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PROJECT SUMMARY 3 1176 01353 1166

Three-dimenslonal unsteady viscous effects can significantly influence

the performance of fixed wing and rotary wlng aircraft. These effects are

important in particular for the flow about a helicopter rotor in forward

flight and the flow about a three-dimensional (swept and tapered)

supercrttical wing at transonic speeds. In both cases, the viscous boundary

layer is predominantly thln and exhibits regions of reverse flow in the

streamwlse and/or spanwise direction. Clearly a computational procedure that

can calculate such flow fields would be of great value in the design process

as well as in understanding the flow phenomena.

A new computational procedure specifically designed to handle such

problems has been developea which bridges the gap between the

Invlscld/boundary layer and Navler-Stokes approaches in that it Is of

sufficient generality to compute regions of reverse flow yet is efficient and

user-orlented. Hence, the major objectives of the current effort were to

adapt this technique to treat three-dlmenslonal unsteady turbulent flows and

validate the procedure by comparing the predictions to experlmenal data.

These goals have been achieved by considering the experimental data of

Karlsson, i.e. two-dlmenslonal unsteady oscillating turbulent flow over a

flat plate. Two-dlmenslonal calculations were performed and the results

agreed both qualitatively and quantitatively with the data. Thereafter, the

analagous three-dlmenslonal case was considered which was obtained by a

coordinate rotation to yield the flow over a flate plate skewed at 45 ° to the

freestream direction. The results of this computation also agreed well with

both the two-dlmenstonal results and Karlsson's data, hence validating the

computational procedure in three dimensions. In addition, new inflow

boundary condltlons were developed and an explanation was proposed to resolve

the discrepancy concerning other previously reported predictions of the skin

friction phase lead angle as a function of reduced frequency.

The computational procedure which has been validated in the Phase I

effort can have a significant impact in the design of both rotary and fixed

wings by predicting the onset of separation and the flow properties through

r regions of reverse flow. In addition, wlth the inclusion of a dlsplacment

thickness interaction option, the procedure can be made more general and can

aid in transonic flutter and buffet aerodynamic analyses where interaction is

important. Furthermore, the calculation procedure can be extended to handle

oscillating control surfaces in a three-dlmenslonal flow.
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ANALYSIS

Introduction

In recent years there has been increased attention given to three- -

dimensional unsteady aerodynamics. Such flows manifest themselves over fixed

wing and rotary wing aircraft. Fixed wing aircraft are designed to be

nominally steady with the unsteady effects being introduced through either

control surface motions or induced external oscillations. These phenomena

are observed in flow about wings throughout the Mach number regime; subsonic,

transonic, and supersonic. The unsteady effects will influence loss levels

as well as lift and moment coefficients. As the speed increases beyond

subsonic into the transonic regime, additional effects such as flutter,

buffeting and aileron buzz may arise. Since the new generation of energy

efficient transports will be operating in the transonic range, the prediction

of the onset of these phenomena under transonic conditions will play a

significant role in the design process. Furthermore, the accurate prediction

of the aerodynamic loading during the unsteady flow phase is crucial in

prescribing the correct input for aeroelastic analyses. As a result of the

three-dimensional nature of the transonic supercritical wings i.e. taper and

sweep, the flow structure will be three-dimensional, while the oscillating

recompression shock will cause regions of reverse flow to exist in the

streamwise and/or spanwise directions.

In contrast to fixed winged aircraft, the flow about a rotary wing is

designed to operate in an unsteady environment. The flow about a helicopter

rotor in forward flight is periodic and exhibits substantial unsteady

transonic effects. As a consequence of the vortex-wake interaction of the

advancing blades, broad band frequencies are excited having large amplitude

oscillations relative to the blade. This flow is also highly three-

dimensional with regions of reverse flow existing in the streamwise and

spanwise directions.

Concurrent with these developments has been an increased effort to

better understand these phenomena by conducting three-dimensional

unsteady wing experimental programs (cf. Ref. I, 2) and applying inviscid

computational procedures to these problems (e.g. Ref. 3, 4). The results of

the numerical calculations in conjunction with the experimental data



indicate that the observed phenomena are strongly influenced by viscous

effects near the body surface which are not accounted for by the inviscid

predictions. These viscous effects are concentrated within a region that is

predominately thin except for localized regions of reverse flow in the
oP

streamwise and/or spanwise directions. Hence, there is clearly a need to

compute these viscous effects in an efficient and economical manner.

There are several possible approaches available for computing

three-dimensional viscous flows, ranging from empirical models to

sophisticated treatments based on the solution of the three-dimensional

time-dependent Navier-Stokes equations. Due to the complex structure of the

flow the _npirical approach is too restrictive. At the other end of the

spectrum is the three-dimensional time-dependent Navier-Stokes analysis.

Even though such procedures have been developed at SRA and have been applied

successfully to a variety of problems (Refs. 5, 6, 7), such a technique is

not required for many of the viscous layer type problems ocurring on wings in

which the static pressure is sensibly constant across the viscous layer.

Therefore, an approach is sought which allows the static pressure to be

imposed at the boundary layer edge, but which can be used in

three-dimensional flows having streamwise and/or crossflow separation.

When the flow is steady and contains little or no separation, standard

boundary layer prediction schemes have reached a high level of sophistication

and predictive accuracy, even in three space dimensions. In unsteady flows,

such as are commonly encountered in rotary winged aircraft and fixed winged

aircraft at transonic speeds, some progress has been made in two space

dimensions but little to date has appeared on unsteady three-dimensional

boundary layers, especially for cases where negative cross flows are

encountered, i.e., the spanwise component of velocity changes sign. To be of

practical value, time-dependent three-dimensional boundary layer prediction

schemes require high computational efficiency and transient accuracy coupled

to the ability to treat arbitrary cross flow profiles. Conventional boundary

layer integration schemes have developed by forward marching the streamwise

velocity in the streamwise direction and simultaneously marching along the

positive spanwise direction. However, in cases where there is "reverse cross

flow", one must resort to specialized differencing to march a solution

through such a region.
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Recently, conventional boundary layer developers have applied an

implicit spanwise construction to remove the restriction of only positive

cross flows. Lin and Rubln (Ref. 8) in their predictor-corrector boundary

region solutions for flow over a yawed cone at moderate incidence have also

shown that retaining diffusion in the spanwise direction not only eliminates

the problems associated with negative cross flows, but improves upon the

solutions obtained by standard three-dlmensional boundary layer techniques. _

Furthermore, with these spanwise implicit approach boundary conditions

applied at the tip the flow inboard would be influenced, if required by the

physics of the flow.

As a consequence of these observations, a spanwise implicit formulation

(retaining spanwise diffusion) is essential for both rotary and fixed wing

applications, and it can be obtained for a very modest increase in code

computational labor. Based on the experience in Refs. 9 and 10, the spanwise

implicit sweep only results in a moderate increase in computational effort

relative to the explicit spanwise marching approach. The extension of the

conventional three-dlmensional boundary layer equations to allow spanwise

diffusion is easily accomplished, and in view of the improved physical

representation, it has been implemented in this effort.

Since the solution is being time marched, the opportunity to take a

streamwise implicit sweep at roughly the same cost as the explicit sweep

(forward march) does arise. If an implicit streamwise structure is adopted,

then full time linearization can be utilized. That is the linearization of

the nonlinear terms is performed about the known time level, rather than a

known spatial marching level. As is pointed out in Ref. I0, it is easier to

obtain a consistent high order accurate spatial-temporal linearization by

marching in time than in space. Further, by structuring implicitly in the

space marching direction, regions of axial reverse flow would not present a

computational stability problem. As a result of these combined benefits an

implicit structure in all three spatial directions has been employed in this

effort. "

Since a full 3-D spatial integrationis carried out at each time step of

a transientcalculation,spatialaccuracy plays a very important role in the -

overall efficiencyof the numericalmethod. The major goal of any spatial

differencingscheme is to achieve a desired level of accuracy for the mimimum

number of grid points. In addition, the scheme should be able to suppress



6scillations associated with coarse grid calculations, i.e. cell Reynolds

number stability condition, without overly smearing the solution; a

consequence of adding excessive artificial dissipation. Such a method (QR

operator), to be discussed in subsequent sections, has been developed and is

described in detail in Refs. II and 12. The QR operator scheme permits among

its many options fourth order accurate spatial approximations.

