NASATM-80163

NASA Technical Memorandum 80163

NASA-TM-80163 19800001985

FOR REFERENCE

Statistics of the second second

COMPARISON OF STABILITY AND CONTROL PARAMETERS FOR A LIGHT, SINGLE-ENGINE, HIGH-WINGED AIRCRAFT USING DIFFERENT FLIGHT TEST AND PARAMETER ESTIMATION TECHNIQUES

William T. Suit and Robert L. Cannaday NOT TO BE TAKEN FROM THIS ROOM

September 1979

National Aeronautics and

Space Administration

Langley Research Center Hampton, Virginia 23665

١

LIBRARY COPY

00T 1 2 1979

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

COMPARISON OF STABILITY AND CONTROL PARAMETERS FOR A LIGHT, SINGLE-ENGINE, HIGH-WINGED AIRCRAFT USING DIFFERENT FLIGHT TEST AND PARAMETER ESTIMATION TECHNIQUES

William T. Suit and Robert L. Cannaday

SUMMARY

Longitudinal and lateral stability and control parameters were estimated from flight data for a high-wing, general aviation, airplane using flight data obtained at various flight conditions within the normal range of the aircraft. These parameters were estimated using an output error technique (maximum likelihood) and an equation error technique (linear regression). Longitudinal static parameters were also estimated from climbing, descending, and quasisteady-state flight data. For the lateral excitations, four input forms were used involving some combination of rudder and ailerons. The resulting longitudinal and lateral parameter estimates were used to compute the periods and time-to-damp to one-half amplitude of the various aircraft modes of motion to determine the sensitivity of these motions to variations in the parameter estimates.

INTRODUCT ION

The use of simulators for research investigations into aircraft dynamics is becoming an increasingly important tool of the research engineer. With this increased use of simulations comes the demand for greater simulator fidelity, which requires improved mathematical models. The aerodynamics of an aircraft can be described mathematically using its stability and control parameters in a set of equations of motion.

Several techniques have been used in the past to estimate stability and control parameters from flight data including analog matching (refs. 1 and 2), the time vector method (ref. 1), and regression analysis (refs. 3 and 4). In recent years the estimation of parameters from flight data by use of a maximumlikelihood algorithm (ref. 5) has become fairly routine where adequate computer facilities are available. In general, the analyses reported in these references were based on the small perturbation equations of motion.

To date, stability and control parameters for several low-winged light airplanes have been determined from both flight test data and wind-tunnel tests (refs. 6, 7, 8, and 9). For high-winged configurations wind tunnel test data are available (ref. 10) but little has been published on the estimated values of stability and control parameters determined from flight data. Wind tunnel tests usually do not include estimated values for rotary derivatives, which can be estimated from flight test data using current estimation techniques.

N80-10225 #

The present paper is similar in some respects to the work that was done for the low-winged, general aviation aircraft as reported in references 7 and 8. However, in the present study, flight test data were obtained at three different airspeeds corresponding approximately to landing, approach, and cruise conditions. During the flight test, the aircraft was perturbed from trim conditions using either elevator or rudder and ailerons, and the stability and control parameters were estimated from the resulting data using both an output error method (maximum likelihood of ref. 5), and an equation error method (linear regression of refs. 3 and 11). Static longitudinal aerodynamic parameters were also calculated from steady climb, descent, and quasi-steady flight data for comparison with those obtained from perturbation flight data.

This report describes the flight test procedure, presents the results obtained from the perturbation flight tests using the two estimation procedures, and compares values for the longitudinal static parameters with values calculated from independent flight tests at two different center-of-gravity locations.

SYMBOLS

The aerodynamic parameters are referenced to a system of body axes with the origin at the airplane center of gravity, which is located at 28.8 percent \bar{c} , and with orientation of body axes as shown in figure 1, which also shows the direction of positive forces, moments, displacements, angles, and linear and angular velocities.

^a x, ^a y, ^a Z	acceleration measured along X, Y, and Z body axes, respectively, g units
b	wing span, m
ċ	wing mean geometric chord, m
F _X , F _Y , F _Z	force along X, Y, and Z body axes, respectively, N
g	acceleration due to gravity, m/sec ²
I_X, I_Y, I_Z	moment of inertia about X, Y, and Z body axes, respectively, kg-m ²
I _{XZ}	product of inertia, kg-m ²
^z t	distance from airplane center of gravity to center of pressure of horizontal tail, m
^M _X , ^M _Y , ^M _Z	rolling, pitching, and yawing moments, respectively, N-m
m	mass, kg

