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FLOW OF MAGNETIZABLE PARTICLES IN TURBULENT AIR STREAMS

by

Kent Ritter Davey

Submitted to the Department of Electrical Engineering on July 27, 1979 in partial

fulfillment of the requirements for the Doctors of Science.

ABSTRACT

The requirement of particulate removal from turbulent flows arises in coal
desulfurization, mineral beneficia±ion, water purification, particle research
where particle loss is undesirable, and aerodynamic drag reduction, where the
containment of particulate in a quasi-stationary manner within a turbulent
boundary layer is desired followed by precipitation after a given length.

Special consideration will be giver, to particle precipitation. Light parti-
cle (diameter < 20u) and heavy particle models (diameter > 20u) are developed.
The first involves the numerical solution of a diffusion equation in which
boundary conditions are imposed only where particles enter the volume of interest.
Inertial effects are unimportant. The second model involves a momentum balance
in Lagrangian coordinates augmented by a diffusion force. The diffusion term is
added so that the theory is consistent with inertia and diffusion dominated
limits, and accounts for the effects of turbulent eddies in spreading particles
in flight. Both models lump the effects of turbulent eddies into a measurable
diffusivity constant.

Precipitation experiments with light and heavy iron powders acted on by a
stationary permanent magnet structure are correlated with the numerical model
predictions. A useful degree of accuracy in predicting particle precipitation,
as compared to existing analytical models,is demonstrated for light and heavy
particles.

Positive correlations with data encouraged the use of the heavy particle
analysis in examining particle flight in an aerodynamic boundary layer over a
flat plate. The model predicted that with conventional permanent magnets, 90%
of the injected particulate is collected in 5 meters and 4% would be lost. An
alternative is described in which a travelling wave structure is used to contain
and shuttle particles along in the boundary lx.-Ir. In this mode, in which
particles continually interact with the wall, z: appears that particle loss can
be greatly reduced.

Thesis Supervisor: James R. Melcher
Professor of
Electrical Engineering
and Computer Science
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I. Introduction

The flow of magnetizable particles in a turbulent air stream in the

presence of an imposed magnetic field is of interest to NASA (National Aero-

nautics and Space Administration) in utilizing the experimentally observed

phenomenon of drag reduction produced by the introduction of particles in a

turbulent boundary layer. The earliest observation of this effect were in

the 1940's [1, 2, 3] and have recently been expounded on by Landahl [4, S],

Boothroyd, and Rosetti, and Pfeffer [6, 7]. According to Landahl, the particles

dissipate energy in the small scale boundary layer eddies. Long, thin parti-

cles are most effective in reducing drag. Other investigators believe that

stabilization of small scale motion leads to a reduction in turbulent stresses

near the wall, and to an associated thickening of the wall layer. In gas-

solid suspensions, 10-60 micron particles yield significant drag reduction

with a maximum reduction observed using 30 micron particles. Particles larger

than 100 micron however, increase the drag [7]. NASA is interested in whether

particles can be introduced into a turbulent boundary layer, ducted along the

skin of a fuselage, and then precipitated. Figure 1-1(a) illustrates an

hypothesized configuration over an airplane wing.

The interest in particle convection migration is widely ranging. Soo

[8, 9] has been working with multiphase flows for some time. The applications

F.
	 of and interest in such flows are quite varied. Some examples are as follows:

(1) Determination of the proximity of the particle flow to stream

motion in order to use solid particles as tracers in studying

the flow of fluids [10].

(2) Determination of the diffusivity of the particles with respect

to the continuous phase [11].
e

F
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(3)Determination of the diffusion of fuel and air as influenced by

the relative motion of the fuel particles and air stream in order

to optimize the combustion of solid field particles [12].

(4)Determination of the relation of the motion of solid particles and

the field stream in sedimentation studies and pneumatic conveyance

applications [13, 14].

More germaine to this investigation is work being done in the area of

magnetic precipitation [15, 16, 17]. Liu and Lin give an excellent overview

of work in this area. It is now clear that the use of magnetic fields in

removing pyrite (desulfurization) and other inorganic contaminants from coal

will be important in the next few decades. An IEEE Magnetics conference this

past summer (1978) [18], as well as in 1975 [19], summarized the current work

vZ this area. Currently, most magnetic precipitators use steel wool or a

similar magnetizable mesh to enhance the magnetic gradient and precipitate

particles (Fig. 1-1(b). The first major contribution to this area where the

effect of particle inertia was considered appeared in a thesis by Clarkson

[221.

The central theme of this thesis is the flow of particles in turbulent

air streams, and particularly in the boundary layer interaction. Towards this

end, two practical avenues of research emerge. A detailed study of the precipi-

tation of particles from an aerodynamic air stream is considered. Precipitation

is required for removing particles from the boundary layer. It is also a

measure of the turbulent diffusion magnetic migration processes at work in the

flow. This thesis will focus on precipitation because of both its basic

implications and its practical application to drag reduction and particle

management.

(1) Small particle theory (< 10 micron)
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Inertial effects are small but turbulent diffusion must be

considered. The determination of particulate density is accomplished

by solving a two-dimensional diffusion equation.

(2) Large particle theory (> 40 micron)

Turbulent diffusion is less dominant, and inertial forces are

significant. Particulate distribution is analyzed through a

numerical integration of the momentum equation, i.e. of determining

the particle trajectories modified by the inclusion of a diffusion-

type force.

The principle contribution of this study is the incorporation of

..^.^ulent diffusion theory with an imposed magnetic migration process both

with and without inertia effects. In this work, the imposed migration is

magnetostatic; the nature of this magnetic force to particle interaction will

be explored in depth.

This thesis begins with a review of the pertinent background information

on turbulent flows and the prediction of particulate diffusion. The nature

of the particle magnetic force will be discussed and the inherent difference

between electric and magnetic precipitation considered. Small and large

particle concentration theories will be developed and followed by a presen-

tation of the experimental apparatus, procedures, and theory correlation.

Finally,-the computer model will be used to simulate the flight of particulate

in an air stream over a flat plate. The objective in this final study will

be to understand the controllability of particle confinement in the boundary

layer by altering the density profile. A steady density in the layer is

desirable to obtain the drag reduction benefits. A brief consideration is

given in the concluding chapter to using a traveling wave structure for
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.22.

walking particless along a wall in a boundary layer.

a structure mounted on the top of the duct.

Before beginning turbulent diffusion theory review, a cursory examination

of the basic experiment is in order. The apparatus used in studying both the

precipitation and ducting of magnetizable particles is shown in Fig. 1-2.

Particles are injected through a copper tube at A and blown down a six-foot

duct. In the precipitation experiments, a permanent magnet structure serves

as the source of a periodic static magnetic field source. The magnets along

the bottom of the duct enhance the precipitation of magnetizable particulate

on the lower plate. Particles not collected by this field leave the duct at

D. A velocity profile grid at B is used to promote and control turbulent

air flow.
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II. MAGNETIC THEORY BACKGROUND

A. Magnetic Force

The first question that must be considered whether considering

particle precipitation or ducting is "what is the nature of the particle

magnetic fcrce?" A ferromagnetic particle of radius a, permeability u,

in a field of intensity tf, experiences a total force

2	
110
	 o

The reader is referred to Appendix A for a derivation of the Eqn. (2-1).

The force expression (2-2) is subject to the following two restrictions:

1) The particle is much smaller than the characteristic length

over which the field changes, i.e., the assumption of constant

H external over the particle's dimension is valid.

2) Particle-Particle interactions are small.

For the largest particles the author will be using (100 um in a

field structure wavelength of 5 cm, assumption (1) is quite valid.

The second assumption is questionable when heavy precipitation

occurs. The particles agglomerate into hair-like structures

and enhancement of local field gradients undoubtedly occurs. This

effect is only significant in the vicinity of precipitated ag-

glomerates. (The author attempted to rest.°ict the amount of pre-

cipitant to low levels.)

The two field structures used in this work are shown in Fig. 2-1. The

sinusoidal wave structure used in the ducting experiments excites a trav-

dl
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H Ho*exp(-ky) * (sin k(x-vt) ix	y

+cos k (x-vt) 1  )
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(a) Traveling Wave Structure
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(b) Permanent Magnet Square Wave Structure

` Figure 2-1 Field Structures Used
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eling wave, the speed of which is determined by the frequency and winding

pole pitch. The field above the motor is Laplacian, decaying exponentially

in the y direction with the same wave number k as the drive current 3.

The permanent magnetic square wave structure has an infinite number

of odd harmonics, again Laplacian and falling off in magnitude in the y

direction as the inverse of the harmonic. Thus, a square wave fie l d struc-

ture with surface fie l d Ho would yield in the upper half plane

00	
sin mkx ix

H	 Ho E m^ a-mky	 (2-2)

M-1	
cos mkx i

odd	 y

The field above such a structure is in reality not a square wave. Figure

( 2-2) shows the typical surface normal magnetic force density 1/4" above the

permanent magnet structure. This field can be decomposed into its Fourier

components and represented as

CO
	 sin mkx ix

H =	 H  a-mky
	

(2-3)

m=1	
cos mkx 1y

Using the first harmonic sinusoidal field of Fig. ( 2•1(a)) along with

eqn. (2-1), one arrives at the particle force

(2k) a-2ky Hot iY

or	 (2-4)

F=-ake kyiy

j1
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f k.

where	 a ( iT a3 ) (-=—) (-Z - 1) u H2

2 + , 1 %	 .0

uo

Note, the net force is y directed only and independent of x.

For the more general Fourier expanded field of ( 2-3) H -IT becomes

L H  H. e- (m+Z) ky cos (m-L) kx
	

(2-5)

m=1=1

The force is obtained by taking the gradient of (2-5) and multiplying by

the constant a' of (2-3)

(m+0 k e-(m+0kY cos(m-Q) kx I 
F = -a'	 H  HR	(2-6)

m=1 R=1	 -(m+O ky
(m-0k e	 sin(m-R) kx ix

Equation (2-6) contains many components that will contribute little to a

particle's motion, When m = 2, all the x directed force components vanish.

Furthermore, if m # R, both the x and y force components have a sinusoidal

x dependence which averages out for interaction lengths greater than one

wavelength. This averaging is more effective when Q and m are quite dif-

ferent. Thus the significant force contributions occur when Z = m and is

y directed.

Hm (2mk)e-2mky 
1y	 (2-7)

m=1

1t.

A
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The reader may wonder if there are other significant mechanisms for

producing a magnetic force not accounted for by this model. Remembering that

the force per unit volume is uON-vH, it is evident that the existence of

a permanent moment m yields a force other than in the direction 0(H-H). Non-

colinear alignment of m and H results in a torque on the particle and a con-

sequent particle spin. Hysteresis would have the effect of giving rise to a

non-colinear magnetization in a changing external field. Increasing tem-

perature can cause permeability to decrease (true of most ferromagnetic

materials) or to increase (e.g. magnetite below the Curie temperature).

None of these effects will be considered in this thesis. The author will

be using ferromagnetic powder (p - 7 x 103 kg/m3 ) with a permeability much

greater than uo'

B.	 General Precipitation Remarks

The author shall for the remainder of the chapter limit the discussion

to particle flows where inertia is unimportant. The aim, specifically, in

this section, is to gain an understanding of the important general proper-

ties common to electric and magnetic precipitators. The added complication

of inertia effects will be considered in Chapter 4.

We shall consider the flow of particulate in a fluid of velocity u acted

on by a migration force F. The particle flux is

(2-8)T = n(u + F/S)

where	 n = particle density

s = Stokes drag coefficient 67rnr

and	 qE = electric precipitation

a'aH-H = magnetic precipitation

I1
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Since a
n 

+ v•'r = 0 9 the Lagrangian density follows (assuming v U = 0)

R_ - v•(0 n

along
	

(2-9)

u=U +F/O

When :inertia is negligible, Eqn. (2-9) describes the state of the par-

ticulate. The problem with (2-9) is that the velocity U in turbulent flows

is a highly fluctuating quantity. A typical electric precipitation with

negligible self field effect has a divergence free force field (v-4E = 0).

In such an electric precipitator, the particulate density is constant along

any trajectory flow line. One might wonder if the density would ever de-

crease in a channel even when precipitation occurs. Equation (2-9) shows

that whenever a packet of particulate enters the volume of interest, the

density in the packet remains unchanged no matter how random or fluctuating

its path. The particulate associated with a trajectory is removed from the

flow when it meets a surface. Trajectories entering through solid surfaces

(e.g. side walls in a channel) enter the volume of interest with zero density.

It is the continued mixing of these zero density trajectories with initial

particulate trajectories (which are themselves constantly being removed by

precipitation) in turbulent flow that leads to a density decay down a channel

with a constant cross-sectional value. This is in fact the Deutsch model we

shall examine in the next section. The point is that all analyses can be

said to be specializations of eqn. (2-9), the key issue being how to
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handle the u of eqn. (2-9,b). Before applying this general theory to

electric and magnetic precipitation in a channel, the author wishes to

point out a general property of all magnetic systems.

It follows from (2-4,(a)), that it is impossible to act on particulate

with a'force field whose divergence is positive definite, and have the dens-

ity increase with time. This explains self charge spreading in an electric

system where 4 •F is proportional to the charge squared. The author will

, now prove that the density always decays along trajectories for magnetic sys-

tems in curl -free regions ( in quasistatics this means no current density J).

The proof follows by demonstrating the divergence of the force field

(^v(H • H)) is positive definite. A simplification of the force term can be

made

4(H • H) = 27H4H + S x (4 x -1) = 2H4H
	

(2-10)

Using the Einstein summation convention, the term of interest can be written

4 .4(H • H) = 2 
ax. (H i ax• Hj) = 2 ax as ( H i Hj )	 (2-11)

The last step follows after applying 4•H = 0. Applying the divergence free

requirement to the last term in ( 2-44) again leads to

aH i aH:

4.(4H • H) = 2 ax  a	 (2-12)

M.	 aH.
Now since 4 x H = 0, ax^ = ax and the proof of a decaying particulate

J

density is accomplished.

41
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C.	 Electric Versus Magnetic Precipitation

Before examinin in detail the full precipitation problem, it is helpful

to consider the nature of the.:precipitation process, and to identify the in-

herent difference between electric and magnetic precipitators. Electric pre-

cipitators have been around for some time and analyzed extensively, but there

lies in the physics of the magnetic precipitator a fundamental dissimilarity

that warrants special attention. With this goal in mind, the author will

compare the performance of a charged particle precipitator in the limit of

mixingcomplete	 and the limit of laminar flow with theP	 n9 ( the Deutsch model)

magnetic precipitator in the same flow regimes.

Electric Precipitation: Figure (2-3) is the basis for modeling electric

precipitation in a fully-mixed turbulent duct flow. Particles of charge q

in a plug flow velocity U are acted on by a constant vertical field E o . It

is assumed for the moment, that gravitational forces are negligible. The

particles are charged before entering the precipitation region, perhaps by a

corona source. The axial dependence of density is derived from mass conserva-

tion arguments. In this mixing model, also referred to as the Deutsch model

after its originator, the density is uniform over any cross-section because

of the turbulent mixing. Balancing the particle flux entering with the flux

precipitated and the flux leaving gives

qE
U(n(x + ox) - n(x)) 2aw = - $ w o x	 (2-13)

or

q E 
do = B	 (2-14)
U - la _U
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4,	 The density then decays exponentially as

n

	

	 (x - xo)
ex. -

no	 Rpl

where

(2-15)

Cpl	
2a U

 2Eo B

The precipitation length pl represents that length when roughly 2/3 of the

initial material has been precipitated.

The equivalent precipitator in the laminar flow model is shown in fig.

(2-4). An analysis based on mass conservation again follows but the trajec-

tory flow lines are of importance now. The flux at any position in the duct

is given by

t=nUiy -  q S ny	(2-16)

Since the divergence of flux must equal the negative time rate of

change of the density, it follows that

q —

8t + (U i x - s iy ) vn = 0 (2-17)

Note that the divergence of the IE field should appear on the RHS of (2-17),

ignoring this term is equivalent to assuming self charge effects are neg-

ligible and that migration is dominated by the imposed field E. Any di-

vergence-free force field will result in a constant density along the

trajectory lines.

a
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In the particle's reference frame, (2-17) can be written

at = 0
	 along

.,	 qE .
Ttt=Uix - o i y (2-18)

Equation (2-18) reveals that all particles are removed in the time it takes

for particles to fall the height of the duct (t = 2a/2E o/S). The turbulent

model never removes all the precipitant. The equivalent precipitation length

in the laminar model is

2a(1 - e) U

Rp2	 q Eo/$

(2-19)

Not only does the Deutsch model predict that the precipitant -;s never t;om-

pletely removed, it predicts a longer precipitation length, their ratio being

P1	 e

	
(2-20)

The fact that these two lengths are comparable should be quite surpris=

ing. In the Deutsch model, particles are supplied to the wall via the tur-

bulent mixing and then precipitated because of the electric field. In the

laminar model, migration to the wall is dominated by the electric field

force. The precipitation lengths will provide a basis of comparison in

examining the magnetic precipitation equivalents.

Magnetic Precipitation: The fully mixed magnetic precipitation model

is shown in Fig. (2-5). Magnetizable particles of permeability u, radius a,
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and density n enter the duct with plug velocity U. A flux conservation

balance requires

U 2a (n(x+ox) - n(x))w = s A x w	 (2-21)

where F  is the magnetic force (ignoring gravity). If the magnetic field

structure is a linear travelling wave, (2-5) gives the force as -ake- 
ky 

iy

and (2-21) becomes)

1 doake-2ky	
(2-22)W cU z - -UB2a

Since the precipitation occurs at the wall where y = 0,

n	
(x-xo)

= exp -
no	Rp

3

where	 (2-23)

R	
2a 

P3 ak /S
k

Again particles are supplied to the wall by the turbulent eddy mixing and

precipitated via the magnetic force at the wall. Equation (3-23) reveals

that the most effective precipitation occurs when k is very large, i.e.,

when the traveling wave structure has a very small wavelength. the physics

duscussed earlier would dictate that a small wavelength field would have a

high gradient and thus a large particle force.

In the laminar flow model (Fig. 2-6), particles of perme4bility u and

initial density no enter the duct in plug flow with velocity U. A traveling

2kywave source again exerts a vertical force ake-	 I . The particle flux is

F
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-2ky	 ,.
t = U n 'Tx= _ ake
	

n iy
B

(2-24)

Equating the flux divergence with the negative time rate of change of density

gives

an	 -2ky _	 2 -2ky

8t
+ (U i x

 - akea	 iy )-Vn = - Zak eB	 n (2-25)

,This is a case where the imposed force-field has a limited divergence (see

eqn. 2-9,(a)), unlike our electric precipitator. Thus eqn (2-22) can be

written	 , 1

do _ 2010 a-2ky
dt - ' B

along

dr _	 ak -2ky =
dt

- Ui x - $ e	 iy (2-26)

The decay is consistent with the spreading of the particle trajectory lines.

By contrast in the electric case, the two-dimensional trajectories are paral-

lel. Integration of (2-26(b)) gives the particle trajectory x and y depend-

ence on time as

x=Ut
	

(2-27)

y 
= 1 We 2kyo  _ 

2aS 2 t)	
(2-28)

A 
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s,1

where the particle is assumed to begin its trajectory at x - 0 and y - yo.

The density is found by substituting for y in equation (2-26(a)) and integ-

rating to give

2 
ak2 

t
n 1 - 

B
no	

e 2kyo
(2-29)

The examination of these results as a function of starting position yo

is found by substituting (2=27) into (2-28) and setting y = 0 to give

2ky
X = = e ° - 1	 (2-30)

2ak

From this result or eqn (2-26,b) it is evident that there exists an op-

timum wave number for minimizing precipitation length. Setting 	 = 0 in

(2-30) gives

2kyo
e	 (kyo - 1) + 1 = 0	 (2-31)

The solution to this equation occurs when ky o = 0.8. Because yo can be no

longer than 2a, optimum precipitation occurs for the wavelength

= 21r 2a =8 	 1 m for a 12.7 cm duct. (2-32)

One can now compare the precipitation lengths for the two ilmiting

regimes using this optimum k as was done in the electric case study. The

result is that the ratio of the laminar to Deutsch length is .55. This com-

parison would give the laminar case an unfair advantage. The author wishes

{

L
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to stress the difference of the above case study results from the electric

analog.

The electric case showed no difference (to an order of magnitude) of

precipitation lengths for two entirely different flow regimes. The magnetic
f +

case gives entirely different results depending on the wavelength. The cor-

rect precipitator design for a highly mixed turbulent flow where particulate

is supplied to the walls primarily by turbulent diffusion is to install a

very short wavelength field structure at the precipitating surface. A good

design in a laminar flow regime asks for a wavenumber roughly equal to the

reciprocal half duct height. Too small a wavelength means little field pene-

tration into the duct volume, while too large a wavelength results in little

field gradient and thus little force. This regime has no help from fluid

motion to get particles to the wall.

The foundation of two basic precipitation models is now laid. Further

extensions to these models such as the inclusion of additional field harmonics

to more accurately represent the H-field could be made at this time, but the

author wishes to incorporate these into the full precipitation models. A

refinement of the magnetic ;recipitation models presented in this section is

developed in Appendix B and the model predictions appear for comparison pur-

poses with other results in Chapter 6.
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III. TURBULENCE PHENOMENA

The essential problem in effectively predicting the profiles of magnet-

izable particles in turbulent air streams is to account for the effect of the

turbulent diffusion. Three major camps have evolved in the study of particles

in turbulent air stream: the flux conservation camp, the momentum or force

balance analysis, and the stochastic or statistical attack. Much empirical

work is intermixed with theory and as a result, many terms and seemingly,

unrelated variables are used to represent effective turbulent diffusivities.

The author wishes to introduce some congruity to-these three avenues by an

initial section defining the relevant parameters and discussing their inter-

relation.

A.	 Parameter Introduction and Interrelationships [1,2]

In laminar flow, it is known that the following relations hold for

viscous stress T and molecular diffusion D.

T

P

8v
= v 

ay
	(3-1)

an
at= D02n	 (3-2)

where p = density of the fluid

n = concentration of the particulate (1/m3)

vx = fluid velocity in the flow (horizontal) direction

y = direction perpendicular to the duct walls

v = kinematic viscosity

By analogy, it is hypothesized that there exists a similar relation-

ship in turbulent flows, i.e.,

t

41
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av	 av

p = (v + vt ) ay = vt ay	 (3-3)

an = (D + Dt ) v2n - Dtv2n	 (3-4)

Here vt , the turbulent or eddy viscosity (often given the symbol e) and Dt,

the turbulent diffusivity (often given the symbol e s ) are much larger than

the kinematic viscosity and molecular diffusivity respectively.

The conventional starting point in most fluid mechanics derivations is

to begin with the Navier-Stokes equations, split the velocity components into

mean and fluctuating parts (e.g. v x = Vx + v;), and then average these equa-

tions in time [3]. The x component of the momentum equation becomes

avx + v avx 
+V 

avx + a 
(v17) + a (v v = p+ vv'	 (3-5)

at	 x ax	 y ay	 ax x	 8y x y	 p ax	 x

}	 where V-V is assumed zero, second order terms have been dropped, no z

dependence exists, and v  represents the average of the x directed perturba-

tion velocity squared. In steady state this reduces to

0 = - a ( vx vy 4- vv2vx 	(3-6)

The first term on the right hand side of (3-6) is hypothesized to be

av

ay (vt -5—Y)

which completes the connection with equation (3-3). Since the ratio of

is a constant again, by analogy, it is believed that D t/vt would be a con-

stant. Thus the ultimate goal of determining D  could be found if vt were

^o

41
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known. The major drive then is to determine vt.

One of the earliest schemes for determining the so called Reynolds stress

(vx vy) was through the large scale eddy mixing length, given the symbol X.

The net flux of particles/area/time in the y direction assuming particles

are transferred across a horizontal plane by the same perturbation velocity

vy is

ry = vy n (Y + 4y ) - vy n (Y) = vy( n (Y) + AY y) - v^ n(Y))

where the representative length in the y direction has been replaced by the

F .
	 Prandtl mixing length. The Prandtl mixing length is effectively the mean

free path of a pulse of liquid and is thus a measure of the scale of the

R	 turbulent eddies. Comparing (3-7) with (3-3) and (3-4), one sees that

vyz = Dt if vt equals Dt . Davies [2] points out that due to the elongation,

both shear and angular, the processes of momentum and mass transfer will be

effected. The mixing length Q should be replaced by slightly larger length

which would depend on the physical properties of the system and the intensity

of the turbulence. A further extension of the mixing length concept is to

relate it to the shear stress as follows:

P	
Q2 

( aY )2	
(3-8)

giving

yt	 Q2 ( ay ) 2	 (3-9)

_ I
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AnothO parameter, the shear velocity U* , has been used to evaluate vt.

U* = 
T
—°	 (3-10)
A

Here, To is the shear stress at the wall. The shear velocity can be cal-

culated by determining the pressure drop between two points in a duct; the

details are outlined in a thesis by Videla [3]. From relations (3-7),

(3-8), and (3-10), it follows that

8v	 D
U* = R ay	 = vy	 =	 (3-11)

wall	 wall

Prandtl first suggested that mixing length was proportional to distance

away from the wall through the Von Karman constant (k - 4).

Q = k 	 (3-12)

M ichel et al. [5] and McDonald, et al. [6] have calculated relationships

for mixing	 9 a length	 a function of distance from the wall but their transi-s

tion across the boundary layer is questionable (see Fig. 3-1). Videla

voices a caution about developing the mixing length approach. Apparently

a more realistic transition can be framed by focusing on the character of

the eddy viscosity and its associated shear stress rather than the mixing

length concept.

An approach the author feels may be more fruitful was first fostered

by Taylor [7]. The argument runs as follows: the position y(t) of a given

fluid particle is

t

y(t) _ f vy(t')dt'	 (3-13)

0
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where vy(t') is the Lagrangian perturbation particle velocity in the vertical

direction. (We could just as well analyze the perturbation from the mean in

the x direction.) Now

-	 t
y(t) vy(t) = at yY,(t) = j v; (t , ) vy t dt'	 (3-14)

0

where the overbar signifies average (i.e., the integrand is first averaged over

t). Finally, it follows that after a change of variables (T = t - t') and for

long times

^ V' t V' t-T

-f at yy = 
vy2	 v	 dt' = 

v;^ T	 (3-15)

o	 vy

where 
v 	

is the turbulent intensity in the y direction obtained by squaring

the perturbation velocity in that direction , and then averaging on time.

The symbol T is called the Lagrangian integral time scale and represents

the time it would take for neighboring fluid eddies to become completely un-

correlated. It is often tied in with the Lagrangian integral scale length

and related to the integral time scale through the average turbulent velocity

181•

L = Tvx
	

(3-16)

This length or Lagrangian eddy scale as it is also called, represents the

length a fluid element would travel before originally neighboring fluid

elements would become uncorrelated. It represents the size of the energy

carrying eddies, those which get their energy from the main stream flow.

The smaller eddies dissipate their energy through viscosity. Another form
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r>
of this length scale is given as

L = j R(Y) dy	 (3-17)

0

v^ y
where R(y) = velocity correlation = v ; ) y	 averaged on

v'
Y

The alternate correlation in space

v t	 v t'-t
Ry(t) _	

y	
averaged on t'	 (3-18)

v'
Y

Hinze [8] argues, must be equivalent to the space correlation when working

with Eulerian velocities.

Before drawing the connection between (3-15) and D t , it should be ob-

served that in homogeneous turbulence (which is what the author will be

assuming) the above analysis follows in all directions. Furthermore, the

time and integral length scale will be the same. Finally, the above analysis

was valid in a Lagrangian frame where tagged particles are followed. The

measurements done in this paper will be Eulerian. Following a lead by

Barfield, et al. [9], the author chooses to assume the Eulerian statistics

are valid. The reader is referred to a thesis by Chadam for further dis-

cussion of this topic [10].

The differential mass in the control volume of Fig. 3-2 is

dm = p dx dy dz
	

(3-19)

Locally, the normal gradient of velocity is approximately a constant

8vx/ay. The differential x-directed momentum is
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x

Figure 3-2 Momentum Transfer in Turbulent Flow
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dP = p(
 ay Ay( dx dy dz)x

Y
(3-20)

Integrating over y gives the net x directed momentum over this infinitesimal

rectangular area

Px = 2 p ad 
Yx 

(y-yO)2 
Ax Az	

(3-21)

Differentiating and averaging gives the net longitudinal stress as

8v

TxY = 2 
p ay ^ (Y )	 (3-22)

Thus one observes from (3-15) that the turbulent intensity 7' 2 and the La..

grangian time scale are related to the turbulent kinematic viscosity.

V  = v' 2 T
	

(3-23)

One more point needs to be considered before the procedure is consistent.

