M-| .
— | —kpalrgsty) $,(s'9) + 2 koplry,s'y) &p(s'y)
M-1 2 [Y-§

1
* 5 kealrys'y) °a<3'u)}= o,

JElyeees, (M-1) (80a)

with
1 M-l 1
— 0,(s7y) +) & (s'y) *> ¢ (s'y) = , (80b)
2 t:a
where
“ 1 1
k11(1‘,5) - — — e K11(P,S) ’
T s-r
#
k12(1‘,5) = K12(P,S) ’
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#

11
kno(r,s) = — ——+ Kpo(r,s) . (81a,b,c,d)
T s-r

The kernels Kq4(r,s), Kqp(r,s), Kpq(r,s), Ksn(r,s) are defined

by (74a, 75a, Tlc and 75b), respectively, and,

i-=1

Si = COS ——— ” ] i=1’ooo.,N
N-1
[ 2%-1

rp =Cos|—— & , k=1,....,(N=1)
2N=2
[ 11

s'i = Cos ” ’ i=1,....,M
M-1
[ 23-1

!“J = COS —_— y j=1pcnoo ,(M-1) . (&a,b,c,d)
2M=2
. B

Equations (79a,b) and (8a,b) would give N+M unknowns

01(81) , i=1,coon,N and

@2(5'1) ’ i=1,.-..,M .
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3.2 The Stress Intensity Factors

In Section (2.4) , it has been assumed that

‘rxy(x,O) f1(x) -a £ x <€ +a

o'yy(x,o) fa(x) . -a { x< +a

They have been rmon-dimensionalized in Section (2.7), by

defining the following variables and functions,

r = x/a ’ T xg +

gy(r) = f(r.a) /7 6, ,

gz(r) f‘2(r.a) / €y

where gi's themselves are defined in the following form (see section

3.1), for the solution of the integral equations;

g,(r) = (1-r2)"V2 ¢ (r)
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gx(r) = (1-r2)" V2 ¢ (r) .

In plane strain crack problems, the symmetric and anti-
symnetric ccmponents of the stress intensity factors may be defined

k1 = lim a 2(a-X) cyy(xro) ) (83)

X

ko = lm,_ . +/2(a-x) cxy(x,o) . (84)

Substituting the above definitions in (83) and (84), the

constants k1, ko may be related to the functions 01, 02 as follows:

lim,__4\/2a(1-r) fy(a.r) ,
limr__1 \’23(1-1") GO 82(1‘) ’

~
-
n

02(1‘)

lim.__4 \/Za( 1-r) &, '\/__2_
1-r

&.(r)
. 2
= lmr_._1v2a &, —,
1+r

Ly



ky = €3 &o(r=1) . (852)
similarly,
k2 = limr-ﬂ 2a(1-r) f1(a.r) ,A
= lm,_,V/2a(1-r) &, g,(r) ’
0](1')
= limx._’1 '\’23(1-2‘) cO rz ’
1=
01(1‘)
= lim,  ;v/2a & ———— '
1+r
ky = co'\,/; ®,(r=1) . (85b)

So the normalized stress intensity factors are ;

N k
1
kq = = $5(r=1)
1 cova— 2
k
2
k, = = &.(r=1) (8a,b)
2 1 ’
06\/5

where, 01(1':1), ®-(r=1) are
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°1 (Si, i=1 —PS1=1 ) )

‘2 (5'1, i=1 —->5'1=1) ' (87)

can be obtained froam the solution of integral egquwations (79) and

(80) .

3.3 The Strain Energy Release Rate

The strain energy release rate is defined as,

K‘? + Kg
- G = ————— ) (88)
E
where,
E = E y for plane stress

E/ (1-p%) , for plane strain

=
]

=\V®r k.

=
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So for our problem, which is a plane strain case, we have

w1 - p2)
G = 2 (k$+k§) )

E

where k,'s are defined by (85a,b), ome gets

1 + K,
G= —= @wae2 ($,2(1) + 43(1)) . (89)
8M,

Note that §,'s are given by equations (87).
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4., RESULTS AND DISCUSSION

The system of dintegral equations, with the additioml
conditions (73 a,b,c,d) is solved by the technigue described in
Appendix IV and Section (3.1). The main problem encountered is the
evalwation of the infinite integrals rather than the solution of the
integral equations. Unless these integrals, which are to be used
later to set up the algebrailc system, calculated with sufficiently
high accuracy, the solution of the integral equations will not
obviously produce dependable results beyond certain number of
significant digits. So the numerical integration scheme has a vital

impor tance.

Before going into any integration technique, one should first
be able to define the envelope functions, RE1(&), TE1(&), RE2(&X),
TE2(®), (61 a,b,c,d). Previously, these functions (as mentioned in
Section 2.4) were unavailable in closed form. All of their desared
properties, including the asymptotic behaviours for @& approaching
infinity or zero, were accurately determined by plotting and using
certain tricks, such as multiplying with the powers of alpha in
order to find out the singular behaviour around zero. Since the
analytical expressions for the envelope functions were not
available, they had to be calculated numerically, by solving sixteen
algebraic equations each time, say "n" times, for every X,
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i=1,....,n .

The number "n", which has been mentioned in the previous
paragraph, is actually the number of points needed for the numerical
integration scheme to give sufficient accuracy. So, obviously "a"
depends on the convergence of the integrands in (74 a,c) and (75
a,b). More specifically, slower the convergence, larger will be the
npn, or vice versa. A closer look, however, reveals that (T4c¢c) and
(75a) do not 4in themselves, have a convergence problem. The
convergence of (T4a) and (75b), on the other hand, is greatly
affected by the adhesive thickness. As it can be seen from Table 1,2
, convergence is very slow for thin gecmetries. So, as a result, we
end up with a very costly procedure, trying to solve sixteen
equations "n" times. Because of this major drawback, equation
systems (18) and (19) are solved analytically in order to obtain

closed-form solutions for the envelope functions.

After having defined the envelope functions, one can then
proceed with the selection of the appropriate integration scheme for
each of the infinite integrals (74 a,c) and (75 a,b). As mentioned
in the previous paragraph, the integrands of the equations (T7ic¢) and
(75a) do not possess a convergence problem. So, they are integrated
from zero to infinity by using Laguerre polynamials in one step.
However, the other two, that is, (T4a) and (75b) needed special

treatment, because of the behaviours of their integrands.
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After a closer look, one realizes that the envelope functions
of these integrands (74a, T75b) can be handled more easily and
accurately, if they are examined in three intervals, instead of just
one going from zero to infinity. First, from zero to A , where the
functions are very steep and relatively large in magnitude. Then
from A to B , where the functions are smoothly decreasing in
magnitude, and finally from B to infinity where the envelope
functions have bheen replaced by thelr asymptotic expressions for
large alpha for computational reasons. The constants A4 and B ,
depend on the geometry and the material properties of the medium,
however, in general A lies between 1 and 5 , and B is around 500 .
So the equations (T4a), (75b) are integrated in three steps ;using
Filon's integration scheme, first from zero to A, then A to B, and

finally from B to infinity.

Finally, the system of integral equations (73 a,c) is solved
using Gauss-Chebyshev integration scheme as discussed ain Appendix
IV. It should be pointed out that, in order to build up the
algebraic system for the solution, the kernels, K“(r,s), K12(r,s),
K54 (rys), Kyo(r,s), (T4 a,c and 75 a,b), that is, the infimte
integrals, have to be evaluated (N x (N-1)), (M x (N-1)), (N x
(M-1)) and (M x (M-1)) times at corresponding "r" and "s",
respectively. N and M are the number of points for which the unknown
functions ¢ ,(s,), 1=1,...,N , ®5(sj), J=1,...,M ,are evaluated (see

Section 3.1). However, taking into consideration the symmetry and
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the anti-symmetry of the kernels and the unknown functions 01 and
$, , these numbers can be reduced to 1/4'th of their original values
which means a great deal of saving in computatiomal time and money.
This concludes almost all of the numerical considerations regarding
the solution of the problem. The results obtained are discussed in

the following paragraphs.

The material constants used in the calculations, unless

otherwise is specified, are as follows,

Upper and Lower Adherends : Aluminum

E, = Ey = 10.5x 108 psi ,
' My = By = 3.9474 x 106 psi
'1 = 'u = 0.33 ,

Adhesive : Epoxy

E, = B3 = 0.28 x 10% ps1
My = M3 = 1.0 x 10° psi

'2 = '3 = 0.’40 .

