NASA= 71 ~739 43

NASA-TM-83942 19830014922

NNASA

Technical Memorandum 83942

Data Base Management System
Analysis and Performance Testing
with Respect to NASA Requirements

E. A. Martin, R. V. Sylto, T. L. Gough,
H. A. Huston and J. J. Morone

AUGUST 1981

P
L. .
National Aeronautics and
. Space Administration e .
NI D
Goddard Space Flight Center B
Greenbelt, Maryland 20771 LANGLEY RZ3ZARCH CENTER

LIEZARY, [LaSA
HAMPTON, VIRGINIA

L Goddard Space Flight Center
. Greenbelt, Maryland
120771

Reply to Attn of: 937 - - .) » . FIL E 14’281
TO0: Distribution . o CJuLgs 1982

FROM: Applications Dwectorate
* Information Extraction Divi sion

SUBJECT: Release of Report “Data Base Management System Analysis and .
Performance Testing with Respect to NASA Reqmrements"

~

~ The purpose of this mema is to announce the release of Technical -
Memorandum No. 83942, “Data Base Management System Analysis and
Performance Testing mth Respect to NASA Requirements”. This report.
was jointly produced by Business: and. Technological Systems,. Inc. under
contract to GSFC's Information Management Branch,. and by Ms.. Elizabeth
Martin and Ms. Regina Sylto from the: Information. Management Branch as
part. of the: GSFC"s NEEDS DBMS. Technology Task. .

‘This report is am evaluation of the use of several data base management -
. “systems in the context of NASA.satellite data systems applications. In
order- to meet the requirements. of the Informationm Extractiom Division:
(IED), particularly the: development of the NEEDS Packet Management .

" System (PMS),. the: Information: Management Branch conducted a study which -
compared two commercial and one: NASA-developed data base management ’
systems. --ORACLE (Relational), SEED (CODSYL Network), and RIM _
(Relational-NASA LaRC).. The results of this study are intended to aid
IED personnel and other data system developers in: selectmq data base .

" management systems (dbms) that will perform well for various NASA'
satellite data system applications.

It is important to note: that the. defined goals of the study. were to
assess. the capability of the dbms to manage- Targe amounts of data
(i.e., at least a milTion: input records),, to determine ingestion rates,.
to measure the efficiency of the various data access techniques used in
the dbms, and to evaluate qualitative characteristics of the systems
considered. Because of schedule, available dollars, and a need to .
support. the development of the PMS, strong emphasis was placed on
determining. what impact using. large volume data bases has onm.the . =
-‘performance of the dbms. Since large amounts of actual NASA satellite
data were limited,. the: study focused on a single data base: apphcatwn
which managed stratosphemc temperature profﬂes (LIMS data) .

iNanorna Aeronauucs and . ‘ m
At Space Administration : v B . AN

After the compTetion: of this initial study, we have found that other
types of data base applications may produce: different performance
_results. The Information Management Branch has initiated a follow-on

study under the DBMS Technology Task that wiTl determine the effects of

varying additional factors (e.g. VAX resource allocations for a dbms
package, number of fields, record length, number of key fields) and -
what impact these factors have on dbms performance. The results of

this new study are- expected to be available for release im early 1983.

Copies of TM 83942 have only been included with- th1s memo- for those
people who have: requested. the report. A Timited number of additional

copies are available. If anyone else would Tike a copy, please contact
Regina Sy]to, Code 931.2,. telephone 30T-344-9040.

Eli abeth A. Martim

Information: Management Branch- =~ - |

'CONCURRENCE

m%ﬂt% He/a’g”wz —

Information Management Branch

DATA BASE MANAGEMENT SYSTEM ANALYSIS
AND PERFORMANCE TESTING WITH RESPECT
TO NASA REQUIREMENTS

PRePARED IN COOPERATION WITH THE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FINAL REPORT
CoNTRACT NAS 5-25561

BY
T. L. GougH
H. A. HusTton
J. J. MoronE

BusinEss AND TEcHNoLOGICAL SysTEMs, Inc.
AerospAce Burrping, SurTe 440
10210 GReeNBELT RoaD
SEaBROOK, MarYLAND 20706

AND BY

E. A. MARTIN
R. V. SyLT0

NATTIONAL AERONAUTICS AND SPACE ADMINISTRATION
GopDARD SpACE FLiGHT CENTER
GREENBELT, Maryranp 20771

AucusT 6, 1981

A/93-23/894

7, \%

FOREWORD

As part of the NASA End-to-End Data System (NEEDS) program to
demonstrate a more efficient and timely transfer of data from sensor to
user, the Information Extraction Division (IED), Goddard Space Flight
Center, has been responsible for the technical direction associated with
the development of the Packet Management System (PMS). The PMS is to be
responsible for managing a catlog of packet headers and for interfacing
with end users for browsing and retrieving data from an Archival Memory.
This component is one of several in a system referred to as the NEEDS
Phase II Data Base Management System. The PMS system was originally
titled the Integrated Data Base Management System (IDBMS) and was renamed
after an altaration in requirements.

To meet the needs of the IDBMS, IED personnel conducted a study of
commerically available Data Base Management Systems (DBMS) that could
operate on the Digital Equipment Corporation (DEC) VAX-11/780 computer.
As a result of this study, two systems were procured, ORACLE and SEED,
for consideration as a nucleus of the IDBMS. It was then that this study
was originated to make a comparison of these systems' abilities to meet
the needs of a NASA application such as the PMS or IDBMS. Subsequent to
the study's inception a third system, RIM (part of a NASA computer-aided
design R&D effort to develop technology for management of engineering
information) was added for consideration. The results of this study are
intended to support the decision of how best these systems can be applied
to support NASA needs especially in relation to PMS.

The study has been conducted under the technical direction and
review of Elizabeth A. Martin of the IED. The document has been prepared
by Thomas L. Gough (Project Manager), Herbert A. Huston, and John Morone
of Business and Technological Systems, Inc. (BTS), and by Elizabeth A.
Martin and Regina Sylto of the IED. Mary Reph (IED) also has contributed
significantly to the study effort and the assisitance of Paul A. Maresca
(BTS), and Karen Posey (IED) is greatly appreciated.

Prior to this document's distribution, it was submitted for review
to the originators of each of the DBMS's. Their comments have been
included as APPENDIX III to permit a rebuttal to any aspects of the
study.

11

TABLE OF CONTENTS

FOREwORD..O.........I.IO.........'........0.......Cl...'..l"...’. 1.

ABSTRACT.QQ..Q.....O....O00.0....‘0........'.‘.0....00.'0...0...00. vi

1.0 EXECUTIVE SUMMARY....‘.........0.l..."l.l..........‘.'..‘... 1-1

2.0 QUANTITATIVE ANALYSIS.eeeevavecoooocrosaoasscasansascsnsances 2-1
2.1 Background and Environment...cceeeeeacecsccrescssssccases 2-1
2.1.1 Data Base Application.ceeececsscecsscsecescocsesse 2=1
2.1.2 Data Base DeSigNecececcoosccscscesscsasssnscconce 2=3
2.1.2.1 ORACLE Data Base Design for Satellite
- - -2 X
2.1.2.2 SEED Data Base Design for Satellite
Dat@sseseesescscesessscssessscscsscssses 2-15
2.1.2.3 RIM Data Base Design for Satellite
Data.ceescecsscsccecnectoscccssencnnnnas 2-22
2.2 Loading the Data BasS@.eceescessescessescessnsasssnasecsse 2=23
2.2.1 General Approach to LoadinG.ceeeseeesscscsacasass 2-23
2.2.2 ORACLE Load ReSuUltSescesecacesesscscscescasescsaass 2=27
2.2.3 SEED Load ReSUltSeesescecescscsascsscsssssssaseas 2=30
2.2.4 RIM Load ResultSeceesescescesccsscsassssssaasssss 2=50
2.3 Query Testing of the Data BaS@S.eeeesscessccsscccssecese 2-60
2.3.1 TesSt Planiecescseeseccscsseacscsssssscscssesesnss 2=60
2.3.2 ORACLE Test ReSUTtSeceesesescsssssscacsasssssccas 2-63
2.3.3 SEED Test ReSUTtSeeescesescccscsscssssosnsessnses 2-69
2.3.4 RIM Test ReSUTtSeeceescsscvscoscassssssscsssnsces 2=75

3.0 QUALITATIVE ANALYSIS.sieeeoesesccacscnccssscssoscscsssscscses 3-1
3.1 User FriendlineSSeeeeeesesessencssscscsssssessssnssoscsas 3=l
3.2 FlexibilityYeeeooeeseesesscaseosscnsersssasesssosacsssasesses 3=0
3.3 Host Language Interfacl.ecescececescoscccccsnsssscsssesnssss 3-10

117

TABLE OF CONTENTS (CONTINUED)

Page

3e4 CONtrol.iseeeeessceccessoasessosscssassasssssssssnssssses 3-14
3.5 SECUPItYieaeeeessecosaseooscasssseosseasscsssccassscsases 3=17
3.6 Processing Consistency and RecoOVeryeeeseeseescsccasessss 3=20
3.7 Complimentary SOftwWar€.e.ecesescsesscscocsssscscsssacees 3=25
3.7.1 Complimentary Software of 0racle..ceeeeceecsceses 3-26
3.7.1.1 Data Base File (DBF) Utilityeeeeeeeeoass 3-26
3.7.1.2 Interactive-Application Facility (IAF).. 3-27

3:7.1.3 Report Writing and Text Formatting
ULiTiti@Seeeeereeascscscssncsesssasesees 3-28
3.7.1.4 Unload/Reload Data Base Utility.ieeeeeess 3-29
3.7.2 Complimentary Software for SEED....ieeescerscesss 3=31
3.7.2.1 DBINIT.eieeesanscsansosescsssscsscsoseane 3=-31
3.7.2.2 DBDUMP..uceersveoncesoncsscossescesseses 3=31
3.7.2.3 NBSTATeeseceacsvscsesssccsascsesssssesee 3-31
3.7.2.4 SCDUMP..cveuieesnsnsnsscsesoasscsnsnsnese 3=32
307.2.5 RECLAIM iiivensesncncsesnansssccnsnsaass 3=33
3.7.2.6 BLOOMuvieueesecncsanosescncecscsssnsnsse 3=33
3.7.2.7 SPROUT ¢ eeueesascesvscssssesscsssssosnsess 3-34
3.7.3 Complimentary Software for RIMiieeieieereeesaeess 3=-36

4.0’SUMMARYQ...l.......'.'...'....'..OO..O'....O'.'.. oooooo eeee v 4-1

APPENDIX I Query Performance ReSUTtS.ceeeescscescacsoesensnseses [=-1

APPENDIX II Data Base SpecificationS.eeeecssececsscsevssscccaness [I-1
APPENDIX III Comments on Study by DBMS OriginatorS.ciscecesceseses III-1
APPENDIX IV IDBMS Functional RequirementS.eeeececcscescoseccssess [V=1

v

2-1

2-3

2-4
2-5

2-7
2-7A
2-78

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
4.1

LIST OF TABLES

Initial Tables for Managing LIMS Data Using ORACLE.........
Tables For Managing LIMS Data Using ORACLE...ceveeeecaacrae
Recommended Tables For Managing LIMS Data Using ORACLE.....
Table Size EStimates cuiceeesseccscsscscesosscssesonssscnanne
Index (B-Tree) Size Estimateececececececssssecscscscanscans
ORACLE Data Base Size Estimate.seeeeescessesscescesscsncoane
SEED Record Description and Storage Requirements.....{.....
Calculation of SATDATA Area SizZ@ieesceescsscosscsccsssaasea
Calculation of SATHEAD Aread SiZ@uessesscscsesccssosscsscnse
Benchmarking OperationS.ieeeeceescesscsssascsscescssasasasne

LIST OF FIGURES

SEED FGGE/LIMS Conceptual Data BaS@.eesesscoacesscssconcnns
Funétional Description of Load LOGiCesieriesecnrseersssoanae
ORACLE Load Rates (Version 2.3)ceceecececcscsccscscaccsnane
ORACLE Load Summary (Version 2.3)..ceiececccsscccscsoconcan
SEED Dynamic Load Rates (Version Bll.2)e.eeeeeeesecasonnsns
SEED Static Load Rates (Version Bll.e3)eceececeesscooancacas
SEED Load Summary (Version Blle3)eeueeeeooosacascnsncsnnsns
SEED Direct Load Rates (Version Bll.4)..eeececesveosccsanes
RIM L08d RAl@Seeseoceasssessosescncasosscssonesscscscnccsnss
RIM L0Ad SUMMAIY.eeeesacesaccsssccsassesssscsssscassssonsas
Cumulative Load RateSececesescesesesscscacssssssasasosens .

Page
2-5

2-9

2-11
2-13
2-14
2-17
2-20
2-21
2-49

2-16
2-26

-2-31

2-36
2-38
2-42
2-48
2-49
2-53
2-59
4-3

ABSTRACT

This study was conducted to evaluate several candidate Data Base
Management Systems (DBMS's) that could support the NASA End-to-End Data
System's Integrated Data Base Management System (IDBMS) Project which was
later rescoped and renamed the Packet Management System (PMS). The
candidate DBMS systems which had to run on the Digital Equipment
Corporation VAX 11/780 computer system were ORACLE, SEED and RIM. ORACLE
and RIM are both based on the relational data base model while SEED
employs a CODASYL network approach.

Various constraints required the study to focus on a single data
base application which managed stratospheric temperature profiles. The
primary reasons for using this abp]ication were an insufficient volume of
available PMS-like data, a mandate to use actual rather than simulated
data, and the abundance of available temperature profile data. Goals of
the study included the following: to assess if the systems could manage
large amounts of data (i.e. at least a million input records), to deter-
mine ingestion rates, to measure the efficiency of the various data
access techniques used in the systems and to evaluate qualitative char-
acteristics of the systems considered.

The test plan employed called for five staged loads for each of the
three DBMS's under study. After each staged load a set of tests were
repeated that exercised certain capabilities of each system. The number
of input records managed by the DBMS's grew from about 50,000 after the
first staged load to over a million after the fifth. The tests were con-
ducted in a “stand-alone" mode to eliminate uncontrolled biases. One
should realize that results obtained in this mode are presumably "best
case" numbers.,

Generally, the load results indicate that SEED is significantly

faster than RIM which is similarly faster than ORACLE below the half
million record level for this application. From a half million to a

vi

15

million records the incremental load rates begin to favor ORACLE and at
over one million records, ORACLE is clearly superior. (This is para-
doxical to conventional theory regarding relational and network data
bases.) The reader must penalize the RIM load results because the RIM
data base design had to be amended to delete one indexed character field
because of the inefficiency in managing duplicate or psuedo-duplicate key
values. Of interest and possible concern is the amount of observed CPU
utilization by each of the systems. ORACLE, SEED and RIM consumed
approximately 75%, 50% and 34% of each available CPU second, respec-
tively, implying ORACLE would be more seriously impacted by other users
than SEED or RIM.

Each system varied significantly in the amount of space required to
manage the one million records. ORACLE required 87 million bytes,
partially due to a module 64 byte memory management scheme (promised by
the vendor to be improved in a later software release), SEED required 20
million bytes and RIM used 40 million bytes.

In general, the ORACLE and RIM systems are much simpler to grasp and
use. There is less emphasis placed on data base theory and more flexi-
bility in making changes to a data base design without paying heavy
restart prices. SEED on the other hand requires much greater compre-
hension of data base concepts by the data base designer or user. It does
offer a greater degree of customization for a particular data base
application which may lead to higher performance but typically is not
easy to modify if a design change is needed after implementation. RIM's
current lack of support for multiple users may well eliminate it from
consideration in many applications and its lack of complimentary software
(i.e. report writer, data entry, etc.) also weighs against it.

The study's results indicate that none of the candidate systems
fully meet the original requirements of the IDBMS. But, clearly, no
commercially produced and marketed DBMS system now available on any
computer system could support all the unique needs of the IDBMS. The

Vit

results do indicate that these systems could be used as a central core to
an IDBMS-like system around which additional software would have to be
built to satisfy many of the specialized requirements of the

application. Readers should be warned that the results from the tests
are based on a single application and should be aware that other
applications may produce significantly different numbers.

vitt

1.0 EXECUTIVE SUMMARY

The function of this preliminary section is to summarize the overall
DBMS benchmark effort and results in a relatively high level manner for
those members of the reading audience who wish to get a brief description
of the study. For those interested in the details of the study, section
2 describes the testbed, test procedures, and test results. Section 3
discusses the DBMS systems in terms of their ability to meet certain
qualitative requirements thought desireable in a NASA data base applica-
tion and Section 4 offers a more detailed summary than this section.

The purpose of the study, simply stated, was to evaluate the per-
formance and chafacteristics of several Data Base Management Systems
(DBMS) software packages that were available and could execute on the VAX
11/780 computer. The study was conducted for the Information Extraction
Division (IED) of the Goddard Space Flight Center and was specifically
concerned with the systems' abilities to meet requirements of the
Integrated Data Base Management System (IDBMS) which was part of the NASA
End-to-End Data System (NEEDS) project. These requirements were defined
in the "NEEDS Data Base Management System Functional Requirements" dated
March 20, 1980, and Appendix IV contains a reprint of chapter three which
specifies the requirements. Before the completion of the DBMS study the
INBMS had been redefined and renamed the Packet Management System (PMS)
and new requirements for the PMS were not available in time to be
reflected in this study specifically. However, the results of this study
are still relevant for aiding in making decisions associated with the
DBMS aspects of the PMS,

A DBMS might be simply described as a system which attempts to col-
lect and organize information which can be later identified or Tocated
for reference, update, or deletion. The state of the art in software
technology has progressed to where a number of approaches to data base
models have evolved and numerous software systems with varying degrees of
sophistication have been implemented using the different approaches.

1-1

Initially, the IED chose two commercial systems for the DBMS study based
on an investigation of available DBMS systems that could operate on the
VAX 11/780 computer. The two systems chosen were ORACLE, marketed by
Relational Software, Inc. of Menlo Park, Ca., and SEED, marketed by
International Data Base Systems, Inc. of Philadelphia, Pa. The two
systems were designed from different data base models that are highly
divergent in the manner in which data is organized. ORACLE is based upon
the relational data base model which presents information in the form of
two dimensional tables. SEED is based on the CODASYL network
specification and presents information as sets that have members and
owners., The two systems were both selected because of the sophisticated
capabilities possessed by both including indexing techniques to
accelerate data location, interactive query language for online data
access, and various utility routines for added DBMS power to name a few.

A late entry to the study was RIM, developed at the Langley Research
Center as part of a NASA supported joint industry/government projett
denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The
development of RIM is part of a computer-aided design (CAD) research and
development effort to develop technology for management of engineering
information. RIM is based on the relational data base model and, as
such, shares many attributes in common with ORACLE but, at least in the
initial delivery, was far less sophisticated than either ORACLE or SEED.
This might be expected if one assumes that at least initially it was
developed for a primary application and that it was not intended to be a
commercially marketable product for general use.

Several problems were present during the testing which affected the
study. A major problem was a lack of resources (time, computer, and man-
power) available to support the design and performance of an exhaustive
set of tests to evaluate DBMS capabilities. Further, both ORACLE and
SEED were repeatedly updated with new versions resulting in test delays
and thus further reducing available time. IED personnel requested that
the testing be based on actual NASA data but the more appropriate data

1-2

.32

sources (e.g., PMS-type data, other Applications' data catalogs and
inventories) did not exist in substantial enough amounts for testing.
The choice was then made to use satellite sensor data. The final
selection made was to use FGGE/LIMS data containing stratospheric
temperature profiles from the NIMBUS 7 mission. There were two primary
types of records in this data, a Profile record and an Entry record. A
Profile record contained a time, latitude, and longitude for a specific
temperature profile and was associated with a specific magnetic tape.
Approximately 16 Entry records were present for each Profile and, each
containing a pressure 1éve1, pressure type, temperature, and quality con-
trol indicator for a specific level within the profile. When reference
is made in this report to "number of records in the data base" it is in
the context of the above description. By describing the number of rec-
ords by reference to the input data format instead of actual records in
the data base, comparisons between data bases can be made more easily.
This approach transcends, for discussion purposes, unique DBMS implemen-
tations that might require multiple data base records per single input
record or vice versa. It is considered appropriate to do this since the
data being managed is the same for each DBMS in the study.

After the choice of the data base application was made a set of
logically similar designs were derived for each DBMS, implying that
fields selected for indexing in one were indexed in all DBMS's and that

data relationships were maintained synonomously. The simplicity of the
FGGE/LIMS data enabled the creation of data base designs that pfovided a
suitable testbed which permitted comparisons between the systems' per-
formance. It must be stated, however, that the use of a single applica-
tion for total system evaluation is unwise. As stated later in this sec-
tion in more detail, an expansion of testing is required to fully explore
total system performance.

The test plan that was applied for this study recognized that re-
sources did not permit a comprehensive testing of all facets of DBMS
capabilities. The test plan concentrated on accomplishing several

goals. One goal was to determine how sensitive the systems were to
size. This was deemed important because of the typically large amounts
of data associated with many NASA applications including the PMS. A
second goal was to compare the loading performance of each system because
of the high data rates associated with the PMS. A third goal was to
determine the efficiency of the data accessing techniques implemented in
the DBMS's. Emphasis was placed on access to data versus update or
deletion which is consistent with many large scale NASA data base
applications as well. Another goal was to evaluate the systems in a
qualitative sense to identify characteristics such as flexibility, user
friendliness, control and complimentary functions.

It should be noted that the applications foreseen for the DBMS
system at NASA are atypical. The scientific environment and the high
volume of data that is normally static once incorporated in a data base
results in different emphasis than perhaps a business oriented applica-
tion such as a corporate information management system or reservation
system. The application dependence of a system's performance must not be
underestimated and guarded conclusions should be made when looking at
test results gained from an application foreign to one's own,

Another goal of the tests was to exercise both the terminal inter-
face capabilities as well as high Tevel computer Tanguage interfaces.
Terminal Interface (TI) capabilities existed in all three systems and the
interactive features are very important for effective use of the data
base by users. The high level language interface or host language inter-
face (HLI) is also important because the highly specialized needs of the
PMS require customized software that can communicate directly with the
DBMS selected for incorporation with it.

The final test plan met these goals by proposing a relatively con-
cise set of functions including queries, deletes, and insertions using
both the TI and HLI capabilities for each system. In addition these
functions were to be performed with differing amounts of data in the data

1-4

bases. Thus, each DBMS was used to load a prescribed amount of FGGE/LIMS
data, was subjected to parallel sets of tests for the TI and HLI, and
then was loaded with more FGGE/LIMS data to have the test repeated

again. Due in part to the amounts of data present on the FGGE/LIMS data
tapes the following numbers of records were used to repeat the tests:
52,000, 99,000, 189,000, 439,000 and 1,040,000, Since there were three
data bases with two sets of tests for each (TI and HLI) at each data base
level and there were five levels of data base size, 30 sets of tests had
to be performed. |

To make the results meaningful a controlled environment was required
to eliminate unknown variables. Since there was no way to objectively
factor the impact of other VAX computer users or to control their
activity so test results would be repeatable, all tests were conducted
during the third shift or on weekends when the computer could be reserved
for data base testing only. The results obtained should be repeatable
under these circumstances and introduce no bias that would have posi-
tively or negatively influenced one system verses another. The results
should be "best case" results for the application since there were no
other users contending for system resources.

The Toad rates of the three systems varied somewhat over the course
of the one million records loaded into each data base. The ORACLE system
varied the least over the loading processes. A slight degradation is
detectable but the initial rate of 7.4 records/sec only dropped by about
1.2 to 6.2 records/sec at the largest data base size. The SEEN load
rates began at a much higher level (45 records per second initially) but
showed a great deal of fluctuation. A substantial degradation occurred
during the course of the loads. Around the 1 million record level the
rate fell below the 5 record/sec level. The RIM system design had to be
altered so that the Profile records time field was not indexed after the
initial 52,000 record load because of an overhead associated with
indexing data with characteristics common to the time values. At the
99,000 record level the profile time index was removed from the data base

1-5

the costs at the low end are reasonable, or that for relatively small
data bases SEED may have an advantage. SEED's degradation is attributed,
in part, to a default algorithm used to determine a location in the data
base for indexed values to reside. Improvement in performance may be
obtainable by a user defined algorithm (permissible in SEED) that
improves the location process by more uniformly distributing the data
Tocations because of prior knowledge of the characteristics of the data.
Also the SEED system has a variety of options selectable in the data base
design which can impact the load rates, as well as query responses.
Several of these options are discussed briefly in Section 2 but tests
have not been conducted to formally compare each option. The options
available have the advantage of offering different approaches for data
bases with differing characteristics and needs. However, a naive or
unfamiliar individual may use options that reduce performance if he is
not careful. Neither ORACLE nor RIM offer options for how or where the
data can be stored.

Noteworthy is the fact that during the loading which was almost
always done in the absence of other VAX users (eliminating contention)
each system utilized the CPU to different degrees. The ORACLE loads used
about 75% of each second of available CPU time. SEED used slightly less
than half of each second on average and RIM used as much as 34% during
early loading but dropped to about 24% during the final load. The
implication here is that if users were contending equally for CPU time
then ORACLE would be impacted more heavily than SEED, and RIM would be
less impacted than SEED. Obviously all systems would perform at Tower
levels of efficiency when sharing resources with other users.

The TI query results should be considered in the context of their
use. An interactive user is not concerned with extremely short delays
in response. A pause of a few seconds is not unacceptable in most in-
teractive situations. The results of tests indicate that the indexing
techniques implemented by all three systems are adequate in providing
responses that are acceptable for interactive users at all levels of data

1-6

)

Y]

than half of each second on average and RIM used as much as 34% during
early loading but dropped to about 24% during the final Toad. The
implication here is that if users were contending equally for CPU time
then ORACLE would be impacted more heavily than SEED, and RIM would be
less impacted than SEED. Obviously all systems would perform at lower
levels of efficiency when sharing resources with other users.

The TI query results should be considered in the context of their
use. An interactive user is not concerned with extremely short delays
in response. A pause of a few seconds is not unacceptable in most
interactive situations. The results of tests indicate that the indexing
techniques implemented by all three systems are adequate in providing
responses that are acceptable for interactive users at all levels of data
base size. The results also indicate that unacceptable delays are en-
countered when queries are made that must search through non-indexed
values. A good analysis and data base design effort must attempt to
eliminate the need for queries that require searching of large groups of
records by properly specifying indexed fields. The results do show that
RIM is decisively faster than either other system in performing a search
through all ocurrences of a particular non-indexed data field. They also
show that SEED is consistently faster than ORACLE.

The HLI results for the queries can be examined more closely since
in this mode relatively small differences can result in large cumulative
differences when a piece of software is repetitively performing functions
that require an interface with the data base. The results generally
indicate that SEED can locate indexed values consistently faster than RIM
which can locate indexed values faster than ORACLE. The magnitude of the
SEED responses for locating a particular profile time for cases where
there are from 3000 to 26000 possible values is around .1 seconds while
with about 60,000 possible values it was about .5 seconds. For RIM it is
around .3 seconds until the 60,000 Tevel when it increments to about .5
seconds also. The ORACLE results are around .5 seconds for all levels.
While trying to locate a particular Entry record SEED requires around .3
seconds when selecting from among 49,000, 93,000, 178,000 and 413,000

-7

Entry records. With about 980,000 choices to contend with, it located
the desired record in about .75 seconds. RIM required about .5 seconds
at the lower levels and about .75 seconds also at the 980,000 level.
ORACLE required 1.08 and 1.33 seconds for all levels. The differences
may be small by themselves but if software interfaced with the data base
and another computer and had to handle bursts of requests the cumulative

ir

difference could become significant.

x)

HLI tests which accessed all occurrences of a particular data item
might be equated to either the querying of non-indexed fields or the
production of summaries about a field or record. The results indicate
that RIM is substantially faster than either ORACLE or SEED. To access
all 980,000 Entry records when the data base was at its largest ORACLE
required over 3 hours and 42 minutes, SEED required over 1 hour and 3
minutes and RIM took less than 17 minutes. If periodic reports or
summaries are frequently generated for an application, these results may
be worth considering when making a DBMS selection. For example, if daily
summaries were produced which required the processing described above
almost a sixth of available processing time would be spent with ORACLE
while less than two percent would be spent with RIM (in an uncontested
environment). The matter of storage utilization was also addressed and
it was found that ORACLE consumed about 87 million bytes to manage the
1,040,000 Profile and Entry records in the largest data base (60,000
Profile records and 980,000 Entry records). Of the 87 million almost 43
million is wasted due to the current storage management capability in %
ORACLE. This is said to be corrected in the 3.0 version of ORACLE to be |
released in late 1981. SEED consumed under 20 million bytes to manage
the same data and RIM consumed about 40 million bytes.

Some general comments regarding the systems are also worth stating.
The ORACLE system was found to be a much simpler one to grasp and use. A
relative novice to data base theory could devise a feasible design and
implement it using ORACLE for many applications with a small amount of
training and/or research. The likelihood of serious flaws are small and

1-8

the flexibility of ORACLE allows for design modifications without
requiring starting over from "square one." SEED is generally the
opposite of ORACLE in this regard., A much deeper understanding of the
CODASYL network specification and SEED capabilities and options are
required for an individual to design and implement a data base. Any
modifications to the design almost invariably require starting over with
a specification of a new schema and the steps that follow that. RIM is
similar to ORACLE in terms of comprehension of the data model but is not
as complete or as thoroughly implemented as ORACLE.

Although RIM has shown certain capabilities that demonstrate great
potential it does lack, to some degree, the generality of the other
systems as well as the complimentary software available in the other
DBMS's. A major shortcoming of RIM and one that should eliminate it from
use in the PMS is that it does not support multiple users. It is unknown
at this time if or how RIM will be modified in the future for support of
its current or other applications.

The results of this study are somewhat inconclusive. The original
goals have been met but the results have not supported the elimination
of any of the NBMS's (except RIM for the reason stated above). It
appears that none of the systems meet all of the original IDBMS require-
ments, but, in truth no general purpose DBMS has been produced that could
support the unique needs of such a system. The study has provided a
foundation from which some comparisons can be made and which may be used
to better envision how the systems can be applied to support other
needs. An overall benefit of this effort has been a greatly increased
knowledge of how to apply the DBMS's as well as more awareness about DBMS
usage and capabilities in the atmosphere of NASA applications. The
results stated give some indications of upper limits of performance to
aid in estimation of maximum throughputs possible with the data bases.
The results also indicate that the systems are capable of managing
relatively large amounts of data although performance is not consistent
over all ranges of data base size.

1-9

Additional factors need to be examined in future studies to more
thoroughly understand and predict the performance of the DBMS's
including:

. Record sizes

. Number of indexed fields

*+ Size of an indexed field

. Experimenting with SEED options

. Experimenting with ORACLE data base parameters
. Multiple data base users

. Multiple VAX users

1-10

2.0 QUANTITATIVE ANALYSIS

The development of the test plan for benchmarking DBMS performance
was constrained by several factors including:

« Computer resources (time and storage)

* The number of systems under scrutiny

+ Calendar time available before results were needed
+ The environment of the target application (IDBMS)

The number of systems under consideration and the impact on the Host VAX
computer, in both consumption of time and of auxiliary memory, required
careful definition of test procedures. Further complicating the matter
was the urgency associated with the completion of the testing. The test
plans had to be relatively concise because each DBMS would be exposed to
them independently and repetitively.

The tests were performed on SEED, ORACLE and RIM data bases with
fixed amounts of FGGE/LIMS satellite data. Originally the goal was to
perform tests with approximately 50,000, 100,000, 200,000, 400,000,
1,000,000, and 2,000,000 million records in the data base. Ultimately
the 2,000,000 goal was discarded and five test points were used:
52,0000, 99,000, 189,000, 439,000, and 1,039,000. By performing the
tests repetitively over these ranges any sensitivities to data base size
would become apparent. Since the target data base application would
manage large amounts of data, the 2 million record level would have been
desirable but the amount of disk space and the lack of time available
made it impractical to proceed past 1 million.

2.1 Background and Environment

2.1.1 Data Base;App]icétion

To facilitate the quantitative measurement of DBMS performance, a
single application was selected from which all results could be

2-1

obtained. Although the data base packages were expected to be used to
manage catalog data the FGGE/LIMS satellite data was selected because
substantial amounts of catalog data were not available. The creation of
artificial catalog data was discarded because it was considered undesir-
able to use test data when ample amounts of actual satellite data exist-
ed. A number of FGGE/LIMS tapes were available and offered enough data
to demonstrate the management of large amounts of information. It was
also felt that the use of satellite data would demonstrate PMS capabili-
ties better than a more abstract application. The FGGE/LIMS data was
stored on a number of magnetic tapes with each tape containing observa-
tions for an exclusive period of time. The tapes available included
observations recorded from December, 1978, through May, 1979. A tape
consisted of files, each of which corresponded to a particular six-hour
time period referred to as a synoptic time period. wfthin the file were
profiles identifying the time, latitude, and longitude associated with a
set of observations which describe a vertical column of the atmosphere.
The set of observations for a profile consisted of approximately 16
records referred to as Entry Records in this document.‘ Each entry record
consisted of a pressure type, pressure level, temperature, and quality
flag.

To provide a fair basis for comparison, the data bases were all
designed as similarly as possible. The relational systems, ORACLE and
RIM, possessed the same basic capabilities and a similar design for each
was a simple matter. Production of an equivalent design for the CODASYL
system, SEED, was a more difficult task. Each of the systems under study
offered a caspability to locate the occurrence of specified values for
some data items without the need to sequentially search all the occur-
rences of that data item. Many methodologies have been developed to pro-
vide this function and many terms have evolved to describe them including
data base keys, indexes, and images to name a few. For the sake of dis-
cussion, the capability shall be called direct access and data items
which are specified to have this characteristic are referred to as
indexed fields. To maintain consistency between the three designs any

data item that required direct access was given that characteristic in
each system. To accomplish this ORACLE and RIM use a technique called a

2-2

~1

B-tree which refers to the data item values as keys. When a key value is
referenced a binary search is made through a Togical tree hierarchy of
key values to locate the occurence of the desired value and, if it is
found, a pointer(s) will be present locating the tuple(s) or row(s) which
contain the value. In SEED direct access is accomplished through the use
of a hashing algorithm technique. This approach performs an operation on
the key value producing a numerical result which is a logical pointer to
a location where the data record should reside in the data base. In SEED
the smallest entity which can be directly accessed is a record. In the
chosen application the profile record presented as input to the data base
had time, latitude, and longitude values all of which required direct
access. The SEED data base design had to include a record definition for
each of these items to accomplish the direct access. This means that
multiple record occurrences exist in the SEED data base for each Profile
record input to it. For clarity the results in this document will refer
to records in the data bases in terms of the way they were presented as
input to the load software not in terms of the internal management used
by each data base unless otherwise stated. The relative simplicity of
the FGGE/LIMS data, i.e. the small number of data items and the clarity
of the relationships between them, made the design of consistent
approaches possible, thus the benchmark results do provide a basis for
comparison of DBMS capabilities.

2.1.2 Data Base Design for FGGE/LIMS Data

2.1.2.1 ORACLE Data Base for Satellite Data

2.1.2.1.1 ORACLE Data Base Construction

After the decision was made to use FGGE/LIMS data for the DBMS
benchmark, a design phase was conducted which considered factors includ-
ing: the LIMS data; the volume of this data; the way this data could be
accessed in the existing Climate Nata Access System (CDAS) which already
manages FGGE/LIMS data tapes for climate research; the need for sequent-

tial retrieval, and the facilitation of a test bed for benchmark
analysis. Because of the small number of relationships that existed in

2-3

the LIMS data, a complex system of tables is not required. Three sets of
tables (Tables 2-1, 2-2 and 2-3) which are all somewhat similar were
considered for the data base design.

A1l of the proposed sets of tables contain three common tables,
TAPE, PRESSURE_TYPE_LEGEND, and QUALITY_FLAG_LEGEND. The TAPE tahle con-
tains a row for each LIMS tape in the data base and has domains for:
tape ID, start synoptic time, stop synoptic time and date of tape crea-
tion. The two legend tables give meaning of various values which the
PRESSURE_TYPE and QC_FLAG fields have in other tables in the data base.
These tables represent an initial attempt to normalize the tape data.

In addition to the three tables described above, the first proposed
set of tables included a fourth table that contains the remainder of the
data base information. The fourth table in the first set of tables is
LIMSDATA and would contain about two million rows of data, if all the
available data was loaded into it. (The two million figure was used
because IED personnel desired to see the data base system perform with as
much data as possible and this was approximately all the data on the
available FGGE/LIMS tapes.) Each row of this table would contain the
fields: tape ID, file synoptic time, profile time, latitude, Tongitude,
pressure type, pressure level, temperature, and quality flag. Such a
table would repeat the tape ID, synoptic time, profile time, latitude and
Tongitude for all 16 entries in a profile. This redundancy of data is
expensive in terms of storage utilization, but the LIMSDATA table does
contain all the profile information relating to a given entry record so
query results could not fail to provide relevant information although
some irrelevant information may be included. An omission of this
approach is the ability to provide a sequential access equivalent to that
for processing an original FGGE/LIMS data tape. This need exists to
permit a minimum of modification to programs which currently process the
sequentially organized data tapes, if they were required to access the
data through the data base.

To reduce the repetition of data for the entries in a profile, and
to solve the sequential access problem, a second set of tables evolved

2-4

<

Ta

ble 2-1

Initial Tables for Managing LIMS Data Using ORACLE

TAPE TABLE

TAPE_ID | SYN STIME | SYN ETIME

GENDATE

PRESSURE_TYPE LEGEND TABLE

*

CODE DESCRIPTION

QUALITY_FLAG_LEGEND TABLE

*

CHAR

CODE DESCRIPTION

LIMSDATA TABLE

*
TAPE_ID |SYN TIME| P_TIME

LAT LONG [PRESSURE_TYPE|PRESSURE LVL | TEMP

QC_FLAG

* Denotes Imaged Field

2

-5

TAPE TABLE

Table 2-2
Tables for Managing LIMS Data Using ORACLE

TAPE_ID

SYN_STIME

SYN ETIME

GENDATE

PRESSURE_TYPE_LEGEND TABLE

QUALITY_FLAG_LEGEND TABLE

* * .
CODE DESCRIPTION CHAR | CODE DESCRIPTION
{
PROFILE TABLE
* . * * *
TAPE ID | SYNTIME | P TIME LAT LONG
ENTRY TABLE
*
ROW # |TAPE_ID | P_TIME |PRESSURE_TYPE|PRESSURE LVL | TEMP |[QC FLAG
LIMSDATA (VIEW)
TAPE_ID [SYN TIME| P_TIME (LAT LONG [PRESSURE_TYPE |PRESSURE_LVL | TEMP |QC_FLAG

* Denotes Imaged Field

2-6

(see Table 2-2). The LIMSDATA table was broken into two tables: The
PROFILE table containing tape ID, file synoptic time, profile time,
latitude and longitude and the ENTRY table containing the row #, tape ID,
synoptic time, pressure_type,bpressure level, temperature, and quality
flag. The PROFILE table removes the repetition of synoptic time,
latitude and longitude from each entry in a profile. The ENTRY table
contains the row # field which is a unique field that application
software creates for each row of the ENTRY table. The value is
incremented by one and thus represents the sequential order in which the
rows were inserted into the data base. If a user accesses the entry
table without specifying an ORDER BY or GROUP BY clause, he receives the
output in the order in which the data was input to the data base.