Yermolli and Taggert [11] have shown after a lengthy study that the diffu-

sivity and eddy viscosity are not equal and indeed vary with particle size,

density, and mixture concentration. A more accurate procedure would be to

let

D  = Svt	(3-24)

(see Videla [3]). However, their results showed a varied between .9 and 2

for sundry sizes and mixtures. In addition, Chien and Einstein [12]

showed that for various mixtures, a was almost nearly one. The author will

in this work consider $ = 1.0 henceforth. There is a fourth approach

based on the time scale necessary to dissipate the energy of the eddies.
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2
( a

at;t)
	 the interested reader in referred to Hi nze .

To summarize, the different methods of approximating turbulent diffusion

are as follows:

(a) through mixing length

av
vt s k2 ay - vy R	 (3-25)

(b) through shear velocity U* =
/TO

p

vt = U*R	 (3-26)

(c) through turbulent intensity and the Lagrangian (= Eulerian) time

scale

vt = VT' T
	

(3-27)

All of the above assume that D t = N = vt . It remains to demonstrate how

these three attacks can be used to determine particle concentration.

B.	 Flux Conservation

The earliest work using this method for approaching turbulent diffusion

was done by Schmidt (1925) and Prandtl (1926) [13]. A detailed analysis of

the theory is outlined by Bauday [14]. We shall for the remainder of this

chapter consider no other external forces aside from gravity. Beginning

with the mass conservation equations, all quantities are broken up into

steady state and fluctuating parts as was suggested earlier, yielding an

equation of the form

no vy+nwy=Q

where	 y = -vertical direction

I1
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v; - perturbation velocity in the y direction

wy - fall velocity in the y direction

n = average concentration 	
(3-28)

n' - perturbation from average concentration

Here Schmidt hypothesized the n r v-r - Dt an which yields the so-called

Schmidt equation

, an +wy n = 0
	

(3-29)

The author wishes to outline a flux conservation argument because of

its applicability to forthcoming work. If I' represents the flux of particles,

then the net particle flux I' (particles/area/time) becomes

t = convection + diffusion + migration (gravity)

= vn + (Dt + 
D molecular ) Dn + wn

	
(3-30,a)

The divergence of flux must equal the negative time rate of change of concen-

tration.

an	 a(v n)	 av'n
	 a(v n)	 a(w n)

at - ax + y + az + (D
t + Dm ) D2n + ^	 (3 -30,b)

A simpler expression of (3-30) results from noting that the net y directed

flux must be zero. Averaging ( 3-30(b)) and neglecting Dmolecular as small,

gives

0t ay +wyn=0
	

(3-31)

The reader should note that three ,:-^sumptions are inherent in (3-31)--steady

f	
state conditions exist, the particulate is disperses evenly over the channel

and is thL-tefore considered a continuum, and no net buildup of particulate

4
4
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occurs.

The work the author has examined is quite extensive and centers on maripu-

lations of equation ( 3-31) [15,16 ,17,18]. Graf and Raudkivi and Yalin al

give a broad scope of the general analysis, Csanady is quite clear, and

Hinze is the most detailed and complete. aggert and Yermolli as well as

Videla are clear, supplying much of the background .justification.

The key to the problem is in finding a diffusion coefficient to match

a given turbulent flow. Assuming Dt is constant as Hurst ( 1929) [11] first

di-d,

n = exp - [wy(Y-a)]/Dt 	 (3 -32)
0
	 ]

where no is the concentration in the center of the duct at position y = a.

A more realistic approximation to D t may be gotten through (3-3). In

a turbulent rectangular channel, the shear stress is [11]

T = To (1 - y )	 (3-33)
0

where TO is the stress at the wall and yo is the distance to the center of

the duct. Ippen [19] expressed the flow in a turbulent channel as

3

v	 kn (1 I kU )x	 *

Y	 )
vxmax	 kn(1 + v/kU*

(3-34)

Von Karman and Prandtl independently determine the turbulent velocity rela-

tion in 1934 [11] to be

vx - v

"

^

U max = k kn( o)

*

(3-35)

i
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using (3-34), (3-33) and (3-3), one can integrate to get

w

n 	 Yo-Y	
2(v/k U* )	 kU

no Cy' off- v k U* ) 1747/k U*	 (3-36)

and if (3-35) is used,

w

n	 Yo-
y

b]nb CYo-b Y]
	

(3-37 )

where nb is the concentration at some height,b..

Indeed the various attempts to obtain an accurate approximation for Dt

are quite involved. Videla chooses to evaluate different diffusion coeffi-

cients in the different-flow zones shown in Fig. 3-1. The notion that vt

depends on distance from the wall seems reasonable because of the smaller

scale eddies near the wall and the altered flow in the boundary layer. The

summary of his work is as follows:

Laminar sub-layer	 vt = v

k U*	 y U*
Buffer zone	 vt = v{l + -Y tanh (a

 7—
)}

Wall zone	 v = vk y U* 1
-4 where y = non-

t	

v (1-gym) dimensional

m = constant

Defect zone vt = U* yo k y( 1 m )

1 -Z (3-38)

Finally, White attempts to make correlations between v t and the Prandtl

mixing length [20].

Several observations have sparked research along alternate lines [17].

For example, experiments indicate that the Von Karman constant (3-35) of

t
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ith suspensions of neutrally buoyant particles decreases with in-

creasing concentration while the turbulent intensity increases. This runs

contrary to the assumption that flows of neutrally buoyant particles should

remain unaffected since no energy is required to suspend them.

C. Momentum Equation Attack

The first major attempt to describe the motion of particles in a tur-

bulent stream was by Tchen [21]. His starting point was the momentum equa-

tion for the particle

4 ^r3 p d. vP 2	 r (v -v) + 4 ^rr p3	 dvf + 14 ^r3 A (dvf - ddvP)p p dt	 67 p f p	 3 p f dt	 ` 2T p fat dt

	

1i--^	 V oo
1	 2	 3	 4

tr 	dvf dv
+ 6r 3p 	

J	
( dtr d) dt' + Fe	 (3-39)

to :fit-T

5	 6

The subscripts p and f refer to particle and fluid respectively. The terms

are explained as follows:

1) force required to accelerate particle

2) Stokes viscous resistance force

3) pressure gradient force in the fluid surrounding the particle

caused by acceleration of the fluid

4) force to accelerate the virtual added mass of the particle rela-

tive to the ambient fluid

5) force due to the fluctuating, non-steady state flow pattern

6) external force field such as gravity or electromagnetic forces

C
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The analysis involves auto correlations of the fluid velocity, via a

Fourier integral switch into the frequency domain. The result is an expec-

tation value of the square of the particle's position [22,8,17]. The theory

involves several assumptions, one of which requires that the neighboring

fluid near the particle not change with time. This assumption reduces the

Tchen analysis to a pedagogical exercise for turbulent flows.

Khosla and Lederman [23] attempt to build on Tchen's theory and alter

the above limiting assumption. Instead of allowing time rates of change of

the particle (^) to equal those of the fluid (dt ), they hypothesized

p	 f
dv„

P

 - dv„

f	 P
+ yv	 (3-40)

where y is an empirically determined constant. The analysis again proceeds

by going into the fourier frequency regime, and seeks to find the ratio of

the diffusivities of particle and fluid. They conclude that the results are

sensitive to temperature, density of fluid, and the presence of various par-

ticles. These factors limit the method to low frequency and low speed tur-

bulent flow.

A momentum attack that has much credibility and links back to Taylor's

early work [7] was first fostered by Chadam [10] and later elaborated by Bar-

field, et al. [9]. With only the external force of gravity, the equation of

motion of the particle is

da = a(t) - $vp - (1 - pf) g	 (3-41)

P

where
6^rnr

P
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A
f = density fluid << 1

Ap density particle

and a(t) - the accelerative forces imparted to the particle by the fluid

turbulence. If the particle was being dragged by the turbulent

fluid, in a strokes type drag, one could represent this accelera-

tion as avf(t),which is what the author will assume.

Chadam integrates (3-41) directly but without including the effect of

gravity. His analysis proceeds as follows:

t

vp (t) = v0e-at + e-at f e-" a (t)d^	 (3-42)

0
t

xp(t) —0 (1 - e
-at ) _ S e-at 

f e" a(g)dg

0
t

+ S 1 a(g)dg	 (3-43)

0

Squaring and averaging gives

2

x(t) 2 = 22 t + V 2 0 -e at)` + A (-3 + 4e -st - e
-2$t

)	 (3-44)
a	 a	 2a

where A =

t+pt t+pt

f	
J 

a(d a(6) dF de

t	 t

and

0r
A =

$2 

J 
vf (t) vf (t-T) dT

0

j1
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where the note after (3-41) has been used.

With the analogy in (3-15) with Taylor's work, a connection to D t fol-

lows

Dt = !vf (t) vf(t-T)dT

1 d 77	 -7_ 2At
Dt = 'f H x 
	

tlarge' x - S2	
-►

Dt = 
vhf 

T

(3-45)

	

tsmall' 
Xf 

= Vot2 	Dt = v
v 

t

Note, attention is fixed on the change in average squared position. The vo

introduced in (3-42) is a turbulent perturbation velocity, the same as v'

introduced earlier. The objective is to determine the fluctuation from the

steady laminar type flow.

The author would suggest another approach--to integrate (3-41). First,

rewrite the basic equation as (g = 0)

d'
dCIL + SVXp 	 SVX

f
(3-46)

The homogeneous solution of (3-46) gives e -S(t-T) as the impulse re-

sponse Uo ( t-T) of the system. With svx' the drive, v' becomes
f	 p

t

VX 
( t ) = r e-S(t-T) NvX (T) dT	 (3-47)

P	 0	 P

Thus

tr tr
xp=(t) 

J J 
e-S(t-T) SvX (T) dT dt	 (3-48)

o -CO	 p

J1



1	 -61-

interchanging the order of integration gives
t

x 
PM - 1 0 - e- O(I-T) ) V; (T) dt	 (3-49)

-Cc	 p

Barfield [9] (after erroneously writing (3-49)) claims that it is rea-

sonable to assume that the turbulent diffusion process is Gaussian and has

a variance equal to

2	 (t-T)) dT
a	 e-8	 (3-50)

0

and a probability distribution function

f(x	 exp	 X-	 (3-51)
p	 7(47ra )	

(- 
2 a2

Evaluation of (3-40) gives the same result as in (3-44) which agrees with

Chadam. Barfield then generalizes this attack by including the gravitational

field. Integrating (3-41) as before gives (from 3-49 but in the y direction)

t
t-,r)

y M	 e-aC	 [v'(T) - #1 dr	 (3-52)
P	 y	 a

or

t

yp +	 El - e	 v^(T) d-r	 (3-53)
f

where the lower bound on the particle's position is changed to zero for

physical reasons. Barfield again argues that a normal Guassian distribution

applies and the the probability distribution of the function

G = y(t) + -2- Ut-1 ) is
$ 
2

f(G)	 exp 
1 62	

(3-54)
747a	

2 a 2
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y=-^(st -1)
s

and the same variance as in (3-51).

(3-55)

The Gaussian assumption is generally accepted especially where turbulent

diffusion occurs in the atmosphere [18]. Indeed, fine particle plume con-

centration analyses are developed from this view point. If one begins with

the diffusion equation, the analysis is as follows:

an 
+	 n = DTv2n	 (3-56)

whose solution is

	

no	 -x2/4Dtt
n =	 e	 (3-57)

t2 ^^rDt

The spread variance is

,.	 00

E	 ax = nJ x
2 n dx = 2 Dt	 (3-58)

o -f

This variance is identical with Barfield and perhaps guided his reasoning

along these lines. If one thinks of aX as 
2 

and remembering (in line with

Taylor's work) that Dt
 = 2 d x

2 the 3-D plume spread from a point becomes
x

[8,18] (iin a uniform x directed flow)

n	 (x-v t) 2	2	 2
n =	

3^2	
exp	 {-	

2x	
-	

2 - 
z	 (3-59)

	

(27r)	 ax ay aZ	 2a 	 lay	 2az

where Co is the number of kilograms released per unit time at the origin.

E	
In line with (3-45) it follows that aX = vxl t 2 for short times (distances)

and is 2v  Tt for long times. The steady state source distribution is ob-

t



-63-

teined by integrating ( 3-59) from zero to infinity with aX = 2vvTt,
_.	 l

a2 = 271 	 cz = 2 7I Tt at large distances. Thus

n=	 1

47r(v E v̂ 'f 7 T3 ) 1/2 [ x + Y_ + z ]1/2
X y z	 yy'T VT VT

_	 1/2

eXp - vX	 v^T x2 + -Y + z2	 - x	 ( 3 -60)
2v	 X	

vT v 	 V^T

The author wishes only to point out the connection to the momentum

Gaussian approach here. Chadam makes the connection between this probability

distribution and the flux diffusivity model using statistical arguments (in

the next section). However, one last point should be made concerning the

connection between time and distance relationships of diffusivity as seen in

sections B and C. Equation (3-44,b) points out that D  represents the cor-

relation of the fluid velocity with itself, that is the time it takes a

fluid element to forget its neighbor. The diffusivity is constant for long

times when fluid velocities are uncorrelated. Davies shows that in the cen-

ter of pipes diffusivity is constant and changes over the wall region, as

shown by Fig. (3-3). Near the wall, turbulent eddies are more correlated

than at the center. (This is not exactly the same for rectangular ducts.)

This process is considered ergodic in the sense that time averages are re-

lated to space averages. ' Herein lies the reliability of the formulas listed

in section A showing space dependence.

Lastly, a method for obtaining diffusivity in the main core of the

channel based on the pipe friction factor has been fostered by Dhanak [27]

and used in predicting the performance of electrostatic precipitation [28].
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(a) Pipe Cross Section

(b) Radial Dependence

Figure 3-3 Pipe Diffusivity
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Dhanak begins by expressing the eddy viscosity v t in terms of the Fanning

friction factor f of the channel, where

f = ^ 
(ix )2 To
	

(3-61)

This factor is determine by either pressure differences down the pipe or the

Blasius's equation. Although the formula derivation is uncertain, Dhanak

concludes that

Dt = .0708 Re vvrf-	(3-62)
a

He compares the above prediction with

VI VI

Dt = —Y	 (3-63)
avx

ay

(Which agrees with (3-6)) and finds good agreement.

D.	 Statistical Approach

Chadam [10] closes the loop between the Gaussian normal approximation
P

`-	 outline in section C and the diffusion equation. He defines a function

W(v; t,vo,to ) to be the probability of a fluid element with velocity v o at

time to to have velocity v' at time t. A similar function W(x,t,x o ,to ) is

defined for transition of particles from position x o to x. Csanady states

'	 that most turbulent flows behave according to a Markov process, one in

which the velocity autocorrelation

E.	 ^'(T)^^tT—t)R(t) = x	 x	 = e-t/T	 (3-64)
vim'
x
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a the numerator overbar indicates an average over T.

im shows that in such a process, which can be assumed Gaussian,

(v'-vo a-st)2

W((v',t$vo,to)	 1	 e 
S 

(1 - e--St

27r S (1 - e-26t^'f

a A is defined in (3-44)

iermore,

l	 (x-xo) 2
W(X,t,xo ,to ) =	 exp. -	 --Z

(2TrZ)	 2x

(3-65)

( 3 -66)

which would agree with Barfield et al.'s equation (3-52). His next step

however is to find the probability distribution P(x,t) of finding a particle

at position, and time t using

Mr
P(x,t) = J P(x',t') W(x,t,x',t') dx'

It is shown that the function

t+At

B(At) _ f	 a M dE

t

has a Gaussian expectation value

_ (B (At)) 2

W(B(At)) _ ^
(47rA0T )

^2 exp 4AAt

The following mathematical Taylor expansion

(3-67)

(3-68)

(3-69)

dl
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P(x"t' ) + R-r (xst' ) = P(x,t' ) - IAx(P'W + PW) d(Ax)

+f ^- (PW" + 2W'P' + P"W) dpx

+ 0(Ax) 3 	(3-70)

,e the primes in the integrals indicate space derivatives)

.es with (3-67) to

2

6 ax

Thus, again a turbulent diffusivity results equal to 74T.

The author wishes for completeness to examine two more approaches.

Batchelor [24] defines a characteristic function 0(^) in a normally dis-

tributed Gaussian field

^(g) = exp LJ S t - 9i 9j x x^]	 (3-72]

(adopting Einstein summation convention)

Conditional probabilistic arguments are then used to link ^(9) to

P(r,t). This involves transforming between C space to x space. The details

are given in Barfield [4]. The result after much calculation is

at P[r't] = at (xix^) a2P r,t +
	

•DP (r,t)	 (3-73)
axiaxi
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and

t

at (x
i xj ) - 2 viv^ 	 Rii (T) + Rji (T) dT 	(3-74)

0

vi
where R^ ii (T) = i --r-

, r	
(averaged on t)

v i v^

Now for large times the integral in (3-74) becomes the Lagrangian time

scale T and (3-71) becomes

aP r,t _ 
iv v!T v2P(r,t) +	 • v P(r,t)	 ( 3 -75)

at	 -	 s

Finally, Soo MI begins by expanding the fluid velocity in an infinite

spectrum of riarmonics (isotropic turbulence)

E	 00

vX = vy = v I =

	

	 Am sin 27r t	 (3-76)'

m=1

He then couples this into the force equation

dv

dt	
S(vf	vp ) + g	 (3-77)

Next, (3-76) is squared and averaged to give

2
,2 = 1 Z	 Am

v xp 2 1+(2^
m-

- 1
	 a

-^ -	 A 
2	

2

v	 - e
	

+-	 (3-78)
yp	

m=1 1+( S 

) Z'
 S
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After expressing the correlation function R(T) in terms of these infinite
x

components and the scale of turbulence ! R(x) dx, the Einstein equation for
-o

diffusivity [26] is used to relate 'the diffusivities of one phase of the

flow to the other phase. The analysis is intended for intimately mixed or

multiphase systems. His conclusion is that the correlation, scale, and in-

tensity of one phase of the system can be calculated from statistical re-

lations on the other phase.

The author will henceforth adopt the position that the turbulence ef-

fects can be incorporated into a diffusivity model where
D-iffusion = DtVn

and Dt is represented by the turbulent intensity v^ times the Lagrangian

00time scale T = f v 
T_ v t-T dt	

The time scale is physically related to
o	 v'

the approximate time for turbulent eddies to decay. It is related to the

integral scale L (size of largest eddies) through the mean flow vx.

T= 
L	

(3-79)
_X	 .

D  has been found to behave roughly as b e-*y + d in channels. Its measure-

ment will be described in Chapter 5.

F
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IV. TURBULENT PRECIPITATION THEORY

A. Introduction

Two precipitation models have been pursued in Chapter 2:

(1)a fully mixed turbulent model (Deutsch) where the particulate is

supplied to the wall via eddy mixing and the cross sectional density

is uniform (representing an effective D  for transverse diffusion

equal to infinity)

(2)a trajectory model where the flow lines are determined from particle

conservation and in this method of characteristics analysis the

density is found to decrease along trajectory lines.

This chapter outlines a method of predicting magnetizable particulate

precipitation from a turbulent airstream. Two analyses emerge based on the

above models. The first, appropriate to light particles, applies where

particle inertia is negligible. The theory is analogous to the Deutsch model

so far as the physics of the problem (both accent the importance of turbulent

diffusion), and the analysis parallels that in the trajectory model. The net

particle flux has four components:

gravitational magnetic
t = convection + migration	 + migration + diffusion

=Un+ s n+a' V s'H n+DOn

where D = molecular + Dturbulent - Dturbulent
	 (4-1)

The diffusion equation results after setting the divergence of (4-1)

equal to zero.

The second heavy particle analysis considers particles in which ine •_^tial

effects are important. In-the consideration of very heavy particles, the theory

to the laminar flow study of chapter 2. The particles with large

II
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inertia ride through turbulent eddies, and diffusion can be neglected. This

E
	

analytical theory is expressed by the particle momentum equation which pro-

daces information of particle trajectories:

mdv
dt + 67rnrpvp - 67rn pvf + mg + a 1 tR-R)
	

(4-2)

The important point of this investigation is in connecting these two

analyses to produce an explanation of particle precipitation. Summarized in

Table (4-1) is the interconnection of particle size, fluid flow, and the two

analyses. The heavy particle turbulent section is split to indicate the model

dependency on the degree of turbulence (lower graph). In reality there exists

a gray area in which both diffusion and inertia are important; for this, a

hybrid model will be developed in Section D-2.

A synopsis of this chapter is shown in Table 4-2. The decision of which

size-dependent analysis is valid must proceed from consideration of the rele-

vant system characteristic times. Three models evolve in the light particle

diffusion analysis. The three differ by diffusivity representation, boundary

conditions, and computer simulation used. The heavy particle analysis is

subdivided according to whether diffusive effects are considered.

B. Characteristic Times

The major question to be answered is, "For what size particles are the

effects of diffusion and inertia important?" This is best answered by

examining the characteristic times of the sy:rtem. In balancing the inertial

and viscous terms in equation (4-2), one arrives at the inertial-viscous

time

1.659 x 10 -3 sec 8u iron particle

_ m_ 2 r2	(4-3)
Tin-vis 6Fnr 9 An

.3137 sec 110u iron particle

S
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Flow Laminar Turbulent

Size Flow Flow

Particle

Trajectory

Model

Trajectory
Heavy .`

Model
Hybrid

Model

(medium heavy)

Trajectory Diffusion
Light

Model Model

d

Degree of Turbulence

Table 4-1 Model Applicability given Particle Size and Fluid Flow
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Light Particle Analysis

Diffusion Effects

Characteristic Times

Heavy Particle Analysis

Inertial Effects

LIGHT	 PARTICLE	 ANALYSIS

Non-Causal Causal Perfunctory Causal Fundamental

Model Model Model

Core; Dt = Dt (x) Core; Dt = Dt (x,y) Core; Dt - Dt(x,y)
Dt no y dependence Lower Region; Dt = 0 Lower Region; Dt = 0

Bondary layers; D,.=0

Transverse an	
0	 on top and

ay n	 0 on top n - 0 on top
Boundary

Conditions bottom of core an 0 on bottom of no lower conditionTy -
y

core

balanced 2-sided y 1-sided backward migration y derivatives
derivatives

Computer forward 1-sided x 1-sided backward x derivatives
derivatives

Simulation

axial march along march in x with simultaneous solution of
channel transverse point

— _ — n=0 n=0In 0

y o=.031cm
Dt

DtD	 Core
t

A=.5cm A=.031

0 ^0 cm (no_
0 _ ay ay conditic— — _ — - — — — —

s

HEAVY	 PARTICLE	 ANALYSIS

Inertia Model	 Hybrid Model

Momentum Equation Attack - particles 	 Hybrid Momentum Attack - diffusion

ride through turbulent eddies-no	 I	 term added to momentum equation

diffusion (like laminar flow -theory)	 by superposition

TABLE 4-2
	

Chapter 4 Synopsis



(4-4)

3.905 sec 84 particle

.02066 sec 1104 particle

a
Tgrav-vis 
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For processes involving times shorter than 
Tin_vis 

experiments show that

inertial forces must be considered] a system where the characteristic times

were longer than Tin_vis can be shown experimentally to be accurately

represented by the viscous dominated flux expression (4-1).

The choice of proper characteristic system time deserves careful con-

sideration. Because the particle's residence time is defined to be how long

it takes a particle to traverse half the height of the duct, special attention

to force terms of the RHS of equation (4-2) is in order. The basis of com-

parison is the time it takes a particle to fall the duct half-height in a

viscous dominated environment. The gravitational-viscous time is

F.
The equivalent magnetic-viscous time calculation requires more information

concerning the field strength and wavelength. For a single harmonic sinu-

soidal field, the magneto-viscous time becomes

0
T _ _	 1	 dy _ R (e2ka _ 13
p	 ak ky	 2aka	

6

(4-5)

3
and with a = 4	 ( 3 )(u -1)40H02 , a 1000 Gauss, 8 cm wavelength field

2+P— o
gives	 40

102.5 sec 84

Tmag-vis

	

	 (4-6)

.542 sec 1104
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Finally, the analogous diffusion time is

"P ;M7
	 (4- 7)

'f .A'+	 V .	 V , r , "
The measurement of the turbulent coefficient Dt (-D) discussed in Chapter 2

is outlined in Chapter S. A representative diffusivity for such a system is

.002 n2. Thus, the diffusion time becomes
TD - 2.016 sec, independent of particle size
	

(4-8)

Examination of the times in equations ( 4-5) to (4-8) allow a more in-

telligent handling of equation (4-2). For the 8u particle, the inertial-

viscous time is much shorter than the characteristic migration or diffusion

F

	

	 time, indicating that the viscous-dominant flux analysis posed in (4-1) is

valid. In the heavy particle analysis,however, the characteristic inertial-

viscous time is not short. Therefore, inertia has a significant influence.
F

The fact that the diffusion time is much longer than either of the migration

terms, however, illustrates the reduced effect turbulent diffusion has with

larger particles. The momentum equation (4-2) without the diffusion term

appears to be the correct approach here. Thus there exist two well defined

avenues of analysis depending on the size of particle being used and the
F

resulting relative time constants.

The larger particles used in the experiments were 55-65 microns in
4- 
C

diameter in which the gravitational viscous time and magneto-viscous time

are .082 seconds and 2.08 seconds respectively. Clearly these particles fit

` into an intermediate domain where diffusion is not negligible, especially

over distances smaller than the duct half height (e.g. the injection tube

diameter). This intermediate region will be considered in section D of this



0.3
avg.	 (.127) 22	 m

(4-11)
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C. Diffusion Model - 4u Particles

The above analysis revealed that 4u particles are viscous dominated,

inertial effects are negligible, and thus a flux, particle conservation approach

using equation (4-1) is in order. Assuming steady state operation, the

divergence of F can be set equal to zero to give

-V- (Dpn) + ta ^ V 	) n -	 + U —`	 0
	

(4-9)

Using a single harmonic field with the magnetic force equal to ake -2k', (4-9)

becomes

-V-(DVn) + (_ Lies 
_ $ )

2-2ky

+ U	 + 2ake
a
	 0

(4-10)

The next step in the analysis is to check whether any simplifications can be

made. In this study and indeed for most boundary layer analyses, the con-

vective horizontal flux dominates the corresponding diffusive flux. A

characteristic density analysis elucidates this point.

Given a uniform injection of particulate during a tune sufficient for

10 grams to be spread over 2 meters of duct, the average concentration is

and assuming a linear axial concentration profile, the density n is typified

by

n - -0.6 (x-2) k
	

(4-12)

m
2

In a 4.3 sec flow with a diffusivity of .004 sec the convective and

diffusive fluxes are respectively

k	 4-13
r	 --2

(m -sec.)
(	 )

I1
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rdiffusion 
(.004)(.6)	 .0024 -	 —	 (4-14)

(m -sec)

Thus the axial diffusion term is justifiably ignored. As shown in the last

section, vertical diffusion must be considered to be at least comparable to

gravitational and magnetic migration.

The equation to be solved then reduces to

1

-D a 2n aD an _
 

ME an _ ake'	 a n + U Ca- -a
 / S

 ana7 _ a
.y ay s a yy	 aY maxi a / ax

2 •2ky

	

+ 2 S e	 n= 0	 (4-1S)

where D is a function of y and x. Including the field harmonics, (4-15)

becomes
1

a.2n m a n	 an	 a- a \ 7 an-D = - 77- Vm(Y) W+ U^ ^--1^'	 ax + Vm (Y)n = 0
Y	 /

where

Vm(y) = vertical magnetic migration velocity

(4-16)

_ 43 ru	 3 k	 2- 2kmy
7rr `uo, -1) (2 . Po m=1 mBm e

0

V. (Y) ay _ ^ ^r3 ( - 1) ( 3 ) 
2u2	

m28m a-2kmy
02+-u	 o m=1

0

The imposition of the proper boundary conditions on equation (4-15) is

necessary for numerical solution. The fact that (4-16) is first order in

x and second order in y suggests two boundary conditions on y (one each at

the top and bottom of the duct) and one on x (at the entrance to the duct).

The boundary condition on x is simply the specification of the incoming

A
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particle density (no). The principle of conservation of particle flux must

be employed to arrive at the vertical boundary conditions.

Further analysis is best pursued in stages. This step progression is

needed to highlight the internal issues involved in a self-consistent solution.

First, a non-causal theory is developed assuming a uniform diffusivity across

the duct with a step change to zero a distance A from the walls. The

equations are then represented in difference form. Axial differentiation

will be represented by forward one-sided derivatives yielding a very straight-

forward solution. This is then followed by two more exact causal theories

in which representations of diffusivity are used. Boundary conditions and

representation of axial and vertical derivatives are examined carefully to

be consistent with causality.

1. Non-Causal Diffusion Model

The measurements of turbulent diffusivity (Chapter 5) along with the

observations of Davies discussed in chapter 3 indicate the diff sivity is

approximately constant over the duct cross-section and decreases to zero

near the walls. If turbulent contributions to the particle flux at the

walls are negligible, a resonable model is one with the problem divided into

(1)a boundary layer region close to the wall where diffusion is

insignificant.