In this report the implementation of a computer code for the efficient

solution of three-dimenslonal tlme-dependent viscous flows on fixed and

rotary wing aircraft is described. The Linearlzed Block Implicit (LBI)

technique of Briley and McDonald (Refs. 13 and 14) is employed in conjunction

with QR operator technique to solve the present approximate form of the

turbulent Navler-Stokes equations which are derived for nonorthogonal

coordinates in generalized tensor form. The rationale for the choice of this

approach is discussed in detail in Refs. 14 and 15.

The basic assumption made in the derivation of these equations is that

the pressure does not vary normal to the shear layer, and is obtained from an

inviscid analysis. Inherent in this assumption is that the shear layer is

thin. Since the boundary layer remains thin over most of the wing, except

perhaps near the tip, it is expected that this assumption should not limit

the applicability of the present approach.

It is also assumed that for the energy equation the stagnation

temperature, To is constant. This assumption is a good approximation for

the flow fields considered as discussed in Ref. 7, and is included here only

for purposes of computer run economy. In the analysis that follows, the full

energy equation could equally well have been used with consequent increase

in computer run time. Employing the equation of state which relates the

pressure p to the velocity components u and w by an algebraic equation, the

problem with To assumed constant can be reduced to one involving only the

three velocity components, u, w and v and three equations, the streamwlse and

spanwlse momentum equations and the continuity equation. Hence, a

block-three system is considered. If the full energy equation were to be

considered, a block-four system would result due to the inclusion of the

temperature as an additional unknown and thus would result in an increase in

computer run time.



For turbulent flows, a two-layer mixing length model is employed and its

formulation in generalized tensor notation is given. A novel method is

employed for solving the continuity equation in conjunction with the momentum

equations. In the following, a description of the computational procedure is

given including, coordinate systems, governing equations, turbulence model,

and numerical technique, i.e. QR operator and Linearized Block Implicit

schemes. Thereafter, the computer code is described. Following this a

detailed discussion is presented of the computations conducted, and the

results obtained in meeting the Phase I objectives.

Coordinate System

Since the goal of this effort is to solve for the flow over wings and

rotors an understanding of the type of geometries to be considered is

essential to guide the choice of the coordinate system and the structure of

the computer code. The coordinate system is not only dependent upon the

geometry of the wing, but also upon the approximations that are made to the

governing Navier-Stokes equations. As in boundary layer theory, the present

approach assumes the pressure is constant normal to the shear layer.

Inherent in the assumptions is that the shear layer is thin. As pointed out

by Howarth (Ref. 16) the boundary layer assumptions lead to the conditions

that one coordinate direction must be normal to the body surface while the

other coordinate directions must lle on the body surface. These conditions

uncouple the metric data on the surface from that in the normal direction.

Hence, the metric data for the surface coordinates are functions of the

surface coordinate§ alone, while the metric data for the normal coordinate

direction are functions of that coordinate alone. The choice of the surface

coordinates is rather arbitrary and is based on considerations such as the

ease of construction of the grid distribution on the wing surface.

For example, a rectangular planform wing could be adequately described with a

Cartesian coordinate system. However, for more general planforms such as a

swept and tapered wing a nonorthogonal grid which conforms with the

boundaries is preferred since it represents the airfoil more accurately

(cf. Fig. I).

Another consideration is the selection of a coordinate grid

distribution; the major objective being the resolution of large solution



gradients. The approach taken here is to construct coordinate trans-

formations that contain distributions for physical mesh points. In this

context, the uniform mesh of computational space is simply mapped into a

suitable distributed mesh in physical space. When the transformation

contains the mesh point distribution, there is no need to construct the

apparatus for the discrete approximation of derivatives on a nonuniform

mesh. This results in a savings in both computer logic and storage.

Hence, in this work a coordinate system is chosen that conforms with

the boundaries of the physical domain, i.e., the wing surface which in

general will be nonorthogonal with provisions made for analytical grid

transformations (Ref. 17) in each coordinate direction.

In view of the type of geometries to be considered and the assumptions

made to obtain the equations, a specialized nonorthogonal coordinate system

is advocated where the metric tensor which has four independent components is

given by

gJl gze 0

gij = g12 gzz 0

0 0 g33

The subscripts 1 and 2 refer to the directions on the surface of the body

while subscript 3 refers to the direction normal to the body. Since the

metric data in the coordinate directions on the airfoil surface are not

functions of the normal direction, the metric data in a parallel surface
o

above the body are evaluated on the body surface (Ref. 16). Furthermore, due

to the use of nonorthogonal coordinates it becomes advantageous to derive the

equations in general nonorthogonal coordinates employing generalized

tensors. Details of the generalized tensor notation can be found in

Refs. 15, 18, and 19.

An important feature of the analysis to follow is that the governing

equations which are derived, under the prescribed assumptions, are invariant

for any coordinate system or any grid transformation (although, of course,

the physical approximations are coordinate dependent). The grid

transformations are absorbed into the geometrical coefficients, leaving the

equations unaltered in form. This feature allows for the construction of the
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geometric data to be contained in a single subroutine with the definition of

the metric data and their derivatives as input.

In Ref. 21 the geometric properties of a surface in three-dimensions

are discussed and where appropriate, the generalized tensor equivalents are

given. In addition, a symmetric (uncambered) NACA four-digit airfoil is

considered and the pertinent geometric coefficients are presented.

Governing Equations

In the following, the governing equations are nondimenslonalized

as follows, xi with respect to the characteristic length L, the velocity

with respect to U=, density, pressure and temperature with respect to p=,

p_U_ and U=2/Cp respectively and time with respect to L/U=. The

viscosity is nondlmenslonallzed with respect to p_o.

Continuity Equat ion

OP + I (jpuk) =3- ,k o (1)

where J is the Jacobian, p the density, and uk is the kth contravariant

velocity component

Momentum

+

the i-th momentum equation in the ei direction

2 /.z. )'kro,.,,+uku'lk] -,k(p.,_YPL Ot
• (2)

+gmk[ /..z.ui p.

where ',k' denotes a partial derivative, 'Ik' denotes a covarlant

derivative and glk is a component of the metric tensor and A is the .

l

velocity divergence.

In Ref. 21 it was pointed out that the QR Operator scheme requires that

the governing equations be in quasi-llnear form and that the spatial operator

in a given direction operate on only one variable. For the momentum equation

this requirement prevents the implicit treatment of certain diffusion terms

that arise due to the curvature effects. In the usual boundary layer



approximations these explicitly treated terms would not appear in the

equation since they are of order 0 (Re-I/2) or smaller, and should,

therefore, be of little consequence.

Since mixed partial derivatives are commonly treated explicitly in

orthogonal coordinate systems, we do likewise in generalized nonorthogonal

coordinates and extend this concept to include mixed second covariant

_o derivatives. All other second covariant derivatives are retained as

implicit. Since the pressure is specified and impressed upon the viscous

layer, its specification replaces the normal momentum equation. Thus, the

streamwise and spanwise momentum equations are the only two retained. A more

detailed discussion of the derivation of these equations is given in Ref. 21.

Energy Equation

For the energy equation constant stagnation temperature is assumed.

Neglecting the square of the normal velocity with respect to the squares of

the other velocity components

g|zl
+ w_) += T + -_ (up2TO

hjhe UpWp (3)

where Up and Wp and the physical velocity components. These assumptions

are employed here only for simplification purposes. If warranted, they can

be removed and the full energy equation can be considered.

Equation of State

The equation of state assumes a perfect gas and is given by

_-!
P = ----pTZ (4)

Linearizations

The following analyses assume a set of linear partial differential

equations. However, the convective part of the momentum equation and the

continuity equation are nonlinear, containing terms that involve the product

of density and velocity components. In order to overcome this difficulty,

the procedure described in Ref. I0 is employed to linearize the

aforementioned terms by Taylor series expansion about the known time level

solution.

9



It is important to note that in the governing equations the

contravariant velocity components are used. However, as noted in Ref. 22, it

is advantageous to solve for the physical velocity components. Therefore,

when the governing equations are subsequently cast into a form amenable to

the application of the LBI scheme, they are transformed so that the physical

velocity components appear. [
i

Turbulence Model !

