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1.0 SUMMARY

This report presents a panel-type influence coefficient method which solves the linear integral equations
of unsteady, small disturbance, subsonic, potential flows. The method is applicable to flows about
arbitrary, nonplanar bodies having flow boundary surfaces undergoing small amplitude harmonic
oscillations. The flow boundary surfaces are paneled (i.e., subdivided into small quadrilateral

surface segments) and polynomial distribution splines of unsteady sources and doublets are

defined for each panel. The method is an outgrowth of a recently developed steady flow panel

method and employs the linear source and quadratic doublet splines of the steady flow method.

Since the flow boundary surfaces are undergoing small amplitude harmonic motion, they have

mean steady locations relative to which their unsteady motion is described. As a consequence,

the unsteady flow problem is formulated as a small disturbance to a mean steady flow, and the
mean steady flow is the flow about the arbitrary, nonplanar boundary surfaces in their steady mean
locations. This formulation of the unsteady flow problem follows from a Taylor series expansion of
the unsteady flow boundary conditions about the steady mean flow boundary conditions. The

result is an unsteady flow problem which depends on an underlying steady mean component of flow
and which contains boundary conditions evaluated at the steady mean locations of the boundary
surfaces. The boundary conditions are such that the unsteady flow analyst can incorporate important
features into the flow model which are not available in the usual theory of linearized flow.

One of the important features of the formulation is the wake model; the wake can be an
arbitrarily shaped surface along which the unsteady vorticity can be convected arbitrarily. This
feature is useful when modeling the unsteady flow about complex configurations, for example,
those consisting of wing-body-tail combinations. When the usual wake model, consisting of free
stream convection of the wake vorticity, is -employed for such a configuration, the tail cannot
be correctly positioned relative to vorticity in the wing wake. Using the present panel method,
if the analyst can determine the appropriate steady mean wing wake surface streamlines which
follow the contour of the steady mean body surface, then he can solve the problem with the
unsteady vorticity in the wing wake convected along those streamlines using the steady mean
convection speed. Using this wing wake model rather than that of the usual linear theory, the
unsteady wing wake vorticity location and phase relative to the tail more closely represents

the physics of the problem.

A second important feature of the formulation stems from the geometric location of the unsteady
source and doublet distributions; they can be located on the actual surfaces of thick bodies in
their steady mean locations. The usual linear theory places these distributions on mean defining
surfaces which are restricted to being cylindrical with the generator of these cylindrical surfaces
aligned with the undisturbed freestream. This restriction is a consequence of having expanded
the boundary conditions about the freestream. In the present panel method, the boundary con-
ditions are expanded about the steady mean component of flow; hence, the sources and doublets
are distributed on the boundary surfaces in their steady mean locations. Since the unsteady flow
disturbances are emitted by the unsteady source and doublet distributions, the panel method
allows the unsteady disturbances to be emitted from locations which are significantly closer to
their actual physical locations. Even so, the panel method still suffers from another defect of the
usual linear theory, namely, that disturbances propagate with the freestream speed of sound.
Regardless of this error, however, the panel method can circumvent part of the error in the com-
putation of the cause-and-effect phase relation of unsteady disturbances emitted from the
boundary surfaces of thick bodies.




Only the second of the aforementioned features of the panel method is demonstrated in the report,
‘namely, that thick aerodynamic surfaces can be paneled on their actual, mean steady locations. The
first feature, which allows a more accurate wake model, is not demonstrated because the steady flow
computational capability required for computing the mean steady flow wake location and vorticity
convection was not available. The unsteady flow about a wing-body-tail-nacelle configuration has
been computed and the wake surface was deformed so that it follows the body contours; however, the
wake deformation is the result of an engineering judgement and was not a result of an actual steady
flow computation. '

The primary objective of the work was to demonstrate the capability for modeling unsteady flow
about realistic aircraft geometries using paneling on the actual surfaces of thick bodies. That objective
was achieved. ‘




2.0 INTRODUCTION

This report describes a panel method for evaluating the unsteady, subsonic flow about a solid body
which is of arbitrary shape and which is undergoing harmonic oscillation in a uniform freestream.

The method is an outgrowth of the steady flow panel method described by Reference 1, “A Higher
Order Panel Method for Linearized Supersonic Flow.” The method has been implemented as a
computer program by modifying the computer program of ref. 1, but only the subsonic capability

of that computer program has been extended to unsteady flow. The modification is such that, if

the unsteady flow program is executed for a harmonic frequency of zero, the two computer programs
yield identical results. The validity of the unsteady flow panel method has been tested by comparing
computed results with wind tunnel test results and with results computed by other subsonic, unsteady
flow prediction methods. Those comparisons are shown in sec. 4 of this report. Sec. 5 contains

a supplement to the user’s manual for the method of ref. 1, i.e., “User’s Manual, Subsonic/Supersonic
Advanced Panel Pilot Code,” ref. 2. From the point of view of the program user, the two programs are
so similar that a separate user’s manual for the unsteady panel method is neither necessary or desirable.

The unsteady flow panel method is described in sec. 3 with references to appendices containing the
details of its derivation. The description is divided into five parts, viz., sec. 3.1 - sec. 3.5. Sec. 3.1
introduces coordinate systems and the method used to describe unsteady surface motion. Sec. 3.2
describes the unsteady flow boundary value problem. That boundary value problem is derived in
App. B as a linear unsteady flow theory approximating the general theory of unsteady flow
appearing in App. A.t Sec. 3.3 describes the integral equation, which represents a general

solution to the unsteady flow boundary value problem. The integral equation is denved

from Helmholtz’s theorem in app. C.

Sec. 3.4, sec. 3.5, and app. D, together, describe the panel method of reducing the integral
equation to a determinate system of linear, complex algebraic equations. The solution to this

system of equations provides a solution to the unsteady flow problem.

In essence the unsteady panel method is a method for constructing approximate solutions to Helmholtz’s
equation, viz.,

V2 o5+ (i2)2 ¢ =0

where $* is the complex amplitude of a potential and § is a constant referred to as the Helmholtz
coefficient.

The solution is constructed in a domain, V , enclosed by a surface, X , by means of Helmholtz’s
theorem, ref. 3, viz.,

I ‘ iR 5 [--iR
o [0* Qz Qi ) ds = ¢* (P)
2

where ¢ *(Q) and u*(Q) represent, respectively, the complex amplitudes of sources and doublets
distributed on the surface, ¥ , and

R=IR-RI

] This development is significant in that it leads to the so-called “nonlmear boundary
conditions.”




where R is the position of a field point P while R’ is the position of a point Q on the surface of
integration X . Also,

5 , =
5'1“]( ) =n-v( )

where 1) is a unit vector which is normal to ¥ and which is directed from a point Q on ¥ and into
the volume enclosed by X, see fig. 1. '

Surface, 2 Surface point, Q

Volume domain, V

Field point, P

0

Figure 1. — Surface of Integration and Domain of Dependence

The theory of unsteady flow underlying the panel method is based on the linear, small disturbance
flow equation. This flow equation, as shown in sec. 3.2, can be related to Helmholtz’s equation by
changes in the dependent and independent variables. Helmholtz’s theorem, therefore, provides a
general solution to the unsteady flow equation. A particular solution is obtained by requiring ¢*
to satisfy boundary conditions which are usually specified on the surface of integration X .

As noted above, the panel method reduces the integral contained in Helmholtz’s theorem to a
linear, complex algebraic expression. As shown in sec. 3.3, for unsteady flow about an aircraft in
an unbounded atmosphere, Helmholtz’s theorem reduces to a surface integral over the aerodynamic
and wake surfaces of the aircraft. The quantities

1 2R 1 8 [e-i92R
_—— and — — | —
dr R 47 on\R




appearing in Helmholtz’s theorem are kernel functions describing the complex amplitudes of the
potentials induced at P due to, respectively, a unit source and a unit doublet located at Q . As
noted above, the complex quantities :

o* (Q) and p* (Q)

multiplying those kernel functions are the distribution strengths of the sources and doublets
distributed on X . These distribution strengths are the unknowns of the flow problem and they

are determined by requiring ¢*(P) to satisfy the boundary conditions of the flow problem. The panel
method is applied by subdividing the surface of integration into quadrilateral panels, fig. 2. The
source and doublet distributions are approximated on each panel by a truncated power series, e.g.,

o* (Q)=00*+0£*£+0n*n

where £ ,n are the coordinates of a surface point Q and where 00* , 0%, ¢ % are the complex
coefficients of the terms of the truncated power series. The surface integral is now evaluated for
each panel to obtain an expression for ¢*(P). This expression is a complex algebraic equation

in terms of the power series coefficients. The power series coefficients are related by a least
squares fit to the values of o* and u* at discrete points on the surface. These values are
collectively called the singularity parameters and they are the unknowns of the problem. -

The flow problem can be expressed symbolically in terms of the singularity parameters as

9% (P)= 20 A (P)
j

Figure 2. — Typical Configuration Surface Panel Arrangement




where A;* denotes the jth singularity parameter. When the values of this expression or of the
gradient of this expression are specified by the boundary conditions at a sufficient number of points,
a determinate system may be obtained, for example,

o= 2 AN
J
and that system may be solved for the unknown singularity parameters. The flow characteristics

which constitute a solution to the unsteady flow problem are then computed making use of the
computed values of the singularity parameters.

The panel approximations employed in the present, unsteady flow panel method are identical with
those of the steady flow panel method for ref. 1. In general, source distributions vary linearly and
doublet distributions vary quadratically on each panel; but, depending on the distance of the field
point from the panel, the linear and quadratic distributions-are defined over: (1) eight triangular
subpanels of the quadrilateral panel, (2) two triangular subpanels of the quadrilateral panel, or (3) the
quadrilateral panel itself. In any case the aerodynamic influence coefficients, A; J* are evaluated by
carrying out the integrations, appearing in Helmholtz’s theorem. These integrations are carried

out independently over each panel region for which thesource and doublet distribution ap-
proximations are defined. This operation leads to values of potential and potential gradiant at field
points where boundary conditions are applied. The resulting integrals relate these field point values
to unit values of the coefficients in the power series approximations to the source and doublet
distributions; they, in turn, are related by the least squares fit to the singularity parameters.

The integrals involved in evaluating the influence coefficients are decomposed in such a manner,

app. D, that every integral which must be evaluated is related to two fundamental integrals. The
integrands of these fundamental integrals are approximated by a series of constrained Tschebycheff
polynomials. The result is a sequence of integrals which are integrable in closed form. The number of
series terms required to achieve a specified accuracy for this approximation depends on the magnitude
of the Helmholtz coefficient, § , and on the panel size; an error analysis of the approximation
appears in app. D. The series approximations are such that the integrands and the limits of
integration appearing in the series terms are independent of the Helmholtz coefficient; thus, the
formulation, like that of ref. 4, would allow the integrals to be evaluated, saved, and recombined
sequentially to produce aerodynamic influence coefficients for a sequence of Helmholtz coefficient
values (i.e., a sequence of harmonic frequency values). The computer code, however, was not
structured to allow this type of sequential computation.




3.0 UNSTEADY FLOW PANEL METHOD

3.1 COORDINATE SYSTEMS AND SURFACE MOTION

The unsteady flow boundary value problem and the panel method for its solution are described in
terms of two coordinate systems:

(1) Compressibility coordinate system — x, y, z

(2) Local panel coordinate system — &, o, ¢

The compressibility coordinate system is a rectangular, Cartesian system which is an inertial reference
frame translating with a steady velocity in the negative x direction relative to the undisturbed fluid,
fig. 3; thus, there appears to be a uniform freestream in the positive x direction.

As noted in sec. 2 and illustrated by fig. 2, the aerodynamic surfaces and the wake surfaces are
subdivided into a large number of segments called panels. Each segment of surface represented by a panel
is approximated by one or more flat panels. A local panel axis system is defined for each flat panel.

This coordinate system is related to the compressibility coordinates by a transformation such

that the &, n coordinate plane is paralled with the plane of the flat panel and such that the ¢ axis

is normal in relation to it, fig. 4. The coordinate transformation, relating the local panel and
compressibility systems, is described in app.C.

-

Uo

-
.

4
x

. Freestream vector

Figure 3. — Compressibility Coordinate System and Uniform Freestream Vector

Figure 4. — Local Panel Coordinate System




The above notation (i.e., x, y, z) for denoting the coordinate lines of the compressibility system

is different from that of ref. 2, “User’s Manual, Subsonic/Supersonic Advanced Panel Pilot Code.”
Since ref. 2 is used in conjunction with sec. 5 of this report as a user’s manual for the unsteady

panel method code, this difference in notation should be carefully recognized. Ref. 2 employs X,y , z
to denote the coordinate lines of the global coordinate system which is used as a basis for describing
body surfaces and flow properties. The coordinate lines of the compressibility system are denoted

by X¢ . ¥¢ » Z¢ - In this report the global coordinate system is mentioned only in sec. 5.

The analytical statement of the flow boundary conditions requires an analytical description

of the aerodynamic and wake surfaces. This description is expressed in terms of surface points defined by
surface coordinates which are the local panel coordinates introduced above. The surface coordinates
appear as the parameters in the Gaussian description of the surface (ref. 5, p. 183), viz.,

R=R En.b).

If n and t are held fixed while § is varied, then the position vector, R , traces out a spatial

curve on the surface as the surface appears at the instant of time t . This curve is a surface coordinate
line corresponding with the & parameter. Surface coordinate lines corresponding with the n parameter
are constructed by holding & and t fixed, and varying % . A surface coordinate system is seen to

be formed by £ and n and a surface point is defined by a pair of values for &£, n.

Unsteady motions of the surfaces are described by an unsteady displacement of the surfaces from
steady mean locations, fig. 5. Let Q denote an arbitrary surface point of the steady mean location

Sg, Steady mean surface location

S, Unsteady surface location

Figure 5. — Surface Displacement




of a surface. This point has the steady position R relative to the compressibility coordinate system.
Unsteady surface motion is introduced by allowing this surface point to have the unsteady (i.e., time
dependent) position R . The surface point therefore undergoes the following time dependent
displacement: ' :

D=R-R'. h (1)

The velocity of the surface point, viz.,
. oD )
U=t ‘ (2)

where £, n are held fixed, is then used to compute the speed of displacement of the surface in the
direction of the surface normal, i.e.,

A D
up =0 o 3
where A is the unit vector normal to the moving surface at the surface point.
The unsteady flow theory used in the panel method _1_§ an approximate theory which, as shown in
app. B, follows by assuming that the displacement, D , is small everywhere on the surfaces and by
assuming that the harmonic motion, i.e.,
1 3D . _
— —=iZD* el where & = w/U,,
U, ot
is such that the frequency of the motion satisfies
| D* <o 15+ [); 4)

hence,

w< O(1).
From the assumed smallness of D the following approximations are taken to be valid (cf. app. B):

= lra o o .
0~ 5 (v X D) is a first order approximation to surface rotation,

A A . . .
n ~ng+6 X ng isthe unit vector normal to the moving surface, and

~n 5—{ is the speed of displacement of the moving surface.




3.2 UNSTEADY FLOW BOUNDARY VALUE PROBLEM

The flow is assumed to be compressible, inviscid, irrotational, and isentropic. Under these assumptions

* the motion of the fluid may be described in terms of a velocity potential satisfying the well known,
nonlinear flow equation shown as equation (A.17) of app. A. In the approximate theory, however,
disturbances to the uniform freestream are assumed to be sufficiently small that the nonlinear flow
equation may be approximated by the small disturbance flow equation, viz.,

where

D
Dt 0 3x

0
—+U
ot

and ¢ is the disturbance velocity potential which is related to the flow velocity as follows:

e

V,=U,+7 ¢ (6)

The panel method is predicated on the separation of the velocity potential into two components, viz.,

=05 +d, | %

where the velocity potential ¢g is independent of time and describes the flow if the speed of
displacement, uy, , of every surface point vanishes for a sufficiently long period of time. The
-velocity potential ¢y, is that of the unsteady component of flow arising as a consequence of
nonzero up, . ‘ ‘

The steady velocity potential is required to satisfy the steady form of eq. (5), viz.,

(w6t 6, 6, -0

and the boundary conditions of the approximate theory of steady flow described by ref. 1. Those
boundary conditions are as follows:

— A _
WS *ng = 0 on SS and WS

where (ref. 1, sec 3.10) Sg and Wy denote, respectively, the aerodynamic and wake surfaces.
The aerodynamic and wake surfaces, in_the present application, coincide with the steady mean
locations of those surfaces. The vector Wq represents the mass flux of the steady component of
flow which is given the following first order approximation (ref. 1, sec. 3.1):

WS = pO <UO + WS)




where, in turn,

A
- ofa A2
pO WS = p0<v ¢S -1 MO (¢S)X> : (1 1)
and the quantity pg WS is the perturbation mass flux of the steady component of flow.

In addition to this boundary condition, across wake surfaces the pressure coefficient is required to be
continuous, i.e.,

I[Cp]l=OonWs. : (12)

The boundary condition shown as eq. (12) is applied using the following second order approximation
for the pressure coefficient:

-1 :
1 1 ) -, = 2
Cp= (ps— po) <—2-P0 U02> ~ - ZJ_E [2UO(¢S)x + T * Vg - Mo2((¢s)x) ] . (13)
: o]

This approximation is chosen because (as shown by sec. 3.3, ref.1) it satisfies Euler’s equations
so that the momentum integral (ref. 1, eq. 24) is valid; as a consequence, the aerodynamig force

is computed as follows:
F=tpu? [[cba
s 7 070 p Mg 45> (14a)

S
S
when the pressure coefficient is approximated by eq. (13). Similarly, the moment of the aerodynamic
pressure is computed as ‘
- ] 5 -~ A
M =—#p U C X
saeo // pis X N (14b)
S

ey . " A, .
where Rg describes position on the mean steady surface and ng is the unit normal.

The unsteady potential, ¢, , must satisfy eq. (§) and the following boundary conditions
derived in app. B:

Wy - ﬁs=_WS . (b‘xﬁs)_(ﬁ . fv‘w“s) + fig + P Un on Sgand Wy (15)

where (app. B, eq. (21))

2
v fa M D ia (16)
Wy =Po\Voy U a(‘bu)l

o .

1




and (app. B, eq.(B.15)

In addition, across wake surfaces the unsteady disturbance pressure must be continuous, i.e.,

[Cpu]] =0on WS,

when the unsteady disturbance pressure coefficient, i.e.,

l
Cpu - (p - pS)/(E Py U02>’

is approximated as follows:

1 -
Cpu ~ 2 (p,s (¢u)t W V(¢u))

1
EpoUo

(17)

(18)

(19)

(20)

where eq.(B.29) has been introduced into eq.(19). Finally, the unsteady disturbance aerodynamic

force is computed by integrating the pressure at the aerodynamic surfaces, viz.,

when the pressure coefficient is given by eq. (20).
Harmonic time dependence is imposed by substituting
D= D* ei‘“’t
and
¢u = ¢I * eiwt

into the flow equation and boundary conditions. The result of that substitution into the
flow equation shown as eq. (5) is as follows:

v 9% = Mo2 (i) 2 g7 + 215 ¢ + g%,

12

(2D

(22)

(24)




where the freestream direction has béen chosen to be sufficiently close to the direction of the x axis =

of the compressibility coordinate system that the components of
Uy

_ -v‘¢'*_¢'x*
UO

have negligible order of magnitude.. The result of substituting €q.(22) and eq.(23) into the’
boundary condition shown as eq. (15) is as follows t:

—

P A — o - _‘-—L )
W ng=-Wg (6* X ﬁs)—(D* . VWS) . ﬁS+PS up™® on SS and Ws,

where Ws (cf. éq. (10)) may contain a small component of freestream incidence,

- N - 1o = - -
W= po(qu’ - M,2 (io‘3¢'* + ¢! *) ’i‘),e* = E(VX D*), and y * = i® Uy D*;

while the wake boundary condition shown as eq. (12) becomes
[[Cp*]] =0 on W
where
C *= ! p. iU ’*+W.—‘¢l>k
- ]—"‘5 siw Uy ¢ s°V :
9 Po Ug
A modified complex potential amplitude, ¢* , is introduced by letting
g * = ¢* eid_)XMO2 / ﬂz’

Substituting eq. (29) into equations (24) - (28) leads to the following problem in which the
flow equation assumes the form of Helmholtz’s equation, viz.,

B2 gk, ok o5, +Q2pLe* =0

where

— 7
Q=wM,[/ B°

(25)

(26)

(27)

(28)

(29)

(30)

T As shown in sec. 4.3, the method for computmg the steady component of flow is not sufficiently
accurate for computing the term (D* v W) * ng. This term, therefore, is retained in the analysis but

is.not actually evaluated in the test cases ot sec. 4.

13




and the boundary conditions appear as

-v;;*._ﬁs.=[.ws»~(e*xﬁs)-(D*~vws)-’ﬁs+psun*]e1wx_Mo /B onsgand W,  (31)

where
N S S A
w*=PO(32¢§‘Z1+¢’§,J+¢"Z‘ k) (32)
Further, eq. (28) b - _
urther, eq. (28) becomes l[cp*ll = 0.on W, v (33)
where
2 1 2 /a2 .
o 2 2) koo W e i&x My? /8
Cp v [(1(0 /B8%)¢ ”o W v¢] 0 (34)

As will be seen in the following, a more useful form for the wake boundary condition follows by
substituting eq. (34) into eq. (33). The desired form is given by

l -
(1w/6> o= Wy Tu* = 0 on W (35)
P, g
where
u*={o*].
Letting
a _ 1 ot Lo
“sau B Ws*v (36)

where ¢ isa coordinate line along a mean steady flow streamline on the wake surface and where

—
Wy = W

1
)

is the magnitude of the nondimensional mass flux at the wake surface, one may write the following
identity:

0
[(ia /8> ws>u* +g—‘ﬂe[<ic‘5/62) /dé/ws] =_g_ ( (i3 /8- ))

14




Integrating along the steady streamline £ from £ = c, the boundary condition becomes

) [fan)

(R, 8)=u*(c,8)e

where s is a wake surface coordinate which is orthogonal to £ .

This expression evaluates the doublet strength at any point on a wake surface in terms of

the value of the doublet strength at £ = ¢.  As noted at the close of app. A, the doublet
strength at the trailing edge of the lifting surface, from whence the wake emanates, is equal to
the circulation on the lifting surface. This condition, when combined with that shown as
eq.(37), allows the wake surface doublet distributions to be treated as known functions of
the source and doublet distributions on the non-wake surfaces. This treatment of the wake
doublet distribution is used in the following section.

3.3 INTEGRAL SOLUTION TO UNSTEADY FLOW PROBLEMS

As shown by app. C, Helmholtz’s theorem provides a solution to eq. (30), i.e., the flow equa-
tion expressed in terms of the modified potential introduced by eq. (29). The solution provides
the value of complex potential, ¢*, at a point P interior to a volume V surrounded by the surface
%, whereon unsteady sources and doublets are distributed. Letting Q represent a surface point

of %, the solution appears as follows: :

3]
JJ [o* (Q ¥ (P, Q)+ u* (Q— (* (P, Q))] ds = ¢* (P) 39
> on,
where
1 .
b 0,0 =g SR, (39)
_ 2 2(.,7 2 20,1 2 12
R=[(x" -x)2+p2(y" -y)? +8°(’ -2) I SR

’

Q is a surface point with coordinates x', y', z’,

P is a spatial point with coordinates x, y, z,

0 =n_ v’ (41)

and

A e (R LI (AN LN RN TN
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The vector 'ﬁc is the conormal vector of X defined such that,_as shown by app. C,

0 '=62(ﬁ -?)L+<ﬁ ?)9——, +(ﬁ . ﬁ)ﬁ__
anc' v ox” oy z’

The function ¢* isan elementary solution to eq. (30) except at Q because y * becomes singular
as P approaches Q on the surface X . Multiplying this function by the factor employed to obtain
the modified potential, viz.,

'e—iQMO (x' - x) ,
results in

beF = e-iQ[Mo(x’—x)+R]. @)

This equation appears as eq. (4.24) in ref. 6 where it is shown to represent the complex ampli- »
tude of the potential induced at point P due to a unit strength, harmonically fluctuating source
located at the point Q.

A solution to the boundary value problem posed in the preceding section, i.e., sec. 3.2, is con-
structed by choosing the singularity distributions, ¢* (Q) and u* (Q), such that ¢* satisfies the
flow boundary conditions. The boundary conditions are specified at the aerodynamic surface,

- S, the upper and lower surfaces of the wake, W, and Wy, and, at the far-field surface, £, —
the latter being an arbitrarily shaped surface located at a large distance from the aerodynamxc
surface. The original surface, X, therefore is represented as

=S UW, UW,UZ,, | (43)

where U denotes a union.

The far-field boundary conditions require that the potential and its normal derivative vanish at Yoo
These boundary conditions are satisfied by requiring ¢* (Q) and u* (Q) to vanish for points Q on
2 ; as a consequence, the integral equation for ¢* reduces to an integral over Ses Wu’ and WQ.

As shown in app. C, the source and doublet distribution strengths are related to the potential as follows:

o* (Q) = |[6¢*/anc]] s

w* (Q) = [o*]

16




where, for example,

() ]
[6*]=4*(Q")-4*(Q)
denotes the jump (or difference) in the limiting values of ¢* as Q is-approached fr‘om either side of
the surface. Applying the second of eq. (44) to the wake surfaces leads to

bt (Qu) =9* (QF) -9" (Q7) on W,
and
w* (Qg) =4* (Qq)-¢* (Qg) on Wy
Letting the surface Wq approach the surface Wy, in the limit
¢* (Qu)=¢* ()

so that one may define
[o*]=0* (Q1)-¢* (f)

as the jump in potential across the wake. Similarly, oné may define

|[a¢*/ anc]] = (29%/ an,)

Q

Q: - (a¢*/8nc)

Further, noting that

o\ __[o_ (45)
ong/,, ang fo’

the integrals over W, and Wy can be expressed as a single integral over the surface W, viz.,

ff([[a"b*/anc]]‘l’ * +[[¢*]]a‘1’*/anlc> ds .
Wy

17




The wake boundary conditions are shown by eq. (31). If eq. (31) is evaluated at either side
of the wake surface and the evaluations are subtracted from one another, then we have the following
result: '

[#+-8]=0 onWy.

From eq. (32) and eq. (41) it follows that this expression may be written as follows:
0p*
— 1 =0 on Ws ) ' (46)
on,

As a consequence of eq. (46), the first term of the wake integral integrand is seen to vanish.

Using the above, the integra'lvshown by €q. (38) becomes as follows:

| « « 0 s , o
@ = [ [o*(ow CQ+H" @, ¥ (P,Q)] as + ‘{fu*(Q) a VeQE @)
Sq ' s

where the upper surface of the wake, W, , is identified as W, thereby distinguishing that side to be
the side where n, is positive. Also, as a consequence of eq. (37), eq. (47) becomes

_ . #* ® 0 * ,
¢*(P) = f f [o QY ®,Q) +u (Q),a—n’cw (P,Q):, ds' + ¢ur (1" (c9)) (48)

Ss

where

g :
by (1" (c9)) = f f uies)e [(i‘s/ 52) f dg/ W(E,s)] Z‘;:;, v (P.Q)ds’
¢ C

Wy

and u* (c,s) denotes the doublet strength (orjump in potential, [¢* ) along the edge of the aero-
dynamic surface from which the wake surface emanates.

18



3.4 AERODYNAMIC INFLUENCE COEFFICIENTS
The concepts involved in the panel method have been introduced in section 2.0, where it was indicated
that the objective of the panel method is to reduce an integral equation and its associated bbundary
conditions to a determinate system of algebraic equations. The surfaces of integration are subdivided
into panels and the unknown functions under the integral sign (viz., the singularity strength distribution
functions) are approximated on each panel by polynomial functions of the surface coordinates £, 7 .
The coefficients of these polynomial functions are expressed in terms of a finite number of singularity
parameters. The resulting expression is integrated over each panel to obtain influence coefficients
which, when used with the boundary conditions, yield an algebraic system of equations containing
the singularity parameters as the unknowns of the problem.

The integral equation for the unsteady flow problem is shown by eq. (48) and the associated
boundary conditions are given by eq. (31) and eq. (37). The panel method for reducing this
problem to a system of algebraic equations is essentially that of ref. 1. The paneling of the surfaces
of integration and the panel approximations to the unknown surface functions are identical with
those of ref. 1. The kernel functions of the integral equation, however, are not identical with

those of ref. 1;hence, different methods for evaluating the panel integrals are required.

Regardiess of this distinction there is a very close relationship with the panel method of ref. 1.
Because of this close relationship only the methods for evaluating the panel integrals are com-
pletely developed in this report with the details of that development contained in app. D.

This section presents only an overview of the panel method.

The surface panels are defined by covering the actual surfaces of integration by a number of grids (cf.,
fig. 2) and these grids are called networks.” The surface points at intersections of the grid lines (called.
grid points) are the quantities used to define the panels, cf, sec. 4.1 of ref. 1. The grid points of each
network of panels are numbered by a double index system (M,N) which assumes that the grid points

of a network are arranged in columns and rows even though the grid may not be rectangular, cf. sec. 1.1
of ref. 2. If a surface of integration covered by a network has finite curvature, the panels are not

actually segments of the curved surface; they lie close to the surface, but even their corner points need
not coincide with the grid points, cf. fig. 6. The panels are flat or they are made up of several flat
segments called subpanels; therefore, the panels are assembled to form a surface which is an approxi-
mation to the actual surface of integration when that surface has curvature.

