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"ABSTRACT

This final report highlights the results of a program
encompassing the study, and design of the solid state satellite
transmitter operating in the 19.7 to 20.2 frequency band,
and the development of key devices and components used therein.
The work was performed under contract NAS3-22491 for the NASA
Lewis Research Center (LeRC) as part of the 30/20 GHz
communications satellite system scheduled for demonstration in
the late 1980's.

This contract included the development of single drift
gallium arsenide (GaAs) Schottky barrier IMPATT diodes and
related components, the Assessment of IMPATT Diode Reliability,
a proof of concept solid state transmitter design, and a
tachnology assessment study.

The objectives of the 20 GHz solid state transmitter program
were to foster the development of 20 GHz solid state power
amplifier (SSPA) technology by:

e development and demonstration of key 20 GHz SSPA
breadboard circuits;
design of a proof of concept SSPA model;
development of 20 GHz GaAs IMPATT material and devices;

evaluation of the reliability of single drift GaAs
IMPATT diodes;

® provision of data consistent with the definition and
design of 20 GHz spaceborne communications trans-
mitter requirements.
The transmitter design utilizes technology which, upon
'implementation} will demonstrate readiness for development
of a POC model and will provide an information base for
flight hardware capable of deployment in a 1985-90 demonstrational
30/20 GHz satellite communication system. :

iii



In order to satisfy the performance objectives on the
overall 20 GHz IMPATT transmitter, the achieved design goals
on the 20 GHz IMPATT diodes to be deployed therein are as follows:

RF power output: 1.5 to 2.0W CW
Frequency: 19.5 to 20.5 GHz
DC~-RF conversion efficiency: 16 =22 percent

The results of the initial reliability assessment defined
major failure mechanisms, diode modifications, future reliability
efforts, screening procedures and operating lifetimes of unscreened
20 GHz GaAs IMPATT exceeding those previously projected.

Lifetime extrapolated from the herein described life test
data are:

Schottky Barrier GaAs Diodes (“Y M) _>'3x104 Hours
Grown Junction GaAs Diodes ( Yy) )'2x106 Hours

Furthermore, the results demonstrate the viability of
GaAs IMPATTs as high performance, reliabile RF power sources
which, based on the recommendation made herein, will surpass
device reliability requirements consistent with a ten year
spaceborne solid state power amplifier mission.
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A. EXECUTIVE SUMMARY

1.0 Introduction

This executive summary highlights the results of a program
encompassing the study and design of a solid state satellite
transmitter operating in the 19.7 to 20.2 GHz frequency band,
and the development of key devices and components used therein.
The work was performed under contract NAS3-22491 for the NASA
Lewis R€search Center (NLeRC) as part of the 30/20 GHz
communications satellite system scheduled for launch
in the late 1980's. Period of performance was from June 1981 to Sept. 1983.

The program - included the development of -single drift
gallium arsenide (GaAs) Schottky Barrier IMPATT diodes and
related components, the assessment of IMPATT diode reliability,
a Proof of concept (POC) solid state' transmitter design, and a

technology assessment Study.
The program objectives are embodied in the following
major task$§:

e 20 GHz solid state (IMPATT) transmitter preliminary
design

o device/assembly development

® reliability assessment

e POC model design, test plan, and procedures

® technology assessment

Figure 1 summarizes the 20 GHz sSingle drift GaAs IMPATT
téchnology, including a 20 GHz dolid state Power amplifier
(developed under a related AFSD/AFWAL Contract F33315-BOC-1182) and

" the level of performanced achieved therein.

(1)



(ZH9) AON3NO3H4

Nwﬁﬂloomlmammm.

‘T 340014

802 902 | 02 z02 0z 86l 96l | ¥6l 276l
\
N 4.
ap 02- \\\
4 8
e
N . 3
N N | 0§
Vw%wWAMV/‘ \\\\\__M
N M“M.V//UM/ \\.\\\\\\ ) m
B NN e s s s e
lﬁwﬁﬁ4mNHWHHWWMHH 1T ——
1NdNI Q3ZNVWHEON €l
|
«x STANTT IANIEA LNANI LNIFHI44Id LV IONVINHO4HId V4SS HAEHITdINY H3MOd d1LVLS dI'lOS ZHO 02
€672C|-€ESYN 3IORIJUOD DYST VSVYN/ASIV« -~
_w“ocu 0'¢ b 81 i ._,_ : : wo&wg 02 61 81 F N."E o 1 ) -
o Ao | P \\\ _
A1 %
Va \\ -
/ 2
— 44 \\ 00001 M WGT
Y 1A
\ . 000 60T
\\ 000001
\\ ooueoot $3001Q zw_xxiﬂ >.,\_ﬁmilvml|l. ol
\\ .c.u_“;w__H;:HMM.H_::M””_“!%( 1074 31vy zo_wix SNINHYAY
/] TR WO N B B | Y I T B
S3dO0Id NOILLONNP NMOYO S3dO0IA Y3iHyvd AMLLOHOS INIWdOTAAIA IAOIA/HIHD LLVdWNI

ADO0OTONHIAL LLVANWI SYVO LAIdd ATONIS ZHO 02




2.0 Program Objectives

The objectives of the 20 GHz solid state transmitter program
were to foster the development of 20 GHz solid state power
amplifier (SSPA) technology by:

e development and demonstration of key 20 GHz SSPA
breadboard circuits
design of a proof of concept SSPA model;
development of 20 GHz IMPATT material and devices;

evaluation of the reliability of single drift GaAs
IMPATT diodes

e provision of data consistent with the definition and
design of 20 GHz spaceborne communications trans-
mitter requirements.

These objectives were encompassed by the program tasks,
as summarized in the following paragraphs.

2.1 20 GHz IMPATT Transmitter for Communications Satellite

The preliminary 20 GHz IMPATT transmitter design presented
in this report and characterized by the functional block diagram
of Figure 2, addresses each of the general requirements enumerated
in Table 1 . The transmitter design utilizes technology which,
upon implementation, will demonstrate readiness for development
of a POC model and will provede an information base for flight
hardware capable of deployment in a 1985-90 demonstrational
30/20 GHz satellite communication system.

The transmitter design utilizes those devices necessary
to amplify an angle modulated, single carrier downlink signal
in the band 19.7 to 20.2 GHz, to an RF output power level of

20 watts and meet all RF performance requirements specified. 1In

so doing, size, weight and power drain requirements have been
reduced to a minimum consistant with spacecraft demands.

Overall design complexity and number of parts have also been
minimized, as have device junction temperature, to insure maximum
transmitter reliability consistent with a 10 year oper-

3)




TABLE I

PROJECTED CHARACTERISTICS OF
20 GHz IMPATT TRANSMITTER DESIGN

CENTER FREQUENCY

-1 dB BANDWIDTH (MIN.)
RF POWER OUTPUT (MIN.)
OPERATING GAIN (NOM.)

RF/DC POWER-ADDED EFFICIENCY (MIN.)

AM/PM CONVERSION (MAX.)
INPUT/OUTPUT VSWR (MAX.)

GAIN VARIATION VS. FREQUENCY @
FIXED DRIVE

PHASE LINEARITY (MAX.)

GAIN SLOPE (MAX.)

PASSBAND GROUP DELAY VARIATION (MAX.)

SPURIOUS OUTPUTS (MAX.)

© HARMONIC COMPONENTS
e¢ NON HARMONIC COMPONENTS

NOISE FIGURE (MAX.)

DC PRIME INPUT POWER (MAX.)

WEIGHT
DIMENSIONS
BASEPLATE TEMPERATURE RANGE

MAXIMUM DEVICE JUNCTION TEMPERATURE:

RF INPUT/OUTPUT INTERFACES (J1/J2)

- DC INPUT POWER INTERFACE

TELEMETRY MONITOR OUTPUT INTERFACE

()

19.95 GHz

500 MHz (19.7-20.2 GHz)
22W

34.5 dB

20.9 PERCENT (EXCLUDING
DC POWER/MONITOR CON-
DITIONER)

3 deg/dB

1.25:1

1.0 dB p-p

10 deg p-p
0.1 dB/MHz

0.5 nS/50 MHz

-50 dBc
-60 dBc

24 4B

105.3W EXCLUDING DC
POWER/MONITOR/COMAND
CONDITIONER 115W OVERALL
4.8 1bs.
6.75"x5.75"x2.5"

0-75°C

235°C (IMPATT)
1129C (FET)

WR-42 W/G-UG595/UG 595/U
COVER FLANGE +28 VDC,
+15 VDC, -5 VDCr +15 VDC

-ITT CANNON DEMA TYPE
CONNECTOR

ITT CANNON DEMA TYPE
CONNECTOR




ational life. Graceful degradation in performance under random
device failure rather than complete loss of output power is an
integral part of the design to further enhance transmitter
reliability.

The critical areas of technology applicable to the
subject 20 GHz transmitter fall into two general categories,
functional circuits, and constituent devices and materials.
In terms of the previously depicted (Figure 2) functional RF block
diagram of a composite 20 GHz FET/IMPATT transmitter, the
key circuit technologies which must be developed at 20 GHz,
include IMPATT power amplifiers, FET driver amplifiers, RF
power dividers/combiners and ferrite circulators. The fore-
going technology development in turn depends upon the concurrent
evalution of such critical 20 GHz device and material tech-
nologies as Read-profile GaAs epitaxial wafer material, GaAs
Read-IMPATT diodes and GaAs FET devices.

None of the above requires any new fundamental breakthroughs
but rather represents extension of the existing state of the
art in these technologies at lower frequencies to the more
severe constraints associated with operation at 20 GHz.

The basic, design requirement on the subject 20 GHz
transmitter is that it provides 20W (minimum) K-band RF power
output over a 500 MHz bandwidth centered near 20 GHz with 20
percent DC bias/RF power added efficiency. (the latter excluding
the efficiency degradation due to DC power conditioning com-
ponents). Moreover, this transmitter must provide 30 dB power
gain to a single, angle modulated (PM) carrier, concurrent
with 25 dB maximum noise figure, and a high degree of amplitude
and delay flatness (+1 dB and +5 deg. overall passband deviation
from gain flatness and phase linearity and 0.15 dB/MHz and 0.5nS/50
MHz maximum gain and delay slope). For the specified single PM
carrier, the transmitter output amplitude can be into saturation

5)



provided that the requirements on such linearity-related
performance parameters as AM/PM conversion (5 + 1 deg/dB max)
and harmonic/nonharmonically related spurious content (a50/60
dBc max) are satisfied. Finally, to accommodate representative
spacecraft thermal profiles, specified performance must be
achieved over a 0-75°C baseplate temperature'range.

The 20 GHz IMPATT transmitter RF assembly, in its most general
form, (Figure 2) consists of the cascaded combination of a FET
driver section and an IMPATT power section. The FET driver
section, in turn, comprises a cascade of low to medium power
FET amplifier stages whereas the IMPATT power section consists
of a multistage IMPATT preamplifier driving a combinatorial
IMPATT postamplifier. The latter is configured as an array
of identical multistage IMPATT "building blocks", paralleled
between identical N-way power divider and combiner. In the
most general case, the number of IMPATT amplifier stages
comprising the preamplifier (Nj) and postamplifier "building
block" (No) are different. The order (N) of power combination
required is determined by the RF power capability of each
"building block" which in turn determines how many paralleled
"building blocks" are required to provide the required RF
power output (20W).

In order to satisfy the performance objectives on the
overall 20 GHz IMPATT transmitter, the corresponding design
goals on the 20 GHz IMPATT diodes to be deployable therein
are as follows:

e RF power output:. 1.5 to 2.0W CW (min)
® Frequency: 20 GHz (nom.)

® DC-RF conversion efficiency: 20-25 precent (min)

Based upon the above, a dual-diode building block, 4 way
combinatorial IMPATT postamplifier topology is chosen, as

described in Section B.

(6)
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2.2 Development of Device/Assembly Technology

The foregoing design objectives, referenced to measured
IMPATT diode performance in a 20 GHz waveguide test oscillator,
are consistent with the requirements dictated by the previously
depicted preferred 20 GHz transmitter configuration. The
high DC-RF conversion efficiency requirement necessitates the
use of GaAs as the diode semiconductor material, as opposed
to the less efficient albeit more mature Si technology.

A vital part of the overall GaAs IMPATT diode development
effort was the selection, evaluation and collaboration with
one or more outside suppliers of state-of-the-art epitaxial

GaAs material, grown to LNR specification.

The achieved level of 20 GHz IMPATT diode performance,
as measured in a K-band waveguide test oscillator,
described in Section C.is,: ’ '

e Frequency range 18-21 GHz
e RF power output: 1.3 to 2.7W
® DC-RF Conversion efficienty: 12 to 22 percent

In addition, a direct correlation was established between
amplifier and oscillator performance measurements, wherein IMPATT
diodes which exhibited ~ 2W RF power output and 18 percent
- conversion efficienty at 20 GHz in the test oscillator,
demonstrated A~ 2.5W RF power output, 4 dB gain and 14 percent
DC-RF power added efficienty over a 1 GHz bandwidth in a

3

single stage 20 GHz test amplifier.

Other breadboard assemblies developed under this program
task include 20 GHz circulators, FET driver amplifier stages
and four way power divider/combiner, also described in

Section C.

(8)




2.3 20 GHz Single Drift GaAs IMPATT Diode Reliability

Assessment

A major limitation to the general acceptance of 20 GHz GaAs
IMPATTs for system and spaceborne use is the question of reliability.
The demonstrated performance of these devices was not in question.

Therefore, a major goal of the program was to establish
the reliability of GaAs IMPATT diodes and dispel misconceptions
of poor reliability identified with GaAs microwave devices

operating at elevated temperatures.

The reliability assessment of Schottky barrier and
grown junction IMPATT diodes consisted of several different
engincering subtasks, including the fabrication and procurement
of 20 GHz GaAs IMPATT diodes, design and implementation of
accelerated stress test equipment, conducting actual accel-
erated stress testing, and performance of failure and statistical analysis.

The results of this initial reliability assessment summarized in the
attached Task IIB report defined major failure mechanisms, diode modifications,
future reliability efforts, screening procedures and operating lifetimes of
unscreened 20 GHz GaAs IMPATT exceeding those previously projected.

Preliminary diode lifetimes, extrapolated from the measured
1ife test data, are:

Schottky Barrier GaAs Diodes (’YM) fv3x104 Hours

Grown Junction GaAs Diodes (/YM) >2x106 Hours

Furthermore, the results (Section D) demonstrate the viability of
GaAs IMPATTs as high performance, reliable RF power sources,
which, based on the recommendation made herein, will surpass
device reliability requirements consistent with a ten year

spaceborne solid state power amplifier mission.

(9,




2.4 POC Model Design

The paper design of a 20 GHz IMPATT Transmitter proof
of concept described in Section E addresses major design

considerations such as:

e Functional Design and Projected Performance, of
minimum RF power output of 22W and a nominal
operating gain of 34.5 dB at a RF/DC power added
efficiency of 20.9 percent consistent with a
center frequency of 19.95 GHz.

® Thermal and Mechanical Design

® Electrical Design

e Specification of key devices components and sub-
assemblies.

® Detailed POC Test Plan/Procedures.

The design approach was selected to provide the best

potential to achieve performance goals, minimize components,
circuit and packaging complexity. Furthermore, the successful

implementation of the preferred POC design is based on the following
key features:

use of LNR 2W, 20 GHz GaAs SDR Read-IMPATT diodes,
which have demonstrated required capability for RF
amplifier deployment;

use of readily available modest power level GaAs
MESFET chips in two-stage FET driver wherein FET's
are mounted on customized pretuned LNR carriers which
are in turn embedded in the microstrip circuit
comprising the two stage single-ended amplifier;

passive combination of mutually isolated, modular
two stage IMPATT amplifier "building blocks" for
simple manufacturability, and enhanced reliability;

graceful degradation in RF output power under random

device failure and "power down" capability, both by
"turning off" individual "building blocks'y

10)




e IMPATT amplifiers, used in high gain-bandwidth product
stable amplification configuration, provide wide
dynamic range and small signal to full drive capability
without stability problems or undesired output spurii
in absence of input signal;

e compact low loss miniature multi-port high isolation
stripline wye junction circulators with individual
junctions serving as amplifier coupling circulators,
and with appropriate resistive internal terminations,
as input and interstage isolators;

e simple miniature non-critical easily aligned highly
reliable and mechanically rugged TEM-line IMPATT
amplifier mount design directly integrated with coupling
port of circulator and incorporating optimum tradeoff
between RF power output, DC/RF power added efficiently,
gain-bandwidth and output flatness.

The performance specifications and budgets and physical
parameters characterizing the POC model SSPA are presented in
detail in Section E.

11




2.5 ‘Technology Assessment

The purpose of this study was to define and evaluate
the technology required for space qualifiable 20 GHz
IMPATT transmitters., Based on the assessment of the currently
available technology, -projections of the technology becoming
available by 1985 through 1987 were included in the study.

For the realization of the projected 1985 - 1987 performance
objectives two key methodologies have been identified with

the performance growth projections:

e IMPATT device technology

© power combiner technology.

The available alternative device considerations are
either single drift or double drift GaAs IMPATT diodes
whereas the general forms of combinatorial configurations
under consideration were active and passive intrastate
divider/combiner power sections (Figure 3),

The selected approach characterized in Table 2, was based upon use of:

e double drift 6W IMPATT diodes
® waveguide reactive junction in the passive
combinatorial configuration,

A development plan was prepared angd submitted for the
1987 advanced technology IMPATT transmitter design imple-

mentation.

(12)
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2.6 Summary '

The 20 GHz IMPATT transmitter feasibility and design study
has resulted in the development of single drift GaAs Schottky
barrier IMPATT diodes and a first order reliability assessment and device
modifications consistent with the paper design of a 20 GHz
IMPATT Transmitter proof of concept, based on currently
available (1982 - Figure 4.) and advanced (1987) technology.

The study further demonstrated, that no technological
breakthroughs are required for the realization of an
advanced 20 GHz IMPATT transmitter technology. Moreover,
advanced performance has been defined mainly as a function of the
IMPATT device and power combining topologies, rather than
new and inovative technologies.

(15)
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ABSTRACT

This final report describes the work done under
NASA/LeRC contract NAS3-22491, "20 GHz Single Drift GaAs
IMPATT Diode Reliability Assessment". Covering a period
of performance from June 1981 to September 1983.

The reliability assessment of Schottky barrier and
Grown junction IMPATT diodes consisted of several different
eng fneering tasks, including the fabrication and procurement
of 20 GHz GaAs IMPATT diodes, design and implementation of
accelerated stress test equipment, conducting actual accel-
erated stress testing, perform failure and statistical

analysis.

The results of this initial reliability assessment
defined major failure mechanisms, diode modifications,
future reliability efforts, screening procedures and operating
lifetimes of unscreened 20 GHz GaAs IMPATT exceeding those
previously projected.

Lifetimes extrapolated from the herein described l1ife test
data are:

Schottky Barrier GaAs Diodes ("y) > 3x104 Hours
Grown Junction GaAs Diodes (Tm) > 2x106 Hours

Furthermore, the results demonstrate the viability of
GaAs IMPATTs as high performance, reliable RF power sources,
which, based on the recommendation made herein, will surpass
device reliability requirements consistent with a ten year

spaceborne solid state power amplifier mission.
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I. INTRODUCTION

1.0 Summary

Solid state power amplifiers (SSPA) represenﬁ‘an attractive
cost effective and reliable replacement for traveling-wave tubes for
applications in the 30/20 GHz communications satellite technology.

The 20 GHz down 1link SSPA may be used in applications that require up
to 20 Watts of RF Power. Two solid state designs are currently under
development, the field effect transistor (FET) and the impact avalanche
transit time diode (IMPATT).

GaAs IMPATT diodes are well known for achieving high output
powers and efficiencies. FET devices need more development to achieve
the equivalent power and efficiency. Thus, the IMPATT diode appears

to be the more qualified RF power generator for the next generation of
EHF satellites.

A major limitation to the general acceptance of 20 GHz GaAs
IMPATTs for system and spaceborne use is the question of reliability.
The demonstrated performance of these devices is indeed most impressive.(l)
It also appears that extensive reliability data on power FETs operating
at lower frequencies (8 GHz) is used to predict a short operating life-
time for IMPATT diodes that operate’ at a junction temperature between
200°C and 250°C. This is a misconception since a 200°C temperature
range is acceptable for IMPATT operation and not for FET due to the
drastic differences in device construction. There are two major reasons
for IMPATT diode reliability predictions of median failure times of lO7
hours at an operating junction temperature of 240°C:

®

Simple device geometry and structure;

®* simple device processing technology allowing greater

flexibility in selecting cont?cF metal structures including
a non-ohmic substrate contact'?’.

‘ The accelerated life testing, conducted over a period covering
December 1981 through September 1983,had the following basic objectives:

®* establish early and wear out failure regions;

* Pproject preliminary operating lifetime of singie drift GaAs

IMPATT diodes;

define process and assembly modifications and optimizations;

(1)



establish screening tests to enhance the reliability of
devices to be tested;

ultimate device reliability to be consistent with a ten
year spaceborne Solid State Power Amplifier (SSPA) mission.
The Phase I reliability assessment program described in this
final report was directed towards the development of first order réli—
ability information and definition of recommendations for Phase II
reliability study ultimately leading to the fabrication of high-reli-
ability IMPATT diodes. IMPATT diodes are subjected during operation
to higher stresses by electric field, current density and junction
temperature then other microwave and millimeter wave solid state devices
with proven high reliability. The purpose of this reliability study is
to define operating reliability characteristics of high frequency CW
IMPATT diodes consistent with an ultimate ‘reliability requirement of a
ten year spaceborne mission. Diodes studied under the program included
single drift low-high-low (L-H-L) profiled gallium arsenide (GaAs)
Schottky barrier junction diodes fabricated at LNR and commercially
purchased (VARIAN) devices fabricated from single drift high-low (H-L)
profiled GaAs with an epitaxially grown p-layer. The low-high-low
structured epitaxial GaAs was grown in a vapor phase (VPE) system,
whereby molecular beam epitaxy (MBE) was used to grow the p-high-low
profiled structure, thus affording a comparison of epitaxial growﬁh
systems. During the developmént phase, LNR fabricated Schottky barrier
IMPATT diodes from both the VPE and MBE grown GaAs. The selection of
the VPE grown material for this program was based on the preferred
profile and not the specific technology. The devices were not subjected
to a pre stress test screening in order to establish an early failure
region to help design a cost-effective screening method and operational

burn-in.

Considerations for cost ahd time schedules regafding accelerated
high temperature stressing were deciding factors in selecting the
constant DC stress test configuration at three predétermined high stress
temperatures (three data points is the minimum data required for the
construction of an Arrhenius reaction rate plot). The required cor-
relation between RF and DC stressing as well as the RF performance

degradation due to stressing was investigated and defined during the

(2)



course of the program. All devices were checked for hermeticity, and
X-Rayed to determine the condition of the sealed device cavity, e.g.
shape and position of ribbon and chip contact. Furthermore, the devices
underwent complete DC and RF characterization, including thermal re-

sistance measurements prior to thermal stressing.

In all, the following diodes were fabricated and in the case
of the Varian diodes, procured, characterized and stress tested

during the reliability assessment:

A. Schottky Barrier (M/S) Diodes fabricated from

single drift L-H-L epitaxial GaAs grown by VPE.
Diode Type: Standard Experimental

Stress tested: 105 20

B. Grown Junction (P/N) diodes fabricated from single
drift H-L epitaxial GaAs grown by MBE.
Diode Type: Standard Experimental
Stress tested: N/A 19

C. Grown Junction diodes procured from Varian Associates.

Diode Type: Standard Experimental
Stress tested: 60 N/A

The reliability assessment of presently available single drift
IMPATT diodes has revealed a significant failure mechanism which poses
a substantial reliability probliem, indicating necessary modifications
to current fabrication methods. The information uncovered during the
reliability study and reported herein will be of great value to the device
manufacturer and end-user, ultimately leading to a high confidence level

in IMPATT solid state power amplifier technology.

The statistical analysis of the accelerated stress test data,
extrapolated to an operating junction temperature of two-hundred degrees
centigrade, projected operating lifetimes of 3xlO4 hours and 2.lx106
hours for the 20 GHz Schottky barrier and grown junction single drift

gallium arsenide IMPATT diodes respectively.

(3)



Furthermore, with the implementation of process and assembly
modifications, in conjunction with newly defined screening procedures
and device type recommended herein, the 20 GHz single drift GaAs IMPATT
diode will be established as a highly reliable millimeter wave RF

power source, more than capable of meeting a ten year space mission
requirement.

(4)



2.0 Reliability Physics - General

The well known "bath tub" concept of three
fundamental failure rates corresponds to early failures (high
failure rate), the useful life region (low failure rate) and
ultimate wear-out failures, is typical for all long-life semi-
conductor devices. For a given device lot to fall within
the low failure rate region early failures need to be eliminated
through effective screening and realistic burn-in, without
consuming excessive operational lifetime. Therefore, one of
the projected outputs of this study is the definition of a
device burn-in schedule.

In general the early failure rate is identified on the typical
failure rate vs. time distribution for semiconductor devices
as decreasing with time and relates to faulty devices having
an infant mortality rate. Screening/burn-in procedures which
are utilized must raise the infant mortality rate so as to |
minimize the operating life failure rate by eliminating all

defective devices during this early failure period.

A statistical analysis addressing the wearout failure
region, where the failure rate begins to increase again is
provided in Appendix 'B' , The wearout region is normally investigated
by accelerated ading via constant stress testing in order to shotten the useful
lifetime and make this study possible within a reasonable program schedule. The
average time to wearout failure is best described by the Arrhenius reaction rate law:

: :
Tu = To exp. (-]E—T_

Where,
’TM = median lifetime hours
75 = preexponential constant, hours
Ea = activation energy, eV
k = Boltzman's constant, and
T = absolute temperature, °k

(5)
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To arrive at an Arrheniu§ dependence, devices are accel-
erated-aged at a minimum of three elevated temperatures. At
each of these temperatures a normal probability graph, where
the abscissa is calibrated in terms of the normal cumulative
distribution function, is generated and plotted on a normal
probability graph vs. the log of the time~to-failure. Any
normally distributed random function will plot as a straight
line versus the normal cumulative distribution function with

the mean at 50% and the standard deviéﬁion, O ., typically between 0.5
to 2.0 for mature fabrication processes represents the slope of the
line. One standard deviation will be the variation between

the 50% function value and the 16% or 84% values. A normally
distributed log function is indicative a@f a straight 1line,

whereby an S-shaped curve would indicate an infant mortality problem.

Finally, a plot of log time-to-failure versus the
reciprocal of temperature should be a straight line establishing

the proportionality of log time to inverse temperature required
by the Arrhenius equation.

In order to justify the assumption that the failure
mechanism follows the Arrhenius reaction rate, the condition
of a normally distributed log function with equal standard
deviations at each temperature and a linear relationship to the

‘rec1proca1 temperature must be met by the time-to- fallures )
resulting straight line will enable the extrapolation of a medlan

operating life time at the pwojected operating junction temperature.

3.0 Failure Mechanism

In the past, various technical reports on IMPATT diode
and/or power FET reliability have investigated and identified
failure mechanisms in Schottky-barrier junction devices.

The reaction of the preferred barrier metal platinum with gallium

arsenide is well know by now and so are the effects of acceptor

(7)



formation and net donor density reduction in the heavily doped spike
region of L-H-L IMPATTS, with optimized layer thicknesses. Keeping
the platinum thickness below 200 3 the reaction with the GaAs will

stop due to the exhaustion of unreacted platinum before device per-
formance degradation becomes excessive. A layer of titanium (1500 R
to 2000 i) is added to prevent further GaAs reaction by acting as a
gold diffusion barrier, gold being the final metal used for the three
metal structure selected for the IMPATT diodes studied in this program.
Indeed, the post test profile reconstructions carried out on both the
Schottky barrier and grown junction diodes showed practically have no

change from the original pre-test profile.

Other potential failure mechanisms are identified with surface
breakdown and surface states resulting in conduction and degraded
current-voltage characteristics. In addition to crystalline defects
and electro-migration of the ohmic or barrier contact will further

effect the slow degradation of the device.

Clearly, failure mechanisms contributing to infant mortalities
within the early failure region include defects due to material process-
ing and device assembly, e.g. incomplete bonds and excessive bonding

pressures.

Grown p-layer devices are much less contact metal dependent
as the active n~region is isolated from the anodic metallization by
the p-layer. Gradual degradation of these and Schottky barrier devices

must therefore be the result of yet another failure mechanism.

In this respect, a major degradation during accelerated DC
stress testing was an observed random change of the input current
and voltage, resulting in a general trend of a decrease in the DC power
dissipation during testing. Subsequent DC measurements of diodes with
a change in dissipated DC power of more than one Watt showed however
a major increase in the thermal resistance, (which after the appropriate
calculations)established a much higher junction stress temperature than
scheduled. A corresponding decrease in the oscillator output power was

also measured. Relatively uneffected were the current-voltage and ca-

(8)



pacitance-voltage characteriétics as. well as the operating frequency.
The above observations together with other temperature related obser-
vations made earlier in the program clearly identified a failure ,
mechanism associated with the gold-tin bonding material used for mount-
ing the chips to the diode packages. Various experiments substantiated
this very important and unexpected observation. The results achieved
with a limited number of experimental diodes with modified metal struc-
tures and bonding procedures were exceptionally good. Thereiore, to-
gether with closely monitored and controlled fabrication procedures a
highly reliable and stable IMPATT diode is achievable, suitable for

the ultimate usage of the IMPATT SSPA technology for ground and space-

borne missionq.

4.0 PFailure Criteria

For the purpose of obtaining a maximum post test data base, an
IMPATT diode was considered to have failed, if one of the following

conditions occurred:
® catastrophic Failure with the diode either
electrically open or short,

Stress Test circuit trip points were set 5 volts
and 200ma above the voltage and current inputs
respectively;

the actual onset of degradation in any of the
monitored DC characteristics resulting in any
of the above failure modes within five hours;

termination of stress testing when none of the
above criteria occurred but significant changes
in leakage current and input power (DC power
dissipated) were observed.

(9)



ITI. TECHNICAL DISCUSSION - TIMPATT DIODE

1.0 Introduction

The basic properties of the IMPATT diodes used for the
reliability are described in this section, including specific
GaAs material parameter and doping profiles. Furthermore,
device design and structural configuration as well as thermal

consideration are discussed.

IMPATT diodes can be realized from various doping
profile designs. The preferred profile structures utilized
for the fabrication of devices used in this study were the
single drift low-high-~low (L-H-L) and high-low (H-L)
profiles. Theory of operation predicted better performance
specifically, higher RF output power (Pg) and DC to RF con-
version efficiency (”1), for the L-H-L Schottky-barrier Gaas
~devices as compared with the H-L grown junction GaAs devices.
However, the average performance achieved did not favor one
structure over the other.

Reliability data on both diode designs will assist in making
recommendations for selecting the optimum design for the
ultimate SSPA application.

(10)
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2.0 L-H-L Schottky-Barrier IMPATT Diodes

2.1  Objectives

For the purpose of obtaining first order reliability
information, a relative broad data base must be established.
Specifically, the gquestion most often raised with respect to
repeatability of state-of-the-art epitaxial GaAs growth needs to
be satisfied first. To achieve this, LNR fabricated the diodes to
be tested from various previously, performance qualified, wafers.
Failure mechanisms identified during the initial reliability

study, which appear to be common ‘to the various wafer/

material lots will lead to defining process and assembly
optimizations. After the device improvements have been
implemented subsequent reliability studies need to address
statistical requirements by stress testing devices fabricated
from one- epitaxial GaAs wafer (depending on the

available wafer area, one wafer may yield up to several thousand
chips).

The optimum design of a L-H-L GaAs IMPATT diode for
sufficient RF power output and DC-RF conversion efficiency
consistant with good current-voltage (I-V) characteristics
having stable and sharp reverse voltage breakdowns (Vg) and
tolerable thermal resistance (GTH) represents the tradeoff
between many competing factors. The key dimensional parameter

is the distance (Xp) of the Schottky-barrier surface to the

center of the high doping spike. Diodes having a relative poor

breakdown characteristics still perform satisfactorily during

oscillator measurements, but generally demonstrate a short oper-

ating lifetime. Therefore, good I-V characteristics were

emphasized rather than optimum RF performance, which also helped
in Keeping the device cost reasonable.

(12)



EPITAXIAL GaAs PROFILE DESIGNT
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2.2. IMPATT Chip Processing

Accordingly, the GaAs material was processed, taking

the aforementioned criteria into consideration. The developed
process flow shown enabled LNR. to. realize IMPATT chips with an

average thickness of 10 to 12 microns and achieve stress-free
chip separation.

Au/ GE} EVAPORATED
N ) ————

EVAPORATED T, i, GaAs SUBSTRATE EPITAXIAL LAYERS
Au T T T OO TR R R AR IO OR AR - S — S (ACTIVE REGION)
GOLD PLATED CONTACT (HEATSINK)
FIGURE 4.
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IMPATT CHIP FLOW CHART AND STRUCTURE
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2.3 IMPATT Chip Packaging

Prior to mounting the chips are examined at a magnifica-
tion of 150X to 600X for potential mechanical ox physical
defects. This is followed by checking the forward voltage
drop (Vf), the breakdown voltage (VB) and the junction cap-
acitance. At the same time a short (20 to 30 sec.) current

stress (100ma) is applied to eliminate unstable or weak chips.

The chips are mounted into preselected and cleaned
packages using a gold-tin. (80/20) eutectic solder. The amount of solder
is kept to an absolute minimum to assure flatness and maximum heat
flow.

In general the contacting ribbon is first attached to the
dielectric support or enclosure by means of TC-bonding or
parallel gap welding. 1Initial contacting to the chip is
again achieved by means of soldering with a minute quantity of
Au/Sn solder (grow junction diodes were TC-bonded).

The Jjunction capacitance is then reduced in discrete

steps and RF tested until optimum performance is achieved.

The diodes are dried in a dry nitrogen atmosphere at
lSOOC for 4 to 8 hours. Without removal from the nitrogen
atmosphere the diodes are then sealed in a dual step process
previously developed at LNR for space borne applications.

(16)
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3.0 .H-L GROWN JUNCTION IMPATT DIODES

3.1 Objective

Although, H-L grown junction IMPATT diodes were avail-
able at LNR, it was decided to utilize commercially available
devices from a second source in the reliability study.
Moreover, identical devices from the same source were eval-
uate. at LNR during the development of a 20 GHz communications
solid state power amplifier (AFWAL-TR-83-1142).

3.2 Procurement

In all seventy five (75) IMPATT diodes were purchased
from Varian Associates according to the following specifications:

Frequency QOutput: 20.0 GHz + 1.0 GHz @ Po max.
Power Output: 1.5 Watts minimum

Thermal Resistance: 30°C/Watt maximum
Efficiency: 16% minimum

Material processing and assembly data will be retained by
Varian Associates, to be available for failure analysis if
required.

3.3 Device Assembly Summary

The assembly concepts employed by Varian and LNR as shown,
were quite similar with the exception of minor proprietary
procedures, which were determined to have no impact on the
accelerated stress test data.

(18)
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4.0 THERMAL CONSIDERATIONS

The preferred bonding material used for the device
assembly is the eutectic gold-tin (Au/Sn) solder. The selection
was based on the results of evaluating various eutectic high
temperature solders, including gold-germanium and gold silicon.
The Au/Sn - compound has a strong affinity to combine with
available gold, namely the package and heatsink gold plating
and/or chip contact and ribbon. According to the Au/Sn phase
diagram, which is extremely sharp, small compositional
changes result in substantial increases in the melting or
plastic temperature of the compound. This fact enabled the use
of the Au/Sn solder for three different operations (chip mount,
ribbon bond, sealing) during device packaging without incurring
unwanted chip movement. '

However, the affinity toward compositional change devel-
oped. into a major failure mechanisms during accelerated DC
stress testing. In a subsequent section this failure mech-

anism will be described in more detail.

Secondly, with one of the junction temperatures scheduled
to be 345°C, a temperature profile was developed based on the
highest junction stress test temperature and the calculated
thermal impedances at the appropriate temperatures. The highest
temperature, as shown on the profile,the Au/Sn would be subjected
to at the chip to package interface is between 240°C and 250°C,
well below the 280°C eutectic temperature.

