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EXECUTIVE SUMMARY

Gas-lubricated piston rings are one alternative for adiabatic diesel engines.

The high temperatures involved preclude utilization of conventional lubricants

and piston rings. Mechanical Technology Incorporated (MTI) and the Cummins

Engine Company began development of gas-lubricated pistons in 1977. Concepts

were formulated, designs completed and hardware produced. Static testing of the

hardware was conducted by MTI under the sponsorship of the Department of Energy

with NASA Lewis Research Center acting as the monitoring agency. This report

principally describes the results of the test program.

Because of the necessity to operate with very small clearances (in the range of

1.5 to 8 microns), the piston ring must have the capability to produce a

self-adjusting clearance that responds to the pressures imposed in the fluid

film. One means to accomplish self- adjusting clearances is to sector the ring

into a number of freely moving segments that are preloaded against the cylinder

liner by supply gas from the combustion chamber and to provide a hydrostatic

balancing fluid film utilizing the same source of fluid. A comprehensive

desnription of the ring system is given in Section 2. A rig was produced foe

evaluating fluid film performance of the rings under varying operating condi-

tions. Results of the test program are provided in Section 4.

In general, the segmented ring configuration tested was deficient in overall

performance and would not be acceptable for the application. The principal

difficulty was the inability of all segments of a ring set to form a fluid film

when exposed to internal pre-load. The problem is due to the delicate moment

balance necessary to prevent the segments from overturning combined with the

small operating films required.

Optimism was produced by some of the sectors that did foYm a film and performed

well in almost every respect, including capability to accept external loads in

the range of 6,000 N, in addition to preloads of approximately 30,000 N.

Flow levels were high (50-60 kg/hr) but could be reduced by more advanced

configurations. Approximately 30% of the flow is attributable to leakage

between sectors. Target flow levels are in the range of 15 Kg/hr. or approxi-



merely 7 percent of the intake volume. These flow levels are achievable by

employing a solid breathable liner With solid pistons. (See Section 7).

Approximate gas bearing theories that were applied to the design of the

segmented rings are not precise enough especially with respect to pad inclina-

tion angle and fluid-film righting moments. Comprehensive gas-bearing computer

codes that model the geometry accurately are required. Although more accurate

analysis is required, analysis alone will not be sufficient to produceanopti-

mum design. The close clearances and high pressures involved are beyond what

has been verified with contemporary gas-bearing theory and further complexities

are introduced by elastic and thermal distortion. Thus, further efforts will

require extensive, well instrumented experimentation, and it can be expected

that first-generation successful configuration will be produced by a combined

theoretical, empirical process.

Recessed configurations were proven to be better for the application than inher-

ently compensated geometries. The advantages of recesses include:

I. Improved liftoff, especially against pre-load because the incoming gas

can enter the film more easily.

2. Superior load capacity and stiffness as compared to inherently compen-

sated geometries.

Recesses may produce slightly greater flow requirements and are more prone to

pneumatic hammer. However_ flow differences can be small and pneumatic hammer

is mitigated by friction and damping in the support structure.

Care must be exercised in the design process to ensure that inlet flow

restrictions in the pad geometry are minimized to assure the fluid can adequate-

ly enter the film. Also9 provision for adequate orifice discharge length is

important to assure proper operation of the orifice restrictor element.

Some cursory examinations were given to other configurations with the general

label of "breathable liner". In these configurations, solid piston designs are

coupled with flexible liners that elastically deflect to form a fluid film under

hydrostatic pressurization. These configurations afford the mechanical



simplicity required for mass produced engines, and indications are that they

will perform acceptably. Breathable liners are the recommended future direction

for continued development of gas-lubricated piston rings.

It is concluded that gas-lubricated piston rings are feasible for engines such

as the adiabatic diesel, but considerable development work remains, not only for

fluid film generation_ but in applying material combinations that can withstand

momentary high-speed rubs and avoiding contamination of small restrictor

elements from combustion gases.

3





1.0 INTRODUCTION

The adiabatic diesel engine concept shows promise for significantly improving

efficiency over present-day diesel engine designs. However, a number of techno-

logical developments are needed in order that the predicted performance can be

fully realized in practice.

A major problem area is a practical method for sealing the engine combustion

chamber gases and supporting the pistons in their housings under the hostile

environment generated by the high operating temperatures in an adiabatic engine.

It is expected that adiabatic diesel engine temperatures will be of the order of

700 ° C or greater; inasmuch as the use of conventional oil-lubricated piston

rings will not be suitable in this situation, novel methods need to be evolved

to accomplish the piston sealing function.

Sealing and load-support mechanism based on gas lubrication offer possible

approaches for treating the problem. Because of the availability of high-pres-

sure gas from the combustion chamber itself, the mechanism of hydrostatic

support for the piston rings appears particularly suitable. A small portion of

the high-pressure combustion gases can be channeled through suitable supply

"iihes and restrictors into the interface between the piston-ring face and the

cylinder liner. By design, a very small clearance (of the order of 1.5 to 8

microns) is provided between the ring face and liner, which controls the rate of

gas leakage past the ring and allows the ring to reciprocate without contacting

the liner. The high- pressure supply gas can generate a net restoring force on

the piston ring by altering the pressure distribution within the gas film when-

ever an external force tends to displace the ring from its concentric position

within the liner. Thus, hydrostatic lubrication affords a possible means for

maintaining a clearance between the ring face and liner when the ring is

subjected to side loads transmitted through the piston (compression,

combustion, expansion) and when side loads are not transmitted (intake,

exhaust).

Preliminary operating specifications for the adiabatic diesel engine are indi-

cated on Table I-i below:



TABLE i-i

ADIABATIC DIESEL ENGINE PRELIMINARY SPECIFICATIONS

Stroke 15o24 cm (6 in.)

/

Diameter 15.24 cm (6 in.)

Speed 219.9 rad/s (2100 rpm) at rated power
157.1 rad/s (1500 rpm) at peak torque

Peak Pressures 12.33 MPa (1789 psia) at rated power

14.33 MPa (2079 psia) at peak torque

Average Temperature 316 ° C (601° F)

Maximum Load 13,344 N (3,000 ibs)

M.E.P. 2.478 MPa (359.4 psia)

The piston size was subsequently reduced to 5.5 inches, which was the diameter

utilized for the static test rig. The maximum load is a momentary load that

occurs within a 30 degree crank angle range.

Under a prior program with the Cummins Engine Company of Columbus, Indiana9

prototype hydrostatic rings and a static test rig had been designed and manufac-

tured. This report describes the results of a static test program intended to

establish performance of a particular hydrostatic rihg configuration. It also

presents advanced configurations that indicate promise for future development.

•



2.0 DESCRIPTION OF THE HYDROSTATIC PISTON RING

To be viable, the hydrostatic piston must operate with very small clearances

(1.5 - 8 microns) so that leakage and blowby is maintained within acceptable

limits, and that adequate stiffness is provided by the gas film. It would be

difficult to manufacture rigid pistons and liners within the clearance tolerance

requirements and if it were possible to produce the required clearance, it would

not be maintained due to thermal distortions occurring in the cylinder and

piston. Therefore, the system of piston and liner must be designed to provide a

self-adjusting clearance in response to the pressure in the film.
w

The sectored ring concept is comprised of a number of circumferential sectors or

segments fitted together in the ring groove of the piston (see Figure 2-I). Gas

from a high-pressure reservoir is supplied through a series of circumferentially

located restrictor holes into the interface between the ring face and cylinder

liner. The reservoir is re-energized once each time during the 4 strokes of a

cycle when the combustion chamber gas pressure is at its maximum. During the

compression and expansion strokes, the rings will be _orced against the piston,

so the side loads can be accepted without consuming the gas film. The segmented

ring configuration was selected to effect self-generation of the gas film thick-

ness between the ring face and liner, and to compensate for any ring wear that

may occur as a result of rubbing contact with the liner.

The principle of operation of the hydrostatically supported piston ring is as

follows. The piston ring is designed to operate at some axisymmetric radial

clearance by force and moment balancing of the ring segments, With no supply of

fluid to the interface through a restrictor, the pressure change along the fluid

film from the high-pressure combustion chamber to the crank end is nearly line-

ar. This is shown schematically in Figure 2-2 by the curve marked '@without

restrictor". In such a case, the fluid film has no stiffness inasmuch as the

fluid film pressure profile does not change as a result of changes in the radial

clearance. On the other hand_ the introduction of a supply of restrictor

compensated high-pressure gas within the interface makes the pressure distrib-

ution sensitive to changes in clearance, thereby making possible the generation

of a restoring force to counteract the force tending to alter the clearance.

When operating at equilibrium design conditions, the pressure distribution in a

hydrostatically supported ring takes the form indicated by the curve marked
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"normal" in Figure 2-2. If an external force tends to reduce the clearance, the

pressure distribution in the fluid film will change to that marked by "closing

clearance", which is in the direction to increase the overall pressure within

the interface. This is a result of the increased resistance to flow in the

interface allowing the fluid pressure at the outlet of the restrictor to rise

toward the reservoir supply pressure. The magnitude of the opening force gener-

ated to counteract the closure force is equal to the difference in the areas

under the two pressure distribution curves. Vice versa, with an increased

clearance over that of the equilibrium value, the resistance to flow in the

interface is reduced and the pressure distribution tends toward that which

exists when no restrictor is present. This is indicated by the curve marked

"opening clearance" in Figure 2-2. In this case, the overall pressure in the

interface is less than that existing under the equilibrium conditions and,

hence, a closing force is generated by reservoir pressure to restore the ring

segment to its equilibrium operating position. The two sets of pressure

distribution curves in Figure 2-2 correspond to the two cases in which the

combustion chamber is at its maximum pressure and when it is at the same pres-

sure as present in the crank end.

As shown on Figure 2-1, the rings are fuicrumed near their upper ends and are

internally sealed by circumferential seals of circular cross section. The upper

fulcrum ensures a converging clearance from the high to low pressure ends of the

piston from the pressure force tending to close the sector against the cylinder.

T11is increases load capability and prevents ring contact. For purposes of stat-

ic and low- temperature testing, the circumferential seals were "Tetraseals"

made of eiastomeric materials. For actual high-temperature conditions, these

seals would be of high-temperature metallic ring construction. In addition to

being able to adjust radially, the rings can accommodate tapering of the cylin-

der bore due to thermal distortions, because they will allow the segments to

move in an angular as well as a radial mode. The joints between the sectors are

sealed by inserts as shown on Figures 2-3 and 2-4. These inserts have circum-

ferential clearance to allow radial and angular motions. Careful attention was

paid to sealing all potential leakage paths with both the outside and inside

joint inserts. Heavy side loads will bottom the loaded segments against the

piston and simultaneously close off the interior annulus around the inlet hole

to the sector to reduce the sector preload. The sectors can then accommodate

full side thrust without consuming the gas-film clearance.

i0
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As shown on Figure 2-4, the exterior inserts include two sealing surfaces, one

near the upper end and one near the lower end of the sectors. The upper sealing

surface is intended to prevent high pressure compressed or combusted gases from

leaking through the sectors. The lower sealing surface prevents through-flow

leakage to provide high boundary pressures and greater load capacity.

Figure 2-5 is a photograph that shows two ring sectors with the outer inserts in

place. Figure 2-6 shows the interior of two adjacent segments with the inside

insert in place.

The piston-ring system incorporates an additional refinement intended to

improve load capacity which has been alluded to in previous paragraphs. The

total load on the gas film is the summation of the external load plus the load

due to the reservoir pressure (pre-load). Before accepting external load, the

segment must bottom against the piston and overcome the preload acting upon it.

In the absence of external load, the segment is preloaded by the reservoir pres-

sure acting against the annular area between the Tetraseals. As load is

applied, the segment makes contact with the piston, in the annular region, and

thus removes the gas pre-load and accepts greater external load. Gas supply is

maintained because of the six drilled holes in the piston centrally located

behind each segment. The gas supply holes in the piston are indicated on Figure

2-7. The slots that extend from each hole were intended to feed restrictor

holes not covered by the main supply hole. That is also the reason for the

grooved pattern on the interior of each pad as shown on Figure 2-6. The groove

pattern was incorporated when the bearing compensation system consisted of

multiple drilled orifices. This configuration was subsequently changed to two

relatively large recesses fed by three orifices; the three orifices could be

fed by the one large inlet hole behind each sector and obviated the need for the

grooving patterns. Unfortunately, once the grooves were machined, they could

not be removed. The grooving deleteriously affected load capacity since they

prevented removal of some preload.

Figure 2-8 shows dimensions of the rings and piston in English units. Other

pertinent drawings are presented in Appendix B. The recess configuration is

presented in Section 4. The test ring diameter was 139.7 mm (5.5 in.) and the

machined clearance between the ring and cylinder was 12.7 microns (.0005 in.).

13



Figure 2-5 Two Adjacent Sectors with Outer Inserts Installed

14 MTI-21799



Figure 2-6 Two Adjacent Sectors with Inner Inserts Installed

15 MTI-21801





Figure 2-7 Static Test Piston with One Set of Rings Installed,

and Showing Gas Supply Hole Behind Each Segment

17
MT1-2! 803
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•3.0 DESCRIPTION OF STATIC TEST RIG AND TEST FACILITY

3.1 Description of Static Test Rig

A cross section of the static test rig is shown on Figure 3-1. Two sets of rings

are tested simultaneously in a back-to-back arrangement to obviate the need for

high-pressure seals. Provisions were made to independently provide hydrostatic

supply pressure to the rings and to provide high pressure to the combustion side

of the rings. The interior piston is stationary and the cylindrical liner is

floating. It can be moved relative to the piston by differential jacking

screws. In between the jacking screws and cylinder are force transducers that

record the force applied to the rings when the jacking screws are turned. •

Six capacitance probes monitor clearance of a ring set so for the two ring

assemblies there are a total of twelve capacitance probes. Longitudinally, the

probes are located at either end of a segment and there are three probes in each

plane. Thus, every other adjacent sector is monitored for clearance. A

complete set of ring and rig drawings are included as Appendix C.

3.2 Description of Flow Loop

The flow loop is diagrammatically shown on Figure 3-2. The source of high-pres-

sure nitrogen was from pressurized bottles located on a truck trailer outside of

the bay area where the test rig was located. The nitrogen splits into two sepa-

rate paths to the test rig. One path feeds the interior of the sectors (bearing

supply); the other feeds the combustion chamber side of the rings. Pressure

regulators control the pressure and flow to each of the independent paths.

