Improved SCR ac Motor Controller for Battery Powered Urban
 Electric Vehicles

Thomas S. Latos
Gould Laboratories, Electrical \& Electronic Research Gould Inc.

LIBRARY COPY
December 1982

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Contract DEN 3-60
for
U.S. DEPARTMENT OF ENERGY

Conservation and Renewable Energy
Office of Vehicle and Engine R\&D

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Nelther the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarlly constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America

Avallable from
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
NTIS price codes ${ }^{1}$
Printed copy: A13
Microfiche copy: A01
${ }^{1}$ Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current Issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR), and publication, NTIS-PR-360 avallable from NTIS at the above address.

Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

Thomas S. Latos
Gould Laboratories, Electric \& Electronic Research Gould Inc.
Rolling Meadows, Illinois 60008

December 1982

Prepared for
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
Under Contract DEN 3-60
for
U.S. DEPARTMENT OF ENERGY

Conservation and Renewable Energy
Office of Vehicle and Engine R\&D
Washington, D.C. 20545
Under Interagency Agreement DE-AI01-77CS51044
n83-16257\#

This final report was prepared for the National Aeronautics and Space Administration, Lewis Research Center for the Department of Energy by Gould Laboratories of Gould Inc. in Rolling Meadows, II. Mr. F. Gourash of the Lewis Research Center was the contract Project Manager. The author wishes to acknowledge the contributions of R. Ehrlich, T. Jahns J. Mezera, D. Thimmesch and D. Bosack to the contract technical effort and this report.

This Page Intentionally Left Blank
Page
Executive Summary ix
I. Introduction I - 1
II. Propulsion System Configuration I I-1
2.1 Vehicle Performance Requirements II - 1
2.2 Drivetrain Selection II - 1
2.3 Inverter System Requirements II - 6
III. Motor/Controller Design III - 1
3.1 Induction Motor Selection and Specifications III - 1
3.2 Control Strategy III - 10
3.3 Power Inverter Design III - 52
IV. Controller Operation and Description IV - 1
4.1 Control Logic Power Supply IV - 1
4.2 Excitation Frequency Logic IV - 2
4.3 Voltage Modulation Logic IV - 7
4.4 System Control Module IV - 13
4.5 Power Inverter IV - 22
4.6 Commutation and Gating Logic IV - 28
V. Enclosure Design V-1
5.1 Enclosure Design Approach V-1
5.2 Power Inverter Enclosure V-1
5.3 Logic Enclosure V-8
VI. Motor Controller System Performance VI - 1
6.1 Testing Methods VI - 1
6.2 Controller Torque-Speed Operating Envelope VI - 4
6.3 Calculated System Efficiency VI - 7
6.4 Pulse-Width Modulation Operation VI - 14
6.5 Thermal Performance VI - 17
6.6 Physical Description VI - 22
VII. Controller Power Scaling and Cost Assessment VII - 1
7.1 Scaled Family Definition VII - 1
7.2 Inverter Component Requirements VII - 1
7.3 Controller/Motor Cost Assessment VII - 6
7.4 On-board Battery Charger Modification VII - 13
VIII. Conclusions VIII - 1
IX. References, List of Symbols IX - 1

Appendices

> Page Number
I. Vehicle Acceleration Prediction Program (VAPP)

A-I Page 1
II. Commutation Circuit Design Analysis

A-II Page 1
III. Inverter Loss Analysis

A-III Page 1
IV. AC Controller Electrical Schematic Diagrams A-IV Page 1
V. Microcomputer Assembly Language Program

A-V Page 1
VI. Test Instrumentation Specifications

A-VI Page 1

This Page Intentionally Left Blank

Executive Summary

DEN3-60 was a research contract funded by the Department of Energy and managed by NASA-Lewis Research Center to design and develop an electric vehicle propulsion system controller which uses an ac induction electric motor as the electrical to mechanical energy conversion unit. Specifically, the contract program was to design and test an improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery, would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels. In such a system, the motorcontroller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands.

The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0-72.4 kmph ($0-45$ mph) in 28 seconds, a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at $48 \mathrm{kmph}(30 \mathrm{mph}$). A 10% grade is defined as one foot of verticle rise per 10 feet of horizontal distance.

With the aid of a computer simulation, the vehicle acceleration, top speed, and gradeability requirements were translated into electric motor torque and shaft power requirements. If shaft torque exceeds $40 \mathrm{~N}-\mathrm{m}$ ($29.5 \mathrm{ft}-$ 1b) until the vehicle speed surpassed 72.4 kmph (45 mph), the acceleration requirement would be attained. Similarly, if the electric motor shaft power capability was at least 12 kW (16 hp) at vehicle speeds of 88.5 kmph (55 mph) and 26 kW (34.8 hp) at $48 \mathrm{kmph}(30 \mathrm{mph}$), the requirements of the SAE 227 a (D) driving cycle could be met or exceeded. Since the mechanical transmission between the electric motor and the drive wheels determine both the rear wheel
torque and electric motor shaft speed at a given vehicle speed, a fixed ratio transmission with a speed reduction of $9.8: 1$ was selected to use in the computer simulation. This transmission would multiply the motor shaft torque available at the rear wheel axle. The simulated vehicle was assumed to be equipped with 0.33 m (13") diameter wheels. The combination of transmission gearing and wheel diameter dictated the speed range of the electric motor to be 0-816 rad/s (0-7800 rpm).

The motor controller converts dc voltage and currents available at the battery terminals to ac voltages and currents required by the three phase ac induction motor. The translation from dc to ac is accomplished with an array of six switches schematically illustrated in Figure i-1. These six switches allow each motor terminal to be connected to either the "plus" battery terminal or the "minus" battery terminal. When two motor terminals are considered, it can be seen that the voltage polarity across motor terminals A and B in Figure $i-1$ can be positive, zero, or negative with respect to terminal B. These three polarities correspond to motor terminal A connected to the (+) battery terminal and motor terminal B connected the (-) battery terminal, both motor terminals A and B connected to the same battery terminal (either plus or minus), and finally motor terminal B connected to the (+) battery terminal and motor terminal A connected to the (-) battery terminal. By coordinating the switching of the six switches in Figure $i-1$, a three phase set of voltage waveforms can be applied to the motor terminals, each phase electrically displaced 120° from each other. By simply varying the rate at which the switching action accurs, the output electrical frequency of the motor controller can be varied.

In the Gould motor controller, the six switches are physically implemented with silicon controlled rectifiers or SCRs. This family of semiconductor switches is available with suitable voltage and current specifications to switch the motor terminals from the plus battery terminal to the minus battery terminal. Although SCRs are not the only candidate semiconductor family (for example, BIPOLAR transistors, gate-turn-off thyristors, or field effect transistors), the use of SCRs within the motor controller was a specific requirement of Contract DEN3-60.

10443)

Figure i 1 Six Switch Array to Convert dc to Three --Phase ac

The electrical schematic of the power electronics circuit within the motor controller is illustrated in Figure i-2. SCRs 1-6 form the six switch array. Diodes D1-6 allow the motor controller to successfully tolerate leading or lagging motor power factors by providing a path for reactive currents in the absence of a conducting SCR. The remaining components are used to commutate or turn off SCRs which have been gated into conduction.

The battery voltage was selected to be 120 Vdc . This decision was based on the traditional use of golf-cart style batteries in electric vehicles and the availability of SCRs in stud mount packages (T0-93) with suitable voltage and current ratings.

The ac induction motor selected to complete the electrical propulsion system was a modified Gould E-plus three phase induction machine. The motor rated 7.46 kW at 60 Hz (10hp) is produced in a NEMA 215 TENV frame size. Motor rotor modification consisted of replacing the original ball bearings with a class C clearance bearing system removing the cooling fins from the rotor end castings, and precision balancing the rotor assembly. The original stator windings were removed and the stator rewound such that the motor was rated for 36 V ac operation at 60 Hz .

The control approach used to coordinate the voltage and frequency applied to the motor terminals is based on the accurate control of the slip or difference frequency between the motor mechanical frequency and the electrical excitation frequency. With this approach, the induction machine shaft torque is linear with slip frequency and independent of the mechanical speed of the rotor provided the machine air gap magnetic flux is held constant.

Two independent control loops within the controller control the slip frequency and the air gap flux in the induction motor. The slip frequency is added to the motor shaft frequency directly via tachometer feedback using digital phase lock techniques. For the selected induction motor, the torque constant is $30 \mathrm{~N}-\mathrm{m} / \mathrm{Hz}$ of slip (22.1 ft-1b). The resulting sum of the slip frequency and the motor shaft frequency directly determines the motor excitation frequency supplied by the inverter.

(0691)

Figure i-2 EV Propulsion System Power Stage Configuration

To achieve control of the air gap flux of the machine, ultimately the terminal voltage applied to the motor must be controlled. The applied voltage ideally should be smoothly variable between zero and the maximum available from the propulsion battery. A second requirement placed upon the applied motor voltage is that it be sinusoidal to minimize both motor ripple torque and peak controller currents. These requirements are achieved in the Gould controller with a Pulse Width Modulation (PWM) algorithm. The exact algorithm adopted which determines the on-off gating signals applied to the thyristor switch array examines the intersection of sine wave reference generated at the motor excitation frequency (f_{ex}) and a triangle function generated at nf ex where n is a function of the excitation frequency. In this controller, n assumes discrete values of $9,27,45,63$, and 81 . By controlling the amplitude of the sine wave and the triangle function, both the amplitude and the harmonic content of the applied motor voltage is controlled. Figure i-3 illustrates the PWM algorithm for $n=9$ and $n=27$.

The air gap flux control algorithm generates control signals to vary the amplitude of the sine and triangle functions. The control algorithm feedback measures the fundamental component of the applied motor voltage and implements a constant voltage/frequency strategy with low speed compensation for stator resistive losses.

The control logic which implements the air gap flux algorithm is accomplished with a Molorola 6802, 8 bit microcomputer system. Additional tasks assigned to the microcomputer are controller logic sequencing, thermal protection of the power circuit components, and controller interlocking to prohibit damaging operator commands. The remainder of the controller logic is implemented with discrete CMOS logic. Specific logic blocks generate the sine and triangle functions, perform the slip frequency addition, and generate the SCR gating signals.

(1398)

Figure i 3 Sine Triangle Modulation Strategy Showing the Effect of Changing the Parameter n . For $\mathrm{n}=9$, the First Significant Motor Harmonic is the 17th; for $\mathbf{n}=27$, this Changes to the 53rd. The Developed Motor Terminal Voltage is Independent of n, but Varies with the Relative Amplitudes of the Sine and Triangle Reference Waveforms.

The complete controller and motor system is illustrated in Figure i-4. The power circuit is contained in the large enclosure and communicates with the logic system via the flexible conduit. Logic power is derived from the propulsion battery via a combination of linear and switching regulators.

The power circuit weighs 56.8 kg (135 1b) and occupies a volume of 87 x $10^{-3} \mathrm{~m}^{3}\left(3.10 \mathrm{ft}^{3}\right)$ and its associated control logic weighs $8.2 \mathrm{~kg}(18 \mathrm{lb})$ and occupies a volume of $17.8 \times 10^{-3} \mathrm{~m}^{3}\left(0.63 \mathrm{ft}^{3}\right)$. The induction machine weighs $53.1 \mathrm{~kg}(117 \mathrm{lb})$ and is in a 215 TENV NEMA frame. Details of the controller construction can be seen in Figures i-5 and i-6 respectively which are photographs of the controller interiors.

System testing was accomplished with a dynamometer system capable of testing the motor/controller in both the 1st and 4th quadrants; i.e.motoring and regeneration. The motor controller system torque limits as a function of motor shaft speed are shown in Figure i-7. A shaft torque of $60 \mathrm{~N}-\mathrm{m}$ (44.2 ft lb) is obtainable at locked rotor and peak torque capability exceeds $100 \mathrm{~N}-\mathrm{m}$ (73.6 ft-1b) at $315 \mathrm{rad} / \mathrm{s}(3008 \mathrm{rpm})$. An inspection of the torque speed envelope indicates the assumed vehicle will be able to successfully meet the schedule D requirements for acceleration, cruise, and gradeability.

The controller's electrical efficiency as a function of motor shaft speed is shown in Figure i-8. Peak controller efficiency of 92% is obtained at peak power. This is expected since the fixed controller losses become the smallest fraction of the input power. The commutation circuit components, primarily the magnetic elements, account for the largest portion of the controller losses.

The retail cost of the ac controller and motor developed in DEN3-60 is projected to be $\$ 1500$ in annual manufacturing quantities of 100,000 units. The controller is projected to cost $\$ 1310$ of this total and the motor $\$ 190$.

Figure i-4 Motor - Controller System
The three major components are induction motor (left), the power circuit (center), and the control electronics (right)

Figure i-5 Interior of Power Circuit Enclosure
Input filter is to the right. Commutation components are centered about the cooling fan. Main SCR's and diodes are to the left.

Figure i-6 Control Logic Enclosure Interior
Circuitry is modularized on eight printed circuit boards for servicing. A simulated drivers console is at the left. Braking energy is returned to the battery.

Figure i-7 Motor/Controller Torque Speed Envelope --- 1st Quadrant

Figure i-8 SCR Controller Efficiency Data - 1st Quadrant Operation

I. Introduction

Nearly all electric vehicle propulsion systems in the past have employed a dc motor and controller to convert battery-stored electrical energy into mechanical energy at the vehicle drive wheels. The dc system has found wide acceptance since the controller design is straightforward and the dc machine provides torque-speed characteristics appropriate for traction applications. An advantage of this system approach is the basic simplicity of dc motor control techniques, typically employing battery tap-changers, resistive networks, or solid-state choppers to vary the applied motor voltage. However, the dc motor itself is responsible for providing the system with its major disadvantages. Dc machines are generally larger, heavier, and more expensive than alternative ac machines, largely due to the dc motor's mechanical commutator. In addition, mechanical commutators often pose special maintenance problems.

Ac machinery suffers none of the disadvantages associated with the mechanical commutators since the required commutating action is performed electronically in the controller circuitry. The ac squirrel-cage induction motor chosen for use in this program is inherently rugged, inexpensive, and capable of high-speed operation. Historically, the principal disadvantage of ac systems has been the control complexity associated with translating the system input commands into motor excitation waveforms of the proper frequency and voltage amplitudes. However, as the cost of power semiconductors and integrated circuitry decreases and general interest in electric vehicles increases, the potential of ac motors for EV propulsion is attracting renewed attention.

This report discusses a program to develop and design an improved induction motor controller for vehicle applications. The selected vehicle configuration used to size the power rating of the controller is a 3500 ib commuter-style vehicle with performance specifications drawn from the SAE J227a, Schedule D driving cycle. Specifically, these performance requirements include acceleration to 45 mph in 28 seconds, 10 percent gradeability at 30 mph , and capabilities for extended crusing at 55 mph . Regeneration of braking
energy back to the propulsion battery is also specifically required. The controller rating was selected to allow the use of a fixed-ratio transmission in the drivetrain. The controller has been designed to employ conventional lead-acid batteries and an industrial-grade induction motor.

Thyristors, or silicon controlled rectifiers (SCR's), were chosen as the power semiconductor switching devices for the power stage on the basis of their proven ruggedness and low cost. In an effort to reduce controller cost by minimizing the number of power stage components, a bus-commutated circuit topology for the power stage was adopted at the outset of the program. The special demands made by this type of topology on the control logic are discussed in this report. The harsh vehicle operating environment dictated that the power stage be contained in a moisture-resistant enclosure making component cooling more difficult. Vehicle ram air directed over the power stage package provides sufficient cooling capability except during extended low-speed operation when thermal protection via controller shutdown is employed.

To insure suitability for vehicle applications, the control logic has been designed to give the propulsion system the characteristics of a torque controller. The control logic responds to operator acceleration and braking requests by making appropriate adjustments in motor excitation voltage and frequency. A motor shaft tachometer and motor voltage transducer provide the control logic with the necessary feedback information to make these adjustments. These control actions are performed by logic submodules under the supervision of an on-board microporcessor. Controller sequencing and protection are additional tasks of the microprocessor.

Contract DEN3-60 was a research contract funded by the Department of Energy and managed by NASA-Lewis Research Center.

II. Propulsion System Configuration

2.1 Vehicle Performance Requirements

The required performance level for an electric automobile for the contract work scope is defined by the SAE J227a Schedule D driving cycle. This driving cycle is schematically pictured in Figure 2.1 and contains an acceleration profile of zero to $72.4 \mathrm{~km} / \mathrm{h}$ (45 mph) in 28 seconds, continued crusing at $72.4 \mathrm{~km} / \mathrm{h}$ (45 mph) for 50 seconds, a coast period of 10 seconds and finally deceleration to zero speed in 10 seconds. A gradeability requirement, $48.3 \mathrm{~km} / \mathrm{h}$ (30 mph) for one minute on a 10% grade, is also included along with a top speed requirement of $88.5 \mathrm{~km} / \mathrm{h}$ (55 mph).

These performance goals, when applied to a commuter style electric powered vehicle, specify the necessary wheel torque and power. A standard vehicle used for this study has the following characteristics:

1)	Mass	1590 kg
2)	$(3500 \mathrm{lb})$	
3)	Drontal Area Coefficient	$1.86 \mathrm{~m}^{2}$

This vehicle requires a power of 11.3 kW to maintain a speed of 88.5 km / h (55 mph) at zero grade and 27.0 kW to maintain a speed of $48.3 \mathrm{~km} / \mathrm{h}$ (30 mph) on a 10% grade. To aid in the determination of motor torque-speed requirements, a Vehicle Acceleration Profile Program (VAPP) was assembled to calculate acceleration time to a target speed. Program listings are included in Appendix I.

2.2 Drivetrain Selection

An electric vehicle drivetrain consists of the propulsion battery, the electric propulsion motor, a transmission (either fixed or multiple ratios), and finally, the drive wheels. These are symbolically represented in Figure 2.2. In any electric propulsion system, selection of the open-circuit battery

(0699)

Figure 2.1 Typical Motor Performance in VehicleSAE J227a, Schedule d, Driving Cycle

Figure 2.2 General Propulsion System Topology
terminal voltage is somewhat arbitrary given that the total battery energy capacity is adjustable independent of terminal voltage. Since the electric vehicle industry is presently manufacturing vehicles with off-the shelf components, however, custom battery modules are not available to allow the simultaneous optimization of battery capacity and terminal voltage. The batteries which are readily available with acceptable performance characteristics are golf-cart style batteries having a typical capacity of 125A-h at a 100 minute rate.

For this program a 120 V battery consisting of 60 such golf-cart cells was selected. This gives a reasonable compromise between the desire to minimize controller currents (have a high terminal voltage) and the need to keep battery weight consistant with the target vehicle performance requirements.

To minimize the expense of the vehicle drivetrain, a fixed ratio transmission was selected with a ratio of 9.8:1. This ratio provides adequate wheel torque to meet acceleration goals and still limits the top speed of the ac motor to 7800 rpm at 55 mph . Although conventional ac squirrel-cage induction motors normally operate up to speeds of only $366 \mathrm{rad} / \mathrm{s}$ (3500 rpm), their structrual design allows operation at speeds exceeding $1047 \mathrm{rad} / \mathrm{s}$ (10,000 rpm).

To provide both the peak power requirements of 27 kW and the steady state requirements of approximately 12 kW at 55 mph , a NEMA 215 TENV frame size induction motor was deemed adequate. This motor size was suggested by both NASA-Lewis during the procurement stage and by Rohr Industries as a result of their contract work ${ }^{1}$. This motor size can produce accelerating torques of 60 $\mathrm{N}-\mathrm{m}$ which will successfully meet the $0-45 \mathrm{mph}$ acceleration requirement when coupled with a 9.8:1 fixed ratio transmission.

The defined powertrain is summarized in Figure 2.3. It consists of a 120 V battery, a dc-ac motor controller, a 215 TENV induction motor, and a fixed ratio, 9.8:1, differential torque multiplier.

Figure 2.3 Selected Propulsion System Power Train

2.3 Inverter System Requirements

The torque-speed envelope requirements at the shaft of the ac motor are illustrated in Figure 2.4 which also shows the vehicle speed corresponding to a given motor shaft speed. The critical torque-speed couples for gradeability and high speed operation are clearly indicated along with the acceleration torque requirements. As is seen in the Figure, the minimum acceptable torque to meet the acceleration requirements is approximately $40 \mathrm{~N}-\mathrm{m}$ with $60 \mathrm{~N}-\mathrm{m}$ required to successfully negotiate a 10% grade at 30 mph .

Figure 2.4 Motor - Torque - Speed Requirements

III. Motor/Controller Design

3.1 Induction Motor Selection and Modifications

Motor Selection

At the heart of the EV propulsion system is the ac motor. As called for in the contract requirements, this motor is a rugged squirrel-cage induction machine. From the beginning of this program it was clear that successful achievement of system performance goals demanded that the selected motor be fully compatible with the controller design.

The contract statement of work gave Gould the option of using a Government-furnished (GFE) induction motor or supplying an alternate motor subject to NASA Project Manager approval. After studying the GFE motor specification, Gould elected to supply an alternate motor. There were two principal reasons for this decision. First, the GFE motor, being necessarily wound for a fixed stator voltage, would limit Gould's freedom in choosing the controller system voltage. Second, tangible benefits in motor efficiency and power factor were forseen by selecting an appropriate alternate motor.

In place of the GFE machine, Gould supplied a motor from its own E-Plus ${ }^{\text {TM }}$ line of induction machines. Introduced in 1975, these industrial grade machines are specially designed to provide higher operating efficiency and power factor than the standard industry-average motors. A cutaway view of the typical E-Plus ${ }^{\text {TM }}$ motor is provided in Figure 3.1 together with short descriptions of the design techniques employed to reduce losses and improve power factor. The E-Plus ${ }^{\text {TM }}$ motor selected for this program is constructed with an aluminum housing, steel stator and rotor laminations, copper stator windings, and aluminum rotor bars and end rings.

Selection of a specific motor for this program consisted of matching performance requirements with available motor ratings. This analysis confirmed the earlier results of the 1978 Rohr Industries study ${ }^{1}$ showing that

Figure 3.1 Construction Details of Gould E-Plus © \times Motor
the performance requirements are best met with a nominal $10 \mathrm{hp}, 1800 \mathrm{rpm}$, four-pole NEMA 215 T frame machine. This motor produces a $40 \mathrm{~N}-\mathrm{m}$ torque under rated flux conditions and can produce over twice that amount during transient conditions at the same flux level. Provided that these torque levels can be delivered over a wide vehicle speed range, as will be described shortly, this motor is capable of meeting all contract power handling requirements. Key motor characteristics are summarized in Table 3.1.

Motor Modifications for the EV Application

Since the E-Plus ${ }^{\text {TM }}$ motors are intended for industrial use, they have been designed for fixed-frequency (60 Hz), fixed speed (1800 rpm for a 4-pole design) and operation from a fixed standard utility voltage source (230V, 3phase, typically). Nevertheless, these machines are useful over the wide speed ranges encountered in this EV application provided that a limited number of motor modifications are introduced. Mechanical modifications of the rotor assembly included rotor balancing and bearing replacement in order to extend motor shaft speed capabilities to 8000 rpm . Mechanical integrity of the rotor poses no problem since the tested burst speed for this type of squirrel-cage rotor assembly is $16,000 \mathrm{rpm}$. Following the suggestions of the NASA Technical Program Monitor for this contract, the rotor was fitted with Class C clearance single-shielded ball bearings lubricated with a high-quality, high-temperature grease, type SRI-2. Further modifications of the rotor to accommodate the extended speed range included removal of the aluminum rotor cooling fins which normally extend from the squirrel-cage end rings. Rotor balancing for 8000 rpm operation was performed using the same techniques used in balancing highspeed automotive engine shafts.

Since the chosen system voltage of 120 V is considerably less than standard utility industrial supply voltages, it was necessary to rewind the stator for a reduced voltage level. A summary of the analysis underlying the choice of voltage rating for the new winding will be presented here. According to the contract specifications, the highest power delivery requirements for the propulsion system occurs at 30 mph under 10% grade conditions. Assuming a 9.8:1 drivetrain transmission gear ratio, 30 mph

corresponds to a motor excitation frequency of 140 Hz for the 4 -pole motor. Since the battery terminal voltage may sag to the vicinity of 110 V under maximum loading conditions, the fundamental frequency line-to-line rms voltage component, $\mathrm{V}_{1}{ }^{\ell \ell}$, will be only 86 V under such conditions:

$$
\begin{equation*}
V_{1} \mathrm{~V}_{140 \mathrm{~Hz}}=\frac{\sqrt{6}}{\pi} V_{\text {bat }}=(.78)(110)=86 \mathrm{~V} \tag{3.1}
\end{equation*}
$$

When this voltage rating is scaled down from its 140 Hz value to the equivalent 60 Hz value, assuming a constant volts-per-Herz ratio, we find

$$
\begin{align*}
& V_{1}^{\ell \ell}=\frac{60}{140} \times V_{1} \text { l\& } \tag{3.2}\\
& 60 \mathrm{~Hz}
\end{align*}=37 \mathrm{~V}
$$

Consideration of convenient winding configurations for the selected EPlus ${ }^{\text {r" }}$ motor led to the specification of a 36 V stator winding under 60 Hz excitation conditions. With the assistance of Gould's Electric Motor Division, the motor was fitted with a lap winding appropriately adjusted for this 36 V rating.

Motor Equivalent Circuit and Measured Performance

Upon arrival of the selected rewound induction motor at Gould Laboratories, a set of tests was carried out to determine values for the motor single-phase equivalent circuit. As shown in Figure 3.2, this process involves identification of five key motor impedances: stator winding and rotor squirrel-cage resistances (R^{S} and R^{r}), stator and rotor leakage reactances ($X \ell s$ and $X \ell r$), and magnetizing reactance $\left(X^{m}\right)$. Reactances are specified at a base frequency of 60 Hz and resistances are adjusted for operating temperatures of $70^{\circ} \mathrm{C} . \omega^{\mathrm{e}}$ is the electrical excitation frequency and ω^{r} is the mechanical frequency.

(0436)

$$
\begin{aligned}
\omega^{\mathbf{e}} & =2 \pi \times \mathrm{f}_{\mathrm{ex}} \\
\mathrm{~s} & =\frac{\omega^{\mathbf{e}}-\omega^{r}}{\omega^{\mathbf{e}}} \\
\mathrm{T} & =70^{\circ} \mathrm{C}
\end{aligned}
$$

Figure 3.2 Induction Motor Equivalent Circuit

A set of motor tests was conducted to determine the machine parameters consisting of the following specific characterization tests:

- stator resistance measurement
- no-load saturation test
- locked-rotor test
- steady-state load test

Since all of these tests are standard in the industry, the interested reader is referred elsewhere for more details on testing procedures. ${ }^{2}$ The results of this testing are presented in Figure 3.3 in the form of an identified equivalent circuit. These resistance and inductance values are relatively insensitive to excitation frequency provided that the motor is operating at low slip; that is, the rotor shaft frequency is within a few percent of the excitation frequency, typical for steady-state operation. However, if the rotor is locked to prevent rotation while the stator is excited at a substantially different frequency, frequency-dependent skin effects alter the rotor impedance values from their low-slip values. Thus, Figure 3.3 includes standstill values for the rotor resistance and leakage reactance for 60 Hz excitation. The equivalent circuit values shown in this figure fall within the range of expected impedance values for an industrialgrade induction motor of this rating.

Figure 3.4 complements the equivalent circuit presentation by providing results of the no-load saturation test for 60 Hz excitation. These results show that, consistent with good motor design practice in industrial machines, the motor is operating just beln... the knee of the magnetic saturation curve during rated voltage excitation. That is, the motor iron magnetic flux levels are maintained as high as possible without causing substantial saturation of the iron core with the associated losses. However, the curve also demonstrates that there is substantial latitude for temporary excursions towards the saturation region of the iron core if necessary to extract higher torques from the motor.

AT STANDSTILL:

$$
\begin{aligned}
& \mathrm{X}^{\ell r}=.0108 \Omega \\
& \mathrm{R}^{\mathrm{r}}=.0048 \Omega
\end{aligned}
$$

Figure 3.3 Identified 36 V Induction Motor Parameters at 60 Hz Excitation Frequency

Figure 3.4 No Load Magnetization Saturation Test Curve

Measured electrical performance characteristics of the rewound induction motor during 60 Hz six-step excitation are presented in Figure 3.5 as a function of rotor slip. Plotted motor performance parameters include measured phase current (I^{S}), shaft torque (Te^{e}), and motor efficiency (n_{m}). In addition, predictions for the phase current and torque generated by the equivalent circuit of Figure 3.3 are also included with the measured curves in Figure 3.5. Measured and predicted torque values agree quite well over the full tested slip range (0 to 4% slip). However, predicted currents are several percent lower than measured currents due in large part to the additional current harmonics resulting from the nonsinusoidal six-step excitation which are not reflected in the predictions.

Measured motor efficiency values presented in Figure 3.5 hover in the vicinity of 80% for most of the slip operating regime. These values are several percent lower than typical efficiency values for standard industrial induction motors with 60 Hz sinusoidal excitation. ${ }^{3}$ Clearly, this loss of motor efficiency due to harmonic currents directly impacts overall system efficiency in an undesirable manner. Although techniques do exist for specifically designing the induction motor to minimize the effects of nonsinusoidal excitation, ${ }^{4}$ such work fell outside the scope of the present program. In the absence of that degree of freedom, attention has been focused on reducing the harmonic content of the controller voltage output waveforms, as will be described later in this report.

3.2 Control Strategy

Desired Characteristics

The fundamental requirement for the selected control strategy is that it give the overall system the characteristics of a torque controller. That is, the system must respond to torque requests delivered to the propulsion system by the operator through the accelerator and brake pedal positions. The control strategy has responsibility for converting these torque requests into the appropriate inverter commands to control the excitation of the ac motor. Specifications for the response time of the propulsion system to step changes

(0439)

Figure $3.5 \quad 36 \mathrm{~V}$ Induction Motor Load Test Performance
in the torque command are not explicitly defined in the contract system requirements. However, the rather sluggish response characteristics of the human operator make a response time on the order of 100 ms a reasonable goal for the EV controller. This response time goal applies over the full range of propulsion system output shaft speeds.

In addition, the control strategy is responsible for protecting the propulsion system components from operator torque requests which exceed system capabilities. This is particularly true at low speeds where component current capabilities could be exceeded if the operator torque requests were not suitably limited as part of the control strategy. The locus of system torquespeed operating points required to meet system performance specifications have been discussed previously in Section 2.3 and summarized graphically in Figure 2.4 On the basis of these minimum requirements, a decision was made early in the design process to require at least $60 \mathrm{~N}-\mathrm{m}$ from the propulsion system at all vehicle speeds less than 48.3 kph (30 mph) for improved acceleration. As shown in Figure 2.4, peak torque production requirements then fall off gradually as the vehicle speed increases beyond 30 mph towards the 55 mph maximum.

Basics of AC Motor Control

The nature of the EV propulsion system application requires that the ac induction motor deliver substantial steady-state torque over a wide speed range. If restricted to fixed-frequency excitation (e.g., 60 Hz line excitation), a high-efficiency induction motor is not capable of meeting this requirement. Inspection of the motor shaft torque versus speed characteristic for an induction motor during fixed-frequency excitation at frequency fex clarifies the source of this limitation (see Figure 3.6). Steady-state operation is limited to a narrow range of shaft speeds adjacent to the electrical excitation frequency corresponding to the negatively-sloped portion of the Figure 3.6 torque-speed characteristic. Note that the induction motor produces no steady-state torque when the rotor rotates exactly at the excitation frequency; braking (negative) torque is generated and power is fed back to the source when the rotor shaft frequency exceeds fex.

Excitation frequency and excitation voltage amplitude provide two important degrees of freedom in varying the operating speed of the induction motor. As shown in Figure 3.6, the steady-state operating point is determined by the intersection of the motor generated torque versus speed characteristic and the load torque versus speed characteristic. Since the amplitude of the motor torque-speed curve is proportional to the square of the applied excitation voltage, $(V \ell \ell)^{2}$, the steady-state operating point can be varied over a limited speed range by adjusting the excitation voltage at a fixed excitation frequency. This technique of induction motor speed control is illustrated in Figure 3.7.

In contrast, if the excitation source is designed such that the motor excitation frequency can be varied while holding the excitation voltage fixed, a continuous family of induction motor torque speed curves in produced as shown in Figure 3.8. A different curve corresponds to each excitation frequency value. All of these curves have virtually identical shapes although their amplitudes decay as the curves shift to the right (higher rotor speeds) for increasing excitation frequency values. The torque-speed curve amplitude scaling factor is proportional to the square of the air-gap flux $\left(\lambda_{a g}\right)^{2}$, where the air-gas flux, $\lambda_{a g}$, can be approximated as well as

$$
\begin{equation*}
\lambda_{\mathrm{ag}}=k_{0}=\left(\frac{\mathrm{v}^{\ell \ell}}{\mathrm{f}_{\mathrm{ex}}}\right) \tag{3.3}
\end{equation*}
$$

where K_{0} is a machine constant. Thus, for fixed excitation voltage amplitude (fixed $V \ell \ell$), the torque-speed curves scale as the inverse square of the excitation frequency, $\left(1 / \mathrm{f}_{\mathrm{ex}}\right)^{2}$.

Since the machine air-gap flux magnitude gradually increases as $1 / f_{\text {ex }}$ for decreasing values of excitation frequency when the motor voltage is fixed, the motor iron becomes magnetically saturated during low frequency operation. In order to avoid this undesirable operating mode while retaining the advantages of variable-frequency operation, it is necessary to consider control techniques which simultaneously vary the excitation voltage and frequency.

(0440)

Figure 3.6 Induction Motor Torque vs. Frequency Characteristic for Fixed Voltage, Fixed Frequency Excitation

(0441)

Figure 3.7 Principle of Shaft Speed Control by Means of Variable Stator Voltage

One of the most popular techniques for coordinating the machine voltage and frequency excitation to avoid saturating the motor's iron core consists of adjusting the voltage so that the air-gap flux magnitude stays constant as the frequency is varied. When the air-gap flux is held constant, the locus of torque-speed curves for variable-frequency operation all have the same magnitude and shape, as shown in Figure 3.9. In this manner, the machine's full useful torque-producing capability becomes available over the entire speed range. As shown in Equation 3.3, regulating the air-gap flux to be constant requires that the voltage amplitude be varied in direct proportion to the excitation frequency. This scheme, commonly referred to as constant Volts-per-Hertz (V/Hz) operation, plays a role in the implemented control algorithm. However, the approximate nature of Equation 3.3 as well as basic system constraints have made it necessary to adopt a voltage algorithm which differs from the basic constant V / Hz relation in several important ways. Details of these differences will be provided in the following sections of this report.

Variable-Frequency Implementation Fundamentals

Having reviewed several of the available techniques for achieving variable speed control of ac motors, discussion in this section will be devoted to how these techniques have been incorporated into the final EV controller. At the heart of this implementation is an array of semiconductor switches illustrated schematically in Figure 3.10. This inverter power conversion stage generates the ac voltage waveforms needed to excite the induction motor using energy supplied by the dc battery source.

In its simplest operating mode, the two switches in each of the three legs of the inverter operate as a complementary pair, one switch closing as soon as the complementary switch opens. In this manner, the line-to-line motor terminal voltages are constrained at any time instant to take on one of three values, $+V_{\text {bat }},-V_{\text {bat }}$ or 0 , where $V_{\text {bat }}$ is the battery terminal voltage. By properly coordinating the switching instants as shown in Figure 3.10, a balanced three-phase set of voltage waveforms is developed at the motor terminals. Although these waveforms are nonsinusoidal, the largest proportion

INDUCTION MOTOR EXCITATION CONTROL TECHNIQUES

Figure 3.8 Constant Source Voltage, Variable Excitation Frequency

(0442)

Figure $3.9 \quad$ Variable Source Voltage, Variable Excitation Frequency

(0443)

Figure 3.10 Inverter Switch Configuration and Associated Switch Sequencing Diagrams for Producing a Set of Balanced Three-Phase Line-to-Line Voltage Waveforms at Terminals A, B, and C
of their spectral energies are concentrated in their fundamental frequency components.