The results for the specimen with equal thickness adherends

which has the same material properties have been tabulated in Tables
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3-10. Corresponding graphs are Figures 3-6 for Tables 4,5,7 and 8
respectively. Since the only applied load is uniaxial tension, the
specimen is free to bend. Consequently, in the case of identical
adherends the normal stress in the adhesive is found to be zero,
which agrees with [4]. Also, it was observed that the adhesive shear
stress, the corresponding stress intensity factor and the strain
energy release rate increase as the adhesive thickness decreases.
Table 5 shows the effect of adherend ticknesses on the adhesive

shear stress.

A special geometry is studied in Tables 9 and -10, for
comparision with ([4]. If the stresses are to beé calculated at
specific distances away from the right end, rather then at specafic
values of the mon-dimensional variable (x/a), the simalarity wall
become apparent. So we .may conclude that the stresses are
independent of bond length, hence, the strain energy release rate

turn out to be constant(Figure 7). The similar result is found in

[4] by using tne plate theory.

~

Tables 11-20 and Figures 8-10 give the results for the specimen
having similar adherends with different thicknesses., In Table 14,
upper plate 1s less stiff than the lower plate, while 1n Table 11
the relative stiffness is reversed. This is accomplished simply by
varying the adherend thicknesses. The peak norma2l stress changes

from tension in Table 14 to compression in Table 11, while ats
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magnitude remains almost the same. The shear stress is compressive
in both cases as expected. Tables 13 and 15 shows the effect of
(h1/a) and (hu/a) ratios on the adhesive stresses, respectively.-
Again for h1 > hll (Table 13) there is compressive normal stress, for
hy < hy (Table 15) there is tensile normal stress. Also it has been
observed that the adhesive stresses, the stress intensity factors
and the strain energy release rate increase as the adherend
thickness increases. The same behaviour can also be seen in Tables 5

and 8, This trend has been noted in [3], [6].

Tables 21-28 give the results for the specimen having
dissimilar adherends. The adhesive shear stress increases as the
shear modulus of the upper plate, ¥q increases relative to the shear
modulus of the lower plate My, ™ matter what their thickness ratio
.S. However, the peak normal stress is conpressive and increases
with increases with increasing w4 for h1 > hy (Table 21), tensile
and decreases with increasing Py for h1 < h,J (Table 22), and is
tensile for W4 < My, zero for My = My compressive for My > My for
equal thickness adherends (Tables 23,24). Same trend is observed for
the corresponding stress intensity factors (Tables 25,26,27,28 and
Figures 11-13). The strain energy release rate, however is as
consistent as the shear stress, since shear is the daminant stress.
Therefore G 1increases as v, increases an all three cases, h1 > hu,
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The evaluation of the infinite integrals and consequently the
numerical solutions of the integral equw tions as mentioned before,
becomes very difficult as the thicknesses decrease, resulting in
costlier computations. For these thin geometries convergence beccmes
very slow, hence o results are given., However, it should be
mentioned that in this case the stresses tend to oscillate near the

crack tip, which happens to be in agreement with [16].
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TABLES
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Table 1. The effect of adhesive thickness on the
envelope function R1(«) (equation 66a).
(hy/a)=(hy/a)=1.0 , a=1.0 in.

R1(¥)
L« 4
(h2/a)=0.0025 (h2/a)=0.005 (h2/a)=0.05
5.878 2.272879 2.21390 1.279204
10.755 2.223983 2.116758 .763813
20.510 2.126674 1.926407 .430288
30.265 2.030539 1.744085 348293
40.020 1.935993 1.572448 265924
54.653 1.797995 1.339239 .13805
64.408 1.709048 1.201911 .078680
T4.163 1.62289 1.07 8744 041523
83.918 1.539796 . 970431 .020802
93.673 1.459%1 . 876033 .010035
103.429 1.383560 .T94602 .004705
113.184 1.310719 . 724990 .002158
122.939 1.241522 .665952 .000973
132.694 1.176016 .616218 .000432
142.449 1.114207 574549 .000189
152.204 1.056074 .539778 .000082
161.959 1.001560 .510833 .000035
171.714 . 950589 485748 . 000015
181.469 .903059 LU66669 .000006
191.224 . 858851 LA449849 . 000003
200.980 .817834 435643 .000001
210.735 .T779864 .423500 .0
220.4 90 .TU4T90 412957 .0
230.245 . 712455 . 403622 .0
240.000 6870 .395173 .0

56




Table 2. The effect of adhesive thickness on the
envelope function T2(&) (equation 66d).

(h1/a)=(h4/a)=1.0 , a=1.0 in.

T2(&)
L+ ¢

(hy/a)=0.0025 (hy/2)=0.005 (hy/2)=0.05
5.878 -2.322568 -2.313114 -2.13348
10.755 -2.314 808 -2.297T474 -1.938180
20.510 -2.299089 -2.265769 -1.48075
30. 265 ~-2.283301 =-2,233475 -1.035337
40.020 -2.26T406 -2.200334 -.654195
54.653 -2.243282 -2. 14 8607 -. 277256
64.408 ~2.22693 -2.1125% -.143009
T4.163 -2.210420 -2.075291 -.070119
83.918 -2.193628 -2.036698 -.033151
03.673 -2.176563 -1.996856 -.015263
103.429 -2.15%209 -1.955842 -.006888
113.184 -2.141551 =-1.913753 -.003060
122.939 -2.123578 -1.870701 -.001342
132.694 -2.105284 -1.826807 -.000582
142.449 ~2.086666 -1.7819 -,000250
152.204 -2.067723 -1.736974 -,000107
161.959 -2.048458 -1.691273 -.000045
171.714 -2.028877 -1.645198 -.000019
181.469 -2.008986 -1.598856 -.000008
191.224 -1.988795 -1.552346 -,000003
200.98 -1.968316 -1.505762 -,000001
210.735 -1.947559 -1.459192 -,000001

220.490 -1.926539 -1.412722 .0

230.245 -1.905270 -1.366429 .0

240.000 -1.883765 -1.320391 .0
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Table 3. The effect of (h2/a) ratio on the adhesive stresses
¢ and T with equal thickness adherends.

(hy/a)=(hy/a)=0.35 , a=1.0 in.

hy/a — 0.0025 0.004 0.005 0.006
x/a -1/6 -1/% -1/8, -1/8
. 99997 1.799 1.78 1.775 1.767
. 99883 .363 .335 .324 .316
.99533 .263 222 .209 .200
.98951 246 <194 174 .162
.98137 .223 .188 167 151
. 97094 .203 . 176 161 .146
.9585 .188 .162 .151 140
. 94331 175 .148 .140 .132
92617 164 .135 .128 .122
.90687 |, .151 .123 .116 1
.88546 .138 112 .105 .101
%197 .124 .102 .0952 .0916
. 83647 .108 .0922 .0859 .0826
. 80902 .0528 .0827 L0772 . 0741
TT7%7 .0775 .0734 .0690 .0663
.74 851 . 0631 . 0644 .0613 .0590
71560 .0500 .0558 .0539 .0522
.68102 .0385 0476 0470 .0459
64484 .029 .0400 .0406 .0401
60716 .0212 .0331 . 0347 .0348
.56 806 015 .0270 .0293 .0299
52764 .0106 .0217 .0245 .0255
48598 .00716 L0171 .0203 .0216
44319 00477 .0133 .0166 .0181
- .35460 L0013 .00772 .0107 .0123
.30902 .00118 .00574 .00842 .00995
.26271 .00073 .00421 .00652 .00790
.16 836 .00021 .00207 .00356 .00453
.07243 .0 .00076 .00139 .0018&
.02416 .0 .00025 .00046 .00060
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Table 3. (cont.)

for all
hy/a — 0.007 0.008 0.009 h2/a ratios
x/a --T/G'o --T/G'o -‘1’/'5'o G/Go
« 99997 1.759 1.751 1.743 0.0
. 99883 .310 .305 .301 0.0
.99533 .192 .186 .180 0.0
. 98951 .154 .48 .143 0.0
.98137 . 140 .132 .125 0.0
. 97094 .135 .126 .118 6.0
. 9585 .130 21 <114 0.0
. 94331 .123 .116 .109 0.0
.92617 .116 .110 . 104 0.0
. 906 87 .107 .102 0977 0.0
. 88546 .098 .0048 .0912 0.0
.86197 .0892 .088 .0842 0.0
. 83647 .0806 .0789 L0771 0.0
. 80902 . 0724 .07T12 . 0700 0.0
CTT%T .0648 .0638 .0630 0.0
. TH 851 L0577 .0570 .0565 0.0
.71560 .0512 .0506 .0503 0.0
.68102 .0451 o447 04146 0.0
L6448 .039% .0393 .0393 0.0
60716 .0346 .0344 .0345 0.0
.56 806 .0300 .0300 0301 0.0
.52764 .0258 .0259 .0261 0.0
.48598 .0221 .0223 .0225 0.0
44319 L0187 .0190 .0193 0.0
>~ .35460 0131 .0135 .0138 0.0
.30902 .0107 L0111 0114 0.0
.26271 .0083 .00902 .00929 0.0
. 16836 . 00506 .00536 .00555 0.0
.07243 .00207 .00221 .00229 0.0
.02416 .00068 .00073 . 00076 0.0
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Table 4. The effect of (h2/a) ratio on the adhesive stresses
¢ and T with egqual thickness adherends.