(2)a region over the duct interior where turbulent diffusivity is

constant with y, but does has an axial dependence.

Thus, in both regions, the 8y term in (4-16) drops out.

The above assumptions (summarized in Fig. (4-1)) along with flux

conservation suffice to give the vertical conditions for the inner diffusion

region. At.the lower boundary (y = Q ,, flux continuity demands

j1
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[-Dt 7y - man + a'o(A•R)n]	 _ [ -man + a'V A•R]	 (4-17)
y = 'a t	 y=A_

or an = 0 at y = o+	 (4-18)

At the upper boundary (y = 2a - A), continuity again requires

[-mgn + a 10 A•A]	 0[-D+ an - mgn + a'0 11-R)	 (4-19)
y = (2a-A) +	°0'	 y = (2a-A) -

Equation (4-19) implies

3n = 0 at y - (2a-A)_	 (4-20)
ay

In the layer regions it is appropriate to apply flux conservation, but

with D  = 0. This is identical with the particle trajectory theory discussed

in Chapter 2.

Each of the above model divisions will now be examined in more detail.

The greatest difficulty is with the lower boundary. There are two physical

conditions that must be realized in the lower region--no particle reintrain-

ment occurs, and diffusivity for iron particles in the laminar sublayer must
w

be zero (i.e. molecular diffusivity and brownian motion do not enter for the

size scale particles we are concerned with).

An understanding of approaches employed by hydraulic and chemical

,engineers to the precipitation problem is helpful. A method used often in

hydraulic's literature (Barfield, et. al. - see Bibliography, Ch. 3) for

modeling an absorbing wall is to force the density to zero at the wall. The

pertinent diffusivity is considered to remain high near the wall in sedi-

mentation research, for instance. This zero density requirement implies two
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conditions which give credence to this assignment.

(1)zero density at the wall insures a positive gradient away from the

wall and thus only downward diffusive flux.

(2)large migration (gravitational) flux to the wall with abnormal

depletion of the core region is prohibited by the assignment n - 0

at the wall. The density is required to be small in the neighborhood

of the wall, since asry large gradient would constitute a correspondingly

large diffusive flux (which could not exist in steady state).

A typical engineering problem is the dissolving of a salt at a wall into

a flowing liquid. The wall molecular diffusivity is very important again.

The wall for such a problem is often supplying flux into the duct or keeping

the particle density in equilibrium, in which case the diffusive and migration

fluxes balance (implying a negative density gradient at the wall). At the

laminar sublayer where the diffusivity increases tremendously, the normal

density must be nearly zero.

Appendix D shows the analytical solution of a three region diffusion

problem (Fig. 4-1) with only gravitational migration, and no x dependence.

The boundary conditions are n = n o at y - 2a and n = 0 at y = 0. The

diffusivities are allowed to be nonzero in the laminar sublayers. The

result is that the normal density gradient at the boundary layer equals the

ratio of the diffusivity in the sublayer to the diffusivity in the core.

Also plotted are density profiles for various ratios of core to layer

diffusivity as well as variation effects of diffusive to gravitational

migration times. The density gradient in the sublayer is determined from

trajectory theory and is fixed by the gravitational and magnetic migration

terms (Appendix B). Negligible layer diffusivity therefore implies zero
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Actual Diffusivity
	

Assumed Diffusivity

— ------------------- - - - -  
Wall Region- - - Dr-- ------

2a	
Mid Region, Dt uniform 4n y

p	 Wall Region	 Dt = 0	
x

System Representation

Figure 4-1 Small Particle Diffusivity Assumptions -

Non-Causal Model
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core gradient.

The condition can be examined less rigidly through the exponential

magnetic force decay in the duct. Changes occur less rapidly axially than

transversely. Small axial flux changes imply a somewhat constant transverse

flux. (This hypothesis will be used to explain density profiles in chapter

6). In the core, magnetic migration is small. One mechanism by which flux

is conserved from the core to the layer region is by diffusive flux di-

minishing at the lower layer where magnetic migration increases. The

diminishing flux appears as a decreasing gradient near the lower layer.

Figure (4-2) shows characteristic profiles of these two cases as well

as a calculated density profile for magnetizable particulate deposition where

the wall is absorbing (i.e., no reintrainment occurs) and molecular diffusivity

in the laminar sublayer is zero. Zero sublayer diffusivity is a reasonable

assumption for 2-8 micron iron particles.

From this there appears to be a sound basis for approaching the problem

as a multi-region one, the core being a constant diffusivity diffusion

problem with boundary conditions ey = 0 at y = A and y = 2a - A. Differences

with other engineering disciplines have been considered.

There now remains the task of matching the core .region solution to the

.aminar sublayer regions. Because D = 0 in the sublayers, the method of

haracteristics approach discussed in chapter 2 can be applied. With a single

►armonic field the Pertinent equation is

2 - 2ky	 - 2ky,l= 2----^ n along ^ _ [f + ^ - ake $ iy	 (4-21)

ind with the full harmonic field (4-21) becomes

U _ -Vm(y)n	(4-22(a))



I; F

11

n
(a) Density Profile-Absorbing Wall

2a 	
nwall	 n

(b) Density Profile-Dissolving Salt

y
2a

.8

.6

.2

fusivity
2

m /sec

gnetic For ,.e

Decay

.4

"t-, __J
.003

Dt(m2/sec),
--	 -	 -	 -	 0

(a) Computed Density and Diffusivity, X=12cm, x-= .956m

Figure (4-2) Density Profiles

j 
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along

dr	 a- a. ^"	 m T	 (y) '3t = Umax (, a	
lx S ly - 

Vm y

6

(4-22(b))

Here the explicit form of U has been inserted. Integration of (4-21,a) shows

that along the particle trajectory lines (4-22,b), the density decays as

n = m + um (Yo)

n mg m y
(4-23)

where nl and yo are the initial density and position of the particulate in

the layer (i.e. at y - A). The particulate distribution on the bottom of the

duct is given by (4-23) with three specifications -- n  is set equal to the

density of the diffusion analysis ((4-16) at y = A), y is set equal to zero,

and the appropriate axial position for each density is found by numerically

integrating (4-22,b) across the boundary layer. The splicing of the different

region solutions is thus accomplished.

The upper layer must be investigated from a different perspective,

because all vertical migration is downward. Since the difusivity goes to

zero in the upper layer, no mechanism exists for particles to enter this

region. In other words, the particle trajectory lines emanating from the

upper boundary must have zero as their initial density. The upper layer

correct boundary conditions are: - n = 0 and ^ = 0. Although nutrerical

integration shows that the two conditions give nearly identical precipitation

results, the densities do differ throughout the volume. The zero density

condition is only a result of no upward migration forces. The zero gradient

condition exists independent of migration force direction--this latter

condition therefore seems to be more fundamental. Figure (4-3) summarizes

the system representation and boundary conditions used.
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Before examining the numerical method of solution, it is helpful to

normalize the defining equation (4-16). Variable normalizations and

relevant times are as .follows:

Yi â
x=L

F	 t=	 t

TDiff

n=n

no

g.

2a 2
TDiff. 

a	
t

T	 __	 2a
grav-vis	

(mgs)

_ 2a
Tmagnetic-vis m

_	 L

TRes U^ as-1 -a1-at^-9-

a	 1

1
Tmag-k = 

(4-24,a)

(4-24,b)

The diffusion equation is now written

_ a2D _ . TDiff	 a. (n) _ TDiff aan + TDiff a n

aY Tgrav-vis Y Tmag-vis ay-
 

TRes	
ax

_ TDiff n = 0
Tmag-k —

The boundary conditions are that 	 1 at x = 0; 8Y = 0 at y

a (^ =  0
and	 ay-	 at Y = 1 - 7a—

or n=0

F



The proper method of solution in the duct diffusion region with as

initial boundary condition on x is to sequentially step in x space. A finite

difference system was used to numerically solve equation (4-15).

Figure (4-4) shows the partitioning of the diffusion region into a number

of points separated vertically by Ay and horizontally by Ax. In finite

difference form, equation (4-24) at point i,j becomes,

-rni+1 + ni _1 - 2ni^\ 

-TDiff l T 1	
+

rav
_
vis	 mag``	 D	 l	 -visg 

Cni+̂ ni-i j + 
T
TDiff (ni,j+l

IIx - 
ni,j 1 _ 

T
TDiff ni =

	

.y	 l	 /	 0 (4-25)

	

Res	 nag-k	 '^

Because all the first column elements are known (n _,j _ 2 = 1), expressing

(4-25) for the (j-2) elements yields a solution of the (j	 elements. The

net system solution is obtained by stepping column-wise from left to right.

At the lower boundary if one were to specify that the next row of elements

(i+3) have the same value as the (i+l) row elements of the same column, then

the condition - = 0 at Y = r would be insured. Matching the (i-2) row

elements with the (i) row elements at the upper boundary insures the same

condition on the normal density gradient at the top. If the alternate

condition (n=0) is desired at y = I. - a, then the last set of difference

equations must stop within the diffusion region, i.e., at row (i). Appendix

E lists the programs KDDI4 used with n=0 on the upper layer, and KDDI9 with

Dn = 0 at the upper layer. The correlation of the experimental result with

the above predictions is discussed in chapter 6.

A point about stability is necessary before concluding this approach.

The worst possible solution perturbation is oscillatory in y having the form
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at a given grid point (see Fig. (4-5))

fi oj 0 
fj (-1) 1	(4-26)

The criteria for stability is that such a perturbation not grow in x. With

such an oscillatory pattern, equation (4-25) including diffusion and con-

vection terms only, demands that

(fi+l,j + fi-1 - 2fi	 s TDiff (fi.j+1 fib) (4-27)
TRes	 Ax

or with equation (4-26)

ant 
TReS

f i , j+1 f i tj	 . 1- 77 T	 (4-28)

At Diff

If the perturbation f is not to grow the second term in brackets must not

exceed 2.0 in magnitude. This condition translates to a restriction on 4x,

i.e.
2

Ax - TDiff
(2)"Res

(4- 29)

For the present analysis with a typical residence time of 0.23 secs, a diffusion

time of 4.03 secs (Dt = .004), and Ay = .1, Ax must be less than .087. In

this analysis, Ax was set to .0125.

It is interesting that the first solution. of (4-25) involved finite

difference equations as above, but with two boundary conditions on x. A

boundary condition of n = 0 was imposed approximately 24 duct widths down-

stream. The finite difference system was imposed Cas above, but the network

of equations was solved simultaneously using a Gauss-Jordan elimination

technique. Except in the neighborhood of the downstream point, the solution

was of the same order as the above stepping procedure. The stepping procedure

j1



M
O

N1v4
.

IIM
wsr0MLC

d

uN0aN00•r^l
u0

mq o60NWwAw0Mr—I
•^i
,.OL
I

C
I]IC
O

W

I11III
^
^
 
GI1•II1IIIII1I1I1II1IIII

f1I

••

•n

I

-
9
2
-

I1IiI

4
 
^
^

iII1I11I11IttIIIIt 	
1 	

,•1

I4I	
I

i	
I

iI	
I

I	
I

I	
"'^	

I
I

s



i

r+N

-93-

eliminated the need to solve simultaneous equations but the question of

causality when using the one -sided forward derivative in x must be considered.

The results of the non -causal deposition prediction are compared in Chapter

2-A.

2. Causal Perfunctory Model

Three modifications of the non-causal solution are in order. The

question of causality points to the first refinement, calling for a more

careful examination of the boundary condition imposition as well as repre-

sentation of first order partial derivatives. With no diffusion, equation

(4-24,b) becomes a first order partial differential equation which can be

solved using characteristic trajectory theory. The correct analysis in this

limit would impose one boundary condition wherever particle trajectories

entered the region of interest. Spatial derivatives in x and y would be

evaluated in a one-sided difference representation always using particle

location information of earlier time. The exact solution should be con-

I-	 sistent with the trajectory analysis and in fact, degenerate to it as

diffusivity decreases. One approach to the problem then would be to extend

a finite difference grid through the upper and lower laminar sub-layers,

imposing the boundary condition n=0 at the upper surface. It would also be

in order to use one-sided partial derivatives consistent with causality for

non-diffusion terms. This solution would surely be more fundamental.

Unfortunately, the refinement of the grid necessary to develop information

through the boundary layer presented numerical difficulty to the small PDP

11-03 computer available in this study. It was decided to continue to split

the problem into regions.

The nature and position of the split leads to the second solution refine-

went--the transverse dependence of the turbulent diffusivity. Equation (3-38)

f^
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reveals one representation of the diffusivity vertical dependence. The

point was made in chapter 3 that according to Davies, the diffusivity is well

represented by Figure (4-6). The turbulent diffusivity is linear over 1/4

of the duct half -height dropping very quickly to zero in the neighborhood of

the laminar sublayer A. The thickness of the layer is computed from Schlichting

(chapter S- RD to be

A :	 Sv	 1 - .031 an	 (4-30)
7 1 —^ 

.03325 
Uav 

v  a T

Here Uavg , the average duct velocity, was assumed to be 4.57 m/sec. Schlichting

also shows that the axial flog in the sib layer can b e represented as
7 1- 1

U [.03325 Uavg vT. a T]  
(4-31)

V

The equation to be solved in the core is identical to (4- 24) , b ut with

f	 the § term of (4.16)
2
n _ TDiff	 M _ TDiff	 ^n _ 1 )D, an + TDiff an

Y Tgrav- vis ay Tmag- vis 3Y b ay ay, TRes ax

_ TDiff n = 0	 (4-32)
Tmag- k —

The normalization of (4- 24 ^ ) ^r as used in (4-32).

The model alterations incorporating these refinements appear in Figure

(4-7). Boundary cmiditions are imposed on the top and left side of the duct

W sere trajectories would enter. The grid is extended into the upper layer

where the condition n=0 is imposed.

The Rv er boundary condition at y=A is necessary if D  is non zero at

It	 I_..



DtE

A

-
9
5
-

A
3
T
A
T
s
n
3
;
T
Q
 
j
u
s
Z
n
g
a
n
y

A
l

"
 
;

a,usrvbc^vavAcouuNdN0WWARGJ7
u1	

,L
N
	

I^+

E-4

^
oICl

RI	
^

^
	

o
0

4	
rlw



•	
•

o
 
T

m
l
e
t

-
9
6
-

^
 
o

u 	
a

N.-4II

N

W
,- c I' -- ► I

ONal

a

♦•n•rl

•
	

r+
	

•
 

'' I

•n

•
•'"1

III1

•
	

•
	

C
1

1^

Cl

^	
H

I	
^

I	
^

I 	
Od

1	
.
^

1	

^

•
n

v1
IiIIIII

0
srI^

000O
l

C01•+dWwWAa^<r

Wr-Icti
N0c^
UWOuC0W4!
at
\Ia^s'ae
n

I
I



i

.
-97-

that point (2nd order in y). As figure (4 -6) points out, a discontinuity in

Dt exists at y-o. The imposition of D t-0 at y-o implies significant alter-

ations that will be discussed in the following section. The discussion in the

causal model section of the boundary condition y- - 0 at y-A applies in this

model as long as Dt is non zero throughout tl+e: :ore.

The trajectory model was then meshed with the diffusion solution at y=.6

as explained in the approximate model solution.

The finite difference representation of (4-32) consistent with causality

and degenerating to the trajectory analysis as Dt goes to zero becomes

(ni-1,2 ♦ ni^,l - 2ni

AY

_ TD^ + TDiff

	 -1'i

	

g_	 -
 11i 'jTgrav-vis	 Tmag-vis	 dY

1 ni-1 - ni+l,] - + TDiff	 ni,j - ni,j-1
b 8Y AY 	 TRes	 ox

_ `Diff	
Si0
	 (4-33)

Tmag-k l,j

Note the ^ term uses a two-sided derivative of density, while the migration

and convection terms use a one -sided derivative. The solution is quite
general in that it is applicable to any type of migration. If migration were

s,p in some region and down in others (e.g. due to positioning magnets at

y=2a as well as y=0) a point by point check of the direction of local migration

would be necessary before one would know whether to choose n i-l'j or ni+l^j
8n

for evaluating a,Y.

Causal representation of the x derivative convective term necessitates

^4
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the simultaneous solution of all densities in a single column before proceeding

to the next column. The point to remember is that the axis in which dif-

fusion is important will require simultaneous solution of all points along

that axis. The other axes give the directions of sequential numerical

stepping.

Appendix F lists the program KDPFZ used to predict the causal perfunctory

light particle diffusion theory solution. The above discussion illucidates

the requirements causality imposed on boundary conditions and numerical

differentiation. A comparison of this models' precipitation prediction with

experimental data is in chapter 6-2.

3. Causal Fundamental Diffusion Model

As shown in Fig. (4-6), there exists a discontinuity in diffusivity at

y=A. If D  is set to zero at the lower layer, the core analysis requires

no lower boundary condition. The diffusion equation representation for the

final raw of elements in Fig. (4-7) involves only elements above and to the

left of their location (i.e., backward in time).

Except for the change in Dt and this boundary condition, the analysis

is identical to the previous section. The program listing appears in

Appendix G. The theory precipitation correlations with data follow in

Chapter 6A. A comparison of these two causal solutions differing by the

lower boundary condition is also discussed in Chapter 6-A. The zero boundary

condition theory predicts a 5-10% lower particulate deposition than the zero

gradient causal theory. The most surpr-sing result was that the no lower

boundary condition causal solution pre&.—Ied a density profile identical in

shape to the zero gradient theory, including a zero density gradient at y=o:

The conclusion is that this third no lower boundary condition causal solution

is more fundamental,

L-
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D. Heavy Particle Analysis

(1) Inertial Model - (rp = 50u

As discussed in section (B), inertial effects must be considered for

sufficiently large particles (> 25u). On the basis of the comparison used,

even a 25u particle had a migration time constant one order of magnitude

smaller than the diffusion time constant. The question of inclusion of

turbulent diffusion will be considered in the next section; for the following

discussion diffusion will be ignored. In this section, a particle trajectory

analysis including particle inertia will be discussed.

In the Lagrangian coordinates, the momentum equation is

dv

	

m TtR + 61rnrvp = 67nTU + mg + Fig	 (4-34)

where

U = the mean gas velocity

a 4 3	 3	 u	 k 	 2 -2kWr
Fmag	 err 2 + u /( 11

o - 1 uo	 1 mBme 	 iv
_	

uo

A normalization is employed as before, but the base time is an inertial-

gravitation time. (This normalization is altered in chapter 7 where gravity

is ignored--the base time is a characteristic diffusion time).

- a

x =17
ro

So_Ta-

t
t 72a
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yX ' VX (4-35)

}

vY = VTa-g vy.

Tin- grav g

a
T in-snag -

m

m	 2 r2
T in-vis ' 67rnrp 	

$ _P__

L	 L
TRES = tT ' U
	 [a- - a •) 9
max	 a

Writing equation (4-34) for the x and y directions in terms of normalized

variables gives

2

d- 	 += Tin gray	 Tin gray

dt	 Tin vis	 Tin-vis TRES	
(4-36(a))

d _ - TTin gray d - 1 - TTin gray
	

(4- 36(b))
dt	 in 	 —	 in-mag

In general, one can express (4-36) in four first order differential equations.

d-74 ' f 
(v ,	 t	 (a)^- x Y

dxUtt- = v—x	 (b)

dv
Pt 	 CC)

dY

"CE= MY (d)
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Equations (4-37) can be numerically integrated if the y integrations (c,d)

are performed first.

A fourth order Runge-Kutta numerical integration system was adopted

marching equations (4-37) in time. fll The procedure made four approximations

on the change in 
MY
	 the time interval °t, taking a weighted average of

these to get Y. The change in Y over this interval of time is found by a

forward Euler approximation.

Given v and yo at time t
0

AV

	

	 At =(v_y;Yo;-)
a	 o

o	 a

v =Atgv + °tea ; ;	 ^^°
^'b 	 (Y-yo ^- Za -to +

°v

°vY
c
 = At g (V 

YO
+ 2 ; Yb ; -to + ^)

Yc = 
Y-0 + T- (zoo + °^c)

°v = °tg(v +°v ; y{ ; to+°t)Ya	 -'o `Yc

v .._v + 1 (nv + 2°v + 2°,,t + Av )
1 -Yo	 ^a	

-yb	 - rc	
Zd

Y-1 - yo + (°D G9 (V YO + V,1)

4-37)

The same procedure is then employed to obtain v_X1 and xl over this time

(Yo + Y1)
interval with y at midpoint approximated as -----^----. The integration
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program KDDN4 is listed in Appendix H. The final result is the particle tra-

jectory flight profiles for different exit positions from the injection tube.

(figure 4-8).

The use of the flux conservation principle is necessary to obtain density

Information from these results. In steady state, the spreading of the tra-

jectory lines is related to the density. Specifically, if the profile tra-

jectories have an initial separation Ay and impact the lower duct wall with

a separation (Tho), then

no ay° vx	 n, c" I (Th.) Az	 (4-38)

°	 y=0

or after normalizing

n_ AY^oa	 (4-39)no (-o)
 
Itj

y=0

Inherent in equation (4-39) is the assumption that the density is uniform

over the injection tube cross section.

Inherent in eqn. (4-39) is the assumption that the problem is two-

dimensional with no spreading in the transverse z direction. This assumption

is consistent with using a multi-tube particle injector positioned at several

z locations across the duct. A transverse slit may be ideal from this view-

point but would surely perturb the air flow and generate a disruptive wake.

(Figure 4-9(a)). The z dependence is not critical since all precipitation

measurements were averaged over the duct width. The effects of turbulent

diffusion considered in the next section tend to somewhat uniformly spread

the precipitate after about two duct widths downstream,even for moderately
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large particles C100u). It was decided therefore to use a simple tube

injector.

Figure C4-9 .C6)) depicts a reasonable flux profile upon exit from the

^'njection tube. Quantitatively, the net flux should display the characteristic

turbulent velocity tube profile dependence, i.e.,

	

_ _	 1
?r -	

vx 
i 

(ra ^Y Y° ^)	 Ix	
(4-40)

x-0	 nj	 o

where

vx_ - the average injection velocity
^n j

ro 	- the tube radius

T - the position in the tube measured from the bottom of the duct

YO = the distance to tube centerline from the bottom of the duct

n	 = the maximum density at the center of the tube

The net weight of particulate injected during a time t o in steady state is

wt	 to Yo+ro

injected) = f	 f	 p^' ) w d y dt	 (4-41)
o yo-ro

and using equation (4-35)

k	 (injected) 
= (p) C2ro) C9) Cvxj ) nto 	C 4-42)

in

The flux and weight of precipitate collected on the bottom over an interval

Ox are respectively:

axial T	 f^dd	 r

(cojnponent) ^c + (n 1t)
7=0

) ly

f

C4-43)

..
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z
.i

x

Flared Injection Tube `^I

U

(a) Two-Dimensional Injection Tube

t

I
1
1
I
1
II
I	 ^,
I

i

I	 ,/

r r rro- y-yo
1 

1 1/9 i
o t	

r 
	 J	 x

(b) Flux Profile Exiting Injection Tube

Figure 4-9 Particle Injection System
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to xo+T
ax-

Ccol ected) ' f x j^ o C y.0 1 )w dx dt

0 T_

.a

(4-44)

Combining equation (4-44) `rith (4-42) it follows that the weight collected

per unit interval Ax becomes

wt	 d	 n
wt	 (injected) (	 n	 Ea	 (4-45(a))

(collected) '	
C. 9) (2r )vo xinj

or normalized
d

(, wt	 )(	 Ax n
( ecol cted) ' 

inj ected — M̂a — —	 (4-45(b))

(.9) (2ro)vXini

Combining the above with equation (4-39) gives

wt
wt	 (injected)	 (4-46)

(collected) '	 ro _o

Thus a knowledge of the par-

` theory on an absolute scale

experimental correlation is

turbulent diffusive effects

deposition.

Cicle trajectories is enough to link the inertial

to experimental precipitation results. The

shrnvn in chapter 6-c. This theory, ignoring

altogether, predicts far too large a particulate

(2) Hybrid Inertial-diffusion Model..(l0u <-rp < 501

The results from the time constant analysis indicate migration times are

an order of magnitude shorter than the duct diffusion time for 55-P particles.

This was based however on diffusion over the duct half height. Upon exit

from the injection tube, the vertical density gradient is quite large near the

tube outer radius. Furthermore, chapter 5 reveals that the upstream diffusivity

41
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2

is nearly an order of magnitude larger than the downstream value ( . 002 g').

An inclusion of diffusion, effects appears n%%zisary especially in the

neighborhood of the injection nozzle. The problem then centers on incorpor-

ating both inertia and diffusion.

The aim is to accurately predict the density profile and precipitation

of particles in the diameter range SS-7S microns. The above discussion would

indicate a perturbation on the inertia theory analysis is more appropriate

than a modification of the diffusion small particle theory for this particle

range. Towards this end, it appears that the addition of a term to the

zKmntum equation is acceptable because the solution degenerates to the

diffusion model when inertia effects vanish. A possible solution meeting

this requirement (basically superposition of models) is

d7

m^ + ftnrpvp - ftnrpff + mg + Fmog - 6Trnrp Dt nn (4-47)

With m - 0, multiplying by density n and dividing by (67rnr p) gives the flux

expression (4-1). The diffusion model then follows by taking the divergence.

Equation (4-47) is in Lagrangian coordinates, and thus the instantaneous

particle density and gradient must be lmown along its trajectory. The

evaluation can be made only by incorporating conservation of particle flux.

This is to be expected since the nature of the diffusion term depends not on

a single particle ' s parameters, but on the proximity of its neighbors.

One can now proceed along the lines of the previous section. The normal-

izations mimic those of (4-35) except for the x variables which are normalized

tc the duct height 2a for ease in evaluating density gradients.

x
'^	 x°7
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vx n 	 g vx

T	 2a n _	 2a	 1	 4-48

	

RES 
n 
u U a- a J	

C )
a

2a 2
TDif 

n 
t

As with the diffusion theory of section B, longitudinal diffusion will be

assumed negligible when carnpared to convection. With these changes, the two

normalized equations to be solved become

2d x	 Tin- gray 
8x	

Tint ay

dW	 Tjn-ViS ^t 	 Tin vis TRES

7 2^	 .,	 2 an
U	

Tin- rav 
dx - 1 - Tin- rav	 (Tin-gray) an _	
Tt	

(T '-'_) - T
	 T	 n	 (4-49)

dt	 in-vis	 in-mag	 in vis Di£p—

The method of integration is identical with the inertia model. Prior

to theinte integration however, the evaluation of the local densi ty and densityY	 ^'	 ,	 Y	 Y

gradient is formulated for each flux tube (from the previous time step results),

and this is used as the input for the next time step. The analysis requires

that, the density be evaluated at every ; point. As the integration is carried

out in Lagrarigimi coordinates, it is desired to compute the density in the

same representation. r23 All particle positions are specified by their initial

position and time only.	 Figure (4-10,a) shows an incremental volume in space

when t=0, the corner position designated T (a—,o) = a.	 By the time t, the

volume element has changed location and shape as shown in Figure (4-10,b).

The rate of change of the position vector 5 with respect to the initial

volume element edge directions is found by observing the change of these edge

vectors between the time o and t.
K

f
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z

Aazizf;;Aayly	 i

Aa i
x x

z(a,0)

a - Z(a,0)

(a)

AV - Aa Aa Aa
x y z

x

(a+Aayiy,t) 	 a Aay

(b)

Figure(4-10) Lagrangian Representation of Incremental Volume

Element (a) t = O,initial configuration (b) configuration at

time t

II
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Conservation of mass requires that

P (a,o) ov (A—,o) n p (a—,t) ov (à ,t)	 (4-50)

The initial volume of the differential elements is (o ax aay o az). The final

volume of the element at time t is just the parallelopiped volume of Fig.

(4-10,b), i.e.

av (a,t)_ - Aax - Faa- aay X ate- Aaz 
J	

(4 - 51)

^c 	 z

This volume is first found by taking the cross product and then carrying out
F	

the dot product of the volume element edge extentions. This operation on the
i

deriva^,kv,s of the position vector alone is known as the Jacobie.i. J. Combining

(4-50) and (4-51) gives

A(a-,t) = A 
a o
	 (4 - 52)

where J =_

a.x a
.y

a^ -

aax aax aax

agx a
. g a9z

aay aay aay

agx ay B EZ
aaz aaz aaz

Each element of the Jacobian determinant, e.g. 
al kas represents the change

of position vector C in the kth direction of a particle beginning initially at

a + Aaj j rather than at a. In a two dimensional evaluation where

a ^i	 0 i ^ z

aaz	1	 i = z	
(4-53)
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then J =
	

(4-54)
agx 	a^

The evaluation of the Jacobian and thus the density at position ZlI time t, of

figure (4-11) is obtained from knowledge of the trajectories of three other

points beginning at position 2,3, and 4 at time t - 0.	 These elements are

related to the position vectors as follows:

a x (Zi , - ^2,) •ix
Tax
 AXo

a^	 _ (E3 ,	 _'C4,) •i

y oyo

^2^)•iy

	

a
x
	 Axo

Z.
	3EX	(C3 r - '74 1) •ix

aay , ----76yo

(4-55)

where Axo = (vX ) Lit, At being the incremental numerical time step.
0

Note that derivatives involving initial changes in vertical position A yo

were obtained from the displacement of position vectors to either side of the

point in question to yield an effective two-sided derivative. This procedure

was adopted throughout except at the upper and lower trajectories where a

single vertical derivative was used.

