T

-

JM o g _- ! NASA-CR-159297
| | o | | 61057
NASA CONTRACTOR REPORT 159297 { (?81 0 Z

J
Al 1 | | 5
5 C " Vo AERONAUTICAL & MARINE SYSTEMS
| DIVISION s

_l! MR SYSTEMS CONTROL, INC.CVE) W 1801 PAGE MILL ROAD B PALO ALTO, CA 94304 M TELEX 348-433 M C4I5) 494-1165 MRS

}' DEVELOPMENT OF ADVANCED TECHNIQUES FOR ROTORCRAFTi
| STATE ESTIMATION AND PARAMETER IDENTIFICATION s
i
l W.E. Hall, Jr.
J.G. Bohn
e J.H. Vincent
| ,
LN
|
L . SYSTEMS CONTROL, INC. (Vt)
Palo Alto, CA 94304
. - N
| : Contract NAS-14549 *’ W an
i August 1980 - H@E«Mg‘ﬁ! ﬁ”ﬁY |
| NASA st
:L} : . »l . LANGLEY R:SEARTH CENTER

National Aeronautics and | , : : LIBRARY, NASA
- Space Administration _ L UBmpTenN, viRamA

! :
[ N Langley Research Center
Hampton, Virginia 23665 |

L e S g



Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catolog No.

NASA CR 159297

" 'BEVELGBMERT OF ADVANCED TECHNIQUES FOR ROTORCRAFT | ‘NoveMBER 1980
STATE ESTIMATION AND PARAMETER IDENTIFICATION

o

6. Performing Organization Code

8. Periorming Organization Repaort No.

~

Auvhnasl o)

W.E. Hall, dJr., J.G. Bohn, J.H. Vincent

9. Performing Orgenization Name and Address 10. Work Unit No..(TRAIS)
SYSTEMS CONTROL, INC. (Vt)
1801 Page Mill Road 11. Contraet or Grant No.
Palo Alto, Ca. 94304 NASI - 14549

13. Type of Report and Period Covered

12. Sponsoring Agency Neme and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACTOR REPORT
Washington, D.C. 20546

14. Sponsoring Agency Code

15. Supplementary Notes

Contract Monitors: Robert Chen, NASA Ames Research Center
Robert L. Tomaine, NASA Langley Research Center

16. Abstrec!  pn integrated methodology for rotorcraft system identification has been

described. This methodology consists of rotorcraft mathematical modeling,
three distinct data processing steps, and a technique for designing inputs to
improve the identifiability of the data. These elements are as follows:

(1) A Kalman Filter/Smoother Algorithm which estimates states and sensor
errors from error-corrupted data. Gust time histories and sta-
tistics may also be estimated.

(2) A Model Structure Estimation Algorithm for isolating a model which
adequately explains the data.

(3) A Maximum Likelihood Algorithm for estimating the parameters and
estimates for the variance of these estimates.

(4) An Input Design Algorithm, based on a maximum 1ikelihood approach,
which provides inputs to improve the accuracy of parameter estimates.

A discussion of each step is presented, with examples to both flight
and simulated data cases.

17. Key Words 18. Distribution Stotemant
Helicopter Math Model
Parameter Identification UNCLASSIFIED-UNLIMITED

Model Structure Determination

19. Secyrity Classif. (of this report) 20. Security Classif. (of this page} 21s No. of Pages 22. Price

Form DOT F 1700.7 &-72) Reproduction of completed page authorized-

M- 190 9F#



-

£

—

[

(—

(=

ﬁ?.,‘

—

—

-

("

("

"

(—-



TABLE OF CONTENTS

Foreword

Nomenclature

Definitions of Inertial Constants

I.

II.

III.

Iv.

VI.

VII.

INTRODUCTION

Organization of Report

ROTORCRAFT MATHEMATICAL MODELS FOR SYSTEM IDENTI-

FICATION

Specification of Rotorcraft Model Criteria
Math Model Selection

Linear and Nonlinear Math Model Descrlptlon .

ROTORCRAFT STATE ESTIMATION

Requirements for Rotorcraft State Estimation
Review of State Estimation Algorithms
Rotorcraft State Estimation Algorithm .

MODEL STRUCTURE ESTIMATION

Requirements .
Model Structure Estimation Approaches

Rotorcraft Model Structure Estimation Method

Description of a Model Structure Estimation
Algorithm

ROTORCRAFT PARAMETER ESTIMATION

Introduction
Rotorcraft Parameter Estlmatlon Approaches
Rotorcraft Parameter Identification Method

INPUT DESIGN

Requirements for Input Design .
Input Design Methods

DATA PROCESSING RESULTS
CH-53A Results . .
Bell 609 Rotorcraft Results

RSRA Results
UH-1H Results

1ii

Page

vii

xiii

O o

39
39
40
44
71
71
87
89
99
99
99
105
119

119
120

131

131
202
206
210



TABLE OF CONTENTS (Continued)

VIII. CONCLUSIONS
REFERENCES
APPENDICES

iv

Pagé
235

237
243

_—

1

l

—

1

S



FOREWORD

This report describes the work performed by Systems Control,
Inc. (Vt) for the National Aeronautics and Space Administration
and the United States Army Research and Technology Laboratories
(AVRADCOM). The contract research effort which has led to the
results in this report was financially supported by the AVRADCOM.
Technical monitors for this project were Dr. Robert Chen and
Mr. Robert L. Tomaine. At Systems Control, Inc. (Vt), Dr. W. Earl
Hall, Jr. was the principal investigator and Dr. N.K. Gupta,
Mr. R.S. Hansen, and Mr. J.G. Bohn were the project engineers.
Programming support was provided by Ms. S. DuHamel and
Mr. B. Bird. Report preparation efforts were directed by
Ms. C. Walker.



NOMENCLATURE

Symbol Definition

a Blade airfoil section 1lift curve slope, acz/aa

ay Longitudinal rotor tilt

a

X 2

ay Body axis acceleration, m/sec

a4

B (1) Blade flapping motion coefficient;
(2) Covariance of innovation vector

bl Lateral rotor tilt

Cy

C Fuselage aerodynamic X,Y, and Z-axis moment

~M coefficients

Cy

Cm

me Hub X,Y, and Z-axis moment coefficients in

cY rotor axes

Q

Cy

CR Hub X,Y, and Z-axis force coefficients in rotor

Y axes

CT

o Blade reference chord length, m (ft)

E Expected value operator

F (1) System dynamics matrix;
(2) Statistical test function

G System noise or control matrix

g Acceleration due to gravity, 9.8 m/sec2 (32.174
ft/sec2

g5 Structural damping coefficient
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Symbol

= =

=

Definition

(1) Rotor hub inplane force, along rotor X axis,

N (1b);
(2) System observation matrix
R
Blade moment of inertia é rzmdr; Kg-m2 (slug-ftz)

2

Reference blade moment of inertia, Kg-m2 (slug ft
Fuselage moment of inertia about X, Y, Z body

axes Kg-m2 (slug ft-z)

Blade flap and lag moments of inertia, nondimen-
sional

Kalman gain matrix
Body-axis rolling (X-axis) moment, N-m (ft-1b)

Hub rolling moment, rotor axis, N-m (ft-1b)

(1) Total helicopter mass, Kg (slugs)

(2) Blade mass per unit span, Kg/m (slug/ft)

(1) Body-axis pitching (Y-axis) moment, N-m (ft-1b)
(2) Information matrix

Hub pitching moment, rotor axis, N-m (ft-1b)
Angular momentum, N-m-sec (lb-ft-sec)

Rotor aerodynamic rolling (X-axis) moment, rotor
axes, N-m (ft-1b)

Rotor aerodynamic pitching (Y-axis) moment, rotor
axes, N-m (ft-1b)

Number of blades on the rotor

Body-axis yawing (Z-axis) moment, N-m (ft-1b)

State error covariance matrix

Body-axis roll (X-axis) rate, rad/sec

Body-axis pitch (Y-axis) rate, rad/sec

(1) Rotor aerodynamic torque, rotor axes, N-m (ft-1b)

(2) Process noise statistics matrix
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Symbol

- R~ BV e

HUB

Definition

Rotor hub yawing moment, rotor axes, N-m (ft-1b)
Body-axis yaw (Z-axis) rate, rad/sec

(1) Reference rotor radius, m (ft);

(2) Measurement noise statistics matrix;

(3) Correlation coefficient

Position along blade radius, m (ft)

Blade pitch bearing radial offset, m (ft)
Standard estimation error

Rotor thrust (Z-axis) force, rotor axes, N (1lb)

Fuselage X-axis translational velocity, body axes,

‘m/sec (ft/sec)

Fuselage Y-axis translational velocity, body axes,
m/sec (ft/sec)

System measurement noise vector

Fﬁselage Z-axis translational velocity, body axes,
m/sec (ft/sec)

System noise vector
Longitudinal axis designation
Body-axis X force, N (1b)

Rotor hub longitudinal location relative to
vehicle reference center, positive forward, m (ft)

Rotor blade torque offset, m (ft)
Blade chordwise bending deflection, m (ft)

Distance of blade c.g. aft of blade elastic axis,
m {ft)

System state vector

(1) Lateral axis designation;
(2) Set of system measurements

ix



Definition

Body-axis Y force, N (1b)

Rotor hub lateral force, rotor axes, N (1b)
System measurement vector

(1) Vertical axis designation;
(2) Blade lagging -

Body-axis Z force, N (1b)

Rotor hub vertical location relative to vehicle
reference center, positive downward, m (ft)

Gimbal undersling, m (ft)

Blade vertical bending displacement, m (ft)

NOMENCLATURE (GREEK)
Definition
(1) Aircraft angle of attack, rad;: :
(2) Angular displacements about rotor axes, rad
(1) Blade flapping degree of freedom or flap
angle, rad;

(2) Aircraft sideslip angle, rad
Discrete system noise matrix
Lock number, pacR4/Ib
Kroneker delta function
Elevator, rudder, and aileron deflection, rad
Flaperon deflection, rad
Tail rotor collective pitch, rad
Hub precone angle, rad
Blade droop, outboard of pitch bearing, rad
Blade sweep, outboard of pitch bearing, rad

Estimate error

Blade lagging degree of freedom or lag angle, rad
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Symbol

Symbol

.

()
")
(~)o,1C,18

()*
()’

W

Definition

General longitudinal control deflection, rad
General lateral control deflection, rad

(1) Blade pitch angle, rad;
(2) Set of parameter values

Vehicle pitch angle, about Y body axis, rad

Rotor shaft tilt relative to Z rotor axis,
positive forward, rad

Vehicle density parameter, m/pR3
Innovation vector

Blade flap and lag rotating natural frequencies,
rad/sec

Air density, Kg/m3 (slug/fts)

(1) Rotor solidity, Nbc/ﬂr;
(2) Standard deviation

Rotor azimuth angle, rotor axes, rad

Rotor angular rate, rad/sec

NOMENCLATURE (SUPERSCRIPTS)

Definition

Time derivative, d/dt
Estimated value

Rotor coning, longitudinal cyclic, lateral cyclic
degree of freedom, respectively, shaft-fixed axes

Normalized on Ib
Geometric derivation, d/dr

Aerodynamic

‘Wing

xi



Symbol

FUS
TR

Symbol

(Js,1¢,15

Definition

Horizontal stabilizer
Vertical stabilizer
Fuselage

Tail Rotor

Matrix transpose

NOMENCLATURE (SUBSCRIPTS)
Definition
Rotor coning, longitudinal cyclic, lateral cyclic
degree of freedom respectively, shaft-fixed axes
Rotor blade
Collective pitch

Trim or steady-state condition
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DEFINITIONS OF INERTIAL CONSTANTS [3]

Notes:
« = [F 5w odr/ th
Sqi A ng M ar/ly ﬁi = i~ mode shape
1 m = mass/unit span
I* = f r2 m dr/1I _
o q; = Borg

— All terms nondimensional —

%* r1
Iqia j n. rmdr/I
o
1
3 1 I .— - - -
Idld = Tg.[ kg ni( Zppa *+ 18y - (r-Tpa)8,
o}
+ f (Z i- Xq k-x K)) m dr
I¥ . = rm 1-(Z i-x k-x k)-dp dr
qiw N3 0 o I p
.é L B Ny ( r61+(r-rFA)62) m dr
1 _ - - -
-_é kB' (XFA FA63+kB (Zol-xok-xlk)> m dr
1* 1 jl 7k jI n. e ( T-x k-x i)’dp dr
. S - n m n- hd YA -X -
akai Ib o k B o 1 . (o] (o) I

- r - > >
+ .[ K °k gl _[ Ny -(zol-xok-xck) dp dr
(o) )

[ e {[oxempaky 3]

{(continued)
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> >
S mogy -GFA2+BG)JXni}dr

3 rFA

UNIT CONVERSION*

1 ft/sec = 0.3048 m/sec
1 m/sec = 3,2808 ft/sec
11 - 2 _ 2
1"g = 32.2 ft/sec” = 9.81 m/sec
.2 2 2
1 1b/in® = 703.1 Kg/m”~ 6897.41 N/m

¥ This report supports the computer programs previously
installed at NASA-LaRC and NASA-Ames. These programs
utilize English units in order to be consistent with
the engineering units outputted by the type of data
provided to SCI (Vt) by the government. In order to

directly compare results with the output of these
codes, English units have been retained herein.
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INTRODUCTION

The rotorcraft has presented a formidable design challenge
to the engineering profession throughout the development of
these unique vehicles. As the significant breakthroughs in the
state of the art have been achieved, there has been a growing
need for validated analytical methods in continuing to guide
engineering decisions. Indeed, the expansion of computer-aided
analytical methods for predicting rotorcraft aerodynamic perform-
ance, vibrations, loads, stability, control, and handling quality
characteristics has affected, to varying degrees, all phases of
rotorcraft engineering. As the vehicles have become more complex,
and the analytical methods more sophisticated, the problem
of validating these analytical methods has itself become a
significant issue. In particular, the validation of analyt-
ical predictions of rotorcraft stability, control, and
handling qualities must address a multitude of problems
associated with vehicle test, instrumentation, and data
processing. These validation methods must further interface
with a wide spectrum of analytical models, from highly
sophisticated digital simulations (e.g. C-81 and GENHEL)
to simple transfer functions (e.g., rotorcraft handling
quality specifications).

Clearly, the establishment of a systematic methodology
for using test data to validate, and upgrade, a-variety of
analytical models is an evolutionary task. Significant
advances to achieving such a methodology have been accom-
plished for fixed-wing aircraft [refs. 1,2] and are generic-
ally categorized as parameter identification methods. Applica-
tions of such techniques to rotorcraft have not been extensive,
but two notable efforts have been reported using two different
approaches. Molusis [ref. 3] performed an extensive develop-
ment of the Kalman filter concept to six-degree-of-freedom
vehicle models, and reemphasized the need to include rotor
degrees of freedom. Gould and Hindson [ref. 4] developed a
least squares quasi-linearization procedure which recognized
the difficulties of the sensor bias problem. These efforts
represent significant steps toward a comprehensive rotorcraft
model validation methodology, primarily addressing the quanti-
fication of estimates from a given model.

Applications of these methods, as well as results from
fixed-wing applications, indicated that the parameter esti-
mation solution, though an essential part of the required



methodology, must be integrated with other requirements.
These include:

(1) Data quality improvement must be achieved by assuring
the completeness and minimum accuracy level of onboard and off-
board sensors (e.g., air data, gyros, accelerometers, force and
moment transducers, radar, optics). Data filtering options, such
as Fourier transform methods, must be used judiciously to avoid
loss of desired information. Multivariable data filtering meth-
ods, such as Kalman filtering, should be available to calibrate
multi-component measurements.

(2) Size of the identifiable (validatable) model is
inherently Iimited by the information content of the data and
the computational resources available (e.g., algorithms and
computers). The goal is not to obtain time history matches
of the estimated model output with the actual data (which is
generally possible if enough parameters are included in the
model), but rather to derive the most accurate estimates of the
model parameters which can be obtained from the data. Even if
a large number of parameters is identified, reasonable compu-
tational limits must be observed.

(3) Test design considerations, which include specific
maneuvers to improve the quality of data, should be integral
parts of an overall test objective. Test design also requires
specification of the data processing integration to diagnose
and resolve particular model or instrumentation problems.

These are the principal issues which form the back-
ground of the methodology presented in this report. The overall
methodology has implications beyond stability and control (see
Johnson and Gupta, [ref. 5], but only the stability and control
issues will be treated here.

System identification is a generic classification for the
methodology of integrating simulation, wind tunnel tests, and
flight tests in order to improve or validate predictive
models of vehicles. This classification is a significant
extension of the process of parameter identification, which
is but one step in the overall process, as will be introduced
in this section.

The following more formal definition of system identifica-
tion has been found useful [ref. 6]:

"System identification determines, from a
given input/output data record of vehicle test
response, an estimate of the physical model
which relates the observed data."
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This definition implies that system identification involves
the following:

(1) A mathematical model: Though the governing equa-
tions for vehicles may be known, it is frequently found that
other equations (e.g., effects) are present, and the data
must be analyzed to isclate what the actual model is.

(2) Parameters of the model: This is the parameter
identification requirement, where the coefficients of the
model are quantified from the data.

(3) Random errors: Random errors must be isolated and
removed from the model effects.

Figure 1.1 shows a representation of how the system identifi-
cation procedure is used with vehicle input and output data
to produce estimates of linear and nonlinear coefficients.

Conceptually, the mathematical principles of system
identification process are directly related to curve fitting
of data to a model, and statistical analysis of the resulting
errors. Indeed, for simple models and perfect data, elemen-
tary least squares methods will meet most requirements for
model quantification. The problem, particularly for rotor-
craft applications, is that the models are not simple and the
instrumentation is both costly and complex. The model com-
plexity presents two difficulties, one obvious, the other
more subtle. The first difficulty is the computer algorith-
mic requirements imposed by processing large amounts of flight
data and correlating these data to high order, multivariable
models. Both feasibility and cost considerations 1limit the
extent to which brute numerical force can be applied to such
objectives. The second, and more subtle difficulty, is the
avoidance of overparameterization of the model relative to
the quantity and quality of data available. A frequent
criterion of '"excellence" of curve fitting techniques is the
fit between the data and the estimated model output. In fact,
it is now recognized that such fit can always be improved by
adding more model parameters, even though the parameters do
not reflect any actual physical effect (i.e., overparameteri-
zation). While it is necessary then to obtain a reasonable
fit to the data, it must be realized that such is not the
explicit objective of identification. The objective of the
identification is to achieve a validated predictive model
which can be subsequently used for design evaluations.

[#2]
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FIGURE 1.1.- INTEGRATED ROTORCRAFT SYSTEM
IDENTIFICATION PROCEDURE

The objective of the rotorcraft identification methodol-
ogy discussed here is to successively treat the problems of
data quality, model structure estimation, and parameter esti-
mation in a systematic fashion, iterating with the test
maneuvers specifications to improve the identifiability of
the stability and control coefficients from data. Each sub-
division of the rotorcraft estimation problem has specific
requirements for data from analysis, wind tunnel tests, OT
previous tests. The overall flow of this procedure is shown

in Figure 1.1,
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The key elements depicted in Figure 1.1 are integrated
to sequentially perform the steps of:

State estimation.— Satisfies the requirement for esti-
mating the actual states and controls from data containing
biases, scale factors,and random noise.

Model structure estimation.— Satisfies the requirement
for isolating that part of a model which can realistically
be determined for a given set of data. The estimated model
is the equations for the linear or nonlinear system.

Parameter identification.— Satisfies the requirement of
accurately estimating the parameters of the model isolated by
the model structure estimation step. Two algorithms are
noted, one for linear models, the other for nonlinear models.
(This approach is taken for a computational requirements
reduction which is realized by optimizing a program by linear
model computations not possible with nonlinear models.)

Input design.— Satisfies the requirement for having a
method of specifying tests to improve the accuracy of param-
eters and estimated models.

In theory, all aspects of this data processing could be
performed with one single algorithmic method. This "procedural
ambiguity" is admittedly present. The resolution shown in
Figure 1.1 incorporates the desire to utilize various types and
qualities of a priori data to optimize a particular step within
minimum cost/maximum accuracy constraints.,

Organization of Report

Chapter 2 summarizes the rotorcraft mathematical models
which are the basic identification models of the algorithms
discussed in the following chapters. Chapter 3 presents the
background, requirements and selected state estimation algo-
rithms. Chapter 4 discusses the general model structure
estimation problem, and details the algorithm for rotorcraft
estimation. Chapter 5 reviews the parameter identification
algorithms and Chapter 6, the input design requirements and
algorithms. Chapter 7 reviews specific numerical results
from each step of the algorithm. Chapter 8 presents conclu-
sions of this effort.
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CHAPTER 1II

ROTORCRAFT MATHEMATICAL MODELS FOR SYSTEM IDENTIFICATION
Specification of Rotorcraft Model Criteria

Overview.— This section considers the analytical models
selected for implementing the rotorcraft parameter identification
methods employed in this study. As is well known, detailed
dynamic models of rotorcraft tend to be of great complexity due
to the large number of degrees of freedom and time-varying non-
linear characteristics of parameters that must be considered.
Given that the principal objective of this work is the identi-
fication of parameters relating to fuselage and rotor dynamics,
and not a study of the modeling task per se, the basic model
requirements were fixed by questions of system identifiability
rather than model generality.

The principal guidelines for model selection are summarized
in the following criteria.

Math model criteria.— The objectives of the parameter iden-
tification work planned in this effort governed the determination
of applicability on the part of several alternative model formu-
lations. It was established that model selection should be made
relative to the following criteria:

(1) The model must contain all degrees of freedom of
/ importance to rotorcraft handling qualities analyses.
Rotor modes must be explicitly shown and not reduced
to quasi-static form by inclusion in fuselage equations
of motion. The rotor modes required are the first
harmonics of longitudinal and lateral flapping and
lagging blade motion, plus coning.

(2) Explicit representations must be given to both fuse-
lage and rotor aerodynamics. Fuselage effects must
be shown as component build-up so that component
effects may be determined if suitable instrumentation
is present. '

(3) The model must be usable with minor modifications for
both linear and nonlinear analyses as would be
required in this effort, in order to provide the con-
sistency needed to isolate the effects of particular
system nonlinearities.

(4) The model must be general enough to treat different
types of rotors and different numbers of blades.

(5) The model should relate to a known theoretical treat-
ment of the rotorcraft dynamics problem, in order to



(6)

give insight into the origins and assumptions implicit
in the parameters identified. That is, a general-
purpose identification model with arbitrary parameters
should not be used; state selection should be in
accordance with previous analytical work.

The model should utilize both dimensional and non-
dimensional parameters in a manner that provides the
simplest and most meaningful representation of rotor-
craft inertial and aerodynamic characteristics from
the point of view of the handling qualities analyst.

The characteristics of various methods of rotorcraft model-
ing are examined in light of these requirements in the following
subsection.

Math Model Selection

Math model types.— There exist three basic types of rotor-

craft models that have found wide applicability in analytical
studies and have been used by many researchers:. In order of
generally increasing complexity, they are:

(1)

(2)

(3)

Quasi-static, 6 DOF models in which rotor dynamic
effects are assumed negligible (by setting rotor state
rates equal to zero) and rotor aerodynamic performance
effects are combined with fuselage effects. Rotor
forces and moments may be represented in terms of

the classical rotor parameters inflow ratio (1),
advance ratio (u), and blade pitch (8). The equations
may be linearized and analyzed in a manner analogous
to fixed-wing aircraft methods [ref. 7].

Rotor blade dynamics models, in which the rotor degrees
of freedom are represented explicitly and rotor forces
and moments are coupled to the fuselage through con-
straints at the rotor hub, and in which rotor blade
aerodynamic characteristics are determined using one
of several azimuthal averaging techniques [ref. 8 ].

Rotor blade dynamic models such as in (2), except

that rotor blade aerodynamic characteristics are deter-
mined exactly at a large number of azimuthal stations
and accelerations and rates are integrated numerically
from one station to the next to determine blade motion
in time-history form. This method, implemented on a
digital computer, is powerful in terms of high accur-
acy and nonlinear capability. No averaging assumptions
are required, and the accuracy is limited only by
integration errors and computer truncation errors.
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The first model type is very useful for vehicle handling
qualities studies in which blade dynamic modes may not be of
concern, as it 1s of low order (8 states) and contains easily-
determined parameters. It is useful either -in a nonlinear, time-
history output form or in a linearized, small-perturbation,
eigenvalue and eigenvector analysis form. However, the absence
of explicit rotor blade dynamics which leads to this simplicity
makes the model inappropriate for studying blade aerodynamics
effects, which is one of the principal objectives of modern
rotorcraft research.

The third type of model contains a very high level of de-
tail in its time history calculations, and represents in fact a
simulation of rotor dynamics that may include as many parameter
nonlinearities as desired due to the flexibility of digital com-
puters in integrating the equations of motion with variable
coefficients. The capability to perform modal analyses is lost
with this type of model, however, due to its numerical nature.
Modal analyses require a model expressed in linear mathematical
form: The maximum of analytical flexibility comes with a linear
__model derived from the nonlinear simulation, at a given flight condi-
tion. In this linear model, the coefficients of the differential
equations represent averages of nonlinear parameters around the
rotor azimuth.

This comprises the second type of model. Several efforts
have led to analytically-determined, linear models that show the
origins of the nonlinear coefficients that must be arranged,
and then impose averaging techniques to arrive at a linear,
closed-form system of equations. Outstanding among these ap-
proaches is that of Johnson ([ref. 8].

In the case of linear parameter identification, a linear,
state-space model is employed in the identification program. For
identification of nonlinear parameters, the same basic linear
model is used but additional, nonlinear effects are accounted
for through the introduction of functions to represent equation
coefficients and the inclusion of nonlinear terms in the forcing
function and inertia models. The basic method of determining
the parameters is unchanged, though the numerical operations are
more involved. This flexibility suggested the selection of a
model that was linear at given flight points, but that could
be modified by additive constants and nonlinear coefficient
functionals for successive flight conditions or nonlinear para-
meter estimation.

The type two math model selected is based on the general
work of Johnson [ref. 8] specialized to the single-rotor heli-
copter case. This model, derived by rigorous aeroelastic analy-
sis, contains all of the required characteristics for the present
purpose and provides a sound framework to serve as a basis for

9



both linear and nonlinear parameter identification. The follow-
ing subsection reviews the background of this model and its
application to the present parameter identification effort.

Linear and Nonlinear Math Model Description

Overview.— This section contains a review of the formulation
of the set of equations used as the basis for parameter identifi-
cation work in this study. Many of the features of the model
developed in ref. 8 were neglected as not appropriate to experi-
mental handling qualities studies, particularly the provision
for higher-harmonic blade bending mode shapes. Rotor dynamics
are determined from rotor inertial and aerodynamic characteris-
tics, transformed to hub forces and moments, and added to fuselage
inertial and aerodynamic forces and moments, from which acceler-
ations of and about the vehicle center of mass are then computed.
A schematic of the flow of computations in this process is shown
in Figure 2.1. In the following, the particular elements shown
in this figure are discussed.

Formulation of equations of motion.-

(1) Coordinate Systems and Transformations. Rotor blade
inertial and aerodynamic characteristics are calculated in a
coordinate system fixed with the blade (i.e., rotating with rotor
angular velocity), then Fourier-transformed into a non-rotating,
shaft-fixed coordinate system. This transformation is well-
discussed in ref. 9. The rotor may then be viewed as a cone
whose semivertex angle and inclination relative to the shaft
change in accordance with blade motions, transformed. Vehicle
reference axes are fixed in the rotorcraft fuselage, and the
relationship between rotor and vehicle degrees of freedom,
forces, and moments is illustrated in Figure 2.2. Transforma-
tions between the two orthogonal, right-handed coordinate systems
are shown in Figures 2.3 and 2.4, and are summarized in equation
form in Figure 2.5. In the equations used in this study, and
presented below, axis transformations were expanded and written
out in equation form.

(2) Nondimensionalization. Particular care was given to
the use of dimensional and nondimensional parameters in the
equations of motion. The generality and conciseness of using
nondimensional coefficients introduces computational problems
if points of singularity (e.g., zero airspeed in hover) occur
and when operating conditions depart substantially from reference
conditions. Dimensional parameters, on the other hand, relate
more directly to flight measurement data but are scale- and
flight condition-dependent. In this study, both types of para-
meters were used. As will be seen below, the basic nonlinear
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equations are dimensional, with physical units of force and
moment, though fuselage aerodynamic contributions are expres-
sed as nondimensional coefficients multiplied by the refer-
ence nondimensionalizing terms. All nondimensionalizing was

done on rotor characteristics: pQ;R4ﬁ for forces, szRsn for

moments. Conversion from conventional, fixed-wing coefficient
definitions for components (such as horizontal and vertical
tail) must be made where required.

The linear equations are nondimensional, on rotor char-
acteristics. The nonlinear equations are dimensional but
feature nondimensional rotor equations which are dimensional-
ized prior to the parameter identification step. This ap-
proach was taken to avoid complete dimensionalization of the
complex inertial and aerodynamic constants in the basic rotor
equations. An added factor in the equations of reference
is that they are also normalized on rotor blade inertia; this
was not retained in the present equations, resulting in addi-
tional scaling changes between the two sets. :

A summary of the final nondimensionalization definitions
is given in Table 2.1.

(3) Fuselage Aerodynamics. Fuselage aerodynamics are
expressed in coefficient form based on rotor characteristics.
A component buildup method is used, in which the force and
moment contribution of each component (in the presence of
all the others) is added to yield net total fuselage forces
and moments. A typical buildup is shown in Table 2.2. It is
important to note that the contributions of individual compo-
nents cannot be separated unless the appropriate load-cell
instrumentation is installed on the components; otherwise,
the sum of all components will be identified as a parameter
varying with, say, w, another parameter varying with q, and
so on. This is shown by the arrangement of terms in Table 2.2
and the equations below. Groups of these terms are parameters
to be identified.