(hy/a)=(hy/a)=0.25 , a=1.0 in.

ho/a —= | 0.0025  0.004 0.005 0.006
x/a -1/8,  -1/8, -/,  -1/F,

« 99997 1.515 1.49% 1.488 1.480

- 99883 .305 .281 .272 . 265
.99533 .221 .185 175 .167
-98951 .205 .162 145 .135
.98137 .185 .156 .138 .125

. 97094 - 167 - 145 .132 .120
-958&5 -153 .132 .123 114

. 94331 1 «119 .112 .106
.92617 .130 107 101 .0%9
. 906 87 118 .0%50 0908 .0875
. 88516 .105 .0860 .0809 L0782
86197 .0909 . 0765 .0718 . 0694
. 83647 .0768 .0675 .0634 .0613
. 80902 .0629 .0589 .0556 -0538
STTHT 0497 -0506 .0483 .0469
.T4851 .0379 .0428 0416 .0406
.71560 .0278 .0356 .0355 .0350
.68102 .01% .0291 .0299 .0298
L6448y .0134 .0233 .0249 .0252
.60716 .00872 .0183 .0204 .0212
.56 806 .00550 0142 .0166 .0176
.52764 .00334 .0107 .0133 .0145
-48598 .00193 .0796 .0105 .0118
44319 .00110 . 005 81 .00822 .00957
.35460 .00029 .00293 0048 .00605
.30902 .00014 .00203 .00362 .00 473
.26271 .0 .00138 .00268 .00363
- 16836 .0 .00059 .00135 .00197
.07243 .0 .00020 .00050 .00077
.02416 .0 .0 .00016 .00025
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Table 4, (cont.)

for all
h2/a —_— 0.007 0.008 0.009 h2/a ratios
x/a -?/60 -f/So -1/60 G/co
» 99997 1.471 1.463 1.455 0.0
. 99883 .259 .255 .251 0.0
.99533 .160 .155 .150 0.0
. 98951 .128 .123 .119 0.0
.98137 .116 .109 .103 0.0
. 97094 111 .103 .0970 0.0
9585 .106 .098 .0926 0.0
. 94331 .0995 .0933 .0879 0.0
. 92617 .0922 L0874 .0827 0.0
. 906 87 .0842 .0807 . 0770 0.0
.885146 .0760 .0735 .0709 0.0
.86197 .0678 . 0662 .0644 0.0
. 83647 .0601 .0591 0579 0.0
. 80902 .0528 .0522 .0515 0.0
<TT97 .0U62 .0458 .0u455 0.0
. T4 851 .0401 .0399 .0398 0.0
.T71560 .0346 .0346 .0346 0.0
.68102 .0297 .0298 .0300 0.0
64484 .0254 .0255 .0258 0.0
.60716 .0215 0217 .0220 0.0
.56 806 .0181 L0184 .0187 0.0
.52764 .0151 .0155 .0158 0.0
4898 .0125 .0130 .0133 0.0
44319 .0103 .0108 0111 0.0
~ .35460 .00679 .00724 .00758 0.0
.30902 . 00541 .00584 .00615 0.0
.26271 00424 .00462 .00490 0.0
.16 836 .00238 . 00265 .00283 0.0
.07243 .000%5 .00107 .00115 0.0
02416 . 00031 . 00035 .00038 0.0
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Table 5. The effect of (h,/a , hu/a) ratios on the adhesive
stresses @ and ¥ with equal thickness adherends.

(hy/a)=0.0025 , hy=h, , a=1.0 in.

for all
hy/a —= 0.25 0.30 0.35 0.50 1.0 h1/a ratios

x/a -1/60 -‘r/co -1/00 -1/60 -‘r/co c/co

«99997 | 1.515 1.663 1.799 2.157 3.059
.99883 .305 .336 .363 U436 619
+99533 .221 .243 .263 317 451

. 98951 .205 .226 246 297 JAh424 .
.98137 .185 .205 .223 271 .389 .
. 97094 . 167 .186 .203 248 .358 .
.95825 .153 AT .188 .231 <337 .
. 94331 L1481 .159 175 .217 «321
.92617 .130 . T47 .164 .205 307 .
. 906 87 .118 .135 .151 .193 293
.88546 .105 .122 .138 179 .278 .
L8197 .0909 .108 .124 .164 .261

.83647 .0768 .0932 .108 .148 .243
_. 80902 .0629 .0783 .0928 131 .223
TTHT o497 .0639 0775 114 .203
. T4 851 .0379 .0506 .0631 .0973 .182
.71560 .0278 .0388 .0500 .0817 .163
.68102 .01% .0289 .0385 .0674 .44
L6448y .0134 .0208 .0290 .0547 .127
.60716 .00872  .0145 .0212 .0437 <111
.56 806 .00550 .00982 .01%2 .0345 0%4
.52764 .00334 .00646 .0106 .0268 .0836
48598 .00193 .00408 .00716 .0205 .0720
44319 .00110  .00254  .00477 .0155 .0618
.35460 .00029 ,0008 .00192 .00845 .0442
+30902 .00014 .,00048 .00118 .00611 .0367

[cNeoNoNoNeRoloNoNoNoeNoNolloNoNoNoloNolleNoNeNolesNoloNolleNo e o]
L] e e e & e o e & o & . .
[eNeNoNoNoNoNeNoNoNeoleNoloNoNoloNoNeNoNoNloleNalloNoNoNoNeNaole]

26271 .0 .00029 .00073 .00437 .0300
.16 836 .0 .0 .00021 .00200 .0179 .
.07243 .0 .0 .0 .0007T4  .00749 .
.02416 .0 .0 .0 .00025  .00250
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Table 6. The effect of (ho/a) ratio on the normalized
stress intensity factors (kq/ky , ka/Ky) and
the strain energy release rate, G/G,, with
equal thickness adherends.

(hy/a)=(hy/a)=0.35 , k =6 Va

G,=€2a/E, , a=1.0 in.

h2/a 0.0025 0.004 0.005 0.006
k1/ko 0.0 0.0 0.0 0.0
ko/k, -.013%4 -.01380 -.01375 -.01369
h2/a 0.007 0.008 0.009

k2/ko -.01363 -.01356 -.01350

G/G, 4 90E~3 +U485E-3 +U81E=-3
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Table 7. The effect of (hy,/a) ratio on the normalized
stress intensity factors (kq/k, , ko/k,) and
the strain energy release rate, G/G,, with
equal thickness adherends.

(hy/a)=(hy/a)=0.25 , kozc‘;\/a_

G,=62a/E, , a=1.0 in.
ho/a 0.0025 0.004 0.005 0.006
k1/ko 0-0 0.0 000 0.0
ko/k -.01173 -.01159 -.01153 ~.01146
G/ G, «363E-3 +354E=3 .351E-3 «347E-3
h2/a 0.007 0.008 0.009
ko/k g -.01140 -.01133 -.01127
G/G, «343E-3 +339E-3 «335E-3



Table 8. The effect of (h1/a s hu/a) ratios on the normalized

stress intensity factors (k4/k, , ky/k,) and the
strain energy release rate, G/G,, with equal
thickness adherends.

(hy/a)=0.0025 , k,=62/a , h;=h,

Go=c§a/132 , a=1.0 in.

h./a 0.25 0.30 0.35 0.50 1.0
ky/kg 0.0 0.0 0.0 0.0 0.0
- ky/ky -.01173 =-.01288 =-.013% =-.01671 =-.02369
G/G .363E~-3 .438E~-3 .513E-3 .T3TE-3 .148E-2
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Table 9. The effect of N ,

the number of unknown functions

selected in the solution of the system of integral
equations (Section 3.1) , on the stress intensity
factor and the strain energy release rate for thin
gecmetries and the comparision of (G/Go) with the
plate solution in Ref.[4] .
hy=hy=0.125 1n., h,=0.0025 in.

. w2
k =6 Va , G =e2a/E, .