Actually, depending on the distance from the panel to the point where its influence is being evaluated
(i.e., the field point), one of three different surface of integration panel approximations is used.
Letting D represent the panel diameter (viz., twice the distance from the panel center to its farthest
corner) and letting Ry represent the distance from the panel center to the field point, the choice of
panel approximation is as follows:

(1) IfR, = 0.75D, then each panel is represented by the quadrilateral whose corners are
formed by projecting four contiguous grid points to their average plane (ref. 1, sec. 4.4).
If the surface of integration has curvature, then the lines forming the edges of two adjacent
panels need not coincide but need merely to intersect one another at their midpoints
(cf. fig. 7). This approximate surface of integration, therefore, may be discontinuous
at the panel edges.
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Flat, average panel

~
~N

Actual surface of integration

(/——Grid point
/N
/
/

Figure 6. — Panel Approximation to Surface of Integration

Figure 7. — Approximate Surface Discontinuity



(2) If 0.45D < R,<0.75D, then the quadrilateral — viz., the four sided region formed by lines
connecting four contiguous grid points — is represented by two plane triangular subpanels having
vertices at the grid points and one edge formed by the diagonal, fig. 8. Since there are two
diagonals, there are two possible surface approximations contained in this arrangement. Both
approximations are used, in that, panel influences are computed using both surface approxima-
tions.and the quadrilateral panel influence is defined as the average influence.

/\—-Triangular subpanels

Second possible diagonal

Figure 8. — Two Triangular Subpanels of a Ouadfi/atera/ Panel

(3) If R;<0.45D, then the quadrilateral is subdivided into eight triangular subpanels, fig. 9.
The four interior subpanels lie in the average plane, while only the interior edge of an outer
subpanel lies in the average panel plane. The exterior vertices of the outer subpanels are made to -
coincide with the grid points. This arrangement, like (2), above, causes the approximate surface
of integration to be continuous at the panel edges. This continuity allows an approximate doublet
distribution formulation having continuity at the panel edges, see sec. 4.2, ref. 1.

/—Canonical point of panel

—

Figure 9. — Eight Triangular Subpanels, Panel Center L ocal Coordinate System,
and Nine Canonical Points
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The panel approximating-functions for the source and doublet distributions are polynomial functions
of local panel coordinate systems defined for each flat quadrilateral panel and each flat triangular
subpanel. The coordinate lines of a local panel system are denoted as ¢, n, ¢ and the £, n coor-
dinate plane is chosen to coincide with the plane of a flat quadrilateral panel or a flat triangular
subpanel. For case (1), above, the origin of the local coordinates is at the center of the quadrilateral.
For case (2), above, the origin for each triangular subpanel is at the vertex opposite the side forming
the diagonal of the quadrilateral. For case (3), the origin is at the center of the quadrilateral when the

local coordinates are related to the inner four subpanels, fig. 9, and at the outer vertices when
related to outer four subpanels, fig. 10.

Outer, triangular subpanel

. \ RS
Four inner, triangular subpanels /
lying on the average plane ~
Actual surface grid lines

Figure 10. — Subpane/ Approximation to Surface of Integration

The polynomial approximating-functions for the source and doublet distributions are as follows:

Source,
o* (Q)=0y* +og*E o, n (49)

Doublet,

1 1
u* (Q) = p* + ng* £+ Nn* n '?”El-lg? g2+ Megn™ &N +'§‘#nn* 12 (50)
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where Q is the surface point with coordinates &, n . The values of the coefficients in these poly-
nomials are found by fitting the polynomials to the values of the source and doublet distributions at
the nine canonical points of the quadrilateral shown by fig. 9. The values at these nine points are
denoted as -

(e) .
oi* =g* (Q) for i=1,..,9 | (51)
and
(e)
CuF=prQ)fori=1,...,9. (52)

For each panel and subpanel the coefficients are related to the canonical values by matrix expressions
of the following form:

05" (e) (e) 53)
GE* = (RR)]lk O'i*

*
On K

and

* © 1)e
{2 1 - [(QQ)jﬂJ{ui*] (54)

where the index j, in eq. (53) and eq. (54), ranges over the elements of the column matrices of
polynomial coefficients, the index i ranges over the canonical values required to determine the
polynomial coefficients, and the index k identifies the subpanel over which the approximating
polynomial is defined.
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The canonical values of the source and doublet distributions on a panel are determined from a
least squares fit of the polynomials shown by eq. (49) and eq. (50) to the values of the distri-
butions at the panel center and the centers of the neighboring panels. In the case of a panel
source distribution the points of evaluation are those shown by fig. 11, while in the case of a
panel doublet distribution the points of evaluation are those shown by fig. 12. The distribution
values at these points are referred to as the panel singularity parameters;and, for a panel source
distribution, they are nine in number and denoted as

(e)

o," for a=1,...,9.

For a panel doublet distribution the panel singularity. parameters are twenty-one in number
and are denoted as :

(e)
uo* for a=1,...,21.

/—Panel under consideration

N

I\Source evaluation point

Figure 11. — Source Evaluation Points at the Center of the Panel and Its Neighboring Panels

o —Panel under consideration
[ ® \ .
Doublet evaluation point
Y [ ]
° ° ] ° °
° ° °

Figure 12. — Doublet Evaluation Points at the Center of the Panel and Its Neighboring Panels
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The least squares fit to these panel singularity parameters, when evatuated at the canonical points of
the panel, yield the following matrix relations:

‘{(e)} ,: (e) ’]{() } R

o (ASTS) . | o (57
@]\ | © e, » |
[ (ASTD)la ot (58)

Taken together, eq. (49), eq. (50), eq. (53), eq. (54), eq. (57), eq. (58) describe fhe source and
doublet distribution approximations on each subpanel of a quadrilateral, and th1s description
is in terms of the panel source and doublet singularity parameters defined by eq . (55) and eq. (56).

and

In the implementation of eq. (56) the points of evaluation appear to be 25 in number, because

a double index system is used to enumerate the evaluation points. The double index system

ranges over five columns and five rows of grid points in order to identify the twenty one evaluation
points. In other words, the evaluation points for each panel span five rows and hve columns,

and this leads to a single index ranging from one to twenty five. :

Having approximated the surfaces of integration by networks of panels and ha"(ing replaced the
unknown functions describing the source and doublet distributions by approximating functions
defined independently over each panel or subpanel, panel influence coefficients may be defined.
Letting X represent the surface area of the eth panel and letting 0™ and ,ué* represent the
approximating functions on the panel, the panel influences at the field point P are defined as follows:

s @)= [foor yras (59)
Ee
; |
k = k__ LA
op* (P) f / B * ds (60)
Vg (P)=-[/oe* S ds’ (61)
>
b *(P)=—f/y *a——-,ﬁ"\[/*ds’ (62)
D % 9ng
Ze
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where
Tyr=-g' Y* ' (63)
because, as shown by eq. (40) Y* is a function of the coordlnates of two points, P and Q, and the

unprimed gradient is with respect to the coordinates of P while the primed gradlent is with respect
to the coordinates of Q.

Appendix C contains the development whereby these integrals are expressed in the local panel
coordinates and the results are shown as equations (C.128) through (C.136). The procedures
for evaluating these integrals appear in app. D; they lead to a reduction of egs. (59) through
(63) to algebraic expressions evaluated at a finite number of points called control points, see
sec. 3.4 and sec. 4, ref. 1. These expressions are evaluated at control points located essentially
at the singularity parameter evaluation points described above (see sec. D.1, app. D);if they
are evaluated at the ith control point and combined with eqs.(49 through (58), they prowde
the following relations:

9 3 (o) ) (o)
Jod (64)
‘ VS“} = zzj ; (DVDS*)ij (ASTS);q 04"
1
and
op* 21 3 (e) © (o)
{ - *} = Z Z: (DVDD*);; (ASTD);q, " (65)
D : o=] j=1

where the superscript (e¢)indicates the values of the quantities assbciated with the eth panel.
The subscript i now indicates the ith control point,

The indices «, appearing in egs. (64) and (65), range over the singularity parameter evaluation
points neighboring the eth panel. These equations and this index assignment scheme are set up
exclusive of the arrangement of the panels when they are used to assemble an approximation to
a surface of integration. A separate index assighment scheme is used to identify the singularity
evaluation points on the actual surface (cf., secs. 4.1 and 4.2 of ref. 1 — particularly, the dis-
cussion related to figs. 13 and 14). The terms “‘panel singularity parameters™ and “global
singularity parameters’ are used. The values of the source and doublet distribution strengths
appearing in egs. (64) and (65) are referred to as panel singularity parameters; thus, a single
isolated panel is under consideration and the panel singularity parameters at points on and
neighboring that panel determine the doublet and/or source distribution on the panel. The
values of the source and doublet distribution at the singularity evaluation points on the
assembled surface are referred to as global singularity parameters. Incidence relations are used
to relate the indices of the panel singularity parameters to those of the global singularity
parameters. These relations appear as follows:

(e)
i= (D) for =1, .., 21 (66)
and
(e)
i=Aa1s), for a=1,..,9 67)
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where i is the global index corresponding to the ath doublet strength value for the eth panel and
similarly, j is the global index corresponding to the eth panel These relations can be viewed as
column matrices, one for each panel;the ath entry of [(IID)a] isthen the global iridex of a doublet
evaluation point on the assembled surface where the ath panel singularity point of the eth panelis
to be located. '

The incidence relations shown by eqs. (66) and (67) are used to incorporate eqs. (64) and
(65) into a single matrix expression, viz.,

li:i:} = [sDEsH{\ | (68)

.
.

A

where 7\j* is the jth global singularity parameter. The coefficient matrix appearing in eq. (68) is

called the acrodynamic influence coefficient matrix and this coefficient matrix contains the coefficients
denoted as Aj; * in sec. 2.0. The left hand member contains the complex amplitudes of the potential
and the ve1001ty (in terms of the modified potential, viz., eq. (29)) evaluated at the control points.
However, as shown by app. C, sec. C.2, the potential and the velocity are discontinuous at the control
points because the control points lie on surfaces containing the source and doublet distributions. The
subscript A, appearing in eq. (68), denotes the fact that the values computed by eq. (68) are

the average of the limiting values found by approaching the surface from above and below, viz.,

- |
(#9n =5 Bu” 90 (©9)
and
GYa=s @) (10)

The discontinuities in potential and velocity at a surface of source and doublet dlstrlbutlon are as
follows:

For doublet distributions:

6% - og* = u* (71)

<a¢*) <a¢*> - (72)
on, g on o

and for source distributions:
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thus, the potential and velocity at the upper side of the surface are found as follows:

1 .
_ gk 7
¢u*—(¢*)A+2“ . (73)
Noting that . _
v‘*_*g*: W T 9¢° _[9¢° =Tut +7, 0* (74)
u CN\an on ‘ ¢ ‘ ’
. C u C [/

the velocity at the upper side of the surface is found to be
— 1 o s
Vu' T (V*)A + 9 (nc o* + V“*);
and, at the lower side of the surface, similarly,

1
bg* = " p - 50" | as)

ot = (™) -,15 (7, 0% +3u7) | (76)

As a comment regarding ¢qs.{69) and (70), the average of the limiting values are not actually computed
in the manner indicated by those equations. Although the integral describing the influence of a panel
on a point located on the panel is singular, the singular behavior of the two integrals implied by the
right hand numbers of egs. (69) and (70) cancel one another. The result of this cancellation is a single,
regular integral. This regular integral is evaluated to obtain the average influence, cf., ref. 1, sec. 3.7.

3.5 UNSTEADY FLOW PROBLEM FORMULATION

As a preliminary to this section, consider the network arrangement for describing the panels on the
surface of a configuration (cf. sec. 4, ref. 1 and sec. 1.1, ref. 2). The panels are described in terms of
networks consisting of rows and columns of panels. Each network covers a portion of the surface of a
configuration without overlapping the surface covered by another network; thus, every panel on the
surface of a configuration is a member of one and only one network. For example, the right half of

a symmetric wing surface and its wake could be covered by four networks consisting of the upper
wing surface, the lower wing surface, a surface closing the tip, and the wake surface.

The panels of a single network are all of one type; that is, every panel of a particular network is either
a source panel, a doublet panel, or a combined source-doublet panel. If one portion of a configuration
surface is to have only sources distributed on it while a second portion is to have only doublets dis-
tributed on it, then these two portions of surface must be covered by different networks: one a source
network, the other a doublet network. ‘

As already noted, a network is a two dimensional array of panels, fig. 13. The grid points, which form
the corners of the panels of a network, are enumerated by the indices (M,N) where M is the grid
point row number, while N is the grid point column number. Although it would appear from this
that a network always has four sides, one side of a network can be collapsed into a single point so

that the collapsed side has zero length. When the edge (or side) of a network is collapsed, all panels
along that edge must have a collapsed edge such that they are three sided and have one corner point




located at the point representing the collapsed edge of the network. This requirement is consistent

with the requirement that every row and column of grid points of a network must have the same number
of members. If the collapsed edge of a network corresponds with the column direction of indexing

grid points and the network has M rows of grid points, then the point representing the collapsed edge

is counted M times in the indexing scheme. Also, if a network edge has finite length, then the edges

of every panel lying on that network edge must have a finite length even though the length of each

panel edge can be different from the others.

Recall from the preceding that the unit vector normal to the surface appears in the boundary conditions
of the flow problem; thus, in order to formulate a flow problem one must have a facility for specifying
which'side of a surface is to be that of positive normal (i.e., the upper side of the surface). This fa0111ty
is provided for each network by the grid point numbering system. Let M and N denote vectors,
respectively, in the grid point row and column directions (fig. 13). The side of the surface in the
direction of the cross product (Nx M) is called the upper side (or positive side) of the surface and

this is the side of positive unit normal vector for the portion of surface covered by the network. The
opposite side is called the lower (or negative) side. »

Network surfaces do not overlap one another and the edges of networks are either free edges of surfaces
or edges which abut other network edges. Since surfaces can contain narrow gaps, a convention is used
to distinguish between a physical gap and an abutment of two network edges on a continuous surface.
The convention is as follows: The edge of a network is a continuous curve consisting of straight line
segments. If the two curves representing the edges of two networks are identical (within the accuracy
of the computations), then the two network edges abut one another. Along any straight line segment
of the network edge curves, the number and location of the grid points can differ between the abutting
networks (except at the line segment ends) but these intermediate grid points must lie precisely on

the line segment, fig. 14. If these conditions are not satisfied, then the two networks do not abut one
another and a surface gap (or discontinuity) is introduced.

The control points of typical networks are shown by fig. 15. A source network has panel center
control points only ; while a doublet network has both panel center and network edge control
points.t Boundary conditions are applied at these points specifying: (1) the value of a flow
parameter obtained as a value of an aerodynamic influence coefficient (e.g., the normal compo-
nent of the unsteady perturbation mass flux vector at the upper side of the network) or (2) the
value of a source or doublet distribution. The network edge control points play the role of
outer evaluation points, see app. C of ref. 1; they are used to impose continuity on the doublet
distribution between abutting networks of doublet panels, see sec. 6.0, ref. 1.

The aerodynamic surface boundary condition which appears as eq. (31) and which is derived in app. B
is expressed as follows:

A
W* e n. =B* onSg

S

where

B* =[_ W+ (0 X ﬁs) - (D* . VWS) . ﬁs+PS un*] emlxMg /52. G

+ Wake surfaces are represented by doublet networks; and, in the case of a wake-doublet network,
control points occur only along one edge, cf., the discussion concerning figures 16 and 17.
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Figure 15. — Network Control Points

* This boundary condition must be satisfied at each of the aerodynamic surface network control points.

Referring to eqs. (32) and (41), the left hand number of eq. (31) can also be expressed in

terms of the mean steady surface conormal vector such that

ffc ‘T o*=B* on'Sg;

(77

hence, assuming that this boundary condition is to be satisfied at the upper surface of a network, it

is evaluated, using eq. (72), as follows:
aoel v *_|__1—‘n o +l—‘v *| =p* S
c A THle 2 ® " ' on og -

Eq. (78) represents a special form of the following general boundary condition: v

. = — [ A = ._‘ —
Cy (wu* . ﬁ) +T, v, tDy ey +Cy (WQ*f n) +Ty « vo* + Dy @™ =B*.

If the coefficients of the flow parameters are given the following values:

Cy=1, T,=Te=Cp=Dy=De=0,

then eq. (79) reduces directly to eq. (78).

(78)

- (79)

Consider, as an example, the Morino-type boundary conditions (ref. 2, sec. 1.31) for an aerodynamic
body having finite thickness, i.e., a body whose surface encloses a volume of space. These boundary
conditions are such that the unsteady disturbance potential is made to vanish everywhere in the enclosed

volume. The networks on the surface are chosen as combined source-doublet networks and their

" grid point indices are chosen such that the lower side of the network surfaces are at the interior of
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‘the body. If ¢o* is set to zero at the doublet control points, then ¢* will vanish at the lower side of
the surface; and, therefore, ¢* will vanish everywhere throughout the enclosed volume. Since, as shown
by eq. (71), the doublet strength is equal to the jump in potential at the surface, i.e.,

pE =yt - o™

the doublet strength is equal to the potential at the upper side of the surface, viz.,

=gy,

because

« Also; from eq. (72)

but, because

* .
<ai>=0,
E)nCQ' v

the source strength is equal to the normal cdmponen.t of -vpertu\lv'bation mass flux at the upper side of the

surface, viz.,
'0*=<@>
an ..
%)y,

where egs. (32) and (41) have been used to introduce the mass flux vector.

or

The Morino-type boundary conditions are implemented, using the general form of the boundary
condition shown as eq. (79), by the following choice of coefficients:

At doublgt control points
set Do = 1 and all other coefficients set to zero.
At source control points
set C, = 1 and set B* = (right hand iside of eq. (31))

and all other coefficients set to zero.
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The evaluation of the right hand side of eq. (31) requires the values of the mass flux vector, the mass
flux vector gradient, and the mass density of the fluid in the steady mean component of flow. These
quantities must be obtained from a separate solution to the steady mean flow problem, cf. sec. 5.2.

In the case of thin wing theory (ref. 7, Chapter 13) the steady mean component of flow is simply
the undistribed freestream. In that case the aerodynamic surface boundary condition, viz., eq. (31),
reduces to the following: : : '

- — . 2 2

Wk . /ﬁs = [-/1\ . (0 * X ﬁs) +u */ UO} eTiwxMo“/ 87 S, (80)
where S¢ is a cylindrical surface with generator parallel with the x axis. Only doublet networks are
required on Sg and the boundary condition is expressed by setting Co= 0.5,C,=0.5,and B*

equal to the right hand member of eq. (80) evaluated at the doublet control points. All other
coefficients of the boundary condition are set to zero.

As indicated by eq. (48), the unsteady wake surface boundary condition is not an independent

boundary condition, in that the doublet distribution on the wake is determined on its entire

surface by its value along its upstream edge. The wake is a surface emanating from the edge of

a lifting body, fig. 16, and the Kutta condition requires that the discontinuity in potential across

the wake surface and across the lifting surface be continuous at the lifting surface trailing edge.

The wake is represented by doublet networks;and, since the doublet strength is equal to the
_jump in potential, i.e.,

p* Q) =¢y* Q)-9¢o*(Q)  for Q on Wy,

the wake doublet strength along the network edges which abut a lifting surface must be equal to the
jump in potential across the lifting surface along the line of abutment. If the lifting body is
represented by thin wing theory, then the lifting body is an infinitesimally thin lifting surface
represented by doublet networks. In this case, letting Qg represent a point on the lifting surface and
letting Qy, represent a point on the wake, if Qg and Qy, approach the same point on the abutment line
between the lifting surface and the wake, then in the limit we require that

w (Qg)=n* (Qu) . (81)

Surface 1

,— Wake surface

\——Surface 2

Figure 16. — Surfaces of a Lifting Body and Its Wake.

Lifting body
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and this expression represents the Kutta condition requirement. If the lifting surface is
thick and is represented by Morino-type boundary conditions such that

ur (@) =0u (@2)
and

- @) o)

where QS1 and Qg re{)resent points on the two surfaces shown by fig. 16, then in the limit
as the three pomts and Q,, all approach the same point on the line of abutment
with the wake we requ1re that

. (Qsl - u* (Qs2> = p* (Qw) : | : (82)
and this expression, in addition to eq. (37), represents the Kutta condition requirement.¥

As noted above, the doublet strength distribution on a wake network is determined by the conditions
along the upstream edge of the network. This determination is described by eq. (37), viz.,

wE @, 5)=p*(c,s) o (i6/6%)7 (0.9 op W, 37)
where
2 4
T(Q,S)=-C/.WS(‘E,C)
and
- 1
=|W
s l lf’oUo

is the magnitude of the mean steady mass flux vector divided by the freestream mass flux. The parameter
£ is a coordinate line along the mean steady flow streamline at the wake surface, s.isa coordinate

line orthogonal to %, and c is the value of 2 at the upstream edge of the wake network, see fig. 17.
Eq. (37) can be seen to specify the doublet distribution everywhere on a wake network in terms of

the doublets’ strength along the upstream edge.

If, as in the case of the usual linear theory, the mean steady flow is simply the undisturbed
freestream, then eq. (37) reduces to

W (x,8) = p* (c, s)e 160 (x-0) (83)

¥ As a result of numerical approximations involved in the evaluation of eq. (82), a modified
form of the Morino-type boundary conditions is required for approximating the Kutta
condition, cf., sec. 4.4.
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Lifting surface

Wake surface

Figure 17. — Surfaces of a Lifting Body and Its Wake

the x coordinate. The results computed in the following section have all been computed using

; this doublet distribution on the wake surface networks. The theory and its implementation as
a computer program provide for the wake model shown as eq. (37), but the steady flow analysis
capability for generating the parameters required to evaluate eq. (37) has not yet been developed.

The evaluation of eq. (37) requires a solution to a nonlinear steady flow problem. The steady flow
method of solution provided by ref. 1 is based on a wake which is a cylindrical surface with gen-
erator parallel with the undisturbed freestream direction. This wake representation provides a

first order approximation to a solution satisfying the exact wake boundary conditions developed
in app. A, viz.,

[p] =0 on W o (A.35)
and

— A—. .
Vi 01=0 onW; (A.48)

however, it does not provide the data required to evaluate eq. (37).

In the exact theory eq. (A.35) requires pressure to be continuous across the wake and eq. (A.48)
“ requires the mean velocity at the wake surface to be tangent to the wake surface. A plausible
formulation of these boundary conditions, which is consistent with the approximations involved
in eq. (37), consists of replacing the pressure in eq. (A.35) with the second order approximation
shown by eq. (B.8) and of replacing the flow velocity appearing in eq. (A.48) with the approximate
mass flux vector shown by eq. (B.4). An iterative solution is required in which the wake surface
location is adjusted until these approximate forms of the wake boundary conditions are satisfied.
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. Presuming success for the solution of the problem, the solution would provide the spatial coordi-
nates of the wake surface (viz., £, s) and the mean of the steady mass flux vector along the wake

surface (viz., Wy). These quantities then provide a means for evaluating the-unsteady flow. wake
boundary condition shown as eq. (37).

Regardless of how the wake surface is approximated, the doublet strength varies along a streamline
coordinate deviating only slightly from a harmonic function of the coordinate distance. Recalling
that the panel approximation to the doublet strength distribution is a quadratic function of the local
panel coordinates, cf. eq. (50), it can be seen that the wake paneling must be sufficiently dense

in the streamwise direction that the panel-wide quadratic provides an accurate least squares
approximation to the harmonic variation. A panel density of sixteen panels per wave length

of harmonic doublet variation has been used in the example cases described in sec. 4.
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4.0 DISCUSSION OF RESULTS

This section presents computed results which demonstrate the validity of the approximations
contained in the unsteady flow panel method, primarily, the approximation to the unsteady kernel -
function described in app. D. This emphasis on the validity of the kernal function approximation .
stems from the fact that the method is an outgrowth of the steady flow panel method of ref. 1.

The approximation to the unsteady kernel function is the primary feature leading to this outgrowth;
hence, the demonstration of its validity is a central consideration in establishing the validity of

the unsteady flow panel method.

The demonstration cases consist of configurations of four different types:
(1) thin, planar lifting surfaces;
(2) thin, nonplanar lifting surfaces;
(3) bodies of finite'thickness; and
(4) combinations of (2) and (3).

Demonstration cases of type (1) are the primary basis for Validating' the unsteady kernel function
approximation. The reason for this is the availability of an accurate, alternate method as a basis

of comparison, viz., that of ref. 8. A T-tail is typical of a type (2) configuration and three different
T-tails are evaluated and compared with alternate methods of evaluation. A type (3) configuration
is represented by a wing with sources and doublets distributed on its actual surfaces in their mean
steady locations. The lift distribution on this wing as a thick body is compared with the lift
distribution on the same wing treated as a thin body, type (1). A type (4) configuration is repre-
sented by a twin engined transport configuration. v

4.1 APPLICATION OF PANEL METHOD TO PLANAR, THIN WINGS

As noted in the preceding, in the case of thin lifting surfaces, when the boundary conditions are
completely linearized, the steady mean component of flow consists of the undisturbed freestream.
The aerodynamic surface and wake boundary conditions shown by egs. (31) and (35), reduce

to those shown by egs. (80) and (83); and the panel method reduces to a method for evaluating -
the flow governed by thin wing theory, e.g., chapter 13 of ref. 7. The problem is formulated
entirely in terms of doublet networks on the lifting surfaces and on the surfaces of their wakes.
For the case of a single, planar lifting surface the acceleration doublet method of ref. 8 provides

a well validated, independent method for evaluating thin wing theory; hence, it provides a

basis for testing the validity and accuracy of the panel method doublet network for in-plane
computations.

Figure 18 shows the planform of the right hand wing of a test case wing, which is symmetric
about the x axis. The wing is oscillating in pitch about the midpoint of the root chord with a
reduced frequency of 0.3577 in a uniform flow with a Mach number of 0.6. Figures 19 through
22 show the real and imaginary parts of the lifting pressure coefficient chordwise distribution at
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Figure 18. — Planform of Test Wing
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Figure 19. — Thin Wing Unsteady Lifting Pressure Comparison at 18.1% Semi-span
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Figure 20. — Thin Wing Unsteady Lifting Pressure Comparisons at 51.2% Semi-span
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Figure 21. — Thin Wing Unsteady Lifting Pressure Comparison at 81.7% Semi-span

41




Lifting pressure coefficient, [[Cp]]

-45

>
-40
-35 \
-30
25 ' Panel Method
\ o real
20 M imaginary
Reference 8
15 & real

’ & - , & imaginary
-10 : -

74

5
0.0 2 4 .6 : 8 1.0

Fraction of chord, X/C

Figure 22. — Thin Wing Uhsteady Lifting Pressure Comparison at 97.7 % Semi-span




four spanwise locations (viz., at 18.1,51.2, 81.7, and 97.7 percent of semi span from the root).’
The plotted values shown on the figure as circles and squares are, respectively, the real and
imaginary lifting pressure coefficients computed by the panel method using 100 panels on the

right hand wing. The panel spacing is such that there are ten panels in both the spanwise and
chordwise directions; letting b = 4.05 denote the span, the chordwise edges of the panels are located
at the following points along the y coordinate direction:

b . /sw
y(N) = 3 sin (—2—> 34)
v where
s=(N-1)/{(NMAX-1) (85)

and NMAX = [ 1 while N = l,--, NMAX. The x coordinates of spanwise panel edges are spaced
along each chord lines as follows:

£ (\/c =% (1 - cos (sm)) - @86

where ¢ is the local chord length, & is the distance from the trailing edge, and
s=(M - 1)/(MMAX -1) (87)
where MMAX = 11 and M = 1,---, MMAX. Fig. 23 shows the resulting panel spacing.

Y(N) et
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/4

M | - E

\\\‘: g

- , I I e
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Figure 23. — Panel Spacing on Test Wing
\
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Figures 19 through 22 show the panel method predicted pressure distribution compared with
that predicted by the method of ref. 8. This method is based on a solution to the unsteady
flow problem in terms of the acceleration doublet kernel function and distribution functions
defined over the entire wing planform; it is a sufficiently well validated method that the close
agreement shown between it and the panel method validates the panel method for application
to planar, lifting surfaces.

Table 1 shows the effect of panel density on the values of the predicted unsteady pressures acting
on the test wing. The effect is evaluated on the basis of the errors in the unsteady lift, pitching
moment and rolling moment. This error evaluation is expressed as the relative error in the magni-
tudes of the lift and the moments, and the absolute error in their phase angles. When the wing
has 375 panels, viz., 25 chordwise panel spaces and 15 spanwise panel spaces, the panel method -
yields the following: : ‘

Lift Force:
IL*]

IcL "1 = ———=3.6235
a9 SREF

ES
where L | is the magnitude of the complex lift force on the right hand wing, SRgp = 2.5465

square semi root chord lengths, and q is the dynamic pressure. The lift phase angle is

SDL = 17.0()()0
Rolling Moment:

’*
* (27|
ICg | = ———= 1.5672
a BREF SREF

kY
where 12 | is the magnitude of the complex rolling moment on the right hand wing about the
x-axis and Bppp = 1.9403 semi root chord lengths. The rolling moment phase angle is

= 20
Y0 14.852
Pitching Moment:

*
* lm |

IC -
9 CREF SREF

m

where Im lis the magnitude of the complex pitching moment about the pitch axisat x = 1.0
and CRE = 1.308 semi root chord lengths.

The amplitude and phase errors are evaluated relative to the values of these quantities computed
for the wing with 375 panels.




=17

Table 1. — Effect of Panel Density on Thin Wing Forces

Lift coefficient

Roll coefficient

Pitch coefficient

Panel density Relative Absol. Relative Absol. Relative Absol.

