General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DESIGN AND DEVELOPMENT OF A FAST ION MASS SPECTROMETER

by
J. L. Burch
Principal Investigator
W. C. Gibson
Project Manager

Final Report
SwRI Projec: 15-5680
NASA Contract NASW 3237
prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

February 1983

SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas 78284

DESIGN AND DEVELOPMENT OF A FAST ION MASS SPECTROMETER

by
J. L. Burch

Principal Investigator
W. C. Gibson Project Manager

Final Report
SwRI Project 15-5680
NASA Contract NASW 3237

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

February 1983

APPROVED:

TABLE OF CONTENTS

LIST OF LLLUSTRATIONS 111
I. INTRODUCTION I. 1
II. DESIGN AND EARLX DEVELOPMENT OF FIMS A AND FIMS B II-1
ITI. FLIGHT UNIT CONSTRUCTION III-1
IV. FLIGHT UNIT CALIBRATION IV-1
V. FLIGHT INTEGRATION V-1
VI. DATA ANALYSIS VI-1APPENDICES - A. FAST ION MASS SPECTROMETER, MODEL AHARDWARE/SOFTWARE REFERENCE MANUAL
B. FAST ION MASS SEECTROMETER, MODEL BHARDWARE/SOFTWARE REFERENCE MANUAL

LIST OF ILLUSTRATIONS

Figure Page

1. Photograph of FIMS Cylindrical-Geometry prototype II-2 Instrument
2. Photograph of FIMS Prototype Instrument with II-3 Spherical Energy Analyzer and Mico-Channel Plate Detector
3. FIMS-A Flight Instrument with CEP III-3
4. FIMS-B Flight Instrument III-4
5. Photograph of the RADIAC System at SwRI IV-2
6. Ion Accelerator and Calibration Facility IV-3
7. Ion Beam Generation System and Mass Selection IV-4 System for the FIMS Ion Accelerator System
8. Plot of Beam Current vs Field Strength for RADIAC IV-5
9. EIMS-B Calibration plot IV-6
10. SwRI/NASA Payload - BBX V-2
11. SWRI/NASA Payload .. BBX V-3
12. FIMS-B Spectrograph VI-2
13. FIMS-B Data Analysis plot VI-3

I. INTRODUCTION

This project has resulted in the development of two Fallt Ion Mass Spectrometers (FIMS A and FIMS B), culminating in their flight on two project CENTAUR sounding-rocket payloads in December 1981. Analysis of data from these flights is now in progress.

This report summarizes the design, development, construction, calibram tion, integration, and flight of these new instruments, along with early results from the data analysis efforts. The goal of the program was to develop a medium-energy ion mass srectrometer that could cover mass-velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved. The initial design consisted of a dual-channel cylindrical
electrostatic analyzer followed by a dual-channel cylindrical $\overline{\bar{E}} \times \overline{\mathrm{B}}$ velocity filter. As part of the early work on this instrument (FIMS A) investigations into the gain versus count-rate characteristics of the high-current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systamatic behavior thrt conld be used as a criterion for selection of CEM's for long counting lifetimes. This result was published in Review of Scientific Instruments (Hahn and Burch, 1980).

Meanwhile, a computer ray-tracing analysis was used to optimize the. FIMS A ion optics, and a prototype instrument was fabricated. Sisce no suitable calibration facility existed at SWRI at that time, prototype calibration was carried out at tos Alamos National Laboratory. This calibration confirmed the ray-tracing analysis, and work on the FIMS A flight unit began.

Although the FIdS A instrument achieved the expected improvements in time resolution, heavy-ion mass resolution, and energy range, it still was able to sample in only one direction at a time. To improve further the time resolution for sampling in mass-velocity space an angular imaging capability was needed. The FIMS B instrument was designed to meet this goal. In rIMS B the cylindrical energy analyzer was replaced by a spherical sector analyzer that was capable of sampling a $35^{\circ} \times 5^{\circ}$ angulax fan that is resolved into sixteen $2.2^{\circ} \times 5^{\circ}$ sectors by means of a microchannel plate detector at the output of the cylindrical $\overline{\mathrm{E}} \times \overline{\mathrm{B}}$ velocity filter. The velocity filter was similar in similar in geometry to that of the FIMS A analyzer but with a magnetic field roughly twice as strong to give even better mass resolution for heavy ions. A FIMS B prototype also was calibrated at Los Alamos, and work was begun on a flight unit for project CENTAUR. The design and early development work on the FIMS A and FIMS B instruments were described in a paper published in Review of Scientific Instruments (Hahn, Burch and Feldman, 1981).

Following the initial FIMS calibrations at Lros Alamos, work was begun on a calibration system at SWRI that could test the response of these instruments and their future derivatives over the full range of their capabilities. Inis calibration system was put into operation in time for calibration of the FIMS A and FIMS B flight units in September 1981.

Integration of these instruments onto two separate project CENTAUR payloads was accomplished with very few problems at SwRI. A long series of environmental tests of the full-up payloads at GSFC was followed by transport to Cape Parry, NWT, for launch operations. Both payloads were launched into the dayside magnetospheric cleft and operated nominally. Analysis of data from FIMS A and FIMS B, in cooperation with the other Project CENTAUR experimenters, is now underway.

II. DESIGN AND EARLY DEVELOPMENT OF FIMS A AND EIMS B

The design and early development, through prototype calibration, of the FIMS A and FIMS B instruments are documented in the paper entitled "Development of a fast Ion Mass Spectrometer for Space Research," by S. F. Hahn, J. L. Burch, and W. C. Feldman, which is reproduced in the following pages. Also reproduced in this section is a paper entitled "Exponential Decay and Exponential Recovery of Modal Gains in High Count Rate Channel Electron Multipliers," by S. F. Hahn and J. L. Burch.

Also shown for reference in Figures 1 and 2 at the end of this section are photographs of the FIMS A and FIMS B prototype units.

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS

FIGURE 2. PHOTOGRAPH OF FIMS PROTOTYPE INSTRUMENT WITH SPHERICAL ENERGY ANALYZER AND MICRO-CHANNEL PLATE DETECTOR.

Exponential decay and exponential recovery of modal gains in high count rate channel electron multipliers

S. F. Hatin and J. L. Burch
Soulhuest Restarch Insiliute, San Aitionto, Texas 78284
(Received 17 July 1979; accepted for publication $\$$ February 1900)
\title{ ORIGINAL PAGE IS OF POOR QUALTY, }

Abstract

A series of data on high count rate channel electron multipliers revealed an initial drop and subsequent recovery of gains in exgenential fashion. The FWHM of the pulse height distribution at the initial stage of testing can tie used as a good criterion for the selection of operating bias voltage of the channel electron multiplier.

PACS numbers: 84.30.Wp, 29.60.Ef
1

Recently, high count rate channel electron multipliers (CEM's) develoned specifically for the High Altitude Plasma Instrument and the Low Alitude Plasma Instrument for the NASA Dynamics Explorer project were examined in the laboratory to determine their performance characteristics. Although a number of different tests were performed, this note reports only on the results of pulse height analysis (PHA) examined as a function of total accumulated counts. The CEM's (Galileo Electro-Optics Series 4800) have typical channel resistance of $\sim 10^{8} \Omega$, and channel length-to-diameter ratios of 50 (with 1 mm inside diameters). The flat cone aperture has $\mathbf{6 m m} \times \mathbf{2 0} \mathbf{~ m m}$ rectangular dimensions to accommodate the instrument exit slit.
The CEM's were tested in an extremely clean vacuum chamber with a cryogenic main pump which brings the chamber pressure to typically less than 5×10^{-8} Torr, Extra care was taken to reduce the number of outgassing sources by, for example, using bare solid wire for electricall connections, and adopting only glass, ceramic and vacuum compatible metal for mounting hardware..

Measurements on CEM gain and pulse height distribution were obtained from a conventional charge sensitive preamplifier (ORTEC 142-PC) and wave shaper (ORTEC 460) combination, whose output was connected to either a CAMAC-controlled single channel analyzer or a multichannel analyzer (Nuclear Data 2200). The multichannel analyzer controls were set to match those of the manufacturer so as to achieve continuity in data taking. Data were obtained both at our facility and the manufacturer's.

Figure 1 shows some of the typical data. To emphasize the exponential nature of the gain change as a function of total accumulated counts, a linear scale was used on the x axis. The counts were accumulated at a rate of ~ 5 $\times 10^{4} \mathrm{~s}^{-1}$ while the CEM modal gain was maintained at $\sim 10^{8}$ by adjusting bias voltage to ensure no premature fatigue induced by overdriving it. The PHA was performed at a count rate of 5×10^{3} counts s^{-1}, which was 'well within the region where no gain change with count rate was observed.

The data show a characteristic gain history with four distinct phases. The first phase involves an apparently' exponential drop in gain. This initial gain reduction is
the result of a "clean-up" process, a term used by many.' 1 It occurs in a relatively short period of total accumulated counts (TAC's) usually in the range of $3-5$ $\times 10^{\text {月 }}$. Some units were observed to exceed 10^{4} TAC's before reaching the second, minimum gain; phase. At the end of the first phase, the gain is gencrally one third to one half of the initial gain. For normal CEM's the mini: mum gain is maintained for a period which is positively correlated to that of the first phase, up to $10^{\prime \prime}$ TAC's. Those units that were subsequently judged defective had monotonically decreasing gain past 10^{10} TAC's, a test limit we set for convenience.

Even with the positive correlation between the accumulation periods of the first and the second phases, the onsel of the third phase, gain recovery, is not very predictable. The third phase is characterized by a strong and fast recovery of gain, agaia in an exponential fashion. While the overall fluctuation of gain reduction and subsequent recovery has been observed by many, no report is known to us on the exponential nature of the gain recovery. The recovered gain is generally higher or comparable to the initial gain as opposed to the lower recovered gain of regular CEM's. The final gain plateau (the fourth and final phase of the gain history) is consistently close to or higher than the gain observed at the beginning of the test. The gain recovery typically plateaus near $10^{9} \mathrm{TAC}$'s, but some units took up to ~ 4 $\times 10^{9}$ for full recovery. No appreciable change in gain was noticed in subsequent measurements up to 10^{10} counts, the set limit. We believe the gain stays more or less constant past this limit so long as no surface degradation due to contamination takes place, as evidenced in the literature. ${ }^{2,3}$

The gain drop and recovery phenomenon was observed after every exposure of the CEM to air, but the amount of change differed from the very first test values. The physiochemical process behind this gain fluctuation is presently not very weli understood.

For statistical reasons it is important to know the FWHM of the CEM. Since the FWHM changes with gain, which is again subject to TAC's, it is better to determine the CEM operational voltage according to the actual FWHM measurements in addition to the usual

Fio. i. Changes in moval gallin and FWHM as functions of total me. cumulated counts.

practice of utilizing a gain (or count mate) vs, voltage curve, which does not give a clear-eut bending point. By lesting FWHM at different bias voltages as a function of TAC's, one can safely set the operating voltage of a CEM with good statistical confidence. According to the data shown in Fig, I, a bias voltage of 2300 V is needed if one wants better than 50% FWHM at any time during the operation of the CEM unless in situ aging of the CEM beyond the third phase is executed.

This work was supported by NASA Contract Nos, NAS5-24301 and NASW-3237.

[^0]
Development of a fast lon mass spectrometer for

space research

S. F. Hahn arid J. L. Burch
Sowthuest Rescarct Insiliure, San Antonk, Texar 70264

ORIGINAL PAGE IS OF POOR QUALITY

W. C. Feldman
Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

(Received 29 Augusi 1980; accepted for publication 6 October 1980)

Abstract

An ion mass spectrometer with a cylindrical $\overline{\mathbf{E}} \times \overline{\mathrm{B}}$ analyzer and either a cylindrical or a spherical electrostatic analyzer is described in this paper. The instrument features two nested shannels and a postacceleration between the electrostatic and $\overline{\mathrm{E}} \times \overline{\mathbf{B}}$ analyzers for wide ranges of energy and mass responses. The dual-channel construction not only doubles the data acquisition rate, but also makes it possible to reverse the electrostatic field orientation in the inner channel (radially outward, as opposed to radially inward in the outer channel) for lighter ions. The outer channel is then optimized for ions of medium to high mass numbers resulting in enhanced mass resolution for such heavy ions. A 90°-deflection angle spherical electrostatic analyzer in combination with a cylindrical $\overline{\mathrm{E}} \times \overline{\mathrm{B}}$ analyzer provides an extremely wide viewing angle. The angular distribution of ions can be obtained from such geometry if a position-sensitive resistive anode or a detector array is used at the exit aperture. Details on the principles of operation, the instrument design, ane, calibration are given in this paper.

PACS numbers: 07.75, $\boldsymbol{+ h}$, 95.55.Lb

INTRODUCTION

Low to medium energy (a few eV/c-tens of $\mathrm{KeV} / \mathrm{e}$) ion mass spectrometers for ionospheric and magnetospheric research have gained great sophistication during the past two decades. The newer types of instruments have steadily. increased the detectable ranges of ion energies and mass numbers, the detection sensitivity, and resolution, Recent progress has been concentrated on $\bar{E} \times \bar{B}$ type filters, in which a permanent magnetic field and a variable electrostatic field are used to form a tunable' velocity analyzer. Such an $\bar{E} \times \bar{B}$ filter in combination with an electrostatic energy analyzer provides energy.* per-charge (E / q) and mass-per-charge (M / q) measure-' ments of ions. .
The geometry of the $\bar{E} \times \bar{B}$ filter has evolved from Cartesian ${ }^{1,2}$ to a cylindrical ${ }^{3,4}$ configuration, resulting in a more efficient use of volume and ion optics. A typical' mass spectrometer ${ }^{3}$ utilizes a cylindrical electrostatic energy analyzer followed by a cylindrical $\bar{E} \times \bar{B}$ analyzer which has radial electrostatic and axial magnetic fields formed by a set of coaxial electrostatic deflection plates placed between two magnet pole pieces. Such mass spectrometers are designed to be double focusing at selected mass and energy combinations achieving high sensitivity and good resolution as a whole device.

The energy ranges of such mass spectrometers have been increased by the adoption of a fixed preacceleration voltage applied between the grounded input aperture and the cylindrical electrostatic analyzer plates.

The preacceleration increases the minimum energy of ions seen by the $\bar{E} \times \bar{B}$ analyzer to a level where the lightest ion $\left(\mathrm{H}^{+}\right)$can be deflected by the magnetic field alone. So the ion energies which the instrument must handle range only from $E_{\text {acc }} / g$ (energy gained by acceleration) to $E_{\text {max }} / q$ (maximum design energy) rather than from 0 to $E_{\text {max }} / q$. The preacceleration, however, results in deterioration of energy and angle resolution of the instrument at the lower ion energies, leads to an energy dependence of the total instrument sensitivity, and requires the use of a retarding potential analyzer (RPA) to obtain energy spectrum information at energies below the preacceleration energy. This approach not only adds to the complexity of the instrument, but also inadvertently decreases the sensitivity of the instrument due to lowered transmittance through a set of RPA grids.

This paper reports on the development of a Fast lon Mass Spectrometer (FIMS) which is based on the cylindrical $\bar{E} \times \bar{B}$ velocity filter, but which achieves several significant improvements over previous instruments of this type. An isometric view of the calibrated instrument appears in Fig. 1. The energy and angle resolution at low energies has been improved by the use of postacceleration instead of preacceleration. In this approach the postacceleration potential is applied between the exit slit of the electrostatic analyzer and the entrance aperture of the $\dot{E} \times B$ analyzer. This arrangement ensures the same wide dynamic operational energy range and still maintains uniform energy and angle resolutions of the basic electrostatic analyzer, eliminating the need of an

Fic. I. A dual-channel fast ion mass spectrometer (FIMS) with cylindrical electrostatic and $\bar{E} \times \boldsymbol{B}$ analyzers.

RPA of the preacceleration instrument. The sensitivity of the instrument also remains constant for the entire energy range. Postacceleration also erihances the mass resolution of the instrument at low energies since the angle and energy spread past the electrostatic analyzer is reduced by the acceleration potential which precedes the $\bar{E} \times \bar{B}$ analyzer.

A second improvement is the incorporation of dualchannel operation, achieved by placing a second set of deflection plates nested within the radius of the first one. Such a nested geometry allows increase in instrument volume while providing a two-fold increase in data acquisition speed with minimal increases in weight and power consumption over those of the single-channel device. This dual-channel feature also allows the mass resolution of the instrument to be increased at higher mass numbers. As described above, single-channel $\ddot{E} \times \bar{B}$ filters of this type have been designed so that low mass-number ions are detected when the radially inward electrostatic deflection force is minimized. An increase of the deflection voltage then allows the detection of higher mass-number ions, but with decreasing
mass resolution since as $M / q \rightarrow \infty$, the $\bar{E} \times \bar{B}$ filter becomes essentially an electrostatic analyzer. With two channels, one can use a stronger magnetic field (or a larger radius), thereby optimizing the instrument at an intermediate mass number (e.g., O^{+}or C^{+}). Then, the outer channel can acquire higher mass-number ions in the manner described above using a radially inward electrostatic deflection force, while the inner channel simultaneously covers the lower mass numbers by using a radially outward deflection electric field. This approach has been verified by trajectory computations, and a prototype instrument is now under construction.
An additional improvement has been achieved by the use of spherical. electrostatic nalyzers instead of the cylindrical units (Fig. 2). This geometry provides an extra large angle of view in at least one dimension (perpendicular to the plane of particle deflection), and, if a 90° deflection angle is used, enables one to measure the angular distribution of particles when a positionsensitive detector is used at the exit aperture.
The principle of device operation and detailed description of the prototype instruments as well as the use of

I. OPERATIONAL PRINCIPLES

The analysis of charged particle optics in crossed \bar{E} and \bar{B} fields has been performed by some in cylindrical geometry, ${ }^{\text {,-7 }}$ and a brief review is made in this chapter with the intention of clarifying the meanings of different parameters used in the instrument descriptions. The idealized field sector geometry is shown in Fig. 3 where, for simplicity, no fringing field effect is considered. The magnetic field \bar{B} is uniform within the sector boundary and is directed parallel to the z axis of the cylindrical coordinates of r, ϕ, and z. The radial eifectric field is generated by the use of a set of coaxial plates. Charged particles introduced into the field region are deflected by the combined effect of both electric and magnetic fields.

Suppose the fields are adjusted so that an ion with mass per unit charge ratio of m_{0} and velocity v_{0} is deflected along the central trajectory of radius r_{0}. The ratio, of centripetal force by electrostatic field to the total deflection force is defined as

$$
\begin{equation*}
f=c E_{0} /\left(m_{0} v_{0}^{2} / r_{0}^{\prime}\right), \tag{1}
\end{equation*}
$$

where e is the unit positive charge and E_{0} is the electric field at $r=r_{0}$. The quantity f is a measure of the relative deflection forces due to electrostatic and magnetic sources, and is either positive for radially-in or negative for radially-out \bar{E}-field orientation. The magnetic field force on the ion is then

$$
\begin{equation*}
e v_{0}^{\prime} B=(1-f)\left(m_{0} v_{0}^{2} / r_{0}\right) . \tag{2}
\end{equation*}
$$

The motion of a particle other than those on the central trajectory can be described by an equation of motion in

Fic. 3. Basic geometry of a cylindrical $\dot{E} \times \dot{B}$ field sector used for ion trajectory analysis.

cylindrical geomerry, which can be solved analytically if first-order approximations are used for certain of the paramelers as follows:

$$
\begin{gather*}
v=v_{0}(1+\mid \beta), \tag{a}\\
m=m_{0}(1+\epsilon), \tag{b}
\end{gather*}
$$

and

$$
\begin{equation*}
r=r_{0}(1+\rho), \tag{c}
\end{equation*}
$$

where β, ϵ and ρ are all $\& 1$.
Using the above approximations and the relationship's between r, ϕ, and t, a second-order differential equation of ρ as a function of ϕ is obtained as .

$$
\begin{equation*}
\frac{d^{2} \rho}{d \phi^{2}}+\rho\left(1+f^{2}\right)=\beta(1+f)+\epsilon, \tag{4}
\end{equation*}
$$

where only first-order terms in ρ, β, and ϵ are preserved, Solving for ρ with boundary conditions given in Fig. 3,

$$
\begin{equation*}
\rho(\phi)=A \sin k \phi+B \cos k \phi+[\beta(1+f)+\epsilon], \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& k^{2}=1+f^{2} \\
& A=\alpha / k \\
& B=\left(d+\alpha I_{0}\right) / r_{0}-[\beta(1+f)+\epsilon] / k^{2},
\end{aligned}
$$

with $\alpha(\ll 1)=$ angle of incidence at the entrance aperture, $d=$ displacement of particle entrance position from the aperture center, and $I_{0}=$ object distance.

After leaving the field region the particle follows a straight path to the exit aperture plane, assuming no fringing field effect. The displacement of the intercept point from the point of central ion trajectory at the exit aperture plane is then expressed as

$$
\begin{equation*}
D=\left.\frac{d \rho}{d \phi}\right|_{\Phi}[1-\rho(\Phi)] l_{i}+\rho(\Phi) r_{0} \tag{6}
\end{equation*}
$$

where l_{l} is the image distance and Φ is the field sector angle.