G

=0.2581 , & j=2E+4 1b/in® .

plate
| t  Plate
N=26 N=29 N=33 Soln.
k1/ko 0.0 0.0 0.0 0.0
a=1 00
ky/k, | -.00816 =-.0081 =-.00818
G/ G, .176E=3 .178E~3 .177E=3 . 181E-3
N=37 N=40 N=45
k1/ko 0.0 0.0 0.0 0.0
a=2.0
ky/k, | -.00578 =-.00581 =-.00579 !
i
G/G, | .882E-4 .891E-4  .BBSE-Y | .903E-4
N=41 N=45
k.] /ko 0.0 0.0 0.0
a=3.0
k2/k° -.00465 -.00471
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Table 10. The effect of bond length (a), on the adhesive
stresses ®© and ¥ , with equal thickness
adherends, for thin geametries.

hq=hy=0.125 in., h,=0.0025 in.

a — 1.0 2.0 3.0 1.0,2.0,3.0
x/a -‘l’/c’o -‘r/co -1/00 c/co
. 99997 1.052 .T48 .609 0.0
.99938 .265 .208 .189 0.0
.99751 172 .151 <144 0.0
. 99440 L4y <137 .124 0.0
.99005 .138 .121 .110 0.0
. 98447 .131 .106 .0990 0.0
.97766 .121 L0943 .0861 0.0
«9%6%3 .109 .0832 . 0704 0.0
.96039 0979 .0718 .0526 0.0
. 94996 .0872 . 0600 .0350 0.0
.93834 0774 .0479 .0202 0.0
. 2556 . 0684 .0362 .00993 0.0
.91162 .0600 .0258 .00408 0.0
. 89655 .0522 .0170 .00139 0.0
.88036 .ou48 .0104 .00038 0.0
. 86307 .0380 .00578 .0 0.0
.8UUT1 .0317 .00293 .0 0.0
. 82529 .0261 .00135 .0 0.0
.80485 .0210 .00054 .0 0.0
.78340 L0167 .00020 .0 0.0
.76098 .0129 .0 .0 0.0
.T3761 .00983 .0 .0 0.0
S .T1332 .00731 .0 .0 0.0
.66211 .00378 .0 .0 0.0
.60759 .00178 .0 .0 0.0
.55006 .00076 .0 .0 0.0
.48978 .00029 .0 .0 0.0
.42706 .00010 .0 .0 0.0
.390488 .0 .0 .0 0.0
.01765 .0 .0 .0 0.0
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Table 11. The effect of (hz/a) ratio on the adhesive
stresses @ and T with different thickness
adherends.

(h1/a)=1.0 y (hu/a)=0.5 ’ a=1.0 ino

(h2/3)=0.03 (hz/a)=0.0u
x/a -‘r/co 0'/6‘0 -1’/6‘0 6/6’0
. 99997 2.174 -.523 2.023 -.464
. 99883 .356 -.0891 .330 -. 0778
.99533 .19 -.0527 173 ~-. 0441
. 98951 .139 =044y .124 -.0354
.98137 .116 -.0426 .101 ~.0327
. 97094 .101 -.0420 .0879 -.0318
.9585 .0912 -.0409 .0786 -.0312
. 94331 .o8uy -.0389 .07T16 -.0301
.92617 .0801 -.0363 .0666 -.0284
. 906 87 L0771 -.0334 .0631 ~-.0264
.88546 L0745 -.0301 .0606 -.0240
.86197 L0717 -.0267 .05 83 -,0215
.83647 .0689 -.0232 .0561 -.0189
. 80902 .0659 -.0197 .0538 -.0162
LTT9%7 .0629 -.0162 .0514 ~-.0134
.T4851 .0597 -.0128 .0489 -.0107
.71560 .0565 -.00950 .0U63 -.00794
.68102 .0532 -.00632 0437 -.00531
.64u8y .0499 -.00326 L0411 -.00276
.60716 .0466 -.0003% .0384 -.00033
.56 806 L0432 .00243 .0356 .00197
.52764 .0398 .00505 .0329 .00412
~ 48098 .0364 .00750 .0301 .00612
44319 .0330 .00977 .0273 .00795
.35460 .0261 .0137 .0216 .0111
.30902 .0226 .0154 .0188 .0124
.26271 .0191 .0168 .0159 .0135
.16836 .0122 .0190 .0102 - .0152
.07243 .00523 .0203 .00436 .0162
.02416 .00174 .0205 .00145 .0163
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Table 11. (cont.)

(hy/a)=0.05 (hy/a)=0.06
x/a -‘I/G‘o G'/CO -‘I’/G’o C/G'o
« 99997 1.905 -.419 1.806 -.38
. 99883 .309 -.0695 .292 -.0635
.99533 .160 ~.0384 .151 -.0344
. 98951 .113 -.0297 .105 ~-.0260
.98137 0012 -.0266 .0838 -.0227
. 97094 . 0786 -,0255 .0716 -,0214
. 9585 0700 -.0249 .0635 -,0207
. 94331 . 0635 -.0242 L0574 -.0201
. 92617 .0583 -.0231 .0525 -.0103
. 906 87 .0545 -.0216 .04 85 -.0182
. 88546 .0516 -.0199 . 0455 -.0169
.86197 L0494 -.0180 .0431 -,0153
. 83647 Noive -.0160 .0412 -.0137
. 80902 .0U55 -.0138 .0394 -.0119
LTT%7 .0436 ~-.0116 L0377 -.0101
. 74851 0415 -.00940 .0360 -.00822
.T1560 .03% -.00716 .0342 -.00633
.68102 .0372 -. 004 9% .0323 -.00445
.6448y .0350 -.00280 .0304 -.00260
.60716 .0327 -.00072 .0285 -.00080
.56 806 .0304 .00126 .0265 .00092
.52764 .02 81 .00314 .0245 . 00256
.4 8498 .0257 .00490 .0224 .00410
LA44319 .0233 . 00652 .0204 . 00553
~ 35460 .0185 .00933 .0162 .00800
30902 .0160 .0105 0141 .00903
.26271 .0136 .0115 .0119 .009063
.16 836 .00866 .0130 .00762 .0113
.07243 .00372 .0139 .00327 0121
.02416 .00124 .0141 .00109 .0122
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Table 11. (cont.)

(hy/a)=0.07 (hy/a)=0.1
x/a -‘I‘/co 6'/6‘0 -‘I/Go 6'/6'0
» 99997 .723 -.357 1.535 -.299
. 99883 .278 -.058 247 -.048
«99533 .143 -.0314 .126 -.0254
.98951 .0990 -.0233 .0859 -.018
.98137 .0781 -.0199 .0666 -.0149
. 97094 . 0662 -.0184 .0555 -.0132
.9585 .058 -.0176 .0U83 -.0123
. 94331 .0527 -.0171 .0432 -.0117
.92617 .0481 -.0164 .039%2 -.0112
. 906 87 L0443 -.0156 .0359 -.0106
.88546 L0411 -.0146 .0330 -.0100
.86197 .0386 -.0133 .0305 -.00927
.83647 .0366 -.0120 .0284 -.00842
. 80902 .0349 -.0105 .0266 -.00746
CTTHT .0333 -.0089% .0250 -.00644
.74 851 .0318 -.00736 .0237 -.00537
.71560 .0302 -.00575 .0224 -.00426
.68102 .0286 -.00412 .0211 -.00313
L6448 .0269 -.00251 .0199 -.00199
.60716 .0252 -.00093 .0187 -.00087
.56 806 .0235 .00060 .0174 .00024
.52764 .0217 .00206 .0161 .00131
48598 .0199 .00345 L0147 .00233
44319 .0180 .004TY .0134 .00330
~  .35460 .0143 .00700 .0107 .00501
.30902 .0124 .007% .00926 .00575
.26271 .0105 .00879 .00785 .00639
.16836 .00673 .0101 .00501 .00737
.07243 .00289 .0108 .00215 .00793
.02416 .000% .0109" .00072 .00804
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Table 12. The effect of bond length (a), on the adhesive
stresses € and T , with different thickness
adherends. )

hy=1.0 in., hy=0.5 in., hy=0.1 in.