Chordwise Spanwise amplitude phase amplitude phase amplitude phase

error error error error error error

M N {percent) (deg) {percent) (deg) {percent) (deg)
2 2 1.2882 3.7643 -4.3078 3.5575 -1.4574 1.3216
3 2 0672 2.3262 -3.3658 1.3043 -1.0146 - .0571
4 2 - .b647 1.7591 -2.9070 .5999 -3.2965 - .8675
6 2 - .7855 1.2611 -2.7774 2514 -3.0980 - .9688
10 2 - .3229 .9876 -2.7966 .2817 - .0434 .0365

3 3 .0096 1.7687 -1.2023 1.0720 -6.9601 -4.7459

4 3 - .56304 1.1990 -1.1313 4498 -6.1607 -3.1378
6 3 -..8324 .7316 -1.1493 .0848 -5.4025 -2.4572
10 3 - .5755 ..b154 -1.0051 .0396 -2.56278 -1.1698
4 4 - .9754 1.0403 -1.6814 .5754 -7.4157 -3.8772
6 4 -1.3384 5922 -1.7217 .2047 -6.1414 -2.6490
10 4 . -1.1723 4087 -1.5706 .1310 -3.0597 -1.0612
15 4 - .9496 3714 -1.4320 .1594 -1.0267 - .1956
6. 6 -1.1424 .3999 -1.4593 2290 - -6.3652 -2.8913
10 6 -1.0397 2371 -1.3294 1242 -3.1733 -1.1056
15 -6 - .8520 .2100 -1.1682 .1299 -1.2578 - .2654
20 6 - .7375 .2077 -1.0765 .1425 - .3041 .1269
10 10 - .6940 .0770 - .7108 .0478 -3.2516 -1.3135
15 10 - .4169 .0572 - .b361 .0401 -1.3554 - 4615
20. i0 - .3069 .05676 - .4276 .0463 - .4553 - .0839
15 15 - 1727 - .0043 - .1689 - .0084 -1.3835 - .5627
20 15 - .0661 - .0049 - ,0604 - .0022 - .4829 - .1993
25 15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




Figure 24 shows a second test wing. This is a swept wing having no taper, a twenty-five degree
angle of sweep, and partial span trailing edge flaps having chord lengths equal to thirty per cent
of the total wing chord. This wing was tested for various combinations of flap and wing
oscillatory motions and the results of those tests are reported by ref. 9. The real and imaginary
parts of the unsteady pressure coefficient were measured along the chord lines shown as dashed
lines on fig. 24. The measured pressure coefficient distributions are compared with distributions
computed by the panel method in fig. 25 through 27. The surface paneling arrangement is

shown in fig. 28.

The flow velocity is less than 100 feet per second; hence, the flow was taken to be incompressible.
There are five different cases of flap and wing oscillation, which are as follows:

(1) Both flaps oscillating with the same phase and amplitude (viz., 0.82 degrees)

(2) Outer flap oscillating (amplitude; 0.66 degrees), inner flap and wing stationary.

4 Semi span = 2.93 ——m8M————» y
‘ -
Chord = 2.0
] Inboard flap
———1.37 ———»|
x ' Chord lines along which
pressures are measured

Figure 24. — Test Wing with Partial Span Flaps
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Figure 25. — Chordwise Distribution of Lifting Pressure Coefficient, Case 1.
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(3) ' Inner flap oscillating (amplitude: 0.67 degrees), outer flap oscillating (amplitude:
0.65 degrees) in anti-phase with inner flap, wing stationary.

In each case the reduced frequency of the oscillatory motion is 0.372.

The comparisons shown by fig. 25 through 27 demonstrate the capability of the panel method

to evaluate the lifting pressure distributions induced by oscillating trailing edge flaps. Table 2
further demonstrates that capability; it shows the variation in the amplitude of the control

surface hinge moments for several panel densities. This variation is shown as the error in hinge
moment amplitude relative to that computed for the most densely paneled case. This table

also shows the absolute error in predicted phase angle, again, regarding the phase angle of the most
densely paneled case as the point of reference.
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Figure 27. — Chordwise Distribution of Lifting Pressure Coefficient, Case 3
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Table 2. — Swept, Thin Wing Hinged Flap Hinge Moment Amplitude and Phase Errors

Inboard flap ' Outboard flap
Panel density Mode shape Relative Absol. Relative Absol.
Chordwise Spanwise number amplitude phase amplitude . phase
error error error error
M N {percent) (deg) (percent) (deg)
3 3 1 8.3573 -1.0627 7.0874 -2.3467
4 4 6.8592 - .6331 3.6825 -1.4808
5 5 3.9411 - .3346 1.9150 -1.0299
7 7 1.6780 - .1575 4573 - .3566
~ 10 7 .0910 - .0180 - 6030 .14871
10 10 0.0000 0.0000 0.0000 0.0000
3 3 2 21.9326 -17.4810 6.7727 -2.7354
4 4 8.9168 -10.3497 3.6726 -1.7837
5 5 4.0357 -6.1419 1.7157 -1.1981
7 7 1.4196 -2.0295 .3400 - 4614
10 7 .3209 -1.1490 - .7575 .1303
10 10 0.0000 0.0000 0.0000 0.0000
3 3 3 10.6967 -1.6447 6.2658 -3.2233
4 4 7.9253 - .9786 3.56864 -2.1791
5 5 4.5119 - 6171 1.4140 -1.4031
7 7 1.8492 - .2542 .1613 - 5891
10 7 .2118 - .0640 - .9636 .1196
10 10 0.0000 0.0000 0.0000 0.0000
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- Figure 28. — Paneling of Test Wing with Split Trailing Edge Flap

4.2 APPLICATION OF PANEL METHOD TO NON PLANAR,
THIN LIFTING SURFACES

The panel method is validated for this type of configuration by computing the unsteady aero-
dynamic forces on three different T-tail configurations undergoing oscillatory motions. These
are T-tails which have been evaluated by the alternative methods described by ref. 10 through 13.

The first T-tail evaluated is shown by fig. 29. This T-tail is tested oscillating in yaw about an
axis along the mid chord line of the vertical surface and the test results are contained in ref. 10.
The tail oscillates with a reduced frequency of 0.105 in a uniform freestream having a Mach
number of 0.376. Table 3 shows the values of the amplitude and phase angle of the following
generalized aerodynamic force coefficients from three sources:

Cy g side force coefficient due to yaw

C'Q v rolling moment coefficient of the horizontal surface abouts its center
line due to yaw

Cy v rolling moment coefficient of the T-tail about the root of the vertical
due to yaw

Ch ¢2 yawing moment coefficient due to yaw
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Axis of yawing oscillation

Free stream velocity\ /
1'0 ’ . \V

1.0 Reference 10

Wind tunnel wall

Figure 29. — Clevenson-Leadbetter T-tail

One set of values appearing in table 3 is that from the experiment of ref. 9, the second set
was computed by the method of ref. 11, and the third set was computed by the panel method
using the paneling shown by fig. 30.

55




9g

Table 3. — Generalized Forces on Clevenson-Leadbetter T-tail Oscillating in Yaw

,
Amp. Cy' v Phase Amp. CQA[/ Phase Amp. CQ,W Phase Amp. Cn,t[/ Phase l

Experiment, reference 11 1.306 - 1.0° -.264 -4.0° -2.74 - 1.0° 616 - 8.0° ‘

Theory, reference 10 1.16 -12.0° Not Available | -1.914 12.0° 621 ' -:11'.o°

Panel method, 10x10 panels 1.224 4.0° -277 2.11° -2.57 3.95° 632 - 65.97°
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Figure 30. — Paneling of Clevenson-Leadbetter T-Tail

Figure 31 shows the T-tail of ref. 11. The side force, yawing moment, and rolling moment coeffi-
cients for this tail are evaluated for five different modes of motion. The five modes of motion are

described in terms of mode shapes expressed in terms of the coordinate system shown on figure 31
For points on the horizontal they are as follows:

Z;=0
Zy=0
Zy=y
Z4=0

Zs5=2(1.5041)y
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- For points on the vertical they are as follows:
V1= 1
Yo =X
y3= (1;5041 -Z) |
y4=X(1.5041-2)
vs = (1.5041 - Z)?

The oscillatory motions all have a reduced frequency of 0.5 based on the root chord length of the
tailplane, and the flow Mach number is 0.8.

D
—} — et — — —————
Y T $
0.7054
\
H
1.6676
C\\
X t: 1.2952 >
: G
Plan of horizontal Reference 11
1.4034

z

!
I

C
Plan of fin ‘ X

Figure 31. — Planforms of Horizontal and Vertical Fin of Davies T-tail
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Table 4 lists the values of the real and imaginary parts of the three generalized aerodynamic

force coefficients corresponding to the first, second, and third mode shapes, viz., C,,, C,» and C

with the yawing moment, n, taken about the z axis shown on fig. 31 and the rolling moment, £,
taken about the root chord line of the fin. Complex values for these three coefficients relative

to each of the above five modes of motion are shown by table 4 and the values shown are those
presented by ref. 11 along with the corresponding values computed by the panel method. The

panel arrangement is essentially that shown by fig. 30 with 11 panel spaces in the épanwise

direction and 13 panel spaces in the chordwise direction of each of the three lifting surfaces making
up the T-tail. Table 5 shows the effect of varying the panel density on the predicted aerodynamics of
this T-tail. Table 5 shows the relative error in the amplitudes and the absolute error in the phase

angles for four different panel densities, treating the most densely paneled case as the basis.” The res-
ults of ref. 11 are included also, again, using the most densely paneled as a base for comparison.

Table 4. — Comparison of Davies T-tail Generalized Force Coefficients

Mode 1 Mode 2 Mode 3 Mode 4 Mode b
Coefficients -
Real Imag Real Imag Real Imag Real Imag Real Imag
C.., ,
Si\ée Ref. 11 2164 |-1.0246(-2.0977| -.7804 | .1589 | -.9654 |-1.700 | -.6946 | .15629 |-1.2249]
force P.MF 2236 |-1.0490(-2.2056| -.8461 | .1431 | -.9327 [-1.8105; -.7158 | .1058 |-1.0671
\C/g\,/vin Ref.11 |-.0129 | .3185| .6847|-.1498 | .0261 .1489 | .3520! -.1612 | .0529 | .0703
g P.M.* -0327 | .3049| .6776|-.2869 | .0673 | .1274| .3361}-.2926 ( .0937 | .0317
moment
g%llin Ref. 11 | .0859 |-1.0942{-2.2202| -.6104 | .1759 |(-1.6627 |{-2.0674| ~.7025 | .3505 |-3.0422
momegt P.M.* .0872 {-1.0682(-2.2048| -.6527 | .0761 |-1.3939|-2.0616| -.6969 | .0641 |-2.2815

* P.M. — Panel method computed result

Figure 32 shows the T-tail which is evaluated by ref. 12 for oscillatory sideslip, yaw, and roll.
Let L;;V denote the following generalized complex aerodynamic force coefficients:

Ly =21§<11_b[fH# Hjds

where H , for u = 1, 2, 3 describes the T-tail surface displacement for unit yaw, sideslip, and
roll while H;f , forv =1, 2, 3 describes the complex amplitude of the surface distribution of
lifting pressure induced by unit yaw, sideslip, and roll. Table 6 compares the values of these
generalized force coefficients computed by the method of ref, 12 with the values computed
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Table 5. — Davies T-tail Generalized Force Coefficient Amplitude and Phase Errors

Panel density

Chordwise Spanwise
¥ N
4 4
18 4
10 9
13 11

(Reference 11)

Mode shape

Number

Vi W N e U BN - (21 SRV S P U

N8N e

Side force coefficient

Relative
amplitude
error

(percent)

«7113
2.1025
60527
33682

13.6220

-2.3728
~242320

29433

~243776
11.59590

»3192
«3685
143557
+ 7066
26007

0.0000
3.0000

0.0000 °

0.0000
0.0000

- =2.3647

-3%2558

36854
'5.6725
1541142

Absol.
phase
error
(deg)

1.7037
12369
-.48*0
«56235
-2,9102

-+03090
-.2738
-18463
-+5884%
-4.0580

-+»0389
‘00522
‘02629
‘00961
-«8238

0.00008
80.0000
0.0000
0.0000
0.00080

-«1870
-.5810
«6242
«5525
14530

Roll_ moment coefficient

Relative

amplitude -

error
{percent}

67321
8.1898
1945132
- Je1164
295909

23127
2452990

17.0718"

1.1952
29.6109

17467
1.9557

4 .4635

1.9844
85778

000080
0.0000
0.0000
00000
fe0000

3.3698
.1391

19.7713

'01000
34,1712

Absol.
phase
error
(deg)

20443
16735
16825
1.2442
1.7166

« L2467
-+33986
~e224%
f'5656
~+0907

-~ 0757
~e1367
«0119
--1043
+1386

0.0000
0.0000
0.0000
0.0000

 0.0000

-22220 -

-1.11381
2.7140
«1753
4,9629

Yaw moment coefficient

Relative
amplitude
error
(percent)

-13.7859
-8+.2379
~17.9444%
-3.6290
258309

-4.23582
-3.4322
-1104§97
~156913
-~+2585

~1.8769

'1.3871
-3.1876
~«8659
--6875

0.0000

0.0000

0.0000
000800
0.8000

3+9500
-4.7483
4.9185
~13.1200
~11.0567

Absol.
phase
error
(deg)

2.62417
~3e0742
-17.0173

-7e8951
-37.,0972

3793
~e3620
-5.3214
-«7336
~-31.51562

+3091
-e4019

: -15598

-09761

- =6+1689

0.0000
0.0000
0.0000
0.0000
0.0000

| ~3.8021

10.6073
173035
16.43564
34.3475
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Figure 32. — Planforms of Horizontal Tail and Vertical Fin of Stark T-tail

using the panel method. The panel method values are based on a computation using the panel
arrangement shown by fig. 33. The comparisons are shown in table 6 for two different values
of reduced frequency of motion, viz., 0.2 and 0.3. These reduced frequency values are based
on the definition of ref. 12 using one third of the semi-span of the horizontal tail as the
characteristic length. Also included in table 6 are comparison values computed using the
doublet lattice method; those values are taken from ref. 13. :
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Figure 33. — Paneling of Stark T-tail

Table 6. — Comparison of Stark T-tail Generalized Force Coefficients

Yawing Sideslipping Rolling

Coefficients Real Imag Real Imag Real Imag
K=40.2 _

Ref. 12 -.0961 -.4811 0412 -.0300 .0125 | .0239

Yawing P.M. -.0528 -.4773 .0456 -.0228 0126 | .0237

moment Ref. 13 -.0837 -.5270 .0470 -.0278 0137 | .0257

Ref. 12 -.6108 -.3625 .0241 -.121 .0158 | -.0295

Side P.M. -.5422 -.3721 .0305 -.1098 .0166 | -.0270

force Ref. 13 -.6270 -.3965 .0297 -.1260 .0171 {-.0318

Ref. 12 -.1247 -.1151 .0134 -.0255 .0179 |-.0497

Rolling PM, -.1176 -.1210 .0149 -.0249 0177 |-.0478

moment Ref. 13 -.1270 -.1266 .0154 -.0269 .0186 |(-.0529

K=0.3

Yawing Ref, 12 -.0690 -.7736 .0973 -.0549 .0315 | .0403

moment P.M. -.0489 -.7260 .1056 -,0282 .0291 } .0396

Side Ref. 12 -.6471 -.5692 .0562 -.1895 .0379 [-.0449

force P.M. -.5015 -.6691 .0749 -.1587 .0382 |-.0386

Rolling Ref. 12 -.1344 -.1729 .0299 -.0415 .0411 {-.0770

.moment P.M, -.1168 -.1820 .0328 -.0390 -.0401 |-.0715.




4.3 GRADIENT OF STEADY MEAN MASS FLUX VECTOR

Before proceeding to a discussion of results from thick wing or wing-body flow problems, a
discussion of one of the influences of the underlying steady mean component of flow is
required. An additional approximation is introduced by deleting one of the boundary condition
terms which is not computed with sufficient accuracy by the panel method of ref. 1.

The aerodynamic surface and wake surface boundary conditions shown by eq. (31) contain .
the following term involving the gradient of the mass flux vector:

(ﬁ '3\_?\75 ’ ﬁs =[T5 '\'7(6055 ",i\MO2 (¢S) X)] ) ﬁs :

The value of this term depends on the second order derivatives of steady mean velocity
potential, and its accurate evaluation places stringent requirements on the accuracy of the
steady mean flow solution. As noted in the preceding, the steady mean component of flow
is computed by the panel method of ref. 1. If that method is notsufficiently accurate,
then this term cannot be included in the unsteady panel method formulation.

The accuracy of the steady panel method was tested by computing second order derivatives
of the velocity potential at the surface of a sphere in an uniform, incompressible flow.
These computed values were then compared with values computed from the exact solution
to this flow problem, i.e.,

a3
¢=__._.

X
3

[\

where a is the radius of the sphere and r is the distance from the center of the sphere to
the point where the potential is evaluated, viz.,

r=(x2 + y2+ 22) 1/2.

The spherical surface was approximated by 968 panels. Twenty-two panels were uniformly spaced
in rows along meridian lines running from the forward stagnation point to the aft stagnation point
and there were forty-four such panel rows around the circumference of the sphere. The problem
was solved using Morino type boundary condition, cf. sec. 3.4;hence, the potential and its

first and second order derivatives with respect to the local panel coordinates were readily
evaluated at each panel center from the solution doublet distribution.

The exact solution to the flow problem was differentiated with respect to the compressibility
coordinates, and the components of the derivatives were transformed to the local panel
coordinates. The derivatives of the potential, with respect to the local panel surface coordinates,
should then compare with those computed by the panel method. For a typical meridian

line row of panels the results are as shown in table 7.
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Table 7. — Computed Vs. Exact Values of Velocity Potential

and Its Derivatives at Surface of A Sphere

0(deg.)* '

(deg.) ¢ 2 Pn et Pn %
4.09 49835** 02183 -.00004 -.84453 -.03974 .06799
50130*** .03542 .00007 -1.51171 .00001 -1.561163
12.27 48831 .10618 -.00271 -.47719 01194 -.87561
49126 .10565 00018 -1.48240 .00004 -1.48164
20.45 46835 17415 -.00406 -.46848 .01045 -.81333
47134 .17400 00026 -1.42409 .00010 -1.42214
28.67 .43886 23910 -.00530 -.43757 .00909 -.76325
44191 23920 .00031 -1.33751 .00017 11.33408
36.82 40041 29923 -.00601 -.38881 .00749 -.69249
40350 29997 .00033 -1.22384 .00024 -1.21893
45.00 35381 36313 -.00632 -.33226 00580 -61314
.35683 .35505 .00032 _ -1.08480 .00031 -1.07870
53.18 .29998 40006 -.00606 -.26680 .00413 -51912
.30278 40317 .00029 -.92269 .00038 -.91597
61.36 23999 43905 -.00519 -19756 00460 -41078
24242 44327 00024 -.74049 .00045 -.73386
69.55 .17510 46891 -.00415 -.13673 .00543 -.30231
17697 47433 00018 -54180 .00049 -53603
77.73 .10662 48936 -.00291 -.08068 00555 -.19175
.10778 49553 .00011 -.33082 .00053 -.32659
85.91 03591 49903 -.00129 -.02526 00543 -.07203
.03631 50633 .00004 -.11223 .00055 -.11003

Meridian angle from forward stagnation point

* %

* X %

Except at the first panel, which is closest to the stagnation point, the value of the potential and

Computed value
Exact value

its gradient are computed with sufficient accuracy to be regarded as a satisfactory steady flow
solution for the purpose of evaluating the surface pressure distribution. The second order
derivatives, however, are considerably in error over the entire meridian line. Because of these
large errors, the boundary condition term described at the beginning of this subsection was
deleted in the boundary conditions of the demonstration cases.




4.4 APPLICATION OF THE PANEL METHOD TO
WINGS OF FINITE THICKNESS

* Figure 34 shows the panel arrangement of a test case wing having finite thickness. This
wing has the planform shown by fig. 18 and an airfoil section that is 4.8 percent thick at

a point 40 percent of the chord aft of the leading edge. The thickness of this wing is -
sufficiently small that the lifting pressure induced on its surface as a result of harmonic

flow incidence is accurately predicted by the thin wing theory method of ref. 8. Using

the paneling shown by fig. 34 the lifting pressure has been computed, satisfying the unsteady
thick wing flow theory shown by egs. (30) through (35). The wing is oscillating in pitch

about a spanwise line through its mid-root chord point with a reduced frequency of 0.3577.
The lifting pressure coefficient distributions along four chord lines are shown by figs. 35
through 38. These figures provide a comparison of the real and imaginary parts of the

pressure with those computed by the method of ref. 10. Since the thick wing panel method
should yield results in this case which are nearly identical with results from the method of
ref. 8, the close correlations shown by fig. 35 through 38 imply validation of the panel
method.

N8/ /A /i i

G
& i //M/
777

Figure 34. — Panel Arrangement for Thick Test Wing
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Figure 35. — Thick Wing Unsteédy Lifting Pressure Comparison at 18.1% Semi-span
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Figure 36. — Thick Wing Unsteady Lifting Pressure Comparison at 51.2% Semi-span
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Lifting pressure coefficient, I[Cp]I
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Figure 37. — Thick Wing Unsteady Lifting Pressure Comparison at 81.7 % Seh*;/—span
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Figure 38. — Thick Wing Unsteady Lifting Pressure Comparison at 97.7 % Semi-span
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This wing flow problem was computed using the Morino-type boundary conditions described in
one of the examples of sec. 3.5. The wing is represented by distributions of unsteady sources

and doublets on the upper and lower surfaces of the wing and on a surface which closes its tip. The
strengths of the sources are set equal to the unsteady flow incidence and the unsteady disturbance
velocity potential is required to vanish at all points interior to the wing surface. A direct applica-
tion of these boundary conditions in the panel method, however, does not lead to an accurate
representation of the flow in the neighborhood of the wing trailing edge. This problem was
corrected by a modification of the Morino-type boundary conditions; the nature of the problem
and its remedy are described in the following.

The panel method is applied by defining three networks of panels covering the Wing surface:
(1) the upper surface, (2) the lower surface, and (3) the tip closure surface. As indicated
above these are combination source-doublet networks: and, in the termmology of ref. 2,

sec. 2.4, these three networks are typed as follows:,

~ NTS(K) = 1 and NTD(K) = 12 for K=1,2,3.

These networks have control points at the panel centers and at the mid-points of the panel edges
which are also network edges, cf., fig. 15. Two boundary conditions are required at each panel

center control point and a smgle bounddry condition is required at each network edge control
point.

Again, using the terminology of ref, 2, sAec. 2.4., the Morino-type boundary conditions are imposed
by setting the boundary condition parameters as follows:

at panel center control points (ref. 2, tables 2.2 and 2.-3): '

NLOPTI =5
NROPTI =5
NLOPT2 =7
NROPT2 =2

at network edge control points:

NLOPT1 =0
NLOPT2 =7
NROPT2 =2

This specification of the boundary condition parameters causes the source strength to be set equal
to the flow incidence at panel centers and causes the disturbance potential to vanish at limiting
points approaching the control points from the interior of the wing.

The doublet strength values at control points at the edges of two adjoining networks are used,
in part, to enforce continuity of the doublet strength between the adjoining networks across their
abutting edges, ref. 1, sec. 6.0. In the present case of the thick wing, the doublet strength on the




wake along its upstream edge is forced to match the sum of the doublet strengths of the upper

and lower wing surface networks along their line of abutment with the wake. At the edge control
-points of the upper and lower surface networks, however, if the Morino-type boundary conditions
are imposed, causing ¢ to vanish at these points, the Kutta condition fails to be correctly satis-
fied. This failure is a failure of the boundary conditions to correctly determine the direction of the
disturbed flow at the wing trailing edge. The flow should be tangent to the wake surface at this
edge; but, because eq. (82) is not satisfied precisely at the wake line of abutment, the flow direction
can be in a direction significantly different from that of the tangent to the wake surface. This
failure is remedied by requiring the flow to be tangent to the upper surface of the wing at the edge
control points.

At the edge control points along the trailing edge of the upper surface network, the boundary con-
dition parameters (ref. 2, tables 2.2 and 2.3) are given the following values:

NLOPTI =0

NLOPT2=3

NROPT2 =2
As a result,

Ve fi=0

at edge control points of the upper surface along the wake and this condition causes the unsteady
flow to have a direction tangent to this surface along its trailing edge.
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4.5 APPLICATION OF THE PANEL METHOD TO A
WING-BODY-TAIL-NACELLE CONFIGURATION

Figure 39 shows the paneling for a typical subsonic, twin engine transport with the following
characteristics:

Wing area = 297.0 square meters (2759 square feet)
aspect ratio = 8.71
taper ratio = 0.267
sweep @ C/4 = 31.5 degrees
dihedral = 6 degrees
root chord = 856.7 cm (337.3 inches)
tip chord = 228.6 cm (90.0 inches)
MAC =603.18 cm (237.474 inches)
span = 47.24 m (1860.0 inches)

Body closure surface

Y7 i

il
L

Note: All wake networks
are type-12 networks

/777 7 1711 I v
///4/// // // // I/ Il ’/I!lf [ I’ M:“%7 il
— L, ="anenii
[msmmnsenst |
1 T

Figure 39. — Paneling of Typical Transport Configuration -
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Horizontal tail area = 89.3 square meters (830 square feet)
~aspect ratio = 4.50

taper ratio = .250
sweep @ C/4 = 33 degrees
dihedral = 7 degrees -
root chord = 662.4 cm (260.8 inches)
tip chord = 165.6 ¢m (65.2 inches)
MAC =463.6 cm (182.5 inches)
span = 1863.0 cm (733.4 inches)
tail arm = 2053 c¢m (808.4 inches)
tail volume coefficient = 0.926

Body cross Section maximum width =502.9 cm (198.0 inches)
’ maximum height = 541.0 cm (213.0 inches)

The body is represented by sources and doublets distributed directly on the actual surface
except on the closure section aft of the horizontal tail. A cylindrical wake surface with gen-
erator parallel with the undisturbed freestream emanates from the aft body surface simulating
flow separation from the body surface at the body station where the trailing edge of the
horizontal tail intersects the body. The body closure surface is simply a flat surface normal

to the freestream and at the leading edge of the body separation wake. Morino-type boundary
conditions, cf. sec. 3.4, are applied at the body surface; hence, the source distribution strength
is set equal to the complex amplitude of the unsteady flow incidence at the body surface and
the unsteady potential is set to zero at the body interior. Source and doublet panels are also
placed on a surface which closes the aft body interior to the cylindrical wake separation surface.
This body closure surface is a flat surface normal to the freestream direction. The unsteady
disturbance potential is set to zero at either side of the body closure surface, thereby, causing
the doublet strength to vanish but providing a source distribution together with control points
along the edge of the body closure surface adjacent to the wake surface. These boundary
conditions lead to undisturbed freestream flow interior to the cylindrical wake separation
surface. '

At the wing, tail, and nacelle surfaces thin lifting surface boundary conditions are applied.
The effects of thickness and the effect of a mean steady component of flow are ignored.
A nacelle is treated, essentially, as a ring wing, and it is on a strut having a wake.

Figure 40 shows the paneling of the transport used in a doublet-lattice computation. The
body paneling shows the surface of interference for the body. The actual body was represented
by unsteady line doublets to generate its slender body theory aerodynamic influence.

The transport is assumed to be oscillating in pitch about a point 848.3 inches aft of the nose
of the body. The reduced frequency was chosen as 0.0174 so as to be typical of the short
period frequency of an aircraft of this type. The flow Mach number was chosen as 0.87.

The complex amplitude of the lift and pitching moment coefficients induced by the pitch
oscillation were computed by both the panel method and the double-lattice method. The
results are summarized as follows:

panel method doublet-lattice method
1/2 C; = (3.5033) +i(.0647) 1/2 Cik_ = (3.0022) +i(.1301)
1/2 C;I= -(15.4742) -i(.75279) 1/2 CK,I= -(13.2033) -i(.9273)

where the pitching moment is about a point 234.95 c¢m (92.5 inches) forward of the nose.
The solution to this problem required approximately 1000 CPU seconds on the Ames CDC
7600 computer.
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5.0 COMPUTER CODE USER’S GUIDE

The computer program of the unsteady panel method is a modified form of the steady flow panel
method computer program described by ref. 1 and 2.¥ Input data for executing the unsteady flow
program is nearly identical with the input data required by the steady flow program; hence,

this section is written as a supplement to the user’s manual of the steady flow program, viz.,

ref. 2. The reader is expected to have ref, 2 in his possession and to be familiar with its contents.

There are three principal differences between the input requirements of the two computer pro?
grams. The differences consist of the following additional data required by the unsteady flow
program:

(1) boundary condition data describing unsteady surface motion at the control points

(2) wake paneling grid point data providing for harmonic variation in the transverse
component of wake vorticity, and

(3) mean steady component of flow data at the control points of the unsteady flow
problem.

The input data is described in detail in sec. 5.2,

Output data is also similar to the output data of the steady flow program. The primary difference
is that the output data of the unsteady flow program is complex. i.e., the program generates

the real and imaginary parts of the complex amplitudes of the unsteady flow parameters.

The output data is described in sec. 5.3.

5.1 GLOBAL COORDINATE SYSTEM

All geometric input describing network grid points is expressed in the global coordinate system,
see sec. 1.0, ref. 2. The global and compressibility coordinate systems are related by a user
supplied angle of attack (ALPC) in degrees and angle of sideslip (BETC) in degrees. From

these two angular rotations, the program computes the components of a unit vector in the
direction of the x-axis of the compressibility coordinate system. This unit vector is as follows:

A A A N
¢ = COMPD(1)i + COMPD(2)j + COMPD(3)k (88)
NAN . . .
where i, j, k are the unit base vectors of the global coordinate system.
5.2 INPUT DATA REQUIREMENTS
5.2.1 STEADY MEAN COMPONENT OF FLOW DATA

By .reference to the boundary conditions equations, i.e., eqs. (31) and (34), it is seen that
at each control point the following steady mean component of flow data is required:

¥ For computer system requirements refer to sec. 1.5 of ref. 2.
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steady mean density,

f)
M &~
- . 0O A = (89)
Ps"p0<1 B U, ¢ V¢S>
and steady mean mass flux vector,
Ws =Po (er*‘?‘ps - GMOZ e °$¢s> ’ - (90)

In addition, the gradient of the mass flux vector is required to evaluate the second term
of the boundary condition shown by eq. (31). That term is evaluated from second order deriva-
tives of the steady velocity potential, with respect the local panel coordinates, see app. E.