Equation (5) is used to evaluate D, and the resultant terms are grouped to represent effects of various sources of dispersions as

$$
\begin{align*}
D= & D_{a}+D_{\beta}+D_{d} \\
= & \left.\alpha\left[r_{0} / k-l_{1} l_{\mathrm{e}} k / r_{0}\right) \sin k \Phi+\left(l_{0}+l_{1}\right) \cos k \Phi\right] \\
& +\beta(1+f+\epsilon / \beta)\left[\left(l_{1} / k\right) \sin k \Phi+\left(r_{0} / k^{2}\right)(1-\cos k \Phi)\right] \\
& \ddots \quad+d\left[\cos k \Phi-\left(l_{i} k / r_{0}\right) \sin k \Phi\right] . \tag{7}
\end{align*}
$$

D_{a} is the dispersion due to the angular divergence at the entrance aperture, while D_{B} results from the deviation of ion velocity and mass from those of the central trajectory ion. The last term is the magnification effect of the ion optics. For first order angular focusing ($D_{\alpha}=0$), the terms inside the first bracket should reduce to zero, or

$$
\begin{equation*}
\left(I_{i}+l_{0}\right) /\left(r_{0} / k+l_{1} l_{0} k / r_{0}\right)=-\tan k \Phi . \tag{8}
\end{equation*}
$$

For example, for a purely electrostatic cylindrical analyzer with $I_{i}=I_{0}=0$, angular focusing occurs when.
$k \boldsymbol{\phi}=\pi$ where $k=\left(1+f^{2}\right)^{1 / 8}=2^{1 / 8}$. Also, for a purcly magnetic analyzer, $=1$ and the ions are focused in angle if $\Phi=\pi$. For any value of k between 1-2 $\mathbf{2}^{1 / 2}$, the focusing should occur between $\pi / 2^{1 / 2}$ and π as both field components contribute in deflecting the ion. In other words, if the field sectorangle Φ is set to a value between the two limits, there is a corresponding value of f for which the angular focusing occurs for the ions of given mass-per-charge and energy-per-charge ratios. Since the electrostatic energy analyzer preceding the $\dot{E} \times \bar{B}$ analyzer can be made to be angular focusing at all energies, the complete instrument can be designed for first-order angular focusing at selected ion energy and mass number combinations.

To achieve focusing in energy as well as in angle, the energy dispersion of the electrostatic analyzer should be compensated by the equal but opposite dispersion in the $\dot{E} \times \bar{B}$ analyzer while maintaining the angular focusing conditions. The velocity dispersion of an angularlyfocusing electrostatic analyzer is obtained from Eq. (7) by keeping $\epsilon=0$ (uniform mass-per-charge), $f=1$ and $k \Phi=\pi$, resulting in $D_{\rho E}=2 \beta r_{o E}$ where the subscript E is used to denote the electrostatic analyzer.

The velocity dispersion D_{β} in the $\bar{E} \times \bar{B}$ analyzer is given similarly:

$$
\begin{align*}
D_{\beta} & =\beta\left(1+f_{0}\right)\left(r_{0} / k^{2}\right)(1-\cos k \Phi) \\
& =\beta\left(1+f_{0}\right)\left[2 r_{0} /\left(1+f_{0}^{2}\right)\right], \tag{9}
\end{align*}
$$

where f_{0} is the value of f for which the angular focusing condition is satisfied. For double focusing,

$$
\begin{equation*}
D_{\rho E}=D_{\beta}, \text { or } r_{0 E}=r_{0}\left(1+f_{0}\right) /\left(1+f_{0}^{2}\right) \tag{10}
\end{equation*}
$$

The mean radius of the electrostatic analyzer, $r_{O E}$, rangès from $1.0 r_{0}$ for $f_{0}=0-1.207 r_{0}$ for $f_{0}=2^{1 / 2}$. Thus, the mass spectrometer can be made double focusing in energy and angle at a selected combination of ion mass and energy by adjusting the radius of the electrostatic analyzer within the limits with respect to that of the $\dot{E} \times \bar{B}$ analyzer.

Even for an instrument with postacceleration (an acceleration potential is applied between the electrostatic and $\bar{E} \times \bar{B}$ analyzers), the angular focusing condition previously discussed is still applicable as the two component analyzers are operating independently to achieve angular focusing as a complete instrument. The amount of angular dispersion at other than the focusing condition becomes smaller for the instrument with postacceleration, especially for ions whose initial energies prior to acceleration are less than those gained by the postacceleration. As explained in the previous section, the acceleration is required to accomplish a wide dynamic range of operation (from a few $e \mathrm{~V} / \mathrm{e}$ to tens of thousands of $e \mathrm{~V} / e$) without the benefit of an electromagnet by raising the minimum energy of the ions to the level required by the permanent magnet. In contrast to postacceleration, a preacceleration scheme (applying acceleration before the ions are introduced into the electrostatic analyzer) required an additional analyzer (a Retarding Potential Analyzer) for low-energy ions,

Fio. 4. Schematic presentation of the dualchannel fast ion mass spectrometer (FIMS).
adding to the complexity of the basic instrument. The double-focusing characteristic is also obtained in the instrument with postacceleration, but at a different value of $r_{O E}$ from that of an otherwise identical preacceleration instrument. In the limiting case for which the initial ion energy per charge is much bigner than the energy gained by the postacceleration, a similar double-focusing condition applies to both. For liow-energy, low-mass ions, the angular focusing occurs near $\phi=\pi / 2$ in deflection angle as all the ions are essentially monoenergetic and parallel in motion when introduced into the $\bar{E} \times \bar{B}$ analyzer. This angle is smaller than the minimum possible angle of $\pi / 2^{1 / 2}$ for angular focusing of an $\dot{E} \times \dot{B}$ analyzer. In other words, there is a lower limit in energy for which the double focusing occurs for such an instrument. This limit, however, does not necessarily degrade the mass resolution of the instrument at low energies since the angular dispersion becomes very small for the same low-energy level.
The preceding discussions were verified through raytracing calculations on a computer graphics terminal. The design of the instrument was initially based on the results obtained from the simulation. Details of the instrument are given in the following section.

II. INSTRUMENTATION

Figure 4 shows a schematic drawing of the instrument with cross-sectional plane parallel to the base plate. The
prototype was built and calibrated in the laboratory. The calibration results are discussed in the next section. The instrument utilizes two ion channels which enable us to collect data at twice the speed of a single-channel device. The two channels are in a nested configuration, so that the additional weight and volume amounts to only a fraction of those for a single channel instrument. Five major functional units make up the physical structure of the instrument excluding the electronics system. These units include the front aperture, the electrostatic analyzer unit, the intermediate aperture, the $\tilde{E} \times B$ analyzer unit, and the exit aperture/detector unit.

A. Front aperture

The front aperture unit works as a mechanical limiter of the viewing angle of the instrument. The unit consists of a four-stage baffle and a grounded grid which shields ions from the electrostatic leakage field of the deflection plates. The last two baffles are machined to exact opening slit sizes ($2.5 \times 120 \mathrm{~mm}$) and viewing angles ($\pm 10^{\circ}$ azimuthal $\times \pm 12^{\circ}$ polar) and are biased to a slightly positive potential with respect to the instrument body to repel ions of energies lower than the design limit. Particles within the viewing angle and direction are introduced into the two cylindrical electrostatic analyzer channels with little disturbance from the front aperture as there is only one grid of high transparency ($\$ 91 \%$).

B. Electrostatic analyzer
 OF POOR QUALITY

The two channels of the electrostatic analyzer have mean radii of 6.92 and 8.92 cm each for inner and outer channels, respectively. The ratio of plate separation to mean radius ($\Delta r / r_{0}$) of a channel is set the same for both of the channels to have, the same energy resolution since $\Delta E / E \propto \Delta r / r_{0}$ in a first-order approximation. The same $\Delta r / r_{0}$ ratio for both channels also results in ions of the same mean energy being deflected through the central radii of the two channels, thus facilitating direct comparison of data between the two even when a common power supply is used for both.

The sector angles of the two analyzer channels are both 112°. Equation (8) demands that the sum of the image and objuct distances be different between the two channels if the same sector angle is used for both. For practical reasons, however, the same image and object distance of 1.0 cm is used for the two channels. The top and bottom edges of the deflection plates are machined to have blunt ribs with circular cross sections. This feature helps to maintain the mechanical rigidity of the thin ' aluminum deffection plates and also to reduce the electrostatic fringing field effect near the edges. The plates are mounted on the base plate and top plate of the housing through Kel-F insulating mounts. The internal area of the deflection plates, which is exposed to the chantiel, is gold blackened for the effective absorption of energetic photons and the prevention of multiple ion scattering, both of which can cause high background count. The gold black is obtained through carefully controlled evaporation of gold in a vacuum chamber with backfilled gas ($98 \% \mathrm{~N}_{2}$ and $2 \% \mathrm{O}_{2}$) maintained at a pressure of ~ 2 Torr. The common practice of serrating the internal surface of the deflection plates is omitted for ease of machining in the prototype instrument.

C. Intermediate aperture

Energy-selected ions from the electrostatic analyzers are angularly focused to a pair of-grounded intermediate apertures of widths 3 and 4 mm for inner and outer channels, respectively. The intermediate aperture selects ions within a predefined energy bandwidth and then passes them to the postacceleration region between the grounded plane and anôther set of matching apertures located on the $\bar{E} \times \bar{B}^{\prime}$ analyzer unit. The postacceleration potential should add enough energy to the ions ($-3400 \mathrm{eV} / e$ for the prototype) to guide the lightest ion ($\mathrm{H}+$) through the inner channel at the given radius and flux density of the $\bar{E} \times \bar{B}$ analyzer. The intermediate aperture unit also includes a channel electron multiplier as an ion detector, which is located against the inner channel of the electrostatic analyzer, but vertically offset from the main aperture slit. This detector is used as an energy monitor which measures the energy distributions of the total ion population. All aperture openings have beveled knife edges to reduce any off-angle scattering of particles.

D. $E \times$ E analyzer unit

The energy-filtered, postaceelerated ions are introduced into the two channels of $\tilde{E} \times \tilde{B}$ analyzer unit. The unit consists of a magnet assembly and two sets of electrostatic deflection plates. The magnet assembly uses two $\mathrm{SmCo}_{\mathrm{s}}$ permanent magnets, pole shoes, and a yoke system which completely enclosies the magnetic field region, except for the aperture openings at the inlet and outlet. The entire $\hat{E} \times \bar{B}$ analyzer unit is biased to -3400 V from the instrument body for postacceleration. The initial yoke design was verified by a two-dimensional magnetostatic computer code to achieve uniform flux density inside the field region at minimum weight and low-leakage flux. The complete analyzer unit weighs $2,8 \mathrm{~kg}$ in the present design, where elaborate machining was avoided for simplicity. The magnet weight can be reduced, if required, by as much as 25% by further trimming of the yoke. The magnets generate an average flux density of 1330 G in a 3.0 cm gap between pole shoes, and the maximum flux density change within the volume of the channel is approximately 1% of the average value except for the regions near the entralice and exit sides of the channels, where a fringing field effect arises.

The magnetic leakage was measured at not more than 0.75 G at 10 cm from the surface of the magnet yoke in any direction. Further reduction in leakage to less than 1γ at 1 m seemş easily obtainable if a high- μ foil is :ssed for shielding around the yoke. The sector angle defined by the physical boundary of the magnets was selected through computer programming of the beam trajectory calculation, and was set at 123°, which is the same for the electrostatic deflection plates mounted between the magnet pole shoes. This angle is chosen to have angular focusing condition at a value of f near unity, corresponding to essentially electrostatic deflection of ions of heavy mass and/or high energy. Considering that the angular focusing of a purely electrostatic analyzer with cylindrical geometry is achieved at $\Phi=\pi / 2^{1 / 2}$ if the object and image distances are zero, it is clear that the $\dot{E} \times \bar{B}$ analyzer with 123° sector angle and 1.5 cm object and image distances will satisfy focusing conditions when the electrostatic deflection force is perdominant over the magnetic force.

With the same object and image distances for both channels, the angular focusing occurs at $f=0.75$ and 0.82 for inner and outer channels, respectively, if no fringing field effect is considered. The mean radii of inner and outer channels are 6.0 and 8.0 cm , respectively. The fringing field of the magnet assembly was measured in situ, and the effect was calculated for various ionenergy and mass combinations. For a $3.0 \mathrm{keV} \mathrm{H}^{+}$ion, the magnetic fringing field effect works as if the field boundary is approximately 0.3 cm beyond the pole shoes, and the virtual field sector angle becomes 128.7° in contrast to the physical magnet sector angle of 123°. The electrostatic deflection plates in the $\dot{E} \times \bar{B}$ analyzer unit are machined and gold blackened as described above for the energy analyzer plates.

Fic. 5. Calibration dala from the dual-channel FIMS of cylindrical seometry. Each set of curves is a composite of separate measurements for different ion species, (a) Innerchannel data for $4.7 \mathrm{keV} / \mathrm{e}, \mathrm{H}^{+}$and $\mathrm{H}_{2}{ }^{+}$ions. (b) Outer channel data for $1.0 \mathrm{keV} / \mathrm{e}, \mathrm{He}^{+}, \mathrm{N}^{+} / \mathrm{O}^{+}$and $\mathrm{N}_{\mathbf{2}}{ }^{+} / \mathrm{O}_{2}{ }^{+}$ ions. The label $\mathrm{N}^{+} / \mathrm{O}^{+}$indicates that the peaks are due to nitrogen.

(a)

(b)

E.' Exit aperture and detector unit

The exit apertures are located at 1.5 cm from the field sector boundary, and are composed of two layers of baffles and a set of two limiting slits on a soft-iron plate. The plate forms part of a magnetic yoke system which completely encloses the magnetic field region, minimizing the leakage flux. Ions with selected mass-per-charge emerge from the apertures and are detected by two high count rate ($\because 2 \mathrm{MHz}$) channel electron multipliers (CEM's) set against the apertures. The CEM (Galileo Electro-Optics' 4800 Series) has an input cone of rectangular ($6 \times 20 \mathrm{~mm}$) opening, which is larger than the exit aperture slit sizes. The bias voltage is individually adjusted to achieve a gain of $\sim 1 \times 10^{8}$, and ranges from $2200-2700 \mathrm{~V}$. The bias voltage of the CEM's is obtained from the postacceleration potential of the $\dot{E} \times \bar{B}$ analyzer unit, thus eliminating the use of an extra power supply. Different types of material are being considered for the shielding of CEM's against penetrating high-energy radiation, including gold and polyethylene combinations.

III. INSTRUMENT CALIBRATION

The calibration of the instrument has been performed using an ion accelerator facility at Los Alamos Scientific Laboratory. The accelerator main chamber contains a gimballed platform on which the instrument is mounted. Ions are generated by a duo-plasmatron type gun, and are postaccelerated to a desired energy level. A massselecting magnet is set between the gun and the flight tube of approximately 3 m in length. The beam intensity ${ }^{\prime}$ and cross sectional distribution are monitored by a set of electron multipliers inside the main chamber next to the beam opening. The chamber is pumped by a combination of ion and turbomolecular pumps to a low 10^{-6} Torr range in pressure. Calibration parameters include the ion species, energy, the orientation of the instruments in' two angles, electrostatic analyzer plate voltages, and the $\bar{E} \times \bar{B}$ analyzer plate voltages to determine the energy and mass resolutions, viewing angles, and deflection sensitivity of the electrostatic plates. The instrument response to ions of isotropic distribution is simulated by integrating the data over all angle and energy settings

Fig. 6. The response curve in polar viewing angles for a spherical electrostatic and cylindrical $\dot{E} \times \dot{B}$ analyzer combination.
of the instrument. Figure 5 shows some of the data obtained using $4.7 \mathrm{keV} / \mathrm{e} \mathrm{H}^{+}$and $\mathrm{H}_{2}{ }^{+}$ions on the inner channel. The two mass peaks show resolutions ($\triangle M / M$) of $\sim \mathbf{0} .15$ for H^{+}and $\mathbf{0 . 2 5}$ for $\mathrm{H}_{2}{ }^{+}$at FWHM. The resolution gets better than 0.1 for H^{+}ions of energies below 1.0 keV .

The outer channel calibration data at ion energy of 1.0 $\mathrm{keV} / \mathrm{e}$ are given in Fig. 5(b). Only He^{+}and heavier ions were used in the calibration of the outer channel. The separation of peaks between $\mathrm{N}^{++} / \mathrm{O}^{++}$group and $\mathrm{N}^{+} / \mathrm{O}^{+}$ group ions is large enough for unambiguous identification, which is true for energies up to and above 10 $\mathrm{keV} / \mathrm{e}$. The instrument viewing angles vary with the change of ion energies, but generally range between $\pm 5^{\circ}$ and $\pm 8^{\circ}$ for both polar and azimuthal angles. The energy resolution is quite uniform over entire energy range, and is typically about 7%. The geometric factor, slightly dependent on the ion energies, is estimated at $-1 \times 10^{-3} \mathrm{~cm}^{2}-\operatorname{ster}(\Delta E / E)$.

IV. USE OF SPHERICAL ELECTROSTATIC ANALYZER IN COMBINATION WITH CYLINDRICAL $\bar{E} \times \bar{B}$ ANALYZER

. On a spin-stabilized satellite, an instrument with its viewing direction perpendicular to the spin axis can scan the whole 4π steradian solid angle per spin if the viewing angle on a plane including the spin axis is 180°. It is thus very advantageous to develop an instrument which has an extra large viewing angle in at least one plane with an ability to resolve the angular response. The mass spectrometer discussed in preceding sections has viewing angles in both polar and azimuthal directions of between $\pm 5^{\circ}$ and $\pm 8^{\circ}$, while a wider angular acceptance is often desirable. A modified mass spectrometer has been developed to meet this objective through the use of a spherical electrostatic energy analyzer as shown in Fig. 2. The spherical analyzer has a 90° deflection angle in the plane of trajectory and the apex of the $1 / 8$ of a sphere is used for particle inlet aperture.
small area-wide polar angle flux at the inlet aperture converts itself to a large area-parallel flux at the exit aperture after the particles have traced out great circle trajectories of 90° in defection. As before, the particles emerging from the exit aperture are introduced into the $\tilde{E} \times \boldsymbol{B}$ analyzer channels for mass analysis. Since the exit positions of parallel particle trajectories correlate uniquely to the particle inlet angles, and the relative positions of particles are conserved in the $\dot{E} \times \vec{B}$ analyzer where there is no force in z-direction, the original particle inlet angle can be recovered at the detector plane if a position sensitive detector is used. A microchannel plate with resistive anode üppears the most promising candidate for the detector while an array of channel electron multipliers could also be used. A prototype of the instrument combining 96° spherical electrostatic analyzer with a cylindrical $\dot{E} \times \tilde{B}$ analyzer was chosen to verify the feasibility of the novel idea. 96° deflection angle was selected in the prototype device to have focusing in polar angles to a point detector located beyond the exit aperture of $\bar{E} \times \bar{B}$ analyzer. The calibration data shown in Fig. 6 shows the wide (34° at FWHM) angle of acceptance in polar angle.
It was also verified that the mass resolutions of the spectrometer with such configuration was quite comparable to those of cylindrical geometry. The magnetic field sector angle must be changed from that of the cylindrical configuration since the ions incident on $\bar{E} \times \bar{B}$ analyzer are all parallel in the plane of deflection (azimuthal angle). The initial angular focusing (in the deflection plane) occurs at a deflection angle between $\pi / 2^{3 / 2}$ and $\pi / 2$ for the parallel ions, which makes the $\int \bar{B} \times d /$ factor too small to differentiate high AMU ions. A sample run of trajectory calculations is given in Fig. 7. The previously mentioned postacceleration still applies to the new scheme with the similar effects, raising the minimum energy of ions before being analyzed in the $\bar{E} \times \bar{B}$ unit and also straightening the ion trajectories for less angular spread.

Fig. 7. Ray tracing of ions in a spherical electrostatic and cylindrical $\tilde{\boldsymbol{E}} \times \bar{B}$ analyzer combination.