Note that flap and control deflections are included, as
are tail rotor force and moment. And, in the complete moment
equations (below), the effects of rotation of the tail rotor
(and engine) angular momentum vectors are included.

(4) Rotor Equations of Motion. The rotor equations of
motion describe, in shaft axes, the motion of the rotor disk
in response to aerodynamic and inertial forces and moments.
The rotor forces and moments determined by these equations
are transferred to the fuselage as hub forces and moments,
and are discussed in the following paragraphs. The rotor

SRS RS I Y D R R R SR D R |

1
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EQUATIONS OF MOTION

TABLE 2.1. — NONDIMENSIONALIZING FACTORS FOR

Parameter Units Factor
1. Length m (ft) R
2. Linear velocity m/sec (ft/sec) QR
3. Angular
velocity rad/sec Q
4. Mass Kg (slugs) oR
5. Force newton (1b) DQZR4n
6. Moment nt-m (ft-1b) p92R5w
7. Moment of ? 2 5
inertia kg-m“(slug-ft°) oR¥m
8. Angular 2 5
Momentum kg-m~/sec (slug- PR
ftz/sec)
2.4
Examples: = X(1b)/(PS°Rm) (Force)
- 255
= M(ft-1b)/(pR"R"m) (Moment)
= Ib / pRsn (Moment of inertia)

nd

dim
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TABLE 2.2. — FUSELAGE AERODYNAMICS

X-Force
A _ W H v FUS TR K
T R A A S A £x
. W _ W W 2 W W W
where: Cy=Cy + ot Cﬂ a €, u+ C B+ st SF
(+] (o1 2 u 8
a F
H H H
C, = C, +C a
X xo Xy
v v ¥
c = ¢ +C_8
X Xy Xg
cI;US - cFUS + CFUS o+ cFUSs + cFUS a2 + cFUS u
b3 X X X X
0 a 8 2 u
a
TR TR TR
c =C +C 8B
X Xy xB
Hence,
W W W 2 W W W H H
Aacl vl 2o urcard s ot o
X Xy Xy xaz Xy xB Xg F Xq xO‘H

scl wcl g cfUS . US4 cfUS o2, (fUSg o (TS,
o %8 o a a 2 8 u
+clR 4 clRyg
0 8
W H v Fus TR W H FUs
= (C% +C +C. +¢C +CN)+(C +CC +C V)
X° Xo Xo VO Xo xu xa Xa
W FUS 2 W FUS W,V . FUS _.TR
+ (C + C Ya©f + (€ + ¢V u+ (€] +C) +C +.") 8
xaz va X, Xy xB xB xB Xg
W
+CX6F6F

-l

B

—

]

]



TABLE 2.2 — CONTINUED

Y-Force

FUS TR

+ CY + C + CY

H
+CY

W
=0y + C 8
Yo Y

)
=Y )
Cy = c, + CY 8

Yo B8
C\r-;USB . cFUS 52

o 8 BZ

FUS
y =G

FUS BZ

"
[l

WoowcH gV, oV g, cFUS , (FUS
+ g+C, +C,B+C +C, B+C + 8 + C
AR A A A AR CYB e

+ CER Y B . cTR

8

- (C# + C? + C¥ + c‘I;'US H C¥ + cFUS
0 o B 8 8

R CAR e
o o 8 B

CFUS B2 + CY

Yg2
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TABLE 2.2. — CONTINUED

Z-Force

Hence,

A
¢z

H v FUS TR

S R R R

W W W W 2 W W
C;=C +Ca+C, a"+Cou+¢C &F
A Zo Za ZGZ Zu ZGF
Hach o choas Cg 8

I S 8

v v v v
C;=C; +Cia+(C,8

z Zo | Zu Z5

FUS FUS FUS FUS

[ = +C, e+ C 3

Z Z0 - ZB

TR TR TR TR

C. =C,  +Ca+Cy B

Z Zo Za ZB

W

v
+C
Zo

+ (Cg

W W 2 W W H H H
=C; +ChatCs a"+C; u+tc S +C, +Coa+C,8
Zo Za zaz Zu 25F F Z0 Za zB
v v FUS FUS FUS TR TR
+C,at+tC, gt C +C,Ta+C B+ C, + C,a +
Za ZB Zo a ZB ZO ;u

H v FUS , TR W H, v, TR
C; +C +C +Cy )+ (C; +C7+C+C, +C
] ZO ZO ZO Za Za Za Za

H v FUS TR W 2 W
+ CZ + CZ + CZ + CZB)B + Czaza + CZ6 CSF

8 3 8 ‘s .

TR

¢, 8
ZB
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TABLE 2.2. — CONTINUED

Rolling Moment

A W, H, oV, FUS, TR
Cp=Cy+Cy+Ci+Ci+C,

W W W W
where: (7 =C) +C 8+ Cha
3 £, 28 2y
H H H H
C,=C, +C,8+C,a
2 2, 28 £y
v v v v
C,=C +C, 8+Ca
2 2, 15 2y

FUS _ ~FUS FUS FUs
C = Cz + CZ g + C2 o1
(o] 8 (v}

TR _ ~TR TR TR
Cz = Cz +C, 8+ CR o1

0 3 o1
Hence,

A W W W H H H v v v
C,=C,+C, #Cla+C/B+C, +C,a+C, +C, a+C. 8
2 20 ZB la Zs lo za 20 la £a

FUS FUs FUS TR TR TR

+C +C,7"8+C, "a + C +C +C,la
zo 8 la lo 288 za

L 2 L

W H vV ;| ~FUS TR W ) H FUS TR
(c, +C+C, +¢C + )+ (CT+C+C+C +C, o
2‘O 2’0 ZO ZO Q a 2'0. g‘a 2'(‘1 a

W H Y FUS TR
+(C,b+CH+C+¢C +C,0)B
fg tg Ly g A
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TABLE 2.2. — CONTINUED

Pitching Moment

A W H v FUS TR
CM = CM + CM + cM + CM + C.'1
W W W W 2, W
where:C,, = C, + Cy a + C o+ C u + C &F
MM T M,2 Mg

F

Ho o o, o, o H
Hacl sclarcl urcys
MM M M

v _ .Y v v
CM = CM + CM a + CM 8
0 .1 8 .
FUS FUs FUS
R R
o 8
TR TR TR TR
Cy =Cy *Cy CM 8
a B
Hence,
A W W W 2 W W H H
Cy = +Cia +Ch a° +Cp u+Cy 6+ Cy +Cpa
M CMo Ma Maz Mu MGF F ,Mo Ma
v v FUS
+CMU+CM6+CM +CM0.+CMB+C
8 8 (]
CFUS +CFUS + CTR + CM R+ CTRa
8

v FUS TR W
= (cM + CM + CM + C + cﬂ ) + (C + CM + CM +

CFUS . CMR)a N (CM . CM . C;"us

F

+ c;:)s + (Cﬁ(S Jog + (C
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My
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H
Cy Ju
My
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TABLE 2.2.

— CONCLUDED

Table 2.2 (cont'd)

Yawing Moment

b cEUS 4 (TUS g 4 cFUS
[

*Oy * Gy
0_ Q Q Q

+ cx

0+
a a

H H
+Cy 3+t Ciat+tC
N N8 Na No

v FUS

FUS c

')

A _ AW H v FUS TR
I I R T T
. _ AW W
where.cN = CN + CN 3
o 3

H _ H H H

CN = CNo + CNB; + CNaa

vV _ AV v v

CN = CN + CN 3+ CN a

o B a

FUS _ .FUS FUS FUS
CN = CN + CN 3+ CN o
) 0 3 a

TR TR TR TR

Cy =Cy +Cy 8+Cy a

N NO NS Na

Hence,

A W W H

Cy=C +Cy +C

N No NB Q

TR TR TR
+ CN + CN 3+ CN a
0 8 a
TR W H
+Cy )+ (Cy +C
No NB NB

TR)u

a

v v
+ CN g + CN o
B8 a




equations used in this study, derived from reference 2 and
retaining only first-order blade flap and lag modes, are
shown in Table 2.3. It wiil bc noted that single parameters,
either constant or nonlinear functionals, are used in these
equations to represent the complex, theoretically derived
coefficients of reference 2. By referring to these theoret-
ical expressions, the content and derivation of identified
parameters may be determined. It will also be noted that
fuselage rates and accelerations have been transformed into
the rotor (shaft) axes.

(5) Rotor Hub Forces and Moments. Rotor dynamics are
determined completely by the rotor equations discussed above.
As the result of these motions, forces and moments are im-
posed on the rotor hub; and in this way, rotor forces and
moments are both aerodynamic and inertial in origin. Table
2.4 shows the equations for the hub forces and moments, in
rotor axes. The aerodynamic parameters in these equations
must be identified, along with those relating to rotor and
fuselage aerodynamics.

Time-varying rotor forces and moments have been modeled
in this study using the averaging method of Johnson [ref. 8],
which replaces periodic rotor force and moment coefficients
with constant, Fourier-averaged values of the coefficients to
obtain a set of constant-coefficient ordinary differential
equations amenable to rigorous mathematical analysis. All of
the effects of the rotor on the airframe have been modeled, in
the present study, by computing rotor-related hub forces and
moments under this constant-coefficient approximation and
resolving them into body axes for the usual force and moment
summation.

General, nonlinear vehicle equations of motion.— Using
the coordinate system definitions, nondimensionalization
technique, and analyses of vehicle component aerodynamics
and rotor dynamics, a general set of complete vehicle equa-
tions of motion may be written. The basis for the general
equations is Euler's equations referenced to a set of body-
fixed axes; these equations are shown in Table 2.5. They are
shown here as dimensional equations, and the degrees of free-

dom appear a< their true values, not as perturbation quantities.

The nonlinear vehicle equations for use in this study
are shown in Table 2.6. They are obtained by introducing the
expressions developed in the previous subsection for fuselage
aerodynamics and hub reactions due to the rotor. While the
rotor equations given in the preceding subsection are for
small-perturbation motion from trim, their use to compute
actual hub forces and moments is valid, as biases due to
steady state (trim) conditions are included in all of the
equations and are identified along with the aerodynamic
parameters.
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TABLE 2.3.

— ROTOR DYNAMICAL EQUATIONS OF MOTION

Rotor Dynamics

Coniqg_(ﬁo)
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TABLE 2.3. — CONCLUDED
Rotor Dynamics (Continued)
Lateral Flapping (B]S)
g, -2 g, + (I +210)B, + M +M_ B +M, B, +M B, +M 8
- g v .. .
B Fls g "lc B s BB’ "1s 015 B, Bic 1 Byg 1S By O
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TABLE 2.4. — HUB FORCES AND MOMENTS
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TABLE 2.5 — GENERAL NONLINEAR EQUATIONS OF MOTION

General MNonlinear Equations of Motion

In Body-Fixed Axes,

o Translational: V+ @xV=xCF (Aero, Rotor, Gravity)

Al—

¢ Rotational: H+TxTa= £ Moments (Aero, Rotor)

M = Angular Momentum of Airplane =T + @

o
I = Ixx 'Ixy 'Ixz v P
Tyx Lyl o BT Q)
“Iox 'Izy Iz R
L (Ro11)
Moments = |M | (Pitch)
N (Yaw)
W=ﬂ'°+ M

Angular Momentum
of Tail Rotor, Engines, Etc.

Expanding the translational equations, obtain

e

u T Fx (Aero+Rotor) RV - QW -5ine
vi=1fz F, (AerosRotor) | +| PH = RU | *9 | cosesino
| W I F, (Aero+Rotor) Qu - PV c0s6cosd

Expanding the rotational equations, obtain
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2 2
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2 2 ¥ E
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TABLE 2.6. — TRANSLATIONAL EQUATIONS OF MOTION
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This model is employed for nonlinear simulation and
parameter identification work, for which time histories are
the principal output required.

Linear vehicle equations of motion.— The linear equations
of motion for the rotorcraft, shown 1in Table 2.7, are a special
set which are derived from the nonlinear equations by the
well known linearization technique using a first-term Taylor
expansion of all parameters and states. Note that the effects
of gravity and controls are also linearized. This model is
used for linear parameter identification and general model
analysis studies, and adds the last of the modeling capabili-
ties desired in this study.

Modeling the Two-Bladed Rotor.— The modeling aspects of a
two-bTaded rotor differ from those of a rotor with three or more
blades because the two-bladed rotor is not axisymmetric and its
inertial properties, as well as its aerodynamics, possess period-
ically-varying characteristics. The modeling of this rotor
is again based on the method employed by Johnson [ref. 8], in
his analysis of the general rotor dynamics problem. This method
substitutes constant, average values of the coefficients for
this time periodically-varying values, and in so doing, achieves
simplicity and clarity in the dynamic formulation. As noted
in reference 8, it introduces some errors because the periodic
and nonaxisymmetric properties of the testing rotor are pro-
nounced. Nevertheless, the method, appropriate to rotor
dynamics studies, 1is certainly also appropriate to rotorcraft
handling qualities studies, and provides for continuity of
method in the present model formulation. The constant coeffi-
cient method is particularly well suited to the sophisticated
system identification methods employed in the present study
because periodic effects will be distributed throughout the
identified model in such a way that maximum dynamic fidelity
is obtained. In this way, the results of system identifica-
tion analysis of the two-bladed rotor will guide future
modeling effort toward useful model structures for handling
qualities and flight dynamics studies.

Identification and State Estimation in the Two-Bladed
Rotor.— For the purpose of system identification, a linear
time-invariant model of the two-bladed rotor gives a high
level of modeling error at 2 per rev. This modeling error
occurs because the two-bladed rotor possesses a plane of
symmetry which rotates with the blades and crosses a refer-
ence point twice in each rotation. In a steady state, this
error term can be filtered out. The filtering is most
effective when low frequency characteristics are desired.
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Thus, accurate estimates of stability and control parameters
may be obtained from models given previously.

The problem is made more complicated because of the
changing level of the 2 per rev error in a transient. A con-
tinuously tracking filter is required to minimize the error.
This is particularly significant for system identification
where most information about parameter values is available in
a transient. The computer programs based on the models pre-
sented in this chapter may incorporate such tracking filters.

When rotor-blade measurements are available, difficulties
are caused in transformations from the rotating system to the
fixed system. In three or more bladed rotors, the positions
of the blade tips at any time define the instantaneous posi-
tion of the tip-path-plane (TPP). For a two-bladed rotor,
two points on the blade cannot define an instantaneous plane.
The following procedure may be used, however, for the trans-
formation.

51 = 50 + Blc cos(qQt) + Bis sin(qQt)
B> = By * Byic cos (Qt+q) + Bls sin(Qt+m)

-8 -8

o le cos(Qt) - B

1s sin(Qt)

In the matrix notation, these equations are

[81} Bo
= T
B2 B1c

B1s

where

1 cosqt sith]
T = 1 -cospt -sinQt

Differentiating the above equation once and then twice, we get

[ BO BO
8 L ]
1 - | 8 8
é = T 1c + T 1c
2 8 8
1s 1s
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8 8 B 8

.1 .1 ° © 0
BT TR T T | BT TR
B1s B1s LB

since the dynamic system of equations defines the relationship
between the tip-path-plane acceleration and the corresponding
velocity and position, we have

-B.O BO BO SC
Bicl = F (8) Pl . r26) | B1ic| + 6. (o) | OL

. R R R o |
8 B L 5

1s 1s 1s LA

We have six equations and six unknowns Bo’ Blc’ 815, Bo’

élc’ éls' We can determine these unknowns in terms of Bqs
BZ, and their first- and second-order derivatives and rotor

inputs. The transformation is both time varying and param-
eter dependent. In addition, both flapping rate and flapping
acceleration measurements are required.

The problem may be simplified somewhat by taking the
sum and difference of 81 and 82 before time derivatives

are derived. Equations for and Bls are still complex.

Blc
A more direct approach is based on using the blade-
flapping measurements without transformations to the fixed
axis system. Periodic gains with 1 per rev periodicity are
then obtained. The implementation is more difficult because
of the need to store a time history of Kalman filter gains.
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CHAPTER III

ROTORCRAFT STATE ESTIMATION

State estimation is the process of quantifying the time
histories of significant vehicle response variables, based
on measurements which themselves are susceptible to errors.
The input data to the state estimation process are the meas-
urements and the desired outputs are best estimates of the
vehicle states and of the measurement errors (e.g., biases,
scale factors, etc.).

The first section reviews the specific requirements for
rotorcraft state estimation. The second section then summar-
izes the fundamentals of state estimation, followed by the
third section which presents the basis of a rotorcraft state
estimation algorithm. The fourth section discusses the
structure of the computer program DEKFIS (for Discrete
Extended Kalman Filter and Smoother.

Requirements for Rotorcraft State Estimation

Rotorcraft flight testing for handling qualities, sta-
bility and control, and simulation validation objectives re-
quires the measurement of a multitude of variables. Examples
"of such measurements are on-board variables such as accelera-
tions, velocity, position, attitude, angular rates, and
control inputs. Off-board measurements may also be required.
Radar tracking is an example. These measurements are, in
general, subject to instrumentation errors due to random
noise, bias, scale factor, channel cross-talk, and dynamic
lags. Further errors are introduced with instrumentation
data conditioning and transfer due to sampling effects and
word length limitations. The determination of the best esti-
mate of required vehicle states from these measurements is
therefore non-trivial.

The systematic methodology for estimating the vehicle
states and for estimating the errors in the measurements is
denoted as state estimation. This methodology has evolved
very rapidly in the past 15 years as digital computers have
become more widespread as a flight test data processing tool.
Parallel to the use of these digital computers has been the
development of algorithms for minimizing the error of the
estimated time histories relative to the actual responses.
The number of measurements required for rotorcraft dynamic
state description presents a formidable state estimation
requirement for these algorithms.

The general requirements for rotorcraft state estimation
are to provide the following improvements over raw flight
data:



(1) data consistency for related attitude, rate and
acceleration measurements (e.g., between radar and
integrated linear accelerometer measurement posi-
tion);

(2) the capability to handle redundant instrumentation
at different locations;

(3) corrections for instrumentation errors such as
scale factor and bias errors, instrumentation dy-
namic lag, cross-talk and random noise;

(4) estimates for gusts and other unmeasured states;
and

(5) estimates for all states.

The specific requirements for rotorcraft state estima-
tion are as follows:

(1) estimation of fuselage states in presence of gusts,
and estimates of gusts and gust statistics;

(2) estimation of rotor states; and
(3) estimates of component forces and moments.

These general and specific requirements pose a significant
computational task because of the large number of vehicle,
instrumentation, and statistical parameters which must be

estimated.

Resolution of these requirements involves three princi-
pal issues. These issues are:

(1) the state estimation algorithm;
(2) the specific models to be estimated; and
(3) the algorithm implementation.

These issues are addressed in the following subsections.

Review of State Estimation Algorithms

There is now an extensive body of experience and docu-
mentation which provides extensive background to the science
and art of modern applied state estimation [10]. This sec-
tion is a summary of the principal aspects of this technology
which are necessary for understanding the rotorcraft estima-
tion approaches discussed in subsequent sections.
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Linear continuous and discrete system models.- The gen-
eral problem of state estimation is based on a formulation of
the linearized system dynamics and measurement equations, viz

x = Fx + Gw » x(o) given (3.1)

y = Hx + v ' (3.2)
where

X A system state

w A system noise (random, white process with
power spectral density, Q)

system measurements

<
(=2

<
| >

system measurement noise (random, white pro-
cess with power spectral density, R)

e |
>

system dynamics matrix (assumed constant)

G

>

system noise matrix (assumed constant)

H A system observation matrix (assumed constant)

(Explicit vectors and matrices for rotorcraft application
are given in the next section.)

Equations (3.1) and (3.2) are a continuous model for the
system. The corresponding discrete model, describing system
characteristics at discrete times i and i+1 (0 A i A N), is

Xp,e1 = ¢xk + Pwk , X, given (3.3)

= H, x, +

Y Kk Vi (3.4)

where Xpo Yo Wy and vy, are the sampled values at time

k of the corresponding terms in Eqs. (3.1) and (3.2}, and the
matrices ¢, T, and H are the discrete equivalents of
F, G, and H.

State estimation algorithms.- The state estimation
problem is the determination of the continuous estimate of
X, X, or the sequence of estimates of Xps Xy from

measurements y OT Yy, respectively. The estimate X is
obtained from Eqs. (3.1) and (3.2) as
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1

= Fx + PHIR L (y-HR) , %(0) = X given (3.5)

e
1

T Tp-1

R™up +rQrT, P(0) assumed (3.6)

e
|

= FP + PF" - PH

and the estimate ik from Eqs. (3.3) and (3.4) as

A T -l A~
OXy_q * PR R Ty -Hoxy 1),

§0 = Eo’ given (3.7)

= Leopy joTerarTy hangr iy 17,

o
|

P(0) assumed (3.8)

The following characteristics are apparent from these

equations:

(1)

(2)

-(3)
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The filter is initialized with estimates of the
initial state x(0) and state error covariance,
P(0). In general, these initializations must be
assumed. '

"Estimates of the process and measurement noise

statistics, Q and R, must be provided to the
algorithm. These statistics must be estimated

a priori (or at least by a modification of the
algorithms described by Eqs. (3.1)-(3.4)).

The quantity PHIR™! is denoted as the Kalman

gain, K,

K = PHIR™! (3.9)

and is explicitlg dependent on R and on Q
(Eqs. (3.6),(3.8)).

The following special cases may be identified from
the discrete algorithm equations, (3.7) and (3.8).

(a) ¢ known, Q is finite

This corresponds to the case shown in Egs.
(3.7) and (3.8).
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(b) ¢ is unity, Q is finite

Equations (7) and (8) become

X = xk_1+Kk(yk-Hkxk_1) (3.10)

P, = [(Py_p+rQri) tenTr1Hy 71 (3.11)

which represents a fitting process for a
process where the value of the state at time,
K, Xp» is related to the value at time k-1,

Xp.1» Within the standard deviation associ-

ated with Q. Note that this implies no
knowledge of the deterministic dependence of
X on x, ;. As Q increases, the infor-

mation provided to X by knowledge of Xp-1
decreases. This type of representation is
denoted as a random walk model.

(c) ¢ is unity, -Q approaches infinity (e.g., large)

Equations (3.10) and (3.11) become

A

- TR 1uy~1gTR"! (3.12)

Yk

|

P, = HIR 1y~ 1 (3.13)

which corresponds to the well known least
square single point estimate of Xy given

the measurement Yo and is independent of
estimates Xp-1° etc.

These considerations are relevant to selection of the a pri-
ori assumptions on Q. Similar conclusions are appropriate
for the continuous equations (3.3)-(3.4).

Smoothing.- The estimation algorithms of the last sub-
section yield an estimate, at any time t, of the state,
x(t), based on measurements y(t), up to and including
time t. One would expect, however, that the accuracy of
such point estimates could be increased if, in addition to
the past data up to t, future data from t to T could
also be incorporated. In the context of sequential estima-
tion approaches (as opposed to a batch estimation wherein all
data are simultaneously processed), smoothing is the generic
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operation for using future data to improve intermediate time
estimate accuracy. The Kalman filter estimation algorithm
- can achieve this by processing the data forward until the
last data point. The filter and smoother estimates are then
identical because they have the same information available.
Reverse smoothing then consists of stepping back from the
last measurement and forming the smoothed estimate by adding
a correction term to the forward filter estimates.

The process of stepping back through the data can be
shown [10] to not only reduce the uncertainty in the state
estimate, but also provide an estimate of the uncertainty in
the state (e.g., process noise). These characteristics then

lead to specific modes of smoother operation denoted as fixed

point smoothing and fixed interval smoothing. Fixed point
smoothing is the mode in which the accuracy of a specific
point estimate is improved. In particular, the initial con-
dition estimate of state and its error covariance are im-
proved based on all the data. Fixed interval smoothing is
the use of data over an interval to provide 1mprovements to
the estimates of the measurement noise statistics and the
process noise statistics.

It should be noted that smoothing type of iterations
can be performed over any span of data. Hence, local, iter-
ated smoothing is frequently used for improving estimates of
states whose actual transition dynamics are nonlinear.

The smoothing operation on data in a nontrivial com-
putational problem; the filter requires the storage
of estimates and covariances of, at most, two successive
data points. The smoothing solution requires that these
estimates and covariances be retained for all data points.
Further, the backward propagation of the filter may, for a
system whose transition matrix is stable, become unstable
(depending on data rate). Such a combination of high com-
puter storage requirements and possible numerical instabili-
ties has resulted in few examples of useful filter/smoother
implementations.

Rotorcraft State Estimation Algorithm

The Khigh dimensionality of rotorcraft state estimation
requires a highly systematic integration of the filter/
smoother characteristics discussed in the last section. The
DEKFIS program utilizes a Friedland-Duffy extended Kalman
filter with a locally iterated smoothing algorithm to pro-
vide the filter estimates. An additional fixed interval
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smoothing algorithm can be used to estimate the gusts (i.e.,
process noise) and provide smoothed estimates. This section
details the specific organization of the rotorcraft state
estimation algorithms.

Structure of model and filter/smoother.- The fundamen-
tal rotorcraft sensor model consists of two types of elements
in the filter state vector. These are the time-varying
states of the vehicle dynamic model and '"constant states"
associated with sensor biases. (These constant states will
therefore be referenced as biases.) The general filter
model will therefore be of the form

il(t) = £(xy,%,,u,t) + I (t)w(t) , x1(0) = X1, (3.14)

X,(t) =0 , Xp(0) = b (3.15)
with measurements
y(t) = h(xy,x,,u,t) + v(t) (3.16)

where X1, is the dynamic state initial condition and b,
is the a priori estimate of bias, and noise statistics

E{w(t)} = w(t)

E{[w(t)-W(t) ] [w(t)-W(t)]T} = Q(t)&(t-1)
E{v(t)} = v(t)
E{[v(t)-V()T[v(T)-F(1)1T} = R(t)S(t-1)

Equations (3.14) and (3.16) are nonlinear and must be lin-
earized in order to satisfy the linearity requirement of the
Kalman filter solution. These linearized equations are of
the form

x; = Fx; + Bx, + Gu + I'w (3.17)
5<2 = 0 (3.18)
y = Hx; + Cx, + Du + v (3.19)
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where

D A

Using the Friedland-Duffy approach, the filter equa-
tions can be written as sets of bias-free filter equations
for the primary states and bias filter equations for the
bias states.

Bias-Free Filter Equations:

~ ~ T T

M, = (0P & + TpQ Tpi)y 4 (3.20)
tl

X = J[ £(x;.95 Bjo1s Uy tiop)dt +oxg g (5.21)
t1—1

W MH T 3.22

Wi - (}{MH + R)i (J )

K., = w1 (3.23)

Xi 1

5 - 3 y 3.24

P, = [I - K.HI M, ( ‘)

Vi = Y1 - h()_(-i’ 0’ uls tl) (3'25)

A 3.26

x; = X; ¢ KXi vy ( )

where ® = exp{FAT}
-1
Tp = F - (e-I)T

.



Bias Filter Equations:

i} -1 ‘

Ui = @351 Vi1 * Byl {®1-1 - I}Bi—l (3.

S; = HjU; + Cy (3

Vi= U - Ky S (3.

~ o~ T

Wy =Wy o+ Sy Py S5 (3.
T o-1

K, =P st 4; (3

bi bi-l i1

P, = [I-K. S.]P (3.

b, b Sil Tby

Note that the primary state estimate at the ith time point

is denoted by &i and the secondary state (or bias) estimate

27)

.28)

29)

30)

.31)

32)

33)

is denoted by Bi’ The bias filter also utilizes Kxj» Wi and

re computed in the bias-free filter. These two

fully coupled by the composite state update which

vi which a
sets are
corrects t
the bias.
Composite
AC
X
1
pe
i
P
X
be

he bias-free state estimate for the effects of

State and Covariance Update:

—A

I V. X.
- i i (3.34)
01 .Pi
P P ]
= x xb (3.35)
T
)2 P
xb bly
=B, +v, P VI (3.36)
i i bi i
=V, P (3.37)
1 1
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For the local smoothing options, it is possible to iterate
on either the bias-free state estimates and/or the composite

state filter estimates.

Bias-Free Local Smoothing:

~

= % p T T T B
Xj.1)4 © X + P ¢, 1 [T - KHI; Hy R “vy

i-1 i-1

Composite State Local Smoothing:
K T T
oC ~C c c X H -1
X; 41s = Xi_q4 + P7_ . &I {I - |---| [H C]} R ™ v,
i-1}i i-1 i-1 “i-1 [ij} i 1T . i

where

o F l{s-1}B
0 I

2¢ =

The fixed interval smoothing equations are used when the
filter estimates are inadequate. These equations are neces-
sary when some states are driven by process noise (i.e.,
gust states) and it is necessary to estimate this process
noise. A further benefit of fixed interval smoothing is
that smoothing estimates are computed for all the primary
states. These equations are shown below.

Fixed Interval Smoothing:

~ ~ T
(1) x5 v = %3 - P30y
A T
(2) wign = %3 - Q3 T3 Ay

=|

Ty-1y <T..T
Ajop = (1 - PH;RSTH )P[0

T

-1 _ — -

i

Note that Ei is the estimate from the bias-free (forward)

(3.38)

(3.39)

(3.40)

filter. Using the above equations, it is possible to estimate

the process and measurement noise covariance by:
~ N
1 T
R = N-T I V.V:
i=1 t1?
48

(3.44)
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These equations are implemented in the filter/smoother
algorithm, which 1is initialized with a priori estimates of

Xy Po, Q and R. Figure 3.1 depicts the overall structure of

the filter/smoother, indicating the basic sequence of filter-
ing, fixed-point smoothing, and fixed interval .smoothing.

Rotorcraft State Estimation Program. The filter/
smoother algorithm of Figure 3.1 is used with different
rotorcraft models. The reason for some decomposition of
the rotorcraft model is basically computational; simultane-
ous quantification of all vehicle dynamic and measurement
system equations with a Kalman filter is simply beyond the
memory capability of existing computers (for a given finite
execution time limitation). The model decomposition 1is
based on the principal objectives of an overall rotorcraft
filtering approach.