Separate flow meters and pressure transducers are incorporated in each path.

3.3 Instrumentation

All test data was recorded on a Fluke 2240C data logger with digital printout.

There were 23 channels of information which are identified on Table 3-I.

All instrumentation was carefully calibrated by MTI or the supply vendor. Cali-

bration curves were recorded in log books available at MTI. The calibration for

the orifice plate flow meters is indicated on Table 3-2.
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TABLE3-1

LISTOF INSTRUMENTATION

Channel Function Instrument

1 N2 SupplyPressure ValdyneDP 15-64 Transducerwith Pace
Wiancko CD-25 TransducerIndicator

2 BearingSupply,P CelescoP 2805-3000PSI - with SalientElectric
MTI 15/15A #03 Power Supply

3 Bearing Flow, _P WhittakerKP 15 Transducer,CD-10 Carrier
Demodulator- 25 PSI - dP

4 CombustionSupply,P CelescoP 2805-3000PSI - wit_ Salient Electric
MTI 15/15A#03 Power Supply

5 CombustionFlow, dP WhittakerKP 15 Transducer,CD-10 Carrier
Demodulator- 25 PSI AP

6 CapacitanceProbe 1 MTI ASP-5 with Wayne Kerr DM-100B
Amplifier- 5 mil range

7 CapacitanceProbe 2 MTI ASP-5 with Wayne Kerr DM-100
Amplifier- 5 mil range

8 CapacitanceProbe 3 MTI ASP-5 with Wayne Kerr DM-IOOB
Amplifier- 5 mil range

9 CapacitanceProbe 4 MTI ASP-5 with Wayne Kerr DM-100
Amplifier- 5 mll range

i0 CapacitanceProbe 5 MTI ASP-5 with Wayne Kerr DM-100B
Amplifier- 5 mil range

Ii CapacltancE.Probe6 MTI ASP-5 with Wayne Kerr DM-100
Amplifier- 5 mil range

12 CapacitanceProbe 7 MTI ASP-5 with Wayne Kerr i_-600
Amplifier- 5 mll range

13 CapacitanceProbe 8 MTI ASP-5 with Wayne Kerr TE-6OO
Amplifier- 5 mil range

14 CapacitanceProbe 9 MTI ASP-5 with Wayne Kerr TE-600
Amplifier- 5 mil range

15 CapacitanceProbe i0 MTI ASP-5 with Wayne Kerr TE-600
Amplifier- 5 mil range

16 CapacitanceProbe ll MTI ASP-5with wayne Kerr TE-600
Amplifier- 5 mil range

17 CapacitanceProbe 12 MTI ASP-5 with Wayne Kerr TE,600
Amplifier- 5 mil range

18 Load'Transduceri StralnSertBolt Transducer-
i0,000 lb. Capacity- BLH 120 C Power Supply

19 Load Transducer2 StralnSertBolt Transducer-
i0,000 lb. Capacity- BLH 1200 B Strain Indicator

20 Load Transducer3 StrainSertBolt Transducer-
i0,000 lb. BLH 1200 B Strain Indicator

21 Load Transducer4 StralnSertBolt Transducer-
i0,000 lb. Ellis Bridge Amplifier

22 BearingSupplyT Copper - Cons_antlnThermocouple

23 CombustionSupply T Copper - Cons_antinThermocouple
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TABLE 3-2

ORIFICE BORE CALCULATIONS

Customer: PFK Company Date: 5/18/81

Order No.: 1139 S.O. 81-0688

Steam, Gas or Vapor Flow

Tag

Operating Conditions

In Line 444, S= .0651

Meter Type Dry
Differential Range H20 i00.00
Meter Tube ID inches .466

Orifice Type Concentric
Meter Tap Flange

Tap Location
Flowing Material Nitrogen
Max. Flow at Base Conditions 170.00 pounds/H

Avg. Flow at Base Conditions 120.21 pounds/H
SP. GV. (Air=l.0) .96700

Specific Heat Ratio 1.400
Bas_ Temperature Deg. F 60.00

Flowing Temperature Deg. F 60.00
Base Pressure PSIA 14_70

Atmospheric Pressure PSIA 14.70

Flowing Pressure PSIG 2000.00
Static Pressure Tap Location Downstream

Operating Viscosity .0190
Sealing Liquid SP.GV. at 60 Deg. F .00
Orifice Plate Material 304 SS

Calculations
i WM = 170.00000

2 D*D = .2172

3 FA= 1.0000
4 FM = 1.0000

5 SQ, ROOT SP.WT,FLOWING=3.3517

6 SQ, ROOT HM = I0.00
7 y = 1.0002

8 FC = 1.0034
9 359"(2 thru 8) = 2622.22

S = (I/9E = .0648
BETA = .3273
BORE = .153

Reynolds Number = 85804.
Coefficient (C) based upon above given conditions

C' = 17.000 pounds/H

Reference° Principles and Practice of Flow Meter Engineering - Foxboro-
9th Edition

Equation 44, Page 332
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The numerical and channel locations of the capacitance probes and force trans-

ducers are indicated on the photographs, Figures 3-3 and 3-4, respectively.

Photographs of the test facility and instrumentation are shown on Figures 3-5

and 3-6.
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Figure 3-6 Photograph of Test Rig and Instrumentation
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4.0 SUMI_Y OF TEST RESULTS

4.1 Final Test Pad Configuration

The recess configuration on the outer periphery of the sector was one of the

parameters that could be physically varied. Because test results indicated

consistent lift-off difficulties, significant variations in the pad surface

geometry occurred over the life of the program. These are documented in Section

6, which provides a chronological history of the test program.

The final pad recess configuration is shown on Figure 4-i. It consists of two

recesses milled to a depth of 0.0254 mm (.001 in.). The angular extent of the

recesses is approximately 47 °. The recesses are not symmetrical because of the

non-symmetry in boundary conditions that occur over the four-stroke cycle. The

recesses are separated to provide greater righting moment when the pads are

inclined due to off-setting moments about the pivot position. The original

drawing of the pad is shown on Figure 4-2. When the pad is installed, it is

intended to pivot about the interior surface located 6.35 mm (.25 in.) from the

upper edge.
q

As shown on Figure 4-i_ the upper recess is fed through two orifice restrictors

0.406 mm in diameter_ and the lower recess is fed by one identical restrictor.

The restrictors feed into a counterbored hole that is 3.18 mm in diameter and is

1.52 mm deep. This depth would have been increased to 10-12 orifice diameters

if it would not have interfered with the counterbore on the inside diameter of

the pad. This particular recess geometrywas selected on the basis of theore-

tical studies which are discussed in Section 5 and single-pad test results. A

photograph of the latest pad configuration is shown on Figure 4-3. In addition

to the recesses and orifice feeds_ the photographs indicate a number of rows of

holes on the surface of the pads. These holes were employed on prior configura-

tions but were blocked off from the inside with molten soft metal when they were

no longer to be employed. A photograph of the pad interior is shown on Figure

4-4.
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Fig. 4-1 Final Segment Recess Configuration
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Figure 4-2 Ring Segment Drawing
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Figure 4-3 Photograph of Latest Recess Configuration
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Figure 4-4 Photograph of Pad Interior Showing Plugged
Orifice Holes and Inside Insert
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4.2 Final Test Assembly Configuration

During final testing of the modified pads, certain variations were made to the

test assembly to correct instrumentation problems. Because of prior damage that

had occurred to the cylinder, it was reworked and the interior plated with elec-

troless nickel to proper dimensions. During the plating process, the threaded

connections for inserting the capacitance probes were not masked off properly

and hard plating was deposited on the thread surfaces. Subsequent use of hard

carbide taps removed most of the deposits, but it was still difficult to accu-

rately set some of the prohes to read consistently. Similar problems were expe-

rienced with the StrainSert load bolts. It was decided to ensure that load and

probe instrumentation was working properly on one ring set and record confident

data during the production testing. The ring set that was most amenable was

ring set A located on the combustion supply end of the rig. Also, the cylinder

was rotated from its normal position (see Figure 3-3) so that the probe channels

were as indicated on Figure 4-5. Probes ii and 12 are monitoring the top pad

rather than the original probes 7 and 8. Also, load cells channels (18) and (19)

were used to monitor loads oh the instrumented pads as indicated on Figure 4-6.

Pad Number IA was located on the near side of Figure 4-5 and monitored by probe

channels (8) and (9), and Pad Number 5A was located on the opposite side, Figure

4-5, and monitored by probe channel (12) and (13).

In addition to the variations in instrumentation, there were also variations in

geometry on some of the pads. In the evolutionary process leading to the final

pad configuration, modifications had been made which were not able to be recti-

fied. (e.g., oversize recesses could not be refilled and remachined, although

this was attempted). Although each of these pads had the final recesses

machined, there were other variations that made them different than the final

selected geometry. Figure 4-7 shows the final pad sets laid out in segmented

order. The A set of segments is on the top row, and the B set is on the bottom.

Pads increase numerically from left to right, pads IA through 6A on top and IB

through 6B on the bottom. The pads containinggeometrical variations are pads

6A, 6B, and 2B. Individual performance of these pads are discussed in Section

6. Insertion of the non-conforming pads had only a slight effect on overall

flow measurements which were not considered serious. Film thickness of these

pads were not monitored during the production running.
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Figure 4-6 Load Cell Channels for Final Testing
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Figure 4-7 Pad Arrangement for Final Testing
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4.3 Test Procedures

The usual procedure for conducting the testing was as follows:

i. All probes were set at approximately .1016 mm (4 mils) from the pad

surface.

2. Pressure was applied to the pressure regulators.

3. A reference set of readings were printed out by the data logger. The

reference values were used as a zero base for subsequent test points.

4. For testing in the absence of combustion pressure, the combustion side

piping to the test rig was disconnected.

5. Between load applications, load was completely removed and proper

pressure applied before the next ioadpoint was set.

Tabulated data from the runs are included in Appendix A.

4.4 Test Results

4.4.1 Clearance Distribution, Zero Load, Zero Combustion Pressure

The first series of tests were run to simulate intake and exhaust conditions,

i.e., zero load on the ring set, and zero pressure on the combustion side of the

ring. Figure 4-8 shows clearance results for pad number 3A, as a function of

bearing supply pressure. The end points of the lines correspond to the probe

locations at each end of the pad. Pad 3A was located at the top position of the

rig and was monitored by probes ii and 12_ channels (16) and (17), respectively.

The pressure levels varied from 2.7 MPa to 10.07 MPa. Under all conditions of

operation, this particular pad maintained a positive clearance, i.e., the pads

moved away from the cylinder wall and the probe measurement increased from that

of the reference position. The magnitude of the clearances are in the approxi-

mate design range. The combustion end of the pad is on the left end of the

clearance curves and the pivot position is approximately 6.35 mm from the

origin. All curves form a converging clearance from the combustion end towards
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PAD 3A CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE
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the crankcase end of the ring. This would be expected since the non-symmetry of

the recess configuration and orifice supply system would produce a converging

inclination with zero boundary pressures applied at either end. In general, the

higher the supply pressure, the larger the clearance, although the test results

produced some contradictions with respect to this pattern. The general trend

regarding the slope of the curves is that they tend to increase with pressure.

Figure 4-9 shows similar results for Pad IA, which was located on the near side

of Figure 4-5, and monitored by probe channels (8) and (9). Notice that the

clearance is negative along a substantial portion of the pad. What this implies

is that the pads moved closer to the cylinder walls and measurement probes, when

pressure was applied, than that measured in the reference position or under

conditions of zero applied pressure. The chances are that the pads are contact-

ing at the exhaust end, but when pressureis applied, deformations occurring in

both the cylinder and pads makes it difficult to precisely establish the film

thickness distribution. For purposes of definition, when negative clearances

occur, the pads are not considered to have "positive lift- off". Note, that

when the pads do not lift-off, higher pressures aggravate the situation and the

clearances become more negative.

There is a tendency, however, for the slope to reduoe as pressure increases

which is beneficial to operation. The results for pad 5A are shown on Figure

4-10. This pad is located on the opposite side of Figure 4-5 and was monitored

by probes 7 and 8, channels (12) and (13), respectively. This pad did not lift-

off and the situation was similarly aggravated by higher pressures. Again,

there is a tendency for the slope to decrease as pressure is applied.

The reason why some pads lift and others do not is not easily discernable. In

the operating clearance range, minute variations produce significant differ-

ences. The problem of lift-off, however, appears robe related to the sensitiv-

ity of the pad to moment unbalance. Apparently_ the pads do not have sufficient

righting moment to correct themselves once they are headed in the wrong direc-

tion and increased pressure levels further deteriorate performance. On the

other hand, for a pad that does lift-off well, performance improves with pres-

sure.
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PAD IA CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE
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PAD 5A CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE

Figure 4-10



Additional clearance measurements were made on pad 3A at an earlier date.

Results are shown on Figure 4-11 and are indicated to demonstrate the kind of

consistency achievable with the test rig. As shown on Figure 4-11, the pad

lifts off nicely and produces the same order of clearances as for the test data

indicated on Figure 4-8. Considering the magnitude of clearances involved, test

repeatability is very reasonable. In general, the tests indicated that trends

were always repetitive. Thus, if a pad lifted off, it consistently did so and

vice versa. Absolute magnitude may have varied somewhat due to variations in

ambient and fluid temperatures, distortions under pressure, etc.

4.4.2 Clearance Distribution - Zero Load Combustion Pressure Equal Bearing

Supply Pressure

During the compression and combustion regions of the cycle, the bearing supply

pressure will approach the combustion chamber pressure. Thus, a series of tests

were conducted over equalizedpressure boundary conditions. Figure 4-12 shows

the results for pad 3A. Several items are noteworthy. First, the slope of the

curves are opposite to the zero pressure boundary conditions (intake and exhaust

strokes). Hence, there is a diverging clearance from the high pressure to low

pressure ends of the pad. This is contrary to theoretical predictions (see

Section 5) and an undesirable characteristic. A converging clearance would

provide improved stiffness and load capability and much greater assurance that

contact will not occur. The obvious reason for the diverging clearance is that

the center of pressure in the clearance region is below the center of pressure

inside the pad, producing a net counter-clockwise moment on the pad causing a

divergent tilt in the direction of the pressure gradient. An attempt was made

to raise the center of pressure by relocating the lower recess towards the pad

fulcrum, but this was not successful. Further description of the process lead-

ing towards an appropriate recess configuration is included in Section 6. The

other significant item concerned with Figure 4-12 is that the clearance goes

negative towards the combustion end. Thus, the pivoting action brings the upper

edge of the pad towards the cylinder and it is quite probable that contact takes

place there. This has not been a consistent phenomenon for Pad 3A. Figure 4-13

shows results of data taken at a different time, and at the higher pressure

levels, clearances are positive. Positive clearances also occurred during other

tests of Pad 3A. The pad inclination, however, is still in the wrong direction.

