NASA Contractor Report 159105

Near-Field Noise Prediction for Aircraft in Cruising FlightMethods Manual

J.G.Tibbetts

LOCKHEED-GEORGIA COMPANY Marietta, Georgia 30063

CONTRACT NAS1-14946
AUGUST 1979

N/ SA

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665

NASA Contractor Report 159105

Near-Field Noise Prediction for Aircraft in Cruising FlightMethods Manual

J.G.Tibbetts

LOCKHEED-GEORGIA COMPANY Marietta, Georgia 30063

CONTRACT NAS1-14946
AUGUST 1979

N/SA

National Aeronautics and Space Administration

FOREWORD

This document is submitted in accordance with the requirements of NASA Contract NAS1-14946, Study of the Prediction of Cruise Noise and Laminar Flow Control Noise Criteria for Subsonic Air Transports. D. L. Lansing is the NASA Langley Contract Monitor and J. S. Gibson is the Lockheed-Georgia Project Manager.

The final technical reports of this program comprise two volumes. The first volume, CR-159104, desciribes the technical selection and development of cruise noise prediction and LFC noise criteria procedures. The secoind report (CR-159105, this volume) is a Methods Manual for applying the cruise noise prediction procedures to practical aircraft design programs.

table of contents

Page
FOREWORD ii
SUMMARY 1

1. INTRODUCTION 1
2. 1 Nomenclature 4
3. COMPUTATIONAL ALGORITHMS FOR PROPULSION NOISE SOURCES 8
2.1 Fan and Compressor Noise 8
2.2 Turbine Noise 24
2.3 Core (Combustion) Noise 31
2.4 Jet Mixing Noise 38
2.5 Jet Shock Associated Broadband Noise 50
2.6 Jet Shock Discrete Tone (Screech) Noise 55
4. COMPUTATIONAL ALGORITHMS FOR AIRFRAME NOISE SOURCES 60
3.1 Trailing-Edge Noise 60
3.2 Turbulent Boundary Layer Noise 65
5. COMPUTATIONAL ALGORITHMS FOR ACOUSTIC RADIATION MODIFIERS 72
4.1 Acoustic Suppression Effects (Treatment) 72
4.2 Structural Shielding 77
6. COMPUTATION PROCEDURES FOR LFC SUCTION SYSTEMS 84
7. SAMPLE RESULTS FROM CHECKOUT CASES 85

NEAR-F.IELD NOISE PREDICTION FOR
 AIRCRAFT IN CRUISING FLIGHT
 By J. G. Tibbetts
 Lockheed-Georgia Company

SUMMARY

This document is a methods manual for noise prediction at any point on an aircraft while the aircraft is in a cruise flight regime. The methods were selected and/or developed for use in Laminar Flow Control (LFC) noise effects analyses, but can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. The selection and development of the noise prediction methods are described in detail in a companion report, CR-159104.

For each noise source applicable to the LFC problem, this manual contains a detailed noise computational procedure in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) Propulsion System, (2) Airframe, and (3) LFC Suction System. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed.

Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

1. INTRODUCTION

The application of LFC criteria for the determination of aircraft noise effects on the laminar flow regions of LFC aircraft during cruise requires a method for the prediction of the incident noise levels and frequencies at any desired point on the airplane. A primary objective of the present study then has been to select from the currently available and evolving technology those noise prediction methods which appear to best meet this need. Discussions of the noise sources considered and the selection and derivation of the noise prediction methods for those sources considered to be significant for the LFC problem are contained in the companion analysis report, CR-159104. The purpose of this volume is to present the final computational procedures of the selected prediction methods of CR-159104 as a "Methods Manual" for use in LFC airplane design and analysis programs. A primary requirement in the development of these computational procedures is that they be in algorithm form so they can be directly convertible to computer programs by users without requiring the user to be knowledgeable in the aero-acoustics field.

The development of each of the computational procedures presented herein has followed a similar pattern. What is believed to be the best available
prediction method for each important noise source was selected and then developed as required for application to cruise noise predictions. Not surprisingly, no methods were found in the available literature which were directly applicable to near-field noise prediction in the cruise regime. The term "near-field" when used in this volume actually refers to the "close-in" far field, where the far field generally refers to source-to-receiver distances which are large relative to a characteristic physical dimension of the source or the sound wavelength; and, as a result, the source may be considered a "point" source. In the close-in far field, the physical dimensions of the noise generating mechanism and its orientation relative to the receiver are important and should be considered. In the case of prediction methods for propulsion (or LFC suction system) noise sources, the available methods have typically been derived for the far-field case at near sea level conditions with no forward speed or for the relatively slow speeds associated with takeoff or landing. The single exception is the procedure for jet mixing noise which is a near-field (closein far field) noise predictor. Consequently, it has been necessary to attempt to adapt these procedures for application to the close-in far field at cruise conditions. In particular, the selected prediction methods for the turbomachinery sources (fan/compressor, turbine, and core (combustion)) were derived for far-field conditions. However, it is believed that these methods will also produce reasonable and satisfactory predictions as they stand for the close-in far field since these propulsion sources are expected to behave approximately as acoustic point sources. Consequently, the basic far-field prediction procedures for these sources have been applied to the near-field LFC case with appropriate corrections as outlined later to account for the cruise environment. In the case of jet mixing noise, the prediction procedure selected is a nearfield predictor applicable to a single nozzle under static conditions. It has been modified using the recommendations of the Bolt, Beranek, and Newman contracted study described in CR-159104 for application to coaxial jets with forward speed. Finally, for the propulsion noise sources, the jet shock associated.broadband noise prediction procedure selected for this study was also developed as a far-field predictor. However, since this source is a distributed source, like jet mixing noise, the far-field procedure could not be applied to the close-in far field with the same level of confidence as in the case of the turbomachinery sources without some verification of the accuracy of the procedure in the near field. Consequently, a comparison was made between results obtained with this far-field prediction procedure and some of the near-field jet/shock noise data measured by General Electric and reported in AFAPL-TR-76-78, Volume IV, July 1976. This comparison indicates reasonable agreement between the measured and predicted noise levels and spectra with the prediction procedure yielding results which appear slightly conservative (higher levels) relative to the measured data. As a result, this procedure was selected for the prediction of jet shock associated broadband noise. Another alternative would be to re-develop the procedure as a near-field predictor but this is beyond the scope of the present study. For more details and discussions of the analyses and rational employed in the selection and development of these procedures refer to CR-159104.

The available airframe noise source prediction procedures were less well defined than those for the propulsion system sources. Consequently, for the sources considered significant for this study, it has been possible to develop the evolving prediction technologies into methods which are basically more applicable to the near-field cruise case than those of the propulsion system.

This is especially desirable since both of the sources considered significant for this study (trailing-edge noise and turbulent boundary layer noise) are clearly distributed sources and not amenable to point source analyses. The development of the airframe noise prediction methods is discussed in CR-159104.

No special noise prediction methods have been selected or developed for the LFC suction systems since the procedures given for the propulsion system are applicable to the more dominant noise sources of the suction system.

As mentioned above, all of the prediction procedures have had to be modified or developed for application to high altitude, high forward speed, and/or the close-in (acoustic) far field. The following effects have been accounted for in this development of the noise prediction procedures contained in this report:

- Forward-speed propagation effects:
(a) emitted/perceived directivity angle $\} \quad$ forward-speed
(b) sound propagation path length \}
transformation
(c) convective amplification
(d) dynamic amplification
- relative velocity/forward-speed effects on noise source strength
- high altitude acoustics (i.e., acoustic impedance and atmospheric attenuation)
- acoustic suppression materials (e.g., turbine/core noise suppression by wall treatment in the primary exhaust duct)
- structural shielding (i.e., line-of-sight shielding by aircraft surfaces between source and receiver location)

Other acoustic radiation effects and acoustic phenomena which are not required or may be neglected for the LFC problem are the Doppler (frequency shift) effect on the received frequency of sound, atmospheric attenuation of sound, and surface and boundary layer effects (e.g., reflection and refraction) on incident wave fields. A Doppler correction is not required for the present case since both the source and receiver move together. Consequently, the frequency measured at the receiver location is equal to the true emission frequency. Atmospheric absorption is not included in the prediction procedures of this volume since its effect is estimated to be small and neglecting it will result in slightly conservative noise estimates. The methods used to estimate the effect of atmospheric attenuation are discussed in CR-159104. Finally, surface effects are not included in the procedures since their effect is incorporated into the LFC criteria applications method of CR-159104. Consequently, the prediction procedures of this volume are for free-field conditions.

The inputs required to utilize the prediction methods of this volume are described within each computational algorithm. All of the parameters involved are further described in the nomenclature of the following section. Each computational algorithm predicts the following parameters for any specified location in the near field (close-in far field) of the noise source:

- the $1 / 3$ octave band sound pressure levels (dB) from 50 to $10,000 \mathrm{~Hz}$
- the overall sound pressure level (dB)
- spectral (1 Hz bandwidth) sound pressure levels (dB) for each $1 / 3$ octave band

In addition, computational procedures are provided which allow the user to include the effects of designs for acoustic sound suppression (acoustic liners and high Mach number inlets), and shielding of noise by aircraft surfaces on predicted noise levels. All predicted sound pressure levels are for free-field, lossless conditions and are referenced to $0.00002 \mathrm{~N} / \mathrm{m}^{2}$ (0.0002 dynes $/ \mathrm{cm}^{2}, 2.9008(10)^{-9}$ PSI). To compute the total sound pressure levels (1/3 octave band or spectrum levels) of two or more noise sources it will be necessary to add the individual source levels on an energy basis (i.e., add the levels logarithmically).

The methods presented in this report are believed to represent the current state-of-the-art in close-in far-field cruise noise prediction, and to provide satisfactory noise estimates for application to LFC aircraft preliminary design studies. However, at this time, the required data is simply not available to develop a reliable estimate of the accuracy of these methods. It is clear, nonetheless, that additional testing and verification is required to improve accuracy and confidence in the procedures. The recommendations section of CR-159104 indicates some of the means by which this can be accomplished.

1.1 Nomenclature

A	primary nozzle (or single nozzle) exit area
A_{j}	elemental surface area
Aref	reference area
AR	ratio of secondary jet exit area to primary jet exit area
BPF	blade passage frequency (Hz)
C_{a}	ambient speed of sound
C_{o}	sea level, standard day speed of sound
D	nozzle exit equivalent diameter
De	primary nozzle (or single nozzle) exit diameter
D_{J}	diameter of secondary jet nozzle exit
D_{S}	frequency (Hz)

f_{b}	center frequency of the $1 / 3$ octave band containing the blade passage or peak frequency (Hz)
f_{d}	acoustic suppression material design frequency (Hz)
f_{i}	center frequency of the i th $1 / 3$ octave band (Hz)
${ }^{\text {f }} \mathrm{FK}$	peak frequency (Hz)
$\mathrm{f}_{\text {ref }}$	reference frequency for fan broadband noise (Hz)
H	plug nozzle annulus height
H_{d}	duct height between opposite acoustic liner surfaces
H_{J}	jet exit characteristic dimension for jet shock-associated noise
H_{N}	Hemholtz number ($f D_{J} / c_{a}$)
ℓ	length of trailing-edge span
L	effective length of acoustic treatment material
$M_{\text {A }}$	airplane Mach number
M_{d}	mean duct Mach number
MJ	jet exit fully-expanded Mach number
MT	fan/compressor rotor tip Mach number
$M_{\text {TR }}$	fan/compressor rotor tip relative Mach number
$(M T R)_{D}$	fan/compressor rotor tip design relative Mach number
$\dot{\mathrm{m}}$	mass flowrate through the engine fan or compressor
$\dot{m}_{\text {ref }}$	reference mass flowrate, $142.9 \mathrm{~kg} / \mathrm{s}$ ($315 \mathrm{lbm} / \mathrm{s}, 9.79 \mathrm{slug} / \mathrm{s}$)
N	fan, compressor or turbine shaft rotational speed (RPM)
N_{R}	number of rotor blades
N_{S}	number of stator vanes
NS	number of inlet acoustic splitter rings
OASPL	overall sound pressure level (dB re: $0.00002 \mathrm{~N} / \mathrm{m}^{2}$)
PR	low-pressure turbine pressure ratio (inlet total pressure/exit static pressure)

Pref	reference acoustic pressure, $0.00002 \mathrm{~N} / \mathrm{m}^{2}$ (0.0002 dynes $\left./ \mathrm{cm}^{2}, 2.9008(10)^{-9} \mathrm{PSI}\right)$
RSS	fan/compressor rotor-stator spacing (percent)
R_{W}	ratio of secondary to primary jet mass flow rates
r	distance from the noise source to desired "observer" location on the aircraft
r^{\prime}	actual sound propagation path length from source to observer
${ }^{\text {ref }}$	reference source-to-observer distance
SPLi	sound pressure level of the i th $1 / 3$ octave band (dB re: 0.00002 $\mathrm{N} / \mathrm{m}^{2}$)
SSPLi	spectral (1 Hz bandwidth) sound pressure level for the i th $1 / 3$ octave band center frequency (dB re: $0.00002 \mathrm{~N} / \mathrm{m}^{2}$)
T_{J}	primary jet exhaust total temperature
$\mathrm{T}_{\text {ref }}$	reference jet exhaust total temperature, $555.6{ }^{\circ} \mathrm{K}\left(1000{ }^{\circ} \mathrm{R}\right)$
T_{5}	secondary jet exhaust total temperature
T3	combustor inlet total temperature
T4	combustor exit total temperature
$\left(T_{4}-T_{5}\right)$ des	total temperature drop across the entire turbine section at the engine design point
t_{a}	ambient static temperature
u	freestream velocity
$U_{\text {ref }}$	reference freestream or rotor tip velocity
$\mathrm{V}_{\text {A }}$	aircraft velocity
v_{J}	jet fully-expanded exhaust velocity
$v_{\text {ref }}$	reference velocity, $51.44 \mathrm{~m} / \mathrm{s}$ ($168.8 \mathrm{f} / \mathrm{s}, 100$ knots. 115.1 mph)
v_{S}	secondary jet fullyaexpanded exhaust velocity
$W_{\text {ref }}$	reference combustor airflow, $15.9 \mathrm{~kg} / \mathrm{s}$ ($35 \mathrm{lbm} / \mathrm{s}, 1.09 \mathrm{slug} / \mathrm{s}$)
W_{3}	combustor total airflow
x_{j}, y_{j}, z_{j}	Cartesian coordinates of receiver location relative to a surface elemental area for turbulent boundary layer noise

x	receiver location measured along jet axis from the primary jet nozzle exit plane (positive aft)
x_{s}	receiver location measured along jet axis from the secondary jet exit plane (positive aft)
y	receiver location measured perpendicular to the jet axis
$\Delta T_{\text {stage }}$	total temperature rise across a fan or compressor stage (actual)
$\Delta T_{\text {ref }}$	reference fan/compressor stage or combustor total temperature rise
δ	turbulent boundary layer thickness
δ^{*}	turbulent boundary layer displacement thickness
λ	wavelength
ρ_{a}	ambient air density
ρ_{0}	sea level, standard day air density
ρ_{3}	combustor inlet density
ϕ	angle between line from source (e.g., the center of the nozzle exit plane) to receiver and engine inlet axis or direction of motion (deg)
ϕ^{-}	source emission angle measured with respect to the inlet axis or direction of motion (deg)

2. COMPUTATIONAL ALGORITHMS FOR PROPULSION NOISE SOURCES

2.1 Fan and Compressor Noise

The method selected for the prediction of fan and compressor noise is discussed in Section 2.3.3.1 of CR-159104. This empirical method was developed by Boeing/Ames and modified and expanded by NASA Lewis. The applications and limitations of this method adapted for the LFC cruise study and the following computational algorithm are outlined below.

Applications and Limitations:
(a) The basic empirical method predicts up to five source noise components (three inlet and two fan discharge) for free-field lossless conditions in the far field. These components consist of broadband, discrete tone, and combination tone noise.
(b) The method is applicable to 1 -or 2 -stage fans or the $1^{\text {st }}$ stage of an axial compressor. (Note: For 2-stage fans, the noise of each stage is computed separately, using the procedure of this section, then the two noise signatures must be summed on an energy basis.)
(c) The method is based on a somewhat limited range of fan types, but is considered the best available method and consistent with the fan types expected for the 1985-1990 time frame and LFC mission.
(d) Combination tone nosie is only computed for $1^{\text {st }}$-stage fans (rotor tip relative Mach numbers greater than 1.0) and is assumed to radiate only from the engine inlet.
(e) The prediction procedure will account for the presence or absence of inlet guide vanes (IGV's) for $1^{\text {st }}$-stage fans, but assumes IGV's are present in all other cases.
(f) Inlet flow distortions associated with static or ground-roll operation are assumed to be absent.
(g) The method assumes aerodynamically clean, relatively short-duct nacelles with hard walls (no acoustic treatment). To include the effects of acoustically treated nacelles use the method of Section 4.1.
(h) The rotor-tip relative Mach numbers must be less than or equal to the design value ($\left.M_{T_{R}} \leq\left\{M_{R}\right\}_{D}\right)$.
(i) The radiated sound field is assumed to be axisymmetric with respect to the engine centerline.
(j) Corrections for rotor-stator spacing are applied.
(k) A tone cut-off correction is employed when computed to exist, but is applied only to the fundamental tone.

[^0]A. Compute parameters which are common to both fan inlet and discharge duct noise prediction calculations.