The user may elect to ignore the influence of the mean steady component of flow. This
choice is set by the logical variable LSTDY in subroutine INPUT. If the statement
LSTDY=.TRUE. appears in subroutine INPUT, the program expects mean steady flow data.

If the statement LSTDY=.FALSE. appears, the steady mean density and steady mean

mass flux vector are given their freest_'ream values. The default value of LSTDY is .FALSE.

The steady mean flow data is provided by executing the steady flow program of refs, 1 and 2.
The steady flow program must be executed using precisely the same geometry and paneling as
that to be used in the unsteady flow program. The control point numbering and the control
point locations are therefore identical with those to be used in the unsteady flow problem, and
the following data is saved for each control pointt:

JC, control point number;

ICP, panel number containing JCth control point;

PLCL(D), I=1, 2, 3, local panel coordinates of the control point;

TSC(1), source strength;

TSC(2), doublet strength:

TSC(1), 1=3.4,5 components of the gradient of the doublet strength in
the global coordinate system;

W(1), average potential;

W), 1=2,3,4 components of the perturbation mass flux vector in the global
coordinate system;

DDO(I), I=1,2 components of the gladlent of doublet strength in local

panel coordinate system;

X1(D),1=1.2,3 second order derivatives of the doublet strength with respect to the

local panel coordinate system.

In the unsteady flow program these quantities for each control point are contained in
labeled common block STDY.

+ This data must be saved in the subroutine OUTPUT, see fig. 1.12 of ref. 2, using the
following statements:
For each case:
WRITE (8,8001) AMACH, ALPHA (IACASE), BETA (IACASE)
For each panel center control point:
WRITE (8.8001) JC,ICP.PLCL,TSC,W,DDO, (X1(1).I=4,6) 8001 FORMAT (4020)
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The data is contained on an octal formatted file identified to the program as tape 13. The first

record on the file contains the following values: AMACH,ALPHA(IACASE), BETA(IACASE).

- Subsequent records contain the data which is listed above and which appears in labeled

common block, STDY. Tape 13 is read as a sequential file in the unsteady flow program and it
is generated by the steady flow panel method program by inserting the previously mentioned WRITE
statements. The steady flow program must be executed with NEXDGN=1 and bit number one must
be set in the variable IFLAG (e.g., IFLAG = IFLAG. or .1).

5.2.2 BOUNDARY CONDITIONS
Boundary conditions are specified at each control point following the procedures of sec 2.4

of ref. 2. The general form of the boundary condition is identical with that of ref. 2, except
that the flow parameters are complex as shown by eq. (79), i.e.,

ey (Wu* - ﬁs)+Tu Vo *+D o + (WQ* ' ﬁs) +Ty *96q* + Do dg* =BET.* (91)

In certain cases the coefficient BET* is represented by the value of the mass flux boundary
condition shown by eq.(31). In these cases the coefficient BET* is computed by Subroutine
CBET by choosing option 5 of table 2.3, ref. 2. As shown by eq.(31), the normal component
of mass flux is equated to

— _ (G Y "‘A.A 2 2
BET* = [‘Ws ) (0* X GS) ) (D%:VWS) | ﬁs"'l’s un*] 51.6_1('00. RM,7/6% 2
. o )

where R is the position vector of the control point in the global coordinate system. This
equation contains the following__iomplex amplitudes of thgﬂgnsteady surface motion
parameterg: surface rotation, # ;surface displacement, D ;and surface rate of displace-
ment, uy, . These parameters are related to time dependent quantities as follows:

=R (3* eiwt)’ D=R (]_5* eiwt)’ and u, =R (un* eiwt)

Where w is the circular frequency in radians per second and R( ) denotes the real part.

The circular frequency is input to the program in the following ratio:

OMGBAR = w/U, =& 93)
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which is related to the reduced. frequency as
k = &c/2 94)

where c is a characteristic length expressed in the units of length used in defining the
freestream velocity magnitude. From eqs. (93) and (94) it is clear that the input parameter
is related to the reduced frequency of the unsteady motion as follows:

OMGBAR =2k/c. 95
As an example of the computations carried out by subroutine CBET, consider the case

of the configuration shown by fig. 41 undergoing pitch oscillations about its center of
mass, i.e., its cg. ’

s
K

Figure 41. — Airplane Configuration Oscillating in Pitch

78




Assume the fdllowing values:

9.14 meters (30 ft),

Xo =

U, = 2134 fn/sec (700 ft/sec),
19, 1= 3°

C = 7.92 meters (26 ft), and
k =10

and assume that the x axis is parallel with the freestream and that the x axis passes through
the cg. The frequency input value is given by eq. (95) as follows:

OMGBAR =2.0(1.0)/13.0
=0.07692

The surface displacement at the control point with position R is

D*R) =0, x(R-R,) (96)
where 8, = (0.007+ (3.0/57.296) + (0.0)k
A A A
= (0.0)i + (0.05236)] + (0.0)k | 97)
and Ry= (30.00+ 0.0+ 0.0)k. o (98)

The surface rotation at the control point is

e S
®) =3,

-k
6
The surface displacement rate at the control point is

up* =i Uy, D* (R) ng . (100)

Substituting into eq. 92 and using eq. 89 and 90, the right hand member of the boundary
condition is seen to be given by

BET* =[- (U 8+96-8M 28 +90,) - (% x B )

(T, x(R-R,)) - (8- EM 28 -Tg,)

, M2 '
0o AL .- s A A i AT 2752
(5o o x (R-R)) 4[R2 o

(99)
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This expression is evaluated in subroutine CBET at each control point storing the complex
amplitude BET* in the labeled common block BCOND. '

Evaluation of BET* for the example requires the FORTRAN code shown by fig. 42; however,
the second term contained in the brackets of eq. (101) is not included in this computation.
As shown by sec. 4.4, second order derivatives of the velocity potential are not evaluated with
sufficient accuracy for this term to be included in the computations, and it is not included

in any of the examples computed for this report.

As seen in fig. 42, the factor
AR M 2 /2 (102)

is computed by a call to subroutine CMAB, computing the scalar product
N -
(FACTOR)=c * R

where the components of ¢ are contained in COMPD(I) while the components of R
are contained in ZC(I). The system subroutine CEXPI then computes the factor shown by
eq (102). The subroutine CBET next computes the following cross products:

D=6g% (R-R,)

and the subroutine CRZAB computes the scalar products:
&

CFAC=C (04 X fig) and DN =D~ fi;.
Finally, the operation

CSUM = FSVM()*(DN-DFAC),

appearing just before the text concerning the logical variable LSTDY, is equivalent to

CSUM = Uo[ia (3% (R- R,)) - f-¢- (96 X ﬁs)] . (103)

This expression represents the bracketed quantity of eq. (101) when the influence of the steady
component of flow is ignored.
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100

1000

SUBROUTINE CBET
COMMON/ACASE/ALPHA(5) , BETA(5),FSVM(5),FSV(3,5),IACASE NACASE
COMPLEX THETA

COMMON/BCDAT/R(3), THETA(3,5)
COMMON/CNTRO/ZC(3),ZNC{3),ZDC,IPC,1CC,4ZC,JCN KC
COMMON/COMPRS/AMACH,BETAMS,BETAM,SBETAM,ABETMS,ALPC,BETC,
COMPD(3),AROTC(9),AROTCI(9),CZINV(3,3)

COMPLEX BET :
COMMON/BCOND/CU,CL,TU(3),TL(3),DU,DL,BET(5),NCT,NLOPT,NROPT,NBIN
COMMON/FREQDT/OMGBAR,OMEGB,0MG

LOGICAL LSTDY

COMMON/OUTDAT/IFLAG,LSTDY
COMMON/STDY/JC;ICP,PLCL(3),TSC(6),W(4),DDO(2),X1(3)
COMPLEX CFAC,CSUM,CXV,CEXP],CZEXP,D,DN
DIMENSION CXV(3),D(3),PHES(3),IMP(3)

DATA THETA/(0.,0.), (.05236, 0.}, (0., 0.)/

DATA R/30.,0.,0./

CALL CMAB(ZC,COMPD,FACTOR,1,3,1)

CZE XP=CEXPI{FACTOR*OMEGB* (BETAMS-1.))
GA=CU+CL :

GD=.5"{CU-CL)

DO 1000 I=1,NACASE
D{1)=THETA(2,1)*(2C(3)-R(3))-THETA(3,1}) *(ZC(2)-R(2))
D(2)=THETA(3,1)*(ZC(1)-R{1))-THETA(1,1)*(ZC(3)-R(3})
D(3)=THETA(1,1)*(ZC(2)-R{2))-THETA(2,1) *(ZC(1)-R(1))
CXV{1)=THETA(2,1)*ZNC(3)-THETA(3,1)*ZNC(2)
CXV(2)=THETA(3,1)*ZNC(1)-THETA(1,)*ZNC(3)
CXV(3)=THETA(1,1)*ZNC(2)-THETA(2,1)*ZNC(1)

CALL CRZAB(D,ZNC,DN,1,3,1)
DN=DN*CMPLX(0.,0MGBAR)

CALL CRZAB(CXV,COMPD,CFAC,1,3,1)
CSUM=FSVM(1}*(DN-CFAC)

IF(.NOT.LSTDY)GO TO 1000

CALL CSCAL(BETAMS,COMPD,ZNC, TMP)

CALL CMAB(ZNC,TMP,FACTOR,1,3,1)

CALL VADD(TSC(3),TSC(1)/FACTOR,ZNC,TMP,3)

DO 100 J=1,3

PHES(J)=GA*W(J+1)+GD*TMP{J) _

CALL CMAB(PHES,COMPD,FACTOR,1,3,1)
FACTOR=FACTOR*(SETAMS-1.)

CALL VADD(PHES,FACTOR,COMPD,TMP,3)

CALL CRZAB(CXV,TMP,CFAC,1,3,1)
CSUM=CSUM+DN*FACTOR-CFAC

BET(1)=CSUM*CZEXP

RETURN

END

Figure 42. — Example Subroutine CBET
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The logical variable LSTDY is supplied to the program as one of the input parameters in
subroutine INPUT and it is contained in the common block labeled OUTDAT. If this variable
has the value TRUE, then subroutine CBET computes the steady mass flux vector and the
steady disturbance density;it then forms the following result:

CSUM = [ (U 450, -0M2 8 To) - (g % )
2 — —
(2 o) u (i G oo

This operation is expressed as

—_

CSUM = CSUM (¥ ¢ - 6 M2 8 %9, ) - (77X fy)
-M02/0\° €¢S 1(5(5::)( (ﬁ'§0)> ¢ ﬁS (105)

where CSUM on the right is given by eq. (103). Referring to figure 42, the call to subroutine
CSCAL leads to an evaluation of the conormal to the surface; hence, the components of TMP(3)
contain the components of n after the call to CSCAL. The call to CMAB leads to an evaluation
of the scalar product of the surface normal with the surface conormal, i.e.,

(FACTOR) =11 - B . ‘ (106)

The call to VADD leads to an evaluation of -G‘lf’s at the upper side of the surface. Recalling
eq. (74), viz.,

— i l — -
Vu=(V>A+5<nc°+V#) (107)
and noting that
TSC (2 +J)=Vpg for J=1,2,3

while

TSC () =0,
the call to VADD is seen to yield
'rfc oy tVuy ;

further, since

. CA=1.0and CD =0.5,
regardless of whether Morino-type boundary conditions (CU=1.0, CL=-1.0) or mass flux boundary
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condition (CU=1.0, CL=0.0), the “do loop”’ leads to
PHES(J) =V,

evaluated at the upper side of the surface. The next subroutine call to CMAB
evaluates the following scalar product:

. V¢S
and the next operation yields

FACTOR = FACTOR*(BETAMS-1.0)

=8 Tp M, 2. (108)
In turn, the calls to VADD and CRZAB yield
TMP (1) =99 - 8 M2 € -Tg, (109)
CFAC =($¢S - MO2 e 3(}53) . ij ﬁs). (110)
Recalling that v
DN=f (9% (R-R,))ia, | (111)
the final operation, viz.,

CSUM = CSUM+DN*FACTOR - CFAC, (112)

yields an evaluation of eq. (105),

The final operation of subroutine CBET, yields the boundary condition value, viz.,

BET* = CSUM <e-iwe'ﬁ M02/32> : (113)

The preceding example describes a single boundary condition consisting of the rigid body
mode shape: pitch oscillation. Provision is made for up to five boundary condition cases
representing five different mode shapes; thus, for example, there is provision for introducing
five different centers of rotation for the pitch oscillation or for introducing five completely
different mode shapes. One must recognize, however, that the flow Mach number and reduced
frequency are fixed and that these parameters are the same for each boundary condition case. -

Two labeled common blocks, ACASE and BCON, contain the information related to multiple’
cases. ACASE contains the variable NACASE defining the total number of cases to be executed;
it also contains the variable IACASE identifying the case currently being executed and three
scalars and a vector which can be evaluated for each case. BCON contains the boundary condi-’
tion defining parameters associated with any control point which are the coefficients appearing

- ineq. (91) and up to five values for BET* are allowed for each of the two boundary conditions

at a control point.
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5.2.3 UNSTEADY WAKE REPRESENTATION

The unsteady wake representation available within the program provides capability for construc-
ting an elaborate model of the unsteady wake vorticity convection. Wake surfaces are represented
by doublet networks which, as noted in sec. 3.2, can be made to form astream surface of the
steady mean component of flow. The unsteady vorticity can be convected along the mean steady
streamlines on the wake surface with the average mass flux of the mean steady flow.

As shown by eq. (37), viz.,

, Q '

CUANETA a7
p* (€, s)=u*(c,s)e C _

the wake model determines the doublet distribution on an entire wake network in terms

of the doublet strength along the upstream edge of the network. The integral contained

in eq. (37) yields the time period, i.e.,

0
at= J /v, (114)
v

1
62U,
representing the period of time required for unsteady vorticity to be convected from point ¢

on the network edge to the point € interior to the network. Writing eq. (37) in terms of the
time delay, viz.,

u* R ,s)y=u*(c,s) [cos (wat) —isin (wAt)] ,

the doublet distribution is seen to be a harmonic function of the time period. Since the
steady disturbance velocity is at least an order of magnitude less than the freestream velocity,
the factor wg is nearly unity (cf. the discussion preceding eq. (37) in sec. 3.1); hence, the
unsteady wake vorticity varies nearly as a harmonic function of the x compressibility
system coordinate, i.e.,

u* (x,5) = ¥ (e, 9) [oos (@ (x - ) = isin (@ (x - )] (115)

where

x-c=UoAt,

The doublet strength distribution on the wake is represented in terms of doublet panel
distributions. As noted in sec. 3.4, a doublet panel distribution is a quadratic function

of the local panel coordinates, c.f, eq. (50), and the quadratic is determined by its least
squares fit to the values of the actual doublet distribution at the evaluation points shown

in fig. 12. As shown above, at a wake surface the actual doublet distribution is very nearly

a harmonic function of the downstream distance, see fig. 43. A quadratic can approximate a
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harmonic function to within three significant figures over a domain which is one sixteenth
of the wave length of the harmonic function ; therefore, the length of a wake panel in the

streamwise direction should not be greater than one sixteenth of (27/&) in regions where
that level of accuracy is required.

The wake networks are defined in subroutine INPUT and they are paneled like any other doublet
network defining the grid points of the panel corner points, sec. 1.1, ref. 2. Control points are
defined and boundary conditions are specified only along the upstream edge of a wake network,
sec. 1.3.2 of ref. 2. The time period contained in eq. (37), for evaluation the downstream wake

doublet strength, is introduced at each doublet smgularlty parameter pomt in subroutine DASPL.
Eq. (37) is expressed as

. | ut (1) = wr ) i (3 /62)TDLY (0 (116)
: where
. TOLY = [ dt/w, (117)
o)
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where 2(J) is the wake streamline coordinate of the network edge singularity parameter upstream

of the Ith singularity parameter on the wake, the latter, having the wake streamline coordinate
L), fig 44.

Lifting surface -
/- Wake network

]
]
]
AN
W

. |
I

/—Wake streamline coordinate

' . . Ith singularity paramete
Jth singularity parameter g yp r

Figure 44. — Singularity Parameters Along Wake Streamline Coordinates

In its present form, subroutine DASPL generates TDLY(I) as follows:
TDLY (1) =& - (R(D) - R()) (118)

where C is the unit vector in the compressibility direction, eq. (88), while ﬁ(l) and _ﬁ(J ) are
the position vectors, respectively, of the downstream and upstream singularity parameters.
This expression approximates the wake vorticity convection time period, ignoring the effect
of the average mean steady disturbance mass flux vector. This approximation is used because

the analysis capability of the steady flow panel method does not currently provide for an
evaluation of eq. (108).

5.3 OUTPUT DATA DESCRIPTION

With the exception of pressure data, the output data of the unsteady flow panel method is a subset
of the steady flow panel method as listed in Table 3-1 of ref, 2. Of course, values of all unsteady flow

parameters are expressed as the real and imaginary parts of their complex amplitudes. The following
pressure coefficients are output.




where

and

Linear, Unsteady Disturbance Pressure

Upper Surface Lower Surface Difference
Real CPLINU CPLINL CPLIND
Imaginary CPLNUI CPLNLI CPLNDI
C *—_—_i (ic'&¢*+é\°'€¢*)
p U )
(o)
Quadratic, Unsteady Disturbance Pressure -
Upper Surface Lower Surface Difference
Real CP2NDU CP2NDL CP2NDD
Imaginary CP2D UI CP2DLI CP2DD!
C. % = ..2_. o # W =k
" =g (1@058% 0+ (W /0o U ) 5
o
M 2
0] A -
Py po<1-—— C°V¢S>
(o]
Cerl A e _ PARA e
WS—pO(UO c +ve . -M,“C v¢s)
Linear, Total Disturbance Pressure
Upper Surface Lower Surface Difference
Real CPLNUT CPLNLT CPLNDT
Imaginary CPLUTI CPLLTI CPLDTI
C . *=(C_ % 2 A
p" =Cp (119) ~ IT V¢S
(6]
where Cp* (119) denotes the value of Cp* computed from eq. (119)
Quadratic, Total Disturbance Pressure
Upper Surface Lower Surface Difference
Real CP2DUT CP2DLT CP2DDT
Imaginary CP2UTI CP2LTI CP2DT!

(119)

(120)

(17)

(10)

(121)
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- 1
Cp* = Cp.* (120)- 60

A o
<2C’V¢S +6'

where

and Cp* (120) denotes the value of Cp* computed fronm eq. (120)

(122)
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6.0 CONCLUSIONS

An advanced panel method for solving subsonic unsteady potential flow boundary value prob-
lems has been presented.. The method is shown to be applicable to small disturbance flows when
the flow can be described with adequate accuracy by a solution to the linear, first order
approximation to the unsteady potential flow equation. The method is also shown to be
applicable to arbitrary configurations.

The principal feature of the method which required validation is a kernel function approximation.
Solutions to the unsteady flow equation are related to solutions to Helmholtz’s equation

by a coordinate transformation and a change of dependent variable. Using this relationship,

a solution to an unsteady flow problem is expressed in terms of an integral equation derived

from Helmholtz’s theorem. The panel method is based on a reduction of this integral

equation to a system of linear, complex algebraic equations and the reduction is accomplished.

by a typical panel method approximation leading to a panel by panel evaluation of the integral
expression appearing in the integral equation. The kernel function approximation is required

for the closed form evaluation of the integrals.

The validity of the kernel function approximation has been examined both theoretically and
empirically. The theoretical examination consists of a direct error analysis. The empirical
examination consists of comparisons of computed panel method results with results from
alternative computational methods. The alternative methods do not contain kernel function
approximations of the same nature as that of the panel method. The comparisons include
solutions to unsteady flow problems of thin, planar wings and for T-tails; they demonstrate
that the panel method solution tends to converge to the correct solution as the number of
panels is increased.

In the analysis of unsteady flow on thin, planar wings the panel method yields aerodynamic
forces which converge nearly monotonically with increasing panel density. Monotonic con-
vergence for a sequence of thin wing solutions tended to occur only for a particular set of
panel density distributions. In the case of the more complex T-tail, however, the panel method
tended to converge with increased panel density but convergence was not always monotonic,
This condition is thought to result from the particular choice of panel density distribution.
Finding the pane! density distribution leading to monotonic convergence may not be plausible
except for very simple configurations undergoing very simple modes of motion.

The validity of the panel method for computing unsteady flow about bodies of finite
thickness was tested by an indirect comparison. The unsteady flow was evaluated about a
wing having a finite (but small) thickness (viz., 4.8 percent) with the wing oscillating in pitch.
The unsteady flow was evaluated for the case of thick wing theory with the panels located on
the actual wing surface and with the flow boundary conditions satisfied at the actual wing
surface. The unsteady flow was evaluated a second time but to provide a comparison case
using thin wing theory. In thin wing theory the panels lie on a flat mean wing surface

89




and the flow boundary conditions at the actual surface are satisfied only to a first order
approximation; but, since accurate alternate methods are available for its evaluation, thin
wing theory provides a reliable comparison case. The lifting pressure distributions for

these two cases are compared and found to be in very close agreement. This close agreement
shows that the panel method is valid for bodies of finite thickness.

Application of the method to complex configurations was demonstrated by computing the
unsteady flow about a wing-body-tail-nacelle configuration undergoing pitch oscillation.
Results from this computation are compared with equivalent results computed using the
well known doublet-lattice method. The comparisons are in sufficient agreement to indicate
validity of the panel method and the capability to analyze very complicated geometries.
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APPENDIX A -

GENERAL THEORY OF FLOW

A.1 INTRODUCTION

This appendix contains a derivation of the general theory of compressible, inviscid, nonconducting,
irrotational, isentropic flow expressed as a boundary value problem. The derivation leads to a
single, nonlinear partial differential equation governing the flow; and it leads to the analytical
expressions for boundary conditions appropriate to solid, aerodynamic surfaces and to wake
surfaces. The derivation proceeds from results appearing in ref. 14 and its purpose is to

provide a convenient reference for the development of the approximate theory of flow appearing
in app. B.

A.2 FLOW EQUATION

The derived governing equation (called, as usual, the flow equation) is a single equation in

terms of a single flow parameter, viz., the velocity potential, but it is derived here from a

system of six equations in terms of six variables: the components of velocity, pressure, density,
and internal energy. The system of six equations, taken as the primitive statement of the

theory, represents the conservation laws (in their forms appropriate to an inviscid, nonconducting
fluid undergoing an isentropic process) along with the constitutive relation for the fluid, the
latter being an equation relating internal energy to the pressure (a mechanical variable) and the
density (a deformation variable). The flow equation is derived by a process of reduction wherein
the primitive system of equations are combined so as to eliminate the explicit appearance

of the original variables. In the reduction process two additional variables are introduced by

two additional equations which express the constraints imposed to obtain irrotational and
isentropic flow.

In the statement of the primitive system of equations and in the derivation involving those
equations, the laws of conservation of mass, momentum, and energy are stated independently
of one another, for example, the law of conservation of momentum is expressed without
asserting that mass is conserved. This independence is retained because of the particular
requirements of the development in app. B which leads to an approximate theory. In the
development contained in app. B approximations are postulated regarding the conservation
laws. The interdependence of those approximations is examined using the equations of app. A;
therefore, the laws of conservation are initially stated (cf., egs. (A.2a) and (A.3a)) as inde-
pendent relations.

The primitive system of equations is as follows:
e  Continuity equation (eq. 5.4), ref. 14—
0p -~ =
— +tv: (pQ)=0

at (A.1)
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This equation follows from the law of conservation of mass and relates the dilitation
rate of the fluid to its rate of change of mass density as

v V = _ .
¢ ot (A.1a)
where
d_o +T .2
=2 v
dt ot €
Euler’s equations of motion eq. (6.9), ref. 14—
Ve +L3p=0 | (A.2)
dt  p ' )
These equations follow from the law of conservatibn of linear momentum when
mass is conserved causing the law of conservation of linear momentum, viz.,
dv
Vi—+pvV ])+p— +Tp=0, 2
to reduce to eq. (A.2).
Energy equation egs. (34.2) and (34.3), ref. 14—
de - -
—+pve V. =0. ‘ (A3
Par TPV Ve )

This equation follows from the law of conservation of energy when eqgs. (A.1) and (A.2)
are satisfied causing the law of conservation of energy, viz.,

(e+§VC-VC><a +pv‘Vc>.+ch-(—5t— +;—Vp +pd—t—+pv-Vc=0, (A.3a)

to reduce to eq. (A.3).

Constitutive relation —

e_1 4 / A
i dt(p;o)- (A.4)

This equation is derived from the perfect gas relations (sec. 31, ref. 14) viz.,
de dT
—_— = C

a’ A5
dt YV dt (A-3)




and

p=pRT, ' (A.6)
where
R=Cp-C, and y=Cp /Cy.

Egs.(A.1), (A.2), (A.3), and (A.4) are a determmate system of six equatlons in terms of
six flow parameters, namely,

p,p,e,V,.

The specific internal energy e is eliminated as an explicit dependent variable by combining
egs. (A.3) and (A.4) to obtain '

1 d
—_ = =- V
@ (r/p) (p/p)¥

Introducing eq. (A.1a) to eliminate the dilitation rate, after some manipulation, the pressure
and density are found to be related as follows:

dp _ dp | A7
'3 v (p /) (A.7)

This result is integrated, following the motion of a specific but arbitrarily chosen fluid
particle, to find the well known isentropic pressure-density relation, viz.,

(p/py) = (p/p0)7 . (A.8)

Equations (A.1), (A.2) and (A.8) form a determinate system of five equations in terms of five
flow parameters, namely,

PP,V

For the case of irrotational flow the system of equations governing the flow may be combined
to eliminate explicit appearance of the velocity by introducing a new flow parameter, namely,
the velocity potential. Letting the flow be a disturbance from a uniform freestream and
introducing the kinematical constraint of irrotationality, viz., v X V =0, the flow velocity
may be expressed in terms of a potential as follows:

V. =U,+99. (A.9)
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Also, as shown by eqs. (3.5) and (17.1), ref. 14, the fluid particle acceleratlon may be expressed as

dV N
':ijt— =VytwxV,
where
ZSE-K;XVC and \l/Ea—(b'i'-l‘V Y% ;
ot 2 ¢ ¢

thus, for irrotational flow in which & vanishes, the acceleration terms of Euler’s equations of -
motion, viz., eq. (A.2), can be expressed as the gradient of a scalar:

{3 1= o ) 1
F|l—+=V_.-V_ }J+—-9p=0. (A.10)
v (at 2 ¢ Ve VP

Noting, further, that eq. (A.8) supplies a unique relation between pressure and density

@i.e., the flow is barotropic), the following relation follows from the rule for differentiating

a definite integral taken along an arbitrary path in space from a point where the pressure
- and density are uniform:

POy P(X,Y,2,) | .
7 — = 6 _— d + —_— = .Y, ’t ——
pf p(p) J (p(p)> P otz vROYLD - ( o) 7o p P
o] » ‘

Po

where ¥p(p) vanishes because the dependence of pressure on density is independent of
position and €p0 vanishes because the lower limit of the integral is assumed to be at
a spatial point where the pressure is uniform. Using this result, Euler’s equations of
motion are expressed entirely as the gradient of a scalar quantity:

= = P dp
=V, V_ + — 1=

st T2V Vet S )70
Po

Integrating this expression over an arbitrary path from a point in the undisturbed fluid,
Bernoulli’s integral to Euler’s equations of motion is found by introducing eq. (A.9) and
choosing the potential ¢ to be zero in the undisturbed fluld The result appears as
follows:

p
_+_v¢.v¢+/‘__=0‘ (A.11)
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where

Further, substituting eq. (A.9) into the continuity equation yields the following expression
in which the velocity components are eliminated as explicit variables:

. 24-.Ld0 (A.12)
vee ot :
. Finally, egs. (A.8), (A.11), and (A.12) provide a determinate system of three equations
in terms of three flow variables, namely,
p b p 3¢ M

The pressure and density are eliminated as explicit variables by introducing the speed of
sound as a new variable (c.f. sec. 35, ref. 14) viz.,

2.9 (A.13)
dp

Combining eq. (A.7) with eq. (A. 13) the speed of sound is found to be given by the
following ratio:
Z=yplp. (A.14)

Since eq. (A.14) is a property of the fluid, the differential with respect to time following
a fluid particle can be expressed as

d ¢ 2y _ 1 dp
dt(c ) =(v-1) ik

and, on integrating, following the motion of a specific but arbitrarily chosen particle,
the speed of sound is evaluated as follows:

P g
- — 2_ 2: - p
+7 (p VC)=O ¢“- oo =(r-1) p(_)f re

where ¢, and P, appear as a result of having chosen a path of integration beginning at
~ an undisturbed point in the flow. This result is combined with eq. (A.11) to obtain the
speed of sound in terms. of the velocity potential, viz.,

D 1
(% s L) w19
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Pressure and density are eliminated by using eq. (A.13) to express the continuity equation
(as given by eq. (A.12)) in terms of the speed of sound. The result is as follows:

5 1
Vep=m—
2

Differentiating Bernoulli’s integral (as given by eq. (A.11)) and combining the result with

this form of the continuity equation, a determinate system of two equations, consisting
of eq. (A.15) and

1 d/Dp 1_ _‘>'

2 — .

Vép=— — |\ t— v v,
_¢ C2dt<Dt 2 Ve

is found in terms of two flow parameters, namely,

¢ and c.