It should be noted that a reversal in pad inclination takes place from the

53



PAD 3A - CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE
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PAD 3A CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE

15' , .
!

14" t

13- OATA SET C - 4/16/84
SUPPLYPRESSURE= COMBUSTIONPRESSURE s

12" PRESSURESFRON TOP - RIGHT SIDE
11" 10,246 HPA

10" 8.340 MPA
1.365 NPA " i ! :

9- 6.g32NPA j
8- 5.522 HPA

u_ 7- 4.151 HPA i iZ ! s " i
0 2.748 NPA z : :
,,-,- 6- ! I(,..1 i
II-"t 5- S

" i i I i I
, 4" I .: ,I ,: I

'" 3" : !•u i : i iz i ! ,

u, '( 2" ! ! i i :_n (X ,
< 1" L i: z :

! I : I l s

t......................"i".........;.................i......:.................i..................-:,o 0-
- l" : *............................"_""................... i...................... "_|Z

i i ' ! ! !
-2" .: : ..- ,: i t i i t
- 3......... ,............................._.............................l............................i ..........................,.................... -1

• : t i : Ii ! ! . l •
-4" : I............................"!"........................ ',t".....-"..................._................... i

-S" i COitIUSTI!ONSIDE '1 ! i ]-6 ........ i.............................i " . ............................................
i i , . i

i " i li i i _ i
0 10 20 30 40 50 60 70

DISTANCE ALONG PAD - MILLIMETERS

Figure 4-12



PAD 3A - CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE
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intake-exhaust conditions to the compression-combustion condition. This

reversal will have some beneficial squeeze film effect, although quantitative

numbers are not available. Results for Pads IA and 5A are shown on Figures 4-14

and 4-15, respectively. Similar characteristics are produced. In general, the

slope or divergence increases with pressure.

4.4.3 Ring Flow as a Function of Pressure

Flow was computed from the pressure drop across the orifice plate flow meters

and the absolute temperature of the nitrogen entering the flow meter. The

following formula was used in computing flows:

18%A___._ 520 ' (4-1)
W = 77. _3. 611 -_

W = Flow kg/h

AP = Pressure drop across flow meter - psi

T = Absolute temperature - OR

Several sets of flow data were plotted because there were some significant vari-

ations. The flow is very sensitive to the clearance in the pads (to the third

power) so that if, for any reason, the clearance opens slightly, high flowwill

result. Figure 4-16 shows flow under zero load conditions and for both boundary

conditions (combustion pressure =0 and combustion pressure = supply pressure).

In the case of zero combustion pressure, the flow levels off to a maximum value

of 55 kg/h. When combustion pressure equals supply pressure, the flow rises to

a value of approximately 97 kg/h at the highest pressure condition. This flow

is excessive and is not characteristic of usual conditions. As will be subse-

quently demonstrated the normal condition is that high combustion pressure

reduces flow from the zero combustion pressure condition. The distribution of

flow under high combustion pressure conditions is indicated on Figure 4-17. The

total flow has two components; one that supplies the recesses from the inside,

i.e., the normal bearing flow; the other is the flow that emanates from the

combustion end of the rings. As indicated on Figure 4-17, the bearing flow

levels off while the combustion end flow continually rises. There are two

explanations for the high combustion end flow. The first is that one or several

pads hung-up with excessive clearance. The second is that nitrogen temperatures

were quite low during this run. The rig had run a considerable period of time

before these conditions were imposed and the temperatures had reduced to some
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PAD 1A CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE
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PAD 5A CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE

............................................., . _
'...........i+°+L,,.--_u°,-_o--u--,o.,_--u°,II.,7--17"--7
fi........... 1 PRESSURES FRON TOP - RIGHT SIDE r........ - .....i ........ ,.............. ("-'_ ..... v"---_!TT"---'_'_-

..........i _o._+ .PA i........................._ IL_.....__...._._+____/_____
_ 1 8.340 HPA [ ! "_'"_"'; __

" 3...........Js._22.PA t............t........L.._._C....______J
c)

",..., 2............I 4.__ .PA r ...."-;,__/_7'r_- --T..--'.... ---i
_..........1_'"0""" I---_-'-_,_<__ ................_--....--;

i O" .............................is.............................i._............, ,...................,i- --_'S_w'_J_._t_j___..... ...........__....................._........................ L:........ "-I
"' i i L_ ///>_'- I + I
uz -1" ............................"..-,.......................;................._,_,_,_-- ". ----- .... _................ -i-:...... '+ ! j.,n//.//'7 _ t ;

-€.n '_"" .............................i...............,.............,,.-._' ......!..................--+..............1
'_ < -2- , i_ ///_'_/ I ! : • I,., : _ ,, , ,_.I

u -3................................"........'""_ _ ...........+l"...........................-".......... -I
i , " '............................ • ...................................................... "......................... i" ......... -- ........................... ,I-4................ ......."...." ..............................-"'" ! !

- 5.................. " ' -...... .................. I

-6..............i........ __......................... .........+.....--..........+................1----.....--.....m.--...m-.--.-------i--------------+-+-- I

-7- + " + + ": +.............................................................................._.............................-(..........................._........................_............. ]
: i

"I ,,.... 7....! T i )
......+....................i............ |

-9.............................i..........................................................._.............................".................................................._......... -: : i ' : i
1 • : t '

-_ + l
o zo 20 30 40 _o _o 70

DISTANCE ALONG. PAD - MILLIMETERS

Figure 4-15



RING FLOWVS PRESSURE

70-

60-

o
-- 50"

o
:_ 40"

° !-J DATA SETS B ANDC - 4/15/84
IJ.

30" , ZEROLOAD

G
1 2 3 4 5 6 7 8 9 I0 II

PRESSURE-HPA

Figure 4-16 •



RING FLOW VS PRESSURE
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10°C at the flow meter and probably significantly less in the rig. More repre-

sentative flow values are as indicated on Figure 4-18, which is a plot of data

taken several days before. Results indicate that when combustion pressure is

absent, the flow is greater than when combustion pressure equals supply pres-

sure. This occurs because when combustion pressure is applied the flow path

from the recesses to the combustion end is effectively blocked off and a net

reduction in flow results. The highest flow at i0 MPa bearing supply pressure

is approximately 80 kg/h. The flow distribution is indicated on Figure 4-19,

for the situation where combustion pressure equals supply pressure. The higher

flow is the bearing flow, most of which exhausts to the low pressure end. The

combustion end flow is inhibited by the upper recess pressures which maintains

the combustion end pressure gradient at low levels. Further data was obtainable

from some of the load test runs, where zero load flow information was extracted.

This data is plotted on Figure 4-20 and substantiates the results of Figure

4-19. Table 4-1 summarizes flow values for the two primary operating condi-

tions.

TABLE 4-1

REPRESENTATIVE FLOW VALUES

AS A FUNCTION OF

PRESSURE BOUNDARY CONDTTIONS

Bearing Combustion Total

Supply End Ring
Pressure Pressure Flow

(Ps' MPa) (Pc' MPa) (kg/hr.)

lO 0 80

5 0 40

10 i0 55

A maximum acceptable value of leakage blowby would be about 7% of the intake

values or approximately 16 kg/hr. As indicated from the above numbers, this

flow limit is being significantly exceeded. By appropriate design of the reser-

voir system, the bearing supply pressure levels during the intake and exhaust

conditions can probably be reduced to half of the anticipated maximum levels

without adversely affecting bearing performance. This conclusion follows from
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RING FLOW VS PRESSURE

Figure 4-20



the fact that side loads are absent during these strokes. Then an average flow

value would be in the vicinity of 50 kg/hr.

Another factor entering into the flow levels experienced during testing is the

leakage occurring between the segments. Some test work had been previously

accomplished to determine sector joint leakage. This was accomplished by block-

ing off all orifices and measuring flow values at different supply pressure

levels. An average leakage rate for a single ring is approximately 15 kg/hr.

Thus, in the absence of leakage, the expected flow rate for a single ring is 35

kg/hr. Appropriate configuration changes could considerably reduce this flow

rate and bring the values to acceptable levels.

4.4.4 Load Capacity vs. Pad Clearance

4.4.4.1 - Combustion Pressure equal Supply Pressure.

The most significan_ load data occurs when combustion pressure equals supply

pressure. This is when side loads are applied to the piston. Figure 4-21 shows

results of the final test run on the loaded pad (3A). The negative clearance on

the combustion end remains as it did when there was zero load on the pad (see

Figure 4-ii). Again this implies that the pad moves towards the cylinder with

respect to the reference position which is a zero load, zero supply pressure

condition. The combustion and supply pressure for the test results plotted on

Figure 4-21 was approximately i0 MPa, or about the maximum pressure considered

during the program. When load is applied the pad inclination reduces, although

it still remains divergent with respect to the combustion end pressure gradient.

Since there are regions of negative clearance, even at zero load, it is diffi-

cult to accurately pinpoint the pad load capability. Fortunately, an earlier

test of a pad with an identical recess and orifice configuration lifted off

cleanly and an accurate measurement of load capacity could be established.

These test results are shown on Figure 4-22. This pad showed positive clearance

for applied loads in excess of 61000 N. If load is applied between pads rather

than directly on a pad, capacity would increase to 109400 N. If the effects of

squeeze film were included, it is possible to momentarily sustain an absolute

maximum side loading of 13,344 N (see Table i-I). Thus, load capacity results

are quite promising, even though momentary contact is a distinct possibility.
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For reasonable life, it would probably be necessary to apply low wear material

combinations.

Load data was also taken when the combustion pressure was set to zero. Although

this is not a load condition, the information is useful in establishing the

capacity of the gas film. Typical results are shown on Figure 4-23. Except for

the most heavily loaded case, all clearances remain positive and reasonably

healthy. Maximum load capacity is in the vicinity of 5,000 to 6,000 N.

A multitude of load vs. clearance data was plotted as a function of clearance

levels and is included in Appendix B for reference purposes.

4.4.5 Flow as a Function of Load

The variation of flow with load at different pressure levels is shown on Figures

4-24 and 4-25. Figure 4-24 shows flow variations when the combustion pressure

equals the supply pressure and Figure 4-25 shows the variation when the

combustion pressure is zero. The results indicate that flow does not vary

significantly with load; the most sensitive independent parameter is pressure.

The reason load is not an important variable with respect to flow variations is

that the integrated clearance distribution over all pads does not vary signif-

icantly. Although there is some clearance closure on the loaded pad, it is

compensated for by slight opening on adjacent and opposite pads.
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5.0 ANALYTICAL PREDICTIONS

5.1 Computer Codes

The initial analysis of the gas-lubricated piston ring made a number of simpli-

fying assumptions that overestimated performance and was a significant underly-

ing factor in producing a deficient design. The major assumptions included in

the analysis were as fol!ows:

I. The ring was presumed to be solid without geometric interruption

between segments.

2. Feed orifices were treated as inherently compensated line sources

around the circumference of the ring.

Section 69 Chronology of Test Program, provides more details and insights into

the development history. When it became apparent that initial computer codes

would not be adequate to provide guidance for configuration changes, it was

decided to use an available incompressible computer code that contained the

required number of options necessary to conduct parametric studies. The capa-

bilities included:

i. Single or multi-recess configuration with arbitrary locations.

2. Orifice compensation.

3. Pre-specified pressure boundary conditions.

4. Ability to determine pad position to satisfy a given radial load and

moment about the known fulcrum position.

Results of the incompressible theory differs from the more accurate compressible

predictions in the following areas:

I. The pressure distribution over land or sill regions (as opposed to over

the recess) is more linear with incompressible theory and is somewhat

parabolic for compressible theory. These distributions become
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distorted with greater variation when pad inclination occurs.

Although absolute comparisons between the results of compressible and

incompressible theory may not produce large differences, small vari-

ations are significant. The pre-load on a pad is in the neighborhood

of 35,584 N and if the center of pressureis off by only 5 to i0 mm, it

could have a significantimpact on rightingmoment and cause a diverg-

ing clearance rather than the desired converging clearance in the

directionof the pressuregradient. In other words, small differences

in large numbers can have appreciableeffectseven though percentages

are small.

2. Incompressible theory does not allow for choking in the orifice,

althoughthis is not of seriousconsequencefor the application since

pressure ratios across the orifice are in the neighborhoodof 0.8 or

greater.

3. Flow conversion from incompressible to compressible theory is made by

using the average density in the film. This can be shown to be exact

for isothermal flow which is the normal assumption in compressible

theory.

5.2 Applied Forces and Moments

The pressure applied to a segment by the bearing supply and the combustion cham-

ber pressure impose radia! loads and moments about the pad fulcrum. These loads

and moments must be balanced by the gas-film. Figures 5-I and 5-2 show closing

forces and moments respectively as a function of pressure levels. In computing

forces and moments, it was presumed that the bearing supply pressure is applied

to the outboard ends of the Tetraseal grooves. When combustion pressure equals

supply pressure, the normal area of the pad above the upper Tetraseal is exposed

to high pressure gas and will produce an additional closing load over that of

the zero pressure boundary conditions. Thus in Figure 5-1, when the combustion

pressure equals supply pressure, the closing loads are greater. With respect to

applied moments, when the combustion pressure equals supply pressure, there is a

moment caused by pressure acting on the top surface of the pad that counterbal-

ances that due to the additional radial pressures above the upper Tetraseal.
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Thus, the moments for both sets of boundary conditions are nearly equal as indi-

cated on Figure 5-2.

5.3 Boundar 7 Conditions Between Sectors

In determining theoretical performance, an appropriate model for determining

the pressure occurring at the joints between sectors must be decided upon.

