NASA TM - 81077

NASA-TM-81077 19800016875

A Reproduced Copy

OF

N80-25371

LIBRARY COPY

DEC 8 1980

LANGEL CERTER LIBRARY, NASA HAMPTON, VIRGINIA

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

JSC-14483 JSC-14483

Rov. 1

STS-1

78-FM-51

Vol.V

4.

÷<u>5</u>_

Operational Flight Profile

Volume V Descent - Cycle 3

Mission Planning and Analysis Division May 1980

(NASA-TM-81077) STS-1 OPERATIONAL PLIGHT PROFILE. VOLUME 5: DESCENT, CYCLE 3 (NASA) 254 p HC A12/MF AC1 CSCL 22A N80-25371

Unclas G3/16 23778

Suprimain 779-12405

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston Texas

78FM51:V JSC-14483

78-FM-51 Vol. V, Rev. 1

SHUTTLE PROGRAM

STS-1 / OPERATIONAL FLIGHT PROFILE

DESCENT - CYCLE 3

By Richard Moore, Flight Analysis Branch; Allen Baker, Richard Carter, Ralph Hite, Alan Hochstein, Jack Lyons, and Ken Strong, McDonnell Douglas Technical Services Co.

Approved:

Craude A. Graves, Jr., Assistant Chief Flight Analysis Branch

Approved: Ronald L. Berry, Chief

Mission Planning and Analysis Dirfsion

Mission Planning and Analysis Divisio. National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas May 1980

FOREWORD

The orbital flight test (OFT) phase of the Space Shuttle Program consists of four orbital flights beginning in March 1980 and continuing through 1981. The major purpose of the OFT program is to demonstrate and verify Shuttle systems and flight capabilities by satisfying the Space Shuttle Program Office (SSPO) OFT requirements (refs. 1 and 2).

This document (Volume V) presents the Space Transportation System (STS-1) descent (deorbit through rollout) data for the operational flight profile (OFP) trajectory phase (Cycle 3).

All STS-1 OFP documents for Cycle 3 and their scheduled distribution dates are listed in the following table.

	Document	Scheduled distribution date
Volume	I - Groundrules and Constraints, Rev. 2	September 1979 (A)
Volume	II - Profile Summary, Rev. 1	April 1980 (A)
Volume	III - Ascent, Rev. 1	May 1980 (P)
Volume	IV - Onorbit, Rev. 1	November 1979 (A)
Volume	V - Descent, Rev. 1	May 1980 (P)
Volume	VI - Abort Analysis, Rev. 1	May 1980 (P)
Volume	VII - OMS and RCS Consumables Analysis, Rev. 1	February 1980 (A)
Volume	VIII - Nonpropulsive Consumables Analysis, Rev. 1	February 1980 (A)

DOCUMENT PUBLICATION SCHEDULE

PRECEDING PAGE PLANK NOT FILMED

ACKNOWLEDGMENTS

The following individuals contributed to this document:

J'Ann Hansen, Dave Heath, Oliver Hill, Dallas Ives, Moises Montez, Dan Payne, and Jim West, Flight Analysis Branch; Joe Betters, Dave Humphreys, Sam Juliano, Dave Lamar, John Manning, Patrick O'Neill, and Roger Ruda, McDonnell Douglas Technical Services Company.

CONTENTS

Section		Page
1.0	INTRODUCTION	1
2.0	FLIGHT DESCRIPTION	2
3.0	DESCENT PROFILE OVERVIEW AND SUMMARY	3
3.1	DESCENT PROFILE OVERVIEW	3
3.2	DESCENT PROFILE CHANGES AND PROFILE SUMMARY FOR CYCLE 3	4
3.2.1 3.2.2	Summary of Changes for Cycle 3	4 5
4.0	STS-1 OFP FLIGHT DESIGN GROUNDRULES AND CONSTRAINTS	7
	-GENERAL	?
4.8	DESCENT - DEORBIT	9
4.9	DESCENT - ENTRY THROUGH ROLLOUT	10
5.0	SIMULATION DESCRIPTION	12
6.0	DESCENT PROFILE	13
6.1	DEORBIT	13
6.2	ENTRY	15
6.2.1 6.2.2 6.2.3	Entry Profile Shaping Control Surface Deflection Schedules Aerodynamic Crossrange Capability	15 19 20
6.3	TAEM	20
6.4	APPROACH AND LANDING	22
6.4.1	Trajectory Capture to' Touchdown	22 23
0.5	COMMUNICATIONS AND TRACKING	24
7.0	ASSESSMENT OF VEHICLE COMPATIBILITY	26
8.0	ASSESSMENT OF FLIGHT TEST OBJECTIVES	27
9.0	DEORBIT-THROUGH-LANDING ISSUES AND CHANGES	32

	78	FM51:V
Section		Page
10.0	REFERENCES	33
APPENDIX	A - ENTRY INITIALIZATION LOAD FOR THE ONBOARD COMPUTER	A-1

ī

1

vi .

l I

TABLES

Table			Page
3.2-1	STS-1 CYCLE 3 DESCENT PROFILE DESIGN CHANGES		35
3.2-11	COMPARISON OF CYCLE ? AND CYCLE 3 OFT PROFILE SUMMARIES	•	37
5.0-I	STS-1 MASS PROPERTIES FOR NOMINAL END OF MISSION		38
5.0-11	OMS LOADING REQUIREMENTS	• •=·	39
5.0-111	STATE VECTORS		. 40
5.0-14	APRIL GLOBAL REFERENCE ATMOSPHERE DATA		41
5.O-V	APRIL GLOBAL REFERENCE ATMOSPHERE DEVIATIONS FROM 1962 STANDARD ATMOSPHERE	•	42
6.0-I	SEQUENCE OF EVENTS FOR STS-1 (CYCLE 3)		
	 (a) Predeorbit maneuver to entry guidance initiate (b) Entry guidance initiate to TAEM interface	• • • •	43 44 45 45 45
6.1-I	STS-1 LANDING OPPORTUNITIES AT EAFB	•	46
6.1-II	DEORBIT AND ENTRY INTERFACE PARAMETERS	•	47
6.1-III	MANEUVER PAD FOR NOMINAL EOM	•	49
6.1-IV	DEL PAD DLORBIT		50
6.1-V	DEORBIT MANEUVER DISPLAYS	•	51
6.1-VI	NOMINAL END-OF-MISSION REFSMATS	.•	54
6.1-VII	NOMINAL END-OF-MISSION RELMATS AND RELQUATS	•	55
6.2-I	STS-I DEORBIT-THROUGH-LANDING TRAJECTORY PARAMETERS		56
ú.2-11	ORBITER SURFACE TEMPERATURE LIMITS	•	60
6.2-111	STS-1 CYCLE 3 THERMAL PROTECTION SYSTEM (TPS) SUMMARY	•	61
0.2-IV	SUMMARY OF CYCLE-3 ORBITER SURFACE TEMPERATURE LIMITS AND MARGINS BASED ON MONTE CARLO ANALYSIS	•	62
0.2 - V	ELEVON AND BODY FLAP SURFACE DEFLECTION ERRORS	•	63

ł

4

vii

1		78FM51:V
Table		Page
6.3 - I	ENTRY/TAEM INTERFACE CONDITIONS	64
6.4-I	TAEM/A&L INTERFACE CONDITIONS	65
6.6-1	STS-1 C-BAND AND 3-BAND COMMUNICATION SEQUENCE OF EVEN'TS	66
6.6-II	STS-1 TACAN COMMUNICATIONS SEQUENCE OF EVENTS	67

FIGUR	ES
-------	----

Figure		Page
3.1-1	Typical entry altitude-velocity profile	. 68
3.1-2	Typical TAEM groundtrack and trajectory sub-phases	. 69
3.1-3	Typical approach and landing trajectory with sub-phases identified	• 70
3.2-1	Comparison of cycle 2 and 3 elevon schedules	. 71
3.2-2	Comparison of cycle 2 and 3 speedbrake schedules	. 71
3.2-3	Comparison of cycle 2 and 3 body flap deflections	. 72
3.2-4	TAEM guidance dynamic pressure profiles	• 73
3.2-5	TAEM guidance dynamic pressure limits	• 73
5.0-1	Mean April global reference atmosphere	. 74
6.0-1	STS-1 deorbit-through-landing groundtrack	. 75
6.1-1	Inertial velocity, inertial flightpath angle, and range target lines for Orbiter OFT-1 entry interface	. 76
6.1-2	OMS propellant versus T_{ig} , nominal end of mission	. 77
6.1-3	Geodetic altitude - deorbit	. 78
6.1-4	Inertial velocity magnitude - deorbit	. 79
6.1-5	Displayed ADI angles-reference - deorbit	. 80
6.1-6	Displayed ADI angles-inertial - deorbit	. 81
6.1-7	Displayed ADI angles-LVLH - deorbit	. 82
6.1-8	Current apogee and perigee altitudes - deorbit	. 83
6.1-9	Displayed velocity-to-go vector in body-axis coordinates - deorbit	. 84
6.1-10	Velocity-to-go vector in LVLH coordinates - deorbit	. 85
6.1-11	Velocity-to-go magnitude and time-to-go - deorbit	. 86
6.1-12	Velocity magnitude to be gained for no fuel wasting - deorbit	. 87

ix

		78F	M51:V
Figure			Page
6.1-13	Displayed ADI angles-reference - deorbit	• •	. 88
6.1-14	Displayed ADI angles-inertial - deorbit		89
6.1-15	Displayed ADI angles-LVLH - deorbit		90
6.1-16	Dedicated display ADI body attitude error - deorbit	• •	91
6.1-17	Left OMS pitch actual and commanded gimbal angles - deorbit	• •	92
6.1-18	Left OMS yaw actual and commanded gimbal angles - deorbit .		- 93
6.1-19	Right OMS pitch actual and commanded gimbal angles - deorbit	••	94
6.1-20	Right OMS yaw actual and commanded gimbal angles - deorbit	. <u>.</u> • .	
6.2-1	STS-1 entry interface through landing groundtrack	•••	96
6.2-2	Lift/drag, reference, actual and commanded angle of attack during atmospheric descent		97
6.2-3	Entry drag acceleration corridor		
	 (a) Nominal thermal constraints boundaries (b) 'Two- and three-signa thermal constraint boundaries 	•••	98 99
6.2-4	Surface temperature control points and panel locations		100
6.2-5	Scheduled and actual elevator deflection during atmospheric descent	••	101
6.2-6	Body flap and speedbrake deflection during atmospheric descent	•	102
6.2-7	Georetic altitude vs. range-to-runway threshold		103
6.2-8	Delta azimuth, actual and commanded roll angles during atmospheric descent	•	104
6.2-9	Reference heating rate vs. relative velocity from entry interface	•••	105
6.2- 10	Control point temperatures vs. relative velocity from entry interface	••	106
6.2-11	Geodetic altitude during atmospheric descent	•••	107
6.2-12	Actual and reference altitude rate during atmospheric descent		108

х

78	FM5	1:V
----	-----	-----

	Figure		Page
	6.2-13	Range to runway threshold during atmosheric descent	109
	6.2-14	Dynamic pressure during atmospheric descent	110
	6.2-15	X, Y, and Z-body axis and total load factor during atmospheric descent	111
	6.2-16	Relative flightpath angle during atmospheric descent	112
_	6.2-17	Actual sideslip angle during atmospheric descent	. 113 .
	6.2-18	Bank rate during atmospheric descent	114
	6.2-19	Bank acceleration during atmospheric descent	115
	6.2-20	Altitude acceleration during atmospheric descent	116
	6.2-21	Body roll, pitch and yaw rates during atmospheric descent	117
	6.2-22	Aileron deflection during atmospheric descent	118
	6.2-23	Left elevon deflection rates during atmospheric descent	119
	6.2-24	Right elevor deflection rates during atmospheric descent	120
	6.2-25	Body flap, rudder and speedbrake rates during atmospheric descent	121
	6.2-26	Relative velocity vs. time from entry interface	122
	6.2-27	Delta azimuth, actual and commanded roll angle vs. time from entry interface	123
	6.2-28	Reference heating rate vs. time from entry interface	124
	6.2-29	Control point temperatures vs. time from entry interface	125
	6.2-30	Altitude vs. time from entry interface	126
	6.2-31	Actual and reference altitude rate vs. time from entry interface	127
	6.2-32	Range-to-runway threshold vs. time from entry interface	128
	6.2 <u>-33</u>	Lift/drag, actual and commanded angle of attack vs. time from entry interface	129
i	6.2-34	Dynamic pressure vs. time from entry interface	130

xi

Figure		ł	Page
6.2-35	X, Y, and Z-body axis components of load factor vs. time from entry interface	•	131
6.2-36	Relative flightpath angle vs. time from entry interface	•	132
6.2-37	Actual sideslip angle vs. time from entry interface	• .	133 🦯
6.2-38	Bank rate vs. time from entry interface	•	134
6.2-39	Bank acceleration vs. time from entry interface	•	135
6.2-40	Altitude acceleration vs. time from entry interface	•	136
6:2-41	Body roll, pitch and yaw rates vs. time from entry interface	•	137
6.2-42	Aileron deflection vs. time from entry interface	•	138 -
6.2-43	Elevator, body flap, and speedbrake deflection vs. time from entry interface	•	139
6.2-44	Left elevon deflection rates vs. time from entry interface	•	140
6.2-45	Right elevon deflection rates vs. time from entry interface	•	141
6.2-46	Body flap, rudder and speedbrake rates vs. time from entry interface	•	142
6.2-47	Left elevon hinge moments vs. time from entry interface	•	143
6.2-48	Right clevon hinge moments vs. time from entry interface \ldots	•	144
6.2-49	RCS fuel usage vs. time from entry interface	•	145
6.2-50	RCS on-time vs. time from entry interface	•	146
6.3-1	TAEM through landing groundtrack	•	147
6.3-2	TAEM dynamic pressure corridor	•	148
6.3-3	TAEM angle-of-attack corridor	•	149
6.3-4	Actual energy over weight during TAEM	•	150
6.3-5	Altitude and altitude reference of gear above landing site during TAEM	•	151
6.3-6	Altitude rate and altitude rate reference during TAEM	•	152

xii

		78FM51:V
	Figure	Page
l	6.3-7	Relative fligtpath angle during TAEM
Ì	6.3-8	Lrag acceleration during TAEM
	6.3-9	Actual and reference dynamic pressure during TAEM 155
	6.3-10	Roll angle during TAEM
	6.3-11	Reference altitude and gear altitude during TAEM
	6.3-12	Topodetic altitude rate and equivalent airsreed during TAEM
· · ·	6.3-13	Dynamic pressure and reference dynamic pressure during TAEM
	6.3-14	Heading, roll angle, and commanded roll angle during TAEM 160
ļ	6.3-15	Flightpath angle, body pitch angle, and angle of attack during TAEM
	6.3-16	True airspeed, Earth relative velocity, and mach no. during TAEM
I	6.3-17	Body roll, pitch and yaw rates during TAEM
	6.3-18	Normal load factor and delta NZ command at the c.g. during TAEM
	6.3-19	Sideslip angle and Y-body load factor at the c.g. during TAEM
	6.3-20	Aileron, elevator, and body flap deflection during TAEM 166
	6.3-21	Right elevon deflection during TAEM
	6.3-22	Left elevon deflection during TAEM
	6.3-23	Actual, commanded speedbrake deflection and rudder deflection during TAEM
	6.4-1	Approach and landing groundtrack
	6.4-2	Orbiter position with respect to runway in the vicinity of the runway
	6.4-3	Altitude/gamma/load factor (NZ) during approach and landing 172
· · . · .	6.4-4	Gear altitude from final flare to touchdown

十一度

xiii

70rM51:

Figure		Page
6.4-5	Gear altitude during landing gear deployment	174
6.4-6	Gear altitude AGL from preflare to touchdown X-runway position	175
6.4-7	Velocity and dynamic pressure from preflare to touchdown	176
6.4-8	Flightpath angle, body pitch angle, and angle of attack from preflare to touchdown	177
6.4-9	Normal load factor and delta NZ at the c.g. during approach and landing	178
6.4-10	Aileron, elevon, and rudder deflection from preflare to touchdown	179
6.4-11	Right inboard and outboard deflection from preflare	180
6.4-12	Left inboard and outboard elevon deflection from preflare to touchdown	181
6.4-13	Topodetic body roll, pitch and yaw rates from preflare to touchdown	182
6.4-14	Control surface deflections during approach and landing	183
6.4-15	Altitude-altitude rate phase plane from preflare	184
6.4-16	Altitude-altitude rate phase plane from exponential capture to touchdown	185
6.4-17	Altitude-altitude rate phase plane from final flare to touchdown	186
6.4-18	STS-1 operational flight profile perspective	187
6.4-19	View from commander eye position	
	 (a) 101.9 seconds prior to touchdown (b) 92.3 seconds prior to touchdown (c) 82.2 seconds prior to touchdown (d) 72.3 seconds prior to touchdown (e) 62.2 seconds prior to touchdown (f) 52.3 seconds prior to touchdown (g) 42.2 seconds prior to touchdown (h) 32.3 seconds prior to touchdown (i) 22.2 seconds prior to touchdown (j) 12.3 seconds prior to touchdown 	188 189 190 191 192 193 194 195 196 197

Figure	Page
	 (k) 2.2 seconds prior to touchdown
6.5-1	Gear vertical load, EAS, pitch and elevon deflection during rollout
6.5-2	Time from maingear touchdown during rollout
6.5-3	Pitch and pitch rate during rollout
6.5-4	Groundspeed and acceleration during rollout
6.5-5	Pilot and c.g. load factors during rollout
6.5-6	Nose gear strut, tire deflection and loads during rollout 205
6.5-7	Main gear strut, tire deflection and loads during rollout 206
6.6-1	Postblackout entry groundtrack for Orbiter STS-1
6.6-2	STS-1 entry groundtrack and Tacan events
6.6-3	Elevation angle versus azimuth Buckhorn (BUC) 209
6.6-4	Elevation angle versus azimuth Goldstone (GDS) 210
6.6-5	Range and elevation versus time to touchdown
	(a) BUC
6.6.6	MSBLS coverage sequence

÷

~

ACRONYMS

ACIP	aerodynamic coefficients identification package
A&L	approach and landing
AOA	abort once around
AOS	acquisition of signal
ATO	abort to orbit
AVE	Avenal
BFL	Bakersfield
BUC	Buckhorn, Calif.
c.g.	center of gravity
c _{n δA}	yawing moment coefficient change due to aileron deflection
C _{n δr}	yawing moment coefficient change due to rudder deflection
CRP	configuration requirements processing
CSS	control stick steering
DFI	development flight instrumentation
DTO	detailed test objective
EAFB	Edwards Air Force Base
EAS	equivalent airspeed
EET	entry elapsed time (EET = 10:00:00 at tig)
EI	entry interface
ET	external tank
FCS	flight control system
FLW	Fellows
FSSR	functional subsystem software requirements
g	gravity acceleration
GDS	Goldstone, Calif.

xvi

GET	ground elapsed time
GMN	Gorman
GMT	Greenwich mean time
GN&C	guidance, navigation, and control
GRTLS	glide-return-to-launch site
GSTDN	ground spaceflight tracking data network
GWM	Guam
HAC	heading alinement circle
HRSI	high-temperature reusable surface insulation
IECM	induced environment contamination monitor
IFCS	integrated flight control system
IGS	inner glideslope
IMU	inertial measurement unit
KEAS	knots equivalent airspeed
KPT	Kadena Pt., Oahu, Hawaii
KSC	Kennedy Space Center
L/D	lift/drag
LOS	loss of signal
LRU	line replaceable unit
LVLH	local-vertical local-horizontal coordinate system
MCC	Mission Control Center
MSBLS	microwave scanning beam landing system
M50	mean-of-50
NZ	normal load factor
OEX	Orbiter experiments
OFP	operational flight profile

xvii

OFT	orbital flight test
OGS	outer glideslope
OMS	orbital maneuvering system
OTT	operational TAEM targeting
PEG	Powered explicit guidance
PLBD	payload bay doors
PMD	Palmdale
PRB	Paso Robles
PST	Pacific standard time
PTP	Pt. Pillar, Calif.
QMA X	TAEM phase maximum dynamic pressure limit
QMIN	TAEM phase minimum dynamic pressure limit
RCC	reinforced carbon-carbon
RCS	reaction control system
RI	Rockwell International
RSI	reuseable surface insulation
RTLS	return-to-launch site
RTV	room temperature vulcanization
SBP	San Luis Obispo
SNI	San Nicholas Is., Calif.
SSPO	Space Shuttle Program Office
STDN	Spaceflight Tracking and Data Network
STS-1	Space Transportation System flight 1
SVDS	space vehicle dynamics simulation
Tacan	tactical air navigation
TAEM	terminal area energy management

xviii

rig	time of deorbit OMS ignition
TPS .	thermal protection system
le	relative velocity
74	velocity increment
VAFB	Vandenberg Air Force Base
WOI	weight on wheels
tong	weight on nose gear

1.0 INTRODUCTION

This document (Volume V) supersedes the STS-1 Descent OFP, Cycle 2 (ref. 3). Volume V is one in a series that, taken together, will define the STS-1 OFP.

The descent OFP is designed to meet the requirements given in the SSPO Flight Requirements Document, STS-1 (ref. 4), and is based on the approved groundrules and constraints documented in volume I (ref. 5).

The trajectory data presented in this document should be used for Orbiter systems and subsystems evaluation, flight and Mission Control Center (MCC) software verification, flight techniques and timeline-development, crew-training, and evaluation of operational mission suitability.

The entry profile is very similar to Cycle 2; however, elevon and body flap temperature margins have increased, and the elevon schedule was changed. The TAEM profile was completely reshaped to conform with new angle-of-attack constraints and left-hand turn around the heading alignment cylinder. Also, the entry/TAEM interface was adjusted to minimize guidance-induced angle-of-attack transients across the interface. The approach and landing (A&L) phase was reshaped for a 20° glideslope and reduced velocity at touchdown.

The definition of the runway threshold has been standardized for all landing sites. This results in a shift at EAFB in aim points and touchdown relative to the threshold of 1000 feet. (The physical location of aim points and touchdown was not changed.) The rollout remains essentially unchanged with the exception of the speedbrake, which is now deployed to 50 percent at touchdown.

2.0 FLIGHT DESCRIPTION

The STS-1 will be a 54.5-hour flight launched from Kennedy Space Center (KSC) on March 31, 1980 at 11:30 Greenwich mean tige (GMT). The flight test will be achieved in a 150-n. mi. circular orbit with a 40.3-degree inclination. This orbit will be achieved by two orbital maneuvering system (OMS) maneuvers, OMS-1 (ground elapsed time (GET) = 00:10:34) and OMS-2 (GET = 00:45:50). The OMS-1 maneuver will occur shortly after external tank (ET) separation with the OMS-2 maneuver occurring at the apogee of the orbit resulting from OMS-1. The payload bay doors will be opened as early as possible on day 1. The Orbiter will be placed in a Z-axis (payload bay down) local vertical (Z-LV) attitude for most of the STS-1 flight. This attitude will be maintained unless other requirements (flight test requirements, inertial measurement unit alinement, etc.) preciude Z-LY attitude. Two orbital OMS maneuvers will be performed during the flight to satisfy flight test objectives. The OMS-3 maneuver (delta-V = 30 fps) will be performed following the deorbit rehearsal on day 2 at GET = 30:59:44. The OMS-4 maneuver (delta-V = 30 fps) will be performed approximately 30 minutes after the OMS-3 maneuver at GET = 31:29:44. Both of these OMS maneuvers will be performed out of plane with the Orbiter remaining in a 150-n. mi. circular orbit. Deorbit (GET = 53:31:04) will occur on April 2, 1980. Nominal landing will occur on runway 23 during a descending pass (orbit 37) to Edwards Air Force Base (EAFB). The GET for the nominal landing will be 54:30:44 (10:01 a.m. Pa-

78FM51:V

3.0 DESCENT PROFILE OVERVIEW AND SUMMARY

3.1 DESCENT PROFILE OVERVIEW

The Orbiter descent profile is divided into four phases as follows:

- a. The deorbit phase, which extends from attitude hold prior to the deorbit maneuver to entry interface (EI) at 400 000 feet altitude.
- b.

The entry phase, which extends from El to the initiation of the terminal area energy management (TAEM) phase at an Earth-relative velocity (Ve) of 2500 fps. The entry phase is divided into four subphases as follows:

(1) lemperature control	file shape consistent with the thermal protection system (TPS) constraints during the high-heating part of entry.
(2) Equilibrium glide -	The equilibrium glide phase provides an entry pro- file that has the fundamental shape of equilibrium flight. It is used during the intermediate veloc- ity region of entry.
(3) Constant drag -	The constant drag phase provides a profile shape consistent with control system limits.
(4) Transition -	The transition phase provides a profile shape con- sistent with the control system limits and guides the vehicle to the proper TAEM interface conditions.

A typical entry altitude-velocity profile showing the flight regime of the four subphases is shown in figure 3.1-1.

c. The TAEM phase extends to the A&L interface at a nominal altitude of 10 000 feet above the runway. The TAEM phase is divided into four subphases as follows:

(1)	S-turn -	This mode is used only when A&L interface con- straints cannot otherwise be met. The vehicle turns away from the target until sufficient energy is dissipated to allow a normal approach.
(2)	Acquisition -	The vehicle turns until it is tangent to the nearest heading plinement cylinder and continues until it reaches the cylinder.

Heading alinement - The heading alinement cylinder is followed until the Orbiter is near the runway entry point.

(4) Prefinal -

(3)

The vehicle leaves the heading aligement sincle and colls to acquire the runway centerline.

Figure 3.1-2 presents a typical TAEM groundtrack with subphases identified.

- d. The A&L phase extends through rollout and is comprised of five subphases as follows:
 - (1) Trajectory capture Trajectory capture starts at the TAEM/A&L interface and steers the vehicle to the steep glideslope. Normally, the software cycles through this phase only one time because the vehicle will be on the glideslope well within specified tolerances.
 - (2) Steep glideslope The steep glideslope is tracked in elevation and azimuth.
 (3) Flare and shallow glideslope The glideslope angle is reduced in preparation for landing.
 (4) Final flare Final flare reduces the sink rate to near zero for touchdown.
 - (5) Touchdown and rollout - The vehicle is directed along the runway centerline from weight on wheels (flat turn) until it comes to a complete stop.

The A&L occurs essentially in the vertical plane containing the runway centerline. Figure 3.1-3 shows a typical A&L trajectory and trajectory subphases.

For additional information see references 6, 7, and 8.

3.2 DESCENT PROFILE CHANGES AND PROFILE SUMMARY FOR CYCLE 3

3.2.1 Summary of Changes for Cycle 3

Table 3.2-I presents a summary of the cycle 3 descent profile design changes. Figure 3.2-1 through 3.2-3 present a comparison of elevon and speedbrake schedules and body flap deflections between cycles 2 and 3.

a. <u>Entry</u> - The entry profiles are very similar with the exception of elevon and body flap maximum temperatures and maximum temperature limits. The maximum temperature limits were increased because the three-sigma dispersion allowance was reduced by 101° F on the body flap and 34° F on the elevon, and maximum temperatures between the two surfaces were rebalanced by positioning the elevon 1° up as compared to 0° in cycle 2.

Table 3.2-II presents a comparison between cycles 2 and 3 thermal data, EI state vectors, and minimum margin above equilibrium glide.

b. <u>Terminal Area Energy Managment (TAEM)</u> - The TAEM profile for cycle 3 was reshaped to conform with new angle-of-attack constraints that resulted in a new dynamic pressure reference and new dynamic pressure upper limits. (figs. 3.2-4 and 3.2-5).

The nominal altitude at TAEM interface was biased approximately 5000 feet below the TAEM reference altitude in order to force guidance to generate a pitch-up command to minimize the pitch-down transient that normally occurs at entry/TEAM interface. Also, TAEM was reshaped to fly a left-hand turn around the heading alinement cylinder (HAC) and to conform with a 20° outer glideslope in A&L.

c. <u>Approach and Landing</u> - The A&L outer glideslope was changed from 22° to 20° as a result of Orbiter weight growth. The other changes enumerated in table 3.2-I were motivated by a desire to reduce touchdown speed due to more restrictive tire and wheel constraints and a desire to provide satisfactory landing conditions with this profile should the launch slip into the summer months.

3.2.2 Descent Profile Summary

a. <u>Deorbit</u> - The deorbit maneuver is normally performed using two OMS engines; however, deorbit targeting and OMS propellant loading provide the capability to deorbit with either one OMS engine or the RCS engines using OMS propellant to achieve the nominal entry conditions.

This OMS loading makes it necessary to use 225 pounds of excess OMS propellant for nominal deor.it to achieve the desired entry longitudinal centerof-gravity (c.g.) position of 66.7 percent at EL. This propellant wasting is accomplished by an out-of-plane deorbit maneuver component resulting in a total deorbit velocity increment (delta V) of 292.9 fps with a thrust duration of 2 minutes 28 seconds and with a 25-minute 47-second free-fall time between thrust termination and EL.

b. <u>Entry</u> - Nominal conditions at the EI of 400 000 feet altitude are 4358 n. mi. range-to-go, 25 752 fps inertial velocity, and -1.21 degrees inertial flightpath angle with an Orbiter weight of 191 902 pounds.