The desired result, viz., a single equation in terms of a single flow parameter, is obtained

by eliminating the speed of sound between eq. (A.15) and eq. (A.16) to find the following
equation in terms of the disturbance velocity potential:

: D 1. L \|-1 d/D N
v2¢=|:coz—(7-1)<£+§v¢°v¢>J a(~£+~;—v¢°v¢>

this equation is termed the “flow equation.”

The fluid pressure is evaluated in terms of the velocity potential by substituting the
isentropic pressure-density relation (i.e., eq. (A.7)) into Bernoulli’s integral (i.e., eq. (A.11))
and carrying out the indicated integration. When the result is expressed in terms of a
pressure coefficient, it appears as follows:

1
Cp= (p - po)/(E Po U02>

(A.17)




"A.3 BOUNDARY CONDITIONS

The equations of the preceding section govern the kinematics and dynamics of the fluid
flow; as such, they represent conditions which must be satisfied at every point of the flow
field. This section introduces additional conditions which must be satisfied on surfaces
which form the boundaries of the flow field. :

The bounding surfaces are of three types. They consist of the aerodynamic surface of the
aircraft, the surfaces of its wake, and a far-field surface which completely surrounds the
aerodynamic surface, but which is at a large distance from it. The aerodynamic surface has
the characteristics of the surface of a solid body; therefore, fluid particles do not penetrate
this surface. In addition, the aerodynamic force on an aircraft is the result of the fluid
pressure acting on the aerodynamic surface. The wake has two surfaces which are adjacent
to one another and are separated by an infinitesimal distance. These wake surfaces form
two sides of a vortex sheet; fluid particles do not pass through them and the component
of velocity tangent to them is discontinuous. Disturbances to the fluid flow are required
to propagate toward the far-field surface and are required to become vanishingly small
there. '

A.4 AERODYNAMIC SURFACE

Let S denote the aerodynamic surface of the aircraft at the present instant of time, and
denote the volume enclosed by this surface as V. In the.analytical representation of the
flow problem the fluid is continuous and fills the entire space; hence, the surface S
encloses the mass of fluid, M, computed as follows:

M={/ffpdv.

In the case of an arbitrary motion of S, the mass M may vary with time; and, assuming

mass is conserved, this variation implies that there is motion of fluid through S in violation

of the aerodynamic surface boundary condition. Spatial points of the surface S have a velocity
denoted as T, see sec. 3.1; hence, the time rate of change of the mass contained in V is given by

dM _ Qim. fff( t+At) d +/ t+ADALT - fi d [[f( £) dv
at A0 |ag S YRt TAD dy ﬁ’("yz YALT - fids -f [ Jo (x,v.2

fff" dV*fﬁ’u n ds (A-19)

where S’ and V' are spatially fixed but coincident with thé moving surface and volume (S and V)
at the instant of time t, see fig. 45.
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Figure 45. — Aerodynamic Surface Variation in Time

Since mass is conserved, the continuity equaﬁon, i.e., eq. (A.1), isintroduced and the volume
integral contained in eq. (A.19) is as follows: :

fff g{dv=—fff'\7~(pvc)dv.
\' V'

Applying the divergence theorem leads to

fff—g—i-)-*dv=-ffpvc°ﬁds
\Y s

so that on substituting this expression into eq. (A.19), the time rate of change of mass is

found as follows:
i ICREAALT
S

’

This equation shows that the time rate of change of enclosed mass is evaluated by the
surface integral sum of

d(%—)=(pﬁ'ﬁ—p\7€'ﬁ) ds .

If there is to be no exchange of fluid from V, interior to S, with the fluid exterior to S,
then this differential quantity must vanish at every point of S; therefore, the aerodynamic
surface boundary condition is given by

pu =¥ b

where




and

b

=l
il
°©
<

(A.22).

is the fluid mass-flux vector.

In the case of steady flow, wherein u, =0, the boundary condition is found by
integrating the steady flow continuity equation over 'V to find

fffv Mdv=0

Applying the divergence theorem, the aerodynamic surface boundary condition is found
to be

M-fi=0on§S. S - (A23)
The aerodynamic force acting on the surface S, see fig. 46, is found as
Fo=-ffpfds. | (A.24)
' S

Let S be a control surface, moving with the fluid and surrounding S, and let V be the volume
of fluid between S and S. The total force acting on this volume of fluid must vanish; hence,

e ’ d —
I | B Jf otas+— Jffo¥, av=0 (A.25)
S dt
c S v
Applying the transport theorem (ref. 14, sec. 4), the volume integral becomes

(%fffp\-;cdv=—z—t fffpvcdv+ {fpvcvc'ﬁds+ .Sf.,[pvc{;c'ﬁds
\Y \% c

where S'C is chosen to be a spatially fixed surface coinciding with S at time t. In steady flow
the first two terms on the right vanish (the first by definition and the second by virtue of
eq. (A.23)); hence,

% fffpVCdv=ffpVCVC~ﬁds
\Y S¢ :

Substituting this result and eq. (A.24) into eq. (A.25), the force acting on S is found in
terms of an integral over the spatially fixed control surface, S'C , as follows:

JI (pV V- i+ pi)as. (A.26)

S¢
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Figure 46. — Control Surface for Computing Aerodynamic Force

Eq. (A.206) also follows directly from Euler’s equations of motion and the continuity
equation. In steady flow these expressions are given by

MYV + Tp=0 (A.27)
and
$.M=0; ’ (A.28)

thus, eq. (A.27) can be written as follows:
MV,)+9p=0. (A.29)

Integrating over the volume V and applying the divergence theorem, eq. (A.29) leads to

ff[(vc M) - ﬁ+pﬁ]ds=0.

S+S

Introducing the steady aerodynamic surface condition shown by eq. (A.23) and the definition
shown by eq. (A.24), the aerodynamic force on S is found again as

1_55= ff(pvcvc'ﬁ+pﬁ)ds.
S¢

In steady flow, therefore, if the mass flux vector, velocity vector, and pressure satisfy eqs.
(A.27) and (A.28), then eqs. (A.23) and (A.26) are valid expressions for the aerodynamic
surface conditions.

The above results are well known and appear in most standard texts on fluid mechanics.
They are developed here to provide a special emphasis for app. B, where approximations

are introduced. The approximations are imposed on the relationships governing the pressure
and density in the flow. In steady flow they lead to an approximate mass-flux vector which
satisfies eqs. (A.28) and (A.29) exactly even though mass and momentum are not conserved
exactly. As a result, the surface conditions shown by egs. (A.23) and (A.26) are taken to

be valid in the approximate theory of flow.
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A5 WAKE SURFACE

The wake surface is a vortex sheet containing the vorticity shed from the trailing edge of a
lifting surface; and as such, it is the idealization of the real flow which was originally
introduced by Prandtl (ref. 15 sec. 19.1). The boundary layers at either side of a lifting
surface separate from the surface and form a thin wake region of viscous flow trailing
downstream. Like the thickness of the boundary layers, the thickness of the thin wake
region of viscous flow tends to zero in the limit of zero viscosity. As noted by sec. 2.7,
ref. 7, there is also a jump in potential across the wake surface along its upstream edge
where it is attached to the lifting surface, and this jump in potential is equal to the circu-
lation on the lifting surface. Since, in general, there can be both a spanwise and timewise
variation in circulation on the lifting surface, there can be a gradient in the jump in potential
along the wake surface. This gradient represents the vorticity shed from the lifting surface
into the wake surface.

The wake is a free vortex sheet except along its upstream edge where it is attached to the
lifting surface;also, the wake surface does not propagate through the fluid with at least
the speed of sound. It follows from these two conditions (ref. 14, sec. F) that the fluid
pressure is continuous across the wake surface, i.e.,

[pl ;0 on W, (A.30)

Additionally, in view of the discontinuity in potential across the wake, there may be a
discontinuity in fluid velocity across the wake, viz.,

[[-\-;C]]¢00nw. (A31)

Egs. (A.30) and (A.31) cause the wake to be a particular type of surface of discontinuity.
Formal procedures for analyzing the flow in the neighborhood of a surface of discontinuity -
are described by ref. 16, chapter C, and those procedures make use of the geometry shown

by fig. 47. In fig. 47 the quantity S denotes a material surface surrounding the material
volume V. This volume of fluid is divided into two parts, vt and V-, by the surface

s and this dividing surface need not be a material surface. The volume vt is surrounded by the
surface ST+s and the volume V- is surrounded by the surface S™+s. Finally, the speed of
surface displacement along the surface normal is given by the following expression:

g+

Figure 47. — Surface of Discontinuity
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3 A
Tt.f =
u, on s
= -
Vc'nonS
—_— A
u-+n =
u, on s

As shown by ref. 14, eq. (6.1), momentum is conserved interior fo the surface S if
d -
m Iffp V. dv=-IIpﬁds.
\% S

Introducing the transport theorem (ref. 14, eq. (4.1)), the volume integral can be expressed
as follows:

fffpv av = m[ QAN .-a(;,vc)ar,,vc-v*.vc]dv;

and, by applying the divergence theorem, it follows that

o5 =S oy 5.9, 0
\% \ S

Introducing the volume subdivision, these expressions yield

[[fa(va) +f./_f%t(’j;£)dv+ .{fpVCVC f ds

vt o

+ /fpvcvc*ﬁds- ff(ovc)+unds+ ff(pvc)—unds
S” S s

=—ffpﬁds— f pds;
st S”
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hence, letting st and §- approach s and noting that Vvt and V- vanish in the limit,

while noting the arbitrariness in the choice of the integral over s, this equation becomes -

[[p VC(VC"r\l—un)]]+ﬂp]] ﬁ\?O.

A development identical to that above, but applied to conservation of mass, leads to the
Stokes-Christoffel condition (ref. 16, eq. 189.14), viz.,

| ’ [[p (Vc°ﬁ-\un):|]=0.

This result may be used in conjunction with eq. (A.32) to obtain
[p) A-pf Ut [V ]=0

where U is the speed of propagation of s:

In_trbducing the requirement that the pressure be continuous across the wake,
viz., €q. (A.30), it follows from eq. (A.34) that

ot Ut I[VC]]=O on W,

From egs. (A.34) and (A.30) it follows that only the tangential component of velocity
can be discontinuous across the wake surface, viz.,

I[VC . ﬁ]]= 0 onW
and

“:VC’?]]¢O on W

where 1 isan arbitrary unit vector tangent to the wake surface. These equations also show

that the discontinuity in tangential component of flow must vanish unless the speed of
propagation vanishes at either side of the wake surface; hence,

-~ \t+
piun=(pVC)—-ﬁ on W,

(A.£32)

(A.33)

(A.34)

(A.35)

Eq. (A.35) is an analytical statement of the requirement which must be satisfied for the wake

surface to be a material surface.
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Let Bernoulli’s integral, i.e., eq. (A.11), be evaluated at either side of the wake surface and
form the difference of the two resulting integrals to obtain

pt p [p]

ﬂgﬂl+U o]+t S50 - v¢]]——f dp/p+f dp/p———f dp/p

where p"r and p~ denote the pressure at either side of the wake surface. As a consequence
of eq. (A.30), it follows that

“a¢]]+U [ ¢l +15[[3¢ Sel=0:

ot
and, recognizing that
(V,+¥,-0,-0,)=0, - s, .o
c ¢” Yo o) = Uo v¢+5v<b Vo,

Bernoulli’s integral is found to lead to

) s o
[[&—]]+ 5[[\/0 +V.]=0 on w. (A.36)

This condition must be satisfied if the wake surface is to be, 51mu1taneously, a material
surface and a surface of velocity discontinuity.

In the following the wake boundary condition shown by eq. (A.36) is developed into a partial
differential equation governing the value of [¢] on the wake surface. This development
follows a consideration of the kinematics of the fluid flow at the wake. To this end con-
sider the two positions of the wake surface shown by fig. 48. One position is that of the wake
surface at time t; the other is its position a short interval of time, At, later. The two
positions are denoted W(t) and W(t+ At).

Ol

\\

~ Wit +at)
n .

wit)
Figure 48. — Wake Surface Motion
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The unit vector, i, normal to W(t) at Q is directed at a surface point Q' of W (t + At).
Let Q have the compressibility system coordinates (x,y,z) and let the compressibility
system coordinates of Q" be denoted as (x + Ax, y + Ay, z + Az). The quantities
(Ax,Ay,Az) represent the coordinate differences of the two surface points.

Let A[¢] denote the difference in the value of [¢] at points Q and Q' so that

alg]l  _ 91 -[9]
At _ At

_ (@) - (o7 -4)
At

o' T-0" ¢ -9
At At

= [ag/at]

where the prime denotes evaluation at the point Q' while the absence of the prime denotes
evaluation at the surface point Q. Taking the limit as At tends to zero leads to the result

g[tg]lzﬂ%ﬂ] | . | | (A.37)

where the operator & / 8t denotes the time rate of change apparent to an observer moving
with the component of velecity of the surface along its normal.

With ¢ expressed as a function of the compressibility coordinates, the change in the
value of ¢ during the interval of time At is given by

s

Ag =At unﬁ-€7‘¢+—g-‘tém-

hence, dividing by At and taking the limit as At tends to zero results in .

T u,neve Y (A.38)

Evaiuating eq. (A.38) at either side of the wake surface and forming the difference of the
two expressions yields

[l [2]
Introducing eq. (A.37) into eq. (A.39) leads to

6 A [ 0
soI01=uy fi ool + [[f]l (A.40)
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This result is called the kinematical condition of compatibility (ref. 16) and this condition
must be satisfied if the discontinuity is to persist in time.

Noting that

f-[vel =[8-7,] | (A41)

the requirement that the normal component of velocity be continuous
leads to

8- [Bel=0
and the kinematical condition of compatibility given by eq. (A.40) reduces to

09

tacl]

on the wake surface. The wake boundary condition given by eq. (A.36), therefore, can
be expressed as '

-§-H¢]]+-l—|[i7-i7]]—o W A43
5t FLVe Ve =0 on W. (A43)

The objective, here, is to reduce the wake boundary condition to a partial differential
equation in terms of the discontinuity in the velocity potential. The kinematical condition
of compatibility shown by eq. (A.42) has accomplished this objective for the first term.
The second term is expressed in the desired form by expressing I[VC ]] in terms of the
average flow velocity at the wake surface, viz.,

— _1 ...\+ -
V=5 (Ve +Vo). (A.44)

Using this definition, deviation velocities at the wake may be defined as

qt=V. -V and 7=V -V (A.45)
with the result that
at=-7" : (A.46)

The deviation velocities contain the wake velocity discontinuity; hence, the avefage flow
velocity is continuous at the wake, i.e.,

[[Vm]] =0 on W; (A.47)
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and it is tangent to the wake surface, i.e.,

Vm'ﬁ=0 on W,

Consider the second term in the wake boundary condition as shdwn by eq. (A.43) and
apply the above conditions. Since

I]:ch]] = VcJr ’ Vc+ Ve Ve on W,
introducing eq. (A.44) leads to
v vtV s at gt gty 2o oV Q-9 9

and, because eq. (A.45) leads to

it follows that

Further, since

then
[a] = [9].
It, therefore, follows that

[v.2]=29,, -l :

and, on applying Hadamard’s lemma given by pp. 492 and 493, ref. 16, this result
reduces to

[ve]=2V, %ol |

(A.49)

(A.50)
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Finally, combining this result with eq. (A.43), the wake surface boundary condition is-
found as ' ‘ : '

6 -~ s _
aﬂ¢]]+vn]'v[[¢]]—00nW- (AS1)

This is the desired result: a partial differential equation governing [¢] on W.

The wake surface is shown by eq. (A.51) to be a surface of convection on which the
quantity [¢] varies in time as a result of [¢] being convected downstream with the
mean flow velocity tangent to the wake surface, W. Given the wake location, the

average flow velocity, and the value of [[¢] along the upstream edge of the wake, eq.
(A.51) can be integrated to find the value of [¢] atany point on the surface. The upstream
edge of the wake surface is the trailing edge of a lifting surface. The spanwise value of

l¢] along this edge is known to be equal to the spanwise value of the circulation on the
lifting surface (ref. 7, eq. 7-39). Eq. (A.51), therefore, does not represent an inde-

pendent boundary condition. The flow conditions on the wake are completely determined
by eq. (A.51) in conjunction with the flow equation and the independent boundary condi-
tions on the aerodynamic surface. ‘
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APPENDIX B
APPROXIMATE LINEAR THEORY OF FLOW
B.l INTRODUCTION
An approximate', linear theory of flow is formulated in this appendix starting from the funda-
mental postulate that all nonlinear terms of the flow equation,viz.,eq.(A.17), are sufficiently"

small as to be negligible, This postulate reduces the flow equation to the following linear
approximation:

, 1 D%
v = — 3.
co2 th (B.1)
Recall that the flow equation (for the case of irrotational flow) is equivalent to the
following system of six equations (cf. app. A):
continuity,
-5.(pv)=_?L°. (A.1a)
¢ ot '
conservation of linear momentum,
- ap S - dVC _ _ A 2a
Ve 9 (V)0 T +Fp - 0 e
conservation of energy,
dv
frts ) o (1)
de — =
+p— +pv-V. =0, (A.33)
o at p c
and the ideal gas relation,
L. L2
dt y-1dt P (A7)
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Since the fundamental postulate is imposed on the exact flow equation, the approximations

to each of the equations in this equivalent system of six equations are indeterminate;

also, since both the aerodynamic surface and wake surface boundary conditions follow

from the requirements of the laws of conservation of mass and linear momentum at those surfaces
(cf. sec. A.4 and A.5), the approximate flow theory cannot be derived without choosing
additional postulates which determine the approximations to those two conservation laws.f

The additional postulates are chosen assuming the unsteady flow to have a steady mean
component so that the flow may be viewed as an unsteady small disturbance superimposed
on a steady small disturbance flow. The additional postulates are chosen such that the
steady mean component of the flow satisfies the boundary value problem of the linear,
steady flow theory of ref. 1, summarized in sec. B.2. As shown in sec. B.2, the additional
postulates are stated as approximations to two relations: (1) the relationship between mass
density and velocity potential, viz.,

p =p(d),

and (2) the relationship between pressure and velocity potential, viz.,
p=p(9).

These approximate relations are chosen such that mass and linear momentum are conserved
when there is no unsteady component of flow.

Consistent with these objectives, the unsteady flow is described by a velocity potential such
that the unsteady flow velocity is given by

V.=T, +$‘(¢S+¢u) : (B.2)

where U, is the velocity of the uniform freestream, ¢, is the velocity potential of the
unsteady small disturbance component of flow, and ¢g is the velocity potential of the
steady small disturbance component of flow.

B.2 MEAN, STEADY COMPONENT OF FLOW

For the steady mean component of flow to be predicted by the theory of ref. 1 it must satisfy
the following boundary value problem derived in sec. 3 of ref. 1:

Governing differential equation —

v- W‘S =0 (B.3)

where )
WS=pO(UO+ Ws) (‘B.Jf).

T This is a significant point and should be recognized as such. The additional postulates
lead to the so-called “mass flux boundary conditions” and the use of the second order
approximation to Bernoulli’s integral to Euler’s equations of motion.
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. and ‘
-~ = 2 /.\.
Wy = Vo -MoT(d), T
whence, eq. (B.3) becomes
2 M 2 =
veg-M, (¢S)XX 0.

Aerodynamic surface boundary condition — (see eq. (A.23))

WS *ng=0 Qn SS ' | (B.6)

where, as shown by fig. 5, S¢ denotes the steady mean location of the aerodynamic surface
and ﬁs is a unit vector normal to Se-

Wake surface boundary condition — (see egs. (A.30) and (A.35))

W, - ng=0 and [Cps ]=0 on W, | (B.7)
where, as shown by fig. 5, Wg denotes the steady mean location of the wake surface
and
1 2
> Po Uy
1 [ —
=703 Yo, T " 9 Mg ((65) )] B.8
5.7 Yo, 7 969 9 M7 (0)) ®8)

Far field boundary condition —

6, >0 asR > oo | (B.9)

where R is the position of a field point relative to an arbitrarily chosen point on S

As shown by ref, 1, when ¢ satisfies egs. (B.5), (B.6), (B.8), and (B.9), the steady mean flow
has the following characteristics:

(1) Mass is conserved because the continuity equation, (A. la), is satistied.

(2) Conservation of linear momentum, eq. (A.2a), reduces to Euler’s equations of
motion, viz.,

W, - 9(T,+ 965) +Ipg=0, (B.10)

because the continuity equation is satisfied.
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(3) Euler’s equations of motion are satisfied when the pressure coefficient is
approximated by eq. (B.8); and, therefore, Euler’s momentum theorem holds, cf.
ref, 14,

(4) A solution to the linear flow equation (viz. eq. (B.5)) in the __goméin A" Surrounded
by the closed surface X is uniquely determined if ¢5and Wy are uniquely
specified on 2. ’

‘Several additional characteristics of the flow are important to the purpose of the following
section, i.e., the derivation of the unsteady flow theory. One of these characteristics is the
approximation to the relation between mass density and velocity potential. That approxi-

mation is derived by expressing the continuity equation as -
I I
v-VC—-—;)— Ve Vg (B.11)

S

This expression shows (cf. ref. 14, sec. 3 and 4) that the steady dilitation rate is proportional
to the rate of convection of the fluid mass density. The steady dilitation rate is also evaluated
by writing the flow equation (i.e., eq. (B.4)) as follows: '

T.V =M. 2
veV.,=My (qss)xx.

These two expressions for dilitation rate combine to express the rate of mass density con-
vection as follows:

o
— V., Tpg ¥-My2 : .
pe Ve VP o (¢S)xx (B.12)

This result can be expressed in terms of the disturbance mass density, viz.,
pg =Pg=Pg s (B.13)
and that expression appears as

_M02 (¢s)xxzp“1(;(l -psf/p0+ ...)(ﬁo+ -$¢S) . sps'

where the series is the result of a binomial expansion. The order of magnitude of the
disturbance mass density is evaluated from this expression to find

pg /oo~ 0(¢S/UO); | N

thus, to a first order approximation

1 -
2 ~ . .
-M, (qbs)xx o Uyt Vg (B.14)
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Writing eq. (B.14) as
(o500 2 0. -
Pt Py T ~0,
\Ps*p0 5 (%), ),

integrating with respect to x, and evaluating the constant of integration in the freestream,
the desired approximation to the relation between the flow mass density and velocity is
found to be as follows:

M,,2 |
oy~ P, I'T(,(‘bs)x . (B.15)

Substituting this approximation into the expression for mass flux, viz.,
W= pg (Uy+ 99g),

and neglecting terms of second order in ¢4 leads to the approximate mass flux vector
shown by eq. (B.4); hence, eq. (B.15) is consistent with the theory of ref. 1.

The derivation of the unsteady flow theory also requires an evaluation of the order of
magnitude of the disturbance pressure. That evaluation follows from the law of con-
servation of energy (viz., eq. (A.3a)) and the ideal gas relation (viz., eq.(A.4)). Since both
mass and linear momentum are conserved, conservation of energy (i.e., eq. (A.3a)) reduces -
to the usual energy equation, viz.,

Wso—v‘es-fps—vbu VC=O' (B.16)

As a consequence, the energy equation can be combined with the ideal gas relation to
find the isentropic pressure-density relation, cf. app. A.,

(Ps/Po) = (Ps fo)T - (A

The isentropic pressure-density relation is now expanded in a Taylor series about the
freestream conditions to find

Pg~ Py ) Py - Py 1 L9 ps'poz
~ ¢y t>(r-De, 4o
. .po po 2 DO

co2 =(dp/dp)o =7 (P /P0) -

where
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On neglecting terms which are shown by eq. (B.15) to-be second and higher order in
¢, a first order approximation is found, viz., .

Pg=Po - 9 (Ps—Po :
 C . .
Po o\~ o _ ‘ (B.17)

Combining eq. (B.17) with eq. (B.15), the order of magnitude of the disturbance pressure
is found to be given by

Ps = Do = £ €20 (b6/Us) - | (B.18)

B.3 UNSTEADY FLOW APPROXIMATIONS

Approximations for the unsteady flow theory, which are consistent with the approxima-
tions of the preceding, are deduced by following the procedure leading to eqgs. (B.15) and
(B.18). The continuity equation is expressed in terms of the divergence of the mass flux, i.e.,

v (ch)=—g—§; (A.1)

and an unsteady disturbance mass flux is deduced by writing the mass flux in terms of
steady and unsteady components, viz., <

PV =W +w,, (B.19)
so that the continuity equation becomes

) J

v (Yu) T3 (B.20)

because the steady flow component satisfies the continuity equation, i.e.,

VeW,=0.

The unsteady flow equation, i.e., eq. (B.1), is now written as follows:

L MZp A Mo\ 5 /D
om0 () 2E )

Comparing this form with eq. (B.20), the following hypothesis is asserted:

M02 D
Wy, & p0<v¢u -1 —O D—t (¢u)> (B.21)
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and

d Mo\2a /D | -
P (2Y2 (2
ot <U ) at<Dt (‘7’11))- (B.22)

0

On integrating eq. (B.22) with respect to time, the unsteady mass density' is found to be
given by the following:

Mo 2 D ‘ |
p= —.00<_U—> B?(%) g - (B.23)

¢}

As a test of the validity of the above hypothesis, consider ¢, to be independent of

time. The disturbance mass flux approximation shown by eq. (B.21) then reduces to that
of the steady flow theory, viz., that shown by eq. (B.4); also, the disturbance mass density
approximation shown by eq. (B.23) reduces to that of the steady flow theory shown by
eq. (B.15). The hypothesis therefore is seen to be consistent with the steady flow theory
of ref. 1.

For the purpose of deducing an approximation to the unsteady pressure coefficient,
recall Bernoulii’s integral to Euler’s equations of motion, viz.,

N dp

v ve+ [ —=0. (A.11)
S5
Po

Assuming that Euler’s equations of motion are satisfied at least to a first order approxi-
mation, the isentropic pressure-density relation can be expressed as follows:

, .
p-p PP\ 1 p-p
(5=t () 13 o e (5 +oe (B2
) 0 p

o}

Substituting eq. (B.24) into eq. (A.11), the integral with respect to pressure is evaluated
to find :

p 2

d P-Pp 1 p-p
f-l’:( °>- ( °> P (B.25)
p Po 2c 2 Po

Po o
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Bernoulli’s integral, in terms of this series, is inverted by letting

p-Dp,

=¥ a, ()"
Po n=1

where

D¢ 1
f -1 _——\ '.—L
()] Dt +2v¢ )

and evaluating the coefficients a, using the uniqueness property of the power series.
The result of substituting those coefficients into eq. (B.26) provides the c_lesired result,

namely,
P-Po  [D¢ 1. 1 (Dp 1 2
=-<—+—v¢-v¢>+ 2<—9+—‘v‘¢-$¢ +oee
2C0 Dt 2

Introducing ¢ = ¢¢ + ¢, and neglecting terms which are of second order in ¢, , the
unsteady disturbance pressure is found by subtracting eq. (B.8). The result is the
following approximation to Bernoulli’s integral:

M, 2
A~ - _— g +3 2 00 Wiy
Po <1 U, (¢S)X> (¢u)t ¥ <U° tvds-M, (¢S)xx 1) v (¢u)

which, by reference to egs. (B.4) and (B.15), can be expressed as

p-pg - (ps (<1>u)t + W v(¢u)) -
Comparing eq. (B.28) with the usual approximation of linear, unsteady flow theory, viz.,

p-pg~- (po ®u), *Po Yo (¢u)x),

the freestream values of the mass density and the mass flux are seen to be replaced in the
present theory by the values - of those quantities evaluated in the steady mean component
of flow. As a point of information which should be recognized, eq. (B.28) represents an
approximation to Bernoulli’s integral to Euler’s equations of motion. In the present
context Euler’s equations of motion are approximated. Equation (B.28) therefore is the
appropriate approximation for evaluating aerodynamic forces at the boundaries of a flow;
however, if the pressure is viewed as one of the flow parameters, then the pressure is
related to the velocity potential by eq. (B.24) truncated as

‘p-po - 2 p_po
0. ) ‘o o
(¢} ‘O'
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and eq. (B.23) expressed in terms of the total disturbance density, i.e.,

pho _ Mo® Dy | a0
Py U02 Dt‘ (‘ )

Combining these two expressions leads to the expression for the unsteady pressure
evaluated as a parameter of the flow, viz.,

This result is identical with eq. (B.29) (i.e\., the usual approximation of linear, unsteady
flow theory), and this is the expected result in view of the fundamental postulate of the’
approximate theory, namely, that terms, having an order of magnitude smaller than
0(¢/U,), are neglected in the governing differential equations. Because of the funda-
mental postulate, Euler’s equations of motion are represented only to a linear, first
order approximation in (¢ / Ug); products of ¢, and ¢,, appear in eq. (B.28) only
because eq. (B.28) is an mtegral to a linear system of equatlons in which ¢ appears as a
parameter.

B.4 AERODYNAMIC SURFACE BOUNDARY CONDITION APPROXIMATION

The aerodynamic surface boundary condition, which was derived in app. A, states the
following requirement: Fluid particles located at the aerodynamic surface S must have a
motion satisfying eq. (A.21), viz.

pu,=W-n. (A.21)

An approximate form of this equation is now derived for the case of unsteady, small
disturbances from a steady mean flow.

