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1.0 SUMMARY

As part of the Quiet, Clean, Short-Haul, Experimental Engine (QCSEE)
program sponsored by the NASA Lewis research Center, a series of acoustic
tests were conducted on a scale model of the Under-The-Wing (UTIW) variable-
pitch fan. The model fan was 50.8 cm (20 in.) in dismeter and was a 1:35
scale of the full-size fan. Tests were run both in forward- and reverse-
thrust modes with a bellmouth inlet; five accelerating inlets (one hard-wall
and four treated) with a design throat Mach number of 0.79 at the takeoff
condition, and four low Mach inlets (one hard-wall and three treated) with a
design throat Mach number of 0.6 at the takeoff condition. Unsuppressed-
and suppressed-inlet, radiated-noise levels were measured at conditions
representative of QCSEE takeoff, approach, and reverse-thrust operations.
Measured aerodynamic performance of the accelerating inlet is also included

in this report.
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2.0 INTRODUCTION

The General Electric Company is currently engaged in the Quiet, Clean,
Short-Haul, Experimental Engine (QCSEc) program under Contract NAS3-18021
to NASA Lewis Research Center. A major objective of the QCGLE program is
to develop and demonstrate the technology required to meet the stringent
noise requirements anticipated for commercial short-haul turbofan aircraft.
The specific goal is a maximum noise level of 95 EPNdB including powered-
lift noise at 152.5-m (500-ft) sideline during all portions of the airplane
trajectory. For noise-prediction purposes, the airplane is defined to have
400 kN (90,000 1bf) installed thrust and to be designed for a 610-m (2,000-ft)
runway. A second noise objective is 100 PNdB maximum on a 152.4-m (500-ft)
sideline during reverse thrust. The QCSEE program explores a wide range of
pertinent technology involving both a variable-pitch, under-the-wing (UTW)
and a fixed-pitch, over-the~wing (0TW) propulsion system. An overview of the
QCSEE program is given in Reference 1.

The UTW 50.8-cm (20~i:ch) Simulator Test Program was designed to evalu-

ate serodynamic performance. of the fan and inlet acoustic performance from a
1:3.55 scale model of the variable pitch UTW fan.

2.1 FAN AERODYRAMIC PERFORMANCE OBJECTIVES

° Obtain base operating maps of the bypass and core portions of the
fen at several forward-thrust, rotor-pitch settings.

' Determine the =ffect of off-design bypass ratio on performance.

o Determine degree of circumferential flow distortion induced by
nonaxisymmetric bypass OGV and pylon configuration.

® Obtain fan performance in an acoustically treated, accelerating-
inlet environment.

® Evaluate fan-performance sensitivity to a tip radial inlet
distortion.

° Determine reverse-tarust performance through both flat-pitch and
stall-pitch settings.

° Obtain core duct recovery and distortion characteristics during
reverse-pitch operation.

2.2 FAN INLET ACOUSTIC PERFORMANCE OBJECTIVES

[ Obtain the basic, unsuppressed, acoustic signature of the fan stage
with a bellmouth inlet.




] Measure suppression provided by a treated accelerating inlet
designed for a throat Mach number of 0.79 at the takeoff con-
dition. The suppression objective at the takeoff condition
is 13 PNdB.

T T T 7 ST

) Measure suppression provided by the treated, accelerating inlet
at the approach condition. The suppression objective is 8 PNdB
at this condition.

° Measure suppression with the accelerating inlet by different treat-
ments in the reverse-thrust mode of operation. These treatments
vere designed to provide 3 PNdB in the reverse~thrust mode.

) Measure suppression provided by different wall treatments at the
takeoff, approach, and reverse-thrust conditions with low Mach
inlets designed for a throat Mach number of approximately 0.6 at
takeoff. This inlet design was considered a backup design in
the event the accelerating inlet was found unacceptable.

o Compare static acoustic performance of the inlet with (1) a
flight lip, representative of the full-scale flight inlet, and
(2) an aerocacoustic lip designed to simulate inlet~-flow conditions
typical of a 4l-m/sec (80-knot) forward velocity.

The fan aserodynamic performance test results were presented and dis-
cussed in Reference 2. This report presents, in two volumes, the results
of acoustic performance and aerodynamic performance testing of the inmlet.
Volume I presents the test configurations, test faciility, vehicle, data
acquisition and reduction procedures, detailed data analysis, results, and
comparisons. Volume Il presents 1/3-octave-band data for all configurations.
The data are given for the model size at a 5.18-cm (17-ft) arc and for scaled-
to-QCSEE full size (3.55:1) on a 152.4-m (500-ft) sideline.




3.0 1EST FACILITY

The tests were conducted in the anechoic environment of the General
Electric Corporate Research and Development Aero/Acoustic Facility in Schenec-
tady, New York. An overview of the facility is shown in Figure 1. A photo-
graph of the facility with the UTW simulator installed is presented in Figure
2. 1t is comprised of:.

1.

2.

The sound field is set up with the center of the arc located such as to
assume the source location to be at the fan face during tests of inlet-radi-
ated-noise levels.

A 1.86-MW (2500-hp) drive system for speeds up to 15,000 rpm.

An anechoic chamber approximately 10.67-m (35-ft) wide by
7.62-m (25-ft) long by 3.05-m (10-ft) high designed for less
than + 1 dB standing-wave ratio at 200 Hz. All walls, floor,
and ceiling are covered with an array of 7l.1l-cm (28-in.) poly-
urethane foam wedges,

Porous walls for minimum in-flow disiortion to the fan when
measuring inlet-radiated noise.

Capability to install the fan for evaluation of both forward-radi-
ated and exhaust-radiated noise.

Far-field noise measurement on a 5.2-m (17-ft) arc from 0° to 110°
relative to the inlet for inlet-radiated noise.
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4.0 TEST VEHICLE

The test vehicle was an adjustable-pitch, 50.8-cm (20-in.)-diameter, ex-
act-linear-scale model (scale factor 20.0:71.0) of the QCSEE Under-The-Wing
(UTW) variable-pitch fan. The scale model included the rotor, the nonaxisym-
metric bypass OGV and pylon, the core stator, and the transition duct for the
core flow. The 50.8-cm (20-in.) stage characteristics are given in Table I.

A cross section of the UTW model fan as assembled on the test stand is
shown in Figure 3. There were 18 variable-pitch rotor blades with a solidity
of 0.95 at the outer diameter and 0.98 at the inner diameter. Circumferen-
tially grooved casing treatment was incorporated over the rotor tip. The
engine bypass OGV's performed the dual function of an outlet guide vane for
the bypass flow and a frame support Ior the engine components and nacelle.
They were integrated with the pylon, which protruded forward into the vane
row. The vane frame was positioned at an axial distance downstream of the
rotor trailing edge equal to 1.5 true rotor-tip chords. The 33 vanes in the
vane frame consisted of tive different geometries around the annulus to mini-
mize flow distotions that would otherwise be imposed by the pylon. The vane/
blade ratio was 1.8 (33/18). Immediately following the rotor, in the hub re-
gion, was an annular ring or island. The 96 OGV's for the fan hub flow were
in the annular space between the underside of the island and the hub. A full-
circumferential axial gap separated the island trailing edge from the splitter
leading edge. The splitter divided the flow into a bypass portion and a core
portion. There were six struts in the core inlet duct. The island configura-
tion was selected specifically to permit the attainment of a high hub-super-
charging pressure ratio during forward-pitch operation without causing a large
core~flow induction pressure loss during reverse-pitch operation.

The design rotor tip relative Mach number was 1.13. The outer portion
of the blade employed a profile shape that was specifically tailored to mini-
mize excessive shock losses on the suction surface and still be compatible
with the requirements governing the inlet flow and energy addition. The blade
mean-line shape and point-of-maximum~-thickness varied radially. The blade
shape was similar to a double circular-arc profile in the hub region. Pro-
file shapes at other radii were generally similar in appearance to the NASA
multiple circular-arc sections, in which a small percentage of the overall
camber occurs in the forward portion of the blade. A photograph of the
rotor is shown in Figure 4.

A conventional OGV system turned the incoming flow to axial. However,
the housing requirements of the pylon dictated a geometry in which the OGV's
underturn approximately 10° on one side and overturn approximately 10° on the
other side. To avoid excessive costs, five vane-geometry groups were deemed
sufficient. Figure 5 shows an unwrapped section at the inner diameter of the
vane to illustrate the different vane groupings; it shows an approximate
streamline pattern derived from an analysis of the circumferential flow field.
A more complete description of the aerodynamic and mechanical design of the :
UTW engine is reported in Reference 3. q




Table I. UTW 50.8-cm (20-in.) Simulator Fan - Stage Design Characteristics.

Inlet guide vanes

Fan diameter

Number of rotor blades
Number of stators

Number rotor/stator spacing
Hub/tip-radius ratio

Rotor pitch angle

Fan Design Point

° Corrected tip speed

. Corrected fan speed

'] Fan bypass pressure ratio

. Fan core pressure ratio

. Corrected fan weight flow

° Bypass ratio

. Specific flow

° Objective adiabatic efficiency
. Bypasss
° Core

Design Takeoff Condition

) Corrected tip speed

® Corrected fan speed

) Fan bypass pressure ratio
° Corrected fan weight flow
. Bypass ratio

° Rotor pitch angle

None

50.8 cm (20 in.)

18

33 (32 + pylon)

1.5 true rotor tip chords
0.443

Adjustable

306.3 m/sec (1005 ft/sec)

11,520 rpm (100%)

1.34

1.23

32.4 kg/sec (71.4 lbm/sec)

11.3

199 kg/sec—m2 (40.8 lbm/sec-ft2)

88%
78%

289.6 m/sec (950 ft/sec)
10,886 rpm (94.5%)

1.27

32.2 kg/sec (71 1bm/sec)
13.15

0° (design)
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Figure 3. UTW Model Fan
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j UTW Model Fan Assembly Drawing.
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ACCELERATING INLET WITH
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Figure 3. UTW Mcd2l Fan Assembly Drf
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) Model Fan Assembly Drawing (Concluded).
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A fully adjustable discharge valve (DV) was used to vary the bypass ex-
baust nozzle area. The core flov was controlled separately by suction through

two Fuller pumps.

13
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5.0 INLET CONFIGURATIONS AND TREATMENTS

One of the major objectives of this test program was to select a suit-
able inlet-wall acoustic treatment for the full-size UTW engine. The prin-
ciple of obtaining reduction in inlet-radiated noise (reduction relative to
a constant-cross-sectional bellmouth) by accelerating the flow at the inlet
had been well established from past experience for high-tip-speed fans
(Reference 3). Little data was available, however, for fans operating at
subsonic tip speeds. Adding acoustic-absorption treatment to the accelera-
ting inlet wall was expecied to yield a nacelle that could provide suppres-
sion capability, particularly at the approach and reverse-thrust conditions.
The overall inlet suppression objectives for the system under different

operating conditions were:

Takeoff
Approach
Reverse Thrust

13 PNdB

8 PNdB
3 PNdB

Using the design philosophy discussed in References 3 and 4, a baseline
bellmouth inlet, a hard-wall accelerating inlet (with a design throat Mach
number of 0.79 at the takeoff conditions), four treated accelerating inlets
(with the same internal flow path as the hard-wall inlet), a hard-wall low
Mach number inlet (design throat Mach number of 0.6 at takeoff conditions),
and three treated low Mach inlets were chosen for the tests. In addition, one
of the treated accelerating inlets was also tested with two different lips:

a flight lip, representative of the full-scale flight inlet, and an sero-
acoustic lip which simulated inlet-flow conditions typical of an 41-m/sec
(80-knot) forward velocity. The qualitative test objectives with the

various inlet configurations are shown below.

1. Scale-model bellmouth

2. Accelerating inlet with hard-
wall, aero-acoustic lip

3. Accelerating inlet with treated

wall, aero-acoustic lip

4, Accelerating inlet with treated
wall, flight lip

Reference noise level for
comparison with suppression
inlets. Scale model of bell-
mouth to be tested on full-
scale engine.

Determine suppression due to
throat Mach number.

Determine combined suppression
due to Mach number and wall
freatment.,

Compare flight lip and aero-
acoustic lip forward-thrust

noise levels. If there is a
significant difference, both




lips will be built. the asero~
acoustic lip for acoustic and
the flight lip for serodynamic
testing.

5. Low Mach inlet, hard wall - Reference noise level for com-
parison with treated low Mach
inlets. Also compare to bell-
mouth levels.

6. Low Mach inlet, treated - Determine suppression due to
vall wall treatment.

The details of the four treatments for the accelerating inlet are given
in Table II. Figure 6 is a photograph of the accelerating inlet and the flight
lip. The details of the three low Mach treatments are given in Table III. A
photograph of the lov Mach inlet is shown in Figure 7. The reader is also
referred to Figure 3 which shows the vsrious inlets and flight lips.

5.1 ACCELLRATING INLETS

The accelerating inlets were designed to reduce forward-radiated fan
noise by accelerating the flow upstream of the fan. The accelerating inlets
for this program were designed to achieve a throat Mach number of 0.79 at the
takeoff condition. This throat Mach number was selected on the basis of both
scoustic and aerodynamic design criteris. Acoustically this throat Mach number
vas estimated to provide sufficient suppression to satisfy the noise goals.
Higher throat Mach numbers would obviously provide higher suppression; how-
ever, aerodynamic tests (Reference 5) had shown the inlet recovery to be
unacceptable above this Mach number, after allowing for control and engine~
variation tolerances. Each inlet was constructed with a flange at the throat
to permit testing with either a flight lip or an aero-acoustic lip. A total
of five accelerating inlets were built, ore with a hard wall and four with
treatment, all having the same wall contour. Three of them (hard wall,
treatment B, and treatment D) were tested in the reverse~-thrust acoustic
mode. Table IV gives pertinent serodynamic design parameters for the
sccelerating inlets, snd Table V gives the coordinates for the inlet
contours including the spinner,

5.1.1 Accelerating Inlet Treatment Configurstions

A summary of the different accelerating inlet treatment configurations
is given in Table II. Four designs are defined; each configuration had
the following features.

. Three sections nf differant depths

. Total treated-length/fan~diameter ratio of 0.74

) Treatment designed for reverse-thrust noise spectrum

15
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Table Il also gives the faceplate definition for each configuration
in~luding hole diameter, porosity, and thickness.

5.1.2 Treatment Design Procedure

The treatment configurations as given in Table III were designed for
reverse-thrust operation because the desired suppression levels at takeoff
power were assumed to be achievable primarily from the high throat Mach number
produced with the accelerating inlet design. This assumption was based on
high Mach inlet data from previous tests. The predicted noise spectrum for
the reverse~thrust mode is given in Figure 8. The spectrum is based on
engine data (found in Reference 6) from tests of a 1.83-m (6-ft) diameter,
variable-pitch, 1.2 pressure-ratio fan, and is scaled to the full-size UIW
engine. The Noy-weighted, unsuppressed spectrum is also given and indicates
that the spectrum requires broadband suppression characteristics in order to
obtain significant PNL suppression. Thus, the inlet treatment of each configu-
ration has three thicknesses to provide the different tuning frequencies
as defined in Table II. The Noy-weighted, unsuppressed spectrum indicates
that tuning at these frequencies should provide a balanced design.

The suppression requirements at approach power were also considered.
Estimates indicated that the suppression requirements could be achieved with
the treatment design for reverse thrust.

The required treatment depths and faceplate parameters needed to give
the tuning frequencies were determined using analytical methods to predict
the acoustic reactance and the optimum reactance required in designing for
the reverse-thrust mode. Treatments A, B, and C were designed for the
lowest order radial mode with a 10th-order, spinning, lobe pattern. Treat-
ment D was designed for the 1l5th-order, spinning, lobe pattern. The analyti-
cal model used for determining the optimum reactance is presented by Rice
in Reference 7 and predicted panel reactance values were made using the
analytical relations given in Reference 8.

Figure 9 gives the predicted optimum reactance for the 10th-order lobe
pattern as a function of frequency for reverse- and forward-thrust conditions,
plus the predicted reactance for treatments A and B. Figure 10 gives the
same type of information for treatments C and D. The intersection of the
optimum reactance curve with the predicted reactance curve determines the
tuning frequencies for each section of treatment. A comparison of the optimum
reactance versus the predicted reactance shows that the panel designs have the
optimum reactance within the previously defined 1/3-octave-band tuning frequen-
cies for reverse-thrust operation.

The faceplate porosities for treatments A, B, and C were selecte? to
give a wide range of acoustic resistance values. Cavity depths w:re
changed as required to maintain the same tuning frequencies for each design.
The results from this type of test matrix provide essential data for the
optimization of acoustic liner faceplates.
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*See Table II for Definitions of

Treatment Sections 1, 2, and 3.

- Treatment A

o= e = Treatment B

Predicted Optimum
Reactance for
Lowest Order

Radial Mode,

~ 10th-Order
Spinning Mode.
Reverse-Thrust
Pattern.

Acoustic Reactance, X/Pc
|
N

-6
Full-Scale
Frequencies
2°|°° 3150 Hz |
8 L [ | i
1000 2000 5000 10000 20000
Scale-Model Frequency, Hz
Figure 9.

Reverse-Thrust Acoustic Reactance Vs. Frequency for Accelerating
Inlet Treatmenis A and B.




*See Table II for Definitions of
Treatment Sections 1, 2, and 3.

Treatment C
e« oo« Treatment D

Predicted Optimum
Reactance for
Lowest Order
Radial Mode,
10th~Order
Spinning Mode.
Reverse-Thrust
Pattern.

Acoustic Reactance, X/Pc

/ Full-Scale
‘/ 1000 [ | 2000 | 5 a>duencies
i 111
8,000 2000 5000 10000 20000

Scale-Model Frequency, Hz

Figure 10. Reverse-Thrust Acoustic Reactance Vs. Frequency for Accelerating
Inlet Treatments C and D.
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The faceplate porosity is different for each of the three treatment
sections to optimize the resistance for each of the different tuning frequen-
cies corresponding to each section of treatment. This order of porosities
is optimum for reverse flow but off-design for forward flow. The analytical
methods used in the faceplate selection are presented in Reference 7.

5.1.3 Predicted Characteristics in Forward Thrust

The unsuppressed fan-noise spectrum as predicted for the forward-thrust
operation at takeoff power (94.5% Npc) is given in Figure 11. Also shown is
the Noy-weighted, unsuppressed spectrum; this indicates that the noise level
in terms of PNdB peaks at 1000 Hz and 3150 Hz. A significant but somewhat
smaller contribution is seen at the 2000-Hz 1/3~octave-band frequency. Thus,
for effective PNL suppression, broadband suppression is necessary. The pre-
dicted acoustic reactance for inlets A and B are given in Figure 12. The
same information for inlets C and D is shown in Figure 13. These predictions
are based on the analytical procedure given in Reference 8. Also shown is the
predicted optimum reactance versus frequency based on the analytical relations
presented in Reference 7. The predicted optimum reactance is for the lowest
order radial mode (10th-order, spinning, lobe pattern). The intersection of
this curve with the reactance for each section of treatment determines the
optimum tuning frequency rfor that section.

The full-scale, forward-thrust, tuning frequencies for each inlet are
summarized below.

Section and 1/3-Octave-Band Tuning Frequency

Accelerating Inlet (Hz)
Treatment 1 2 3
A 2000 1600 800
B 2000 1600 800
C 2500 1600 800
D 2500 1250 800

Comparing these precdicted tuning frequencies with the 1000 and 3150-Hz
frequencies from Figure 11, which are required for optimum PNL suppression,
shows that none of the configurations are optimized for this condition.