For this effort, the objective is to provide state esti-
mates and sensor error coefficient estimates for use by sub-
sequent parameter identification software. The specific
models (to be included in the filter) which result to achieve
this objective are as follows:

(1) Fuselage/gust estimation to estimate the rigid
body translational and rotational states, errors
of the associated on-board and off-board sensor
model, and gust statistics.

(2) Rotor state estimator to estimate the rotor flap-
ping and lead-lag states.

(3) Force and moment static estimator to estimate the
distribution of forces and moments from load cell
sensors. (This estimator is denoted as the RSRA
estimator because its principal application is to
the Rotor Systems Research Aircraft.)

Table 3.1 summarizes the resdlting filter/smoother options,
and their applications.

Figure 3.2 illustrates the basic integration logic for
the three filter models in order to meet the application
requirements of Table 3.1. Detailed models for each of these
options will now be presented.

Fuselage/gust estimator equations.- The state and mea-
surement vectors for the fuselage/gust estimator are shown
in Table 3.2. The user of DEKFIS has the option of choosing
which states (and, hence, which equations are to be
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TABLE 3.1. — FILTER/SMOOTHER EQUATION OF MOTION OPTIONS

FUSELAGE/GUST ROTOR STATE RSRA
ESTIMATOR ESTIMATOR ESTIMATOR
Single Rotor J/
Helicopter Y
Multi-rotor J/ Repeat for
Helicopter each rotor
RSRA-Fixed Wing J J
Configuration
RSRA-Compound Y J/ J/
Configuration
Whirl Stand Y/
Data

integrated), which measurements and which process noise
sources are to be used for a particular problemn.

The X; vector is of size 25x1 and contains the primary

states for the fuselage/gust estimator. These are: the air-
craft attitudes — Euler angles ¢, 8, y; the aircraft iner-

tial velocities in the aircraft body axis Vo vy, v, the
fuselage angular rates — p, q, r; the linear accelerometer
indicated acceleration — axy» yg» 2zg (this differs from

the actual linear acceleration by .a first order lag asso-
ciated with measuring that acceleration); the angular accel-
erometer indicated acceleration — pI, qI, Ty (likewise

lagged); gust velocities in an inertial north, east, vertical
frame — VgN, VgE’ VgV; and the aircraft position in an
inertial north, east, vertical frame — XN, YE’ ZV

The y vector is of size 24x1 and contains the measure-

ments for the fuselage/gust estimator. These are: the air-
craft attitudes — $nr O Yo the airspeed in the aircraft

body axis — Vxn® Yym® Vim (or either alternately or redun-

dantly as Vm’ Bm’ a_ measurements); the aircraft angular
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FIGURE 3.2. — FLOWCHART AND OPTIONS OF STATE ESTIMATOR
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TABLE 3.2.—FUSELAGE/GUST ESTIMATOR VECTOR DEFINITIONS

cont'd
— — - - - [~ ]
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rates — P> 9p> Tpb the linear accelerometer measurements —
axy_» ayy > 8zp 3 the angular accelerometer measurements —

L] m L] m. m

PI,» 9Ip> rIm; and radar position measurements in an inertial

north, east, vertical frame — XNm, YEm, va (or alternately

Rm> BR> aRm)-

The x, vector is of size 50x1 and contains the biases
(i.e., b's% and scale factors (i.e., k's) for each of the

measurements.

The w vector is a 9x1 process noise vector. This pro-
cess noise drives the linear accelerations — Wi, Wy, Wzj the

angular accelerations — Wys Wg, Wes and the gusts — Wi, Wy, Ws.

The v vector is a 24x1 measurement noise vector each ele-
ment of which corrupts one of the aforementioned measurements.

The nonlinear fuselage/gust equations are presented below.

Primary State Equations:

é = p + (r cos¢p + g sin¢) tané

8 = q cos¢ - r sind

¥ = (r cos¢ + q sing)/cos8

V. =Vv.T-vV,q-g sind + g sinB(o) + Wy - wslzl + w6£yl

X y vA
+ (q2+r2)2,xl - qp 2Y1 - Trp Rzl

vy =V, P -V, T +g sin¢ cos® - g sind (o) cos6 (o) + wz-—wezX2
2,2

+ w4222 -pPq zxz + (p~+r )Qyz -rq 222

GZ =V, q - vy p + g cos¢ cos® - g cosd(o) cosb(o)
2,2
- - - +

+ Ws W4 st + ngxs pr 2’)(3 qr 2’}73 + (P Y )2‘23
13 = Wy
q = We
T = We
54
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yA

\Y%

a9 Vgy = %9 g

Vo COos8 cosy + vy sinf sin¢ cosy - vy cos¢ siny
+ v, sin® cos¢ cosy + v, sin¢ siny
Vo cos6 siny + vy siné sin¢ siny + vy COs¢ cosy
v, sin6 cos¢ siny - v, sing¢ cosy

"V sinf + vy c0s6 sing + v, cos6 cosod

Secondary State Equations:

.

X2

0

Measurement Equations:

¢

m

]

k¢ ¢+b¢+n1

k e+be+n

S yA
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kww +b

v

+n
Z

k V_+V + b + n
vx( x xg) Vg 4

= kvy(vy+ng) + b, + nc

y

kvz(vz+vzg) + b, + ng

P

k_ q+b
qa 17°q

k. -r+b_+n
T T

k +b
PP

+n7

+n8
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Z

= kax (ax + g sine(o)) + bax * 1y,

I

ayI

=ka
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I
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2 2

<
]

n - Ky ((vx+vxg+q 224-r Zy4) + (vy+vyg+r 2

x4‘P 224)

o 1 2
vV tP Ry ma Axy) ) * by * nyg

Bm = kB tan-l((vy+vyg+r QXS-p 225)/(vx+vxg+q 225
a = ka tan'l((vz+vzg+p 2y6-q Zx6)/(vx+vxg+q 226-r lyé))+ba+ njq
Rn = kR(XN2+YE2+ZV2)% tbp * 0y
BRm = kBR tan-l(-ZV/txgaYé%%) + bBR * N,
oR = kaR tan-l(—YE/XN) + baR + Ny,
where,
vo =

x_ = (VgN+VwN)cosecosw + (VgE+VwE)c03651nw - (VgV+va)51ne
Ye = (VgN+VwN)51nesin¢cosw - (VgN+VwN)cos¢51nw
+ (VgE+VwE)51n651n¢51nw + (VgE+VWE)cos¢cosw

+ (VgV+VwV)cosesin¢

<
I

z = (VgN+VwN)sin6cos¢cosw + (VgN+VWN)sin¢sinw

+ (V, +V,, )sinbcos¢siny - (V, +V,, )sindcosy
8¢ Vg 8 Vg

+ (VgV+VwV)cosecos¢

The parameters used in these equations are defined in
the fuselage/gust estimator parameter list shown in Table 3.3.
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TABLE 3.3. — FUSELAGE/GUST ESTIMATOR-PARAMETER
PARAMETER PARAMETER DESCRIPTION
INDEX
1-25 %, ic's (use uncompressed vector)
26-75 %5 ic's (use uncompressed vector)
76 ""1
77 Ly ) a, accelerometer location, ft (relative to c.g.)
S
79 txy
80 Lys } ay accelerometer location, ft
81 1tz
82 !.x3
83 £y3 } a, accelerometer location, ft
84 L25
85 xg
86 Lyy } V probe location, ft
87 124
88 le
89 Lys } 8 vane location, ft
90 Lzg
91 Lxg
92 zys ; a vane location, ft
93 1273
94 ay
95 ay
% o3 accelerometer time constants
97 ay
93 ag
99 ag
100 a.
7
101 ag l gust power spectral time constants
102 ag ‘
103 VuN
104 Vg steady gust components (wind)
105 Yy
58

LIST

SN S | R GRS (O RN TS RV AU TSN RS R

S



Rotor state estimator equations.- The state and measure-
ment equations for the rotor state estimator are shown in
Table 3.4. As in the previous estimator, the user has the

option to flag which states, measurements and process noise
sources he wants to use.

The X, vector is a 14x1 vector of primary states used

in the rotor state estimator. These are: rotor coning angle —
Bo; rotor longitudinal flapping — Bycs rotor lateral flapping —

BlS; similar fixed system coordinates for the rotor lagging

motion — Co’ Cice T1gs rotor azimuth angle - wR’ and the time

derivatives of each of these — 8 BlC’ 815, Zo2 G102 ClS’ and

b
The y vector is 13x1 vector of measurements for the rotor

state estimator. These are: the individual blade flapping
angles Bj i=1,6; the individual blade lagging angles Cigs

i=1,6; and the cosine of rotor azimuth — coszm.

The X, vector is a 26x1 vector of biases and scale fac-
tors for each of the aforementioned measurements,
The w vector is a 7x1 vector of process noise sources

each driving one of the seven rotor degrees of freedom
modeled.

The v vector is a 13x1 vector of measurement noises each
corrupting one of the 13 measurements.

The state and measurement equations for the rotor state
estimator are presented below.

Primary State Equations:

X, = +

1

lleo]
=

X1 w
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TABLE 3.4-— ROTOR STATE ESTIMATOR VECTOR DEFINITIONS
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where

1
1.0
' 1.0
: 1.0
F = 0 1.0 » I = 0
- = 1.0 - =
! 1-07.0
: 1.0
' 1.0
: 1.0
0 0 1.0
- 1 = 1.0
: 1.0
' 1.0
1
Secondary State Equations:
X, =0
Measurement Equations:
?1m = kgl(Bo-Blc cos (bpteq) - Big sin(wR+¢1)) *bg * 1y
?im = kBi(Bo-Blc cos (bp+d.) “B1g sin(wR+¢i)) * bg, * 1y
86m = k86(BO-Blc cos (Yp+de) -Bls sin(wR+¢6)) * bge * Mg
Clm = kCl(co-Clc cos(wR+el) -cls sin(wR+el)) + bC1 * n,
Cim = kCi(Co-Clc cos (Yp+6,) “Clg sin(wR+ei)) + bCi My

Sop = keg(5o701¢ cos (hpt8s) -1g sin(vprog)) + brg + my

coszm = kcosw cos(yp) + bcosw *ny3

The parameters used in these equations are defined in
the rotor state estimator parameter list shown in Table 3.5.
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TABLE 3.5. — ROTOR STATE ESTIMATOR PARAMETER LIST

Parameter Description
*1
2
¢z Blade flapping measurement
94 phase angles, rad.
b5
%6
%1
%2
04 Blade lagging measurement
0, phase angles, rad.
%5
%6

RSRA estimator equations.- The state and measurement
equations for the RSRA state estimator are shown in Table 3.6.

The X, vector is a 10x1 vector of primary states for the

RSRA estimator. These states are: the rotor forces at the
hub in the aircraft body axis system — XR, YR, ZR; the rotor
moments at the hub — Lp> MR, NR; the inertial accelerations

of the transmission in the body axis system — atx’ aty, atz;
and the sum of the engine and tail rotor drive shaft torques —

Qt‘

The y vector is a 10x1 vector of measurements consisting

of: the transmission load cell reactive forces — A, B, C, D,

E, and F; transmission accelerations — at_ , at_ , at_ ; and
Xm Ym Zm

total drive shaft torques — Qt'

Thez2 vector is a 20x1 vector of biases and scale fac-

tors for each of the 10 measurements.
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TABLE 3.6.— RSRA STATE ESTIMATOR VECTOR DEFINITIONS

5 =1 %R Xp = | Pa L=|A
1x1 | 'R 20x1 | % 10x1 E
Zo b
Lo by D
Mg b E
NR bF F
3ty baty Atxy
at, Baty 3ty
at, bat, Atz
Qt bQT th
_ kA _ .
kg
ke
kp
ke
ke
katx
katy
katz
kqr
w = v u=|» ¥o= I
1ox1 | "2 ex1 |9 ny
W3 r . N
w4 p
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w7
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The u vector is a 6x1 control vector of body angular
accelerations — p, q, r; and body angular rates —p, q, T
that are treated as deterministic inputs. These six quan-
tities should be obtained from a prior fuselage/gust esti-
mator Tun.

The w vector is a 10x1 vector of process noise sources
that drives each of the states.

The v vector is a 10x1 measurement noise vector.

The state and measurement equations for the RSRA state
estimator are presented below. These equations are based on
Reference (11).

Primary State Equations:

Secondary State Equations:

Measurement Equations:

A = hy Xp+hy Yp+hygZp+hy Lp+hy Mp+hy (Np-hymoar

'hl2“‘1:""'Cy'hls‘mt"“tz'hlclltxxp'hm(Itzz'lt},},)r P

*hygfemeat,hy4Qe-hygle, A-hyg(Ie It Jar
*hygfgmear ~hygfemeag, ~hygle,, T

“hygfempat, -hyo (It  ~It, Jpa + 1y

B = hyXpthyYpthpzlpthy LpthysMprhygNp-hyymeas

“hoyaMedt,~hasMeat, ~hole ( Prligg (Tt - Te, T p

+h24f6mtaty-h24Qt-hZSItrrq-hzs(Itxx—Itzz)q T
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+h2stmtatz'hzsfémtatx'h261tzz T
-h26f5mtaty-h26(1tyy-Itxx)pq t

f3 f f

1 1 3
= X - Z - -
¢ (F*E)"R - (F*E)°R C31+E25MR (F i)t *tx

I I -1
f t ( t tzz) fS m

+ L m, oa, + Y § o+ XX r - toa
(F 750t *tz 7 Tt EFE PR €IS PO L
. f6 m, . . n
(F+5) 7t~ 3

£, 1 £ It ,
D = Y, - N, + m,_ at + +
(F;+f) 'R (F*F5) R 1P Tty o (B
I, -1
+ ( tyy txx pq f5 mt a
(£1+£5) (F{+f5) by 4
. - I
p. Satfsth, RS S G 1 2 trz .
f1+fz3 R (£1+£5) R f1+£f3 t oty (£,+£5)
(It “I ) f. m
XX 57t
+ Yy : jole} + P a + 5
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ath = atz + 1'19
th = Qt * nlo
where,
R
11 21 2 (£1+£7)
b= en,, = 23, ety
12 22 Ye Yi(£1+£3)
R B
13 ° %23 7 7 7 (Fy+E,)
1
h = -h =
14 24 Yt
- =1
hys = hys 2(£,+£5)
(£,-£2)
h16 = _h26 = _.:___i__
ye(f1+£3)

The parameters used in these equations are defined in
Table 3.7. Figure 3.3 shows the RSRA transmission orientation
on the airframe and the location of the six load cells (A-F).
Figure 3.4 shows the physical description of the parameters.
The most basic parameters are Xes Yo Zps Zp and it where:

Xys Yg¢» 2, are the rotor mounting geometry dimensions in the
transmission principle axis system; Zp is the distance from
the rotor hub to the transmission center of gravity along the

shaft; and it is the transmission incidence with respect to

the longitudinal body axis.
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TABLE 3.7. — RSRA STATE ESTIMATOR PARAMETER LIST

Parameter Description
Y7 See Text
Xt . .
f] f] = 5 cos i, + (zR + Zt) sin iy
Xt . L

fs fy= 5 cos i, - (zR + Zt) sin i,
e .

f3 fy= (zR + Zt) cos iy + = sin iy
Xt

f4 fy = (zR + zt) cos iy - 5= sin iy

f5 f5 = zp sin it

f6 f6 = zp coOS it

Mt Transmission mass, slugs

Itxx

I Transmission principle moments of inertia,

tyy slug - ftZ2,
tzz
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CHAPTER IV

MODEL STRUCTURE ESTIMATION

Requirements

System identification methodology has been used success-
fully in many applications. This wide scope of application
has focussed attention to one particular phase of the system
identification methodology--the model structure determination
phase--as an essential step. This step consists of proces-
sing the input/output data to determine the significant
linear and nonlinear equations and associated parameters
which are necessary to represent an observed system response.
The significance of model structure determination in the
overall system identification procedure is illustrated in
Figure 4.1. A number of techniques must be used in the data
processing stage, particularly for nonlinear operation re-
gimes, to obtain the maximum information from the data for
any particular rotorcraft. In the first stage, unmeasured
or failed channels of data are reconstructed based on avail-
able measurements. This also gives preliminary force and
moment coefficient time histories of interest. In the model

TEST DESIGN

INPUTS

TEST DURATIONS
INSTRUMENTS AND SAMPLING
RATES

f

TEST PLAN
3

CONDUCT TEST

TEST DATA

h 4
DATA PROCESSING
® DATA RECONSTRUCTION

® MODEL STRUCTURE
DETERMINATION (MSD)

e MAXIMUM LIKELIHOQD
IDENTIFICATION

! SYSTEM MODEL

MODEL VERIFICATION

e CONFIDENCE BOUNOS
e PREDICTION CRITERIA, ETC.

v

FIGURE 4.1.— ROLE OF MODEL STRUCTURE DETERMINATION IN
ROTORCRAFT SYSTEM IDENTIFICATION PROCEDURE.
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structure determination (MSD) stage, the dependent forces
and moments are related to the independent variables (e.g.,
angle-of-attack, Mach no., etc.) to provide the model with
the most useful predictive capability. The maximum likeli-
hood method is used in the third stage to refine the para-
meters of the model structure selected in the previous stage,
as well as to validate the model structure.

It must be noted that this procedure will produce a
mathematical model from the data which represents the par-
ticular data characteristics. No one set of data can com-
pletely define a unique model for all possible conditions.
Additional dynamic tests (with specified input designs),
scale model tests, or analytical correlation are always
required to arrive at such a unique model. These additional
requirements are discussed in detail in this chapter.

This step is particularly important in rotorcraft model
identification because: (1) general rotorcraft models tend
to be of high order with many dynamic effects, (2) rotor
dynamics may or may not be important in any maneuver, (3)°
longitudinal and lateral motions may be coupled, and (4)
there are significant nonlinearities in aerodynamic behavior
particularly near hover and in transition.

Clearly the model structure determination is an extreme-
ly important step in rotorcraft identification work. Yet,
the authors ‘think that this is the first attempt at MSD for
rotorcraft. The basic rotorcraft characteristics add new
complexities to the problem. This chapter will also discuss
how some techniques previously used for fixed-wing airplanes
are specialized to rotorcraft applications. Numerical ap-
proaches are also described because the number of models to
be tested may be very large.

The second section discusses the general model struc-
ture estimation method. Specializations required for rotor-
craft applications are given in the third section. Finally,
the fourth section describes the basis of a specific algo-
rithm on which the computer program developed in this effort
is based.

Model Structure Estimation Approaches

Though the fundamental problem of model structure esti-
mation has been recognized since the origin of physical
science, the utilization of statistical methods to systemat-
ically determine significant characteristics in nonlinear
dynamic systems was first presented in 1974 [12,13]. Such
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methods have been applied to static systems [14] (e.g.,

in econometrics and biometrics) and to linear systems
[15]. From a more fundamental approach, however, the
work of Akaike [16] and Kullback [17] provided the sig-
nificant theoretical formulation concepts for both linear
and nonlinear systems. The theoretical basis of the methods
discussed in this chapter is found in the cited work of
Thiel, Akaike and Kullback. The application to aerospace
systems can be traced to the work of Gerlach [18] in the
Netherlands who demonstrated the use of a linear technique
on actual test data.

The model structural determination process for rotor-
craft has been isolated into three significant issues:

(1) Specification of classes of a priori models.

(2) Criteria for hypothesis testing of data against
models. -

(3) Numerical procedures.

Specification of classes of a priori models.- The
first major step in the model structure estimation process
is the selection of mathematical forms to be correlated and
tested against data. The specification of these models must
be sufficiently broad to include the most probable relation-
ship without attempting to consider all models. In order
to form a tractable a priori model base, the following gen-
eral considerations have been found to be relevant:

(1) It is useful to recognize two aspects of mathemati-
cal models of physical systems. Basic models are
derived from fundamental physical laws. Useful
engineering models are, to some extent, empirical,
wherein many of the system interrelationships are
defined by tests and appropriate interpretation of
the results. This obviously means that the role
of physical engineering analysis in the model
structure estimation process is essential. 1In
particular, it is important to keep in mind that
rotorcraft may have faster and slower modes.

(2) The ultimate validation criteria, which include
ability to explain existing data, consistency of
empirical results with phenomenological considera-
tions and ability to predict data, dictate model
form.
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(3) The objective for which the model is to be used
will indicate the levels of complexity required
and the regime over which the model should be
valid. This means that there may not be a unique
model to describe a particular vehicle. In fact,
model selection depends mainly on the use to which
the model is put.

Selection of Functional Forms.- In order to optimize
the initial model for computational speed and numerical
accuracy, it must include elements of known phenomenological
behavior supplemented by various classes of functional
forms, depending on the particular problem. In the absence
of strong phenomenological evidence to the contrary, poly-
nomials are well known as simple and versatile choices for
mathematical models. Indeed, polynomials serve exceedingly
well in modeling 1ift, drag, and moment coefficients for
helicopters. If, however, it is known that the process is
susceptible to a growth phenomenon, such as vortex buildup
from aircraft control deflections, exponential or logarithmic
functions are desirable. The use of polynomials should
therefore be undertaken with a reasonably clear understanding
of the limitations. This fact was emphasized in the second
chapter. Factors which affect the particular polynomial form
including the following:

(1) A priori phenomenological information about the
process.

(2) Range of variation of the dependent variables (and
possibility of differences in physical phenomena
over that range).

(3) Specification of whether the polynomial is to be
differentiated (requiring valid slope representa-
tion) or integrated (requiring high reliability in
the initial value). ‘

(4) Computationai resources available to use the model
(in terms of speed and memory).

To meet these requirements, two basic polynomial formu-
lations have been used, as shown in Table 4.1:

(1) A regular polynomial is used to represent a simple
continuous phenomenon. This polynomial is usually
linear in the unknown parameters Ci (though many

cases arise in which the polynomial is nonlinear
in the unknown parameters). For improved numeri-
cal conditioning, orthogonal polynomials are

desired. The classical orthogonal polynomials of
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TABLE 4.1.— SELECTION OF FUNCTIONAL FORMS FOR MODEL STRUCTURE DETERMINATION

TYPE OF

PHENOMENON BASIC FORM IMPROVED NUMERICAL CONDITIONING
POLYNOMIAL ORTHOGONAL POLYNOMIAL
m ; m
Homogeneous y= I Cx y= I cipi(x) 0<x<1
i=0 i=0
b
where f Pu Py dx = Gmn
a
SPLINE B-SPLINE
m ; n m ; m+1 (m+1)(x-x1.+1)q
Heterogeneous y= I Cix + T X C]..(x—x.) y. = I N CP)
i=0 j=1 i=vt1 J =0 AR
v = m-1
j 0 X < xJ
where (x-x;)' = oxtt o n Wi(x) = (%) (x=xg,) - (x~xj+q+1)
J N




Legendre, Laguerre, and Hermite may be generated

by three term recurrence relations which are easily

programmed. The Tschebycheff polynomial is known
to demonstrate the properties of both the Fourier
series and the orthogonal polynomials [19].

(2) A spline of order n and continuity v is used
to represent a simple heterogeneous phenomenon.
The spline function consists of piecewise poly-
nomials wherein the derivatives are continuous.
Hence, the spline preserves the continuity of
lower order derivatives across function discontin-
uities. There are n+l regions defined by
X <Xy, X] £ X < Xg,...,X < X. At each of the

transition points, X5 which are called knots,

the first derivatives of the function y are
continuous. The independent variable y is a
linear function of parameters, Ci’ but is a non-

linear function of knot locations. B-splines are
used for improved numerical conditioning (see
Table 4.1).

The representations for a single independent variable
can be generalized to many independent variables in several
ways. Straightforward generalizations of the polynomial and
spline forms for two variables are given in Table 4.2. Such
an approach is useful for cases where the number of indepen-
dent variables and/or terms in approximating polynomials is
small. For several independent variables, a more organized
procedure has been found necessary. The method which has
been implemented to achieve this is an extension of
Ivakhnenko's group concept [20]. Table 4.2 shows the typi-
cal equations which are used to evaluate large levels of
subsets of model terms. For example, the equation of Table
4.2 (for regular polynomials) is written in terms of the
second variable for all the unknown variables in the first

equation.

The models specified using the above procedure will
in general be too complex. The next section discusses sta-
tistical criteria which are used to simplify the above rep-
resentations such that useful models are obtained from a
limited set of data.

Quantitative criteria for comparison of competitive
models against test data.- The representations of the pre-
vious sections are quite flexible and allow for a very large

number of model structures. In certain applciations, several

competing representations based on different independent
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TABLE 4.2.— GENERAL POLYNOMIALS FOR FUNCTION OF SEVERAL VARIABLES

TYPE OF

i
1
ciljliZjZ[x“)-le(l)] [x(2)

- sz(s)112 ‘...

PHENOMENON BASIC FORM HIERARCHICAL FORM
MULTIPLE SUBSET POLYNOMIALS
ml mz . ; j m1 ;
Homogeneous = L L Ci. x (1) x'(2) y= L C].x (1)
i=0 j=0 M i=0
M2 f
C.= & C.x'(2)
LS
POLYNOMIAL SPLINE MULTIPLE SUBSET SPLINE
m i i, oy o i
Heterogeneous = I L Ciix (1) x <(2) = I %x(1)+ b bX qju(n-x42n+
=0 i,20 "1'2 i=0 3=0 i=v¢l J
NNy m m, ny i m mw i
L £ I b3 = I dix (2) + & b dij[x(Z) -xj(2)]+
J1=l J2=1 11=v1+1 12=v2+1 i=0 i=1 i=v2+1




variables may be hypothesized leading to a further increase
in the number of plausible model structures. The use of
measured data isolates the most likely model and indicates
model adequacy in explaining the observed behavior. This
section discusses several classes of criteria used for this
purpose. The tradeoffs to be considered in the particular
selection of the criteria are:

(1} The distribution function of the noise. Certain
criteria are applicable when the noise is white
Guassian while others are more general;

(2) A priori knowledge about noise distribution func-
tion; and

(3) Number of models to be compared.

Let there be N sets of measurements (or reconstructed
values) represented by Y and xi(l), xi(Z), cees xi(p),

i=1,2,...,N. Quantitative criteria used for model substan-
tiation based on this data may be divided into four broad
categories, shown in Table 4.3. Note that all these criteria
can be used with both the equation error and the dynamic
model formulations.

Fit error statistics. Fit error is a measure of the
difference between the measured response and its estimate
based on the model. Suppose two models M1 (with m; para-

meters, 61) and M, (with m, parameters, 62) are to
be compared. Let ?i(Ml,ﬁl) and ?i(Mz,gz) be the esti-
mated valEes of Y3 based on models My and M,, respec-
tively (91 and 6, are the corresponding parameter esti-
mates). Then the fit error leads to the following criterion

N
1 “ 2 .
N' iﬁl[yl-yi( 1361)] < 1 Select Model Ml
1 N o X 2 (4.1)
N izltyi-yi(MZ’ez)] > 1 Select Model M,

Improved results are obtained if the fit error is corrected
for the number of unknown parameters in the model. The
adjusted fit error for model Ml is
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TABLE 4.3.— COMPARISON OF CRITERIA FOR VALIDATION OF
MODELS AGAINST TEST DATA

CLASS EQUATION COMMENTS

FIT ERROR

e Error Covarianca %- Z(yi-§i)2 e Since fit error always increases with
: number of parameters, subjective termination
criteria required.

. 1 - -
e YWhiteness Test § Y Ve ere,
iy = 1 . 232
® Fit Zrror Corrected for - :.(yi-yi)
Degrees of Freedom N

LIKELIHOOD APPROACH

e Likelihood Ratio p(YIMI,el)/p(Y Mz.ez) e fquations given for two models--see text for
generalizations

Requires knowledge of probability distribu-

tions, a priori

e Log Likelihood Ratio 1og{p(¥|M1,§1)/p(Y]M2,§2) e Works with any noise distribution
Corrected for Degrees
of Freedom -2m, + 2m
) 1 2
PREDICTION ERROR M
: p
¢ g::s-c:no?:g:g;:::;? N_I' 1'51 (yi 'Y1p)2 ® Excellent when model is used for prediction
Data Set P
® Estimate Over Same le 1 N ~ 42
Region as Data —N'ml Ty 151(y‘-y1) e Automatically incorporates degrees of freedom
® Estimate Over a New 1 P2, a2
Region N Lo [ogroyiy)]
pi=1
F-RATIO 2 .
e fquation F-Ratio —L——g i e Most used test in econometrics and biometrics
(1-R%)/(N-m)
(R3-7)/m,
® Parameter F-Ratio o Lasy to implement

R )
\l'Rz)/(N'ml'mz)

® Parzen's Test See Ref. 13 ® Excellent for a first cut




N
N-m .5

1’ i=1

The fit error should be rarely used directly for comparison
of models. It is, however, very useful in establishing the
validity of the model selected by other approaches.

Likelihood ratio statistics. The likelihood approach
has been used extensively for both parameter estimation and
comparison of competitive models based on test data. The
central concept is the likelihood function, which defines
the probability that the measured data were generated by any
specific model or any set of parameter values. The likeli-
hood function for model My is p(YIMl,el) where Y is

the set of measurements Y1sYgoeeesYy and @1 is the maxi-
mum likelihood estimate of 61 assuming model M1 holds.

The model selection criterion is the ratio of the likelihood
functions for models M1 and MZ' The likelihood ratio

must, however, be corrected for the degrees of freedom.
Otherwise the results will always favor more complex models.
When there are p competitive models to be compared, the
following procedure may be used.

Step 1: Compute Ji, i=1,2,...,p

J; = en {p(Y|M;,6,)} - 2my

Step 2: Let Jj be such that

Jj > Ji’ i# 3

Then J. 1is the '"most likely" model.

