BOUNDARY LAYER SIMILATOR IMPROVEMENT

December 1984

BOUNDARY LAYER SIMULATOR IMPROVEMENT

December 1984

Prepared by
Sarat C．PraharaJ
REMTECH，Inc．
Huntsville，Alabama 35805

Other Contributors：
Craig Schmitz
Cynthia Frost
Carl D．Engel
Charles E．Fuller
Robert L．Bender
John Pond

Prepared under
 Contract NAS8－35976
 for

FOREWORD

1
This final report presents work conducted for the Marshall Space Filght Center (MSFC) in response to the requirements of Contract NAS8-35976. The work presented here was performed by REMTECH, Inc., Hunstville, Alabama and is titled, "Boundary Layer Simulator Improvement".

The project manager for this project was Dr. Sarat C. Praharaj. The project was very much alded by the helpful technical support of the NASA contract monitor, Mr. Klaus Gross, and by Mr. A. Krebsbach, both of the Systems Performance Branch of the Mission Analysis Division.

TABLE OF CONTENTS
Section Page
FOREWORD
1.0 INTRODUCTION 1
2.0 WALL SURFACE ROUGHNESS EFFECTS 6
2.1 BACKGROUND 6
2.2 ROUGHNESS OPTIONS 7
2.3 EXAMPLES 12
2.4 DISCUSSIONS 28
2.5 REFERENCES 28
3.0 RELAMINARIZATION 30
3.1 BACKGROUND 30
3.2 RELAMINARIZATION CRITERION 31
3.3 EXAMPLES 34
3.4 DISCUSSIONS 41
3.5 REFERENCES 41
4.0 PARTICLE EFFECTS 42
4.1 BACKGROUND 42
4.2 PARTICLE OPTIONS 44
4.3 EXAMPLES 49
4.4 DISCUSSIONS 50
4.5 REFERENCES 55
5.0 THRUST LOSS REEVALUATION 56
5.1 BACKGROUND 56
5.2 . PROCEDURE FOR THICK BOUNDARY LAYERS 58
5.3 EXAMPLES 64
5.4 DISCUSSIONS 71
5.5 REFERENCES 71
6.0 RECOMMENDATIONS 72
6.1 ANAL YTICAL 72
6.2 NUMERICAL 73
6.3 EXPERIMENTAL 74
APPENDIX
LISTING OF THE UPDATED SUBROUTINES IN BLIMPJ

The primary goal of the work reported here was to improve the existing Boundary Layer Integral Matrix Procedure, Version J (BLIMPJ) ${ }^{1}$. BLIMPJ has been used in the industry as a rigorous boundary layer program in connection with the existing JANNAF reference programs such as $O D E$ and TDK ${ }^{2}$. It is capable of treating two-dimensional and axisymmetric nozzles with a variety of wall boundary conditions which include regenerative and transpiration cooling as well as ablating wall materlals. The improvements described herein have potential use In the design of the future Orbit Transfer Vehicle (OTV) engines.

The projected engine design for the OTV would utilize an expander cycle operation mode. In this mode, heat energy obtained through a regeneratively cooled wall is used to drive the turbines and pumps. $0_{2}-\mathrm{H}_{2}$ propellant system is used to react in the combustion chamber at pressure levels of 1500-2000 psia at a mixture ratio of 6. The reaction products are expanded through a nozzle of large area ratio, ranging from 400 to 3000. Although the above chamber pressures and $0 / F$ ratio for a $\mathrm{O}_{2}-\mathrm{H}_{2}$ system are not uncommon for the currently operating Space Shuttle maln engines (SSMEs), the area ratio is only of the order of 80. These high chamber pressure expander cycle engines depend primarily on the heat energy transmitted from the combustion products through the thrust chamber wall. The larger the regenerative heat transfer the higher the chamber pressure which in turn permits larger area ratio motors. These engines

1. Evans, R., "Boundary Layer Integral Matrix Procedure, BLIMP-J User's Manual," Aerotherm Division/Acurex Corporation, July 1975, under Contract NAS8-30930.
2. Nickerson, G.R., Coats, D.E., and Bartz, J.L., "The Two-Dimensional Kinetic (TDK) Reference Computer Program," Engineering and Programming Manual, Ultrasystems, Inc., December 1973, under Contract NAS9-12652.
and the associated interlor nozzle flowflelds are outside the range of current engineering experience. The heat transfer to the nozzle wall is affected by such varlables as wall roughness, relaminarization, and the presence of particles in the flow. The motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded in BLIMPJ. Flow expansion within large area ratio nozzles and assoclated low pressures and temperatures may produce two-phase flow conditions (liquid droplets or lce crystals) adjacent to the wall especially in connection with strongly cooled walls. The presence of such particles will have some effect on the friction and heat transfer mechanism within the boundary layer. Moreover, there are discussions in the technical community of replacing the nozzle wall around the throat by an ablative wall. This would reduce high heat-transfer to the nozzle throat because of ablation while introducing the ablation products in the nozzle boundary layer and the inviscid part of the nozzle flowfleld. All these modificatlons and innovations require investigations and Implementation in BLIMPJ code of the follow ing simplified analytical formulations:

- Wall surface roughness simulation and its impact on heat transfer and shear effects.
- Prediction of relaminarization regions with approximations on heat transfer and friction along the wall.
- Presence of particles in the boundary layer and their impact on heat transfer and friction.
- Re-evaluation of the existing boundary layer thrust loss calculation method for nozzles with large area ratios, experiencing thlck boundary layers at low density and high Mach number flow situations.

Various versions of BLIMPJ were recelved from Marshall Space FIIght Center (MSFC). Apart from the version avallable at REMTECH, a total of three additional versions including the (i) Aerotherm, (il) MSFC, and (III) mini-versions was
tABLE 1.1 bLIMPJ SUBROUTINES

obtalned. It was recommended by MSFC to use the mini-version for making modifications to the code. The mini-version is a cleaner and shorter version of the code and has fewer subroutines when compared with the Aerotherm version in Table 1.1. In order to access the code at various subroutines for moditications, a macro flow diagram was prepared and is provided in Fig. 1.1.

The varlous tasks described earlier are discussed in the following sections. Section 2 discusses the effects of wall roughness on skin friction and heat transfer. Section 3 highlights the mechanism and effects of relaminarization, whereas Section 4 discusses the effects of particles on skin friction and heat transfer rate on the nozzle wall. Section 5, on the other hand, focuses on the re-evaluation of the existing boundary layer thrust loss calculation method for nozzles with large area ratios experiencing thick boundary layers. The last four sections described above are self-contained in that the technical discussion for each item along with the corresponding figures and list of references are contalned in that section, independent of any other section. These sections also describe applications of the various modules in a composite fashion if more than one effect needs to be considered. Finally, Section 6 makes recommendations both in the areas of analytical and experimental techniques for future work.

Fig. 1.1 BLIMPJ Mini-Version Macro Flow Diagram

Section 2.0

WALL SURFACE ROUGHNESS EFFECTS

2.1 Background

The importance of wall surface roughness which increases the resistance to fluld flows has been recognized for many years. One of the principal parameters influencing the surface heat transfer to a rough wall is the roughness helght, k.

The problem of modelling turbulent flow over rough surfaces has been divided into three regimes:

Regime 1: Smooth - The roughness size is so small that the protrusions are contained within the laminar sublayer. The surface skin friction and heat transfer are not changed from smooth surface values.

Regime 11: Iransitional - Some of the roughness elements protrude outside of the laminar sublayer. The skin friction and heat transfer are increased above the smooth surface values.

Regime 111: Eully Rough - All surface roughness elements protrude outside of the laminar sublayer. The increase in skin friction is primarily a result of form drag of the roughness elements.
H. Schlichting (Ref. 1) summarizes all the early work on rough wall measurements in turbulent flow and describes the evaluation of the "equivalent sand grain roughness height", K_{s}, which is based on the early work of Nikuradse (Ref. 2). Many theorles and correlations, following Nikuradse, employ the parameter K_{s}. Defining K_{s} for a given surface condition is not a straightforward task. Schlichting (Ref. 1) describes procedures for a given array of roughness elements. Recently, Dirling (Ref. 3) has devised a correlation for K_{s} and has applied it to the prediction of nosetip shape change. In modeling the effects of roughness on skin friction, the velocity proflle through the boundary layer has
been correlated with surface roughness of sand. Data and empirical correlations have been developed for other types of roughness elements to obtain the equivalent sand roughness. That is, the sand roughness which yields the same velocity profile is the roughness of interest. There is considerable uncertalnty in the determination of the equivalent sand roughness for roughness elements which are randomly shaped and spaced. Physical spacing, relating to the type of cavity flow that is established, the inclination of the roughness element surface to the flow direction, and the increased surface area are some of the important elements in the calculation of K_{s}. Figure 2.1 shows the correlation developed by Dirling (Ref. 3). The roughness density parameter Λ is defined as shown on the figure, where A_{s} is the windward surface area of the roughness, A_{p} is the projected area of the roughness in the flow direction and D is the inverse square root of the roughness elements per unit area. The correlation shown is derived from velocity measurements and is applicable for rough wall skin friction calculations. For the analysis given here, the K_{s} parameter is not investigated, but instead, it is assumed that K_{s} is given.

2.2 Roughness Options

The purpose of the task in this section is to determine which simplified correlations are appropriate for application in the BLIMPJ computer code. The correlations avallable in the Iiterature, which perform "point" calculations based on local edge and wall quantities, were reviewed. The slgnificance of "point" calculations lies in the fact that the history effects in the boundary layer at other points do not affect the calculation at the polnt under consideration. An excellent paper by Seidman (Ref. 4) reviewed some of these correlations and compared them with incompressible and compressible data. The approprlate options performing "point" calculations are given below:

2-0 ROO ELEMENTS	2-O WAVY SURFACE
BETTERMANN LIUETAL Streeter	- traEETER HAUGHTON
1-OELEMENTS - SCHLICHTING	0 COHEN

Skin Friction Options	Heat Transfer Options
1. Prandtl-Schlichting	1. Seidman
2. Droblenkov	2. Hill

The mathematical expressions are given in Ref. 4. There are two options for calculating skin friction and four possible combinations that can be used to calculate heat transfer rate. For reasons described in the next subsection, Hill's correlation was not coded in BLIMPJ. As a result, only two combinations for heat-transfer rate calculation remalned. The mathematical expressions for the above options were taken from Ref. 4 and are listed in Table 2.1 along with the input-output variable list that is used in the roughness subroutine. The expression (A.1) in Table 2.1 contain the calculation of a compressibility facfor in terms of the enthalpy ratio. Although, in the original paper (Ref. 4) the corresponding temperature ratios are chosen, it is customary to use the enthal py ratios instead of temperature ratio in order to include real gas effects. This would be approprlate for the $\mathrm{O}_{2}-\mathrm{H}_{2}$ reactive system to be used in the future OTV motor, where the combustion temperatures are in the order of $6000^{\circ} \mathrm{R}$ and real gas effects exist.

Another option by Cebeci was selected to slmulate the effects of a rough wall on the boundary layer and to account for "history" effects in the boundary layer. In Ref. 8, the turbulent mixing length of the eddy viscosity expression Is modifled for the inner region of a two-layer turbulence model to include the effects of surface roughness. Assuming that the velocity profiles for smooth and rough walls are similar, the expression for the mixing length given by

$$
\begin{equation*}
l=0.4 y\{1-\exp (-y / A)\} \tag{2.1}
\end{equation*}
$$

is modifled and rewritten as,

TABLE 2.1
ROUGH WALL HEAT TRANSFER OPTIONS

Options 1 and 2:

Skin friction compressibility (Young)

$$
\begin{equation*}
\frac{C_{f}}{C_{f i}}=0.365\left(\frac{H_{e}}{H_{a w}}\right)+0.635\left(\frac{H_{e}}{H_{w}}\right) \tag{A.1}
\end{equation*}
$$

Incompressible rough wall skin friction
Option (1) Prandtl-Schlichting

$$
\begin{equation*}
c_{f i}=\left[2.87+1.58 \log _{10}(x / k)\right]^{-2.5} \tag{A.2}
\end{equation*}
$$

Option (2) Droblenkov

$$
\begin{equation*}
c_{f i}=0.0139(x / k)^{-1 / 7} \tag{A.3}
\end{equation*}
$$

Rough surface turbulent Stanton Number (Seidman)

$$
\begin{equation*}
S t=\frac{C_{f}}{2}\left[1+A\left(\frac{C_{f}}{2}\right)^{0.725}\left(R_{k}\right)^{0.45}(\operatorname{Pr})^{0.8}\right]^{-1} \tag{A.3}
\end{equation*}
$$

where $A=0.52$ nominal and range from 0.45 to 0.7 (Owen \& Thomson), and C_{f} is obtained from Equ. (A.1).

Transition criterion (Fenter)

$$
\begin{equation*}
n_{k}=\frac{\rho_{W} U_{\tau} k}{u_{w}} \text { where } U_{\tau}=U_{e} \sqrt{\frac{C_{f}}{2} \frac{\rho_{e}}{\rho_{w}}} \tag{A.4}
\end{equation*}
$$

$$
\begin{aligned}
\quad n_{k} \leqslant 5 & \text { Smooth } \\
5 \leqslant n_{k} \leqslant 100 & \text { Transitionally rough } \\
100 \leqslant n_{k} & \text { Rough }
\end{aligned}
$$

TABLE 2.1 (Continued)

INPUT VARIABLES

$$
\begin{aligned}
& X=\text { Running length (ft) } \\
& k=\text { Sand roughness height (ft) } \\
& H_{a w}=\text { Aidabatic wall enthalpy (Btu/lbm) } \\
& H_{e}=\text { B.L. edge enthalpy (Btu/lbm) } \\
& H_{W}=\text { Wall enthalpy (Btu/lbm) } \\
& \rho_{e}=\text { B.L. edge density (} 1 \mathrm{bm} / \mathrm{ft}^{3} \text {) } \\
& \rho_{\mathrm{W}}=\text { Wall density (} 1 \mathrm{bm} / \mathrm{ft}^{3} \text {) } \\
& \mu_{W}=\text { Wall viscosity (1bm/ft-sec) } \\
& \mu_{e}=\text { Edge viscosity (} 1 \mathrm{bm} / \mathrm{ft}-\mathrm{sec} \text {) } \\
& \operatorname{Pr}=\operatorname{Prandt} 1 \text { number (Edge) } \\
& \text { ICF }=\text { Skin friction flag } 1 \ldots \text { Prandtl-Schlichting } \\
& S t_{s}=\text { Smooth wall Stanton number } \\
& U_{e}=\text { B.L. edge velocity (} \mathrm{ft} / \mathrm{sec} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
C_{f} & =\text { Rough wall sking friction coefficient } \\
S t & =\text { Rough wall Stanton number } \\
P C T & =\text { Percent of transition to fully rough }
\end{aligned}
$$

$$
\begin{equation*}
l=0.4(y+\Delta y)[1-\exp \{-(y+\Delta y) / A\}] \tag{2.2}
\end{equation*}
$$

where the coordinates are displaced by an amount Δy. He expresses Δy as a function of an equivalent sand-grain roughness parameter $K_{s}^{+}\left(\equiv K_{s} U_{\tau} / \nu\right), 1, e_{1}$,

$$
\begin{equation*}
y=0.9\left(V / U_{\tau}\right)\left\{\sqrt{K_{s}^{+}}-K_{s}^{+} \exp \left(-K_{s}^{+} / 6\right)\right\} \tag{2.3}
\end{equation*}
$$

This expression is valid for $4.535<K_{s}^{+}<2000$, with the lower limit corresponding to the upper bound for a hydraulically smooth surface.

2.3 Examples

In order to lllustrate the valldity of the roughness options against measured data, first the skin-friction and heat-transfer data were collected from the original report by Pimenta, Moffat and Kays (Ref. 5). The two sets of data collected were for flat plates at moderate freestream velocities. Since BLIMPJ could not be run for external flow situations, BLIMPK (appllcable for external flow) was modifled to include the roughness options 1 and 2 and was run for an equivalent sand roughness of $K_{s}=.002583 \mathrm{ft}$. employing the only-resident, Kendall's turbulence model. Figure 2.2 contains the two cases for which the two skin-friction options were used. It is seen that the two options bracket the data, although Droblenkov's approach is closer to the data. Figure 2.3, on the other hand, shows the heat-transfer computations based on Seidman's Stanton number correlation. Again, the two skin-friction optlons along with Seidman's heat transfer correlation bracket the heat-transfer data, although one combination seems to predict the data better than the other one. Another Stanton number correlation by Hill was checked out (Fig. 2.4a), by varying the value of A in Hill's correlation. It is found that Hill's correlation underpredicts the data considerably. Figure 2.4b, on the other hand, gives comparison of

Fig. 2.3 Comparison Of Stanton Number Correlation With Data

(B)

Fig. 2.4 Comparison Between Stanton Number Correlation And Data With Varlable Parameter A

Seidman's correlation with heat-transfer data for three values of A. The nominal value of 0.52 for A seems to predict the data quite well.

The rationale for checking the roughness heat-transfer options against data In external flow is a result of little or no data being avallable for nozzles having rough walls. Some roughness data obtained in an MSFC test on a 40-K subscale regenatively cooled nozzle (Ref. 6) were communicated to the authors. On closer examination, it was found, however, that the nozzle was rough at the throat region only. In other words, the equivalent sand roughness is not constant throughout the nozzle and none of the roughness options described here applies to such a situation. Moreover, the concept of equivalent sand roughness breaks down, since similarity in the boundary layer can no longer be satisfied. Instead, to exercise the three roughness options in BLIMPJ, the code was modifled to integrate all the options. In the meantime, the geometry package of a generic OTV nozzle was received (Ref. 7) along with the wall temperatures and wall pressures (given In Fig. 2.5). The code was first checked out for the OTV smooth wall situation using two different turbulence models including the Kendall and Cebeci-Smith models. The heat transfer distributions on the nozzle wall are given in Fig. 2.6. As noted by other Investigators, the Cebeci-Smith model predicted lower heating rates. A fictitious value of the equivalent sand roughness of 0.00125 ft . was used to run BLIMPJ for the OTV nozzle using first the roughness option 3 (which used a modification to Cebeci-Smith turbulence model). An example of the namelist tape for BLIMPJ using a roughness option is given in Table 2.2. The heat-transfer results are plotted in Fig. 2.9 and compared with those for a smooth wall. Heat rates are approximately 3 times higher for the rough wall than for the smooth wall in the peak heating region occurring around the throat. Although the skin friction and heating rate values are quite high for a rough nozzle locally in the throat region, the integrated values of

Fig. 2.5 Input Wall Pressure And Temperature Variation For A Typical OTV Nozzle

```
FEMTEOFHINC.
```


Fig. 2.6 Comparison Of Two Turbulence Models

TABLE 2.2 Example Of Namelist Input For Roughness Option

these quantities over the whole nozzle in relation to the smooth wall values are much lesser in magnitude. Since this roughness option modifles the turbulence model due to the presence of roughness, Fig. 2.7a was prepared to compare the velocity profiles between the rough and smooth wall cases at the nozzle throat. Figure 2.7 b , on the other hand, compares the velocity proflles given in normalized y-coordinates. It is clearly seen from both the plots that not only the boundary layer is thicker but is pushed upward as suggested by Cebeci. This phenomenon has also been observed experimentally be Voisinet (Ref. 9) and is reproduced in Fig. 2.7c as evidence.

The other two roughness options were also exerclsed for the same OTV nozzle with the above equivalent sand roughness helght. Since the enthalples in the expression (A1) in Table 2.1 are with respect to $T=0^{\circ} \mathrm{R}$ as the reference, the concept was modified in BLIMPJ to integrate C_{p} with respect to T from $T=0^{\circ} R$ to either the wall or the edge temperature to calculate H_{w} or H_{e}, respectively. Noting that C_{p} is calculated as a function of T in the boundary layer, an extrapolation was made on C_{p} to a value down to $T=0^{\circ} R$ as shown in Fig. 2.8 for the OTV nozzle throat location. A numerical intergration was performed within the code to calculate all the required enthalpies, and consequently, to compute skin friction and heat transfer rates. Figures 2.9, 2.10 and 2.11 compare heat flux, Stanton number and skin friction coefficient distribution using all the three avallable roughness options with $K_{s}=0.00125 \mathrm{ft}$. The comparison among the three optlons is quite reasonable near the throat and downstream of the throat. However, some disparities remaln in Stanton number and skin friction in the subsonic contraction section of the nozzle, particulary for Options 1 and 2.