To provide’the casua] user a more friendly interface, a view is de-
fined which looks to the user like the LIMSDATA table in the first set of
tables. To produce this effect the view definition joins the PROFILE and
ENTRY tables on the common fields tape ID and profile time within each
table. A "view" in ORACLE can be used to define what appears to be a
table in the data base but which is really some part or parts of one or
more existing tables. In this case the view combines information from
two tables based on common fields and only omits the artificially pro-
duced row # field. The use of this view does result in additional pro-
cessing overhead since the view definition must be found, appropriate
queries to each of the tables must be made and a merged output line must
be produced. The view is called LIMSDATA and can be queried using any
combination and yielding any combination of the tape ID, synoptic time,
profile time, latitude, longitude, pressure type, preséure level,
temperature and quality flag fields. A casual user need not know the
PROFILE and ENTRY tables exist separately. This further removes the user
from having to understand the physical storage of the data. The more
sophisticated user could work directly with the PROFILE and ENTRY tables
if necessary and, if desired, views could be defined which eliminate the
row # field since it has no direct relationship to the data. The major
drawback of this approach is the remaining repetition of tape ID and
profile time for each row in the entry table. The impact of the row #
field should also be noted. Obviously it will add size to each row in

2-7

the data base, but more importantly this field maintains the sequential
order of the data, and, as such, cannot be updated once stored in the
table without potentially corrupting the data base. Such a limitation is
consistent with the way sequentially organized data sets are managed on
magnetic tape (i.e., the observed values cannot be updated or rearranged
once on the tape).

To reduce the response delay and repetition of data a third set of
tables evolved (see Table 2-3). The ENTRY table no longer contains row
#, tape ID, and profile time as before, but a new field, PROFILE_CNT#,
has been added which is propagated through all the entries for a given
profile. PROFILE_CNT# has been added to the PROFILE table and is an
ascending number representing a unique value for each profile in the data
base. The synoptic time has now been deleted. These changes result in
the same total number of columns in the PROFILE table while a total of
two columns have been deleted from each row in the ENTRY table which
could contain as many as two million rows.

To provide the user with a friendly interface, a view similar to
the LIMSDATA view used in the second set of tables was implemented in
this approach as well, except synoptic time is no longer available. The
view still requires the joining of the PROFILE and ENTRY tables, but the
new view now joins the two with a WHERE clause that matches a row in the
PROFILE table with those in the ENTRY table whose value in the PROFILE
CNT# field is equal to the value in the PROFILE CNT# field of the PROFILE
table.
Normally this would result in the matching of about 16 ENTRY table rows
with a single row from the PROFILE table. By joining the tables using
the PROFILE_CNT# values in each table the sequential access problem is
still solved since the responses will be ordered in increasing size of
PROFILE_CNT# when a task needs to access all the data the way current
software processes data tapes. Since all the fields in the WHERE clause
are imaged, all queries using the LIMSDATA view would take advantage of

2-8

Table 2-3
Recommended Tables for Managing LIMS Data Using ORACLE

TAPE TABLE

*

TAPE ID | SYN STIME | SYN ETIME GENDATE

PRESSURE_TYPE LEGEND TABLE QUALITY_FLAG LEGEND TABLE

* *

CODE DESCRIPTION CHAR | CODE DESCRIPTION

PROFILE TABLE

* * * *
PROFILE CNT# | TAPE ID P TIME LAT LONG
ENTRY TABLE
* :
PROFILE _CNT# [PRESSURE TYPE | PRESSURE LVL TEMP QC_FLAG

LIMSDATA (VIEW)

TAPE_ID | P_TIME LAT LONG |{PRESSURE_TYPE|PRESSURE_LVL TEMP 1QC_FLAG

* Denotes Imaged Field

2-9

the ORACLE B-trees and reduce access time significantly over the previous
approaches. The use of the PROFILE_CNT# fields would be transparent to
the casual user who accesses the data base through the LIMSDATA view.

Several general points are worth noting about the approach described
above. The use of the view capability requires the joining of tables.
Such a process is necessarily slower than if the data is all stored in a
single table, but the storage costs of a single table for this
application are prohibitive. Secondly, although BTS recommended the use
of a single ENTRY table for all eight tapes in this approach it was done
in the context of the use of this data base. In general, the production
of such a large table is probably undesirable but for the purpose of
benchmark testing and because the data base is limited to eight tapes,
the data base has been so designed.

2.1.2.1.2 Estimation of ORACLE Data Base Storage Requirements

In estimating the storage requirements for the data base design in
Table 2-3, it is possible to ignore the size of the three small tables
and only consider the ENTRY and PROFILE tables. In making the size
estimate the calculations are based on the available FGGE/LIMS data which
amounted to two million rows of data in the ENTRY table (which corre-
sponds to two million input records in this case). The first step in
estimating the data base size is to calculate the average row size.

The FGGE/LIMS data base has no null fields so each domain will contain
two bytes of overhead plus a variable number of bytes for the actual data
representation. The field size estimates are shown in Table 2-4. The 2.2
version of ORACLE manages disk storage in 64-byte groups and, as a
result, must write each row inserted into the data base in a multiple of
64 bytes. Table 2-4 shows the calculations of the row sizes for both
tables. The estimated sizes indicate that 30 and 42 bytes are wasted as
overhead in each row of the PROFILE and ENTRY tables, respectively, due
to the current method of disk memory management used by ORACLE. A word
level (16 bits) management capability is planned by RSI in the future,
possibly in the 3.0 version to be released in late 1981,

2-10

Table 2-4
Table Size Estimates

Profile Table

Domain Data Type Average Size*
PROFILE_CNT# Numeric
TAPE_ID Character
P_TIME Character 12
“LAT Numeric 4
LONG Numeric _4
TOTAL ROW SIZE 34 Bytes

of Rows * Minimum Row Size** = Table Size (Bytes)

130,000 Profile Rows * 64 = 8,320,000.
Entry Table
Domain Data Type "Average Size*
PROFILE CNT# Numeric 6
PRESSURE_TYPE Numeric 4
PRESSURE_LVL Numeric 4
TEMP Numeric 4
QC_FLAG Numeric 4
TOTAL ROW SIZE 2 Bytes

of Rows * Minimum Row Size**
2,000,000 Entry Rows * 64

Table Size (Bytes)
128,000,000.

* Includes Overhead Bytes
** QRACLE Version 2.2 must manage rows in multiples of 64 bytes. RSI
promises to improve this in the near future to a 2 byte capability.

2-11

An estimate of the index space required for the ORACLE B-trees is
more difficult to make. RSI has provided relatively little formal docu-
mentation about the internal B-tree algorithms and structure but through
their representative and some experimentation the following was learned:

+ The B-tree leaves and nodes are 512 byte blocks of data

« The B-tree leaves can be estimated to be 75% utilized since they
are divided in half when they become full.

« That because of compression techniques a leaf block may be con-
sidered, for estimation purposes, to hold 50 keys when full or
approximately 37.5 keys when 75% full,

« That the node blocks could also be assumed to be at 75% utiliza-
tion.

+ That for each 37.5 leaf blocks a node block would be required at
the 75% utilization point.

« That 512 blocks are reserved for user defined views regardless of
data base size.

« That 300 blocks are reserved for data dictionary use regardless
of data base size.

By using the above guidelines an estimate of data base size could be
made. A small FGGE/LIMS data base that was full and whose row numbers
and keys were known provided evidence that the guidelines were veny
acceptable for this application.

Dividing the total number of keyed values by 37.5 should approximate
the number of leaf blocks. To obtain the number of node blocks it is

2-12

Table 2-5
Index (B-Tree) Size Estimate

TABLE NAME ROWS # OF KEYS/ROW = # OF KEYS

PROFILE 130,000 4 520,000

ENTRY 2,000,000 1 | 2,000,000
TOTAL NUMBER OF KEYS IN DATA BASE 2,520,000_

Leaf Calculation -
(Assume leaf blocks 75% full and contain 37.5 keys/block)

2,520,000 keys 37.5 keys/block * 512 bytes/block = 34,406,400 bytes
Node Calculations -

(Assume node blocks 75% full and contain 37.5 pointers/block)
(34,406,400 Leaf Bytes 512 bytes/block = 67,200 leaf blocks)

67,200 leaf blocks 37.5 pointers/block
block

1,792 1st level node

48 2nd level node block

1,792 1st level nodes 37.5 pointers/block

1 root node block

Plus a single root block

TOTAL NUMBER OF NODE BYTES 1,841 * 512 = 942,592

Leaf Bytes 34,406,400
Node Bytes 942,592

TOTAL INDEX SIZE 35,348,992 BYTES

2-13

Table 2-6

ORACLE Data Base Size Estimate¥*

TTEM SIZE IN BYTES

Reserved Space for User Views 262,144
(Independent of Data Base Size)
Reserved for Data Dictionary Use 153,600
(Independent of Data Base Size)
PROFILE Table (See Table 2-4) 8,320,000
ENTRY Table (See Table 2-4) 128,000,000
Index Requirements (See Table 2-5) 35,348,992

ESTIMATED SIZE OF DATA BASE 172,084,736

*Estimate is for a data base containing two million entry records

associated profile information.

2-14

and the

assumed that for every 37.5 leaf blocks a node block is required, and for
every 37.5 node blocks another level of node blocks is required until the
root block is reached. The need for estimating or sizing the data base
is crucial and the lack of RSI-supplied documentation on this subject at
this time is disappointing. Table 2-5 details the estimation procedure
for predicting the B-Tree storage requirements for the FGGE/LIMS applica-
tion.

Table 2-6 summarizes the estimates for each of the significant con-
tributors to the data base size. The bottom line figure shows that
slightly more than 172 million bytes are estimated to be required to
store 2,000,000 rows of entry level data plus 130,000 rows of profile
level data using the 2.2 version of ORACLE. Noteworthy is the fact that
about 88 million bytes of storage is dedicated to the wasted overhead
created by the 64 byte storage management now employed. A future change
to a word level (2 byte) management approach would eliminate this waste
but would increase the number of bit maps required for managing the data
base by a factor of 32 and would add processing overhead as well,.

2.1.2.2 SEED Data Base Design for Satellite Data

2.1.2.2.,1 SEED Data Base Construction

Figure 2.1 in conjunction with Table 2-7 describes a SEED data base
structure for FGGE/LIMS data. The structure which resides in a single
area is very simple and straightforward. A single tape of FGGE/LIMS data
is represented by an occurrence of the CALC record R3_TAPEIN. Each tape
will have a synoptic time range associated with it represented by the
owner occurrences of the records R1_SYN_STIME, which contains the synop-
tic start time, and RZ2_SYN_ETIME, which contains the synoptic end time.
The R4_DATATYPE record indicates tne type of data on the tape, in this
case FGGE/LIMS and corresponds loosely to the small tape table. That is,
one could query for all tapes which have FGGE/LIMS data. This
record-type could have been omitted for the testing but its inclusion
does not contribute significant overhead to the results.

2-15

FIGURE 2.1

SEED FGGE/LIMS CONCEPTUAL
DATA BASE

SATHEAD | SYN-STIME

$1-3, O

R-1 SYN-STIME SATHEAD TAPELD $4-3, 0 SATHEAD |DATATYPE

R-3 TAPEID B R-4 DATATYPE

\/

SATHEAD | SYN-ETIME

91-2

R2-SYN-ETIME $2-3, 0
s3-10, O
SATHEAD LAT S7-10, 2
R7-LAT
. £
SATDATA |P-TIME
R10-PROFILE
SATHEAD | QCFLAGCODE
SATHEAD LONG
$10-11 R100-QC-DESCR
R8-LONG s8-10, 0

SATHEAD PRESSURE-TYPE-CODE

SATDATA|VIA S10-11 R101-PRESSURE-DESIR

RI11-ENTRY

Table 2-7

SEED Record Description and Storage Requirements

Set
Data Linkage
Record Name Field Name Type Storage/ |Overhead/
_ Rec Rec
R1-SYN-STIME SYN-STIME CHAR*8 8 8
R2-SYN-ETIME SYN-ETIME CHAR*8 8 8
R3-TAPEID TAPEID CHAR*6 12 32
GENDATE CHAR*6
R4-DATATYPE DATATYPE CHAR*30 30 8
R7-LAT LAT INTEGER*4 4 8
R8-LONG LONG INTEGER*4 4 8
R10-PROFILE P-TIME CHAR*10 10 32
R11-ENTRY PRESSURE-TYPE INTEGER*2 10 4
PRESSURE-LVL INTEGER*4
TMP INTEGER*2
QC-FLAG INTEGER*2
R100-QC-DESCR QC-FLAG-CODE INTEGER*2 64 4
QC-DESC CHAR*60
R101-PRESSURE-DESCR | PRESSURE-TYPE-CODE | INTEGER*2 64 4
PRESSURE-DESCR CHAR*60

2-17

A tape consists of many profiles and each profile consists of
several entries. This relationship (one to many) is established by the
use of the R10-PROFILE record which is a CALC record on profile time
(P-TIME) and the R11-ENTRY record which contains detail data on each
profile. Table 2-7 lists the contents and structures of the data base
records. Also associated with each profile is a latitude and longitude.
These are represented by the R7-LAT and R8-LONG records respectively.
Note that the structure illustrated in Figqure 2.1 allows an R7-LAT or an
R8-LONG record to own many different profiles. This situation occurs
quite often as there are many profiles at a particular latitude and
longitude. This structure should reduce query time and e]iminate
duplication of data.

The CODASYL data structure depicted in Figure 2.1 shows the rela-
tionships of the FGGE/LIMS data base. The structure is depicted as boxes
which correspond to record types and arrows which correspond to set
types. Each set type has a record declared as the owner record (which
would be at the tail of the arrow) and a record declared as the member
record (which would appear at the head of the arrow). Appendix II, Part
B, contains the Data Description Language (NDL) that is used to define
the schema for this data base application.

2.1.2.2,2 Estimation of SEED Data Base Storage Requirements

The size of the SEED data base must be defined prior to loading the
data base by specifying its constituent sizes in the schema. In making
an estimation of the data base size one must first approximate the total
number of records to be managed by the data base. For the purpose of
this estimation it is assumed that there would be a maximum of 130,000
PROFILE records and 2,000,000 ENTRY records. The schema specified that
the ENTRY records were to be members of a "VIA" set owned by PROFILE
records. This means that the ENTRY records associated with a PROFILE
time are loaded physically as close to each other as possible (i.e. on
the same page or an overflow page if this page is full). A single area

2-18

1y

was selected to contain this information. The pages in this area were

defined to be 1024 bytes long and a maximum of 38 records per page was

specified. (The figure 38 was originally selected when it was thought

that a single page would always contain all member records for the asso-
ciated owner record. This was found to be an incorrect assumption only
after the testing had begun. The impact of this design error is to de-
crease the density of the data on a page.) Table 2-7A describes the cal-
culations used to determine the size of the area that contained the pro-
file time values and the ENTRY records. The record sizes were estimated
by calculating space required for data, set linkages (chain pointers),
and overhead. Two logical areas of the data base were defined in the
schema. One was the'SATHEAD area which contained the latitude and longi-
tude values associated with a profile time as well as the tape-id and
data-type occurrences. The other was the SATDATA area which contained
the profile times and all the entry data.

Because of the VIA set storage approach used, an average number of
PROFILE and ENTRY records could be determined based on their ratios and
the maximum number of records per page. Multiplying the size of each
record type by the average occurence per page and summing the values
yields a result of 685 bytes per page. The remaining 339 bytes on each
page will not be utilized because of the limiting specification of 38
records per page. A total number of pages is determined by dividing the
total number of PROFILES to be entered into the data base by the average
number of PROFILES per page. The resulting figure multiplied by the
bytes per page figure yields a required SATDATA area size of 59,164,672
bytes. It is important to remember that of this amount only 39,577,930
would be utilized. The remainder is unused due to the schema design.

The SATHEAD area estimate is shown in Table 2-78. Because of the
small number of occurrences of some of the records their space considera-
tions are ignored. The LAT and LONG records are the only significant
records to consider. Both are calculated to have record sizes of 14
bytes. The page size is 512 bytes in the area so the maximum of 38

2-19

TABLE 2-7A
CALCULATION OF SATDATA AREA SIZE
ASSUMING 130,000 PROFILE RECORDS

Maximum Number of Records/Page = 38 Page Size = 1024 Bytes

Page Averages: 2.25 Profile Records
35.75 Entry Records

38 Records/Page

n
—
o

Profile Record Size Bytes Data
32 Bytes Set Linkage

2 Bytes Record Header

44 Bytes/Record

n
—t
o]

Entry Record Size Bytes Data
Bytes Set Linkage

4
_2 Bytes Record Header

16 Bytes/Record

14 Bytes Page Overhead

99 Bytes Profile Data (2.25 Record * 44 bytes
record)

572 Bytes Entry Data (35.75 Record * 16 bytes
record)

Page Utilization

685 Bytes Per Page

339 Bytes (1024 bytes per page-
685 bytes utilized)

Unused space/page due to design

57,778 (130,000 profiles 2.25
profiles/page)

number of pages in area

SATDATA area

59,164,672 Bytes (57,778 pages * 1,024
bytes/page)

SATDATA area utilized 39,577,930 Bytes (57,778 * 685 bytes/page)

2-20

TABLE 2-78
CALCULATION OF SATDATA AREA SIZE

Maximum Number of Records Page = 38 Page Size = 512
SATHEAD would contain a maximum of:

1 DATATYPE record

8 SYN STIME records

8 SYN ESTIME records
8 TAPE_ID records

(For calculation purposes the above records are ignored due to their numbers)

18001 LAT records (values range from - 9000 to 9000)
36001 LONG records (values range from 0 to 36000)

LAT Record Size

4 Bytes Data
8 Bytes Set Linkage
_2 Bytes Record Overhead

14 Bytes/Record

LONG Record Size

4 Bytes Data
8 Bytes Set Linkage
_2 Bytes Records (Overhead

14 Bytes/Record

number of records per page 36 (512 bytes per page * 14 bytes/record)

54,002 (18001 LAT records + 36001 LONG records)

Maximum number of records

number of pages required 1,501 (54002 records + 36 records/page)

SATDATA area 768,512 Bytes (1501 pages * 512 bytes/page)

2-21

records is not reached because at 14 bytes per record only 36 records can
be stored on a page. The LAT and LONG records can assume a maximum of
54,002 possible different values so this is the constraining limit rather
than the 130,000 PROFILES they are related to. By dividing the possible
values by the number of records per page, the number of pages required in
the area is ohtained. The total bytes required would be 768,512 bytes of
which virtually all space is utilized. Summing the utilized Space in
each area reveals a space requirement of 40,349,442 bhytes.

2.1.2.3 RIM Data Base.Design for Satellite Data

2.1.2.3.1 RIM Data Base Construction

The RIM DBMS is based on the relational algebra model and, as such,
is similar to ORACLE. The RIM package was introduced to the study just
prior to beginning the quantitative benchmarking. Ample time did not
exist to experiment with the package to determine what special attributes
or limitations it might have, but there appeared to be no problem using a
data base design identical to the ORACLE design. Logically, this seemed
to be the wisest approach based on the lack of experience with the pack-
age and the desire to provide a test bed from which analogous measure-
ments could be made. ATl testing was performed on version 4.0 of RIM.

After preliminary testing it was determined that a RIM data base was
made up of three files. The first file appeared to contain the informa-
tion that defined the tables, domains, and other relevant information
about the data base structure and relationships. The second appeared to
contain the actual data in the data base. The third, and last file,
appeared to contain the inyerted files or B-trees responsible for
managing the data base indices.

As a result of some initial loads of the LIMS data, it was deter-

mined that one deviation from the ORACLE design was mandatory. The pro-
file time was an indexed domain in the ORACLE Profile Table. The time

2-22

was represented as a ten-character string (as in the ORACLE and SEED
designs) because it was too large to be numerically represented. Initial
loads indicated that the managing of this field when indexed resulted in
significant degradation in RIM load and query performance (see Section
2.2.4) and, as a result, ﬁhis field was redefined as non-indexed for the
benchmarking effort. In comparing the benchmark results it must be taken
into account that the RIM load rates reflect the indexing of one less
indexed field after the 99,000 record level and that a different query
was used in testing indexing efficiency. The exact impact of these
changes is impossible to determine at this time but the steps taken were
necessary to continue the testing.

2.1.2.3.2 Estimatijon of RIM Data Base Storage Requirements

Lack of documentation regarding internal storage methods and over-
head in RIM prevented preliminary estimates of data base size as were
made for the ORACLE and SEED systems. The absence of internal data base
documentation needs to be corrected but the lack of this information was
not too serious due to RIM's dynamic approach to allocating space. (RIM
dynamically requests more space for its files as the data base grows.)
Thus, a preliminary estimate of data base size was not required, though
this was necessary for SEED and ORACLE. Obviously, a production DBMS
must provide a methodology for estimating data base size so that storage
media requirements or availability may be determined.

2.2 Loading the Data Bases

2.2.1 General Approach to Loading

The LIMS satellite data designated for use in ORACLE, RIM and SEED
data bases was available on eighf magnetic tapes. As already stated,
these tapes included approximately 130,000 profiles and approximately
2,000,000 records associated with the profiles. Initially it was
considered desirable for Toad software to be designed and coded which

2-23

could insert data into the data bases directly from the LIMS tapes. A
high level design was formulated for a main or "driver" routine that
could call routines to read and select data from the LIMS data tapes and
call sets of load-specific routines written to load the data base
structures managed by either ORACLE, SEED, or RIM.

This approach would minimize bias in evaluating the loading capabil-
ities of SEED, ORACLE, or RIM since all sets of load software would be
interfaced with the same logic for reading the tapes and supplying data
to be inserted into the data bases. The common logic was designed to
make five calls to the load software. The first call would pass the tape
id (obtained by prompting the user, since tape id is not available on a
LIMS tape), synoptic start and stop time, and the tape generation date.
The second would be made for each file on the tape ahd would identify the
synoptic time of the file. The third would be made for each profile and
would identify the profiles actual time to the minute, the latitude, and
the longitude. The fourth would pass a set of entry values for a given
profile by passing a number of pressure type, pressure level, tempera-
ture, and quality flag values. The fifth call would signal the end of
data on the tape and should result in the closing of the data base.

The implementation of this approach uncovered several problems which
resulted in some alterations. All the software was to be coded in
FORTRAN but it was found that VAX FORTRAN I/0 could not be used to read
the LIMS data tapes. Rather than spend time implementing routines using
the VMS QIO capability it was determined that files created by the
Climate Data Access System (CDAS) could be read easily using VAX FORTRAN
I1/0. Because of the urgency associated with loading the satellite data
the main routine was modified to read disk files containing the FGGE/LIMS
data that had been generated by CDAS. This indirect approach would
ordinarily be undesirable, but time limitations required taking such a
shortcut. The only drawback of the CDAS version of the LIMS data is a
loss of the file synoptic time, but this omission within the data bases
is of little or no significance. Each set of load software was modified

2-24

ot

to ignore the call to the DBMS2 routine (see Figure 2.2) for file
synoptic time and the main routine was set up to make only one such call
during a run. A functional description of the load software appears in
Figure 2.2. An additional capability provided for the load software was
logic to provide measurements of load rates on an interim and summary
basis.

The benchmark™ tests were to be conducted at various levels of data
base size. The actual levels chosen were in part a function of the
amounts of data on the FGGE/LIMS data tapes but were intended to reveal
sensitivities of performance to diferent volumes of information. The
actual levels of data base size chosen (expressed in terms of the sum of
Entry and Profile records read off the CDAS files) were: 52,000, 99,000,
187,000, 439,000 and 1,039,000, Although the original plan suggested
reaching a 2,000,000 record level, time and disk storage limitations
forced a cut off at approximately 1,000,000,

The load rates were measured by reporting elapsed "wall clock" time,
elapsed CPU time, total direct I/0's and total page faults as reported by
VAX system monitor routines for the load software routines. These
statistics' with the exception of "wall clock" time, do not reflect the
majority of the processing overhead in ORACLE's case because a detached
process is created which does much of the actual processing and which is
not included in the reported figures directly (see Sections 2.2.2 and
2.2.3). The measurements were reported for each 5000 successive Profile
and Entry records inserted into the data base from the CDAS file. From
these measurements one can determine the relative insertion rate at any
particular lTevel of data base size and thereby draw conclusions about
degradation or efficiencies.

To produce results that were comparable between incremental loads or
across DBMS's, dedicated VAX system time was desirable. Due to the
amount of such time required the loads could not be conducted in a total-
ly stand-alone environment. The loads were all conducted from some time
after 6:30 p.m. and almost all were completed prior to 8:00 a.m. During
the first half hour of each load the system was reserved for stand-alone

2-25

8¢-¢

MAIN ROUTINE

DRIVER LOGIC

READ ROUTINE STATE PROCESSOR STATISTICS
READ MAINTAIN INTERIM
CDAS CONTROL LOADING AND FINAL
FILES LOAD SUMMARIES
DBMS1 DBMS2* DBMS3 T TpBMSA DBMS5
OPEN DATA BASE SUPPLY SUPPLY PROFILE | [SUPPLY ENTRY INFO:
SUPPLY: TAPE ID FILE INFO: INFO: TIME, PRESSURE TYPE AND CLOSE
AND SYNOPTIC FILE LATITUDE LEVEL, TEMPERATURE DATA
TIME RANGE SYNOPTIC TIME AND LONG I TUDE AND QUALITY FLAG BASE

*DBMS2 is only called once and the DBMS2 load routines simply return when called due to the omission of
file level data in the CDAS data files.

Figure 2.2
Functional Description of Load Logic

loading to provide controlled results., This meant that other users could
have logged on the VAX after the first half hour of a load and could have
performed operations which contend with the load routines for CPU
resources. However examination of the load results and informal monitor-
ing of terminal room activity by benchmarking personnel and VAX personnel
indicate that contention was rarely encountered. With this in mind one
may use the measurements to determine the relative degradation in load
rates, if any, due to data basevsize to compare performance between
systems. The actual numbers generated must be viewed in the context of
the data base design and the isolated environment they were produced in.
A design with more fields or more indexes would likely degrade lead
performance. The introduction of other VAX users could also affect load
rates but predicting how is dependent on the system "mix", the contending
processes and their associated quotas and priorities, as well as the Tload
routines' associated quotas and priorities. Clearly empirical testing is
required to estimate rates in a particular environment and the figures
produced in the benchmark loads would normally have to be considered best
case or "top end" figures.

2.2.2 ORACLE Load Results

The ORACLE load process required that at the beginning of each Tload
that a query be made of the data base to determine the maximum value of
the PROFILE_CNT field which was artificially created and added to the
data (see Section 2.1.2.1.1). The overhead incurred by this query is
small initially but increases as more rows are added to the Profile
table. Also at the beginning of each load is the overhead of logging
onto the data base and opening it. The net effect of the overhead is an
apparent degradation in the initial 5000 rows inserted into the data base
at each incremental load step. Accompanying this discussion are a number
of graphs depicting load performance. The points plotted on these graphs
represent the "wall clock" time required to load the CDAS records into
the data base at a particular data base size. The points are determined
by dividing the wall clock time since the last 5000 record measurement

2-27

into 5000 to get the number of records inserted per second. This
provides an insertion rate per second averaged over the last 5000 entries
(approximately 300 Profile records and 4700 entry records). The result-
ing pictorial summary of load performance should demonstrate any sensi-
tivities to data base size or particular external conditions such as user
contention.,

During the initial loads using Version 2.2 of ORACLE the data base
was defined with relatively small data base "extends" that were suffi-
cient for the amount of data in the data base at that time. An ORACLE
"extent" is an addition to the data base made after it is originally
defined and initialized. Extents normally allow the data base to grow
gracefully without requiring one to reserve large amounts of space prior
to needing them. An extent is the equivalent of a VAX disk file. After
reaching the 180,000 row level the number of "extents" was increased to a
total of six in anticipation of going to the 439,000 row level. When
that load was begun the detached process exited before the completion of
the load. The original load process remained in what appeared to be a
dormant state. It was then cancelled by benchmark personnel. Subsequent
examination of the data base revealed about 220,000 rows were then
present. Discussion of the problem with RSI personnel indicated that a
problem existed in the ORACLE software when a large number of data base
"extents" were defined. RSI suggested reinitializing the data base to a
single large extent and reloading the data. This was done and a new set
of loads were started. Approximately 290,000 rows were inserted into the
data base before a similar failure occurred. That is, the detached
process exited leaving the parent Toad process in a semi-dormant state.
An attempt to restart the load was futile., Further consultation with RSI
revealed a problem with the 2.2 version in managing more than 65,000
blocks of memory. A patch was provided for the ORACLE software but it
proved ineffective and RSI agreed to provide a preliminary copy of
Version 2.3 that would solve the management problems. The results of
these original loads are not presented in any of the graphs provided
because they are superseded by those from Version 2.3.

2-28

Before discussing the Version 2.3 load rates, some discussion of the
ORACLE methodology used for processing is worthwhile, especially in Tlight
of our earlier load failures. When software "logs on" to ORACLE to begin
the load, ORACLE creates a detached process that appears to perform most
of the work required during the session. RSI documentation does not
detail the methodologies employed to communicate with the detached
process but problems seem to exist. When the detached process encounters
a fatal error and must prematurely terminate, the original load software
is left uninformed. This is a very serious problem because the user has
no way of knowing his session has essentially stopped nor does he have
any way of finding out the actual cause of the original failure other
than a "post mortem dump". The significance of this shortcoming is
apparent and should be corrected. The graphs provided depict results of
successful load rates only.

The ORACLE load rates produced using VERSION 2.3 are extremely
uniform. Figure 2-3, Part 1, shows rates plotted for the initial 100,000
rows loaded into the data base. Note should be made that the degradation
at about 58,000 rows is probably associated with the overhead of the
initial maximum Profile count query mentioned earlier. The degradation
over the first 100,000 rows is barely detectable dropping from around 7.4
rows/second to around 7.2 rows/second. The 2.3 version of ORACLE appears
to be a bit slower in load performance than Version 2.2 (whose results
are not provided here). This may be caused by the introduction of the
“journaling capability” but whatever the cause, the load rate was reduced
about 12%. Figure 2.3, Parts 1 and 2 shows the load rates from the
100,000 row level to the 400,000 row level. The load rate remains very
uniform with a very slight degree of degradation. Over this 300,000
range the insertion rate drops less than .4 rows/second going from
slightly below 7.2 rows/second to about 6.8 rows/second. Figure 2-3,
Parts 3, 4, and 5 depicts the load rates from the 400,000 row level to
1,039,000 rows. The results continue to display uniformity with very
slight degradation. After loading over 600,000 records the load rate had
dropped to a final rate of about 6.2 rows/second. Figure 2.4 summarizes

2-29

the results of the entire load on a single page and shows the consistency
of the load rates.

At the end of the first load Figure 2-3 Part 1 displays a noticeable
dip which is unexplainable at this time. Examination of the last obser-
vation point of the succeeding loads shows no such behavior. The breaks
in the graph represent the pauses in the load sequence where a new load
was begun. The total degradation in insertion rate from 7.4 to 6.2 rows
per second is most likely attributable to the size of the B-trees requir-
ed for the indexed .fields. The very slight irregularities that exist
along the plotted points are probably attributable to random efficiencies
and costs due to the physical location of the disks when reading from the
CDAS files and writing to the data base. (The input files were Tocated
on a different device than the output devices but they were both asso-
ciated with the same controller as was the case with the SEED and RIM
applications).

Examination of both the load software process and the detached pro-
cess associated with the load show that their cumulative CPU utilization
in an uncontested environment was around 77% of available CPU time. The
ratio of the load software's utilization to the detached process's utili-
zation is about 1 to 4.5. The detached process does most of the process-
ing associated with the insertion procedure which is demonstrated by the
proceeding ratio. The ORACLE DBF LU command shows that the final data
base containing about 1,039,000 record requires 169,142 blocks or about
87 million bytes. This supports the methodology applied for estimating
the ORACLE data base size in Section 2.1.2.1.2 which predicted 172
million bytes would be required to manage two million rows. The actual
number of rows in the data base is 52% of the two million rows and has
consumed about 51% of the space originally estimated for it.

2.2.3 SEED Load Results

The approach used for the managment of Profile and Entry information
was partially described in Section 2.1.2.2.,2. The implication of the

2-30

LE-¢

R AR e AR A AR

INSERTIONS/SEC (WALL CLOCK) i : ((1‘] i I Hill
T [' eI IE ' - J —‘ i _‘ I RE ORACLE LOAD RATES
; 1 +J L 4 - il T : é “ v- 2.3

Part (1 of 5) ”*L

(0
Pl
[

e T R T

me
v T i
T T ‘
+ T yami e I s
.t T yui e e
o e s T I e t :
i T t T 1 t
" THT > T =8 Sarm

T UL R LT TR T A T T
>T: :n>i_,:a

i At
Figure 2.3, Part 1

e 4

eaRaEeY Pt

1

poums npges

=T
o

asmee

BT

|
ATES

3

:ﬁ; gi; l
R

ORACLE LOAD
V. 2
Part (2 of 5

)

B

HilH

HH

!

T

1y

}

by

Figure 2.3, Part 2

L1

!

i

INSERTIONS/SEC (WALL CLOCK)

cfae

]

T
|

i

T H D &1

2-32

s

ge-¢

T] | ' ' i 58 T R IR R B
e ot s ~ R
e Bl A TR it i il I ORACLE LOAD RATES
i | - V. 2.3
| i Part (3 of 5)
0 A
: T ; —f il -J% ; it stttk i ["% f% I
: i U
I i i i i
A R il £ ! i
H 1HH 4 H} HidE
FHL 4 HIHH H HHIH Hil H :gr i ! J 1
T A L i
H H 1 1 H 1
i I 1 il il i r il
L ‘ eI
E H £ HHHHT T T H
[1 11 :[3 5 _‘{
-l B 15_
It : i
[1HHITE [
| I
i 1 TH T
! | (UL | T !
i ‘#” i
} it I | i 4%; | % | | | iré 100" OF CDAS RECORDS i % EL
S S S e e
e S e s A

Figure 2.3, Part 3

ve-2

TR T T) LRI T AR T Tt il

T
T

: 1

T e eI ' JTTHE ' ORACLE LOAD RATES ||
: Al R I i i V. 2.3 3
| 7 :: Part (4 of 5) il

[S et

- —
T

4 | i Tk T

atilE [R R R Billl | Tl c L i
’ : ailligiasiliecalad Ll Hi i 4 i
i kst likglit i ittlisliti | g i 1 i i Hikistilist i
15 HEY H i i H ; : i it |

I

1T
T

1

: HHH H £
el iiEeltbenibee b tetile i] H il
| i i - w T

} i i I i e H : 22 HI I H)
2 . wapp
: 1 L O H1H _] 1 11 H ; H g §

£ F i : spa
] THT i S T R i
. o TR HI 1

H H 4
f | | st i
it ! | L i 1
I : 1] HIHH DB SIZE T
] H # ‘ ¥ | IHaR 1 BEliiE 1000'S OF CDAS RECORDS ::iif:
BT : I i 7 1 XN B T 2 ¥ 1K
i | B Jn J J. 4 ﬂ i N Ml T H { o
1 b 1|0 o H11H P D IR REE: 33 s : i
EilllliE il AR iR

Figure 2.3, Part 4

Ge-¢

RN R

INSERTIONS/SEC (WALL CLOCK)

B g
I

i

==

T

el ORACLE LOAD RATES !
Sl y. 2.3 "
LR gt T ' H Part (5 of 5) I
i i S T T
Hil 3 | : At
T : HH -
piijLilites 7 it i
i Hi H T T | §
ks it i i s disitiee Hitl
114 HH HH HH T : il Ba
it T AT T
1H £ HH 1 il
BURRPEY ::: - T I 13- g -1 24 —J:
Bt T EHE
¥ : R R E
i H { HHH HIHHIE
1 HIE T 1H it :(EAR]|REReES
it i il HIHHTE LR
1 i H1 81] : £ RES
4 It I3] I 1] dsdps B! B 11111
il I | S
HAHIL 1 it § ' A EIEIER R
Rl 4 Hhi] HRIHEHER T
il i il eI e et
1 111 1113 ! 9 H T—‘j ’7 :‘_ :"
L 1 . H- H T
1 i * T il
] it 11 H i]
|
I HIl ! li i
L WL i
i 1l il HIHE 0B SIZE
i ii' | b 11T vo00's o coas recoros
R { 1] i ST AT il IS IR SRR S
i WL Lvi kbl I QR b bl ! 11 W ot} HH HEH 2 _r} Bl
101 o A T R R R

Figure 2.3, Part 5

9€-2

LRI TR i HHH jHlits i L i it
INSERTIONS/SEC (WALL CLOCK) i H i
it} i ! ORA . 2.3 LOAD SUM |
| i 1iH
jilil flHiT ; il ,
I R R R stisihii e Lt il i
H H HIHHIH HHH] HitH £ HHE 11
H H H 3 i i }
§ HEH H i i it] it
g i il i dituiitiii it il i
it it giet it il i Y L
| 4 111 I 31 ® T 1
H] H HilH saghiee H
i H i
i HiTHTH i HiH H
i . i i i
‘_11 13 i 24 *i j:: H »j’_ Iy § —{ L H
T H it e b il 1 H s
S , : i : e
v’:: 15{ ':: AI]MV H £ H] 3”1 1 “ 1 f
it T HHR HHHHIH i L
i i i |
H T Hi] i it T H H d ::L
HIHTE i : : i i i i
i H] H HHTH T 181
§ T I g H H
1 {4 TH] i A 8 HiHH H H 8 “.: (1
j H
. 29! H Hi 4 . e .
| I ' ‘ § DB SIZE
t H 1000'S OF CDAS RECORDS
Fi AR I AR A PRI SRR T | _HI HH ’
b 1 ld:z H r1 iﬁ' i g l kb i1 Kb g KDt * h | L

Figure 2.4

description is that a Profile and the Entry information related to it
would be physically stored as close to each other as possible. By
defining the Profile and Entry data relationship as a "VIA SET" to SEED
this physical adjacency was accomplished. All of the benchmark testing
was conducted with this approach, however, subsequent to the testing
several test loads were performed using a "NIRECT" loading approach which
isolated the Profile and Entry information into separate areas. The
results of those loads are summarized at the end of this section but no
query tests were made for the data so loaded.