The unsteady flow is a consequence of a small, unsteady disturbance motion of the
surface S _relative to its steady mean location Sy , fig. 49. A point Pon § has
position R and becomes the point Q on S¢ with position R when the unsteady
motion ceases. The point Q is said to be undergomg a dlsplacement i.e., a change
in position, computed ds follows:

D-R-R,. (B.31)
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The displacement of points on Sg are assumed to be sufficiently small that the value of a
flow parameter evaluated at P can be approximated by a truncated Taylor series expansion
about Q, e.g.,

$(P,D~¢(Q 0+Fs)g D. (B.32)

Unsteady surface

Mean steady
surface location

Ss

Figure 49. — Unsteady Surface Displacement

The velocity of the point P relative to the point Q is given by

29D (B.33)
ot

and the unsteadiness of the motion is assumed to be such that its Fourier representa-
tion has a reduced frequency band whose upper bound has the order of magnitude '
unity or less. As a consequence, the velocity of a surface point, when normalized by
the freestream velocity, has an order of magnitude which is equal to or less than that
of its displacement. Further, because of the assumed small displacement, the rotation
of the surface at point P may be linearly approximated, viz.,

°°L

. =
5 vXD; (B.34)

and the unit vector normal to S may be approximated, viz.,

=>
v
=4

+0 X fi -
R N + n
Y ng+60 Xng. | (B.35)}

5>
2
=
w
=
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In turn, the normal compOnehp of surface velocity is approximated as follows:

)
= A O " ——  —
u,=n ralad ﬁs vl (B.36)
Substituting eqgs. (B.35) and (B.36) into eq. (A.21), the surface boundary condition is
approximated as follows:
punzw . (ﬁs+5x ﬁs)on S.
Introducing eqgs. (B.19) and (B.23), this result becomes
(ou*pg)up =~ (W +%,) + (B +7 X A) on s (B.37)
where
2
MO D¢u
Py -Py~— o -
U 2 Dt
Us
The truncated_expansion of the flow parameters, cf. eq. (B.32), leads to an expression
evaluated on the steady mean surface, viz.,
— A -— A -y e A —_ A
pgun ~ W -(ns+0 X ns)+<D *vWg ) ngt+w,ng on Sg
where all nonlinear terms involving unsteady quantities are neglected as small; further, as a
consequence of eq. (B.6), the unsteady disturbance mass flux is found to be required to
satisfy the following boundary condition on the steady mean surface:
Wy * g~ W -(e x'ﬁs)-(D-vws)-ﬁs+psun on S (B.38)
where
2
5 ~oo (G0, 2 By 3n B.21
Wy & pg V%_Ec—) Bt"(cbu)l , (B:21)
—_ " - ,‘\
Wsz;oo(UO1+v¢s—Mo2 ((,‘bs)xl), and (B.4)
M 2
© (B.15)

'OS%pO l-—[r(¢)s)x .

119



B.S WAKE SURFACE BOUNDARY CONDITION APPROXIMATION

The jump in potential across the wake surface is represented by a doublet sheet; hence, the
wake boundary condition, i.e., eq. (A.51), is expressed as follows:

=
gti+vm Fu=0 on W . ' (B.39)

where
u=[e] (B.40)

is the strength of the doublet sheet. If eq. (B.39) is multiplied by the flow mass density,
the boundary condition is an expression in terms of mass flux, i.e.,

-

t - '
pg‘f+wm-w=00nw. (B.41)

This result follows from continuity of pressure across the wake surface, i.e.
| [p1=0 onW, (A.30)
and the isg:ntropic pressure-density relation, i.e., eq. (A.8); whereby,

fp]=0 onW

so that the average mass density across W is equal to the mass density at either side
of the wake.

The flow parameters appearing in eq. (B.41) and evaluated at a point P on W can be
expressed by a Taylor series expansion about the steady mean location of P on W
The result appears as follows:

+D.V ool —+— 9 +Do_v.__+--o
(p _ P )( M 50

+<Wm+D -vwm+---) -$(u+5o’€u+ ~~)=o on W,.
Introducing

P =0yt A, Wm= (Ws)m"'(wu)m’ and u=ugtuy
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and noting that u satisfies the steady mean wake boundary condition, viz., eq. (B.7), after
deleting products of unsteady quan’utles the unsteady wake boundary condition is
expressed as follows: '

oMy

by +(Wy) +Vu, =0 on W, (B.42)

Recalling eq. (B.40) and comparing eq. (B.42) with eq. (B.28), the unsteady wake boundary
condition, as approximated by eq. (B.42), imposes the requirement that the approximate
disturbance pressure be continuous across the wake. The approximation shown by

eq. (B.42) is therefore consistent with the approximation for pressure,
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APPENDIX C

DERIVATION OF INTEGRAL EQUATION FORMULATION OF
' THE UNSTEADY FLOW PROBLEM

The objectives of this appendix are twofold. The first objective is to provide a derivation
of the integral equation which is shown as eq. (38). The second objective is to express that
integral equation in terms of panel integrals by introducing a change of variable and a
coordinate transformation. These panel integrals are evaluated by the methods of app. D
to generate the unsteady aerodynamic influence coefficients which appear in sec. 3.4

In sec. C.1 the unsteady flow equation, shown as eq. (30), is shown to be identical in form
with a particular form of Helmholtz’s equation. This form of Helmholtz’s equation follows
from the application of the Prandtl-Glauert transformation to Helmholtz’s equation when it is
expressed in rectangular Cartesian coordinates. The application is such that two units of
measure for distance are introduced into the formulation. One of these is the measure
associated with the rectangular Cartesian coordinates of Helmholtz’s equation; the second

is that of the compressibility coordinate system in which the flow problem is defined.

Section C.2 introduces the theorems of Helmholtz which provide an integral equation
satisfying Helmholtz’s equation. The integral equation is expressed in invariant form
such that it can be expanded in terms of any coordinate system related to a rectangular
Cartesian reference frame by an admissible transformation of coordinates. The Prandtl-
Glauert transformation is admissible; and, in sec. C.3, the form of the integral equation
satisfying the flow equation is derived. This derivation includes the definition of

the conormal of the surface of integration. '

Section C.4 delineates the line vortex integrals which arise at the perimeter of a surface
having a doublet distribution.

Section C.5 introduces a change of variables for the integral equation. The operation
provides a form for the integrals allowing them to be made independent of the com-
pressibility factor, g.

Section C.6 derives the transformation from the compressibility coordinate system to the
local coordinate system for each panel. Applying this transformation to the integral
equations provides the panel integrals which are evaluated in app. D.

C.1 PRANDTL-GLAUERT TRANSFORMATION

The Prandtl-Glauert transformation is used in the following to relate solutions to Helm-
holtz’s equation with solutions to the unsteady flow equation, eq. (30). Using

indicial notation and summation convention (ref. 5, sec. 7), the transformation is
expressed as follows:

gi=El (C.1)

+ This distinction in measure and its consequence, viz., the introduction of two different
unit vectors which are both normal to the same surface, tends to cause confusion in
following the development of the panel method; it should be carefully noted.
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where the compressibility coordinates are denoted as -

1 2 3_

X =x,x4=y,x3=7 (C.2)
and
Eil =1, E22 =8, E33 =4, Eji =0 otherwise; (C.3)
o : and the Prandtl-Glauert transformation is introduced choosing the X i system as the |

reference frame (ref. 5, pg 8). The metric tensor (ref, 5, sec. 29) of the compressibility
system, therefore, is given by

zk azk
Bij SEE | (C.4)
ax_l ox)
where, by eq. (C,3),
g,,=1,809=B% 833 =62 . = 0 otherwise: (C.5)
11 °22 » 533 » Bjj ’ .

while, its contravariant form (ref. 5, sec. 30), viz.,

GY (C.6)
g

gl.] =

where Gij' are the cofactors of 8 and gis the determinant of 8jj»

g= |g1j|, (C.7
has the components
g11 =1 ,g22 = ]/Bz, g33 = 1/82, gij = 0 otherwise. (C.8)
Helmholtz’s equation (ref. 3, pg. 239), viz.,
v2gx+Qlgr=0, (C.9)

is expressed in terms of the contravariant metric tensor, eq. (C.6), by introducing
the following identity (ref. 5, eq. (90.7)):
Vz¢*=gij¢*’ij (C.10)
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~ where (ref. 5, sec. 33) the comma denotes covariant differentiation. For the case of
linear transformations, such as the Prandtl-Glauert transformation, covariant differenti-
ation reduces to partial differentiation; hence,.

92¢*

=, (C.11)
ox! 9x

¢*>U

Substituting eq. (C.11) into eq. (C.10) and substituting the result into eq. (C.9), Helmholtz’s
equation becomes

. 02 p¥
gl == +Q2¢*=0; (€12
ox! ox)

and, introducing eq. (C.2) and eq. (C.8), this form of Helmholtz’s equation is expressed as

1
bt 55 by 0u) 1 0720, 1

Helmholtz’s equation, as given by eq. (C.13), when multiplied by 62, is identical with the

unsteady flow equation, eq. (30). Asa consequence of this identity, solutions to Helmholtz’s
equation expressed in the compressibility coordinate system (regarding the scaled coordi-
nates, X!, as the reference frame) are solutions to the unsteady flow equation.

In the scaled coordinates, )"(i, Helmholtz’s equation appears as follows:

e +Q2*=0; (C.14)
or, letting
| x=x,7=52,2=1, (C.15)
Helmholtz’s equation becomes
bxi* + Byy* T Bzt T Q2 B* =0, (C.16)
If

O*(X,7,7) = $*(x,8y,82) = p*(x,y,2) (C.17)
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where q) is a solution toeq. (C.14), then on substituting eq. (C.17) into eq. (C.14), the cham
rule for differentiation leads to

82 ¢* axl axd
ax! axl 8% & gk

+Q2¢*=0. (C.18)

Introducing the inverse Prandtl-Glauert transformation, viz.,
xi=g % - (C.19)
where

g1l=1,8,2=1/8,85%= 1/g, &' = 0 otherwise, (C.20)

eq. (C.18) becomes eq. (C.13); hence, if 25* is a solution to Helmholtz’s equation expressed

in the scaled coordinates regarded as the reference frame, the change of variables shown
by eq. (C.17) provides a solution to the unsteady flow equation.

C.2 HELMHOLTZ’S THEOREMS
Solutions to Helmholtz’s equation are provided by the theorems of Helmholtz which
appear in the following. Since the preceding has shown that solutions to Helmholtz’s
equation can be related to solutions of the unsteady flow equation by the Prandtl-Glauert
transformation, the following theorems provide a means for constructing solutions to
the unsteady flow problem.
Helmholtz’s theorems (ref. 3, pg. 240) are based on a division of all space into two volumes

'V and V' by the closed surface X enclosing V;thus, P, an arbitrary point in space, is
either interior to X (i.e., PeV) or exterior to T (i.e., PeV') oron X (i.e., PeX). Letting

1 .
o= 'IQR 9
Y 47{Re (C.21)

where R is the distance from P to a point Q on X and noting that eq. (C.21) satisfies
eq. (C.12), then, if ¢™ is a second solution, the first theorem of Helmholtz states that

¢* (P) ff( ¢*(Q+) Ju >ds if PeV

(C.22)
¢*(P) = 0if PeV’

¢*(P) = oo if PeX
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where ¢* (Q+) denotes the limiting value of ¢* as the point of evaluation approaches Q
from V, n’is the normal coordinate of ¥ and is positive in V, and the prime denotes
operations involving the coordinates of Q. The second theorem states that

6% (P) = - ff <—a¢,* Q) U - ¢* (Q7) EE) ds if PeV’
on on
z

=0 if PeV | (C.23)
= oo if PeX

where ¢* (Q) denotes the limiting value of ¢* as the point of evaluation approaches
Q from V.

Combining eqgs. (C.22) and (C.23) leads to a third theorem:

. Dy a*t . ay*y
¢* (P) = P y* - [o*] o ds' if PeV' UV (C.24)
h

where, for example,

16*1=*(Q*)-4* () (C.25)

because ¢* and a¢* / dn’ are not finite at the surface. The elementary. source,

Y*, leads to a discontinous normal derivative for the potential; while the elementary doublet,
dy*/an’, leads to a discontinuous potential. Noting that ¢* and 9¢*/dn’ represent, respectively,
the complex amplitudes of the potentials induced by unit sources and unit doublets distributed
on X, one may define

o* (Q)= l[g%*ﬂ (C.26)
and |
u* (Q) = [[¢*] (C.27)

so that
o* (P) = ¢g* (P) + ép* (P) (C.28)
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where

b ()= fo* Y+ ds

_ z |
ahd

oY*
*(P)=- *— ds'
op* (P) fﬁ e
b)

Further, the complex amplitude of induced velocity can be expressed as

V¥ (P) = Vg* =Tk (P) +Vp* (P)

where
VS* (P) = ﬂo* v y*ds
>
and
* (P) = *g'— ds’
Vp* (P) ﬁ o
z
because

g‘w* =9 Y*

where the prime denotes differentiation with respect to the coordinates of the point Q,
while the unprimed gradient operator denotes differentiation with respect to the
coordinates of the point P.

Egs. (C.28) through (C.33) describe the complex amplitudes of the potential and
velocity induced at the field point P by harmonically fluxuating sources and doublets
distributed on the closed surface » . These induced quantities satisfy the form of
Helmholtz’s equation shown by eq (C.12);and, egs. (C.28) through (C.33), like

eq. (C.12), are valid in terms of any coordinate system which is the result of an
admissible transformation (ref. 5, sec. 19 and 20) from the reference frame. The
reference frame has been chosen, in sec, C.1, to be the scaled coordinates, g1,

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)
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C.3 CONORMAL VECTOR

As noted in the preceding section, the integral equation, i.e., eq. (C.24), which provides
a means for evaluating the unsteady flow problem, is expressed in terms of geometric
quantities whose measure is that of the scaled coordinates, %!, This use of measure is
illustrated by writing

T o* ds (C.35)

where the magnitude of A is unity in the measure of the scaled coordinates and ds
is the differential surface element in the scaled coordinates. The objective of this
section is to derive the following identity:

To*ds=T, +Fo*dS - - (C.36)
where ﬁc is the conormal vector with components
<B2 Nla N2) N3)’

where the components of N satisfy

x/iNDz + (Nz)2 + (N3)3 =1 (C.37)

in the measure of the compressibility coordinates, x1 , and dS is the differential surface
element in the compressibility coordinates. The vectors fi and N are both normal
to the same surface; hence, when they are evaluated at the same surface point,

=N/N (C.38)

where N is the magnitude of N in the measure of the scaled coordinates, ii.
Further, the two differential surface elements are shown to be related as

das = N\/Eds . (C.39)

As a preliminary to the derivation, consider the reciprocal base systems (ref. 5,
sec. 45). In the reference frame, again, taken to be the scaled coordinates, X!,
position is described as follows:

=]

_5it ~
= %', (C.40)
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‘where (ref. 5, eq. (45.2)) the vectors, b are the unit base vectors of the scaled coordinates

such that

The covariant base vectors of the compressibility coordinates (ref. 5, eq. (45:6),) are
defined as

- or
Q= —:;
i~ gyl
and, since
Yy l—-‘ =
48T &

these are not unit vectors in the measure of the scaled coordinates.

Contravariant base vectors are introduced by eq. (45. 8), ref. 5, and these can be written
in the following convenient form:

where (ref. 5, pg. 138)
€iik = VB sjjk

and €iik is the permutation symbol defined in sec. 40 of ref. 5. Similarly, from
eq. (45.9), ref. 8,

elik =53, 3k
where (ref. 5, pg. 138)

clik =

_ L ik

Returning to the derivation, as noted by eq. (90.5) of ref. 5,

(C.41)

(CA42)

(C.43)

(C.44)

(C.45)

(C.46)

€47y

(C.48)
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where ni denotes the contravariant components of the unit normal vector, fA. An expression
for evaluating n' is obtained from the deseription of the surface, Z, in Gaussian form
(ref. 5, sec. 52), viz.,

xi= X (u1 , u2) ' - (C.49)
where u® (for o= 1,2) are parameters which, when varied independently, describe

curves on the surface which are surface coordinates. The base vectors of the surface
coordinates (ref. 5, eq. (54.6)) are given by

- _or (€.50)
a,=——
o .
ou®
where T denotes position on the surface, i.e.,
T=x (ulu2)h, = (ul,u2)3, (C.51)
where the following has been used:
A dr X
bi =T
ax! ax!
so that, by eq. (C.40) and (C.20),
A i_, P
and
&% (ulu2) =xi (u'u2). (C.53)
Since '51 and _zfz are vectors tangent to the surface along the surface coordinate curves,
the unit normal vector is given by (ref. 5, eq. (65.2))
A x a
n= __1 f : (C.54)
ap X 32l
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The components of the unit normal vector are derived using eq. C.50 and C.51 to write
the surface coordinate base vectors as

By =—— ;. | (C.55)

Their cross product, using eq. (C.44), is then expressed as

o oadaxk o axk L
) XTy = o (3 ) e O P (C.56)
dul au? dul u2
hence, defining
A= |ayxa,|, (C.57)

the covariant components of the unit normal are found to be

i ack :
n= A e O O (C.58)

k
va v aulau2

while the contravariant components are

nl= gij n; (C.59)
(ref. 5, sec. 45).
As shown by sec. 54, ref. 5, the differential surface element is given by
ds = |7 x 3 |dul du?; (C.60)
and, introducing eq. (C.57),
ds=va du! du?. (C.61)
Combining eq. (C.58) and (C.61), the covariant components, viz.,
ax axk
n; ds=eiik_ —_ dulduz, (C.62)
N dul au2
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are seen to be the components of the vector formed by the cross product of the following
two tangent vectors: '

(C.63)

and
dry = dx,' % . (C.64) )
Consider the following vector product:
A — —
N dS =dry x dry
in the measure of the compressibility coordinates; thus,
' A . . A.
N dS = el_]k Xm'] dX2J al . (C65)
Introducing eq. (C.62) and recalling eq. (C.45), eq. (C.65) leads to
N dS=vEn; dSal. (C.66)
Taking the norm of this result in the measure of the scaled coordinates, wherein
() (1) =iy o eo
and
(N7 - () = NI N =9, (C.68)
the two differential surface elements and the covariant components of the two normal
vectors are found to be related as follows:
ds=vg NdS (C.69
and
n=N; /N. » » (C.70)

Egs. (C.69) and (C.70) verify the expressions shown as egs. (C.38) and (C.39).
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Recalling eq. (C.59) and introducing eq. (C.70),

nl= glJ N; /N
thus, since (ref. 5, eq. (92.5))
op* : 0%
—¢ ds=n! i ds,
on axl

egs. (C.69) and (C.71) lead to

a & a *
99 ds=ve giN, 22 s
on Jaxl

which can be written as

ag* | 09 dp*
9" 4s=n EApTes 29" i
8n axl anC
where
nCiE\/é FUBY

and, on> introducing eq. (C.8), (C.5), and (C.7),

ncl=62N1 ,nC2=N2,nC3=N3.

From eq. (C.76) the vector r1C is seen to be the vector usually called the conormal to

the surface.

The integral equation shown as eq. (38) follows directly from eq. (C.25) by making

the substitution shown as eq. (C.74); thus,

. dy*
o* (P) = LY Y S ds
(P) é/(o Y- u anc,>

where

(C.71)

(C.72)

(C.73)

(C.74)

(C.75)

(C.76)

(C.77)

(C.78)
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C.4 ELIMINATION OF PANEL EDGE LINE VQRTICES

The integrals shown by egs. (C.29) through (C.34) are expressed by the sum of the
panel integrals shown by eq. (37) through (60). In the case of eq. (60), viz.,

' 0
- - _ * o — * '
vp¥ ®P) ffue anc,(v Vi )dS,
e ’
a decomposition is introduced such that
d +7V (C.79)
where the term VV* represents the velocity induced by a line vortex lying on the perimeter
of the panel, viz., aze. When panels are joined together to form a continuous surface of -
integration, the line vortices at the edges of panels al%utting one another are equal in
strength and opposite in sign; hence, the velocity V‘V induced by one panel edge is canceled
by the velocity induced by the other, abutting, panel edge. As a result, the line vortex

induced velocities need not be computed and the doublet panel igduced velocities (i.e.,
eq. (60)) are computed from the regular part of eq. (C.79), viz. Vd .

The decomposition of eq. (60), which leads to eq. (C.79), is formed from a corollary to
Stoke’s theorem. Stoke’s theorem is expressed by eq. (92.15) of ref. 5 which, on inter-
change of dummy indices j and k, is written as follows:

k

dx
k — .
/]ell ij n; ds = f Fk —dc dc (C.80)

z 0z

where 9% denotes the perimeter of the surface, 2
Xl = x1 (c)

represents a parametric description of 9X; and Fj represents the covariant com-
ponents of an arbitrary vector. The corollary is obtained by letting

- omn ¥ = .
Fk_er111“* g Y,y for £=1,2,3;

whereby, eq. (C.56) becomes

z

.. " axk
J G T T L A S (€81
2T
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where use has been made of Ricci’s theorems (ref. 5, sec. 35), viz.,
gij’k= 0 and gY, K= 0,
whence

1
(em<m),j = (\/g)’j Cokm = 2vE |8pqj| km =0 -

- Expanding (C.81) leads to -

* m * .Sl_)é. dc = eljk ¢ mn * , %
€Qkm M 2 1o de= km & MYy njds
ox z

. ,
+ f ﬁ* e o M0 Vo 1y ds. ' (C.82)
& .

The vector form of the integrand of the second integral is deduced using the reciprocal
base system shown by eqs. (C.44) and (C.46). The result is a triple vector product which
is then revised using the following vector product identity:

(ZxB)xT=5(3-3)-3(s-7)

These operations appear in the following sequence:

u*euk €0km gmn Wﬁj' ni—gQ = u* euk(akx 3 )gmnw i D

il

- “ ( aJ) X anl mn ¢l*>nj n

- u* ('ﬁ x?) XTY*

- (B D)Fur +ur(3 T 0¥

- gl n W>Q s + ¥ ng g ol Uy i (C.83)

Also, from eq. (C.12),

gll Yot =- Q7 Y+ ; (C.84)
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and, because the first térm is identical with integrand of eq. (60), viz.,

0
IJ‘* IJ ny w’l_] Q=M*E (€w*)a

c
eq. (C.79) becomes
VS ="-"d* +“7v*
where
=ffele €orm &1 u,"f,j xl/*,n' n, ds""2 + 522 fn u* U* ds"a ES
Ze Ze
=[/(ﬁx‘6u*)x‘v" v* ds' + Q2 [fﬁu* y* ds’ | (C.85)
Ze z
vy = - €okm M d/ n' ?1_5 dc a puFdrxv’ Y (C.86)
0Z, 0Z,
where
* * - -
V=g, TP g,
and
'k
, _dx -
dr’' = E dc ayp .

C.5 CHANGE OF VARIABLE

In section C.1 it was noted, eq. (C.18), that solutions to the flow equation could be
related to solutions to Helmholtz’s equation through a change of variables: thus, if
¢* (x,y,2) is a solution to the flow equation, then

$* (X,y,2) = ¢* (X, y/B, z/B) (C.87)

is a solution to Helmholtz’s equation expressed in the scaled coordinates, viz.,

Pz *Oy5 + oz + QEé*=0. (C.17)
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The advantage accrued through this change of variables, when the solution to the flow
equation is the integral equation shown by eq. (C.77), is that the integrals do not contain
the compressibility factor, 8, except that the compressibility factor appears in the '
Helmholtz’s coefficient, viz., : '

Q=aM, 62, (30)

which appears in the exponential function contained in x//‘*.

‘Recalling eq. (C.77). the panel induced complex potential amplitudes at the field point,
P, are given by '

" AR
op P)=- u* pg s’ (C.88)
2o ¢
and
$3 (P)=ffo* y*ds . (C.89)
Ze ‘ .
Under the change of variables egs. (C.74), (C.72) and (C.59) yield the expression
—— dS = n; S| I
any 457NE 501
which becomes
TV I
ony’ dS =nj-=vi dS (C.90)
where
_ . dyY* ) Y
=&} =l T
n; =&; PR tew I
and

g ke = oKL

hence, the doublet panel integral becomes

o1 (P)=p (P) | (C.91)
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where

when

Recalling eq. (C.69), the source panel integral becomes

¢§ Py=1 ¢S* (P)
where

1
Ag N

I

J

and

b (P) = fa* I+ ds'
_ie

Having the potentials expressed in the scaled coordinates, a convenient means for
computing the velocity components in the compressibility coordinates is obtained

by the following operations:

i i

axl  axl ax!

Noting, again, that
dy* Y
oxd  ax
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L0 oK jegr
ox)

(C.92)

(C.93)

(C.94)

(C.95)




the source panel induced velocity components are given by

%® s %k o
vgi ®)=TE] Vg (P) (C.96)
where
_* _ oy
Vg; (P)=—ff0* a_jl ds’ . (C9M
z, | -
The doublet panel induced velocity components are given by eq. (C.85) whereby
% = . ou* oY* _ S
Vg (P) =ffeuk €0km —B— w, n; ds’ + QzﬂnQ uE PE ds’ (C.98)
ox) axm _ _ '
Ze Ze
so that
* Q% =
vpi (P) =E;* vpo (P) . (C.99)

The influence of a panel edge line vortex, eq. (C.86), becomes

_# dx™ gy
v, (P) = f *e — dc — . C.10
ve (P) P M egn o dc e | (C.100)

Ze

C.6 PANEL, LOCAL COORDINATE SYSTEMS

Egs. (C.91) through (C.100) of section C.5 contain the integrals which must be evaluated
to determine the panel influence at field points. This section introduces local coordinate

systems in which these integrals assume forms which are particularly convenient for that

evaluation. The coordinate lines of a local system are denoted as &, n, ¢ and the system is
defined such that the £, n coordinate plane is parallel with the panel plane and such that
the { coordinate is along (and in the direction of) the panel normal, 1.

Letting the coordinate lines be denoted as
glag £2=n 8 =¢, (C.101)

the local system is expressed by a transformation of the compressibility coordinates
as follows:

fi=Alx (C.102)
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with the inverse:
xi=aly | (C.103)

This is a linear transformation since it is a combination of the Prandt-Glauert transforma-
tion, viz.,

)‘(k=Ejk x .1
and an orthogonal transformation,
- t ) %K, (C.104)
such that |
A=y BX - | (C.105)

where, because of the orthogonal nature of the transformation,

gk=Tke 7 (C.106)
and
T.X = tki . | (C.107)

The orthogonal transformation is derived by noting that, if &i are unit base vectors

for the local system, then they are related to the base vectors of the scaled system by
the transformation rule for covariant tensors (ref. 5, sec. 24), viz., :

—_ — ___]
&i=§_f__=a_r_ X =1/ ;. (C.108)
og!  a% ot

The unit base vectors of the local system are chosen as follows:

az =1 (C.109)
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where 0 is the unit vector normal to the panel plane defined by eq. (C.54) and Cisa unit
vector in the direction of the freestream flow, viz., in the direction of X and x. Because of
the form of the Prandtl-Glauert transformation, the vector € is a unit vector in the measure
of both the scaled system and the compressibility system, and its covariant and contra-
variant components are identical to one another. Using these characteristics of the vector ¢
along with eq. (C.38), the unit base vectors of the local system are seen to be given by

. Nt

2 |Nxé\|

A l A = :

&) = S&xN | (C.110)
and

A l =

0(3 —. EN

where it should be noted that these vectors can be formed directly from vectors expressed
in the measure of the compressibility system.

The expansion required by eq. (C.108) is obtained by writing the cross products using the
reciprocal base systems (viz. egs. (C.44) and (C.46)); thus,

Nx&=elkN;c\ 5. (C.111)
Introducing
vi=elkN; o (C.112)

and

[0

INx2[=yVigv , | | (C.113)

because the local system has the measure of the scaled coordinates, wherein

a8 =gy,

the unit base vectors of the local system are found to be as follows:
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i
0‘2“'&‘ V‘ aj ,
A 1l : (C.114)
—_ 1
and
a3——1\7 jE =g Njghg
where
Ul=elik ving (C.115)

because, in the measure of the compressibility system,

vi=vy. . : (C.116)

- _ar ar oX N
ai=-——=——-——,=EiJ bj, .17
ox!  ax!'ax!
the local system base vectors become as follows:
A _ 1 1 jA
&, = 1 Ui EJ b,
L7 aN 1
Aol Kigjp
a3——N—ng E; bj. , (C.118)
The orthogonal transformation shown by eq. (C.106) is deduced from egs. (C.108) and
(C.118) with the result that
ot g L Gigie2, ) kipje3
W= UE) £ 4= VIE) g2+ DN o E) £ (C.119)
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Similarly, the transformation, eq. (C.103), which is the inverse of eq. (C.102), is found
from eq. (C.114) as

) .
Lvigt e DN gliigd (C.120)

i1 R
o N

X “aN §

Using the characteristics of the orthogonal transformation shown by (C.107), the trans-
formation shown by eq. (C.104) is found as

El = —UlEJ &,
aN
£2 .—__LViE.J' 3
and « 1
£3 =%ngkiEij o (C.121)

Finally, introducing eq. (C.1) into eq. (C.121) and noting eq. (C.4), viz.,
~pkrk
and noting from eq. (C.6) that

ik_ sk
ging —51 )

the transformation shown by eq. (C.102) is found to be

Vo b oyiy
¢ aNugIJx’
2 - Zvyig.. 4
£ = Vg,
and 3.1 i ' C.122
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" Matrix notation provides a useful form for presenting the operations involved in cdmputing
the components of Ajl and its inverse, 4j1, viz.,

[.a,i] = [&% {ut} 1: l— .{vi} ;il_ [gij] {Nj }] | (C.123)

and

[ ] [ [gu] (U [gu] Vlil ] (C.124)v

where
{ui} = components of (N X ® X N,
{Vi} = components of (ﬁ X ©) and . (C.125)

{Nj} = components of N.

Expanding eq. (C.95) and noting eq. (C.105), the velocity components are ’found to
transform as follows:

Ejaqs*_E]askafp*

EJ ek o akgie ')
K (C.126)
a5 ox) otk ! !