V. DISCUSSIONS

The use of cylindrical electrostatic and $\dot{E} \times \dot{B}$ analyzers in space-borne ion mass spectrometers has led to the achievement of high mass resolutions over wide ion encrgy ranges. Further improvements have been made possible by the use of more than one channel and the adoption of postacceleration between electrostatic and $\dot{E} \times \dot{B}$ analyzers as established by the calibration data of a laboratory prototype. The use of multiple channels increases the data acquisition speed with little penalty on weight and volume, When a high mass resolution is needed for ions with high mass-to-charge ratios, the magnetic flux density and the postacceleration potential of the $\bar{E} \times \tilde{B}$ analyzer can be optimized for such ions on the outer channel. Ions of lower mass-to-charge ratios are then analyzed through the inner channel, which not only provides naturally smaller channel radius, but also work with reversed (radially-outward) electrostatic field to guide the ions through the channel. The - postacceleration brings the mass resolution of the instrument to a still higher level, especially when the ion energy per charge is lower than the acceleration voltage. A mass spectrometer of this design has a mass resolution which is high enough to distinguish between O^{++}, O^{+}and NO^{+}up to several keV / e.
For a large polar angle response of the mass spectromcter, a spherical electrostatic analyzer was tried in place of the cylindrical unit. A laboratory prototype provides
up to 34° FWHM response angle with slightly reduced geometric factor when the same magnet was used in both. It can also provide angular resolutions in polar angles if a position sensitive detecior is used on the exit aperture plane.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to all who contributed to this project. Special thanks go to Bill Tomlinson, Russ Williams, John Brune, and Tom Booker for their work involving instrument design and fabrication, and to Drs. Jack Asbridge, John Lynch, and Sam Bame for many discussions and detailed designs leading to the incorporation of spherical section front end clectrostatic analyzer, and for their help in calibrating the instrument. This project was partially supported by NASA Contract Nos. NAS5-24301 and NASW-3237, and by the Southwest Research Institute, Internal Research Panel, and the U.S. Department of Energy.
${ }^{1}$ E. G. Shelley, R, G. Johnson, and R. D. Sharp, J. Geophys. Res., 77, 6104 (1972).
${ }^{2}$ K.'W. Ogilvie, N. Mcllwraith, and T. D. Wilkerson, Rev. Sci. Instrum. 39, 441 (1968).
${ }^{3}$ H. Balsiger, P. Eberhardt, J. Geiss, A. Ghillmetti; H. P. Walker, H. Loidi, and H. Rosenbauer, Space Sci, Instrum, 2, 499 (1976),
${ }^{4}$ E. G. Shelley, R. D. Sharp, R, G. Johnson, J/Geiss, P. Eberhardt, H_{2} Balsiger, G_{4} Haerendel, and H. Rosenbauer, IEEE Trans. Geosci. Electron., GE-16, 266 (1978).
© R. Herzog, Z. Phys, 89, 44 (1934).

- E. G. Johnson and A. O. Nier, Phys, Rev, 91, 10 (1953).
' D. Fischer, Z, Phys., 133, 471 (1952).

III. ELIGHT UNIT CONSTRUCTION

The two FIMS flight instruments were constructed in the laboratories of the Department of Space Sciences at Southwest Research Institute during the period of June through September 1981. A considerable amount of the flight unit construction was performed in clean room facilities owing to the sensitivity of the solid state detectors to contamination from airborne particulate and vapor contaminants. Figures 3 and 4 are photographs of the FIMS A and B flight units.

Appendices A and B of this report contain complete hardware and sof tware reference manuals for the two flight instruments. It will be noticed that the instruments each have an associated Central Electroniss Package (CEP) which provides control and data acquisition services for the spectrometers. The CEP associated with the FIMS A instrument was constructed primarily from widetemperature CMOS digital circuitry. The system consisted of three primary subsystems - the channeltron scalers, paralisl-to-serial converters, and the programmable power supply (PPS) controllers. The output of each of the three FIMS A channeitrons was connected to a 16 -bit linear accumulator. All three sets of accumulators employed tri-state output buffers so that a single common data bus could be constructed from their commonly connected outputs.

This data bus, in turn, was connected to a single, 16-bit parallel-toserial converter. The parallel-to-serial converter was used to format channeltron (and PPS command) data for subsequent transmission to the CENTAUR rocket's P.C.M. telemetry encoder. Control of the PPS's was provided by a PROM-stored sequence digital controller. At the P.C.M. system's minor frame rate, a binary counter within the PPS controller was incremented. The counters' output was used to form an effective address into the stored PPS command word table. Two such circuits were utilized, one each for the mass and energy programmable high-voltage power supplies. This rather simple procedure ensured that the power supply step levels were synchronized with the telemetry system's clock.

The CEP for FIMS B was a microprocessor-based system. As shown in the schematic diagrams contained in Appendix B, the FIMS-B controller was constructed from a few LSI microprocessor components. The system used an 8085 microprocessor with software stored in a single 8755 PROM/peripheral interface adaptor chip. The interface to the microchannel plate detector electronics was made through ons of the parallel $1 / O$ ports on an $8155 \mathrm{RAM} / \mathrm{I} / \mathrm{O} / \mathrm{timer}$ chip. A "ready" flag from the microchannel plate electronics was used to strobe data into the 8155 and to interrupt the 8085.

The function of the FIMS B microprocessor system was similar to that of a conventional laboratory multi-channel analyzer. Two 64-channel data memories were maintained by the system during spectrometer operation. As the detector electronics strobed its 7 -bit wide digital data word into the 8155 , the interrupted 8085 would read this data word as a pointer into data memory. The data word pointed to would then be incremented by one.

Seperate interrupts were routed to the 8085 from the P.C.M. system's minor and major frame rate clocks. Hiese additional interrupts were used to increment 8085 internal registers which, in turn, were used as pointers into a table of PPS command words. In a manner analogous to that of the FIMS A CEP, the FIMS B CEP was able to usc the P.C.M. clock-interrupts just described to synchronize its PPS settings to telemetry timing. Measurements stored in the data memory were sent to the telemetry system through simple 8-bit shift registers.

The two FIMS instruments, each equipped with a pair of programmable high voltage power supplies and a central electronics package, were integrated into their respective rocket payloads ir early September, 1981. After a brief series of interface tests with the rcikets' systems, both instruments were turned over to the payload integrator on 13 September 1981.

FIGURE 3. FIMS-A FLIGHT INSTRUMENT WITH CEP

ORIGINAL PAGE IS

 OF POOR QUALITY

The FIMS A and FIMS B flight units were calibrated in the SwRI RAMTAC (Right Angle Deflecting Ion Accelerator) system in September 1981. A photograph of the calibration system appears in Figure 5, and a schematic diagram of its operation is shown in Figure 6. Close-up views of the ion generation syetem appear in Figure 7. The system is fully computer-automated except for the ion generator, which requires some manual settinge. Automation is accomplished with a Hewlett-packard 2113E minicomputer, which communicates with the calibration system, and the instrument under test, through a CAMAC interface system. This system controls the beam energy, the orientation of the instrument relative to the beam axis, and the various deflection potentials required in the instrument, while acquiring and storing the output data. An example of the excellent mass discrimination obtained with the mass spectrometer that is part of the ion accelerator is shown in Figure 8 , in which relative beam current is plotted against the magnetic field produced by the 90° deflection system electromagnet. Purely electrostatic deflection can also be employed when a mixture of beam masses is desired.

An example of the calibration data acquired with the FIMS B instrument in a beam of N_{2} ions is shown in Figure 9. Literally hundrede of such plots were required to characterize the response of the instrument for the full range of parameters over which it operated.

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 7

ION BEAM GENERATION SYSTEM AND MASS SELECTION SYSTEM FOR THE FIMS ION ACCELERATOR SYSTEM. Top Photograph: View from behind the mass-selection electromagnet. Bottom Photograph: View from ion gun side, showing the electromagnet in its retracted position.

FIMSB ANGLE CALIBRATION
$18 \forall 6 \quad \lambda \forall 0$

V. FLIGHT INTEGRATION

The two FIMS instruments were delivered to the payload integrator at SwRI in early September, 1981. Figures 10 and 11 show the locations within each of the two payloads where the instruments were mounted. The entrance apertures of the instruments were oriented 30° up from the $X-Y$ plane as shown in Fig 10.

After a brief "fit check", the instruments underwent a series of interface tests with the rockets' telemetry and power systems. only one minor change had to be made in the rockets' telemetry format for the FIMS A instrument in order to accommodate a minor design problem with the instrument's controller. Neither instrument seemed to be sensitive to mar generated by other instruments or by the rockets' systems (i.e. scan platform) during ground testing, although FIMS B did encounter some EMI problems in filght from the scan platform.

Once the two payloads were checked out they were shipped from SWRI to the Goddard Space Flight Center. Arriving at GSFC on 18 September, the payloads were subjected to the usūal series of integration and environmental tests. The payloads were later shipped to the NASA Wallops Island Tracking Station where the final assembly of the rockets took place and the integrated systems awaited shipment to Cape Perry, N.W.T., Canada.

The expedit._on arrived at Cape Perry on 18 November 1981 and began making immediate arrangements for flight. During the preparations for flight no problems were experienced with either of the two FIMS instruments. The rocket carrying FIMS B (X35.001) was launched on 2 December 1981 at 01:38:01 local time. Telemetry records showed nominal performance from the microprocessorbased controller at launch and throughout the remainder of the flight. High voltage wos applied to the instrument approximately 122 seconds after launch. Monitor circuits on the outputs of the programmable high-voltage power supplies reported normal performance for both supplies. The rocket was at approximately 600,000 ft. altitude when high voltage was applied. Telemetry records indicate normal behavior of all instrument systems for the remainder of the flight.

The rocket bearing the FIMS A instrument (X35.002) was launched on 13 December 1981 at 22:54: i25 local time. Again telemetry records showed normal behavior of all instrument systems throughout the flight. High voltage was applied to the instrument at approximately 121 seconds after launch. No signs of high voltage-breakdown were seen in telemetry data records for the duration of the flight. Neither of the two rockets was recovered following flight.

[^1]
ORIGINAL PAGE IS

 OF POOR QUALITY

FIGURE 11.

VI. DATA ANALYSIS

Analysis of data from the two project CENTAUR sounding rockets is being performed on the SwRI Space Sciences Data Analysis facility. The primary computational system is the VAX $11 / 750 \mathrm{CPU}$ with 120 MB disk and tape drive that were partially funded through this contrct. Data display is being performed on our Chromatics CG 7900 color graphics system, which, for this application, is employed as a terminal to the VAX 11/750.

Up to this time only cursory examinations of the data have been performed, since the VAX system has only recently been placed into operation. Detailed data analysis will be performed over the next six months and the results will then be published in appropriate journals, In particular, the Canadian Journal of Physics plans to have a special issue on Project CENTAUR, and one or more papers on the FIMS results will be submitted.

Examples of the FIMS data displays now being generated are shown in Figures 12 and 13. In Figure 12 data from FIMS B for a segment of the flight of the first CENTAUR payload are presented in spectrogram format as follows. In the top panel, count rates are displayed as grey-scale intensi-ties versus angular channel number (vertical scale) and time (horizontal scale). plotted below the spectrogram are the mass analyzer program power supply (PPS) steps, the energy analyzer PPS steps (both positive and nejative), and the payload magnetometer data. Since the payload was oriented
nearly along \bar{B}, the FIMS B channels sampled neariy constant pitch angles in the range of 30° to 60°. Note in Figure 12 that each of the 16 energy steps are held constant while a mass sweep is made, and that a complete energy-mass cycle requires approximately 20 seconds.

In the spectrogram at the top of Figure 12, where a few of the angular channels for each of the two FIMS B mass channels are plotted as grey-scale intensities, multiple and distinct mass peaks are seen for nearly every mass analyzer PPS sweep. However, one noisy angular channel is apparent in the lower of the two traces, and this particular channel will have to be disregarded in subsequent analyses.

In Figure 13 the FIMS B data are plotted in a different format, but with the same information content as in Figure 12. In these figures each 20-second segment of data is plotted with mass step on the horizontal axis, total count rate for all angular channels on the vertical axis, and energy on the 3rd (or depth) axis. Each energy "plane" is coded in a different color to aid in its identification. The effect of the one noisy angular channel appears as the high baseline or "plateau" that appears on all traces. Although this noisy channel became quiet later in the flight, it does not affect the quality of the data from the other 31 channels. The distinct mass peaks, which we identify as H^{+}, He^{++}, and at times O^{+}, are easily seen in the plots of Figure 13. These plots, and similar ones for FIMS A, will be the primary means of initial scanning of the data, which will then be followed by the required detailed analysis and interpretation.

APPENDIX A

FIMS MODEL A

HARDWARE/SOFYWARE REFERENCE MANUAL

FAST ION MASS SPECTROMETER MODEL A hardware/software reference manual

Submitted to
The National Aeronautics and Space Administration
NASA Headquarters
Office of University Affairs

By
The Space Science Department
Instrumentation Research Division
Southwest Research Institute

Project 15-5680
The work performed under NASA Contract NASW-3237, the Development of a Fast Ion Mass Spectrometer.

September, 1981
$?$

Approved:
folie P Barton.

John R. Barton, Vice President Instrumentation Research Division

TABLE OF CONTENTS

TITLE SECTION
INTRODUCTION \mathbf{I}
QUICK-LOOK TEST INFORMATION II
SIGNAL INPU'S TEST PROCEDURE III
INSTRUMENT CABLING INFORMATION IV
INSTRUMENT TEST RECORDS/HISTORICAL LOG \mathbf{v}
INSTRUMENT CALIBRATION RECORDS VI
INSTRUMENT DESIGN INFORMATION VII

1. INTRODUCTION

This document provides a single location for all pertinent fims operational, calibration and repair information. It is hoped that this document will be of assistance in the field operation of the FIns instrument should any problems arise with the instrument integrated onto its launch vehicle. Sufficient information is contained heroin to troubleshoot the instrument should the occasion arise. All test and calibration records will be kept in this document as well.

The second purpose of this document is to aid in the development of future generations of similar ion mass spectrometers. The experience gained in the laboratory and the field with the FIMS A instrument will be of critical assistance in the development of similar instruments for the OPEN program or for other sounding rocket applications.

The introductory section of this document contains a copy of a paper published in the Review of Scientific Instruments which describes in some detail the geometry of the analyger sections of the FIMS-A and FIMS-B instruments. As is described in this paper, the primary difference between FIMS-A and FIMS-B is in the area of the electrostatic energy analyzer and in the detectors used. The nomenclature "FIMS-A" refers to that instrument which uses the cylindrical energy analyzer and an array of three channel electron multipliers. The "FIMS-B" instrument uses a spherical energy analyzer and a microchannel plate array with resistive anodes. The Central Electronics Packages for the two instruments are also different. The FIMS-A instrument will be flown for the first time on the A rocket payload of the two payloads produced by the SWRI Department of Space Sciences durinte the summer of 1981.

This document will serve as a combination Design Specification and Instrument Log Book and should be kept with the FIMS B instrument at all times. Figures I-1 and I-2 are pictures of the fully assembled FIMS A instrument. Figure I-3 is a block diagram of the total instrument system.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPA

ORIMNAC PMGE
BLACK AND WHWTE PHOTOGRNPH

FIGURE I-3. FIMS INSTRUMENT BLOCK DIAGRAM

II. QUICK-LOOK TEST INFORMATION

This section presents a short, sumnary of the data produced by the FIMS A instrument, the telemetry locations for these data sources and the procedures to be used to stimulate the various sections of the instrument to obtain responses viewable on PCM telemetry. Table I shows a list of the FIMS A data channels, their respective telemetry word locations and word lengths.

To describe the expected responses, via PCM, of the FIMS A instrument it will be assumed initially that the instrument is operating with only its low voltages and without the externally applied stimulus to its test input connectors. At the onset of power to the FIMS Central Electronics Package, the controllers contained therein will begin to produce stepping counts to the two programmable power supplies. These two 9-bit digital words (S31 and S32), are located in word 8, frame 19 and word 9, frame 20, respectively. Figure 1 is an example strip-chart recording of the output of the s3l data channel. The data contained in this channel is produced by the energy analyzer PPS command words. The stepping rate for this word is approximately 1 step/second. It should be noted that Figure 1 is a strip chart recording made with the deflection calibrated for 10 counts/major division. Since the strip chart recorders used in the PCM ground station are normally calibrated for a deflection of approximately 100 counts/major division, the recorder must be recalibrated using the PCM simulator if an exact corresponderice is to be obtained with Figure 1. Such exactness is not necessary for routine operations and a general waveform analysis will be considered adequate.

Telemetry channel 532 corresponds to the mass analyzer program; power supply command words. 532 is located in word 9, frame 20 anc this 9-bit value range from a minimum of zero counts to a maximum of 63 counts. Figure 2 is an example strip chart recording of the waveforms produced by the Central Electronics Package under normal operation. The mass analyzer commands steps at a rate of $1 /$ major frame, or approximately 1 step every 25 milliseconds. Figure 2 is a copy of a stripchart recording made with the deflection sensitivity again set for 10 counts/division. The stripchart recorder speed was $25 \mathrm{mim} / \mathrm{sec}$.

The FIMS A instrument produces a total of 5 channels of serial/digital data and 3 channels of analog data. At the onset of low voltage power only, only the 531 and 532 channels will show any information. Channels 28, 29, and 30 serial/digital words are derived from the instrument scalers and without high voltage beingoperated, no counts will appear in these channels. Likewise, analog channels 38,39 and 40 , corresponding to the float potential monitor, energy analyzer program power supply positive monitor and energy analyzer program power supply negative voltage monitor, will show 0 readings initially.

During the execution of a signal input test to the FIMS A instrument, which is described in the next sectionof this document, count values will begin to appear at serial data channels 28,29 or 30 , depending upon which input is being stimulated. It should be noted that all three of these channels are 18 bit words with the second of the two words in each case
corresponding to the 9 least significant bits of the count. Serial chanmel 28 (S 28) contains the 18 -bit digital count from the energy analyzer. Channel 529 corresponds to the outer mass channel (MA1). The third channel, 530 , is used by the inner or second mass analyzer channel. As stated earlier, all three of these serial/digital channels are 18 bits in length. The 531 and $\lesssim 32$ channels are 9 bits each. As the test input stimulus is applied to the energy analyzer input, word no. 3 of frame 7 will bagin to show counts. Word 2 of frame 7, corresponds to the nine most significant bits of this scaler word. If the setup test procedure for the input signal test is followed properly, it should be possible to see the counts building up as the pulse repetition rate is increased for the energy analyzer input by riewing words 2 and 3 of frame 7. If the test input is applied to mar, analyzer channel 1, (S29), counts will begin to appear in words 2 eid 3 of frame 23. Again, word 3 of frame 23 is the least significant 9 -bits of the 18 -bit word. Finally, as counts are applied to the mass analyzer channel 2, (S30), counts will begin to appear in words 8 and 9 of frame 3 with word 9 representing the 9 least significant bits of the l8-bit scaler. The procedure described in the next section of this document should produce a count of approximately 2300 counts in the 18-bit scaler words.

When high voltage is applied to the FIMS instrument by turning the timed 28 v switch on, the three analog data channels will respond. Analog channel 38, corresponding to the float potential monitor, is located in word 7, frame 23. This monitor will assume an output of approximately 3.2 volts with the onset of high voltage. There should be no modulation on this channel since it represents the output of the PICO-PAK high voltage power supply and is not programable. Analog channel 39, word 6, frame 27, corresponds to the positive output of the energy analyzer program power supply and its output can be seen stepping at the same rate as the digital word described earlier in channel S31. The output range for this monitor will be $0-2.4$ volts. The third analog output from the FIMS A instrument is located in analog channel 40, word 6, frame 19, and it represents the analog output of the negative voltage monitor from the energy analyzer program power supply. It will also step at the same rate as analog channel 39 and its outputs should be of the same magnitude as channel 39 (word 6, frame 27). Only when high voltage is applied and the externally applied stimulus is connected will data be seen on all three analog and three of the five digital channels. Again, with low voltage only applied to the instruments, only channels S31 (word'B, frame 19) and channel S32.(word 9, frame 20) will show any counts. Figures 1 and 2 are examples of the waveforms which should be obtained from these two digital daca channels with a stripchart recorder properly calibrated for 10 counts/ major division.

ORIGINAL PAGE IS OF POOR QUALTTY

FIGURE II-1

FIMS A PCM DATA MATRIX LOCATIONS

Digital Serial Data

Signal Name	Word Length	Matrix No.	Word	Frame
Energy Analyzer Data	18 bit	S28	2 and 3	7
$\begin{aligned} & \text { Mass Analyzer } \\ & \text { Data No. } 1 \text { (inner) } \end{aligned}$	18 bit	S29	2 and 3	23
Mass Analyzer Data No. 2 (outer)	18 bit	S30	8 and 9	3
EA PPS Step No.	9 bit	S31	8	19
MA PPS Step No.	9 bit	S32	9	20

Analog Data

Signal Name	Voltage Level	Matrix No.	Word	Frame
Float Potential (-HVPS)	023.2 V	A38	7	23
$\begin{aligned} & \text { EA PPS + HV } \\ & \text { Monitor } \end{aligned}$	On2.5V	A39	6	27
EA PPS -HV Monitor	002.5 V	A40	6	19

TABLE II-2 ORIGINAL PACE E OF POOR QUALITY

MAIN FRAME CHANNEL NO.
$\begin{array}{lllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 . & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

SUBFRAME: NO.'S

The following equipment will be needed to perform the signal input test of the FIMS A instrument:

1. A pulser or function generator capable of producing IV negative goirig pulses, approximately 50 ns wide into a 50 ohm termination.
2. Two variable HP 355 VHF attenautors.
3. An oscilloscope with performance capable of accurately demonstrating the 50 ns negative-going waveform produced by the pulser.
4. Four lengths of coaxial cable, each terminated with a male BNC type connector.
5. A 50 ohm terminator contained in a standard BNC connector shell.
6. A short length of coaxial cable with a BNC on one end and a SELECTRO No. 51-424-3188 connector on the other end.