The initial SEED loads were conducted using Version Bll.2 with a
data base defined as "dynamic" which would allow the data base to grow
when overflow conditions occurred. The load rates associated with the
first 99,000 records are shown in Figure 2.5. This graph is similar to
to the preceding ones for ORACLE which plot the load rate of the previous
5000 record interval, not the entire load. In this manner, DBMS sensi-
tivities can be more closely observed. For example, the first 51,000
records were loaded at an average of 30.75 records/second but closer
examination shows that the first 5,000 records were inserted at a rate
close to 40 records/second and a degradation effect occurs to the point
where the interval between 45,000 and 50,000 averages about 28
records/second. ‘

Figure 2.5, reveals a choppy pattern of degradation with small peaks
and valleys. This oscillation is probably attributed to the hashing
formula used to determine the page locations of the records associated
with the "CALC" value Profile time. It is suspected that the troughs are
associated with a relatively high number of duplicate hits and overflows
while the peaks might suggest the "CALC" values have indicated more pages
with space available. The overflow condition occurs when the hashing
algorithm employed identifies a page to locate a record on that is
already full. This happens when the same "data base key" is generated
for a number of data values that are hashed. 1In the FGGE/LIMS applica-
tion the profile time is an incrementing string 6f characters that is

2-37

8€-¢

I s g T iiliili i T
"INSERTIONS/SEC (WALL CLOCK) i ERERTH i T 1 T tHH
i HHH R
H H HiTE i ; L H SEED DYNAMIC LOAD RATES
| I I V. B11.2
Al | i i |
i H | £ § HHRR R HE ! 8 HHIHIHHH
|] i HH Hik HH HETHHH AT H H HiTHH] H T
i i i il i HiEH R i H i H HitH § H H
il i i H : it i T
i i 4 bedliichinee TR
| il i i I gl
. H HH T § HHHHH H silasis HHHHBHIRHH LT
£ it HitiHH H it $ it i flis : H taiiie
: il il | T iilit A R R R R
H F i i i HHIH ijiiii t tHHH f H I
: M I IS THIHHI i i T i fjidi HHR BRI
10 H i "r? :-\' i H - . il il H : H H: 38 i H “:
HT HiHHHIHHE il 3 H H & i T
1 HHH & 1 HiH \3 i | A H i I i ii{ I HHH I 1 i h: :h :
HHH R H 3 i : R HH B ‘ HiHH HH H
: | HH] HH sttt H § T sl H H
“ il il il il it il
I HH H
il it i
i IHIHH i | 0B SIZE
. i Hihk i i 1000'S OF CDAS RECORDS
A i IR
4 A i ' 13 bl kh d 7 H 1 1 F ¥ ‘“ E“ 1 24 th 1» zapd :»; ‘?I -+ i 4

Figure 2.5

very similar in appearance from one value to the next which results in a
number of similar data base keys. Also the latitude and longitude values
are over a limited range and they too may be causing overflow. Once the
overflow occurs, chaining to some other available space must take place
burdening SEED with extra overhead to locate an indexed value or a spot
for a record. As the profile time changes it periodically results in a
data base key which points to a clean page and improves the load rate.

While conducting the load from the 99,000 record level to approxi-
mately 180,000, a serious problem arose. After loading approximately
35,000 more records, the load was stopped by the indication of an error
in the insertion process. The SEED error returned was:

"ERRSTA = 1222 IN STORE"
"RECORD IS NOT CURRENTLY A MEMBER OF SET".

Subsequent discussions with IDBS personnel revealed an undefined problem
that SEED had encountered in some other applications with large data
bases using the dynamic load technique. 1INBS personnel believed that the
VAX system software was indicating to SEED that more space was available
than was actually allocated. This problem was said to be corrected in
Version 2.1 of the VAX operating system but, since this version was not
available on the benchmark VAX computer at the time, a new data base was
defined using the "STATIC" approach. The "STATIC" approach forces SEED
to search logically succeeding pages already defined to the data base for
enough space to place a record when overflow occurs. This means the data
base must be initially defined large enough to hold all the information
to be introduced to it or a data base unload (using TROUT) followed by a
new "DBINIT" and then a data base reload (using TRIN) would be required
to enlarge the data base.

After the decision was made to define the SEED data base using the

“STATIC" approach, the data base was rebuilt to the 180,000 record level
immediately. It should be recalled when examining the query results that

2-39

at the first two levels the data base was loaded dynamically while subse-
quent levels were all associated with the "STATIC" data base specifica-
tion. The load rates of the first 99,000 records are shown in Figure
2.5. It appears that there is an improvement in performance over the
same load range. This may be due to not having to call the operating
system to request additional space. Close comparison of Figures 2.5 and
2.6, Part 1 show that the troughs and peaks, although not identical, are
very similar in pattern revealing that regardless of whether the data
base is "DYNAMIC" or "STATIC", a fluctuation exists.

Figure 2.6, Part 1 also shows the incremental load rates from
100,000 to 187,000 records. It is still apparent that degradation exists
but it becomes much more gradual after 130,000 records were in the data
base. The load rate has dropped from an initial high of 45
records/second for the first 5,000 records to about 17 records/second to
load 5,000 records at the 180,000 point. Figure 2-6, Parts 1 and 2,
show the load rates for the interval between 187,000 and 434,000
records. The degradation seen over the 101,000 to 180,000 range is con-
tinued over the range from 180,000 to about 265,000 records. At this
point a new tendency was observed. Performance improved but a
roller-coaster effect is noted on the graph with a great deal of fluctua-
tion between intervals. The increased performance was suspected before-
hand and is probably caused by the profile time finally transcending from
1978 to 1979. 1If one recalls, profile time is a ten-character string
whose first four characters consist of year and month. Up to the 270,000
mark all profile times had the same first four characters, 7812 (year
1978, month 12). Around the 270,000 mark the same four characters switch
to 7901. Improved performance was anticipated because it was thought the
hashing algorithm would be more likely to arrive at new pages that would
not result in overflow (at least temporarily).

The improvement in performance is obvious from looking at Figure

2-6, Part 2, even if it is only a four or five record/second improvement
for the interval between 270,000 and 330,000 records. More obvious to

2-40

the eye is the amplitude between successive observations. The choppiness
is so marked (even though the results are averaged over 5000 insertions)
that the only explaination supporting the behavior is the overflowing
overhead of duplicate data base keys. Since the data base is now
“Static" the overflows are going on successive pages with space avail-
able. Perhaps the overhead of searching for overflow space periodically
rises and falls like a sine wave due to the nature of the inserted
values, There is no other reason related to either the load software or
the VAX system which would contribute to this behavior other than the
chance that disk seek times might periodically add some small overhead.
(This in a worse case would only add 56 milleseconds to a disk read or
write using the RP06 disk drives.) The load rates toward the end of this
load indicated degradation to around 12 records/second.

The next load was performed in three parts and advanced the data
base to about 1,039,000 records. The load rates are displayed in Figure
2-6,Parts 3, 4 and 5. The version of SEED used for these loads was up-
dated to B11.3. An inspection of Figure 2-6 reveals periods of relative
stability with slight degradation each followed by a period of signifi-
cant oscillation at an observably higher rate of performance. As before,
this is attributed to the hashing algorithm and the profile time values.
A general degradation has persisted throughout the load to a point where
the last 50,000 records have averaged about 4.5 records/second for their
insertion rate.

An examination of Fiqure 2.6, Part 5, shows the omission of load
results from 830,000 to 865,00. This omission is due to a VAX system
“crash" which occurred in the midst of a SEED load. No other users were
signed on or active when the “crash" occurred but there is no evidence to
indicate the SEED system was in any way responsible for the system
failure. Further, it was determined that the data base remained in a
useable state. After deleting the last partial set of entry records and
the associated profile record the load process was restarted without
problem and completed normally.

2-41

1111

g E;q

)

i
H

ikt
i
bB SIZE

V. B11.3

1000*S OF CDAS RECORDS

Part (1 of 5

|
IR
1

8 1[;
H3

gEacipaqsapasetitadibny

§
H

SEED STATIC LOAD RATES

A
i

aeesRE e

;|
11
NI A A

T

M
HTH

1

1

|
1/1“"

2a{y

T

N

aﬂ'&
4# i

i N LE

liil

~\
H
1

i
l

w
1l
:

|

[

1

HIEIHH
it

T

T

I
i
i

fini
|
n
T
|
i
'
i
t
|

il

¥
LT

N

|
L

INSERTIONS/SEC (WALL CLOCK)
l

il

R
|
{“J
:
!

i
1]
i
|

2-42

Figure 2.6, Part 1

T T yas T =T T
—t — naa n ; L T T T
T T T T o T T T ! : T
——t:—=} T T — - s SR o e e T
¥ t ; ; T :
- s T
—— v
" — T T 1
A——— : : s T
o —
= i =
e : T
—— [EE) T [%a)
- n eaasa - I3
: F T ! &S
+ T 1T ™
M : o oo : = S
- - T — = 1}
= ™ = i asasasesss TR =
LR o= | wn T : - w vy
<L ™M T + T T = T T tr ; N .
0 . Al 1 1T T - e bad bpnd
Y Tt 7 no
1 — .
o T auaas e : T v, 0 u. T
— T T T T iaases: aan: oo
[S]aaoN] b4 : T e ot
. [
— Sr? t I A - a)
- . T T I T = T
: =3 “h
<L > 42 ta Y =4 —
I—r—= S + Ht - 42 ot - b=F
— [. -
- - e =
(=% - esassass .—
m—— g T T 2 f
e S N T T T
— + T : :
Ll M T T -1 b A
i = N
(72} o ¥ I T T
T : T T -~ -
T T T T =T
= T t - :
——
- — t T T
T = T T T 1
T T T
T T
T
T
T
T
Tt T
T o
T ; T T
: e o inn
T T
T t T T
T
T
T T
_
T
1 T
1
t
; -
T T
¥ T s 1
T T bana :
T T - S
1 T T
t S mna e, T
T
I n — T
T
T -
T
-
- e
T — +
: ™ = anne: T
. e
T ==
T
T
1 - — —T
: e — T :
T — ..
T y anas - a4~
T ra T
T o
T T — - ma: y
— : T PRt Sl
; T T z
S ora
+ - & U
= 1 e Reubb
T L
T —— - T
T \%e ot REp g —
! 2 [pieres
s e
1 —
: T 1
i : e - T t—
1T T T = a
T aana; HHT T - ——
T T BEA—
: . F3A ame
T T T T
- I T
F
t
— : T -
s aue: T
: T —]
— — = i
e ansmnsn
Tt aan: -
— T
f—— + T+ " T T —]
= —2%
i + o
b=
e LY, e
—— o = P
oo = g ——]
e O e
e a — — -
= = \nme ebaedl fra—
= = —azbhal
= = — ; ey X o pam
e~ \zwan
= S5 e
(5} %
f——- A
— ro: - S —
= & ja —S]
o oy o N a—
— =
—— o t
—: 2
= 7 T
F e .o e
P w Sty
— v +
=2 £ LS
R oy p
i o
= or or ey
iy t T T +
. 1 1 1 -
R S T t T T

2-43

Figure 2.6, Part 2

B RS A

' INSERTIONS/SEC (WALL CLOCK)
i il

TN

SEED STATIC LOAD RATES

SRS Qe AP G

-2

q‘l-ll ' I
i 1] il A I
“, il it r V. BI1.3
; - Part (3 of 5)
'4] lili HIlEHN I IR AL e AT
| ikl A
IR 1 W R
r i ’ T | g JIfet I
il | il il
i N ikl HHEH HHI g g
it it i i HHEH
Bt J- j—i l] JH - HH 1 £ 1] 5
1 11] G I £ 1
_‘ ! } 8 Fk 4 i : r _‘ Be! ’i “ 1:
IR | R e
J H j{ 4% 4] gﬁjijirfi 1 EsRREsHfRE: aeashe £ JA shEsffas i 1 ;* L:-F H .
f T R I e TR { i
3] b8 THiH HITH H1H] HHH g
i e i i i
HH HHIHH HHH 1 f I } i f 1 [5 HH 3 ’J 1
R [ER HREEL HHE EE il I 1 S i i i jisile
; g 1 j H‘ 1 4 } —3 { 1 1 i'\ s § HiH tiidants Hia 1
1 } i i | | HIHE i Hil
* il | il
1 T 1 H H HH ji H 1
N d i AN T H R P e R
W / N N T ST HE Betdeie
A < ‘f "\ / A j 3 :; HHHH 1 1
41 \V U \r rﬂ MY N \ ’ N / \5 L f HitHH T H i
Hhs 2 ey Jagasse RN HHH
' ! J -1 J v 1 W WWL‘ ‘3 ..FFF'1 I et Nt T JFT {114 {!FE’—[4! b F:‘ B i “t Afiee
U IR i il L * TR R
S i AR
T N I ; B 8 Rui HIH
1 H JITH X
’} nnide i(1 ;“’ { ‘! 1T it i L i T £[TN e "~ 1000'S 8? géig RECORDS
| {54 l e —4-‘ A | T T> nj }.-M R 'lkl . il
aihie s e it et e et e S e e % i
Gl i A e e e e
Figure 2.6, Part 3
4)

4

T I T " ,ﬂ T
o = 7t s amaan
it it ; T T :
WS AR ERNEE H 2 HE T
+ : -
o T e
. t Tt T e e
T T 1T 4 T T T T — e . o
T
|4 T
T T T (%l
T = : : T
%) - = a a
il = - o &
F yut T T o
= f T s maan sxs ; T o
A T T I : (¥%)
[: &«
C T el T T .
—_F ises et T " = wu
i -t + - + N <C
: aeaany T H T a8
=] o Y T .
<L M T e asaaczass = i o
= QO e 4= : : " Qu
— T T T t T S
- o I T T O 8 s mssaas :
s b s : s ETE : v
———. nvhnudn T + T T I : S
— ~— : s jacaqsssansas : Q
— = . = _ = 2
P e 7 n - ; p=
ey S~ o T e T .
puscborn S + 1= iTassan: t T - s
=T e < ians: 1 H .
i V0 | < imgas T ;
T = I
. Q. ¢ - T
= t T t
— — T InES
—— ___ b AN 1 H»
Snud nub r jry T T T + +
7] t : T
msaamas T
172) T T T =t
= , i T T Sssmassas:
v 1 T T s e T
T L T T
e T T o
> T - T T
Rireeaes sow ; T ;
e 12 u0 uas " ran: T T
yppoed r=e T T ess ot
i ywu S T T e
I . 1T iSRS AREat -
i 1) N
] T :
1 1 3 IT e
! T T
— } 1= T
t T Tt T
: ! s eass ns
— 1 :
+ t
T =
t ; : T =
t : T
: T s
T T
T L s
T
-
:
e smama s
T s
t T
T T T
] T
t et
e e L i . IT
1 b T T
T
T o
s
T +
T +
=
T
—r
: e T T
T 1 T —
t — smaan: T
yemm_; T T 1
T T
T
T Tt
+ T ym— t = '
+ 1 T o
- T T m—
t e ,
+ - : ; T T "
t T
T T T
T T
T - T
T
—+ }
i T
1
aas
= T -
T jant = { T
as T T T
T t enssas
t T T
t
} ; T z T
mmawanar e,
T HH ;
- +
—] s SEmaS man S s SR a: o - t
[e T T T T
; T . F
T T :
et
- y 1
TH
e 4 T
=T
- T
= + T
———— - +
Pt T
F==: T
— M — P
Tl g ~—t
o h Ny
-1 N
P T ST
= - i b i
—
— B e et
—— = =T - T T =
| I o -
= o = T -
o Wi T
—= v
e
— v 1 :
= = T
]
——— — . L 1
S —_ T i :
= oo t 1
F== & —— g ! = | it e bes sl hats wsal shall gobi
St R - S wa— WA o rorroy n
R e Ll ' ¢ S it Gt o 3T S 1 =
o s dals bamgas: : ! t =
S R pr et e o 1 e T ;

2-45

Figure 2.6, Part 4

e T L 3 S
S e aam : aeis b
(ot ot F e SRy ShEay anawd semgy g =
— T ~ :
—— = T - : T = T =3 paass
i g T T T T o L]
. - w
— .
—— «n _ : : . : 5 & %
e e T Y | T T o el
o= pa e A wwn |mm
= | : : T - ==
12 i W T T T T LTI
= = : H = oo wo |-
o — - - N @ T2
bt S T T T T 3 f- oo jaSuons
gt A | w TH— a T t :
== < ™ : : = = h v
o e T T : T 1 b
T D e Y= H e Smsaaematas: eRSseestnamanas 1 o -
=" Jm— O , f 8 Ssie
||I||'|I — A T —— . T T f o
o —= = I T a | imasasseua: Isane & T \e A Paviprunone
—TITT O AW = : = 3 \ S
|¢|||||A| — e’ T) 4t T Ae g 1 = P :
= H a T T Thr T ;
=== b= _ - T HiT Tt T i -
———— +3 i
— AT- > 2 e =" - tH T ses 53 B roIs b
== P — T = : T
b o———— e - T +
e a. am T T T T Tt
ootz o T jasaeod =t g isaas:
T et
Swunss St T T T T+ T yu m 1
1 T b 1 T T _vr M
(%] 1T n v
oasans T T T . a Tt
e ames sones samas on: aas Tf T
amee: H T i
—r—— . : cacais
=t : :
pd 1 T 1 T n 1 I - T 1
T k" t o
X :
T \ =
ST H \t T
a } e as j = T
— 4 -
< T T T T L T T T S — p
> IR B T T . U 6 N S BB
: Sassseaseas T t t
e nanas T : ~; :
aseaan: e jmaas N
t Ezassssessseaa: HT jasass: inea: > ;
* T Bes geans
-
o S— T L T 1 m ke 1
e — = 2 ==t
S— L bl Sl + T T lW.h
— T — t eans, s
[e Sty . - A L e
r— - aais
! : &
L 11’1“’ T
T X
T T ¥
—— — —— -y 3% S
— . r
t
X A
N o —
jmvay Jug Simeit
T ot
= T
r ; T <= }
T 1T Af. jdp— nlﬁ.l. t +
s i
< Cg i
* e 1 1 T -
T : (Y ol g :
t £
ys
T = £
T T T ; =is
7 —
&
— i+
< T
b =T X
N
N\ —
T 1
N T
T = T
+ A
N e)
N
NS —
t Nt
A
N
; et \ :
T T .
, P
A
] f
] ! T
:
T ;
. T —
- — O
M SR /S P
} . T
v
1 —
T T 1 TRl AT atuis) Pt avieans
- o Rt [eoms
—a
s — i g * 5 4.° S0
I e = : =
T T T H hatdubts ipfiutuyl fuciond (oot e
T = T - T : T T
= + T
A me T T T b s asd—1
8
T 1 T Inas et el el
T T Ssanaai T
T o an: ssax
T ,_. ——
T - T p—
T s na: jsaese) : -
T TT — % A g
e o= : e S e pad=
1=
= it T 1
: et aas - ol pe
| D bl b, T, ¥
T —-. o]
s ams:
— maacass T =
== = 7 T t
—— M *
| S——— + -
—
—_— O } 1 = o T
— & — . T
—- u - — SR 8 S ks
o= M 1
== -
=== 3 i T
= = = ; T
—: ~ — L
— o ; aa ;
—— o : T = — e as
Y v = T T T T
t—
— 41 == T = ; : nae e
- 3 T T T
= = —
. = == T
T : T
o0 e - T
—n &%
T) T T 1 I
b—omr 2 oo b p — §
I e s hnles or pie ot § I
s - —— :
B I =
ey o T T 3 o= § Semieprm— g suned

2-46

0

Figure 2.6, Part 5

Use of DBSTAT (SEED's Data Base Statistics Package) revealed that
the data base consumed 19,746,622 bytes. This represents 48,9 percent of
the figure determined-in Section 2.1.2.2.2. The data base contains about
48 percent of the data originally planned for indicating that the derived
figure was very close to the actual consumption rates. An overall
summary of the load process from 0 to 1,039,000 records is included in
Figure 2.7. It has been smoothed somewhat, but provides a broader view
of the Toad rates. Another observation about the loading process was
that in an uncontested environment the ratio of CPU time consumed by SEED
processing to elapsed wall clock time was consistently around 48% for all
loads.

Subsequent to the loads discussed above, several more loads were
conducted to experiment with the DIRECT loading capability available in
SEED. The approach used defined separate areas (or files) for the
Profiles and Entries. The Entry records' "location mode" was defined as
DIRECT and the entries were inserted in a sequential order controlled by
the currency pointer in that area. This plan would mean that more
profiles could be stored on a data base page (since no Entry data is
present) thus reducing the likelihood of overflows caused by duplicate
hash code values. Fewer overflows would mean faster loading. Theoreti-
cally, this approach would increase response time when querying the entry
data via the Profile time since Profile and Entry data would be in
separate areas instead of closely packed on the same physical page.
Figure 2.8 shows the results of loading the first 200,000 records of the
FGGE/LIMS data using the direct technique. There still exists some
degradation and choppiness in the load rates but comparison with the
rates previously attained (see Figure 2.6) reveals a significant improve-
ment in load performance. The last 50,000 records appear to have load
rates that are almost twice as fast using the DIRECT approach.

The results obtained in this experiment are not conclusive because

query results are not available to compare access rates but they do point
out several things. The improvement in performance is so significant

2-47

8h-¢

T TR i il
INSERTIONS/SEC (WALL CLOCK) ittt i
j 3 SEED LOAD SUMMARY
f 1 (STATIC)
i1 _LV
H H ’“‘£ [U1 I
H 85 ? 111 § 8
! 'rr IH I sadisaiijis
i N e
i i i H :f‘ it i i it 1
: i it LR
‘ i i I
i H sHiiE:
2 il 43 it
HH H i i
H _:L
{ i i
f = HHlTH
] | | 11
H § H
JI-P = p \ i ; 2
it W 4
1 S ;] H
] H H T
, H i TR i
\ | T
N § il i i
8 HN : %
v{ HY ——L:\N: i]
1 1igd 1 ‘\
T 1 TN 1 !
j il i
| ! i [
Al DB SIZE
gl 1000°S OF CDAS RECORDS
_J 1 ! 3 Hiit 1 1
il it i
! i:!st § 1

Figure 2.7

6v-¢

i1

i

R AN nA

INSERTIONS/SEC (HALL CLOCK)

be
15

PO i St

m .fi,fi ;:f i i il
H [N Hi I 4 : T
i B ! R

b i

SEED DIRECT LOAD RATES

F

LA

V. B11.4

i
PEeng FuNEPIRS S
! P ey Saas wows
I 1 I _

L — | [ikisHt R skt HE
I st i Hil i ittt i
HLL I i fidiide | It H i H LR fite
il N il ’ h |] i i
, i 4 i st

HHE TR N A Alls it 4 | . H i b H !
l I HH il] i S INHHT ARG T th saithih
R R R ik T T GIHEHEH R I
e LR - < il il
T e 85t 1

iy H HH I i § HilH H
. - e o5t o i gt HHTHE H
i i : HH] HiH b B Hi b B
I i | IR Gttt it
H HH i 1 HH T 11
] ¢ i HH . L I Sassbau
f T H T
) H E | H 1 HHIT HHITH T
3 e 1 B £ HH T
HHH 4‘1 i i £ H
ang : sgug s HH 4

Bl ot St e i

ECORDS

DT .
t

kS S suburnd
T
—
(=]
o
o
w
o
-
O
(=4
>
(%)
=

Figure 2.8

that the DIRECT approach should be considered when load rates are criti-
cal. The theoretical advantage in query response time of having Profile
time and Entry data maintained in physically adjacent space may be mini-
mized somewhat if that approach is subject to a significant amount of
page overflowing, which creates more disk 1/0 , thus nullifying the
original gain. Underlying all of this is the matter of hashing. Given a
particlar type of data, one might well be able to produce a hashing
algorithm which produces a random distribution of hash codes and there-
fore reduces duplicate hits greatly. The benefit of such an algorithm
for a particular application could be enormous if it is definable. Theo-
retically, production of an algorithm that generated random values for
the data being used would result in load rates that were essentially
uniform and would have no degradation. But production of such an algori-
thm may not be a trivial problem for a given set of data.

2.2.4 RIM Load Results

As was previously stated, the RIM DBMS was introduced to the bench-
marking procedure just prior to the beginning of the tests. As a result,
a certain amount of trial and error was required during initial loads
that would ordinarily have taken place in a preliminary checkout. The
initial RIM data base design was based on the ORACLE design since both
were relational systems and shared the tabular concept of data represen-
tation. This approach would also permit direct comparison of benchmark
test results.

Figure 2.9, Part 1, shows the 5000 record interval rates for the
initial 50,000 records inserted into the data base. It was easy to see
that a significant amount of degradation occurred within the first 15,000
records. In fact, the asymptotic nature of the graph was alarming
because it was apparent that building a large data base would require
more time than could reasonably be dedicated for it. As a result, a dis-
cussion of the data base design and this initial load was held with Mr.

Wayne J. Erickson who was instrumental in developing the RIM system for
the Boeing Company. His explanation for the load rates involved the
profile time field and the associated inverted file or B-Tree used for
indexing it.

One may recall that the profile time field was stored as a ten-
character string and was specified as an indexed field. Since the first
four characters represent year and month, all of the values of these four
characters are the same in the initial load. RIM builds its inverted
file for an indexed field based only on the initial four bytes of the
field which, in this case, corresponds to the year and month specifica-
tion of profile time. All keys whose initial four bytes match are chain-
ed together as duplicates. Further complicating the issue, duplicates
are added at the end of the chain (rather than the beginning) which re-
quired RIM to transcend the entire chain to insert each new profile time
value. (Mr. Erickson explained that a future version of RIM would main-
tain a pointer to the end of the chain eliminating the need to read
through it when adding a duplicate.)

It was then decided that the second load, from 50,000 to almost
100,000 records, would only contain indexed values for the profile count
values repeated in both the PROFILE and ENTRY tables. The profile time,
latitude, and longitude fields in the PROFILE table would not be indexed
during the load. For this reason, direct comparison with ORACLE load
rates over this range of the loading procedure must recall that ORACLE is
building an additional index that RIM is not. Figure 2.9, Part 1,
depicts the results of this load and demonstrates a tremendous improve-
ment in load performance. Similar to ORACLE's load software, the load
software for RIM must obtain the profile count value to begin the Tload
‘with., The RIM load software does this by sequentially reading to the end
of the Profile Table to acquire the last profile count value used. This
accounts for the initial increase in load rate between 57,000 and 62,000
records. The rapid decline in performance from 67,000 to 82,000 records
is somewhat a mystery in light of the "1eve1ing of f" between 82,000 and

2-51

100,000 records. In any case, the minimization of indexing produced a
dramatic improvement in load performance, increasing load rates by about
a factor of 50 between the original load at the 45,000 to 50,000 record
level and the new load at 50,000 to 60,000,

Following the second 1oad the latitude and Tongitude fields of the
PROFILE table were indexed via the RIM "BUILD KEY" command so that
queries could be tested. This required about 14 minutes of wall clock
time and almost five minutes of CPU time to accomplish for the PROFILE
table which now contained approximately 5,900 rows. It was now confirmed
that the profile time was the primary cause of the. original degradation
(as Mr. Erickson had indicated) and the third load (from 99,000 to
180,000) omitted only the profile time index from the original design.
Figure 2.9, Part 1, shows the load rates from 100,000 to 180,000 for
RIM. Over the course of this load a general degradation can be observed
from about 22 records/second down to about 18 records/second. There are
small irregularities which can be observed in Figure 2.9, Part 1,
indicating that unknown overheads and efficiencies exist periodically,
but what they might be is undetermined. Possibly the dynamic allocation
of disk space as the data base grows contributes to periodic
irregularities, and the construction of inverted files could be the cau-e
of some fluctuations in load performance.

The next RIM load took the data base from about 180,000 up to
437,000 records. This load was especially interesting because it was one
of the few known cases where contention with other VAX users occurred.
The load was begun at approximately 6:00 a.m. and the VAX computer was
reserved for stand-alone use until 9:00 a.m., but the load was estimated
to require four hours without contention and would inevitably take longer
when contention was introduced by other users. The load began with an
insertion rate of about 20 records/second at the 200,000 to 210,000
record level and gradually decreased with irregularities similar to the
previous load. At the 360,000 record level the insertion rate had de-
graded to about 13.5 records/second. At about this point user contention

2-52

€6-¢

AR

INSERTIONS/SEC (WALL CLOCK)

A

I Al il RIM LOAD RATES |[i|
i il i i Part (1 of 5) il
V ' g I I
Hi HEHHIE THH
R R AT H . Tt TH i [3
13 11 A] Bu FIH ,. +
i T I ST i e i il il
| HitsllEele Tl H IR R 1 : H HHH T
t H T il H [: HHITH i R
| HH R R il | iR ahidli i i 1 %,i
il R i il ilil il il
{1 TRl 1 HiHI Wi HHHAL] L
! Hi i fils il ilishiie : e el
Eeagess 3 i H H : aBSaapgze 113113] Ei3IkEd
i ' TR T i
1 T i i fiihille | dtitiseillts il
i HHH il i S Y i i Eatt i
i) IR Ecat HH I] il TR] f.t 'LE' il
= T ik e il
H R it & I S i
HH : B .P:. tH H|Hi] I 1 il
A . HH HHIH HHHEETH L
IR DA il Iieslis i
I § ; ; LT i s i s
I it i 4 ' |l i
HHHHHHTH i i ks ﬁA i i s tEihi
st e ot ()4 Hili H LT Al
ITHIE t] 1] 1111431 11 8 I
L i i R
T 1H } I HIHIHE [b H H T jaastineisitl
| i 1 A [T
| . HiHH[IR il
: i T R
H{H
\ L] »
A N\h I g —j
NUplE | DB SIZE HhES
b~ S .l_

+
—

"
I
1
—nc

i
—] 1—
b3
y s
)

ok

o 4
-

'r\:. T
i
it

!
&3 +H H kb
T B] ! W it HiH I H ;

»
g2

Figure 2.9, Part 1

Figure 2.9, Part 2

T - T T e T 1
T L T L s , ot Be PPy Sy pa o
= — T
- = — - -
T : T T T T — T
- : + T T i T b
e =t T + “
)~ T T — : ~ a
* = 4 — : — &
T__ 2% Anmnnn nas T iT T T + T 8
T T i T T T
anEn anand anuee 8 T vener T T ; Sy]
Y T o
o T T ; = T e T = .
g an: T ness e - N <
T T T T
QN 1T —a
DI | 1~ - -
< — B 22 4 e (0o :
() T .- RV
) T T : rmat T T ; Lo T
U an 1T as 1 T T HHHM.II.
< - : =t ~+ : - D ow :
T T T T]
= © T T T A 8 : s =]
— — T 1T T - + anms
a. =T o |—=zax—
—t— R ~ A A
I Iy H T IR ng .
T T yuaa; T e
—F s reae n Y —-. u
I B0 —
.. - 1 - - X
oIl b jua T AT
o =) —i
i g i L V. V.
- S, =
plpeoy [t diernts £
t 1 : h
P S— Ty . - 3 3
e Tt T T
= 1 T Semsaseuns
T+ jaars aan 5
o T T I : emsaan:
1 T +H T ; T+ re S o v vy
t : =
o
y T T e T
1T R 1T LIS B, T g
T T T o raas TN F— :
T 2 :
t T T : : =
+ t T 7 T
T : T
T T TH e m R ans na: T = T
=" —r T £
- - - ¥
= : Tt 5% bmn 08 BR OGS T T Ba
1 T T T iaRns v
T T imansesae anmanen
= H T ya
T T T T 17
=t T o T
T - tr T TTTrTTT T + T T T
— 1T i o e T 1
— : 7
T
N S 1T P
— oy T
o g
+ : T
= T T
T — T
— e =
e T a y
—% * ya T
T
| S—
= 340
ety SRR -u
— 1
I
£
: g
=" TR
s eamnEn: T T
e o T
1 - T T yows me
T inn o T i naws
.
= A
T - §
HH mn
T T T 17 T x 16 ¥ T
- 3 !
: § -
T T . : -
T - e -
- . u WY
ra e 4
o A
£
: 1m o :
A
T 5 nen
3
T T
T ina: t — -
¥
§ ;
= — —F S—
+ T b o 1 — e
ra A
v mnd M
™ T
Tt T T
- . T
T —T
: v
% t 28
s Al —y .
+
— T ¥ =
f
: ¥
} Sdnm ——— s — e)
T £ iy bt
L oo tnsmte . . Y. b
r 7N
T T T =
— T Ty ; -
: ; T Y
- - T T 1 T
T 1 it ™
T = T i] —
T e
T i - e Etesa
T —IT
Tt t e mas: T T
T ve
T ——f
T t T T 7
T T nans b v =T
1T Tt T ..w L
— T + . o
= =% +H . T - ¥
T + T Z. ==
T T y
Ty e T - T T
T : ra T - g o
—— ——— 1 LR & 1 - - Py E——
ey i T
T T
1 T—F T
> =1 +
= T 1 T T :
A
——= = =T T T . iaam. e S B
f———— T T T T
— Z
- Q .- + T T v as
oo S oS T T < oI
t—— O - n ram T * e nied
— © raat T T & D S———
— s ! ot =5 i
It R el g
T 1 T T A AN Fuad T 1
F—— o = T 7 A
== masas e
— £ —— T T ? + o
— ana as iz
— < < Tt T iaaal | =
— — 1 - - 1
— o - - — 1t
—VY | = I+ T A 1T T — = .
—— 1 I Srmas Eaa)
F— 5 T T - 3 Taxt
F=—= 2 TIT o = s ¥
T : I 1 T
— o z 1 T T
.- - —— ' T 1 -
o= T by T ==
GRS } T 1 T
= 9 T Y r T
== v - — T | Saans I ¥
=" =Z e ——wni i
S—— C 3 a_hw 12 d A 6
+ SR
o D 1— T T P
—. ¥ . M —F — e
= I T 1 T 3 Y [,
- — i

2-54

65-¢

III

T

INSERTIONS/SEC (HALL CLOCK)

T

1

RIM LOAD RATES
Part (3 of 5)

T
T

i i iR e i 1 S siaitlie
i TR 1[‘ I HHH I HTH 5 H il
1 it ¢ HHHH i V:T 144 B: i 1 Hi _F - 71 h § 1 HHT
i HEH R 11 “ 1_Lf HiH ! qh_] T E I W a2 H i : : hidt
H S HHHR I HH : s
' L it - HANTHIE R HI{H T i 1 il
T [H HIHHIT I : Hi HH aijikie
HHH i ppestish HHHH I TR i HH HE
g sategeiiatay " TR I HHHH 1] . 1 [HH '
il i I
S elRiedd s i fEcdil HLHH I HH | i i R
41 [ttt iii Y HHH TR THIHH BilREsitnaisteifyinbatbadty
Il R HHRRISAREIRORS i T
il LA e 1 A
| 1 i i : I H i : H HH R R
s T il il T 1 it i ijii
il i il | ‘ i il T
. ;EA

IO 8a N Bu i

i Yappg i

Qwy

o
L iy
T h—
=
=
=T
-t e =
e

S
y Sy

Lv i ”uiq

,._
S RO b
m—a e 042 T

— VT

I HH T

o

Figure 2.9, Part 3

9§-¢

O 0 T f T
Ei INSERTIONS/SEC (WALL CLOCK) | 1 T“ i i “7{‘H%§I H@ﬂ]}”{}‘h{lﬂ;}is
R Il il Mttt AL RIM LOAD RATES |1
Ts bt : | | ' | Part (4 of 5) Aﬁ
i Lr] I 1 : 7' | iyt
| T 1 e A e
| T R WA A
, [T i T geseEt
i | 1 shlkt Bifqqeeeetts T 3 feistatetiss
| il il li i
14 Hilli dhdn il i T Bl i
I L iR i r i ittt
r ? S HHE
| i it HATEH i |] fEHichiniEet |]
| it : L L ‘ il TR S
! i i HHT A T
i it A i L T R R i HEeiidl
i I 1 1 L] 1 FHHENRH _rjﬁgw. HERY A [|
i HIEHI T i il
| fiblit I Jiligitifies I HiHIH
i HH)] 1 seefil 1%’.‘ o g -H‘-EE i) g
| Hilleeit T L R R T
I i AT TR ki i
I i ;
! i r il
1 1 b 1 t .
| G 1 | 1
I 1 dHEdisa i H | i I J i]
] HETITT . i
i HH ~<J<L- H f i -L 4 1]
il R i i i _ it
Ha=t H, TTHTE] - -
il Al L
| i dhil i S A L _:? ' T:;:
il It i HEH I RN) i i l '] HEH DB SIZE i
A i QUL R HIITEE T 1000°s oF coas Recoos |
{d g 'é TN ! i { ! T3 LI TERR T ER e T e R
I £ At g arte et et g S Rl e g nyr_;h};:,;; HHEH
., 3 03 a0 A A R
Figure 2.9, Part
3)

LS-¢

(TR T * |
| INSERTIONS/SEC (HALL CLOCK) L] :]
AD E
(5 5
il »‘(;
A ! ¢ i
_Vk | jﬂt
; |]
] HifH § H i
i T i HHHHHT
t it it
1t 4
il HEEHT i
! i
H i I
H 3 it
r i
HIEH HITH i
h 1 -1' il 1
14 | L—- 1 H 1
T EA T a T o T R e R R H H R R e T Hi
Tl | i
:; ! | e
e 0
l i 00'S 0
‘_ il 1 PPy [O D []J Yo 1 by NL] 2! R
i F>)l -l 2 3 X o ;;I % i %"L :: 2 3 3 1 "Eé‘

Figure 2.9, Part 5

began. A significant change in the degradation rate can be observed over
the range from 370,000 to 440,000 records. The irregularities became
more pronounced and the load rate was eventually down to about 7.5
records/second. The effect of contention was verified when the next load
began without contention at more than 14 records/second and did not drop
to the 7.5 rate again (without contention) until the data base reached
the 900,000 record level.