P	roll rate, rad/sec
q	pitch rate, rad/sec
ā	dynamic pressure, N/m ²
r	yaw rate, rad/sec
R	estimate of error covariance matrix
S	wing area, m ²
Т	thrust, N ,
u, v, w	velocity along X, Y, and Z body axes, respectively, m/sec
u', v', w'	velocity component along X, Y, and Z body axes, respectively, at angle-of-attack sensor on wing-tip boom, m/sec
U	control vector
V	airplane total velocity, m/sec
x _i	matrix of measured states and input variables
X, Y, Z	body coordinate axes through airplane center of gravity
x(1)	state vector
y(1)	output vector
x, y, z	x-, y-, and z-coordinates, respectively, of the sensors on wing-tip boom relative to airplane center of gravity, m
^z i	measurement vector
α	angle of attack, rad
β	angle of sideslip, rad
^δ a	left aileron deflection minus right aileron deflection, rad
δ _e	stabilator deflection, positive trailing edge down, rad
δ _r	rudder deflection, positive trailing edge left, rad
Э	angle between thrust axis and airplane X body axis, positive for thrust up, rad
θ	pitch angle, rad

parameter vector θ air density, kg/m^3 ρ measurement noise vector η roll angle, rad φ perturbation in parameter vector Δ lift coefficient, gm/qS C_{L} ° C rolling-moment coefficient, $M_{\chi}/\bar{q}Sb$ pitching-moment coefficient, ${\rm M}_{\rm Y}/\bar{\rm q}S\bar{\rm c}$ C_m yawing-moment coefficient, $M_{\gamma}/\bar{q}S\bar{c}$ C_n thrust coefficient, $T/\bar{q}S$ (used in some publications as T'_c) C_T axial-force coefficient, $F_{\chi}/\bar{q}S$ cx side-force coefficient, $F_{\gamma}/\bar{q}S$ CY normal-force coefficient, $F_Z/\bar{q}S$ C_{z}

$$C_{z_{p}} = \frac{\partial C_{z}}{\partial \frac{pb}{2V}} \qquad C_{z_{r}} = \frac{\partial C_{z}}{\partial \frac{rb}{2V}} \qquad C_{z_{\beta}} = \frac{C_{L}}{\beta} \qquad C_{L_{\alpha}} = \frac{\partial C_{L}}{\partial \alpha}$$

$$C_{z_{\delta a}} = \frac{\partial C_{z}}{\partial \delta_{a}} \qquad C_{z_{\delta r}} = \frac{\partial C_{z}}{\partial \delta_{r}} \qquad C_{m_{q}} = \frac{\partial C_{m}}{\partial \frac{qc}{2V}} \qquad C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial \alpha}$$

$$C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial \frac{qc}{2V}} \qquad C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial \alpha}$$

$$C_{m_{\alpha}} = \frac{\partial C_{m}}{\partial \alpha} \qquad C_{m_{\beta}} = \frac{\partial C_{m}}{\partial \delta_{\beta}} \qquad C_{m_{p}} = \frac{\partial C_{m}}{\partial \frac{pb}{2V}} \qquad C_{m_{r}} = \frac{\partial C_{m}}{\partial \frac{pb}{2V}}$$

$$C_{n_{\beta}} = \frac{\partial C_{m}}{\partial \beta} \qquad C_{n_{\delta a}} = \frac{\partial C_{m}}{\partial \delta_{a}} \qquad C_{n_{\delta r}} = \frac{\partial C_{m}}{\partial \delta_{r}} \qquad C_{T_{\alpha}} = \frac{\partial C_{T}}{\partial \alpha}$$

$$C_{X_{\alpha}} = \frac{\partial C_{X}}{\partial \alpha} \qquad C_{X_{\alpha}}^{\dagger} = C_{X_{\alpha}} + C_{T_{\alpha}} \cos \varepsilon \qquad C_{Y_{p}} = \frac{\partial C_{Y}}{\partial \frac{pb}{2v}} \qquad C_{Y_{r}} = \frac{\partial C_{Y}}{\partial \frac{rb}{2v}}$$

$$C_{Y_{r}} = \frac{\partial C_{Y}}{\partial \frac{rb}{2v}} \qquad C_{Y_{r}} = \frac{\partial C_{Z}}{\partial \frac{rb}{2v}} \qquad C_{Z_{r}} = \frac{\partial C_{Z}}{\partial \frac{qc}{2v}} \qquad C_{Z_{r}} = \frac{\partial C_{Z}}{\partial \alpha}$$

$$C_{Z_{r}} = C_{Z_{r}} + C_{T_{r}} \sin \varepsilon \qquad C_{z_{\delta e}} = \frac{\partial C_{Z}}{\partial \delta_{e}} \qquad C_{T_{r}} = \frac{\partial C_{T}}{\partial \alpha}$$

c	computed
k	index
m	measured
0	coefficient at trimmed conditions
t	trimmed conditions

Superscripts:

-1	inverse matrix
Т	transpose matrix
М	measured quantity
o	nominal evaluation
^	estimated value

A dot over a symbol signifies a derivative with respect to time.