Initially, it was presumed that there would be essentially zero flow normal to

the joint. However, when comparing the theoretical predictions with zero normal

flow joints with actual test data, the theory seems to overestimate performance.

More accurate results were produced when zero joint pressures were applied. The

reason why zero pressure joints produce more correct theoretical predictions is

not well understood, but to provide the greatest accuracy for determining recess

configurations to be tested these were the conditions applied.

5.4 Theoretical Models

The theoretical computer models employed are depicted on Figure 5-3. The grid

network is for one sector. The abscissa represents the circumferential direc-

tion and the ordinate represents the axial direction. There are 24 grid inter-

vals (2.5 ° each) in the circumferential direction and 16 grid intervals (4.366

mm each) in the axial direction. The numbers at the grid points are used to

identify boundary points, recesses, computation points, etc. The numbers ll and

12 identify recesses numbers 1 and 2, respectively. The number 8 indicates a

grid point at which the pressure is determined from numerical solution of the

lubrication equation. The zeros imply 0 pressure. The numbers 4 and 13 are used

to apply appropriate pressure boundaries to the top of the pad when combustion

pressure equals supply pressure. The dimensions used in the analysis are not

identical to the final dimensions physically machined into the pad. There are

two reasons for the discrepancy_

i. Test results indicated a variation of dimensions to improve perform-

ance.

2. Grid intervals must be sufficiently large to avoid excessive consump-

tion of computer time.
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5.5 Theoretical Results

Since theory is not limited by instrumentation capability, a significant amount

of theoretical information can be readily produced. This section discusses

theoretical results, and Section 5.6 following compares the results with exper-

iment.

Minimum film thickness as a function of pressure is shown on Figure 5-4. The

first observation is that all film thicknesses are positive. Minimum films are

less for the case where combustion pressure =0. When combustion pressure equals

supply pressure, the combustion pressure provides additional capacity that

opens clearances. The absolute values of minimum films are in the range where

achievable surface topography would not interfere, but are stretching what would

be considered safe limits in bearing technology (2.5 - 5.0 microns). Figures

5-5 and 5-6 shows the clearance distribution along the length of the pad at

various pressure levels for combustion pressure equal zero and equal to supply

pressure respectively. These two plots can be directly compared to experimental

results (see previous section). Absolute magnitude of pad inclination for the

two pressure boundary conditions are shown on Figure 5-7. A negative inclina-

tion implies a converging clearance from the combustion end to the exhaust end.

Theoretically converging clearances are predicted although for combustion pres-

sure equal supply pressure, the pad inclinations are quite low. Also note, that

there is not a significant variation of the inclination angle with pressure.

Ring flow as a function of pressure is shown on Figure 5-8. The higher flow

occurs when the combustion pressure equal zero, because there is no pressure

gradient to inhibit flow from the recess towards the combustion end. Flow

levels do increase with pressure.

Figures 5-9 and 5-10 indicate the variations of both recess pressures with

supply pressure for the combustion pressure equal to zero and to the supply

pressure respectively. Recess I is the large recess at the combustion end and

Recess 2 _s the smaller recess closer to the exhaust end. Optimally, there

should be a good separation between the recess pressure and supply pressure in a

hydrostatic bearing. As the recess pressure approaches the supply pressure,

stiffness is adversely affected. Unfortunately, when low flow and high loads

are prerequisites, small films and high recess pressures are consequences. As
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THEORETICAL PAD MINIMUM FILM THICKNESS VS PRESSURE
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THEORETICAL CLEARANCE DISTRIBUTION
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THEORETICAL CLEARANCE DISTRIBUTION
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THEORETICAL PAD INCLINATION VS PRESSURE
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THEORETICAL TOTAL.RING FLOW VS PRESSURE
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THEORETICAL RECESS PRESSURES VS SUPPLY PRESSURE
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THEORETICAL RECESS PRESSURES VS SUPPLY PRESSURE
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indicated on Figure 5-9, for combustion pressure equal zero, pressures in Recess

2 are quite high, while those in Recess 1 maintain an adequate separation with

the supply pressure. The reason that high pressures occur in Recess 2 is that

moment unbalance tends to close off the clearance on the downstream end where

Recess 2 is located, increasing flow resistance in that region with consequent

high recess pressures. For the case of combustion pressure equal to supply

pressure, Recess i has slightly higher pressures than Recess 2, but both pres-

sures are relatively high because of the close clearances and boundary condi-

tions.

Figure 5-11 shows the radial stiffness of the sector as a function of bearing

supply pressure. At a pressure of I0 MPa, the stiffness when the combustion

pressure is zero is more than twice the value when combustion pressure equals

supply pressure. Although the stiffness values appear to be large, they are

deceiving because of the low operating film thickness. Figure 5-12 shows the

pad tilt stiffness as a function of pressure. It is significant to note that the

pad stiffness values continue to increase with pressure and have not leveled

off. In theory, the predicted stiffness values are adequate enough to prevent

segment contact. The final theoretical performance curve is the pad eccentrici-

.ty ratio as a function of supply pressure, shown on Figure 5-13. The eccentric-

ity ratio is defined as the radial displacement at the pad pivot position

divided by the machined clearance of the pad (.0127 mm). An eccentricity ratio

of I would mean that pad contact had occurred. For the general operating condi-

tions the pad eccentricity ratios are very acceptable, but the more meaningful

parameter is the minimum film thickness since this accounts for tilt about the

pivot points.

5.6 comparison Between Theor 7 and Experiment

Direct comparisons can be made between theory and experiment for the clearance

distribution and flow. Consider first the clearance distribution when the

combustion end pressure is zero. If Figures 4-8 and 5-5 are compared, the

following conclusions canbe made:
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THEORETICAL PAD RADIAL STIFFNESS VS SUPPLY PRESSURE
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THEORETICAL PAD ECCENTRICITY RATIO VS SUPPLY PRESSURE
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ClearanceDistribution,CombustionPressure=0 (Figures4-8and 5-5).

" The theory indicates decreasing clearances with pressures. Experiments

provide mixed results but, in general, clearances are greater at higher

pressures.

" The pad inclination for both experiment and theory provides a converging

clearance from the combustion end to the exhaust end.

• Figure 4-9 shows clearance results for pad IA. Although this pad experi-

ences negative clearances, note the general trend towards reduced clear-

ances as pressures increase. This is in conformance with the general

theoretical results of Figure 5-5. Similar results apply to pad 5A, as

can be seen by comparing FigUres 4-10 and 5-5.

• Clearance distribution comparisons between theory and experiment for the

case where combustion pressure equals supply pressure can be made by

examining Figures 5-6 and 4-12 (pad 3A). The theoretical results shown

on Figure 5-6 indicate a good converging clearance in the direction of

the combustion end pressure gradient and reasonable values of operating

clearance. Also, the clearance decreases as the pressure increases. The

experimental results, Figure 4-12, on the other hand, show a diverging

clearance in the direction of the pressure gradient. Also, the higher

pressures produce higher clearances, which is again contrary to theory.

Positive clearances at the higher pressures were produced experimentally

for pad 3A, at a different test date (see Figure 4-13) indicating some

inconsistency in pad performance. Figures 4-14 and 4-15 show that pads

IA and 5A maintained similar performance characteristics.

• Flow data comparisons can be made by examining Figures 4-18 and 5-8.

Theoretical values shown on Figure 5-8 indicate that when the combustion

pressure equals zero, the flow is always higher than when combustion

pressure equals supply pressure. The test results indicate that the

curves cross each other and at lower pressure levels, the flow is higher

for the combustion pressure equal to supply pressure. This is due to the

diverging clearance distribution as opposed to theory. At the higher

pressure levelS, the absolute magnitude of the flows compare reasonably

well. Also, the general trend in flow are correct; the flow gradient

with pressure is greater for zero combustion end pressure.

• In general, the computer code proved very useful in evolving a final

configuration and predicted general trends (e.g. improved performance)
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very well. The theory was lacking, however, in predicting final clear-

ance distributions.

5.7 Pneumatic Hammer Instability

Hydrostatic gas bearings are prone to a phenomenon known as "pneumatic hammer",

a self-excited, and often destructive, vibration of the opposed surfaces.

Pneumatic hammer comes about because of compressibility in the film and is

aggravated by trapped fluid regions within the clearance volume. References i,

2 and 3 indicate theoretical methods for determining criteria for avoiding pneu-

matic hammer problems. Theoretical development is outlined on the following

pages.
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NOMENCLATURE

A = Bearing area

A = Orifice area
O

A = Surface area of recess
r

A = Surface area of bearing
S

= Coefficient of discharge

g = Gravity constant

h = Film .thickness

h' = Film thickness perturbatio_

K = Flow constant of bearing

= .._ 12ygK° Orifice constant = NoCDA° (y-1)RgT

m = Mass of bearing

= Rate of change of fluid mass inside bearing reglon. ,

N = Number of orifices
o

p Pressure

p' = Pressure perturbation

Pa = Ambient pressure

Pr = Recess pressure

Ps = Orifice supply pressure

qi = Incompressible flow through bearing

qin = Mass flow into bearing

qout = Mass flow out of bearing

R = Universal gas constant
g

T = Absolute gas temperature

Vr = Recess volume = Ar_\
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NOMENCLATURE (continued)

y = Ratio of specific heats

= Depth of recess

pa = Density of fluid at ambient pressure

Pr = Density of fluid at recess pressure
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................ ',,.- ........

The equation of motion (neglecting tetraseal stiffness and damping and

coulomb friction) for the bearing is

ee

mh = p'A (5-1)

The conservation of nmss states that the time rate of change of the bea.ring

gas content equals the difference between inflow and outflow. Corresponding

to the time rates of small deviations from the equilibrium position the fol-

lowing equations are obtained:

Qin l'_p I _h / (5-2)

Similarly,

_Qin _Qout

(_Qin _Q°utl h, (5_4)
• " I p' +

h

Qin - Qout = _p _p _ _h _h

The rate of change of mass within the bearing is:

Equating (5-4) to (5-5) we obtain

_p [ _h _ I h' = _p p' + _ (5-6)

From (5"1)
oe |

p, ,mh
= _ (5-7)

eee4

_, = mh (5-8)A

Eliminating p' and p' from (5-6) by substitution of (5-7) and (5-8) we

obtain
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"_, + 3p 8.p [ + _ _, + m _h _ '/h'=0 (5-9)
_M _M _M

8p _p _p

let

C 2 --ceofflcient of h'

CI --coefficient of h'

CO --ceofficient of h'

Equation (5-9) thus becomes

,it

h' + C2 h' + CI h' + CO h' -- 0 (5-10) "

In accordance with Routh's criteria, the condition for stability is that all

coefficients are positive and that

C2 CI > CO (5-11)

Substitution of the values of the coefficients leads to the inequality

Qin
-- = (5-12)

_M _Qout _Qin
_h

_h 8h

The mass content within the clearance is equal to the clearance volume multi-

plied by the average density

M = LrAsh + Ar6] Pr + Pa (5-13)J 2

but since isothermal conditions are presumed to exist in the clearance region

= --P-- and

P RgT (5-14) .

M = RgT 2

Then

= 2RgT (5-15)

i

_M = (Pr + Pa ) A
s (5-16)

_h 2 RgT
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Pr . Pa ) qi(Pr +pa )Qout = qi 2 = 2 RgT (5-17)

qi --Kh3 (Pr - Pa) (5-18)

Qout = 2Rg---_

aQ°utap= Kh3prRgTI (5-20)'i

iiiiii i

aQ°Utah= 23Kh2RgT(p/_ pa2)I (5-21)

..__ /" Zyg ' f 2/y,. y-l, ")1/2

Qtn = NoUDAo'_i(y-1)RgT Ps/IPr/ /1-(Pr I y 1_ (5-22)[_,J L gJ Jj

For orifice compensation aQin = 0 since A is not a function of.h
ah o

(i-_)I/2
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The equation (5-12) was applied to one sector of the bearing.

For one sector of the bearing

K (Ps = 1500, Pc = 0) = 1.392 x 109 (from previously developed theory)

A = 7.9194 in2 y - 1.5814
s

P = 1300 psig 8 = .9493r

P = 1500 pstg
s

h = 130 x 10-6 in

in

Rg = 662-_R

T = 530 OR

_M I lAsh + Ar_] = I [7.9194(130 X I0-6) + Vr]_p = 2Rg---_ 2(662)(530)

= 1.4671 x 10-9 + 1.425 x 10-6 V
r

(1315 + 15)(7.9194)_M (Pr + Pa) A = = 1.501 x 10-2

_-_ = 2 RgT s 2(662)(530)

10-6)3
@Qout : Kh2pr 1.392 x 109 x (130 x (1315) = 1.1462 x 10-5= (662)(530)
_p RgT

_QoUt@h= 2--_gT3Kh2(pr2- pa2) = 3(1"392x i09)(130x i0-6)2 [ 13152 -15212(662)(530)

= 173.89
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/ 2yg ' 7(.016) 2 V2(1.5814)(386.4) 'Ko = No_Ao _ (y-l)RgT --3(.85) 4 (.5815) (662) (530)

= 3. 9684 x 10-5

8p = _- y i- = 1.5814 ._--93-I + _ i-i'.5814

• 1/2
(1-.9493)1

(1-Bly
= -2.6446 x 10-5

_M _Qout _Qin

_p 8p _p

_-_ 3Qout
ah _h

1.4671 x 10-9 + 1.425 x 10-6 V = 1.1462 x 10-5 - (-2.6446 x 10-5 )
r

1.501 x 10-2 173.89

V = .0013r

5.5_ 46.96 (.5 + .859) = 3.0629Ar = -_-- 60

= .0013 = 4.14 x i0-4 in.
r 3.0629
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The theory states that the depth of the recess should be limited to 0.0105 mm

(0.414 mils). This theory, however, is conservative because sector damping and

coulomb friction have not been accounted for, The actual manufactured pad was

limited to a recess depth of .0254 mm (i mil), and pneumatic hammer was not a

problem during the test program.
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6.0 CHRONOLOGYOF TEsTPROGRAM

This section is intended to document the history of the test program and outline

the evolutionary process that led to the final sector configuration.

Prior to the inception of the program, all hardware had been designed and manu-

factured, through prior Contracts between the Cummins Engine Company of Colum-

bus, Indiana and MTI. Reference (4) is a report issued by MTI that covered the

initial portion of the Cummins contract, The analytical effort covered by this

report, and subsequent analysis used in the hardware design treated the rings as

complete circular bearings with line sources of pressure introduced into the

film via inherently compensated inlet holes. The predicted performance of the

rings are indicated on Tables 6-i and 6-2.