By simply varying the rate at which the switching sequence of Figure 3.10 proceeds, the frequency of the motor excitation can be varied over a wide continuous range. Thus, the basic requirement of variable-frequency speed control is satisfied. However, a second key requirement for variablefrequency speed control described in the preceding section is the capability of varying the applied motor voltage as the frequency is varied. Note that the simple waveforms displayed in Figure 3.10 do not satisfy this requirement since their amplitudes are fixed at the source voltage amplitude, Vat•

One technique for providing this variable voltage capability is to add a power conversion stage between the battery source and inverter input to adjust to the dc bus voltage. Thus, the amplitudes of the Figure 3.10 waveforms become variable rather than fixed values. However, in order to avoid the cost of introducing this additional power stage, an alternate approach has been adopted which achieves this independent voltage control in the inverter stage itself. This is accomplished by increasing the sophistication of the inverter-stage switching algorithm using pulse-width modulation (PWM) techniques adapted from communications systems work. Such PWM algorithms provide the drive designer with a powerful tool for shaping the inverter output waveforms.

Since the voltage waveforms delivered by the inverter power stage are non-sinusoidal, undesirable harmonic components are present in the motor excitation waveforms of Figure 3.10. These harmonics produce pulsating torques and losses in the machine without contributing to the average torque, and hence reduce the system efficiency. Sufficient degrees of freedom are inherently provided by the pulse-width modulation algorithm to permit the concentration of the spectral energy of the generated voltage waveforms in the fundamental frequency component. The amplitude of the fundamental component is independently adjusted by means of a duty cycle control known as the modulation index. Further details about the implemented PWM voltage control algorithm are found in Section 4.

Fundamental voltage component amplitudes provided by the PWM alogrithm are limited to a maximum value set by the source voltage, Vbat. In fact, under maximum output voltage conditions the motor terminal voltage waveforms are identical to the simple "six-step" waveforms as shown in Figure 3.10. As a result of this upper limit, the propulsion system has been designed to operate in two distinct regimes during a typical driving cycle. At all speeds below a base frequency f_{b}, the motor voltage is controlled to follow a modified constant V / Hz program designed to hold the motor air-gap flux constant at its rated value. The resulting torque-speed curves associated with excitation frequencies in this regime all have the same shapes and amplitudes as illustrated in Figure 3.11. This operating regime is commonly referred to as the "constant torque" regime, consistent with the terminology typically applied to separately excited dc motors during variable armature voltage, fixed field strength operation.

When the excitation frequency is increased to values exceeding the base frequency f_{b}, insufficient battery voltage is available to maintain the motor air-gap flux at its rated value. Instead, the inverter delivers six-step waveforms to the motor terminals, providing a "full-on" motor voltage directly proportional to the battery terminal voltage. As explained earlier in this section, increasing the excitation frequency with a constant motor voltage results in a set of torque-speed curves with decreasing amplitudes as shown in Figure 3.11. Although the torque amplitudes of these curves actually scale as $\left(1 / f_{e x}{ }^{2}\right)$ rather than $1 / f_{e x}$, this operating regime is typically referred to as the "constant horsepower" regime; such terminology is consistent with that developed for separately excited dc motor drives to describe similar performance in the field-weakening operation regime. Note that a true constant horsepower operating locus can be achieved, i.e., $\mathrm{T}^{\mathrm{e}} \alpha 1 / \mathrm{f}_{\mathrm{ex}}$, provided that the rated operating point at the base frequency f_{b} occurs at a slip less than the peak torque pullout slip. In this case, constant horsepower operation is achieved over a limited frequency range by gradually increasing the slip frequency until the peak torque value is reached at some elevated frequency, f_{2} (see Figure 3.12). Above f_{2}, maximum available torque is limited to the $\left(1 / f_{e x}\right)^{2}$ locus described earlier.

Figure 3.11 Adopted Voltage and Frequency Control Strategy

In response to this program for motor excitation as a function of frequency, the full torque-speed operating locus for the propulsion system covers an area with the approximate shape shown in Figure 3.12. The compatibility of this torque-speed locus with the performance requirements discussed in Section 2.3 is quite evident by a comparison of Figure 3.12 and Figure 2.4. As indicated in Figure 3.12, the torque-speed operating locus for regenerative operation (negative braking torque is essentially the mirror image of the motoring locus (positive propulsion torque) reflected about the speed axis. This property results from the fundamental symmetry of the induction motor's torque-speed curve (Figure 3.6) about the zero-torque synchronous speed point during fixed-frequency constant voltage operation.

Figure 3.12 represents a simplified and somewhat idealized sketch of the propulsion system's operating locus intended to illustrate the fundamental concepts. The actual operating locus for the assembled prototype system as presented in Section 6 of this report deviates somewhat from this idealized shape due to controller implementation details which will not be addressed until later in this report. Notwithstanding, Figure 3.12 contains sufficient detail to set the stage for the propulsion system control strategy description presented in the following sections.

S1ip Control Strategy

The propulsion system control module must respond to operator torque requests by properly adjusting the motor excitation frequency and terminal voltage to produce the desired torque. Several different strategies for executing this coordinated voltage and frequency excitation control have been developed over the years, each distinguished by its particular performance and implementation characteristics. One implementation feature shared in common by nearly all of these candidate control strategies is the necessity of a motor shaft tachometer. The availability of shaft speed information provides a powerful feedback variable to the control module for achieving system performance objectives. Although the undesirability of a tachometer in the propulsion system is generally acknowledged because of its expense and fragility, a satisfactory strategy for eliminating this key component is not yet commercially available.

Figure 3.12 Simplified Illustration of System Torque -Speed Operating Locus

The principle of the chosen control strategy can be best described by referring to the expanded plot of the motor torque vs. motor speed relationship in the vicinity of the excitation frequency shown in Figure 3.13. Rotor speed in this figure is plotted as a difference frequency between the excitation and rotor frequencies $\left(f_{e x}-f_{r}\right)$, referred to henceforth as the slip frequency, $f_{s \ell}$. Note that the developed motor torque is very sensitive to slip frequency values for a high efficiency induction motor; motor torque increases from zero to its rated value as the slip frequency changes by approximately 1 Hz .

Provided that the motor magnetic air-gap flux is held constant, the developed motor torque as a function of slip frequency plotted in Figure 3.13 is independent of excitation frequency, fex. That is, the developed torque will remain constant as the vehicle speed varies, provided that the excitation frequency is adjusted to hold the difference frequency between the shaft speed and the excitation frequency constant, and the excitation voltage is adjusted to maintain the motor flux constant as well. This feature provides the basis for a powerful torque regulation scheme known generally as slip control. Since the instantaneous shaft frequency, f_{r}, is available from the tachometer, the inverter excitation frequency, $f_{e x}$, is controlled by adding or subtracting an adjustable difference frequency, $f_{s \ell}$ to the rotor frequency. A schematic drawing of the basic slip control configuration is quite straightforward, as shown in Figure 3.14. One of the desirable characteristics of this control scheme is the near-linear dependence of motor torque on slip frequency in both the motoring (positive torque) and regenerative braking (negative torque) regimes. This linearity becomes seriously degraded only if the slip frequency is increased to values in the vicinity of the peak torque pullout slip.

Independence of motor excitation frequency and motor torque during slip frequency control is dependent on the condition of constant amplitude of the rotating magnetic air-gap flux wave. This flux amplitude must be held constant despite changes in the machine excitation frequency and torque loading which would change the flux amplitude if the voltage were held constant. The dependence of flux on frequency and loading can be described most easily with the help of the machine steady-state equivalent circuit, shown in Figure 3.15. Air-gap flux magnitude can be expressed as the product

(0446)

Figure 3.13 Induction Motor Torque vs. Slip Curve in the Vicinity of the Excitation Frequency ($\mathrm{f}_{\mathbf{s} \ell}=0$) for Rated Air Gap Flux Operation

Figure 3.14 Slip Frequency Control Block Diagram

(0448)

Figure 3.15 Equivalent Circuit of Induction Motor Highlighting Air-Gap Flux Dependence on Frequency and Loading
of magnetizing inductance and the current through this circuit branch, That is,

$$
\begin{equation*}
\lambda_{\mathrm{ag}}=L^{m_{i_{m}}} \tag{3.4}
\end{equation*}
$$

As described earlier, the inductive nature of the motor equivalent circuit implies that, as a first-order approximation, motor voltage must be increased linearly with frequency to maintain constant flux. However, this simplified relation does not account for the effect of the machine loading: As the developed motor torque increases, the impedance of the rotor branch of the motor equivalent circuit decreases because of the increase in slip, s, which reduces $\mathrm{R}^{r} / \mathrm{s}$. For a given motor voltage amplitude and excitation frequency, an increase in the rotor current causes a decrease in the magnetizing current, \mathbf{i}_{m}, because of increased stator resistance and leakage reactance voltage drops. Thus, the flux amplitude decreases as the motor loading increases, assuming constant voltage excitation. This phenomenon is exactly analogous to the speed regulation of a dc motor with loading caused by the armature resistive voltage drop.

Flux Regulation

Various strategies are available for regulating the magnitude of the air-gap flux. One class of flux regulation schemes relies on special flux transducers such as Hall effect probes and voltage-sensing coils installed inside the machine. By directly measuring the flux amplitude, a closed-loop regulator can be designed to adjust the motor excitation to hold the flux amplitude constant despite frequency and loading changes. Unfortunately, there are no manufacturers who produce standard industrial grade induction motors with flux sensors installed as standard equipment; rather, such sensors must be retrofitted into the motor at considerable expense. Consistent with the goal of designing an economical propulsion system based on the standard industrial grade induction motor, a decision was made to consider alternatives to internal flux sensors for flux regulation.

Although alternative motor variables such as phase currents are available for closing a flux regulation loop, one of the most straightforward approaches to controlling flux amplitude uses an open-loop configuration based on a priori knowledge of the motor's eqivalent circuit. Although an open-1oop scheme by its nature sacrifices some accuracy in the flux regulation, the EV propulsion system performance requirements provide sufficient flexibility to assure the scheme's viability in this application. In particular, the most important characteristic of the torque-to-input command signal relationship is monotonicity rather than precise linearity.

Although implementation details of the flux regulation scheme will be reserved for the following section, the nature of this scheme can be described here in a straightforward manner. The amplitude of the air-gap flux ($\lambda_{a g}$) during steady-state operation is a unique function of the excitation frequency $\left(f_{e x}\right)$, the excitation voltage amplitude (V^{S}), and the generated torque (T^{e}). That is

$$
\begin{equation*}
\lambda_{a g}=g_{1}\left(f_{e x}, V^{s}, T^{e}\right) \tag{3.5}
\end{equation*}
$$

If we demand that the air-gap flux be held constant, then the excitation voltage can be expressed as a unique function of the other two variables, frequency and torque. That is

$$
\begin{equation*}
V S=g_{2}\left(f_{e x}, T^{e}\right) \text { for } \lambda_{a g}=\text { constant. } \tag{3.6}
\end{equation*}
$$

Although a direct measurement of the developed torque is not available in the implemented system, equality of the torque command, $\mathrm{T}^{\mathrm{e}^{*}}$, and the actual torque T^{e} is implicit in the regulating nature of the control circuitry. Thus the expression for the voltage can be rewritten as

$$
\begin{equation*}
V^{s}=g_{2}\left(f_{e x}, T^{e^{*}}\right) \tag{3.7}
\end{equation*}
$$

where both f_{ex} and $\mathrm{T}^{e^{*}}$ are explicitly available as control inputs. This calculation is displayed schematically in Figure 3.16. $\mathrm{V}^{* *}$ is shown in the figure with an asterisk since the output of this block is a commanded value which is delivered to the pulse-width modulation circuitry.

The actual excitation voltage delivered to the motor is limited to a maximum value $V S_{\max }$ which is directly proportional to the battery voltage. Hence, the PWM control circuitry simply saturates at this maximum value when the command signal $V^{s^{*}}$ exceeds $V^{s} \max$. This has the effect of causing the flux amplitude to fall off inversely with excitation frequency for further frequency increases. As described in a previous section, such operation corresponds to the "constant horsepower" regime since the amplitude of the torque-speed curve decreases for further increases in the excitation frequency. As a result of entering this operating regime, the slope of the torque vs. slip frequency characteristic shown in Figure 3.13 gradually decreases as the frequency increases above the transition value. In other words, the 'gain' of the system's accelerator pedal relating the torque to pedal position falls off at elevated speeds in the constant horsepower regime.

Dynamic Performance

Two issues which are of interest with respect to the dynamic performance of any candidate control alogrithm are the system stability, and dynamic response to input command changes. Dynamic characteristics of the slip frequency control system are generally quite compatible with the performance requirements for an electric vehicle propulsion system. General features of these dynamic characteristics will be described in the following paragraphs.

In the strictest sense, any torque controller is statically unstable at all operating points when driving a constant torque load which is independent of speed; specifically, any difference between the motor and load torque causes the motor to accelerate. Provided that this is the case, it has been shown that the dynamic stability of a slip-frequency controlled drive is superior to that of a conventionally excited motor with independent voltage

(0449)

Figure 3.16 Schematic Diagram of Stator Voltage Calculation Algorithm
and frequency excitation. ${ }^{5}$ That is, the damping ratio of the dominant poles in the slip-frequency controlled system is generally higher than those of a comparable conventional system. This is of particular importance at low excitation frequencies in the range of 10 to 20 Hz where conventionallyexcited induction motors typically operate under conditions of marginal dynamic stability. ${ }^{6}$

Transient response of the developed motor torque to step changes in the input torque command is the second important dynamic issue. During the course of the doctoral thesis work of A. Miles at the University of Wisconsin ${ }^{5}$, the dynamic response of the basic slip-frequency torque controller was investigated at a variety of operating points. Using the parameters of the EV propulsion system, analytical results derived from this work show that the small-signal transient torque response of the slip-frequency system is dominated by a decaying time constant of 100 ms or less over the full motor operating speed range. More detailed examination of the system natural frequencies indicates that the step transient torque response is adequately damped at all speeds, with a slightly oscillatory underdamped response occurring at excitation frequencies of $30 \mathrm{~Hz}(900 \mathrm{rpm}$) and lower. Experience with the actual system has generally borne out these calculations, although sampling delays introduced by the control logic implementation have extended the dominant time constant of the torque response to the range of $150-200 \mathrm{~ms}$ for most operating conditions. In addition, an adjustable RC circuit has been included in the torque control logic to allow the dominant time constant to be further extended by controlling the rise/fall time of the operator torque request.

Control System Implementation

As described in the last section, the propulsion system is given the characteristics of a torque controller by means of a slip-frequency control scheme requiring air-gap flux regulation. Implementation descriptions for this control system are presented in this section at the block diagram level, leaving detailed logic hardware and software presentations for later sections.

In order to place the control system in its proper perspective, Figure 3.17 provides a block diagram of the entire propulsion system. The voltage modulator logic prepares the thyristor gating signals according to a pulsewidth modulation algorithm. These signals are delivered to the inverter power stage where the actual dc to variable frequency, variable voltage power conversion takes place. Systems control functions are centralized in the system control module which gathers the necessary internal transducer signals as well as the operator torque request in order to perform the control functions. In addition, the system sequencing (e.g., start-up) and protection functions are performed in the system control module. At the heart of this module is a microprocessor which accomplishes many of these tasks via software real-time control.

A block diagram of the slip-frequency torque control algorithm performed in the system control module is presented in Figure 3.18. The lower half of this diagram consists of the induction motor slip-frequency control algorithm while the upper half executes the necessary flux regulation. Each of these two sections will be described in turn.

Slip Frequency Control Functions

The slip-frequency control functions are conceptually straightforward. First, the operator torque request, $\mathrm{T}^{\mathrm{e}^{*}}$, is converted into an equivalent slip frequency command, $f^{*}{ }_{s \ell}$. The relationship between the developed motor torque and applied slip frequency is nearly linear in the useful slip operating range between 3 Hz (motoring operation) and -3 Hz (regenerative braking). During rated flux operation this torque-slip relationship is essentially independent of the excitation frequency, with the motor torque increasing at a rate of 30 $\mathrm{N}-\mathrm{m}$ per 1 Hz slip frequency in both the motoring and braking regions. This relationship has been plotted previously in Figure 3.13.

As a result of the simplicity of the actual motor torque-slip frequency relationship ($T^{e}=g\left[f_{s \ell}\right]$), the inverse of this relationship ($f_{s \ell}=g^{-1}\left[T^{e}\right]$) can be modeled very adequately as a linear function for both motoring and braking.

(0450)

Figure 3.17 AC Controller Configuration Block Diagram

(0451)

Figure 3.18 System Control Module Block Diagram

$$
\begin{equation*}
f_{s \ell}^{*}=k T^{e^{*}}, \quad\left|\quad f_{s \ell}^{*}\right|<f_{s \ell \max } \tag{3.8}
\end{equation*}
$$

where the asterisks signify command values.

A reasonable choice for the gain constant, K, value is the reciprocal of the rated flux torque-slip curve slope, which is $(1 / 30) \mathrm{Hz}$ slip frequency per N -m torque request. That is,

$$
\mathrm{K}=.033 \mathrm{~Hz} / \mathrm{N}-\mathrm{m}
$$

As a result of this implemented slip frequency algorithm, the overall system gain relating the actual developed motor torque (T^{e}) to the torque request ($\mathrm{T}^{* *}$) remains nearly constant at 1 throughout the lower speed constant flux region. However, at speeds above roughly 3600 rpm the system enters its declining air-gap flux regime, causing the slope of the motor torque-slip curve to decrease as speed is increased. A decision was made to hold the value of gain constant K relating the slip and torque requests fixed at . 033 $\mathrm{Hz} / \mathrm{N}-\mathrm{m}$ at all speeds. As a result, the over all system gain $\mathrm{T} / \mathrm{T}^{\mathrm{e}}$ decays in the flux weakening region as $1 /\left(f_{b} / f_{e x}\right)^{2}$, where $f_{\text {ex }}$ is the excitation frequency and f_{b} is the transition frequency value separating the constant flux and flux weakening regimes. Since the highest allowable excitation frequency value is approximately twice the transition value, the system gain decreases from 1 at lower frequencies ($\mathrm{f}_{\mathrm{ex}}<3600 \mathrm{rpm}$) to approximately 0.25 at the highest excitation frequencies.

A second task performed in the slip frequency algorithm block is a safe operating regime current limit function. Under steady-state operating conditions, the current drawn by the motor is uniquely determined by the slip frequency and air-gap flux. In fact, at any given flux level, the motor current is a monotonically increasing function of slip frequency which is symmetrical for the motoring and braking regimes. Thus, by limiting the slip frequency command magnitude, $\mathrm{f}_{\mathrm{s} \ell}$, a current limit function is obtained. This functional relationship is known schematically in Figure 3.18 as part of the
control system block diagram. The actions of the slip frequency algorithm block in this figure are summarized by the following equations:

$$
\begin{align*}
f_{s \ell}^{*} & =k T^{e^{*}}, \frac{f_{s \ell 2}}{k}<T^{e^{*}}<\frac{f_{s \ell 1}}{k} \tag{3.9}\\
& =f_{s \ell 1}, \quad T^{*}>\frac{f_{s \ell 1}}{k} \tag{3.10}\\
& =f_{s l 2}, \quad T^{*}<\frac{f_{s l 2}}{k} \tag{3.11}\\
f_{s \ell 1} & =h_{1}\left(f_{e x}\right) \tag{3.12}\\
f_{s l 2} & =h_{2}\left(f_{e x}\right) \tag{3.13}
\end{align*}
$$

These relationships are illustrated in Figure 3.19. Note that the positive slip frequency limit, $f_{s \ell 1}$ and the negative limit, $f_{s \ell 2}$, are identical at each excitation frequency except at low speeds below $1200 \mathrm{rpm}(40$ Hz), where $\mathrm{f}_{\mathrm{s} \mathrm{\ell 2}}$ is set at zero. As a result, regenerative braking is not permitted below 40 Hz in order to avoid undesirable current peaking in a speed regime where there is little kinetic energy available for regenerative recovery. This issue will be described in more detail later in this section.

The positive slip frequency limit is held at 3 Hz throughout the constant flux frequency range (0 to 120 Hz) corresponding to a maximum motoring torque of $90 \mathrm{~N}-\mathrm{m}$. At frequencies above 120 Hz corresponding to flux weakening operation, the slip limit is progressively relaxed since the motor current and torque developed at each slip frequency gradually decreases as the excitation frequency is raised. In this manner the steady-state motor rms phase current is held within a limit of approximately 350A at all speeds.

Of the various elements composing the system control block diagram in Figure 3.18, the only one accomplished using hardware rather than software is the slip frequency/shaft speed summation operator. This opertion is critical to the entire system since the quality of torque regulation depends directly on the accuracy of the slip frequency addition. Considering the fact that

Figure 3.19 Control Algorithms
(a) $f_{s<}$ vs. $T^{e^{*}}$
(b) $f_{s^{\prime} 1}, f_{s<2}$ vs. $f_{e x}$
rated slip is less than 2% of the rated motor speed, there is an acute demand for techniques which permit a small frequency to be accurately summed with a much larger frequency. This goal has been achieved quite admirably in the designed system using special phase-locked loop techniques together with rotor speed information derived from a shaft-mounted optical encoder. Details of this hardware will be presented in a later section of this report. For this discussion it is only necessary to note that slip frequency values can be accurately summed with arbitrary rotor shaft frequency values at a slip frequency resolution of better than 0.1 Hz .

The result of this summation process is a pulse train which is delivered to the voltage modulator block of Figure 3.17, directly setting the fundamental frequency of the inverter power stage f_{ex}. In addition, the value of $f_{e x}$ is an important parameter used internally in the system control module at two key points as shown in Figure 3.18. One of these calculations consists of setting the slip frequency limit as a function of the excitation frequency as described in the preceding paragraphs. In addition, the excitation frequency information is used in setting the voltage amplitude of the inverter output waveforms. This issue of motor flux regulation, which comprises the upper half of the system control module block diagram in Figure 3.18, is described in the following paragraphs.

Desired Terminal V/Hz Alogrithm

The role of the flux regulation algorithm is to control the amplitude of the inverter output fundamental frequency voltage component so that the machine's internal air-gap flux magnitude is maintained nearly constant, independent of operating conditions. This constant flux algorithm has an adverse effect on system efficiency under light-load conditions due to the losses associated with establishing this flux. However, the desire for a straightforward microprocessor-compatible control algorithm and the infrequency of light-load conditions during typical driving cycles, the constant flux algorithm represents a good compromise between system efficiency and complexity.

As discussed earlier in this section, a prior knowledge of the machine's equivalent circuit is used to calculate the necessary terminal voltage for constant air-gap flux as a function of excitation frequency and desired motor torque. Inspection of the equivalent circuit is sufficient to derive the expression for terminal volts $/ \mathrm{Hz}, \lambda_{t}$, as a function of rated airgap flux $\lambda_{\text {ag (rated) }}$ (in V / Hz), slip frequency, and excitation frequency. Strictly speaking, use of this expression requires one to assume that this system is continually operating under steady-state or quasi-steady-state conditions. The linearized expression for torque as a function of slip frequency during constant flux operation, ($T^{\mathrm{e}^{*}}=K \mathrm{f}_{S_{\ell}}^{*}$), is used to eliminate the frequency variable in favor of torque, yielding the final desired relationship

$$
\begin{equation*}
\left|\frac{V_{1} \ell \ell}{f_{e x} \sqrt{3}}\right| \equiv \lambda_{t}=\lambda_{a g_{r a t e d}}\left|\frac{\left(R^{S}+j 2 \pi f e^{L \ell S}\right)\left[\frac{R^{r_{K}}}{2 \pi T^{e^{\star}}}+j 2 \pi\left(L^{\ell r_{+}}+L^{m}\right)\right]}{j 2 \pi f e^{L^{m}}\left[\frac{R^{r_{K}}}{2 \pi \mathrm{~T}^{\mathrm{e}^{\star}}}+j 2 \pi L^{\ell r}\right]}+1\right| \tag{3.14}
\end{equation*}
$$

where $\lambda_{a g_{\text {rated }}}$ is the rated air-gap flux amplitude and λ_{t} is the motor terminal equivalent flux, both in V / Hz.

Using the measured parameters of the induction motor, the ratio of terminal volts per Hertz (line-to-neutral) to the desired constant air-gap flux (in V / Hz) is plotted in Figure 3.20 as a function of the desired torque for a family of excitation frequency values. This relationship has been linearized for microprocessor implementation and then adjusted empirically to improve torque/excitation frequency independence, yielding the following simplified expression in its final form
$\lambda_{\mathrm{t}}^{*}=0.36+A_{1} \times T_{1} \times \mathrm{f}_{\mathrm{S} \ell}$
where $\quad T_{1}=1 / f_{e x} f_{e x}<25 \mathrm{~Hz}$
$=1 / 25 \quad \mathrm{f}_{\mathrm{ex}} \geqslant 25 \mathrm{~Hz}$
and

$$
\begin{array}{ll}
A_{1}=0.9 & f_{s \ell}>0 \\
A_{1}=0 & f_{s \ell}<0
\end{array}
$$

This expression is plotted in Figure 3.21 in a form which permits easy comparison with the analytical expression derived directly from the equivalent circuit and plotted in Figure 3.20. Such a comparison indicates that the curves are quite similar in the motoring regime ($f_{s \ell}>0$), however, the implemented terminal V / Hz expression in the regenerative region ($\mathrm{f}_{\mathrm{s} \ell}<0$), departs from the calculated curves of Figure 3.20. This notable departure requires an explanation, and leads naturally into a discussion of the rationale for the closed-loop terminal V / Hz control configuration which follows the voltage control algorithm block in Figure 3.18.

Closed-Loop Flux Regulator Rationale

First, attention must be turned to the interaction of the pulse-width modulation algorithm and the inverter power stage. The effective amplitudes of the output voltage waveforms are adjusted by means of a duty cycle control parameter known as the modulation index which introduces "notches" of variable widths into the output voltage waveforms. Additional details on the implemented PWM algorithm are given elsewhere in this final report. For this discussion, the important point is, as a result of the implemented inverter thyristor gating strategy, the output voltage is dependent on load power factor in addition to the modulation index and the battery terminal voltage.

As described in Section 3.3, the thyristor gating strategy selected for implementation required trade-offs between the quality of the output PWM waveform and inverter efficiency. Thus, in each of the three inverter legs, only one of the thrystors is alternately gated on and then commutated during each half-cycle of PWM operation. During the "off" intervals, the inverter depends on current flow through the complementary free-wheeling diode to pull the motor terminal voltage to the opposite bus potential since the complementary thyristor is never triggered. This situation is shown in Figure 3.22a. This scheme was adopted because it results in one-half the number of thyristor commutations required by the conventional triggering scheme, leading to an important reduction in the inverter commutation losses.

Figure 3.20 Desired $\lambda_{t} / \lambda_{\text {ag rated }}$ Ratio as a Function of Excitation Frequency and Slip Frequency for Constant Flux Operation (calculated using motor equiv. circuit parameters of Figure 3.3)

Figure 3.21 Implemented $\lambda_{\mathrm{t}} / \lambda_{\text {agrated }}$ Ratio as a Function of Excitation Frequency and Slip Frequency, Approximating Constant

Flux Operation

As long as the load power factor approaches 1.0 (motoring under load) so that each phase voltage and current is in phase, the adopted triggering scheme yields exactly the same results as when all of the thyristor gatings and commutations are performed. However, this is no longer true when the motoring load is decreased and reversed into a braking load so that the power factor exceeds 90° (phase voltage and current progressively more out of phase). During any interval in which the motor phase current is of opposite polarity to the associated fundamental frequency phase voltage (Figure 3.22b), the unavailability of the complementary thyristor for current conduction affects the voltage waveform. Instead, the current must flow through the free-wheeling diodes, forcing the motor terminal voltage to bus potentials opposite from those specified by the desired PWM algorithm. As illustrated in Figure 3.22b, notches disappear from the output voltage waveform, changing the fundamental frequency voltage amplitude.

This notch disappearance phenomenon results in the aforementioned sensitivity of the output voltage amplitude to load power factor. In addition, the output voltage is directly proportional to the propulsion battery voltage, reflecting its present state-of-charge. Clearly, the output voltage is not solely dependent on the PWM modulation index setting. Thus, the decision was made to adopt a closed-loop control scheme which regulates the modulation index in order to keep the motor terminal V / Hz setting as close to the desired value as possible, compensating for the other dependencies. Such regulation scheme is feasible because the output voltage amplitude has a monotonically increasing dependence on the modulation index.

The closed-loop V / Hz regulation scheme works very effectively throughout the motoring regime. However, as increasing regenerative braking torques are called for, the gradual disappearance of output voltage waveform PWM notches makes it more difficult for the modulation index to exert effective control of the motor terminal voltage. Thus, there was no need to develop a sophisticated algorithm for calclating the desired terminal V / Hz in the regenerative region (Figure 3.21, $f_{s \ell}<0$) since, to a large extent, the motor sets its own operating voltage during regeneration. The resulting nonlinearity in the regenerative torque dependency on slip frequency, which is
A) MOTORING REGINE OPERATION (HIGH PONER FACTOR)

MOTOR TERMINAL VOLTAGE WA VEFORM

- StNCE motor voltage and current waveforms are in phase, FWD B CONDUCTS PHASE CURRENT WHEN SCR A IS OFF DURING POSITIVE HALF CYCLE
B) REGENERATION REGIME OPERATION (POWER FACTOR ANGLE $>90^{\circ}$)

- DURING HALF CyCLE when scr a is triggeren, voltage WAVEFORM NOTCHES DISAPPEAR SMCE SCR B IS NEVER TPIGGERED TO DIVEPT REGENERATIVE CURAENT FROM FIVD A

Figure 3.22 Basis for Influence of Load on Motor Terminal Voltage During PWM Operation
not particularly severe, is part of the price paid for a substantial reduction in inverter commutation events and, hence, losses during motoring.

It is important to note that Volts per Hertz regulation is only an issue during PWM operation at vehicle speeds less than roughly $48.3 \mathrm{~km} / \mathrm{h}$ (30mph), (fex $=140 \mathrm{~Hz})$. At all higher speeds the motor calls for more terminal voltage than the propulsion battery/inverter combination can provide. Thus, the closed-loop regulator saturates with the modulation index at its maximum value, resulting in simple six-step voltage output waveforms throughout the flux weakening speed regime. Six-step excitation is fully compatible with regenerative motor operation, having no counterpart to the notch disappearance phenomenon which occurs during PWM operation at lower speeds. Thus, it was necessary to restrict regenerative operation by means of the slip frequency limit only for excitation frequencies of 40 Hz (1200 rpm) and under.

Flux Regulator Algorithm

At the heart of the terminal V / Hz regulator implementation is the modulation index control block of Figure 3.18 which converts the error signal, ε_{V}, representing the difference between the desired and measured motor V / Hz, into a modulation index command. This control function is executed by means of a proportional-integral (PI) algorithm implemented in the microcomputer's software. This digital algorithm has been designed to emulate the action of a PI controller in its more familar analog configuration according to the expression

$$
\begin{equation*}
m_{i}=A_{p} \varepsilon_{V}+\int_{t_{0}}^{t} A_{I} \varepsilon_{v} d \tau \tag{3.16}
\end{equation*}
$$

where m_{i} is the value of modulation index at time t, A_{p} is the proportional analog controller gain, A_{I} is the integral controller gain, and ε_{v} is the motor terminal V / Hz error. In its analog equivalent form, note that the presence of the integral term prevents the control loop from reaching a steady state condition $\left(\mathrm{dm}_{j} / \mathrm{dt}=0\right)$ until the error signal is forced to zero ($\varepsilon_{\mathrm{V}}=$ $0)$.

In the frequency domain, the PI controller law can be expressed in its Laplace transform form as

$$
\begin{equation*}
M_{i}(s)=\frac{A_{I}\left[1+\left(A_{p} / A_{I}\right) s\right]}{s} \varepsilon_{v}(s) \tag{3.17}
\end{equation*}
$$

where $M_{i}(s)$ and $\varepsilon_{V}(s)$ represent, respectively, the Laplace transforms of the modulation index and the V / Hz error, and $\mathrm{s}(=j \omega)$ is the complex frequency.

The adopted digital implementation of the PI controller law is expressed as a difference equation relating the new values of the control variables to their most recent values one control cycle earlier. Since the measured terminal Volts per Hertz is updated once per excitation frequency cycle, the digital controller cycle time is conveniently set equal to the excitation frequency period, $T_{e x}=1 / f_{e x}$. Thus the digital PI controller law can be written as

$$
\begin{equation*}
M_{i}(\text { new })=M_{i}(\text { old })+\Delta m_{1} \tag{3.18}
\end{equation*}
$$

where, $\Delta m_{1}=\left[D_{p(n e w)} \varepsilon_{v}(\right.$ new $)-D_{p(o l d)} \varepsilon_{v}($ old $\left.)\right]+D_{I}($ new $) \varepsilon_{V}($ new $)$
where the "new" subscript represents updated values of variables, whereas "old" subscripts represent variable values one cycle time earlier, D_{p} represents the gain of the digital proportional controller and D_{I} is the integral controller gain. Note that "new" and "old" subscripts are added to the gain values as well as to the modulation index and error values because these gains need not be constants. Provided that the dynamics of the controlled process are slow compared to the digital controller update frequency, the analog and digital controller update frequency, the analog and digital PI controllers will perform identically if A_{p} equals D_{p} and A_{I} equals the product $D_{I} f_{e x}$, where $f_{e x}$ is the digital controller update frequency.

Based on a combination of analytical and empirical results, it was found necessary to adjust D_{p} and D_{I}, the digital proportional and integral
gains, as a function of the excitation frequency. The implemented functions for D_{p} and D_{I} are plotted in Figure 3.23 over the full PWM frequency range, with the D_{p} / D_{I} ratio held at a constant value of 2.0 over this full range. Heurisically, it makes sense that, over much of this range, the gains increase with frequency, since the terminal V / Hz becomes less sensitive to modulation index as the excitation frequency increases. At higher frequencies approaching the upper limit of PWM operation, the gains are gradually decreased in order to ease the transition between PWM and six-step excitation operation. A bit of the dynamic response speed is sacrificed as a result of decreasing these gains, but the resulting transition smoothness justifies the compromise.

One aspect of the digital PI controller operation which is not reflected in the analog version is digital quantitization error. For example, a finite deadband exists around zero error in the digital controller for which the integral controller does not respond at all because of the quantitization effect. The width of this deadband varies as $1 / \mathrm{D}_{\mathrm{I}} \mathrm{V} / \mathrm{Hz}$, preventing a hunting instability from occurring near zero error. This feature works very well except at very low frequencies where the deadband gets so wide that undesirable steady-state V / Hz errors occur, allowing motor iron saturation and torque inaccuracies. As a result, for excitation frequencies below 14 Hz a second integral controller gain term is introduced as follows

$$
\begin{align*}
& m_{i}(\text { new })=m_{i(\text { old })}+\Delta m_{1}+\Delta m_{2} \quad f_{\text {ex }}<14 \mathrm{~Hz} \tag{3.19}\\
& \Delta m_{2}=D_{k} \varepsilon_{v} \tag{3.20}
\end{align*}
$$

where m_{i} (new),$m_{i(o l d)}$, and Δm_{1} have been defined previously.
By implementing this auxiliary integral controller so that it has no deadband, the problem of steady-state V / Hz errors during low frequency operation is eliminated. The gain D_{k} in this second integral controller is purposely set at a constant value of 2.0 so that the system dynamics are dominated by the Δm_{1} proportional-integral gain terms. In this manner acceptable regulator performance is achieved at all operating frequencies throughout the PWM excitation regime.

Figure 3.23 Gain Factors D_{p} and D_{I} as a Function of Excitation Frequency

Motor Terminal V / Hz Transducer

The final topic which requires discussion in this section is the structure and operation of the motor terminal Volts per Hertz transducer. More specifically, the motor variable of interest is the ratio of rms fundamental frequency terminal voltage to excitation frequency, or $V_{1} \ell n / f_{e x}$. Since the motor terminal voltages have nonsinusoidal PWM waveforms, extracting the V / Hz term of interest is not a trivial task. Although rms conversion integrated circuits do exist which could perform the task, they require a tunable filter to provide accurate readings with acceptable dynamic response over a wide excitation frequency operating range. After investigation, this approach was rejected.

Instead, a special V / Hz transducer circuit was designed and built which performs an on-line Fourier transform of the motor terminal voltage according to the expression

$$
\begin{equation*}
\frac{v_{1} l}{f_{e x}^{l n}}=\frac{1}{\sqrt{2}} \int_{0}^{1 / f_{e x}} v^{s}(t) \sin (2 \pi f e x t) d t \tag{3.19}
\end{equation*}
$$

where $V^{S}(t)$ is the periodic line-to-neutral motor terminal voltage waveform varying at frequency $f_{e x}=1 / T_{e x}$. This expression yields the entire fundamental component of $V^{S}(t)$ as long as the fundamental component of $V^{s}(t)$ and $\sin (2 \pi f e x t)$ are exactly in phase. Fortunately, the fundamental component of the PWM line-to-neutral motor voltage waveforms are synchronized with reference sine waves generated inside the PWM modulator hardware. Thus, by multiplying an attenuated reproduction of one of the three motor line-toneutral voltage waveforms with the appropriate reference sine wave, and then integrating this product, a new reading of the desired quantity $V_{I}^{\ell n} / f$ ex is available at the end of each excitation period.

