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Introduction 

by 

Larry L. Schumaker 

On may 17-19. 1982. a workshop entitled "Surface Fitting" was held 

at Texas A&M University. College Statlon. The purDose of the workshop 

was to bring together leading experts from academia. industry. and 

government laboratories for an exchange of views and a discussion of the 

"state of the art." For a list of participants see pages 5-6. 

The workshop began wlth an overview by R. P. Heydorn of NASA/Johnson 

Space Center, Houston. Texas. The purpose of the overview was to acquaint 

the partlclpants with some mathematical/statistical problems withln the 

AgRISTARS Program which may be amenable to investlgations involvlng the 

use of surface-fitting techniques. In order to establish a framework 

for the workshop. Larry Schumaker presented a general survey of surface 

flttlng and contourlng in WhlCh he touched on a variety of local and 

global methods for both lnterpolatl0n and approximation. 

The program for the workshop lncluded six invited lecturers (see the 

p~ogram on pages 3-5). Charles Lawson dlscussed t~~ constructlon of a 

trlangular grld on the sphere, and the computatl0n of correspondlng C1 

surfaces. R. E. Barnhlll dealt with several sche~es based on patches and 

blending. Rolland Hardy lectured on the multlquadric surfaces which he 

lnvented. Thomas Foley consldered a three stage procedure WhlCh proceeds 

from scattered data to grld values USlng local least squares, then to a 

-, 



bicubic B-spline interpolant, and finally uses Shepard's method to 

obtain an interpolant of the original data. Douglas Bates discussed 

smoothing splines and the method of generalized cross validation, with 

particular emphasis on computational methods. Rosemary Chang's talk 

dealt with several practical problems arising in Engineering. 

2 

In dddition to the formal lectures, the program included a panel 

discussion involving everyone. We believe that the workshop gave all 

participants--the theoreticians, the practitioners, and the consumers--

a better understanding of what methods and software are available, and of 

what needs to be done in the future. 

Written versions of the lectures are included in this document. 

The talks elicited a great deal of discussion WhlCh we have not attempted 

to reproduce here. Finally, this document lncludes a computerized 

bibliography of surface fitting papers which larry Schumaker has 

assembled at Texas A&M Unlverslty. Additions and correctlons to this 

bibliography would be greatly appreciated. 
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Monday, t~ay 17 

8: 15 - 8:30 

8:30 - 9:00 

9:00 - 10:30 

10 : 30 - 11: 00 

11:00 - 12:00 

12 :00 - 1: 30 

1:30 - 2:30 

2:30 - 3:00 

3:00 - 4:00 

Tuesday, May 18 

8:15 - 8:30 

8:30 - 9:30 

9:30 - 10:30 

10:30 - 11 :00 

11 : 00 - 12: 00 

12·00 - 1:30 

NASA WORKSHOP ON "SURFACE FITTING" 

Texas A&M University 
May 17-19, 1982 

Room 206 Memorial Student Center 

Coffee & Doughnuts 

Introduction 
Larry F. Guseman, Jr., Texas A&M University 

"Crop Proportlon Estimatlon Problems 1" AgRISTARS" 
Richard P. Heydorn, NASA/Johnson Space Center 

Coffee break 

Overview 
Larry L. Schumaker, Texas A&M Universlty 

Lunch 
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"C1 Surface Interpo1at1on for Scattered Data on a Sphere" 
Chuck Lawson. Jet Propulsion Labs, Cal Tech 

Coffee break 

"Computer-Aided Surface Representat10n" 
Bob Barnhl11, Univers1ty of Utah 

Coffee & Doughnuts 

"Appl1cat10n of Surface Modeli 1 ng Technlques to Engineering 
Problems" 
Rosemary E. Chang, Sandla Natlona1 Labs 

"Surface Flttlng wlth Blharmonlc and Harmonic Models" 
Rolland L. Hardy, Iowa State Unlverslty 

Coffee break 

"BSPLASH: A Three-Stage Surf~re Interpolant to Scattered Data" 
Tom Foley, Cal ifornla Polytechrllc 

Lunch 
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Workshop on "Surface Fi tting" 

1:30 - 2:30 

2:30 - 3:00 

Douglas Bates. University of Wisconsin--Madison 

Coffee break 

Dlnner at Larry Gusemdn's cabin 

Wednesday, May 19 
8:15 - 8:30 Coffee & doughnuts 
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8:30 - 10:00 Panel dlScussion: Research Issues in Surface Fitting Applicable 
to NASA 

10:00 - 10:30 Coffee Break 

10:30 - 12:00 Panel discusslon, contlnued. 
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Crop Proportion Estimation 
Problems in AgRISTARS 

Richard P. Heydorn 
N~SA/Johnson Space Center 

Earth Observatlon Division 

Workshop on Surface F;tting 
May 17. 1982 
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FITTING SURFACES TO SCATTERED DATA 

Larry L. Schumaker 

This pap,!r is a survey of a variety (If numerical methods 
for fitting a function to data given at a set of points scat
tered throughout a domain in the plane. We discuss four 
classes of m,!thodB: (1) glol>21 interpolation, (2) local inter
polation, (3) global approximati~n, and (4) local approximation. 
We also dia'_usB two-stage methods and contouring. The surfaces 
constructec. will include pol)~omialB, spline functions, and ra
tional fUDctions, among others. 

1. Introduc tion 

0u7 aim is to survey methods for solving the following 

probleD',. 

PROBLF.M 1.1. Let D be a domain 1n the (x,YJ-plane, and sup

pose F is a real-valued function defin~d on O. Suppose we 

are hiven the values F i = F(x i , Yi ) of F at some set of 

poir!!! (xi,Y
i

) located in 0, i = 1,2, ••• ,N. Find a function 

f defined on 0 which reasonably approximates F. 

This problem is, of course, precisely the problem of fit

ting a surface to given data. In many cases the domain 0 is 

& rectangle and the data points lle on a rectangular grid. 

There are, however, many practical problems (see the following 

sectlon for some specific examples), where 0 is of unusual 

shape and where the data points are irregularly scattered 

throughout O. Thus, while we shall pay some attention to spe

cial methods for regularly spaced data, we are actually more 

interested in the general case. 

There are basically two approaches to handling Problem 1.1. 

F1rst, we may try to construct a function f WhlCh interpolates 

........ .It I .... • ••• r ...... " •••• • " ........ . 
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the data exactly; i.e., such that 

i = l,2, ••• ,N. 

This approach may be desirable when the function values at the 

data points are known to high precision and where it is highly 

desirable that these values be preserved by the approxLmating 

function. 

The second approach involves constructing f which only 

approximately fits the data. This may be regarded as data 

smoothing and will be desi.able when <as is often the caae) 

the data are subject to inaccurate measurement or even errors. 

The que~t~on of whether interpolation or approxLmation should 

be used "lil not be discussed further here--this is ~ problem 

wh~ch must be settled for the individual problem at hand. 

In discussing Problem 1.1, it will be convenient to make 

a further distinction between t~ose methods which are local in 

character (i.e., where the value of the constructed surface f 

at the point (x,y) depends only on the data at relatively 

nearby points) and those methods which are global in nature. 

Thus, we discuss four categories of methods in sections 3-6: 

(1) global interpolation, (2) local interpolation, (3) global 

approximation, and (4) local approximation. In pach of these 

sections we further subdi\ide the material according to the 

type of functions being used and the type of data (scattered or 

not) for which the method is suitable. 

In discussing methods which apply only to special arrange

ment~ of data points, we have two objectives in mind. First, 

the methods are of interc'IL in their own right. l'tore important

ly in terms of Problem 1.1, however, such methods can also be 

used in two-stage nroc('sses ill WhiCh we first ccnstruct a sur

face g based on ~:Ie scattered data, and then use g to gen

erate regular data for the construction of another (perhaps 

smoother or more convenit.'nt) surface f. Such two-stag~ methods 
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will be discussed (along with several examples) in more detail 

in section 7. 

For many of the methods bas~d on regular data and some of 

those for scatt~red data, ~rror bounds arc available to indi

cate how well smooth f~nctions are approximated by tt.e surface 

constructed. We do not have space to go into the extensive 

literature on error bounds. A simple test of how well a method 

will approximate ~ooth functions is, however, provided by ita 

ability to reproduce pol}nomi.l surfaees exactly (that is, if 

F is a polynomial in x and y up to a cert.in degree, tl~n 

the surface f is identically equal to F). For many of the 

methods we will be able to indicate the corresponding degree of 

exactness. 

In many of the applications of surface-fitting techniques 

(cf. the examples in section 2), the ultimate aim is to usc the 

data to construct a contour map of the unknown function. Since 

F Is known only at the data points, we must be content to con

struct a contour map for one of our fitted surfaces. In aec

tion 8 we discuss some approaches to accomplishing this numeri

cally. 

We close this introdu~tion with a disclaimer--this survey 

does not include all possible methods for fitting surfaces to 

scattered data. For example, we have not discussed Fourier 

series methods, spatial fllterlng, and other such related sta

tistlcal technlques. In addition, t~e set of references for 

those methods WhlCh we have discussed are albo not complete. 

My original lntention was to complle as complete a bibliography 

as pOSSible, but the sheer bulk of relevant papets and my in

abllity to locate all of them conVinced me t~ settle for less. 

r have opted to quote a fairly representative list of papers, 

including several other surveys. Further reterences can be 

found by consulting these. 1 shall be very happy to receive 
information on references and methods 1 have overlooked. 

29 



2. Exrul\ples 

In this section we shall quote several explicit examples 

of Problem 1.1 to emphasize the fact that unusually shaped re

gions and scattered data do arise frequently in practice. 

EXAMPLE 2.1. Petroleum exploration. In exploring for petro

leum, the contours of various underground layers of sandstone, 

shale, limestone, etc. can be important indicators of possible 

oil fields. Frequently, data on such layers is pva!lable from 

exploratory wells, which, however, have most likely been drilled 

at locations scattered randomly throughout some geographical re

gion of interest. To quote a specific example, Robinson, 

Charlesworth, and Ellis (166) consider precisely this problem 

for some data obtained from 7,500 wells drilled in Alberta. For 

another example of this type, see Whitten and Koelling (208). 

Problems similar to that mentioned in Example 2.1 arise 

frequently in cartography and submarine topography where the 

measurements represent actual elevations. In some cases the 

measurements must be taken from photographs or from sonar mea

surements and are usually subject to some measurement error 

(eg. see Kubik [125J for a discussion of photogrammetry). 

EXAMPLE 2.2. Geological maps. There are a great many problems 

in Geology and the earth SClences 1n whtch the data arises from 

some other function of location bestdes actual elevations. For 

example, some geological variables of interest mlght include 

concentrations of variolls chemlcals, specific gravity, electri

cal resistivity, grain Size, texture, optical properties, iso

tope ratiOS, elc. To quote a specific example, Bhattacharyya 

[21, 22) discusses methods for fttting a surface to measurements 

(taken by airborne sensors) of magnetic potentlals over a cer

tain portion (If the Yukon. See also Bhattacharyya and Raychalld

huri (23) l'\nd Crain and Bhattacharyya [61 J. 
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The UDportance of surface-fitting methods in the earth sci

ences can be judged by the large number of papers in the area 

relating to various fitting methods. For a further list of 

problems and a discussion of some of the methods which have been 

applied, see the booKs of Bohrenberg and Giese [31), Chorley 

(~l), David (62), HArbau@h and Merriam (98), and Merriam (140). 

Recent survey papers include Whitten [203, 205) and Whitten and 

Koelling [207). To add just a few more of the papers in the 

geological literature dealing with surface fitting to our list, 

we mention Anderson [7), Crant [91), HeSSing, Lee, and Pierce 

(114), Holroyd and Bhattacharyya (115), Kubik [123, 125), Nor

cliffe [l~l), Reilly [16~J, Whitten [200, 201, 204), and Whit

ten and Koelling [206). 

EXAMPLE 2.3. Heart potentials. In order to diagnose certain 

abnonnal heart conditions, ~t is desired to make A series of 

several hundred contour maps of the heart potentIal field at 

t!~e steps of 1/100 of a second throughout a heart beat. Data 

on these heart potentials can be obtained by fitting the patient 

with a shirt containing probes. Because of body geometry, when 

this shirt is flattened out it takes the nonrectangular fo~ 

illustrated in Figure 1. Although the probes could be arranged 

fairly regularly in this domain, because of the added signif!-

• 

Figure 1. Heart Potential Measurements 
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canee of frontal measurements, in practice more probes are 

fitted there than in the bacK. Thi. example va. brousht to .y 

attention by M •• Patrizia Ciarlin1 of Rome. 

Potential fields arise in many other .pplic.tiona. W. 

have .lready mentioned Geology in Example 2.2. For.o.e exaa

pie. in !DOdd ling pl ....... ee Suneman [40 J. The probl •• d.n 

in 8ier.ack .nd Fink (24) in experimentally studying crystal 

structure using neutron bombardment. Data from v.vefo~ dis· 

tortion in electronic circuits can be found in Aki .. (5, 6). 

3. Global interpolation methods 

In this section ve outline several methods for lolving the 

interpolation problem (1.1). 

3.1 Polynomial interpolation. (Scattered datal. The general 

theory of finite dimensional interpolation i., of course, very 
N 

well known (e.g., see Davis (631). Briefly, if (~i}l ere N 

functions defined on the domain D, tben the function 

(3.1) 
N 

f(x,y) - La' (x,y) 
j:l j j 

will satisfy (1.1) if and only if 

linear system 

i 

H 
raj)l is a solutlor. of the 

1,2, ••• ,N. 

This system nas a (unique) solution for arbitrary choices of 

data precisely when it is nonsingular. This depends on the 

choice of functions (~j}~ and the location of the data points. 

To illustrate this method, we may cht)ole the ('j)~ to be 

polynomials in x and y. Given H, there is some le~v.y in 

the choice of which powers of x and y to use. For example, 

with N = 3 one could use the functions I, x, y or possibly 
2 2 

the functions 1, x , y , etc. When ~ is of the fo~ N ~ 
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(d+l) (d+l), we might use the functions 

("" ( »)N (xv ~)d ,d 
~j x,y 1 = Y v=o,~~O 

As simple as this sounds, there are some aerious difficul

ties with polynomial interpolation of scattered data. For open

ers, it is not so easy to guarantee that the system (3.2) is 

nonaingular. To give a very simple example, consider the case 

N • 3 with the functions 1, x, y. If the three data points 

happen to lie on a line, then (3.2) will in fact be singular. 

Even when (3.2) is nonsingular, it will often be the case (at 

least if N is moderately large) that the system will be i11-

conditioned. Finally, as is well known, polynomials of even 

moderate degree exhibit a considerable oscillatory character, 

and the resulting surface (even though it is C~ is often too 

undulating to be acceptable. The general problem of polynomial 

interpolation to scattered data is not usually treated in Nu

merical Analys·s and Approximation Theory books (see, however, 

Kunz [126], Prenter (151), and Steffenson [186). Some papers 

dealing with the question include Guenther [93], Thatcher [189], 

Thatcher and Milne (190), and Whaples [191]. Assuming the in

terpolant exists, error bounds have been studied in Ciarlet and 

Raviart [52-55). 

Let 

(3.3) ( V "'1m ,n ~ :0 span x y 0 1\ m,n V: ,~:,. • 

be the space of polynomials of degree m in x and of degree 

n in y. This linear space is of dimension (m+l) (n+l) and 

is, in fact, the tensor product of the linear spaces ~ and 
m 

It is perhaps of interest to note that there always exists ~. 
n 

a (usually nonunique) polynomial p £ ~N,N which solves the 

interpolation problem (1.1), no matter how the data points are 

positioned, see Prenter [158]. 
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3.2 Polynomial interpolation (sridded data). We begin this 

subsection by defining what we mea~ by gridded data. Let 

(3.4) H = (a, b) " (c,d) 

be a rectangle, and let 

(3.5) 
a == ~ < xl < 

c :- YO < Yl < 

< ~+l 

< Y .. d. 1+1 

b 

We suppose now that F 1s a function defined on H, and that 

we have the values of F at the corner points of the rectangu

lar grid defined by (3.5); i.e., 

i =' 0,1, ••• ,k+l 
j O,l, ••• ,i+1. 

This is a total of N ~ (k~2)(l.2) data points. 

It is quite easy to show that there exists a unique poly

nomial p in the class Pk+l,l.l (cf. the definition (3.3» 

which interpolates the gridded data given in (J.4)-(3.6). In 

fact, p can be written down explicitly in terma of the one

diDensional Lagrange polynomials a. 

k ... l £+1 
(3.7) p(x, y) =- L i.: F ijLi (x) 1:

j 
(y), 

i=O j=O 

where the {L
i 

(X»);+l and (Lj(Y) }~+l are the uaual one

d~nsional Lagrange polynomials associated with the interpola-

{ }k+l {}k+l tion points Xi 0 and Y
j 

0 ' respectively. Interpolation 

of gridded data by polynomials has been discussed in varioua 

books and papers--we do not bother with a long list. See e.g. 

Prenter (157] or Steffenson r186]. More recently, there haa 

been considerable work on Heroite and ollculatory interpolation 

in several variables; see e.g. Ahlin [3], Haussman (99,101,1021, 

and Sal%er (168-170). 
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3.3 Shepard's method. In this subsection we di.cus •• ~thod 

of Shepard [180 J and SOllIe modification. of it. The method .p'. 

plies to arbitrarily spaced data, and the interpolatina ntnctlon 

can be written dOW& explicitly. 

Let p be some metric In the plane, for example the u.ual 

dhtance metric. eiven a point (x,y), let r i "p«x,y),(xl ,yi» 
for i = l,2, ••• ,N. Let 0 < ~ < e. Then Shepard'. interpola

tion fo~la i. defined by 

1 

(3.8) f(x,y) .. 

I when 

The fonaula (3.8) Is defined for all points (x,y) in the 

plane R2. It is clear from the definition that it interpolate. 

the values Fi 3t the data points (xi'Yi)' 1 = l,2, ••• ,N. 

The value of f(x,y) at nondata points ia obtainPd a. a weight

ed average of all the data VAlues, where the ith measurement 

is weighted according to the distance of (x,y) from the point 

(xi'Yi)· 
We shall briefly recount some of th~ properties of Shep-

ard's fo~ula. First, by converting all of the te~. to a 

cOIIIDon denominator, it can be shown that 

N 
0.9) f(x,y) = L FiAi (x,y), 

i=l 

where 
N 
If {r (x, y) ]'"" 
j = 1 j 
jii 

(3.10) Ai (x, y) ,. .......,.N~-N-----

L L (r1(x.;)]"" 
k~l £= 1 

ilk 

Thes~ functions satisfy 

i 1,2, ••• ,N • 
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1,j = l,2, ••• ,N. 

The representation (3.9) is numerically more stable than the 

original formula (3.8). 

In view of its definition, we .ee that the function f(x,y) 

conutructed by Shepard is ~ot a simple polyn~ial or rational 

function. It is clear, however, that except for the points 

(x1,Yi ), it Is analytic everywhere In the plane. Its behavior 

in the vicinity of the data points (xi'Yi) depend. on the .ize 

of ~. It can be shown that for 0 < ~ ~ 1, f baa cusp. at 

theae points. For 1 < ~, f has flat apote at the data points 

(i.e., the parti~l derivatives vanish there). We also obeerv~ 

the inter~ating property that 

(3.12) min Fi ~ f(x,y) ~ max F
i

. 
l~i~N l~i~N 

We may also note th&t if the data came from a constant function, 

i.e., Fi = c, i = 1,l, ••• ,N, then f is also the cona~lt 

function f. c. 

We now comment on the choice of ~. To get smooth surface. 

without cusps, it 1s desirable to take 1 <~. On tbe other 

hand, if ~ is relatively large, then the surface tends to be

come very flat near the data points and consequently quite steep 

at points in berween. Experiments (cf. Gordon and Wixom (90), 

Poeppelmeir [155], and Shepard [ISO]) seem to indlcate that a 

choice of ~ = 2 lS perhaps a good tradeoff. ([155] containa 

several examples shOWing the behavior as a function of ~.) 

There are several drawbacks to Shepard's method (3.8), as 

pointed out by Shepard (180] nirnself. First, if N is large, 

then there is a very conside.able amount of calculation in

volved in evaluating f(x,y) at a particular point. Secondly, 

the weights are assigned on the basis of the distance of peints 

from (x,y) only, not their direction. Finally, the flat apote 

36 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

unIGI.~AL pJ..\CE I'; 
OF POO!l QUALITY 

in the neighborhood of the data points is somewhat di.turbiua. 

The first of the~e objections can be met by defining a local 

v.raion of the fo~ula, which we shall do in section 4.5. It i. 

po.sible to construct an ana~ogous fo~ula which accounts for 

direction. For details, see Shepard (180). Finally, we briefly 

discuss handling the flat spots. 

Suppose in a~dition to the function values Fi at eacb 

point (xi'Yi ) ve also have est~te8 FXi dod FYi of 

Fx(xi,y
i
) and F

y
(x

1
,y

i
). Th~n we may consider the function 

(3.13) f(x,y) 
N 
E Ai(X,y) (F

i 
+ (x-x1)FXi + \Y-Yi)FY1J. 

i=l 

It is easily checked that this fu~~tion also interpolates, and 

that 

This property may be expresse~ in the assertion that if the 

data Fi,FXi,FYi ~ame from a plane ~Jrface F, then f will 

exactly reproduce this surface. To use fo~la (3.13) in p~a,

tice on the data-fitting Problem 1.1, we have to carry out a 

~o-stcge approximation process in which the first stage con

sists of some method for esti~ating the slope at each of the 

data points. 

It might be of practical interest in some cases to con

struct still a more sophisticated version of Shepard's formula 

which would exactly reproduce hi3her-order polynomial lutfac.s. 

One approach to doing this is to use the following lemma. 

LfMMA 3.1. (Barnhill [15]). Let P and Q be linear proJec

tions of some linear space of functions , into itself. Sup

p03e that Q exactly reproduces the linear subspace E C 'i 

~ 

(3.15) Qp = p, all p E: E. 

37 



In additl.on. su~eose 

~ " .!!!.!L t ha t 

ORISk.;;:..L t': .. -::~ :..;; 
OF POOR QUAL1TY 

that {i\ }~ is a sel of linear 

(3.16) }. pf ~ 
i \£, all f £ ~, i 1,2: ••• ,m. 

then th~ Boolean sum 2rolector I I f • 

(3.17) P$Q-PtQ·PQ 

f\.n('''~~ 

en!o)s the function erecision of Q (i.e •• reproduces E) and 

the interpolation properties of P (~Ie" (3.16) also h~ 

!2! P $ Q). 

this result permits tl.e constructior. of interpolatl.on 

schemes using Shepard's :onnula which reproduce higher-order 

surfaces. For an example, see Poeppelmeir [115) wh~re Shepard', 

formula 1.5 combined with a certain local l.nterpolation scheme 

which reproduces quadratic s~faces. In closing this section 

we note that Sh~p3rd's formula can also be inter reted as aris

lng from WClb~tcd least squarcs--see section 5.1. 

3.4 Spli~e ilterpolation (scattered d~ta). Suppose X is a 

linear space ot "smooth" functions defin~d on the domain D, 

and let 

(3.18) u 

U is the set 0t smootn functlons WhlCh lnterpolate. Now sup

pose that e is a functional on X which measures the smooth

ness of an cll~ent in X--the smaller 9(f) is, the smoother 

f l.S. Th('n we may conSl-ocr the following minimization problem: 

(3.19) Find s c U iuch that 9(s) = inf 9(u). 
U'-U 

the functi0n s wlll be the smoothest interpolant, and in view 

of thc similarity wit:, clasSlcal spline apprOXimation, 5 is 

calleo a spline function lnterpolating F. The basic questions 

concernins sp.lne interpolation center around existen~e, unique

II~SS, characterization, and construction. A quite general 
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aLstract theory of spline interpolation has been built up (see 

ego Laurent [127) and teferences therein). In this section we 

quote some specific examples which can be used on Problem 1.1. 

Where X is a semi-Hilbert space, 9(f) = IIfll, where 11·11 
is a seminorm on X, and ti "- (f € X: IIf!! :: O}, it is po.uible 

to show (under some additional mild conditions on X, see Duchon 

[72,73]) that problem (3.19) always has a solution which is 

unique up to an element in N. Horeover, it can be shawn that 

there exists a reproducing kernel K defined on D x D such 

that 

~ d 
(3.20) s(x,y) L aiK«x, y) ; (Xi' Y » ~ L biPi (x, y) , 

i=l l. hl 

d 
where (Pl.)l is a basis for N. Mor~over, the coefficients 

(a
i

) and ibi) can be determine~ from the linear system of 

equations 

(3.21) 
N 

L. "UXj'Yj);(xi'Yi»ai + 
j=l 

N 
L aiPk (Xi'Y i) - 0, k 

i=l 

d 

i:lbiPi(Xj'Yj) =F jl j::l, ••• ,N 

l,2, ... ,d. 

The development wl.th scmi-Hllbert spaces in Duchon [72,73) 

is an extension of earlier work of Atteia [10-12) and Thomann 

[192-193) using Hilbert spaces. The essential difficulty in 

applying the general re~ults is the construction of an appro

?riate reproduclng kernel. We turn now to some specific exam

ples. 