In turbulent flow cases, the three-dimensional ensemble-averaged 1i

turbulent flow equations are considered. The approach taken here assumes an

isotropic turbulent viscosity, BT, relating the Reynolds' stress tensor to

mean flow gradients. Using Favre averaging (Ref. 23) the governing equations

then are identical to the laminar equations with velocity and density being

taken as mean variables and viscosity being taken as the sum of the molecular

viscosity, _, and the turbulent viscosity, _T"

At this point additional closure assumptions for the Reynolds stresses

are required, i.e., the evaluation of _T" There are a variety of

approaches available, from the slmpler mlxlng length models to the more

complicated one and two-equation models. Since the intention here is to

verify the code's performance in wall bounded cases, the mixing length model

which has worked well in the past for similar flow environments (Ref. 24) was

chosen. The extension to more complex models could be undertaken at a later

time if warranted. At that time, the LBI procedure that is used for the

solution of the momentum equation could be applied to the kinetic energy of

turbulence and the turbulent dissipation equations.

Employing the Prandtl mixing length concept, the turbulent viscosity is

given as

L

where _ is the mixing length and @ is the dissipation function, which in

generalized tensor notation is given by

j .

C_ = -_-e II ei j (7)

i0



As in the Cartesian tensor formulation, € does not automatically reduce to

the dominant term for standard boundary layers, i.e., _u/_y in two dimensions

and ((_u/_y)2 + (Bw/_y)2)I/2 in three dimensions. Hence, provisions are

made in the computer code that on option retains only the dominant components

of the strain.

The mixing length formulationis based on McDonald's model (Ref. 25),

and is given by
Ky

(8)
where £. is the outer layer length scale and

.._: I- exp(-y+/A+) (9)

where y+ takes on its usual meaning. The constants appearing in Eqs. 8 and

9, _,% and A+ are .4, .09 and 26.0 respectively and 6 is the local boundary

layer thickness defined as .995 Ue. Note that in the limit as y.0 Eq. 8

reduces to

li=kY _

while for y large Eq. 8 reduces to

lo : lm
the standard two layer values.

Spatial Difference Approximations

QR Operator Notation

In this section, implicit tridiagonal finite difference approximations

to the first and second derivatives and to the spatial differential operator

are considered. The QR operator procedure for generating a variety of

spatial discretizations is also introduced. As special cases, standard

second-order finite differences, first-order upwind differences, fourth-order

operator compact implicit (OCI), fourth-order generalized OCI and exponential

type methods are obtained. Since all these schemes are of the same form

(cf. below), a single subroutine which defines the difference weights is all

that is required to identify the method, while leaving the basic structure of

the program unaltered. The rationale for the use of the QR approach in the

present problem is discussed in detail in Ref. 14.

ii



The QR formulation allows for ADI methods and permits the treatment of

systems of coupled equations, i.e., LBI method_. Although variable mesh

schemes can be employed within the QR framework, it is believed preferable to

use analytic transformations to obtain a uniform computational mesh, hence

attention is restricted to uniform mesh formulations.

The general concepts and notation will be introduced for two-point

boundary value problems and then the methodology will be extended to more

general linear and nonlinear parabolic partial differential equations in one

dimension. The application of QR operator method to multidimensional

problems is discussed in the section pertaining to the LBI scheme.

Consider the two-point boundary value problem

L(u) " o(X)Uxx + b(x)u x + c(x)u = f(x) (lO)

with boundary values u(0) and u(1) prescribed. Derivative boundary

conditions, although not discussed here, can easily be incorporated into the

framework of the QR operator notation. Let the domain be discretized so that

xj = (j-l)h, j= i, 2, . . , J + I, and Uj_u(xj), Fj_

Ux(X j), Sj_uxx(X j) and h = I/J is the mesh width. The numbering

convention was chosen here to be compatible with FORTRAN coding.

Without loss in generality for a(x) _ 0, Eq. (I0) can be divided by

a(x) so that we may treat instead the following equation

L(U) • Uxx + b(X)Ux+ C(X)LI = f(x) (11)

where

b(x) l _'(x)/'o'(x), c(x) I _'(x)/Flx) ond f(x) -Tlxl/o'(x)

Substituting the finite difference approximations to the first and

second derivatives

DO - Uj,,.I
2h Uj = Ui+12h - Fj = Ux(X j) + O(h z) (12)

D.D_ Uj_I- 2Uj +Uj.I
h_ Uj = h2 = Sj •Uxx(X j) +O(h z) (13)

into Eq. (ii) and rearranging, we obtain

12



[ b] [ 21o[ ,14L(u) - -_ _-h ul-' + J- _ J+ -_- . 2h uj.,

or

where Rcj = hbj is the cell Reynolds number.

Equation (15) can be generalized by introducing operator format, i.e.,

• h2(q;fj. + c 4rjUj., + r_Uj + r;Uj,, , qj fj + qj fj.,) (16)

where the superscripts (-) minus, (c) center, and (+) plus indicate the

difference weight that multiplies the variable evaluated at the (j-l), (j)

and (J+l) grid points respectively, and where the rj's and qj's for grid

point j are functions of h, bj_l, bj, bj+l, cj_ I, cj and cj+ I.

Comparing Eqs. (15) and (16) we can identify the rj's and qj's viz.
J

r; - I- Rcj /2 q; = 0

c hZcj-2 q_ = I (17)rj =
!-

rj = I + Rcj/2. q; = 0

We now define the tridiagonal difference operators Q and R

R Uj - r;uj_ I + rj +Uj+ I
(18)c 4o[,j]-_;,j-.+,j,j . _j,j..

Noting that L(u) = f and substituting Eq. (18) into Eq. (16), we obtain

,[o,].,,o[,,].,.o[_cu))] _,,
13



Alternatively by employing the inverse operator Q-I an expression for

L(u)j can be obtained

!

L(u) l = --_ 0 -I RUj (201

For standard central finite differences Q = Q-l = I, the identity

matrix, so the spatial operator can be given explicitly in terms of Uj_I,

Uj and Uj+ I. However, in general, for higher order methods whereas Q is

trldlagonal Q-I is a full matrix, and the spatial operator cannot be given

explicitly in terms of the variables at adjacent grid points. Hence, Eq.

(20) provides a method for expressing the spatial operator for a wider class

of difference approximations. The formalism in Eq. (20) is also applicable

for first and second derivatives appearing alone (cf. Ref. II). In Refs. 12

and 14 a technique due to Berger, et al is described for constructing fourth

order trldlagonal methods which possess a monotonlclty property as the cell

Reynolds number is increased, Rc . =. This type of scheme is an option in

the computer code.

Application to Coupled Nonlinear Parabolic Equations

Before considering the LBI technique, we discuss some of the

limitations placed on the QR operator scheme in solving a system of nonlinear

parabolic equations.

Given a system of m nonlinear parabolic equations in m unknowns,

i_ n*B At - - Ni (ul,u 2, .,-.Um, Xl,X2,X3,t) = 0
= oij

n+B J = 1,2,...,J+l
where Ni is a quasilinear spatial operator, the QR formalism carries

directly over provided that for any equation only one independent variable is "

operated upon by the differential operator. For example,

!

o(u,w,v) ut =Uxx+ b(u'v'W)Ux+ c(u,v,w]

14



is allowed since x derivatives of u only appear, while

!

o(u,w,v)ut"uxx+ b(u'v'w)ux+ c(u,v,w)+ d(u,v,w)wx
is not allowed since x derivatives of both u and w appear. The approximate

form of the unsteady Navier-Stokes equations used here, when written in

quasi-linear form, falls within the class of allowable differential

operators. Thus, for the problem being addressed in the present study, the

OCI schemes are applicable. Note that within the splitting approach,

nonallowable terms in the OCI scheme such as dwx above, may be split off

and treated by a special implicit sweep. Provided care is taken and for

instance the Douglas-Gunn (Ref. 26) formalism is adhered to, no particular

problem arises other than the cost of an additional implicit sweep which is

incurred.