A 40-degree angle of attack is maintained during the early part of atmospheric descent to minimize the aerodynamic heating environment. This angle of attack is maintained until the aerodynamic heating is reduced to a relatively low level with pitchover to a lower angle of attack beginning at an Earth-relative speed of 14 500 fps. This pitchover continues until an angle of attack of 14.0 degrees is reached at the entry/TAEM intc.face at 2500 fps Earth-relative speed.

The entry profile is shaped in the temperature control region to conform with surface temperature limits at five control points on the vehicle (fig. 6.2-3). When 30 dispersions are considered (fig. 6.2-4), the surface temperature on the wing leading edge becomes most constraining. This profile was shaped to a wing leading-edge temperature limit of 2603° F (table 6.2-II) The heat load and maximum reference heating rate for this trajectory is 53 731 Btu/ft² and 61.4 Btu/ft²/sec, respectively.

The entry angle-of-attack profile for STS-1 results in a crossrange capability of 700 n. mi.

C. <u>TAFM</u> - The TAEM trajectory is shaped within the TAEM flight corridor to minimize trajectory transients and provide adequate maneuver margins for entry trajectory dispersions, winds, and aerodynamic uncertainties while maintaining dynamic pressure, descent rates, and turning rates that are acceptable for compartment venting and sonic boom overpressures. At entry/TAEM interface, 2500 fps relative velocity, the dynamic pressure is 209 psf, which is near the center of the flight corrigor. The dynamic pressure is reduced to 160 psf at Mach 0.9 and is then ramped to the 265 psf required for the A&L phase outer glideslope (OGS).

d. <u>Approach and Landing</u> - The A&L phase is initialized when the altitude decreases through 10 000 feet. The basic geometry consists of a 20-degree OGS followed by a preflare (first flare) maneuver to a 1.5-degree inner glideslope (IGS). The criteria used for the design of these constants were to provide as shallow an OGS as possible while maintaining adequate performance margins, to provide as much time as possible on the IGS, and to provide an energy reserve at nominal touchdown corresponding to 4 seconds of flight time under stressed conditions. Two OGS intercept points and two speedbrake retraction altitudes can be used to accommodate from 20-percent tailwinds to 100-percent headwinds.

At A&L interface, the body flap is commanded to retract to the trail position (0 degrees). The speedbrake is modulated to maintain a constant 473 fps equivalent airspeed (280 knots equivalent airspeed (KLAS) or 265 psf dynamic pressure) on the OGS. Nominal speedbrake retraction occurs at 2500 feet altitude. The prefiare maneuver starts at 2000 feet altitude and is designed to result in a normal acceleration of 1.3 g's or less. The transition from the pullup circle to the exponential capture mode is commanded at a range of 3784 feet from the runway threshold. When the velocity decreases through 270 KEAS, the landing gear is deployed. A nominal gear deployment time of 7.5 seconds was used and resulted in the gear being down and locked 11.8 seconds prior to touchdown. This 270 KEAS is the minimum velocity to start gear deployment and still have the gear down and locked 5 seconds prior to touchdown for a three-sigma deployment time of 9.4 seconds. Touchdown occurs at a range of 2942 feet past the runway threshold with a 2.4-fps sink rate. The velocity at touchdown is 185 KEAS, which equates to a 8.1-second energy reserve; the ground relative velocity is 191 knots.

e. <u>Touchdown and Rollout</u> - Immediately after main-gear touchdown, the speedbrake is commanded to 50 percent, and a 6- to U-degree vehicle pitch attitude is maintained until the equivalent airspeed decelerates to 165 knots. Derotation at a pitch rate of -3 deg/sec is then commanded with weight on nose gear occurring at a range of 5538 feet from the runway threshold. The range at the end of rollout is 9510 feet, which occurs 36 seconds after main-gear touchdown.

4.0 STS-1 OFP FLIGHT DESIGN GROUNDRULES AND CONSTRAINTS

The following groundrules and constraints (ref. 5) were used in the generation of the OFP for STS-1.

4.1 GENERAL

4.1.1 Trajectory techniques will provide maximum vehicle subsystem margins from design specifications when possible. Priorities and trade analyses will determine the best compromise when conflicts exist.

4.1.2 The launch date is March 31, 1980 at 11:30:00 GMT (6:30 a.m. EST).

4.1.3 The nominal orbit is 150/150 n. mi.

- 4.1.4 The nominal inclination is 40.3 degrees. This inclination will provide an ET groundtrack that, for excessive MECO overspeeds, passes to the south of King Island and north of the Furneaux Group off the southern coast of Australia.
- 4.1.5 Nominal and abort to orbit (ATO) landings will be on Rogers Lakebed runway 23 at EAFB. Abort-once-around (AOA) landing will be on runway 17 at Northrup strip. Landing for glide return to launch site (GRTLS) will be on runway 15 at KSC. Because of the high probability of landing on either runway 15 or 33 for RTLS, OFT performance assessment will be based on the capability to achieve either runway for RTLS. Nominal and abort landing site locations are given in appendix A.
- 4.1.6 Standard GSTDN contact data will be provided for selected stations depending on the mission phase. Table II of appendix A establishes the AOS/LOS computational requirements for each phase. Minimum elevation may be computed assuming zero degree or 3 degrees maximum elevation with no masking. However, normally all AOS/LOS is computed assuming zero degree elevation with masking and keyholes considered. Exclusion of a site from table II, appendix A does not preclude it from being used in the tracking network.
- 4.1.7 All landings (nominal, abort, and contingency) except AOA will be no earlier than JO minutes after sunrise and no later than 30 minutes before sunset. AOA landings may be as early as sunrise. It is desirable that nominal landing at EAFB occur prior to 10:00 a.m. local time.

7

4.1.8 A 1-hour launch window (as a minimum) will be provided.

4.1.9 There is no ontime launch requirement.

4.1.10 There are to be two crewmen. Crew provisions will be loaded for 5 days.

4.1.11 The planned flight duration will be approximately 54 hours.

4.1.12 There will be landing opportunities at EAFB on at least four orbits each day.

- 4.1.13 The payload will include the development flight instrumentation (DFI), the induced environment contamination monitor (IECM), the aerodynamic coefficients identification package (ACIP), and the Orbiter experiments (OEX) tape recorder. Mass properties for total payload weight are given in appendix A.
- 4.1.14 The payload bay doors (PLBD) are to be opened as soon as operationally practicable after OMS-2. However, the contingency capability will exist to leave the PLED closed for up to 8 hours following CMS-2.
- 4.1.15 (Deleted)
- 4.1.16 All nominal deorbit opportunities will be planned such that the entry crossrange is <550 n. mi.; however, a crossrange of <690 n. mi. is acceptable for AOA and contingency cases.
- 4.1.17 (Deleted)
- Reaction control system (RCS) backup deorbit capability is required. For this contingency, propellant from both OMS pods is assumed to be 4.1.18 available.
- 4.1.19 The deorbit targeting will be biased to accommodate the designated backup deorbit propulsion mode.
- 4.1.20 Aerodynamic data, atmosphere and wind models, I-load values, software baseline (including implemented CR's), engine data, assumed constants, geodetic locations for TACAN/MSBLS/launch and landing sites and mass properties data for the nominal, RTLS, ATO, and AOA analysis are specified in appendix A. The limitations and constraints defined in

volume I and volume II of the SODB (JSC-08934) will be adhered to in the design of the nominal and abort OFP profile except as defined in appendix B. (See 4.1.21.)

4.1.21 Appendix B summarizes the groundrules and constraints that deviate either from reference 2 or from reference 3 of this document.

4.8 DESCENT - DEORBIT

- 4.8.1 The IMU alinement will be designed to minimize the IMU misalinement at the entry interface. To maintain system performance margins, the maximum platform misalinement at entry interface will be 950 arc-seconds. For a contingency where degraded system performance margins are necessary during entry, the maximum IMU misalinement at entry interface will be 1900 arc-seconds.
- 4.8.2 The deorbit maneuver will nominally be performed using two OMS engines, but due to targeting and guidance flexibility, the capability will exist to downmode to other thruster configurations during the burn. Specifically, the TIG and targets will be selected so that if one OMS engine "ails at TIG, or any time later in the burn, the deorbit maneuver can be successfully completed using the remaining OMS engine. Furthermore, if the other OMS engine should also fail at the same time or at any time after the first failure, the deorbit maneuver could still be successfully completed using the +X RCS engines.
- 4.8.3 Propellant-critical contingency deorbit will be based on a shallowerthan-nominal targeting criteria to provide the best compromise between deorbit capability, RCS propellant availability for attitude control during atmospheric descent, and entry thermal environment.
- 4.8.4 Between the termination of the deorbit maneuver (except ATO) and entry interface for two OMS, one OMS, and RCS modes that result from the triple downmoding operation, a minimum free-fall time of 15 minutes is required for entry preparation.
- 4.8.5 In addition to satisfying the entry velocity, flightpath angle, and range requirements, the deorbit maneuver will include an out-or-plane component to achieve an acceptable Orbiter entry interface center of gravity and weight.
- 4.8.6 The Orbiter entry weight will be minimized by reducing remaining content with reasonable operations techniques.

- 4.8.7 When selecting the nominal deorbit revolution, it is highly desirable to have communication with and tracking of the spacecraft postdeorbit.
- 4.8.8 During descent, the Orbiter shall operate within the limits established in Structural Flight Restrictions for Orbital Flight Test Program (SD78-SH-0121).
- 4.9 DESCENT ENTRY THROUGH ROLLOUT
- 4.9.1 The environment model used for computing the nominal OFP will be a mean monthly atmospheric model for the planned entry date as defined by the Four-D Global Reference Atmospheric Model. The environment model for the nominal profile simulation will not include winds.
- 4.9.2 The entry profile will be shaped to achieve a balance between the TPS surface and bondline temperatures and Orbiter structural temperatures such that the TPS performance during entry is optimized. This balance will include allowances for aerodynamic heating and trajectory dispersions.
- 4.9.3 (Deleted)
- 4.9.4 Entry-through-landing profiles will conform to control surface hinge moment limits, aerodynamic load limits, actuator rate limits, and structural load limits. For actual Orbiter weights for nominal end of mission, the structural load limits are +0.3 to 2g normal load factor between a Mach no. of 5.0 and an Earth relative speed of 24 000 fps and -0.3 to 2.0g normal load factor for a Mach no. ≤5
- 4.9.5 Optimization of the entry profiles will include consideration of sonic boom ground-level overpressures.
- 4.9.6 Nominal entry profiles will be targeted so that post-blackout target changes are not required. However, the profiles will be shaped to maximize post-blackout redesignation capability.
- 4.9.7 At entry interface, the nominal Orbiter longitudinal c.g. will be bb.70 percent and the lateral c.g. displacement will be 0.0. The nominal vertical c.g. will be 375 ± 3 inches.

4.9.8 The terminal area energy management (TAEM) guidance reference dynamic pressure will be based on the concept of flying directly to the heading alinement circle without employing an S-turn in tailwind conditions.

Additionally, this dynamic pressure will allow the TAEM/approach and landing interface constraints to be met in the presence of severe headwinds. The energy control will provide conditions suitable for the initiation of a manual approach.

- 4.9.9 The TAEM profile will be compatible with manual and automatic modes of operation.
- 4.9.10 The max q will be limited to 300 psf for a Mach number >5 and to 342 psf for a Mach number <5. The dynamic pressure on the nominal profile will be less than 240 psf for a Mach number >5 and less than 300 psf for a Mach number <5. During the terminal area maneuvers for a Mach number :2.5, the minimum dynamic pressure will be restricted to a value that keeps the vehicle's lift/drag (L/D) on the front side of the L/D curve. Therefore, the minimum dynamic pressure is a function of Orbiter weight and varies from 133 to 161 psf as the Orbiter weight varies from 181 000</p>
- 4.9.11 To conform to compartment venting constraints, the maximum descent rate and dynamic pressure will be 400 fps and 300 psf, respectively, in the transonic region. | In addition, the minimum dynamic pressure on the nominal profile will be 150 psf in this flight region.

5.0 SIMULATION DESCRIPTION

The Orbiter mass properties and c.g. locations (ref. 9) used to design the STS-1 deorbit-through-landing flight profile are presented in table 5.0-I. The OMS loading requirement is summarized in table 5.0-II. The state vectors at deorbit ignition minus 35 minutes, deorbit ignition, and EI minus 5 minutes (descent simulation initiation), and EI are presented in table 5.0-III.

The STS-1 deorbit trajectory presented in this document was generated using the space vehicle dynamics simulation (SVDS) program (ref. 10). All phases were simulated with the SVDS 6-degree-of-freedom option, except the initial coast period prior to deorbit, which was simulated with the 3-degree-of-freedom option. The STS-1 entry trajectory was generated using the 6-degree-of-freedom SVDS program documented in reference 11. The flight profile is generated using zero winds and the aerodynamics data defined in the April 1979 Aerodynamic Design Data Book (ref. 12). The atmospheric model used for this profile is the mean monthly atmospheric model for the month of April, as defined by the Four-D Global Reference Atmospheric Model (ref. 13) and is presented in table 5.0-IV. Table 5.0-V presents pressure density and temperature deviations from the 1962 Standard Atmosphere. The density deviation data are presented graphically in fig. 5.0-1. The 6-degree-of-freedom integrated flight control system (IFCS), as decribed in reference 14 and supported in reference 15, was used during the descent phase. Guidance commands and control surface deflections were implemented using the automode logic for all channels. Longitudinal control is maintained by the moments resulting from the modulation of the elevons and body flap and from RCS jet firings. Lateral-directional control is maintained via moments resulting from aileron and rudder deflections and from RCS jet firings. A preset speedbrake schedule is maintained until M = 0.9. Flight control sensor and controller models (ref. 16) were utilized. Thermal models used to define TPS surface and backface temperatures are the simplified models described in reference 17. The entry, TAEM, and autoland guidance (with modifications from reference 18) used in simulating the STS-1 profile are defined in reference 16. The navigation simulation used in this reference trajectory is defined in references 19 and 20. Coordinate system definitions are contained in reference 21.

6.0 DESCENT PROFILE

The cycle 3 descent profile is initiated with a deorbit maneuver at 53:31:04 GET. The deorbit maneuver is followed by a coast period of 25 minutes 42 seconds prior to the EI, which occurs at 400 000 feet altitude. The entry phase of the profile begins at EI and is terminated at the entry/TAEM interface, which occurs at a relative velocity of 2500 fps. The TAEM phase of the profile is terminated at the TAEM/A&L interface, which occurs at approximately Mach 0.6 and at an altitude of 10 000 feet. Modified autoland guidance, which simulates a manually flown trajectory, is used to guide the Orbiter to touchdown.

The prime landing site for STS-1 is runway 23 on Rogers Lakebed at EAFB. The runway azimuth and the coordinate systems origin, with respect to the Fischer 1960 ellipsoid for runway 23, are 244.41 degrees east of north, 34.96 degrees north geodetic latitude, and 117.820 degrees west longitude, and 208..C fest altitude (ref. 5).

The design of the STS-1 OFP has resulted in a change in postdeorbit tracking by the Guam station as reflected in a decrease in maximum elevation angle from 23.5 degrees for the previous profile to 16.7 degrees for this profile. Approximately 5.5 minutes of tracking coverage is provided based on being clear of masking.

A detailed discussion of the deorbit, entry, TAEM, and A&L phases is presented in sections 6.1 through 6.4. The descent groundtrack is presented in figure 6.0-1. An overall sequence of events is presented in table 6.0-I.

6.1 DEORBIT

STS-1 will be launched from KSC into an approximate 150-n. mi. altitude circular orbit with a 40.3-degree inclination. The nominal deorbit maneuver is thrustinitiated at 53:31:04 GET during the 36th orbit, with subsequent landing on Rogers Lakebed runway 23 at EAFB at 10:01 a.m. PST. The 36th orbit was selected for deorbit because it provides the best combination of predeorbit and postdeorbit tracking and communication. A backup deorbit opportunity occurs during the 37th orbit with degraded postdeorbit tracking and communication and with no coverage during the last orbit through the Ascension tracking station. The STS-1 orbits that provide deorbit opportunities with subsequent landings at EAFB are presented in table 6.1-I. The deorbit maneuver will be nominally performed using two OMS engines, with a capability to downmode to either a one-OMS engine or RCS thruster configuration if required. The time of ignition (TIG) is biased to provide the capability to achieve the same desired EI state vector with a two-OMS maneuver, a one-OMS maneuver, or a +X RCS maneuver. The range-inertial velocity-inertial flightpath angle target lines for these conditions are presented in figure 6.1-1.

The deorbit guidance maneuvers the Orbiter to the desired EI conditions assuming a conic coast. The deorbit targets represent the actual desired EI conditions, so biased targets must be used onboard to achieve these conditions. The Cycle 3 targets have been biased by reducing the first coefficient of the velocity-flightpath angle target line (C1) by 1.0 fps and by reducing the targeted central angle between ignition and EI (θ_T) by 0.003 degree to account for Earth oblateness effects.

The inplane two-ONS deorbit delta V for the biased TIG and targeting is 282 fps. It is necessary to use 225 pounds of excess OMS propellant to achieve the desired entry longitudinal c.g. position of 66.70 percent with a resulting Orbiter entry weight of 191 902 pounds. This propellant wasting for the two-ONS deorbit is accomplished by an out-of-plane deorbit maneuver with a total delta V of 292.9 fps. The burn duration is 2 minutes 28 seconds followed by a 25minute 42-second free-fall time from thrust termination to EI. For the one-OHS backup deorbit, the biased TIG and targeted total delta V is 292.9 fps, and the resulting out-of-plane propellant wasting is 375 pounds to achieve the entry c.g. and weight. The one-OMS deorbit burn maneuver lasts 4 minutes 56 seconds with a free-fall time of 23 minutes 15 seconds. For the +X RCS deorbit, the total delta V is 270 fps with a resulting weight and c.g. of 191 827 pounds and 66.78 percent, respectively. /The +X RCS deorbit burn lasts 7 minutes 32 seconds with a free-fall time of 20 minutes 36 seconds. Significant deorbit parameters are summarized in table 6.1-II. The OMS propellant usage is depicted graphically in figure 6.1-2.

The ideal maneuver pads-(MNVR PADS) for the two-OMS, the one-OMS, and the +X RCS deorbit modes are shown in tables 6.1-III, IV, and V, respectively. Similar computer-generated displays at selected events from the 6-DOF two-OMS nominal EOM simulation are presented in table 6.1-VI. The differences between the actual and ideal attitudes are due to deadbands in the attitude control systems. The Deorbit-Entry-Landing Pad (DEL PAD) for the nominal EOM is presented in table 6.1-VII. The time history plots of trajectory, attitude, and burn-related parameters from the 6-DOF deorbit simulation are presented in figures 6.1-3 through 6.1-20.

The APU's are started 5 minutes before the deorbit maneuver and remain operating until landing. Aerosurface cycling is not required for this flight because of the benign thermal environment. Nominal conditions at EI are 4358 n. mi. range to go, 25 752 fps inertial velocity, and -1.21 degrees inertial flightpath angle. These nominal conditions at EI have changed slightly from the cycle 2 values of 4399 n. mi., 25 753 fps, and -1.18 degrees, respectively. The nominal end-of-mission reference to stable member matrix (REFSMATS) for stable members 1, 2, and 3 are presented in table 6.1-VIII. The RELMATS and RELQUATS for the deorbit maneuver are presented in table 6.1-IX.

A RELMAT is a mean-of-50-to-attitude display indicator (ADI) reference frame transformation matrix. For the deorbit/entry flight phase, two RELMATS are used called the REF RELMAT and the INRTL RELMAT (RELMAT's, nine-element matrices, are converted to RELQUATS, four element quaternions, for onboard use).

The REF RELMAT is computed so that when the vehicle is in the nominal doorbit attitude (includes out-of-plane wasting), the ADI attitudes (REF setting) will read pitch = $(80^{\circ}, yaw = 0^{\circ}, roll = 0^{\circ}$. The INRTL is computed so that if warting is terminated at ignition and the vehicle is maneuvered back inplane, the ADI attiudes (INRTL setting) will read pitch = 180° , yaw = 0° , roll = 0° .

The ADI attitudes are assumed to be computed in a pitch/yaw/roll sequence with the ADI in a +X sense direction.

6.2 ENTRY

The STS-1 EI-through-landing groundtrack is presented in figure 6.2-1. Entry profile shaping, control surface deflection schedules, nominal trajectory data, and the aerodynamic crossrange capability are discussed in sections 6.2.1, 6.2.2, 6.2.3, and 6.2.4, respectively. Significant trajectory parameters for the entry are presented in figures 6.2-2 through 6.2-50. Table 6.2-I presents a comparison of the trajectory and aerosurface parameters used in designing the STS-1 profile to the actual values achieved by the profile. The entry-through-landing guidance constants (I-loads) are given in appendix A.

6.2.1 Entry Profile Shaping

The objective of the entry profile shaping for STS-1 is co minimize the effects of the TPS thermal environment, maximize the FCS performance margins, and minimize structural loads while providing sufficient maneuver margins to compensate for trajectory, navigation, aerodynamic, and environment dispersions. In some cases, these objectives result in conflicting requirements for the entry profile. For example, shortening the entry range reduces the TPS backface temperatures but increases the TPS surface temperatures for a particular angle-ofattack profile.

The entry profile developed for STS-1 is a compromise between the onflicting requirements for profile shaping. The angle-of-attack profile for STS-1 (fig. 6.2-2) is designed to provide improved thermal conditions at high speeds at the expense of crossrange capability and differs from the design entry profile developed to achieve a high crossrange by maintaining the initial entry angle of attack at lower speeds, thus eliminating the intermediate ramp to the lower angle-of-attack levels required for high crossrange. Minor deviations from the reference angle-of-attack profile occur as a result of the incorporation of angle-of-attack modulation logic in the entry guidance. This involves modulation of the angle of attack to prevent major deviations from the drag acceleration profile during the pullout maneuver and during roll reversals. The reference angle-of-attack profile and the drag-velocity profile are very similar to those of reference 3.

With this reference angle-of-attack profile, the entry corridor, as limited by TPS surface temperatures, structural loads, flight control considerations, and the equilibrium glide capability, can be defined. This latter constraint must be met to ensure that the flight conditions can be sustained (i.e., no subsequent trajectory transients will necessarily occur) and that crossrange maneuvering is possible. The corridor, as limited by these considerations, is presented in figure 6.2-3(a) in the drag acceleration relative velocity plane. The TPS backface temperature is minimized by dissipating the Orbiter kinetic and potential energy as quickly as possible within the limits defined by systems and by flight dynamic constraints as illustrated in figure 6.2-3. This is achieved by maintaining the drag acceleration as high as possible throughout entry

consistent with surface temperature, systems, and flight dynamics constraints. The backface is more sensitive to the drag acceleration level at the higher speed during entry and is relatively insensitive to the drag acceleration level at speeds below 10 000 to 12 000 fps.

The basic policy in shaping for the thermal criteria is to first achieve the surface temperature margin and then the backface temperature margin. In the event both criteria cannot be met, the backface temperature criterion is exceeded while the surface temperature criterion is met. However, this OFP marginally meets both the surface and backface temperature requirements with onorbit cooldown prior to deorbit.

The design-drag-acceleration/velocity profile for this update is very similar to the previous operational flight profile (ref. 3). The drag-velocity corridor is restricted between the surface temperature constraint boundaries and the equilibrium glide boundary in the high-velocity region of entry. The drag profile in this region reflects a slight increase in vehicle structural temperatures when compared to the previous profile as a result of the small increase in Orbiter weight. This drag-acceleration profile intercepts the same constant drag level as in the previous operational profile at 33 fps². From this point, the design-drag-acceleration profile is essentially unchanged from the previous OFP down to 3564 fps. Between 3564 fps and 2500 fps, a slight change in the angleof-attack schedule resulted in a small change in the drag-acceleration profile. At entry/TAEM interface the design drag acceleration was reduced slightly from 21.0 fps² for cycle 2 to 20.8 fps² for the current profile.

An entry weight of 191 902 pounds was used for the current entry profile compared to 189 844 pounds for the previous cycle 2 design profile of reference 3; the longitudinal center-of-gravity position remains unchanged at 66.7 percent. The increased Orbiter pitchdown moment reflected in the April 1979 aerodynamic data of reference 12 requires smaller down control surface deflections. The ± 12.5 -degree azimuth deadband is replaced by a ± 10.5 -degree deadband until the first roll reversal is completed, after which the magnitude of the deadband is expanded to ± 17.5 degrees. The change in the deadbind limit is made to keep the first roll reversal from occurring at the guidance phase change from the is mperature control phase to the equilibrium glide phase. This reduces the probability of a transient occurring in the drag acceleration profile during a guidance phase change.

There have been no changes in the TPS surface temperatures model since reference 3 was published. In shaping the STS-1 entry profile, the TPS surface temperatues were evaluated at five locations as illustrated in figure 6.2-4. The single-mission maximum surface temperatures are 2600° F for high-temperature re-usable surface insulation (HRSI) material, (LI-1100), 2700° F for HRSI material on the chine (LI-2200), and 2800° F for the RCC material on the nose and wing leading edge. Because the TPS surface temperatures are computed using a simplified TPS model, the limiting temperatures on the nose and wing leading edge must be adjusted to 2950° F to account for a bias in the temperature prediction. The most critical surface temperature location is on the wing leading edge, which is slightly more restrictive than the forward chine region.
78FH51:V

The surface temperature limits and margins used for acrodynamic heating uncertainties and trajectory dispersions in designing the STS-1 OFP are presented in table 6.2-II. Because the aerodynamic heating uncertainties and effects of trajectory dispersions on the TPS temperatures are independent, the effects of these two sources of temperature dispersions are combined statistically by the root-sum-square technique. In addition, the elevon temperature can be further dispersed because of steady-state deflections required to compensate for lateral c.g. offset and airframe asymmetrics and by transient deflections required for high-frequency attitude control. Table 6.2-V lists the source of these elevon and body flap surface deflection errors. The temperature dispersions resulting from these elevon deflections were added to the combined aerodynamic. heating uncertainty and trajectory dispersion effects. The material limits on the nominal surface temperatures are translated into constraints on the entry corridor in figure 6.2-3(a). The limiting surface temperatures are on the forward chine (control point 6) at velocities greater than 19 500 fps and on the outer elevon underside (control point 4) at velocities less than 19 500 fps. When translated into constraints on the entry corridor, the two-sigma and three-sigma thermal boundaries give limiting surface temperatures on the wing leading edge (control point 3) at velocities greater than 17 500 fps and on the outer elevon underside at velocities less than 17 500 fps as illustrated in figure 6.2-3(b). Also shown in figure 6.2-3(a) are the effects of additional constraints and the guidelines on the entry corridor. On the first flight, it is desirable to limit the structural loads to a 2.0g normal load factor, which is 80 percent of the design value of 2.5g's. Also shown for information purposes is the 1.5g normal load factor line.

The Orbiter elevon and body flap surface temperature limits during entry for this profile have increased from those of the previous profile. The elevon and body flap control surface temperature limits have increased 34 degrees and 101 degrees, respectively. These increases are primarily due to the technique in which the the trajectory dispersion effects were evaluated. The present profile provides an improvement in the temperature control margin for the body flap and elevon because of the increased aerodynamic pitchdown moment characteristics reflected in the aerodynamic update. The increased pitchdown moment requires decreased control surface down deflections. Additionally, the elevon deflection schedule has been changed from the cycle 2 zero-deflection schedule to a 1-degree up deflection schedule in the high-heating region. This results in a more favorable balance of temperature margins on the body flap and elevon.

The heat load and maximum reference heating rate on this trajectory is 53 731 Btu/ft^2 and 61.4 $Btu/ft^2/sec$, respectively, compared to the respective cycle 2 values of 53 147 Btu/ft^2 and 59.7 $Btu/ft^2/sec$.

The equilibrium glide boundary defines the minimum drag level that the time rate of change of flightpath angle can be maintained equal to zero. Thus, this line defines the limit for sustaining equilibrium flight. Although flight conditions with lower values of drag acceleration can be achieved, this condition is temporary, and a subsequent trajectory transient to higher drag acceleration will occur. This equilibrium glide boundary is a function of bank angle as well as angle of attack and relative velocity. Therefore, the boundaries were defined for the minimum bank angles required to ensure a turning capability for

crossrange maneuvering. This minimum bank angle is a function of entry speed with higher values required to overcome the higher inertia at high speeds.

Thus, the entry guidance uses two discrete levels of minimum bank angle to achieve turning; 37 degrees at high speeds and 20 degrees at low speeds. These bank angle limits result in significant turning capability with little loss in entry corridor because turning capability and entry corridor are functions of the sine and cosine of the bank angle, respectively.