Suppose X is the space of all functions on the rectangle 

o = H (cf. (3.4» which have (distributional) derivatives up to 

order 2 which lie in L 2 
(II) • For f € X, let 

(3.22) 
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The reproducing kernel in this case can be written down aa an 

infinite series involving sin and cos, and the space N is 

spanned by 1, x, and y. Similarly, if we replace H by the 

unit disc uo, the kernel can b~ computed as an infinite s~ries 

(aee Atteia [10-12) and Thomann [192-193). Thomann considers 

computation of these splines by approxLmating the infinite 

series--FORTRAN programs are also included. 

If we replace the bounded sets H or ~D by the entire 

plane R2 and introduce an appropriate space X, it is po.aible 

to obtain explicit expressions for tal'l It'oducing kernel. This 

ia the content of Duchon [72,73J. In particular, let n-
be the set of all tempered di8tributions f on R2 whose 

.. ... Zs ms 
~ourier transfo~s f satisfy flflt dt <~. Let X de-

note the set of all 1unctions which have derivatives up to 

order lying in -s Our first example concerns the m H . space 
x20. If we choose 9 as in (3.22) , then the interpolating 

spline solution of (3.19) 15 of tht form 

N 
(3.23) 8 (x, y) \' 2 log (ri (x,y» + blX + b2y + b

3
, = L.- a i r i 

(x, y) 
i=l 

where ri(x,y) = [(X-X
1
)2+ (Y-Yl)2J~. The coefficients are de

term~ned from the system (3.21) with d = J, N = span (l,x,y), 
2 

and K(z,w) = Iz-wl log(z-wl. Duchon refers to this type of 

spline as a thin plate spline Slnce the expression & relat~s 

to the energy in a trin plate forced to interpolate the data. 

This spline belongs to C(R2). 

As a second example, suppo~e we conslder X ~ h21 . In 

this case the solution of (3.19) with 9 given b) (3.22) has 

the form 

(3.24) s(x,y) 

Here I-: (z,w\ 3 
Iz-w I. Duchon (72, 7) 1 refers to these spl1nes 
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as pseudo-cubic splines because of the analogy with the cubic 
1 

splines in one variable. They belong to C (IQ. Pseudo quintic 

splines etc. ar~ also considered in Duchon [72,73). 

A similar program has been carried out by Mansfield (133-

137) for some spaces of smooth functions defined on a rectangle 

R. In (136) she considers a space of func tions ra, n (a,~) , 

where m and n are positive integers and a ~ a ~ 1:., c ~ ~ ~ d. 

This bpace is actually defined by completion of & set of tensor 

product functions with respect to an appropriate inner-product, 

and we do not want to define it preclscly here. A function 

f c Tm,n(a,~) has the following properties, however: 

f (i, j) E C (It) , i = 0, 1, •.•• aI- 1 and j = 0, 1, ••• , n-l 

f(s-j-l,.n(x,:~) cAC[a,b) and f(S-j,j)(x,~) cL2 [a,bj, 

(3.25) j = O,l, ••• ,n-l 

I f(i,l'-l-l) (a,y) cAC[c,d) and f(i,S-i) (a,y) £ L2 [c,d), 

I 
I 
I 
I 
I 
I 
I 

i = 0, 1, ••• ,aI-l 

~ (m-l, n-l) t. AC(H) and f (m, n) .: L 2 (1I) , 

where AC stands for the ~pace ot absolutely continuous func

tions and where s - m .. n. By ('('Instructing an appropriate re

producing kernel, she is able t('l solve problem (3.19) with 

n-l b 
fI[f(m,n)]2 .. \ r [t(:.-j,J'(xd.»)2dx (3.26) 9(f) 

H j-O a 

t 

aI-l d 
r [ (l,:.-i) ( ) )2d } 1 a, y y. 

i 0 c 

[n (13)), Mansl1cld L&rrics out a similar analysis for a 

f f .. n,1l space ('I unctiClns ~ 

ROl,n L~la,bl x L;lc,dl, 

dcfin~d on the rectanglL H. Here 

wh~re L~[a.bl is the usual Sobolev 

space of tunctions with absolutely cuntinuous derivatives up to 

order m-l, and with rem) c L2 (a,bl. By constructing an 
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appropriate reproducing kernel, she now solves problem (3.19) 

with 

(3.27) 9(f) 
n-l b 

ff[f(m,n)}2 + L f [f(m,j) (x,c)}2dx 
H j=O a 

m-l d (i) 2 
+ L f [f ,n (a,y)] dy • 

i=O c 

The solution turns out to be a piecewise polynomial of degree 

2m-I in x and of degree 2n-l in y. It is also in 

C2m- 2,2n-2(H). For the particular case of gridded data, it re

duces to the tensor product of one-variable spline~ (cf. the 

following section). Other more general definitions of 9 are 

also considered (with minor modifications on the one-dimension·: I 

integrals) • 

A more algebraic approach to constructing multidimensional 

spline functions (which also involves certain kernel functions) 

has been taken by Schaback [l73-l74J. His two-dimensional ker

nel function is obtained as a tensor product of one-dimensional 

kernels. 

3.5. Spline interpolation (gridded data). The problem of con

structing interpolating splines in two dimensions with gridded 

data as in (3.4)-(3.6) is, of course, a special case of the 

general problems discussed in subsection 3.4. The development 

of the gridded data case predated the more general development 

and, moreover, is conslderably simpler. There are a great many 

papers on two-dimensional polynomial splines and generaliza

tions. We do not have space here to discuss all of them in de

tail. We shall be content to quote some of the pa~ers and to 

give a somewhat more complete discussion of polynomial splines, 

WhlCh are the most widely used splines for this problem. 

Some ~arly papers dealing with two-dlmensional interpola

ting splines include Birkhoff and {l •• Boor [26], Blrkhoff and 
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Garabedian [27J, Price and S~onson [159), and Thel1heimer and 

Starkweather [191). In [26} certain bicubic aplipes wer~ intro

duced which were later studied in detail in de Boor (32). The 

problem was to minimize 

(3.28) 
b d (2 2) 2 

f f [f ' (x,y)l dxdy 
a c 

over all appropriately smooth functions on the rectangle H 

which interpolate the gridded data (3.4)-(3.6). It was found 

that the solution of this problem was a certain bicubic func

tion with global smoothness C2(H). This problem was genera

lized to minimizing 

(3.29) 
b d () 2 

a(f) = J f [f m,n (x,y) 1 dx dy, m = 2p, n ., 2q 
a c 

in Ahlberg, Nilson and Walsh [1,2], whose solution involves 

certain higher-order polynomial splin~s. Since they are widely 

used, we give a short algebraic treaament here. 

{ )k+l )£+1 The p01nts Xi 0 and (Yj 0 define A partition of the 

intervals [a,b) and [c,dJ, respectively (cf. (l.5)). Suppoee 

now that x 1_m ~ ... ~ x -1 ~ a < b ~ ~"'2 ~ ... ~ ~~-l and 

Yl-n ~ ••. ~ Y- l ~ c < d ~ ')'£+2:5 ... ~ YI+n_Iare chosen albi

trarily. Let (~}~-m be the B-sp11nes associated with the 

x-partition, and let the B-sp1ines associated with the y-psrti

tion be denoted by (Nj(y) 1:_n • For a complete discussion of 

B-sp11nes and thc1r properties, see de Boor (36) in thlS volume 

(or CD]). Let 

N~(:C) ~(y), i I-m, •• o,kandj I-n, .• o,l. 

The linear space 

(3.31) 

Is clearly of dimension (k~)(i+n). We may now construct an 
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element in (3.31) which interpolates to the gridded data. 

Since there are only (k+2)(1+2) data points on the grid (cf. 

(3.4)-(3.6), it is clear that if we use d to interpolate, we 

have 

(3.32) (k-+1D)(I+n)-(k+2)(t+2) = (k+2) (n-2)+(l+2) (m-2) + (n-2) (m-2) 

free parameters. Thus, to uniquely define a spline, one must 

add additional conditions. Recall that m = 2p and n = 2q. Then 

we might add the extra conditions 

(3.33) 

and 

(3.34) 

s (v,O) (x
O

' y j) 

8(0,~) (xi' yO) = 

S (V,O) (x. Y) =0 j ° 1 1+1 k+l' j , =, I··· I 

V = P, ••• ,m-2 
(O,~) ) ° 8 (XeYt +l = , i=O,l, ••• ,k+l 

'" = q, ••• , n-2 

s(V,~) (~,yO) = s(V,~) (xO'Y.e+l) -- s(V,I.1) ('\.1' yO) 

= 8(V'~)('\+1'YI+l) =0, v=p, ••• ,m-l 
~ = q, ••• , n-l. 

These are called the natural boundary conditions, and it can be 

shown that the system of equations 

a=O,l, ••• ,k+l 
1'\=0,1, ••• ,1+1 

coupled with the conditions (3.33)-(3.34) provides a nonsingular 

system of equations for the coefficients {aijl. This system 

has convenlent bandedness properties if the equations are ar

ranged properly. The resulting soline is precisely the solucWn 

of the minimization problem (3.29). The boundary conditions 

(3.33)-(3.34) are the natural ones associated with the problem 

(3.29). However, it is also possible to spe~ify lower-order 

derivative information along the boundary and also obtain a 

nonsingular system of equations. The resulting splin~ called 

Type I, can al&o be shown to satisfy an appropriate minimization 
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problem. However, for data-fltting purposes, to uae the inter

polaDt with boundary derivative data one would firat have to 

perfo~ a first-stage approx~tion to find estimates for the 

required derivatives. 

The best-known case of the above spline interpolation i. 

the case m = n = 4, i.e., bicubic spline interpolation. In 

this case the surface constructed is a piecewise blcubic with 

global smoothness C2 (H). The natural boundary conditions set 

second-derivative values to O. Programs for computing natural 

bicubic interpolating splines can be found in the IHSL Library 

(117) in FORTRAN. FCRTRAN programs for Type I bicubic splines 

can be found in Koelling and Whitten (1211, where the required 

boundary information is assumed to be input. An ALGOL program 

for computing Type I bicubi~ splines in which bounoary data are 

automatically computed by fitting one-dimensional splines ap

pears in Sp~th (1831. 

Bicubic spline interpolation has been widely applied. For 

some references in the Geology literature) see ego Anderson (7), 

Bhatta~haryya (221, Holroyd and BhattachLryya [115), Koelling 

and Whitten [1211, and Whitten and Koelling (2061. 

Problem (3.29) has been widely generalized in the spline 

literature. Instead of minimizing ordinary derivatives, one 

may introdu~e general lineal operators, and instead of dealing 

with point evaluation functionals, more general linear function

als may be permitted. To list some (but by no means all) papers 

deallng wlth such generallzatlons, we mention Arthur (8,9), 

Birkhoif, Schultz and Varga [29], de Boor (34), Delvos [65,661, 

Delvos and Schempp [68,69J. Delvos and Schlosser (70), Fisher 

and Jerome [78,79], Haussmann [lOOJ, Haussmann and Munch (104), 

Munteanu [143,144}, Nielson [148,150], Kitter [164,165J, Sard 

[171,172J, Schoenberg [176], Schultz [177,178J, Sp~th (184,185J, 

and Zavialov (209-212). On L-shaped regiona and other pol}gons 
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aee Blrkhoff (25) and Carlaon and Hall [44-49). 

We cloae this section by mentioning another dieectlon of 

generaUzation which has led to a considerable development, the 

idea of spline blending. These methods are useful for construc

tion of a surface which interpolates not only function values 

at isolated points but on the grid lines themselves; 1.e., 

a ~ x 5 band j 0,1, ••• ,1+1 (3.36) f(x, Y j) = F(x, Y j) 

f(xi,y) = F(xi,y) c 5 y 5 d and i = O,l, ••• ,k+l. 

To use such blending methods one must have F defined on the 

grid lines. Thus, the methods could be of value as second-stage 

processes. We do not have space to go into detail on apline

blended methods. We lefer to the recent book of Barnhill and 

Riesenfeld [20) for a collection of papers on the subject and 

for further references. See also the papers of Gordon (84-87) 

and Gordon and Hall (88). Recently, considerable effort has 

gone into showing that blending methods also arise as soluttons 

of appropriate variational problems; see the papers of Delvos 

[65}, Delvos and Kosters [66), and Delvos and Malinka [67}. 

4. Local interpolation methods 

The interpolation methods discussed in section 3 were glo

bal in nature--that is, the value f{x,y) of the constructed 

surface at any given point (x,y) in D depends on the values 

of all of the data points. 1I11s gLllCcully mc..&lIt1 lhat lu ~UlUI,ull" 

a representation for f one has to solve a fairly large system 

of equations, and to evaluate f{x,y) one generally has to 

carry out a considerable &~ount of arithmetic. In this section 

we shall consider local schemes where the surface depends only 

on nearby data points. Then the construction will usually lead 

to (a possibly large number) of ~ll systems of equation~, and 

moreover, the evaluation of the surface at a given point will 
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usually involve very little computation. 

Many of the schemes mentioned in section 3 can be made 10-

cal in nature by the following simple approach. 

the domain D is partitioned into 8ubdomains: 

then seek a surface fn the form 

Sup~ae that 
d 

D = U D
i

. We 
iel 

(4.1) f(x,y) = (fi(x,y), 1,2, ••• ,d. 

To construct each individual f
i

, we suppose that Di 

mains containing Di , which contain only points wh:ch 

Di • Then we use the data (and only the data) in Di 

are do-

are "near" 

to con-

struct fie Usually, we can choose 0i = Di • In m~at cases 

the most convenient choices for the subdoma~ns Di are trian

gles and rectangles. We discuss these two cases firat. 

4.1. Triangular s~bregions (scattered data). Suppoae that we 

are given data at points Pi = (xi'Yi)' i = l,2, ••• ,N scatter

ed throughout the plane, and let 0 be the convex hull of 

these points. It is more or less clear that by drawing linea 

from point to point we can construct a set of triangles with 

vertices at the Pi which partition D. It is al.o clelr that 

given any set of points, this triangularization of D is not 

usually uniquely defined (see Figure 2 below for two different 

triangularizations of the same region). Moreover, as the fig

ure shows, some triangularizations arc superiur to others in 

the sense that they exhlbit fewer of the less desirable long 

thin triangles. 

Figure 2. Triaogularization 
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The design of an algorithm to divide a region into accept

able triangles with vertices at prescribed points is not as 

easy as it sounds. Two algorithms in the literature which are 

designed to give good triangularizations can be found io caven

dish [50} and in Lawson [128}. 

The simplest approach to defining a local interpolating 

surface is to construct fi (x, y) to be of the form a l + a2x + 

a
J

y in each triangle. The data at the three cornera of the 

triangle determine the coefficients for that piece of f (the 

corresponding system will be nonsingular providmthe triangle 

is nondegenerate). This procedure produces a piecewise linear 

surface which, in fact, will be globally continuous. This las~ 

property follows from the fact that along the sides of the tri

angle the functions reduce to straight lines joining the ver

tices. This method has been used by several authors for data 

fitting, ~.g., Lawson [128J and Whitten [206J. For some con

touring routines based on this local interpolation scheme, see 

section 8. 

If we desire to interpolatp several sets of data defined 

on the same triangularization, it may be more convenient to 

compute Lagranglan functions rather than to compute the surface 

in each triangle separately. In partlcular, it is clear that 

we can construct (unctions (~j(X'Y))~ with the property 

i.,j = 1,2, ••• ,N. 

These functions car be constructed as pyram1.ds in such a 

way that the function ~j has support only on the triangles 

surrounding the point (x J' Y j) (see Figure 3). In terms of 

these Lagrangian functions, tile l.nterpolatlng surface is given 

by 

(4.3) f(x,y) 
N 
2~ Fj~ (x, y) • 

j=.l J 
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Figure 3. A Lagrange Element 

The Lagrangian approach to local inte~olatioD is very 

reminiscent of the (inite element method in which the solution 

of an operator equation is sought in the form ot a linear com

bination of a set of functi~ns (called elements) with the pro

perty (4.2). (See e.g., Prenter [1571, Schultz [179), or 

Strang and Fix (188).) There is no need to restrict the ele

ments to be picce~ise linear functions--we may use higher-order 

polynomials, rational functions, or even more complicated r~nc

tions. In fact, if we are careful in the construction, we may 

be able to construct ~lements with small support but higher 

global smoothness. 

There are a great many papers in the finite-element litera

ture concerned with defining convenient smooth elements (La

grangian functions with small support). To mention a few, see 

~arnhill, Birkhoff, and Gordon (16), Barnhill and Gregory [17, 

18), Barnhill and Mansfield [19], Bitkhoff and Mdnsfie1d [28), 

Bramble and Zlamal (39), Goel [83), Hall (94), Mitchel! [141), 

Mitchell and Phillips (142), Nicolaidis [146,147], Zenisek (213~ 

Zienkowicz (214)1 and Zlamal [215-217). The books cn finite 

elements of Aziz [13), de Boor [35), Strang and Fix (IS8], and 

Whiteman [198) should also be con~ulted. 
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The construction of elements with higher-order smoothne.s 

becomes increasingly difficult. For example, it is shown in 

hansfield [137J that to get an element with support on the tri

angles surrounding P
j 

and with global continuity Cl(D), it 

is nece •• ary to use polynOD1als of degree 5 at least. Otatter. 

are somewhat .~pler on regular triangularizations, s~e .ub.ec

tion 4.2 below.) 

We close this subsection by mentioning that it is al.o pos

sible to perform interpolation using elements based on triangles 

to data which also involves derivatives, or in cnalogy with the 

blending methods, to data which includes function values along 

the e~ges of the triangles. (See e.g., Barnhill, Birkhoff, and 

Gord~n [16J, or Barnhill and Gregory [17,18).) The.e met~od. 

are not directly applicable to the scatter~d data Problem 1.1, 

but may be useful as second-stage methods. 

4.2. Regular triangularizati~ns. When the data is distributed 

such that the region can be triangulated into a set of congru

ent triangles, then it is extremely ad~ant3geou8 to use the La

gtsnge approach. In particular, in this case we can find an 

element f with value 1 at (0,0) such t~~t all ether elements 

are translates of 0. In this case, f takes the form 

N 
)' 
.J Fjf«x,y) - (xj,y

j
». 

j=l 
(4.4) f (x, Y) = 

We illustrate this with a coul)l,' of examples. Suppose that 

we are given data at points chosen from the collection 

(4.5) 01 = {(i,j»)i,jCZ U «i+~,j+'l»)i,jEZ' Z = ~integers}. 

These points lie on the corners of a triangular grid as shown 

in Figure 4. 

It is shown in Zwart [218,p.673) the: there extsts a func

tion f E C
1

(R2) which is 1 at tre origin an~ 0 at all other 

points in n, and nas support on the shaded region in Figure 4. 
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Figure 4. A Regular Triangulariz.t1~n 

This function is constructed a. a piecewise quadratic polyno-

mj A simUar clement has been constructed by Powell (15(,) 

(th ~re on page 267 of [156] should be rotated 45° to see 
t' f 

1'0 give anott,er example, sUP1Jose that we consider the set 

of points 02 which lie at the vertices of th~ grid defined by 

equilateral triangles shown in Figure 5. 

"--~----i""'--~ia---J. ..... .. 

Figure 5. Another Regular Triangularizatlon 
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It 1. ahown in Fredric~son (81J that there exists a function _ 

which hal value 1 at the origin and value 0 at atl other points 

in ~, The function t 111 in C2(R~ I conshta of piecewhe 

quartica, and has support in the region shown in Figure 5. 

Fredrickson ~lso cons~ructs a piecewise cubic element with the 

same support but which is only C1(RL), For right triangles 

a~e Carlson and Hall (44). 

4.3. Rectangul£r subregions, In this section we suppose that 

we have data given tt points lying ~n a rectangular grid a. in 

(3.4)-(),6), and cons~der local !nlerpolation method •• The 

a1m~le.t approach h're (cf. the triangulari&atio~ caae) is to 

construct a separate bilinear f~nction f(x,y) = a l + alx + 

aJ
y + c4xy in each subrectangle, "ij == ixi,xi+1J x [yj,yj+1J, 

u.ing the four corner values t~ determine the coefficienta. 

Since the bilinear patches reduce to linear functiona on the 

grid lines, the global .urfacc is C(R), 

Several authors have consi1ered constructing function. on 

~ach \If the "lj using higher-orc.e:- POlynOOlhls. Thh require. 

additi~nal info~tio~ in addition to the four corner values. 

For example, if one sc,ks a blcublc 

(4.6) f (x, y) 

the~e are 16 coefficients to determine. Th~se could be deter-

mined by 

and f ..... y 

the four corner values, plus the va1u~. of f , f , 
x Y 

at each conler, To determine these, one must perfo~ 

suoc first-stage rrocess. Fcr some appro~ches ~o this, see 

Aktma r5), HeSSing, et a1 (114), and Sh~, et a1 rl~lJ. A FOR

lRAN p~~rAm for Ak~ma's method can be fou~d in [6). Nonpoly-

n~ial patcheft have also been considered; ~.g., se~ Birkhoff 

.~d Car~bedlan [27). 

The Lagrange (firLte element) approach ca~ "l~o be used in 
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the case of rectangular gridded data. Tn particular, if we can 

construct a rUlction satisfying (4.2) with local support, then 

the surface f given by (4.3) will interpolate and the method 

will be local in character. As before, the Lagrange approach 

1s espec~all) convenient if the grid is regular, i.e., if all 

subrectangles Hij are congruent. To 11lu&trate this, suppose 

that the "ij are actually the unit sauares; i.e., the data 

points lie in the set 

(4.7) 03 =- (i,j») i,j £ Zt Z ... (integers). 

1 To get a quadratic C elemert, we may stmply rotate the ele-

ment of Zwart [218] c~nsidered in the last section by 45 degrees 

(cf. Figure 4), or we may take the elemert of Powell [156]. 

4.4. Parametric representations. The methods discussed 1n the 

last section is concerned with data given on a rectangular grid. 

By u3ing parametric representations, it is possible to construct 

stmilar local interpolating surfaces for data given at the cor

ners of any partition of D conslsting of quadrilaterals. In 

this section we briefly describe how this might proceed. 

Suppose Q is a particular quadrilateral subregion of D 

of interest. In addition, suppobe tnat x(s,t), y(s,t), and 

z (s, t) are functions defined on the unit square U = (0,1) x [0,1) 

wlth the propertles that as (s,t) runs over the boundaIY of 

U, (x(s,t),y(s,t» runs over the boundary of the quadrilateral; 

the four corners of U correspond to the tour corners of Q; 

and z(s,t) takes on the desired data valuea at the four cor

ners of U. In this case, the triple (x(s,t),y(s,t),z(s,t» 

provides a par~etric representation of a piece of surface de

fined over Q interpolating the data. 

The problem of con~tructing par~etric reprpsentations of 

interpolating functlons has been consldered in a number of pa

pers. Several papers on these methods and a host of references 

can be found 1n tne book of Barnhill and Rlesenfeld (20]; see 
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also the survey paper of Shu et al (181]. Such surfaces are 

Io=et~es ~alled Coon's surfaces, cf. r.oons [59], and arc of 

considerable interest in the field of computer-aided geometric 

design. To cention just a few of the Actual papers, see Ahuja 

and Coons [4], Earnshaw and Youill~ [74), Ferguson [77), HAyes 

[107], Hosaka [116], and Mangeron [132]. 

There also has been some effort directed towards construct

ing elements (l.agrange functions) associated with other less 

regular 8uboet& of the plane We ~ntion, for cxaaple, the 

work of C!arlet and Raviart [55], Wachspress [194,195), and 

Zlamal [217] in which elements are constructed for domains 

involving curved edges. 

4.5. Local Shepard m.tht'ds. It is possible to modify th~ meth

od discussed in sunsection 3.3 to mAke it local. For example, 

following Shepnrd (1801, suppose we fix 0 <;, R and define 

0 < < R 
r _ 3' 

(4.8) ";(r) = 
27 (! _ 1) 2 f'r 4R R ' 

R/3 < r 5 R, 

o , R < r 

This function is continuously differentiable and vanisheo iden

tically for r < R. N~J with r
i 

as in (J.8), we definp. 

N 
L F i [\t(r

i
) JI-o 

i=l 
N 

~hcn r
i 

~ 0, all i 

(4.9) f (r., y) L [If (r
i

) ]~ 
1=1 

l Fi when r 1 '" o. 

FOI1:lula (4.9) is dC'fincd at all (x,y) in the plane R2. 

By definition it interpolates the values Fi at the data 

points (xi,Yi ), 1 :: 1,2, ••• ,N. The values at nOn-dl1tll points 

are obtAined dS weighted 8ver~geg of the data values Fi, but 
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only those ,.hich He l.t points wl.thin a distance of R of 

(x,y). Thus, the fo~ula is local. 

To use this tlCthod in pr&ctice it is ueceuary to choose 

a reasonable value for R. The aim is to find R so that for 

every (x,y) A reaaoD4ble number of data points will fall in 

the disk centered at (x,y) of radius R It would alec be 

pOHslble to let R depend on (x,y), i.e., to usc differ£nt 

valu~of R in different subregions of D. 

5. Global appro~Lmation 

As mentioned in the introduction, frequently the ~ata doea 

not warrant constructing an interpolating function (e.g., be

cause of errors). In such cases it may be preferable to con

struct a surface which only approxi~ates the data. In this 6ec

tion we discuss some global approxir:Jltion methods. 