5.2 LOW MACH INLETS

The low Mach inlet (Mg, = 0.6 at design flow) featured a reduced throat
Mach number via a larger throat radius. As indicated in Table IV, the low
Mach inlet diffuser contour maintained the same average diffusion angle
(2eeq) and inlet length (L/Dp) as the accelerating inlet. This was achieved




60* Acoustic Angle

152.4 m (300 ft) Sideline
at 61 m (200 f£t) Altitude

° 1ool'u,c ——— Unsuppressed
Full=Scale Data = ==« Unsuppressed, Noy Weighted

T 1 11T

100

1/3-Octave-Band SPL, dB
3
L‘&
< £
<
/
- ,l

100 200 500 1000 2000 5000 10000
Frequency, Hz

Figure 11, Predicted Unsuppressed Forward-Thrust UTW Fan Spectra at 100Z Ngc
at 60°.
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by inserting a 13.9-cm (5.506-in.), cylindrical spool piece between tle diffuser
exit and the fan casing. Considering the relatively low inlet wall Mach num-
bers (a consequence of low throat Mach number and the cvlindrical spool piece),
it wa- anticipated that the desired fan-noise attenuation could be achieved

with treatment alone in the low Mach inlet. No attenuations due to Mach

number was expected at the My = 0.6 design point. The coordinates tor the

low Mach inlet are given in Table VI,

A hard-wall, low Mach inlet and three treated inlets, all to the same

contour, were tested. The details of the treatment design are discussed
below.

5.2.1 Low Mach Inlet Treatment Configurations

The low Mach number, treated-inlet configurations are defined in Table
I11. Two of these three configurations are single-degree~of-freedom (SDOF),
resonator-type designs while the third utilizes the bulk absorber concept,

The faceplate dimensions for each of the configurations are given in
Table 111,

5.2.2 Treatment Design Procedure

The treatment configurations as defined in Table 11l were designed
to give the optimum suppression with the fan operating in the forward-thrust
made . The unsuppressed and the unsuppressed, Noy-weighted spectra are
given in Figure 11. The Noy-weighted spectrum indicates the unsuppressed
PNL 1s controlled at 1000 and 3150 Hz with some contribution also firom the
2000-Hz 1/3-octave band. Thus, from this spectrum, it is obvicus that an
optimum treatment design in terms of PNL suppression requires broadband
suppression characteristics. With this in mind, the two treated-inlet
configurations with reasonatur treatment (confipurations A and C) were
designed to give the three different tuning frequencies as given in Table
I111. The bulk absorber inliet design (confipuration B) has a constant depth of
1.27 em (0.5 inches). This design selection was based on the performance
of previous suppression data cbtained from bulk-type materials that demon-
strated wide suppression characteristics.

Figure 14 gives the predicted acoustic reactanrce for the A and C inlet
tiner designs described in Table 111. Also shown 1s the predicted oprimum
reactance versus frequency for the lowest order radial mode and Oth-order,
spinning, lobe pattern. The intersection of the reactance lines with this
curve determines the optimum tuning frequency for each liner section for
treatments A and C. The desired tuning frequencies for the liner sections
as determined from the Nov-weighted spectrum in Figure 11 are 1000, 2000,
and 3150 Hz,  The inlet A desipn gives these tuning Trequencies; however,

P

the tunine for treatment € 18 somewhat different: tuning frequencies are

30




Table VI. Low Mach Inlet Coordinates.

—
Aero-Acoustic Lip Diffuser
Axial Axial
Station Radius Station Radius
cm in. cm in. cm in. cm in.
-57.13 | -22.492 | 32.52 |12.804 ~43.18 | -17.000 | 22.43 | 8.830
-57.11 | -22.484 | 31.98 |12.589 -13.99 | -5.506 | 25.40 | 10.000
i' -56.95 | -22.420 | 30.89 |12.161 0 0 25.40 | 10.000
-56.62 | -22.292 | 29.82 |11.741 (Fan Face)
-56.14 | -22,102 | 28.79 |11.333 i

-55.50 | -21.852 | 27.80 | 10.943
-54.28 | -21.372 | 26.41 | 10.399
=-52.77 | -20.777 | 25.19 9.919
=-51.01 | -20.082 | 24.17 9.515
-48.34 | -19.032 | 23.14 9.112
-45.31 | -17.839 | 22.56 8.882

-43.18 | -17.000 | 22.43 8.830

(Throat)

31




. *See Table III for Definition of Trestment A
. Treatment Sections 1, 2, and 3,
F = = = - Treatment C
b
3
i A y Now—
! 7 1y
3 / 1
1 /1
L /1]
H /7 /
. /! 1l
B e SRR SN W v 7F _‘_.J
0 A} -
Ao
> Predicted Optimum
- Reactance for
§ Lowest Order
s Radial Mode,
3 BN I S 10th-Order
&3 . Spinning Mode,
o @ Forward-Thrust
- Pattern,
>
3
g -
<
-0 e e — .
Full-Scale
A (. Frequencies
Jy ol 2000° 113150 Wz
Ao MIA T
-8 i | |
1000 OO0 OO0 10000 20000

Scsle-Model Frequency, Mz

Fipure 14, Forward-Thrust Acoustic Reactance Vs, Frequency for Low Mach

Inlet Treatments A and U,




1 1600, 2500, and 3150 Hz. These tuning frequencies are due to the combination
of the low-porosity selection and the faceplate materials.

Inlets A and C have constant faceplate porosities of 10X and 3.62
respectively. These porosity values were selected on the basis of previous
: fan data (Reference 9 for 8% and 2.52) showing good suppression results for
g the liner designs with these porosity values.

5.2.3 Predicted Characteristics in Reverse Thrust

g

. As previously discussed, the low Mach inlet configurations were designed

: for forward-thrust operatioan. Figure 15 gives the predicted acoustic reactance
for the lowest order radial mode and 10th-order, spinning, iobe pattern at

the reverse-thrust condition. These predictions result from the analycical
methods given in References 7 and 8. The intersection of the predicted opti-
mum reactance with the reactance curve for each section of treatment deter-
mines the optimum tuning frequency of each section.

Treatment A full-scale, predicted, 1/3-octave-band tuning frequencies
for the reverse~thrust condition are 800, 2500, and 4000 Hz. For treat-
ment C the predicted 1/3-octave-band tuning frequencies are 1600, 2500, and
3150 Hz. No tuning frequency is shown for treatment B because previous data
from tests with bulk-type absorber liners have rather flat broadband-noise-
suppression characteristics. Since the low Mach inlets were designed for
forward thrust, it is not surprising to see that the predicted tuning frequen-
‘cies do not correspond to the optimum reverse-thrust design frequencies of
1000, 2000, and 3150 Hz. However, the frequencies are reasonably close; thus,
good PNL suppression was expected fo: each design.
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Acoustic Reactance, X/fc

Figure 15.

*See Table III for Definition of
Treatment Sections 1, 2, and 3.
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6.0 INSTRUMENTATION AND DATA ACQUISITION

The overall instrumentation was installed for fan serodynamic-
performance measurements and for acoustic measurements. Figure 16 showe
the sachematic for the vehicle instrumentation. In addition, there were
12 microphones in the anechoic chamber for acoustic far-field measurements,
as shown in Figure 1.

6.1 FAN AERODYNAMIC PERFORMANCE INSTRUMENTATION

This was discussed in detail in Reference 2. A brief summary is given
below.

6.1.1 Radial Rakes

s

There were three inlet radial rakes of five total pressure and five
total temperature elements each. For reverse-thrust serodynamic testing,
these were reversed and moved forward to the inlet throat. Once the aero-
dynamic performance map was established and operating lines determined,

the rakes were removed from the vehicle; they were not present during
acoustic tests.

Three radial rakes of five Py and five Ty elements each were located
in the bypass duct just downstream of the OGV. These rakes were also reversed
for reverse-thrust aerodynamic testing and removed from the vehicle during
acoustic testing.

Three radial rakes of four Py and four Ty elements each were located in
the core duct. These were not removed from the vehicle for acoustic tests.

6.1.2 Traverse Rakes

Two traversing (arc) rakes with 13 Py and 13 Ty elements each were
located in the bypass duct spproximately 3/4-chord downstream of the OGV.
These were removed from the vehicle for acoustic tests.

6.1.3 Traverse Probes

Provisions for cobra-probe (Pr and Ty) traverses were incorporated into
the vehicle at three different locations. In reverse-pitch aerodynamic
operation, a cobra and a wedge probe simultaneously traversed the throat
region of the accelerating inlet to provide data for reverse-thrust and
exhaust-swirl determination. These traverse probes were removed from the
vehicle for acoustic testing.
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core duct for airflow determination.
file determination during acoustic tests relied very heavily on a series of

static pressure taps in the inlet.
cial method used to accurately determine inlet throat Mach number based on

these static taps are discussed in detail in the Appendix.

6.1.4 Static Pressures

Static pressure instrumentation was provided for four purposes: deter-

mining airflow, assessing circumferential flow distortion, determining axial
profiles, and monitoring vehicle operation during acoustic testing with all

rakes (except core duct rakes) removed.

Static pressure taps were located in the inlet, bypass duct exit, and
Inlet weight flow and Mach number pro-

The location of these taps and the spe-

The procedure for acquisition of fan aerodynamic data (specifically
In

with radial rakes, traversing rakes, etc.) is discussed in Reference 2.
general, the instrumentation and data reduction were coordinated to stay

within the following constraints:

e Scannivalve limitations (96 ports, 8 of them alloted to reference
pressure, leaving a total of 88 for fan aerodynamics)

. Fan aerndynamic temperature limited to 44

Since the acoustic tests were carried out with all the rakes removed,
an additional 20 wall static pressures were monitored and recorded.

6.2 FAN INLET ACOQUSTIC INSTRUMENTATION

6.2.1 Far-Field Microphones

Twelve 0.64~cm (0.25~in.) diameter Bruel and Kjaer microphones were

located in the facility on a 5.2-m {17-ft) radius from 0° to 110° relative to
The locations are shown schematically in Figure 1. During

the inlet axis.

reverse~thrust testing the microphones at 0° and 10°, and in some cases at
20°, were vremoved be.ause they would have had exhaust air impinging on them.
At the start of each test day, the microphones were calibrated with a piston-

phone, and the calibration was recorded on magnetic tape.

6.2.2 Wall Kulites

Four wall Kulites were located at four axial locatinns on the inlet
wall, between the throat and fan face, at a single circumferential orienta-
All the Kulites were

tion. Ore Kulite was located aft of the bypass OGV.
Kulite phase-shift-relation

calibrated at the beginning of each test day.
first, by applying a pressure on each

calibrations were determined two ways:
Kulite simultaneousiv and observing the direction of the d.c. shift; second,

by inserting a clipped sine wave signal into the amplifiers of all Kulites
simultaneously &nd recording the results on magnetic tape.
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The acoustic data from the far-field microphones and the Kulites were
recorded simultaneously for 60 seconds at each data point on a 28-track,
Sangamo Sabre IV recorder which has a 40-kHz capability in the FM mode at
152 em/sec (60 in./sec). All the microphone and Kulite signals were contin-
uously monitored on oscilloscopes during all the acoustic tests. In addi-
tion, the output from one of the microphones (generally the one at 60° to
the inlet) was processed through a General Radio analyzer and log converter,
and the SPL spectrum was plotted on-line. In addition to providing a check on
the test data acquisition, this allowed quick, on-line comparison of configur-
ations, a capability which was useful in making changes to the test plan.

6.2.3 Sound-Separation Probe

General Electric has developed special sound-separation probes for
installation in flowing ducts to obtain data for discrimination between
acoustic and aerodynamic pressure fluctuations. One of these sound-separation
probes was built for the QCSEE simulator test and is shown schematically in
Figure 17 mounted in the accelerating inlet for traversing across the stream.
The probe was pointed aft to keep the tip from interfering with the high
Mach throat region of the inlet.

These probes contain two pressure sensors flush-mounted in the probe
tip and axially separated by 2.54 cm (1 in.). The sensors are immersed in the
flow to provide a flat frequency response (Figure 18) and phase retention
between signals. The sensors are covered with a millipore screen to prevent
damage and are separately reloadable in the event of senscr failure.

6.3 MECHANICAL INSTRUMENTATION

The rotor blades, bypass vanes, core vanes, inlet radial rakes, and
bypass duct radial rakes were instrumented with strain gages. The strain
gages were monitored on a l4-channel recording and monitoring system for
all critical testing. Details of the mechanical instrumentation, as well
as observations and results, are presented in Reference 2.
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7.0 TEST MATRIX

The test program was divided into two segments: fan aerodynamic perfor-
mance tests and fan acoustic tests. This separation was needed because all
the rakes which were needed in the inlet and in the fan bypass for the aero-
dynamic performance testing had to be removed for the acoustic tests to
prevent generation of noise by these flow-path obstructions. A complete
listing of all the aerodynamic performance test readings taken is given
in Reference 2. After initial vehicle-shakedown tests, the fan performance
at nominal rotor blade angle setting (0°) was mapped out with the baseline
bellmouth. The discharge valve (DV) setting (related to the exit nozzle area),
blade speed, and blade angle are the independent parameters that uniquely
determine a fan aerodynamic test condition. Accordingly, it is appropriate
and convenient to identify a given test condition by the DV setting once the
blade angle and speed are fixed. The fan aerodynamic performance map for the
baseline bellmouth inlet at 0° (nominal) blade angle setting is shown in Fig-
ure 19. The operating line through the takeoff condition was at a DV setting
of 7.7. This corresponds to a full-scale nozzle area of 1,60 m2 (2480 in.2),
Numerically higher DV settings correspond to higher fan back pressure (towards
stall) - that is, lower nozzle area, and numerically lower DV sgettings corre-
spond to lower fan back pressure (toward choke) - that is, at larger nozzle
areas. Figure 20 gives a plot of full-size-engine nozzle area as a function
of DV setting. Most of the forward-thrust acoustic tests for inlet and
treatment evaluation at nominal rotor pitch angle were conducted at the
takeoff DV setting of 7.7. Approach-condition testing at +5° blade angle and
reverse-thrust testing were conducted at different DV settings, and the choice
of DV setting is discussed in the appropriate sections.

The core flow is collected in a manifold and exhausted through two pipes,
one on either side of the vehicle, to a set of suction pumps. The pumps are
outside the test chamber and independently control the core flow to maintain
the desired bypass-ratio schedule for a given discharge valve (DV) setting.

The corrected fan speed (as percent of design speed), DV setting, blade
angle setting, and configuration (inlet and treatment) for each acoustic-data
point are given in Table VII.
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Table VII. Tabulation of Acoustic Test Conditions.
Thrust Mode
and Discharge | Percent | Immersion
Run | Configuration | Blade Angle | Reading Valve Speed Number
2 Baseline Forward 6 7.7 70
Bellmouth (1 7 1.7 78
8 7.7 90
9 1.7 95
10 7.7 98
11 7.7 102
12 1.7 105
13 7.4 102
14 7.4 95
15 7.4 90
16 1.4 78
17 7.9 78
18 7.9 90
19 7.9 95
20 7.9 100
21 7.9 102
4 Accelerating Forward 5 71.75 70
Inlet, Hard 0° 6 7.75 78
Wall 7 7.75 90
8 7.75 93.5
9 1.75 96
10 7.75 98.5
11 7.75 99.5
12 7.75 100.5
13 7.75 101.5
14 7.75 103
15 7.75 99
16 7.7 97.1
5 Accelerating Forward 4 7.75 70
Inlet, Treat- 0°* S 7.75 78
ment B 6 7.75 90
7 7.75 93.5
8 7.75 96
9 7.75 98.5
10 7.75 99.5
11 7.75 100.5
12 7.75 101.5
13 7.75 103
14 7.75 99
15 1.7 97.7
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Table VII. Tabulation of Acoustic Test Conditions. (Continued)

? Thrust Mode
; and Discharge | Percent | Immersion
E Run | Configuration | Blade Angle | Reading Valve Speed Number
: 12 Baseline Forward 4 7.40 83
Bellmouth +5° 5 7.78 90.5
{ 6 7.65 91.5
. 7 7.5 92.5
8 7.9 95
9 7.65 95
10 7.4 95
11 7.78 98
12 7.4 98.5
13 7.78 105
14 7.4 105
15 7.4 110
16 7.78 110
17 7.9 100
18 7.5 100
19 7.9 80
20 7.78 80
13 Accelerating Forward 4 7.78 90.5 1
Inlet, Treat- +5° 5 7.78 90.5 2
ment B (Sound 6 7.78 90.5 3
Separation 7 7.18 90.5 4
Probe Run) 8 7.78 90.5 5
9 7.4 110 1
10 7.4 110 2
11 7.4 110 3
12 7.4 110 4
13 7.4 110 5
14 7.5 92.5 1
15 7.5 92.5 2
16 7.5 92.5 3
17 7.5 92.5 4
18 7.5 92.5 5
19 7.78 98 1
20 7.78 98 2
21 7.78 98 3
22 7.78 98 4
23 7.78 98 5
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? Table VII. Tabulation of Acoustic Test Conditions. (Continued)
i
F Thrust Mode
t and Discharge | Percent | Immersion
E Run | Configuration | Blade Angle | Reading Valve Speed Number
. 14 Accelerating Forward 4 7.4 83
%i Inlet, Treat- +5° 5 7.78 90.5
4 ment B 6 7.65 91.5
4 7 7.5 92.5
. 8 7.9 95
9 7.65 95
10 7.4 95
11 7.78 98
12 7.4 98.5
13 7.78 105
14 7.4 105
15 7.4 110
16 7.4 110
17 7.78 110
18 7.9 100
19 7.5 100
20 7.9 80
21 7.78 80
19 Accelerating Forward 4 7.75 70
Inlet, Treat- 0° 5 7.75 78
ment B, 6 7.75 90
Flight Lip 7 7.75 93.5
8 7.75 96
9 7.75 98.5
10 7.75 99
11 7.75 99.5
12 7.75 100.5
13 7.75 101.5
14 7.75 103
15 7.75 99
16 7.75 78
26 Accelerating Reverse 4 6.37 60
' Inlet, Treat- -100° 5 6.37 80
’ ment B 6 6.37 90
7 6.37 100
8 6.37 86
9 6.37 83
| 10 6.37 75
]




Table VIL. Tabulation of Acoustic Test Conditions. (Continued)