The final step is to compute the vertical density gradient from this

information. The attack employed 'here is to calculate the true gradient from

a knowledge of the gradient component in two arbitrary directions. Consider

41
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again figure (4-11) with the vector rl,_ 3 , representing the vector from point

1' to point 3' and i 	 representing a unit vector in that direction.
rl,_3,

Components of the density gradient are found as follows:

n3,-nl,
(4-56)Dn	

lrl , -3'	 r3'-1'

n2,•nl,
Dn it +. + . r +_ ,	 (4-57)

	

1 2	 11 2 I

Splitting the gradient into x and y components and performing the dot product

yields

an(x3,•xl,)	 an (y3 , -yl ,)	 (n3,-nl,)	
(4-58)

ax rl,_2,	 8y Ti-, 3,

an (x2 , •xl ,)_ + an (y2 ,-yl ,)	 (n2,-nl,)

8x rl , 2 ,	 ay rl'-2'	 rl, 2,

Equations (4-58) and (4-59) can be solved to give the vertical gradient

an = (n3 , -nl ,) (x2 , -xl , ) - (n2 , -nl ,) (x3 , -xl , )

ay	 y3 ,-yl , x2 ,-xl , - y2 ,-yl , x3,-xl,

This analysis is basically good except for the one-sided nature of the vertical

point difference (r3 , _ 1 ,). This one-sided difference was found to precipitate

oscillations in the computer program. For trajectories other than the upper

and lower ones, it was better to replace equation (4-56) with one involving

points 3' and 4' to approximately represent the gradient at 1 1 , i.e.,

n3,-n4,
Dn.i	 =

r4 ,_ 3 ,	 r4,_3,

The vertical gradient throughout most of the trajectory region becomes

(4-61)

I1
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8n (ng1-n41)(x21 -xl1) - (n21-nl1)(x31-x41)

Ty
' y3 ,-y4 , X21 -xl1 

- y
21

-y
l1
 x3,-x4,	

(4-62)

It was desired to keep the incoming flux profile unchanged from the

inertial assumption. To also avoid huge gradients at the tube periphery, the

injection velocity was assumed constant across the injection tube exit area

and the density given the characteristic turbulent profile, i.e.

1

n	 (ro- I Y-Yoh
X__ 0	 ro

(4-63)

The linking of these results with the deposition on the lower wall proceeds

exactly as in the previous section (equation (4-46)). The program KDIN7 used

is listed in Appendix I.

One final comment concerning particulate spreading by turbulent diffusion

is in order. Turbulent eddies can never cause movement of particulate faster

than the turbulent perturbation velocity. It was necessary to put an upper

limit on DtAn at v' which from cnapter 3 becomes
n

Furthermore, it was assumed sufficient in the perturbation type analysis to

keep Dt uniform across the duct core region and setting it to zero one-half

centimeter from the wall (Dt goes from 0 to maximum value in roughly 1 centi-

meter). The theory's insensitivity to the choice of cutoff layer thickness

shown in chapter 6, justifies this action.

A comparison of this hybrid theory's precipitation prediction with

experiment follows in chapter 6-B. The work in chapter 7 concerning particle
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flight in a jet boundary layer builds on the hybrid diffusion theory.
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V.	 DOCUMENTATION OF FIELDS AND FLOWS

A.	 Introduction

The thrust of this thesis is directed towards predicting the precipita-

tion of magnetizable particulate in turbulent air flows. Towards this end,

it is necessary to quantify turbulent eddy effects and magnetic field ef-

fects and magnetic field effects. The purpose of this chapter is three-fold:

i) to describe the method used for inducing turbulence in the duct

ii) to document the measurement of the channel turbuelnt diffusion co-

efficient

iii) to give an account of the permanent magnet array field measurement

The goal of the first objective was to induce	 turbulence in the

duct that would not decay as quickly as that incited by a screen. It was hoped

that the design of a velocity profile grid might give rise to a channel in-

tensity resembling fully developed turbulent flow. The result was in fact a

turbulent intensity decaying an order of magnitude over the channel length

(which is considerably better than the turbulence excited by a screen). The

axial non-uniformity in turbulence was acceptable but necessitated measure-

ment of turbulent diffusivity at several axial locations.

The result of the second objective was an experimental measure of the

turbulent diffusivity's axial and transverse character in the duct. The

outcome of this testing was the establishment of the credibility of linking

these measurements to existent fluid turbulence diffusivity literature.

Specifically, the data supported the decision to use the transverse dif-

fusivity dependence documented by Davies (chapt. 3 [2]) with the peak mag-

nitude obtained experimentally along the duct. This course of action was

motivated by the desire to avoid using transverse experimental results be-

I:
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cause of the asymmetry they exhibited. The asymmetry was caused by the

hot wire anemometer probe schroud; the schroud inhibited fluid flow dif-

ferently when extended clear across the duct than when extended just past

the insertion hole.

The third objective was to determine the nature of the magnetic field on

the duct lower surface excited by the permanent magnet structure. The goal

specifically was to ascertain the relative size of the different harmonics.

As an aside, it was found that positioning the magnets 1/4" from the duct

lower surface yielded a nearly sinusoidal field on the duct surface.

B.	 Inducement of Turbulence and the Velocity Profile Grid

This section describes the construction of a velocity profile grid in-

tended to excite a fully developed turbulent flow. The grid design (an

improvement over a plane screen) succeeded in inducing turbulence decaying

an order of magnitude down the duct.

The desirability of a fully developed turbulent flow poses a problem

in this experiment. Although the Reynolds number for this flow is well

within the turbulent region (36,000), the length of duct necessary for

development of this flow is prohibitive. Schlichting [1] states that the

point of transition at which an instability initiates a growing disturbance

in the flow has been found empirically to occur when

Re = UuX = 3.5 x 105	(5-1)

For a 4.3 m/sec flow, this gives a transition length of 2.5 meters. Further-

more, the boundary layer thickness a is given by

A{

41
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8(x) - (0.37) x (lox) 
-1/5	

(5-2)

Thus the distance x for this boundary layer to grow half the duct width

(a - 6.35 cm) is

u
X - (8 ) 5/4 (V ) 4 - 2.6 meters

.37
(5-3)

It would take over 4.5 meters to insure fully developed turbulent flow.

One method of exciting turbulence in the duct is to use a screen or

wire mesh. According to Baines and Peterson [2] the mesh size of the screen

and the wire diameter (bar thickness) completely determine the character of

the turbulence excited. Their results reveal that 5 - 10 mesh lengths (see

Fig. 5-1) downstream from the screen are required to insure good flow estab-

lishment, i.e., homogeneity. It is the screen bar thickness b (wire diameter)

however, which determines the turbulent intensity decay. The figure shows

roughly this intensity versus distance downstream dependence in terms of

number of bar thicknesses. It is desirable to work in the region where

v'/u = .01, 100 bar thicknesses downstream. This option would however yield

a very low intensity, and a roughly exponential decaying turbulent level would

still exist in the expeirmental section. For this reason the option of using

a nonuniform velocity profile grid rather than a screen was adopted.

There are at least two requirements that such a profile grid must meet

to establish a fully developed turbulent -flow--

1)	 The size of eddies excited by the grid spires must be the same as

the large scale eddies (L) that would exist in the full developed

turbulent duct flow.

I1
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2) The impedance presented by the grid to the upstream flow must be

such that the average axial flow velocity U over the duct cross-

section matches that of the fully developed turbulent flow.

It is noted that this discussion does not consider the effect of duct walls

on the turbulence growth.

Most work on pr^)file grids has been done with circular ducts. A typical

profile grid for a round pipe is shown in Fig. (5-2(b)). The grid consists

of a number of radial spires, the size of which at any radius is chosen to

match (i.e., insure the same velocity of) the fully developed flow. The

number of spires is determinedin meeting requirement ( 1) above. The average

thickness of a spire ( e.g. at half the radius) represents the average eddy

scale excited; this must be the same order as the turbulent length scale

for the circular duct flow desired.

The corresponding grid for the rectangular duct is shown in Fig. ( 5-2(a)).

Each side of the duct has the same number of spires extending toward the cen-

ter, but each is terminated on the duct diagonals. The same procedure is used

in determining the width and number of each spire.

It was concluded after private consultation [9] that the characteristic

duct integral gale is roughly a quarter of the duct width. The eddy size

excited by a spire will be roughly the same as the spire width. This would

indicate four spires to a side as being the proper choice, which is what the

author used.

The spire width calculation required more work. Frank Durgin [3] has

studied the excitation of full scale turbulence in pipe flow, and has found

that the spire width d and the spire spacing R should be related as follows
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U = (a) 
1/n

0
(5-5)
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2

I )2 = 1 + kl —	 2
1-(d/R)

U = the average X directed velocity

Uo = the maximum midstream x directed velocity

k1 = constant

ular pipe flow k 1 is about 4, but private discussion [9] has led the

to believe kl - 10 is more accurate for rectangular ducts.

complete the calculation, a formula for flow velocity with position

is needed. The author has measured the duct flow velocity with position.

The results for maximum flow speeds of 850 ft./min. (4.3 m/sec) and

450 ft./min. (2/2 m/sec) are shown in Fig. 5-4. The asymmetry about the center

line is attributed to two aspects of the anemometer probe:

1) At lower y positions, the probe extends across the entire duct

impeding flow above the probe tip. At the upper positions leakage

is occuring through the probe insertion hole.

2) The anemometer probe tip is completely surrounded by a metal

shroud inhibiting sensitive measurements especially near the

wall. This is undoubtedly the source of asymmetry exhibited in

Figures (5-4) and (5-10).

The author has fitted several curves of the form

(5-4)

where (n = a constant) to the above data. The best fit appears to occur

when n = 9; these are plotted next to the experimental measurements in

I1
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fig.
k

Using the above results, equation (5-4) transforms to

(a) 2/9 - 1

R	 ( )
279

-1

	 (5-6)

1+
10

Now since R is equal to a quarter of the duct width, d is calculated for every

position up to the center of the duct. 	 X and a are different for the ver-

tical sides with rectangular ducts, but (5-6) applies. Thus the author con-

structed eight identical vertical spires and eight horizontal spires, posi-

tioning these as in Fig. 5-3 and cutting them along the duct diagonals.

As will be shown in the next section, the turbulence decay is consistent

with screen literature predictions if the characteristic screen bar size is

chosen equal to the thick base (1.25") of the spire. Choosing any other

thickness of the spire as a representative bar size leads to the conclusion

that the spires induce a turbulence that does not decay as rapidly as would

screen turbulence (incidently,4 screen bars 1.25" thick would block the duct

completely). The important point is that turbulence is induced and has an

axial variation.

C.	 Turbulent Diffusion Coefficent Determination

Historically, work in the area of turbulent electrostatic precipitation

[7] has been geared along one of two limits. One involves the assumption of

an infinite diffusivity known as the Deutsch model, which implies the fliud

turbulent eddies dominate all other forces in supplying particulate to duct

walls where it can be precipitated. The second limit ignores diffusion and

infers that particles have a large enough inertia that they are unaffected
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by turbulent eddies. The work by Williams and Jackson [8] assumes a con-

stant diffusivity ( based on Dhanak ' s formula.---chapter 3) falling instantly

to zero a small distance 6 from the walls. The intent of this section is to

build upon the work of Davies (chap. 3, [2]), i.e., to use the transverse

diffusivity dependence he documents with the midstream measured duct diffu-

sivity.

The turbulent diffusion coefficient was found in Chapter 3 to be

Dt = v
v T
	 (5-7)

where v is the time average squared perturbation velocity

00

and T =	
v I ( T-t) v t^ dT

o	
vim'

The long overbar in the Lagrangian time scale T is understood to be an

average in time t.

The turbulent intensity v' 2 was measured with an RMS meter and an ane-

mometer probe. The velocity probe signal feeds a resistance bridge in the

anemometer which then in turn supplies a voltage to an RMS voltmeter that

blocks any do signal (see Fig. 5-5, a). The RMS voltage is then multiplied

by a constant to give the turbulent intensity.

The output from the anemometer wire represents the resistance change

resulting from , the cooling of the hot wire probe. This velocity voltage

relationship is sometimes referred to as the King relationship and is shown

in Fig. 5 -6. The anemometer signal can be fed into an equalizer to linearize

the voltage dependence. If the interdependence is linear, then any perturba-

tion velocity superimposed on the main flow when filtered through an RMS

n 1.
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voltmeter and multiplied by the slope (change in velocity with respect to

voltage) will yield the turbulent intensity.

Because an equalizer was not available, a more approximate method had

to be adopted. Figure (5-6) shows the anemometer voltage-velocity relation-

ship. As long as the velocity perturbations about the steady mean are small,

the RMS voltage is related to the average perturbation velocity through the

local slope. By taking the slope from fig. (5-6) for the average flow at

every position y in the duct (fig. (5-4)), one gets the proper multiplying

factor, c, along the duct. The turbulent intensity measured in this manner

is shown in Fig. 5-7 for mean flow velocities 4.32 m/sec and 2.28 m/sec.

The measurement of the turbulent time scale is more involved and re-

quires a measurement of the energy spectrum, i.e., the turbulent energy in

isolated frequency bands. Von Karman [4] and Berman [5], as well as Hinze's

book ((pp. 165-174) referenced in Chapter 3) use stochastic theory to pro-

vide a connection between the integral of the velocity auto-correlation in

egn.(5-7) and the turbulent energy specturm. Berman, as well as Durgin and

Fannucci [6], specifically correlate the integral length scale with the fre-

quency at which the turbulent intensity begins to fall, i.e.,

L	
2UO	 .1	

(5-8)
b

where	 Uo = the maxium axial velocity

f  = the turbulent intensity break point frequency

Figure (5-8) shows the turbulent intensity in 20 Hz band widths with

	

f:	 a main flow of 4.32 m/sec and 2.28 m/sec. The measurements were made in the

center of the duct in both the x and y directions. The equipment set-up
c"+

t::F
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is shown in fig. (5-5(b)). The process is identical to that above except

for the addition of the bandpass filter. As fig. (5-8) shows, the 20 Hz

bandpass test beginning at 10 Hz, revealed- only the characteristic decrease

in turbulent intensity with a 5/4 fall off. it was necessary to decrease

the frequency bands to 4 Hz, centering the first at 4 Hz to observe a con-

stant intensity and a break frequency. Figure (5-9) shows these results,

again for measurements in the center of the duct for a 4.32 m/sec flow. The

axial flow intensities for each flow exhibit a 19 Hz break frequency at 4.32

m/sec flow and a 15 Hz break frequency at 2.28 m/sec. flow.

Using equation (5-8) and the work from Chapter 3 in connecting the

turbulent length and time scales (T - L/U 0 ), the desired turbulent para-

meters follow:

L = 2.7 cm

4.32 m/sec flow

T = .00624 secs.

(5-9)
L = 1.81 cm

2.28 m/sec flow

T = .00791 secs.

Multiplying these time scales by the respective turbulent intensities of

fig. (5-7) gives the turbulent diffusion coefficients shown in Figs. (5-10)

and (5-11). Along with these experimental values are shown the diffusivities

as predicted by Davies and Dhanak (see chapter 3). Davies's prediction

based on the duct width Reynolds number gives

41
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p

t = . ON (Re 2. • 875

	
4.32 m/sec D  . .00147 	

(5-10)

2.28 m/sec D  = .00084

hown in figs. (5-10 9 5-11), Davies assumes a rise in diffusivity to the

e values in 1/8 of the channel width. Dhanak bases his diffusivity pre-

ion on the duct half width Reynolds number as well as the duct friction

or.

4.32 m/sec	 D  = .00205

D  = .0708 Re VVr
a

2.28 m/sec	 D  = .0013

Mere it is assumed from Dhanak's empirical results that the friction flow

factor for a dry air is .011 and .016 for the 4.32 m/sec and 2/28 m/sec

flows respectively. This value which represents axial dependence only is

intended to be valid in midstream. The rough agreement of the three is ac-

tually quite good when one remembers that these expressions are obtained

empirically for specific flows.

One further point should be made concerning the generality of this

approach. The diffusivity obtained was based on turbulent intensities

measured in the flow direction. To apply this diffusivity to diffusion in

the y direction, one must assume isotropic turbulence, which shall be as-

sumed henceforth. It was hoped that the turbulent intensities might be

measured in the transverse directions, but the probe multiplicative con-

stant is difficult to determine near zero mean flow and the linearity

al
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Assumptions are questionable.

The diffusivity representation adopted in this work us*3 the transverse

dependence of Davies with the measured experimental midstreaw diffusivity to

determine longitudinal magnitudes. The hybrid diffusivities are shown dot-
.	 ^

i
ted in figures (5-10) and ( 5-11). These measurements were taken just before

the right-most flange of fig. 1-2. One rough order estimate of the diffu-

sivity ' s axial dependence is obtained from screen turbulence literature, e.g.,

Baines and Peterson [2]. Given a screen bar size equal to the base spire
.2

width (1.25"), their results predict a grid turbulence level ( —v' ) _ .16 and

a turbulength scale L - . 0095 m, 6 inches from the screen. With a 7 . 62 m/sec

flow the diffusivity is

Dt = L (V) U2 = .0116 m2/sec
	

(5-12)

This would indicate an order of magnitude decay down the duct is likely.

Fig. (5-12) shows the measured diffusivity versus axial position. The

region immediately following the grid where the velocity "necks" down ex-

hibits a calm before a turbulent transition. This data was matched in a

least squares polynomial fit using the MIT Math library subroutine LSFIT.

The axial dependence past the 1' mark was found to be accurately represented

as

Dt = .0546 - .151 x + .202 x2

- .0843 x3 - .079 x4 + .0289 x5 + .0656 x6
	

(5-12)

- .0336 x7

L
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This completes the measurement of diffusivity as a function of both x and y.

D.	 Magnetic Field Distribution

As mentioned in chapter 2, the permanent magnet field structure is not

sinusoidal, but contains manu harmonics. Given that the field pattern re-

peats over a length L and begins at zero, a reasonable representation would

be

m

i,	

Bnet(x) = 7 bm sin 2--^

M-1

(5-13)

Multiplying equation (5-13) by sin 
2 
r
x and summing over 2M-1 discrete X

steps gives

(2M-1)0x1
(2M-1) Ax1M

27rmx	 2'RiX
Z

,2^rRx =
6(x) sin L	 Z Z bm sin L sin L	 (5-14)

x=Axl	x=Axl	 m=1

where Ax l = L/2M

{	 Using the discrete orthogonality property for sinusoids wherein

(2M-1 ) Ax 1	 0 m#R

Z:	 sin ( 27L	 sin ( 2 ^ x ) _	 (5-15)

x=Ax1	1/2 (2M-1) m=.t

it follows that

(2M-1)ax,

bm = 2M-1 Z	 Bnet (x) sin ( 2x )	 (5-16)

x=oxl

The normal flux density was measured 1/4" above the permanent magnet

wave structure for each of three wavelengths-5.08 cm, 8 cm, and 12 cm using

a Hall effect prove. For each case, a discrete Fourier analysis according

41



fi^R

-141-

to the above discussion was performed using the computer program FOURIE

listed in Appendix I. The measured field for the above three wavelengths

along with the first 9 calculated harmonic components is shown in figs.

(5-13) to (5-15).
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VI. Experimental Results and Correlations with Theoretical Models

A. Small Particle Dynamits

Figure (6-1) shows the experimental arrangement for the small particle

tests. The injection nozzle is positioned approximately 3 feet before the

magnetic structure to insure a uniform initial particulate density over the

duct cross-section. Several tests appeared to indicate an injection distance

6" into the settling chamber gave reasonable uniformity. Where possible,

precipitation was avoided in the local region just after the profile grid

where flow necking and spurious wakes could cause unwanted side effects. The

tests were performed for three field wavelengths - S.08 cm., 8 cm., and 12

cm. For each experiment, the total weight of particulate injected was re-

corded, and the amount of material precipitated across the duct width per

half wavelength axial distance was measured.,

1. Correlation of Measured Parameters from Numerical Models

It is necessary to correlate the number of grams per half wavelength

with the density dependence theory calculation. The correlation is based on

the assumption that particulate at density n o is injected during a time
F

interval to seconds at the beginning of the precipitation structure. The

total weight in grams of particulate injected is

to 2a

(Net Wt.) _	 p U no w dy dt	 (6-1)
grams	 o 0

where

p = mass density of particles grams/m3

w = duct width-meters

	

_
	 -
	 1

U = axial flow velocity = U^ (a a 
a )3
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Evaluation of (6-1) yields

(Net wt*.) - p(2a) (.9 L•max) w no to
grams

(6-2)

In terms of the vertical particle flux at y - 0 9 Ty - 0), the precipitated

particulate per half wavelength strip in a steady state operation lasting to

seconds is

to x + X/4

(measured) - 
J	

f	 p(Ty - 0 •iy) w dx dt	 (6-3)
output	 o x - a/4

where x is measured from the beginning of the magnetic precipitation structure.

The particle flux at y - 0 is in Stokes flow without diffusion so that

3

Tr	
m (^^r3 ( u )̂	 k

Y	 s	 110	 m=1
ly

Assuming there exists an average flux over any one axial half - wave strip

whose magnitude is ro (x)., the measured output (6-3) can be written

(measured) = p ro w(j) to
output

where ro is evaluated at (x +)

Using (6-3) this becomes
grams of
p
nrectedate (,)(g

inag+ F)

(measured) =
output	 (2a)(.9 U)

(6-5)

n
(6-6)

no 	 at (x) 
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2. Correlation of Measured Parameters from Deutsch Model

The data will be compared to the refined Deutsch precipitation model

developed in Appendix B. The Deutsch model analysis correlation proceeds in a

similar fashion to section 1. The density developed is,

ft

n	 x - xo
= exp

no	 Zaav

m +a )

(6-7)

and is valid for plug flow U and a single harmonic B field. Including the full

harmonic field and the actual flow velocity, (607) becomes

x - x

i	 no = exp -	 mg ma
	 (6-8)

2a Uavg (--- ^---)

where Fig is defined in (6-4)

a	 1

and U= 2	 U	 (^)^ dy = .9 U
avg Na 	 max a	 max

0

Integrating equation (6-3) with r 	 0 given by (6-4) and substituting the

total mass injected using equation (6-2) gives

am of
p 

a
articulate	 _ _ _ mgma

(measured)	 ,^,g +̂ Fm,.â 	 ^	 ma

output	 = injected
	 exp - Za Uavg S (X	 e	 a avg S

(X1 )
3. Observations of Theoretical Deposition Predictions

The theories of section 4-B are compared by examining the percentage of

injected particulate collected per half wavelength on the lower duct surface.

(6-9)

41
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Figure (6-2) shows the deposition predictions (with 4t u particles. g cm

field wavelength) for the four light particle theories--Deutsch, non causal,

causal perfunctory, and causal fundamental as presented in chapter 4. The

numerical theories are computed with the spacer grid representation discussed

in section 4-C using 25 transverse points and 80 axial steps. Studies re-

vealed the accuracy of numerical solution with such a grid assignment is

questionable for two reasons, figure (6-2) is useful for comparing theories

only in a cursory manner.

The first problem to be considered is that of numerical convergence.

The causal theory downstream (7.5 cm) deposition prediction decreases 50%

as the grid size is increased from 15 to 40 transverse points (axial - 80).

Considerations of grid stability indicate the axial spacing Ox should be less

than or equal to (D tU). This criteria sets the number of axial grid points

into the thousands. The numerical density solution was . calculated in the

limit of constant	 diffusive and convective terms only, and compared

to the analytical solution. When using 95 transverse points and 1000 axial

steps the numerical solution demonstrated reasonable convergence and dif-

fered from the analytical solution a:ly in the third significant figure

(<l% difference).

The second problem of numerical accuracy is more subtle. The diffu-

sivity and magnetic force in the lower portion of duct near the laminar

sublayer change very rapidly. These facts added to the uncertainty as to

the nature of the sublayer physics make it clear that the lower portion of

the grid solution at the wall is the area of greatest uncertainty. The

solution outlined in section (4-C) couples the migration fluxes to the

41
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density atat the lower grid point (for each axial location) to arrive at de-

position on the wall, although the net profile is relatively unaltered.

Considerable changes in predicted densities occur for the lower transverse

grid point locations when the number of transverse points is increased

further.

An alternative to predicting deposition rates which effectively in"

tegrates through the region of numerical diffuculty, involves applying tht

principles of mass conservation to the numerically calculated density pro-

files (for which the analytical model gives credibility). Specifically the

transverse flux deposition on a strip Cox equals the difference of upstream

and downstream axial fluxes. The procedure of using the density profiles

of section (4-C) in this manner to arrive at deposition predictions is

described in Appendix K, and the corresponding refined causal fundamental

FORTRAN program KDFF1 is listed in Appendix L.

Figure (6-3) shows the causal and refined causal deposition predic-

tions (grid 95 x 1000) along with the Deutsch theory prediction for 8u

particles and an 8 cm field wavelength. The increased grid accuracy re-

veals the error of the unrefined model. Increasing the grid accuracy from

(95 x 1000) to (500x 2000) gave only a 5% decrease in deposition pre-

diction (the 95 x 1000 grid assignment will be used for the remainder of

this chapter). The refined perfunctory prediction exceeded only slightly

the fundamental causal preductions (<l% difference).

The Deutsch model, with an infinite diffusivity always predicts greater

precipitation (except at the initial axial locations) than the finite

diffusivity models and exhibits a less rapid initial decay. This observa-

j1
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tion is linked to a property common to all the theories concerning the

shape of the deposition prediction.	 Mass conservation dictates that the

predictions must have the same integral	 (i.e., net area).	 Thus, steep

initial deposition predictions must be brlanced by slow downstream decays.

Theoretical predictions are limited in how they can differ;	 the principle

difference occurs in the nature of the initial deposition decay.

As pointed out in fig. 	 (4-6), the diffusivity undergoes a rapid change

in slope at the laminar sublayer. 	 An attempt to simulate this change in the

causal fundamental model (in which O t goes to zero just above the sublayer)

was made by increasing the magnitude of the slope by a factor of 10 for the

last transverse core grid point only.	 This assignment is in fact an arti-

fice, but may represent the diffusivity dependence more realistically.	 The

numerical deposition prediction was not sensitive to this alteration; leav-

ing the diffusivity slope unaltered results in a 0.5% lower deposition pre-

diction (at x = 7.5 cm). The factor of 10 increase in diffusivity slope

will be inserted into the last grid point assignment for the remainder of

this section.

The refined causal fundamental model displayed a much smaller sensi-

tivity to particle size than did the Deutsch theory (4i u tests were 13 to

20% lower at upstream locations, negligible downstream). It is expected

that small downstream precipitation predictions should exist. Magnetic

migration is extremely dependent on particle radius (-r 2 ); at upstream

locations, magnetic forces remove particulate in the vicinity of the wall at

different rates dependent on their size. After particulate is removed

from this magnetic interaction region, further removal is more dependent
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on turbulent diffusive effects which are independent of size. The only

parameters important in the Deutsch model spring from migration forces which

depend on the particle diameter squared.

Discussion of the representation of the field harmonics and their

effect on theory predictions is in order. Numerical predictions differed

little (approximately 1% for a - 12 cm) when only one, rather than nine

harmonics (chapter 5) were used to represent the field. The nine harmonic

tests cannot be treated by superpositions, i.e., more harmonics yield a

higher flux toward the wall, and thus greater precipitation. The actual

field being more uniform in sections has a smaller field gradient, and thus

a smaller force. The fundamental harmonic field computer test predicts

greater precipitation. A nine harmonic field representation is used through-

out this chapter.

Figure (6-4) shows the effect of removing the magnetic field altogether.

The deposition decays slowly downstream. Such a drop in precipitation is

not surprising since the magnetic force is 81 times larger at the wall

(X = 8 cm) than the gravitational force. Only a dusting of the duct lower

wall was observed experimentally when all magnets were removed. Reentrain-

ment made a true measurement of gravitationally deposited particulate dif-

ficult.