5.1. Pol)~ooial l~ast squ4re~. The general theory of discrete 

leAst-squares fitting 15 very well knovn. To briefly r~\'icv, 

suppose that (~j)~ are n given functions on D. Definta 

(5.1) 0 (n) 

T n where a - (a1, •.• ,a
n

) is any vector in R. Then the prob-

lcr:1 is to find 4* such that 

(5.2) O(a*) = cin ¢(a). 
a 

TIle corresponding function 

n 
(5.3) f(x,y) = r d~ ~j(x,y) 

j==l 

1S called the discrete lcast-5quorcs approxit:~1tion of the (lata 
"l 

{FiJI' Usually one t4~es n ~onr.tccr&blj !n~llcr than N. In 

this section we brie(ly discuss least squares u3ing polynornialD. 

Before doing so. hcwever, we ca~c a few gcncrfil rCObrks £bout 
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solving the general leoSst-squarcs problCt:l. 

There are several approaches to solving (5.2). Perhaps 

the ncatest is thc case whcre the (~j)~ are orthononual with 

res?cct to the inner-product 

N 
(5.4) (!I,l) " i\~(Xl'Yi)V (xi,Yi )· 

Then the solution of (5.2) can be written d~~ explicitly as 

n 

(5.5) f(x,y) = L ~~j(x,y). 
l= 1 \l\ 

~ I 
J I 

A second very well-known approach to Bolving (5.2) in via 

the normal equations 

(5.6) 

where 

A*Aa - A*F, 

T 
F = (F l' ••• , F N) is the vector of data values, and where 

(5.7) A (~j(xi'Yi» j:l:i~l' 
In sexnc cases the not"nlAl cquations arc a perfectly acceptable 

way to cooputc least-squares approximation, but in other cases 

the systeo (5.6) may be ill-conditioned (or even singular--cf. 

the follOWing subsection for spline least squares). This ar>

proach Is also not convenient should eide conditions be de&lred 

(e.g., by lQPosing actual .nterpolation at soce vi the value~). 

For more en the nOrelAl equations, see any book on Nucerical 

Analysis. 

A more Modern r.ethod of solving least-squares problt:~:.t is 

to use ~eneral m.~trix cethods. Specifically, consider the ob

servation equations 

(5.8) A a = F. 

It can be shown that by apolying a series of 04trix trans for

a&tions to this systco, one cnn o~tnin a set of equations giving 

the vector a*. For a complete description of methods of this 

56 

". 

J 
T 
1 
I 
r 
r 
r 

I 
1 



type aee Lavson and Hanson (129) or Stewart (167). Matrix 

~ethods are quite amenable to the adding of aide condition8 and 

can also be desisned to take account of rank-deficiency of the 

matrix A (which correspondo to the C8dC of singular normal 

equations) • 

Polyn~ial discrete least-squares fittin~ haa been vidcly 

used for fitting surfaces to data, both scattered and regular. 

Several authors have developed algorilhus fot PI" ,.tnomial dis

crete least-squares fitting of sCAttered data by I:onlltructlng 

orthonormal pol>~0Q1a18 (e.g. by Grao-Scl=idt orthonormaliza

tion). See, tor example, Cadwell and Williams [42}, Crain and 

Bhatt~charyya (61), and ~hitten [201,202). The latter cont~ins 

a rORTRAN rrogr4lll. 

Wh~n the data 8.e more regularly distributed, polynomial 

least-squareD fitting can often be Simplified. For ex~mpl~, if 

t~e datil lie on a grid ao in (3.4) - (3.6), then the desired or

thogonal polynomials are 6~ply p~nduct8 of the one-dimensional 

orthogonal pol)~omials associated with the one-dimensional inner 
1<+1 £+.1 

PN~ucts corresponding to {xi}O and (y j)O respectively; e.g., 

see Cadwell (41) or Clenshaw and Hayes [~6), as well as the sur

vey pnpers of Hayes [105,108,109). 

There arc also special t\lcthods for handl!.<1g data which Are 

not on 8 grid but instead lie on parallel straight l1nes. For 

exaoplc, Clcnshaw snd Hayes (56] hdvc developed ~cth~ds using 

expan~~on& in tcrmq of Tchebycheff polynomials (alth~ugh the 

method actually only produc~s an approximatlon to the .eest

squares fit rather than the actunl cinicUQ). 

Polyn~inl lenst squares can alJo be interpreted as culti

dimensional regression us practiced by statislicians, e .• , 

see Lffro)~son [75]. For example, lf we arc try'ng to fit a 

funclion 1n thl' form 
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'#$'" + WAg f,:p+ .... ~ ... a;;J;#!,JTHtfiC\"fWll §¥ ,'ij .. D)U, 

f(x, y) 

then by defining new variables by 

V I-l 
zV(dy+l)+~ = x Y , 

we can write 

d 

f(x,y) = L biz i ' 
i=O 

v O,l, ••• ,dx 
I..I=O,l, ••• ,<.'y 

d = dxdy + dx + dy, 

and the problem becomes one of fitting a linear function in 

several variables. 

We cloDe this section by observing that in some CAses it 

may be desiral:lle to consider weighted least squares. In parti

cular, if we hdve positive weights Wi >0, 1 = 1,2, .•. ,N, then 

we may replace ¢ in (5.1) by 

I (a) =- £ Wi I ~ a/j(xi,yi ) - Fi 12 
w i=l j=l 

It is interesting to note that the interpolation forerula 

of Shepard discussed in section 3.3 can be interpreted in terms 

of weighted lesst-squares fitting. In particular, fix (x,y) 

in D, and let riCx,y) be the distance froc (x,!,) to the 

i t ( ) b f N'~' t -I. d id po n xi,vi as e ore. ,w se Wi ~ r i ' an cons er 

least-squares approxim~tion by a constant c, using these 

weights. Then one easily cO'1lputes that the least-squares choice 

of c is 

N N 

L wiF i 
-u 

L Fi r i 1 I -c 
N N 
" 2~ -.... 
L, \l i r

i I I 

This approach was adopted by PelLo, Elkins and Boyd (152J (as 

pointed Q"t to me by Chuck Duris). 
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5.2. Discrete least-squares fittinr. by splines. As outlined 

in the previous subsection, discrete least squares can he car

ried out vith any finite set of functions. It i~ not surpris

ing that a number of authors have tried u!1ing tensor product 

splines. See, e.g., Halliday, Wall, and Joyner [96), Hayes and 

Halliday (110), Jordan (119), Hanson, Radbill, and Lawson (97), 

and Whiten (199). HAyes and l~lliday have developed both ALGOL 

and FORTRAN programs. It is, on the other hand, perhaps some

what surprising t~~t least-squares fitting with splines can be 

SOI!Icwhat problematical. We briefly discuss the method. 

Suppose that U -0 [d,b) x (c,d) is 11 rectangle containing 
k+l £+1 

the domain 0 of interest. Let (xi)O and (Yj)o be parti-

k+l 1+1 
tions of [a,b) and [c,d), respectively, and let (Nij)l-m,l-n 

be the tensor product B-splines di~cus3ed in section 3.5. We 

consider discrete least-square& fitting using these (k~) (l+n) 

B-splines. 

To explain hew dif1iculties can arise with spline least

square fitting, we observe that tt is quite ellsy for the matrix 

A in the observaticnal equations (5.8) to b~ tank-deficient. 

On a trivial level this can happen if for some B-spline Nij , 

none of the data points lies in its support. ~his deficiency 

~an, of course, be easily r~moved by dropping this particular 

B-spline from the set bcin3 u~cd to approxicatc. But rank de

ficiency can also occu~ in mor~ subtle way~ bec~use of the 

local support propert~es of the functions. This problem can be 

overcome with properly dC'iir;ned algoritm!l. Sec Hayes and l\alli

day [110 1 for II cllre:ul discussion of spilne least-squares fit

ting.Lawson and H~nson [129J i~clude a general discus~ion of 

ho-... to handle rank deficient least-squarcs problcMs. 

If we operate in tems of the non::al equations, then it 

may ~ •. , 1 occur that the normsl equations are 4.n fact Singular. 

This is again due to the local rropcrty I)f the B-spl1n~s COOl-

59 



ORIGINJ\L P;..c:: 13 
OF POOR QUAUn' 

bined ~lth the discrete inner-product. Even when it is not 

singular, the set of normal equations can be ill-conditioned 

(even though it is a relatively sparse matrix with a kind of 

repeated band-structure). 

Discrete least squares can also be carried cut with ~ari

ous finite dicensional linear spac~s of blended functions. For 

an extensive study of such methods, see the dissertation of 

Doty (711. 

5.l. Dl&crete Ll nnd l~ approximation. Instead of perforcing 

discrete least squares, we cay consider the following discrete 

approxtmation problcc: Given function~ (~jl~ defined on 0, 

we seek a* so that 

(5.9) ¢ (a) 

is minimized. Alternatively, we may minL:izc 

n 
(5.10) ¢(I\):: max I ~ 4j~j(l'l'Yl) - Fi /. 

1~15N j"-l 

These are the ulH!:ll /lnd 1 ~cst approx~tion proble:s. 

Both of these probleQs can easlly be rcforculated as linc&r 

prograaning problem!! for the dctcn:1inatlons of the optim.1.1 a* 

(d. RabiuOl.'icz: [Ifil,1611 or Rosen (1671). Rcasona~lc choices 

for thc (~j) ~ould b~ low-degree polj~~illls 1f 0 1s g~ll, 

or possibly spline functions. 

Discrett' llpprox1::-.ation methods of this t>'pe have had rela

tively little exposure 1n the literature. For sooe results 

using tensor product splinc~ i.n tre ; problem, 8C~ Rosen. 
ro 

The opt1n:41 Ii* \.1.'15 obtained there by usin~ the I!tandard (tiel. 

plex t:lcthod on th~ 118S0ci:1tcd dual lincar progrr..=ing problC'::l. 

The iro problCt:l cen albo be solved by u!ling Rc:llez-typc 

algorith::ls. For an 1.I1gor1tl~ which pcrfort:l1J gcnerlllt::ed 
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rational approximation (and thus can a'so be uoed for polyn~

al approximations) set! Kaufman and Ta}l.or [120 I. Theoretical 

considerations for Tchebycheff approximation in several vari

ables can be found in Coll~tz [53) or Weinstein [196), for ex

ample. 

5.4. Spline smoothing (scattered dsta). In this section we 

consider sooe minimization problems siwilar to those discussed 

in section 3.4, but where the class of admissible functions i6 

not ~eGuired to interpolate nnd where the functional to be mini

mized includes a term measuring how close the function comes to 

fitting the data. To be Qore specific, suppose X is a linear 

space of "smooth" functions and that 9 is a functional on X 

which measures the ~oothness of An clement in X. Suppose in 

addition that E is II functional defined on X which measures 

how well 4 function fito the data. Then the splinc-smo.)thing 

problem is the following: 

(5.11) Find 8 £ X such that pes) 

where 

(5.12) p(f) = 9(f) + E(f). 

inf p(u), 
UE:X 

The abstract theory of spline smoothing has been well 

developed, see, e.!;., the book of lAurent (127) and references 

therein. To illustrate the ideas, we briefly discu~s A couple 

of cxaoplcs. We suppose as in section 3.4 that X is a n~Qi

Hilbert spl1ce and thal 0 is a scr:nnonn on h '.J: th H = 
(f £ X: 9(f) = O}. \.Ie aL~o suppose that X is actually a 

function space defined on a domain D, and that the point eval-
U 

uAtors at {(Xi'Yi»)l are bounded lincdr functionals ~l X. 

W<.> define 

(S.13) E{f) 
" :.: 2 

p 2.. [f(>': 1.' Y i) - F i) , 
10.1 

where p 1s 11 fixed positlve constant. Then it can be gh~Nn 
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(cf. Duchon (72,73]) that the solution of Problem (5.11) i8 a 

spline which can be written in the foon (3.20), where now the 

coefficients arc dctennined from the linear syste:n 

N d 
l: K«Xj,yj);(xi,Yi»lli + E biPi(X.,Yj ) +8/P >=FJ' 

i=l i=l J 

(5.14) j 1,2, ••• ,N, 

0, k 1,2, ••• ,d. 

An in section 3.4, the applic~tion of this method depends 

on constructing a reproducing kernel I'.. If 9 i6 chosen as 

in (3.22), Atteia [10-12] and Thomann [192,193] considered 

spline smoothing for spaces of smooth functions on the rectangle 

and on the disc (the latter even containe ALGOL progr~s). 
2 Duchon [72,73J considers similar problems defined on D = R • 

A similar spline-smoothing problem has also been consider

ed by Pivorarova [1541, where 9 is taken to be 

(5.15 ) 

Sec also Kubik (1231. 

5.5. Smoothin? splines (gridded data). In sectio· '3.5 we con

sidered several mini1:1ization problems whose solutions led to 

interpolnting polyn~~ial splincij (and generalizations). In con

junction \lith the development of interpolating spUnes for 

gridded data, there was a concurrent development of smoothing 

splines. For ex~ple, instead of minimizing the integral 9 

in (3.29) over approprlute smooth interpolating functions, we 

tnlly minic::b:e instcud r:>(f) - 9(f) + pF.(f), where E i.s given 

by 

(5.16) E(f) 

For rcsults in this dircction, see e.g. Nielson (149,1501. ior 

1 I 
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9 given by (3.29), the smoothing splines are again polynomial 

spiines. Again, more general linear differential operators a~d 

more general linear functionals can be considered. 

5.6. Continuous least squar~. The method of continuous least 

squares is not directly suited to fitting surfaces to discrete 

data, but it can be of use as a aecond-atage process, so we 

briefly revtew it. We suppose now that F i8 a function de

fined on D which we wish to approximLte, and that (~j)~ are 

given functions on D. We define 

(5.17) (f,g) = fJ f(x,y)g(x,y)dxdy, IIfll2 
D 

and 

(5.18) ~(a) 
n 2 

= IILaj~j - FII. 
j=1 

(f, f) 

The problem is to fir.d a* to minimize ¢(a). The solution is 

given by solving the normal equations 

(5.19) Aa.;: r, 

where 

For reasonably nice approxlmating functions it is often 

possible to compute the normal matrix exactly. In practice, 

the difficulty lies in evaluating the rieht-hand aides. Gener

ally a quadrature formula is required for this. One advantage 

of the method would be that if several data-fitting problems 

are to be solved using the same set of approximating functions, 

one can do the work of inverting the normal matrix just once 

and re-use the result as many tim~s as desired. 

Reasonable choices for ~he approximating functions include 

polynomials, or better yet, tensor product B-splincd as in 

(3.30). here the singulanty probleos do not crop \IP for the 

splines beclll'nc we are integrating instead of sw=ing over 
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finitely many points. The nQ~l matrix in this C85~ has a ~ind 

of repeated band structure. The entries can be romputed exactly, 

e.g., by Gaussian quadrature (cf. de BOl)r, Lvchc and SchUIMker 

[38]). Uniform best approximation by leneor products of splines 

has also been considered, e.g., see S~cr [182]. 

6. Local approy.imstion cethods 

As pointed out at the beginning of section 4. there are 

many advantages which accrue if one uses local ~ethods rather 

than global ones. In this sec~ion we dIscuss Boae local approxi

mation scb~me8. 

6.1. Patch eethoda. As in thp- case of intarpolation, the sic

plest approach to obtaining local ap~coximation c~thods is to 

parti tion the domain <lrd to define a surface (patcn) on each 
J 

8ubdomain separately. In pLrticular, 5uPlo~e that ° ~ U(O!)l' 

where 0i are disjoint bubsets of O. Then we cay seck f in 

the form 

(6.1) f(x,y) = (fi(x,y), (x,y) c 0i' i ~ 1,2, ••• ,d. 

To construct the patch fi(X,y), we Might ~se the data 8vailA~1~ 

ill the subregion 0i. In certain cases, ho--wever, it c:.ay well oc-

c.Jr that no datil at all are available in the set O!: In this 

csse we may choos.:! a somcw"at larger set Di of points "near" 

°i' and use the data in Di to copstruct f i • For any given 

cethod, it should be possible to r..nkc the choice of 5". adaotive l 
so that the Blze d Di 1 s k!p t as sl'I'sll as possible cons~~tcnt 

yith the a~ount of data des'red f~r the consttuction of fi. 

The patch method cutlit • .:c1 abrwe can be used w1th nny of the 

appro>ciC!ltion nethods di sCllssed in section 5. For !!AI1!'lplc, one 

eight choose to use pol ~inls (of loy order), and to do diD-

crete least-squares approximation. Or, one might use 11 or 

foo approxination or SC'le other convenienL srace (e.g. splines) 
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instead of polynomials. The 041n poine ie to keep the aize c7 

each individual patch problem (and thus the 81~~ oi the corre

spo~dins Gyst~ of equations) smAll. We cay have :0 solve & 

lot of systems of equation~, but each uill be a~ll and fAirly 

vell-conditioned. 

To illustrate how the ad6ptive fe4tur~ nigh: be !mpICQer.~~, 

suppose that the domain D ot ~nt~re8t l~s been enclo.cd in ~ 

rectangle Hand tlult a partition of H ie defined by t1:: 

U(Hij)~~;~~ I with 1I1j = [xF x 1+l 1]l; [yj,Yj+lJ fer '.)CIC 

(6.2) t1 '" "0 < xl < ••• < "tk+l "" b, c = YO <Y1 < ••• <Y1+1 .. d. 

Nw suppose that we ",ant to do discrete least-squares 

using a patch of t~e f~~ fij{X,y) ~ a + bx + cy on 

In ~his ca~e it would be reasonable to r~quire tlult ~t 

fitt!::;; 

RO· 
leaH 

..IJ.:f 3 pieces ot data should Lc usca to constrtlc: fir 

docs not contain 3 piece3 of OLta, we exp'ud Hij 

ad~inb all borderir& rectanBl~8. If this doeq root 

If Hij 

to iT
ij 

contAin 

3 pieces, w~ again add ~ll bor1erin~ r~ctangles, etc. We t~~ 

compute the discret~ 1~ast-squa[~8 polynomial using the ~tA ~ 

"i1' 'Jut then we usc the resulting f'.J~ction 2!'lY i"'l lI .. 
j

• ~-~ 

process r~y be repectcd to define each reqlired patch. This 

kind of adaptive algolirhm is very easy to prngr~. 

In using patch :nethods to get local interpolztion octh~'1 

-.Ie con:cntratcd on CI~thods 'Ising data at conletS 01 t ~.Lallg1e% 

or rectangles,p~~ ~1 c~oosin~ np~ro?riatc fo~~s ior th~ pat~-~t 

it was p05sit;le ro get tne indivldllal plltcl.es .. 0 r:.atcn t.)gt.t':.~: 

lO give II cC'ltinuC'us i'lobal !"udace (ror \oIi:~ c re 1l0"hbti:::4~'t~ 

patches. e'Jcn C
1 (D) or hif;r('r) _ H,-re, however. uhere the !:"J

divtdual patChes Are detcrcl~ea by ~pptv~i~tic~, it i~ not 

very likely ttult the patches yill C'.atch up. end tt>e globe.l t.:

fac~ will generally not even be contlruouz. Fer r.ost ap?l!:~

tio:1s, this ~s a seriol,s drawb.3_;~. HO'-'!! .. -cr, as toe shall sec !: 



section 7, patch ~pprox1mation m~thods can still be very useful 

a~ first-stage methods. 

6.2. Direct local methods. In this section we d f sCUS3 ~ome 

local metnods in which the approximtltillg surface is constructed 

directly fr~ the data without solving any systems of equations. 

It will be convenient to pose a more general problem than pre

viously considered. 

Let ~ be a l':'uear space of functions defined on D, and 
N suppose toot £\)1 are linear functionals dE'fined on ~. Let 

N 
(~\ )1 be e prescribed set of functions defincti on D. Then we 

l1re inter.:nted in npproxitaation schcrcn of the follOWing fom: 

(6.3) QF(x, y) 
N 

L. \ F~ i (x, y) • 
1=1 

We can think l,f thi" as a surface- fittln& problc:ll where the 

dctn ere given by Fi = AlF} i - 1,2, ..• ,N. Given the data, 

we can write the appro~imAtion dO'Jn itrulcdiatcly. 

We also observe that if the ~i have support on 5~11 sub

sets of D, snd if each "i also has support on the same set, 

then the fo~uln (6.3) is local. F~r example, if we take "i 

to be point evaluwti~~ at t~c point (xi,Yi ) and 

be a function with ~upport in n ncighoornood of 

the approximation fo~ul.~ siClply bt'corncs 

N 
QF(x,y) ~ Z fi~ (x,y). 

i-1 1 

~i(Y.,y) to 

(xi,y i ), then 

This is very reminiscent of the l~gr3nge form of interpolation 

(cf. (4.3», but unless the ~\ arc taken to 3oltisf), (-+.2), 

QF will not in fact be ~n inter~oI1nt. For this ren:on, for

cube of the fom (6.4) (or more ~~cnerally (6.3» are SC'Clctimes 

refenccl to liS 9ynsi-interpolr.nts. Local qU.!l'li-interpolants 

of the forro (6.3) ~an be constructed s~ply by def1ning the 
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[unctions (~i)l witn local supports. If eAch of these Is 

continuous (or smooth), then QF will a!so be. 

Although a host of quasi-interpolants can be constructed 

as outlined above, considerable care must be exercised in order 

to get methods which give good accuracy (when the original 

function F is smooth). As obsel~ed earlier, this is directly 

related to making the method exact for polynOOlials, Le., such 

that QP ~ P for all P in some clas~ of polynomials. 

T~ construct methods of the form (6.3) which apply to 
N 

scattered data, it is neCe5!l8ry to construct apPI'oprlate (~i }l' 

While n hoqt of methods can be constructed this way, it is not 

so easy to ChO(l5C the ,\ to m.1ke thc method exact for poly

nomials (which, as we , ... c:.:lrked earlier, is directly related to 

how well the method will approximate smooth functions F). To 

get cethods WhlCh do have a reasonable dcg.ee of ~xactness (and 

3 corre:.pondingly good error bound for smooth functions), it is 

easier to first choose the N 
(Oi)l' and then try to find 8uit-

N 
able (\)1' Whilc this generally rules out usinb point evalu-

ators at scattered data, it is possible to construct m~thods 

based on point evaluators at appropriate points, and such meth

ods can be useful as second-stage approximations. 

To illustrate these ideas, we consider construction of 

local spline approximation methods following the general treat

ment in Lyche and Schun~kcr [13li. Suppose D is enclosed in 

a rectangle 11, and that H is partitloned inte subrectangles 

b id i ( L~) S h (N) k , £ h Y n gr a~ n u._. uppose t ~t lj i=l-m,l-n 3re t e 

tensor product B-splincs associated with thi. pnrtitLon (cf. 

(3.30)). We arc now interested in approxitn!!tion schemes of the 

form 

(6.S) QF(x, y) 

In particlllar, we •• r~ going to consider the questlo:\ of 
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constructing formulate of this type which arc exact for the class 

of polynomials ~ ,with some fixed 1 ~ v ~ m and 1 ~ u ~ n. v,u 
This problem has a very simple algebraic solution if we decide 

to construct each ~'ij in the form 

v u 
(6.6) 

\j 
L L a x y 

'" \jV ~'lj~ 
v=l ~=l ijVp 

where the (AX)V and 
'ljv v;l 

which apply to functions of x and y alon~, respectively. It 

CAn be shown (cf. [131]) that giver. any (~~jV) and (~ij~) SA-

tisfying mild indcpendence as:luu;ptions, tht!re exist coefficients 

(aljV~) such that the formula (6.5) will be e~act for ~vu. 

In fact, these cocffi.ients can ~asily be explicitly computed. 

To give on(' example, suppose 

r (xi~l+···+xi~m_l) 
i I-m, ••• ,k 

(m-1) 
(6.7) 

(YI+l+···+Yl..-i-l) 
l-ro, ..• ,f. L '1 j ~ (n-l) , j 

Then we. obtain 

a formula which exactly r('produces tl"-e bilinel t' polynomials "1 l' 
I 

This is the multldimcns10nal (tensor product) version of the 

Variatl.on Diminishing rJclhod of !".arsdcn and S-;l\oenbergj it W8;i 

studied in some detail in Munteanu and Sch~~ker [1451. This 

formula is closdy re lilted to the Bczier-type surfaces construc

ted in Riescnfeld [1631 (~cc also Gordon and Riesc~fcld [89]). 

We should ob£crvc that tl-tc way fomula (6.5) now stands, it 

may involve inforr-.ation on F \JhlCh 15 ta\...cn iLo\:! da~ll outside 

of the dO!:lain D. Thl!' Sl.tuatl(,:l can be rectified 8S follows: 
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Let 

(6.9) n = (1,j): support \j n () not; CtlIp~)'!. 

then it can be shown (131] that the -ethod 

remains exact as long as all fu~cticos arc restricted to D. 

to gc: higher-order methods, depending only on point eval

uations, we proceed as follows. Choose 

v 1,2, ••• ,v 
(6.11) 

~ = 1,2, ••• ,u, 

for i = l-m, ••• ,k and j - I-n, ... ,£. Then if we take f\~jV 

to be point evaluation at T~JV and r.i.l,l to be point evalu

ation at Tij,l' the coefficie'1.ts 1tl (6.6) arc e.:lslly cooputed. 

Hints on where thc T', should be placed within the support 

of the B-8plines arc given by t~e error an~lysis 10 [131J, 

We close this section with SOMC historical rcmark~ on the 

develop~ent of local ~pproximation schemes in two dimensions. 