4 Thrust Mode
g and Discharge | Percent | Immersion
: Run | Configuration | Blade Angle | Reading Valve Speed Number
¢
h 27 Accelerating Reverse 1 6.37 60
Inlet, Hard -100° 2 6.37 80
1 Wall 3 6.37 90
. 4 6.37 100
5 6.37 86
6 6.37 83
7 6.37 75
28 Accelerating Reverse 1 6.37 83
Inlet, Treat~- -100° 2 6.37 86
ment A 3 6.37 90
4 6.37 100
5 6.37 80
6 6.37 75
7 6.37 60
29 Accelerating Reverse 4 6.37 83
Inlet, Treat- -100° 5 6.37 86
ment C 6 6.37 90
7 6.37 100
6.37 80
9 6.37 75
30 Accelerating Reverse 1 6.37 83
Inlet, Treat- -100° 2 6.37 86
ment D 3 6.37 90
4 6.37 100
5 6.37 80
6 6.37 75
7 6.37 60
31 Accelerating Reverse 4 6.37 100
Inlet, Hard -95° 5 6.37 90
Wall 6 6.37 85
7 6.37 80
8 6.37 75
9 6.37 70
10 6.37 60
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Table VII. Tabulation of Acoustic Test Conditions. (Continued)
Thrust Mode
and Discharge | Percent | Immersion
Run | Configuration | Blade Angle | Reading Valve Speed Number
32 Accelerating Reverse 1 6.37 75
Inlet, Traat- -95° 2 6.37 80
ment D 3 6.37 85
4 6.37 90
5 6.37 100
6 6.37 70
7 6.37 60
33 Accelerating Reverse 1 6.37 60
Inlet, Treat- -105° 2 6.37 70
ment D 3 6.37 75
4 6.37 80
5 6.37 85
6 6.37 90
7 6.37 100
34 Accelerating Reverse 4 6.37 60
Inlet, Hard -105° 5 6.37 70
Wall 6 6.37 75
7 6.37 80
8 6.37 85
9 6.37 90
10 6.37 100
35 Accelerating Forward 1 7.75 70
Inlet, Treat- 0°* 2 7.75 78
ment D 3 7.75 90
4 7.75 93.5
5 7.75 96
6 7.75 98.5
7 1.75 99.5
8 7.75 100.5
9 1.75 101.5
10 7.75 103
11 7.75 99
12 7.7 97.1
36 Baseline Forward 4 1.7 70
Bellmouth 0* 5 7.7 78
(Rerun) 6 7.7 90
7 7.7 95
8 7.7 98
10 1.7 102
11 7.7 105
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Table VII. Tabulation of Acoustic Test Conditions. (Continued)
E Thrust Mode
: and Discharge | Percent Immersion
3 Run | Configuration | Liade .ingle | Reading Valve Speed Number
i 39 Low Mach Forward 4 7.75 60
i Inlet, Treat- o* 5 7.75 70
ment A 6 7.75 80
7 7.75 90
8 7.75 95
9 7.75 98.5
10 7.75 99,5
11 7.75 103
40 Low Mach Forward 4 7.75 60
Inlet B 0° 5 7.75 70
6 7.75 80
7 7.75 90
8 7.75 95
9 7.75 98.5
10 7.75 99.5
11 7.75 103
41 Low Mach Forward 1 7.75 60
Inlet € o° 2 7.75 70
3 7.75 80
4 7.75 90
5 7.75 95
6 7.75 98.5
7 7.75 99.5
8 7.75 103
42 Low Mach Forward 1 7.75 60
Inlet Hard 0* 2 7.75 70
wall 3 7.75 80
4 7.75 90
5 7.75 95
6 7.75 98.5
7 7.75 99.5
8 7.75 103




:

Table VII. Tabulation of Acoustic Test Conditions. (Concluded)
Thrust Mode
and Discharge | Percent Immersion
Run| Configuration | Blade Angle | Reading Valve Speed Number
43 Low Mach Reverse 4 6.37 60
Inlet A 100° 5 6.37 75
6 6.37 80
7 6.37 83
8 6.37 86
9 6.37 90
10 6.37 100
11 0.53 100
12 0.53 90
13 0.53 86
14 0.53 83
15 0.53 80
16 0.53 75
17 0.53 60
44 Low Mach Reverse 4 6.37 60
Inlet B 100° 5 6.37 75
6 6.37 80
7 6.37 83
8% 6.37 83
9 6.37 86
10 6.37 90
11 6.37 100
*No acoustic data.
45 Low Mach Reverse 1 6.37 60
Inlet C -100° 2 6.37 15
3 6.37 80
4 6.37 83
5 6.37 86
6 6.37 90
7 6.37 100
46 Low Mach Reverse 1 6.37 60
Inlet, ~100° 2 6.37 75
Hard Wall 3 6.37 80
4 6.37 83
5 6.37 86
6 6.37 90
7 6.37 100
8 0.54 100
9 0.54 90
10 0.54 80
11 0.54 60
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8.0 DATA REDUCTION

Data-reduction procedures were specified for the seven data modes
described below:

Fan Aerodynamic Performance Tests

Mode 1 - Conventional-pitch test mode with all fixed, radial
rakes installed

Mode 1 (Mod) Conventional-pitch traverse mode for cobra and/or

wedge probes

Mode 2 ~ Conventional-pitch test mode for traversing the bypass
OGV with both arc rakes simultaneously

Mode 4 - Reverse-pitch test mode with all fixed, radial rakes
installed
Mode 5 - Reverse-pitch test mode for simultaneous cobra and

wedge-probe traverse of inlet throat

Fan Acoustic Tests

Mode 6 - Conventional-pitch test mode for operating-line mon-
itoring for acoustic testing with fixed rakes removed

Mode 7 - Reverse-pitch test mode for monitoring vehicle acoustic
testing.

In Mode 6, the mode for forward-thrust acoustic testing, the axial pro-
file of static pressures measured in the inlet was used to obtain inlet flow
and throat Mach number. The procedure used is explained in the Appendix.

In Mode 6 and 7, the mode for reverse-thrust acoustic testing, the core
flow was measured by an orifice in the core suction system. The bypass flow
was obtained by measurements of wall static pressures aft of the OGV (between
the OGV and the discharge value) and total pressure and total temperature
measurements in the stack leading to the discharge valve.

Acoustic data, recorded on a 28-channel Sangamo Sabre IV tape recorder,
was processed using a General Radic 1927 real-time analyzer for digital out-
put that was run through a Full-Scale Data Reduction (FSDR) Program. Cor-
rections for microphone responses were done in this program as was data
extrapolation using appropriate atmospheric-absorption corrections. Scaling
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of the model data to full size included (1) an adder of 10 times the log-
arithm of the weight/flow ratio between model and full size, plus (2) a
1/3-octave-band frequency shift based upon the blade passing frequency of
the 1/3-octave bands which contain the model and full-scale blade passing
frequencies. The printout from the FSDR program (contained in Volume II)
consisted of measured model SPL on the 5.2-m (17-ft) arc and full-size QCSEE
(71:20) data on 61-m (200-ft) and 162-m (500-ft) sidelines. A schematic of
the acoustic data system is given in Figure 21. The repeatability of the
entire data-reduction system (at Evendale, at R&DC, and between the two
facilities) was within +0.5 dB. Narrowbands of 20-Hz bandwidth were
obtained for selected cases using a Federal Scientific UA-6A Ubiquitous
Spectrum Analyzer. The methods used for reducing the data from the sound-
separation probe are discussed in Section 9.5.
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9.0 FORWARD-THRUST RESULTS

9.1 BASELINE BELLMOUTH INLET

9.1.1 Summary of Fan Aerodynamic Performance

After the initial mechanical shakedown tests of the facility and
vehicle, a complete serodynamic-performance test was conducted in order to
determine the fan performance characteristics and define the operating con-
ditions at which acoustic data were to be taken. Figure 19 shows the fan
aerodynamic-performance map at nominal rotor blade setting (0°) with the
bellmouth inlet.

T T ST Ty T & Y T

Along a fixed-area operating line through the aerodynamic design point
(the design speed and nominal blade angle), measured flow of 30.6 kg/sec (67.5
lbm/sec) and bypass pressure ratio of 1.30 are, respectively, 5.5% and 3.0
less than the design values of 32.4 kg/sec (71.4 1b/sec) and pressure ratio
of 1.34. The bypass adiabatic efficiency is 0.87 which occurs on & operating
line approximately 42 more open than design.

Measured performance of the fan hub flow, Figure 22, is close to the
design-point objective. Comparison is made at design speed and nominal blade
angle at a flow of 30.6 kg/sec (67.5 lbm/sec). This flow is significant be-
cause it is the measured flow along an operating line through the design
point on the fan bypass map. The measured hub pressure ratio slightly ex-
ceeds the design-point objective of 1.23, The core adiabatic efficiency of
0.84 is six points higher than the predicted value of 0.78,

Fan performance tests were also run at +5° (closed) and -5° (open) rotor
pitch settings. Figures 23 and 24 show the performance maps for these two
conditions reaspectively. Fan performance at +5° (closed) and -5° (open)
rotor pitch angles exhibit expected trends. Speed lines shift to higher flow
when the rotor pitch is opened from nominal and shift to lower flow as the
rotor is closed. Peak efficiency is slightly higher for the closed-pitch
angles at comparable speeds but drops significantly as the rotor is opened.
Peak efficiency occurs at or near 1002 Npc for the +5° (closed) blade angle
and drops off less rapidly with overspeed than for the nominal blade angle.
For the -5° (open) pitch setting, peak efficiency occurs at about 95X speed
and appears to fall off more rapidly with speed increase than for the nom-
inal pitch setting. Also, a deterioration in peak efficiency is noted at
lower speeds.

To meet the required takeoff fan flow, bypass prcssure ratio, and cor-
rected speed (94.52) the rotor must be opened approximately 3' from nominal
rather than the pretest estimate of 1° open. Increased speed at a less open-
pitch setting however, would also satisfy the thrust and flow requirements
and would additionally improve efficiency because of the efficiency trend
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Figure 23. Fan Performance Map, +5° (Closed) Blade Angle.
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with pitch angle noted earlier. Therefore, from the fan-performance stand-
point, it was felt desirasble to match the required takeoff flow and pressure
ra*io with the least open rotor setting possible. The potential impact of
the resulting higher fan speed on the acoustic signature needs to be weighed
carefully. Acoustic data, discussed in later sections, tend to show that
while the baseline bellmouth PNL satisfied the original prediction even at
higher speeds, the suppression due to acceleration is increased with increas-
ing speed (at nominal pitch angle) making the higher speed operation (higher
throat Mach number) at takeoff more attractive. The limiting factor would

be inlet recovery, which shows a steep drup after My, = 0.8.

For QCSEE the thrust at approach is defined as 651 of the takeoff thrust.
With a variable-pitch fan such as the UTW, approach thrust can be set by
closing down the blades and holding high fan speeds for quick response in the
event of a missed approach condition. Figure 23 shows a constant-approach-
thrust line on the fan map. No aerodynamic-performance analysic was done at
approach; however, acoustic performance for the approach condition will be
discussed in a later secticn. Further details of the fan aerodynamic perfor-
mance are discussed in Referencs 2.

9.1.2 Acoustic Results at Nominai Pitch

Since takeoff represented one of the critical acoustic-test conditions,
most of the acoustic tests were conducted along an operating line through the
takeoff condition; this occurs at a DV setting of 7.7 at 98.5% speed. The
DV setting of 7.7 is identified in all the pertinent acoustic figures as Ag =
takeoff [corresponding to a QCSEE full-size takeoff nozzle area of 1.6 m?

2480 in.2). Additional data with the bellmouth inlet were also taken at
W= 7.4 [Ajg = 1.73 n? (2680 in.2)] and DV = 7.9 [A;g = 1.40 m?
(2170 in.%)] (full size).

Most of the data presented in the rest of this volume are for the full-size
QCSEE, 1.8-m (71-in.) diameter fan, scaled from the 50.8-cm (20-in.) dia-
meter simulator fan. Sideline data presented are generally for a 152.4-m
(500-ft) sideline.

Variation with fan corrected speed for full-size, 152,4-m (500-ft) side-
line, perceived noise level (PNL) at 60° to the inlet and at the nominal
blade-angle setting is shown in Figure 25 for three DV gettings: DV = 7.4,
7.7, and 7.9. The trend shows that the PNL is slightly “.gher at the higher
operating line; this corres»honds to a higher pressure ratio for a given speed.
One noteworthy aspect ¢~ the plot is the rather flat profile with varying
speed.

Plots of PNL directivity [full-size, 152,4-m (500-ft) sideline] at DV =
7.4 are shown in Figure 26 for 702, 98X, and 1052 fan speeds. At the peak
angle (60° to inlet), the measured (scaled and extrapolated) PNL was 94 dB for
the takeoff condition. Figures 27 through 29 show the 1/3-octave band SPL
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PNL Directivity - Baseline Bellmouth at 70%, 98%, and 105% Ngc.
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spectra for these three speeds at 50°, 60°, and 70° to the inlet respectively.
The 1/3~octave-band, power-level spectra for these three speeds are shown in
Figure 30. While the tone fundamental level (BPF) and levels beycid the third
harmonic are higher for the 98.52 speed, the 105 speed spectra indicate a
very high incidence of lower frequency noise. In order to explore the possi-
bility of the presence of multiple pure tones (MPT's) at the higher speeds,
20-Hz bandwidth narrowbands were generated with the model-size data.

The 20-Hz narrowbands from the 60° microphone for the model-size data
at 70%, 982, 1022, and 105X Npc are shown in Figures 31, 32, 33, and 34
respectively. The relative tip Mach numbers for the four speeds were 0.75,
1.06, 1.17, and 1.21 respectively. The fan speed and corresponding shaft
frequency are listed in each of the figures. The 1/3-octave~band model data
are also shown in each of the figures plotted at the band center frequencies.
One immediate observation is that the narrowband spectrum is dominated by
broadband noise at 702 Npc, and the tones at the BPF and the second harmonic,
but at higher speeds where the tip relative Mach numbers are greater than 1.0,
the MPT's are dominating the 1/3-octave-band levels below the BPF, and the
broadband noise dominates the 1/3-octave-band levels above the BPF. Trans-
lating these results back to Figure 30 and performing the frequency shift
required due to the scale (71:30 dismeter), it is apparent that the high
levels at 1052 between 250 Hz and 1000 Hz in Figure 30 are the result of high
MPT content.

Figures 35 and 36 give directivities of the blade passing frequency and
the second harmonic of the BPF on a 152.4-m (500-ft) sideline. The degrada-
tion of the BPF with the onset of strong MPT's is seen in Figure 35.

The takeoff condition for QCSEE occurs on the nominal-blade-angle, fan-
performance map at 98.52 corrected seed (Figure 19). The measured, unsup-
pressed PNL, scaled to full-size QCSEE and extrapolated to 152.4-m (500-ft)
sideline, at this condition was 94 dB in Figure 25, agreeing with the earlier
prediction (Reference 10).

9.2 ACCELERATING INLETS AT NOMINAL PITCH

9.2.1 Fan Aerodynamics

Prior to the acoustic tests with accelerating inlets, a series of fan
aerodynamic tests were run in order to determine the fan aerodynamic charac-
teristics and the ir et diffusion characteristics with the accelerating inlet.
From these tests, it was determined that the operating line through the
takeoff condition was at a DV setting of 7.75; hence, all the forward-thrust
acoustic tests with the accelerating and the low Mach inlets were conducted at
a DV setting of 7.75.

63

i ———
" o




A 'y 4 & A e
Ll v v L4 L v

A
v

- . F'e -
v v v L

i
>

" 80 125 200 315 500 BOO 1250 2000 3150 5000 8000

50

110

FREQUENCY. NZ

Baseline Bellmouth Inlet 1/3-Octave-Band PWL at 70%, 98%, and

Figure 30.

105% Npc.

0
©0




.\

-0dy %07 ‘YoITd TPUTWON ‘YInow[ag SUFTaseq - wn13dads 7S PUBGAOLIEN T SInB13

zZHq ‘4Aduenbaxj 1opon

(12 8 6 8 L 9 S | 4 € 14 1 0
0S
09
1 LN—Y/———\ 4\-{— - — oL
-~ ao-| o8
O o0 nuawnv
O]
06
0]
nw 0] (©) o)
00T
o1t
ZH PEI = AN/T
ZH SOve = JAdd
wv3sq pueg-948390-¢/1 (O udx g108 = 9N
ZH 0Z = Yipiapueg

Ooo

a18uy 51318NOOY

ap ‘1oaa axnssaad punog

67




oU.mz %286 ‘YO9311d TEUTWON qn—ugﬁﬁﬁﬂm 9ulToseqg - una3o3adg 1dS pueqmolraey °z¢ th&ﬁnm

zy ‘Aouenbaag topon |

(1) § 6 8 L 9 S 4 € A 1 0
0S
09
o
Ahd AA UK N © £
ﬁ oL 7
)
i
} @ o5 &
| { _ | ¥ e
0 o4 e
0o (0] s
A — 06 >
| &
¢ o ®
001
O]
011

ZH 181 = AdY/1
ZH £9¢€€ = Jddd
®3eg pueg-aa8300-¢/1 wdx 01z ‘11 = dN
| ZH 02 = Y3ipimpueg
: 009 = o13uy D138NOdY

68




2N 2Z0T ‘y23F4 TeuFwoy ‘YInosTrag aupyeseg - awniivads 4s pueqmoiley °¢f aan8yy
Zyn ‘Aouenbaxy Tepon
o1 6 8 L 9 | 4 € L4 T (1)
] 09
. G

fy oL w
°
g
a
3
| | § — — ~ — v — v —c cm "
£
-
o
¥ 06 m.
}v D 2
() -
© &

o) 001

o
011
ZH G61 = AM/T
ZH £€0SE = add
wdx g9ty = dy
®18q pueg-aa®3oo-g/1T O ZH 0Z = Y3ipyapusg
09 = @13uy oy3snooy

BT TS T TR TR L e

€9




.sz %601 ‘goirg TsuIRON .nuso!:ua auy [o8eg - unxjosadg 4g pPusqmoxIeN ‘pg aanSryg

ZHN ‘Aouenbexy 1opoy
o1 6 8 L 9 S i 4 € 4 1 0

08

194277 aanssesq punog

& o) ¢ @ .
o ) 8

L¢ 00

ott

ZH 00Z = A9y/1
ZH ¥09E = 4dd .
ndx p1o‘zT = dy
®38q pueg-aae3oo-¢/1 O 2H 02 = Y3plapusg

009 = @78uy d138nooy G

70




(\ 1] 9 - l 3 v
«AN{B 8. U T CﬂI- FULL LE
0 AN F i < HaROw ¢ lbﬂ
F 8T 11 ™0 ~ '
: , I’l'. » 7.7 1
_ | . ‘

8
\

BAND SPL. DB
3

£/3 OCTAVE
- !! )

60 ¢+ ;
40 + - + -+ $ + * + + +
1] 20 40 60 20 100
ACOUSTIC ANOLE. DEGREES
Figure 35. One-Third-Octave-Band SPL Directivity of Blade Passing Frequency -

Baseline Bellmouth Inlet at 70%, 98%, and 105% NFC.

ORIGINAL P"r"m!
of PCCR =7

71




% "'iz msobmet. UTW INUET 8IR.. FULL SCALE
ADE A B.8M. HARDHALL
CoRiRRD TARUGTS  Rigs OB
eVeo B 70
70 +
-]
(-]
)
[
m
1
e
b“d -
2
w -
30 e At —t
0 20 a0 60 80 100 120

RACOUSTIC ANGLE. DEGREES

Figure 36. Omne-Third-Octave-Band SPL Directivity of Second Harmonic - Baseline
Bellmouth Inlet at 707, 98%, and 1057 Npc.

72




B A o S

9.2.2 1Inlet Aerodynamics

Acoustic tests in the forward-thrust mode were conducted with three
accelerating-inlet diffuser configurations: hard-wall, treatment B, and
treatment D. Treatment B was teésted with both an aero-acoustic lip and a
flignt lip while the hard-wall and treatment D were tested only with the
aero-acoustic lip. Due to the fact that all inlet and fan-exhaust rakes
were removed from the airstream during acoustic testing, the aerodynamic
performance of the inlet, including throat Mach number determination to set
operating condition, was monitored by means of a series of wall static pressure
taps located on the inlet lip and diffusers. The methods for determining
inlet throat Mach number and for adjusting the prediction for viscosity
are described in the Appendix.

The inlet aerodynamic performance pertaining to the hard wall (with
aero-acoustic lip) and the treatment B (with aero-acoustic and flight lips)
configurations is discussed in this section. Since the acoustic results from
inlet D presented some special problems, the inlet aerodynamic performance of
treatment D is discussed separately along with corresponding acoustic data.