(20)
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5.0 IMPATT DIODE CHARACTERIZATION

The evaluation of each of the IMPATT diodes fabricated
as described previously included the measurement of:
® DC current-voltage (I-V) behavior, including the
diode forward (V,) and reverse (Vg) breakdown volt-

ages, and the leakage current (I; measured at 50%
of the 1l0na reverse breakdown voltage);

® Capacitance-voltage (C-V) measurements taken at zero
bias, minus 3 volts and near the reverse breakdown.
In addition, two diodes of each metalization lot
are used for profile reconstruction (as described
previously) to identify potential processing related
changes and barrier interface instabilities;

® thermal resistance (©th) to determine diode junction
temperature and to identify problems associated with
the chip and/or contacting ribbon bonds;

e RF parameters, such as power output (Pg), operating
frequency, DC-RF conversion efficiency (”Z) operating
voltage and current.

The thermal resistance measurement configuration developed
at LNR, utilizing a unique refinement of the Haitz* method
eliminates all frequency-dependent components, except for one
blocking capacitator, permitting small signal CW measurements
as opposed to the usual pulse method. The measurements are
made through a high series resistance, thus proteécting the
device under test. A major advantage of this measuring method
is a highly flat frequency response up to 20 MHz as compared
to an upper limit of only ~3 MHz on the part of other related
methods. Therefore, it is possible to measure thermal response
times of £50 ns. The overall accuracy of the thermal resistance
measurements is typically within four percent. The one
limitation of measuring thermal resistnace as described is that it
is breakdown voltage dependent, e.g. devices with degraded I-V
characteristics can not be measured accurately.

* R.H. Haitz, H.L. Stover and N.J. Tolar, IEEE Trans. Electron
Devices ED-16, pg. 438 (1969)
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Devices accepted following the fine and gross leak
measurements were evaluated via X-Ray photography to
determine the internal (e.g. inside of sealed package)
physical condition(s) of chip, ribbon, seal and bonds. The
X-Ray examination was carried out on all devices used in
this reliability study.
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1)
X-RAY PHOTOGRAPH EVALUATION

COMMUNICATIONS

X-RAY PHOTOGRAPH OF A GOOD IMPATT DIODE

e GOOD SHAPE OF RIBBON

o NO EXCESS METALIZATION
ALONG THE SIDES

X-RAY PHOTOGRAPH OF A MARGINALLY ACCEPTABLE IMPATT DIODE

e (OOD SHAPE OF RIBBON

o NO EXCESS METALIZATION
ALONG THE SIDES

¢ ONLY THREE FOURTHS OF
THE CONTACT IS BONDED
TO THE RIBBON

X-RAY PHOTOGRAPHS OF REJECTED IMPATT DIODES

e (OOD SHAPE OF RIBBON

e NO EXCESS METALIZATION
ALONG SIDES

o PARTIAL BOND OF CONTACT
RIBBON- CAUSE OF REJECTION

FIGURE 12, (27) '



A éomplete history of the DC and RF characterization data

of device lots-ultimately used for accelerated DC stress testing is

shown.

LNR Lot definition

Lot No.: (83-8) 83-16B G380-4

Where:

(83-8) = Fabrication Request
(83-16B) = YEAR - WEEK, Assembler Identification

G380-4 = wWafer # - Metallization Processing Lot

In addition each device started during fabrication is

serialized, the serial number cannot be reassigned.

(28)



DC AND RF DATA

COMMUNICATIONS

IMPATT DIODE AOCEPTANCE TEST - DC DATA

"1OT # -8)83-168  G3 V= VOLTS C =pF Ir = NANOAMPS (I, @ .5vg @ 10ua)
STEP I OF PROCESS FLOW ° FINAL PRE STRESS TEST
DC DATA DATE: 5/10/83 : DC DATA' DATE: 6/6/83"
UNIT #{ < 3 [1n | e, Ve 8 ___ | ¢, |31 |8y, Ve -~ Vg
° @ 10ua , @l ma | @l0ua € Ll ma € 10ua [@l ma| €l0ua | €L ma
15558 10.886 | 9:272 | 70 28.9 .47 .70 10.6] 12.4 | 10.893{9.279] 80 | 29.10 .45 [ .69 | 10.6 | 12.4
15598 10.914 | 9.283 | 12 28.8 .48 .70 1.2} 12.6 ! 10.92d 9.2894 12| 29.41 47 | .67 | 1.8 | 12.6
IMPATT DIODE RP - TEST DATA
‘LOT # (83-8)83-16B G380-4 ' : . ’
STEP Bo2 hra oo FLov | FINAL PRE STRESS TEST RF DATA ~ payp 6/6/83
UNIT 8] To | Vo | £5- ] Po | n(vise/mN| X, Vo f P | Po | R, | £, | nen|SP/AN
“issse ].313 | 26.2 ] 19.20] 1.35] 16.5 3§° 339 27,2 §ez2ar.ar | 7235 faeanfis.e 220
. & /56

15598 |.292 | .26.8] 19.85] 1.19} 15.2 338 307} 27.9 { 8.57|1.46 1 7.i3 | 19.18]16.8 326°

Note: SP/PN - denotes oscillator tuning information

FIGURE 13.
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ITI. TECHNICAL DISCUSSION - ACCELERATED CONSTANT
DC _STRESS TEST FOR 20 GHz IMPATTS

1.0 Introduction

Stress tests should be designed to accelerate failure
mechanisms so that a device which would fail under normal
operating conditions in millions of hours will fail orders of
magnitude sooner. Certain reactions are known to be temp-
erature dependent without incurring secondary electro-
micration effects. 1In such cases it must be determined if

the reaction follows the Arrhenius equation,
- _Ea_
T ot % e (B

The determination of whether or not the progress
follows the Arrhenius dependence is a multi-step operation
and that for a single failure mechanism which has been

experimentally observed  (4,5) the following criteria apply:

e the probability density function (pdf) at a
constant temperature and applied electrical stress
is log normal;

® the logarithmic variance is independent of
temperature;

® the median lifetime follows the Arrhenius
dependence. (shown schematically)

Thermal stressing as a means of accelerated aging
of semiconductor devices is an accepted and widely utilized

form of assessing the reliability of such devices.(4'5)

The diodes tested are conventional 20 GHz single drift
GaAs IMPATTs and were not subjected to any thermal or electrical
stressing to remove early failures.

(30)
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In configuring a design for accelerated device aging, a

concise work plan was developed comprised of the six major tasks.

Design and implement thermally accelerated
stress test.

Design and fabricate stress test rack.

Conduct the required number of stress tests
for each diode type.

Experimentally verify observations made during

the diode fabrication and stress testing.

From the stress test data construct cumulative
failure vs. time to failure and Arrhenius reaction
rate plots.

Perform failure analysis as required.

(32)



2.0 Design and Implementation of Thermally Accelerated

Device Aging

Taking into consideration the guidelines set forth in
an "Accelerated Testing Model"6 the selection of the number
and choice of temperatures used to thermally accelerate device
aging are a function of the following considerations. The
lowest stress test temperature must be consistent with the program
schedule of eighteen months. Selection of the highest test
temperature is clearly a function of the diode bonding materials
used and the start up system stabilization, e.g., the projected
median lifetime must be sufficiently long to enable accurate
monitoring and measurements following completion of start-up.
Placing a number of diodes at a third temperature, midway between
the two extremes will enable the construction of the required
Arrhenius reaction rate plot with acceptable accuracy and indicate

an earlier trend of the stress data, signified in the activation
energy (Ea).

The following equations were used in determining the
stress test temperatures. It must be noted, that certain assump-

tions and/or projections were required since actual data was not
available to complete the calculations.

Standard deviation {(J) egquation

t t
oS- Rofs0) on Cn (ﬁ)

16
Where:
tl6 = Time to failure of 16 percent of sample.
tSO = Median time to failure of 50 percent of ‘sample.
t84 = Time to failure of 84 percent of sample

(33)



The standard deviation is assumed to be equal to 1.0,

which is characteristic of a reasonable mature and well-con-

trolled process (acceptable variance range is 0.5 to 2.0).M)
Activation Energy (Ea) Equation
' t
« b ()
2
Ea = ev
I S U
. T
Where:
K = Boltzmann's constant (8.625x10_° ev/°K)
Tl and T2 = Low and High Temperatures (©K) respectively
tl and t2 = Median life.(Hrs.) at Tl and T2 respectively

The activation energy is assumed to be 1.75ev, furthermore
projecting a median life at a given temperature will permit the
calculation of a second temperature consistent with a desired

median life.

Estimating a median 1ife of 90 hours (t16 = 33 hours) and
using a miximum safe test temperature of 345°C based on the
aforementioned thermal profile, the remaining test temperature

wer derived:

_ o

Tyran = 345%%
O

TuEDIUM 3217c¢
_ O

T ow = 299%%

(34)
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3.0 Preferred Stress Test Approach

Ideally, the IMPATT diodes should be thermally aged at
an accelerated rate under actual operating conditions for max-
imum confidence in the reliability data. However, high cost of
accelerated aging under RF stress and temperature related circuit/
device matching and monitoring of large number of devices make
the accelerated operational aging impossible. Consequently,
it was decided to employ a constant DC stress test at three pre-
determined elevated junction temperatures. For completeness of
the reliability data and to establish correlation between RF and
DC stressing, it was initially proposed to include accelerated RF
stressing on a small sample of IMPATT diodes.

Subsequent experiments addressing the RF Stress testing
configuration however revealed a sharp degradation of the RF
performance at elevated baseplate temperatures. Unable to
achieve the required stress test temperature without the
collapse of the oscillation mode in spite of making the app-
ropriate circuit adjustments, efforts to implement accelerated
RF stressing were discontinued. Experimental observations
are described in more detail in Appendix 'C"

In achieving the desired DC junction stress temperature it was
decided not to overstress the diodes electrically and/or
thermally, since in either case unrelated failure mechanisms
may be activiated, which have no bearing on the actual'reliability
of the device under test. Thus, the accelerated constant temper-
ature DC stress festing was carried out by first measuring the
thermal resistance, the DC power input and the RF power output of
each diode measured in a 20 GHz oécillator test mbunt. Secondly,
the baseplate temperature (Tgp) of the test fixture was brought
to a predetermined level, which was based on the average thermal

resistance of the device test lot and the stress temperature. The

(36)



baseplate temperature was held to a maximum:of 150°C to minimize

any potential thermal effects on fixture components and be consis-
tent with device related constraints described in a later section.
Finally, adding to the thermal resistance of the diode a correction
factor resulting from a change in thermal resistance due to an
increase in temperature and thermal impedance of device mounting
interfaces, back biasing the diode into avalanche until the dissi-
pated DC power raises the junction stress temperature to its required

level.

The DC power dissipation was limited to 90 percent of the power

dissipated during oscillator measurement and is given by:

Ty = ®ru(rorar) -° Foec = Prr) * Tep
T3 = ®pu(rorar) (Fo) * Tmp
where:
T; = Diode Junction Stress Temperature (°C)
TBP = Baseplate Temperature (°C)

e = Thermal Resistance of diode and correction

TH (TOTAL) factor (°C)
PD = Power dissipated during oscillator measurement
Pp = (Ppe=Ppyp) = Ipy Viy (W

{(37)



4.0 Stress Test Rack

The following design and functional concepts served as
guidelines for the fabrication of the required stress test
rack.

Design Concept

e Temperature controlled diode stress test fixture

® Series resistance controlled diode bias with constant
voltage source

e Fast speed protection circuit to prevent excessive
current at the time of failure (in addition to power
shut down)

Elapsed time meter (non-resetable)

Individual diode adjustable voltage and adjustable
current

Diode "Turn-On" transient protection
Room Temperature to 170°C operating baseplate

5 to 50 volt and 0 to 1 ampere operation

Nanoampere leakage measurement capabilities

Functional Concept

e Capacity - 24 individually controlled diode test positions
(20 required number of diodes to be tested plus 4 experi-
mental diodes)

Monitoring
e Individual power input

® Individual operating time

® Individual diode over-voltage and over-current
shut down ‘

® Monitoring diode parameters during testing without
disturbing the other diodes

(38)
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5.0 Stress Test Procedures

For the implementation of the thermally accelerated
constant DC stressing of 20 GHz IMPATT diodes an operational
test procedure (LNR No.: 119012992) was developed consisting

of the following major operations.

® preparations of the stress test rack prior
to start-up include safety and operational
functions;

e diode loading and in system measurements;

e temperature controller turn on and adjustment;

® DC-bias current adjustment for the required
power dissipation;

® in-situ tests and diode measurements (as shown);

e monitoring schedule (as shown).
Monitoring of the device parameters is less than one
minute per device. Measurements are made while input power is

appropriately reduced on each diode individually, e.g. stressing

is interrupted for less than one minute.

(41)



ICNIR)

COMMUNICATIONS

TEST PROCEDURE

TEST. TEMPERATURE MONITOR SCHEDULE

HIGH ® EVERY HOUR FOR 24 HOURS
- UNTIL 84% CUMULATIVE FAILURE.
MEDIUM ® EVERY HOUR FOR THE FIRST
24 HOURS

® LEVERY HOUR FOR 16 HOURS PER
DAY UNTIL 168 TEST HOURS
ARE ACCUMULATED

® EVERY 2 HOURS PER WORKDAY UNTIL
84% CUMULATIVE FAILURE

LOW e EVERY 2 HOURS PER WORKDAY

UNTIL 168 TEST HOURS ARE
ACCUMULATED.

® EVERY 2,5 HOURS PER WORKDAY
UNTIL 84% CUMULATIVE FAILURE.

MONITORED PARAMETERS

FORWARD VOLTAGE (VF) AT 1Ma
(VF) AT 10Ma

BREAKDOWN VOLTAGE (VB) AT 1Ma
(VB) AT 10Ma

(VB) AT 50Ma

(V,) AT 100Ma

B
LEAKAGE CURRENT _ (I;) MEASURED AT .5 V,(l0uA)
BASEPLATE TEMPERATURE (Tgp)
INPUT CURRENT (IIN)
INPUT VOLTAGE (Vy)
D.C. POWER INPUT (Py)
TIME OF MEASUREMENT (HRS)

FIGURE 18.
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6.0 Start-up Description

Device scheduled for stress testing are grauped
according to the measured thermal resistance in order to
accommodate previously noted thermal and electrical stress

criteria.

The diodes are placed intoc individual diode holders
and installed into the test fixture. 1Initial in-system
measurements are taken at room temperature (~:25°C) and
include the forward and reverse voltage at the noted
current levels and the leakage current (Iy). The leakage
current is measured at fifty percent of the reverse break-
down voltage as measured at a lOua current level., At this
time the baseplate temperature is brought to the préde-
termined level and allowed to stabilize. With a maximum
base plate temperature of 150°C, no operating lifetime is used

up during the time period needed to finalize the start up sequence.

The above voltage and leakage current measurements are
repeated once the baseplate temperature has stabilized. As
anticipated, the high temperature measurements differ in
that they are generally higher than the room temperature

values.

Individually, the diodes are then biased in the
reverse direction until the required level of DC power
dissipation is reached via coarse and fine current adjustments.

Once the proper power level is set the power is turned
off until all diodes have been adjusted in a like manner.
Following completion of the iniatial bias adjustments
the power to all diodes is turned on. The diodes are rechecked

for the correct power level and readjusted .as required.

(43)



Prior to powering up the diodes the input current and
voltage trip points are set for each diode and the
time on the hour meter is recorded for each diode test
circuit.

The above procedure will greatly minimize temp-
erature related increases in the thermal resistance. Data
analysis at the conclusion of the accelerated stressing
indicated a strong correlation between temperature, time
and thermal resistance. A major deficiency of the current
stress test configuration is the inability to measure the
thermal resistance, which during the concluded tests
seemed to change substantially. A recent paper on silicon
IMPATT diode life'tests(S)defined changes in the reverse
bias voltage at 200 mA indicative of an increase in thermal
resistance. If the change exceeded 0.5° C/W over the
previous value, new bias conditions were calcuiated from the
new value af thermal resistance. Verification of these
ohservations with GaAs IMPATT diodes needs to be estab-
lished in subsequent reliability studies.

The following example will serve as an illustration
of how the correct stress test conditions were derived.
EXAMPLE:

DIOBE TYPE: Varian, H-L Grown Junction
Serial No.: 25 Lot No.: 3717
RIF Measurements:

Py = 10.93 W I, = 389mA
Py, = 8.74W v, = 28.1V
P, = 2.19W '? = 20%

Thermal Resistance: 21.6 C/W
Correction Factor : 4.0° C/W
Total @, (total) : 25.6°C/W

(44)



Maximum DC power to be converted to heat during testing is
90% of PD' or 7.87W, this value will serve as an upper limit

for the electrical stress point.

Diode Junction Test Temperature (TJ) : 321°C
Base Plate Temperature (TBP): 125°¢C
Ty = Tgp * Tpin
Tpin = 321°C - 125°C = 196°C
Pry = LPIN = 196°C
PIN = 7.66W (this value is below the upper limit
of .9PD = 7.87W)
or
Tpin = (1., x V. ) e, (TOTAL)
IN IN TH

Thus, the input current is adjusted until the PIN value

is reached at the given baseplate temperature.

(45)



MONITORED STRESS TEST DATA
(SAMPLED

COMMUNICATIONS

ACCELERATED D.C, STRESS TEST DATA

N ]
TEST FIXTURE PARASICTIC Spa( CAO__ 48 page __L
LOT & 3717 VSK9250AD DEVICE O, (%C/w)__21.6
POSITION __ 8 ojove s/ 25 SOT VB 3 lous _7VTOTAL  eTHOCA B8 Vgpag 3l Igias 2238
BASEPLATE TENP 125 C Pin TERP 19 % REQUIRED JUNCTION TEMP. _ 321 9%  ACTUAL Pyytwd __T:65
- (Tpiy = Ty-Tgp) . THEORETICAL P, (W) 7.66
HGUR METER DATA sua:ﬂ
TINE DATE TIME Metwa |vi20m|vg1m [va 10 majvesom |va 100 MSIOLx:BTI\:)w INTIAL %é AT Iy Vin Pin W
SETUP_ 133),75 | S/6/83 1,15 30 15.94 16,38 | 17,48 | 19,15 A | Loy | 725 9 [ 0
START UP | 3336 3 {10 a0 100 (20,9 208 2.3 248 2088 (e 130 223 .54
384,45 | 5/9/83 | 11 M .89 1001205 208 ] 22,3 ] 24,6 17 /772 T 223 161
385.5 Hoon 83 1ol 2004 208 | 23 Ton7 [2om 2L 129 25 | 23 | 768
386,5 1M 90 01 l203 20.7 2.2 24,6 208 | cova 126 225 1 zu1 | 768
387.4 2. PM =30 01 1708 0.8 | 223 | ong 1 ouwa 2 130 ,228 34,2 7.67
388.4 3 PR .90 1.00 1203 20,7 22.2 24.6 FE N WY 26 1 .22 35.1 7.68
389.4 apn_| 39 1,02 l20.3 20,7 1 222 1 2yg° | ou s 129 225 1 2 1770
390.4 S . .02 1203 207 1 222 24,6 2684 2744, 128 1224 344 7.59
391.3 [ .91 1.03 1202 2061 22,1 24.4 2287 ) 124 .225 30,4 7.73 ;
13923 7PM .90 1.02 f20.4 20.8 | 22.3 246 | 2uma el 129_ .24 36,2 7.67 i
333,73 3.8 a1 02 [20.2 205 | 2.1 24.5 2288 ) | 125 225 34.2 | 7,70 !
139435 9PN 91 Lo2 1202 206 | 2.2 .5 31nA ol 128 .223 34.4 7.66_1 1|
395.35 10 pn .92 1,03 Y200 20,51 221 ] 245 3MA | ;oo 125 .225 34.2 7.70 !
395.35 11 PH .91 102 [20.2 206 | 222 1245 298A e 126 .228 34.2 7.87 !
397.25 12 An .92 1.0 J20.2 206 | 222 | 2u.6 3604 2 127 224 34.2 7.6 J‘
- .
LOT # 3717 VSK9250AD ACCELERATED D.C. STRESS TEST DATA . ‘ PAGE 2
POSTION _.___8  DIODE S/ ___25 SoTVvBaloua _ 7V TOTAL om0 256 Vg 341 Iy 228
: 0,
BASEPLATE TEMP 125 9 Py TEW 196 Oc  REQUIRED JUNCTION TENP. (3 ACTUAL Py (W) 7,65 :
o8 T T THEQRETICAL _ ~Pinewy 7,68 N
THOUR METER DATA - ILan MEASURED - j
TIME DATE | rpe |VFlma |VF20m|vgloma |VE 10 ma|vg 50 m | Vg 100 "‘50sz;; Loyd IMITIAL [BASEPLATER 1p, YIn PN
SET UP__ | 381.75 5/6/83 1.6 1.30 1594 | 1538 | 1748 | 19.)5 ana__ | como 25 [ 9 0
START UP_| 383.6 5/9/83 | 10 aM K 1,00 20,4 20.8 22,3 245 208A Cono 130 223 _ 1 3.2 2,54
398.2__15/10783 | 1AM 91 1.02 20.3 20.7 22.3 24,6 33nA % 128 .224 3.4 7.69
399,2 2 I8 T Y] 20.2 20.7 22.2 | 246 3304 127 y | 34 | 7.69
400,15 3 an 92 | 103 20.2 20.6 22.0 24,5 3304 % 125 225 34,2 7,70
401.15 4 AN .92 1.03 20.2 20.6 22.2 24.6 34NA ; 125 .224 34,2 7.67 B
402,15 S AM .92 1,02 1 2006 1209 22.4 4,8 3unA ) 124 .225 34,2 7.70
3.1 6 AN R 1.03 20,3 20,6 22,2, 26,6 3INA_ 127 .223 34.4 7.66
400.1 784 92 t 10 20,4 20.8 2.4 4,8 UUNA 129 222 34,5 7.65
405, 1 8 AN 9] 102 20,4 20,8 22.3 24,8 33nA Qo 128 1227 3.5 | 7.65
406.1 . 3 .__.93 1,03 20.5, 20,9 22,5 24.3 3uNA AL 125 .2 3u, 7.65
406,95 108 | 9 1,03 20,3, 20,8 22,3 20,8 | 36NA $imo 127 .2 34,5 7.85
408,0 1l an ) 1.03 20,2, 20,6 22,2 24,6 32N A 124 2222 34,5 7.65
409.0 noow | 92 1.02 20.4 0.8 2.4 - |oug  lua _} 2 129 .?22 34,5 7,65
410,0 1pM a1 102 20,3 20,6 22.2. 4,6 o | 125 .222 4.5 7.65
810,95 2pM .91 1,02 20,3 0,2 223 | 248 288 e 128 2222 4.5 7
41].9 3 PM .92 1.03 20.2 206 1222 24.6 42N4 23 126 222 4.5 7.65
413.0__ | 5/10/783 | 4 PM .91 1.02 20,4 - | 20.6 22.3 24.8 48NA Zs 126 220 34,6 50 o
413.9 S .92 1.02 20.2 20.6 22.2 4,7 4INA 126 20 [ 346 7.64
ule.9 5 PM .92 1,02 20.2 _20.6 22,2 2u.7 4SNA_ o) 125 220 34,6 7.60
415.9 7PN . .02 0.2 0.6 22.2 1.7 u3nA 125 221 34.5 7.62_.
416.85 g PM . 02 0. 0.7 22.3 24.8 4UNA mw 127 220 34.6 7.6 |
417.85 9 PN . 0 0. 20.7 22.3 25.8 42nA rmL 220 34,6 7.61
G18.8 10 PN . 0. 20. 20.7 22.3 24.8 u2nA mad 126 219 34,7 7.59
219.8 11 PN 192 .0 20. 20.7 22.3 24.8 420A me) 126 .219 34.6 7.57
W27.9 | 5711783 | 7 M
23 L49 30 2,30 4,52 oy 0. ’
- . T
1

Faiiure Mode:

Test Circuit was tripped at indicated time.
Failure was defined as a short, as power was removed just
prior to shorting.

FIGURE 19. (46)



IV.  THERMALLY ACCELERATED CONSTANT DC STRESS TESTS

1.0 Introduction

In order to achieve the projected outputs of the combined
accelerated stress tests, a minimum of three thermal stress
levels are required for each device type. The obtained data
is used to generate an Arrhenius reaction rate plot for
both the Schottky barrier and grown junction diodes from
which the activation energies can be calculated and lifetimes
extrapolated to the actual operating junction temperature can
be projected with reasonable accuracy.

A summary of the number of tests carried out and diodes
stressed is shown. Also shown is a device fabrication and
procurement history.

Projected Outputs

® Failure rate - early failure data

e Log-normal data and standard deviation
(cumulative failure vs. time to failure)

Validation of log-normal data

® Median time to failure for each accelerated stress
test

Definition of failure mechanism

Activation energy and operating lifetime
projection from Arrhenius reaction rate plots.

Optimized stress test témperature recommendation
Identification of process and packaging modifications

Burn-in temperature and time for early failure
screening

(47)



SUMMARY OF 20 GHz SINGLE DRIFT GaAs IMPATT
DIODES AND ACCELERATED DC STRESS TESTS

COMMUNICATIONS

DIODE TYPES

¢ MODIFIED READ PROFILE (LHL) SCHOTTKY BARRIER (M/S)
FABRICATED AT LNR '

¢ HIGH LOW (HL) WITH GROWN P-LAQER (G/J) PROCURED FROM VARIAN

A. SCHOTTKY-BARRIER (M/S) DIODES FABRICATED AT LNR FROM SINGLE
DRIFT L-H-L EPITAXIAL GAAs GROWN BY VPE. ‘

STANDARD EXPERIMENTAL
FABRICATED 275 168
CHARACTERIZED 226 126
STRESS TESTED 105 20

B. GROWN JUNCTION (P/N) DIODES PROCURED FROM VARIAN WERE
FABRICATED FROM P,-H-L PROFILED WAFERS GROWN BY MBE.

PROCURED 80
CHARACTERIZED 80
STRESS TESTED 79

C. SPECIFICATIONS:

FREQUENCY (GHz): 19 TO 21
POWER OUTPUT(W): 21.0
EFFICIENCY (%) : 216

THERMAL RESISTANCE(OC/W): < 30
NUMBER OF STRESS TESTS

@ FOUR AT A HIGH TEMPERATURE 2340°C (INCLUDING 2 CALIBRATION TESTS)
o TWO AT A MEDIAN TEMPERATURE OF 3219¢C
® TWO AT A LOW TEMPERATURE > 2999C

FIGURE 20.
(48)



2.0 Failure Criteria

In order to obtain a comprehensive data base, a certain
flexibility in the failure criteria was maintained during stress
testing. Thus, certain observations could be made of diode
behaviors while under test, e.g. the leakage current for example,
would increase substantially and then stabilize, in some case
would decrease again. Previous 20 GHz oscillator measurements
clearly indicated that substantial increases in leakage current
did not indicate a sufficient decrease in RF performance to be
considered a failure. However, if the onset of a substantial change
in any of the monitored parameters ultimately resulted in a
failure within five hours, the time of the onset was considered the
failure time. Also, devices which showed little change as a
whole, other than the level of DC power being dissipated where
terminated, to enable post test thermal resistance and power
measurements. The measured parameters ultimately confirmed the diode
as having failed because of increases in thermal resistance and/or
decreased RF performance. Thus, for any subsequent reliability studies
" the failure critefii ¢an bé defined m&ré appropriately.

For the concluded reliability assessment the failure criteria

used to define 20 GHz IMPATT diode failure is listed.

(49)
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3.0 High Temperature Accelerated Constant DC Stress

Test

To check the'operation and calibrate the burn in system,
two mixed lots of Schottky barrier and grown junction diodes were
used. The results of these forty six stressed diodes were not

used for the statistical analysis and lifetime predictions.

Diodes were grouped according to the measured thermal
resistance in order to achieve the previously described thermal
and electrical stress levels. Following satisfactory calibration
and operational check of the burn in rack, having made certain
indicated improvements and corrections, the system was readied
for the first high temperature stress test. The high temperature
test was selected to provide maximum data in the shortest possible
time.

3.1 Test Conditions

® LNR Schottky Barrier Diodes
Junction Stress Temperature: 345°%¢

Baseplate Temperature : l40°C (constant)
® Varian Grown Junction Diodes
Junction Stress Temperature: 340°C

Baseplate Temperature :  150°%C {(constant)

3.2 Test DATA Summary

The failure modes for both types of diodes have been
tabulated according to the established criteria.

To generate the required Cumulative Failure (%) vs.

Log Time to Failure (hrs.) plot the following calculations
were used.

(51)



I
D'Agostino’'s Test (D) =
N~SS
where, SS = Sum of Squares
(£ X;)2
—gx 2 - —L
N
TI = Constant
N+1
I = Sequential Rank
N = Number of devices tested
XI = Ln tI
tI = The individual failure times

(L =1,2,...N)

At 90% confidence,

IF Dmin 5;-Ddata 5;. Dmax

Then the assumption of lognormality is valid where:

D is taken from the table, "critical values of

min
D'Agostino's "D" for normality testing, based on

"N" and desired degree of confidence.

Dmax is taken from the table "critical values of
D'agostino's "D" for normality testing”, based on

"N" and desired degree of confidence.

(52)



Cumulative Failures (Percent)

__2p-1
C.F. = —55=— x 100

where, P = number of failures

N = number in test sample
Standard Deviation

(><——>

where, = time to failure in hours

Median Time to Failure(Hrs.)

X
ey - s _ t _ i I
L. . TH ..
where, TI = time to failure of I diode (I=1,2...)

TCF is obtained from the lognormal plot

XI = Lh TI

N Number of Diodes

3.3 Logérithmic - Normality Validation

To test the hypothesis of normality of the log arithmic

lifetime data the D'Agastinds test(g)

is imposed. The
result indicates whether or not at 10 percent significance
(90 percent confidence) the hypothesis that:the log-
arithmic lifetime date is normally distributed is to be

or not to be rejected. In case the hypothesis is correct
and not rejected, the logarithmic data is considered to be

"normal enough" for the Student -t analysis.

(53)



3.4 Initial and Final DC and RF Data

The initial DC data shown is taken after the burn-in
system has stabilized at the required baseplate temperature.
Consequently, the data of some diodes appear to indicate
defective devices, which,is, however, the result of the initial
impact of both thermal and electrical stressing. In some
cases the combined stress levels resulted in instant failures.
Furthermore, the final RF power data shown have in some

cases been noted as:

e Short/open - implying that the diode shorted/
opened during the final oscillator

measurement.

) N/A - -indicates that no oscillation could

be observed

(54)
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3.5 High Temperature Stress Test Results

SCHOTTKY BARRIER

EARLY FAILURE W/0 EARLY FAILURE

NUMBER OF DEVICES (N) : 20 19
STANDARD DEVIATION @) : 0.8 0.7
MEDIAN TIME TO . 35 HRS. 39 HRS.
FAILURE ( 7Yy )
D'AGOSTINO TEST - VALID
(VALID/FAILED) = VALID

GROWN JUNCTION
NUMBER OF DEVICES(N) : 20 13
STANDARD DEVIATION () : 3.5 0.95

MEDIAN TIME TO

s. 47 HRS.
FAILURE ( Y ) 5 HR

D'AGOSTINO TEST

: FAILED VALID
(VALID/FAILED) (NOT LOGNORMAL)

OBSERVATION: The grown junction, n = 20 sample is not

lognormal due to infant mortalities, therefor, on the
Arrhenius plot, the point plotted for grown-junction,
high temperature, n = 20 is n&t valid and cannot be

used to determine the activation energy.
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ACCELERATED DC STRESS TEST DATA LNR

COMMUNICATIONS

. ; S
T T T :
HIGH TEMPERATURE (TH= 3450¢)
20 GHz SCHOTTKY-BARRIER IMPATT DIODES
f _
q/ .
/A
y R
b ‘/ | =
— é &
[ .
e e R e
/1s =
] A e
i /K ? o gé
T Py ‘ N D
| - -t 4 —| == =47 E
b (&)
S
3 ///
/ _,
N = 20
.y =35 HRS.
o '=0.8 '
l | o) o | L1 4
1 2 3 4 5 6 7 8

X = LN (TIME TO FAILURE-HRS)
(58) .
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DC ACCELERATED STRESS TEST. DATA FOR i
HIGH TEMPERATURE (Ty= 345°C) ‘ LNR

20 GHz SCHOTTKY-BARRIER IMPATT DIODES COMMUNICATIONS

CUMULATIVE  21-1

DEVICE S/N T, (HRS.) X[=LNT; % FAILURES = —or—X100%
12386 4,55 1.515 2.5
12296 11.1 2,407 7.5
1116B 12.8 2.549 - 12.5
6806 13.6 2.610 17.5
6686 22,25 3,102 22.5
362D 24,5 3,199 27.5
366D 25.8 3.250 32,5
6856 © 32,8 3,490 37.5
12316 38,5 3,651 42,5
5146 44,8 3.802 47,5
11886 45,6 3.820 52.5

- 1106B 46,1 o 3.831 - 57.5
11806 48.8 3.888 62.5
4706 48.8 3.888 67.5
12236 55.6 4,018 72.5
12206 65.8 4,187 77.5
1254M 70.7 4,258 | 82.5
12376 80.2 4,385 87.5
1264M 80.7 4,391 92.5
11776 147.8 4,996 97.5
N =20
FIGURE 25.
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GENERAL REQUIREMENTS ON 20 GHZ IMPATT TRANSMITTER DESIGN

. MEET ELECTRICAL/RF PROFORMANCE OF SOW

. SPACE-QUALIFIABLE DESIGN UTILIZING l9éZ-TIME FRAﬁEu
TECHNOLOGY

. COMPATIBLE WITH SPACECRAFT DEPLOYMENT OF FULLY QUALIFIED
FLIGHT UNIT BY 1985-~90 TIME FRAME

. MINIMUM SIZE, WEIGHT AND PRIME POWER DRAIN

. MINIMUM COMPLEXITY AND PARTS COUNT.FOR MAXIMUM RELIABILITY
OVER 10 YEAR OPERATIONAL LIFE.

. GRACEFUL DEGRADATION IN PERFORMANCE UNDER RANDOM DEVICE
FATILURES

. MINIMUM DEVICE JUNCTION TEMPERATURE FOR MAXIMUM REiIABILITY

. COMPATIBLE WITH ANTENNA MOUNTING

e
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1.3 GENERAL REQUIREMENTS ON 20 GHz IMPATT TRANSMITTER DESIGN

The preliminary 20 GHz IMPATT Transmitter design presented
in this report addresses each of the general requirements
enumerated in the accompanying Table. The transmitter design
utilizes technology which upon implementation, will demonstrate
readiness for development of a POC model within the 1982 time
frame and will provide an information base for flight hardware
capable of deployment in a 1985-90 Demonstrational 30/20 GHz
Satellite Communication System.

The. transmitter design utilizes those devices necessary
to amplify an angle modulated, single carrier downlink signal
in the band 19.7 to 20.2 GHz, to a power level of > 20 watts
and meet all RF performance requirements specified. 1In so doing,
size, weight and power drain regquirements have been reduced to
a minimum consistant with spacecraft demands.

Overall design complexity and number of parts have also
been minimized, as has device junction temperature, to insure
maximum transmitter reliability consistant with a 10 year oper-
ational life. Graceful degradation in performance under random
device failure rather than complete loss of function is an
integral part of the design to further enhance transmitter
reliability.
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3.0 RESULTS OF PARAMETRIC TRADEOFF ANALYSIS
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3.2.1 POWER AMPLIFIER CASCADE FORﬁULATIONS

In order to analyze the performance of the IMPATT power
section, FET driver and overall 20 GHz transmitter on a stage-
by-stage budgetary basis, the foregoing power amplifier cascade
formulations are used. These formulations are generalizations
of well-known cascaded linear amplifier analysis, wherein the
following aspects of nonlinear power amplifier performance are
taken into account:

- nonlinearity of input/output power transfer
characteristic at operating point Pijpn, Pgoyt
expressed in terms of compression ratio
CR = (dPout/dPin) (Pin/Pout). With CR ranging
between unity and zero for the extremes of a
linear and completely saturated amplifier.

. variability of input/output transmission phase
© out with input power level, expressed in
terms of AM/PM conversion factor
kg =Aeout (deg) //\ P;,, (@B), which is zero
in the linear amplifier limit.