Fig. 2.7a Comparison Of Velocity Distribution Between Rough And Smooth Walls At The OTV Nozzle Throat

Fig. 2.7b Comparison Of Velocity Distribution Between Rough And Smooth Walls At The OTV Nozzle Throat

$$
\begin{aligned}
& K=\text { Equivalent Sand Roughness Height } \\
& \dot{m}=\text { Mass Transfer Rate }
\end{aligned}
$$

Fig. 2.7c Typical Velocity Profiles Given By Voisinet (Ref. 9)

Fig. 2.8 Variation Of Specific Heat of $\mathrm{H}_{2} / \mathrm{O}_{2}$ Reaction Products With Static Temperature At OTV Nozzle Throat

Fig. 2.9 Comparison Of Heat Flux Distribution On The Wall Of The OTV Nozzle Wall Using Various Roughness Options

Fig. 2.10 Comparison Of Stanton Number Distribution On The OTV Nozzle Wall Using Various Roughness Options

Fig. 2.11 Comparison Of Skin-Friction Coefficient Distribution On The OTV Nozzle Wall

2.4 Discussions

The correlations and modifications incorporated in BLIMPJ to account for roughness would be very good candidates for evaluating the thermal losses on the OTV nozzles. The results given in Figs. 2.9-2.11 for a fictitious sand roughness show that although the comparison of \dot{q}, St and $C_{f_{i}}$ on the OTV wall between the three options is reasonable, there is still about 20 to 30 percent variation In the peak heating areas of the nozzle. It must be noted that certaln engineering approximations have been incorporated in the evaluation of H in the calculation of the compressiblity factor, $C_{f} / C_{f_{i}}$ in Options 1 and 2. The Option 3 , on the other hand, is a more systematic modification of the turbulence model to account for wall surface roughness. It not only gives the heat transfer at the wall, but also provides the detalls of the turbulence scale change effects within the boundary layer. The effects of wall roughness on the law-of-the-wall results have been noted by others (Ref. 8) to cause a downward shift in the profiles with increased roughness. This meant that for the same value of the law-of-the-wall coordinate, y^{+}, the velocity is lower. The same phenomenon was observed in the work presented earller. One item In the Cebeci roughness model (Ref. 8) is the upper limit of 2000 for the equivalent sand-graln roughness parameter, K_{s} for which the modification of the length scale is valid. In the code modification, a value of 4000 was used for running the case presented earlier. The validity of this limit must be examined experimentally. Suggestions for future work in this area appear in Sec. 6.

2.5 References

1. Schlichting, H., Boundary Layer Iheory, Fourth Edition, McGraw-HIII Book Company, New York, 1960.
2. Nukuradse, J., "Laws of FIow in Rough Pipes," Translated as NACA TM 1292, November 1950.
3. Dirling, Jr., R.B., "A Method for Computing Roughwall Heat Transfer Rates on Reentry Nostips," AlAA Paper No. 73-763, July 1973.
4. Seldman, M.H., "Rough Wall Heat Transfer in a Compressible Turbulent Boundary Layer," AlAA Paper No. 78-163, January 1978.
5. Pimenta, M.M., Moffat, R.J., and Kays, W.M., "The Turbulent Boundary Layer: An Experimental Study of the Transport of Momentum and Heat with the Effect of Roughness," Stanford University, Thermosciences Division Report No. HMT-21, May 1975.
6. Romine, W.D., "Thermal Analysis of the Data from the 40K Subscale Regenerating Cooled Thrust Chamber Cyclic Life Tests," Rockwell Internal Letter No. ASR 76-206 (SSME 76-2523), September 1976.
7. Generic OTV Nozzle Geometry - Obtained from Mr. Klaus Gross, EL 24, Marshall Space Filght Center, Al.
8. Cebecl, T., and Chang, K.C., "Calculation of Incompressible Rough-Wall Boundary Layer Flows," AlAA Journal, Vol. 16, No. 7, July 1978, pp. 730-735.
9. Volsinet, R.L.P., "Combined Influence of Roughness and Mass Transfer on Turbulent Skin Friction at Mach 2.9," AlAA Paper No. 79-0003, January 1979.

Section 3.0
RELAMINARIZATION

3.1 Background

The prediction of relaminarization phenomena is one of the strongest tests of validity of the turbulence models. Relaminarization is basically a reversion from turbulent to laminar boundary layer. Relaminarization is principally caused by severe flow acceleration effects that typically occur internally in the convergent portion of nozzles where subsonic flow exists; in the divergent portion of nozzles where supersonic flow is dominant; and externally in expanding supersonic flows around bodies such as ogive-cylinder and sphere-cylinder configurations. Some of the theoretical and experimental work is reported in Refs. 1-5. Many of these works are experimental in nature. Patel and Head in Ref. 1 have shown experimentally that quite large departures occur from the universal inner-law velocity distribution in the presence of severe favorable pressure gradients in turbulent boundary layers. The work of such investigators as Launder in Ref. 2 has described investigations generally similar to that reported by Patel et al. (Ref. 1), but emphasizes the measurements of turbulence and mean velocity proflles, and covers the complete reversal transition process. In the measurements of Back, Cuffel and Massler (Ref. 3), a reduction in heat-transfer below values typlcal of a turbulent boundary layer was found when the values of the parameter, $k=\left(\mu_{e} / \rho_{e} U_{e}\right)\left(d U_{e} / d x\right)$ exceeded about 2 to 3×10^{6}. One of the best documented experimental investigations of compressible boundary layer relaminarization is that reported by Nash-Webber (Ref. 4). In this work, an instrumented flat plate was tested in the presence of a variety of upper-wall profiles. The profiles were chosen to impose varlous pressure gradients on the flat-plate turbulent boundary layer. He deduced a comprehensive criterion for
relaminarization, which will be discussed in detall in the following subsection. It was noticed that acceleration effects tend to keep flow laminar beyond the normally-prescribed transition value.

3.2 Relaminarization Criterion

The various turbulence models in BLIMPJ were derived based on zero to moderate pressure gradients existing in the flow direction and thus, would not be able to predict laminarization for severe favorable pressure gradients. However, a treatment done by Adams et al. (Ref. 5) using the IKET (Integral form of the Kinetic Energy of Turbulence) approach was able to predict Iaminarization on the shoulder of a spherecylinder configuration tested at $M_{\infty}=9$ in Tunnel F at AEDC. It was also pointed out by Adams that BLIMP could not predict either the onset of relaminarization or the degree of relaminarization.

The acceleration parameter which is a potential candidate for relaminarization and chosen for this study is that due to Nash-Webber (Ref. 4). According to Ref. 4, the acceleration parameter is defined as,

$$
\begin{equation*}
K=\frac{\bar{\mu}_{W}}{\bar{p}_{W} U_{e}} \cdot \frac{d U_{e}}{d x} \tag{3.1}
\end{equation*}
$$

Where the subscript ' w ' denotes wall conditions, the subscript 'e' denotes boun-dary-layer edge conditions, and the barred quantities are time-averaged values. The importance of this parameter is lllustrated in Ref. 4 and is reproduced here in Fig. 3.1 for completeness. According to this, the numerical value of K can be used as an indicator for probable occurrence of relaminarization provided that the momentum thickness Reynolds number based on edge conditions is sufficlently low. The recommended boundary value for the onset of relaminarization in FIg. 3.1 seems to be somewhat lower than the threshold recommended by Launder

Fig. 3.1 Turbulent-Laminar Transition Boundary
(Ref. 2) and was curve-fitted by a quadratic polynominal given by

$$
\begin{equation*}
K=a R^{2}+b R+c \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=8.935 \times 10^{-14} \\
& b=2.239 \times 10^{-10} \\
& c=1.0248 \times 10^{-6}
\end{aligned}
$$

The end of relaminarization (complete laminar condition) is the limit (Fig. 3.1) suggested by Kline (given in Ref. 4) where there is complete suppression of turbulence production.

Currently, BLIMPJ contains a criterion for transition where a specified or input value of $\operatorname{Re}_{e, \theta}$ is used to trigger transition. When the prescribed $\mathrm{Re}_{e, \theta}$ is exceeded, the turbulent transport properties are introduced into the calculations. In order to simulate a transition zone, these transport properties are reduced by a factor varying between 0 and 1 for complete laminar and complete turbulent flow respectively. A linear relationship that is used for varying ε_{m} (eddy viscosity) is given by

$$
\begin{equation*}
\varepsilon_{m}=l(S) \cdot \varepsilon_{m}(\text { ref }) \tag{3.3}
\end{equation*}
$$

where ε_{m} (ref) is the reference value for complete by turbulent flow and

$$
\begin{aligned}
& \\
\text { with }(S) & =\frac{s}{S_{+}}-1.0, S_{+}<S<2 S_{+} \\
I(S) & =0 \text { for } S \leq s_{+} \\
I(S) & =1 \text { for } S \geq 2 S_{+}
\end{aligned}
$$

where S is the running length and S_{t} is the running lenght up to the point of transition on the body. It is suggested by Ref. 6 that a flat plate zero pressure gradient value of $R_{e, \theta}=360$ serves as a nominal estimate. Now, In order to
account for flow acceleration effects, the recommended transition boundarles described in the previous paragraph and given in Fig. 3.1 has been coded in BLIMPJ. For acceleration parameters K less than 1×10^{-6}, Eq. (3.3) is used to check the state of the boundary layer. However, for acceleration parameter greater than 1×10^{-6}, the new criterion given in Fig. 3.1 and described in the previous paragraph is used. In order to simulate a relaminarization zone, the values of K are used instead of S in Eq. (3.3). K_{1} and K_{2} at any $\mathrm{Re}_{e, \theta}$ corresponding to the beginning and the end of relaminarization have been coded in BLIMPJ according to the following formula:

$$
\begin{equation*}
\varepsilon_{m}=\left(\frac{K-K_{1}}{K_{2}-K_{1}}\right) \cdot \varepsilon_{m}(r e f) \tag{3.4}
\end{equation*}
$$

It should be observed that ε_{m} linearly varies with K from a turbulent ε_{m} (ref) value to a value of zero for completely laminar flow. Incidentally, the percent relaminarization value is

$$
\begin{equation*}
P C T=\left(\frac{K-K_{1}}{K_{2}-K_{1}}\right) \times 100 \tag{3.5}
\end{equation*}
$$

This additional logic in BLIMPJ only applies for turbulent flow. Depending on the value K, a value of turbulent eddy viscosity is calculated and fed into the boundary layer calculations.

3.3 Examples

In order to check the limits of relaminarization, an example of flow over the Shuttle clean ET configuration was considered. The aeroheating data were measured on a 0.0175 scale clean ET model tested at $M_{\infty}=7.3$ in the Ames HWT facility. The measured data had been compared against turbulent and laminar cal-
culations made by other aeroheating codes in Fig. 3.2. Because of tripping of the boundary layer due to the ET triple-cone nose, the boundary layer becomes turbulent over the ogive. The flow remains turbulent up to $X / L=0.2$, becomes fully laminar at $X / L=0.25$, and finally turbulent agaln beyond $X / L=0.4$. The acceleration parameter in Eq. (3.2) was examined after calculating the pressure gradient from the method-of-characteristics procedure and then the acceleration parameter, and was plotted in Fig. 3.3 as a function of X / L. It is evident that the parameter peaks at $X / L=0.2$ and drops of f very rapidly as X / L is increased. Another way of plotting this information is shown in Fig. 3.4, where K is plotted vs. Re e, θ. From both the figures, it is obvious that the peak value is not higher than the threshold value of $K\left(=1.58 \times 10^{-6}\right)$ at $\operatorname{Re}_{e, \theta}=1550$. This indicates that the acceleration parameter is not high enough to trigger relaminarization, even though the data seem to suggest it. A similar observation was made by Adams (Ref. 5) for the sphere-cylinder case. Even though his IKET approach as well as the measured data seemed to show relaminarization, the Nash-Webber correlation did not strongly suggest that.

In order to examine the validity of this correlation for nozzle boundary layers, the relevant data taken on a $10^{\circ}-10^{\circ}$ half angle conical nozzle by Back et al. (Ref. 3) were examined in Fig. 3.5. Wall pressures calculated by TDK (Ref. 7) were input to the REMTECH version of BLIMPJ, and the heat-transfer. (Fig. 3.5.B) along with the acceleration parameter distributions (Fig. 3.5.C) were calculated. The acceleration parameter based on edge quantities, K_{e}, compared quite well with Back's calculations. The K_{e} peak occuring upstream of the nozzle throat was not predicted by BLIMPJ because of inadequate wall pressure definition in this region. The heat-transfer calculations were made by using the coded relaminarization criterion. The momentum thickness Reynolds number, Re $_{e, \theta}$ distribution compared well with Back's calculations. The K_{w}
vs. $R_{e, \theta}$ correlation for relaminarization [Eq. (3.2)] suggested that the turbulent boundary layer was on the verge of relaminarization at the tangency point located at the juncture of the conical and curved portions of the nozzle contraction section. It is seen from Fig. 3.5.B, however, that the prediction is consistently higher than the measured data and that the boundary layer is predicted to be turbulent throughout the contraction section of the nozzle, but not partially relaminarized as evident from the measured data and as pointed out by Back's analysis. Back et al. point out in their paper that if K_{e} is higher than 2 to 3×10^{-6} relaminarization occurs. Since K_{e} satisfies this criterion In the contraction portion of the nozzle as evident from Fig. 3.5.C, it suggests that relaminarization occurs. The currently coded criterion, which is different from the above criterion and is more definite in structure, is not able to quantify the degree of laminarization as well as suggested by Nash-Webber (Ref. 4). An example of the name list input to turn on the relaminarization flag is given in Table 3.1.

3.4 Dlscussions

The Nash-Webber criterion for relaminarization worked only marginally for the external flow situatlons, whereas for the limited measured data avallable on nozzles where relaminarization occurs in the boundary layer, this criterion seems to be only approximate. Without going through an extensive analysis such as the IKET-type model (Ref. 5), the current approach needs to be modified somewhat for engineering calculations. In addition, relaminarization can be predicted in the presence of roughness. In order to accomplish this, the roughness option 3 due to Cebecl must be input ($\mathrm{RK}=\ldots .$. ICF $=3$) along with the relaminarization option (ILAMIN $=1$). The occurence of relaminarization will tend to reduce the turbulence length scales whereas the presence of wall rough-

```
FEMTEO\mapstoINO.
```


Fig. 3.2 1.75\% Model Space Shuttle External Tank Heat-Transfer Distribution.
$k \times 10^{6}$

$\mathrm{Re}_{\mathrm{e}, \theta}$

Fig. 3.3 Plot Of Acceleration Parameters Based On Edge And Wall Conditions And Momentum Thickness Reynolds Number Vs. X/L For The Shuttle ET Model

Fig. 3.4 Acceleration Parameter Vs. Re $e_{e, \theta}$ for the Shuttle ET Shoulder

Fig. 3.5 Relaminarization Analysis Of The Boundary Layer Flow In Back Et Al. 10° - $10^{\circ} \mathrm{Half}$ Cone Angle Nozzle

TABLE 3.1 Example Of Namelist Input For Relaminarization

ness will tend to increase it. Although the code has not been exerclsed extensively for both being present in a nozzle, it is belleved that the code would handle it adequately.

3.5 References

1. Patel, V.C., and Head, M.R., "Reversion of Turbulent to Laminar Flow," Journal of Fluid Mechanics, Vol. 34, Part 2, 1968, pp. 371-392.
2. Launder, B.E., "Laminarization of the Turbulent Boundary Layer by Acceleration," MIT Gas Turbine Lab. Report No.-71, 1963.
3. Back, L.H., Cuffel, R.F., and Massier, P.F., "Laminarization of a Turbulent Boundary Layer in Nozzle Flow - Boundary Layer and Heat Transfer Measurements With Wall Coollng", ASME Paper 69-HT-56, August 1969.
4. Nash-Webber, J.L., "Wall Shear-Stress and Laminarization in Accelerated Turbulent Compressible Boundary Layers," MIT Gas Turbine Lab. Report No. 94, April 1968.
5. Hodge, B.K. and Adams, J.C., "The Calculation of Compressible Transitional, Turbulent, and Relaminarizational Boundary Layers Over Smooth and Rough Surfaces Using an Extended Mixing-Length Hypothesis," AEDC-TR-77-96, February 1978.
6. Evans, M., "BLIMPJ User's Manual," Aerotherm Division/Acurex Corporation, July 1975, under Contract NAS8-30930 (Document number no avallable).
7. Nickerson, G.R. and Dang, L.D., "Improved Two-Dimensional Kinetics (TDK) Computer Program," SEA Report SN-54, Santa Ana, California, October 1983.

Section 4.0

PARTICLE EFFECTS

4.1 Background

The study of the boundary layer flow contalning particles (in the fluld-particle systems) is of special interest because of the influence of the particles on the wall shear and heat transfer, the possible tendency of particles to collect near a wall, and the problem of particle impingement on the wall. Typical data (Ref. 1) in the chemical engineering ilterature correlated In terms of voidage show that there is negligible effect caused by solid particles until the volume percent of solids reaches 0.05 percent, but a very marked Increase occurred in heat transfer for higher solids loading. In fact, Nusselt number increases by factors as high as eight have been reported for the addition of particles to a flowing gas (Ref. 1). Materlal deposited on the nozzle wall al so represents a loss in performance, because the resulting rough surface causes increased skin friction losses.

Correlation of gas-particle heat transfer in terms of sollds loading and, sometimes, tube diameter (for pipe flow) is not entirely satisfactory, since such correlations ignore the effect of particle size. The differences in the data reported by Leva (Refs. 2 and 3) suggest that the enhancement in heat transfer is at least partially associated with disturbance of the laminar sublayer by particles, causing a local increase in heat transfer. On the other hand, reduction in heat transfer and shear stress have been reported in Ref. 4 for large populations of the smallest particles, less than 1μ, by primarily displacing the boundary layer and thereby reducing thermal gradients.

The laminar particle-gas boundary layer has been investigated by Marble (Ref. 5), Soo (Ref. 6), Tabakoff and Hamed (Ref. 7) using momentum integral
techniques. In all these studies, analytical expressions have been found relating wall heat transfer and shear with particles to those without the particles. These investigations have determined that the introduction of particles leads to an Increase in the gas boundary layer thickness. In addition, it was found that the gas boundary layer characteristics are more sensitive to particle concentration than any other particulate flow parameter. It has been shown that for gas-particle flow systems, the wall heat transfer and skin friction are related to non-particle flow by a non-dimensional parameter called the "momentum range" which depends on particle size, the fluid viscosity, the fluid velocity and the distance from the leading edge, and another quantity called the "particle momentum interaction parameter", which depends on the ratio of particle mass density to fluid mass density.

Particulate-laden turbulent boundary layer flows in nozzles have not been understood completely and substantial empiricism must be employed to estimate the effects of particle concentration, particle size, density, pressure and entropy gradients on wall shear and heat transfer rate. Tien (Ref. 8) analyzed the increase in heat transfer due to differences in the gas and particle temperatures in boundary layer regions, under the assumptions of incompressible, constant property flow with no radiation or velocity lag effects and no effect of the particles on the gas flowfield. In this case, there is an increase in heat transfer rate while the flow is developing in the pipe. Soo and Tien (Ref. 9) considered particle motion in a turbulent fluid stream with emphasis on the effect of wall interference. The high particle intensity in wall regions increases the heat transfer by increasing the particle to gas heat transfer rates. Disruption of the gas laminar sublayer by particle motion further increases the local heat transfer. Also, if temperatures are high enough for radiation to occur, the radiation from particles to col der walls causes additional
heat transfer. Farbar and Morley (Ref. 10) also concluded from their experimental work on flowing gas-solids mixtures in a circular tube that the use of solids in gaseous heat transfer systems may prove to be advantageous when an increase in the heat transfer rate is desired without any increase in the heat transfer area. It was concluded from this study that the gas-side heat transfer factor increases rapidly for sollds loading ratios greater than unity. The solIds affect both the gas boundary layer and the heat capacity of the flowing mixture. On the other hand, for solids loading ratios of unity or less, a transitional region exists in which the effect is primarily one of increased heat capacity.

4.2 Particle eptions

The various options integrated in BLIMPJ fall into the following two categories:

4.2.1 Laminar Boundary Laver-Particulate Flow

The approach used in the modification of BLIMPJ to account for the presence of particles and their effect on wall shear and heat transfer is taken from the work of Marble (Ref. 10). Marble developed an expression for the shear coefficlent from an Integral momemtum solution of the laminar boundary layer equations, particle continuity and momentum equations for an incompressible flat plate flow. The final expression for the case where $\lambda_{v} / x<1$ is given in Table 4.1. The applicable momentum range, λ_{v}, in the OTV-type nozzles would fall basically in this category. We recognize in Eq. (B.1) of Table $4.1 \mathrm{C}_{\mathrm{f}_{0}}$ as the shear coefficient for the fluid boundary layer without particles. In his original paper, Marble used

$$
\begin{equation*}
C_{f_{0}} / 2=0.332 / \sqrt{R_{x}} \tag{4.1}
\end{equation*}
$$

Since BLIMPJ provides a shear coefficient for clean flow, that value was used as reference instead to calculate the shear coefficient for the gas-particle system. The quantity, λ_{v}, represents a distance, x, which describes the particle motion relative to the fluld. For $x<\lambda_{v}$, there is a high degree of fluid-particle silp, whereas for $x>\lambda_{v}$, the particles tend to take on the motions of the gas. The heat transfer characteristics are more complex in the high "particle-slip" regime in that the initial conditions become quite important in such a calculation. Since there is very litter work in the literature for this regime, this was not coded in BLIMPJ.

Returning our attention to the expression for shear, the factor $\sqrt{1+K}$ multiplying the usual shear coefficient gives the result for no particle slip and represents a minimum value for shearing stress. The first order correction $0.49\left(\lambda_{v} / x . K / 1+K\right)$ gives shear stress due to particle slip reduction along the flow path.

Heat transfer through the boundary layer was treated in a similar manner as given in Eq. (B.2).