The hard-wall, accelerating inlet was tested with an aero-acoustic lip
designed (using a streamtube curvature program, Reference 11) to simulate
inlet flow conditions typical of a 4l-m/sec (80-knot) forward velocity.

A flight lip, representative of the full-scale flight inlet, was also de-
signed but was tested only with treated accelerating inlet B. Figure 37

is a geometric comparison of the two lips. Figure 38 compares inviscid
streamtube curvature (STC) computer predictions (Reference 16) of the wall
Mach number distributions for the aero-acoustic lip at a static condition and
for the flight lip at a 41-m/sec (80-knot) forward velocity. The results
indicate that the aero-acoustic lip provides a very similar wall Mach num-
ber distribution in terms of both the peak wall Mach number and the rate of
diffusion.

In Figure 39 measured data are compared to the STC-predicted viscous
wall Mach number distribution for the aero-acoustic inlet at the design
takeoff throat Mach number (0.79). With a few exceptions, the wall static
pressure data are in good agreement with predictions. At Stations -17.4 and
-17.5, in the vicinity of the throat where there is a steep gradient of Mach
number versus axial station, static taps at two circumferential locations
indicated significantly different Mach numbers. This could have resulted
either from a surface discontinuity at the lip/diffuser interface or from a
static tap installation problem. Figure 40 presents the Mg} versus fan per-
cent design speed relationship for the accelerating inlets; design takeoff
Meh (0.79) occurs at 98.5% with the hard-wall, accelerating inlet; inlet B
requires 99.5% spc.ed, and inlet D requires 100,52 speed., Typically, an in-
crease in the corracted fan speed needed to produce a given throat Mach num-
ber suggests a decrease in inlet recovery. However, the variability in re-
setting the fan blade angles (+1°) introduced an additional factor to be
considered. The hard-wall and the treatment B diffuser inlets were tested
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with no intervening blade-angle changes. Therefore, the observed difference
in throat Mach number at a given fan speed is likely due to additional inlet
tot il pressure losses caused by the perforated treatment faceplate. On this
basis, treatment B appears to contribute 0.6% additional inlet recovery loss
relative to the hard-wall inlet at the design takeoff flow (Mg = 0.79).

In terms of fan speed, the treated inlet requires about 1% higher corrected
speed to attain the design throat Mach number. The treatment recovery loss
inferred from Figure 40 data cannot be independently verified because

total pressure rakes, adequate for measuring inlet recovery, were not in-
stalled in the inlet.

The variation of inlet M), with percent fan speed, shown in Figure 40
for inlet B with the two lips, indicates that a substantially reduced flow
was observed with the flight lip. Careful investigation revealed that sev-
eral blade-angle changes had been made between the acoustic tests with the
two lips. The data from the aerodynamic tests also showed that when the
rominal (0°) blade angle was reset by hand for the baseline bellmouth, the
+ blade angle repeatability and intervening discharge valve repair work
had slightly changed the fan flow/speed characteristics. The 2.5% flow
reduction measured with the flight lip was well within the flow variation
porsible with a +0.5 blade-angle setting repeatability.

Figure 41 compares measured wall Mach number distribution at 1032 speed

with STC calculations at M., = 0.79. A similar comparison is shown in Figure
42 at My, = 0.79 and measured data at 99.5% speed for the aeroacoustic lip.

9.2.3 Inlet Acoustics

9.2.3.1 _Hard-Wall, Accelerating Inlet

The variation of full-size, 152-m (500-ft) sideline PNL (at 60° to
inlet) with fan corrected speed is presented in Figure 43 for the hard-wall,
accelerating inlet. Also shown, for comparison, are the data with the
baseline bellmouth inlet. The suppression due to acceleration begins to
show at the 93.5% speed condition. Figure 44 shows the same PNL data plotted
versus throat Mach number for the accelerating inlet. The abcissa for the
bellmouth data is plotted on an equal-tip-speed basis with inlet B. 1t is
now seen from Figure 44 that the suppression due to acceleration shows a
monotonic increase from about M¢p, = 0,69, At the takeoff flow condition
(M¢y, = 0.79), the suppression obtained was 9.5 PNdB with the hard-wall,
accelerating inlet., The objective suppression at the takeoff condition
was 13 PNdB with a treated inlet, and data presented in a later section will
show that this objective was met with treatment B. The variation of suppres-
sion with throat Mach number for the hard-wall, accelerating inlet (baseline
bellmouth - hard-wall accelerating inlet) is shown in Figure 45. The band
shown along with the current data represents results from 18 other config-
urations (Reference 3).
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O Nard-Wall, Accelerating Inlet
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Figure 45. PNL Suppression Vs. Average Throst Mach Number of Hard-Wall,
Accelerating Inlet.
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Figure 46 shows the PNL directivities [full-size, 152-m (500-ft) side-
line] at t:e takeoff condition (98.5% speed, M.y, - 0.79) with the baseline
be.lmouth inlet and the hard-wall, accelerating inlet. Both patterns peak
at 60° to the inlet where the suppression was 9.5 PNdB. The 1/3-octave-band
SPL spectra for the two inlets at 98.5% speed are compared in Figures 47, 48,
and 49 at 50°, 60°, and 70° to the inlet respectively. The suppression con-
tributing to PNL is seen to be achieved at and above blade passing frequency.
A certain amount of suppression of the MPT's is also observed at the lower
frequencies. This can be seen more readily from Figures 50 to 52, which show
the 20~-Hz narrowband compared for the two inlets at 50°, 60°, and 70° respec-
tively. The narrowbands are for unecaled data measured on a 5.2-m (17-f¢)
arc; however, an approximate scale is slso shown in the figures to adjust for
shifting the frequencies to full QCSEE size. Figures 53 and 54 show the
1/3-octave-band SPL directivities of the blade passing frequency and the sec-
ond harmonic of the BPF; a stronger attenuation is indicated of the BPF than
of the second harmonic. The 1/3-octave-band PWL spectra comparison at the
takeoff speed is shown in Figure 55.

At low speeds the hard-wall, accelerating inlet should be expected to
give an acoustic signature similar to that of a baseline bellmouth inlet.
This, Lo some extent, can be seen by comparing the PNL directivity at 70X
speed, shown in Figure 56 for the two inlets. While the excellent agreement
between 10° and 70° is as expected, the reason for the deviation between 80°
and 110° is not clear. Figure 57 shows the 1/3~octave-band SPL spectra at
60° to the two inlets. The spectra are quite similar in character and com-
parable in levels except for the higher BPF level with the hard-wall, accel-
erating inlet. The directivity of the BPF shown in Figure 58 indicates that
the BPF level is about 5 dB, or more, higher for the hard-wall, accelerating
inlet than for the baseline bellmouth in the 30° to 100° range. The second-
harmonic level shown in Figure 59 indicates that the hard-wall, accelerating
inlet is about 3 PNdB higher from 10° to 70° and 6 PNdB higher at 80° and
90°.

The effect of ircreasing the fan corrected speed (and thus the throat
Mach number) with the hard-wall, accelerating inlet is seen in Figure 60;
the full-size, 152-m (500-ft) sideline, PNL directivities at 70%Z, 98.5%, and
101.5% speeds are shown. The reduction in PNL continues with higher speed,
increasing by as much as 5 dB between 98.5% (Myp, = 0.79) and 101.5% (Mtnh = 0.82)
at the peak angle of 60° to the inlet. This points to the attractiveness,
from an acoustic standpoint, of setting takeoff at a higher speed and choos~-
ing a lower operating line (a more open DV) to adjust to a lower pressure
ratio and maintain takeoff thrust. This consideration may, however, be
accompanied by other engine operating constraints pertaining to the engine
cycle and inlet recovery. The 1/3-octave-band, SPL spectra at the three
speeds (702, 98.5%, and 101.52) are shown in Figures 61 through 63 respec-
tively for 50°, 60°, and 70° to the inlet. The PNL suppression that results
from acceleration is dominated by the aigh-frequency suppression (at and
above BPF). However, a considerable degree of low-frequency suppression is
observed between 70% and 98.5% speeds. The 1/3-octave-band PWL spectra for
these three speeds are shown in Figure 64,

|



, [ =]

H ~N

. Ll 1 N - -

' o

1 AU vco..
8.0 B _—

e —
w..v R
18D B e ow
L] = flﬂ
a0 —
Ber =

TRt """ """ e
3T : -
B 2
@ - vom
~ ' L
WO .
SN o
[ o~
Ny - - ——
- .1 ] ®o
X s e R w
- -8
|=680._ _ — Loc
[ -
L I N - w.l
ao R — T

4 ol
~To -
W T

1eax - -
ac- . N
0.2 :
e . —
.‘_)‘.mm lyl.'.OM [ U S,

o -
a2°6 ‘ ﬂ . .
=0l H R N X ,

o O . A do g w..u“"....-. . o
- A — T - M SRPI - Y. - Q-
b ..H”».,w..“,u.nnu,:ll X e - N R
2RI gONd 273031 3SION_O3A130¥3d. _ . -

I S N

PNL Directivity - Baseline Bellmouth and Acceler-

Forward-Thrust,

Figure 46,

ating Hard-Wall Inlets at G.79 Throat Mach Number.

83




i
]
o
ki
g
i
!
[
_
o
e
1
P, !
o |
:
A
ﬁ

COTTEGIERER

IR

47 .75

LET, 6TH.» FULL
8=1/0 ! (DV=7.7)
8=170-2 PCT (OV

IN
A1
A1l

1 UTK
]
o

i
|
|
i
|

162.4M(E00FT)ISL.
0 DEG BLADE ANG.

| FORKARD THRUST
~50 DEOREE. MIKE,

LR

\]

|

5000. 8000

L)

|

+

{ FREQUENCY, HZ |

315! 500 8001250 2000: 3150

i

L

- 80
l .
-
ng.

mnthumm azcmrw>¢»uo mmu

1/3-Octave-Band, SPL Spectra - Baseline Bellmouth and

Accelerating Hard-Wall {nlets at 0.79 Throat Mach Number at 50°,

’

Forward-Thrust

Figure 47.

86

e s i b - ks -

e



)
::90.

WS

H

NLET 8IN.. FULL SCALE
182770 '(0V=7+7)

I
A
A

UTH
a
o

162.4M(S500FT)SL .
0 DEC BLADE ANG.

FORMARD THRUST

182T/0-2 PCT (DVa?7.76

!

|
1
i
i

g
i

|
|

P —

200 316 500 800 1250 20003150 50008000

4
I
!

L

i i

! FREQUENCY, HZ :

¥

|

2

80 | 125/
’ |

!
|

160 DEGREE MIKE:

1

SITeT T TR
680.°71dS._ONYS..

!
-

L s ...In..
3AH1J0_€/1

-~Wall Inlets at 0.79 Throat Mach Number at

Forward-Thrust, 1/3-Octave-Band, SPL Spectra - Baseline Bellmouth

o
Mm
o0
(-]
e
&~
<
™
)
4
O
)
b}
<
g
a0
<3
o
[
3
&0
Ll
[

60°.

87




IF7 g
1o .8 e
ki 8-

,ih
;:;
L}

. H
j §>!V
it
vitoh
'
|

315| 500: 800 :1250: 2000, 3150.5

8=T/0-2 PCT (DV=7.76

| FREQUENCY, HZ

A18=T/0 :(0V=7.7)
Al

v

"UTH INLET: STH.. FULL SCALE

Forward-Thrust, 1/3-Octave-Band, SPL Spectra - Baseline Bellmouth

and Accelerating Hard-Wall Inlets at 0.79 Throat Mach Number at

80 —— ,
. o !
AL -
- T o~
e o - !
-4 ... : Cme— !
WL . w0 ,
1.’“8K.. —_— _—— e —— . —— - L-CN !
= D+ i -t [
L.weex ; \ .
OD“ “ 1 PR .
[~L 44"V R ! °
40 W O m
‘Bom ) . ®
£ o : &
<OTLS . —— . i
‘WXO i . o 1
jvoee — L.O d |
w 0o : b w v 1
=~ Ou. i~ 4 1 4 ! " e -m
P Y : Y R , ~— ‘ '~ 2
°vla...lo|||..l|u ¥ - DS S o e llrso - _. R - TR LR SN = I
88 & S A 2
i HERRT mnllumm ozam’m>¢huclmmh R ‘

o P A it il s i




‘e0§ I® Jaquny yoeR 3IBOIYL 6/°0 I® 3IBTUI 8uyrjeaatadoy
TTeM-Pa®H puw yjnowyrag auyroseg

ZH ‘Aouenbexg Tepon

8 L 9 S ¥ € z

= ®8a3d0ads 14s pueqmoxaey *0S 2an8y1y

h

- G,

] |

00¢2 0002 0091 0621 0001
ZH ‘Aouenbexy ao3jue) PUSg-0A®3ID0~¢/1 OT®I8-TTNI

Ody 9588 ‘3eTur Buyjvzerescoy ‘TTOM=PIOH — e e —
Ody 486 ‘39Tul ynowyreg oujreseg

Yipiapueg zH oz e
92V (37 L) w 2°c o
@T3uy oy3snooy o0 ©

oS
09
/]
Q
oo §
o
K]
[ ]
H
(4] M
[
[}
<
[ ]
o6 I
001
o1t

89




‘009 I® I2QqUNN YoER ILOIYL 6/°0 IE IITUI
SuyjeiaT2do0V [TEBM-PABH Pue Yjnow[[ag duj[aseg - e131d0ads 7IdS pueqmoiieN ‘TG andig

3 g ‘Aouenbexg TOPONW

o1 6 8 L 9 < ¥ € z 1 ]
7 oS
A A L 4
AV ?_} WAy
N
|
M ! }
| Q
0]
> _ o
o ®
2ay (37 L1) m g°c e -—{ 001
o13uy 2313sNOOY 09 o
| 1| 2
| | _ [ 6 T N I
0s1¢e 00s2 0002 0091 0GZT 0001 00 06T se1

zH ‘Aousenbaag J9juUe) puUBg-9A®IOQ~-C/T OTSOS-TINJ

qapvapueg zH 0z ‘Ody 9g°ge ‘3eTul Bujiexe1eddy ‘IIeM-PIEH —=————-
wapsapueg zH 02 ‘Ody ygé ‘1eTul ynomwyreg suyieseg

838Q puUSg-9A®3D0~-¢/T ‘319Tuy Buyiszaiecoy ‘yiem-paeH ()

®38Q pueg-9Ae3o0-g/1 ‘39TUl Yjnowyiag sujiaseg O

gp ‘1eae7 eanssaxd punog




*,0L 3% Iaquny YdEY 3IBOIYL 6.°0 IT ILTUL

SupIvia[900V [IPM-PIPH PuU® YINOWTTAg JUFTaIsed - BIIDAdS I4S pueqmolaeN °z¢ 2anByj

ol

aHN ‘Aouenbeag TopoN
8 L 9 G 4 € 4 1 0

vy iiA a3
v, i

_ f * L

| | T I I P

os1e

00€2 0002 0091 0SZ1T 0001 00S 082 sZ1
2 ‘4Aouenbexj Ie3ue) pusg-sAe3O0~-£/1 OT1EIS-TINA

Ody qg g ‘3eTul BUTILISTEOIV ‘ITSM-PISH — ———
Ody 4gg ‘3eTul ynomireg eujreseg

uyipyapueg zy 02 ©
say (33 L1) ®w2's ©
e18uy d9138N0OY 0L ©

ap ‘1eae eanssexd punog

91




--804 -

+

_f73“gETBVE'SPLo’IﬂI:
o

.
g e s

{
!

.Z" IORE B Lo
e
o
4
v

L 162.

~ 1 |0 DEG BLADE ANG.
. |FORWARD THRUST. .
| |1000 HZ BPF . . i

“INLET (81N.
A18=1/0

imsoﬂrnst.-;,urg NLET
. ® A1B=

ov
8=T/0-2 P

!
. SCALE i ]
9
)l |

i
- 8_ i
o !

Figure 53.

92

—

j40 | | g0 i } igo |
| "ACOUSTIC ANOLE.. DEOREES |

! i |
I N . ; DU I
| .
} ! ;
L AN
T o ’
§ ] T
. mth.* -1 : . ?v . f' | '§ 2 “.'.._} - —— -
‘ : : i : . ' i ! !
' ‘ i ‘ ; . ' !
! i ' N 1 ! ] i i
v L] ) T Uy Y T
' 40
A

1001 | : 120
SRR RN

Forward-Thrust, 1/3-Octave-Band, SPL Directivity of Blade Passing
Frequency - Baseline Bellmouth and Accelerating Hard-Wall Inlets
at 0.79 Throat Mach Number.

T




T ! '
. T1B2.4W(BOBFTIBL. [UTH INLET 8TH.; FULL scm.e |
| [t o T e AT T o B
e} i = - [{ .
' |1} 2000 He 2N0"tieR. =1.761] .
. i | o
(6 e e
804 i |
L B T
+ Qe : . .
‘“’L P ' : ! ! :
wt— g S S R e
S| : /. H ! 4 ; ]
el T
Bggd L L ’ - ! | | ' |
k AR S T N R
ol 4 S S A A L A SR S S
, IS DN OV /% AR B ST I
v; i ‘ | ? ! : : . : !' '-P—-T—’—n
SEJ 5 : ! i f , f i j f
»E‘D" off] e ; : e i ' : f-| _!,._,._,;'...AJL._‘.;_,
e S A S I R SRS SRR SN N
N T S O A R ;
i ' | : : i | : TR St S
| 3 : ; : ; ; f | l :
1tk I L : ;
[ [ 120 .14 L 180 g0 | | t'oog 120
| nlh TR R RCOUSTIC ANOLE.i DEOREES | | ' |- I

Figure 54.

Forward-Thrust, 1/3-Octave-Band, SPL Directivity of Second Har-
monic - Baseline Bellmouth and Accelerating Hard-Wall Inlets at

0.79 Throat Mach Number.

93



l
4

|

27.75)" 1|

{
i

— -
316 500 800‘1250f2000‘3150?5000 8000

SIM., FULL SCALE |

@ A18=1/0 '(DV=7.7)
. © R18=T/0-2 PCT_(DV

t

 FREQUENCY, MZ:

Y S e
f

!

UTN INLET!

Forward-Thrust, PNL Directivity - Baseline Bellmouth and

Accelerating Hard-Wall Inlets at 70% Npc.

| e
— = b - s 18
e ©
Lo - . v ' u I SN
& e : m i . m 4]
. — P o - H - e e s e .
b ! r 4| Al -
Wmm“ A I
oa—| ! | _ w i a
SL —— e .._. P T— . - \_) ‘0 . n
£®oor “ _ i T : . © o
cOc! : 0 ; v ! h 4—- i
woE,_ i .. L | ) ;
@os L + TR |- 3 |
~ou! { i ! ; , o
C . [ = ’ o o- : . ” o . -
. s . . ﬁ"l u. '
g . ]

1304~

CEEEESTE T gg +IMd ONBE 3ABL30 €1 o 0 E




N ;120_
95

ALE!

T
L
Sy

8¢
"‘v
. 80

.
ov
P
|
|
' )': i
RCOUSTIC ANGLE.! DEGREES

)
(
e
) 4

!Y

P od

N1
OA
L

et

8
N
T
i
l

|

\'2?

Forward-Thrust, PNL Directivity - Baseline Bellmouth and Acceler-

ating Hard-Wall Inlets at 702 Npc.

<AM(500F
DEO BLADE

i
[}

.;i?? 162,

1| FORNARD THRUST|

ﬁl

0

?
Figure 56.