The entry profile was shaped to satisfy the surface temperature constraints while keeping the drag level as high as possible to minimize the backface temperature. The resulting nominal entry profile is presented in figure 6.2-3 along with the entry corridor. The summary of the resulting thermal environment forseveral surface panels is presented in table 6.2-III. Orbiter surface temperature limits and margins for the five temperature control points of interest are presented in table 6.2-IV. Data in this table are based on a 50-case Monte Carlo analysis, Appendix C. Table 6.2-V presents the elevon and body flap bias and random errors used to compute corresponding TPS temperature dispersions. When the three-sigma trajectory and deflection dispersions from this analysis are combined with the aerothermal heating dispersion and added to the maximum mean temperature, the actual OFP temperature margins can be determined. Table 6.2-V shows that the OFP is designed with sufficient temperature margins to maintain acceptable surface temperatures. The Monte Carlo analysis results demonstrate that the backface temperature margin is the same as that anticipated by the design of the OFP. The negative back-face temperature margin shown on panel 2 is representative of an AOA case where high initial vehicle temperatures (summer launch) are encountered. Acceptable back-face temperature margin for EOM will be achieved by onorbit cool down, if required.

A 40-degree angle of attack is maintained during the early part of atmospheric descent to minimize the aerodynamic heating environment. This angle of attack is maintained until the aerodynamic heating is reduced to a relatively low level with pitchover to a lower angle of attack beginning at an Earth-relative speed of 14 500 fps. This pitchover continues until an angle of attack of 14.0 degrees is reached at the entry/TAEM interface at 2500 fps Earth-relative speed.

The low-speed part of the entry profile, during transition to the low-angle-ofattack and trajectory conditions at the TAEM interface, was shaped to achieve the desired TAEM initial flight conditions and to maintain the entry profile at the location in the entry corridor that maximizes the capability to compensate for navigation, aerodynamic, and environmental dispersions while providing a capability for postblackout runway redesignation. The target flight conditions at this interface were selected to provide proper positioning within the TAEM flight corridor and the entry profile was designed to achieve these conditions. The lateral guidance requirement of a roll reversal at 2900 fps result of at the entry/TAEM interface. Although the roll reversal results in transient trajectory conditions being present at entry/TAEM interface, these flight conditions are sufficiently close to the target interface conditions to allow for rapid convergence of conditions within the TAEM flight corridor by the selected TAEM profile. The transition phase angle-of-attack schedule remained the same as that of the previous profile with the exception of a slight change in the profile between 3564 fps and 2500 fps. This change incorporates a linear angle-of-attack ramp and provides a design angle of attack of 14.0 degrees at the entry/TAEM interface compared with 13.5 degrees for the cycle 2 profile.

6.2.2 Control Surface Deflection Schedules

The nominal elevator and speedbrake deflection schedules and the corresponding body flap deflections are designed to aerodynamically trim the Orbiter to maximize the effectiveness of the control surfaces, to provide Orbiter attitude control while maintaining aerodynamic heating on the control surfaces within limits, and to minimize the attitude control moments required from the RCS. The elevator deflection schedule (ref. 14) and actual elevator deflection, the speedbrake schedule, and the actual body-flap deflection to accomplish this are presented in figures 6.2-5 and 6.2-6. During the period of high aerodynamic heating, the speedbrake is fully retracted to minimize the aerodynamic heating on these surfaces, and elevator and body-flap deflection schedules are balanced to control the surface temperatures of these two control surfaces. At speeds above 13 600 fps, the elevator is maintained at 1 degree up, and the body fl o is deflected approximately 7.0 degrees down during most of this region. A inear ramp is introduced in the elevator schedule at 13 600 fps to move the elevator to a 5.0-degree down deflection at 4000 fps. This down deflection is necessary to ensure that the rolling moment due to aileron deflection is not nulled by the rolling moment from the yaw angle induced by the aileron deflection. This provides favorable alleron yawing moment characteristics ($C_{n\delta A}$) required when using the aileron to compensate for the aerodynamic moments caused by lateral c.g. offset and aerodynamic asymmetries.

Use of the rudder is initiated at Mach 3.5, but rudder effectiveness is initially low. Aileron control for lateral-directional trim is gradually reduced from this point as the rudder effectiveness increases. For this reason, the 5.0-degree down elevator deflection is maintained between 4000 fps and 3000 fps. At 3000 fps, the elevator is moved to a position favorable to switching to a traditional airplane-type flight control system (FCS). The FCS is blended from the early-to-late configuration in the Mach range from 3.0 to 0.9, where traditional airplane-type control surface functioning is introduced. In the Mach range from 2 to 1.5, the elevator is at 3 degrees up deflection to minimize the effect of elevator deflection on lateral dynamics and to aid in the reduction of elevon hinge moments. In the transonic speed range, the elevator is deflected to a down position to reduce the elevon hinge moment.

The speedbrake is deflected to a full-out position at a speed of 9000 fps to induce a pitchup moment so that the elevator can normally be deflected down in this region. Conversely, at a speed of 2500 fps, the speedbrake is retracted to 65 degrees to improve rudder effectiveness ($C_{n\delta r}$) and reduce the nose-up pitching moment. At subsonic speeds, the nominal speedbrake deflection is the midvalue to allow for modulation for speed control. The body flap is used to balance the pitching moment to trim the Orbiter.

6.2.3 <u>Aerodynamic Crossrange Capability</u>

The crossrange capability is a function of energy and targeting conditions at EI. For this reason the early AOA with an apogee altitude of 105 n. mi. is most restrictive for STS-1. This profile has a nominal crossrange capability of 792 n. mi., with a 99.86 percent probability of achieving a 700-n. mi. crossrange with the first roll reversal occurring at a relative velocity of 3500 fps. However, for normal operations, the Orbiter should limit the maximum entry crossrange to 550 n. mi.

6.3 TAEM

The primary factors that influence trajectory shaping during the TAEM phase are aerodynamic maneuver capability, adequate margins to compensate for winds and dispersions, compartment venting requirements, flight control contraints, and sonic boom overpressure considerations. The best profile for providing flight control and aerodynamic maneuver margins, reducing transonic hinge moments, minimizing sonic boom overpressures and optimizing compartment venting is a profile with low dynamic pressure and high angle of attack in the transonic region. The TAEM altitude reference has been shaped to provide a smooth dynamic pressure and angle-of-attack transition from TAEM guidance initiation at 2500 fps Earthrelative velocity to Mach 0.9, which avoids flight control lateral directional constraints and provides adequate maneuver margins without excessive sonic boom over-pressures. The TAEM dynamic pressure is then ramped to achieve the A&L OGS requirements. Since reference 3 was published, a left-hand turn onto the OGS has been incorporated into the TAEM phases.

Significant STS-1 trajectory parameters for the TAEM phase are presented in figures 6.3-1 through 6.3-23. The TAEM-through-landing groundtrack is given in figure 6.3-1. The entry/TAEM interface conditions are summarized in table 6.3-I. Appendix A lists the TAEM guidance constants required for this profile.

The guidelines and constraints used in defining the flight corridor during the TAEM region are presented in figures 6.3-2 and 6.3-3 in the dynamic pressurerelative velocity plane and in the angle-of-attack-Mach number plane, respectively. Figure 6.3-2 presents the flight limits for the structural and flight control systems, the ground-level sonic boom overpressure, the minimum dynamic pressure that contrains operation to the front side of the L/D curve as required by the TAEM guidance altitude and energy controllers, and the dynamic pressure limit to accommodate vehicle pressure differentials due to compartment venting limitations. The sonic boom guideline corresponds to a 2.0 $1b/ft^2$ groundlevel overpressure and is based on the date and analysis given in reference 4.

The TAEM dynamic pressure profile in figure 6.3-2 is shaped to achieve an angle-of-attack profile that will avoid the new lateral/directional dynamic stability ($_3$ dynamic) boundary resulting from the April 1979 aeroelastic updates (ref. 10. At entry/TAEM interface the dynamic pressure at initiation of TAEM guidance is 209 psf (233 psf for the previous profile design) and is near the center of the flight corridor. The dynamic pressure is then gradually reduced to 160 psf at Mach 0.9 to achieve angle-of-attack flight that will avoid

the $C_{n\beta}$ dynamic stability boundary. The dynamic pressure is then ramped to 265 psf to achieve conditions for the A&L OGS of 20 degrees.

This dynamic pressure profile biases the trajectory toward the toe of the maneuver footprint and accomplishes six desirable objectives as follows:

- a. Provides a maneuver margin to compensate for winds that, on the average, present a tailwind component during the planned mission date.
- b. Provides a margin adequate to allow subsonic acceleration to the dynamic pressure of 265 psf required at initiation of the A&L phase without undue penalization of the capability for excess energy dissipation.
- c. Provides a smooth angle-of-attack profile with minimum pitch transients around Mach 1.
- d. Provides sufficient margin from compartment venting constraints to avoid structural integrity problems under dispersed conditions.
- e. Minimizes transonic hinge moments. The high-hinge moment coeffecients encountered in this region are compensated for by lower dynamic pressure.
- f. Minimizes sonic boom overpressures. The reduction in dynamic pressure from the value at entry/TAEM interface maintains dynamic pressure below the 2 psf overpressure guideline to the extent that maneuverability and flight cont constraints will not be compromised.

The angle-of-attack corridor presented in figure 6.3-3 defines the angle-ofattack limit for the flight control system (FCS) as defined in reference 14. Below Mach 3.0, in the low-supersonic transonic Mach 2.0 to 1.0 flight regime, the April 1979 aeroelastic update has resulted in a significant reduction in lateral stability ($C_{1\beta}$) and directional stability ($C_{n\beta}$). Because the aeroelastic effect is proportional to the dynamic pressure, the reduction in lateral/directional stability is more pronounced at the lower angles of attack. Consequently, the lower angle-of-attack limit in the Mach 1.0 to 2.0 region is defined by the ability of two RCS yaw jets to successfully augment the unstable $C_{n\beta}$ dynamic as presented in figure 6.3-3. Also shown in this figure are the regions where the Orbiter has a tendency for rolloff, noseslice, and buffet onset. Although the effect of these characteristics on the FCS performance are acceptable due to their transient nature, these regions are avoided to the extent possible for STS-1.

The TAE: altitude and altitude reference have been adjusted at the entry/TAEM interface to minimize the angle-of-attack transients produced by guidance logic changes. As indicated in figure 6.3-5, the altitude reference is approximately 4700 feet higher than the actual altitude thus requiring the Orbiter to maintain nose-up flight to recapture the altitude reference. This minimizes the pitchdown transient at entry/TAEM interface. Equilibrium conditions on the TAEM reference profile are reestablished just prior to alining the vehicle with the HAC tangency point. After the heading toward the HAC is attained, the turn compensation logic causes a second pitchdown to occur.

6.4 APPROACH AND LANDING

6.4.1 Trajectory Capture to Touchdown

The objective of the A&L profile shaping for STS-1 is to minimize the descent rate to the extent possible while providing benign maneuvers and sufficient energy to achieve the desired touchdown conditions. Based on these considerations, the A&L profile consists of an OGS followed by a preflare maneuver to an IGS and a final flare maneuver prior to touchdown.

The OGS is designed to be as shallow as possible to minimize the descent rate. The dynamic pressure on the OGS is selected to provide sufficient speedbrake reserve to cope with winds and dispersions and to provide the energy required at initiation of the preflare maneuver. The energy at initiation of the preflare maneuver must be sufficient to accommodate the subsequent deceleration during the preflare maneuver and the deceleration on the IGS and to provide the targeted touchdown airspeed. For the STS-1 profile, the OGS angle is -20 degrees and the dynamic pressure on the OGS is 265 psf, which corresponds to a reference velocity of 280 KEAS.

The preflare phase of the A&L trajectory transitions the Orbiter from the OGS to the IGS. Profile shaping criteria for the preflare phase are to provide a normal acceleration of 1.3 g's or less during the maneuver and to minimize oscillations in the normal acceleration during the maneuver.

The criteria used to shape the A&L profile for the IGS are to provide a minimum of 5 seconds on the IGS and an energy reserve at touchdown corresponding to at least 4 seconds of flight time. Time on the IGS is crucial because 1' allows time for the Orbiter to stabilize after completion of the preflare maneuver prior to the final flare maneuver and allows time for the pilot to assess the approach and make corrections, if needed, to establish a controlled approach to the runway. The IGS for STS-1 is -1.5 degrees.

The final flare maneuver is designed to reduce the sink rate at touchdown to less than 2 to 3 fps, to provide a smooth increase in the pitch attitude at an altitude high enough to allow the pilot to effect a safe landing and to provide the desired touchdown conditions. Touchdown conditions must satisfy the tirespeed limit of 218 knots groundspeed, avoid tailscrape, and provide at least 4 seconds of energy reserve time in all wind conditions.

The A&L profile was shaped with a modified autoland guidance to simulate a manually flown flightpath, as specified in the STS-1 Groundrules and Constraints document (ref. 5). These modifications include compensation for transport lag time and open-loop guidance command filters during the flare and shallow glideslope mode. The modifications were verified in the Ames IV simulations (ref. 6) and result in better tracking of the reference altitude profile.

Since reference 3 was published, the A&L OGS has been changed from 22 degrees to 20 degrees, and the reference velocity on the OGS has been lowered from 290 KEAS to 200 KEAS for this profile. The speedbrake retraction altitude has been lowered from 3000 feet to 2500 feet, and the gear deployment speed has been

reduced from 280 KEAS to 270 KEAS. These changes have resulted in a decreased velocity at touchdown of 185 KEAS compared to 194 KEAS for the previous profile.

TAEM/A&L interface conditions are presented in table 6.4-I. The STS-1 final approach conditions and the design values used as guidelines to shape the profile are presented in table 6.2-I. The groundtrack for A&L is presented in figure 6.4-1. Figures 6.4-2 through 6.4-17 present detailed plots from the 6-degree-of-freedom simulation for some specific parameters describing A&L conditions.

The A&L phase starts at an altitude of 9825 feet and a flightpath angle of -20.07 degrees. The initial altitude error (from the OGS reference path) is -26 feet. The body flap is retracted to the trail position (0 degrees) at the beginning of the A&L phase. The Orbiter stays on the OGS and maintains the 280 KEAS reference velocity (265 psf dynamic pressure) until the altitude decreases to 2000 feet. The descent rate on the OGS varies from approximately 196 to 175 fps. The ground intercept point of the OGS is 6500 feet from the runway threshold. The speedbrake is modulated on the OGS to maintain the reference velocity, and is retracted when the altitude has decreased to 2500 feet.

At 2000 feet altitude, the preflare maneuver begins. The normal acceleration during the preflare maneuver is less than 1.5g's. During the preflare maneuver, the gear deployment is commanded when the velocity decreases to 270 KEAS. The altitude at this time is 238 feet. A nominal gear deployment time of 7.5 seconds was used and resulted in the gear being down-and-locked 11.8 seconds prior to touchdown. This 270 KEAS is the minimum velocity to start gear deployment and still have the gear down and locked 5 seconds prior to touchdown for a three-sigma deployment time and trajectory dispersions. The transition from the preflare to the ϵ xponential capture mode is commanded at a range of 3700 feet from the runway threshold.

The time on the IGS is approximately 5.1 seconds, and the ground intercept point for the IGS is 2500 feet past the runway threshold. At initiation of the final flare maneuver, the sink rate is 11 fps, the wheel altitude is 59 feet, and the range is 945 feet from the runway threshold.

Touchdown occurs 2942 feet past the runway threshold at an £irspeed of 185 KEAS with a sink rate of 2.4 fps. The energy reserve time for the zero wind case is 8.1 seconds; the ground-relative velocity is 191 knots. A perspective of the flight profile with actual Orbiter attitudes displayed at 1-minute intervals from touchdown is given in fig. 6.4-15. Out-the-window views as seen from the commander's eye position are presented at 10-second intervals from touchdown in fig. 6.4-7.

6.4.2 Rollout

The objective of the rollout technique developed for STS-1 was to find the best compromise between maximum main-gear and nose-gear loads, braking, and rollout distance. The technique is a compromise because what alleviates one concern is usually detrimental to another area. Maximum main-gear loads occur very near nose-wheel contact due to the acrodynamic loading. Therefore, derotation is not started until the velocity has been reduced to a value thr will not result in

excessive aerodynamic loading. Starting derotation at too slow a velocity can result in loss of elevon control, and the rollout range is increased significantly. Losing elevon control will result in high nose-gear slapdown loads. Longer rollout distances before nose-gear contact will require more braking.

The technique developed first commands the speedbrake to open to 50 percent after main-gear touchdown. Opening the speedbrake increases deceleration and relieves elevon deflection requirements. A pitch attitude of 6 to 8 degrees is maintained until the velocity decreases to 165 KEAS. The range at this point is 5054 feet past the runway threshold. Derotation at -3 deg/sec is then commanded with nose-wheel contact occurring at 5538 feet. The maximum main-gear load is 132 379 pounds, which is under the 166 667-pound limit. The elevons are lowered to 10 degrees down deflection after nose-gear contact to help alleviate maingear loads. The maximum nose-gear load is 48 777 pounds; the steady-state load on the nose gear is 36 294 pounds. Moderate braking is initiated when the velocity is below 140 knots, which corresponds to the brake reuse limit. This occurs approximately 6 seconds after nosewheel contact. Nose-wheel steering is engaged when the groundspeed decreases to 110 knots. The vehicle comes to a halt after a rollout of 6568 feet, or 9510 feet past the runway threshold and 36.5 seconds after main-gear touchdown. Significant rollout parameters are presented in table 6.0-I(e), and figures 6.5-1 through 6.5-7.

6.5 COMMUNICATIONS AND TRACKING

Significant communications and tracking events relative to the OFT-1 groundtrack are presented in figures 6.6-1 and 6.6-2.

A summary of STS-1 S-band and C-band data is presented in table 6.6-I. Tacan data are presented in table 6.6-II and station locations are presented in table 6.6-III. The data for the Buckhorn and Goldstone S-band communications stations are based on detailed analyses of terrain masking with 30 seconds allowed for lockup after clearing masking. The Pt. Pillar and Vandenberg C-band tracking stations AOS is based on a zero-degree elevation angle with 60 seconds for firm lockup using skin tracking.

Approximately 18 minutes after the deorbit maneuver, communications and tracking by the Guam station are established with AOS based on clearing terrain masking at 53 hours 52 minutes 8 seconds GET. Coverage lasts for 5 minutes 25 seconds with LOS occurring 1 minute 41 seconds prior to EI.

The Orbiter enters S-band blackout approximately 5 minutes 9 seconds after EI when the Orbiter is at an altitude of 262 157 feet and a relative velocity of 24 481 fps. There are no S-band stations available for communications after Guam until Buckhorn acquisition.

The theoretical S-band blackout exit occurs 18 minutes 23 seconds after EI at an altitude of 177 266 feet and a relative velocity of 12 330 fps. The theoretical blackout exit for L-band communication used by the Tacan stations occurs about 18 mirubes 57 seconds after EI at an altitude of 170 299 feet and a relative velocit. α : 11 284 fps. Communications blackout entry and exit computations are based on the criteria presented in reference 18 and are presented in the

altitude/range plane, altitude/relative velocity plane and altitude/time plane in figures 6.2-7, 6.2-11 and 6.2-30, respectively.

Figures 6.6-3 and 6.6-4 present the OFT-1 trajectory profile in the elevation azimuth plane for the Buckhorn and Goldstone stations, respectively.

C-band tracking by the Pt. Pillar station is established at about 183 956 feet altitude and a relative velocity of 13 716 fps and by the Vandenberg station at about 176 167 feet altitude and a relative velocity of 12 192 fps. These data from these two C-band stations are available to provide an estimate of the state vector by the MCC before establishing the S-band communications lockup with the Buckhorn station. Fifteen seconds later, after communication is established through the Buckhorn S-band station, the crew could initiate a runway redesignation, if given a ground command, at an altitude of 158 307 feet and a relative velocity of 9212 fps. The first MCC state vector update (ref. 9) could occur about 67 seconds after the Buckhorn S-band AOS at an altitude of 145 806 feet and a relative velocity of 7763 fps. Range and elevation data from C-and S-band sites are presented in figure 6.6-5.

The Tacan acquisition logic is based on the three-tier concept. A total of 10 Tacan stations is used for navigation with acquisition and switching of these stations based on the arrangement within three tiers or regions: the acquisition region, the navigation region, and the landing region. The acquisition region includes the San Luis Obispo, Paso Robles, and Gaviota stations and is used for ranges greater than 120 n. mi. The navigation region includes the Fellows, Gorman, Bakersfield, and Avenal stations and a mobile Tacan station and is used for ranges between 10 and 120 n. mi. The landing region includes the Palmdale and EAFB stations and is used for ranges less than 10 n. mi. Table 6.0-I presents the Tacan switching times. Based on favorable acquisition and data comparison, the MCC will confirm the Tacan information 30 seconds after acquisition by the Buckhorn station. This allows incorporation of Tacan data as early as 150 000 feet altitude.

Lock-on by two Tacan line replacement units (LRU) will occur at approximately 149 345 feet. If the navigation state residuals are acceptable and the navigation filter is in the AUTO mode, incorporation of Tacan will then occur with no verification required from the MCC (ref. 21). Otherwise, crew action and MCC verification is required to incorporate the Tacan data into the navigation state.

The microwave scanning beam landing system (MSBLS) coverage sequence during TAEM and A&L is presented in figure 6.6-6. The MSBLS coverage data is first processed at a groundtrack range of 52 252 feet. All three channels (azimuth, elevation and distance) of the MSBLS data can be used until the range reduces to 2248 feet past the runway threshold on the nominal trajectory. At this point, the Orbiter flies past the elevation antenna team. The azimuth and distance data are continually used through rollout.

7.0 ASSESSMENT OF VEHICLE COMPATIBILITY

A comparison of the parameters used in designing the STS-1 OFP to the actual values achieved by the profile was presented in table 6.2-I. A brief summary of the Monte Carlo results is as follows:

- a. With onorbit thermal conditioning, the entry profile meets all groundrules and constraints.
- b. The TAEM profile meets all groundrules and constraints except the rolloff, nose slice, and buffet onset guidelines. The short time period flown in this region prevents this from being a serious problem, however.

c. The A&L profile meets all groundrules and constraints.

A more detailed assessment of the Orbiter and trajectory compatibility will be presented in appendix C of this document.

8.0 ASSESSMENT OF FLIGHT TEST OBJECTIVES

The descent OFP meets all of the STS-1 flight test requirements with the following exceptions:

a. The elevon schedule during peak heating (relative velocities greater than 13 600 fps) will be 1 degree up. (See paragraph 3.1.u below.)

b. The entry profile was shaped to achieve a maximum nominal RCC surface temperature of 2663° F on the wing leading edge and a maximum nominal surface temperature of 2504° F on the elevon. These are currently the most constraining control points using the simplified TPS mode. A panel 2 bondline/structural temperature of 325° F results from this profile. (See paragraph 3.2.h. below.)

The flight test requirements are contained in reference 4. Those requirements applicable to the development of the OFP are presented below: (original section and paragraph numbers have been retained).

1.3 FLIGHT PURPOSE

The primary purpose of STS-1, the first manned orbital flight of the Space Shuttle vehicle, is to demonstrate a safe ascent and return of the Orbiter and crew. Additionally, STS-1 is to provide data to support verification of the following:

- b. Combined Shuttle vehicle aerodynamic, structural and systems characteristics and predicted loads.
- c. Orbiter entry characteristics and performance including crossrange capabilities, TPS performance, control performance, and predicted structural loads.
- d. Orbiter vehicle and systems thermal response.
- e. Inflight vehicle hardware and software systems checkout and performance.
- f. Attitude and translational control capabilities, and guidance and navigation performance.

3.1 OPERATIONAL REQUIREMENTS

For STS-1, the following operational/test requirements and limitations will be observed during flight profile and crew activity planning.

- p. Orbital altitude will be between 90 and 150 n.m.
- q. This flight will have a deorbit plan which will allow a nominal and next orbit backup landing opportunity with less than 550 n.m. crossrange.

- r. Deorbit burn will be planned for a two engine OMS burn but deorbit must be achievable with one OMS engine.
- s. Nominal Orbiter c.g. for entry (at time of entry interface) will be as follows: $X = STA \ 1098.63 \ (X/L= 66.7\%), \ Y = STA \ 0, \ Z = STA \ 375.$
- t. The entry profile shall provide the least demanding thermal environment possible by minimizing heat loads (40° angle-of-attack schedule).
- u. Elevon position during entry peak heating (from 24 760 fps to approximately 10 000 fps) should be targeted for C^{0} .
- v. Nominal approach to the landing site will be such as to minimize sonic boom and overpressures near heavily populated areas.
- W. The final approach and landing profile must be compatible with both a manual and an automatic mode; however, a pilot- controlled approach and landing will be the planned mode.
- x. Landing will be on the lake bed at EAFB. Runway 23 will be the primary runway, 17 the backup, and 04 the alternated.

3.2 SUBSYSTEM REQUIREMENTS

For STS-1, certain subsystems requirements more conservative than design limitations must be imposed. The subsystem requirements will be observed as follows:

- f. Orbiter normal load factors will not exceed -0.3g to +2.0g for entry.
- g. Orbiter shall be configured and entry profile established to maximize the probability of a successful entry, approach, and landing with a single functioning APU within other system operational and flight safety considerations.
- h. The bondline temperature will be maintained below 312 °F for nominal entry. (Note that the RSI surface temperatures of reference 4 resulted from the Cycle 2 entry profile shaping. Updates to these temperatures are given in table 6.2-1.)
- 1. No later than 12 hours prior to schedule entry time, the ground will evaluate real-time telemetry of Orbiter bondline temperatures and assure the bondline temperatures are within acceptable limits. The ground will continue to monitor the bondline temperatures, provide atti-ude change instructions as required and provide go/no-go instructions to the crew for deorbit and entry. (Ref: DT0111 Preentry Thermal Conditioning).

3.3 CARGO REQUIREMENTS

For STS-1 the following limitations must be imposed on items of cargo being carried:

a.	Item	Weight/1b
	ACIP	164
	IECM	985
	DFI	<u>9 015</u>
	Total	<u>10 164</u>

- b. The DFI (including IECM) will be located at station 1069.
- c. Ballast will be carried to optimize the c.g. location as specified in paragraph 3.1.s. Primary ballasting will be provided by addition of OMS propellant. Additional ballast will be added as required.

4.1.4 DTO 104 Entry/Approach and Landing Phase Tests

4.1.4.1 Purpose

The purpose is to allow verification of structural, thermal, dynamic and systems performance of the Orbiter vehicle, during the entry, approach and landing phase of the flight. This test partially accomplishes the following flight test objectives defined in the Master Flight Test Assignment Document (ref. 17):

- (1) Safe return of the Orbiter and crew; verify capability for the expected range of operational flight profiles, c.g. and payload weights
- (2) Orbiter alone aerodynamics
- (3) Verify the Orbiter is free of flutter and adverse aeroelastic effects
- (4) Normal operation of all vehicle systems/subsystems including propulsion, electrical power, avionics, guidance, navigation and control (GN&C) mechanical systems, and flight control
- (5) Predicted payload environment
- (6) Entry and crossrange control capabilities for a range of payload weight and vehicle c.g. conditions to verify maximum crossrange entry performance
- (7) Verify Orbiter heat rate and heat load predictions and entry aerothermodynamic environment
- (8) Predicted structual loads and load paths
- (9) Approach and landing capability

(10) TPS performance over a range of entry conditions as required to verify nominal TPS capability

The following functional test objective requires evaluation:

a. FTO 104-01 SYSTEMS PERFORMANCE DATA. Assure that the proper data is obtained during the entry and approach and landing phase of the flight to allow proper evaluation and postflight analysis of the Orbiter systems.

4.2.1 DTO 111 Preentry Thermal Conditioning

4.2.1.1 Purpose

The purpose is to thermally precondition the Orbiter structure to obtain desired initial bondline temperatures prior to entry. This preconditioning is in support of verification activities associated with the following flight test objectives defined in the Master Flight Test Assignment Document:

- (1) Demonstrate thermal response to selected attitudes which support predictions of Orbiter thermal performance in operational situations.
- (2) Verify Orbiter entry heat rate and heat load predictions.
- The following functional test objective requires evaluation:
- a. FTO 111-1. STRUCTURAL CONDITIONING. Prior to deorbit for entry, the structural thermal condition must be determined and/or adjusted to assure that predetermined initial bondline temperatures are proper to allow a safe entry and to enable a thermal stress and TPS analysis postflight.

4.2.1.2 Test Conditions/Activity Required

a. FTO 111-01. No later than 12 hours prior to the scheduled deorbit burn, the ground will evaluate real-time telemetry of Orbiter bondline temperatures to assure that temperatures are at or below the limits specified in the Shuttle Operational Data Book. If bondline temperatures are within acceptable limits, they will continue to be monitored.

If the bondline temperatures are not within acceptable limits, the ground will evaluate the data and provide attitude control instructions to the crew to obtain the desired temperatures prior to the scheduled deorbit time. The ground will continue to monitor the bondline tempera-tures and provide go/no-go instructions to the crew for deorbit and entry.

4.2.1.3 Verification/Evaluation

a. FTO 111-01. Successful accomplishment of this FTO requires that real-time telemetry be provided to allow determination of bondline temperatures for

go/no-go evaluation and that the proper bondline temperatures be achieved prior to entry.

4.2.1.4 Data Requirements

- a. Flight data requirements
 - 1. OI telemetry formats: 161, 162 or 129 (M)

Real-time OI data are required during the test whenever station coverage is available.

2. DFI PCM telemetry format 140 (M)

DFI PCM is required during the test period at 10 seconds every 10 minutes.