Thus, multidimensional problems and/or more general equation forms

can usually be accommodated by a splitting procedure, which reduces the

differential operator to a sequence of one-dimensional problems which

have the appropriate allowable form. However, as with standard finite

differences, to avoid the cost of additional implicit sweeps, special

procedures must be applied to cross derivative terms, e.g., extrapolation or

explicit treatment.

Linearized Block Implicit Scheme

Consider a system of nonlinear partial differential equations

where _ is a vector of unknowns and T is a source term vector which is a

function of xI 2 3, x , x and t. Extension to source terms which are functions

of _ are discussed in Ref. (I0). D is a three-dimensional nonlinear

differential operator and the matrix• A appearing in the momentum equations is

equal to pl where p is the density and I the unity matrix.

. Equation (21) may be centered about the n+B time level, i.e. tn+B =

(n+B)At = nAt+BAt = tn+BAt, and written

- = + _ (22)

15
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where 0 < B < I is a parameter allowing one to center the time step, i.e.,

B = 0 corresponds to a forward difference, B = I/2 to Crank-Nicolson and B =

1 to a backard difference.

After linearizing Eq. (22) by Taylor series expansion in time about the

nth time level by the procedure described in Ref. I0 to give a second-order

linearization, we obtain

where _ is the linearized differential operator obtained from _,

The difference between the nonlinear operator _ and the linear

operator _ is defined as Mn = _n _ _n At the intermediate level

n + B, _n+B is represented as

Using these relationships and dropping the vector superbar for convenience a

two-level hybrid implicit-explicit scheme is obtained

An( c_n+l cI_n)/At _n(cI)n+! c_n) +.2_nc_ n + M" C_n + n+p- = -- (25)

The vector _n+B represents all of the terms in the system of

equations which are treated explicitly. More about this will be said later,

but for the moment note that _n+B may be approximated to the requisite

order of accuracy by some multilevel linear explicit relationship, or

approximated by _n with a consequent order reduction in temporal accuracy.

The operator _ is now expressed as a sum of convenient, easily

invertible suboperators _ = _i + _2 + .... _m" In the usual ADI

framework these suboperators are associated with a specific coordinate

direction. Further, it is supposed that these suboperators can be expressed

in the QR notation introduced earlier. Writing _n+B and Mn_ n as a

single source term Sn+B, Eq. (25) is written as

- . - + + (26)

16



To solve this system efficiently it is split into a sequence of easily

invertible operations following a generalization of the procedure of Douglas

and Gunn (Ref. 26) in its natural extension to systems of partial

differential equations. The Douglas-Gunn splitting of Eq. (26) is written as

the following three-step procedure

,,"[."__>"]/,,,:_.t,[."-."]+_-_2[*"-*"]+[-',+.t,"+.t._]."+_"+_
: [.'"-."}/,,,:_._,[*"-*"}+n.12[**'-*"]+_l_[.'"--."]

{_,. "+_,"]..+_.+_,+ £I e (27)
i

which can be transformed to the alternative form

If the intermediate levels are eliminated, the scheme can be written in the

so-called factored form

(An __Att_nXAn_-I(An__lAt!.znxAn_i (An_,8AIj3n)(_n+i _¢n) _ (29)

At( .,Laln + .,LI2n +.._3 n) _>n+ At Sn+'B

The ADI formulation given in Eq. (28) is directly applicable for _i

operators represented in Q-IR operator format. Consideration of

intermediate boundary conditions and the removal of the inverse operator

Q-I is given in Ref. 21.

" It is worth noting that the operator _ or _ can be split into any

number of components which need not be associated with a particular

coordinate direction. As pointed out by Douglas and Gunn (Ref. 26), the

criterion for identifying sub-operators is that the associated matrices be

"easily solved" (i.e., narrow-banded). Thus, mixed derivatives and
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complicating terms which might inhibit the use of OCI can be treated

implicitly within such a framework, although this would increase the number

of intermediate steps and thereby complicate the solution procedure.

An inspection of Eq. (28) reveals that only the linearized oPerators

_n, _n and _n appear. Indeed, the computer code employs this feature by
1 2 3

evaluating these three operators before the first sweep, storing them and

accessing them as needed in the subsequent three sweeps. In addition, the

terms arising from the nonlinear terms are immediately absorbed into Sn+B

as they appear, allowing for an efficient evaluation of the terms in the

differential equations.

The spatial operators appearing in the differential equations

n n

_I' _ 2 and "_3 must be identified at least formally in order to isolate

the coefficients that are to be used in the construction of the Q and R

operators. These operators can be represented in standard form at each grid

point, i.e.,

_n n _ + an c_ + an _l + an _e + n _3 (30)I(_ln : 011 I_11 12 I,I 13 14 015

In Eq. (30) the first subscript of _ indicates the velocity component

(associated with the corresponding direction) and " , " indicates a

n
derivative. The subscripts of the a.. refer to the direction (i) and the

ij

term in the equation (j) respectively. Note that the equation is in

quasi-linear form, since the coefficients of the derivative operators need to

be identified, for use with the QR operator technique employed here.

Alternate schemes have been proposed by Leventhal (Ref. 27) for equations in

conservation form but are not considered here. In the following section, a

description will be given of how this entire operator is discretized by

employing the QR operator format, and how the discretization is incorporated

into the LBI framework in order to solve the system of equations (28).

The continuity equation is considered first. Since it is a first-order

partial differential equation it does not have the standard form of Eq.

(29). Furthermore, in the linearization process p has been eliminated in

favor of the ui velocity components so that the continuity equation has

become an equation for the three velocity components, and not density.
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An inspection of the system of equations under consideration reveals

that substantial savings can be realized if the equations are partloned

appropriately. Since the normal to the body ("3" direction) momentum

equation is not solved, the normal velocity appears only in conjunction wlth

terms associated wlth the normal "3" direction in the other two momentum

equations. Hence, in the first two sweeps where directions "I" and "2" are

implicit one is required to solve only for the two corresponding velocity

components In the streamwlse and spanwlse momentum equation without the need

of considering the contlnultyequatlon. However, on the third sweep where all

3 velocity components appear, one must solve all 3 equations. Thls strategy

reduces the solution procedure to the inversion of two 2 × 2 block matrices

and one 3 × 3 block matrix rather than three 3 x 3 block matrices which leads

to a substantial reduction In computation time. If the full Navler-Stokes

equations were considered (including a normal momentum equation) the

aforementioned partlonlng could not be applied since the normal velocity

would appear in all three sweeps.

The question that arises is how to appropriately split the continuity

equation, since it need only be solved on the third sweep. Here again the

Douglas-Gunn formulation leads to the appropriate choice. The continuity

equations written in conservation form is,

_p ! 8
_! + j 0x'ir1LJpUlj = o (31)

After linearizing and eliminating p, the increment form is obtained

AnAun+l + BnAwn+I+ At._ _ [vnAnAun+, + vnBnAwn+,+ pnAvn+l]d 0x_

At _ l In Ati_ _ Aun+'+ )Awn+'] (32)- d axl- [ Jpu + [ (pn + unAn} (unBna axr

+ AI,B a
a _)xz [(pn+ WnB.)Awn+,+(wnA.)Aun'H]

where all the velocity components are the contravariant components u = u !
2 3

w = u and v = v J is the Jacob ian and
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An pn
= _ Un -!- wn1T n [ gll gJ2

.pn

Bn =-_--6-[g22wn+gi2u n]

By employing the Douglas-Gunn procedure, Eq. (32) is represented as a

third sweep equation, and a consistent approximation is obtained to the

continuity equation, i.e., the xI derivative term is evaluated at the * level

and the x2 derivative term is evaluated at the ** level. The values of the

intermediate derivative terms are obtained after the solution of the first

two sweeps of the two momentum equations. Note that these terms do not

contain the normal velocity. The equation can thus be written in symbolic

form

Annun+l. Bnnwn+l.l_ At_j Ox30 [j{Anvnnun+l !. VnBn.Awn+l.I _PnAVn+I }]
(33)

At 8 ]* _ At 8

Since the only term involvingv is in the x3 derivative term, one can

directly integratethe equationwith respect to x 3 i.e

xj'3 [AnAun+l-l-BnAw n+i]. dxS "!-At-_[vnAnAun+l-! - vnBnAwn+l-i -PnAvn+l ]

= j,'x3 I sn /_A| ]* ,_A| "_ I

The next sectiondescribes how this is done very easily via the QR operator

scheme. The concept of integratingdirectly the continuityequation is not

new. Blottner (Ref. 28) attributes a similar coupled procedure to Davis for

the two-dlmenslonalsteady boundary layer equationsin which the trapezoidal

rule is used to integrate the continuity equation. Welnberg (Refs. 29 and

30) also used a fourth-orderSimpson integrationscheme to solve the compres-

sible boundary layer equations. Such procedures are stable and offer a

viable alternativeto approximatingthe derivativesby finite differences.