DESCRIPTION OF AIRPLANE AND DATA SYSTEM

The subject airplane was a four-place, externally braced high-wing, fixed tricycle landing gear, single-engine airplane, as shown in figure 2. Its pertinent geometric details and mass characteristics are given in table I. The mass characteristics shown were obtained from manufacturer's data on the subject

aircraft. The airplane instrumentation used to record control-surface movements and airplane responses to these movements was basically like that of the subject aircraft of reference 7.

The instrumentation system measured and recorded on tape the data used in this study. The variables recorded and the range of each sensing instrument is given in table II. The accuracy of these measurements is considered to be 2 or 3 percent of full scale on each instrument. Unlike the data recorded in reference 7 in which FM and PAM were merged, all the data were recorded on FM (continuous) channels. The advantage of this was that all data channels could be filtered using an analog filter without introducing time delays in some channels relative to others. These data were digitized, then sampled at 20 points per second and converted to engineering units to obtain the data used in this study. The pitot-static head for measuring velocity (dynamic pressure), and the angle-of-attack and angle-of-sideslip vanes were mounted on a boom located near the left wing tip. The boom extended 3/4 chord ahead of the wing leading edge.

FLIGHT TESTS

Three types of flight tests were flown to obtain the data used in this report.

(1) <u>Perturbation tests</u>.- These tests consisted of trimming the airplane with power for level flight, idle, or full power and perturbing the trimmed condition with either elevator or rudder and aileron doublets. A typical time history of the input forms used to excite the longitudinal motions is presented in figure 3. The aircraft was trimmed at three indicated airspeeds; 31.6 m/sec (61 knots), 40.7 m/sec (78 knots), and 54.2 m/sec (104 knots), which correspond roughly to landing, approach, and cruise, although no flaps were used in these tests.

The lateral perturbation tests consisted of trimming the aircraft at the same three airspeeds as for the longitudinal data, but only trim power for level flight was used. Four different input forms designated A, B, C, and D, were used to excite the lateral motions, and typical time histories of the inputs are illustrated in figure 3. All perturbation data were obtained for one centerof-gravity (c.g.) location, 28.8 percent MAC, and test altitudes ranged from about 600 m to 1500 m in relatively smooth air.

The number of test runs made at each condition longitudinally and laterally and for each input is presented in table III.

(2) <u>Steady tests</u>.- These tests consisted of trimming the airplane for a steady full power climb for a particular airspeed followed by setting the power to idle and trimming for an idle power steady descent at the same airspeed and altitude range as the climb. This test was done for the same three airspeeds as above, with no flap deflection, and two c.g. locations 28.8 percent MAC, and 36.5 percent MAC. No analysis for lateral characteristics was performed on these data.

(3) <u>Quasi-steady tests</u>.- These tests consisted of performing slow acceleration-deceleration flight test maneuver (ref. 12), starting from trimmed level flight. Power for these tests was left at the trim setting. The initial trimmed indicated airspeeds were again 31.6 m/sec (61 knots), 40.7 m/sec (78 knots), and 54.2 m/sec (104 knots). These tests were performed at the same c.g. locations as the steady tests. No flaps were used nor was an analysis of lateral characteristics made for these data.

DATA REDUCTION AND ESTIMATION METHODS

The measured flight data included dynamic pressures, angles of attack and sideslip, linear accelerations, rotational rates, and control surface movements. It was necessary to apply corrections to the measured flight data before it could be used for estimating stability and control parameters. Since the angle of attack and sideslip vanes were mounted on a boom located near the left wing tip and extended about 3/4 chord ahead of the wing leading edge, corrections for upwash and angular rates were applied to the measured angle-of-attack. Angleof-sideslip was corrected for angular rates. Details of the angle-of-attack and sideslip corrections are given in reference 7. Airspeed was corrected for position error by applying a correction to the static pressure determined from an airspeed calibration test. The airspeed was also corrected for altitude to obtain true airspeed, and since the pitot head was located on the boom, angular rates were taken into account to convert airspeed to the aircraft c.g. (ref. 7). The accelerometer readings were also corrected to the c.g. of the airplane.