- noise figure cascade formulation is based upon
incremental stage gains at respective large
signal operating points, given in turn by
G-CR = dPoyt /dPip -

These formulations are used in all subseguent multistage
amplifier performance analyses.
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BASIC IM?ATT AMPLIFIER STAGE

Each IMPATT amplifier stage used in the preamplifier and
combinatorial "building blocks" comprising the previously
described overall IMPATT power module is basically a circulator-
coupled negative resistance reflection amplifier, with additional
match-terminated circulator junctions deployed as input and/or
output isolators. This amplifier stage incorporates Np (one or
more) IMPATT diode packages in an Np-way combinatorial mount
which is in turn coupled to the active port of the amplifier
circulator through an appropriate impedance transformation and
broadbanding network. The latter may also contain a band
rejection type out-of-band resistive loading netwok for stabil-
ization against spurious out-of-band oscillation. An RF isolated
DC bias entry network may be incorporated in conjunction with
this resistive loading circuit or, alternatively, may be incor-
porated at the match-terminated port of the input or output
isolator. Each IMPATT diode package may, in turn, incorporate
No IMPATT mesas and/or chips per package.

The major tradeoffs governing the design of this represent-
ative IMPATT amplifier stage includes degree and type of device
chip or mesa level (No) and package level (Np) intrastage IMPATT
combining, mode of amplifier operation (stable vs. I.L.O.),
bandwith/power/gain and linearity and techniques for tuning
and biasing.
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3.3.1 INTRASTAGE IMPATT DIODE - LEVEL COMBINATORIAIL. ALTERNATIVES

The alternative configurations wherein more than one
IMPATT diode may be combined within a single amplifier stage
involve device combination at both the mesa or chip level and
at the package level. The alternatives for mesa or chip level
combining by direct interconnection within a single package
include:

. multiple parallel connected mesas per chip

. multiple parallel, series, or series-parallel
connected chips per package.

Further intrastage diode combination at the package level
can be accomplished using one of the following:

. direct paralleling (series connected packages are
not viable due to inadequate thermal heat sinking
as well as mechanical awkwardness)

. planar N-way Wilkinson hybrid junction (resistively
isolated) coupling

- reactive N-way planar or waveguide junction

. radial, conical or waveguide reactive extended
interaction cavity combining

The key factors influencing a tradeoff analysis encompassing
the above intrastage combinatorial alternatives include their
relative compatability with adequate thermal heat sinking of
the IMPATT devices and with graceful degradation in overall
transmitter output power under random device failures.
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3.3.2 INTRASTAGE DIODE-LEVEL COMBINATORIAL TRADEOFF CONCLUSIONS

The results of a detailed tradeoff analysis relating to the
optimum degree of intrastage chip and/or package level IMPATT
device combining are summarized as follows:

1. Intra package chip level ¢ombining:

» Multiple (Ng), paralleled mesas per chip limited
to Ne € 2 to avoid thermal "crowding" - single
annular mesa a high power output alternative

- Series and parallel connected chips viable for
Ne € 2 - series connected chips are thermally in
parallel in diamond heat-sunk package

* 2 X 2 series-parallel combination of dual series-
connected dual-mesa chips conceptually feasible

- Optimum degree and form of chip level combining
awaits breadboard evaluation-tentative assessement
limits Nt € 4

2. Intrastage package level combining:

- N-th order intrastage combining of Np IMPATT
packages tends to reduce the stage bandwidth

capability relative to_that of a giqgle‘diode
stage by a factor which, in the limit of large

Np, approaches (l1/N_), (although, for Np=2 this
reduction is negligible).

Direct interconnection of any number of packaged
. diodes in series or more than two diodes in
parallel is impractical for thermal, electrical
and physical reasons.

- Combining more than two IMPATT packages in a single
amplifier stage, though possible using hybrid or
extended interaction combiners, will excessively
compromise the graceful degradation capability of
the overall IMPATT power section (which is more
easily enhanced by multiple, mutually isolated
building block stages than by multiple IMPATT
packages within a stage). Since a single device
failure will generally detune the stage gain

response sufficiently -to be equivalent to a stage
failure.

. The choice of embedding geometry for one of two IMPATT
packages per stage (coaxial, strip-line, microstrip or
waveguide) must be made as much on the basis of the
thermal heat sinking provided by said configuration as
of the circuit propeérties introduced thereby. (31)
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" 3.3.3 COMPARISON OF STABLE VERSUS INJECTION

LOCKED MODES OF IMPATT DIODE AMPLIFICATION

A detailed comparative -analysis of the relative merits
of the stable versus injection-locked oscillator (ILO) modes
of IMPATT diode amplification has yielded the following con-

clusions:

The advantages of the ILO mode of amplification are:

Greater power added efficiency and higher gain at
the maximum efficiency operating point.

More saturated input-output transfer characteristic,
e.g., more constant RF output versus input power
for input levels exceeding the locking threshold
for given bandwidth.

The disadvantages of the ILO mode of amplification are:

LNE -

COMMUNICATIONS / INC

Lower gain-bandwidth product (at the maximum effic-
iency operating point, the stable amplifier provides
lower gain but considerable wider bandwidth than

the ILO)- the locking bandwidth of the ILO, however,
must exceed the desired bandwidth by an amount
sufficient to accommodate the ILO free running
frequency drift, thus reducing the advantage of

the higher gain at maximum efficiency operating
point.

Somewhat greater bandedge delay distortion and AM/PM
conversion.

Noisy, free running carrier transmitted during time
intervals for which drive level falls below locking
threshold.

Higher AM noise as reflected in equivalent noise

figure, possibly causing degradation in phase noise
due to AM/PM conversion.

Anomolous degradation imparted to PSK signals,
particularly for abrupt 0-180° phase transitions,
resulting in higher BER in PSK link. Similar
degradation does not occur for angle modulated
waveforms with less abrupt phase discontinuities.
This degradation increases with decreasing bit
transition period for fixed ILO bandwidth and can
only be suppressed for ILO bandwidths greater than
2 to 5 times the maximum bit rate.

Necessity to "turn-off" ILO (remove DC bias) during
all transient and steady state time intervals for
which drive level falls below locking threshold-

hence ILO only useful for truly cw envelope, angle-
modulated signals.
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3.3.4 - TUNED IMPATT DIODE EQUIVALENT CIRCUIT MODEL

The detailed large-signal equivelant circuit model of an
externally reactively tuned, packaged single or multi chip IMPATT
diode has been used as the basis for a tradeoff analysis leading
to IMPATT power amplifier stage design optimization. The salient
features of this circuit model are:

* band-limited, RF drive level-dependent IMPATT-mode
negative conductance, characterized by maximum-~
conductance center frequency (fy) and bandwidth
parameter (Qa).

. monotonically decreasing negative conductance
magnitude Gy (Vip) with RF drive level, with rate
of fall-off (typically quadistic) dependent on mode
of DC bias (constant current vs. constant voltage,
with the latter resulting in more moderate fall-off
due to compensating effect of RF drive-derived
rectified DC current)

- direct junction-area dependence of Gy and excess
junction capacitance component/\C:, which also
vary directly with RF power added capability and
DC bias current requirement.

- controllable package parasitics which, for high
power (largezﬁ,Cj) K-band operation, generally
result in inductive untuned device impedance char-
acteristic '

- external parallel or series capacitive tuning element
for resonating said inductive diode at specified
amplifier band center, with the former resulting in
a more tolerable negative impedance level and wider
bandwidth capability then the former.

Typical normalized susceptance or reactance slopes of
tuned K-band IMPATT diodes are in the range 15-30.
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OVERALL POWER SECTION COMBINATORIAIL TRADEQFFS

1. DEGREE OF INTERSTAGE COMBINING (N) FOR SPECIFIED 20 W
TOTAL. POWER OUTPUT, BASED UPON:
- POWER OUTPUT CAPABILITY OF INDIVIDUAL "BUILDING BLOCKS"
- DEGREE OF TOLERABLE GRACEFUL DEGRADATION UNDER RANDOM
DEVICE FAILURE:
« GEOMETRIC REALIZABILITY
2. N-WAY POWER DIVIDER/COMBINER TOPOLOLY, BASED UPON:
- MINIMUM RESIDUAL INSERTION LOSS CAPABILITY
- MAXIMUM DEGREE OF SYMMETRY
- ABSENCE OF TRANSMISSION IMPAIRMENTS (PHASE IMBALANCE,
EXESSIVE MISMATCH) UNDER OPERATING CONDITIONS
» COMPATIBILITY WITH MECHANICAL CONSTRAINTS IMPOSED BY
GEOMETRY AND HEAT-SINKING REQUIREMENTS OF PARALLELED

IMPATT "BUILDING BLOCKS"
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3.4 OVERALL POWER SECTION COMBINATORIAIL TRADEOFFS

The primary tradeoffs impacting the selection of an
optimum combinatorial postamplifier configuration for the
IMPATT power section of the 20 GHz transmitter, involve the
following alternatives:

degree (N) of interstage combining (between N-way
power divider and combiner) for specified 20W
total output capability.

type of N-way divider/combiner topology:

The major considerations entering into the foregoing

tradeoffs,

in turn, are:

assessment of the maximum power output capability,
(perhaps using a degree of intrastage device com-
bining) practically achievable in each of the
paralleled "building blocks" ;

apportionment of the total degree of device
combining required to achieve the required overall
RF output power between intrastage (within each
building block) and interstage (paralleled building
blocks) combining for best trade between graceful
degradation capability and simplicity.

geometric realizability in an N-way combiner/
divider topology that minimizes residual insertion
loss, phase imbalance, mismatch, ete., while con-
currently being compatible with "building block"
geometry.

 [LNR
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3.4.1 GRACEFUL DEGRADATION CHARACTERISTICS OF ALTERNATIVE
POWER SECTION COMBINATORIAL POST-AMPLIFIERS

Two approaches to the accumulation of sufficient IMPATT
devices within a combinatorial power section post amplifier
to achieve the specified 20W total RF power output capability
involve:

. cascading of successively higher power IMPATT
stages, containing successively greater numbers
of devices combined within end stages

. paralleling of identical "building blocks between
N-way power divider and combiner.

The degradation in RF power outpuf capability under random
device failures occurs quite differently in each of the above
configurations, e.g.:

. failure of a single IMPATT device within a multiple-
device, circulator-coupled IMPATT amplifier stage
generally results in a sufficiently detuned and
degraded gain response to require that the stage
be shut down and effectively by-passed into a
unity gain state by removal of DC bias current,
so that failure of said device connotes failure
of the amplifier stage, e.g., reduction of said
stage gain to unity (less circulator loss).

- failure of an amplifier stage within a cascaded
amplifier power section reduces the overall RF
power output of the latter by, at worst, the nominal
gain of that stage prior to failure.

. failure of an amplifier stage within one of N
paralleled "building blocks" reduces the overall
RF power output by at worst ( (N-1) /N) 2

Extension of the above to M failed stages shows that the
paralleled power section generally exhibits about 3 4B less
degradation than its completely cascaded counterpart.

LNIR
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3.4.2 COMPARISON OF ALTERNATIVE 20 GHZ N-WAY POWER DIVIDER/COMBINER
TOPOLOGIES

The relative merits of the various 20 GHz divider/combiner
alternatives may be summerized as follows:

. The corporate binary Wilkinson configuration, for N>2,
exhibits excessive size and residual insertion loss.
Moreover the series balancing resistors are difficult to
implement.

. Generalization of the above to an N way Wilkinson con-
figuration results in a more compact TEM transmission line
implementation with moderately low residual insertion loss
and port-to-port isolation. Implementation of the series
balancing resistors remains difficult, however.

. A reactive junction configuration exhibits low insertion
loss but no inherent port to port isolation and hence is
only useable with isolator coupled "building blocks", such
as under consideration here. Within this category, the
planar TEM junction is more compact and wider band but the
waveguide junction exhibits the absolute minimum in in-
sertion loss.

. . The extended interaction reactive cavity configuration
exhibits low loss, and narrow (radial and waveguide) to
wide (biconical) bandwidth, but may be more awkward with
respect to interfacing with N "building blocks" than the
above.

. In all cases, orders of division recombination of N»8 are
difficult to implement. .

Based on the above, it is clear that, for accomodating circu-
lator coupled IMPATT "building blocks", the reactive waveguide- junctlon
"and biconical extended interaction cavity configurations seem most
suitable.
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PREFERRED 20GHz IMPATT POWTR STCTION
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POWER- ADDED EFFICIENCY20.9 PERCENT(MINI
GAN COMPRESSION RATIO:O .0l dB /4B (NOW )
AN\~-PM CONVERSION:52" DEG /dB (N\AX)
NOISE FIGURE: DI 4B ( NOM) '

e & o o O
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3.5 PREFERRED 20 GHz IMPATT POWER SECTION

Based upon the results of the foregoing tradeoff analyses,
the preferred 20 GHz IMPATT power section configuration comprises:

. two stage circulator coupled IMPATT preamplifier utilizing
single mesa 0.4W and 1.6W IMPATT devices in the stable
amplifier input and output stages, respectively

. four identical two stage circulator coupled IMPATT
"building block" power amplifier, each providing 6.2W
RF output capability, utilizing single mesa, l.5W and
four mesa 6.2W devices in the stable amplifier, input
and output stages, respectively

. 1ildentical four way reactive waveguide junction or biconical
extended interaction RF power divider and combiner

. @all IMPATT stages operated in stable amplifier mode.
The projected performance characteristics of this IMPATT

power section are, in general, consistent with the requirements on
the overall 20 GHz transmitter.
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3.6 20 GHz DRIVER SECTION ALTERNATIVES

The géneral 20 GHz driver section design alternatives
include:

- type of device (FET vs. GaAs IMPATT)

. mode of amplification (positive resistance two-
port transmission versus.circulator-coupled
negative resistance one-port reflection.

- total driver gain, linearity and noise figure,
as dictated by characteristics of preferred
power section design.

- number of driver stages and apportionment of
performance among stages.

Based upon the previously presented preferred power section
design, however, it is clear that the driver section need only
provide a nominal (~~ 8-10 dB) amount of relatively moderate
noise figure (< 20 dB) gain to meet the overall transmitter
noise figure requirement. This greatly simplifies the driver
section tradeoffs and makes the selection of preferred config-
uration less critical.
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DRIVER SECTION TRADEOFF RESULTS

LNR,.

TRADEOFF PREFERRED APPROACH RATIONALE
1. TYPE OF DEVICE ALL FET® FET PROVIDES:
. GaAs FET ONLY (REQUIRED IN ORDER TO MEET - = LOWER NOISE FIGURE
. GaAs READ/IMPATT NOISE PERFORMANCE REQUIRE- - LOWER DC POWER
ONLY MENT) DRAIN
. COMPOSITE FET/IMPATT - LOW/MODERATE GAIN/
STAGE
IMPATT PROVIDES
- HIGHER GAIN/STAGE
- TRANSPARENT OPER-
ATION UNDER DEVICE
FAILURE
2. AMPLIFIER STAGE TWO-PORT COMMON SOURCE TWO-PORT +R

TOPOLOGY

. TWO-PORT POSITIVE
RESISTANCE (+R)
TRANSMISSION

. ONE-PORT CIRCULATOR-
COUPLED NEGATIVE-
RESISTANCE (-R) RE-
FLECTION

*
FET

- APPLIES ONLY TO
FET

- SMALLER/LIGHTER

- LIMITED GAIN/STAGE

- MORE AMENABLE TO
MULTIPLE DEVICES

ONE PORT -R

- FET OR IMPATT

- UNLIMITED GAIN
UNDER WELL DEFINED
GAIN-BW CON=-
STRAINTS

- MAY EXHIBIT (USING
FET) DEGRADED BW,
NOISE FIGURE OR
POWER OUTPUT

- TRANSPARENT UNDER
ACTIVE DEVICE
FAILURE

FET TWO PORT AMPLIFIER
TOPOLOGY

« SINGLE-ENDED
. BALANCED

. SINGLE-ENDED INPUT
STAGE

"« OTHER ‘STAGES BALANCED

SINGLE-ENDED CONFIG-

URATION PROVIDES:

- SLIGHTLY HIGHER
GAIN

- SMALLER, LIGHTER,
LOWER PARTS COUNT

BALANCED-CONFIGUR~

ATION PROVIDES:

- HIGHER RF POWER
INPUT/OUTPUT

- ADDITIONAL DEGREE
OF INPUT / OUTPUT
MATCHING CAPABIL-
ITY
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3.6.1 DRIVER SECTION TRADEQCFF SUMMARY

A sumnmary of the tradeoff results obtained in evolving
a preferred approach to the 20 GHz driver section, in light of
the relatively modest requirement on driver performance
( <10 dB gain, =< 20 dB noise figure) is as follows:

« all FET driver necessary in order to meet noise
performance reguirements

+ two-port common-source FET stages preferred due
to better noise performance and linearity

« single ended stages preferred due to their simp-
licity and lower parts count.

Based upon the relatively modest RF gain and power output
capability imposed upon the driver section by the previously
described preferred IMPATT power section design, it is concluded
that a two~stage single-ended common source FET driver amplifier
with integral input isolator is the simplest and most approp-
riate design approach.
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PRELIMINARY DESIGN SPECIFICATION
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FPERFORMANCE BUDGET FOR PREFERRED

COGHz TMPATT TRANSMITTER CONFIGURATION
FET IMPATT
j=—DRIVER SECTION ~—fa—— POWER SECTION — |
QF': |- 2 : 3 4 4 5 G | a IRF
SHO-D—D——{ U > wir L
P/0 P/C | |
| ouT
| |
STAGE '. zZ | 3 ]« 5 | & [oVERAL
A= S % AD 145 2.7 |62 | b2 | L] |375%
REOUTRPOT POER B &5 [ 1D [25.7 (31,9 [ 3161379 |42 6%
E’,\;‘f@”‘rj“’:j‘ = o 1o joe o6 oo |oa boo
i~ dB/am
ARA /R o | o |zalaz |4z |4z |5
(CNYERSL = dsg /aB : ~ - ' -
f ./n .)Irl_ l__/g i
BE F_uIJ:-/A.JJ" o004 looa [1zs 2o 12| 5 | -
CAPAZIL T - W _
NOISE FIGURE-dZ™ & G |50 |30 |20 | 20 {z25%
AN E e S | 9EAk
%‘PA*\T‘;]“ET%{% oislows | s | 5 [T S5 0es
OO SITE T HE Wi 4 T
BT b =W eolieo | 1e |16 16 | o
"RHORSTCASE ?Q%n%‘:#‘:
DEVICE ACT!Y -l _
B Tk, 102 NO2 165 (165 16D |205
ATURE T ,
¥ IMNCLUDES  LOSDSSES IN /D p/C C\PCULRTORB

\l

,'é%fi%f%%?%‘f BPASEPLATE AND 1S°0 BASERFLATE /1CADE

1= NOISE FIGURE SPECITICATION \q FELAYED ¢

68

AND \NTERCONNECT S A8
M NOT INCLUDING DC VOLTAGE REGUL P\TOR"’: ETC.

S TOTAL FOR 4 PARALLELED STAGES

DIFFERENTIAL

(0.3

7O 32458, DRIVER §ECTIDN CAN BE
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4.2 PERFORMANCE BUDGET FOR PREFERRED 20 GHz IMPATT
TRANSMITTER CONFIGURATION

Based upon a composite of the previously presented pre-
ferred power and driver section performance budgets, that
governing the overall transmitter design exhibits the following
key features:

- Four-way combinatorial IMPATT power section which
by itself exceeds the 30 dB gain, 20WRF power
output and 20 percent DC/RF power added efficiency
regquirements on the overall 20 GHz transmitter.

. Simple two-stage FET driver amplifier section,
providing sufficient gain (~9 dB) to adequately
reduce the contribution of the 32 dB noise figure
IMPATT power section to overall transmitter noise
figure to maintain the latter below the specified
25 dB.

- Tolerable AM/PM conversion within specified 6 deg/
dB maximum, coupled with highly saturated input/
output amplitude transfer characteristic.

+ Realizeable device junction (or channel)-to-housing
thermal resistances, resulting in tolerable maximum
junction or channel temperatures at maximum base-
plate temperature.

It is clear from the above that if the overall transmitter
noise figure specification is relaxed to 32 dB, the FET driver
section can be eliminated from the transmitter.
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PROJECTED WEIGHT BUDGET FOR PREFERRED

20° GHz IMPATT TRANSMITTER DESIGN

COMPONENT _(QUANTITY)

IMPATT POWER "BUILDING BLOCKS" (5)
FET DRIVER AMPLIFIER (1)

POWER DIVIDER/COMBINER (2)

INPUT ISOLATOR (1)

WG/TEM TRANSDUCERS (2)

DC POWER/MONITOR CONDITIONER PCB (2)

.IMPATT REGULATOR PASS TRANSISTORS (10)

WIRING, ETC

DC POWER, MONITOR CONNECTORS

EMI FILTERS

INTERNAL CONNECTORS, TRANSDUCERS AND CABLE
HOUSING AND COVER

STRUCTURE AND HARDWARE

TOTAL

WEIGHT (o0z.)

16.8
1.5
4.4
1.2
2.1
5.0
2.0

0.8
0.6
1.8
1.8

16.0

5.0

59.0 oz (3.7 lbs)
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PACKAGING FEATURES OF 20 GHz IMPATT TRANSMITTER

Additional features of the physical packaging concept under-
the preferred transmitter design include:

Two identical four-way biconical reactive power divider/
combiners, directly integrated with the four associated
paralleled IMPATT “building blocks” through low loss strip-
line interconnect manifolds. ’

Directly integrated TEM/aneguide transducers coupled to
input and output WR-42 waveguide RF interfaces, in driver
and power modules, respectively.

Modular construction wherein self-contained replaceable

driver section and power section ("building blocks"), DC

power conditioner, and monitor conditioner, are incorporated

as individual prealigned modules prior to embedding in the
master transmitter enclosure. This modular approach enhances
RF performance, ease of assembly, integrability and reliability
with negligible impact upon size and weight.

Elimination, where possible, of internal RF connectors and
superfluous transmission line lengths, thereby enhancing
reliability and mechanical integrity as well as electrical
performance. Direct transmission line interconnections
between microwave components and hard-wired DC interfaces
will be used in lieu of internal connectors.

Partitioned housing machined from solid aluminum stock.
thereby providing maximum degree of mechanical rigidity
consistent with minimized weight, as best tradeoff between
selective "lightening" for weight reduction and *stiffening”
for immunity to severe vibrational environments.

Hermetically sealed and passivated heat sunk semiconductor
devices avoid necessity for sealing at the compartment or
component level and promote greater reliability by minimizing
device temperature.

The overall transmitter package design is of approximate dimensions
6.75" x 5.75" x 2.5", and will weigh about 3.7 lbs.
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* WORST CASE THERMAL ANALYSIS OF IMPATT

*BUILDING-BLOCK” AMPLIFIER |
Oyp b ' Cwmp '
RI——DIODE JUNCTION - — > R
. M%)UNT- SHEL L
INTERFACE
RZ_._MDUNT SHELL 4

(SPREADING PATH)

K3 —— MOUNTSHELL- Ty HOUSING —— SRS

(INTER FACE)

RA—~— Tx HOUSING
(SPREADING PATH)

Tx HOUSING-EXTERNAL 1O

RO==" EASEPLATE

(INTERFACE)

me—

=

COMMUNICATIONS

S e

77— NASA- SUPPLIED _,_' 77777
BASE PLATE(T,  75%C)
- l
MOUNT THERMAL THERMAL EM2 RISE [MAKTMUI
FATH RESISTANCE |&aT  ABGCVE | TEM2
°C/W BASEPLATE | T("C)
HIGH-POWER] R\ o 120 203 *
Oy COW Rz O.14 2.6 33
R3 O.\ r4® BO.2
R4 0.0¢ .4 762
RS O.14 2.8 77.8
MEDIUM Y @) 1o 8o . IG02.3 *
FOWER x
@ - 5W =7 Q11 . 2.85 32.3
M RS 027 .35 78.5
>, 0.0 0.3 774
RIO . O.3G .3 6.5
% WORST- CASE” IMPATT DIODE JUNC TION

(76 TEMPERATURE.
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4.5 THERMAL ASPECTS OF 20 GHz IMPATT TRANSMITTER DESIGN

The thermal aspects of the 20 GHz IMPATT transmitter design
are based upon the following general principles:

* Mounting of all high dissipation components in intimate
thermal contact with overall enclosure baseplate.

Use of high thermal conductance interfaces between
individual module baseplates and overall enclosure
baseplate.

+ .Maintenance of short length, large area thermal conductance
paths of high conductance materials.

Optimum spreading in thermal paths to minimize baseplate
thermal density.

The net result of this design approach is that, in this
transmitter packaging concept all dissipative component temperatures
are confined to less than 10°C above the enclosure baseplate, with
the exception of the 20 GHz FET's and IMPATT's. Moreover, the
dissipative elements are widely distributed on the enclosure base-
plate so that the average thermal density presented to the baseplate
mounting interface i1s low, '

The "worst case" transmitter device junction temperatures are
those experienced by the high and medium power IMPATT diodes in the
absence of RF drive, under which condition all of the IMPATT diode
DC bias power is dissipated. 1In this case, under maximum baseplate
(thermal interface) temperature of 75°C, the high and medium power
IMPATT junction temperatures are 203° and 162°C, respectively.
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. v PROJECTED CHARACTERISTICS OF PREFERRED

20 GHz IMPATT TRANSMITTER DESIGN

~

CENTER FREQUENCY ' 19.95 GHz

-1 @B BANDWIDTH (MIN.) - 700 MHz (19.6-20.3 GHz)
' RF POWER OUTPUT (MIN.) — . 22.5%

OPERATING GAIN (NOM.) 39 @B

RF/DC POWER-ADDED EFFICIENCY(MIN.) ‘20.4 PERCENT - (EXCLUDING DC POWER/

, MONITOR CONDITIONER)

AM/PM CONVERSION (MAX.) - 5.9 deg/dB

INPUT/OU?PUT VSWR (MAX.) . 1.25:1

GAIN VARIATION VS FREQUENCY @ 1.0 as p;p

FIXED DRIVE ' :

DPHASE LINEARITY (MAX.) 10 deg p-p

GAIN SLOPE (MAX.) 0.1 dB/MHz

PASSBAND GROUP DELAY VARIATION (MAX.) 0.5 nS/50 MHz

SPURIOUS OUTPUTS (MAX.)

. HARMONIC COMPONENTS -50 dBc
. NON EARMONIC COMPONENTS |  -60 dBc
NOISE FIGURE (MAX.) -..23 @B
DC PRIME INPUT POWER- (MAX.) 110.3W-EXCLUDING DC POWER/MONITOR
_ ‘ LT ) - T CONDITIONER .
: ‘ : 120W - OVERALL
WEIGHT . 3.7 lbs.
DIMENSIONS 6.75"%5.75"%2.5"
BASEPLATE TEMPERATURE RANGE 0-75°C
MAXIMUM DEVICE JUNCTION TEMPERATURE: 205°C (IMPATT)
,:1080C (FET)
RF INPUT/OUTPUT INTERFACES (J1/J2) WR-42 W/G-_ UG595/UG 595/U COVER FLANGE
. 428 VDC, +10 VDC, -10 vDC
DC INPUT POWER INTERFACE ~-ITT CANNON DEMA TYPE CONNECTOR

TELEMETRY MONITOR OUTPUT INTERFACE ITT CANNON DAMA TYPE CONNECTOR
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4.6 PROJECTED CHARACTERISTICS OF PREFERRED 20 GHz IMPATT
TRANSMITTER DESIGN

The preferred 20 GHz IMPATT transmitter design described
herein meets or exceeds all of the previously enumerated specific
design and performance requirements on the subject program. In
particular, some of the key characteristics of this preferred design
1nclude the following:

RF power output at nominal operating point: 22.5W (+43.5 dBm
min.), as compared to 20W requirement.

-1 dB bandwidth: 700 MHz (min.), as compared to 500 MHz
requirement), by virtue of inherently wideband design.

Operating gain: 39 dB (nom.), as compared to 30 dB redquire-
ment. Note that the latter could be satisfied by use of the
IMPATT power section alone, with the 9 dB additional FET
driver section gain being provided to sufficiently suppress
the IMPATT noise contribution to meet the requirement on
overall transmitter noise figure.

Noise figure: 23 dB (max.), as compared to 25 dB requirement
(if requirement were relaxed to 32 4B, EFET driver section
could be omitted).

DC prime power: 120W (max.) including dissipation in DC
power and monitor conditioner (110.3W required as DC bias
for the amplifier stages themselves).

RF /DC power added efficiency: 20.4 percent (not including
DC power and monitor conditioners).

The above is based upon the use of IMPATT power devices with
25 percent DC/RF power added efficiency.
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5.0

SENSITIVITY ANALYSIS
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CONSTRUCTION/ALIGNMENT TECHNIQUES FOR MINIMIZATION
OF 'AMPLTFIER SENSITIVITY TO VARIATIONS IN IMPATT

DIODE PARAMETERS

1. MODULAR IMPATT MOUNT CONSTRUCTION -

. EASY REPLACEMENT OF IMPATT DIODES _

. 'DIRECT ACCESS TO IMPATT MOUNT TUNING AND BROADBANDING
ELEMENTS FOR PRECISE ITERATIONS‘TOWARD NOMINAL PER-
FORMANCE GOALS

2. PRECISE AMPLIFIER "BUILDING BLOCK" ALIGHMENT
.  SELECTION OF MOUNT TUNING ELEMENTS TO RESONATE DIODES

AT SPECIFIED BAND CENTER - |
. SELECTION OF MOUNT TRANSFORMERS TO ACHIEVE SPECIFIED MID-
BAND GAIN LEVEL. '
. ADJUSTMENT OF DIODE BIAS VOLTAGES FOR NOMINAL VALUE OF
POWER ADDED CAPABILITY.

. - GENERAL ALIGNMENT OF "BUILDING BLOCKS" FOR NOMINALLY
IDENTICAL POWER OUPTUT, GAIN AND PHASE CHARACTERISTCS
PRIOR TO INTEGRATION INTO IMPATT "POWER SECTION"

3. FINAL, SECOND-ORDER PHASE EQUALIZATION OF PARALLELED "BUILDING
BLOCK" AMPLIFIER PATH LENGTHS IN POWER SECTION COMBINATORIAL
POSTAMPLIFIER, BY USE OF INCREMENTAL REACTIVE “PHASE ADJUST"
PERTURBATIONS INCORPORATED IN POWER DIVIDER/COMBINER INTER~
CONNECT MANIFOLDS: |

4. SELECTICN OF IMPTTT DIODES FOR MATCHED POWER ADDED CAPABILITY

(24)




5.7 CONSTRUCTION/ALIGNMENT TECHNIQUES FOR MINIMIZATION OF

AMPLIFIER SENSITIVITY TO VARIATIONS IN IMPATT DIODE PARAMETERS

The impact on overall transmitter performance of dispersion
in this characteristics of the IMPATT diodes used in power section
~"building block" amplifiers will be minimized by the use of the
following dedicated constructional and alignment techniqgues in the
implementation of said power section:

modular IMPATT mount construction, permitting easy replace-

‘ment of IMPATT diodes and direct access to IMPATT mount’

tuning and broadbanding elements for precise iterations
toward nominal performance goals.

precise alignment of combinatorial postamplifier "building
blocks" for nominally identical RF power output, gain and
phase characteristics prior to integration on overall IMPATT
power section.

accomplishment of above by precise selection of mount tuning
elements for diode resonance at band center, of mount trans-
formers for specified gain level and of diode bias voltages

for specified power output capability.

final second order phase equalization of paralleled "building
blocki"path lengths by use of incremental phase adjustments
in power divider/combiner interconnect manifolds

selection of IMPATT diodes for matched power added capability

Utilization of the above techniques should reduce any degra-
dation of overall transmitter performance due to IMPATT diode
dispersion to negligible values.

LN

CONMMUNICATIONS / INC
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1. Functional Design/Projected Performance
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PROJECTED CHARACTERISTICS OF POC MODEL

20 GHz IMPATT TRANSMITTER DESIGN

CENTER FREQUENCY 19.95 GHz

-1 dB BANDWIDTH (MIN.) 500 MHz (19.7-20.2 GHz)

RF POWER OUTPUT (MIN.) 22w

OPERATING GAIN (NOM.) 34.5 4B

RF/DC POWER-ADDED EFFICIENCY (MIN.)  20.9 PERCENT (EXCLUDING DC
POWER/MONITOR CONDITIONER)

AM/PM CONVERSION (MAX.) 3 deg/dB

INPUT/OUTPUT VSWR (MAX.) 1.25:1

GAIN VARIATION VS FREQUENCY @ 1.0 dB p-p

FIXED DRIVE

PHASE LINEARITY (MAX.) 10 deg p-p

GAIN SLOPE (MAX.) 0.1 dB/MHz

PASSB?ND GROUP DELAY VARIATION 0.5 nS/50 MHz

(MAX.

SPURIOUS OUTPUTS (MAX.)

. HARMONIC COMPONENTS =50 dBc
. NON HARMONIC COMPONENTS -60 dBc
NOISE FIGURE (MAX.) 24 @B
DC PRIME INPUT POWER (MAX.) 105.3W EXCLUDING DC POWER/MONITOR/

COMMAND CONDITIONER
115W OVERALL

WEIGHT 4.8 1lbs.
DIMENSIONS 6.75"x5.75"x2.5"
BASEPLATE TEMPERATURE RANGE . 0-75%C

MAXIMUM DEVICE JUNCTION TEMPERATURE: 235°C (IMPATT)
1129¢ (FET)

RF INPUT/OUTPUT INTERFACES (J1/3J32) WR-42 W/G - UG595/UG 595/U COVER
FLANGE +28 VDC, +15 VDC, -15 VDC,
: +5 VDC
DC INPUT POWER INTERFACE -ITT CANNON DEMA TYPE CONNECTOR

TELEMETRY MONITOR OUTPUT INTERFACE  -ITT CANNON DEMA TYPE CONNECTOR

(5)



PROJMECIED  PRRFORMIARCE BUDGEY FOR 2D (=Hz POC WODZL
WPATT  TRENSNWTTIER

FET IMPATT
UR\V: S5LCNON -—-—i—- TOWER 2ETTIN -
|
| 5 |
% 3 4 > b
S P e Ve [P P T
| 0.254B | Z6.2 aB 5.0 45!
SIALE ( V4 3. | 4 s Lo |OVERALL
G AS 5.25 4 Y 1 62 | 6z |45 [345
RTOUTPUT POWER-dbm | +14  [418 | 227 14332 |432.2 14317 |435
GAIN COMPRES ION ‘
AV PM
CONVER.SION-deg/db ° ° Sl I DR B
NUMBER OF |
PARMLLE LED STAGES | ‘ ‘ I
NCASE FALURE -4B (e 2 3L | 3] 32| 3a | zw
DC POWER
DRAIN /5TheE ~w_ | 0031021 | 15 1725 | 75 | 15 |13
COMPOSITE  THERMAL
TWORST USE™ DEVICE —_

NOTES !

e PER FORMANCE  CALLOLATED AT +24Bm NDMINAL
INPUT DRIVE LEVEL,

o (ARGE SIGNAL AM/PM ZONVERSION AND NOSE

FIGURE CALCULATIONS TAKE \NT0 ACCOUNT GRIN
COMPRESS\ON RAT\O.

eDC POWER DRAIN DDES NOT INCLODE CONTRIBUTIONS

OF DC REAULRIORS CONWAAND AND MONITOR CIRCU\TS.

* JUNCTION TEMP @ 77157 C BASEPLATE ANDL107C MY

STAGE  HOUSING /BAsenme RISE.
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KEY FEATURES OF POC MODEL 20 GHz IMPATT
TRANSMITTER DESIGN

Use of LNR 2W, 20 GHz GaAs SDR Read-IMPATT diodes, which
have demonstrated required capability for RF amplifier
deployment.

Use of readily available modest power level GaAs

MESFET chips in two-stage FET driver wherein FET's

are mounted on customized pretuned LNR carriers which

are in turn embedded in the microstrip circuit comprising
the two stage single-ended amplifier.

Passive combination of mutually isolated, modular
two stage IMPATT amplifier "building blocks" for simple
manufacturability, and enhanced reliability.

Graceful degradation in RF output power under random
device failure and "power down'" capability, both by
"turning off" individual "building blocks".

IMPATT amplifiers, used in high gain-bandwidth product
stable amplification configuration, provide wide dynamic
range and small signal to full drive capability without
stability problems or undesired output spurii in absence
of input signal.