Table 6-I indicates performance at intake and exhaust conditions. The orifice

rows were located at 25.4 mm (I in) and 34.925 mm (1.375 in) from the upper end

of the pad. There were 18 orifices located around the circumference of each row.

The orifice diameter was 0.3683 mm (.0145 in). The 18 orifices divide into 3

orifices per sector per row, and that was the original construction of the pads.
i

The line source pressures were predicted to be 7.6_ MPa (1108.65 psia) and 8.398

MPa (1218.08 psia) respectively with supply pressure of 10.34 MPa (1500 psia).

The total flow was computed to be 13.02 kg/h (28.68 Ib/h). The clearance varied

from 5.31 microns (209 B) at the top of the pad to 2.26 microns (89 Bin) at the

bottom. Stiffnesses in the radial and angular direction are also indicated on

the tabulations. Principal stiffness values of 4.7 x 109 N/m (2.682 x 107

Ibs/in) and 3.07 x 105 N-m/rad (5.38 x 107 in-lbs/rad) were considered very

adequate.

Table 6-2 shows similar performance during compression and combustion condi-

tions. Here again performance appears to be adequate. The clearance distrib-

ution is almost constant, but there is a slight convergence in the direction of

flow.

Rig checkout commenced in May, 1983. Capacitance probes were changed from one

mil range to five mil range to reduce the sensitivity of the probes to the tight-

ening process at installation. The one mil probes could not be set easily

because of their sensitivity to installation tightening. Some probes that could
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TABLE 6-1

PREDICTED PERFORMANCE AT INTAKE AND EXHAUST CONDITIONS

RADIUS OF PISTON 2.750 IN TEMPERATURE 530.000 DEG R
LENGTH OF PISTON Z.?50 IN ABS. VISCOSITY ._6¢OOD-OB PSI-S
PROJECTED WIDTH 2.750 IN DENSITY .€6239D-02 LBH/IN3
SUPPLY PRESSURE 1500.00 PSI GAS CONSTANT. .26720Ot06 IN2/S2.R
CYL. HEAD PRESS. !€.70 PS! GAMA 1.€00
AHBIENT PRESS. 16.70 PSi

PIVOT LOCATION 0.250 IN NO. OF SEGMT 6.
CLOSING FORCE 6630.00 LB CLOSING MOMENT -7550.00 IN-LB
OPENING FORCE 6637,68 LB OPENING MOMENT IN-LB

ORIFICES - - I CD = 1,00 I

LOCATION DIAMETER NUMBER PRESSURE FLOW
IINI IINI IPSII LBH/HR

ROg O! 1.000 0.0165 IB 1108.65 15.66
o ROW _2 1.375 G.OI65 "18 121B.OB 13.06

CHARACTERISTICS WHEN PARALLEL
C = 0,000156 IN

KRR = ,26663D10B LB/IN KAR = ,2653BDtOB
KRA = .2765TD*OB KAA = .633130*08 [N-LB /RAD
HOHENT UNBALANCE = -553.236 IN-LB

WHEN REACH EQUILIBRIUH POSITION
CP = 0,000198 IN . "ERI = 0o0012
ALFA= -0.000039 RAD ER2 = O.OOZZ

C|_ O.O00ZO9 C2= 0*000165 C3= 0.000169 C6= 0.000089
TOTAL FLOg = '2B,6B LBM/HR

KRR = .26B280*OB LB/|N KAR = .36619DtOB

KRA = .308990*08 KAA = .538390*08 |N-LB /RAO
HOMENT UNBALANCE = -16.655 IN-LB
PLENUH VOL REO'D 1,08 IN3 AT 2000°00 RPM

IRL IRK IRA IRED
D" 0 0 0



TABLE 6-2

PREDICTED PERFORHANCECOHPRESSIONSTROKE

RADIUS OF PISTON 2.750 IN TEMPERATURE 530.000 OEG R
LENGTH OF PISTON Z.750 IN ABS, VISCOSIIY ,ZbfiOOO-O6 PSI-S
PROJECTED HIDTH 5,750 IN DENSITY ,6_2390-05 LBH/IN3
SUPPLY PRESSURE 1500.O0 PS! GAS CONSTANT .2675ODt0b IN2/SZ R
CYL. HEAD PRESS. |500.00 PSI GAHA |°600
kHBIENT PRESS, l_,TO PSI

PIVOT LOCATION 0.550 IN NO° OF SEGHT 6,
CLOSING FORCE 8155.OO Lfi CLOSING HOHENT -7200.00 IN-LB
OPENING FORCE BIEZ.9| LD OPENING HOHENT IN-LB

ORIFICES - - I CD = 1oOO I

LOCATION DIAHETER NUHBER PRESSURE FLOW
IINI IINI IPSII LBH/HR

o ROW ni 1.000 O,O!65 lB 1311.51 ZT,33
ROW _2 |°37§ 0.0!65 tO 1500.15 32.31

CHARACTERISTICS HHEN PARALLEL
C = 0°000332 IN

KRR =. °5690bD*07 LB/IN KAR = ,353|6OOOT
KRA = ,iB6300*O8 KAA = ,Z_9_D*O8 IN-LB /RAD
HOHENT UNBALANCE = -_5°1_0 IN°LB

HHEN REACH EQUILIBRIUH POSITION
CP = 0,000389 IN ER| = 0.00L0
ALFA= -0°000009 RAD ERZ = 0o0052
CI= O,000393 C5= O,0OO37q C3= 0,000376 C_= O,O00356
TOTAL FLOW = 76.86 ' LBM/HR

KRR = ,235870*07 LB/IN KAR = o595_ZDtOT
KRA = ,|6630D*O8 KAA = °ZZ_l§O*OB [N-LB /RAO
HOHEHT UNBALANCE = -lb,IO6 ]N-LB
PLENUH VOL REQ"D 2,25 IN3 AT 5000°00 RPH

IRL IRK IRA IRED
0 0 0 O



not be adequately tightened would be blown out of the rig when pressure got

underneath the probes. Installation of the five mil probes corrected this situ-

ation; they are accurate to within .025 microns (i B in) which is satisfactory.

Checkout runs indicated that the piston ring sectors did not lift off and form a

film between the cylinder wall and sector. The initial assumption of 360 °

circumferential line sources for each of the two rows of orifices over-estimated

the load capability of the sectors because there are pressure depressions

between sectors. Additional computer studies were made using an incompressible

code that could handle appropriate boundary conditions existing in the sectors.

Approximate correction factors were applied to account for compressibility. A

single pad was modified as follows:

• The number of rows of orifices was increased from two to five, with five

orifices in each row (originally there were three). One row was added

above the original two rows, and three rows were added be!ow. The spac-

ing between rows was 9.525 mm (0.375 in), and between columns was i0

degrees.

• The orifice diameter was increased from .3683 mm (0.0145 in) to .4064mm

(0.0160 in).

• Shallow recesses of approximately 9.525 mm (.375 in) in diameter and

0.0127 mm (.0005 in) to ,0254 mm (0.001 in) deep were lapped around each

hole to promote the introduction of gas between the cylinder wall and

sectors. The recesses were shallow to avoid pneumatic hammer instability

problems.

Testing of a revised single pad proved satisfactory. Lift-off was achieved for

both extremes of operation (zero and full combustion chamber pressure). A

photograph of the revised pad is shown on Figure 6-I. The 25 holes and surround-

ing recesses are clearly indicated. The interior of the pad is shown on Figure

6-2. Grooves were milled along some rows and columns to assure gas supply to the

orifices. The piston also incorporated grooving to feed those orifices that did

not contain grooves in the pad themselves.

Results of single pad data taken on July 5, 1983 is shown on Table 6-3. Good

lift-off was achieved on the single test pad. Actual clearances are quite high,

exceeding 25 microns (I mil) for many of the data points. Also note that when
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Figure 6-1 Pad Modified with 25 Holes and Surrounding Shallow
Recesses
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Figure 6-2 Interior of 25 Hole Pad Modified with
Inlet Feed Grooves
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Table 6-3

SINGLE PAD DATA- JULY 5, 1983

25 Orifices 0.4064 mm (.016 in), with shallow
recesses to assist liftoff

Ps Pc h5 h6

MPa MPa _,-m p-m

(psi) (psi) (mils) (mils)

3.45 0 18.86 29.13

(500) (0) (.7427) (I.147)

5.17 0 18.21 29.87

(750) (0) (.717) (i.176)

6.89 0 15.88 27.58

(i000) (0) (.625) (i.086)

8.62 0 13.89 25.91

(1250) (0) (.547) (1.020)

i0.34 0 12.65 25.02

(1500) (0) (.49 8) (.985)

3.45 3.45 16.0 .94

(500) (500) (.63) (.037)

5.17 5.17 21.69 1.98

(750) (750) (.854) (.078)

6.89 6.89 25.45 3.00

(i000) (i000) ( i. 002) (. 118)

8.62 8.62 27.13 4.11

(1250) (1250) (i.068) (.162)

i0.34 i0.34 27.69 3.76

(1500) (1500) (1.090) (.148)

h5 = clearance at exhaust end of pad

h6 = clearance at combustion end of pad
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the combustion pressure was zero the pads assumed a converging clearance from

combustion to exhaust end; when combustion pressure equaled supply pressure the

clearance rotated to a diverging distribution from the combustion to exhaust

end.

Attempts were made to reduce the number of active orifices by plugging on the

backside. Blanking off rows and individual orifices to improve moment balance

did not work. Any reduction in the number of orifices resulted in negative

clearances, or inability to achieve proper lift-off. It was then decided to

modify all pads with 2S orifices consisting of 5 rows and 5 columns with shallow

recesses around each hole. These recesses were produced by a hard electrical

eraser and lapping compound. Figures 6-3, 6-4, 6-5 and 6-6 show various views

of the pads and pistons assembly.

A series of production test runs were made with all twelve modified pads on

September 19, 1983. Results indicated the following:

• Lift-off was not being achieved on all pads. At the zero load condition

and combustion pressure Pc = 0, lift-off was completely achieved on one

ring set, and only one monitored pad_on the second ring set did not lift

properly. Clearances were fairly high and similar to those experienced

during single pad testing.

• At Ps = Pc (supply pressure = combustion pressure), the lift-off situ-

ation was not as good. At least one pad on each ring set did not

lift-off. As had been typical of this situation the clearance diverged

from the combustion to exhaust end.

• In either case load capacity (and stiffness) was not very good, being in

the neighborhood of 300-400 Ibs.

• The most disturbing aspect of this test was the flow data. The flow was

beyond the range of the differential pressure transducer. A plate with

approximately 5 times the range also bottomed, which indicated flow rang-

es well beyond those considered to be acceptable.

The excessive clearances and flows experienced were contrary to predictions from

prior approximate analysis. Further study revealed the reasons for the anoma-

lies occurring. To achieve liftoff, it was necessary to machine shallow

recesses on the bearing surface around each of the orifice holes. This altered
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Figure 6-3 Two 25 Hole Pads Showing Exterior Inserts

ii0
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Figure 6-4 Two 25 Hole Pads Showing Interior Insert

iii
MTI-21822





Figure 6-5 View of Two 25 Hole Pad Ring Sets
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Figure 6-6 25 Hole Pads Assembled on Piston
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the type of restriction or compensation of the hydrostatic bearing from the

originally intended inherent compensation to recess compensation. The differ-

ences are significant. The restrictor area for inherent compensation is _dh,

where d is the orifice diameter and h is the film thickness. For recess compen-

sation the restrictor area is the area of the hole which is _d2/4. Considering

an operating clearance of 5.08 microns (200 _-in), and an orifice diameter of

.4064 mm (.016 in), the ratio of hole area to inherent compensation area is

approximately 20:1. Thus, if inherent compensation is assumed, and in reality,

recess compensation is occurring, performance characteristics will be dramat-

ically different. This would be especially true of the flow which would be

orders of magnitude greater if recess compensation rather [han inherent compen-

sation was Occurring. It is believed that near recess compensation was happen-

ing.

The initial reason for designing for inherent compensation was to avoid "pneu-

matic hammer" which is a common malady of recessed gas bearings. However, there

had been no evidence to this time of pneumatic hammer occurring, because the

recesses were made shallow and the O-ring support of the sectors introduces

damping into the system.

Since the primary objection to a recessed configuration had been pneumatic

hammer which was not evident, it was logical to pursue recessed configurations

because they provided decided advantages. These were:

• Greater stiffness and load capacity than inherent compensation.

• Providing a passage for inlet fluid so that pressure could get into the

film and lift-off could occur.

• Enabling a large area to be supplied by a small number of restrictors,

thereby reducing flow consumption to manageable proportions.

A series of configurations were tried that consisted of peripheral grooves fed

by one or multiple orifices, such as shown on Figure 6-7. The peripheral groove

maintained recess pressure over a large area, while simultaneously keeping

trapped volume to a minimum to inhibit the onset of pneumatic hammer. Most of

the grooved configurations were done on a single pad. After one of the tests,

the rig did not come apart as easily as usual, and some gouging of the cylinder

walls occurred. Locations of the gouging coincided with locations of the
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nlet Orifice

--3.175 CB x 1.524 DP

_//_/_ F Pad Interface Surface

A ' A "q_'-0.406 D Inlet Orifice

_,'/'JJL! Section A-A

I Groove 3.175 0.0254 DP

x

525 Land Width, All Over

Fig. 6-7 Peripherel Groove Recess Configuration
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inserts, and this was verified by gouging of the inserts themselves. Manufac-

turing fixtures used for producing the sectors were obtained from the subcon-

tractor who produced the sectors. When the sectors were assembled on the

fixture and measured with a micrometer, they were within print dimensions and

tolerances.

When the inserts were inserted into the fixture to produce a complete ring

assembly, diametral measurements were taken across the inserts. The inserts

were found to be 50-i00 microns too large in diameter. In operation, the

inserts were contacting the inner walls of the cylinder, preventing further

inward radial motion of the sectors. Some sectors were kept too far away from

the cylinder walls to allow the necessary pressure buildup for lift-off to take

place. •

Measurements also indicated that the inside diameter of the cylinder was under-

size which compounded the liftoff problem. Machining fixtures were obtained

from the vendor who manufactured the pads, and a special fixture for machining

the inserts was received from Cummins Engine Company. The pads and inserts were

subsequently machined to the correct dimensions by the MTI Model Shop. The

cylinder was re-bored and sent out for electro[ess nickel plating and grinding

to final dimensions.