Early papers include Bnbuska [14], de Bcor and Fix [37], and 

Fix and Strllng [SO J. For some methods in\'olving triangular 

panitions, see Fre<lrickson [82J. Qua,!,-interpolants were 

constructed in de Boor and Fix [37J using point evaluation 

data, but including dClivatlves. \.'e have followed Lyche and 

Schu.:"laker [131 J w:wr(> seneral linear funct;ionals are consider

ed, and where in particular, methods can be constructed USing 

only point evaluation of the function. (Local integrals etc, 

wouid also be po~slhlc.) The parers [37} and [131J both con

tain ('xtenslve error bound analyses. It is striking that these 

local ~plinc npproxlr.~tlon Methods give opt~al order error 

bounds for mnooth functions. 
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7. TWo-stage processes 

Many of the Methods we have discu9sed in this paper are 

only applicable when the data are regularly spaced (and in fact, 

many surface-fitting methods require specification of derivative 

data as well as function values). Such methods cannot be ap

plied directly to the scattered data-fitting Problem 1.1. On 

the other hand, some of the most convenient local interpolating 

and local appr~ximnting methods which do work for scattered 

data produce surfaces which are not globally £:nooth (or even 

continuous). Th'JS, it Sf!ems natural to consider the posslbllity 

of constructing two-stage processes in which the first stage 

uses the scattered data to construct an approximation g, while 

the second stage uses g to generate data for constructing a 

surface f (with desirable properti£s, such as smoothn'ss). 

Since it i~ quite clear how various methods discussed in 

the earlier sections might be put together to yield two-stage 

processes, it will $uffice to mention just a couple of c~ples 

here. 

7.1. Interpolatlon/int0rDolaticn. Suppose that we ~ant to con

struct a piecewise bicubic surface based on data given on a 

rectangular grid as in (3.4)-(3.6). In each subrectangle Hij 

the 16 coefficients of the bicublC f (cf. (4.6» would be de-

tennined by the values of f, f , f , and f at each of the 
x J xy 

fou .. corners. Now since our original data-fating problem only 

specifics the values of the function at the grid points, local 

interpolation cannot be carrled out directly. HO'.1ever, we can 

use the data to provide estll'Ultes for the values of f , f , 
x y 

and f 
X)" 

at tbe grid poitlt~ (l.e., '..Ie construct g interpolating 

the data); then we can u:.e local ulcub1.c lnterpolatior. as a 

sLcond sta~e. The ttndcr WIll have n0 d1itlc~lty 1n lnaginlng 

\ .. lYS tl) produce est1.!".dtc> tot' the~e quantlties. For sene meth

ods UhlCh aprear 1.n the ~ 1 ~priJ r .n', jee the' papers of Aklma 
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(5,6), ~oell1ng and W~itte" [121}, nnd Sp~th [183} • 

7.2. Approximation/interpolation. Instead of making the first

stage process interpolation a~ in section 7.1, it would also be 

possible to use an approximating process. For example, one 

might usc le~st-squareo polynooial approximation to construct 

a patch surface and then usc some convenient interpolation pro

cess 8S a second stage. For an example of this type, see He58-

ing ~ (1l4). 

7.3. Approximation/approximation. This combination is parti

cularly convenient if we are not concerned about getting an in

terpolating function. Both stagcs can be made local. To give 

an example, recently 1 have constructed an algorithm for fitting 

surfaces to scnttered data in which the first stage consists 

of polynomial least-squares patch approx~tion (with adaptive 

choice of data--sce scction 6), and ·.:herc tl-c second stage con

sists of direct local tcn~or product spline approximation. Both 

stages are local, nnd the final surface is a tcnsor product 

spline. Since the second stage is a direct method, it is very 

cheap to apply. Experiments \lith rcal-life data (e.g. from 

heart potentials, potential fi~lds, and tieological ~ps--see 

section 2) have produced very promi'il.llg results. Details, in

cluding an analysiS of error bounds, will appear elsewhere. T 

have also ':ricd alternate versions where the patch!!s are con

structed as low-order polynomials which are best approxllMtions 

in the i l or iN sense (via linear programming) again with adap

tive choice of data. The results ~ere very similar. Finally, 

I have also ,'xperuncnted with cOC'puting patch approxirnatic.'Os, 

followed by continuous lc~s:-squares tensor-product spline ap

proximation. Agaln, the experLMents were promising. 

8. font ':luring 

As indicated 1n the llltrodJction, trequently the goal 1n 
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fitting a surface f to data i~ to con9tru~t a contour map 

which approximates the contour map ~f the unkn~Jn surface F 

which produced the data. In this section we discuss some methods 

for constructing contour maps of a surface f. 

8.1. Piecewise linear functions on triangles. When the func

tion f to be contoured is a piecewise linear function defined 

on triangles (and globally continuous), locating contours re

duces essentially to n mattr.r of good bookkeeping. Indeed, if 

H is the height of the contour of interest, then it is easily 

seen that for a given triangle T with vertices, A, B, and C, 

(8.1) the contour docs not pass through T if H < min(f(A), 

f(B), f(C» or if It >C'.ax(f(A),f(B),f(C» 

and 

(8.2) the centour inter:::ect.s exactly two ~adcs of T otherwiGe. 

If case (8.2) holds, it is easy to deteroine ~hlch two sides 

are intersected and, moreover, by using in'o'erse linear interpo

lation between vertex values, the po~nts on these sides where 

the contour crosses can be determined. Specifically, if, for 

eXlU:lple, 

f (A) < H < f (B) , 

then the contour crosse& the line trom A t(\ B at the point 

on the line which is a distance of 

(H- f (A)) I I 
(f(B)-r(A» ,B-A 

from A. Given the points on t~o sides of a triangle ~hcre the 

contour line crosses, we can .'ow dr8,.. the contour line since it 

is Bieply II straight line between the points. An algorithm to 

carry out this procedur~ requires en~~eratlng the trlangles and 

vertices and sone kind of cffectlve searcl-J procedure. 1h<:!rc 

are severa 1 available in the lltcrElture. For ALGOL progrru:ts, 
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sec Heap [111, 112J. (An earlier paper of Heap and Pink [113 J 
contains 11 similar fORTnAN program but only for regular lriangu

larizatio:ls.) LaUSO:l (128) discusses a similar algorithm. The 

algorithms mentioned im.lude two possible approaches: (1) one 

may start with 11 triangle where it is known the contour inter

sects, and trace this contour as far a:o it goes, or (2) one may 

simply draw the contour lines in all tnangles which have them. 

8.2. Pl.ecewise btlincar functions on rectangles. Suppose now 

that the function f to be contoured is a pieccwiae (contl.nuous) 

function on a rectangle partitioned into subrcctangles by a grid. 

Since ( is linear 1n x or y on the edges, it follows that 

we can again determ1ne whether a contour line of height H 

crosses an edge by inverse linear inte~olation. Therp is in 

this csse, however, a serious difficulty which does not arise 

in the case of triangles. It raay happen that the height H 

lies on three or even four sides cf the rectangle. In this 

case, it is possible that two different contour l~ncs pass 

through tht' rcctllnglc, and it is not clear ho-ol to interconnert 

th~ points (se~ Figure 6). 

• • • 

?~/ 
~-... 

Figure 6. Tvo Contours In a Rpctnngle 

Put another way, if we are follo~lng a contour ~nd enter Il rec

tangle bS shCYJTl above in rl.gure 6 on the bott= line, then it 

is not clcc.r whC'ther we should now turn right or turn left. One 

&pproBch to designing an algorit~~ in this case is to simply 

ay:;.~~~~ ... ~ 
, 
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always go right, 911Y, even though thil. CI.I\)' in the end be wrong. 

(If it is, \Ie have to start over with a co,n'ser Clc'\h.) Thh 

technique \las incorpor3tcd in an algor! tlw by Heap (l1l,112J-w 

the paper contains a FOR!&\N program. (An earlier ALr~L pro

gram can be found 1.n Heap ana Pink (1l3 ) • 

A second approach to handling the e~bibulty probleo is C~

pute nn approxlClltioll to th" value of f at the center of the 

rectangle (e.g., by taking the averagl" of the four-corner val

ue&i and then to triangulate the rectangle. This ~~ounta to a 

second-stag" approximation process, and the eurface contoured 

is no lc.lger f itself but an approx1r.lation g. Thl.s idea \148 

progur:x:Ied in ALGOL in Heap and Pink [113 J and in rORTRAl1 in 

Heap [111,112]. 

Once the set of pc.ints for a particular contour have i--een 

found, there 3re n variety of W3YS of dra\ling II contour Hne 

through these points. Onc possibiUty is to si!:lply draw 

straight lines bct\lccn cech of the points. The actual contour 

lines are expressions of the forn. y:= (a+bx) / (c·dx) In each 

rectangle. Thesl' are gencrally not straight hoes. Hence, if 

smoother contours arc desired, one ~y usc anyone of a nueber 

of methods for dra· ... ing a smooth curve through an ordered set of 

points in the plane. for example, the curv~ co~ld be c~puted 

in paranctric forn. UIHn~ onc-ditl1pnsional splines. Another pos

sibility would be to use the llczicr methods with either Bern

stein polynonials or \.lith B-splines (cf. Gordon "nd Riesenfeld 

[89 J and Riesr·nfeld [163 j), at though in thi s case the curves 

\lill not exactly go throu~h the points. For other algorith:lIq 

see ~lrl~ ... and PO\olell [1381 or XcConalogue [139J. 

8.3. Plec(,\.Ii~e quadratics on trian51c~. Suppose now that f 

is n plece\llse quadratic defined on a triangular partition. In 

this case a contour line at height H passing through a trian

gle !:lust be described bv a conic section. Sue!. a section can 
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be rcpresl'nted in parametric tom 3:. 

x(t) 

sec Pouell [156). Powell has promised an algoritnQ based on 

this observation. 

We turn now to 1I000C ccthods for handling general function!! 

f on arbitrary domains D. 

8.4. ~ simple line-printer method. The £ol1ouing Hcple-cinded 

method can produce reasonable-looklng contours uithout excessive 

computation, and uithoUl recourse to a plotter. Suppose H is 

a rectangle enclosing the domain D, And that ue partition n 
as Il '" U Hij with a rectangular grid as in (6.2). Let ilL < lID 

be given real numbers. Finally, suppose th~t t
ij 

is some 

point in Hij where f can be evaluated (perhnp':l one of the 

corners or thc center). Define 

o 

(8.3) C
ij 

9 

v 

if f(t
ij

) < ilL 

if f(t. ) >HU 
LJ 

if It!. + (v-l)h < f(t ij) < HL - vh, 1:::v58, 

for all i" O,l, ••• ,k nnd j" 0,1, ••• ,1 (I.'here h::- (HU-UL)/8). 

The (k+2) by (i+2) clltrix C contalns only integera, and if it 

is printed out uithout either horLzontal or vertical spaclng, 

ue obtain a reasonable-look1ng contour ~p of the function. A 

t>~ical example is included in Figure 7. 7hc ccthod can be 

refined by using an alpha-m~::leric array C and r::ore lhan 10 

s>~bols. It can also be refined by using g printer uith appro

priate hori~ontal spaCing so that cllctl ::.>~bol oc,"upies a Gqullre 

rather than a rectangle (/!. g., cf. huncnan [40 J) • 

8.5. Threading cn a t~ct3ngular grid. As 1n scctlon 8.4. 
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be represented in paramettic form as 

x(t) 

sec Powell [156]. Powell has promised an algorithm based on 

this observation. 

We turn now to sorne methods for handling general functions 

f on arbitrnry dOMains D. 

8.4. A simple line-printer method. The following Simple-minded 

method can produce reasonable-looking contours without excessive 

computation, and without recourse to a plott~r. Suppose H is 

a rectangle enclOSing the oorn3in D, and th:lt 'Je partition H 

as H - U Hij with n rectangular grid as in (6.2). Let liL < HU 

be given real n~bers. 

point in where f 

Finally, suppose that t ij is some 

can be evaluated (perhaps one of the 

corners or the center). Define 

o 1£ f(t i ) < aL 

(8.3) C
ij 

9 1£ f(t i ) > HU 

v 1£ HL + (v-l) h < f(t ij) < HL + vh, l::: v::: 8, 

for all ~ '" O,l, ••• ,k and j = 0,1, ••• ,1 (where h= (HU-llL)/8). 

The (k+2) by (£~2) ~~triy. C conta~ns only inlegers, nnd if it 

is printed out without either horizontal or vertical spacing, 

we obtain 3 rpasonablc-lookLng contour map of the function. ~ 

typi<.al example is included in Figure 7. The method clln be 

refined by using an alpha-numeric array C nnd more than 10 

symbols. It can also be refined by using A printer with appro

priate hori:z:ontlll spacing so that each symbol occupies ti squsre 

rather than a rectangle (e.g., cf. Bune~an [40J). 

B.S. Threading on n rectangular grid. As in section 8.4, 

1 ' 
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177?(?2233333'~\"S55556~~67711768~8r~BBnR7117 
?222222127223333\\'5555~66617177B8gaaB8S888171 
1211111111227?3334'SSS56~~17717BR838RR88688888 
27111111111127233"'SS5G~67777RS88R88999999999 
2111'ooooo1111}233"S5S~G6177~8R8899999999~999 
2111oooooooo117733~"SS~~777B8Sq9~9999999999q9 

2111ooooooooo11n33"5S66777eB~999~999~9999999 
211ocoooooooo117l33"SS6617R8B99999~9999999999 
211~112233"5S66178~Bq9999999)9999999 
21100000000Q111223'~S5S66?78889g99999999999999 
111oooooooo1112233"5566677S688999999~~9999999 
111oooooo111122j3"S5566171888889999~999999999 
11111111111'2233,'SSS666777eSsse89999999999999 
111111111121233"'SS6667777B88g88888999888R~BS 
11111112222333~'SS566677778888R8sa888B88388888 
2212222223333"SSS;~67778888358889999999999998 
22222233333"'S556&177788888~~199999999999999~ 
222333333"'~5S~~57777a,S88Bq999999999999999q9 
2333333""55SS~6677188Sq889399399999999999999 
333333""'55556577778881019999999999999999999 
333333""SSS5~fi67777eBS8SB8999999999999999999 
233333"'\SSSS5~5117178SR3888~9993999999999q99 
2333334~"555Sb666177778888~8aSa99999999)99999 
223333"'~5S5S666F611771S8B88S888B8999199q9jq9 
2?3333"~"55S5666~~71711788S98e8S8S8999999999 
2233333""5S555S666667117717Rq88S~e8999q99999 
2223333""'5SS5S56665S~171777SBaSSa8899qq9999 
~2233333""'5S55555S~66fi71777778~88q899~9919~ 
22233333\""'S55555666~56777i7778P38R8999999q 
??2233333""'5S5S556665~~677~777R8~ee8gS99999 
122233333"""55555665~~6617771778g8~S8R888~9 

Figur~ 7. A Simple Contour M.:lp (Heart Potential) 

suppose that D is 1mbeddeo In a rectangle II \oIhich has been 

partitioned by a rectangular grid as in (6.2). Assuming that 

f is continuous, 1t 15 still p05~lble to decide \oIhich of the 

grid lines a partl. Ilar contour of height Ii crosses by ex8.Clin

ing the end-po1nt5 of each such hne. Since f is not gent'rally 

linear along such a line, ve cannot determine cxa~tly \oIhere the 

crossing point 15 bj 11ncar lnversc interpolatlon. \lO'IoIever, if 

\ole are \oIil11ng to evaluate ( a few times along this line, \ole 

can estimate the crossing point qUlte accurately by bisection, 
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for example. Once a sequence of pOl.nt~ on a contour has been 

determined, we may thread a curve through the points just aa in 

section 8.2. 

This metho~ does have one serious drawback, h~Jever,--

just as with the method discussed in section 8.2--, if we are 

tracing n contour it may happen that after entering a triangle 

there is an ambiguity a~ to which of two points to use to exit 

the rectangle. One could opt for an ad hoc rule or try the 

second-stage approximation described in section S.2. For at. 

example of h~~ this Method works, Bee Falconer (76) (ba,ed on 

Lodwick and ~~ittle [130), where it is apolied to a surface 

constructed by loc~l weighted quadratic polynomial least-squares 

approximation. Since bisection is involved, one should realize 

that in drawing contours with thi') routing the &urfllce f io 

going to be evaluated a great many times. 

8.6. Threading on a triangular grid. An o~vious cure for the 

ambiguity discussed in &ection 8.5 for threading on a rectangu

lar grid is to use a triangular partition in the first place. 

Then the bisection method coupled with a threading routine leads 

imnediately to 0, contouring routine for general surfaces f. 

Strangely enough, I have r.ot been aole to find anywhere where 

this method ho,s been sur,gest(>d. 

I have made no effort to track down all avaiLable p&pers 

on contouring. A few which I did find and have not yet men

tioned are Cottafswa and Ie Moli {60], Dayhoff [641. and Pelto 

et al [1521. There are ~lny others. 

In SO<1'lc cases it nay be desirable to have a o')re graphic 

picture of a surLlce than a .... .:-·'::our nap cnn provide. Recently 

there has bc('n ccnsLdernble effor:: devotcd to cCl'11?u::cr t'1cthodo 

for displaying surfaccs on a scope or with n plotter. For some 

examples of output and a disc.ussion of -nethods, s('c e.g, the 

book by Barnhill and Ri('sen:cld [201 on cC""putcr-aidcd dellign. 
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If an llctuAl )-0 picture is dt>lIircd In'ltcau of jur.t a perspec

tive, it 18 even possible to :'l"oducc hologl".lpns. 
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c1 Surface Interpolation for Scattered Data on a Sphere 

Abstract 

This paper describes an algorithm for constructing a smooth computable 
function, f, defined over the surface of a sphere and interpolating a set of n 

data values, ui ' associated wlth n locations, Pi' on the surface of the 
sphere. The interpolation function, f, wlll be ~ontlnuous and have continuous 
first partial derivatives. The locations, Pi' are not required to l1e on 
any type of regular grid. 
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1. Introduction 

The problem of constructively definlng a smooth surface that interpolates data 
deflned at scattered pOlnts In the plane has been treated in different ways by 
a number of authors. For surveys of this work up to 1977 see Refs. (2) and (7). 

We consider here the analagous problem for data defined at scattered pOlnts 
over the s~rface of a sphere. When data is deflned over only a portlon of the 
surface of a sphere it may be most reasonable to map that portion of the 
spherical surface to a planar reglon, using a C1 mapping function, and treat 

the problem by an algorithm deslgned for the planar domain problem. However 
when the data is scattered over the whole surface, and lt is desired to 
produce a C1 interpolatlon function defined over the entire surface, it 
seems np.cessary, or at least very deslrable. to deal w1th the problem directly 

in the spherical setting. In particular, there 1S no C1 functlon that will 
map the ent1re surface of a sphere to a bounded planar region. 

2. The problem 

Let S denote the surface of the un1t sphere in 3-spcce. G,ven points 
P" i=l, ••• , n, the problem is to construct a computable functlon f, 
deflned and having C1 cont1nulty over S, and sat1sfying the lnterpolat10n 
conditions 

2.1 Relevant propert1es of C1 functions on S 

A functlon of f deflned on S lS dlfferentlable at a POlot PO in S If and 
only if there eXlsts a 3-vector go :~tlsfYlog 

(1) 

11m 

IdpU ~ 0 

Po + dp c S 

o 
gdpD 
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let TO denote the tangent plane to the sphere at the point PO. Si~ce the 
perturbed points PO+dp 1n Eq. (1) are requ1red to lie in S, the normalized 
perturbat10n vectors dp/ edpi approach the plane TO as IdPI approaches 
zero. It follows that if a vector 90 sat1sfies Eq. (1) then so also does 
any vector of the form 90+h where h is orthogonal to the tangent plane TO' 
i.e. where h is Q mUltiple of the vector from the origin to PO. 

To resolve this nonuniqueness of vectors go satisfying Eq. (1) we will 
standardize on the shortest such vector. This vector is distinguished among 

vectors go satisfying Eq. (1) by the property of being orthogonal to the 
pos1tlon vector from the orig1n to PO' or equivalantly by the property that 
the point PO+g lles 1n the tangent plane TO. We will call this vector 
go the gradlent vector of f at po. 

Note that the fact that f has a restricted domain, namely S, is an essential 
part of this defin1tl0n. For example 1f f is the restrictlon to S of some 
funct10n f deflned in an open nelghborhood of 3-space containlng Po it lS 

ent1rely poss1ble that f may be d1fferent1able at Po and have a unique 
grad1ent vector 9 that 1S different from the {m1nimal length} grad1ent vector 

go of f. In such a case however 90 will be the orthogonal project1on of 9 
onto the 2-D subspace parallel to the tangent plane TO. 

let U be a region of S conta1n1ng PO and not extendlng more than n/2 rad1an5 
away from Po 1n any dlrect10n. Let k be the one to one mapp1ng of points of 
U to thelr ort~o90nal proJect1ons 1n TO. Let Uo be the reglon in TO to 

Wh1Ch U 1S mapped by k. Define the function fO on Uo by 

Note that the pOlnt PO lS 1n both the domalns of f and foe If f 1S 
dlfferent1able at Po w1th gradlent vector 90 then also fO 1S 
dlffere~tlable at Po w1th grad1ent vector gO. We w111 make use of thlS 
local equ1valence of f and fO later 1n der1vlng an algorithm for est1mat1ng 
the grad1ent of f from d1screte data. 
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We will say a function defined on S is in the class C1 lf there is a 
continuous 3-D vector-valued function g. defined on S, such that for each 

pOint Po £ S g(PO} is orthogonal to the vector from the origin to Po and 
satisfies the condltion ascribed to 90 in Eq. (1). 

3. Major steps of the solution method 

The approach to be described has the same :najor steps as the method for the 
analagous planar problem given in Ref. (6). These steps are 

1. Build a triangular grid on S havlng the given p01nts Pi as vertlces. 

2. Est1mate the gradient vector gi at each point Pi' 

3. To evaluate the 1nterpolation function f at an arb,trary point p in $: 

(a) look up p in the grld to find the tr1angle contain1ng p. 

(b) Compute f(p) by an interpolation method using the given functlon 

values ui and the estlmated gradlent vector~ 9, at the three 
vert1ces of the encloslng triangle. 

3.1 Data structu~es 

In the algor1thms to be descr1bed the p01nts P1 w1l1 bf represented by their 
cartes1an coord1nates. It wlll be conven1ent 1n the foll~.lng to let the same 
symbol denote elther a pOlnt or the 3-D vector from the or1gin to the pOlnt. 
In particular. paints 1n S are represented by vectors of unlt euclldean length. 

Each ~riangle w1ll hav~ an lndex nu~ber and w1ll be represented by a set of 
six rJ1nters ldent1fY1ng the three adjacent tr1angles and the three vertex 
points. TIllS 15 exactly the same data structure as was use:d 1n Ref. (6). 

If tr1angle t has vert1ce~ hhose 1~d1CCS are A. B. and C 1n counterclockw1se 
(lrder. and whose adjacent tnangle 1nd1ces are a. b, and c 1't1th triangle a 
OPPos1te vertex A. b Oppos1te B. and C OpPos1te C. the SlX p01nters 
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representing triangle ~ would be stored in one of the following three 
permutations: 

a., b, c, a, c, A 
b, c, a, C, A, B 

c, a, b, A, B, C 

All access to these pointers 1S done via three very short subroutines. Thus 
the actual storage mode for these pointers 1S "hiddcn" from the rest of thE: 
program. By appropriate prograrmnng of these three subroutines the p01nters 

can be packed to save storage. 

The array storage requirements of this algor1thm are thus 

3n locations for the vectors Pi' i=l, ••• , n. 

n locations for the data values ui • i=l, •••• n. 

12n 10cat10ns for the triangle p01nters. Th1S is based on 6 p01nters 
per triangle and at most 2n-4 triangles. This storage requirement 
can easily be reduced by pack1ng. 

3n 10cat10ns for the grad1ent vectors g" i=l, ••• , n. 

n 10catlons for a permutat10n vector used only whlle bUll ding the 
9r1d. Th1S storage could be ~verla1d by the grad1ent vector array 
or could be elim1nated entlrely by m1nor changes ln the orogram 

des1gn. 

3.2 Determ1nantal tests and gr1d look-up 

Let PI' P2' and P3 be 1-vectors hav1nJ unlt euclidean length. Let 
Oet(PI' P2' P3' denote the det€rmin~~t of the 3x3 matrlx whose column 
vectors are Pl' P2' P3 1n that order. 

If II = Oet(PI' P2' P3' "0 then no two of the vectors form an angle of 
zero or ~. and the three vectors do not all lie 1n a slngle plane through the 
or1g1n. In th1S case a proper spher1cal tr1angle can be formed by connectlng 
each of tne three pa1rs of p01nts bv ·he snorter arc of the great c1rcle in S 
determined by that palr of p01nts. ,nus each arc w1ll have length less than n. 
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This triangle divides $ into two reg10ns. The smaller region is to be 

regarded as the lntenor of the triangle. If A > 0 an observer traversing the 

edges of the tr iangle with the intenor of the tl"iang1e to the left wi 11 V1S 1 t 

the vertices 10 the order PI' P2' 03' If A < 0 the ordering would be 
reversed. We will always order the vertices of tnangles so that A > O. 

Let PI' P2, P3' be vertl ces of a proper tnangl e t in S with A > O. 