Figure (6-5) shows the theory sensitivity to the -magnitude of Dt;

turbulence at larger diffusivities keeps particulate dispersed evenly over

the upper portion of the duct and sweeps more particulate to the wall where

it can be precipitated. The numerical solution should converge to the

Deutsch prediction as diffusivity increases. The Deutsch precipitation

11
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prediction exceeds the causal model prediction further downstream, because

particulate is not swept up to the top of the duct by eddies. In the limit

of zero diffusivity, particles decay along trajectories; in section (2-C)

it was shown that particles in trajectory precipitation are removed more

quickly than the Deutsch model predicts. The point to emphasize is that

precipitation at upstream positionsis quite sensitive to the value of dif-

fusivity.

4.	 Numerical Density Profiles

Figures (6-6) to (6-8) show the density profile transverse dependence

at four axial locations for 5.08, 8, and 12 cm field wavelenghts respectively

with 8u particles as predicted by the fundamental causal model (95 x 1000

pts). The density rises from zero at the top of the duct, peaks below the

center, and decreases toward the lower wall. The greater the penetration

of magnetic forces into the volume (i.e. at larger wavelengths), the greater

is the decrease in density profile magnitude downstream due to particulate

removal. This is confirmed in figs. (6-6) to (6-8).

The lowest density plotted is actually that calculated at the laminar

sublayer (y/2a = .002).	 The final wall density ranges from .92 to .95 of

the density at the sublayer (at y = .002*2a cm) as predicated by the trajec-

tory model of Appendix B.

The density gradient is relater_ in the sublayer than in the core (see

fig. (4-2)). The perfunctory model imposes a zero gradient at y = 0, and

as explained in chapter 4, it does so by assuming the density just below the

core region to be the same as that above. This numerical assignment is

certainly ad hoc, since the density does not increase in the sublayer.
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The splicing on of the trajectory model solution distorts what the core

diffusion analysis assumed should exist below y - A. The diffusivity of

fig, (4-6) undergoes a power law decay to zero at the boundary layer, not a

discontinuous decay. This implies from Appendix D that the sublayer density

gradient be much larger than the core gradient. The fundamental model pre-

dicts this condition without imposing a difficult to justify boundary con-

dition, and inherently represents a more realistic diffusivity by keeping

D  finite in the core region.

The fundamental model deserves the title "fundamental" for another

reason. As the degree of turbulence diminishes, it is meaningful to think

in terms of trajectories. In this limit the fundamental model imposes

boundary conditions only where particle trajectories enter the region of

interest.

Included with the plots of (6-6) to (6-8) are the diminishing

diffusivities at the given axial locations as well as the exponential mag-

netic force decay. The results indicate magnetic migration is relevant

over only 1/4 of the duct. The density profile resulting when magnetic

forces are eliminated entirely is shown in fig. (6-9). The results con-

firm the proposition that the densities are not altered significantly over

the upper three fourths of the duct. The smaller migration over the lower

1/4 of the duct yields a smaller deposition despite the large wall density.

The densities in the uniform migration (no D t ) sublayer do not decay.

Finally, it is interesting to consider the density profiles in the limit

of no turbulence, i.e. D t = 0. The density (fig. (6-10)) can only decay
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over the lower portion of the duct where magnetic forces are significant.

(No density decay occurs over the region of divergence-free force where

gravity dominates.) The core region of the duct should have uniform density

dropping discontinuously to zero near the upper region. The discontinuous

density jump to zero represents the point ab-.)%e which all trajectories can

be traced back to an entry point on the upper wall where the density is

zero. All trajectories below the transition point have their origin at the

entry plane x=0.

An examination of the experimental results and their correlation with

theory will follow a discussion of the particle size distribution. The non-

causal model will not be considered in this comparison; its predictions are

for readily seen reasons, too low. The perfunctory model's predictions

differed only slightly from the fundamental model. For this reason and the

above discussion concerning difficulties in justifying the zero gradient

boyndary condition, the perfunctory model will not be compared with date

either.

5.	 Particle Size

The iron powder used in the diffusion tests ranged in diameter from 1

to 26 micrometers. It was necessary to know to what extent the particles

acted as agglomerates in flight. A microscope analysis (histogram) of the

particle agglomerate size spread is shown in fig. (6-11). (The tests was

prepared by blowing powder through the injection tube and allowing it to

settle on an oil coated microscope slide.) The scope base particle size

was about 4 micrometers. With the intent of determining more of the

iI
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particle's size behavior in flight, an Anderson Impactor Test (which balances

a particle's inertia forces with drag forces) was conducted. The results

(fig. (6-12)) indicated that then equivalent aerodynamic diameter represent-

ing particles dispersed essentially as in the magnetic collection experi-

ments ranged primarily from 4t to 8 microns in diameter. the microscope

test procedure would favor collection of heavier particles; this may be

the reason for the disparity.

6. Theoretical Predictions Compared to Experimental Deposition Data

f
	 The Deutsch and fundamental causal theory predictions are compared to

experimental collection results at field wavelengths 5.08, 8 and 12 cm

tests in figs. (6-13) to (6-15) respectively for particles as described in

the previous sections. Included with Fig. (6-15) is the fundamental causal's

prediction of deposition of 2u particles. The data supports the causal
R
F	 model's steeper decay over the Deutsch model's gradual decline.

The Deutsch model prediction increasingly departs from the data with

decreasing wavelengths. The 4-f micron theory results shown in fig. (6-7)

reveal that th Deutsch model still predicts a high particulate deposition at

k
a 5.08 cm field wavelength, and a slow axial deposition decay. It was noted

in chapter 2 that the Deutsch model is based on two major assumptions--

(1) Fluid turbulence is infinitely capable of supplying particles to

the wall.

(2) The migration forces (primarily magnetic) hold the particle to the

wall; their interaction in the duct is small.

Assumption (1) is always optimistic. At short wavelengths where assumption

(2) is accurate, the Deutsch prediction should be high because of assumption

(1). At the larger wavelengths (with the magnets spaced further apart),
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forces are larger at further distances from the wall, and thus augment the

precipitation process (the optimum wave number is approximately the recipro-

cal duct height). The error of both assumptions then emerges in a trade off

at larger wavelengths where the Deutsch model departs less from data.

7.	 Discussion of Results

Large initial deposition is expected since magnetic forces remove parti-

cles immediately at upstream locations in the magnetic field dominant region.

Larger upstream theory depositions are in part caused by the step input in

initial density (high density edge gradients; sine wave input yielded lower

immediate initial deposition). Dividing the most uncertain parameter D t by

10 (which makes upstream 0  = 2*(literature value)-developed flow) improves

agreement with data. Altering the second uncertain parameter r  (fig. 6-15) shows

significant alteration in initial deposition also. In the light of these

comparisons, model credibility along with a useful degree of accuracy in

predicting precipitation and density profiles exist.

}	 Three dimensional effects are the most significant effects deleted from

the theory. The true velocity representation as well as magnetic field ini-

tial and edge gradient effects should enhance precipitation. Fruitful

future research may be directed toward understanding the effect of precipi-

tated dendrite augmented tip effects. Certainly one starting point

for determining the magnitude of this effect is by determining whether the

rate of deposition is altered by the loading of already existant precipitant.

This effect of augmented gradient effects is a concerted interest to re-

searchers in mineral beneficiation and particulate removal.
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Of the effects discussed above, those related to wavelength are

tk	 j

the enhanced gradient effects. Specifically the augmented field gradients

due to magnet edge effects should become more prominent at large wave-

lengths. Furthermore, non-realistic representation of the transverse

dependence of axial velocity may be wavelength dependent as well., Too

large a velocity was adopted throughout the core analysis except at the

center of the duct. Slower moving particulate would in reality have more

interaction time with the field forces. This effect would be more sig-

nificant when the force penetrates into the volume (i.e. at larger wave-

lengths).

It is hypothesized that those three-dimensional effects are not

as important as accurate representation of the axial and transverse dif-

fusivity dependence. Despite the lack of these refinements, the refined

causal fundamental model has a useful degree of accuracy in predicting

sedimentation in particle flows where inertia is unimportant.

II
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B. Large Particle (SO-100u) Analysis - Inertial Hybrid Model

Figure (6-16) shows the physical arrangement for the large particle tests.

Mike figure (6-1), the injection tube extends well into the duct, usually

14" past the profile grid. The number of grams injected as well as the amount

precipitated per half wavelength is recorded for each test. Except for an

isolated case, the injection velocity was adjusted to match the main duct flow

in order to avoid secondary fluid mechanical effects due to non-isokinetic jet

mixing. The jet was found to cause the diffusivity to increase only slightly

in the duct. The new diffusivity profile was fitted with a least squares

polynomial fit and used in the hybrid theoretical model discussed in Chapter

4, section D. The first nine harmonics of the magnetic field structure used

in each test were used for the magnetic force calculation. The position of

the injection tube varied roughly from one-third to two-thirds of the total

duct height.

(1) Diffusion-free Model Results

The first test (figure 6-17) reveals the inaccuracy of the trajectory

precipitation model (Appendix B) and the inertial model (chapter 4, section

D) for 60 micron particles. Plotted are the particle paths from the top and

the bottom of the injection tube for the two trajectory models along with

the percentage particulate collected per half wavelength (6 cm). Particulate

was injected isokinetically at 1500 ft/min. The inertia-free model predicts

precipitation far too early primarily because of the immediate vertical

viscous-limited velocity upon injection. The particle's inertia keeps the

particle in flight longer and predicts precipitation in nearly the same region

as the observed experimental collection pea-k . However, the inclusion of

diffusion is clearly necessary if the trajectory spread is to have any

correlation with the experimental observations.
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Figure (6-18) shows the same test with 100-180 micron particles. The

experimental collection spread is not as large but again exceeds the inertial

model prediction. The peak collection again occurs near the inertia model's

impact prediction. The viscous drag.dominated model also predicts precipitation

much too early. The percentage collection consistent with the above trajectory

models was not shown because of its large value, being at least an order of

magnitude larger than the observed collection for the 60u case.

(2)Hybrid Inertial-Diffusi ,̂ n Results

Figure (6-19) compares the experimental precipitation with the hybrid

inertia-diffusion model prediction. As with the diffusion tests, the per-

centage particulate (of the total injecteJ) collected per half wavelength

is the precipitation ordinate. For this 12 cm wavelength, 70 micron particle

test, the hybrid theory is seen to predict a comparable peak collection
w

shifted downstream; somewhat from the observed peak collection. The particulate

spread is much larger now but still smaller than the experimentalprediction.

For illustration, the inertial theory prediction is shown at the top of the

graph quite compressed in spread with a predicted precipitation an order of

magnitude larger than the test results.

The results of 5.08, 8, and 12 cm wavelength tests for 60-70 micron

particles are shown in figures (6-20) to (6-22). In all three cases the

inertial diffusion hybrid model predicts larger precipitation with a peak some-

what downstream of the observed peak. Experimentally only 1/3 to 1/2 of the

material injected was collected over the approximate four foot working section.

The theory appears to always predict a short total collection distance, but

this could only be thoroughly investigated with a longer duct working section.

(3)Particle Size Considerations

Particle size sensitivity is pertinent in all models. The iron particles

V.
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used in these tests were sized by sifting through several progressively

smaller screen meshes. The smaller size particles used above were caught

between 38 and 45 micron mesh screens, the hypotenuse of this size square

opening being 54 and 64 microns respectively. The largest spherical particle

must indeed be between 38 and 45 micron; most particles were however anything

but spherical. Thus, ellipsoidal and elongated particles much heavier than a.

45 micron sphere could surely exist in a batch. Observation of the particle

group under the microscope revealed 60 micron to be the representative

diameter of the 38-45 micron batch.

The particle size sensitivity of the hybrid model's particulate deposition

prediction for the 8 cm wavelength case is shown in figure (6-23). As with

the diffusion case, the size dependent parameters are proportional to the

particle radius squared, a 20 micron spread appears to be quite significant

indeed. The interesting result here is that the smaller particles with less

inertia have a smaller deposition per half wavelength (over most of the

precipitation region) and a peak deposition upstream of the larger ones.

Figure (6-24) shows the hybrid model's deposition prediction for 40 micron

spheres in this 38-45 micron sifted batch.for a 12 can wavelength field.

Figures (6-25) and (6-26) show the equivalent couparisons for a 5.08 cm test

45-54 micron batch and an 8 cm, 38-45 micron batch. The upper trajectories

in the 8 an test are subject to question because they involved collisions with

the upper wall.

The improved agreement leads one to believe that larger oblong particles

behave in flight more like smaller spherical particles. This idea would

certainly have credibility in terms of viscous drag forces. The streamlining

of the heavier oblong particles and resulting lower drag would play against

the larger gravitational and magnetic forces. The microscope, two-dimensional
F
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slide picture is unfortunately lacIdng in its ability to reveal the total

particle shape.

(4)Boundary Layer Thickness Sensitivity

For completeness, the question of model boundary layer thickness sensitivity

must be addressed. The deposition predictions of the hybrid model at an 8 cm

field wavelength with the boundary layer thickness varying from 1/4 to 3/4 cm

are shown in figure (6-27). Unlike the diffusion case study, the results are

relatively insensitive to thickness choice, varying only slightly at downstream

duct positions. This is understandable because of the much greater role the

migration forces should play with larger particles, especially the magnetic

force (which grows exponentially towards the wall).

(5)Non-Isokinetic Injection

In all the precipitation tests, an effort was made to inject particles

as close to the ambient duct flow velocity as possible. Figure (6-28) shows

the collection results and theory predictions for a non-isokinetic test where

the jet injection (2300 ft./min.) was more than twice the duct velocity

(925 ft./min.). The working duct section was not long enough to observe the

complete deposition pattern; less than half of the injected particulate was

collected. The theory deposition prediction was based on a 70 micron particle

.representing a 45-53 micron grid batch (which, based on the above comments,

is subject to question). Nevertheless, the results indicate a substantial

difference between theory and experiment.

As figure (6-29) points out, there exists a region at the top and the

bottom of the jet in which momentum is being exchanged between the two fluid

streams. The thickness of the layer grows approximately as

(6-10)6 - I V r
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The fluidfluid within this region 6 is highly turbulent. Measurement of the

fluid turbulence from such an injection showed little significant increase in

diffusivity, but that may be attributed to the insensitivity of the anemometer

i
	

probe and equipment.

(6) Field Harmonics

Finally, the inclusion of additional field harmonics has negligible effect

on the precipitation level. Light particles are supplied by a relatively,

strong diffusion force to the wall. The heavier particles depend on the

magnetic: force and gravity to get to the lower wall. As the fluid field

decays exponentially into the volume (the harmonics to a greater extent -e-kmy

their omission or addition changes little.

(7)Conclusion

The effect of adding diffusion to the momentum equation is to spread the

particles out. The technique of marching in time in a Lagrangian frame,

calculating density locally at every point in space is applicable to any

geometry provided knowledge of the turbulent diffusivity is available. The

diffusive term becomes more important when steep density gradients exist

(e.g. at injection tubes). The next chapter will use the hybrid diffusion

to analyze particle flight over a flat plate.
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VII. Particle Flight Over Jet Fuselage

A. Introduction

The possibility of ducting particles with a permanent magnet structure

will be considered in this section. The objective is to retain a substantial

part of the particulate within the boundary layer as it evolves. A first

attempt at this is to apply the hybrid inertial precipitation work of Chapter

4 to the problem.

The hybrid diffusion heavy particle computer model substantiated in

chapter 6 will be the tool for analysis of this theoretical study. The flow and

boundary layer development over a flat plate will be used to represent to

first order the aerodynamics over an aircraft fuselage. All airstream com-

pressibility effects will be ignored.

B. Fluid - Mechanics and Diffusivity

Any analysis requires first, knowledge of the bot*:idary layer thickness

and diffusivity. The experimental evidence (Schlichting - see reference Ch. 5)

indicates that if the boundary layer becomes turbulent at axial position

x=xo , its thickness will increase as

1
Uo(x-xo)	 ^

6 = .37(x-xo)
	 v	 (7-1)

where v - local atmosphere kinematic viscosity and

U  = ambient air stream speed relative to the jet

The transition to turbulence occurs when

3 x 105 < 
U °x
< 	 3 x 106	(7-2)

For a passenger jet cruising at 40,000 feet, air speed 500 MPH, the onset of

turbulence occurs about 24 inches after the leading edge and the boundary layer

thickness is .68 meters, 10 meters downstream.
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The turbulent diffusivity depends not only on the axial displacement

along the fuselage, but also on. the normal position in the boundary layer.

Hinze (see chapter 2 reference, p. 645) shows Klebanoff ' s data for the eddy

viscosity's distribution acre:;,- the boundary layer. Equating the eddy viscosity

with the turbulent diffusivity (as discussed in chapter 2) yields the diffusivity

profile shown in figure (7-1). A least squares polynomial fit was made to

represent Dt . The results are

Dt - .037Uo6 _(-.00103 + .291 (Y-)s + .007 Iv% 2

-1.36 (d) ; + .418 (a)4 	 + 2.123 (b) 5	 (7-3)

-.277 (d) 6 - 1.556 (d) 8 + 1.20 (a^ 9^

Typically, injection would occur a few millimeters vertically into the

boundary layer. As shown in figure (7-1), the diffusivity near the surface

becomes negligibly small at downstream positions where 6 is large. The

diffusivity can be approximately represented as

Dt = (.037%6) (.07) sin (fL)
	

(7-4)

Using the expression for 6 from (7-1), the axial position for maximum Dt is

found by setting the derivative of (7-4) equal to zero. The result is

tan Y-
	

(7-5)

The graphical solution of (7-5), shown in figure (7-2), reveals that the only

meaningful solution occurs where , M goes to zero. The actual vertical

dependence (7-3) of D t goes to zero faster than sin(Tt indicating that for a
6 1P

given vertical location, diffusion will have a more pronounced effect at up-

stream (smaller boundary layer thickness) locations. 	

^f -^)
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C. Typical Injected Density Profiles

Figure (7-3) shows computer calculations of particle trajectories for

particulate injected isokinetically through an 8mm diameter tube into an

aerodynamic boundary layer 6m away from the plane skin. Injection for this

calculation was set at just over 1 m downstream of the leading edge where the

boundary layer thickness had grown to 7.3 cm. The calculation was identical

to the hybrid inertial diffusion model developed in chapter 4 except that

gravity was ignored here. The calculation was performed assuming use of 40

micron spheres, an eight cm wavelength field structure, and an ambient air

,qr ed of 500 MPH. The strength of the magnetic field was chosen to be compa-

rable with commerically obtainable permanent magnets--the field strength on

the aircraft skin 1/4" from the magnet being about .095 web/m 2 . Iron powder

was chosen as the injected particulate, but any large u material of density

-7 x 103 kg/m3 would give equivalent results. A listing of the program KD747G

used is listed in Appendix J.

The effect of the small layer thickness and thus large initial diffusivity,

is seen to force the upper trajectories away from the plane structure. The

lower trajectories are, however, precipitated rather quickly. It is not until

the lower trajectories begin to precipitate and thus lower the densities

among the upper trajectories, that they begin to drop as well. This upward

diffusion makes it quite difficult to collect the last 5% of particulate. In

the above calculation, the upper trajectory was only beginning to curtail its

upward ascent 47 meters downstream, 7.5 cm above the skin. Because of the

diminished effects of diffusion downstream at the same injection height,

precipitation of all the particulate is easily accomplished (e.g. with xinjection

= 10m, all particulate is collected in 3 meters). In any event, with an initial

density injection profile characterized by a (y/a) 1/7 dependence, ducting is
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not possible; either the particulate will be precipitated or lost.

D. Possibility of Quasi-Stationary Profiles

The question that must be considered is whether or not there exists an

injection density profile that would yield a steady or quasi-steady positioning

of particulate in the boundary layer. This would require a balance between

the upward diffusive flux and the downward magnetic migration. From the

results of chapter (4-D), this would require

- 
67rnrDt+ an _ 4 ^,3	 3	 u _ 1) k2 e - 2kmy= 0

n	 ay	 2 + u uo 	 uo m=1 m	 (7-6)110

or with a fundamental harmonic field only

6irnrDt 
^ Bn) 	 2

Equation (7-7) could be integrated if `lie density at some location y

were known. Although the assignment of n=0 at y=6 is reasonable, D t also goes

to zero there and the evaluation of the first term above becomes a problem.

Again approximating Dt as (.037 Uod)(.07) sin( / The analysis proceeds by

assuming

y.0.6	 (6 Y)p	 (7 - 8)

Equation (7-7) gives

ake-2ky =	 (61rnr) (.037 Uo6) (.07) 
lis 

(6 -y) p(6_
Y)
 p(7-9)

-, Y 6	{6 

or

	

	
-2k6

(67rnr) Z. 037U 0

t.
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The constant in front of the exponential is equal to about 82 for parameters

characteristic of the above text. The exponential power W, however, is 411,

indicating that p is a very small number. The density is nearly uniform, but

drops sharply at y~S in the neighborhood of the boundary layer exterior. Desig-

nating the density at y=S _ as no , equation (7-7) can now be integrated to give

no	S_

1

ndn _	 ake.2.9''	 (7-11)

n	 y	 S (67mr) (. 037,Jo) . 07 sin

Reversing the order of integration, (7-11) becomes

^	 ake-2kS (S)d
(10) 	 Onnr) (.037U ) .07 sin ^ 	 (7-12)

1	 o	 S

Equation (7-12) was integrated numerically beginning 10 ft. downstream

from the transition to turbulent instability where 5 = .26m for an 8 cm wave-

length field. The calculation was quasistationary in that it assumed a constant

boundary lay , -thickness. The resulting density profile is shown in figure

(7-4) alone , ith the necessary sharp cutoff dependence near y=d.

The ,rge density at y=0 indicates a problem occurring in this region.

There is no way to terminate the density in this region except as a step at

y=0+ from n=0 to a very large n almost instantaneously at y =O+E. At this

point, the search for a possible steady profile becomes merely a mathematical

exercise, since the profile in this region implies a very rapid precipitation

ratio.

It is interesting to compare the spreading of two density profiles under

the same conditions. The trajectory profiles with isokinetic injection of

particulate 3 meters after the transition to turbulence, under the same condi-
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tions as the trajectories in figure (7-3), are shown in figures (7-5) and (7-6).

Tree characteristic turbulent profile (y/a) 1/7 dependence is assumed in fig.

(7-5), while an initial density profile similar to that in figure (7-3) is

assumed in fig. (7-6). The calculated densities are plotted for various

locations downstream. The results indicate the skewed profile case does

indeed keep the mid to upper trajectories more horizontal for a longer axial

distance. The precipitation of the lower trajectories occurs within the same

distance as the normal density profile case however. Downward diffusion

dominates at these lower trajectories since no particulate exists between the

plane skin and the lower part of the injection tube initially. The density

plots reflect just how quickly the effect of downward diffusion and migration

of the lower trajectories propagates upward. The author's conclusion from the

F

	

	 above analysis is that ducting of magnetizable particles in a turbulent boundary

layer with a permanent magnet structure is unfeasible. Ninety percent of the

particulate injected 6 mm above a flat surface in a 500 MPH airstream can be

contained end collected within 4 m. The last 10% if collected, will be spread

over the following 4 m stretch.

L
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acluding Remarks

Particle F,ntrainment over Jet Fuselage

process of entraining magnetizable particulate in a boundary layer

may now de examined in the light of the chapter 7 results. If particulate is

moving in near synchronism with the jet air speed, and collection of particulate

and reintrainment at the front of the craft is in effect, it is seasonable to

assume particulate undergoes one full cycle when the jet has traveled twice its

length with respect to the air at "infinity". Th4 density tests of chapter 7

indicate that at best 4% of the injected particulate will be lost per cycle.

(This assumes that particles collected prematurely are shuffled along the wall

while still interacting with the boundary layer in some positive drag reducing

manner.) Thus with these figures, a 100 ft. craft undergoing a 10 mile flight

(10)(5280

(and hence lOx 180 round trips) 100[1 - L1 - .04) 	 ] s 99.9979 per cent

of the original particulate would be lost.

Assuming the craft has a surface area of 4700 sq. ft. and specifying that

1 gram of powder be exposed to 2 sq. ft. of the craft skin at any instant, it

would be necessary to begin the flight with 1.13 x 10 6 kg of powder stored on

board! Clearly this is an unacceptable demand and 3n alternative in which

constant interaction with particulate over the skin must be sought.

B. Travelling Wave Interaction with Particulate

A travelling wave structure mentioned in the introduction has been

examined qualitatively as a means of shuffling particulate along the skin in

an aerodynamic boundary layer. The experiment shown in fig. (1-2) involved

injecting particulate just under the duct upper edge; particles were captured

by the field, held against gravity, and-shuttled downstream opposite to the
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direction of the travelling magnetic field.

Figure (8-1) shows an inverted picture of the field region just above the

wave structure with a right traveling wave, an observer at point P encounters a

counter clockwise rotating field. Non-spherical agglomerates experience a counter-

clockwise torque.in such a field resulting in a reverse walking motion on a sur-

face adjacent to the structure.

Figure (8 -4 depicts a typical instantaneous picture; of agglomerates on the
duct upper wall. Particles generally form agglomerates in the magnetic field.

Most of the agglomerates will cling to the end of the field structure. Agglom-

erates over the body of the structure actually bounce along the S,Arface toward

the downstream field edge. Particles and agglomerates gravitate to some degree
f

toward the side edges as they propagate down the duct because of the edge effect

F
gradient.

The flight of a single agglomerate is shown in iig. (8-3). The agglomerate

literally walks end upon end; at low freauencies-(1 IIz) this effect becomes clear

as long agglomerates (1/4 I1) walk along the duct.

s
Agglomerate speed is a function of frequency and agglomerate length. Two

steps are taken every cycle, each equal to the agglomerate length. Agglomerate

size has a strong dependency on wave structure frequency, there being a gradual

decay in agglomerate length between 1 Hz and 40 Hz. Above 40 Hz particle

agglomerates are small (400u). Inertial effects become even more important

above 60 Hz where motion is impeded. Particles are observed to form into very

thin (1-4 particle diameters thick) hill-type structures (fig. 8-3,b). All

motion at these frequencies occurs by particles skirmishing over the top of

such hills; the area between these thin hills remains clean. This particle

formation forms to minimize the reluctance in the region below the field

structure. The dominant mode of operation at lower frequencies involves walking



J

r

1

-207-

Direction of Wave

P

3-Phase Traveling Wave Structure

Instantaneous Field at Point P With Time

time

Observer at P sees counter clockwise rotation

Figure 8-1 Circglating Field above Traveling Wave Structure
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Direction of Travelling wave

Time

(a) Single Agglomerate Walking Motion (f<40 Hz)

(b) Stationary Particle "hills" Formad above 60 Hz

Figure 8-3 Particle Formations

It !
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uniford y on the duct wall with a wave undulation moving opposite to the particle

migration in the same direction as the travelling wave.

An alternative step for studying these effects is . shown in fig. (8-4)

A 4-pole, 3 phase synchronous stator now serves as the field structure. A

cylindrical chamber with a rectangular plate of plexiglass suspended on pins

serves as the secondary member. It is sealed and filled with water and a small

amount of iron powder. A clockwise field causes the powder to circulate counter

clockwise-on the walls of the chamber. The powder drives the water by viscosity

which in turn causes a rotation of the paddle. The experiment is especially

suited to correlating particle speed with frequency. The speed was found to

increase somewhat linearly with frequency up to 20 Hz (indicating that

agglomerate length is a nonlinear inverse function of frequency, decreasing

sharply after 20 Hz).

These effects indicate particle ducting via a travelling wave structure

is feasible. The exact nature of drag reduction benefits obtainable from

particles confined and shuffled in this manner is not clear. The particles

do bounce and rotate along the surface and provide a mechanism for both trans-

fering momentum from the wall to the flow or vice versa. This transfer can

be coherent in the sense of tending to prolong a net circulation, but it

appears that it could also function on the scale of the turbulent eddies. A

longer interaction in the free stream flow might be obtainable by actually

releasing the particles by using a standing, rather than travelling wave field.

The consideration of particle loss may cause this mode of operation to be im-

practical. In any event, operation in either mode must be at a frequency less

This experimental apparatus was built and studied by Ed Wooten, Massachusetts

i



-211-F
t

j,

f

Figure 8-4 Cylindrical Wave Structure for Studying Particle

Motions Without End Effects
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than 60 Hz. This restriction necessitates the use of a long pole pitch if a

travelling wave is used to synchronously (a distance 1/3 of the way into the

boundary layer where the speed is roughly half the free stream speed) shuttle

particles along the aircraft skin. A 500 MPH jet operating at 40 Hz would

require a wave structure pole pitch

500 5280

P =2T=7	 +	 1.4m
	

(8-1)

The results of this thesis are directly applicable to the design of a precipitator.

for capturing the particulate at the aircraft tail and shuttling it to the nose.

As energy needs expand, it may be desirable to apply this process to ships

ant; underwater vessels. The travelling wave interaction could in fact be the

basis for propulsion, perhaps with a reduction in hydrodynamic noise associated

with conventional propulsion. The restriction on weight would not be as severe.