For the configuration shown on Figure 6-7, liftoff was achieved for zero

combustion chamber pressure and bearing supply pressures from 1.38 MPa to 10.34

MPa (200 to 1500 psi). The magnitude of the indicated liftoff was 1.52 - 1.78

microns (60 - 70 B-in). However, when combustion chamber pressure was applied,

the sector became moment unbalanced resulting in contact at one end (combustion

side end). The results, however, were encouraging in that they were signif-

icantly better than the test results of prior configurations. Flow levels

appeared reasonable, although total flow included not only the flow through the

test pad_ but the leakage flow through the other pads and sectors as well.

The most persistent problem had been the inability of the sectors to appropri-

ately liftoff and form a small and stiff gas film. Modifications made to the

sector inserts obviated prior problems associated with pad hangup from oversize

inserts and modifications made to the piston eliminated any possibility of

excessive closing loads on the sectors. Thus, the liftoff problem was associ-
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ated with insufficient opening force due to excessive restriction of inlet flow.

Flow restrictions that do not ordinarily occur in usual clearance hydrostatic

bearings are present in very close micro-inch clearance bearings that in effect

restrict the flow into the pad to a prohibitive degree. The additional

restrictions include the curtain area of the inlet orifice and the cross-sec-

tional area of the recess grooves. Corrective action included counterboring the

interface surface at the inlet hole and increasing the cross-sectional area of

the recess grooves to the maximum extent possible without introducing a geometry

prone to pneumatic hammer.

A significant change was made to the computer code used for analyzing the

sector. It was modified to determine the sector position in both radial and

angular degrees of freedom to balance a given radial force and a given moment

about the pad pivot position. Prior to this addition it was necessary to input

the radial eccentricity and pad inclination and load and moment was produced as

output. Manual iterations were required and the procedure was quite awkward to

implement.

Analytical studies led to a two recess configuration that could balance the

loads and moments over both sets of boundary conditions and perform satisfac-

torily in all other respects. The mathematical model is shown on Figures 5-3_

and 5-3b.

For improved righting-moment capability, two segregated recesses were employed.

The recesses were non-symmetrical to accommodate the non-symmetry existing

under the high pressure boundary conditions. With this basic recess configura-

tion a series of computer runs were made, where the number of orifices feeding

each recess was varied. The principal objective was to obtain a Configuration

that provided a converging clearance distribution from the combustion to exhaust

end during the high pressure boundary condition, and simultaneously perform

acceptably during intake and exhaust boundary conditions. The results of the

studies are indicated on Table 6-4. The nomenclature for this table is indi-

cated with the table. The loads and moments, Wo and Mo, are input quantities for

each set of boundary conditions, and they are tabulated to indicate the conver-

gence achieved from the Newton-Raphson iterative process employed. The princi-

pal variables were the number of orifices, NI and N29 of diameter, do = .4064n_n

(.016 in) feeding each recess. The best theoretical performance was obtained
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for NI = 2 and N2 = i, where N I is the number of orifices feeding the large

recess on the combustion end and N2 is the number of orifices feeding the small-

er recess on the exhaust end. The inclination angle _, is convergent from

combustion to exhaust end, when it is a negative number. For Ps = Pc, and the

above number of orifices, theory predicts a converging clearance which is the

desirable condition. For the boundary condition of Pc =0, the flow is relative-

ly high, but this assumes a high bearing supply pressure, Ps. By allowing Ps to

drop during the intake and exhaust strokes, the flow will also drop (see Se=tion

5.0).
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Table 6-4

RESULTS OF SEGREGATED RECESS COMPUTER STUDIES

P = 10.34 MPa (1500 psi) P = 0
S c

%o+4 oW M° m t x

31_968 45.4 i.47 94.4 8115 9542 -6479 160 -. 360 200 .66 2 i
(7187) (7950) (58) (208) -.44 (1177) (1384) (-37) (36) (-63) (45)

32,083 46.4 1.04 134.4 7998 9453 -6304 169 -.411 205
.59 3 i

(7213) (8117) (.41) (296) -.66 (1160) (1371) (-36) _ (38) (-72) (46)

32,088 46.4 1.12 52.7 7839 9991 -5429 102 - .226 122.3

(7214) (.8131)(44)" (116) -.35 (1137) (1449) (--31) (23) (-39.6) (27.5) .74 1 i

32,092 46.4 1.75 148.9 7867 9832 -4378 93 -.211 114.8 .58 3 2
(7215) (8123) (69) (328) -.56 (1141) (1426) (-25) (21) (-37) (25.8)

P = P -- 10.34 MPa (1500 psi)
s c

38,457 45.4 2.36 56.8 9935 9494 -2627 lll -.217 87.2
•75 2 1

(8646) (7948) (93) (125) -.13 (1441) (1377) (-15) (25) (-38) (19.6)

38,351 45.2 2.26 76.3 9956 9280 -3257 128 -.259 lll.6
•69 3 1

(8622) (7918) (89) (168) -. 26 (1444) (1346) (-18.6) (28.8) (-45.3) (25. l)

38, 422 45.4 2.03 37.2 9860 9894 -3047 lll -.206 84.5
.84 1 1

(8638) (7943) (80) (82) .06 (1430) (1435) (-17.4) (25) (-36) (19)

38,413 45.3 3.45 97.2 9901 9542 -2242 90 -.175 71.2
•70 3 2

(8636) (7934) (136) (214) .058 (1436) (1384) (-12.8) (20.2) (-30.6) (16)



Table 6-4 (C0nt.)

NOMENCLATURE

= }_nlmum film thickness,microns (_-in)

K = Radial stiffness,due to radial displacement,N/m (ibs/in)
YY

K = Radial stiffness,due to angular displacement,N/rad (Ibs/rad)
y_

K = Angular stiffness,due to angular displacement,N-m/tad .

(in-lb/rad)

K = Angular stiffnessdue to radial displacment,N-m/m (in-lb/in)
ay
M = Fluid film moment,N-m (in-lbs)
o

= Total ring flow, kg/h (ibs/h)

N1 = Number of orifices feedinglarge or upper recess

N2 = Number of orifices feedingsmall or lower recess

P = Combustionend pressure,MPa (psi)
c

PrI = Top or large recess pressure,MPa (psi)

Pr2 = Bottom or small recess pressure,MPa (psi)

P = Supplypressure,MPa (psi)s

W = Fluid film openingload, N (ibs)
o

e = Inclination,aboutpivot position,radians

= Radial eccentricityat pivot position
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Three pads of dual recess construction were tested. Each had the required number

of orifices per recess. The test pads were tested singly, and the test results

were to form the basis for modification of the remaining pads and final full

ring testing.

Configuration B is shown on Fig. 6-8. It incorporated a land length of 15.88 mm

(.625 in) at the bottom on the exhaust end of the piston. Test results for

Configuration B are indicated on Figs. 6-9, 6-10, and 6-11. Figure 6-9 shows

the clearance distribution as a_function of pressure when combustion pressure

equals zero. For most of the pressure range the clearance is positive and there

is the usual converging distribution from the combustion side to the exhaust

side. Figure 6-10 shows the clearance distribution of Configuration B when the

combustion pressure equals the bearing supply pressure. The clearance goes

negative on the combustion end, and also the clearance diverges from the

combustion to the crankcase end. This was contrary to theory which predicted a

converging distribution. Figure 6-11 shows the effect of load on Configuration

B when combustion pressure equals supply pressure. Except for very high load-

ing, the clearance distribution is slightly improved when load is applied.

Although clearances becomes positive on the combustion end, when load is

applied, values are very small in magnitude (0.5 microns).

In an effort to improve the clearance distribution, and in particular to produce

a converging clearance when Ps = Pc, the bottom land was increased to 19.05 mm

(0.75 in); this configuration was designated as configuration A, and was the

_selected configuration (see Fig. 4-i).

Clearance as a function of pressure for Pc = O is shown on Fig. 6-32. The clear-

ance is positive for all values of supply pressure and has the predicted

converging distribution from combustion to exhaust end. Figure 6-13 shows

results for Pc = Ps. Clearances are positive except for the lower values of

supply pressure. Clearances appeared to increase with pressure. Again, this

configuration did not produce the desired converging clearance distribution. As

shown on Fig. 6-14, performance when loaded was acceptable, but slightly errat-

ic.

In a final attempt to produce a converging clearance from combustion to crank-

case end9 when Ps = Pc, configuration C as shown on Fig. 6-15 was made and test-
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Fig. 6-8 Recess Configuration B



CONFIGURATION B - CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE

6..................................................I' {
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CONFIGURATION B - CLEARANCE DISTRIBUTION AS A.FUNCTION OF PRESSURE

10"
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CONFIGURATION B - LOAD VS CLEARANCE DISTRIBUTION

12" I
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CONFIGURATION A - CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE

TEST DATA - 311184
7- - {OWOUSTION PRESSURE- O. 0

PRESSURESTOP TO BOTTON- LEFT SIDE
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Figure 6-12



CONFIGURATION A - CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE

10'

TEST DATA - 3/1/84

9 CONBUSTIONPRESSURE- SUPPLYPRESSURE
PRESSURESTOP TO BOTTOM- RIGHT SIDE
P 10.307 MPA
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Fig. 6-15 Recess Configuration C
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ed. The bottom land was increased to 22.23 mm (.875 in). Clearance as a

function of supply pressure for Pc = 0 is shown on Fig. 6-16. The clearance was

negative throughout the operating range. Ability to support moment unbalance

and preload were unacceptable. Results for Ps = Pc are shown on Fig. 6-17.

Again, the clearance diverges from the combustion to exhaust end and the clear-

ance goes negative on the combustion end.

Since configuration A showed superior performance, it was the selected config-

uration. Some general conclusions are as follows:

• Producing the desirable converging clearance from the combustion to

crankcase • end, when Pc = Ps, was not accomplished by continuously

increasing the length of the bottom land. A poin= is reached where

, excessive moment unbalance occurs for the boundary condition of Pc = 0. "

• Theory and experiment do not agree with respect to the Shape of the

clearance distribution for the boundary condition Pc = Ps.

• Configuration A was superior in all respects to configuration B and C,

and therefore was selected for the remaining pads (see Section 4).
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CONFIGURATION C - CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE
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CONFIGURATION C - CLEARANCE DISTRIBUTION AS A FUNCTION OF PRESSURE
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7.0 BREATHABLELINERCONSIDERATIONS

As mentioned at the outset maintaining the necessary small clearances involved

is not practical with a system of rigid pistons and liners. Clearances could

not be easily manufacturednor could they be maintained during operationwith

the large temperatureand'pressuregradientsinvolved. Therefore,the system of

pistonand linersmust be designedto have clearancesthatwould be self-adjust-

ing i_ response to the pressures in the film clearances.

The sectored hydrostaticpiston-ring in which the individualsectors can move

radially and angularly is one approach to The formation of a self-adjusting

clearance. The other incorporates a solid hydrostatic piston with a resiliently

mounted liner that can "breath" and form the necessary clearance with the piston

under the stimulus of hydrostatic pressurization/__
/

Figure 7-i schematically depicts the breathable liner concept. In this case,

the liner consists of radial split segments, supported by a compliant material

that will permit each segment to move independently. The splits between

segments are sealed radially by the compliant or resilient backing support.

Axial leakage at the splits is inhibited by forming axially layered liner rings,

with the seams staggered in the axial di£ection.

The material for the compliant or resilient support depends both upon the appli-

cation and on whether cooling is available. For non-high-temperature applica-

tions, elastomers can be used (Fig. 7-1); for high-temperature application, some

form of metal springs must be applied (Fig. 7-2). Since high spring stiffness

is required, a beam spring in combination with a seal plate is one approach for
./

sealing the joints.

Because the ssgmented ring design required considerably more effort than

originally contemplated, it was not possible to complete a comprehensive design

and analysis o£ a breathaSle liner concept. However, there were some cursory

examinations conducted which demonstrates the feasibility of the concept and

provides encouragement for future evaluations.
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7.1 Solid Breathable Liner

Consideration of the elastic deformation properties of a solid cylindrical liner

subjected to pressure over a portion of its length led to some very interesting

results. As indicated in Ref. (5), the following formulas apply.

pR2 (i _ e-b%&r = Et cos b%) (7-1)

SH _- -pR% (7-2)2t •

M = --P-- e-b% sin b% (7-3)
x 2_2

where

4 / 3 (i - 2) (7-4)

= _ R2t2

and p = pressure on circumferential width of 2b

R = outside radius

t = wall thickness

E = modulus of elasticity

b = half length to which pressure is applied

= radial displacementr

SH = hoop stress

Mx = maximum bending moment

Results of applying these equations are shown on Figures 7-3, 7-4 and 7-5.

Figure 7-3 shows radial displacement as a function of liner thickness, t. The

nominal range of clearances are in the range of .002 to .005 nun. Initially,
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LINER THICKNESS VS. RADIAL DISPLACEMENT
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LINER THICKNESSVS. HOOPSTRESS
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LINER THICKNESS VS. MAXIMUM MOMENT ABOUT x-AxIs
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there will be some preload or interference between the piston and liner. Addi-

tional deformations above the nominal clearance are required to produce load.

Thus, maximum radial deformations might be approximately .010 - .025 mm. From

Fig. 7-3, for average pressure levels of 2.76 - 6.89 MPa, the wall thickness

would be in the range of 7 mm (0.28 in) which is quite reasonable. Neither hoop

stress or applied moments would be excessive for a 7 mmwall thickness, as indi-

cated On Figures 7-4 and 7-5 respectively. The net result is that a solid liner

and solid piston appear to be feasible,which improvesthe practicalityof gas-

pistons tremendously because of manufacturing simplicity,reduced number of

parts, etc.

Some preliminary analytical evaluations were made of the film characteristics a

solid piston wi=h machined recesses on either side. No attempt was made at

optimization, since the _present scope would not allow extensive studies or

analyses to be made. A total of 4 recesses were incorporated, two in each of the

oppositely loaded zones. Geometric specifications are indicated on Table 7-i

below and the computer model is indicated on Figure 7-6.