A block diagram of the V / Hz transducer is provided in Figure 3.24. A fast differential amplifier configuration is used to produce the attenuated motor line-to-neutral voltage signal. Be feeding this analog signal and the reference sine wave digital signals as inputs to a multiplying D/A converter, the required product is formed in real time. An operational amplifier

(0457)

Figure 3.24 Block Diagram of the Fundamental Frequency Volts-per-Hertz Transducer
integrator circuit then integrates this product every cycle, being reset at the end of each cycle by an FET switch. Immediately preceding this reset pulse the integrated product value (an analog signal) is sampled by an IC sample-and-hold circuit; this level, representing the most recent reading of motor Volts per Hertz, is held until the next reading becomes available at the end of the cycle.

The gain of the V / Hz transducer varys little throughout the excitation frequency and loading operating ranges during motoring operation. On the other hand, gain falls off somewhat during regeneration due to a phase shift which develops between the reference sine wave and the fundamental component of the motor line-to-neutral voltage. This decay in gain, caused by the PWM notch disappearance phenomenon described earlier in this section, is compensated in the microcomputer software, assuring acceptable performance under all operating conditions.

3.3 Power Inverter Design

The power inverter is the physical implementation of the six switch array illustrated in Figure 3.10. Physically, each switch in the inverter is a thyristor, a semiconductor device which latches into conduction when a voltage is applied to its control or gate terminal. The device regains its voltage blocking capability when an external negative voltage is applied to the thyristor's anode-cathode terminals for a minimum time period determined by the device characteristics. If this reverse bias time is short, less than $15 \mu S$, the device is considered an inverter grade SCR or thyristor. Thyristors were chosen to implement the inverter switch array because they are readily available at low cost with suitable power handling capabilities.

Although SCR's would appear to offer a superior implementation advantage when compared to transistors, the external circuitry required to turn-off the SCR, or reverse bias the anode-cathode terminals, complicates the SCR inverter circuit implementation. This additional circuitry is generally termed the main SCR commutation circuitry. It was a goal in this program to
select an inverter circuit topology which required a minimum of additional circuit components to accomplish the commutation function. The topology which was selected to meet this goal is generally termed a bus-commutated inverter and requires a minimum of commutation components.

Figure 3.25 illustrates the schematic diagram of the inverter power stage. The components shown may be grouped into two sub-circuits, one consisting of the main conduction devices, and the second the commutation circuitry. Those components to the right of the dotted line in Figure 3.25 carry the three motor phase currents, and those to the left of the line are used to commutate the main SCR's. A description of the operation of the buscommutated inverter is useful to understand the advantages and limitations of this inverter topology.

Commutation Sequence Description

To set the stage for a commutation cycle, initial conditions of the inverter must be established. Figure 3.26 illustrates typical initial conditions. As shown in Figure 3.26, the motor phase terminals A and B are connected to the plus battery terminal via SCR's 1 and 3 and motor phase terminal C is connected to the minus battery terminal via SCR 2. The inverter is to be reconfigured such that motor terminal A is connected to the minus battery terminal. The polarities of the commutation capacitors C_{1} and C_{2} are as shown in Figure 3.26.

SCR7, which is blocking $V_{C 1}$, is gated into conduction to initiate the commutation of upper bus thyristors. This places the top commutation capacitor voltage $V_{C 1}$ across the transformer windings $T 1 A$ and $T 1 B$. If the voltage across T1A is greater than the battery voltage, then all three thyristors in the upper bus (SCR1,3,5) will be reverse biased. This can be shown by tracing a path in the circuit of Figure 3.26 from anode to cathode of each device. This path starts at the common anode connection, goes through T1A, the battery, and one of the lower bus diodes (D2, 4, or 6) to the cathode of either SCR1, 3 or 5 . The only significant voltage drops encountered are those across T1A and the battery. This event allows all of the upper bus thyristors to regain their blocking state.

(0691)

Figure 3.25 EV Propulsion System Power Stage Configuration

Figure 3.26 Initial Power Circuit Current Paths

Capacitor $C 1$ will now discharge through the two paths shown in Figure 3.27. The time constant of this discharge is determined by the inductance and capacitance of the commutation circuit components. For a successful commutation, the main devices must be reverse biased for some minimum turn-off time, $T_{q_{m i n}}$, a characteristic of the devices. For the devices used in the Gould inverter, $\mathrm{T}_{\mathrm{q}_{\mathrm{min}}} \leqslant 10 \mu \mathrm{sec}$. Thus, the voltage across T 1 A must remain greater than battery voltage for this time period.

During the commutation interval, the motor phase currents are carried by the freewheeling diodes D4-D6. In Figure 3.27, the current paths shown are those consistent with positive $I_{A} S$ and $I_{B}{ }^{S}$ phase currents immediately prior to the commutation.

Note that as shown in Figure 3.27, during the commutation interval, all three motor phases are connected to the negative battery terminal. Thus, during the commutation interval, the voltage applied to the motor is zero. Figure 3.28 shows the effect of this "notch" or zero voltage interval on a typical line to line motor voltage waveform.

After successfully turning off all conducting upper bus thyristors, the upper commutation capacitor Cl continues to discharge. At some point, after its voltage has reversed polarity, the transformed potential appearing across T1C (coupled to T1A and T1B) becomes greater than the battery voltage, forward biasing SCR9. When the capacitor $C 1$ reaches a predefined negative voltage, SCR9 is gated into conduction. Since the transformed capacitor voltage was greater than the battery voltage now applied across T1C, the actual capacitor voltage, $V_{C 1}$ is greater than that across T1A, B. Thus, SCR7 is reverse biased, and turns off. For the rest of the interval, the commutation capacitor voltage remains constant. The energy that was contained in the transformer windings T1A and T1B is transferred to T1C, and is returned to the battery via the current path shown in Figure 3.29.

The clamp thyristor can be fired any time after the transformed potential across T1C is greater than the battery voltage. This allows limited control over the final commutation capacitor voltage, and, thus, over the

Figure 3.27 Currents Following the Initiation of a Commutation Cycle

Figure 3.28 Inverter Six-Step Waveform.
The Instants of Zero Voltage Correspond to Commutation Intervals

Figure 3.29 Energy Recovery Current Paths
initial voltages on $C 1$ and $C 2$ for the next commutation. The minimum attainable commutation voltage is determined by transformer parameters and the battery potential, while the maximum is limited only by circuit components.

After the clamp thyristor SCR9 is fired, the appropriate main devices may be enabled to reconnect the motor phases to the desired battery terminals. In the case examined here, SCR2 has remained in conduction, so only SCR3 and SCR4 need be triggered, completing the transfer of motor terminal A to the negative battery terminal illustrated in Figure 3.30.

If the upper bus main thyristors are enabled before the current in T1C goes to zero, the remaining energy in T1C will be transferred, through T1A, to the motor. This is usually the case, as it allows a shorter commutation "notch" in the motor voltage waveform. However, any transferred energy in excess of that necessary to attain the required do bus current through T1A will be dissipated in the upper bus main semiconductors. The path of the excess current, for the case examined here, is shown in Figure 3.31. Thus, a compromise must be reached between the desire for a short voltage waveform notch, and the need to return a sufficient amount of energy to the battery before the main devices are re-enabled. After the main devices have been enabled, the commutation circuit is prepared exclusively for a lower bus commutation due to the voltage polarities on $\mathrm{Cl}, \mathrm{C} 2$.

Figure 3.32 shows an oscillograph of the major controller current waveforms during an upper bus commutation. The uppermost waveform is a logic signal. The other three waveforms in Figure 3.32 (from top to bottom) correspond to the currents through SCR7, SCR9, and the DC bus, respectively. The flow of energy through the controller can easily be traced with this diagram. In Figure 3.32, initially a current of about 100 Anps flows through the dc bus to the motor thru SCR1 and SCR3. Once the commutation begins, this current is diverted to the commutation circuit (part of the initial current through SCR7 is due to discharge of the snubber connected across it). The SCR7 current waveform is recognizably sinusoidal. When the energy recovery phase begins, this current is transferred to SCR9. The transfer takes several microseconds, due to leakage inductance in the T1A, T1B, and T1C windings.

Figure 3.30 Reconnected Motor Terminals After Commutation

Figure 3.31 Current Paths for Excess Commutation Energy Remaining After Main Devices are Enabled

Figure 3.32 Commutation Circuit Current Waveforms

Finally, when the upper bus main thyristors are re-enabled, the current in T1C is transferred back to the dc bus. The total commutation event duration is about $100 \mu \mathrm{sec}$.

The description of a typical commutation sequence emphasises severai important features about the Gould inverter. First, due to the circuit topology, whenever it is desired to turn off a thyristor in either the upper bus (SCR's 1,3 or 5) or the lower bus (SCR's 2,4, or 6), all three thyristors connected to that bus must be commutated. Since the amount of stored energy required to turn off a thyristor with an LC oscillating circuit depends on the commutated current, turning off all of the conducting thyristors in a bus requires more stored energy than turning off one alone.

Secondly, during the commutation interval (about $100 \mu \mathrm{sec}$), the three motor phases are connected to the same battery terminal. When the excitation frequency $f_{e x}$ is very high (260 Hz) these intervals of zero applied voltage, which appear six times per cycle, have a significant effect on the maximum fundamental voltage which is applied to the motor.

A third restriction imposed by the bus-commutation circuit topology is the necessity of alternate top and bottom bus commutations to store energy in the commutation capacitors. This is not an important restriction when the inverter is delivering its maximum voltage since commutations are demanded alternately for top and bottom bus devices, but must be considered in designing PWM control logic.

Finally, the energy-recovery branch of the commutation circuit, including SCR's 9 and 10 , as well as one winding on each transformer, allows control of the amount of energy used in turning off the main devices. Under light-load conditions, the circuit reduces its commutation capability and, thus, its losses. This allows the commutation circuit design to be optimized for efficient operation for cruising conditions, while the transient high loads encountered during startup and acceleration are handled by increasing the commutation voltage temporarily.

In this section, equations are presented which describe the constraints placed on the main and commutation circuit components by the operating requirements of the controller. These controller requirements are stated in terms of a battery current and voltage, $V_{b a t}$ and $I_{b a t}$, respectively, and a controller three-phase output power, P. In addition, it is assumed that the main thyristors have a given minimum required turn-off time, $\mathrm{T}_{\mathrm{q}_{\mathrm{min}}}$, and that the maximum commutation frequency, $f_{\text {com }}$ (max) is known.

The commutation circuit design is addressed first. A mathematical analysis of the commutation sequence is used to determine component values for the resonant circuit which result in minimum stored energy while simultaneously meeting the reverse bias requirements for main thyristor turnoff. The actual component values are then used to derive current and voltage rating requirements for the thyristors and capacitors in the commutation circuit. It is shown that the topology of the Gould bus-commutated inverter, with its three-winding transformer, allows the designer a degree of freedom in adjusting either the peak current or voltage stress of the commutation circuit components.

The main device voltage and current ratings are functions of the peak commutation voltage and motor-controller performance requirements. These semiconductor stresses are shown to be within the limits of the devices selected. The gate drive requirements of the thyristors are specified. An analysis of the gate drive circuit employed shows that drive requirements are satisfied. Finally, the normal operating modes of the inverter are examined to determine those which necessitate semiconductor voltage protectors or snubbers.

Commutation Circuit Design

The function of the commutation circuit is to provide a reverse voltage across either the upper or lower bus of main thyristors for the specified turn-off time, $T_{q_{\min }}$. The losses suffered by the commutation circuit are
empirically found to be proportional to the peak stored energy of the transformer, Up, defined as $(1 / 2) L^{A+B} I_{p}^{2}$ where L^{A+B} is the total inductance of the transformer A and B windings and I_{p} is the peak commutation circuit current. Thus, in order to minimize commutation losses, it is desirable to choose circuit component values to allow successful turn-off of the main devices with the minimum possible peak stored energy.

A detailed analysis of this problem is presented in Appendix II. Only the results are summarized here. Given a required battery current, Ibat, battery voltage, $V_{b a t}$, and device turn-off time, T_{q}, the minimum peak stored inductor energy which will allow commutation of the main devices is $U_{\min }$.

$$
\begin{equation*}
U p_{\min }=\underline{U} p_{\min } \cdot U_{\text {diverted }} \quad[\text { joule }] \tag{3.22}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{\text {diverted }} \equiv V_{b a t} I_{b a t} T_{q} \tag{3.23}
\end{equation*}
$$

and

$$
\underline{U} p_{\min } \cong 3.80
$$

$U_{\text {diverted }}$ is defined as the diverted energy of the controller, and $\underline{U} p_{\min }$ is a mathematically determined constant. Its derivation is included in Appendix II. Thus, within the constraints of the given circuit topology, it is impossible to commutate the main devices without having a peak stored inductor energy equal to about four times the diverted energy of the controller. In order to achieve successful commutation with this peak energy, the component values of the two coupled inductors and capacitor of each bus commutation circuit must satisfy the constraints:

$$
\begin{align*}
L^{A} & =\frac{V_{\text {bat }}}{I_{\text {bat }}} \cdot \frac{T_{q_{\min }}}{K_{\text {min }}} \tag{3.24}\\
c^{T} & =\frac{I_{\text {bat }}}{V_{\text {bat }}} \cdot \frac{T_{q_{\min }}}{(1+x)^{2} K_{\min }} \tag{3.25}
\end{align*}
$$

where L^{A}, the inductance of the " A " winding of the transformer alone, x, the
turns ratio of the " B " to " A " windings, and C^{\top}, the total commutation capacitance, completely determine the three component values. $K_{m i n}$ is another constant ($K_{\text {min }}=0.5559$) .

The commutation voltage necessary is

$$
\begin{equation*}
V_{c}=1 / Y_{\min } \cdot(1+x) V_{\text {bat }} \tag{3.26}
\end{equation*}
$$

where $\quad Y_{\text {min }} \cong 0.556$
$Y_{\text {min }}$ expresses a ratio between the battery voltage and the voltage across Cl .

The peak current in the commutation circuit, I_{p}, is

$$
\begin{equation*}
I_{p}=\left(2 K_{\min } U_{p_{\min }}\right)^{1 / 2} \quad I_{\text {bat }} /(1+x) \tag{3.27}
\end{equation*}
$$

Thus, with no transformer " B " winding (i.e., $x=0$), and optimum component values for the particular motor load and turn-off time, the commutation voltage should be about twice the battery voltage, and the peak current in the commutation thyristor is about twice the commutated motor line current. As the number of turns in the " B " winding rises, the commutation voltage goes up and the peak current goes down, according to eqs. 3.26 and 3.27.

It should be noted that the minimum energy requirement places only two constraints on the three parameters, L^{A}, x, and C^{\top}. The parameter, x, can be considered a free variable, whose value is determined by the desired peak voltage or current rating of the commutation circuit. Either one, V_{c} or I_{p} can be lowered, at the expense of raising the other, by choosing appropriate values of x. Also, note that x can actually be made negative, if desired, by winding the " B " turns in a direction opposite to that of the "A" turns (as long as $-1<x$).

The nominal battery voltage and current used in this calculation for the Gould controller were $V_{b a t}=120 \mathrm{v}, \mathrm{I}_{\text {bat }}=600 \mathrm{~A}$. With a minimum reverse-bias time of $T_{q_{\text {min }}}=10 \mu \mathrm{sec}, L^{A}=3.6 \mu \mathrm{H}$, and if x is chosen as 0.67 , peak voltages and currents compatible with available semiconductors are obtained.

$$
\begin{aligned}
V_{C} & =360 \mathrm{~V} \\
I_{p} & =750 \mathrm{~A} \\
\text { then } \quad C^{\top} & =33 \mu \mathrm{~F}
\end{aligned}
$$

The actual component values used were

$$
\begin{aligned}
L^{A} & =8 \mu H \\
x & =0.67 \\
C^{T} & =60 \mu \mathrm{~F}
\end{aligned}
$$

These values give an $L^{A+B} C^{\top}$ time constant of about $36 \mu s e c$, as opposed to 18 usec for the "ideal" components. This larger time constant is essentially an extra margin of safety during commutation. In the actual implementation, the commutation voltage varies between 360 and 440 volts. The peak commutation current is about 800 Amps.

The maximum commutation frequency $f_{\text {com }}(\max)$, encountered during motoring is 2400 repetitions per second, which occurs at vehicle speeds of $288.5 \mathrm{~km} / \mathrm{h}$. In regeneration, this rate can go as high as 3400 Hz . If the current in the commutation thyristor is assumed to consist of Fm halfsinusoids per second, each of duration Tcorn and peak current I_{p}, the RMS thyristor current in SCR7 is

$$
\begin{equation*}
\underset{\text { RMS }}{\text { SCR7 }}=\frac{1}{\sqrt{2}}\left(T_{\text {com }} F_{m}\right)^{1 / 2} I_{p} \tag{3.28}
\end{equation*}
$$

with

$$
\begin{aligned}
& I_{p}=800 \mathrm{~A} \\
& T_{\mathrm{Com}}=80 \mu \mathrm{~S} \\
& \mathrm{~F}_{\mathrm{m}}=1200 \mathrm{~Hz} \\
& \mathrm{I}_{\mathrm{RMS}}^{\mathrm{SCR} 7}=175 \mathrm{~A}
\end{aligned}
$$

Actually, the commutation thyristor current waveform is not a perfect half-
sinusoid, being "chopped off" at both the beginning and end. Thus, the $80 \mu \mathrm{sec}$ pulse duration is used, rather than $\pi \sqrt{L^{A+B} C^{\top}}=108 \mu \mathrm{sec}$.

The peak forward voltage across the commutation thyristor is nominally the commutation voltage, although some allowance must be made for over-ring. Thus, the commutation thyristor forward breakdown voltage must be greater than 440 volts by a sufficient margin of safety. The nominal reverse breakdown voltage requirement is somewhat smaller. The reverse recovery spike encountered when the thyristor turns off (see snubber analysis in this section) results in a 350 volt maximum reverse voltage. Since most thyristors have nearly equal forward and reverse voltage blocking capability, however, this is of little consequence.

To meet these criteria, a GEC184 thyristor rated at 600 V and $250 A_{\text {RMS }}$ was selected for SCR7 and SCR8.

From the C184 specifications, the maximum allowable peak on-state current, given a pulse width of 80 sec , repetition rate of 1.2 kHz , and a case temperature of 90 C , is about 830 Amps. During regeneration, when the commutation rate can go as high as 1700 repetitions per device per second, the device rated steady-state peak current of about 660 Amps at $90^{\circ} \mathrm{C}$ is below that required. Thus, heavy regenerative braking requires use of the transient thermal capability of the devices and associated heatsinks, and cannot continue indefinitely.

The clamping thyristor (SCR9 and SCR10 in Figure 3.25) must be able to withstand substantial reverse voltages. If N_{a}, N_{b}, and N_{C} are the number of turns in the T1A, T1B, and T1C windings of the commutation transformers, then the necessary clamp thyristor reverse voltage capability is

$$
\begin{equation*}
V_{R}^{\text {SCR9 }}=V_{C}\left[\frac{N_{C}}{N_{a}+N_{b}}\right]+v_{\text {bat }} \tag{3.29}
\end{equation*}
$$

The forward blocking requirement is less, determined by the following equation:

$$
\begin{equation*}
V_{F}^{\text {SCR9 }}=V_{c} \frac{N_{c}}{N_{a}+N_{b}}-V_{b a t}\left[\frac{N_{a}+N_{b}+N_{c}}{N_{a}+N_{b}}\right] \tag{3.30}
\end{equation*}
$$

substituting $N_{a}=3, N_{b}=2, N_{C}=5$, the number of turns on each commutation transformer in this equation yields

$$
V_{R}^{S C R 9}=630 \mathrm{~V} .
$$

The actual clamp thyristor reverse recovery voltage of 170 volts is much smaller than this due to leakage inductance of Tl .

The calculation of RMS clamp current is more complex. Essentially, the energy introduced into the commutation circuit from (a) the motor current, through T1A, and (b) the battery, must be returned to the battery via T1C as pictured in Figure 3.29. The peak current I_{p} SCR9 is

$$
\begin{equation*}
I_{P}^{S C R 9}=\left[\frac{L^{A}}{L^{C}} I_{b a t}^{2}+\frac{C^{\top}}{L^{C}} V_{\text {bat }}\left(2 V_{C}-V_{\text {bat }}\right)\right]^{1 / 2} \tag{3.31}
\end{equation*}
$$

This is determined by the constraint that the energy initially contained in TIC be equal to the excess commutation energy. The duration, $T_{c l a m p}$, during which current flows in SCR9 can be written as

$$
\begin{equation*}
T_{c l a m p}=\frac{L^{C} \mathrm{I}_{p}{ }^{\text {SCR9 }}}{V_{\text {bat }}} \tag{3.32}
\end{equation*}
$$

if it were not for the fact that the main devices are enabled before the energy-recovery phase is completed. The actual length of the interval, Tclamp is the difference between the (pre-determined) main blanking time and the commutation time before the clamps are fired.

$$
\begin{equation*}
T_{c l a m p}=T_{\text {blank }}-T_{\text {com }} \tag{3.33}
\end{equation*}
$$

For the present controller,

$$
\begin{aligned}
& T_{\text {blank }}=100 \mu \mathrm{~S} \\
& T_{\text {com }}=80 \mu \mathrm{~S}
\end{aligned}
$$

Given the clamp current waveform shown in Figure 3.32, the RMS current is

$$
\underset{\text { RMS }}{\substack{\text { SCR9 }}}=87 \mathrm{~A}
$$

To fill the clamp device requirements, GE C164N thrysistors were selected with ratings of 800 V and 110 ARMS.

The C164 data sheets give a peak allowable on-state current of 840 Amps for $20 \mu \mathrm{sec}$ pulses at a 1.2 kHz rate. This corresponds to a 92 Amp RMS rating for sinusoidal pulses. Although the predicted RMS current is not much lower than this, it is a very conservative estimate, neglecting the effects of losses on the necessary initial clamp current.

Each commutation capacitor is subjected to current pulses whose magnitude is half that of the comnutation thyristor pulses. However, both capacitors receive a pulse for every commutation. Thus, the RMS capacitor current is $1 / \sqrt{2}$ times that of the commutation thyristors.

$$
\mathrm{I}_{\text {RMS }}^{\mathrm{Cl}}=124 \mathrm{~A}
$$

The commutation capacitors (C1,C2) used are Sprague paper-polypropylene commutating capacitors. Each of the two capacitors actually consists of two 15 uF cans, having a terminal current rating of 50 Amps RMS current apiece. Thus, the 125 Amp RMS current encountered at the maximum motoring commutation frequency (62.5 Amps per can) is beyond their steady-state rating and again requires use of the transient capability of the controller.

MAIN THYRISTOR AND DIODE SELECTION

The primary controller specification which influences the main device current rating is the peak power requirement (35 HP at 30 mph). This constraint, combined with the battery voltage limit, determines the minimum RMS current rating of the devices. The voltage ratings are affected by both battery voltage and commutation voltage. If motor voltage and current waveforms are assumed sinusoidal, then the motor shaft power, pe, is given by:

$$
\begin{equation*}
p^{e}=\sqrt{3} I^{s} \quad V_{1} \ell \ell \cos (\theta) n_{m} \tag{3.34}
\end{equation*}
$$

where I^{S} is the fundamental RMS motor phase current, $V_{1} l l$ is the fundamental line-to-line RMS motor voltage, $\cos (\theta)$ is the power factor, and n_{m} is the motor efficiency. In six-step operation, the fundamental RMS line-to-line voltage is related to the battery voltage

$$
\begin{equation*}
V_{1} l l=\frac{\sqrt{6} V_{\text {bat }}}{\pi} \tag{3.35}
\end{equation*}
$$

Thus, with the selected battery voltage, shaft power, motor power factor, and efficiency, the RMS phase current requirement is

$$
\begin{equation*}
I^{S}=\frac{\pi}{3 \sqrt{2}}\left[\frac{p^{e}}{V_{\text {bat }} \cos \theta n_{m}}\right] \tag{3.36}
\end{equation*}
$$

With a battery voltage (under load) of 100 v , shaft power of 26.1 kW , power factor and efficiency both equal to 0.8 ,

$$
I^{S}=302 \mathrm{~A}
$$

Since every motor phase is fed by two thyristors, each device must have a current rating $1 / \sqrt{2}$ times the per phase requirement.

$$
\begin{array}{ll}
\text { SCR1 } & =214 \mathrm{~A}
\end{array}
$$

As the controller must be capable of operation with regenerative currents that are as large as those encountered during motoring, the RMS
current requirements of the main diodes D1-D6 are virtually the same as those of the main thyristors.

It should be noted that while, theoretically, the same phase currents are sufficient to obtain the peak torque at low frequencies, the RMS device currents are greater, due to the increased harmonic content of the waveform. At the same time, the RMS current rating of the main devices is slightly lower in this regime, due to the high thyristor switching frequency required to limit these harmonics.

The forward voltage blocking requirement of the main thyristors is set by the maximum forward voltage at the end of the commutation interval. Since the voltage across the corresponding capacitor is then $\left(V_{C}-V_{b a t}\right)$, the forward blocking voltage must be at least $V_{F}^{S C R I}=340 \mathrm{~V}$.

The GE C184 thyristors are available with breakdown voltage ratings from 100 to 800 volts. It is seen from the previous analysis that 600 volt devices are sufficient. These have been selected for use as the main semiconductor devices. GE A198M diodes with ratings of 600 V and 250 A were employed as the free-wheeling diodes.

gATING REQUIREMENTS

The requirements for safe fast turn-on of a thyristor may be stated in terms of a minimum gate charge and limiting gate current. In the case of the GE C184 thyristor, it is recommended that 3μ Coul be injected into the gate over a period of not less than $3 \mu \mathrm{sec}$ and not greater than $6 \mu \mathrm{sec}$ in order to insure turn-on into a high di/dt load. In addition, it is suggested that the gate-cathode voltage spike which results from the fast turn-on not be allowed to reverse the gate current. For turn-on into low di/dt phase currents, a longer pulse of current, of at least the dc gate trigger level, igt, is recommended. This is necessary to allow the thyristor current to attain the latching value. For the C184, $\mathrm{i}_{\mathrm{gtm}}=300$ ma (A typical value for i_{gt} is 150 ma).

The gate drive circuit shown in Figure 3.33 is designed to deliver a large pulse of current to the thyristor for several $\mu \mathrm{sec}$ through an isolation transformer, then to supply a constant low current for the rest of the $10 \mu \mathrm{sec}$ turn-on interval. In most cases, the thyristor turns on within $2 \mu \mathrm{sec}$. An oscillator repetetively triggers the gate circuit forming a picket fence drive to allow for variations in motor power factor. One pulse of this fence ultimately triggers the device.

Referring to Figure 3.33, the amount of charge delivered to the gate during the initial pulse is determined by the charge stored in Cg , and the transformer turns ratio N of the gate drive isolation transformer.

$$
\begin{equation*}
Q_{\text {gate }} \cong 2 V_{S} \mathrm{CgN} \tag{3.37}
\end{equation*}
$$

where $\pm V_{S}$ are the logic supply voltages in Figure 3.33 .

With the components selected for the gate circuit implementation $Q_{\text {gate }} \cong 5 \mu c o u l$.

COMMUTATION ENERGY CONTROL

The commutation voltage control capability of the Gould inverter gives the designer flexibility in selecting commutation circuit component values. The peak stored energy (and, hence, the loss) of the commutation circuit can be minimized for a standard set of operating conditions, and then the comutation capacitor voltage may be varied to accomodate extremely heavy or light loads.

The scheme used to control the peak commutation capacitor voltage is described in this section. It is shown that efficient commutation voltage modulation can be achieved through feedback control of the main thyristor reverse-bias time, T_{q}. The algorithm used to determine the desired commutation voltage from reverse-bias time measurements is outlined. Finally,

Figure 3.33 Schematic of Thyristor Gate--Drive Circuit. Transitor "Dumps" Capacitor (Cg) Charge, through Transformer, into Thyristor Gate.
Repetedly Triggering Q1 Produces the Traditional Picket Fence Drive Shown in Section IV
the actual circuit implementation of the control scheme is discussed, which controls the triggering of SCR 9, and SCR 10 respectively. The power circuit topology was previously presented.

It is shown in Appendix II that, given a particular set of commutation circuit component values, the commutation voltage required to turn off the main devices varies with both battery voltage and current, according to the relation

$$
\begin{equation*}
\frac{V_{c}}{V_{\text {bat }}}=\left[\frac{1+x}{W_{\min }}\right]\left[\frac{V_{b a t}^{\prime}}{V_{\text {bat }}}+1-W_{\mathrm{min}}^{2} \quad \frac{I_{\text {bat }}{ }^{\prime}}{I_{\text {bat }}}\right] \tag{3.40}
\end{equation*}
$$

where $V_{b a t}{ }^{\prime}$ and $I_{b a t}{ }^{\prime}$ are the instantaneous battery voltage and current, respectively, V_{c} is the required commutation voltage, $V_{b a t}$ is the nominal battery voltage, $I_{b a t}$ is the nominal full load inverter current, and all other terms are defined in Appendix II.

Given the largest forseeable values of $V_{b a t}{ }^{\prime}$ and $I_{b a t}{ }^{\prime}$, a maximum necessary commutation voltage, $\left.V_{C(\max }\right)$, may be calculated. If V_{C} is simply set equal to $\left.V_{c(\max }\right)$, then the commutation circuit will always be able to turn off the main devices. The reverse bias time, T_{q}, will be at least $\mathrm{T}_{\mathrm{q}_{\mathrm{min}}}$ with high power output levels, and much longer when the motor is unloaded.

Since a smaller voltage would be sufficient to obtain the required reverse-bias time at light loads, commutation circuit losses could be reduced by using only that voltage which is necessary to maintain $T_{q}>T_{q_{m i n}}$. The function of the commutation energy control circuit is, thus, to vary the commutation voltage so as to keep the reversebias time nearly equal to ${ }^{q_{\text {min }}}$.

The actual control algorithm can be best described as a two-stage process. In the first stage, the measured reverse-bias time for the last commutation is transformed into an intermediate voltage request for the next commutation, according to the relationship pictured in Figure 3.34. This request voltage is passed to a second stage, a non-linear low-pass filter. It

Figure 3.34 Plot Showing Commanded Commutation Capaciter Voltage, $\mathrm{V}_{\mathbf{C}}^{*}$ as a Function of Measured Thyristor Reverse-Bias Time, T_{q}
is non-linear in that it has different time constants for rising and falling signals. The output voltage will rise towards the input signal level with a time constant on the order of $100 \mu \mathrm{sec}$ if it is lower. If the output level is above that of the input, then it will decay towards a minimum value with a 10 second time constant. Thus, if the measured reverse-bias time for a commutation is smaller than the desired time, the voltage for subsequent commutations is increased very quickly. If the reverse-bias time is longer than necessary, then the commutation voltage will fall slowly. This slow response to a long reverse-bias time is necessary for stable commutation voltage control.

Commutation voltage modulation occurs only when the controller is in the six-step mode (maximum motor voltage). For operation in the pulse width modulation regime, the commutation voltage is fixed at its maximum value. During six-step operation, the commutation voltage varies from 360 to 440 volts, depending on the motor load. The 37% reduction in initial stored energy has a significant impact on the circuit losses at light motor loads. The main device reverse-bias time measurement is provided by observation of the bus voltage, $V_{a b}$ measured from the common anode of the upper bus thyristors to the cathode of the lower three (Figure 3.35). Whenever $V_{a b}$ is negative, either the upper or lower main thyristors are reverse-biased.

The rectified bus voltage is passed through an isolation (step-down) pulse transformer to the control logic, where it is converted to a logic high value for the duration of the reverse-bias interval. This logic signal controls the charging of a timing capacitor whose voltage at the end of the interval is proportional to the latest reverse-bias time. The capacitor voltage is inverted, amplified, and sampled after the logic signal drops. This resulting voltage is the intermediate commutation voltage request, or, the first stage output. These stages are illustrated in Figure 3.35.

The non-linear low-pass filter is implemented with the circuit shown in Figure 3.36. The holding capacitor is charged through R_{C}, and discharged through Re. A factor of 10^{5} between resistances allows rapid charge, but slow

(1785)

Figure 3.35 Commutation Energy Control Block Diagram

Figure 3.36 Non--Linear Low-Pass Filter (Output Stage for Commutation Energy Control Circuit)
discharge of C_{4}. This stage is followed by a circuit which limits the maximum and minimum commutation voltage signal.

The actual commutation capacitor voltage is measured by a sense winding on each commutation transformer, and compared to the energy control circuit output. The clamp thyristors are fired when the commutation voltage reaches the desired value. The implementations of the sense windings installed on each commutation transformer, T1 and T2, are illustrated in Appendix IV.

INVERTER LOSSES

In this section, the three major sources of inverter loss, main conduction, main switching, and commutation circuit loss are examined. It is seen that the contribution made by switching losses is small enough to be neglected. Equations are presented which approximate the remaining losses as a function of the inverter operating point.

The inverter electrical losses are dominated by the main SCR on-state conduction losses and commutation circuit component loss. Main device switching losses are small in comparison to these two. The category of main SCR switching loss is further divided into the areas of turn-on and turn-off loss. For the calculation of thyristor turn-on loss, the voltage and current waveforms shown in Figure 3.37 are used. The thyristor is assumed, initially, to be in the off state, blocking a forward voltage, $V_{\text {bat. }}$. During the rise time, $T_{o n}$, the voltage falls linearly to zero, while the current rises to the value, $I_{b a t}$. Due to finite power stage leakage inductances, the current normally does not reach its final value by the time that the voltage has fallen. Thus, the estimate made here is a conservative one. The energy loss is simply the time integral of the v.i product over the turn-on interval. The power loss is the product of this energy and the total circuit independent inverter switching rate, fcom.

$$
\begin{equation*}
\mathrm{pSCRI}_{\text {turn-on }}=1 / 6 \mathrm{~V}_{\text {bat }} \mathrm{I}_{\text {bat }} \mathrm{T}_{\text {on }} \mathrm{f}_{\text {com }} \tag{3.41}
\end{equation*}
$$

10697)

Figure 3.37 Idealized Voltage and Current Vaveforms used to Calculate Main Thyristor Turn-On Switching Loss

Actually, the battery current is sometimes distributed between two thyristors instead of one. But, since the loss is linear in $I_{b a t}$, this does not affect the total loss estimate.

The turn-off loss is estimated by the use of data on the thyristor recovered charge, Q_{r}. Such data is normally supplied by manufacturers as a function of the peak thyristor current and rate of turn-off (di/dt). Figure 3.38 shows the idealized thyristor voltage and current waveforms. Again, the energy loss is simply the time integral of voltage and current.

$$
\begin{equation*}
P_{\text {turn-off }} \cong V_{R}^{S C R 1} Q_{r} f_{\text {com }} \tag{3.42}
\end{equation*}
$$

With a turn-off rate of $300 \mathrm{~A} / \mu \mathrm{sec}$, a junction temperature of 125 C , and thyristor current of 600 Amps, the recovered thyristor charge is about 60 $\mu c o u l . V_{R}^{S C R 1}$ has a maximum value of 190 volts (before reverse recovery), giving $P_{\text {turn-off }}=27 \mathrm{~W}$.

The total main switching losses are less than 60 watts. An estimate of the on-state thyristor conduction loss, assuming two semiconductor voltage drops, V_{d}, in series with the motor, gives

$$
\begin{equation*}
P_{\text {on-state }} \sim 2 I_{\text {bat }} V_{d} \tag{3.43}
\end{equation*}
$$

With an on-state voltage drop V_{d} of 1.3 volts, $P_{\text {on-state }} \sim 1560 \mathrm{~W}$
The main device switching losses are negligible in comparison. In Appendix III, the switching losses encountered in the main snubbers are examined. The estimated maximum main snubber loss is seen to be about 100 watts. During six-step operation, the maximum loss is closer to 45 watts.

A more accurate expression for the main device losses is obtained by accounting for reactive currents carried by the freewheeling diodes. The equation given below is derived in Appendix III. Given a semiconductor on-

(0698)

Figure 3.38 Current and Voltage Waveforms used to Estimate Thyristor Turn--Off Switching Loss
state voltage drop, V_{d}, battery voltage, $V_{\text {bat }}$, battery power, $P_{b a t}$, and motor power factor, $\cos (\theta)$,

$$
\begin{equation*}
P_{\text {on-state }}=\frac{2 V_{d}}{V_{\text {bat }}} \cdot \frac{P_{\text {bat }}}{\cos \theta} \tag{3.44}
\end{equation*}
$$

With the required shaft power, pe, as well as motor and (estimated) inverter efficiencies, $P_{\text {on-state }}=1530 \mathrm{~W}$ when the battery is delivering approximately 36 kW , or full rated power.