- b. Preflight data requirements none
- c. Postflight data requirements
 - 1. OI data continuously from touchdown until touchdown plus 30 minutes (M)
 - 2. DFI PCM telemetry to be recorded by ground facilities continuously from touchdown until touchdown plus 30 minutes (M)

4.2.1.5 Background and Justification

The Orbiter structure must be thermally preconditioned pricr to entry to allow postflight verification of the structural system operational capability and to verify the stress/temperature response of critical structural components. This preconditioning is also required to allow an analysis to verify the thermal perfor OFT and operations.

9.0 DEORBIT-THROUGH-LANDING ISSUES AND CHANGES

No significant issues have been identified prior to going to publication of the document.

Subsequent to the generation of this profile, the following changes/updates are being considered:

- a. Launch date (atmosphere)
- b. Flight control system
- c. Center of gravity
- d. Deorbit maneuver (no fuel wasting)

10.0 REFERENCES

- 1. Space Shuttle Program Office: Shuttle Master Verification Plan, Master Flight Test Assignments Document. JSC-07700-10-MVP-10, rev. C, June 1979.
- Space Shuttle Program Office: Shuttle Master Verification Plan, Flight Test Requirements Document. JSC-07700-10-MVP-11, rev. A, August 1979.
- 3. Mission Planning and Analysis Division: STS-1 Operational Flight Profile, Descent-Cycle 2. JSC IN 78-FM-51, vol. V, February 1979.
- 4. Space Shuttle Program Office: Flight Requirements Document, STS-1. Basic rev. C, change 1, JSC 10780, November 1979.
- 5. Mission Planning and Analysis Division: STS-1 Operational Flight Profile, Groundrules and Constraints, Cycle 3. JSC 14483, vol. I, rev. 2, September 1979.
- Space Shuttle Orbital Flight Test Level C Functional Subsystem Software Requirements Document, Guidance, Navigation and Control, Part A, Guidance, Entry Through Landing.^a SD-76-SH-0001-C, 15 December 1978.
- Analytic Drag Control Entry Guidance System, rev. 1, JSC IN 08974, January 21, 1975.
- Shuttle Entry Guidance. The Journal of the Astronautical Sciences, vol. XXVII, no. 3, pp. 239 to 268, July-September 1979.
- 9. Entry Flight Procedures Handbook. JSC-11542, June 30, 1978.
- 10. Software Development Branch: Space Vehicle Dynamics Simulation (SVDS) Program Description. JSC IN 76-FM-26, vol. I, rev. 2, change 2, May 1978.
- 11. Software Development Branch: Space Vehicle Dynamics Simulation (SVDS) Program Description. JSC IN 76-FM-26, vol. I, rev. 1, Nov. 1976.
- Aerodynamic Design Data Book Vol. I, Orbiter Vehicle 102, Rockwell Document Rev. K. SD72-SH-0060-1L, October 1978 with April 1979 update.
- 13. Four-D Global Reference Atmosphere Technical Description. NASA TMX-64871, September 1974.

^aPlus CR's 19256A, 19549A. Functionally simulates April 1, 1979 IBM software delivery.

- 14. Space Shuttle Orbital Flight Test Level C Functional Subsystem Software Requirements Document, Guidance, Navigation and Control, Part C, Flight Control, Entry Through Landing.^b SD-76-SH-0007B, 1 May 1979.
- 15. Data to Support Entry FCS FSSR Usage^c, Memorandum FR-94-79, 18 July 1979.
- 16. Space Shuttle Orbital Flight Test Level C Functional Subsystem Software Requirements Document, Guidance, Navigation and Control, Part E, Flight Control Sensors/Controllers, Entry Through Landing.^c SD-76-SH-0015, November 26, 1976.
- 17. Rockwell International: RI/Houston Simplified Weight Synthesis Program, rev. 3, SEH-ITA-75-192, May 1978.
- 18. Sperry Flight Systems: Sperry Autoland Memo No. 31. March 9, 1978.
- Space Shuttle Orbital Flight Test Level C Functional Subsystem Software Requirements Document, Guidance, Navigation and Control, Part B, Entry Through Landing Navigation.^d SD76-SH-0004D, December 15, 1978.
- 20. Subsystem Operating Programs, Navigation Aids, Part E^e, SD-76-CH-0014, November 26, 1975 through PCN update no. 5, December 15, 1978.
- 21. Coordinate Systems for the Space Shuttle Program, NASA TMX-58153, October, 1974.

^tPlus CR's 29094D, 19570A, 19564, 19054, 19182, 19394C, 19415A, 19442, 19564. Functionally simulates auto flight control mode in April 1979 IBM software delievery.

^CPlus CR12416A updated air-data sensor model. Functionally simulates April 1, 1979 IEM software delivery.

^dPlus CR's 12924A, 19031C, 19045A, 19292, 19390, 19563. Functionally simulates April 1, 1979 IBM software delivery.

ePlus CR's 19611A, 19391. Functionally simulates April 1, 1979 IBM software delivery.

TABLE 3.2-I.- STS-1 CYCLE 3 DESCENT PROFILE DESIGN CHANGES

General	
April 13, 1979 aerodynamics	
Mean April atmosphere	
Orbiter weight	
Nominal: Increased from 189 844 to 191 902 1b	
AOA: Decreased from 194 325 to 192 202 1b	
AOA landing site changed from EAFB to Northrup strip	
Revised elevon schedule from entry interface to Mach 2.0	
Revised speedbrake schedule between Mach 10.0 and 2.5	

Entry

Changed elevon schedule from C to 1° up to better balance elevon/body flap surface temperatures for Mach > 13.6

Changed heading error deadband for initial bank maneuver in entry from 12.5° to 10.5°

Adjusted entry/TAEM interface to minimize angle-of-attack transients

Adjusted the altitude/altitude reference at entry/TAEM interface

Changed the angle-of-attack reference at entry/TAEM interface from 13.5° to 14.0°

TAEM

Recessioned TAEM for new alpha-Mach constraint boundary

Incorporated left-hand turn onto final approach

Adjusted the TAEM profile to be compatible with revised approach and landing profile

TABLE 3.2-I.- Concluded

Approach and landing

Reduced outer glideslope from 22° to 20° Reduced dynamic pressure on outer glideslope from 285 psf to 265 psf Reduced nominal landing speed from 197 KEAS to 186 KEAS Standardized inner glideslope location relative to the runway threshold Reduced landing gear deployment speed from 280 KEAS to 270 KEAS Sp3edbrake retraction altitude lowered from 3000 ft to 2500 ft Speedbrake deployment during rollout decreased from 70 percent to 50 percent

78FM51:V

78	FM	51:	V
----	----	-----	---

	Cyc	le 2	Cycle 3	
	Nominal	Margin OF	Nominal	Margin OF
Orbiter wt, lb	189 844		191 902	
CP1 - nose	$ \begin{array}{r} 2 517 \\ 2 134 \\ 12 669 \\ 2 319 \\ 2 477 \end{array} $	241 128 0 77 25	$ \begin{array}{r} 2 524 \\ 2 103 \\ 12 6751 \\ 2 302 \\ 2 485 \end{array} $	241 171 -5 127 22
Panel 2 struct temp, ^o F	325.	a_13	25.3	a_13
Max heating rate, Btu/ft ² -scc	59.7	· .	61.4	
Heat load, Btu/ft ²	53 147		53 731	•
Traj margin wrt eq glide,ft/sec ² .	2.38		2.26	
Entry state V, ft/sec	25 753 -1.18 4 399		25 752 -1.21 4 358	

TABLE 3.2-II.- COMPARISON OF CYCLE 2 AND CYCLE 3 OFT PROFILE SUMMARIES

!___! Exceed temperature limits.

a Preentry thermal conditioning used to achieve positive margin

TABLE 5.0-I.- STS-1 MASS PROPERTIES FOR NOMINAL END OF MISSION

ORBITER PRIOR TO DEORBIT BURH

HASS PROPERTIES

PEIGHT	AND C. G.	HOMET	NT OF THERTT	£	PRODUC	T OF INERTIA	A.
CGIN	197961 • (1 B) 1178 • 4(1N) -• 5(1N) 377 • (1N) PFRCENT BODY	IXX IYY IZZ LENGTH	47365A+4 6902741+8 7172723+6 67.5		1 X Y 1 X Z 1 Y Z	- 767+4 - 767+4 210266+4 1177+0	

ORBITER POST DEORAIT BURN

		MASS PROPERTIES	
NEIGHT	AND C. G.	MOMENT OF INERTIA	PRODUCT OF INERTIA
REIGHT	192288.7(18)	(SF2)	(SF2)
X Y Z X CG IN	1098+7(TN) +0(1N) 374+1(TN) PERCENT BODY	1 XX 848700.5 1 YY 6749156.6 1 ZZ 7920396.1 1 ENGTH = 66.7	1XY -37.5 1XZ 168113.9 1YZ 1187.1

ORBITER AT ENTRY INTERFACE

HASS PROPERTIES

WEIGHT AND C+ G+	MOMENT OF INERTIA	PRODUCT OF INERTIA
#FIGHT 191901+6(18) X 1098+6(1N) Y -0(1N) Z 374+0(1N) X CG N	(5+2) 1xx A479p1+1 1yy 6736480+4 172 7207833+1 ENGTH = 66-7	(SF7) 1XY 263+7 1X7 166406+1 1YZ 1177+4

ORBITER AT TAEM INTERFACE MASS PROPERTIES #EIGHT AND C+ G. MOMENT OF INERTIA ISF21

*E1GHT	AHD C. G.	MOMENT OF INERTIA	PRODUC	T OF INFRITA
REIGHT	101113.4(18)	(SF2)		(5F2)
X Y Z X CG_TN	1997+8(18) +9(18) 373+7(18) PERCENT BODY	1XX 945592.4 1YY 6721526.7 1ZZ 6993233.4 LENGTH = 66.6	1 X Y 1 X Z 1 Y Z	494+9 167740+5 1168+4

ORBITER AT LANDING GEAR DOWN

		HASS PROPERTIES	
#EIGHT	4+-D C. G.	MOMENT OF INERTIA	PRODUCT OF INFRIA
AF. IGHT	191029+4(18)	(5F2)	(5F2)
X Y	1298+8(1N) • P(TN)	1×× 869276.0	
7 X CG 1N	371+5(1N) P+8CENT BODY	172 6986244+3	1YZ 1167•9

Requirement	ΔV, fps
Insertion	204
Circularization	167
OMS-3	30
OMS-4	
Deorbit	293
Total AV	724

39

27

TABLE 5.0-II.- OMS LOADING REQUIREMENTS

78FN51:V

Parazeter	Deorbit ignition minus 35 minutes	Deorbit ignition	Entry interface -5=in	Ent og interface
GET, hriminisec	52:56:00	53:31: 4.32	53:54:15.24	53:59:14.28
Inertial velocity, fps	25 400.0	25 389.0	25 562.0	25 752.0
Inertial flightpath angle, deg	0.0262	0066	-1.1930	-1.2045
Inertial heading from north, deg	122.5014	82.4006	50.2812	54.4072
Longitude, deg	62.9785W	63.6885E	144.9013E	160.39365
Geodetic latitude, deg	25.3757N	39.83405	7.7783N	20.4924
Geocentric latitude, deg	25.2332N	39.65295	7.7269N	20.36661
Altitude of c.g. above the Fischer ellipsoid, ft	919 885.0	937 220.0	554 962.0	399 965.0
Orbital inclination, deg	40.3	40.3	40.3	40.3
Entry range, n. mi				4 358.0
Entry weight, 1b	•			191 902.0

6

TABLE 5.0-III.- STATE VECTORS

TABLE 5.0-IV-APRIL

GLOBAL REFERENCE ATMOSPHERE DATA

NO.OF	ALTITUDE ABOVE			* ENDEDA TUDE
ATMCSPHERIC	1960 FISCHER		DENSITY	DEC BANKINE
ELEWENT S	ELLIPSOID.FT	PRESSURE, PSF	SLUGS/FI3	DEG APARTIC
		C 2228117.04	40615683-10	.69597837+03
1	39736987+06	62662069-04	51532454-10	.64827484+03
2	22426027+06	74550837-04	66332719-10	.60277415+03
3	27774648+06	89916127.04	.86639381-10	.56000337+03
4	37774848+00	11628991-03	12199375-09	.51793913+03
5	36385046+06	14499927-03	.16465228-09	.48140859+03
7	35740391+06	.18630682.03	,22783018-09	.44974556+03
8	35098518+06	.24555865-03	,32180145-09	.42221984+03
ğ	34-59723+06	.32174869-03	.45373947-09	39473502+03
10	.33824320+06	.44472125-03	.65856998.09	25051508403
11	:33102835+06	.64162716-03	.10050372-08	24656802+03
12	.32476291+06	.89135778-03	14450045-08	34494904+03
13	,31854983+06	124/124/02	20065946-08	33977265+03
. 14	.31152618406	18210383-04	42953829 08	34113279+03
15	.30546394+06	25300287-02	62370153-08	.34243058+03
16	.29865877+06	50004173-02 50469712-02	88393691-08	.34509737+03
17	19561794406	72934476.02	12153754-07	.3-1936086+03
18	27890412+06	.10361143-01	1706.388C-07	.35404478+03
19	27252371+06	14270612-01	.23284728-07	.35763-86+03
20	26586755+06	.20043662-01	.32337740.07	.31.191272+03
21	25929568+06	.27814818-01	.44204618+07	.36742656+03
23	.25260108+06	.38456105-01	.59910273-07	.37443107+03
24	24603352+06	.52700806-01	,80292385-07	. 31243455+03
25	23249273+06	.71373607-01	10640655-06	.31058584+03
26	,23286649+06	.97172506-01	14135165-06	40711227403
27	,22635619+06	13060263+00	18059764-06	40111221103
28	,21992056+06	.17352991+00	,24283215-00	425-6733-03
29	.21323262+06	.23317931+00	41428679-06	4 14 45 1 30 + 03
30	.20659753+06	4052(355400	53251439-06	44-44039+03
31	.20022362+06	E 99/20058400	679180-7-06	45337857+03
32	, 19376217+08	4 NG13716+00	86015019-06	,40450288+03
33	100402773-05	0.0043696400	10958337-05	.47581910+03
34	17277569406	11578637+01	1397 3045-05	,44234062+03
35	16720218+06	1 4870722+01	.17773384-05	4874-58 0+03
30	16065391+06	19204148+01	,22956091-05	48784996+03
37	15417348+06	24561315+01	29569240-05	4 +++ 13 9 3 2 + 03
20	14740715+06	.31158781+01	.37770794-05	48053233+03
40	14113922+06	.40576962+01	.10060896.05	4/212/55/03
41	,13451527+06	.52740240+0	.66554792.05	46146257403
. 42	,12820703+06	.67970527+01	.874942 2-03	437771-2+03
43	, 12122139+06	.96453405+01	110/0000-04	41107259-00
44	.11459924+06	.11002543+02	21171399-04	42829000+03
45	.10836202+06	20352572+02	28501752-04	42062902+03
46	05242225405	2783/512+02	39266141-04	,412,5391+03
47	84714203+05	37850612+02	54479862-04	.4)459227+03
40	82057295+05	51840077+02	,76084101-04	.3JEH-054+03
50	75490973+05	.70902573+C2	.10577372-03	2.00727+03
51	68899793+05	.97416029+02	.14702500-03	. 31. 30424 5+03
52	.65629219+05	.11430226+03	.17307192.03	39771990+03
53	.62269766+05	.13464464+03	,20425729-03	20229107403
54	,59074073+05	.15736265+03	23918002-03	535578(1+03
55	,55836322+05	.18441086+03	.28078113-03	17814546+03
56	.52509586+05	.21712500+03	19177566-03	37689554+03
57	49224850+05	20534960103	45968428-03	32148420+03
58	,45890337+05	26243286+03	53578069-03	.3001 752+03
59	.42572789+05	41947654+03	62541679-03	, 38490247+03
60	20125761405	48438043+03	71464432.03	. 3147 6599+03
61	- 12810819+05	.56589625+03	.81270454.03	4 65917+03
63	24564866+05	.65674545+03	.91746(61-03	41701314+03
64	26200148+05	.75881775+03	.10265765-02	43061667+03
65	,22998521+05	.87355456+03	11453744-02	.44435854+03
66	19696257+05	.10010055+04	12742153-02	AUDEJED/*03
67	,16358936+05	.11459767+04	15720205-02	48248676+03
68	.13095232+05	.130//514+04	17107369-02	49411194+03
69	.98401593+04	16676915+04	19321664-02	.50284875+03
70	.55598745404	18811144+64	21593788.02	50749786+03
71	.32/96303+04	14507994+04	22330733-02	.50892911+03
72	.22033300+04			

CHERNAL PARE IS

TABLE 5.0-V	APRIL	GLOBAL REE 1962 STANDARD	ERENCE A	TMOSPHERE RE	DEVIATIONS	FROM
			OCH ST	TV	1 EMPE RATU	RE

		PRESSURE	DENSIT	M DEVIATIONS FROM
NO.0F	ALTITUDE ABOVE	DEVIATIONS FROM	A DEVINITONS TRO	1962 STANDARD.
ATMOSPHERIC	1960 FISCHER	1952 STANDARD	PUDCENT	PERCENT
ELEMENTS	ELLIPSOID.FT	PERCENT	FERGEN	
			77516052+00	.43860234+01
1	39736987+06	0.020002401	19539317+01	54581640+01
2	.39031040+06	96720902401	17400175+01	35700770+01
3	.38426937+06	-76466728+01	15644951+01	19850843+01
4	.37774848+06	.59009270401	28837721+00	13055925+01
5	.37032273+06	-69180205401	- 78692223-01	72546817+00
6	.36385046+06	5612912-101	21104105+01	91033269+00
7	.35740391+06	.58535098+01	71051739+01	.35277283+01
8	.35098518+06	.77868642401	11064795+02	63069314+01
9	.34459723+06	.80331092401	17141378+02	66104059401
10	.33024320+06	.13221234+02	.1/1433/0+02	68283004+01
11	.33102835+06	.17449037+02	22353002402	67407475+01
12	32476291+06	.20889778+02	.25/8/894402	40(51902+01
13	.31854983+06	.24500751+02	28581100+02	
14	.31152618+06	.27226191+02	30184016+02	- 100000000
15	.30546384+06	,28871630+02	,28113237+02	
16	29865877+06	.29376913+02	.24469032+02	.355-3461+01
17	29202714+06	.27392489+02	.19788546+02	.6128-960+01
10	28562784+06	23087954+02	.15041781+02	74394528+01
	27880412106	19815430+02	.10137059+02	.80799061+91
19	27252371+06	1 5985442+02	.56288742+01	.90855056+01
20	255925755405	12080968+92	92879065+00	11299545+02
21	20380753700	76843517+01	- 24931707+01	.10e~8018+02
22	.25929580400	27521406+01	+ 39336297+01	.81544032+01
23	.25260108+08	+ + 726473+01	+ 46624745+01	613-3-346+01
24	.24603352406	1 1126073101	. 52696022+01	43350963+01
25	.23949223+06	- 11145425101	- 46400094+01	26149590+01
26	.23286849+06	2002/565+01	- 24703054+01	11329412+01
27	.22635519+06	26/84021+01	2075 1201+01	- 12112043+00
28	.21992056+06	30886430+01	40507507401	• 13-0265H+01
29	.21323262+06	25508514+01	- 13590507401	- 23763655+01
30	.20659753+06	•.21672247+01	,14139304400	- 1155502-01
31	.20022362+06	•.10927132+01	,18936703+01	01202001
32	.19376217+06	40632009+00	.19087876+01	- 22202233401
13	18716679+06	•.24831209+00	.10605646+01	13-22315+01
74	18043773+06	.36544908+00	.68081368+00	- 46E125R0+00
34	17377669+06	47019319+00	.99286914+00	5.1(90365+00
35	16720218406	97647011+00	.92039160+00	10232663+00
36	16065201+06	1 37 34327+01	13322585+01	.13957463+00
37	.10085351400	+ 4092952+01	17183021+01	25008257+00
38	.15417346400	11112130+01	12360431+00	.9726624:+00
39	.14790715+00	0.4302172+00	46068330+00	.13911907+01
40	.10113922+08	55639458+00	· 76198290+00	.12896192+01
41	13-51527+06	2 4202575-01	14235375+01	. 14402008+01
42	.12820703+06	24202575-01	- 26037123+01	19162190+01
43	,12122139+00	- 7 54 58 63 8 4 60	- 43074952+01	23687588+01
44	.11499924+06	- 20960447401	- 52919394+01	.29804727+01
45	.10836202+06	- 24760340101	- COB3286C+01	269-10795+01
46	.10184533+06	35054395+01	. B2409035+01	16067559+01
47	.95242335+(5	37088155+01	25465769+01	61027184+00
48	.68714603+05	29331096+01	- 3000 7139+01	+ 4931936.7+00
49	.82057295+05	246/5285+01	71600768400	- 1171625.0+01
50	.75490373+05	-,193:6630+01	. / 10:17:00:00	- +.170964H+01
51	.66899793+05	13506860+01	.84075951-01	- +3/67319.01
52	.65629219+05	9E310730+00	.37836705+00	- 15:47171401
53	.62269766+05	+.63456715+00	90088329+00	1,15447777400
54	59074073+05	31527729+00	.14198998+01	
55	55836322+05	.69252 63-01	.19896672+01	+.18955261+01
56	52509586+05	.49448027+00	.36461737+61	- 30193431+01
50	49224850+05	10232715+01	.37313423+01	• 25832831+01
50	4589(337+05	.14983385+01	,37635246+01	21760120+01
50	4267 2789+05	18050218+01	.36709769+01	174435B6+01
29	30401006+05	22063587+01	.35659717+01	- 12924651+01
00	36135761405	23/06/0847+01	, 11396648+01	.1240-845+01
61	2001001010100	22577149+01	12956731+01	.94912348+CO
62	. J2010019703	22642937+01	.13708334+01	.811482244+00
63	.29564866+05	21079791401	77649520+00	.13144412+01
64	.26290148+05	1 10053551+01	15643381+00	.17457834+01
65	.22998521+05	+ : 4 276 28404	A0334390+00	.212+0526+01
66	.19696257+05	.1043/040101	. 88762803+00	22357491+01
67	.16358936+05	13.12/503+01	- 11510581+61	22216-61+01
68	.13095232+05	104/5235+01	. 140100/32+01	21747496+01
65	,98401593+04	1.74531294+00	- 10207338+01	15266688+01
70	.65588745+04	42272757+00	10212650401	10291214+00
71	32796353+04	20007725+00	10312520400	 20155766+00
70	72805608+04	. 19977476+00	.20138464400	

TABLE 6.0-1.- SEQUENCE OF EVENTS FOR STS-1 (CYCLE 3)

)

(a) Pre-deorbit maneuver to entry guidance initiate.

{*t=1	8 (1647 7 (166 1 (1671) 1 (1671) 1 (1671) 1 (1671)	EVENT TINE ISETE HE AN SEC	Erth7 Time FEET: ME WH SEC	RyENT TINC NAT ENIAT INTEARACE MR MN SEC	GEOGETIC VEL ACTITUDE FT FPS	*EL #719074 EEG	PELATIVE FLI FAIM Angle DEG	LONGITUDE	GEODETIC LATITADE DEG	CHBITER VEICHT LB	ANGLE DF ATTACK DEG	8784810 +8655480 L8/87+3
INITIATE MANYLYER FG FUNITION ATTITUGE	53 24 54 24	84 54 54 24	8 53 45.97	- 0 34.18 88	927247, 24175	103 510	. 013 .	33 35 E	34 67 5	110084/	118 67	.00
440 45°2343304	53 26 4.32	64 54 4 32	DQ. 22.8	· 0 33 8 61	938099. 24174	49 603	- 011	31 74 E	39.56.5	134027.	162 14	. 00
TERMINATE MANEUVER TO ISNITION ATTITUDE	53 26 19 20	64 54 19 20	9 55 14 88	- 0:32 \$4.73	938169, 24174.	94.756		40 15 E	39 71 5	197993.	191.43	. 60
PROCEAN 10 NAJOR NOSE 303	53 29 54 24	66 59 54 24	9 54 49 92	- 0 28 18 84	937 9 97. 34174.	86.106	+ , 00 4	97 93 L	40 28 8	197978.	165 50	.00
GUIDANCE IN111411261200 000000	53 30 49 92	65 00 49 92	8 33 45 60	- 0-26 24.01	937408. 24175.	82,549	100	67 SI 8	39 95 3	197978.	173 67	04
ICAL FRANCEMENT	53 30 55 04	65 00 58 04	8 89 54 72	0:38 14.49	837281, 24178.	82.321		63 24 E	20 03 3	187977.	374.24	. 00
CEURDIT BURN BNITISTION (1265	\$3 31 4 32	65 D1 4 32	10 00 .00	- 0.28: 9 61	837320 34175	82 016	+ .007	83 88 L	29 83 3	187877	174 12	. 00
2020	53 33 32 14	85 03 37 16	10 62 27.04	- 0 25 41 77	839925. 23910.	73 687	121	73 37 E	37 84 1	192330.	-178 78	.00
SACCESH TO	53 41 11 04	65 11 11 04	10 10. 6.72	- 0:18 2 23	885150 23978.	- 15.335	\$40	105 84 E	25 05 8	192314.	-14	.00
UNUTIONE POSITE DABIT ATTUTION WANELLEP	\$3 42 10 OB	45-12-10-06	10 11 5-76	- 0 17: 3 ES	828873. 23 998 .	12.706	+.418	100 IS E	22.40 5	182313.	•142.24	.00
TERUINATE FOSTIN DREET ATTETUDE MANEUVER	\$3 48 24 00	#5 18 34 00	10 17.15 88	0.10 49.83	727544. 24174.	47 664	-1.574	128 (6 E	7 43 3	103148.	17 11	. 00
CLAR 5 BARD ADA (CLEAR MASK)	\$2 \$2 7 68	65 22 7.44	10.21 3.36	. 0:07. 6.25	820317. 24307	47.310	+ 1,126	126 77 E	3 14 m	152143.	30 05	90

ŧ.