Table 7-I

GEOMETRY SOLID HYDROSTATICPISTON

Piston diameter = 139.7 mm (5.5 in)

Piston ring length = 69.85 mm (2.75 in)

No. of recesses = 4

Angle of each recess = 90 °

Length of each recess = 13.08 mm (.515 in)

Upper land length = 13.08 mm (.515 in)

Lower land length = 13.08 mm (.515 in)

Land length between upper and

lower recesses ffi 17.53 mm (.69 in) .

Theoretical performance under Varying conditions• of operation is indicated on

Table 7-2. As mentioned above no attempt was made at optimization; thus the

flows for this configuration are high. Load capability, however, is very good.

Flow can be reduced by using smaller recesses without seriously compromising the

required load capability. Also, a smaller designed film thickness can be
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Table 7-2

FULL 360° - 4 RECESS BEARING

P 'P s hM W Ms c t

3.45 0 0 7.62 0 46.67

(500) (.3) (102.8)

3.45 0 .292 3.O0 13415 43.7 ,

(500) (.118) (3016) (96.3)

i0.34 0 0 7.62 0 108.96

(1500) (.3) (240)

i0.34 i0.34 .4 4.57 15879 66.61

(1500) (1500) (.18) (3570) (146.7)

i0.34 i0.34 .6 3.05 20252 70.2 8

(1500) (1500) (.12) (4553) (154.8)

p

• Assumed bearing clearance = 7.62 microns (0.3 mils)

• Orifice diameter to each recess = .7366 mm (.029 in.)

• Pivot position 63% from top = 44 mm (1.7325 in.)

Ps = Supply pressure MPa (psi)

P = Combustion pressure MPa (psi)C

€ -- Eccentricity ratio

hM = Minimum film thickness, microns (mils)

W = Load, Newtons, (ibs)

Mt = Ring floW, kg/h (ibs/h)
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applied. The average flow level for the geometry indicated on Table 7-I is

approximately 55 Kg/hr. By reducing the clearance to 5.08 microns (0.2 mils),

the flow is reduced to 16 Kg/hr. or at the target level. Further reductions are

achieved by reducing recess size. A final compromise would consist of a combi-

nation of reduced recesssize and clearance.

In conducting the theoretical analysis9 it became apparent that the solid piston

configuration is sensitive to the unbalance moment just as was the sectored

configuration. Th_e wrist pin •(pivot position) should be located near the center

of pressure of the fluid film, when combustion pressure is applied, to avoid

problems with overturning moments. The theoretical center of pressure was 63%

f_m the combustion end when the pist'on is loaded.

Consideration was given to one other type of breathable liner concept. It is

labelled the offset radius concept and is depicted on Fig. 7-7. It consists of

two offset semicircles which provide clearance between the cylinder bore and

liner in the two loaded regions. This will permit the liner to deflect and

provide clearance with the piston in these regions. At 90 degrees to the offset

regions the liners are rigidly attached to the cylinder, with small clearance

between the piston and liner.

Some preliminary analysis was conducted with the configuration indicated on Fig.

7-7. Note that the inside diameter of the liner is circular and equal to the

diameter of the piston. The radius of the outside of the liner is offset to

provide clearance between the liner and cylinder load in the loaded region. The

net result is that the liner thickness varies around the circumference, being

thinnest in the load direction and thickest 90 ° from the load*

Approximate computations were made using a uniform liner thickness of 3.175 nun

(.125 in) indicated deformation of 11.43 mm (.45 in) opposite the load. This

deformation is excessive but exaggerated by the approximations imposed, and

could be reduced to desirable levels by greater wall thickness or spring

supports as indicated on Figure 7-7.

Since the breathable liner operates with preload at start-up_ a means to develop

a fluid-film before engine start would be desirable. This can be accomplished

by a separate reservoir supply of high pressure gas, that is charged during
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normal operation of the engine and energizes the hydrostatic rings immediately

preceding crank rotation.

In summary_ the breathable liner offers a practical alternative for a gas-lubri.

cared hydrostatic piston. Necessary deformations are achievable. It will be

necessary to conduct extensive finite element elasticity analysis of the liner

coupled with gas bearing theory before a final configuration can be established.

The piston wrist pin must be located so that piston overturning moments from the

fluid-film pressure distribution are minimized. In general the breathable liner

is the most promising concept for gas pistons.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

i

The program described by this report led to the following conclusions and

recommendations:

• The segmented ring configuration demonstrated some positive results, but

did not provide sufficiently adequate overall performance for use as a

gas-lubricated piston ring. In addition to deficient performance, the

segments and inserts are difficult to manufacture to the tolerances

required and are considered too complex for mass produced engines.

• The major difficulty was the inability of all segments of a ring set to

lift off and form a full film. The problem is due to the delicate moment

balance required to prevent the segments from overtuning combined with

the Small operating films required.

• Some individual sectors did lift-off and those that did seem to perform

well. Load capacity was excellent (6000 N/pad). The performance of

these individual pads provide substantiation of the ultimate feasibility

of gas-lubricated pistons.

• Flow levels were high (50-60 Kg/hr) but could be reduced by more advanced

configurations. Approximately 30% of the flow is attributable to leakage

between sectors. Substantial flow reductions can be achieved by using a

solid breathable liner with solid pistons. As indicated fn Section 7, an

optimally designed solid breathable liner configuration can operate

satisfactorily in the 15 Kgihr flow range which is the desired level.

• Approximate gas bearing theories that were applied to the design of the

segmented rings are not sufficiently accurate. Comprehensive gas-bear-

ing computer codes that model the geometry accurately are required.

• Although more accurate theoretical predictions are necessary, extensive

experimentation will still be required to consummate a successful

design. Experimentation is essential because the close clearances and

high pressures involved extend the present state of the art of conven-

tional gas bearing theory.

• Recessed configurations were proven to be better for the application than

inherently compensated geometries. The advantages of recesses include:

i. Improved liftoff, especially against pre-load because the incoming

gas can enter the film more easily.
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2. Superior load capacity and stiffness as compared to inherently

compensatedgeometries.

Recesses may produce slightly greater flow requirementsand are more

prone to pneumatic hammer. However, flow differencescan be small and

pneumatic hammer is mitigated by friction and damping in the support

structure.

• Care must be exercised in the design process to ensure that inlet flow

restrictionsin the pad geometry are minimized to assure the fluid can

adequately enter the film. Also_ provision for adequate orifice

dischargelength is importantto assure proper operationof the orifice

restrictorelement.

• The breathable liner configurationthat permits solid pistons coupled

with solid liners is the recommended future direction for continued

developmentof gas-lubricatedpistonrings.

• The work presentedhere concentratedon the formationof the fluid-film.

It is clear thatsome contact between piston and liner will occur and

that engine combustiongases may presentcontaminationproblems. Thus,

appropriatelow wear materialcombinationsw£11 stillbe requiredas will

filtrationof the compensatingrestrictors.

• Finally, 'it is concluded that gas-lubricated .piston rings a#e feasible

for engines such as the adiabatic engine, but considerable development

and investmentare required.
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APPENDIX A

PRODUCTION TEST DATA

SAMPLE DATA LOGGER SHEET

.153.



tl



NOMENCLATURE

PRODUCTION RUN DATA

CHANNEL SYMBOL DES CRIPTI ON

2 Ps Bearing supply• pressure, psi

3 Ap AP across bearing supply flowmeter psiS

4 P Combustion chamber pressure psiC

5 AP AP across combustion chamber flowmeter, psic

8 h3 Clearance combustion end, pad IA, mils

9 h4 Clearance exhaust end, pad IA, mils

12 h7 Clearance combustion end, pad 5A, mils

13 h8 Clearance exhaust end, pad 5A, mils

16 hll Clearance Combustion end, pad 3A, mils

17 h12 'Clearance eKhaust end, pad 3A',mils

18 W I Load cell i, ibs

19 W2 Load cell 2, ibs

22 Ts Flowmeter temperature, bearing supply, °F

23 T Flowmeter temperature combustion supply, OFC

READINGS CORRECTED FROM REFERENCE DATA POINT

F2 = Computed flow - bearing supply, ibs/hr

F3 = Computed flow - combustion supply, ibs/hr

W = Computed load, ibs

7-
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PRODUCTION TEST DATA - 4/L6/84

No Load Data

IA 5A • 3A

r -----_'---_ _ F2/rlngChannel 2 3 4 5 8 9 12 13 16 17 22 23

DATA SET A

_ 203.3 .8387 -- -- .1769 -.0086 .1230 -.076 .3597 .0734 50 41.36

404.2 3.1099 .... .1240 -.0546 .0420 -.095 .3173 .0139 50 79.651

605.8 5.5126 .... .1176 -.0743 .0380 -.097 .3211 ..00075 50 106.05

803.7 6.2211 .... .ll81 -.0835 .0510 -.091 .3524 -.0196 50 112.65
117.48

998.1 6.7656 .... .1255 -.0931 .0560 -.072 .3757 -.0224 50

1204.4 7.2169 .... .1284 * .0560 -.049 .3898 .0344 50 121.34

1398.2 7.2906 .... .1169 _ .0380 -.031 .3917 .0483 49.4 67.1 121.95

F_ DATA SET B
Ln

o_ 190.9 .9153 .... .1453 -.1559 .0730 -.3950 .2175 .I181 53.3 54.6 43

392.4 3.5505 ..... .0791 -.1756 -.023 ..4190 .1780 .I107 55.6 55.1 84.64

604.1 5.7182 .... .0588 -.1939 -.0480 -.4280 .1874 .1069 52.6 55.4 i07.73

803.2 6.4801 .... .0573 -.2030 -.0390 -.4200 .2119 .1060 50.4 114.93

996.4 6.9225 .... .0564 -.2106 -.0470 -.4070 .2307 .1087 49.4 55.7 118.91

1194.4 7.1317 .... .0504 -.2131 -.0520 -.3970 .2392 .1125 48.4 55.9 120.81

1460.9 7.1935 .... .0356 -.2116 -.0630 -.3880 .2411 .1209 47.1 56.2 121.49

LostProbe 9

** Computed values



PRODUCTION TEST DATA - 4/16/84

No Load Data

Channel 2 3 4 5 8 9 12 13 16 17 22 23 F2 F3 ZF/2

DATA SET C

199.1 .2354 196.7 -- -.2411 .2409 -.2160 .2230 -.1440 .4901 50 50 43.83 -- 21.92

398.9 .9951 .398.1 -- -.2762 .1564 -.2730 .1560 -.2090 .4352 50 50 90.11 -- 45.05

603.4 2.3952 600.7 -- -.2870 .1908 -.3080 .1710 -.2354 .4418 50 50 139.8 -- 69.9

799.0 3.1569 802.7 .100 -.2865 .3553 -.3270 .2210 -.2514 .4575 50 50 160.5 28.6 94.55

lO01.O 3.9578 I007.1 .7820 -.2930 .4458 -.3370 .2640 -.2551 .4789 50 50 179.71 79.88 129.8

I185.9 3.8228 1233.4 3.865 -.2846 ".5319 -.3510 .3200 -.2617 .5068 50 50 176.62 177.6 177.1

1452.5 4.9358 1519.8 6.393 -.2693 .5734 -.3540 .3840 -.2429 .5338 50 50 200.69 228.40 214.54

kn



i PRODUCTION TEST DATA - 4/16/84 W = (W1 + W2) cos 45 = .7071 (W1 + W2)

i Loaded Load
: Channel _ F2 F3 ZF/2
i 2 3 4 5 8 9 12 13 16 17 __ 18.__ __221___ W 22 23

DATASET D

496.1 1.3434 492.6 .002 -.1699 .0041 -.241 -.016 -.0998 .4389 5 6 67 67.4 103 3.97 53.5

493.7 1.3808 492.0 .006 -.162 .0445 -.215 .009 -.130 .2176 204 168 263 53.9 67.2 105.7 6.88 56.29

710.1 2.9406 707.1 .001 -.163 .1382 -.245 -.022 -.1148 .3404 -13 -- 49.7 66.7 154.95 2.8109 78.88

712.5 3.0093 713.0 .001 -.166 .1195 -.259 -.022 -.1139 .3822 -5 50.9 66.2 156.62 2.812 79.71

717.9 2.8388 -716.6 .003 -.159 .1888 -.230 .009 -.I167 .1730 256 162 296 49.4 66.2 152.28 4.871 78.58

677.1 2.6716 718.3 -- -.163 .1412 -.183 .059 m.l130 -.0902 463 355 578 49.4 66.1 147_74 -- 73.87

723.8 2.5657 720.7 -- -.173 .1068 -.159 .073 -.ll01 -.1134 673 552 866 49.4 66.0 144.78 -- 72.39

723.8 2.5101 719.5 ,001 -.181 .1028 -.147 .104 -.llll -.1311 869 748 I143 49.4 65.8 143.2 2.813 73.01

713.7 2.5391 712.4 .004 -.187 .0739 -.Ill .233 -.1073 -.1423 1030 916 1376 48.8 65.6 144.1 5.628 74.86

i_ 698.2 2.7369 694.6 .008 -.190 .0284 .073 .464 -.0988 -.1423 1502 1349 2016 48.7 65.4 149.63 7.960 78.80
k,n
Oo

DATA SET E

984.4 5.1386 976.8 .010 -.176 .122 -.173 .382 -.0819 .2033 0 -- 48.3 65.1 205.11 8.903 107

986.8 4.9500 978 .017 -.170 .1483 -.175 .368 -.0932 .0577 236 174 289.9 48.3 65.0 211.62 11.609 111.6

988.0 4.7860 982.7 .019 -.174 .1134 -.141 .382 -.1054 .0623 435 400 590.4 48.4 64.8 197.93 12.275 105.10

987.4 4.7490 982.1 .023 -.184 .0861 -.124 .400 -.1017 -.0614 567 597 823.1 48.3 64.6 197.18 13.508 105.34

982.0 4.7662 973.2 .025 -.199 .0521 -.077 .453 -.0988 -.0437 832 860 1196.4 48.3 -- 197.54 14.08 105.81

973.1 4.8054 966.7 .026 -.206 .0243 -.043 .513 -.0819 .1172 240 398 451.0 48.3 64.4 198.35 14.36 106.36