The load required to reach the 1,035,000 record level was conducted
in two parts and is shown in Figure 2.9, Parts 3, 4 and 5. Examination
of these graphs shows a gradual degradation with decreasing irregulari-
ties. In fact, the rates are so uniform that accurate predictions of
load rates for subsequent loads could easily be made. The final three
rates observed after 1,020,000 records were also exposed to user conten-
tion which explains their increased degradation. Prior to that point the
load rate had degraded to approximately 6.5 records/second.

Figure 2.10 summarizes the load rate figures. Rates for the initial
100,000 records are not included since they were loaded with different
indexing requirements than the remainder of the load. The contention at
the 380,000 to 440,000 discussed above stands out\dramatical]y on this
graph. The final RIM data base contains three files totaling 40,366,080
bytes. RIM apparently uses one file to contain data dictionary type in-
formation, a second to contain the tabular records, and a third for the
inverted files used for indexing key values. For the LIMS application
the data dictionary information used .1% of the data base space, the
tabular data used 71.9%, and the inverted files required 28% of the
space. An examination of the CPU time consumed during Toads versus the
wall clock time shows a decrease in the proportion of CPU time consumed
per second of wall clock time as the data base enlarges. The 100,000 to
189,000 load used approximately 34% of each available second while the
189,000 to 439,000 step used about 27%. This 27% figure is influenced by
the contention experienced between 370,000 and 439,000 as discussed

2-58

[}

T I b T T

—— T T e 1T T T

T e T He P T T T 14 & T o - T

T T e T L LAY T LN T A~Kl|l ——

— T t . s bn
b—1=: T T Tt I T T - = :
e T ; i Tt aes ya jases aanesanassae: =

" 1 pmas Tt + T Tt T T 3 yunas T ; .

e =1 .
Fr——r— o T = > — + T T +—
e x T =T = T T : n 1=
——— T T T T o
T ast T + T B ~+H =3
—r mauen T veui 1 T ! 4
: emaneus sRRan o T o H 17 =
M T T T iy T e w
r g
v LUE S SN T T) 1 1 - o«
- s 1 A e jE e 1T Ll b1 b -t T
(72} * Tt z T n s Cwwn vy
T T - N o<t
jm— H T T o= easacsoseasas: Hrrt aas: T T=a
D T R T 1T T 1 11 T Inus 11T + I Q
Dy ! iansa sanas T T ! =T o T
—— <I T Tow
— 1t as T } T T t 3% T
o H i yaat essases: T : T T . T
L 1
: ! T t g T = v 7
e as T T e o - o =
— = = : t na T Lul Sup S Viaaaid
! ;
= = e ooe ! o 7 S s
= o : T H T -t yma ot § -
— »_‘ s T T “ I 1 1T 1 “
fr—— - e T +]
S —— — < T [N S
o= e T } T £t o
F— e ——— AR AR T — T 1 "!‘leb
e : 1
= a, e ssenessceasmssatsan Fmandsssaasaas jos T }] T
! a8 HeSauaasas sannanan: T 1 T faa s ?
T T a: T T S— t
t ! oa
+H T T nssammanas: 1 T
T T e T THH T j=a:
gt SASU Wb Rt T Tt Tt T T 1 T + T - T
T T - T
T > f
ey ; T T ;
T T — i
nacsasssss : + Hrt
7 T t T =
T ?
: T ot
T = T ; a:
1 T T 1 T e A T
i ? T
T ; e eas T - 1
T] 1884 T - L1 T —_
+ Hroe HHT ¥ =at = T
T
T T T T
at aso: H
H ans: T
T T]
? t
T T Y jaasesssanan :
T T T
T jaassas: + T
Eessasa,
T S aensessanaEs: T
M HE ;
e -
! t T
T
T i ; T
1 r + =
T +
: T
: i [T S £ T
I : T
ol — b r— T L i T
B —— - .- .
e = R - : 1iC v
— : jass T \ el
1 T B e b 3 i M —
T T = — - —
1 T Tttt + T | Smat Mg
T T jon aasssaseasasasa: jmat
ot : HHT e - 4
] measaassaseas 4
+ T T 1
SSassssssasussamess: eas sat ¥
T T Sacasasasasna: + ¥
T T T - ;o |
e + a
1 yox uos
T e T paaam; = 7
T T T T — T T) A b
: T T f T
7
T = —t ——
— T ! ; T 4 :
7, L8 T
: — - T T 7
-
Ty e snan : — T
Jasnenn: asssse:
eaRessesasesissanssassassasass: T T T
— asan:
It T > T
. . T T
T T = =
' =
- T - oaiais
o mes: T
- 1 A — T T f
: acs o : /
+ a
Il s e - Y s
H T y aaes
saaazas: 4 aSRERERTeS Bnms LT — i
o T + 7 ;
T T T T T 2
: 1 =
f va
T -
T T T P
T SoBan=aan: yi =]
t t : T jo—
2
T — — X
= — : - >
fod = p i
T f
f T ¥ e
S ; ~
—r— T T B e ensenauns: T
- ———— e — a -y

hd s as ' t -

; e T T — T =

T 1T JAASESSBAE SRS i =

r T ; T ieas: 80 e it oot T

v
T : T aa eu gt 1 T
: T HrHT + —
T T T jaasassens, Tt 1 1
A a—]
; + a3 m
+ T T ya
! Tt 7 oo
T jaasaes; 7
T = 7
T s T +—rF 1 T
I ane: i > = —
T THT T o ! b
t]
- 1
y om 7, ;
[t s T T T 1 }
T HHT]
T 1=
T — -
= = 7 T +
—— 4w e — 8"t s Y —]
= 1 T Y e Bt
Sompn s s ; e ¥ A ave
T e .

o : T 7 e mmt = -
|||; [T T I THT 0 Sun ﬂ T
£ S : : = z 7 ST
o : i
albal s S TrHT TH jmans ansas #
et - - —— o o
iy 2 ima s ™

- 1+ — T T -
= = 7
— R T ST e :

—_— ~ . T T * =
— : s = =
(=] ek
— . T T -
—— — .
et y 1T - i s f RS SR g puaws Sdmes
k= = pmay T 1 T
—— T -
— S T asansssaneasaas janaaa:
= = o ’
= = = T :
I— T T T
 S—— w e T T
— m_ .
—r = T B sroparl st fapun
— - T T
: 5 B —
i X i
B 1 —+
T = o = 4 —

2-59

Figure 2.10

above. Up to the 370,000 level the percentage was about 30%. Between
439,000 and 639,000 records the CPU use was about 29% and between 639,000
and 1,039,000 records the percent of use was down to about 24%. This
reduction appears to be due to an increase in disk I/0 as the data base
gets bigger which could be expected. Any comparison of load related
figures directly with ORACLE's must take into account the omission of
profile time from the inverted files. This omission results in less
space consumed in the inverted files and reduces the effort required to
load the same data loaded into the ORACLE and SEED applications. Without
the omission, testing could not have been completed for the data base
sizes chosen due to RIM's inefficiency in indexing the Profile time

value.

2.3 Query Testing Of The Data Bases

2.3.1 Test Plan

The test plan had to include demonstrations of analogous functions
in all three DBMS packages. A particular test had to be designed so that
results could be compared. Since all the systems were managing the same
data and since the designs chosen for the data bases were conceptually
similar (see Section 2.1.2), tests could be constructed that would facil-
itate the desired comparisons. Because of the number of times the query
tests were to be repeated, the urgency associated with the completion of
the testing and the availability of "stand alone" VAX computer time the
tests had to be relatively concise.

The tests that evolved were both simple and straight forward but
would measure the primary capabilities required of the packages. Similar
to the load measurements, these tests measured elapsed wall clock time,
CPU time, direct 1/0's and page faults. Direct I/0's are related to the
number of actual read and write operations made by the monitored software
but would not include the number of I/0's which may result due to operat-
ing system support of the active task such as reading in software when a

2-60

virtual address is determined not to reside in main memory. Page faults
are a measure of the number of times the monitored software addresses an
instruction or data cell directly that is not presently in main memory
resulting in a disk read to retrieve it. They were also conducted in a
“stand-alone" fashion so that external interference would be eliminated.
This means that the results are best-case numbers that might not be ob-
tainable when other user contention existed. The tests were normally
performed using the provided query languages and repeated using FORTRAN
routines exercising the appropriate Host Language Interface (HLI) to
accomplish the same function or operation.

Table 2-8, Benchmarking Operations, summarizes the functions per-
formed. Items 1 and 3 should demonstrate the effectiveness of the index-
ing techniques implemented by each DBMS package. Items 2 and 4 should
demonstrate the overhead or cost associated with accessing all the
Profile Information (Records in SEED and Rows in ORACLE and RIM) and all
the Entry data respectively by searching on non-indexed fields. The
fifth consists of three separate but similar queries that demonstrate the
cost of compound selection criterion for indexed and non-indexed fields.
Item 6 was only performed using the 52,000 record data base. Its purpose
was to determine the cost of using the available DBMS sort capabilities.
Items 7 and 8 measure the incremental cost to add and delete a record (or
row) to and from the data base. Item 9 was included as a measure of
control so that this overhead could be accounted for in some of the
preceding operations conducted using a Terminal Interface (TI) language.
This was necessary when determining the net cost of the operations using
the provided query language. All of the TI tests were implemented via
VAX command files to eliminate the variability of human typing rates. A
side effect of this approach is that the measurements yielded in the TI
tests include the overhead of opening and closing the data base. The
inclusion of Item 9 was done to provide a basis for determining a net
figure by presenting the cost of simply opening and closing the data
base. One can derive a net figure by subtracting the Item 9 results from
the other query results.

2-61

TABLE 2-8
BENCHMARK OPERATIONS

Using an indexed field, locate a specific Profile related value.

Sequentially access all the Profile records.

Using an indexed field, locate a specific Entry related value.

Sequentially access all the Entry records.

Establish the cost of compound selection criteria

A.) With a single indexed value as selection criteria (control)

B.) With two indexed values as selection criteria

C.) With an indexed value and a non-indexed value as selction
criteria

Measure sort capability

A.) Unsorted (control)

B.) Sorted

Incremental addition and deletion of a Profiie value

A.) Insertion

B.) Deletion

Incremental addition and deletion of an Entry value

A.) Insertion

B.) Deletion

Open and close data base without intermediate operations

2-62

f)

The test functions described in Table 2-8 are consistent with the
goals of the benchmark and remained within the boundaries of the con-
straints imposed on the testing. Although the tests do not compre-
hensively measure all aspects of data base performance, they do provide a
basis for evaluating the fundamental response rates and resource demands
for the primary DBMS functions. Because of this, the results can be used
to compare a single DBMS's sensitivity to data base size from 50,000
records to a million records or to compare its interactive query
responses to a host language interface performing similar functions or to
compare one DBMS's performance to another's in the same frame of
reference.

2.3.2 ORACLE Test Results

As noted in the ORACLE Toad discussion (Section 2.2.2), a new
version of ORACLE was provided after the 189,000 row level had been
reached. Upon receiving the new version, which was a test release
version 2.3, tests were repeated at the 52,000 row Tevel and then per-
formed at the 439,000 level. The results at the 52,000, 439,000,
1,039,000 row levels were produced with an early 2.3 version while the
results at the 99,000 and 189,000 row levels were derived using version
2.2. Comparison of the 52,000 row results done with version 2.3 with
that originally done with version 2.2 showed an improvement in perfor-
mance. This must be considered when looking at the 99,000 and 189,000
results. The results of the tests are discussed in the following para-
graphs and the actual results appear in Appendix I.

As mentioned earlier ORACLE presents a problem in measuring resource
utilization because a detached process is initiated when a user logs onto
the data base and performs a majority of the actual data base processing
instead of the user's task. By examining the System Activity Log,
figures were determined for the detached process for all the version 2.3
TI tests. These figures are identified in Appendix [in the column
Tabled ORAAAA (which was the name of the created detached process). The

2-63

ORAAAA figures provided at the 99,000 and 189,000 data base levels are
not totally accurate. They did not originate from the System Activity
Log but,_instead, were derived from the interactive system monitor.

Since the figures for the detached process disappear on the interactive
display when the process terminates the figures provided for the 99,000
and 189,000 are the last observed and as such are minimum utilization and
quite likely are less than the actual figures.

As noted in the previous section the TI figures include overhead for
opening and closing the data base and this is true for the detached
process figures as well. Again one might derive an estimated net figure
for a particular TI test by subtracting the Item 9 ORAAAA results from
the ORAAAA results of interest. Because the HLI tests were conducted as
a single process the System Activity Log could not be utilized to deter-
mine detached process figures for each test. However, the net figures
derivable in the manner discussed above for the TI tests are reasonable
measures of what one might approximate for the detached process of an HLI
test.

The number 1 Query in the test plan for ORACLE was:
SELECT P_TIME FROM PROFILE WHERE P_TIME = 'YYMMDDHHMM'.

The actual time value used was the largest Profile time available in the
data base at the time of the particular test. Examination of the results
of this query for both the Host Language Inerface (HLI) and the Terminal
Interface (TI) shows that the indexing algorithms used by ORACLE are
effective, since the access times are consistently similar and reveal no
significant degradation as a result of increased data base size.

The number 3 query in the test plan for ORACLE was:

SELECT * FROM ENTRY WHERE PROFILE CNT# = NNNNN.

2-64

The domain "PROFILE _CNT# was the only indexed field in the ENTRY table.
This particular query measures essehtia]]y the same capabilities as
number 1 but for a much larger range in table size. The number of rows
in the PROFILE table varied from about 3,000 to about 60,000 while the
ENTRY table varied from about 50,000 to about 980,000 rows. The results
were consistently similar for all five levels of data base size.
Comparison with the number 1 results showed that the number 3 results
were on the order of twice as large. The cause of this discrepancy might
be attributed to the increased data base size but that does not appear to
be the case since the largest table size in number 1 was greater than the
smallest table size in number 3 and the 2 to 1 ratio still exists. The
most likely cause for this discrepancy is the fact that normally 16 rows
were supplied in answer to query 3. This additional I/0 is probably the
cause of the increase in response overhead. Number 1 used a 10 character
field as an index while number 3 used an integer. The results do not
indicate a significant cost in terms of response time or I/0's for
managing the character field verses the integer field. (This conclusion
is based on a limited amount of empirical evidence and the nature of the
values of the strings might have allowed ORACLE's key compression to be
applied with a great deal of effectiveness which may bias the evidence).

Query number 2 and query number 4 are related in the same manner as
number 1 and 3 were. The function was to measure the time required to
pass through all the information in the respective PROFILE and ENTRY
table. The results should aid in gaining an appreciation of the overhead
required to make queries based on non-indexed domains or to access all
rows in a table. The query in number 2 was:

SELECT P_TIME FROM PROFILE WHERE TAPE_ID = "XXXXXX".

The value "XXXXXX" was actually used in this instance so that no matches
would be found. The query in number 4 was:

SELECT COUNT (*) FROM ENTRY

2-65

As one might expect, the response time associated with these test were
directly proportional to the data base size. The shortest table "scan"
in these tests was through the PROFILE table when it contained only 3115
rows and the longest was through the ENTRY table when it contained about
980,000 rows. For the shortest, a response was obtained in about 1
minute 43 seconds, and for the longest a response of 3 hours and 42
minutes was required. Clearly, one must be leary of making queries of
solely non-indexed fields with a large data base. The price in response
time for not defining domains as indexed (or imaged in ORACLE terms) if
they are to be used regularly as selection criterion is quite high,

Another observation which can be made from examining these two sets
of results is that scanning the ENTRY table when it contained 90,000 rows
took less wall clock time than accessing approximately 60,000 rows in the
largest PROFILE tabie. Some difference might be expected because while
processing the PROFILE table a comparison of the TAPE_ID field had to be
made but this should not mean that 50% more rows could be scanned in less
time. Probably the most Tikely cause is that when the PROFILE table has
60,000 rows the data base has about a million records while when the
ENTRY table has 90,000 rows the data base is about one tenth that size.
(Since all data is stored in the same VAX file or files the Profile and
Entry table rows are interleaved within the file. When the entry file
has 90,000 rows it occupied about 93% of the data base space utilized for
tables so it is more densely packed into the data base. The Profile rows
represent only about 7% of the utilized space requiring more disk reads
to locate an equal number of rows since they are less densely apportioned
in the file.)

Queries 5A, 5B, and 5C's function was to ascertain the significance
of compound search criteria when soliciting information from the data
base. The three queries were respectively:

SELECT COUNT (*) FROM PROFILE WHERE LAT
SELECT COUNT (*) FROM PROFILE WHERE LAT

XXXX
XXXX AND LONG = YYYY

2-66

SELECT COUNT (*) FROM PROFILE WHERE LAT = XXXX AND TAPE_ID =
"717711"

the search criteria in the first query is simply the indexed field LAT.
The second compounds the search criteria by adding a second indexed
field, LONG. The third compounds the first criteria by adding the non-
indexed field, TAPE_ID, as a second qualifier. Thus, the first query
serves as a control while the second measures the added cost of a second
indexed field and, the third, that of a second non-indexed field.

The results of this set of queries are somewhat inconclusive for
ORACLE. Perhaps the choice of LAT and LONG values should have been more
selectively chosen so that a larger number of successful responses would
have resulted. The values chosen yielded the following successful
matches at the five ascending levels of data base size for the first or
control query: 1, 2, 3, 9, and 28. The second query yielded only 1
successful match for each of the five levels and the third had the
following responses: 1, 2, 2, 2, and 9 respectively. Comparing the
successful matches with the response times of each of the three related
queries lead to no consistent pattern of performance. (The times in the
tables include the time to get all successful responses.) From these
results it is assumed that no significant change in performance exists
when changing the search criteria from a single indexed field to a
compound one. Note should be made that no attempt was made to
demonstrate the cost of choosing non-indexed fields exclusively in
compound format. This would require a search of the entire data base
similar to queries number 2 and 4 already discussed.

Queries 6A and 6B were intended to identify the cost associated with
using the "ORDER BY" clause in ORACLE. This option, when invoked,
returns the results of a query in a specified order based on the value of

a particular field in the row selected. Query 6B was:

SELECT * FROM ENTRY WHERE PROFILE_CNT < 125 ORDER BY TEMP.

2-67

Query 6A served as the control run and was the same as 6B except it con-
tained no "ORDER BY" clause. The number of responses to the query was
1,973. The control query completed in 81,08 seconds while the query re-
quiring the sort completed in 93.11 seconds. The difference of 12.03
seconds is almost 15% more than the control query.

Queries 6A and 6B were only conducted once because the sort function
is directly dependent on the number of responses not the total data base
size. Several points should be made about the "ORDER BY" option. The
use of "ORDER BY" when a "WHERE" clause references the same field and
that field is indexed is a redundant procedure because the results of the
query are returned in ascending order by virtue of the "WHERE" clause
alone. It is unclear how the sort is internally managed by ORACLE and it
may be possible that larger numbers of values to be sorted could overflow
the available work space and create a large number of VAX page faults
thereby degrading the sort response significantly.

Items 7A and 8A are intended to measure the incremental times to add
a new row to the PROFILE and ENTRY tables respectively. The results
associated with the insertion of a new row in the PROFILE table reveal
that a direct relationship between size of data base and incremental load
time required does not appear to exist. This defies the intuitive
suspicion that the larger the data base the slower the performance but
could be due to several factors. First, ORACLE load rates, as discussed
in section 2.2.2, displayed remarkable consistency at all tested levels
of data base size revealing é small variance in performance over the
whole range of data base size. Secondly, because four of the five fields
in the Profile table row are indexed the balance or state of the B-trees
at the time of the insert may have considerable influence on the results.
Lastly, the sample is for only five cases (only three of which are
version 2.3 results) and a larger number of tests would have to be made
to statistically assure that the relationship of data base size to
incremental load rate is not significant especially in light of the small
variance in load rates mentioned above. A similar observétion can be

2-68

made for query 8A although only one of five fields is indexed in the
ENTRY table. The incremental load rates still show no pattern related to
data base size. Comparison of the two does tend to demonstrate a consis-
tent overhead related to the extra B-trees required to be updated in the
PROFILE table as one might expect.

Comparison of the results of 7A and 8A with the load rates depicted
in Figure 2-3 reveals that the incremental cost of an additonal row is
much more expensive than the insertion rates indentified during the load
process. This can be attributed to the cost of compiling the ORACLE in-
sertion statement prior to loading. This is relatively signficant if
only one set of values are to be bound for insertion but is neglegible
when thousands of sets of values are bound for insertion,

Numbers 7B and 8B are intended to measure the impact of deleting a
single row from the PROFILE and ENTRY tables respectively. The target
rows in each table chosen for deletion were the ones added in number 7A
and 8A. The deletion rates are all lower than the insertion rates but
are somewhat proportional to the corresponding insertion rate. As a con-
sequence, the results appear to demonstrate no relationship between data
base size and incremental deletion rates. They also show that deletion
of an ENTRY row with its single indexed field is consistently faster than
deletion of a PROFILE row with four indexed fields.

2.3.3 SEED Test Results

The SEED benchmarking tests were conducted using version Bl11.3 at
all levels of data base size. The results are provided in tabular form
in Appendix I. !nlike ORACLE the primary terminal interface in SEED
which is called HARVEST does not have all the capabilities available
through the Host Language Interface (HLI). HARVEST only allows for data
base queries and does not facilitate insertion, update, or deletion of
records in the data base. A second Terminal Interface (TI) module called
Garden is also available in SEED which permits exercising of all

2-69

capabilities available through the HLI. For this reason some of the
benchmark operations were performed using only one of the terminal inter-
face capabilities. In general, however, HARVEST was exercised whenever
possible because it is more user oriented and, as, such would be targeted
for the casual user's primary interface. Where applicable,GARDEN was
also exercised and in one case the report writer, BLOOM, was used.

Also, unlike ORACLE, there is a difference between the HLI implemen-
tation and the TI. ORACLE's HLI supports the commands in an identical
string format to that for the terminal interface. SEED's HLI implemen-
tation is not equivalent to the HARVEST query lanquage. It requires the
establishment of currency by navigating the data base structure in a
manner consistent with the function to be performed and then fetching or
operating on the data as desired. The results reported in Appendix I for
SEED's HLI and for GARDEN include the costs of navigation and currency
establishment for each test. The logic implemented to navigate the data
base was simple and straight-forward and significant improvement to the
FORTRAN code was not considered possible so, for this reason, the SEED
HLI results are not felt to be negatively influenced by poorly or
inefficient written code. |

The number 1 query in the test plan for SEED was:
WHERE P_TIME = "YYMMDDHHMM" DISPLAY P_TIME.

The actual time used was the last P_TIME value entered into the data base
at the time of the test. The number 3 query was:

WHERE P_TIME = "YYMMDDHHMM" DISPLAY PRESSURE_LVL, TEMP
which verifies how effective the index capability is in SEED. Number 1
should require a "HASH" computation and the necessary I/0 to fetch the

particular record pointed to while number 3 includes the additional steps
required to Tocate and fetch the entry level records that are associated

2-70

with the desired P_TIME value (number 1 does not locate the LAT, LONG,
and TAPE_ID associated with the P_TIME). Results for both of these
queries indicate the indexing methodology is effective but some
degradation is apparent at the 1,040,000 record data base level. This is
probably attributed to index values "HASHING" to the same location and
overflowing the physical page they would normally be stored on. As a
result overhead develops because the overflow pages must be fetched and
searched. Naturally with a limited amount of data base space (as in the
"STATIC" approach used here, Section 2.2.3) more duplicate hits will
occur as the data base grows unless an ideal hash computation is
derived. It should be noted that this data base is only half as big at
the one million record level as the planned for data base. Seeing
evidence of degradation due to duplicate hits at this point is
forewarning and points up the need for analyzing the data characteristics
to determine a new user supplied hash code. Query 1 asks that a profile
time be located and printed if it is available in the data base.
Practically speaking one would normally expect to ask for additional
information such as the LAT, LONG, and/or TAPE ID. In ORACLE locating
the Profile time implies that the LAT, LONG and TAPE_ID values are also
lTocated since they are on the same record. In the SEED schema used in
this application more processing would be required to obtain that
information. The Profile time value is located on a record that has
pointers to three other records in another area (VAX file) which contain
the LAT, LONG, and TAPE_ID values. These would have to be obtained in
separate steps, if desired, once the Profile time was located. No
measurenents have been made to determining'the additional costs of these
steps, however.

Query number 2 requires that all Profile records be sequentially
accessed and number 4 requires that all Entry records be sequentially
assessed. The results of these queries demonstrate the cost of accessing
non-indexed data or navigating through an entire set sequentially. Query
number 2 and number 4 were respectively:

#2) WHERE DATA TYPE = “FGGE LIMS" COUNT P_TIME and

2-71

Examination of the results indicate that response time is directly re-
lated to the data base size as one would expect.

It is important to note that the data base design is closely related
to sequential access response rates. For example, in the data base
design implemented for the benchmark testing, approximately 16 entry
records are stored with an associated Profile record (see Section
2.1.2.2). A data base page contains 2 Profile records and about 32 entry
records. The implication here is that a single physical disk read is
required to retrieve 32 entries but only 2 Profiles (assuming a physical
READ inputs a single data base page). The results bare this out by show-
ing a response of over 295 seconds is required to access about 11,200
Profile records when thé data base is at the 189,000 level while only
about 250 seconds is required to access about 48,000 Entry records at the
50,000 level. If the design suggested for the "direct" loading in
Section 2.2.3 were tested it would probably have had different results
because Profile records would have been stored together on a data base
page without the associated entry records. This would have significantly
improved response time for accessing Profile records sequentially. In
any event the time to sequentially access all records in a large data
base is likely to be high and, if possible, the data base design should
attempt to minimize the Tikelihood or need for performing such operations
through the proper assignment of keyed fields.

Queries 5A, 5B, and 5C were intended to measure the effect of intro-
ducing compound selection criteria in the "WHERE" Clause. The three
queries used were, respectively:

#5A) WHERE LAT
#5B) WHERE LAT
#5C) WHERE LAT

XXXX COUNT P_TIME
XXXX AND LONG = YYYY COUNT P_TIME
XXXX AND TAPE ID = "ZZZZZ7" COUNT P_TIME

2-72

As mentioned in the previous section, the number of responses to
each of the above queries was relatively low and provide some incon-
clusive findings. Further, query 5C has a compound WHERE clause that
uses both LAT and TAPE_ID. Although this is the same query as used with
the ORACLE tests it does not accomplish the purpose of having an indexed
and non-indexed combination because in the SEED application the TAPE_ID
field is indexed while in the ORACLE application it was not. This over-
sight was not discovered in time and as a result no measurements were
taken which reflect the use of a WHERE clause containing both an indexed
and non-indexed field for SEED. The results of the queries do not
indicate consistent results when comparing the use of two indexed fields
versus the use of only one. They do indicate that compounding the WHERE
clause with TAPE_ID results in faster response time than if compounded
with LONG. The cause for this is probably due to the small number of
occurrences of the TAPE_IND (from 1 to 8) versus the large number of
longitude values (3,000 to 62,000).

Queries 6A and 6B were intended to measure the efficiency of the
sort capability available in SEED's software. Number 6A was intended to
be a control and 6B was intended to effect a sort for 1,973 temperature
values in the entry record. Unfortunately neither HARVEST, GARDEN, nor
the HLI currently support a sort option. The report writer, BLOOM, does
have such a feature and this was used to produce the sorted results in 6B
while 6A used BLOOM to generate an unsorted list. The use of BLOOM to
produce sorted output is not suitable for an interactive user. It is not
designed to be used like a query language and is much too procedural and
complicated for casual users to use. See Section 3.7.3.6 for more in-
formation on BLOOM., These two tests were conducted at the 52,000 record
data base level only. The response times associated with these two tests
are a bit mysterious because the sorted output was produced faster than
the unsorted. Examination of the CPU time required to produce the output
does show an additonal 9 seconds were required to produce the sorted
results. This is only about half of one percent of the total time re-
quired to produce the unsorted results implying that the sort adds rela-
tively little overhead. As noted in the previous section it is not clear

2-73

if larger numbers of values to be sorted may overflow the work space
available to the sort thereby creating a significant degradation due to
the inevitable page faulting that would occur.

Numbers 7A and 8A measure the incremental cost of inserting a new
Profile record and Entry record respectively. The inserts consist of the
DML commands necessary to obtain currency of the proper owner record
occurrences and then to insert the new values. As was mentioned in the
previous section, the times recorded are much slower than the load rates
seen at corresponding levels of data base size but this is attributed to
the initial overhead required to prepare to insert the record (i.e. to
open the data base and estblish "currency"). With the exception of the
results at the 52,000 record data base level the response times show an
Entry record can be inserted at a much faster rate than a Profile
record. This is most likely due to the way the Profile record is treated
in the data base design, that is, the profile time, latitudes, and
lTongitude values are all indexed or "CALC'ed" fields while the Entry
record has no indexed values. (The anomaly seen at the 52,000 Tevel is
thought to be due to the choice of Profile time associated with the Entry
record to be inserted. At that level a choice of time with approximately
the same value as the largest time in the data base was made. Subsequent
tests used a value with a significantly different value of Profile time
than any in the data base. This may have resulted in page overflows when
hashing to the Profile time value at the 52,000 level that was not
present at other levels). Examination of the results also shows that
data base size is weakly related, if at all, to the speed of the insert.
This would tend to contradict the results of the loading process
discussed in section 2.3.3,but a closer examination of the inserted
values in number 7A and 8A may explain this anomaly. The values chosen
for LAT, LONG, and P_TIME were all extreme so that their subsequent
deletion would not cause other Profile records to also be deleted. The
values chosen probably "Hashed" to clean pages in the data base making
the insertion somewhat independent of the data base size. This again
underlines the importance of the hashing algorithm and its relation to
data base performance. The Entry record inserted in 8A while not

2-74

(3]

containing indexed fields is associated with the profile record that was
inserted in 7A and therefore benefits from the hashing to the profile
record when establishing currency before inserting the entry data.

78 and 8B measured the cost of deleting a single Profile record and
Entry record, respectively. SEED's approach to deletion is to mark the
relevant occurrence as deleted but not to remove it until all the
pointers associated with it have been properly updated. This means a
minimum of work is done during the delete procedure and examination of
the results reflect that. It is also apparent that data base size has
very little relationship to the response time required for the delete.
Note again should be made, however, that the values deleted were probably
"hashed" onto or related to values "hashed" onto "clean" data base pages
as discussed for the insertions in 7A and 8A above. Hashing cleanly to
the data without overflowing would make the delete response independent
of data base volume. From a comparison of the results of inserts 7A and
8A and the load rates at corresponding data base levels it seems likely
that the deletion of a range of values that are chained contiguously
would be faster per deletion than the single delete rates obtained in 7B
and 8B,

2.3.4 RIM Test Results

The queries and commands chosen for the RIM benchmarking tests were
patterned after the ORACLE queries for the most part, but because P-TIME
was not an indexed domain after the 52,000 row level some of the queries
had to be modified to use the indexed domain PRO-CNT instead. There also
existed several problems which prevented some tests from being executed,
but these cases are confined to the incremental deletion and insertion
tests. Queries 7A and 8A, insertion of Profile and Entry rows,
respectively, could not be done with the TI due to a RIM software error.
Queries 7B and 8B, deletion of Profile and Entry rows, could not be done
with the HLI due to a linkage problem of unknown origin with the RIM
software,

2-75

Because ORACLE and RIM are based on the relational data base model
and since their applications share a common set of table and domain
specifications a tendency to make direct comparisons of the two is
natural, but some considerations should be made before doing so. One
must recall that the ORACLE results have to include the detached process
overhead while RIM does not. The TI results of both systems include
overhead required to Open and Close the data base as well as the costs of
the function being tested. Also it is important to remember that RIM
could not continue in the testing with Profile time as an indexed value
so that the first test had to be modified and the inserts and deletes
have one less index field in the Profile Table to be concerned with.

The number 1 query for RIM was originally:
SELECT P_TIME FROM PROFILE WHERE P_TIME EQ "YYMMDDHHMM".

The measurements derived from this query were to assess the effectiveness
of the RIM indexing capability using the smaller PROFILE table. In
section 2.3.4, RIM Load Results, an explanation of the problems of index-
ing this field was given. As a result of the problem the number 1

query was altered for all succeeding data base levels above the 52,000
row size to:

SELECT P_TIME FROM PROFILE WHERE PRO_CNT EQ XXXXX.

Examination of the response time for this query while using P_TIME as the
search criteria at the 52,000 level reveals the severe penalty associated
with the indexing of this twelve character string. Once the PRO_CNT
field is substituted the responses show an effective indexing capability
which appears to suffer little degradation as a function of data base
size,

2-76

The number 3 query was similar in purpose to number 1 but was de-
signed to exercise the indexing capability using the large Entry table.
The query used was:

SELECT ALL FROM ENTRY WHERE PRO_CNT EQ XXXXX.

An examination on these results shows agreement with those in number 1
and leads to the belief that the indexing technique used by RIM is effec-
tive for numeric data. Because of the approach taken, which only uses
the first four bytes of the field for indexing, an inefficiency will
result when indexing many values greater than four bytes in length whose
first four bytes are identical.

Query numbers 2 and 4 were both designed to access all of the rows
in the PROFILE and ENTRY tables, respectively. The queries chosen for
this function were:

#2) SELECT P_TIME FROM PROFILE WHERE TAPE_ID EO "XXXXXX"
#4) COMPUTE COUNT PRO_CNT FROM ENTRY*

(The "XXXXXX" in #2 is used to force a search through the entire table.)
In both cases the results are as expected and show a very linear rela-
tionship between data base size and response time. The shortest response
time was just under 30 seconds and is related to the accessing of 3115
rows in the PROFILE table. The longest response was 16.5 minutes count-
ing the PRO_CNT values in the ENTRY table when it contained about 980,000
rows. RIM's speed in searching the entire data base is considerably
faster than that of either ORACLE or SEED.

* Originally query 4 was SELECT ALL FROM ENTRY WHERE PRESS_LVL EQ "X" AND
PRESS_TY EQ "Y" AND TEMP EO “ZZZ" AND QC_FLAG = M but was changed after
the 99,000 row level to just count the rows.

2-77

Queries 5A, 5B and 5C were designed to measure the cost of compound
search criteria. The three queries used were respectively:

#5A) COMPUTE COUNT PRO_CNT WHERE LAT EQ XXXX
#5B) COMPUTE COUNT PRO_CNT WHERE LONG EQ YYYY and LAT EQ XXXX
#5C) COMPUTE COUNT PRO_CNT WHERE TAPE_ID EQ "ZZZZZZ" and LAT EQ XXXX

The first query simply used a value of LAT, which is an indexed field, as
the search criteria and thereby serves as the control measure. The
second adds another indexed field and the third adds a non-indexed field
to the search criteria. As stated in the previous two sections, the
values of LAT, LONG, and TAPE_ID chosen yielded a relatively small number
of responses which made it impossible to draw valid conclusions from the
measurements recorded. The results at varying data base sizes are con-
flicting when all three queries are compared. When the Profile Table is
largest (60,000 rows) the HLI results show that an indexed and non-
indexed combination requires 20% more time than the control while using
two indexed fields requires more than 75% more time. When the Profile
table contains 26,000 rows, indexed and non-indexed, and both indexed
require about 25% more time than the control run. With the Profile table
containing its lowest level, 3115 rows, the control is slower than either
of the others by .02 and .04 seconds, respectively. From the results
available, no consistent patterns can be detected nor are any serious
degradations apparent.

Query 6A and 6B were designed to measure the cost of requesting
results in a sorted order. Query 6A was a control while 6B retrieved the
same data but in a specified order. The two queries were:

SELECT ALL FROM ENTRY WHERE PRO_CNT LE XXX
SELECT ALL FROM ENTRY SORTED BY TEMP WHERE PRO_CNT LE XXX

The queries were only exercised at the 52,000 row data base Tlevel and a

PRO_CNT value was chosen that would require the sorting of 1,973 values.
The results of the queries show the sorted requests required about 16%

2-78

more time for the HLI test and about 9% more for the TI test. It should
be noted again that documentation of the internal functioning of the RIM
software was not available and there may be a point where an internal
work space used for sorting is overflowed causing a significant
degradation in sort performance due to page faulting.

Queries 7A and 8A were intended to measure the incremental time to
insert an additonal row to the Profile and Entry tables respectively.
The results associated with inserting a row into the Profile table show a
direct relationship exists between data base size and response time re-
quired for insertion with the exception of the first result. The excep-
tion is due to the previously mentioned problem associated with indexing
the P_TIME field. At all subsequent data base levels only the LAT, LONG,
and PRO_CNT fields have been indexed. Query 8A showed no pattern to in-
dicate that the insertion rate for it was related to data base size al-
though at the 1,040,000 row level over 2 seconds was required while pre-
vious levels had required less than .25 seconds. The difference noted
between 7A and 8A may be due to the fact that insertion into the ENTRY
table requires a single index be updated while such an operation for the
PROFILE table requires three updates. In any case incremental insertion
into the ENTRY table is signficantly faster than that for the PROFILE
table. A serious failure was discovered in RIM while performing these
insertions. The TI could not perform the insertion function and had to
be omitted from the test procedure. It was subsequently discovered
during the performance of 7B and 8B that the HLI could not be used to
delete rows from the data base and the HLI tests were omitted from 7B and
8B.

The delete operations, 7B and 8B, could only be conducted with the
TI. To estimate the net time required to perform these tests (i.e., to
remove the open and close data base overhead) one can subtract out the
results of test number 9. This can also be done for the other tests con-
ducted using the TI. However, the variance the number 9 results may have
with that of a particular test is unknown and erodes the validity of the
net result. In one case a negative time was generated using this
approach underscoring the variability which exists.

2-79

3.0 QUALITATIVE ANALYSIS

3.1 User Friendliness

3.1.1 ORACLE

The relational model which ORACLE is based on is considered by many
to be the most comprehensible data representation currently available.
The concept of two dimensional tables is easily understood by most poten-
tial users especially the target users in the NASA environment. Nor-
mally, the relationships among the data are readily apparent to a user
when the tables are presented. In most cases it is quite easy for a user
to design tables that will accommodate the application without studying a
great deal of data base theory. If one can establish a "first normal"
form for the data, one can produce an acceptable data base design for
ORACLE to manage. This does not mean an optimal design is inherent, but
it does imply that a relatively casual understanding of data base con-
cepts is required, which permits the user to focus his thoughts on his
data instead of on data base intricacies. Certainly complex data struc-
tures and medium-to-large-scale DBMSs would benefit from, if not require,
a data base specialist to optimize the design and avoid serious pitfalls.