For two candidate models the method simplifies to

A

p(YlMl,el) >0, Select M1
2n {———————;—— --2m1+2m2 (4.3)
p(YIMZ,ez) <0, Select M,

Important generalizations of the likelihood ratio result

when one model is the subset of the other model, or in gener-

al, all models considered are subsets of the same maximum

0

[yi';'i(Mlsél)]z (4~2)

S

)

S
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model. Let the maximal model be characterized by parameters
6. When certain parameters are zero, a lower order subset
is obtained.  (Note that this may be used to model a wide
variety of situations.) The log likelihood function may
then be expanded in_a multidimensional Taylor series about
our best estimate 6 of 6.

in p(Y|8) = 2n p(Y|d) « 22 PUIB) (o 3y (4.4)

+ 2 0-8)T Mo -8) +

where M is the information matrix. Since & is the best
estimate of 6, the first gradient of the likelihood has

mean zero and covariance M'l. To test the hypothesis that
a lower order model is valid, the estimated 6 equal to
zero will decrease the likelihood function significantly.

A model structure determination principle based on this con-
cept was detailed by Gupta [21].

The likelihood method is optimal under a variety of cir-
cumstances. Its rigorous applicability is limited by the
theoretical requirement to know the probability density of
the measurements for each model.

Prediction error statistic.- The capability of a model
to predict system responses for a class of inputs is a
desirable quality. Therefore, prediction error of models
may be used as the quantitative criteria to select the model
which best substantiates the measured data. There are two
methods to determine the prediction error of a model. In
the first method the measured data is divided into two parts.
The first part of the data is used to estimate unknown para-
meters in each model. The estimated models are then used
to predict the response for the second data set. The model
which predicts the response most accurately is the desired
model. The second method is indirect where the prediction
error is estimated statistically. The prediction error is
either based on the same input as the one used to estimate
the models or covers a different region (the choice depends
on the ultimate application of the model). A good estimate

of prediction error for a model M1 ‘with m, parameters
over the data region may be shown to be [16]
N+m N
1)1 A N 2
Nom, )N L5 Dy -y (8005 - (4.5)

1 i=1



The prediction over a data region ypi’ i =1,2,...,Np is
computed as follows. Let ?pi(Ml,él) be the estimated
value for vy i with mean square error Si(Ml) for model

M If cg is the variance of noise in vy the predic-

1°
tion error is

pi’

1 P2 a2
T I [0 + os(M))] . (4.6)
Np j=1 1 iv1
Prediction error criteria are most useful when the estimated
model is to be used for simulation. They automatically in-
corporate the degree of freedom correction for number of un-

known parameters in the model.

F-ratio statistic.- The F-ratio is perhaps the most
widely used statistic for model hypothesis testing
in econometrics and biometrics. The test is based on
the assumption of normally distributed random disturbances
and requires a priori specification of acceptance-rejection
boundary.

These assumptions are restrictive, and as noted in Ref.
12, F-tests should not be used as the only criterion for the
adequacy of a model. On the other hand, they do have com-
pensating attributes which include the following:

(1) Standard algorithms have been optimized for com-
puter implementation of F-ratio statistical hypo-
thesis testing. They allow the consideration of
an extremely large number of models.

(2) A relative maximum of the F-ratio with the number
of parameters is often found in practice. This
maximum is cited in Ref. 12 as an experimental
result, which to the authors' knowledge, has not
yet been investigated by other researchers.

(3) For many practical cases, it gives the same result
as more sophisticated approaches.

The desirable performance of the F-ratio, in spite of the
assumptions, is presumably due to the robustness of the
statistic and the particular self-check features used in the
implementation. In particular, application of the F-test
criterion on properly prefiltered data has been found to
improve the utility of the statistics. Three approaches
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have been used based on: (1) equation F-ratio, (2) parameter
F-ratio, and (3) Parzen's test. The equation F-ratio tests
the validity of the entire model. It is given by

y
= le /m (4.7)
(1 -R“)/(N-m) |

where R 1s the equation multiple correlation coefficient,
N 1is the number of data points, and m 1is the number of
parameters in the equation.

The parameter F-ratio statistic is applied as follows.
Suppose that the complete set of parameters 6 is divided
into two subsets of 61 and 6, of size my and m,. An

F-test can be used to test the hypothesis that 6, is equal

to any specific value (usually zero) while parameters 64
are chosen to minimize fit error. The F-ratio of parameters

62 is

(R - RT)/m,
F(ez) = > (4.8)
(l-Rz)/(N-ml-mz)
where
R1 is multiple correlation coefficient with para-

meters 61
R, is multiple correlation coefficient with para-

meters el and 92

If the F-ratio is small compared to a threshold, parameters
82 may be set to zero. F-ratio for parameters in the equa-

tion is computed in a similar manner. In practice, the F-
test is performed on single parameters rather than on sets
of parameters.

Parzen [22] devised a unique method based on the F-
statistic to develop models for physical systems. The
method assumes that the '"true'" model is very complex and
has several degrees of freedom. Since the measured data
contains noise and does not encompass the entire operation
regime, the estimated model must be a simplified version of
the true model. Each simplified model is then compared with
a high order model using an F-statistic.
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Summary.- Quantitative criteria presented in this sec-
tion look at model structure optimality from different view-
points. Extensive experience has indicated that for well-
behaved systems, all the tests (except fit error) give simi-
lar model structures if the noise has a normal distribution
and the specified a priori minimal model includes all the
effects observed in the data. If the distribution of the
noise is significantly-different from normal or if the noise
is not white, the likelihood ratio test gives the best
results.

Numerical procedures.- Implementation of methods to
develop models from test -data must consider the following
factors:

(1) The number of hypothesized models may be very
large (number in billions or more is common).

(2) All models contain some level of modeling error
(i.e., no model of a physical system is perfect).
The models are 'good" or '"poor,'" not "right" or
"wrong."

(3) Many physical systems are dynamic. The modeling
of system dynamics may improve the model structure
estimates. '

(4) Distribution functions are usually not known and
must be approximated.

(5) It should be possible to incorporate the analyst's
opinion.

(6) Computation time should be reasonable.

These factors indicate that proper implementation is a key
part of the successful model structure determination process.

Three formulations have been successfully used:
(1) Equation error.
(2) Kalman filter (or Extended Kalman filter).

(3) Maximum likelihood (or its special case, output
error).

Equation error formulation.- In the equation error for-
mulation, measurements of dependent and independent variables
are related by
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Y = £(X,0) + e, i=1,2,...,N (4.9)

Yi is the set of p independent variables at the ith

point and 6 is the kx1 vector of unknown parameters.
Yy
measurements. For example y; may represent angular accel-

erations obtained by differentiating measurements of angular
rates. Such reconstruction is often necessary in equation
error formulations. The results shown here are for uncor-
related and Gaussian noise, though extension to other cases
is straightforward. The above equation is linearized about
the nominal value 60 of the parameter vector

and Yi are obtained by reconstruction from available

_ _ 8f (X;,8,)
Y -f(Xi,eo) A 5 (6 —eo) * ey (4.10)
0
i=1,2,...,N
which may be written as
AY = AAB + € (4.11)

AY is an Nx1 vector and A is an Nxk matrix. Note
that Eq. (4.1) will usually be an overdetermined system

(N>K). A8 is chosen to minimize ||AY - AAGIIZ.

Nominal parameter values O, are obtained either from

a priori estimates or from a previous iteration. Equation
(4.11) must be solved a number of times until convergence
occurs. Most nonlinear equations of engineering signifi-
cance can be solved by iteratively forming and solving a
series of linear equations (4.11).

A straightforward way to evaluate all of the possible
models is to solve the complete least square problem for
each of the parameter subsets. This is unpractical even
for systems with 25 unknown parameters (34 million models).
One method to make the procedure feasible is to use the
stepwise regression procedure [12]. By considering one
parameter at a time, only a small fraction of all the sub-
sets is tested. This allows the analysis of models having
up to 400 candidate parameters. One disadvantage of the
method is that it usuwally finds only one subset of each size,
unlike the complete search methods.

85



Kalman filter.- The Kalman filter and extended Kalman
filter have been applied to many problems in state estima-
tion, parameter identification and fault detection. Like
the least squares method, the parameter estimates resulting
from a Kalman filter are biased. To use this approach for
model structure estimation, one set of dynamic equations is
written for each model proposed, i.e., for the ith model

ii = £(M;,x;) + w(t) 0<t<T (4.12)

y(k) = h(Mi,xi,k) + v(k) , k=1,2,...,N (4.13)

The states X; of course, include the unknown parameters

in each model. An extended Kalman filter is developed for
these equations. One or more of the following quantities is
then used to compare the models:

(1) Innovations: The innovation for model i 1is
y (k) -;(k,k—l,Mi). Its bias and covariance is

a good measure of one-step-ahead prediction error.
It could also be used to compute certain likelihood
ratios by making suitable assumptions. The prob-
lem with innovation is that while the parameters
are being adjusted in the initial portion of data,
innovations are large and more complex models may
be unnecessarily penalized.

(2) Fit Error: The fit error for model i is
y(k) -y(k N,Mi) and can be used like innovations
to compare models. Residuals may also be used.
(3). Parameter Estimates and Covariances: This is a
poor basis of a test because predicted covariances

are often grossly in error when determined using a
Kalman filter.

Problems with using a Kalman filter for model structure
determination are: (1) choice of measurement and process
noise covariance have a strong influence on model; in general,
increasing process noise covariance will result in less com-
plex models, (2) filter divergence because of poor starting
values may invalidate an otherwise good model, and (3) since
one extended Kalman filter is required for each model (34
million Kalman filters for a problem with 25 parameters,
each of which could be zero), the method often requires un-
acceptable computation time in practical systems.
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Maximum likelihood method.- ~Several of the problems
associated with extended Kalman filter may be solved by
using the maximum likelihood method. This method has been
described extensively [12,13] in the literature. It gives
accurate estimates of parameters as well as associated error
covariances. Though all of the quantities used for model
comparison with Kalman filter may be applied, the liklihood
ratio and prediction error tests are most appropriate. In
certain cases, log likelihood ratio expansions of the kind
shown in the likelihood statistic test section can simplify
the implementation significantly.

The maximum likelihood procedure is very general and
includes equation error and Kalman filter procedure as spe-
cial cases. A major problem with a direct application of the
procedure for model structure estimation is the excessive
computation time requirement. This technique is best applied
when the equation error has substantially reduced the number
of plausible models.

Summary.- A comprehensive advanced model structure
determination for dynamic systems is an essential aspect of
system identification for rotorcraft. The critical elements
of such a procedure are:

(1) Specification of functional forms for useful

models.

(2) Criteria for selecting an adequate model against
competing models.

(3) Efficient numerical algorithms for integrating the
conflicting requirements of adequate functional
forms and accurate criteria.

The next section will show how these choices are made
for rotorcraft model structure determination problem.

Rotorcraft Model Structure Estimation Method

The previous section discussed a fairly comprehensive
model structure determination method for a wide variety of
rotorcraft. Conceptually, any combination of functional
form, model evaluation criteria and numerical procedure may
be used in developing mathematical models of rotorcraft from
real time data. Practically, the choice of an acceptable
combination is dictated by the following considerations:
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(1)
(2)

(3)

4)

(5)

(6)

Rotorcraft models are usually of high order with
complex interactions, both mechanical and aero-
dynamic between rotor(s) and fuselage.

There are many different classes of rotorcraft and
very little experience exists in processing rotor-
craft data.

There is poor wind tunnel data base for many
helicopter types and analytical simulations (like
C-81) though useful for simulations are not as
good for determination of model form.

The characteristics of typical rotorcraft change
significantly from hover to transition and cruise.
In addition, functional relationships between forms
of aerodynamic coefficients at various speeds is
not thoroughly understood.

-Because of model complexities, certain important

interactions are likely to be unidentifiable for
any maneuver.

In the face of the above problems, the computation
time should be reasonable even for complex and long
maneuvers in which several control inputs are
applied sequentially or simultaneously.

These considerations suggest the following selections:

1

(2)

(3)

A model based on dynamic equations of motions, in
which all unknown functional forms (aerodynamic
coefficients, interaction coefficients, unknown
torques, moments and forces) are written as multi-
dimensional polynomials in corresponding indepen-
dent variables.

F-ratio, equation F-ratio or prediction error
criteria are used in model selection.

The equation error method is used in the model.
This is partly justified because the MSD step is
followed by a parameter identification step based
on the maximum likelihood technique.

We now describe an algorithm based on the above selec-
tions in detail.
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Description of a Model
Structure Estimation Algorithm

The use of the state estimation approach as the first
step on the data, and the selections of the polynomial func-
tion forms and equation error approach lead to a model struc-
ture problem in the following general form

y = X6 + ¢ (4.14)

where y 1is an (mx1l) vector of observations, X is an mxp
matrix of known coefficients (m>p) and 6 is a pxl vector
of parameters. € 1is an (nxl) vector of disturbance or error
random variables with &(e) = 0 (zero mean) and variance

£(€6T) = 021 (components of € are uncorrelated with the
same variance cz).

Basic principles.- Minimization of J with respect to ©
yields the well-known least squares estimator

6 = (xIx) 1xTy

where (XTX) is nonsingular. Substituting Eq. (4.14) into
Eq. (4.15), it is easily shown that

&6) = o (4.16)

el6-0)(6-0)T1 = o2 xTxy 1L (4.17)

where X 1is fixed in repeated samples and assuming
e(x'e) = 0.

In actual experimentation, o2 is not known and must
be estimated. This is due to the fact that ¢ = y -Xe, the
error, is a nonobservable, stochastic variable. However,

estimates of the variance of ¢ = y - X8 (Fig. 4.2), sz, may

be determined which estimate 02. The sum of squares of

the residuals is found by solving Eqs. (4.11) and (4.14) for

ATA .
ee, 1i.e.,

eTe = (y-x8)T(y - x6) = eTowe
=y1ﬂy
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where .= (I_-X0X'X)“'xT). Note that .#? =.w =.4". Since
A is thus idempotent and tr.# = m-p,*¥ taking the expec-
tation of Eq. (4.18) yields

AT
€

m_

m>

2

P sl Xy -x) = ©(4.19)

o]

which estimates 02. Equation (4.19) in Eq. (4.17) gives

A

the sample estimate of the covariance of §

B-0)(8-0)7 = s?2xxt . L (4.20)
Note that Eq. (4.15) produces unbiased estimates of § ohly

if the model is correct.

Decomposition of variance.- Substituting the estimate
into J, 1t is found that

J=2:T2 =4ty - 5T (4.21)
whgre
Yy =E (¥|X) = X6 . (4.22)

Equation (4.21), a consequence of orthogonality theorem of
least squares, decomposes the sum of squares of the data

variation (yTy) into the contribution from the sum of
squares of the regression equation (¥.y¥) and sum of squares
of the residuals (ETE), i.e.,
yly = 375 + &T¢ (4.23)
The basic idea of subset regression is to compute the
reduction in error sum of squares (ETE) relative to the
increase in regression sum of squares (¥1y) which is

*The rank of I - = )(()(TX)-1 is p, and the rank of Im

is m. If the observations are not centered, then p is
replaced by  p+l1.
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caused by adding (or subtracting) new variables ei in the

regression. Ratios based on these incremental sum of squares
may then be used to determine the significance of these
added parameters. These ratios may be formulated as test
statistics for which, under the assumption of normally dis-
tributed errors, €, standard significance testing may be
performed. That the errors are, in fact, normally distri-
buted, is justified by the central limit theorem on the nor-
mality of the distribution of a large number of random dis-
turbances.

Significance of the regression equation.— The solution 6,
Eq. (4.15), to the minimization of error sum of squares is
unique when X has full column rank. Any coefficient vector
which differs from the least squares vector & must lead to
a larger sum of squares. That is, for any other coefficient
vector, 6,

(y-X8) = (y-X8) - X(6 -8) (4.24)

has an error sum of squares

(v-xe)T(y-x0) = yT y + 0-8)Tx"x(6-8) . (4.25)

The quantity (6-§) is the "sampling error" of the regres-
sion.

Assume that it is desired to test the hypothesis that

8 1is some specific numerical value, say 60 (e.g., eo =0

if there is not dependence of the data on ©). Then, if

eo is the true value of 6,

-0 = 68-8 = X'x) TxT(xe+e) -0 = xTx) IxTe. (4.26)

Using Eqs. (4.18) and (4.16), Eq. (4.23) then becomes

y-x6 )T y-xe) = €T e+ (1 ~u)e . (4.27)

In order to fulfill the requirements for using statis-
tical tests based on the sum of squares of Eq. (4.27), it is
necessary to recall the fact that an indempotent quadratic
form in independent standardized normal variates is a chi-
squared variate with degrees of freedom given by the rank of

91



the quadratic form* (Sec. 15.11, Ref. 23). Furthermore, if
the two normalized sum of squares Si/c2 and Sj/c2 are
Xz(vi) and xz(vj) distributed, and S and Sj are
independent, then

L (4.28)

is a Fisher F-ratio distributed with vy and v. degrees
of freedom. J

As discussed after Eq. (4.18), the rank of .# is m-p
and that of I -.# 1is p. Thus, the ratio

e (1 - ) e/p (4.29)

el e/m-p

is distributed as F(p,m-p), if 6 =6_ . But from Egs.
(4.18) and (4.19), eT = (m-p)s2 and it is easily shown that

el (1 -i)e = (6-eo)xTX(e-eo), if 6 = 6_. Hence,

(6-eo)xTX(6-eo)
5 ~ F(p,m-p) (4.30a)
ps

Examination of Eq. (4.24) shows that the numerator of Eq. (4.26)
is the difference between the sum of squares regression on
8, and the sum of squares of the actual parameters 8.

High values of F(p,m-p) correspond to rejection of the
hypothesis that 6 = 6o° In particular, to test whether the

data depends on a specific parameter, 8 of 6, the
F(p,m-p) ratio is evaluated for eo = 0,

A sum of squares Si can be written as yTAy where y is

vector, A 1is a matrix of known constants. Then the number
of degrees of freedom of Si is defined to be the rank of

A.
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A recursive form of Eq. (4.30a) is

(8-8,)XX(8-5 )
F(q,m-p) = > (4.30b)
gs

where q 1s the number of parameters in the regression at
any stage in adding (or deleting) parameters to improve fit.

The F-ratio tests are based on quotients of regression
"fit" to error "fit." The quantity,
2 _ )T xd)
T
yy

Al A T
yTy/y y (4.31)

measures the regression sum of squares to observation sum

of squares. The positive square root of Eq. (4.31), R, is
the multiple correlation coefficient. The closer R 1is to
unity, the better the performance of the subset of regression
variables. Note that R 1is the cosine of the angle between
the data vector and the p dimensional subspace spanned by
the included subset of regression variables.

From the sum of squares decomposition (4.20), and
Eq. (4.31), it may be shown that

2
F - —R/p1 (4.32)

(1-R?)/ (m-p)

which expresses the F-ratio in terms of RZ.

The closer R 1is to unity, the stronger the dependence
of the data on the regression parameters and the higher the
F-value. If there is little dependence, R 1is '"small,"
the hypothesis 6; = 0 is "correct," and F is "small."”

This test is dependent on choosing a critical value of F
which specifies the cutoff levels. This critical F is
chosen as a function of m (number of observations) and p
(number of parameters) from tables of F statistical tables
for a desired confidence level. The confidence level can be
selected on the basis of a priori knowledge about level of
noise in data. '
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Significance of individual conditions to the regression
equations.- The multiple correlation coefficient measures
t%e dependence of the data on the complete set of regression
variables. If several sets of parameters are to be evaluated
with respect to their respective explanations of the data,
the R coefficient would serve as one measure of relative
performance. Unfortunately, it follows from the definition
of R that increasing the number of explanatory variables
always increases R, unless the added variables are linearly
related to other included variables. Beyond a certain point,
the added variables start fitting the random noise e. For
example, if the number of variables is increased to m, a
perfect fit can be obtained and R 1is one. In order to
eliminate parameters not significant, only the most linearly
independent variables are desired.

Stated in terms of the sum of squares principal, it is
desired to incorporate those new variables into the regres-
sion which most reduce the error, given that the other vari-
ables are included in the regression. If the increase in
regression sum of squares due to adding a new variable, say
x., after variables Xs have been included in the regres-

sion, is denoted as 4||y|| , then the ratio

2 A
R Allyl]
yx_oxl’xz’..,,X._l,x-+1,..-,x = ~Tn~ A
3 j-17; Pgte+allyll

(4.33)

measures the partial contribution of xj to the regression.

2 . .
yxj X see,X is the partial correla-
tion coefficient. Several forms of this definition may be

written. One is defined by letting ¥ be the residuals
from the regression of xj on the same variables. It may

then be shown

The square root of R

o 12
(£¥%.)
= —1 (4.34)

RZ
vX. ~2 N
X5 e en 2

Note that, in general, ZRéi # rRZ.
J J
Now, let the regression equation y = X6 + & be par-
titioned as
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y xlel + XZGZ + ¢ (4.35)

where Xl includes q variables and X, contains p-q
variables. Then

y - X107 = X508, + € - (4.36)

which shows that an estimate of 6, could be obtained by
regressing the residuals from the regression of y on X1
(i.e., which estimates 61). Then the vector y-Xlel is

regraded as a new observation, say y(l), which may be
regressed on X2 to estimate 6,. This decomposition can

be applied to each possible subset of variables, Xi’ "bring-

ing in" new variables from the right to left hand side of
Eq. (4.36). The requirement on "bringing in" new variables
may be satisfied by examining the significance of each vari-
able.

The F test may be used to determine the significance
of a single parameter by noting the estimate of the variance

02, sz, is distributed as czx;_p. Hence, sz/ozm(xé_p)/(m-p)
from Eq. (4.19). Then for the parameter ei,

01785 _ (04-6;5)/08; (4.37)

Sei Sei/Oei
where sg. 1is the standard error of 6, which, from Eq.
(4.20) 1is

sei = s Vs, (4.38)
where Sii is the square root of the ith diagonal term of
xTx)-L.

Since (éi‘ei)/°i ~ n(0,1), it follows that, by defini-
tion of Student's t distribution that
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1 1.t ) (4.39)

In particular, if it is desired to test the hypothesis

ei =0 (i.e., y does not depend on 6), the statistic

t =-ei/sei is used. It is shown [23] that the F distri-

bution with 1 and (m-p) degrees of freedom is equivalent

to the t2 distribution with m-p degrees of freedom.

Hence, the significance of individual regression coeffici-
ents, 6, 1is determined from F-ratios

_.2,.2
F=0%/s; . (4.40)

If the ratio (4.40) indicates a variable is not sig-
nificant, then the variable is deleted. To bring in another
variable, the partial correlation coefficients of all other
parameters are examined. To form the F-ratio for these
coefficients, Eq. (4.33) (with Eq. (4.38)) may be manipulated
to show

6. .
RZ. = (95/505) (4.41)

i (85/s5)% + (m-a)

where q 1is the number of variables already in the regres-
sion. The corresponding F-test is

yX;
Fs = — (4.42)

l-r5-
X.
x5

The variable (F-ratio with 1 and m-q degrees of freedom),
is calculated for each of the remaining variables. The
variable with the highest value is then brought into the
regression.

Summary.- The variables xl,xz,...,xp are postulated

as possible causative factors in determining the observed
data, y (Eq. (4.35)). The variables xl,xz,..;,xp are

ranked according to the magnitude of their individual partial
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correlation coefficients with y. The variables with the
highest significance (F to enter) is added to the regres-
sion. The significance of the added parameter is then
tested to determine if it is above the critical F value

for deletion (Eq. (4.40)). As variables are entered, new
F-ratios are computed from the remaining variables not in the
regression since the degrees of freedom have been reduced.
This process is terminated when no new variables satisfy the
F-ratio required to enter and when one is ‘to be removed.

At each variable incorporation, the multiple correlation
coefficient (R, Eq. (4.31)), the equation F-ratio (Eq. (4.32)),
and the standard error of the entered parameter (Eq. (4.38))
are all included.

It is noted that, in general, the particular variables
finally selected are not unique. Use of orthogonal variables
would result in uniqueness.

Numerical methods.- The previous sections have demon-
strated that both classical and subset regression parameters
are obtainable from steps in the solution of a set of linear
equations (ref. Eq. (4.15)). In order to reinforce this
connection, consider the augmented data-coefficient matrix
(with rank p+1)

U51ng the inversion of Eq. (4.15), it is found that the

final element of A 1, af, is

£ 1 1
- - T T,T
yly - yixxix) " Ixty  yly - eTx’x

1
(1- RZ) YTY

i.e., the multiple correlation coefficient (and the sum of
squares ||€||) are directly obtainable. Similarly, it is

found that the diagonal element of (XTX)-l corresponding
to the ith coefficient of x, is
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1

2.=T-
(1 - Pi)xixi

Tyo-1 _
(X*X)3 =

where Pi is the multiple correlation coefficient of the

regression of X, on Xl’XZ""’xi-l’xi+l""’xp' It may
be further shown that the variance of éi is

g2

var §i = OZ(XTX)Q% = —— -

Computationally, the inversion of A 1is based on the
Gauss-Jordan pivot algorithm. Let the kth diagonal element
of A be nonzero. Applying a Gauss-Jordan pivot on this

element is a new amtrix whose ijth element is aij’ i.e.,
aij -y akj/akk i#k, j#k
a.. - 'aik/akk 1 # k’ J = k
1) . .
, akj/akk i=%k,j#k
l/akk i=%k, j=k

The final result of this inversion is the matrix B,

(xTx) 1

AT ~
-8 [ell

The recursive algorithm of the Gauss-Jordan pivot sweeps
through the A matrix, generating statistical parameters
which guide the deletion and addition of new variables.
Details of this selection for the Gauss-Jordan pivot are
found in Ref. 24. One further parameter of this method is

the tolerance. This is a parameter of the computation algo-

rithm itself and is a measure of the accuracy of the calcu-
lations and computer. If  a;; 1is the value of the ith

diagonal element of the non-negative matrix (aij) after

pivoting on several elements, then a../a.. is the tolerance.
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CHAPTER V

ROTORCRAFT PARAMETER ESTIMATION

Introduction

Rotorcraft parameter identification is the process of
extracting the stability and control derivatives for a given
mathematical model structure using a set of flight test or
simulated data. In the past, aircraft identification has
been carried out as an ancillary part of experimental flight
test work. The principal source of stability and control
derivatives has always been wind tunnel results and theoreti-
cal calculations. However, as the result of what is often
gross disagreement between wind tunnel and flight test
derivatives, and the known difficulties of obtaining wind
tunnel values, as well as extrapolating these values to full
scale, there is an increasing emphasis on obtaining these
parameters from actual flight data.

In the field of system identification, most of the ef-
fort had been, for a number of years, confined to the solu-
tion of low order linear problems. However, during the past
few years, powerful digital techniques have been developed
which are capable of solving the more difficult nonlinear
aircraft problems. The problem of extracting aerodynamic
coefficients for rotorcraft is one of the most difficult
identification problems.

The development of accurate parameter estimation is a
logical step following model structure determination. This
is because the model structure estimation step (described in
the previous chapter) gives a reasonable model of rotorcraft
forces, moments and other dynamic parameters, but the esti-
mates of parameters resulting from the least square approach
may be of questionable accuracy. Several procedures have
been used for estimating nonlinear system parameter in the
past. Because of the complexity of rotorcraft dynamics, the
selection of an appropriate identification method is extremely
important. This chapter discusses various identification
methods pointing out the advantages and disadvantages of
each. Finally, one method is selected for further investi-
gation.

Rotorcraft Parameter Estimation Approaches
General discussion.- Most identification methods that

have been or are currently being applied to rotorcraft prob-
lems can be classified as either:
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(1) equation error methods,
(2) output error methods, or
(3) advanced methods.

These methods differ by: (1) the performance criterion that
they are developed from, (2) the kind of estimates they pro-
duce, and (3) the problems to which they can be applied.

Equation error methods [25] assume a performance cri-
terion that minimizes the equation error squared (the process
noise). All of these methods are basically least squares
techniques. In general, it is necessary to measure the
response variables and their time derivatives to apply these
methods. This results in n or more linear equations in
n unknowns. For the case where the time derivatives are
not measured, various '"'method functions' are used to operate
on the equations (e.g., time derivatives, Laplace or Fourier
transforms, etc.), to obtain equations that are linear in the
unknowns. Since these methods do not allow for measurement
errors (sensor noise, etc.) they result in biased estimates
when this type of error does exist. The principal use of
these methods are as start-up techniques for the output error
and advanced methods. The equation error methods have been
used or are being used by Calspan Corp. [25], Air Force
Flight Test Center [26], and by Gerlach [27].

Output error methods [28-33] minimize the square of the
error between the actual system output and the output of a
model. These methods assume measurement noise but no process
noise. Typical output error methods include Newton-Raphson;
Gradient methods; the Kalman filter (without process noise);
and modified Newton-Raphson, differential correction, and
quasilinearization (all three of which are the same method).

It should be noted that analog matching is basically
a manual form of the output error methods (it attempts to
match the simulated response to the actual response). This
method has been used by the Air Force Flight Test Center [26],
the Naval Air Test Center [34], and the NASA-Dryden Flight
Research Center [35] for the F-104, X-15, B-70, HL-10, M2/Fe,
X-24, and PA-30 aircraft. The modified Newton-Raphson method
has been used extensively in flight test applications for the
past several years. It is the one method that has been used

on an operational basis and for which the most experience exists.

It is known that this method has been or is being used by:
(1) the NASA Dryden Flight Research Center [35] on lifting
bodies (X-24, F-3, X-14, SB-70, 990, HL-10, M2/F3), Jet Star
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and PA-30 aircraft, (2) the NASA Ames Research Center [36]
on the Learjet, XV-5, 990, and C-8 aircraft, and (3) the
NASA Langley Research Center [37] on the XC-142, Navion and
F-4 aircraft.

The principal disadvantage of output error methods is
that, because they do not include process noise in their
performance criterion, the results degrade when process
noise (gusts, modeling errors) exists. This may result in
the program not converging or in estimates that have large
variances or poor estimates [38]. However, as long as these
methods are applied to linear flight regions, or where the
form of the equations are known, and where gusts are not
significant, they work very wecll.

There are two advanced methods which have been applied
to flight data with both process and measurement noise.
These are:

(1) The Kalman filter and smoother [39-41]
(2) The maximum likelihood method [42-47]

Because of the advanced nature of these algorithms, they are
discussed in some detail in the following subsections.