1. Compute the correction required to "de-normalize" the predicted peak 1/3 O.B. sound pressure levels:
$C_{N}=20 \log _{10}\left(\Delta T_{\text {stage }} / \Delta T_{\text {ref }}\right)+10 \log _{10}\left(\dot{\mathrm{~m}} / \dot{m}_{\text {ref }}\right)+63.0 d B$
2. Compute rotor/stator spacing correction to be applied to broadband noise:

$$
C_{R S S, B B}=-5 \log _{10}(R S S / 300) . d B
$$

3. Compute rotor/stator spacing correction to be applied to discrete tone noise:

$$
C_{R S S}, D T=-10 \log _{10}(R S S / 300) d B
$$

4. Compute tone cut-off factor for discrete tone noise (if $\delta<1.05$, a cut-off correction will be applied to the fundamental tone):

$$
\delta=\left|\frac{M_{T}}{1-\frac{N_{S}}{N_{R}}}\right|
$$

5. Compute the blade passage frequency:

$$
B P F=N \cdot N_{R} / 60 \mathrm{~Hz}
$$

6. Compute the correction to be applied for local acoustic impedance:

$$
c_{1 M P D}=10 \log _{10}\left(\frac{\rho_{a} c_{a}}{\rho_{0} c_{0}}\right) d B
$$

B. Compute fan or compressor inlet radiated noise.

1. Compute source emission angle ($\phi_{\bar{I}}$) and actual sound propagation path length ($r_{\bar{I}}^{\prime}$) from input values of observer angle $\left(\phi_{\bar{I}}\right)$ and distance $\left(r_{I}\right)$ W.R.T. the engine inlet (forward speed effect t :
(a) $M_{A}=0.0$

$$
\phi_{\bar{I}}=\phi_{I} \text { and } r_{\hat{I}}^{\prime}=r_{I}
$$

(b) $0.0<M_{A}<1.0$

- If $\phi_{I}=0^{\circ}$, $\phi_{I}=0^{\circ}$ and $r_{I}=r_{I} /\left(1-M_{A}\right)$
- If $\phi_{I}=180^{\circ}$, $\phi \hat{I}=180^{\circ}$ and $r_{\hat{I}}=r_{I} /\left(1+M_{A}\right)$
- If $0^{\circ}<\phi I<180^{\circ}$,

$$
\begin{gathered}
\cot \phi_{I}^{\prime}=\frac{1}{1-M_{A}^{2}}\left[\cot \phi_{I}+M_{A} \sqrt{1-M_{A}^{2}+\cot ^{2} \phi_{I}}\right] \\
r_{I}^{\prime}=r_{I} \sin \phi_{I} / \sin \phi_{I}^{\prime}
\end{gathered}
$$

2. Compute the correction for convective amplification:

$$
C_{A_{I}}=-40 \log _{10}\left(1-M_{A} \cos \phi_{I}^{\circ}\right) \quad d B
$$

3. Broadband noise
(a) Calculate the peak normalized $1 / 3$ O.B. SPL:

- For $M_{T_{R}} \leq 0.9$

If $\left(M_{T_{R}}\right)_{D} \leq 1.0, \quad \bar{L}_{B B}=58.5 \mathrm{~dB}$
If $\left(M_{T_{R}}\right)_{D}>1.0, \quad \bar{L}_{B B}=58.5+20 \log _{10}\left(M T_{R}\right)_{D} d B$

- For $M_{T_{R}}>0.9$

$$
\begin{aligned}
\text { If }\left(M T_{R}\right)_{D}<1.0, \quad \bar{L}_{B B} & =57.6-20 \log _{10}\left(M T_{R}\right) \\
\text { If }\left(M T_{R}\right)_{D} \geq 1.0, \quad \bar{L}_{B B}=57.6 & +20 \log _{10}\left(M T_{R}\right)_{D} \\
& -20 \log _{10}\left(M T_{R}\right) \quad d B
\end{aligned}
$$

where $M_{T_{R}} \leq\left(M_{T_{R}}\right)_{D}$
(b) "De-normalize" the peak level for the specific fan or compressor operating condition:

$$
L_{B B, P K}=\bar{L}_{B B}+C_{N} d B
$$

(c) Correct the peak level for local acoustic impedance, rotor/ stator spacing, and convective amplification:

$$
L_{B B}, P K=L_{B B}, P K+C_{I M P D}+C_{R S S}, B B+C_{A I} d B
$$

(d) Find the directivity correction for the inlet broadband component from table 2.1.1 (linear interpolation).

$$
\Delta d B_{I, B B}=F^{N}\left(\phi_{\mathrm{I}}\right) \quad \mathrm{dB}
$$

(e) Apply corrections to the peak $1 / 30$. . level for directivity and distance:

$$
L_{B B}=L_{B B}, P K+\Delta d B_{I, B B}-20 \log _{10}\left(r_{I}^{\prime} / r_{\text {ref }}\right) d B
$$

(f) Compute the broadband $1 / 30 . B$. spectrum levels using the following equation:

$$
\begin{aligned}
\left(S P L_{i}, B B-L_{B B}\right) & =10 \log _{10} e^{-4.264\left[\log _{10}\left(f_{i} / f_{r e f}\right)\right]^{2}} \\
\text { where } S P L_{i}, B B= & i T H 1 / 30 . B . S P L \quad(d B) \\
f_{i}= & i T H 1 / 30 . B . \text { center frequency }(H z) \\
f_{r e f}= & \text { center frequency of the } 1 / 30 . B . \text { containing the } \\
& f r e q u e n c y \text { equal to } 2.5 \text { times the center freq. of } \\
& \text { the } 1 / 30 . B . \text { containing the BPF. }
\end{aligned}
$$

4. Discrete tone noise
(a) Calculate the peak normalized $1 / 3$ O.B. SPL of the fundamental tone:

- For $M_{T_{R}} \leq 0.72$

If $\left(M T_{R}\right)_{D} \leq 1.0, \quad \bar{L}_{T}=60.5 \mathrm{~dB}$
If $\left(M_{T_{R}}\right)_{D}>1.0, \quad \bar{L}_{T}=60.5+20 \log _{10}\left(M_{T_{R}}\right)_{D} d B$

- For $M_{T R}>0.72$

If $\left(M T_{R}\right)_{D}<1.0$,
USE LESSER OF $\left\{\begin{array}{l}\bar{L}_{T}=60.5+50 \log _{10}\left(M_{T_{R}} / 0.72\right) d B \\ \bar{L}_{T}=59.5-80 \log _{10}\left(M_{T_{R}}\right) d B\end{array}\right.$
If $\left(M_{T R}\right)_{D} \geq 1.0$,

$$
\text { USE LESSER OF }\left\{\begin{aligned}
\bar{L}_{T}= & 60.5+20 \log _{10}\left(M T_{R}\right)_{D} \\
& +50 \log _{10}\left(M_{T R} / 0.72\right) \mathrm{dB}
\end{aligned} \quad \begin{array}{r}
\bar{L}_{T}= \\
59.5+80 \log _{10}\left[\frac{\left(M_{T_{R}}\right)_{D}}{M_{T_{R}}}\right] \mathrm{dB}
\end{array}\right.
$$

where $M_{T_{R}} \leq\left(M_{T_{R}}\right)_{D}$
(b) "De-normalize" the peak tone level for the specific operating condition:

$$
L_{T, P K}=\bar{L}_{T}+C_{N} d B
$$

(c) Correct the peak level for local acoustic impedance, rotor/ stator spacing, and convective amplification:

$$
L_{T, P K}=L_{T, P K}+C_{I M P D}+C_{R S S}, D T+C_{A I} d B
$$

(d) Find the directivity correction for the inlet discrete tones from table 2.1.1 (linear interpolation):

$$
\Delta \mathrm{dB}_{\mathrm{I}}, \mathrm{DT}=\mathrm{F}^{\mathrm{N}}\left(\phi_{\mathrm{I}}\right) \quad \mathrm{dB}
$$

(e) Apply corrections to the peak tone for directivity and distance:

$$
L_{T}=L_{T, P K}+\Delta d B_{I, D T}-20 \log _{10}\left(r_{I}^{\prime} / r_{r e f}\right) d B
$$

(f) Compute the $1 / 30 . B$. levels of the harmonic tones:
(1) $1^{\text {st }}$ stage fans w / o inlet guide vanes

$$
\begin{aligned}
& L_{k}=L_{T}+3-3 k \quad d B \quad k \geq 2 \\
& \text { If } \delta \geq 1.05, L_{1}=L_{T} d B \\
& \text { If } \delta<1.05, L_{1}=L_{T}-8.0 d B
\end{aligned}
$$

(2) All other cases

$$
\begin{aligned}
& L_{k}=L_{T}-3-3 k \quad d B \quad k \geq 2 \\
& \text { If } \delta \geq 1.05, L_{1}=L_{T} d B \\
& \text { If } \delta<1.05, L_{1}=L_{T}-8.0 d B
\end{aligned}
$$

where $k=1,2,3, \ldots$ integer multiples of the center frequency of the $1 / 30 . B$. containing the BPF. The level is assigned to the $1 / 30 . B$. containing the harmonic frequency.
5. Combination tone noise (CTN)

Note: Applies only to $1^{\text {st }}$-stage fans where $M_{T_{R}}>1.0$
(a) Compute the normalized peak level for each of the three components of this inlet source:
(1) $f / f_{b}=1 / 2$

If $M_{T_{R}} \leq 1.146, \bar{L}_{c, 1 / 2}=785.68 \log _{10}\left(M_{T_{R}}\right)+30.0 \mathrm{~dB}$
If $M_{T_{R}}>1.146, \bar{L}_{c, 1 / 2}=-49.62 \log _{10}\left(M T_{R}\right)+79.44 \mathrm{~dB}$
(2) $f / f_{b}=1 / 4$

If $M_{T_{R}} \leq 1.322, \bar{L}_{c, 1 / 4}=391.81 \log _{10}\left(M_{T_{R}}\right)+30.0 \mathrm{~dB}$
If $M_{T_{R}}>1.322, \bar{L}_{c, 1 / 4}=-50.06 \log _{10}\left(M T_{R}\right)+83.57 \mathrm{~dB}$
(3) $f / f f=1 / 8$

$$
\begin{aligned}
& \text { If } M_{T_{R}} \leq 1.610, \bar{L}_{c, 1 / 8}=199.20 \log _{10}\left(M_{T_{R}}\right)+30.0 \mathrm{~dB} \\
& \text { If } M_{T_{R}}>1.610, \bar{L}_{c, 1 / 8}=-49.89 \log _{10}\left(M_{T_{R}}\right)+81.52 \mathrm{~dB}
\end{aligned}
$$

$$
\text { where } f=\text { peak frequency of the combination tone noise }
$$ component ($1 / 3$ О.B. center frequency).

$$
\begin{aligned}
f_{b}= & \text { center frequency of the } 1 / 30 . B . \text { containing the } \\
& B P F .
\end{aligned}
$$

(b) "De-normalize" the peak levels of the three components of CTN:

$$
L_{c, n}=\bar{L}_{c, n}+C_{N} \quad d B \quad n=1 / 2,1 / 4,1 / 8
$$

(c) Apply correction for inlet guide vanes, if present:

$$
L_{c, n}=L_{c, n}-5.0 \quad d B \quad n=1 / 2,1 / 4,1 / 8
$$

(d) Correct peak levels for local acoustic impedance and convective amplification.:

$$
L_{c, n}=L_{c, n}+C_{I M P D}+C_{A_{I}} d B \quad n=1 / 2,1 / 4,1 / 8
$$

(e) Find the directivity correction for CTN from table 2.1.1 (linear interpolation),

$$
\Delta d B_{C T N}=F^{N}\left(\phi_{I}\right) \quad d B
$$

(f) Correct the CTN components for directivity and distance:

$$
L_{c, n}=L_{c, n}+\Delta d B_{C T N}-20 \log _{10}\left(r_{\underline{I}}^{\prime} / r_{\text {ref }}\right) d B \quad n=1 / 2,1 / 4,1 / 8
$$

(g) Compute the $1 / 30 . B$. spectrum levels for each of the 3 components of CTN using the following equations:
(1) $f / f_{b}=1 / 2$

$$
\begin{aligned}
& \text { If } f_{i} / f_{b} \leq 0.5, S P L_{i}, 1 / 2=L_{c, 1 / 2}+30 \log _{10}\left(f_{i} / f_{b}\right)+9.03 \\
& \text { If } f_{i} / f_{b}>0.5, S P L_{i}, 1 / 2=L_{c, 1 / 2}-30 \log _{10}\left(f_{i} / f_{b}\right)-9.03
\end{aligned}
$$

(2) $f / f_{b}=1 / 4$

$$
\begin{aligned}
& \text { If } f_{i} / f_{b} \leq 0.25, S P L_{i}, 1 / 4=L_{c, 1 / 4}+50 \log _{10}\left(f_{i} / f_{b}\right)+30.1 \\
& \text { If } f_{i} / f_{b}>0.25, S P L_{i}, 1 / 4=L_{c, 1 / 4}-50 \log _{10}\left(f_{i} / f_{b}\right)-30.1
\end{aligned}
$$

(3) $f / f_{b}=1 / 8$

$$
\text { If } f_{i} / f_{b} \leq 0.125, S P L_{i}, 1 / 8=L_{c, 1 / 8}+50 \log _{10}\left(f_{i} / f_{b}\right)+45.15
$$

$$
\begin{aligned}
& \text { If } f_{i} / f_{b}>0.125, S P L_{i}, 1 / 8=L_{c}, 1 / 8-30 \log _{10}\left(f_{i} / f_{b}\right)-27.09 \\
& \text { where, } f_{i}=\text { the } i^{\text {th }} 1 / 30 . B . \text { center frequency }
\end{aligned}
$$

6. Compute the $1 / 30$. B. SPL's of the total inlet radiated noise at the observer location.
(a) $\mathrm{SPL}_{I, i}=10 \log _{10}\left[10^{\left(\mathrm{SPL}_{\mathrm{i}, \mathrm{BB}} / 10\right)}+{ }_{10}\left(\mathrm{SPL}_{\mathrm{i}, 1 / 2} / 10\right)\right.$

$$
\left.\left.+10^{\left(\text {SPL }_{i, 1 / 4} / 10\right)}+10{\left(S^{(S P L}\right.}_{i, 1 / 8} / 10\right)\right]
$$

where $S P L_{I, i}=$ the i th $1 / 30 . B$. SPL of the total inlet radiated

$$
\begin{aligned}
& S P L_{i, B B} \text { from Step } B-3(f) \\
& S P L_{i, n} \text { from Step } B-5(g) \text { for } n=1 / 2,1 / 4,1 / 8
\end{aligned}
$$

(b) If a harmonic of the fundamental tone occurs in the ith 1/30.B. correct $S_{I, i}$ computed above as follows:

$$
S P L_{I, i}=10 \log _{10}\left[10(\mathrm{SPL} / 10)+10\left(\mathrm{~L}_{\mathrm{k}} / 10\right)\right] \mathrm{dB}
$$

7. Correct the inlet radiated noise spectrum for acoustic suppression if treatment is applied to the inlet duct. This correction is treated as a separate prediction module and is described in Section 4.1.
8. If appropriate, correct inlet radiated noise for structural shielding. This correction is also treated as a separate module. See Section 4.2. The source location is taken as the center of the inlet plane (see figure 2.1.2).
9. Compute the overall sound pressure level for the inlet radiated noise at the observer location for the $241 / 3$ octave bands from 50 to 10,000 Hz 。

$$
\text { OASPL }_{I}=10 \log _{10} \sum_{i=1}^{24} 10^{\left(S P L_{I, i} / 10\right)} \mathrm{dB}
$$

10. Compute the spectral levels (1 Hz bandwidth) of the inlet radiated noise at the desired observer location.
(a)

$$
S S P L_{I, i}=\left[S P L_{I, i}\right]_{\text {from step } B-6(a)^{-10} \log _{10}(\Delta f)_{i} d B ~}^{d B}
$$

where $S S P L_{I, i}=$ the spectral sound pressure level (SPL) at the observer location for the i th $1 / 3$ octave band center frequency.
$(\Delta f)_{i}=$ the bandwidth of the $i^{\text {th }} 1 / 3$ octave band $(H z)$.
(b) If a harmonic of the fundamental tone occurs in the ith $1 / 3$ octave band, correct $S S P L_{I, i}$ of (a) above as follows:
$S S P L_{I, i}=10 \log _{10}\left[10^{(\mathrm{SPL} / 10)}+10^{\left(L_{k} / 10\right)}\right] \mathrm{dB}$
where $\begin{aligned} \text { SPL } & =\text { SSPL } \\ k & =1,2,3, \ldots \ldots \ldots .\end{aligned}$
(c) Apply the corrections of Steps B-7 and B-8, if applicable, to the computed spectral levels of (a) and (b) above.
C. Noise radiated from the fan discharge duct.

1. Compute the source emission angle ($\phi \dot{D}$) and the actual sound propagation path length (r_{0}) from input values of observer angle (ϕ_{D}) and distance (rD) W.R.T. the fan discharge duct exit (forward speed effect):
(a) $M_{A}=0.0$

$$
\phi_{D}^{\prime}=\phi_{D} \text { and } r_{\dot{D}}^{\prime}=r_{D}
$$

(b) $0.0<M_{A}<1.0$

- If $\phi_{D}=0^{\circ}, \phi_{D}=0^{\circ}$ and $r_{D}=r_{D} /\left(1-M_{A}\right)$
- If $\phi_{D}=180^{\circ}, \phi_{D}^{\prime}=180^{\circ}$ and $r_{D}=r_{D} /\left(1+M_{A}\right)$
- If $0^{\circ}<\phi_{D}<180^{\circ}$,
$\cot \phi_{D}=\frac{1}{1-M_{A}^{2}}\left[\cot \phi_{D}+M_{A} \sqrt{1-M_{A}^{2}+\cot ^{2} \phi_{D}}\right]$

$$
r_{D}^{\prime}=r_{D} \sin \phi_{D} / \sin \phi_{D}^{\prime}
$$

2. Compute the correction for convective amplification

$$
c_{A_{D}}=-40 \log _{10}\left(1-M_{A} \cos \phi_{D}\right) d B
$$

3. Broadband noise
(a) Compute the peak normalized $1 / 3$ O.B. level:

- For $M_{T_{R}} \leq 1.0$

$$
\begin{aligned}
& \text { If }\left(M T_{R}\right)_{D} \leq 1.0, \bar{s}_{B B}=60.0 \mathrm{~dB} \\
& \text { If }\left(M T_{R}\right)_{D}>1.0, \bar{s}_{B B}=60.0+20 \log _{10}\left(M_{T_{R}}\right)_{D} d B
\end{aligned}
$$

- For $M_{T_{R}}>1.0, \bar{S}_{B B}=60.0+20 \log _{10}\left(M_{T_{R}}\right)_{D}$
$-20 \log _{10}\left(M_{T_{R}}\right) d B$
where, $M_{T_{R}} \leq\left(M_{T_{R}}\right)_{D}$
(b) "De-normalize" the peak level for the specific fan operating conditions:

$$
S_{B B, P K}=\bar{S}_{B B}+C_{N} d B
$$

(c) Correct the peak level for local acoustic impedance, rotor/ stator spacing, and convective amplification:

$$
S_{B B, P K}=S_{B B, P K}+C_{I M P D}+C_{R S S, B B}+C_{A D} d B
$$

(d) Apply correction to peak level for inlet guide vanes, if present:

$$
\mathrm{S}_{\mathrm{BB}, \mathrm{PK}}=\mathrm{S}_{\mathrm{BB}, \mathrm{PK}}+3.0 \mathrm{~dB}
$$

(e) Find the directivity correction for the fan discharge duct broadband component in table 2.1.1 (linear interpolation):

$$
\Delta \mathrm{dB}_{D, B B}=\mathrm{F}^{\mathrm{N}}\left(\phi_{\mathrm{D}}\right) \mathrm{dB}
$$

(f) Correct the peak level for directivity and distance:

$$
S_{B B}=S_{B B, P K}+\Delta d B_{D, B B}-20 \log _{10}\left(r_{D}^{-} / r_{r e f}\right) d B
$$

(g) Compute the broadband $1 / 30 . B$. spectrum levels using the following equation:

$$
\begin{aligned}
\left(S P L_{i, B B}-S_{B B}\right)= & 10 \log _{10} e^{-4.264\left[\log _{10}\left(f_{i} / f_{r e f}\right)\right]^{2}} \\
\text { where } S P L_{i, B B}= & i \text { th } 1 / 30 . B . S P L(d B) \\
f_{i}= & i \text { th } 1 / 30 . B . \text { center frequency } \\
f_{r e f}= & \text { center frequency of the } 1 / 30 . B . \text { containing } \\
& \text { the frequency equal to } 2.5 \text { times the center } \\
& \text { frequency of the } 1 / 30 . B \text {. containing the BPF. }
\end{aligned}
$$