TABLE 6.0-I.- Continued

(b) Entry guidance initiate to TAEM interface

£vt=7	Evtat 1000 10011	Estar Trac Conts edits	Ev(n) 7:04 14:11 n0 00 5tC	Event time mat fatev interace to Ma Ste	GEOCETIC ALTITUDE	84461 6.8447 74833400 8 8		DEL DEL	ALLATIVE ALT BATH ANGLE DEG	LDMGITUDE CLG	6400411C LATITUDE 046	BACH MIRSER	ANGLE ATTACK BES	876.501C P2135081 LB/71**8
14111418 84101 B.IDANCE	83 14 16 24	41 24 15 24	10 28 11 24	8 04 88.04	\$54043.	11 22 1	44364.	47.850	-1.250	144.90 E	7.78 6	10.68	41.93	. 09
5.44 5 34 40 106 (Entle Assa)	83 87 33 00	es 27 33 00	10 28 29 00	0 01 41 38	452055	4750 0	24317	80 418	-1.276	154.89 E	18.31 H	12.93	48.67	.00
ENTRY SHIEFFACE	\$3 \$9 14.28	85 29 14 26	10 28 10 24	9 00. 00	398445.	4317.5	24563.	82 439	-1.263	160.30 E	20.49 M	18.46	19.54	.61
ACTIVATE ELLYON THIP	64 01 81 24	65 31 61 24	10 30 47 34	6 02 35 Ph	323149.	3134 3	24870	34.649	+1.191	140.65 L	34.87 M	26.96	30.76	.61
COMMUNICATION BLACKOUT	54 D1 54 04	LS 31 55 04	10 30 52 04	0 03 41 78	219962.	3711.4	24672.	66 B21		148 97 E	26.75 M	27.04	39.64	.54
atersulfact contect activeted	\$4 02 44 53	45 32 44 52	10 31 40 53	0 63 30 34	297448.	2920.6	24877.	M 438	+1.118	172.99 L	38.45 8	27.28	39.69	3.01
ERACITYATE OCS DOLL THRUSTEDS	34 04 11 40	55 34 11 40	10 33 7 40	8 04. 57.12	265082.	3177.1	24531.	61.690		178.77 E	31.38 m	36.30	39.96	10.02
INITIALE TERFERATURE CONTROL PHASE	84 04 14 28	65 34 14 28	18 33 10 28	0 CT 00	384392.	3161 .	24521	81.804	838	178.94 E	31.48 M	26 27	49.33	10.54
FIEST NON-TENG POLL EDMAND	B4 04 23 84	63 34 23 86	10.72 18 48	0 06: 9,90	263187.	3122.0	24487.	62.184	•**	179.62 8	31.78 M	24.17	40 13	11.64
DEACTIVATE BLS BITCH THRUSTERS, ENITIATE ANGLE OF ATTACH MODULATION	84 87 26 29	BB 37 26 26	+# 38 22 28	0 08:12 00	247826	2416 5	23324.	T3 038	• , 192	147.21 #	34.38 M	34.43	40.13	20.00
Inclust Dass updating	94.10 43 13	65 40 47 12	18 39 34 13	0 11.27.84	238105.	1639.8	31870.	87.178	•. 222	182.43 W	38.45 8	. 82.18	20.12	29.97
TATTOTE EQUILIBRIUM SLICE PHASE	\$4.13 \$0 78	45 42 50 76	10 41 44 76	0 13 24 44	272935	1245 1	19914.		314	143.22 8	30 18 8	20.01	29 34	42.04
FIRST POLL REVERSEL	94:12 47.98	45 43 47 80	10 42 43 84	0.14:23.00	21 4097.	1090.6	18908.	102.004		138.47 W	87.48 H	58.74	39 37	94.48
ENTITE CONSTANT EPAG PHASE	\$4.16 .84	65 44 54		0.16.43 56	1 9 2 1 02.	715 9	13524.	99.215	. 673	131.84 w	34.30 H	14.82	29 95	66.17
INITIATE ANGLE OF ATTACK TRANSITION	84 18 22 52	65 44 32 82	10:45 24 93	0 17.18.24	189433.	840.8	14494.	14.830	• , 450	130.26 8	34.12 8	12.71	39.00	91.35
PT PILLAR C-BAND ADS ID DIS ELEY +EQSECT	\$4:18.\$4.\$2	c5. 44 54 51	10:45.52.53	0.17:42.24	183954.	\$43.8	13716.	M.737		129.13 1	36.02 H	12.01	38.92	59.58
ERT S-SAND LOUMMILATIONS														
	\$4.17 37.80	68.47 17 60	10.46 33.00	9-10:23.52	177364.	497.6	12383.	90.543	•	137.32 8	25.94 M	11.14	20,84	41.63
	\$4:17.43.54	45.47 43 64	10:48.29.56	0.18:29.25	176167.	416.0	12192.	PS . 953	+, (1)	127.08 W	35-94 B	11.39 .	38,41	21.42
ELIT L BAND CONNENTIATIONS	84-18 11 40	65 48 11 40	10 47 7.40	6 18 57.12	170209.	431.2	11264.	86 621	-1.128	135 98 8	35.98 N	10.48	87.43	100 33
INITIATE TEAMSITION PHASE	94 18 38 28	45 48 34 24	10 47 34 28	Ø 18:24.00	184118.	3 M . 8	10-07.	82 872	+1.267	125.02 W	38 05 4	9.44	39.95	101.75
TO YOCK	84.18 S1.24	85 44 81 94	10.47.47 34	0.19 24.94	181028.	344.5	9947.	81 110	-1.198	134 80 W	34.10 %	9.22	34.82	117.92
ERIT LAF COMMUNICATIONS BLACKCUT	\$4.19 .36	95 49	10 47.54 26	0.10.41.01	158721.	411.0	. 105 .	61.257		124 28 W	34.14 8	8 17	83.41	111.22
BLC CP4 \$ 8440 405 101148 8458+20 \$10;	54 18 8.28	45 49 2 28	10 47 54 24	8 19 48 00	15.0677.	349 0	\$817.	61 501 ·	423	124.22 W	36.18 H	8.81	33,83	er# \$1
EARLIEST CAPCETURITY FOR BCC STATE	34.18 17.16	85 49 17 18	10 48 13 18	8 20 3 84	158301.		\$213.	84.848	+. 818	182.75 W	34 30 B	4.12	33.78	105 90
INITIATE TACAN ACCUISITION ARGION UPDATING 13 LOU LOCE ONI SEP SELECTES	54 18 55 08	43 49 55 00	10 48 51 04	0 20.40.80	148345.	274.2	i	11.134	-1.727	122.45 #	33.28 8	7.14	21.24	117.67
AMECHIA BOILES ACTIVATED	54 21 40 68	65 51 40 M	10 50 26 60	0 22 28 40	121020.	157.8	\$ \$47.	120 433	-3. 547	12p.34 a	25.21 8	8.30	83.70	175.43
	84 21 40 88	43 51 40 88	10 50 24 68	0 22 24.40	121828.	187.8	1142	120.483	-2.347	130.34 .	35 71 B	1.34	83.74	11. 43
INITIATE TACAN NAN_CATION #15100 UPDATING AVE SELECTED	54 31 54 53	85 51 54 53	10 50 52 52	0 22 42 24	6 1 76.3Q.	144 7	\$216.	125.632	-2.744	130.19 8	25 SØ W	5.07	21.88	184 10
ANT ISCAN ELEVATION SPEATER THAN	54 21 57 96	45 51 57 14	10 50 53 96	0 22.43 44	117446.	143.1	\$104.	126 009	-1, 154	130.04 #	25 19 4	5.05	21.61	186 76
FLB TACAN SELECTER	54 32 20 32	45 53 23 53	10 81 18 82	0.33: 4.24		127.1	44 85	125.756	-1.875	119.78 m	25.38 B	4.60	24.31	145.53
FLE "ALAN ELEVA"ION LNEATE THAN 45 GEG	\$4 23 20 52		10 \$1 16 \$2	Q 23 8 24	113239.	127.1	46 90 .	125.750	-1.175	11p.78 w	25.38 H	4.60	30.31	• •
STE TACAR SELECTED	\$4 23 48 32	45 82 48 32	10.51 41 33	8 23.26 04	107382.	107.2	4118.	115.341	-8.299	110.42 m	35.33 B	4.04	15.36	128 19
ALTACTION TO 458	64 22 55 54	61 52 55 64	10 81 51 56	0.23:41.26	105200	162.2	3987.	113.164	+3.579	119.34 m	35.19 N	3.15	18.98	113.90
NT PILLAR C BAND LOS LS DLG CLEVATIONI	94 27 58 44	63 52 54 44	10 \$1 \$4.44	8 23-44.18	16 2043.	101.0	3941.	112.182	-1.655	110.31 0	25.17 8	8.99	18 79	105 81
INITIATE ALE DATA STITUS PROSE DEPLOTERY	14 JZ # 12	49 53 6 12	10 61 2 12	0 23 81.84	102010	99.2	3754.	100.403	-3. 818	110.21 #	28.18.4	3.77	18.34	182.41
Can Talan Mult 15	94 23 18.24	45 53 15 34	10 52 11 24	6 34	100739	80.4	3431.	106.131	-4.067	110.11 m	25.12 #	2.41	17.86	3 PE . 75
CREW EUTCOIN CAPAL LI'S	\$4 23 18.12	43 53 18 12	10.52 14.12	0 24: 3 5	¥\$964.		3447.	106.010	-4. 193	119 67 8	25.11 8	3.14	17.71	1.90.74
INITIATE MUDCEN THEM	84 23 21 96	65 53 21 86	10 53 17 18	0 24. 7.4		87.1	3496.	103.107	-4.317	119 03 #	26.10 8	3.49	17.43	198.03
BAL TACAN BELECTED	94.24.13.84	0.5 P4.13.04	10.63. 8 84	4 24.56 54	45205.			87,481		*18.93 4	34.55 4	3.63	14.42	813.03

1.2

. . . .

TAPLE 6.0-I.- Concluded (c) TAEM Interface to approach and landing Interface

	(riet	8 v In 7 7 : eq 1 64 * 1 1 64 * 1 1 66 * 1	E-(47 7100 -(47) -(47) -62	8 2 1 0 7 1 0 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 1 1 1 1	Event time wat entar tareface Ma par 640	44006710 44117406 87	BanGe- TO-RUNTAT TURESHOLD R B	841 141 195	46. 421muta 856	ALLATINE PLT PATE AMOLE PLG	LEWE : TUBE BL6	62006716 LATITUDE 844		1948 81944 (B 8495)	10171_ENT 410171_ENT 60075	ANDLE OF ATTACH BLG	8******** 8***************************
418 0411 31518	FACE INITESTE	- 54 34 17 84		10 23 13 04		84 363.	ee .1			14 449			3.98	+479		14.34	ara 63
		54 54 53 46	NA 34 33 40	10 13 18 40	• n • · ·	83248.		6294.	12.023	-4 684	118 48 8	35 09 9	8.45	1481.	244.	18.86	295 81
	•	84 24 28 64		10 53 25 64	• 25 · 5 24	82012	95.1	2298.	** ***	×4 763	118 20	35.07.0	8.35	1366.	P43.	13.97	198 78
	809 1118	54 24 46 53	M 54 46 83	10 53 42 93	e 79 ** 94	74927	-1 8	8938.	188.971	-6 602	118 DE #		2.10	1280.	823.	18.77	184 32
43-065 - 144110		54 25 57 M	41 11 F7 M	10 54 52 98	1 N 43 M	DF149.	39.3	1230-	149 363	-12.075	117 38 W	34.97 H	1.27	723.	\$31.	7.40	163 71
-	THE THRUSTEES	H H 21 22	M 54 78 32	18 86 21.32	8 27 11.84	\$1187.	28.7		189.831	18 292	117 (01 15	24.95 H	1.00	\$64.	110.	7.86	150 87
\$817187C \$26508	AAAE BOOMLAT ION	84 29 41 64	85 56 41.64	18 56 27 64	0.27-27 24	47348	22.2	84.0	189 923	-14.812	117 77 .	24.83 H	. 98	\$10.	216.	8 17	117 96
THE TEATS MEASER	S ALTERNEY PRASE	54 37 7 08	85 57 7 88	10.54, 3.50	6.27 52 60	41462.	18.8	798.	100 033	-17 818	117 FR 4	34 91 10	. 83	471.	229.	8 81	177 82
CREW 14-7 1418 C	16 mat	54 27 29 15	86 57 28 14	10 36 25 18	0.20 14.00	34331.	17.0	758.	70 160	-18 85.8	117 wh w	24.85 B	. 78	481.	836. ·	6 97	100 51
1011201-10200 V*Collig			** ** ** 20	10 87 34.34	ê 30 75 83	21437.	9.9	643.	-56 617	-24 2.20		20 e1 W	, e3	M 0.	249.	8.09	PH 14
Telliets minus		54 35 51 24	88 34 81 34	18 17.41.24	0:29 36.95	18243.	e.#	635.	-78 875	-30.34e	117 db m			878.	878.	6 95	PH0 4.5
48.0510+2 5.844 13 266 5.844110	9 L06		85 56 56 60	10 17 10 40	0.25 40.32	19522.			-01.631	-30,178	117-05-0	35.0 1	.10	344.	873.	8.87	861 84
Initiati TREFIN		\$4.30 0.00		18-18. 8.00	0.21 \$4.72	19384.	7.1	\$94.	+184.985	-18.866	117.0P.W	86.02 H	. 🛤	283.	878.	8.49	204 34

					•											
t et ar	fytat Tjuć 142'; 142';	€vtst T296 (8075 ~5 80 640	Evtat timt tetti me an SEC	107 000 546 1071 5156 901 50194 54507 1100	ALTITUE	BANGE - TD-BUNUST THE SHOULD FT	776	94. 421m/14 916	ALLATIVE FLT FAIM Angle Angle	LONG I THEE pt 6	ALCONTIC LATITUDE DEB	Buch Russe F	T BAR ALB SPTER BOOTS	BONTY)LENT Albertip MOTS	4111740R 480%E Russet 87	ALTITUCE BATE FPS
140-12-14-666-4 840 20003108 247884828. 16/13/8 8007 8 240 08 18662284 78 8 868.	84 28 27.24	66 10 37 24	10 50 53.94	8 20.12 96	11828.	-83878.		-118 188	-10 909	417.78 B	38 81 8	.63	340.	J01.	1078-	-101.0
		61 10 13 13	18 18 48 53		7943	-20211.	882.	-118 868	-10 630	117.76 W	34 95 9	.40	319.	261.	*****	+181.2
	34 30 6 60		10 60 3.07	* 20 54 54	45.84	-13320.	619.	-115 815	-10 988	117 18 8	\$4.98 K	, +0	30 9 .	381.	2479.	-114 4
45*1+ 8 MM # 4 M	94 30 B 48		10 58 8.48	4 20 51 20	4081.	-11943.	90 B.	-115 808	-30.637	117 70 H	34 98 P	.46	301.	342.	1730.	-174 8
NITIFE LANDING SIAM DEPLOTMENT	94 30 24 38	66 98 34 34	10 10 20 20	8 31.18 08	3348.	-4131.	473.	-115.811	-8.007	117 87 8	34 97 10	,43	280. ·	874.	342.	-45.6
ALTE & BAGAS ALTERTER UPDATING	84 35 34 13	46 48 26 12	10 10 21 13	8 31 11 84	8273.	291 F.	46.8	-118 844	-3 645	117 BS W	24 17 1	.42	873.	263.	174	130.2
mail: 144 04 3451,488	94 36 74 60		18 19 23 44		87 56.	- 3 700	-16	-118 848	13,357	117 81 9	34 97 8	i .e.	276.	361.	167.	-14.5
LAR LINE AND LOCALD	54 30 31 80	48 09 31 68	18 58 27 88	8.31.17.48	8175.	- 5426	414.	-116 628	19,6 96	117 88 8	84 87 W	. 37	245.	\$37,	11.	
nitere fine, filme	54 JG 14 BB	an 46 33 am	18 58 29 49	+ 31 18 73	8163.	945			-1 487	117 MB W	34 97 K	. 37	346.	231.		-11.0
M418 L08	54 30 41 44	66 68 41-84	10 10 37.04	8 31 27 28	2100	1254	337.	-115 818	116	157.43 w	***	. 10	189.	183.	۹.	-1 2
NIGHT IN MAIN GEAR SPEEDINGARE TO	\$4. 10 42.72	88 88.44.73	19 14 10.71	8.31.29.44	2106.	2943 .	33 2	-115.540		117.88 W	34.98 H	. 20		105		-3.4

(6) Approach and landing interface to main gear landing

				(e) Main gear to	chdown throug	n rollowt				
şv. •	8484 11-2 (687) 	astat gant roats roats gata	8.50° (*8 (817) (817)	Event time Latentation Latentation ME Br Brc	1112 -008 8410 -0148 1040-000 510	SILLA BILLA	2001941847 41454288 84019	ELACE FROM BURGET TURESHOLD FEET	BOLLOUT BIBTANCE FEET	ANDLE ATTACA PLS
C G- CH MAIN SEAN PLEASAND TH SOL DEPLOYING T	84 30 43 12	64 No 43 13	18 28 29.73		•		+46.	2011.0		8 40
19. 18. CHATRACTOR	\$4 36 49 31	دو 44 ون 44		e as as co		***	141.	46.5	176- 3	6.35
	64 34 54 53	ad (1 13 13 13	18 19 48 13	8 31 38 24	• •	150	154.		3246 1	-2 91
11-12-16 BRANZING	21 30 58 63			8 AL 44 AL	14 8	1+8	· 20 ·	296 a b	4183.1	-1 18
ALTINIA ADSE AMAGEN	14 15 J 16 .	44 91. 3 99	10 10 10 00	0 31 40 44		167	tet.	1998.B	305¢ 8	-0.18
	31.31.29.64	46 01 38 04	11 63 18 09	8.32 \$ 76	14 3	•	۰.	5510.3	6148 0	-4.29

Deorbit orbit	Crossrange, n. mi. ^a	GET deorbit, hr:min	GET entry interface, hr:min	GET landing, hr:min ^b	Time since sunrise, hr:min ^b
2	129 N 248 S	2:17	2:47 4:22	3:17 4:52	1:18
ц Ц	317 S	5:27	5:57	6:27	4:27
5	66 S	7:02	7:32	8:02	0:02
6	459 N	8:37	9:07	9:37	(:3)
17	515 N	24:46	25:16	25:46	-0:14
18	30 S	26:26	26:50	27:20	1:20
10	308 S	27:55	28:25	28:55	2:55
20	266 S	29:30	30:00	30:30	4:30
20	86 N	31:05	31:35	32:05	6:05
21	687 N	32:40	33:10	33:40	7:39
22	205 N	48:48	49:18	49:48	-0:12
33 211	158 S	50:23	.50:53	51:23	1:23
34	220 5	51:58	52:28	52:58	2:58
32	170 5	53:33	54:03	54:33	4:33
50	266 N	55:07	55:37	56:07	6:08
31	110 N	72.51	73:21	73:51	-0:09
49	252 5	74:25	74:55	75:25	1:26
50	215 5	76:00	76:30	77:00	3:01
51	512 5	77.35	78:05	78:35	4:36
52 53	472 N	79:10	79:40	80:10	6:10

TABLE 6.1-I.- STS-1 LANDING OPPORTUNITIES AT EAFE

Crossrange ≤ 700 n. mi.

aNOTE: "N" means Orbiter must fly north of groundtrack to reach landing site and "S" means Orbiter must fly south of groundtrack to reach landing site.

bNOTE: Touchdown assumed to occur 1 hour after deorbit.

(-) = Before sunrise

(+) = After sunrise

1

ORIGINAL PAGE IS OF POOR QUALITY

Parameter	2 0145	1 OMS	RCS	Contigency 1 OMS
Deorbit	•			
GMT of ignition, day:hr:min:sec	93:17:01:04	93:17:01:04	93:17:01:04	93:16:58:36
GET of ignition, hr:min:sec	53:31:04	53:31:04	53:31:04	53:28:36
Vehicle weight at ignition, lb	197 961.0	197 961.0	197 961.0	197 961.0
Propellant, 1b	5672.0	5672.0	6134.0	4229.0
ΔV total, including c.g. control, fps	292.9	292.9	270.0	217.6
Δv min for in-plane solutions, fps	282.0	273.2	270.0	217.6
Wasting angle, deg	15.9	21.4	0	0
Burn time, min:sec	2:28	4:56	7:32	3:41
Coast-to-entry interface from burn cutoff, min:sec.	25:42	23:15	20:36	25:44
Entry interface				
Longitudinal e.g., in	1098.6 (66.7 %)	1098.6 (66.7%)	1099.6 (66.78%)	
Weight, 1b	191 902	191 902	191 827	.
H _a (burnout), n. mi	150.7	149.9	149.5	149.6
H _p (burnout), n. mi	1.8	1.5	1.3	27.9
Range-to-runway threshold, EAFB, n. mi	4358.0	4358.0	4358.0	4603.0
Crossrange to EAFB, n. mi.	196.0	196.0	196.0	197.0
Inertial velocity, fps	25 752.2	25 750.0	25 749.0	25 796.5

TABLE 6.1-II.- DEORBIT AND ENTRY INTERFACE PARAMETERS

TABLE 6.1-II.- Concluded

Parameter	2 OMS	1 OMS	RCS	Contigency 1 OMS
Inertial flightpath angle, deg	-1.206	-1.203	-1.202	-0.911
Thrust vector roll, deg	180		180	180
Ignition attitude, deg	•			
Pitch Yaw LVLH . <t< td=""><td>171 343 357</td><td>175 326 358</td><td>173 0 0</td><td>191 348 0</td></t<>	171 343 357	175 326 358	173 0 0	191 348 0
Pitch Yaw Roll ADI . .	180 0 0	184 343 0	181 17 2	209 4 354
Pitch Yaw Roll ADI . .	181 343 357	185 326 358	183 0 0	210 348 0

TABLE 6.1-III. - MANEUVER PAD FOR NOMINAL EOM

TABLE 6.1-IV.-

50

のでないのである

GMBL CK 1	000/00:06:40		
I R		GMBL CK 1	000/00:00:14
L N]	TRIM L R	LR	TRIM L R
Ρ.	P 12 .1	Р	P 12 .1
Y	Y 13 -6.5 14 6.5	Y	Y 13 -6.5 14 6.5
SEL		SEL	
PRI 2* 5*	ENG SEL OMS	PRI 2* 5*	ENG SEL OMS
SEC 3 6	OMS BOTH 15* PURGE ENA 19*	SEC 3 6	OMS BOTH 15* PURGE ENA 19*
0FF 4 7	L 16	OFF 4 7	L 16
BURN ATT 8 R357	R 17 SURF DRIVE	BUPN ATT 8 R357	R 17 SURF DRIVE
9 P180	RCS +X ACC 18 ON 22	9 P180	RCS +X ACC 18 ON 22
10 Y344	21 WT 197961 OFF 23*	10 Y344	21 WT 197961 OFF 23*
HA HP	F RCS ARH 24	HA HP	F RCS ARM 24
TGT 151 2	DUMP 25	TGT 151 2	DUMP 25
CUR 150 148	TARGET OFF 26*	CUR 150 148	TARGET OFF 26*
TFF 25:42	27 TIG 000/10:00:00.0	TFF 25:42	27 TIG 000/10:00:00.0
REI 4327	31 C1 15310 36 DVX	REI 4327	31 C1 15310 36 DVX
EXEC	32 C26157 37 DVY	EXEC	32 C26157 37 DVY
DVTOT 292.9	33 HT 65.832 38 DVZ	DVTOT 292.9	33 HT 65.832 38 DVZ
TGO 2:23	34 OT 113.206	TGO 2:28	34 OT 113.206
VGO X 276.16	35 PRPLT 5672	VGO X 276.16	35 PRPLT 5672
Y 8.43	·	Y 8.43	
z 97.36	LOAD 39 ST CRT TMR 40	Z 97.36	LOAD 39 ST CRT TMR 40

TABLE 6.1-V.- DEORBIT MANEUVER DISPLAYS

LOAD COMMAND

GUIDANCE INITIATE

5

ない。

		1 000 /10:00:00	2021/ / DEORB MENVE EXEC
٢	3021/ / DI	EORB MNVR EXEC 1 000/10:00:00	GV3L CK 1 1 000/00:02:28
	GMBL CK 1		
I	LR	IRIM L K	P 4 - 2 P 12 -1
	P.1.1	P 12 .1	Y CO COT Y 13-65 14 6.5
	Y-6.5 6.5	Y 13 -6.5 14 6.5	T-0.0 0.3 T 15 -0.5 14 0.0
	SEL		SEL OVE
	PRI 2* 5*	ENG SEL OMS	PRI 2* 5* ENG SEL UNS
	SEC 3 6	OMS BOTH 15* PURGE ENA 19*	SEC 3 6 OMS BOTH 15* PURGE ENA 19*
	OFF 4 7	L 16	OFF 4 7 L 16
	BURN ATT 8 R357	R 17 SURF DRIVE	BURN ATT 8 R357 R 17 SURF DRIVE
	9 P180	RCS +X ACC 18 ON 22	9 P120 RCS +X ACC 18 ON 22
	10 ¥344	21 WT 197961 OFF 23*	10 Y344 21 WT 197961 0FF 23*
	HA HP	F RCS ARM 24	HA HP F RCS ARM 24
		DUMP 25	TGT 151 2 DUMP 25
ĺ		TARCET OFF 26*	CUR 151 4 TARGET OFF 26* 1
	LUR 150 148	27 TIC 000/10:00:00 0	TFF 25:42 27 TIG 000/10:00:00.0
	TFF 25:42	27 FIG 0007 10:00:00:0	RET 4327 31 C1 15310 36 DVX
	REI 4327	31 CI 15510 50 DVX	EXEC 32 C2 - 6157 37 DVY
	EXEC	32 C2615, 37 DVT	DUTOT 2 6 33 HT 65 832 38 DVZ
a.	DVTOT 292.9	33 HT 65.332 38 DV2	
	TGO 2:28	34 OT 113.206	
	VGO X 276.75	35 PRPLT 5672	VGO X 2.54 35 PRPL1 56/2
	Y 8.60		Y .04
	Z 95.66	LOAD 39 ST CRT TMR 40	Z .73 ILOAD 39 ST CRT TMR 40
	1		

TABLE 6.1-V.- Continued

OMS IGNITION

.

OHS CUTOFF

52

. . . j.
3021/ / DEC	ORB MWVR EXEC 1 000/10:02:33	3031/ / DEORB MIVR COAST 1 000/10:10:06
GMBL CK 1	000/00:02:33	
LR	TRIM L R	
P.42	2 12 .1	P 6.0 6.0 P 12 .1
Y -6.0 6.9	Y 13 -6.5 14 6.5	Y 7.0 -7.0 Y 13 -6.0 14 6.9
SEL		SEL
PRI 2* 5*	ENG SEL OMS	PRI 2* 5* ENG SEL OMS
SEC 3 6	OMS BOTH 15* PURGE ENA 19*	SEC 3 6 OMS BOTH 15* PURGE ENA 19*
	L 16	OFF 4 7 L 16
	R 17 SURF DRIVE	BURN ATT 8 R 0 R 17 SURF DRIVE
BURN ATT 6 R337	Prs + x Arc 18 01 22	9 P317 RCS +X ACC 18 ON 22
9 P100	21 UT 107061 0FF 23*	10 Y 0 21 WT 197961 OFF 23*
10 1344	E RCS ARM 24	HA HP F RCS ARM 24
HA HP	DUMP 25	TGT DUMP 25
TGT 151 2	055 25*	CUR 151 2 TARGET OFF 26*
CUR 151 2	TARGET OFF 20	TEE 19:05 27 TIG : : .
TFF 25:42	27 TIG 000/10:00:00.0	1 1 1 1 36 DYX
REI 4327	31 Cl 15310 36 DVX	RET 4327 51 CT 37 DVY
EXEC	32 C26157 37 DVY	
DVTOT .O	33 HT 65.832 38 DVZ	
TGO 0:00	34 OF 113.205	TGO 34 BI
vgo x .co	35 PRPLT 5672	VGO X SALE 35 PRPLI
Y .01		Y
Z 00	LOAD 39 ST CRT TMR 40	Z ILOAD 39 ST CRI IMR 4
<u></u> ζ =,		`\

TABLE 6.1-V.- Concluded

AFTER TAILOFF

PRO TO MM303

ទួ

نہ

TABLE 6.	1-VI	NOMINAL	END-OF-	MISSION	REFSMATS
----------	------	---------	---------	---------	----------

	REFSMAT FOR STABLE MEMBER #1	
74224394+00	 26936383+00	.61360984+00
66760481-01	88138038+00	46766616+00
.66679603+00	38808727+00	.63621639+00

REFSMAT FOR STABLE MEMBER #2				
.27283688+0C	.35604039+00	.89375345+00		
.94832034+00	25597617+00	18752255+00		
.16201399+00	.89872766+00	40748008+00		

REFSMAT FOR STABLE MEMBER #3

54381812+00	.83134827+00	.11455071+00
.13166533+00	.21933172+00	96672529+00
82881001+00	51064040+00	22873631+00

RI	EFERENCE RELMAT (M50 to ADI))
29909217+00	95376793+00	29505944-01
.62551605+00	17261702+00	76087648+00
.72060636+00	24602864+00	.64822555+00
	INRTL RELMAT (M50 to ADI)	li naini naini naini na
44939156-00	86814561+00	.21064281+00
.47763892+00	43276111+00	76457757+00
.75492268+00	24298351+00	.60913932+00
	REFERENCE RELQUAT	
(M50 to ADI)		(ADI to M50)
.54233669+00		.54233669
.23732852+00		23732852
34577797+00	•	.34577797
.72799978+00		72799978
	INRTL RELQUAT	
(M50 to ADI)		(ADI to M50)
.42631756+00		.42631756
.30587180+00		30587180
31917516+00		.31917516
.78919136+00	•	78919136

TABLE 6.1-VII.- NOMINAL END-OF-MISSION RELMATS AND RELQUATS

Parameter	Design value	Actual value
Deorbit	•	·
Minimum coast time prior to entry interface, min		· · · · · · · · · · · · · · · · · · ·
2 OMS	15	26
1 OMS	15	23
+X-RCS	15	21
Center of gravity at entry interface		·
Longitudinal, percent	a66.70	66.70
Lateral, in	a0.00	0.00
Vertical, in	^a 375 <u>+</u> 3	373.5
Entry		
Maximum normal load factor, g	^a 2.0	1.63
Maximum dynamic pressure, psf		
Mach >5	^a 300	190
Mach ≤ 5	a342	218
Maximum hinge moments, in-1b x 10 ⁶		
Left Inboard elevon	a <u>+</u> 0.93	-0.397
Right Inboard elevon	^a +0.93	-0.395
Left Outboard elevon	a <u>+</u> 0.43	-0.179
Right Outboard elevon	a <u>+</u> 0.43	-0.188
Body flap	a_1.4	-0.507

TABLE 6.2-I.- STS-1 DEORBIT-THROUGH-LANDING TRAJECTORY PARAMETERS

aDenotes hardware/systems constraint.

Parameter	Design value	Actual value
Entry (concluded)		
Maximum hinge moments, in-1b x 10 ⁶ (concluded)		
Speedbrake	a _{+2.5}	0.535
Maximum heating rate, Btu/ft ² /sec		61.4
Heat load, Btu/ft ²		53 731
Target (runway threshold)		
Longitude, deg W	117.820	
Geodetic latitude, deg N	34.966	
Height above Fischer ellipseid, ft	2086.0	
True heading, deg	244.41	
TAEM	· · · ·	
Maximum hinge moments, in-1b x 10 ⁶		
Left inboard elevon	a <u>+</u> 0.78	-0.25
Right inboard elevon	^a <u>+</u> 0.78	-0.29
Left outboard elevon	a <u>+</u> 0.35	- 0.15
Right outboard elevon	a <u>+</u> 0.35	-0.17
Body flap	a-0.74	-0.27
Speedcrake	^a 2.1	0.83
Maximum normal load factor, g	a2.0	1.3

TABLE 6.2-I.- Continued

^aDenotes hardware/systems constraint.