The smaller difference in density between particulate and flow medium will be an

advantage in terms of particle loss. The implantation of a travelling wave

structure near the skin of the vessel should be an easier task as well.

C. Synopsis and Related Research

The thrust of this thesis centered on the prediction of magnetic particle

ducting and precipitation in turbulent air flows. Towards this end two models

were developed, one appropriate for light particles (< 20u) and the other for

heavy particles (> 20u). The light particle model requires the solution of a

diffusion equation with appropriate boundary conditions imposed where trajectories

enter the duct volume. Inertial effects are unimportant. The heavy particle

hybrid inertial-diffusion model represents the particle momentum balance in

Lagrangian co-ordinates with an additional diffusion term added in by super-

position. In both models, the effects of turbulent diffusion are lumped into a

41
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measurable diffusivity constant. By means of correlation with experiments,

both models have been shown to provide a useful degree of accuracy in predicting

particle precipitation. Significant improvement over analytical models was

shown in correlations with experimental data. This encouraged the application

<1	 of the hybrid diffusion model to the problem of particle containment in the

aerodynamic boundary layer. Results indicated about 4% of the injected particulate

would be lost if permanent magnet collection were used in a boundary layer of

typical aircraft. The analysis further revealed 90% of the particulate would

be precipitated over a 4 to 6 meter length of the aircract. Thus, unless it

were reintrained in some manner of benefit to drag reduction, it also would be

lost as a drag reducing agent.

The analysis indicated that to improve correlation of experiment with

predictioris,the three dimensional nature of the problem must be brought into

the model. Specifically either the flow and field structure needed to be made

wider,or the three dimensional considerations needed to be added to the model.

Incorporation of variations of flow over the width of the channel and viscous

effects of the side walls into the model would lead to higher precipitation

predictions in both heavy and light particle analyses. Magnetic field edge

effects which are a function wavelength should explain some wavelength trends

observed. For application to precipitation technology, for example coal

desulfurization, the consideration of'small gradients around the tips of

precipitated dendrite structures may be the most significant area for further

study. The dependence of precipitation on loading would give a clue as to the

magnitude of this effect.

The precipitation models should be of use to particle ducting studies in

which loss of particulate is undesirable. The models developed should aid
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researchers in particle augmented drag reduction since precipitation would

normally be required simply to conserve particles.

The wind tunnel is quite useful for experimentally studying general drag

reduction effects and in this context, the above research is directly applicable

in collecting particulate.

LL
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Appendix A - Particle Magnetizable Spherical Particle

It is helpful in determining the nature of the magnetic force to consider

the analogous polarized particle in an external electric field. The polar-

ization originates from charges separated by a distance d (fig. A-1), and the

force can be examined separately on the two charges, i.e.,

T - 27(r + 3) - 27(r)	 (A-1)

Employing Taylor ' s expansion and assuming d small, (A-1) becomes

i' = 2 (E(r + 3• VE) - 2E(r7 	 (A- 2)

or

T - p•Ir	 (A-3)

where p is the particle polarization given by 23. The material can be

considered to have a number of dipoles per unit volume n p . From equation (A-3),

the force density T F is had, by multiplying by np , i.e.,

F' = npp • V7 - Y. Vr	 (A-4)

The force on a magnetized particle now follows by analogy. No magnetic

monopoles exist, but one can certainly examine magnetic dipoles and define M

as the number of magnetic dipoles m per unit volume. Now the electric force

of (A-4) can be obtained via energy arguments, i.e., by taking the gradient

of energy of electric dipoles in an external electric field. It is legitimate

to use the same energy arguments with magnetic dipoles and the result must be

the same, i.e.,

1r = uoM • V-I
	

(A-5)

where the V  comes in because of the historical definition of M
(Vr}jo (R + ff) =0:;0 • (eor + -P-)= k ) .

The requirement of a gradient in the external field is -intuitively reasonable;

there must exist a different field at either end of a particle (acting

^	 14

i

I



'l Y

-215-

i

F - P - v E
	

F-PO - vi

i,

(a) Polarized Particle
	

(b) Magnetized Particle

Figure A-1 Particle Magnetic Force
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Figure A-2 Permeable Sphere in External Field
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differently on the poles) to yield a net force.

To apply (A-5) in determining the force, it is necessary to examine the

field internal to a highly permeable sphere in an external field Ro (fig. A-2).

For the external Z directed field Ro and a particle of radiuss a, the scalar

potential outside: thr. sphere is represented as

To = -Hor cose	 rose	 (A-6)
r

	

Tin = Ar rose	 (A-7)

where R = -VT

Matching tangential H and normal B at r = a gives

D=H a3(uo - i
t

o \

2 + uo/

A = -H	 3	 (A-S)
o^2 +u

uo

In a linear permeable material, the magnetization R and ff are related as

FI =

(
IL - 1) ff	 (A-9)
110I

Using (2-10) tlien, one finds RI to be

11

= 	 3	 ii-- 1 A	 (A-10)
 ( 2 + 

uo 
'Po0

With (2-5) and the fact that the particle force is obtained by multiplying by

the volume, one finds that

11
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M!

F- 4 Tra3	 u- 1 u 1 0 ^•^3	 2+ u uo	 o^

Po

Kry	 or

F . alp (T.ff)	 (A-11)

Here the A due to magnetization has been brought inside the gradient. It

should be emphasized that the R in (A-11) is the external field only.
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Appendix B - Refinement of Basic Precipitation Models

The refined models and laminar flow test calculation are developed from

the results of chapter ,2, section C. The.easiest model to refine is the Deutch

model for a turbulent, fully mixed flow. The model posed thus far incorporated

migration due to magnetic force only. Adding gravitational migration for

particles with mass m 'ters (2-21) to

1 do =^m	 ake-2kY
F

	

	 a - U^^—	
(B-1)

ME 

The solution of (C-1) again gives an exponential fall for the density. Since

precipitation occurs at y - o, the density becomes

x-xr	
n = exp -	 o	 (B-2)
no	 2aU m + ak

a

Two additions to the particle trajectory laminar flow are in order. The

first is the inclusion of the gravitational migration. The second deals with

the replacement of the assumed uniform air velocity plug flow with the

1

characteristic turbulent flow profile (U = U o^a)^ ix). The net particle flux

now contains a more accurate convective term along with two migration terms.

t - Un 1X - s	 a

mgn iV
	 ake- 2ky 

n i
y
	 (a- 3)

Following the procedure above of taking the divergence of I' gives

1

8n + U Y	 i - rn
	

+ `^
7
	Vn = - 

a'oo(ffR) n
8t	 o a	 x S	 S	 S

or in the particle's frame,

(B-4)

I1



-220-

F

TTE  = -a' v•v •	 n

along

1

	

R = Uo (a) ìx -	 iy + a'V (Ff•F)	 (B-5)

As in the previous study it is noted that if the force field is not divergence-

free, (V- (VA•H) # 0), the density is not constant along a trajectory line.

For a single harmonic sinusoidal field (C-5) becomes

dn ;_ - wA e - 2^' n

	

_	 1	 _	 _ ky

aloe dr U -) 7 i - 
mgi„ - ake 2 i	 B-6g	 o^ a	 x	 $	 --$	 ^	 ( )

The particle trajectory dependence is (C-5, b) as before. The vertical tra-

jectory's dependence on time can be found by integration immediately as

0 
CY Yo) + 6 inm + ake '2ky	 t	 (B-7)

Mg	 71F. 9-	 (mg + ke - ^'o

It is not as f uitful to seek the trajectory and density time dependence in this

refined model, but is more convenient to solve for the x - y trajectory

character and then to find the density dependence on a space dimension. Towards

this end, dt can be eliminated from the two equations in (2-25,b) to give

1

cix	

(Y

	

Uo. 1 a,	 (B-8)

y _ M_ A-2ky
S 

S e
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The density y dependence is obtained by substituting for dt its

equivalent in terms of dy from (2,25,b), i.e.,

dt =d=	 (B-9)

-mQ - a^ 2kY

and thus

do = 2ak2e -2kyn d	 (B-10)
U mg + ake- . cy

It follows from (2-41) that

no	
(mg + ake y )

For any starting position yo, the density upon impact at y=0 follows directly.

The particle's trajectory follows by numerically integrating (C-9). The pro-

gram KDTRAG (Appendix C) uses a forward Eulerian integration, stepping y from

yo to the duct wall at y=0. Fig. (B-1) shows typical trajectories of iron

particles where the magnetic migration is upward. The calculation for these

profiles assumed the particle size and magnetic field were such that the

magnetic force balanced gravitational force midway up the duct. The increased

downward curvature of the gravitationally dominated trajectory lines near y=0
1

reflect the convective (a)7 dependence. The magnetically dominated trajectories
exhibit an even greater curvature (upward) due to the exponential field depend-

ence.

I1
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Appendix C - RDDTRAG

This program calculates particle trajectories according to the re-

fined inertia-free model developed in appendix B. X and Y represent

the particles axial and vertical position respectively, while n repre-

sents particle density. The program is in basic.

10 DIM YO(3)rXO(3)tN(3)rY(3r100)rX(3r100)rJ9(3)
12 PRINT ' THIS PROGRAM COMPUTES INERTIAL FLOW TRAJECTORIES'
13 PRINT ' FOR SINGLE HARMONIC B--U0(1 /9)rBvANU GRAVITY
14 PRINT 'T-GRAVrT-INrMAG PT-RESr X FOLLOW'
15 INPUT G1rMl r RlPK \ PRINT G1rM1 r R1 rn
20 D2=91 \ D3=.01
30 FOR I=1 TO 2
35 YO(1)=.4252 \ YO(2)=•315 \ X(Ir0)=0
40 FOR J=0 TO 400
50 Y(IrJ+1)=YO(I) -J*D3
55 IF Y(IrJ+1)<;1,00000E-03 GO TO 85
60 U=61/R1*(2*(1-Y(IrJ+1)))^.111111
65 IF Y(IrJ+1)<*5 THEN U=61/Rl*(2*Y(IrJ+1))^.111111
70 F=U/(1+Gi/M1*EXP(-2*h*Y(IrJ+1)))*D3
75 IF J=0 THEN F=F*.5
80 X(IrJ+1)=X(IrJ)+F \ NEXT J
85 N(I)=(1+61/M1*EXF'(-2*h*YO(I)))/(1+01/Mi)
88 J9(I)=J
90 XO ( I)=X(IrJ) \ NEXT I
93 PRINT 'THE YOrXOr N FOLLOW'
95 FOR I=1 TO 2
100 PRINT Y0(I)iX0 ( I);N(I)r \ NEXT I \ PRINT
105 INPUT H1 \ PRINT ' THE XrY TRAJECTORIES FOLLOW'
110 FOR I=1 TO 2
120 FOR J=1 TO J9(I)
125 PRINT X(IrJ)iY(IrJ)r \ NEXT J \ PRINT
130 INPUT H2 \ NEXT I
135 STOP

f

f`

r,
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Appendix D - Analytical Diffusion Analysis

The point of this analysis is to determine the nature of the density

gradient at a boundary separating regions at high and low diffusivity. Figure

(D-1) shows the problem considered here, two thin layer regions of small

diffusivity d and thickness d separated by a large core region of diffusivity

D and thic1mess (2a-28). Only gravitational migration exists and no x depend-

ence is considered. Injection of particulate occurs at the upper wall and the

boundary conditions are n - n o at y = 2a and n = 0 at y = 0 (perfectly absorbing

lower wall).

The flux in region 1 is

ry = -d r - S n	 (D-1)

In the steady state with -at = 0,
-d 8^ - 	 an = 0

8y	 S	
y	 (D-2)

The same equations apply to region 2 with d-)-D. Normalizing to the duct width,

we have

-= a
a

2a 2

= Td

(2a) 2 _ T- r-- 'D

2a __ T

g

s
n=n

0

(D- 3)
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a2n 	 Td an+
T

T

- 0
}	 3Y	

g

..

r

(D-4)

The general solution of (D-4) is

Y

(D-5)

Td

T
n = cl + c2 e g

With the boundary condition n = 0 at Y = 0, we have
Td Y

ig

n1 = cl 	1 - e	 (D-6)

Similarly for region z, the density is

DY
n2 = c3 + c4 a Tg
	 (D-7)

Imposing the condition of continuity of particle density and flux at y = a = 8

determines nz to be

(TD-Td) a	 TD

n = c	 1- e T 
	

a T 
	

(D-8)
-^ 1

Finally in region 3, we have a characteristic density
- T.d

T 
n3 = CS + c6 a	 (D-9)

and the boundary conditions n - 1 at y = 1 and continuity of density and flux

at y = (1-D. Combining (D-6), (D-8), and (D-9) with these conditions yields

the densities for each region as

t
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Td

. Tg Y

	

'no	 1-e

_Td_TD
g S Tg (Y

 -

	

ano	 1-e	 e

TD Td
T

g 
(1-28	 T (Y-(1-25)))

g

	

=no	1-e	 e

1
__o =	 - TD
	

_T d 
	 (D-10)

g (1-2Dg d

1-e	 e

Figure (D-2) shows a typical density profile for this problem assuming

D»d. The ratio of density gradient in the core region to the boundary layer

region at Y - d or 1-6 is found straight away from (D-10). The result is

an I
3y region 2	 = TD
	

(D-11)
3n ITd

3y region 1, rS
or

region 3, rc1-S

Thus, for small diffusivity d, the density gradient is nearly zero in the

core. This is explicityl shown for the two curves with TD = TU. The dashed

	

TD	 1	 g

curve with Tg - Mdisplays a sharp vertical slope at y=S. Also the effect

of smaller core diffusivity is seen to squeeze all the particulate into the

lower layer.

I1
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Appendix E - KDDI4 ; KDDI9
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS P00R

6

These fortran programs calculate particle density and deposition

according to the approximate diffusion model presented in chapter 4-B.

I ;w
	

KDDI4 imposes the boundary condition n-0 on the upper boundary,

while KDDI9 uses a zero density gradient condition there.

KDDI4

C
C CALCULATION OF DUCT CONCENTRATION PROFILE
C SMALL PARTICLE TURBULENT DIFFUSION CASE
C

DIMENSION B(10r80)rX(80)rAN(80)rBO(16)rAM(10)rU(10)rAMK(10)
COMMON AKrBOrU1rAMMVrNHARMrDLTUB
WRITE(5vU)

5 FORMAT(' THE NUMBER OF ROWS AND COLUMNS ARE')
READ(5r10)IROWrICOL

10	 FORMAT(2I5)
WRITE (5r15) IROWrICOL

15	 FORMAT ( 2I5r/r' INPUT VARIABLES G1rAKrXBrAMMVrDLXMSrXMAGFDLTUB')
READ( 5r 20)GlpAKYXBPAMMVPDLXMSPXMAGPDLTUB

20 FORMAT(F15.2)
WRITE(5r25)G1rAKrXBrAMMVrDLXMSrXMAGrDLTUB

25 FORMAT(' THE INPUTS G1rAKrXBrAMMVsDLXMSrXMAGrIiLTUB ARE'r/6F10.4)
READ(5r23)AH1

23 FORMAT(F10.2)
WRITE(5r16)

16	 FORMAT(' THE 4 OF HARMONICS AND THE NORMALIZED B-FIELDS'/'
1 FOLLOW--B(N)="H**2*@*K/b/(D/2a)')

READ(5r10)NHARM
READ(5r20)(B0(I)rI=1rNHARM)
WRITE ( 5r17) ( B0(I)rI =1PNHARM)

17	 FORMAT(8F10.5)
DLX = 1./(ICOL+1.)
W=12.7
DLY = (1.-2.*DLTUB/W)/IROW
U1=.5968/XB
YU=1.-DLY-DLTUB/W
XPOS=XMAG + DLX*XB
CALL DT2A(XPOSrDT)
CALL U0AM(YUrU2rAM2rAMK2)
U(1)=U2
AM(1)=AM2
AMK(1)=AMK2

j1
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G2=G1/DT
AM2=AM2/DT
AMK2=AMK2/DT
U2=U2/DT
F(1 r 1) =1.-DLX/U2*(AMK2+(G2+AM2)/2/DLY+1./DLY**2)
DO 30 I=2rIROW
YU=1.-DLY*I-DLTUB/W
CALL UOAM(YU,U2rAM2rAMK2)
U(I)=U2
AM(I)=AM2
AMK(I)=AMK2
AM2=AM2/DT
AMK2=AMK2/DT
U2=U2/DT
H(Iri)=1.-DLX/U2*AMK2

30 CONTINUE
DO 50 J=2PICOL
XFOS=XMAG + J*DLX*XB
CALL DT2A (XF'OS r DT )
DO 45 I=1rIROW
62=61/DT
AM2=AM(I)/DT
AMK2=AMK(I)/DT
U2=U(I)/DT
IF(I.GT . I.AND . I.LT.IROW)N(IrJ ) =B(I,J-1) + IiLX/U2*(

1 -AMK2*6(IrJ-1)+(62+AM2)*(B(I-19J -1)-B(I + 1,J-1))/2/DLY
2 +<B(I-1,J- i> ♦E^(I + 1rJ-1)-2*I+(IrJ-1 >)/DLY**2>

IF(I.EG . 1)	 +IiLX/U2*(-AMK2*H(I,J-1) -
1 (02+AM2)*B(I+1rJ-1)/2/DLY+(B(I+1,J-1)-2*b I,J-1))/LILY**2)

IF(I.EG * IROW)F(I,J)=B ( IrJ-1) +DLX/U2*(-AMK'4,gI+(I,J-1"
1 +(2*B(I-1,J-1) - 2.*B(IrJ-1))/DLY**2)

45 CONTINUE
50 CONTINUE

DO 111 J=irICOLr10
WRITE(5r90)(IrI=1,10),J

90 FORMAT(' THE DENSITIES ARE AS FOLLOWS',/r3X,I1,9(6XrI2),
1 /r' THE FIRST COLUMN IS',I3)

JJ=J+9
IF(JJ•GT.ICOL)JJ=ICOL
DO 108 I=irIROW
WRITE(5r100)(P(IFJJJ),JJJ=JrJJ)

100	 FORMAT(10F8.4)
108 CONTINUE

READ(5,110)AH3
110 FORMAT(F1O.2)
111	 CONTINUE

YU = DLTUB/W
DLYO = YU/10.
CALL UOAM(YU,U2,AM2,AMK2)
AMO=AM2
SUM=.5*U2/(61+AM2)
DO 115 J=1,9
YU=YU-DLYO
CALL UOAM(YU,U2rAM2,AMK2)

A
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SUM=8UM+U2/(61+AM2)	
Of TO

115 CONTINUE	
Is POOR

SUMnSUM*DLY0
WRITE(5v110)SUM
CALL UOAM(O#PU2pAM2tAMK2)
DO 120 JnlrICOL
AN(J)=B(IRGWPJ)*(01+AMO)/(61+AM2)*DLXMS
X(J)=(DLX*J+SUM)*XB

120 CONTINUE
WRITE(5t125)(X(I)PAN(I)PI=1PICOLP3)

125 FORMAT(4E15*4)
STOP
END
SUBROUTINE UOAM(YUPUPAMPAMN)
DIMENSION BO(16)
COMMON AKPBOPUlPAMMVPNHARMPDLTUB
YMYU
IF(YU#GT#*5)Yn1,—Y
UmUl*(2#*Y)**#llltlll
AMwOo
DO 15 I=lpNHARM
P=2#*I*AK*YU
IF(P,GT#20 * )60 TO 15
AM=AM+AMMV*BO(I)**2*1*EXP(—P)

15 CONTINUE
IF(YU * LT * DLTUB/12 * 7)60 TO 30
AMK=O*
DO 25 ImlpNHARM
P-2**I*AK*YU
IF(P * GT * 20o)GO TO 25
AMK=AMK+2#*I**2*AMMV*BO(I)**2*AK*EXP(—P)

25 CONTINUE
30 RETURN

END
SUBROUTINE DT2A(XPDT)
DX-#1524
IF(X*LT*DX)DToo003625
XE1=2#*DX
IF(X*6E#DX*AND#X#LT*XE1)DT=*003625+#020915*(X—DX)/DX
IF(X*GE#1,33985)DT=o00178
IF(X#LT,XE1 * OR,X#GE * 1#33985) 80 TO 50
DT='*054658—.150851-*X+'4201784*X**2—'4084262*X**3—#07702*

1 X**4+*028938*X**5+*065659*X**6—#033616*X**7
50 DT=DT/#127

RETURN
END

61— —
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KDDI9

.,
(01'

C CALCULATION OF DUCT CONCENTRATION PROFILE
C SMALL PARTICLE TURBULENT DIFFUSION CASE
C CHANGE UPPER BOUNDARY CONDITION
C

r a DIMENSION B(1Or80)PX(80)PAN(80)PBO(16)PAM(10)PU(10)PAMK(10)
COMMON AKrB0rU1rAMMVrNHARM
WRITE(5r5)

5 FORMAT(' THE NUMBER OF ROWS AND COLUMNS ARE')
READ(5rl0)IROWrICOL

10 FORMAT(2I5)
a WRITE(5r15)IROWPICOL

15 FORMAT(2I5r/r' THE INPUT VARIABLES 01PAKPXBPAMMVtDLXMSPXMAG ARE')
READ(5r20)GlpAKpXBpAMMVPDLXMSPXMAO

20 FORMAT(F15.2)
WRITE(5r25)GIPAKPXBPAMMVPDLXMSPXMAG

25 FORMAT(' THE INPUTS 61PAKPXBPAMMVPDLXMSPXMAO ARE'r/6F10.4)
READ(5r23)AH1

23 FORMAT(F10.2)
WRITE(5P16)

16 FORMAT(' THE 0 OF HARMONICS AND THE NORMALIZED B—FIELDS'/'
1	 FOLLOW--B(N)=^H**2*0*K /b/(D/2a)')

READ(5r10)NHARM
READ(5r20)(B0(I)rI-1pNHARM)
WRITE(5P17)(B0(I)rI=ltNHARM)

17 FORMAT(8F10.5)
DLX = 1./(ICOL+lo)
W=12.7
DLY =	 (1.—i./W)/(IROW-1.)
U1=.5968/XB
YU=lo—.5/W
XPOS=XMAG + DLX*XB
CALL DT2A(XPOSPDT)
CALL UOAM(YUPU2PAM2PAMK2)
U(1)=U2
AM(1)=AM2
AMK(1)=AMK2
62=01/DT
AM2=AM2/DT
AMK2=AMK2/DT
U2=U2/DT
B(1P1) =1.—DLX/U2*(AMK2)
DO 30 I=2PIROW
YU=1.—DLY*(I-1.)—.5/W
CALL UOAM(YUPU2PAM2PAMK2)
U(I)=U2
AM(I)=AM2
AMK(I)=AMK2
AM2=AM2/DT
AMK2=AMK2/DT

4
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U2=U2/DT
B(Irl)=1.-DLX/U2*AMK2

30 CONTINUE
DO 50 J=2 r I COL	 OF
XPOS=XMAG + J*DLX*XB	 RpDUCIBILI, IS p00lt
CALL DT2A (XF'OS r DT )	 Ri" vAL pAGL
DO 45 I=1rIROW	 pgyG
02=01/DT
AM2=AM(I)/DT
AMK2=AMK(I)/DT
U2=U(I)/DT
IF(I.GT.I.AND.I.LT.IROW)B(IrJ)=B(IrJ-1) + DLX/U2*(

1 -AMK2*B(IrJ-1)+(G2+AM2.`*(B(I-1rJ-1)-B(I+1rJ-1))/2/DLY
f	 2 +(B(I-irJ- 1) +B(I +1rJ-1)-2*B(IrJ-1))/DLY**2)

IF(I.EG * I) B(IrJ)=B(IrJ-1) +DLX/U2*(-AMK2*B(IrJ-1)
"1 +(2*9(I +irJ- 1)-2. *B(IrJ-1))/DLY**2)

IF(I•EG*IROW)B(IrJ)=B(IrJ-1)+DLX/U2*(-AMK2*B(IrJ-1)
1 +(2*B(I- irJ-1) - 2.*B(IrJ-1))/LILY**2)

45 CONTINUE
50 CONTINUE

DO 111 J=1rICOLr10
WRITE(5r90)(IrI=1r10)rJ

90 FORMAT(' THE DENSITIES ARE AS FOLLOWS'r/r3XrIlr9(6XrI2)r
1 /r' THE FIRST COLUMN IS'rI3)

JJ=J+9
IF(JJ.GT .ICOL)JJ=ICOL
DO 108 I-IPIROW
WRITE(5r100)(B(IrJJJ)rJJJ=JrJJ)

100	 FOFMAT(10F8.4)
108 CONTINUE

READ(5r110)AH3
110 FORMAT(F10.2)
111

	

	 CONTINUE
YU = .5/W
DLYO = YU/10.
CALL UOAM(YUrU2rAM2rAMK2)
AMO=AM2
SUM=.5*U2/(61+AM2)
DO 115 J=1r9
YU=YU-DLYO
CALL UOAM(YUrU2vAM2rAMK2)
SUM=SUM+U2/(Glc-AM2)

115

	

	 CONTINUE
SUM=SUM*DLYO
WRITE(5r110)SUM
CALL UOAM(O.rU2rAM2rAMK2)
DO 120 J-1rICOL
AN(J)=B(IROWrJ)*(61+AMO)/(01+AM2)*DLXMS
X(J)=(DLX*J+SUM)*XB

120 CONTINUE
WRITE(59125)(X(I)rAN(I)rl=lrlCOLr3)

125	 FORMAT(4E15.4)
STOP
END

i
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SUBROUTINE UOAM(YUrUrAMrAMK)
DIMENSION BO(16)
COMMON AKPOOPUirAMMVrNHARM
Y=Yu	 ►ry OF TYIE
IF(YU.GT. •5)Y=i.-Y	 U^IgIL'I	 R
U=U1 * (2. *Y) **.1111 i 11	 gg GOAL pAGE IS P0o
AM=0.	 Q
DO 15 I,irNHARM
P=2.*I*AK*YU
IF(P.GT.20.)80 TO 15
AM=AM+AMMV*BO(I)**2*I*EXP(-P)

15 CONTINUE
IF(YU.LT..5/12.7)80 TO 30
AMK=0,
DO 25 I=irNHARM
P=2.*I*AK*YU
IF(P.GT.20.)GO TO 25
AMK=AMK+2.*I**2*AMMV*BO(I)**2*AK*EXP(-P)

25 CONTINUE
30 RETURN

END
SUBROUTINE DT2A(X,DT)
DX=.1524
IF(X.LT.DX)DT=.003625
XE1=2.*DX
IF(X.GE.DX.AND.X.LT.XE1)DT=.003625+.020915*(X-DX)/DX
IF(X.GE.1.33985)DT=.00178
IF(X.LT.XEI.OR.X.GE.1.33985) GO TO 50
DT=.054650-.150851*X+.201784*X**2-.084262*X**3-.07902*

1 X**4+9028938*X**5+.065659*X**6-.033616*X**7
50	 DT=DT/.127

RETURN
END
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Appendix F- KDDF2

This fortram program calculates particle densities and particulate

deposition according to the refined small particle diffusion analysis

disscused in chapter 4-B. The exact diffusivity X Y dependence, vertical

densities are solved simultaneously, and space derivatives consistent

with causality are used.