To perform the signal input tests, perform the following steps:

1. Connect the output of the pulser to the input of the oscilloscope, through a BNC " T ", the other side of which is connected to the 50 ohm termination.
2. Adjust the output of the pulser as viewed on the oscilloscope to produce a negative-going pulse approximately IV in amplitude, 50 ns wide, with a 20 ns fall time, a 20 ns baseline time and a 20 ns rise time. The baseline voltage for this waveform should be 0 V , with the peak amplitude of -1 V .
3. With the pulser adjusted for the proper parameters to produce the waveform described, install the FIMS test cable described earlier and set the pulse repetition rate to approximately 100,000 pulses/second.
4. Set the HP, attenuators in such a manner that an attenuation of approximately 29 dB is obtained. If no counts are seen in $T M_{r}$ lower the attenaution in 1 dB steps to a minimum level of 20 dB until counts appear.
5. Apply low voltage to the FIMS Central Electronics Package and observe the corresponding count rates on the telemetry channel assigned to whichever input channel is being used on the instrument. For the energy analyzer, the telemetry assignments are words 2 and 3 of frame 7. For mass analyzer channel 1, the telemetry assignments are words 2 and 3 of frame 23; for the second mass analyzer channel, the telemetry assignments are words 8 and 9 of frame 3. With the pulse repetition rate set
to the value mentioned earlier, it should be possible to observe a count of approximately midscale on both words of the 18-bit word scaler. Since the sample period for each major frame is 23.2 ms , the 18 -bit accumulator is capable of count rates of greater than 10 nHz.

Figure III-1 shows the test configuration.

IV. INSTRUMENT CAETETG INFORMATION

This section contains the wiring lists and cable pin connections which were used in the construction of the FIMS instrument. Any problems arising from miswiring can be solved by referring to the original wiring lists for the instrument.

SOUTHWEST RESEARCH INSTITUTE				Code 10. ${ }^{\text {Commber }}$	Lir.	Date
CONNECTORDDSO(P) NMB		TITLE FIMS "A" CEP TO INSTRUMENT \& PPS			SHEET? Of 2	
FROM CONNECTOR	PIN NO.	WIRE ID.	LGTH	SIGNAL DESCRIPTION	PIN NO.	TO CONNECTOR
P76	27			TIMED 28 V TO EA PPS	B	EA-PPS-P1
11	28			CHASSIS (SHIELD)	C	MA-PPS-P1
11	29			28V RTN TO EA-PPS	E	EA-PPS-P1
11	30			TIMED 28V TO MA-PPS	D	MA-PPS-P1
11	31			28 V RTN TO MA-PPS	E	MA-PPS-P1
"	32			MA PAD \#1 DATA	1	FIMS P1
"	33			RETURN	2	
11	34			MA PAD \#2 DATA	15	
11	35			RETURN	16	
11	36			EA PAD DATA	4	
"	37			RETURN	5	FIMS P1
11	38			SHIELD (CHASSIS)	C	EA-PPS-P1
1	39			FLOAT POT. MON	20	FIMS-P1
11	40			RETURN	8	:
"	41			SHIELD (NO CONNECTION AT CEP	21	"
"	42			+8V	18.	11
"	43			-8V	19	"
11	44			COMMON (8V)	6	"
1	45					11
"	46			$+5 \mathrm{~V}$	9	"
11	47			5 V RETURN	10	1
"	48			TIMED 28 V TO INSTRUMENT	13	1
"	49			28 V RETURN	25	"
"	50			CHASSIS	21	FIMS-P1
				ORIRINAL PAGE IS		
				OF POOR QUALITY		

SOUTHWEST RESEARCH INSTITUTE				Code 10.	Number ${ }^{\text {Re }}$	Rev. Lir.	Dore
CONNECTORP73 \quad (37S)		TITLE		FIMS/SPS CEP		SHEET _ L OF 2	
FROM CONNECTOR	PIN NO.	WIRE ID.	$\begin{gathered} \text { LGTH. } \\ \text { FT. } \end{gathered}$	SIGNAL	DESCRIPTION	PIN NO.	$\begin{gathered} \text { TO } \\ \text { CONNECTOR } \end{gathered}$
P73 (375)	1			+5v from LVP	S \#8 (900mA)	8	P97
"	2			COMMON (5 RE		7	11
"	3			$+8 \mathrm{VDC}(50 \mathrm{~mA}$		5	"
11	4			-8 VDC		6	1
"	5			COMMON (8V)		12	"
"	6			-6 VDC		10	"
"	7			+6 VDC		9	"
"	8			COMMON (6V)		NC	$\begin{aligned} & \text { USE BV } \\ & \text { COMMON } \\ & \hline \end{aligned}$
"	9			-5 VDC		11	P97
11	10			COMMON		NC	USE BV COMMON
"	11			TIMED 30 VDC	\qquad	7 6	P93
"	12			30 V RETURN		25	P93
11	13			MF2 ${ }^{3}$		4	P100
11	14			SF2 ${ }^{4}$		5	P100
11	15			SIGNAL RTN (GND)		NC
11	16			GATED CLOCK		9	P100
"	17			MF 2^{3}		14	P101
"	18			SIGNAL RTN (GND)		NC
"	19			FIMS "B" DATA	A 527	1	$J 107$
"	20				S28	2	3107
"	21	ORIGINA	$\angle \mathrm{PAC}=$	13	S29	3	$J 107$
1	22	OF POC	R QUT		S30	4	$J 107$
"	23				S31	5	J 107
1	24				S32	6	$J 107$
"	25			DIGITAL SIGNAL	AL RTN (GND)	7	J 107
1	26			FIMS ENABLE	GATE EG27	8	3107

SOUTHWEST RESEARCH INSTITUTE				Code 10		Number		Rev. Lir.	Date		
$\begin{aligned} & \text { CONNECTOR (37S) } \\ & \text { P74 } \end{aligned}$		TITLEFIMS/SPS CEP		SIGNAL		DESCRIPTION		SHEET 1 LOF 2			
FROM CONNECTOR	PIN NO.	WIRE ID.	$\begin{aligned} & \text { LGTH. } \\ & \text { FT. } \end{aligned}$			PIN NO.	$\begin{gathered} \text { TO } \\ \text { CONNECTOR } \end{gathered}$				
P74(37S)	1			SPS DI	DIGITAL			DATA S12	(SPS)	19	$J 106$
11	2				"	S13		20	11		
"	3				11	S14		21	"		
11	4				1	S15		22	"		
"	5				$\stackrel{1}{ }$	S16		23	1		
"	6				"	S17		24	"		
"	7				"	S18		25	"		
"	8				"	S19		26	"		
1	9					$\mathbf{S 2 0}$		27	11		
"	10					S21		28	1		
"	11					S22		29	\prime		
"	12			DIGITAL	TAL RTN	(GND)		30	"		
"	13			ENABLE	E GATE	EG 12		32	"		
"	14					13		32	1		
"	15				1	14		33	"		
"	16			AEE 16	\%	15		34	1		
"	17	$\begin{aligned} & \text { ORIK } \\ & \text { OF } \end{aligned}$	$\begin{aligned} & \text { NAR } \\ & \text { OOR Q } \end{aligned}$	JALITY	$\mathbf{\gamma}$	16		35	1		
11	18					$\underline{17}$		36	"		
11	19	-				18		37	1		
"	20					-19		38	11		
"	21				1	20		39	"		
"	22					-21		40	1		
"	23				"	22		41	11		
"	24			CHASSIS	SIS			NC.			
11	25			200 kHz	kHz CLOCK			20	P100		
	26			3 STMAL	Al_RETURI	(GND)		NC			

SOUTHWEST	RESEA	ARCH INS	ITUTE	Code 10. ${ }^{\text {Number }}$ N	Rev, Lir.	Dote
CQNNECTOR P74 (37S)		TITLE		FIMS/SPS CEP		SHEET 2 OF 2
FROM CONNECTOR	PIN NO.	WIRE ID.	LGTH. FT.	SIGNAL DESCRIPTION	PIN NO.	TO CONNECTOR
P74(375)	27			SF 2^{4}	9	P101
"	28			SIGNAL RETURN	NC	
11	29			ANALOG DATA A12 SPS 3 kv	12	3110
0	30			SPS 3 kv Al3 -3 kv	13	$1{ }^{\prime}$
"	31			SPS PPS A14 PPS	14	"
"	32			ANALOG RTN (GND)		NC
11	33			CHASSIS CONNECTION TO FIMS		NC
"	34			SF 2^{3}	17	P100
1	35			$5 \mu \mathrm{~s}$ GATE	21	P101
1	36					
"	37					
				- ORICNAL PACE IS OF POOR QUALITY		
	-					
-						

V. INSTRUMENT TEST RECORDS/HISTORICAL LOG

This section of the system reference manual will be used to store all instrument test records taken during the field test and laboratory calibrations of the instruments. Records of shipment and installation and removal of the instrument will be maintained in this section of the document.

DATE LOCATION TEST DESCRTPTIOS

RESULTS:

VI. INSTRUMENT CALIBRATION RECORDS

This section of the system reference manual contains all of the original calibration information taken for the FIMS A instrument. Any subsequent calibrations or modifications to the instrument will be noted both in this section and in the previous section.
FIMS A ENERGY ANALYZER

$470 \mathrm{eV} \mathrm{N}{ }^{+}{ }^{+}$

ortainal pace is
 OF POOR QUALITY

C/S

ORIGINAL PAGE 13 OF POOR QUALITY
0

VII. INSTRUMENT DESIGN INFORMATION

A. Analyzer Design

The details of the design information pertinent to the energy and mass analyzer sections of the FIMS instrument are described in some detail in Section I of this document. In particular, in the scientific paper published by S. F. Hahn and J. L. Burch in the Review of Scientific Instruments, February 1981. No further coments on the analyzer design will be made in this section of the reference manual.

B. CEP Design

Figures 1,2 and 3 are the schematic diagrams of the Central Electronics Package used to control the operation of the FIMS A instrument. As can be seen, the system consists of three circuit boards populated almost entirely of cMOS logic with additional help from low-power Schotky prescalers in the area of the high-speed digital accumulators. Board 1 of the three-board set contains all three digital accumulator channels and their respective output buffer latches with tristate drivers. The control lines to support the operation of the accumulators is provided by a decoded state controller located on Board 2. Basically the accumulators are allowed to acquire counts from their respective pulse-amplifier discriminators located within the detector assembly of the instrument for all but 3 minor frames of the telemetry format. With the receipt of an SF 2^{4} rising edge, the controller on Board 2 inhibits the accumulation of counts from all three accumulators on the scaler board and transfers those accumulated counts into the buffer-store latchets shown on the Board 1 schematic as 54C 374's. As the time arrives for the transmission of the accumulated count information to the telemetry system, the selected digital data channel is enabled and the tri-state outputs of the octal buffer latches are turned on, thus applying the accumulated count output to the input of the systems one and only shift register assembly. The shift register hardware is located on Board 2 of the set. Each of the three accumulator channels is read out at its respective time in the PCM format. For a period of 3 minor frames, the accumulators are disabled by the controller on Board 2. This dead time is necessary because of the flyback period of the programmable power supplies used on FIMS. Since the power supply outputs are not stable for a period of 3 minor frames, it is desired that data counts not be accumulated during this period. As seen in the schematic of Board 1 , each accumulator channel consists of a 14-bit CMOS synchronous counter string preceded by a 4-bit LS counter. The $Q A$ output of the first stage LS counter is brought out as the clock input to the following CMOS counters. This configuration results in the LS counter being used as a high-speed prescaler for the CMOS counters that follow. Since the output of the PAD amplifiers located within the instrument are only 50 ns wide, it is not possible to apply this input directly to the slow CMOS counters, thus the need for the LS prescaler. The board layout for Board 1 is shown as Figure 4 of this document.

Card 2 of the FIMS Central Electronics Package contains all of the instrument controller functions as well as two erasable programmable read-only memory chips in which are stored the PPS commands for both power
mupplies. As seen on the schematic, the instrument controller is keyed to the rising edge of the $S F 24$ timing signal. Each time a transition is seen on this line, the controller clocked by the 200 kHz clock, goes through 7 states which are used to transfer the accumulated count data in the scalers into their respective buffer latches, to fetch and store the next PPS command from the erasable PROMS into low-power octal latehes and to induce the 3 minor frame delay before resumption of count accumulations on the accumulator board. Card 2 thus contains all of the instrument controller functions and it functions basically by keying its activities to the rising edge of the SF 24 clock to perform its duty as controller for the two PPS's and the accumulators. (Board 2 layout is Figure 5.)

Card 3 of the FIMS 8 -card set contains the interface logic used to receive the incoming signals from the PCM subsystem. As seen in the schematic, the typical electrical interface consists of a 10 K hm pull-up resistor and shunt, with a 100 picofarad capacitor. The line receivers used in this application are 54C of 914's, yielding a high-noise immunity, medium-speed interface circuit. (Fig. 6 is board 3 layout.)

The FIMS A instrument central electronics package is completely hardware controlled; thus, only the PRS commands are stored in PROM and no other software operations are involved. Figure 7 shows component list for the CEP.

The intra-instrument cable details for the FIMS A CEP are shown in Figure 8 of this document. They are provided here should any changes be necessary or construction of any additional cables be required.

C. Programmable Power Supplies

FIMS-A uses two programmable high voltage power supplies. Both power supplies were constructed from the design drawings prepared by the Goddard Space Flight Center for use on the HAPI and LAFI instruments on the Dynamics Explorer Satellite.

A few design changes were made to the power supplies to adapt them to the scientific and operational requirements of the rims/Centaur rocket program. The two power supplies used by FIMS are referred to as the energy and mass units, corresponding to the two sections of the instruments analyzer. The energy supply is very similar to the standard $D . E$. design. Table VII-1 shows the relationship between the 6-bit programming code word and the high voltage output.

The mass analyzer power supply is considerably different from the basic P.P.S. design, the principal difference being that this supply has its high voltage output floated at the -3200 VDC bias used for the mass analyzer float potential. To realize this objective, a considerable effort was invested in insulating the electronics within the supply from the chassis-grounded case of the power supply. The inner surfaces of the case of the power supply are lined with a fiberglass material to prevent high voltage breakdown.

The second major change was the addition of a set of six optical couplers to interface with the 6-bit parallel command interface to the CEP. In summary, the mass P.P.S. has its high voltag' return connected to the minus high wiltage output of the HVPS, thus floating most of the circuits within the supply at -3200 V . A 50 -megohm resistor was placed in series with the high voltage return line to the minus high voltage output of the bias power supply (PICO-PAK).

The third major change was the modification of the input multiplexer circuit and the output voltage range. The resistor network for - RiN and RF was changed to allow the output voltage to step from a maximum of 982 V to a minimum of 25 V in 64 steps.

Table VII-2 shows the relationship between the 6-bit programming code and the high-voltage output of the mass suppily.
D. High Voltage Power Supply (HVPS)

The FIMS-A instrument uses a single HVPS to provide the float potential for the mass analyzer deflection plates and the bias for the channc electron multiplier. A standard PICO-PAK Model PP9N provides the bias potential. The pages following contain specification shects for the unit used on FIMS-A. The high voltage output has been adjusted to $\mathbf{- 3 2 0 0}$ VDC for this application.
E. Fims Instrument Detector Assembly

The detector assembly as shown in the introductory section contains two (2) printed circuit boards containing the charge/preamplifiers for thres channel electron multipliers, analog-buffer circuit for monitoring the float or bias potential and the necessary voltage divider resistor networks for the CEMs. The schematic diagram for the instrument is shown in Figure 9 and the component parts list is shown in Figure 10.

I. SPECIFICATIONS

A. Electrical

1. Input Voltage: 28 ± 4 volts; negative ground.
2. Regulation:

Line: < $\pm 0.4 \%$
Load: (50 t. 250 mW output): < $\pm \mathbf{1 . 5 \%}$
-3. Ripple: <0.007\% peak to peak. *
4. Output power: $250 \mathrm{~m}_{\mathrm{k} i}$ maximum.
5. Output voltage: See Table 1 below.
6. Input current: See Figure 3.
7. Temperature drift: $< \pm 1 \%$ from $-30^{\circ} \mathrm{C}$ to $\pm 71^{\circ} \mathrm{C}$
8. Dynamic load regulation: Equivalent power supply source impedance $<100 \mathrm{~K} \Omega$ at 1 KHz to $<1 \mathrm{~K} \Omega$ at 0.5 MHz .

TABLE 1

MODEL VOLTAGE RANGE \quad| $\frac{\text { MAX WEIGHT IN GRAMS }}{\text { Without }}$ |
| :---: |
| Output Protect in Protect'n(L) |

PP-5	$400-725$ volts	110	150
PP-6	$725-1300$ volts	110	150
PP-7	$1150-2000$ volts	140	280
PP-8	$1500-2600$ volts	140	180
PP-9	$2300-4000$ volts	160	200

A "P" or "N" in the model number indicates positive or negative output polarity.

The letter "L" in the nodel number indicates current limited to protect against short-circuit or overload damage.

Example: PP-7-N is negative, not output protected; PP-7-PL is positive, and is output short-circuit protected.

* Ripple is measured with input and output returns connected to case.

ORICinAL PAcE is OF POOR QUALITY

A. Electrical (Continued)
9. Stability: After two hours operation, drift less than 0.1\% per day.
10. Noise induced into 28 volt power line: less than 25 millivolts across 1 ohm impedance.
11. Impedance between either input and output returns and case is > 10 megohms and < 100 pf.
B. Environmental

Pico-Pacs have been designed and tested to meet or exceed the environmental conditions indicated below:

Altitude: Operational from sea level to 200,000 feet (exposure at reduced pressure > 30 minutes).

Acceleration*: 120 g for 30 seconds - any axis.
Mechanical Shock*: $80 \mathrm{~g}, 15$ mililseconds - any axis:
Thermal Shock*: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ and $+65^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$, each in less than five minutes.

Sinusoidal Vibration*:
$\left.\begin{array}{l}5-28 \mathrm{~Hz}, 0.55 \text { inch double amplitude } \\ 28-3000 \mathrm{~Hz}, \pm 20 \mathrm{~g}\end{array}\right\} \begin{gathered}2 \text { octaves } / \mathrm{min} . \\ - \text { any axis }\end{gathered}$
Random Vibration*:
$0.1 \mathrm{~g} 2 / \mathrm{Hz}, 3 \sigma, 20-2000 \mathrm{~Hz}$, 90 seconds - any axis.