4. Discrete tone noise
(a) Compute the peak normalized $1 / 30 . B$. SPL of the fundamental tone:

- For $M T_{R} \leq 1.0$

$$
\begin{aligned}
& \text { If }\left(M T_{R}\right)_{D} \leq 1.0, \bar{S}_{T}=63.0 \mathrm{~dB} \\
& \text { If }\left(M T_{R}\right)_{D}>1.0, \bar{S}_{T}=63.0+20 \log _{10}\left(M_{T_{R}}\right)_{D} d B
\end{aligned}
$$

- For $M_{T_{R}}>1.0, \bar{s}_{T}=63.0+20 \log _{10}\left(M T_{R}\right)_{D}-20 \log _{10}\left(M T_{R}\right) d B$ where $M_{T_{R}} \leq\left(M T_{R}\right)_{D}$
(b) 'De-normalize" the peak tone level for the specific fan operat-
ing condition:

$$
S_{T, P K}=\bar{s}_{T}+c_{N} d B
$$

(c) Correct the peak level for local acoustic impedance, rotor/ stator spacing, and convective amplification:

$$
s_{T, P K}=s_{T, P K}+c_{I M P D}+c_{R S S, D T}+c_{A D} d B
$$

(d) Correct the peak level for inlet guide vanes, if present:

$$
\mathrm{S}_{\mathrm{T}, \mathrm{PK}}=\mathrm{S}_{\mathrm{T}, \mathrm{PK}}+6.0 \mathrm{~dB}
$$

(e) Find the directivity correction for the fan discharge duct discrete tones from table 2.1.1 (linear interpolation):

$$
\Delta \mathrm{dB} \mathrm{D}_{\mathrm{D}}, \mathrm{DT}=\mathrm{FN}^{N}\left(\phi_{\mathrm{D}}\right) \mathrm{dB}
$$

(f) Apply corrections to the peak tone for directivity and distance:

$$
S_{T}=S_{T, P K}+\Delta d B_{D, D T}-20 \log _{10}\left(r_{D} / r_{r e f}\right) d B
$$

(g) Compute the $1 / 30 . B$. levels of the harmonic tones:
(1) $1^{\text {st }}$-stage fans w / o inlet guide vanes

$$
S_{k}=S_{T}+3-3 k \quad d B \quad k \geq 2
$$

If $\delta \geq 1.05, S_{1}=S_{T} d B$
If $\delta<1.05, S_{1}=S_{T}-8.0 d B$
(2) All other cases

$$
s_{k}=s_{T}-3-3 k \quad d B \quad k \geq 2
$$

If $\delta \geq 1.05, S_{1}=S_{T} d B$
If $\delta<1.05, S_{1}=S_{T}-8.0 d B$
where $k=1,2,3, \ldots$ integer multiples of the center frequency of the $1 / 30 . B$. containing the BPF. The level is assigned to the $1 / 3$ $0 . B$. containing the harmonic frequency.
5. Compute the $1 / 3$ O.B. SPL's of the total noise radiated from the fan discharge duct

$$
S P L_{D, i}=S P L_{i, B B} \quad d B
$$

If a harmonic of the fundamental tone occurs in the $i^{\text {th }} 1 / 3$ O.B., compute the total SPL as follows:

$$
S P L_{D, i}=10 \log _{10}\left[10\left(\mathrm{SPL}_{\mathrm{i}, \mathrm{BB}} / 10\right)+10\left(\mathrm{~S}_{\mathrm{k}} / 10\right)\right] \mathrm{dB}
$$

where, $S P L_{D, i}=$ the i th $1 / 30 . B$. SPL of the total fan discharge noise

$$
\begin{aligned}
\mathrm{SPL}_{\mathrm{i}}, \mathrm{BB} & \text { from Step } \mathrm{c}-3(\mathrm{~g}) \\
\mathrm{s}_{\mathrm{k}} & \text { from Step } \mathrm{c}-4(\mathrm{~g}) \\
& \text { and } k=1,2,3 \ldots
\end{aligned}
$$

6. Correct the aft-radiated fan noise spectrum for acoustic suppression if treatment is applied to the fan discharge duct. This correction is treated as a separate prediction module and is described in Section 4.1.
7. If appropriate, correct the aft-radiated fan noise for structural shielding. This correction is also treated as a separate module. See Section 4.2. The source location is taken to be the center of the exhaust duct exit plane. (See figure 2.1.2)
8. Compute the overall sound pressure level for the aft-radiated fan noise at the observer location for the 24 1/3 octave bands from 50 to $10,000 \mathrm{~Hz}$.

$$
O A S P L_{D}=10 \log _{10} \sum_{i=1}^{24} 10\left(S P L_{D, i} / 10\right) d B
$$

9. Compute the spectral levels (1 Hz bandwidth) of the aft-radiated fan noise at the desired observer location.
(a) $S_{S P L}{ }_{D, i}=\left[S P L_{i, B B}\right]_{\text {From Step } C-3(g)}-10 \log _{10}(\Delta f)_{i} d B$ where, $S S P L_{D, i}=$ the spectral sound pressure level (SPL) at the observer location for the $i^{\text {th }} 1 / 3$ octave band center frequency (dB).
$(\Delta f)_{i}=$ the bandwidth of the i th $1 / 3$ octave band $(H z)$.
(b) If a harmonic of the fundamental tone occurs in the $i^{\text {th }} 1 / 3$ octave band, correct SSPL ${ }_{D, i}$ of (a) above as follows:
$S S P L_{D, i}=10 \log _{10}\left[10(\mathrm{SPL} / 10)+10\left(\mathrm{~S}_{\mathrm{k}} / 10\right)\right] \mathrm{dB}$
where SPL $=$ SSPL $_{D, i}$ from $9(a)$ above S_{k} is from Step $C-4(\mathrm{~g})$ and

$$
k=1,2,3 \ldots \ldots
$$

(c) Apply the corrections of Steps C-6 and C-7, if applicable, to the computed spectral levels of (a) and (b) above.

Table 2.1.1 Fan Noise Directivity

$\triangle \mathrm{dB}$ CORRECTIONS					
Angle From Inlet (Deg) ϕ^{\prime}	Broadband		Discrete Tones		CTN
	Inlet	Discharge	Inlet	Discharge	
0	-2.2	-41.7	-2.9	-38.8	-9.5
10	-1.0	-37.4	-1.5	-34.8	-8.5
20	0	-33.1	0	-30.8	-7.0
30	0	-28.8	0	-26.8	-5.0
40	0	-24.3	0	-22.8	-2.0
50	-2.0	-20.1	-1.2	-18.9	0
60	-4.5	-15.8	-3.5	-15.0	0
70	-7.5	-11.5	-6.8	-11.0	-3.5
80	-11.0	-8.0	-10.5	-8.0	-7.5
90	-15.0	-5.0	-14.5	-5.0	-9.0
100	-19.5	-2.7	-19.0	-3.0	-9.5
110	-25.0	-1.2	-23.3	-1.0	-10.0
120	-30.6	-0.3	-27.8	0	-10.5
130	-36.3	0	-32.4	0	-11.0
140	-42.1	-2.0	-36.9	-2.0	-11.5
150	-47.6	-6.0	-41.5	-5.5	-12.0
160	-53.3	-10.0	-46.0	-9.0	-12.5
170	-58.8	-15.0	-50.4	-13.0	-13.0
180	-64.6	-20.0	-55.0	-18.0	-13.5

(a) GEOMETRY FOR $1^{\text {ST}}$-stage fans Without inLet guide vanes.

Figure 2.1.1 Fan or compressor geometry.

Figure 2.1.2 Description of input.for observer location.

2.2 Turbine Noise

Section 2.3.3.2 of CR-159104 contains a discussion of the selection of the turbine noise prediction procedure. The selected procedure adapted here for LFC studies was developed by General Electric under contract to the FAA. The applications and/or limitations of the empirical method are tabulated below.

Applications and Limitations:
(a) The basic prediction procedure selected is a semi-empirical methodology verified for static, sea level conditions to predict turbine noise in the far field. For free-field estimates, the procedure is expected to run about 1.5 dB on the high side as a result of the test data used in developing the method.
(b) The turbine noise is predicted to consist of two components (1) a broadband spectrum, and (2) a discrete tone occurring at the blade passage frequency of the last turbine stage.
(c) The last turbine stage is assumed to be the dominant stage.
(d) The method is considered to be applicable only to engines whose lowpressure turbine consists of three or more stages (this is expected to be the case for engines of interest in the 1985 to 1990 time frame).
(e) The equation presented here for the overall sound pressure level is the equation of the reference method corrected to lossless conditions to simplify the procedure. This was done assuming a turbine blade passage frequency of near $10,000 \mathrm{~Hz}$. This will result in slightly conservative (higher) OASPL's at lower frequencies.
(f) The "hay stacking" effect or the redistribution of turbine radiated discrete tones over adjacent frequencies by interaction with the turbulent jet flow is not included in the present procedure.

TURBINE NOISE COMPUTATIONAL ALGORITHM

The following engine and flight parameters are required:
PR = low-pressure turbine pressure ratio, (inlet total pressure/exit static pressure) ideal
$N \quad=$ low-pressure turbine rotational speed (RPM)
D $\quad=$ blade tip diameter of last turbine stage
A $\quad=$ primary nozzle exit area
$N_{R} \quad=$ number of blades in last turbine stage

M_{A}	$=$ aircraft Mach number
ρ_{a}	$=$ ambient density
c_{a}	$=$ ambient speed of sound
ρ_{0}	$=$ sea level, standard day density
c_{o}	$=$ sea level, standard day speed of sound
r	$=$ observer distance from center of primary nozzle exit plane
ϕ	$=$ angle between engine inlet axis and line from observer to center of
	the primary nozzle exit plane (deg.)
$U_{\text {ref }}$	$=$ reference tip speed, $340.3 \mathrm{~m} / \mathrm{s}(1116.4 \mathrm{f} / \mathrm{s})$
$A_{\text {ref }}$	$=$ reference nozzle area, $0.0929 \mathrm{~m}^{2}\left(1.0 \mathrm{f}^{2}, 144 \mathrm{in}^{2}\right)$
$r_{\text {ref }}$	$=$ reference distance, $70.4 \mathrm{~m}(230.9 \mathrm{f})$

Step 1 Compute the turbine tip speed, U_{T}

$$
U_{T}=(D / 2) \quad\left(\frac{2 \pi N}{60}\right)
$$

Step 2 Compute the total (lossless) OASPL (broadband + discrete) at 120° from the engine inlet on a 61 m sideline.

$$
\begin{aligned}
0 A S P L_{P K}= & 40 \log _{10}\left[1-\left(\frac{1}{P R}\right)^{0.286}\right]-20 \log _{10}\left(U_{T} / U_{r e f}\right) \\
& +10 \log _{10}\left(A / A_{r e f}\right)+109 . \mathrm{dB}
\end{aligned}
$$

Step 3 Correct the OASPL of Step 2 for local impedance.

$$
O A S P L_{P K}=0 A S P L_{P K}+10 \log _{10}\left[\frac{\rho_{a} c_{a}}{\rho_{0} c_{0}}\right] d B
$$

Step 4 Compute the discrete frequency $1 / 3$ O.B. SPL (lossless) at 120° from the engine inlet on a 61 m sideline.

$$
S P L_{P K}=0 A S P L_{P K}-5.0 \mathrm{~dB}
$$

Step 5 Find the source emission angle, ϕ^{\prime}, and actual sound path length, r^{\prime}, corresponding to the desired observer location given by r and ϕ.
$\left(M_{A}<1.0\right)$. (Forward Speed Effect)
(a) $M_{A}=0.0$

$$
\phi^{\prime}=\phi \text { and } r^{\prime}=r
$$

(b) $0.0<M_{A}<1.0$

$$
\begin{aligned}
& 0 \text { If } \phi=0^{\circ}, \phi^{\prime}=0^{\circ} \text { and } r^{\prime}=r /\left(1-M_{A}\right) \\
& 0 \text { If } \phi=180^{\circ}, \phi^{\prime}=180^{\circ} \text { and } r^{\prime}=r /\left(1+M_{A}\right) \\
& 0 \text { If } 0^{\circ}<\phi<180^{\circ}, \\
& \phi^{\prime}= \cot ^{-1}\left[\frac{1}{1-M_{A}^{2}}\left\{\cot \phi+M_{A} \sqrt{\left.1-M_{A}^{2}+\cot ^{2} \phi\right\}}\right] \operatorname{deg} .\right. \\
& r^{-}= r \sin \phi / \sin \phi^{-}
\end{aligned}
$$

Step 6 Correct the total OASPL PK of Step 3 for directivity angle (ϕ^{\prime}) (using Table 2.2.1 with ${ }^{\text {PK }}$ inear interpolation) and distance $\left(r^{\prime}\right)$:
$O A S P L=0 A S P L_{P K}+\left(O A S P L \quad-O A S P L_{P K}\right)_{\text {Table }} 2.2 .1^{-20} \log _{10}\left(r^{-} / r_{r e f}\right) d B$
Step 7 Correct the tone SPL ${ }^{\text {PK }}$ of Step 4 for the directivity angle (ϕ^{-}) (using Table 2.2.2 with linear interpolation) and distance (r^{\wedge}):
$S P L_{D}=S P L_{P K}+\left(S P L-S P L_{P K}\right)_{T A B L E} 2.2 .2-20 \log _{10}\left(r^{\prime} / r_{r e f}\right) d B$
Step 8 For $M_{A}>0.0$, apply convective amplification correction to the total ${ }^{A}$ OASPL and tone SPL of Steps 6 and 7 , respectively.

$$
\begin{aligned}
& \text { OASPL }=\text { OASPL }-40 \log _{10}\left(1-M_{A} \cos \phi^{\prime}\right) \mathrm{dB} \\
& S P L_{D}=S P L_{D}-40 \log _{10}\left(1-M_{A} \cos \phi^{\prime}\right) \mathrm{dB}
\end{aligned}
$$

Step 9 Compute the broadband OASPL (lossless) at the desired location by subtracting, logarithmically, the tone SPL from the total OASPL.

$$
0 A S P L_{B B}=10 \log _{10}\left[10(0 A S P L / 10)-10\left(S P L_{D} / 10\right)\right] d B
$$

Step 10 Compute the blade passage frequency.

$$
B P F=N_{R}(N) / 60 \quad \mathrm{~Hz}
$$

Step 11 Find the $1 / 30 . B$. containing the blade passage frequency.

$$
\begin{aligned}
f_{b}= & 1 / 30 . B . \text { center frequency }(\mathrm{Hz}) \text { of the } 1 / 30 . B . \\
& \text { containing the } B P F
\end{aligned}
$$

Step 12 Compute the broadband spectrum (lossless) using Table 2.2 .3 with linear interpolation.

$$
\mathrm{SPL}_{i}=0 A S P L_{B B}+\left(S P L-S P L_{P K}\right)_{i_{T A B L E} 2.2 .3}-7.3 \mathrm{~dB}
$$

where $S P L_{i}=$ the sound pressure level in the $i^{\text {th }} 1 / 3$ octave band.
Step 13 If the BPF of Step 10 falls within the range of the $241 / 30 . B .1 \mathrm{~s}$ from 50 to 10 K Hz , add the tone SPL of Step 8 to the broadband SPL of the corresponding $1 / 30 . B$. to obtain the total spectrum shape (discrete + broadband). Otherwise, go to Step 14.

$$
\mathrm{SPL}_{1 / 3 \text { O.B. }}=10 \log _{10}\left[10\left(\mathrm{SPL}_{\mathrm{PK} / 10)}^{\text {Peak Freq. }} \text {. } 10\left(\mathrm{SPL}_{D} / 10\right)\right]\right.
$$

where $S P L_{P K}=$ peak SPL of the broadband spectrum from Step 12.

Step 14 Apply corrections to the spectrum of Steps 12 and 13 for acoustic suppression if treatment is applied to the primary exhaust duct. This correction is treated as a separate noise prediction module in section 4.1.

Step 15 If applicable, correct the turbine radiated noise for structural shielding. This correction is treated as a separate correction and is described in section 4.2. The source location for shielding estimates is taken as the center of the primary nozzle exit plane.

Step 16 Compute the overall sound pressure level of the turbine noise at the observer location for the $241 / 3$ octave bands from 50 to $10,000 \mathrm{~Hz}$.

$$
\text { OASPL }=10 \log _{10} \sum_{i=1}^{24} 10^{\left(\mathrm{SPL}_{\mathrm{i}} / 10\right)} \mathrm{dB}
$$

where, SPL; is from Steps 12 and 13.
Step 17 Compute the turbine noise spectral levels (1 Hz bandwidth) as follows:
(a) $1 / 3$ octave band containing the blade passage frequency

$$
\begin{aligned}
& S S P L_{P K}=10 \log _{10}\left[10^{\left(S P L_{P K}-K\right) / 10}+10^{S P L_{D} / 10}\right] d \mathrm{~dB} \\
& \text { where, } \text { SSPL }_{\text {PK }}=\text { spectral sound pressure level (SPL) of the peak } \\
& \text { frequency, } f_{b}(\mathrm{~Hz}) \text {, of Step } 11(\mathrm{~dB}) \text {. } \\
& \text { SPL }{ }_{P K}=\text { same as in Step } 13 . \\
& K \quad=10 \log _{10}(\Delta f)_{P K} \text { and }(\Delta f)_{P K}=\text { bandwidth }(\mathrm{Hz}) \text { of } \\
& \text { the } 1 / 30 . B \text {. containing the peak frequency. } \\
& S P L_{D}=S P L \text { of the discrete tone (Step 8). }
\end{aligned}
$$

(b) All other $1 / 3$ octave bands

$$
\begin{aligned}
& S S P L_{i}=S P L_{i}-10 \log _{10}(\Delta f)_{i} d B \\
& \begin{aligned}
& \text { where, } S_{S P L}= \text { the spectral sound pressure level (SPL) of } \\
& \text { the } i^{\text {th }} 1 / 3 \text { octave band (dB). }
\end{aligned} \\
& \begin{aligned}
S P L_{i}= & 1 / 30 . B . S P L \text { of the } i^{\text {th }} 1 / 3 \text { octave band } \\
\text { from Step } 12 & (d B) .
\end{aligned} \\
& (\Delta f)_{i}=\text { bandwidth of the } i^{\text {th }} 1 / 3 \text { O.B. (} \mathrm{Hz} \text {). }
\end{aligned}
$$

TABLE 2.2.1.- TURBINE OASPL DIRECTIVITY

ANGLE FROM ENGINE INLET
ϕ^{\prime} ($D E G$)

OASPL - OASPL ${ }_{P K}$

(dB)
-13.8

- 4.5
0.0
- 1.3
- 2.8

160

- 5.4

180

- 6.6

table 2.2.2.- TURBINE TONE DIRECTIVITY

ANGLE FROM ENGINE INLET
$S P L-S P L_{P K}$
(dB)
0
90
-25.6
90

- 9.5
111
- 2.5
120
0.0
130
- 4.3
140
- 6.5
150
-11.8
180
-19.5

TABLE 2.2.3.- TURBINE BROADBAND NOISE SPECTRUM

f / f_{b}	$S_{\text {SL }}-$ SPL ${ }_{\text {PK }}$
. 001	-60.0
. 005	-41.0
. 01	-36.0
. 02	-29.5
. 03	-26.0
. 05	-21.5
. 10	-14.5
. 15	-10.9
. 20	-8.3
. 25	- 6.6
. 30	- 5.4
. 35	- 4.4
. 40	- 3.7
. 45	- 3.0
. 50	- 2.5
. 60	- 1.7
. 70	- 1.0
. 80	- 0.5
. 90	- 0.25
1.00	0.00
1.10	- 0.2
1.20	-0.4
1.30	- 0.6
1.40	- 1.0
1.50	- 1.3
1.60	- 1.7
1.70	- 2.2
1.80	- 2.8
1.90	- 3.5
2.00	- 4.5
$\mathrm{f}=1 / 3$ O.b. CENTER FREQUENCY	
$\mathrm{f}_{\mathrm{b}}=$ PEAK FREQUENCY FROM STEP 11.	