Note that conceptuallythe continuityequation in integrated form is treated
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on each sweep of the Douglas-Gunn splitting, although in actuality the

continuity equation is solved only on the third sweep. The stability and

consistency of the original splitting is still retained since the split

integration operators can be incorporated into the _ and _ difference

operators (cf. Eqs. 27 and 28).

Implementation of the LBI Scheme Employing

the QR Operator Technique

Consider the third sweep of Eq. (27) in which both momentum equations

and the continuity equation are solved. The momentum equations are in the

form

where A_*** is the column vector of unknowns, u, v, w. Here it has been

implicitly assumed that the equations have been appropriately normalized and

that the contravarlant velocity components have been suitably transformed

into their physical components. Employing physical components, (cf. Ref. 22)

leads to a better behaved solution since these components are not unduly

influenced by geometrical variations.

For the streamwise momentum equation one obtains

Au,33+ u23 3 + 033Au + 043Aw + 053Av (35a)

while for the spafiwise momentum equation one obtains

_3 = Aw'33+ _3Aw'3 + b33Aw + b43Av + b53Au (35b)

where superscript *** has been omitted from Au, Av and Aw. Now in Eq. (35a),

the first three terms on the right-hand side are approximated by the operator

equivalent so that
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Similar approximations are made for Eq. (35b). After substituting Eq. (36)

into Eq. (34), and multiplying through by Q, one obtains for the streamwise

momentum equat ion

OmPn - /_XRI]Au - ,_AtQla43Aw-,_AtDja53 Av = QIP nAu_* (37)

where X = At/Ax32 A similar expression is obtained for the spanwise .

momentum equation.

The same type of procedure is also employed for the continuity

equation. Since the continuity equation involves only first derivatives,

they can be represented as

QcRc (38)
_x3 _x 3

were Qc and Rc are the QR operators associated with the continuity equation.

The operators Qc and Rc are constructed to approximate the weights associated

with either a second-order trapezoidal rule or a fourth-order Simpson's rule,
i.e.,

Trapezoidal rule

c I I
:o ,% : ,

c c = -I rc. : Ir = 0 , rc

Simpson's rule

I c 4 _ I
qc = "_- qc = "3- qcII | --

C C : 0 +r =-I , rc ,r c = I
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The discretized continuity equation thus becomes after multiplying thru by

Qc

where RHS contains all the terms due to the linearization procedure and the
r

terms evaluated at the * and ** levels and _ = At/Ax3. The resulting matrix

derived from Eqs. (37) and (39) becomes a block 3 trldiagonal matrix

(QI, RI, Q2, R2, Qc and Rc are tridlagonal operators) with each sub block

taking the form

°

The matrix is inverted by standard LU decomposition.

The Computer Code

The type of numerical algorithm employed as well as its formulation has

a marked impact on the structure of the computer code. One needs to consider

both the number of CPU operations as well as the memory requirements.

Usually, the number of operations can be reduced at the expense of increasing

the amount of storage• For the type of problems under consideration both in

two and three dimensions, with their large data bases, core requirements be-
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come a stringent constraint and external disk storage must be employed. An

additional consideration is the allocation and acquisition of data, in parti-

cular how this impacts upon code vectorization. With these requirements in

mind the code has been structured in such a way as to exploit available core

and disk files by employing concurrent data transfer (buffer type statements)

and structuring the code to operate on lines of data so that vectorization is

possible. The calculations that are discussed in the next section were

obtained on the CRAY 1 computer situated at the University of Minnesota

computer center. The original version of the code was developed to run ef-

ficiently on a CDC 7600 scaler machine. That version was transferred to the

CRAY, but was not modified to exploit the vectorization capabilities of the

machine since that was not within the scope of the present contract. Hence,

the quoted run times, which are low, could still be reduced substantially if

full vectorization is taken into account. This could be part of a Phase II

effort. However, certain features have been incorporated into the code which

leads to the mentioned efficient run times. The modifications described

above are suitable for other vector processers such as the CYBER 205 as well

as the CRAY.

An investigation of the operation count of the LBI scheme in

conjunction with the QR operator technique reveals that the most significant

fraction of time is spent in computing the matrix coefficients, i.e. the

linearization coefficients and difference weights, and exceeds the time

required for the matrix inversions. Hence, it is worthwhile to optimize the

calculation of these coefficients, and if possible store their values. This

was accomplished by storing the operator coefficients_n
2 and _ n3 as they

were computed in the first sweep on the right-hand side of the differential

equation. On the second and third sweeps _ n and _ n
2 3 were accessed

respectively and were not recomputed. It was for this reason that the

formulation of the LBI scheme referred to the linearized operators _n's.
l

instead of the _'s on the right-hand side of the equation.

The general structure of the computer code will now be described.

After the input section and the initialization of data e.g. geometry, grid
t

transformations, initial flowfield, etc. the actual construction of the

difference operators is begun. The first derivatives of the velocity

components and viscosity are obtained for the entire flow field and stored

for ready access when needed for the computation of the appropriate terms in

24



the governing equations. Thereafter the terms that are to be treated

explicitly are evaluated and absorbed into the function Sn.

The operators _I, _2 and _3 are then computed. These are

used to evaluate the appropriate Q and R coefficients which are then stored

for easy retrieval during each of the ADI sweeps.

In the first sweep the matrix resulting from the application of the

_I operators for the streamwise and spanwise momentum equation is

solved as a 2 × 2 coupled system. The solution of this system, the * level

quantities, are then used to construct the right-hand side of the second

sweep equations and to evaluate the appropriate * level term in the

continuity equation. At this point the _2 operator is accessed and again

a 2 × 2 system of equations for the streamwise and spanwise momentum equation

is solved. The ** level quantities are then used to construct the right-hand

side of the third sweep equations as well as the appropriate terms in the

continuity equation. For the third sweep equations which consist of the two

momentum equations and the continuity equation, the _3 operator is

accessed from memory. The resulting 3 × 3 system of equations is solved for

the three velocity components.

After the primary variables are evaluated, the thermodynamic

quantities, density, temperature and viscosity are computed. The procedure

is then repeated at the following time steps.

Discussion of Results

In order to validate the numerical procedure for solving the

three-dimensional unsteady turbulent approximate form of the Navier-Stokes

equations it is necessaary to compare with available experimental data.

Unfortunately, reliable three-dimensional data is rare and it is necessary to

resort to alternate strategies in order to achieve this goal. Previously one

of the present authors has successfully employed a procedure for verifying

the numerical method for three-dimensional steady laminar flow (cf Ref. 14).

A three-dimensional flow field was derived from a two-dimensional one by

performing a coordinate rotation of the computational domain through a

specified angle (for instance 45 °) as shown in Fig. 2. As can be seen in

Fig. 2 this is analogous to considering a uniform flow over a flat plate

skewed at the rotation angle. In the orthogonal coordinate system consisting
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of the leading edge of the plate and the normal to it (_,_) the flow is

two-dimensional However, when viewed in the x I 2• , x coordinate system the

flow is a restricted type of three-dimensional flow involving in addition to

the streamwise and normal velocities a spanwise component. Although this

represents a restricted three-dimensional flow, it serves as a valid

three-dlmensional test case for the code.

Such a procedure has several attractions over considering an actual

three-dimensional flow. First, the analogous two-dimensional calculation (in

the _,_ coordinate system) can be performed giving additional information

with which verifications can be made to assess proper code operation in the

thee-dimensional mode. Second, three-dimensional geometrical effects are

removed allowing for a more direct comparison of the numerical results with

the data. Third, turbulence modeling is simplified since the models have, in

effect, no three-dimensional complications other than the contribution to the

dissipation appearing in the mixing length formulation (cf Eq. 6). Finally,

the two-dimensional calculation can facilitate the validation of the

three-dimensional calculation.