TABLE	6.2-I	Continued
-------	-------	-----------

Parameter		Design value	Actual value	
	TAEM (concluded)			
Maximum dynamic	pressure, psf			
Mach > 0.9 .	· · · · · · · · · · · · · · · · · · ·	a, b ₂₅₀₋₂₂₀	209	
Mach ≤ 0.9		æ340	267	
	Approach and landing		-	
Maximum normal	load factor, g	a2.0	1.33	
Maximum dynamic	c pressure, psf	a340	278	
Maximum hinge n	moments, in-1b x 10 ⁶			
Left inboard	d elevon	a <u>+</u> 0.955	0.169	
Right inboa	rd elevon	a <u>+</u> 0.955	0.167	
Left outboa	rd elevon	a+0.46	0.042	
Right outbo	ard elevon	a <u>+</u> 0.46	0.041	
Body flap		a _{+1.4}	0.276	
Speedbrake		a <u>+</u> 2.5	0.803	
Time on the IG	S, sec	<u>></u> 5	5.1	
Speedbrake def	lection at 5000 ft, deg	55-60	64.8	
Preflare veloc	ity, KEAS	281	282	
Normal acceler preflare maneu	ration during aver, g	1.3	1.33	

^aDenotes hardware/systems constraint. ^bSee figure 6.3-2.

TABLE 6.2-I.- Concluded

Parameter	Design value	Actual value
Approach and landing (concluded)		
Final flare altitude, ft (c.g.)	50-60	59
Conditions at main gear touchdown		
Groundspeed, knots	^a 218	191
Velocity, KEAS	185	185
Range from threshold, ft	3000	2942
Descent rate, fps	^a 9.6	+2.4
Angle of attack, deg	<11	9.8
Energy reserve, sec	<u>≥</u> 4	8.1

^aDenotes hardware/system constraint.

Single mission temp limit, or Temperature dispersion, OF Control surface Control point location Control Traj Combined effect Temp limit, oF Aero heat deflection point Material limit Equiv simp model uncert disp Bias Random 1 Nose 2800 2950 180 65 131 2759 -------2 Body flap 2500 2000 247 146 0 33 289 2311 3 Wing leading edge 2800 2950 272 92 287 2663 --Elevon 2600 22 2600 135 75 h 34 158 2442 Forward chine 2700 2700 187 - 58 ÷ 195 2504 ---

TABLE 6.2-II.- ORBITER SURFACE TEMPERATURE LIMITS

						- setting and
PANEL	PANFL AREA (FI)2	MAXINUM HEATING RATE, BTU/(FT)2/SEC	MAXINUM Surface Temperature Ceg F	SURFACE INSULATION TYPE	TOTAL HEAT LOAD BTU/(FT)2	STRUCTURAL TEMPERATURE MARGIN,DEG F
	24, 33	22.07	2257.62	RCC	19329.16	****
	362 17	11.00	1854.08	FRST	10177.72	25.05
2	113 10	9.77	1756.57	FRSI	8568-10	17.03
· · ·	(13.03	9-02	1713.10	FRSI	7903.21	14.41
4 E	- 440.03 - 550 11	6.53	1543.10	HRSI	5892.93	15.73
5. K	403-00	4.79	1394.03	FRSI	4450.71	14.92
7	158.10	11.1+	1330.42	RCC	15678.34	*******
3	435.33	13.15	1929.17	FRSI	13127+39	22
9	412.00	13.29	1317.79	FRSI	10206+76	-14.27
10	641.00	21.03	2226.35	FR31	9115-07	10,50
11	105.33	21.08	2194.15	PK51	1751 14	4.00
12	360.00	10.53	1916.29	1254	4/20.05	30.40
13	275.22	2.93	1175.95	HRSI	2562+36	50.00
14	477.33	2.02	1034.32	LRSI	1794.30	25.82
15	1631.12	• 21	342.67	LASI	190.75	*****
•	7+4.73	.17	253.17	LRSI	78.31	****
17	114.12	. 45	53 t. 37	Last	284.21	******
1.7	<pre></pre>	, 77	520.39	LRST	267.46	*****
1 -	166.30	7 73	1633.37	FRSI	4434.55	68.49
[4		1 7 3	974.93	LRSI	1635.07	28.23
50	67.00		577 61	1351	640.99	32.64
21	247.33	1.11	527461 100 / 7		662.73	24.24
22	×10.7)	• 76	()))+42		364.10	******
23	1132,23	.41	545.54	FK21	300.00	24 - P4
24	5.5.5	. 44	563.45	LRSI	370.00	C 30
?5	32+01	33.74	2561.74	FRSI	14105+19	7.36

TABLE 6.2-III.- STS-1 CYCLE 3 THERMAL PROTECTION SYSTEM (TPS) SUMMARY

م

-

78FH51:V

TABLE 6.2-IV.- SUPMARY OF CYCLE-3 ORBITER SURFACE TEMPERATURE LIMITS AND MARGINS BASED ON MONTE CARLO ANALYSIS

	Control . point		•		Maximum Ti	t	Simp-				
Control	location		· .		Di	spersion, 3		Mean	 model	•	
point	(velocity fps)a	Nominal	Mean	Traj	 Bias	. defl. Random	Aero heating	Combined	+ 30 disperson	limit, CF	Margin, OF
1	Nose (22 800)	2524	2515	72	`		180	194	2709	2950	241
	Body flap (18 000)	2103	2132	161	0	33	247	297	2429	2600	171
3	Wing Leading edge (21 600)	2675	2070	54	••• •••		272	285	2955	2950	-5
2r	51evcn (18 000)	2302	2323	44	4	34	135	150	2473	2600	127
6	Forward chine (22 800)	2485	247ð	70		. 	187	200	2678	2700	22
Panel 2	Forward lower	325	325	10	 ,		37	38	363	350	-13

avelocity of maximum dispersed temperature

· · ·

1-1-1 Start -1-1

and the state of the

12

ノートレート

	Deflection errors, deg										
		Elevon	Во	dy flap							
Error source	Bias	Random	Bias	Random							
Y _{CG} (<u>+</u> 0.5 IN)		<u>+</u> 0.40									
Maneuver capability	<u>+</u> 1.0										
Asymmetric airframe thermal (orbital) manufacturing		<u>+</u> 1.2									
Bending under load	N/A		N/A								
Deadband	<u>+</u> 1.0 -		-> <u>+</u> 2.0	· •••							
Aero variations	`	(Varies along - trajectory)	>	(Varies along trajectory)							
Elevon position accuracy corrections	+.16	<u>+</u> .46	- .32	<u>+</u> .93							
Sum bias errors	+2.16		+1.68								
RSS random errors	· · ·	<u>+</u> 1.34		<u>+</u> .93							
^a Sum bias errors without deadbang	+1.16		32°								
^b Errors used in Monte Carlo analysis (table 6.2-IV)											
Bias	°+.16		0								
Random		+1.34		+.93							

TABLE 6.2-V.- ELEVON AND BODY FLAP SURFACE DEFLECTION ERRORS

aDeadband modeled in simulation. ^bOnly positive errors (down defections produce increased heating. ^{c10} subtracted from eleven bias as eleven schedule is -1^o (1^o up).

TABLE 6.3-I.- ENTRY/TAEM INTERFACE CONDITIONS

ł

.

17

- ÷

•	
PARAMETER	VALUE
CFT .HR : MN : SEC	54:24:17.64
TIME FROM ENTRY ENTERFACE.MIN:SEC .	0:25:3.36
TAFM WEIGHT.LB	191901.6
DELATIVE VELOCITY. FPS	2494.9
DELATIVE FLIGHT PATH ANGLE.DEG	- 4 . 4470
DELATIVE HEADING FROM NORTH.DEG	90.0537
IONGITUDE DEG W	118.4817
GEODETIC LATITUDE.DEG NORTH	35.0765
GEOCENTRIC LATITUDE.DEG NORTH	34.8958
ALTITUDE OF C.G. ABOVE FISCHER	84393.4
ALTITUDE OF C.G. ABOVE RUNWAY.FT	82531.8
	2.55
ANCLE OF ATTACK DEG	14,26
	208.7
DINAMIC PRESSURES OF THRESHOLD.NM	E0.1
DELTA AZI MUTH TO HAC.DEG	-14,03

TABLE G.4-1- TAEM/ASL INTERFACE CONDITIONS

PARAMETER	VALUE	
GET .HR : MN : SEC	54:29:27.24	
TIME FROM ENTRY ENTERFACE.MIN:SEC .	0:30:12.96	
RELATIVE VELOCITY, FPS	573.6	
RELATIVE FLIGHT PATH ANGLE.DEG	-19.9889	,
RELATIVE HEADING FROM NORTH, DEG	115.1516	, e
LONGITUDE.DEG W	117.7191	
GEODETIC LATITUDE.DEG N	35.0058	
GEOCENTRIC LATITUDE.DEG N	34.6232	
ALTITUDE OF C.G. ABOVE FISCHER ELLIPSOID.FT	11928.0	
ALTITUDE OF C.G. ABOVE RUNWAY.FT .	9824.6	
DOWNRANGE TO RUNWAY THRESHOLD.FT .	-33371.7	

TABLE 6.6-1.- C-BANC AND S-BAND COMMUNICATION SEQUENCE OF EVENTS

E E T HE MINISFA	::••	E.E.**	G E *	RLEVATION. DEG.	STITION AZIMJIH FROM NORTH, IEG	SLANT RANGE, N.WI.	RINGE PATE. FPS	SUPFACE RANGE, N.WI	RELATIVE VELOCITY. FPS	ALTITUDE . F1	LONSTTUDE.	GEODETIC LATITUDE. DEG MIN	EADTH RELATIVE FLIGHT PATH ANGLE.DEG.	EARTH BELATINE AZINUTH Deg
1 8 4 1		ASS WIN ELEN	53 51 47	ç	117 S	649	- 22580	132	24254	630809	137 46	1 14	-1 18	47 27
	•	C.ELP #45#	53 53 6			673	22352	157	2412-	620237. FC6634	138 46	1 21	-1 21	47 35
		M20 E.E.211	53 55 7	16 7	140 4	270	1207	252.	24422.	520040.	147 27	10 3	-1 26	48 42
10 20 12		LIS BEER EL	53 57 16	<u> </u>	74 B	566.	21228	555.	24505.	451024.	153 59	15 35	-1 28	50 12
	7	ENTER WASH	53 57 33	1.7	71.9	627.	21732.	617.	24517.	452055.	154 53	16.18	+1.28	50 61
	Y	EDG MON ELEN En secto a m	53 57 59	- 0		0.	3.	0.	24672.	319863.	169 55	26 45	1.19	56 12
		AND MON ELEC	54 15 57	ō	254 3	468	. 14508.	465.	15561	192957.	+132 4	36 20	• 64	99.54
11 44 GL -		ALL MIN ELLY	54 15 57	c	264 3	468.	-14509.	465.	15661.	193907.	-132 4	36 20	- 64	59 54
11. A. 41. A	• - •	ALC MON ELEV	54 18 44	0	263 3	459.	-14016	437.	14135.	165403.	- 123 44	36 4	• . • 1	95 92
1 1 4 4 4 5 1		A.C. 994 1.14	54 18 44		263 3	114	+13999	137.	11716			36 2		94 74
	•		54 17 15		279 3	530	- 1248	528	13345	192425	128 36	35 50	+ 61	\$3 (3
		411 3 185 EL	54 17 9	3 3	254 8	310.	-12217	307.	13330	142359	128 35	35 60	• 62	93 57
ه به ره	••	400 3 190 EL	54 17 9	3 3	254 8	315.	-12217.	357.	13332.	122353.	- 126 35	35 60	- 62	50 50
	s • •	ALC WIN ELEV	54 17 22	0	293 7	•57.	•12455,	449.	12163	121033.	- 127 58	35 58	•.78	90.54
	· •	1.1	54 17 44	23	255 5	331.	+11852.	329.	12192	175.157	- 127 5	35 57	. 51	89 55
15 45 15 1		ASC MON ELEV	54 17 50	. 0	280 4	443.	-11835	440.	11974.	174534	- 125 49	35 57	•.98	89.18
15 4 57 4	. a	122 3 282 84	54 18 1	30	287 0	258.	-11099.	295.	11614.	172502.	- 126 23	35 58	-1.08	87 87
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ASS BISES EL	54 TR 2	3 2	287 1	298.	+11075.	295.	11539.	172:98.	- 126 22	35 58	-1.08	87 61
		E 94 B.	54 9	5	277 8	474	10255	£ 77 .	11652	170799	- 125 60	12 23	•1.13	86 63
		1.743 W414	54 14 12	1 2	262 3	267.	.16233	365.	10510	145615	- 125 14	36 2	-1 30	81 61
		111 5.4	54 19 0	c	0	0.	Ο,	ο.	9705.	159721.	- 124 17	35 9	- 52	B1 25
	6 i -	₩2,4 + 30 S	54 19 2	20	264 8	319.	- 5019	317.	5547.	159577	- 124 13	36 9	* 42	81 52
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		410 3 101 61	54 19 13	30	246.2	201.	- 6636	295.	9330	154541	* 123 53	36 17		84 65
		455 @ 555 EL	54 19 24	30	797 A *	273.	-8336	271.	8720	154607	123 14	36, 13	-1.71	88.57
12 4 42 4		ass a ses eu	54 19 14	٥. د	287 7	273.	·8339.	271.	8723.	154507.	+ 125 14	36 13	-1 71	88.57
· · · · · · · · · · · · · · · · · · ·		MAR ELIGATION	34 19 53	17 0	107 7	81.	- 797		8212	146719	• 122 43	36 13	1.72	92 32
12 44 5	- -	¥4,4 + 97 \$	54 25 9	4.1	230 4	227	.7556.	225.	7763.	141806.	- 122 16	36 12	+1.82	96 03
10 4 + 5		450 0 CEG EL	54 20 19	3.0	282 6	259.	- 7493.	257.	7525.	145507.	-122 2	36,10	-1 90	98 18
15 51 6	***	ELELA MALK	54 21 10		261 3 278 K	. 200.	· 6079.	199.	6253.	125841.	- 120 52	35:56	-2.36	111 53
10 37 37 3		MASH + 30 S Mik Frifyats	54 27 4	17.	29 3	62.	•746	59.	5049.	115875.	- 119 59	35,31	-2.54	127.73
		WIN ELEVATE	54 22 8	17.3	31.1	62.	-607.	59.	4965.	115053.	- 115 55	35 29	-2.12	126 15
10 ST 47 5		WAR ELEVATIN	54 22 51	7.5	2.9	119.	+1542.	118.	4093.	107021.	- 119 24	35:13	-3 46	114.63
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	: • :	155 3 165 Ev	54 22 58	20	131 0	209.	2676.	208.	3941,	101053	- 113 18	35 10	-3 65	112 16
		ISI 3 INC LL	14 22 15 FA 15 4	96	253 6	65.	-1513	64.	1777	73432	-118 8	35 2	-9 67	125 01
		DIG VIN ELER	54 25 44	. 0	122 9	257.	1253.	267.	1381.	£2P81.	- 117 58	34 59	-12 88	108 59
45 34 45 4	• • •	TST WIN ELEV	54 25 44	- 0	122 9	267.	1259.	267.	1301.	62661.	- 117 58	34 59	-12 85	168 59
12 54 53 1	è	VIA ELEVATN	54 25 57	83.7	15.6	9.	-293.		1235	58587	-117 54	34 58	13 60	109 23
1 51,51 1 1 51,51			54 25 57	30	81 3	134.	1031.	134	1220.	54568	+ 117 54	34.58	-13 68	169 28
1. 6. 6.		151 1 111 11	54 25 59	3.0	611	133.	1014.	133.	1204.	58153.	+ 117 54	34 58	-13 73	109 33
12 34 16		ost à ges es	54 26 0	3 0	37 7	132.	355.	\$31.	1193.	57878.	- 117 54	34.56	-13 78	109 35
15 5 19		TTO VON ELEV	54 28 53	c	55 9	115	-560.	146.	622	:8933.	- 1+7 39	- 35, 1	-20 27	-78 22
	11	ENTER 4234	54 28 51	3 1	243 5	4J. 145		145	610	16430	- 117 40	35 1	-20.25	-80 72
		1.7. VIN 1.1.4. 517 - 3 1.7.5 F	4 28 55	30	\$43 6	43.	45.3	43.	618.	14.22	- 117 43	35 1	-20 17	-81 53
			54 26 56		45 6	141	- 344 .	141.	616.	18215.	+ 117 40	35. 1	- 23 67	83 95
	ا فعال	55. VIN ELLY	54 35 4	• .0	244 5	42.	431.	49.	515.	5110.	- 117 47	34 59	-19 95	-115 55
	• • •	<u> </u>	54 30 6	30	78 7	1.	-473.	7	510.	4640	- 117 47	34:59	-19.95	-115 61
		CONTRACTOR DE LA CONTRACTA DEL CONTRACTA DE LA	54 30 22		81.9	Ś.	459	5.	487.	2439.	- 117.4B	34,58	+8.37	-115 63
	= 1	EN ER WASK	54. 30.22	• 0	80.4	S.	-451.	5.	485.	2466.	· 117 48	34:58	•7.85	-115.63

E.

TABLE 6.6-11.- STS-1 TACAN COMMUNICATION SEQUENCE OF EVENTS

							E.E. " H= H & SEC - SETE	Event	GET MRW:N SEC	ELEVATION. DEG.	STATION AZIUUTH FROM NORTH, DEG	SLENT Range. N.W1.	PINGE RATE. FPS	SURFACE Range. N.WI.	RELATIVE VELOCITY. FPS	ALTITUDE . FT	LONGITUDE. DEG WIN	GEGDETIC LATITUDE. DEG MIN	EADTH RELATIVE FLIGHT PATH ANGLE.DEG.	TRAJECTORY EARIM RELATIVE AZIWUTM. DEG	
		·			· .		10 30 53 11 45 03 505 11 41 34 535 10 45 43 53 10 45 53 534 10 45 55 54 10 45 55 54 10 45 55 54 10 45 23 50% 10 44 23 50%	EN SBIND B.K ATT WIN ELEF ATT WIN ELEF	54 1 55 54 16 37 54 16 37 54 16 57 54 16 57 54 16 55 54 17 55 54 17 38	000000000000000000000000000000000000000	0 279 1 275 9 275 7 264 C 279 7 276 5 281 6 C	0. 458. 459. 457. 454. 452. 453. 445. 6. 6.	0. • 14210. • 14119. • 13569. • 13579. • 13530. • 13530. • 13590. • 14590. • 14500. •	6. 456. 457. 454. 452. 449. 451. 443. 0.	24672. 14337. 14366. 13623. 13701. 13608. 13129. 12739. 12380. 12130.	3+9653. 106578. 166972 163697. 183697. 183697. 183638. 181451. 177366. 177265.	169 55 -130 2 -129 59 -129 17 -129 8 -128 58 -128 19 -127 47 -127 19 -127 1	26 45 36 6 36 2 36 2 36 2 35 1 35 5 35 5 35 57 35 57	-1.19 42 42 50 52 69 87 87 93	56 62 56 45 56 37 55 37 55 63 54 69 54 42 52 56 91 73 50 58 89 74	
		•					15 45 21 Val 15 45 46 115 15 46 51 126 15 47 124 15 47 7 15 41 8 15 47 124 15 47 8 15 47 8 15 47 8 15 47 8	400 MIN ELEV 400 N DES EL 400 3 DES EL 400 A DES EL 6000 AN DA 6000 AN DA 6000 AN DA 6000 AN DA 6000 AN DA 6000 AN DA	54 17 52 54 17 52 54 17 53 54 17 53 54 18 5 54 18 1 54 18 1 54 18 2 54 18 2 54 18 2 54 18 2	2 C 3 0 2 4 1 4 2 6 4 C 2 6 4 C 3 C	260 3 260 0 .75 1 260 2 267 7 283 4 283 4 284 9 284 9 284 3 281 3 275 7	253 253 442 317 360 0. 366 261. 255 35	- 11740 - 11750 - 11672 - 10550 - 10564 - 10561 - 10551 - 10551 - 11720 - 10566	296 37, 440 315 358 0 358 0 354 259 252 389	11927. 11817. 11817. 11554. 11352. 11284. 11263. 11253. 11253. 1127.	174540, 174942, 179839, 171771, 170405, 170493, 170493, 170493, 146526	- 125 45 - 126 42 - 126 37 - 125 37 - 125 1 - 125 63 - 125 63 - 125 59 - 125 57 - 125 55	35 88 35 58 35 58 35 58 35 59 35 59 35 59 35 59 35 59 35 59	- 59 1 01 -1 03 -1 09 -1 13 -1 13 -1 13 -1 13 -1 13 -1 14	89 C2 88 82 87 46 86 59 86 53 86 57 86 57 86 57 86 33 86 33	
				6/			12 4 15 14 12 4 15 14 12 4 12 14 15 4 14 15 4 15 15 4 15	ESSO PA PA ESSO PA PA PA ESSO PA PA PA ESSO PA PA PA PA PA PA PA PA PA PA PA	54 18 4 54 18 4 54 18 6 54 18 15 54 18 15 54 18 27 54 18 27 54 19 27 54 19 27	5 2 1 3 2 3 6 3 0 0 0 7 0	260 9 277 2 275 8 275 9 269 4 262 7 278 8 0 268 6 287 8	455 332 255 267 290 288 285 0 277 275	• 10960. • 10960. • 10960. • 10927. • 10227. • 10541. • 9935. • 9935. • 8745.	404 323 264 265 265 265 265 264 0 275 274	11190 11127 11127 11127 11022 10533 10265 9705 9647 8939	16,4684 169238 169238 169239 169439 162446 163550, 159577, 159577, 156560,	125 53 - 125 49 - 125 49 - 125 49 - 125 40 - 125 36 - 124 52 - 124 17 - 124 13 - 123 29	15 59 35 60 35 60 36 0 36 0 36 4 36 9 36 2 36 13	-1 15 -1 18 -1 18 -1 16 -1 19 -1 20 -1 41 - 52 - : 42 -1 47	86 26 86 01 85 55 85 55 85 24 82 20 81 26 81 50 86 87 80 25	
	· ·		•			e e a companya de la c		LISS DISS LL LISS DISS LL VI DELLOIN VI ELLOIN VI ELLOIN CS DISELE VI ELLOIN VI E	4 19 42 54 21 35 54 21 35 54 21 35 54 21 35 54 21 35 54 21 35 54 21 25 54 22 27 54 22 27 54 22 27 54 22 27 54 22 27 54 22 27 54 22 27 54 22 27 54 23 27 54 22 27 54 23 27 54 23 24 54 23 24 54 24 24 54 25 24 54 25 24 54 25 24 54 25 24	3 0 45 1 25 2 26 8 46 8 71 8 46 9 46 9 46 9 45 9 46 1 47 1 46 1 36 6 47 1 45 9 47 1 45 9 47 1 45 9 47 1 45 0 3 6 5 3 0 3 5 0 47 1 45 5 45 5 45 5 45 5 45 5 45 5 45 5 45	287 6 3'5 1 26 3 22 5 5 5 5 7 2'7 7 147 2 31.4 31.4 9 4 7 200 5 15 00 1 1 5 7 15 7 15 7 15 7 15 7 15 7 15 7 1	271, 30, 22, 40, 28, 26, 25, 25, 25, 25, 25, 27, 22, 18, 12, 13, 13, 14,	- 62/3 - 4054 - 253 - 4055 - 266 - 2058 - 208 - 574 - 410 - 396 - 1481 - 1281 - 1281 - 1268 - 1281 - 1268 - 1281 - 1268 - 1281 - 1268 - 1281 - 1268 - 1268 - 1281 - 1268 - 1281 - 1268 - 1281 - 1268 - 1281 - 1268 - 12	269. 21. 9. 35. 20. 19. 6. 18. 17. 52. 18. 21. 14. 21. 35. 139. 138. 10.	8515 6297 5843 5756 5616 5414 4515 4689 4530 4530 4467 3914 3156 2110 1656 1376 1376 1376	152729. 135349. 125193 125193 12753 12763. 17773. 11753. 11753. 112557. 11257. 11557. 11557. 11557. 11558. 11559. 1155	- 123 1 - 120 55 - 120 55 - 120 55 - 120 57 - 120 52 - 120 52 - 120 52 - 120 53 - 116 45 - 116 45 - 119 37 - 119 37 - 119 37 - 119 57 - 118 51 - 118 4 - 117 56 - 117 56	36 13 35 56 35 44 35 44 35 44 35 44 35 22 35 32 35 32 35 35 35 35 35 10 36 10 37 10 38 10 39 10	-174 -234 -249 -252 -257 -255 -255 -278 -169 -212 -253 -253 -368 -501 -169 -501 -179 -1291 -1311 -1375	90.35 116.69 117.84 119.74 122.63 125.63 125.65 125.15 125.16 121	
•				•			1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 515 1.11 515 1 215 1. 927 E. 1.25 EL 927 E. 1.25 EL 45 515 1.E. 515 3 515 EL 515 51	54 25 56 54 25 53 54 25 33 54 25 45 54 27 55 54 27 55 54 27 55 54 28 27 54 28 24	45 1 7 0 85 5 3 5 45 1 3 6 - 0 - 0 - 0	76 2 76 7 116 9 206 5 54 7 140 7 141 9 80 8 94 6 101 2 75 0	13 116 116 115 8 83 155 152 122	504 744 643 - 233 773 45 45 67 - 524 - 525 - 525	115. 116. 116. 104. 61. 83. 155. 152. 122.	94 902 854 845 845 845 671 645 671 645 637 594	51245 44145 46531 46510 37114 2*555 25159 2516 2514 15554	. 117 49 . 117 47 . 117 45 . 117 37 . 117 38 . 117 28 . 117 41	34 51 34 56 34 56 34 51 34 51 34 51 34 51 35 5 35	-15 40 -15 64 -14 82 -14 95 -16 70 -17 64 -19 75 -20 34 -19 56	t09 83 109 92 109 94 109 93 81161 29 99 - 1 12 - 51 76 - 62 61 - 104 99	
								511 VIN ELEV 511 VIN ELEV 512 VIN ELEV 513 SEC EL 513 VIN ELEV 513 SEC EL 513 SEC EL 513 SEC EL	54 29 19 54 29 23 54 29 23 54 29 51 54 20 51 54 30 31 54 30 31		92 C 1C8 3 78 7 78 1 114 5 283 7 81 4 537 4	107, 1*8, 17, 56, 71, 3, 14,	- 491 - 393 - 503 - 491 - 308 - 495 - 463 - 380	107 118 17 56 71 1 3 14	582 576 542 535 512 512 567 490 390	13647 12668 6660 742 2864 367 2547 2547 2142	- 117 42 - 117 43 - 117 45 - 117 45 - 117 45 - 117 48 - 117 48 - 117 48 - 117 49	35 36 34 34 5 34 5 34 5 34 5 34 5 34 5	-19 72 -20 13 -19 95 -19 87 -19 55 -14 59 -9 14 -9 14 -9 14 -1 39	-114 42 -114 93 -115 43 -115 54 -115 57 -115 65 -115 62 -115 50	

CRIGINAL PAGE IS OF FOOR QUALITY

Figure 3.1.2.- Typical TAEM groundtrack and trajectory sub-phases.

Figure 3.1-3.- Typical approach and landing trajectory with sub-phases identified.

Figure 3.2-1.- Comparison of cycle 2 and 3 elevon schedules.

Figure 3.2-3.- Comparison of cycle 2 and 3 body flap deflections.

Figure 5.0-1

Figure 6.0-1.- STS-1 decrbit-through-landing groundtrack.

CONAL PAGE IS

Ć

- 💚

-84

Figure 6.1-20.- Right OMS yaw actual and commanded gimbal angles - deorbit.

ORIGINAL PAGE IS

Figure 6.2-2

(b) Two- and three- σ thermal constraint boundaries.

Figure 6.2-3.- Concluded.

Figure 6.2-4.- Surface-temperature control points and panel locations.

Figure 6.2-5

Figure 6.2-7

Figure 6.2-9

......

Figure 6.2-11

Figure 6.2-16

Figure 6.2-17

Figure 6.2-18

Figure 6.2-20

0.0 6.0 **;** AILERON DEFLECTION , DEG -2.0 0.0 2.0 11 Antis N7 11 -1.0 -6.0 -8.0 0.0 ×10³ 20.0 16.0 12.0 RELATIVE VELOCITY ,FT/SEC 8.0 4.0 28.0 24.0 AILERON DEFLECTION DURING ATMOSPHERIC DESCENT

Figure 6.2-22

Figure 6:2-23

Figure 6.2-24

120

.

Figure 6.2-25

Figure 6.2-26

Figure 6.2-29

Figure 6.2-31

Figure 6.2-32

ŀ

-2.8 X-X-COMPONENT Y-Y-COMPONENT Z-Z-COMPONENT T-TOTAL LE ENTRY/TREM INTERFACE -2:4 2.7 2.0 -2.0 8/L G د د د X, Y, AND Z- CONPONENT OF LF, -0.8 -1.2 -1.6 TOTAL LF IN BODY AXIS, 0.8 1.2 1.2 **• .**. 0.0 0.0 5. --10.0 15.0 20.0 25 TIME FROM ENTRY INTERFACE, MIN . o.o **s**.o 25.0 30.0 35.0 T Z X,Y, AND Z- BODY AXIS COMPONENTS OF LOAD FACTOR VS. TIME FROM ENTRY INTERFACE

Figure 6.2-35

.