$f=1 / 3$ O.B. CENTER FREQUENCY
$f_{b}=$ PEAK FREQUENCY FROM STEP 11.

2.3 Core (Combustion) Noise

The engine core noise is predicted by an empirical procedure which predicts combustion noise and includes turbine transmission loss effects. The basic method developed by General Electric under contract to the FAA was adapted here for the near-field cruise condition. For a discussion of the selection of a core noise procedure, see Section 2.3.3.3 of CR-159104. Applications and limitations of the following computational algorithm are itemized as follows:
(a) The basic method is empirical and developed for static, sea level conditions to predict core (combustion) noise in the far field under free-field conditions.
(b) The peak frequency is assumed to be 400 Hz . The test data indicate this ${ }^{\circ}$ may vary by plus or minus one $1 / 3$-octave band. Furthermore, there is some indication that low-emission combustors may peak at higher frequencies (630 to 1000 Hz).
(c) The method is applicable to turbojets, turbofans, or turboprops.

CORE NOISE COMPUTATIONAL ALGORITHM

The following input parameters are required:
$W_{3} \quad=$ combustor total airflow
$T_{4} \quad=$ combustor exit total temperature
$T_{3}=$ combustor inlet total temperature

$\left(T_{4}-T_{5}\right)_{\text {des }}$	$=$ total temperature drop across the entire high and low pressure turbine section at the engine design point
ρ_{3}	= combustor inlet density
ρ_{a}	= ambient density
ρ_{0}	= sea level, standard day density
c_{a}	$=$ ambient speed of sound
c_{0}	= sea level, standard day speed of sound
r	$=$ distance from center of primary nozzle exit plane to observer
ϕ	$=$ angle between the engine inlet axis and the line defined by r above (deg.)
${ }^{M} A$	= aircraft Mach number

```
    Wref = reference combustor airflow, 15.9 kg/s (35 lbm/s, 1.09 slug/s)
```



```
    r ref = reference source to observer distance, 70.4 m (230.9 f)
```

Step 1 Find the overall sound power level from the following equation:

$$
\begin{aligned}
O A P W L= & 10 \log _{10}\left[\left(W_{3} / W_{\text {ref }}\right)\left(\frac{T_{4}-T_{3}}{\Delta T_{\text {ref }}}\right)^{2}\left(\rho_{3} / \rho_{0}\right)^{2}\right]-40 \log _{10}\left[\frac{\left(T_{4}-T_{5}\right)_{\text {des }}}{\Delta T_{\text {ref }}}\right] \\
& +123.5 \mathrm{~dB} \text { re: } 10^{-13} \mathrm{~W}
\end{aligned}
$$

Step 2 Compute the $1 / 3$ octave band power spectrum at approximately 120° from the engine inlet using Table 2.3.1.

$$
\mathrm{PWL}_{i, 120^{\circ}}=\mathrm{PWL}_{400 \mathrm{~Hz}}+\text { DELPWL }
$$

where, $\mathrm{PWL}_{\mathrm{i}, 120^{\circ}}=$ the i th $1 / 3$ octave band sound power level (dB)
$\mathrm{PWL}_{400 \mathrm{~Hz}}=0 A P W L-6.8 \mathrm{~dB}$ (the peak $1 / 30 . B$. sound power level)
DELPWL $=\Delta d B$ correction from Table 2.3.1.
Step 3 Calculate the $1 / 3$ octave band sound pressure level spectrum from 50 to $10,000 \mathrm{~Hz}$ for free-field, lossless conditions at the reference distance corrected for local acoustic impedance (approx. 120° from the engine inlet).
$S P L_{i, 120^{\circ}}=P W L_{i, 120^{\circ}}+10 \log _{10}\left(\rho_{a} c_{a} / \rho_{o} c_{o}\right)-57.8 d B$
where, $S P L_{i}$ and $P W L_{i}=$ the $i^{\text {th }} 1 / 30 . B$. sound pressure level and sound power level, respectively.

Step 4 Computh the source emission angle (ϕ^{-}) and the sound propagation path length (r^{\wedge}) for the desired observer location (forward speed effect).
(a) $M_{A}=0.0$

$$
\phi^{\prime}=\phi \text { and } r^{\prime}=r
$$

(b) $0.0<M_{A}<1.0$

$$
\begin{aligned}
& \circ \text { If } \phi=0^{\circ}, \phi^{-}=0^{\circ} \text { and } r^{\prime}=r /\left(1-M_{A}\right) \\
& \circ \text { If } \phi=180^{\circ}, \phi^{\prime}=180^{\circ} \text { and } r^{-}=r /\left(1+M_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \operatorname{lf} 0^{\circ}<\phi<180^{\circ} \\
& \phi^{-}=\cot ^{-1}\left[\frac{1}{1-M_{A}^{2}}\left\{\cot \phi+M_{A} \sqrt{1-M_{A} A^{2}+\cot ^{2} \phi}\right\}\right] \operatorname{deg} . \\
& r^{\prime}=r \sin \phi / \sin \phi^{-}
\end{aligned}
$$

Step 5 Apply correction for directivity angle, distance, and convective amplification.
(a) Dual-flow engine exhaust configurations (e.g., 3/4-duct turbofan).
$S P L_{i}=S P L_{i, 120^{\circ}}+$ DFDI $-20 \log _{10}\left(r^{-} / r_{r e f}\right)-40 \log _{10}\left(1-M_{A} \cos \phi^{-}\right) d B$ where, $S P L_{i}=$ the i th $1 / 30 . B$. sound pressure level at the desired

> DFDI $=$ directivity index from Table 2.3.2 as a function of $\phi^{\prime} \quad$ (linear interpolation).
(b) Single-flow exhaust configurations (e.g., mixed-flow exhaust).
$S P L_{i}=S P L_{i, 120^{\circ}}+S F D I-20 \log _{10}\left(r^{\prime} / r e f\right)-40 \log _{10}\left(1-M_{A} \cos \phi^{\prime}\right) d B$ where, SFDI = directivity index from Table 2.3 .3 as a function of ϕ^{-}(linear interpolation).

Step 6 Apply corrections to the core noise spectrum for acoustic suppression if treatment is applied to the primary duct. This correction is treated as a separate prediction module. See section 4.1.

Step $71 / 3$ octave band corrections for structural shielding, if applicable, are applied using the method of section 4.2. The source location is taken as the center of the primary nozzle exit plane.

Step 8 Compute the OASPL at the observer location for the $241 / 3$ octave bands from 50 to $10,000 \mathrm{~Hz}$.

$$
\text { OASPL }=10 \log _{10} \sum_{i=1}^{24} 10\left(S P L_{i} / 10\right) d B
$$

Step 9 Compute the spectral levels (1 Hz bandwidth) of the core noise component as follows:

$$
S S P L_{i}=S P L_{i}-10 \log _{10}(\Delta f)_{i} d B
$$

where, $S_{S P L}=$ the spectral SPL at the observer location for the ith $1 / 30 . B$.
$(\Delta f)_{i}=$ the bandwidth of the i th $1 / 3$ octave band $(H z)$.

TABLE 2.3.1.- ENGINE CORE NOISE SPECTRUM SHAPE

1/3 O.B. Frequency, Hz
PWL - Peak Frequency PWL, $d B$ (DELPWL)

50
63
80
100
125
160
200
250
315
400
500
630
800
1000
1250
1600
2000
2500
3150
4000
5000
6300
8000
10000
-24.0
-20.0
-16.0
-13.0
-10.0

- 7.0
- 4.5
- 2.5
- 1.0 0
- 1.0
- 2.5
- 4.5
- 7.0
- 10.0
-13.0
-16.0
-20.0
-24.0
-27.5
-31.5
-36.0
-40.0
-45.0

TABLE 2.3.2.- DIRECTIVITY INDICES FOR DUAL-FLOW EXHAUST SYSTEMS, DUAL-FLOW DIRECTIVITY INDEX, DFDI

1/3 О.В. Angle from engine inlet (ϕ^{\prime}), Degrees											
1/3 O.B. Frequency, Hz	40	50	60	70	80	90	100	110	120	130	140
50	-4.0	-3.8	-3.2	-3.0	-2.7	-2.0	-0.8	+0.8	+3.0	+5.0	+7.0
63	-4.0	-3.8	-3.2	-3.0	-2.7	-2.0	-0.8	+0.8	+3.0	+5.0	+7.0
80	-4.0	-3.8	-3.2	-3.0	-2.7	-2.0	-0.8	+0. 8	+3.0	+5.0	+7.0
100	-4.0	-3.8	-3.2	-3.0	-2.7	-2.0	-0.8	+0. 8	+3.0	+5.0	+7.0
125	-6.5	-5.8	-5.0	-4.0	-3.0	-1.5	0	+1.8	+4.0	+5.0	+5.0
160	-6.5	-5.8	-4.5	-3.5	-2.5	-1.5	0	+1.5	+3.5	+4.8	+6.0
200	-6.5	-5.8	-5.0	-4.5	-4.0	-3.0	-1.8	+1.0	+3.5	+5.5	+6.5
250-10K	-10.0	-8.5	-6.5	-4.5	-2.5	-0.5	+1.0	+2.5	+5.0	+4.5	+3.5

TABLE 2.3.3.- DIRECTIVITY INDICES FOR SINGLE-FLOW EXHAUST SYSTEMS, SINGLE-FLOW DIRECTIVITY INDEX, SFDI

Angle From Engine Inlet (ϕ^{\prime}), Degrees SFDI

10	-8.0
20	-7.5

30 -7.0
$40 \quad-6.5$
50 -6.0
$60 \quad-5.3$
70 -4.6
80 -4.0
90 -1.7
$100 \quad 0.7$
$110 \quad 3.0$
$120 \quad 5.0$
$130 \quad 3.5$
$140 \quad 1.2$
150 -1.8
$160 \quad-5.0$

The jet mixing noise is the only propulsion system noise component for which a basic near-field prediction procedure could be found. This semiempirical procedure was developed at Lockheed-Georgia and is discussed in section 2.3.3.5 of $C R-159104$. The applications and limitations are indicated as follows:
(a) The semi-empirical method predicts near-field jet mixing noise sound pressure levels in three adjacent octave bands and an overall sound pressure level. The method is applicable to a single jet at sea level static conditions.
(b) The present analysis assumes no doppler frequency shift for jet mixing noise with forward motion. See the reference documents given in section 2.3.3.5 of CR-159104 for further discussion.
(c) The methods and assumptions involved in adapting the basic procedure to coaxial jets with forward motion are described in the reference documents referred to in (b) above.

NEAR-FIELD JET MIXING NOISE COMPUTATIONAL ALGORITHM

```
    Input required:
V = primary jet exhaust velocity
TJ}= primary jet exhaust total temperature (absolute
ta}= ambient temperature (absolute)
MJ = primary jet exhaust Mach number
DJ = primary jet exit diameter
MA}= aircraft Mach number
V
x = receiver location along jet axis measured from primary jet exit plane
    (positive aft)
y = receiver location measured perpendicular to jet axis
\rhoa}= ambient density
ca}= ambient speed of soun
\rho
co = sea level, standard day speed of sound
```

```
Tref = reference exhaust total temperature, 555.60 K (1000 % R)
P
    For plug nozzles:
H = annulus height
    For coaxial jets:
V
T
AR = ratio of secondary jet exit area to primary jet exit area
R
DS = diameter of secondary jet nozzle exit
* * = receiver location along jet axis measured from the secondary nozzle
```

Step 1 Compute the primary jet effective Mach number (M):
(a) Single circular jet (or mixed-flow exhaust) at zero forward speed or coaxial jet:

$$
M=M_{J}
$$

or
(b) Single circular jet (or mixed-flow exhaust) with forward speed

$$
M=M_{J}\left[1-\frac{V_{A}}{V_{J}}\right]^{0.75}
$$

Step 2 (Plug nozzles only) Compute equivalent diameter and R_{d} parameter for plug nozzles (see figure 2.4.1).

$$
\begin{aligned}
& D_{e}=2 \sqrt{H\left(D_{J}-H\right)} \\
& R_{d}=2\left(H / D_{e}\right)
\end{aligned}
$$

Step 3 Compute reduced nozzle-to-receiver distances (see figure 2.4.2):

$$
\begin{aligned}
& \bar{x}=x / D_{e} \\
& \bar{y}=y / D_{e}
\end{aligned}
$$

where, $D_{e}=$ jet diameter $\left(D_{J}\right)$ or D_{e} from Step 2 if plug nozzle
Step 4 Compute reduced source-to-receiver coordinates in polar and cartesian form for each of the three octave bands of the prediction method plus the overall. Obtain the required coefficients, $A(I, J)$ for $I=1,2,3$ and 4 from Table 2.4.2. See also figure 2.4.2.
$\bar{x}_{0}(I)=A(I, 13) M^{A(I, 14)}\left(T_{J} / T_{r e f}\right)^{A(I, 15)}+A(I, 16) M$
$\bar{y}_{0}(I)=0.5+0.132 \bar{x}_{0}(I)$
Case $1 \quad \bar{y}>\bar{y}_{o}(I):$
$\theta_{s}(I)=\tan ^{-1}\left(\frac{\bar{y}-\bar{y}_{o}(I)}{\bar{x}-\bar{x}_{0}(I)}\right) d \in g \quad$ NOTE: $\quad \theta_{s}(I)$ must be $\geq 7.5^{\circ}$
$\bar{r}_{s}(I)=\sqrt{\left(\bar{x}-\bar{x}_{0}(I)\right)^{2}+\left(\bar{y}-\bar{y}_{0}(I)\right)^{2}}$
Case $2 \bar{y} \leq \bar{y}_{0}(I)$ and $\bar{x}<0$ (positive aft)
$S E T=\theta_{S}(I)=180^{\circ}$
$\bar{r}_{s}(I)=\sqrt{\left(\bar{x}-\bar{x}_{0}(I)\right)^{2}+\bar{y}^{2}}$
Step 5 (Forward speed only) Compute the source emission angle W.R.T. the jet exhaust axis, and the actual reduced source-to-receiver distance.
(a) $M_{A}=0.0$

$$
\begin{aligned}
& \theta_{s}^{\prime}(I)=\theta_{s}(I) \\
& \bar{r}_{s}^{\prime}(I)=\bar{r}_{s}(I)
\end{aligned}
$$

(b) $0.0<M_{A}<1.0$

$$
\begin{aligned}
& \text { If } \bar{y} \leq \bar{y}_{0}(I) \text { and } \bar{x}<0, \\
& \theta_{S}^{-}(I)=180^{\circ} \text { and } \bar{r}_{s}^{\prime}(I)=\bar{r}_{s}(I) /\left(1.0-M_{A}\right) \\
& \text { If } \bar{y}^{\prime}>\bar{y}_{o}(I) \text { and } \theta_{S}(I) \geq 7.5^{\circ} \\
& \theta_{s}^{-}(I)=\cot ^{-1}\left[\frac{1}{1-M_{A}^{2}}\left(\cot \theta_{s}(I)-M_{A} \sqrt{1-M_{A}^{2}+\cot ^{2} \theta_{S}(I)}\right)\right] \operatorname{deg} \\
& \bar{r}_{s}^{-}(I)=\frac{\bar{y}-\bar{y}_{0}(I)}{\sin \theta_{s}^{\prime}(I)}
\end{aligned}
$$

Step 6 Compute parameters for basic prediction equation which are not frequency dependent.

$$
\begin{aligned}
& C_{1}=M^{2} .34 \\
& C_{2}=10.65\left(T_{J} / t_{a}\right)^{0.93} \\
& C_{3}=-15.18\left(T_{J} / t_{a}\right)^{1.11} M^{0.89} \\
& C_{6}=17.5\left(T_{J} / 3 T_{r e f} ; 0.89\left(M^{2}-1\right)\right. \\
& C_{7}=0.41\left(T_{J} / 3.6 T_{r e f}\right)^{0.566}\left(M^{2}-1\right)
\end{aligned}
$$

Step 7 Compute root-mean-square acoustic pressure corrected for dynamic amplification for each of the three octave bands and the overall. Use coefficients, $A(I, J)$ for $I=1,2,3$ and 4 from Table 2.4.2.

$$
\begin{aligned}
& \alpha^{2}=A(I, 1) M^{A(I, 2)}\left(T_{J} / T_{r e f}\right)^{A(I, 3)+A(I, 4) M} \\
& C_{4}=A(I, 5) M^{A(I, 6)}\left(T_{J} / T_{r e f}\right)^{A(I, 7)+A(I, 8) M} \\
& C_{5}=A(I, 9) M^{A(I, 10)}\left(T_{J} / T_{r e f}\right)^{A(I, 11)+A(I, 12) M} \\
& C_{9}=\left[\frac{\left(1+\alpha^{2} M^{2}\right)}{\alpha^{2} M^{2}+\left(1-\frac{M \cos \theta}{1+C_{6} e^{-C_{7} r}}\right)^{2}}\right] \\
& C_{10}=1+\frac{C_{4} e^{-C_{5} \theta}}{1+C_{6} e^{-C_{7} r / 4}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{p}^{2}(I) / P_{r e f}^{2}=\left(\frac{1}{C_{10}}\right)\left[A(I, 17) C_{g}\left(T_{J} / T_{r e f}\right)^{1.54 M^{4}\left(1+\cos ^{4} \theta\right)}\right]\left(\frac{C_{1}}{r^{2}}+\frac{C_{2}}{r^{4}}+\frac{C_{3}}{r^{6}}\right) \\
& /\left(1 \overline{4}_{A} M_{A} \cos \theta\right) \\
& \text { where, } r=\bar{r}_{s} \text { (I) if } M_{A}=0.0 \text {, or } \bar{r}_{s}^{-}(I) \text { if } M_{A}>0.0 \\
& \theta=\theta_{S} \text { (I) If } M_{A}=0.0 \text {, or } \theta_{S}^{-} \text {(I) If } M_{A}>0.0 \text { (radians) }
\end{aligned}
$$

Step 8 Compute frequencies and SPL's for the three octave bands and the overall ($\mathrm{I}=1,2,3,4$):
(a) Use these equations for primary nozzles without plugs, or for secondary jets, if Steps 11, 12 and 13 have been computed: $L P(I)=10 \log _{10}\left[\bar{P}^{2}(I) / P_{\text {reff }}^{2}\right] d B$

$$
\begin{equation*}
F(I)=H_{N}(I) c_{a} / D_{J} . \tag{Hz}
\end{equation*}
$$

(b) Use these equations for primary jets with plug nozzles

$$
\begin{aligned}
& L P(I)=10 \log _{10}\left[\bar{p}^{2}(I) / P_{r e f}^{2}\right]+3 \log _{10}\left(0.10+2 H / D_{e}\right) \quad d B \\
& F(I)=H_{N}(I) c_{a} /\left(D_{e} R_{d}^{0.4}\right) \quad(H z)
\end{aligned}
$$

where $H_{N}(I)=$ Hemholtz number from Table 2.4.1
$D_{\mathrm{e}} \quad=$ equivalent diameter of plug nozzle (Step 2)
$R_{d} \quad=$ Strouhal number correction parameter for plug nozzles (Step 2)