Having resolved the three-dimensional problem to be considered, the

remaining task reduces to determining the appropriate two-dimensional

experimental case with which comparisons are to be made. In recent years

there has been great interest in the experiments of Karlsson (Ref. 31).

Karlsson conducted a set of experiments for a zero pressure gradient flat

plate flow whose external velocity consisted of sinusoidal fluctuations

superimposed upon a mean velocity, i.e.,

U

u = uo(l+AcosoJt)
(40)

where A is the amplitude of the oscillations and _ is its circular

frequency. The magnitude of the amplitude ranged from 8% to 34%, while the

oscillation frequency ranged from 0 to 48 Hz. Karlsson measured the mean

velocity, the in phase and out of phase components of the first harmonic of

the periodic fluctuations as well as the sum of the turbulent intensity and

the contribution of the higher harmonics. A schematic of this test facility

reproduced from a report by Carr (Ref. 32) is shown in Fig. 3 , and consists

of a rectangular tunnel with the unsteady fluctuations being introduced by a

rotating shutter assembly at the exit of the tunnel.
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In Fig. 4 are shown recent computational results that have been ob-

tained for the phase angle lead of the skin friction (cf. Refs. 32, 33, 34,

35, and 36). The phase angle of the first harmonic of the skin friction is

plotted against the reduced frequency, _x/u o. It is immediately apparent

that there is a wide variation in the predicted results. For laminar flow

there is a direct correlation between the phase angle and the reduced

frequency. As can be seen in Fig. 5 (cf. Ref. 21), the phase angle ap-

proaches an asymptote of 45 ° corresponding to Lighthill's high frequency

limit (Ref. 37) for large values of the reduced frequency. For turbulent

flow, as shown in Fig. 4, there does not appear to be this direct correlation

nor does the data approach an asymptotic value as observed for the laminar

case. Such an asymptotic behavior would be plausible from physical

consideration since the skin friction is dependent on the local flow

properties near the wall, i.e. viscous sublayer. Furthermore, there does not

appear to be any correspondence among the various predictions. An

explanation for some of these disparaties is proposed and will be discussed

below. For the moment it must be kept in mind that the experiments conducted

by Karlsson are more than 25 years old and the methods used for obtaining and

reducing the data were not as sophisticated nor as reliable as they are

today. More disturbing from a computational point of view is that there is

data at only one streamwise location and there is no upstream data with which

to make comparisons. Another concern is the low Reynolds number,

approximately 105/ft at which the experiment was conducted. However, the

the experimental data remains valuable and can be used to verify calculation

procedures. _.

In calculating this flow it was intended to be as faithful as possible

to the actual flow conditions of the experiment. This could not be totally

achieved due to the low Reynolds number of the experiments which would neces-

sitate the consideration of unsteady transition, and the inclusion of low

Reynolds number effects. Since this was not within the scope of the present

effort, fully turbulent conditions were assumed. Hence, at the upstream

boundary the velocity profile employed was a fully turbulent one. This is in

contrast to some other numerical predictive methods in which it is assumed

that the laminar flow developing from the leading edge of a flat plate

undergoes instantaneous transition to turbulent flow at some predetermined

streamwise location.
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In view of the lack of upstream information and the low Reynolds

number, the determination of a physical streamwise location for the upstream

boundary required some attention. The experimental data of Wieghardt

(Ref. 38) in conjunction with the curve fits of Clauser (Ref. 39) were the

starting points for determining the upstream profile as well as the physical

streamwise extents of the computational domain. In Fig. 6 Wieghardt's data

is plotted in cf, Red, coordinates along with Clauser's predictions. As

can readily be seen the experimental data compares well with Clauser's

•predictions for Red, > 2000, but diverges from Clauser's prediction at

lower values of Red, where low Reynolds number effects are prevalent. For

the present calculations, the upstream boundary was placed sufficiently far

upstream of the measuring station (nominally Red, = 3600) where the

numerical predictions are to be compared to the experimental data. This

location was chosen to be approximately Res,= 850, with the corresponding

value of cf = .00051. In Fig. 6 this point lies between the Clauser curve

and Wleghardt's data. Modifying these values by as much as 10% had little

effect on the computed solution for Red, > 1500.

The upstream velocity profiles, which must be prescribed in the

numerical computation were obtained from Cole's wall-wake law, (Ref. 38),

--=--In + C + sin2 Wall-Wake Law
UT K _ K •

(41)
y+ = U+

laminar sublayer

where

y+ :YUr U+ = U _w= U , u'--T uT= IP

and _(x)/< is evaluated from the condition that u = uoo at y/8 = I. In

Eq. (41) the constants < and C are set at .41 and 5.0 respectively. This

leaves two free parameters Tw (or Cf) and 8, which must be chosen to

completely specify the profile. Since Red, is to be specified instead of 8

an additional relationship is required. In Ref. 38 a relationship

relating Red,, 6, Cf and H(x) is given

K (Re_.- 65)
= I + 1"[(x) (42)

8ur/v
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Combining Eq. 41 and 42 E(x) can be eliminated and a transcendental equation

for _ = 6uT/_ is obtained (with Cf and Red, being specified constants),

= 2 2 (43)
-_ I In_. + (Re_,x.- 65) ---u.,.

which can be solved for I and hence 6 by a Newton iteration procedure. In

general, only two or three iterations are required for convergence. There-

after 6 and Cf are substituted in Eq. (41) to Gbtain the required velocity

profile. In some cases the 6 and Cf obtained from the iteration procedure

were used as input for Musker's profile (Ref. 40). The advantage of this

profile is that there is a smooth transition between the laminar sublayer and

the logarithmic portion of the boundary layer.

Streamwise locations for the upstream and downstream boundaries were

chosen consistent with the boundary layer properties at these locations.

This wag done in order to present the unsteady data as a function of mx/u o,

the reduced frequency. However, the x value so determined will not

necessarily correspond to the x locations in Karlsson's experiment due to

virtual origin effects which are consequences of upstream history. A

correlation between Cf and Rex was employed, to obtain these locations.

The correlation which assumes a I/Tth power law profile for the velocity is

given by

I

Consequently, in order to obtain a Red, in excess of 4000 at the downstream
U

boundary, the extent of the computational domain in the streamwise direction

was set as .594 m < x < 4.862 m (1.95 ft < x < 15.95 ft).

In the normal to the wall direction, the outer boundary was chosen so

that during the oscillatory motion the boundary layer edge would lie totally

within the computational domain. Hence, the outer edge was placed at a

nominal height of x3 = 13.716 cm (.45 ft). In the normal direction either 41

or 51 grid points were employed. For the 41 point grid a clustering

transformation of the hyperbolic tangent type was used, with the first grid

point being located at x3 = .003888 cm (.000324 ft) or y+ = 1.407 at the

upstream boundary. For the 51 point calculation Oh's transformation

(Ref. 41) was used, which relies upon an error function series for the grid
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clustering. The first grid point was located at xs = .005732 cm (.000188 ft)

or y+ = 1.0377. There were 36 uniformly spaced grid points in the stream-

wise direction yielding a mesh spacing of Axl = 12.192 cm (.40 ft) and cor-

responds to nearly six boundary layer thicknesses as measured at the upstream

station.

For the quasi-steady state case in order to correspond to the

experimental data the Reynolds number per unit length was, Re = 307,579/m

(93,750/ft) where U_ = 4.572 m/sec (15 ft/sec) and _ = .0000149 sec/m 2

(.00016 sec/ft2). For the other cases, the Reynolds number per unit length

was Re = 358,842/m (I09,375/ft) where U_ = 5.334 m/sec (17.5 ft/sec). The

mesh employed in the calculation consisted of 51 x 36 = 1836 grid points.

The calculation reached a steady state in 42 time steps, defined as the point

at which the dependent variables u! and u S do not change by _ore than g =

10-5 over two successive time steps. In obtaining the steady state, the

solution is advanced in time from some initial guess, and the time steps are

chosen in order to hasten convergence.