The primary interface to ORACLE is the SQL language. SQL embodies
all the Data Descriptive Language (DDL) capabilities as well as the Data
Manipulation Language (DML) capabilities. It is used as the input lan-
guage for the terminal interface called the User Friendly Interface (UFI)
as well as for statements represented as character strings in high level
languages which communicate with ORACLE through the Host Language Inter-
face (HLI). The use of a single language simplifies the learning process
and normally makes it easier to locate descriptions about a particular

syntax or capability because a single document can be referenced.

The language itself requires a defined syntax. It is currently
lacking a "help" function or other user friendly guide to aid a user in
constructing DDL or DML statements. When using UFI, the user is given an
indication of the location of the first field which causes the SQL state-

3-1

ment to fail when an error is present. The user is not notified of other
errors which may be present at the time. The error identified is de-
scribed briefly, but accurately, in a "canned" phrase. The user may take
advantage of the UFI editor to modify the most recent SQL statement and
resubmit that statement without retyping it, which can save time and
minimize additional typographical errors. Using the HLI, errors are
identified by status codes and are pointed to by an offset from the first
character in the SQL statement. In general the infrequent user may find
it unacceptable to use UFI because of the syntax requirements and lack of
tutorial assistance. The incorporation of a "help" function is needed to
provide the infrequent user with a bridge to understand the syntax and
refresh his memory.

Associated with a data base in ORACLE are system tables and views of
system tables which comprise the systems knowledge of the data base.
This information decribes a data base's tables, views, domains, and
domain attributes which constitute the information pertaining to a data
dictionary. Also provided in these tables are definitions of user
privileges defined for the tables in the data base and definitions and
descriptions of the dictionary tables themselves. A user may survey this
information to gain knowledge about the data base design and structure,
about a particular column or domain's use or occurrence in the data base,
or about his privileges to access or modify information in tables in the
data base.

ORACLE has implemented an approach to naming domains or columns
without regard for consistency between tables. For example, if the
domain, "TIME", in table A was defined as a character field that was
stored as hour, min, and second ("HHMMSS"), a second domain called "TIME"
may be present in table B which is a numeric field stored in total sec-
onds. The fact that the domain, "TIME", exists in both tables does not
imply that both represent the same logical entity. If consistency is
desired, the user is given responsibility for establishing and enforcing
rules to maintain it. MWithout user enforcement, an ambiguous and
confusing environment can evolve.

3-2

ORACLE can provide a user with summary results about the data in the
data base. This includes a count of responses which meet query require-
ments as well as providing minimum, maximum, average, and sum values for
fields of rows which meet the query requirements.

3.1.2 SEED

THE CODASYL Network model which SEED is based upon requires a schema
to define the data base structure. Within the schema description lies
the relationships between the data in the data base. The concept§ of one
to one, one to many, and many to many relationships need to be understood
and applied appropriately in the schema specification. The user must
comprehend the hierarchy of his data so that a suitable data base struc-
ture can follow. The formalization of these relationships for the pro-
duction of a data base design is normally unnatural to a user unless he
has had prior experience with a CODASYL system. The user will, in many
cases, be required to understand the system of pointers which chain to-
gether occurrences of his data so that he can navigate the data base
structure to perform desired operations. The exception to this is the
terminal interface language called HARVEST which navigates the data base
structure for the user. The definition and compilation of schemas and
sub-schemas and the navigational considerations imply that the user must
divert a significant amount of attention away from his primary concern,
the data, to understand how to use SEED for his application. [t certain-
1y means that a data base specialist would be required to analyze re-
quirements and design and define structures for all but the simplest of
applications in the NASA target environment.

There is no primary interface language with SEED. As mentioned
above, the HARVEST terminal interface permits the user to access data in
the data base without need to navigate the data base structure. It is
limited to query capability and, as such, does not possess the power to
insert, delete, or update data. The language itself requires a defined
syntax, but does possess a "help" function to guide the user through
command construction. The other terminal interface in SEED is GARDEN.

3-3

GARDEN provides the full compliment of Data Manipulation Language (DML)
commands. It also provides a method to get information about a partic-
ular data base's sets, records and items and contains a "help" facility
to instruct a user in how to use the DML. To use GARDEN one must under-
stand the data base structure and be knowledgeable about navigation and
currency. When interfacing with SEED using a high level programming lan-
guage like FORTRAN a usér must use a DML that is similar to the commands
used with GARDEN,

The formality inherent in the CODASYL model and the need to navigate
the data base structure are barriers to most casual data base users. The
HARVEST interface relaxes these demands, but facilitates queries only and
"points out" errors by cursor position without describing the nature of
the error. The user is forced to continue the input sequence from the
point of the detected error and must escape from it with a control char-
acter sequence if he opts not to continue the current input line.

Both GARDEN and HARVEST provide the user the ability to request
information about the areas, items, records and sets defined in the sub-
schema that is currently active. This provides a data dictionary capa-
bility to aid the user in understanding the content of the data base as
well as the relationships between the information. The actual Data
Description Language (DDL) defining the schema or sub-schema may provide
a better understanding of the structure of the data base design and can
be obtained by examining the source files used to define them or via the
SCDUMP utility.

SEED permits a user to request a count of successful responses to a
particular query without getting the actual responses. It also permits a
user to request summary information including minimum, maximum, average,
sum, and standard deviation for fields successfully meeting query
requirements. GARDEN provides a capability to produce simple graphs and
histograms from data in the data base as well.

3-4

3.1.3 RIM

The RIM system is a single-user data base management system (DBMS)
based on the relational model. In a relational model users are only con-
cerned with desjgning the logical structure of a data base; they are not
burdened with a data base's physical design. Most users will find it
easy to design and query RIM data bases. The schema of a data base must
be declared in the DEFINE submodule. A data base schema defines a set of
flat tables or relations, a set of table columns or fields, the con-
straint rules on fields in tables, the owner password to the schema, and
read or modify passwords to the tables.

An interactive user need only learn the DEFINE submodule, the LOAD
submodule, and the RIM query commands to know the Data Descriptive
Language and Data Munipulation Language capabilities. A HELP function in
RIM provides a description of these RIM commands and submodules, a
summary of the syntax of each command, and a description of RIM "where"
clauses. Therefore, the learning process is easy and the user always has
information available if he forgets the syntax of a command. Users may
enter RIM commands in a free-field format, therefore multiple commands
may be entered on one line separated by a semicolon. RIM remembers each
previous command so that all or part of the previous command can be re-
used.

RIM commands provide access to all tables, selected rows and/or
selected columns in a table, and a combination of information from
different tables. Functions exist to find the minimum, maximum, average,
sum or count of a column. The function that finds the count of a column
operates on all types of columns (i.e. real, integer, or text). The
functions which find the average and sum of a column operate on real and
integer type columns. The functions which find the minimum and maximum
of a column operate on all types of columns that are eight bytes in
length or less.

A user may access the Data Dictionary with three commands: LISTREL,
EXHIBIT, and PRINT RULES. The Data Dictionary provides users with infor-
mation about the tables in a data base, characteristics of the fields in

3-5

a specified table, the date that a particular table was last modified,
the existence of read or modify passwords on a table (the actual password
is not shown), the current number of rows in a table, and all the exist-
ing constraint rules on a table.

The RIM DBMS maintains consistency with the schema in the DEFINE
submodule. Columns with the same name must have the same data type. In
the LOAD submodule, if a constraint rule is violated, the DBMS displays
the constraint rule violated by the user.

3.2 Flexibility .

3.2.1 ORACLE

The ability to add more data to the ORACLE data base in the form of
additional tuples or rows is not a problem. If the space allocated at
any point becomes insufficient, an extension can be added to provide
additional data base storage. The number of extensions is said to be
unlimited, but in section 2.2.2 a case is described where multiple
extensions may have caused a data base failure. This was said to be
related to version 2.2 and is supposed to be corrected in version 2.3.
The final data base used in the quantitative study for ORACLE had three
extensions and performed without problem. Extensions offer a dynamic and
flexible approach for defining the data base size to meet current needs
without having to allow for future growth until the growth occurs. The
growth can be related to more tuples in an existing table or to a change
"in data base structure.

ORACLE permits a user the flexibility of redefining a data base to
accommodate differing needs without paying a significant price with his
existing data. New tables can be added to the data base without impact
to existing tables. New columns (domains) can be added to an existing
table with any possible combination of attributes (i.e., imaged, unique,
null, type). Once a new column has been defined, the user is responsible
for updating the tuples accordingly so that the appropriate values are

3-6

associated with the new column. There is no capability to delete a
column from a data base table, although this is promised to be avaijlable
in version 3.0. If the column permitted null values, it could be elimin-
ated by assigning the null value to the field in each tuple, and then a
new user view could be provided that did not include that field. The
result would e a table that used no space for the field (since nulls are
represented by default), and the user would not be aware of the field's
existence. There is no capability to redefine the attributes of a

field. RSI has indicated that a future version of ORACLE will permit
indexes to be created or dropped dynamically for fields to give greater
flexibility (probably version 3.0). All fields can be updated if
required.

The use of views mentioned above also provides the flexibility of
adding columns to the data base without affecting existing users or pro-
grams that do not need the new information. This logical data indepen-
dence can be of great importance in reducing maintenance costs for old
programs in an evolving data base environment. Views do add overhead for
the system to retrieve the view definition, to effect the intersection of
tables, if necessary, and to build the desired response. The amount of
overhead is related to the view definition's content and complexity. In
general, the ORACLE system is permissive to a change in structure or size
without requiring a great deal of reworking of steps already done.

This is not to say that in all cases changes are painless because some
alterations require unloading and reloading the data base.

3.2.2 SEED

SEED requires that a user define the data base size prior to the
insertion of any data in it. He may, however, define a data base as
"Dynamic" which permits the data base to grow larger as it is filled., If

"~ he doesn't choose to use the "Dynamic" approach, the eventual data base

size must be estimated accurately because too big a space will waste
storage media and too small a space will require the unloading and
reloading of the data base to recover. If the "Dynamic" approach is used

3-7

new data base pages are allocated when overflow conditions occur. One
must be careful because overflows can occur when there are available
pages elsewhere and the data base grows dynamically anyway. It is not
clear whether all the dynamically obtained pages must be searched or
traversed when an overflow occurs to find where a new entry may go or if
a new page is fetched outright. The former would require additional
processing time and the latter might waste storage space. In any event,
the overflow pages would require some additional disk I/0 which would
not ordinarily occur.

The schema definition in SEED dictates a rigid structure for a data
base design. Normally a modification to the data base design results in
a costly procedure requiring the unloading of all or part of the data
base, the respecification and recompliation of schemas and subschemas and
the reloading of the data base. If future changes can be anticipated a
design is sometimes plausible which limits the chances to a single area
thus requiring that only a part of the data base (that area) be unloaded
and reloaded although the schemas and subschemas would still have to be
respecified and recompiled. One approach to the problem when an antic-
ipated design odification will require the definition of new records is

he use of dummy records in the original schema. In his approach a
dummy record is inserted for each owner record and the schema is defined
so that the dummy records reside in a separate area in the data base.
When the modification is defined a procedure that requires the unloading
of the dummy area, the respecification and recompilation of the schema
(only updating the record description just determined) and subschemas and
the reloading of the dummy area with the new data corresponding to the
new record description is needed. The implication here is that if one
can initially foresee where the need for changes will arise then he may
be able to design a structure which minimizes the impact when they occur.

The concept of sub-schema access can insulate some users and
programs from certain types of changes in the data base design thus
providing some logical data independence. The sub-schema can provide a
program or user access to only the records and sets he needs to know

3-8

about. Therefore, if the data base is modified and the information
relevant to a user is not structurally modified that user is insulated
from the change through his subschema.

In general it must be stated that the CODASYL model and the result-
ing SEED implementation is not designed to accommodate frequent changes
to a data base design without imposing significant overhead. A thorough
analysis should proceed the design of any data base to understand fully
the characteristics of the information to be managed and the needs of the
user community. The chosen design will then require little or no altera-
tion and where modifications are required that were anticipated the pro-
cedure mentioned earlier may minimize the cost of the changes. In
instances where initial data characteristics or user needs cannot be
fully identified and defined, one might expect that future data base
changes will be required and will prove to be costly with SEED.

3.2.3 RIM

The RIM DBMS dynamically allocates more space for a data base as it
increases in size., If there is not enough disk space available for this
dynamic allocation, the data base cannot be enlarged (RIM does not
provide the capability of storing one data base on more than one disk).
Therefore, the user must always be aware of the amount of available free
disk space. It is the user's responsibility to recover unused data base
space by issuing the RELOAD command. This is necessary because the space
of a deleted table or row cannot be re-used until a RELOAD command is
executed. When the RELOAD command was executed (in version 4.0) after
the deletion of a row or a table, the DBMS displayed an error message:

-ERROR- on unit 52 with status 25.
From the testing that was performed it could not be verified that the

RELOAD command functioned properly nor was the source of the error
message determined.

3-9

A RIM data base schema can be modified in a number of ways without
redefining the entire data base and reloading the data. New tables can
- be added to a data base. Existing tables can be deleted. Columns can be
added to or deleted from a table. Table or column names can be changed.
Relational algebra commands (e.g., INTERSECT, JOIN, PROJECT, and
SUBTRACT) can be used to create new tables from old tables. The BUILD
KEY command can be used to change a previously defined unindexed column
to an indexed column. The DELETE KEY command will change an indexed
column to an unindexed column. Passwords to read and/or modify tables
can be changed. The constraint rules (section 3.4.3) declared for a
table and its columns cannot be changed. However, during the interactive
load of a table the user can specify that these checks not be made.

3.3 Host Language Interface

3.3.1 ORACLE

ORACLE supports an interface between it and a number of programming
languages including: FORTRAN, COROL, PL-1, "C" and the VAX native mode
instruction set (using macro instructions). The interface, termed the.
Host Language Interface (HLI), permits the full use of the SQL language
including query, data manipulation, data definition and data control
facilities. The actual SQL statements used in the interactive interface
are input as character strings for the HLI to compile. The HLI uses work
areas defined in the users program area for communication between ORACLE
and the user. Steps the user's software can make with ORACLE include:

. "log on" (required)

+ open a "cursor area" (required)

. request descriptions of data base fields

. define fields requiring conversion for internal representation
. “bind" values to fields in a SOL statement

. execute the current SQL statement

. repetitively "fetch" rows of output

. "log off" the data base (required)

3-10

Some of the above steps are not necessary in certain instances and more
than one “cursor" may be active so multiple SQL statements can be execut-
able at a given point in a program.

The fact that the entire set of SQL capabilities exists through the
HLI implies that software surrounding the ORACLE system can be produced
to accommodate many unique needs a particular application may require.
Most commercial DBMS packages cannot be expected to address these needs.
The proposed Packet Management System (PMS) being developed by NASA for
the NEEDS Phase II program required among other things the management of
packetized header data received over high speed data lines, management of
various data sets now stored as sequential files on magnetic tapes, and
management of catalog information about data maintained in an archive.
None of these requirements are directly supportable by ORACLE, but with
the HLI, software could be built around ORACLE to accommodate these
needs. The HLI does not constrain the amount of software which can sur-
round the DBMS, so the primary limitations are system bounds and fiscal
budgets. Many of the functions stated as requirements for the PMS are
not explicitly met by any commercially DBMS. The functions are either
too unique to the application or too specific for a general purpose DBMS
to meet directly. The HLI capability in ORACLE permits software to be
added around the data base software to accomodate the desired customiza-
tion to meet system goals.

The creation of an ORACLE data base requires the running of the DBF
utility which requires interactive input for the specification of the
data base. This step would make the generation of a data base by means
of software a difficult problem and is not a recommended approach.

The implementation of generic software which could access tables
originally unknown to it is conceivable but would require explicit rules
relating data in one table to that in another for the production of such
software to be of use. It would also require the overhead of searching
the system tables in order to determine the contents of the data base and
this approach may be too expensive in terms of response time.

3-11

3.3.2 SEED

SEED supports an interface between it and both the FORTRAN and COBOL
languages. The interface, referred to as the HLI, permits software to
fully navigate the data base to access, insert, update, and modify data
within the limits of the subschema specified by the calling program. The
HLI is employed using the same approach as used with GARDEN. In this
case the software must navigate and establish currency instead of a user
at a terminal. For FORTRAN, a sub-schema must exist and must be process-
ed by the SEED utility SUBFDP which generates a user work area (UWA) that
must be inserted at the beginning of the user's source program. This
area will facilitate the communication between the user's code and SEED.
The user's code must "open" some or all areas of the data base, navigate
the data base accordingly to establish currencies, retrieve, update,
insert or delete information in the data base, and "close" the data base.

The HLI provides an interface for user software to fully exercise
SEED's capacity to manage data. For those applications such as the pro-
posed PMS, which have highly unique and specialized needs, no
commercially available system can be expected to satisfy all system
requirements. With the HLI a user can provide the customized software
that complements SEED's DBMS capabilities and meets the requirements of
the application. There are no bounding constraints to the user's
software when interfacing via the HLI, so the primary constraints to
surrounding SEED with software are system bounds and fiscal budgets.

The generated User Work Area (UWA), for FORTRAN, identifies and
names the variables which the software will use to communicate with SEED
reducing the programmer workload. Also the GARDEN module provides an
inherent mechanism whereby a programmer can become familiar with the same
data manipulation language (DML) used in the HLI and the navigational
steps required for a given data base design and operation. This can

3-12

facilitate the logical debugging of the interface software in an
interactive mode to reduce the programmer effort. The procedural nature
of the schema and subschema definitions and the use of the respective
compilers, FDP and SUBFDP, in preparation for using the HLI makes the
dynamic definition of a data base throﬂgh user software very difficult.
The production of generic software that could navigate and access
different data base structures originally unknown to it is not a
practical or realistic consideration for a system such as the proposed
PMS.

3.3.3 RIM

RIM data bases may be accessed and modified by application programs
through FORTRAN-callable interface routines. The programming language
interface supports the following two operations:

1. moving a row from a data base to an array (supplied by the
application program)

2. moving a row from an array (supplied by the application program)
to a data base.

These two operations can be used to access, modify, and load data.

To move a set of rows from a data base to an array supplied by the
application program, the application program must let RIM know which rows
are desired and get the desired rows. The RIMFIND and RIMHUNT interface
routines enable the user to specify a selection criteria for retrieving a
set of rows from a table in the data base. The set of rows retrieved may
be sorted using the RIMSORT interface routine. To retrieve data from the
table for the desired set of rows, the RIMGET interface routine is used.
RIMGET puts the data retrieved into the array supplied by the application
program.

3-13

To modify a row after retrieving it from the data base, the RIMPUT
routine is called. The application program supplies the array in which
the modified row is placed and passed to the data base through RIMPUT.
To load new rows in a RIM data base, the RIMLOAD routine is called in
which new rows to be inserted are passed.

Not all RIM capabilities are available through the Host Language
Interface that are available through the interactive on-line mode (e.g.,
tables cannot be created or expanded; columns cannot be deleted, and
relational algebra commands cannot be executed). Therefore, this
programming language interface would be more powerful if all RIM
capabilities were available. As shown by the quantitative analysis of
RIM, the programming language interface can effectively be used to load
and query the data base.

3.4 Control
3.4,1 ORACLE

The concept of a centralized Data Base Administrator (DBA) respons-
ible for the overall use of the data base was considered a requirement
for the NASA target environment. ORACLE does not currently support such
a concept. Any user may use DBF to create a data base and then has the
power to explicitly grant other users access to the data base (with the
SQL command DEFINE USER). Once given access to the data base a user may
in turn give other users access. A data base creator also has the option
of allowing all persons access. Once a user can access a data base, the
user may create his own table(s) and may identify which other users have
the right to access the table and how they may use the table including:
read, insert, de]ete, updaté and expand. A user may also be given the
privilege to grant his own privileges to other users.

The implication is that control exists but not through a central

individual or group. This would have to be accomplished through a set of
operational standards. The LIST option available in the DBF utility does

3-14

identify the data bases which are currently defined to the ORACLE system
data base as well as the number of blocks in each of the data bases'
constituent extents. A DBA would not be able to learn more about a data
base if it was secured and he was not granted access to it. (If a data
base is secured, the LIST option will identify the original creator's
name, however.) Since one must log on the VAX system under the ORACLE
account before starting the ORACLE system, centralized control can be
maintained over the activation of the DBMS since the account is password
protected. This is also true of the procedure required to bring the
ORACLE DBMS "down" gracefully as well,

Also of note is the lack of control of disk space. Any user may, at
any time,'attempt to enlarge the data base using the DBF utility. The
only constraint is the available contiguous space on the storage medium.
The potential thus ex sts for a user to consume all available space at
the expense of other data base applications which have higher priority
but which cannot find space needed for their data.

Related to the idea of control is the presentation of only pertinent
information to users. This includes the omission of information that is
either superfluous to a given type of user or too sensitive to be made
available to all users. ORACLE can address this need through the use of
"views" that include only the “need-to-know" information for a class of
users.

3.4.2 SEED

The concept of a DBA is not supported in the methodology adopted in
the SEED DBMS. The DDL describing the schema permits the originator the
ability to define a password to limit other users from accessing it un-
less they are told the password. Likewise the sub-schema DDL can use the
schema's paséword or a new password to control access to it. This pass-
word protection does not facilitate the DBA concept, however. Implement-
ing a DBA controlled system would require the use of operational proce-
dures that compels potential users to request use of SEED prior to using
it. The use of DBSTAT results in the identification of the logical

3-15

"areas" of a SEED data base but not the actual VAX file specification and.
location. No direct capability exists to identify what VAX files are
SEED data base files. This limits the central control of the DBMS.

The control of data base size and therefore the consumption of the
available mass storage is defined by a user in the schema DDL. Since any
user could define a schema and run DBINIT there is no explicit central
control of the use of disk memory for SEED data base applications.

The use of sub-schemas to control or restrict the access of informa-
tion in the data base for a class of users is effective. Sub-schemas can
protect parts of the data from access by users who do not need or should
not be permitted to view them. Logical areas may be omitted from a
user's "window" to the data base all the way down to a specific item or
field within a record.

3.4.3 RIM

The concept of a DBA is not supported by -the RIM DBMS. The creator
of a data baée assigns the schema a password. Only the users knowing
this password can change the schema through the DEFINE submodule. The
DE INE submodule allows a read and/or write password to be placed on each
table. This read/write password can be changed by anyone knowing the
schema password. No command or utility is availabl to list all the
passwords corresponding to a data base. Centralized control of a data
base is not available. Centraiized control of all RIM data bases is also
not available; there is no capability to find all RIM data bases and
their locations.

The DEFINE submodule provides three types of constraint rules on
tables. A column in all tables may be constrained to a set of values; a
column in a specified table may be constrained to a set of values; and
two columns in the same table may be compared to each other with a cer-
tain rule (e.g., = , =, >, >, <, <). At anytime during the LOAD
submodule, which loads rows on-line to one or more tables, a user may

3-16

specify with the NOCHECK command that the rules stipulated in the DEFINE
submodule are not to be checked. The CHECK command specifies that each
row is checked as it is loaded.

3.5 Security

Security is closely related to the preceding section on control and
some capabilities exist in the systems that overlap both subject areas.

3.5.1 ORACLE

As mentioned in Section 3.4.1, ORACLE offers the creator of a data
base the right to restrict use of his data base to himself, to the
"Public", or to specific users defined individually to ORACLE.

(Currently if a data base is defined for "Public" use and as "READ" only,
users are still able to insert, update, and delete anyway!) Initially
when defining the data base the user identifies himself and his password
to secure the data base. Then using the DEFINE USER command he identi-
fies the users that can have access to the data base. Any legitimate
data base user may create and define tables and identify users who may
access them as well as the privileges each user may have including:

READ, INSERT, UPDATE, DELETE, EXPAND, and if that user may grant his
privileges to still other users. Users must then know their passwords to
sign on the data base and also must have been granted rights to access
the table(s) they wish to operate upon. A user's privileges may be
revoked or changed by the grantor of those privileges or by the
individual who granted privileges to the grantor and so on. Data base
users identified by a DEFINE USER command must identify themselves and
their passwords in order to "Log On" to the data base.

It must be mentioned that although ORACLE permits the securing of
information under its management the data is stored in VAX files. In a
secure environment, steps would have to be taken that would assure the
integrity of the VAX file. The data base creator is considered by the

3-17

VAX operating system to be the owner of the associated file(s) and as
such he must control access to his files. The most protection available
appears to be the limiting of access to all users with the same UIC group
specification. For the PMS environment the ORACLE security is probably
adequate because the data is truly not sensitive. In a secure environ-
ment, however, the VAX files would have to be managed to prevent access
to even hexadecimal dumps which could be decoded.

Also related to security is the ability to give different users
different accesses to the same data base. As stated above each table in
the data base can be treated independently in terms of defining user
access. If a user or users need access to a portion of a table but
should not be permitted access to all of it a "View" may be defined which
will present only that information specified. This enables sensitive
information to be excluded. The "View" provides for vertical exclusion
as well as horizontal exclusion. This means that specific columns may be
excluded and also that rows can be included or excluded based on defined
conditions.

3.5.2 SEED

SEED's primary method of securing the data base is the password
specification allowed for both schema and sub-schema access. Since all
direct access to the data base through SEED requires a schema and sub-
schema the data base is secure. Access to the VAX file that contains the
data base or to the files containing the DDL and the passwords associated
with the schema and sub-schema(s) must be protected by the creator of
those files using the VAX file management capabilities. The compiled DDL
has passwords encripted but the source does not. A secure application
may wish to require the deletion of the source once it is compiled to
prevent undesirable access to the passwords. As stated in the previous
section, a truly secure application would have to prevent dumps of the
data base files that might be decoded.

3-18

The use of sub-schemas can prevent users from accessing information
in the data base which is sensitive and not meant for their use. The
sub-schema can prevent knowledge of or access implicity to whole SEED
areas or explicitly to records, subsets of records (fields), set and item
types. Access denial based upon conditional values is not supported
through sub-schema specification.

3.5.3 RIM

RIM offers password security to a data base. The schema cannot be
re-defined unless the owner password to the schema is known. All tables
may optionally have read passwords and modify passwords. Read passwords
can be made known to a select group of users if certain tables contain
sensitive information. Only users responsible for updating tables should
have access to modify passwords. If two tables are given different read
passwords, they cannot be used together. For example, if table A has
'BLUE' as the read password and table B has 'WHITE', the user must set
the current password to 'BLUE' (i.e. USER BLUE) to read table A but table
B cannot be read. To read table B, the user must set the current
password to 'WHITE', but table A cannot be read. If table B is not given
a password, then once the current password is set to BLUE both table A
and table B can be read. Therefore, care must be taken in defining
passwords. There are no capabilities to assign passwords to columns in
tables.

A RIM data base is made up of three VAX files. The creator of the
data base can protect these files using the VAX file management capabili-
ties. It is good practice to have a backup of these files in case of
integrity if the data is lost.

‘ 3.6 Processing Consistency and Recovery

This section addresses the DBMS's capabilities to insure data con-
sistency, to resolve contention in the case of multiple accesses to a
given piece of information, to recover from failures and/or errors, and
to back up the data base.

3-19

3.6.1 ORACLE

Numeric data introduced to ORACLE has several limitations beyond
that imposed by the VAX/VMS system. Although the VAX permits the storage
of an integer as large as 2,147,483,648, ORACLE accepts integer values
greater than 9 digits in length but displays the information in exponen-
tial notation (Version 2.3 may change this). This causes a problem when
a subsequent query is made with a "WHERE" clause that uses the
exponential form because ORACLE does not identify its displayed value as
being equal to the internal value. ORACLE will identify the original
integer value as equal to the internal value but that integer value may
not be available after its insertion into the data base. The use of a
"UFI FORMAT" declaration can relieve this problem for insert but is too
procedural and unfriendly and isinvokable only from the interactive
interface. It also appears that real numbers presented to ORACLE via UFI
can be referenced exactly as they are input while the same real numbers
can lose some of their accuracy when introduced via the HLI.

ORACLE "locks" a row when one person updates it to prevent dual up-
dates ffom overwriting each other. This function is supported automati-
cally without user request. To obtain a higher level of “lock-out" the
user may employ the BEGIN TRANSACTION and END TRANSACTION commands which
explicitly prevent the concurrent update of a specified table by other
users while the user is performing his transactions. The BEGIN TRANS-
ACTION has the option of locking other users out completely or just from
update commands.

The Automatic Row Lockout Feature will prevent the occurrence of the
“Deadly Embrace" phenomenon. That is concurrent users would not be able
 to begin multiple row updates during which each user finds that the other
has a row "locked" that the other needs in order to complete the update.
If two users attempt to issue a BEGIN TRANSACTION on the same table, the
request received second is suspended until the first requested issues an
END TRANSACTION for the table. The suspension could cause a problem

3-20

especially in an HLI application. Without an indication of why his BEGIN.
TRANSACTION request has been suspended, the interactive user might escape
from his suspension by issuing a "Control/C" sequence. He could then
repeat his request or go on to another function. An HLI application does
not have this latitude and would be suspended until the END TRANSACTION
was issued by the other user. An implication here is that the time be-
tween BEGIN/END transaction sequences should be kept short if possible to
minimize others from lockout.

At the time this document was prepared there was no information
available on how ORACLE implemented or is implementing its journaling and
recovery capabilities. However, information is anticipated on these
features in the near future.

ORACLE provides two utility routines to backup and restore a data
base. EXPORT is used to save all or selected parts (unload) of a data
base in a dump file while IMPORT is used to restore all or selected parts
(reload) of a data base. EXPORT can dump all tables in a data base or
only user-specified tables (including no tables), all or only user-spec-
ified views (including no views), all granted privileges or no privileges
associated with the tables and views being unloaded or EXPORT may only
unload the table/view definitions and their associated privileges.

IMPORT allows a user to reload all or none of the tables on the dump
file, all or none of the available views, all or none of the available
privileges, or to inspect the dump file without reloading anything. A
user may indicate that tables are to be added to an existing data base so
rows for an existing table will be inserted. If this is not indicated no
data will be entered. It is evident that the EXPORT/IMPORT procedure
could be used for more than just backup and recovery. It can facilitate
the combination of two existing data bases, the respecification of privi-
leges or grants, the dumping of single tables, or the redefinition views.
The nature of EXPORT and IMPORT require that the information they process
be handled on a record level. The implication is that the saving and
restoration of a data base could be as expensive (in computer resources)

3-21

and time consuming as the loading of the data from its origin if that were
a possible alternative. To provide a backup of a large data base in a
timely fashion one would probably wish to discard the use of EXPORT and
use a VAX file copy utility routine. This would greatly reduce the time
required for the backup as well as for the recovery if needed. It would
not provide the options available through EXPORT and IMPORT however. In
the event that a new ORACLE version uses different internal storage
methods EXPORT and IMPORT could be used to unload and reload the data base
so the new version could be used.

3.6.2 SEED

Numeric data introduced to SEED has the same restrictions normally
imposed on it by the VAX/VMS operating system. An integer number as
large as 2,147,483,648 may be input to SEED. Floating point or real
numbers are subject to the same loss of accuracy that the VAX/VMS system
exerts on all users. This means that a floating point number inserted
into the data base may be retrieved with a slight variation in value.

When a user wishes to use GARDEN or the HLI to perform an update
(MODIFY) he must first log on to the data base by explicitly naming the
sub-schema to be used and identifying his intent to perform an update(s).
SEED then attempts to "lock" all areas that are included in references in
the sub-schema definition. If a referenced area is already "locked" for
another user's update then the log on is rejected and the user must wait
until the area is released. If the sub-schema explicitly references
records in all the data base's areas or implicitly references all areas
through the "COPY ALL" option, the entire data base is locked against
other users changing the data base. Other users may log on at any time in
a read only mode regardless if area "“LOCKOUT" is active. This approach
eliminates the possibility of the "deadly embrace" phenomenon but does not
exclude the chance that data one person is inspecting has been modified by
another user without the first's knowledge.

3-22

t)

Several levels of error protection and data base corruption preven-
tion are available or present in SEED. Currently the schema definition
identifies one of four modes of journal operation which all users of the
data base are subject to. (SEED may implement a deferred mode which will
permit users to choose the mode they wish through sub-schemas or at run
time but at present all users must use the mode identified in the
schema.) The four modes are progressively inclusive, that is, each suc-
cessively defined mode contains all the features of the preceding mode.
The initial mode is "INTERNAL" integrity which guarantees pointer integ-
rity of all chains in the data base. This is always present in SEED.
The second mode is "COMMAND LEVEL" integrity which guarantees command
completion with rollout or restart. The third mode is "TRANSACTION
LEVEL" integrity with roll forward. This permits the application of

journalized transactions to a backup copy of the data base so that the
updates can be re-applied to the data base. The fourth mode is
“TRANSACTION LEVEL" integrity with roll forward and roll back. This adds
the ability to retract or erase transactions made to the data base from

the current data base contents. Each successive operating mode provides
additional capabilities but at increased cost in system performance so
one must analyze his needs carefully to strike the proper balance. The
user or DBA must use the journaling utility , DBJRNL, to appropriately
restore the data base to a desired point after it has been corrupted.
The journal file can be inspected to aid in determining how the restora-
tion can best be made. A user may also explicitly identify the start of
a logically related sequence of DML commands. He then has the option of
identifying the completion of the commands through a "COMMIT" specifica-
tion or he may roll back the commands completed since the sequence
started and thereby erase those commands. He may also generate a check-
point to the journal log file but care should be taken in a multi-user
environment because the checkpoint is for all users. Restoration to the
checkpoint would mean other user's inserts, updates and deletes would be
erased!!

SEED has two utilities called TROUT and TRIN which may be used to
unload all or selected areas of the data base. TROUT and TRIN are part

3-23

of SEED's SPROUT which is a system for processing transactions into and
out of a data base. SPROUT accommodates a variety of data base related
transactions and TROUT and TRIN are integral to these functions. Purely
for the purpose of backing up and restoring the data base TROUT and TRIN
are sufficient but may not be efficient enough for practical day to day
use. They are interpretive in nature and, as such, add additional over-
head to the cost of dumping and restoring the data. Their use requires
an understanding of the data base structure for design and specification
of the necessary Transaction Description Language (TDL). Preferable to
using TRIN and TROUT is the use of VAX/VMS file utility routines to copy
or restore the files comprising the data base. Procedurally this is a
simpler task which requires no unique understanding of the data base
design and is a much faster process. TROUT and TRIN can be used to
unload and reload a data base when a new version of SEED is implemented
that employs a different internal management technique.

3.6.3 RIM

During our use of RIM, data inconsistency has not occurred. RIM
DBMS provides no capability to recover from failures and/or error. The
three VAX files containing the directory data, the data for each table,
and the KEY or indexed element pointers should be backed up periodically
to disk or tape using the VAX utility COPY.

RIM is a single user DBMS so there is no need to resolve contention
in case of multiple accesses to a given piece of information.

3.7 Complimentary Software

Associated with both the ORACLE and SEED DBMSs are an array of soft-
ware routines that are either required to perform certain DBMS functions
or which can be utilized to give more versatility and power to DBMS per-
formance. At this writing both systems are adding to their respective
inventory or support software as well as enhancing their current rou-
tines. For that reason the discussion that follows cannot be considered
as a full-measure of the accessory software available. It is intended

3-24

that the information presented reflect the knowledge gained about soft-

ware that was both available during the benchmarking exercises and which
- time and resources permitted informal testing of.

3.7.1 Complimentary Software of ORACLE

3.7.1.1 Data Base File (DBF) Utility

- DBF supports the establishment and mapping of an ORACLE data base.
The DBF utility is used to create, initialize, modify, and delete a data
base. It also may be used to identify the system data base and to list
information about a data base. A user must use the DBF command with the
"CREATE" parameter to initially define the data base. When using the
“"CREATE" command one must identify the new data base's name, an initial
file name and its size (a minimum of 1024 blocks of 512 bytes per block
is required) and optionally a user-name/password combination. The
initial file may be added to through use of the DBF command, "EXTEND", to
provide additional data base space. The optional user-name/password
specification allows data bases to be secured. 1If the user-name/password
is specified all DBF functions must also specify it when referencing the
data base except the SYSTEM DATABASE, LIST, and ENTER functions. The
"INIT" and "INITEXTENT" commands initialize existing files as a data base
and enter the new data base into the data base directory. The "REMOVE"
command removes the data base from the ORACLE data base directory. The
"ENTER" command enters a set of initialized data base extent files into
the data base directory. A set of files whose data hase name has been
"REMOVED" may be re-entered using the "ENTER" command. The "MOVE"
command allows an extent to be renamed so that a duplicate file may be
used in its place. The "REINIT" command flushes all the information in
the data base leaving it totally empty.

The command "SYSTEMDB" is required to identify the system data base
to ORACLE. The "LIST" command results in information being displayed
about the data base of concern or about all the data bases in the direc-
tory if desired. The information provided by "LIST" includes the data

3-25

base name, the user name if it is a secure data base, an indication if
the journal option is on or not, and the size and file name of the data
base extents. The "LU" command identifies the number of totally unused
blocks present in ‘the entire data base. The "M" command provides a hexa-
decimal output of the bitmaps used by ORACLE to manage space in the data
base. At this time no documentation has been made available about either
the "LU" or “"M" commands.

The DBF utility is required in order to use the ORACLE DBMS. It is
generally easy (for a DBMS specialist) to use and is sufficient in its
ability to create, modify, and delete data bases. The "LIST" command is
helpful for managing a large data base. The "LU" and "M" commands are
routines which probably could use enhancing (as well as documenting) to
aid DBMS specialists in scrutinizihg the data base. Enhancements to in-
clude additional statistics on B-tree space consumed, view definition
space available, and local dictionary space available would be useful and
should be supplied. The use of DBF is not normally a routine that an end
user of a data base would be expected to be conversant with. If the end
user must create his own data bases, the use of DBF is required and could
present an obstacle because of its lack of user-friendliness. Normally
the assistance of a DBMS specialist would be required in such a case.

3.7.1.2 Interactive-Application Facility (IAF)

The IAF permits the development of interactive applications for data
entry, data retrieval, and update. The IAF application requires a DBMS
specialist or designer to define the prescribed application interactively
to the Interactive Application Generator (IAG). The designer defines the
data base being referenced, the columns and tables of concern, a column's
editting criteria, its initial value, a SQL statement to be executed when
the field is entered, the fields screen:1ocation, and the placement of
prompts, instructions, and line drawing characters. The information in-
put to IAG is saved in a response file and may be edited for update to
avoid the respecification of all the information interactively again.

3-26

Once the definition is complete the application is compiled into an in-
ternal format and stored for use by the Interactive Application Processor
(IAP).