4.2.2 Iurbulent Boundary Laver-Particulate Flow

The approach for modification of the heat transfer and skin friction calculations in BLIMPJ for a turbulent boundary layer is based on the analytical results of Tlen (Ref. 8) and the empirical expressions of Farbar and Morley (Ref. 10). Tien solved the turbulent gas-particle energy equations for flow in a plpe and found that the qualltative effect of particle concentration is to flatten the temperature profile and consequently to increase the heat transfer. He has theoretically confirmed the test results of Farbar and Morley that

TABLE 4.1

GAS-PARTICLE SKIN FRICTION AND HEAT TRANSFER

Laminar Boundary Layer (Marble)

$$
\begin{equation*}
c_{f}=c_{f_{0}} \sqrt{1+K}\left(1+0.49 \frac{K \lambda_{v / x}}{1+K}\right), \frac{\lambda_{v}}{X} \ll 1 \tag{B.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{q}=\dot{q}_{0} \sqrt{1+k}\left(1+0.49 \frac{k \lambda_{v / x}}{1+k}\right), \frac{\lambda_{v}}{x} \ll 1 \tag{B.2}
\end{equation*}
$$

where

$$
\begin{aligned}
K & =\rho_{p} / \rho_{e} \\
\lambda_{v} & =\frac{m U_{e}}{6 \pi a \mu_{e}}
\end{aligned}
$$

TABLE 4.1 (Continued)

Turbulent Boundary Layer

For
$C_{f}=C_{f_{0}}\left(1+\beta_{5}\right)$
and $\quad \dot{q}=\dot{q}_{0}\left(1+\beta_{5}\right)$
(B.3)
where $\quad \beta_{5}=\frac{C_{p} W_{p}}{C_{f} W_{f}}$

For

$$
\begin{align*}
& \frac{W_{p}}{W_{f}}>1 \text { (Farbar and Morley) } \\
& N u=0.14 \operatorname{Re}_{D}^{0.6}\left(W_{p} / W_{f}\right)^{0.45} \tag{B.4}\\
& \dot{q}=\frac{N u \cdot K_{g}}{D} \cdot\left(T_{a w}-T_{W}\right) \\
& \text { Particle Factor }=\dot{q} / \dot{q}_{o} \\
& C_{f}=\left(\frac{\dot{q}}{\dot{q}_{o}}\right) \cdot C_{f o} \tag{B.6}
\end{align*}
$$

Nomenclature

suspended solids, having a solids-to-gas loading ratlo of less than 1.0 , have a negligible effect on heat transfer. As pointed out earlier. Tien's analysis is valid for the entrance region of a pipe. Since the flow is not fully developed in this region of the plpe, the boundary layers do not merge. This flow situation is similar to what happens in a nozzle, where the boundary layers develop near the nozzle wall and do not merge. Consequently, the expressions developed by Tien for the pipe may be applicable to a nozzle. The expressions for parti-cle-to-fluid loading ratlo of less than 1 are given in Eq. (B.3) of Table 4.1.

For higher particulate loading where interactions and collisions among particles become important, the above expression is no longer valid. For the case, where the particle-to-fluid loading ratio is more than 1 , the experimental results of Farbar and Morley (Ref. 10) have been correlated and are given in Eq. (B.4) of Table 4.1. This expression is valld for a limited Reynol ds number range of $13,500<R_{e}<27,000$ which were the limits in the test conditions. It has further been noted by Farbar and Morley that for loading ratlos up to unity, the Nusselt number varies as the 0.03 power of the loading ratio, while that above unity varies as the 0.45 power of the loading ratio, except that for the lowest Reynolds number which Indicates a variation to the 0.5 power. The expressions for Nu in Eq. (B.4) was used to calculate a particle factor which was then used to calculate skin friction coefficient from Eq. (B.5). The above expressions were coded in BLIMPJ and checked with a few examples.

4.3 EXAMPLES

In order to illustrate the effect of particles in the fluid boundary layer on skin friction and heat transfer rate, the following hypothetical example was chosen. Aluminum particles of 10 radius (density of $A 1=169 \mathrm{lbm} / \mathrm{ft}^{3}$) and par-ticles-to-fluid loading ratio of 0.5 was chosen. Thus,

$$
\begin{aligned}
r & =10 \mu=10^{-5} \mathrm{~m} \\
\rho_{\mathrm{al}} & =169 \mathrm{lbm} / \mathrm{ft}^{3} \\
C_{\mathrm{p}_{\mathrm{al}}} & =0.208 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}
\end{aligned}
$$

An example of the namelist input in BLIMPJ for particles-in-flow is given in Table 4.2. The OTV nozzle was used for testing the effects of these particles. The relative magnitudes of the resultant skin friction and heat flux are plotted in Figs. 4.1-4.3. Since the OTV nozzle contains both laminar and turbum lent boundary layer flow regimes, both laminar and turbulent expressions for particles-in-flow could be checked out simultaneously.

4.4 Discussions

The particle options chosen in the present work are designed to perform "point" calculations and are not capable of taking into account the "history" effects. The particle option can either be used independently or used along with one or both of the roughness and relaminarization options. The reference value for the particle factor will be obtalned either from the smooth wall value or from the relaminarlzation or rough wall value and then be enhanced by the particle factor. It has been polnted out previously that the particle factor expressions for turbulent flow were derived from tube data and do not represent a rocket nozzle case, and in that sense are only approximate in nature. However, they wlll provide relative values of wall skin friction and heat flux for varlous particle sizes and particle loadings. Some relevant suggestions for future work for gas-particle flows in rocket nozzles are given in Sec. 6.

TABLE 4.2 Example Of Namelist Input Particle Option

Fig. 4.1 Comparison Of Heat Flux Distribution Over The OTV Nozzle Wall For With And Without Particles In Flow

Fig. 4.2 Comparison Of Stanton Number Distribution Over The OTV Nozzle Wall For With And Without Particles In Flow

Fig. 4.3 Comparison Of Skin Friction Coefficient Distribution Over The OTV Nozzle Wall For With And Without Particles In Flow

4.5 References

1. Schlinderberg, D.C., Discussion of Ref. 8 Heat Transfer, Transactions of American Soclety of Mechanical Engineers 83, 188 (1961).
2. Leva, M., Weintrub, M., and Grummer, M., "Heat Transmission Through Fluidized Beds of Fine Particles," Chemical Engineering Progress 45, 563, (1949).
3. Leva, Mo, Weintrub, Mo, Grummer, Mo, and Clark, E.L., "Coolling of Gases Through Packed Tubes," Ind. Eng. Chem. 40, 747, (1948).
4. Buckingham, C., "Dusty Gas Influences in Turbulent Erosive Propellant Flows," AlAA Journal, Vol. 19, No. 4, April 1981.
5. Marble, F.E., "Dynamics of a Gas Containing Small Solld Particles," Combustion and Propulsion, Fifth AGARD Colquium, Braunschwelg, April 1962.
6. Soo, S.L., Slngle and Multi-Component Elow Process, "Gas-Solid Flow," Engineering Research Publication No. 45, Rutgers University, 1965.
7. Tabakoff, W., and Hamed, A., "Analysis of Cascade Particle-Gas Boundary Layer Flows With Pressure Gradient," AlAA 6th Propulsion Joint SpecialIst Conference, AIAA Paper No. 80-712.
8. Tien, C.L., Meat Transfer by a Turbulently Flowing Fluids-Solids Mixture in a Pipe," Transactions of the ASME, Journal of Heat Transfer, pp. 183, May 1961.
9. Soo, S.L., and Tien, C.L., "Effect of the Wall on Two-Phase Turbulent Motion," J. Appl. Mech., Trans. Am. Soc. Mech. Engrs., 27, 5 (1960).
10. Farbar, L., and Morley, M.J., "Heat Transfer to Flowing Gas-Solids Mixtures in a Circular Tube," Ind. Eng. Chem. 49, 1143 (1957).

Section 5.0
THRUST LOSS RE-EVALUATION

5.1 Background

A thrust loss calculation method which has been prevlously implemented in BLIMPJ code is given in Ref. 1. The thrust loss due to the boundary layer ef-: fects for a circular cross-section nozzle is given at a specified cross-section by (for vacuum ambient conditions)

$$
\begin{equation*}
\Delta F=2 \pi r_{e} \cosh _{e}\left(\rho_{e} U_{e}^{2} \theta-P \delta_{B}^{*}\right) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& r_{e}=\text { Body radius at the station of interest } \\
& \phi_{e}=\text { Wall angle } \\
& \rho_{e}=\text { Boundary layer edge density } \\
& U_{e}=\text { Boundary layer edge velocity } \\
& \theta=\text { Momentum thickness } \\
& P=\text { Static pressure in the boundary layer } \\
& \delta_{B}^{*}=\text { Body displacement thickness }
\end{aligned}
$$

The assumptions used in deriving the above expression are the following:
(i) The boundary layer is thin, l.e., the thickness of the boundary layer is small compared to the radius of the nozzle at any cross-section.
(Ii) The inviscid values of density and velocity do not change within the thickness of the boundary layer. In other words, if there was no viscosity (l.e. for inviscid flow), there would be no variation of the inviscld values between the edge location and the nozzle wall.
(ili) The pressure is constant across the boundary layer. This assumption is consistent with the derivation of the usual boundary layer equations.
(iv) The definitions of body displacement thickness and momentum thickness are given by

$$
\begin{equation*}
\delta_{B}^{*}=\int_{0}^{e}\left(1-\frac{\rho U}{\rho_{e} U_{e}}\right) d y \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=\int_{0}^{e} \frac{\rho U}{P_{e} U_{e}}\left(1-\frac{U}{U_{e}}\right) d y \tag{5.3}
\end{equation*}
$$

where e and o refer to edge and wall conditions respectively.
As the nozzles grow in area ratio, the boundary layers grow in size, and the above assumptions may not hold. The proposed OTV nozzles such as the one given in Fig. 2.5 will utilize an expander cycle operations mode in which the walls will be regenerately cooled and the heat energy will be used to drive the turbines and pumps. So, while the regenratively cooled walls wlll help in reducling the size of the boundary layers to some extent, the large area ratio nozzles wlll produce thick boundary layers. Consequently, depending on the reservolr and exit conditions, and the geometry of the nozzle, it is possible and very likely that boundary layer thicknesses wlll vary from small to large values. The displacement and transverse curvature effects become important for thick boundary layers and must be included in the boundary layer calculations. In addition, as the flow expands in the nozzle, it will create low density and high Mach number flows. If the flow passes from the continuum to a non-continuum regime, velocity slip and temperature jump (STJ) may become important.

Similar boundary layer solutions are not applicable for such an Investigation, since similarity cannot be satisfled for any specified set of reservoir conditions, nozzle geometry and wall temperature distributions. Fortunately, the boundary layer procedure in BLIMPJ does not assume similarity. Furthermore, It takes into account transverse curvature effects (TVC) in the derivation. It also calculates the displacement effects for thin boundary layers. As far as the STJ effects are concerned, it has been pointed out by previous investiga-
tions (Ref. 2) that they are generally small compared to the other effects discussed above and thus, will be ignored in the present approach.

5.2 Thrust Loss Reevaluation Procedure For Thick Boundary Layers

In accordance with the above discussions, the expression for thrust loss for thick boundary layers has been modified. The assumptions made in deriving Eq. (5.2) and (5.3) are no more strictly valid. The u-component of the velocity In the inviscid flow will vary to some extent between the nozzle wall to the edge location. Consequently, the definitions for δ_{B}^{*} and θ are

$$
\begin{equation*}
\delta_{B t}^{*}=\int_{0}^{e}\left[1-\frac{\rho U}{\rho_{i}(y) \cdot U_{i}(y)}\right] d y \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{t}^{\theta}=\int_{0}^{e} \frac{\rho U}{\rho_{1}(y) \cdot U_{1}(y)}\left[1-\frac{U}{U_{i}(y)}\right] d y \tag{5.5}
\end{equation*}
$$

The expression for the thrust loss calculation given in Eq. (5.1) will al so have to be modifled in its derivation where the edge quantities, (ρ_{e}, U_{e}) and pressure will no more be constants but would be replaced by local inviscid values $\rho_{i}(y), U_{1}(y)$ and $P(y)$. However, it was decided that the whole procedure of thrust loss calculation will be much more simple and adapted a lot easier in the BLIMPJ algorithm, if the pressure is replaced by an average value of the pressure distribution within the thlckness of the boundary layer. As a result, averaged inviscid edge values of velocity and density wIll automatically be calculated from the BLIMPJ algorithm and could be used in the thrust loss calculation in the existing algor ithm in BLIMPJ. In the above calculations, the location of the boundary layer edge is not precisely known and has to be determined by lterating upon the inviscid and viscous flowflelds.

There are two different problems to be solved when one attempts to calcu-
late performance for a rocket nozzle having thick boundary layers:
Case 1 - The potential nozzle contour is given and the objective is to define the hardware wall contour and calculate the rocket nozzle performance. For detalls, see Attachment 5.1.

Case 2 - The hardware wall contour is given and the objective is to define the potential contour and calculate the rocket nozzle performance. For detalls, see Attachment 5.2.

Attachment 5.1

In the case, where the potential contour is given, the objective is to define the wall contour for thick boundary layer situations. The suggested iteration procedure is given below: (Also see Fig. 5.1).
(1) Run the inviscid code (TDK and RAMP) to define the distribution of pressure on the potential wall and everywhere else in the nozzle, particularly near the potentlal wall.
(ii) Run BLIMPJ with the giken pressure distribution on the potential wall. This calculates δ and δ. Then, the body radius is calculated from

$$
R_{B}=R_{P}+\delta^{*} \cos \phi
$$

This is the first iteration.
(ili) Calculate an average inviscid pressure for the height between the potential wall and the boundary layer edge, which was obtalned from the previous calculation at each station. Use these pressures to run BLIMPJ again, and calculate δ_{2} and $\delta_{2^{*}}^{*}$. Then, calculate R_{B}. This is the second iteration.
(iv) Iterations stop when convergence on δ^{*} is achleved within a specified accuracy.

Attachment 5.2

In the case where the hardware wall contour is given, the objective is to define the inviscid edge for thick boundary layer situations. The suggested Iteration procedure is given below: (also see Fig. 5.2)
(1) Run the inviscid code (TDK or RAMP) to calculate the distribution of pressure on the hardware wall in the nozzle.
(II) Run BLIMPJ with the calculated wall pressure distribution on the hardware wall. This calculates δ and δ as a function of the nozzle axial coordinate. Then, the radius of the potential wall is calculated from

$$
R_{P}=R_{B}-\delta^{*} \cos \phi
$$

This is the first itertation.
(ili) Calculate the pressures again by using the inviscid code (TDK or RAMP) on the new potential wall and everywhere else in the nozzle, particularly near the potential wall.
(iv) Calculate the average pressure for the height between the boundary layer edge, which was obtained previously, and the hardware wall. Use the pressures on the hardware wall to run BLIMPJ again and calculate δ_{2} and δ_{2}. Then calculate R_{p}. This is the second iteration.
(v) Ge back to (III) and iterate until a prescribed convergence criterion on δ^{*} is achleved. If it is found that the pressure calculations in (iil) in the first two iterations are very close, do not go back to (ill), instead go back to the beginning of (iv).

Once the iterations are completed, the thrust loss wlll automatically have been calculated by BLIMPJ to yield the final answer.

NOTES:

1. The potential contour is given; the objective is to define the wall contour.
2. Subscript refers to iteration number.
3. δ^{*} refers to displacement thickness.
4. δ refers to boundary layer thickness.

PPotential Contour

Fig. 5.1 Suggested Iteration Procedure For Nozzles With Thick Boundary Layer (Potential Contour Given)

NOTES:

1. The wall contour is given; the objective is to define the inviscid edge.
2. Subscript refers to iteration number.
3. δ_{*} refers to displacement thickness.
4. δ refers to boundary layer thickness.

Sample Of Iterated Contours
Fig. 5.2 Suggested Iteration Procedure For Nozzle With Thick Boundary Layer (Wall Contour Given)

5.3 Example

For lllustrating the procedure given above for calculating thrust loss for thick boundary layer situations, the OTV nozzle given earlier in Sec. 2.3 was used. Furthermore, since the glven wall coordinates represent a generic class of OTV nozzles, these coordinates were assumed to represent the potential wall contour of the OTV nozzle. Consequently, the iterations were performed based on the procedure shown in Attachment 5.1.

SInce REMTECH did not have the information to run TDK for computing and storing the pressures for the interior points away from the wall, another available code called RAMP (Ref. 3) was run for the OTV nozzle contour to compute the pressure fields both on the wall and near the wall. Figure 5.3 gives a comparlson of wall pressure distributions from TDK and RAMP on the nozzle wall. The comparison is quite good. A comparison of δ^{*} calculations based on results from both codes is given in Fig. 5.4 showing a close agreement. The pressure distribution near the potentlal contour obtalned from RAMP is given in Fig. 5.5 along with δ and δ^{*} from the first iteration. It is obvious that there is a distribution of pressure through the thickness of the boundary layer and as a result, the shown inviscid edge of the boundary layer is not accurate. Golng through the step (ili) in Attachment 5.1 ylelds a new average pressure distribution given in Fig. 5.6, which is distinctly different from the first iteration both in the high pressure region near the throat and in the low pressure region near the exit plane. The BLIMPJ calculation yielded a δ^{*} distribution which was compared with the original distribution in Fig. 5.7. Again, the two iterations are somewhat different. A third iteration was done when it was found that the average pressure and δ^{*} distributions were very close to the second iteration (Figs. 5.6 and 5.7). The thrust loss in the successive iterations is given in FIg. 5.8.

Fig. 5.3 Comparison Of OTV Nozzle Wall Pressure Distribution Using Two Different Codes

```
FEMTECHINC.
```


Fig. 5.4 Comparison Between TDK And RAMP Output For The Boundary Layer Effective Displacement For First Iteration

Fig. 5.5 Inviscid Pressure Distribution At Various Wall Locations Within The Boundary Layer Thickness

Fig. 5.6 Iterations Of The Wall Pressure Distribution For The OTV Nozzle With Thick Boundary Layer

Fig. 5.7 Iterations Of δ^{*} Distribution For The OTV Nozzle With Thick Boundary Layer

Fig. 5.8 Thrust Loss In The OTV Nozzle As A Function Of Iterations

5.4 Discussions

The procedures described before and the example given in Subsection 5.3 are engineering procedures which could be used for thrust loss calculation in nozzles with thick boundary layers. The calculations performed at the time were not all computerized and as a result, could contain some inaccuracies in the varlous steps of the calculation. Even though the convergence was observed in the pressure distribution in Fig. 5.6 in the third iteration, it was not absolutely so in the convergence of δ^{*} in Fig. 5.7 and thrust loss in Fig. 5.8. However, the difference between the second and third iteration for the thrust loss in the OTV nozzle is around 10 ibs and it might be even less between the third and a fourth iteration. The thrust loss for thick boundary layers has not been programmed, since TDK cannot presently provide the necessary data away from the nozzle wall. However, a number of suggestions are made in Sec. 6 for future work.

5.5 References

1. Evans, M., "BLIMPJ User's Manual," Aerotherm/Acurex Corporaton, July 1975, under Contract NAS8-30930.
2. Whitfield, D.L., and Lewis, C.H., "Boundary-Layer Analysis of Low-Density Nozzles, Including Displacement, Slip, and Transverse Curvature," Journal of Spacecraft, April 1970, pp. 462-468.
3. Smith, Sheldon D., MHigh Altitude Chemically Reacting Gas-Particle Mixture, Vol ume 1 - A Theoretical Analysis and Development of Numerical Solution," August 1984, LMSC-HREC TRD867400-1.

Future work in the OTV research and development areas described in the previous sections may be categorized into three broad areas;

- Analytical
- Numer Ical
- Experimental

6.1 Analytical

The future analytical work on OTV-class nozzles, with reference to the four modules that have been addressed in the previous sections of this report, consists of the following recommendations:

6.1.1 Wall Roughness Effects

1. Roughness module in BLIMPJ needs to be checked out further with other avallable data for any size nozzle. This would enhance confidence in the usability of the various roughness options incorporated in BLIMPJ. The modules should also be exercised with the data to be taken on the future OTV model or flight tests.
2. Effects of partially smooth and partlally rough nozzle wall on wall skin friction and heat transfer rate need to be examined. This problem does not lend itself to the assumption of an equivalent sand roughness, because the concept of equivalent sand roughness which is based on simllarlty assumptions breaks down. Some related developments appear in works by T.C. LIn, J.C. Adams, etc.

6.1.2 Relaminarization

1. The relaminarization module needs to be checked out with any other avallable data for internal flow situations.
2. Questions remain as to whether the relaminarization criterion using wall quantities rather than edge quantities is valid for OTV-type nozzles. What happens to this criterion when wall roughness is present?
3. It is well known that freestream turbulence is present in the inviscid flow inside the nozzle. The question, then, is what role does the freestream turbulence play in the turbulence length scales and thus, in the relaminarization process?

6.1.3 Partlcle Effects

1. Check the options in BLIMPJ with avallable data both in laminar and turbulent flows.
2. For the case of replaceable and ablating nozzle inserts, the particles or debris in boundary layer flow wlll enhance heat transfer at the nozzle wall. If the particle loading could be determined, the effects of ablating nozzle wall could be determined.
3. Modify the turbulent mixing length due to the presence of particles in the flow.

6.1.4 Thrust Loss Reevaluation

1. Check the predicted performance with avallable nozzle data having large area ratlos, and consequently, thick boundary layers.
2. A procedure which consists of a combination of machine and hand calculations has been given in Sec. 5 for computing final performance calculations for large area ratio nozzles. This procedure should be considered approximate. A special software using a flow diagram involving TDK and BLIMPJ needs to be written for smooth calculation of high area ratio nozzles.
3. An optimization procedure needs to be developed to design a nozzle with length and area ratio constralnts for minimizing thrust loss in large area ratio nozzles.