Compact low loss miniature multi-port high isolation
stripline wye junction circulators with individual
junctions serving as amplifier coupling circulators, and
with appropriate resistive internal terminations, as
input and interstage isolators.

Simple miniature non-critical easily aligned highly
reliable and mechanically rugged TEM-line IMPATT amplifier
mount design directly integrated with coupling port of cir-
culator and incorporating optimum tradeoff between RF power
output, DC/RF power added efficiency, gain-bandwidth and
output flatness.

(7)



2. Thermal/Mechanical Design
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OUTPUT WAVEGLIDE (WR42)

INPUT 4 WAY POWER DIVIDER

INPUT WAVEGUIDE (WR-42)
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PUILDING BLOCK
AMPLIF] ER “RERD)

(Z777 7777777777777 A

1 17 é » -’\ \ ’.' \‘ Hal ) ' i ] 3 '
» <~ \'\\‘\ < N AV \;
PREAMPLIFIER INPUT —OUTPUT 4-WAY ~—[IMPATT MOUNT

POWER COMBINER

SECTION A-A

CONCEPTUAL LAYOUT OF 20GHZ IMPATT TRANSMITTER
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PROJECTED WEIGHT BUDGET FOR POC MODEL 20 GHz IMPATT TRANSMITTER

COMPONENT (QUANTITY)

IMPATT Power Section Building Blocks

IMPATT Power Section Preamplifier (1)

FET Driver Section

4~Way Power Divider/Combiner (2)

Input Isolator (1)

DC Postregulétors (7)
Monitor Conditioner (7)
Command Conditioners (6)
Wiring, etc.

Waveguide interconnects
EMI Filter Box

Connectors and Transducers

Structure and HardWare

(11)

WEIGHT (02Z)

(4) 16.0

TOTAL 76.0 oz

(4.75 1b.)



MECHANICAL ASPECTS OF POC MODEL 20 GHz IMPATT
TRANSMITTER DESIGN '

Identical two stage - "building block" circulator-
coupled IMPATT amplifiers implemented as integrated
four junction dielectrically loaded stripline circula-
tor structures to the active ports of the second and
fourth junctions of which are directly coupled the
TEM~line IMPATT amplifier mounts. Each IMPATT mount
containing the hermetically sealed stud-mounted IMPATT
diode and its associated tuning and broadbanding/
transformation elements, is directly integrated with
the circulator housing, and is directly heat sunk to
the transmitter baseplate. The first and third junctions
comprising input isolators have their isolated ports
match terminated with directly integrated customized
miniature 20 GHz terminations, the former of which
accomodates RF-isolated, non dissipative DC bias input
for the IMPATT diodes.

The power section two stage IMPATT pre-amplifier is
implemented as a similar integrated, unitized structure.

The five two-stage IMPATT "building blocks" utilized in
the power section are mounted vertically and coupled
between a four way input power divider and output power
combiner the latter affixed to the transmitter baseplate
and the former elevated, thereby providing short, low
resistance thermal paths from the stud-mounted IMPATT
diodes, to the transmitter baseplate.

The four way waveguide power divider and combiner are .
essentially compensated reactive junctions, formed in
milled-out waveguide enclosed housings.

Power section IMPATT preamplifier, "building blocks"
and power dividers and combiner, mounted as above, are
directly inter-connected through matched and phase-
compensated waveguide sections, to form high packaging
density power section with most efficient utiiization
of space.

Directly interconnected connectorless driver, section
comprising cascade of two-stage FET amplifier of duroid
based microstrip implementation.

Dielectrically loaded stripline terminated circulator
input isolator directly integrated with FET driver input
and through TEM/waveguide transducer, with transmitter RF
input WR-42 waveguide interface.

(12)



Miniatureized PC card DC bias postregulators each of
which utilize PC card mounted, hermetically sealed
*flatpack" functional IC's and discrete "pass"
transistors which are affixed to the transmitter base-
plate for better heat sinking.

PC card based monitor conditioners utilizing functional
IC's to derive required DC analog outputs, and inter-
connected directly with associated voltage regulator
cards.

PC card based command conditioners, providing turn off/
turn on of amplifier stages on external pulse command,
and interconnected directly with associated voltage
regulator cards.

(13)



THERMAL ASPECTS OF 20 GHz POC MODEL
IMPATT TRANSMITTER DESIGN

Mounting of all high dissipation components in
intimate thermal contact with overall enclosure
baseplate.

Use of high thermal conductance interfaces between
individual module baseplates and overall enclosure
baseplate.

Maintenance of short length, large area thermal con-
ductance paths of high conductance materials.

Optimum spreading in thermal paths to minimize baseplate
thermal density.

All dissipative component temperatures confined to less
than 10°C above the enclosure baseplate, with the
exception of the 20 GHz FET's and IMPATT's.

Dissipative elements widely distributed on enclosure
baseplate so that average thermal density presented to
baseplate mounting interface is low.

"Worst case" Eransmitter device junction temperatures
{(those experienced by IMPATT diodes in the absence of
RF drive, under which condition all of the IMPATT diode
DC bias power is dissipated), at maximum baseplate
temperature of 75°C, are 235 degrees C.

(14)



T WORST CASE THERMAL ANALYSIS OF IMPATT
*BUILDING-BLOCK” AMPLIFIER

- )
nF? (2) ' C? (1) \ii
(. ! 3
DUAL~DIODE Rl ‘-—DDDE JUNCTION - —= > RG zé
MOUNT MOUNT - SHELL §
Mo S coveee- | =
R ——— R7 —
(SPREADING PATH) . MOUNT
R3 —— MOUNT SHELL- Ty HOUSING ——am SRS
(INTER FACE)
Ri——  Tx HOUSING —_— O
(SPREADING PATH)
__Tx HOUSING- EXTERNAL, '
RS BASEPLATE —=—>RIO
(INTERFACE)
NASA - SUPPLIED -
T BASEPLATE(T, - 75%C)
COMPOSITE I TEMP. RISE
: THERMAL AT ABOVE MAXIMUM
MOUNT THERMAL RESISTANCE BASEPLATE TEMP.
PATH oCc/wW ocC T (OC)
R1 10 150 234.,9%
DUAL-DIODE R2 0.36 5.4 84.9
0 = 15%W
(2) ~ R3 0.1 1.5 79.5
R4 0.02 0.3 78.0
R5 0.18 2.7 77.7
R6 20 150 234*
. R7 0.6 4.5 84
SINGLE- -
DIODE R8 0.2 1.5 79.5
Q1) = 7.5%W _ ’
R9 0.04 0.3 78,0
R10 0.36 2.7 77.7

*"WORST-CASE" IMPATT DIODE JUNCTION TEMPERATURE
, (15) '



PACKAGING FEATURES OF 20 GHz POC MODEL
IMPATT TRANSMITTER DESIGN

Modular construction wherein, self-contained replaceable
FET driver and IMPATT power amplifier subassemblies

(and their associated miniature postregulators, command
conditioners, and monitor conditioners) are incorporated

as individual prealigned modules prior to embedding

in the transmitter master enclosure. This modular approach
provides enhanced RF performance, ease of assembly, inte-
grability and reliability with negligible impact upon

size and weight.

Direct mounting, through minimum thermal paths, of all
power dissipating modules and components, to enclosure
baseplate.

TEM line housings milled out from solid aluminum stock
All surfaces finished with silver plate and then lead-tin
electroplated and heated for final lead/tin flow (similar
construction used on currently manufactured high-rel
amplifiers).

Optimum spreading in thermal paths to minimize baseplate
thermal density. .

Elimination, where passive, ¢f internal RF connectors and
superfluous transmission line lengths, thereby enhancing
reliability and mechanical integrity as well as electrical
performance.

Partitioned housing machined from solid aluminum stock
thereby providing maximum degree of mechanical rigidity
consistent with minimized weight, as best tradeoff between
selective "lightening" for weight reduction and "stiffening"
for immunity to severe vibrational environments.

Monel EMI gasketing used around all cover openings.
Strain relief at all electrical solder "bridge" inter-

connections thereby avoiding thermal and mechanical
fatigue.

(16)



ENVIRONMENTAL ASPECTS OF 20 GHz POC
MODEL IMPATT TRANSMITTER DEISGN

Operation over 0-75°C Temperature Range

design optimization for peak performance at the
high operating temperature extreme so as to
minimize impact of inherent rolloff in transmitter
RF output power, with increasing temperature.

passive temperature compensation within DC bias
voltage regulators to provide bias voltage versus
temperature profiles which maximuze performance at

‘high temperature extreme and maintain tolerable

variations in performance over the entire specified
temperature range. :

use of temperature dependent residual heating
obtainable from dissipative elements of voltage
regulators to reduce temperature excursions of more
critical passive RF components, such as circulators.

Constructional Techniques to Maximize Mechanical

Integrity in Shock and Vibration Environment

all hardware torgqued and staked.
all harnesses and cabling staked.

all wires provided with adequate band stress relief
at their termination.

no teflon wiring used.
all solder connections hand soldered.

elimination of loose fits, with all microwave parts
and assemblies under design compression fits.

cantilever structures minimized.

design maintains all structural resonances well
above 2000 Hz.

(17)



3. Electrical Design
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DC POWER BUDGET FOR POC MODEL 20 GHz IMPATT TRANSMITTER

. DC Input DC Power Drain-w
Subassembly Quantity Voltage(s) =V Unit Total
FET driver 1 +3V,+6V, -1V 0.3 0.3
IMPATT Preamplifier 1 +267 15 15
IMPATT "building 4 +26V 22.5 90
blocks"”
+6V FET drain 1 +15Y 0.5 0.5
voltage regulator
FET gate voltage 1 ' -157 0.02 0.02
regulator :
+26Y IMPATT bias
voltage regulators
for:
. IMPATT preamplifier 1 ' +28Y 1.2 1.2
. IMPATT "building ,
blocks" 4 +28V 1.73 6.92
Command Conditioners 6 +5V 0.02 0.12
Monitor Conditioner 7 0.02 0.14
TOTAL DC POWER DRAIN 114.2W

(20)



ELECTRICAL FEATURES OF 20 GHz POC MODEL
IMPATT TRANSMITTER DESIGN

Co-ordinated DC bias postregulation, command and
monitor conditioning for functional amplifier
subassemblies.

Apportionment of coordinated DC bias voltage post-
regulation and command and monitor conditioning

among amplifier stages is as follows: FET drain

(two stages), FET gate (two stages), IMPATT pre-
amplifier (two stage), IMPATT "building blocks"

#1, #2 and #3 and #4, (each two stage) thus resulting
in a total of seven dedicated voltage regulator/command
conditioner/monitor conditioner subassemblies.

Individual DC bias voltage postregulators, deployed

as above to provide passively temperature compensated
sufficiently regulated drain and gate bias voltage to
both FET driver stages and to each IMPATT power section
building block. 2Also included therein are foldback
current limiting circuits to protect amplifier stages
and secondary voltage input lines from excess current
conditions.

Monitor conditioner circuits deployed in conjunction
with corresponding postregulators, which provide analog
telemetry outputs linearly proportional to corresponding
DC bias currents, and to thermistor-derived unit temper-
ature. -

Command conditioner circuits, deployed in conjunction
with corresponding monitor conditioners, provide
"shut-off" and "turn-on" gates to the post regulators
in response to input "turn-off" and "turn-on" command
pulses, with a change of state occurring upon receipt
of each new command pulse.

Individual high rel worthy connector for the DC

power input and associated ground return, and A
analog command inputs and telemetry monitor outputs.

(21)



4. Key Device, Component and Subassembly
Specifications
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IMPATT Diode Specification

Supplier: LNR

Frequency range*: 19.7-20.2 GHz

RF power output*: 2W (min)

DC-RF conversion efficiency:* 22 percent (min)
Thermal resistance: 20 deg C/W (max)

Package: LNR Part No. 118000119

*measured in 20 GHz waveguide test oscillator

(25)



IMPATT Power Section “"Building Block"

Frequency range: 19.7-20.2 GHz
Number of stages: 2
Number of IMPATT
devices/stage 1. (input stage)
2. (output stage)
RF power output: 6W (min)
Operating gain: 10.8 4B (min)
RF input dr;ve level: +27 dBm (nom)
Gain compression ratio: 0.24 dB/dB (min)
AM/PM conversion: 2.3 deg/dB (max)
Noise figure: 37 dB (max)
Input/output VSWR: 1.25:1 (max)
DC power requirement: 22.5W (max) @ +26V

Construction: Composite WG/TEM

RF input/output interfaces: WR-42 WG

(26)



IMPATT Power Section Preamplifier

Frequency range: 19.7-20.2 GHz

Number of stages: 2

Number of IMPATT devices: 2

RF power output: 2.0W (min)

Operating gain: 15 4B (min)

RF input drive level: +18 dBm (nom)
Gain compression ratio: 0.4 dB/dB (min)
AM/PM conversion: 1.8 deg/dB (max)
Noise figure: 36.5 dB (max)
Input/output VSWR: 1.25:1 {(max)

DC power requirement: 15W (max) @ +26V
Construction: composite WG/TEM:

RF input/output interfaces: 1.5 mm (SMA)/WR-42 WG

(27)



Four-Way Power Divider/Combiner

Frequency range: 19.7-20.2 GHz

Residual insertion loss: 0.2 dB (max)

Port to port amplitude balance: +0.25 dB (max)
Port to port phase balance: 15 deg (max)
Common port VSWR: 1.25:1 (max)

Construction: composite WG/TEM

RF input/output interfaces: WR-42 WG

(28)
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IMPATT Combinatorial Postamplifier

Frequency range: 19.7-20.2 GHz
Number of "building blocks": 4
Number of IMPATT devices: 12

RF power output: 22W (min)
Operating gain: 10.3 dB (min)

RF input drive level: +33 dBm (min)
Gain compression ratio: 0.24 dB/dB (min)
AM/PM conversion: 2.3 deg/dB (max)
Noise figure: 37.5 dB (max)
Input/output VSWR: 1.25:1 (max)

DC power requirement: 90W @ +26V
Construction: Composite WG/TEM

RF input/output interfaces: WR42-WG
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IMPATT Power Section

Frequency range: 19,7-30.2 GHz

Number of "building blocks": 5 (incl. preamplifier)
Number of IMPATT devices: 14

RF power output: 22W (min)

Operating gain: 25 dB (min)

RF input drive level: +18 dBm (nom)
Gain compression ratio: 0.1 dB/dB (min)
AM-PM conversion: 3 deg/dB (max)

Noise figure: 37.5 dB (max)
Input/output VSWR: 1.25:1 (max)

DC Power requirement: 105W @ +26V
Construction: Composite WG/TEM )

RF input/output interfaces: 1.5mm SMA/WR-42 WG
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FET Specifications

Supplier - Varian, MSC, Dexcel

Frequency range: 19.7-20.2 GHz

Driver stage deployment 1
Small signal gain 5.5 dB (min
Noise Figure 6 dB (max)

Output level @ 1 4B

gain compression +17 dBm(min)
DC bias requirement 10 ma @ +3V
{drain)
-1V (gate)
Thermal resistance: 300 deg C/W
(max)
Configuration carrier-mounted

(32)

2
4 dB (min)

8 dB (max)

+21 dBm(min)
45 ma @ +6V
(drain)

-1V (gate)

100 deg C/W
(max)
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FET Driver Section

Frequency range: 19.7-20.2 GHz

Nuﬁber of stages: 2

Number of FET devices: 2

RF power output: 62.5 mW (nom)

Operating gain: 9 dB (min)

RF input drive level: 9 dBm (nom)

Gain compression ratio: 1 dB/dB

AM/PM conversion: 0

Noise figure: 8 4B (max)

Input VSWR:' 1.25:1 (max)

Output VSWR: 2:1 (max)

DC bias requirement: 10 mA @ +3V
45 mA @ +6V

-1V
Construction: Composite WG/TEM

RF input/output interfaces: WR-42WG/1.5 mm SMA

(33)



B.

DETAILED POC TEST PLAN/PROCEEDURES

(2.4.3/2.4.4)
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1.0 INTRODUCTION

This test plan describes the test and methods which will
be used to evaluate the performance of the 20 GHz IMPATT Trans-
mitter (ITX) Proof-of-Concept Model. The formal test program
will be based on the specifications and requirements outlined
in contract NAS3-22491. The test plan consists Qf functional
tests at room ambient temperature and atmospheric pressure and
environmental tests to simulate space conditions. . The functional
tests are described in Sections 2.0, 4.0 and 5.0, whereas the
thermal vacuum tests to be performed on the POC model are described
in paragraph 5.8. All raw data taken during the acceptance tests
will be properly recorded and ahalyzed for worst case performance

unless otherwise noted.
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2.0 ACCEPTANCE TESTS

Acceptance tests on three POC model IMPATT transmitter
assemblies shall be conducted in a standard ambient environment
to demonstrate that the POC Model design meets the RF performance
specification outlihed in the previously presented POC Model
Design. One POC Model will be subjected to additional testing
in a thermal vacuum environment. The standard ambient condition
for conducting POC Model acceptance tests shall be as indicated
below:

© to +80°F

a) Temperature, +60
b) Relative humidity, 70 percent or less

c) Barometric pressure, between 28 and 32 inches of mercury.

(37)




3.0 THERMAL VACUUM TESTING

Thermal vacuum testing will consist of mounting a POC model
assembly on a baseplate which contains a reference temperature
sensor and installing this assembly in a thermal vacuum chamber.
Limited functional tests will be conducted at standard ambient con-
ditions to establish a reference baseline. A vacuum of less than
5 x 107> torr is then established in the chamber and the limited
functional tests are repeated at ambient temperature. Limited
functional testing is then conducted at an elevated baseplate tem-
perature of 75°C, and a reduced baseplate temperature of 0°c. - a
repeat of testing at ambien£ temperature in vacuum and at ambient
pressure completes the thermal/vacuum test cycle.

4.0 SUMMARY TABLES

Table 4-1 summarizes the acceptance tests to be conducted
on all three POC Model assemblies. Table 4-2 summarizes the
limited functional testing and thermal/vacuum test sequence required

for testing one POC Model in a thermal/vacuum environment.
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TABLE 4-1

POC

MODEL ACCEPTANCE TESTS

(STANDARD AMBIENT ENVIRONMENT)

PERFORMANCE PARAMETER

Frequency Range

RF Output Power/Gain
Gain Variation vs Fre
Gain Slope

DC Power/Efficiency
Noise Figure

In-Band Overdrive
Input/Output VSWR
Group Delay

AM-PM Conversion

Phase Linearity

Harmonic/Spurious
Response

RANGE OF TEST PARAMETER

TEST PROCEDURE

RF

g.

RF
RF
RF
RF

RF
(3

RF

RF

19.7-20.2 GHz

19.7, 19.95, 20.2 GHz
19.7, 19.95, 20.2 GHz
19.7-20.2 GHz

19.7-20.2 GHz

19.7-20.2 GHz
freq over band)

16.7-20.2 GHz

19.7-20.2 GHz

(39)
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TABLE 4-2

POC MODEL THERMAL/VACUUM TESTS

A. Limited Functional Testing

PERFORMANCE PARAMETER RANGE OF TEST PARAMETER TEST PROCEDURE

Frequency Range RF 19.7-20.2 GHz Gain Setup
RF Gain/
Gain Variation vs freq.
Gain Slope
DC Power
B. Test Sequence

Baseplate Temperature Pressure
1 60°-80°F Ambient
2 60°~80°F Vacuum
3 75°¢ Vacuum
4 0°cC Vacuum
5 60°~-80°F Vacuum
6 60°-80°F Ambient

(40)



5.0 TEST DESCRIPTIONS
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5.1 Gain/Frequency Range/RF Output Power/Efficiency
Gain Variations (3.2.2.1, 3.2.2.2, 3.2.2.4, 3.2.2.6,
3.2,2,7, 3.2.2.15)

The power output variations and power output
added efficiency will be measured using the test set-up of
Figure 5-1. The unit will be mounted on a temperature controlled
baseplate and will be powered with +28, +15, +5 and =15 VDC
sources. D.C. voltages, currents and temperature of the unit
will be continuously monitored and recorded ét beginning and end
of test. The test set-up will be initially calibrated for RF power
and frequency range with the ITX unit removed. The power level
into the ITX will be set to the nominal required level +13.0 dBm
(20 mW). the frequency range will be set on a sweeper from 19.7
to 20.2 GHz. With the ITX removed, the response of.the test set-
up will be measured and stored in the memory of the network analyzer.
The ITX will then be installed in the test set~-up with power "ON"
and the response of its gain displayed on the CRT of the network
analyzer in "Memory Minus input" mode at 1 dB/Division sensitivity.
The response will be plotted on the x~y recorder and properly
annotated. All traces will be properly annotated for corresponding
input power levels and analyzed for compliance to gain specifica-
tions. Output power and power added efficiency will be calculated
from the gain data as follows:

. Pout = Pin X 10G,where G = Gain (dB)/10

. Power added efficiency = Pgoye = Pip
Vpc - Ipc
where Vpe AND IDc are the DC voltage and current

x 100

inputs, respectively, to the ITX

(42)
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5.2 Noise Figure (3.2.2.3)

The operating noise figure of the ITX will be measured on
a point by point basis at the nominal drive level +13.0 dBm using
a calibrated noise diode, a mixer and automatic noise figure meter
shown ip Figure 5.2.

Set the signal generator to the lower band-edge frequency
of 19.7 GHz. Adjust the tunable trap (T) to absorb the amplified
signal at the output of ITX to a level below saturation of the
mixer (M). Set the automatic noise figure meter to "CAL" and
adjust the calibration to the excess noise ratio (ENR) of the
calibrated noise diode at 19.7 GHz. Set the automatic noise figure
meter to "AUTO" and read and record the corresponding noise figure
in dB. Repeat test at mid-band (19.9 GHz) and upper band edge

(20.2 GHz). Analyze results for compliance to specifications.

(44)
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5.3 In-Band Overdrive (3.2.2.5)

The in-band overdrive capability of the ITX will be
measured using the test set-up of Figure 5.1. The input level
into the ITX will initially be set to nominal +13.0 dBm and a
swept gain response will be plotted on the x-y recorder. The
input will be adjusted +5 dB and the output monitored on the CRT
of the network analyzer. The above condition will be maintained
for a short TBD time interval after which time the input level to
the ITX will be adjusted back to nominal and a second gain trace
plotted on the same graph sheet as the first trace. Data will be
properly annotated and analyzed for degradation in performance of

the ITX.
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5.4 Input/Output VSWR (3.2.2.8)

The VSWR tests will be performed using the test setup of
Figure 5.3. The measurement will be made on a swept frequency
basis in both operating and non-operating modes for the ITX. The
nominal power'level +13.0 dBm) and frequency range (19.7-20.2 GHz)
will be set at the input to the ITX. The test port will be
calibrated with a matched load for the ITX port to be measured
.(1.30:1 Input and Output). A plot of the return loss response
will be recorded on the x-y plotter via the PMI network analyzer.
The matched load will then be replaced with the ITX port and
a second plot recorded on the same x-y graph sheet. The data
will be properly annotated and analyzed for compliance. The test
will be similarly repeated with ITX in non-operating mode and
for the remaining port using the appropriate matched load. All

data will be analyzed for compliance to specifications.
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5.5 Group Delay Variation (3.2.2.10)

The group delay variation of the ITX will be measured
using the test set-up of Figure 5.4. The sweep‘oscillator will
be set to sweep a 1 GHz band centered on 20 GHz and a slow sweep
time of 1 to 10 secs. A 20 GHz pin modulator will be driven with
a 1 MHz to 10 MHz modulation frequency. The RF power and
modulator signal amplitude will be adjusted to obtain an undistorted
sinewave on channél B of the Vector Voltmeter using an oscilloscope,
as shown. The siénal amplitudes into channel A and B will be
adjusted for equal levels using the variable attenuator. The x-y
recorder will be calibrated for phase resolution with ITX removed.
A group delay response plot of the ITX will be made after inserting

the unit into the test setup. Data will be annotated and

1
'

analyzed for compliance.

(49)
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5.6 Phase Linearity/AM To PM Conversion (3.2.2.13, 3.2.2.12)

The test set-up of Figure 5.5 will be used for these
measurements. Initially, an electrical equivalent length of
the ITX will be installed in the test set-up. The power level
(+13.0 dBm) will'be set before the 30 @B pad to obtain equal
levels at the "REF" and “test" ports of the harmonic converter.
The sweeper will be set to the frequency range 19.7-20.2 GHz. With
the test set-up calibrated, the transmission test set unit will
be adjusted to display phase responée on the HP network analyzer
at a sensitivity of 45°/Div. The phase output of the analyzer
will be expanded from l0mv/degree to 100mw/div on the linear
amplifier of the PMI Analyzer. The response will be stored in
memory. The w/g electrical length will be replaced with the
| ITX unit in operating mode. fhe phase response of the ITX will
then be displayed on the PMI analyzer CRT in "Input Minus Memory"
condition and the trace plotted on calibrated graph sheet using the
x-y recorder. Without disturbing the test set-up, the input power
into the ITX &ill be adjusted +2 dB from nominal power level
using the w/g variable attenuator. The resultant responses will
be plotted on the same graph sheet. All data will be annotated

and analyzed for compliance.
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dN-LdS §LSdL NOISIYIANOD ZQLS.@ ‘RLIYVINIT ASYHd S°S dAUNOIJ
OWIN WM
¥3L10M4 r&c,ﬂw_ -9 \__.._g
a=x | MO/AWOO ANINIWV &
A §VANIT
YIKWNY YA0MLAN Twd
30/ N 01
AMLINSRW / 39PHA
. azonwy | B
YO LIN 4TINS
V0Ib@ dM
NN
1
NOLLYZ\ VN3
A9 431400
. o 1S3L AOIVINILLY I WNQILTRMA fe— ¥343IME
AABINND) (€~ = XL qp o FF] NOAIN G L ar 01- ZHD 0'02
JANOWH | | |
G _un N R
KON |
| w1 WAl | LN
LR MAwed

AININY WA

(52)



5.7 Harmonic/Spurious Outputs (3.2.2.14)

The spurious outputs requirement will be satisfied by

manually sweeping a CW signal of nominal power level (+13 dBm) into the

ITX and observing the output with a spectrum analyzer. Harmonic
and non-harmonic components will be observed on the calibrated
display of the spectrum analyzer ana signal level and frequency
of each recorded on a data sheet. The éensitivity of the spectrum
analyzer will be set to a minimum 60 dBc range to satisfy the
requirement for non-harmonic components levels. In addition,
an automatic preselec;or (HPB8443A) will be used in conjunction with the
spectrum analyzer to filter mixing and spurious responses of the

L.0 sources in the analyzer.

(53)




5.8 Thermai Vacuum Test (3.2.3)

| The thermal vacuum requirements for the ITX will be
satisfied upon successful completion of the initial functional
tests outlined in sections 5.1 through 5.7. A thermal vacuum chamber
will be used for the tests as shown in Figure 5.6. The ITX unit
will be mounted on a baseplate inside the thermal vacuum chamber
with a temperature sensor attached to the plate for monitoring
the operating temperature inside the chamber. A limited func-
tional test (LF) consisting of a gain response will be performed
prior to evacuation of the chamber to establish a reference base-
line (see timeline Figure 5.7). This will be accqmplished
as discussed in the gain test of paragraph 5.1 of this section. Upon
evacuation to the desired level of 1 x 1010 torr the base-
.plaﬁe temperature will be raised to 165°F and a second gain trace
will be fecorded after a stabi%ization period of TBD hours.

After a four (4) hour dwell at 165°F the baseplate temper-
ature will be lowered to 30°F. A gain trace will be recorded at
30°% after a stabilization period of TBD hours. The baseplate |
temperature will be returned to room ambient after completion of
a four (4) hour dwell at 30°F. A final gain trace will be recorded
after venting the chamber. All data will be compared for repeat-

ability and compliance to gain performance requirements.
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5.9 Test Seguence

The test sequence for the acceptance t
program will be performed as follows:

. Initial functional tests

. Thermal vacuum tests

. Final functional tests

All tests are described in the precedii
Initial and final functional tests will be i
repeatability of data and will be performed

ambient conditions.

(57)



6.0 TEST EQUIPMENT LIST

The following list of test equipment on its egquivalent

will be used to perform the tests in this plan.

DESCRIPTION

CwW Signél Generator

20 GHz Sweeper

Network Analyzer
Network Analyzer

Sweep Amplitude Plug-In
Log Amp/Memory Plug-In
Linear. Amp/Memory Plug-In
Phase Magnitude Plug-In
Spectrum Analyzer

RF Detector (2)

RF Crystal Detector
Power Meter

Thermistor Head
Waveguide Atﬁenuator
Noise Figure Meter
Oscilloscope

Digital Voltmeter

D.C Power Supply

Noise Diode

X-Y Plotter

Harmonic Converter
VSWR Bridge

Frequency Counter

(58)

MFG/MODEL

HP628A

HP8690B

PMI1038

HP8410A

PMI 1038-H13

PMI 1038-V12

PMI 1038-V20
HP8412A
HP141T/8555A/8554B
PMI 12466
Aertech W806FS
HP431B

HPK486A

Flan Microwave 20/11
Ailtech 7514
Tektronics 465
Simpson 464
Kepco JQE 55=-10M
Ailtech

PMI 1034

HP8411A

Narda 5082

SD 6054B



6.0 TEST EQUIPMENT LIST (CONT'D)

DESCRIPTION

Transmissién Test Set
Directional Coupler
Yig Preselector

RF Switch (2)

Mixer (20 GHz)

Vector Voltmeter

Modulator (20 GHz)

(59)

MFG/MODEL

HP8740A

HP11692D

HP8445B

HP8761A

Honeywell SMC-1826
HPB405A

Narda



7.0 TEST DISCREPANCIES

Any discrepencies observed during the course cf POC Model
acceptance testing will be immediately flagged and brought to the
attention of the cognizant quality assurance engineer. QA will
convene a review board consisting of the technical program manager,
director of quality assurance, the quality engineer, reliability
engineering, and the director of high-rel.engineering. This board
will (a) document the nature of the discfepancy: (b) attempt %o
isolate the cause i.e. test set-up, design, componeﬁ£ failure etc;

(c¢) direct further failure analysis and (d) define retest require-

»

nments.

The nature of any discrepancies will be categorized into one

of three possible types:

1) Performance Discrepancy whereby the POC model measured
performance of a particular parameter is below the
anticipated design goal. 1In this case the equipment log
will be carefully reviewed and acceptance test data
compared to manufacturing test data and pre-A.T. inte-
gration data. This will ascertain whether or not the -
discrepancy is historical to the sub-assembly involved.
If.so, design engineering will recommend modifications
or follow-on technology development leading to improved
performance for flight hardware. Acceptance testing
will continue from the point where the discrepancy was
noted. If ‘the anomally can not be explained from past
performance records, category 2 applies, as 3describeéd below.

2) A shift or change is observed in one or more parameters
which affects performance relative to design goal. The
unit will be removed from acceptance test and evauated
to determine the sub-assembly or compcnent requiring

- adjustment/realignment. If the affected area is one

previously defined as being of flight type design, extensive
failure analysis will be performed and appropriate design
modification recommendations made. Depending on the outcome
of said failure analysis the unit may be returned to test
in sequence or retest ordered from initial acceptance test.

(60)



3) Complete loss of performance whereby the POC model
ceases to function. 1In this case the unit will be re-
moved from test and submitted for failure analysis which
will determine the mode of failure, recommend design
modifications, if any, and define any repair action to
be implemented. Depending on the outcome of said

“analysis the unit may be returned to test in seqguence
or retest ordered from initial zcceptance test.

Any and all test discrepancies will be duly recorded in the
POC model equipment log. The results of all failure analysis will
be fully documented via a failure analysis report and said report
will become a permanent part of the acceptance test data package
for the POC Model as well as the acceptance test report. Design
modification recommendations or recommendations for follow-on
technology development which may result from ahy test discrspancies

will be included in the formal analysis of test results.

(61)
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1.5 SCOPE OF 20 GHz DEVICE/ASSEMBLY TECHNOLOGY DEVELOPMENT

In order to address the previously enumerated critical technology areas
identified in the preferred 20 GHz transmtter design approach, the following
key 20 GHz devices and circuits were developed and demonstrated in breadboard
form within the device/assembly technology task:

SDR GaAs Schecttky modified-Read-profile IMPATT diodes, in stud-
mounted encapsulated structures;

. Dual-junction (six port) stripline circulator;

Coaxial one-port IMPATT test mount for diode impedance measurements
and single stage test amplifier experiments;

Two stage, circulator coupled, composite TEM line IMPATT "building
block" amplifier, incorporating single IMPATT diode per stage;

. Single-stage duroid-based microstrip FET amplifier, utilizing procured
FET chip mounted on customized in-house carrier;

. Four way waveguide reactive junction power  divider/combiner.
The goals on developed device/assembly performance, enumerated in the
above table, are consistent with the previously described preferred 20 GHz

transmitter design, which assumed 6W dual diode IMPATT building block output

stages.

LNR
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SCOPE OF 20 GHz DEVICE/ASSEMBLY TECHNOLOGY DEVELOPMENT

A ="-IMPATT POWER SECTION™ "~~~ =7

ELEMENTS TO BE DEVELOPED @ 20 GHz

. GaAs READ-IMPATT DIODES

. CIRCULATOR-COUPLED IMPATT TEST AMPLIFIER

. 4 WAY POWER DIVIDER/COMBINER

. TWO-STAGE IMPATT "BUILDING BLOCK" AMPLIFIER

OBJECTIVES OF BREADBOARD DEVELOPMENT - DEMONSTRATION OF PERFORMANCE

-CAPABILITIES/GOALS AND VALIDATION OF DESIGN OF 20 GHz

IMPATT DIODES: 1.5-2W (MIN) RF POWER @ 20-257 (MIN) EFFICIENCY

(IN TEST 0SC.)

. CIRCULATORS: 0.25 dB (MAX) INS. LOSS/PASS AND 20 dB MIN ISOL/RET.

LOSS OVER 2 GHz MIN BW

BUILDING BLOCK AMPLIFIERS: 22.5-3W MIN RF OUTPUT OVER 0
. 4 WAY P/D, P/C: £0.25 dB MAX RESIDUAL LOSS OVER 0.5 GHz
CONSTRUCTION / IMPLEMENTATION APPROACHES '

ENCAPSULATED, STUD-MOUNTED IMPATT DIODES
. COAXIAL IMPATT TEST MOUNT
. STRIP-LINE CIRCULATOR FOR TEST AMPLIFIER
. COMPOSITE TEM~LINE TWO~STAGE IMPATT "BUILDING BLOCK"
. WAVEGUIDE REACTIVE-JUNCTION 4 WAY DIVIDER/COMBINER

B - FET DRIVER SECTION

ELEMENTS TO BE DEVELOPED @ 20 GHz

TEST AMPLIFIER
OBJECTIVES OF BREADBOARD DEVELOPMENT
. SELECTION OF PREFERRED FET DEVICE

.5 GHz MIN BW
MIN BW

. DEMONSTRATION OF DRIVER AMPLIFIER PERFORMANCE CAPABILITY

. VALIDATION OF DRIVER AMPLIFIER DESIGN
CONSTRUCTION/IMPLEMENTATION APPROACHES.

FET DEVICES IN CHIP FORM, MOUNTED ON CUSTOMIZED IN-HOUSE CARRIERS

. DUROID-BASED MICROSTRIP FET AMPLIFIER STAGE W/>» 5 dB LINEAR GAIN,
>0.3 GHz BW AND>50 mW OUTPUT LEVEL @ 1 dB GAIN COMPRESSION

LNR
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2.0

20 GHz IMPATT DIODE DEVELOPMENT
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2.1 PROGRAM OBJECTIVES

In order to satisfy the performance objectives on the overall
20 GHz IMPATT transmitter, the corresponding design goals on the
20 GHz IMPATT diodes to be deployed therein are as follows:

. RF power output: 1.5 to 2.0W CW (min)

. Frequency: 20 GHz (nom.)

. DC-RF conversion efficiency: 20-25 percent (min)

The frequency design objectives, directed to measured IMPATT
diode performance in a 20 GHz waveguide test oscillator, is con-
sistant with the requirements dictated by the previously depicted
preferred 20 GHz transmitter configuration. The high DC-RF con-
version efficiency requirement necessitates the use of GaAs as
the diode semiconductor material, as opposed to the less efficient

albeit more mature Si technology.