The commutation circuit losses have been empirically found to be proportional to the peak stored energy of the commutation transformers. These losses are entirely due to the non-ideal nature of the commutation circuit elements (particularly the transformer). If V_{C} is the commutation voltage, C^{\top}, the total commutation capacitance, L^{A} the transformer T1A winding inductance, Ibat the average dc bus current, this peak stored energy is

$$
\begin{equation*}
U_{p}=1 / 2 C^{\top} V_{c}^{2}+1 / 2 L^{A}\left(I_{b a t}\right)^{2} \tag{3.45}
\end{equation*}
$$

Thus, the commutation circuit loss is

$$
\begin{aligned}
P_{c o m} & =K_{m} f_{c o m}\left[1 / 2 C^{T} V_{C}^{2}+1 / 2 \quad L^{A} I_{b a t} 2\right] \\
& =820 \mathrm{~W} \text { at } 900 \mathrm{~Hz}
\end{aligned}
$$

Km is an empirically determined constant, equal to about 0.17 for the Gould controller. The dc bus current is roughly $\sqrt{2}$ times the RMS phase current if the phase waveforms are sinusoidal.

IV. Controller Operation and Description

The controller for the ac induction motor coordinates the voltage and frequency applied to the motor terminals. To accomplish this task, the controller physically consists of five major functional blocks. These circuit blocks are the control logic power, excitation frequency logic, PWM voltage algorithm logic, the system control module (a microcomputer) and the power inverter. The organization and the operation of these five major circuit groups is presented in this section.

4.1 Control Logic Power

The function of the control logic power section is to generate the voltages required by the controller circuitry. Since most electric vehicles currently in use have both a 12 Vdc battery and a propulsion battery, the input power source to the control logic power section may be selected from these two choices. Tapping the series battery chain which forms the propulsion battery is not permissible because it preferentially discharges those batteries which supply both tractive power and logic power. In this controller design the propulsion battery with a nominal rating of 120 V was chosen as the input power source for the control power.

The voltages required by the controller circuitry are listed in Table 4.1.

TABLE 4.1

CONTROL LOGIC VOLTAGE REQUIREMENTS

$+5 V$ dc	$2 A$
+15 V dc	1 A
-15 V dc	1 A
+12 V dc	2 A
-12 V dc	20 mA

The design approach selected for the control logic power supply is a dc-dc switching converter in series with a linear voltage regulator. The linear regulator limits the maximum dc-dc converter input voltage to 85 V . During regeneration, the propulsion battery voltage can exceed 140 V and drop below 80 V during motoring. Figure 4.1 is a block diagram representation of the control logic power. The logic system of the motor controller consumes approximately 50W. The electrical schematic can be found in Appendix IV.

4.2 Excitation Frequency Logic

As previously described, the control strategy selected for this ac propulsion system is one employing slip control. A major advantage of this particular control philosophy is that it is easily adapted to conventional ac induction motors with only the addition of a tachometer. This provides a general scheme which is completely motor independent while incorporating customary types of industrial transducers.

The function block diagram is illustrated in Figure 4.2. As shown in the figure, accelerator and brake commands are summed to determine the overall torque, and thus slip frequency, requested. This slip command is then summed with the shaft speed tachometer signal to derive the motor excitation frequency.

The digital tachometer itself is constructed of a stainless steel disk with two tracks of information and optical detectors. Each track contains 252 pulses/revolution with the two tracks etched in quadrature. The tachometer logic sums the two pulse trains to generate a base pulse train of 1008 pulse/revolution by detecting logic level transitions. This signal corresponds to an electrical frequency, at zero slip, of 504 Hz per mechanical Hz since the motor has four electrical poles. The disk is seen in Figure 4.3a along with the tachometer logic PC board. Figure 4.3 b is a detailed picture of the disk. The quadrature relationship of the tachometer pulse trains also provides rotation direction information by observing the phase relationship between the two pulse trains. The tachometer logic schematic is contained in Appendix IV.

(0704)

Figure 4.1 Control Power Electronics Suppy Schematic

(1786)

Figure 4.2 Excitation Frequency System Block Diagram

Figure 4.3(a) Motor Tachometer System
The tachometer is retrofitted onto the end of the induction motor. It consists of a stainless wheel and two optical detectors, one for each track. Tachometer electronics is included on the PC board to support the optical detectors.

Figure 4.3(b) Detail of Tachometer Encoder Disk
Note that the two tracks of information are etched in quadrature to provide direction information.

The digital pulse train generated by the tachometer, ftach, is algebraically summed with the slip frequency, $f_{s l} \mathrm{VCO}$, generated by the slip frequency $V C O$, to yield the voltage modulator clock frequency $f_{v m} \cdot f_{v m}$ is directly scaled to the inverter output frequency, $f_{e x}$. The output of the voltage modulator circuit is six parallel signals of frequency $f_{e x}$, each representing the desired state, off or on, of the six main thyristors in the power circuit. The following constants define the relationship among ftach, $f_{s l}, f_{v m}$, and the mechanical shaft frequency $f_{\text {shaft }}, f_{e x}$, and the motor slip frequency $f_{s l}$. A complete schematic of the frequency excitation logic is included in Appendix IV.

$$
\begin{aligned}
& f_{\text {tach }}=f_{\text {shaft }} / 1008 \\
& f_{s l}^{v C 0}=\frac{f_{s l}}{4032} \\
& f_{v m}=f_{s 1}+f_{\text {tach }} \\
& f_{e x}=\frac{f_{v m}}{504}
\end{aligned}
$$

4.3 Voltage Modulator Logic

The objective of the voltage modulator is to provide a means of controlling the inverter output voltage so that a constant air gap flux (i.e. volts/hertz) can be maintained over a wide motor speed range. This capability is essential for the control philosophy selected. Primary design objectives included a 20:1 dynamic control range in the fundamental output voltage, symmetrical excitation waveforms between all three phases and circuit modularity. These objectives were all achieved primarily using discrete low power digital logic and some support analog circuitry.

The voltage modulation hardware implements a standard pulse width modulation strategy based upon the comparison of a sine function generated at the inverter electrical frequency, $f_{e x}$, and a triangle function of frequency $n f_{e x}$, where n is restricted to the integer values of $9,27,45,63$ and 81 . A
schematic function diagram for the modulator circuit is illustrated in Figure 4.4 and the electrical schematic is included in Appendix IV.

The three sinusoidal waveforms originate from 8 bit PROMS which are clocked to generate a complete half cycle sinusoidal. These digital words are applied to multiplying D/A converters which result in discrete analog signals whose amplitudes are controlled by reference inputs set by the modulation index described in Section III. A similar technique is used for the triangle generation except that a simple up/down counter replaces the PROMS.

The digital data representing the sine wave is stored with 7 bit magnitude resolution. Half an electrical cycle is defined using 126 successive memory locations. To complete a triangle, 56 clock pulses are required. The triangle magnitude resolution is 4 bits. Table 4.2 illustrates the digital representations of the sine function and triangle functions. The gating of the main inverter power devices are determined by the intersections of the two functions as illustrated in Figure 4.5. Comparators with special debounce circuitry determine these points of intersection from the discrete analog waveforms. The relative amplitude of the sine and triangle therefore determine the points of intersection which in turn changes the PWM waveform and thus the voltage applied to the motor. The ratio of the sine and triangle reference amplitudes is known as the modulation index, m_{i}, as shown in Figure 4.5. These amplitude controls are the only control inputs to the voltage modulator. The ratio of the triangle wave frequency to the sine reference frequency, n, is always an odd integral value of 3 in order to achieve the desired symmetries among the three phase voltage and current waveforms. The value of n is adjusted as the excitation frequency is changed to control the harmonic content of the phase currents at all speeds without making unacceptable demands on the commutation circuit cycling frequency. The sine and triangle generators schematic is contained in Appendix IV.

Figure 4.6 illustrates the operation of the voltage modulation circuitry. Figure 4.6 displays the analog sine and triangle waveforms and 4.6b displays the output of the comparator circuitry. This logic signal provides the basis for controlling the SCR gating circuitry and commutation logic.

Figure 4.4 Voltage Modulator Function Schematic

(0707)

Figure $4.5 \quad$ Voltage Modulator Algorithm

(a) generated sine AND TRIANGLE FUNCTIONS
(b) COMPARATOR OUTPUT

(c) COMPARATOR OUTPUT MODIFIED BY COMIMON BUS COMMUTATION REQUIREMENTS

Figure 4.6 PWM Algorithm Main Thyristor Gating Signals

DIGITAL SEQUENCE REPRESENTING SINES AND TRIANGLES

(All Data Represented in Hexidecimal Notation)
(Bit $7=$ Sign Bit $0-$ Bit $6=$ Magnitude)

Sine
Phase Prom
A Addresses

0000	FF	83	86	89	8C	8 F	93	96	99	9 C	9 F	A2	A5	A8	$A B$	AE
0010	B1	B4	B7	BA	BD	CO	C2	C5	C8	CA	CD	CF	D2	D4	D7	D9
0020	DB	DD	DF	E2	E4	E6	E7	E9	EB	ED	EE	E0	F1	F3	F4	F
0030	F7	F8	F9	FA	FB	FC	FC	FD	FE	FE	FF	FF	FF	FF	F	FF
0040	FF	FF	FF	FF	FF	FE	FE	FD	FC	FC	FB	FA	F9	F8	F7	F5
0050	F4	F3	F1	F0	EE	ED	EB	E9	E7	E6	E4	E2	DF	DD	DB	D
0060	D7	D4	D2	CF	CD	CA	C8	C5	C2	CO	BD	BA	B7	B4	B1	A
0070	AB	A8	A5	A2	9 F	9 C	99	96	93	8 F	8 C	89	86	83	80	0
0080	06	09	OC	OF	13	16	19	1 C	1 F	22	25	28	2B	2 E	31	3
0090	37	3A	3D	3 F	42	45	48	4A	4D	4 F	52	54	57	59	5B	5
00AO	5 F	62	64	66	67	69	6B	6D	6E	70	71	73	74	75	77	7
OOBO	79	7A	7B	7 C	7 C	7 D	7E	7E	7F	7F	7F	7F	7F	7F	7 F	
OOCO	7F	7F	7F	7E	7E	7 D	7C	7C	7B	7A	79	78	77	75	74	7
00DO	71	70	6E	6D	6B	69	67	66	64	62	5F	5D	5B	59	57	
O0E0	52	4F	4D	4A	48	45	42	40	3D	3A	37	34	31	2 E	2B	
00F0	25	22	$1 F$	1 C	19	16	13	OF	OC	09	06	03	00	FF	FF	

Triangle

Counter Sequence
123456789 A B CDEF
EDCBA9876543210

Since independent control of all SCR's connected to one battery bus is not possible with the bus commutation power circuit topology, the need to commutate one SCR affects the gating signals applied to all SCR's on that bus. Figure 4.6c illustrates the logic signal actually controlling the SCR main conduction periods. It differs from 4.6 b by the introduction of logic zeros to inhibit the gating signals to all of SCR's on a common bus during commutation. For example if SCR 1, 2, and 3 were in conduction, and SCR 1 was to be commutated off, the gating signal would be removed from SCR 1 and inhibited on SCR 3 during the top-bus commutation interval. The inhibit signals are derived from the logic signals which trigger SCR 7 or SCR 8. The gate waveform generator schematic is contained in Appendix IV.

4.4 System Control Module

The system control module performs the actual voltage and frequency excitation coordination. This is accomplished directly by varying the analog inputs to the voltage modulator in response to commanded torques and excitation frequency. In the controller itself, the hardware selected to perform this coordination is a microcomputer based on the MC6802 microprocessor.

The primary task which is placed on the microprocessor in this systemm design is that of performing the volts/hertz regulation to keep the induction machine air gap flux constant. The sensed input is a volts/hertz weighted signal derived from measuring the excitation voltage and frequency. The implemented algorithm consists of a proportional plus integral type of control scheme with machine and load dependent factors. The algorithm is discussed in detail in Section III of this report. The algorithm's operation is slaved to the operating frequency of the inverter so as to calculate a new voltage correction factor on a once-per-cycle basis. The calculated error signal is used to control the sine-triangle amplitudes of the voltage modulator to maintain constant air-gap flux.

The software which accomplishes the voltage and frequency coordination is designed using an interrupt program structure in which execution of the
voltage control algorithm is initiated once every electrical cycle. All the remaining microcomputer functions, for example, controller sequencing (powerup) and protection coordination (temperature limits), are performed sequentially at low priority as real CPU time is available with an executive program. The executive/interrupt program interaction is illustrated in Figure 4.7.

Figure 4.7 emphasizes that the voltage control algorithm execution can be initiated at any time by suspending execution of the executive algorithm until the control routine is complete. The interruption occurs once per electrical cycle (excitation frequency) and is triggered by the excitation frequency pulse train.

The algorithms for the microcomputer are implemented in Motorola 6802 assembly language. The detailed programs are included in Appendix V. Flow chart representations of both the executive code and the voltage control code is illustrated in Figures 4.8 and 4.9 respectively.

On the executive level, (Figure 4.8), specific sequencing operations performed under microprocessor supervision include system power-up initialization, enabling of the main and commutation thyristor gating signals, and controller interlocking to prevent invalid operation. The system monitors key controller components for dangerous operating conditions such as overtemperature and overvoltage, and sends warnings to the operator and/or shuts down the controller as the situation warrants. A watchdog timer is included to protect the system from processor malfunctions.

As shown in Figure 4.9, the voltage control flow chart, the microprocessor receives updated readings of the operator torque request, the excitation frequency and the measured motor volts $/ \mathrm{Hz}$ at the beginning of each interrupt cycle. These inputs are used to calculate an error signal corresponding to the difference between the desired and measured instantaneous motor volts per hertz values. This error signal then generates commands to the voltage modulator logic to control the reference sine and triangle waveform amplitudes, and hence, the motor terminal voltage. Execution of this algorithm is slaved to the excitation frequency to produce updated commands to

Figure 4.7 Executive/Interrupt Code Interaction

Figure 4.8 Executive Program Flowchart

Figure 4.9 Flowchart of Voltage Control Interrupt Routine
the voltage modulator once per cycle, which is the measurement period for the motor terminal voltage fundamental frequency component.

An additional task performed during the interrupt routine is the generation of a slip frequency limit command to override excessive torque requests by the operator. This function is illustrated in 4.10a. Below excitation frequencies of 120 Hz , the slip limit is set to 3 Hz , linearly increasing to 10 Hz at the maximum excitation frequency of 266 Hz . Finally, the interrupt routine also performs the selection of the desired triangle frequency multiplier based upon the instantaneous excitation frequency value. This function is shown in Figure 4.10b. Hysteresis is provided by the software to prevent oscillations in the multiplier value in the vicinity of the transition points.

The control functions which have been discussed are accomplished using a Motorola 6802 microprocessor with 2 K words of external program memory. A block diagram of the microcomputer architecture is illustrated in Figure 4.11. As illustrated in the figure, the microcomputer system contains a system clock, digital $I / 0$ capabilities, and analog $I / 0$ capabilities. Programmable timers are connected directly to the computer's data bus to measure inverter excitation frequency. Complete electrical schematics are included in Appendix IV.

Safety

The system includes several types of safety features for both the operator and controller protection. Thermal protection of critical controller components constitutes the major source of system protection. Thermistors continuously monitor the operating temperatures of both the main and commutation SCR's in addition to the commutation capacitors. Battery safeguards exist by calculating the effective open circuit battery voltage from a measurement of battery voltage and current. A fixed internal impedance of $2 \mathrm{~m} \Omega /$ cell is assumed The protection system functions at two levels for both over temperature and low battery. The first level results in a visual indication to the operator that an over temperature or low battery condition

(a) Slip Frequency Limit vs. Excitation Frequency

(b) Triangle Frequency Ratio vs. Excitation Frequency
(0712)

Figure 4.10 Control Functions Performed by the Microprocessor during the Interrupt Program

Figure 4.11 Microcomputer Hardware System

TABLE 4.3

SYSTEM RESPONSE TO FAULT CONDITION

System Condition		
	Stage 1	Stage 2
Temperatures		
Commutation Capacitor	$>75 \mathrm{C}$	$>80 \mathrm{C}$
Commutation SCR	$>75 \mathrm{C}$	>80 C
Bottom Bus - SCR	>75 C	$>80 \mathrm{C}$
Top Bus - SCR	$>75 \mathrm{C}$	>80 C
Battery Voltage, $\mathrm{V}_{\text {OC }}$	$<111 \mathrm{~V}(1.85 \mathrm{~V} / \mathrm{cell})$	<102V (1.70V/cell
$V_{\text {oc }}=V_{\text {bat }}+I_{\text {bat }} * 120 \mathrm{~m}$,		
Current	>750A	
(Inverter Maximum)		
System Indicators/Response		
	Stage 1	Stage 2
Temperature	"Overtemp" Indicator	"Emergency Shutdown" Indication and Controller Disable
Voltage	"Low Battery"	"
Current	Perform Commutation and "Overcurrent" Indication	n.a.

exists. The second level will actually cause an orderly propulsion system shutdown (all main SCR's are commutated off) with a visual indication provided to the operator showing that emergency shutdown has occurred. Table 4.3 illustrates the thermal temperature limits and the resulting controller reaction.

Interlocks have been designed into the system to offer an additional degree of safety. Operational interlocks prevent the controller from being operated in an invalid manner. Console direction selection will only be recognized if the motor is operating below 60 RPM. This prevents possible controller damage from inadvertent plugging commands. A "neutral" position which can be selected at any time forces the slip command to zero hertz and thus forces the developed motor torque to also be zero. These features are included in the excitation frequency logic. It should also be noted that after a shutdown has occurred the system will inhibit any further attempts to operate the controller. This mode will continue until the fault conditions subside and the system is reset with a power down - power up sequence using the front panel key switch. These interlocks should prevent unexpected system operation which could endanger the operator.

Several hardware interlocks can also inhibit controller operation. These features require proper connections (sensed by connector jumpers) to be made to the tachometer and console modules before normal operation is permitted. The controller key switch provides an ultimate means for system control by forcing an immediate shutdown under all operating conditions.

4.5 Power Inverter

The operation of the bus commutation inverter was described earlier in Section III with the aid of Figures 3.26 thru 3.30. This section presents oscillographs of the voltage and the current waveforms seen by the power stage components.

The voltage across SCR1 and SCR3 during an upper bus commutation interval is shown in Figure 4.12. The time that the voltage across SCR1 and SCR3 is negative is the available SCR turn-off time.

Figure 4.12 SCR1 Voltage during Commutation Interval

The voltage and current seen by SCR8 (or SCR7) during the commutation interval is shown in Figure 4.13. The current in SCR8 increases sinusoidally as determined by the characteristics of the resonant LC circuit.

After a period of time, depending on the resonant frequency of the LC circuit and the initial current in winding T1A, the voltage across capacitor C1 will reach zero and the current in windings T1A, B and SCR7 will be a maximum. For no-load operation, the time required for the current in SCR7 to reach its maximum value is approximately 50 useconds. For operation under loaded conditions (i.e., an initial current in winding T1A), this time interval is reduced since the current in SCR8 will start the commutation cycle at a current proportional to that initially present in winding T1A. This is illustrated in Figure 4.13c and shows the current in SCR8 during a commutation cycle when current is initially present in winding T1A of the commutation transformer.

When the current in SCR7 has reached its maximum value capacitor C1 will begin to charge with a polarity opposite to that shown in Figure 3.25 . At this point the voltage on capacitor C2 will also have a polarity opposite to that shown in Figure 3.25 and have a value equal to that of the propulsion battery.

When the voltage across capacitor $C 1$ charges to a high enough value that SCR9 is forward biased, and assuming SCR9 is then gated, current will transfer to winding T1C, SCR9 and the propulsion battery. When this occurs the voltage across capacitor $C 1$ will be higher than the relfected voltage across windings T1A, B and SCR7 will be reverse biased and thus turn-off. The voltage across commutation capacitor $C 1$ is shown in Figure 4.14 and shows the voltage cycling between approximately 450 and 330 volts with a propulsion battery voltage of 120 volts. The transition time between these two extremes is the commutation interval.

The current paths during the energy recovery portion of the commutation interval are shown in Figure 3.29. The voltage and current stresses seen by SCR9 are illustrated in Figure 4.15.

Figure 4.13 Commutation Thyristor Voltage and Current Waveforms during a Commutation

Figure 4.14 Capacitor (C1) Voltage during Commutation

Figure 4.15 Clamp SCR Voltage and Current Waveforms during the Commutation Interval

In Figure 4.15, the rate at which the current increases in SCR9 is determined by the leakage inductance of winding T1C and the voltage difference between winding T1C and the propulsion battery voltage. The rate at which the current decreases is determined by the magnetizing inductance of winding T1C and the propulsion battery voltage. The discontinuity in the current waveform of Figure 4.15 coincides with the renabling of the main bus thyristor devices.

The voltage and current stresses on a main thyristor (SCR's 1-6) are illustrated in Figure 4.16 during six step operations at 4000 RPM. During the 180° conduction period of each SCR, the impact of the bus commutation is visible in both the voltage and current waveforms. The voltage spikes appearing on the device are caused by the cycling of the commutation circuit.

Similarly, the voltage and current waveforms of a main thyristor are illustrated in Figure 4.17 during PWM operation. For this figure, the machine is operating at 2000 RPM in the first quadrant. The triangle-sine frequency ratio in the voltage modulator is 9 . Again, the impact of bus commutation during PWM operation is clearly visible in the device current waveform as a series of current waveform discontinuities of approximately 100μ s duration.

4.6 Commutation and Gating Logic

The sequential bus commutation requirements of the Gould inverter topology requires the commutation logic to interpret the voltage modulation circuit gate drive logic waveforms. A computing circuit approach was elected whose inputs included turn-off or commutation requests from both the top-bus and bottom-bus groups of main thyristors and the present polarities of the commutation circuit capacitors. The polarities of these capacitors indicates whether the top or bottom bus is ready for commutation. A dc or battery overcurrent signal completes the list of commutation logic circuit input signals. A functional diagram of the logic system is illustrated in Figure 4.18. The output of the logic block directly controls the gating of the commutation thyristors SCR7 and SCR8. The logic truth table is contained in Table 4.4. The electrical schematic is contained in Appendix IV.

TABLE 4.4

COMMUTATION CIRCUIT TRUTH TABLE

LOGIC INPUTS	(TOP BUS REQUEST	1	0	1	0	x	X	X
	BOTTOM BUS REQUEST	0	1	0	1	x	X	X
	OVERCURRENT	0	0	0	0	X	1	1
COMMUTATION STATUS	(BUSY COMMUTATING	0	0	0	0	1	0	0
	TOP BUS READY	1	0	0	1	X	1	0
	BOTTOM BUS READY	0	1	1	0	X	0	1
OUTPUTS	(GATE SCR 7	1	0	01*	10*	X	1	0
	GATE SCR 8	0	1	10*	01*	X	0	1

* indicates two sequential commutations
$X=$ Don't care

Figure 4.16 Main Thyristor Voltage and Current Stresses during Six-Step Operation

Figure 4.17 Main Thyristor Voltage and Current Stresses during PWM Operation

(0719)

Figure 4.18 Commutation Sequencer Block Diagram

The control of the clamp SCR's, SCR9-10, is assigned to the commutation voltage control logic. As discussed in Section 3, the clamp SCR's are used to control the energy stored in the commutation capacitors. Figure 4.19 is a simplified schematic of the control circuitry for gating SCR9, 10. The circuit becomes enabled after the initiation of the commutation event as defined by the gating of SCR7 or SCR8. The time the main bus SCR's are reverse biased is compared to the desired reverse bias time. The error signal is used to increase or decrease the commutating voltage of the commutation capacitors.

When the desired voltage is achieved, the clamp thyristor which is forward biased is gated into conduction, effectively preventing the commutation capacitor from charging up to higher voltage. Circuit schematics are contained in Appendix IV.

The actual gating signals applied to the main SCR's form a "picket fence" drive. A series of pulses is generated with a local CMOS oscillator operating at 27 kHz . The oscillator duty cycle is such that gate current flows for $9 \mu \mathrm{~s}$ leaving $28 \mu \mathrm{~s}$ to reset the gate pulse transformer. A series of pulses is necessary because the machine power factor alters the exact moment when a given main SCR becomes forward biased and can be gated into conduction. Figure 4.20 portrays the series of gate pulses applied to a main SCR during six-step operation. Again, detailed electrical schematics are contained in Appendix IV.

(0720)

Figure 4.19 Commutation Energy Control Circuit Schematic

Figure 4.20 Gate Oscillator Drive Waveform Six-Step Operation

V. Enclosure Design

5.1 Enclosure Design Approach

The mechanical layout of the controller is divided between two enclosures, one containing the power stage components and one containing the control electronics and logic power suplies. This division allows the control electronics to reside in the controlled environment of the passenger compartment away from the heat generated by the power stage components and from direct contact with the road environment. A moisture resistant enclosure was selected for the power stage to protect these components from road salt, dirt and other potential contaminants.

The two enclosures communicate with each other via twisted wire pairs residing in a flexible conduit. No connectors are used to terminate the conduit in order to avoid connector reliability problems.

5.2 Power Inverter Enclosure

The power inverter enclosure contains the power inverter circuit components, the device snubbers, and the transducers which are used to measure inverter operational parameters. The enclosure itself consists of two major structural parts. The first is an aluminum base extrusion which provides the mechanical rigidity required to hold the inverter components in place and also acts as the main heat exchanger between the inverter components and the ambient air. The second is an aluminum shell which forms the power inverter package sides and top. Figure 5.1 a is a photograph of the main aluminum extrusion. The slot in the middle of the enclosure is used for mounting the commutation transformers. Figure 5.1 b is a photograph of the component side of the aluminum extrusion. As seen in the photo, the stud type SCR's are mounted in aluminum blocks which are then secured to the aluminum baseplate with a two-part epoxy system. Figure 5.2 summarizes both the mechanical mounting technique and the resulting thermal impedance between the thyristor junction and ambient.

Figure 5.1a Main Aluminum Extrusion

Figure 5.1b Component Side of Aluminum Extrusion

(1333)

Figure 5.2 SCR Junction to Ambient Thermal Resistance

$$
v-4
$$

Several aspects of the controller package design were influenced by the field experience obtained with the fleet of 350 DJ-5E electric vehicles supplied by AMG and Gould to the U.S. Postal Service in 1975. For example, clamping-related assembly and servicing problems associated with hockey-puck thyristors influenced the choice of stud-mounted devices for this controller. Stud mounted thyristors and rectifiers lend themselves well to single-side cooling and require less operator skill during installation.

All of the 16 power semiconductors are mounted in aluminum blocks which in turn are bonded to the base extrusion. Mounting of the aluminum blocks to the finned aluminum extrusion is accomplished using a two-layer epoxy bonding technique. A thin epoxy layer providing high dielectric strength between the device mounting block and extrusion is used in combination with a relatively thick high thermal conductivity layer to fill the gaps between the two surfaces. Using this mounting technique, the SCR junction temperature was calculated for the condition when the loss of main diode and main SCR semiconductor was fixed at 800 W . These results are illustrated in Figure 5.3. At vehicle speeds of 10 mph , the $S C R$ junction temperature will be approximately $100^{\circ} \mathrm{C}$. This result does make the assumption that a ram air flow of $880 \mathrm{ft} / \mathrm{min}$ is available for cooling the main aluminum extrusion. This air flow would be provided by vehicle ram air at the 10 mph speed.

The total weight of the power package, 135 lb , is distributed among the components, enclosure, and mechanical hardware. Table 5.1 summarizes the weight distribution among the power inverter components. Approximately half of the total weight is contained in the aluminum base extrusion, mounting blocks, and enclosure.

Figure 5.3 SCR Junction Temperature vs. Vehicle Speed

$$
v-6
$$

TABLE 5.1

AC CONTROLLER PACKAGE - PARAMETERS

- PROTOTYPE SIZE (POWER UNIT)
$28 \times 21 \times 8$ inches
o POWER UNIT WEIGHT
ALUMINUM BASEPLATE 26 LBS.
ALUMINUM BLOCKS 24
ALUMINUM ENCLOSURE 14
FILTER CAPACITORS (14) 16
COMMUTATION TRANSFORMERS 15
SCRS (10) and DIODES (6) 8
COMMUTATION CAPACITORS (4) 4
SCR GATE DRIVE BOARD 3
BUS BARS 3
CABLE 8
HARDWARE and MISC. 14135 LBS.
terminals of the propulsion battery and the average battery current. The measured first quadrant controller efficiency is illustrated in Figure 6.4. This figure contains lines of constant controller efficiency plotted in the operating torque-speed envelope.

For operation in the fourth quadrant, the definition of controller efficiency is the inverse of the motoring definition, that is

$$
\begin{equation*}
n_{\text {controller }}=\frac{P_{\text {battery }}}{P_{\text {controller }}} \tag{6.3}
\end{equation*}
$$

It should be noted that this definition is only valid if the power delivered by the battery is negative, $P_{\text {battery }}<0$. This distinction has been made to avoid efficiency definition ambiguity for the case when power is being absorbed by the controller from both the motor and the battery. This occurs when the fixed controller losses are greater than the regenerative power delivered by the motor, to the controller. The fourth quadrant regenerative efficiency of the controller is illustrated in Figure 6.5.

Since the power flow between the controller and motor consists of multiplying non-linear voltage and current waveforms, a comment regarding the performance of the Ohio-Semitronics wattmeter is appropriate.

The technical specifications of the wattmeter are impressive; accuracy to 0.5% FS and a bandwidth of 5 kHz . Since it is difficult to generate a nonsinusoidal waveform for calibration, the high frequency accuracy of the meter is difficult to verify. During the test program at Gould, the wattmeter provided consistent and repeatable data which seemed reasonable when compared with the precise mechanical power measurement and the battery power measurement. The accuracy of the wattmeter in our opinion is $\pm 2 \%$ of reading.

TABLE 5.2

AC CONTROLLER PACKAGE - LOGIC UNIT

0 SIZE $11 \times 10 \times 7$ inches

- WEIGHT

LOGIC POWER SUPPLY 10 LBS
LOGIC BOARDS 3
ENCLOSURE 3
HARDWARE and MISC

2
18 LBS

Figure 6.5 SCR Controller Efficiency Data 4th Quadrant Operation

Figure 5.5 AC Controller Logic Unit Diagnostics

VI. Motor Controller System Performance

6.1 Testing Methods

This section discusses the measured motor-controller performance. Motor phase currents generated by the inverter for discrete operating modes are presented as well as the resulting mechanical power produced at the shaft of the induction motor. The mechanical dimensions and weights of the motorcontroller system are tabulated to describe the system's physical parameters.

The measurement of the mechanical power produced at the shaft of the induction motor was obtained by loading the motor on a motoring dynamometer. A motoring dynamometer was required to provide both first and fourth quadrant loads at the shaft of the induction motor. First and fourth quadrant loads correspond to positive shaft torque and speed (vehicle motoring), and negative shaft torque and positive speed (regenerative braking), respectively. Figure 6.1 is presented to illustrate the four available load quadrants. Operation in quadrants II or III was not a system requirement, although operation in quadrant III is available to propel the vehicle in reverse.

The dynamometer system is illustrated in Figure 6.2. It consists of a GE dc dynamometer (Model 26G71 type TLC2462), a Lufkin gear (Model N600C), and an in-line torque/speed transducer manufactured by Himmelstein (Model MCRT902T). The mechanical power at the motor's shaft is the product of the shaft torque and speed, $\mathrm{pe}^{\mathrm{e}}=\mathrm{T}_{\omega}{ }^{r}$. The torque transducer is designed to measure 220 $N-m$ full scale with an accuracy of 0.1% full scale. Speed information is obtained from a 60 tooth tachometer internal to the torque transducer. The specifications for the Himmelstein equipment are included in Appendix VI.

The electrical power delivered by the controller to the motor was measured with a 3-phase wattmeter manufactured by Ohio Semitronics. This wattmeter employs Hall sensors to measure both the individual phase currents and to compute the power in each of the three motor phases. Technical specifications for the wattmeter are also included in Appendix VI.

Figure 6.1 Motor Load Quadrants

(ALL SHAFT COUPLINGS - THOMAS COUPLING DBZ SERIES)

Figure 6.2 Motoring Dynamometer System Mechanical Schematic

Power delivered by the propulsion battery was measured with a Bell current meter (Model 103) and an integrating 3-1/2 digit Fluke voltmeter, their product representing the average battery power flow. This approximation is valid because of the low ac ripple battery voltage.

6.2 Controller Torque-Speed Operating Envelope

The maximum torque that the ac controller-motor system can produce is limited either by the RMS current rating of the controller thyristors or the commutating energy of the auxiliary thyristor-LC circuit. These limits imply a maximum controller operating temperature and a maximum peak battery or controller current. In the controller, the battery current is measured with a Hall current transducer and compared to a predetermined maximum current. This limit represents the maximum commutation capability of the commutation circuit. When that limit is exceeded, the main thyristors in the controller are commutated off and the voltage applied to the motor is decremented to reduce the main thyristor current. This event occurrence is indicated by the current limit LED on the front panel of the controller logic package and primarily determines the maximum torque envelope of the controller. At high speed, when the motor-controller system is operating in the constant horsepower regime, the limiting factor is not the torque capability of the machine but the integrity of the shaft speed transducer or tachometer signal. This limitation is discussed in Section 6.6 of this report and is designed to limit the maximum shaft speed to $816 \mathrm{rad} / \mathrm{sec}$ (7800 RPM).

The maximum torque limits of the controller, determined by the current limit criteria when operating from a 120 V nominal propulsion battery, is illustrated in Figure 6.3 and tabulated in Table 6.1.

As illustrated in Figure 6.3, shaft torques of $64 \mathrm{~N}-\mathrm{m}$ are available at stall and the system generates peak shaft torques of $100 \mathrm{~N}-\mathrm{m}$ at shaft speeds of $315 \mathrm{rad} / \mathrm{sec}$. The dip in the torque speed envelope at $259 \mathrm{rad} / \mathrm{sec}$ in Figure 6.3 is due to interaction of the PWM algorithm and the commutation circuit notches discussed in Section 3.3. At this operating point, the commutation circuit is significantly modifying the requested voltage waveform applied to

TABLE 6.1

MAXIMUM TORQUE-SPEED LIMITS 1ST QUADRANT OPERATION

MOTOR TORQUE		MOTOR SHAFT	SPEED
$(\mathrm{N}-\mathrm{m})$	$(\mathrm{ft}-\mathrm{lb})$	$(\mathrm{rad} / \mathrm{S})$	(RPM)

64	(47.2)	0	(0)
86.6	(63.81)	54.6	(521)
85.4	(62.9)	106.2	(1014)
97.0	(71.5)	157.1	(1500)
98.6	(72.7)	210.9	(2014)
65.2	(48.1)	259.4	(2477)
101.0	(74.5)	315.0	(3008)
76.8	(56.6)	367.5	(3509)
62.0	(45.7)	419.7	(4008)
54.6	(40.3)	471.2	(4500)
46.0	(33.9)	524.6	(5010)
38.8	(28.6)	581.4	(5552)
33.0	(24.3)	622.6	(5945)
27.0	(19.9)	683.2	(6524)

Figure 6.3 Motor/Controller Torque Speed Envelope -1st Quadrant
each motor phase. Since the spectral energy is no longer closely confined to the fundamental frequency, harmonic currents in the motor are produced which exceed the selected dc current limit. The comutations introduced by the high stantaneous bus currents further degrade the voltage waveform quality until the transition regime is complete. This transition is indicated by a change in the carrier fundamental frequency ratio as discussed in Section 4.

6.3 Calculated System Efficiency

Controller Efficiency

Of special interest in electric vehicle power trains is the electrical to mechanical energy conversion efficiency as well as the conversion efficiency of the ac controller alone. These efficiencies directly affect the range of an electric vehicle and can be measured in both the motoring mode of operation and the regenerative mode of operation, which is permissible at motor shaft speeds above approximately $125 \mathrm{rad} / \mathrm{sec}$.