The terminal operator who wishes to use the application must run the
IAP utility and specify the proper image file name created by the IAG.
The user may then interactively communicate with the IAP in a manner pre-
scribed by the image file. He may proceed from field to field and from
screen to screen during the course of his session until he has completed
his assignment. The IAP communicates with ORACLE via the HLI and as such
passes SQL statements based on the criteria presented to it by the user
and the image file.

The IAF provides a generic capability to define and process inter-
active applications that communicate with an ORACLE data base without
requiring unique software. The approach relieves the terminal operator
from having to know anything about the data base. Procedurally he is at
the mercy of the designer to produce screens that are easily comprehen-
sible. He must also be aware of the IAP keyboard function codes to
proceed from "insert" to "inquiry/update" mode or to "next block" or
"previous block". The IAG does not pre-determine the validity of field
and table names made to it. Errors of this pype would be discovered dur-
ing the use of the application under IAP which underlines the need for
careful checkout prior to the operational use of the design. It also
means care should be taken to analyze the effects on all IAF applications
whenever a data base redesign is considered or made.

3.7.1.3 Report Writing and Text Formatting Utilities

The Report Writer Utility (RPT) interprets and executes a report
program consisting of report writer statements, text formatting commands,
and user text. It creates an interim file which may be used as input by
the Text Formatting Utility (FMT) to produce a finished report. FMT
formats the text based upon embedded commands in its input file and a set
of switches specified when it is exectued. Also, FMT may be used in a

3-27

stand-alone fashion as a general purpose formatter for word processing
applications. In that case the input file for FMT is built using a
standard text editor rather than by RPT.

During the report generation process, RPT reads a report program
created by a standard text editor in a file to be passed as input to
RPT. User text and FMT commands in the report program are copied to the
interim file but are otherwise ignored by RPT. Report writer statements
are interpreted and executed to direct the retrieval of database informa-
tion and its placement in the interim file,

FMT uses the text in the interim file for titles, column headings,
and other descriptive information. The embedded FMT commands are used to
control the placement of text and data ﬁnto a tabular format and to spec-
ify spacing, underscoring, margins, and page numbering. FMT does not
access any ORACLE data base. To modify a query imbedded in a report re- .
quires the entire process be repeated with the new query.

The initial development of a report using FMT and RPT would normally
be accomplished by a DBMS specialist. Once the ihput file is defined and
verified any user can initiate the report request to generate the desired
output with ease. The definition of the input file requires experience
with formatting and knowledge of the data base as well as a set of re-
quirements describing the nature of the report.

3.7.1.4 Unload/Reload Data Base Utility

The Unload/Reload Utility consists of the modules, EXPORT and
IMPORT. They are designed to be used in conjunction with each other,
that is to say, EXPORT creates a dumpfile which IMPORT can read to re-
build a data base. The EXPORT function permits the dumping of all or
only specified data base tables, all or only specified views, all or no
GRANT privileges, or only the table/view definitions and GRANT priv-
ileges. When specified tables or views are desired EXPORT will prompt

3-28

for user specification. The names of all tables and views unloaded will
be displayed as well as the row count of any unloaded table.

Once a dumpfile has been created IMPORT can be used to access spec-
ified portions of it for reloading of the data base or simply for inspec-
tion. IMPORT permits a user to specify that all or no tables present on
the dumpfile be reloaded, that all or no views present be reloaded, that
all or no GRANT privileges be reloaded, that the reload is against an
existing data base so tables already present shall have the same dumpfile
table's rows added to the existing data or to ignore the dumpfile's data
for duplicated tablie names, or finally to display the name of all tables
and views present on the dumpfile. Any records that cannot be processed
will be printed and IMPORT will provide a count of the number of rows
inserted as well as the number read.

The use of EXPORT/IMPORT for data base backup and recovery is not a
wise choice except for relatively small data bases. The use of a VAX
file copy utility is far more efficient for this purpose. One occasion
when EXPORT/IMPORT would be of use is when a modification to ORACLE
results in an internal data base storage change. In this case the
data base has to be "EXPORT'ed" using the old version of ORACLE and
“IMPORT'ed" using the new version. EXPORT and IMPORT work on a row basis
and for that reason are not any faster than an efficient HLI routine that
reads or writes rows from or to the data base. They do, however, replace
the need for the development of such routines and offer flexibility in
the amount and type of information loaded and unloaded. It should be
pointed out that the unloading of data from a data base using EXPORT does
not remove that data but instead copies it to a sequential file. The
format of the dumpfile is not provided by RSI which precludes the oppor-
tunity of pre-processing data destined for the data base into a compat-
ible dumpfile format which IMPORT could process for loading into the data
base. '

3-29

3.7.2 Complementary Software for SEED

3.7.2.1 DBINIT

DBINIT is a utility routine which is used to initialize a data base
before data can be stored into it. It will also flush existing data if
it is run against an area which has been partially or fully loaded.
DBINIT sets up the necessary internal SEED pointers and variables in an
area so that it will appear empty and be ready to receive data. DBNINIT
will permit the user to specify the area(s) which should be initialized
if one or more areas do not require it. The use of DBINIT would normally
be confined to a DBMS specialist as opposed to an end-user.

3.7.2.2 DBDUMP

DBDUMP is a utility which permits a user to inspect the contents of
desired data base pages in both numeric (hexadecimal or decimal) and
ASCII. The DBMS specialist can use DBDUMP to display data base pages in
order to analyze problems or to empirically study the results of differ-
ent designs. The provision of a utility like DBDUMP can be of great
assistance in the diagnosis of a problem because it facilitates a look at
the internal data base structure. It is not anticipated that the end-
user would make use of DBDUMP, however.

3.7.2.3 DBSTAT

The DBSTAT utility is used to produce usage reports about the data
base. The reports can summarize usage based on user specification for
all areas in the data base, selected areas, or selected pages in selected
areas. Five kinds of reports are generated by DBSTAT, including: a
record instance report, a storage distribution report, a storage utiliza-
tion report, an all area summary, and page level statistics. (The first
three of the above are always provided.) The record instance report
provides a count by record type of the number or record occurrences

3-30

t)

present. The storage distribution report summarizes the number of data
base pages which are from 0% to 5%, 5% to 10%, 10% to 15%, ... , 95% to
100% full. Examination of this report shows how well the data is
distributed in the data base. It can help determine if data is "bunching
up" or if it is evenly distributed. The storage utilization report
identifies how a data base page is being used. It identifies the number
of bytes and corresponding percentage space associated with page header
overhead, record header overhead, set linkage overhead, data item
storage, line number placeholders, unrecovered free space, and free
space. The report quickly summarizes how the data base space is being
consumed and how much space is still available. If the all area summary
report is requested the same information as the storage utilization
report is provided but for the entire data base area instead of the page
level., The page level statistics report lists for each page the
percentage of free space, the total number of records on that page, and
the total number of records of each record type on the page.

The reports provided under DBSTAT are complementary to the data
base. Their use coupled with analysis and some experimentation can aid
in the fine tuning of a data base to maximize its effectiveness in meet-
ing user requirements. Note is made that when a "dynamic" data base was
used the DBSTAT results were inaccurate but a future version promises to
correct the problem.

3.7.2.4 SCDUMP

The SCDUMP utility is used to display the contents of schemas and
sub-schemas. It may be invoked interactively or from a FORTRAN program
as a subroutine. The contents are provided in an encoded fashion. A
user may option to use the text editor to examine his original schema or
sub-schema specification as opposed to the encoded output of the SCDUMP
output.

3-31

3.7.2.5 RECLAIM

The RECLAIM utility removes all deleted records which are present
when it is run. When a record is deleted from the data base, it may not
be removed from the data base. This imp]ementatidn was chosen by SEED to
minimize the overhead of the delete function. A record will be removed
after it is deleted only when all chains associated with the record have
been relinked to exclude its occurrence. This may happen during the
dynamic navigation through the data base by the initiator of the delete
or by another user unintentionally. If it is determined that a large
number of deleted but unremoved records exist, the RECLAIM utility can
resolve this problem. RECLAIM permits the user to specify the range of
pages to be operated upon and RECLAIM reports the number of bytes re-
claimed after it scans the specified pages and removes the deleted rec-
ords. The RECLAIM utility would normally be reserved for use by a DBA or
DBMS specialist when it was determined that unremoved records were becom-
ing detrimental to system performance. No figures are available to docu-
ment how long this function requires but obviously it is a factor of the
size of the data base and the number of pointers present.

3.7.2.6 BLOOM

BLOOM is a routine which interfaces with a SEED data base to produce
user defined reports. BLOOM eliminates the need for user provided DML
statements by locating target records and determining the access path
used for data retrieval. The first step in using BLOOM is to use the
text editor to create a file which contains the report definition lan-
guage (RDL) which defines the report format and contents. A great deal
of flexibility is provided in the format definition which offers a wide
latitude in the report layout. Once completed the RDL is input to the
Report Definition Processor (RDP) which compiles it to produce a report
format called an FMT file which is later accessed by the BLOOM processor
to produce a report. RDP will analyze the report and determine if access
paths and target records can be derived from the data base using the sub-

3-32

V)

schema provided. If not, error indications are given to inform the user
of the problem,

Once the FMT file is successfully produced it may be used repeti-
tively by the BLOOM processor to produce the report as needed without
further user alteration unless the report format or contents requires
alteration. When the BLOOM processor is used to produce a report it
interfaces with SEED and creates a report data file (RDF) and a report
auxiliary data file (RAD) which hold the unformatted results of the
report. The user can specify the re-use of the RDF and RAD files to
regenerate a report that has already been created without needing to
access the data base again. He may produce a report that contains only
summary information and he may also select to output the report to a
terminal or to a disk file for future printing. Additionally the user
may specify selection criteria to reduce the amount of information
included in his report to what is desired. Selection criteria can refer
to items in the data base, defined variables from the RDL specification
or summaries. To modify a query defined in the report requires the
entire process be repeated with the corrected query.

The use of BLOOM has been limited to date but one problem has arisen
with the sorting of real numbers. SEED apparently uses the VAX sort
éapabi]ity and this currently causes erroneous results when used with
SEED managed real numbers. Otherwise there were no significant errors to
be noted in the use of BLOOM. As might be expected, a DBMS specialist is
recommended for the job of creating the RDL and producing a verified FMT
file which end users could then run the BLOOM processor against to pro-
duce reports.

3.7.2.7 SPROUT
SPROUT is a system for processing "transactions" into and out of a

data base. It can be used for outputting data to external files and in-
putting data from external files among other things. -The SPROUT system

3-33

consists of four processors: the Transaction Definition Processor (TDP)
which defines record (transaction) formats of external files into a
transaction library; the Transaction Library Dump (TLDUMP) which displays
format definitions; the Transaction Input Processor (TRIN) which creates
or modifies a data base from an external transaction file; and the Trans-
action Output Processor (TROUT) which creates a transaction file from a
SEED data base.

TDP reads and checks transaction definitions and creates a Trans-
action Library using an input file of Transaction Definition Language
(TDL) and a sub-schema. The TDL permits the specification of up to 50
transaction definitions for defining the record formats to be input or
output to/from the data base. If any TDL errors are encountered, TDP
identifies them including data name and field-length errors to the user.
Once properly compiled into the Transaction Library TRIN and TROUT can be
used accordingly. TLDUMP can be used to print a formatted directory of
any Transaction Library that has been created by TDP.

The use of TROUT and TRIN for system backup and recovery is not
recommended. The use of VAX file copy utility is advised for the sake of
efficiency. TROUT and TRIN are general purpose transaction processors
that interpretively decode a transaction from the Library definition and
operate accordingly. This implies a significant amount of overhead that
is not necessary. For a large data base, transaction processing of all
data base records would be prohibitive on a regular basis. To accommo-
date a data base design change or an internal SEED Modification one might
consider their use but should not overlook the use of FORTRAN or COBOL
interfacing with the data base through the HLI. That approach if done
properly will normally reduce computer resources consumed in the backup
and recovery steps. The comprehension of the data base structure
required for either approach is probably equivalent so this is not a
factor., In either case it is advisable that a DBMS specialist be
employed to perform the work as this is not a job safely left to an
end-user.

3-34

f)

3.7.3 Complementary Software of RIM

A1l of the capabilities which RIM provides are accessed through the
on-line terminal interface or the programming language interface; there
are no additional utilities.

3-35

V)

4.0 SUMMARY
4,1 Load Rates

The load rates of the systems varied in different degrees as the one
million Climate Data Access System (CDAS) records containing the
FGGE/LIMS information was input to the data bases. As noted, the ORACLE
data base initially began the loading process with load rates of about
7.4 CDAS records per second and was extremely uniform in performance. It
demonstrated a rather small degradation in performance as it eventually
dropped to a level of 6.2 records per second at about the one million
record (CDAS) level. RIM which did not index the time field to the
Profile record and therefore was subject to less processing overhead was
loading at over 23 CDAS records per second at the 100,000 level. (The
initial attempts to load RIM with the Profile Time field as an index
resulted in rates which were unacceptable for continued testing and, for
this reason, the index was excluded from the design.) The RIM system
load rates demonstrated more fluctuation and degradation than the ORACLE
rates. Perhaps the dynamic acquisition of file space used by RIM period-
ically induces an overhead which is responsible for the fluctuations.

The degradation drops the load rate to approximately 6.7 CDAS records per
second at the one million record data base level. The SEED load rates
demonstrated even more fluctuation and degradation than RIM's. Initial-
ly, the SEED load rates were over 45 CDAS records per second but by the
one million data base level the rate was reduced to below 5 records per
second. The fluctuations that are so evident during the SEED loading are
attributed mainly to the data location technique used by SEED called
"hashing." SEED provides a default algorithm which operates on "key
fields" to determine a location for the data record to reside. If the
Tocation determined is already full an overflow occurs adding overhead to
the locating process. This periodic overhead is thought to be the cause
of the fluctuations observed during the SEED loading.

4-1

The cumulative time required to load the one million plus CDAS
records into the three systems is depicted in Figure 4.1. The RIM and
SEED systems appear to have required almost the same amount of time,
approximately 33 hours, to load the records. ORACLE has consumed approx-
imately 42 hours to perform the same amount of loading.

From these results several observations may be made about the load-
ing capabilities of the systems. It appears that ORACLE is much less
sensitive to data base size than either RIM or SEED when comparing the
load rates. For a data base of a smaller size SEED appears to have an
advantage in load performance but above the 700,000 CDAS record level in
this application it is clear that ORACLE outperforms SEED. One cannot
directly compare the RIM results because of the omitted index field but
it would appear that its dégradation in Toad performance indicates that
ORACLE would begin to outperform it even with the omitted index field at
a data base size of slightly more than one million records.

Some reservations about the test resuits should be stated as well.
Other IED test applications have demonstrated load rates with signifi-
cantly different results. This underscores the application dependence of
the results which one must consider when evaluating them. Additional
testing is needed to evaluate other variables which may effect the load
performance such as the number of fields in a record, the number of keys
or indexed values, the nature of an indexed fields values (i.e. character
vs. integer, length, duplicity), as well as the number of different
records. The SEED DBMS offers a number of options in the data base
design that also influence load rates which are not available in ORACLE
or RIM. These options represent another set of variables which could be
subjected to analysis to aid in the evaluation of load performance. In
some applications a particular option could be utilized to improve per-
formance while in others its use may be a hindrance.

The percentage of CPU time consumed by each system for each second
of elapsed wall clock time is worth noting as well. ORACLE consumed

V)

ey

1

i
i
!
i
b

!

TR

ETOTAL WALL CLOCK TIME (SECONDS)

111 IREAES A S eSS N R R R a R n R R s AR AR A RARRRERAE SRARE S

CUMULATIVE LOAD RESULTS

11

L
i il

T+
T
» v

~N
ey
= HE

T

[Jsatey semas

S,
s APyt -
o ~Bl'S fhmn

g Wymory pepu—:
et o4

=

Sty =

-
5
X
=X
—X t
'y
—\i-

1000'S OF
RECORDS 1

S STy g— S

by ...}_::.': SEESRELINE FREE

=
— N\
—X
==lEAs
£
, o
EL*
=
=
=

— X
a
ey e fopnd et
X
1

patetrd

o~ 24

|

Figure 4.1

about 75% of the available processing time while SEED used about 50% and
RIM used from 34% to 24% (RIM used less as the data base grew). The
implication is clear that in an environment that must share resources
with other users OQRACLE load performance would suffer a more drastic
reduction than SEED's which would suffer more than RIM's. The impact in
performance may be significant and further testing of the systems should
include an investigation of the effect of contention for the host
computer's resources.

An examination of the disk memory utilization of each data base
containing approximately 60,000 CDAS Profile records and 980,000 Entry
records was made. The SEED data base reported via its utility software
that less than 20 million bytes of storage has been consumed of the space
originally allocated for it. The files that contain the RIM data base
consume about 40 million bytes, but recall it does not contain an index
for the Profile time value. ORACLE consumed about 87 million bytes but
of that 43 million is thought to be overhead attributed to the current 64
byte management scheme employed. The promised 2 byte approach would
improve this drastically but it will increase the amount of bit map space
required by a factor of 32 as well incrementing the processing overhead
some.

4.2 Query Testing

The TI results for all three systems under scrutiny show adequate
response. An adequate response in an interactive environment implies
that a momentary pause is acceptable to the user.

The results demonstrated that queries made with conditional clauses
referencing indexed fields were met with no more than momentary pauses
and are, therefore, considered adequate and effective., Access to non-
indexed data or for summany information requiring the sequential search-
ing of large portions of data are not recommended as regular functions in
an interactive mode. If this happens a data base design change should be

4-4

considered to expedite the processing such as the keying of additional
fields or the maintenance of on-line summary information dynamically.

The HLI results are worth examining more closely because of the
potential for a small difference in response becoming significant due to
repetitive interfaces with the data base. The results show that SEED was
generally the fastest to respond to queries with conditional clauses
specifying an indexed field. RIM was next and ORACLE was slowest. To
locate a particular indexed value associated with the Profile record
information from among as many as 26,000 possible choices, SEED requires
about .1 seconds. Frbm among 60,000 possible choices SEED required about
.3 seconds. Corresponding response times for RIM are .3 and .5 seconds
and ORACLE consistenty requires about .5 seconds at all levels. To
locate a particular indexed value associated with an Entry record from
among as many as 413,000 choices SEED requires about .3 seconds and from
980,000 choices about .75 seconds. Corresponding times for RIM are .5
and .75 seconds while ORACLE took between about 1.1 and 1.3 seconds for
all levels. The differences between the systems are small but the
cumulative effect could be significant if an application required a high
volume of responses in a relatively short period of time.

HLI test which sequentially accessed large portions of the data base
were done to determine the cost of accessing non-indexed fields or to
obtain summary information from the data base such as when making
periodic reports. At the largest level the data bases contained 980,000
Entry records. To access all of the information via the HLI, RIM
required less than 17 minutes. In contrast SEED requires over 63 minutes
and ORACLE requires over 222 minutes.

4.3 Qualitative Aspects

The QORACLE and RIM systems were found to require a great deal less
comprehension of data base theory than the SEED system to design and
implement a data base application. The two dimentional tables are more

4-5

readily understood than the network approach using member-owner sets.

The relational systems are also more permissive to modification of the
original design. A variety of alterations can be made including the
addition of space to the data base, the addition of tables in the data
base, and the addition of fields in a table without unloading and reload-
ing the data base. SEED's schema approach is much more rigid and will
not readily support modifications to the original design.

The ORACLE and RIM systems do not offer a wide variety of options
that permit a data base application to be tuned for special needs. SEED
provides a variety of permissible options in.the schema specification to
facilitate special needs or aspects of the application. For example, one
may select from three choices of "location mode" to designate the manner
in which a record type may be loaded into the data base. A hashing tech-
nique may be specified to facilitate direct access, a "via" technique to
maintain physical proximity to an owner record (reducing disk I/0's) may
be specified, or a "direct" technqiue may be used to enable sequential
access or loading in a more efficient manner. This type of latitude is
not available in either ORACLE or RIM. A more naive user must be
cautioned to examine his data base needs carefully before selecting the
techniques for his schema specification because an unwise choice may
degrade the actual performance he desires to emphasize.

Both ORACLE and SEED have an assortment of complimentary software
including utility routines necessary for creating and maintaining a data
base as well as peripheral modules such as report writers that increase
the overall DBMS usefulness. This software adds to the flexibility and
power of the two systems but also underscores the need for cognizant data
base personnel to aid in the proper use of these routines. RIM, at this
writing, does not possess the peripheral software available in either
SEED or ORACLE. 1Its biggest drawback, however, appears to be the
lTimitation of only one user in version 4.0. Without enabling multiple
users RIM's suitability is highly suspect for most data base applica-
tions. It is unknown at this time if plans exist to adapt RIM for

4-6

multiple user access. If so, the revised system should undergo more
testing because the nature of the changes required would most likely
modify response performance.

4.4 Conclusions and Recommendations

The major goals of the testing were accomplished but the results of
the tests were somewhat inconclusive. It is clear that none of the
systems meet all the requirements originally stated for the IDBMS (now
the PMS). Because of RIM's limitation for supporting only a single user
it can probably be eliminated from consideration as a candidate. The
other two systems are still worthwile candidates for use as a "nucleus"
for the PMS data base management software. Either can be surrounded with
the cutomized software required for the unique needs of the PMS.

The results of the testing provide some basis for estimating perfor-
mance of the systems. As already mentioned the load rates derived in the
tests demonstrate that a comparison of the systems performance must be
done with respect to data base size since different rates exist at
initial levels but degradations exist which eventually change the order
of performance. Other factors including contention for CPU resources by
other users which is likely in the PMS environment have not been included
in this study. Because of the different percentage of CPU time required
by ORACLE and SEED during loading, approximately 75% vs. 50%, contention
could more adversely effect one system than the other. Further, the
application dependence of the test results should be underlined., The
variables associated with the application including number of record
types, size of records, numbers of indexed fields among others will
impact the load performance. Informal testing of other IED applications
have produced significantly different load rates initially. Consequent-
ly, a recommendation is made that additional testing be performed which
uses a pseudo PMS design to minimize the application variability if con-
clusions are to be firmly drawn regarding the pe}formance of the DBMSs in
the PMS environment. .

4-7

results. If the VAX computer was burdened with heavy use the DBMS's
could not be expected to perform as well. The DBMS's have been
periodically updated with new software releases. They may continue to be
updated in the future as they mature. The changes made to the software
can have significant effects on performance. For example, the proposed
2-byte memory management capability in ORACLE and the pointer array
capability in SEED could greatly enhance each system respectively.
Additional testing should be considered for these systems after such
changes to re-evaluate performance. Lastly, the reader should recall
that the evaluation and testing made has been relative to the typical
needs of a NASA data base application. These needs are not necessarily
oriented the way those of an average commercial data base might be. The
typical NASA data base is presumed to consist of large amounts of
scientific data that once loaded will remain somewhat static.

4-8

APPENDIX 1
QUERY PERFORMANCE RESULTS

APPENDIX I
PART A
BENCHMARKING OPERATIONS

Using an indexed field, locate a Specific Profile related va]ge.
Sequentially access all the Profile records.

Using an indexed field, locate a specific Entry related value.
Sequentially access all the Entry records.

Establish the cost of compound selection criteria

A.) With a single indexed value as selection criteria (control)

B.) With two indexed values as selection criteria

C.) With an indexed value and a non-indexed value as selection
criteria

Measure sort capability
A.) Unsorted (control)r
B.) Sorted

Incremental addition and deletion of a Profile value
A.) Insertion

B.) Deletion

Incremental addition and deletion of an Entry value
A.) Insertion

B.) Deletion

Open and close data base without intermediate operations

I-1

APPENDIX 1
PART B
TABLES OF BENCHMARKING RESULTS

Note should be made that at the 52,000, 439,000, and 1,040,000 row
data base levels version 2.3 of ORACLE was used while at the 99,000 and
189,000 levels the measurements of the ORAAAA task are approximated. At
the 52,000, 189,000 and 1,040,000 the ORAAAA times are derived from the
system accounting log but at the other two levels the times, I/0, and
page faults had to be derived from the latest update of the DEC display
monitor prior to the conclusion of the primary task.

Also, of importance is the fact that all terminal interface results
(UF1, GARDEN, HARVEST, and TI) include the cost of opening and closing
the data base in their measurements. One might attempt to more accurate-
ly estimate response and overhead by determining a net time by subtract-
ing out the appropriate query 9 results which simply opened and closed
the data base without intermediate steps.

The tables that follow contain the results of the Benchmark tests at
each level of data base size. The left hand column specifies the data
base size. For consistency, the size stated is related to the number of
CDAS records loaded, not necessarily the number of data base records.

The measurements provided are for four different resources identified in
the second column as: clock time, CPU time, Direct I/0, and page

faults. Clock time is the total number of seconds required from sub-
mission to completion of a function., CPU time is the computer processing
time consumed while performing a function. Direct 1/0's are the number
of disk read and writes issued by the software. Page faU]ts are the
number of times the software addresses an instruction or location not
currently in main memory thus requiring the virtual operating system to
swap main memory for the desired‘page on the disk. Each of the three
systems have separate columns. |

-2

L

ORACLE's column is subdivided into an HLI and UFI (interactive inter-
face) halves each with an ORAAAA element which corresponds to the detached
process for the test function. SEED is subdivided into HLI, GARDEN, and
HARVEST (BLOOM is used for 6A and 6B) where appropriate since some func-
tions were not tested using all interfaces. RIM was subdivided into HLI
and TERM. INTER. only. Neither SEED nor RIM had a detached process to
keep track of.

A1l TI results (UFI, GARDEN, HARVEST, TERM. INTER) contain the added
overhead of opening and closing the data base as well as the cost of per-
forming the desired test function. A1l HLI fiqures are net results and do
not include the overhead. The ORAAAA column for ORACLE's HLI results is
blank because measurements were not obtainable for this detached process
on a test function basis. It may be presumed that the equivalent ORAAAA
results for UFI approximate those for the HLI tests with results from
Query #9 subtracted out first

Note should also be made that each level of data base size is made
up of a proportionate amount of FGGE/LIMS profile information and entry
information. The ratio of the two record types averaged about 1 Profile
record to 15.85 Entry records. As a result queries that access Profile
related information are searching a much swaller amount of data than
those which access Entry related data. An estimate of the number of
Profile and Entry records at each tested level of data base size is:

Data Base Size Profile Records Entry Records
52,000 3,100 48,900
99,000 5,900 93,100

189,000 11,200 177,800
439,000 26,100 412,900
1,040,000 61,700 978,300

The above figures are expressed in terms of records from the input source
(FGGE/LIMS data tapes) and does not necessarily reflect data base records.

[-3

v-1

BENCHMARKING OPERATION RESULTS #1

ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLI ORAAAA UF1 ORAAAA HLI GARDEN HARVEST HLI TERM. [INTER
(Records or Rows)
52,000 Clock Time (SEC) LA0(.66)* --] 10.01 8.0 .07 2.54' 3.31 96.11 109.11
CPU Time (SEC) 02(.05 -- .60 2.63 .02 1.17 1.65 53.42 58.58
Direct 1/0 0 0 -- -- 37 1 6 6 1712 1792
Page Faults 0 19 -~ -- 1718 11 606 831 152 1999
99,000 CLK Tim .62* -- 7.42* 7.42% .06 2.39 2.90 .25 3.17
CPU Time .03 -- .52 2.31 .02 1.14 1.52 .12 1.72
DIR 1/0 0 -- -- 29 1 6 6 4 83
PG FLTS 22 -- -- 674 11 621 176 24 860
189,000 CLK Time .48+ -- 7.47* 7.47* .11 1.99 2.82 .32 3.08
CPU Time .04 -- .61 1.97 .03 1.07 1.39 17 1.79
Dir 1/0 o -- - 22 3 8 9 4 83
PG. Flts 0 -- -- 590 11 573 181 24 874
439,000 CLK Time .44 -~ 6.91 6.0 .07 2.27 2.82 .29 5.91
CPU Time .02 -- .56 2.50 .02 1.27 1.44 .14 2.38
Dir 1/0 0 -- - 37 2 7 8 4 12
PG Flts 0 -- -- 718 i1 597 781 20 858
1,040,000 CLK Time .52 -- 6.76 6.0 .54 3.08 13.36 .52 5.32
CPU Time .02 -- .59 2.713 .18 1.32 1.75 .13 1.7
Dir 1/0 0 -- - 38 22 21 28 5 79
PG FLTS 0 -- -- 729 11 631 115 25 879

* ORACLE Version 2.2 Used To Produce Results

G-1

BENCHMARKING OPERATION RESULTS #2
ORACLE SEEN RIM
DATA BASE SIZE MEASUREMENT HLl ORAAAA UFl ORAAAA HLI HARVEST HLI TERM. INTER
(Records or Rows)

52,000 Clock Time (SEC) 103.4 (108.43)* -- 109.03 108.0 106.33 140.16 29.37° 36.52
CPU Time (SEC) .04 [.04 -- .58 55.78 31.86 52.67 18.06 21.62

Direct 1/0 3 (3 -~ -- 2684 3120 3126 318 397

Page Faults 0 (1 y - -~ 716 1513 3391 69 952
99,000 ClK Time 209.93* -- 1 214.88* 214,88+ 216.67 283.14 57.84 53.81
CPU Time .03 -- .67 101.51 60.42 99,20 34.69 36.96

DIR 1/0 6 -- -- 5451 5893 5899 601 680

PG FLTS 1 -- -- 676 1592 6621 134 1534
189,000 CLX Time 422,92* -- | 283.04* 283.04* 295.48 439.64 92.05 101.64
CPU Time .03 -- .63 191.20 102.15 232.59 63.51 68,55

Dir 1/0 14 -- -- 10256 8959 8965 1134 1213

PG. Flts 1 -- -- 689 3574 9222 117 2244
439,000 CiK Time 892.38 -- | 902.87 902.0 660.78 1009.43 214.04 223.77
CPU Time .04 -- .65 452.92 228.12 531.62 149.01 160.10

Dir 1/0 29 -- -- 23245 18865 18871 2661 2729

PG Flts 0 -- -- 117 6564 1712 142 6106
1,040,000 CLK Time 2132.78 -- |2141.38 2140.0 1413.04 2236.61 546.22 560.18
CPU Time .08 -- ot 1065.48 510.02 1254.39 350.35 375.01

Dir 1/0 71 -- -- 55477 40178 40183 6297 6371

PG FLTS 0 -- -- 129 13468 33628 119 17036

* ORACLE Version 2.2 Used To Produce Results

9-1

BENCHMARKING OPERATION RESULTS #3

ORACLE SEED RIM
DATA BASE SIZE HEASUREMENT HL1 ORAAAA UFl ORAAAA HLI GARDEN HARVEST HLI TERM. INTER
(Records or Rows)
52,000 Clock Time (SEC) 1.15(1.24)* -- 8.34 1 .32 3.10 3.64 .58 7.68
CPU Time (SEC) A7 .12 -- .83 2.94 .16 1.67 1.88 .26 3.29
Direct 1/0 o6 (o - -- 39 4 8 8 10 85
Page Faults 6 (2) -- -- 119 64 649 883 31 889
99,000 CLK Time 1.15* -- 11.51* 11.51* .22 2.90 3.24 .52 3.83
CPU Time 12 -- 3.21 3.02 .14 1.55 1.92 .24 1.93
DIR 1/0 0 -~ -~ 42 3 7 7 8 85
PG FLTS 1 -- -- 671 63 600 892 30 872
189,000 CLK Time 1.36% -- 11.84+ 11.84* 31 2.90 2.96 .49 4.35
CPU Time .19 -- 3.61 3.05 .19 1.61 1.86 .28 1.89
Dir 1/0 0 -- -- 36 5 0 10 9 85
PG. Fits 1 -- - 689 64 642 870 32 877
439,000 CLK Time 1.08 - 8.46 1.0 .33 3.19 3.713 .45 5.98
CPU Time .19 -- .83 3.09 .19 1.70 1.99 .24 2.86
Dir 1/0 0 - - 39 5 10 10 9 14
PG Flts 0 - -~ -- 719 63 650 854 30 842
1,040,000 CLK Time 1.33 -- 8.53 1.0 .74 3.50 3.88 .13 5.45
CPU Time .16 -- .19 3.19 .33 1.85 2.09 .26 1.87
Dir 1/0 0 -- -- 40 24 28 28 9 82
PG FLTS 0 - -- 728 64 . 587 886 23 878

* ORACLE Version 2.2 Used To Produce Results

L-1

BENCHMARKING OPERATION RESULTS #4

ORACLE SEED RIH
DATA BASE S12¢ MEASUREMENT HLI ORAAAA UF1 ORAAAA HLI HARVEST HLI TERM. INTER
(Records or Rows)

52,000 Clock Time (SEC) 680.49(926.27)* -- 694.14 693 249.09 548.94 67.83 78.51
CPU Time (SEC) .06 .12 -- .60 598.6 136.74 399.35 53.36 57.75

Direct /0 22 0 - - 1,568 3,492 3,498 319 397

Page Faults o (2 - -- 716 3,191 9,794 221 1,635
99,000 CLK Time 1,89]1.96* - 1,851.21* 1,851.21* 521.23 1,107.78 114.32 124,72
CPU Time .08 -- 1.58 1,413.77 259.87 778.39 96,62 101.68

DIR 1/0 59 -- -- 15,659 7005 7,011 603 681

PG FLTS 13 -- -- 679 4,885 17,423 356 2,182
189,000 CLK Time 4,048.75* -- 3,366.34* 3,366.34* 754.14 2,971.15 221.88 140.22
CPU Time .38 - .70 2,427.02 483.47 2,507.12 172.69 100.95

pir 1/0 123 -- -~ 29,251 10,845 10,850 1,134 1,213

PG. Flts 9 - - 285 8,786 44,545 3,059 965
439,000 CLK Time 5,667.79 - 5,610.83 5,609.0 1,754.56 7,476.69 451.61 326.28
CPU Time .06 -- .63 4,906.57 1,142.36 5,836.77 356.57 235.84

Dir 1/0 188 -- -- 12,903 22,826 22,832 2,661 2,129

PG Flts 0 - -- 715 19,686 92,461 71,349 1,045
1,040,000 CLK Time 13,350.21 -- OMITTED 3,811.96 15,703.78 1,000,81 167.88
CPU Time .15 - 2,603,.52 13,427.67 835.23 557.03

Dir 1/0 444 -- 48,258 48,263 6,297 6,371

PG FLTS 0 - 42,314 221,350 18,357 1,072

* ORACLE Version 2.2 Used To Produce Results

8-1

BENCHMARKING OPERATION RESULTS ¥5A

ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLT ORAAAA UF1 ORAAAA HLI HARVEST HLI TERM. INTER
(Records or Raws)

52,000 Clock Time (SEC) J39(.57)* - 6.66 5.0 12 3.50 .27 7.41
CPU Time (SEC) .02(.04 -- .66 2.47 .04 1.76 .11 3.10

Direct 1/0 o (o -- - 36 2 8 4 83

Page Faults 0o 1) - -- 117 28 924 12 864
99,000 CLK Time 13 -- 12.66 * 12.66* .15 3.26 .35 4.34
CPU Time .04 -- .62 2.13 .04 1.67 .19 1.86

DIR 1/0 0 - -- 53 3 9 6 86

PG FLTS 0 - .- 690 30 845 13 B66
189,000 CLK Time 8% -- 7.12% 7.12+ .18 4.47 .63 2.79
CPU Time .06 -- .61 1.91 .03 2.81 .31 1.53

Dir 1/0 0 -- -- 22 8 88 4 10

VPG. Flts 0 -- -- 592 15 867 2 758
439,000 CLK Time .92 -- 1.39 6.0 .50 4.06 1.87 7.11
CPU Time .04 -- .57 2.13 10 1.73 .82 3.13

Dir 1/0 0 -- -- 46 11 17 20 89

PG Flts 0 -—- -- 716 33 184 21 854
1,040,000 CLK Time 1.79 -- 8.51 1.0 1.24 4.57 6.96 11.05
CPU Time .05 -- .58 3.19 .25 2.10 2.56 3.41

Dir 1/0 0 - - 65 30 35 58 133

PG FLTS 0 - -- 727 33 168 41 878

* ORACLE Version 2.2 Used To Produce Results

6-1

BENCHMARKING OPERATEON RESULTS #50

ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLL ORAAAA UF1 ORAAAA HLI HARVEST HLI TERM. INTER
(Records or Rows)

52,000 Clock Time (SEC) .A6(.51)* - 6.71 6.0 .23 3.52 .25 7.25
CPU Time (SEC) 06(.02 -- .60 2.1 .07 1.1 .09 3.07

Direct 1/0 0 n - -- 36 3 9 4 83

Page Faults 0 0 - -- 119 51 881 16 872
99,000 CLK Time .63* - 7.50* 7.50* X1 3.52 .39 4.00
CPU Time .04 - 58 2.52 .07 1.77 .26 2.94

DIR 1/0 0 -- -- 39 6 9 6 86

PG FLTS 0 - - 677 25 881 18 905
189,000 CLK Time .63* - 71.30* 7.30* .43 2.89 .76 5.89
CPU Time .06 -- .58 2.78 .11 1.57 .45 2.09

Dir 1/0 0 - -- 33 8 9 11 91

PG. Flts 0 -- - 690 51 764 26 850
439,000 CLK Time .66 -- 6.65 6.0 .92 3.05 2.33 8.17
CPU Time .08 -— 62 2.66 .22 1.58 1.12 3.61

Dir 1/0 0 -- -- 36 20 9 29 98

PG Flts 0 - -- 119 51 764 41 854
1,040,000 CLK Time J1 -- 1.60 6.0 4.00 3.31 12.27 21.01
CPU Time .03 - .68 2.86 .55 1.67 3.63 5.24

Dir 1/0 0 - - 40 58 16 114 190

PG FLTS 0 - - 728 51 734 46 879

* ORACLE Version 2.2 llsed To Produce Results

OL-1

BENCHHARKING OPERATION RESULTS #5C

* ORACLE Version 2.2 Used To Produce Results

ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLI ORAAAA UF1 ORAAAA HLI HARVEST HLI TERM. INTER
(Records or Rows)

50,000 Clock Time (SEC) JS1(.30 -- 6.57 5.0 .20 - .28 7.50
CPU Time (SEC) .04} .04 -- 56 2.67 .06 -- .11 3.06

Direct 1/0 0o (o -- - 36 3 --) 81

Page Faults o (o - -- 718 5] -- 18 678
99,000 CLK Time .34+ -- 7.35% 7.35% .25 3.15 .31 3.93
CPU Time .08 -- .63 2.12 1 1.83 .17 1.31