6.2 Numerical

Computational fluid dynamics (CFD) procedures should be examined to evaluate the nozzle wall thermal losses due to relaminarization, the presence of wall roughness and particles in flow. Without going Into too many detalls, the following concerns should be borne in mind:

1. The turbulence models in the existing codes need to be examined. The problems of modifying the turbulence models for roughness, particles and relaminarization remain.
2. Acceptable chemistry packages have to be integrated in the CFD codes.
3. On the positive side, the iteration procedure necessary for calculating the thrust loss for thick boundary layers is eliminated in the CFD procedure, since the code defines both the inviscid and viscous flowflelds in the nozzle at the same time. However, the thrust loss formula for nozzles needs to be integrated with the CFD code, if the boundary layer effects need to be singled-out.

6.3 Experimental

It is the opinion of the authors that not enough applicable experimental data is avallable for the OTV-class nozzles. In order to validate the modules described in this report, measurements need to be made to support them. The parameters that need to be measured, the size of the models, the kind of flow to be tested and the accuracles involved in conducting these tests are the items. described in modular form in Table 6.1. This table presents a number of choices and possibilities from which any combinations could be selected for future experimental programs to support the OTV nozzle development.

TABLE 6.1 Recormmendations For OTV Experimental Programs

STUDY ITEMS ITEMS TO EXPLORE	WALL ROUGHNESS EFFECTS		RELAMINARIZATION EFFECTS		PARTICLE EffECTS		THICK BOUNDARY LAYER ISP LOSSES
EXISTING DATA BASE FOR NOZZLES	NO OTV NOZZLE DATA - rocketdyne 4ok subscale chamber test AT MSFC - for sSme, no internal nozzle data		BACK AND CUFFEL $10^{\circ}-10^{\circ} \mathrm{HALF}$ ANGLE CONE DATA NASH-WEBBER VARIABLE NOZZLE WHICH STUDIED RELAMINARIZATION EFFECTS	-	NO OTV NOZZLE OR ANY OTHER NOZZLE BOUNDARY LAYER DATA the avallable data base is FOR TUBES AND PIPES	-	NO OTV THICK BOUNDARY LAYER DATA
$\begin{aligned} & \text { MODEL TESTS - } \\ & \text { SHORT DURATION } \end{aligned}$	- steady state test times 10 msec 100 MSEC - test time dependent on altitude CHAMBER SIZE AND/OR DIFFUSER CAPACITY USE DIFFERENT NOZZLES OR NOZZLE INSERTS FOR ROUGHNESS EFFECTS STUDY	-	TEST ARRANGEMENT SAME AS WITH WALL ROUGHNESS		VERY DIFFICULT IF NOT IMPOSSIBLE TO INJECT KNOWN PARTICLES INTO FLOWS ON SHORT DURATION BASIS		\cdots
COLD, HOT OR REACTIVE FLOW	- EXACT SIMULATION OF HOT FLOWING $\mathrm{H}_{2} / \mathrm{O}_{2}$ C $0 / F=6$ AND $P_{C H}=2000$ PSI USE OF COLD/NON-REACTING GASES	-	SAME AS WITH WALL ROUGHNESS	-	COMBUSTION OF SOLID PROPELLANT - THE PROBLEM IS THE LACK OF CONTROL OR KNOWLEDGE OF PARTICLE SIZE AND CONCENTRATION		
PARAMETERS TO BE MEASURED	- wall roughness - nozzle wall heat transfer as a FUNCTION OF TIME - NOZZLE WALL PRESSURES - NOZZLE WALL TEMPERATURES - EXIT VELOCITY/TEMPERATURE PROFILES		WALL HEAT TRANSFER WALL TEMPERATURES WALL PRESSURES	0	WALL HEAT TRANSFER WALL TEMPERATURES WALL PRESSURES		
INSTRUMENTS TO BE USED; SPECIAL innovative PROBES THAT COULD BE USED	- FAST-RESPONSE PIEZO-ELECTRIC PRESSURE TRANSDUCERS - THIN FILM SHORT DURATION HEAT TRANSFER GAGES CO-AXIAL SURFACE HEAT TRANSFER GAGES MINIATURE THIN WIRE/T.C. GAGES mechanical measurements of mall roughness	-	SAME AS WITH WALL ROUGHNESS	-	same as mith mall roughness		
ACCURACY OF MEASUREMENTS	- $\pm 5 \$$ TO $\pm 10 \$$ FOR THIN-FILM AND CO-AXIAL GAGES - ± 0.58 ON TEMPERATURE - $\pm 2 \%$ ON PRESSURE		$\pm 5 \$$ TO $\pm 10 \$$ ON HEAT TRANSFER $\pm 0.5 \%$ ON TEMPERATURE ± 28 ON PRESSURE	-	$\pm 5 \$$ TO 10% ON HEAT TRANSFER $\pm 0.5 \%$ ON TEMPERATURE ± 28 ON PRESSURE		
MODEL SCALE PROBLEMS, IF ANY	- CHEMISTRY, THERMODYNAMICS AND TRANSPORT PROPERTIES ARE REALISTIC IN NOZZLE - SMALL THROAT AREAS AND IMPERFECTIONS MAY OBSCURE EFFECTS BEING SOUGHT	-	SAME AS WITH MALL ROUGHNESS	-	Particle size and CONCENTRATIONS VERY DIFFICULT to scale for small test rig		
FACILITIES TO BE USED	IMPULSE BASE FLOW FACILITY (IBFF) AT MSFC - PLUMBROOK SPACE POMER FACILITY AT NASA LEWIS - chamber a at johnson space center - Ludwig tube at calspan, buffalo	-	SAME AS FOR WALL ROUGHNESS EFFECTS	-	SAME FACILITIES AS FOR WALL ROUGHNESS STUDIES		

TABLE 6.1 (Continued)

STUDY ITEMS ITEMS TO EXPLORE		WALL ROUGHNESS EFFECTS		RELAMINARIZATION EFFECTS		PARTICLE EFFECTS		THICK BOUNDARY LAYER ISP LOSSES
MODEL TESTS LONG DURATION	-	DEPENDING ON MODEL SIZE AND TEST DURATION, COSTS CAN BE A FACTOR OF 10 LARGER THAN SHORT DURATION allows more than one measurement per run scale problems are alleviated HIGH ALTITUDE SIMULATION REQUIRES VERY LARGE FACILITY		SAME AS FOR WALL ROUGHNESS EFFECTS	\bullet	LONG DURATION ALLOWS FOR pOSSIBLE UTILIZATION OF PARTICLE INJECTION TECHNIQUES in COLD/WARM GAS FLOW reactive flows still have unknown PARTICLE SIZE/CONCENTRATION	-	LARGE OTV MODELS SHOULD BE USED CAN MAKE BETTER THRUST MEASUREMENTS THAN SHORT DURATION TEST BOUNDARY LAYER PROBING IS POSSIBLE
COLD, HOT OR REACTIVE FLOW	-	COLD/WARM FLOWS SIMPLEST AND LEAST COSTLY HOT OR REACTIVE FLOWS REQUIRE COMPLEX FACILITY AND MODEL COOLING		SAME AS FOR WALL ROUGHNESS EFFECTS	-	COLD, HOT OR REACTIVE FLOW SIMULATION IS NOW COMPLICATED BY THE NEED FOR PARTICLES PARTICLE INJECTION SCHEME CAN BE UNRELIABLE	-	hot/REACTIVE FLOWS SIMULATING H $\mathrm{H}_{2} / \mathrm{O}_{2}$ SYSTEM are preferabte
parameters TO BE MEASURED	-	WALL ROUGHNESS WALL PRESSURE AND TEMPERATURE MEASUREMENTS EXIT VELOCITY/TEMPERATURE PROFILES WALL HEAT TRANSFER RATE PROBE THE BOUNDARY LAYER INSIDE NOZZLE	\bullet	SAME AS FOR WALL ROUGHNESS EFFECTS	-	PARTICLE DENSITY AND SIZE NOZZLE PROBES TO MEASURE PRESSURE AND TEMPERATURE WALL PRESSURE AND TEMPERATURE MEASUREMENTS	\bullet	THRUST MEASUREMENT BOUNDARY LAYER PRESSURE AND TEMPERATURE MEASUREMENTS. BOTH INSIDE AND AT EXIT PLANE OF NOZZLE
INSTRUMENTS AND PROBES TO BE USED	-	THERMOCOUPLES FOR TEMPERATURE PRESSURE TANSOUCERS LASER DOPPLER VELOCIMETER (PARTICLES) FOR HOT/REACTIVE FLOW MEASUREMENTS, SYSTEMS/PROBES REQUIRE SPECIAL PROTECTION optical schlieren at exit plane PHASE CHANGE PAINT	\bullet	SAME AS FOR WALL ROUGHNESS EFFECTS	\bullet	LDV VERY ADAPTABLE TO PARTICLE FLOWS PARTICLE MEASUREMENT TECHNIQUES ARE GENERALLY UNREL IABLE EXCEPT IN SPECIAL FLOW SITUATIONS	\bullet \bullet \bullet	THRUST/STRAIN GAGE - MEASUREMENTS FOR ISP DETERMINATION intrusive techniques SUCH AS HOT-WIRE ANENOMETERS AND PRESSURE PROBES NON-INTRUSIVE TECHNIQUE SUCH AS LDV
ACCURACY OF MEASUREMENTS	\bullet	SAME AS FOR SHORT DURATION LDV $\pm 15 \%$ DUE TO PARTICLE LAG	\bullet	SAME AS FOR SHORT DURATION	-	SAME AS FOR SHORT DURATION LDV $\pm 15 \%$ DUE TO PARTICLE LAG PARTICLE - UNKNOWN	\bullet	SAME AS FOR SHORT DURATION HOT WIRE $\pm 15 \%$
MODEL SCALE PROBLEMS, IF ANY	-	scale problems are alleviated to some EXTENT ASSUMING THAT MODELS ARE LARGER ON LONG DURATION THROAT MUST BE PROTECTED AGAINST HIGH q RESULTING IN WALL TEMPERATURE discontinuity where materials change	-	SCALE PROBLEMS are alleyiated if MODEL SIZES ARE I NCREASED	-	scale problems are alleviated if MODEL SIZES ARE INCREASED	-	scale problems are alleviated if model SIZES ARE INCREASED
FACILITIES TO BE USED	-	engine test facility at aedc can SImulate altitude ENGINE TEST FACILITY AT MSFC has NO ALTITUDE SIMULATION LEWIS TEST FACILITY ALTITUDE SIMULATION NOT KNOWN		SAME FACILITIES AS FOR WALL ROUGHNESS STUDIES	-	SAME FACILITIES AS FOR MALL ROUGHNESS STUDIES	-	SAME FACILITIES AS FOR WALL ROUGHNESS STUDIES

APPENDIX

A LISTING OF THE UPDATED SUBROUTINES IN BLIMPJ

0001	000565	4才1G	0001		001023	42L	0001		001042	447G	0001		001057	452G	0001	001072	464G
0001	001107	500G	0001		001124	513G	0001		001131	520G	0001		001172	533G	0001	001246	65L
0001	001252	70L	0006	1	000000	ADARY	0005	I	000000	CASE	0005		000015	CBAR	0004	000000	DUB
0006 I	000026	ESPER	0006	I	000027	FLDP	0007	I	000000	FLDX	0006	I	000313	FLDY	0000	I 000000	I
0006 I	1001077	IAXIS	0000	1	000003	IERR	0006	1	001100	INJ	0000		000071	INUP\$	0006	I 001101	INKI
0003	000000	IPLOT	0007	I	000030	IPP	0005	I	000020	IS	0005		000021	ISH	0003	I 000001	IUNIT
0006 I	001102	IWALL	0000	1	000001	IX	0006	1	001103	J	0006	I	001104	K	0006	I 001105	KELVIN
00061	001106	KGDE	0006	I	001107	L	0006	I	026161	LA	0006	I	001110	LANK	0006	I 026162	LB
0006 I	026163	LC	0006	1	001111	LOGRAM	0006	I	001112	LWXO	0006	I	001126	LWYO	0006	I 001142	LXIN
0006 I	001156	LXIV	0006	1	001172	LYIN	0006	1	001206	LYIV	0006	I	026164	M	0006	I 001222	METER
0007 I	000031	MS	0004	1	000006	N	0005	1	000114	NETA	0006	I	001223	NJOUL	0005	000115	NNLEO
0006 I	026165	NOGRID	0007	I	000032	NPCON	0007	I	000033	NPLOT	0005	I	000120	NS	0007	I 000072	NSTAT
0007 I	000154	NSTP	0000	I	000002	NUMBR	0006	I	001224	OULES	0006	R	020266	0	0006	R 023222	R
0006 R	026156	RCIRC	0006	R	026157	RSQAR	0006	R	026160	RSTAR	0006	I	001225	S	0006	I 001226	SECON
0006 I	001227	SPER	0006	I	001230	SQUARE	0006	R	001231	U	0006	R	004165	v	0006	R 007121	W
0006 I	012055	WATTS	0006	R	012056	X	0006	R	012224	XL	0006	R	012222	XMAX	0006	R 012223	XMIN
0006 R	012225	XR	0006	R	012226	Y	0006	R	015244	YB	0006	R	015245	YMAX	0006	015246	YMIN
$0006 R$	015247	YT	0006	R	015250	z	0006	I	020204								

@SYS\$*MSFCFOR\$.FOR, IS ROUGH
HSA E3-12/10/84-22:23:44 (.0)

```
SUBROUTINE ROUGH ENTRY POINT OOO172
    STORAGE USED: CODE (1) 000176; DATA(O) O00034; BLANK COMMON(2) 0000000
COMMON BLOCKS:
\begin{tabular}{lll}
0003 & RUF & 000022 \\
0004 & RUF3 & 000002
\end{tabular}
```

EXTERNAL REFERENCES (BLOCK, NAME)

0005	ALOG 10
0006	XPRR
0007	SQRT
0010	NERR3

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

00105	25*	C	1.15 - AXISYMETRIC	000000
00105	26*	C		000000
00105	27*	C		000000
00105	28*	C	OUTPUT VARIABLES	000000
00105	29*	C	- -	000000
00105	30*	C	ST - ROUGH WALL STANTON NUMBER	000000
00105	31*	C	PCT - PERCENT OF TRANSITION TO FULLY ROUGH	000000
00105	32*	C	CF - ROUGH WALL SKIN FRICTION COEFFICIENT	000000
00105	33*	C		000000
00106	34*		IF (ICF.EQ.3)GO TO 100	000000
00106	35*	C	SKIN FRICTION COMPRESSIBILITY (YOUNG)	000000
00110	36*		CFCFI $=(0.365 * H E / H A W)+(0.635 * H E / H W)$	000002
00111	37*		IF (CFCFI. LE. 0.0) CF CFI $=0.0$	000012
00111	38*	C	INCOMPRESSIBLE ROUGH WALL SKIN FRICTION	000012
00113	39*		IF (ICF NE, 1)GO TO 10	000016
00113	40*	C	OPTION(1) PRANDTL - SCHLICHTING	000016
00115	41*		CFI $=(2.87+1.58 * A L O G 10(X / R K)) * *-2.5$	000021
00116	42*		GO TO 20	000037
00117	43*	10	CONTINUE	000041
00117	44*	C	OPTION(2) DROBLENKOV	000041
00120	45*		CFI $=0.0139 *(\mathrm{X} / \mathrm{RK}) * *-(1.0 / 7.0)$	000041
00121	46*	20	CONTINUE	000052
00122	47*		CFR $=$ CFCFI $* C F I * F M F$	0000052
00122	48*	C	TRANSITION CRITERION (FENTER)	000052
00123	49*		UTAU $1=U E * S Q R T((C F R / 2 . O) *(R H O E / R H O W))$	000055
00124	50*		ETAK $=$ RHOW * UTAU1*RK/MUW	000070
00124	51*	C	ROUGH SURFACE TURBULENT STANTON NUMBER	000070
00124	52*	C	$A=0.52$ NOMINAL , RANGE OF 0.45 TO 0.7 (OWEN - THOMSON)	000070
00125	53*		REK $=$ RHOE *UE*RK/MUE	000074
00126	54*		STR=CFR/2.*(1.+A*(CFR/2.)**.725*REK**.45*PR**.8)**-1. © (SEIDMAN)	000101
00126	55*	C	STR $=$ CFR/2.*(1.+A* ($\mathrm{CFR} / 2) *.(H W / H E)$)**. $5 * R E K * * .45 * P R * * .8) * *-1$. @ (HILL)	000101
00126	56*	C		000101
00126	57*	C	100 USED BY FENTER, 70 USED BY HILL, 65 USED BY PIMENTA	000101
00126	58*	C	PIMENTA VALUE CURRENTLY USED FOR TRANSITION	000101
00126	59*	C	ETAK LE. 5.0 SMOOTH	000101
00126	60*	C	$5.0 . L E . E T A K . L E . ~ 65.0 ~ T R A N S I T I O N A L L Y ~ R O U G H ~$	000101
00126	61*		65.0.LT. ETAK ROUGH	000101
00126	62*	C		000101
00127	63*		PCT $=(E T A K-5.0) /(65.0-5.0)$	000126
00130	64*		IF (PCT.LT.O.O)PCT $=0.0$	000132
00132	65*		$I F(P C T . G T, 1.0) P C T=1.0$	000136
00134	66*		$C F=(P C T * C F R)+((1 . O-P C T) * C F S)$	000144
00135	67*		$S T=(P C T * S T R)+((1.0-P C T) * S T S)$	000154
00136	68*	100	CONTINUE	000163
00137	69*		RETURN	000163
00140	70*		END	000175

```
@SYS$*MSFCFOR$.FOR,IS PARTCL
HSA E3 -12/10/84-22:23:46 (.0)
```

SUBROUTINE PARTCL ENTRY POINT 000165

STORAGE USED: CODE (1) OOO170; DATA(O) 000026; BLANK COMMON (2) 000000
COMMON BLOCKS:

0003	PARTI	000020
0004	RUF	000022

EXTERNAL REFERENCES (BLOCK, NAME)

0005	SQRT
0006	XPRR
0007	NERR3

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

00101	1*	SUBRDUTINE PARTCL			000000
00103	2*	REAL K,KG, LAMBV,M,MUE, NU			000000
00104	3*	COMMON /PARTI/M, LAMBV,RHOP,RED, CP, WP, CF, WF, KG, TAW, TW,			000000
00104	4*	\$ ILT, Q, K, RP, IPART			000000
00105	5*				000000
00105	6*	1 DUMM9, MUE, DUMM 11 , UE, RK, ICF, FMF, STR, DUMM 17 , CFR			000000
00105	7*	C			000000
00105	8*	C	INPUT VARIABLES		000000
00105	9*	C			000000
00105	10*	C	M - AVERAGE PARTICLE MASS	(LBM)	000000
00105	11*	C	UE - BOUNDARY LAYER EDGE VELOCITY	(FT/SEC)	000000
00105	12*	C	SIGMA - STOKERS DRAG COEFFICIENT	(LBM/SEC)	000000
00105	13*	C	A - RADIUS OF SPHERICAL PARTICLE	(FT)	000000
00105	14*	C	MUE - GAS VISCOSITY	(LBM/FT SEC)	000000
00105	15*	C	LAMBV - MOMENTUM RANGE	(FT)	0000000
00105	16*	C	RHOP - PARTICLE MASS DENSITY OF THE GAS	(LBM/FT3)	000000
00105	17*	C	RHOE - GAS DENSITY	(LBM/FT3)	000000
00105	18*	C	RED - EDGE REYNOLDS NUMBER BASED ON D		000000
00105	19*	C	X - RUNNING LENGTH	(FT)	000000
00105	20*	C	TAU - SHEAR STRESS	(LBF/FT2)	000000
00105	21*	C	CFRO - FRICTION COEFFICIENT		000000
00105	22*	C	STS - SMOOTH STANTON NUMBER		000000

00105	23*	C CP - SPECIFIC HEAT OF THE SOLID PARTICLE (BTU/LB DEG F)	000000
00105	24*	C WP - MASS FLOW OF PARTICLES (LB/FT2 SEC)	000000
00105	25*	C CF - SPECIFIC HEAT AT CONSTANT PRESSURE OF FLUID (BTU/LB DEG F)	000000
00105	26*	C WF - MASS FLOW OF FLUID. \quad (LB/FT2 SEC)	000000
00105	27*	C K-RATIO OF PARTICLE DENSITY TO FLUID MASS DENSITY AT EDGE	000000
00105	28*	C KG - THERMAL CONDUCTIVITY OF THE GAS (BTU/SEC FT DEG K)	000000
00105	29*	C D - DIAMETER OF THE TUBE	000000
00105	30*	C NU - NUSSELT'S NUMBER	000000
00105	31*	C TAW - ADIABATIC WALL TEMPERATURE \quad DEG. R	000000
00105	32*	C TW - WALL TEMPERATURE \quad DEG. R	000000
00105	33*	C ILT - FLOW TYPE FLAG 1 - LAMINAR	000000
00105	$34 *$	C 2-TURBULENT	000000
00105	35*	C OUTPUT VARIABLES	0000000
00105	36*	C	000000
00105	37*	C CFR - MODIFIED FRICTION COEFFICIENT	000000
00105	38*	C STR - PARTICLE STANTON NUMBER	000000
00105	39*	C	000000
00106	40*	$\mathrm{PI}=3.1415927$	000000
00107	41*	IF (ILT.EQ.2) GOTO 100	000001
00107	42*	C IF ILT $=2$ THE FLOW IS TURBULENT	000001
00111	43*	K=RHOP / RHOE	000004
00112	44*	Y $=$ LAMBV/X	000007
00112	45*	C THE EQUATIONS USED TO COMPUTE QDOT AND CFR ARE DIFFERENT WHEN	000007
00112	46*	C LAMBDA /X IS LESS THAN 1. THAT THE EQUATIONS USED WHEN LAMBDA/X	000007
00112	47*	C IS GREATER THAN 1. HERE ONLY LAMBDA/X LESS THAN 1 CASE IS USED.	0000007
00113	48*	$10 \quad C F R=C F R O * S Q R T(1 .+K) *(1 .+(.49 *(Y * K /(1 .+K)))$)	000012
00114	49*	STR $=$ STS*SQRT $(1 .+K) *(1 .+(.49 *(Y * K /(1 .+K)))$	000031
00115	50*	$Q=S T R / S T S$	000035
00116	51*	GOTO 160	000037
00117	$52 *$	100 BETAS $=(W P * C P) /(W F * C F)$	000041
00120	53*	$W=W P / W F$	0000046
00121	54*	IF (W.LT. 1. OR.ABS (W-1.).LT..001) GO TO 105	000051
00123	55*	IF (W.GT. 1.) GOTO 110	000070
00123	56*	C THIS IF STATEMENT SERVES THE SAME PURPOSE AS THE IF STATEMENT FOR	000070
00123	57*	C THE LAMINAR CASE	000070
00125	$58 *$	105 CFR $=$ CFRO* (1.+BETA5)	000075
00126	59*	STR $=$ STS * ($1 .+$ BETA5)	000101
00127	60*	$0=$ STR/STS	000104
00130	61*	GOTO 120	000106
00131	62*	110 NU=. $14 *($ RED **.6)*(W**.45)	000110
00132	63*	$\mathrm{D}=$ RED / (RHOE * UE/MUE)	000123
00133	64*	QDOT $=((N U * K G) / D) *(T A W-T W)$	000131
00134	65*	STR = QDOT/((DUMM5-DUMM6)*RHOE*UE)	000137
00135	$66 *$	$Q=S T R / S T S$	000145
00136	67*	CFR $=$ Q*CFRO	000147
00137	$68 *$	120 CONT INUE	000152
00140	69*	RETURN	000152
00141	70*	160 CONT INUE	000155
00142	71*	RETURN	000155
00143	72*	END	000167

@SYS\$*MSFCFOR\$.FOR,WUS BLKDTA.