* Units energized following, but not during, tests.
sumang rumbaz amf

$$
\begin{aligned}
& \text { FIMS A C } \\
& \text { Bonind No. } 1 \\
& \text { JuLV. El } \\
& 15-5680- \\
& \text { Gin.F. }
\end{aligned}
$$

104
OH 30 2530
 $10: 25$ 10 20
> $10-25$ — 00000000
1
α

FIGURE VII-6

SOUTHWEST RESEARCH INSTITUTE				Code 10.	Rev. Lir.	Doie
CONNECTOR (5GS)50 Pin Sub "D"		TITLEFIMS "A" CEP		INTERNAL WIRING	SHEET 1 Of_5	
FROM CONNECTOR	PIN NO.	WIRE ID.	$\begin{aligned} & \text { LGTH. } \\ & \text { FT. } \end{aligned}$	SIGNAL DESCRIPTION	PIN NO.	$\begin{gathered} \text { TO } \\ \text { CONNECTOR } \end{gathered}$
J-76	1			E.A. PPS BIT 0	46	35
"	2			H 1	47	"
"	3			112	48	11
"	4			113	49	11
"	5			114	50	"
"	6			115	51	II
"	7			SIG RETURN	36	36
11	8			MA PPS ANODE BIT \emptyset	46	"
"	9			" CATHODE BIT \emptyset	47	"
1	10			" ANODE BIT 1	48	"
"	11			" CATHODE BIT 1	49	"
"	12			" ANODE BIT 2	50	11
"	13			: CATHODE BIT 2	51	11
11	14			" ANODE BIT 3	52	"
11	15			" CATHODE BIT 3	53	"
1	16			$1{ }^{1} \quad$ ANODE BIT 4	54	"
1	17			" CATHODE BIT 4	55	"
1	18			" ANODE BIT 5	56	"
"	19			" CATHODE BIT 5	57	" -
"	20			E.A. PPS +V MON (A39)	33	J 73
"	21			RETURN	37	"
"	24					
"	25			ORIGINAL PACE IS OE POOR OUALITY		
J-76	26					

SOUTHWEST RESEARCH INSTITUTE				Code 10. ${ }^{\text {a }}$ Number	Rev. Lir.	Date
CONNECTOR (50S)50 PIN SUb "D"		TITLE FIMS "A" CEP		INTERNAL WIRING	SHEET E Of. 5	
FROM CONNECTIR	PIN NO.	WIRE ID.	$\begin{array}{\|c\|} \hline \text { LGTH. } \\ \hline \end{array}$	SIGNAL DESCRIPTION	PIN NC.	TO CONNECTOR
J76	27			TIMED 28V to EA PPS	T1	-
"	28			CHASSIS		GND LUG
"	29			28 V return to EA PPS	T2	-
"	30			Timed 28 V to MA PPS	T1	-
J76	31			28 V return to MA PPS	T2	-
1	32			MA PAD \#1 DATA	38	J5
"	33			RETURN	68	"
"	34			MA PAD \#2 DATA	37	1
"	35			RETURN	36	11
"	36			EA PAD DATA	39	"
"	37			RETURN	69	11
"	38			CHASSIS		GND LUG
"	39			FLOAT POT. MON. (A38)	32	$J 73$
"	40			RETURN	37	J 72
11	41			CHASSIS		GND LUG
"	42			+8V to INSTRUMENT	3	$J 73$
"	43			-8V to INSTRUMENT	4	J73
"	44			COMMON (8V)	5	$J 73$
"	45		-			
11	46			+5 V to INSTRUMENT	35	J7
11	47			5 V RETURN	1	37
11	48			TIMED 28 V to INSTRUMENT	T1	
"	49			28V RETURN	T2	
U76	50		,			
J73	11			TIMED 28V from SUPPLY	T1	
$J 73$	12			28 V RETURN	T2	

SOUTHWEST RESEARCH INSTITUTE				code iD.	Number	Rev. Lir.	Date
CONNECTOR		TITLE		FIMA "A" CEP		SHEET 4 _OF 5	
$\begin{aligned} & \text { FROM } \\ & \text { CONNECTOR } \end{aligned}$	PIN NO.	WIRE ID.	$\begin{array}{\|l\|l\|} \hline \text { LGTH. } \\ \text { FTT } \end{array}$	SIGNAL	DESCRIPTION	PIN NO.	$\begin{aligned} & \text { TO } \\ & \text { CONEETOR } \end{aligned}$
35	2			BOARD INTERCONNECI		2	- 46
"	3			1		3	"
"	4			"		4	"
0	5			1		5	\ldots
"	6			1		6	\cdots
1	7			1		7	"
"	8			$"$		8	\cdots
"	9			1		9	1
"	10			" original pace m		10	\cdots
"	11			"OF POOR QUALITY		11	1
"	12			"		12	1
1	13			"		13	"
"	14			$"$		14	"
"	15			"		15	"
"	16			1		16	"
"	17			"		17	"
"	18			"		18	"
"	19			"		19	1
"	22			1		23	\cdots
"	23			"		23	32
"	24			1		24	\because
"	25			"		25	4
36	22			1		22	1
1	26			"		26	1
"	27			"		27	\cdots
"	28			"		28	37

STEP NO.	VOLTAGE LEVEL	+V0	-V0	+TM	-TM	.STEP NO.
0	2500.0 V	2515	2486	5.02	4.95	0
1	2164.9	2179	2154	4.36	4.29	1
2	1874.7	1884	862	3.77	3.71	2
3	1623.4	1630	1611	3.26	3.21	3
4	1405.8	1442	1396	2.83	2.79	4
5	1217.4	1223	1209	2.45	-2.41	5
6	1054.2	1061	1049	2.13	2.09	6
7	912.92	918	908	1.84	1.816	7
8	790.55	794	785	1.59	1.57	8.
9	684.59	688	681	- R. 38	1.36	9
10	592.83	595	589	1.19	1.18	10
11	513.37	515	510	1.03	1.02	11
12	444.56	446	442	. 894	. 884	12
13	384.97	386	383	. 774	. 766	13
14	333.37	335	332	. 672	. 664	14
15	288.68	290	287	. 581	. 575	15
16	249.99	250	247	. 500	. 496	16
17	216.48	216	214	. 434	. 430	17
18	187.47	187	186	. 375	. 372	18
19	162.34	162	161	. 324	. 322	19
20	140.58	140	139	. 280	. 279	20
21	121.74	121	121	. 243	. 242	21
22	105.42	105	105	. 210	. 210	22
23	91.288	91	90.6	. 182	. 1820	23
24	79.052	79.2	78.9	. 158	. 1584	24
25	68.456	68.5	68.4	. 137	. 1375	25
26	59.281	59.2	59.2	. 118	. 119	26
27	51.335	51.2	51.3	. 102	. 103	27
28	44.454	44.3	44.5	. 088	. 0895	28
29	38.495	38.3	38.5	. 0763	. 0776	29
30	33.336	33.2	33.4	. 0660	. 0675	30
31	28.867	28.6	29.0	. 0569	. 0585	31
32	24.998	25.0	24.92	5.02	4.83	32
33	21.647	21.7	26.6 i	4.35	4.18	33
34	18.746	18.78	18.7	3.76	3.61	34
35	16.233	16.26	16.2	3.25	3.12	35
36	14.057	14.10	14.04	2.82	2.70	36

table vill- energy analyzer pps step coue

STEP NO.	VOLTAGE LEVEL	+V0	-V0	+TM	-TM	STEP NO.
37	12.173	12.20	12.16	2.44	2.33	37
38	10.541	10.6	10.56	2.12	2.02	38
39	9.1285	9.17	9.13	1.84	1.74	39
40	7.9049	7.94	7.90	1.59	1.50	40
41	6.8454	6.88	6.85	1.38	1.30	41
42	5.9278	5.95	5.93	1.195	- 1.12	42
43	5.1333	5.15	5.13	1.035	0.96	43
44	4.4452	4.46	4.45	0.898	0.832	44
45	3.8494	3.86	3.85	0.380	0.716	45
46	3.3334	3.36	3.35	0.678	0.618	46
47	2.8866	2.906	2.896	0.588	0.530	47
48	2.4997	2.503	2.498	0.508	0.453	48
49	2.1646	2.169	2.165	0.442	0.389	49
50	1.8745	1.876	1.874	0.384	0.333	50
51	1.6232	1.623	1.620	0.334	0.282	51
52	1.4057	1.407	1.407	0.292	0.243	52
53	1.2173	1.218	1.217	0.255	0.207	53
54	1.0541	1.057	1.056	0.223	0.176	54
55.	0.91281	0.914	0.973	0.195	0.149	55
56	0.79046	0.797	0.801	0.172	0.127	56
57	0.6841	0.691	0.693	0.151	0.1067	57
58	0.59276	0.598	0.600	0.133	0.0890	58
59	0.51331	0.516	0.518	0.1172	0.0734	59
60	0.44450	0.448	0.452	0.1039	0.060	60
61	0.38492	0.388	0.390	0.0921	0.0488	61
62	0.33333	0.331	0.336	0.0820	0.039	62
63	0.289	0.280	0.279	0.075	0.028	63

ORIGINAL PACE RS OF POOR QUALTTY

TABLE VII-1.2 ENERGY ANALYZER PPS STEP CODE

STEP	RI	RF	V1	-V0	+ $\mathrm{VO}_{\text {, }}$	-Vo	+ 7 M	-TM
1	127 K	127K	-7.50	-982.22	982	982	4.91	4.903
2		120K	-7.08	-926.62	934	934	4.67	4.663
3		113K	-6.67	-874.17	874	874	4.37	4.363
4		107K	-6.30	-824.69	829	829	4.145	4.138
5		101K	-5.94	-778.01	774	773	3.87	3.863
6		95K	-5.60	-733.97	739	738	3.69	3.687
7		90K	-5.29	-692.43	700	700	3.501	3.495
8		84K	-4.99	-653.23	655	654	3.27	3.268
9	202K	127K	-4.71	-616.26	619	618	3.09	3.088
10		120K	- -4.44	-581.38	588	588	2.94	2.937
11		113K	-4.19	-548.47	550	550	2.75	2.748
12		107K	-3.95	-517.42	522	522	2.610	2.606
13		101K	-3.73	-488.13	487	487	2.436	2.433
14		95K	-3.52	-460.50	465	465	2.325	2.322
15		90K	-3.32	-434.44	441	441	2.204	2.201
16		84K	-3.13	-409.85	412.6	412.1	2.06	2.058
17	323K	127K	-2.95	-386.65	386.1	385.6	7.928	1.926
18		120K	-2.79	-364.76	367.2	366.7	1.834	1.831
19		113K	-2.63	-344.12	343.5	343.0	1.715	1.713
20		107K	-2.48	-324.64	325.9	325.4	1.627	1.625
21		101K	-2.34	-306.26	304.2	303.7	1.519	1.517
22		95K	-2.21	-288.93	290.4	289.9	1.450	1.448
23		90K	-2.08	-272.57	275.3	274.8	1.374	1.373
24		84K	-1.96	-257.14	257.4	256.9	1.285	1.283
25	514K	127K	-1.85	-242.59	243.2	242.8	1.214	1.213
26		120K	-1.75	-228.86	231.4	230.9	1.155	1.153
27		113K	-1.65	-215.90	216.5	216.0	1.080	1.079
28		107K	-1.56	-203.68	205.4	204.9	1.025	1.024
29		101K	-1.47	-192.15	191.7	191.2	. 956	. 956
30		95K	-1.38	-181.28	183.0	182.5	. 913	. 912
31		90K	-1.31	-171.02	173.5	173.0	. 865	. 865
32		84K	-1.23	-161.33	162.2	161.7	. 809	. 808
33		127K	-1.16	-152.20	152.2	151.7	. 759	. 758
34	820K	120K	-1.10	-143.59	144.8	144.2	. 721	. 721
35		113K	-1.03	-135.46	135.5	134.9	. 675	. 675
36		107K	-. 98	-127.79	128.5	128.0	. 640	. 640

STEP	RI	RF	V1	-V0	+VO.	-vo	+TM	- TM
37		101K	-. 92	-120.56	120.0	119.4	. 597	. 597
38		95K	-. 87	-113.73	114.5	114.0	. 570	. 570
39		90K	-. 32	-107.30	108.6	108.0	. 541	. 541
40		84K	-. 77	-101.22	101.5	101.0	. 505	. 505
41	1.306 M	127K	-. 73	-95.49	95.9	95.4	. 478	. 477
42		120K	-. 69	-90.09	91.3	90.7	. 4546	. 4547
43		113K	-. 65	-84.99	85.4	84.9	. 4253	. 4255
44		107K	-. 61	-80.18	81.0	80.5	. 4034	. 4036
45		101K	-. 58	-75.64	75.7	75.1	. 3765	. 3768
46		95K	-. 54	-71.36	72.2	71.7	. 3594	. 3597
47		90K	-. 51	-67.32	68.5	67.9	. 3406	. 3410
48		84K	-. 48	-63.51	64.0	63.5	. 3185	. 3189
49	2.082 M	127K	-. 46	-59.91	60.2	59.6	. 2989	. 2993
50		120K	-. 43	-56.52	57.2	56.7	. 2843	. 2847
51		113K	-. 41	-53.32	53.6	53.0	. 2659	. 2664
52		107K	-. 38	-50.31	50.8	50.3	. 2522	. 2527
53		101K	-. 36	-47.46	47.5	46.9	. 2354	. 2359
54		95K	-. 34	-44.77	45.3	44.8	. 2247	. 2252
55		90K	-. 32	-42.24	43.0	42.4	. 2129	. 2135
56		84K	-. 30	-39.85	40.2	29.6	. 1991	. 1997
57	3.318 M	127K	-. 29	-37.59	38.0	37.5	. 1882	. 1887
58		120K	-. 27	-35.46	36.2	35.6	. 1789	. 1796
59		113K	-. 26	-33.56	33.9	33.3	. 1674	. 1680
60		107K	-. 24	-31.56	32.2	31.6	. 1587	. 1594
61		101K	-. 23	-29.78	30.0	29.5	. 1481	. 1488
62		95K	-. 21	-28.09	28.7	28.1	. 1414	. 1421
63		90K	-. 20	-26.50	27.2	26.7	. 1340	. 1347
64		84K	-. 19	-25.00	25.5	24.9	. 1253	. 1260

ORIGINAL PAGE IS OF POÓR QUALITY

ADDRESS	DATA	ADD	DATA	ADD	DATA	
00	06	20	21	40	33	ORICINA PAEE
01	06	21	21	41	33	OF POOR OUAKIT
02	09	22	21	42	33	
03	09	23	21	43	06	
04	OC	24	21	44	06	
05	OC	25	24	45	06	
06	OC	26	24	46	"	
07	OF	27	24	47	"	
08	OF	28	24	48	"	
09	OF	29	24	49	"	
OA	12	2A	27	4A	"	
OB	12.	2B	27	4B	"	
OC	12	2C	27	4C	"	
OD	15	2D	27	4D	"	
OE	15	2E	27	4E	"	
Of	15	$2 F$	2A	4 F	"	
10	15	30	2A		"	
11	18	31	2A	'	"	
12	18	32	2A		"	
13	18	33	2A		"	
14	18	34	2D		"	
15	18	35	2D		"	
16	18	36	2D		"	
17	18	37	2D		"	
18	1 B	38	2D		"	
19	18	$39-$	30		"	
18	18	3A	30		"	
1 B	1 E	3B	30		"	
1 C	2E	3 C	30		"	
10	123	3D	30		"	
1 E	1 E	3E	33		"	
1 F	1 E	3 F	33		"	

Each	ADD	DATA									
6	00	00	9	33	00	12	66	18	15	99	33
"	01	01	"	34	OE	"	68	1 c	18	A0	08
"	02	02	"	35	OF	"	68	1D	"	A1	09
\cdots	03	03	\cdots	36	10	"	69	1E	*	$\lambda 2$	OA
"	04	04	"	37	J, 1	15	70	06	"	A3	OB
"	05	05	"	38	12	"	71	07	"	A4	OC
"	06	06	"	39	13	"	72	08	"	A5	OD
"	07	07	12	40	01	"	73	09	1	A6	OE
"	08	08	"	41	02	"	74	OA	"	A7	OF
"	09	09	"	42	03	"	75	OB	"	A8	10
"	10	OA	"	43	04	"	76	OC	-'	A9	11
"	11	OB	"	44	05	"	77	OD	"	B0	12
"	12	OC	"	45	06	"	78	OE	"	B1	13
"	13	OD	"	46	07	"	79	OF	"	B2	14
"	14	OE	"	47	08	"	80	10	"	B3	15
"	15	OF	"	48	09	"	81	11	"	B4	16
"	16	10	"	49	OA	"	82	12	"	B5	17
"	17	11	"	50	OB	"	83	13	"	B6	18
"	18	12	"	51	OC	"	84	14	"	B7	19
6	19	13	"	52	OD	"	85	15	"	B8	$1{ }^{\text {a }}$
9	20	00	"	53	OE	"	86	16	"	B9	1B
"	21	01	"	54	OF	"	87	17	"	CO	1 C
"	22	02	"	55	10	"	88	18	"	Cl	1D
"	23	03	"	56	11	"	89	19	\cdots	C2	$1 E$
"	24	04	"	57	12	"	90	1A	"	C3	$1 F$
"	25	05	"	58	13	"	91	1B	"	C4	20
"	26	06	"	59	14	"	92	1 C	"	C5	21
"	27	07	"	60	15	"	93	1 D	"	C6	22
"	28	08	"	61	16	"	94	$1 E$	"	c7	23
*	29	09	"	62	17	"	95	1 F	"	C8	24
"	30	OA	"	63	18	"	96	20	18	C9	25
"	31	OB	"	64	19	"	97	21	18	D0	08
"	32	OC	12	65	1A	15	98	22	21.	D1	09

Each	$A D D$	DATA	Each	ADD	DATA	Each	ADD	DATA	Each	ADD	DATA
210	${ }^{\text {2 }}$ H	$0 \boldsymbol{R}_{\mathbf{H}}^{\prime \prime}$	${ }^{21} D$	${ }^{105} \mathbf{H}$	${ }^{2} B_{H}$	${ }^{24} \mathrm{D}$	138_{H}	${ }^{29} \mathrm{H}$	${ }^{27}$ D	${ }^{171} \mathrm{H}$	18_{H}
"	D3	OB	,	06	2C	\cdots	39	2A	"	72	19
"	D4	OC	\cdots	07	2D	"	40	2B	\cdots	73	1A
"	D5	OD	"	08	2E	1	41	2 C	\cdots	74	1 B
"	D6	OE	21	09	2F	"	42	2D	"	75	1 C
4	D7	OF	24	110	OD	"	43	3E	"	76	1D
*	D8	10	\cdots	11	OE	"	44	$2 F$	"	77	1 E
"	D9	11	${ }^{\prime \prime}$	12	OF	"	45	30	"	78	1 F
"	E0	12	"	13	10	"	46	31	"	79	20
"	E1	13	"	14	11	"	47	32	"	80	21
"	E2	14	"	15	12	"	48	33	"	81	22
1	E3	15	"	16	13	${ }^{\prime \prime}$	49	34	11	82	23
"	E4	16	11	17	14	"	50	35	"	83	24
"	E5	17	"	18	15	11	51	36	"	84	25
"	E6	18	11	19	16	"	52	37	"	85	26
"	E7	19	"	120	17	"	53	38	"	86	27
"	E8	1A	"	21	18	"	54	39	"	87	28
"	E9	18	"	22.	19	"	55	3A	"	88	29
"	F0	1 C	"	23	1 A	"	56	3B	"	89	2A
"	F1	1D	"	24	1 B	"	57	3 C	"	90	2B
"	F2	$1 E$	"	25	1 C	"	58	3D	"	91	2 C
*'	F3	$1 F$	"	26	1D	24	59	3E	"	92	2D
*	F4	20	"	27	1E	27	60	OD	"	93	2 E
11	F5	21	"	28	$1 F$	"	61	OE	"	94	$2 F$
"	F6	22	"	29	20	"	62	OF	4	95	30
11	F7.	23	1	30	21	"	63	10	"	96	31
"	F8 ${ }^{-}$	24	"	31	22	1	64	11	-	97	32
"	F9	25	"	32	23	"	65	12	"	98	33
"	100	26	"	33	24	1	66	2.3	"	199	34
"	01	27	"	34	25	4	67	14	${ }^{\prime}$	1 AO	35
10	02	28	"	35	26	"	68	15	"	A1	36
"	03	28	"	36	27	"	69	16	\checkmark	82	37
${ }^{21}{ }_{D}$	04	29	${ }^{24}$ D	${ }^{37} \mathrm{H}$	$28_{\text {H }}$	${ }^{27}$ D	70	17	27D	A3	38

Each	ADD	DATA									
${ }^{27}$ D	$1 \mathbf{1 4 H}_{H}$	${ }^{39} \mathrm{H}$	${ }^{30}$ D	${ }^{1 D 7} 7_{H}$	28_{H}	${ }^{33}$ D	210_{H}	${ }^{18} \mathrm{H}$	3^{33} D	243 ${ }^{\text {H }}$	38
"	A5	31	${ }^{\prime}$	D8	29	"	11	18	D	44	3 C
"	A6	38	$"$	D9	2A	"	12	1 C	\cdots	45	3D
"	A7	3 C	*	1 EO	2B	"	13	1D	"	46	3E
"	AB	3D	"	E1	2C	"	14	$1 E$	"	47	$3 F$
27D	A9	3E	"	E2	2D	"	15	$1 F$	"	48	$3 F$
${ }^{30}$ D	180	OD	"	E3	2 E	"	16	20	33D	249	3 F
${ }^{\prime}$	B1	OE	"	E4	2 F	"	17	21	36D	250	10
"	B2	OF	"	E5	30	"	18	22	"	51	11
"	B3	10	"	E6	31	"	19	23	"	52	12
"	B4	11	"	E7	32	"	220	24	\cdots	53	13
"	B5	12	"	E8	33	"	21	25	"	54	14
"	B6	13	"	189	34	"	22	26	$"$	55	15
\cdots	B7	14	"	150	35	"	23	27	"	56	16
"	B8	15	"	Fl	36	"	24	28	"	57	17
"	189	16	"	F2	37	"	25	29	"	58	18
"	1 CO	17	"	F3	38	"	26	2A	"	259	19
"	Cl	18	"	F4	39	"	27	2B	"	260	1 A
"	C2	19	"	F5	3A	"	28	2C	"	61	18
"	C3	1A	"	F6	3B	"	229	2D	"	62	1 C
"	C4	18	"	F7	3 C	"	230	2 E	"	63	10
"	C5	1 C	"	F8	3 D	"	31	2 F	"	64	$1 E$
"	C6	1D	${ }^{30}$ D	159	3E	"	32	30	"	65	$1 F$
"	C7	$1 E$	33°	200	10	"	33	31	"	66	20
"	C8	$1 F$	"	01	11	"	34	32	"	67	21
"	C9	20	"	02	12	"	35	33	"	68	22
"	1D0	21	"	03	13	"	36	34	"	269	23
"	D1	22	"	04	14	"	37	35	"	70	24
0	D2	23	"	05	15	1	38	36	"	71	25
"	D3	24	"	06	16	"	239	37	"	72	26
"	D4	25	"	07	17	"	240	38	"	73	27
"	D5	26	"	08	18	"	41	39	"	74	28
$30^{\text {D }}$	D6	27	3^{33} D	09	19	${ }^{33}$ D	4)	3A	${ }^{36}{ }^{\circ}$	275	29