977.9 4.7885 972.0 .029 -.208 .0157 _ -.083 .473 -.0847 .I014 1105 II01 1559.9 48.3 -- 198.00 15.17 106.59

979 4.7557 973.2 .030 -.1996 .0415 -.103 .462 -.0885 .0409 1275 1255 1789 48.4 64.4 197.30 15.43 106.37

976.7 4.7843 968.5 .031 -.199 .0491 -.097 .461 -.0875 .0205 i541 1484 2139 48.4 63.7 197.89 15.7 106.8

1215.8 5.6604 1216.8 .200 -.182 .168 -.238 .393 -.0857 .2697 .... 48.2 58.3 215.3 40.07 127.6

1218.2 5.5398 1221.6 .243 -.189 .1873 -.242 .386 -.0932 .2213 228 |38 258.8 47.8 54.5 213.O7 44.33 128.7

1216.4 5.4455 1221.0 .255 -.194 .1377 -.207 .427 -.097 .1302 315 354 473,1 47.7 51.6 211.27 45.54 128.41



PRODUCTION TEST DATA - 4/16/84

Loaded

Channel _ Load F2 F 3 £F/22 3 4 5 8 9 12 13 16 17 18 21 W 22 23

DATA SET E (CONT'D)

1215.2 5.4100 1220.4 0.285 ".199 O.1265 -.205 435 -.1045 .106 606 " 628 873 47.6 51.0 210.61 48.18 129.40

1214.0 5.4301 1219.2 0.307 -.199 0.1286 -.206 431 1054 .093 814 732 1093 47.6 50.5 211. 50.03 130.52

1212.8 5.4008 1218.6 0.314 .-.196 0.1432 -.206 430 1045 .0726 I011 939 1379 47.6 50.2 210.43 50.61 130.52

1212.8 5.3976 1218.6 0.327 -.193 0.1539 -.197 421 1064 .0484 1260 1120 1683 47.6 50.0 210.36 51.66 131.0

1215.3 5.397! 1218.6 0.337 -.184 0.1888 -.213 410 1092 -.0372 1708 1476 2251 47.3 49.6 210.42 52.46 131.44

1466.8 5.9392 1471.7 1.331 -.189 0.2439 -.285 368 -.097 .2613 .... 47.0 48.8 220.8 104.34 162.57

1463.8 5.8276 1472.3 1.81 -.184 0.250 -.283 .393 -.097 .2074 231 204 307.6 46.6 48.1 218.8 121.8 170.3

1460.8 5.7231 1470.5 1.644 -.189 0.2126 -.252 .430 -.0941 .1339 446 463 642.8 46.1 47.2 216.9 116.1 166.5

1459.6 5.7187 1469.3 1.708 -.188 0.2115 -.244 .422 -.0951 ,1237 598 534 800.4 46.2 47.1 216.8 118.4 167.6

1457.3 5.7080 1464 1.816 -.1842 0.2171 -.241 .428 -.1007 .0967 812 777 1123.6 46.1 47.1 216.65 122.1 169.38

_-_ 1456.1 5.7229 1466.4 1.922 -.1788 0.2212 -.242 .427 -.1045 .0688 988 843 1294.7 46.2 47.0 216.91 125.6 171.26

_O 1454.9 5.6916 1465.2 1.988 -.1758 0.2288 -.242 .423 -.1064 .0428 1250 987 1582 .... 216.34 127.76 172.1

1454.3 5.6973 1462.2 2.033 -.1729 0.2449 -.243 .418 -.1139 .0242 1668 1352 2135 46.1 46.9 216.44 129.19 172.8

1454.3 5.6534 1462.2 2.087 -.1768 0.2449 -.236 .424 -.112 -.0521 1840 1643 2463 46.0 46.8 215.63 130.91 173 .27



PRODUCTIONTEST DATA - 4/16/84

Loaded

Channel _ Load F2 F32 3 4 5 8 9 12 13 18 21 W 22 23 _F/2

DATA SET F (EXTRA DATA)

470.4 1.6380 470 0.086 -.2194 -.0248 -.222 -.047 -.0649 .3199 .... 201 56.1 59.5 114.93 26.25 70.59

468.0 1.4971 467.6 0.088 -.2381 -.042 -.218 -.003 -.0904 -.0576 201 114 223 51.8 59.5 110.33 26.55 68.44

467.4 1.5102 467.6 0.090 -.2386 -.0551 -.235 -.0008 -.0932 .0084 391 305 492 51.4 59.4 110.86 26.85 68.86

462.7 1.5536 462.9 0.091 -.2415 -.0718 -.199 .122 -.0913 .0642 601 530 799.7 51.3 59.5 112.45 27.0 69.73

461.5 1.5727 461.7 0.094 -.2351 -.0658 -.156 .232 -.0904 .1014 803 725 1080.5 51.0 59.4 113.17 27.44 70.31

719,1 2.3071 730.8 0.722 -.2312 .0633 -.225 .265 -.0838 _1823 179 114 207.2 49.9 52.1 137.22 76.6 106.91

_ 719.1 2.2647 729.6 0.763 -.2292 .0678 -.221 .273 -.0941 .1535 406 324 516.2 49.4 50.8 136.02 78.8 107.41

718.5 2.2920 731.4 0.790 -.2183 .1043 -.214 .263 -.096 .1153 632 485 789.8 49,3 50.5 136.9 80.3 108.6

717.3 2.2761 730.8 0.790 -.2243 .0896 -.198 .289 -.0922 .1088 822 738 1103.1 49.2 50.2 136.4 80.3 108.35
i..a

_ O_ 966.5 3.8328 981 5 1.278 -.2178 .1807 -.258 .276 -.0951 .2083 211 124 236.9 48.3 49.5 177.1 102.2 139.65ii 0
ii 965.3 3.8355 982.1 1.253 -.2223 .1721 -.230 .310 -.0951 .i553 610 463 758.7 48.3 49.1 177.2 101.2 139.2

i 967.1 3.7824 983.3 1.261 -.2228 .1873 -.226 .319 -.0951 .1125 816 724 1089 48.0 48.8 176.03 101.6 138.82

962.5 3.5574 981.5 1.186 -.2331 .1503 -.206 .346 -.096 .1144 1003 906 1350 48.2 48.8 170.7 98.5 134.6

1216.4 5.6214 1223.4 0.549 -.2173 .2374 -.292 .282 -.1045 .2204 201 128 232.6 47.5 48.7 214.7 67 140.85

1214 5.5832 1221 0.553 -.2132 .2207 -.275 .291 -.iiii .1758 448 325 546.6 47.2 48.4 214. 67.3 140.65



PRODUCTION TEST DATA - 4/16/84

Loaded

Load F2 ZF/2
Channel 2 3 8 9 12 13 18 21 W 22 23

DATA SET G

466.9 4.653 .0232 -.1017 -.144 -.278 .1629 .1256 240 167 287.8 49.7 54.4 194.9 97.45

466.9 4.6508 .0316 -.1012 -.145 -.274 .1611 .1070 381 375 534.6 49.4 54.6 194.9 97.45

471.7 4.5912 .0356 -.1022 -.139 -.272 .1611 .0958 579 597 831.6 49.0 55.0 193.7 96.85

700.7 5.9913 .0272 -.080 -.151 -.259 .1658 .1191 831.6 47.9 55.5 221.6 110.80

698.3 5.9739 .0247 -.0734 -.142 -.264 .1498 .1181 I0 - 1 6.36 48.6 55.6 221.1 110.55

694.1 5.9375 .0217 -.0779 -.140 -.263 .1366 .0837 . 213 166 268 47.7 55.9 220.6 110.3

694.1 5.9285 .0262 -.0795 -.149 -.261 .1290 .0921 380 364 526 47.4 56.0 220.5 110.25

693.5 5.9370 .0247 -.0785 -.149 -.260 .1253 .0772 587 555 807.5 47.2 56.1 220.7 110.35
_'_ 858 736 1127.1 47.0 56.1 220.5 210.25
o_ 694.7 5.9221 .0227 -.07784 -.i51 -.258 .298B .0586
_-_ 44 3 56.3 242.7 121 35

1387.6 7.1398 -.003 -.08544 -.166 -.231 .1902 -.0176 1403 976 1682.2 •

1369.7 7.1378 -.0025 -.08344 -.172 -.231 .3343 .0809 793 732 1078.3 43.3 56.4 242.9 121.45

1361.3 7.1373 -.6729 -.08244 r.167 -.233 .4153 .1163 489 510 706.4 43.1 56.4 242.98 121.49

1351.2 7.1366 .0015 -.07894 -.166 -.234 .3993 .1237 247 262 359.9 42.7 56.5 243.06 121.53

1177.7 7.0919 .0064 -.08244 -.159 -.236 .3758 - .0204 1341 826 1532.3 43.0 56.4 242.2 121.10

1177.1 7.0939 .0054 -.08094 -.166 -.231 .6507 .0400 1042 764 1277 42.7 56.5 242.3 121.15

1174.7 7.0957 0 -.08244 -.154 -.231 .5820 .1070 362 555 648.4 42.7 56.5 242.4 121.20

1172.3 7.0964 0054 -.07684 -.167 -.231 .5123 .1107 237 238 335.9 42.7 56.4 242.4 121.20

804.4 6.3811 0094 -.0784 _.168 -.254 .5095 1107 43.0 56.4 229.8 114.9

806.8 6.3811 0118 -.07734 -.155 -.251 .5029 1051 170 183 249.6 43.3 56.4 229..7 114.85

806.2 6.3799 0109 -.07684 -.146 -.251 .4888 0484 606 478 766.5 43.8 56.4 229.6 114.8

803.8 6.3754 0084 -.07944 -.153 -.250 .4445 0223 1031 956 1405.0 44.2 58.4 229.4 114.7

805.0 6.3637 0079 -.07894 -.149 -.250 .1846 0419 863 781 1162.5 44.1 56.4 229.2 114.6

497.3 4.9165 .0178 -.06924 -.160 -.267 .5038 1060 44.8 56.5 201.33 100.67



PRODUCTIONTEST DATA - 4/16/84

Loaded

_----""_ Load F2 £F/2
Channel 2 3 8 9 12 13 16 17 18 21 W 22 23

DATA SET G (CONT'D)

500.3 4.8932 .0178 -.06924 -.151 -.267 .5198 .1051 289 206 350.0 45.1 56.4 200.79 100.40

499.7 4.8612 .0193 -.07034 -.154 -.266 .5179" .0809 488 363 601.7 40.0 45.3 201.15 100.58

498.5 4.8808 .0183 -.07284 -.146 -.266 .5321 .0716 667 561 868.3 45.7 56.3 200.41 100.21

499.1 4.8766 .0222 -.07134 -.152 -.265 .5151 .0540 892 846 1229 46.0 56.3 200.27 100.135

223.0 1.4221 .079 -.04554 -.071 -.263 .4332 .0530 46.5 56.3 108.1 54.05

225.4 1.4757 .084 -.03284 -.055 -.266 .3607 .0010 244 63 217 47.1 56.4 100.05 55.03

225.4 1.4591 .0761 -.04094 -.057 -.254 .2439 .1042 279 168 316.1 47.5 56.4 109.38 54.70

225.4 1.4993 .0706 -.03484 -.054 -.259 .3475 .0614 484 335 579.1 47.9 56.3 110.84 55.42

p.A
O_
bo
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LOAD VS CLEARANCEDISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION

7..............................{..............................."............:................_.............................si i I

i _ ' I I /
I

........ I)ATA SET _ 4/16/84 .............................................. J..................... ._...#i'........

6 CONBUSTION PRESSURE- SUPPLYPRESSURE I IPRESSURE " 4.gg6 NPA " 1. i _ :
•LOAD TOP TO BOTTO"- RIGHT SIDE I f "'_7 _.... "i"...........

-_. i ! / I I
4.........2a96 N ................"1 .........................._ ...........I ......._ .........I

3s13N I M't _ I
S......... 4907 N " "................. 'it............... _ ....... _ ......... = ........... !

• " : l l._ I / i / I_ ,
u'l ' i : i : / !/ _./- '
z : " ! j / _ /j_.. i
O 2.............................. i .............................€...........................................................t-__.- _..... +......................... ,

i-: ! : ' i i(J
i i " . : i i
i ' ! ! ! i

.............................i.............................i............................................................................I-.........................r......................."_
x I- ! I
I : l ; I i :

,,, . : _ ..... !............. •tJ 0 ............................. . ............................. :.............. '....................... '........................... " ................................................ I

Do _, CONBUSTION !_,oE _y___-X i i i ,,_1:
Ll,,i

_l i i
!

• . I -. ' i
I

3" - ........... ""°°'"""_¶

: : 1 " : :!

: : i i : i i

': ' I 1 ' :
-6- t _ |

0 10 20 30 40 S0 60 70
DISTANCE ALONG PAD - MILLIMETERS



LOAD VS CLEARANCE DISTRIBUTION

5" ' ! : I" I ]!

DATA SET D 4/16/84 J i
COMBUSTION PRESSURE - SUPPLY PRESSURE i .j

4" PRESSURE - 4.905 NPA J
LOAD TOP TO BOTTOM - RIGHT SIDE i

1317, N ! J i

3- 2571N j
3852 N ' i !
5084 N i ! : !• ! i j

Ln 2" 6120 N z
Z 8967 N _ io ! i

i i : : ....
€,.j : i ! !
Z ]- {
i : : | .....! i

,,, iU
z O-
r_, : : z
q=[ : z ILz.I : :-J l [ ' '

-1-
COMBUSTIONiSIDE i !

-2" i...... _..............................Z................_.......................................................................T ............................'

! ! ; i

-_-'-'-------: i
-3- I i

-4 _ I _ _ _ ! ..... !
o zo 2o 30 40 5o eo 70

DISTANCE ALONG PAD - MILLIMETERS



LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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LOAD VS CLEARANCE DISTRIBUTION
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turning and contacting the cylinder walls. Some individual sectors formed a film
and performed well in every respect including load capability to 6,000 N. These
results produce optimism as to the ultimate feasibility of hydrostatic, gas-lubri­
cated piston rings. In addition to test results, the principles of operation, and
theoretical developments are presented. Breathable liner concepts are suggested
for future consideration. In these configurations,solid hydrostatic pistons are
coupled with flexible liners that elastically deform to form a gas-film under
hydrostatic pressurization. Breathable liners afford the mechanical simplicity
required for mass produced engines, and initial examination indicates satisfactory
operation.
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