Step 9 (For coaxial jets only) Compute correction to primary jet SPL's to account for presence of the secondary jet. ($I=1,2,3,4$)
(a) Find M_{c} from Table 2.4.3 (linear interpolation)
(b) $\Delta L_{p}(I)^{c}=10 M_{c} \log _{10}\left(1-\frac{V_{S}}{V_{J}}\right)$
(c) $L_{p}(I)=L_{p}(I)_{\text {STEP }} 8+\Delta L_{p}(I)$

Step 10 Use Table 2.4 .4 to expand the frequency range. Compute SPL's in octave bands to either side of the three bands of the prediction method to cover the range from 50 to $10,000 \mathrm{~Hz}$.
(a) For frequencies less than $F(2)$ (see Step 8) where $F(2)>$ 50 Hz .
(1) Compute octave band center frequencies to cover range from $F(2)$ to 50 Hz .
$F_{A(N)}=F(2) / N$
where $N=1,2,4,8, \ldots$. etc. until $F_{A(N)} \leq 50$.
(2) Compute Strouhal numbers for above frequencies.
$S_{A(N)}=\frac{0.221 c_{a}}{V_{J}} \frac{F_{A(N)}}{F(2)} \quad N=1,2,4,8, \ldots$.
(3) From Table 2.4.4, find reduced sound pressure level, $L_{A}(N)$, for each $S_{A}(N)$ and then compute an SPL for each new octave band below $\mathrm{F}(2)$. For computer purposes, interpolation in x / D_{J}, and $\log _{10}(S)$ is recommended.
$L_{A(N)}=F^{N}\left[S_{A(N)}\right]$ from Table 2.4.4, then
$L_{P_{A(N)}}=L_{P}(2)-L_{A(N)}+L_{A(1)} \quad N=2,4,8, \ldots$
(b) For frequencies above $F(4)$ (see Step 8) where $F(4)<10,000 \mathrm{~Hz}$.
(1) Compute octave band frequencies to cover range from $F(4)$ to $10,000 \mathrm{~Hz}$.

$$
\begin{aligned}
F_{B(N)}= & N \cdot F(4) \text { where } N=1,2,4,8, \ldots \text {.etc. until } \\
& F_{B(N)} \geq 10,000 \mathrm{~Hz} .
\end{aligned}
$$

(2) Compute Strouhal numbers for above frequencies.

$$
S_{B(N)}=\frac{0.884 c_{a}}{V_{J}} \frac{F_{B}(N)}{F(4)} \quad N=1,2,4,8, \ldots
$$

(3) From Table 2.4.4, find reduced $S P L, L_{B(N)}$, for each $S_{B(N)}$ and then compute an SPL for each new octave band above $F(4)$. For computer purposes interpolation in x / D_{J} and $\log _{10}(S)$ is recommended.
$L_{B(N)}=F^{N}\left[S_{B(N)}\right]$ from Table 2.4.4, then

$$
L_{P}{ }_{B(N)}=L_{P}(4)-L_{B(N)}+L_{B(1)} \quad N=2,4,8, \ldots
$$

where, $L_{p}(2)$ and $L_{p}(4)$ are obtained from Step 8 or 9.
$F(2)$ and $F(4)$ are obtained from Step 8.
NOTE: Skip to Step 14, for single jets.

Step 11 (For coaxial jets) Compute effective secondary jet flow parameters.

$$
\begin{aligned}
& T_{E}=\left(T_{J}+R_{W} T_{S}\right) /\left(1+R_{W}\right) \\
& V_{E}=\left(V_{J}+R_{W} V_{S}\right) /\left(1+R_{W}\right) \\
& M_{E}=\frac{V_{E}}{20.04 \sqrt{T_{E}-(4.978(10)-4) V_{E}^{2}}}
\end{aligned}
$$

where V_{E} is in m / s and T_{E} is in ${ }^{\circ} \mathrm{K}$
for forward speed, set $M_{E}=M_{E}\left(1-\frac{V_{A}}{V_{E}}\right) 0.75$
Step 12 (For coaxial jets) Compute effective reduced nozzle-to-observer distances for secondary flow.

$$
\begin{aligned}
& \bar{x}=x_{s} / D_{s} \\
& \bar{y}=y / D_{s}
\end{aligned}
$$

Step 13 (For coaxial jets) To obtain the octave band spectrum for the secondary jet repeat Steps 4 through 8 and Step 10 using following parameters:

Substitute M_{E} for M, T_{E} for T_{J}, V_{E} for V_{J}, and D_{S} for D_{J}.
Use \bar{x} and \bar{y} from Step 12.

Step 14 We now have an octave band spectrum for a single jet or in the case of a coaxial jet, a primary jet spectrum and a secondary jet spectrum covering the frequency range from 50 to $10,000 \mathrm{~Hz}$. Use interpolation to obtain octave band SPL's at the $241 / 30 . B$. frequencies from 50 to $10,000 \mathrm{~Hz}$; interpolation in $\log _{10}(f)$ is recommended.

Step 15 Convert octave band levels at $1 / 30 . B$. center frequencies to 1/3 O.B. levels.
$(1 / 3 \text { O.B. } \mathrm{SPL})_{f_{i}}=(0 . \mathrm{B} . \mathrm{SPL})_{f_{i}}-4.85 \mathrm{~dB}$
where, $f_{i}=1 / 30 . B$. center frequency, $i=1$ to 24 .

Step 16 (Coaxial jets) To obtain the total jet spectrum add, logarithmically, the primary and secondary jet $1 / 3$ octave band levels at each of the 24 1/3 O.B. center frequencies.
$S P L_{i}=$ Total $1 / 30 . B . S P L @ f_{i}=10 \log _{10}\left(10^{\left(S P L_{1} / 10\right)}+10^{\left(S P L_{2} / 10\right)}\right)$
where, $f_{i}=$ the i th $1 / 30 . B$. center frequency
SPL $\mathcal{1}_{1}=$ primary jet $1 / 30 . B$. SPL @ $\mathrm{f}_{\mathbf{i}}$
$S P L_{2}=$ secondary jet $1 / 30 . B$. SPL @ f_{i}

Step 17 Correct the total jet mixing noise $1 / 3$ octave band sound pressure levels for local acoustic impedance.

$$
S P L_{i}=S P L_{i}+10 \log _{10}\left(\frac{\rho_{a} c_{a}}{\rho_{0} c_{0}}\right) d B \quad i=1 \text { to } 24
$$

Step 18 Structural shielding effects, where appropriate, are estimated using the jet noise shielding procedure of section 4.2.

Step 19 Compute the jet mixing noise overall sound pressure level (OASPL) at the observer location.

$$
\text { OASPL }=10 \log _{10} \sum_{i=1}^{24} 10\left(\text { SPL }_{i} / 10\right) d B
$$

Step 20 Compute the spectral levels (1 Hz bandwidth) of the jet mixing noise for each $1 / 3$ octave band by applying a bandwidth correction as follows:

$$
S S P L_{i}=S P L_{i}-10 \log _{10}(\Delta f)_{i} d B
$$

where, $\begin{aligned} S S P L \\ i\end{aligned}=\begin{aligned} & \text { the spectral } S P L \text { corresponding to the } i^{\text {th }} \\ & \\ & 1 / 3 \text { octave band }\end{aligned}$
$(\Delta f)_{i}=$ the bandwidth of the $i^{\text {th }} 1 / 30 . B .(H z)$.

TABLE 2.4.1
IDENTIFICATION OF FREQUENCY bANDS FOR JET NOISE ESTIMATION

	Freq.	Hemholtz Number $H_{N}=f D / c_{a}$	
Index I	Band	Band Center	Range
1	Overall	1.25	0.078 to 20
2	Octave	0.221	0.156 to 0.312
3	Octave	0.442	0.312 to 0.625
4	Octave	0.884	0.625 to 1.25

TABLE 2.4.2
COEFFICIENTS A(I,J) FOR JET NOISE PARAMETERS
Frequency Band I

TABLE 2.4.3

CORRECTION FACTOR (M_{c}) FOR THE PRIMARY JET NOISE OF COAXIAL JETS

		M_{c}			
$\log _{10}\left[\frac{f(I) D_{e}}{V_{J}}\right]$	1	3	RATIO 6	10	15
-1.15	2.00	0.85	0.00	0.00	0.95
-1.00	1.22	0.80	0.66	0.74	1.60
-0.8	0.46	1.02	1.45	1.66	2.63
-0.6	0.74	1.34	2.16	2.46	3.60
-0.4	1.06	1.68	2.82	3.15	4.32
-0.2	1.41	2.07	3.47	3.74	4.77
0.0	1.78	2.49	4.07	4.23	4.99
0.2	2.16	2.93	4.62	4.62	5.02
0.4	2.55	3.38	4.97	4.91	5.03
0.6	2.95	3.85	5.04	5.04	5.04
0.8	3.36	4.31	5.06	5.06	5.06
1.0	3.80	4.72	5.08	5.08	5.08
1.2	4.24	5.04	5.10	5.10	5.10
1.4	4.70	5.10	5.10	5.10	5.10
1.6	5.00	5.10	5.10	5.10	5.10
1.8	5.10	5.10	5.10	5.10	5.10
2.0	5.10	5.10	5.10	5.10	5.10
$f(I)=$ Primary jet frequencies from Step $8, \mathrm{I}=1,2,3,4$					
$=D$ or $D_{e} R_{d}{ }^{0.4}$ for primary nozzles without or with p respectively.					

table 2.4.4
REDUCED SPECTRA SHAPES FOR NEAR-FIELD JET NOISE
$Y / D \leq 30$

REDUCED SOUND PRESSURE LEVEL, $L_{\text {A }}(\mathrm{N})$ OR $\mathrm{L}_{\mathrm{B}}(\mathrm{N})(\mathrm{dB})$				
Strouhal No.				
$S_{A(N)}$ or $S_{B(N)}$	$0 \rightarrow 5 *$	10	20	30
0.04	23.8	19.9	16.5	13.6
0.05	21.9	18.1	14.9	11.4
0.06	20.5	16.8	13.3	9.9
0.07	19.2	15.6	12.3	8.6
0.08	18.2	14.6	11.4	7.6
0.09	17.3	13.8	10.6	6.8
0.10	16.6	13.0	9.9	6.2
0.12	15.3	11.9	8.9	5.2
0.16	13.4	10.0	7.3	4.1
0.20	11.9	8.6	6.2	3.6
0.25	10.4	7.4	5.3	3.6
0.30	9.2	6.5	4.8	3.8
0.40	7.5	5.3	4.1	4.7
0.50	6.2	4.3	3.8	5.8
0.60	5.2	3.8	3.8	6.8
0.70	4.5	3.2	4.0	7.6
0.80	3.8	3.0	4.2	8.5
0.90	3.4	2.8	4.6	9.2
1.0	3.0	2.6	5.0	10.0
1.2	2.6	2.7	5.6	11.3
1.6	2.2	3.2	6.9	13.6
2.0	2.2	3.8	8.0	15.5
2.5	2.6	4.7	9.3	17.4
3.0	2.9	5.4	10.4	19.2
4.0	3.6	6.8	12.4	21.9
5.0	4.2	7.9	14.0	24.1
6.0	4.9	9.0	15.5	26.0
7.0	5.5	10.0	16.6	27.5
8.0	6.0	10.9	17.7	28.9
9.0	6.6	11.7	18.7	30.1
10.0	7.1	12.4	19.5	31.4

*These values are assumed to apply to the forward quadrant up to $X / D \geq-30$.

Figure 2.4.1 Primary exhaust plug nozzle geometry.

Figure 2.4.2 Source/receiver geometry for jet mixing noise.

2.5 Jet Shock Associated Broadband Noise

The selected prediction procedure is discussed in section 2.3.3.5 of CR-159104. The method was originally derived by Harper-Bourne and Fisher and later modified slightly by Lockheed-Georgia. This method predicts the broadband noise associated with expansion shock waves in the jet exhaust of nozzles operating at supercritical pressure ratios. The applications of the procedure are outlined as follows:
(a) By replacing jet diameter with a characteristic jet dimension, the method is believed to be applicable to secondary jets (an annular nozzle exit) as well as primary or single circular jets.
(b) The method is only applicable to source emission angles (ϕ^{-1} s) of 150° or less with respect to the engine inlet.
(c) The method as applied here assumes that the ratio of jet exit static temperature to ambient temperature is equal to or greater than 0.9.
(d) The present procedure is only applicable to modified shock Strouhal numbers, S_{i} (see Step 5(a) of the algorithm), of 0.2 to 70.0 inclusive.

SHOCK NOISE COMPUTATIONAL ALGORITHM

Input required:
$v_{J}=$ jet exit velocity
$M_{J}=$ jet exit Mach number
$D_{e}=$ equivalent diameter of the nozzle exit.
$D_{e}=2 \sqrt{A / \pi}$ where $A=$ nozzle exit area.
$H_{J}=$ jet exit characteristic dimension
for single circular jets or primary jets, $H_{j}=$ nozzle equivalent diameter
for a separate-flow fan nozzle, $H_{J}=$ annulus height
$M_{A}=$ airplane Mach number
$c_{a}=$ ambient speed of sound
$\rho_{a}=$ ambient density
$c_{0}=$ sea level, standard day speed of sound
$\rho_{0}=$ sea level, standard day density
$r=$ distance from nozzle exit to observer
$\phi=$ observer angle from the engine inlet measured at the nozzle exit (deg)

Step 1 Compute the following shock parameters:

$$
\begin{aligned}
\beta & =\sqrt{M_{J}^{2}-1.0} \\
L_{0} & =K_{0} H_{J} \beta \\
L_{1} & =K_{1} H_{J} \beta \\
M_{c} & =C \cdot\left(V_{J} / c_{a}\right) \\
V_{c} & =C \cdot V_{J} \\
\text { where } C & =0.70 \text { (eddy convection velocity constant) } \\
K_{0} & =1.10 \text { (average shock spacing constant) } \\
K_{1} & =1.31 \text { (first shock spacing constant) }
\end{aligned}
$$

Step 2 Compute source emission angle (ϕ^{\wedge}) and actual sound propagation path length (r^{-}) from actual observer angle and distance from the nozzle (forward speed effect) where $M_{A}<1.0$.
(a) $M_{A}=0.0$

$$
\phi^{\prime}=\phi \text { and } r^{\prime}=r
$$

(b) $0.0<M_{A}<1.0$

$$
\begin{aligned}
\circ \text { If } \phi & =0^{\circ}, \phi^{\prime}=0^{\circ} \text { and } r^{\prime}=r /\left(1-M_{A}\right) \\
0 \text { If } \phi & =180^{\circ}, \phi^{\prime}=180^{\circ} \text { and } r^{\prime}=r /\left(1+M_{A}\right) \\
0 \text { If } 0^{\circ} & <\phi<180^{\circ}, \\
\phi^{\prime} & =\cot ^{-1}\left[\frac{1}{1-M_{A}^{2}}\left(\cot \phi+M_{A} \sqrt{1-M_{A}^{2}+\cot ^{2} \phi}\right)\right] \operatorname{deg} \\
r^{\prime} & =r \sin \phi / \sin \phi^{\prime}
\end{aligned}
$$

Step 3 Compute the following two terms of the shock noise prediction equation:

$$
\begin{aligned}
& W_{1}=2 \pi B_{c} H_{J} \beta / c_{a} \text { where } B_{c}=0.2316 \text { (bandwidth constant) } \\
& \text { and, If } \beta \leq 1.0, \text { ANS }=40 \log _{10} B-20 \log _{10}\left(r^{\prime} / D_{e}\right) \quad \text { (dB) } \\
& \quad \text { If } B>1.0, \text { ANS }=20 \log _{10} B-20 \log _{10}\left(r^{\prime} / D_{e}\right) \quad \text { (dB) }
\end{aligned}
$$

Step 4 Compute the following parameter as a function of angle (ϕ^{\prime}).

$$
D_{F}=1.0-M_{c} \cos \left(180-\phi^{\prime}\right)
$$

$$
W_{2}=L_{1} D_{F} / V_{c}
$$

Step 5 Compute the $1 / 3$ octave band SPL's at each frequency from 50 to $10,000 \mathrm{~Hz}$ as follows:
(a) $S_{i}=2 \pi f_{i} L_{o} / c_{a}$
where, $\begin{aligned} f_{i}= & \text { the } i \text { th } 1 / 30 . B . \text { center frequency from } 50 \text { to } \\ & 10,000 \mathrm{~Hz} .\end{aligned}$
(b) From Table 2.5.1, find H_{i} as a function of S_{i}. (linear interpolation in $\log _{10}\left(S_{i}^{i}\right)$ and H_{i} if required)
(c) Find C_{i} from Table 2.5 .1 as a function of S_{i}. (linear interpolation in $\log _{10}\left(S_{i}\right)$ and C_{i} if required)
(d) Compute the following summation:

$$
\begin{aligned}
\text { SUM } & =\sum_{n=1}^{N S-1}\left[c_{i} n^{2} \sum_{S=1}^{N S-n}\left\{\cos \left(W_{c} Q_{n s}\right) \sin \left(\frac{{ }_{c} W_{c} Q_{n s}}{2.0}\right) / Q_{n s}\right\}\right] \\
\text { where, } Q_{n s} & =n W_{2}\left[1.0-0.06\left\{(S-1)+\left(\frac{n+1}{2}\right)\right\}\right] \\
W_{c} & =2 \pi f_{i} \\
N S & =8 \text { (nurnber of shocks) } \\
B_{c} & =0.2316
\end{aligned}
$$

(e) Compute the following parameters:
$A N S 2_{i}=10 \log _{10}\left|1.0+\frac{4(S U M)}{N S \cdot B_{c} \cdot W_{c}}\right|$
ANS3 ${ }_{i}=10 \log _{10}\left(W_{1} f_{i}\right)$
(f) Finally, compute the $1 / 3$ octave band sound pressure level (free-field and lossless).
$S P L_{i}=H_{i}+A N S 1+A N S 2_{i}+A N S 3_{i}$
(g) Correct SPL; for local impedance, convective amplification, and dynamic amplification.

$$
\begin{aligned}
S P L_{i}= & S P L_{i}+10 \log _{10}\left(\frac{\rho_{a}^{c} a}{\rho_{0} c_{0}}\right)-40 \log _{10}\left(1-M_{A} \cos \phi^{\prime}\right) \\
& -10 \log _{10}\left(1-M_{A} \cos \phi^{\prime}\right) d B
\end{aligned}
$$

NOTE: Repeat the above procedure (Steps (a) through (g)) for each $1 / 3$ octave band center frequency, $f_{i}(H z)$.

Step 6 To estimate structural shielding effects on shock noise, use the method of section 4.2. For this calculation, the shock noise is assumed to act as a point source located on the jet centerline at distance L_{1} downstream of the nozzle exit.