.

Figure 6.2-39

Figure 6.2-43

Figure 6.2-44

Figure 6.2-45

.

ORIGINAL PAGE 19 OF POOR QUALITY

. .

Figure 6.2-48

Figure 6.2-49

Figure 6.3-1.- TAEM through landing groundtrack.

Figure 6.3-4

Figure 6.2-6

Figure 6.3-10

和二、「「「「「「「「「「「「」」」」」「「「「「「」」」」」

Figure 6.. 15

3200.0 ÷. 280-360 - 340 - 320 300 40 380 + TIME TO TOUCHOOMS SEC 2800.0 3.5 TRUE AIRSPECD AND RELATIVE VELOCITY, FPS 800.0 1200.0 1600.0 2000.0 2400.0 о. Г 2.5 MACH NUMBER 2.0 1.5 0.1 A 100.0 0.5 M-MACH A-AIRSPEED V-VELOCITY 0.0 0.0 -6.0 ×10 18.0 12.0 RANGE TO RUNKAY, FT 6.0 0.0 24.0 30.0 36.0 A М TRUE AIRSPEED, EARTH RELATIVE VELOCITY, AND MACH NO. DURING THEM

Figure 6.3-16

163

Map

·** :

Figure 6.3-23

1/

Figure 6.4-6

55.0 14.3 40 36 28 43 .32 44 C TIME TO TOUCHDOWN, SEC 10.0 12.0 INITIATE FINAL HOH FLIGHTPATH AND BODY PITCH ANGLE, DEG 10.0 GEAR DOWN PNSLE OF ATTACK, DEG INITIATE PREFLARE -10.0 GEAR LOCKED 2.0 -20.0 0.0 P-PITCH ANGLE F-FLIGHT PATH A-ANGLE OF ATTACK -30.0 -2.0 -†· -8.0 -4.0 X-RUNWAY POSITION, FT 8.0 ⊭10' 0.0 1.0 -20.0 -16.0 -12.0 A F FLIGHTPATH ANGLE, BODY PITCH ANGLE, AND ANGLE OF ATTACK FROM PREFLARE TO TOUCHDOWN

Figure 6.4-8

Figure 6.4-9

Figure 6.4-11

Figure 6.4-12

Figure 6.4-13

Figure 6.4-15

Figure 6.4-16

Figure 6.4-17

A ...

. •

Figure 6.4-19.- Continued.

TIME TO LANDING T EYE ALTITUDE S G.G. ALTITUDE S PANSE TO PUNHAY S UPODSTANSE T FLIGHT PATH ANGLES 72.3 SEC 3023.9 FT 9029.1 FT 9029.1 9023.1 FT -31131.4 FT -35.5 FT -13.6 DEG -15.0 DEG -12.0 DEG V.L.H PITCH PSLL ٠. -. . . (d) 72.3 seconds prior to touchdown.

Figure 6.4-19.- Continued.

(f) 52.3 seconds prior to touchdown.

Figure 6.4-19.- Continued.

195 .

Figure 6.4-19.- Continued.

Figure 6.4-19.- Continued.

Figure 6.4-19.- Concluded.

Figure 6.5-1

Figure 6.5-2

Figure 6.5-4

Figure 6.5-6

Figure 6.5-7

Figure 6.6-2.- SIS-1 entry groundtrack and TACAN events.

Figure 6.6-3

Figure 6.6-4

210 ,

រ ឆ្ល 12:22 |. 84● 2002 35.5 505.5 25.5 SLENT RENGE, NEUTICAL MILES ELEVATION AVGLE, DEGREES ELEVATION AVGLE, DEGREES 0 12 22 い 0 8-17 er çi ບ ພະ HIND FRIDE TO TOCCHEDWAY. en de la companya Centra de la companya *,*• .. 1.73 ł. ELEVATION VERSUS RANGE AND TOUCHDOWN EUC TIME TO

(a) Figure 6.6-5

(b) Figura 6.6-5

214 -

APPENDIX A

ENTRY INITIALIZATION LOID FOR THE ONBOARD COMPUTER

The guidance constants for the entry, TAEM, and A&L phases are presented in tables A-I(a), A-I(b), and * I(c), respectively.

TABLE A-I(a) .- DEFINITION OF ENTRY GUIDANCE CONSTANTS(G4.8)

1510 # V\$70	SW	SYMBOL	DESCRIPTION	МС	VALUE	CON	ISTANT
C495C	c	ACLAM	WAXINUW ALPHA COMMAND INTERCEPT CONSTANT	03	.7500000+0	DEG	D
0495C	с	ACLAM2	MAXINUW ALPHA COMMAND SLOPE CONSTANT	03	.35000000-03	DEG-S/FT	Ð
0497C	c	ACLIMI	MINIMUM ALPHA CONVAND UPPER Limit intercept	03	.3700000+6	DEG	٥
C498C	c	ACLIN2	MINIMUM ALPHA CONWAND UPPER Limit Slope	03	.0000000	DEG-S/FT	D
0499C	c	ACLIM3	MINIMUM ALPHA COMMAND LOWER Limit intercept	, 03	.76666670+0	DEG	D
C500C	c	ACLIM4	MINIMUM ALPHA COMMAND LOWER LIMIT SLOPE	03	.22333330-0	DEC-S/FT	D
00060	с	ACNI	TIME CONSTANT FOR H DOT FEEDBACK	03	.5000000+0	2 S	C
00070	c	۵ ۲	FACTOR IN DD/DV FOR TEMPERATURE CONTROL GUIDANCE USED TO DEFINE	03	• .451277/0+0	NÐ -	M
0008C	c	AK1	FACTOR IN DD/DV FOR TEMPERATURE CONTROL CUIDANCE USED TO DEFINE C23	03	•.41765250+0	110	ц, s
0009C	с	ALFX	DESIPED CONSTANT DRAG LEVEL	03	-33000000+0	FT/SEC++2	M
00100	c	ALIM	MAXIMUM SENSED ACCELERATION IN TRANSITION	03	.70840000+0	F1/SEC**2	D
0011C	c	ALMN1	WAXIMUM L/D CONMAND OUTSIDE OF HEADING ERROR DEADBAND	03	.72863550+0	110	D
001	c	ALWN2	MANIMUM L/D COMMAND INSIDE OF HEADING ERROR DEACEAND	03	.96592580+0	GN	D
00130	с	ALPN3	WAXINUM L/D CONVAND BELOW VELMA	03	.93969000 · C	D ND	D
C014C	с	ALWN4	MAXIMUM L/D COMMAND ABOVE VYLMAX	03	.100000000+9	ND	D
0042C	ç	ASTART	SENSED ACCELERATION TO ENTER PHASE 2	03	.5660000+0	FT/SEC++2	D
-0043C	c	CALPO(1)	ALPCHD CONSTANT TERM IN VE	03	.54245050+0	DEG	24
0044C	c	CALPO(2)	ALPEND CONSTANT TERM IN VE	03	.54245050+0	DEG	XI .
00450		CALPO(3)	ALPEND CONSTANT TEAM IN VE	03	42778000+0	1 DEG	ш

A-2

. .

	VS10 #	SW	SYMBOL	DESCRIPTION	2 2 C	VALUE UNIT	S MISSION DEPENDENT CONSTANT
	0460	c	CALPC(4)	ALPEND CONSTANT TERM 14 VE	03	.16398000+02 D	EG M
	C047C	с	CALPOIS	ALPEND CONSTANT TERM IN VE	C3	.44760000-U1 D	EG M
	C048C	с	CALPO(6)	ALPEND CONSTANT TERM IN VE	C3	99339000+01 D	EG M
	0490	с	CALPO(7)	ALPEND CONSTANT TERM IN VE	03	.40000000+02 D	EG M
	C479C	c	CALPO(B)	ALPEND CONSTANT TERM IN VE	03	.40000000.02 D	EG M
		c	CALPOISI	ALECHO CONSTANT TERM IN VE	C3	4000000+02 D	EG M
	C481C	с	CALPOTIC)	ALPEND CONSTANT TERM IN VE	03	.4000000+02 D	EG H
	COSOC	с	CALP1(1)	ALPEND RATE TEPM IN VE	03	.34301980-02 D	EG-SEC/FT H
	00510	c	CALP1(2)	ALPEND RATE TERN IN VE	03	.34301980-02 D	EG-SEC/FT N
	CC52C	c	CALP:(3)	ALPEND RATE TERM IN VE	03	.88750020-02 D	EG-SEC/FT M
×	00530	c	CALP1(4)	ALPOND RATE TERM IN VE	03	•.31431090-03 D	EG-SEC/FT N
	C0540	с	CALPI(5)	ALPCHO PATE TERN IN VE	03	.3:875000-02 D	EG-SEC/FT N
	COSSC	c	C4LP1(6)	ALPOND RATE TERM IN VE	: 03	.60874360+02 D	EG-SEC/FT N
	00550	c	CALP1(7)	ALPEND RATE TERM IN VE	03	.00000000	EG-SEC/FT M
	C4P2C	с	CALP1(B)	ALPCHO RATE TERM IN VE	63	0 00000100.	EG-SEC/FT N
	C483C	c	CALP1(9)	ALPOND RATE TERM IN VE	03	.00000000	EG-SEC/FT M
	04840	c	CALP1(10)	ALPEND RATE TERM IN VE	60	0000000000	EG-SEC/FT H
	C057C	с	CALP2(1)	ALPEND QUADRATIC TERM IN VE	- C3	.00000000 0	EGIS/FT)**2 H
	. 00580	с	CALP212)	ALPEND QUADRATIC TERM IN VE	63	.00000000 0	EG(S/FT)**2 #
	00590	c	CALP2(3)	ALPEND QUARRATIC TERM IN VE	63	76388910-C5 D	EGIS/77)**2 ¥
	00500	c	CALP2(4)	ALFEND QUACRATIC TERM IN VE	23	25714550-C0 D	EGIS/FT)**2 M
	00610	c	CALP2(5)	ALPOND JULSPATIC TEPK IN VE	C3	.000000000	EG(5/FT)**2 M
	25620	c	CALF2(6)	ALPEND QUISPATIC TERM IN VE	03	23749780.C6 C	EG(S/F1)**2 M
	CCEJC	c	CALP2(7)	ALPOND QUADRATIC TERM IN VE	03	.00000000	EGIS/FT)**2 M
	04850	c	CA1 P2(8)	LIPCHO QUADRATIC TERM IN VE	03	.00000000 0	DEG(5/FT)**2 #

A-

2.5

4510 . V970	54	SYMBOL	DESCRIPTION	NC.	VALUE UN	ITS MISSION CONST.	DEPENDENT
C486C	c	CALP2(9)	ALVEND QUACRATIC TERM IN VE	03	00000000.	DEG(S/FT)**2	ler.
04870	с	CALP21101	ALPCHO QUADRATIC TERM IN VE	03	.00000000.	DEGIS/FT)**2	H
CC64C	c	CDDOTI	CO VELOCITY COEFFICIENT	03		F1/5	D
00650	c	CDD012	CO VELOCITY COEFFICIENT	03	.20000000+04	FT/S	D
00660	C	CDD0 * 3	CO VELOCITY COEFFICIENT	03	.1800000+00	h0	D
00670	с	CDD014	CO ALPHA COEFFICIENT	03	.79300020-01	ND	D
00690	c	CCDOTS	CD ALPHA COEFFIC.ENT	03	01050000-02	1/CEG	D
00690	c	CCC016	CD ALPHA COEFFICIENT	03	.683300-00-03	1/CEG 2	D
00700	c	CUDOT7	CD COEFFICIENT	03	.90000000-04	5/ FT	D
03710	c	CCCCTB	CD COEFFICIENT	, C3	.13166000-02	1/DEG+ >2	D
00720	C	CD0019	CD COEFFICIENT	63	81650000-02	*/2EG	D
0501C	ç	CACEAF	GATH CN FOLL BIAS	03	.40000000.01	ħD	D
00780	c	CT16(1)	CIS COEFFICIENT	C3	.13540000-00	5++2/FT	D
00790	c	CT16(2)	CIG POMER COEFFICIENT	03	10000000+00	ND	D
00800	c	CT15(3)	GAIN ON CIG ERACH TERM	03	.6000000-02	54/812	D
00830	c	CT17(1)	C17 COEFFICIENT	03	.15370000-01	5/FT	D
CCB4C	¢	CT17(2)	C17 POWER COEFFICIENT	03	58145050+00	CM	D
C5C2C	C .	C17MP	MULTIPLICATION FACTOR ON C17 FOR Alpha Modulation	03	.7500000+00	CM	D
00310	C	CTIGMN	NININUM VALUE OF CIG	03	.2500000-01	5++2/FT	D
00920	с	CTIGMX	MAXIMUM VALUE OF CIS	03	.3500000+00	\$**2/FT	D
COBSC	С	CT17MN	MINIMUM VALUE OF C17	63	.2500000-02	S/FT	D
DCBSC	c	CT17MX	MAXINUM VALUE OF C17	03	.1400000-01	S/FT	D
C503C	c	CT17N2	VALUE OF CTITHIN FOR ALPHA MODULATION	03	.13300000-02	S/FT	D

M110 #	5.	SYNEOL	
C109C	c	CYO	
	•		
C110C	С	CYI	
03033	c *	C21	
(507C	с	C22	
C508C	с	C23	
C509C	с	C24	
C510C	c	C25	
C511C	C	C2G	
C512C	c	C27	
C111C	с	COLIM	
C534C	c	DOWIN	
28113	c	CELV	
C121C	C ,	DF	
C141C	c .	D230	
C477C	С	DLRDTM	
C504C	c	DIALLM	
0505C	C	DALPLM	
C128C	с	DECOL	
01400	c '	DIANIN	
01600	c	EEF4	
02270	c .	FTRAN	
0228C	c	E1	

:

DESCRIPTION	-0	VALUE	115
CONSTANT TERM IN HEADING EPRCH DEADBHOD	03	13090000+00	RAC
SLOPE OF HEADING ERROR DEADBAND WRT VE	C3	.10908300-03	RAC
C20 CONSTANT VALUE	03	.6000000-01	1/08
C20 CONSTANT VALUE LINEAR TERM	03	10000100-02	1/1
C20 LINEAR TERY	6.0	.42500000-05	S/F
C20 CONSTANT VALUE	C 3	.10000006-01	1/20
C20 CONSTANT VALUE IN LINEAR TERM	03	.10000000-01	1/01
C20 LINEAR VALUE	03	.00000000	S/FI
C20 CONSTANT VALUE	03	.00000000	1/18
MAXIMUM CELTA OPAG FOR HOOT FEEDBACK	03	.2000000+01	FT/5
NAVINUA DETO ELECS	03	.1500000+00	FT/S
PHASE TRANSFER VELOCITY BIAS	C3	-2300000+04	F1/5
FINAL DRAG VALUE IN TRANSITION	63	.20800310+02	FT/S
INITIAL VALUE OF D23	03	19380000+02	F1/5
MAXIMUN VALUE OF DURCOT	03	.1500000+03	F1/5
MARINUM ALPHA CONSTANT	C3	.43000000+02	DEG
LIMIT VALUE FOR DLAPIN	03	.2000000+01	DEG
MINIMUM VALUE OF DEDD	03	+.1500000+01	NW - 5
MINIMUM VALUE OF TEDOT	C3	8000000-02	FT/S
FINAL REFERENCE ENERGY LEVEL In TRANSITION PHASE	03	.2000000+07	(FT/
ENERGY LEVEL AT START OF TRANSITION	03	.59984730+08	(FT/
MINIMUM VALUE OF DREFP AND DREFP-DF IN TRANSITION PHASE	C3	.10000000-01	FT/S

	VALUE	• • • •	15	MISSION DI CONSTAN	EPENDENT T	
•.	130900004	00	RAC		D	
	10908300-	03	RAC-S	FT	D	
÷.	.0000000	01	1/CEG		M	
	10000100	02	1/116		LI I	
· .,	42500000	65	5/71.1	EG		
	10000000	01	1/216		u	
	10000000.	01	I/DEG		Μ.	
	000000000		S/FT-C	DEG	P.	
	00000000		1/LEG		14	
	20000000+	01	FT/5	2	D	
	15000000	co	F1/5+-	2	D	
	23000000	C4	F1/S		D	
	20800310+	02	FT/S**	2	μ.	
	19380000+	07	f1/5··	2	M	
· 4	1500000+	03	FT/S		D	
	43000000+	02	DEG		D	
	20000000+	01	DEG		D	
۰.	1500000+	01	N4-5	2/FT	D	
	80000000-	G2	FT/S··	3	D	
	2000000+	07	(FT/S)	••2	M	
	500047704	0.9	(FT/S)	••2	H	
•	333041304	00	6		1	1

...

1 ...

N510 # V97U	SW	SYMBOL	DESCRIPTION	ыс	VALUE UNI	TS MISSION DEPENDENT CONSTANT
02590	С	GS1	FACTOR IN SMOOTHING ROLL COMMA	50 C3	.00000000.	1/S M
0260C	C	GS2	FACTOR IN SMOOTHING ROLL COVMA	ND 03	.1000000-03	1/S M
02610	С	Ç53	FACTOR IN SMOOTHING ROLL COMMA	ND 03	0000000.	1/5 M
0262C	с	GS 4	FACTOR IN SMOOTHING ROLL COMMA	ND 03	.00000000	1/S K
02930	с	HSMIN	WINIMUM VALUE OF SCALE HEIGHT	03	.2000000+05	FT D
0294C	с	H501	SCALE HEIGHT CONSTANT TERM	03	.12075000+05	FT D.
02950	C ·	HSO2	SCALE HEIGHT CONSTANT TERM	03	.27000000+05	FT D
0296C	c	нѕоз	SCALE HEICHT CONSTANT TERM	03	.45583500+05	FT D
02970	c	HS11	SCALE HEIGHT SLOPE WAT VE	03	.72500000+00	S. D
0298C	с	HS13	SCALE HEIGHT SLOPE WAT VE	03	+.94450000+00	s D
03160	с	LCDMIN	MININUM L/D RATIO	03	.50000000+00	D D
03210	c	NALP	NUMBER OF ALPOND VELOCITY Segment boundaries	03	.90000000+01	ND D
0349C	Ċ	PREBNK	PREENTRY BANK ANGLE COMMAND	03	.00000000	DEG M
0535C	C	RDWAX	MAXIMUN ROLL BIAS	03	.12000000+02	DEG D
04700	с	RLMC 1	MAXIMUN VALUE OF RUN	03	.7000000+02	DEG D
0471C	с	RLMC2	COEFFICIENT IN FIRST RLM SEGNE	NT 03	.7000000+02	DEG D
04720	с	RLMC 3	COEFFICIENT IN FIRST REM SEGME	NT 03	.000000000	DEG-S/FT D
0473C	с	PLMC 4	COEFFICIENT IN SECOND RLW SEGM	ENT 03	3700000+03	DEG D
0474C	с	RLWC 5	COEFFICIENT IN SECOND RLM SEGM	EN1 03	.1600000+00	DEG-S/FT D
0475C	с	RLMC 6	MINIMUM VALUE OF RUM	03	.3000000+02	DEG D
03920	с	RPT1	RANGE BLAS TERM	C3	.29440000+02	KM M
04210	c	VA	INITIAL VELOCITY FOR TEMPER- Ature quadratic. DD/DV=0	03	.23163700+05	FT/S M
05130	c	VALMOD	VELOCITY TO START ALPHA Modulation for Non-Convergence	03	.2300000+05	FT/S H

VSIC #	5 w	SYMBOL	DESCRIPTION	R.C.	VALUE	UNITS	MISSION DEPENDENT CONSTANT
04220	с	VALP(1)	ALPEND VS VE BOUNDARY	03	-28500000+0	4 FT/S	u u
04230	с	VALP(2)	ALPEND VS VE BOUNDARY	C3	.35636700+0	4 FT/S	*
0424C	C	VALP(3)	ALPEND VS VE BOUNDERY	03	.45000000+0	4 FT/S	 M
C425C	Ċ	VALP(4)	ALFOND VS VE BOUNDARY	03	.68090000+0	4 F1/S	M
04250	с	VALP(5)	ALPOND VS VE BOUNDERY	03	.77694505+0	4 FT/S	**
C427C	с	VALF(6)	ALPEND VS VE BOUNDARY	03	.14505990+0	5 FT/5	14
04935	c	VALP(7)	ALPOND VS VE BOUNDERY	63	.14500000+0	5 81/5	м
C489C	c	VALP(8)	ALPOND VS VE BOUNDERY	03	.14566000+0	5 F1/5	w
04900	с	VALP(9)	ALFEND VS VE BOUNDERY	03	.14500000-0	S FT/S	x
J428C	c	VA1	DOUNDARY VELOCITY BETWEEN OUADRATIC SEGMENTS IN TEMPERATURE CONTROL EMASE	03	9100 00000	FT/S	H
6429C	c	¥42	INITIAL VELOCITY FCP TEMPERATURE GUADRATIC. DD/DV=0	03	.27197450+0	F1/5	M
0430C	с	VB1	HEAT RATE-EQUILIBRIUM GLIDE PHASE BOUNDARY VELOCITY	03	.19000000+0	FT/S	м
043:C	c	VCIG	VELOCITY TO START CHE DRAG Error term	03	.23000000+0	FT/S	D
CSICC	c	VC20	C20 VELOCITY BREAKFO : NT	03	.25000000+04	11,5	W
C433C	, C	VELMN	NAXINUW VELOCITY FOR LIMITING	03	.9500000+04	FT/S	D
C434C	c	VEROLC	MARINUM VELOCITY FOR LIMITING BANK ANGLE COMMAND	03	-80000000+04	FT/S	D
C435C	c	Vri S 1	SCALE HEIGHT VS VE BOUNDARY	03	.12310340+05	FT/S	D
C436C	с	VH52	SCALE HEIGHT VS VE BOUNCARY	03	.19675500+05	FT/S	D
05150	c	VNOALP	VELOCITY TO START ALPHA Modulation	03	.25000000+05	FT/S	M
64372	c	vq	PREDICTED END VELOCITY FOR Constant drag phase	03	.50000000+04	FT/S	

TABLE A-I(a).- Concluded.

NSID 4 V970	នង	SYMBOL	DESCPIPTION	MC	VALUE	UNITS	MISSION DEPENDENT CONSTANT
0438C	с	VRDT	VELOCIT# TO START HOOT FEEDBACK	03	.23000000+0	5 F1/S	D
04760	с	VRLMC	VELOCITY IN TRANSITION WEXTWOM Roll Command Detervination	50	.27500000+04	FT/5	ΰ
C439C	c	VSAT	LOCAL CIRCULAR OPBIT VELOCITY	60	.25766200+0	5 FT/S	o
04400	c	VS1	REFERENCE VELOCITY FOR Equilibrium glide	03	.23271870+0	F7/S	L
64200	С	V TAEM	REFERENCE VELOCITY AT ENTRY- TAEM INTERFACE	03	.25000000+04	F7/5	۵
C441C	с	VIRAN	NOVINAL VELOCITY AT START OF TRANSITION PHASE	03	-10500000+05	FT/5	M
C442C	C	VYLMAX	MINIMUM VELOCITY FOR LIMITING LMN by Almn4	03	.2300000+05	F1/5	C
04650	C	YLMIN	YL BIAS USED IN TEST FOR LAN	03	.3000000.01	RAG	D
0466C	C	YLMN2	MINIMUM YL BIAS	03	.7000000-01	HAD	. D
04670	c	YI	MAKIMUM HEADING ERAOR DEADBAND For initial bank maneuver	03	.16325950+00	RAD)	D
0468C	c	¥2	MINIMUM HEADING ERPOR CEACBAND	03	.17453250+00	CAR (D
0478C	с	۲3	MAXIMUW HEADING ERROR CEADBAND	03	.30543260+00	RAD	D
0469C	C	ZXI	GAIN FOR H DOT FEEDBACK	СЗ	.6000000-00	s	D

MSID # SYMBOL DESCRIPTION MC VALUE UNITS MISSION DEPENDENT SW V97U CONSTANT CONSTANT GAIN USED TO COMPUTE 0073C CDEOD 03 ND D Q80 (= EXP (-0.4 UTG)) .68113130-00 0075C CPMIN MINIMUM VALUE OF COSPHI 03 .70700000+00 ND n 0076C CODG CONSTANT GAIN USED TO COMPUTE 03 ND Ð QBD (- 1 · CDEQD) .31P86860+00 C377C COG CONSTANT GAIN USED TO COMPLTE 03 1/5 D GSARD AND ENZED (+ (1 + EXP (-0.08 DTG))/DTG) .55039580+00 0103C. CUBIC C3(1) COEFFIC:ENT USED TO COMPUTE -.36411C80.05 1/FT D 03 -01040 CUBIC C3(2) HREF AND DHORRF p 03 -.36411E90-06 1/FT 01050. CUBIC C4(1) COEFFICIENT USED TO COMPUTE 03 -.94810260-13 71---2 0106C CUBIC C4(2) HREF AND CHORFF 03 -.94010260-13 FT---2 .. 01130 D DEL HI ALTITUDE ERROR COEFFICIENT 03 .19000000+00 ND n 01140 DEL H2 ALTITUDE ERROR COEFFICIENT 03 .9000000+03 FT DEL R EMAX(1) DELTA RANGE USED TO COMPUTE 01150 D 03 .5400000+05 FT 01160 DEL R EMAK(2) EMAX 03 .5400000+05 FT 0123C D CNZCG GAIN USED TO COMPUTE ENZO 03 .101.0000.01 G-S/FT 01240 PHASES 0.1. AND 2 LOWER NZC DNZLC1 03 n LIMIT 01250 DNZLC2 PHASE 3 LOWER NZC LINIT 03 Þ -.75L00000+00 G n 0126C D DNZUC1 PHASES 0.1. AND 2 UPPER NZC 03 n LIMIT .5000000+00 C127C PHASE 3 UPPER NZC LIMIT DNZUC2 p 03 .1500000+01 G D 0131 C DSBCN WACH VALUE TO INITIATE SPEEDBRAKE . 03 D 1:0 NODULAT: ON .90000000+00 0132C LIMIT ON INTEGRAL COMPONENT DSBIL 03 DEG D OF SPEEDBRAKE COMMAND .200000000+02 0133C DSBLIM MAXIMUM VALUE FOR SPEECBRAKE 03 DEG D CONVAND .98600000+02

TABLE A-I(b) .- DEFINITION OF TAEM GUIDANCE CONSTANTS(G4.9)

١.