HSA E3 -12/10/84-22:23:49 (22,23)
-21
COMMON/RUF DUMM1, DUMM2, DUMM3,DUMM4 DUMM5, DUMM6, DUMM7, DUMM8, DUMM9
\$ DUMM 10, DUMM 11 , DUMM 12, RK, ICF, FMF, DUMM16, DUMM 17 , DUMM 18
COMMON/PART I/PARTM, DUMM24, RHOPA, DUMM23, CPART, WP, DUMM19, WF.
\$ DUMM22, DUMM2O, DUMM21, ILT, PF, AK, RP, IPART
COMMON /LAM/ LLAMIN
-92
C DEFAULT VALUES FOR ROUGHNESS OPTION
DATA FMF/1.15/.ICF/O/.RK/O.O/
C DEFAULT VALUES FOR PARTICLE OPTION
DATA IPART/O/.RP/O./.WP/O./.WF/1./.CPART/O./.RHOPA/O./
OEFAULT VALUES FOR RELAMINARIZATION OPTION
DATA ILAMIN/O/
BLOCK DATA
STORAGE USED: CODE (1) OOOOOO; DATA (O) OOOOOO; BLANK COMMON(2) OOOOOO
COMMON BLOCKS :

0003	AL	000002
0004	CARDS	000003
0005	CONSTS	000010
0006	CRBCOM	000111
0007	EPSCOM	000045
0010	EQPCOM	000435
0011	ETACOM	000017
0012	HOLLER	000060
0013	INPUTI	000015
0014	INTCOM	000115
0015	LOWTH	001372
0016	NZERO	000001
0017	PLOTS	000172
0020	PRMALS	000154
0021	RFTCOM	000045
0022	RUF	000022
0023	PARTI	000020
0024	LAM	000001
0025	SAHA	000066
0026	TEMCOM	000162
0027	UNICOM	000011
0030	WALTEM	000715

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0020		000000	A	0023		000015	AK	0030		000000	ALTAB	0012	I	000000	AREA	0006		000000	ASU
0010		000000	ATA	0010	R	000030	BASMOL	0014		000000	CASE	0014	R	000015	CBAR	0007	R	000000	CLNUM
0023	R	000004	CPART	0005	R	000000	CPFL	0025		000000	CPH	0015	R	000000	CPL	0012	I	000002	CO
0012	I	000006	DENS	0012	I	000010	DIST	0007		000001	DL	0005	R	000001	DPR	0004		000000	DUB8
0022		000000	DUMM 1	0022		000011	DUMM10	0022		000012	DUMM1 1	0022		000013	DUMM 12	0022		000017	DUMM16
0022		000020	DUMM17	0022		000021	DUMM18	0023		000006	DÜM 19	0022		000001	DUMM2	0023		000011	DUMM2O
0023		000012	DUMM2 1	0023		000010	DUMM22	0023		000003	DUMM23	0023		000001	DUMM24	0022		000002	DUMM3
0022		000003	DUMM4	0022		000004	DUMM5	0022		000005	DÜMG	0022		000006	DUMM 7	0022		000007	DUMM8
0022		000010	DUMM9	0007	R	000020	ELCON	0012	I	000012	ENERGY	0010	R	000031	EPOVRK	0007		000021	EPSA
0011	R	000000	ETA	0010		000032	FF	0004	R	000001	FFAR	0004	R	000002	FITMOL	0017		000000	FLDX
0012	I	000014	FLUX	0022	R	000016	FMF	0021	R	000000	F2FIX	0021		000017	F2FIXT	0005	R	000002	GC
0012	I	000016	HEAT	0015	R	000226	HL	0012	I	000022	HWALL	0014		000016	I	0015	I	000454	IADD

0013	I 000000	IBODY	0022	I	000015	ICF	0025	1	000062	I CON	0030	I	000231	ICOOL	0026	I	000000	IDAT
0013	I 000001	IDERIV	0013	I	000002	IDIFF	0026	I	000001	IED	0030		000232	IENH	0013	1	000003	IETA
0013	1000004	IFIT	0013	I	000005	IFLOW	0013	I	000006	IGUESS	0024	I	000000	ILAMIN	0015	I	000455	ILSP
0023	000013	ILT	0026	I	000002	IND	0015	I	000537	INEW	0026	I	000003	IOR	0026	I	000004	IOUT
0023	I 000017	IPART	0025	I	000063	IPASS	0003	1	000000	IPLOT	0017	I	000030	IPP	0020	1	000146	IPUNCH
0026	I 000005	IRE	0025	I	000064	IRITE	0026	1	000006	IROC	0026	I	000007	ISAV	0026	I	000010	ITA
0013	1 1 000007	ITDK	0026	1	000011	ITE	0013	I	000010	ITHERM	0025	I	000065	ITRCNT	0003	I	000001	IUNIT
0013	1000011	IWALL	0020		000147	J	0013	I	000012	JWALL	0014	I	000023	KAPPA	0013	I	000013	KEDGP
0014	I 000024	KONRFT	0014		000025	KR9	0026	I	000012	LIF	0026	I	000014	LLA	0026	I	000015	LLAW
0026	I 000016	LOT	0026	I	000017	MAIN	0012	I	000024	MASS	0026	I	000020	MOEG	0017	I	000031	MS
0026	I 000021	MURD	0026	I	000022	NCH	0014	1	000114	NETA	0026	1	000023	NIT	0015	I	000551	NLTSP
0017	I 000032	NPCON	0017	1	000033	NPLOT	0021	I	000043	NPOINT	0017	I	000071	NSTAT	0017	I	000153	NSTP
0026	I 000024	NTOR	0013	I	000014	NTROPY	0016	1	000000	NUL	0026	I	000026	NW	0023		000000	PARTM
0005	R 000003	PATM	0023		000014	PF	0005	R	000004	PI	0020	R	000153	PNORM	0012	I	000030	PRESS
0007	R 000040	PRT	0012	I	000032	RAD	0021	R	000044	RATLIM	0005	R	000005	RBAR	0007	R	000041	RETR
0012	1000034	REY	0023	R	000002	RHOPA	0007.		000042	RHOVS	0022	R	000014	RK	0023	R	000016	RP
0005	R 0000006	RVAR	0007	R	000043	SCT	0012	I	000036	SHEAR	0010	R	000434	SIGMA	0005	R	000007	SIPSF
0015	R 000552	SL	0006	R	000110	STEF	0015	I	001000	SUBLT	0012	I	000040	TCON	0012	I	000044	TEMP
0012	I 000046	THRUST	0015	R	001144	TL	0030	R	000714	TOLOW	0027	R	000000	UCD	0027	R	000001	UCE
0027	R 000002	UCL	0027	R	000003	UCM	0027	R	000004	UCP	0027	R	000005	UCR	0027	R	000006	UCS
0027	R 0000007	UCT	0027	R	000010	UCV	0012	I	000050	VEL	0012	I	000052	VIS	0023	R	000007	WF
0023	R 000005	WP	0012	I	000056	XIPR	0007	R	000044	YAP								

END OF COMPILATION: NO DIAGNOSTICS.
\qquad

EXTERNAL REFERENCES (BLOCK, NAME)

0015	1	000004	IFIT	0015	1	000005	IFLOW	0005	1	000003	IFRAC	0015	I	000006	IGUESS	0026		000001	ILAM
0032	1	000000	ILAMIN	0020	I	000455	ILSP	0031		000013	ILT	0046	I	000002	IND	0020	I	000537	INEW
0035		000000	INT	0046	I	000003	IOR	0046	I	000004	IOUT	0023	I	000145	IP	0031	I	000017	IPART
0034	I	000063	IPASS	0003	I	000000	IPLOT	0022	I	000030	IPP	0023	I	000146	IPUNCH	0016	I	000017	IQ
0012		000316	IR	0046	I	000005	IRE	0034	I	000064	IRITE	0046	I	000006	IROC	0016	I	000020	IS
0046	I	000007	ISAV	0016	I	000021	ISH	0013	I	000000	ISN	0023	I	000147	IST	0007		000025	ISU
0046	I	000010	ITA	0051	1	000233	ITCOOL	0015	I	000007	ITDK	0046	1	000011	ITE	0005	I	000004	ITEMP
0036		000002	ITFF	0015	I	000010	ITHERM	0051	I	000234	ITHICK	0051	I	000235	ITLINP	0034		000065	ITRCNT
0016		000022	ITS	0023	I	000150	IU	0003	I	000001	IUNIT	0015	I	000011	IWALL	0000	I	000027	J
0040		000052	UJ	0015	I	000012	JWALL	0016	1	000023	KAPPA	0025		000036	KAPPAL	0025	I	000037	KAPPAT
0012	I	000326	KAT	0017		0000000	KBC	0017		000001	KCC	0015	I	000013	KEDGP	0016	I	000024	KONRFT
0017	I	000003	KQ10	0017		000002	K09	0036		000003	KR2	0016	I	000025	KR9	0007	I	000026	KS
0017		000004	KSB	0017		000005	KSOL	0025	I	000040	KTURB	0017		000006	KT8	0005	I	000005	KU
0051	R	000236	LAMDAW	0012		000336	LAMI	0051	R	000237	LAMTAB	0014		000126	LAR	0004	I	001606	LEF
0004		001616	LEFS	0004		001626	LEFT	0004		001636	LEFW	0046	I	000012	LIF	0046	I	000014	LLA
0046	I	000015	LLAW	0046	I	000016	LOT	0000	L	000016	LOWT	0004		001604	L2	0004		001605	L3
0046	I	000017	MAIN	0016		000107	MAT 11	0016		000110	MAT 1 J	0016		000111	MAT2I	0004		001646	MOA
0004		001742	MOB	0046	I	000020	MOEG	0000	R	000017	MR	0022	I	000031	MS	0046	I	000021	MURD
0016	1	000112	MWE	0005	I	000006	N	0016		000113	NAM	0045	I	000026	NC	0000	I	000020	NCASE
0046	I	000022	NCH	0036		000004	NCV	0012	I	000432	NEL	0016	I	000114	NETA	0025		000041	NETAL
0025	I	000042	NETAT	0005	I	000007	NFF	0046	I	000023	NIT	0020		000551	NLTSP	0016		000115	NNLEQ
0016	I	000116	NON	0005	I	000010	NP	0022	I	000032	NPCON	0022	I	000033	NPLOT	0025	I	000043	NPOINT
0016		000117	NRNL	0016	1	000120	NS	0034	I	000066	NSU	0016	I	000121	NSP	0004		002036	NSPEC
0016		000122	NSPM1	0022	I	000071	NSTAT	0022	I	000153	NSTP	0000	I	000021	NTAL	0023	I	000151	NTH
0046	I	000024	NTOR	0015	1	000014	NTROPY	0046	I	000026	NW	0000	R	000025	OK	0000		001106	OUT
0000	R	000007	OX	0012		000433	P	0031		000000	PARTM	0023	R	000152	PCHAMB	0010		000065	PE
0031		000014	PF	0004		002037	PIEASE	0043		000044	PIM	0021	R	013560	PITAB	0043		000045	PM
0023	R	000153	PNORM	0045	R	000027	PRA	0045	R	000030	PRB	0045	R	000031	PRC	0045	R	000032	PRD
0045	R	000033	PRDUM	0024	R	000063	PRE	0011	R	000040	PRT	0013		000074	PVMW	0013		000120	PVOL
0034		000067	QWG	0023	R	000156	RADFL	0024	R	000145	RADR	0024		000227	RADS	0023		000154	RAD5
0023		000155	RAD6	0025	R	000044	RATLIM	0051	R	000321	RECOFT	0043		000046	RED	0027		0000000	RE THMO
0011	R	000041	RETR	0010		000147	RHOE	0031	R	000002	RHOPA	0011		000042	RHOVS	0050	R	000372	RHOVW
0030	R	000014	RK	0024	R	000311	ROKAP	0031	R	000016	RP	0023	R	000157	RTM	0024	R	000373	S
0011	R	000043	SCT	0035		000001	SDRHOH	0035		000002	SDRHOK	0012	R	000434	SIGMA	0020	R	000552	SL
0047	R	000152	SP	0026		000002	SPCT	0010		000231	SPE	0005		000072	SPL	0005		000073	SPU
0050	R	000454	SPW	0007		000110	STEEF	0020	I	001000	SUBLT	0023		000160	SUMQG	0012		000435	T
0010		000705	TE	0012	R	001006	TF	0051	R	000322	THITAB	0051		000404	TI	0013	R	000144	
0005	R	000074	TJA	0012	R	000436	TKP	0013	R	000147	TKT	0020	R	001144	TL	0051	R	000466	TLINP
0051	R	000632	TLTAB	0051	R	000714	TOLQW	0012		000526	TQ	0045		000034	TR	0043		000047	TREF
0010		000767	TTVC	0012		000616	TU	0051	R	000715	TUBEN	0010		000770	TVCC	0050	R	001130	
0010		001052	UE	0042		000001	UKAPPA	0033		000000	UTAU	0021		016514	VA	0043		000050	VINTR
0021	R	021450	VITAB	0045	R	000037	VMUA	0045	R	000040	VMUB	0045	R	000041	VMUC	0045	R	000042	VMUD
0010		001134	VMUE	0045		000043	VMWD	0010		001216	VMWE	0012		001102	VN	0012		001176	VNU
0021		024404	VS	0004		002040	W	0042		000020	WALLA	0012	R	002136	WAT	0031	R	000007	WF
0012		002146	WM	0013	R	000217	WMS	0031	R	000005	WP	0012		002147	WTM	0051	R	000716	XAREA
0051	R	001000	XENH	0021	R	027340	XITAB	0051	R	001062	XLTAB	0023		000161	XST	0051	R	001226	XTHIK
0012		002243	Y	0011	R	000044	YAP	0021	R	032274	YITAB	0012		002337	YW	0051	R	001310	ZMUTAB
0000	R	000022	ZP																

00100	1*	CBLIMP	BOUNDARY LAYER INTEGRAL MATRIX PROCEDURE	BLIM 001	000000
00100	$2 *$	C			000000
00101	3*	COMMON	/AL/ IPLOT. IUNIT	/AL/	000000
00103	4*	COMMON	/BLQCOM/ FR(60, 15),L2,L3.LEF (8), LEFS(8), LEFT (8), LEFW (8).	/BLQCOM/	000001
00103	5*	1	MOA(60), MOB(60),NSPEC,PIEASE,W(3)	/BLOCOM/	000001
00104	6*	Соммо̃	/CARDS/ DUB8, FFAR, FITMOL, IFRAC, ITEMP, KU, N, NFF, NP (50), SPL,	/CARDS/	000001
00104	7*	1.	SPU, TUA (3)	/CARDS/	000001
00105	$8 *$	COMMON	/COEFFS/ COEF(7,3,60)	/COEFFS/	000001

00171	129*		5 IDAT,NIT,MURD, IOR, NCH, ISAV, ITA, IROC, ITE, LLA , NCH, IDAT	ANK 7/83	000001
00307	130*	46	MWE $=-1$		000137
00310	131*		READ (5,1,END=50) CASE		000140
00313	132*	1	FORMAT (13A6)		000151
00314	133*		READ (5, DATA , END $=50$)		000151
00317	134*		IF (ZP.GT. 0.0) WRITE (6, ARRAYS)	ANK 3/83	000156
00323	135*		IF (ZP, GE - O.O) WRITE (6,OUT)	ANK 3/83	000165
00327	136*		IF (NEL .LE. 8 . AND. NSP .LE. 7) GO TO 25	ANK $8 / 83$	000174
00331	137*		WRITE (6,3) NEL,NSP	ANK 8/83	000212
00335	138*	3	FORMAT (//10X, 'NEL MUST BE .LE. 8 , NEL $=0,12$,	ANK 8/83	000221
00335	139*		1, NSP MUST BE.LE. 7. NSP $=$ ', I2//)	ANK 8/83	000221
00336	140*		NEL $=$ MINO(NEL, 8)	ANK $8 / 83$	000221
00337	141*		NSP $=$ MINO(NSP, 7)	ANK 8/83	000227
00340	142*	25	IF (MR LE. O.O) GO TO 30	ANK $8 / 83$	000236
00342	143*		IF (NTAL.GT. 0) $\mathrm{GE}=(\mathrm{MR} * \mathrm{HOX}+\mathrm{HFU}) /(\mathrm{MR}+1.0)$	ANK 4/83	000240
00342	144*	C	CALCULATE RELATIVE NUMBER OF ATOMS FROM THE MIXTURE RATIO AND THE		000240
00342	145*	C	NUMBER OF EACH ELEMENT IN THE OXIDIZER AND FUEL		000240
00344	146*		OK $=0.0$	ANK 5/83	000255
00345	147*		$F K=0.0$	ANK 5/83	000256
00346	148*		DO $10 \mathrm{~J}=1$, NSP	ANK $5 / 83$	000262
00351	149*		$F K=F K+F U E L(U) * W A T(U)$	ANK 5/83	000262
00352	150*	10	OK $=$ OK + OX $(J) * W A T(J)$	ANK $5 / 83$	000265
00354	151*		AMNO $=$ MR*FK/OK	ANK 5/83	000272
00355	152*		AMWP $=$ FK + AMNO*OK	ANK $5 / 83$	000275
00356	153*		AMNOS $=$ AMNO/AMWP	ANK 5/83	000300
00357	154*		AMNFS $=1.0 /$ AMWP	ANK 5/83	000302
00360	155*		DO $20 \mathrm{~J}=1$. NSP	ANK 5/83	000310
00363	156*	20	TKP $(u, 1)=A M N O S * O X(U)+A M N F S * F U E L(U)$	ANK $5 / 83$	000310
00365	157*		CMR = AMNOS*OK/(AMNFS*FK)	ANK 5/83	000316
00366	158*		WRITE (6.2) CMR,MR	ANK 5/83	000324
00372	159*	2	FORMAT (//10X, 'COMPUTED MIXTURE RATIO $=$ ', F10.6,' INPUT MIXTURE'	ANK 5/83	000334
00372	160*		$1 \quad$ RATID $=, \quad \mathrm{F} 10.6 / 7)$	ANK 5/83	000334
00373	161*	30	NCASE $=$ NCASE +1	ANK 5/83	000334
00374	162*		NSJ $=15+$ NSP		000336
00374	163*	C	IF LOW TEMPERATURE EXTENSION DATA HAS BEEN READ IN, CONVERT IT		000336
00374	164*	C	TO INTERNALLY REQUIRED UNITS		000336
00375	165*		IF (LOWT) CALL LTCPHS		000341
00377	166*		IF (NCASE .GT. 1) REWIND 2	ANK 7/83	000345
00401	167*		IF (IPLOT EQ. O) GO TO 45		000354
00403	168*		IF (NCASE .LE. 1) GO TO 35	ANK $7 / 83$	000356
00405	169*		REWIND 3		000362
00406	170*		REWIND 4		000365
00407	171*	35	NSTAT(NS) $=1$	ANK 7/83	000371
00410	172*		IF (IWALL . NE. 7) GO TO 45	ANK $4 / 83$	000373
00412	173*		NPLOT(7) $=0$		000376
00413	174*		NPLOT(12) $=0$		000377
00414	175*	45	$I S=1$	ANK 5/83	000401
00415	176*		$I Q=1$		000402
00416	177*		IF (ICOOL NE O . AND. ICON, EQ - O) IRITE = O		000404
00420	178*		IF (IPLOT .EQ. O .OR. ICOOL .NE. O) IPASS $=1$		000415
00422	179*		IF (ICON EQ . 1 AND. IPLOT NE O O) IPASS $=0$		000427
00424	180*	41	CALL SETUP		000443
00425	181*	43	CALL ITERAT	BLIM 031	000445
00426	182*		CALL OUTPUT	BLIM 032	000446
00427	183*		IF (NON) 43,44, 5		000450
00432	184*	44	ISH $=$ IS	ANK $5 / 83$	000454
00433	185*		$10=10+1$		000456
00434	186*		$I S=I S+1$	ANK $5 / 83$	000461
00435	187*		IF (NP(IS) EQ. NTH) NSTAT (IS) $=1$	ANK 5/83	000464
00437	188*		IF (K010 + IS . EQ. -10) KQ10 $=1$	ANK $5 / 83$	000474