DIR I/0 0 -- -- 52] 10 6 86

PG FLTS 0 - - 688 125 1,119 22 866
189,000 CLK Time .52% -- 6.25% 6.25* .37 .37 .55 4.61
CPU Time .03 - .58 2.01 .12 2.02 .34 1.77

Dir 1/0 0 - -- 22 6 12 8 88

PG. Flts 0 - -- 578 125 1,262 37 861
439,000 CLK Time 1.00 -- 7.34 6.0 .69 4,16 2.33 1.97
CPU Time .04 -- .60 2.93 .23 2.21 1.09 3.48

Dir 1/0 0 -- -- 46 13 19 28 97

PG Flts 0 -- - 18 125 1,381 42 874
1,040,000 CLK Time 1.86 -- 8.41 7.0 1.66 8.22 8.38 13.40
CPU Time .08 -- .65 3.36 .56 .24 2.92 4.86

Dir 1/0 0 -- - 65 34 39 39 166

PG FLTS 0 . -- 728 200 1,703 1,703 880

Li-1

BENCHMARKING OPERATION RESHLTS J6A

"ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT net ORAAAA UFL ORAAAA BLOOM HL1 TERM. INTER
(Records or Rows)
52,000 Clock Time (SEC) 81.08 -- 181.17 180.0 1774.03 56.14 78.80
CPU Time (SEC) 16.15 - 33.76 54.38 1540.28 37.28 56.41
Direct 1/0 0 -- -- 435 5,627 721 892
Page Faults 0 -- -- 719 35,356 54 1,031

¢L-1

BENCHMARKING OPERATION RESULTS #68

ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLT DRAAAA UF1 ORAAAA BLOOM HLI TERM. INTER
(Records or Rows)
52,000 Clock Time (SEC) 93.11 -- 287.99 287.0 1732.63 64.96 85.66
CPU Time (SEC) 16.20 -- 34.39 124.83 1549.81 46.53 66.07
Direct 1/0 0 -- -- 1688 5,631 780 949
Page Faults 0 -- -- 724 38,487 593 1,511

El-1

BENCHHARKING OPERATION RESULTS #7A

ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLI ORAAAA UfFl1 ORAAAA MLl GARNFN HLI TERM. INTER
(Records or Rows)

52,000 Clock Time (SEC)|| .93(1.47)* -- 7.30 6.0 1.09 3.18 15.59 --
CPU Time (SEC) .02(.04; -- 64 2.481 .20 1.62 1.82 --

Direct 1/0 0 (0 -- -- 49 21 17 549 --

Page Faults o (19 -- -- 718 75 1,091 58 --

99,000 CLK Time 1.14* - 8.28* 8.28% 1.13 3.74 .43 --
CPU Time .02 -- .57 .45 .18 1.48 .21 --

DIR 1/0 0 - -- 3 21 21 12 --

PG FLIS 0 - -- 417 13 790 24 --

189,000 CLK Time 1.31* -- 8.57+* 8.57* .84 3.03 .53 -
CPU Time .03 -- 1.45 2.48 .19 1.48 .24 --

Dir 1/0 0 - -- 29 21 18 13 -

PG. Flts 0 -- -- 685 713 159 27 --

439,000 CLK Time 1.97 -- 11.34 9.0 .88 3.30 .81 -
CPU Time .03 -- .56 3.02 17 1.53 .28 --

Dir 1/0 0 -- -- 48 22 23 22 --

PG Fits 0 -- -- 19 73 788 26 -

1,040,000 CLK Time 1.33 -- 1.97 6.0 .89 6.53 3.8 --
CPU Time 0 - 51 2.97 .21 2.68 .6 --

Dir 1/0 0 - -- 50 25 153 52 --

PG FLTS 1] -- - 728 70 823 26 --

ORACLE Version 2.2 Used To Produce Results

vi-1

BENCHMARKIENG OPERATION RESULTS #7R
ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLI ORAAAA UFl ORAAAA HLI GARDEN HLI TERM. INTER

(Records or Rows) ‘
52,000 Clock Time (SEC) .79(.62)* -- 6.96 6.0 .19 1.36 - 7.29
CPU Time (SEC) .02{0 -- .58 2.68 0 1.21 - 3.10

Direct 170 0 0 -- -- 46 4 9 - 91

Page Faults 0 (1] -- -- 11 47 595 -- 909
99,000 CLK Time .31 -- 8.43+ 8.13* .18 2.19 -- 3.70
CPU Time 0 -- 58 .82 .04 1.13 -- 1.78

DIR 1/0 0 -- -- 9 4 9 -- 90

PG FLTS 0 -- -- 163 4] 595 - 902
189,000 CLK Time .33+ -- 7.59* 7.59* .16 2.24 -- 6.13
CPU Time .01 -- .53 .60 07 1.13 - 1.87

0ir 1/0 0 -- -- 9 4 9 .- 30

PG. Flts 0 -- -- 450 47 591 - 873
439,000 CLK Time 1.31 -- 7.23 6.0 .13 2.29 -- 6.01
CPU Time .03 -~ .55 2.64 .02 1.12 - 2.60

Dir 1/0 0 - -- 46 4 9 -- 79

PG Flts 0 -- -- 715 12 122 - 858
1,040,000 CLK Time 1.03 -- 7.49 6.0 .24 3.55 -- 5.58
CPU Time .02 -- .53 2.74 .09 1.32 -- 1.74

Dir 1/0 0 -- - 47 6 34 -- 86

PG FLTS 0 -- -- 126 47 679 - 906

ORACLE Version 2.2 Used To Produce Results

SL-1

BENCHMARKING OPERATION RESULTS #8A

NRACLE SEED RIM
DATA BASE SIZE MEASUREMENT HL1 ORAAAA UFI ORAAAA HLI GARDEN HLI TERM, INTER
(Records or Rows)

52,000 Clack Time (SEC) .85(.71)* -~ 10.72 8.0 1.4 4.33 .22 --
CPU Time (SEC) L01(.0 -- .63 2.9 .09 1.39 10 --

Direct 1/0 0 0 -- - 39 2 10 4 -

Page Faults o (0) -- - 718 67 672 14 --

99,000 CLK Time .69+ - 7.91* 7.91* .16 2.44 .19 --
CPU Time 0 -- .52 2.69 .07 1.32 L1 --

DIR 1/0 0 -- -- 39 2 8 4 --

PG FLTS 0 -- - 677 67 612 14 -

189,000 CLK Time .83* -- 7.97* 7.97* .11 2.46 .28 --
CPU Time .02 -- .63 7.48 .06 1.35 10 -

Dir 170 0 -- -- 29 2 9 4 --

PG. Flts 0 -- - 685 67 129 15 --

439,000 CLK Time .82 -- 1.27 6.0 .14 2.61 .22 --
CPU Time .02 -- .53 2.93 .09 1.32 .12 -

Dir 1/0 0 -- -- 39 2 9 4 --

PG Fits 0 - -- 719 67 608 15 --

1,040,000 . CLK Time .99 -- 1.3 6.0 2.08 3.70 .49 --
CPU Time 02 -- .56 3.03 .92 1.53 .14 -

pir 1/0 0 -- - 12 108 31 5 -

PG FLTS 0 -- -- 129 617 656 15 --

* ORACLE Version 2.2 Used To Produce Results

91-1

BENCHMARK ING OPERATION RESULTS #8R

ORACLE SEED RIM
DATA BASE SIZE MEASUREMENT HLI ORAAAA UF1 ORAAAA HL1 GARDEN HL1 TERM. INTER
(Records or Rows)

52,000 Clock Time (SEC) .59(.26)* -- 6.98 6.0 .16 2.76 - 8.06
CPU Time (SEC) L02(.02 -- 60 2.75 .06 1.17 -- .17

Direct 1/0 {0 -- -- 38 2 8 -- 84

Page Faults (o) -- -- 711 61 622 - 880
99,000 CLK Time - .26* -- 7.40* 1.40% .13 2.53 - 3.67
CPU Time .01 -- .58 .34 .07 1.18 - 1.71

PIR 1/0 -- -- 3 2 8 - 84

PG FLYS -- -- 282 61 580 - /72
189,000 CLK Time .44 - 7.68% 7.68* 10 2.39 -- 3.95
CPU Time .0l -- 53 1.41 .05 1.13 -- 1.75

Dir 1/0 -- -- 12 2 7 - 84

PG. Flts -- -- 546 61 593 -- 866
439,000 CLK Time .63 -- 1.11 6.0 .14 2.25 - 5.74
CPU Time .01 -- .54 2.61 .08 1.14 -- 2.40

Dir 1/0 -- -- 38 2 7 -- 13

PG Flts -- -- 715 61 581 - 861
1,040,000 CLK Time .58 -- 6.91 6.0 .16 3.49 - 5.35
CPU Time .02 -~ .58 2.75 .08 1.33 -- 1.67

Dir 1/0 -- -- 39 3 30 -- 80

PG FLTS -- -- 729 61 617 - 866

ORACLE Version 2.2 Used To Produce Results

L1-1

BENCHMARKING OPERATION RESULTS

#9

ORACLE SEED RIH
DATA BASE SIZE MEASUREMENT UF1 ORARAA GARDEN HARVEST TERM. INTER
(Records or Rows)
52,000 Clock Time (SEC) 6.29(6.50)* 5.0 (6.6) 2.18 2.44 --
CPU Time (SEC) 51(.49 2.21(2.13) 1.00 1.26 --
Direct 1/0 -- 0 (28) 5 5 --
Page Faults _— 703 (660) 445 464 -
99,000 CLK Time 6.83* - 2.06 2.28 3.55
CPU Time .51 -- .91 1.24 1.64
DIR 1/0 -- -- 5 5 78
PG FLTS -- -- 442 430 838
189,000 CLK Time 6.91* 6.91* 2.10 2.23 3.37
CPU Time .56 -2.08 92 1.17 1.50
Dir 1/0 -- 22 5 5 18
PG. Flts -- 634 403 426 846
439,000 CLK Time 6.24 5.0 2.07 5.08 5.42
CPU Time .50 2.28 .93 1.64 2.37
Dir 1/0 -- 30 5 5 66
PG Flts -- 104 403 539 834
1,040,000 CLK Time 6.29 5.0 2.39 2.41 4,5]
CPU Time .49 2.51 .99 1.26 1.49
Dir 1/0 -- 30 5 5 13
PG FLTS -- 125 445 475 846

* ORACLE Version 2.2 Used To Produce Results

8l-1

BENCHMARKING OPERATION RESULTS §9

ORACLE SEED RIH
DATA BASE SI12E MEASUREMENT UF] ORAAAA GARDEN HARVEST TERM. INTER
(Records or Rows)
52,000 Clock Time (SEC) 6.29(6.50)* 5.0 6.6)* 2.18 2.44¢ --
CPU Time (SEC) S1{ .49 2.21{ 2.13 1.00 1.26 --
Direct 1/0 -- 30 28 5 S --
Page Faults -- 103 660 445 464 -
99,000 CLK Time 6.83* - 2.06 2.28 3.55
CPU Time .51 -- .91 1.24 1.64
DIR 1/0 -- -- 5 5 78
PG FLTS -- -- 442 430 830
189,000 CLK Time 6.91* 6.91* 2.10 2.23 3.37
CPU Time .56 2.08 92 1.17 1.50
Dir 1/0 -- 22 5 5 18
PG. FYts -- 634 403 426 846
439,000 CIK Jime 6.24 5.0 2.07 5.08 5.42
CPU Time .50 2.28 .93 1.64 2.37
0ir 1/0 -- 30 5 5 66
PG Flts -- 704 103 539 834
1,040,000 CLK Time 6.29 5.0 2.39 2.41 4.51
CPU Time .49 2.51 .99 1.26 1.49
Dir 1/0 -- 30 5 5 13
PG FLYS -- 725 445 475 Ba6

* ORACLE Version 2.2 Used To Produce Results

APPENDIX I
PART C
GRAPHS OF HLI BENCHMARK RESPONSE TIMES

I-19

INDEX FIELD ACCESS OF PROFILE DATA (#1)

T T
L PSS P PTE SRS St peite cbtun wetett bl gubpel Seiiatgupg §ubduin] (iepmial hubipeid pudie

— T

DB SIZE
1000'S OF CDAS RECORDS

T H

WALL CLOCK RESPONSE TIME (SECONDS) :

NON-INDEX FIELD ACCESS OF PROFILE DATA (#2)

g wwug I SRS G T g {nagme
fing Sunielet gl O S S Sy iy it
3! = Y SRS gutuiy P8 Smes) St sapiiet s g S Sh A4
t— T T T T
" X
A1 + T X
v \C 1T —r
X X : \
X X T T
h v X aensans T —— T T
AR Nt TT T
: T X T T T " T Tt
X -
L
X, T T T ry :
X T T T Y :
X, X T
X X
X X \ v
X T L Vo T T At
= T T T —iT T T :
X + + T +
X X
X
I v T T
T T T T T
X T A ymas = + :
X X T
X
T X R
n Las set X T " T o
¥ e T X s s s .
1 X X
: T Y -
X s * T :
. v =Y tr T M-
X X |asse eDans ! . .
X - ?
T peven
t X Inen 1 THTY T e
= b us X Tt ‘ T T X 1
- T X; T T t " S By i
\ X
T T T ! Lt o s 1 T 10t TIu S S —_
Ty reus ne sy usan! T T T Shaiy
TIeNT) SUNG EANSE RS SR REE LS o) Ty o ey
Yo me X T =
! . % + T
T T X X T =
\¢ 18 A v T+ T+ s AT .
T X
X ry =
T L s T
it T T 1
T T 2 s Ia 1
X X
X X T ¥ =
= T X X i, T T I
SO S — oy s T X hvpraadi s vy s [pus s ! 1 pEey! u
N a 1 :
X T — s T
1 T T) Suton npinbad § Wity —- =
T T) F
: T
by gur) gurert
I
T T
1
I=—+
e
;i
t
T
t
T
1
T
"
+ +
—
T

WALL CLOCK RESPONSE TIME (SECONDS)

I-21

T t T
— = o st Salod el Sialel taprigs Bt Suroiis CEfiod TRl] capet Sxkts Sobis SITe) SEbAl SEETY Sy LISty EEETtEEN
.OI.T.I| -

. T

) 4
\;
=
t
L
— E
t
o %
S Chead == 5
T
 :
t
t
— 1
= fr— o8
k
T
™ 1
T T
T 1
—
Som— : : p
t = =i
1
—
1 3}
; b
¥
L 1
gy T Am
T —F
T Mt ol Gubing
e
t
T
L
o e o m—— e i §
:
t
3
T T Y
a—
T
I] 4
e | §
T
.t
1
3
3
b I —
d H
= | imapte
+ 1
[Sy P e T -
~t: o e =
: = 7
T = 7
7
P " . H -
I —
: t)
: ! *
Y I t
== = ? He—
¢
T — T
T —F t X
=] T X
-
— t
I — k4
1 1 T)
1 + + . |
———
T T /
T — +
1 . !
T > T
pa B— T ¥
1 T 1 i
—
—
="
’a
— s
t T £
; + 4
: t — T 7
L —L — o
7
— >
b—— ——)
f
——
7

NON-INDEX FIELD ACCESS OF ENTRY LEVEL DATA (#4)

e H I I aeliiing pubuid purd e

T
1
=TT

[SPPS S9pg phgud sunteiel papauen

i

; 08 SIZE .
1000'S OF CDAS RECORDS

B
b
L
Bes

»
240

1§

Zab

‘__f‘
.

AT

L4

|

1T

4+

LT
i
i

i

g el

T
|
1

T
I
)

I

I

I

L

T

b1

i

WALL CLOCK RESPONSE TIME (SECONDS

]
1
i
'

Higte
Ith I

COMPLEX SEARCH CRITERIA (CONTROL #5A)

i.ﬂ‘l-!m“nl
r ,.f. T STUIpLITT Tt PG Surih PEne St SOuSS Sy DTILeITIT
st
o [Dp— popa = == CITLITT
= " = T
X X X - me
\ e PAN e
X, X a
au o -
— ; : 3 S |=
X o 1 X [=2 e
Y = \ po=my Y w -
p— X R AR fhe = h o @ Pt it
Jorgue) S Sy : Pl X sp==x Y w it
X- Y ~NW
Y X j i o —
. - wao
B : (=3
g e = o =
< L} oW
] . s 1 o
= = X
L X %)
= = % X g
e — Sy T . L3 S gl
X 1 1 Ly (=]
X P X -
| T 2 X -
¥ : ' ¢
X a1 T
gy A" T
X
T X[T
N
Bemiad oy T
% T
A
ey wui e 2 ¥ Bas T
-
s
X
b— N,
P X
s it hia) - i
1 A
1
T X
T n X
PP SO Ppge fipseny bivgu =

) Sy S
_— Sp——
Pusinhal
e
e
e
—
g 1
-l T

== [
el St et ok ¥
t I
oI o
T
Sty t
—
:
:
T
+ H 1
: :
:

T

WALL CLOCK RESPONSE TIME (SECONDS) i;

12,27

COMPLEX SEARCH CRITERIA (COMPOUND INDEX FIELD #5B)

e QuuTPESTTY Spr SR SO s et

== = e e e

T -

7

S
A

1000*S OF CDAS RECORDS

A

|

'
JRARERE RS

DB SIZE

S OF CDAS RECORDS

1000'

INCREMENTAL ADDITION OF A PROFILE

il B PRSES bess e ko et Gt i H : Bt stsed Is)
jopresuiguinindl st 12 o NS S s Loojiiinninh .
— : : _ : E—
¥ T 1 T H r
———f— e — T Iy by S — PSS —
1 1
x - .
-
T : b e
Py T T ¥ (=1 T
T 5 & o ————
t QLo
T t] e
o
= F —] g ol i) [eriid Eott] CRt] oy w :
= T X t b it it 4 Ny
T 7 —
A " ¢ L N=]
himaed i b ot 4 o
e I @
Sy £ [=Y™
- =3
[
< T P
{ o
X = = o
=3
= —
SE—
b
T
1
t
e
T
i
S
o
] s f 1
Fhptg iy fuwg sus
T
mae——e— S T
Sn——y "
—
g t
b
T
— pe :
jniine e Gunapiiy Suineied g s T
T

Il _‘
piayy Sy nigary P S

H4H HH

b MMM Pt iy ety

I

A

T M
H 14

15,59
]

thi
fot

i

WALL CLOCK RESPONSE TIME (SECONDS)
A

DELETION OF A PROFILE RECORD (#7B)

man: — T
. pges F IT -+ -t
T 1 T T
T T T 1T . T —
T T T o anss HH
t
e ¢ - v
T T T T T 1 —
T : T T : : r =]
= _ T T e -8
aasa: T T T : ; T H1 + T]
T T : - . T T i - * " =
T 7 H T =4
: T T P e
: i R o T H :) a
T 1T 1 LN RSw T T T T 1T) 4 | TNV LRy saasa
- + Tt T 1 + Y 1 Lo g |z
T+ : o wva
s T 1T T T T T T t + T T T T Byt sy
— = i - . - =
T T T T T T - T : Jwan: L a0a DRSS AN R, T - -} it asnae
T insng T T T N T T T T ¥ —— F=1™N -
= o
: T ; T H ssaaaa; T jassas i ™ T
T T A T T T T T T Tt 1 o - v
= s He T t 1 -
- ; ime v = o
—— t * t T T T Aoaun tamua: 1 =
T T T T It T 1 : =1
e ey : Tt ass T 1 T THT t = S
T > T e T e - - -
o Panasmanw T T t T T :
T ? T jaaan T H T YT i mrna s nang pawas snaid 6 SR
a— \mssanasamenssa: t t T T s nassusEn ; o e =4
. T o T T
: T !
+ T s T T
T t T T T T T
T T e amas T I ast T bt o ae HH =
- T T
T 1 T + j T e T T 1 A —
t T + TT e ; ; jeasas: T ey Hrr
T T I T + T 1 T
: T : :
: T t T T aesa: T t T
T T ¥ T T T T T ¥ —F
= : jou sun T t Tt t T T
T an aaa: T H T T T
> T
T T t an amamaan: jou et t :
T T joa vannasa: 1 b + ; Thrt n
Ana sumadon; HH f = t
sma: - " T T
T T vat
T ' T ; T an: f s et
T H - I T e + R AL
T I T T T ud) & e x
= T f t M
T ASHAnA e o T T 1 T T3 T T T T 1T T 1 T L
T 1 1 b — 1N e T L |
T tr 1 * T
e I
7 T
T T T T imaat T o
— == T T =t + T e measmamsmaswimmsssess: ;
s T T T ™+ : jameananss n T
e t
: t ; T T
T ans T T T anat T T
1 T : :
b t =
== T % T
: : : T —
T o T ™ +
- 7 : T
e e T T 1
T : aamn
T t T T
+ it
T t T
T o T
T pat ke
— - Y
n
= =
-
T 1t
}
: T nai
— t
= T T = T
: H T i =evun: T Q
T == t aae: T ou: T
as Y
:
T Jm e mmas sras =
T e T T »_H 1 H_‘ AH e ‘.
T
Tt T T Y =
I 18 1 = i 1
T T Joan: .y 1
= 7 . %
; T
- r —L
= t T =
T t T e
— - e
T
Tt T e — I
NS
A
T T = ; t
T 1
; T T ~
=
T : T
T = N T
o
o
"N e Sampum—
1 —
T r? N
X
T AT
— <
—
N\
- et X
= o
%
— \:
\:
N
T TN
Nin
t oy -
= : ~] s s SR .:
I T T - Lopl (=
; ~r T
T -t
T T T T
- t — FE———
T T - Feememssanese:
1 T IS DSBS I i1 1) A b hutd
- L I a8 o
T T -~ Py ot bt
T — T T ;
T
pump + iz — :
T .
T ~
) ~
— a T — " = —
= = -t : s e e
— 8]) R R, ey
A —— _— T
Y] T T AT 1
= ©» 2! W = A =
-2 : Tlaa— 7
amed t 3o g
—
T py 4 T
= = I 1 y'a
— —
- = 7
F—: == T = :
=W = 7 e 1
= 2 Z i grew—— ¥
: — o ~To oS
T = AT =T ety Sumvwe sumel
= & 7]
— 5 T 4y ~ L
= e Q ==
F— =3 r= o T ~ 2w
e :
> . - TN
et W] T
F— o + > .
= T
—s @ T 1
e !
. 3)
o F T p— T
L= t T . —==
< T —— — T
PO T " . & 1
T T —
58 st 1 ; " ==
= — 1 — 3

1-28

INCREMENTAL ADDITION OF AN ENTRY LEVEL RECORD (#8A)

T R t—
gy pawd aamme has T gl patipatet st gt
T ety 7 + + et
-1 - T e o e e & T i :
Rasaes Eaasaresamney txna. e : AT e e sea st :]
iy t mas T T T T ; St T jhas papiagngy sl quma
T e T
x T ¢ — Py
= T T T et i sty

T T + H T x 1 I

— + 1T 1 T 1 T T

ama: o T T + : b Q

T n T T iy T T t 28 = T T) b
i nas A ¥ TIITT 1 T T 1= j=4
T T T T T THTT HIT T (=]
T b [re]
: T
T T T T T T T I 1§ 1 o
y T T : .“’~ T T T T n [39)
T + - e N
. T ~—t- et T L
T= t inaas THT T + 17 T T+ Tt ea a; T na
T L. IEanas T i LEAA | T — ENORA ¥ T T T T T T h S
T T \ et . : = T I+ 1 t HH T 1 (=) -
: : I -]
; , X (=™
T : t 1 T T T T 4 T
T T I e ' T s I 1TTT T Tt 15 & (=] T
ha T s : 1 T C T _H n T
! T t
> T T T T v o
- 1 T T FT 18 b
T T 1 T o
— T AL T T - 1 b T 4
T T e Y ' 4 w z
+ T T r Y Tt ; o =2 e
T K. 1 T T 1T 1 | T 1 T e
T a o8 8 in: 1 T T T
T T T t T
T T
T T T T
™ s e w2 e : T Tt 1 Tt -1 T
AW —_— b T 1 bl §
> 1
T
T T T in T T t T + T T fone: =t
T - T T L pull v T 1 I
— T T T T T DI T 1 : T T T
: T T X I t : 3 saswa s
T + + . L
o 1 Tire T nmay
—_— TTT L e 1 11 T =1
t = n T T T T T T
; T T e :
—, T T T T T A A BT
T t " T s anaay .Y amns T ana se s Bow;
o + saa; 3 TEIT T " 1T
T T T
T + T | 8 T . T
Tt t T T
T T oA 18 8n0e e man s n: T - T
I T - aas + T = i t
- T mna: T T
: + T T 1
T 16 - 1 T Ty I
Lt T T e S T ot : T T
S Tt :
T : T
T T 1 ; + T Jnans sanas v + T
-— e T4 T T L IS A0 N P T T T
poithy hamie - T + 1 T T iseasasa;
I e X
. T T
— T t —t a8 senuenm: 1 ;
_—— — —) 1T T T e 1 A
o T =t e e it ma 8 mawe '
T HH = t . { T
peiep— : + T 1«
TIrns T T 8 S t 1 8 Saa: r 1 _
—_— 1 1 T T X 1
T T s T t
yans S %
- T T
Julbiig b 1 I 1 T
t e RS aRa 81 oS on suns t X 1
T T tom at T t
T X :
o ¥
: o 1
v } ¥ =
: - T t ——
1 Y
h T Y t
: T T X, 1
: ¢
iy p—— 1 X 1
t
T t <
L= T T T
1 LT Y
nau: T T X
T T t
T T t
T " e t
7 t- .
T T T t It
T 7 t T T+ |
\na s
g
T T T T ¥
1 T T T L
T : . r {
+ s ; \
> " T N
T Pu " T + 1-
T jeud sasssse — | Y T
15
4
> > Ei=
: aua sma T = T
T T 1
b=t e
— I
TF T t 1
- + T
T .
” T T t e
T Tt T T
t : T
T
e inawt T T
ot Y) =
o T —r T |:
n = Y
t T 1 1
1 : T
'
T ; 1
; T
T T T T
T
T : e
t
jam
T
T T llA~ -
: T _ T
aa s H § Sk Pt
T T —r N
T T Y 11 -
I NS U + b 1 .
I T I A IS8 6 T T T b & bl
1 : e t —t t
; - T m
HH T n: T T 1
1 1 T - e Lk b A
1 1T T 1 T 1 -
T
— T T T
T iR aan; anssans: x
t T + 1
T T
- + T
T T
— T T 1 T :
= i ann T : 1
¥
— T : = :)
e~ I t s T
T - L =
) nn\u. - T T T X
p—- + T
eyt ﬂNv =)
— T T : ; -
poawyell o S
—— g 7
— o T T T
[~— su T -
— ot I
e T T T T 1 v
- -y e . T T T k\\
== =
—> w + T L
—". 2 >t
C— = o -

T T T
== o = 3 et =
—T a 1 - 7 Skl i gl =
rl'l.lll vy i 1. F

w T T A~ J— LS

—_— = + 4 -
S > y: . F ey
— KIS © SV VR oAl & 1A RO 4 S ivurum Shummindr SIS S S et S A S SH—, So——— S ri e
o T :
= O T Tt T T T
—
— O —
=
E—
= 2
A ey
e = T plpmeny

T T

1

b T :

= b

T ——

.

1-29

0e-1

[T T

WALL CLOCK RESPONSE TIME (SECONDS)

(g8#) QY0d3¥ 13A3T AYINI NV 40 NOIL3T3d

1 § 3 i 1 1
; i 1 § t 3 Hil HHH ;: H H H
3 . . : .
£ Hi) : I H
I H 8% it H HHH H it} it H
1 H H HH {1 i i §
83 tH T R R i HHHH T f H t
£ HinH : HI i HH
H HE {1 HTH HitHH H1l H HH HH
E § H it H HH
,.{. H o 11134 9 [L o)
o 8 H HHHH ¢ H
I 1 £ 1 B8t H
i il i it i i
i g 8 { L I R H
EE T r
B HiHH HHH H i
H H
Imba HH r111 I i 8
! H H T H H H
3“. : I ;
: i ARl R [i R L
3 H I HHR I i R H H
H HHR I T HH H i el tH i
fi fEsHa H T B H .
S e :~
it T it ettt il st
gh’ [i .Ekg Yep i i i Hut e E: HHIH st
1= S H HHHH HHH B H H
iR R I fiil | HiH g i
1233 Tt 1 - z a8 »
T i THINLL L e i] T i i
i BRI U T t M HHH H HHTHH S]
g Biles $11:4(; |1aEE1L HHEEH HHH H 353 Hr S
i i Wil i il i i :
an i R I B illé 4 LR MiHliH
g HIHH \11H H BN H H HIH 1
R i : il iRitlE): HHT [14

APPENDIX II
DATA BASE SPECIFICATIONS

¢-11

TABLE
ENTRY

PRESSURE_TYPE_LEGEND

PROFILE

QUALITY_FLAG_LEGEND

TAPE

coLumn

PROFILE CNT#
PRESSURE_TYPE
PRESSURE_LVL
TEMP

QC_FLAG

CODE
NESCRIPTION

PROFILE_CNT#
TAPE_ID™
P_TIME

LAT

LONG

CHAR
CONE
DESCRIPTION

TAPE_ID
SYN STIME
SYN_ETIME
GEN DATE

DATE TYPE LENGTH IMAGE
NUMBER 22 NON-UNIQUE
NUMBER 22

NUMBER 22

NUMBER 22

NUMBER 22

NUMBER 22 NON-UNIQUE
CHAR 50

NUMBER 22 UNIQUE
CHAR 6

CHAR 10 NON-UNIOUE
NUMBER 22 NON-UNIQUE
NUMBER 22 NON-UNIQUE
NUMBER 22 NON-UNIQUE
NUMBER 22

CHAR 50

CHAR 6 UNIQUE
CHAR 8

CHAR 8

CHAR 15

APPENDIX II
PART A

ORACLE TABLE AND ROW

SPECIFICATIONS

FOR BENCHMARK TESTING

NONULL

YES
YES
YES
YES
YES

YES
NO

YES
YES
YES
YES
YES

YES
NO
NO

YES
YES
YES
YES

SCHEMA NAME SATDB MAXIMUM OF 36 RECORDS PER PAGE.
AREA NAME SATDATA AREA SIZE IS 64007 PAGES.

PAGE SIZE IS 512 WORDS.

AREA NAME SATHEAD AREA SIZE IS 2161 PAGES.

PAGE SIZE IS 256 WORDS.

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

RECORD

NAME R1_SYN STIME
LOCATION MODE CALC
SYN_STIME

NAME R2_SYN ESTIME
LOCATION MODE CALC
SYN-ETIME

NAME R3_TAPEID

LOCATION MODE .CALC
TAPEID
GENDATE

NAME R4_DATATYPE
LOCATION MODE CALC
DATATYPE

NAME R7_LAT
LOCATION MODE CALC
LAT

NAME R8_LONG
LOCATION MODE CALC
LONG

NAME R10_PROFILE
LOCATION MODE CALC
P TIME

NAME R11_ENTRY

USING SYN_STIME WITHIN SATHEAD.
TYPE CHARACTER 8.

USING SYN ETIME WITHIN SATHEAD.
TYPE CHARACTER 8.

USING TAPEID WITHIN SATHEAD.
TYPE CHARACTER 6.
TYPE CHARACTER 6.

USING DATATYPE WITHIN SATHEAD.
TYPE CHARACTER 30.

USING LAT WITHIN SATHEAD.
TYPE INTEGER*4,

USING LONG WITHIN SATHEAD.
TYPE INTEGER*4,

USING P_TIME WITHIN SATDATA.
TYPE CHARACTER 10.

LOCATION MODE VIA S10 11 WITHIN SATDATA.

PRESSURE_TYPE
PRESSURE_LVL
TP

QCFLAG

TYPE INTEGER*2.
TYPE INTEGER*4.
TYPE INTEGER*2.
TYPE INTEGER*2.

APPENDIX 11
PART B
SEED SCHEMA
FOR BENCHMAR TESTING

(CONT'D)

RECORD NAME R100_QC DESCR
LOCATION MODE CALC USING QCFLAG CODE WITHIN SATHEAD.
QCFLAG CODE TYPE INTEGER*2.
QC_DESCR TYPE CHARACTER 60.

RECORD NAME R101 PRESSURE_TYPE CODE
LOCATION MODE CALC USING PRESSURE_TYPE_CODE WITHIN SATHEAD.
PRESSURE_TYPE_CODE TYPE INTEGER*2,
PRESSURE_DESCR TYPE CHARACTER 60.

SET NAME S1 3 MODE CHAIN ORDER NEXT
OWNER R2_SYN ESTIME
MEMBER R3_TAPEID LINKED TO OWNER
SET SELECTION CURRENT.

SET NAME S4 3 MODE CHAIN ORDER NEXT
OWNER R4 DATATYPE
MEMBER R3_TAPEID LINKED TO OWNER
SET SELECTION CURRENT.

SET NAME S3 10 MODE CHAIN ORDER NEXT
OWNER R3_TAPEID
MEMBER R10 PROFILE LINKED TO OWNER
SET SELECTION CURRENT.

SET NAME S7-10 MODE CHAIN ORDER NEXT
OWNER R7-LAT
MEMBER R10_PROFILE LINKED TO OWNER
SET SELECTION CURRENT.

SET NAME S10 11 MODE' CHAIN ORDER NEXT
OWNER R10 PROFILE
MEMBER RIT ENTRY
SET SELECTTON CURRENT.

APPENDIX III
COMMENTS OF STUDY BY DBMS ORIGINATORS

The following comments are responses by the originators of the DBMS's
under study concerning the material presented in this document. The
authors of this document do not confirm or refute the claims of the
originators of the DBMS products on the pages that follow. Futhermore the
authors wish to point out that any new statistics provided in this appendix
by product originators have not been substatiated by the study group.

I1I1-1

RS

Rejational Software Incorparated 3000 sand Hill Road, Menio Park, CA 9402S Teiex-171437 415/854-7350

October 28 1981

NASA Goddard Space Flight Center
ATTN: Ms. Beth Martin

Code 931

Bldg 28 Room W—-246

Greenbelt, MD 20771

Reference: NASA Study
"Database Management System Analysis and
Performance Testing with Respect to NASA Requirements®
Preliminary draft dated August 5, 1981.

Gentlemen,

Thank you for providing us the opportunity to review and comment on the referenced
report, which presents the results of tests conducted with the ORACLE relational
database management system as well as RIM and SEED. We were pleased to work closely
with NASA personnel during the test program that is described, and we find that in
general, the report is both balanced and technically correct.

Rather than comment at length, we have chosen to confine our response to two Key
aspects of the quantitative analysis section of the report, and one aspect of the
qualitative analysis section.

First, the series of tests reported exercised each of the systems only in single user
mode. We do not know why the tests were conducted in this fashion, since multi-user
operation is critically important to large-scale use of a database management system.
However, this mode of testing may have been selected because only CRACLE allows
multiple users to update the database concurrently; SEED and RIM are limited to a
single user for update. The tests discussed here did not utilize ORACLE's multiuser
capability. For example, ORACLE allows two serarate programs to concurrently load
data into the same table.

The second point we wish to emphasize is that the particular version of ORACLE tested
by NASA (i.e., Version 2.3) runs on the VAX 11/780 in PDP-ll compatibility mode;
both SEED and RIM run in VAX native mode. Version 3 of ORACLE, now in test at RSI
runs entirely in VAX native mode and is substantially faster than ORACLE version 2.3,
(Version 3 ORACLE is scheduled for release to beta test sites in December of 1981.)

RSI has recently completed performance testing on ORACLE version 3 on the VAX 11/780.
The following chart describes the performance of ORACLE version 1, (released in June
1979), version 2 (released in January 1980), and version 3 (scheduled for general
release in March of 1982).

continued

ORACLE PERFORMANCE
| VERSION 1 | VERSION 2 | VERSION 3 | VERSION 3
I | | | CLUSTERED

—— — — ———— —— —— — =]

|

|

SELECT | 1l0/sec | 50/sec | 100/sec | 175/sec |
- — o - —|

UPDATE | 4/sec | 15/sec | 25/sec | 40/sec |
- } - } |

| INSERT 3/sec | 8/sec | 22/sec | 50/sec |
| : —t— + -]
| DELETE | 2/sec | T/sec | 20/sec | 35/sec |

In addition to running in native mode, ORACLE version 3 includes among its -
enhancements a new physical storage optimization called ‘'clustering.' Clustering
allows data from separate tables to be stored in the same physical disk page or
block. The use of clustered storage is especially effective in optimizing the
performance of join, insert and delete operations.

It is interesting that even though ORACLE was running in compatibility mode and
without clustered storage, the NASA test demonstrated that version 2.3 CRACLE was
faster than on large databases, while SEED was faster on small databases. This
result is somewhat ironic, considering that "experts” have been claiming that
relational [BMS are not suitable for applications with large databases. We would be
very interested in the result of a repetition of the tests using ORACLE version 3.
We believe that version 3 will substantially outperform both SEED and RIM on large
and small databases.

The qualitative analysis section of the report outlines the advantages of ORACLE's
relational approach in the areas of ease of use and data independence compared with
SEED's network data model. Unfortunately, the qualitative analysis did not include
any ORACLE functions that SEED cannot also perform. That is, the test evaluated
functions provided by both ORACLE and SEED even though the report states that ORACLE
can perform many functions that either require large amounts of user programming or
are not available at all with SEED. We hope that the next phase of testing will not
be limited to that subset of functions of ORACLE that can also be performed by SEED.

Thank you again for your cooporation in letting us review the document before
release. We look forward to cooperating with NASA in future tests.

Yours truly,

I.al ence J. Ellison
P ident
Relational Software\Ihc.

LIE/cba
Refational Software (ncorporated 3000 Sand Hili Road, Menig Park, CA 94025 Telex-171437 415/854-7350

INTERNATIONAL DATA BASE SYSTEMS, INC.
2300 Wainut Street, Philadeiphia, PA 19103 (215) 568-2424
Suite 217

November 3, 1981

Ms. Beth Martin

NASA/Goddard Space FLight Center
Bldg. 26

Greenbelt, MD 20771

Dear Beth:

Attached is IDBS’ letter of comment on the preliminary draft benchmark
study —= it essentially provides information on software released since thias
summer that should have some bearing on SEED s usefulness for NASA s satellite
data cataloging requirements. Please feel free either to print the letter as a
seperate appendix or to imbed the information in the body of your report. If
further clarification is needed or the information might be more useful in
another format, please don’t hesitate to give me a call at (312) 787-6916.