a=2.0 a=3.0 a=14.0

x/a —1/60 6/60 -1/60 C/Go -1/60 G/Go
. 99997 .511 - 414 1.333 -.375 1.176 -.333
. 99883 245 -. 0686 .218 -.0632 .193 -.0570
.99533 | .127 -.0377 .115 -.0362 .103 -.0340
. 98951 .0894 -.0289 .0827 -.0294 . 0761 -.0288
.98137 .0718 =.02%6 L0679 -.0271 .0631 -.0271
. 97004 .0616 =.0242 0588 =.0259 L0547 -.0254
.9585 .0547 -.0233 0522 =.0243 0487 -.0229
. 94331 0493 =,0222 04784 =,0221 L0449 =-,0197
.92617 .0451 -.0207 0441 -.019 0423 -.0160
. 906 87 0419 =-,0189 L0817 =.0163 U000 =,0122
.88546 .0395 -.0168 .0397 -.0131 .0377 -.00834
.86197 .0376 =.0145 .0378 =-.00979 .0354 -.00472
. 83647 .0359 =.0121 .0358 -.00660 | .0331 -.00147
“. 80902 .0343 ~-.00%1 .0338 ~-.00361 .0308 .00129
LTT%T .0326 -.00720 .0317 =-.00092 .0285 .00348
. T4 851 .0310 =-.00486 .0297 .00139 | .0262 .00507
.71560 022 -.00265 | .0277 .00329 | .0240 .00609
.68102 .0275 -.00061 .0257 .00 476 .0218 .00658
L6448 .0257 .00122 .0237 .0057T9 | .0197 .00661
60716 .0240 .0028 .0217 . 00643 L0177 .00628
.56 806 .0222 .00418 | .0198 .00670 | .0157 .00570
.52764 . 0204 .00530 .0179 .00669 .0139 .00498
48598 | .0186 .00619 | .0161 .00643 .0122 .00420
44319 .0168 . 006 86 .0143 . 00602 .0106 00344
.35460 .0133 .00766 .0110 0042 .00771 .00220
.30902 .0115 .00784 .00935 .00435 . 00645 00177
.26271 .00971 .00793 .00780 .00381 .00528 .00145
.16 836 .00617 .0079Q2 .004 8 .00295 .00319 .00112
.07243 .00264 .007 84 .00205 .00244 .00133 .00101
.02416 .00088 L0078 .00068 .00234 .000539 .00099
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Table 13. The effect of (h1/a) ratio on the adhesive
stresses © and T with different thickness

adherends.

(hu/a)'-'o.s ’ (h2/a)=0-1 ’ a=100 in.

(hy/a)=1.0 (hy/a)=2.0 (hy/a)=3.0

x/a | -a/e, 6/6, | -4/s,  &/6 | -/8,  6/6,
.99997 {1.535  -.299 | 1.605  ~.391 |1.620  -.405
.99883 | .247  -.0486 | .259  -.0637 | .261  -.0659
.99533 | .126  -.0254 | .131  -,0333 | .133  -.0344
.98951 | .0859 =-.0182 | .0899 =-.0238 | .0907 =~.0246
.98137 | .0666 -.0149 | .0698 =~-.01% | .0704 =-.0202
.970%4 | .0555 =-.0132 | .0582 =-.0173 | .0587 -.0179
.9585 | .0483 -.0123 | .0506 -.0160 | .0511 ~.0166
.94331 | .0432 -.0117 | .0453 -.0152 | .0457 -.0158
.92617 | .03%2 -.0112 | .0#12 =-.0146 | .0415 ~-.0151
-90687 | .0359 -.0106 | .0377 -.0139 | .0380 =-.0144
.88546 | .0330 -.0100 | .0347 -.0131 | .0350 -.0135
.8197 | .0305 -.00927 | .0322 -.0121 | .0324 -.0125
83647 | 028 -.00842| .0299 -.0110 | .0302 =-.0114
.80%02 | .0266 ~-.00746 | .0281 -.00971 | .0283 =-.0101
.TT%T | .0250 -.00644 | .0264 -.00837 | .0267 -.00868
.74851 | .0237 -.00537 | .0250 ~-.006% | .0253  ~-.00723
.71560 | .0224 -.00426 | .0237 =.00551 | .0239 -.00573
.6 8102 .0211 -.00313 .0224 -.00403 | .0226 ~-.00420
.64484 | .0199 -.00199| .0211 ~-.00255 | .0213 ~-.00267
.60716 | .0187 -.00087 [ .0198 =-.00108 [ .0200 =-.00115
.56806 | .0174  .00024 | .0185  .00035 | .0187  .00034
.52764 | .0161  .00131| .0171  .00174 | .0173  .00178
4898 | .0147  .00233| .0157  .00307 | .0159  .00316
44319 | .013%  .00330 | .0143  .00432 | .0145  .00446
.35460 | .0107  .00501 [ .0113  .00653 | .0115  .0067T
.30902 | .00926 .00575 | .0098  .00748 | .0100  .00776 .
.26271 | .00785 .00639| .00830 .00831 | .00850 .00862
.21578 | .00644  ,00693 | .00681 .00901 | .00698  .00936
.16836 | .00501  .00737 | .00531 .00958 | .00544 .009%5
.07243 | .00215 .00793 | .00229 .0103 | .00234  .0107
.02416 | .00071 .00804 | .00076 .0104 | .00078 .0109
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Table 14. The effect of (h2]a) ratio on the adhesive
stresses @ and 7 with different ~t_:hiekness

adherents.

(h1/a)=0.5 ’ (hu/a)=1.0 , a=1.0 in.

(hzla)=0.03 (hz/a)=0.01¥ (h2/a)=0.05

x/a -"l/(&'o 6‘/60 -*r/co 6‘/60 --‘l/'.s’o G‘/co
»99997 1 2.173 525 2.023 464 1.90%4 419
. 99883 .356 .0895 +330 L0778 .309 .06 9%
.99533 .190 .0529 173 LOoL .160 .0385
. 98951 . 139 L0446 .124 .0354 .113 .0298
.98137 .115 0427 .101 .0323 .0911 .0267
. 97094 . 101 0421 .0879 .0318 .0785 .0255
. 9585 .0911 .0410 .0786 .0312 .0700 .0249
. 94331 .0843 .0390 .0716 .0301 . 0634 .0242
.92617 .0801 .0364 .0666 .0284 .0583 .0231
. 906 87 . 0771 .0334 . 0631 .0264 .0544 .0216
. 88546 L0744 .0301 .0606 .0240 .0516 .0199
L8197 0717 .0266 .0583 .0215 .04 94 .018
.83647 .0688 .0231 .0561 .0189 L0474 .0159
. 80 902 .0659 .0195 .0538 .0162 .0455 .0138
CTTHT .0628 .0160 .0514 0134 .0435 .0116
. T4 851 .059 .0126 .04 89 .0107 .0415 00931
71560 .0564 .00631 .0U63 007 .0393 .00707
.68102 .0532 .00612 .0437 .00531 .0372 . 004 86
64484 .0499 .00306 L0411 .00276 .0350 .00271
60716 .0U65 .00014 .0384 . 00033 .0327 .00064
.56 806 .0432 ~-.00262 .0356 -.00197 .0304 -,00134
. 52764 .0398 =.00521 .0329 =-.00412 .0281 -.00321
4898 | .0364 -.00763 .0301 -.00612 .0257 -.00495
.44319 .0330 =.00985 0273 =.00795 .0233 =~.00655
.35460 .0261 -.0137 .0216 -.0111 .0185 -.000931
.30902 .0227 =-,0153 .0188 ~.0124 .0161 -.0105
.26271 .0192 -.0167 .0159 =~.0135 .0137 ~.0114
.16 836 .0123 =.0188 .0102 =.0152 .00872 =.0129
.07243 .00526 -.0201 .00436 -.0162 .00374 -.0138
.02416 .00175 =.0203 .00145 ~,0163 .00125 -.0140
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Table 14. (cont.)

x/a

(hz/a)=0.05

-1/8, &/¢

(h2/a)=0.07

-‘1'/1&'o €¢/¢

(h2/a)=0.1

-‘I'/G‘O ¢/

0 (o) o
.99997 |[1.806 .385 1.723 .358 1.536 .299
«99795 | .222 .0489 211 .0450 187 .0371
.99179 | 117 .0281 .110 .0253 .09%2 .0200
.98156 | .08M1 .0228 .0784 .0200 .0670 .0150
.96729 | .0688 .0211 .0635 .0181 .0530 .0129
.94906 | .0595 .0203 0547 .0173 .0449 .0119
.92692 | .0527 .0193 .0483 .0165 0354 .0112
.90097 | .0476 .0178 .0433 .0153 .0351 .0105
.87132 | .0440 .0160 .03% .0138 .0315 .00956
.83809 | .0413 .0138 .0367 .0120 .0285 .00845
.80141 .0390 0115 .0345 .0100 .0262 .00718
~76145 | .0367 .00900 | .0324 .00797 | .0242 .00578
.71835 | .0343 .00650 .0303 .00583 | .0225 .00432
.67230 | .0319 .00401 .0282 .00367 | .0209 .00282
.62349 .0293 .00159 .0259 00155 0192 .00132
.57212 | .026T7 =~.00073 | .0236 ~-.00049 | .0175 -.00016
.51839 | .0240 =-.00290 | .0213 =.,00242 | .0158 =.00157
. 46254 | .0213 -.00489 | .0189 -.00419 | .0140 -.00289
.40478 | .0186 -.00667 | .0164 ~.0057T9 | .0122 -,00409
.34537 | .0158 =-.,0082 | .0140 =-,00719 | .0103 -.00516
.28453 | .0130 =-.,00953| .0115 =-,00838 | .00842 -.00608
.22252 | .0101 =-.0106 .00894 -.00935 | .00656 =-.00683
.159%60 | .00723 =-.0114 00640 ~.0101 .00470 -.007H#1
.09%602 | .00434 -.0120 .00384 -.0106 .00283 -.00780
.03205 | .00145 =.0122 .00128 -.0108 .000%4 =-.00799
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Table 15. The effect of (hu/a) ratio on the adhesive
stresses ¢ and 9 with different thickness

adherends.