A vital part of the overall GaAs IMPATT diode development
effort was the selection, evaluation and collaboration with one
or more outside suppliers of state-of-the-art epitaxial GaAs

material, grown to LNR specification.

LN
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PROGRAM OBJECTIVES

DEVELOP ADVANCED - GaAs IMPATT DIODE TECHNOLOGY FOR 20 GHz

20 WATT SOLID STATE SPACEBORNE TRANSMITTER

DEVICE GOALS

RF POWER OUTPUT (Po) 1.5 to 2.0 WATTS CW (min)

FREQUENCY (fo) 20 GHz (nom)

EFFICIENCY () ' 20-25 Percent (min)
THERMAL RESISTANCE ' (8.y) 25 Degrees C/W (max)

LNER
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2.2 DEVICE DESIGN CONSIDERATIONS

Alternatives considéred during the evaluation of an optimum
20 GHz GaAs IMPATT device design encompassed:
a) GaAs epitaxial growth technique
. VPE - vapor phase epitaxy
. MBE - molecular beam epitaxy
b) doping profile
. single versus double drift (SDR vs '‘DDR)
. high-low (HL) vs low-high-low (LHL)
¢) Jjunction formation
.--grown (p-n) vs Schotﬁky (SDR only)
. single versus multiple mesa cross sections

. Ssimple versus complex structure

d) heat sinking

gold plated versus metallized diamond heat sink
(PHS vs DHS)

e) packaging alternatives
hermetically sealable package versus open structure

. single versus multiple chip embedding
The criteria utilized in enduring a preferred device design
from among the above alternatives included:

. potential RF performance

realizability of epitaxially grown doping profile

practicality of associated processing
These criteria were also applied within the context of the

capabilities of several potential outside sources of epitaxial

NR

grown GaAs wafers.
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2.3 PREFERRED LNR IMPATT DEVICE DESIGN

Based upon imposition of the foregoing criteria to the
previously presented IMPATT diode design alternatives, the pre-
ferred LNR GaAs IMPATT device design comprised the following
features:

. Based upon the availability of two independent outside
sources of epitaxial GaAs material, epi-wafers grown to
precise LNR specifications by both VPE and MBE were
procurred and processed into IMPATT chips.

. SDR rather than DDR doping profiles were grown, based
upon the comparative simplicity and lower development
risk of the former, despite the potentially higher RF
power output capability of the latter.

. The modified Read (LHL) doping profile was selected
rather than the simpler HL profile, due to the higher
potential DC to RF conversion efficiency of the former,
as well as the availability of a greater number of
degrees of freedom in optimizing the LHL doping profile
for realization of best performance.

. The Schottky rather than grown (p-n) Jjunction configuration
was selected, as it not only permitted an additional
iteration in remeasurement of the epitaxial layer doping
profile but more significantly, permitted efficient fine
grain optimization of the surface to high doping region
distance. In-house processing avoided excessively time
consuming and costly optimization during the epitaxial
growth cycle. Once this distance has been extablished
a p-layer could easily be grown in place of the Schottky
barrier.

. A circular cross section single mesa junction geometry
was selected in preference to more complex multiple
or distributed junction configurations despite the
potential increase in RF power generation and decreases
in thermal resistance with increasing junction area,
thereby avoiding unusually low RF junction impedance
levels and excessively complex and potentially un-
reliable device contacting requirements.

LN ,

- COMMUNICATIONS / INC
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. CARRIER DOPING DENSITY

DISTANCE

PREFERRED LHL PROFILE

LN
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. Gold plated (PHS) rather than diamond (DHS) heat sinking
of the IMPATT chip was pursued as the primary approach
(although preliminary DHS investigation was undertaken)
due to its higher probability of success despite the 20
to 25 percent potential reduction in diode thermal re-
sistance obtainable using DHS. The active or heat
generating surface was bonded directly to the package
stud. -

. Enclosed hermetically sealable rather than open structure
packaging configuration was selected on the basis of its
superior reliability and mechanical integritv for ultimate
spacecraft deployments.

. Single rather than multiple chip per package deployment
was selected since, based upon preliminary experiments
at LNR, the latter exhibited poor combinatorial efficiency
and tended to introduce undesired modes of spurious
oscillation which were not readily suppressed.
The foregoing considerations provided the basis of the pre-
ferred LNR GaAs IMPATT design, as described in the following

paragraphs.

LNIR
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2.4 CRITICAL STEPS IN GaAs IMPATT DIODE DEVELOPMENT & EVALUATION

The evaluation of a successful 20 GHz GaAs IMPATT diode
design and implementation required the following series of critical

and somewhat interactive steps:

design and specification of the preferred SDR LHL doping
profiles for the proposed epitaxial GaAs material;

procurement and characterization of epitaxial GaAs wafers
grown by reliable suppliers;

. process development for ultra thin, stress free IMPATT chips;

assembly and characterization of packaged 20 GHz
IMPATT devices. :

The LNR approach to and results incurred during the per-
formance of each of these steps in the successful 20 GHz IMPATT

diode development process are described in the following para-

graphs.

LNIER
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CRITICAL STEPS IN GaAs IMPATT DIODE
DEVELOPMENT AND EVALUATION

EPITAXIAL MATERIAL DEVELOPMENT

. Design and specification of suitable 20 GHz single drift
modified Read doping profiles.

. Identification and development of suitable outside suppliers
with capability to grow specified epitaxial GaAs material.

. Evaluation of epitaxial GaAs structure.

. Iteration of doping profile design and epitaxial growth
for optimum device characteristics.

IMPATT CHIP DEVELOPMENT AND IMPLEMENTATION

. Wafer thinning and contact layer thickness optimization.

. Surface preparation prior to forming the Schottky barrier
metal structure,

. Schottky and ohmic contact metallization.
. Stress free chip formation.

. Junction area etching.

IMPATT DIODE DEVELOPMENT AND IMPLEMENTATION

. Implementation of void~free chip bonding techniques

. Development of high temperature solder-and thermocompression
bonding technigues

. Development of optimum chip embedding/heat sinking config-
uration

. Realization of hermetically sealable package having minimum
parasitic circuit elements.

DEVELOPMENT OF REQUIRED CHARACTERIZATION CAPABILITY

Doping profile reconstruction as a function of C-V data.

. Surface and profile characterization using SEM, ESCA, SAM
EBIC.

. Thermal resistance measurement.

. RF characterization in suitable test oscillator structures.
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2.5 DESIGN AND SPECIFICATION OF IMPATT DOPING PROFILE

In order to maximize the probability of success in the
realization of the specified epitaxial GaAs which is within the
reproducable growth capabilities of potential semiconductor
material suppliers, a family of LHL doping profile designs have
been generated. The realized growth "window" provides a range
of values.of the following critical LHL profile parameters for

acceptable device performance:

. X_. = active layer depth, e.g, location of highly doped’
P (H) "spike" relative to Schottky contact interface
Np = peak doping density of "spike"

8 = width of "spike"

width of lightly-doped drift region

=
w)
]

Np = drift region doping density

The tradeoff in potential RF performance with the degree of
relaxation in specification of the foregoing critical L-H-L profile
parameters relative to their optimum "modified Read" values, shows
that considerable relaxation is possible without intolerable deter-
ioration in predicted RF performance.

Accordingly, this family of LHL doping profile designs formed
the basis for the specification and procurement of GaAs epiwafers

as described in the following pafagraphs.
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2.7 EPITAXIAL GaAs (LHL) DOPING PROFILE RECONSTRUCTION

The accurate reconstruction of the GaAs epiwafer doping
profile as a function of the distance from the surface of the
active region is the most critical step in evaluating the grown
layer structure with respect to potential IMPATT diode per- |
formance. Capacitance-voltage profiling is the technique used
to characterize the grown single drift modified Read (LHL)
IMPATT structure. The technique is based on the measurements
of the capacitance as a function of negative applied voltage of
a series of Schottky barrier diodes processed from said IMPATT
wafers.

By measuring the depletion layer capacitance (C(v)) as a
function of the applied reverse bias voltage (V), the doping
density (N) can be derived as a function of the calculated
distance from the surface, based upon accurate measurement of
the junction area. For the complete profile reconstruction of
multi-layer LHL IMPATT structure, it is necessary to step-etch
wafer sections in discrete increments of active layer depth
prior to forming the Schottky barrier interface. Specifically,
accurately controlled step etching will move the surface on which
the Schottky barrier structure is formed towardsvthe highly doped
spike and finally past the spike into the drift (Low) region.

The Capacitance-voltage profiling has been performed using

both manual and automatic measurement, with representative mea-

LN
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For this purpose of verification of the doping profile of
each GaAs epiwafer procured four ultimate IMPATT diode fabrication,
as small section of the wafer is removed and used to fabricate
a series of Schottky diodes, as described previously, per the
depicted process flow chart. .

For each of these Schottky diodes, corresponding to a
different value of etched surface layer thickness, the data
acquisition includes fine grain measurements of reverse bias
capacitance versus applied voltage steps, photographic record
of current-voltage (I-V) characteristic and carefully measured
junction areas.

Measurements of the epitaxial wafer doping profile and the
corresponding series of Schottky diode current-voltage character-
istics provided the basis for an early prediction of potential
IMPATT diode performance, which was verified during subsequent
RF measurements on fabricated éevices.

During the course of the development the following number

of epitaxial GaAs wafers were characterized:

$# of Wafers “# of Wafers Meeting
Growth System Characterized Requirements
VPE 35 7
MBE 6 3

Those of the foregoing wafers with measured doping profiles
corresponding to the required level of potential 20 GHz IMPATT
device performance, were used to process IMPATT chips as described

in the following section.
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2.8 IMPATT CHIP DEVELOPMENT AND IMPLEMENTATION

The optimum design of a III-V semiconductor (e.g. GaAs)
IMPATT diode for maximum RF power output and DC-RF efficiency
consistant with tolerable thermal resistance represents a trade-
off between many competing factors. The key dimensional design
parameters characterizing the physical GaAs IMPATT chip implement-
ation include:

. Chip thickness (N4++ Substrate)

. Effective mesa area

. Mesa geometry

. Ohmic and Schottky barrier metal structure

. Void-free chip to package bond

Accordingly, a GaAs material process was deveioped, which
took the aforementioned criteria into consideration. The process
flow shown enabled LNR to realize IMPATT chips with an average
thickness of 10 to 12 miﬁrons and achieve stress-free chip
separation. During the development phase a combined total of
3400 chips were produced for the purpose of providing a com-

prehensive material, process and device performance (DC and RF)

evaluation.

LN
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2.9 IMPATT DIODE PACKAGING

It is LNR's experience that the internal IMPATT diode thermal
interfacial quality plays a very significant role in determining
the total thermal resistance and censequently the operating
junéfion temperature of the diode. Furthermore, it is also
LNR's finding that device package parasitic inductance and
capacitance have a considerable effect on performance. The
packaging process developed encompassed both high temperature
solder bonding and thermocompression bonding achieving
excellent chip to package "foot prints" (e.g. void free inter-
faces). Over 500 packaged IMPATT diodes were fébricated for DC

and RF evaluation.
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2.10 IMPATT DIODE CHARACTERIZATION

The evaluation of each of the IMPATT diodes fabricated as

described previously included the measurement of:

. DC current-voltage (I-V) behavior, including the diode
forward (Vgp) and reverse (Vg) breakdown voltages, and
the leakage current (I measured at 50% of the 1l0ua
reverse breakdown voltage).

. Capacitance-voltage (C-V) measurements taken at zero

bias, minus 3 volts and near the reverse breakdown.

In addition, two diodes of each metalization lot are
used for profile reconstruction (as described previously)
to identify potential processing related changes and
barrier interface instabilities.

Thermal resistance (8¢}y) to determine diode junction
temperature and to identify problems associated with

the chip and/or contacting ribbon bonds.

. RF parameters, such as power output (P,), operating
frequency, DC-RF conversion efficiency (ﬂz) operating
voltage and current.

The thermal resistance measurement configuration developed
at LNR, utilizing a unique refinement of that due to Haitz*
eliminates all frequency-dependent components, except for one
blocking capacitator, permitting small signal CW measurements
as opposed to the usual pulse method. The measurements are
made through a high series resistance, thus protecting the
device under test. A major advantage of this measuring method
is a highly flat frequency response up to 20 MHz as compared to
an upper limit of only ~3 MHz on the part of other related
methods. Therefore, it is possible to measure thermal response
times of <50 ns. The average thermal resistance achieved was

24°C/w without any specific emphasis on its optimization during

the development phase.

* R.H. Haité, H.L. Stover and N.J. Tolar, IEEE Trans. Electron
Devices ED-16, pg. 438 (1969)
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The RF measurements were conducted in a dedicated K-band
waveguide oscillator test station, wherein variable tuning
adjustments permitted centering of the distribution of oscillator
frequencies in the vicinity of 20 GHz and simultaneous maximiz-
ation of RF power output. The results of the above measurements
ranging from 30 to 80 data points per diode were used extensively
during the IMPATT diode development sequence, wherein observation
was made of the impact on diode characteristics of fine grain
iterations in such device design parameters as:

. LHL doping profile "spike" doping level and location
_relative to contact interface.

. LHL active layer depth and doping level.

. Junction capacitance (as optimized by in-package etching).

Analysis of the fine grain measured results indicated that
each of these parameters exhibited a "window" over which accept-
able performance was achieved.

A combined total of more than 300 diodes were characterized.
The distribution of RF oscillator power output and DC~-RF efficiency
for a quantity of 175 diodes operating in the 19-21 GBHz
frequency range indicates a range of 1.3 to 2.7W and 12 to 22

percent, respectively.

LNR,.
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2.11 20 GHZ IMPATT DIODE RF PERFORMANCE SUMMARY

LNR achieved the following level of developmental ~20 GHz
IMPATT diode performance, as measured in the aforementioned
K-band waveguide test oscillator:

. Frequency range 18-21 GHz

. RF power output: 1.3 to 2.7W

. DC-RF Conversion efficiency: 12 to 22 percent.

In addition, a direct correlation was established between
amplifier and oscillator performance measurements, wherein IMPATT
diodes which exhibited ~2W RF power output and 18 percent con-
version efficiency at 20 GHz in the test o¢scillator, demonstrated
~2.5W RF power output, 4dB gain and 14 percent DC-RF power
added efficiency over a 1 GHz bandwidth in a single stage 20 GHz

test amplifier.
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2.12 MBE vs VPE Performance

A byproduct of the 20 GHz IMPATT diode developed was a
comparison of the RF performance of GaAs IMPATT diodes fabricated
from MBE or VPE material as grown to precise LNR specifications
by two seperate epiwafer suppliers. Since this comparison was
not itself the main thrust of the development effort, the avail-
able data is not a conclusive comparison of (epitaxial growth)
technology but also includes the result of random sampling
variations between different epitaxial GaAs wafers. In general,
the results obtained with LNR IMPATT diodes processed from both
types of epitaxial wafers are seen to be comparable, both on an
individual and statistical (histogram) basis. However, the MBE
technique for wafer growth, has, based upon wafer/diode yield data
accumulated.during this development effort, established itself as
being more uniform and repeatable, and, consequently, capable of
achieving specified state of the art doping profiles with a min-

imum of iterations.

LNR
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2.13 DISTRIBUTION OF RESULTS

The distributions of measured IMPATT diode test oscillator
RF power output,_efficiency and frequency data vary as widely
between wafers grown by a particular technique as between those
grown by MBE versus VPE. In reality substantial performance
variations are also evident from processing lot to processing
lot as the result of deliberately introduced process iterations.
However, as seen in histogramic data summaries, a large fract;on
of the characterized diodes meet the basic RF performance
objectives. Introduction of tighter specifications'however, in
order to achieve higher levels of RF performance reduces the

vield factor, thereby introducing a cost versus performance

tradeoff.

LNR,.
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3.0

20 GHz RF ASSEMBLY DESIGN/DEVELOPMENT
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3.2 20 GHz IMPATT TEST MOUNT AND TEST AMPLIFIER STAGE

A one port coaxial IMPATT diode test mount was implemented not only as a
vehicle for LNR IMPATT diode evaluation but also, when coupled to a 20 GHz
four port TEM-line circulator, as a means toward evolving and demonstrating
a baseline 20 Ghz IMPATT "building block" amplifier stage design. The coaxial
mount design was selected over its waveguide counterpart on the basis of its
lower-parasitic reactance diode mounting geometry, and its wider band immunity
against out of band oscillations. Accordingly, the test mount itself, incor-
porating an end-mounted IMPATT diode embedding geometry (for lowest diode
parasitics and best heat sinking) and in-line capacitive tuning element and cascaded
line transformation network, was used to accomodate small signal network analyzer
IMPATT diode negative impedance measurements, When extrapolated, these measure-
ments provided a useful large signal design characterization of the IMPATT diode as well
as a means toward selecting the optimum tuning and transformation elements.

The single stage test amplifier formed by connecting this IMPATT diode
mount to the output junction of a dual junction (4-port) breadboard 20 GHz TEM
circulator (the resistively match-terminated input junction comprises an input
isolator), demonstrates wideband high power operation of LNR IMPATT diodes
developed under this device/assembly task. Typical IMPATT diode performance
obtained in this 20 GHz test amplifier operated in the constant voltage mode
included 2.5W RF power output, 4 dB operating gain and 14 percent DC-RF power-
added efficiency over a 1.5 GHz bandwidth at a nominal 1IW RF input drive level,
all of which in consistent with the 2W, 18 percent RF power/efficiency per-

formance exhibited by the same diode in a 20 GHz waveguide test oscillator.
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3.3 20 GHz MULTIJUNCTION CIRCULATORS

Both two and four junction (four-and- six port) circulators were
developed at 20 GHz for use as the coupling mechanisms for single stage
IMPATT "'test amplifier and an integrated two stage IMPATT "amplifier re-
spectively, wherein the unused junctions are resistively match terminated
for use as input and/or interstage isolators. The preferred dielectrically
loaded stripline circulator configuration, though at the threshold of the
state~of~the-art at 20 GHz, was selected over its more conventional (at this
frequency) waveguide counterpart due to its:

. Significantly smaller size and lighter weight (by factor of 4:1),
’ of particular importance since five such six-ports are utilized in
the preferred transmitter design.

Considerably wider bandwidth capability, which is of great
importance in presenting the IMPATT diode with a wideband well-
matched terminating impedance over wide ''guard-bands" on either
side of the specified passband so as to maintain out of band stability.
Accordingly, both the four and six-port implementations exhibited the
following typical level of performance at'20 GHz.
. less than 0.25 dB/pass insertion loss over 19-21 GHz
greater than 25 and 20 dB external port isolation/return loss over
19.5-20.5 GHz and 19-21.5 GHz, respectively
. greater than 24 and 20 dB interjunction isolation over 19.5-20.5 and
19-23 GHz, respectively
Relatively high power, DC insulating microwave absorbing loads were
utilized at each of the internally terminated circulator ports, providing RF
isolated DC bias entry networks for each of the associated IMPATT amplifier

stages.
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3.4 INTEGRATED, TWO-STAGE 20 GHz IMPATT AMPLIFIER

The design baseline achieved in the preveiously described 20 GHz IMPATT
test amplifier stage was extended to the implementation of a completely
integrated two stage, 20 GHz IMPATT amplifier. Constructed in a composite
coaxial/stripline transmission medium, with the in-line IMPATT mounts
connected to the second and fourth junction of the six port circulator, this
amplifier is typically mounted diode-side down to the baseplate for best
diode heat sinking. In the preferred 20 GHz transmitter design approach, this
two stage amplifier may be utilized as the power section preamplifier or, if
suitably modified to accomodate two 2W IMPAIT diodes in the output stage, as
each of the four power section combinatorial "building blocks".

Typical measured performance of this two stage, 20 GHz integrated IMPATT
amplifier, over the 19.5-20.5 GHz frequency range, utilizing 1.5 to 2W GaAs
IMPATT diodes operated in the constant voltage mode,includes:

. maximum useful RF power output of 2.5W at 7.0 dB overall gain and

DC-RF efficiency of 12.5 percent at a 0.50W input drive level.

. maximum DC-RF power added efficiency of 12.7 percent at 2W RF
output power,; 13 dB gain and 0.1W input drive level

higher gain smaller signal operation exemplified by 1.25VW RF
output power at 17 dB gain and 25 mW input drive level
This level of performance is useful as the 20 GHz transmitter power
section preamplifier and extrapolates to 5W RF output for a dual diode output

stage as required for the power section "building blocks".
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3.5 SINGLE-STAGE 20 GHz FET TEST AMPLIFIER C—_

To demonstrate the validity of the use of a two-stage 10 dB gain FET
driver section amplifier in the preferred 20 GHz transmitter design, a single
stage 20 GHz FET test amplifier was implemented in duriod based microstrip
transmission line. Utilizing a commercially available (DXL 3504A) 20 GHz
FET chip, wounted on a customized LNR carrier which incorporated self
contained gate input and drain output matching elements, this breadboard
test amplifier exhibited:

. 5.5 +1.0 dB monotonic small signal gain over the 19.7-20.7 GHz

frequency range.

. +16.4 dBm (45 mW) RF output level at 1 dB gain compression

10 percent DC-RF power added efficiency at the 1 dB compression
point
Combining the above with a second FET amplifier stage utilizing currently
available higher level (0.l to 0.25W) 20 GHz FET's can be shown, based upon
extrapolation of the above data, to yield a two-stage FET driver with the

desired 10 dB operating gain and 0.1W RF output at 1 dB gain compression.
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3.6 20 GHz FOUR-WAY POWER DIVIDER/COMBINER

In the preferred 20 GHz transmitter design, the use of circulator-
coupled IMPATT "building block” amplifiers in the four-way combinatorial
power section postamplifier permits the utilization of a reactive (non-
isolated) four-way power divider and power combiner, since the terminated
ports of the input and interstage isolator in each "building block" provide
external port-to-port isolation for the divider and combiner. Therefore, for
minimum residual insertion loss and maximum compatibility with the combinatorial
postamplifier topology, a four way waveguide reactive junction divider/combiner
configuration was selected, and developed.

The breadboard implementation of the resulting 20 GHz four-way reactive
waveguide junction divider/combiner design, representable by a symmetrical 5 x 5
scattering matrix,'exhibited the following measured performance over the 19.5-
20.5 GHz range:

.- Residual insertion loss: £0.2 dB (max) (combining efficiency

> 96 percent)

. Common port VSWR: 1.1:1 (max)

In fact, the useful bandwidth of this divider/cémbiner was about 2 GHz.

Based upon the above measured results, the validity of the reactive wave-
guide junction divider/combiner design approach was amply demonstrated and seen

to yield the state of the art in 20 GHz combinatorial technology.
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4.0 SUMMARY AND CONCLUSIONS

This report has summarized the accomplishments of the
Device/Assembly Technology Development task wherein the key
state of the art technology items requisite to the development
and implementation of a POC model 20 GHz IMPATT transmitter were
developed and demonstrated.

The 20 GHz POC model 20W IMPATT transmitter paper design
generated on this program is configured around a two stage FET
driver and an IMPATT power section. The latter, in turn, consists
of a two stage, circulator coupled 2W IMPATT preamplifier cascaded
with a four way combinatorial postamplifier. This IMPATT post-
amplifier is formed by four identical two-stage, circulator-coupled
6W IMPATT "building block"™ amplifiers paralleled between identical
four way reactive power divider and combiner, wherein each
"building block™ output stage utilizes two 2-2.5W IMPATT diodes
in a dual diode mount.

The primary accomplishements of the task include the
development, implementation and breadboard evaluation of:

. 20 GHz single drift GaAs Schottky LHL Read-profile

IMPATT diodes in hermetically sealed packages, which,

in developmental quantities, exhibited 1.5-2.7W RF

output power and 12-22 percent DC-RF power added effi-
ciency when éevaluated in K-band test oscillator. Typical
diode performance in single-stage 20 GHz test amplifier
includes 2.5W to 2.8W RF power output, & dB gain and

14 percent DC-RF power added efficiency, over a greater
than 1 GHz instantaneous bandwidth;

. critical constituent building blocks of POC IMPATT

transmitter design, including 6 port circulator, two
stage IMPATT amplifier, FET amplifier stage and four

way reactive power divider/combiner.

The measured results of the aforementioned development effort

-~
h

serve to validate the POC IMPATT transmitter design.

LNIR
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SUMMARY OF DEVICE/ASSEMBLY DEVELOPMENT RESULTS

20

GHz GaAs Read-IMPATT Diodes:

Construction: Stud-mounted, encapsulated
RF power output: 1.3-2.7W
Efficiency: 12-22 percent

Single-stage IMPATT Test Amplifier

Construction: composite TEM transmission line
Frequency range: 19.5-20.5 GHz

RF power output: 2.5-2.8W

Operating gain: 4.0-4.5 dB

Operating bandwidth: 1 GHz

DC~RF power added efficiency: 14 percent

Six-port (four -junction) circulator:

Construction: stripline

Frequency range: 19-21 GHz
Insertion loss/pass: 0.25 @B (max)
External port return loss: 20-27 @B
Interjunction isolation: 20-30 4B

Integrated two-stage IMPATT driver amplifier

Construction: composite stripline/TEM
Frequency range: 19.5-20.5 GHz

RF power output: 2.5W (nom)

Operating gain: 7.0dB (nom)
Efficiency: 12.5 percent

FET amplifier stage

Construction: Duroid-based microstrip
Frequency range: 19.7-20.7 GHz

Small signal gain: 5.5 *1 dB

RF power out @ 1 dB compression: 45 mwW
DC power drain: 0.3W

Four-way_ power combiner

Construction: waveguide reactive junction
Frequency range: 19.5-20.5 GHz

Residual insertion loss: 0.2 dB (max)
Output port VSWR: 1.1:1

LNE
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E. POC MODEL DESIGN, TEST PLAN
AND PROCEDURES

FINAL REPORT

NASA CR 174716

Prepared For:

NASA Lewis Research Center
Cleveland, Ohio

CONTRACT NASA-NAS3-22491
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LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
HIGH TEMPERATURE (Ty= 345°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODE

LNIR

| COMMUNICATIONS

‘ D= eT
Va3ss
WHERE,
SS=SUM OF SQUARES .. < - N+l.> X,
= 2
2 .
2 (£ X))
= ExI _leX7 I = SEQUENTIAL RANK

N
NUMBER OF DEVICES

2
]

N = 20
D -2213—- 0.2734
DATA ~ B
V n3ss

AT 90% CONFIDENCE., n= 20:

=0.2657 = 0.2857

D*mIn D*max

D*win = Dpata = D*max

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS VALID.

*ZAR. J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL. INC. N.J. PP83-84, 504.

FIGURE 26. (60)



ACCELERATED DC STRESS TEST -DATA
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! HIGH TEMPERATURE (Ty= 3u59C)
20 GHz SCHOTTKY-BARRIER TMPATT DIODES
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DC ACCELERATED TEST DATA FOR
HIGH TEMPERATURE (Ti= 345°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODES

COMMUNICATIONS

CUMULATIVE 2;-1

DEVICE S/N T1(HRS.) X=LNTT o FAILURES = on— X100%
12296 11.1 2.407 2.6
1116B 12.8 2.549 7.9
680G 13.6 2.610 13.2
6686 22.25 3.102 18.4
362D 24.5 3.199 23.7
366D 25.8 3.250 28.9
6856 32.8 3.490 34.2
12316 38.5 3.651 39.5
5146 44,8 3.802 44,7
11886 45.6 3.820 50
1106B 46.1 3.831 55.3
11806 48,8 3.888 60.5

4706 48.8 3.888 65.8
12236 - 55.6 4,018 71.1
12206 65.8 4,187 76.3
1254M 70.7 4,258 81.6
12376 80.2 4,385 86.8
1264M 80.7 4,391 92.1
11776 147.8 4,996 97 .4
N=19

FIGURE 28. : (62)
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LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
HIGH TEMPERATURE (Ty= 345°C) ;
20 GHz SCHOTTKY-BARRIER IMPATT DIODE :

VALIDATION BY D’AGOSTINO’S TEST*

’ pe Il
Vn3ss
WHERE ,
SS=SUM OF SQUARES < ! > N
T= 5 1

2
2 (E XD
&X; = L8N

N

—
i

SEQUENTTAL RANK
N = NUMBER OF DEVICES

N=19
D £ 0.2793
DATA ~ . -
V n3ss

AT 90% CONFIDENCE, N= 19:

D*wry = 0.2646 D*yax = 0.2855

D*wiN = Dpata < D*way

THEREFORE., THE ASSUMPTION OF LOGNORMALITYVIS VALID.

*ZAR, J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL{ INC. N.J. PP83-84, 504,
FIGURE 29. ' (63),



ACCELERATED DC STRESS TEST DATA

COMMUNICATIONS

100

HIGH TEMPERATURE (Ty= 340%C) -
20 GHz GROWN-JUNCTION IMPATT DIODES

+

CUMULATIVE FAILURE (PERCENT)

|
|
|
|
e e
{
t
=
|
{
|
|
|
|
|

| <
S
N = 20
Tuw= 5HRS., |
& = 3.5
} G |
1 2 3 4 5 6 7 8

' X = LN (TIME TO FAILURE-HRS)
FIGURE 30.  ~oooomm = o nm e



DC ACCELERATED STRESS TEST DATA FOR
HIGH TEMPERATURE. (T,=340°C)

20 GHz GROWN-JUNCTION IMPATT DIODES

»
) s

B COMMUNICATIONS -

CUMULATIVE  21-1

DEVICE SN T, (HRS.) X1=LNT, % FAILURES = —3m— X100%

'19 0 - - 0° 2.5
35 0 — - oo 7.5

36 0 - -0 12.5
8 0 —>-o0° 17.5
31 0.5 -.69315 22.5
37 1.0 0.0 27.5
17 2.5 .91629 32.5
33 12.8 2.54945 37.5
1 12.9 2.55723 42,5
32 16.05 2.77571 47.5
18 20,3 3.01062 52,5
7 35.2 3,56105 57.5
3 47.75 3.86598 62.5
16 48.6 3.,88362 67.5
24 4g8.85 3,88875 72.5
7 49,0 3,89182 77.5
32 110.2 4,70230 82.5
18 110.65 4.70637 87.5
I 201.75 5.30703 32,5
22 202.0 5.,30827 97.5
N =20

FIGURE 31.

(65)



LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA

HIGH TEMPERATURE (Ty= 340°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODE

I COMMUNICATIONS

VALIDATION BY D'AGOSTINO'S TEST*

' D= en
VN3SS
$S=SUM OF SQUARES /1 - N+1
T= 2 XI
2
2 (E XD
= ExI - 1 = SEQUENTIAL RANK
N = NUMBER OF DEVICES
h N = 20
] £h ;
DATA = | = 0.2653
V 83ss
AT 90% CONFIDENCE., N= 20: b
D*yjy = 0.2657 Dfyuy = 0.2857

Dpatp IS NOT BETWEEN D*yy;y AND D¥*yay
THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS NOT VALID,

NOTE: FOR THE PURPOSE OF THIS TEST., LIFETIMES OF
ZERO HOURS WERE ASSIGNED T1=0.01 HOURS.

*ZAR, J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL, INC. N.J. PP83-84, 504,

FIGURE 32. o (66)
‘ 3 e



ACCELERATED DC STRESS TEST DATA '

COMMUNICATIONS

R T T g
R . =
HIGH TEMPERATURE (Ty= 340°C) -
T 20 GHz GROWN-JUNCTION IMPATT DIODES
/]
9//
<o
P [en}
e e el s e P =
R / o0 Ll
/K =
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? b // =
Y4 i '5.'2'
/2 N N A N N AU N A N P
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// N o= 13 —
/ “TM = 47 HRS.,
O = 0.95
l ol o1 :
1 2 3 4 5 6 7 8
FIGURE 33. X = LN (TIME TO FAILURE-HRS).
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DC ACCELERATED STRESS TEST DATA FOR  FrT)
HIGH TEMPERATURE (Ty= 340°C) , LNR

20 GHz GROWN-JUNCTION IMPATT DIODES - °°""~°"'°s

CUMULATIVE  21-1

DEVICE- S/N T (HRS.) X{=LNT; % FAILURES = o X100%

'+ 33 12.8 2.54945 . 3.8
1 12.9 2.55723 11.5
32 16.05 2.77571 19.2
18 20.3 3.01062 26.9
7 35.2 3.56105 34.6
3 47.75 3.86598 42.3
16 48.6 3.88362 50
24 48.85 .3.88875 57.7
17 49.0 3.89182 65.4
32 110.2 4,70230 73.1
18 110.65 4,70637 80.8
4 201.75 5,30703 88.5
22 202.0 5.30827 96.2
N =13

FIGURE 34. (68)



LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
HIGH TEMPERATURE (Tw= 340°C)

20 GHz GROWN-JUNCTION IMPATT DIODES

COMMUNICATIONS

VALIDATION BY D’AGOSTINO’S TEST*

' £
V n3ss
WHERE,
SS=SUM OF SQUARES . < - N+l > X,
= 2
2
2 (€ X))
= ELxI-— LEXT 1 = SEQUENTIAL RANK
N
N = NUMBER OF DEVICES
) N = 13
< |
D =T———= 0,2814
DATA
V n3ss
AT 90% CONFIDENCE, n= 13:
D*MIN = (0.2598 D*MAX = (,2849
D*miN = Dpata < D*wax

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS VALID,

*ZAR. J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL, INC. N.J., PP83-84, 504,

' . (69)
"FIGURE 35.



4.2

The

applies.

4.3

Medium Temperature Accelerated Constant

DC

Stress Test

Test Conditions
® LNR Schottky Barrier Diodes
o
T.: 321°C
J
o
TBP' 100°C (constant)

® Varian Grown Junction Diodes

o
TJ. 321°C

T 125°C (constant)

BP®

Test Data Summary

same rationale as described in section 6.3

Logarithmic Normal Validation

(see section 6.3 for rationale)

Initial and Final DC and RF Data

(see section 6.3 for description)

(70)



4.5 Medium Temperature Test Results -

SCHOTTKY BARRIER

Early Failure W/0 Early Failure
Number of Devices(N) : 20 16
Standard Deviation (o) : 2.95 0.5
Median Time To Failure
{Ty) : 30 Hrs. 105 Hrs.
D'Agostino Test
(Vvalid/Failed) : Failed valid

GROWN JUNCTION
Early Failure W/0 Early Failure

Number of Devices(N) : 20 .. 18
Standard Deviation(o9 : 0.9 0.8
Medlgn Time To Failure: 210 Hrs. 248
(Ym)
D'Agostino Test . . .
(Valid/Failed) : valid Valid

Observations: The Schottky barrier, N=20 sample is not

lognormal due to infant mortalities. Therefore, on the
Arrhenius plot, the point plotted for gchottky barrier
medium temperature N=20 is not valid and can not be

used to determine activation energy.

(71)
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ACCELERATED DC -STRESS TEST DATA ) LNR

COMMUNICATIONS

. . . &)
RERRRRRER -
!
‘MID, TEMPERATURE.(Tw= 3210C)—
20 GHz SCHOTTKY-BARRIER IMPATT DIODES
L
{
)
,// o
P / o
el i - o P
[
[ o)///
| /(
! !
vailn T T T T 7 I R
D1 I Y=
/’/ e ‘
,/ . 2
/_/_____.q'___.!-_ 4+ 41— — 4 -
.. 2
i
N o= 20
Ty = 30 HR
o= 2.95
o l o 1
1 2 3 4 5 6 7 8

X = LN (TIME TO FAILURE-HRS)
FIGURE 38. ~~— " "~~~ (74)



DC ACCELERATED STRESS TEST DATA FOR
MID. TEMPERATURE (Tm= 321°0)

IINR)

20 GHz SCHOTTKY-BARRIER IMPATT DIODES COMMUNICATIONS

CUMULATIVE 2;-1

DEVICE S/N T{CHRS.) X=LNTY  w FAILURES™ o X100%
1396B 0 5 - 00 2.5
14298 0 - - 00 7.5
13028 - 2.25. .81093 12,5
13978 | 8.55 2, 14593 17.5
13106 uy,75 3.,80109 22.5
13828 46.1 3.83081 27.5
14288 60.5 4,10264 32,5
13078 65.2 4,17746 37.5
13186 81.6 4,40183 42,5
1303B 87.7 4y, 147392 475
13008 93.2 453475 52,5
13928 93.4 4.53689 57.5
1301B 105.2 465586 62.5
13146 114.0 4,73620 67.5
13176 122.75 4,81015 72.5
14308 147.2 4, 99180 77.5
13166 159.15 5,06985 82.5
1385B 189.8 524597 87.5
1389B 2432 | 5.49388 92.5
13136 262.3 5.56949 97.5
N =20

FIGURE 39. (75)



LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
MID. TEMPERATURE (Tw= 321°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODE

§ COMMUNICATIONS

VALIDATION BY D’AGOSTINO’S TEST*

' A
Va3ss
WHERE,
SS=SUM OF SQUARES /1 - N+l
T= ( 2 XI

SEQUENTIAL RANK
NUMBER OF DEVICES

(=]
I

2 (§ X.)2
= &X; - L8R
N

=2
]

N =20

. <1
DATA =
Vdss

0.2165

AT 90% CONFIDENCE, N= 20:
D'y = 0.2657 D*yay = 0.2857

Dpara IS NOT BETWEEN D*y;y AND D*yay

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS NOT VALID.