Each	ADD	DATA									
${ }^{36}$ D	276H	${ }^{2} \lambda_{H}$	${ }^{39}$ D	${ }^{2 A 9} \mathrm{H}$	19 H	39 D	${ }^{2 E 2} \mathbf{H}$	$\mathbf{3 A}_{\mathbf{H}}$	42 D	315 H	${ }^{29} \mathrm{H}$
${ }^{\prime \prime}$	77	28	"	2 BO	14	\cdots	E3	38	$\stackrel{\square}{\square}$	16	2A
${ }^{\prime \prime}$	78	2 C	"	B1	18	"	E4	3 C	\cdots	17	2B
"	79	2D	"	B2	1 C	*	E5	3D	\cdots	18	2 C
*	280	2E	"	B3	1D	"	E6	3E	\cdots	19	2D
\cdots	81	2F	4	B4	12	*	E7	$3 F$	0	320	2 E
1	82	30	"	B5	15	"	E8	$3 E$	1	21	$2 F$
0	83	31	1	B6	20	39 D	2E9	$3 F$	"	22	30
11	84	32	"	B7	21	$42^{\text {D }}$	2 FO	10	${ }^{\prime \prime}$	23	31
"	85	33	"	B8	22	"	F1	11	\cdots	24	32
"	86	34	1	289	23	"	$F 2$	12	"	25	33
"	87	35	"	200	24	1	F3	13	"	26	34
11	88	36	"	Cl	25	"	54	14	0	27	35
"	289	37	"	C2	26	11	$F 5$	15	"	28	36
11	290	38	"	C3	27	"	F6	16	"	329	37
"	91	39	"	C4	28	"	F7	17	"	330	38
"	92	3A	"	c5	29	"	F8	18	"	31	39
"	93	3B	11	C6	2A	\%	F9	19	11	32	3A
"	94	3 C	"	67	2B	1	300	1A	1	33	3B
"	95	3D	"	C8	2 C	"	01	18	4	34	3C
\#	96	3E	"	2 C 9	2D	"	02	1 C	"	35	3D
"	97	$3 F$	"	2D0	PE	"	03	1D	"	36	3E
"	98	3F	"	D1	$2 F$	"	04	$1 E$	"	37	3F
${ }^{36}$ D	299	$3 F$	1	D2	30	"	05	$1 F$	11	38	3 F
${ }^{39}$ D	280	10	11	D3	31	"	06	20	"	339	3F
11	Al	11	"	D4	32	*	07	21	"	340	10
"	A2	12	1	D5	33	"	08	22	"	41	11
"	A3	13	10	D6	34	1	09	23	"	42	12
"	A4	14	"	D7	35	"	310	24	1	43	13
"	A5	15	"	D8	36	"	11	25	1	44	14
"	A6	16	"	2D9	37	"	12	26	"	45	15
"	A7	17	"	250	38	"	13	27	1	46	16
39	2A8	18	3^{39} D	El	39	42	314	28	"	47	17

Each	ADD	DATA	Ench	ADD	DATA	Each	ADD	DATA	Each	ADD	DATA
$45^{\text {D }}$	$\cdots{ }^{348}{ }_{\text {A }}$	18_{H}	${ }^{45}$ D	${ }^{380} \mathbf{H}$	$3^{\mathbf{H}}{ }_{\mathbf{H}}$	${ }^{48}$ D	${ }^{382} \mathrm{H}$	${ }^{26} \mathrm{H}$	${ }^{51}$ D	${ }^{3 E 4} \mathrm{H}$	${ }^{14} \mathrm{H}$
"	49	19	"	81	39	"	B3	27	\cdots	E5 :	15
"	350	12	"	82	3A	"	B4	28	"	E6	16
"	51	18	"	83	3B	"	B5	29	"	E7	17
\cdots	52	1 C	"	84	3 C	"	B6	2A	"	EB	18
\cdots	53	10	"	85	3D	"	B7	2 B	"	3E9.	19
\cdots	54	1E	"	86	3 E	"	B8	2 C	"	3 FO	1A
"	55	$1 F$	"	87	3 F	"	389	2D	"	Fl	18
"	56	20	"	88	$3 F$	"	3 CO	2E	"	$F 2$	1 C
\prime	57	21	45	389	3 F	"	Cl	2 F	"	F3	10 *
"	58	22	48	390	10	"	C2	30	"	F4	$1 E$
"	59	23	"	91	11	"	C3	31	"	F5	1 F
"	360	24	"	92	12	"	C4	32	"	F6	20
1	61	25	"	93	13	"	c5	33	"	F7	21
"	62	26	"	94	14	"	C6	34	"	F8	22
"	63	27	1	95	15	"	c7	35.	"	$3 \mathrm{F9}$	23
"	64	28	"	96	16	"	C8	36	"	400	24
"	65	29	"	97	17	"	C9	37	"	01	25
"	66	2A	"	98	18	"	3D0	38	"	02.	26
"	67	2B	"	399	19	"	D1	39	"	03	27
"	68	2 C	"	3A0	1A	"	D2	3A	"	04	28
"	69	2D	"	A1	1 B	"	D3	3 B	"	05°	29
"	370	2E	$"$	A2	1 C	"	D4	3 C	"	06	2A
"	71	2 F	"	A3	1D	"	D5	3D	"	07	2B
\cdots	72	30	"	A4	$1 E$	"	D6	3 E	"	08	2C
"	73	31	"	A5	$1 F$	"	D7	3 F	"	409	2D
\cdots	74	32	"	A6	20	"	D8	$3 F$	"	410	2E
"	75	33	"	A7	21	46 D	$3 \mathrm{D9}$	3 F	"	11	2 F
"	76	34	"	A8	22	51	3 E 0	10	"	12	30
"	77	35.;	"	A9	23	"	E1	11	"	13	31
"	78	36	"	3B0	24	"	E2	12	"	14	32
${ }^{45}$ D	${ }^{379}$ A	${ }^{37} \mathbf{H}$	${ }^{48}$ D	Bl_{H}	${ }^{25} \mathrm{H}$	51_{D}	$3 \mathrm{E} 3_{\mathrm{H}}$	13_{H}	${ }^{51}{ }_{D}$	15_{H}	$3^{33} \mathrm{H}$

APPENDIX B

FIMS MODEL B

HARDWARE/SOETWARE REFERENCE MANUAL

FAST ION MASS SPECTROMETER MODEL B HARDWARE/SOFTWARE REFERENCE MANUAL

Submitted to
The National Aeronautics and Space Administration NASA Headquarters
Office of University Affairs

By

The Space Science Department
Instrumentation Research Division
Southwest Research Institute
Project 15-5680
The work performed under NASA Contract NASW-3237, the Development of a Fast Ion Mass Spectrometer.

September, 1981

Approved:

John R, Barton, Vice President Instrumentation Research Division

TABLE OF CONTENTS

TITLE SECTION
INTRODUCTION I
QUICK-LOOK TEST INFORMATION II
SIGNAL INPUT TEST PROCEDURE III
INSTRUMENT CABLING INFORMATION IV
INSTRUMENT TEST RECORDS/HISTORICAL LOG v
INSTRUMENT CALIBRATION RECORDS VI
INSTRUMENT DESIGN INFORMATION VII

OHIGINAL PAGE IS OF POOR QUALITY

I. INTRODUCTION

This document provides a ingle source for all FIMS operational, calibration and repair information. It is hoped that this document will be of assistance in the field operation of the FIMS instrument should any problems arise. Sufficient information is contained herein to troubleshoot the instrument in the field. All test and calibration records will be kept in this document as well.

The second purpose of this document is to aid in the development of future generations of similar ion mass spectrometers. The experience gained in the laboratory and the field with the FIMS B instrument will be of critical assistance in the development of similar instruments for other satellite and rocket-borne instruments.

The introductory section of this document contains a copy of a paper published in the Review of Scientific Instruments which describes in some detall the geometry of the analyzer sections of the FIMS-A and FIMS-B instrwnents. As is described in this paper, the primary difference between FIMS-A and FIMS-B is in the area of the electrostatic energy analyzer and the detectors. The nomenclature "FIMS-A" refers to that instrument which uses the cylindrical energy analyzer and an array of three channel electron multipliers. The "FIMS-B" instrument uses a epherical energy analyzer and a microchannel plate array with a resistive anode following. The central electronics packages for the two instruments are also different. The FIMS-A instrument will be flown for the first time on the A rocket payload of the two payloads produced by the SWRI Department of Space Sciences during the summer of 1981.

This document will serve as a combination Design Specification and Instrument Log Book and should be kept with the FIMS B instrument at all times. Figure $I-i$ is a picture of the fully assembled FIMSm instrument. Not shown in the picture is the instrument' Central electronics package. Figure I-2 is a block diagram of the total instrument systen.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS
OF FOOR QUALITY

ANALYZER

FIGURE I-2. FIMS INSTRUMENT BLOCK DIAGRAM

ORIGINAL PACE IS OF POOR QUALITY

II. QUICK-LOOK TEST INFORMATION
and The FIMS-B instrument produces three digital data channale, 827,53 oigital chanel 527 is located in word 13 , all frames, and containe the FIMS B ecientific information. tt is a 9-bit digital word with all of the information contained in the 8 most significant bits. The least aignificant bit of the 9-bit word is not used by the instrument.

Channel 531 (word 8, frame 19) if used to transmit the mass analyzer program power supply command word. It is also a 9-bit digital word with the instrument information again contained in the 8 most significant bits of that word. The third digital channel is $63 \overline{2}$ (word 9 , frame 20) and is used to transmit the energy analyzer PPS command words to P.C.M. As is the case with the other two digital channels, channel 532 usen only the 8 most significant bits. The two analog channels, 139 (word 6, frame 27) and $\lambda 40$ (word 6 , frame 19) contain the analog monitore from the energy analyzer program power supply. Channel aig contains the positive output monitor signal and 140 the negative output.

At the onset of low voltage to the FIMS Central Electronics Package, a tepping value will be seen on both 531 and s 32 . Figures II-1 and II-2 are sample stripchart recordings made of these two channels under normal operating conditions. It should be noted that the strip chart recorder which produced these signals was carefully calibrated for a deflection of 10 counts/major division with the knowledge that the 2^{\prime} bit of the 9 -jit data word is the least significant bit of the word. in other words, when calibrating the stripchart recorder for use in FIMS 8 testing, use the second least significant bit rather than the least. significant bit to represent a count of ${ }^{\prime \prime \prime}{ }^{\prime \prime}$ for the calibration. It is not necessary for routine testing to recalibrate the stripchart recorder just for a FIMS B test. It is possible to observe the general waveform of these two stepping counts to ensure basic function of the Central electronics Package. Word 527 will not contain any count information unless the signal input test is being conducted. Details for the signal input test for the FIMS B instrument are described in the following section of this manual.

Likewise, analog channels 39 and 40 will not contain any information unless the FIMS B high voltages have been turned on. If the high voltages have been applied, then a stepping signal will be seen on these two channels such as is shown in Figure II-3. Both of these channels should step at the same rate and contain approximately the same signals. It is expected that under normal circumstances these two elgnals should track each other to within 104. Again, no data will be obtained from these two data channels unless high voltages are applied to the instrument.

A. Equipment Required

To perform this test the following items will be required:

1. Pulser (1.0. HPB010A) capable of producing a 50 ns wide, 100 mv pulee at a repetition rate of $8500 /$ ecc.
2. Two dial-selectable attenuatori. One attenuator should be capable of attenuating in 1 ds repe, while the second should attenuate in 10 ds steps.
3. Single channel osciliomcope, with vertical bandidîh of 100 mHz .
4. One 50 ohm terminator, packaged in atandard BNC-type connector shell.
5. Frequency counter capable of counting 100 mv , 50 ns wide pulses.

B. Pulser Adjustment

1. Configure the equigment listed above in the manner shown in Figure III-1.
2. With all equipment opersting, adjust the output of the pulser to produce 100 mv low-going pulse, 50 ns wide. The low-going pulse should drop to OV, with the high level at +100 mv . The leading and trailing edge transition times should be adjusted to approximately 20 n each, although experience has shown that the instrument is not particularly sensitive to transition times. It is assumed that at the time of these adjustments the two dial-selectable attenuators are set to zero and the 50 olwa attenuator is attached to the pulser.
3. Adjust the repetition rate of the pulser to produce an 8500 pulse/second rate.
4. Iurn off the pulser, remove the 50 ohm terminator and attach the FIMS-B test cable to the attenuatore. Set the dial selectable attenuators for a total of 25 dB .

C. Instrument/Payload Operation

1. With the instrument power off and the pulser off, attach the FIMS-B test cable to the test input connector on the Instrument's detector.
2. Apply low voltage only to the FIMS-B instrument, then to the pulser.
3. On the rocket' P.C.M. decommatator dial up word 13, Erame 28.
4. With the pulser at 8500 pulses/second, the decommatar should be reading approximately full scale (8 MSB' set). If it is not, adjust the dial slectable attenuators in $1 d s$ tepa until counts mpear. It should not be necessary to reduce the attenuation below 20 ds if the instrument is functioning normally.
5. Select word 13, frame 27, on the decommatator. Under normal operating conditions the instrument will produce a fow counts in this channel when frame 28 is near full scale. No other frames for word 13 should have ary counte.

Onicinal pace is OF POOR QUALITY

FIGURE III-1. SIGNAL INPUT TEST CDNFIGURATION

HEADER
 Name:finge angle calierate. INNER CHANNEL

ORICINAL PACE RE
 OF POOR QUALTTY

THETA

9 4-81

$14.28-0$

EEAM MASS:H2
EEAM CURKENT: 500.000
EEAM-DEFLECTION VOLTAGE:- 0.000
EEAM DEFLECTIDN CLIRRENT:-..-. 250
X SWEEP VOLTAGE:-- 4.coo
X SWEEP FREQUENCY:5000.000
Y SWEEP VOLTAGE:-... - 4.000
Y. SWEEF FREQUENCY:i5000.00

ORIGINAL PAGE is OF POOR QUALITY

ORIGINAL PAGE is OF POOR QUALITY

A. Analyzers

The energy and mase analyzer design aspects of Fims-B were described earlier in this document, and no furhter information on the analyzers will be presented. The following pages of this section of the document will present a description of the instruments Central Electronics Package.

B. Central Electronics Package

The Central Electronics Package designed for the FIMS B instrument is radically different from that used by the FIMS A instrument. This system is designed around the INTEL $8085 \mathrm{~A}-2$ microprocessor. Figures VII-1 through VII-5 are the detailed schematic diagrams of the FIMS B central electronics package. This system is contained completely on a single printed circuit board. The microprocessor-based controller is a totally interrupt-driven aystem with interrupting sources being the $6 F 2^{4}$ timing signal, the MF 2^{3} timing gignal and the data ready (D.R.) flag from the microchannel plate array detector.

In normal operation the microprocessor is interrupted every 25 ms by the $5 F 2^{4}$ signal to indicate the start of a new major frame of data. Responding to this interrupt, the microprocessor updates the commands to the two program power aupplies based on values stored earlier in a look-up table, the values for which were derived from the instrument calibration. After updating the two command words to the PPS line drivers, the microprocessor makes a 1 to 0 to 1 transition on the shift-load line of the two shift registers which are used to send power supply step values to the telemetry system. In other words, the shift load command for the two shift registers used to send PPS values to telemetry is software generated.

Following the update of the two PPS commands, the 8085 -based controller disables its science data acquisition for a period of 3 minor frames, or for approximately 2.4 ms . This dead time is allowed for pps settling. However, even during the 2.4 ms dead time for scientific data acquisition, the microprocessor still is able to send data acquired during the previous major frame to telemetry based on the arrival of the MF 2^{3} timing signal which generates the third processor interrupt. When interrupted by MF $\mathbf{2 3}^{3}$, the microprocessor performs an address pointer manipulation to fetch the next stored value of science data word to telemetry.

Science data information is presented to the Central Electronics package of the FIMS B instrument in the form of a 6 -bit wide addres/s with handshaking flag. The four least significant bits of this 6 -bit word represent the binary address of the X -location on the resistive anode detector where a particle event has occured. The two most significant bits of the 6-bit address represent the binary address of the y location on the resistive anode of the particle event. To the microprocessor, the interface appears to be a simple, 6-bit memory address with a handshaking flag that is used both to latch the data into the 8155 hardware interface
chip and to generate the software interrupt to the 8085. Handshaking; with the microchannel plate detector instrument is not completed until the 8085 has had a chance to rad the data from the port B interface of the 8153, thus clearing the 8 buff-full handshaking flag. This ensures that the instrument will not attempt to send new ecience informition to the CEF until the previous information has been properly digested." stated in ste most elemental form, the FIMS B CEP functions as a 64-channel multi-channel analyzer. Each time a 6-bit address is presented to the microprocessor and an interrupt generated, the corresponding memory location in the 64 -word ecience data buffer memory is fetched, incremented by 1 and stored back. This is exactly the same procedure used with any laboratory-style multichannel analyzer.

The flight CEP described here contains a double-buffared memory system whereby two seta of 64 locations are reserved for the science data counts. Two buffers are preserved so that one can be reserved for data inconing from the instrument while the second buffer is used for cending data out to telemetry. At the end of each major frame, signalled by a high-going transition on the SF 2^{4} timing signal, the buffer pointers are awitched and the buffer previously used for atoring incoming acience information now becomes the output buffer for data going to telemetry. This technique preserves the integrity of the data as a block this data that is presented in minor frame 1 has the eame staleness as the data presented in minor frame 32.

As mentioned earlier, the microprocessor based controller is totally interrupt driven. The $5 \mathrm{SF} \mathbf{2}^{4}$ timing flag initiates the process whereby the microprocessor updates the PPS commands to both program power supplies and also loads these new PPS commands in the telemetry data output shift registers. The SF $\mathbf{2}^{4}$ timing flag also initiates a 3 -minor frame long blanking period where no new science data interrupts are acquired. Within the three minor frame dead time, however, interrupts are allowed from the MF 2^{3} timing flag and are used to initiate the process of sending the next available ecience data word to telemetry. stated another way, the first MF 2^{3} interrupt which arrives at the microprocessor after the sF 2^{4} interrupt is used to flag to the microproprocessor that it should present data from it: buffer location 1 to telemetry, likewise the 32nd MF 2^{3} interrupt to the microprocessor flags to the software that it should send the 32 nd mamory location from its ecience data buffer to telemetry. This results in very aimple mapping technique. The only aspect of this operation which is the least bit involved is the process whereby the numer of data channels sent to telemetry is reduced from the 64 channels produced by the instrument down to the 32 channels forwarded to telemetry. Tha 32 middle channels of the 64 total are ment to telemetry. This mapping function was arrived at by the eimple knowledge of geometry of the instrument, that is channels 0 through 15 are channels which are not struck by particles under normal operation of the analyzer section of the instrument. Likewise, channela 48 through 64 do not contain any scientific information from the instrument.

Contained in the following few pages of this section of the document is a copy of the software listings which are used to control the operation of the FIMS B microprocessor based Central Electronics Package. As seen, the software was written in 8085 asaembly language and is now atored in the erasable prom section of the 8755 integrated circuit.

80

25

3
$\stackrel{8}{2}$

8755 2midexe ermou/to

POHIALE
MARDURE CONFJGCIRATJOUS

ORIGINAL PACE IS

ORICINAL PAGE IS
 OF POOR QUALITY

56 Uu4t 76
5% ULSO COHFOU
E4 uns
$=$ Mise
-1 116 S
E:
E 4n5
Eg plose
シ M
E UnEE IGME
E6 10.57 LIGMB
E" UOS © STF
θ ULEE
\therefore UMELI

F~ ULES LS
734164
$7 \quad 1104$
$7 \quad 4164$
max
910
01104810500
4106\% 1111440
E0 40EH 1600
WICE UF
UBEI 77
UNEE 7H
UHOF FEDF
पOF1 EATHDG
diñ4 14
0 (175 bs
いロー
0077 ESBG0,
SE OII
47
おごいOM
シモロInす
57
SE1Gin
3 C
3ごこいい
브옹
1EGF
EEFF
シこもН゙ロ
3EQEDG
C!