8000:

1
S—
1
!
b
A
' i
|
{
A
13
|

.!.;-l_! S S g
o |
, le |
1 \ i O i
+ ‘ . i t w !
s LIRS SN AU S G
- ! “ -t . o
i ; w |
Ca _ ﬁ [ — l‘l -
! i | ! ! (2] '
g e e .- - I R
. 1]
i g i ; , ]
[ . v . +6 -
i : nl _ . ~
IS . S S S0

800 . 1250

Lo

g4
v

- e cema . .
'
!
H i '
___*,..-.
: !
3 R .
H

!
o
i
(A
H

!

!

i

500
| FREQUENCY. HZ

t
'

'y
v

316!
1/3-Octave-Band, SPL Spectra - Baseline Bellmouth

and Accelerating Hard-Wall Inlets at 70% Npc at 60°.

e

i
o
.

'

1

4

+

+

L

s

|
[}
—d
.
H
|

'}
v
[}

Y ST S S

i
v

o
[
| i 3
| ond | V] ' . ) . L
REex ' | ) b~ ]
T ux ” . N - — | lvl. ] A
LwEx ) { i , | ° :
18&&Ew -+ — P R D S S m ,
= N S Y ; _
[ ! ™ (M
- P f“.-i L et I —
SBEE T =5 T . -
- - 1 .. - _ , 3 : Avn
Sof8 1 i T A S B .
: 4 ! i N — —_ - @
| 1 ! J S (R B 3 i
- . --,um T > R B w- = ®
L ; :.80.°1dS..ONYE.3A61J0. E/1 : =l




m ) | i ! ] -
) . i { i , | ™~
P 1 : H . , -
- @ i M ’ R
- 4 - ) . H R
H i ¢ 1 .
Il . RN I
-1 . - - ; ; o;iv
xr% &ll -lllw»tmlv \r r —————n .i.w.i-
Lz i
- Tt ey —— - - - ——— - - — - —— - ——— — ———
w w nw , A [
= N
[T, A i i B .. 0".._.
T 3 T _ o
jr P g . : : B ‘o.—
D - L -
- -t - : T —e - s
no !
>0, \\ ' .lllE
0 s a
A=Y - & o —— ——de e JOZ
[ 1-1-] [ 1+
TTNNN —‘ —
ol - Y ! -e
L N N S .. W S — o -
«
-
L=}
[
[+ 4

i
i

U

o e o e e e e -

— s o

|
AM(BOOFT

| 40

wee
[~ 4N
0.
2a” »
- - 2 .
L omﬁ ! e : : 3
“WiX : e
abzZo R D ]
~ouw | ! : : i | T
. I " ) . . Il =
| ) X M ) I R K - ]
-~ N o [ S [ = JIRES IR o - R IR D ; N -
S @ Ly A e TS
Toi 2 go e1ds oNve 3AWLI0_EsT . Tl

Forward-Thrust, 1/3-Octave-Band, SPL Directivity of Blade Passing

Figure 58.

Frequency for Baseline Bellmouth and Hard-Wall Accelerating Inlets




o TR

W_ ! ,“ , -
.W ¥ i ! m i ! - u
| . L . i ” e ]
| D U 58
W, . e q— e s h u
| . - e o e
] o33 - ! : p g =
| : ! o__ 0~
;,‘ - i - — nlsh...' -e - & II..
., ‘ A —_ =
“N e . . - “d
, e ,. o
4 TUITLTT ISR S et~ o
u, - a—— ||| , ———— . 3 u u m
, w o -
| W - of 38
, w O &
f Ll1lo—e _ + b= ,
T 85 % s s
| < A Y -w e
P = ‘ w a —
: B E™ - R T r~
, peD O P . - a n by
[T ol o | = o, M
1T . -z
o> -g
o |lr.lll|lnv.0c b - ] S
159 oS §
woo .,_ . “ . -fn-
— X = [ -
- -3 23
ammnn S =t
pry .1 - , 7 ~
r ol ad . . m u
=13 _ g
- -y “nvc g ——— A',m.!‘. ” “
m : . —_— u
MM! q!. . .‘,s m M
— s o — J i ——
[ 40" m
e -~ f
[TRTT] 4] i - lo. _ .m A m
-$O0OXEE - — - — r g R
g S s i
CRom— - ' | 5ES
o . S SN SV S w
les28 ! h Sl :
- i - - —— o
Boos - R &
1 ‘ - » -
SOuny : " e o
. » . h . . All.,‘.lll.ll'
R 8 R S & i
E..lumm..azcc N>¢huocmb SIS _ b -3




60 ——
0 20 40 80 80 100 120
ACOUSTIC ANOLE, DEOREES

Figure 60. Forward-Thrust, PNL Directivity for Accelerating, Hard-Wall Inlet
at 70Z, 98.5%, and 101.5% Nyc.




L o |
=] |
-8 pe ”
o “
S ;
o .m u,
18 : w
L9 < |
m o
N £ 0
m & N
i
g o B
H=
| &
Q.
wuwnn 2]
o
vc.v - m..ul
numw 7R -] !
ro.d -5
® < i
L mw .m.&
v.wn..n b
€B0
o 2R
L s .
w O e
| > oo ]
™ &=
. S |
Q 3
-] ol
0 —
- z48
|8 B J
- HE: .,
< o1
g5
L
8 S4
i 1
Lvm

! S

;.v ¥ -
et st 'l‘ Illl.ﬁzA .......

‘SAMId0 €78

4D

Figure 61.

80 ‘148 ONEB

100

W R i PN T, VETL T . T P TR



T I ——y

i . '

i m...u.nm
e R

e e it 8.

‘ . - A Aend y S S . 4L . F - r's i L e b i i G S G ) -
u ¥y ¢ v ¥ v « v v v v A\ v v v v v v v v \d v v B
.50 8 126 200 31§ 6500 800 1260 2000 3150 5000 8000 ‘

FREQUENCY, W2

Figure 62. Forward-Thrust, 1/3-Octave-Band, SPL Spectra for the Accelerating,
Hard-Wall Inlet at 70%, 98.5%, and 101.5% Npc at 60°.

101




+m
- -
I8
,fw
to
Ig
. ™~
1..!0
18
L“.
o
...Yo
@
4
18
To
4z
& -
er
i
w
Lvmu
ir
;vmw
-
40
(7]
Q
-

FREQUENCY, N2

Forward-Thrust, 1/3-Octave-Band, SPL Spectra for the Accelerating,

Hard-Wall Inlet at 70%, 98.5Z, and 101.5% Npc at 70°,

Figure 63.

R T A e

102

E—



= o S s~ ot

[

-1b ’

s i"' .-

{ ,

P R g

! ' ' H

ot o - :

i X 5 . '

L S , x

' 1608+ o : = ;_ .
' . ‘ i 1 : : !

; i o

B ; |
R ; 1
i. h !

E

E 1 |
- —4--~[

E | ]
r Ar ‘1

L.

i i

s | !

'. ‘ic 2 A _a i 4 e A _ g e ' : 4- 4 a2 2 2 a + o~

.U B0 80 126 200 316 5§00 800 1260 2000 3160 65000 8000
i FREQUENCY., HZ

Figure 64. Forward-Thrust, 1/3-Octave-Band, PWL Spectra for the Accelerating,
Hard-Wall Inlet at 70%, 98.5%, and 101.5% Npc.

103




A comparison between the baseline bellmouth and the hard-wall, acceler-
ating inlet is shown at 101.5X speed in Figures 65 through 69. The spectra
at the peak angle, 60° to the inlet, show suppression over the entire fre-
quency range. The origin of the spikes in both spectra at 250 Hz is a fan
four-per-rev signal. One of the interesting phenomena seen with the bell-
mouth inlet is the significant levels of MPT's at frequencies higher than
the BPF, seen in Figure 69. The 1/3-octave-band levels shown alonrg with the
20-Hg narrowband do indicate that, with the bellmouth inlet, the MPT's con-
trolled the 1/3-octave-band level below the BPF, but above the BPF the broad-
band noise controlled the 1/3-octave-band levels. The accelerating-inlet
spectra that are superimposed show strong suppression of the MPT's over the
entire frequency range in addition to suppressing the BPF and the second
harmonic of the BPF.

9.2.3.2 Effectiveness of Accelerating-Inlet Treatments

The hard-wall- and the suppressed-accelerating-inlet PNL's for forward-
thrust operation are given in Figure 70 as a function of fan speed. The
results shown were extrapolated to a 152-m (500-ft) sideline distance at 60°
relative to the fan inlet and are for a 0° blade angle.

Suppressed noise levels are given in Figure 70 for two inlet-treat-
ment configurations, D and B. The other inlet configurations, A and C, were
not run in the forward-thrust mode due to constraints on available test
time. Treatment B was sclected on the basis of previous test data (Refer-
ence 9) that showed good suppression with liner designs having 102 faceplate
porosity. The selection of treatment D for forward-thrust testing was
based on the good suppression characteristics exhibited in reverse-thrust
tests (wvhich will be discussed later).

The comparison of treatments D and B indicate that the latter shows in-
creased suppression relative to the hard-wall, accelerating inlet at the
higher fan speeds, whereas treatment D shows an increase in the noise level
relative to hard wall. For a throat Mach number of 0.79, the inlet B treat-
ment gives an additional 3 PNdB suppression. Comparing inlet D to the hard-
wall at 0.79 throat Mach number shows that the noise level increased with
the acoustic treatment by about 1.0 PNdB. Performance of these inlets at
high throat Mach numbers will be discussed in more detail in Section 9.3.3.3.

Treatment B also gives more suppression than inlet D at the lower fan
speeds. The suppression measured at 702 Npc for treatment B is 6 PNdB;
for inlet D, the suppression is approximately 4,0 PNdB,

The forward-radiated fan noise levels, PNL, versus acoustic angle,
are shown in Figure 71 for the hard-wall accelerating inlet and treatments
B and D. The data are for a 0.79 throat Mach number on a 152.4-m (500-ft)
sideline. The unsuppressed noise peaks at an acoustic angle of 60°. The
suppressed noise for all inlets also peaks at or near the 60° acoustic angle.
The additional noise reduction with the treatment B configuration is seen to
be independent of acoustic angle.
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Spectral comparisons, at C.79 throat Mach number, are shown in Figure 72
for the hard-wall accelerating inlet, ai: treatments B and D. The data are
for an acoustic angle of 60° on a 152.4-m (500-ft) sideline. A noticeable
reduction in noise is seen for the treatment B configuration relative to the
other inlets in the frequencies ranging from the fan blade passing frequency
(1,000 He) through 10,000 Hz. No particular trend in suppression is evident
for frequencies below 1,000 Hz for any of the configurations. The hard-wall,
accelerating inlet and treatment D have about the same noise levels at all
frequencies except those below 1,250 Hz; in that range treatment D is about
6 dB higher. This increase undoubtedly contributes significantly to the
1.0 PNdB level increase measured on inlet D over the hard-well, accelerating
inlet.

The inlat B configuration gives a total 1/3-octave-band tone-suppression
level of approximately 20 dB at 1000 Hz relative to the baseline bellmouth.
Here 8 dB of the 20 dB suppression are from the acoustic treatment as shown
in Figure 72. Comparatively, treatment D gives a total suppression of 15 dB
of which only 3 dB result from the ad?ition of acoustic treatment.

Figures 73 and 74 give the spectra, as discussed above, for the 70° and
50° acoustic angles. The suppression characteristics as noted in Figure 71
are found to be independent of icoustic angle between 50° and 70°.

Figure 75 gives PNL directivities at 702 speed for the hard-wall con-
figuration and treatments B and D. The unsuppressed noise is shown peaking
at 60° with gsharp decreases in level for all other forward-quadrant angles.
The suppressed noise level also peaks at 60°; however, the directivity pat-
tern is somewhat flatter than that of the unsuppressed noise levels. The
suppression as a function of angle is rather constant for angles of 50° and
greater but decreases significantly for angles less that 50°.

Figure 76 gives the spectral comparisons at 60° to the inlet for 70%
speed. The low fan speed results in no suppression from inlet Mach numbe:.
The spectral results for treatments B and D show that the treatment B con-
figuration suppression levels at frequencies of 800 Hz through 3150 Hz are
significantly higher than for inlet D. Tone suppression-level comparisons
at 630 Hz, 1250 Hz, and 2500 Hz show treatment B giving from 1 dB to 5 dB
more suppression. The suppression at frequencies greater than 4000 Hz is
small, and little difference is seen for either treatment configuration.

Spectra for the hard~wall and the treated inlets at 702 fan speed are
given in Figure 77 for 50° and Figure 78 for 70°. These data show no signi-
ficant changes in the spectral suppression characteristics with respect to
acoustic angle in the range of 50° to 70°.

Figures 79 through 82 compare suppression spectra for treatments B and
D for fan speeds of 70%, 78%, 90%, and for the fan speed corresponding to
0.79 throat Mach number. All data are for an acoustic angle of 60°. At 70%
speed, treatment D has both broadband and tone suppression improvement rela-
tive to treatment B. A similar difference is also seen in Figure 80 for a
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782 speed. Spectra for 0.79 throat Mach number are shown in Figure 82.
Treatment B is seen to consistently give suppression relative to the hard-
wal., accelerating inlet at frequencies above 800 Hz. Treatment D results
indicate an increase in noise level relative to the hard-wall, accelerating
inlet at most of the 1/3-octave-band frequencies. This increase accounts
for the higher PNL level seen in the earlier data.

Figure 83 compares suppression spectra for treatment B for fan speeds
of 70X, 78X, and 90X speed. This comparison shows that the overall suppres-
sion decreases with increasing speed. Figure 84 gives the same set of data
for treatment D. No significant suppression differences are seen for the
three fan speeds.

AR 'wmm‘w‘vvr'" R o O

9.2.3.3 Performance of Accelerating Inlet D at High Throat
Mach Numbers

Treatment D consisted of three segments in tandem, each with a different
open area - 7.2%, 14.4%, and 28%; treatment B had the same open area, 9.2%,
in all three segments. In reverse-thrust tests, for which all the treatments
had been designed, treatment D provided slightly more suppression than treat-
ment B. Hence treatment D was also run in the forward mode to compare with B in
order to select the better treatment for both forward- and reverse-thrust
modes.

The full-size, 152.4-m (500-ft) sideline (60° microphone), PNL values
versus percent corrected fan speed for the baseline bellmouth, hard-wall
accelerating inlet, and treated accelerating inlets B and D were shown in
Figure 70. Figure 85 is a crossplot of Figures 70 and 40 to give PNL versus
throat Mach number. The speeds were matched for the bellmouth and inlet B
in Figure 85. It may be noted from Figure 70 that at 90X speed, inlet D
starts diverging from inlet B and providing less suppression. Figure 40
shows sn apparent loss of flow recovery compared to inlet B beyond this speed.
Figurcs 70 and 85 show that, beyond this speed, inlet D even provides less
suppression than the hard-wall, accelerating inlet. The effect is less pro-
nounced in Figure 85 due to suppression being plotted against flow (M,}).

In order to examine the deterioration of the performance of the D inlet,
the measured wall Mach number data are presented along with acoustic data.
The axial distribution of wall Mach numbers (obtained from a series of wall
static taps) is shown in Figure 86 for inlets B and D at 93.5X speed, at
, which the average throat Mach number for both inlets is 0.69. Operation of
| the two inlets generally appears similar, but the higher corrected fan-face
Mach number with inlet D indicates a recovery loss. Since inlet D was
tested after some blade-angle changes, it is also possible that small errors
during resetting of blade angles could have contributed to a difference in
corrected fan-face flow. Figures 87 through 93 show the acoustic data for
hard wall and treatments B and D at 93.5% corrected speed. The data indicate
slightly better suppression from treatment B.

124




ToR

Qo | u

.l |

' |
. ‘ 1 | ,
' : : . H ' f : |' ' | ‘

N T T U .K._+MJ RIS S 1J~;¥ _LW“

E : : : ; S I i ; ' i ! g
& . A A R :
qwb- D - ! }. L 1 - - 4‘ . -] RO S — ; -

. f ! 1 ; ' i 1 {
. . ' : . !

: { ! . \ ) i ! ‘ .
! ! - i ebae c— e -
LI . | ‘ 5 : T S |
\ ) ' ! ‘ i 1 t : |
F DR L |
; =20+ ; | ! t . SRR o
! ' 2 i ! , ! |
i ; i J i ‘ .
! - , , oo b
- ' NN R
g _ac A ' A 'y A 'n 4 4 e e b 4 A L J_“:L A 4 4 é A L e Y.L . :
; ettt Tt e T :
i . 60 - 80 . 1256 200 316 600 600 1260: 2000 3160 60008000, |

Figure 83. Forward-Thrust, 1/3-Octave-Band, SPL Suppression Spectra
(Relative to Hard-Wall, Accelerating Inlet) for Treatment B
at 70%Z, 78%, and 90X Ngc.

125




N S T

0601

© "
« S - s E
." m,; ;“ " Avm “m
, o : w0 o w
” B R e i - ,
m L h o Sh |
| LI . e e 18 c |
. ' "
” : { - - o
W - — LYMUI - uf
| SRS R 1 M 18 23
“ | m : & &
Z 4 SPSPRITFSRVR S g 3 a
; oz 7. o
1 Lv““ n o0
- &5
- ol‘aLYVs'r.! l“
=% o M
o> b 4 [ ']
©u 34
- 4. w 1 e
. o - S SR [ TR - - . Ava ] m
[T tloﬂ
BN Y VG N A by $35
\ . ' w "3 O
' . : [ o
W S m.wm
18 B8y
e — Eol
10 >3 .
- + & R
_ - ar
w - £3
o~
i e~ @

|
Figure 84.

M i : % . ..
[P LI
m.un._&ﬁ.ra..h.bxn: -

126

T T W O U o e



R A

P S Y

*83aTul
Suyivaa[addy puw Yinowm[lag FUFIISEq Y3l 10J IIqENY YIEK IBOIYL °"SA 'INd °S8 2anByg

nal ‘zaquny YoeN jeoryl a3vaaay
0"t 6°0 8°0 Lo 9°0 ¢'0 ¥°0
oL
(=4
o
«.
-
"
]
v lx=
o V|7
—— ..d 08

D
00

04

04

P &

GPNd ‘12A977 9810\ paarauied

—$5 —p—F]

g uawewdx] ‘32Ul Fuyj3wIa[3adOY e3eq 21edg-11nd 2:
a18uy apeld .0

auy1apIs (3F 00S) ® ¥ °ZSL
a18uy dy38nOdY .09

g jJusmlesa] ‘32Ul Buyisiayaddy
1TeA-pael ‘31aTul Buijela[adry

|D<1<>

$31801 Ynowiyog auyiaseqg jJo QMC.—Q><
$31831 331Ul yanomyiad aurtased OO

127




*IaquaN YoeR 3Ieoayl 69°0
Je @ pue g sjuauleai] 327Ul SUTIRIITIVOY 103 SUOTINQTIISTQ IIqUNN YO®K [TEM P2ansesaq °98 2an31g

wd> ‘uorlels (vIXy

0 g~ o1- St~ 0z- sz~ oe- se- ob- Sh- oS- cc-
T I Vo
JUBWIBAIL O 3IVLS g
s'o
-3
=4
lx]
[=]
[+]
t
1 9°0
=
)
| g— 2084 =
usjg =
1)
Lo S
- 4
[~
5
o
L]
o ]
8°0
Oy gccer0 o
oul -5 4 — -—
i a juswisall O 6°0
g JUDWIBDLL e P
. R B L L 1 1 1 o't
0 g~ ot~ st~ 02-

128

‘uy ‘uoyjels 1erxy




TR PR e LN L

0
129

g Inlets at

PNL pirectivities for Acceleratin

Y
@
S
r.
£ o
Ve
o a
| 9]
5
o)
= o

Figure 87.

o

.

e e R

P



P e T

i e e
SEEEE B
'

Fom
1

e

1

i
3
f

r
b

?ﬁ.