IDBS would like to go on record as approving the direct comparison of
benchmark results for the three systems tested -= especially in the form of
single graphs showing performance curves for all three systems. In addition,
the Study carefully illustrates methodologies for determining data base file
size, shows pre-load predictions of file size for both documented systems, and
confirmed the high degree of accuracy of the predictive method. It might be of
interest to the readers of the study to directly compare the predicted sizes for
the 2 million CDAS record data base. The disk space requirements were: ORACLE
172 megabytes; SEED 40 megabytes. When very large data bases are anticipated,
a difference in 4disk storage requirements of greater than a factor of four might
have impact on the decision as to the appropriate means of implementation.

Attached are copies of IDBS’ newest descriptive information on the SEED
System, the C.0.0 release notes, and the most current VAX operating guide. I
look forward to both the publication of this study and the results of further
benchmarks by your group.

With best personal regards,

ynag
Evan A. Bauer

encls.
EAB:ds

INTERNATIONAL DATA BASE SYSTEMS, INC.
2300 Walinut Street, Philadeiphia, PA 19103 (215) 568-2424
Suite 217

November 3, 1981

Ms. Beth Martin

NASA/Goddard Space FLight Center
Bldg. 26

Greenbelt, MD 207TT1

Dear Ms. Martin:

International Data Base Systems, Inc. would like to thank the Information
Extraction Division, Goddard Space Flight Center and Business and Technological
Systems, Inc. for the careful job done in the study m"Data Base Management
System Analysis and Performance Testing with Respect to Wasa Requirements®. We
also welcome the opportunity to comment on the preliminary draft of the study.
In particular, we would like to point out the areas where the new C.0 Release of
the SEED Data Base Management System should make SEED more appropriate to the
requirements of the Packet Management System (PMS).

Load Rates

Pages 1-5 and 1-=6 in the Study compare the load rates of the three Data
Base Management Systems used in the Study. IDBS concurrs with the Study in that
the substantial degradaticn in load performance experienced is characteristic of
the "lumping® of data caused by a poor match between calc key profiles and the
hashing algorithm used to position the data in the data base. The cyelice change
in storage rates would seem to indicate that "multiple hits" were resulting in
long overflow chains that would consistently decrease performance until one of
the T"PROFILE"™ records was hashed to a page that was substantially empty. It
should also be noted that setting the maximum number of records per page in the
SATDATA area at 38 compounded the effect of the innapropriate hashing algorithm
by causing additional data overflow that resulted in additional I/0s and the
resultant increase in wall-clock time. IDBS provided the B.11.2 and 3.11.3 SEED
user with the option of writing up to nine additional hashing algorithms for the
efficient handling of data not asuited to the action of the SEED default
algorithm,

With SEED version B.11.9, and subsequent releases, IDBS is now distributing
several hashing algorithms, one of which is designed to randomly distribute
multi-word keys like the time-stamp used as the cale key in the M"PROFILE™
record. It is IDBS’ expectation that if the tests were repeated using this new
standard algoritam that the SEED load-rate curve would decline much less sharply
and show much less fluctuation.

We fear that the language in the second paragragh on page 4-2 mnay
mislead some readers. Although it is clear from both the first paragraph and
figure U-1 that at ome million records, SEED’s performance is approximately 25%
better than that of ORACLE, the second paragraph cculd mislead a reader into
believing that ORACLE’s performance in loading a database of 700,000 or more
records was Dbetter. Perhaps it would be less misleading to state that in the
700,000 to 1,000,000 record range, ORACLE’s marginal performance was better than
SEED.

HARVEST

Enhancements have besn made to the HARVEST Query Language since the B.11.3
version that was used for the Study. In response to the requirement to use an
escape sequence to abort an incomplete incorrect query, IDBS has now added the
ampersand (&) character to HARVEST as an abort character. The insertion of an
ampersand character at the end of a HARVEST command string aborts the command
and returns the user to the HARVEST "COMMAND" prompt level.

In addition, the query diagnestic capability of HARVEST has been
substantially enhanced to assist the user in identifying syntactical or logical
errors in his query and %o correct them without requiring the use of any
reference documentation.

HARVEST now has a sort capability equivalent to that in the 3LOOM Report
Writer that allows multiple ascending and descending sort keys to be specified
in a single query using a simple additiorn to the DISPLAY clause (SORTED on
(field-name) (ASCENDING/DESCENDING)). :

New Products

Descriptions of VISTA and RAINBOW new addition to IDBS® SEED System, might

be appropriate additions to section 3.7.2 (Complementary Software for SEED) of
the Study.

RAINBOW is an interactive graphic display facility designed to be used by
tachnical and non-technical users of SEED-amanaged data bases. It makes it easy
for users to obtain pie charts, bar graphs and line graphs in oultiple colors.
RAINBOW provides a high degree of automation, but at the same time, sufficient
flexibility for directing, wmodifyinz, and wmanipulating the presentation of
information. RAINBOW acts as graphic designer and graphic artist in response to
user queries. RAINBOW displays query output in a graphic format in black and
white or color in accordance with the user’s objectives.

RAINBCW is a modular addition to the HARVEST System. It provides the same
degree of default capability in its automatic graphic displays, as HARVEST
provides in its tabular displays. Use of the "DRAW"™ command invokes RAINBOW.
Input data is then intermally structured to relate to design attributes of
shape, color, and scale.

VISTA is a screen-oriented applications development system which permits a
user to create routines to accept, edit, retrieve, and process data. It is
device-independent, and will run on virtually any video terminal that supports a
minimal set of cursor movement functions. VISTA offers non-procedural screen
definition, full SEED Data Manipulation Language Capabilities, the capability to
perferm arithmetic calculations, and "if" testing on data that is entered,
generated, or retrieved. VISTA allows the user to take advantage of such
terminal features a3 reverse video, direct cursor addressing, and graphical
capabilities (where available) to produce Muser-friendly" screen formats.
Because VISTA i3 dictionary-driven, the user need not explicitly describe the
syntax of data base items. VISTA is fully integrated with SEED’s jourmaling
function, allowing screen controlled backout of erroneous transactions.

VISTA can be run as a stand-alone intarpretive processor or as a 3set of
subroutines callable from FORTRAN.

The C.0 version of SEED supports the use of "b-tree® managed pointer arrays
for accessing data. The pointer arrays can be used instead of linked lists to
implement sortad sets (changing performance charactaristics but not affecting
the users® view of the data base); or can maintain seperate indices to any
field in a record. A fleld can be indexed after the data base has been designed
and loaded. HARVEST s automatic navigation capabilities can make use of indices
and pointar array maintained sets. The users’ "relational™ or flat-file view of
the SEED data base need not be changad.

IDBS would again like to thamk all of the organizations involved 1in this
study and we look forward to both the publication of this study and the results
of further benchmarks by NASA/IED.

Sincerely yours,
‘.—-.,‘_~ ;\\
i - N

Rob Gerritsen

President

encls.
RG:ds

.

National Aeronautics and W /
Space Administration
Langiey Research Center

Hampton, Virginia
23665

NOV 2 1981

Aeoty to Am o MS246 (L -1155-REF)

Pl

T0: Goddard Space Flight Center
Attn: . 931/Regina Sylto, Informatijon Extraction Division

FROM: 246/1PAD Project Manager, IPQ, SODD

SUBJECT: Performance of Data Base Management Systems

Thank you very much for a copy of the draft report °Data Base Management
System Analysis and Performance Testing with Respect to NASA Requirements,"
forwarded with your letter of September 29, 1981.

The report contains a lot of data and its careful review will require more
time than your deadline of October 12 permits. Some initial comments
relative to RIM are as follows:

1. A RIM-5 is already operational and a copy is available from
COSMIC. Selected other enhancements are also being added consistent with
its basic capability and scope.

2. A multi-user version of RIM is currently operational; however, the
documentation has not yet caught up with the process.

3. RIM is being developed as part of a CAD R&D effort to develop technology
for management of engineering information, and we would recommend these words
be included in the front of the report. Its development and evaluation is an
ongoing part of the IPAD project. RIM currently runs on DEC, PRIME, CDC, IBM,
UNIVAC, and CRAY computers. While not production software, several organizations
now have production versions in aperation.

Thank you for your constructive comments on RIM. We will transmit a copy of
this draft report to the IPAD Program Office at The Boeing Company to guide
future RIM enhancements and to obtain any technical comments.

oy £ Dot

Robert E. Fulton

RELATIONAL INFORMATION MANAGEMENT (RIM)

¢ INITIALLY EXPERIMENTAL SOFTWARE
¢ IN-CORE CYBER VERSION 1978 o
® PAGING CYBER VERSION 1980

® VAX VERSION 1980
® MULTIHOST VERSION (C_DC ‘DEC, IBM, UNIVAC,PRIME)

eAVAILABLE OCT 1981

- «MAJOR ENHANCEMENTS -
«SCIENTIFIC DATA ATTRIBUTES
VARIABLE LENGTH ATTRIBUTES
*FORTRAN INTERFACE
*RIM TO RIM INTERFACE

PRODUCT AVAILABILITY

* PLANNING, REQUIREMENTS, PD DOCUMENTATION
¢ INTEGRATION PROTOTYPE |
* RIM (MULTIHOST VERSION)

e MONTHLY TECHNICAL PROGRESS NARRATIVE
e REQUEST FROM

D. E. TAYLOR |

IPAD PROGRAM SUPPORT MANAGER
MS 73-03

P.O. BOX 24346

SEATTLE, WA 98123

TELEPHONE (206) 237-2389

RIM-5 DEVELOPMENT STATUS

© CYBER NOS VERSION UNDER PROGRAM CONFIGURATION CONTROL

o CHECKED CODE
-« DOCUMENTATION
o INSTALLATION TESTS
o AVAILABLE FOR DISTRIBUTION

® CYBER NOS/BE VERSION

CONVERSION BY GENERAL DYNAMICS/CONVAIR
DOCUMENTATION

TRIAL INSTALLATION AT GENERAL DYNAMICS
AVAILABLE FOR DISTRIBUTION

® VAX VMS VERSION

o CONFIGURATION CONTROL
o AVAILABLE FOR DISTRIBUTION

10/81

10/81

8/81
10/81
10/81
11/81

10/81
10/81

RIM-5 DEVELOPMENT STATUS (CONTINUED)

® UNIVAC EXEC VERSION

« CONVERSION BY LOCKHEED, GEORGIA 8/81
« DOCUMENTATION R N 10/81
e TRIAL INSTALLATION AT LOCKHEED GEORGIA 11/81
o AVAILABLE FOR DISTRIBUTION 11/81

® PRIME PRIMOS VERSION

o CONVERSION BY NASA 9/81
e DOCUMENTATION - 11/81
o TRIAL INSTALLATION 11/81
e AVAILABLE FOR DISTRIBUTION 11/81

® IBM VERSION

o FORTRAN 66 VERSION AT BOEING (VM/CMS) 9/81

o FORTRAN 77 VERSION CONVERSION AT GENERAL DYNAMICS/CONVAIR IN PROGRESS
AND NORTHROP

o DISTRIBUTION - | ST UNDETERMINED

RIM POTENTIAL FUTURE ENHANCEMENTS

® FUNCTIONALITY

o REPORT WRITER

PLOT INTERFACE

EDIT OF ATTRIBUTE VALUES

ATTRIBUTE UNITS, DESCRIPTION, ALIAS
ARITHMETIC CAPABILITY IN COMPUTE COMMAND

® PERFORMANCE
o KEY PROCESSING
o 170 ON SPECIFIC HARDWARE
o IMPROVED SORT
® MULTI-USER, TRANSACTION PROCESSING

o DESIGN FOR MULTI-USER
o IMPLEMENTATION OF MULTI-USER ON SELECTED HARDWARE

L]

APPENDIX IV

The following is a reprint of Chapter Three of "NEEDS Data Base
Management System Functional Requirements" dated March 20, 1980, written by
J. Patrick Gary, Karen W. Posey, and Ronald W. Durachka for the Information
Extraction Division at the Goddard Space Flight Center in Greenbelt,
Maryland. This chapter summarizes the original requirements of the
Integrated Data Base Management System (IDBMS) and as such provided
guidance to the study. For additional information the reader is referred
to the document itself.

[}

3. REQUIREMENTS

3.1 Functions

3.1.1 Data Reception and Storage

1. Manage a dynamic local archive consisting of climate-related and
other Applications and Space Science data sets. These will consist of NASA
and related scientific data including digital image data, satellite mea-
surements, correlative ground truth data, results of application data
analysis programs, extracted parameters, application modeling results, and
information describing data characteristics and data sets (see Section 3.3
and 3.4). The local archive will contain mostly derived geophysical para-
meter data and sensor radiance data from NASA missions; however, non-NASA
data and non-satellite data must also be accommodated.

Provide for entry of data into the local archive via magnetic tape,
disk pack, or telecommunications through a computer network (see Section
4)., Data will be received in various mission-dependent sequential file
formats. The data will be physically stored in the archive on magnetic
tape, disk packs, or other direct access storage devices.

2. Manage a local archive of packetized data stored in the MSFC
Archival Mass Memory (AMM) (see Reference 16). Packetized data will be
entered by the MSFC DBMS into the AMM following its receipt via electronic
transmission using the CCITT X.25 protocol (see Reference 16). Although
this tramission and storage function will be handled external to the IDRMS,
it must catalog and manage this archive as described below. Packetized
data may also be entered into the AMM under the control of the INBMS (see
Section 3.1.1(3) and 3.1.3(4).

3. Accept, store, and manage data sets created by application pro-

grams running in the IDBMS environment or entered from local and remote
interactive terminals. The data will be physically stored in the local

IV-1

archive on magnetic tape, disk packs, the AMM, or other direct access
storage devices.

4, Provide for the addition, deletion, and logical and physical
replacement of data sets in the local archive.

5. Provide an interface for data producer specified software modules
to perform data quality control checks. These data type dependent quality
checks will be performed on data sets entered into the archive and/or
created by the system and will include such tests as format checks, tape
quality checks, and limit checks (i.e.,out-of-range values).

3.1.2 Catalogs

1. Provide for the flexible construction and maintenance of a
catalog* of available climate-related data (see also 3.1.2(3)). The
catalog will describe all climate-related data in the local archive, as
well as certain climate-related data which is archived elsewhere and is not
directly accessible to the system. This includes data sets created by the
IDBMS as well as those created outside the IDBMS and transferred to the

archive.

Nata will be described in the catalog at various levels of
aggregation., At the highest level of aggregation, a catalog entry could
represent the collection of all data available for a specific measurement
or parameter from a single source instrument and with a single physical
storage format. For instance, all radiance data from the NOAA Scanning

*As used herein, "catalog" is a collective term referring to the total
collection of information describing the characteristics and locations of
available data. The architecture to be used in logically and physically
partitioning this information is a system design consideration to be
addressed as part of the system design phase.

Iv-2

t)

Radiometer (SR) instrument, or all sea surface temperatures from the
Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) instrument could
be considered a data set at this level. For data sets at this level of
aggregation, the catalog will maintain summary information on all available
data sets. More detailed descriptions and information about each data set
will also be maintained.

Sample outlines for typical summary and detailed descriptions to be
maintained in the catalog are given in Appendix A. A sample detailed data
set description using the outline shown in the second figure of Appendix A
is presented in Appendix B.

At the lowest level of aggregation, a catalog entry could represent a
specific physical storage entity, such as a tape volume, a tape or disk
file, a data packet, or a specific logical entity such as a gridded array
(map) within a file. For each data set at this level, the catalog must
maintain key descriptors such as name/ID, source, parameter(s) represented,
time period of coverage, archival location, etc. A sampl 1listing of this
type of catalog information is shown in th third figure of Appendix A.

These figures are intended as examples only. The IDBMS must provide
the capability to dynamically define the contents and organization of these
catalogs and the levels of data aggregation described by the catalog
entries.

2. Provide for the automatic construction and maintenance of catalogs
suitable for managing the storage and retrieval of packetized data. The
catalog entries (packet descriptions) shall contain information extracted
from the primary and secondary headers of packets. For data received by
the MSFC DBMS (see Reference 16), the MSFC DBMS will make these packet
headers available to the IDBMS as the packets are stored in the AMM. The
IDBMS must examine these headers and automatically update catalog and
cross-reference information. For packetized data sets created by the IDBMS
(see Section 3.1.3(4)), the catalog entries will be constructed by the
IDBMS from the packet header information provided with the data sets.

IvV-3

3. Provide for the flexible construction and maintenance of other
Applications and Space Science data catalogs permitting different descrip-
tions for other data or for new data types to be entered into the system.

4, Provide a capabilify for users to create their own catalogs
describing locally archived data, data archived elsewhere, and user
(system) created data sets.

5. Provide for the flexible construction and maintenance of "biblio-
graphic catalogs" (vs. data catalogs) which describe supporting documents
and applications software related to the archived data. These catalogs
will contain information such as title/name, author, abstract or overview
description, and physical location or reference number.

Provide the ability to cross-reference such documents and software to
data sets maintained in the archive.

6. The catalog update capability shall include, where appropriate,
automatic construction of catalog entries from information extracted from
the data set. It shall also allow users to directly specify catalog

entries or fields within the entries where appropriate.

7. Provide the capability to distinguish "master" and "secondary"
data sets. As used herein, "master" data set refers to the primary version
of a given data set (e.g., the "best" set of Nimbus-7 SMMR sea surface
temperature available in the archive). "Secondary" data sets refer to
other versions of data represented in the master sets (e.g., tapes created
by copying portions of one or more master tapes, data sets derived via
different versions of the retrieval algorithms, etc.).

8. Provide the capability to extract catalog-type descriptive

information from a data set and to display or print this information
without actually entering it into the catalog.

Iv-4

N\

9. Provide catalog access, search, and display capabilities to enable
users to determine what data is available and what data they want retrieved
from the archive.

10. Provide the capability to Timit catalog access/search to user-
specified criteria related to the catalog entries, such as limited area
coverage, specific parameters, time periods, or data sources. This
includes efficient text-searching capabilities, where necessary, to locate
appropriate catalog entries where fields (search values) are text data.

11. The catalog data base structures and the algorithms for
searching/updating them must accommodate a flexible, dynamically definable
set of catalog search criteria. They must be designed for maximum search/
update efficiency, and allow for dynamic creation and removal of
appropriate internal structures. These internal structures must be updated
automati- cally by the system as the catalogs are modified.

12. The internal structures of the catalogs must be expandable and
deletable without necessitating a reorganization or reloading of the
catalogs. Expansion must allow for the addition and deletion of catalog
fields, alteration of field size, the addition and deletion of search
criteria/keys, additional values for the search criteria/keys, and
.additional catalog entries containing these values. The system must
dynamically reuse available space created by deleting catalog information
or internal system data. It must also be possible to add new data base
catalogs without necessitating a reorganization of existing catalogs.

13. Provide a capability whereby a user can request a count of the
number of data sets which satisfy a complex search condition prior to
retrieving catalog information for such data sets.

14, Provide for variable length fields within the catalog entries,

i.e., provide for the storage of variable length values for each item in a
catalog description such that only the amount of space actually needed to

IV-5

accommodate the information present in a catalog entry is used for its
physical storage.

15. Provide capabilities which handle multi-valued fields within the
catalog entries, i.e., for fields having two or more distinct values within
a single entry. (An example of this requirement is Nimbus-7 SMMR digital
maps, each of which contains multiple parameters.)

16. Provide capabilities which handle multi-valued groups of fields
(repeating groups) within the catalog entries, i.e., for groups of
logically related fields which occur more than once within an entry. (An
example of this requirement is Nimbus-7 SMMR digital maps, where each
parameter in a map has its own associated spatial resolution.)

17. Provide for null fields within the catalog entries, i.e., for
catalog entries having no assigned value for a given field.

3.1.3 Data Access and Manipulation

1. Provide for user selection of, and access to, a subset of data in
the local archive, distinguished by a flexible, dynamically definable set
of characteristics of the data, including source, parameters, coverage
(time, space) and level of reduction.

2. Provide flexible data manipulation and reorganization capabilities
for data in the local archive. These capabilities should include sorting
(time, location, parameter), interpolation and smoothing, averaging, histo-
gramming, and generation of gridded data sets (for a limited set of
projections and space/time grid intervals) for user-selected data in the
local archive,

3. Provide capabilities to update; access and invoke a library of

processing routines for performing selected general purpose data processing
function.

IV-6

4, Provide a capability to format a non-packetized data set into a
packet formatted data set. Information needed to construct the necessary
primary and secondary packet headers shall be obtained through the inter-
active user terminal or application program interface by which the packet
formatting capability was invoked or, if the data set is already cataloged,
from descriptors in the data set's catalog entry.

3.1.4 User Interface

1. Provide an interactive terminal user interface and an English-like
user language for requesting the data and catalog input, update, selection/
search, retrieval, manipulation and output capabilities. The user language
must be easy to learn and use and must provide clear explanatory messages
(not codes) following the input of any incorrect syntactic construction.

2. The user language must utilize menu-quided prompts whenever
possible to facilitate the user selection and specification of processing
options.

3. The user language must include data description/dictionary
capabilities for defining and describing the properties of all data and
catalog information stored in the data base. This shall include
capabilities to:

- Assign names and descriptions to data and catalog elements/fields
or groups of logically related elements and to describe their size
and type of representation (alpha, numeric, etc.).

- Declare whether an element/field is a key or a non-key item.

- Describe the logical structure of the catalog or data base, i.e.,

the constituent elements/fields and their logical relationship to
one another.

Iv-7

Retrive and display all data description/dictionary information
stored in the system.

4. The user language must provide the capability for the user to
request and display descriptions of what capabilities are available for
data and catalog input, update, search, retrieval and output.

5. The user language must permit the dynamic definition, creation,
and deletion of individual data sets and catalog entries.

D

6. The system must support the submission of IDBMS commands from
batch input. The syntactic format of batch submitted IDBMS commands must
be identical to those submitted via interactive user terminals.

7. The system must enable the user to write a séquence of IDBMS
commands and store them on disk under a referenceable name. The user
language must allow the user to execute the sequence of commands by
appropriate reference to the command sequence name.

8. Provide an application program interface to the data and catalog
input, update, selection/search, retrieval, manipulation and output
capabilities. This program interface is oriented to high level procedural
language applications software, and shall be FORTRAN callable.

9, System status indicators must be provided to an application
program each time the system is given a command. The indicator(s) must
allow the application program to determine, at a minimum: >

- that the command to the system was understood and executed without
detectable error, or

- that the command to the system was not error-free and the nature of
the error involved, e.g., syntax error, invalid record reference,
etc.

Iv-8

10. An application program must not require modification or
recompilation when a catalog or data field is added, deleted, or changed in
format or classification of content, unless that field is referenced in the
application program. The addition or deletion of indices or other internal
search structures must not require modification or recompilation of
application programs.

11. The system must not require that interactive, batch, and
application program users be aware of physical locations or storagé
structures of catalvbgs, data indices, pointers, or other internal
structures, |

12. Provide capabilities for applications programs to perform the
following basic input/output and file maintenance operations for tape,
disk, and the AMM: a) open and ciose files, b) read/write next record, c)
read specified record, and d) copy or move files from one device to
another.

3.1.5 System Qutputs

1. Provide options to display catalog access/search results at local
and remote alphanumeric CRT terminals, to print this information, or to
output it to disk or computer compatible tape in user-specified formats.

2. Provide data output as disk files, computer compatible magnetic
tape files (including reformatting, if necessary, to accommodate a limited
set of magnetic tape characteristics), alphanumeric CRT and graphics
terminal displays, printed listings and graphic plots, and image (raster)
terminal display.

3. Provide a capability by which IDBMS created data products can be

stored temporarily or permanently as master or secondary data sets managed
by the system. (See 3.1.2.(7)).

Iv-9

3.1.6 System Operation, Control and Accounting

1. The IDBMS must operate in a multi-user, multi-thread mode wherein
several users are processed concurrently. For example, when the request
that the system is currently processing requires I/0, the system requests
the 1/0 and then begins processing another request while waiting for the
first 1/0 operation to be completed. The system must not require that one
request be serviced to completion before the next one is begun. This shail
include synchronous control to permit concurrent access to data catalogs
and to archived data sets by multiple interactive terminal users, batch
users, and application programs. The system shall permit up to 32
concurrently active interactive terminal users, batch users and attached
application programs.

2. Provide user transparent lockout features at the lowest practical
level to support multi-user access to data catalogs and to archived data
sets and to prevent concurrent access/update probiems while minimizing the
degree to which a particular access/update operation "ties up" the data
base.

3. Maintain system logs and provide accounting reports of data
entered into and deleted from the local archive as well as all data
processing activities performed by the system, i.e., data selected,
accessed, manipulated and output. These logs will include descriptions of
the activity performed, when it was performed, and who requested it.

4. Provide mechanisms (a) for supplying users with information
(including costs) for data ordering, (b) for storing and updating
accounting data on the ordering processes {(who, what, when, costs), and (c)
for producing usage reports from this data.

5. Provide a capability for IDBMS users to invoke VAX/VMS system
utility routines (e.g., file dumps, file copy routines, etc.).

Iv-10

6. Provide capabilities which will permit changing the physical
Tocation (storage device or location within a storage unit) and
reorganization of catalogs and data sets to minimize seek time, to
consolidate free space, and to optimize the use of system resources.

7. Provide capabilities whereby the Nata Base Administrator (DRA) can
allocate and deallocate selected amounts of disk storage space to/from the
[DBMS for the management of archived data sets and their respective
catalogs.

8. Provide capabilities whereby the DBA can specify the disk packs on
which specific catalogs or portions of catalogs will reside. It must be
possible to reﬁove the disk packs containing this information and replace
them with other packs without rendering the system inoperable. When data
has been removed in this manner, any request to access ft must produce an
information message to the user without rendering the system inoperable.

9. Provide capabilities which minimize required computer operator
intervention and effort for the running of the INBMS once it has been
initiated.

10. Provide capabilities to save and restore selected data bases, to
generate systemwide checkpoints of all data needed to restore the system to
its operating status at the time the checkpoint was taken, and to roll bhack
from checkpoints with restored data bases. - (See 3.5(3)).

3.2 Performance

3.2.1 Data Accuracy

1. The INBMS must be capable of storing, retrieving, and displaying
data without loss of data precision or accuracy. '

IV-11

3.2.2 Validation

1. The syStem shall provide full error-checking and error-handling
capabilities for user input errors and input data errors. This shall
include: a) interactive, batch, and application program user syntax errors;
b) validation of length and type (character, binary, etc.) of all
information entered into the catalogs and other system internal data
structures; c) validation of length and type of all data fields specified
by interactive, batch, and application program users; -and d) the ability to
incorporate user-specified integrity checks (e.g., allowable values or
range limits) to be applied against data fields input by a user or entered
into catalogs or other system internal data structures.

3.2.3 Response Times

1. The system will have the following general usage characteristics:

- Data base/catalog search and retrieval operations will typically be
performed more frequently then update operations.

- Most searches will involve multiple (2 to 10) keys.

- Most searches will result in the retrieval of multiple (typically
10 to 1,000) entries/records.

- Update operations will typically be performed by a more restricted
group of users than retrieval operations.

- Update speed will typically be bound by the time required to
construct the update information, e.g., to extract descriptors from

a data set or from information entered at user terminals.

Therefore the system must be optimized for search and retrieval speed (vs.
update speed) and for multi-key searches (vs. single-key searches).

Iv-12

.

2.

Response time requirements are characterized by the follgwing

single-user scenarios which the system must accommodate:

Pefine a new data element to the system, including its name,
length, and type of representation,'within one second. DNefine a
new data base to the system, including its constituent element
names and their logical relationship, and initialize the data base
within 3 seconds.

Initialize a data base, 1nad records from a source file into the
data base and build required indice$s at the rate of 100 records
per second (2 minutes total) given the following characteristics:

Source file: sequential file of fixed length records. Record
size: 80 bytes.

Number of records in source file: 10,000

Number of indices to be built: 10

Assuming that a data base intially has the following
characteristics:

Mumber of records in data base: 2 million
Average record size: 80 bytes
Number of indices defined: 10

load records from the source file described under (b) into the
data base and update required indices at the rate of 20 records
per second (10 minutes total).

Perform an index search on the data base described under (c) and

display a count of the number of records/entries meeting the
search criteria within 2 seconds.

IV-13

e. Retrieve selected fields from the data base described under (c)
and output them to a sequential file at the rate of 100 records/
entries per second. Retrieve and display these entries via a user
terminal at the rate of 15 records per second.

3. When installed in the MSFC DBMS configuration, the IDBMS must be
capable of constructing catalogs suitable for managing the storage of
packetized data transferred to the DBMS at a rate of 100Mbps (see Section
3.1.2(2) and Reference 16).

3.2.4 Flexibility

A Timited number of data sets and specific examples of the functions
listed in Section 3.1 will be selected by GSFC personnel for initial system
implementation. The initial system shall include all software needed to
provide these selected functions for the selected initial data base. In
addition the initial system shall be designed and implemented in a manner
which allows for the easy expansion and incorporation of modules to support
additional functions and additional data types. It is envisioned that this
system growth will occur in a phased incremental manner. This potential
system growth must be fully accounted for in the initial system design.

The system must be flexible and easily expandable to accommodate:

1. Dynamic local archive and a dynamic collection of data cataloged
by the system but not locally archived. This includes new data
types and data formats as well as additions/deletions/replacements
of data sets for existing data types and formats.

2. Changes (adds/modifications/deletes) to the type of information
items stored in the catalog, changes to the level of data aggrega-
tion described as a single entity in the catalog, and changes to

the information contained within the catalog.

3. Changes to data selection criteria and catalog search criteria.

Iv-14

4. Incorporation of new functions and data access and manipulation
capabilities (e.g., subset extraction, averaging/regridding, sort/
rearranging, plot/list/display, quality checks, new output tape
formats, etc.) for existing data types.

5. Extension of existing system functions to handle new data types.

3.3 Inputs-Qutputs

Data will be entered into the local archive via magnetic tape, disk,
telecommunications, and IDBMS users (interactive, batch, and application
program users) in a variety of formats. Typical examples of climate data
are given in Figure 3.1. Formats of packetized data to be handled in the
NEEDS DBMS are given in References 16 and 17.

Data will reside in the local archive on tape, disk, and AMM, or other
direct access storage devices. Data will be output to local and remote
alphanumeric CRT and graphics terminals, printers, plotters, image display
terminals, computer compatible tape, disk, application programs, and remote
processors (via a local network as described in Section 4.1) in various
formats depending on the user's requirements. Some examples of typical
output products are:

Selected catalog information describing those portions of the data
base which meet user-specified search criteria.

- Data plots and gridded arrays showing Earth location of available
data and numbers of data values available in specified latitude/

longitude grid regions.

- Gridded arrays of data values at various space and time grid
intervals.

- Tabular listings of selected data qualified by time, parameter,
etc.

Iv-15

- Contour plots of 2, 3 and 4-dimensional data sets.

- Data value plots (for example, average monthly value vs. month for
each 10° latitude zone).

- Displays of selected data in raster format on image analysis
terminals.

Selection parameters for output products will be input in one of the
following ways:

- Interactively at local and remote alphanumeric CRT terminals
through user-specified commands and/or responses to system-
generated prompts.

- Procedurally by application programs through the argument list of
IDBMS-supplied FORTRAN-callable routines.

Printed outputs of user retrieved data will be 50-100 pages/user/day
with 4400-6600 characters/page. Two to five computer compatible tapes

(1600 and 6250 bpi) of data will be produced daily for each user.

The IDBMS must be able to read and write records up to 32k bytes in
length.

3.4 Data Characteristics

The IDBMS must manage a large number of multi-source data types
including imaging and non-imaging satellite data and derived geophysical
parameters. These data characteristics are found in climate-related data.
The IDBMS will have to handle at least 10 climate parameters with 3 to 10
sources per parameter and - 3 types of data products per source, the result
being 100 to 300 different types of data products. Typical examples of
such climate data are given in Figure 3.1. Catalog and data archiVe volume

IV-16

LL-AI

1.

10.

PARAMETER

Sea Surface Temperature

Sea Ice Concentration

Ozone

Clouds

Weather Variables

Radiation Budget

Ocean Rainfall

Ocean Surface Winds

Snow Cover

Stratospheric Aerosols

Figure 3-1

TYPICAL PARAMETERS AND DATA SOURCES*

SATELLITE

NOAA-2,3,4,5
TIROS-N
NIMBUS-7

NIMBUS-5,6
NIMBUS-7

NIMBUS-4
NIMBUS-7

NIBUS-5,6,7
SMS/GOES

NIMBUS-6
NIMBUS-7

NIMBUS-5,6
NIMBUS-7

NIMBUS-7
SEASAT

NOAA-2,3,4,5
TIROS-N
NIMBUS-7
NIMBUS-7

AEM

INSTRUMENT

Scanning Radiometer (SR)
Advanced Very High Resolution Radiometer (AVHRR)
Scanning Multichannel Microwave Radiometer (SMMR)

Electrically Scanning Microwave Radiometer (ESMR)
SMMR

Backscatter Ultraviolet Experiment (BUV)
Solar Backscater Ultraviolet (SBUV) and
Total Ozone Mapping Spectrometer (TOMS)

Temperature Humidity Infrared Radiometer (THIR)
Visible and Infrared Spin Scan Radiometer (VISSR)

National Meteorological Center Archives (NMC)

Earth Radiation Budget (ERB) Experiment
ERB

ESMR
SMMR

SMMR
Scatterometer (SCAT), SMMR

SR
AVHRR
SMMR

Stratospheric Aerosol Measurement (SAM II)
Experiment
Stratospheric Aerosol and Gas Experiment (SAGE)

*Archive can include all products (sensor radiances and in situ or averaged derived parameters) for
each instrument.

Figure 3-2
ESTIMATED VOLUME OF CLIMATE-RELATED DATA

ARCHIVE VOLUME ESTIMATE (stated in equivalent 1600 BPI tape units):

100-300 data sets
1-300 tapes per data set (average)
10-100 files per tape (but sometimes over 1,000)

TOTAL ARCHIVE:
Result: 100-90,000 tapes, 1,000-9,000,000 tape files, 3 x 1010 _
2.7 x 1013 bits (at 3 x 108 bits per tape)

CATALOG VOLUME ESTIMATE (stated in equivalent 1600 BPI tape units):

High Level Data Sets - Summary Nescription:

80 bytes per data set * 100-3N0 data sets = 8K-24K hytes
High Level Nata Sets - Individual Detailed Nescription:

3K-8K bytes per data set * 100-300 data sets = 300K - 2.4M bytes
*Tape Level Catalog Information: |

80 bytes per tape entry * 1-300 tapes per data set * 100-300 data
sets = 8K - 7.2M bytes

*File Level Catalog Information:

40 bytes per file entry * 10-100 files per tape * 1-300 tapes per
data set * 100-300 data sets = 40K - 360M bytes

TOTAL CATALOG: 350K - 370M bytes
*While the system must provide flexibility in specifying the level of data
aggregation described as a single entity in the catalog, tape and file

level aggregates are used here as typical examples for volume estimation
purposes.

IV-18

estimates for the climate-related data sets to be handled by the IDBMS are
given in Figure 3.2.

Characteristics of packetized data, including the packet length fields
which may be used to compute estimates of the volume of packet data to be
managed by the MSFC DBMS are provided in References 16 and 17.

Examples of other Applications data which are currently utilized by
existing discipline oriented systems and which may be cataloged and managed

by the IDBMS are given in Appendix C.

3.5 Failure Contingencies

1. The system must provide full error-checking and error-handling
capabilities. Errors include system I/0 errors, system crashes, user
aborts, and corruption or Toss of system files.

2. The system must provide capabilities to periodically create tape
backup copies of all (or selected) disk-resident system files (including
catalogs, data and associated indexes) and to restore the system to this
previous checkpoint by reloading from tape in the event of severe system
corruption or degradation.

3. The system must maintain a system log file in which all changes to
on-line files and catalogs and all save and restore operations are recorded
so that the system can be rolled forward from a restored data base to its
status as of some later point in the processing cycle (e.g., to just before
a system crash). The system log must be entirely under the control of the
system so that no user can read from or write to it directly.

4, The system must provide the capability to recover from all
software/hardware problems occurring during system execution which leave
the system in a corrupted state. Examples and the way they are to be
handled are given below:

Iv-19

System crashes, user aborts, or I/0 errors which occur in the
middle of an update to the catalog.or other system files and which
leave tables, pointers, indexes, etc. in an inconsistent state.
The system will provide the capability to back out the partial
update.

I/0 errors which occur while reading data tapes (to make catalog
insertion, extract data subset, etc.). Depending on the nature of
the error and type of function involved, the system will provide
the capability to either recover and continue or to back out and
re-do the partially completed transaction.

Iv-20

BIBLIOGRAPHIC DATA SHEET

1. Report No. 2. Government Accession No, 3. Recipient’s Catalog No.
TM83942

4, Title and Subtitle 5. Report Date

Data Base Management System August, 1981

Analysis and'Performance Testing with Respect 6. Performing Organization Code
to NASA Requirements 93]

17. Author(s) E, A. Martin, R. V. Sylto, T. L. Gough, 8- Performing Organization Report No.
’ H. A. Huston, J. J. Morone

9. Performing Organization Name and Address 10. Work Unit No.
Information Management Branch
NASA/Goddard Space Flight Center 11. Contract or Grant No.

Greenbelt, MD 20771

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This study was conducted to evaluate several candidate Data Base Management
Systems (DBMS) that could support the NASA End-to-End Data System's
Integrated Data Base Management System (IDBMS) Project which was later
rescoped and renamed the Packet Management System (PMS). The candidate
DBMS systems which had to run on a VAX 11/780 computer system were ORACLE
and RIM, both based on the relational data base model, and SEED, a CODASYL
network approach. Goals of the study included assess capability to manage
large amounts of data (i.e. at least a million input records), determine
ingestion rates, measure the efficiency of the various data access techniques
and to evaluate qualitative characteristics. The load results indicate that
SEED is significantly faster than RIM and ORACLE below a half million
records. From a half million to a million records the incremental load rates
becin to favor ORACLE and at over one million records, ORACLE is clearly
superior. Each system varied significantly in the amount of space required.
While the results indicate that none of the candidate systems fully meet the
original requirements of the IDBMS, they do indicate that these systems
could be used as a central core to an IDBMS-1ike system around which addi-
tional software would have to be built to satisfy many of the requirements.

17. Key Words (Selected by Author(s)} 18. Distribution Statement
Data Base Management Systems
DBMS Performance Testing
ORACLE

SEED, RIM

19. Security Classif. {of this report) [20. Security Classif. {of this page) 21. No. of Pages | 22. Price*
Unclassified Unclassified

*For sale by the Nationa! Technical Information Service, Springfield, Virginia 29161 GSFC 25-44 (10/77)

=9

\F

I .. 1 IR .
~ SR ¢« - 0
A

PN P