Extended Kalman filter/smoother parameter identification
methods.- In 1961-1962, R.E. Kalman published a sequence ot
papers in which he proposed a filter with the capability of
estimating randomly disturbed states of a system from noisy
measurements. The Kalman filter has, since then, been the
object of intense research and development. It is signifi-
cant to note that the Kalman filter for state estimation is
a particular solution to a more general problem of estimating
both unknown states and parameters of a dynamical system.
Kalman, himself, suggested in this early work that the fil-
ter could be adapted for estimation of the parameters as
well as the states by simply augmenting the parameters to
the state and estimating both simultaneously. This is still
the first approach that is usually tried in developing para-
meter identification algorithms, because it does have a
strong intuitive and simple implementation. Unfortunately,
the approach is found to suffer from certain inherent prob-
lems in actual implementation, particularly for high order
systems perturbed by both process and measurement noise.

There is a simple reason for the difficulties encounter-
ed by this approach. The Kalman filter is strictly a state
estimator derived on the assumption of known parameters.
Assuming a filter of the Kalman type for also estimating the
parameters is an "after-the-fact" adjustment. Practically,
the result is that to apply the Kalman filter to even a
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linear system requires that the linear system be converted
into a nonlinear system. Although this transformation does
not, in itself, degrade the algorithm effectiveness, it does
cause other problems which can. Other problems which are
reported are;:

(1)

(2)

(3}

The Kalman filter approach, even with the algo-
rithm modifications such as smoothing, produces
biased estimates of the parameters [41]. Hence,
the parameter estimates may be in error.

Any Kalman filter algorithm requires initial
guesses for both states and parameters, as well as
their respective state and parameter variances
[39,41]. The necessity for providing good state
variances is not a severe limitation. However,
parameter variances are usually much harder to
guess than state variances. Unfortunately, the
Kalman filter approach does require accurate para-

meter variance initiation to obtain good estimates. .

A common technique is to use initial guesses and
variance obtained from a least squares regression
on the data. These results are biased, however,
and in order to account for bad guesses, arbitrary
variance multiplication "factors'" must be used to _
ensure even algorithm convergence [41]. Such
"guesses' for each type of case run require highly
skilled personnel. .

The Kalman filter approach is often claimed to
estimate parameters in the presence of process
noise, even though there is no theoretical justi-
fication for its ability to do so. What is done
is actually to either filter the data by some
smoothing technique or simply adjust the process
noise covariance terms of the filter until con-
vergence is achieved. Molusis [39] uses the
smoothing approach to filter the data. The prob-
lem with this approach is that the resulting data
may contain less information about the parameters
of interest, again causing errors in the estimates.
The iterating smoothing approach suggested by
Chen, et al. [41] is probably the best implementa-
tion of extended Kalman filter for parameter
estimation.
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Maximum likelihood methods.- The previous section
alluded to the fact that the Kalman filter for state estima-
tion is a particular solution of the more general problem of
simultaneous state and parameter estimation. Realizing the
difficulties of trying to use the Kalman filter approach in
practical application, a return to the original formulation
of the simultaneous state and parameter estimation problem
leads to a more general estimator. This formulation--a
maximum likelihood approach--is one of the ways a Kalman
filter state estimator is derived. The maximum likelihood
method is illustrated in Figure 5.1. Conceptually, this tech-
nique can be summarized as follows: :

"Find the probability density functions of
the observations for all possible combina-
tions of unknown parameter values. Select
the density function whose value is highest
among all density functions at the measured
values of the observations. The correspond-
ing parameter values are the maximum likeli-
hood estimates."

The method is a combination of three steps:
(1) A Kalman filter to estimate the states.

(2) A Levenberg-Marquardt optimization technique
for the parameter estimates.

(3) An algorithm to estimate the noise statistics
(mean and variance of the measurement and process
noise).

The method has the following important features:

(1) Parameter Estimate Variances. In estimating para-
meters from flight data, it is essential to pre-
dict the error in these estimates, that is, the
confidence level associated with the estimates.
The maximum likelihood method automatically com-
putes the lower bounds on the variances of the
parameter estimates. Since the maximum likelihood
estimate is asymptotically efficient, the actual
variances in the parameter estimates approach
these bounds for long data records. The method
does not require initial parameter variances to
initialize the algorithm.
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(2) Noise Statistics. Many identification algorithms
assume that the means and variances of the process
and measurement noise are known. In fact, these
quantities are generally not known and should be
identified. Typical noise parameters that should
be identified include sensor biases, c.g. off-
sets, the variance of the random measurement noise,
and the mean and variance of the

require a priori knowledge of the process or meas-
urement noise covariances but determines them as
part of the identification procedure.

(3) State Estimates. In addition to estimating the
parameters of the aircraft models (stability and
control derivatives), it is also necessary to
estimate the airplane response variables (state
variables). The maximum likelihood method obtains
the best mean square state estimates as part of
the parameter identification process.

In addition, the generality of the maximum likelihood method
has important operational features:

(1) In the absence of process noise, the method is
equivalent to the output error method which many
flight test agencies already use.

(2} In the absence of measurement noise, the maximum
likelihood method reduces to a least squares
approach.

(3) The method requires no "fine tuning" or '"fiddling"
to provide estimates for new cases.

Rotorcraft Parameter Identification Method

It is clear from the discussions of the previous sec-
tion that the maximum likelihood provides an optimal blend
of optimality and flexibility in rotorcraft identification
problems. It is for this reason that the maximum likelihood
method has been selected for investigation in rotorcraft
applications. The maximum likelihood method is one of the
most flexible techniques in statistics for identification of
parameters from input-output data. Suppose it is possible
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to make a set of observations on a system, whose model has

p unknown parameters 6. For any given set of values of
the parameters 6 from the feasible set ©, we can assign
a probability p(Z|8) to each outcome Z. If the outcome
of an actual experiment is 1z, it is of interest to know
which sets of values of ©6 might have led to these observa-
tions. This concept is embedded in the likelihood function
£(9|z). This function is of fundamental importance in
estimation theory because of the likelihood principle of
Fisher and others [48-50] which states that if the system
model is correct, all information about unknown parameters
is contained in the likelihood function. ,The maximum like-
lihood method finds a set of parameters 6 to maximize this
likelihood function

6 = max 2(8]z) (5.

6e0d

In other words, the probability of the outcome of 2z is
higher with parameters © in the model than with any other
values of parameters from the feasible set. Usually it is
more convenient to work with the logarithm of the likelihood
function (it is possible to do so because the logarithm is

a strictly monotonic function).

Consider a nonlinear rotorcraft of the following form

x = f(x,u,8,t) + r(e,t)w 0 <t<T

E[x(0)] = x (8)

E{[x(0) - x,(8)1[x(0) - x, ()17} = P_(8)
where
x(t) 1is nxl state vector
u(t) 1is 2x1 input vector
8 is px1l vector of unknown parameters
r is nxq process noise distribution matrix
w(t) 1is gxl1 random process noise vector
1906
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Let there be m measurements y(tk) taken at discrete times
t
k

y(t) = hix(t),ult,),0,t,) + v(t,)

w(t) and v(tk) are Gaussian random noises with the follow-
ing properties

Ew(t)] = 0 E[v(t)] =0  E[w(t) vT(tk)] = 0
Elw(t)wl (1)] = Q(8,t)8(t-1),

T
E[V(tj)v (tk)] = R(e,tj)éjk

The log-likelihood function for this mathematical model can
be shown to be of the form

II.M Z
=

log{2(8]2)] = - tvT(i) B7L(i) v(i) + log|B(i)|}

& =

1

where v (i) 1is the innovations vector at sample point ti

and B(i) 1is its covariance. An estimate of the unknown
parameters is obtained by maximizing the likelihood function
or the log-likelihood function from the feasible set of para-
meter values

D>
1]

max log [.£(8]z)] (5.2)
8el

N

N1 .
max |- 7 l{v (i)B"1(i)v(i) + log|B(i)|}  (5.3)
1=

The log-likelihood function depends on the innovations
and their covariance. To optimize the likelihood function, a
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way must be found for determining these quantities. Both

innovations and their covariance are outputs of an extended

Kalman filter. The developments of the required Kalman
filter is discussed in subsequent paragraphs.

The extended Kalman filter is conventionally divided
into two parts. In the first part, called the prediction

equations, the state equations and state estimate covariance
equations are propagated in time from one measurement point

to the next. In the second part, called the measurement

update equations, the measurements and associated measurement

noise covariances are used to improve state estimates. The

covariance matrix is also updated at this point to reflect
the additional information obtained from the measurements.

Prediction equations.— The state prediction is done using
the equations of motion. Starting at time tiq with current

estimate §(i-1|i-1) of the state x(ti) and the covariance

P(i-1|i-1), the following equations are used to find the pre-

dicted state Q(ili-l) and the associated covariance P(i[i-l);

see Bryson and Ho (Ref. 10).

4 X(t]t,

dt 1-1) = f(SE(tlti_l)’u(t)’e,t)

B(tlty ;) = E(t) P(tlty_;) + P(t]t; ;) F (t) + rQr’

£t <t

ti-l = i

(5.4)

(5.

The nxn matrix F is obtained by linearizing f about the

best current estimate

af(X(t]t. ),u(t),e,t
F(t) = (x( | ij-174 )

ax(tft;_4)
Using (5.4) to (5.6), we can obtain

X(tglt; 1) & X(i]i-1)

>

P(t|t; ;) A P(i]i-1)

| >

Thereafter, the measurement update equations are used.
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Measurement update equations.— The covariance and state
estimate are updated using the measurements. The necessary
relations are derived by Bryson and Ho (ref. 10) and are
presented here without proof. The innovation and its covari-
ance are

v(i) = y(i) - h(x(i]i-1), u(ty), 8, t,) (5.9)
B(i) = H(i) P(i|i-1) H' (i) + R (5.10)
where H is obtained by linearizing h,
dh(X(i|i-1),u(t,,0,t.)
H(i) = IA i09:%5)) (5.11)
ox(i]i-1)
The Kalman gain and the state update equations are
iy e s T,y o-1,- (5.12)
K(i) = P(i]i-1) H (i) B ~ (i) .
X(L]1) = X(i]i-1) + K(i) v(i) (5.13)

Finally, P(i]i), the covariance of error in updated state, is
obtained by

P(i[i) = (I-K(i) H(i)) P(ili-1) (5.14)

The maximum likelihood method can be shown to reduce to
output error in the absence of process noise. If there is no
measurement noise, it reduces to the equation error method.
These simplifications are discussed in Appendix A.

Optimization procedure.— It is possible to use any one
of several numerical procedures for this optimization problem.
The authors have found by experience that the Levenberg-
Marquardt optimization technique provides the most rapid con-
vergence. This technique has both the Newton-Raphson and the
steepest descent algorithms as special cases. The general
Levenberg-Marquardt approach is discussed in references [51
and 52]. The algorithm requires computation of the first and
second order partials of the log-likelihood function.
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The last three terms in the equation for second partial of the
the log-likelihood function involve second partials of innova-
tion and its covariance. Those terms are usually dropped.

So, the second partial is approximated by

3° log(®(8|z))

CLEELEN - i

vl (i) pleyy 2v(i)

N
L
=11 993 30

TG pology 3BE) 51y

90y 39
V() p-1l,:y 3B(A) p=l,:vycrs _——
36 B o) 36 B ~(1)v(i) (5.16)
EOLOR R RIOR b R OGN
]
-1 -1,y 9B(d) p-1,;y 3B(i)
? Trl} W T P T ]S

The gradients of innovation and its covariance for parameter
9. are:
J

3v(i) _ _ 9h 3X(ili-1) _ 3h (5.17)
36 - ox| ~ ... 36 36
J x=x(ili-1)

j o =1,2,...,p; i=1,2,...,N

B - M) psfi-1uT (@) + u(i) BLLEL YT,
j j j

5.18
oH' (i) , 3R (5.18)

39j aej

+ H(i) P(i]i-1)

j = 1’2,"”p; i= 1’2,000,N
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Recursive equations can be obtained for gradients of the
predicted state and its covariance. This is done in stages
by using the prediction and measurement update equations of
Kalman filter. Differentiating (5.4) to (5.6) with respect

t .
o) eJ
a_d_ 3% (t]t; ;) _ af(;“c(t|ti_1),u(t),t,e)
t . .
38 5 36
3E(X(t]t;_1),u(t),t,0) ARGty ) (5.19)
ax(t]ti-1) 365
3%(0]0) _ 2% (8)
aej 39j
P(tlt. ) 3P(t|t., ;)
_d_ i-1 = BF(t) P(tlt- ) + F(t) I i-1
dt 385 385 i-1 38 ;
AP(t|t. ) T
i-17 _T -y 9F (t) ar T
¥ 364 EL(t) + P(t[t; 1) ===+ 5= QT
j j j
5Q T a7 (5.20)
+ T ST+ TQ g5
j j
3p(0]0) _ Fo(®) b stet
38 38 ; i-
(5.21)
2.2 -
3 F(X(t|t, ) ,u(t),e t)
aF t _1 ’ 3 bl .
(t) . = j o= 1,2,...,p

a6 aej 3x(t|ti_1)

The sensitivity functions are updated at measurement points
by differentiating (5.11) to (5.14) with respect to ej.
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SH(i) _ azh(§(1|i'1)’u(ti)’e’ti)

- 5.22
385 205 dx(ii-1) ( )
. o . T.,.
agé;) - BP(;Q;'l) HU (1) B™1(i) + P(i]i-1) égﬁifl 871 (1)
_ (5.23)
- pili-1) wY i) 37l ﬁ%é%l 8 1 (1)
j
ax(ili) _ eXx(ili-1) . 8K(i) ... .y 9v (i)
265 06; ¥ 20 V(i) + K(1) 303 (5.24)
§3§%Lil = I-K(i) H(i) P(ggf'l) - §é%) H(i) P(ili-1)
j j j
- k(1) A peji-1 (5.25)
26

j = 1’2’3""’p

The negative of the matrix of second partials of the log-
likelihood function is called the information matrix M. The
step size A8 for parameter estimates is given by

-1 9 log (£(8l2))

A6 = p(M+al) Y (5.26)

where o is the Marquardt parameter and p is a scaling term.
Observe that as a - o the step approaches that of the Gauss-
Newton procedure. As a -+ « (with p/o finite) the step
approaches that for the steepest descent algorithm. During

the optimization, it is desirable to change the Marquardt
parameter to promote rapid convergence. If it is found that
the step is too large (i.e., the log-likelihood cost increases),
the step is cut by increasing the Marquardt parameter by a
given factor and another step is taken. If the cost deereases,
the Marquardt parameter is decreased by the given factor so
that the following step is larger. This is to prevent the
slow convergence that results from taking a small step — as

is often characteristic of steepest gradient algorithms.
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Linear systems.— In a linear system, the functions £
and h are defined as

f(x,u,8,t) A F(8,t)x + G(6,t)u

and h(x,u,08,t) A H(8,t)x + D(8,t)u
The basic algorithm is the same. However, some of the
equations can now be simplified. Equations (5.4) and (5.9)
now become

é% i(t]ti_l) = F(6,t) §(t|ti_1) + G(8,t) u(t)l (5.27)
and
v(i) = y(i) - H(s,t;) X(i]i-1) - D(6,t;) u(ty) (5.

Equations (5.17) and (5.19) can be written as

(5.29)

. Al H(B,t.)
ov(i) _ _ 8x(1|1-1) . P ST P
e H(e,t;) =5 T x(i]i-1)
J J J
BD(e,ti)
- e ulty)
J
and
g ax(tlty ;) 8R(t]ty 1) 3E(e,t) o
J J J
aej

All other equations remain the same.

There is considerable reduction in computation require-

ment for time-invariant linear system, In this case, matrices

F, G, H, D, T, Q and R and their derivatives with respect to
parameters are constant.
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For many cases, the Kalman filter is in steady state for
the duration of the experiment. This occurs when the Kalman
filter is in operation for a sufficiently long time and the
process and measurement noise covariances do not change. The
Kalman gain and the innovations and the state covariances ap-
proach constant values. The time update and measurement up-
date equations for the covariances are

{

é% P(élti-l) = FP(t|t; ;) + P(tlti_l)FT + 1Qrt (5.31)
K = P(i]i-1)H' B! (5.32)

B = HP(i|i-1)H' + R (5.33)

P(i|i) = (I-KH) P(i]i-1) (5.34)

By definition of the steady state

P(i-1]i-1) = P(i]|i)
Therefore, from (5.31)

T i . T . ..
P(i|i-1) eFAt P(i-1]i-1) eF ot , eF(tl 0 TQFTeF (ti T)dr
ti-1

t-
T S Tiesm
P2 (1-x) p(ili-1ef At « ./. ef (ti-TpgpT oF (1T

ti1

>

¢(At) (I-KH) P(ili-1) ¢(at) + Q°
(5.35)

p(at) (P(ili-1) - KBK') ¢(at) + Q°

Using (5.32), (5.33) and (5.34), we can solve for P(i]i-1)
and then find K and B. Also, it can be shown that

9P oP , T
—_— = _ A
aej A1 38 1

+ A - ¢PA3P¢T (5.36)

2
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3K (1-xm) é%i o' (men' + R)TD 4 A (5.32)

- 2
30 3
3B 9H T 5p T aHT 3R -
3o " e PH rHoSH wHP e S 0 (538
j j j J j
where
Al = ¢ (I-KH)
56 T Ty 3H . T . 3Q°
A, = =22 (I-KH)P¢  + ¢(I-KH)P - - oK == P¢p  +
2 50 ; 36 36 : 90 .
J J J J
Al = SHT 31y + uTp~! BH T & gp 3HT . AR p-1y
3 385 38 aej 38 ;

P A P(i]i-1)

é%; using (5.36) and then
J
find ég; and g%; from (5.37) and (5.38). Equation (5.36) is a
J J

linear equation in ggl and the coefficient of the unknown

matrix does not depend on the parameter ej. Thus, the
sensitivity of state covariance matrix can be determined
very quickly for all parameters. Once the sensitivity of P,

K and B for unknown parameters is determined, only state
sensitivity equations need to be updated.

Thus, it is possible to solve for

An approximation simplifies the problem further. The
unknown parameters are defined to include elements in K and
B matrices instead of Q and R. Optimizing the log-likelihood
function for parameters in B gives

R

1v(i) vl (1) (5.39)

o>
]
A L

i
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The gradient of the log-likelihood function with respect to
other unknown parameters is

N . i
9 Log (#(6l2)) - T \)T(i) B'l v(i) (5.40)
aej i=1 Bej
The sensitivity of innovations to parameters is determined
using the following recursive equations
d 2 - FX 5.41
I X(tlt;_q) = Fx(t]t; ;) + Gu(e) | (5.41)
a x(tlt; 1) 5p . ax(tlt; 1) g
at 36 = 3o X(t[ty 1) + F 36 - * 5g, vt
] J J J (5.42)
j = 1,2,...,p ti 1 St S‘ti
v(i) = y(i) - HR(i]i-1) - Du(t;) (5.43)
X(i]i) = X(ili-1) + Kv(i) (5.44)
V(i) _ _ BH 2..ii_4y _ o OX(ili-1) _ D
36 ; s, (11i-1) - H =S 50, 4(t4) (5.45)
J J J J .
ax(ili) _ ex(ili-1) . 8K _ .. v (i)
36 - 36 - *gey V() K=t (5.46)

J J J J

j=1,2,...,p

Note that
gg; = 0 if ej is not an element of K matrix
]
= Ij Jk.o lf ej -A- Kj ;k;

where Ij‘k’ is a matrix of all zeroes except a 1 at the j~,k”
position.
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CHAPTER VI
INPUT DESIGN

In previous sections, we have considered aspects of rotorcraft
system identification methodology which address the post flight
data processing phase. Data are presented to the procedure, and
some level of model and coefficient estimation achieved. One does
not have to perform this task many times before it is evident that
no post-flight data procedure can identify coefficients if the in-
formation on these parameters is not in even the uncorrupted mea-
surement response. An input design requirement, therefore, has
arisen because of the need to improve the efficiency of flight

testing by obtaining more accurate estimates from response data in
less time.

Requirements for Input Design

There are several factors that must be considered when choosing
inputs for flight tests. These include:

(1) Efficiency: The inputs should improve the efficiency of
stability and control flight testing by maximizing coefficient
identifiability in fewer maneuvers.

(2) Structural and Safety Constraints: The inputs should ex-
cite the modes of interest without violating rotorcraft safety and
structural constraints.

(3) Identifiability: The inputs selected must improve param-
eter estimation accuracy and avoid identifiability problems in the
post-flight data analysis stages.

(4) Pilot Acceptability: If the flight test is to be carried
out with a pilot onboard the rotorcraft, it is necessary that the
control inputs be acceptable to the pilot. The inputs should not
maneuver the aircraft into a flight regime from which a pilot can-
not recover. In addition, the inputs should be reproducible by the
pilot.

(5) Instrumentation: The inputs must consider specific in-
struments available, and their dynamic range and accuracy. The
primary impact of the instruments on input design is on the signal/

noise ratios which the response must have for sufficiently accurate
data.

(6) Modeling Assumptions: The inputs that are designed must
also consider the model that is assumed. For example, inputs
chosen for a linear mode should not cause such large rotorcraft
motions that the assumption of constant stability and control de-
rivatives is invalid. :
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Input Design Methods

Since the first efforts of applying parameter extraction
technology to aircraft flight test data, many different control in-
puts have been used. In one approach, the flight vehicle is ex-
cited by sinusoidal inputs over a range of frequencies, usually
around the natural frequency of the specific mode, until a steady
state is reached at each frequency. The parameters of a suitable
linear model are selected to obtain the best fit to the variation
with input frequency of the output/input amplitude ratio and phase
difference. These inputs work satisfactorily but require much
flight test time. Pulse inputs have been used to identify simple
low order linear systems. Doublets, steps and finite duration
pulse inputs have also been used to identify aircraft parameters.
However, the estimates of certain parameters may be quite poor and,
in some cases, a set of parameters may not be identifiable at all.

The definition of information matrix, M, which provides a
quantitative meaning to the knowledge about a certain set of param-
eters, is the starting point for a systematic study of the input
design problem. The inverse of the information matrix, referred to
as dispersion matrix, is a bound on parameter error covariances,
i.e.,

cov {(8-8)(8-0)T!> M1 Ap
where 6 1is the actual value of a parameter and 6 1is the esti-
mate. Most of the analytical methods in input design use a func-
tion of information or dispersion matrix as the extremizing crite-

rion.

Optimal input design for dynamic systems.— In this section, we
describe a method consisting of two different techniques for design
of input signals which provides estimates of unknown parameters in
linear systems. The first technique used the time domain represen-
tation of system dynamics and develops methods to compute the time
history of control input sequence for any duration of the experi-
ment. In the second technique, the system is assumed to be in
oscillatory steady state and a frequency domain representation is
utilized. This gives the optimal control input spectrum. The
corresponding time history is "optimal'" only for long experiments.
The time domain approach is computationally much more complicated
than the frequency domain approach. The two approaches are, there-
fore, complementary. The frequency domain approach is suitable for
long experiments and the time domain approach should be used for
short and medium duration experiments.

Consider a linear, time-invariant, dynamic system described by
the following differential equation:
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x = AX + Bu

(6.1)
x(0) = 0 0<tc<1

where x is a nxl state vector, u 1is a qgx1 input vector, and
A and B are appropriate matrices which depend on m unknown
parameters 6. Let there be noisy measurements of p 1linear combi-
nations of the state vector

y = Cx +v (6.2)

where v 1is assumed to be a Gaussian white noise vector with in-
tensity R, and matrix C is a function of 6. Since we are
mostly concerned here with finite time problems, we may assume
without loss of generality that the final time is one. For prac-
tical reasons, we impose a constraint on a quadratic function of
the input -and the states

1
J = S (x'Qx + UTu)dt < E (6.3)
0

For linear sytems, the inequality sign can be replaced by a equal-
ity sign. The information matrix, M, for parameters 6 is

M = S; (%%)T R Ity %g .dt | (6.4)

The input u(t) is chosen to minimize parameter estimation errors
(in terms of the weighted trace or the determinant of the disper-
sion matrix) subject to the constraint (6.3). This problem can be
reformulated [53]as a two-point boundary value problen.

[E] R owis 5] [¢
= - H (6.5)
at |, cT r7lg KT |a A

x(0)=0, x(i)=o

T (6.6)
u opt = -uB°A

The smallest value of constant u for a nontrivial solution to
the two-point boundary value problem gives the optimal control

input. The quantities X, R, B, T and R are defined below:
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T [iT, e o’ (6.7)
) ’ ael, 862’ ....... ’ ae -
m
[ A 0 0 0
g—‘g A 0. 0
. 1 t
A= (6'8)
A
0 A
36, 0
3A
=0 0 A
L m —
T auT : T
5T . [T 2B 2B 3B
T = |pT,6 2B° 3B . 9B (6.9)
RN T ’ aem]
Yo
%, C o0 0 T,
3C
TA 5, 0 Cc...o0jalT, (6.10)
3¢
5 9 C T
_aem i i m_
r-R 0...0
R=|0 R (6.11)
0 . R

The solution to this two-point boundary value problem, based on the
symplectic properties of the Hamiltonian matrix H, is discussed in

[54].

If the duration of the experiment is much longer than the sys-
tem characteristic time, it is possible to design inputs based on a
variety of criteria quickly by making the assumption of steady
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state. In an ingenious approach, Mehra [55] converts a linear time-
invariant system into its frequency domain representation. This
eliminates the dynamics of the system. The parameter estimation
problem becomes a regression problem in which input frequencies

and the power in each frequency are the control parameters. These
parameters, which define the input design, are chosen by an itera-
tive procedure.

Consider the state space representation of a discrete-time
linear system

x(k +1) = ox(k) + Gu(k) k=1,2,3,...,N (6.12)
and the noisy measurements
y(k) = Cx(k) + v(k) (6.13)

¢, C, and H are appropriate matrices and contain m unknown
parameters 6. Fourier transform y(k) to get

2mn

y) =c(ed W -9yt

G u(n) + v(n)
- (6.14)

AW(n,8)u(n) + v(n)

As the number of sample points increases, the information matrix
per sample approaches [55]

1 T W* 3

_ -1, 20
M = 2 Re S_ﬂ T S (w)3E dF () (6.15)

u

where Fuu is the spectral distribution function of u and SVV

is the spectral density of v and superscript '*' denotes the con-
jugate transpose of a matrix. An algorithm based on this approach
is outlined in [54].

Optimal multistep inputs for parameter identification.— Several
algorithms have been developed for a solution of the boundary value
problem leading to the solution of the optimal input design problem.
The application of this theory has been limited to low order time
invariant systems due to the complexity of the computation proce-
dure. The optimal input selection algorithms may be considerably
simplified, for time variant as well as time invariant systems, if
the inputs are restricted to be multistep. In this approach,
the state equations are first propagated to obtain the state time
histories. A simplifying assumption is then made by approximat-
ing the states to be multistep and are represented as sums of
Walsh basis functions. They may then be determined by using the
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methods developed by Corrington [56] and applied to the linear quad-
ratic feedback control design problem by Chen and Hsiao [57]. This
approximation may degrade the quality of the input, particularly

if the state variables change significantly over the duration of a
step. ‘

We consider the system defined by equations (6.1) and (6.2)
subject to the constraint (6.3). Matrices A, B and C may be
functions of time.

The information matrix for parameters 6 1is

T
- 3[C(t,8) x(t)] -1 (3[C(t,8) (t)1] '
M -‘0 { L x } R { X B Fae (6.16)

The dynamics of the augmented vector x are defined by the equation
x=Ax+3Bu (6.17)

where A, ﬁ, x are defined by equations (6.8)-(6.10). Further,

dz(t) _ C(t,6) ax(t)
5. < o x(8) * C(t,0) agi : (6.18)

A typical element of the information matrix may be written in terms
of x(t)

1 T

) T, \o-1 ~
My S;‘x(t) T; (8)R7IT, (£)X(¢) -dt (6.19)

where Ti and Tj are defined by equation (6.10).

It is shown that certain mild restrictions on the class of in-
puts simplifies the input design problem considerably. Two cases
are considered in this report.

Case 1: The inputs are restricted to be multistep with s
steps each of duration A. The state and output sensitiv-
ities are obtained by a solution of the differential equa-
tions.

Case 2: The inputs are restricted to be multistep with s
steps each of duration A. The state and outputs are
approximated to be multistep.

As the number of steps is increased the multistep inputs approach
the general unrestricted input.
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The equations for the information matrix and the quadratic
constraint are specialized for multistep inputs. These will be
used in the derivation of the multi-step input algorithms. The
two cases are discussed separately because different techniques
are involved in determining the augmented state vector X(t).

-

Case 1

Under the first approximation, a general representation for
input u is

u(t) = Hs(t) (6.20)
where H 1is a qgxs matrix and s 1is an sxl1 vector such that

Si(t)

1, (i-DA<t < i
(6.21)
= 0, elsewhere.