KDDF2

^ODUCIBII,ITy OF 
TH)

R^
p	

AL p^.Cs1^ 
IS P^n^

$TiGIN

C CALCULATION Or DUCT C(INICFNT :ZATION PRnrI:E
C S MALL PARTICLE TURROLENT OI rFUSInN CASE
C SMIONDARY CONDITIONS CnNSTSTANT WITH CAUSALITY
C ZFRO DENSITY 3RAnTENT I MPOSED ON ' LnWE4 SURFACE
r

OIMENSION 9(65),X( a0).AN(80) , Rn(9)992 ( E5)93?K(65) . Y(69i,
IIIR (65) . ANO((55) , AR(65, An) 9A(6591)
DOUBLE P PEMISION A 98
COMMON AK,RO,W;AMMVqN4AQA
WRITE(695)

S	 FOQMAT(I TAF NI)MRFR OF ROWS ANn COLU MNS ARce)
0EAD(5910)IaOW.ICOL

TO	 FORMAT(2I5)
WRITE(6,15)IR0w,TCOL

1S	 F09M A T ( 2I5•/+ 0 INPUT T6 9 AMMV , WV,X9 , ILXMS AREO)
READ(5g20)T5,AMMVgWV9X9,)LXMS

an	 FORMAT(5F1n.2)
WPITE (6,25)TG.XR4AMMV,WV•DLXHS

'>5	 FORMAT(' THE INPUTS TG,XS . AWMV,WV,OLX Mq ARC09/6F1O.4)
NHARM=9.01
IF(WV.EQ.8..OR.WV.FO .12.)GO TO 30
AK=15.71
XMAG=.499
9.0(1)=0080356
90(2)=.0027
00(3)=00392
RO (4) =.00151
90(5)=.001
AO(6)=.OnOn931
90(7)=.0007905
9n(9)=.000537A
90(q)=000352
GO TO 40

1n	 IF (WV.EO.1 P .) rn TO 3S
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AK=9.975
XMAG=.3175
Rn(1)= .099763
80(2)=9001x3
AO (3) =-014;7
PO(4)=.0009366
90(5)=00015
140 (6)	 000579
A0(7)=.001?6
00(8)=00005 	 REPRODUCEMATY OF THE
9n (9) =.000R5	 ORIGINAL PUCE IS T 001)

GO TO 40
is	 AK=6.650

XMAG=.0762
RO(1)=-08gR3
AO(2)=.00116
PO(3)=-025
RO(4)=.000?67
RO(5)=.00178
90 (6) =.000058'1
80 (7) =.00364	 1
90(8)=.000267
90(9)=0001064

40	 OLX = 1-/(ICOL)
Wb1 =12.7
W=.127
nLY = (1--.031/WW) /(T40W)
00 45 I=19IQOW
ANO(I)=1.
Y(I)=19-DLY*I

45	 CONTINUE
00 50 i=19TROW
CALL UnAM( Y(I)-AMgAMK.U)
82(1)=A M
82K(I) =AMK
UR (I )'=U/XB

R0	 CONTINUE
C INPUT FINISHED--SFT UP FINIT= ELEMENT SOJATTONS

nO 151 NCOi =1 + TCOL
XPOS =XMAG + DLX#xA°NCML
DY=DLY
DO 100 NROW=19TPOW
CALL DT2A(X0OS9nT+Y(N0OW)90T4AX)
TID=DT/W*#2
C=n-
IF(Y(NROW).LT..1P5)C=1.
IF(Y(NR0W).GT-.875)C=-1.
GRDT = C*DTNAX!W**?*Tn*12.7/(1.9875-.031)/2. /nY
A (^IROW,2) = TG*TTD*2 /DY**?_+ (1. +T r,*R 2 (N OW) /W) /nY +
1TG*UR(N9OW)/0LX+TC',*R?K(NROW)

A ( NPO'd• 1) =-TG*TIG/DY##2- (1.+TG # Q2 (N4)W) /W1 /()Y -GODT
A (N P 0W-3) =-TG*TTl/nY**2+GpDT
R ( No OW) =TGaUR (Mp 0W) /n9_ X*ANO (vanW)
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-too cow rzNue
A (I4OwstI Rly"W,2) 	 8?13^^w) /W^ ID Y

A I 191) =0.
A (IROW , 1) = A (T QnW, I ) -T3*TIO/nY**? - GROT
A(IPOW93) =0.

C SINGLE COLUMN IF FLEMENTS N04 RE ADY FnQ INVFRStnN
139 CALL INVRS ( A9R91POW)
1 4 1 AN (NCOL) =A4P (T pnw) *nLxMS

DO 145 JJ=1•Tpmw
ANO (JJ ) = A (J.J)	

REPRODUCIBILITY OF THE9R (JJ,NCOL) =ANA (.JJ) 	
ORIGNAT, PA r,, TS PnnP1 45 CONTINUE

X (NCOL) = NCOL°nl_ x*xF
1S1 CONTINUE

C DENSITIES ARE N OW KNOWN - OJTPUT FOLLOWS
IF(TG.NE .?4.494) GO TO 108
WRITE(699n)(I.i=11.71920)

9n FORMAT( I T45 nFNSiTIF q A qE AS F0LLOWS'9/91nX9T?.93(6X.T?))
00 108 I=19IRMW

WRITE(691O7)Y(I)9(RA(T.J)•J=11.719?n)
107 FORMAT(F5.3+4F9.4)
10A CONTINUE

YU=.031 /WI4
OLYO=YU/5.
C ALL U0AM(YU9AM+AMK9(J)

AMO=AM
SUM=.5*U/ (W/TG+AM)
nO 165 J=194
YU=YU-OLYO
CALL UOAM (YU,AM, AMK,lj)

SUM=SIJM•U/ ( W /TG* AM)
165 CONTINUE

C ALL UOAM(n.9AM,AMK91J)
RAT=(W/TG+AMO)/(W/TG+AM)
SUM = SUM *DLYn# w
WRITE(6,187)SUM,RAT

187 FORMAT( I THE X INTFGRAT13N W N RATIO AREI, PF1?.S)
00 170 J=1,ICnL
AN(J) =AN (J)*RAT
X(J)=X(J)+SJM

i70 CONTINUE
WRITE(691-25) (X(I) •AN(T) 9I=1•ICnL+3)

125 FORMAT(4E15.4)
STOP
FNn
SU9ROUTINF_ U0AM(YU,AH,AM<g1J)
DIMENSION aO(Q)
COMMON AK99O9w',AuMV,NNApH
Y=YIJ

IF(YU.GT..:;)Y=1.-Y
U=4.572*(2.#Y)*#.11lllll
AM=O.

+l
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00 15 I=194NARM	 ^CGE S4pp^
P= 2. *

 
I°AK*YU	 0l	 v

IF (P.GT.20.)	 4' 
,
!,,iANGn TD 15 .

p4.k, AM=AM+AMMV*R0(T)ao2*T*EX3(-0)
AMK,=AMK+2 . 0l aaP*4MMV#RO(I)#a2*AK/w*EXP( -P)

15 CONTINUE
IF(YU.GT..03n9/1?.7)	 60 TO 3n

U =	 .242**P*YII*,, I27/.000015
10 RETURN

r END
SUBROUTINE DTPi(x•DT+Y•QTMAX)
DX=.1524
IF(X.LT.DX)DT=.003625
xEi=2.onx'
IF(x.GE.DX.ANn. X.LT.-XFI)3T =.00'xA25+.n2o915a(X-AX)/OX
IF(X9GE91.339A5)DT=.0n17R
IF(X9LT.XEI.OR.X.GF.I,11 Q85)	 GM TO 50
DT=.054658-.150A51#X+.201784*X**?-.094262*X*#3- .079np*

1X#++4+. 02A938^Xe+#S..0fi^fi59#X+ ► ^6-.0'13516 #X^^7.	
50 DTMAX = OT

IF(Y.LT..1?5)DT=OT*Y/.1?_5
IF(Y.LE..0i0945/12.7) 	 DT = 09
IF(Y.GT..875)nT=OT#(l.-Y)/.125
RETURN
END
SUBROUTINE INVPSE ( o.R.ip3w)
DIMENSION	 A( 65.3)9P(6A)+3(65).1)(65.2)+Y(55)
DOUBLE PRECISION A•B.n•U+Y

1)(1.2)	 =	 At193)
00 30	 I = ?.IQgw
U(I.1)	 =	 A(1,•2)-A ( I-1.3)#A ( I.1)/1)(I-1+1)
U(i92)	 =	 A(I.3)
D(i)	 =	 A(i+l)/U(T -i+i)

30 CONTINUE
Y(I)	 =	 9(1)

t DO 40	 I = a.IQnw
E Y(i)	 =	 A(I)-D(T)*Y(I-))

40 CONTINUE
8(IROw)= Y(i ow)/U(IQnw.i)
DO 50 J=29TROw
I=IROw+1-J
Bt1)	 _	 (YtT) -I1(I.2)^+A(I.1>)/U(T,11

50 CONTINUE
RETURN
FND

iiGO.SYSIN DD #
55 80

74.6A4	 14.063	 9.	 1.5	 1.1875
t

/*EOJ ^► +a pt	 e► 	 a
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Appendix G - KDDF1	 ORIGIVAt, PXC"" 
IS POOR

This fortran program calculates light particle densities and articu-

late deposition consistent with causality. Both the x and y diffusivity

dependence are included in the model.Diffusivity is allowed to go to zero

at the laminar boundary layer and thus, no boundary condition is imposed

at the lower core boundary.

KDDF1

C
C CALCULATION O r DUCT CnNCFNTRATION PQOPI'-E
C SMALL. PARTICLE TUORULFNT DI FFUSION CASF

C BOUNDARY CONOITIn KIS CONSTSTANT WITH r.AUSALITY
C NO BOUNDARY CONDITION ON LONER SUQFACE
C

DImENSION 3(65) oY(80).AN(80) •RO(9).A ?_(AS) •92K(65),Y(6F) g

IUR(65).ANO(55),Ra(659RO).A(65+7)
DOUR.LE PRECTSInN A98
COMMON AK4. 40914,AMMV•NHARN
WQITE(695)

R	 FORMAT(I THE NUMgFR nc 43WS ANn COLL) ANS ARVI)

READ(5910)TROW9ICOL
in	 FORMAT(2I5)

WPITE(6,15)Ianw,TCnL
T5	 FORMAT(?I5•/, 9 INPUT TG g AMMV.WV,XR,)LXMS ARF1)

PEA0(5s20)TG,AMMV,WV,x9,)LX4S
,>0	 FORMAT(SFin.2)

WPITE(6,25)TG.XR9AMMV*WV9DLXM5
,P5	 FORMAT( O TWE T 1IPOTS Tr„X3+A44V.WV,1LXM5 ARV_19/6F10.4)
NHARM=9.01 
IF (WV.EQ * A..OR.WV * FO.1 2.) GO TO 30
AK=15.71
XMAG=.499
RO(1)=.080356
90(2)=.0027
80(3)= 003x2
RO(4)=90011
QO(5)=.001
R0(6)=.n00n931
90(7)=0007905
R0(8)=.000937A
SO(Q)=e000152
GO TO 4n

in	 IF(WV.E09JP9)GO TO 35

dl
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AK=9.975
XMAG=.3175

	

k$r
	 AO(1) =.99763

31 AO (?.) =.001 A3
90(3)=900457
S0 (4) =.00Q5366
80(5)=90015
90(6)=9000678

	

4 1 ]r
	 R0(7)=.001P6

90(8)=.0005
ROt9)'=0600aS
60 TO 40

E
	

i5	 AK=6.650
XMAG=.0762

	

r ;,	 R01 1Y=.08993
80 (2)'=.00155
90(3)=.025
80(4)=.000?67

90(5)=0001?5
90 (6) =.p00n5A'3
90(7)=.00354
80(8)=.000?67
90(9)'=.0001064

40	 DLX = 1./(TCOL)
WW=12.7
W=.127
SLY = (1.-.031/WW)/(TQOW)
n0 45 I=1,TROW
ANO(I)=1.
Y(I)=1.-DLY#I

45 CONTINUE
DO 50 I=19TQOW
CALL UOAM(Y(I).AM,AMKgU)
92(I)=AM
82K (I) =AMK
UR (I )'=U/XB

SO	 CONTINUE
C INPUT FINISHED--SET UP FImIT_ ELE M ENT Ft1;)ATIONS
C	 KENT LOVES LANA

DO 151 NCO =I.TCnL
XPOS =XMAG + DLX*XB*NCnL
DY=DLY
DO 100 NROW=19TPOW
CALL DT2A(XoOS.nT,Y(M00W)+0TMAX)
TID=DT/W*aa
C=O.
IF(Y(NROW).GT..975)C=-1.
IF(Y(NROW).LT..i?5)C=1.
G P OT = C*DT m AY /W**?*Tr,#12.7/ (1, g A75-.0'31) /?./nY
A (N D OW,2) =Tn*TTn*2/DY**?+ (1. +TM*02 (N z OW) /W) /nY «

1TG*tjR (NROW) /DLX+TG*42K (N;OW)
A(NROW,1)=-TG*TID/DY**2-11.+TG#A2 (V43W) /W1/OY-GROT
A(N P OW +3)=-TG # Ti0/nY**2+ R0T
P(NDOW )=TG#UR(NR3W)/ n1X*AMO(NRnW)

.	 1_ , -	 i
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i n 0 CONTINUE	 -241 -
A(IROW91)=A(IROW.1)+GRDT-DTMAX*(.031/WW+DY)/.125/DY+Tr./W+ ►a?_ /nY*10.
A(IP.OW +2) = A(IRnW•?)+nTMA X *(.611/WW+O Y ) /.1?.5 /DY°TG /W••2/nY•i0.
A(1.1) =0.
A(IPOW.3) moo

SINGLE COLUMN OF ELEMENTS N04 READY FOR INVERSION
110 CALL INVRSF(A.Q.TROW)
141 AN(NCOL)=AVO(TROW)*DLXMS

00 145 JJ=1•IpnW
ANO(JJ) = 9(JJ)

9A(JJ.NCOL)=ANn(JJ)
145 CONTINUE

X(NCOL)=NC^L*nLXOXR
151 CONTINUE.
QENSITIES ARE VOW KNnWN - OUTPUT FOLLOWS

I F (TG.NIF.24.6A4) 60 TO 108
W0TTE(6,p9n)(T9I=11971920)

9n FORMAT( t TH E DENSITIES ARE AS rOLL3W509 /• lnX9I2.3 ( 6X.T?))
DO 108 I21 + IRMW

WRITE(69107)Y(T)•(RR(T.J)+J=11.71920)
107 FORMAT(F5.3+4FA04)
108 CONTINUE

YU=.031/WW
DLYO=YU/5.
CALL UOAM(YUgAM•AMK,•I!)
AMn=AM
SUM-.S*U/ (41TO+AM)
DO 165 J=194
YU=YU-DLYO
CALL U0AM(YU9AM+AMK+U)
SUM=SUM+IJ/(W/Tn+AM)

i6S CONTINUE
CALL IJ0AM ( 0 .9AM9AMK.11)
RAT=(W/TG+AMO)/(W/TG+AM)
SUM = SUM #DLYn*W
WQITE(6,187)SUM,0AT

187 FORMAT( t THE X INTEGRATIO N AND N RATIO ARF#.?E1p.5)
00 1 70 J=19TCOL
AN(J) =AN (J.)*PAT
X(J)=X(J)+SJM

i7n CONTINUE
W R ITE(6912 =^) (X(I)+AN(T),I=1+ICOL+3)

125- FORMAT(4E15.4)
STOP
END
SUAROUTINE UOAM(YU•AM,AM<,U)
DIMENSION ;0(0
COMMON AK9^09W.AMMV+NWAP4
Y=YU
IF(YU.GT ..;)Y=1.-Y
11=4.572+ (2,*Y) #x'.1111111
AM =n.
DO 15 I=19MHAPM
P=2.#I*AK*YU

4

C

rk'.

P	 ,
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IF (P.GT. 2n,) Gn T n 15	 ORTGINAL PAGE IS POOR
AM=AM+AMMVaAO(I)**?*T*EX*(-D)
AMK=AMK +2.*T **P O AMMV*PO (I) **P* AK/W OEYP (-P)

15	 CONTINUE
IF(YU.GT ,.03nQ/12.7) G3 TO 3n

U s .242**P*YU*.127/,n00015
%0	 RETURN

ENO
SUAROUTINE DTPA (X•0T•Y.DTMAX)

'	 DX=.1524
IF(X.LT.DX)DT=.003625
XE1=2o*DX
IF(X.GE.DX. ANn. X.LT.XF1)3T=,003625+.020915a(X-DX)/7X
IF(X•GE.1.339850T=.nnl79
IF(X.LT.XEI.OR,X.GE.1.33985) GM Tn 5n
nT=.0546S8-.150 351*X+.201794*X**?-.0 y4?6?*X**I-.07902 ►
1X**4+.028939*X#*5+.0o^ti6S9*XO*6—.0336160X#*7

5O OTMAX = OT
IF(Y.LT..1?5)OT= nT*Y/.125
IF(Y.LE..031001/12.7) nT = 0.
IF(Y4GT.,875)OT=DT*(1.-Y)/.125
RETURN
END
SUSPOUTIME INVPSF(A.Q4IR3w)
DI MENSION A(hS.3).R(F5)+)(6S).11(65,P?)+Y(6S)
DOUBLE PRECISION A•89n+U+Y
U(1.1) = A(19?_)
t1(1,2) = A(1.3)
no 30 I = ?.IRnW
1)(I,1) = A(I,2)-A(I-1.3)*A(I.1)/U(I-1.1)
WW2) = A(T,3)
D(I) = A(I.1)/tJ(T-1+1)

30 CONTINUE
Y(1) ='9(1)
DO 40 I = P.IRnW
Y(I) = R(I)-DtI)+^YtI-^)

4n CONTINUE
P(IROW)= Y(IROW) /U(IQMW.I)
no 50 J = ?.I?nW.l
I = IROW+1-J
8(I) _ (YtI)-tl(I.2)#R(I.1))/UtT.l)

50 CONTINUE
RETURN
ENS

/%GO.SYSIN DO +^

5S	 An
i24.o6	 108511	 126	 1.5	 .23A9

s



-243-

Appendix K - KDIN4

'=his fortran program calculates heavy particle inertia trajectories

and deposition according to the theory of chapter 4-C. No diffusion is

considered. Numerical integration is based on a forth order Runga-Cutta

method.

* TYPE KDIN4,FOR
C
C THIS PROGRAM CALCULATES THE TRAJECTORIES OF HEAVY
C PARTICLES INERTIA DOMINATES--NO DIFFUSION
C

DIMENSION Y(3y200)yYF'(3p2OO)pX(3y2OO)pXF'(3p2OO)yBO(l5)PJMAX(3
COMMON AMMOPNHARMPAKYBO
WRITE(5p5)

5 FORMAT('	 GIVE ME T-INPUT-INVPT-RESYAMMGYYOYXF'OPAKYrILI'PrllA,)
READ(5P10)TGP,rvp'rRYAMMGPYOPXPOPAI<PDLTPrIIA

10 FORMAT(F15,5)
WRITE(5p15)TGYTVPTRYAMMGPYOPXF'OPAI<PDLTYDIA

15 FORMAT('	 INPUTS TGPTVP*TRYAMMGPYOPXF'OYAI<YLILTPrIIA	 ARE"/8FI0#4)
WRITE(5P20)

20 FORMAT(' GIVE ME THE 1: HARMONICS AND THE 	 •"SI)
READ(SP25)NHARM

25 FORMAT(IS)
READ(5r10)(SO(I)yI-lvNHARM)
WRITE(5P30)(B0(I)yI=1FNHARM)

30 FORMAT('	 THE DENSITIES ARE'Y/P8FI0+6)
GV=TG/TV
GVR=TG**2/TR/TV
Y(2yi)=YO
Y(Ipl)=YO+DIA/2,
Y(3r1)=Y0-DIA/2#
DO 35 I=IP3
YP(Irl)=O#
XP(IP1)=XP0
X(Ivl)=O#

35 CONTINUE
C INPUT IS FINISHEDY VERTICAL INTEGRATION FOLLOWS

DO 90 I=IP3
DO 85 J=2P200
YO=Y(IFJ-I)
YF'O=YP(IPJ-1)
CALL AM(YOPAMG)
DYP1=DLT*(-GV*YP0-1#-AMG)
YHALF=YO+EILT/2#*YFI0
CALL. AM(YFIALFFAMB)
DYr-'2=EIL-T*(-GV*(YFI O+DYF, 1/2, )-1 # -AMG)

91
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YHALF=YO+DLT,'2.*(2.*YPO+DYP2)/2.
CALL AM(YHALFYAMG)
DYP3=DLT*(-GV*(YPO+DYP2/2.)-1.-AMG)
Y1=YO+DLT*(2.*YF'O+DYP3)/2.
CALL AM(Y1yAMG)
DYP4=DLT*(-GV*(YPO+DYP4)-1.-AMG)
YF' (I y J) =YPO+ (DYF' 1+2. * (DYP2+DYF'3) +DYF'4) /6 #
Y(IPJ)=YO+ (YPO+YF'(IPJ)) /2. *DLT
YHALF=(YO + Y(I,J))/2.

C THE Y-INTEGRATION IS FINISHED, X-INTEGRATION FOLLOWS
f	 XPO=XP (I y J-1)

XO=X(IFJ-1)
CALL U1(Y0PUFGVR)
DXPI=DLT*(-GV*XPO + U)
CALL U1(YHALFPUPGVR)
DXP2=DLT*(-GV*(XPO+DXF'1/2.) + U)
DXF'3=DLT* (-GV* (XF'O+DXF'2/2 . ) +U)
CALL U1(Y(IPJ)YUFGVR)
DXP4=DLT*(-GV*(XF'O+DXF'3)+U)
XP (I y J) =XP0+ (DXF' 1 +2. * (DXP 2+DXF'3) +DXF'4) /b .
X(IYJ)=XO+(XPO+XF'(IPJ))/2.*TILT
IF(Y(I,J).LE.O.) GO TO 88

85 CONTINUE

	

88	 JMAX(I)=J
9O CONTINUE

C	 X-INTEGRATION FINISHED 9OUTPUT FOLLOWS
DO 110 I=1 y3
WRITE(SY93)IPJMAX(I)

	

93	 FORMAT(' XYYPVXFVY ARE FOR CASE-yJMAX--'y2l3)
WRITE(Sy95)(JPX(IyJ)yY(IYJ)yXP(IYJ)YYF'(IYJ)YJ=IYJMAX(I)PI.0)

F	 JM=JMAX(I)
WRITE(8 y 9 )JMYX(IPJM)yY(:[y,)M)PXF'(Iy,JM)YYl~'(IY,JM)

	

93	 FORMAT(Iy4F1.5)
READ(5y10)AH1

	

110	 CONTINUE
STOP

t	 END
SUBROUTINE AM(Y Y AMG)
DIMENSION BO(15)
COMMON AMMG y NHARM y AID y B0
AMG=O,,
DO 10 I=:L y NHARM
P=2. *AI<*Y*I
IF(P.LT.0.)P=0.
IF(F'.GT.20) GO TO 20
AMG=AMG+AMMG* I *BO (:[) **2*EXI =' (•-F' )

	10	 CONTINUE
20 RETURN

END
SUBROUTINE U1(YyUyGVR)
U=o.

f	 IF(Y.LT.O.)GO TO S
IF(Y.LT..3 U=GVR*(2.',(Y) *. J^II11.J.1
IF(Y.GE.. a) U =GVI^i^Kt;;?.:k(J..-'Y) )^k^K.:I.J.1:i.:119.

RETURN
I^.NrI
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Appendix I - KDIN7

This fortran program predicts particle densities and deposition

according to the hybrid-inertial theory presented ir. chapter 4-D.

Particle trajectories are calculated as in the diffusion-free model,

but the diffusion term causes additional trajectory spreading. The

analysis is especially tailored to intermediate sized particles where

inertia and diffusion are important.

CC

C THIS PROGRAM CALCULATES THE TRAJECTORIES OF HEAVY
C PARTICLES INERTIA DOMINATE--WITH DIFFUSION!!
C

DIMENSIOiN Y(30)rYP(30)rX(30)rXP(30)PBO(9)vJMAX(30)PAN(30)r
1 DLN(30)rAN00(30)PANO(30)PSCLT(30)PeCLT2(30)PY00(30)PX00(30)

DOUBLE PRECISION XrYrXPrYPrANrY00rX00rAN00rXOrXF'OrYOrYF'Or
1 PCHYPPCtiXPYCHANPXGHANrX3rY3rRN3

COMMON AMMGPNHARMPAKPBO
WRITE(5v5)

	

5	 FORMAT(',GIVE ME T-INGPT-INVrT-RESrAMMGrYOrXPOrWVPDLT'r/
1 ' DIAPXTUBE PBND-LAYER(CM)r OROWSPIIIF-ON')

READ(5310)TGPTVrTRrAMMGrYOPXPOrWVrIILTPrIIA#XTUBErBLrROWrDON

	

10	 FORMAT(F15,5)
WRITE(5315)TGPTVrTRrAMMGPYOPXPOrWVrDLTrDIArXTUBErBLrROWrI,ON

15 FORMAT(' TGrTVPTRrAMMGPYOrXPOrWVPDLTrDIArXTUBEPBLPROWrDON'
1 r/r6F12,6)

NROW=ROW+,01
NHARt4=9, +, 01
T=.006244
IF(WV.EG#S# * OR,WV.EQ * 12, )GO TO 20
AKm15.71
BO(1)=.080356
BO(2)=,0027
BO(3)=.00392
BO(4)=.00151
90(5)=.001
BO(6)=00000931
BO(7)=.0007905
BO(8)=,0005376
BO(9)=,000352
GO TO 30

	

20	 IF(WV,EG#12,)60 TO 25
AK=9,975
BO(1)=,099763
BO(2)=.00183
BO(3)=.00457
D0(4)=#0003366

I1
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90(5)=.0015
BO(6)=*000678
BO(7)=.00126
BOIB)=60005
BO(9)=.00095
GO TO 30

25	 All=6.649
90(1)=008993
NHARM=1.+.01
GO TO 30

26	 90(2)=.00156
90(3):.025
BO(4)=.000267
90(5)=.00128
90(6)=90000583
BO(7)=.00364
BO(8)=.000267
BO(9)=.0001064

30 GV=TG/TV
GVR=GV*TG/TR
DG=TG**2/.127**2/TV*DON
DLY=DIA/( NROW+1)
DO 35 I =1pNROW
Y(I)=YO+DIA/2.-I*DLY
X(I)=0.
XP(I)=XPO
YP(I)=O.
JMAX ( I)=1000
ANO(I)=(1.-ABS(Y(I)-YO)/(DIA/2.))**.1111111
AN(I)=ANO(I)

35 CONTINUE
CALL DT(XTUBEPD)
DLN(1)=-AN(2)/2./DLY/AN(1)*D
DLN(NROW)=AN(NROW-1)/2./DLY/AN(NROW)*D
DO 36 I=3/NROW
DLN(1-1)=(AN(I-2)-AN(I))/AN(I-1)/2./DLY*D

36 CONTINUE
DLXO=XPO*DLT
IMAX=NROW

L
	

INPUT IS FINISHEDP VERTICAL INTEGRATION FOLLOWS
DO 120 J=1r1000
DO 40 I = i r Il"MAX
YO=Y(I)
YPO=YP(I)
CALL AM(YOPAMG)
DYPI=DLT*(-GV*YF'0-1.-AMG-DG*DLN(I))
YHALF=YO+DLT/2.*YPO
CALL AM(YHALFPAMG)
DYP2=DLT*(-GV*(YPO+DYF'1/2.)-1.-AMG-I10*I,LN(I))
YHALF=YO+DLT/2.*(2.*YF'O+DYP2)/2.
CALL AM(YHALFPAMG)
DYP3=DLT* (-GV* (YPO+IIYP2/2.) -i . -AMG-I1G*DLN (I) )
Y1=YO+DLT*(2.*YPO+DYF'3)/2.
CALL AM(Y1rAMG)

L_._.
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DYP4=DLT*(-GV*(YPO+DYP3)-l.-AMG-DG*DLN(I))
YP(I)=YPO+(DYP1+2.*(DYP2+DYP3)+DYP4)/6.
Y(I)=Y0+ (YPO+YP(I))/2.*DLT
YHALFs (YO + Y(I))/2.