Step 7 Compute the overall sound pressure level for the $241 / 3$ octave bands from 50 to $10,000 \mathrm{~Hz}$.

$$
O A S P L=10 \log _{10} \sum_{i=1}^{24} 10\left(\mathrm{SPL}_{\mathrm{i}} / 10\right) \mathrm{dB}
$$

Step 8 Compute the spectral SPL's corresponding to the $241 / 3$ octave bands as follows:
$S S P L_{i}=S P L_{i}-10 \log _{10}(\Delta f)_{i} \quad d B$
where, SSPL $_{i}=$ the spectral (1 Hz bandwidth) SPL for the i th $1 / 3$ 0.B.
$(\Delta f)_{i}=$ the bandwidth of the $i^{\text {th }} 1 / 3$ O.B.

TABLE 2.5 .1

MASTER SPECTRA

S_{i}	H_{i}	C_{i}
0.2	116.0	0.70
0.3	121.6	0.71
0.4	125.5	0.71
0.7	132.5	0.72
1.0	137.7	0.73
1.5	142.7	0.74
2.0	145.7	0.74
3.0	148.5	0.71
3.5	149.1	0.69
4.0	149.2	0.67
4.5	148.8	0.64
5.0	147.9	0.62
6.0	146.7	0.58
7.0	145.7	0.54
8.0	137.7	0.50
10.0	130.5	0.45
20.0	125.4	0.28
40.0	125.2	0.12
68.0		0.02
70.0		

2.6 Jet Shock Discrete Tone (Screech) Noise

The method presented here for the prediction of shock screech noise is taken and adapted from various sources in the literature. It is applicable to the acoustic near and far fields. The details of the development of this procedure are discussed in section 2.3.3.5 of CR-159104. The most important aspect of this noise source is that it does not always appear to be present and no criteria are available to determine the presence (or absence) of shock screech. To be on the conservative side it is recommended that this source normally be included in LFC aircraft cruise noise predictions where jet nozzle pressure ratios are 2.0 or more unless it is otherwise known that shocks or shock screech will not be present.

Applications and/or limitations of this procedure are as follows:
(a) The sound pressure levels predicted are considered as upper bound levels.
(b) Noise levels are predicted for only the fundamental and second harmonic discrete frequencies.
(c) The noise source is considered to be a point source on the jet exhaust centerline.
(d) Cruise altitude and Mach number are assumed to not effect the jet shock flow structure.
(e) For separate flow engines, this prediction procedure is applicable to either or both of the exhaust flows.

SHOCK SCREECH NOISE COMPUTATIONAL ALGORITHM

```
    Input required:
v
NPR = Jet nozzle pressure ratio
MA}=\mathrm{ airplane Mach number
HJ = jet nozzle exit characteristic dimension
        for primary jets, H}\mp@subsup{H}{J}{}=\mathrm{ nozzle exit equivalent diameter
        for fan jet flows, H}\mp@subsup{H}{J}{}=\mathrm{ nozzle exit annulus height
De}=\mathrm{ equivalent diameter of the nozzle exit
A = nozzle exit area
x = receiver location measured along jet axis from the nozzle exit
        plane (positive aft)
```

$y=$ receiver location measured perpendicular to the jet axis
$c_{a}=$ ambient speed of sound
$\rho_{a}=$ ambient density
$c_{0}=$ sea level, standard day speed of sound
$\rho_{0} \quad=$ sea level, standard day density
$A_{\text {ref }}=$ reference nozzle exit area, $2.60(10)^{-3} \mathrm{~m}^{2}\left(0.028 \mathrm{f}^{2}, 4.03 \mathrm{in}^{2}\right)$

Step 1 Compute the noise source location.

$$
\begin{aligned}
& x_{s}=3.5 H_{J} \sqrt{N P R-1.893} \\
& \phi_{s}=\tan ^{-1}\left(\frac{y}{x_{s}-x}\right) \operatorname{deg} \\
& r_{s}=\sqrt{y^{2}+\left(x_{s}-x\right)^{2}}
\end{aligned}
$$

NOTE: The source is assumed to be located on the jet centerline at a distance x_{S} downstream of the appropriate nozzle exit, r_{s} and ϕ_{S} are the polar coordinates of the receiver location with the osigin as the source location and the angle ϕ_{S} measured from the inlet (jet) axis.

Step 2 Compute the source emission angle (ϕ_{S}^{\prime}) and actual sound propagation path length (r_{s}^{\prime}) from the observer angle and distance from the nozzle (forward speed effect) where $M_{A}<1.0$.
(a) $M_{A}=0.0$

$$
\phi_{s}^{\prime}=\phi_{s} \text { and } r_{s}^{\prime}=r_{s}
$$

(b) $0.0<M_{A}<1.0$

$$
0 \text { If } \phi_{S}=0^{\circ}, \phi_{S}^{\prime}=0^{\circ} \text { and } r_{S}^{\prime}=r_{S} /\left(1-M_{A}\right)
$$

$$
0 \text { If } \phi_{S}=180^{\circ}, \phi_{S}^{\circ}=180^{\circ} \text { and } r_{S}^{-}=r_{s} /\left(1+M_{A}\right)
$$

$$
0 \text { If } 0^{\circ}<\phi_{S}<180^{\circ}
$$

$$
\phi_{S}^{\prime}=\cot ^{-1}\left[\frac{1}{1-M_{A}^{2}}\left(\cot \phi_{S}+M_{A} \sqrt{\left.\sqrt{1-M_{A}^{2}+\cot ^{2} \phi_{S}}\right)}\right] \operatorname{deg}\right.
$$

$$
r_{s}^{\prime}=r_{s} \sin \phi_{s} / \sin \phi_{s}^{\prime}
$$

Step 3 Compute reference sound pressure levels for the fundamental and second harmonic discrete tones using the data of Table 2.6.1.

$$
\begin{aligned}
& S P L_{1, \text { ref }}=S P L R E F 1 \text { Table } 2.6 .1+10 \log _{10}\left(A / A_{\text {ref }}\right) \\
& S P L_{2, \text { ref }}=S P L R E F 2 \text { Table } 2.6 .1+10 \log _{10}\left(A / A_{\text {ref }}\right)
\end{aligned}
$$

Step 4 Compute directivity and distance corrections. $\Delta S P L_{1}=20 \log _{10}\left(\cos ^{2} \frac{\phi_{S}^{\prime}}{2}+\frac{1}{2} \sin ^{2} \frac{\phi_{S}^{-}}{2}\right)$
$-20 \log _{10}\left(r_{s}^{-} / r_{s, r e f}\right)+2.5 d B$
$\Delta S P L_{2}=20 \log _{10}\left(\sin \phi_{s}^{-}\right)-20 \log _{10}\left(r_{s}^{-} / r_{s, r e f}\right) d B$ where $r_{\text {s,ref }}=4 \mathrm{D}_{\mathrm{e}}$

Step 5 Compute fundamental and second harmonic sound pressure levels corrected for nozzle area, directivity, and distance.
$S P L_{1}=S P L_{1, \text { ref }}+\Delta S P L_{1} \quad d B$
$S P L_{2}=S P L_{2, r e f}+\Delta S P L_{2} \quad d B$

Step 6 Apply corrections for convective amplification and local acoustic impedance.

$$
\begin{aligned}
& \Delta S P L= 10 \log _{10}\left(\frac{\rho_{a} c_{a}}{\rho_{0} c_{0}}\right)-40 \log _{10}\left(1-M_{A} \cos \phi_{S}^{\prime}\right) \quad d B \\
& \text { then, } S P L_{1}=S P L_{1}+\Delta S P L \quad d B \\
& S P L_{2}=S P L_{2}+\Delta S P L \quad d B
\end{aligned}
$$

Step 7 Compute the fundamental and second harmonic frequencies of the shock screech tones.

$$
\begin{aligned}
& f_{1}=\frac{c_{a}\left[M_{A}+0.625\left(M_{J a}-M_{A}\right)\right]\left(1-M_{A}\right)\left(1+0.625 M_{J a}\right)}{1.25 \sqrt{N P R-1.893}\left[1+0.625\left(M_{J a}-M_{A}\right)\right] M_{J_{a}} H_{J}} \mathrm{~Hz} \\
& f_{2}=2 \mathrm{f}_{1} \mathrm{~Hz}
\end{aligned}
$$

$$
\text { where, } \begin{aligned}
f_{1} & =\text { fundamental frequency }(\mathrm{Hz}) \\
f_{2} & =\text { second harmonic frequency }(\mathrm{Hz}) \\
M_{J a} & =V_{J} / c_{a}
\end{aligned}
$$

NOTE: Normally, for computer purposes, such as rumning various component noise sources, the sound pressure levels of the two screech tones are assigned to the $1 / 3$ octave bands containing f_{1} and f_{2}.

Step 8 The predicted spectrum of shock screech consists of the tones of Step 6 which occur at the discrete frequencies computed in Step 7. Consequently, a bandwidth correction to convert $1 / 3$ octave band SPL's to spectrum levels is not appropriate, i.e. the computed spectrum levels (1 Hz bandwidth) are also $1 / 30$. B. levels for the $1 / 3$ O.B.'s containing f_{1} and f_{2}.

Step 9 To estimate the effects of structural shielding on shock screech noise use the method of section 4.2. For this calculation, use the source location as computed in step 1, i.e. on the jet centerline at a distance x_{s} downstream of the appropriate nozzle exit plane.

TABLE 2.6.1
SHOCK SCREECH REFERENCE SOUND PRESSURE LEVELS

$$
\text { AT } r_{s}=4 D_{e} \text { AND } \phi_{s}=90^{\circ}
$$

NOZZLE EXIT PRESSURE FATIO (NPR)	FUNDAMENTAL SPLREF1, dB	SECOND HARMONIC SPLREF2, dB
2.0	110.0	110.0
2.5	127.0	124.0
3.0	136.0	130.0
3.5	141.0	133.0
4.0	143.5	134.5
4.5	144.5	135.0
5.0	144.5	134.5
6.0	143.0	132.0
7.0	140.5	128.0

3.1 TRAILING-EDGE NOISE

The selection of a method for the prediction of trailing-edge noise is discussed in section 2.3.4.3 of $C R-159104$. The method selected was developed as an alternate procedure to the NASA ANOPP method and modified for application to the close-in far field by M. R. Fink.

The following applications and limitations should be noted for this procedure:
(a) The method is applicable to "turbulent" and laminar-flow-controlled surfaces as long as the boundary layer at the trailing edge consists of fully developed turbulent flow.
(b) In its present form, the following computational algorithm is only applicable to a receiver located in a plane perpendicular to the trailing edge span at the mid-point of the span.

Input required: (See figure 3.1.1)
$M_{A}=$ aircraft Mach number
$V_{A}=$ aircraft velocity
$\rho_{a}=$ ambient density
$c_{a}=$ ambient speed of sound
$\rho_{0} \quad=$ sea level, standard day density
$c_{0}=$ sea level, standard day speed of sound
$\phi \quad=$ observer angle measured from forward of the trailing edge in a plane perpendicular to the T.E. (deg)
$r=$ distance from observer to mid-point of T.E.
\& $\quad=$ length of T.E. span being considered
$\delta \quad=$ turbulent boundary layer thickness at the trailing edge. If this input is not available or desired, Step 1 may be used to calculate δ based on flat plate flow.
$V_{\text {ref }}=$ reference velocity, $51.44 \mathrm{~m} / \mathrm{s}(168.8 \mathrm{f} / \mathrm{s}, 100$ knots, 115.1 MPH$)$
Step 1 (If δ not input) Compute boundary layer thickness at the trailing edge.

$$
\delta=0.376 \bar{c}\left(\frac{v_{A} \bar{c} \rho_{a}}{\mu_{a}}\right)^{-1 / 5}
$$

where, $\mu_{a}=$ ambient viscosity
$\bar{c}=$ mean aerodynamic chord of airfoil section of interest
Step 2 Compute the source (trailing edge mid-point) emission angle (ϕ°) and propagation path length (r^{-}) corresponding to the desired observer location (forward speed effect where $M_{A}<1.0$).
(a) $M_{A}=0.0$

$$
\begin{aligned}
\phi^{\prime} & =\phi \\
r^{\prime} & =r
\end{aligned}
$$

(b) $M_{A}>0.0,0^{\circ}<\phi<180^{\circ}$

$$
\begin{aligned}
& \phi^{\prime}=\cot ^{-1}\left[\frac{1}{1-M_{A}^{2}}\left(\cot \phi+M_{A} \sqrt{1-M_{A}^{2}+\cot ^{2} \phi}\right)\right] \quad \operatorname{deg} \\
& r^{\prime}=r \sin \phi / \sin \phi^{\prime}
\end{aligned}
$$

(c) $M_{A}>0.0, \phi=0^{\circ}$

$$
\begin{aligned}
& \phi^{\prime}=0^{\circ} \\
& r^{\prime}=r /\left(1-M_{A}\right)
\end{aligned}
$$

(d) $M_{A}>0.0, \phi=180^{\circ}$

$$
\begin{aligned}
& \phi^{\prime}=180^{\circ} \\
& r^{\prime}=r /\left(1+M_{A}\right)
\end{aligned}
$$

Step 3 Compute the angle subtended from equivalent observer location given by ϕ^{\prime} and r^{\prime} to ends of the trailing-edge span.

$$
\beta^{-}=2 \tan ^{-1}\left(\frac{l}{2 r^{-1}}\right) \operatorname{deg}
$$

Step 4 Compute the uncorrected overall sound pressure level at the observer location.

$$
\begin{aligned}
\text { OASPL }= & 50 \log _{10}\left(\frac{V_{A}}{V_{\text {ref }}}\right)+10 \log _{10}\left(\delta \beta^{\prime} / r^{\prime}\right) \\
& +10 \log _{10}\left[\cos \left(\phi^{\prime} / 2\right)\right]^{2}+80.7
\end{aligned}
$$

Step 5 Correct the OASPL for local acoustic impedance and convective amplification.

$$
\text { OASPL }=0 A S P L+10 \log _{10}\left(\frac{\rho_{a}^{c} a}{\rho_{0} c_{0}}\right)-40 \log _{10}\left(1-M_{A} \cos \phi^{-}\right) d \mathrm{~dB}
$$

Step 6 Compute the peak frequency.

$$
f_{P K}=0.1\left(V_{A}\right) / \delta \quad \mathrm{Hz}
$$

Step 7 Compute the $1 / 3$ octave band sound pressure levels from 50 to $10,000 \mathrm{~Hz}$ using the following equation:

$$
S_{P L}=0 A S P L+10 \log _{10}\left[0.613\left(\frac{f_{i}}{f_{b}}\right)^{4}\left|\left(\frac{f_{i}}{f_{b}}\right)^{1.5}+0.5\right|^{-4}\right] \mathrm{dB}
$$

where SPL_{i} and $f_{i}=$ the i th $1 / 3$ octave band sound pressure level and center frequency (Hz), respectively

$$
\begin{aligned}
& f_{b}=\text { the center frequency of the } 1 / 30 . B \text {. containing the peak } \\
& \text { frequency }(\mathrm{Hz})
\end{aligned}
$$

Step 8 Shielding effects are taken to be negligible for trailing-edge noise as a result of this sources location, orientation, and directivity pattern.

Step 9 Compute the overall sound pressure level (OASPL) at the observer location for the $241 / 3$ octave bands from 50 to $10,000 \mathrm{~Hz}$ as follows:

$$
\text { OASPL }=10 \log _{10} \sum_{i=1}^{24} 10\left(\mathrm{SPL}_{\mathrm{i}} / 10\right) \mathrm{dB}
$$

Step 10 Compute the spectral level (1 Hz bandwidth) for each of the $1 / 3$ O.B. center frequencies as follows:

$$
\begin{aligned}
& \text { SSPL }_{\mathbf{i}}=S P L_{\mathbf{i}}-10 \log _{10}(\Delta f)_{\mathbf{i}} \\
& \text { where } S S_{P L}=1 \mathrm{~Hz} \text { bandwidth spectral level }(\mathrm{dB}) \\
& \quad(\Delta f)_{\mathbf{i}}=\text { bandwidth of the } i^{\text {th }} 1 / 30 . B . \quad(\mathrm{Hz})
\end{aligned}
$$

Figure 3.1.1 Source/observer geometry for trailing-edge noise.

3.2 Turbulent Boundary Layer Noise

The details of the selection and development of a prediction procedure for turbulent boundary layer noise are given in section 2.3.4.2 of CR-159104. This procedure was developed from the literature for application to the present LFC problem by Lockheed-Georgia.

The implementation of this method as described in the algorithm will normally involve approximating the surface of interest (say the side of a fuselage) by one or more flat surfaces subdivided into several elemental areas. Following the recommended procedure, the total noise from this source is estimated by summing, on an energy basis, the noise contribution from each of these sub-areas. In the near or close-in far field, the total radiated noise levels computed for a given surface will be dependent upon the number (and orientation) of these elemental areas. Unfortunately, no guidance is presently available as to a selection criteria which relates the number and orientation of the representative elemental areas to the accuracy of the prediction procedure. Note, however, that for near-field estimates the more subdividions made the more accurate will be the procedure (maximum dimension of the elemental area small compared to source-to-receiver distance), although fewer "segments" may give a conservative (high) estimate. For far-field estimates, one representative segment may be sufficient.

Input required: (See figure 3.2.1)

```
\(A_{j}=\begin{aligned} & \text { surface area of an element of the airframe surface under } \\ & \text { consideration }\end{aligned}\)
\(U \quad=\) free-stream velocity (normally \(U=V_{A}=c_{a} M_{A}\) )
\(x_{j}, y_{j}, z_{j}=\underset{\text { area } A_{j}}{\text { coordinates of observer location relative to a surface elemental }}\)
\(M_{A} \quad=\) aircraft Mach number
\(\rho_{a} \quad=\) ambient density
\(c_{a} \quad=\) ambient speed of sound
\(\rho_{0} \quad=\) sea level, standard day density
\(c_{0} \quad=\) sea level, standard day speed of sound
\(\begin{aligned} \delta \% & = \\ & \text { turbulent boundary layer displacement thickness at } A_{j}\end{aligned}\)
\(U_{\text {ref }}=\) reference velocity, \(236 \mathrm{~m} / \mathrm{s}(774.3 \mathrm{f} / \mathrm{s}, 458.7\) knots, 527.9 MPH\()\)
\(A_{\text {ref }}=\) reference area, \(0.0929 \mathrm{~m}^{2}\left(1.0 \mathrm{f}^{2}, 144.0 \mathrm{in}^{2}\right)\)
\(r_{\text {ref }}=\) reference distance, \(1.0 \mathrm{~m}(3.28 \mathrm{ft}, 39.37 \mathrm{in})\)
Step 1 Compute the source emission angle relative to a normal to the surface ( \(\gamma_{j}^{\circ}\) ) and the sound path length ( \(r_{j}^{\circ}\) ) to the desired observer location for each elemental area, \(A_{j},\left(M_{A}<1.0\right)\).
(a) \(\phi_{j}=\tan ^{-1}\left(\frac{\sqrt{y_{j}^{2}+z_{j}^{2}}}{x_{j}}\right) \operatorname{deg}\)
where \(\phi_{j}=90^{\circ}\) if \(x_{j}=0\), and \(0^{\circ} \leq \phi_{j} \leq 180^{\circ}\)
(b) \(r_{j}=\sqrt{x_{j}{ }^{2}+y_{j}{ }^{2}+z_{j}{ }^{2}}\)
(c) Forward speed transformation \(r \phi \rightarrow r^{\prime} \phi^{\prime}\) :
(1) If \(M_{A}=0.0\)
\[
\phi_{j}^{-}=\phi_{\mathbf{j}}
\]
```

$$
r_{j}^{\prime}=r_{j}
$$

(2) If $M_{A}>0.0$, and $0^{\circ}<\phi_{j}<180^{\circ}$

$$
\begin{aligned}
& \phi_{j}=\cot ^{-1}\left[\frac{1}{1-M_{A}^{2}}\left(\cot \phi_{j}+M_{A} \sqrt{1-M_{A}^{2}+\cot ^{2} \phi_{j}}\right)\right] \operatorname{deg} \\
& r_{j}^{\prime}=r_{j} \sin \phi_{j} / \sin \phi_{j}
\end{aligned}
$$

(3) \quad If $\phi_{j}=0^{\circ}$

$$
\begin{aligned}
& \phi_{j}=0^{\circ} \\
& r_{j}^{\prime}=r_{j} /\left(1-M_{A}\right)
\end{aligned}
$$

(4) \quad If $\phi_{j}=180^{\circ}$

$$
\begin{aligned}
& \phi_{j}^{\prime}=180^{\circ} \\
& r_{j}^{\prime}=r_{j} /\left(1+M_{A}\right)
\end{aligned}
$$

(d) $\gamma_{j}=\cos ^{-1}\left(y_{j} / r_{j}^{-}\right)$deg where $0^{\circ} \leq \gamma_{j} \leq 90^{\circ}$
where ϕ_{j} and γ_{j} are the angles to the observer location measured from the plus X axis and a normal to $A_{\text {. }}$, respectively. (See figure 3.2.1) ϕ_{j}^{\prime} and γ_{j}^{\prime} are the source emission angles corresponding to ϕ_{j} and γ_{j}^{j} above.