A comparison between the predicted mean velocity profile at x = 4.252 m

(13.95 ft) corresponding to (Red, = 3551 and Cf = .00331) with Karlsson's

data is shown in Fig. 7. The predicted values are in excellent agreement.

For the unsteady calculations comparisons were made with the data at this

same location.

Unsteady Calculations

The procedure for obtaining unsteady flows is similar to the steady

solution procedure. Whereas in the steady state case, the inflow and outer

edge boundary conditions are perscribed to be invariant in time, for the

unsteady case the velocities at these boundaries are allowed to change in

time. For the outer boundary this poses no difficulty since the streamwise

velocity is known, i.e.

u =Uo(l+Acosmt)

However, there is some difficulty at the upstream boundary where the stream-

wise velocity is unknown. Several methods have been used by investigators

(Ref. 33 - 36) to handle the specification of these upstream conditions. In

references 34 and 35, the authors begin their calculation at x! = 0 as a
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laminar flow and arbitrarily specify a location for instantaneous transition,

to fully turbulent flow. Although such a procedure can be employed when the

governing equaions are cast in boundary layer coordinates (e.g., q=y/2_) in

order to remove the singularity at xl = 0, it necessitates the consideration

of transition which we have attempted to avoid. Others, (Ref. 33 and 36)

have specified quasi-steady upstream conditions, in which cf and 6 areo

varied (the parameters in the Cole's velocity profile) to correspond to a

steady state that would exist with the same edge velocity at that instant in

time. This method also has drawbacks, since the upstream profile is void of

any phase shift effects, and this is incompatible with the rest of the flow

downstream of that location.

In the present procedure the upstream profile is still given by the

Cole's wall-wake velocity profile, but now Cf and 6" are allowed to be

periodic functions of time; i.e.,

Cf = Cfo(I +ACfl cos(_t + (_Cf)) (44)

(t+AS,cos + -rr+ tE,8.))
where Cfo and 6*0 are the mean (time averaged) skin function and dis-

placement thickness, cf! and 6" I are their respective amplitudes of

oscillation and $cf and $6* their respect phase shifts. This procedure

introduces additional unknowns. For the mean quantities Cfo and 6*o, the

steady state values are used, while the other four quantities are determined

by analyzing the solution behavior near the upstream boundary. For instance

the variation of $cf as a function of the reduced frequency _x/u o is

shown in Fig. 8. As can be seen, the quasl-steady upstream profile is not

consistent with the interior, while the present procedure gives more

realistic behavior leading to a smoother transition from the upstream to the

interior. Although _x/u o may not be the unique scaling parameter for

turbulent flow, it is nevertheless used in the present approximate analysis

which is now briefly described. First, the parameters in Eq. (44) were

assumed for the low frequency case, _ = .33 Hz, and a solution was computed.

: Thereafter, the distributions of Cfl, $cf, 6,1, and $6* were obtained

as a function of _x/u o in the initial calculation. For another frequency,

_2 for example, the corresponding values of Cfl, $cf, 6, I and $6*

can be determined at the new value of _2x*/u o, from a curve such as shown

in Fig. 8, where x* is the location of the upstream boundary.
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For all the reported computations a time step corresponding to I0 ° of

the period was chosen. The calculation was run through 2 periods (72 time

steps) and the results were obtained for the second period. Several

calculations were run through 3 periods and the solutions did not vary from

the second period results. Also, several calculations were run in 5° time

step increments and again the results were almost indistinguishable from

those obtained with I0° time steps, thus indicating accurate temporal

resolution. The run time for a 36 x 51 grid is 44.91 sec on the CRAY-I for

three cycles (108 time steps) and corresponds to .00024 sec/grid point/time

step.

In presenting the results, the skin friction, Cf, the displacement

thickness, 6* and the streamwise velocity profile at the measuring station

were Fourier decomposed into their harmonic components.

For a function f(_), the Fourier Series becomes:

{OnOOn'.I
where

co rJ= +T
f(_)d_Oo j

t I t I +T
[d

on =_-" / f(_)cosoJn_'d_ (45)
Ii

oJ / tl+Tb n =_-" f (_') sin_n_'d_
t I

and where tl is the time at the start of the integration, and the period T =

2_/m. ..

Although the code allows for the determination of any number of

harmonics, only the first two were obtained. In Karlsson's experiment, the

mean (time averaged) velocity and the components of the first harmonic

were measured. Therefore, comparing to the Fourier series representation the

mean velocity is ao/2 , the in phase component of the first harmonic is a l

and the out of phase component of the first harmonic is -b I (to correspond to ".

Karlsson's notation). For the evaluation of the Fourier coefficients

Simpson's integration scheme was used and all data points for the second

cycle were sampled.

Results of the computations and comparisons with the data of Karlsson

are shown in Figs. 9-22. In the first set, Figs. 9-13, the time averaged
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mean velocity profiles of the location corresponding to Karlsson's streamwise

measuring station are shown for frequencies _ = .33, 1.0, 1.33, 2.0, 4.0 and

7.7 Hz with amplitudes of oscillation A = .2020, .195, .1763, .1358 and .1273

respectively. As can be seen in these figures, there is excellent agreement

between the computed profiles and the data. Since there is little difference

between the mean velocity profiles and the quasi-steady profiles, unsteady

effects cannot be inferred from an inspection of these figures. Therefore,

the in phase and out of phase components of the first harmonic of the

oscillations must be considered; corresponding to normalized values of a! and

-b I in Eq. 45. These are given in the next set, Figs. 14-18.

As can be seen in these figures, there are considerable unsteady

effects present with the predominant effects appearing at the lower

frequencies. At the highest frequency calculated, 7.7 Hz, the unsteady

effects are relegated to a thin region near the wall reminiscent of the shear

wave solutions of Lighthill (Ref. 37) for laminar flows. Note that the

boundary layer does not oscillate as a unit at the excited frequency but

rather different portions oscillate at varied frequencies. This is further

exemplified by the characteristic overshoots and undershoots in the in phase

and out of phase components respectively that were obtained for all cases

run. For _ = .33 Hz there is excellent quantitative agreement with data for

both components, while for the other frequencies considered the correct

qualitative behavior was obtained but the exact magnitudes and locations of

the peaks were not recovered. It should be noted that the present results

show quite good agreement with Karlsson's data evenothough a simple

turbulence model was used. In particular, the characteristic in phase and

out of phase velocity profiles were qualitatively predicted and

quantitatively these profiles were in agreement with the data. The existing

descrepancies, however, could be due to turbulence modeling, upstream

conditions or experimental error. It should also be noted that the present

in phase and out of phase prediction show better agreement with Karlsson's

data than was obtained by other researchers using a variety of turbulence

models (e.g. Refs. 42 and 43).

The next two figures 19 and 20 show the amplitude and phase angle

variations of the displacement thickness plotted against the reduced

frequency _x/u o. Also shown in these figures are the data of Karlsson

(interpreted by Telionis with his error estimates indicated by vertical bars)
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as well as the present predictions for w = .33, 1.0, 2.0, 4.0 and 7.7 Hz.

Good agreement is obtained between the present results and the data as far as

amplitude is concerned. In addition, these results compare favorably with

those obtained by McCroskey (Ref. 33).

However, the phase angle of the skin friction (phase lead) as a

function of reduced frequency (cf. Fig. 21) shows an apparent lack of

agreement between the present predictions and the data. Such a discrepancy

was also noted in the results of other analyses as shown previously in

Fig. 4. A better understanding of these results can be obtained by viewing

Fig. 21 which presents the calcuated _cf versus _x/uo for each of the

five runs made under the present effort. Each curve represents the results

for a different oscillation frequency, _.

As can be seen in Fig. 21 for each of the frequencies the phase angle

approaches a different constant asymptotic value that is increasing with

frequency. Each case taken alone resembles the behavior obtained for laminar

flow. Whereas in laminar flow the unique similarity variable is the reduced

frequency, _X/Uo, for turbulent flow it may not be. Furthermore, the phase

angle is likely to be a function of the Reynolds number as well. Therefore,

when viewed in this manner, the present predictions would have the

appropriate physical behavior since they mimic the results obtained for

laminar flow. Nevertheless, the lack of correlation with the data and the

correspondence of the various calculations still needs to be addressed.