Regarding q as a variable 3-vector in S, note that the quantity 

is proportional to the distance of q fr()!T1 the plane determined by the vectors 

P2 and P3 w1th the S1gn of sl being pos1tive if q lS on the same side of 

the P2 P3 plane as PI and negatlVe 1f q 1S on the opposite side. Thus a 
point q £ S 1S in5ide the triangle t if and only if the three quantities 

are all nonnegat1ve. 

sl Det 

s2 = Det 

s3 = Oet 

(q, P2' P3) 

(PI' q. P3) 

(PI' P2' q) 

Our algor1thm for f1nd1ng a tr1angle conta1n1ng a glven pOlnt q consists 1n 

comput1ng the quant1t1es 51' s2' s3 for some tri2ngle t and then e1ther 

accept1ng t as the conta1n1ng trlang1e 1f all s. > 0 or else mov1ng to the 
1 -

ne1ghbonng tnangle across the edge OPPos1te vertex P, 1f si lS the first 

of the test quant1tles found to be negatlVe. 

If there is no ne1ghbonng tnangle across this edge the search stops, 

returnlng th1S 1nformatlOn. Otherw1se the seal'ch cont1nues by comput1ng the 

test quant1t1es 1n the ne1ghbonng tnangle. 

Round1ng erro"s 1n :')rnputlng a 3)'3 determ1nant causlng lnconS1stent 51gn 

determ1nat10n could conce1vably lead to cycl1ng 1n the look-up process or to 

the constr uct1on of topolog1cal1y 1mposs1ble edges 1n the 911d construct10n. 
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Consider for example four points Pl' ••• , P4 that lle in order along an 
arc of a great circle, the arc having length less than w. The true 
mathematical value of the determinant of th~ 3x3 matr1x formed using any three 
of these v(ctors is zero. 

Using f1n1te preclslon coordlnates and flnite precision floatlng point 
arithmet1c these determinants will generally not be c~~puted as zero. A 

nonzero result does not in 1tself cause a ser10US problem but the poss1bility 
of incons1stency in the evaluat10n of related determ1nants can. 

To illustrate the hazard suppose that w1th Pl , ••• , P4 as above the 

computed value of Oet(P1' P2' P3) is posit1ve and (Pl' P2' P3) is 
accepted as a triangle 1n the grid. Then suppose P4 is tested for 1nclus10n 
in this triangle. It 1S possible that all of the determinants Oet (P4, 

P2' P3)' Oet (PI' P4' P3)' and Det(Pl' P2' P4} might evaluate 
nonnegatlve. ThlS would lead to the erroneous conclus10n that P4 is 

contalned 1n the triangle (PI' P2, P3) and varlOUS topologically 
lncorrect edges would be constructed to lncorporate P4 lnto the grid. 

USlng a tolerance c such !hat all results between -c and c are treated as zero 
does not solve the problem. We have had good luck uSlng double preC1Slon 
evaluatlon of the determinants and strlct zero tests. We have also had 
success wlth slngle preC1S10n determ1nant evaluat10n 1f we random1zed the 
order 1n w~lch the pOlnts Pi were conSldered for 1ncluSlon In the grld. 

One way to assure cons1stency wh,le sacnflclng some accuracy would be to 

truncate all coordinate values to a small enough number of b1tS to permlt the 

determ1nant eva1uatlon to done exactly. For example. on a machlne carrylng 
fourteen hexadec1mal dlQ1ts of slg~lf1cance 1n a double prec1S10n number, one 

mlght round all coord1nates to the 2-17 b1t. The smallest nonzero blt that 
cou1 d occur 1n the product of three such numbers \loul d be the r 51 blt. The; 
coordlnates do not exceed one 1n magnitude so the same 15 true of the1r 
product~. These products and thp sum of ~p to 51X such products can be held 
exactly In a normal1z~d floatlng pOlnt n~mher carrlng fourtee~ hexadeclmal 
dlgltS. Thus determ1n"nts of 3x3 matnces could be conlputed exactly. 
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3.3 Constructing the trlangular grid 

The convex hull of a finlte set of points in the plane is the smallest convex 
polygon contalnlng the entire pOlnt set. We need an analagous notlon, WhlCh 
we will call the spherical convex hull, for pOlnts on the surface S of the 
unit sphere. 

Let P be a finlte set of points in S. If there lS no plane that strictly 
separates the orlgin from P, we will say the whole surface S lS the spherlcal 
convex hull of P. 

Alternatlvely 1f there is a plane strictly separating the orlgin from P let C 
be the smallest convex cone w1th 1tS vertex at the O(lgln and containlng the 
set P. The intersect10n of C w1th S w1ll be called the spherical convex hull 
of P. ThlS region wlll lie strictly with1n some hemlsphere of S. 

A trlangular grld with n vertices and c9vering all of S will have 2n-4 
trianglEs. A grld that convers a spherlcally convex proper subset of Sand 
has n vertlces and b boundary edges wlll have 2n-b-2 trlangles. Note that 2n 
can always be used as an upper bound on the number of trlangles. 

Our method of constructlng a tr1angular grld using a given flnlte pOlnt set P 
in S as vertlces wlll be d ~eQuentlal process that alters a grld coverlng the 
spherlcal con/ex hull of some set of k pOlnts of P to obtain a grid coverlng 
the spherical convex hull of these k p01nts plus one more. 

Algorithms of thlS type can be dlvlded lnto (at least) three subtypes 

(a) Flrst flnd the boundary pOlnts of the (spherical) convpx hull of P and 

construct a tnangular g:"11 for these powts. Then In the remalnlng 
sequential part of the algorl thm each n€\'J powt lS known to lle ln some 
triangle of the current grld. 

(b) Preprocess the pOlnts of P lnto dn orderlng that ass~res that each new 
pOlnt wlll be strlctly outslde the (spherlcal) convex hull of the 
preceeding pOlnts. 
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Do no prepreprocess ing and be prepared for each new point to ~e either 
inside or outside the (spher1cal) convex hull of the preceeding points. 

W1th subtypes (a) and (b) one is adding extra ~ode and execution time for a 
preprocessing stage in the hope of perm1tiing the subsequent sequential phase 
to be slmpler and execute faster. We have at dif;erent times developed 
algorithms for the planar probiem representing each of these subtypes. The 
algorlthm of ~ef.(6} lS of subtype (b). My present inclination is to prefer 
subtype (c) as I think it permlts the total program to be simpler and probably 
is not significantly slower if in fact 1t is any slm~er. Mere speclfically lt 
does not requlre storage for a sep~:ate data structure to keep track of 
boundary pOlnts as was the case 1n Ref. (6). 

Our approach then 1S to form one inltial triangle and then loop through the 
remaining n-3 pOlnts adding one at a tlme and modifying the triangular grid at 

each stage to cover the spher1cal convex hull of all the points so far 
r.onsl~ereo. Each new point may ~e either lnside or outslde thp. grid so far 
cons tructed. 

In the class of problems for which this method lS prlmarlly lntended, l.e. 
problems ln WhlCh the data lS scattered qUlte generally over all of S, a stage 
will be reached at ~/hlCh the spherical convex hull lS all of S. Thereafter 
all add1tlonal points wll1 necessarlly l,e inslde the grld so far constructed 

s lnce the gnd \\ 111 cover all of S. The user can cause thls full coverage f)f S 

to happen early by arranging that the f1rst four points to be processed are 
located such that the tetrahedron wlth these four points as vertices contains 
the orlgln as a strlctly lnterior pOlnt. The trlangular grld based on these 
four p01nts wlll cover all of S. 

Inlt1ally the algorlthm seeks three p01nts wlth WhlCh to construct the flrst 

trlangle. The flrst vector PI 1S accepted uncond1tlonally. The rema1n1ng 
vectors are scanned for the flrst one whose lnner prcduct w1th PI 11es 
between cos 179 0 and cos 1°, l.e. between -0.99985 and 0.99985. POlnters 
are swapped to relabel th,S vector as P2. 
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The remaining vectors are scanned 10 flnd one wDose determinant along with 

P1 and P2 exceeds 0.001 in magnltude. Slich d vector is reiabeled as P3' 

The vectors P2 and P3 are then swapped 1f necessary to assure that 

Det{P1' P2' P3) is posltive. This completes the constructlon of tile 
first tnangle. 

we may now assulTe a grul b'l$ed on k-1 points has been constructed and the n~xL 

point, Pk, is to be introduced. A look-up i~ done uSlng the method 
described in Sec. 3.2. This look-up either f1nds a tr1angle t conta1n1n9 

Pk, or else f1nds ~ triangle t such that Pk is outsIde thlS triangle 
relative to a slde of the trlanqle beyond WhlCh there is nu adjacent triangle. 

In the first :ase, the slngle tl'iangle t having vertex POllitS PA' PB' r)C 

wi1i be replaced by th."<::!e Viangles h:, .ng -Jertex points (Pk' PB' PC)' 

(PA' Pk' PC)' and (PAt Pat Pk) respec~i>2ly. ihe algorithm th(~ 
does a grld lmprovement phase to be descrlbed s~bsequently. 

In the second posslble outco~e of the :~0k-up p~oce5s. the POlot Pk is 
strictly outslde the sptlcncal convex hull t)f the preCCeGHlg k-1 pOlnts, and 

in partlcular lt 15 cutsloe In edge of trlangle t that const':ute~ a portlo~ 

of the boundary of the spher'cal conver hull. In th1S case one new trlangle 

w11l be tormed by connect)ng Pk to the two ~nds of the edge of t th3t gave ~ 

negatlve si value 1n the look-up testlng (See Sec. 3.2). 

The algorithm next scans the current grld boundary pOlnts 10 boP. dlrcctions 

from the nPN tnangle 3nd connects Pk to all other boundary points th~t 
result In tne creatIon of proper spherlcal trl?ngles (See Sec. 3.2). The 
algor Ithm then does gnd lmpro."ement. 

3.3.1. Gr.d lmorOVef'1ent 

When t~o adjacent sp~crlcal trla~gles form a strlct1y convex 50herlcal 
quadrllateral !here arlses the posslbll1ty of rep'all~g t~cse two trlangles by 

the two that occ!.!r when the quadrllateral lS partlLlOned by lt5 other 
diagonal. One ~ust establIsh a crlterlcn for lhooSlr.g between ~he t~o 

posslble dlSectlOns of d QJ3drl1aleral. 
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ih,S issce was discussed for the planar case 1n Ref. (6) wherE it was shown 

that ~hree dlfferently stated cr1terld were mathematlca11y equivalent. In the 

spherical settlOg a fourth cr1ter~on \'lith conslderab1e intuitlVc appeal call be 

formulated and it is ('3s1ly seen to be equivalent to the "Clrcle test" of Ref. 

(5). 

Let Pi' P2 , P3' and P4 be the vertlces, ln cOl1nterclochnse order, of 

a spherlcal ~uadrilateral in S. Assume all four 01 the potcntlal trlangles 

(PI P2 P3)' (P2 P3 P4 ), (P3 P4 PI)' and (P4 Pi P2) 
'~ould be proper spherical triangles. One cholce ~lOuld be to connect pOlnts 

PI and P3 formlng tnanglt:s (PI P2 P3) and (P3 P4 PI) wh1le 

the ott-er cholee would be to connect pOlnts P2 and P4 form1ng trlang1es 

(p2 1)3 P4) and (p~ Pl p~). 

ConsHier the 3-0 polyhedron underlYlTI9 the sphencal trlanqu1ar ~rid. If th€' 

four potnt~ under consideraton are not coplanar then one c1101ce wlll 9lVe 

under1Ylng planar trlur.qu1ar faces that could be faces of a cC't"Ivex polyfledron 

and the other cholce ~'11l rot. Th15 therefore 15 Our new cnterlon: a 

preference to ma\..e the underly~ng 3-0 polyhedron convex. 

Another way to descrlbe thlS cr1terlon lS to crnslder th! un1qup llne L from 

the orlglO that 1ntf'rSects both of the 11nf'S P1"3 and P?P4' If PI' 

P2' P3' "nd P4 are not copl anar the two hnes wl11 lntel'sect L at two 

dlstlnct pOlnts. We construct the one of thf'se two 11nes that 1nterscrts L 

furth('rest from the Orlglr.. 

we lmpl C'f1't'flt th 15 test by computlng d = (let (pz-p}, PrPl' P4-Pl) 

and con::;trw:tlng che 11ne P2 P4 If d > 0 ancI construct1ng p}J."I
3 

lf 

d < O. E1ther l1ne can be used If d = O. 

Jifter J nl'W pOlllt. say p~, 1'> connected 1nto the gna, each 0dg~ that lS 

orrosltc ~\ 111 <;om(' trlc1nqle 15 a CJndlddte for swapPlnq. Thus 1f there 

IS a tr1anqlp PkP~rA Jlld an udJ3ccnt trlangle P?P3 P. the cage 
, '4 ~ ,t 

p?p~ Wll1 tll' rl'p1.1Cl'd by the ('age Pk P3 lf Oet (P;:-Pk' PrP~' 

P4-r l) 1<; nCQatlVe. I-,llcn an t'dgp 15 swapped the edqes OPPosite Pk 111 

till' thO l1l'wly for,Ted tnanglcs become cdfldldat('s for <';WJIJPlng. 
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3.4. Estimatlon of gradient vectors 

We assume a triangular grld has been constructed ln S covering the spherical 

convex hull of the points Pl' •••• Pn and having the points Pl' •••• 
Pn as vertices. We also assume the data values ul ••••• ~n (See Sec. 2) 
are available. It is required to estlmate a 3-D gradlent vector gi ~t each 
point Pi' See Sec. 2.1 for the characterization of gradlent vectors for 
this problem. 

Let Pi be a point at ~hith a gradient vector 9; is to be estimated. Our 
general idea is to dJ a least squares quadratic fit to dat« near the point 

Pi and then use the gradient vector of this fitted quadratic polynomia~ ('s 

the gradlent vector at Pi' We use a six term quadratic polyn~nlal in two 
val'iables forcing interpolation to the value ui at Pi' Thus we need at 
least f,ve neighboring pOlnts. and prefer more than flve to obtain a local 
smoothlng effect on the gradlent vector. 

Let Q denote the set vf points to be used for tne fit. we first place all the 
immediate ne'g~bors of P, lnto O. If th~ number of lwroedlate nelghbors lS 

from 6 through 16 and if the maxtrlx for the least squares problem pa~ses a 

cond1t1on1ng test then thlS set Q lS used for the flt. If the number of 
pOlnts exceeds 16. excess pOlnts are discarded. If the nurroer 1S less than 6. 

more nearby po,nt5 beyond the ,mmedlate ne,ghbors of P, are ,ntroduced. If 
the matnx condltlOn test 1S not passed. more po,nts. IJP to 16. are added. If 
the cond1tion test stlll fal15 wlth 16 points, the least squares system is 
damped to b13S the solut,on toward small values of the coefflclents of the 
three second order polynomlal terms. 

The flttlng lS se' cp ln a 'ocal coord,nate system de~ermlned by P" A 3x3 
rotatlon matr,x R 's determ1ned that tr3n~forms the posltlon vector of P, to 
the vector (0, 0, 1). Thus the "nc,-th pole" of the rotc.ted coordlnate system 

lS at Pi' 
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The same coord1nate transformation is applied to all vectors in the fitting 
sel Q. Generally these transformed vectors, having some proximity to Pi' 
will all 11e in the "northern hemisphere" of the rotated coord1nate system 
i.e. their z coordinates will be pos1tive. If any transformed vector (x,y,z) 
has z < 0 we arbitrarily replace it by (xIs, yls, 0) where s = Sqrt (x2 + 

y2). This last step is Just an expedient to do something definite in a poor 
situation. Data must be very sparse or poorly distr1buted to result in any 
points of Q being in the "southern hemisphere" of the rotated coordinate 
system. 

We ignore the z coordin~tes of these transformed vectors, uS1ng only their x 

and y coord1nates 1n the fitt1ng. This can be interpreted as projecting the 

points PJ of Q orthogonally onto the plane T that is tangent to the sphere 
at the "lIorth pole", i.e. at Pi' The po1ynor.na1 model for the fit is 

The coefficients c1 ' "', Cs of th1S polyncmlal are det~rmined by a least 
squares computat10n. The ?-vector (cl ' c2) 1S the grad1ent vector at Pl 
of the fitted polynom1al relative to the xy coord1nate system in the tangent 
plane T. US1ng the observatlons at the end of Sec. 2.1 we take the 3-vector 

(c1, c2, 0) to be the grad1ent vector at Pl of the (as yet unkno~n) 
interpolat1ng funct10n defined over the surface of the sphere. The inverse of 
the rotatlon matr1x R 1S then appl1ed to (c1, c2, 0) to obtain the 
representat;on of the gradlent vector gl in th~ origlnal coordinate system. 

3.5. Interpolat10n 1n a single tr1angle 

In the planar case descrlbed 1n Ref. (6) we pref~rred the 9-parameter 
Clough-Tocher CUb1C macroelement (Ref. 3) as our 1nterpo'ation method 
pr1mar1ly for the followlng two reasons: 

(a) It lS rrore econo,n, .al to evaluate than any other C1 lnterpolatlon 
method of Wh1Ch \\~ are aware. Beg1nnlng I'nth the rectangular 
coordlnates of q and of the vert1ces, and the functlon values and 2-0 
gradlent vectors at the vertlces, our evaluatl0n of th1S lnterpolant 
uses 55 multl;lles, 65 adds, and 4 d1vldes. 
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(b) The interpolant at any point is simply a cubic polynomlal in the 
cartesian coordinates (or in the barycentric coordinates), and thus it 
is easy to derive a.,d implement an evaluation of the gradient of the 
interpolated surface if thlS should be desired. 

Unfortunately, the Clough-Tocher method depends strongly on properties of 
polynomials in cartesian coordinates over a planar reqlon and does not seem to 
generalize for use over a spherical triangle. 

We will describe blO methods for C1 interpolation over planar triangles that 
do generalize to sphetlCal triangles. These both represent the lnterpolant in 
the form 

(2) 

where the wi's are nonnegatlve weight functions depending only on q and the 
locations of the vertices, and the f's are interpol ants depending in general 
on q and all of the data associated with the triangle t, and satisfying some, 
but generally not all, of the conditions for C1 contlnulty across triangle 
edges. A very helpful analysls of convex cOlOOlnat10n formulas of th,S type lS 
given in Ref. (4). 

As wlth the Clough-Tocher 1nterpolant the requirement for C1 contlnuity 
across edges is approached by estJbllshlng values of the function and ltS 
gradlent along an edge that depend only on data at the two ends of the edge. 

Values along an edge are co~puted by Hermlte CUblC 1nterpolat10n and the 
tangentlal derlvatlve at any pOlnt on an edge 1S computed as the derlvatlve of 
thlS hermite CUb1C lnterpolatlon polynomldl. The normal derlvative at any 
pOlnt on an edge 1S co~puted by llnear interpolatl0n uS1ng the de~ivatlves 
norl'1al to the same edge at the two ends of the edge. For q on an edge of a 
trlangle to let F(q) denote the value and G(q) denote the gradlent vector 
deflned by these lnterpolatlon methods along the edge. 

• 1 
! , 

\ f .. 
; ! 
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3.5.1. Pl anar ~lethod 1 III 

For any point q in the triangle t let f, in Eq. (2) be deflned b) Hermite 
CUb1C lnterpolation along the line througn q parallel to the edge opposite 

vertex Pi' This function f, has been called the BSG ,nterpolant or SSG 
proJector due to its use in Ref. (1). S~e also Ref. (2), pp. 92-101. 

Function and derlvative values fer this interpolation are derived from the 

edge functions F and G defined above. ihe functlon fi(q) defined 1n thlS 
way is Clover tr1angle t, and f, and ,ts grad,ent match F and G 
respectlvelyon all edges except that the normal derlvative of fi on the 

relative lntenor of the edge Opposlte P, vnll generally not be consistent 
with G. 

Corollary 2.5 of Ref. (4), adapted tc our present notatlon, states that if all 

fils ln Eq. (2) match F on the entire boundary of t, dnd w,(q) = 0 for any 
1 and edge pOlnt q for which the qradlent of f, evaluated at q does not 
match G(q), then f of Eq. (2) matches F and the gradlent of f matches G on the 

entlre boundary of t. 

Thus lettlng f, be the SSG lnterpolant, lt will suff1ce to requ1re that w, 

have the value zero on the edge OPPoslte P, and be nonzero elsevlhere on the 
boundary of t. ThlS 1S conven1ently assured by lett1nq w, be the 

barycentrlc coord,nate of q that has the value zero on the edge Opposlte P, 
and one at P,. Thus Eq. (2) speciallZes to 

(3) 

where the b, are the barycentr1c coord1nates of q relative to the trlangle t 

and the f,'s are BBG lnterpolants, each requirlng two 11near lnterpolat1ons 
and three Hermlte CUb1C lnterpolatlons for ltS evaluatIon. 

3.5.2. Planar Poethud 2 

For any pOlnt q 10 the trlangle t let f 1n [q. (2) be deflOed by f-lerm1te 
1 

CUb1C lnterpolatlon along a llne from vertex p throU0~ q to the OPPoslte 
1 -

edge. This 1nterpolant has been called a slde-vertex or radlal lnterpolant. 

(See Ref. 2, Q. 101). 

-. , . 



The function fi matches F en the entire boundary of t and its gradient 
matches G ~n the edge opposite Pi but its normal derivative is not 
consistent with G. on the relative 1ntenor of the two edges adjacent to 

1 

Pi' Again using Corollary 2.5 of Ref. (4), 1t suff1ces to define wi of 

112 

Eq. (2) to be zero on the relative interior of the two edges adjacent to Pi 
and positive on the relative interior of the opposite edge. TillS is 
accompl1shed by setting 

where the bi's are barycentr1c coordinates of q and the subscripts are to be 
evaluated modulo 3 to one of the values I, 2, or 3. 

The funct10n w, defined 1n th1S way has non-removable singularitles at 

vertices P,+1 and P,+2 Slnce it is one on the relat1ve interior of edge 
Pi+I P+2 and zero on the relative 1nterior of the other two edges (and at 
vertex P,), For mathemat1cal deflnitene~$ we may define w, to have the 

value zero at P,+l and one at P,+2' The sum I'll + w2 + w3 1S then 
one throughout tnangle t. as 1S requ1red for Corollary 2.5. In a computer 
implementat10n one would treat lnterpolation at a vertex as a special 
(trivial) case anyway, so !.'1e part1cular choice of deflOit1on of w. at the 

1 

P,+1 and P, +2 has no be3rlng on 1mplementat10r.s. 

Thus Eq. (2) spec1allzes to 

(4) 

{

(b3bZfl + bl b3fZ + GZDlf3)/(b3bZ + bl b3 + bZb1), for q ~ PI' PZ' or P3 
f(q)= 

u
" 

for q = Pi 

where the b,'s are the barycentr1c roord1nates of q and the f , 's are 
side-'/ertex lnterpolators. Each f, requlres one llnear interpolatlon and 
two Herm1te CUblC 1nterpolatlOns for 1tS evaluat1on. 

, I , 
, : 
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3.5.3. GenerallZation of Planar f4ethods 1 and 2 for spherl_al triangles 

The key in generalizing these two planar methods for use with a grld of 
spherical trlangles on the surface S of the unit sphere is to replace all of 
the linear and Hermlte cubic interpolations along line segments by the same 
type of interpolatlons along arcs of great circles in S. 

Let t denote a proper spherlcal triangle with vertex position vectors PI' 

P2' and P3' and let q be a point of S contained ln t. Let t' denote the 
underlying planar triangle having the same vertices as t, and let Q' be the 
central projecticn of q into the plane of trlangle t', i.e. q' is the pOlnt ln 
the plane of t' ,ntersected by the llne from the center of the sphere to q. 

When the look-up procedure of Sec. 3.2 finds that a given point Q in S is in 
triangle t, it also retu~ns the three nonnegative numbers sl' 52' and 
s3' We call these numbers unnormallzed barycentrlc coordinates Sl~ce the 
(normalized) barycentrlc coordlnates of q' relative to the planar trlangle t' 
can be computed as 

The lntersection pOlnts between certaln llnes th~ough q' and e~ges of t' 
needed for either of the two planar lnterpolation rr;ethods are easily 

represented in terms of the b,'s and Pl '~. Thus the lntersectlon between 

edge Pi Pi+l wlth thp llne through q' parallel to edge P, +I P1+2 has 
posltion vector b,P, + (l-b,)p,+l whlle the lntersectlon between edge 
P,+I P,+2 WIth the llne from vertex ~, through q has the positlon vector 

(b
'
+1 Pi+l + b, +2 P,+2)/(b , +1 + b, +2)· 

These 1ntersect10n p01nts can then be ce~trally proJected to S by normalizlng 
their poslt1on vectors to have unIt euclldean length. All of the 11near and 
cubic 1nterpolat1ons called for 1n the planar methods are then done w,th 
respect to drc length along great Clrcle arcs 1n S obtalned by central 
proJect1on of the con'espond1ng hne seg;nents 1n the planar tr1an~le t'. 
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Recall that gradient data at each vertex PI' PZ' and P3 is represented 
as a 3-vector that is orthogonal to the positlon vector of the vertex. 
Gradient lnformation generated at auxiliary points in either interpolatlon 
method is also represented a 3-vector orthogonal to the associated position 
vector. 

The verification that each of these two sphencal tnangle interpolation 
methods defines a C1 function over 5 can be carried out in t~e same way the 
C1 property of the planar methods is proved, for example in Ref. (4). Thus 
one observes that thp function value and gradient vector at any edge pOlnt of 
a spherical trlangle is determlned only by data at the ends of the edge and 
thus wlll be consistent in neighborlng triangle;. The partlal lnterpolation 

functions f; have the correct values at all edge points and gradient values 
that are correct on certain edges and wrong on others. The convex combinatlon 
formula (3) or (4) prJperly zeros out the fu~ctions ~here their gradient 
values are wrong and thus gives a function having the required boundary values 
and boundary gradlents. 