000 | 91

o

!

i 2

L 2

1250

'
» H2

oy

4—+-

|

' FREQUENC

15 |

+
200 !

H

128

i
t

LA A2

Forward-Thrust, 1/3-Octave-Band, SPL Spectra for Accelerating

Inlets at 93.5% Npc at 50°.

Figure 88,

130




I W E
- e SO — rm - -
! o0
w AL S T — 48 £
P o o
e g
48 -
[V
12 g
jle! - <
49 5
$2 -
P S
= 8
Lﬁm &
9
[ ]
ATm“ ]
(-9
-, n
.Ar e g —n
o0 ;
+9x .m
O h
1.8 i
O >0
+ O T O
|7 j e &
O &
S ﬂ ©
wn o
._;.3 S
ts— 5%
o D .
L O 3™
18 %
T Dk
\n
fz - ..m )
T a
. . . w Y
—t
L o 5
. ;!”...Ri:_
0&.0"1.1'(1:; w
18 .
. =3
S S (-]
. o
P




v m . - ] “- B
,“ RS o IR B
N L SR e P N, N
T A ¥ T m
e g e oy . . . » .
e " - > ” . "
- . “ - ;“ NI' -t - -t r rm. o
. [ * w ' Lrl".“l
T ; . p v 7 P~y
wlll. - Iwi| o — .4 B o L. Afm
. M i . i '
: : : ; ™
s - : P~y
. 1 »
—43- m : = - - ,.Tcsn“
: : - ! i -,
=3 - e 1 e o e 2 gttt e Lr ,..“.l

. O ;
y
: ..-.Ian . Cod

Forward-Thrust, 1/3-Octave-Band, SPL Spectra for Accelerating

Inlets at 93.5% Npc at 70°.

Figure 90.

N
(2]
4




h
133

|
|

I

i

4

r

!

I

]

1
Sy
'
b

 prt e

i

'
-
|
V-
1

i
{
i
i
!
e
A
i
'
|
!

i
|
[
|

- g wde
i
-
|
|
o
!
i

3150 5000 | 6000

!

l
f
4
+

t

f
o +

'

i

!

i

t
—t
| 2000

EQUENC:. Wz |

- s a e ——— - — J

!
)
+

+

!
)
1250

{

1

)

I3

I

]

]
1

|
Fn
=
t

i

.

600 800
. Fi

L
1

0! 315,

L 2

|

'
9345
-~

b

[

t
y
v

B OO — . SRS S

-
T RUSTs,
125

Forward-Thrust, 1/3-Octave-Band, PWL Spectra for Accelerating

Inlets at 93.5% Ngc.

L
RAln

Figure 91.

R T



.

{
M i
b - — - + - tad
. i ' o
+ 1”1 .‘
. ; o =
. i . ILT““
R R { e
} : : =
e ; - e =
N ] | MM
¢.lwf) . — - w I s 4 - jS Se—
i ; !
P ! s
R S

AR

Forward-Thrust, 1/3-Octave-Band, SPL Blade Passing Frequency

Directivities of Accelerating Inlets at 93.5% Npc.

Figure 92.

134

e



DEGRFES

o I
4B : SB i
l COUS?HC R! OLE.!

be
4+
[
|

| 2p

N T I A

F

Forward-Thrust, 1/3-Octave-Band, SPL Second-Harmonic Directi-

vities of Accelerating Inlets at 93.

Figure 93.

135




B i et i A b i’ S Mihoada. oowe o

Figure 94 shows axial distribution of wall Mach numbers for the two
treated inlets at 98.5% fan speed. At this speed, it can be seen from Fig-
ure 85 that the aerodynamic performance of treatment D has begun to deter-
iorate. The wall Mach number distribution in Figure 94 also shows a second
peak, downstream of the throat, at Station -14.4. This peak was not observed
in the 93.5% speed data shown earlier and is seen to be more pronounced in
the My = 0.8 data shown in Figure 95. It may be noted that My = 0.8 was
achieved at 100.5% speed with treatment B and 103.5% speed with treatment D.

Ordinarily, the unusually high wall Mach number observed with treatment
D might be attributed to an instrumentation problem. The problem, however,
is not one of instruments but of flow in the treated diffuser. This conclu-
sion is supported by the fact that the spike does not appear until the inlet
performance (as inferred from Figure 85) begins to deteriorate, introducing
higher noise levels.

No positive conclusion could be reached regarding the poor aerodynamic
performance and diffuser velocity spike of the treatment D inlet. Several
possible explanations can be postulated. The most significant design differ-
ence between the two treated diffusers is the much higher faceplate pososity
starting 4.4 cm (1.75 in.) aft of the throat in the treatment D diffuser (282
open area compared to 9.2% porosity with treatment B); this porosity could
lead to higher boundary-layer momentum losses. Other explanations include
(1) poor alignment of the lip and diffuser inlet components at the throat,
(2) secondary airflow circulating forward under the treatment faceplate (the
faceplate should be sealed, however), and (3) poor model fabrication. A vis-
uval inspection of the model failed to provide any conclusive evidence of
mechanical defects which could have caused the poor inlet performance for
treatment D,

Figures 96 through 102 compare acoustic data from the hard-wall and the
treated inlets at 98.52 speed. The treatment D fared worse than even the
hard-wall case at this speed, almost in the entire frequency range of inter-
est except at the 1000-Hz BPF (Figure 101).

9.2.3.4 Flight Lip Versus Aero-Acoustic Lip: Comparison of
Acoustic and Aerodynamic Performance

It was shown earlier that the flight lip and the aero-acoustic lip used
on accelerating inlet B were quite similar in aerodynamic behavior. The only
major difference observed was an apparently reduced flow with the flight lip.
This was shown to be attributable to the tolerances in blade-angle setting
and DV setting repeatabilities.

Full-size, 152.4-m (500-ft) sideline, PNL versus throat Mach number for
the two configurations is compared in Figure 103. Using this type of compari-
son, the two lips performed similarly. Figures 104 through 108 show detailed
comparisons at Mep, = 0.69. It should be noted that the speeds at which this
M.}, was achieved were different for the two configurations. Figure 104 shows
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that both the levels and the shapes of the PNL directivities for the two con-
fipurations were nearly identical at Mgy = 0.69., The 1/3-octave-band spectra
sho/n at 50°, 60°, and 70° in Figures 105, 106, and 107 also prescnt essen-
tially the same picture although the flxght lxp spectrum at 70° appears to be
at a slightly lower level. The 1/3-octave-band PWL spectra compared in Figure
108 show the similarity of the acoustic signatures of the two lips.

At higher speeds (and higher M), some differences are noticeable., At

a throat Mach number of approximately 0.775, we see that while the PNL directiv-

ities (Fxgure 109) are quite comparable, the 1/3-octave-band SPL spectra at
50°, 60°, and 70° (Figures 110, 111, and 112) and the 1/3-octave-band PWL
spectra (Fxgure 113) show a consxderably higher level of low-frequency (below
BPF) noise with the aero-acoustic lip. On a PNL basis, this higher level of
low-frequency noise appears to have compensated for the very slightly higher
level of high-frequency noise with the flxght lip. A similar picture emerges
at My, = 0.79 from the comparisons shown in Figures 114 through 118,
Narrowband analysis (20-Hz bandwidth) of the data from the 60° microphones

at My, = 0.775 (Figure 119) and at My, = 0.79 (Figure 120) show that, at
frequencies below BPF, the aero-acoustic lip configuration exhibited some in-
explicably high levels of SPL. The source of this behavior is not obvious at
this point. However, there is a strong, four-per-rev signal in the aero-
acoustic lip narrowbands similar to that observed with the baseline bellmouth
and the hard-wall, uoccelerating inlet in Figure 69. In Figures 119 and 120
the aero-acoustic lip narrowbands exhibit a strong, ten-per-rev signal which
corresponds to the peak observed in the 630-Hz, 1/3-octave band in the full-
scale data (Figure 116).

9.3 LOW MACH INLETS AT NOMINAL PITCH

9.3.1 Inlet Aerodynamics

Aero-acoustic testing of the low Mach inlet in the forward-thrust mode
was conducted only with the aero-acoustic lip. A total of four inlet con-
figurations was examined: a hard-wall diffuser and three treated diffusers.
Figure 121 compares wall Mach number data for the four inlets at approxi-
mately the design throat Mach number (Mg, = 0.60). All of the inlet wall
Mach number distributions compared reasonably well to the predictions. It
was observed after the test that several static pressure lines had been
crimped during testing. This could explain the high pressures (low Mach
numbers) indicated at stations -14, -15, and -16.2 (only for the hard-wall
inlet).

In the low Mach inlet, flow approaching the fan appeared to accelerate
a great deal more than in the accelerating inlet. The 13.99-m (5.50-in.)
spool piece in the low Mach inlet permitted the flow to diffuse to a much
lower Mach number prior to the acceleration induced by the hub (spinner).
Figure 39 indicated that the lowest wall Mach number reached in the acceler-
ating inlet was 0.53 compared to a 0.43 minimum in the low Mach inlet from
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Number.
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Figure 120 at the design takeoff condition. Nevertheless, the low Mach num-
ber inlet accelerated the flow to a higher velocity at the fan face. It has
not been determined whether the low Mach inlet static pressure data at sta-
tion -14 are realistic. The STC predictions near the fan face were consid-
ered invalid since the inlet geometry analyzed included an additional 3.3-cm
(1.3-in.) spool piece (similar to the instrumentation section planned for an
upcoming wind tunnel test but not installed for the simulator test),

Figure 122 shows the low Mach inlet fan-speed relationship to throat
Mach number. All configurations were tested at the same fan blade angle
(unlike the tests for the accelerating inlet configurations). Results indicate
similar serodyuamic performance {or all three inlets regardiess of treatment
design,

9.3.2 Inlet Acoustics

9.3.2.1 Hard-Wall, Low Mach Inlet

The hard-wall, low Mach inlet should be expected to have acoustic char-
acteristics roughly similar to the baseline bellmouth inlet. Figure 123
shows this to be true with a comparison of full-size, 152.4-m (500-ft) or
sideline PNL, at 60° to inlet, plotted against percent corrected fan speed.

A comparison of PNL directivity at 98.5% speed (corresponding to takeoff

My vwith hard-wall, accelerating inlet) between the baseline bellmouth,
hard-wall low Mach, and hard-wall accelerating inlets (Figure 124) shows
that, whereas no suppression was achieved with the hard-wall low Mach inlet,
a considerable amount (9.5 PNdB at 60°) of suppression was realized, as ex-
pected, with the use of the accelerating inlet. Figures 125 through 127 give
the 1/3-octave-band SPL spectra for the three inlets at 98.5% speed at 50°,
60°, and 70° to the inlet. The low Mach inlet appears to have been influenced
more strongly by MPT's below BPF than was the baseline bellmouth, with a
corresponding small decrease in BPF tone level. The hard-wall, accelerating
inlet, on the contrary, suppressed the MPT's as well as high-frequency,
broadband noise. The small decrease in BPF with the low Mach inlet can be
seen in Figure 128, which compares the 1/3-octave-band BPF directivity for
the three inlets; Figure 129 compares the second-harmonic levels, and Fig-
ure 130 compares 1/3-octave-band PWL spectra. The general message appears

to be that the low Mach inlet has a stronger MPT content below BPF and a
corresponding, slightly reduced, BPF level. 1In terms of PNL, the hard-wall,
low Mach inlet behavior is identical to that of the baseline bellmouth inlet.
Hence, in order to meet the takeoff suppression goal of 13 PNdB, all the sup-
pression would be expected to come from wall treatment.

9.3.2.2 Effectiveness of Low Mach Inlet Treatments

The low Mach inlet configuration, hard-wall and treated, forward-thrust
PNL is given in Figure 131 as a function of per ent fan speed. The Asta are
for a 0° blade-angle setting.

166




paadg ued PeIdeII0) JUSII3G
001 $o 06 $9

*§273SFI23081RY) laquny Ydey IBOIYL IITU] Yo'y MoT °Z7l

2an814

e 3

Jaquny YownN 3jvoayl adSeieay

D juawmisag] q
g wam3sarl
tten pasg O

g et 4 o T T PR R




[TeM-PIeH ‘UYDEH AOT PuUE yInouwlag SUITISEY

poadg usg PajyddIIONY quadiad
SOt 001 56 06 ;

*sj97U]

- paads ueg °SA TINd ISNIUL-piEAlO]

*gz1 2and1d

oL
oy

o] |o]

3
APNd ‘TOA97] 8810\ PeATadlay

joTul [TSA-PISH UOWN 407 v
s18a] auitaseg J)o afsaoAy
s31sal 121Ul Ynomiiag oa«aouunb Q e18q aTedS-1TNd
a18uy 2p¥I8 L0
2uT [9PTS (3F 00S) W P TSI
a13uy O13ISNOOY «09




7
- 3
PR
g
1

. '_:%_.' Ll

C e b el ?__ [, r..__._.._ :_ .

88 4ttt — .
0 2 40 60 - 80 ' ipo’ 1RO
B RCOUSTIC ANOLE. DEDREES o

Figure 124, Forwerd-Thrust, PNL Directivity - Baseline Bellmouth, Accclurating
Herd-Wall, snd Low Mach Hard-Wall Inlets at 98.5% Npc.

169




@O

o=
R
4

0B

~J

Q

§
¥

T TTI73 0CTRAYE BRND SPL.,

a
>
4

40 i I PR § —t —t $ } ——t
v L 4 L 8 L

50 B0 125 200 31.5 500 800 1.250 2000 3160 5000 8000
FREQUENCY, HZ

Figure 125. Forward-Thrust, 1/3-Octave-Band, SPL Spectra - Baseline Bellmouth,
Accelerating Hard-Wall, and Low Mach Hard-Wall Inlets at 98.5%
NFC; 50° to Inlet.

170




: ! . | ; ! \
8 et | R
~ T1B2.4H(E0 uim ge T s e gu;;t. ans,
R ppE. =7 it
. ggau RO T r/o~arcr (lova7d76) ct Wil |
| | i
80 + N z .o
m - ! ,
Q- t
‘ DI TR PP
ad : ‘
g S
o Lo ~
2" SRR
g R
5 NN
>+ ) - S R
50 + AW NI
\ ‘ | t? E j
‘n 'L Aﬁ % L n A l 4 L A A ,#__ :__,11 : + 3
60 80 12.5 200 31.5 500 300 1250 2000 3150!5010080005 L |
FREQUENCY, HZ : ] |
Figure 126, Forward-Thrust, 1/3-Octave-Band, SPL Spectra - Baseline Bellmouth,
Accelerating Hard-Wall, and Low Mach Hard-Wall Inlets at 98.5%
Nrc; 60° to Inlet.

171




‘DB

40

TTI73 ODCTRYE BRND SPL.,

80 +

3

b

o
CALE If |
jove7{76)

!
t
J
i
]

|
i

G WA WS W VU G W S U VI U G VN U USY GUEY SN U U

L3

- b0

Figure 127,

172

.
v

-
- .

00 1250 2000 3150 5000 8000
FREQUENCY. HZ

80 126 200 315 500 Bt

Forward-Thrust, 1/3-Octave-Band, SPL Spectra - Baseline Bellmouth,
Accelerating Hard-Wall, and Low Mach Hard-Wall Inlets at 98.57
Npc; 70° to Inlet.

ooy




IR——— e

’ i . : ; i m\ {
; i Y
! : ' | : ’ ‘ \\
H - :

; L
; | P ; |
i ' i ' i | ;
| 1 | ; |
sl : |
: (0] ! ! i
i . ! é |
f : i
40 e R e e L S
‘ 0 20 40 60 80 100 120
RCOUSTIC ANCLE. DEDREES
Figure 128. Forward-Thrust, 1/3-Octave-Baud, SPL Directivity of Blade Passing
Frequency - Baseline Bellmouth, Accelerating Hlard-Wall, and Low
Mach Hard-Wall Inlets at 98.5% Ngc.
i

173




®

7+

. e

..~ ¥

NO nAR

&

| 3

1

i
L]

1 R TR SR S S M
WH(BODFTI8L. UTN INLET 81H.. FULL GCALE -
S BeD BLADE ANG. ™ ﬂFB:T;E mvg'm)
FORHARD THRUST A/ A18=T/0-2PCT (

B -
va7.76), ¥

!

+

»»»»»

0

Figure 129,

174

8t

T

—t

L
L

0 60 80
RCOUSTIC ANGLE. DEOREES

+

+
1p0

120

PR -.4’. - —

Forward-Thrust, 1/3-Octave-Band, SPL Directivity of Second
Harmonic - Baseline Bellmouth, Accelerating Hard-Wall, and Low
Mach Hard-Wall inlets at 98.5% Nypc.




! ' : |

| J
JMAM(B0 FTlSk. UIH IN ET SSH-. ﬂULL CALE '
BLADE AND. T/70 (OVe7.7
WARD T 8T 0 RlBa'l‘/O-ﬂPC!‘ (DVs7<76)
l .

b
o
-

150

"BRND: PRL. DB

173 ggTevE

- e

|
+ 60 80 125 200 3L5 500 800 1250 2000 31.5035 18000
FREQUENCY, M1 :

Figure 130. Forward-Thrust, 1/3-0ctave-Band, PWL Spectra - Baseline Bellmouth,
Accelerat ing Hard-Wall, and Low Mach Hard-Wall Inlets at 98.5% Ngc.

175




<g1aul YdeW Mo7T TV - paods uejg °SA 'INd Isniyl-paemtod “TE€T 21n314

poadg ued pa3d2110) 3UIDIAJ
0l

SOl 001 $6 (6] Sy 08 (A
! U
A4
v
= %« ot
H H o
o B 51]
Ol

5 juswmjeall + wjaq 2180s-11Ind L4

(312323005) @ 3uouwzeail V a18uy opeld 0 ©

aur1apIs (37 0oc) w pest @
a13uy ©13sNOJY 09 ®

v juswieaxl O
11es pxed O

‘12487 8STON Paa1dd13d

ADPNA

176

e
B e . 2



-

The bulk-~absorber inlet treatment is seen to give significantly more
suppression than the two resonator treatments at the 702 and 802 speed
po‘nts. At 70X Npc the bulk absorber, treatment B, gives about 8.5 PNdB
suppression relative to the hard-wall inlet. Treatments A and C give about
4 dB at this fan speed. At the higher fan-speed points, 902 to 100X, the
advantage of the bulk absorber relative to the resonator-type configurations
decreases, and the level of suppression for inlet B is reduced to about
4.5 PNdB at the 952 fan speed. Thus the bulk-absorber, inlet-suppression
performance decreases for increasing fan speed while the suppression level for
the other two inlets is less influenced by fan speed.

The hard-wall and the suppressed-inlet noise levels in PNL versus
acoustic angle are given in Figure 132 for 702 speed. The hard-wall level
peaks at 60°. Treatments A and C also peak at 60°, but for treatment B the
peak is shifted to 50°. The suppression is rather constant for angles of
60° and greater, but it decreases for lower acoustic angles. At 20°, inlets
A and C show no suppression, whereas inlet B gives about 3 PNdB reduction.