00441	189*		IF (IS .EQ. NS) IRITE $=1$	ANK 5/83	000502
00443	190*		IF (IS .LE. NS) GO TO 41	ANK 5/83	000507
00445	191*		$I S=N S$	ANK 5/83	000513
00446	192*		IF (ICOOL.EQ. O.OR. ICON.EQ. 1) GO TO 15		000515
00450	193*		CALL SATEMP		000527
00451	194*		GO TO 45		000531
00452	195*	15	IF (NP(IS) .LE NTH) GO TO 46	ANK 8/83	000533
00454	196*		CALL ROCOUT	ANK 8/83	000537
00455	197*		IF (IPLOT GT. O) CALL PLOT		000541
00457	198*		GO T0 46		000546
00460	199*	50	IF (IPUNCH NE - 1 . AND. IPUNCH NE. 2) CALL EXIT	ANK 8/83	000550
00462	200*		$J=0$	ANK $8 / 83$	000565
00463	201*		WRITE (15) J	ANK 8/83	000566
00466	202*		END	BLIM 038	000575
END OF COMPILATION:					

 COMMON/ACCN/ACCPK. ILAM, SPCT
 COMMON/ACPK/ACCPK 1, ACCPK2
 COMMON/RETH/RETHMO
 COMMON/RUF /DUMM 1 , DUMM2, DUMM3, DUMM4, DUMM5, DUMM6, DUMM 7, DUMM8, DUMM9,
 \$ DUMM 10, DUMM 11 , DUMM 12, RK, ICF,FMF, DUMM 16 , DUMM 17 , DUMM 18
 COMMON/PART I PARTM, DUMM24, RHOPA, DUMM23, CPART, WP, DUMM19,WF ,
 DUMM22, DÜMM2O, DUMM21, ILT, PF, AK, RP, IPART
 COMMON/LAM/ ILAMIN
 -313
RETHMO $=-$ C $3 M(I S) * \operatorname{RHOE}(I S) * U E(I S) * C T E * V M U E(I S) / V M U(N E T A)$
ACCP $=$ BETAV (IS) *VMUE (IS) **2*ROKAP (IS) $* * 2 / 2.0 / X I$ (IS)
ACCPK $=A C C P * R H O E(I S) * V M U(1) /(V M U E(I S) * R H O(1))$
IF (ILAMIN.EQ.O)GO TO 79
ILAM=0
IF(S(IS).GT.2.*STURB.AND.ACCPK.GT.1.1E-06)GO TO 69
GO TO 79
69 TF(RETHMO LT. 250.) GO T0 79
ILAM $=1$
$A A=8.935 E-14$
$B B=2.239 E-10$
$C C=1.0247 \mathrm{E}-06$
ACCPK $1=A A * R E T H M O * * 2+B B * R E T H M O+C C$
IF (RETHMO.LT.4100.) GO TO 98
I LAM $=0$
GO TO 99
98 GCCPK2=3.5E-06
99 IF $A C C P K . L T . A C C P K 1) I L A M=0$
IF $A C C P K \cdot L T \cdot A C C P K 1)$ I LAM $=0$
IF $A C C P K \cdot G T \cdot A C C P K 2)$ I LAM $=1$
CONTINUE
-320
-321
IF (RETHMO.GT.RETR)ILT=2
IF (RETHMO.ET.RETR $) I L T=1$
SUBROUTINE NNNCER ENTRY POINT 002554
NONCER ENTRY POINT 002557
STORAGE USED: CODE (1) 002562; DATA (0) 000142: BLANK COMMON(2) 000000
COMMON BLOCKS:
0003 BLQCOM 002043
0004 BUMCOM 000004
0005 COECOM 000014
0006 COECOM 000014
0007 CONSTS 000003
0010 CRBCOM 000110
0011 EDGCOM 001216
0012 EPSCOM 000042

0013	EQPCOM	000433
0014	EQTCOM	001427
0015	ERRCOM	000622
0016	ETACOM	002631
0017	FLXCOM	000020
0020	HISCOM	000426
0021	INPUTI	000015
0022	INTCOM	000123
0023	INTERI	000006
0024	NONCOM	035532
0025	NZERO	000001
0026	PRMALS	000145
0027	PRMORG	000455
0030	PRPCOM	000303
0031	PRPNPT	000076
0032	SAVNCR	000175
0033	TURB	000001
0034	VARCOM	000645
0035	WALL	000226
0036	ACCN	000003
0037	ACPK	000002
0040	RETH	000001
0041	RUF	000022
0042	PARTI	000020
0043	LAM	000001

EXTERNAL REFERENCES (BLOCK, NAME)

0044	EQUTL
0045	STATE
0046	LINCER
0047	TRMBL
0050	IMONE
0051	TVCM 1
0052	ICOEFF
0053	TVCCOE
0054	IONLY
0055	TVCI
0056	LIAD
0057	ABMAX
0060	RERAY
0061	RNLCER
0062	NERR3\$

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0001	000067	10L	0001	000626	100L	0001	001141	1001L	0001	000163	11L	0001	000157	12L
0001	000642	120 L	0001	001022	145 L	0001	000056	167G	0001	000113	202G	0001	000137	216 G
0001	000204	230G	0001	000206	234G	0001	001163	244L	0001	000247	251G	0001	000345	270G
0001	000346	273G	0001	000025	3L	0001	000364	302G	0001	000417	317G	0001	000426	325G
0001	000435	3316	0001	000501	354G	0001	000504	360G	0001	000513	364G	0001	000030	4L
0001	000604	417 G	0001	000671	441 G	0001	000672	444G	0001	001002	470G	0001	001033	500G
0001	001114	512G	0001	001117	516G	0001	001134	526G	0001	000373	53L	0001	001173	535G
0001	000401	54L	0001	001274	560G	0001	001304	565G	0001	001324	574 G	0001	000424	58L
0001	000544	60L	0001	001350	605G	0001	001204	605L	0001	001376	614G	0001	001407	621G
0001	001445	6291	0001	001425	630G	0001	001472	642G	0001	001474	645G	0001	001512	654G
0001	001520	660G	0001	001663	6651	0001	001545	671G	0001	001703	673L	0001	001720	675L
0001	002320	69 L	0001	001572	701G	0001	001617	704G	0001	001624	710 G	0001	001646	717G

0001		002022	740 L	0001		002005	747G	0001		002077	760G	0001		002121	765L	0001		002127	770 L
0001		002163	775G	0001		002366	79L	0001		002406	850L	0001		000612	95L	0001		002351	98L
0001		002353	991	0014	R	000044	A	0000	R	000020	AA	0000	R	000017	$\triangle C C P$	0036	R	000000	ACCPK
0037	R	000000	ACCPK 1	0037	R	000001	ACCPK2	0042		000015	AK	0034	R	000000	ALPH	0020	R	000000	ALPHD
0024	R	000000	AM	- 0010	I	000000	ASU	0013		000000	ATA	0016	R	000321	BA1	0016	R	001727	BA2
0000	R	000021	BB	0020	R	000001	BETAP	0020	R	000063	BETAV	0010	I	000003	BSU	0004	R	000000	BUMP
0022		000000	CASE	0022	R	0000015	CBAR	0000	R	000022	CC	0006		000000	CK 1	0006	R	000006	CK6
0012		000000	CLNUM	0024	R	000000	CORAR	0032	R	000000	CORMA	0026		000000	COSALF	0042		000004	CPART
0007	R	000000	CPFL	0000	R	0000015	CTE	0020	R	000145	C1	0005	R	000005	C10	0005		000006	C12
0005	R	000007	c13	0005		000010	C14	0020		000146	C2	0020	R	000147	C3M	0005	R	000013	C32
0005	R	000000	C5	0005	R	000001	C6	0005	R	000002	C7	0005	R	000003	C8	0005	R	000004	C9
0030		000255	DCAPCH	0024	R	035431	DLPH	0024	R	035441	DLPK	0007		000001	DPR	0030	R	000000	DRHOH
0030	R	000001	DRHOK	0015	R	000612	DRNL	0011		000000	DSIP	0030	R	000254	DTH	0024	R	035521	DTHW
0030	R	000037	DTK	0024	R	035522	DTKW	0000	R	000012	DUB	0011	R	000062	DUEDGE	0000	R	000014	DUM
0041		000000	DUMM1	0041		000011	DUMM.10	0041		000012	DUMM11	0041		000013	DUMM 12	0041		000017	DUMM16
0041		000020	DUMM17	0041		000021	DUMM 18	0042		000006	DUMM19	0041		000001	DUMM2	0042		000011	DUMM20
0042		000012	DUMM2 1	0042		000010	DUMM22	0042		000003	DUMM23	0042		000001	DUMM24	0041		000002	DUMM3
0041		000003	DUMM4	0041		000004	DUMMS	0041		000005	DUMM6	0041		000006	DUMM7	0041		000007	DUMM8
0041		000010	DUMM9	0032	R	000001	DVNL	0004	R	000001	EASE	0015	R	000375	ELMM	0010	R	000007	EMISC
0010		000010	EMIST	0010	R	000011	EMIV	0015	R	000376	ENL	0015	R	000571	ENLM	0015	R	000601	ENLMM
0012	R	0000021	EPSA	0014	R	0000000	EQT	0016	R	000000	ETA	0034	R	0000001	F	0015	R	000000	FLE
0035	R	000000	FLUXU	0041		000016	FMF	0003		000000	FR	0034	R	000075	G	0007	R	000002	GC
0026	R	000144	GE	0011	R	000063	GEP	0015	R	000053	GLE	0031	R	000000	HB	0010	R	000014	HCARB
0010	R	000015	HCHAR	0011	R	000064	HE	0020		000231	HF	0031	R	000017	HP	0010	R	000020	HPG
0010	R	000021	HPYG	0022	I	000016	I	0021		000000	IBODY	0041		000015	ICF	0032	I	000174	ICORM
0027		000000	IDISC	0015	1	000602	IENLM	0021	1	000005	IFLOW	0021	I	000006	IGUESS	0021		000007	IH
0036	I	000001	ILAM	0043	I	000000	ILAMIN	0042	1	000013	ILT	0000		000077	INJP\$	0042		000017	IPART
0022	I	000017	IQ	0022	I	000020	IS	0022		000021	ISH	0014	I	000016	ISP	0010	1	000025	ISU
0022	I	000022	ITS	0021	I	000011	IWALL	0000	I	000010	IX	0004	I	000002	1777	0000	I 0	000001	J
0000	I	000013	JJ	0021		000012	JW	0000	I	000004	K	0022	I	000023	KAPPA	0023		000000	KBC
0023	I	000001	KCC	0000	I	000000	KK	0022		000024	KONRFT	0023	I	000003	KQ10	0023	I	000002	KQ9
0022	I	000025	KR9	0010	I	000026	KS	0023		000004	KSB	0023	I	000005	KSOL	0000	I	000005	L
0016	I	000126	LAR	0003	I	001606	LEF	0003	I	001616	LEFS	0000	I	000016	LPI	0003	I	001604	L2
0003	I	001605	L3	0000	I	000002	M	0022	I	000107	MATII	0022	I	000110	MATIU	0022	I	000111	MAT2I
0000	I	000006	MM	0003	I	001646	MOA	0003	I	001742	MOB	0022		000112	MWE	0000	I	000003	MX
0000	I	000007	N	0022	I	000113	NAM	0013	I	000432	NEL	0022	1	000114	NETA	0022	1	000115	NNLEO
0022		000116	NON	0022	I	000117	NRNL	0022		000120	NS	0022	I	000121	NSP	0003	I	002036	NSPEC
0022	I	000122	NSPM1	0021	I	000014	NTROPY	0025	1	000000	Nū	0014		000017	P	0042		000000	PARTM
0011	R	000065	PE	0042		000014	PF	0003	R	002037	PIEASE	0030	R	000000	PREQ	0031		000020	QR
0017	R	000007	QW	0014		000350	R	0027		000227	RADS	0040	R	000000	RETHMO	0012	R	000041	RETR
0031	R	000037	RHO	0011	R	000147	RHOE	0031	R	000056	RHOP	0042		000002	RHOPA	0041		000014	RK
0027	R	000311	ROKAP	0042		000016	RP	0027	R	000373	5	0000	R	000011	SFE	0034	R	000152	SP
0036		000002	SPCT	0015	R	000111	SPLE	0033	R	0000000	STURB	0014	R	001237	TC	0024	R	035530	TCW
0031	R	000075	TP	0017	R	000017	TPWALL	0011	R	000767	TTVC	0011		000770	TVCC	0011	R	001052	UE
0017	R	000010	VJKW	0014	R	001333.	VLNK	0024	R	035531	VLNKW	0030	R	000264	VMU	0011	R	001134	VMUE
0003	R	002040	W	0017	R	000001	WALLJ	0017	R	000000	WALEO	0004	R	000003	WDOT	0042		000007	WF
0042		000005	WP	0020	R	000344	XI	0006	R	000242	XM								

00463	190*	1	1 : ETA (KAPPA))*CBAR)	ANK 4/83	000742
00465	191*		IF (ITS .GT. 1) GO TO 145	ANK 5/83	000771
00467	192*		DO $140 \mathrm{~K}=1$. NSP		001002
00472	193*	140	IF (LEFS (K) .LE. O . AND. LEF (K) .GT. O) EASE $=0.050$		001002
00475	194*	145	$M=2$	ANK 4/83	001022
00476	195*		$M M=M A T 1 J-1$		001023
00477	196*		DO $200 \mathrm{I}=1$, NRNL		001033
00502	197*		CALL ABMAX (MM-1. ENL (M), ENLM (I), IENLM (I)		001034
00503	198*		$\operatorname{IENLM}(\mathrm{I})=\operatorname{IENLM}(\mathrm{I})+1$		001053
00504	199*		$M=M+M M$		001056
00505	200*	200	$M M=$ NETA - 1	ANK 8/83	001061
00505	201*	C	SOLVE REDUCED SET OF EQUATIONS	B05A2070	001061
00507	202*		IF (IGUESS . LT. O) RETURN	ANK 4/83	001066
00507	203*	C	SCRUNTCH DEFINED ROWS OF AM MATRIX TO THE TOP	B05A2090	001066
00511	204*		DO $240 \mathrm{M}=1$, NAM	B05A2130	001074
00514	205*		$E N L(M)=E N L(M+1)$		001114
00515	206*		DO $240 \mathrm{~J}=1$, NNLEQ		001117
00520	207*	240	$A M(M, J)=A M(M+1, U)$		001117
00523	208*		IF (KQ10 - LE , O) GO TO 1001	ANK 4/83	001126
00525	209*		DO $1000 \mathrm{M}=4$, NAM		001134
00530	210*	1000	$A M(M, 3)=A M(M, 3)+\operatorname{ENL}(M) / F(1,3)$		001134
00530	211*	C	THE FOLLOWING ROUTINE REARRANGES COLUMNS OF THE NOW RECTANGULAR	BO5A2250	001134
00530	212*		AM MATRIX, ACCORDING TO LAR, INVERTS (AM $\left.\left.^{(I, J), ~} J=2, N A M\right), I=1, N A M\right) ~ A N D$	B05A2260	001134
00530	213*	C	MULTIPLIES THE INVERSE TIMES THE REMAINING COLUMNS OF AM MATRIX	BO5A2270	001134
00530	214*	C	AND TIMES THE ENL	B05A2280	001134
00532	215*	1001	CALL RERAY (NAM, AM, NSP+1, ENL, 1, LAR, IX, 123. EQT, EQT (106), EQT (219).	ANK $4 / 83$	001141
00532	216*	1	EQT(332), EQT (445))	ANK 4/83	001141
00532	217*	C	TREAT SURFACE OPTIONS IN RNLCER WITH REDUCED NONLINEAR SET		001141
00533	218*	244	CALL RNLCER	ANK 4/83	001163
00533	219*	C	DETERMINE MAXIMUM NONLINEAR ERRORS	B05A4010	001163
00534	220*		DO $605 \mathrm{I}=1$. NRNL		001164
00537	221*		IF (ABS(ENLM(I)) .GE. ABS(DRNL(I))) GO T0 605		001173
00541	222*		$\operatorname{ENLM}(\mathrm{I})=$ DRNL (I)		001177
00542	223*		$\operatorname{IENLM}(\mathrm{I})=1$		001201
00543	224*	605	CONTINUE		001205
00545	225*		$S F E=A L P H * A M A X 1(A B S(B E T A P(I S)), 0.10)$	ANK $7 / 83$	001205
00546	226*		DUB $=\operatorname{AMAX1}$ (ABS $(\mathrm{G}(\mathrm{NETA}, 1)-\mathrm{G}(1,1)), 1 . \mathrm{OE} 3)$		001214
00547	227*		$\operatorname{ENLM}(1)=\operatorname{ENLM}(1) / S F E$	-	001224
00550	228*		ENLM (2) $=$ ENLM(2)/DUB		001227
00551	229*		CALL ABMAX (NRNL, ENLM, ENLMM, M)		001232
00552	230*		ENLMM $=$ ENLMM/10.		001240
00553	231*		$\operatorname{ENLM}(1)=\operatorname{ENLM}(1) * S F E$		001243
00554	232*		$\operatorname{ENLM}(2)=\operatorname{ENLM}(2) *$ DUB		001246
00555	233*		ELMM $=A B S$ (ELMM)	B05A4160	001251
00556	234*		ENLMM $=$ ABS (ENLMM)	ANK 4/83	001253
00556	235*	C E	EVALUATE NONLINEAR CORRECTIONS FROM THE REDUCED SET	B05A4180	001253
00557	236*		DO $615 \mathrm{I}=1$, NAM	B05A4190	001274
00562	237*		$L=L A R(I)$	B05A4200	001274
00563	238*		DVNL $(L)=E N L$ (I)	B05A4210	001276
00564	239*		DO $615 \mathrm{~K}=1$, NRNL	B05A4220	001304
00567	240*		$J=K+N A M$	B0544230	001304
00570	241*	615	$D V N L(L)=$ DVNL $(L)-$ DRNL $(K) *$ AM (I, J)	B05A4240	001307
00573	242*		DO $620 \mathrm{~K}=1$. NRNL	B05A4250	001324
00576	243*		$I=N A M+K$	B05A4260	001324
00577	244*		$J=\operatorname{LAR}(I)$	B05A4270	001327
00600	245*	620 D	$\operatorname{DVNL}(J)=$ DRNL (K)	B0544280	001332
00600	246*	C-----R	RECYCLE IF ALPH WANTS TO GO NEGATIVE		001332
00602	247*		IF (OVNL (1) . GT. -0.90*ALPH) GO TO 629		001337
00604	248*		DO $627 \mathrm{~K}=$ NUL , NSPM1		001350
00607	249*		WALLJ(K) $=$ VJKW (K)*C3M(IS)	ANK $8 / 83$	001350