4. Software ir.1plementlng thpse dlgorlthms 

Subrout1nes were \'/rltten for these algorithms in 1979 US1ng the JPL SFTRAN3 
structured Fortran language WhlCh 15 preprocessed Federal {ANSI} Standard 
Fortran 77. 

The t1me for gr1d construct10n for n p01nts was oroport10nal to n1•25 for 
test cases ln the range froM 25 to 500 pOlnts. The RMS error ln test cases 
using slmple mathematlcal functlons to generate data over relatively unlform 
triangular grlds of var10US densltles was proport1onal to h3•4 1n test cases 
havlng maX1mum edge length 1rJ the gnd ranglng from 63 0 down to 90

• 

A COunt of the nurrtJer of arithrnetlc operatlons requlred to do a s1ngle 
lnterpolatlon In a tnangle glVes t"!! flgures 11sted 1n Table 1. The planar 
Cloug~-Toch~ method 1S lneluded for co~parl~on. Far all methods the 
computatlon starts wlth carteslan coorOloates for Q. Pl' P2' and P3 and 
functlon values and gradlent vectors at P1 P2' and P3. The we1ghts used 
to cor.tllne the counts are arbltrary but plauslble. They are normallZed to 
cause an add plus a mult1ply to sum to one for cons1stency w1th operatlon 
counts measured 1n "Flops M. 
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For f4ethod 1, tests of the contlnuity of the interpolated function and its 
flrst partial derivatlves across edges of the grid were made in two ways. 
Interpolated values and thelr first and second differences \~ere computed at a 
sequence of equispaced pOlnts along a smooth arc. Paths were chosen crossing 
edges at various angles and cross1ng a vertex. These tests indicated 
c0ntinulty of the values and f,rst differences with discontinuity of the 
second dlfference at edges. 

The other test of CI contlnuity involved reprogramming all of the code for 
Method 1 using a "U-arithmetic" package developed at JPL in 1971 based on the 
ideas of Ref. (8). (This is like the method of Ref. (5) without the benefit 
of a preprocessor.) In this approach the program computes a 3-0 gradient 
vector and d 3x3 Hessian matr1x for every lntermed1ate quantity and thus also 
for the flnal lnterpolated value. All derivative computations use 
matnemdticdlly correct formulas, 1.e. not dlfferenclng. 

We found it necessary to reorder some computations to avoid severe artificial 
numer1cal instabllltles 1n the der1vatlve computatlons. After this reordering 
the results were conslstent with C1 cont1nulty. 

We d1d not try a U-ar1thmet1c verS10n of Method 2. I would expect severe 
dlfflcultles wlth thlS Slnce the slngular1t1es of the Wi'S at certaln 
vertices (See Sec. 3.5.2) imply that sOfTIe flrst part1al derwatlons of the 

w, 's can be arb1trar1ly large 1n a small ne1ghborhcod of a vertex. 
Mathematlcally these cancel out but numerlcally there would be large rounding 
errors. 

5. Pn appllcatlon 

In Fetruary. 1982, this software was used at JPL 1n the study of gravlty 
variatlon over the surface of the planet Venus. Data was aV311able at many. 
but not all pOlnts. of a rectangular longltude-latltude grid. The mlsslng 
data cccurred in lrregularly shaped reglOns determlned by geometncal 
constraInts of the observatl~n and ccrrrnunlcatlon lnstruments • 
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Add/Subtract 

Multiply 

Divlde 

Sqrt 

Atan 

Welghted 

Total 

(Flops) 

I 

Table 1. Operation counts for a single 

interpolation in a triangle 

C lough-Tocher Spherical Spheri ca 1 

Planar Method Method 1 Method 2 

65 371 352 

55 699 450 

4 81 57 

24 15 

18 12 

63.8 827.0 584.2 

, 
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Factors 

for 

weighted 

total 

0.4 

0.6 

1.2 

3.0 

5.0 
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Using 2450 points at which data was present our program built a spherical 
triangular grid consisting of 4896 triangles. Misslng data in the rectangular 
grld was then filled in by interpolation in the trlangular grid. 

In the course of this work the scientists gained neo.'1 insights rega.·dlng their 
data and we found and repalred a weak spot in our program. See the dlScuSSlon 
of determinant evaluation in Sec. 3.2. 

6. Ccnclusions and remarks 

The efflclency of the grld bUlldlng procedure, executlon time in test cases 
being observed to be proportional to n1•25 , 1~ qUlte satisfactory. 

C1 interpolation in a spherical trianole requlres 9 to 13 more Flops than 
C1 lnterpol~tion ln a planar triangle. Modif1cations 91ving small 
reduct10ns 1n the operat1cn counts are known but it would be lnteresting 1f an 
entirely d1fferent approach could be found that might be more intrinSlcally 
related tc the topology of the spherlcal surface and requ1re slgn1ficantly 
fewer Flops. 

Method 1 lS more tlme-consumlng than Method 2 by a factor of about 3 to 2 
~ince Method 1 uses n1ne CUblC 1nterpolat10ns ~lcng crcs compared w1th six for 
Metll"d 2. Ana1ytlc computatlOn of grad1ents for 1nterpolated .. a1ues would 
probably be more stable uS1ng ~~ethod 1 than MetilOd 2 because of the 

slngularitles 1n the wi's of ~1ethod 2. It would be lnterest1ng to make 
v1sual comparlsons of surfaces generated by these two methods but we have not 
had the resources to make such comparlsons. 

The programs appear to be robust and rel lab le. The use of the SFrqArl3 
structured Fortran language has been extremely helpful 1n keep1ng the code 
understandable. 

It should be noted that the use of the surface of a sphere as the domaln is 
Just a wathemat1ca1 construct for dea11ng with the set of all d1rect10ns 1n 
3-space fr~~ an or1g1n pOlnt. Thus the methods of th1S paper are appllcable 
to the representatlon of any bounded two-d1~ens1ona1 C1 surface 1n 3-spatc 
that lS ~starl1ke" In the sense that there lS some or191r pOlnt from WhlCh a 
ray In any Olrectlon lntersects the surtace In at most one pOlnt and the ray 
lS not tangent to the surface at that pOlnt. 
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Other two dimens ional manifolds bes ides the plane and the spherical surfacp 

that may deserve investigatl0n for scattered data interpolation include the 
surface of a cylinder or a torus. On a cylinder one may wlsh to admit 
triangles having two vertices at the same datl point while on the torus one 
may admit triangles having all three vertices at t~e same data point! 
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Of POOR QUALITY 

Outline cf 3D Surfaces 

Surfaces: .. 
Interpolaticn v. ApproxiImtion 

l ! 
Patches v. Points Least Squares - (J. G. Hayes. }''TL) 

! 
Co::ms v. Bezier Shepard's Fo~.Ua 

! ~ 
(1) 0 p.ltches (2) 6 patches 

! ~ 
Transfinite Preprocessors: 

Bool~1n sums/correction surfaces 1. Triangulation 

Lofting illterpola.'1ts 1st pass 

Cal?atibility conditions Optimization 

2. Gradient specification 
Discretization ~ Point methods 

Triangular Ir.terpola.'1ts 

Barycentric coordL~tes 

BBG 

Radial Ki elson 

Symmtric Gregory 

Convex cOTbina.tions 

r 
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(1) 0 Coons' Patches 

First Problem: Interpolate 

to the 4 curves . 

Conventions : 

F ''prinu.tive'' 

F general coordinate 
F(l.v) 

[
X(U'V)] 
y(u.v) + parametric surfdce 

z(u,v) 
u 

Solution to the 1st problem: Lofting interpolant 

P1F = (l-u)F(O.v) + ur'(l.v) 

Univariate linear interpolant: 

Bivariate F = F(u,v) - P1F ~ tr.c above. 

Error F-P1F 

Idea' Mate:. F - P1F 

and add this to P1F 

Solution: P2[F - P1F] 

docs the Job. 
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F(u,l) 

r-------r---~----~v 

(O.fO> 

u 



Gearetry vs. Algebra 

g ... g(v)'" P2g == (l-v)go + vgl 

:. P2(F-Pl F) = (1-v)(F-P1F)(U,O) + v(F-PlF) (u,l) 

a (l-v)F(u,O) - (l-v)[(l-u)F(O,O) + uF(l,O)] 

+ vF(u,l) - v[(l-u)F(O,l) + uF(l,l)1 

= (l-u)F(O,v) + uF(l,v) + (l-v)F(u,O) + vF(u.l) 

[(l-u)(l-v)F(O,O) + u(l-v)F(l.O) + (l-u)vF(O,l) + uvF(l,l)] 

CheCk interpolation: (PF)(u,O) == F(urO) etc. 
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PF "" (Pl e P2)F Boole. 1 sun, transfinite lnterpolant, blending functions 
W. J. Gordon 1969 

Bilinearly blended Coons' patch 

Piecewise method - cO 

Practical applications: c1 or C2 

~ ... bicubically blended Coons' patch. 
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r 
~ 

f ::I 

r 
feu) .. P1f ::I ho(u)f(O) + hl(u)f(l) + ho(u)f'(O) + fil(u)f'(l) 

F ::I F(u,v) .. 

[ho(u)hl (u)11a(u)n1 (u) l1F(O, v) ~ 
IF(l,v) 

~
Fl'O(O'V) + dual t_crm _____ .:::q::_ ".. 

Fl O(l,v) , 

where 

B ::I F(O,O) F(O,l) Fa 1(0,0) FO,l (0,1) , 
F(l,O) F(l,l) Fa 1(1,0) FO,l (1,1) 
F1,O(O,O) Fl ,O(O,l) , 

F1,l(O,O) F11(O,l) 
fl 0(1,0) Fl 0(1,1) 

, 
, , F1,1(l,O) Fl 1(1,1) , 

0;' [Pos~tions I Tangents l 
Twist trouble ("F ":: --v> os -----------+---------

1,1 dUd Tangents ~ 1Wi.sts J 
I 

[ c~ a~ ] u -;:--;:;- (0,0) + v ~ (0,0) 
, oVoU oUoV 

Gregory s Squ.:rre + • u v • . 
Discretization .... Pomt l!ethods 
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OF pOOR QUAUTY 

2. Triangular Patches 

Rectangular dana.ins vs. non-rectangular danains 

Preprocessors: a. Tr~oulaticn 

Algorithn: (1) Enforce given boundary 

Default: convex hull. 

(2) A triangulation ... fast. 

(3) Optimize: min max angle 
T TET 

where T is the set of triangulations. 

b. Gradient Specification 

Surface Design: use tangent handles 

Surface Representation: use triangular Shepard's l'1ethod (Little) or 

inverse-distance-weighted least squares (Franke). 

T-
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Bary.:c.-,t:ric coorciinact S 

....... 
" A ... ... '" 1 ...... 

(Finite elements) 

Problem: Find C1 triangular mterpolants 

C1 triangular Coons I patches 

Barnhill. Birkhoff. Gordon. 1969-73 

- .......... ~ .. - ~ .. ----~~ .... - ... "---rJ ...... __ .. ____ .............. 
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OF POO~ C:'- ~ .• ' ;~ 

Standard triangle 

The BEG idea: wft & Boolean sun 

P1F m ho(f-q)F(O,q) + hl (o)F(l-q,q) (0,0) 

+ no(o) (l-q)Fl,O(O,q) + n1(o) (l-q)Fl,O(l-q,q) 

Fom cPl e PZ)F. Carpatibility conditicns (O,q) 

M:>re triangular mte-ryolants: 

Radial 

Syrmetric Gregory 
s~ 

nielson 1971 

oP1F + BP2F + yP3F 

~ t ~ 
BBG projectors 

a,B,y polynomials from the Birkhoff Pic. 

~ ~ A 

Convex Cccinnaticn aTIF + PT2F + yT3F 

TiF Cl Litery~l3nt on edg~ i 

Br~n ;,B.y rational functi~ :rom Shepard's Formula. 

Little 

-r- -_. ~-- --......-- ..... _j 
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(1,0) Heuristic only: 

use mxlern vcrs ion in 
practice. 
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OF POOR QUALITY 

Finite dirrensiona' triam;ular schenes: 

c1 : User supplied data 

(1) Little Triangle (1976) 

+ + 

> 
Condc..,sation of 

par~ters 
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t .. 
(2) C1 Clough-Tocher pie~..se cubic 

• j 

User-supplied data Clough-Tocher subdivision 

Problem: Find C2 Clough Toc.l-ter. 
\ 

Teo1: Farin IS Bezier Triangle methods 1979. 

Solution: Barnhill, Farin, and Little 1980. 
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Contouring: This is sc:xnetimes the probl€ClS. e.g., hidden surfaces, silho-.Jette 

edges. 

Adaptive subdivisicn schezres Little 

Petersen 
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Point Hetl1Ods: Arbitrarily Spaced Data 

Shepard's Fonrula (1968) 

(SF) (x,y) ". 

(x,y) = (x.,y) 
J J 
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Solar naps 

~nere 1i = di(x,y) = distance fran (x,y) to (xi'Yi) • 

Rewrite SF == 

r (n ~)F. 
i Wi ~ 

I (n ct2) 
kiiK 

w. (x
j 

, y . ) _ {1 
~ J 0 

if 

if 

- r w.F. 
i ~ ~ 

i '" j 

i " j 

. SF interpolates and is continoous. 

Global t::ethod I flat spots 

Inprove:ncnts: Bal.nhill & Pocppel.rreier 1975 

Fran.'<e 1975 

Vittitow 1978 

Little 1978 

cardinal fonn. 
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Rem3.rks: Patch methods are local tWthods. 

Shape fidelity requires at least local quadratic precision. 

Interactive design - real time computations. 

Interactive viewing - use the h.:rrdware. 

Reference: R. E. Barnhill, Representation al,d Appl.'"Oxinuticn of Surfaces, 

}hth. Software III, J. R. Fice, ed., Academic Press, 1977. 
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4D Surfaces Exan:>le: Tmperature as a function of 3 spatial 

Tessellation of 3D Connins into tetrahedra. 

1 
4D Surface Interpolants 

1 
3D Crotours 

variables. 

Lit\::ie 

Gregory 

Hans field 

Jens(';!l 
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OACKGRou:m 

This paper is devoted mainly to a physical and geometric interpretation of 
the surface fltting techmquc dlseovered by the author in 1963. which \"las 
called r.lultlquadnc equatlOns in 1971 (Hardy 1971). It Has not until 1980. 
after a report by Franke (1979) that lt was recognlzed that multiquadric 
equatlons or MQ may be interpreted very slmply as a llnear (omblnatlon of 
three dimenslollal dlstance functions. The slmilarity of the "Q method to 
a slmple summation associated wlth pOlnt Mass r.lodels in qeodesy was rec
ognized very early (Hardy 1972). As it turns out now thlS was simply the 
other slde of the biharmonic-hannonlc "coin", ard I have recently cowed 
a multlquadrlc label for the pOlnt nhlSS anomaly also, l.e. reclprocal 
multiquadnc or ~:Q-. In thlS case ''Ie construct a set of pOlnt mass 
ano~~lles havlng positlve and neqative values as contrasted wlth always 
posltive masses. By requlring or assunnn9 the SUr.\ of /11ass anomal1es to 
total zero we do not change the total ~~ss and are therefore dealing wlth 
irregulantlcs ln a dlstnbutlon of mass \"llth respect to ''Ihat \'1e perceive 
to be ~ome standard d1stribution of ~ass. For dlsturblng potentlal outside 
the ano'lalous m..1sses \'1e obtaln a solutlOn ,~ith a llnear comblnatlon of 
three dmensional reclprocal dlstance funetlons, 1n winch the orlginally 
unknOl·m pOlnt russ clnomal1es are treated as undetermined coefflelents. A 
reclprocal dlstance functlon is hamonlc, satlsfying Laplace's dlfferen
bal equatlOn. H~nce, a linear comblnat10n of such functlOns lS also har
emnle. An alternJtlv~ way of looling at the problen and ltS Solutlon lS 
to consider the 1ntegral 

in 'ih,cn p lS a pOlnt on or outsidf> the sphencal body where disturbinq 
potentl{,l T lS r.easurecl. Thl<; lnteqral cannot be forr,1dlly 1ntegrated 
because the equallty d~ = 6(r,O,A) dv contaln~ an unlnown denslty func
tlon 6(r,0,\} under the 1ntrqral SlQn. Therefore the lntegral, conSldered 
1n thlS llnht, has the chJracterlstlcs of an lnteqral equatlon. Jaswon 
and Syrr.l (1977) have studled problens of thlS type In both pJtent1al and 
e1astlcHy. It lS thlS form of a numencal approxlmatlOn to a 11near 
1nteqral e<1uatlOn_~hlch prov1des a solut1On for the anonalolJs dens1ty 
funct10n USlnq'~ . r~asure~ents of d1sturb1ng potentldl at n pOlnts 
dnd the fOl1'1aoon of a systcm of up to n llOear equatlOns provldes the. 
;-, r.danental baS1S of thlS approach. HOI·/cver, the apprOXlfT'..:!tlon of the 
denslty functlon 15 not the orlr.ary qoal usually. After obtaln'n~ a good 
apprOXlri1Jtlon of the dens1ty fUflctlOn 1t 1S used 1:1 the SU'r..1tlon furm 
to evaluate T at any pOlnt, usually 11here r has not been ,nclsured. The 
u1 tl;"".ate outco,t? then, 1 S .1 procedure that one Ci\n claSSl fy as predlctlon, 
apprOXHilJtlOn. or surface flttlng. 1f not sorle other form of nu~enr.al 
<1IIJ1Y~IS. 

- 1 A f,'eQuent probll'11\~lth I~Q • or !,olnt nac;s rlodels ln uener,,1. 15 teo rind 
('It.: ~est l.!cpth l)I- IdOlUS for placHiCl the ano,1,dll(,~. t-l3"dy ~197[;. 1979) 
and rl.1r'dy and C.opfel·t (1975) h.1VP pr'ovlced iI vcr'y satl'facto··y C;olutlfin fJr 
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this with respect to both spheres and planes. This is the "best-r fonnula", 
but it does not seem to be \Ie 11 kno~m. The ori gi na 1 rAQ fonn (now known to 
be bihannonlc) is relatlvely lnsensltive to this problem, and as noted by 
Franke (1979) 1 t seems to give results equal to or better than t1Q-l for 
most surface fltting purposes. Hence MQ essentially as used 1n 1971. will 
probably become the favonte of the blo sUI"face fltting techniques. 

The emphasis below will be on NQ rather than tlO-l but contrasts and similar
it1es of the blo \,1111 be shown. As ~1111 be seen, ihis the geonetnc and 
physical lnterpretation that has been appl ied to rIO I'lhlCh has contributed 
to a better understanding of flO. To summarize briefly in advance: 

(1) MQ-l is hamonic; ~1Q is bihatTlonlc. 
(2) MQ-l deals basically with exterl0r disturbing potential and 

satlsfles Laplace's C'luatlon; flQ deals bas1cally \:ith lnterior 
and surface Gi~placements, elast1cally, and satisfles Poisson's 
equatlon. 

(3) In both cases the solutions may be viellPd as belnq numerical 
apprOx1natlons of an lOtegral equat10n 1n \"hich an unknOl'ln den
sitl1function is the physical source for dlsturblnq potential 
{rIQ } or elast1c dlsplacement (flQ). 

rust of \that follows has been taken qU1te l1terally from my recvH papers 
(Hardy 1980,1981). There has not been a ra;nG expanslOn of mj knol'l1edge 
on the subject ~lnce 1980; however, ! am taklng advantage of th,S opportun-
1ty to renedya few m1s1eadlng stater.1ents, to correct outright ~llstakes, 
and to chanqe other matters, partlcu1ar1y F1qure 2 Wh1Ch represents the 
clast1c d1splacement of a sphere. Herce what lS presented lS cons1derea 
to be a modest 1mprOVeMcnt over my prevlOus papers. 

BIHARrlQtUC-HARHONIC PODELS 
FOR SURFACE FITTING 

Reccgn1t10n that MQ lS b1harmon1c in three d1menslOffi. Just as t~O-l 1S 
hannonlC in three d1r.1enSlOffi, was exped1ted by Franke's (1979) descnp
t10n of Duchon's th1n plate sp11ne or TPS. Fran~e noted Slnllar1t1es 
of lPS and MQ 1n the fact that ord1nates for a slngle ~ernel funct10n 
get larger 1n both cases as the d1stance lncreases. TPS involves a 
b1harmJn1C functl0n 1n tl,/O dlrler.:lons of the form: 

2 ? 2 \ 
r log r \~ith I" = (x-ty ) ~ 

whereas r~ 1nvolves a b1harmon1c functlon in three d1n~ns1ons of the for~: 

r 2'r- 1 or slmply r wlth r ~ (x2+y2+z2)~. 
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Most references in ~he theory of elasticity deal more with two dimensional 
theory than that of three d1mensions. N(>vertheless blharmonic functions 
of both types sho ... , ,-,p 1n mathemat1cal physics. particularly in cases 1n
volvlng relationships of Dotential. e1astlc1ty and hydromechamcs. r~O\., I 
\-li11 show you severa 1 groups of equations and give brief corrrnents on each 
group. 

n 
HQ ~!OOEL: 1: da Q. = H 

J=I J J 
(1) 

Q. = 
J 

[(X - X ,2 
JJ + (Y - y

J
}2 + 02 ]'/2 

(2 ) 

n 
[lATA EQUATIONS: L da Q • = H. 1 ,. 1.2 •••. ,n 

J '" 1 J lJ 1 
(3) 

Q
'J 

[<x _x.)2+{V_ V )2 2]1/2 - + 6 
1 J 1 J 

(4 ) 

In th~s group we ~ee the original !1Q method. Ordinates of 
II COnSl&ts of linear combinations of hypcrboloidb centered 
at data pOlnts. 6 was considered as a constant, whereas 
we w111 see later that 1t can be treated dS the d1fference 
between a constant ZJ and a varla~lc Z 

n 
G \' Q-1 L.. d::t

J 
= T 

J=l J 
(5) 

DATA E~UATIONS: 1 = 1,2 •...• n (7) 

2 ? ]-1/2 
'(J ) + (V - y.) + (Z - z ) 2 

1 J 1 J (8) 

Tre ~et,;1procal NQ ·nodel above lS actually a pOlnt mass 
anomaly ~odel for d1sturb1ng potent1al T Q to the m1nus 1 
15 a conC1n'10tlS recl.procal d~stance function 1n three vari
ables. For cOffi?utat10nal conven1encc we can locatp point 
~a~s anomalies at a conqtant depth 6 = ZJo We can also 
~ake all ~casure~ents of T on the XY plane at Z = O. Then 
(Z-Z.J) becomes the (:, 1n the :-:Q equatlons of tl'e preVlOUS 
£.roup 
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(9) 

(10) 

(11 ) 

G[Q~~J [Q~~T' [rJ = [Tp] (12) 

The solutions and predictions fer HQ and reciprocal HQ, as 
above, foJlow the ~ame bas~c pattern in each case. We 
don't need to consider these deta~ls now since th~s is not 
the main purrose of this paper. 

LET 
. (13) 

THEN [ 
2 2 2]'/2 

Q. = (X - X) + (Y - y) + (Z - Z.) 
J J J J 

(14) 

The equival~nce previously centioned and identLfied above, 
causes the MQ basis function to be a Cartes Lan d~stance 
function ~n three variables, analogous to the reciprocal 
distance in three variables. The IM~lication ~$ present 
then, that the un~eter~~ned coeff1cients daj 1n the two 
cases should ~ave the same phys1cal Mraning. ThlS 15 ver~
fied by the mathe~atical theory of clasticlty. 

MQ IIODEl (B I HARMOU Ie) 

4 ~4~ ~4Q 2a 4
(o 23 40 2~4n 

'12 (1i2Q) " \,40 = LO. + 0 IJ + + -(... + ~ - 0 (15) 
'< dX4 "y~ ~/. ;-X2~1Y2 ayZ;ZZ dZ"~X -

V 4 (t Ca Q ) = 0 ( 16 ) 
J = 1 J J 

Any single Q or distance function as above satIsfies the 
blharmonlc dlfferentlal equat10n 1n three var1ables as 
gIven. Thus a 11nCdr co~binatlon of all dlstancc functIons 
used In MQ apprOXIQatlon 1S bIharmonIc. 
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(17 ) 

(18 ) 

Q-l as above, l~ the generatIng function for zonnl harmon
ics, and through the decompo~ltion formula, leads to com
plete spherical harmonlcs satisfVln~ the Laplace differ~n
tial cquatlon. 1hus a llnear combInatIon of reciprocal HQ 
functions sJtisfles Laplace's equation. 

DUCHON'S TPS: 

W(p) (19 ) 

(20) 

The b~SlC Idc3 of Duchon's TPS 1S givcn in cquati~ns (19) 
and (20) ahovc .:(p) lS the d~flcct10n at toe pOlnt loca
non (XpYp ) \:here a concentrated loc'(.! ~ is dPpl1.ed. (Xq, 
Yq) is d pOlnt located on the boun~:ry defined as a Simple 
&upport for the rlate. D is the c~~~tant of ~tructural 
rig1dlty. Then Ip-Ql is the distance between 2 pOints in 
the <;amc plane. :'ote that if t.,'c let I~-ql = r then equatlon 
(19) 15 1n o:hc c.lrlt>lifl.(·d form kr L log:. Log r 15 the 
~ell hnu~n lOSlrlth~ic potent1al 1n 2 variables. 