The efficiency of the controller when operating in the first quadrant, delivering positive torque, is defined simply as:

$$
\begin{equation*}
n_{\text {controller }}^{I}=\frac{P_{\text {controller }}}{P_{\text {battery }}} \times 100 \tag{6.1}
\end{equation*}
$$

Pcontroller, the electrical power delivered by the inverter to the motor, was measured with the use of the Ohio-Semitronics $3 \emptyset$ watt meter discussed earlier. This instrument performs the calculation

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T}\left(v_{A N} i_{A}+v_{B N} i_{B}+v_{C N} i_{C}\right) d t \tag{6.2}
\end{equation*}
$$

and outputs a dc voltage which is proportional to the result. The battery power was calculated from the product of the average voltage measured at the

5.3 Control Logic Enclosure

The logic enclosure contains an array of eight printed circuit boards and the logic power supplies described in Section 4. As discussed, the communication between the logic package and the power inverter is via a $3 / 4^{\prime \prime}$ flexible conduit. The enclosure itself is divided into two sections, one for the power supplies and the second which forms a card nest for the logic system. Table 5.2 summarizes the weight distribution of the logic enclosure components and the physical size of the unit.

The front panel of this enclosure contains LED's to indicate the controller's status and a key switch for activating the controller. The enclosure also has two "D" type connectors to accommodate the accelerator/brake potentiometer assembly/console selector and the tachometer cable connection. Figure 5.4 is a photograph of the logic enclosure in which the logic printed circuit boards are visible.

Controller diagnosis is simplified by the functional modularity of the printed circuit boards. The eight boards each contain discrete circuit functions which can be tested independently.

The eight circuit boards contain the following controller circuitry:

1. Micro computer (A8)
2. Digital-Analog I/O (A7)
3. Transducer Signal Conditioning (A6)
4. Slip Frequency Circuitry (A5)
5. Sine-Triangle Generator (A4)
6. Main Thyristor Gating Logic (A3)
7. Commutation and Clamp Thyristor Logic (A2)
8. Gate Drive Amplifiers (Al)

Access to all inter-circuit board connection is available via a card extender as pictured in Figure 5.5 or at the printed circuit card nest backplane.

Figure 6.4 SCR Controller Efficiency Data - 1st Quadrant Operation

Figure 5.4 Control Logic Enclosure (Printed Circuit
Boards Visible)

Motor-Controller Efficiency

A similar definition to those previously discussed is employed to calculate the efficiency of the entire electrical to mechanical conversion system. Since the battery power and shaft power can be each accurately measured, the efficiency of the ac system consisting of the motor and controller can be acertained to high accuracy, $\pm 1 \%$. The first quadrant efficiency of the motor controller system is defined by

$$
\begin{equation*}
\eta_{\text {system }}^{I}=\frac{P_{\text {shaft }}}{P_{\text {battery }}} \times 100 \tag{6.4}
\end{equation*}
$$

Again, a similar definition is possible for operation in the regenerative regime, but again for the definition to be valid, the battery power, $P_{\text {battery, }}$ must be <0. This insures that the direction of the power flow is unidirectional throughout the system.

$$
\begin{equation*}
\eta{ }_{\text {system }}=\frac{P_{\text {battery }}}{P_{\text {shaft }}} \times 100 \tag{6.5}
\end{equation*}
$$

The calculated system efficiency in the first quadrant is plotted as a function of both torque and speed in Figure 6.6a, which also includes the vehicle load line for level ground. As can be seen in Figure 6.6a, system efficiency approaches 70% at a vehicle speed of 45 mph . The peak system efficiency, 80%, is obtainable when the controller is delivering near peak power, approximately 26 kW . This result is expected since at that operating point the fixed losses of the controller become the smallest fraction of the power processed by the motor-controller system. Figure 6.6b illustrates the system regeneration efficiency above shaft speeds of $150 \mathrm{rad} / \mathrm{s}$.

Figure 6.6a Motor/Controller Efficiency Map Fixed Transmission Ratio

Figure 6.6b System Regeneration Efficiency

6.4 Pulse-Width Modulation Operation

The voltage modulator described in Section IV of this report has several distinct operating modes. These modes result from the selection of discrete triangle-sine frequency ratios as discussed earlier. Since the motor voltage waveforms in the time domain consist only of a series of pulses of magnitude $V_{\text {bat }}$, this section presents the motor voltage waveforms generated by the ac controller in the frequency domain. This data is discussed for discrete motor shaft speeds, each representing a different triangle-sine frequency ratio.

The motor line-to-line and line-to-neutral voltages are shown in Figure 6.7 when the inverter is operating in the "six-step" mode and delivering maximum output voltage. The effects of bus commutation can be clearly seen in Figure 6.7, producing a series of zero voltages intervals or notches which correspond exactly to the duration and occurrance of a commutation event.

The corresponding time domain motor phase current and the frequency domain representation of the motor voltage is shown in Figure 6.8. As seen in 6.8(a), the harmonic spectrum consists only of odd harmonics which are nonmultiples of 3 , which are suppressed in a 3 -phase system. The suppression of the even harmonics is a measure of the waveform symmetry. As shown in Figure $6.8(a)$, the even harmonics are approximately -50 db below the fundamental voltage component, demonstrating waveform symmetry. Figure 6.8(b) details the resulting time domain motor phase current. The shape of the current waveform is not controllable when the inverter is operating in the six-step regime.

Figure 6.9 shows the high speed PWM operation of the inverter. At this particular operating point, the inverter output voltage is just below the maximum obtainable in six-step operation. In Figure 6.9, the carrier frequency ratio is 9 but not all the triangles are intersecting the excitation frequency sine wave since the modulation index is greater than 1 . The generated output voltage in the frequency domain is illustrated in Figure $6.9(a)$ while the corresponding time domain motor phase current is displayed in Figure 6.9(b). The commutation circuit is commutating each bus 9 times/cycle.

SHAFT SPEED $=5138$ RPM
POWER $=15 \mathrm{~kW}$

Figure 6.7 Inverter Output Voltage in the "Six-Step" Mode of Operation Showing Bus Commutation Interaction

(a)
(b)

100A/cm

104311
$1 \mathrm{~ms} / \mathrm{cm}$

Figure 6.8 (a) Six-Step Voltage Waveform Represented in the Frequency Domain
(b) Six-Step Motor Current in the Time Domain

When the modulation index becomes less than one, all triangles intersect the base frequency sine wave and the inverter waveforms undergo a discrete change again. This situation is shown in Figure 6.10. Figure 6.10a contains the frequency domain representation of the inverter output voltage and Figure 6.10 b represents the respective motor phase current. Note that the additional intersections have suppressed the 5th, 7th, 11 th and 13 th harmonics compared with the voltage spectrum illustrated in Figure 6.9(a).

At a still lower excitation frequency, the triangle-sine frequency ratio is increased from 9 to 27. This generates another discrete step in the waveform characteristics. Figure $6.11(a)$ shows the frequency domain representation of the inverter output voltage for the conditions of $m_{j}<1$ and the carrier frequency ratio of 27 . Figure $6.11(b)$ shows the corresponding inverter phase current . The effect of the higher carrier frequency ratio is clearly seen in the suppression of harmonics up to the 53 rd and 55th. This is the expected result in that the chosen modulation strategy should suppress harmonics below twice the carrier frequency ± 1. For a carrier frequency rates of 27 , this yields 54 ± 1, the result evident in Figure 6.11(a).

Figure 6.12 illustrates the motor phase current time domain waveform when the modulator is operating with a carrier frequency ratio of 45 . The oscillograph was recorded at a motor shaft speed of 245 RPM. The motor voltage represented in the frequency domain is not displayed due to limitations of the measurement equipment.

6.5 Thermal Performance

The steady-state capabilities of the motor-controller system are limited by the ambient temperature and the component cooling techniques employed in the package design. Since the motor and controller are designed to be cooled by vehicle ram air, cooling fans were used to simulate the vehicle air flow. The temperature of the controller components were monitored during the testing program to identify thermal management areas of concern which would limit the controller rating.

(a)

Figure 6.9 (a) PWM Voltage Waveform, Frequency Domain Triangle Frequency Ratio $=9, m_{i}>1$
(b) Motor Phase Current-Time Domain Triangle Frequency Ratio $=9, m_{i}>1$

(a)

$$
\begin{aligned}
& \omega=2162 \mathrm{RPM}(226.40 \mathrm{rad} / \mathrm{s}) \\
& \tau=40 \mathrm{~N} \cdots \mathrm{~m}
\end{aligned}
$$

(b)

Figure 6.10 (a) PWM Voltage Waveform Frequency Domain Triangle Frequency Ratio $=9, m_{i}<1$
(b) Motor Phase Current -Time Domain Triangle Frequency Ratio $=9, m_{i}<1$

(a)

$$
\begin{aligned}
& \omega=776 \mathrm{RPM}(81.26 \mathrm{rad} / \mathrm{s}) \\
& \tau=37 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Figure 6.11 (a) PWM Voltage Waveform Frequency Domain
Triangle Frequency Ratio $=27, m_{i}<1$
(b) Motor Phase Current-Time Domain Triangle Frequency Ratio $=27, m_{i}<1$

Figure 6.12 Motor Phase Current -Time Domain Triangle Frequency Ratio $=45, \mathrm{~m}_{\mathrm{i}}<1$

The blowers which were used to simulate the vehicle ram air were two Dayton Model 2C962A blowers each generating airflow at a rate of 490 CFM. A third blower, Dayton Model 2C989, provided airflow over the frame of the 215 frame induction motor. During the tests, the flow rate was held constant, independent of the operating frequency of the inverter.

During the testing, the temperature of the three types of aluminum SCR mounting blocks were monitored. The maximum temperature rise observed was $30^{\circ} \mathrm{C}$, which, when added to the ambient temperature of $25^{\circ} \mathrm{C}$, 1 imited the device case temperatures to less than $55^{\circ} \mathrm{C}$. These measurements verified the design conservatism of the thermai system. The details of a typical device mounting cross-section are included as Figure 6.13.

The temperature of the commutation capacitors and magnetics was also monitored during the electrical testing phase. The magnetics, which were fabricated to Class H standards, did not exceed $185^{\circ} \mathrm{C}$ coil temperature. However, it was possible, during extended PWM operation, to trip the thermal protection circuit which sensed the temperature of the commutating capacitors. The upper temperature limit of the commutating capacitor was set to $80^{\circ} \mathrm{C}$. During PWM operation, the commutation circuit cycling frequency exceeds that which is required for motoring at 55 mph , the thermal design point. A low loss commutation capacitator, GE type 97F, can be substituted for the 26 F style capacitors presently employed to increase the commutation circuit's ability to support extended PWM operation.

6.6 Physical Description

The ac controller-motor system physically consists of three segments: the motor, a control electronics package, and the power inverter package. These are illustrated in Figure 6.14. The weight of each of these components is tabulated in Table 6.2 and equals 270 lb . This weight reflects the controller's design approach which emphasizes component access and serviceability.

Figure 6.13 Stud Semiconductor Mounting Technique

Figure 6.14 Motor-Controller System
The three major components are induction motor (left), the power circuit (center), and the control electronics (right)

The dimensions of the system are also summarized in Table 6.2, with the exact outline of each of the two controller packages illustrated in Figure 6.15 and 6.16 respectively.

Table 6.2

```
Controller Component Weights/Dimensions (Measured)
```

	WEIGHT (1bs)	DIMENSIONS
Motor	117 (53.18kg)	NEMA 215TENV
Inverter	135 (61.36 kg)	$\begin{aligned} & 21.5^{\prime \prime} \times 28.5^{\prime \prime} \times 8.75^{\prime \prime} \\ & \quad(54.6 \mathrm{~cm} \times 72.4 \mathrm{~cm} \times 22.2 \mathrm{~cm}) \end{aligned}$
Controller	18 (8.18kg)	$\begin{aligned} 12^{\prime \prime} & \times 11.28^{\prime \prime} \times 8^{\prime \prime} \\ & (30.5 \mathrm{~cm} \times 28.7 \mathrm{~cm} \times 20.3 \mathrm{~cm}) \end{aligned}$

The motor construction utilizes class H insulation, rated at $180^{\circ} \mathrm{C}$. Although motor coil temperatures did not exceed $140^{\circ} \mathrm{C}$, the performance of the optical detector mounted on the motor was affected by high motor ambient temperatures. Reliable tachometer operation at high speed (> $680 \mathrm{rad} / \mathrm{s}$) is only possible when the tachometer enclosure remains below $50^{\circ} \mathrm{C}$. This was ensured during the testing phase by not securing the protective tachometer end-bell. The redesign of the shaft speed transducer is an engineering task which should be addressed in the pre-production prototype redesign to increase the reliability of the motor tachometer.

Figure 6.15 Mechanical Outline Drawings of the Control Logic Enclosure

ure 6.16 Mechanical Outline Drawings of the Power Circuit Enclosure

VII. Controller Power Scaling and Cost Assessment

The controller developed during the contract period is formally defined as a 10hp controller. Design guidelines are presented in this section to scale the present controller design up to defined power levels of 50 hp . The higher power levels are applicable to heavier passenger vehicles, delivery vans, and trucks in urban service in accordance with the SAEJ227a Schedule D driving cycle. The discussion of the ac controller family and cost assessment is divided into four areas. These include available inverter thyristors, commutation components, packaging impacts, and the motor controller costs.

7.1 Scaled Family Definition

The present ac motor-controller system has a nominal rating of 10 hp derived from the traditional 60 Hz rating of a NEMA 215 size frame induction motor. The actual power capabilities of the motor controller system include a peak rating of 26 kW (35 hp) and a steady state rating of 11.2 kW (15hp). The scaled family consisting of $20,30,40$ and 50 hp controllers then represent motor-controller systems having actual peak power capabilities of up to 130 kW. Table 7.1 summarizes the exact controller ratings for the complete family of controllers. The nominal propulsion battery voltage is limited to be less than 300 V throughout the controller family.

7.2 Inverter Component Requirements

The inverter components which are affected in a scaling exercise are the main inverter thyristors, the commutation and clamp thyristors, and the commutation capacitors. To determine the feasibility of scaling the original controller design upwards to 50 hp , component specifications were determined as a function of propulsion battery voltage. These specifications were then compared to existing commercially available components to ascertain both price and power capabilities.

TABLE 7.1

AC CONTROLLER FAMILY POWER LEVEL REQUIREMENTS
NOMINAL
CONTROLLER/
MOTOR

RATING \quad\begin{tabular}{l}
PEAK POWER

RATING

(HP)

\quad

CONTINUOUS

RATING

10^{*}
\end{tabular}

*Existing controller design

Using the analysis described in Section 3.3, the voltage and current ratings of the main inverter SCR's were derived for each member of the scaled family of controllers as a function of propulsion battery voltage. A criteria for determining the suitability of commercial SCR's included both their power capability and turn-off time. A maximum turn off time of $15 \mu \mathrm{~s}$ was assumed so that similar scaling techniques could be applied to the commutation circuit components.

Figure 7.1 contains the plot of main thyristor RMS current requirements as a function of battery voltage. Commercially available inverter grade SCR's are included in Figure 7.1. As can be seen, there are no component restrictions related to main thyristor availability if the propulsion battery voltage is greater than 200 Vdc .

The commutation circuit thyristor requirements for both the commutation and clamp thyristors must also be derived to determine the availability of commercial devices. Using the analysis presented in Section 3.3 of this report, and fixing the commutation capacitance, inductance and turn-off time requirements to those values selected for the 10 hp design, the requirements of both the commutation and clamp thyristors were derived. These results are illustrated in Figure 7.2, which plots the voltage and current requirements of the commutation SCR and the voltage requirements of the clamp thyristor vs the defined controller rating. As shown in the figure, commutation thyristors are available with turn-off times of $20-30 \mu \mathrm{~s}$ and voltage ratings of $1400-1500$ volts. By readjusting the commutation transformer turns ratio, the voltage margin on the clamp thyristor can be improved so that there are no scaling restrictions derived from the commutation thyristors.

Commutation type capacitors are commercially available with paper/polypropylene or all polypropylene dielectric materials. The major difference between these two dielectric materials is the much lower dielectric losses of the all polypropylene (dissipation factor of 0.02%) versus the paper/polypropylene (dissipation factor of 0.3%). This allows the polypropylene capacitors to be operated at much higher RMS currents for the same capacitor volume. Paper/polypropylene commutation capacitors can be

Figure 7.1 Main Thyristor Current Requirement as a Function of Battery Voltage

Figure 7.2 Commutaion Circuit Thyristor Requirement vs. Controller Rating
obtained with maximum dc voltage ratings from 400 to 2000 volts and a maximum CV product of approximately 0.03 where V is expressed in dc volts and C in farads. All-polypropylene commutation capacitors are available with maximum dc voltage ratings of 350 to 800 volts and a maximum CV product of approximately 0.01 . The voltage ratings of the paper/polypropylene capacitors are suitable for scaling the controller family up through the 50 hp rating.

Finally, industrial-grade induction motors similar to the Gould $E^{+^{T M}}$ machine selected for the 10 hp controller are available up thru NEMA frame size 326 , which would be rated at 50 hp at 60 Hz .

The results of the scaling exercise indicate that the present power stage inverter topology can be scaled to power levels of 50 hp . This controller would have a steady state power rating of 75 hp and be constructed with commercially available thyristors and commutation components.

7.3 Controller/Motor Cost Assessment

Estimated component cost (1979 dollars) for the nominal 10 hp ac controller is shown in Table 7.2 and is based on quoted component cost information. High volume cost estimates for the major power components is illustrated in Figure 7.3 and ac induction motor costs are illustrated in Figure 7.4. Shown in Table 7.3 is the estimated OEM and retail cost for both the ac controller and ac induction motor. OEM cost is defined as the expected selling price to a vehicle manufacturer with retail cost being the cost paid by the end user. Retail cost comparisons with state-of-the-art dc propulsion systems are shown in Table 7.4 where the ac controller/motor retail cost is compared to the estimated high-volume cost of Gould's second generation dc controller and motor and General Electric's SCR based dc controller/motor. Table 7-5 indicates the expected controller/motor life cycle cost including the estimated repair and maintenance cost.

AC CONTROLLER/MOTOR COMPONENT COST ESTIMATE (35 HP PEAK)

Figure 7.3 Main SCR Cost vs. K VA Rating ($10 \mu \mathrm{sec}$ turn-off)

Figure 7.4 AC Induction Motor Cost vs. HP Rating

TABLE 7.3

AC CONTROLLER MOTOR - COMPONENT/OEM/RETAIL COST

100,000 VEH/YR
 35 HP PEAK

| | COMPONENT | OEM | RETAIL |
| :--- | :---: | :---: | :---: | :---: |
| CONTROLLER | $\$ 600$ | $\$ 1050$ | $\$ 1310$ |
| MOTOR | $\underline{150}$ | $\underline{150}$ | -190 |
| TOTAL | $\$ 750$ | $\$ 1200$ | $\$ 1500$ |

TABLE 7.4

EV CONTROLLER/MOTOR - RETAIL COST COMPARISON

100,000 VEH/YR.
35 HP PEAK

$\frac{\text { GOULD AC }}{\text { SCR }} \frac{\text { GOULD DC (MOD 1) }}{\text { SCR }} \frac{\text { GE-DC (EV-1) }}{}$

CONTROLLER
\$ 1310
\$ 930
\$ 879

MOTOR
190
890
959
\$ 1500
\$ 1820
\$ 1838
$1_{\text {NEAR-TERM ELECTRIC }}$ VEHICLE PROGRAM, PHASE 1, FINAL REPORT, 1977

TABLE 7.5

AC CONTROLLER/MOTOR LIFE CYCLE COST ESTIMATE
$100,000 \mathrm{VEH} / \mathrm{YR}$

100,000 CYCLES SAE J227A, D CYCLE (APPROX. ONE MILE/CYCLE)

10 HP NOMINAL

INITIAL COST	$\$ 1500$
INTEREST (4 YRS at 14\%)	500
REPAIR/MAINT.*	300

\$ 2300

LIFE CYCLE COST - 2.3 $\$ /$ MILE ($0.037 / \mathrm{Km})$

* It is assummed that the controller will be reparied once during its life. Labor and materials are estimated to be 300 .

7.4 On Board Battery Charger Modification

The power circuit of the present controller has been found to uniquely lend itself to the incorporation of a charging function. No additional semiconductor devices are required nor are the present operational characteristics of the drive affected. Thus with minor modifications to the motoring control logic and the addition of a contactor for isolation, an isolated on-board charger suitable for providing an 8-hour recharge at 208/240 Vac can be obtained.

The proposed on-board charger can be incorporated into the controller by the addition of a three-pole contactor (or circuit breaker) to the present ac controller power stage. This modification is illustrated in Figure 7.5.

The existing rectifiers D1, D3, D4, and D6, are used to convert the ac line voltage into a dc voltage for charging the propulsion battery. Existing transformers, T 1 and T 2 , used during motoring to commutate the main inverter SCR's, are used in combination with the commutation SCR's and the energy recovery SCR's to charge the propulsion battery from the ac line. Utilizing existing components in this manner provides an on-board charger with minimal additional cost, weight and volume.

Charger Operation

Operation of the proposed on-board charging approach is described with the aid of Figure 7.5. For single phase ac line operation, ac power is supplied to two of the three output terminals of the inverter. One pole of the three pole circuit breaker is used to remove the ac motor from its position across the ac line. Rectifiers D1, D3, D4, and D6 are used in a full bridge configuration to convert the ac line voltage to a full-wave rectified dc voltage which appears across filter capacitor C3B. Capacitor C3B is part of the main capacitor bank used during motoring which has been separated into two units (C3A and C3B) by the remaining two poles of the circuit breaker. In the present ac controller the maximum voltage rating of filter capacitor C3 is 200 volts. For charger operation from a 208 or 240 Vac line the voltage

Figure 7.5 Modified AC Controller Incorporating an On-Board Charger
rating of filter capacitor C3B will be increased to 400 volts. By operating the cricuit consisting of T1, T2, C1, C2, SCR7 and SCR8 in a manner similar to that used during motoring, energy is transferred from the ac line and filter capacitor (C3B) to the propulsion battery via transformer windings T1C, T2C and SCR9 and 10.

Circuit operation can be described assuming the circuit initial conditions shown in Figure 7.5. The voltages on capacitors $\mathrm{C} 1, \mathrm{C} 2$ and C 3 B have polarities as shown. When SCR7 is gated the initial voltage on capacitor C1, defined as $V_{C 1}$, is placed across the transformer windings T1A, B and the current increases sinusoidally in windings T1A, B. The LC circuit formed will allow C1 to discharge and C2 to charge. After a period of time depending on the resonant frequency of the LC circuit, the voltage across $C 1$ will be zero and the current in windings $T 1 A, B$ will be a maximum. Assuming current continues to circulate in windings T1A, B capacitors C1 and C2 will charge up with polarities opposite those shown in Figure 7.5. When the voltage across capacitor Cl charges to a high enough value that SCR9 is forward biased, and assuming SCR9 is then gated, current will transfer to winding T1C, SCR9, and the propulsion battery. When this occurs the voltage across capacitor C1 will be higher than the reflected voltage across windings T1A, B so that SCR7 will be reverse biased and thus turn-off.

With current circulating in winding T1C, SCR9, and the propulsion battery, the voltage on capacitor $C 1$ will remain fixed and the energy stored in the magnetizing inductance ($L_{A B}$) of winding T1A, B will be transferred to the propulsion battery. The circuit conditions are now such that SCR8 can be gated and the above cycle repeated. Power flow rate is controlled by the gating frequency of SCR7 and SCR8.

VIII. Conclusion

A recent program leading to the design and construction of a prototype ac motor controller for electric vehicle applications has been described in this report. Design objectives laid out at the beginning of the program included low cost, excellent ruggedness/reliability characteristics, and high system efficiency. A desire to use readily-available technology dictated the choice of an industrial-grade squirrel-cage induction motor in this system so that development efforts focused on the electronic motor controller.

These efforts have led to the successful development of a 35 hp peak (26kW) ac motor propulsion system appropriate for use in a 3500 1b (1590kg) commuter vehicle. Voltage and frequency of the applied motor excitation waveforms are coordinated by the microprocessor-based controller in response to operator torque requests. This prototype controller in combination with a fixed-ratio gearbox drivetrain provides sufficient torque to complete the SAE J227a, Schedule D driving cycle with the simulated commuter vehicle. Controller testing has been conducted on a laboratory dynamometer.

The controller package consists of two separate modules; a larger enclosure for the power stage electronics and a smaller housing for the control electronics to be mounted in the passenger compartment. Combined weight of the ac motor and prototype controller is 270 lb which compares favorably with the weight of similarly-rated dc systems. Analysis of this first-generation controller prototype has indicated that at least a 30\% reduction in both volume and weight are feasible by packaging improvements.

The bus-commutated inverter configuration adopted at the program's outset is responsible for providing both the controller's major advantages as well as its shortcomings. Low-cost thyristors possess the desired ruggedness while the bus-commutated topology provides additional cost advantages by requiring fewer power stage components than most alternative configurations. However, the bus-commutated topology produces some unique constraints on the switching algorithm, particularly during low-speed pulse-width-modulation
operation. As a result, controller efficiency which exceeds 90% at crusing speeds drops to the vicinity of 70% for operation at 10 mph .

Experience gained during the development of the first-generation controller has suggested techniques for circumventing the shortcomings while retaining the advantages of the present power stage configuration. These include methods for optimizing the switching modulation strategy specifically for the bus-commutated configuration, and improvements in the inverter commutation magnetics for lower losses. Time limitations prevented their inclusion in the first-generation controller prototype.

In conclusion, this development program has successfully demonstrated the viability of ac electric vehicle propulsion systems using present technology. Future improvements in power semiconductor and controller technology can be expected to further enhance the attractiveness of ac motors over their dc counterparts for EV applications.

IX. References

1. J. A. Ross and G. A. Wooldridge, "Preliminary Power Train Design of a State of the Art Electric Vehicle", Rohr Industries, prepared for NASA. (NAS 3-20592) April 1978.
2. Test Procedures for Polyphase Induction Motors and Generators, IEEE No. 112A, New York, 1964.
3. E. Klingshirn and H. Jordan, "Polyphase Induction Motor Performance on Nonsinusoidal Voltage Sources", IEEE Transaction Power Apparatus and Systems, Vol. PAS-87, Mar 1968, pp. 624-631.
4. F. DeBuck, "Leakage Reactance and Design Considerations for Variable-Frequency Inverter-Fed Induction Motors", Proc. of the 1979 IEEE Inc. Appl. Soc. Mtg., Cleveland, pp. 757-769.
5. A Miles and D. Novotny, "Transfer Function of the Slip-Controlled Induction Machine", IEEE Trans. on Industry Applications, IA-15, No. 1, Jan/Feb 1979, pp. 54-62.
6. R. Nelson, T. Lipo, and P. Krause, "Stability Analysis of a Symmetrical Induction Machine", IEEE Trans. on Power Appratus and Systems, Vol. PAS-88, No. 11, November 1969, pp. 1710-1717.
7. W. McMurray, "Optimum Snubbers for Power Semiconductors", IEEE Transactions on Industry Applications, IA-8, No. 5, Sept/Oct 1972, pp. 593-600.

A	- ampere
ac	- alternating current
$A_{\text {I }}$	- proportional controller gain
C	- Centigrade
c^{\top}	- equivalent parallel capacitance, commutation capcitors
dc	- direct current
D_{I}	- digital integral controller gain
D_{K}	- low frequency auxiliary integral controller gain
D_{p}	- digital proportional controller gain
EV	- electric vehicle
f_{b}	- base excitation frequency
$\mathrm{f}_{\text {com }}$	- commutation circuit cycling frequency
f_{ex}	- motor excitation frequency
f^{*} ex	- excitation frequency command
${ }^{\text {f }}$ r	- rotor frequency
$\mathrm{f}_{\text {S } ~}$	- rotor slip frequency
$\mathrm{f}^{*} \mathrm{~S}$ \&	- slip frequency command
$\mathrm{f}_{\mathrm{s} \ell 1}$	- positive slip frequency 1 imit
$\mathrm{f}_{\mathrm{s} \ell 2}$	- negative slip frequency
$\mathrm{f}_{\mathrm{s} \mathrm{~s}_{\max }}$	- pullout slip frequency
ft	- foot
$f t-1 b$	- foot-pound
hp	-- horsepower
Hz	- Hertz
$I_{\text {bat }}$	- battery current

I_{p}	- peak commutation circuit current
I_{p}^{n}	- component n peak current
I^{r}	- rotor current
$I_{\mathrm{RMS}}^{\mathrm{n}}$	- component n RMS current
IS	- stator current
${ }^{1} \mathrm{~m}$	- stator magnitizing current
j	- $\sqrt{-1}$
kg	- kilograms
km/h	- kilometers/hour
kW	- kilowatt
1b	- pound
$L^{\ell S}$	- stator leakage inductance
Ler	- rotor leakage inductance
L^{m}	- stator magnitizing inductance
m	- meter
m_{i}	- modulation index
$m_{j}{ }^{\text {* }}$	- modulation index command
mph	- miles/hour
N-m	- Newton - meter
$\mathrm{p}^{\text {c }}$	- controller output power
$\mathrm{P}_{\text {com }}$	- power dissipated in the comutation circuit
$\mathrm{p}^{\text {e }}$	- motor shaft power
$P_{\text {bat }}$	- battery power
PWM	- pulse width modulation
Q_{r}	- semiconductor recovered charge
rad	- radians
rpm	- revolutions per minute

rms	- root means square
R^{r}	- rotor winding resistance
R^{S}	- stator winding resistance
S	- \% slip
SAE	- Society of Automotive Engineers
SCR	- silicon controlled rectifier
Tcom	- conduction interval of SCR7 (SCR8)
Tclamp	- conduction interval of SCR9 (SCR10)
$\mathrm{T}^{\text {e }}$	- motor shaft torque
$T^{\text {e* }}$	- torque command
TENV	- Totally enclosed nonventillated
Tex	- motor excitation frequency period
T_{q}	- thyristor reverse bias time
U_{p}	- peak energy stored in the comutation circuit
V	- volts
$V_{a b}$	- inverter bus voltage defined across the main thyristors
$V_{\text {bat }}$	- battery terminal voltage
V_{C}	- comutation capacitor voltage
V_{d}	- on-state semiconductor voltage drop
$V_{F} S C R n$	- foreward voltage SCRn
$v \ell \ell$	- motor line - line voltage
$V_{1} \ell \ell$	- fundamental motor line - line voltage
$V_{R} S C R n$	- reverse voltage - SCRn
V^{S}	- line-neutral motor voltage
$V^{\text {S* }}$	- commanded line - neutral motor voltage
$V^{s} \max$	- maximum available line - neutral motor voltage
X	- N_{B} / N_{A} comutation transformer turns ratio

$x^{m} \quad-$ stator magnitizing reactance
$n m$
$\lambda_{a g}$
$\lambda_{t} \quad-m a c h i n e ~ t e r m i n a l ~ v o l t s / H z$
$u_{b} \quad-$ angular base frequency
ω^{e}
$\omega^{r} \quad$ - angular rotor frequency

APPENDIX I

VEHICLE ACCELERATION PREDICTION PROGRAM (VAPP)

Page NumberAcceleration Program EquationsAI - 2
FORTRAN Program Listings AI - 5

Acceleration Program Equations:

The torque required at the drive wheels of a vehicle can be written as:

$$
\begin{equation*}
\tau_{D}=\left(F_{R}+F_{A}+F_{I}+F_{g}\right) R \tag{1}
\end{equation*}
$$

where $\quad F_{R}=$ rolling resistance (force)
$F_{A}=$ aerodynamic drag force
$F_{I}=$ inertial force
$F_{g}=$ gravitational force due to grade
$\mathrm{R}=$ tire radius

These forces can be expressed as:

$$
\begin{align*}
& F_{R}=M g\left(k_{1}+k_{2} V\right) \cos \alpha \tag{2}\\
& F_{A}=.500 \rho A V^{2} C_{D} \tag{3}\\
& F_{I}=\frac{M d V}{d t} \tag{4}\\
& F_{g}=M g(\sin \alpha) \tag{5}
\end{align*}
$$

Where $\quad M=$ vehicle mass ($k g$)
$k_{1}=$ tire rolling resistance (dimensionless)
$k_{2}=$ tire hysteresis coefficient ($\mathrm{sec} / \mathrm{m}$)
$\alpha=$ road grade (radians)
$\rho=\operatorname{air}$ density ($\mathrm{kg} / \mathrm{m}^{3}$)
$V=$ vehicle velocity (m / s)
$A=$ vehicle frontal area $\left(m^{2}\right)$
$g=$ acceleration due to gravity ($\mathrm{m} / \mathrm{s}^{2}$)
$C_{D}=$ drag coefficient (dimensionless)

The torque at the motor shaft is:

$$
\begin{equation*}
\tau_{s}=\tau_{D} / r \cdot e f f \tag{6}
\end{equation*}
$$

Where

$$
\begin{aligned}
r & =\text { drivetrain gear ratio } \\
\text { eff } & =\text { drivetrain efficiency }
\end{aligned}
$$

The combination of equations [1] through [6] gives

$$
\begin{align*}
\tau_{S} & =\frac{.5 \rho C_{D} A R}{r \cdot e f f} V^{2} \\
& +\frac{k_{2} \cos \alpha M g R}{r \cdot e f f} V \\
& +\frac{M R}{r \cdot e f f} \frac{d V}{d t} \tag{7}\\
& +\frac{M g\left(k_{1} \cos \alpha+\sin \alpha\right) R}{r \cdot e f f}
\end{align*}
$$

which is an equation of the general form:

$$
\begin{equation*}
\tau_{s}=A_{1} V^{2}+A_{2} V+A_{3} \frac{d V}{d t}+A_{4} \tag{8}
\end{equation*}
$$

If τ_{s} is constant, then the time required to accelerate from V_{1} to V_{2} is:

$$
\begin{equation*}
t=\int_{V_{1}}^{v_{2}} \frac{A_{3}}{\tau_{s}-A_{1} v^{2}-A_{2} v-A_{4}} d v \tag{9}
\end{equation*}
$$

This is the equation used for the constant torque acceleration calculation in the program.