END OF COMPILATION
NO DIAGNOSTICS.

```
@SYS$*MSFCFOR$.FOR,WUS OUTPUT
HSA E3 -12/10/84-22:24:00 (39,40)
-8,8
    COMMON/EDGCOM/DSP(53),PE(50),RHOE(350),TE(51),TVCC(50),UE(50),
    $ VMUE(50)
-30
    COMMON/RUF/DUMM1,DUMM2, DUMM3,DUMM4, DUMM5 DUMM6, DUMM7,DUMM8,DUMM9,
    $ DUMM 1O,DUMM11,DUMM12,RK,ICF,FMF,DUMM16,DUMM17,DUMM18
    COMMON/PARTI /PARTM,DUMM24,RHOPA,DUMM23,CPART,WP,DUMM19,WF,
    $ DUMM22, DUMM2O,DUMM21,ILT,PF,AK,RP,IPART
        COMMON /LAM/ ILAMIN
-37
        COMMON/ACCN/ACCPK.ILAM,SPCT
        COMMON/RETH/RETHMO
        DIMENSION DM1(15),DM2(15)
-99,93-
\//\
```

```
            IF(IPART.EQ.1)GO TO 40
        IF(ICF.GT.O.AND.ICF.LT.3)GO TO 40
        GO TO 41
    40 DUMM1=DER(11)*2.
        DUMM2=DER(12
        DUMM3 =S(IS)
        AM=F(NETA, 2)/ALPH*UE(IS)/SQRT (GMR(NETA)/VMW (NETA)*TT(NETA)*49732.)
        REFF=(1.+(GMR(NETA)-1.)/2.*PR(NETA)**.333*AM**2)/
        $ (1.+(GMR(NETA)-1.)/2.*AM**2)
        DO 42 I=1,NETA
        DM1(I)=CPBAR(I )*UCT/UCE
        DM2(I)=TT(I )/UCT
4 2
    CONTINUE
        DZERO=DM1(1)-(DM1(2)-DM1(1))/(DM2(2)-DM2(1))*DM2(1)
        AINT =0.5*(DZERO+DM1(1))*DM2(1)
        DUMMG=AINT
        DO 43 I=2,NETA
        AINT=AINT+O.5*(DM1(I-1)+DM1(I))*(DM2(I)-DM2(I-1))
    43
CONTINUE
        DUMM4 =A INT
        DUMM5 = (DUMM4+(G(NETA, 1)-HB (NETA)/UCE))*REFF
        DUMM7 = RHO (NETA)
        DUMM8 =RHO ( 1)
        DUMM9 = VMU (1)
        DUMM 1O=VMUE (IS)
        OUMM11=PR(NETA)
        DUMM12=UE(IS)
        DUMM12=UE(IS)
        IF(IPART.EQ.1.AND.(ICF.EQ.O.OR.ICF.EQ.3))GO TO 41
        AFACT =0.52
        CALL ROUGH(AFACT)
        CF=DUMM18/2.
        ST =DÜMM16
        WALLQ=ST*(G(NETA,1)-G(1,1))*RHOE(IS)*UE(IS)
        41 CONT INUE
        IF(IPART.EQ. 1)GO TO 45
        GO TO 44
45 IF(ICF.EO.O.OR.ICF.EQ.3)GO TO 46
        DUMM 1=DUMM18
        DUMM2 =DUMM 16
        CONTINUE
        DUMMS=G(NETA,1)
        DUMMG=G(1.1)
```

DUMM2 $1=T T(1) / U C T$
DUMM22 $=$ DUMM 19*VMU (NETA)/UCV/DUMM 11
DUMM23 = (DUMM7*DUMM12*2. *ROKAP (IS)/RAD5)/DUMM 10
PARTM $=(4 . / 3) *.(22 . / 7) *.((R P / 12) * * 3) * R H O P$.
DUMM24 = PARTM*DUMM $12 /((22 . / 7) * .6 . * R P / 12 . * D U M M 10)$
CALL PARTCL
$C F=D U M M 18 / 2$
ST = DUMM16
WALLQ $=S T *(G(N E T A, 1)-G(1,1)) * R H O E(I S) * U E(I S)$

IF (ICF.EQ.O)GO TO 1111
WRITE (6.1009)
FORMAT ($/, 1 \mathrm{X}, 56(*$, , REMTECH INC. $11-84,56(\%$,$))$
FORMAT $\left(/, 1 X, 132\left({ }^{\prime *}{ }^{\prime}\right)\right.$
WRITE $(6,1000) \mathrm{ICF}$, RK
1000 FORMAT (/, 2X,'ROUGHNESS MODULE USED - OPTION , I2./
\$ $6 X$, 'EQUIVALENT SAND ROUGHNESS HEIGHT, $R K=, E 10.3$, (FEET)')
IF (ICF.EQ.3)GO TO 1112
RFACT = DUMM 16/DUMM2
IF (DUMM 17.EQ.O.O)WRITE 6.1001)RFACT
IF (DUMM17.GT.O.O.AND.DUMM17.LT. 1.O)WRITE 6,1002$) R F A C T$
IF (DUMM17. EQ. 1.0) WRITE 6,1003) RFACT
1001
1002 FORMAT ($6 X$,'SMOOTH', $14 X, 20 X$.'ROUGHNESS FACTOR $=$, F7.3)
1003 FORMAT ($6 X$, ROUGH', $15 X, 20 X$, ROUGHNESS FACTOR $=, F 7.3$)
WRITE $(6,1008)$ CF, ST, WALLO
1008 FORMAT ($1 X, \quad$ CF/2 $=1,1$ PE10.3,5X, \quad ST NO. $=1,1$ PE10. $3,5 X$,
\$ 'HEAT FLUX='. 1PE1O.3)
GO TO 111
1112 CONTINUE
IF (ABS (DUMM17) LE. 0.001)WRITE $(6,1004)$
…...........IF (ABS (DUMM17-1.) LEE.O.OO1)WRITE 6,1005)
1004 IF (ABS (DUMM17-2.). LE. O.001)WRITE $(6,1006)$
FORMAT ($6 X$.'SMOOTH')
1006 FORMAT (6X, RKS BEYOND UPPER LIMIT - EQUATION BECOMES INVALID - -
'THEREFORE RKS $=0.0$ WAS USED.')
WRITE (6, 1010)
1111 CONTINUE
IF (IPART.EQ. 1) GO TO 1301
GO TO 1302
1301 WRITE $(6,1009)$
IF(ILT. EQ. 1)WRITE (6, 1303)RP, AK, PF
1303 FORMAT (/ 2X,'PARTICLE MODULE USED',/ 6X,'LAMINAR FLOW', $5 X$,
\$'PARTICLE SIZE RP=, E1O.3, IN RADIUS', J. $X X$, 'PARTICLE LOADING $=$,
\$ F10.2. 10X, 'PARTICLE FACTOR $=$ ', F10.4)
IF (ILT.EQ.2)WRITE $(6,1305) R P, W P, P F$
1305 FORMAT (/, 2X, 'PARTICLE MODULE USED', $/, 6 X$, 'TURBULENT FLOW', 5X,
\$'PARTICLE SIZE RP=, E1O.3,'IN RADIUS', /, $1 X$, 'PARTICLE LOADING $=0$.
$\$$ F10.2, 10X, 'PARTICLE FACTOR $=$, F F 10.4)
WRITE 6,1008) CF,ST,WALLQ
WRITE $(6,1010)$
1302 CONTINUE

IF(ILAMIN.EQ.O.OR.ILAM.EQ.O)GO TO 1211
WRITE (6,1009)
WRITE (6, 1200) SPCT
1200 FORMAT ($/, 2 X$, RELAMINARIZATION OCCURED',
$\$ 2 X$, DEGREE OF RELAMINARIZATION $=$, E10..3.' PERCENT')
WRITE (6, 1010)
1211 CONT INUE
WRITE (6, 1007) RETHMO, ACCP, ACCPK
1007 FQRMAT (/. $1 \times$, \quad RETHMO ACCN PARA ACCN PARA $, 1,1 X$
\$, (EDGE) (WALL),./, 3X, 1P3E 10.3)

SUBROUTINE OUTPUT ENTRY POINT 003775

STORAGE USED: CODE(1) 0O4015; DATA (O) OO1251: BLANK COMMON(2) 000000
COMMON BLOCKS:

0003	AL	000002
0004	BLOCOM	002043
0005	COECON	000317
0006	CONSTS	000010
0007	CRBCOM	000111
0010	EDGCOM	001216
0011	EPSCOM	000040
0012	EOPCOM	002243
0013	ETACOM	000017
0014	FLXCOM	000020
0015	HISCOM	000426
0016	HOLLER	000056
0017	INPUTI	000015
0020	INTCOM	000123
0021	INTERI	000004
0022	PRMALS	000243
0023	PRMORG	000455
0024	PRPCOM	000303
0025	PRPERT	000151
0026	PRPIOP	000016
0027	PRPNPT	000056
0030	RFTCOM	000045
0031	RUF	000022
0032	PARTI	000020
0033	LAM	000001
0034	SAHA	000151
0035	SAVOUT	000021
0036	TEMCOM	000201
0037	TURB	000020
0040	UNI COM	000011
0041	VARCOM	000645
0042	WALL	000454
0043	$A C C N$	000003
0044	RETH	000001

EXTERNAL REFERENCES (BLOCK, NAME)

0045	ROUGH
0046	PARTCL
0047	REFIT

0050	ATAN2
0051	COS
0052	NWDU\$
0053	NIO1\$
0054	NIO3\$
0055	NIO2\$
0056	NWBU\$
0057	SQRT
0060	XPRR
0061	NERR3\$

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0033	I 000000	ILAMIN	0032	I 000013	ILT	0000		001211	INJP\$	0032	I	000017	IPART	0034	I 000063	IPASS
0003	000000	IPLOT	0034	I 000064	IRITE	0020	I	000020	IS	0020		000021	ISH	0022	I 000147	IST
0007	I 000025	ISU	0017	I 000007	ITDK	0017		000010	ITH	0034		000065	ITRCNT	0022	000150	IU
0003	I 000001	IUNIT	0017	I 000011	IWALL	0000	I	000060	J	0017		000012	JW	0000	I 000046	K
0020	I 000023	KAPPA	0030	I 000036	KAPPAL	0030	I	000037	KAPPAT	0021		000000	KBC	0020	10000024	KONRFT
0021	I 000003	KQ1O	0021	1000002	KQ9	0020		000025	KR9	0007		000026	KS	0030	I 000040	KTURB
0004	001604	12	0000	I 000110	M	0016	I	000024	MASS	0004	I	001646	MOA	0004	I 001742	MOB
0012	I 000432	NEL	0020	I 000114	NETA	0030	I	000041	NETAL	0030	1	000042	NETAT	0020	000115	NNLEQ
0020	I 000116	NON	0030	000043	NPOINT	0020		000117	NRNL	0020	1	000120	NS	0034	1000066	NSU
0020	I 000121	NSP	0004	I 002036	NSPEC	0020	I	000122	NSPM 1	0017	I	000014	NTROPY	0000	1000043	NUM
0012	000433	P	0032	R 0000000	PARTM	0006	R	000003	PATM	0010	R	000065	PE	0032	R 000014	PF
0006	000004	PI	0004	002037	PIEASE	0000	R	000104	PITOT	0000	R	000061	POUT	0025	R 000055	PR
0000	11.000041	PRES	0016	I 000030	PRESS	0000	R	000053	QDIFU	0034	R	000067	QWG	0022	000156	RADFL
0023	R 000227	RADS	0022	R 000154	RAD5	0022	R	000155	RADG	0030	R	000044	RATLIM	0000	R 000077	REFF
0044	R 000000	RETHMO	0016	I 000034	REY	0000	R	000103	RFACT	0027	R	000037	RHO	0010	R 000147	RHOE
0032	R 000002	RHOPA	0042	R 000372	RHOVW	0031	R	000014	RK	0023	R	000311	ROKAP	0032	R 000016	RP
0022	R 000157	RTM	0006	R 000006	RVAR	0023	R	000373	S	0025	R	000074	SC	0000	R 000052	SHEAD
0016	I 000036	SHEAR	0000	R 000050	SHFAC	0006	R	000007	SIPSF	0041	R	000152	SP	0043	R 000002	SPCT
0000	R 000102	ST	0007	R 000110	STEF	0037		000000	STURB	0022	R	000160	SUMQG	0016	I 000040	TCON
0010	R 000705	TE	0016	I 000044	TEMP	0036	R	000153	THELEM	0000	R	000070	THENGY	0000	R 000071	THMOM
0016	1 1 000046	THRUST	0014	R 000017	TPWALL	0025	R	000113	TT	0037	R	000001	TURPR	0010	R 000770	TVCC
0040	R 000000	UCD	0040	R 000001	UCE	0040	R	000002	UCL	0040	R	000003	UCM	0000	R 000065	UCMF
0040	R 0000004	UCP	0040	R 000005	UCR	0040	R	000006	UCS	0040	R	000007	UCT	0040	R 000010	UCV
0010	R 001052	UE	0035	R 000001	UKAPPA	0016	I	000050	VEL	0016	I	000052	VIS	0000	R 000107	VISC
0014	R 000010	VJKW	0024	R 000264	VMU	0010	R	001134	VMUE	0025	R	000132	VMW	0012	R 001176	VNU
0004	R 002040	W	0035	R 000020	WALLA	0014	R	000001	WALLU	0014	R	000000	WALLQ	0012	R 002136	WAT
0032	000007	WF	0032	R 0000005	WP	0012	R	002147	WTM	0005	R	000247	XG	0015	R 000344	XI
0005	R 000242	XM	0005	R 000254	XSP	0022	R	000161	XST	0036	R	000162	Y			

01055	329*	1004	FORMAT (6X, 'SMOOTH')		NEWOO2335	
01056	330*	1005	FORMAT (6X, 'ROUGH')		NEWOO2335	
01057	331*	1006	FORMAT (6X,'RKS BEYOND UPPER LIMIT - EQUATION BECOMES INVALID - ' '		NEWOO2335	
01057	332*		\$ THEREFORE RKS $=0.0$ WAS USED. ${ }^{\circ}$)		NEWOO2335	
01060	333*		WRITE (6, 1010)		NEWOO2335	
01062	334*	1111	CONTINUE		NEWOO2343	
01063	335*		IF (IPART.EQ, 1)GO TO 1301		NEWOO2343	
01065	336*		GO TO 1302		NEWOO2345	
01066	337*	1301	WRITE $(6,1009)$		NEWOO2347	
01070	338*		IF (ILT.EQ. 1)WRITE (6,1303)RP, AK, PF		NEWOO2353	
01076	339*	1303	FORMAT (/ . 2 X, 'PARTICLE MODULE USED'./.6X, LAMINAR FLOW', 5 X ,		NEWOO2366	
01076	340*		\$ PARTICLE SIZE RP=', E1O.3, IN RADIUS', \%, $1 \times$, PARTICLE LOADING $=$ ',		NEWOO2366	
01076	341*		\$ F10.2,10X.'PARTICLE FACTOR $=$ ', F10.4)		NEWOO2366	
01077	342*		IF (ILT.EQ. 2)WRITE (6,1305) RP, WP, PF		NEWOO2366	
01105	343*	1305			NEWOO2401	
01105	344*		\$ PARTICLE SIZE RP=, EIO.3, IN RADIUS\%,\%, $1 \times$, PARTICLE LOADING $=$,		NEWOO2401	
01105	345*		\$ F $10.2,10 X,{ }^{\prime}$ PARTICLE $F A C T O R=$, F 10.4)		NEWOO2401	
01106	346*		WRITE (6, 1008) CF. ST, WALLQ		NEWOO2401	
01113	347*		WRITE (6, 1010)		NEWOO2411	
01115	348*	1302	CONT INUE		NEWOO2417	
01116	349*		IF (ILAMIN.EQ.O.OR. ILAM.EQ.O)GO TO 1211		NEWOO2417	
01120	350*		WRITE (6,1009)		NEWOO2426	
01122	351*		WRITE (6, 1200) SPCT		NEWOO2433	
01125	352*	1200	FORMAT (/, 2 X , 'RELAMINARIZATION OCCURED', $/$		NEWOO2441	
01125	353*		\$ 2X, 'DEGREE OF RELAMINARIZATION = ', E10.3.' ${ }^{\prime}$ PERCENT')		NEWOO2441	
01126	354*		WRITE (6,1010)		NEWOO2441	
01130	355*	1211	CONT INUE		NEWOO2447	
01131	356*		WRITE (6, 1007) RETHMO, ACCP, АССРK		NEWOO2447	
01136	357*	1007	FORMAT (/. $1 \times$, ${ }^{\prime}$ RETHMO ACCN PARA ACCN PARA'. $/ 1 \times$,		NEWOO2456	
01136	358*		\$\% (EDGE) (WALL) , /, 3X, 1P3E10.3)		NEW002456	
01137	359*		IF (IPASS . EQ . 1) GO TO 55	PLOT	002456	
01141	360*		$A C C P=1 . O E G * A C C P$		002461	
01141	361*	C	STORE ON DRUM FOR PLOTTING: TOTAL HEAT TO WALL, WALL AREA. THRUST	LOSS.	002461	
01141	362*	C	ACCELERATION PARAMETER, INVISCID MASS FLOW, AND TOTAL MASS FLOW		002461	
01142	363*		WRITE (3) SUMQG, WALLA, DF, ACCP, THENGY, THMOM	PLOT	002464	
01152	364*		WRITE (6,6) SHEAR (IUNIT), (ENERGY (IUNIT). K $=1.2$)	ANK $8 / 83$	002477	
01161	365*	6	FORMAT (1 H1, 5X, 'NODAL INFORMATION'//1X, 2HNO, $7 \mathrm{X}, 3 \mathrm{HETA}, 10 \mathrm{X}, 4 \mathrm{HU} / \mathrm{UE}$,		002552	
01161	366*		$18 X, 5 H G A M M A, 8 X, G H S H E A R, A 6,3 X,{ }^{\prime}$ STREAM FUNCTION F', $8 X,{ }^{\prime} \mathrm{FPP}, 12 X$,		002552	
01161	367*		2 'GP 'A6, 8X,'GPP ', A6)		002552	
01162	368*		DO $183 \mathrm{I}=1$, NETA	B11A 240	002552	
01165	369*		DER(1) $=\mathrm{F}(\mathrm{I}, 2) / \mathrm{ALPH}$		002552	
01166	370*		$\operatorname{DER}(2)=\operatorname{DUDS}(1) / U C S$		002555	
01167	371*		$D E R(3)=F(1,3) / A L P H * * 2$		002560	
01170	372*		$\operatorname{DER}(4)=G(1,2) /(A L P H * U C E)$		002563	
01171	373*		DER(5) $=\mathrm{G}(\mathrm{I}, 3) /($ ALPH**2*UCE)		002566	
01171	374*	C	STORE ON DRUM FOR PLOTTING: ETA VALUES, VELOCITY RATIO, GAMMA, AND	SHEAR.	002566	
01172	375*		IF (IPASS . NE. 1) WRITE (4) ETA (I), DER (1),GMR(I), DER(2)	PLOT	002571	
01201	376*	183			002603	
01213	377*	12	FORMAT $(1 \times, 12,3 F 13,7,1$ P5E 18, 7)		002623	
01214	378*		WRITE (6,7) DIST IUNIT), DENS (IUNIT), (ENERGY(IUNIT), K $=1,2$) ,		002623	
01214	379*		1 PRES (IUNIT), NUM, NUM		002623	
01227	380*	7	FORMAT (//1X, 2 HNO, $5 X$, 'DISTANCE FROM', $8 X,{ }^{\text {, DENSITY', }} 7 \times$, STATIC ENTHA		002653	
01227	381*		1LPY'. $4 X$. 'TOTAL ENTHALPY', 6X.'PITOT TUBE', 7 X, 'MACH', 7 X , 'MOLECULAR'		002653	
01227	382*				002653	
01227	383*		3 A6, 5X, 'PRESSURE ', A6, $4 \mathrm{X}, \mathrm{A}, 7 \mathrm{X}$, 'WEIGHT', $7 \mathrm{~T}, \mathrm{AG}$)		002653	
01230	384*		DO $184 \mathrm{I}=1$, NETA	B11A 259	002653	
01233	385*		$\operatorname{GMR}(1)=\operatorname{ABS}(\operatorname{GMR}(\mathrm{I})$)		002657	
01234	386*		$A C H=F(I, 2) / A L P H * U E(I S) / S Q R T(G M R(I) / V M W(I) * T T(I) * G C * R V A R) ~$	ANK $5 / 83$	002661	
01235	387*		DER (2) $=$ RHO (1)/UCD	EV 10/73	002676	
01236	388*		$D X=G M R(I)-1.0$		002701	