Ji~Cn~·' I S ~I'00EL· 

" r 
'\ - ;, Ip: 

+ a,.t. ... ,'-" + a~ :: f{X,V) 
I '- .l 

(?l) 

DUC!lOl""'" 7PS r.odel b1vcn abovC' lndic~te-; that f(X,Y) b, a 
11:H .• r C0;:1:,inat10n of terms r2 log r plus thrcc ler1~S that 
phy~lc3l1y account (or r1~lrl bOJy dlsplacements. These do 
not affect stress or straln 1n a thln plate 
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(i .. 1.2 •...• n) 

WITH tONDITIONS: 

n n 
L A

J 
.. 0; ~ AjX

J
. :: 

n 
\ .... 0; L- A.Y. :: O. 
J=l J J J:: 1 J'"l 
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(22) 

1"he above eouations shmol that n measurCr.lents of stress or 
displacemec~ or~inatcs f(Xi,YiY are sufficient to determlne 
n value~ of upper case A coefficients (concentrated loads), 
~en 3 condition equations involvlng rigid body motion arc 
included in the 'ystem of equations. 

O'lE fOP.."l OF HAR.'10:nC-BIH,,\P.:~ON!C RELATIONS 

x ,. ,.2¢ + y (23) 

r. DISTA~,CE HI 2 OR 3 VAPIABlES 

This rcL:ltionship c,i \'cn abavc is one of several cl assical 
statements conccnnng biharmonic-harMonic relations 1n tbe 
theory of elastlc1ty. It is nppl1cablc to both HQ and TPS. 

ClJellu','s TPS BASIS 

X :: r2 LOG r + ~ 2 2 1/2 
r = (X .. y ) (24) 

v\ :: 0 [lIHhP,,'!Cr.HC 1tl TWO VARlh6LES 

Duchon's TPS 15 b1harnonic .. n two v..triables because it can 
be expressed as a eomblnation of t .... ·o nal7lonic funct'"lons, 
one of .,. .. hieh 15 log r, han'.~:Hc 1n tbe two va:-iab les, roul ti
plied by the square of r in t~o var1ables. The other 
functlon 15 ~ ~ a X + a

2
Y + 3

3
, also har~onlc In two vari-

ables. I 

HARJY'S MO 6AS:S 

2 n 2 1/2 _'v.,' .. 7\ - t,' ~ I (2:i ) 
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NQ is biharmonic in three varidble!.. because it can be ex
pressed as a

1 
cOI'llnnation of two n,lrmon1C functions. one of 

\\'hich 19 MQ- 1tl three var1abl('s. mul tiplied by the square 
of r in three varlables. The other harmonic functlon will 
be d1scussed later. 

Figure 1 illustrates the cross GCctlon of a sphere after 
tr,msformation ot !-!Q .md Iec1procal IIQ to spherical coordin
ates. We as~~me the sphere 1S an idealized solid elastic 
body with constant density or denslty as a function of the 
rad1us only. except for one mass element. A mass excess 
of d~j at a slngle element induces a disturblng potential 
of th~ othen-:ise Sf)herlCal ('quipot('nr 1al \J1th respect to 
the sphere. The nagn1tude is greatly exaggerated to show 
cle~rly the sh~pa of the disturbed equipotential surface. 
:-llr ,1pproXlmatlon as a whole cons1sts of a linear combina
tlon of ordinates of such d1sturLcd surfaces. 

I, 

OmGii!Al;-' - - '" 
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J 
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Figure 2 is the same d13gram except that lt shows 1n exag
gerated form the bihar~onlc dlsplacement of the solld spher
lcal body caused by the same DOlnt ~asq anomaly d~i' ~Q 
apprOxlmat1on as a whole-cooSls-CS-o-r-a linear conolnatlcn 
of ordinates of such dlsrurbed elastlc ~urfaces. Note that 
the displaced surface is l~slde the spherlcal ~urface for 
a PO~ltlve anomaly, due to pbysical contractlon of the 
body. The neqatlVc d,splacement 15 least nearest the anomaly and lncreases 
negatlvely as the spherIcal d,stance increases. An lmportant pOlnt to be 
Vlsual,zed wlth thlS 1llustratlon IS that the point mass anomaly C~ lS 
itself dlSplacp.d radIally lnllard (for a positwc anoIMly) dUrlna th~ lnter
actlon of the standard rrosses and the pOInt mass anor.~11y. ThlS change In 
poSItion induces a sr.all ch3nqe ln the exterIor dlsturblnCl potentIal. 
ThlS induced chanQe ln t~e exterior harnonlc functlon IS probably assocIated 
with the fom of the hannonlc-b,hamolllc relatlol')s lllustrated earller. 
In brIef there appears to be JustIfIcatIon for adclno three terMS In One 
varIable each becaJse of three lhmensional dlsplacc'-'lents In the sol id body. 
and possibly a constant ter~ as r'ell to corr.nletely fulfill the th~ory of 
elastlclty. Practlcal1y lt does,'t seem necessary to lnclude these terns 
when the I~ nethod IS aoplled to non-elastIC problems. as a general approx
matlon schene. I suspect the stdtenent would be true for uuchon's iPS. 

I' , 
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CONCLUDUtG RL:-1ARKS 

I wish to comncnt briefly on a poss1ble reason why the MQ 
methods gave generally better results than Duchon's TPS 1n 
Franke's study. Duchon's method 1nvolves direct applica
tion of externally concentrated forces at the surface of a 
reference plane; there are no body forces. The MQ methods 
use body forces induced by 3nonalous gravitation; there are 
no concentrated external forces. Hence the MQ b1harmonic 
function is generally a smoother function than Duchon's TP& 
This ~ay account for ~ome diffcrcncc~ in the approximation 
prcperties of the two method~. 
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BSPLASH; A Three-Stage Surface 
Interpolant to Scattered Data 

By Thomas A. foley 
California Polytechnic State University 

Computer Sciene" Depurtment 
!;an Luis Obispo 

ABSTRP.CT 

Given N dlStipct pOlnts (xi' 1i) and ~ real numbers zi' 

BSPLA~H constructs a functlon G (x. y) that sat,sfles G (x,> y,) = z, 

fGr i = 1 •...• N. 
? ThlS c~ l~terpolunt CO~Sl~ts of a blcubic splln~ 

a~proXlm3tlon and S~epard's blvar1 ate lnterpola~t. 
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1. Introduction 

This paper presents a three-stage procedure that solves the 

following bi~'Jriate interpolation problem. Given N distinct points 

in the plane(xi , Ji) and N real numbers zi' construct a function 

G(x,y) t~at satisfies G (xi'Yi) = zi for i & 1, ••• , N. This is re

ferred to as the scattered data interpolation problem because the 

data points (xi'Yi) are not assu~ed to fallon a rectangular grid. 

The irterpolation problem can be interpreted as fitting a sur

face through N points in three dimensional space and thus has many 

applications. In mineral exploration, exploratory wells are drilled 

and the depths of various layers are recorded. Given ~his data, 

surfaces representing these layers can be constructed uSlng inter

polation methods. Such an erample was studied by Robinson, Charles-

worth, and Ellis [9] 1n petroleum exploration. Foley [3) and [4] 

used bivar1ate interpolation in the characterization of fad10 -

nucl ide activity resulting from nuclear tests. Samples of activity 

were measured at various locations, the (xi'y~) points, Jnd the 

magnitude of the readings were the zi 'so The survey pJt:cr by 

Schumaker [10] gives applications in medic1ne, computer aided de

sign, electron1cs and geology. 

The new approach presented here 1S slmilar to the delta 

iteration method3 of Foley [3J and Foley and Nielson [5], but the 

new method is more stable, visually s~oother on s~ooth data. and 

it uses less storage. It is equally eff,c1~nt on large data sets 
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and is capable of smoothly fill1n9 in arPdS that ~re void of data. 

This globally defined 1ntcrpolant can be displayed by a three-

dimensional 5urface, a contour map, or by a table of interpolated 

z values. 

The name of the algorithm is called BSrlASH because it uses a 

bicubic spline approximation and a mod1fied Shepard's interpolant. 

The motivat~on for this approach is based upon the fac~ that many 

methods that apply directly to scattered data do not yield smooth 

or desirable surfaces. On the other hand, rr.any methods that yield 

efficient smooth interpolants only apply to data that fallon a 

rectangular grid. 

2. Modified S~cpard's Method 

It wll1 be convcn1ent to usc operator notation and to assume 

that there is some underlying function f(x,y) defined at the data 

points that sat1sflp~ f{X 1'Y1' ~ zi for i = 1 •.••• N. An easily 

implcmented scattered data interpolant is the rodif1ed Shepard's 

method descnbed 1n Foley [3] that is defined by 

ORIGINr.L P;,:"': :s 
OF po on Qv';!": fY 

S[f] (x,y) = 

for (x,y) I (Xj'Yj) 
j=l ••••• N 

where d1 = ex - xi )2 + (y - Yi}2, Ri is t~c d1stor.ce squared from 

(Xi' Yi) to its 5th nearest dat) p01nt divided by four. and 

d;(R. t c1 ) 
D ... (x. \,) = . 1 1. 
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This method produces an interpolant based on the inverse of the 

distance frem a point to the data ~oints. The proof of the following 

theorem can Le found in Foley (6) and l~ Gordon and WiT.om [t3]. 
~. 7 

Theorem 1 

Given N distinct points (xi,y;), then 

a) S is a linear operator; 

b) S[f] (xi'Yi) = f (xi'Yi) for i = It •••• Ui 

c) S[f] c C~ (R2). that is S[f) has continuous partial derivatives 

of all order$ for all (XtY)i 

d) ~x S[f] (xi'Yi) = 0 and ~, S[f] (xi'Yi) = 0 for i = 1, ••• ,Ui 
" 

e) S[f] satisfie~ the max-min principle min f(~i'}i) _~ S[f](x.y)~ 
i<N 

max f(x·.Yi) for all (x.y); and 
i<N 1 

f) S[f] is invariant under translatlons, rotations, and magnlfi

cations of the data points (xi'Yi)' 

Properties a), b), and c) state that S[f] solves th~ scattered 

data problem with a ccntinuous function, while d) says that S[f] 

is flat at the data points. Property e) is important when deal ing 

with data that has a large variatlon in zi in small reglons. S[f] 

will not oscillate vlolEntly as sorre other rethods might. The 

final property implies that srf] depends on the relative distances 

between data points, and not on the p1acp~ent of the axes, nor on 

whether distances arc me~sured 1n inches or ~11es. 

~:odified Shepard's intnrpolant is 'Jcry fast co:o:putationally. 

requires veryhttlc storage, and easl1y gCl1eral;ze5 to higher 

dimenslons. Unfortunately. even though ~rf] c em t~e plots arc 

not visually smooth. 

r 
I 
i 
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Fi9ur~ 1 ulsp1ays the plot of the blvarlate function 

(1) f(x,y) = .75 exp(- (9x-2)2 + (91:£12)+ .75 exp(-(9x+l}2- 2Y.+1) 
4 49 10 

+ .5 exp(-(9x-7}2 + (9v-3)2) - .2 exp(-(9x-4)2 (9y-7)2) 
4 

on the dOf11ai'l 0 < x ~ 1 and 02, y 2, 1. 

FrOM this surface. 100 data points were chosen whose (x,y) 

coordinate~ are shown in Figur~ 2. Each pOInt was chosen randomly 

front a unif)rm dIstribution on a square \.,.ith side length 1/9 centered 

at (i/9,j/S), i,j : 0,1.2 ••..• 9. This function and dctta are used 

here becausE. Franke (5) u~ed them as his primary test case in con-

paring many bIvariate intcrpolants. 

Fisurc 3 shows the moaifled Shepard's 1nterpolant applled to 

th,s d3t3. The M3ximunt absolute error 1~ .2403 and the avcr.;ge 

absolutp error is .0284. These crlors w~re cOi.~uted USIng the 

diff~rences at the 33 by 33 grId us~d to plot the surfaces. The z1 

values range from .027 to 1.17. 

3. Bicubic Splln~s 

l\Ooth~ r In-JJOt' corrporen t of BSPlA!:H 1 s the tn cubi c sp 11 ne tha t 

solves the fol1o~ln9 grldded ddta lnterpo13tion p.oblem. GIven 

(XG

" 

YG
J

• ZG'J),i = 1 •••. NXG Jnd J = 1 •... NYG. cunstruct a functIon 

H(x,y) that satlsflcS h(XG ,YG,' = 7Go
J

. The corrcspondlng o~crJtor 
1" I 

notatl0ns assu~es thdt there l~ S07C undcrlYlng function g(x,y) 

defined at the grid pOlnts that satlsflfS q(XG ,YG ) = ZG . I J lJ 

ORiG:"1rl P:.C: 1:. 
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Figure 1 
f(x,)') 

Figure 3 
<;; (f) (x,y) 
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Fiqure 2 
100 Data Points 

Figure 4 
B(f) (x,},) 
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The points (XG,.VG) will be referred to ilS the rectangular grid 

points. . 
The natural bicubic spline interpolant to g(x,y) over the grid 

(XGi.VGj ) is denoted by 6(g] (x,y) and it solves the gridded inter

polation problem 6[9] (XGi'YGj) = g(XGi"YGj) for i = 1, •••• NXG and 

j '" 1 ••••• NYG. 

6[gJ is formed by the tensor product of natural cubic splines 

in the x and y directions. The function is a piecewise bicubic poly-

nomial of the form 

J=O 

on each rectangle dete~lncd by the rcc:angular grid points (XGi.YG
J
). 

It is pleced together smoothly so that B[g] has all of its second 

order partial derlvat,ves cont1nuous. B[g] also minimlzcs the curva-

ture functional: 

over all functlons f{x,y) th~t solve the same gridded interpolation 

problem ?nd satisflcS certaln contlnulty concitlons. See dcBoor [1] 

for a detal1ed de~crlptlon. 

Other blcublC spllne lntcrpolants CX1St that use dlffercnt end 

condltlOn r
,. Th~ natural end condltlons were used here pnr..arily bc-

cause they ~er~ easily accesslble 1n the software packaqe 1.M.S.L.[8] 

in the subrout1ne IBCIEU. ThIS subroutlne was, ?pl1Cd to the test 

function (1) USing an equally spaced 9 by 9 grld on the ~nlt square 
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and this is shown in Figure 3. The maxi~~m absolute error is .0406 

and the average absolu!e error is .0033. 

In many cases, this interpolant is ,\ good choice for gridded 

data because it is co~putatlon311y cfflclcnt,visually smooth. it 

belongs to e2, it is globally defined, and it is easily accessible. 

Unfortunately, it only applies to gridded data. 

4. BSPlASH 

BSPlASH uses a blcub1C spline and r.0dlfied Shepard's ~cthod 

in the second and third stages of the procedure. The first stage 

of the alogr1thm 15 to generate a grldocd data problem. This con

sists of defining the rectangular grid points (XGi.YGj ) and the 

values ZG iJ = g(XG"YG
J

) u5ing local least squares apprOXimJtlons. 

The second stage is to form the bicubic spi1:le through thes~ points. 

The flnal stage adds a correctlon term using Shepard's ~ethod to the 

bicubic spline so that the scattered data interpolation problem is 

solved. 

BSPlASH allo~:s the user to enter hlS cwn rectangular gri~polnts 

or else it cc"putes tre qrid for hlm. The grld algorith~ is first 

applied to the Xl ,$ and then to the Yi '5 The objective is to 

compute grld pOlnts that cover the data pOlnts (x , 'Yi) proportlon

ally to the censity of the data points without having grid points 

too close together or too fdr apart, and to have all the data 

points fall inside thc grlo. There is a restrictlon that ~XG < 25 

and NYG ~ 25 for large data sets. 

let fol = IROU~:D(lN">, Ie = IKOU~m(rj/~I}. IIXG = M+2 and lIYG = ~~+2. 

Sort p-. X-COO,"dlr1ates 1nto inc,"casing order. Set ;:C2 to the aver3ge 

""'I ..... , .......... fI' '*\.-..r" - .,.Ir\,I_,. r"- ( • ... .J_ ,:... 
r'\- n",...,.. r'\""II~ 
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of the first k x-coord1natt " XG3 to th~ average of the next k small-

est x-coordinates, ••• , anG XGtl+1 to the average of the k largest 

x-coordinates. 

let U = (XGM+l - XGZ)/(M-l). If the M grid points were equally 

spaced, then U would be the d1fference between blo c.onsecutive grid 

pOints. Set XCl = xl - U dnd XGNXG = xN + U so that dll of the data 

points fall 1nslde the grid. 

While the interior grid points arp being computed, consecutive 

grid points are co~pared to see if their difference is between U/2 

and 3 i ll. If their difference is less thJn tl/2, they are considered 

to be too close and they are averagea together thus reducing NXG by 

cne. If their d1fference is greater than 3*U, a new grid point is 

in5e,'ted at tl1elr r:lldpoint and NXG is increased by one. 

The y-coordinJtes of the rectangular gnd arc defined in the 

same r.ldllner. 

Figure 5 shows the results of applying thlS grid algor1thm to 

sets of data coosist1ng of N ~ 100. 33, and 25 p01nts. The grid 

points are hhere the orthogonal lines intersect. Note that the 

second highest horizontal line 1n FIgure Sb is the average of two 

gr1d lines that ~ere too close together. All three of t~ese (x,y) 

data sets here used by Frankr [6J ln his comparlson of ~any bi-

variate interpolants. 

The rest of the first stage is to define the values ZG,j = 

g(XG
" 

YG
J

) at the grid pOlnt5. For each of the 9rld POH:tS (XG
1

, 

YGj ), find the seven nearest data p01nts (xk,y,,). To slr..pllfy the 

notatlOn. assu .. e that the nearest data pOlnts to (XG1.YG
J

) are 
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(X1 'Yl)""'(X7'Y7)' let dk = {xk-XG i )2 + (Yk-YGj)2, and note that 

d1 ~ d2 ~ ••• ~ d7• A weighted least squares fit to (xk'Yk,zk)' 

k c 1, •••• 7, by a quadratic is formed and then it is evaluated at 

(2) min 
7 1 
La; 
k=l 

s 2 2 for the aj I , where g(x,y) ~ 01 + a2x + a3y + a4x + asxy + a6y 

Then define ZGij = g(XGi,YGj ). 

To add stabillty to this proccss. BSPLkSH sets ZMW = min 

(Zl'""z7)' Z~~'\X = IMX (Zl""'Z7)' and then deflnesthe grid values 

by 

if g (XG p YG) <; Z~~IN 

if 9 (XGi • YG.
J

) > Z~'AX 

otherwise 

The I.M.S.l. subroutine llSQF is used to compute al .a2 ••.• o6 

for each of the grid points. This subroutine will properly handle 

the case where the I:nnir.nzatlon problem (2) has r..any solutions by 

using the fit of lo~est degree. 

This first stage can be used to define functlon values at any 

point. but since th,S dcp~nds on the se~en nearest data pOlnts. thc 

function may not be contlnuOU5. Pm'>'ever, thlS rleighted least 

squares approach gives a good io~a' ~pproxi~atlon to f(x,y} at the 

rectangular grld points. 
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The second stage is to fonn the bicublC spline B[g), where 

g(XGi • YGj ) = ZGij , i : 1, ••• , r:XG, and J .. 1 •••• ,NYG. Although this 

generally yields a smooth approxlmation to f(x,y}, it does not inter

polate the scattered data (xi'Yi,zi)' 

The third and final stage solves the scattered data problem by 

addlng the correction term S[f - 6[g]] to 8[g] to yield the BSPLASH 

intcrpo 1 ant. 

P[f] (x.y) ~ S[f - B[g]] (H.y) + B[g) (x,y). The correction 
-

term uses the modlfied Shepard's method to interpolate the d1ffer-

ences between zi and the bicubic spline B[gJ evaluated at (x
1
'Yl)' 

i =l, •••• N. 

Theorem 2 

then 

a} 

b) 

Proof: 

P[f] solves the scattered data prob1em P[f] (~l'Yl) = f(X i 'Y1} 

for 1 = 1 •••• ,Ni and 

P[f] has all of its second order partial def' atives cont1n-

uous for all (x,y). 

By b) of Theotem 1. it tonoNS that PEf] (xi,Y,) 

= S[f - B[~]] (x
1

'Yl) + B[9J (x"Y, ) 

= f{X 1,y1) - O[g] (X"Y1) + B[gJ (x"Y,) 

., f(xi,y , )· 

Since PEf1 15 the SU":1 of em Shepard's correction functlOn and the 

C2 blcublC spl1ne, 1t fol1o~~ that P[f] belongs tc e2 for all (x.y). 
Q. [,0. 
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Figure 6 shows the results of BSPlASH applied to the data sets 

of " = 100, 33, and 25 points from (1) evaluated at the (x,y) points 

shown in Figure 5. The mar.im~m absolute errors are .0443, .2293, 

and .1220 respectively, and the average absolute errors are .0060, 

.0435, and .0277 respectively. 

These discrete errors cc~pare fdvorably with the best of the 
-

methods tested by Franke [6J. The visual smoothness of BSPlASH would 

also rank high with those methods. BSPlASH was applied to three 

other :est functio~ of Franke [6] on the same three data sets of 

100, 33, and 25 paints, and the results were accurate and visually 

smooth. 

The storage required for BSPLASH is very 10\>1. Besides the 

storage of the data points (x:.y,.=,,). i = 1 •.•• ,H. less than 3N 
I 1 

locations are needed to store the grld. the grid's z-values, and the 

local p('rameters 1', usee in ff'.odified Shepard's rrethod. P.ost tri

angular based interpol ants require storage on the ord~r of 30~ and 

soore ethers require storage of IT10re U,an U2 e1 ernents. 

The ~xecution times can't be accurately co~pared because dif-

fcrent con'putcrs werf! used. The resu1 t~ here were done on a Cyber 

CDC 170/730. The overall computation t~r.e is on the order of N2• 

but the obsrrved times appear llnCdr in N even when the grid a190-
ON 

rit~m was used. The execut 1 ~ t ir.es for BSPlASH when N = 25,50,' 00. 

200. 400. and 800 pOlnts HelP used were 4.5, 8.3, 17.2, 39.6, 104.5, 

~nd 206.2 seconds resp~ctively. So~e other blvariate illterpo'ants 

are on th~ order of N3 and are not efffClcnt for large N. 

r 
I 
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Naval Pos .. gf3~lJatp School. /lr")nterc}, Cfl, lS19. 

7. Gordon. \.1. J. and J. Wixc,n, ":it,epard s r~ethod of 'Poetnc 

Interpolatlon' to B1Vdrlate <-nd I:ultivarliltc Data," !~Jth::,rC!tic!; 

cf Ccnouta~~~, 32 {1978j 253-264. 
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Computer Subroutlnes L lbraries in ~:<lthemat ics and Statistics t 

Hou$ton. Texas 1977. 

~. Robinson. J. E.. H.A.K. Chdrlesworth and M. J. Ellis. "Structural 

Analysis USlng Spatial Filtering in Interior Plains of South

Central Alberta," A .. ner. Assoc. Petrol. Geul. 8ul1.. 63 (l96!;1), 

2341-2357. 

10. Schumai-cr. l. La. nrittirg Surfaces to Scattered Dat(t,1\ in 

Approxi~Jtion Theory II. G. G. Lorentz. C. K. Chiu and L. L. 

Schumalcr, eds., Academic Press. New York, 1~76. 
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DSPLr\~a ',/dS upplie.1 to !:i~verul SI.!t~ of <.lutu thilt rr'1n~~(6) u~eJ In 

the CO'.1put" i~on of n .. lIlY in Vilr ic"l tc interpol.llltS. Sect-ion 1 descr .Lb~s the 

~, section 3 ("ont..:lins the plots of t.he 3-D surf.J.c:::-=>, un,l scetl.on ~ 

lists the ctiscrct~ ('l-rOn, of the bett.er ;:,~lho 1$ teste l bl rr:lI\l;~'. ';'l\.:! 

first <lnJ fourth $~ctlOIW <\rt! editeu xero"I!~ of l'ran'-'(!' $ technical 

report. 
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• 1.2.2. Th~ Test Prob1~ms 

The basic set of test problems cunsisted of six different test functions 

over three different x-y point sets. and two x-y-z point sets from the 

literature, one of tho5e used in a second version with one of the coordinates 

scaled. Another interesting test was the computation of a "cardinal" 

function obtalncd by setting all function values on a point set to zero; save 

onc. 

The SlX test functions ,,:ere all to be approximated on [0. 1)2. Four of 

them were basically obtained from ~cLain's paper [39], but were translated 

to [0, 1]2 from [1. 10]2 and some modlfled slightly to enhance the visual 

aspects of the surface. The other tl'lO were generated by the author to provide 

a funda'l1entally different shape 1n one case (sadjle), and to provide a surface 

with a varlety of behavior on one surface to sene as a prineipil.l test func-

tion. 

The princlpal test funct10n is given by 

222 
f ( ) 75 [ (9x-2) + (9y-2) ] + -S [ ~x+1) ~] 1 x, Y =. exp - 4 . I ey.p - 49 - 10 

2 ? 
.+ .5 exp[ - (9x-7) ~~-3)~] _ .2 exp[ _ (9x-4)2 _ (9y-7)2]. 