(h1/a)=0c5 ? (h2/a)=0.07 ] a=1.0 in.

(hy/a)=1.0 (hy/a)=2.0 (h,/a)=3.0

x/a -1/00 6/60 -1/00 G/Go -1/60 ¢/€,
.99997 | 1.723  .358 [1.818 479  [1.840  .499
.99795 | .211  .0450 | .223  .0603 |.226  .0628
.99179 | .110  .0253 | .116  .0339 [.118  .0352
.9815 | .0784  .0200 | .0829  .0268 |.0839  .0278
.96729 | .0635  .0181 | .0672  .0243 | .0680  .0252
94906 | .0547  .0173 | .0579  .0231 | .058  .0241
.92692 | .0483  .0165 | .0512  .0220 | .0518  .0229
.90097 | .0433  .0153 | .0460  .0205 | .0465  .0213
.87132 | .03%  .0138 | .0420  .0185 | .0426  .0192
.83809 | .0367  .0120 | .0391  .0161 | .03%  .0167
.80141 | .0345  .0100 | .0368  .013%4 | .0372  .0140
.76145 | .0324  .00797 | .034  .0106 | .0351  .0110
.71835 | .0303  .00583 | .0325  .00778 | .0329  .00806
.67230 | .0282  .00367 | .0302  .00489 | .0306  .00506
.62349 | .0259  ,00155 | .0279  .00206 | .0282  .00212
.57212 | .0236  -.00049 | .0254 =.00066 | .0258 ~.000T1
.51839 [ .0213 -.00242 | .0230 =-.00323 | .0233 -.00337
.46254 | .0189 -.00419 | .0204 -.00560 | .0207 -.00583
40478 | .0164 -.00579 | .0178 =-.00774 | .0180  -.00804
.34537 | .0140 -.00719 | .0151 =-.00%1 | .0154 -.00999
.28453 | .0115 =-.00838 | .0124 -.0112 | .0126 -.0116
.22252 | .00894 -,00935 | .00972 =-.0125 [ .00986 -.0130
.15%0 | .00640 =-.0101 | .006% =-.0135 | .00707 =-.014%0
.0%602 | ,00384 =-.0106 | .00419 =-.0141 | .00425 =-.0147
-03205 | .00128 -.0108 | .00140 =-.0145 | .00142 -.0150
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Table 16. The effect of (h2/a) ratio on the normalized

stress intensity factors (k4/k, kzlko) and
the strain energy release rate , G/Gg, with
different thickness adherends.

(h1/a)=1.0 ? (hn/a)=0.5 ] k°=c°.V£

G,=¢2a/E, , a=1.0 in.

ho/a 0.03 0.04 0.05 0.06
kq/k, | =-.0045  -.00359  ~-.00324  ~.00298
ko/k, | -.0168  -.0157 -.0148  -.0140
G/G .T45E-3  .650E-3  .578E~-3  .517E-3

h2/a 0.07 0.1
k1/ko -.00277 -.00232
k2/k° -.0133 -.011¢
G/G +46TE-3 «3T4E-3
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Table 17. The effect of bond length (a) , on the normalized
stress intensity factors (k4/k,, ky/k,) and the
strain energy release rate, &/Gd, with
different thickness adherends.

hy=1.0 in., hy=0.1 in., hy=0.5 in., k =6)/a,

el
GO-G' oa/Ea .
a=2.0 a=3.0 a=4.0
k1/ko -.00321 -.002 91 -.00258
k2/ko -.0117 -.0103 -.00911
G/Go «361E=3 .2B80E=3 +219E=3

Table 18. The effect of (h1/a) ratio on the normalized
stress intensity factors (k1/k°, k2/k°) and
the strain energy release rate , G/Go, with
different thickness adherends.

(hy/a)=0.5 , (by/a)=0.1 , k=6, a

=2 =
Go-Goa/EZ y a=1.0 din,

h1/a 1.0 2.0 3.0
kq/kg -.00232 -.00303 -.00314
ky/k, -.0119 -.0124 -.0125
G/ G, «3T4E~3 +406E-3 +412E-3
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Table 19, The effect of (h2/a) ratio on the normalized

stress intensity factors (k4/k,, ky/k.,) and
the strain energy release rate, G/G,, with
different thickness adherends.

(hy/a)=0.5 , (hy/a)=1.0 , k=6 \a

=82 =
GG...G'oa/E2 y a=1.0 in.

_hy/a 0.03  0.04 0.05 0.06
_—1:1/1:0 .00407  .00360  .00325  .00298
ko/k, | =.0168  -.0157  -.0148  =-.0140
G/G, -T89E~3  .68E-3  .606E-3  .5H1E-3
hy/a 0.07 0.1
kq/kg .00277  .00232
ko/ky | =.0133  -.0119
-G/G -4 87E-3 +388E-3
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Table 20.

The effect of (h,/a) ratio on the normalized
stress intensity factors (k1/k°, kzlko) and
the strain energy release rate, G/Go, with
different thickness adherends.

(hy/2)=0.5 , (h,/a)=0.07 , k=€ yfa
2 -
G°=¢oa/E2 ) a—100 in.

hu/a 100 2.0 300
kq/kq .00277  .00371  .0038
k2/k° --0138 -'01u1 -.01“3
G/G «523E-3 «56 1E=3 +5T9E-3
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Table 21. The effect of the material properties on the

x/a

adhesive stresses € and ¥ with different
thickness adherends.

(h1/a)=1-0 y (hu/a)=0-5 ’

(hy/2)=0.07 , a=1.0 in.

. 99997
. 9979
.99179
.98156
.96729
. 94 906
.92692
. 90097
.87132
. 83809
.80141
.T76145
.71835
.67230
.62349
.57212
.51839
. 46254
40478
.34537
.28453
.22252
.15%0
.0%02
.03205

/s, s/8, |-us, e/8, | s, /5,
194 -.0258 211 -.0450 .222 -.0579
101 =-.0145 .110 ~-.0253 .116 -.0326

.0716 =.0114 .0784% -.0200 .0828 =-.0258
.0578 =-.0104 0635 ~.0181 0672 -.0234
.0496 -.0099% | .0547 -.0173 .0580 =-.0224
.0436 -.00946 .0483 ~.0165 0513 =-.0213
.0389 -.0088 | .0433 ~.0153 0461 -.0199
.0354 ~-.00793 .03%5 -.0138 0422 -.0180
.0327 =-.00689 | .0367 =-.0120 .0393 =-.0157
.0306 -.00574 | .0345 -.0100 .0370 -.0132
.0286 -.00454 .0324 -.00797 | .0349 =-.0105
.0267 -.00331 .0303 -,00583 | .0327 =~-.007T1
.0247 -.00207 | .0282 -.00367 | .0305 =-.004091
.0226 -.00086 .0259 ~.00155 | .0281 ~-.00214
.0206 .00030 | .0236 .00049 | .0257 .00054
.0184 .00140 | .0213 .00242 | .0232 .00307
.0163 .00241 .0189 .00419 | .0206 .00540
.0141 .00332 | .0164 .00579 § .0180 .00751
.0120 .00411 .0140 .00719 { .0153 .00937
.00981 .00479 | .0115 .00838 | .0126 .0109
.00763 .00534 .00894 .00935 | .0098 .0122
.00545 .00576 | .00640 .0101 .00704 .0132
.00327 .00604 | .00384 . 0106 .00423  .0139
.00109 .00618 | .00128 .0108 .00141 0142




Table 22. The effect of the material properties on the
adhesive stresses & and 1 with different
thickness adherends.

(h1/a)=005 ) (hu/a)=1.0 )

(hy/a)=0.07 , a=1.0 in.