?THIS SUEFDLITIHE WILL 1HITIHLIZE THE ETEE EFFDM

SSTEULEI ULITFUT MDIES, RESFECTIVELY.
1
;THIS SUEFULIINE IMITIHLIZES ELIFFEF FDINTERE:
;FLFGE: HHII LHTH THHT IS LOBEI E'Y THE FIPIE-E
SEFF 7 WFFE

1MEM LKI HBHFEET FFETCH HFS FE THELE HII.
LSil E;HERUM IFETCH KDT HIDFESS.
; LLEHR II-REG.
FFETCH WFLLIE TD A.
; MDVE 7U FIHM.
;FETEH II-FEEG.
:Z-EIT SET IF H = 15.
11F $2=1$, $\mathbf{~ E ~ E T ~ S . W . ~}$
ELIMF II
: ELINF E,C FHIR.
SELMF H:L FAIF:
-MCVE HIGIM.
© LLEHF: H-KEG.
: KESET MFE゙(3) ELULMT.
; KEEET FFS * 1 STEF EDLIMT.
; RESET HPS *シ ETEF CDUITT.
© ELIFFER LHSE HIII. IN II.
;RESET IHTA INHIEIT FLFG.
; LILMF A-REG.
ISET FIRST TIME THFU FLFEG.
; 8185 FHM EHEE HIID. IN C.
: IHTH MHSk IN E-REG.
; FETCH FFS VILT LULE.
: SHVE FPE *1 CUIE.
SHVE HPS *シ COIE.
; FEETLKN.
;THIS SUEFDUTINE WILL WFITE TD FIYL THEN REFD FFDM
; EVER'Y FIHM LULHTIDF. IF THE IHTH FEEFII 15 THE SHME

; WILL EE SET HLUME WITH THE ENHELE INT. FLFG,
; (EIFLG), HLLUWING THE SDFTWFKE 70 ENHELE THE
:INTEFRUFT SYETEM: \&EIFLG $=1$. IF THE GFITE/REFI

11	U098
1	010\％
11	909\％
11	00088
11^{-}	प）
11	$009 E 3644$
117	00\％1 PE
118	DUSE FEOO
11	botus Cef
12．	0UAB 36FF
ľ1	UGHE 7E
18	OOHE FEFF
12	DOHE EEF 0
124	U0HE 7 C
125	UOFC FE
16	UOHE CHEEOO
ter	DOE1 E3
1 E＇g	DOEE COYEMO
16	O10E5 71
11 m	UHEE FEFF
131	OOES EAKF
$1{ }^{2}$	UUEE CC
13	UUEL Les
184	uneF C1
18	W004 31FFOE
17	bince te
$1{ }^{\prime \prime}$	
188	000．7 Se．un
171	H10c： $7 E$
d	DOCH FEO
141	QuLC CEFOM
148	DHLF EGFF
1.3	O0L1 TE
$14+$	OOLE FEFF
145	00.144 CEF 000
1.1	00101771
1．${ }^{\text {a }}$	00LE FEFF
148	GOLIF CHE 1
$11^{4} 7$	日ULL EC
10	OHLE ESC700
151	OLE 1 EEFF
15	ODES 13000
113	HDES 3EU1
117	
155	UDEF E1
15	O价E EIFF
1	ODEE CS
158	OUEF C．
15\％	Q MF O SEPF
10	00FE IS00
1.1	ODF 4 Et00
$16 E$	00F6 SE0
12	OuFg C1
4	OUFA S1FF10
16．4．	UUF 11 CE

13 UHSUCEESSFLLL HT HNY LDCATIDIY，HDFT A．EIT 7 UF \＄THE GTES WILL EE CLEHFED HLCIVG WITH EIFLG， GLEHVIMG 7 HE IMTEFELUFI SY＇STEM IISHHLEL． 3

CHKHW LXI H：EUOH
LE185
Mvi
MEV
CHI OHM
JHZ WRTER
MVI MOUFFH
MLiv fitin
LFI UFFH
JNZ WRTER
MLY H：H
CHI UKH
JZ LKEEG
INK H

LEEG MOV HOL
CFI IIFFH
$J 2$ c815心
14R： L
JMF LE185
C8155 fロF E
LK1 EF：OEFFH
FUSH E
L\％1 H． 1000 H
L8lSE MV1 Mo OUH
MDW H．M
CFI UUH
NHZ WETER
MW1 M：UFFH
MLV H，M
CFI OFFH
JNZ WKTER
May HOL
CFI OFFH
I2 CHKLLK
INR L
JMF L®15t
CHKRK MVI H，UFFH
DUT OUH
Mw1 H． 111 H
STA EIFLG
POF \boldsymbol{s}
LK1 SF： 1 UFFH
FUSH B
RET
WFTER MVI H：PFH
DUT UOH
MVI H．OUH
STH EIFLG
FDF E
LKI SF： 1 UFFH
FLOHE
\＄8185 HIDR．IH H．L FHIF．
3WRITE U 108185.
BKEHD 8185．
：Z－BIT SET IF H－REG．$=0$.
BIF Z－BIT $=$ U，ERKUR：
；WKITE FFH TV E゙185．
FREHI BIES．
：Z－EIT SET IF $H=F F H$ ．
IIF Z－EIT＝U，ER：KDF：
BFETCH H－FEEG．IM H－NEG．
：2－E：17 Stา IF H＝OEH．
© IF z－EIT SET，CHECK L．
©［THEFWISE：KLIMF H，L．
SHECK IUENT LOCFTIDH．
；FETCH L－FEG．IN F－EEEG．
；Z－E：17 SET IF L＝FFH．
；1F Z゙－E17 SET，LHECK 81ES．
；［ITHEFIWISE，BLMFF L．
© CHECK MEXT LDCHTIDN．
：SHWE RETURN HIII．IM E，C．
BNEW STACK FUIHTER．
；FUSH FETURN HIII．
；815S HLLLR．IH H：L FHIR．
；WFITE OTV 8155.
；PEFH \＆15E．
「ど－817 SET IF $A=00 \%$ ．
； $1 F$ Z゙－BIT＝0，EREDR．
；WKITE FFH TD 815E．
：KEHL E155．
；Z－bIT SET IF $H=$ OFFH．
；IF Z－HIT＝O．EFRRR．
；FETCH L－FEEG．IN H－KEG．
；Z－EIT SET IF $A=$ OFFH．
；IF Z－HIT＝O LHECK DK．
；DTHEFWISE，EUMF L－EEE．
；E：HECK MEXT LDC：TIDN．
；FETEH 1／D LIHTH．
SET ETES HRRT H：EIT 7.
；H－EEG．$=1$ ．
；SET EIFLG．
：FETCH KETLKM HIII．
SHESET STHEK PDIMTER．
：FESTIFE RETLIRM HIII．
；EEETUEN．
；FETCH I，L IHTH．
；EESET QTEE FDRT FH EIT 7.
BH－KEG．$=0$.
©CLEFF EIFLG．
；FETCH FETLIKIT HID．
GEESET STFIEK FOIMTER．
：RESTUKE FEETLIRN HIID．

	gnownceb
，	
ごで1	g1be SE1E0！
E゙＝	
83	01745
E	0175 GE0以い0
és	U17E FE10
¢ 0	
C－7	0171 GEdu
C゙E゙B	U1FF EEUIO！
E＇9	
E \％	0185 FECO
E＇3	0187 CHgzu1
E＊E	M，BH SEOU
3	1188 Ecyedu
E．4	U1EF St
E0ctic	d1F0 3E16010
θ	U1F玉 E10400
	119\％Eftuciol
	113\％EESF
－9	115147
811	D15：
841	01\％F EEdS
24̇	V1H1 OF
	DIHE MF
－4．4	H1HE ED
E	C1H4 EF
t	1，1HE BHOLO
7	M1HE ESUC．
c48	U1FH UF
－	W1HE OF
	U1 HE：E4
2．	M1HIL 67
ジ5	G1FE GEFF
6－6	M1E LIGE
4	U1EE IUBUE
Ecc	い154 TE
Ecies	U1ES EEDFUQ
\％${ }^{7}$	015EF6LO
4ntic	111EH ITSH0
E59	Q1ELE 20 O！
－11	01 AF BH0Iu0
， 1	O1LE EGGF
它島	0164 ES
－6\％	M1E5 6F
434	日1 6 EEFF
とぢ心	U1E．LG口E
Eヒ心	O1LH LSUE
13	016 OE
－ B_{6}	DIEL SEUEOU
e69	D1 Li，FGCO
－70	11 LĖ L®G1
181	0114 EEOL
む゙大	111204
E\％	111% FE
74	0110 E
ᄂ75	U14 SEGO

EFFPS	STH	$301+1 \%$ FELH7	；SET IHTH INHIEIT FLEGG． BFETCH FF＇S HE STEF C［DINT．
	114＊	H	3 INLTEEMLEM7．
	S1H	Fexiciy	－SHYE FFFS＊さ STEF CDLINT．
	CF1	1611	\％Z－EIT SET IF MFẊ．LOLIYY．
	Jivz	FIHILI	\＄1F Z－EIT＝O．FDFM HLII．
	MVI	H： 11.14	OTHEFIWISE，H－REE．$=0$.
	S14	F＇cictl	\＄EESE 7 PFS \＃＇C STEF COUNT．
FIHEII	LLIH	F1KST	QFETCH FIRST 1 IME FLFG．
	CFI	HOH	\％ $2-51 T$ SET IF H－FEG．$=0$.
	J 2	F17AB	
	M＇l	H：（1UH	\＄TTHERWISE：LLEHK H－FEG．
	STH	FIRST	\％FESE1 FIFET TIME FLFG．
	176：	H	\＄ELIMH H－REG．
	－1H	SLIJPH	：SET LHTH INHIEIT FLFG．
F1THE	LXI	H：$+\mathrm{FS1T}$	；FF＇S 1 THELE HILI．JM HiL．
	LIIH	P1LMT	OFETCH FFE \＃ 1 STEF COUPT．
	Hiyl	次F	－MHEKK FICMT．
	M19\％	E：H	F SWE IH E－FEEG．
	LIIH	FCENT	
	HHI	WSH	\％MHSk E17S 11 HWII 1.
	RFE：		：FDTHTE FIEHT ジ LITS．
	FMC：		
	U） H	E	\％DK WITH HF゙
	MLw	L：H	SHVE IN L－WEG．
	LIH	F＇cicy	OFETCH FF＇S WE STEF EDLVT．
	HMI	LILH	；MASK H17S E HrHL
	KSM：		ORDTATE KIGH7 E EITS．
	REMC：		
	UFTH	H	\＃OF：WITH FFS ： 1 EHSE HIII．
	MロV	$\mathrm{H}: \mathrm{H}$	S SHWE IM H－KEG．
	Mw 1	H；环FH	；FETCH ETS 1×0 MDIE
	DUT	HEH	\＄HEIH1TIHLIZE HOET H．
	CU17	Hith	FEEINITIHLIZE FDF＇T F ．
	MLV	H：M	\＃FETCH PFS＊$* 1$ YOLTHEE．
	STH	F＇FS1	SHVE YULTHEE HT FPS1．
	OK．1	ILUH	SET H11S 6 HIHI 7.
	UUT	U1．1H	
FETHE	Lふ1	H：H＋SET	；FF＇S E 7HELE HIII．IN H：L．
	LIH	Hélim 7	；FETCH FFS \＃二 STEF CDUMT．
	HiPl	WFH	；MASK FCCNT．
	CHH	L	： OF W1TH FFS＊E゙ EHSE HIII．
	MU＇	L．H	© SHVE IH L－KEG．
	Mwl	H：UFFH	；FETEH Eが心 1 人口 MIJIE．
	$\square 1.17$	WEH	；EEIMI 1 IFLICE FORT H．
	［111	USH	：FEINITIHLI2E FOFT B．
	MD\％	H, M	\％FETCH FPS＊己゙ YDLTHISE．
	$\bigcirc 7 \mathrm{H}$	HFSE	SSFYE YDLTFGE HT FFSE．
	［1］	11L． 1.1 H	；SE7 BITE E HMII 7.
	［17	O1H	
IHIEM	Mul	$\mathrm{H}, \mathrm{WHOH}$	－CLEHF＇H－KEG．
	M［＇\％	H：H	－FESET MFIN FFIPME CDLMT．
	E1		SEMHHLE IPTERFUFT SYSTEM．
	KET		OEEETUEN．
EMHEL	Mrl	HOHH	OCLEFF：H－NEG．

37H SIITH
JMF IWIEN
；RESET IHTH INHIHIT FLFG． ；GL EPMHLLE IH7EFFUFT S＂＇STEM．

MFぜ心 MLK
HHI 41 H
CF＇ 4 UH
」た \＄FEXT
CIIULIT LHLII LLUEF
MC＇Y H．M
Du1 1 CH
1 Hón H
SHLI LLILEF
INF E
MOY H：E
CFI USH
JHE EMLHT
MFEXT Miv＇H：4 UH
MOF
MVI H：DCOH
14 DF
；
EI
W，ET
ENINAT LIH
CFI
SIIMH
01 H
12 MFEKT
Mv1 H：4 SH
Pitit
Fil H：MGH
＂リF＇
；
$1111 H$
EI
HET
\＄KEHII INTEFREUFT MHEK．
OMAKK 17．5 EIT．
3Z－E17 SET IF H＝4 HH．
3IF Z－H17 \＆ET PETUFM．
BLII EUFFEF HLII．IN H．L．
；FETEM LHTH．
；DUIFUT 10 ©SEM，FOFT B．
；ELIMF H，L FHIE．
SSHVE NEXTT HLI．IN DLLEF．
© PHEREMENT MA゙IH FFAME CDUTYT．
；FETCH MFE（3）LDUMT．
B－EIT $=1$ IF $H \leqslant U B H$ ．
； $1 F E=11$ ：EMHELE INHTH．
©FETEH ELEHE SUI CDMMFIM．
CLLEHF SOII．
：FETCH SET SDII LCMMIANI．
SEET SUI．LEFVE MHBK WITH

；EMHELE 1MTEPRUTT STSTEM．
；FEETLIFN．
©FETCH IHHTA IMHIEIT FLHE．
シごーEI7 SET IF H－FIEG．＝ 1 。
－IF Z－HIT SET．FIETLFN．
IFETCH CLEHF SUI LCMIMHTHL． SCLEHK SDI．
：FETCH SET SDL E［JMMFHI．
SET SDI．EPHEILE FUT E．E， K57 6．5．KS7 7．5．
：LLEHE HST 5 F FEMIIME．
SEMHELE IHTEHFLIFT S＇STEM． ：REETLIFM．
；$+\phi+\phi+\phi \phi+\phi$
 $!-+\phi+\phi+\phi+\phi+\phi+\phi-\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi+\phi$

SLICE IN 11H
CMH
MOW H：C
Hllit E
DR：＇H II
MLW L．A
LHE M
El
HET
END FIMSL

11HFUT FFRM 81ES：PDFT F． © CDIFLIMEMT．
IDHIA EHEE HIII．IN H－REG． ：MASK EITS O－4．
；DR WITH BUFFER EAEE FIID． IM－FEG．FOIMTS TD LHTH． ；INEFEMEMT THHT LDCHTIDN． ：EMHELL IMTEFRUFT SYSTEM． ：REETUF：M．

ORIGINAL PAGE IS FIMS－S FPS JOERIOP TMELE ORTK

 OF POOR QUALITY| | | HintigeAcos | MATABIE MAI | ERTMEEARE． | SATHEE MATA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\ldots{ }_{\text {che }}$ | ． 01. | 4－216．．． | SDH | －XESH．．．． | －．．09H＿－． |
| ．， 25 ＋1． | 011．－ | 4．25： | S511 | 8094 | 9914 |
| 26 H | － 81 | d上6x | $\overbrace{}^{2} F_{4}$ | S0141 | 091 |
| 17 H | （940 | H－75 | Sx | E里边 | 09 Cl |
| $\phi \theta_{n}$ | － 424 | －$\pm \times 0_{18}$ | CF\％ | －6ه2K | QCn |
| 31. | －02n | $4 \leqslant 1$ | 2 | Sod | QuN |
| W9：8 | －\％ | H231 | 11. | 520r | － 0 ¢－－－－－ |
| か3， | S2n． | \bigcirc | 10 | 区欠a | |
| 另い | ¢0n | －3945 | 13. | 802． | －OC． |
| －05 | Cor． | ذミ5 | SH_{H} | 80211 | O |
| Dos | 02\％ | 426n | 15 | Sgou | Orn |
| 0.7 | ${ }^{1}$ | ± 874 | 16 H | 8：301 | Qc． |
| \＄8： | x^{2} | 158 | 178 | \＄．324 | OCH_{1} |
| χ^{1} | © 2. | 山¢％ | 18.4 | Sbeu | $d c_{1}$ |
| WA | －con | － 2 AK | 19 N | 8 \％0： | \bigcirc |
| EBt． | 02.1 | 二SBr | $1 A^{\text {H }}$ | 903 | － Clt $_{6}$ ． |
| T^{+x} | dsu | $\underline{\square 8 C H}$ | SB4 | ¢ ${ }^{\text {¢ }}$ | －\varnothing cu |
| －us． | 152：1 | \cdots 天D | $1{ }^{1 / 1}$ | Sobs | －icu－－－－ |
| Qra | － Cl_{2}^{1} | USEH | 10．14 | Sxe： | |
| 1 Cl | 02：16－．． | ＋6FH | $1{ }_{14}$ | 9024 | dcs－．－． |
| 10.4 | 120 | | $1 \mathrm{~F}_{\mathrm{H}}$ | 820：4 | ${ }_{3}{ }_{4}$ |
| ［11N | O2．1． | $\therefore 910$ | $2 \phi_{N}$ | \％oar | ϕ |
| | CO_{2} | 4925 | $31+$ | 5×2.1 | ¢ |
| T3u | \％2N | 293 | 22 H | 80211 | － |
| 㧒 | O2\％ | $\pm 3{ }_{4}$ | 234 | 8 ¢2r | ¢－1＋－－ |
| 15 r | 051 | $\underline{2} 95$ | $2{ }^{2} \mathrm{H}$ | SSn： | cia |
| ．． 46 | －O24 | －964 | 25\＃ | 8 8＇s． | D－11 |
| 17.4 | 521 | 197\％ | 26% | kだい | 6－ H |
| 18 r | 0214 | -198% | 2\％ | 区が近 | OCH^{2} |
| 40_{H} | ¢2， | ̇P911 | 28.1 | Stor | OCN |
| SAN． | Csar | こ9A4 | 29 | ¢0？ | \＄crn－－ |
| in： | －024． | $\therefore 981$ | 3 An | Stas | 㜛以－．－．．．－ |
| $\ell^{\prime} C_{H}$ | O2m | $-19 C_{H}$ | $2 \mathrm{BH}_{5}$ | ¢0： | $\phi \mathrm{Cr}$ |
| ＇ D_{H} | $\phi 04$ | 49D． | ． 26 | ¢02．4 | $\underline{\phi}{ }^{\circ}$ |
| SEM－ | Cs： | USEN | 2 DN | 50 | |
| － $1 E_{i}$ | Sa！ | －19FN | 2．En． | $8 \square^{\prime 2}$ | －$\alpha_{\text {ch }}$ |
| W－$=\square_{i}$ | | HA \varnothing_{N} | 2 FN | 509： | －$\triangle C_{1-}$ |
| $181 n$ | 2_{26} | －A1N | $\underline{3} \phi_{\text {H }}$ | 4 205 | $\mathscr{C}_{1.1}$ |

ORIGINAL PAGE IS TEM＇－B IPS iODKUP TABLE DKTA

PIPUT	Prat	，	Hi Tiole DiS	ES ThBCE KON．	Fintieds math
\therefore ins．	．． OL_{2}	Tris．		．8＇2．4．	． 0618
23.1	－ c2，$^{\text {ar }}$	1／13．3	3 S	EDa．！	\otimes_{1}
24，	$\mathrm{O}_{2} 16$	¢，兄	33 4	802H	DCH
25 m	－ 02.1.	\therefore ¢5．4	$3{ }^{1}$	E¢2	${ }_{0}{ }^{\circ}$
36%	－62u	Hibu	351	S0H	ϕc_{1+}
27.4	0 O	4×17	36	\％20	OCN
－10\％	－035：	$4 \mathrm{SO}_{6}$	orn	$00^{\circ} \mathrm{S}$	
Q1．	CE：	二小⿺𠃊	C＇\％	Cos	－SErr．
02 H	－\％\％	dica	－ OF $_{\text {w }}$	$8 ¢ 3 \mathrm{~s}$	
c3．	－3：11	H63：	$1 \phi_{\text {H }}$		． FFH_{5}
O_{4}	$)^{1}$	dist	11＊	903，	CFH－－－－－－
\＄54．．．	©3．1	HC5\％	$12 . \mathrm{N}$	80315	－06
06	CSi	de6．s．	13.4	SO311	$\ldots F_{1}$
\＄7．	QS：	ざで	145	S0．3r	． OF_{5}
Cl_{4}	d：	$\chi^{4} 8_{1}$	15．d	8 83ッ	－ 0 F
\％9．1．	43\％	$4 \square_{\text {¢ }}$	161	So3！	－ $\mathrm{FF}_{\text {H }}$
．40	约	16 ¢以	1714	\＆ $03 \times$	Cris
f 13	$65:$	HCEA	18	$4 \phi 3$.	－\varnothing Ern
Is．	03	$\therefore C$－	19.	803	．ϕ Frs
¢D．	63.	$4 C D_{5}$	154	963	
LEN	6 SH	4CE ${ }_{\text {H }}$	1 BH	903\％	ϕF_{4}
CFs	CS：	${ }^{\text {HCF }}$	1.15	$8 \phi 3$	¢F．
－ 0_{1}	S3：	HDO．H	10	ใ 035	OFH
11：	\％	401N	$1 \mathrm{E}_{\mathrm{H}}$	2p3！	
	\％	4D24	15^{*}	中3』1	$\phi F_{\text {Ib }}$
15	63	4 D 3 H	$\underline{\prime 2} \underline{6}_{6}$	803	－OFs
	\％	LDEM	21.4	\％$力 3$	OE
－5	Onio	4D5	2211	$\therefore \phi 3$ 内	Of．
\therefore ：	0 ¢	\triangle A6H	33．	－63N	QFs
－ 4	Cs：	HD．7．	24 H	\bigcirc	CFA
－ 0_{1}	－034	4D8．n	35.1	${ }^{2} 318$	－ED
1：	－03，	$4 \mathrm{~L}_{14}$	26	$103 x$	${ }_{\text {¢F }}$
Lh：	\bigcirc	$\triangle D A N$	27 H	8×3 H	\＄Fs
1	Cs，	4DE	． 2814		－\varnothing Frn
	－ 016	－MDC4	S9 ${ }_{H}$	9 O．3世	
	OS：	HDD．	SA_{4}	4534．	－Of．r
	－Cos	UDE H	26\％	－ 03.	${ }^{\text {dFI }}$
Hint	$0 \leq$	$\triangle D F_{\sim}$	$\mathrm{CH}^{\text {ch }}$	Ffsh．	$\phi \mathrm{F}_{3}$