1 1 agk

where ?b'* denotes the complex amplitude of the modified potential expressed in the
local system and

08" (C.127)

denotes the components of the velocity in the local system. Using eq. (C.126), egs. (C.97) through
(C.100), describing the panel influences, become as follows:

(1) Source panel induced potential:

¢S* (P)= J¢S* (P) (C.128)

where

By ®)=- f f 5% T dt'dn’ (C.129)
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(2) Doublet panel induced potential:
s5®) =15 @)

where

(3) Source panel induced velocity components

® ik
vgi = A Vg;

where
. -
T =ffo*i dg' dn’ .
Sj J . aE"
Ze

(4) Doublet panel induced velocity components
® L Q%
VDi TA{ VDR

where (for Greek indices ranging over 1,2)

= ot oyt
.VD6(P)=’/:/’ eOlB eaﬁa?( 5%{/—, d¢' dn
z, :

because the components of the normal are given by

Hl =O, fl\l‘z:o, H3=1

and
K egim =- e egpm =- P egg
while .
%~ ou* oY -
' ..VD*3 (P)=_/,/‘e°“8€ﬁg;—li _\0_6 dg' dn'+92ﬂﬁ* y* d¢' dn’
o = oE% at' -
Ee 26_

(C.130)

(C.131)

(C.132)

(C.133)

(C.134)

(C.135)

(C.1306)
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because

e3ik €3km = g308 €385 = B egs -

(5) Doublet panel edge induced velocity components:

vi= ALY (C.137)
where (for Greek indices ranging over 1,2)
£
, f/ e |
Voo ®) = H eaa i 457 (C.138)
while
e ~,  dEY o
# =_ *® 2. A
vy3 (P) [fu €8 5 dc ag’B . (C.139)
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APPENDIX D

EVALUATION OF AERODYNAMIC INFLUENCE COEFFICIENTS

Th1s appendix describes the theory underlying the procedure used to evaluate the panel
influences shown by egs. (C.128) through (C.136) of app. C.

Panel singularity distribution functions are introduced in sec. D.1. These functions reduce
the panel influences of app. C to influence coefficients relating the induced flow potential
and velocity at a field point, P, to the coefficients of a Taylor series expansion of the
distribution function, cf. eq. (49) and (52). The end result is a set of integral equations for
the panel influences which are in terms of panel integrals having integrands of nine basic
types. The remainder of the appendix is directed toward deriving evaluation procedures’
for those nine integrals.

Section D.2 introduces two coordinate systems: (1) a panel edge coordinate system describing
position in the panel plane in terms of distance along and normal to a panel edge and (2) a polar
coordinate system. In the following sections of the appendix the panel integrals are expressed
in polar coordinates. The panel edge coordinates are then introduced as a change of variables.
The result is a convenient expression for the integral in terms of the distance along the panel
edge.

Section D.3 contains a reduction of the integrals involved in the panel influence coeffi-
cients. The reduction is based, in part, on a separation of the unsteady kernel function into
a steady component and an unsteady component. The unsteady kernel function, viz.,

P* = L e-iSZR

4wR ’
is expressed as
vy
where the steady component is givén by
- L
©  4qR

and the unsteady component is given by

*w___w (-ISZR 1) 1

The steady component is evaluated in closed form and the unsteady component is further
reduced to a dependence on two fundamental integrals which cannot be evaluated
directly in closed form.
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The integrands of the two fundamental integrals are approximated in sec. D.4 by polynomials
containing terms which are closed form integrable. Sec. D.5 describes the polynomial
estimation procedure for the approximation introduced in sec. D.4 and sec. D.6 contains an
error analysis to the approximation, '

Finally, sec. D.7 contains a derivation of the influence coefficient evaluation procedure used
in the far field. The fundamental idea underlying the far field evaluation is that of approxi-
mating the kernel function (or its gradient) with a truncated Taylor series expansion which
is a valid approximation when the field point is sufficiently far from the influencing panel.
The section presents the criteria used to establish validity.

D.1 PANEL SINGULARITY STRENGTH DISTRIBUTION FUNCTIONS

For the purpose of introducing the singularity distributions, a*(Q) and u*(Q), the panel
-influence integrals are expressed in terms of the following representation of the field
point, P, and the surface point, Q: P is the point representing the projection of the
field point onto the panel plane and T is a vector along the panel normal from P to P,
figure 50.. A'local origin , Qo, with coordinates £, 4, fo is introduced and P’ and

Q have the positions § and T relative to Qy- Thevector R is then given by

R=7+%. (D.1)

]

Figure 50. — Representation of Field and Surface Paints
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Indical notation and summation convention (ref. 5, sec. 7) are used in the following;
hence, the following notation is introduced for the coordinates of points:

$1= £, 82 =9 . coordinates of Q

Eol =&, ‘502 =1y & coordinates of Qo

zl= £, 722 = n : coordinates of P’ . (D.2)

The components of the vectors in the panel plane (viz.,T, Zf, and 3) are given by
ra = Ea - an s

p(Y:r(X_aO(’

8% =z%_ 200‘ | (D.3)
where, and in the following, Greek indices have the range a = 1,2,

- The panel singularity strength distribution functions, c.f. eqs (49) through (52), are
' expressed in terms of the above notation as follows™ :

0* (Q) =03 + 05\ 1* (D.4)

and

1 1 |
= % o o _ ¥
Q) =ug tulqr +2u§’aﬁr rﬁ+6u§,amr°‘rﬁr .

For the purpose of evaluatmg the mtegrals of eq. (C.128) through (C.136), however, it is
convenient to expand ¢ and u in.a Taylor series about the point P’ (viz., the
projection of the field point onto the panel plane); thus,

* = o
0% (Q)=0,+04p

and

1 1
B (Q) = 1y + i 0% +5 Mg 0 pB+—6-ma67p0‘ B o7 (0.5

*  Terms which are of third degree in the spatial coordinates are included in the
doublet distribution function for evaluating the quasi-near-field approximation
described in sec. D.7.
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where

* ¥ ot
o5t 9o, S

Q
il

o

O = og,a

B, = yg + M’S,a 5% + “g,aﬁ 5% 88

Mo = “E)k,a + “g,aﬁ o8 + %“g,aﬁ'y 8P 57

%
My = “g,aﬁ+“0,a5787

3
il

®
oy = Ho,ofy-

Introducing eq. (D.5), egs. (C.128) through (C.136) are written as follows:

where
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~%

3y ==[o0 V(D + 05 ¥ (o7)

1 ' |
¢4 = [uo w(l) + sy @ (p%) + ;—Mo{g w (p% o) e MagyV (o o pvﬂ

;;SB* = [O‘o WB (H+ Oy WB (_i)a)]

’\7‘;‘3 = [oo w((h)+ aaw(pa)

* )
Vdo =['u0£ w (D +Mggw (pﬁ) +'15ma6'y o4 (ﬁﬁ .07)J

V;s =" [“a Woc 1)+ My Woz (pﬁ) +_;"moc[37 Wa (,,(3 p'y)]

(D.6)

“(D.7y

(D.8)

D.9)

(D.10)

.11

+0? [uo b+ g ¥ (0%) 3 Mag b (6 0B+ =gy v (5% oF w)] (D.12)

@ () Effw* fd§’ do'

(D.13)




w (f) = f f %‘g* £ dE’ dy’ | (D.14)

AP+

W, ()= spa fdg' dn' (D.15)

The problem of evaluating the panel influences reduces to the evaluation of the
following integrals:

v (1), ¢ (%)
w (), w (%), w (6%0P), w (0% 08 p7)

W (1), Wy (pﬁ), Wo (P pv) .
D.2 PANEL EDGE COORDINATE SYSTEMS

The corners of a panel are enumerated by the subscript ¢ in a counter clockwise
direction. Their positions are denoted 'r'é. The eth edge of a panel is described by
the vector

- —

Te=res1-Te. (D.16)
and
N - nrd
te =Te/|Tel : (D.17)

is a unit vector tangent to the eth edge. In indicial form

N

N« A
te =t (D.18)
where &a denotes the unit base vectors of the local system, cf. eq. (C.109). A normalized
edge normal vector is then introduced as '
N

Ne = eap te” g (D.19)

such that
né = te1 R ne2 = - te1
and
n, x/t\e = a8 e teﬁ = ne1 tez - ne2 tel =]
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~ The orthogorial unit vectors ﬁe and /t\e are used to write

p=an, + Vi
P = 2N, e

whence,

where dc is the differential arc length along an edge; also,

dc =dV.

Recalling eq. (D.1) and introducing eq. (D.20),

- A ~ -
R=a,n,+vig+h;
whence,

RZ=a,2+vZ+h2.

Introducing polar coordinates, viz.,

p1=p cos ¢ and p2=p sin ¢
where
p=17]
then
— - o ﬁ . A ~
pXdp=p X|— dp+pdo (—sm¢a1+cos¢oz2) .
o
et - . A A
Letting v=pdo¢ (— smd.>a1+cos¢oz2>

Z;X};=ea3p°‘v3=plvz-p2u1=p2d¢ (cosz¢+sin2q>)=p2d¢;
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(D.22)

(D.23)
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thus,
o X do=p2dg.

Alternately,
D X dﬁ=(ae ﬁe"'vlt\e) Xﬁc\e dv=ae dv ; : (D.26)

hence, combining eqs. (D.25) and (D.26),

ae dv

d¢ =

= D.27
ae2 +v2 ( )

provides a relationship between the differential of the phase angle, ¢, and the edge
coordinates.

D.3 REDUCTION OF THE PANEL INTEGRALS TO FUNDAMENTAL INTEGRALS

Proceeding to a consideration of the integrals to be evaluated, consider first the relationship
which can be established between w(p%f) and W ().

Since

it follows that

' Consequently, the two integrals are related as

w (% f)=-h W, ()
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and, by induction,

w (0%)=-h Wg (1)
T w(p¥0B) =-nw, (of) . (D.28)

@ (0% B p7) = -1W, (P p7) . -

The remaining integrals (viz., ¥, w, Wa) are evaluated in terms of the cylindrical coordi-
nates; whence,

0(&,m)
d (0,9

dg dn = ’ dpo d¢ =p dp d¢ . _ (D.29)

In general, these integrals are not convergent; rather, their correct evaluation must be
performed using the theory of finite parts.

Consider the integral performed for each edge, viz.,

b + Pe (9) |
4 / de¢ f gp dp
do” 0

where (figure 51) ¢e— and ¢e+. denote the coordinates of the end points of the edge,
while pg(¢) is simply the value of p expressed as a function of ¢ alongthe eth edge.

Figure 51. — Region of Integration Corresponding to a Panel Edge
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Using these concep'ts,

b’ pel®) o
y (=2 _/ d¢f y*pdo. (D.30)
Defining
R
X(R)Ef ¥ R dR’ - . (D.31)
o]

~and usin.g the notation

Re @) =R P =P @), (D.32)
it follows that
-~ o~
y)= f d¢ [X(R)-X(.Ihl)] =2 f d¢X(R)-21rCOX. (Jh|)  (D.33)
: e e
¢e— ¢e_ :

where C denotes the winding number, if the origin of the p% coordinates is interior to the
panel, .. The winding number C is defined by the following relation:

o (the boundary of Z does not
[ encircle the or1g1n) (D.34)

f d¢ =21 C. =

oX

. 27 (the boundary of X, does

encircle the origin

Consider, now, the integral

v (o%1) fﬁ) U* £ dg' dn' ff( > (R v%) (O at’ dan’
R e f
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Integréting by parts using Gauss’ theorem,

v (p%f) = fn(Xdec'-ffxi dg’' dn';
4 S o

thus, by induction,

W(po‘) =fnaXdc’
-

w(papﬁ)=fpﬁnalx dC"ffXdE’ dn'
0

v (%0 p7) =fpﬁ pY ny X dc' - aﬁafﬁ>7 X dg’ dn"— avafﬁ’ﬁ X dg' dn’
2

where
5043: 1if a=8

=0 if o5 .

The integrals
ffX d¢' dn' and ffpo‘ X d¢' dn'

may be treated in a fashion identical to that given to (1) and Y (p%).

Defining
R
OEf XR dR',
0
o
and Pe”
X(pa)E/ﬁXdE'dn'—fna 6 dc'.
0
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Turning now to the treatment of w(1) and Vva(f) and recalling that

R _ h ff Vo
ag-l—_Rs w (1) ac’ df dn
+ Pe (¢)

e 1 oy*
"h[fRﬁz dsd"hzf d¢f RaR ° %"

But,
pdo=RdR;
hence,
be"
w(l)——h Z / y*de - 27rC gl/*(lhl)
e 6o
Next,

W (). ffaw* dg' dn' = fn Y* fds —ffd/*——- d¢' dn' ;
9%

consequently, by induction,
¢

Wa(1)=[ ng, W* ds’

Wy (p5)=/p3 ng Y* ds’ -//tb* dg’ dn’
d

Wa“(pﬁﬂ) =f9507'na Y dS’-BBaffﬂw* dag’ dn'-ﬁya[[pﬁw* d¢' dn’
9

whére the integrals on the right are given by eq. (D.28)

(D.41)

(D.42)

(D.43)

(D.44)
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All of the required integral évaluations are now seen to be in terms of the following
two operators: _ o

the panel operator:

G
1(f) =2, [ fdé - 2r Co £ (h1) | (D.45)
e
b
the edge operators:
le (&)= f g ds | ~ (D46)
E, '
Y1) =J(X) (D.47)
v (p%) =X 00 (ne) | (D.48)
v (poz pﬁ) =3 Ie (pﬁ X) (Ne) =7 (6) (D.49)
)

V(%P ) = T 1 (%07) (no)a - Bp0 Tle @) (g)y 8 T @) (ng)g  (D:50)
€ [+ . €

w (1) =-hl(y*) ' (D.51)
W (1) = 3 L (U%) (ng),, | (D5
[V
Walof)= 3 1(Pu*) (ng)g -¥ (D (D.53)
&
Wy, (0807 )= 5 1, (0BoY ) (ne)a - B (67 - 800 (F) (D.54)
c

A careful examination of the integrals appearing in egs. (D.47) through (D.54) reveals that the
only integrals which need be evaluated are the following:

hI(y*) Te(¥*) (o) 1(o%oBy %)
J(X) I(X) I(p%X) 1o(+%PX) (D.55)
1) 1,0,
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Before attacking this list of integrals, consider explicit expressions for the functions- X
and 0, viz., ‘ '

R . R R’ ~AOQR
X=—4 *R' "= -1 L S —
nfq, R'dR fe 4R = o
O
and R | R
0= [ XR'dR"= —— [ R (1R 1)gr’
f i) f S )a
[¢] [¢]
1 .
= — {¢iar) [12R - gR)]
(i)2 |

- [e-iﬂR - 1-(HQR) - (—‘iSZR)2 / 2]}

Introducing the abbreviated notation

- x=-iR,
then
-4my* =e* /R ;
X=R<ex_l> ;
X
and

6=R3{(ex—1-x) /xz—(ex—l—x-x2/2)/x3}

From these expressions 8 can be seen to be related to Y * and X as

Q20 =4qR2y* +Rx [ 2+ X

= 47R2y* - iQR2 /2 + X .

(D.56)

(D.57)

(D.58)

(D.59)

(D.60)

(D.61)

(D.62)
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'Returning to the problem of evaluating eq. (D. 55), recall eqgs. (D.20) and (D 22) SO that
on referring to.eq. (D.46),

309 = [ (s + vigurav = Raagle@ + %, [ vty

B Ee
€
vt
A
ncaele(‘]’*) e X |y - (D.63)
Similarly,
V+
1,0X) = a A LX) + 1,0 (D.64)-
-
Next,
I(PPY*) = f(a i, + vt )pw *dy
v—
A —_ N o A
=agn,Je (py™*) +t,pX +-tefde (D.65)
v
v—
= agf I BU) +TepX | Al le(X) -
+
v
Similarly,
V+
1,0PX) = af L BX) + 800 | E,T1.0). (D.66)
-

Recalling that eq. (D.12) contains a term multiplied by 2 and noting that the term contains
Ie(0), eq. (D.12) involves eq. (D.62); hence, consider

iQ
Q1,(0) = - T(R%y*) - = 1(R2) +1,(%). (D.67)
Each term of eq. (D.67) is treated separately as follows:
Ie(Rsz*) =f<v2 + ae2 + hz)\ll *dv =fvdX + (aez + hz) I, (™)

- _
—fde+(aez+h2)Ie(gb*) =vX
+

A%
v
,
13|+ (a2 +n?) (-v);

v .

VX To (X) + (a2 + h2) 1w ®)

V+

1. (r2)
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thus,

vioo vt '
21(6) = 20X - (1,2 +02) 1y -vX | _ .‘%Z- (3 13)] +(a2*n)(-v). m.68)
A v
Similarly, consider
Q23(0) = -hZI(Y*) + 1(X) - T agl () (D.69)
. (&

~ The above results complete the reductions which are possible without becoming heavily
involved in the theory of special functions. For the treatment of the remaining integrals,
recourse is made to techniques that involve approximating the integrand with expressions
that are integrable in closed form.

D.4 APPROXIMATIONS FOR EVALUATING THE FUNDAMENTAL INTEGRALS
This section treats in detail the computation of the fundamental integrals Io({), 1e(X), hJ({),
J(X), and J(6). The approach which is used is this: Treat singular parts of an integrand
separately and use a high order polynomial approximation on the regular part of the inte-
grand (also, functions of R are approximated by polynomials in R).

For the evaluation of J integrals the operations are as follows:

The unsteady kernel function, viz.,

1 e-if2R
Yr=-— —
47 R ’
is expressed as
\p* = lPO + *\lj
where -
1
=- (D.70)
Yo 4R
is the steady kernel function; hence,
=yt -y = (AR 1) /R, (D.71)

The function *y is an analytic function of R;consequently, it can be estimated quite
accurately by polynomial interpolation.
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In general, the approximation procedure consists of determining the coefficients for the
approximation having the following form:

™Mz

*w%*{p,z

n

C, (*¢) R, _ (D.72)

0

" All that is required of this approximation is that it be accurate for values of R ranging

over the boundary of the panel. (The reason for this is shown below.) Recalling the
definition of J, i.e., eq. (D.45),

¢ +
=% f #ydg - 2mCy *Y(Ih ) (D.73)

since *J accurately approximates *y on the boundary,
be +
QALY / *wd¢ 2nCy*y (i)
€ Qe
~J (*J) - 21Co {*¥(Inl) - *F (Inh)}
N
nZOc (*PIIRM) - 20C, Ly (Inl) - * (D) (D.74)

where the presence of the second term allows *{(lhl) to be a relatively poor approxi-
mation to *y(h).

In a similar fashion, X and 6 are approximated by the formulae:

N
n:
N
0 ~f= Z Cn(G)Rn ~ (D.76)

n=0
where a higher degree polynomial is used for @ than is used for either *¥ or X for
two reasons: (i) it involves no greater computational cost and (ii) the limiting )
behavior of 6 as £ tends to zero is given by

£2~0
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thus, if N=1,N + 2 3 will be required to follow the behavior of 8 in the limit of small
frequency. Using the approximations shown by egs. (D.75) and (D.76),

N
I~y C (X)J(Rn) 21C, { X(l -X (I} | (D.77)
n=0
N .
JO)~ T Cy(0)I RM) - 2nC, {aclnl) - (D.78)
) n=0
- The task of evaluating the integrals has now been reduced to one of computing hJ(\[/O)

and J(RM for n = 0,...,N+2. Those operations are facilitated by a recursion formula for
J(RD), Using the definition of J(f), i.e., eq. (D.45), and some of the identities derived in
the preceding (viz., egs. (D. 1) (D.27), and (D.46)),

+
IRM = ¥ f R%dp - 27 Co " = 3 f (p% +n2)RD-2 dp - 2702 €, 12
e ¢ € e
6o" v
: azdv :
=) / p2RM2 2 S+ n25(R1-2) = 3° f 2 RP2 dy +421 (R1-2)
e do p e v
. (D.79)
= Z aele (Rn—2) + h2J (RH—Z)
€
For n =1, note that
1 -
-1 B2 RD=n(w o)) ; (D.80)

consequently, egs. (D.79) and (D.80) provide a recursive relation for evaluating J(R™) for all
n if J(Y,) and J(1) are known. From eq. (D.46)

P T
=y f dp-21C, =0 (D.81)
€ ¢~ ’

because the panel edges form a close curve; thus, only the integral hJ(y ) is required.

The integral J(Y ;) has been studied extensively and these studies (ref 17, appendix J.7, J.8; ref 19 ‘
. appendix G) have led to two basic forms, called the standard rationalization and the special rationali-
’ zation. The standard rationalization is given (the quantity J of equatlon J.8.98, ref. 17 is to be iden-
tified with hJ(gbo))

hJ(Y ) = -sgn(h) [77T Z(ﬂ Ph (X, YC))] v (D. 82)
panel
corners, ¢
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where :
: X =_h2’t‘ -‘/t\_ ~a,a,
c ¢ c 1 cc (D.83)

N
IhIRCtC-IXtC

and the phase function, Ph(.,.), defined by
Ph(X., Y.) = arg (X +iY),-r<e<m

is essentially equivalent to the standard intrinsic Fortran function ATAN2. (It is pertinent to remark
that the expression [ -J (gl/ ) 1 of this document is equal to the expression H(1, 1 ,3) that flgures SO
prominently in appendlxes D and G of ref. 19.)

The edge integrals, I, are determined using eq. (D.79) for values of n=1,2,...N+2.
The procedures for I.(¢) and I(X) follow by combining eqs. (D.71) and (D.72) to obtain
N
sy~ = 3 Cp () RD, (D.84)
n=0
Applying the operator I, to this relation and to eq. (D.75) yields the following estimates:

N
e(w)~1 (1/R)+ 3 C,(*y) I, (RM) (D.85)
n=0
and
N
(X))~ 3 CuX)I,(RM) ; - (D.86)
n=0

consequently, the computation required consists of the evaluation of Ie(RK) for
K =-1,0,...,N. This is exactly the same set of information which is required for the
evaluation of the. J integrals, cf. eq. (D.79).

The following provides a recursion formula for the required integrals:

ot +
€ , Ve
1, (RK) = f R¥as' = f (v + 8e?) RX2ay
Ve Ve -
for
geZE Pe2 +h2
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' +
- \/
1,(RK) = f © 2Rk gy 4 g2, (Rk'2)
+
kyfve ¥ ,
- v<5—> f " Ray +g,2 (RE2)

Ve Ve

e _11_(_ I, (RK) +ge2(Rk—2>

'Rearranging terms yields the recursion formula as

: +
v
k ¢
Ie (Rk> = E_I_—] .% ka + ge2 Ie (Rk—z)
Ve

=T<%1l A(vRK) +EJI:—1 221, (R<2)

where
+
e

\4
A(vrR¥)= vRE
Ve

This recursion relation reduces the requirement to that of evaluating (1 /R) and L (1).

These integrals are evaluated as
Ie(D) =f dc' = AV
E, '

where
AV= VF-Vg

while

I(l/R)—de— f dv
. Y A v
EeR B, | v2+e2

+

1 <V+R> Ve
=—=4n

2 v -R _

Ve

(D.87)

(D.88)

(D.89)
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-D.5 POLYNOMIAL ESTIMATION PROCEDURES|

" The preceding provides the procedures for evaluating the near field panel influence coeffi-
cients with the exception of the polynomial estimation procedures for *y,X,0. Those
polynomial estimation procedures are derived in this section. One of the principal consi-
derations in constructing the polynomial estimates is that they be analytically precise
in the limit as § tends to zero. Since the limiting forms of these functions are

1 .
o iR) (i2)2R~>0
| ?)
X~R-—iQR">R

9 ~ R3/3->R33,

motivation is provided for requiring (at least in the case of small frequencies)

4

* +iQ = O(R)

In fact, it is convenient to require a somewhat stronger condition for *J] , Viz.,
~ 1 .
) +iQ ——i(lﬂ)zR =0 (Rz) asR—> 0.

Consequently, if the estimates of *i, X, and 6 are required for values of R such that
QR< 1, the estimates can be chosen to have the following forms:

* 0 -2 Q2R + R2
=-iQ2 - - Q4R + R“P R
Y > N-2(R)
X= R+R2Py,(R) | for QR <1
6= R3/3+R¥WPp_H(R)
where R i, is the minimum value of R for which the approximations must be accurate

and Py_) denotes some polynomial (different for each function *xp X, or 0) of deg,ree
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less than or equal to (N-2). Since a polynomial of degree . (N-2) is determined by its value
at (N-1) points, the functions *J,X, and 6 must be sampledat (N-1) pomts in order to
determme the precise forms of the approximations.

The reason now becomes clear why it is convenient to fit the first two terms of the Taylor
expansion of *Y and the first four terms of the expansion of X while requiring the degree
of 6 to be (N+2) rather than N. With this choice there is a fit to the analytical behavior
of these kernels for small R while the number of the remaining degrees of freedom is
identical for each of the three functions. Since the functions of *y,X, and @ are all
structurally similar, all three functions can be evaluated at the same (N-1) points. This mode
of evaluation requires substantially less computational effort than would be required were .
each function evaluated at a different set of points.

Eq.(D.90) describes the approximation procedure for the case when QR in <l
More generally, the following procedure is used.

(1) Find the minimum value, Riin> and the maximum value, R which R
assumes on the boundary of the panel and define

max:?

Rmin if QRmin > €

R, = - (D.9D)

(0] if OR i S

where, nominally, ¢ =0.1.

(2) The functions *y,X,8 are fitted, for R e[R Rmax]’ by the polynomial
forms

T =1 Ro)* ' (Ro) R-Roh+ (R-Ro) 2Py s (*9) (D.92)
X=x (RO) +X'(Ro) (R-Rg) + (R-Rp) 2Py (X) (D.93)

R-R
Z 00 (R,) (___) + (R-R)4 Py_,(0). (D.94)

- j=0 it

(3) The remaining (N-1) degrees of freedom are determined by sampling *,
X, and 6 at ““constrained Tchebysheff absicissae” pomts chosen to globally
minimize the expected error in the estimation of *w and 8. The sample
points, denoted as R; have the form
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Ri=Ro+ (Rpay ~Ro) NV fori= 1, N-1 (D.95)".

~ where ti(“) are normalized interpolation points' which must be determined by

solving J nonlinear equations in the following. When the functions have been
sampled at these points, the remaining degrees of freedom are constrained by
interpolation.

The value of N, the degree of the approximation, remains to be chosen by a careful
error analysis of the above procedure, see sec. D.6.

Consider the following class of polynomials which are called “constrained Tchebycheff
polynomials” and which are associated with the optimal choice of interpolation points
for the constrained interpolation problem,

£(x) = £(0) + xE' (0) + x2Pp_H (50 for 0<x<1. (D.96)

A set of basis polynomials is characterized as follows

2.

Py=1,P1=x,Py=x (D.97)
and, for m> 0, P+ is characterized by the conditions:
P 42(0) =P 1~(0) =0, P 1r(1) =(-1)M, (D.98-a)
Pm+2 has m extrema between 0 and 1 at X; fori=1,...,m and these extrema satisfy
Pt (X =0 (D.98-b)
P40 (X)) = (-1i] (D.98-c)

Diagramatically, the basis polynvomials appear as
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0 AP Py
1.0] | 10} 10t
0 —x 0 —x 0 X
y P3 10 AP4 1.0 ‘}Ps 1.0
1.0 1.0 10
0 f— x 0 — X 0 X
-1.0 1.0 10
1.0 1.0 10

The problem is to find the extremum points of P+ forall m and, in this way, charac-
terize the family of basis polynomials., Once the basis polynomials are known, their roots

can be determined to obtain the natural analogues of Tchebycheff abscissae. The roots of
' P+ (which are N—1 in number in the interval 0<x<(1) provide the evaluation points of
f(x) for which the optimal solution to the problem is obtained.

The nonlinear algebraic equation which must be satisfied by the set of extermum points

for P ;- is derived as follows. Using the conditions eqs. (D.98a) and (D.98c), it is clear

the P, 1 7(x) may be expressed in terms of the numbers X; by the following formula (Lagrange
interpolation):

m
P20 = 20 (DI 85000 /8;0x) + (1M 8,410 / 8,41 (1) (D.99)
i=1
where 0 m
6i(x) = x4(x-1) Il (x -Xj) (D.100-a)
i=1
jFi
0 m
Smt1 0 =x" I (x-x).
i=1
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The actual positions of the points x; are then determmed by improving the constramt shown

as eq. (D.98b). Computmg Pm+2(xl)

- 1
Pt (Xi0) = 5 i (x / 8:)

1 Xk = X{
i#k
o 1
k-1
+(-1) — te— f
Xkl =1 Xk X1
i*k
+(-Hm (Bk/ﬁ (D.101)
where
8 = 8 (%) > Om+1 = O (1) (D.102)

Eq. (D.101) motivates the definition of a function F as follows

1 (- l)i-l (_l)k—l
Fi(x) = Z +
K (- Xl)[ Oy
1#1(

1 - m _ k-1 2
[5(1) PGl }+(-1)k'l .

(Xk ‘1) m+1 8k Xk 6k
: m+] .
el 2y L fent ek
X1, & X1, - X; 5. + s
k% =1 k7K i k
' i#k
m+] '
P(x)= 35 (DI & () / 85y
i=1
m+1]
=2
6;(x) =x jlzll (X - Xj)
JFi
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—

Xm+]
o 800 8
P =3 DF
i=1 8; (x)  8i(x))
' m+] ' m+1
i _2 ! St 2 v
0 x = xx TG ST
. _]=l ] ]=1
j# J#i
N
05 (M) =Xk ngk (X = %5) =0k / (¥ - %)
. 8 /8,
P =Y D —Z 4kl =+ 2
i=1 (Xk— i Xk J=] Xk...
i#*k j#k
_ 2=Dk! s L [eo | ent
e N I O
i#k
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'D.6 ERROR ANALYSIS FOR CONSTRAINED POLYNOMIAL FITTING

In this section a rigorous error analysis is presented for the polynomial approximations to
the functions *w(R), X(R) and #(R). The error bounds are relative error bounds;
- for *y, the error bound takes the form

[y (R) - *P (R, oln.

Here, *y(R) is the transcendental function to be approximated by a polynomial in R,
*Y(R) is the associated polynomial approximation, and *y,o is a “gauge function”
chosen so that the following approximate bound holds:

¥y (R) | #,0/<1.