NOTE: FOR THE PURPOSE OF THIS TEST, LIFETIMES OF
ZERO HOURS WERE ASSIGNED 7= 0.01 HOURS.

*ZAR. J.H. 1974 BIOSTATISTICAL ANALYSIS.
 PRENTICE - HALL, INC. N.J. PP83-84, 504,

FIGURE 40. .
o (76) -



COMMUNICATIONS

ACCELERATED DC STRESS TEST DATA

TTTTTTTT

MID, TEMPERATURE (Ty= 321°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODES

T
H
/ |

100

Jo=
90

P
80

CUMULATIVE FAILURE (PERCENT)

Al
il !
! Lo
, N
- -4+ 1] 1 s
i
/
/,
/
/ N = 16 —
T = 105 HRS.
C =0.5
| 7] o]
12 3 4 .5 6 7 8

' X = LN (TIME TO FAILURE HRS)
(77)

FIGURE 41.



DEVICE S/N

13106
1382B
1428B
1307B
13186
1303B
13008
1392B
1301B
13146
13176
1430B
13166
1385B
13898
13136

 FIGURE 42.

BC ACCELERATED.STRESS TEST DATA FOR
MID. TEMPERATURE (Ty= 321°0)
20 GHz SCHOTTKY-BARRIER IMPATT DIODE

T, (HRS.)

uy,
46,
60.
65.
81.
87,
93,
93,
105.
114,
122,
147,
159.
189.
213,
262.

NO NN NN N OO M- N
(V2] w

= N
Ul

.80109
.83081
.10264
17746
40183
47392
. 53475
.53689
.65586
73620
.81015
.99180
. 06985
. 24597
49388
.56949

s B2 &5 £ W oW

C T BT BV B N N N =R =

(78)

15.
21,
28,
34,
40,
46 .
53,
59.
65,
/1.
78.
84,
90.
96.

.l

4
&
9
1
4
6
9
1
4
.
9
1
4
6
3



LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
MID. TEMPERATURE (Tw= 321°C)

20 GHz SCHOTTKY-BARRIER IMPATT DIODE

LNR}

N COMMUNICATIONS

VALIDATION BY D’AGOSTINO‘S TEST*

' L ETL
VN3ss
WHERE,
SS=SUM OF SQUARES - <1 - N+l.> X,
= 2
2
2 (€ X))
= ExI JLe kT I = SEQUENTIAL RANK
N
N = NUMBER OF DEVICES
i N = 16
D -Eg;zl-— .0,2846
DATA ~ -=
V 83ss
AT 90% CONFIDENCE, n= 16: B
D*yyy = 0.2634 D*yay = 0.2855
D*wiN = Dpata =  D¥max

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS VALID.

*ZAR, J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL., INC. N.J. PP83-84, 504,

_ . (79)
FIGURE 43.



ACCELERATED DC ‘STRESS TEST DATA

COMMUNICATIONS

TTTTTTTT] :
- i
MID. TEMPERATURE (Ty= 3219C)
20 GHz GROWN-JUNCTION IMPATT DIODES
! //
] /A
Jmmunt
F":’_”_"“_“—o
I ¢ o
A
f I //°
Vo. (e
7/ o
2
- /| 1
AR s
y i N
:-——'—--—-—q-—————————l——;
// =
////
/ N o= 20 —
/ = Im = 210 HRS.
O‘.= 0'9
| o || o} ] '
1 2 3 4 5 6 7 8
X = LN (TIME TO FAILURE-HRS)
FIGURE 44. (80) ) o

CUMULATIVE FAILURE (PERCENT)



DC ACCELERATED STRESS TEST DATA FOR
MID. TEMPERATURE (Ty= 321°C)
GHZ GROWN-JUNCTION IMPATT DIODES

" COMMUNICATIONS

20

CUMULATIVE  21-1

DEVICE -S/N T (HRS.) X=LNT; % FAILURES =—7m— X100%

25 | 46.15 13,832 2.5
18 46.65 3,843 7.5
27 72.7 4,286 12.5
21 94,55 4,549 17.5
22 94,7 4,551 22.5
35 103.05 4,635 27.5
3y 106.5 4,668 32.5
28 158.95 5,069 | 37.5
50 161.7 5,086 42.5
48 167.55 5,121 47,5
55 275.45 5,618 52,5
33 334.0 5,811 57.5
41 369.0 5,911 62.5
uy 384, 4 5,952 67.5
42 389.9 5,966 72.5
36 488.7 6.192 77.5
31 533.3 6.279 82,5
32 623.7 6.436 87.5
30 695.9 6.545 92,5
37 £96.9 6.547 97.5
N =20

FIGURE 45.

(81)



: | LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA f
MID, TEMPERATURE (Ty= 321°C) :
20 GHz GROWN-JUNCTION IMPATT DIODES ;

. D: é'—Tl__
Vn3ss
WHERE .
SS=SUM OF SQUARES - <: ! > X,
= 2
2 .
2 (€ X.)
= EXI - —‘C'-L- 1 = SEQUENTIAL RANK
N

N = NUMBER OF DEVICES
N = 20
T

D =T————= (,2849
DATA / -
N3SS

AT 90% CONFIDENCE, n=20:

D*miN = 0.2657 D*max = 0.2857

D*wiN = Dpata = D*wax

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS VALID,

*ZAR. J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL{ INC, N.J. PP83-84, 504,

FIGURE 46 ——n - .. - (82)



ACCELERATED DC STRESS TEST DATA |

COMMUNICATIONS

100

BERRRERE

MID. TEMPERATURE (Tw= 321°C)
20 GHz GROWN-JUNCTION IMPATT DIODES

90

50
CUMULATIVE FAILURES (PERCENT)

/" )
/

}/ —

- N = 18

Yy = 2u8 HRS.| |
c = Or8
|l o | o | |
1 2 3 4 5 b 7 8
X = LN (TIME TO FAILURE=HRS) ‘

FIGURE 47.



DC ACCELERATED STRESS TEST DATA FOR
MID. TEMPERATURE (T,="3219C)
20 GHz GROWN-JUNCTION IMPATT DIQDES

IENR

2 COMMUNICATIONS

CUMULATIVE  21-1

DEVICE S/N T, (HRS.) X[=LNT, ¢ cAlLURES = —5n—X100%

‘27 72.7 4,286 2.8

21 94,55 4,549 8.3
22 4.7 4,551 13.9

35 | 103.05 4,635 19.4

3y 106.5 4.668 25.0

28 158.95 5,069 30,55

50 - 161.7 5,086 36.11

ug 167.55 5,121 41,7

55 275.45 5,618 u7.2

33 334.0 5.811 52.8

4] 369.0 5.911 58.3

47 384 .4 5,952 63.9

42 389, 9 5,966 69.4

36 488.7 6.192 75,0

31 533.3 6.279 80.6

32 623.7 6.436 86.1

30 695.9 6.545 91.7

37 696.9 6.547 97.2

N =18

FIGURE 48.

(84)



LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
MID. TEMPERATURE (Ty= 321°C)
20 GHz GROWN-JUNCTION IMPATT DIODES

i commMuNICATIONS

VALIDATION BY D’AGOSTINO’S TEST*

. . D.—_ —é-L
‘ V n3ss
. WHERE,
SS=SUM OF SQUARES D= N
; T = 5 I
2 (S X.)
= &X| - e 1 = SEQUENTIAL RANK
N
N = NUMBER OF DEVICES
) N =18
£ '
DATA = = —
N335
AT 90% CONFIDENCE, n= 18:
D*ypy = 02646 D*yuy = 0+2855
D*miN = Dpata < D*max

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS VALID,

*ZAR.- J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL. INC. N.J. PP83-84, 504,

FIGYRE 49. (85)



5.0 Low Temperature Accelerated Constant DC stress Test

5.1 Test Condition

'o LNR Schottky Barrier Diodes

o
Ty ¢ 299°°C

o
TBP : 100°C (constant)

® Varian Grown Junction Diodes
o
TJ : 304°C

(o}
TBP : 120°°C

5.2 Test Data Summary

The same rationale as described in section 6.3
applies.

5.3 Logarithmic Normal Validation

(See section 6.3 for rationale)

5.4 Initial and Final DC and RF Data

In addition to the description given in section 6.3, it
must be noted here that Varian diodes numbers 3717/7 and
3717/40 were terminated from the testing with no apparent change
in any of the monitored parameters, not satisfying the imposed failure
criteria. Termination was based on meeting the requirement of
84 percent cumulative failure. Furthermore, the diode charact-
eristics remained very stable, giving no indication of failing
within a reasonable time period. However, subsequent thermal
resistance and oscillator measurements indicated device failure,
because the measured output power was insufficient. Thus, the dif-
ficulty associated with monitoring DC parameters without direct
correlation to either thermal resistance or RF data is evident.
Furthermore, the above observations also substantiate the effects
of the Au/Sn solder described in a subsequent section addressing
data analysis.

(86)
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5.5 Low Temperature Test Results

SCHOTTKY BARRIER . -

Barly Failures W/0 Early Failure
Number of Devices(N): . 20 18
Standard Deviation(oc): - 0.75 0.5
Median Time To Failure
VYM) : 185 Hrs. 221 Hrs.
D'Agostino Test .
(Vvalid/Failed) : Valid valid
GROWN JUNCTION
Early Failures W/O Early Failures
Number of Devices (N) : 20 18
Standard Deviation(o ) : 1.1 0.65
Median Time To Failure
(YM)' : 317 Hrs. 424 Hrs.
D'Agostino Test
(Vvalid/Failed) : Failed Valid

OBSERVATIONS: The Grown-Junction, N=20 sample is not log-

normal, therefore, on the arrhenius plot, the point plotted
for grown-junction low temperature, N=20 is not valid and

cannot be used to determine activation energy.
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ACCELERATED DC STRESS TEST DATA LNR

COMMUNICATIONS

| I
NEEERRREE g
. - o
LOW TEMPERATURE (T, = 299°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODES 7
! //
"/
/)

A &
e e e e e I
T A [0 IR U]
1/ S
I Ve !LJ‘.J
L [ie =~
Y e g
for— == 1-1g 3
/1, <
ol i L|.>J
i ol —
5 —
Al 5
/.__.L_-_._.__-___-_._-.Ng
e - (& ]

-/ =

/
IV
7
/ N o= 20 |~
“Yir= 185 HRS. .||
&= 0,75
Holl lall.
1 2 4 -5 ) 7 3

3
Frgure s2. . X T LN (TIME IO FAILURE-HRS)



DC ACCELERATED STRESS TEST DATA FOR
LOW TEMPERATURE (T_= 299°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODES

COMMUNICATIONS

CUMULATIVE 2;1-1

DEVICE S/N T C(HRS.) X {=LNT % FAILURES = —or— X100%
15628 29.05 3.369 2.5
15658 45,65 3,821 7.5
15976 84,2 14,433 12.5
15538 84,3 4,434 17.5
1563B 95,6 4,560 - 22.5
15916 165.5 5,109 27.5
15826 170.5 5,139 32,5
15008 191.4 5,254 37.5
15558 191.4 5,254 42,5
15796 191.6 5,255 47.5
15886 218.8 5,388 52.5
15806 273.0 5.609 57.5
1559B 285.0 5.652 - 62.5
15866 287.35 5,661 - 67.5
15896 287.4 5,661 72.5
14998 336.6 5,819 77.5
1497B 356.05 5,875 . 82.5
15528 373.2 5,922 87,5
15498 435,65 6.077 92,5
15816 435.7 6.077 | 97.5
N =20

FIGURE 53.
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LOGNORMAL MODEL FOR DC ACCELERATED.STRESS TEST DATA
LOW TEMPERATURE (T, = 299°C)
20 GHz SCHOTTKY-BARRIER IMPATT DIODE

. ‘|- o R
1ENR
. A N -

 COMMUNICATIONS

VALIDATION BY D'AGOSTINO’S TEST*

" p= £
Vn3ss
WHERE .
SS=SUM OF SQUARES . <1 - N+l-.> X,
) 2
2
2 (XD
S ALt 1 = SEQUENTIAL RANK

I N

NUMBER OF DEVICES

=
I

N =20
D -—Z—II—- 0,2690
DATA ~ . - Y
V n3ss

AT 390% CONFIDENCE. n= ZQ:

0.2657 D*m

* = AV
- MIN o ' FIAA

= 0.2857

D*min = Dpata < D*wax

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS VALID.

*ZAR. J.H. 1974 BIOSTATISTICAL ANALYSIS.
PRENTICE - HALL, INC. N.J. PP83-84, 504,

FIGURE 54. .
Yo(92) -



ACCELERATED DC STRESS TEST DATA ' ~

COMMUNICATIONS-

100

RERRRRRRA

b

LOW TEMPERATURE (T_= 293°C) .
20 GHz SCHOTTKY-BARRIER IMPATT-DTODES

]
90

80

[UUOIUSIPES P,

+

Pepel | ||

e

|

20

1/ )
/ N = 18 —_
/ THW= 221 HRS.
o= 05 -~
‘ llollo| .
1 2 3 4 5 6 7 3

| X = LN (TIME TO FAILURE-HRS)
FIGURE 55. (93)



DC ACCELERATED STRESS TEST DATA FOR
LOW TEMPERATURE (T, = 299°C) | "
20 GHz SCHOTTKY-BARRIER IMPATT DIODES COMMUNICATIONS:

CUMULATIVE 21-1

DEVICE S/N T, C(HRS.) X [SLNT, % FAILURES = —3n X100%
15976 8L4,2 4,433 2.8
15538 84,3 4,434 8.3
1563B 95.6 4,560 13.9
15916 165.5 5,109 19.4
15826 170.5 5,139 25.0
15008 191.4 5,254 30.6
15558 191.4 5,254 36.1
15796 191.6 5,255 41.7
15886 | 218.8 5,388 47.2
15806 273.0 5.609 | 52.8
1559B- 285.0 5.652 58.3
15866 287.35 5.661 ~ 63.9
15896 287 .4 5.661 69.4
1499B . 336.6 5.819 " 75.0
14978 356,05 5,875 80.6
15528 373.2 5,992 86,1
15496 435,65 6,077 ;91,7
15816 435,7 | 6.077 97.2

N =18
FIGURE 56.
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LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA LNR
LOW TEMPERATURE (T_= 299°C) n Y
20 GHz SCHOTTKY-BARRIER IMPATT DIODE COMMUNICATIONS

- VALIDATION BY D'AGOSTINO‘S TEST*

‘ L
Vadss
WHERE,
SS=SUM OF SQUARES - <& - N+lujy X
- 2
2
2 (E XD
= &X; - e X7 I = SEQUENTIAL RANK
N
N = NUMBER OF DEVICES
h N =18
£

D =T
DATA
V n3ss

AT 90% CONFIDENCE, n= 18:

D*yy = 0.2646 D*yay = 0.2855

D'vin = Dpata < D'wax

THEREFORE., THE ASSUMPTION OF LOGNORMALITY IS VALID.

*ZAR, J.H. 1974 BIOSTATISTICAL ANALYSIS.
'PRENTICE - HALL, INC. N,J. PP83-84, 504.

FIGURE 57. STy (95) _ ..



COMMUNICATIONS

ACCELERATED:DCfSTRESS;TEST DATA

TTTTTTTTT

LOW TEMPERATURE (T = 304°C)
20 GHz GROWN-JUNCTION IMPATT DIGDES:
i :

100

e L feeees e

90

CUMULATIVE FAILURE (PERCENT)

80

e el
L 4

—
-

50

; == e e ey
4

N

- / . Ir
| A 1 o
i N
222_ I 1 1
A1 .
/ r
- ~—
‘N-= 200 -
M 317 HRS.
?T = 1,1
| lo || o | |
1 2 3 4 5 6 Z 8

X = LN (TIME TO FAILURE-HRS)

FfGURIEI 58 ._ (96)



DC ACCELERATED STRESS TEST DATA FOR
LOW TEMPERATURE (T_= 304°¢C)
20 GHz GROWN-JUNCTION IMPATT DIODES

B COMMUNICATIONS

CUMULATIVE  21-1

DEVICE S/N T, CHRS.) X1=LNT, 2 FAILURES = —Tr—X100%
' 53 13.8 2.625 2.5
12 39.8 3.684 7.5
i 121.2 4,797 12.5
16 121.45 4.800 17.5
39 167.2 5,119 22.5
6 | 207.35 5,334 27.5
11 3345 5.813 | 32.5
13 3346 5,813 37.5
8 420.8 6.042 42.5
14 | 428.0 6.059 47.5
2 523, 1 6.260 52,5
I 525.35 6.264 57.5.
15 548.85 6.308 62.5
9 5565 5.322 67,5
10 693.2 6.541 - 72.5
740.7 6.608 77.5
781.15 6.661 82.5
52 781.3 6.661 87.5
7 844,15 6.738 92.5
40 8442 5.738 97.5
N =20
FIGURE 59.

(97



LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
LOW TEMPERATURE (T, = 304°C) -
20 GHz GROWN-JUNCTION IMPATT DIODES:

LNR

COMMUNICATIONS

VALIDATION BY D'AGOSTINO’S TEST*

- o £l
Vn3ss
WHERE, |
SS=SUM OF SQUARES 1= N1
2 T = 2 I
2 (€ X
=&x, ~ —‘c'—-l— 1 = SEQUENTIAL RANK

I N

NUMBER OF DEVICES

b4
[}

N =20
£h

D == (.2536
DATA
V n3ss

AT S0% CONFIDENCE., n= 20:

D*MIN = 0,2657 D*MAX = 00,2857
Dpata IS NOT BETWEEN D1y AND D¥yyy.

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS NOT VALID.

*ZAR. J.H. 1974 BIOSTATISTICAL ANALYSIS.
'PRENTICE - HALL, INC. N.J. PP83-84, 504,

FIGURE 60. (98) N , -



COMMUNICATIONS

ACCELERATED DC STRESS TEST DATA.

" ' o
NRRRRRRE -
LOW TEMPERATURE (T, = 304°C)
20 GHz GROWN-JUNCTION IMPATT DIODES
H /
j ///
L/
' =
i - /H-1-+1--_c
o =
®
4 &
/ =
1 C g.:_]
:4——————1——-——82
A =
. 7 o
| ‘| =3
‘ o
TN N N O B N
s [/ O
1/ =
Noo=18 .
y Tuet = 424 HRS
o =0,65
Ho || ol
1 2 3 4 5 3 7 8

FIGURE 61. X =.LN.4,(TIME(.;T§)) FAILURE~HRS) .. S



DC ACCELERATED STRESS TEST DATA FOR
LOW TEMPERATURE (T, = 3049¢C)
20 GHz GROWN-JUNCTION IMPATT DIODES

| COMMUNICATIONS

CUMULATIVE  21-1

DEVICE" S/N T, (HRS.) X1=LNT v FAILURES = 2n_ X100%
g 121.2 4,797 2.8

16 121,45 4,800 8.3
39 167.2 5,119 13.9
6. 207.35 5,334 19.4
1 334,5 5,813 25,0
13 334.6 5,813 | 30,55
g 420.8 6.042 36.11
14 428.0 6.059 417
2 523.1 6.260 47.2
4 525,35 6.264 52,8
15 548,85 6.308 58,3
9 556.5  6.322 63.9
10 6932 6,541 69.4
1 740.7 5.608 75.0
5 781.15 5.661 80.6
52 781.3 6.661 86.1
7 84L4, 15 6.738 91.7
19 8414, 2 6.738 97,2
N =18

FIGURE 62.
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LOGNORMAL MODEL FOR DC ACCELERATED STRESS TEST DATA
LOW TEMPERATURE. (T_ = 304°C)
20 GHz GROWN-JUNCTION-IMPATT DIODES: .

COU“UNKI“ON#

VALIDATION BY D'AGOSTINO’S TEST*

- AN
Vn3ss
WHERE ,
$S=SUM OF SQUARES . <& - NN
2 (£ X2 e : I
= &x, - —— 1 = SEQUENTIAL RANK
N = NUMBER OF DEVICES
- N = 18
D _EL 0.2730
DATA ~ | -
V w3ss
AT 90% CONFIDENCE, n=18: b
D*ypy = 0.2646 D*yax = 0.2855
CD'MiN & Dpata = Dfax

THEREFORE, THE ASSUMPTION OF LOGNORMALITY IS VALID,

*ZAR, J.H. 1974 RIOSTATISTICAL ANALYSIS.
"PRENTICE - HALL., INC. N.dJ. PP83-84, 504.



V.. DATA AND FAILURE ANALYSIS

1.0 Arrhenius Dependence

The small number of devices tested and the rather
insignificant number identified as early failures, required
the development of a different approach in determining the
early failure activation energy than the method used in

reporting life data 8

when a large test population (N=357)
is available. The method developed for the identification of
a criteria to define early failure, resulting from a small test

population, is described in Appendix A'.

Furthermore, a statistical analysis of the obtained 1life
test data was performed, providing refined operational lifetime
projections. The resulting data is presented in this section,
whereby the analysis is shown in Appendix 'B'.

The Arrhenius dependence expression,
¢n v, = la Yo + EaskT

was used to analyze the life-test data in Appendix 'B'. The
results of the linear regression and confidence interval
determination are summarized here and the refined Arrhenius
reaction rate plots are shown. The refined Arrhenius data

is somewhat different from the preliminary Arrhenius reported in

LWchber, 1983 ’

The sequence of the data shown is as follows:
A. Summary Data of both types of Diodes

B. Schottky Barrier

@ Diode Identification and failure times for the
three test temperatures.

e Combined Lifetimes vs. the inverse of the test
temperatures plot with early failures defined
according to 'Appendix A', which are below the
range of the main population.

(102)



The above
diodes.

Combined Diode Identification and failure
times with early failures removed.

Combined Log=-Normal Plot with early failures
removed.

Final Arrhenius (Regression) Line Plot

sequence is repeated for the grown junction

(103)
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DC ACCELERATED STRESS TEST DATA‘FOR NR
20 GHz SCHOTTKY-BARRIER GaAs IMPATT DIODES % COMMUNICATIONS

HEGH TEMPERATURE MID. TEMPERATURE LOW TEMPERATURE

(Ty=345°C) (Ty=321°C) (T, =299°C)
N =20 N = 20 N = 20

DEVICE S/N T (HRS.) DEVICE S/N T (HRS.) DEVICE S/N T, (HRS.)
12386 4,55 13968 0 15628 29.05
12296 11.1 14298 0 15658 45,65
11168 12.8 13028 2.25 15976 84,2
6806 13.6 13978 8.55 1553B 84.3
6686 22.25 13106 44,75 15638 95.6
362D 24.5 13828 46,1 15916 165.5
366D 25.8 14288 60.5 15826 170.5
6856 32.8 13078 65.2 15008 191.4
12316 38.5 13186 81.6 15558 191.4
5146 44,8 1303B 87.7 15796 191.6
11886 45,6 13008 93.2 15886 218.8
1106B 46,1 . 13928 93.4 15806 273.0
11806 48.8 1301B 105.2 1559B 285.0
4706 48.8 13146 114.0 15866 287 .35

12236 55.6 13176 122.75 15836 287 .4
12206 65.8 14308 147.2 14998 336.6
1254M 70.7 13166 159.15 14978 356,05
12376 80.2 13858 189.8 15528 373.2
1264M 80.7 13898 243.2 15498 435,65
11776 147.8 13136 262.3 15816 435.7

FIGURE 65.
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ILLUSTRATION OF INDWIDUAL DEVICE WUFETIME Va, -
ACCELERATED TEXT TEMPERATURE BEFORE DETERMINATON § 13 I ¥WT™™

OF BEARLY FAWURES. (NOTE: FAILURE TWEA LEAS THAN 4 d & NR
| HOUR ARE NOT SHOWN) § COMMUNICATIONS

SCHOTTKY- BARRIER IMPATTS [ 60 DIDDES TESTED

1,000,000
\og @0
10,000 1
)
N | |
§ 1,000 . :
R
N 3
N -
N . : )
100 . '.:L [
y oR
. ®
. LIFETIME OF EACH
Q DIODE TESTED
o ® EARLY FAILURE
7)45 4| Qqa) Qm"ﬁ
1 1 J | .
L& T L& (.9 2.0 2.\ 2.2
000 /T (°K)
FIGURE 66.
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DC ACCELERATED STRESS TEST DATA FOR
20 GHz SCHOTTKY-BARRIER. GAAS IMPATT DIODES ¥ Iemmimfestaled

EARLY FAILURES REMOVED

HIGH TEMPERATURE | MID. TEMPERATURE LOW TEMPERATURE
(T,= 345°0) (T,= 321°0) (T, = 299°0)
- N=19 ' N=16 N=18
DEVICE S/N T, (HRS.) ~ DEVICE S/N T, (HRS.) DEVICE S/N T (HRS.)
12296 11.1 13106 4,75 15976 84,2
11168 12.8 13828 46.1 © 15538 84,3
6806 13.6 1428B 60.5 15638 95.6
668G 22,25 13078 65.2 15916 165.5
362D 24,5 13186 . 81.6 . . 15826 170.5
366D 25.8 13038 87.7 15008 191.4
6856 32.8 13008 93,2 15558 191.4
12316 38.5 13928 93,4 15796 191.6
5146 uy,8 1301B 105.2 15886 218.8
11886 45,6 13146 114,0 15806 273.0
11068 46,1 13176 122.75 15598 285.0
11806 48,8 14308 147.2 15866 287.35
4706 48,8 13166 159.15 15896 287 .4
12236 55,6 13858 189.8 1499B 336.6
12206 65.8 1389B 243,2 14978 356.05
1254M 70.7 13136 262.3 . 15528 373.2
12376 80,2 15498 435,65
12684 80.7 15816 435.7
11776 147.8
Ny= 53

FIGURE 67. (107)



SCHOTTKY BARRIER DIOQOES
COMBINED LOGNSRMAL PLST

EARLY FAILURES REMOVED

COMMUNICATIONS

'x 100 %

- 2i.
™N

24 %

50%

CUMULATIVE  EANLURE (97%)

16

(108)-

S"ANDAT-]% DEVIATIDN
d=0.b
;\EH MiD LDW
/
© . 2
@& -/ A
_— = - -'—_é?--)-z—l‘—‘————t_——
/o /
B Sk
©
——— — | — — — — ] - N S A B
oPar:
A
< /a
g /' A
A /A
— ——p— com—— - —B —_—/.—A — — ——— — —— —— a—
@ s/
/ / N
=19 Wi N:\8
\ Z 3 4 ) 1) B D
FIGURE 68. Ln (L“:ET\MF—>



ARRMENIUS (REGRESS\ON) LINE PLOT

LNR

COMMUNICAONS

SCHOTTKY - BARRIER IMPATTA

1,000,000

100,000
10,000

@

X

§ 1,000

N

{

N

0o~

L

S

7

Ea: 1148 eV

Yo ATOC ~
30,000 HRS
I O °~ 0,342

O (ALCULATED MEDIAM LIFETIVE
AT EACH TEST TEMP

H | |
| |
—+ EXTRAPOLATED TM .-
AT OPERATING TEMPERATURE
| | e
e 1 L8 13 20 a2l 2.2
FIGURE 69. 1000/ T (°K) '
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DC ACCELERATED STRESS TEST DATA FOR ;
20 GHz GROWN-JUNCTION GaAs IMPATT DIODES COMMUNICATIONS

HIGH TEMPERATURE MID. TEMPERATURE LOW TEMPERATURE
(T,= 34090 (Ty= 321°0) (T_=.304°C)

N =20 . N = 20 N = 20
DEVICE S/N T (HRS.) DEVICE S/N T, (HRS.) DEVICE S/N T, (HRS)
19 0 25 46,15 53 13.8
35 0 18 46 .65 12 39,8
36 0 27 . 72,7 , 4y 121.2
8 0 21 94,55 16 121,45
31 0.5 22 4,7 39 . 167.2
37 1.0 35 103.05 6 207 .35
17 2.5 3 106.5 117 3345
33 12.8 28 158,95 13 334.6
1 12.9 50 161.7 8 420.8
32 16.05 48 167.55 14 428.,0
18 20.3 55 275,45 2 523,1
7 5.2 33 334,0 4 525.35
3 47,75 41 369.0 15 548,85
16 48.6 u7 384, 4 9 556.5
24 - 48,85 42 389.9 10 693.2
17 49,0 36 488.7 1 740.7
32 110.2 31 533,3 5 781.15
18 110.65 32 623.7 52 781.3
4 . 201.75 30 695.9 7 844,15
22 202.0 37 6%.9 19 8ul 2

FIGURE 70.

(110)



ILLUSTRATION OF INDIVIDUAL DEWV\(CE LIFETIME

va. ACCELERATED TEST TEMPERKIURE BEFORE
DETERMINATION OF EARLY FAILURES.
NOTE : FAILLRE TIMES LESS THAN 1 R ARE NOT SHMN

COMMUNICATIONS

GROWN - JUNCTION IMPATTS: &0 DEVICES TESTED

\Q0,000
100,000
30)% 1
¢
\J
‘g 1,000 -
N .
X f
N -
N .
100 = 'y
t ®©
tO o
o LIFETIME OF EACH DIODE
TESTED ’
8 @EARLY FAILURE
A | Ly,
- ] =
N L8 19 2.0 2.\ 2.2

\0CO/ T(PWA)

FIGURE 71.
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DG ACCELERATED STRESS TEST DATA FOR
20 GHz GROWN-JUNCTION GAAs IMPATT DIODES [ SeweNebellel

EARLY FAILURES REMOVED

HIGH TEMPERATURE MID, TEMPERATURE LOW TEMPERATURE
(T,= 340°C) | (T,= 321°0) (T_= 3049C)
N=13 N=20 N=18
DEVICE S/N T (HRS.) DEVICE S/N T, (HRS.) DEVIEE S/N T, (HRS.)
33 12.8 | 25 46,15 iyl 121,2
1 12.9 18 U46.65 16 121.45
32 16,05 27 72.7 39 167.2
18 20,3 21 94,55 6. 207.35
7 35,2 22 9y,7 11 334,5
3 47,75 35. 0 103.05 . . 13. - 334.6
T 48,6 3 106.5 8 420.8
24 48,85 28 158.95 14 4280
17 49,0 50 161.7 2 523,1
32 110.2 8 167,55 4 525,35
18 110.65 55 275,45 15 548,85
4 201.75 33 33,0 9 5565
22 202.0 41 369.0 10 693.2
47 384, 4 1 740.7
42 389, 9 5 781.15
36 4887 52 781.3
31 533,3 7 8ul, 15
32 623.7 19 844, 2
30 695.9
N, = 51 37 696.9

(112)
FIGURE 72.



GROWN  JUNCTION DIODES
COMBINED LOGNORMALPLOT

LNR

COMMUNICATIONS

EARLY FAWLURES EUMINATED

2N

I
STANDARD TEVIATIAN
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2.0 Summary of Failures

A summary of failures is presented here, together
with an identification of failure mode for each of the IMPATT
diodes. A subsequent failure analysis will address each of the
failure modes with representative illustration of the ultimate

failure mechanism.

A. High Temperature Stress Test

Failure Mode Schottky Barrier Grown Junction
Short 9 11
Open 0 ' 1
Criteria
B, C or D 11 8

B. Medium Temperature Stress Test

Short 6 5
Open 0 2
Criteria

B,C or D 14 14

C. Low Temperature Stress Test

Short 8 7
Open 0 0
Criteria ’

B,C or D 12 13

(115)
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3.0 Initial and Final Thermal Data

The post test thermal resistance could only be measured
on diodes with good I-V.characteristic, a limitation of
the method used as mentioned in a previous section
(II-5.0). The degradation of Schottky barrier diodes, as
anticipated, is more pronounced as compared to the grown junction

diodes, consequently, more post test thermal data is available.

Both types of diodes show substantial and variable
increases in thermal resistance, which resulted in either
very poor or no RF performance (data in section IV - 3.0,4.0
and 5.0). Furthermore, the measured increases in thermal
resistance, - and it appears safe to assume, that dicdes not
measured experienced identical increases in thermal resistance -,
ultimately subjected the diodes to higher than scheduled junction
stress temperatures. Because of limited data and randomly
distributed increases in thermal resistance and junction stress
temperature, these effects were not considered in the
statistical analysis. The random change in thermal resistance,
not measurable during stress testing, did not correlate with

the random change in Iin and Vin monitored during testing.

(119)
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4.0 Failure Mechanism and Analysis

4.1 Thermal/Electrical Stress Effects on Gads

Doping Profile

Reconstruction of both the L-H-L Schottky barrier
and H-L grown junction profiles before and following
accelerated stress testing revealed no significant profile
changes. Thus, it can be concluded that none of the
observed device failures are related to the insignificant

changes of the GaAs doping profiles.

(124)
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DOPING PROFILE RECONSTRUCTION
(USING C-V DATA)

LNR
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4.2 OQpen Circuit Failures

Out of all the diodes stress tested only three diodes
failed due to an electrically open circuit. The three failed

diodes are grown junction diodes procured from Varian Associates.

After removal from the test fixture, the diodes were
electrically checked to confirm the open circuit failure (standard
procedure for all tested diodes). External examination did not
indicate any reasons for the failure. To examine the internal
cavity the devices were carefully delidded. Microscopic viewing
of the ribbon bonds to the IMPATT chip showed very shallow nearly
undetectable thermo compression imprints. Subsequent attempts to
move the contacting ribbon were successful. The ribbons of all
three diodés were not bonded to the chips, causing the open circuit

conditions.

Probing of the IMPATT chips indicated good I-V characteristics,

which indicates an operational IMPATT device.

Therefore, improved bonding procedures, in conjunction with
precap inspection and thermal cycling as per Mil-standards can

eliminate these types of failures.

The following documentation of the external and internal visual
inspection is representative of the type of examination all diodes

were subjected to after accelerated aging.
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EXTERNAL VISUAL INSTPECTION OF FAILED IMPATT

DIODE COMMUNICATIONS

DIODE NO.: VSK9250AD Lot:3664 S/N 37
TEST TIME: One Hour
FAILURE MODE: Electrically Open

OBSERVATIONS

® No discolorations on
package.

@ Visible diode identificdtion.

® Top of package shows
impressions caused
during oscillator
measurement.

"® Complete solder flow
between cap and package.

@ Cap is slightly off center.

FIGURE 84. (128)



INTERNAL VISUAL INSPECTION OF FAILED

IMPATT DIODE

DIODE NO.: VSK9250AD Lot: 3664 S/N 37

TEST TIME: One Hour
FAILURE MODE: Electrically Open

FIGURE 85. _ (129)

COMMUNICATIONS

OBSERVATIONS

e Partially delidded,
Au/Sn solder is shown
in cavity.

® Fully delidded, top
ribbon of the cross
ribbon used shows
centered wedge shape
bond impression.

® Flaky or curled up

metal visible
introduce during
delidding.




INTERNAL VISUAL- INSPECTION OF FAILED
IMPATT DIODE LNR

COMMUNICATIONS

DIODE NO.: VSK9250AD Lot 3664 S/N 37
TEST TIME: One Hour
FAILURE MODE: Electrically Open

OBSERVATIONS

e With ribbons easily
removed, no thermo -
compression foot print
is visible on Au/Ge
contact pad.

® Smooth barrier metal
outlines pre-etch chip
area.

@ GaAs is evenly etched.

® Excessive, unattached and
wrinkled barrier metal
extending beyond the
heatsink.

® Direct contact to contact
pad shows good I-V
characteristic.

e Failure due to poor
ribbon to chip bond.