ORIGINAL PAGE IS OF POOR QUALITY

TIMS-B PPS LOOKUP TABLE ANTA
Pi, 5 or \because

FTHS-B PPS 2OOUTF TKE'E DKTK

GRIOINAL PAGE IS OF POOR QUALTTY

FIHS'EPRS ZODUP TIGIT DATA

PJCLT PERLT Hítafur an

ORIGINAL PAGE PI OF POOR QUALITY

FJMS-E FPS LOOKUP TIRES MTG

FIMS-B PPS LCOPEN TACLE DATI

ORIGINAL PAGE IS OF POOR QUALITY

FYKS-B PPS LOOKUP TABIL NKTA

FINS-G PFJ dOOKOP TÍBLE DKTK
PG. Jief i:
ORICINAL PAGE IS

17

ORIGINAL PAGE IS FIMS＇B PFS ICOR＇ZIT TKENE DATÁ

$1 \cdot 0 T$	［：M	maces：r Arn．		Fimeirarn	EdTie．rnir
10\％．	．．． S_{3} ：	…－－	墔	比の世，－－	－${ }^{13}$
13 H	OR：	Sin	－aidu．		2413－7．－．－
－． 14 ti．．．	－	－	－131	Sodo	24：
． 15 N	允い		221		24：3
－ 16	\％	怣口1	23	JCAS	$24:$
11		67：	2a＇：	$3{ }^{\circ} \mathrm{A}$	${ }^{2}+16$
1811	CH5	¢	S54	SDA．1	2411
1911	吅：	602	\therefore	Sol：	2 N 11
A．11．	2\％	6	－	． $0^{\prime} A_{1}$	24
$1 \mathrm{~B}_{1}$	じ心1：	6－8	Axu	8¢1．	SNH
$1 \mathrm{~A}_{4}$	0 On	\therefore	S2，	SOA	241
S．1．	＊	Efu	2 AH	SOA	21.1
1f11	总	Gitic	$2 \mathrm{BH}^{2}$	SDA3	$2:$
$1{ }_{1}$	Shir	O「．	2 C	SDAL	20111
dr	OXA		2D．H．	Ssidn	Sint
$21,1$.	1－Ch．	CA1．	2EN	$8 \mathrm{SH}_{1}$	－－m．．． $3^{\prime \prime} 1$
23.11	－S＇K	6人2，	$2 \mathrm{~F}_{\text {H．}}$	\＄c）	2t．
311	Chu．	6人三い	S¢	Sc＇Au	214
2！	－© ${ }_{14}$	ヶイット	31 H	－ SH_{4}	2
554	Oh：	615	32.1	SSh	S19
S14	314	$646 \cdots$	334	Schu	20111
370	K1．	$6{ }^{6} 7$	अ	SUA以	241：
80.78	C＇E	COO_{5}	CEti		274
－ 014	它世	6c1r	هE．	区 ${ }^{\circ} \mathrm{B}$ ．	Si4
1821	\＆ror	EC2 ${ }^{1}$	OTH	8 SB4	2711
83	St．	$6 \mathrm{Ca}_{5}$	$1{ }_{1}$	8Df：	2711
\＄1，	碞以	CrH_{4}	\cdots	\％ 8 B	27
05\％	－6E4	$\underline{=05.51}$	12 r	$8 S^{\prime} \mathrm{B}_{2}$	27 H
\therefore	TiE：	6.6	124	Sxim	27.
C\％	1	$6 \leq 7$	$1{ }^{\prime}$	S SE．	27.
	E	にこ上	15	QSes	27
\because	E：	－CS	！ 6	53	$2 \pm$
\therefore	S	OCK，	1711	$8{ }^{8}$	27
I2E	－ 0^{1}	＿E®	$1 \varepsilon_{\text {H }}$	E＂E！	274
	30，	\therefore 二c．	$\bigcirc{ }^{6}$ ．${ }^{\prime \prime}$	55 E	27.1
D_{H}	25：	GCL	－	$\leq \pm E_{4}$	27.1
卧1	O：	$\leq E^{\text {c }}$	事：	SETH	$\bigcirc 711$
r_{1}	－ C^{1}	$\therefore C \mathrm{~F}$	－C_{15}	\underline{O}	21．5．

ORIGINAL PAGE ES OF POOR QUALTTY

:JM: E RFS ALOI:OF TAE:E RITK
f. je ir in

ORIGINAL PAGE IS OF POOR QUALITY

IIMJ.E FPS LOOKUP TABLE DATA
R. 16 OF 17

Taris. S fis -conzep trige LATA

C. Programmable Power Supplien

FIMS-B unes two programmable high voltage power supplies., Both power supplies were constructed from the design drawings prepared by the Coddard Space Flight Center for use on the HAPI and LAPI instruments on the Dynamice Explorer Satellite.

A few design changes were made to the power supplies to adapt tham to the scientific and operational requirements of the FIMS/Centaur rocket program. The two power supplies used by FIMS are referred to as the energy and mass units, corresponding to the two sections of the instruments analyzer. The energy supply is very similar to the standard D.E. design. Table VII-1 shows the relationship between the 6-bit programming code word and the high veitage output.

The mass analyzex power supply is considerably different from the basic P.P.S. design, the principal difference being that this supply has its high voltage output floated at the -2400 VDC bias used for the mass analyzer float potential. To realize this objective, a considerabie effort was invested in insulating the electronics within the supply from the chassis-grounded case of the power supply. The inner surfaces of the case of the power supply are lined with a fiberglass material to prevent high voltage breakdown.

The second major change was the addition of a set of six optical couplers to interface with the 6 -bit parallel command interface to the CEP. In sumary, the mass P.P.S. has its high voltage return connected to the minus high voltage output of the IVPS, thus floating most of the circuits within the supply at -2400 V . A 50 -megohm resistor was placed in series with the high voltage return iine to the minus high voltage output of the bias yower supply (PICO-PAR). Table VII-2 shows the relationship between the 6-bit programing code and the high-voltage output of the mase supply.
D. High Voltage power Supply (HVPS)

The FIMS-B instrment uses a single HVPS to provide the float potential for the mass analyzer deflection plates and the bias for the microchannel plate detector. A standard PICO-PAK Model PP9N provides the bias potential. The pages following contain specification sheets for the unit used on FIMS-B. The high voltage output has been adjusted to -2400 VDC for this application.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\& 8^{8}-10-61 \\
\& \text { 1354977-7 }=2
\end{aligned}
\]} \\
\hline \& \& \& \& \& \({ }_{1}\) \& \& \& －フT \\
\hline 0 \& \({ }^{21564.9}\) \& \({ }^{2} 5524\). \& 0 \& \& ！ 1203 \& Step no． \& \& \\
\hline 2 \& 1284．7 \& 18.1 \& it 180 \& 4．86 \& 4．3\％ \& 1 \& \& \(E_{2}\)（CapR 1 \\
\hline 3 \& 1623．4 \& 1635 \& \({ }^{16} 33\) \& \& 3，27 \& \({ }_{3}^{3}\) \& \& （Fasino \\
\hline 5 \& 1217.4 \& 1228 \& 1226 \& 2， 1.23 \& 2.46 \& 4 \& \& （FM，mor \\
\hline \({ }_{7}^{6}\) \& 1054．2 \({ }_{912.92}\) \& 1064 \& 1063 \& \begin{tabular}{l}
2.14 \\
1.85 \\
\hline
\end{tabular} \& － 7184 \& \({ }_{7}^{6}\) \& \& 2 （cund \\
\hline 8 \& 790．55 \& 789 \& \％8 \& 1.59 \& \({ }_{6}^{1,58}\) \& 8 \& \& \\
\hline 9 \& （684．59 \& 68 \& 679 \& 1.37
1.3
1.8 \& 1.36
1.185 \& 0 \& \& \\
\hline 11 \& 513.37 \& 512 \& 5\％11 \& 1.03 \& 1．045 \& 11 \& \& \\
\hline 12 \& \begin{tabular}{l}
444.56 \\
384 \\
\hline
\end{tabular} \& 444 \& \(4{ }^{4} 43\) \& ． 8973 \& ． 825 \& 12 \& \& \\
\hline 131 \& 333．37 \& 385
33.3 \& 364
333 \& ． 773 \& ． 767 \& 13
14 \& \& \\
\hline 12 \& 288.68
2498 \& 288,7
250,4 \& 288， 2 \& .560
.503 \& ． 6.508 \& 15 \& \& \\
\hline 17 \& 216．48 \& 250，4 \& 250,1
215,5 \& ．503 \& ． 4327 \& \& \& 1 \\
\hline 18
19 \& 187.47
162.34 \& 18721
162,4 \& 187,5
162,2 \& \& 3766
3258 \& \({ }_{19}^{18}\) \& \& \\
\hline 20 \& 1140．58 \& 180.7
12.9 \& 140.6 \& ． 2826 \& －2824 \& 20 \& \& \\
\hline \({ }_{22}^{21}\) \& （105．42 \& 1. \& 1215
105.5 \& －2446 \& ． 21427 \& \({ }_{22}^{21}\) \& \& 7 \％ \\
\hline 23 \& \({ }_{91.288}\) \& 91.5 \& 91.4 \& ．1832 \& ．1678． \& 23 \& \& \\
\hline 24 \& \％6．456 \& 68.6 \& 68，6 \& ． 1371 \& ．1379 \& 24 \& \& \\
\hline 26 \& 59.281 \& 54.7 \& 55.7 \& ．1198 \& 1200
.1038 \& 26 \& \& \\
\hline \({ }_{28}^{27}\) \& 51．335
44.454 \& 51.6
44.7 \& 51,6
44.7 \& ． 6889. \& ． 0899 \& \({ }_{28}^{27}\) \& \& \\
\hline 29 \& \({ }^{38.493}\) \& 38.7 \& 38.7 \& ． 076 \& ． 0760 \& 29 \& \& \\
\hline \({ }_{31}^{30}\) \& 3．3．336
2．8．867 \& \begin{tabular}{l}
33,5 \\
29.0 \\
\hline
\end{tabular} \& 33.5
\(=9.0\) \& ． 050573 \& ．0546 \& \({ }_{31}^{30}\) \& \& \\
\hline \({ }_{33}\) \& 24．9980 \& 25.12 \& 2512 \& 3．06． \& 4.900 \& \& \& \\
\hline \({ }_{34}^{33}\) \& 21．647 \& S1866 \& 218.86 \& 4，37， \& 4.220 \& \begin{tabular}{l}
33 \\
34 \\
\hline
\end{tabular} \& \& \\
\hline 35 \& 16.233 \& 1633 \& 1633 \& 3，30 \& 3.18 \& \({ }_{35}\) \& \& \\
\hline \({ }_{37}^{36}\) \& 14.057
12.173 \& 12， 124 \& 11217 \& 2，866 \& 2，75 \& \({ }_{37}^{36}\) \& \& \\
\hline 38 \& － 10.541 \& 10.65. \& 1065 \& \& \& 38 \& \& Nu \\
\hline 39
40 \& － \(\begin{array}{r}\text { 9．1285 } \\ \hline\end{array}\) \& 螛言 \& 9 \& 11876 \& 1，7586 \& \({ }_{40}^{39}\) \& \& 0 \\
\hline 41 \& 6.8454 \& 483 \& 683 \& \(1,3{ }^{1}\) \& 1,316 \& 41 \& \& \\
\hline 4 \& 5.9278
5.1333 \& 5，15 \& \& 1，22． \& \& \& \& \\
\hline 44 \& 4.4452 \& 4．457， \& 4.475 \& ． \(\mathrm{C}_{123}\) \& 6， 958 \& 44 \& \& ， \\
\hline 45
46 \& 3．8494 \& 3，364 \& 3，360 \& ， 2042 \& ＇．739 \& 45 \& \& 26.70 \\
\hline 47 \& 2.8866 \& 2． 2.514 \& ： 21509 \& ． 612 \& 55 \& \& \& \\
\hline 48 \& 2．4997 \& \({ }_{2}^{25171}\) \& 2， 2114 \& ． 467 \& ． 2478 \& \({ }_{49}^{48}\) \& \& \\
\hline 50 \& 1.8745 \& 1．891， \& 1.890 \& 411 \& 1356 \& 50 \& \& \\
\hline 51
52 \& 1．6232 \& 1,417 \& 1416 \& ．318 \& 1306
1264 \& 51
52 \& \& \\
\hline 53 \& 1.2173 \& 1.226 \& 1223 \& ． 280 \& ． 2227 \& 53 \& \& \\
\hline \begin{tabular}{l}
54 \\
55 \\
\hline 5
\end{tabular} \& \({ }_{0}^{1.0541}\) \& 1062 \& \({ }^{10} 5\) \& －248 \& ．196 \& 54
55 \& \& \\
\hline 5 \& 0．72946 \& ． 801 \& ． 801 \& 1965 \& ．1461 \& 56 \& \& \\
\hline \begin{tabular}{|c}
57 \\
58 \\
\hline
\end{tabular} \& O． 68451
0.99276 \& ． 685 \& ． 6596 \& 1743
11546

1 \& 11242 \& | 57 |
| :---: |
| 58 | \& \&

\hline 59 \& 0．51331 \& \& \& 11403 \& ：0908 \& 59 \& \&

\hline $$
\begin{aligned}
& 60 \\
& 61
\end{aligned}
$$ \& O．44430

0.3 \& ． 446 \& ． 145 \& ．1268 \& ．077？ \& 60 \& \&

\hline ${ }_{63}^{62}$ ！ \& 0.3893
0.283 \& ． 3132 \& ${ }_{3} 329$ \& $\therefore 1044$ \& ．055 \& 62 \& \&

\hline
\end{tabular}

TABLE VII－1

521	${ }^{1}$	${ }^{\text {ar }}$	$v 2$	w	＋V0	＋+ M	－vo	－TM	$\text { . } I \tan x)=80 .$
2	227k	${ }^{227 \%}$	－7， 30	－912，22	977	4.86	979	4.901	Verkubta $=2$
？		1200	9.008	－926，62	${ }^{924}$	4.60	927	4.64 4.34 4.3	
，		1213	－6．69	－42， 12	$8{ }_{85}$	4.30			
；		207x	－6．100	－121，409	818	4.07	820	4.18 3.86	
？		30	－3．60	－710．01	778	3.83 3.62	772	3.65	Omamal page is
＇		\％ok	－5． 29	－682，43	694	3，45－	695	3.48	OF POOR QUALTY
：		$0 \cdot 6$	－4．03	－635，23	$64)^{-}$	3.21	647	3，29	1
10	2028	127k	-4.71 -6.44	－616，26	617 584	3：570	618	3,045 2.93	7
${ }^{1}$		21\％	－4．19	－346，47	55	2.716	547	2.74	
${ }^{22}$		2008	－3．95	－317，62	517	2，57	$5-18$.	2，54	
${ }^{23}$		1018	－3．73	－410．23	486	2.42	487	2，44	
${ }^{26}$		3k	－3．52	－460．30	440	2.285	461	2.306	
138		${ }_{\text {cox }}$	${ }^{-3.32}$	－631．46	438 408	2.18 2.026	439	2.177 2.04	$\rightarrow \leqslant 3 / \mathrm{mms}$
${ }^{17}$	323k	22\％	$-2,9$	－306，6s		1.898	383	1，915	
16		220x	$-2,10$	－306， 16	361.5	1．796	362	1－81	
${ }^{1}$		нı\％	－2，63	－44，12	338	1，68	339	1.696	
20		107 x	－2，48	－326，64	320	1.55	321	1.604 1,51	
${ }_{22}^{21}$		303k	${ }_{\text {－2，}}^{\substack{-2.14}}$	-30626 -20.93	205	1.496	302 285	1，43	
${ }^{23}$		90x	－2．08	－272．51	2,71	1，347	272	1.36	
24		14 K	－2．96	-237.14	252	1.254	253	1.26	INA
${ }^{26}$	344x	${ }^{1220 \times}$	-2.05 -1.75	-222.59 -22.196	241	1.198 1,13	242	1.21	
${ }_{27}$		${ }^{213 \%}$	-1.15 -1.65	-221.196 -2108	228 213,4	1,06	229 214	1.07	DATA
20		201K	－2．56	－203．68	202	1.0	202	1.01	
29		101k	${ }^{-1.47}$	－192．15	190	－． 943	190.	.952	
30		${ }_{\text {gok }}^{\text {9\％}}$	${ }_{-1.31}^{-1.38}$	${ }_{-211.02}^{-211.20}$	179.6	1891 849	180	190	
32		84k	－1．23	-261.31	$\frac{15}{159}$	849 .790	$\frac{171}{159}$	． 8.798	$2{ }^{2}$
33	820k	${ }^{22120}$	－1．16	－152．20	150	， 746	151	． 754	$171.4=17$
36	820k	${ }^{2200}$	${ }^{-1.10}$	－143．98	13	． 706	103	． 713	シーノ
36		200\％	$\stackrel{-1.08}{-.98}$	－－132．196	126	． 623	133	．．631	
3		201k	－．92	－120．36	118	． 5887	119	－354	
${ }^{36}$		93k	－．87	－123．73	112	． 55.4	112	． 535	
39		90k	－． 02	－107． 30	107	．528	107	－498	
4	2．306\％	－ 124 K	－．71	$\stackrel{-101.22}{-959}$	799.3 7.94 .6	：493	94.6	． 474	
42		${ }^{320 \mathrm{~K}}$	－．69	－90．09	－ 89.5	－ 4444	89.8	． 449	
${ }^{4}$		${ }^{213} \mathrm{k}$	－． 65	-14.98	83,5 79 74	.393	84.0	． 6329	
4		207k	－． 61	－80．18	79,2	1393 .370	7915	． 374	
45		201K	－． 56	－75．64	74.6	－379	71.8	1353	
46		${ }_{\text {90\％}}^{\text {9\％}}$	-.56 -.51	-72.36 -67.32	70.5	＋333	67.3	＋ 1336	
4		aik	－． 68	－63，51	62.4	， 309	62.7		
49	2.0824	127k	－． 46	－59．91	59.5	5．295	59.7	． 2981	
so		${ }^{220 \mathrm{~K}}$	－． 43	－56．52	56.3	3.279	56.5	． 2864	
51		${ }^{1213}$	－． 61	－33．32	52.6	$6 \quad 126$	52.9		
32 53		107K	－． 36	－50．31	\＄9．8	8.246	50.0	，25－1	
33		${ }^{2015}$	－． 36	－67．46	46.8	$8 \quad .232$	47.0	． 235	
36		${ }^{\text {95k }}$	－． 4	－44，7	44.3	319	44,4	${ }^{222}$	
35		${ }_{8}^{\text {80\％}}$	－． 32	－42．24	42．2	2 ．2085	42，3	［272	
56	3．3104	－84k	-.30 -.29	-39.85 -37.59	39.2	2.194	379.4	.197 .186	
58		1200	－．27	-35.46 -3.45	37.1	$1{ }^{183} .18$.	37,2 35,2	． 176	TMoz $00^{\circ}=\mathrm{Vo}$
39		${ }^{2130}$	－． 26	－33．56	32.8	8.162	33.0	． 165	
60		207k	$-.26$	－32．56	31.0	：15－3	31，2	．156	$1227(200)=24.6$
${ }^{6}$		201k	－． 23	－29．78	29.2	．144	27.3	． 1426	$243-4=31$
${ }_{6}^{62}$		9sk	－． 22	－28．09	27.6	． 136	27.		
${ }^{63}$		90x	－． 20	－26．50	6.2	． 129	26.		
			－19	－25．00	24.4	.120	24		TABLE VII－2

[^0]: "E. A, Kurz, "Whamel eleetron multipliers," Am, Lab, 67, (March 1979),

 * H, Rosenbatuer, Remarks on the qualifieation of continuous channel electron mullipliers (CEM's) for use as detectors in long term space night missions, bmpublished manuseript (May 1978).
 3 J. G. Timothy and R, L. Bybee, Rev, Sei, Insirum, 49, 1192 (1978).

[^1]: FIGURE 10.