Step 2 Compute the overall sound pressure level corrected for convective amplification and dynamic amplification for each elemental area, A_{j}, as follows:

$$
\begin{aligned}
& \text { OASPL }_{j}= 60 \log _{10}\left(U / U_{\text {ref }}\right)+10 \log _{10}\left(A_{j} / A_{r e f}\right)-20 \log _{10}\left(r_{j}^{f} / r_{r e f}\right) \\
&+20 \log _{10} \cos \gamma_{j}-30 \log _{10}\left(1-\left(0.18 M_{A}\right) \cos \phi_{j}^{\prime}\right) \\
&-10 \log _{10}\left(1-M_{A} \cos \phi_{j}^{-}\right)+91.1 \mathrm{~dB} \\
& \text { MOTE: If } \gamma_{j}=90^{\circ}, \text { set } O A S P L_{j}=0.0
\end{aligned}
$$

Step 3 Correct each $\mathrm{OASPL}_{\mathrm{j}}$ of Step 2 for local acoustic impedance.

$$
\text { OASPL }_{j}=0 A S P L_{j}+10 \log _{10}\left(\rho_{a} c_{a} / \rho_{o} c_{o}\right) d B
$$

Step 4 Compute the peak $1 / 3$ octave band level frequency of the radiated sound for each area, A_{j}.

$$
f_{P K_{j}}=0.01102\left(U / \delta_{j} *\right) \quad H z
$$

NOTE: If $\delta_{j} *$ is not otherwise available, it may be estimated using the following equation for flat plate flow:

$$
\delta_{j}=0.376 \ell_{j}\left(\frac{\rho_{a} U_{j}}{\mu_{a}}\right)^{-1 / 5}
$$

Then, $\delta_{j} *=\delta_{j} / 8.0$ where, $\delta_{j}=$ the turbulent boundary layer thickness
$\ell_{j}=\begin{aligned} & \text { distance from leading edge (or point where } \\ & \text { boundary layer growth begins) }\end{aligned}$
$\mu_{a}=$ ambient viscosity

Note: Total scrubbed area being considered $=A=\sum_{j=1}^{n} A_{j}$
where $n=$ number of elemental areas (A_{j}) into which the total scrubbed area being considered is subdivided.

Step 5 Compute the $1 / 3$ octave band levels for each area, A_{j}, as follows:

$$
\begin{aligned}
& S P L_{N_{j}}=S P L_{P E A K, j}=O A S P L_{j}-7.0 \\
& S P L_{N_{j}-1}=S P L_{N_{j}}-1.0 \\
& S P L_{N_{j}-2}=S P L_{N_{j}}-2.0
\end{aligned}
$$

For $\mathbf{i}<N_{j}-2, S P L_{i}=S P L_{N_{j}}-2-\left(N_{j}-2-i\right)(2.7)$
For $\mathrm{i}>\mathrm{N}_{\mathrm{j}}, S P L_{i}=S P L_{N_{j}}+\left(N_{j}-i\right)(2.2)$
where $S P L_{i}=$ the $i^{\text {th }} 1 / 30 . B$. SPL for area $A_{j}(d B)$.
$\begin{aligned} S P L_{N_{j}}= & S P L_{\text {PEAK, }}=\text { the peak } 1 / 30 . B . S P L \text { for area } A_{j}(d B) . \\ i= & \text { the } i \text { th } 1 / 3 \text { octave band for the } 241 / 3 \text { octave bands } \\ & \text { from } 50 \text { to } 10,000 \mathrm{~Hz} .\end{aligned}$
$\begin{aligned} N_{j}= & \text { the value of } i \text { for the } 1 / 30 . B \text {. containing the peak } \\ & \text { frequency, } f_{P K_{j}} .\end{aligned}$
Step 6 If appropriate, apply shielding correlations to each spectrum of Step 5. This procedure is described in section 4.2. The source location is taken as the center of the area, A_{j}.

Step 7 Compute the total spectrum levels by summing the spectra, logarithmically, of Step 5 or 6 as follows:

$$
\left.S P L_{i}=10 \log _{10} \sum_{j=1}^{n} 10^{(S P L}, i_{i} / 10\right) d B
$$

where $n=$ number of elemental areas, A_{j} $S P L_{j, i}=S P L_{i}$ from Step 5 or 6 for Area A_{j}
Step 8 Compute the total overall sound pressure level

$$
\text { OASPL }=10 \log _{10} \sum_{i=1}^{24} 10^{\left(S P L_{i} / 10\right)} d B
$$

Step 9 Compute the spectral level (1 Hz bandwidth) for each of the $1 / 3$ O.B. center frequencies as follows:

$$
\begin{gathered}
{S S S P L_{i}}=S P L_{i}-10 \log _{10}(\Delta f)_{i} \\
\text { where } S_{S P L}=1 \mathrm{~Hz} \text { bandwidth spectral level (dB) } \\
(\Delta f)_{i}=\text { bandwidth of the } i \text { th } 1 / 30 . B .(\mathrm{Hz})
\end{gathered}
$$

Figure 3.2.1 Geometry for turbulent boundary layer noise.
4. COMPUTATIONAL ALGORITHMS FOR ACOUSTIC RADIATION MODIFIERS

The computational procedures of this section are used to compute corrections to the predicted turbomachinery (fan/compressor, turbine, and core) noise levels of section 2.0 whenever it is necessary to account for the effects of acoustic suppression materials and to compute corrections to all the procedures of sections 2.0 and 3.0 to account for shielding of radiated noise by aircraft surfaces. The procedure for the prediction of acoustic liner attenuation effects was developed by Lockheed-Georgia, while the general procedure for estimating shielding effects has been developed by Lockheed from the method süggested by Z. Maekawa. See CR-159104 for a discussion of these methods. Note, however, that since the airframe noise sources of section 3.0 and shock noise of section 2.5 are distributed sources (i.e. do not radiate from a single point or localized area), the procedure for shielding effect corrections will be less accurate than when applied to turbomachinery sources (i.e. sources which more nearly approximate point sources.) A separate procedure for estimating shielding effects on jet mixing noise, developed by Boeing, is provided. This empirical method accounts for the distributed source characteristic of jet mixing noise.

4.1 Acoustic Suppression Effects

This section is designed to be used in conjunction with the turbomachinery noise source computational algorithms (fan/compressor, turbine, and core) of section 2.0 to include the effects of acoustic suppression materials in the noise prediction procedure. The method given here is applicable to inlet radiated fan or compressor noise and aft-radiated fan, turbine and core noise. See figure 4.1.1. The effect of high Mach number inlets on inlet radiated noise may also be included. The approach given here is to provide a procedure for the computation of corrections to be applied to the computed $1 / 3$ octave band levels of the associated engine noise source. The method is set-up to compute the attenuation spectrum without specifying acoustic liner detailed parameters, which are assumed to be chosen for maximum attenuation at the liner design condition. The method is conservative in that it assumes a current technology single-layer liner design, i.e. a relatively narrow attenuation bandwidth. See section 2.3.3 of CR-159104 for further discussion.

The following input is required:
$L \quad$ the effective length of treatment in the duct (with allowances made for fastening strips, etc.)
$H_{d} \quad$ the duct height between opposite liner faces
$\lambda \quad$ the wavelength of sound in the duct at the liner design frequency ($\lambda=c / f_{d}=20.044 \sqrt{t_{d} / f_{d}}(m)$ where $t_{d}=$ duct flow static temperature (${ }^{\circ} \mathrm{K}$), and $c=$ speed of sound in the duct)
M_{d} the mean Mach number of the flow in the duct under consideration
$\phi^{-} \quad$ the source emission angle W.R.T. the inlet axis for the desired observer location (deg.)
f_{d} the liner design frequency (Hz)
NS the number of inlet splitter rings

Step 1 Calculate L / H and determine the peak attenuation at $M=0$ and $H / \lambda=1$.

$$
\Delta \mathrm{dB} \text { peak }=10\left(\frac{\mathrm{~L}}{\mathrm{H}_{\mathrm{d}}}\right)^{0.7} \mathrm{~dB}
$$

Step 2 Determine the effect of H / λ from:

$$
F_{1}=\Delta d B / \Delta d B_{H / \lambda=1}=\left(H_{d} / \lambda\right)^{-0.6}
$$

Step 3 Determine the effect of duct Mach number from:

$$
F_{2}=\Delta d B / \Delta d B_{M=0}=1-\left\{\frac{M_{d}}{2}\left(2-\left(H_{d} / \lambda\right)\right)\right\}
$$

Step 4 Compute the correction for observer location from:
a) Exhaust duct

$$
\text { for } \begin{aligned}
\phi^{-} \leq 130^{\circ} \quad F_{3}=\Delta \mathrm{dB} / \Delta \mathrm{dB} \mathrm{Max}=\frac{\phi^{\prime}}{130} \\
\phi^{-}>130^{\circ} \quad F_{3}=\Delta \mathrm{dB} / \Delta \mathrm{dB} B_{\text {Max }}=\frac{205-\phi^{-}}{75}
\end{aligned}
$$

b) Inlet

$$
\begin{aligned}
\text { for } \phi^{\prime} \leq 60^{\circ} \quad F_{3} & =\Delta \mathrm{dB} / \Delta \mathrm{dB} \mathrm{Max}=\left(\frac{4-\mathrm{NS}}{4}\right)\left(\frac{\phi^{\prime}}{100}\right)+0.15 \mathrm{NS}+0.40 \\
\phi^{\prime}>60^{\circ} \quad F_{3} & =\Delta \mathrm{dB} / \Delta \mathrm{dB} \mathrm{Max}=\frac{140-\phi^{\prime}}{80}
\end{aligned}
$$

Step 5 Compute the attenuation at the design frequency corrected for H / λ, duct Mach number, and emission angle.

$$
\Delta d B_{f}=\Delta d B_{\text {peak }} \times F_{1} \times F_{2} \times F_{3}
$$

Step 6 Determine attenuation spectrum, as a function of frequency f_{i} from:

$$
\Delta d B_{f_{i}} / \Delta d B_{f_{d}}=\exp \left\{-\frac{\left|\log _{10}\left(f_{i} / f_{d}\right)\right|^{1.3}}{0.35}\right\}
$$

where $f_{i}=$ the $i^{\text {th }} 1 / 30 . B$. center frequency from 50 to $10,000 \mathrm{~Hz}$.

Step 7 To obtain the applicable source spectrum corrected for acoustic treatment attenuation, apply the $d B$ corrections of Step 6 to the uncorrected spectrum computed from the appropriate propulsion noise source algorithm as follows:
$\left(S P L_{i}\right)_{\text {corrected }}=\left(S P L_{i}\right)_{\substack{\text { from propulsion } \\ \text { source algorithm }}}-\Delta d B_{f}$ STEP 6
where i represents the $i^{\text {th }} 1 / 3$ octave band.

HIGH MACH NUMBER INLETS

If it is desired to estimate the effects of high Mach number inlets on inlet radiated noise, proceed as follows:

Step A Compute the non-directional correction which is independent of frequency as follows:

$$
\Delta d B=216\left(M_{1}-0.5\right)^{2.5} d B
$$

where $M_{I}=$ the inlet throat Mach number.
Step B Apply the correction of Step A across the uncorrected $1 / 3$ octave band fan noise spectrum.
$\left(\text { SPL }_{i}\right)_{\text {FAN, Corrected }}=\left(S P L_{i}\right)_{\text {FAN, Uncorrected }}-\triangle d B$ STEP A where \mathbf{i} represents the i th $1 / 3$ octave band.

Figure 4.1.1 Typical acoustic liner installations.

4.2 Structural Shielding

The two procedures of this section are provided for use where it is desired to estimate the effect on radiated noise of direct line-of-sight shielding by aircraft surfaces. The first method is applied to all engine sources except jet mixing noise and treats these as point sources. This point source treatment is considered to be valid for fan/compressor, turbine, and core noise and to provide a reasonable approximation in the case of shock noise. The broadband shock noise source is approximated as a point source located at the first shock location downstream of the nozzle exit since there appears to be no method available to handle its distributed source character. The data available on shielding effects on jet mixing noise (also a distributed source) indicate this point source approximation can be expected to yield reasonable and conservative results. The second method is an empirical procedure for the estimation of shielding effects on jet mixing noise. For further discussion on these procedures, see section 2.4 .3 of CR-159104.

It is anticipated that estimates of shielding effects on trailing-edge radiated noise will not normally be required. This results from the location and directivity of the trailing-edge source. However, the first method described above can be employed to estimate a shielding effect if desired, using the center of the appropriate span as the source location. Similarly, it is believed that the contribution of shielded turbulent boundary layer noise at most points of interest on the aircraft may be neglected. However, if shielding effects are desired to be estimated, the approach of the first method noted above may be used; with each elemental area, A. (see section 3.2), treated as a point source. In this case, the shielding protedure will need to be included in the computational procedure of section 3.2 rather than used separately as a single final correction.

This computational procedure is divided into two parts، The first method applies to noise components which are to be considered a point source (all sources except jet mixing noise). The second method applies to shielding of jet mixing noise.
(a) Use this procedure for all sources except jet mixing noise. The parameters required for this computation are defined in figure 4.2 .1 for two shielding cases.

Case 1 - Receiver located at some distance removed from the shielding barrier. Compute the total shielded $1 / 3$ octave band sound pressure levels as follows:

Step 1 Compute a correction for each $1 / 3$ O.B. SPL for each edge of the shielding surface around which sound may be diffracted. Normally, for wing or fuselage shielding, two edges will be considered.

$$
\begin{aligned}
& \Delta S P L_{i, j}=10 \log _{10}\left(\frac{2 f_{i} z_{j}}{c_{a}}\right)+10 \mathrm{~dB} \\
& \text { If } \Delta S P L_{i, j}>25, \text { Set } \Delta S P L_{i, j}=25
\end{aligned}
$$

where $\Delta S L_{i, j}=$ the $\Delta d B$ correction computed for edge j to be applied to the $i^{\text {th }} 1 / 30 . B$. predicted (unshielded) SPL.
$f_{i}=$ the $i^{\text {th }} 1 / 30 . B$. center frequency (Hz)
$z_{j}=$ the path length difference between a direct line from source to receiver and actual path length around edge j. (see figure 4.2.1)
$c_{a}=$ ambient speed of sound
Step 2 Compute the shielded spectrum associated with each 'edge' being considered.
$S P L_{i, j}=S P L_{i}-\triangle S P L_{i, j} d B$
$\begin{aligned} & S P L_{i, j}= \text { shielded } S P L \text { for the } i \text { th } 1 / 30 . B \text {. associated with the } j \text { th } \\ & \text { edge. }\end{aligned}$
$S P L_{i}=$ the predicted unshielded 1/30.B. SPL at the observer location (dB)
$\Delta S P L_{i, j}=$ correction from Step 1

Step 3 Compute the total shielded spectrum at the observer location by summing the contributions from each 'edge' involved.

$$
\begin{aligned}
S P L_{i, s h i e l d e d}= & 10 \log _{10} \sum_{j=1}^{n} 10\left(S P L_{i, j} / 10\right) d B \\
\text { where } S P L_{i, j}= & 1 / 30 . B . S P L \text { from Step } 2 . \\
n= & \text { number of edges around which sound is considered to } \\
& \text { be diffracted to the observer location. } \\
\mathbf{i}= & \text { the } i \text { th } 1 / 3 \text { O.B. }
\end{aligned}
$$

Case 2 - For a shielded receiver located at the surface of the barrier (figure 4.2.1), compute the estimated shielded spectrum using Table 4.2.1 as follows:

$$
\begin{aligned}
S P L_{i}, \text { shielded } & =S P L_{i, \text { unshielded }}-\Delta d B_{i} d B \\
\text { where } \quad \Delta d B_{i}= & \text { the } d B \text { correction to be applied to the } i \text { th } 1 / 3 \\
& 0 . B . S P L .
\end{aligned}
$$

(b) Procedure for jet mixing noise shielding estimates.

Figure 4.2.2 defines the geometry used for this procedure. It is assumed that the only sound path to the observer is aft of the nozzle exit. Other input parameters are as follows.
$v_{J}=$ jet exhaust velocity
$c_{a}=$ ambient speed of sound
$\mathrm{g}=$ gravitational acceleration ($9.81 \mathrm{~m} / \mathrm{s}^{2}$ or $32.2 \mathrm{f} / \mathrm{s}^{2}$)
Step 1 For each $1 / 3$ octave band center frequency, compute the following parameter $\left(Z_{i}\right)$:
$z_{i}=\left\{\frac{1}{1+0.033\left(\frac{\theta}{180-\theta}\right)^{4}}\right\}\left\{\frac{f_{i} L c_{a}^{2}}{g D V_{j}(10)^{6}}\right\}\left\{1+4.5(10)^{9}\left(\frac{g D}{c_{a}^{2}}\right)^{2}\right\}$
where $f_{i}=$ the i th $1 / 3$ octave band center frequency $(H z)$.
Step 2 Compute the $\triangle S P L$ to be applied to the unshielded $1 / 3$ octave band noise levels as follows:

$$
\Delta S P L_{i}=10 \log _{10}\left(1+0.6 \mathrm{Z}_{\mathrm{i}}\right) \mathrm{dB}
$$

where $\quad \Delta S P L_{i}=$ the shielding correction to be subtracted from the i th $1 / 3$ octave band unshielded jet noise sound pressure level.