01461	449*	204	$S P(I, 3, K)=S P(1,3, K) * A L P H * * 2$	003366
01464	450*	2041	IF (IRITE .EQ. O) GO TO 325	003377
01466	451*		WRITE $(6,16)$	003400
01470	452*	16	FORMAT (/2X14HMOLE FRACTIONS.7) B11A 130	003405
01471	453*		DO $196 \quad \mathrm{~J}=1$, NSPEC \quad B11A 274	003405
01474	454*	196	WRITE $(6,14) \mathrm{MOA}(J), \operatorname{MOB}(J),(F R(U, I), I=1, N E T A)$	003423
01505	455*		IF (IWALL .EQ. 4) WRITE (6,17) MOA (ISU), MOB (ISU) ANK 4/83	003443
01512	456*	17	FORMAT (/4X, SURFACE SPECIES IS , 2A6)	003460
01513	457*	325	WALLO $=$-WALLQ*C3M(IS) \quad ANK 8/83	003460
01514	458*		IF (NON.LT.O) RETURN	003463
01516	459*		$J=$ NETA - 1	003471
01517	460*		$\mathrm{M}=\mathrm{KAPPA}-1$	003474
01520	461*		$K=K A P P A+1$	003477
01521	462*		NETAL =NETA	003502
01522	463*		KAPPAL = KAPPA	003504
01523	464*		IF (KONRFT.EQ.O) RETURN	003506
01525	465*		IF (KO10.GT. O AND . KTURB . GT . O) GO TO 4019 ANK 4/83	003513
01527	466*		IF (IS - 1) 4002,4021.4002	003527
01527	467*	C	TRANSITION TO TURBULENCE - CHANGE NODE DATA	003527
01532	468*	4019	KTURB $=-1$	003534
01533	469*		$Y(I)=Y(1) * U C L$	003535
01534	470*		NETA = NETAT	003541
01535	471*		KAPPA $=$ KAPPAT	003543
01536	472*		DO $4020 \mathrm{I}=1$, NETA	003554
01541	473*	4020	F2FIX $(I)=F 2 F I X T(I)$	003554
01543	474*		DO 4018 I $=$ NETAL, J	003562
01546	475*	4018	$T T(I+1)=-1.0$. ${ }^{\text {a }}$ (83	003562
01550	476*	4021	IF (NTROPY . EQ. O) GO TO 4002 ANK 4/83	003565
01550	477*	C	SPECIAL ENTROPY QPTION NTROPY $=5$	003565
01552	478*		DO 4000 I $=1, \mathrm{M}$	003566
01555	479*	4000	$\operatorname{UKAPPA}(I)=F 2 F I X(I) / F 2 F I X(K A P P A)$	003603
01557	480*		UKAPPA $(K A P P A)=1.0$	003606
01560	481*		DO 4001 I $=$ K, J	003614
01563	482*	4001		003614
01565	483*		UKAPPA $($ NETA $)=1.0$	003620
01566	484*	4002	IF (KTURB . NE. - 1) GO TO 4022	003623
01570	485*		$K T U R B=0$	003625
01571	486*		GO TO 327	003626
01572	487*	4022	IF (IS .EQ. NS) RETURN	003630
01574	488*		IF (NTROPY . EQ. O) GO TO 4012 (${ }^{\text {a }}$ ($4 / 83$	003635
01574	489*	C	SPECIAL ENTROPY OPTION NTROPY $=5$	003635
01576	490*		DO $4010 \mathrm{I}=1 . \mathrm{M}$	003654
01601	491*	4010	F2FIX (I) $=$ UKAPPA (I)*F(KAPPA, 2)/ALPH	003654
01603	492*		F2FIX ${ }^{\text {KAPPA }}$) $=F(K A P P A, 2) / A L P H$	003660
01604	493*		DO $4011 \mathrm{I}=\mathrm{K}, \mathrm{J}$	003667
01607	494*	4011	$F 2 F I X(1)=(F(K A P P A, 2)+(F(N E T A, 2)-F(K A P P A, 2)) * U K A P P A(I)) / A L P H$ ANK $8 / 83$	003667
01611	495*		$F 2 F I X(N E T A)=F(N E T A, 2) / A L P H$	003674
01612	496*	4012	IF (IS . EQ: 1) GO TO 327	003700
01614	497*		$00326 I=2 . J$	003702
01617	498*		$M=1$	003707
01620	499*			003711
01622	500*	326	$I F(A B S((F) T, 2)-F 2 F I X(I) * A L P H) /(F(M, 2)-F(M-1,2))$).GT.RATLIM)GOTO327ANK 8/83	003721
01625	501*		KONRFT $=1$	003736
01626	502*		RETURN	003740
01627	503*	327	CALL REFIT	003744
01630	504*		KONRFT $=2$	003745
01631	505*		RETURN	003747
01632	506*		END ${ }^{\text {B11A }} \mathbf{3 0 7}$	004014

\qquad
\square
@SYS\$*MSFCFOR\$.FOR,WUS TRMBL
HSA E3 -12/10/84-22:24:09 (31,32)

| 0025 | VARCOM | 000645 |
| :--- | :--- | :--- | :--- |
| 0026 | ACPK | 000002 |
| 0027 | ACCN | 000003 |
| 0030 | RETH | 000001 |
| 0031 | RUF | 000022 |
| 0032 | LAM | 000001 |

EXTERNAL REFERENCES (BLOCK. NAME)

0033	LIAD
0034	TAYLOR
0035	ERP
0036	ERF
0037	NERR2\$
0040	NWDU\$
0041	NIO2\$
0042	SQRT
0043	EXP
0044	XPRR
0045	TANH
0046	COSH
0047	NERR3\$

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION. NAME)

0001		002617	1000 G	0001		000012	1001 L	0001		000213	1002 L	0001		001402	1003 L	0001		004232	1004L
0001		004245	1005L	0001		001534	103L	0001		003114	1036G	0001		001576	104L	0001		003454	1100G
0001		003565	1122 G	0001		003661	1136G	0001		003716	1150G	0001		004051	1177G	0001		004074	1210G
0001		004167	1226G	0001		004310	1255G	0001		004434	1275G	0001		004511	1307G	0001		004556	1317G
0001		000577	15L	0001		000074	$2003 L$	0001		000123	2004 L	0001		000155	$2005 L$	0001		002456	201 L
0001		002560	202L	0001		002553	2031	0001		000227	247G	0001		000264	291	0001		001651	305L
0001		001127	32 L	0001		001702	320 L	0001		000415	321 G	0001		000432	324G	0001		000752	331
0001		001712	330 L	0001		001742	3314	0001		002022	350L	0001		002111	362L	0001		000275	391
0001		000710	400G	0001		003773	400L	0001		004027	4011	0001		004063	405L	0001		003770	406 L
0001		004133	415L	0000		000360	42F	0001		000064	43L	0001		001065	4316	0000		000437	44F
0000		000407	45 F	0001		001215	456 G	0000		000417	$46 F$	0001		001220	461 G	0000		000351	47F
0001		001336	4779	0000		000457	48F	0000		000516	49F	0001		O02143	505L	0001		002216	525L
0001		002317	532 L	0001		002664	547 L	0001		002701	550 L	0001		003253	$554 L$	0001		003203	555 L
0001		001656	561 G	0001		001675	573G	0001		004252	600L	0001		001706	601G	0001		001775	616G
0001		002101	636G	0001		004600	650L	0001		002206	663G	0001		002213	670G	0001		003257	700L
0001		003650	703L	0001		002273	711G	0001		001204	75L	0003		000000	A	0000	R	000321	ABECK
0027	R	000000	ACCPK	0026	R	000000	$A C C P K 1$	0026	R	000001	ACCPK2	0000	R	000341	ACEB	0000	R	000325	ACY
0000	R	000311	AF	0025	R	000000	ALPH	0011		0000000	ALPHD	0015	R	000000	AM	0000	R	000301	BBECK
0011	R	000001	BETAP	0000	R	000312	BF	0003		000003	C	0021	R	000000	CAPC	0000	R	000307	CAPY
0013		000000	CASE	0013	R	000015	CBAR	0000	R	000300	CBECK	0000	R	000275	CCEB	0005		000000	CG
0004		000000	CK1	0004	R	000006	CK6	0023	R	000000	CL	0006	R	000000	CLNUM	0021	R	000017	CPBAR
0000	R	000324	CRD	0011	R	000145	C1	0003	R	000005	C 10	0003	R	000007	C13	0011		000146	C2
0003	R	000011	C26	0003	R	000012	C28	0011	R	000147	C3M	0003	R	000013	C32	0003	R	000015	C53
0003	R	000016	C56	0003	R	000002	C7	0003		000006	D	00000	R	000320	DADA	0000	R	000313	DADPP
0000	R	000306	DADVP	0000	R	000277	DB	0020	R	000255	DCAPCH	0020	R	000067	DCAPCK	0000	R	000000	DCAPCW
0023	R	000001	DCLNUM	0000	R	000344	DEACY	0000	R	000304	DEL	0023	R	000002	DELCON	0000	R	000007	DELTA
0023	R	000003	DEPC	0010	R	000017	DETA	0006	R	000001	DL	0000	R	000346	DLDA	0023	R	000004	DPI
0020		000256	DPRH	0020	R	000000	DRHOH	0000	R	000331	DRHOI	0020	R	000001	DRHOK	0000	R	000332	DUM
0031		000000	DUMM 1	0031		000011	DUMM 10	0031		000012	DUMM 11	0031		000013	DUMM 12	0031		000017	DUMM 16
0031	R	000020	DUMM17	0031		000021	DUMM18	0031		000001	DUMM2	0031		0000002	DUMM3	0031		000003	DUMM4
0031		000004	DUMM5	0031		000005	DUMM6	0031		000006	DUMM7	0031		000007	DUMM8	0031		000010	DUMM9
0000	R	000326	DUM1	0000	R	000327	DUM2	0023	R	000042	DVS	0000	R	000071	DYA	0003		000010	E
0006	R	000020	ELCON	0007	R	000376	ENL	0000	R	000330	EPI	0000	R	000322	EPS	0006	R	000021	EPSA

0023	R	000043	EPS 1	0036	R	000000	ERF	0035	R	000000	ERP	0010	R	000000	ETA	0000	R	000345	EXPA
0025	R	000001	F	00007		000000	FLE	0000	R	000264	FM	0031		000015	FMF	0025	R	000075	G
0022		0000000	HB	0011	R	000231	HF	0022	R	000017	HP	0013	I	000016	I	0012		000000	IBODY
0031	I	000015	ICF	0017		000000	IDISC	0012	I	000005	IFLOW	0027	I	000001	ILAM	0032	I	000000	ILAMIN
0000		000574	INJP\$	0000	I	000334	INK	0000	I	000274	IPRT	0013		000017	IQ	0013	I	000020	IS
0013		000021	ISH	0000	I	000302	IWK	0000	I	000335	J	0000	1	000316	K	0013	I	000023	KAPPA
0014		0000000	KBC	0013		000024	KONRFT	0014	I	000003	KQ10	0013		000025	KR9	0000	I	000315	L
0013	I	000110	MAT1U	0013		000111	MAT2I	0000	I	000347	MINK	0000	I	000333	MPJ	0013	I	000114	NETA
0013	I	000115	NNLEO	0013		000116	NON	0013	I	000121	NSP	0013	I	000122	NSPM1	0016	I	000000	NUL
0003		000014	0	0000	R	000323	ONK	0000	R	000343	PCT	0023	R	000044	PIM	0023	R	000045	PM
0000	R	000317	PPL	0021	R	000055	PR	0006	R	000040	PRT	0022		000020	QR	0000	R	000305	RC
0023	R	000046	RED	0030		000000	RETHMO	0006	R	000041	RETR	0022	R	000037	RHO	0005	R	000147	RHOE
0022	R	000056	RHOP	0006	R	000042	RHOVS	0031	R	000014	RK	0000	R	000342	RKS	0017	R	000373	S
0000	R	000303	SALPH	0006	R	000043	SCT	0025	R	000152	SP	0027	R	000002	SPCT	0000	R	000350	SQPI
0024	R	000000	STURB	0000	R	000336	TAUW	0022	R	000075	TP	0000	R	000276	TPCON	0023	R	000047	TREF
0005	R	000767	TTVC	0024	R	000001	TURPR	0005		000770	TVCC	0005	R	001052	UE	0000	R	000337	UTAU
0000	R	000314	VA	0023	R	000050	VINTR	0020	R	000264	VMU	0005	R	001134	vmue	0000	R	000340	VWP
0000	R	000270	XP	0006	R	000044	YAP	0000	R	000310	YDI								

00274	99*	DEL $=-\mathrm{C3M}(\mathrm{IS}) *$ VMUE (IS)	ANK 8/83	000327
00275	100*	RED $=-$ C3M (IS) *RHOE(IS)*UE (IS)	ANK 8/83	000333
00276	101*	RC=RED*CLNUM		000337
00277	102*	$\mathrm{PM}=0.0$	ANK $5 / 83$	000341
00300	103*	EPS $1=0$.		000342
00301	104*	DEPC=0.		000343
00302	105*	RHOVS $=C 1 * F(1,1)+H F(1,5)$		000344
00303	106*	IF (RC.LT. O.O) GO TO 75		000350
00305	107*	DADVP $=$ RHOE (IS)/RHO (1)		000361
00306	108*	CAPY $=$ DADVP/RHO (1)*RHOP (1)		000364
00307	109*	YDI $=0$.		000367
00310	110*	$A F=0.0$		000370
00311	111*	$B F=0.0$		000371
00312	112*	$A M(1,1)=0$.		000372
00313	113*	DADPP $=(0.995-C B A R) /(1.0-C B A R)$		000373
00314	114*	SALPH $=0.0$		000401
00315	115*	$V A=0.0$		000402
00316	116*	DVS $=0$.		000403
00317	117**	$L=117$		000404
00320	118*	DO $66 \mathrm{I}=1$, NETA		000415
00323	119*	DO $3 \mathrm{~K}=1, \mathrm{NSP}$		000432
00326	120*	DRHOK $(K-1)=A M(L, K+97)$		000432
00330	121*	PPL $=-$ CAPY		000434
00331	122*	DADA $=$ DADVP		000436
00332	123*	ABECK $=$ YDI		000440
00333	124*	$E P S=B F$		000442
00334	125*	ONK $=$ RHOE (IS)/RHO(I)**2		000444
00335	126*	C10 $=$ C7*F(1,2)		000452
00336	127*	$C 56=F(I, 2) / A L P H$		000455
00337	128*	$C R D=D R H O H * C 10$		000460
00340	129*	$\mathrm{ACY}=$ - VA		000462
00341	130*	IF (I GE. NETA) GO TO 15		000464
00343	131*	DADVP $=$ RHOE (IS)/RHO (I+1)		000470
00344	132*	CAPY $=$ DADVP/RHO $(1+1) *$ RHOP ($1+1)$		000474
00345	133*	$P P L=P P L+C A P Y$		000477
00346	134*			000501
00347	135*	SALPH $=$ SALPH + YDI		000513
00350	136*	DUM1 $=$ VOI $*(F(I, 3) / D A D A-F(I+1,3) / D A D V P) / 6.0$		000515
00351	137*	DUM2 $=F($ NETA, 2) $-(F(1,2)+F(I+1,2)) / 2.0$		000525
00352	138*	DVS $=$ DVS + YDI * (DUM2-DUM1/2.)		000532
00353	139*	$V A=Y D I * * 2$		000537
00354	140*	$A C Y=A C Y+V A$		000542
00355	141*	$A F=A F+D E T A(I) / 2 . O *$ (DUM2 - DUM 1)		000544
00356	142*	$\triangle B E C K=A B E C K ~+~ Y D I ~$		000552
00357	143*	$B F=A L P H * D E L * D E T A(I) / 2.0$		000555
00360	144*	IF (I . EQ. KAPPA) EPI $=$ BF*DADPP		000562
00362	145*	$I F(I . N E . K A P P A) \quad E P S=E P S+B F$		000570
00364	146*	DRHOI = - AF*DADA/RHO(I) - F I , 3)/12.0*ACY/RHOE(IS)		000577
00365	147*	IF (CBECK.GT.O.) GO TO 33		000611
00367	148*	DUM $=A M(L, 98) *$ DRHOI $*$ RC		000613
00370	149*	$A M(1, I+3)=A M(1, I+3)-R C * A B E C K / 2,0+C 7 * D U M * F(1,2)$		000616
00371	150*	IF (I .LE. 1) AM (1,3) $=A M(1,3)-R C / D A D A * A C Y / 12.0$		000626
00373	151*	IF (I GT. 1) CALL LIAD (-1, 1, NETA-2+I, -RC/DADA*ACY/12.0)		000640
00375	152*	$A M(1,1)=A M(1,1)-C 7 * D U M * F(1,2) * * 2 / A L P H$		000663
00376	153*	MP $J=$ MAT $1 \cup+1+1$		000700
00377	154*	DO $60 \mathrm{~K}=\mathrm{NUL}$, NSPM 1		000710
00402	155*	IF (K.GT. O) DUM $=$ AM $(L, K+98) * D R H O I * R C$		000713
00404	156*	IF (I . EQ. NETA) CALL LIAD (K, 1, 1, DUM)		000722
00406	157*	IF (I NE. NETA) AM(1,MPU) = AM (1,MPU) + DUM		000733
00410	158*	$M P J=M P J+N E T A$	ANK $8 / 83$	000742

00537	219*		CRD $=1.0 / \mathrm{PIM}$		001522
00540	220*		EPS $=-2.0 / P I M * * 2$		001525
00541	221*		GO TO 104		001532
00542	222*	103	$A F=\operatorname{SQRT}(2.0 * D E T A(I-1) / O N K)$		001534
00543	223*		$B F=E R P(A F * P M / 2.0)$	ANK 5/83	001544
00544	224*		DADA $=1.0-A F * P M * B F$	ANK $5 / 83$	001553
00545	225*		$C R D=E R P(A F * P I M / 2.0)$		001560
00546	226*		$E P S=1.0-A F * P I M * C R D$		001570
00547	227*	104	$B F=B F-E P I * C R D$		001576
00550	228*		DUM1 $=E P I *(A F * C R O-C L) * D E T A(I-1) / 2.0$		001601
00551	229*		$C L=C L * E P I+A F * B F$		001611
00552	230*		$D L(I)=A L P H * E L C O N *(E T A(I)-C L)$	ANK 5/83	001616
00553	231*		DUM2 $=$ AF/ONK* $(B F / 2.0+D A D A * A F * P M / 4.0-E P I * E P S * A F * P I M / 4.0)$	ANK 5/83	001623
00554	232*		IF (I-2) 305,330,320		001644
00557	233*	305	$D L(1)=0.0$	ANK 5/83	001651
00560	234*		DO $307 \mathrm{~J}=1$, NNLEQ		001651
00563	235*	307	AM $(2, U)=0$.		001656
00565	236*		$\mathrm{CL}=0$.		001657
00566	237*		$\operatorname{DPI}(1,2)=\operatorname{CAPC}(1)$		001660
00567	238*		$\operatorname{DPI}(3,1)=F(1,3) * D C A P C H$		001662
00570	239*		IF (NSPMI LE L O) GO TO 350		001665
00572	240*		DO $315 \mathrm{~K}=1$, NSPM 1		001670
00575	241*	315	$\mathrm{DPI}(\mathrm{K}+3,1)=\mathrm{F}(1,3) * \operatorname{DCAPCK}(\mathrm{~K})$		001675
00577	242*		GO TO 350		001700
00600	243*	320	DO $325 \quad J=1$, NNLEQ		001702
00603	244*	325	$A M(2, U)=A M(2, U) * E P I$		001706
00605	245*	330	$D U M=-A L P H * E L C O N *(D U M 1+$ + + M $2-E P I * E P S * A F * * 2 / 2.0) * T R E F$		001712
00606	246*		$A M(2,1)=A M(2,1)+(D L(I)-E P I * D L(I-1)) / A L P H$	ANK $5 / 83$	001727
00607	247*		$L=1-1$		001736
00610	248*	331	$\operatorname{AM}(2,1)=\operatorname{AM}(2,1)+D P I(1,1) * D U M$		001742
00611	249*		$\operatorname{AM}(2,2)=\operatorname{AM}(2,2)+\operatorname{DPI}(2,1) * \operatorname{DUM}$		001745
00612	250*		$\operatorname{AM}(2,3)=\operatorname{AM}(2,3)+\operatorname{DPI}(1,2) * \operatorname{DUM}$		001751
00613	251*		$A M(2, L+3)=A M(2, L+3)+$ PPI $(2,2) * D U M$		001755
00614	252*		$J=$ MAT $1 J+2$		001764
00615	253*		DO $340 \mathrm{~K}=$ NUL, NSPM 1		001775
00620	254*		$A M(2, J)=A M(2, J)+D P I(K+3,1) * D U M$		002001
00621	255*		$A M(2, J+L-1)=A M(2, J+L-1)+$ DPI $(K+3,2) * D U M$		002005
00622	256*	340	$J=J+$ NETA	ANK $8 / 83$	002011
00624	257*		IF (L GE . I) GO TO 400		002015
00626	258*	350	TREF $=$ RED/C26/(2.*CAPC(I)*YAP*PM*YAP*CAPC(I))	ANK $5 / 83$	002022
00627	259*		DPI (3,2) $=-\mathrm{PM} / \mathrm{TREF} *(\mathrm{DCAPCH} / \mathrm{CAPC}(1)-\mathrm{DRHOH} /(2 . * R H O(I))$)	ANK 5/83	002034
00630	260*		DPI 2,2$)=$ C10*DPI $(3,2)-$ RHOVS *ALPH		002047
00631	261*		DPI $(1,1)=-C 10 * C 56 * D P 1(3,2)-F(1,2) * R H O V S$		002054
00632	262*		$\operatorname{DPI}(2,1)=-A L P H * C 1 * F(1,2)$		002063
00633	263*		IF (NSPM1 . LE O) O) GO TO 362		002067
00635	264*		DO $360 \mathrm{~K}=1$, NSPM1		002072
00640	265*	360	DPI $(K+3,2)=-\mathrm{PM} / \mathrm{TREF} *(\operatorname{DCAPCK}(K) / C A P C(I)-\operatorname{DRHOK}(K) /(2, * R H Q(I)))$	ANK 5/83	002101
00642	266*	362	$\mathrm{L}=\mathrm{I}$		002111
00643	267*		DUM $=-$ ALPH*ELCON*(DUM1 - DUM2 + DADA*AF**2/2.O)*TREF		002112
00644	268*		IF (I .LE. 1) RETURN		002126
00646	269*		IF (I - NETA) 331,400,400		002135
00646	270*	C	CEBECI-SMITH AND BECKWITH-BUSHNELL MODELS		002135
00651	271*	505	DEL $=-$ C3M (IS)*VMUE(IS)	ANK 8/83	002143
00652	272*		INK $=1-1$		002146
00653	273*		ONK $=-12.0$		002151
00654	274*		IF (I -GT. 1) GO TO 525		002153
00656	275*		INK $=1$		002157
00657	276*		ONK = ABS (ONK)		002161
00660	277*		TAUW $=$ - AMAX $1(\mathrm{C} 28,1 . \mathrm{OE}-4) *$ UE (IS)/ALPH/C3M(IS)	ANK 8/83	002163
00661	278*		DCAPCW (1) = DCAPCH		002174

END OF COMP ILATION:
NO DIAGNOSTICS.