SCALE: Vertical 10pA/Div.
1mA/Div.

& 5V/Div.
——% 0.5V/Div.

FIGURE 86. (130)




4.3 Short Circuit Failures

All electrically shorted device failures, twenty three
Schottky barrier and twenty three grown junction diodes
(revised from previously reported short circuit failures,
November 1983), were physically examined externally and
internally following delidding. Prior to delidding the diodes
were confirmed as electrical shorts, which did not change
after the ribbons were removed and the chips whecked directly.

Microscopic examination clearly grouped the two types of
diodes. Specifically, the Schottky barrier diodes did not
visually indicate any reason for shorting. Conversly,
every grown junction diode showed a discolored burn area, the
obvious location where the electrical short occurred. Further
study of the failures revealed and was confirmed via SEM-
analysis a singular failure mechanism of the Schottky barrier
diodes and two failure mechanisms relating to the grown junction
diodes.

It is apparent from the photos of the SEM-analysis, that
the Schottky barrier failures are either surface and/or semi

conductor material related, whereby the grown junction failures
clearly indicate flaws introduced by chip processing and/or

device fabrication.

A. SEM Analysis of Schottky Barrier Diodes

The SEM analysis of the Schottky barrier IMPATT diode
shown here, is representative of all the electrically shorted
Schottky barrier diodes.

Following the aforementioned external and internal inspections and
with no burn marks visible, it was decided not to cross section
the device. 1Instead, the analysis proceeded by chemically etching
the GaAs chip from the substrate side towards the active

(131)




region in discrete steps allowing the detection of any potential
causes of the short circuit failure relating either to the

substrate active region or metal to semiconductor interface.

The first observation of a cyrstal defect appeared after
etching for two minutes (photo a.). In addition, in the photo
the partial removal of the GaAs reveals the smooth barrier metal (Pt)
covered by the GaAs during stress testing. The destinct
orange peel effect seen outside this area is addressed in detail
in a later section. The wrinkled exposed barrier surface has

been observed on every diode.

Close up examination of the suspect crystal defect via
Scanning Electron Microscope (SEM) shows a highly reflective
center of the obviously damaged area. (Photo b.) The high re-
flectivity of the area can generally be identified with high conductivity.

Continuous etching revealed a strangely chaped mesa or
spike, roughly 3.75 microns high (Photo C.). The mesa height
penetrated the active and drift region, causing the electrical
short. The X-Ray spectrum analysis of the mesa identified only
barrier surface elements, eliminating electromicration of the
ohmic substrate contact.

Every shorted Schottky barrier diode indicated an identical

failure mechanism.

The most probable cause, among numerous possibilities for this
type of failure mechanism, is a surface or near surface
crystal defect or epitaxial growth imperfection resulting in
very high localized heating or 'hot spot', thus, accelerating
electromigration of the barrier surface metal structure. Not to
be ruled out is the development of a hot spot due to compositional

reaction of the Au/Sn bonding material.

Review of the pre test DC data identified these diodes
with a somewhat unstable forward and reverse breakdown voltage
at high current levels (Z 50ma). Also, the leakage current
was consistently higher than diodes which did not short during

stress testing.
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Consequently, this type of failure can be eliminated by
limiting the range of acceptable device leakage current and
observing the voltage breakdown behavior during a brief electrical

stressing, which follows an effective high temperature reverse

bias burn-in.
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SEM ANALYSIS OF IMPATT DIODE

COMMUNICATIONS

DIODE NO.: 1317G STRESS TEST TEMPERATURE: 321°C

TEST TIME: 122.75hrs. ASSEMBLY FABRICATION: LNR Schottky-
, Barrier Au/Sn

FAILURE MODE: Electrical Short Solder Bonded

b)

d) (400X)

a) Top view of an opened IMPATT diode with the ohmic contact
and ribbon removed shows suspect area of electrical

short following 120 seconds of chemical etching.

b) Close up view of suspect area clearly shows crystal
damage. Light area is indicative of conductive

material.

FIGURE 87. (134)




SEM ANALYSIS OF IMPATT DIODE

COMMUNICATIONS

DIODE NO.: _1317G STRESS TEST TEMPERATURE: 321°cC
TEST TIME: 122.75hrs. ASSEMBLY FABRICATION: LNR Schottky-

Barrier Au/Sn

FAILURE MODE: Electrical Short Solder Bonded

R S
10pm x3000 _3aKkY x8 000  IBkV

c) SEM photographs give the indication that the obstruction
is possibly erupting up from the Pt. barrier metal.
Continuous etching of suspect area left an ~ 3.75 um
high mesa. X-Ray spectrum analysis of the mesa confirms

electromicration of barrier metal structure.

FIGURE 88. (135)



X-RAY SPECTRUM ANALYSIS

COMMUNICATIONS

13176

SPECTRUM LABEL SPECTRUM FILE NAME
] B LNRI

1288

1000 — av

Pt

gee q“ AU

bee

480 —

208

ENERGY (KEV)

F PIGITI

Multiple peaks are indicative of the different
energy levels associated with the various elements
found in the mesa like structure.

FIGURE 89. (136)



B. SEM Analysis of Grown Junction Failures

Every shorted grown junction diode was identified with
one of the herein described failure mechanisms, which is related
to either chip processing or device assembly. Internal visual
inspection showed discoloration due to excessive heat on every

diode (Photo a.) examined.

The type of failure mechanism shown in Photo C. clearly
demonstrates some form of eruption of the barrier metal (Pt.)
bridging the active area, causing the diode to short. Excessive
and instantaneous heat melted the GaAs and ohmic metallization.
It is conceivable, that entrapped gas and/or fluid during the
electroplating of the heatsink was superheated, resulting in the
blister formation.

Refinement of the plating process would be a first step
towards eliminating this failure mechanism.
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SEM ANALYSIS OF IMPATT DIODE

COMMUNICATIONS

DIODE NO.: S/N 50 STRESS TEST TEMPERATURE: 321°C
TEST TIME: 102.9hrs. ASSEMBLY FABRICATION: Varian Grown-
FAILURE MODE: Electrical Short Junction Au/Sn

Solder Bonded
Chip T.C. Bonded
Ribbon

a) (200X) b)

a) Shown is the hexagon heatsink with the GaAs chip centrally
located. Just below the GaAs chip the discolored suspect

burn area is visible.

b) Extensive damage on the substrate surface near the ohmic
contact in the upper left corner is apparently due to

electric arcing.

FIGURE 90. (138)




SEM ANALYSIS OF IMPATT DIODE

COMMUNICATIONS

DIODE NO.: S/N 50 STRESS TEST TEMPERATURE: _321°C
TEST TIME: 102.9hrs. ASSEMBLY FABRICATION: : Varian Grown
FAILURE MODE: Electrical Short Junction Au/Sn

Solder Bonded
Chip T.C. Bonded
Ribbon

19 pym x1300 30kVY 10 pm

c) i d)

C) High magnification of the damaged areashows a mesa or
blister formation of the Ptsmetal bridging the active layer

(dark region) causing the electrical short.

d) Close up view shows actual rupture of the platinum,

FIGURE 91. (139)




The second type of failure mechanism identified

with the shorted grown junction diodes is mechanical damage

to the GaAs apparently introduced while soldering the IMPATT

chip into the diode package or during thermo compression

bonding the ribbons to the substrate side of the chip.
From photo a. it appears as if the IMPATT chip is cracked,

however, further investigation and chemically etching

the chip as described previously did not reveal any

evidence of cracking through the center
the two damaged areas. However, it was
the direction of the contact ribbon was
areas. The X-Ray photo of the internal
diode does not indicate any abnormality
or position.
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SEM ANALYSIS OF IMPATT DIODE

COMMUNICATIONS

DIODE NO.: S[N 27 STRESS TEST TEMPERATURE: 3210C
TEST TIME: 80.85hrs. ASSEMBLY FABRICATION : Varian Grown-

Junction Au/Sn
Solder Bonded
Chip T.C.
Bonded Ribbon

FAILURE MODE: Electrical Short

a) Top view of the IMPATT diode shows the GaAs chip on top
of the Pt and subsequent metal structure. Centered on the
rounded GaAs chip is the Au/Ge ohmic contact to which the ribbon
was bonded. Damaged areas on the outer edges of the GaAs
are suspected to be device assembly related. Electromigration
of the contact metal along the damaged area ultimately
caused the device to electrically fail. Detached particles

were introduced during the failure analysis.

FIGURE 92. (141)



SEM ANALYSIS OF IMPATT DIODE

COMMUNICATIONS

DIODE NO.: S/N 27 STRESS TEST TEMPERATURE: 3210C

TEST TIME: 80.85 hrs. ASSEMBLY FABRICATION : Varian Grown-
Junction Au/Sn

FAILURE MODE: Electrical Short Solder Bonded
Chip T.C.

Bonded Ribbon

b) c)

b) High magnification of the cracked area allows a partial view
of the smooth active layer. Also very visible is the Pt.

contact metal in the upper left side of the photo.

c) High magnification of the second damaged area exhibits
electromigration from the ohmic contact, through the GaAs
substrate to the Pt. metal contact. Note the extensive

damage to the GaAs as the result of localized heating.

FIGURE 93. (142)




4.4 Failure due to Degradation

Both types of diodes (summary of failures) exhibited the
greatest percentage of failures as the result of degradation.
The degradation appears to be quite random, whereby the monitored
parameters did not establish a clear trend and did not reoccur
as identical changes during the various stress test conditions.
However, those diodes which retained good I-V characteristics
to enable post stress test thermal resistance measurements
clearly showed, a substantial increase in thermal
resistance on nearly all diodes. Thus, the dominant changes in
thermal resistnace caused substantial increases in junction.
temperature during stress testing (junction temperature vs time)
and conceivably activated premature failure modes, oObscuring

lesser potential failure modes and parametric trends.

Expermiental results established the Au/Sn solder bond (interface)
thermally and electrically unstable. The exact physics of this
thermal instability is not known at this time and requires
further investigation. Experimental diodes on the other hand,
with the chip to package solder bond replaced by a thermo
compression bond, demonstrated substantial improvements in the
thermal stability, trends and lifetimes (nearly twice that of Au/

Sn bonded diodes).

In most cases, degradation of IMPATT diodes will ultimately
result in electrical shorts. The slow changes observed during
stress testing with this type of failure mode could be attributed
to many different mechanisms. However, in general these
mechanism are usually identified with reactions or diffusions
between both the barrier and ohmic metals and the GaAs. Moreover,
the process is well understood and new techniques developed to
optimize the metallization of GaAs IMPATT material have demonstrated
superior thermal and electrical stability. Experiments, carried
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out at LNR have confirmed the outstanding results reported.(3)

The failure analysis of degradation failures substantiated
experimental findings and observations during the reliablity
assessment study. Two major observations, changes on the surface
of the barrier metal and substantial thermal resistance increase

have been related to compositional changes of the Au80[Sn20

solder bonds used for the assembly of the IMPATT diodes.

A. Experimental Results

Specific experiments addressing degradation as a function
of:
e thermal
® electrical
e thermal electrical

effects on IMPATT chips and diodes fabricated in one case

with the eutectic Au/Sn solder and the other case with TC-bonding,
established, without any doubt, the superior thermal

and electrical stability of TC bonded devices. In all experi-

mental cases grown junction diodes were used (fabricated at LNR).

High temperature storage of IMPATT diodes at temperatures
ranging from 150°C to 270°C demonstrated initial degradation
of RF-power output and thermal resistance at package temperatures
as low as 180°c. This information was used in limiting the
maximum base plate temperature during stress testing to 150°¢.
Furthermore, minute changes in the surface topology of exposed
Schottky barrier metallization not covered by the GaAs were
observed at 200°c.

Subjecting the experimental 20 GHz GaAs IMPATT diodes to
RF pulse stressing, the results again clearly established the

TC honded devices as superior devices.
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BOND PULSE WIDTH

Au/Sn 4 microseconds max.

TC >10 microseconds max.

The magnitude of the input current and voltages were

identical.

Finally the results of brief RF stressing (C.W.)
shown here, again verify the thermal and electrical stability
of the TC bonded diodes.

By keeping the junction temperature;the same, three different
baseplate (storage) temperatures were selected to generate
three destinct stress conditions. Three groups

of devices were subjected to the following stress variations:

e high thermal - low electrical
@ 1low thermal - high electrical

® ~medium thermal - ~medium electrical

The Au/Sn bonded IMPATTs were subjected to the high - low stress
conditions, whereby the TC~bonded devices were stressed at the
medium levels. The grouping of the stress conditions

was utilized to define the corresponding effects on the per-

formance of the diodes, specifically the thermal resistance.

The tabulated results shown here, clearly demonstrate the
substantial degradation in RF power output and thermal resistance
identified with the high thermal stress device group. Degradation is still
evident with the high electrical stress diode group, however the
degradation is greatly reduced.

Conversely, the TC bonded devices not only remained

unchanged and stable, but the initial, pre stress thermal
resistance is also about 15 percent lower.

Thus, the thermocompression bonded IMPATT diode has

proven to be much superior to the gold-tin soldered device.
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The above experimental results were essential to the
failure analysis of degraded GaAs IMPATT diodes and supported
the findings that, indeed, the Au/Sn eutectic solder is an
unstable compound, not suitable for high temperature junction
devices, and degrades device performance at relative low

 storage temperatures.

The following SEM-Analysis offers further evidence of
undesirable effects arising from the continuous reaction of

the gold-tin as a function of temperature.
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AVERAGE RF STRESS TEST DATA SUMMARY

o HIGH THERMAL - LOW ELECTRICAL STRESS

PN Tep®0) TH%) TIMEMIN

Pour™ :vzx FoGi2) @p,(%cm) BOND,

COMMUNICATIONS

INITIAL 1.3 .2 1975 2.2 AV
TEST #1 5.7 15 25 1 1.9 139 198 4.8 AV
n 282 20 3105 1 1.5 138 1874 54 A

s 2.3 25 g 20 0.% 123 19682 286 A

e 2.3\ 25 312 15 076 107 19 2.4 AV

s 1.5 265 ~ 3 5 ' 038 AV

® LOW THERMAL - HIGH ELECTRICAL STRESS

INITIAL 1.8 144 20,02 49 AV
TEST 91 1029 0 S48 1 186 DB 195 28 A
n 9.7 © W3 1. L7 17 199% - Bl A

s 9l % 38 20 12 - 12,0 1978 X7 AN

™ 012 & 324 15 121 177198 39 AV

s 9.2 80 9.5 5 59 AV

e MEDIUM THERMAL AND ELECTRICAL STRESS

INmA L W7 183 205 T

TEST M1 80 156 263 1 1.6 129 19.61 209 T

” 72 180 305 1 159 161 1/.& 21 T

s 672 25 300 20 1.3 138 1984 26 TC

m 720 182 3103 15 1% 48 1978 205 T

s 708 18 309 S 205 T

|
FIGURE 9%4.
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B. SEM Analysis of Degradation Failures

The following series of SEM photos dramatically illustrate the
profound change of the barrier surface morphology of the
gold/tin bonded IMPATT diodes. The degree of surface dis¢or tion is
a function of stress *ime and temperature. It was also
determined later, that the Varian Associates diodes utilize
heatsink metal other than gold and employ nickel as a diffussion
barrier, which reduced the Au/Sn thermal effect at the barrier

surface, but did not eliminate it.
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v) :
SEM ANALYSIS OF THERMAL EFFECTS

COMMUNICATIONS

DIODE NO.: _1237G STRESS TEST TEMPERATURE: 345°C

TEST TIME: 72.8hrs. ASSEMBLY FABRICATION : LNR Schottky-
— Barrier Au/Sn
Solder Bonded

>x 1980 30kV

X200

Au/Sn solder bonded diodes show severe wrinkle effect on the

Pt barrier metal, (this is characteristic of Au/Sn

solder bonded diodes). Thermal Effect was noted after only
73 hours af accelerated aging, (Fracture of the GaAs

chip resulted when the contact ribbon was removed.)

FIGURE 95. (149)




Discrete chemcial etching of the GaAs IMPATT chip exposes
the smooth barrier metal (Pt) surface. 1In contrast, the
barrier metal not covered by the GaAs during the high temperature
stressing appears raised and greatly distorted. Thus, the
effects of the thermally activated Au/Sn compound reaction
are visible, even though, the barrier surface is separated
by the remaining barrier metal structure and close to 50
microns of gold plated heatsink.
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SEM ANALYSIS OF THERMAL EFFECTS

COMMUNICATIONS

DIODE NO.: _1317G STRESS TEST TEMPERATURE: 321°C

TEST TIME: _122.75 hrs. ASSEMBLY FABRICATION: LNR Schottky-

Barrier Au/Sn
Solder Bonded

— GaAs

Original GaAs
chip area

— Region not covered
19 pym X2 100 - 30kVY by the GaAs

Thermal effects on the barrier metal show up as a raised
surface with roughened texture outside the area covered

by the IMPATT chip. The GaAs was removed as part of the
failure analysis.

FIGURE 96. (151) '




As previously mentioned, the surface distortion is
less severe on the Varian Associates grown junction diodes, however,
the effects are still clearly visible. Note the terrace -
effect due to the undercutting of the active region during
etching. Damaged area resulting from the electrical short
is also visible, lifting of barrier metal in the rear area

defined as the under cut active area.
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SEM ANALYSIS OF THERMAL EFFECTS

COMMUNICATIONS

DIODE NO: S/N 27 STRESS TEST TEMPERATURE: 321°C
TEST TIME: 80.85 hrs. ASSEMBLY FABRICATION: Varian Grown-

Junction Au/Sn
Solder Bonded
Chip T.C.

Bonded Ribbon

| e—
18pm xX1500 30kV

Thermal Effects on contact metal near the active region
not covered by the GaAs chip is shown as a raised surface
with a change in texture following removal of GaAs via

chemical etching.

FIGURE 97. (153)




In contrast, no surface texture changed are noted on this
experimental LNR grown junction 20 GHz IMPATT diode, different
only in that the device was thermo-compression rather than
solder bonded. No structural metallization modifications

were implemented. The diode accumulated 1060 hours of stressing
at a junction temperature of 304°c. Prior to failure analysis
which was performed for the sole purpose of investigating

the barrier surface condition, the diode was characterized

and found to be fully operational. However, accidental

detuning during oscillator measurements shorted the diode.
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SEM ANALYSIS OF THERMAL EFFECTS LNR :

COMMUNICATIONS

DIODE NO:: 1632B STRESS TEST TEMPERATURE: 304°C

TEST TIME: 1060.75hrs. ASSEMBLY FABRICATION : LNR Grown
Junction T.C.
Bonded

—— damaged ribbon
bond area following
ribbon removal

— Ohmic contact

— Substrate

—Active Layer

—— Pt. Metallization

T.C. bonded diode shows no evidence of any thermal effects
on the Pt.metallization following accelerated aging for

1060 hours.

Figure 98. (155)



VI. CONCLUSIONS AND RECOMMENDATIONS

The completion'of the Phase I reliability assessment on
20 GHz single drift GaAs IMPATT diodes has resulted in
projecting the operational. lifetime of Schottky barrier and
grown junction IMPATT devices, defining four major failure
mechanisms, recommending device modifications, addressing
prOcess and assembly improvements supported by experimental
observations and failure analysis, and identifying future

reliability efforts including device screening procedures.

LNR has demonstrated, that the 20GHz GaAs IMPATT diode is a
viable EHF RF power source, which based on the recommendations
made herein, will exceed ultimate device reliability requirements,
consistent with a ten year spaceborne solid-state power amplifier

mission.

1. Conclusions

The conclusions arising from the completed reliability
assessment phase of unscreened 20 GHz GaAs IMPATTs are presented

in summary.

® Measured and extrapolated medium lifetimes of GaAs
IMPATT diodes far exceed previously predicted lifetimes.
Schottky Barrier: >3x104 hours
Grown Junction : «>2.lx106 hours
® The failure mechanisms identified in this report

can be eliminated by refining process and assembly
procedures.

e A limited number of new and improved experimental
IMPATT diodes fabricated as recommended clearly
demonstrated significant increase in:

thermal stability

€lectrical stability

lifetimes

Performance (Pulsed operation )>10- psec.)
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Confirmation of observed improvements via a second

phase reliability program is fundamental in establishing
a high level of confidence in the integrity and
reliability of EHF -~ GaAs IMPATT diodes (single and
double drift).

The recommendations directed towards device improve'-
ment do not require a technological break
through, but are readily available for implementation.

Severe degradation of the current-voltage (I-V)
characteristics has been experimentally identified with
surface-states resulting from incorrect etching and

rinse procedure. Schottky barrier (LHL) diode degradation

is compounded by:

e® carrier concentration at barrier surface

ee critical distance of surfact to doping spike

Incorrect sealing results in entrapment of potential
contaminants causing substantial degradation.

In general, grown junction diodes exhibit superior I-V

characteristics.

Schottky barrier diodes with excellent pre high temp-
erature storage I-V characteristics remained nearly
as stable as the grown junction diodes.

Conversely, diodes with relative poor I-V characteristics
at the 10 pa level degraded with temperature at an
accelerated rate.

Additional changes associated with the IMPATT metallization
structures and/or GaAs during the stress testing are

not ruled out, as they may have been obscured by the
effects of the Au/Sn degradation. However, judging by

the experimental data, such changes, if any, appear
minimal.‘ |
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Observed failure. modes and failure mechanisms
were general in nature and could not be identified
with a specific wafer and/or device 1lot.

Accelerated RF stress testing of the herein
described IMPATT diodes was not possible because

of the severe degradation of RF performance. Loss
of oscillation during high temperature measurements,
suggest that high temperature RF stressing would
ultimately result in a form of DC stressing.

Device performance degradation at high baseplate

temperatures has been linked to the Au/Sn eutectic
solder used for device assembly.
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2.0 Recommendations

2.1 Preferred IMPATT Diode Design

With the‘average achievable RF performance béing equal,
it was easy to recommend the H-L profiled grown junction IMPATT
device for further reliability assessments and ultimate space-
borne SSAP application. Achieving the required ideal relation
between perfect current voltage characterists and reliable
RF device performance is nearly impossible with the L-H-L
profiled Schottky barrier IMPATTs on a high yield, cost effective

basis.

2.2 Processing and Fabrication Modifications

The recommended changes of state-of-the art metallization
structures, were developed and reported after the reliability
assessment program was in progress. Experiments, with the
recommended modifications in place, conducted at LNR confirmed

improvements reported by Raytheon.

Large area thermocompression bonding developed at LNR
was used for experimental devices and found to be superior
to Au/Sn bonded diodes. Thus, elimination of Au/Sn in favor
of thermo compression bonding in addition to the illustrated

modifications in the GaAs metallization is strongly recommended.
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RECOMMENDED IMPATT DIODE PROCESSING AND FABRICATION
IMPROVEMENTS ' COMMUNICATIONS

IMPATT CHIP CROSS SECTION

CURRENT )
Au-RIBBON
AN : %u/Sn-SOLDER
Au/Ge + Au
GaAs SUBSTRATE
T —pe—ACTIVE LAYERS
Pl o -
Tl g 4 1
Au-————-{ X\
AUHEAT SINK—e/
/ . \Qa Sn - SOLDER
Au-ib. .
Ni—a — ‘
OFHC Cu- PACKAGE
RECOMMENDED .
: THERMO COMPRESSION : '
TOOL MARK . Au - RIBBON
‘ ﬁ: 3
s—T1
Yo—— Pt
THERMO COMPRESSION — SUBSTRATE
‘ ACTIVE LAYER
BOND INTERFACE :—- CTIPF;' L s )%
Ti ,
- )
Ay
————————— an-Ay.
- =-N|

OFHC Cu-PACKAGE

¥ METALIZATION SYSTEM AS DEVELOPED

BY RAYTHEON AND REPORTED .
AT "MANTECH DEBRIEFING',MAY, 1983

FIGURE 99..
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2.3 Screening;?rocedufe for IMPATT Diodes

Resulting from the accelerated stress test program
and the determination of criteria to define early failures
described in Appendix'A’,a prelimihary screening procedure,
as shown in the flow chart,has been developed and is
recommended for implementation of a potential follow'on
reliability program.

The high temperature reverse bias burn in is perhaps
the most important screening step in that its purpose is
the elimination of "Infant Mortalities", early failures.
For the statistical analysis criteria III of Appendix A
was used, however, with the elimination of the Au/Sn it is
recommended to implement criteria II which is a slightly lower

burn-in level.

IMPATT Diode Stress Temperature: 270%¢
Burn in Time : 168 Hours

An operational DC burn in is Preferred, with test conditions being

identical to those of the accelerated stress test.

Specifically, the junction stress temperature is achieved
via a combination of high temperature storage and applied
reverse bias. '

It is conceivable that the burn in schedule, which
indicates a high stress level, may have to be revised following

initial screening and accelerated stress testing of one
device sample lot.
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2.4 Extended Reliability Assessment

The completion of the herein reported 20 GHz IMPATT
reliability assessment must be viewed as an initial assessment,
with the reported results forming the basis for an extended
reliability program, consistent with the reliability objectives

enumerated in this final report.

An extended reliability program would consist of the
major tasks and tests illustrated in the flow chart. The
essential stress test configuration would again comprise
high, medium and low temperature stress levels, adding the
validation of the proposed screening procedure via a
high temperature accelerated DC stress test, ultimately

determining the actual brun in conditions to be used.

The advantages of an added temperature optimized stress
test in conjunction with 20 GHz oscillator measurements are:
o provide fourth data point on Arrhenius reaction
rate plot;

e Perform 20 GHz oscillator measurements at pre-
determined intervals by interrupting the DC stress
test;

® cCorrelate DC stress test data to actual RF performance
data,

e ocomparison between interrupted and continuous stress
testing;

® ¢enhance confidence level,

The result of the initial accelerated stress tests are
used to optimize the stress temperature.
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The dominating degradation effect of the Au/Sn solder
indicates the need to further investigate high temperature
effects on 20 GHz oscillator measurements, providing the
potential design criteria or an accelerated RF stress test

configuration.

Finally, the inclusion of a fifth accelerated stress
test with an assumed operational lifetime of lO4 hours,
would permit a relative low stress temperature, thus
providing maximum confidence in the reliability data. Obtaining
the activation energy from the aforementioned stress tests
will permit extrapolation of the V) after the first one
or two failures occuring with lxlO3 and 2xlO3 hours. A major
advantage of the recommended low temperature stress level
would be the potential verification of the activation energy
obtained at high temperature stress levels with stress data
reflecting results most generically identified with operational
20 GHz GaAs IMPATT diodes.
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DETERMINATION OF CRITERIA TO DEFINE EARLY FAILURE

The following is a summary of the rationale used to
define early failures and to derive a burn-in screening
procedure for the estimation of early failures from the

main device population.

From each of the accelerated stress tests carried
out, an insufficient number of infant mortalities were
obtained or could be identified as such. Based on the
assumption that early failures may be due to different
failure modes or mechanisms, the realization of
an early failurefactivation energy is further
complicated and seems nearly impossible. In order
to extrapolate an effective screening criteria from the
limited stress test data, "cut off" points (denoted tc)
between early failures and main sample failures must be
clearly defined. Since precise cut off points are not
obvious from the stress test data, three possible approaches

are investigated.
The infant cut off time can be defined as:

I. Approximately equal to the first main sample
fadilure time (tc = t1).

II. Equal to exp (X - 3d), derived from the log normal
data at each stress test level. The dguantity
(X - 34) is in accordance with the concept

of a normal distribution. (fc = texp(}-' 3dW>

X = sample mean lp(failure time)

o

approximate standard deviation

III. Derived from the inflection point (between infant
and main sample failures) on each whole -~sample

)

cumulative frequency plot (tc = tinfl.
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The rationale addressing the above approaches is

- summarized as follows:

I. Given that the original whole population was
not sufficiently large, the first main sample
failure time may not be a good estimate of the
first main population failure time.
Therefore, this type of definition could
potentially lead to a burn-in screen which
may result in the removal of non-infant morta-
lities along with the true early failures.
Furthermore, a substantial part of the operating
lifetime would be consumed by this method of

burn-in.

1ntc Lognormal distribution

The shaded area depicts infant mortalities plus
an unknown percentage of main population failures.



II. This method depends on first plotting each whole-
sample cumulative frequency plot. Infant mortal-
ities are determined as points which fall before
the line and are then eliminated from the data
set. Next, a second plot is made using the main-
sample data only. Once lognormality is verified,
irand O are determined. Finally, a cutoff time is
calculated as t_ = exp (X - 30°). However, this
method depends on first eliminating infant mortalities
which are not vet clearly defined, and therefore could

lead to ambiguities.

The shaded area depicts infant mortalities

plus 0.135% of the main-population failures.



Cumulative Failure (Percent)

III.

The inflection point of each wholé-sample cumulative

frequency plot is defined as the exact cutoff between

infant failures and main-sample failures.

This method

is the most realistic in terms of estimating the true

population cutoff point.

The problem with this method

is that it may not be as straight forward as it seems.
Inflection points may not be clearly defined on the

plots,‘as is the case with the Schottky barrier stress

test data.

However, by looking at a typical sample plot,

it can be seen that the inflection point lies about half
way between the points obtained by applying methods.

I and II as illustrated.

Example of Cumulative Frequency Plots:

II

HF——~—=== -

=
HfE "~~~ e ccca-

Int

Whole-sample data illustrating
actual inflection point (III)
as well as the cut off points
obtained from I and II.

Cumulative Failure (Percent)

&

int

Main-sample data (i.e. infant
mortalities removed) illustra-=-

ting the location of lntinfl.

with respect to the other
methods cited.



Graphical Representation: (Schottky Barrier IMPATTs)

A. depicts individual life times vs.
(inverse) test temperature.
Infant mortalities are shown as [

B. illustrates the Arrhenius dependence -
of the data. Notice the median lifetimes Cry)
for main-sample data only.

C. shows the results of each criteria.
Extrapolation of screening criteria
Yields lines parallel to the Arrhenius
line. (Note: "cutoff" implies that this
is ‘'when infant failures cease and main-
population failures begin).

In summary, from the three methods described
inflection point approach appears best suited in defining
early failures of a limited device population and establishing
an effective procedure for the device screening burn in.

The following observations are illustrated in

I. Definition appears to be too arbritrary and too
severe. The extrapolated line cuts through the

main sample.

II. Extrapolation appears lenient in view of the
presented stress test data, since not all the
¢éarly failures are eliminated. However, due to
the impact the Au/Sn solder had on
Criteria II was applied towards the recommended

reverse bias burn in screening.

III. Drawing a line half way between I and II eliminated
all apparent early failures, without affecting the
main-population. This method was used for the
statistical analysis presented in Appendix B.
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Main Population

Definitions:

tc = the cutoff time between infant mortalities and

main-population failures at any given temperature.

tlgg the first main-sample failure time at any given i
test temperature.

t(§_307= exp (¥-3g) = cutoff time at three standard
deviations below the logarithmic median lifetime at
a-given test temperature.

tiﬁf1= the time derived from the inflection point on each
whole-sample plot. tinfl. = exp (xinfl)
Where, ‘
x. = 1n (time to failure, hrs) for each main-sample failure;
i
71 = the number of main-sample failures observed at the

given test temperature.

O = standard deviation. (log base e)

Note: The estimates of o obtained from lognormal.cumulative
frequency plots are used throughout.

X.
- , . 2 i
X = —~sample mean = —_n
Main-Sample = acutal test data excluding infant mortalities

(i.e. the lognormal portion of the data).

all devices in the lognormal distribution. This includes
the small sample of devices tested, as well as all

other untested devices manufactured under the same
conditions. However, it does not include infant mortalities.
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STATISTICAL ANALYSIS OF LIFE TEST DATA

INTRODUCTION

Accelerated DC Stress Testing was used to obtain
information on the lifetime distributions of 20 GHz
IMPATTs. Both Grown-Junction and Schottky Barrier
devices were tested, twenty of each type at each of
three elevated test temperatures. To examine the mathe-
matical relationship between device lifetime and junction
temperature, the Arrhenius Model was applied. The
application of statistical principles yielded extra-
polated device parameters at the specified normal
operating temperature of 200°C. This appendix includes
a brief introduction to these‘statistical concepts, as

well as calculated and graphical representations of
the analysis results.

OBJECTIVE:

To predict specific parameters corresponding to
an actual operating temperature from the lifetime data

taken at elevated device-junction temperatures.

- The following parameters will be determined:

® device median 1jifetime ( ~,, which corresponds to the time
at which 50% of the device will have failed) and its associated
confidence interfal, as explained in a later section;

o the lifetime of a single, untested device at
the requested level of confidence Or degree of
accuracy;

e the logarithmic variance (C72) and its associated
confidence interval;

o the activation energy (E;) of the main failure
mode.



°

Fundamental Assumptions of the Analysis(l)

The mathematical rationale used to analyze life-

test data is based on ’'the following conditions, Figure 1.

(1) The lifetime at .a constant temperature and.
applied electrical stress is expressed by a single
lognormal probability density function (pdf),
where "lognormal” means that the logarithms
of device lifetimes are normally distributed.

(2) The failure mode is characterized by a single
activation energy.

(3) The logarithmic variance is independent of
temperature.

(4) The median lifetime follows an Arrhenius dependence
expressed as:

-y = T, exp (Ea/kBT) (1)
or, 1n ‘}’M = lng + E,/kgT (2)

These reaction-rate parameters are now simplified and con-
verted to standard statistical regression parameters as follows:

Y = o¢c+ 48X (exact population parameters) (3)

Y = a + bX (estimates of population para-
meters obtained from sample (4)
data)

Where:

X = reciprocal junction temperature (1/°K)

Y = lnan . = ln(Median 1lifetime, hrs.)
a= o = lng = ln(pre— exponential constant)=
intercept of the regression line.
Ea B :
b g~/9 == = slope of the regression line.
B . .



Analysis Approach:(l-4)

SIMPLE LINEAR REGRESSION

"Simple Linear Regression" refers to a linear functional
dependence between two variables. One variable, in this
case temperature, is independent, while the other, in
this case lifetime, is dependent. This is a commonly
employed statistical procedure. The resulting simple

linear regression equation is written as:

Y = OC-ﬂfs X, (3)
Where:
X = the independent variable
Y = the dependent variable
©¢ = the Y-intercept.
f3'= the regression slope
(Figure 2) |

If the actual data does not show a llnear relationship, 2

transformation of the parameters often may be emplOYed Such

for the transformed parameters a linear dependence
is obtained. In the case of life test data, a log-

arithmic transformation of the lifetime 'and a
reciprocal transformation of the temperature “are
used. '

The - main objec tive of_-simple linear regression is to
determine the "best fit" line through the X,Y data. This
@)

is accomplished by utilizing the concept of least-squares" .
The outcomes of the least-~squares regression analysis are:

Sieg Commonly referrgd to as the reg;ession Variance,é
is the best estimate of population parameter
a - the best estiméte of population parameter
o, the Y~-intercept
b the best estimate of the regression slope  {3
3 ("Y-hat") the estimated Y value corresponding to

a given X.

B-4
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EXTRAPOLATION

"Extrapolation" refers to the prediction of Y for
given values of X outside the sample (test) range of X.
(Figure 3)

Note: The scatter, or variance, in the original X,Y
data leads to an uncertainty in projected Y value(s).
Therefore, the true population value, Yactual' should be expressed

as a range Y =9 + D . (Figure 4)

actual

(Here,l& is a function of the Student-t distribution
and the regression variance, as well as the spread in X
values. The exact relation can be inferred from the
fdrmula“fof the 90% Confidence Interval for Yy
13).

P, equation

CONFIDENCE LEVELS/INTERVALS

Confidence determination is an extension of a concept’
known as statistical hypothesis testing. (Refef to statistics
text for description). In short, these concepts enable us, to state a
range, or confidence interval for a particular population parameter along

with the degree of accuracy, or confidence level associated
with this range . '

A confidence interval reads as follows:

"The probability that the true Y value is within

the range stated is (1-§) percent", and is expressed
mathematically as:

PiY = (?iA)} = (1- 8§)% (5)
-Here,

p { } means "the probability that..."
S is known as the statistical significance level, and
(1-§) is the confidence level.

B-5



The above expression is known as a two-tailed
confidence interval, meaning that both the upper and
the lower bounds are taken into account. For lifetime
predictions, only the lower bound of the range is requested
and is known as a one-tailed confidence interval. It
reads "The probability that the true Y value is greater
than the lower bound stated is (1- ) percent®. In life testing,
the lower bound prediction for the median lifetime
is of great importance, whereas the upper bound is of
little interest. (See Figure 5 and equations 13 and 14.)