C THE Y-INTEGRATION IS FINISHED, X-INTEGRATION FOLLOWS
XPO=XP(I)
XOsX(I)
CALL U1(YOPUPGVR)
DXPl aDLT*(-GV*XPO + U)

f. CALL U1(YHALFPUPGVR)
DXP2=DLT*(-GV*(XPO+DXP1/2.) + U)
DXP3=DLT*(-GV*(XPO+DXF'2/2.)+U)
CALL Ul(Y(I) ► U,GVR)
DXP4=DLT*(-GV*(XPO+DXP3)+U)
XP(I)=XPO+ (DXP1+2.*(DXP2+DXP3)+DXP4)/6.
X(I)=XO+(XPO+XP(I))/2.*DLT
IF(Y(I) . LE.O.)	 IMAX=IMAX-1
IF(Y(I) . LE.O.)JMAX(I)=J
Y00(I)=YO
XOO(I)=XO

40 CONTINUE
C X-INTEGRATION FINISHED , NOW GET DENSITY

DO 90 I =IPNROW
X0=X00(I)
Y0=Y00(I)
AN00(I)=AN(I)
IF(I.EG * 1 )60 TO 65
IF(Y(I-1).LE.O..AND . JMAX (I).LT.J) 6O TO 90
I F (I . Eli. NROW) GO TO 68
YCHAN=(Y(I-1)-Y(I+1))/2./LILY
IF(Y(I+1).LE.O.)YCHAN=(Y(1-1)-Y(I))/DLY
XCHAN=(X(I)-XO)/DLXO
PCHY=(X(I-1)-X(I+1))/2./DLY
PCHX=(Y(I)-YO)/DLXO
GO TO 70

65 YCHAN=(Y(1)-Y(2))/DLY
XCHAN=(X(1)-XO)/DLXO
PCHY=(X(l)-X(2))/DLY
PCHX=(Y(1)-YO)/DLXO
GO "TO 70

68 YCHAN=(Y(NROW-1)-Y(NROW))/DLY
XCHAN=(X(NROW)-XO)/DLXO
PCHY=(X(NROW-1)-X(NROW))/DLY
PCHX=(Y(NROW)-YO)/DLXO

70 AN(I)=ANO(I)/(XCHAN*YCHAN-PCHY*PCHX)
90 CONTINUE

C DENSITIES ARE KNOWN-GET D*GRADIENT(N)
95 DO 110 I=IPNROW

DLN(I)=0.
IF(I.GT.IMAX ) GO TO 110
IF(Y(I).LE * BL/12.7.OR.Y(I).GE.(1.-KL/12.7))0O TO 	 110
XPOS=X(I)*.127+XTUBE
CALL DT(XPOSPD)
IF(I.EQ, l )	 GO TO 100
IF(I.EG * NROW )GO TO 105

C.
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Y3=Y(I+1)
X3=X(I+1)
RN3=AN(I+1)

106 DLN(I)=((AN(I-1)-RN3)*(X(I)-X00(I))-(AN(I)-AN00(I))*
1 (X(I-1)-X3))/((Y(I-1)-Y3)*(X(I)-X00(I))-(Y(I)-YOO(I))*
2 (X(I-1)-X3)) / AN(I)*D

GO TO 109
100 DLN(1)=-AN(2)*(Y(1)-Y(2))/((X(1)-X(2))**2+(Y(l)-Y(2))

1 **2)/AN(I)*D/2.
" GO TO 109

105 DLN(NROW)=AN(NNOW-1)*(Y(NROW-1)-Y I NROW))/((X(NROW-1)-
1 X(NROW))**2+(Y(NROW-1)-Y(NROW))**2):AN(NROW)*D/2.

109 SIGN=1.
IF(DLN(I).LT.0.)SIGN=-1.
W=.127*SGRT(D/T)
IF(SIGN*DLN(I).GT.W)DLN(I)=SIGN*W

110 CONTINUE
IF(Y(1).LE.O.)60 TO 125

114 IF(MOD(Jr5).NE.0)00 TO 120
112 WRITE(5ri11)J
111 FORMAT(' THE OUTPUTS-XrYrXPrYPPDENSITYrDLN-CASE='rI.=i)

DO 115 I=lrNROW
WRITE(5r113)Irk(I)rY(I)rXP(I)rYP(I)rAN(I)rIILN(I)

113 FORMAT(I5r6E12.5)
F

115 CONTINUE
k 120 CONTINUE

c
C NET INTEGRATION FINISHED--OUTPUT FOLLOWS
C

125 WRITE(5r126)
126 FORMAT(' THE OUTPUT FOLLOWS'/r2Xr'I'rXr'JMAX'r6Xr'X'911Xr

's 1 'Y'r10Xr'XP'r12Xr'YP'r9X;'GCLT'PSXr'GCLT2')
f DO 135 I=irNROW

IF(I.NE.I.AND.I.NE.NROW)GDX=(X(I-i)-X(I+1))/2.
IF(I.EG#1)GDX=X(1)-X(2)
IF(I.EG.NROW)GDX=X(NROW-1)-X(NROW)
GCLT(I)=100./.9/DIA*DLY/GDX*WV/2./12.7*ANO(I)

` GCLT2(I)=-100.*WV/2./12.7/.9/DIA/XPO*AN(I)*YP(I)
135 CONTINUE

DO 140 I=lrNROW
X(I)=X(I)*.127
WRITE(5x130)IPJMAX(I)gX(I)rY(I)rXF'(I)rYP(I)POCLT(I)POCLT2(I)

130 FORMAT(2I4r6E12.5)
140 CONTINUE

STOP
END
SUBROUTINE AM(YrAMG)
DIMENSION BO(9)

k' COMMON AMMGrNHARMrAKFBO
AMG=O.p,
DO 10 I=1rNHARM
P=2.*AK*Y*I
IF(F'.LT.O. )F'=0.

S
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'
IF(F':GT.20.) GO TO 20	 R PRODTJCniftx
AMG=AMG+AMMG* I *BO < I > **2*EX F' ( — F')	 ORIGJ14AL PAGE OF TFIL

IS P^^R
'

k 10 CONTINUE
20 RETURN

END
SUBROUTINE U1(YPUPGVR)
U=0.
F'si./9#
IF(Y.LE.O.)GO TO 5
IF(Y.GT•(1.—.5/12.7))U=GVR*(2.*•5/12.7)**F
IF'(U.NE.Oo )GO TO 5
IF(Y.LT.•5)U=GVR*(2.*Y)**F'
IF(Y.GE..5)U=GVR*(2.*(1.—Y))**F'

5 CONTINUE
F	 a RETURN

END
SUBROUTINE DT(XPD)
D=.061664—.146418*X+.135854*X**2—.013655*X**3

1 —.03752*X**4—.002257*X* *5+.009903*X**6
50 RETURN

END
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Appendix - FOURIE

This	

PA

6

This basic program performs a discrete fourier analysis of the mag-

netic field density waveform 1/4" above the permanent magnet structure.

The analysis follows that described' in chapter 5.

10 DIM X(31)tB(16)
-	 12 PRINT I N HARMONICS FOLLOW--NEED 2N-1 DATA POINTS'

15 PRINT 'N=' \ INPUT N \ PRINT 'X(I).FOLLOWS'
17 P=2*N-1
20 FOR I=1 TO P ♦ INPUT X(I) \ NEXT I
23 PRINT 'THE X'S ARE' \ FOR I=1 TO P ♦ PRINT X(I), \ NEXT I \ PRINT
35 FOR J=1 TO N \ D(J)=0
40 FOR I=1 TO P
45 P(J)=B(J)+X(I)/N*SIN(3.14159/N*J*I)
50 NEXT I \ NEXT J
55 FOR I=1 TO N ♦ PRINT IPB(I) \ NEXT I

F

}

41
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Appendix K - 0747G

This fortran program calculates particle density and deposition

for intermediate sized particles injected over the skin of an aircraft

flying 500 HPH at an altitude of 40,000 ft. The exact normal and axial

diffusivity dependence in the boundary layer is used. Only magnetic mi-

gration exists normal to the fluid stream flow; gravitational effects

are ignored. the analysis follows that'described in chapter 7.

CC
C THIS PROGRAM CALCULATES THE TRAJECTORIES OF HEAVY
C PARTICLES- INERTIA DOMINATES--WITH DIFFUSION!!
C CALCULATES FLIGHT OF PARTICLES OVER 747 JET
C ALTITUDE= 40,000 FT•r SPEED=500 MPH.
C

DIMENSION Y(30)rYP(30)rX(30)rXP(30)PBO(9)rJMAX(30)rAN(30)r
1 DLN(30)rAN00(30)rANO(30)PSCLT(30)tGCLT2(30)rY00(30)rX00(30)

DOUBLE PRECISION X!YrXF'rYPrANrY00rX00rAN00rXOrXPOrYOrYF'Or
1 PCHYPPCHXrYCHANrXCHANtX3rY3rRN3

COMMON AMMGrNHARMrAKPBO
WRITE(5r5)

	

5	 FORMAT(' GIVE ME T-INGrT-INVrT-RESrAMMGrYOrXPOrWVrDLT'r/
1 ' DIArXTURBP #ROWSrDIF-ON')

READ(5t10)TGtTVrTRrAMMGrYOrXPOrWVrDLTrDIArXTURBPROWtIION

	

10	 FORMAT(F15.5)
WRITE(5x15)TGtTVrTRrAMMGrYOrXF'OrWVPDLTrDIArXTURBYROWrIION

15 FORMAT(' TGrTVtTRrAMMGrYOP.%C'OrWVrDLTtDIArXTURBPROWrDON'
1 r/r6F12.6)

NROW=ROW+.01
NHARM=9.+.01
IF(WV.EQ.8..OR,WV.EQ.12,)G0 TO 20
AK=123.68
BO(1)=.080356
80(2)=.0027
RO(3)=.00392
BO(4)=.00151
BO(5)=#001
FO(6)=00000931
BO(7)=.0007905
BO(8)=.0005376
BO(9)=.00035
GO TO 30

	

20	 IF(WV.EQ.12,)GO TO 25
AN=78.54
BO(1)=.099763

n sir
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80(2)=.00183
80(3)=.00457
80(4)=.0005366
80(5)=.0015
80(6)=.000678
80(7)=.00126
80(8)=60005
80(9)=.00095
GO TO 30

25 AK-52,36
80(1)=.08993
80 (2) = . 00156	 RR ROD	 Ll7y OF
BO(3)=#025	 - .	 TlTr,
HO(4)=.000267
80(5)=.00128
BO(6)=10000583
80(7)=.00364
80(8)=.000267
BO(9)=.0001064

30	 GV=1.
GVR=TV/TR
GG=TV*ICON
ILLY=ILIA/(NROW+i )
DO 35 I=irNROW
Y(I)=YO+ILIA/2.-I*ULY
X(I)=0.
XP(I)=XPO
YP(I)=0.
JMAX(I)=850
ANO(I)=(1.-ABS(Y(I)-YO)/(ILIA/2.))**.1111111
AN(I)=ANO(I)
Y00(I)=Y(I)
X00(I)=-XPO*ULT
AN00(I)=AN(I)

35 CONTINUE
DLXO=XPO*DLT
IMAX=NROW

C	 INPUT IS FINISHEDr VERTICAL INTEGRATION FOLLOWS
DO 120 J=1x850
GO 40 I=lrIMAX
YO=Y(I)
YPO=YP(I)
XO=X(I)
XDT=XTURB+XO
DL=.37*XDT*(XDT/TR/.4701)**(-.2)
GO TO 95

39	 CALL AM(YOrAMG)
DYP1=DLT* (-GV*YPO-AMG-I16*DLN (I) )
YHALF=YO+DLT/2. *YF'O
CALL AM(YHALFrAMG)
DYP2=DLT* (-GV* (YF'O+DYP 1 /2 .) -AMG-DG*I,LN (I) )
YHALF=YO+DLT/2.*(2.*YPO+DYF'2)/2.
CALL AM(YHALFrAMG)

\d
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DYP3=DLT*(-GV*(YPO+DYP2/2.)-AMG-DG*DLN(I))
Y1=YO+DLT*(2•*YPO+DYP3)/2.
CALL AM(Y1rAMG)
DYP4=DLT*(-GV*(YPO+DYP3)-AMG-DG *DLN(I))
YP(I)=YPO+(DYP1+2.*(DYP2+DYP3)+DYP4)/6.
Y(I)=Y0+ (YPO+YP(I)) /2. *DLT
YHALF=(YO + Y(I))/2.

C THE Y-INTEGRATION IS FINISHED? X-INTEGRATION FOLLOWS
XPO=XP(I)
CALL U1(YO?UrGVR?DL)
DXP1=DLT*(-GV*XPO + U)
CALL U1(YHALFrUrGVR?DL)
DXP2=DLT*(-GV*(XPO+DXPl/2.) + U)
DXP3=DLT*(-GV*(XPO+DXF,2/2.)+U)
CALL U1(Y(I)rU?GVR?DL)
DXP4=DLT*(-GV*(XPO+DXP3)+U)
XP(I)=XPO+ (DXF'1+2.*(DXP2+DXP3)+DXP4)/6.
X(I)=XO+(XPO+XP(I))/2.*DLT
IF(Y(I).LE.O.) IMAX=IMAX-1
IF(Y(I).LE.O.)JMAX(I) =J
Y00(I)=Y0
XOO (I) =X0

40 CONTINUE
C	 X-INTEGRATION FINISHED ?NOW GET DENSITY

DO 90 I=1?NROW
X0=X00(I)
YO=Y00(I)
AN00(I)=AN(I)
IF(I.EQ * l )GO TO 65
IF( Y(I-1).LE.O..AND.JMAX(I).LT.J)60 TO 90
IF(I.EQ * NROW)GO TO 68
YCHAN=(Y(I-1)-Y(I+1))/2. /DLY
IF(Y(I +1).LE.O.)YCHAN=(Y(I-1)-Y(I))/DLY
XCHAN=(X(I)-XO)/DLXO
PCHY=(X(I- 1)-X(I+1))/2./DLY
PCHX=(Y(I)-YO)/DLXO
GO TO 70

65	 YCHAN=(Y(1)-Y(2))/IiLY
XCHAN=(X(1)-XO)/IILXO
PCHY=(X(1) -X(2))/DLY
PCHX=(Y(1)-YO)/DLXO

- - 60 -TO 70 -	 -- --

68	 YCHAN=(Y(NROW-1)-Y(NROW))/DLY
XCHAN=(X(NROW)-XO)/DLXO
PCHY=(X(NROW-1)-X(NROW))/DLY
PCHX=(Y(NROW)-YO)/DLXO

70	 AN(I)=ANO(I)/(XCHAN*YCHAN-PCHY*PCHX)
90 CONTINUE

IF(Y(1).LE.O.)60 TO 125
IF(MOD(J?5).NE.0)60 TO 120
WRITE(5r91)J?IMAX



rr_... :..	 .,	 a	 ^^	 .._:	 ^^.:. •e	
Y

-254-

91	 FORMAT(' XPYPXPPYF ' PDENSITYPDLN —CASE=', I5 ► ' IMAX='r15)
DO 93 I=lpNROW
WRITE ( 5r92 ) I,X(I)PY(I)PXP ( I)PYP(I ) PAN(I ) PDLN(I)

92 FORMAT(I5r6D12.5)
93 CONTINUE
120 CONTINUE

C DENSITIES ARE KNOWN—GET D*GRADIENT ( N)--THE FOLLOWING STATEMENTS
C ACT AS A SUBROUTINE TO GET THE GRADIENT

95 DLN(I)=0.
IF(I.GT.IMAX)GO TO 39

(	
ORD^ (I ) . LE. 0. > GO TO 

RE,RODUCIBILjTy OF THIS
CALL DT (DL ► Y (I

pA,GF 
IS POOR

IF (I . EG # i ) GO TO 100	 ORIGINAL
IF(I.EQ * NROW)GO TO 105
Y3=Y(I+1)
X3=X(I+1)
RN3=AN(I+i)

106 DLN ( I)=((AN(I -1)—RN3 )*( X(I)—X00 ( I))—(AN(I)—AN00(I))*
1 (X00 ( I-1)—X3))/((Y00(I - 1)—Y3)*(X ( I)—X00 ( 1))—(Y(I)—Y00(I))
2 *(X00(1-1)—X3)) / AN(I)*D

GO TO 109
100 DLN(1)=—AN(2)*(Y(i)—Y(2))/((X(1)—X(2))**2+(Y(1)—Y(2))

1 **2)/AN(I)*D/2.
GO TO 109

105 DLN(NROW)=AN(NROW-1)*(Y00(NROW-1)—Y(NROW))/((X00(NROW-1)
1 —X(NROW))**2+(Y00(NROW-1)—Y(NROW))**2)/AN(NROW)*D/2.

109 SIGN=1.
T=DL/.7/223.5
IF(DLN ( I).LT.O. ) SIGN=—Io	 i
W=SQRT(D/T)
IF(SIGN*DLN(I).GT.W)DLN(I)=SIGN*W
GO TO 39

C
C NET INTEGRATION FINISHED--OUTPUT FOLLOWS
C

125 WRITE (5,126)
126 FORMAT(' THE OUTPUT FOLLOWS'/r2Xr'I'PXr'JMAX'v6Xr'X'r11Xr

1 'Y',10Xr'XP't12X,'YP'r9Xr'GCLT',BXP'GCLT2')
DO 135 I=1rNRUW
IF(I.NE . I.AND . I.NE.NROW ) GDX=(X ( I-1)—X(I + 1))/2.
IF(I.EG41)GDX=X(1)—X(2)
IF(I.EQ*NROW)GDX=X(NROW-1)—X(NROW)
GCLT(I)=1009/.9/DIA*DLY/GDX*WV/2./12.7*ANO(I)
GCLT2 ( I)=-100. *WV/2./12.7/. 9/IiIA/XPO*AN ( I)*YF'(I)

135 CONTINUE
DO 140 I=1rNROW
WRITE ( 5r130 ) IrJMAX ( I)rX(I ) rY(I)PXP ( I)•YP(I ) PGCLT(I),GCLT2(I)

130 FORMAT ( 2I4v6E12.5)
140 CONTINUE

STOP
END

E
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SUBROUTINE AM(YrAMG)
DIMENSION BO(9)
COMMON AMMGrNHARMPAKPBO
AMG=0.
DO 10 I=irNHARM
P=2.*AK*Y*I
IF(P.LT.0.)P=0.
IF(P•GT.20.) GO TO 20
AMG=AMG+AMMG*I*BO(I)**2*EXP(-P)

10 CONTINUE
20 RETURN

END
SUBROUTINE UI(YrUrGVRPDL)
U=O.
IF(Y.LE.O.)GO TO 5
IF(Y.LT.DL)GO TO 3
U=GVR
GO TO 5

3	 P=i./7.
U=GVR*(Y/DL)**P

5 CONTINUE
RETURN
END
SUBROUTINE DT(DLPYrD)
D=O.
IF(Y.LE•O..OR.Y.GT.DL)GO TO 50
YN=Y/DL
D=-.01031+2.91226*YN+.070557*YN**2-13.614712*YN**3
+4.179703*YN**4+21.233276*YN**5-2.772369*YN**6-
15*559235*YN**7-8.465072*YN**8+12.027271*YN**9
D=D*.0037*223.5*DL
IF(D.LT.O.)D=-D

50 RETURN
END
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Appendix L - Refinement of Causal Fundamental Light Particle Model

The density profiles predicted by the fundamental causal model are in-

tegrated to give mass deposition per half wavelength on the lower duct sur-

face. This technique integrates out numerical difficulties in the lower

.Y	
duct region caused by diffusivity gradients and a steep exponential magnetic

variation. The integration forces the model predictions to be consistent

with causality.

Figure (L-1) shows a representative flux balance at position x in the duct.

Mass conservation demands that	
REPRODUCmITATY OF THE

x+A2	 2a	 '^n

	f 'ry  w dx = 
1 (rx in ( x=x-a/2) - rx out (

x=x+a/2)) w dy	 (L-1)

x-a/2	 0

Assuming steady state operation over an interval t o seconds, the amount of

particulate collected on the lower duct surface is

to x+X/ 2
(mass collected ) 

_ f
	 f	 ry dx dt

0 x-A/2
(L.-2)

x+a/2

= w to ry dx

x- /2

With an average axial duct velocity, Uavg in the duct, the net mass injected

is

2a t

(mass injected) = 
J 	 fo

 no U w dt dy

0	 0	
(L-3)

= no Uavg w to



3A
 
^

uaa^
A

-
2
5
7
-

r^' N

^C

io 4

0

0
00

00

IJu0A
x

vu00oaawiav00
o

i 	
w

i
1



-258-

t	 combining (L-1), (L-3) with (L-2) gives

(mass collected ) _ (mass injected)

A/2	
no Uavg

j	 o

2a	
(L-4)

Crx in (x=x-a/2) - rx 
out(x=x+X/2)3 

dy

0

The program predicts n/no and since ry = n u, the mass collected can be

calculated. The FORTRAN program KDFF1 incorporating these changes is listed

in Appendix M. Simpson's rule is used to perform the transverse flux inte-

gration.



F

.

-259-
	 REPRODUCIBILITY OP THE

ORIGINAL PAGE IS POOR

Appendix M - KDFF1

This FORTRAN program computes densities and half wavelength deposi-
tion for light particles. Particle deposition is computed using mass
conservation arguments; integration of the entire transverse profile is
involved in predicting deposition. The analysis occurs in Appendix L.

c	 CALCULATION OF DUCT CONCENTRATION PROFILE
c	 SMALL PARTICLE TURBULENT DIFFUSION CASE
C
	 BOUNDARY CONDITIONS CONSISTENT WITH CAUSALITY

c	 NO BOUNDARY CONDITIONS ON LOWER SURFACE
c

dimension b(100)v:,(1000)vari(1000).bO (9)vb2(100)vb21<.(100)ytd(100)
dimension ur(100) variO(100) vbb(100v4) va(100+3) vans(.•2v100) Piics(40) v
ncf (140)
double Precision avb
common ak. v b0 v w v ammv r nha rm
write(6vr)

5 format(' THE NUMBER OF ROWS AND COLUMNS ARE*)

read(3v10)irowvicol
10 formatQi )

write(6v15)irowyico1
15 format (2i!5 y / y ' INPUT TO v AMMV v WV v XS v IILXMS ARE")

read( 5v20)t3vammvvwvvxbvdl,xms
20 format(•PIS+5)

write (6v25)tiv:•;bvamitivvwvvdl.:ms
25 fo rmat (' THE INPUTS TG v XB v AMMV v WV v DLXMS ARV v /6 •r 10.4 )

nharm=9.01
nu=0
no = i ca, I/23
rIc:aII =0
:I. •r (wv.ea+8..or.wv#eci#12.):10 -to 30
ak.:=15.71
.;mas .489
b0 (1) = . 080356
b0(2)2%.0027
b0(3)=:.00392
x:+0(4):=.00151
b0(5):=.001
bO(6)~.0000931
bO.(7 ):=.0007905
b0(8):=.0005376
bO (9) := . 0003 52
ao t'o 40

30 if(wv.ea-12. );:10 t  35
al:.- 9 +9l7

:ITIa;•, := o 317.5!
bO(1)=.099763

31 bO(2) =.00183
bO (3) = . 00457
b0(4)-.0005366

kL
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A

bO(5)=.0015
b0(6)=.0006 "8
bO(7)=.00126
b0(S)=00005
bO (9) = . 00095	 gEpRDDUCIBII ITY OF THE
Ao to 40	 OItIGINAI. PAGE IS PnnR.

1373 	 ak.=6.650
40005

b0(1)=003993
33	 bO (2) =.00136

bO(3)=.025
bO(4)=.000267
bO(5)=.00123
bO(6)=.0000533
bO(7)=.00364
bO(S)=.000267
bO (9) ; . 0001064

40	 dl,.., := 1./(icol)
ww=12.7
w=.127
rid l'r=wv/2 . * . O 1 /d l :•; /;•:17
k.cs=O
k.c=O
rend=icol--no
do 43 J=novnendvrio

42	 kc=kc+i
if((;:b*J^kdl;.-wv/4.01).:3't. (k.c*:;I.,*dl:;)) :go tc
1,.cs=k,cs+1
ncs (k.cs) =kc
nc •r (k.cs) = 1,.c+rid1'r

43	 cantinue
kcsend=k.es
write(6v44)kcsendq(ncs(j)rncf(J) v J=1vk.cserid)

44	 format(' kcsend v ncs,and ncf are'i3/1.415)
1,.c=1
dlw=(I -.031: ww)/irow
do 45 i=1 v irow

anO(i)=1.
45	 Continue

do 50 i=1 v i row
call uOam(^i(i.) vamvamk.v1_0
b2(i)=am
b2k. ( i ):= a in 14.

50	 continue
c_ INI"'(J'r FINISHED--SET UP FINITE ELEMENT EQUATIONS

KENT LOVES LANA
do 151 ricol=1 v icol

+ dl>:,K;;kr^cal
d^^=dlv
do :100 p row=:l v i row
call dt2a(;•;Posvr..i'tvv(nraw) vdtma:•;)
tid=dt/w**2

42
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13-1/v**2/dy*10.
C=06
if Q(nrow) .1't..875)c=-1.
if Q(nrow) .1t..125)c=1.
9rdt Ga c$ stn►.a„/w**2*tz*12. 7/ (l o 5575-.031) /2. /dw
a(nrowr2)=ta*tid*2/dw**2+(1.+tg*b2(nraw)/w)/dw+tz*ur(nrow)/

Q (n row) 1 dlx+tg*b2k(nrow)
a(nrowr1)=-ta*tid/dw**2-(1.+tZ*b2(nrow)/w)/dv-drdt
a(nrowr3)--is*tid/dv**2+srd't
b(nraw)=is*ur(nrow)/dlx*anO(nrow)

100	 continue
a(irow. 1) =a(irow,1)+ardt-dtmax*(.031/ww+dw)/.125./dw*t!g td3
a ( i row r 2) =a l i row v 2) +dtmax* (. 031 / ww+d ew) / .125/dw*t:3 *d3
000=0.
a(irowr3)=0.

SINGLE COLUMN OF ELEMENTS NOW READY FOR INVERSION
139	 call invrse(arbvirow)

do 145 jJ= 1 v i row

nco = icol/4
i f (nco l . ne . nco . and . nco l . ne . 2*nco . and . nr. o 1.1' e . 3*nco , and . nf_ o l
.ne.(4*nco-1)) go to 145
if(ncoll.ea,ncol)10 to 903
nu=nu+1

903	 ncol i=ncol

145	 continue
ndum=1
if(ncol.ry e.rocs(k.c).and.ncol.ne.ncs(k.c+i)) to to 135
if (ncol.se.ncs(k.c+l)) ndum=2
do 180 i=lvirow
ans (ndum v i) : anO (i )

ISO	 continue
135	 if(ncf(k.c).ea.ncol)c_all fluxire(anspanOv:irowvurrdlovdifa)

i f (ncf (kc) . ne . ncol) to to 151
i •f (ncol.lt,ncs(k.c+1)) to to 170
do :1S7 01v.irow

137	 continue
L70	 k.c=k.c+l

are Qcol) x=100. *difa*xb/. 9/.4.57
15L	 continue

DEN SITT.ES ARE NOW KNOWN - OUTPUT FOLLOWS
noo=icol/4
wri.teQY90) (i v 0noov iro1 vnoo)

J	 forire at(" THE DENSITIES ARE AS 1= OLI._OWS" v/v 1O i.4 3(6xv i4))

do 108 01virowv3
write(6v1O7)v(i)v(bb(ivj)v.i =1v4)

.107 -rormat(f5o3v4f8.4)
108 continue

do	 190	 .r•= l v k.i.: send
x(i.)=nr..s(:i)*d1m*mb+wv/4.*.0:1.

190 continue
writs+(6v125)(x(i)van(i)v:i.=:lvk.caend)

125 format(40% 4)
stop
end



r

-262-

REPRO ^8 POOEALO ÂG
ORIGIN

subroutine U0aits(vu ram yamk.ru)
dimension MY
common ak. r bO r w r ammv r nha rm
=WU

u=0 572* 0 40 ** . 1.11 '1111
airy=0.
do 15 i=lrnharm
P=2. *i*ak*'wij
if(P.90200 9u to 15
am=am+ammv *b0 (i) **2* i *ex p (-P )
amk° =amk° +2. *i* *'2*ammv*t+0 (i) **2*ak./w*exp (-P )

1a continue
i •f(wU.9t..0309/12.7)	 to to 30

U = .242**2*wU*.127/.000015
30 return

end
subrou ti ne dt2a (xydt rwydtmax)
dx= .1524
i f (...1t, dx) d't=.003625
xe1=2.*d;•:
if (x..geo dx.and * xo lt.xel)dt=.003b_5't'.020915*(x-dx)/d:<
if(x,9e.1.33985)dt=.00178
i •f(x * l •L,xei.or.x.9e.1.33985) 	 go to 50
dt=.054658-.150851*x+ * 201784*x**2-.084262*x**3-.07?0.2 *x* *4
l+.028938*x '**5+.065659*x**6-.033616****7

50 d tmax v d't
i f (w , l t .. 125) d •t=dt* w/ .125
if(w.le,031001/12.7)	 dt __ 0#
if(w.9t..875)dt=dt*(1..-w)/.125
return
end
sub roGt i ne i nv rse (a y b y l r ow )
dimension	 a(135y3) pb( 135)yd(135)yu(135r:2)y w( 135)

€ doub le Precision ayb

WW I)	 = a(1y2)
WON = 0193)
do 30 i = 2 p i row
WWI)	 =	 a(x92)-a(^-ir3)*a( ly i)/rr(a-iyi)

d(i)	 = a(i y i)/Wi-10)
30 cur•itinue

Y(I)	 _	 b(1)
do 40 i	 = 2 r i row
w(i)	 b(i)-d(i)*w(i-1)

tU continue
b(irow)= w(irow)/W irow y i)	 .
do 50 i = 2 y i row r l
i	 =	 i row+1 •-j
h(:i)	 _	 (w(i)- r.^(iy:?):acL^(i'#'1)).'tJ(iy1.)

r	 50 conti nu e
s return
f en d
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h
subroutine fluxin(ansran0yirowrurrdlvrdifa)
dimension ans(2r100)ran0(100)rur(100)
fl=dlw/3.*ans(irow)*ur(irow)
f2mdlw/3.*an0(irow)*ur(irow
iro=irow-1
iroe=irow-2
do 10 i=l,iror2
fi=fi+ur(i)*4.*dlw/3o*ans(i)
f2=f2+ ur(i)*4.*dlw/3*an0(i)

10	 continue
do 20 i=2yiroer2
fl=fl+ur(i)*2.*dlw/3.*ans(i )
f2=f2+ur(i)*2.*dlw/3.*an0(i )

20	 continue
difa=f1-f2 
return
end
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