Let §i.(t) be the response of the augmental sensitivity system

(6.17) when a single element H of H equals one and the re-

ij ~
maining elements are zero. In the general time-varying case xj.(t)
may be obtained by a direct solution of the differential equation
for each i and j. Then because of the linearity of the sensi-
tivity system, it is clear that

. q s .
t) =2 T H.. x..(t
x(e) i=1 j=1 ¥15 ()
(6.22)
qs
8 I h ™ (v)

i=l 71 71

where
(V5-mars T iy

Using Equations (6.19) and (6.22), a specific element of the
information matrix is

M Sl T 3 h % )lT r°Y
= X,
k2 0 { k j21 1 i } { '3

hT v(x,2)h



where V(k,%) is a qs x qs square matrix such that
V.. (k,2) = ~/-1 =TT, YT R() dt (6.24)
ij 0 i k 2 73 ’

Matrices V(k,%) do not depend upon the input u and therefore
they need not be computed again and again in the iterative proce-
dure described in the next section. Notice that a considerable
simplification results if the measurement distribution matrix, C,
is time invariant. Then

l~ -~
Vi (K,2) =§TR R, ‘é.xj(t) %' () ;dt
(6.25)

T
k

..1 . .
A Tr ;T R™ T, Rxx(1,3)§
The quadratic constraint on the input and states may also be
written in terms of h

1
_/'3(T0 x (N7 Ty X () + ulr) u(t)f dt = E  (6.26)
0
oTr
HIQ h = 1 (6.27)
where
- 1 . . :
Q5 = : 3Jé.xiT(t) Ty R T, X5(t) dt + Adiji (6.28)
)1 j=j
%15 = 30 1#
Case 2

When the state and outputs are assumed multistep, the Walsh
functions prove useful. Details of the properties of the Walsh

functions are covered in References [56], [57], and [58]. The impor-

tant properties for the purpose of the present application are
summarized in Appendix B. To simplify the various derivations it
Q
2

is assumed that s = , Wwhere @ 1is an integer. Let ¢i’

i=0,1,...,s-1 be the ith Walsh function in the dyadic order and
let the input be assumed to be
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u(t) = H % (t) (6.29)

d(t) is a vector of Walsh functions from 0 to s-1. It is shown
in Appendix [C] that equations similar to (6.23) and (6.27) can be
obtained for information matrix and quadratic constraint respec-
tively.

In the next section, we use the expressions for the informa-
tion matrix and the quadratic constraints together with some
theorems on certain properties of the optimal input leading to a
computationally attractive algorithm for the selection of optimal
multistep inputs.

Algorithm description: Criteria for input design have been
discussed in previous literature [59] Here, we consider two of the
many criteria which are useful. They are: (1) A-optimality (mini-
mize weighted trace of the dispersion matrix, i.e., minimize

Tr(wm'l) where w 1is positive semidefinite) and (2) D-optimality
(minimize the determinant of the dispersion matrix). Extensions of
the theorem and algorithms to other criteria is straightforward.

In deriving the algorithms we consider only nonrandomized in-
puts. Such an input is completely described by a vector h. An
input h which satisfied the quadratic constraint on states and
input is called a feasible input. It is known that the information
matrix is always semidefinite. The following algorithms may be
used for detection of inputs.

Algorithm 1

(1) Set 1i=0 and select a feasiblg input h(l) such that
the corresponding information matrix M(l) is nonsingular.

(2) Compute \

-1

1
ks,

V(k,2) to min Tr (WM~

m . .
i aD) Ty (D )

<
Il

1 (6.34)

s )’ -1
. ( V(k,%) to min |M |

K, 2=1 Jxe

(3) Find the maximum eigenvalue A and the corresponding
eigenvector h of the equation

Vh= Q3h (6.35)
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iy-1
If the eigenvalue A 1is close to its minimum value (Tr(WM(l) )to

min Tr (WM'l); and m to min |M'1| ), stop. Otherwise, proceed
to (4).

(4) Find an input

LCAE DR L | (6.36)

by choosing o and B such that it is feasible and minimizes the
corresponding cost function.

(5) Change i to i+l and return to (2).

The above algorithm converges to the global optimum.

NOTE: What these theorems have achieved for us is an algorithm
which converts a complex nonlinear problem into a succession of
linear eigenvalue problems. Though the matrix V may be of rela-
tively high order, it is positive semidefinite and we are only in-
terested in its maximum eigenvalue — a problem much simpler than
finding all eigenvalues of a matrix.

Extension to nonlinear systems: For rotorcraft application,
we have to extend the multistep input algorithm developed for
linear systems to nonlinear systems.

Selection of parameter identifying inputs in nonlinear systems
is extremely complex. One major problem is that the inequality
constraint on the quadratic function of the input and response,
Equation (6.3) cannot be converted into an equality constraint. In
fact, it is shown in Reference [60] that to best identify parameters
associated with a local instability observed at high angle-of-attack
flight of airplanes, a lower amplitude input is better than a high
amplitude input. In addition, the theorems corresponding to
theorems 1 and 2 on the properties of optimal inputs for linear
systems cannot be proven for nonlinear systems. Here we describe
an approximate method for input selection for the following system.

x = f(x,u,t,0)
(6.37)
y = h(x,u,t,9) + v
where v 1is white Gaussian noise with power spectral density R.

Algorithm 2

(1) Select an input u,(t) which satisfied the constraint of
Equation (6.3) and gives a ngnsingular information matrix MO' Let
the corresponding state trajectory be xo(t).
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(2) Linearize the system around xo(t), uo(t) to get

Ax = A(t,0)Ax + B(t,0)Au

(6.38)
Ay = C(t,0)Ax + v
where
Ax(t) = x(t) - xo(t)
(6.39)
Au(t) = u(t) - uo(t)

(3) Design an optimal input Au(t) for the system of Equa-
tion (6.38) under the constraint

1
_/.g‘Ax(t) + Xy (t) T Q ax(t) + xy(t) +
0
(6.40)

+ du(t) + ug(t) T odut) + uy(t) pdt < 1

Au(t) may be obtained by a modification of Algorithm 1.

(4) If Au(t) 1is small, stop. Otherwise, update u(t) and
x(t).

(5) Return to (2).

Figure [6.1] is a flow chart of the rotorcraft nonlinear model
input design algorithm. The algorithm is made up of Algorithm 1
and Algorithm 2. First, a trajectory from a previously estimated
nonlinear model is generated and linearized. A perturbation input
is synthesized for this linear model based on Algorithm 1. The
perturbation input is then added to the original nominal input and
relinearization of the nonlinear model response to the total input
computed. The iteration is continued until a minimum variance
solution has been obtained.
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. CHAPTER VII
DATA PROCESSING RESULTS
CH553>R§sults

The CH-53A data processing results fall into two cate-
gories: simulation data processing and flight data process-
ing. For the simulation data processing phase, a mathematical
model was simulated and the outputs contaminated with random
measurement noise. These noisy outputs were then used for
validation of various computer programs. The flight data
processing phase uses actual flight data when executing the
computer programs.

CH-53A simulation data processing. - Simulation data pro-
cessing for the CH-53A consisted of: simulating the CH-53A
and contaminating the outputs with random measurement noise,
and processing this data through the SCIDNT, NLSCIDNT and
DEKFIS computer programs. -

CH-53A simulation: A nine degree of freedom linear
model for the CH-53A at 100 kts. was used for the simulation
data base. This was a 14 state model with the body states:
u, v, w, p, q, r, ¢ and 8; and the rotor states: Bo’Bo’Blc’

A
a

Blc’ Bls and 815. There were 4 control inputs: Bls’ 1s°?

X’ ay’ Z,
Blc and Bls' The linear model 1is

?Tagl Rotor and By.in Rotor’ 20d 14 outputs: a

P, 49, ¥, P, 9, T, ¢, 8, 80’

shown in Table 7.1. This model was simulated to the input
shown in Figure 7.1, which is superior to the more common step
or doublet input [Refs. 61 and 62]. The outputs were contam-
inated with a zero mean white Gaussian measurement noise with
variances: (units — ft., rad., sec.)

R = diag [3*0.25, 3*0.0003, 3*%0.000076, 2*0.000003, 3%0.000012]

The data record was 5 seconds long and sampled at 100 samples
per second for a total of 500 data points.

SCIDNT runs on CH-53A simulation data: The linear identifi-
cation program was used to identify 60 of the parameters in the
model. The start-up values of the SCIDNT run were arbitrarily
chosen as the simulation values +25 percent.

Table 7.2 shows a comparison of several parameters.
(The quantities B, /By, B1./B;s and Bi1c/B1s

b

Because of the extensive data processing done under this
contract, only a portion of the overall results have been
presented. An attempt has been made to present the more
interesting and potentially useful information.
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TABLE 7.1
NINE DEGREE OF FREEDOM LINEAR MODEL FOR CH-53A - 100 KTS - NO SAS

ERIVALIVE Siate [ v w U] q r (] 0 Fo fo Mc Bye Fs fis s M O1p N
oF SIALT (eysec) | (rrysee) | (rizseey | (rangsste) | (rap/se) | (Rap/sEC) | (RAB) | (RAD) ] (mAD)  f(RAu/sec) | (Rap) | (mao/sec) | (ran) (RAD/SEC) (RAD) (RAD) (rAD) (RAD)
u, (ft/sec’) -.0048 .ocoaz 0942 -2 -9.97 .865 0o -32.2 2.1 0116 | -24.0 -2.51 -1.9 -.49 -4.92 -4.92 -.4 26.5
V. (It/sec’) 0156 | -.0567 .00216 6.6 -.659 -167. 2.2 0.054| -10.1 -.376 L% -.210 5.8 .92) 12.0 n.9 6.67 - 708
w, (ft/sec’) -1 -.0071 - -6.12 193 1.4 0.89 | -1.44 | -208. 799 | -1 118 n.s -4.09 124, 17 534 | -269.
. {rad/sec’) -.00n -.0158 -.0099 -an .o0170 .40 0 ] -s20] -0 -4.56 -.An 7.8 ror .9 13 3.85 -3.45
4, (rad/sec’) -.0005 .0023 .0016 -.0055 -5.0 L0045 ] ] -.064 -.0421 3.84 .30 1.00 04 -.352 -.0795 .0078 .66
Fo (rad/sec’) -.0016 .008) -.0002 .m 059 -.728 o ] -4 -2 -3 -.0532 1.84 .08 -.0905 -5 | 5.1 4.7
4, (ra/sec) 0 0 0 1.0 0 0047 [ ] 0 0 [ o [ 0 [] 0 [} 0
\

&, (rad/sec) 0 0 [ 0 1.0 0 0 ] 0 0 0 ] [ 0 [ [} 0 ]
figr (rad/sec) o [} 0 o 0 0 [} ] [} 1.0 [ 0 0 ] ] 0 0 []
figs {rad/sec’) .0294 .0005 .42 495 -3.97 -1.96 0 0 }-168. BER 19.0 -999 -16.8 -.59 -64.2 9.82 -1 2.
Pyee (rad/sec) 0 0 0 o 0 0 ] 0 0 0 0 Lo (] 0 0 0 [ 0
tee (rad/sec’) 0891 -.0%07 .0379 -8.46 -18.8 156 0 [] 89.5 332 | -4, -19.4 -161. -7 - 163, -.53 30.7
ftyge (rad/sec) 0 0 0 0 0 0 ° o 0 0 ] ] [ 1.0 0 ] 0 ]
tyqe frad/sec) -.0648 -.0506 -.0945 § -15.2 12.1 - 0 [ 8.3 1.56 154, 2.8 -48.7 | -17.6 163. no. 29 -84,

0.0

-0.5 4

AdLONG FROM TRIM, INCHES
CYC

| 1 !

k] T
Q 1.0 2.0 3.0 4.0 5.0
TIME, SEC.

FIGURE 7.1 CONTROL INPUT FOR CH-53A SIMULATION
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TABLE 7.2 — TYPICAL CH-53 PARAMETER ESTIMATES
AFTER TWO ITERATIONS

SIMULATION VALUE | IDENTIFIED VALUE F-RATIO
X, -0.0048 -0.00075 0.33
M, -0.0005 -0.0017 248.9
Y, -0.0567 -0.069 60.8
Y, 0.00216 0.046 0.008
z, -0.744 -0.37 414.5
M, 0.0016 -0.0066 150.1
M -0.0055 0.057 0.08
N 0.111 0.089 68.2
Lq 0.017 0.47 0.05
My -5.00 -5.40 64018.8
M. 0.0045 -0.0349 0.02
N -0.728 -1.19 781.6
8/8, -168.0 -138.15 1747.5
B1e/8 89.5 42.80 609.3
B/, -13.7 -9.59 494.3
sk/Bo 3.32 5.89 8.6
I, 0.78 -2.29 23.8
B /8. 19.0 24.65 375.5
81 /B1c -47.0 -51.14 523.5
Bi/B1c 154.0 175.13 168157.0
Mé1c 0.30 0.28 2675.7
§0/61c 1.00 1.24 97.95
81 /81 -161.0 -172.84 3750.6
By /B -48.7 -29.25 761.3
go/éls -0.59 -3.17 431.5
ek/?]S -23.7 -19.92 12022.3
By /By -17.5 -22.22 14004.9
XB15 -4.92 -5.39 115.4
YB] 12.0 16.59 1185.0
Zg s 124.0 101.71 19243.9
LB:S 0.913 1.29 968.9
MB1: -0.352 -0.387 486.6
Ng -0.091 -0.0075 27.7
-9
B /B 1 -64.2 -49.67 8558.6
Bye/Brs -117.0 -149.7 55842.1
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are rotor stability derivatives, e.g., éls/sls = 8515/8815).

Only two iterations on each of the 60 parameters were made.
Correspondence is reasonable, with the exception of those
with low F-ratios signifying poor identifyability.

Table 7.3 shows a comparison of the starting and final
poles of the transfer function of the vehicle response. The
simulation values are also given.

CH-53A flight data processing. - Flight data processing
for the CH-53A consisted of: reading the flight data tape
and preprocessing the data, and processing this data through
the DEKFIS, OSR and SCIDNT computer programs. .

CH-S3A flight data: The CH-53A flight data was provided

by the Sikorsky Aircraft Division of UTC under contract by NASA.

The maneuver processed was specifically flown at 100 kts for
system identification purposes. The «control input sequence for
this maneuver is shown in Figure 7.2. The data record was 27.5
seconds long and sampled at 100 samples per second. The
following measurements were available: Ays 2y, 2, P, 4, T,

vV, 8, &, p, 9, T, ¢, 6, U, GLONG ’ SLAT ’ 6PED ’ GCOLL
PILOT PILOT PILOT PILOT

(pilot control deflections), §;qyyg» SLAT’ SpED’ ScoLL (aux

AUX AUX  AUX AUX
servo deflections in equivalent stick deflections - sum of
pilot + SAS), B3, i=1,6 (blade flapping angle for all blades)
and cos‘wR (rotor azimuth).

DEKFIS runs on CH-53A flight data: The CH-53A flight

data was processed through the fusela%e/ ust estimator and
the rotor state estimator options of DEKFIS.

The primary purpose of the fuselage gust estimator is
to provide data consistency between the measurements by
correcting for bias and scale factor errors and eliminating
random noise effects. A secondary purpose is to provide
estimates of u, v, w and their derivatives since the meas-
urements are V, 8, a, ay, ay and a,.

Figures 7.3a and 7.3b show the actual measured and esti-
mated time histories of the normal accelerometer and the
angle-of-attack vane. In both cases, the estimated measure-
ments track the actual measurements well. There is a well
defined oscillation on the a-vane measurement {attributed
later to boom natural frequency which was not included in

S |

]
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TABLE 7.3. — COMPARISON OF IDENTIFIED CH-S3A POLE LOCATIONS

STARTING POLES

CONVERGED POLES.

SIMULATION VALUES

-10.1 + 1.17j
-8.4 + 19.9j

-4.39 + 10.2j
-0.246 + 1.33]

-13.9 + 20.1bj
-6.48 + 3.54]
-4.68 + 10.5]
-0.334 + 1.25j

-11.46 + 21.7j
-6.81 + 2.88J
-6.26 + 10.9j

-0.210 + 1.23j

-0.0123 + 0.0874j -0.0120 + 0.0920 -0.0145 + 0.110j

-5.59 -4.75 -4.41

-1.48 -2.29 -2.34
-1.21 -0.959 -0.955
-0.219 -0.285 -0.167

S ong ‘\j'[\

SLAT """"""\Jf’\\\\./’

SpED ‘\x/’/ﬂk'"'r

ScoLL /\J

0 TIME, SEC. 27.5

- SAMPLED AT .01 SEC.

FIGURE 7.2 CH-53A FLIGHT DATA PROCESSING - SI MANEUVER

INPUT SEQUENCES
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the filter model). Figure 7.4 shows the scale factor error
calibration on the accelerometers and gyros for this test.
The comparison is based on the value of scale factor assumed
prior to the filtering, indicating the change in scale fac-
tor error concluded by the additional information provided
by the flight data. Table 7.4 shows the bias error estimates
obtained from this data processing.

The rotor state estimator was used to process the six
main rotor blade flapping measurements and the rotor azimuth

measurement and estiamte the fixed system states B8  (coning

angle), B1c (longitudinal flapping) and B1s (lateral

flapping). Initially, the trim portion of the maneuver
(first second of data) was processed to obtain any biases on
the blade flapping measurements. Coning, longitudinal and
lateral flapping were approximated as constants in trim.
Then, the entire maneuver was processed holding these biases
fixed, and allowing Bor Bic and Bis estimates to vary in

time. The rotor state estimator also provided first and

second derivatives of B8_, B,_., and B for subsequent use

. . o} lc 1s

in OSR processing.
An example of the estimation of flapping angles with

the rotor state estimator option of DEKFIS is shown in

Figure 7.5 for blade 5.

OSR runs on CH-53A flight data: One of the key 1issues
in rotorcraft modeling is the degree to which an explicit
rotor model should be included in a stability and control
simplified linear model. The objective is, of course, to
work with the minimum order model which predicts stability
or control requirements adequately. The model structure es-
timation was applied to CH-53 flight test data to determine
the significance of the rotor in explaining the vehicle
response. Three generic models were formulated:

(1) A six degree of freedom (6 dof) model with fuse-
lage states (u, v, w, p, q, r, ¢, 6). This is a quasi-
static model in that the rotor dynamics are assumed much
faster than the fuselage/body dynamics and are lumped in
with the fuselage/body dynamics.

(2) A nine degree of freedom ( 9 dof) with a first
order rotor model with the nine fuselage states and three
rotor tip-path-plane states (BO, Blc’ 815). The first order

rotor assumes a tip-path-plane but assumes only first order
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dynamics for each rotor deéree of freedom. (They do couple,
however). This model corresponds to a rotor precession model.

(3) A nine degree of freedom with a second order rotor
model. Now, second order dynamics are assumed for each tip-
path-plane degree of freedom. The additional states are the
tip-path-plane rates (60, Blc’ Bls).

Each of these three rotorcraft models was identified for the
augmented and unaugmented CH-53A. Referring to Figure 7.6, it
is clear that closed loop parameters (with the SAS lumped in) may
be identified by formulating the identification with QPILOT as

the control input, and y as the measured output. It is also
possible to identify the unaugmented helicopter by using
§AUX SERVO @S the control inputs. As long as there is sufficient

control excitation, the QAUX SERVO channel will be independent

of the states being fed back. One might expect the identification
of the unaugmented vehicle to provide better results since the
SAS dynamics and nonlinearities (e.g., saturation) are inherent
in the SAUx SERVO input and are not being lumped into the model.

In addition, problems due to stick slop and hysteresis that occur
between the pilot station and the auxiliary (SAS summing) servo
are avoided, so that the QAUX SERVO input also provides a

cleaner control input for identification.

OSR identified models for each of the six cases are
presented in Tables 7.5 through 7.10. It is possible to assess
the quality of the results by observing the statistics in the
tables. Any given run generates one column in the tables. The
R2 (multiple correlation coefficient squared) at the bottom of
any given column is indicative of the fit error, being the ratio
of the regression sum of squares, to the observation sum of
squares. The F-ratio at the bottom of any given column gives the
total F-ratio for that regression. The F-to-remove number
provides F-ratio for that regression. The F-to-remove number
provides a measure of the relative identifiability within a given
column. A high F-to-remove indicates a well identified parameter
(e.g., MB in Table 7.7). A low F-to-remove indicates poor

1lc
identifiability. Note that it is not advisable to compare
F-to-remove values between column, unless the columns have a
similar overall fit.
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Results for three of these models are cross tabulated in
Table 7.11 for the q dependent variable regressions. The
corresponding regression fits are presented in Figure 7.7. Based
on these, the model structure estimation program analyzed the
relative significance of the three models with two criteria, the

RZ multiple correlation coefficient and the F-ratio. Figure

7.8 illustrates the relative significance of explicit rotor
modeling. By both criteria, the increase in model accuracy is
notable by including at least the rotor precession. Further, but
less significant, improvement is obtained by the complete tip
path plane model. Note, however, that in Table 7.11 the first
order rotor model tended to enter the controls into the
regression; whereas, one would expect most of the control effects
to come through the rotor flapping terms. The second order rotor
model does not enter these controls into the regression; rather,
the tip-path-plane rates are entered giving an improved fit! On
the other hand, inclusion of the rotor dynamics does not always
lead to an improved fit. One can observe this in the X-force

(0) and Y-force (v) -equations. Although the RZ multiple
correlation coefficient increases, (which is generally expected
since the number of terms in the regression has been increased),
the total F-ratio decreases. This can be attributed to the
independent regression variables fitting the noise and not the
process. This is generally the case whenever there is a low
signal-to-noise ratio resulting from insufficient signal
excitation.

Table 7.12 shows a comparison between the SAS on
quasi-static model and the SAS off quasi-static model. It is
interesting to note that the SAS off Mg stability derivative is
positive (but with a very low F-ratio) and it becomes negative
with the inclusion of SAS. (Mg may well be positive for the SAS
off case since.we are dealing with a reduced order (quasi-static)
model that has the rotor dynamics lumped in. It is difficult to
be certain in this case since M is basically unidentifiable.)
For the higher order models, the SAS on effect manifests itself
in the Mq and Bj1c/q stability derivatives.

SCIDNT runs on Ch-53A flight data: a limited number of
SCIDNT runs were attempted on Ch-53A flight data. Because of the
high order of the model (14 states), the large number of
parameters involved (>100) and the number of data points being
processed (2750 time points for 19 channels) it was determined to
be infeasible to run SCIDNT on the fully coupled 9 dof
helicopter. (A problem of this magnitude, whereas possible with
the SCIDNT software, would be extremely costly in terms of
computer time, and would require a large number of iterations to
insure proper cnvergence*.) Hence, a high order identification
model was abandoned and a simple 3rd order model (states 8, q,
Bic) was adopted, using only the longitudinal stick input

portion of the maneuver. The modeling errors were compensated by
including process noise in the model. Unfortunately, the
converged parameter values were not reasonable, and proved to be
very dependent.

* The numerical efficiency of the current version of SCIDNT
(1980) has been improved 20:1 relative to the version used for
this study. 141



TABLE 7.5. — CH-53A FLIGHT DATA - OPTIMAL SUBSET REGRESSION RESULTS
N o 100 kts, with SAS
D o Aerodynamic terms only
e SI Maneuver
o 6 dof quasistatic model
u r W P q r
ft/sec? Ft/sec? ft/sec’ RAD/ sec? RAD/sec? RAD/sec?
u, ft/sec -.1722/29.24 -.07939/3.812 | .008592/2.413 -.006343/20.30
v, ft/sec -.08335/126.9 | -.Q3447/14.78 .001572/32.05] .003533/117.5
w, ft/sec -.03696/3.937 | -.05283/5.826 | .01017/11.28 -.01339/327.7
p, RAD/sec -1.737/9.040 | -2.325/13.13 1.542/6.084 -1.075/123.0 -.1045/13.36
q, RAD/sec 5.100/6.292 3.467/3.846 18.98/71.32 -.6639/92.09 | .5666/56.02
r, RAD/sec 2.881/2.400 -3.387/2.983 1.854/29.01 -.3331/17.80 | -.6182/57.32
élong,inches 2.318/69.69 .8789/14.36 4.555/236.5 -.1435/231.7 | .03488/11.96
alat’ inches .3150/4.691 .3841/233.5 -.02354/24.06) .04597/48.00
6c0]]'inches -.5512/7.278 -7.295/780.4 .06481/3.838 .03535/18.91
Gped,inches -2.597/22.15 .2188/5.555 -.08264/14.19] -.3877/247.0
F-RATIO 23.27 30.83 154.0 54.64 134.87 76.62
R2 . 1459 .3639 .6655 L4137 .6660 .5312
-y 2y -y )y .y )y oy )y oy oy )y Y .} )} 1]
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TABLE 7.6. — CH-53A FLIGHT DATA - OPTIMAL SUBSET REGRESSION RESULTS
o 100 kts., with SAS KEY:
e Aerodynamic terms only Parameter value
e SI Maneuver XXXX/ XXXX
o 9 dof model - 1st order rotor F to Remove
u ) v ) W p a r 8o Bic B
ft/sec ft/sec ft/sec? RAD/sec? RAD/sec? RAD/sec’ RAD/sec RAD/sec RAD/sec
u, ft/sec -.1730/30.37 | -.06570/5.219 | .005569/4.989 | -.002059/6.290| -.005380/16.62 .001944/5.195
v, ft/sec .01374/2.660 | -.08391/135.0] -.02101/11.73 | -.001422/6.045 .004069/173.7 -.0009028/15.92
w, ft/sec -.05269/7.931 | -.04706/3.349 -.001211/3.737] -.006328/37.31 -.002832/19.78
p, ft/sec -1.521/5.960 | -1.140/4.902 .3336/31.26 -.1356/52.34 .1015/21.09 -.09729/28.471 -.1103/50.93 -.3032/1583.0
q, ft/sec 3.644/2.754 3.495/4.032 4,654/8.728 .2000/14.50 .2030/6.214 -.4021/64.94 | -1.425/687.5 -.1587/8.388
r, ft/sec 3.058/2.114 -4.283/4.878 | -4.266/6.527 |.9565/41.03 . -.8988/111.5 -.1351/6.725
go, RAD -308.4/302.0 |-6.155/27.8) 1.099/6.032 3.533/132.4 2.544/28.24
Blc, RAD -12.44/2.755 -50.16/50.67 6.334/898.6 -2.718/61.01 |-.6362/17.41 | -2.489/114.7
81s, RAD -16.86/4.749 | 28.10/20.83 25.34/19.22 29.61/1939. -1.113/25.64 3.572/170.4 -.9623/20.67 -.9873/12.79
§long, Inches | 1.838/23.66 .9946/18.70 .04000/22.70 -.3280/5.820 |-.04142/24.55| -.1280/227.6
§lat, Inches -.03842/6.392 | -.008685/3.152 .01654/11.65 | .01268/11.17 .04978/63.57
scoll, Inches -.6403/10.10 | -2.079/45.84 | .07251/10.24 .01421/7.221 .01907/5.053 -.02514/6.898
Sped, Inches -2.516/21.38 ]| -.9547/4.065 | .2806/41.46 -.4212/326.9 -.01899/2.629
F-RATIO 14.99 - 33.35 281.0 422.9 395.7 87.72 13.93 88.27 28.01
Rz .1622 .3822 .8390 .8758 .8683 .6194 .1708 .5953 .2929




TABLE 7.7. — CH-53A FLIGHT DATA - OPTIMAL SUBSET REGRESSION RESULTS
= e 100 kts., with SAS
=~ Aerodynamic terms only KEY:
A ¢ ferody Parameter value
e SI Maneuver \ XXXXS XXXX
e 9 dof model - w/ 2nd order rotor F to Remove*
u v W p q r flo B, £l
2 2 2 2 : 2 2 2 2 2
ft/sec ft/sec ft/sec RAD/sec RAD/sec RAD/sec RAD/sec RAD/sec RAD/sec
u, ft/sec -.1746/32.95 |-.06034/5.002 | .005909/7.374 |{ -.001306/3.117 | -.005953/21.56}-.01913/7.310
v, ft/sec -.07649/114.6 | -.01818/10.23 ] -.002701/28.68 .004191/192.9
w, ft/sec -.07854/17.2Y |-.06330/7.707 -.002838/26.48 | -.005714/31.26].08361/154.1 .04008/24.41
p, RAD/sec -2.798/21.27 | 2.051/5.795 ° -.08598/2.264 |-.1805/272.8 .1724/26.89 -.7654/39.09 | -.7521/14.88 -1.729/38.01
q, RAD/sec -13.16/25.43 ¢ 11.50/23.62 -.5186/15.05 -.2470/22.92 .6857/58.83 3.018/19.14 ~3.675/41:26 6.122/51.76
r, RAD/sec -3.627/3.657 }-5.294/11.07 { .8932/48.06 -.9109/127.4 |-1.287/8.09%1 | -3.113/29.10 1.266/4.809
éo‘ RAD/sec 6.861/8.872 -10.78/67.29 ~.2493/31.14 -.1671/4,685 |-.7367/2.993
éic‘ RAD/sec -13.23/45.56 | 5.765/16.37 -.4539/25.86 -.2372/40.64 .3968/37.25 2.496/36.42 4.248/74.02
Bise RAD/sec -2.988/4.027 | 5.188/18.00 -1.148/165.0 -1.369/25.20 | -2.928/65.06 -.6940/2.548
éo’ RAD 30.63/5.021 -288.3/292.0 2.187/60.72 -1.623/10.89 |-128.0/663.6 | -49.60/113.3
R]c. RAD -41.12/54.86 -62.75/95.74 5.279/1143. -2.030/53.41 )21.75/79.20 -21.86/135.0 24.52/25.00
Brgs RAD 39.14/25.75 21.36/14.92 27.79/2612, -1.444/93.95 3.897/120.6 4.291/8.274 -46.11/234.9
8t ,Inches 1.706/42.87 -.4456/3.508 -.3986/21.11 {-1.025/117.5 .5862/22.7
ong
6 t.lnches -.5313/7.947 .03299/6.041 -.01542/3.885 .1366/10.17 .5628/69.
a
6co“,lnches . -1.015/23.77 }-2.041/46.09 1.843/470.7 .9106/99.79
6Ped' Inches -2.392/20.58 [}-1.297/8.347 | .2951/60.80 -.4193/359.4 {-.3290/7.714 | -.6093/15.83
F-RAT]O T 19.40 30.34 288.6 526.5 497.6 74.36 60.50 42.56 31.67
R2 .2003 .4239 . 8551 .9071 .8924 .6433 .6129 L4412 .3701
-y Yy Yy )y oy Y Y )y o) ] ] ) | J )
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TABLE 7.8. — CH-53A FLIGHT DATA - OPTIMAL SUBSET REGRESSION RESULTS
e 100 kts, without SAS .
o Aerodynamic Terms Only
s SI Maneuver
e 6 dof quasistatic
u v W p q r
_ft/sec2 ft/sec2 ft/sec2 RAD/sec2 RAD/sec2 RAD/sec2
u, ft/sec -.1569/25.94
v, ft/sec .01573/3.175 1 -.09861/198.5 -.005183/26.05 ] .001326/22.99 }.003600/136.0
w, ft/sec -.09037/10.77] -.1203/30.61 -..3201/177.7 -.004692/31.34] -.001968/3.465
p, RAD/sec -1.209/3.916 [ -2.774/34.11 2.696/29.37 -.5123/51.96 -.05173/7.385
q, RAD/sec -5.861/7.084 -7.306/15.20 .6538/8.639 .1569/6.085 .3786/24.46
r, RAD/sec 1.049/25.25 -.2050/7.749
6Iong aux,
inches 2.971/66.62 1.416/27.58 7.103/522.1 -.2282/468.7 | .06784/27.16
ﬁlat aux,
inches .6672/45.70 - .3803/755.8 .02145/34.72 |.05630/149.2
6coll aux, .
inches -.6170/6.007 | -.5674/8.529 -8.220/1435. .09366/11.97 .05507/54.00 |-.04522/26.03
6ped aux,
inches -2.481/13.86 .3927/20.93 -.05997/6.232 | -.4620/262.7
F-RATIO 16.35 47.56 291.48 148.3 191.1 82.74
R2 .1530 .3805 L7631 .6570 .7387 .5503
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TABLE 7.9. — CH-53A FLIGHT DATA - OPTIMAL SUBSET REGRESSION RESULTS
e 100 kts., without SAS
e Aerodynamic terms only
¢ SI Maneuver
e 9 dof model - 1Ist order rotor
u v v P q r 8o 8 B
2 2 2 2 2 "2 ¢
ft/sec ft/sec ft/sec RAD/sec RAD/sec RAD/sec RAD/sec RAD/sec RAD/sec
u, ft/sec -.1769/34.09 -.001906 .001526/3.902
v, ft/sec -.1106/234.2 ~.001137/3.267 | .0005303/9.281 | .004441/184.9 |-0004905/7.606]-.0006978/12.79] -.001370/31.89
w, ft/sec -.1134/10.33 | -.08100/13.06 | -.09912/14.06 -.003352/37.12 | -.003908/14.18|.003404/39.73 |.002154/7.307
p, RAD/sec -2.532/13.95 | -4.367/50.95 | 2.669/24.76 .3134/38.12 -.1179/94.72 .1394/32.95 -.09999/44,22 |-.1397/62.95 -.2638/181.7
q, RAD/sec ~5.832/6.324 2.528/2.842 ~.09554/4.715 | .3622/21.72 -.6268/189.7
r, RAD/sec -4.006/7.383 1.5212/16.30 -.2898/15.56 .1008/6.210 -.1513/9.245
Bys RAD 63.62/5.676 -261.4/170.9 |-6.227/26.33 3.824/46.05 -2.712/33.60
Brce RAD 63.25/29.76 -72.89/84.08 7.035/836.7 -2.813/31.36 |-1.920/45.79 |-4.114/159.6
B]S. RAD -62.06/16.33 | -45.12/12.18 | 59.69/29.80 31.33/920.7 4.125/206.5 -1.972/38.20 1-1.952/35.99 -3.590/81.29
8long aux,
inches 3.632/46.56 4,030/53.10 .09085/55.23 -.04166/2.654 |-.1453/114.1 |-.2386/264.8
élat aux,
inches .8477/12.23 1.259/37.70 -.5632/10.81 |-.05912/12.62 | -.02750/128.0 .03080/37.06 |.04059/63.64 .07513/137.0
Scoll aux,
inches -1.465/7.778 | -.9610/20.11 | -3.181/87.30 [.08012/11.61 -.03909/15.89 |.05904/125.1 }.03114/8.744 -.02269/6.264
6ped aux,
inches -3.085/31.07 | .2820/29.11 -.4829/271.3 .03795/5.355 -.02905/2.077
F-RATIO 14.48 42.456 304.47 462.5 513.1 76.79 30.53 91.08 38.44
R2 .1764 .8144 .8496 .8724 .8835 .5876 L3100 .6884 .3624
.y oy .y .y )y )y )Y ) I IR RS R R ] J
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TABLE 7.10.