The small positive number 5 measures the relative accuracy of the approximation. It turns
out that because the function *y(R) is analytic in R with all of its derivations nicely
bounded, a value of n = 10-10 can be achieved for all practical purposes by polynomials

of degree less than or equal to 8.

Now, in the evaluation of aerodynamic influence coefficients, integrals of the form

ff*xpds' and f*gbdqb
Ze

Ee

are approximated by computing the corresponding integrals for the polynomial approxima-

tions, that is,
ff,"‘$ds' and f *Jde
Ee

Ee

Using the relative error bound for *y given above, the quality of these approximations is
assessed by means of the following integral error bounds:

ff #yds' - ff*k’llvds' max MAs’ and f *Yde - f *$d¢ max 17
Ze Ze

< l*w,o

<'*w,o

Ee Ee
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‘From this, it is easily seen that n provides an appropriate estimate of the relative accuracy
of the integrals as well. Thus, a relative error bound for the polynomial approximation
*y translates directly into a similar relative error bound for the required integrals.

Having described (in a general sort of way) the nature and the purpose of the error bounds,
it is now appropriate to present and derive the precise error bounds that are required. As
a beginning, this presentation and derivation requires the development of some notation.

The functions *y(R), X(R) and 6(R) for which polynomial approximations are desired
are given by '

*p(®) = (AR - 1) /R

R
X(R) = f JRIR'GR' = (AOR 1) / (i
0

R .
OR) = [X(RHR'dR'=R3 l[e'iQR -1- (—iQR)] / (HQR)?
0

- [e'iﬂR -1 - (HQR) -%(-iszRﬂ] / (—iSZR)3l .

Note that for small frequencies (£~0), the functions *i, X and @ exhibit the following

- limiting behavior:

*y =40 +0 (22)
X=R +0(Q)

0=R3/3+0(Q)

These limiting properties motivate the definition of the “gauge functions”™: *y¢,, XO, 0 o
which will be used later in the statement of the error bounds. The definitions of the gauge
functions are as follows:

*¢3OE'iQ

X

o=R

=R3
0,=R3/3,

(D.103)

(D.104)

(D.105)

(D.106)

(D.107)

(D.108)

(D.109)
(D.110)

(D.111)
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Now, when approximations are desired for the *y, X, and @ for R lying in the internal
[Ro, Rmax], the approximating polynomials are assumed to have the following structure:

“P(R) = *y (Ro) + *¥' (Ro) (R QRO) + (R+Ry) 2Py, [*W1(R) (D.112)
X(R) =X(Ry) +X' (Ro) (R -Ry) + (R -Rg) % Py [XI(R) (D.113)

3 . . ) ; ’
BR) =Y 0D (R)(R-R)I /it + (R-Ry)* Py [0T(R). (D.114)

=0

Here, PNLo [f1(R) denotes a polynomial of degree N-2 in the variable R, determined by the
function f. (Note: N is restricted to be greater than or equal to 1. For N=1,N-2 =-]
and the convention is adopted that P_1[f](R) = 0.) The coefficients of the polynomials
PN [*¥ ], Py 5[X] and Py_5[0] are determined by requiring that the polynomials

*w, X, g agree with the functions *y, X, 0 at the N-1 values of R, viz.,

R =Ry + (Rpax - Ro) D i=1,2,  N-1. (D.115)

The numbers Zi(NH ), i=1,...,N-1 are the non-zero roots of a polynomial PN_l_l(x) having
the form
N-1

PN =Knyp X2 T (x—zi(NH)). (D.116)
: i=1

The polynomial PN+ 1(X) is a “constrained Tschebycheff basis polynomial” which is a
family of polynomials that will be described below.

The accuracy of the polynomial approximations, i.e., eqs. (D.112), (D.113), and (D.114), is
determined by two parameters:

(i) N, which determines the degree of the various polynomial approximations,
and

(i)  A¢, the total phase variation experienced by the function IR gor

Re[RGR o]

where it should be noted the A¢ is given explicitly by _

46 =| 2 (Rpax - Ro)|. (D.117)
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For R lying in the interval [RO,Rm ax ], the accuracy of the polynom1a1 approxima-

tions, i.e., Egs. (D.112), (D.1 13), and (D.114), can be described precisely by the following
relative error bounds:

|G -=3) 1 *v.0| < (A<z>)N+l  ((D.118)

. [ (x-%)/ %, |<DN+1 (AN (D.119)
C

’ (6 -) /0, |< N+3[£I—j—12 AN+ Dy (A¢)N}. (D.120)

‘The parameters CN+1s> DN+ (tabulated in Table 8) are called “truncation error
coefficients”; they decrease rapidly with increasing N. The bounds, viz., egs. (D.118)
(D.119), and (D.120), clearly show that if N is chosen large enough that

CN+1
N+1 (D.121D)
Al <
N+ 2( ) n B
and
Dy (Ap)N <, (D.122)

then the following relative error bounds will immediately follow:

(9 - #9) F*9,0l<n
X-X) /Xy 1<n

~ -3
0 -0)/601<Sn

Thus, for any specified error tolerance, 1, an appropriate value of N is selected so

that the two inequalities: eqs. (D.121) and (D.122), are enforced, consequently, assuring
sufficient accuracy is obtained in the polynomial approximations: eqgs. (D.112), (D.113), (D.114).
It is pertinent to remark that for A¢ =27 / 6 (so that [Rg:Rpax] spans 1/6 of a wave

length) and n = 10-10 (10 significant digits), the 1nequaht1es egs. (D.121) and (D.122) are
satisfied provided N > 8. A fairly complete table of the maximum phase variation,

: ) Ag, allowable for a given N and 7 is presented in Table 9.
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Table 8. — Truncation Coefficients* and Zeros ** of Constrained Tschebycheff Polynomials

N 2 3 4 5 6
C(N+1) .176488E-01 .788915E-03 .327165E-04 .120822E005 .396476E-07
D(N+1) .333095E-01 .261056E-02 .168479E-03 .894424E-05 .399135E-06
T .894107456974979 |.606717423814530|.418254069443174 |.301674740674210|.2265954 19540605
2, .9518566 18566651 |.761423683974629 .590322089237812 |.462063955210008
L 3 .971712927869628 |.838296069702794 |.694739789581133
4, .981195629247498 |.882789721841533
5. .986532130357020

N 7 '8 9 10 . 11
C(N+1) .116355E-08 .307903E-10 .740598E-12 .163101E-13 .331018E-15
DIN+1) .152913E-07 .511954E-09 .151990E-10 404951E-12 .097958E-14
1. .175946932336543|.140351289637167 |.114455639954652 | 09586280094 1203 | .080180344720937
2. .368204640983135 |.298873937094264 |.246743790067857 |.09506280094 1203 |.080180344720937
3. .574775757973370|.477851060077372 {.401168084345066 |.340339265992784 |.291682130160915
4, .765287083020215 |.6565248984 16237 |.663272199002783 |.485427407681714 |.420942838028783
5. |.911009103656216 |.813554821066919|.717353855456647 |.630434630202327 |.554690530009402
L 6. .989854498274183 |.930077552626063 |.848391222077275 |.763662228532745 |.683850675866850
7. .99207 1284053473 |.943584280361694 |.874338729060653 |.79963916 1635557
8. .993627507931414 |.953508620868845 |.894 174252256846
9. .904763511480262 |.961018408761163
10. .995618902517403

*C(N+1) and D(N+1)

* % N'1
{N+1) ,
{Zsz }sz=1

PN (XUN=2,.0, 1
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Table 9. — Maximum Admissible Phase Variation*

M* *

N 4 6 8 10 12
2 .0762 .0075 .0008 .00008 .0000075
3 .4992 .1075 .0232 .0050 .0011
4 1.3244 4188 .1324 .0419 .0132
5 .2.4179 .9626 .3832 .1526 .0607
6 3.6825 1.7093 7934 .3682 .1709
7 5.0646 2.6232 1.3587 .7037 .3645
8 6.5074 - 3.6694 2.0578 1.1572 .6507

9 7.9904 4.7902 2.8717 1.7215 1.0320
10 9.5116 6.0014 3.7866 2.3892 1.56075
1 11.0543 7.2730 4.7852 3.1483 2.0714

*Maximum phase variation, (A¢)max, for a polynomial approximation of a given order N
and relative accuracy 7.

*¥*

n=10M

-logqqg (M N] (significant digits)
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Having stated and discussed the fundamental error bounds: egs. (D.118), (D.119), (D.120), it
is now appropriate to present a derivation and proof of their vahdlty .

oo
As a starting point for this discussion, consider a family of polynomials {Pi }i=0’ called
“Constrained Tschebycheff basis polynomials.” These polynomials are characterized by
two properties:

(i) Forj=2, P (x) = O(xz) asx —~> QandP; (x) has j-2 zeroes in the interval
0,1) (Constramt property)

(ii) Pj(x) oscillates between -1 and +1 for x€[0,1] (Tschebycheff property).

The first of these two properties, the constraint property, allows one to write down
immediately the formulae for Pj(x),

Po=1
Pr=x (These are defined in this way by convention.)
, D.
P, = 2 (D.123)
i-2
P K x2 I (x 28))
=1
The Tschebycheff property now determines the placement of the zeroes ZQG) and the
value for the normalization constant K In practlce the polynomial P (x) is found by
computing the “‘external ordinates™: (i)
.
[ L=1,
viz., points satisfying the conditions
g ® @ i
x]<xy <. <xi0) < x @ =1 (D.124)
Pj' (XQ(j)) =0 2=1,2,...,j-2 (extremal property) , (D.125)
Pj (xQ(j)> = (-I)Q'1 2=1,2,...j~2 (oscillation property). (D.126)
Using the characterization shown by eq. (D.126) together with the constraint P; (x) Cx?
for small x, P:(x) can be written explicitly in terms of
l x (J)} j-1
2 1g=1
by using Lagrange interpolation basis functions (c.f. ref. 19, pp 284-285). One finds that
j-1
Pix) =Y, -D¥I 5Q(X) / 8(%9) (D.127-)
g=1
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where SQ(x) are given,viz.,

g0 =x2 1 (x-x9). (D.127-b)

This representation, coupled with the external conditions eq. (D.125), then provide (j-2)
. unknown external coordinates xQ(J), 2=1,...,j-2. Solving these equations numerically
by Newton’s method,eq.(D.127)provides an explicit representation of the function P(x).
The representation shown by eq. (D.123), in terms of the zeroes ZQ(J), can then be
P obtained by solving the equations:
P; (ZQ(J)) =0

This has been done and the zeroes zg (Nﬂ) 2=1,.,N-1,N=2,.,11 are tabulated in
table 8. Having computed ZQ(J) the condltlon eq. (D 126) with £ =j-1 provides an
exp11c1t and useful formula for the normalization constant K One obtains

j-2
(-1)i‘2=Pj(xj(H)=Pj (1) =K; Jn (1 -ZQG))
2=1

so that
j=2

K=l (1-20) | (D.128)
0=1

Having described the constrained Tschebycheff polynomials in sufficient detail, the error
analysis can now begin.

Suppose that a function f(x) is approximated on [0,1] by a polynomial fN(x) of degree
N by requiring that fjy(x) interpolate the following (N+1) pieces of data:

f(0), f'(o), f (ZQ(N“)) ,0=1,2,..,N-1.

- Thus, fjy(x) satisfies,
. fiy(0) = £(0)
fN'(0) = £(0)
+1)) = N+1)) ¢=12..N-
i (zeMN*D) = £ (zgND), 0= 1.2, N1




When these conditions are satisfied, the standard error analysis for polynomial interpolation
then provides the estimates (c.f. ref. 19, p. 278)

NDe 5 e (N+1)
(00 - N0 =7y X (x-2,ND) .. (X-ZN_l ) (D.129)
Using eq. (D.123) with j = N+1, one can then write | -
I L L :
CO-INO=D Ky

Now, since [Pj(x)lgl for.all xe [0,1], the error bound
Jf0) - 00 | <Cpya HNFD )], £et0,1] _ (D.130)
follows directly provided the truncationb coefficient Cyy4q Is defi_ned by
et = 1/ [N+ DU KNy] (D.131)

The bound eq. (D.130) is of fundamental importance in the subsequent error analysis.
It shows that the error associated with the specified polynomial interpolation process

is determined by a constant Cy41 > depending on the order of the fit, and the modulus
of the (N+1)st derivative of f. The coefficients Cyj4 decrease very rapidly with

increasing N, an approximate formula being given by 17.15x27" ON = 17.15x10 406N,
Thus, each extra term in the polynomial approximation provides an improvement in
accuracy of about 1-1/2 decimal digits.
Another useful bound can be obtained from the estimate eq. (D.129). This bound
reads as follows
(%) - fy(0) | < Dy 1x 1 [fNFD () (D.132)
where Dyj4p is defined by .
1 max (N+1)> (X (N+1) }
= — -7 s e - . . D.133
PN+ = [ 37 0<x<1 X(x 1 N-1 (D.133)
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" The bound eq. (D.132) will be useful in obtaining the relative error bounds for X, viz.,
eq. (D.119). The coefficients D41 also decrease rapidly with increasing N, an approxi-
mate formula being given by

Nn+p = 27.9x27444 = 2795107134

Finally, before applying our results to the functions *y, X and 8, one final estimate is
stated. Suppose that a function g(x) is approximated on [0,1] by a polynomial gN+2(%)
of degree N+1 by requiring that gn4o(x) interpolate the following data:

£(0), £'0), £”(0), £"(0), e{zg™*D) | € = 12,.. N-1.
Then the standard error analysis for polynomial interpolation gives

(N+3)(§

(N+1)
80 - gy (0 = ———— x4 (x 2 (VD). (x ing) s k0] (D.134)
(N+3)! -

Having obtained the fundamental estimates, viz., egs. (D.129), (D.132), (D.134), the error

bounds, i.e., egs. (D.118), (D.119), (D.120), can now be obtained. Consider first the bound
(D.118). Deﬁnmg the variation of R ,i.e., AR, as

AR =R .« -R,, (D.135)
a function R(x) is defined for xe [0,1] by writing
R(x) = (R, + ARx) e[Ry, Ry - (D.136)

Applying the estimate shown by eq. (D.129) to the function f(x), i.e.,

f(x) = *Y (R(X)) = (e'iﬂR(X)- 1) /R = (<) [(e‘iQR(X)- 1) /(—iQR)] (D.137)
one obtains

|*),[/(R(x)) - *$(R(x))| = lf(x) - fN(x)l‘ < CN+1 |f(N+1) (E)I for &e [0,1] . (D.138)

Now f{NH)(x) can be easily computed from eq. (D.137) to find

N+1
(N Dix) = (-ig) [ -iaRINY! (%) [€2-1) s Z] 2= 4OR. (D.139)
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By a fairly straightforward compufation, the identity

d\P[fe?-1 1 |
d __1 ¢ (D.140)
<dz> < . ) i Ofredf |

is easily proved. Applying this identity with p = N+1 then yields

N+1

@ 04

for ¢ =-iQR7.

1
ion = ——— N+l ($qe = er“ e1ORT4, (D.141)
z = iR (-IQR)N+2 f § e § J
0

The integral on the right has the following bound:
!. ! I 1
] AN iR 7g, | < JTN” AR 4r < [ NHlar< —. (D.142)

\ N+2
(&)

Substituting this result into eq. (D.139) then yields the bound for t(NH)(x), viz.,

| (N D] <10 110aR i —1—\115 (D.143)

Substituting this bound for the (N+1 )St derivative of f into eq. (D.138) then yields

~ 1 '
[*y - 3| <Cn+p 12! 1QAR]| N+l Ne2 (D.144)

Recalling that *y,0=iQ, A¢ = IS2AR|, the relative error bound follows directly as:

(v -*7) 1 w,ol apl !

as asserted by eq. (D.118).
Next, the error bound, shown as eq. (D.119) for X, is proved. Applying the bound
shown as eq. (D.132) to the function f(x) defined by

f(x) = X(R(x)) (D.145)
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one obtains

X-XI<Dpy XD ] L . (D.146)

Now the (N+1)St derivative of this new f(x) is given as

N+1 N
f<N+1)(X)=< i ) + (2R - 1) i) = (d;';) [AReQR ()]

= (AR) (4QAR)N ¢-2R(x)
so that

[{N+D] <ar @agN. | (D.147)

Substituting this bound into eq. (D.146) and dividing by the gauge function, given by
X, = R, yields the following bound:

AR
D+ XARAGN =Dy, AN (x ) .

~ 1
- < -
[X-%) 1Xo| < & o

This result directly implies the bound eq. (D,119) by virtue of the inequality

xAR _R(X)-Rg
R(x) R(x)

=1-R,/RX <1 | (D.148)

which implies
[xAR /R <.

Finally, the error bound, shown as eq. (D.120), is proved. Applying the estimate eq. (D.134)
to the function g(x),

gx) =6 (R(x)) (D.149)

one obtains

N-1
~ 1 d
: 2=1 D

(N+3)!




A straightforward computation yields the following equation for the derivative expression:

N+3 : >N+2

d _/d | -
<Ei;> [6(R(x))] ~<d_x [R(g)X(R(X))]AR

- (£) ™ [ XRe)) + ReADR | (aR)?

((%)N [2-iar) R ] (aR)?

(N +2-iQR)e 2R (ioaR)N (AR)3.
Substituting this into eq. (D.150) and dividing by the gauge function 0o= R3/3 yields

' 4 N-1
~ 3 X :
- - =z _ . (N+D) s -iQR N 3
0-0)/0, N3 3 Q=”1 (x zg ) I:( N-1I~2 1&22R) e (-iAg)" AR jl .

Breaking this up into two terms as indicated yields

_a -iQR,_; N 3 N-1
0-6 _ 3 (-iAg) (N +2) <ﬂ> x I (x - ZQ(N'I'I)) 1
0, (N +3)! R

2=1

2 N-1 |

AR

+ (H0AR) <f——> <x2 m(x-zgN*! ))> 2
R 2=1

Bounding this expression, one obtains

.1 - N
< 3:1-A¢
(N+3)!

[(_N+2)-1' [N+ DDy + 180l 1+ [v+ 1! CNH]] . (@IS

0-9
9

0O

In obtaining this bound, the definition of Dyy4 shown by eq. (D.133) has been used
together with the bound eq. (D.148) and the following identity:

j-2 Pnay
max | x2 T (x - ZQ(N+1)> ‘ - max| NI = = (N+D! CNgp-
x f=1 X | KNt KN+
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Rearran'ging the bound eq; (D.151) slightly now yields the required form of the bound,
cf. eq. (D.120):

e
3 N, N+ N+]
SN+3 |:DN+1 (Ag) ~N+2) (A¢) :l

\0-(?

9o

D.7 FAR-FIELD APPROXIMATIONS

Recall that the panel influences, viz., egs. (C.128) through (C.139), describe the potential and
the gradient of the potential induced at the field point P as the result of source and doublet
distributions on quadrilateral surface panels. If the panel influence at the field point is
evaluated, letting the field point recede to greater and greater distances from the panel,

then the panel influence is found to depend less and less on the details of the panel source
and doublet distributions; in fact, if the field point is sufficiently far from the panel, the
panel influence appears to be that of a point source and a point doublet. This observation

is the fundamental idea underlying the far field approximations to the panel influences.

The kernel function, Y *, and its gradient,?;'x[/*, are approximated by a truncated Taylor
series expansion, and the panel influences are manipulated and separated into the sum of

a product of two kinds of components. These two types of components are called kernel
moments and panel moments. The kernel moments depend only upon the field point location
relative to the point of expansion and are, in particular, independent of the geometry of

the panel. The panel moments, on the other hand, depend only upon the geometry of the
panel and may be computed once and for all before any panel influences are computed.

Because the kernel function, ¢ *,exhibits singular behavior as the field point of evaluation
approaches the point.of source or doublet definition, it is clear that the concept for far
field expansions must break down as the field point approaches the point of kernel function
definition. Asa consequence, the far field expansion is applied only when the distance R
from the fleld point P to every point Q on the panel is bounded substantially away from
zero. Let q0 denote the position of the point QO lying more or less in the panel center
and let Q, be the expansion point. Letting D denote the position of the field point, the
condition for bounding the field point away from the panel is expressed as

R (3,) = | (5-3,) | > KD | (D.152)

where D denotes the panel diameter measured in the scaled coordinate system, c.f. sec.
C.1. The constant K- has been chosen as follows:

K= 4 dipole far-fields (D.153)

{ 1.5 quadrupole far-fields
12 monopole far-fields
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where the terms monopole, dipole, and quadripole refer to moments of the kernel func-
tion, and are defined in the following.

In addition to the condition shown by eq. (C.152), which is adequate to ensure that the function
1/R is adequately approximated by a truncated Taylor series, it is also necessary to ensure
that the total phase variation over the panel, viz.,

A= (Rmax - Rmin) s | (D.154)

is sufficiently small that adequate accuracy is achieved. Roughly, to indicate the nature of
the requirements imposed by this condition, consider table 10 showing the value of A¢
admissible for the monopole, dipole, and quadrupole approximations when the error in
the approximation to the function,

¢l$

is less than or equal to €. The approximation is given by the truncated Taylor series:

N r.
b ity) 3 [16-99]] (D.155)
j=0 j!
and table 10 shows the value of A¢ for which the approximation attains the accuracy e

in the interval | ¢ ,-A¢, ¢, + Aq&]. Since the absolute value of the error entailed in the
approximation is provided by Lagrange remainder theorem, whence

N ( N+1
y i(¢-9)] |¢-9,|
i _ .ip [ o = 19
croene Z it (N+1)!
i=0
the admissible range for ¢ for a given N and a given € is
ap=[(N+1)re] /AHD, (D.156)

Table 10 is based on eq. (D.156).

These remarks are aimed at describing the accuracy of the procedure; the following
describes the details of the procedure itself.
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Table 10. — Admissible Panel Phase Var[ation'* Related to Truncation Errors

€
N .001 - .003 .01 03 -4 -3
1, , _
monopole .045 077 141 245 .447 775

2, _
dipole .182 .262 .391 .b65 .843 1.216

31

. quadrapole .394 518 - ..700 921 1.245 1.638

*Value of Ad such that, for (¢, - Ag) < ¢ < (P, + A¢), the approximation

. \ ‘
6 i [@-9)]
el® = ¢i% —

\
|
is accurate to within €
\
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As stated above, the underlying principle of the far-field approximation follows from having
replaced the actual kernel functions by truncated Taylor series approximations; therefore, as
a starting point for describing the far-field approximation procedure, consider the Taylor
series expansions for the kernel function and its gradient, viz.,

y* = - L_LLR e-i2R
T

and

v Y, .

where these expressions are in terms of the scaled coordinates introduced by sec. C.1.
Proceeding in such a way as to preserve maximum symmetry, let

wr=yr (B-a) = v* (1B~ - (@-d9)) (D.157)

where P is the position of the field point P and Ef is the position of the surface point
Q. The surface point Q. with position HO will be the point of expansion; thus, letting

PEB-AO andQEa--‘o, (D.158)
. C N2 NS Y
P= (plgijpj> and Q= <Q1gile> , (D.159)
PiEgiij and QiEgijQi ) (D.160)
1/2
[(P‘ Q‘)gu(PJ ] : (D.161)
leads to the following expansion of the kernel function:
2
Y*(R) = Y *(P) - Q! ——1 VAP +5 Q‘Q' - Y*(P) (D.162)
oP apigpi
Similarly,
Gy gk WLk T ST ay*
aQk apK apk .
= 0k j 9 I i O ) #(P) (D.163) -
A | - — PP QN —— () -0 Q) s VI 10
apk oPKap! 2 aPkapP!aP)
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Introducing the following identitieé:

oy* P oy _ ( Pm)l/zaw* P gy Pyogyx

opi  apl ap  gpi S§m p 3p P ap
32y * 1 oy Pia /1 ay* 19\2 1 ay*
o 8%ipa ipp\sae )T em) Vs P p

3 2
1 19
. =-P.P.P, [-—= *+10..P +g..P; + g.,P: -—— *
apigpigpk 1K < P 8P> v [gﬂ k¥ 8k glkpl} (P aP) v
and defining the operator D by

and substituting it into eqgs. (D.162) and (D.163) leads to the following truncated expansions of the
kernel function and its gradient:

VHR) =y *(P) + QIRDY* +— Q) (Pinszp* _ giij) (D.164)

CRTE lPka* +Ql [pP D2y * gy DY)
1 . . .
'“EQ“y[ﬁ?ﬁkD3¢*'(%Wk*gm3r+%kﬁ)D2¢ﬂ (b-169)

where the following identity has been used:
Q pl= QIP

Eqgs. (D.164) and (D.165) lead to the definition of quantities which are termed kernel function
moments, viz.,

Goy =W*(P)

: =PiD %
G v

Gy, =PiPi(D2y¥) - glipy*

P4

Gl(gf) = pipipk (D3y+) - (Pigik + Pjgikpkgij) D2y* (D.166)

189




where each of these moments has the property of a tensor which is completely symmetric
in its indices. In terms of the kernel moments the truncated expansions become

*® KR . i
¥*(R) =Gy + QG(1) *3 QIQJG ) (D.167)
vy < &y * ) * QinG?ff)>- - (D.168)
Having obtained these approximations for the kernel function and its gradient, the panel
. influences shown by egs. (C.128) through (C.139) can be evaluated for the far-field approxi-
mation. The result of that evaluation is expressed in terms of the following panel moments:
(B 1)
J = -ﬂ’sn Q  bdsforo® =228 5, . (D.168)
1 n
z 5 QQ
Win | 1 1
Y Wikn 7 =- fjmn Q ¢ npds for u* =Z mnﬁn (D.170)
| _ n
| Wijkn) e 7 QA
Fon 1
Fsin ff e e55 aga lQi ds for o i1,2 (D.171)
FB.. 2 —-QQ. B - 172
un © 2 71 & =122
where it should be noted that the entries of the F-moments are vectors; more\}er, all
these moments are symmetric in the i,j indices.
Using the above definitions, the panel influences are written in the following concise form:
. 1 .
i ij -
9= 22 ﬂsn <G(0) TQGyY gQinG(2)> ds oy
no¥,
= 5 (Gyn\E + Gl E. + Gl E--)E
= 2( ©0)En t G(1)Ein + G(2) Ejjn ) On (D.172)
n
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=L ff n <G( QG *3 QinG(4)> a0 ds ity
n

z,
| K ik ijk _
=L (G(l ) Wicn * G2) Wikn * G(4) Wijkr) 2 (D.173)
n
. | - k ki1 STANR
5T 2 f Sn <G<1>+QiG(2)+ 3 UG | axds on
. n X,
o (L ij ijk _
=3 2 <G(1)En +G(2) Ejn t Gg) Ejkn>0n | (D.174)
n .

L, k ik ijk _
Dy T 2 \FsnG(1) + Fsin G(2) * Fsiin G(4)> ny dspiyy
n

U § i6 iis\ . _
Dy = 2o '(FSnG(l )+ FsinG(2) * Fsiin G(4)> dsiiy (D.175)
" ,
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, APPENDIX E
SECOND ORDER DERIVATIVES OF THE VELOCITY POTENTIAL

The following terms appears in the boundary condition shown as equation eq. (31):
(D* v WS) i
and this term contains the operations:
— - - ~n -
v W=7 (T -cM,2C Tog) (E.1)
which, in turn, contains second order derivatives of the velocity potential of the steady

mean component of flow. The objective of this appendix is to present a means for
evaluating those derivatives.

Recall that the doublet strength at a network surface point is equal to the jump in potential
across the network surface, c.f., eq. (C.27). In the case of a thick body on which Morino-

type boundary conditions are applied, c.f., sec. 3.4, the potential vanishes at the interior of

the body;hence, the doublet strength at the body surface is equal to the value of the potential at
the exterior side of the surface of the body, i.e.,

b5 =l ‘ (E.2)

at the body surface. The steady flow panel method computes the doublet strength as a
quadratic function of the surface coordinates, viz.,

| 1 !
Q) = po + gk Fupn + Eﬂggfz +ugpkn + Eu,mnz; (E.3)

hence, the following second order derivatives of the velocity potential afe readily evaluated:

(8s) g = Mgt
(¢S) &n ~ Hgn
(¢s) m P (E.4)

Of the remaining second order derivatives (¢S)§§ can be evaluated using the flow equation, i.e.,

v %p -M,2 ¢ (€ -Teg) = 0. (E.5)

192




Letting
N N ~
8.8y, 8

represent the unit base vectors in the directions of the surface coordinates, it follows that.

¢ =" 1-(1\40;3;)2 [¢zs [l -(MOS-Qg)z]

+ [1 - (M€ 8y) 2] } . "A | _(E.65

The remaining second-order derivatives can be evaluated using the steady flow boundary
condition applied at aerodynamic surfaces, viz.,

which, when expressed in terms of the surface coordinates, becomes
FANEAY
¢§ = —U0 ¢ ng, (E.7)

The surface is to be represented as a quadratic function of the surface coordinates at each
panel, i.e.,

f(Ens)=0
where
) =5 - (ro gkt (nn #o Lyt + byt S §,mn ) (B.8)
and the vector normal to the surface is
A3t
s e (E.9)
where
T (g Sk * L) By - (S F Sy fgné)gn +8 (E.10)
and
[F] =V (8 + fggt + St ) T+ (g + S * S 2 1 (E11)

193




Finally, the two remaining second-order derivatives are f_orméd by differentiating eq. E.7
to obtain the following:

o=~ o & [ (<t ~Segin) (11 B )-Gr) (el (R el)2] o)

and

o ==Uo & (-Seafe~Saeta) (VFE) -ED) (Fl)/ (IS H)°] @) -

Egs. (E.4), (E.6), (E.12), and (E.13) provide a means for evaluating all nine components
of the gradient of the mean steady flow velocity potentlal
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