The experimental data as well as the other computations in Fig. 4 tend

to lie on curves that are monitonically increasing with reduced frequency.

Recall that the experimental data correspond to different frequencies at one

streamwise location, and not to the phase angle distribution along the plate

at a given frequency. If one would connect the points associated with the

measuring station for each Of the present calculations one would obtain a

curve resembling for instance that of McCroskey (Ref. 33) (cf. Fig. 4).

The curves obtained by other investigators appear to be based on data points

for different values of _ and may not indicate the appropriate physical °_

behavior, nor for that matter they may not contradict the present results.

Finally, with regard to the displacement of the various curves, the

discrepancy may reside in the virtual origin associated with turbulent

flows. Since the streamwise distance is not a characteristic length, the

distances in various predictions would not correspond precisely with those of

34



Karlsson. By taking this into account, and shifting the present data points

so that for the _ = .33 Hz case the reduced frequency of the computation is

set equal to that of the experimental data the new curve (stars) in Fig. 22

is obtained.

Three-Dimensional Calculation

The three-dimensional unsteady flow requires additional attention

compared to its two-dimensional counterpart, ie particular with respect to

boundary condition specification. For two-dimensional flows at the upstream

inflow boundary (which is a line) the streamwise velocity profile must be

specified as a function of time. For the three-dimensional flow, there are

two inflow boundaries (planes) (cf. Fig. 2) where streamwise as well as

spanwise velocity profiles must be specified. Since the intent of this

calculation is to demonstrate the capability of computational procedure for

three-dimensional unsteady flows, the boundary conditions at these boundaries

were obtained from the two-dimensional results. The description of the

actual steps in the calculation are now given.

First, the analogous two-dimensional steady and unsteady calculations

were completed. The normal and streamwise velocity profiles were then stored

for each time step during the second cycle of the oscillating flow. This

corresponds to the flow along the diagonal of the square computational

domain. For the two-dimensional problem the extent of the computational

domain was .960 m < Xl < 4.526 m (3.15 ft < Xl < 14.85 ft) and

0 _ x3 _ .122 m (0 <_x3 _ .4 ft) and a 27 by 41 grid was employed. In the
o

streamwise direction, a uniform grid was employed with Ax! = .137 m (.45 ft)

while normal to the wall a hyperbolic transformation was used to cluster

points near the wall. The setting of the upstream profile was discussed

previously. In anticipation of the three-dimensional problem to be done the

. upstream xI location was located at x! = .960 m (3.15 ft) rather than .594 m

(1.95 ft). Therefore, the Cole's velocity profile required different values

of Re_, and cf which were set to 1200 and .0043, respectively. Steady

state was reached in 38 time steps with a total running time of 9.545 seconds

or .00023 sec/grid point/time step. Thereafter the unsteady case was run for

= .33Hz and with an amplitude of oscillation, A = .202. The modified

upstream condition procedure was used, with the following parameters set
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6*I = .28 cf! = 1.82

_6" = 24° _cf = 4°

The calculation was run for two periods with a time step corresponding to i0°

and the Fourier decomposition was computed on the second cycle. Results of

the calculation are shown in Figs. 9 and 14. The mean flow and the in-phase _

and out-of-phase components are in excellent agreement with the data. The

phase shifts angles and amplitudes show qualitatively the same behavior as

the calculations of McCroskey and Phillipe (Ref. 33).

Having obtained the two-dimensional unsteady results, a three-

dimensional flow field calculation can be made. The first task is to

determine a starting flow field for the three-dimensional calculation. Since

a periodic solution is sought, the flow field at the beginning of a cycle

will not necessarily correspond to the steady state flow field, but rather to

the cyclical flow. In order to reduce total computational time, the initial

flow field used to run the 3-D calculation was that which was obtained at the

beginning of the second cycle of the two-dimensional calculation. Recall

that the two-dimensional calculation corresponds to the flow along the

diagonal of the computational domain in the _ coordinate direction. Hence,

in order to obtain the initial flow field the two-dimensional data was

reflected directly onto the grid by decomposing the _ direction velocity into

its x! and x2 components. This was done in order not to interpolate the

two-dimensional calculation onto the three-dimensional grid. This resulted

in a 14 x 14 grid in the Xl-X 2 plane and a grid spacing of AxI=AX2 = .194 m

(.636 ft). Since this spacing is larger than that used for the

two-dimensional calculation, there is a question to what effect that

discretization error would have on the solution. Therefore, another coarser

two-dimensional calculation was performed on a 20 x 41 grid which

corresponded to the same Ax I as the three-dimensional calculation, and the

results obtained were very close to the fine mesh calculation.

Once the initial flow field was obtained, the three-dimensional

calculation was run, also with a 10° time step, but for only one cycle.

Since the initial state is obtained from a periodic solution there is no need

to march through one preliminary cycle in order to eliminate transient

non-periodic effects. The inflow boundary conditions as stated previously

were the two-dimensional unsteady results, decomposed into their xI and x2

components, and applied along boundaries 1 and 2 in Fig. 2.
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The results for the mean flow and the in phase and out of phase

components of the first harmonic of the velocity were indistingushable from

the two-dimensional results (cf. Figs. 9 and 14). This indicates that the

three-dimensional procedure can give accurate results comparable to the

two-dimensional calculation. However, further validation was obtained by

comparing the three-dimensional derived boundary layer properties with the

two-dimensional results along a _ = constant line (perpendicular to the

diagonal). Along such a line the values should be equal to the two-

dimensional results. In Table 1 these quantities are presented as a function

of plane location corresponding to points along the line perpendicular to the

diagonal in the adjacent sketch.

In the first column, the two integers signify the x2 and x! grid

locations in that order. Also given in the table are the 27 x 41 fine and

20 x 41 coarse, two-dimensional calculations. As can be seen, tee values

along the diagonal are relatively constant and the maximum relative error

betwen the three-dimensional and the fine two-dimensional results are less

than 0.6%. The minimal variation of these derived values along the

= constant line indicates that the three-dimensional calculation procedure

recovered the two-dimensional results, hence, further validating the

technique. Since the solution is ostensibly two-dimensional in the

appropriate frame of reference, the physical behavior corresponds to that

which was discussed previously and thus the reader is referred to that

section.

As a final note, the reader is referred to Table 2 where run times

(total and per grid point per time step) are given for both two-dimensional

and three-dimensional results. These run times are for the unvectorized

code. If past experience with vectorizating other fluid mechanics codes

holds for this code then one can expect a reduction of up to a factor of

five in run time. Hence, it is conceivable that three-dimensional viscous

calculations of the type considered in this report can be obtained in less

than a minute of CPU time on the CRAY-I computer.
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CONCLUSIONS

In the Phase I effort, all major objecties have been satisfied. The

three-dlmensional solution procedure for the approximate form of the

Navier-Stokes equation was exercised in the two- and three-dimensional modes

to compute the unsteady turbulent boundary layer on a flat plate

corresponding to the data of Karlsson. New upstream boundary conditions were

developed that yielded more realistic solutions for the interior in the

vicinity of the upstream boundary. Comparisons of the computaion employing

these boundary conditions with the data indicate that both qualitative and

quantitative agreement was obtained for the mean velocity and the in phase

and out of phase components of the first harmonic of the velocity.

In addition, the calculation gave results for the skin friction phase

angle that had plausible physical behavior for large distances downstream of

the inflow boundary. Finally, an explanation was suggested to resolve the

discrepancy with regard to previously reported calculations of the skin

friction phase angle.

For the three-dimensional case, the two-dimensional data of Karlsson

was considered, but skewed at 45 ° by a coordinate rotation. The results of

the calculations were inexcellent agreement with the data and the

two-dimensional computations, thereby validating the three-dimensional

procedure.
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Figure 21 - Phase Angle of Skin Friction Fluctuations
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Figure 22 - Phase Angle of Skin Friction Fluctuations - Effect of Virtual Origin 



Table 1 - Comparison of Three-Dimensional Results 
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.0027 
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RUN TIME

GRID TIME STEPS TOTAL PER GRID .POINT / TIME STEP

36 X51
2-D 108 44.91 .00024

_, (1836)

14 X 14 X 41
3--D 36 185.35 .00064

(8036)

Table 2 - Computer Run Times
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