Since motor output power, P_{S}, is related to the motor shaft speed, ω_{S}, by:

$$
\begin{equation*}
P_{S}=\tau_{S} \omega_{S} \tag{10}
\end{equation*}
$$

the shaft torque can be related to motor output power and vehicle speed by:

$$
\begin{equation*}
\tau_{S}=\frac{P_{S}}{k_{3} V} \tag{11}
\end{equation*}
$$

where $\quad k_{3}=\frac{r}{R}$

With the use of eq. [11], eq. [9] can be written for the constant motor shaft power case as:

$$
\begin{equation*}
t=\int_{V_{1}}^{v_{2}} \frac{k_{3} A_{3} \nu}{P_{5}-k_{3} A_{1} \nu^{3}-k_{3} A_{2} \nu^{2}-k_{3} A_{4} \nu} d \nu \tag{13}
\end{equation*}
$$

This is the equation used for the constant power acceleration calculations in the program.

```
    UAFF,FOFK
    TSL.,%%"06T\cdots1970
```

```
OOULM LABS, ELEGTRONTC FESEARCH
        FOLLINO MEAOOWS, ILL.
        312/640\cdots4472
MOMTFICATIONS:
C
```



```
    Vehicle acceleratiom werformamce VEF 1.0
```



```
MESCFTFTTON:
    This prosram csculates the time to accelerate
    to a sjven velomitw. The tramsistion from comstamt
    Fower to constamt torque is accommted for.
    lrifut warameters are entered via an srras of
    subroutirues.
TNFUTS;
    AlL irmatse are vie sumroutimes
OUYFUTS:
    Time to «ccelerote
    SUEFOUTTNES CALLEEM:
CUHFI.
C EURON
C MLEI
MF!
C QATR
FOFS VAFF=UAFF
C LINN゙\UAFFF=UAFF
C STANMARM FORMATS:
11 FORMAT (8OA1)
0002 12 FOFMAT(10T8)
OOO3 13 FOFIMAT(X,8OA1)
0004 14 FOFNAT(6F12.0)
0005 18 FOFMAT (1008)
O006 19 FOFMAT(4E20.8)
```

C
C
C

0007	29	FORMAT（4OA2）
0008	24	FOFIMAT（20A4）
0009	28	FOFMAT（1．OAB）
	C	
	C ME	ARATIONS：
0010		TMFLTCIT FEEAL（M）
0011		MTMENSTON FATTO（G）
0012		FEAL
0013		LOGLCAL＊J HLAT（9）HTTM（8）
	C	
0014		EXTEFNAL TOROUE \％FOWEF
0015		COMMON AD，A2，A3，AAyMTFTQ，MTFW，
0016		IIATA FATIO／0．90．90．90．90．
0017		MATA ANSI，ANS2／0．90．
0018		MATA GRAV／9．815／
0019		MATA VEHWT，UEHFAッKC／1590．91． $1.868061 .0+3 /$
0020		MATA TRAO，UK゙1，UK゙2／．2667． $01296.7 \mathrm{EW-W/}$
002d		IIATA HEMUEL，ORAME／0．90＊／
0022		WATA THFKAT，DEFF／9，8\％，80／
0023		MATA MTETQyMTFWyTFTRFMyMSFFT／O．90．90．90．7
0024		
	C	
	$\because \mathrm{MA}$	BOLY：
002w		CALIL MATE（HIAT）
	C	INFUT FARAMETER COME
0026		WFTTE（TWy 100）
0027	1.00	FORMAT（＇TNFUT FARAMETERS＇）
0028		WFETEE（JW，101）
0029	1.01	FOFMAT（IOX，FEQUEST MESTFEL TNPUTS FEF THE FOLLOWTNG COME＇）
0030		WETTE（JWy 102 ）
0031	1.02	WOKMAT（1EX，VEHICLE MESTGN -1^{\prime} ）
0032		WFITE：（W，103）
0033	103	
0034		WRTTE：（Wy O4）
0035	1.04	FOMMAT（EX：VEHTCLE MRTUETEATN－－ 3^{\prime} ）
0036		WFTTE：（Wy 106）
0037	1.05	
0030		WFTTE（Wy Jo6）
0039	1.06	
0040	997	WKTTE（IWy 10）
0041	1.10	
0042		READ（IE，12）TFAKA
0043		TF（TFAFA E ER，\％）STOF
0045		TFAFA $=1$ FAFAHI
0046		
0047	1010	
0048		60 T0 999
0049	1020	CALL EURON（HEMUEL．，GRALE：
O0\％0		6010999
0051.	1030	CALL MWI（HTFRAT，FATTO，DEFF）
00\％		00 TO 999
0053	1040	CALL MFI（MTKTQ MTFW，TFTFFM，सATJO，MSFFY）
$00 \% 4$		00 TO 999
00\％	1050	CALL．SUMAFY（VEHWT，UEHFA，LC，TRAL，UK゙】，VK゙2y

C
C CACULATE RELATMONSHIF BETWEEN VEHTCLE SFEED AND MOTOR SFEEX
0010999
1000
CONTTNUE：
C
TEMF＝TRAD／（DTFEAT＊MEFF）

A2＝UK2＊
A $3=\cup E W W Y$ TEMF

CALL．SHFTSF（1．，DTFRATyTRAM，MMFSFM）
バ3＝MTRSFO
C

120
WRTTE（IW，120）

KEAM（IF゙g1．4）VEHSFW
SFEETMVWHSFW

CALL SHFTSF（UEHSFWyMHRAT，TFAKyMTFSFD）

$\mathrm{FF}(\mathrm{BFEEW} E \mathrm{EO}+\mathrm{O}$ ）OO TO 500
C CACULATE ACCELERATION TTME
C
CALL．QATK（O．9 SFEEH：1000．TORCUE A ANSI）
TF（SFEEEMER，VEHSFW）GO TO 2OOO
CALL QATR（SFEEW，UEHSFW， 1000 OFOWLR ANS $)$
500
ANSI＝ANSI＋ANS工
WKTYE（TW， 130 ）ANSI

1.

+ ＋ 6 स VEHF \＆

WHTTE（TW， 1 OO）FOW

CALL SHFTSF（UEHSFX，DTFRAT，TRAL，MTRSFTI）
MTFSF以＂MTRSF以＊60／（2＊3．1416）
WFITE（IW，160）MTKSFL

GOTO 999
END
 2 MTFW，TFTRFM，MSFFT）

Storese Maw for mrosrem Unit tMmiN。											
1．．6\％\％．	Variab	1es，\％F	ECT	制以云A，	Size	：：＝ 00	76	$($	63.	人¢\％）	
Name	Twwe	Offeet		N\＃me	T¢w	Oft	et		Neme	Twwe	Oftewt
MNSI	下゙＊	000046		ANS：	「゙兩4	000			IIC	下冰4	000072
WEFFTV	「゙＊A	000122		MTVFAT	たれ4	000			GKAME	\mathfrak{R} 戌4	000112
GFAV	「゙＊4	000056		10	1＊2	000			JFARA	1＊2．	0001.44
IF	I．${ }^{2}$	000136		IW	1＊2	000			MSFFT	R＊4	000132
MTRSFO	以゙束4	0001.6		FOW	下゙＊4	000			SFEEX	F承4	000162
TEMF＇	以＊	000146		TFTrw	「兆4	000			TFAL	以为4	000076
VEHFA	「＊4	000066		UEWSFW	12＊${ }^{4}$	000			UE：HWT	$R ⿻ 丷 木^{*} 4$	00006%
Vぐ」	下驶A	000102		Uド3	以゙＊	000					
COMMON	E10c	／	1\％	Size	000040	0 （	16		ds）		
NEme	Twwe	Oprset		Names	Tswe	0 Pf			Name	$T w \% \mathrm{e}$	0freet
A1	K＊A	000000		A\％	「゙＊4	000			A3	W＊	000010
A4	下＊4	00001.4		MTRTE	「束年	000			MTFW	以嵒A	000024
ぐ3	E＊A	000030		HETVEL	F	000					
L．．区欠，\％rat COMMON Arrass：											
Name	Tw\％e Section										
HMAT	L．＊ 1	出 1 A							（9）		
HTIM	L．．${ }^{\text {k }}$ ．	WDATA		000035	00001.0 （ 4．）				（8）		
EATIO	「必4	Whate		000000	000024（ 10.$)$				（5）		
¢mbroutjums，		Fumetiomsy		Stetememt and Frocwssorwactimed						Furnetions：	
Neme	Tw\％	Neme	Tus	\％e \quad Nam	me	T¢\％			T¢\％	Neme	TSFe
Cos	「求A	MATE		＊ 4 MMP	F1．	下速等		ON	必必名	Mrl	が＊4
FOWER	「戌A	QATR		＊ 4 SHF	F9F\％	ESA	8 I		下゙＊4	Slma	
TORQUE	下＊ 4	V1\％ 1		＊${ }^{4}$							

```
    C MLF FOK FOF- -11/RT11 TSL:20-OCT-1978
    C
    C
    C
    C
    C
    c
    \(c\)
    C
    C
    C WRITTEN BY … Thomes 8. Latos 20-0CT-197e
    C GOULD LABS. ELECTRONTC RESEARCH
    C ROLLTNG MEADOWS ILL.
    \(312 / 640-4472\)
MOMIFTCATIONS:
**********************************************
        arivetrain Farameter subroutine VER 1.0
*******************************************
DESCRTFTTON:
    This is an \(1 / 0\) routine for enterins venicle
        drivetrain parameters. Up to five transmission
        ratios are permissible.
        SUBROUTINE MDF (DIFRAT, RATIO, DEFF STTM)
        INFUTS:
        DHFRAT MMFEFENTAL GEAR RATIO
        EATIO ARHAY CONIAINTNG THE TEANSMISSION RATIOS
        LEFF THE DRTVETRATN EFFICIENCY
OUTFUTS:
    ouTFurs -. The outwuts of this subroutine are the user inmbs
    SUBROUTINES CALLEEI:
        NONE
```



```
    STANDARLI FORMATS:
000212 FORMAT(10IB)
000314 FORMAT (6F12.0)
        C
        C DECLABATTONS:
        LOGICML* HDAT(9) HTMM(B)
        GTMENSION RATHO(S)
0005
    C
0006 MATA ITF/O/
0007 MATA TRッTW/EッS/ッリ0/5/
C
```

C MATN BOMY：

0008 0009 0010 0011 0012 0013 0014 0015 0016 0018 0019 0020 0021 0022 0023 0024 0025 0027 0028 0029 0030 0031 0032 0033 0034 0035
WFITE (TW, 100)

WFITE (IW, 110)

WKTTE (TW, 120)
FOFMAT(\$, $10 X$, NUMEEF OF TRANSMISSION FATMOS: ')
FEAM(IKy 12) ITK゙
IF (ITK, EQ, O) GO TO 200
WFITE (TW, 1, 42)
FOFMAT (束, 10X, SHIFT TIME (SEC): ')
FEALI(TF, 1.4) STIM
HO $150 \mathrm{I}=1$, ITK
WFITE(IWyI30) I

FEALI (TF, I. A) FATIO(I)
TF (I, EQ, 5) 00 TO 200
150 CONTINUE
200 WRITE (TW, 140)
140 FOFMAT(事, 10X, MFTUETFAIN EFFICIENCY(\%) : ').
FEALI (IF゙y 14) MEFF
MEFF= IEFFF /100.
WFITE (IW, 14E)
1.4 FOKMAT(//)
RETUKN
ENI

FORTRAN TV Storase Maw for Frosram Unit DOFI
Local Variables，F FSECT \＄DATA，Size＝ 000046 （ 1．9，words）

Name	T¢Fe	Offset	Name	TצFe	Offset	Name	Type	Optset
WEFF：	だ＊	000004	LIFRAT	下゙＊4	000000	I	1＊2	00004A
10	1＊2	000040	IF	I＊2	000034	ITR	1＊2	000032
IW	1＊2	000036	STIM	下＊＊	000006			

Local and COMMON Arrass：

Name	Tywe		Section	Offset			Himensions
Haft	L．$*^{1}$		¢ DATA	000010	000011	5．）	（9）
HTTM	L＊ 1		\＄HATA	000021	000010	4．）	（8）
RATIO	下＊＊	E	＊lata	000002	000024	10．）	（5）

```
    C EURON,FOK FMF-11/RY11 TSL.23-OCY-1.978
C WFTTTEN BY ... Thomas 5. Labos 23-0CT-1978
    GOULH LABS, ELECTRONIC RESEARCH
    ROLLTNG MEADOWS, ILL.
    312/640-4472
    MONIFICATIONS:
    **********************************************
        Environment ssubroutime VER 1.0
    **********************************************
    MESCRIFTION:
    This is an 1/0 routime to emter venicle operatims
    emvironment to the main routinet
            GUBROUTINE EURON(HEDUEL,GRALE)
INFUTS:
    HENUEL Headwing velocits (M/S)
    GRADE Foad stope from horizontal (desmees)
OUTFUTS:
    Outwuts are the smme os the inmuts
    SURROUTINES CALLEEO:
        NONE
    FORS EURON=EURON
    STANOARD FOKMATS:
    14 FOFMAT (6F-12.0)
    C
    C MECLARATTONS:
O003 LOGTCAL* HMAT(9),HTMM(8)
    C
0004
    C
    C MAIN BOMY:
0005 WRITE(IW,100)
0006 100 FORMAT(' OFERATING ENUIRONMENT',/)
0007 WRITE(JWy110)
OOOE 110 FORMAT($y10X,' HEANWINA UELOCITY (M/S): ')
```

0009
0010 $0011 \quad 120$ 0012 0013 0014 $001 \% \quad 130$ 0016 0017

REAN(TF゙g1.4) HEMUE:...
WRTTE (TW\% J2O)

FEAD (IR゙, 1.4) BRAME
 WhITE (IWy 1.30)
FORMAT(//)
FETURN
ENO

```
Local Verimbles, fGECT $MAYAy Size = 000034 ( 14. words)
```

Name	Tswe	Offset	Name	Tume	Offset	Neme	Tswe	offeet
grame	下゙书4	000002	HEMUEL	F゙れ4	000000	10	I．${ }^{2}$	00003\％
1 F	I＊2	000026	IW	1＊2	000030			

Locel mad COMMON Arrass：
 HMAT L＊W WHATA 000004000011 （ 5. ）（9） HTIM L．W1 \＄LATA 000015 000010（ 4．）（0）

C

C
C MATN BOMY:

0008 0009 0010 WKTTE (TW 110)
OOII 1.10 FOKMAT($\$, 10 X, ~ M A X T M U M$ SHAFT TOFQUE (N-M): ')
0012 KEAM(TRyt4) MTRTO
OO13 WRTTE: (TW, 115)

001 E FEAD(TRy14) MTFW
0016 WRTTE (TW, 620$)$

0018 FEALITRy14) TFTFFM
001.9

0020
0022
0023
0024
$002: 3$
0026
0027
0028 0029

TFTFFM=TFTRHM次, *3.1416/60. 1 FANTANS/SEC
IF (RATIO (1), ER,O) EO TO 136
WRITE (TW, 130)

REAX(IN゙, 14) MSFFT
MSFFT=MSFFT*2, *3.1416/60, ! FAMIANS/SEL
WFTTE: (JW, 1.40)
1.40 FORMAT (//)

RETUKN
END

Local Variables, pSECT WMATA, Size = 0000A2 (17 . words)

Local anc COMMON Arrass:

0001
0002 0003 0004 0005

SUBROUTTNE SHFTSF (UEHSFM, XTFRAT, TRAK,MTRSFO)
C
MMETCIT REAL (M)
MTRSFH= (UEHSFLWOTFRAT / TRAD !KALIANS/SEC
FETURN
END

FORTRAN IV
Storase Mas for Frosram Unit SHfTs.
Local Variables, pGECT \$DATAy Size = 000010 (
4. words)

Name TuFe Offset Name Tyme offset Name Tume offset
 VEHSFW F** 0000000

0001 FUNCTION TORQUE（V）

0002
0003
0004 0005 0006 0007

IMFLTCTT REAL（M）
REAL K゙3
COMMON A1，A2，AЗ，A4，MTRTRッMTFW，K゙З，HEDVEL TOFQUE $=A 3 /(M T R T Q-A 1 *(U+H E D V E L) * * 2-A 2 * V-A 4)$ RETURN
ENTI

FORTRAN IV		Storsse		Mar for Frosram Unit TORQUE				words）	Offset
Local	Variabl	Les，＋FS	SECT	洓的TA，	Size＝	$=000006$	（ 3.		
Name	Tume	orfset		Name	Tswe	offset	Name	TsFe	
TORQUE：	だれ4	000002	EQv	V	K＊ 4	000000			
COMMON	Block．	1	1，	Size＝：	000040	16.	words）		
Name	TuFe	0ffeet		Name	TuFe	Offset	Name	Twwe	Offset
A1	だ＊4	000000		A2	F＊ 4	000004	A3	$\mathfrak{F} * 4$	000010
A4	た＊ 4	000014		MTETG	R＊4	000020	MTFW	FKA	000024
$k 3$	だれ4	000030		HEEDUEL．	下＊ 4	000034			

1.

0002 0003 0004 0005 0006 0007

FUNCTION FOWEF(U)
IMFLTCIT KEAL. (M)
KEAL K゙る

RETUKN
EMO

Local	Varjabl	es，．FS	SECT	¢ Lata，	Size $=$	$=000006$	3.	ords）	
Name	TuFe	Offset		Name	TuFe	Oftset	Name	Tupe	0ffset
FOWER	F゙＊4	000002	EQV	V	だ＊ 4 ¢	000000			
COMMON	Block	／	＇，	Size＝	000040	（ 16．	words）		
Name	Tupe	0rfset		Name	Tupe	0tt＇set	Name	Tume	0ffeet
A1	だ＊4	000000		A2	だ＊A	000004	A3	F゙＊4	000010
A4	F＊${ }^{\text {a }}$	000014		MTETG	R゙＊4	000020	MTFW	R＊ 4	000024
13	R゙＊A	000030		HEBUEL	R゙＊4	000034			

```
C UNFI.FOR FOF-11/RT11. TSL:20-0CT-1978
C COFYRTGHY (C) 1978, GOULH TNC., ROLLING MEADOWS, ILL.
C INFORMATION CONTATNEH IN THIS LTSTING
C IS THE FROFERTY OF GOULI, INC, ANO IS
C HIGHLY FROFRTETARY. REFRODUCTION,
C GTSClOSURE, OR ANY USE OF ANY FOKYION
C OF THIS LISTING IS FROHTBTTEN WITHOUT
C EXFRESS WRTTTEN CONSENT OF GOULIM, TNC.
C
C WRITTEN BY ... Thomes S. Latos 20-0CT-197e
C
C
C
C
C MONTFICATIONS:
C
C **********************************************
C Vehicle lesisn Subroutine VEF 1.0
C ***********************************************
C
C OESCRIFTION:
C
C This prosram is en T/O routime to inmut venicle
C desism Farameters.
0001 SUBFOUTTNE ULFI(UEHWT,UEHFA,DC,TRAD,UK1,UK゙2)
INFUTS:
    VEHWT Vehicle weisht(ks)
    VEHFA Vehicle frontal area(me)
    C VEHWT
    C UEHFA
    C MC
    C TRAO
    TKALI
Mres coefficient
    Tire redius(m)
    Follims resistance tire coefficients
    OUTFUTS:
        Outwuts are the amwuts to the main prosram
SUBROUTTNES CALLEM:
    NONE
    C
    C
    C
    C FOR% UNFI=UMFI
    C
    C STANOARX FOKMATS:
0002 12 FORMAT(1018)
0003 14 FORMAT(6F12.0)
C
C DECLARATIONS:
0004 LOGTCAL.*I HMAT(9),HTMM(E)
C
0005 MATA IF,IW/E.G/v0/E/
C
C MATN BOMY:
```

0006 0007 0008 0009 0010 0011

100
110 .

WETTE (TW, 100)
FORMAT(' VEHTCLE DESTGN FARAMETERS', () WFITE (IW, 110)
FORMAT(\$, 10X:' VEHTCLE WETGHT(kss): ')
FEAM(TR, 14) VEHWT
WRITE (IW, 120)
FORMAT(\$,10X:' VEHICLE FRONTAL AREA(m2): ')
FEAD (IR, 14) UEHFA
WFTTE (TW,130)
FORMAT (\#, 10X,' QRAG COEFFICTENT: ')
READ(IR,14) DC
WFITE (IW, 140)

REATM(TE, 1.4) TRAL
WRTTE (TW, 150)
FORMAT ($\%, 10 \mathrm{X}, \mathrm{TIFE}$ COEFFICTENTS (k.,k2): ')

WRITE (IW, 1.60)
FORMAT(//)
RETURN
END

Name	Tswe	Offset	Name	Tyme	0pfset	Name	Tepe	Offeet
MC	R＊A	000004	10	1＊2	000042	IF：	I＊2	000036
It W	I．＊2	000040	TRAM	F＊4	000006	VEHFA	だ＊	000002
VEHWT	F＊A	000000	UK1	R＊＊	000010	Vぐ2	下＊A	000012

1．ocel mag COMMON Arrass：

SUBROUTINE SUMARY（VEHWT，VEHFA，DC，TRAN，UKL，UK゙き，
MMFLICIT KEAL（M）
MTMENSION FATHO（E）
MATA TW，TR／E： $5 /$

100
WRITE（JW， 110 ）
1．10 FORMAT（ 8 X, ＇BONY＇，1EX＇TIRES＇）
WFTTE（IW，120）
 1 6X，（ド2 ）
WFITE（IW，130）VEHWT，VEHFA，LC，TRAL，OKK1，UK2 WRTTE（TW：4．40）
140 FORMAT（ $2 X$, GRADE＇， $2 X$, HEAOWINI＇）
WFITE（TW，150）GKADE，HEDUEL
FORMAT（ $3 X, F 3+1,5 X, F-1,1 / 1$ ）
WFITE（IW，160）

DO $10 \mathrm{I}=1, \mathrm{E}$
JTK＝1－1
TF（FATIO（I），EQ．O．）GO TO 20

CONTINUE

FORMAT（5X，F3．1，12X，I1，10X，F4．1，）
WFITE（TWgIBO）
180 FORMAT（16X．＇MOTOR＇）
WRITE（IWッ190）

WFITE（TW，200）MTETR，MTFW／1000．，TFTFFMッMSFFT
200 FORMAT（ $3 \times, F 5,1,5 \times, F 4,1,5 X, F 6,1,5 X, F 6,2, / /$ ）
RETURN
ENH

Name	TuFe		Offset	Name	Tspe		orfset	Name	Tswe	Offset
aC	た＊4	a	000004	DEFF	た＊4	－	000024	DTFRAT	た＊${ }^{\text {a }}$	000020
GRADE	に＊A	E	000016	HETUEL	に゙＊	e	000014	1	I＊2	000014
TR	I＊2		000040	ITK	T＊2		000046	IW	1＊2	000036
MSFFT	『＊4	E	000034	MTFW	た＊4	e	000030	MTETR	下゙＊4	000026
TFTRFM	下＊A	］	000032	TEALI	下＊＊	e	000006	UEHFA	下＊4	000002
UEHWT	R＊4	］	000000	UK1	下＊ 4	$\underline{0}$	000010	UK2	R＊4	00001

Local and COMMON Arrass：

0001		SUETOUTINE QATR (XL. XU, NUMVyFLTg ANS)
0002		TEMF'=0.
0003		$H=(X U-X L ..) / N M T M$
0004		TF(H, ER, O.) GO TO 20
0006		ANS $=\mathrm{FCT}(X L)+\mathrm{CT}$ CT $X U$)
0007		$0010 \mathrm{~T}=1$, N0]Mw1.
0008		TEMF=TEMP+FCT(XL.+(TWH)
0009	10	CONTTNUE:
0010		
0011		FEETUKN
0012	20	ANS $=0$.
0013		EETURN
0014		ENT

NEme	TYFe	Oザ¢Et	Name	Twwe		Name	TwFe	0 ftyemt
ANS	下束4	000010	H	下边4	00001.6	I．	T＊2	0000\％2
Natm		000004	TEMM＇	だ㒳 4	000012	XL．．．	K＊A 4	000000
XU	为4	000002						

 FらT K゙れ

APPENDIX II

COMMUTATION CIRCUIT DESIGN ANALYSIS

This appendix presents an analysis of the inverter commutation sequence. Expressions are derived for the peak current, $I_{p}^{\text {SCR7 }}$ flowing in a commutation thyristor (SCR7-SCR8), the maximum commutation capacitor voltage V_{C}, and the stored energy, U_{p}, of the commutation circuit as functions of the battery voltage, $V_{b a t}$, battery current, $I_{b a t}$, thyristor turn-off time, $T_{\text {qmin }}$, and circuit component values L_{a}, C_{1}, and $x \equiv N_{b} / N_{a}$. The peak energy is then minimized with respect to normalized component values to determine "ideal" values for these components depending on $I_{b a t}, V_{b a t}$, and $T_{\text {qmin }}$. It is seen that this analysis yields only two constraints on the three components. The free parameter may be used to lower the peak current at the expense of raising the commutation capacitor voltage, or vice-versa.

The circuit is modeled as shown in Figure A2-1. The coupled inductors, L^{A} and L^{B} are characterized by two parameters L_{a} and $x . L_{a}$ is the inductance of the L^{A} winding (L^{B} terminals open-circuited), and x^{2} is the ratio of the L^{B} and L^{A} inductances.

$$
\begin{equation*}
x^{2}=\frac{L_{b}}{L_{a}} \tag{1}
\end{equation*}
$$

The effective inductance of the coupled inductors in series is thus

$$
\begin{equation*}
L_{c}=L_{a}(1+x)^{2} \tag{2}
\end{equation*}
$$

C^{\top} is defined as the total commutation capacitance, or twice the value of either commutation capacitor alone.

$$
\begin{equation*}
C^{\top}=2 C_{1} \tag{3}
\end{equation*}
$$

(1340)

Figure A2-1 This figure contains the commutation circuit for the bus commutated inverter. The design analysis concentrates on determining the value of commutation inductance, capacitance, and energy stored prior to commutating the main SCR's. The clamp windings are not included in this figure.

The initial conditions at the initiation of the commutation sequence are:

$$
\begin{align*}
& \left.i_{L^{B}}\right|_{t=0}=\frac{I_{b a t}}{1+x} \tag{4}\\
& \left.v_{c_{1}}\right|_{t=0}=v_{0} \tag{5}
\end{align*}
$$

where $I_{b a t}$ is the dc bus or motor current before initiation of the commutation, and V_{0} is the (as yet undefined) initial commutation capacitor voltage. The initial commutation current is smaller than the motor current, due to the added inductance of the L^{B} winding.
$V_{\text {out }}$ is defined as the voltage across the thyristor bus to be commutated. It is assumed here that the thyristor was conducting before commutation, and that the motor phase current remains positive (negative, in the case of a bottom bus commutation) during the commutation interval, so that the thyristor reverse bias time is defined here as the interval of time over which $V_{\text {out }}$ remains negative.

The analysis will proceed as follows. An expression for the reverse bias time will be derived, and set equal to $T_{\text {qmin }}$. This constraint will determine $V_{C_{1}}$, the commutation capacitor voltage. Given $V_{C_{1}}$ and the original parameters of L_{a} and x, the peak stored energy will be evaluated and minimized.

Application of Kirchoff's voltage and current laws to the circuit of Figure A2-1 yields a second-order constant-coefficient differential equation in $i_{L^{B}}$.

$$
\begin{equation*}
\frac{d^{2} i_{L} B}{d t^{2}}+\frac{1}{L_{c} C^{\top}}\left(i_{L} B\right)=0 \tag{6}
\end{equation*}
$$

The initial condition on $v_{C I}$ can be restated in terms of ${ }^{\mathbf{T}} \mathrm{T}_{1 \mathrm{~B}}$

$$
\begin{equation*}
\left.\frac{L_{c}}{\frac{d i}{d t} B}\right|_{t=0}=V_{0} \tag{7}
\end{equation*}
$$

The differential equation and initial conditions form a closed set. The solution is valid up to the point when the clamp thysistor (SCR 9-10-not considered here) is fired. Until that time,

$$
\begin{align*}
& { }^{i} L^{B}=\frac{I_{b a t}}{(1+x)}\left[\frac{1+y^{2}}{y^{2}}\right]^{1 / 2} \sin (\omega t+\alpha) \tag{8}\\
& \alpha \equiv \cos ^{-1}\left[\frac{1}{\left(1+y^{2}\right)^{1 / 2}}\right] \tag{9}\\
& \omega^{2} \equiv \frac{1}{L_{c} C^{\top}} \tag{10}\\
& y \equiv\left(\frac{L_{a}}{C^{\top}}\right)^{1 / 2}\left(\frac{I_{b a t}}{V_{0}}\right) \tag{11}
\end{align*}
$$

This expression for ${ }^{T}{ }_{T 1 B}$ can be used with Kirchoff's voltage law to determine $v_{\text {out }}$ as a function of time.

$$
\begin{equation*}
V_{\text {out }}=V_{\text {bat }}-\frac{\left(\frac{L_{a}}{c^{T}}\right)^{1 / 2} I_{\text {bat }}}{(1+x)}\left[\frac{1+y^{2}}{y^{2}}\right] \cos (\omega t+\alpha) \tag{12}
\end{equation*}
$$

The time, $t_{R B}$, when $v_{\text {out }}<0$ is thus given by

$$
\begin{equation*}
\omega t_{R B}=\cos ^{-1}\left[q \frac{y}{\sqrt{1+y^{2}}}\right]-\cos ^{-1}\left[\frac{1}{\sqrt{1+y^{2}}}\right] \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& q \equiv \frac{1+x}{z} \tag{14}\\
& z=\frac{I_{\text {bat }}}{V_{\text {bat }}}\left(\frac{L_{a}}{c^{T}}\right) 1 / 2 \tag{15}
\end{align*}
$$

Now, $t_{R B}$ is set equal to $T_{q_{m i n}}$, and the cosine of both sides is taken. Use of a trigometric identity yields

$$
\begin{align*}
& W \equiv \cos \left(\omega T_{q_{\min }}\right) \tag{16}\\
& W=\frac{q y}{1+y^{2}}+\frac{y}{1+y^{2}}\left(1+\left(1-q^{2}\right) y^{2}\right) 1 / 2
\end{align*}
$$

Eq. 17 has four solutions for y, two imaginary roots, $\pm j$, and two real roots.

$$
\begin{equation*}
y=\frac{W}{q \pm\left(1-W^{2}\right)} 1 / 2 \tag{18}
\end{equation*}
$$

It can be shown that the "-" solution corresponds to a non-physical root of the equation, and that the " + " solution is the correct one.

The peak stored energy is defined as the energy stored in L^{A} and L^{B} when $i_{L} B$ is at its peak value.

$$
\begin{align*}
U_{p} & =1 / 2 L_{c} I_{p}^{2} \\
& =1 / 2 L_{a} I_{b a t}^{2}\left(\frac{1+y^{2}}{y^{2}}\right) \tag{19}
\end{align*}
$$

where the peak current, I_{p}, is obtained from Eq. 8. It is useful to normalize this peak stored energy to a quantity defined as the diverted energy, U_{d}, U_{p} is this normalized diverted energy. Then

$$
\begin{equation*}
\underline{u}_{p} \equiv \frac{u_{p}}{u_{d}} \equiv \frac{u_{p}}{v_{\text {bat }} I_{\text {bat }} t_{q_{\min }}} \tag{20}
\end{equation*}
$$

Where U_{d} is the product of battery voltage, $d c$ bus current, and minimum thyristor turn-off time. Thus

$$
\begin{equation*}
\underline{u}_{p}=1 / 2\left(\frac{1+y^{2}}{y^{2}}\right)\left(\frac{1}{q \cos ^{-1} W}\right) \tag{21}
\end{equation*}
$$

Substitution for y yields

$$
\begin{equation*}
u_{p}=\frac{w^{2}+\left[q+\left(1-w^{2}\right)^{1 / 2}\right]^{2}}{2 q w^{2} \cos ^{-1} w} \tag{22}
\end{equation*}
$$

The peak normalized energy of the commutation circuit is seen to depend on the two normalized parameters, q and W. Minimization with respect to q gives

$$
\begin{equation*}
\left.\underline{u}_{p}\right|_{q=1}=\frac{w^{2}+\left[1+\left(1-w^{2}\right)^{1 / 2}\right]^{2}}{2 w^{2} \cos ^{-1} w} \tag{23}
\end{equation*}
$$

A value of 1 for q yields the minimum energy for any particular W. Minimization with respect to W is done numerically. A plot of $U_{p}(W)$ is shown in Figure A2-2. The minimum value of U_{p} is seen to occur for $W=W_{\text {min }}=0.8494$. The significance of \underline{U}_{p} is that the peak stored energy in the commutation circuit must be greater than 3.81 times the diverted energy, U_{d}.

Figure A2-2 Plot of $\underset{-p}{U}$ vs. $W, q=1$
Minimum Value, ${\underset{-p}{ }}_{\underline{p}} \cong 3.81$, occurs at $W \cong 0.849$

$$
\text { A-II Page } 7
$$

At this point, using $q \equiv 1$ and $W_{\min } \equiv 0.8494$, then

$$
\begin{aligned}
& \underline{y}=0.556=Y_{\min } \\
& \underline{\omega T}_{q_{\min }}=0.5559=K_{\min }
\end{aligned}
$$

The actual inductances, capacitance, and voltage corresponding to these normalized values are determined as follows. The normalized circuit time constant, $K_{\min }$, is used to calculate the ideal inductance L_{a}.

$$
\begin{equation*}
L_{a}=\left(\frac{T_{q_{\text {min }}}}{K_{\text {min }}}\right)^{2} /(1+x)^{2} c^{\top} \tag{24}
\end{equation*}
$$

At the minimum peak energy $q \equiv 1$, therefore

$$
\begin{align*}
& L_{a}=\frac{V_{b a t} T_{q_{\min }}}{I_{b a t} K_{\min }} \tag{25}\\
& V_{0}=\frac{(1+x) V_{b a t}}{Y_{\min }} \tag{26}\\
& c^{T}=\left(\frac{I_{b a t}}{V_{b a t}}\right)\left(\frac{T_{q_{\min }}}{(1+x)^{2}}\right)\left(\frac{1}{K_{\min }}\right) \tag{27}
\end{align*}
$$

The peak current, I_{p} is given by

$$
\begin{equation*}
\left.i_{L^{B}}\right|_{\text {peak }}=\frac{I_{\text {bat }}}{(1+x)}\left[\frac{1+Y_{\min }^{2}}{Y_{\text {min }}^{2}}\right]^{1 / 2} \tag{28}
\end{equation*}
$$

Thus, the main winding inductance for minimum peak stored commutation energy is given by Eq. 25. Then Eqs. 26 and 28 are used to determine a value of x which best suits the commutation thysistor voltage and current ratings.

APPENDIX III

INVERTER LOSS ANALYSIS

Page Number
III. 1 Main Semiconductor On-State Loss Analysis A-III-2

III. 1 Controller Main Semiconductor On-State Loss Analysis

An expression for the on-state conduction loss of the controller main devices is derived in this appendix. First, the average battery power is calculated as a function of the peak motor phase current (assuming sinusoidal waveforms) and motoring power factor. Then, an assumption of constant semiconductor on-state voltage drop is used to compute the main device conduction loss. The two equations for battery power, and semiconductor conduction losses are then combined to yield a prediction of main semiconductor losses normalized to battery power as a function of the power factor and ratio of semiconductor on-state voltage drop to battery voltage.

Figure A3-1 gives a schematic illustration of the three (fundamental) phase currents in the motor during operation of the inverter. The motor is assumed to be a set of three ideal current sources, and the battery is assumed an ideal voltage source.

The lighter lines in Figure A3-1 show the phase currents as a function of time. Underneath the plot are markings which indicate the time intervals during which each motor phase ($\phi 1, \phi 2$, and $\phi 3$) is fed from its upper bus thyristor or diode. Six step operation is assumed, so that one of the SCR's associated with any particular phase is on at any specific time. The solid line represents the sum of current in the bus as a function of time (i.e., the actual battery line current).

The voltage and current are out of phase by the power factor angle, as indicated in the Figure. The average battery line current is

$$
\theta+2 \pi / 3
$$

$$
\begin{equation*}
i_{\text {bat }}=-\frac{1}{\pi / 3} \int_{\theta+\pi / 3} I_{0} \sin \mu d \mu=\frac{3}{\pi} I_{0} \cos \theta \tag{1}
\end{equation*}
$$

Since the motor phase current is always passing through a semiconductor, be it a diode or thyristor, an assumption of equal and constant on-state voltage

(1344)

Figure A3-1 This figure illustrates the three motor phase currents as a function of time. The motor is operating with a power factor angle θ and it requires a peak phase current of I_{O}.

The heavy line in this figure is the resulting dc link current flowing in the inverter.
drops, V_{d}, for both gives a simple approximation for the main semiconductor conduction loss, P_{C}

$$
\begin{equation*}
P_{c}=\frac{V_{d}}{\pi} \int_{0}^{\pi} I_{0} \sin \mu d \mu=\frac{2}{\pi} V_{d} I_{0} \tag{2}
\end{equation*}
$$

There are six SCR-Diode pairs, each on for a 50% duty-cycle. So, the total time average main conduction loss is

$$
\begin{equation*}
P_{C}^{T}=\frac{6}{\pi} V_{d} I_{0} \tag{3}
\end{equation*}
$$

Thus, the fraction of battery power (during motoring) that is lost to the mains is

$$
\begin{equation*}
\frac{P_{c}^{T}}{P_{b a t}}=\frac{2 V_{d}}{V_{b a t} \cos \theta} \tag{4}
\end{equation*}
$$

Note that as $\theta \rightarrow \pi / 2, \cos (\theta) \rightarrow 0$, and $\left(P_{\text {Loss }} / P_{\text {bat }}\right) \rightarrow \infty$. This is due to the fact that $\theta=90$ corresponds to no battery power out, while there still exists finite semiconductor losses.

The motor power factor is sometimes defined as

$$
\begin{equation*}
\text { P.F. }=\frac{\text { PMotor }^{3 V_{\ell-n} I_{R M S}}}{\text { R }} \tag{5}
\end{equation*}
$$

Caution should be exercised in using this definition of $\cos (\theta)$ in the formula of eq. 5, as the two definitions coincide only when the semiconductor voltage drops are negligible. In fact, the power factor, defined in terms of the motor power, will go to zero before θ reaches 90°. This is due to the fact that, for $\theta=0$, the motor accepts current form the battery at a voltage that is less than the battery voltage by one diode drop, but returns it at a voltage that is greater by as much. When the net current out of the battery is small, this difference can become significant.

CONTROLLER ELECTRICAL SCHEMATICS

Page Number.