MSID #	SW	SYMBOL	DESCRIPTION	NC	VALUE U	ITS	CONSTANT
0134C	P	DSBNCM	NOMINAL SPEEDBRANE COMMAND	03	.65000000+02	DEG	D
01350	P	DSBSUP	MACH DSBCM SPEEDBRAKE COMMAND	03	.6500000+02	DEG	D
0136C	P	DSHPLY	DELTA RANGE VALUE USED TO COMPUTE SHPLYK	03	.4000.100+04	FT	G
01420	P	EDELC1	CONSTANT USED IN DETERMINATION OF EMAX	CO	.10000000+01	ND	•
01430	Ρ	EDELC2	CONSTANT USED IN DETERMINATION OF EMAX	03	.10000000+01	ND	M. ··
01440	P	EDELNZ(1)	DELTA ENERGY OVER WEICHT USED	03	.4000000+04	FT	•
01450	Р	EDELNZ(2)	TO COMPUTE EMAX AND EMIN	03	.40000000+04	FT	M
0:460.	P	EDRS(1)	SLOPE OF ES WITH RANGE	03	.60894920+00	ND	2
01500	Р	EDRS(2)	SLOPE OF ES WITH RANGE	03	.6089492C+CO	ND	K
01610.	р	EMEP C1 (1.1)	CONSTANT ENERGY OVER WEIGHT	. 03	37137970+03	FT '	N
01520	P	ENEP C1 (1.2)	USED TO COMPUTE EMEP	. 03	.14604870+05	FT	M
0:54C.	ρ	EMEP C1 (2.1)		03	37137970+03	FŤ	
01650	P	EMEP C1 (2.2)		03	.14604870+05	FT	· . · ·
01670.	P	EMEP C2 (1,1)	SLOPE OF EMEP WITH RANGE	03	.41682740+00	ND	R.f
01680.	р	EMEP C2 (1,2)	SLOPE CF EMEP WITH RANCE	03	.28211870+00	ND	
01700.	р	EMEP C2 (2.1)	SLOPE OF EMEP WITH RANGE	03	.41682740+00	ND	N
01710	Р	EMEP C2 (2,2)	SLOPE OF EMEP WITH RANGE	03	.28211870+00	ND	M
01730.	· · ·	EN C1 (1.1)	CONSTANT ENERGY OVER WEIGHT	03	25423950+03	FT	M 1
0174C.	P	EN C1 (1.2)	USED TO COMPUTE EN	03	.17645340+05	FT	м
01770.	P	EN C1 (2.1)		03	·.25423950+03	FT	. 4
01780	P	EN C1 12.2)		03	.17645340+05	FT	M
01810	P	EN C2 (1.1)	SLOPE OF EN WITH RANGE	03	.55002750+00	ND	L
01820	B	EN (2 (1 2)	SLOPE OF EN WITH RANGE	03	.38902400+00	ND	M

	NSID # V970	SW	SYMEOL	DESCRIPTION	MC	VALUE	JNITS	WISSION DEPENDENT CONSTANT
	01650.	P	EN C2 (2.1)	SLOPE OF EN WITH RANGE	03	.55002750+0	C N C	85
	01860	P	EN C2 (2.2)	SLOPE OF EN WITH RANGE	03	.38907400+0	D ND	M
i.	01996.	P	EOW SPT(1)	RANCE USED FOR IEL SELECTION	03	.11771800+0	5 FT	м
	02000	р.	EGW SPT(2)	RANGE USED FOR IEL SELECTION	03	.11771800+0	5 FT	Li I
	02196.	P	ES1(1)	CONSTANT ENERGY OVER WEIGHT	03	-9000000+0	5 FT	2
	C223C	Ρ	ES1(2)	USED TO COMPUTE ES	03	.90000000000	5 FT	м
	0230C	P	GANYA - COEF 1	FLICHTPATH ERPOR COEFFICIENT	03	.7000000.0	B DEG/FT	D
	02310	P	GAMMA - COEF2	FLICHTPAIN ERROR COEFFICIENT	03	.30000000+0	DEG	D
	02320	Р	GANNA ERR TRAN	FLICHTPATH ERROR BAND	03	.40000000+0	DEG	D
	02360	P	GAMSGS(1)	STEEP GLIDESLOPE ANGLE	03	+.2000000+U	DEG	12
	02370	P	GAMSGS (2)	STEEP GLIDESLOPE ANGLE	03	2000000+D	2 DEG	M
	0238C	P	GDHC	CONSTANT USED TO COMPUTE GON	03	.2000000+0	CN I	D
	C239C	P	GDHLL	LOWER LIMIT ON GDY	03	.3000000+0	CH C	D
	02400	P	GDHS	SLOPE OF GON WITH ALTITUDE	03	.7000000.0	4 1/FT	, D
	02410	P	GOHUL	UPPER LIMIT ON GDH	03	.10000000+0	כא ו	D
	02420	P	GEHOLL	GAIN USED TO COMPUTE ECHNZLL	03	.10000000.0	1 G+5/FT	D
	02430	P	GEHDUL	GAIN USED TO COMPUTE EOWNZUL	03	.10000000-0	1 G-5/71	O
	02440	P	GELL	GAIN USED TO COMPUTE ECWAZLE	03	.:000000+0	0 1/5	D
	02450	P	GEUL	GAIN USED TO COMPUTE EDWNZUL	03	.10000000+0	0 1/5	D
	C246C	Р.	GPHI	GAIN ON HEADING ERROR FOR PHASE 1 ROLL COMMAND	03	.25000000+0	ND 1	D
ł	02470	P	GR	GAIN ON RADIAL ERROR FOR PHASE 2 Roll Command	03	.20000000-0	DEG/FT	D
	02530	P	GROOT	GAIN ON RADIAL RATE ERFOR FOR PHASE 2 ROLL COMMAND	03	.2000000+0	DEG-S/	FT D
	02570	P	GSBE	SPEEDBRAKE PROPORTIONAL GAIN	03	.15000000+0	DEG/PS	F D

MSID # V970	SW	SYMBOL
02560	P	GSB1
02630	P	GY
02640	P	GYDOT
02670	₽	H ERR TRAN
02790	P	N REFI
02800	Ρ	H REF2
C287C.	Р	HALI(1)
02860	P	HALI(2)
02900	Р	HDREQG
02910.	P	HFTC(1)
02920	P	HFTC(2)
C319C	P	MXCBWT
03270.	P	PBGC(1)
03290	P	PBGC(2)
03330.	P	PBRCQ(1)
03340	P	PBRCQ(2)
03290.	Þ	(1) JHE4
03300	P	PBHC(2)
03310.	Р	PBRC(1)
03320	P	PBRC(2)
03350	P	PHAVGC
03360	Р	FHAVGLL
03370	P	PHAVGS

	CESCRIPTION	ыC	VALUE 1	UNITS	MISSION	DEPENDENT
	SPEEDBRAKE INTEGRAL GAIN ON Oberr	60	.10000000+0	DEC/5	PSF	D
•	PHASE 3 LATERAL ERROR GAIN	03	.50000000-0	1 CEG/F	T	O
ъ.	PHASE 3 LATERAL RATE ERROR GAIN	03	-\$9000000+0	DEG-S	/F1	D
	ALTITUDE ERROR BOUND FOR TRANSI-	03	.10000000+0	FT 1		2
	ALTITUDE REFERENCE FOR TRANSI- TION TO AUTOLAND	03	.10000000+0	F1 5		G
•	ALTITUDE REFERENCE FOR TRANSI- TION TO AUTOLAND	03	.5000000+0	FT .		D
	ALTITUDE USED TO COMPUTE XALI	03	.10016000+0	5 FT		
	AND HREF	03	.10018000+0	5 FT	•	4
	GAIN ON HERROR TO COMPUTE DNZC	03	.1000000+00	D 1/S	. •	D
	ALTITUDE USED TO COMPUTE XFTC	03	-12018000+0	5 FT		M
	ALTITUDE USED TO COMPUTE XFTC	03	.12018000+0	5 FT		M.
	CONSTANT USED TO COMPUTE QULL = (140./190000 PSF/LB M)	00	.23707160-0	PSF /S	LUGS	M
	LOWER LINIT ON DHORRE =	03	.11259530+00	01 0		บ่
	(TAN (6.2 DTR). TAN (6.2DTR))	03	.11759530+00	ON C		M
	RANGE BREAKPOINT FOR OFREF	03	.12200000+00	5 FT	•	¥7.
	RANGE BREAKPOINT FOR OBREF	1 03	.12200000+08	5 FT		N.
	ALTITUDE REFERENCE FOR	03	.84821290.0	S FT		24
	RPRED = PERC	03	.84821290+0	5 FT		u
	MAXIMUM RANGE FOR CUBIC	03	.20810950+0	S FT		H
	ALTITUDE REFERENCE	03	.30810950+08	5 FT		N.
	CONSTANT USED TO COMPUTE PHAYG	03	.63330000+0	2 DEG	•	D
	LOWER LIMIT ON PHAVE	03	.30000000+0:	2 D2G	• • •	. D .
	SLOPE OF PHAVE WITH MACH	03	.13330000+03	DEG	•	D

A-12

TABLE A-I	(b)	(Cont	inued.
-----------	-----	---	------	--------

1

1 . .

WSID .	SW	SYMBOL	DESCRIPTION	ыC	VALUE UNITS	CONSTANT
03780	Р	FHAVGUL	UPPER LIMIT ON PHAVE	03	.5000000+02 DEG	C
03120		PHILMSUP	SUPERSONIC ROLL COMMAND LIMIT	03	.3: 00000+02 DEG	D
03420	P	PHILMO	S TURN ROLL COMMAND LIMIT	03	.5000000+02 DEG	D
03430		PHIINI	ACOUISITION ROLL COMMAND LIMIT	03	.500000000 DEG	D
03450	P	PHILM2	HEADING ALIGNMENT ROLL COMMAND	03	.60000000+02	D
03460	P	PHILM3	PREFINAL ROLL COMMAND LIMIT	02	.3000000+02 DEG	D
03470	P	PHIM	MACH VALUE FOR PHILIMIT TEST	03	.10000000+01 ND	C
0348C	P	PH1P2C	NOMINAL ROLL CONMAND DURING	03	.30000000+02	D
0351C	Р	P2TRNC1	CONSTANT USED IN PHASE 2	03	ND.11000000+01	0
03520	P	P2TRNC2	CONSTANT USED IN PHASE 2 INITIATION TEST	03	ND	D
03530	Р	OB ERRORI	DYNAMIC PRESSURE ERROR BOUND	03	+.1000000+01	D
03540	P	QB ERRCR2	DYNAMIC PRESSURE ERROR BOUND	C3	PSF	D
03550	р	CRAEDI	LIMIT ON CEARD	03	.20000000+02 PSF.	/5 0
03550		OBCILLI	SLOPE OF GEREF WITH DRFRED	03	.50095650-03 PSF	/FT H
03560.		0501(2)	PBBCO	03	.58695650.03 PSF	/FT k
03570	P		SICPE OF OBREF WITH DRPRED	03	10316950-02 PSF	/FT M
03586.		0002(1)	PBRCD	03	10316950-02 PSF	/FT M
03590	P	QBG1	GAIN USED TO COMPUTE OBNZLL	03	1/5	D
03610	P	Q2G2	GAIN USED TO COMPUTE OBNZEL	03	5-G	/PSF D
03660	P	OBMXS	SLOPE OF OGMANZ WITH MACH	03	.20000000+02	D

A-13

. . .

MS1D # V97U	SW	SYMBOL	DESCRIPTION	MC	VALUE	NITS	MISSION DEPENDENT CONSTANT
03670	P	QEWX 1	CONSTANT USED TO COMPUTE DEMXNZ	03	.34000000+0	PSF 3	D
03680	₽	CBMX2	CONSTANT USED TO COMPUTE COMXNZ	00-	.22000000+0	929 3	D
03690	P .	OBMXD	CONSTANT USED TO COMPUTE CBNKNZ	03	.25000000+0	PSF 3	O
03710	P	QENI	MACH BREAKPOINT FOR COMPUTING QEMXNZ	03	.1000000+0	ND I	D
C372C	р	08*2	MACH BREAKPOINT FOR COMPUTING Communiz	. 03	.1000000+0	ND	D
03736.	P	QBRLL(1)	OBREF LOWER LIMIT	03	.15300000+0	3 PSF	N
0374C	P	QBRLL(2)	OBREF LOWER LIMIT	03	. 15 300000+0	3 PSF	ħŧ
03750.	P	OBRAL(1)	OBREF MIDDLE LIMIT	03	.18000000+0	3 PSF	м
03750	P	QBRML(2)	CBREF MIDDLE LIMIT	03	.18000000+0	3 PSF	14
03770.	P	QBRUL(1)	OBREF UPPER LIMIT	03	.26543000+0	3 PSF	м
03780	Ρ	QBRUL(2)	OBREF UPPER LIMIT	. 03	.26543000+0	3 PSF	M
0384C	P	RERRLM	LIMIT ON RERRC	03	.50000000+0	2 DEG	D
03850	P	RFTC	ROLL FADER TIME CONSTANT	03	.5000000+0	1 S.	D
0387C.	P	RMINST(1)	MINIMUM RANGE TO INITIATE	03	.12220450+0	6 FT	M
03880	۶	RMINST(2)	S TURN PHASE	03	.12220460+0	6 FT	° M.
03890.	P	RN1(1)	CONSTANT RANGE USED IN COM-	03	.65428860+0	4 FT	м
03900	P	RN1(2)	PUTING EN. EMEP. AND EMAX	03	.65428860+0	4 FT	ĸ
03930	۶.	RIBIAS	CONSTANT USED IN PHASE2 INITIATION TEST	03	.30000000+0	FT 4	D
0394C	P	RTURN	HAC RADIUS	03	.20000000+0	5 FT	D
04140.	P	TGGS(1)	TANGENT OF 4/L STEEP GLIDESLOPE	03	•.36397000+0	O ND	м
04150	P	TGGS(2)	TANGENT OF A/L STEEP GLIDESLOPE	03	36397000+0	O. ND	М

TABLE A-I(b).- Concluded.

0431C P VCO CONSTANT USED TO COMPUTE GCONT L+RTD G/GCN, WHERE GCN + GON (GCS)) 03 FT/SEC D 0536C P V DEF NAVDAD/DEFAULT QBAR SWITCH ON VELOCITY 03 .CC000000 FT/SEC M 0444C P WT GC1 WEIGHT USED FOR IGS SELECTION 03 .6527C000+04 SLUGS M 0456C P XA(1) STEEP GLIDESLOPE GROUND 03 .55000000+04 FT M 0457C P XA(2) - INTERCEPT 03 .55000000+04 FT M 0459C P Y ERROR CROSSANGE ERROR BOUND FOR AUTOLAND INITIATION WHEN H> H REF 1 .10000000+04 FT D 0452C P Y RANGE1 COEFFICIENT ON H USED TO COMPUTE CROSSANGE ERROR BOUND WHEN H .10000000+04 FT D 0453C P Y RANGE2 CONSTANT USED TO COMPUTE CROSSANGE ERROR BOUND WHEN H .180000000+00 T D 0463C P Y RANGE2 CONSTANT USED TO COMPUTE CROSSANGE ERROR BOUND WHEN H .180000000+03 FT D 0463C P Y RANGE2 CONSTANT USED TO COMPUTE CROSSANGE ERROR BOUND WHEN H .180000000+03 FT D 0464C P Y ERRLM LIMIT ON YERRC 03 .12000000+03 <th></th> <th>MSID # V97U</th> <th>SW</th> <th>SYMBOL</th> <th>DESCRIPTION</th> <th>MC</th> <th>VALUE U</th> <th>NITS</th> <th>MISSION DEPENDENT CONSTANT</th>		MSID # V97U	SW	SYMBOL	DESCRIPTION	MC	VALUE U	NITS	MISSION DEPENDENT CONSTANT
0536C P V.DEF NAVDAD/DEFAULT GBAR SWITCH DN VELOCITY 03 FT/SEC M 0444C P WT GS1 WEIGHT USED FOR IGS SELECTION 03 .652700000404 SLUGS M 0456C P XA(1) STEEP GLIDESLOPE GROUND 03 .65200000404 FT M 0457C P XA(2) INTERCEPT 03 .55000000404 FT M 0459C P Y ERROR COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND FOR AUTOLAND INITIATION WHEN H> H REF 1 03 ND D 0452C P Y RANGE1 COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND WHEN H< H REF 1		0431C	P	vco	CONSTANT USED TO COMPUTE GCONT (=RTD G/GON, WHERE GON = GON (GCS))	03	.1000000+21	FT/SEC	C
0444C P WT GS1 WEIGHT USED FOR IGS SELECTION 03 .6527C000+04 SIUGS M 0456C. P XA(1) STEEP GLIDESLOPE GROUND 03 .65200000+04 FT M 0457C P XA(2) INTERCEPT 03 55000000+04 FT M 0459C P Y ERROR CROSSRANGE ERROR BOUND FOR AUTOLAND INITIATION WHEN H> H REF 1 03 .1000000+04 FT D 0452C P Y RANGE1 COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND WHEN H< H REF 1		0536C	P	VDEF	NAVDAD/DEFAULT QBAR SWITCH ON VELOCITY	03	.0000000	FT/SEC	M
0456C. P XA(1) STEEP GLIDESLOPE GROUND 03 65000000+04 FT M 0457C P XA(2) INTERCEPT 03 55000000+04 FT M 0459C P Y ERROR CROSSRANGE ERROR BOUND FOR AUTOLAND INITIATION WHEN H> H REF 1 03 55000000+04 FT D 0452C P Y RANGE1 COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND WHEN H< H REF 1		04440	P	WT GS1	WEIGHT USED FOR IGS SELECTION	03	.6527000+04	SLUGS	· •
0457C P XA(2) INTERCEPT 03 55000000+04 FT M 0459C P Y ERROR CROSSRANGE ERROR BOUND FOR AUTOLAND INITIATION WHEN H> H REF 1 03 55000000+04 D 0452C P Y RANGE1 COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND WHEN H< H REF 1		0456C.	P	- XA(1)	STEEP GLIDESLOPE GROUND	03	6500000+04	FT	k t
0459C P Y ERROR CROSSRANGE ERROR BOUND FOR AUTOLAND INITIATION WHEN H> H REF 1 03 FT D- 0452C P Y RANGE1 COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND WHEN H< H REF 1		0457C	P	XA(2) -	INTERCEPT	03	55000000+04	_ FT	M
0452C P Y RANGE1 COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND WHEN 03 ND D 0463C P Y RANGE2 CONSTANT USED TO COMPUTE CROSC-ANGE ERROR BOUND WHEN HC H TF 1 03 FT D 0464C P YERRLM LIMIT ON YERRC 03 +3200000+03 DEG D		0459C	P	Y ERROR	CROSSRANGE ERROR BOUND FOR Autoland initiation when H> H Ref 1	03	.10000000+04	FT	D
0463C P Y RANGE2 CONSTANT USED TO COMPUTE 03 FT D CR05C-ANGE ERROR BOUND WHEN NC 80000000+03 0464C P YERRLM LIMIT ON YERRC 03 +2000000+03 D	5 2	0452C	Р	Y RANGE1	COEFFICIENT ON H USED TO COMPUTE CROSSRANGE ERROR BOUND WHEN H< H REF 1	03	.18000000+00	ND	D
0464C P YERRLM LIMIT ON YERRC 03 .12000000+03 DEG D		0463C	р	Y RANGE2	CONSTANT USED TO COMPUTE CROSSANGE ERROR BOUND WHEN HS H STE 1	03	- 80000000+03	FT	D
		04640	P	YERRLM	LIMIT ON YERRC	03	. * 2000000+03	DEG	D

TABLE A-I(c).- DEFINITION OF AUTOLAND GUIDANCE CONSTANTS(G4.10)

1 .1

	VSID #	5 W	SYMBOL	DESCRIPTION	ELC .	VALUE UN	1175	MISSION DEPEND CONSTANT	ENT
	00040	Ρ	A 3	FINAL FLARE FILTER CONSTANT	03	.10000000+02	1/5	D	
-	0-000C	P	A INT	CROSSRANGE ERROR INTEGRATOR	03	.00000000	DEG-S	rt D	
	00010	P	A SBF	SPEEDBRAKE COMMAND FILTER	03	.50000000+00	1/5	D	
	00020	P.	A 13	AIRSPEED FILTER CONSTANT	03	.1000000+01	1/5	D	
	02030	P	Λ 14	SPEED CONTROL FILTER CONSTANT	03	.10000000+01	1/5	D	
	00050	2	A 40	OPEN LOOP FILTER CONSTANT	03	.13330000+01	1/5	D	
	C117C	P	DELTA SB	SPEEDBRAKE THRESHOLD ANGLE Factor	03	.28000000+01	DEG	D	
- 10	C129C.	P	DSBC TD(1)	SPEEDBRAKE ANGLE AT TO	03	.00000000	DEG	D	
	C130C	P	DSBC TD(2)	SPEEDBRAKE ANGLE AT TD	03	.00000000	DEG	D	
	C229C	P	GAWA CAPTURE	MAXIMUM GANNA ERROR TO ENGAGE STEEP GLICESLOPE	03	.20000000+01	DEG	. D	
	0233C.	P	GANNA REF 1(1)	STEEP GLIDESLOPE FLIGHTPATH	03	20000000+02	DEG	. X	
	C234C	Ρ	GANNA REF 1(2)	REFERENCE	03	20000000+02	DEG	Ħ	
	C 235C	P	GANNA REF 2	SHALLOW GLIDESLOPE FLIGHTPATH REFERENCE	03	15000000+01	DEG	ц Ц	
	C265C	P	H CLOOP	ALTITUDE AT WHICH START CLOSED LOOP PULLUP	03	.17000000+04	Ft	м	٠.,
	C256C	P	H DECAY	EXPONENTIAL CAPTURE ALTITUDE REFERENCE	03	.29000000+02	FT	N	
	C-268C	Ρ	H ERROR CAPTURE	MAXIMUM ALTITUDE ERROR TO ENGAGE STEEP GLIDESLOPE	03	.5000000+02	FT	D	
	C269C	P	H ERROR MAX	MAXIMUM ALTITUDE ERFOR	03	.3000000+03	FT	D	
÷	0270C	₽.	H FF	ALTITUDE TO START CHECKING FINAL FLARE ALTITUDE	03	.80000000+02	FT	D	
	()271 C	P	H FLARE	FLARE ALTITUDE	03	.2000000+04	FT	M	
	0272C	Р	H INTMX	ALTITUDE ERROR INTEGRATOR	03	.50000000+02	FT	D	

	WS10 #	SW	SYMEOL	CESCRIPTION	MC	VALUE	NITS MISSION DE CONSTANT	PENDENT	
	C273C.	P	н к (1,1)	CONSTANT & CIRCLE CENTER	03	.26320000+05	FT	M	
	0274C.	P	н к (1.2)	ALTITUDE	03	.26796000+05	FT	N	
	02750	۶	H K (2,1)	с. ж	03	.25320000+03	FT	н	
	C276C	P	H K (2.2)		03	.26796000+05	FT	4	
	C277C	2	H MIN	MINIMUM ALTITUDE FOR FINAL FLARE	03	.30000000+02	FT .	D	
	G278C	P	H NO ACC	ALTITUDE FOR ZERO ACCELERATION	03	-20002200+01	FT	D	
	02810.	¥	H SER TABLE (1.)	TABLE OF SPEEDBRAKE RETRACT	03	.250000+04	FT	u	
	C262C.	P	H SBR "ABLE(2)	ALTITUDES	03	.25000000+04	FT	K	,
	6283C	P	H SER TABLE(3)		03	.10000000+04	FT		,
	C284C	P	H TD1 COT	TOUCHDOWN ALTITUDE RATE	03	.90000000+01	FT/S	D	
	C285C	P	H T02 DOT	CLOSED-LOOP TOUCHDOWN ALTITUCE RATE	03	3000000+01	FT/5	D	
	0286C	Р	HHL	ALTITUDE REFERENCE FOR LIMITER	03	.75000000+04	FT	ט נו	
	C492C	۶.	INT RET BF	INITIAL RETRACT BODY FLAP FLAG	03	.10000000+01	CN	M F -	ş
	0301C	₽	K H SGS	ALTITUDE ERROR GAIN. SGS	03	.24000000-02	G/FT	D	
	C299C	Р	K FLR	FEED-FORWARD GAIN. F-F	03	.25000000-01	G-5**2/FT	D	
	03090	P	K H FSGS	ALTITUDE ERROR GAIN, FSGS	. 03	.24000000-02	G/FT	D	
2	03020	P	КНТС	ALTITUDE ERROR GAIN. TC. SGS	03	.24000000-02	G/FT	D	
	03030	2	K HOOT FF	VERTICAL VELOCITY GAIN. FF	03	.1200000-01	G-S/FT	D	ł
×	03045	P	K HOOT FSGS	VERTICAL VELOCITY GAIN, FSGS	03	.12000000-01	G-S/FT	D	
	C3050	2	K HOOT SGS	VEPTICAL VELOCITY GAIN. 105	03	.12000000-01	G-S/FT	D	e
	03060	Ρ.	K HOOT TO	VERTICAL VELOCITY GAIN. TO	03	.1200000-01	G-S/FT	D	
	03070	2	K PINTS	INTEGRATOR GAIN. SGS	C3	.1200000-03	G/FT-5	D	
	C3C8C	2	K IFLR	INTEGRATOR GAIN. FF	03	.00000000	1/5	D	
	03090	P	K INT FSGS	INTEGRAL GAIN, FSGS	03	.50000000-01	1/5	۰ <u>م</u>	
TABLE A-I(c).- Continued.

VS10 .	Sel	STAEDE	DESCRIPTION	K.C	VALUE	NITS MISSI	ICN CEPENDENT
0310:	P	K 81	YAN PATE COMMAND GAIN. FLAT TURN	03	.25000000+0	1/5	D
03110	P	K R2	YAK PATE COMMAND GAIN. Touchdown	03	.50000000+00	1/5	D
03120	P	K SB	SPEEDBRAKE GAIN	03	.200000 0+01	DEG-S/FT	D
03130	F	K SB;	SPEECBRAKE INTEGRAL GAIN	03	.10000000+00	DEC/FT	D
03150	P	K 71	CROSSRANGE ERROR INTEGRATOR Gain	03	.70000000-01	DEG/FT	D
C3:4:	P	K YEOT	CROSSRANGE RATE GAIN	C3	.10000000+02	S	5
03200	P	N FASER	FOLL FADER CONSTANT	03	.000000000	ND .	D
C322C	P	NSB	MAXIMUN VALUE OF ISB	03	.30000000+01	NG	D
03230	P	NZC LIM	MAX-G LIMIT FOR NZC	03	.100000000+01	G	D
03390	P	PHI MI	MAXIMUM POLL ATTITUDE COMMAND	03	.45000000+02	DEG .	0
03400	P	PHI W2	COVVAND	03	.2000000+02	DEG	D
C341C	₽	PHI UJ	VAFINUV ROLL ATTITUDE COVVAND	· c3	.45000000+02	DEG	D
03560	P	P VODE INITIAL	INITIAL PITCH SUBPHASE INDICATOR	03	10000000+01	СИ	D
03500	P	FSI CAP	MATIMUM HEADING ERROR (RC)	03 ,	.20000000-01	CEG	D
C379C.	P	R (1.1)	CONSTANT & CIRCLE PADIUS	03	.26200000+05	FT	x
C360C.	2	R (1.2)	CONSTANT & CIRCLE PADIUS	03	.26707000+05	FI	1 2
COBIC.	P .	R (2.1)	CONSTANT & CIRCLE RADIUS	03	.26200000+05	FT	×
03820	2	R (2.2)	CONSTANT & CIRCLE HADIUS	03	.26707000+05	FT	и
63955	• •	SS PATE	SPEEDBRAKE PETRLCT RATE	C3	.11000000+02	DEG/S	P
C397C	P	SB REF	SPEEDBRAKE REFERENCE	03	.55000000+02	DEG	D
C398C.	P	SBF TABLE(1)	TABLE OF REFERENCE SPEEDBRAKE	03	.2500000+02	DEG	L
03990.	P	SBF TABLE(2)	POSITIONS FOR RETRACTION ALTITUDE	63	.75000000+02	DEG	

A-18

-

TABLE A-I(c) .- Continued

MS10 #	Sir	SYMBOL	DESCRIPTION	MC	VALÚE U	NITS	MISSION DEPENDENT CONSTANT
DADLC	Р	SBF TABLE(3)	POSITIONS FOR RETRACTION ALTITUDE	03	.99600000+02	DEG	3.5
6402C.	Р	51GMA (1)	EXPONENTIAL DISTANCE	03	.85000000+03	FT	* *
04030	P	51G#A(2)	EXPONENTIAL DISTANCE	03	.85000000+03	FT	ы
04090	P	T Q .	MINIMUM TIME WITH COUNDED Errors for transition to steep glideslope phase	03	.40000000+01	5	D
04100	P	TAU GANNA	TIME CONSTANT. FSGS	03	.20000000+01	S	ο.
C411C	р	TAU TD	TIME CONSTANT, FSGS	03	.6000000+01	5	ΰ
04120	Р	TAU TOI	TIME CONSTANT, FF	03	.50000000+01	S	0
04130	P	TAU TD2	TIME CONSTANT. FF	03	.5000000+01	S	. D
04160	P	TO LAT	MINIMUM TIME WITH BOUNDED Error to Engage Lateral Track	03	.40000000+01	S	D
04170	P	V LIMIT	MAXIMUM ERROR VELOCITY Limit	03	.1000000+0:	FT/5	D
04180.	P	V REF(1)	REFERENCE AIRSPEED	03	.47300000+0	B FT/S	₩ .
04190	P	V REF(2)	REFERENCE AIRSPEED	03	.47300000+03	B FT/S	14
04440	Р	WT GS1	WEIGHT FOR GLIDESLOPE Selection	03	.65270000+04	SLUG	5 M
04450	P	X AIM PT	AIM POINT X-DISTANCE	03	.1500000+04	₽ FT	M
0446C.	Р	X EXP (1.1)	EXPONENTIAL CAPTURE X DISTANCE	03	•.37840000+04	\$ FT	M
04476.	P	X.EXP (1.2)	EXPONENTIAL CAPTURE X DISTANCE	03	•.26450000+04	4 FT	M
0448(.	P	X EXP (2.1)	EXPONENTIAL CAPTURE X DISTANCE	03	37840000+04	4 FT	, M
04490	P	X EXP (2.2)	EXPONENTIAL CAPTURE & DISTANCE	03	26460000+04	4 FT	M
04500,	P	X K (1.1)	CONSTANT & CIRCLE CENTER RANGE	03	22090000+0	4 FT	M
C451C.	P	X K (1.2)	CONSTANT & CIRCLE CENTER RANGE	60	•.10360000+0	A FT	м
04526.	P	X K (2.1)	CONSTANT & CIRCLE CENTER RANGE	03	22090000+0	4 FT	M
04530	Р	X K (2.2)	CONSTANT & CIRCLE CENTER RANGE	03	10360000+0	4 FT	· M ·

A-19

N'SID # 1970	SW	SYMBOL
0454C.	P	X ZERO(1)
0455C	Ρ	X ZERO(2)
0460C	P	Y INLIM
0458C	P	Y CAP
C461C	P	Y LIMIT
1.1		-

TABLE A-I(c).- Concluded.

DESCRIPTION	MC	VALUE UNITS	MISSION DEPENDENT CONSTANT	
STEEP GLIDESLOPE INTERCEPT	03	.65000000+04 FT	м	
STEEP GLIDESLOPE INTERCEPT	03	.55000000+04 FT	М	
CROSSRANGE ERROR INTEGRATION	03	.50000000+02	D	
LATERAL CAPTURE-DISTANCE (RC)	03	-50000000+02 FT	D	
CROSSRANGE ERROR LIMIT	03	.1000000+04FT	D	

. 1

A-20