Step 3 Apply the correction of Step 2 to obtain the estimated shielded $1 / 3$ O.B. spectrum at the observer location.

$$
S P L_{i, \text { shielded }}=S P L_{i, \text { unshielded }}-\Delta S P L_{\mathbf{i}} \quad d B
$$

where SPL $_{\mathbf{i}, \text { unshielded }}=$ the $i^{\text {th }} 1 / 30 . B$. SPL predicted for the observer location without shielding (dB).

TABLE 4.2.1

ESTIMATED 1/3 Octave Band Near-Field Shielding Reductions
1/3 O.B. CENTER
FREQUENCY (Hz)SHIELDING$\Delta d B$
50 5.7
63 6.7
80 7.8
100 8.7
125 9.7
160 10.8
200 11.7
250 12.7
315 13.7
400 14.8
500 15.7
630 16.7
800 17.8
1000 18.7
1250 19.7
1600 20.8
2000 21.7
2500 22.7
3150 23.7
4000 24.8
5000 25.0
6300 25.0
8000 25.0
10000 25.0

$$
\dot{z}=a+b-c \text { or } a^{\prime}+b^{\prime}-c
$$

RECEIVER

CASE 1

SOURCE

CASE 2

Figure 4.2.1 Shielding geometry for point noise sources (turbomachinery noise).

Figure 4.2.2 Geometry for jet mixing noise shielding.

5.0 COMPUTATION PROCEDURES FOR LFC SUCTION SYSTEMS

No separate noise prediction procedures are provided or recommended for the LFC suction systems since the procedures given for the aircraft propulsion system are also applicable to this system. Consequently, the procedures of section 2.1 through 2.6 should be used when it is desired to predict the compressor, turbine, combustion, jet mixing, or jet shock noise associated with the LFC suction system.

6.0 SAMPLE RESULTS FROM CHECKOUT CASES

This section presents some typical inputs and results obtained from computer runs made to checkout the computational algorithms presented previously. These results were checked against hand calculations or other available data. All check cases are for a single engine at cruise with no structural shielding. Table 6.1 presents the results of a check case for the fan/compressor noise prediction procedure. This case is for a single engine with an unsuppressed fan with no high Mach inlet effects included. Tables 6.2 and 6.3 present the results of one of the check cases run for turbine and core noise prediction checkout, respectively. Table 6.3 includes the predicted perceived wavelengths (at the receiver location) for the core noise. A jet mixing noise case is presented in Table 6.4. This case is for a turbofan engine with a separate flow exhaust nozzle with no plug in the primary nozzle. The receiver location is in the plane of the nozzle exits. Table 6.5 presents the jet shock associated broadband noise predicted for the input shown. In this case, the shock noise is generated by the secondary (fan) exhaust; no shocks are present in the primary flow.

Sample cases have also been run to checkout the computational procedures for the airframe noise sources. A check case for the trailing-edge noise prediction is shown in Table 6.6. This case represents a point at approximately 45 percent chord and 8 percent span on an LFC configuration having a wing span of about 73 meters (240 ft). Table 6.7 presents the results of one check case for the turbulent boundary layer noise prediction. A description of the input and schematic of the geometry are given in Table 6.7(a). The receiver location is on the underside of the wing (high-wing configuration) at about 3 meters (9.8 ft) spanwise from the side of the fuselage. The fuselage side is the only airframe surface that is expected to radiate significant turbulent boundary layer noise to the receiver location. This surface is represented by a flat plate 20 meters (65.6 ft) long by 3 meters (9.8 ft) wide. By inspection of the predicted noise levels for each of the 5 sub-areas used in this problem, it can be determined that noise contributions from locations forward or aft of the area selected are negligible.

TABLE 6.1

FAN NOISE PREDICTION

Input used:

$\Delta T_{S T A G E}$	$=81^{\circ}{ }^{R}$
\dot{m}	$=314.6 \mathrm{lbm} / \mathrm{s}$
N	$=4290 \mathrm{RPM}$
$M_{T_{R}}$	$=0.70$
$\left(M_{T_{R}}\right)_{D}$	$=1.30$
$M_{T_{R}}$	$=0.73$
N_{R}	$=42$
N_{S}	$=92$
$R_{S S}$	$=380$

$$
\begin{aligned}
\phi_{I} & =90^{\circ} \\
r_{I} & =50 \mathrm{ft} \\
\phi_{D} & =90^{\circ} \\
r_{D} & =50 \mathrm{ft} \\
M_{A} & =0.80 \\
\rho_{a} & =0.01883 \mathrm{lbm} / \mathrm{f}^{3} \\
c_{a} & =968 \mathrm{f} / \mathrm{s} \\
\rho_{O} & =0.0765 \mathrm{lbm} / \mathrm{f}^{3} \\
c_{\mathrm{O}} & =1116 \mathrm{f} / \mathrm{s}
\end{aligned}
$$

1/3 O.B.				
CENTER	PREDICTED $1 / 3$	$0 . B$.	SOUND PRESSURE LEVELS	(dB)
FREQUENCY	INLETAL FAN	SPECTRUM		
(Hz)	DUCT	DISCHARGE	TOTAL	LEVELS

16.8
0.0
0.2
16.8
24.5
7.9

50
63
80
24.5
8.1
32.4
39.4
46.0
53.0
58.9
64.5
69.9
75.1
79.6
83.9
13.3

100
125
160
200
250
315
400
500
630
800
1000
1250
1600
2000
2500
3150
4000
5000
6300
8000
10000
39.3
46.0
53.0
58.9
64.5
69.9
75.1
79.6
83.9
87.9
91.3
94.4
97.4
99.7
101.7
105.0
104.7
105.6
108.6
106.4
107.6
15.1
21.8
28.8
34.7
40.3
45.7
50.9
55.4
59.6
63.7
67.1
70.2
73.2
75.5
77.5
81.8
80.5
81.4
85.7
82.2
84.3
87.9
91.3
94.4
97.4
99.7
101.7
105.0
104.8
105.7
103.6
106.4
107.6
19.8
25.7
31.4
37.3
42.2
46.9
51.3
55.4
58.9
62.2
65.2
67.7
69.8
71.7
73.1
74.1
99.9
75.1
75.0
104.9
73.8
101.9
*1 Hz bandwidth
overall sound pressure level $=114.9 \mathrm{~dB}$

TABLE 6.2

TURBINE NOISE PREDICTION

Input used:

$$
\begin{array}{ll}
P R=8.48 & \rho_{a}=0.01883 \mathrm{ibm} / \mathrm{f}^{3} \\
N=4290 \mathrm{RPM} & c_{a}=968 \mathrm{f} / \mathrm{s} \\
D=3.15 \mathrm{ft} & \rho_{0}=0.0765 \mathrm{lbm} / \mathrm{f}^{3} \\
A=470 \mathrm{in}^{2} \therefore \ddots c_{0}=1116 \mathrm{f} / \mathrm{s} \\
N_{R}=127 & r=50 \mathrm{ft} \\
M_{A}=0.80 & \phi=90^{\circ}
\end{array}
$$

1/3 O.B. Center		
Frequency (Hz)	1/3O.B. SPL (dB)	Spectrum Level* (dB)
50	64.9	54.3
63	66.2	54.6
80	67.9	55.2
100	69.9	56.3
125	71.5	56.9
160	73.8	58.1
200	76.4	59.7
250	78.2	60.5
315	80.2	61.6
400	82.2	62.5
500	84.4	63.8
630	86.2	64.6
800	88.6	65.9
1000	91.4	67.8
1250	93.2	68.6
1600	95.5	69.8
2000	97.6	70.9
2500	99.3	71.7
3150	100.8	72.2
4000	102.2	72.5
5000	103.4	72.8
6300	104.4	72.8
8000	105.4	72.7
10000	107.0	100.5

*1 Hz bandwidth
overall sound pressure level $=112.7 \mathrm{~dB}$

TABLE 6.3
CORE NOISE PREDICTION

Input used:

W_{3}	$=29.5 \mathrm{lbm} / \mathrm{s}$	$\rho_{0}=0.0765 \mathrm{lbm} / \mathrm{f}^{3}$
$\mathrm{~T}_{4}$	$=2355^{\circ} \mathrm{F}$	$\mathrm{c}_{\mathrm{a}}=968 \mathrm{f} / \mathrm{s}$
T_{3}	$=972^{\circ} \mathrm{F}$	$\mathrm{c}_{0}=1116 \mathrm{f} / \mathrm{s}$
$\left(\mathrm{T}_{4}-\mathrm{T}_{5}\right)$ des	$=1529^{\circ} \mathrm{F}$	$M_{A}=0.80$
ρ_{3}	$=0.3647 \mathrm{lbm} / \mathrm{f}^{3}$	$r=50 \mathrm{ft}$
ρ_{a}	$=0.01883 \mathrm{lbm} / \mathrm{f}^{3}$	$\phi=90^{\circ}$

$1 / 3$ O.B. CENTER $\quad 1 / 3 \underset{(\mathrm{~dB})}{\mathrm{O} . \mathrm{B}}$. SPL
FREQUENCY
SPECTRUM LEVEL*
(dB)

PERCEIVED ** FREQUENCY (Hz) (dB) WAVELENGTH
($1 / \mathrm{ft}$)

50	62.0
63	66.0
80	70.0
100	73.0
125	73.3
160	76.3
200	78.8
250	77.1
315	78.6
400	79.6
500	78.6
630	77.1
800	72.1
1000	69.6
1250	66.6
1600	63.6
2000	59.6
2500	55.6
3150	48.1
4000	43.6
5000	39.6
6300	34.6

51.3
0.54

63
66.0
54.3
0.68
57.3
0.87
$100 \quad 73.0$
59.3
1.08
$58.7 \quad 1.35$
$60.6 \quad 1.73$
$62.2 \quad 2.16$
$59.5 \quad 2.70$
60.0
3.41
$59.9 \quad 4.33$
$57.9 \quad 5.41$
$55.4 \quad 6.81$
$52.4 \quad 8.65$
$48.9 \quad 10.81$
$45.0 \quad 13.52$
$40.9 \quad 17.30$
$36.9 \quad 21.63$
$32.0 \quad 27.03$
$27.0 \quad 34.06$
$22.4 \quad 43.25$
$17.4 \quad 54.06$
$11.9 \quad 68.12$
$6.9 \quad 86.50$
$0.9 \quad 108.13$
overall sound pressure level $=87.6 \mathrm{~dB}$

* 1 Hz bandwidth
$\therefore *$ measured in y direction, i.e. at $\phi=90^{\circ}, x$ component $=0.0$

TABLE 6.4
JET MIXING NOISE PREDICTION
Input used:

$$
\begin{aligned}
D_{J} & =0.622 \mathrm{~m} \\
V_{J} & =470 \mathrm{~m} / \mathrm{s} \\
M_{J} & =1.0 \\
T_{J} & =7170 \mathrm{~K} \\
\rho_{a} & =0.30156 \mathrm{~kg} / \mathrm{m}^{3} \\
c_{a} & =295 \mathrm{~m} / \mathrm{s} \\
\rho_{0} & =1.225 \mathrm{~kg} / \mathrm{m}^{3} \\
c_{o} & =340 \mathrm{~m} / \mathrm{s} \\
t_{a} & =2170 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& M_{A}=0.80 \\
& V_{A}=236 \mathrm{~m} / \mathrm{s} \\
& x=0.0 \\
& \mathrm{y}=7.62 \mathrm{~m} \\
& \mathrm{x}_{\mathrm{S}}=0.0 \\
& R_{W}=8.1 \\
& D_{S}=1.359 \mathrm{~m} \\
& V_{S}=361 \mathrm{~m} / \mathrm{s} \\
& T_{S}=2890 \mathrm{~K} \\
& A R=3.8
\end{aligned}
$$

1/3 0.B.	1/3 O.B. SOUND PRESSURE LEVELS (dB)			TOTAL JET SPECTRUM
FREQUENCY (Hz)	$\begin{gathered} \text { PRIMARY } \\ \text { JET } \end{gathered}$	$\begin{gathered} \text { SECONDARY } \\ \text { JET } \end{gathered}$	TOTAL JET	LEVELS* (dB)
50	76.5	81.5	82.7	72.1
63	78.2	81.8	83.4	71.7
80	80.0	82.0	84.1	71.5
100	81.6	82.9	85.3	71.7
125	82.0	86.5	87.8	73.2
160	82.1	90.4	91.0	75.3
200	82.1	93.5	93.8	77.1
250	81.6	94.2	94.4	76.8
315	80.8	94.9	95.1	76.5
400	80.0	95.5	95.6	76.0
500	80.6	95.4	95.5	74.9
630	81.6	95.3	95.4	73.8
800	82.5	95.0	95.3	72.6
1000	82.8	94.4	94.7	71.1
1250	83.0	93.8	94.2	69.6
1600	83.1	93.1	93.5	67.8
2000	82.8	92.2	92.6	66.0
2500	82.3	91.2	91.7	64.1
3150	81.8	90.2	90.8	62.2
4000	81.0	89.2	89.8	60.1
5000	80.1	88.2	88.8	58.2
6300	79.2	87.2	87.8	56.2
8000	78.2	86.2	86.8	54.1
10000	77.2	85.2	85.8	52.2

* 1 Hz bandwidth
overall sound pressure level $=106.1 \mathrm{~dB}$

TABLE 6.5

JET SHOCK ASSOCIATED BROADBAND NOISE PREDICTION

Input used:

$$
\begin{array}{ll}
V_{J}=401 \mathrm{~m} / \mathrm{s} & \rho_{\mathrm{a}}=0.30156 \mathrm{~kg} / \mathrm{m}^{3} \\
M_{J}=1.223 & c_{\mathrm{O}}=340 \mathrm{~m} / \mathrm{s} \\
D_{\mathrm{e}}=1.21 \mathrm{~m} & \rho_{0}=1.225 \mathrm{~kg} / \mathrm{m}^{3} \\
H_{J}=0.3305 \mathrm{~m} & \mathrm{r}=3.5 \mathrm{~m} \\
M_{A}=0.80 & \phi=90^{\circ} \\
c_{a}=295 \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Note: This input applies to the secondary exhaust flow where the annulus height $=0.3305 \mathrm{~m}\left(H_{J}\right)$. There are no shocks in the primary flow.

FREQUENCY (Hz)
50
63
80
100
125
160
200
250
315
400
500.

630 800
1000
1250
1600
2000
2500
3150
4000
5000
6300
8000
10000
102.7
106.5
110.2
113.4
116.2
118.6
120.0
120.8
122.5
128.0
136.6
142.7
143.4
142.0
143.1
142.9
141.4
140.8
139.6
138.5
137.3
136.0
134.8
133.5
92.0
94.9
97.6
99.8
101.6
102.9
103.3
103.2
103.9
108.3
115.9
121.0
120.8
118.4
118.5
117.2
114.8
113.1
111.0
108.8
106.7
104.4
102.1
99.9
*1 Hz bandwidth
overall sound pressure level $=152 \mathrm{~dB}$

TRAILING-EDGE NOISE PREDICTION

Input used:

$$
\begin{array}{ll}
M_{A}=0.80 & \rho_{\mathrm{a}}=0.30156 \mathrm{~kg} / \mathrm{m}^{3} \\
V_{A}=236 \mathrm{~m} / \mathrm{s} & c_{\mathrm{a}}=295 \mathrm{~m} / \mathrm{s} \\
\ell=6.0 \mathrm{~m} & \rho_{\mathrm{O}}=1.225 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{r}=5.0 \mathrm{~m} & \mathrm{c}_{\mathrm{O}}=340 \mathrm{~m} / \mathrm{s} \\
\phi=0^{\circ} & \mu_{\mathrm{a}}=1.4217 \times 10^{-5} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \\
& \bar{c}=9.1 \mathrm{~m}
\end{array}
$$

1/3 O.B. CENTER FREQUENCY (Hz)		SPECTRUM LEVEL* (dB)
50	101.5	90.9
63	104.5	92.9
80	107.2	94.5
100	109.3	95.7
125	111.0	96.4
160	112.4	96.7
200	113.0	96.4
250	$\rightarrow 113.3$	95.6
315	113.0	94.4
400	112.4	92.7
500	111.5	90.8
630	110.2	88.6
800	108.8	86.1
1000	107.2	83.6
1250	105.6	81.0
1600	103.7	78.0
2000	101.9	75.2
2500	100.0	72.4
3150	98.1	69.5
4000	96.1	66.4
5000	94.2	63.6
6300	92.2	60.6
8000	90.2	57.5
10000	88.2	54.6

1/3 O.B. CENTER FREQUENCY (Hz)

50
63
100
125
160
200
250
315
400
500
630
800
1000
1250
1600
2000
2500
3150 4000
5000
6300
8000
10000

1/3 O.B. SPL
(dB)
101.5
104.5
109.3
111.0
112.4
113.0
113.0
112.4
111.5
110.2
107.2
105.6
103.7
101.9
100.0
98.1
96.1
94.2
90.2
88.2
92.9
94.5
95.7
96.4
96.7
96.4
95.6
94.4
92.7
90.8
.
83.6
81.0
78.0
75.2
72.4
69.5
66.4
63.6
67.6
54.6

* 1 Hz bandwidth
overall sound pressure level $=122.4 \mathrm{~dB}$

TABLE 6.7

TURBULENT BOUNDARY LAYER NOISE PREDICTION

(a) Description of Geometry and Program Input

	$j=1$	$\mathrm{j}=2$	j=3	$j=4$	$j=5$
$A_{j}\left(m^{2}\right)$	12.0	12.0	12.0	12.0	12.0
$x_{j}(\mathrm{~m})$	-8.0	-4.0	0.0	4.0	8.0
$y_{j}(\mathrm{~m})$	3.0	3.0	3.0	3.0	3.0
$z_{j}(m)$	1.5	1.5	1.5	1.5	1.5
$\ell_{j}(\mathrm{~m})$	23.0	27.0	31.0	35.0	39.0
$U=236 \mathrm{~m} / \mathrm{s}$			$\rho_{0}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$		
$M_{A}=0.80$			$c_{0}=340 \mathrm{~m} / \mathrm{s}$		
$\rho_{a}=0.30156$			$\mu_{\mathrm{a}}=1.4217 \times 10^{-5} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$		
$c_{a}=295 \mathrm{~m} / \mathrm{s}$					

TABLE 6.7 - Continued
TURBULENT BOUNDARY LAYER NOISE PREDICTION
(b) Predicted Noise Levels

1/3 O.B. CENTER FREQUENCY (Hz)	$\underset{(\mathrm{dB})}{1 / 3 \underset{\text { O. }}{\text { O. }} \text { SPL }}$	SPECTRUM LEVEL* (dB)
50	85.5	74.9
63	86.6	75.0
80	87.6	74.9
100	85.7	72.0
125	83.5	68.8
160	81.3	65.6
200	79.1	62.4
250	76.9	59.2
315	74.7	56.0
400	72.5	52.8
500	70.3	49.6
630	68.1	46.4
800	65.9	43.2
1000	63.7	40.0
1250	61.5	36.8
1600	59.3	33.6
2000	57.1	30.4
2500	54.9	27.2
3150	52.7	24.0
4000	50.5	20.8
5000	48.3	17.6
6300	46.1	14.4
8000	43.9	11.2
10000	41.7	8.0

[^0]: * See figure 2.1.2