This surface eonslsts of two Gaussian pea~s and a sharper Gaussian dip 

superl~posed on a surface sloping to~ard the first quadrant. The latter 

was lnc1udcd mJlnly to enhance the visual aspe~ts of the surface, Wh1Ch 1S 

shown 1n r,gure 4.0.1.0. 

The second test f~nction, essc~tia11) obtained frem Mela1n is 

1 f 2(x, y) = g{tanh(9y - 9x) + 1]. 

This surface consists of b/o nrar1y flat regions of hC1ght 0 and ~. JOlned 



"'"--'-- ..... -,..,......--..,.-.-.- .... --. ----.rcr-...... -...--..l ___ -___ , 

ORIGIN~L P:'::~ r:; 
OF pOOR QUAUTY 164 

by a sharp r-ise, cllirost J cliff. running di.1gonally from (0, 0) to (l, 1). 

The test surfacE:> is shol'fn in Figure 4.0'.2.0. 

The third test function was generated by the investigator and is 

f ( ) = 1.25 + c('ls(~.4\'} 
3 X, Y 2 • 

5(1 + (3x - 1) ] 

This surface is saddle shaped and is shown in Figure 4.0.3.0. 

The fourth test function, essentially obtained from t:cLain. is 

This surface is a Gaussian hill which slopes off in rather gentle fashion in 

[0. 1]2. It can be seen in Figure 4.0.4.0. 

The fifth test fU1ction \'/ilS also essentially obtilined from Hclain and is 

This surface is a steep Gaussian hill which beccmes a'~ost :cro at the bound-

aries of the unit squilre. It can be 

There were three dif&rrent sets of pOlnts over [a, I]? used 10 the tests. 

The first set consisted of 100 pOl~ts gcrcratcd by a pseudorandom nunber 
1 i j 

generator, one pOlnt 1:1 each square of sldc "9 centered at (9' 9-) for 

i, j = 1 •...• 10. ThlS yields a set of scattered P01Pts forced to hilve 
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SOmc./holt unifonll dcnslty ... 1t"oug~ as can be secn in Flgure 0.1.0.0. there 

arc loca~ly large vadations in dcnslty. The triiln9uloltedsetof points is 

also shown in figure ~.l.O.O. Part of the unit square is outside of the 

r convex hull. The points arc listed 1n Table 1. 

r 
1 
1 
I 
I 
I 
r 

The second set of dat,' ~<)nsists of 33 points and was generated by tnc 

investigator to purposely have ~om~ areas sparsely populated by points 

while other areas arc not. ThlS set of pOlnts is shmln in Figure 0.2.0.0. 

The points are 115ted 1n Table 2. 

The third set of points \-I.)S digitized by Gregory M. Niehon and is 

similar 1n dispos1tion to a set of points appearing in Hcla1n [40]. This set 

of points is sho\/n in Figure 0.3.0.0. Pdrt of the unit square is outside the 

convex hull. The points are llsted in Table 3. 

n/o sets of data were cbtJlned fron the literature. and one of these was 

scaled in one vanable t('l obtaln another. A fourth set \-/as u5cd to generate 

a "Cardinal Furctlon H
• The data glvcn in Table 3. and ~hown in Flgure 0.3.0.0. 

was given the foll0.nng function valu[!s: f(xk• ll-) = 0 except 

f f(.1875 •. 2625) = .2. Here.2 Has usrd for visual purposes ,'ather than 1 as 

. i 

would ordinarl1y be done for a true cardlnal functlon. This gives some infor-

mation about the lnfluence of one pOlnt en the surface for ~odcrate sizrd 

point sets. Of the two sets of pOlnts frot1 the·l1teraturc , one is from !I~lr.:a 

[1) and I ... as obtalned during a study of \','avefom distortion. It is repeated 

here 1n Table 5. and shCl-:n 1n FiglJr'c 0.5.0.0. The second lias obtalned fror.l 

Ferguson [14] and is repeated h~rc 1n Table 6 , and shohn in F1gure 0.6.0.0 • 

The sar.lt? set of data. but \nth the y coordinate r.lultlp·lied by three was 

also used to show effects of scal1n~ only one varlablc. and is shown in 

Figure 0.7.0.0. For vlsual purposes, t~e functlon valu0s given in Table 2 

arc actual1y .5 ~'orc thJn glvcn by Ferguson. As Ciln be seen f1"0:1I Figure 
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BSPLASH ON F2 (x, y) 

33 p~/JI:s. 

d-.~p~-h 



oniGlr!,'\'- ?I'!.I"!" t .... . -- .;, 

OF POOR QUALITY 

168 

BSPLASH ON F3 (x. y) 

100 f6i~ 

.. 
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BSPlASH on F4 (x, y) 
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BSPLASH on F5 (x. y) 

33 
. / 

~/IJTS 
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.,~tho~ MaXIMU:1 Mean RMS 

r 
) DC\'iat ion DevIation DeviatIon 

1 : fran\-c - 3 .0919 .00812 .0148 

r 4: /I~ II"J .0647 .00787 .0125 

10: M lllJ /:od. I .0856 .001£:4 .0133 

11 : Nlcl~on - Franke J .0782 .00741 .0122 
I~: /h)d. Qua d. Shcpard .0573 .00785 .0128 

r IS: Mir.a Ilod. II I .0520 .00729 .0117 
(". rran~e - TPS .0940 .00887 .0164 
". 

28: lawson .0951 .00783 .0124 

r 19: tliclson ~linrlorm .0492 .00537 .OC'l9~O 

21: Hanly Q'JddrlC .0225 .00181 .00357 

1 
1): Duchon TPS .0518 .00525 .OO9~7 

21: Hardy PCClp. Qu.:d. .0247 .... 0283 .00510 
33: Foley I!l .0636 .00473 .C0941 

BSPLASH .0#3 • DOG.O 

J 
~thod +; 3Sp1-S Mdximl.l':l Hean RHS 

J 
Oevlcltlon DeviatIon DeviatIon 

1 : rran~e - 3 .347 .0477 .0732 

I ' : M" \r",l .158 .0384 .0535 

10' M:H",J r~od I .197 .O~OO .0570 

13: hlrlson - Frclr~e Q .150 .0326 .0455 

I ' \: . Pod QVJd. Shepard .184 .01';0 .0~7b 

16: f,'r I r'J ~'od. III .164 .0372 .0521 

1~ : fr,lIll-.c - TPS .218 .0346 .0517 

ZB. lawson .287 .0462 .0557 

-, 
19: 111Clson rl~n'lorn .150 .0305 .0437 

21: Hdrdy Qua~r~c .137 .0181 .0259 

.. i): Ouchon - I Pol .153 • fl293 .C~21 

I Z7: Hardy neelp. Quad. .140 .0153 .O2~4 

J3: foley I j I .296 .0350 .OS~6 

I 
BSPLf\SH ,2:l1 ,O4-~ 

Hethod -t :2~pts Maximum Mean R'15 

I 
Oevlat JOn Ocvlatlon Oevlat lOn 

1 : Franle - 3 .2~O .0359 .0485 

I 4: M.lra .134 .0282 .03::'G 

10: M \r J ~·od. I .129 .02S0 .03:J 

13 : NIelson - franlc 0 .153 .0350 .O~7a 

14: ~~:Jd. QUi) d Shepard .158 .0353 .C~25 

16. M. ]:"1.1 :')0 III .155 .0355 .O':S·~ 

24: rrdnke - iPS .129 .0267 .037~ 

213: liH.son .202 .0327 .O~58 

. 
19. Iln-l SGri :!l n·:or.n • 12ti .0235 .0323 

21: !'dre!j QUJcnc .119 .023S .0}22 

23 Duct,on TPS .121 .0253 .03:8 

27: ftll dy r,t'C 1 p. Q"Jd. .119 .0214 .O29~ 

3a: rolel II: .165 .0195 .031 0 

BSpu,sH " (;>.?- .O";l..77 
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1: Franke - 3 
4: Md:na 

10: M~ 11:1<' ~~od. I 
13: Nielson - Fran~e Q 
14: ~cd. Quad. S,epard 
16: Akina ~~od. III 
24: Franke - TPS 
28: lawson 

19: Nielson ~in~orn 
~I Hardy Quadr1c 
23. Duchon - TPS 
'7: 'Ildrdy R~C1p. Quad. 
30: Foley II I 

BSPLJ\~H 

MAX 
.0518 
.0520 
.0473 
.0721 
.0468 
.0958 
.0295 
.0280 

.0424 

.0244 

.0344 

.0379 

.0281 
.. O;:{b~ 

Devlatior'ls fron Cliff teet surface. 

Table 0.1.2 

I: rr.!n~e - 3 .0776 
~ . Ak1r..! .0543 . .,: J.k '-4 ~od • I .0513 . ). ~felson - Franke Q JJ878 

U: "'.ad. Quad. Shepard .0376 
'6' Ak i r-d ~~od. III .0580 
H: franke - TPS .0561 ., l!wson .0955 . . 
19: IHelson 'lin';orM .0532 
11 : lIudy Quacin c .0577 
:): OJchon - ; I S .0526 
:7: H.lrcy Rec1p. Quad. .0500 
n. Foley 111 .0314 

'BSPLF1SH .. olI1'5 
Devlations froo;, Cl iff test surface. 

Tau1e 0.2.2 

1 : Franl'£! - 3 .161 
,: M:'lrJ .099Q 

10: A1..1~3 ~~cd. .0987 
13: Nlc1son - Fran~e Q .148 
I' . r'od. Qu~) ~. 5t"e;:>ard .163 ... 
16 : Aklr·a :·cd. III .146 
2" franl,e - Ii'S .105 ... 
29~ laW50lT .132 

19: Nielson ~'r";:lrn .0942 
21 : Hardy QUdcnc .099~ 

2): Ou:hcn - Trs .101 
27: "'arcy RCC1p. QJad .105 
)0: foley III .0132 

BS?LJ,SH .077Q 

('f'Vidtions frc~ :1,ff te~t surface, 

M'::IIN 
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.oonG .O8~% 

.00303 .COGO,) 

.00257 .OJS~2 

.00265 .OOGP3 

.oon4 .COSS1 

.00293 .(1080') 

.0024) ,OO~1J 

.00271 .oo~~g 

.00101 .COD4 

.0017 7 .O(·j]) 

.00210 .0:1':35 

.O319? .uJJ~3 

.00223 .01)419 

.~;:21 

100 p01nts I-- .. 
'~ 

• .0124 .019:1 
.00350 .0133 
.00747 .0122 
.0137 .0219 
.01?1 .0285 
.0105 .0176 
.(1:>911 .OI~7 

,0126 .0205 

.OJ30~ .Ol~O 

.0129 .0170 

.03777 .0120'. 

.OGgS3 .0130 

.0165 .0262 

scr:AO 
33 roints -+ 

~ 

.0;'25 .O~Q3 

.0143 .0757 

.0143 .O'J2 

.01 fi6 .038': 

.0155 .03:4 

.01C,': .0385 

.01~3 .OiS7 

.0164 .0233 

.013B .0?t.2 

.OI~3 .0231 

.0135 .0235 

.0139 .0('35 

.01G5 .02S0 

.0107 

25 p01nts ~ 
I.;L 
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1 1 : Fran~t! - 3 .0198 .00164 .00294 

4: j\\..lra .027-1 .00224 .00423 

10: Al..lnl,J ll.od. I .0254 .00198 .00361 

I 13: ~ic1son - Franle Q .0168 .00110 .0020G 

14: Mod. Qu~d. Shepard .0125 .00112 .00194 

16: AI.. 1 Il'J Pood. II I .0142 .00105 .00202 

T 
24: Franke - TPS .0165 .00157 .00273 

28: Lawson .0565 .00149 .00359 

19: ru (' 1 son lli nr;('m .0195 .00091 .00200 

I 21 : liardy Quadrlc .00461 .00025 .00052 
23: O~chon - TPS .00597 .OOO~9 .00092 

27: HJrdy Reclp. Quad. .00928 .00068 .00135 

J 30: foley 1 II .0117 .00117 .00196 

BSPL.ASH- .Olq~ .COIO 

Devlations from S~ddle test surface, 100 p,)lnts '-

I '-r 
Table 0.1.3 .s 

I 
1 : Franke - 3 .111 .0121 .0224 
4: M.lI'll .0578 .0110 .0165 

10: Alwroa ~:od. 1 .0573 .0lQ.~ .Oi56 
13: Nlclson - Franlc ~ .• 0679 .OJ939 .0146 

R 14: Mod. QUJd. Shepard .0724 .00907 .0139 
u 16: AI..lml Nud. l!l .0597 .0104 .0162 

24: Frdrlke - TPS .0662 .0109 .0175 

f1 78: l.lwsor: .0535 .0133 .0199 
14 

19: l~l e 1 s:)O ~'l n~iorm .0511 .01\12 .0159 

!"i' 
21 : !la.dy Qua:lr.c .0262 .00442 .0068::1 

Ii D: LJuchon - T t'S .0574 .00912 .0140 
~ 27: IlJrcy ['(,Clp. QUJd. .05% .OOS]} .OO97() 

30: foley I II .0835 .008SS .0148 
f) 
<! 

~ 
BSPLAS\-! .Olcl~ .oroS' 

Oevlatlons from Saddle test surf~cc. 33 pOlnts 
Tt 

..)::-

~ 1 = fr"nle - 3 . %38 .0111 .0111 
4: i\\..I~J .086'\ .0121 .0202 

10: ""Ira ~od. I .0851) .On9 .0203 

I 13: ~'rlson - franlc Q .0794 .0115 .0189 
1':. fo~. Q!.ld. S"l'PJrd .0759 .0114 .0183 
16 : I~k 1 ,";J ~~od. Iii .e7S7 .0116 .0189 

I 24 : rrJq~e - Trs .0714 .OC933 .0171 
26: L.!hson .0875 .0126 .0205 a 

19: Niel$:ln P.lr,';Jr-, .O10!' .OlOJ .0112 

I 21 : f'JrcJ QUJdnc .0397 .00570 .00952 
23: C'Ll:hon - TPS .OS8S .00310 .0137 
27: PJ1C'l Rf'Clp. ~uJd. .O~43 .00528 .00955 

I 30: fole)' IIi .0323 .00S53 .016:-
e:.SPLASH ,.D3,CJ7 .CO(,~ 

! De\'iJtlon~ frc'1 Sacdlc test ~"rfJcc. 25 points -+; 
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1: Franke - 3 
4: Mona 
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10: Aklna ~:od. I 
13: ",clsco - rrJn~c Q 
14: !-Iod. Quad. Shepard 
16: Alona Hod. III 
24: Franke - TPS 
28: lawson 

19: Nielson Mint/orr'l 
21: Hardy Quadric 
23: Duchon - TPS 
27: Hardy Rerip. Quad. 
30: F 01 ey III 

B,SPU\SH 

MA'X • 
• 0114 
.0101 
.00575 
.00517 
.00388 

.• 00:30 
.OO~(jO 

.00899 

.00303 

.00102 

.00Z94 
.00227 
.00604 
.0077 

MEAd 176 

.00122 

.00124 

.00102 

.00353 

.00065 

.000~9 

.00103 

.00061 

.000,\7 

.00u05 

.00017 

.OOJ34 

.OOJ33 
.occ,b 

De~iat~ons from Gentle test surface. 100 pOInts 

1: Franke - 3 
4: Akim3 

10: Akma '·:od. 
13: Nielson - Franke 0 
14: ~od. Quad. Shepard 
16: Aklna ~od. III 
24: Fran~c - TP5 
28: La\'.son 

19: Niel son MinNorm 
21: Hardy QuadrIC 
23: Duchon - TPS 
27: Hardy QCClp. QLad. 
30: F 01 C) I I I 

BsPLf\S\1 

Tablc 0.1.4 

.0446 

.0167 

.0160 

.0312 

.0272 

.0204 

.0339 

.0~69 

.0214 

.0::1724 

.0259 

.0188 

.0349 

.D3\9 
Deviatlons frem Gen~le test surfac~. 33 points 

I: Franke - 3 
c: AI;,~a 

10: /,k I r.' :·~od. 
13: I/lclson - Frdn~c Q 
1': t':>d. Q:Jad. ::hcparo 
16: Akl~J ~od. III 
:~. fr~n~c - TPS 
:3: Lawson 

19: NIelson Mln~orM 
21: Hardy QJadrlC 
n. DJcho!1 - TPS 
11: Hardy Rcrlp. Quad. 
}J: folcy II j 

BSPU\S\-\ 

.0247 

.0256 

.02413 

.0340 

.022.7 

.0232 

.02·~5 

.0234 

.0161 

.00709 

.01:8 

.00',28 

.022·' 
.OXl..l 

.00603 

.OO~S7 

.00442 

.00 .. 22 

.OO~51 

.0039~ 

.00631 

.0~S52 

.00371 

.U:)1?1 

.OO~15 

.00:L6 

.OODS 

...t". 
.O:J~91 
.()~15': 1 
.(~5': 1 
.0:):;51 
.C15:'Q 
.CG57S 
.OJ~':O 
.0,)399 

. oeD:)] 

.C0107 

.on(,5 

.C~\~55 

• OJ~ 36 
.oo3~ 

DeviatIons frt~ C~~tle test surf~ce. 25 ~olnts 

.00189 

.00177 

.00n3 

.OOO:l3 

.000:'9 

.00070 

.OOl'~l 

.00109 

.00069 

.0001 'i 

.0003~ 

.0005:) 

.O~t17 

.0101 

.00623 

.00573 

.00637 

.00679 

.00555 

.OlG7 

.OO~15 

.C:l553 
C "~'" • • v'-v' 

.OJ]l.: 

.OO~S5 

.00:;7': 

.OCG51 
• CC: ~ s 
.O:f-Sl 

.O:[~9 

· O~:7~ J 
.0:'5:::; 
.OJS~j 

.08':~} 

.C2E3 
· C\13~ 1 
· OJ::) 
.OJ:~;3 

I 
I 
I 
I 



ORIGIN;'.l P.f.G: 12 177 

OF POOf( ClIl\U rY tltPtX ... NEll tJ 

1 : frJnte - 3 .O3~!l .O~2?3 .00447 
4: fir. 1 m.) .0-134 .002';2 .00510 

10: f'.I: 11,~J n:>d. .0317 .00215 .00·136 
13: ~lclson - Fran~e ~ .0206 .00176 .00337 
14: r:od. QUJd. Sh£'pJr.l .0218 .00187 .00361 
Hi: Atln'J r:od. I I I .0212 .00171 .00337 
24 : fr.1nl.f' - TPS .0284 .oa212 .00418 
28: lawson .0216 .00154 .00323 r 

19: r:lel son HlO'~orm .0195 .00101 .00729 
21 : I!a"dy QUJdnc .00280 .00:)12 .00031 
23: Duchon - TPS .0175 .O:::J .. ~S .00217 
71: l!'lroy Reel;>. Quad. .00736 • (\2:l.~:) .OOD/R 
30: Foley ill .011i3 .00172 .00282 

t;,sPLI\SH .0;2.(,3 .oal~ 
OeVIJtlonc; from Steep test surface, 10::> pOInts -!:" 

TJble 0.1.5 lS-
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~ !II .. Hl'J .115 .0120 .02~O 

I): rd. 1 ",1 ~:od. .109 .0113 .0227 
13' NIelson - Franke Q .0835 .010~ .0181 
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:I DJcrtJl1 - Tt'S • 1 ~9 .OUJ .0?96 
: ,. IIJr (', f~I'(lp. QU.1d .0%3 .r.n.;;~8 .0130 
JJ foll'), III .110 .01';3 .O2~9 

5SPLA,S\1 .. 1;;)..(' 7 "'I "<1 .'-- ~ 

Dc'.'! a t Ions frc .. Steep test surfolcc, 33 r01nts \' .....--

Table 0.2.5 
IS' 

. ------ - -
I . f'ranle - 3 .113 .Dl7b .0257 
~ :,1. 1- J .O53·~ .01:3 .Ol~9 

1.1 AI.I- J :'Jd. .OJ?O .01[13 .01';0 

Il 'o('15C"\ - ~nr,~e Q .0:'50 .r.~~:J .01(7 
I ~ 'JJj. C 1.,,1 51",; .1 rd .O·~(,g • (l:ll ~ 1 .0126 

I~ M.l-) ~'~,"1 
, .. .0:'10 0""''1'"':'''' " .01,'3 .11 · . ."' . , r, anI e - Trs .0:\1 7 .OJ:· .l .DiC;) .' . -}. lawson .0":i5 • 01 ~ ,) .0225 

Ii ~,' (' l' (\~ :~'r'~orn .031'" C' ..... <:"' · .. ' 
• (l~:\~" ~ 

n. II.lrc1y (~"J.·I·l C .0lf\Q .O:--~ .. ,3 .O;i~)('jS 

n fuct-"n - it'S .0.'33 · (':' : ~ ) . C'J> 3 
n fl· r\~ { i ;1;1 (t.,1d. .01 t. i [~~ · , I .00-,'6 
: ) fOil'! j II .OlD .01..),' 0:(,1 

6 <;; 1'1... .\ <':::rt .. CI~02.. .C'C~,1, 
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Classification Appl1cations 

1 multivariate observations 

2 populations (can be )2) 

training sa~ples from populat10ns 1 & 2 

Set Vi = 1 for each 1; in populatlon 1 

Vi = 0 for each 1; in popu1at1on 2 

Like noisy data generated by real valued fundtlon 1n RK 

Function 15 relatiVe llkel1hood of sample 1 at that point. 
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Professor Larry L. Scrn-~aY~ 
Department of Mathe:retics 
Texas A & M Uru'~rsity 
College Station, TIC 77843 

Dear Larry: 
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OIF AR!ME .. 1 Of' 
MATHEMATICS 

S'-I.l WE OTV tf"AI'MIl2 
eQl5e'-U~' 

lbank you for your kind attentions at the NASA Worv.shop on Surface Fitting. 
You and your colleagues did a nice job of makmg us all feel at heme. I 
regretted missing the panel discussion (and the party~). Perhaps you can 
let Ire know serre of wr.at was said. 

I have b2CIl thinking about w~t might be useful to K-\s"<\ on Surface Fitting. 
The only talk that really was on NASA problc:rs was Heydom' s taLl<, "me." 
focused cr., statistical methods. I happen to have had a shght exposure to 
I...M1J)SAT data :f.ccm sare University of Ut:..1h geographers. Tne surface rrethods 
custana.aly used seerred to b~ piece\nse linear or piec5.'l.se bilinear, which 
is a blot naive. Heydom' s talk contained a., interestbg picture of fields 
of wheat, corn, or "idle". TillS screamed for Little's arbitrary quadrilateral 
patches and/or Gregory a.,d Cnarrot's putting triangular patChe3 into a system 
of rectangular patchas. 

A rendering issue' I was surprised that NAS..<\ tMnks it can understa."1C: sudaces 
fran flat pictures. I thin.'< tMt rnteracti'v-e graphics rendering is the 
absolutely bare rri.nirn'J~n for hav'...r.8 the illusion of mderstand.L'g 3D surfaces. 
A mil1ed rrodel is better. Sc:r::rc of thesE' points were rrode in the wE article 
by Barnhill and C,1ung which Qung referenced. This docurent might have serre 
utihty tc)';·:ard NAS.:\ ap?hcations - let me knO".v if you have a copy or not. 

For arb5 ::rarily spaced data V.nen there is a lot of data, I think tha.t adaptive 
r~thods, such as in Vittito".v' s PhD. thesis at Utah, are a good idea. 

In conclusion, I have the follovnng broadly-based thoughts: 
1. The richness of possib~lit~cs for surface rc?resentat~on: The Trost im

porta.,t thing about surfaces ~s to get one. Operat1Dn counts and all 
t~"1:: pale in ccrnparJ .. scn to getting .gome solution to the proble::l at ha:1d. 
Chce a solution ~s fomd, lot cec.c;.res rather routine to lll?rove it. 

2. Multich..""1e!1sional p!'oblens jD and 4D surfaces are what have resca! ch 
sign1flCOI1ce. Cu:ves have been over-sturiwd, even though there r~in 
mans-wered qllest~cns, e g., par~tn.zatHm. But just to say "3D surf.:-.ce" 
is rnsufficient. (be rrrust tailor t.."e surface to the probl an at hand. 

I a ' / . T ( •• ,. LlHlIt 
., ~.- ~I ~.I ,I .. I'; ,uhf-Lt.'. D 1\\'H1 
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3. What can NASA do with its zwney to achieve Surface research? 
a) Research grants to individual groups. 
b) Con&ultants for their labs. 

Tnese are both standard and will produce results. 

Let Ire s-uggest sCJr'ething new: 

196 

c) Research grant to ThU groups who would collaborate on !1ASA
related Surface problems. (E. g., Bal."l1hill' s grot:p and Schtm3ker' s 
group.) 

Hhy could this be good? htswer: 
uore than the sun of the parts. 
and app1icution aspects. 

the cross-fertilization would produce 
This would be true of both the research 

We can explore these thoughts at greater length after I hear fro:n you. 
Cc::mmr.ication· My office phone nunber is (801), 581-7916 and, if I'm not 
there, MS. Sylvia MOrris' number is (801), 581-7710. A choice of times to 
call back would be useful. 

Best re£ards, 

Robert E. Barnhill 
Professor of 1-~thenu.tics and 
Professor of ~uter Science 

Ismn 

cc and thanks: Professor Larry F. Gusertan, Jr. 
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