Figures 133 through 135 show the hard-wall and suppressed spectra for
acoustic angles of 50°, 60°, and 70° for 702 fan speed. The treatment B
suppressed level is lower than the other inlet levels at all the 1/3-octave-
band frequencies; thus, increased tone and broadband suppression is indicated
relative to the resonator treatments. The maximum tone suppression occurs at
the second fan harmonic; 12 dB 1is measured. Suppression at the fan funda-
mental tone is 8 dB.

In comparing the two resonator-treatment inlets, A and C, the spectral
data indicate that inlet A, with the 102 faceplate porosity, gives much
higher suppression at most of the 1/3-octave-band frequencies. The data at
frequencies greater than 4000 Hz show that no suppression was measured for
either inlet A or C and are seen not to be a function of acoustic angle.

Data for 98.5% fan speed are given in Figures 136 through 139. Figure
136 compares the hard-wall and the suppressed-inlet PNL directivities. The
hard-wall and the suppressed directivity patterns are rather flat for angles
of 50° to 70°; the unsuppressed and suppressed levels peak at 60°. Suppression
level versus acoustic angle is constant for all the treated inlets at angles
equal to or greater than 60°; however, for angles less than 60°, the suppres-
sion level decreases. This characteristic was also noted for the lower fan
speeds discussed above.

Figures 137 through 139 give the hard-wall and suppressed spectra for
angles of 50°, 60°, and 70°. Here the treatment B, as evaluated at the lower
fan speed, gives more suppression at most of the 1/3-octave-band frequencies.
At frequencies of 5000 Hz through 10000 Hz; however, no suppression is mea-
sured for any of the inlets.

Figures 140 through 143 are suppression spectra for all the treated in-
lets at fan speeds of 70%, 80X, 90%, and 99.5% respectively at an acoustic
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angle of 60°. As seen in earlier comparisons, the inlet B treatment has the
highest suppression levels. However, at the 99.5X fan speed point in Fig-
ure 143, the peak suppression for inlet A is equal to that measured for
inlet B.

Comparing inlet A suppression with fan speed shows that as the fan
speed increases so does the peak suppession. Peak suppression for inlet B,
on the other hand, stoys constant, and for inlet C it decreases.

Figures 142 and 143 both show the poor high-frequency suppression per-
formance for all the inlets at 90% and 99.5) fan speeds. This trend in sup-
pression is rather unusual and certainly unexpected from the bulk-absorber
inlet configuration.

9.4 APPROACH-CONDITION ANALYSIS

To evaluate inlet-noise levels of the UTW engine for the approach condi-
tion, acoustic tests with the UTW simulator were conducted at 0° and +5°
(closed) blade-angle settings with the baseline bellmouth and the accelerating
inlet B. The approach condition was defined as 65X of takeoff thrust; this
could be achieved at several combinations of fan pressure ratio, weight
flow, fan speed, rotor-pitch setting, and nozzle areas. A constant-thrust
line can be established as a function of pressure ratio and weight flow on the
fan map. At a given pressure ratio, flow, and area condition, a speed/blade-
angle combination can be selected. To reduce engine response time under
conditions where quick thrust changes are desirable, it is considered good
operating technique to keep the engine rpm high. This can be accomplished
with a variable-pitch fan by selecting a closed rotor-pitch setting at a
higher speed and maintaining constant approach thrust. From an acoustic
standpoint, it is important to determine the influence of higher speed and
closed rotor-blade-angie setting on the inlet-radiated noise, both unsuppres-
sed and suppressad. With this objective in mind, a wide range of DV/speed
conditions was chosen at 0° and +5° blade-angle settings to bracket constant-
thrust approach conditions.

For the several nozzle areas and the two blade angles chosen for the
tests, 0° and +5°, the cycle deck - revised in light of the aerodynamic
results of Reference 2 - was used to obtain the fan speed needed to provide
the required approach thrust. The relationship thus obtained between nozzle
area, fan speed, and rotor-pitch setting at the constant-thrust approach
condition is plotted in Figure 144. This is valid for both inlets. Figure
145 shows plots of scaled, 152.4-m (500-ft) sideline, PNL versus percent fan
speed at 0° and +5° pitch settings for the baseline bellmouth inlet at differ-
ent nozzle areas at which acoustic tésts were run. For each tested area, the
required speed for approach thrust was obtained from Figure 144, and these
constant-thrust points are shown in Figure 145. Figure 146 shows similar
plots for the accelerating inlet B. Figure 146 between 902 and 1002 speeds
indicates the effect of an increase in throat Mach number on the suppression
due to acceleration.
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In order to interpret these data at constant thrust, the PNL's from
Figures 145 and 146 at the constant-thrust points are plotted against speed
in Figure 147 and against nozzle area in Figure 148. With the bellmouth
‘nlet there was a tendency for the noise to increase with speed both at
U° and at +5°. However, Figure 148 indicates that with the bellmouth inlet
there is a minimal-noise area both at 0° and +5°. At +5°, a minimal-noise
point is indicated at a low-speed/low-nozzle-area condition, With the
accelerating inlet at +5° rotor pitch, a combination of treatment and accel-
eration suppression at higher speeds offsets the noise increase exhibited
at higher speeds by the bellmouth inlet, resulting in a flat or nearly con-
stant noise level along a constant-thrust-approach line. Even though only one
point is available at 0°, it appears reasonable to predict that operation
(with accelerating inlet B) between 0° and +5° along a constant-thrust-approach
line would result in a PNL nf 88.0 to 89.5 PNdB on a 152.4-m (500-ft) side-
line. Thus, there is no optimum or low-noise point to select for approach with
accelerating inlet B. From a systems standpoint, however, high-speed/open-
nozzle operation is better because of lower jet/flap noise and better engine
response.

9.5 RESULTS FROM SOUND-3EPARATION PROBE DATA

When acoustic measurements are made in ducts, a problem exists in dis-
criminating between true noise and turbulence. A technique for separating
the two noise sources has been developed and was demonstrated during this
program. The technique incorporates a new type of probe referred to as a
"sound-separation probe," rather than the standard waveguide probe, to
acquire the data for the discrimination analysis. A description of the
probe is given in the instrumentation section of this report.

The sound-separation probe was used during testing of the accelerating
inlet with treatment B. Data were acquired at 90.5%, 92.5%, 98, and 1102
fan speeds at five immersions across the inlet just aft of the throat (as
shown in Figure 17). |

The first portion of the analyeis involves determination of the spectra

for the upstream sensor on the probe. The very narrowband (2.5 Hz) spectra, i
from 0 to 5000 Hz for the 90.5% and 98% fan speed conditions, is shown in J
Figures 149 and 150. There are two regions of the spectra that will be |
discussed with regard to the type of pressure fluctuations being measured.
Those are the very low frequencies (0 to 300 Hz) and the frequency band from
500 to 5000 'iz. Note that the broadband level between 500 and 5000 Hz de-
creases and the tone levels at the very low frequencies remain about the same
at all immersions. The discrimination analysis of the sound-separation-probe
data will provide the explanation for these features in the spectra.

The acoustic discrimination technique described in Reference 12 computes j
the crosscorrelation between the signals from the two sensors on the probe. i
The result is a crosscorrelogram that has separate peaks for each of the com- |
ponents of the broadband signal. As discussed in Reference 12, there can be
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up to three peaks in the crosscorrelogram of the broadband signals. For mea-
surements in the fan exhaust duct, the two peaks at positive time delay are
due to sound and turbulence travelling with the flow; the peak at negative
tim: delay is due to sound travelling against the flow. For measurements in
the fan inlet duct there are only two peaks: one at positive time delay due
to turbulence travelling with the flow, and one at negative time delay due to
sound propagating upstream from the fan rotor.

Since the sound-separation analysis is only applicable to broadband, ren-
dom signals, the tone levels must be removed prior to computation of the
crogscorrelation so that the periodicity from the tones does not contaminate
the crosscorrelograms. This is a relatively easy task involving modifying
the cross-spectrum between the two probe-sensor signals prior to taking
the Fourier transform to convert it to the crosscorrelation. It was demon-
strated in Reference 12 that linear interpolation of the levels in the real
(co) and imaginary (quad) parts of the cross—spectrum in the frequency range
of the tones leaves only the broadband portion of the energy for transforma-
tion to the crosscorrelation.

The crosscorrelograms with the tones removed for the five immersions at
98% fan speed are shown in Figure 151. Note that the signal is predominatly
sound for the outer three immersions indicated by the peak at t = -0.0006 sec.
However, for the inner two immersions the buildup of turbulence in addition
to sound becomes evident as indicted by the peak at 1 = 0.0005 sec. Also
observed in the crosscorrelograms is the difference in the shape of the peak
due to sound and that due to turbulence. Very sharp peaks in correlation
functions indicate a broad band of random energy in the spectrum, and broad
peaks indicate a relatively narrow band of energy in the spectrum,

The crosscorrelation information can now be used to determine which por-
tions of the spectra are due to sound and which to turbulence. As indicated
above, the sharp peak due to sound represents a very wide band of random
noise. It is also safe to assume that the tones are due to blade interac-
tions radiating forward in the inl2t as sound. Therefore, the portion of the
spectra shown in Figure 151 due to sound is the entire spectrum from the very
low frequencies to 5000 Hz. This assumption is further supported by the fact
that the peaks in the crosscorrelations due to turbulence indicate that a very
narrow band of energy 1s present.

The crosscorrelogram also provides information about the relative, over-
all level of the two portions of the signal. At the outer three immersions
the turbulence is much lower than the sound, as indicated by the lack of a
peak at positive time delay. The turbulence in the inner immersions becomes
equal in level to the scund, as indicted by the presence of nearly equal
levels of the two peaks.

Using the above information, the separated spectra were constructed and
are shown in Figure 152 for the five immersions at 987 fan speed. The tur-
bulence spectrum is nearly constant for all five immersions. How:ver, the
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sound spectrum changes quite a bit in level and relative energy in tones
compared to broadband. There is a decrease in the tone levels and an in-
crease in broadband level near the outer wall of the duct.

The above results are examples of the added informarion provided by the
sound-separation probe for the treated, accelerating inlet. Further data
comparisons are not possible becsuse the probe was not used on any other
configuration during the tests. Another reason the sound-separation-probe
results are limited in scope is the fact that a direzt method for separat-
ing sound and turbulence into respective spectra is not completely developed.
However, the use of the sound-separation probe in the iniet demonstrated the
potential to be obtained from development of more advanced acoustic-
measurement—analysis techniques.
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10.0 REVERSE-THRUST RESULTS

Reverse-thrust testing was an important segment of the progream both
from aerodynamic and acoustic-performance points of view. From an aero-
dynamic standpoint, it was necessary to determine (1) whether the reverse-
thrust objective (35% gross forward design thrust) was achievable at the
selected reverse-through-stall- and reverse-through-flat-pitch settings
(and, if so, at what blade angles and speeds), and (more fundamentally)
(2) to assess the "starting phenomenon" in reverse thrust. The starting
phenomenon refers to the establishment of useful reverse-thrust flow from
the fully stalled regime which existed with initiation of rotor rotation,
Another major aerodynamic interest was core flow recovery. The measured
flow conditions at the transition duct discharge plane are representative
of core compressor inlet conditions during engine operation. The recovery
of this flow directly affects the power available to drive the fan.

From an acoustic standpoint, the tests were designed to estimate
(1) the unsuppressed PNL at 152.4-m (500-ft) sideline for the full-size
QCSEE at the objective reverse-thrust condition, and (2) the suppression
provided by the various treatments in reverse thrust (for which they were
initially designed). The next objective was tc select the optimum treat-
ment design for adequate suppression at takeoff, approach, and reverse
modes of operation. But the most important acoustic objective was to
determine whether the system noise goal cf 100 PNdB on a 152.4-m (500-ft)
sideline could be met in the reverse-thrust mode of operation.

With these basic objectives, a series of fan aerodynamic tests were
first performed with the accelerating inle: B. The accelerating inlet was
chosen since this, rather than the bellmouth inlet, represented the inlet
that would be tested on the engine.

10.1 FAN AERODYNAMIC PERFORMANCE

Aerodynamic testing in the reverse mode of operation was performed,
with the high Mach number inlet only, at open pitch-angle settings of
-95°, -100°, and -105° in the reverse-through-stall-pitch direction and
at closed pitch-angle settings of +73° and +78° in the reverse~through-
flat-pitch direction. The bypass discharge valve (DV) was set at 6.37 for
all tests. The method for determining this DV setting is discussed in
Reference 2.

The overall reverse-thrust-mode perfcrmance of the fan is shown in
Figure 153. These results represent measured test data adjusted by the
methods described in Reference 2. FExcept for the tlagped symbols, ftor
which the discharge valve was fully open, the vehicle geomeii: was fized
for a given pitch setting.
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In the reverse-through-stall-pitch settings, the reductions in flow,
at speed, with more open pitch setting, is consistent with expectations.
How:ver, the rather dramatic change in operating line was not expected.
The primary trend noted in adiabatic efficiency is a fall-off with in-
creasing flow. A smaller but noticeable effect of pitch angle is observed.
In the reverse-through-flat-pitch settings, the vehicle was restricted to
a maximum speed of 65% at a pitch setting of +78° by high rotor stress.
Flow and pressure ratio, and therefore reverse thrust, at the +73° setting
are remarkedly reduced from the values obtained in the reverse-through-
stall-pitch direction. Angle settings less than +73° were expected to
result in even lower values. Since the +73° setting resulted in reverse-
thrust levels less than objective, further aerodynamic testing in the
reverse-through-flat~pitch direction was terminated. For the same reason
no acoustic tests were performed in the reverse-through-flat-pitch
settings.

The reverse-mode, flow~speed relationship is shown in Figure 154. The
fan gross reverse thrust, consistent with the overall performance maps, is
presented in Figure 155. The approximate, scaled-engine, fan-gross-thrust
objective is also shown. In the reverse-through-stall-pitch direction the
objective reverse thrust can be achieved, with the appropriate fan speed,
for each of the three pitch settings tested. A line of constant gross
thrust, equal to the appropriate objective, is shown in Figure 154. As
the pitch setting is changed from (open) -95° to ~-105° it is noted that
the speed increases but flow decreases., The implications of these trends
on fan efficiency, core engine recovery, and overall engine operation must
all be examined before the "optimum'" pitch setting can be determined. From
the standpoint of fan efficiency at objective-gross-thrust condition, a
~100° pitch setting at 86% speed would appear to be a good operating
condition.

Details on the starting phenomenon and the core engine recovery

at the different pitch settings and speeds are discussed in detail in
Reference 2.

10.2 ACOUSTIC PERFORMANCE OF ACCELERATING INLETS

The hard-wall, accelerating inlet and all four treated, accelerating
inlets were tested in reverse-thrust mode with rotor-pitch setting at open
100° (which was deemed adequate for obtaining 35% of design thrust in
reverse mode). The tests were performed at 60, 75, 80, 83, 86, 90, and
100% corrected speeds. The treated inlet D and the hard-wall inlet were
also tested at -95° and -105°, at which angles the fan-performance tests
indicated that the objective ¢ross thrust was achievable.

The variation of PNL {full size, 152.4-m (500-ft) sideline] with cor-
rected speed at -100° pitch is shown in Figure 156 for all five inlets. All
the inlets showed increasing PNL with speed; treatments B and D gave the
highest suppression of the four treatments tested. At the objective reverse-
thrust condition corresponding to 86% speed at the -100°
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setting, inlets B and D showed respective suppression levels of 3.9 and 4,2
PNdB. The same suppression trends are also observed at higher speeds up to
1007 speed. The estimated hard-wall reverse thrust PNL is shown at the ob-
jective point of 35% reverse thrust in Figure 156, It 1is evident that the
measured hard-wall level is about 6 PNdB higher than estimated.

The effectiveness of accelerating-inlet treatments specifically at
the objective gross-reverse-thrust condition (86X speed) is discussed in
Section 10.3. Data at other representative speeds are presented below.

PNL directivities for the five inlets at 80% speed are presented
in Figure 157. A peak-angle suppression (relative to hard wall) of 4.5
dB and 3.5 dB is indicated, respectively, for inlets D and B; treatment C
provided the least suppression. The 1/3-octave-band SPL spectra for all
inlets at 50° and 60° to the inlet at 80X speed are presented in Figures 158
and 159. The SPL suppression (ASPL relative to hard wall) spectra for treat-
ments B and D are shown in Figures 160 and 161 both at 50° and at 60° to
the inlet. The 1/3-octave-band PWL spectra for inlets B and D are shown
in Figure 162. The overall observation i1: that treatment D appears to
be very slighly superior to treatment B in reverse-thrust suppression at
this speed. Figures 163 through 168 present similar data at 832 speed and
Figures 169 through 174 at 90% speed. One interesting point, as the speed
is increased, is the considerably higher suppression (as high as 12 dB) of
the Llade passing frequency and harmonics.

All the data shown above indicate that inlets B and D were quite
comparable in acoustic characteristics. Due 1o slightly better suppression
characteristics, inlet D was selected for further tests at -95° and -105°
pitch settings. It was noted earlier (Figure 155) that the objective gross
thrust can also be achieved at about 78% corrected fan speed at -95° pitch
setting and at 100X speed at -105° pitch setting. PNL directivity and 1/3-
octave-band spectra at 50°, 60°, and 70° for -95° pitch setting for the
hard wall and the treatment D configurations are shown as follows: Figures
175 through 178 at 75% speed, Figures 179 through 182 at 80% speed, and
Figures 183 through 186 at 85X speed. Similar plots are presented in
Figures 187 through 194 for -105° pitch setting at 902 and 100% speeds.

The variation of inlet D PNL with fan speed at 60°, on a 152.9-m
(500-ft) sideline, at all three pitch angples (Figure 195), indicates that
the levels do not vary much at the constant-thrust setting; however, a slight
bottoming of the PNL at -100° (about 1 dB less than at the other two angles)
is noted. It may also be noted from Figure 153 that a combination of -100°
and 86% speed provides the best fan efficiency. Although it appears from
these results that, both aerodynamically and acoustically, the reverse-thrust
operation is feasible and acceptable at any point along the constant-thrust
line between -95° and -105° (subject to core recovery considerations), the
86X speed at -100° setting appears to be slightly more advantageous.
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Reverse-Thrust, PNL Directivities of Hard-Wall and Treatment D
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10.3 EFFECTIVENESS OF ACCELERATING-INLET TREATMENTS
10.3.1 Measured Suppression Results

The measurement hard-wall and treated-inlet PNL directivities at 867
speed and -100° blade-angle sctting are given In Fipure 196. Treatments D
and B have the highest suppression at all acoustic angles. The directivity
pattern for the hard-wall inlet is rather flat from 60° through 80°, with the
treated iniet noise peaking at 60°. Thus, the suppression levels at 70° and
80° are somewhat higher (- 1.0 PNdB) than the suppression measured at 60°.