Py=Hy/2 Bq=Wy Bq=2Ny
x/a | -1/6, e/s, |-1/6, e/e, |-1/6, oI5,

.99997 {1.570  .534 |1.723 .358  [1.839  .172
.99795 | .12 .0670 | .211 .0450 | .226 .0216
.99179 | .100  .0374 | .110  .0253 | .118  .0122
.98156 | .0712  .0293 | .0784  .0200 | .0840  .00G71
.96729 | .0575  .0263 | .0635  .0181 | .06&  .008%0
.94906 | .0493  .0247 | .0547  .0173 | .0588  .00858
.926%2 | .0435  .0233 | .0483  .0165 | .0520  .008&8
.90097 | .0389  .0213 | .0433  .0153 | .0467  .0078&
.87132 | .0354  .0189 | .03%  .0138 | .0428  .00712
.83809 | .0329  .0161 | .0367  .0120 | .0398  .00628
.80141 | .0308  .0132 | .034%5  .0100 | .0374  .00534
76145 | .0289  .0102 | .0324  .00797 | .0352  .00433
.71835 | .0270  .00708| .0303  .00583 | .0330  .00326
.67230 | .0251  .00408 | .0282  .00367 | .0307  .00216
.62349 | .0231  .00120 | .0259  .00155| .0283  .00107
.57212 | .0210 -.00150 | .0236 ~-.00049 | .0259 =.00001
.51839 | .0189 -.00399| .0213 =-.00242 | .0233 =-.00104
.46254 | .0168 -.00622 | .0189 -.00419 | .0207 =-.00201
40478 | .0146 -.00818| .016% =-.00579| .0180 =.00290
.34537 | .0124 -.00986 | .0140 -.00719 | .0153 =-.00370
.28453 | .0102 -.0113 | .0115 -.00838| .0126 =-.00438
.22252 | .00797 -.0124 | ,0089% -.00935 | .00981 ~-.00494
.15%0 | .00571 -.0132 | .00640 -.0101 | .00702 =-.00537
.0%602 | .00343 -.0138 | .00384 -.0106 | .00422 =-.00567
.03205 | .00115 ~-.0141 | .00128 =-.0108 | .00141 -.00580
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Table 23. The effect of the material properties on the
adhesive stresses ¢ and T with equal thickness
adherends.

(hq/a)=(hy/a)=0.5 , (hp/a)=0.07 , a=1.0 im.

Wqy=y/2 M=y Pq=20y
x/a | -1/6, €/6, |-1/6, €/6, | -1/6, €/6,
. 99883 . 221 . 0335 02 )47 . ° 270 -e 032”
099533 0113 00178 0127 . 0138 -00171‘

. 98951 . 07 81 .0131 .0876
.98137 | .0614  .0111 | .0691
. 97004 .0518 .0102 0584
.95&5 | .0455  .00959 | .0515
. 94331 .0408 .00915 .0463
.92617 .0370 .00867 0421
.90687 | .0338  .00808 | .038
.88546 | .0312  .00739 | .0357
.86197 .0291 .00663 .0334
. 83647 .0273 .00581 .0316
.80902 | .0259  .0049% | .0300
J77%7 | .0245  .00409 | .0285
.74851 | .0232  .00322 | .027T1
.71560 | .0219  .00235 | .0256
.68102 .0205 . 00151 0241
64484 .0192 .00070 .0226
.60716 | .0178 -.00008 | .0211
.56806 0164 -.00080 .0195
.52764 | .0151 =.00147 | .0179
48598 | .0137 -.00208 | .0164
44319 0124 -.00264 .0148
.35460 | .009%68 -.00356 | .0116
.30902 .00836 ~-.00393 .0101
.26271 | .00705 -.00424 | .00851
.16836 | .00446 -.00469 | .00540
.07243 | .00191 -.0049% | .00231
.02416 .00064 -.00499 .00077

.0959 -.0129

0757 =~.0110

.0642 -.0102

.0566 ~.00973
.0511 -.00940
0466 -.,00903
0429 -.00855
.0398 -.00795
.0374 -.00727
.0354 -.00650
.0337 =-.00569
.0321 -.,00484
.0306 -.0039
.0290 ~-.00306
0274  -.00217
.0258 =-.00128
0241  ~-.00042
.0224 .00041
.0207 .00121
.0189 .00195
0171 .00264
.0136 .00384
.0118 .00434
.0099%  .00477
.00634 .00542
.00272 .00578
.00091 .0058

[ecNeNeNoNoNoloNeoNeeNoloNoleNaoNoNeNola NaleNoloNoNolole o]
L) L] L]
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Table 24. The effect of the material properties on the
adhesive stresses € and ¥ with equal thickness

x/a

adherends.

(h1/a)=(hu/a)=1.0 ’ (hg/a)=0.07 , a=1.0 in.

”1=”u/2

-1/60 C/Co

. 99997
. 99883
«99533
. 98951
.98137
<9709
.9585
. 94331
.92617
.+ 90687
.88546
L6197
. 83647
. 80902
JTTHT
. T4 851
.71560
.68102
6448y
.60716
.56 806
.52764
48598
44319
.35460
.30902
.26271
. 16836
.07243
.02416

1.716 + 146
0277 '0239
142 .0128

.0984 .00940
.0776 .00798
. 0657 .00729
.0579 .00690
.0522 .00659
0475 .00625
0437 .00585
.0406 .00538
.0381 .004 87
.0361 .00432
.0344 .00374
.0328 .00315
.0312 .00255
.0297 00194
.0281 .00135
.0264 .00076
.0247 .00019
.0230 =-.00035
.0212 -.00087
0195 =-.00136
.0176 -.00181
0140 -,00260
.0122 -.00293
.0103 -.00322
.00657 -.00366
.00282 -.00391
.00094 ~,003%

e e & 8 o e o
[=ReRolofoNoaloNoloNeloNeNeNolaNoNoNeloNoNoNoNoNoNoNolNoRa e

o o o s e e e o

el eNeoNNeolsNoNoNoNeNoNoNleNoloNoReNoNoNoNeNoNe ol eNaY-NoNaNa)
L]

Bi=2Ny
-1/@0 G/Co
1.938 -.103

.313 -.0169
112 ~.00674

.0883 ~.00577
.0750 -.00532
.0663 ~.00508
.0600 -.00490
.0549  ~-.00470
.0506 -.00445
0472 ~.00415
.0445 -,0038
0423 -,00341
0404 -,00300
.038T -.00257
.0370 =-.00213
.035%2  ~.00167
.0334 ~.00121
.0315 =-.00075
.029% -,00030
.0276 .00013
.0256 .00056
.0235 .000%
.0214 .00133
.0170 .00200
.0148 .00229
.0126 .00254
.00803 ,00292
.00345 .00314
.00115  .00318



Table 25. The effect of the material properties on the
normalized stress intensity factors (kq/k,, ko/kj)

and the strain energy release rate, G/Go, with
different thickness adherends.

(hy/a)=1.0 , (hy/a)=0.5 , (hy/a)=0.07 ,

- w2 -
ko-co‘/a-, G,=Fca/E, , a=1.0 in.

By=¥y/2 Mi=¥y Pqi=2Wy
Iy /Kg -.00159 -.00277 -.00356
ko/k, -.0123 -.0133 -.0140
G/G, -399E-3 .46 TE~3 .517E-3

Table 26. The effect of the material properties on the
normalized stress intensity factors (k1/k°, ko/k )
and the strain energy release rate, G/Go, with
different thickness adherends.

(hy/2)=0.5 , (hy/a)=1.0 , (h,/a)=0.07 ,

- =62 -
ko=€\a , G,=62a/E, , a=1.0 in.

pi=hy/2 B1=Py Py=2¥y
kq/kq .00413 .00277 .00133
kz/ko "00122 -00133 --0142
G/ G, «438E-3 JU87TE-3 «537TE-3

8y



Table 27. The effect of the material properties on the
normal ized stress intensity factors (k¢/k,, kzlko)

and the strain energy release rate, G/G,, with
equal thickness adherends.

(hy/a)=(hy/a)=0.5 , (h,/a)=0.07 , k =€ \/a
G,=62a/E, , 2=1.0 in,

W =N,/2 M1=Py V1=2b)
ko/k, -.0106 ~.0118 -.0150
6/G, .303E-3 .367E-3 .5 HE-3

Table 28. The effect of the material properties on the
normal ized stress intensity factors (k1/k°, kz/ko)
and the strain energy release rate, G/Go, with
equal thickness adherends.

(hy/a)=(hy/a)=1.0 , (hy/a)=0.07 , k =6 /2

-2 -
G,=F2a/E, , a=1.0 in.

Bq=Hy/2 M1=Py Pi=2by
kz/ko -.0133 -.0143 -.0150
G/G, < 470E~3 .540E-3 S 4E-3
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Figure 1.

h, ®
| @— - -C 1"‘4 S
l @ Ihs ) X
. ; ® N %

-

Gemetry and notation for an adhesively bonded joint.
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Figure 2.