1. Power Circuit A-IV-2
2. Micro Processor

A-IV-3
3. I/0 Board A-IV-4
4. Signal Interface Circuit A-IV-5
5. Frequency Control A-IV-6
6. Sine-Triangle Generator A-IV-7
7. Main Thyristor Gating Circuit A-IV-8
8. Commutation and Clamp Logic A-IV-9
9. Gate Drive Amplifiers A-IV-10
10. Gate Firing and Snubber Circuits A-IV-11
11. Tachometer Logic A-IV-12
12. Logic Power Supplies A-IV-13
13. External Wiring A-IV-14

NOTES

1) CONNET GATE AND CATHOOE LEADS TO ORVERSS SEE

SCHEMTC DIAGRAM SK- 111979

TOLERANCES: UNLESS OTMERWISE SPECIFIED FRACTON $=:$ $x X=m$		mit SCHEMATIC DIAGRAM POWER CIRCUIT	\bigcirc
	\Rightarrow coub oounuourome	D ${ }_{\text {SK }}{ }^{\text {¹722 }}$	
Do NOT SCCLE ETHIS DAWWNO		D ${ }^{\text {SK } 172280}$	

NOTES:
ALL RESISTORS $1 / 8 \mathrm{~W}$ INLESS SPECIFIED
2) U1 $^{2} \mathrm{CD} 4013 \mathrm{~B}$

U2 CD4077 B
U3 CD 4011 B
U4 MC751.

APPENDIX V
MICROCOMPUTER PROGRAMS

A-V Page 1

PAGE ØØ3 ACDRIV＊＊＊
00590 09115P 0000
0058500116
00590 Ø0117
0059500118
00500 00119
00505 0カ120

0061500122
0062090123
ロロ625 00124
9063000125 P 0003 10 A
00635 90125P 0004
のด640 0ด127P 0005
Ø0645 0ø128P 0005
Ø0650 のø129P Øロด7
0の655 0の130Р 0008
00650 00131P 0909
00655 のø132P $0 \emptyset 0 \mathrm{~A}$
0957900133
のロ675 Øロ134P のロロВ
の0580 90135P 900С
0068502135 P のดのD
ดのБ9の ロロ137P ロロロE
0059500138
0070000139
00705 00140Р の00F 8E $003 E$
00710 日ロ141
0071500142
00720 00143
$0 \emptyset 725$ 00144P 0日12 7F E401
Ø0730 00145P 0015 7F E403
Øø735 00146 P 001886 FF
00740 00147P 001A B7 E40の
00745 90148P 001D B7 E402
09750 00149P 0020 36 3E
00755 のø150Р 0022 B7 E401
Ø0760 00151P 0ø25 85 3E A
00765 Ø0152P 0027 B7 E403
00770 00153P 002A B5 E402
00775 の0154P 902D B6 E40ø
の0780 00155
0078500155
Ø0790 Øø157
00795 00158P 0030 35 1B
0080の 00159
0080500160
00810 00151P 0032 B7 E41の
00815 g0162P 0． 035 CE FF9B
00820 00163P Ø038 FF E416
Øロ825 00164Р Ø03B 85 03
00830 90155
の0835 00165P 003D B7 E411
のø840 00167P ø04の86 B2
0034500168
00850 00169P 0042 B7 E410 A
00855 Ø0170P 0ø45 CE Øø3C A
00860 D0171P 0048 FF E412
0086500172 P 0ด4B $86 \quad 02$

AC DRIVE－ENGINEERING PROTOTYPE－VERSION 1.0
PSCT
＊＊
＊＊
＊＊
＊＊
$* *$
P START JMP INIT BRANCH AROUND CONSTANT STORAGE
＊CONSTANTS STORAGE LOCATION
＊

＊＊INITIALIZATION ROUTINE

A

A KVH
FCB 220
230
230
2
34
76
＊
A IPOMAX F
IPOMIN
S1B
\＄5B

PROGRAM FILE NUMBER
． $36 \mathrm{~g} \mathrm{~V} / \mathrm{H} 7 \mathrm{MACHINE}$ CONSTANT（37
255（．850）
（1．55 V／H7．）／1．7．32
（1． $56 \mathrm{~V} / \mathrm{HZ}$ ）／1． 732
2／（＂255＂）LOW SPEED GATN CONST 16（5．23）
76／（＂255＂）
PROPORTIONAL SUM MAX．LTMTT＜＝ PROPORTIONAL SUM MIN．LIMIT＞＝ DISABLE IRQ LINE
ENABLE IRQ LINE
＊
＊
A INIT LDS \＃\＄3F INITIALITE STACK POINTER
＊
＊PIA INITIALTZATION SEQUENCE
＊PTM INITIALIZATION SEQIJENCE
A LDAA \＃\％g日glIgII PULSE WIDTH COMPARISON MODE
＊OUTPUT MASK，IRO DISABLE，$X, X, X, 16 B I T$ COUNT，INT
＊NOTE：IRQ DISABLED ONLY DURING INITIALTZATION ROUTI
STAA PTMICX CONFIGURE TIMER \＃3
LDX \＃SFF9B FULL SCALE－ 100 US
STX PTM3LC INITIALITE COUNTER VALUE
LDAA \＃\％ดøのดのøI CONTINUOUS OPERATING MODE
＊OUTPUT MASK，IRQ DISABLED，$X, X, X, 15 B I T$ COUNT，IN
$\begin{array}{lll}A & \text { STAA PTM2CS CONFIGURE TIMER \＃2 } \\ A & \text { LDAA }\end{array}$
＊OUTPUT ENABLED，IRQ DISABLED，$X, X, X, 16 B I T$ COUNT， STAA PTMICX CONFIGURE TIMER \＃I
LDX \＃SØロ3C MIN．PULSE WIDTH－ 60 US
STX PTMILC INITIALIZE COUNTER VALUE
LDAA \＃\＄の2 SETUP TO NRITE TO CR \＃3

A-V Page 5

PAGE	905	ACDRIV＊＊＊				DR IVE			PROTOTYPE－VE	ION	．\varnothing
91160	00231P	Ø0B3	B6	ØロロE	P		LDAA	EIRQ	RECONF TGURE	TIMER	\＃ 3
91165	g0232P	の日В 5	B 7	E410	A		STAA	PTM1CX	ENABLE IRQ		
01170	00233					＊	ENTER	EXECUTIVE	ROUTINE		
01175	Ø0234P	00В9	7E	Ø日BC	P		JMP	EXECA			

PAGE $0 \square 5$ ACDRIV *** AC DRIVE - ENGINEERTNG PROTOTYPE - VERSION 1.0

01585	09315					**	EMERGENCY SHUTDOWN		
01590	00.317					**			
01595	00318					**			
91600	00319 P	$014 D$	86	31	A	ESHUTD	LDAA	\#\$81	"EMERGENCY SHUTDONN" LED CODE
01505	003201	0145	BD	0433	P		JSR	DOUTA	TURN LED ON
01610	00321					**			
01515	08322					**	NORMAL	SHUTDONN	- Disable IRQ
01620	00323					**			
01625	0n324P	0152	B6	900D	P	SHUTD	LDAA	DIRQ	RECONFIGURE TIMER \#3
01630	00.325 P	0155	B7	E419	A		STAA	PTMICX	DISABLE IRQ
01635	00326P	0158	95	日A	B		LDAA	DOB	
01640	60327P	015 A	BD	9438	P		JSR	DOUTB	OUTPUT TO REQUIRED LED'S
Ø1645	90328P	015D	85	20	A		LDAA	\#\$20	MATN'S SELECT CODE
Ø1650	gb329P	015 F	BD	0433	P		JSR	DOUTA	DISABLE MAINS
01655	983308	0162	BD	O4DA	P		JSR	RCOM	FORCE COMMUTATE MAINS DEVICES
01658	20331P	0155	86	10	A		LDAA	\#\$10	COMM'S SELECT CODE
01655	00332P	0167	BD	0433	P		JS?	DOUTA	DISABLE COMM'S
01670	Ø0.333P	0164	BD	@4F1	P		JSR	Z VOLT	ZERO VOLTAGE CONTROLS
01675	90334?	0160	BD	0495	P	SHUTDI	JSR	WDOG	SERVICE 'NATCHDOG TIMER
01680	00335 P	0170	20	FB	6D		BRA	SHUTDI	LOOP FOREVER

PAGE $\emptyset \emptyset 9$ ACDRIV *** AC DRIVE - ENGINEERING PROTOTYPE - VERSION $1 . \emptyset$

PAGE	011	ACDRIV＊		DRIVE－ENGINEERING PROTOTYPE－VERSION 1．0				
02560	00511			CONTROL SEQUENCE				
02555	00512			＊	PROPORTIONAL TERM CALCULATIONS ：			
02570	00513			＊	$X=E R R$＊GAIN－INCPO			
02575	00514			＊	INCP＝TRUNCATION［X］			
02590	のロ515			＊	INCPO $=$ INCPO＋INCP			
02595	90516			＊	RESUET：INCP＝SIGN OF CORRECTION OF MODULAT			
Q2590	00517			＊	INCP＋1＝MAGNITUDE OF CORRECTION（IN			
02595	08518			＊	TOTAL SUM SAVED AT INCPO \＆INCPO＋I			
02500	00519			＊				
92.505	00520P	028085	67 A	CTLP2	LDAA	4\＄7	$2^{\wedge} 7$	
02510	00521P	Ø28F 97	7 2E $\quad B$		STAA	DIVN	PRESET DIVISOR FOR 128	
02615	00522P	02915 F			CLRB		7ERO SLSB	
02520	Q0523P	029295	$10 \quad B$		LDAA	INCPO＋1	INCPO＊255	
02525	00524P	¢294 47			ASRA		MAINTAIN SIGN	
『2639	Ø0525P	029555			RORB		SCALE TO KGAIN ACCURACY	
02535	0．0526P	829597	733 B		STAA	CTEMP		
02640	00527 P	0298 D7	$734 \quad B$		STAB	CTEMP＋1	SAVE SCALED INCPO	
92545	Ø0528P	029A 96	$10 \quad B$		LDAA	KGA IN		
02650	00529 P	029C D6	$11 \quad B$		LDAB	KGAIN＋1	RETRIVE MULTIPLIED ERROR	
02655	Ø0530P	Ø29E 7D	6014 8		TST	ERR		
02650	08531P	$02 A 124$	－ 03 82A6		BPL	CTLP2A	POSITIVE CORRECTION	
の2655	00532 P	$02 A 3 B D$	05D1 P		JSR	COM 15	FORM $15 B 1 T 2$＇S COMPLEMENT	
02670	00533 P	Ø2A6 D \quad d	34 B	CTLP2A	SUBB	CTEMP＋1		
02675	00534 P	Ø2A8 92	33 B		SBCA	CTEMP	COMPARE TO SCALED SUM，TER	
82588	90535P	g2AA 2B	－08 0284		BMI	CTLP3	INCPO＞GAIN＊（ERR＋1）	
02585	00535 P	Ø2AC CD	の日 \quad－		SUBB	\＃ 5 の日		
02690	Ø0537P	g2aE 82	90 A		SBCA	\＃ 0	DEAD BAND ADJUSTMENT	
02695	90538P	Ø2B 0 2B	¢9 02BA		BMI	CTLP4	INCP＜ 0	
02700	96539P	02B2 2 Ø	98 92BC		BRA	CTLP4＋2	INCP＞\quad ，CONTINUE	
92705	Ø0540P	02B4 CB	90 A	CTLP3	ADDB	\＃ 5 \％ 0		
82710	06541P	02B6 89	句 A		ADCA	\＃ 0	DEAD BAND ADJUSTMENT	
02715	96542P	72B8 2B	の\％028C		BMI	＊+4	INCP＜\quad ，	
02720	0． 543 P	日2bA 4F		CTLPA	CIRA		ZERO INCP	
02725	00544 P	日2BB 5F			CLRB		7．ERO INCP＋1	
92730	Ø0545P	日 2 BC BD	$06 B 7 P$		JSR	QDIV	DIVTDE BY 129 （TRUNCATE）	DIVIS
02735	60545P	Ø2BF DB	1 B B		ADDB	INCPO＋1		
92740	Ø0547P	92C1 99	$1 C \quad B$		ADCA	INCPO	INCP＋INCPO	
92745	g6548P	02C3 2B	6D 82D2		BMI	CTLPS	TNCP＋TNCPO＜\quad g	
8275\％	の0549P	$02 C 526$	95 32CC		BNE	CTLP5	TNCP＋INCPO \＃${ }^{\text {I }}$	
Ø2755	g9550P	02 C 7 Fl	－0ด刀口 P		CMPB	IPOMAX	CHECK FOR MAX．LIMIT	
g2760	00551 P	カ2CA 23	14 92ED		BLS	CTEP7	INCP＋INCPO $<=$ IPOMAX	
92765	90552P	02CC 4 F		CTLP5	CIRA			
02770	Øø553P	O2CD F6	の00の日		LDAB	IPPMAX	SET MAX．LIMIT	
02775	09554 P	Ø2D』 20	OE 02E0		BRA	CTLP7	CONTINUE	
02780	g0555P	020281	FFA	CTLP6	CMPA	\＃SEF		
02785	90556P	Ø2D 426	05 02 DB		BNE	CTLPSA	8BIT OVERFLOW	
02790	Ø0557P	02 D 5 Fl	000C P		CMPB	IPOMIN	CHECK FOR MIN．LTMIT	
02795	0．5588P	Ø2D9 22	O5 Ø2E』		BHI	CTLP7	OK，CONTINUE	
02890	90559P	Ø2DB 86	FF A	CTLP6A	L LDAA	\＃${ }^{\text {SFF }}$		
02805	90560P	Ø2DD F6	000C P		LDAB	IPOMIN	SET MINIMUN	
02810	00551P	Ø2E0 D 0	1 D B	CTLP7	SUBB	INCPO＋1		
02815	00562 P	02E2 92	1 C B		SBCA	INC PO	DETERMINE DIFFERENCE FROM	L．IM I
02820	00553 P	Ø2E4 D7	$1 B \quad B$	CTLP8	STAB	INCP＋1	SAVE	
02825	00564 P	Ø2E6 97	$1 A \quad B$		STAA	INC P	PROPORTIONAL INCREMENT	
02830	005650	Ø2E8 DB	ID B		ADDB	INCPO＋1	CALCULATE	
¢2835	00556 P	Ø2EA 99	$1 \mathrm{C} \quad \mathrm{B}$		ADCA	INC PO	PROPORTIONAL SUM	
92840	90557P	Ø2EC D7	1D B		STAB	INC PO＋1		
02845	O0558P	Ø2EE 97	1 C B		StAA	INCPO	SAVE PROPORTIONAL SUM	

PAGE	012	ACDRIV＊		DRIVE	－ENGINEERING PROT	OTOTYPE－VERSION 1.0
02855	00570			＊		
02859	90571			＊	CONTROL SEQUENCE	
02865	00572			＊	LOW SPEED（＜	13HZ）CORRECTION FACTOR
02870	00573			＊	INCO $=$ INCO +K	KLOW＊ERR
92875	00574			＊	INC $=$ TRUNCATIO	ON 「INCOl
02880	Ø0575			＊	INCO $=$ INCO－	INC
02885	00576			＊	RESULT：INCO＝REM	EMAINDER
02890	00577			＊	INC $=$ SIG	
02895	20578			＊	INC＋1＝	MAGNITUDE（IN COUNTS）
02900	00579			＊	REMAINDER FROM	INCREMENT SAVED AT INCO \＆INCO
02905	00580			＊		
72910	00581P	02Fg 95	9B B		LDAA PER	READ PERIOD
82915	00582P	Q2F2 81	26 A		CMPA \＃\＄25	CHECK FOR 12．85H2
32920	Ø0583P	02F4 23	339032 F		BLS CTLSI	FREQ＞ 12.85
32925	G9584P	02F6 B6	9008 P		LDAA KLOW	GAIN CONSTANT
72938	00535P	02F9 D5	15 B		LDAB ERR＋1	ERROR TERM
32935	00585P	Ø2FB BD	D 0587 P		JSR MP8	KLON＊ERR
72940	＠0537P	02FE 7D	0014 B		TST ERR	CHECK ERROR SIGN
32945	60588P	0301 2A	A 030305		BPL $\quad *+5$	OK，POSITIVE
72950	90589P	9303 BD	9601 P		JSR COM16	CORRECT FOR SIGN OF MULTJPY
\＄2955	00590P	0306 DB	21 B		ADDB INCO＋1	SUM REMATNDERS
32950	Ø0591P	Ø398 99	20 B		ADCA INCO	INCO＋KLOW＊ERR
$\times 2955$	90592P	030A D7	721 B		STAB INCO＋1	SAVE REMAINDER SUM
32970	Ø0593P	Ø30C 97	20 B		STAA INCO	INCO $=$ INCO＋KLOW＊ERR
12975	Ø0594P	030E 2A	－08 0318		BPL CTLS	OK，POSITIVE SUM
12980	00595P	0310 BD	0601 P		JSR COM15	FORM COMPLEMENT
12985	00596P	0313 C 6	FF A		LDAB \＃SFF	SIGN EXTEND
12990	D0597P	031540			NEGA	TRUNCATE 8LSB AND CONVERT SIGN
12995	08598 P	031626	01 0319		BNE CTLS＋1	CONTINUE，IF SIGN EXTEND VALID
13000	90599P	0318 5F		CTLS	CLRB	SIGN EXTEND TO 8MSB
13005	90600 P	0319 D7	1E B		STAB INC	SAVE INCREMENT
13010	00601 P	031 B 97	1F F		STAA INC＋1	INC＝TRUNCATION［INCO1
13015	0ø602P	0310 D6	$21 \quad B$		LDAB INCO＋1	
13020	00603P	031F 96	20 B		LDAA INCO	
13025	00604P	0321 CD	90 A		SUBB \＃S	SUBTRACT（INCREMENT X 255）FRO
13030	90605P	032392	1F B		SBCA INC＋1	
13035	07605P	0325 D7	$21 \quad B$		STAB INCO＋1	SAVE ADJUSTED REMAINDER
13040	00507P	032797	2日 B		STAA INCO	INCO $=$ INCO－INC
－3045	のด608P	0329 D5	$1 F \quad B$		LDAB INC＋1	
13050	90609P	032 B 96	1E B		LDAA INC	
13055	のø610P	032 D 20	Ø6 0335		BRA CTLS 2	
3050	90511 P	032 F 5 F		CTLSI	CLRB	CLEAR REMAINDER TERMS
3055	00612P	033D 4F			CLRA	
3070	90513P	9331 D7	$21 \quad B$		STAB INCO＋1	
3075	00514P	033397	20 B		STAA INCO	
3985	00516			＊		
3090	96617			＊	CONTROL SEQUENCE	
3095	00618			＊	COMBINE ALL CORRECTTON TERMS ：VLOOP＝INCI＋	
3100	00519			＊	RESULT：VSIGNE	＝SIGN OF CORRECTION
3105	00620			＊	VLOOP＝MAGNITUDE OF CORRECTION（ IN	
3110	09621			＊		
3115	00522 P	0335 DB	$1 B \quad 3$	CTLS 2	2 ADDB INCP＋1	
3120	のD623P	033799	1A B		ADCA INCP	INC + INCP
3125	Øø524P	0339 DB	$19 \quad B$		ADDB INCI＋1	ADD PROPORTIONAL AND INTEGRAL
3130	90525P	033 B 99	18 B		ADCA INCI	INC＋TNCP＋INCI
3135	00526P	633 DBD	056F P		JSR TRUNC	TRUNCATE TO 8BITS＋SIGN
3140	00627 P	இ340 07	722 B		STAB VLOOP	SET CORRECTION EACTOR
A－V Page 13						

PAGE	013	ACDRIV＊＊＊				DRIVE	－ENGINE	ERING PRO＇	OTOTYPE－VERSION $\dot{\text {－}}$－
03145	00628 P	0342	97	23	B		STAA	VS IGNE	SET CORRECTION DIRECTION
03155	90630P	0344	7 D	0022	B	INTV2	2 TST	VLOOP	
03160	00631P	0347	27	$1 F 03$	68		BEQ	INTE	NO，CORRECTION－RETURN
03165	Q0632P	$\emptyset 349$	BD	04 FF	P	INTV3	3 JSR	VC ORR	VOLTAGE CORRECTION SUBROUTINE
93170	00633P	034 C	7A	0022	B		DEC	VLOOP	DECREMENT LOOP COUNTER
03175	90534P	034 F	26	F8 93	49		BNE	INTV3	REPEAT UNTTL TERO
03180	92635					＊			
03185	00535					＊AVOTD POOR ＊harDware		OPERATING	G REGION OF VOLTAGE MODULATOR
03190	00537							（ BETWEEN	CSINE／CTRTA $=1.8-2.5$ ）
03195	29533					＊	（TEMPORARILY SET		FOR NO EFFECT： $0 / 25 / 80$ J．R．M．
03200	90639P	0351	85	$\square \square$	A		LDAA	\＃ワロ	LONER LIMTT M．I．$=1.8$ 136）
03205	00540P	$\square 353$	C 5	08	A		LDAB	\＃$D 0$	UPPER LTMIT M．I．$=2.5$（25）
03210	90641P	0355	91	37	B		CMPA	CTRIA	CHECK CURRENT SETTING OF M．I．
03215	gø542P	0357	23	ロC 03	65		BL．S	INTV4	CONTINUE，NOT IN POOR REGION
03220	00543 P	Ø359	D1	37	B		CMPB	CTRIA	
03225	06544P	Ø35B	24	¢8 93	55		BCC	INTV4	CONTINUE，NOT IN POOR REGTON
93230	Ø0545P	－350	7D	0023	B		TST	VS IGNE	DETERMINE PROPER LTMIT
03235	00546P	0350	27	®1 03	63		BEQ	＊＋3	SELECT UPPER EIMIT
03240	Ø0647P	0362	16				TAB		SELECT LOWER LIMIT
03245	ØØ548P	0363	D7	37	B		STAB	CTRIA	CORRECT SETTING
03250	90549P	0355	BD	053D	P	INTV4	4 JSR	VOUT	OUTPUT NEIN VOLTAGE
03255	の0650P	0358	GF			INTE	SEI		
03250	00651P	0359	FE	E411	A		LDX	PTM2CS	READ STATUS
03255	90552P	Ø36C	FE	E416	A		LDX	PTM3LC	CLEAR IRQ FLAG
03270	g0653P	036 F	B6	の】のE	P		LDAA	EIRQ	IRQ ENABLE CODE
03275	00654P	0372	B7	E410	A		STAA	PTM1CX	ENABLE IRQ
03280	Øø655P	0375	3B	．			RTI		RETURN TO EXECUTIVE

PAGE	ACDRIV＊＊＊	AC DRIVE	－ENGINEERING PROTOTYPE－version 1.0		
03875	08774	＊＊			
03880	00775	＊＊D	DIGITAL	OUTPUT S	SET－UP ROUTINE－＂ $\boldsymbol{\Lambda}^{\prime \prime}$ R REG OUTPUT
03885	00775	＊＊		PORT＂A＂	DOAG－DOA6（ SELECT BITS）
03890	00777	＊＊		DOA7	：（VALUE BIT）
03895	90778	＊＊		LOGIC＂1	］＂SELECTS APPRORIATE OUTPUT（DOA
83900	00779	＊＊		DOAD	：＂EMERGENCY SHUTDOWN＂INDICATOR
03905	90780	＊＊		DOA1	：FWD ENABLE
03910	90781	＊＊		DOA2	：REV ENABLE
83915	09782	＊＊		DOA3	：RING COMM＇S
g3920	و0783	＊＊		DOA4	：COM ENABLE
03925	09784	＊＊		DOA5	：Main enable
03930	90785	＊＊		D0A6	：ENERGY CONTROL DISABLE
03935	の0785	＊＊			
03948	Ø0787P 0433 C6 日E	A douta	LDAB	\＃S0E	PORT＂A＂DEVICE SELECT CODE
93945	90788P 0435 7E 044E	P	JMP	OUTPUT	OUTPUT TO PORT

0402500804

0403000805
0403508806
0404000807
3404500808
24050 00809P 043D 0F
04055 00810Р Ø43E F7 E40Ø A
04060 20811P $0441 \quad 8636 \quad A$
ク4065 Ø0 812P 0443 B7 E401 A
才4070 $\emptyset ฎ 813 \mathrm{P} \quad 0446 \quad 36$ 3E A
0407500814 P 0448 B7 E401 A
$3408090815 \mathrm{P} \quad 044 \mathrm{~B}$ 日1
3403500315 P 044 C 日E
14090 00817P 044D 39

34100	00819			
34105	09820			
14110	98821			
14115	00822			
14120	Øด823P	944E	0 F	
14125	90824P	044 F	37	
14130	00825P	0450	C5	3A
14135	00826P	0452	F7	E403
14140	60827P	0455	C 6	FF
！4145	gø828P	0457	F7	E402

** PIA - SELECT CODE OUTPUT (DEVICE SELECT)
REG "A" ALTERED; REG "B" DEVICE CODE
NON - INTERRUPTIABLE (30 CYCLES)

DEVSEL SEI
STAB
LDAA
STAA LDAA
STAA NOP CLI RTS
MASK IRQ
PIAIAD SET DEVICE CODE \＃\％00110110 CONFIGURE A SIDE PIAIAC CA2＂LOW＂（ SELECT ） \＃\％0g111110 RE－CONFIGURE A SIDE PIAIAC CA2＂HIGH＂（ DESELECT ）
CLEAR MASK

OUTP PUT SEI PSHB LDAB STAB LDAB STAB

MASK IRQ
SAVE TEMP．DEVICE CODE
\＃800111010
PIAIBC SELECT DATA DIRECTION REGISTER
\＃SFF
PIAIBD CONFIGURE PB日－PB7 AS OUTPUTS

```
**
```

**
** PIA OUTPUT - "A" OUTPUT; "B" DEVICE CODE
** PIA OUTPUT - "A" OUTPUT; "B" DEVICE CODE
** NON - INTERRUPTIABLE (57 CYCLES)
** NON - INTERRUPTIABLE (57 CYCLES)
**

```
**
```

PAGE	017	ACDRIV＊＊＊			AC DRIVE		－ENGINEERING		OTOT	PE －VE	VERSION 1．a
04150	90829P	$045 A$	C 6	3E	A		LDAB	\＃800111			
04155	00830p	b45C	F7	E403	A		STAB	PIA1BC	SEL	CT DAT	TA REGISTER
04160	Ø0831P	¢45F	B7	E402	A		STAA	PIAIBD	OUT	UT VAL	UUE
04165	g0832P	0462	33				PUEB		RET	IEVE D	DEVICE CODE
04170	90833P	0463	F7	E40ワ	A		STAB	PIAIAD	SET	DEVICE	CODE
04175	90834P	0465	85	36	A		LDAA	\＃\％90110			
04180	90835P	0458	B7	E401	A		STAA	PIAIAC	CA2	＂LOW＂	（SELECT）
04185	90836P	045 B	85	3E	A		IDAA	\＃\％の0111			
94190	90837P	045 D	B7	E401	A		STAA	PIAIAC	CA2	＂HIGY＂	（DESELECT）
04195	90838P	0470	01				NOP				
04200	50839P	0471	OE				CLI		CLE	R MASK	
04205	0084 0 P	0472	39				RTS				

94320	00853					＊＊			
04325	90354					＊＊	WATCHDOG TIMER RESET ROUTINE		
04330	80855					＊＊	RESETS HARDNARE TIMER		
04335	90856					＊＊	TIMER CYCLE TIME＊\quad OMS		
04340	09857					＊＊			
04345	90858P	0496	C5	$\square \mathrm{F}$	A	indog	LDAB	\＃${ }^{\text {O }}$ OF	WATCHDOG DEVTCE SELECT CODE
94359	00869 P	0498	7E	Ø43D	P		JMP	DEVSEL	SELECT DEVICE AND RETURN
Ø4350	09871					＊＊			
04355	08872					＊＊	I／O BOARD INPUT＂A＂REG．MUX ADDRESS		
04370	00873					＊＊	＂B＂	REG．8MSB	8MSB（ NON－INTERRUPTIABLE ）
04375	Ø0874					＊＊			
04380	80875P	049B	WF			AIN 8	SEI		MASK IRQ
04385	98876P	049C	C 6	3A	A		LDAB	\＃\％00111	1010
04390	D0877P	$\square 49 \mathrm{E}$	F7	E403	A		STAB	PIA1BC	SELECT DATA DIRECTION REGISTER
04395	のด878P	94．A1	C6	FF	A		LDAB	\＃SFF	
04400	g0879P	04A 3	F7	E4D2	A		STAB	PIAIBD	CONFIGURE PBG－P8 7 AS OUTPUTS
94405	g8880］	Ø4A6	C5	3E	A		LDAB	\＃9091111	1110
04410	00891 P	ஏ4A8	F7	E403	A		STAB	PLA1BC	SELECT DATA REGISTER
04415	00882P	84AB	B7	E402	A		STAA	PIA1BD	OUTPUT VALUE
04420	g0883P	g AAE	C 6	01	A		LDAB	\＃\＄01	SAMPLE HOLD \＆CONVERT CODE
							A－V P	Page 18	

04475	00894			
04480	00895			
04485	90896			
04490	00897			
04495	Ø0398			
04500	90899			
84505	の0900P	04C4	C.E	C 350 A
84510	90901P	04C7	FF	E414 A
84515	00902 P	04 CA	BD	0495 P
84520	00903P	$04 C D$	B5	E411 A
84525	90904P	Q4D0	85	Q2 A
34530	00905P	04D2	27	F5 04CA
84535	00905P	04D 4	7A	002C B
84540	90907P	64D7	2E	EB $\quad 4 \mathrm{C} 4$
345	90908p	84D9	39	

34555	09910				
14560	09911				
34565	09092				
34570	00913				
34575	06914				
34580	00915 P	04 DA	85	98	A
34585	Ø0916P	94DC	BD	0433	3
14590	$0 \emptyset 917 \mathrm{P}$	04DF	CE	0395	5
34595	g0918P	g4E2	FF	E414	4
14690	00919 P	D4E5	B6	E411	1
34605	00920 P	04E8	85	¢2	A
14510	00921 P	04 EA	27	F9 0	O4E5
14615	00922P	Ø4EC	85	$\square 8$	A
14620	Ø0923P	$\emptyset 4 \mathrm{EE}$	7E	0433	

DELAY SUBROUTINE
DELAY $=50$ MS X TIME NOTE : MIN. DELAY $=5 \emptyset \mathrm{MS}$ WATCHDOG TIMER RESET DURING DELAY

DELAY	LDX	\#SC 350	SET FOR 50 MS DELAY	
	STX	PTM2LC	INITIALIZE TIMER - CLEAR FLAG	
DELAY1	JSR	WDOG		
	LDAA	PTM2CS	READ STATUS	
	BITA	\#S@2	TEST BIT \#l (TIMER \#2 FLAG)	
	BEQ	DELAY1	WAIT FOR TIME OUT	

**	
$* *$	RING COMMUTATTON CTRCUTT - SUBROUTINE
$* *$	ENABLE COMMS; RING FOR IMS
$* *$	NOTE: COMM'S LEFT ENABLED

RCOM	LDAA	$\# \$ 98$	RING COMM (BIT \#3) COMM ENABLE
	JSR	DOUTA	ACTIVATE CIRCUIT \& FORCE RTNG
	LDX	$\# \$ 0.395$	IMS - 83US (EXECUTION COMPENSA
	STX	PTM2LC	INITIALTZE TIMER - CLEAR FLAG
	LDAA	PTM2CS	READ STATUS
BITA	$\# \$ 92$	TEST BIT \#I (TIMER \#2 FLAG)	
BEQ	$\star-5$	WAIT FOR TIME OUT	
	LDAA	$\# S \emptyset 8$	RING COMM CODE (BIT \#3)
	JMP	DOUTA	DEACTIVATE FORCED RINGING \& RE

PAGE	019	ACDRIV			AC	DRIVE	－ENGI	NEERING PR	OTYPE－VERSION 1． 0	
04695	00938					＊＊				
04700	00939					＊＊	VOLTAGE CORRECTION SUBROUTINE			
04705	98940					＊＊	CHECKS VSIGNF：FOR INCREASE OR DECREASE			
04710	00941					＊＊	ALTERS：CPULSE，CSINE，CTRIA			
04715	00942					＊＊	CTRIA TS UPDA		TED BY TABLE LOOK－IJP T	APPROXI
04720	00943					＊＊	LINEAR CHANGE		IN MODULATION INDEX	
04725	00944					＊＊				
04730	Ø0945P	g4FF	96	23	B	VCORR	R LDAA	VSIGNE	DETERMINE CORRECTION	IRECTION
04735	09945P	¢501	26	1 B 0	851E		BNE	VDEC	VOLTAGE DECREASE	
04740	00947					＊VO	VOLTAGE	INCREASE		
04745	00948P	$\square 503$	96	35	B	VINC	LDAA	CSINE	READ PRESENT SINE AMPL	ITUDE
04758	00949P	0505	91	40	A		CMPA	\＃${ }^{\text {4 }} 0$	CHECK FOR 2．50V MAX．	OSTTION
04755	Ø0950Р	0507		050	50E		BCC	VINC2	SINE ALREADY MAX．	
04768	08951P	0509	7C	0035	6 B		INC	CSINE	INCREASE SINE AMPLITUD	
04755	08952P	950C	20	＠F $\square^{\text {g }}$	951D		BRA	VINC 3	BRANCH TO RETURN	
\＄4770	のØ953P	050E	96	37	B	VINC 2	2 LDAA	CTRIA	READ PRESENT TRIANGLE	AMPLITUD
04775	Ø0954P	0510	81	00	A		CMPA	\＃ 90 \％	TEST FOR MIN．POSITION	
04789	00955P	0512	23	$09 \square$	51D		BLS	VINC 3	BRANCH TO RETURN	
04785	00956 P	0514	CE	073C	C P		LDX	\＃TBLVTR	SET POINTER TO 1ST LO	ATION
04790	90957P	0517	BD	0537	7 P		JSR	FUNC	DETERMINE FUNCTION	
04795	0095 3P	651 A	10				SBA		DECREASE TRIANGLE AMPL	ITUDE
04808	00959P	051 B	97	37	B		STAA	CTRIA	SAVE NEN VALUE	
04805	の10960P	051 D	39			VINC3	3 RTS		RETURN	
04810	00961					＊VO	VOLTAGE	decrease		
04815	00962 P	651E	96	37	B	VDEC	LDAA	CTRIA	READ PRESENT TRIANGLE	AMPLITUD
04820	Ø09．63P	0520	81	FF	A		CMPA	\＃SFF	TEST FOR MAX．10．0V LE	VEL
04825	00964P	0522	24	OF 0	0533		BCC	VDEC 1	TRIANGLE ALREADY MAX．	
04830	Ø0955P	0524	CE	973C	C P		LDX	\＃TBLVTR	SET POINTER TO 1ST TAB	SLE LOCAT
04835	Øø965P	0527	BD	0637	7 P		JSR	FUNC	DETERMINE FUNCTION	
04840	00957 P	052 A	1B				ABA		INCREASE TRIANGLE AMPL	ITUDE
04845	Ø0958P	Ø52B	24	020	052F		BCC	＊＋4	NO 8 BIT OVERFLOW	
04850	00969P	052 D	86	FF	A		LDAA	\＃SFF	OVERELOW－SET MAX．VA	LUE
04855	00970p	052 F	97	37	8		STAA	CTRIA	SAVE NE＇N VALUE	
04850	00971 P	0531	20	090	353C		BRA	VDEC 2	BRANCH TO RETURN	
04855	09972P	0533	95	36	B	VDEC 1	1 LDAA	CSINE	READ PRESENT STNE AMPL	ITUDE
04870	00973P	0535	81	9D	4		CMPA	\＃${ }^{\text {¢ }}$ D	TEST FOR MIN．POSITION	
04875	9Ø974P	0537	23	$03 \square$	053C		BLS	VDEC 2	SINE ALREADY MIN．	
04890	Ø0975P	0539	7A	0036	6 B		DEC	CSINE	DECREASE SINE AMPLITUD	
04885	00976P	$053 C$	39			VDEC 2	2 RTS		RETURN	
04895	00978					＊＊				
04908	00979					＊＊	VOLTAC	GE OUTPUT S	UBROUT INE	
04905	00980					＊＊	MODT	FTES MODUL	ATION INDEX BASED UPON	VALUE AT
04910	00981					＊＊	CPUL	SE，CSINE，	CTRIA	
04915	96982P	053 D	5F			VOUT	CLRB		ZERO 8 LSB	
04920	ØØ093P	Ø53E	95	35	B		LDAA	CPULSE	READ TIMER VALUE	
＠4925	00984 P	9540	44				LSRA		128 MSB	
04930	Ø09850	0541	56				RORB		128 LSB	
04935	90985P	0542	44				LSRA		148 MSB	
04940	の0987P	0543	56				RORB		148 LSB	
04945	90988P	0544	CB	3 C	A		ADDB	\＃\＄3C	CORRECT FOR MIN．VALUE	（5gUS）
04950	009892	0545	D7	34	B		STAB	CTEMP＋1	SAVE TEMPORARY 8 LSB＇S	
04955	00990P	0548	97	33	B		STAA	CTEMP	SAVE TEMPORARY 8 MSB＇S	
04960	90991P	654A	DE	33	B		LDX	CTEMP		
04965	Øø992P	054C	FF	E412	2 A		STX	PTMILC	OUTPUT TO TIMER \＃1	
04970	00993					＊ 0	OUT PUT	SINE AMPLI	UDE	
04975	Ø0994P	$\emptyset 54 \mathrm{~F}$	96	35	B		LDAA	CSINE	READ VALUE	
							A－V	P Page 20		