The hard-wall and suppressed spectra are shown in Figure 197 for
reverse thrust at 35% Fn and 86% Ngc. The data are for a 60° acoustic
angle on a 152.4-m (500-ft) sideline. The presence of a strong fan fundamen-
tal tone at 800 Hz, plus the second and third harmonics, are indicated in the
hard-wall spectrum. Suppressed spectra indicate (as seen in the earlier
comparison of the PNL's) that the treatment D configuration gives the highest
level of suppressioen at most of the 1/3-octave-band frequencies. The peak
suppression for treatment D occurs at the l/3-octave-band frequency contain-
ing the fan fundamental frequency; a suppression level of approximately 8 dB
is found. The spectra comparison show a broad suppression bandwidth with an
average suppression of about 5 dB from 1000 Hz through 6300 Hz. However, the
treatment B configuration suppression 15, on the average, about 1 dB better
than the suppression measured frr treatment D, except at the tan fundamental
tone where treatment D gives 2 dB to 2.5 dB more suppression. The remaining
two treatments, A and (, both give significantly less suppression than treat-
ments D and B; of these two inlets, however, treatment A gives the better
suppression. This indicates 'hat the inlet A treatment with a faceplate
porosity of 24% offers an acoustic resistance value nearer the optimum value
tor these inlet conditions than inlet C. Inlet C, with a much lower porosity
of 3.6%, undoubtedly has a resistance exceeding the required value at these
conditions. Figure 198 and Figure 199 give the hard-wall and suppressed
spectra for acoustic angles of 50° and 70° respectively for 86% Np; (that
is, 35% thrust), The PNL suppression increases at the 7C° angle, as was
noted in Figure 196; however, the relative performance of each inlet 1is
similar to that observed for all other angles.

10.3.2  Predicted Versus Measured Suppression

A comparison of the reverse-thrust, suppression spectra for treat-
ments D and B versus the estimated suppression is shown in Figure 200.
The suppression estimate 1s based on previous, forward-thrust, suppression
spectra with corrections for the reverse-flow condition. The understand-
ing of treatment pertormance in the reverse-thrust mode had been limited due
to lack of test data. This scvries of tests has, therefore, provided
valuable data in this respect.

The comparison shows that the broadband suppressicon levels in the
higher 1/3-octave trequency bands are somewhat higher than estimated; how-
ever, the peak suppression occurs at a lower frequency than predicted.  The
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predicted PNL suppression. determined by applying the suppression spectrum
to the estimated hard-wall spectrum, was 3 PNdB. The measured suppression
as previously presented showed treatments D and B giving suppression levels
of 4.2 and 3.9 PNdB. Therefore, the treatments were somewhat more effective
than was predicted.

The effectiveness of the treatment D configuration relative to treat-
ment B is seen to be most significant at the 630-Hz and 800-Hz 1/3-octave~
band frequencies. The treatment D configuration also gives more suppres-
sion, approximately 1 to 1.5 dB more, in the 2500~ to 8000-Hz frequency
range. This increase in treatment effectiveness can be attributed to
the ‘able faceplate porosity used in this design rather than the con-
stau. rorosity used with treatment B. However, in forward thrust the
order of the treatment D faceplate porosities is opposite to what it should
be for flow in this direction, whereas inlet B with the constant 10%
porosity has the better overall-average acoustic resistance for both for-
ward and reverse-thrust performance. The porosity for each section of
treatment in inlet D was selected using analytical methods to optimize
the acoustic resistance based on the tuning frequency of each treatment
section &nd assuming reverse flow.

The reverse—thrust PNL suppressions are shown in Figure 201 as a func-
tion of faceplate porosity at 35% Fn and 86% Ngc. The suppression measured
for treatment D is plotted at a porosity value of 14.4%, which is an average
of the three porosities in the design (compared to the other configurations
which have constant-porosity values as indicated). However, by plotting the
dats in this form, a trend in the suppression levels is indicated and suggests
that the low-porosity (3.6%) and the high-porosity (24%) designs have nonopti-
mum acoustic-resistance values.

10.4 EFFECTIVENESS OF LOW MACH INLET TREATMENTS

Acoustic tests on the hard-wall and the three treated low Mach inlets
were conducted at -100° blade-angle setting (reverse thrust) in the speed
range of 60 to 100% Ngpc. The low Mach inlet hard-wall and suppressed
noise levels as functions of fan speed at a -100° blade-angle setting
are given 1n Figure 202. This comparison shows that the bulk-absorber
(Scottfelt 3-900) treatment B configuration gives the highest suppression
at all fan speeds relative to the two configurations having resonator-type
treatments. The suppression level is = 6 db at 60X Npc for the bulk
absorb:r as compared to about 3.5 dB for the best resonator design. The
suppression decreases to about 5 dB as the fan speed is increased to 100%
Ngpc. However, the resonator design in treatment A gives approximately
the same suppression as measured at the lower fan-speed point. Suppression
measured at 86% Npc, which gives the requiied reverse thrust (assuming
reverse—thrust performance with the low Mach inlet is essentially the
same as the high Mach inle~), is 5 PNdB for the bulk-absorber inlet versus
3.5 for treatment A.

The resonator-inlet configurations A and C have different faceplate
porosity values. The results here show that treatment A, with a 10%
porosity faceplate, give~ significantly more suppression at all fan speeds
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than treatment C, with a 3.6% porosity faceplate. Thus, the lower porosity
has en acoustic resistance much higher than optimum for reverse-thrust
cond tions.

Figure 203 gives the low Mach hard-wall and treated-inlet PNL directivities
for 867 fan speed (35% of design forward thrust). The peak unsuppressed and
suppressed noise levels occur at 60°. The suppression versus acoustic angle is
seen to increase by a small amount for angles greater than 60° but decreases
at angles less than 60°.

The measured spectra for the hard-wall and the treated-inlet con-
figurations are shown in Figure 204. The spectra are for 86% speed (35%
thrust) at an acoustic angle of 60° on a 152.4~m (500-ft) sideline. The
bulk-absorber inlet configuration suppressed levels are lower at all the
1/3-octave~band frequencies reclative te the two resonator-inlet configura-
tions. Inlet A, which has the 10% faceplate porosity, gives suppression
over a wide range of frequencies, whereas treatment C, with the 3.6%
porosity, gives little suppression at frequencies below 2000 Hz. Neither
of these two inlets gives suppression at the 8,000 Hz and the 10,000 Hz
1/3-octave-band frequencies. Figures 205 and 206 give the same spectral
comparisons at acoustic angles of 50° and 70°. The same suppression trends
are observed for these two angles; however, the level of suppression
for each inlet increases at 70° and decreases at 50° relative to the 60°
data. Tre hard-wall configuration tone level is observed to change sig-
nificantly as a function of acoustic angle; the fan fundamental tone
level increases as the acoustic angle increases. This increase in the
unsuppressed tone level relative to the broadband noise is a significant
factor in the increased suppression levels at the higher angles because
tones are generally suppressed more effectively than broadband noise.

Figutes 207 and 208 give spectral comparisons for the hard-wall and
treated-inlet configurations for fan speeds of 60% and 100% at an acoustic
angle of 60°. The 60% speed results show the same spectral characteris-
tics previously observed for 86% speed. However, the results for 100%
speed in Figure 206 show the bulk-absorber inlet giving little suppression
at the higher fan speed. The suppression at almost all the frequency
bands, including tones, is significantly reduced relative to the suppres-
sion at the 60% fan speed.

The suppressed spectra for all the inlet configurations indicate
that additional PNL suppression would require more high-frequency suppres-
sion. In fact, even the large amount of low-frequency suppression, mea-
sured for each of the inlets tested, contributed little toward reducing
the PNL. Therefore, a design with more of the treatment length tuned to
the higher 1/3-octave-band frequencies would be desirable.
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11.0  CONCLUSIONS AND OBSERVATIONS

Acoustic tests of inlet-radiated noise were conducted on a icale-model
(1:3.5) fan [50.8-cm (20-in.) diameter] of the under-the-wing QCSFE inlet
and fan .tage in forward a. ! reverse thrust modes. A baseline bellmouth
inlet, five accelerating inlets (one hard-wall and four treated), and four
low Mach inlets (one hard-wall and three treated) were tested. Unsuppress-
ed and suppressed inlet-radiated noise levels were measured at conditions
representative of OCSEE-UTW takeoff, approach, and reverse thrust opera-
tions. The suppression effectiveness of inlet wall treatments in forward
and reverse thrust modes was measured.

The tabulation below summarizes the predicted and achieved perceived
nolse levels. The values are for scaled-to-QCSEE size on a 152.4-m
(500-ft) sideline,

Summary of Inlet Noise Levels

Full QCSEE Size, 152.4-m (500-ft) Sideline PNL

Condition Predictred Measured
Takeof

Unsuppressed Level 94.0 93.5

Suppressed lLevel 81.0 81.0

Suppression 13.0 12.5
Approach

Unsuppressed Level 90.4 94 .4

Suppressed Level 82.4 88.7

Suppression 8.0 5.7

Reverse Thrust

Unsuppressed Level 98.9 105.0
Suppressed Level 95.9 100.7
Suppression 3.0 4.3

As can be seen trowm the above tabulation, the measured unsuppressed level
at takcoff was sliphtly lower than nredicted, while ar approach and reverse
thrust the unsuppressed 'evels were S oand 6.1 PNAB hipgher than predicted,
respectivelv,  Suppression at apprech was 203 PNdB lower than predicted
while at reverse thrust the suppression was about 1.3 PNdB higher than
predicted.  As a resuelt, the suppressed levels at approeach and reverse thrust
are somewhat hivher than prodictsd,

At appreach thrust, lade anples of 07 and 5" gave nearly the same
unsuppressed and sappressed nofse Tevels, At both blade angles, for increasing

265

i

PRI e . s



fan speed and increasing fan nozzle area to hold constant thrust, there was an
increase in noilse with a slight rolloff of about 1 PNdB at the maximum speed
for each blade angle.

Summaries of supprossion resuits of accelerating and low Mach inlets in
forward and reverse thrust follow,

Accelerating-Inlet, Forward-Thrust Suppression

' Suppression measured from inlet B is higher than that measured for
inlet D at all fan speeds.

° The inlet D PNL at the 0.79 throat Mach number is higher than the
noise level measured for the hard-wall, accelerating inlet.

) Suppression level is sensitive to the liner faceplate porosity.
Inlet B with the constant 10% porosity results in a better
compromise for both forward- and reverse-thrust performance than
does inlet D with the mixed-porosity design optimized for the
reverse-thrust mode.

° The poor performance of inlet D treatment at the 0.79 throat Mach
number suggests that the positioning of treatment with a high
faceplate porosity (inlet D - 287%) near the throat area in a
high Mach inlet mav degrade the acoustic performance of hvbrid
inlets.

Accelerating-lnlet, Reverse-Thrust Suppression

* Treatments ¥ and D gave the highest suppression levels of the four
inlets tested., Inlet D gave 4.2 PNdB suppression while inlet B
gave 3.9 PNdB suppression at the reverse thrust-design puiut (867 fan
speed, which gives 35X of design takeoff thrust).

) Suppression improvement was measured for the mixed-porosity
design, inlet D, relative to the hest constant-porosity design,
inlet B,

] inlets B and D both gave suppression levels higne. than predicted.

° The suppression performance of Inlets A and C indicates that each

have nonopt imum porositv values; inlet A at 247 porosity is too
high, and inlet C with 3,67 is too low.
Low Mach Inlet, Forward-Thrust Suppression

™ The constant-depth, bulk-absorber treatment (inlet B) gave nore

suppression ot most fan speeds than did the inlets with resonator-
tvpe treatment,

2006

o e il PR - N o e £ o

i PP g o T



™ TR W"w"""“

UG T Y A=Y g g v -

e

) The inlet A treatment with a faceplate porosity of 107 gave higher
suppression than the inlet C treatment with the lower (3.67%) face-
plate porosity.

) The suppression performance of the bulk-absorber inlet treatment
decreased with increazed fan speeds while resonator-treatment
suppression was not influenced by fan speed.

o None of the inlet-treatment configurations gave suppression in the
higher 1/3-octave-band frequencies for fan speeds at and above 90%.

° The lower suppression for the two resonator-type treatment config-
urations relative to the suppression measured for the bulk-absorber
treatment indicates that the resonator-treatment designs were non-
optimum,

Low Mach Inlet, Reverse-Thrust Suppression

. The constant-depth, bulk-absorber treatment gave higher suppression
than did either of the two resonator-treatment designs. At the
reverse-thrust design point, the bulk absorber gave an increase of
1.5 PNdB relative to the best resonator treatment, This suppres-
sion is 0.8 PNdB better than the best accelerating=-inlet treatment
designed for reverse thrust,

° The inlet A resonator design with a 10% porosity gave significantly
more suppression than inlet C with a 3.6% faceplate porosity.

° The suppession level for the bulk-absorber treatment decreased with
increasing fan speed. The best resonator design suppression was
constant with fan speed.

® PNL suppression can be improved with more of the overall treated

length tuned to the higher frequencies.

Sound-Separation Probe

The snund-separation probe was traversed across the inlet throat for
the accelerating, treated inlet. The sound-separation technique was used to
confirm that the spectrum levels from 500 to 5500 Hz were due to sound prop-
agating from the inlet and tha% those below 500 Hz were due to turbulence.
Unfortunately, no information relative o treatment effectivencis or design
could be derived since there were no sound-separation-probe measurements
made with the hard-wall or other inlets for comparison.
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Aerodynamic Performance - Accelerating Inlet

Wall static pressure data at 0.79 throat Mach number agreed very well
with the predicted distribution obtained from a stream-tube curvature (STC)
computer program analysis, The aeroacoustic lip and the flight 1lip were

found to have similar wall Mach number distributions in terms of both the
peak wall Mach number and the rate of diffusion.
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APPENDIX - QCSEE INLET THROAT MACH NUMBER DETERMINATION

Determining weight flow has always been a problem in evaluating inlet
serciynamic performance. The usual methods of flow measurement include a
veh cle~discharge venturi, discharge total pressure rakes, and flow-measur-
1', bellmouths. These tests establish fan speed/flow characteristics (i.e.,
fan operating lines) important in designing the inlet for good cruise per-
formance. Due to the sensitivity of acoustic suppression to throat Mach
number, the advent of accelerating inlets for noise suppression has increased
the significance of accurate weight-flow determination.

During the QCSEE 50.8-cm (20-in.) inlet tests at Schenectady, there were
no means available to directly measure inlet weight flow. Calibration of
flow/speed relationships using a flow-measuring bellmouth was attempted, but
the blade-angle repeatability of the QCSEE fan compromised the results of
this method since blade angle settings were only repeatable to within #0.5°.
An accurate evaiuation of acoustic-suppression data requires a more accurate
indication of inlet flow (i.e., inlet throat Mach number).

In view of difficulties associated with direct iniet-flow measurements
for the QCSEE 50.8-cm (20-in.) model tests, General Electric utilized a pre-
viously developed method of determining the inlet flow using analytical pre-
dictions and measured inlet-wall static pressures. Prior to testing, the
General Electric Streamtube Curvature (STC) flow-analysis program (Refer-
ence 11) was utilized to calculate inviscid inlet-wall static pressure dis-
stributions both for the accelerating inlet and for the low Mach inlet. The
analysis included each inlet with both a flight lip and an aero/acoustic
bellmouth lip. The effects of diffuser-wall treatment and the associated
total pressure loss were not considered in the analysis. Upstream of the
peak wall Mach number, which usually occurred slightly ahead of the inlet
throat, the inviscid solution was considered valid. Aft of the peak, diffu-
sion of the flow causes a rapid growth in the boundary layer which affects
the measured wall pressures. To compensate for the viscous effects, the
inviscid wall pressures were adjusted according to the blockage of the cal-
culated boundary layer displacement thickness. Boundary layer characteris-
istics were obtained from the Stratford and Beavers soluticn (SABBL: Ref-
erence 11), an option of the STC program. The following steps describe the
method of adjusting the wall static pressure for viscosity.

(1) (Po/P) D (-“'—'ﬁ-"—)
inviscid 6 inviscid

;
3
2
3
3
E
k
;

2
W/; R W/e |
(2) (—m_) ( - |
™ —
sA inviscid R-g sA effect ive |
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In Step 1, the imaginary specific flow was inferred from the predicted,
normalizad, static pressure (at a given position on the diffuser wall) using
compressible-flow tables. The specific flow was then corrected for boundary
layer blockage on a one-dimensional area basis (Step 2). Step 3 reversed
the process of step 1 to identify the predicted, viscous, wall pressure. The
procedure was repeated at a number of stations along the diffuser duct.

Having calculated the viscous wall pressures for a range of different
inlet weight flows, the results were plotted for each inlet configuration
(see Figures 209 through 212). High flow rates in the accelerating inlet
resulted in supersonic wall velocities near the throat, leading (in some
cases) to a local instability in the STC solution. Also, transonic veloci-
ties invalidated the method of adjusting for boundary layer blockage. How-
ever, boundary layer blockage corrections were only applied to subsonic wall
Mach number regions downstream of the peak wall Mach number, for it is in
these regions that blockage begins to have a significant effect due to the
rapid growth in boundary layer thickness. Portions of the predicted wall-
pressure distributions considered invalid for either of these reasons are
indicated by dashed lines on the curves in Figures 209 through 212.

For several static pressure tap locations (chosen locations shown in
Figures 209 through 212), the predicted normalized pressure was cross-plotted
against inlet throat Mach number. Throat Mach number was determined from cor-
rected weight flow (an input for the STC analysis), inlet physical throat
area, and one-dimensional compressible-flow relationships. The resulting
plots for several tap locations are contained in Figures 213 through 216. The
selected flow-correlating taps were located in the forward part of the inlet
where experience has indicated better agreement between data and predictions
and where the acoustic treatment has a minimal effect on the data. Although
the taps near the throat are extremely sensitive to small changes in inlet
airflow, usefulness is limited because the analytical solution is unreliable
in the throat region. This problem is only encountered with the accelerating
inlet at high flow rates as already discussed. Therefore, some existing
taps located in the throat were not used for the weight-flow correlation.

During testing of a particular inlet configuration, wall static pressure
data were acquired for a number of different fan speeds. For each data point,
the selected, normalized pressures were plotted on the appropriate plot from
Figures 213 through 215, Data should be distributed vertically on the plot
with ail taps indicating the identical throat Mach number. Test data at the
apparent design flow are included in Figures 213 through 215 for each of the
inlet configurations tested. A modest amount of data scatter results from the
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usual causes (model-contour inaccuracies, inprecise tap installations, or un-
detected pressure leaks in the static pressure lines). Inlet throat Mach
nuuber was determined by averaging the inlet Mach numbers indicated by all of
the selected flow-correlation static pressure taps. Throat Mach number
versus fan-speed results are contained in Figures /U and 122 for the acceler-
ating and the low Mach inlet, respectively., For the flight lip, Figure 216,
test data were not obtained and only predicted results are shown,

Having determined the inlet throat Mach number (i.e., inlet corrected
flow) via the foregoing discussion, it is possible to estimste the fan-face
corrected flow as follows:

W ﬂ?) (‘_sh
§2 7} \ N

throat
where _
W/ @ is the specific flow at the throat corresponding to the
8A calculated throat Mach number,
throat
Ach is the inlet physical throat area,
n is the diffuser total pressure recovery, PTZ/PTO'

Inlet recovery (Pp,/Pr,) must be determined from fan-face total prussure
rake data. In the Schenectady 50.8-cm (20-in.) in'et test program, adequate
rake data were not available; however, representative recovery data had been
previously obtained for scaled inlet [30.5-cm (12-in.)] models. Figure 217

relates the inlet-throat Mach number to 50.8-cm (20-in.) inlet fan-face cor-
rected flow (W/8/82) based on the measured 30.5~cm (12-in.) recoveries. It

is assumed that the difference in Reynolds number between the 30.5-cm (12-in.)
and 50.8-cm (20-in.) inlets has a negligible effect on inlet recovery. The
expected flight lip and aero-acoustic bellmouth inlet recoveries (solid and
dashed curves) were evaluated by testing the 30.5-cm (12-in.) flight lip inlet
at Vg = 0 and Vg = 41.2 m/sec (80 knots), respectively. No 30.5-cm (12-in.)
inlet tests were conducted with an aero-acoustic bellmouth lip or a low Mach
inlet.
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