S! Maneuver

— CH-53A FLIGHT DATA -

100 kts., without SAS
Aerodynamic terms only

9 dof model - 2nd.order rotor

OPTIMAL SUBSET REGRESSION RESULTS

u

v

w

P

q

r

Bo

ft/sec’ ft/sec’ ft/sec RAD/sec’ RAD/sec’ RAD/sec’ RAD/sec’ RAD?lgcz RAnj::cz

u, ft/sec -.1817/37.35 ,004233/3.545 | -.001295/3.115 -.01118/2.823| .02233/7.334
v, ft/sec -.09508/195.2 | -.009164/2.127]-.003159/30.86 | .0005216/9.925| .004771/205.4 -.01333/30.08
w, ft/sec -.09864/7.880 | -.1606/47.91 | -.08390/10.75 -.003514/40.37| -.004621/12.63] .1186/310.1 | .04956/35.28 | .02797/13.76
p. RAD/scc -5.465/46.24 | -1.454/6.977 | .8080/2.453 |-.1301/5.128 |-.1265/114.9 | .2042/43.32 |-.7297/24.86 | -.9488/27.40 | -2.521/107.7
q, RAD/sec -16.75/41.36 | 2.997/2.441 -.6353/19.19 | -.2358/21.15 | .7388/71.55 |5.486/139.0 | 1.778/9.521 | 2.826/17.52
r, RAD/sec -4.029/8.039 |.4729/15.32 -.3046/28.23 |-.7296/4.214 | -1.471/11.07 | .8181/2.494
By» RAD/sec | 5.011/4.799 -11.23/59.66 -.2222/25.85 -1.137/7.904 | -1.736/12.00
B;.» RAD/sec | -16.70/71.39 | 9.542/36.58 -.1825/23.59 | .s920/81.97 |1.961/23.92 | -1.223/6.067 | 2.442/19.41
Byg» RAD/sec [ -7.351/22.44 | 3.421/8.511 | -1.727/2.861 -1.200/18.90 | -3.440/101.2 | -2.294/29.92
By RAD 143.8/23.87 -241.4/160.1 1.7323/39.09 | -2.873/10.69 |-142.7/752.9 | -48.33/56.35 | 7.777/2.560
B¢+ RAD -66.48/38.14 | 89.94/55.01 | -87.31/57.51 [-3.429/12.86 | 5.139/1115, 9.844/9.475 | -50.99/165.7 | 22.93/23.33
B> RAD -99.64/37.03 25.33/20.31 |25.53/678.0 4.935/75.37  |10.07/11.97 | -1a.20/15.53 | -90.04/383.2
&long aux,

inches 6.583/88.21 | -.9083/2.976 |-.1977/15.65 A073/31.97  |-1.415/81.32 | -2.011/224.5 | .9066/17.54
5lat aux,

inches 1.732/42.64 | .3774/13.89 .06482/15.10 | -.02470/108.7 | -.01776/3.699 | -.07459/2.500] .3a73/35.46 | 1.1297217.1
6coll aux,

inches -1.389/8.648 |-1.885/5716 | -2.822/61.07 |.08207/19.52 -.04923/7.590 |2.198/587.0 | 1.357/145.8
6ped aux, .

inches -2.975/27.84 |.2844730.41 -.5070/327.7 |-.2679/3.969 | -.5812/12.18
F-RATIO 18.37 40.36 281.5 404.9 260.0 76.04 68.90 45.98 43.40

R? .2730 .4521 8628 .9076 .8951 .6295 6593 .5636 4923




TABLE 7.11.— OSR RESULTS FOR THREE LINEAR MODELS

MODEL
DERIVATIVE

6 DOF

1st ORDER ROTOR

9 DOF

9 DOF

2nd ORDER ROTOR

M,» 1/(ft*sec)
M,> 1/(ft*sec)
M, 1/(ft*sec)
1/sec
1/sec

1/sec

M
M
Msong? 1/(sec2*in)
MGLAT’ 1/(sec2*in)
McoLr» 1/ (sect*in)
MspeD> 1/(sec2*in)

.00157/32.05
.01339/327.7
.66386/92.09
.33308/17.80

.14347

.02354/24.06
.03535/18.91
.08264/14.19

-.00206/6.290

.00121/3.737
.13561/52. 34
.20003/14.50

.33428/898.6
.11285/25.64

.03999/22.70
.008685/3.152

.01421/7.221

-.00131/3.117

-.00284/26.48
-.18051/272.8
-.24699/22.92

2.18694/60.72
5.27916/1143.
-1.44412/93.95
- .249272

-.23720/40.64

R2
F-Ratio

.6€6037
134.87

868342

395.73

.892402
497.63

® CH-53A Flight Data, 100 KIS

e SAS On
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TABLE 7.12.— OSR RESULTS WITH AND WITHOUT SAS

DERIVATIVE MODEL SAS ON SAS OFF

M, 1/(ft*sec) - -

M,» 1/(ft*sec) .00157/32.05 .00133/22.99

M 1/(ft*sec) -.0134/327.7 | -.00469/31.34

My, 1/sec - -.0517/7.39

My» 1/sec -.664/92.09 .1569/6.09

M 1/sec -.3331/17.80 -

MBO’ 1/sec2 - -

MB1 1/sec2 - -

MB1 1/sec2 - -

MBO’ 1/sec - -

M81 » 1/sec - -

MB1 1/sec - -

Mg onG? 1/(sec®in) | -.143/231.7 -.2082/468.7

Mg 7> 1/(sec?*in) | -.0235/24.06 .0215/34.72

McoLL» 1/(sec?*in) | .0354/18.91 .0551/54.00
Mopgps 1/ (sec?in) | -.0826/14.9 | -.06997.6.23
R? 666037 73865
F-Ratio 134.87 191.13

e CH-53A Flight Data, 100 KTS

e 6 DOF Linear Model

\PARAMETER VALUE

XXXXX/XXXXX\
F TO REMOVE

N I

S

N

.

]

—1 1

1]



on the level of process noise chosen. Further attempts to iden-
tify the process noise power spectral density were inconclusive.
The moral of this effort is that it is dangerous to rely on low
order models when significant higher order dynamics are present.

Bell 609 Rotorcraft Results

Parameter identification results were generated with linear
SCIDNT for the Bell 609 rotorcraft, using actual in-flight data
as input. This flight data was acquired from Bell Helicopter
(Textron) on a magnetic tape which contained control and
measurement time history redords of longitudinal maneuvers
performed on May 23, 1973. The particular maneuver data used in
this identification example was #4158, which consisted of a 1
second aft pulse on the stick (longitudinal cyclic input). This
particular maneuver was chosen because there was very little
lateral stick motion.

A fourth-order linear model was used in the parameter
identification program. This model is

£ x(t) = Fx(t) + Gu(t)
y(t) = Hx(t) + v(t)

E[v(t)vi(t)] = R8(t-1)

Assigning the states u(t), w(t), q(t), and 8(t), long-
itudinal velocity, vertical velocity, pitch rate, and pitch
attitude to x and y, and assigning the controls Blc(t)

and 1. to u, the model can be written as follows:

u(t) X, X, xq-wo -g cosf, u(t)
d w(t) Zu I, Zq*'U0 -g sind, w(t)
3 ) h M 0 t)
aley | (M, M, Mg a
a(t) 0. Q. 1. 0. a(t)
Xy X, Blc(t)}
. ZB :o 1.
MB Mo
Lo o
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wo (t)
q, (t)

8 (t)

The time history measurements used were: Voo
pitch rate, and

velocity, as

em, pitch attitude.

and W
read by SCIDNT.

—um(t)— Fl.

- - L

m
and after proper units conversion, the tape was

0. 0
0. 0
1. 0
0. 1.
.

angle-of-attack,

and o

ru(t)

w(t)
q(t)

8(t)

m

A >
were resolved into u

p— —

n, (t)
nw(t) -

ng (t)

Lne (t)
total

m

A total of 287 points, spaced at a .125

second sample interval, were used (every 64th point was used).

The nominal airspeed of the maneuver was 60 kts (100 ft/sec).

The SCIDNT run was started with most of the unknown
parameters in F and G as zero. The F and G matrices
were initially input as follows (with parameters to be iden-
tified starred].

of  of 0 -32.17 |
% * E3
g 2|07 ol 100 337
* * *
or 0. 0 0
0. o 1. 0 |
F ) %
oF o,
* *
co|or o
* *
or 0
—O O.-J

1

-

1

B

S



After 27 iterations, linear SCIDNT calculated the follow-
ing F and G matrices:

Final F =
3.59x10'6* -1.83x1078"  _31.7%¢  _32.17
-.157% 4.93x10°7"  66.9%  .337
.00567% -9.0x107%" -3.83% 0
| o 0 1. o |

Final G =
.116% - 5.41¢%
.837%* -40.3*
-.0244% 1.16%
| 0 0. _

The final F matrix had the following eigenvalues:

-3.8, 0.0, and -1.73 + j0.22.

The particular estimates from these matrixes, as well as
the standard deviations and F-ratios are presénted in Figure 7. 9.

It can be seen from the F-statistics that the pitching
moment coefficients should be regarded as the most accurate para-
meter estimates. This is to be expected, as longitudinal stick
motion primarily excites pitch dynamics. Other parameters, such
as Xu, Xw, Zw and Mw are basically unidentifiable as is
indicated by the low F-ratios.

Since the initial value of the control was not subtracted

out of the data, and bias terms Xo’ Zo’ and M0 are estimated,
an approximate value of the control bias can be calculated as
2 2 2
B = (X2 + 22+ M)/ (Xq X + Z Z + My, M)
1c0 o 0 o} B1C o B1C o} B1c o)

[
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The estimate of the control bias is fairly gooa, that is, 48
percent, compared to an actual value of 50 percent.

In conclusion, careful preliminary analysis of the flight
data and the modeling should be made prior to any SCIDNT run. In
particular, it is recommended that DEKFIS be used to verify
flight data consistency and OSR be used to assure proper
modeling. In this case, it was attempted to bypass these steps
with obvious consequences.

RSRA Results

Results for the rotor systems research aircraft (RSRA)
consist of simulation data processed through the optimal subset
regression (OSR) computer program

The simulation data was provided by NASA Langley Research
Center and was generated by the Nonlinear RSRA simulation
mathematical model [Ref. 63]. This model was simulated to the
control inputs shown in Figure 7.10. These inputs are superior
to the more common step and doublet inputs usually used for
identification [Refs. 61 and 62]. Unfortunately, the magnitude
of these control inputs was exceedingly large, and the unstable
simulation model diverged over the length of the 25.5 second
maneuver. Nevertheless, the data were processed through OSR to
show its flexibility in breaking out the rotor force and moment
contributions. Whereas the results alone are of questionable
value, the techniques investigated should prove to be quite
useful when processing actual RSRA flight data.

Three different models were identified from this data.
These were:

(1) 12 dof with 2nd order rotor; (2) rotor hub force/moment
breadkdown; (3) 6 dof with rotor hub force/moment contributions.

The first model is a 12 degree of freedom (dof) model with 6
body dof's, 3 rotor flapping dof's and 3 motor lagging dof's.
Each rotor flapping and lagging degree of freedom is of second
order. The resulting OSR identified model is shown in Table
7.13. Because of the large nonzero mean excursions in the
independent variables (i.e.,u,w,q), the parameters identified in
the linear model are not physically realistic. An attempt was
made to identify some nonlinear (polynomial type) parameters.
This is shown in Table 7.14.

The second model is a rotor hub force and moment breakdown
model where the hub forces and moments were treated as dependent
variables and the 12 dof rotor (only) model was identified.
Table 7.15 shows this breakdown.
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The third model identified is a 6 dof body/fuselage model
where the rotor hub forces and moments are treated as control

inputs (i.e., independent variables). The results are shown in
Table 7.16

Note that in many cases quite reasonable regression fits and
F-ratios were achieved. These results can be deceiving,
however. Since the sum of squares of the signal was large, the
residual error will be proportionately large for a given multiple
correlation coefficient (R2). These residual errors are

Standard
Parameter Estimated Value Deviation F-Value

X, 3.59x10°0 1.62x1073 4.93x107%"
Z, -.157 .0482 10.5

M, L0057 .0005 126.

X, -1.83x10°% 7.78x1073 5.56x10°8"
z, 4.93x10”7 6.73x1073 5.36x10"%"
M, -9.0x107° 1.48x10°% 3.69x10"9"
Xq -31.65 1.84 29.4

2, -33.08 33.06 4.09

My -3.83 .336 130.0

X 115 .023 25.2

Blc

z .837 .160 27.26

B1c

M -.0244 .00171 20.3

B1c

X -5.42 1.14 22.6

2, -40.4 7.63 27.9

M, 1.16 .0818 201.1

* Not Identifiable

FIGURE 7.9 - PARAMETER ESTIMATES AND STANDARD DEVIATIONS
FOR BELL MODEL 609 AT 60 KTS.
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not negligible, and substantially more nonlinear modeling is
required to yield reasonable numbers. On the other hand, if
too many additional independent variables are added, the number
of independent variables can equal or exceed the number of data
points in the regression. For the supplied sampling period
(T=0.2 sec), it is neither reasonable to substantially increase
the number of independent variables to model the nonlinearities
nor to reduce the length of the data segment to maintain the
linearity of the data.

UH-1H Results

The UH-1H results consist of control input design and
flight data processing through the SCIDNT computer program.
Initially, a series of stepwise control inputs were designed
for implementation in the UH-1H flight test program based on
a UH-1H linear model. These inputs were subsequently dupli-
cated by the pilot during the flight testing. The conven-
tional doublet inputs were also used in the flight tests.
The final step was to process the data through the SCIDNT
parameter identification program and get improved linear
models.

Input design for UH-1H flight testing. - To illustrate
the sequence of computations and type of inputs, the applica-
tion of the input design algorithm to a low order simulated
linear model of a UH-1H helicopter (no stabilizer bar) at 60 kts
was computed. Only the longitudinal dynamics were considered,
and thus the quasi-static rotor assumption is evoked. The

assumed model, based on C-81 [Ref. 64] computations, is shown in
Figure 7.11, where five measurements are assumed (u, w, q, 8,

az) and with measurement random noise power spectral density

(units ft, rad, sec)

R = diag [4.,4.,10°%,107%,4.]

The two controls, collective stick 6COLL and longitudinal
cyclic stick 6LONG are assumed applied individually. It is

desired to design inputs which maximize the accuracy of the
parameters underlined in the matrices (10 parameters). For
this input, 8 seconds of total input time are specified, with
only 1 second steps allowed. For both inputs, SCOLL and

SioNG» TMean square control excursions are limited:
8 2
f 100 6° dt = 1.0.
o
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SLong I I
-10 HEY 15 20
10
SCoLL I
1 1 )
-10 | 5 10 U

TIME, SEC

FIGURE 7.10.— RSRA SIMULATION CONTROL INPUTS
(STICK DEFLECTION IS IN PERCENT
OF TOTAL TRAVEL RELATIVE TO THE
TRIM STICK POSITION)
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TABLE

7.13.

— RSRA SIMULATION DATA -

2ND ORDER ROTOR

OSR RUNS -

LINEAR -

12 DOF WITH

5 D A

Coefficient Value

F to

Remove

i
FT/SEC?

v
FT/sEC?

W
FT/SEC?

b
RAD/SEC?

q
RAD/SEC?

ro
RAD/ SEC*

u, ft/sec

v, ft/sec

w, ft/sec

p, rad/sec
q, rad/sec
r, rad/sec
$
¢, radians
B
Blc' rad/sec
Bg» rad/sec

Bo, rad

Blc
?ls’ rad

(o rad/sec
ilc’ rad/sec
Lise rad/sec
Ly» rad

C]c' rad

radians

rad/sec

, rad

L]S, rad
GLONG' inches
GLAT’ inches
SCOLL' inches
GPED‘ inches

-.108938/659.7

.792670/17.20
-38.5933/456.2
-2.75896/660.8
-35.8445/1623.
-6.37844/75.98
27.5079/72.46

25.5739/98.12

.0849884/30.03

.180321/582.7
-1.32923/134.1
-10.7371/5.915
-154.652/403.9

-38.0693/23.4}

44.5946/23.29
-207.816/376.6
495.536/69.57
135.652/149.2

-1.66441/85.07

-.0982755/55.82
.627098/36.42

136.726/266.3
78.9239/17.53

16.9444/19.89
-190.027/133.4
125.448/23.94
-149.185/69.88

~.569339/33.32

.0040090/11.15

2.33184/35.98
-1.642477180.6
10.2840/439.9

-

.500467/161.4
.0292561/119.6
.0613266/15.35
.253363/14.37
.18317/45.97
.66507/265.4
.02214/170.9

.631489/52.49

.0092254/232.6

-.0001866/42.16
.0025545/61.72
-.00131511/36.62
-.0424003/45.91
-.309070/23.563

-.154603/6.503
.137973/38.46
.3515617/20.73

.430655/181.5

.662435/105.6

.0014917/17.53

F-Ratio

4631.7 179.25 46.271 181.12 96.594 82,9
Rz .997177 -936729 .798175 854663 ~831961 887743
) 1 ) I | Sy ooy oy oy Ly Yy oy ) 2
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TABLE 7.13. — CONCLUDED
Bo Eilc éls Eo ZIc Zls
RAD/SEC? RAD/SEC? RAD/SEC? RAD/SEC? RAD/SEC? RAD/SEC*?

u, ft/sec

v, ft/sec

w, ft/sec

p, rad/sec
q, rad/sec

r, rad/sec
¢, rad

6, rad

éo' rad/sec
?lc‘ rad/sec
ﬁls' rad/sec
B, rad

Blc. rad
?]s. rad

Lo rad/sec

P8 rad/sec

&ls‘ rad/sec
Lor rad

Llc' rad

Lls’ rad
5L0NG‘ inches
SLAT' inches
6C0LL' inches
5PED' inches

'1.24137/14.70

.616372/35.19
1.66034/21.50

3.36914/11.45
-.0165573/60.87

-3.70532/50.43
-2.49783/255.3
-3.05377/21.76

-.022818/44.47

-1.1000/61.52

*-.506508/120.4
-.532184/28.29

-1.1689/56.93
-.458404/33.76

-.00135146/93.50

.487964/12.41

-3.89073/20.94
-3.92671/125.2

-.111215/7.750
-.479954/1009.

.331959/53.39

3.03866/134.7

-.002584/19.569

.0005515/83.09

-.161654/19.65

.216715/163.4

.658497/46.39

-10.5956/145.4

84.373

255.34

47.629

84.357

f-Ratio
RZ

.775680

.8925

.607678

(lZZEJ—F to Remove
Coetficient Value

.775646




TABLE 7.14.

— RSRA SIMULATION DATA -

- Longitudinal

- Transgenerated u?,

w?, q2, uw, U, g, wg terms

- 12 dof w/ 2nd order rotor

OSR RUNS

o/
F to Remove
Coefficient Value
u W q
ft/sec? ft/sec? ft/sec?
u, ft/sec .0462094/45.23
v, ft/sec -.150251/328.7
w, ft/sec -.00222258/7.712
p, rad/sec -51.4330/168.9
q, rad/sec -12.0530/54.60 50.3129/38.40 .287329/45.96
r, rad/sec 90.4102/72.66 -.479089/103.5
u?, ft?/sec? -.000282046/709.7
w2, ft¥/sec?
q%, rad?/sec? -331.375/56.42 -1.90977/72.51
uew, ft2sec? .00720504/153.0 | -.000014654/20.38
ueq, fterad/sec? -.172689/132.4 .976432/139.4
weq, fterad/sec? | -1.16709/213.7 .0187846/43.95
¢, radians -.733555/43.35 .0260525/153.6
¢, radians -27.2399/1544.
éo, rad/sec
B1c, rad/sec -.220495/112.3
Bys, rad/sec 1.30155/398.3
8o, radians 199.449/39.26 -1.48749/12.30
B1¢c» radians 8.79354/47.60 -1.01747/119.4
815, radians 840.703/189.9
io. rad/sec
i]c, rad/sec
i]s, rad/sec
Zo» radians -153.125/74.72 .581002/97.90
gyc» radians
31y radians
SLong» inches -.595814/49.57
8 aT» inches .00750275/42.01
6C0LL’ inches .00750275/42.01
6PED’ inches
F-Ratio 10210. 49,731 129.75
R? .998718 .809541 .936692
160
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Coeff
cient
Value

6L0NG' inches
SLAT» inches
ScoLL» inches
8pgps inches
Bgs rad

Bycs rad
ﬂ]s, rad

8,, rad/sec
Bics rad/sec
é]s. rad/sec
Lo rad

Lycs rad

T1ss rad

Ly, rad/sec
Ly1c» rad/sec
i1s, rad/sec

.030524/66.35

-1.39531/131.1

-.0240146/24.90

-1.95725/122.8
7.19282/92.32

-2.515641/56.39

-1.17629/284.3

267.937/111.6
83.0572/166.7
27.9802/32.99

-20.4926/44.39

-24.0639/157.0

~1.10282/23.61
1.40552/22.46

-1.75356/268.9
8.89439/478.3

-.838172/29.75

-.763121/404.2

.391089/111.1

] ] ] ] ] ] ]
TABLE 7.15. — RSRA SIMULATION DATA - OSR RUNS - LINEAR, 12 DOF,
2ND ORDER ROTOR - ROTOR FORCE/MOMENT BREAKDOWN

Re- R L Iy Ly M Ne

move ft/sec? ft/sec? ft/sec? rad/sec? rad/sec? rad/sec?
u, ft/sec -.00652639/45.39 -.155099/539.8 -.00120664/28,57 .000663154/71.47 .000338245/610.3
v, ft/sec .02646/51.93 ~-.00416582/493.7
w, ft/sec ~.679121/195.0 .00728603/46.09
p, rad/sec 1.84322/615.0
q, rad/sec -2.1530/62.34 .298756/158.4
r, rad/sec 1.28644/3.263 .687865/16.19 . .876033/563.6
¢, rad ~.192164/79.05 -3.43178/451.5 -.0975959/56.85 .0346858/309.8
o, rad 2.39862/155.0 -27.7042/324.0 -.0990877/41.31

.00346815/110.7

-.393753/55.19

-1.03361/284.2

.780316/375.8

.334434/454.2

F-Ratio

2089.3

383.57

501.07

159.66

1094.0

924,32

R2

.990440

.957219

977183

.924118

.981900

.984162




TABLE 7.16. — RSRA SIMULATION DATA - OSR RUNS - LINEAR - 6 DOF WITH
ROTOR FORCE/MOMENT CONTRIBUTIONS
= e / ‘e
3 Coeffi- F to a v W p q r
cient Value Rewove ft/sec? ft/sec? ft/sec? rad/sec? rad/sec? rad/sec?
u, ft/sec -.106146/360.9 -.000151235/2.313
v, ft/sec .00917058/507.2
w, ft/sec .627368/50.99 -.00851137/341.4 -.00211978/66.10
p, rad/sec -33.2212/144.4 -.0302990/10.27 .110442/52.49
q, rad/sec 14.3666/48.48 110.979/132.9
rad, rad/sec -22.1317/M12.2 -49,6356/27.72 96.4448/90.56 -1.14855/209.1
¢, rad -2.68670/286.5 ~3.38161/42.00 4.87067/115.7 .0320097/231.5
0, rad -41.5172/1474. 13.9795/73.52 .0991914/16.96
8 onge inches -.00149956/8.895
S ay» inches
ScopL» inches .493362/44.62 576395/23.85 -.00557196/176.6
Spgps inches
XR» ft/sec? 3.51784/74.48 .0743372/30.05 .0102781/6.407
YRs ft/sec? 15.1571/68.35 ~.0367486/17.04
Ip, ft/sec? .357942/28.54 1.40466/105.1- -.00617716/40.11
LR, rad/sec? -40.0115/259.8 1.10766/12460. .0958124/145.0 -.0538265/32.54
Mp, rad/sec? 12.3210/12,26 32.6719/17.82 1.27048/38.70
Ng, rad/sec? .522857/84.28 -.572691/74.12 .994565/613.1
F-Ratio 3840.6 111.87 33.763 4596,4 94.979 139.06
R? .995556 .882638 .663244 .991088 .864593 .929513
-y oy NI S S R SUUS R N R R R )




STATE EQUATIONS:

n -.0227  .0587  -5.645 -32.09 u 7115 .862
4| .0013  -.7542  101.71  -2.314 | |w 9.818  2.46 | |%coLL
at | q| ~ |.00373 -.0032  -.5305 O ql * 0064 -.180 | | 8 g
0 0 0 1.0 0 0 0 0
L] L 4 U1 L _

u 1.0 0 0 0 0 0
§ u ScoLL
y 0 1.0 0 0 0 0

W %) oNG
a | = | O 0 1.0 0 + 0 0

q
By 0 0 0 1.0 0 0
2, 0013 -.7542 O 0 0 -9.818  2.460

FIGURE 7.11. — THREE DEGREE OF FREEDOM LINEAR STATE
AND MEASUREMENT EQUATIONS FOR THE
UH-1H HELICOPTER

e No Stabilizer Bar
e 60 Kts

¢oT
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Figures 7.12 and 7.13 show the iteration outputs as the
algorithm minimizes the sum of the estimated variances of the
parameter error covariance matrix (J). In both cases, a con-
ventional pulse input is used to start the iteration. The
cyclic input is seen to reduce the cost J by 60 percent.
The collective input reduces J by 68 percent.

A considerably more complex input design approach was
taken for flight test. The linear math model used in this
design was derived from C-81 simulation. It is an eight
degree-of-freedom, 10-state model with four inputs. It is
assumed that we have measurements of 10 independent quanti-
ties. The states, controls and measurements are as follows:

States (x): wu, w, q, 8, v, p, T, o, ag, b1

Inputs (W: Sygynge Spate SpED’ ScoLL

Measurements (y): u, w, q, 6, v, p, T, ¢, a;, a,

The state and measurement equations are
x = Fx + Gu
y(k) = Hx(k) + Du(k) + v(k)
Nominal values of F, G, and H matrices used in input de-

sign are shown in Table 7.17. Note that we have continuous
state equations with discrete measurements. v(k) is a noise

term which is assumed zero mean white Gaussian with covariance

, sec., rad). .
R = diag[4.0, 4.0, 0.0001, 0.0004, 4.0, 0.0001,
0.0001, 0.0004, 0.0004, 4.0]

(units ft.