Confidence intervals aside from Y re

actualAé
derived in the analysis of life test data using equations 13,
14 and 15. The interval for the logarithmic variance utilizes

the Chi-square distribution rather than the Student-t.
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Analysis Equa:ti'ons]-"4

First, we restate the Arrhenius equation and its

equivalent regression or straight-line translation:

E
. _ a '
n . = lnyg o+ KpT (2)
Y = a + bX ' (3)
Where,
Y = 1ln(lifetime, hrs)
= 1/T(°K) = reciprocal junction temperature
= lnq% = Y-intercept = 1ln (pre-exponential
E constant)
b = ka = redgression slope
B
Ea= activation energy, ev
kB= Boltzmann's Constant
= 8.625 x 10°° ev/°K

Estimates of Regression Parameters

N = total number of devices tested, excluding early
failures

= number of X,Y pairs

X = Z.X/N over entire sample (6)
¥ = S Y/N over entire sample | (7)
SLx-x) (x-) ]
b = —— (8)
.--f_(x‘-x)2
a= Y - DbX (9)
P _
SZ - <Y - aiY b £XY - (10)
_ [a2 (11)
sreg TN Sreg»( _



Extrapblation

A

Yoo

- given,

XOp

]

12
a + on (12)

p

1/ 713°K

90% Confidence Intervals

s ~
P §YOP> Y

Where,

£(1-tail)_

2.
i X) .= 90% (13)
- t(l—tall) S ‘_._ -—___:__._._.2.! ]
10%,N-2 TeI9VN Xy - X)Ll

- )
Xop-%)
- t(l-tail) sreg\/1+ % + é_gptﬁ) = 90% (1,
10%,N-2 ZAX X)) 22
2 s2_ (-2) |
¢ & & Creg. Y = 90% (15;
,2 J
X 95%,5-2

Student-t value at 10% significance
and N-2 degrees of freedom (table value)

Cbi-Square value at the specified
significance level and N-2 degrees of
freedom (table value)



Translation to Arrhenius Parameters at ZOOOC

® Activation Energy
= (from eq. 8
Ea(eV) ka q: 8)

e Pre-exponential Constant
1n"f_‘o = a (from eq. 9)

® Estimated median lifetime

Ty = ©€XP (Qop"‘ (from eq. 12

® 90% Confidence Lower Bound for T
P {!TM > exp (Yop lower bound), h;sg =90% (from eqg. 13)
® Estimated Logarithmic Variance = sieg (from eq. 10)

® Two-tailed 90% Confidence Interval for Logarithmic
Variance

P {lower bound £ 52 < upper bound} = 90% (from eqg. 15)

e 90% Cohfidence Lower Bound for the Lifetime
of a Future Untested Device = TN+1

P i’ﬂN+l > exp (YN+l lower bound), hrs:} =90% (from eq. 14)



SUMMARY OF TERMS AND SYMBOLS

Definitions

Regression

o PR

also

oK) X =

o)
2
sreg

Extrapolation

mowon n-n

Confidence

o + )B X = linear regression equation

0.

independent variable = 1/junction temperature, K

dependent variable = 1ln(lifetime, hrs.)
Y-intercept, population parameter

estimated Y-intercept, from'sample (test) data
regression line slope, population parameter
estimated slope

total number of X,Y pairs
sample mean of X = Exi/N
sample mean of Y =£Yi/N

variance, population parameter
estimated variance, from regression analysis .

a + bXop

estimated (projected) Y-value at XOp

l/operating temperature, Ok = 1/473°K

statistical significance level = 10% (used
to locate Student-t or Chi-Square
values in table)



Arrhenius Dependence

T M

E
a

T
o

it

TN+l

device median lifetime

activation energy of the main failure mode

pre-exponential constant

predicted lifetime of a future, untested
device at normal operating temperature.
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. . ) “  0C ACCELERATED STRESS TEST DATA FOR m
“ B ACCELERRTED STRESS TEST DATA FOR ‘ 20 Gz SCHOTIKY-BARRIER GaAs IMPATT Djois § |
- 20 GMz SCHUTTKY-BARRIER GaAS JHPATT DIODES J comswascatcus COMMMMICA TIONS

EARLY FAJLURES REMOVED

HIGH TEMPERATURE MiD, TEMPERATURE LOW TEMPERATURE
1,=3a5°0) (Ty321°0 (1, =235°0 HiGH TERPERATURE RID. TERPERATURE Lov TERFERATIRE
" =20 ue20 "2 1= 3a5%) T, 321%) : (1= 295%)
JEVICE S/ T (HRS.) DEVICE S/N  T,(HRS.) DEVICE S/M T (HRS.) . w19 Wb b
12386 6.5% 13968 0 15628 29.05 )
1228 U4 14238 ) 15658 45.65 BEVICE S/%  Ty(HRS.) DEVICE S/ Ti(HRS.)-  DEVICE SN T (HRS.)
3028 2.25 15976 89.2 '

:::B 123:: ima 8.55 - 15538 84.3 12296 u.1 1316 w75 15876 “84.2
€686 22.25 13106 84,75 15638 95.6 11168 12.8 13328 46,1 15538 84,3
3620 2.5 13828 46.1 15916 165.5 - €806 13.6 14288 60.5 15633 95.6
3860 25.8 T €0.5 15826 170.5 668G 2.5 * 13078 €5.2 15816 165.5
6856 "52.8 13078 65.2 15008 191.4 3620 8.5 13186 81.6 . . 15826 170.5
12316 3.5 13186 81.5 15558 1914 ) 366D 5.8 13038 e7.7 15008 1914
S146 u4.8 13038 e7.7 15795 191.6 6856 32.8 13008 93.2 15558 1914
11886 45,6 13068 93.2 15886 218.8 12316 38.5 13928 93.4 15796 191.6
11068 4.1 13928 93.4 15806 .  273.0 5145 44,8 13018 105.2 15886 ° 218.8
11806 48.8 13018 105.2 15598 285.0 11836 85.6 13146 114.0 1580G 273.0
4706 48.8 13146 116.0 15866 287.35 : . 11088 45.1 13176 122.75 15598 285.0
12236 $5.6 13176 122.75 15896 287.4 11806 @8 14308 w2 15856 287.35
12206 €5.8 14308 w2 14938 336.6 4206 48.8 13165 159.15 15896 287.4
1254 70.7 13166 159.15 14978 356,05 12236 5.6 13858 189.8 14998 336.6
12376 80.2 13858 183.8 15528 373.2 12206 65.8 13898 243,2 14978 356.05
12641 80.7 13898 243.2 15498 435.65 125um 70.7 13136 262.3 15528 373.2
e .e 13136 262.3 15816 By 12376 802 15493 435.65

126sm 80.7 15816 4357

1776 7.8

Ny 53

" 20 GHZ GROWN-JUNCTION GaAS INPATY DICDES * 20 GHZ GROWN-JUNCTICN GAAS IMPATT DIUDES [ coguwmcanons

L2
“ D¢ ACCELERATED STRESS TEST DATA FOR I _ & BC ACCELERATED STRESS TEST DATA FOR INR
COMMUNCATIONS

EARLY FAILURES REMOVED

, HIGH TEMPERATURE MID. TENPERATURE LOV TERPERATURE
HIGH TENPERATURE MID. TENPERATURE LOW TENPERATURE T, 340°C) (T, 321%) (1, = 306%)
€T, 340°) (T, 321%) (1 - 304%) L e nen
Tooes "2 - w8 DEVICE S/ T,(HRS.) DEVICE S T;(MRS.)  DEVICE S/ T (HRS)
BEVICE /8 T,GMRS.) ©  DEVICE SM. T,(HRS.) nzvxl'cs s T,0mS8.) , ® . ® s . 5
53 2.8 ] 85,15 [ .2 35 0 13 6.65 12 39.8
1 2.9 8 - %685 . 26 - .S % ° R X aa 121.2
2 - 6.5 Y] 72.7 38 167.2 ] ° 2 %.55 16 121,45
18 203 2 84,55 E. . .207.35 31 0.5 2 .7 33 1672
S ¥ 2 9.7 i VIR + P » 1.0 B 10505 6 207.35
3 R 35 20805 . . 13. . 3.6 . » 2.5 B 1665 n s
16" 8.6 . 1068 ] 420.8 53 128 » 158.95 13 334.6
2 48,65 28 158,95 i 428.0 1 12,9 0 1617 8 420.8
7. ase 50 61,2 2 sz 5 16.05 @ 167.55 W 2.0
2 10.2 ut 167,55 s 525.35 18 203 SR T 2 X 2 523.1
18 . 110.65 55 275,48 15 548,85 ? 5.2 B 3.0 8 525.35
4 201,75 33 3340 9 $56.5 3 w5 & 369.0 15 48,85
2 202.0 . 4] 363.0 10 693.2 16 .6 VA "N 3 $56.5
7 3814 1 7%0.7 - 2 ess W@ 3898 10 €53.2
) 389.9 5 781.15 Y %9.0 % 88 1 0.7
35 48s.? 52 %13 n 10.2 3 533 5 .18
3} 533.3 ? 844,15 18 110,65 R 637 52 781.3
- 2 623.7 19 euw.2 ] 0178 6By 7 84,15
30 695.9 2 2020 ¥ 6% 19 8.2
nesl s 6%.9 ot e e,
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COMPUTER PRINTOUT FOR SCHOTTKY BARRIER ANALYSIS

LNR COMMUNICATIONS, INC.
G.L. BRECHT JAN 1984

USER’S NAME M. WALDMAN
DATE 2/28/84
PROJECT NO. _ SCHOTTKY BARRIER, N=19, 14,1

DEFINITION OF VARIABLES

XSuM=SUM OF ALL X VALUES

YS'2M=SUM OF ALL Y VALUES

XYSUM=SUM OF PRODUCTS OF ALL X AND Y PAIRS
X2SUM=SUM OF ALL X VALUES SQUARED
Y2SUM=SUM OF ALL Y VALUES SQUARED
XBAR=AVERAGE OF THE X VALUES

YBAR=AVERAGE OF THE Y VALUES

S2=VARIANCE ’

S =STANDARD DEVIATION

TO CONVERT X ENTER THE NO.
1) NONE

2> TO NATURAL LOG (LN)

3) TO LOG BASE 18 (LOG)
4) TO 1/DEGK (1/273+C)

S) OTHER

TO CONVERT Y ENTER THE NO.
1> NONE .

2) TO NATURAL LOG (LN)

3) TO LOG BASE 10 (LOG)

4> OTHER :

HOW MANY PAIRSS3
ENTER.DATA

ANY CORRECTIONS?NO
53 PAIRS

XSUM=. 8871488952

YSUM=241 ,333455

XYSUM=,488822817

X28UM=1 .58109879E~04

Y25UM=1144,0932

XBAR=1 .682834463E-83

YBAR=4 ,55349915

CORRELATION=,783482387 OR X’S AND Y’S ARE 78.3482387% CORRELATED
REGRESSION LINE SLOPE=13306.7854 E..z 1.149 eV
Y INTERCEPT=~17.8291862 .
VARIANCE=.342141945

SID DEV= 584929089

MEAN TIME TO FAILURE (MTTF) AND
CONFIDENCE INTERVAL (CI)

TC=OPERATING TEMP IN DEG C
MTTF(M)=MEDIAN TIME TO FAILURE
CI=CONFIDENCE INTERVAL .
ST=VALUE FROM STUDENT T OISTRIBUTION
CHI=VALUE FROM CHI-SQUARE DISTRIBUTION
LU=LOGARITHMIC VARIANCE

PRESS RETURN TO CONTINUE

OPER TEMP DEG C208@

MTTF(M)=29828.5852 HOURS AT 206 DEG C

FOR MTTF AT OTHER CONF INTERVALS
ENTER ST FROM THE STUDENT T TABLE AT
NUMBER OF PAIRS MINUS 2 (P-2) AND CI
P-2=31

ENTER Cl¥/=90

ST=1,298%

MTTF=0R>12929.4889 HOURS AT 208 DEG C
FOR A 907 CONFIDENCE INTERVAL

LIFETIME OF A SINGLE FUTURE UNIT
- TTF=0R>9648.7695f HOURS AT 2006DEG C
FOR A 987 CONFIDENCE INTERVAL

FOR LOGARITHMIC VARIANCE

ENTER VALUES (CHI) FROM CHI-SQUARE TABLE
pP-2=51

LOWER BOUND=3/

UPPER BOUND=95%

ENTER LOWER BOUND CHI&8.6469

ENTER UPPER BOUND CHI35. 400

.25410649950R¢ LV (OR=.498147149 B-18
Ff & 987 CONFIDENCE W1t Rml




COMPUTER PRINTOUT FOR GROWN JUNCTION IQQAIA{SIE;

LNR COMMUNICATIONS, INC.
G.L. BRECHT JAN 1984

USER’S NAME M. WALDMAN
DATE 2/23/84
PROJECT NO. CROWN-JUNCTION, N=13,28.18.

DEFINITION OF VARJABLES

XSUM=SUM OF ALL X VALUES

YSUM=SUM OF ALL Y VALUES

XYSUM=SUM OF PRODUCTS OF ALL X AND Y PAIRS

X25UM=SWM OF ALL X VALUES SQUARED

Y2SUM=SUM OF ALL Y VALUES SGQUARED

XBAR=AVERAGE OF THE X VALUES s o
YBAR=AVERAGE OF THE Y VALUES

S2=VARIANCE

S =STANDARD DEVIATION

TO CONVERT X ENTER THE NO.
1) NONE

2) TO NATURAL LOG (LN)

3) TO LOG BASE 18 (LOG)
4) TO 1/DEGK (1/273+C)>

S) OTHER

TO CONVERT Y ENTER THE NO.
1) NONE

2) TO NATURAL LOG (LN)

3> TO LOG BASE 18 (LOG)

4) OTHER

HOW MANY PAIRS31
ENTER DATA

ANY CORRECT IONS?PNG : ; : )
51 PAIRS . e Late [ e . _ -

XSUM=,08860234515
YSUM=265.7682279
XYSUM= . 449981 964
X2SUM=1 ,45175397E-04
Y25UM=1455.52344
XBAR=1 ,68673434E-83
YBAR®S,2114171%
CORRELATION=, 722817472 OR X‘S AND Y’S ARE 72,2817472/ CORRELATED
REGRESSION LINE ‘SLOPE=21879,5897 €, = 11987 eV
Y INTERCEPT=-31.6936383
VARIANCE=, 687958117
STD DEV=, 829432404
MEAN TIME TO FAILURE (MTTF) AND =
CONFIDENCE INTERVAL (CI)

TC=OPERATING TEMP IN DEG C
‘MTTF(M)=MEDIAN TIME TO FAILURE
Cl=CONFI1DENCE INTERVAL

ST=VALUE FROM STUDENT T DISTRIBUTION
CHI=UALUE FROM CHI-SQUARE DISTRIBUTION © - - —-
LU=LOGARITHMIC VARIANCE

PRESS RETURN TO CONTINUE

OPER TEMP DEG C200

2 Tesm g evegreaag

MTTF(M)=2111864.97 HOURS AT 200 DEG C

FOR MTTF AT OTHER CONF INTERVALS
ENTER ST FROM THE STUDENT T TABLE AT
NUMBER OF PAIRS MINUS 2 ¢(P-2) AND CI
pP-2=49

ENTER C1%=90

ST=},299

MTTF=0R>397438.431 HOURS AT 200 DEG C
FOR A 98% CONFIDENCE INTERVAL

LIFETIME OF A SINGLE FUTURE UNIT
TTF=0R)>289485.331 HOURS AT 280DEG C
FOR A 907 CONFIDENCE INTERVAL

FOR LOGARITHMIC VARIANCE

ENTER VALUES (CHI)> FROM CHI-SGUARE TABLE AT
P-2o49

LOWER BOUND=5/

UPPER BOUND=93%

ENTER LOWER BOUND CH166.339

ENTER UPPER BOUND CHI33.930

.508144757=0R< LV (OR=.993514522
FOR A 907 CONFIDENCE INTERVAL R-19
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THERMAL -~ - EFFECT AND LIMITATIONS OF HIGH TEMPERATURE
RF STRESS TEST*

While performance degradations of semiconductor devices in general
are expected at elevated temperatures, the degradation is reversible
in principle. The initial stress test data and subsequent experimental
data indicated some significant irreversible physical changes resulting
during moderate high temperature cycling of 20 GHz GaAs IMPATT diodes.
The design of an accelerated RF stress test is a function of
the thermal stability of the device under test in order to maintain
device oscillation with only minor adjustments in circuit tuning. 1In
order to determine the high temperature effects on the performance of
the GaAs IMPATTS as a function of the semiconductor physics, some
simple calculations were made. The calculated results and predictable
performance degradation formed therbasis-for:an initial accelerated
RF stress design concept. However, the actual device degradation did
not follow the calculated diode performance prediction,
, The ionization rate (¢ decreases - with increases in
temperature. A graph, showing the relation of the ionization coefficient
with temperature, was generated from the expression,

oL = a exp [}(b/E)%]

where
a = 5 -4 Oy -1 .
1.61 x 10° [1 + 7x10°(t -25°C) ] om™!  “=-constant
{measured)
: 5 -4 (o]
— 5.41 x 10 + 9. - =
b = [l 9.7 x 10 “(t -25 Ci]ch 1. constant
) ' (measured)
E = Electric field, V/cm

The decreased ionization rate results in an increase of the depletion
width, causing in effect a higher breakdown voltage (VE) as can be

4\/‘0((E)dx'=l :
Wp -
;):. E (x) dx = Vg

seen from



where ,

X = refers to distance along the direction of avalanching.

WD = is the depletion width at breakdown.

A high-low IMPATT doping profile was used to calculate changes

in DC device parameters resulting from changes in temperature.

Temp. (°C) WD(pm) Emax (kV/cm) VD(V) VB(V)=V—:V5 1 XQ
e i v
. B
200 ' 1.05 -76.8 11.3 21.3 17%
17.6%
250 . 1.15 -78.2 12.9 23.3
300 1.27 -79.8 ... . 15.1 "25.8 . 18.6%

Furthermore, the device conversion efficiency is given by
0?1:1 VD 8§in (1T/2WD/Wn-)
X
(Vy + V) (W /Wy )

where Wyr= Vs//f corresponds to a transit angle. The scatter-limited
velocity Vs decreases from Vs=4x106cm/sec at 500K to Vs = 3. 4x106cm/sec

at 600°K and with corresponding increases in Wp, the eff1c1ency

decreases to a value as low as nine percent at 500°K.
Finally, calculating the output power from

! ATmax
1-7 eTH




_ ° _ o]
where values of GTH = 25°C/W, and ATmax = Tj +25°C were assumed.

The output power and efficiency are plotted as a function
of operating frequency (fo). -Such operating assumes frequency
optimized RF circuits. While a calculated degradation is evident
the actual observed device degradation of both the grown junction
and Schottky barrier device was much more severe. In fact the
experienced degradation which resulted in the collapse of the
oscillation mode inspite of careful and continuous circuit

~ tuning, was irreversible.

Consequently, in conjunction with the stress test data,
which indicated device degradation due to the compositional
instability of the Au/Sn bond, a meaningful accelerated RF stress
test design without implementing the recommended device modifi-
cations is not feasible.
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1,0 Performance Assessment of POC IMPATT Technology

(2)



KEY IMPATT DIODE PARAMETERS

GaAs Epi layer Doping Profile

Reverse Breakdown Voltage

Effective Mesa Area (Junction Capacitance)
Device Series Resistance

Thermal Resistance

(3)
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METHODOLOGY FOR 20 GHz IMPATT DIODE
PERFORMANCE GROWTH PROJECTIONS

20 GHz IMPATT Diode Performance Improvements
Based Upon Optimization of:

Read-IMPATT Doping Profile

. SDR vé DDR

. LHL vs HL

Junction Geometry

. Single vs multiple mesa

. Distributed mesa

Chip Processing

. Grown vs Schottky junction

. Contact metallization systems

. Etching procedure

. Chip thickness

Chip-Level Combining

. Series vs parallel

. Stabilization approach

Heat Sinking (Thermal Design)

. Minimization of thermal resistance

. Plated versus diamond heat sink (PHS vs DHS)

(5)



RATIONALE FOR 20 GHz IMPATT DIODE
PERFORMANCE GROWTH PROJECTIONS

Yr. Projections Based Upon:

Short-term Read profile optimization within context
of LHL, SDR configuration

Single mesa

Some reduction in chip Rg
DHS packége

Reduced package parésitics
Yr. Projections Based Upon:

More fundamental Read profile. optimization, with
possible utilization of DDR configuration

Exploitation of premature collection mode
Significant reduction in chip Ry
Multiple or distributed mesa, or,

Dual chips/package

Reduced package parasitics

(6)
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IMPATT DIODE RF POWER/EFFICIENCY VERSUS THERMAL RESISTANCE /
JUNCTION TEMPERATURE

1

IMPATT

Poc ™= MOUNT

®
v
)
mn
"

Porr~ PNrF
®Prr = 7 Ppc

.ATj max ¥ Rin Ppe

MAXIMUM RF POWER ADDED- PRF W ——gm=

DC/RF POWER
ADDED EFFICIENCY
(") : PERCENT
N
\
\ N \‘ .r\ 30
~3 =~ \25
m " I~ i S =~30
MAXIMUM “"WORST CASE =~ =
IMPATT JUNCTION TEMPERATURE =20
RISE ABOVE HOUSING ™~ — —_ 25
_ —20
OT jmox= 200°C
- — — = OTjma=160°C
10 15 - 20 25 30

DIODE THERMAL RESISTANCE- Ry, ~°C/W ———tmm

LNR
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IMPATT DIODE RF EFFICIENCY/POWER/ THERMAL RESISTANCE

MAXIMUM RF POWER ADDED @Y7

LNR

COMMUNICATIONS 7/ INC
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20

2S5

DIODE THERMAL RESISTANCE- Riypy= °C/W ———am
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20 GHz IMPATT Diode

Performance Growth Prospects

Performance Parameters Time Period

(Stable Amplifier) Current 1 yr. 3 yrs.
RF POWGI’ Output (w) 1.5 -2.5 3.0 - 4ao 4.5 - 6.0
RF Power Added (W) 1.0 - 1.5 2.0 - 2.5 3.5 - 4.0
Operating Gain (dB) 3.0 - 4.0 4,0 = 5,0 4,5 = 6.0 -
DC/RF Power Added - A - _
Efficiency - Percent 15 - 20 20 - 22 22 - 25
"Al dB BaIldWidth-GHz 1.0 - 1.5 1.5 - 2.0 195 - 205
Diode Thermal Resistance. n - | - -

: o¢ /w o 20 - 30 16. 20 8 - 12
Diode Junction Temperature :
Rise Abovg Baseplate (Max)| 150 - 200 156 - 210 - 150 - 220

=9c ' '

(10)
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CONCLUSIONS OF 20 GHz IMPATT DIODE
PERFORMANCE GROWTH ASSESSMENT

Near Term (1 Yr) Growth Prospects

Significant performance improvement within context
of single-mesa, SDR, LHL-profile Read IMPATT device

Reduced package parasitics permit use of larger
mesa with attendant decrease in Ry and increase in
RF output power

Increase in efficiency based on reduction of Rg and

. further short-<term Read profile optimization

utilization of DHS for reduction in thermal resistance

Long Term (3 Yr) Growth Prospects

Additional increase in performance capability requires
more fundamental advance in IMPATT device characteristics

Higher RF powef capability based upon use of mul-
tiple or distributed mesa chips, either singly or in
dual chip per package configuration

Further increase in efficiency due to more fundamental
Read profile optimization (including possible use of
DDR) and significant reduction in Rg

Concurrent reduction in thermal resistance due to

combination of usage of DHS, larger mesa and/or mul-
tiple chip devices and chip thinning.

(11)



2.0 Performance Assessment of POC Combiner Technology

(12)
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IMPATT. " POWER SECTION" - AMPLIFIER COMBINATORIAL CONFIGURATIONS

A. General Forms of Combination

1. Active (intrastage) divider/combiner
. most compact configuration
. generally limited in bandwidth
. prone to spurious mode oscillations
. catastrophic degradation under rapdom device failure
. requires extremely élosely matched IMPATTs

. generally requires internal isolation resistance
elements.

2. Passive (interstage) divider/combiner

. can be completely reactive for lowest residual insertion
loss

. potential wideband capability
. can accomodate wide dispersion in device parameters

. devices completely isolated from one another thus
precluding multi-diode spurious mode oscillation

. graceful degradation under random device failure

. allows "power-down" operation to conserve prime power,
by "turning off" selected building blocks.

B. Types of Combinatorial Networks

1. Topology

. corporate binary

. N-way Wilkinson

. reactive junction

. extended interaction

2. Transmission media

. waveguide
. planar (microstrip, stripline)
. radial or biconical (extended interaction).

(14)
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RELATIVE MERITS OF ALTERNATIVE 20 GHz POWER
COMBINATORIAL CONFIGURATIONS

The corporate binary configurations in TEM line (in-phase
/Wilkinson, quadrature/branch line and 0-180°/"rat-race")
and waveguide (0 - 90°/short-slot or in phase/magic tee) all
exhibit excessive size and residual inSertion loss.
Moreover the TEM configuration are somewhat difficult to
implement at 20 GHz.

Generalization of the above to an N-way Wilkinson con-
figuration results in a more compact TEM transmission
line implementation (applicable to either passive or
active combining) with moderate residual insertion loss
and port to port isolation. Implementation of the series
balancing resistors is extremely difficult, however, at

20 GHz.

A reactive junction configuration exhibits low insertion
loss but no inherent port to port isolation and hence is
only useable in passive combinatorial configurations with
N circulator coupled "building blocks", such as the IMPATT
amplifier stages. Within this category, the planar TEM
junction is more compact and wider band but the waveguide
junction exhibits the absolute minimum in insertion loss,
and is easier to manufacture, align and accomodate in an
N building block packaging concept.

The extended interaction reactive cavity configuration
applicable to passive and active combining exhibits low
loss, and narrow (radial and waveguide) to wider (biconical)
bandwidth.

Preferred configuration for passive combining of 20 GHz

circulator-coupled IMPATT "building blocks" is waveguide
reactive junction.

(17)



METHODOLOGY FOR 20 GHz IMPATT AMPLIFIER COMBINATORIAL
TECHNOLOGY PERFORMANCE ASSESSMENT

Assume following apportionment of passive and active RF
power combining:

. active combining limited to maximum of two IMPATT
chips (in individual or in single package(s)) per
amplifier stage '

. passive combining comprising N identical circulator

' coupled n-stage "building blocks" (n=1 or 2) paralleled
between identical N-way power divider/combiners, of
optimum waveguide reactive junction type.

Assume IMPATT diode parameters @ 20 GHz
. Py =1.5, 3, 6%¥/chip
. Gain: 4.0-6 dB at nominal drive level

. RF/DC power added efficiency: 16, 20 and 25 percent

Compare alternative combiner configurations in conjunction
with above diode parameters:

. using half, the same number and twice as many IMPATT

diodes as in current POC model amplifier design

. providing 20W (current specification) and 40w (advanced
capability) RF output power capability (Pgrp) at 20 GHz.

(18)
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ALTERNATIVE
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— out
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RATIONALE FOR 20 GHz IMPATT AMPLIFIER
COMBINATORIAL TECHNOLOGY PERFORMANCE COMPARISON

Performance comparison based upon near-term and long
term RF power output capability, e.g:

. 20W - representative of current POC model amplifier
specification

. 40W - representative of potential IMPATT amplifier
capability in the 1987 time frame.

Selection of IMPATT diode RF power outpﬁt per chip, in
combinatorial "building block" amplifier stage deploy-
ment, based upon:

. current to near term realizeability of 1.5 to 3W RF
power output per chip, at 16 to 20 percent power added
efficiency

. 1long term projection of 6W RF power output per chip, at
25 percent power added efficiency.

Selection of number of IMPATT chips used in each
"building block" output stage based upon:

. maximum practical number of IMPATT diodes per amplifier
stage limited to two, to minimize the impact of ex-
cessive combinatorial loss, stringent tolerances on
diode parameters, catastrophic stage degradation on
single device failure, and tendency toward spurious
oscillations

. near term combining of two individually packaged IMPATT

chips, and long term combining of two chips per diode
package.

(21)




20 GHz. IMPATT COMBINATORIAL POSTAMPLIFIER

CONFIGURATIONAL PERFORMANCE TRADEOFFS

Time Period

Parameter

0 -1Yr, 3 Yrs,
Order of Combiner (N) 4 8 8 4 4
# Stages/Building Block 2 2 2 1 2
Building Block Gain-dB 9.0 9.0 9.0 | 5.6 9.0
Building Block RF Power - »
Output - W 506 ) 2'8 506 5.25 1102
RF Power-Added/Diode - W 1.8 0.9 1.8 3.6 4.0
DC/RF Power Added Efficiency
: per diode - percent 20 16 20 25 25
Thermal Resistance per |
Diode (degrees C/W) 18 25 18 10 10
Maximum Diode Junction Temp, .
Rise above Baseplate (deg.C) 162 142 162 144 169
Overall Gain (dB) 17.5 17.5 17.5 15 . '17.5
‘Total RF Power Output (W) 21.5 21.5 43 20 43
Total DC Power Drain (W) 124 152 245 88 196
Overall DC-RF Power - e ~
Added Efficiency - Percent 17 13.8 o 22 21.5
Degradation in RF Oﬁtput ' ) o _
Power per ''Building Block" 1.5-4.8 | 0.75=24 | 0.75-234 | 1.1-2,2 ) 1.5-4.8
Failure (dB)

(22)
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1.

CONCLUSIONS OF IMPATT COMBINATORIAL POSTAMPLIFIER
COMBINER TECHNOLOGY ASSESSMENT

Preferred Combinatorial Configuration(s)

. Passive interstage combining preferred to active
intrastage combining, primarily on basis of its
accomodation of wider dispersion in device para-
meters, greater immunity to spurious oscillation and
more graceful degradation under random device failure

. Above considerations limit degree of active combining
to maximum of two diodes per amplifier stage

. WaVeguide N-way reactive junction preferred combiner
implementation based upon its ultralow insertion loss,
wide band width and simplicity.

Combinatorial Postamplifier Performance Assessment

. Preferred near term 20W combinatorial postamplifier
(basis for POC design) utilizing 4 way divider/combiner
and four 6W two-stage "building blocks" (each with
two 3W diodes in its output stage) is most compact,
highest DC/RF efficiency configuration, based on current
near term 20 GHz IMPATT diode technology.

. Eight way combinatorial 20W configuration provides
even more graceful degradation capability than the
the above, but only at the expense of higher DC prime
power drain and greater size and complexity.

. Eight way configuration is only viable combinatorial
post amplifier for 40W capability using near term
technology

. Preferred long term 20W combinatorial postamplifier,
utilizing four 6W single stage, single-diode "building
blocks between four-way divider/combiner, provides
optimum efficiency concurrent with minimum size and
weight

. Four way cobminatorial postamplifier, utilizing four
12W two stage "building -blocks" (each with two 6W diodes
in its output stage) results in the most eff1c1ent and
compact 40W configuration.

(23)




2.0 1987 IMPATT Transmitter Technology Assessment Study

(24)



RECOMMENDED ADVANCED 20 GHz IMPATT
TRANSMITTER DESIGNS USING 1987 TECHNOLOGY

1. 20%, 2.5 GHz BW design

2. 40%, 2.5 GHz BW design

(25)



RATIONALE FOR ADVANCED 20 GHz IMPATT
TRANSMITTER DESIGN RECOMMENDATIONS

2.5 GHz transmitter bandwidth can accomodate
single Gb/s rate angle modulated carriers.

20W design compatible with current ground terminal
projections

40W design compatible with smaller, low cost, possibly
mobile ground terminals.

Higher efficiency associated with 20W and 40W designs,
results in tolerable DC power drains for IMPATT trans-

mitters. .

(26)
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PROJECTED CHARACTERISTICS OF 20W, 20GHz

IMPATT SOLID-STATE TRANSMITTER DESIGN

FREQUENCY RANGE
-1 dB BANDWIDTH (MIN)

RF POWER OUTPUT (MIN)
OPERATING GAIN (NOM)
RF/DC POWER-~ADDED EFFICIENCY (MIN)

AM/PM CONVERSION (MAX)
INPUT/OUTPUT VSWR (MAX)

GAIN VARAITION VS. FREQUENCY @
FIXED DRIVE

NOISE FIGURE (MAX)

DC PRIME INPUT POWER-(MAX)

LNIR

COMMUNICATIONS / INC
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17.7-20.2 GHz (Typ)
2.5 GHz

20W
40 dB

22 PERCENT (EXCLUDING DC POWER
MONITOR CONDITIONER)

5.0 deg/dB
1.25:1

1.0 dB p-p

15 dB

90W - EXCLUDING DC POWER/MONITOR
CONDITIONER
100W. OVERALL




DN 4/ SNOILYIINNWINOD

@lNIT

ATLLINCNGIL ALUIC AII0S  ZHDOZ ‘wQb 40 WEHTVIA %I0G

(S) 300IQ LIY4WMl M2I = =T . C.LOALO0
a0a L M7 = 'T AOSNIS [[HINOLIANGD F———+— WOLINOW

<) 30014 LLYAMI M = °J FAMNAIAWALE FAOLINOW —  AALANTAL
i .4

i}
140 S H AHHT S €0g iawn . ano
_b.Tﬁ:EE 140d z_%zz_msat_ Cr o om e MA SVIR 1L bW
N e o W - . />> QU Uvawl
_ R G SuIa LU [ LA
i ASUYT4 Q12 WA - MGG 1Lgdwi| 3304
ES {0 f9 YD p~—HYANCHIE Nigwa 134 04 |
IS | WS forntip- N Sy 3190LT| AL
BNID s LOd N
3l L= )8 NEef
_ Mﬁ_ ..... N s N A0 24
DR @Y@«@%yifgéﬁi i SUOLYINOT INLION
< ‘ NS 0 |
Wl LS S| T L MOLY0EL
VAQ_ ¥ _m_m_ ‘1 Al “ LOAN |
e El e - 1. ——O
| I LN
| AN - “ .ux

l | - _
e MNOWIIAS  WAMUA  LLGAW \——<— N0 WIS WANYA VA4 —]

(29)



PROJECTED CHARACTERISTICS OF 40W, 20 GHz

IMPATT SOLID-STATE TRANSIMITTER DESIGN

FREQUENCY RANGE 17.7-20.2 GHz (Typ)
-1 dB BANDWIDTH (MIN) 2.5 GHz

RF POWER OUTPUT (MIN) ' 40

OPERATING GAIN (NOM) 40 dB.-

RF/DC POWER-ADDED EFFICIENCY (MIN) 21 PERCENT (EXCLUDING DC POWER
: MONTTOR CONDITIONER)

AM/PM CONVERSION (MAX) i 6.0 deg/dB

INPUT/OUTPUT VSWR (MAX)  1.25:1

GAIN VARIATION VS. FREQUENCY @ 1.0 dB p-p

FIXED DRIVE

NOISE FIGURE (MAX) 17 dB

DC PRIME INPUT POWER- (MAX) | 190W - EXCLUDING DC POWER/MONTTOR
CONDTTIONER

200W OVERALL

LN

COMMUNICATIONS 7 INC
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C.
D.

TASK DESCRIPTION FOR DEVELOPMENT OF ADVANCED
20 GHz IMPATT TRANSMITTER

Design Definition

1.

2.

3.

Parametric tradeoff analysis

Technoldgy assessment

Preferred paper design

Device/Assembly Development

1.

3.
POC

Advanced GaAs IMPATT device development

optimization of Read doping profile

optimization of chip mésa geometry

maximum degree of substrate thinning for minimum RS
minimization of packaging parasitics

chip combining within package

use of DHS for minimum thermal resistance

Advanced amplifier circuit development

broadbanding of IMPATT and FET amplifier stages and
associated passive components for full 2.5 GHz band-
width.

dual diode IMPATT amplifier stagé development

development of higher gain lower noise FET preamplifier
circuits.

DC Power and monitor conditioner development

Model Design, Fabrication, Assembly and Test

Qn/Reliability

1.
2.

Reliability Analysis

Product Assurance

Documentation
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