Superposition technique used in the solution of the
problem.
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0.
002 1
0.1 1
0.2
1: h2/a= 0.004
- 2: hp/a= 0.006
3: h2/a= 0.009

Figure 3. The adhesive shear stress for different (h2/a) ratios
with equal thickness adherends.

(hq/a)=(hy/a)=0.25 , a=1.0 in.
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Figure 4. The adhesive shear stress for different (hs/a , hy/a)
ratios with equal thiaickness adherends.

(h,/2=0.0025 , h.=h, , a=1.0 in.
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ks /Ko x10° G/G, x 10°

-1.12; G/Gq ka/ Ko 0.375
-1.141 0.355
-1.16- H0.345
-1.18- -0.335
0.002 0.004 0.006 0.008
h,/a
Figure 5. The normalized stress intensity factor and the

strain energy release rate versus (hz/a) ratio
with equal thickness adherends.

(h-l/a):(hu/a):OozS s a:1.0 ino
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-0.011-
- 0.013;
-0.015]
-0.017]
-0.019"
-0.021-

-0.0231

Figure 6.

ka/ ko

G/Gy x10°

0.3 0.5 0.7 0.9
h,/a

The normalized stress intensity factor and the
strain energy release rate versus (hq/2) ratio
with equal thickness adherends.

(hy/a)=0.0025 , a=1.0 in.
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0261 ' Gp
0.25. ———G

1.0 20 3. ¢

Figure 7. Comparison of the strain energy release rate
calculated in this study (G) with the plate solutions
(Gp)for the specific gecmetry discussed in Tbl.9 .

‘ka/ ko
0.01191
= _k1/ ko
0.0031 -
0. 00271
0.00231

10 20 30 h/a

Figure 8. The effect of (h.,/a) ratio on the normalized stress
intensity factors with different thickness adherends.
(hu/a)=0.5 ) (h2/a):0.1 s 2=1.0 in.
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0.014:
0.012-
0.00:= K/ ks 05
0.0021 03
003 005 007 009 , s
e mtematy Factord and. fhe soratn enore i2sa Strese

with different thickness adherends.

(hy/a)=1.0 , (hy/a)=0.5 , a=1.0 in.



G/Gg x 10°

0.004- k./ kg

0.002; 0.8
-0.01; 0.6
-0.014- G/m 0.4
- 0.016 - e/ kg 0.2

003 005 007 009 h/a

Figure 10. The effect of (hy/a) ratio on the normalized stress
intensity factors and the strain energy release rate
with different thiclmess adherends.

(hy/2)=0.5 , (hy/a)=1.0 , a=1.0 in.
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0.014 1

0.0121

A
e

0.00367
] -k/ K¢

\

0.0016"

05 10 20 M/
Figure 11. Effect of material properties on normalized stress

intensity factors with different thickness adherends.
(h1/a)=1.0 ’ (hu/a)=0.5 ’ (h2/a)=0.02 y @a=1.0 in.

T "G/Go
.004- X,
0 - 10
-0 52
0.001
\ 1 0.48
J
-0 0131
0 44
-0 0121

| 05 10 2.0 W/u,
Figure 12. Same as Figure 11 with
(h1/a)=0.5 s (hu/a)=1.0 ’ (h2/a)=0.07 , a=1.0 in.
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05 10 20 /U,
———— (h4/a)=(hy/a)=0.5, (h,/a)=0.07, a=1.0 in.
Y e m— - (h1/a):(h4/a)=1 0, (hs5/a)=0.07, a=1.0 in.

Figure 13. Effect of material properties on normalizaa stress

intensity factors and strain energy release rate
with equal thackness adherenas.
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APPENDIX I

c =Py /Wy y d=W3/ Wy

aq (K, - K1c) / (e - 1) s

ay = (kKqe + 1) / (e = 1) ’
a3=(lc2+c)/(c-1) ’
ay = (ayh, + a3h1) ’
by = (K3 - Kyd) / (d - 1) ,
by = (Kyd + 1) /7 (d-1) 7,
by = (K3 +d) / (d-1) ’
by = (byhg + bshy) )

where vi's, hi's, ui's are defined in Figure 1 .
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APPENDIX II

’ = e-zah'Z )
"‘ - e-2ah3

¥ = e-20.’(h1 + by) ’

t = e—2¢h1 ,

i* = e-ZQhu '

Go(&) = apy + B + af +bahng - a;
GB(“) S - az'f - B + 26h1€ y

Gu(a) = - u“zh-lhzs - az - i - a1B + a3‘Y 3

Gg(x) = 2anmB +§ + 2, ,

G7(G)

Gi(&)Gglax) - Ga(x)Gy(a&)

Gg(®) = G3(&)Gg(&x) - G(ax)Gg(a)
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Gg(a) = - Zabu - 2“(113%* - huB‘!) ’

Gyol®) = by +§" 4 llczh3h43’ + b8 - b3oy* ,

Gy1(&) == b, - § - 2ans’ ,
Gyp(®) = = by§" + by - haPnghy” - BT - byt
Gyg(@) = - 2av "by - 2a(hgB” - nyE")

G1u(a) = béY' - 2“11)4;' + B' ’

Gy5(&) = Gy (&)Gg(&) = Gyo(&)Gyq(x)

Gy (&) = Gy3(&@)Gyq(&) ~ Gyy(&)Gyplax)

where hi's, ai's, bi's are defineq in Appendix I .
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Py (&)
P, (&)
P3(et)
Py (&)
Pg (&)
Pg (&)
Po (&)
Pg(a)
Po(&)
Py (&)
P\”(G)
Py, (&)
Py3(&)
Pqyy ()

Pyg(a)

APPENDIX III

Gyla)

G (&)

-a Y - B - 2ahi

Gy (&)

()

2ah,p - § -3, ,
Py(a)Pg(a) - Py(a)Py(a)
Py(a)Pg(x) - Py(&)Pg(x)
Gg(&)

Gigl&)

- b, - §° +2an 8",
Go(k)

Gi3(x)

- byt - 2amgt - BY
Py (@)Po(&) = Pip(@X)Pyq(a)
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Pig(&) = P13(G)P”(a) - Pw(c)Pw(a) ’

where (hi's, ay's, b;'s) and (8, B', y, ‘f', $, 5'. Gi's) are

defined in Figure 1 and Appendix II, respectively.
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APPENDIX IV

Solution of the Singular Integral Equation

In [15] a quadrature formula of closed type is derived for the

principal part of the singular integral equwation of the form ;

|
b $(t)
a®(t) + — dt + ®(t) k(x,t) dt = gi(x) ,
r t-x |

-l
-1 < x < +1 .

The solution will be sought in the form

®(t) = g(t) W) ,
where $(t) is a bounded function, and W(t) is given by

Wit) = (1-0)% (1+6)%

1 ra - ibn

« = log {|——| + N ,
271 La + ib ]
1 [ a - ib]

B = - log | ———mm | + M .,
2T La + ib
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N and M are arbitrary integers determined from the physiecs of the

problem. The index of the singular integral equation is defined by

K== (0+8)==(N+MNM.
Defining,

k (x,t) = ———— + k(x,t) ,
mw(t-x)

the approximate solution to the singular integral equation is

determined from

-

(1 + &) Hy kK (x,t9) $(ty) + 2 H kK (x,t;) b))
L=
+ (1 +B) Hy K (b)) $(ty) = g(xy) 5 kel,e.,=1
and

n-1
(1 + &) Hy b(tq) + 0 H () + (1 +8) Bob(ty) =C
=3

where the last equation is the approxamation to the extra condition,
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(when K=1)

|
f@(t) dt = C .
=i

Here ti» X, and H; are defined as follows ,

_ 2y p(1:&, 148) -
(1=t p{13% 1+B) vy 20, ;> b, .l >ty

piz1-% ~1-B)(x ) =0, ke1,2,0..,(0-1)
and

T'(n+a) T(n+8)
(n=1) [P(n)p{%8) (£,)] 2

where Pga’s) (x) is the Jacobi polynomial of degree "n" .

I}z the analysis of the report the singular integral equations

are of the first kind and &= B= - 1/2 giving =1 . In this case

Jacobi polynomials reduce to the Chebyshev polynmmials and

unknowns ')(ti) can be determined from
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-l

1
— kM, tq) (b)) + ) K (xp,ty) $(ty)
2 And

1 ’ o n-1
+—k (x , b ) (t,.) = —S(X ) ’
2 k' "n n p k
and,
1 n-l 1 n~1
—d(ty) +) $(ty) +=(t) =—cC ,
2 HES-N 2 ]
where

i-1
t‘ = COS[ q 2 i=1,-'oo ,n
B n-1

2Kk-1
XK = COS ﬂ ? k=1’.'.0 ’(n-1) .
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