There are about 80 parameters of interest. Since a single
input could not possibly excite the system to identify all the

parameters simultaneously, 10 individual sequences were de-
signed. Each input sequence was designed to maximize estima-

tion accuracy of only 10 parameters. Some important parameters

are included in two or more sequences. Table 7.18 lists the
parameters for which each of the 10 inputs is designed. The
inputs are shown in Figure 7.14. Each input consists of a
sequence of eight steps each of 1 sec. duration and has been
designed to minimize total input energy (which in turn also
restricts output energy).
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LARGEST |
ITERATION 8 STEP IMPUT J RGeSt
Fy
S onG —‘
] ! >t 016.47 962.19 .37263
A
S one L__
2 >t 323.60 483.04 .67249
SLonG '
st 261.65 290.01 81753
3 T Re—— bl
4
§
merj_L1~ﬂ — .t | 285.92 269.58 .93734
4 .
SLong »—‘_\_‘
5 4 .t 251.27

FIGURE 7.12

UH-1H INPUT DESIGN - LONGITUDINAL STICK

CONTROL, $poNG
i TERAT 10M 8 STEP INPUT J E1GERVALUE Y
r' 3
1 Scovr. P']
>t 68051. 104385, .77643
r
) ScoLt h—‘—| .t
e > 4€599. 47168.3 .99022
Scout _‘_L‘ '
3 >t 46209. 46229.6 .99973
a ScoLL ‘—-l'—l_-.l
1 >t 46195, 46196.5 .99998
4
ScoLL r-_L‘L_]
5 - >t 16194,

FIGURE 7.13

CONTROL

SCOLL

UH-1H INPUT DESIGN - COLLECTIVE STICK
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Table 7.1

7

Eight Degree of Freedom Linear State And Measurement
For the UH-1H Helicopter

e No Stabilizer Bar

® 60 Kts
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TABLE 7.18.

— INPUTS AND THE CORRESPONDING PARAMETERS FOR WHICH

THEY ARE OPTIMIZED

INUT #1 | INPUT #2 | ineuT #3 | InpuT 44 | ineut 45 | ineut 46 | neut 47 | neut 48 ) ineut 49 | InpuT #10
SLong 1 Song 2 | Song 3 | Suat s SLAT 2 SLaT 3 SpepaL 1 | Speoar 2 | Scorn ScoLL 2
M, Y, X, t, ", X, Y, X, 1, v,

M Ly Z, Ly Np Z, Ny ¢ M Ly

M, Ly L, L My Y, L, M, M, N,

M, L N, L M. M, L, M, 7,1 L,

Ivlq Yal Lu I'r al Mv Nr Mr Mal Lq

xal Lal Nq Yb] Xb] l‘v "r Mr Mal Lal
I Nay a1 Lpy Iy b1 YspED XspED XscoLL YscoLL
M Lay XsiLong N Mo YsLaT LspED Zsped LscoLL LscoLL
Ma1 Mo Zsi onG Loy M1 Lsiar NspeD MspeD MscoLL NscoLt
MsLong LsLonG MsLone LsiaT MsiaT NsLAT Lspep MspeD MscoLL LscoLL
R B | ] 1 . | . | R D R | ) |




UH-1H Flight Data Processing.— Flight data processing for
the UH-1H consisted of: Treading the flight data tape, editing
and preprocessing the data, and processing the data through the
SCIDNT computer program. (Due to the limit imposed on computer
gesou§ces, it was not feasible to run DEKFIS and OSR on this

ata.

UH-1H flight data: Flight data for the UH-1H V/STOLAND
helicopter was provided by NASA Ames Research Center. This data
was from Flight 68 and dated February, 1978. The maneuvers
processed were specifically flown at 60 kts for system identifi-
cation purposes using the optimally designed inputs discussed
previously. Conventional doublet inputs were also flown for
comparison. The pilot's rendition of the optimal longitudinal
stick input (6LONG3) is shown in Figure 7.15. The optimal

input sequence is repeated three times in succession. Figure
7.15 algo shows the.collective stick motion during this vperiod.
The optimal collective stick input analyzed is likewise presented

in Figure 7.16. Optimal collective stick input 3§ is
| COLL,

repeated three times at the beginning of the maneuver and once
towards the end. Longitudinal and collective doublet inputs

are shown in Figures 7.17 and 7.18 respectively. The four

data records processed (each corresponding to the inputs of
Figures 7.15 to 7.18 were 50 seconds long with a sample period

of 0.0504 second (for a total of 990 data points). The following
measurements were utilized: VTOTAL’ h, q, 6, ay, a,, GLONG and

ScoLL.

SCIDNT runs on UH-1H data: The UH-1H flight data was pro-
cessed using a linear 3 dof, 4th order longitudinal model. (A
simple longitudinal model was chosen in order to conserve com-
puter time.) Since all the maneuvers were flown at the same
flight condition, it was decided to process a longitudinal stick
input and a collective stick simultaneously to obtain a single
identified linear model. Three separate longitudinal-collective
stick maneuver combinations were considered. These cases are
shown in Table 7.19. These cases produced three separate final
estimated parameter models: a model identified using only optimal
inputs, a model identified using only doublet inputs, and a model
using the combination shown for Case 3 (to be discussed further
below).

The initial parameter estimates were based on C-81 computa-
tions for a 3 dof longitudinal model without stabilizer bar stabil-
ity augmentation. The F,G,H and D matrixes for this model are
shown in Figure 7.19, with states, controls and outputs as follows:

States: u, w, q, ©

Control Inputs: GLONG, SCOLL

Qutputs: Vogral: h, q, 6, aes 2, 169



This initial parameter model is shown simulated to the pilot's
optimal longitudinal stick inputs (of Figure 7.15 in Figures

7.20 (a) - (f). This simulation ("B" trace) is shown compared to
the actual UH-1H response time history ("A" trace). Large
discrepancies can be noted. The same model is likewise simulated
to the pilot's optimal collective stick input (of Figure 7.16

in Figures 7.21(a) - (f).

For Case 1, a new set of parameters was obtained by running
SCIDNT. These parameters, along with the associated standard2
deviations and F-ratios, (which in this case is (Parameter/o)“),
are shown in Table 7.20. Simulations of these parameters for
each of the optimal longitudinal stick input and the optimal

collective stick input are shown in Figures 7.22(a)-(f) and 7.23(a)-

respectively. These time histories are a marked improvement
over the simulations of the initial parameters, although many
discrepancies still exist. There are several possible reasons
for this poor agreement. First, it is possible that there are
unmodeled bias, scale factor and other measurement error effects
in the SCOLL maneuver. Also, thére may be substantial lateral

coupling and unmodeled rotor effects present. Another possibil-
ity is that key GCOLL parameters had not converged resulting

in the poor matches. This would be the case if the GCOLL and
the SLONG were at slightly different flight conditions, and
the SCIDNT program converged to the GLONG parameters because
of the higher signal level.

The SCIDNT results for Case 2 (doublet inputs) are presented
in Table 7.21. Final parameter simulations to the longitudinal
stick doublet input (Figure 7.17) and the collective stick doublet
(Figure 7.18) are shown in Figures 7.24 and 7.25 respectively
In this case, improved results were observed for the 6COLL

maneuver. Note that this does not necessarily mean that doublet
inputs are '"better' than optimum inputs. In order to properly
compare doublet and optimal inputs, there must be a low level

of external disturbances (i.e., gusts) and all other factors

must be the same (particularly the energy of the input signals).
In addition, the pilot must be able to adequately duplicate the
optimal stick input. Even then, the doublet inputs may give
better results. The optimally designed stick input may not really
be optimal because of the procedure used for designing that

input. It is possible that modeling errors (coming about from
higher degrees of freedom, nonlinearities and/or erroneous para-
meter values) can cause large differences in the "optimal" inputs.
In addition, there are inherent limitations in the multi-step
input approach that can lead to differences. These limitations
come about due to the size and number of steps in the designed
input. Large steps (i.e., large AT ) can make identification
of shorter period characteristics difficult. Increasing the
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number of steps (to make the step size smaller) increases the
computer time, core storage and accuracy requirements. Hence,
there is also a limitation on the length of the maneuver.

In order to obtain the best results at this flight condi-
tion, an additional run was set up using the optimal GLONG

control input and the doublet ScoLp control input for simul-

taneous processing. The results of this Case 3 are presented

in Table 7.22 and the corresponding simulations in Figures

7.26 and 7.27. These results are somewhat better but not
completely converged. A comparison of the parameters estimated
for all three cases are presented in Table 7.23. There are
notable differences in these results which warrant further study.

One of the principal benefits of a complete state variable
model is that many transfer functions can be rapidly obtained.
For the Case 3 model identified from the flight data, the follow-
ing stick to pitch attitude transfer function is derived:

2

8(s) - .17s"+.100s+.0017
S LoNG s+1.185%+1.395%+.10s+.0044

the poles of which are s; , = -.565 + j.99, sq 4 = -.024 + j.182
and the zeroes of which are -.560 and -.017. (Here GLONG is

positive inches of aft stick.) The corresponding Bode plot is
shown in Figure 7.28,

Table 7.19
Makeup of the Three Cases

MANEUVER MANEUVER
1 2

Case 1 Optimal Longitudinal Optimal Collective
Stick Input Stick Input

Case 2 Longitudinal Stick Collective Stick
Doublet Doublet

Case 3 Optimal Longitudinal Collective Stick
Stick Input Doublet
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FIGURE 7.21(a).— SIMULATION OF INITIAL PARAMETER
MODEL TO THE OPTIMAL COLLECTIVE
STICK INPUT. COMPARED TO ACTUAL
UH-1H RESPONSE
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Table 7.20
Parameter Estimates and Standard Deviations for UH-1H

» Case 1
INITIAL FINAL PARAMETER STANDARD

PARAMETER ESTIMATE ESTIMATE DEVIATION F-RATIO
Xys 1/sec -0.0227 -0.0264 0.00024 12296.49
Zy, 1/sec 0.0013 -0.0255 0.00128 394.00
My» 1/ft-sec : 0.0037 0.0025 0.00002 11664.90
Xws 1/sec 0.0587 0.0429 0.00070 3757.95
Z,, 1/sec -0.7542 . -0.4258 0.00312 18572.47
My, 1/ft-sec -0.0032 -0.0093 0.00005 31510.22
Mg> 1/sec -0.5305 -0.7509 0.00775 9396.00
XS, ong? ft/sec?-in 0.8620 0.5947 0.0115 2677 .86
25, onG? ft/sec®-in 2.4600 2.1250 0.0602 1246.41
Ms, onG® 1/sec?-in -0.1800 -0.1709 0.0011 25094.51
XscoLL? ft/sec2-in 0.7115 0.2051 0.0094 472.72
ZsggLy» ft/sec’-in -9.8180 -2.9867 0.0573 2717 .62
MscoLL» 1/sec?-in 0.0064 -0.0332 0.0010 1096.91

€61
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Parameter Estimates and Standard Deviations for UH-1H

Table 7,21

+ Case 2
INITIAL FINAL PARAMETER STANDARD

PARAMETER ESTIMATE ESTIMATE DEVIATION F-RATIO
Xy, 1/sec -0.0227 -0.0328 0.00063 2713.21
1y, 1/sec 0.0013 -0.0221 0.00478 21.27
Mys 1/ft-sec 0.0037 0.0040 0.00007 3430.32
Xys 1/sec 0.0587 0.0257 0.00201 162.97
Zys 1/sec -0.7542 -0.5268 0.00601 7681.96
My, 1/ft-sec ~-0.0032 ~0.0075 0.00008 8471.64
Mq, 1/sec -0.5305 -0.5170 0.01405 1354.68
X5L0NG’ ft/sec2-in 0.8620 0.4725 0.01556 921.96
ZGLONG’ ft/sec?-in 2.4600 2.7983 0.09074 951.04
MGLONG’ 1/sec?-in -0.1800 -0.1103 0.00151 5356.71
XGCOLL’ ft/sec?-in 0.7115 0.2907 0.01036 788.00
Z5C0LL’ ft/sec?-in -9.8180 -5,1817 0.07954 4243 .93
MSCOLL’ 1/sec?-in 0.0064 -0.0583 0.00130 2001.03
)] ) R | D R A )y ) 2] Y Yy Ly ) L) )
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TABLE 7.22.— PARAMETER ESTIMATES AND STANDARD DEVIATIONS FOR UH-1H

e Case 3
INITIAL FINAL

PARAMETER | PARAMETER SEC¥R$¥8N F-RATIO

ESTIMATES | ESTIMATES
X,» 1/sec ~0.0227 ~0.0271 0.00026 | 11092.39
Z,, 1/sec 0.0013 -0.0226 0.00144 244.79
M,» 1/ft-sec 0.0037 0.0027 0.00003 9694.58
X,» 1/sec 0.0587 0.0391 0.00075 2701.15
2, 1/sec -0.7542 ~0.4573 0.00337 | 18361.13
M 1/ft-sec ~0.0032 -0.0095 0.00006 | 28760.19
My, 1/sec ~0.5305 -0.7017 0.00697 | 10141.01
XsLong> ft/sec-in|  0.8620 0.5871 0.01119 2754.05
Z onge Tt/sec’-in|  2.4600 1.9616 0.06012 1064.63
M ong> 1/sec’-in | -0.1800 -0.1685 0.00106 | 25282.50
XseoLL» Ft/sec?-in|  0.715 0.1691 0.01151 215.80
ZyeoLL> Tt/sec’-in|  -9.8180 -3.9439 0.08663 2072.84
McoLL» 1/sec?-in 0.0064 ~0.0535 0.00163 1072.94
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TABLE 7,23.— UH-1H FLIGHT IDENTIFIED PARAMETERS — COMPARISON OF THE THREE CASES

® 60 Knots
¢ 2 Maneuver Runs
INITIAL CASE 1 CASE 2 CASE 3
PARAMETER FINAL PARAMETER FINAL PARAMETER FINAL PARAMETER
ESTIMATES ESTIMATES ESTIMATES ESTIMATES
Xu’ 1/sec -0.0227 -0.0264 -0.0328 -0.0271
Zu, 1/sec 0.0013 -0.0255 -0.0221 -0.0226
Mu’ 1/ft-sec 0.0037 0.0025 0.0040 0.0027
Xw’ 1/sec 0.0587 0.0429 0.0257 0.0391
Zw, 1/sec -0.7542 ~-0.4258 -0.5268 -0.4573
Mw’ 1/ft-sec -0.0032 -0.0093 -0.0075 -0.0095
Mq, 1/sec -0.5305 -0.7509 -0.5170 -0.7017
XGLONG’ ft/sec?-in 0.8620 0.5947 0.4725 0.5871
ZGLONG’ ft/sec?-in 2.4600 2.1250 2.7983 1.9616
MGLONG’ 1/sec?-in -0.1800 -0.1709 -0.1103 -0.1685
XGCOLL’ ft/sec?-in 0.7115 0.2051 0.2907 0.1691
ZGCOLL’ ft/sec2-in -9.8180 -2.9867 -5.1817 -3.9439
MGCOLL’ 1/sec?-in 0.0064 -0.0332 -0.0583 -0.0535
| - | )| I | o] 1 1 1] -V 1 __]




N4

‘Magnitude

1¢901t tononsdunesvovivsnnctacrcatovevnnrtovenvedruncatgenvesestnecssntnnceosimenucvotoveond

1

1

- - i —-q - — - i

See00 ? ' ' ! L]

! 1 [} ! [}

——— g I i e -7

' [} ' | ]

2400 ! ' [} | []

- v T | - i

1 | ! . ] [}

14400 *'""*""..'0-----0.----’-------0-.--.‘--..vfﬁo---,-ﬁoc---OO----f-----.-0.-.--:
r - | TR ! "

' ] ] 1] ] ]

Se=01 ' 1 # . t [

-t J e ¥ T I

! ! ' 7] t 1

! ' ) ks ! |

ol ' (2 - SERET I

! ! ! 1] '

' ' . ' ' oe '

_’3;0f_r:3---0-------4-.---‘::o--0----"-f-.r-»f..-.a0--.---.#-----f'.'--tit--.--tq---nO

' [ . s t ) L . ! L3 !

! ' 12 %} ! ! * ]

“Sew02 1t AR 11 1 D - [ L}

FEESERRRNRNEBEERRNFEED . 3 t

§ ] * '

]

[}

!

T : r B

! ¥

*

I |

L
L

i
!
|
1
'
|
: 1
‘0-02 i-----#-------O.----0-.---#-}..---’-----O--.O-0.---u-if-----'.l..uto--.o-".u.--’
!
!
!
[}
r
!
|
Ll

f

!

)

! L
!

!

f

T
[}
[}
¥
t
[}
¥

|0-03 0-----0-------0-----0---..0.--...-0...-.0-...-0...'-..0.....Qv.---’-.---.-#--.."

T 03 20353903 35w 02 2002 5002 T 1ea U T 2ee Ul T Sew 0T TeR 00 2300 TS5 F00 T.90T

Frequency, Rad/Sec

FIGURE 7.28 (a),.— BODE PLOT OF 6(s)/&8(s) TRANSFER FUNCTION EXTRACTED

FROM UH-1H FLIGHT DATA (60 KTS), MAGNITUDE

I



1600 tusevateswevvatrenvetuncvutespnusentnconctnssrntisnnvegutaveastavnsntescvncrdsanced

:: s | | _ ' |
~ 1 LIRS { - T i
' ' L ¥ ' '
1 ' ' | |
v R B I | ¢ 4 - [B
t ! 1 [ ] ' ]
t ! ' AXIX3A. J 1
- LI r - (I T30 t
90, 0-'-'-#-o---OQQ-OGUDOu----0--..-.-#---.-1q..o-f..-.n.,'.--.’0----.4..--.--’-----0
! : : ' B Y ", .
LI v T 1 - T8 LIS
' LI [ [ ]
§ ' ' 'y 1 %, |
LI L - 15 ¢ I
o ' ' e Y ¥ o
ég ' LI 'i [ L X [}
1 ; v 1 M I ITTI T A
q; (V1Y 0.'---0.n----UQG-’--0-.--‘0---0---9.-.--0-----f.-----.’-----'.-.-.0-.-.-.-0..-"‘
— ! ' [ [ \
=i J L 1" T’
<C ' | 1, [ 1.
O !‘ ! [N | ',
(%] 1 T v L LI I
= 1 1 ' 1 '
[~ [ [} [ t [}
L L T L ¥
«0, 9"""“'-.'--0---"Oounin0-..----0.---10...-u’.'-----f--—.-’.---.fbacoaﬂ"-!ﬂ-‘0E
1 [ t ] ]
R - — ' j FERRANRETES " v L)
t ' L1z tox ' 1
! ' 117 LR ! 1
+ 1t X 2 - - T : - Samors b "
) % : ', 1, 1
! LAY IS B ', 4 _ ' 1
b R YR PER Y —— — i 1 )

.‘80. ".‘.‘0--.-.--0---.-0-.---0-..-..-0-.---0..---0-..o---0----.0;--.-0--....-0.--.'0

1¢903 2,03 5203 1,202 2,+02 54002 14201 2,001 Ses0] 1400 2,400 S.¢400 1,404

Frequency, Rad/Sec

FIGURE 7.28(b).— BODE PLOT OF 6(s)/&8(s) TRANSFER FUNCTION EXTRACTED
FROM UH-1H FLIGHT DATA (60 KTS), PHASE ANGLE

UG I I . Yooy Yy oy oy oy Yy Yy Y ) J



CHAPTER VIII
CONCLUSIONS

An integrated methodology for rotorcraft system identifi-
cation has been described. This methodology consists of three
distinct data processing steps and a technique for designing
inputs to improve the identifiability of the data. These
elements are as follows:

(1) A Kalman Filter/Smoother Algorithm which
estimates states and sensor errors from
error-corrupted data. Gust time histories
and statistics may also be estimated.

(2) A Model Structure Estimation Algorithm for
isolating a model which adequately explains
the data.

(3) A Maximum Likelihood Algorithm for estimating
the parameters and estimates for the variance
of these estimates.

(4) An Input Design Algorithm, based on a maximum
likelihood approach, which provides inputs
to improve the accuracy of parameter estimates.

A discussion of each step is presented, with examples to
both flight and simulated data cases.

Simulated data examples indicate that the software is
valid for the idealized errors of such synthetic tests.
Such simulation data processing provides intuitive insight
into the manner in which various errors affect the identifi-
cation performance. One unexpected benefit of applying the
algorithms presented as part of the methodology is that
simulation bugs were rapidly found and, in some cases,
corrected.

The following principal conclusions are made from the
experience gained on the flight data processing.

(1) Any set of flight data poses unique problems
for estimation of the data errors, model
structure estimation, and parameter identifi-
cation. Maximum flexibility on the part of
software is needed to quantify the numerous
possibilities of errors.

(2) Rotorcraft can pose a particularly severe
instrumentation problem. For the data

235



(3)

236

provided to us for this effort, no rotorcraft,
as expected, had a complete set of perfect
sensors. Sensors were either completely
absent, failed, or badly degraded on the

data. This stresses the importance of the
state estimation aspect of the methodology,
which can be used to reconstruct very poor
data channels.

Use of a sequential processing scheme provides
valuable engineering judgement to be applied

at key points in the processing. The three
basic software algorithms can be used to
actually check and double-check some estimates
of each other. For example, sensor bias can

be estimated by all the algorithms independently.
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APPENDIX A
MAXIMUM LIKELIHOOD WITH NO PROCESS OR MEASUREMENT NOISE

The maximum likelihood method can be simplified when
either process noise or measurement noise are absent.

No process noise.— If the process noise is zero and
initial states are known perfectly, i.e., w(t) and P(0) are
zero, the covariance of the error in the predicted state is
also zero. It is clear that Kalman gains are zero. The
innovations are the output error, i.e.,

V(i) = y() - hx(t;),ulty),e,t,) (1)

and the innovation covariance is
B(i) = R (2)

the log-likelihood functionis,

vI(i) R™ (i) + log |R| (3)

n o™=

Log (#(8]2)) = - %

i=1

which on optimizing for unknown parameters in R gives

R = v(i) vI(i) 4)

Z| =
W=
[

i

The equality in (4) holds only for those elements of R which
are not known a priori. For instance, even if R is known to
be diagonal, the right hand side matrix will not be diagonal,
in general; but, the off-diagonal terms should be ignored

before they are equated to R. Using (4) in (3)

1

vT(i) R v(i) n+ constant (5)

=

Log (2(8]z)) = -

N

i=1

The optimizing function is the same as that for the output
error method except that the measurement noise covariance
matrix is determined using (4) and is used as the weighting
matrix in the criterion function. In the output error method,
the measurement noise is assumed known and the weighting
function is arbitrary.
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The first and second derivatives of the log-likelihood
function with respect to unknown parameters are

N N .
337 log (@(8lz)) = - = vT(i) R™1 ggé%l (6)
J i=1 J
of log (@(olz)) _ . N favTd) 31 av(d)
265 28 j=1 | 96, %
. a2 (7
T.. -
+ v (i) R 1 —-——-—:ev(;g }
1] i k

The terms in the second derivative are approximated as

3% 10g (2(8l2)) _ N favT(i) a-1 av(i)
36. a9 = - I 30 R 30 (8)
j 9% i=1 k 3

No measurement noise.— If all states are measured with
no noise, the covariance of the error in state estimates 1is
zero at the beginning of any time update,

P(i-1]i-1) = 0
(9)
and x(i-1]i-1) = x(i-1)

It is easy to show in this case that for fast sampling the
log-likelihood function is quadratic in the difference be-

tween measured values of x and f(x,u,8,t). The method re-
duces to the equation error method, the weight W being chosen

as

T
/[ (x - £(x,u,6,t)) (x - f(x,u,e,t))T dt  (10)

(o}

=
1l
=1

Thus, the maximum likelihood method and equation-error
methods are equivalent except for the technique for choosing
the weighting matrix.

244

)

N

-]

|



APPENDIX B

This Appendix gives a brief description of Walsh functions and
a short summary of their properties. The Walsh functions ¢O(t),

¢1(t),¢... ¢n(t) are a set of square waves which are orthonormal.
Each Walsh function can be decomposed into more elementary square
waves, or Rademacher functions.

Rademacher functions rk(t), are a set of square waves of

unit height with periods equal to 1,1/2,1/4, ..., 2(1-K) 11 other
words, the number of cycles of the squre waves of rk(t) is

Z.k'1 A few Rademacher functions are shown in Fig. B.1l. The Walsh
functions are defined in terms of rk(t) as follows:

99(t) = ry(t)

6, (t) = T, (t)
b b b
k-1 k-2
51 () = [0 ()] 5+ [ry 1 (0] [r_,(0)] &2
where
k = [log,'] + 1.
[-] means taking the integral part "-" and bk’bk-l’ e e b1 is

the binary number expression of 1i. Typical Walsh functions are
shown in Fig. B.Z.

Next, we consider some of the properties of the Walsh func-
tions.

Integration of Walsh Functions.— Integrals of Walsh functions
may be approximated by sums of Walsh functions. It is shown in
Reference [4] that for the first four functions

'/O't $(t)dt = '—%- T 3 o] ect)
b
£ 0 0 o0
o & o o] T Paxa o (t) 245



Higher dimension P matrices may be obtained straightforwardly.

Evaluation of .¢i(t)¢(t).— If two Walsh functions are multi-

plied together the produce is a Walsh function obtained by the mod
2 addition of the binary representation of the original functions.

Therefore, ¢i(t)®(t) may be written in terms of Walsh functions.

It is easy to show that

sp()e(t) =[1 0o 0 o ece)
o 1 0 o0
0 0 1 o0
0 o o 1]
s 0e(r) [0 1 0 o] ece)
0 0 0
0 o0 1
o 0 1 o]
o, (1) =0 0o 1 o] ey
0 o0 o 1
1 0 o0 o0
0o 1 0 o]
p(20(e) =[0 0 0 1] et
0 0 1 o0
0 1 0o o0
1 0 0o o

Delay Matrix.— A delayed

Walsh functions

¢(t) may also be written in terms
of the Walsh functions. It is easy to verify that for first four

1 1
(t-3) =7 |3 -1 -1 -1} o(¢)
1 1 1 -3
1 1 -3 1
- R R ITLIO
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It is clear that D2 will produce two units of delay, e.g.,

1, _ 2 1 )

2(t-3) = D°e(t) = 77 |38 8 0 0] e(t)
8 -8 0 0
0 0o 8 -8
0 o 8 -8
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APPENDIX C

In this appendix we derive expressions for the information
matrix and the quadratic constraint when the state and outputs are
assumed to be multistep. Walsh functions are used in this deriva-
tion. Details of the properties of the Walsh functions are cov-
ered in References [56], [57], and [58]. The important properties .
for the purpose of the present application are summarized in
Appendix . To simplify the various derivations it is assumed
that s=29, where Q 1is an integer. Let ¢i, i=0,1,...,s-1 be
the ith Walsh function in the dyadic order and let the input be
assumed to be

u(t) = H o (t) (1)

¢(t) 1is a vector of Walsh functions from 0 to s-1. Also, let

F(t) =Wo (t) (2)
Since Xx(0)=0,
. t
X(t) = W _/' 5(t) dt = WP & (t) (3)
0

where P 1is an sxs matrix described_in Appendix A. Next, we
approximate time varying matrices A, B, and C by Walsh series

~ s-1

A(t) = I A(1) ¢;(¢)
1=0

- s-1

B(t) = I B(i) ¢;(t) | (4)
1=0
s-1

Te(t) = Z Ty(3) 05 (1)

Using this approximation, Equation (6) becomes
s-1 s-1
We(t) = £ A(1)¢;(t) WPe(t) + I B(i)é,(t) He(t) (5)
i=0 i=0 1
where U(i) is an sxs matrix such that (see Appendix A)
¢, (t)e(t) = U(i)e(t)
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Matrix H can be rearranged into a vector as before and the matrix
W may be rearranged into another n(m+l)s vector w by substi-
tuting its first column into the first n(m+l) element of w, the
second column into the next n(m+l) elements and so on. Then
Equation (5) becomes

s-1 T s-1 | T
I - & A(1)@(PU(I)) [ w= T B(i)®U (i) h (6)
i=0 i=0
where
- -
BllA BlZA BlnA
A@B = B21A BZZA BZnA (7)
_BnlA BnZA BnnAJ
therefore
s-1 T -1 s-1 T
w= TI-0Z A(i)® (PU(1)) 2 B(I)®U (i) h
i= i=0
(8)
ALh
Similarly, Equation (6.18) may be written as
3z s-1 ] '
58, = I T (i) ¢; (t) Wo(t)
i=0
(9
s-1
= I Tk(i) WP U(i)o(t)
i=0
A typical element of the information matrix is
s-1 T -1 T T, T
M = I TriT, (i) R~ T,(3) WP U(j) U (i) P'W( (10)
k2 L k 2
i,j=1
Since w is a linear function of h, Mkz may be written as
_ T
Mkl = h" V(k,2) h (11)
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An explicit expression for V(k,%) may be obtained by the reader.
The quadratic constraint may also be written in terms of the vector
h. ’

1 sl T (s-1
1=E,/(; {(z Ty (1) WPU(i)‘b(t)) Q(Z TO(J')WPU(J')<I>(t))

i=0 i=0
T
+ u (t)u(t)}dt
1 s-1

_ T,. . v Ty oT
= Tr{E i?j=l T (1)Q To(3) WPU() U™ (i) P°W

T

+ HH } = T Q*h - (12)

We note that in both cases (see 6.2.2) similar kinds of relation-

ships are obtained for the information matrix and the state and
input quadratic constraint.
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