PAGE	0	ACDRIV ***			AC	DRIVE - ENGINEERING PROTOTYPE - VERSION 1.0		
04980	00995 P	0551	C 6	05	A	LDAB	\#S05	DEVICE SELECT CODE
04985	90996P	$\square 553$	BD	Ø44E	- P	JSR	OUTPUT	OUTPUT VALUE
84990	80997					* OUTPUT	TRIANGLE	AMPLITUDE
04995	Ø0998P	0556	96	37	B	LDAA	CTRIA	READ VALUE
95900	Ø\|999P	6558	C 6	08	A	LDAB	\#\$08	DEVICE SELECT CODE
05005	01000Р	055A	BD	644 E	P	JSR	OUTPUT	OUTPUT VALUE
05010	01001					* CHECK FOR	ENERGY CO	ONTROL ACTIVATION REGION
05015	01002 P	9550	86	C0	A	LDAA	\# ${ }^{\text {PCb }}$	CODE TO DISABLE ENERGY CONTROL
05020	01003 P	055 F	D6	37	B	LDAB	CTRIA	CHECK FOR SIX-STEP
05025	01004 P	0561	26	020	565	B NE	* +4	AMPLITUDE \# \dagger, NOT IN SIX-STEP
05030	910ø5P	0563	85	40	A	LDAA	\# $\$ 40$	CODE TO ENABLE ENERGY CONTROL
05035	Ø1006P	0565	7E	0433	3 P	JMP	DOUTA	OUTPUT VALUE AND RETURN

05045	01008				**			
05050	01009				**	INVERTER ROTATION		SUBROUTINE
05055	01010				**	CHECKS CONSOLE		POSITION : DIA
05060	01011				**	AND CONEIGURES		INVERTER ACCORDING
05065	01012				**			
05070	01013 P	0563	7 F	0025 B	IROT	CIR	IDIRF	RESET INVERTER DIRECTION ELAG
05075	$01014 P$	056 B	96	08 B		LDAA	DIA	READ DIGITAL INPUTS A PORT
05080	01015 P	056D	84	05 A		ANDA	\#S06	MASK FWD \& REV BITS
05085	91016P	056 F	27	130534		BEQ	IROT $2+3$	"NEUTRAL" - CONTINUE
05099	81017P	0571	81	04 A		CMPA	\#S04	CHECK REV BIT
05095	91018P	0573	26	07057 C		BNE	IROT1	FOR'NARD
05100	Ø1019P	0575	86	34 A		LDAA	\# ${ }^{\text {8 }} 4$	CONFIGURE TNVERTER FOR REVERSE
05105	01020p	0577	7 A	0025 B		DEC	IDIRF	SET INVERTER FLAG (-1=REV)
05110	01021 P	657A	20	959581		BRA	IROT2	
05115	01022P	057C	85	82 A	IROTI	LDAA	4\$82	CONFIGURE INVERTER FOR FORWARD
05120	01023 P	057 E	7 C	0025 B		INC	IDIRF	SET LNVERTER FLAG ($1=F W D$)
05125	01024?	0581	BD	0433 P	IROT 2	JSR	DOUTA	OUTPUT DIRECTION INFORMATION
85130	日1025P	0584	39			RTS		

PAGE Ø21 ACDRIV *** AC DRIVE - ENGINEERING PROTOTYPE - VERSION $1 . \varnothing$

05260	010519	0517	C1	C	A
05255	01052 P	Ø5A9	24	05 g	95B0
05270	01053 P	$\emptyset 5 A B$	7D	0026	6 B
Q5275	Ø1054P	65AE	27	010	65B1
95280	Ø1055P	-5B®	4F		
05285	01056 P	05B1	97	$\square E$	B
05290	01057P	Ø5B3	C 6	09	A
05295	Ø1058P	05B5	7E	944E	

05305	01060					**
Ø5310	01051					**
05315	01062					**
¢5320	01063					**
05325	91064					**
05330	01055					**
05335	01065					**
05340	01067					**
05345	01068					**
05350	91069P	95B8	97	33	B	REG
05355	01078 P	Ø5BA	95	0.5	B	
05350	01071 P	65BC	F 5	Ø00A	P	
05365	01072 P	05BF	BD	0587	P	
05370	01073 P	05C2	2A	0105		
05375	91074P	95C 4	4 C			
95380	g1075P	65C5	15			
05385	91076P	Ø5C6	96	$\square E$	B	
05390	01077 P	65C8	CB	D2	A	
05395	91078P	65CA	DI	$0 \square$	B	
05400	g1079P	05 CC	25	0905		
05405	91080Р	Ø5CE	7D	0027	B	
05410	01081 P	0501	25	1605		
05415	Ø1082P	05D 3	95	33	B	
95420	01083 P	65D 5	20	27 -		
05425	Ø1084P	65D7	CB	07	A	REG 9
05430	Ø1085P	65D9	D1	00	B	
05435	01086 P	05 DB	25	0905		
05440	Ø1087P	05DD	7D	Ø027	B	
05445	01083P	65EØ	26	1305		
05450	Q1989p	ด5E2	95	33	B	
05455	01090P	@5E4	20	1895		
05450	01091 P	95E5	D7	27	B	REG@A
05465	01092P	05E8	901	01	A	
05470	01093P	b5EA	24	0105		
05475	01094P	®5EC	4 F			
05480	81095P	05ED	20	0505		
05485	01096 P	05EF	8B	01	A	REGI
05490	Ø1097P	Ø5F1	24	0205		
05495	01098 P	05F3	85	FF	A	
85500	61099P	65F5	D6	33	B	REG1A
05505	日1100Р	05 F 7	11			
05510	O1101P	05 E 8	25	0405		
05515	01102P	の5FA	7F	Ø027	B	
05520	01103 P	$05 F D$	17			
05525	01104 P	05 FE	39			REG2
05530	91105					
05535	01106					**
05540	01107					**

REGENERATION SLIP CONTROL
REDUCES: PREVIOUS SLIP LIMIT IN REG. "A" IF VBAT + (POT SETTING) EXCEEDS PRESET LIMI DEAD BAND IS INCORPORATED AROUND LTMIT INCREASES: SLTP LIMIT TO NORMAL LTMIT IF VOL BELOW DEAD BAND RETURNS WITH SLTP IN "A"-REG

STAA	CTEMP	SAVE LIMTT	
LDAA	REGV	REGENERATION SETTING	
LDAB	KPOT	SCALE FACTOR	
JSR	MP8	SCALE	
BPL	*+3		
INCA		ROUND SMSB	
TAB			
LDAA	SmAXV		
ADDB	\#210	150V - 2.5 V	
CM PB	VBAT		
BCS	REG \varnothing	VBAT > (VLIM - 2.5)	
TST	REGF	TEST REGENERATION LTMIT	
BNE	REGI	YES, ACTIVE	
LDAA	CTEMP	USE NORMAL LIMIT VALUE	
BRA	REG2	CONTINUE	
ADDB	\# 7	$150 \mathrm{~V}+2.5 \mathrm{~V}$	
CMPB	VBAT		
BCS	REG@A	VBAT > (VLIM + 2.5)	
TST	REGF	TEST REGENERATION LIMIT	
BNE	REGIA	YES, ACTIVE	
LDAA	CTEMP	USE NORMAL LIMIT VALUE	
BRA	REG2	CONTINUE	
STAB	REGF	SET REGENERATION ELAG	
SUBA	\# \$01	DECREASE SLTP LIMIT	
BCC	* +3	NO, OVERFLON	
CLRA		SET MINTMUN	
BRA	REG1A		
ADDA	\#SO1	INCREASE SLIP LTMIT	
BCC	* +4		
LDAA	\#SFF	SET MAXIMUN	
LDAB	CTEMP		
CBA		COMPARE TO NORMAL LIMTT	VALUE
BCS	REG2	SLIP(FREG) > SLIP (REG)	
CLR	REGF	RESET FLAG	
TBA			
RTS		RETURN	
SINE / TRIANGLE RATIO SUBROUTINE			
SELECTS PROPER SINE /TRIANGLE RATIO FROM TA			

05570	01133	**								
05575	01134					**	SUBROUTINE : CONTROL GATN LOOK-UP			
05680	01135					**	BASED UPON EREQUENCY AT PER+1 \& PER+2			
05685	D1136					**	TABLE: TBLGLO		LOW FREQUENCIES <	30.547
05690	01137					**	TABLE: TBLGHI		HTGH EREQUENCIES >	> 3 ¢. 5 H7
05595	01138					**	RETURNS FROM		TBL SUBROUTINE WITH	GAIN IN A-
05700	01139					**				
05705	91140P	0621	95	DC	B	GA IN	LDAA	PER+1	9MSB	
05710	01141 P	0523	D5	0	B		LDAB	PER+2	8LSB	
05715	91142P	0525	81	10	A		CMPA	\#S10		
05720	g1143P	0627	24	060			BCC	GAIN1	< 3日HZ USE LOW FREQ.	- table
05725	01144 P	0529	CE	0761	P		LDX	*TBLGHI	USE HIGY FREQ TABLE	
05730	01145 P	052 C	7E	0543	P		JMP	TBL	LINEARTT, \& R RETURN	
05735	g1146P	日62F	15			GAIN1	TAB			
05740	01147 P	0630	4F				CLRA			
05745	91148P	0631	CE	0750	P		LDX	\#TBLGLO	USE LON FREQ. TABLE	
05750	91149P	0634	7E	0543	P		JMP	TBL16	LINEARITE \& RETURN	

05840
0581167
054
0168

0585001169
0585501170
0586001171
0586501172
0587001173 P 054358
$0587501174 \mathrm{P} \quad 054449$
$05880 \quad 01175 \mathrm{P} \quad 054559$
05885 Ø1176P 064649
05890 Ø1177P 064758
$0589501178 \mathrm{P} \quad 064849$
0590001179 P 064958
05905 01180P 064A 49
$\begin{array}{lllll}05910 & 01181 \mathrm{P} & 064 \mathrm{~B} & \mathrm{DF} & 30 \\ 05915 & \mathrm{~B}\end{array}$
$\begin{array}{rrrrrr}05915 & 01182 \mathrm{P} & 064 \mathrm{D} & 9 \mathrm{~B} & 31 & \mathrm{~B} \\ 05920 & 01183 \mathrm{P} & 064 \mathrm{~F} & 24 & 03 & 0654\end{array}$
0592501184 P Ø551 7C 0030 B
$05930 \quad 01185 \mathrm{P} \quad 05549731 \quad \mathrm{~B}$
0593501185 P Ø656 DE 30 B
0594001187 P 0558 А5 0 0 A
05945 @1188P Ø65A Ag @1 A
0595001189 P 065C 9732 B
05955 01190p 055E 2C 01 0651
05950 01191P 0660 40.
0595501192 P 0651 BD 0687 P
0597001193 P 0664 2A 010657
05975 இ1194P 0666 4C
05980 Ø1195P 0667 D5 32 B
05985 @1196P 0669 2F 01 066C 0599001197 P 066 B 40
05995 01198P 065C AB D0 A Ø6øøø Ø1199P Ø66E 39

A-V Page 26

PAGE	026	ACDRIV ***			AC DRIVE		- ENGINEERING		PROTOTYPE - VERSION	1.3
06570	01333 P	8708	9 B	2E	B		ADDA	DIVN		
06575	01334 P	070.	59				ROLR			
05580	01335 P	@70B	49				ROLA		2 (REMAINDER)	
06585	01335 P	970c	53				COMB		I'S COMPLEMENT OF	QU〇T.
05598	01337P	070D	39				RTS			

PAGE	028	ACDRIV	***	AC	DR IVE	- ENG	ERI	OTOTYPE	VE	RS	ON	. 0
0.5975	a1394P	0730	91	A		FCB	\$01	SET STR	T0	27	(X3	CODE)
06980	g1395P	0731	2C	A		FCB	S2C	11.1 HZ				
05935	Ø1396P	0732	2D	A		FCB	S2D	10.6 HZ				
05990	91397P	0733	02	A		FCB	S@2	SET STR	TO	45	(X5	CODE)
05995	Ø1398P	0734	39	A		FCB	\$39	8.57 HZ				
07000	Q1399P	0735	30	A		FCB	\$3D	8.00 HZ				
07085	の1400P	0735	04	A		FCB	\$04	SET STR	T0	53	(X7	CODE)
07010	01401 P	$\boxed{7} 77$	4 B	A		FCB	\$4B	5.51 HZ				
07015	g1482P	0738	51	A		FCB	\$51	6.03 HZ				
07020	01403P	0739	08	A		FCB	\$08	SET STR	TO	81	(X9	CODE)
07025	01404P	073A	EF	A		FCB	\$FF					
07930	$01405 P$	973B	FF	A		FCB	\$FF					

07085	01416	
07090	01417	
07095	01418	
07100	01419 P	0744
	P	0745
07105	01429 P	0746
	P	0747
07110	01421 P	0748
	P	0749
07115	01422 P	074 A
	P	074 B
07129	01423 P	074 C
	P	074 D
07125	01424 P	074 E
	P	074 F

0713501425
0714081427
07145 91428
$07150 \quad 01429$
0715501430 P 0750
07160 01431P 0751
0716501432 P 0752
07170 $01433 \mathrm{P} \quad 0753$
87175 Ø1434P 0754
0718001435 P 0755
63

PAGE	029	ACDRIV	＊＊＊	$A C$	DR TVE	－ENS	ER	OTY	PE		ON 1.0
$\dot{8} 7195$	91435P	0756	OE	A		FCB	14	（5）	5.99		55000
87190	91437P	$\boxed{6} 7$	00	A		FCB	12	（7）	4.35	47.	S709x
07195	01439 P	0753	8 A	A		FCB	10	（3）	3.81		\＄3900
97200	Ø1439P	0759	9A	A		FCB	10	（9）			
07205	91449P	075A	DA	A		FCB	10	（A）			
07210	91441P	975B	gA	A		FCB	10	（B）			
07215	01442 P	075C	ดA	A		FCB	10	（C）			
07220	g1443P	0750	OA	A		FCB	10	（D）			
07225	91444P	¢75E	OA	A		FCB	10	（E）			
07230	81445P	075 F	QA	A		FCB	10	（F）			
07235	01446 D	9750	0 A	A		FCB	10	（10）			

カロロ0	A I	90044＊90045	90045	00947	90048	90049	の9050	90051	の0ロ52	0905 5
		90855 90955	90057	00058	90059	00050				
ØロのA	ATI®．	90055＊								
900B	AIII．	60056＊								
9034	AI4．	のøロ49＊								
9005	AI5．	90959＊								
9007	AI7．	00052＊								

PAGE 03ø ACDRIV *** AC DRIVE - ENGINEERING PROTOTYPE - VERSION 1. \emptyset

```
    0008 AI8. 00053*
    \emptyset009 AI9. 00054*
P049B AIN9 00195 00347 00350 00695 00757 00763 00755 90875*
```



```
    00038 00039
P g EEI BATT 00728*Ø0736
P 03F7 BATT1 00731 00738*
P 0401 BATT2 00739 00743*
P 0432 CALCVI @0770 00772*
P 0410 CALCVB 00729 90755*
P 06D1 COM16 g0359 00441 00532 00589 00595 01280 01287 01293*
B 002B COUNT 00104*Ø0690 00711
B 0035 CPULSE 00111*00931 00983
B 0035 CSINE 00112*g0500 00933 00948 00951 00972 00975 00994
B OOQF CSLIPV g\emptyset\emptyset83*\emptyset0386 90417
В Ø0 З3 СTEMP 0\emptyset109*Ø0404 Ø0405 00403 00409 90526 00527 00533 00534 00989 00990
    90991 01059 01082 01089 01099
    P 0288 CTLP1 00502 00505*
    P 028D CTLP2 00595 g0520*
P 02A6 CTLP2A 00531 00533*
P 02B4 CTLP3 00535 g0540*
P g2BA CTLP4 Ø0538 00539 g0543*
P 02CC CTLP5 00549 Ø0552*
P 02D2 CTLP6 00548 00555*
P 02DB CTLP6A 00555 00559*
P Ø2E0 CTLP7 \0551 00554 00558 90561*
P 02E4 CTLP8 の0508 0.553*
P 0318 CTLS 00594 00598 00599*
P 032F CTLSI 00583 00511*
P $335 CTLS2 00510 00522*
B g037 CTRIA 00113*00503 00541 00543 00548 00935 00953 Ø0959 00962 00970 00999
    01003
P01D4 CTRL 00399*
P 0214 CTRL1 00427 00430*
P 0225 CTRLIA 00437 00439*
P 022D CTRL2 00440 00443*
P 04C4 DELAY 00205 00253 00900*g0907
P OACA DELAY1 00902*Ø0905
P 043D DEVSEL 00219 90459 00809*00859
B 0008 DIA 90075*00271 00302 00555 01014
B ดूด9 DIB Ø0077*00672
P OQDD DIRQ 00136*Ø0324 00340
P 05D8 DIV g0483 01305*
P @GDE DIV2 01308*01310
```



```
    01311 01315 01318 01321 01323 01325 01328 01331 01333
```



```
    00744 00748
```



```
    00923 01005 91024
P 0438 DOUTB 00202 ब0214 g0327 9, \379 00749 00801*
P Ø\emptyset\emptysetE EIRQ \emptyset0137*\emptyset0181 \0231 00553
```



```
B g012 ERRA बøD85*g0410 00411 00443 \emptyset0444
P Ø14D ESHUTD @0319*g\569 00704 90737
P 0719 ETBLTE 00689 01357*
P ØOBC EXECA Ø0234 0D243*\emptyset0258 बD270 00288
P ODCD EXECAI O0250*00257
```

PAGE 631 ACDRIV *** AC DRIVE - ENGINEERING PROTOTYPE - VERSION 1.め

```
P O1IE EXECB ص0294*
P 012D EXECB1 00295 20300*
P0142 EXECB2 00304 00310*
    0010 FILE 00012*00125
B 0005 FREQ g0073*@0255 00344 00357 00358
P 0637 FUNC 00486 00957 0%955 01155*01153
P g640 FUNC1 01160 01164*
P 0621 GAIN 20474 01I40*
P 062F GAINI gl143 01145*
B 0028 HOTF 00101*Ø0691 00707 00713
B 0001 IBAT 00058*00767
        00ø3 IBAT. Øøø48*g0765
B \emptyset02A ICOUNT @0103*ø0245 00282 00284 00289 00345
B 0025 IDIRF 00098*00244 00276 00279 00305 01013 01020 01023
B 001E INC 00093*00500 09601 00505 00508 00509
B Ø018 INCI 00090*00489 00493 00494 00524 00625
```



```
B D01A INCP 00091*00553 00554 00522 00523
B g01C INCPO 00092*g0523 00546 90547 00561 00552 00555 00565 00567 00558
P 000F INIT 00121 00140*
P 0058 INITI 00178 g0187*
P 0473 INPUT 00175 00353 \0455 00654 00571 00846*ø0890
P0172 INT 00340*g1474
P 019A INT1 00357*
P 01B4 INTIA 00364 00367 00371*
P gIC7 INT2 09375 00381*
P 0358 INTE 00371 00531 00650*
P 0238 INTV 00454*
P 0251 INTVI 00457 00474*
P 027A INTVIA 08490 00492 00494*
P 0344 INTV2 00464 00530*
P0349 INTV3 00632*00634
P0355 INTV4 00542 00644 00549*
P 00gB IPOMAX 00134*00550 g0553
P ØøøC IPOMIN \emptysetø1 35*ø0557 0056!
P 0558 IROT 00299 01013*
P 057C IROT1 01018 01022*
P 0581 IROT2 01015 01021 01024*
P 0009 KFREQ g0131*00421
```



```
P OO08 KLOW OO130*O0584
P0005 кмOT 00128*00428
P Ø0ØA KPOT Ø0132*Ø1071
P 0007 KREG 00129*00430
P 0005 KVHZ 00127*00400
P gOE@ MODE O\emptyset183 00261*øø314
P GOEA MODEI 00262 00266*
P gOF4 MODE2 00265 g0271*
P 0105 MODE3 00275 00279*
P 010A MODE3A 00278 00282*
P 0113 MODE3B 00283 00286*
P 011A MODE4 g0273 00277 00280 00289*
P 011D MODE5 00285 Ø0287 00290*
B g024 MODEF Ø0097*g0243 00269 00294 00310 00369
P 0587 MP8 00401 00418 00431 00478 00586 01072 01192 01228*01256
B g02D MULT 00106*g1228 01233 01237 01241 01245
P 044E OUTPUT 00783 00802 00823*00996 01090 01058
B Ø00B PER 00081*øø265 00360 00361 00365 00413 00581 01035 01045 01050 01114
```

PAGE ø32 ACDRIV＊＊＊AC DRIVE－ENGINEERING PROTOTYPE－VERSION 2.0

			0114091141									
P	0718	PERMAX	01042 g1353＊									
P	071 A	PERMIN	01039 $01362 *$									
	E491	PIAIAC	の日ロ25＊ロ0144	08150	20812	00814	09835	00837	の¢855	90858	09885	79888
	E400	pialad	00025＊g6147	20154	Ø0810	98833	90851	00884				
	E403	PIAIBC	00028＊ロ9145	08152	00826	90830	g0848	のø853	00877	00891		
	E492	PIAIBD	gøg27＊00148	08153	00828	00831	90850	00857	00879	06882		
	E410	PTMICX	90032＊00161	90169	09182	00232	00325	00341	00654			
	E412	PTMILC	00034＊00171	80992								
	E413	PTMIXX	90035＊									
	E411	PTM2CS	90033＊00165	00173	08179	80229	60342	00551	09903	00919		
	E414	PTM2LC	00035＊08901	06918								
	E415	PTM 2XX	09037＊									
	E416	PTM 3LC	ø0038＊00153	00180	90230	90343	00652					
	E417	PTM 3 XX	00039＊									
P	ø ¢ 7	QDIV	00545 01275＊									
P	$05 C 2$	QDIVI	01278 91281＊	¢1284								
P	06 D 0	QDIV2	01286 g1288＊									
P	＠4DA	RCOM	0022300295	90．33ø	00915＊							
P	9583	REG	01047 01069＊									
P	05D 7	REG0	01079 01084＊									
P	05E6	Reg0a	01085 21091＊									
p	05 EF	REG1	01981 01095＊									
p	0555	Regia	0108891095	01099＊								
P	05 FE	REG2	0108301098	01101	01104＊							
B	g027	REGF	$00100 * 01080$	01087	01091	01102						
B	0005	REGV	00872＊00761	01078								
	0000	REGV．	00045＊09756									
P	0385	SAFETI	00558 90570＊									
P	0399	SAFET2	00575 90679＊									
P	0376	SAFETY	00221 00250	60313	の日663＊							
P	0646	SCALE	00422 81255＊									
P	0152	SHUTD	00324＊91476									
P	016 D	SHUTD	00334＊00335									
B	0029	Shuta	00102＊00693	00599	90701	09728	08732	00734				
P	05 FF	SINTR	00373 01114＊									
P	6604	SINTR1	$01116 * 01120$									
P	961 D	SINTR2	9112201125	91130＊								
B	0003	SLIPD	00070＊00261	00355	90426	90439	81648					
B	g． 26	SLIPF	ø0099＊08380	20309	01053							
B	加 4	SLIPM	90071＊00263	00351	90383	00385						
	0001	SLIPM．	96946＊00349									
P	0585	Smax	00381 01036＊									
P	059 E	SMAXI	0104001043	01047＊								
P	¢5AB	SMAX2	01049 01053＊									
P	95BD	Smax 3	01052 ø1055＊									
B	の00E	Smaxv	00082＊00382	01655	01075							
P	0000	StART	00121＊01475	91477								
B	0016	STR	00688＊g0213	00378	00747	01124	01126					
B	0017	STRF	98089＊g9374	01128	01130							
P	064 B	TBL	$0114501181 *$									
P	9643	TBL16	01149 91173＊									
P	0647	TBL4	01046 01177＊									
P	0645	TBL8	91175＊									
P	0744	TBLCOR	00485 81419＊									
P	0761	TBLGHI	01144 01452＊									
P	0750	TBLGLO	$0114801430 *$									

```
PAGE Ø33 ACDRIV *** AC DRTVE - ENGINEERING PROTOTYPE - VERSION I.Q
```

P 071C TBLSP 01037 01367*
P Ø70E TBLTEM 00589 のロ692 01345*
P 073 C TBLVTR 00955 ⿹勹955 01411**
B 0030 TEMP Ø0108*Ø1181 Ø1182 01184 01185 01185 01189 91195
P の39F TEMPの Ø0.589*
P 03A9 TEMP1 $00693 * 00703$ 00712
P 03C2 TEMP2 00692 00705*
P 03 C 9 TEMP3 00795 90708*
P 03DB TEMP4 00714 00718*
B g02C TIME Ø0105*ø0204 Ø0252 ø0905.
カロロС TOD. Øロด57*ด1346
のดのD TO1. のめの58*Ø1349

の日2F TO3. ØØ050*Ø1355
P 065F TRUNC 00445 0062501205*
P 967E TRUNC1 @1209 0121Ø 01214*
P 0695 TRUNC2 ब1207 01213 01219*

ロ092 VBAT. $00047 * 00762$
P g4FF VCORR g0.532 03945*
P 051E VDEC 00946 Ø0962*
P 0533 VDEC1 00964 00972*
P 053C VDEC2 00971 00974 00975*
B 90日2 VH2 00069*Ø0348 30399
Ø006 VHZ. g0051*øた345

P 0503 VINC 00948*
P 050E VINC2 00950 00953*
P 051D VINC3 ด0952 09955 00960*
B Øロ22 VLOOP Ø0095*の0451 Ø0527 0の530 00533
P @53D VOUT Ø0549 の9936 00982*
B Øด23 VSIGNF Øø095*ดø453 Øด528 Øø645 00945
P Ø495 WDOG Ø0227 ø0311 Ø0334 00868*g0992
P の刀5D ZERO gø189*øø192
P ब4F1 7VOLT Ø0215 90246 00333 0の931*

APPENDIX VI

TEST INSTRUMENTATION SPECIFICATIONS

Page NumberHimmelstein Torque Transducer A-VI-2
Ohio Semitronics Watt Meter A-VI-6

GENERAL DESCRIPTION

The MCRT ${ }^{\infty} 9-02 T$ is a general purpose, high accuracy shaft torquemeter ideal for continuous dynamometer readout and torque feedback applications. Six standard torque ranges provide maximum power capacities from 60 to 1200 horsepower. Performance is independent of speed from stall through 7.500 rpm .

The $M C R T{ }^{*} 9.02 T$ uses a rotating strain gage torque bridge, temperature compensated for drift and modulus. The bridge is connected to a stationary electronic readout by integral, non-contact rotary transformers. The device is immune to water, lubricants, coolants, vibration, etc. and elimination of slip rings permits very low level measurements and long maintenancefree life. Thrust and bending loads are inherently cancelled by the transducer design. Factory options include an integral, non-contact speed pick-up and a foot mount.

Linearity: 0.1\%

Temperature Effects: From 75 to 1750 F maximum drift is 0.2% of full scale and maximum error due to modulus change is 0.2% of reading.

Maximum Operating Temperature: $220^{\circ} \mathrm{F}$, assuming permanent lubrication. Above $175^{\circ} \mathrm{F}$, the maximum shaft speed may have to be de-rated.

Readout: Any carrier amplifier suitable for strain gage service may be used.

Excitation Voltage: 10 volts rms, maximum.
Nominal Output: 0.75 millivolts/volt (open circuit).
Standard Ratings:

MODEL	FULL SCALE TORQUE	TORSIONAL STIFFNESS	MAXIMUM ROTATING INERTIA	MAXIMUM WEIGHT
MCRT ${ }^{\text {® }}$ 9.02T	(lb. - in.)	(lb. - in./rad.)	(in. - oz. sec. ${ }^{\text {2 }}$)	(lbs.)
-(5-2)	500	117,000	0.151	17
-(1.3)	1,000	197,000	0.152	17
-(2-3)	2,000	260,000	0.154	17
-(4-3)	4,000	427,000	0.186	221/2
-(6-3)	6,000	515,000	0.188	221/2
-(1-4)	10,000	605,000	0.192	221/2

Overload Capacity: 2 times full scale rating
Shaft Speed: 0 to $7,500 \mathrm{rpm}$ bi-directional. Optional speed pick-up produces 60 pulses per shaft revolution.
Construction: Load carrying member is $17-4 \mathrm{PH}$ high strength stainless steel.

NOTES:
[1] Maximum speed rating assumes permanent lubrication. Consult factcry for higher ratings.
(2] When mounted as a floating shaft, residual shaft mis-alignment to driving and driven shafts should be taken up with single flexible couplings and the stator assembly compliantly restrained. When a foot mount is used, double flexible couplings should be employed.

$\begin{gathered} \text { MODEL NC } \\ \vdots-02 T \\ \hline \end{gathered}$	TOROUE RANGE LB. INCH	OIMENSION									
		A	8	C	D	E	F	G	H	L	w
5-2	0-500										
1-3	0-1,000	$\underset{\sim}{n}$	$\underset{\sim}{n}$	$\underset{\sim}{\bar{m}}$	O-					O	
2-3	0-2,00C								8		\cdots
4-3	0-4,000					$\stackrel{+}{N}$	$\stackrel{\sim}{\square}$	∇.	$\stackrel{N}{N}$		\odot
6-3	0-6,000	少	$\stackrel{N}{N}$	$\stackrel{9}{6}$	운					$\xrightarrow{\mathbf{N}}$	
1-4	0-10,000				-						

MCRT ${ }^{\circ} 9-02 T$

TRANSDUCER AMPLIFIER MODEL 6-201

- HIGH ACCURACY
- 100 MEG INPUT RESISTANCE
- RATIOMETRIC OPERATION
- UNSURPASSED NOISE IMMUNITY
- beSSEL RESPONSE OUTPUT FILTER
- NEGATIVE SPAN ADJUSTMENT

Description

The Model 6-201 is a truely universal Transducer Amplifier. It will handle directly-wired or transformer-coupled strain gage transducers or, LVDT's. No effort has been spared to provide the most stable, accurate and noise-free performance obtainable. When incorporated in a SYSTEM 6, the module is complete in all respects; it provides transducer excitation, transducer balance, zero set, span set, switchable low pass filtering, dual polarity shunt calibration and output buffering functions. Versatility and high accuracy are enhanced by provision for 4 , 6 or 7 wire input connections.
A.c excitation yields extremely stable operation and high sensitivity while eliminating the effects of thermocouple and galvanic voltages, voltages induced by rotating machinery or a-c magnetic fields and other industrial noise sources. While such noise immunity is inherent in a carrier amplifier with phase sensitive detection, the Model 6-201 attains a new level of noise immunity that is especially meaningful in noisy industrial environments. Such immunity is achieved, in part, by the unique detector circuit which yields unsurpassed quadrature rejection, by the incorporation of low level active filtering and by the very high Common Mode Rejection (CMR). The use of low level filtering increases the effective CMR ratio and prevents large, normal mode, noise signals from overloading the amplifier and causing reading errors. Additional normal mode rejection is provided by an active, output filter with switch selectable bandwidths. This Bessel response filter avoids data distorting group delays and overshoot errors that occur with other types. The very low cut-off frequencies provide long term signal averaging and prevent roll-over of the last display digit, even in the presence of ultra low fre--rency variations.

The 6-201's very high input impedance eliminates errors from shunting type balance controls found in older instruments. Stable, internally generated balancing voltages are summed with the residual transducer unbalance after the high impedance, differential input amplifier. An independent, Negative Span Adjustment is available to compensate for transducer with imperfect symmetry. This provides correct system symmetry when several transducer channels share a digital display.

The 3 kHz oscillator is amplitude-locked to the ultra-stable SYSTEM 6 reference. Additionally, the actual bridge excitation voltage is feedback locked via 6 (or 7) wire sensing to the system reference thus providing ratiometric operation. In the unlikely event the system reference changes, both the sensitivity of the digital indicator and the bridge excitation voltage change in the same ratio. Hence, the displayed digitized output will remain unchanged i.e., the equivalent system gain is independent of the reference.

The module includes SYSTEM 6 address decoding circuitry and will generate legend, A/D Converter Scaling, 5 th digit blanking and decimal point location commands in accordance with switch-programmed, field-changeable instructions. A front panel LED indicates when the module output is addressed for display on the digital indicator.

Specifications, Model 6-201

Transducer Type: Any strain gage transducer either directly wired or transformer coupled. Will also handle 1/4 and 1/2 bridges and LVDT* Transducers.
Transducer Impedance: 80 to 2000 ohms Transducer Connections:. Provision for 4, 6 or 7 wire circuits Transducer Cable Length: up to 5000 foet
Transducer Excitation:
Amplitude: 6 volts rms, regulated
Frequency: $3 \mathrm{kHz} \pm 1 \%$. Provision included for frequency
"slaving" to other 6-201 modules.
Calibration: Dual-polarity shunt calibration with provision for CAL resistor feedback
Sensitivity: . 0.1 mv/v, minimum
Sensitivity Range: Minimum SPAN adjust range from 5.0 to $0.1 \mathrm{mv} / \mathrm{v}$ via multi-turn. COARSE and FINE front panel controls. Negative SPAN independently sdjustable over a 2% range
Input Impedance: 100 megohm shunted by 20 pf independent of NULL control settings. Common Mode Rejection (CMR): 120 db , minimum Normal Mode Rejection: At least 120 db at 60 hertz with selectable filter in 500 hertz position
Quadrature Rejection: at Ieast 60 db at $\mathbf{3} \mathbf{~ k H z}$
Null Control Range: $11 / 2 \mathrm{mv} / \mathrm{v}$ both in-phase (R) and quadrature (C) via multi-furn controls. COARSE and FINE control provided for in-phase (R) adjustment. Amplifier response is flat regardless of selected filter bandwidth when in the NULL mode. Releasing the NULL switch automatically re-engages the selected filter bandwidth.

Analog Output: \qquad ± 5 volts full scale with 40% * overrange at 5 milliamperes maximum
Output Impedance: Less than 0.1 ohms Bandwidth: d-e to 0.1, 1, 100 or 500 hertz, switch salectable"e.
Signal-To-Noise-Ratio: 0.05\% rms or better except 0.1\% in 500 hertz bandwidth filter position Switchable Filter Response Time: Assuming a step input. the filter output will reach the tabulated percentage of actual value $\mathrm{in} \mathrm{K} / \mathrm{fc}$ seconds where fe is the selected cut-off frequency

Kof Actual Value	K
99.9%	2.0
99.0%	1.5
90.0%	1.0
63.2%	0.6

Fiter Attenuation: 80 db per decade above cut-off frequency Overall Accuracy: 0.05% of full scalo. *e. Module Size: . One standard width

NOTES:

- The 6-203 LVDT amplifier is recommended for dedicated LVDT Applicstions.
* See Bulletin 601 for separate A/D overrange specifications
**Four individual pushbutton switches select desired response. When no filter switch is dopressed, signal output is unfiltered.
*... See Bulletin 601 for complete definition of operating conditions.

SPECIFICATIONS:

INPUTS:

Phase	$3 \phi 3$ wire, 304 wire
Voltage "fs"	120 VAC
range	0 to 150 VAC
overvoltage (continuous)	175 VAC
burden (per phase)	.1VA
Current "fs"	600 amperes ac
range	0 to 300 amperes ac
	0 to 600 amperes ac
overcurrent	10 times fs
burden	<.1VA
Power factor range	unity to 0 lead or lag
Frequency range	DC to $5 \mathrm{~K} \mathrm{~Hz} \pm 1 \mathrm{db}$
Response time	$20 \mu \mathrm{sec}$ to $90 \% \mathrm{fs}$
Isolation input/output/case	1500 VAC
Power ranges "fs"	(300A) 0 to 108 KW
	(600A) 0 to 216 KW
Accuracy (including setpoint, linearity,	Analog $\pm 0.5 \%$ fs
pf and temperature)	Digital Meter $\pm 1.0 \%$ fs
Instrument power	115VAC $10 \% 60 \mathrm{~Hz}$
Current transducer size	$41 / 8^{\prime \prime} \times 5^{\prime \prime} \times 11 / 4^{\prime \prime}$
	2" dia.

*For sale by the National Technical Information Service, Springfield, Virginia 22161