Three methods were used to estimate stability and control parameters using the corrected flight test data. These were the maximum likelihood technique described in reference 5, a regression parameter estimation technique described in references 3 and 11, and an analytical technique described in reference 13.

The maximum likelihood technique utilizes the log-likelihood function

$$J(\Theta) = -1/2 \Sigma \eta_i^T R^{-1} \eta_i - \frac{N}{2} \log |R|$$

where

$$\eta_{i} = z_{i} - \hat{y}_{i} = y_{i} - y_{i}(\Theta_{o}) - \frac{\partial y_{i}}{\partial \Theta} \bigg|_{\Theta = \Theta_{o}} \Delta \Theta$$

with z_i the measurement vector and y_i the output vector which comes from $\dot{x} = f(x, U, \theta, t)$ and $y = g(x, U, \theta, t)$. In the above equation η_i is assumed to have a Guassian distribution and the representation $\dot{x} = f(x, U, \theta, t)$ is assumed to accurately represent the physical system. The unknowns to be estimated are the elements of θ and R. Minimizing J with respect to R, $\hat{R} = \text{diag} \frac{1}{N} \sum_{i} \eta_i \eta_i^T$ is obtained. The estimates for the parameters are obtained

from the equation

$$\frac{\partial \Theta}{\partial 1} = \frac{\Theta}{\Theta} = 0$$

which results in

$$\Delta \hat{\boldsymbol{\Theta}} = \left[\sum_{i} \left(\frac{\partial y_{i}}{\partial \boldsymbol{\Theta}} \right)^{\mathrm{T}} \hat{\mathbf{R}}^{-1} \frac{\partial y_{i}}{\partial \boldsymbol{\Theta}} \right]^{-1} \left[\sum_{i} \frac{\partial y_{i}}{\partial \boldsymbol{\Theta}} \hat{\mathbf{R}}^{-1} \boldsymbol{\eta}_{i} \right]$$

yielding the parameter estimates

$$\hat{\Theta} = \Theta_{o} + \Delta \Theta$$

The regression technique utilizes the cost function

$$J_{r}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left[\dot{x}_{ri} - f_{ri}(x, U, \boldsymbol{\theta}_{r}) \right]^{2}$$

where r indicates the rth state equation.

The estimates of the unknown parameters are obtained from the equation

$$\frac{9}{91} = 0$$

which results in

$$\boldsymbol{\hat{\Theta}} = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{X}_{i}^{\mathrm{T}} & \boldsymbol{X}_{i} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{X}_{i}^{\mathrm{T}} & \boldsymbol{X}_{i} \\ \boldsymbol{\Sigma} & \boldsymbol{X}_{i}^{\mathrm{T}} & \boldsymbol{X}_{i} \end{bmatrix}$$

where the matrix X. includes measured states and output variables (assumed noise free).

The analytical technique was used to determine the longitudinal static and control parameters. These were estimated using the measured stick-fixed trim curves at two c.g. positions and the measured C_L as a function of angle-of-attack curve. $C_{L_{\alpha}}$ was determined using the slope of the C_L versus α curve. $C_{m_{\alpha}}$ was determined from the slopes of the stick-fixed trim curves. $C_{m_{\delta e}}$ was determined using the difference between the stick-fixed trim curves for various C_L 's. $C_{Z_{\delta e}}$ was then calculated from $C_{m_{\delta e}}$ (see relation in appendix).

The application of these techniques is outlined in figure 4. The maximum likelihood and regression techniques were applied to the perturbation data, and the analytical technique of reference 13 was applied to the steady and quasi-steady data.

One criterion used to evaluate the uncertainty of the parameter estimates obtained using the maximum-likelihood technique is the Cramer-Rao bound discussed in reference 14. The Cramer-Rao bounds are an estimate of the standard deviations of the parameter estimates but they are too small except for the ideal case of a perfect mathematical model, infinite data points, and unbiased random noise in the data. Since this is not the case in a practical situation, the Cramer-Rao bounds can be used in a relative sense to determine the estimation accuracy.

The effects of power settings on the estimated parameters were determined by comparing the values of the estimated parameters determined using full power data with those determined using idle power data.

RESULTS AND DISCUSSION

Longitudina1

The results of applying the various estimation techniques to the longitudinal flight data are shown in figure 5. The longitudinal parameters estimated for each longitudinal run are also given in table IV. All of the parameters except C_{z_q} and $C_{z_{\delta e}}$ had Cramer-Rao bounds less than 2 percent of the estimated value (table V). These results indicate that the uncertainty in the estimated values was small. Where repeat runs were available, the longitudinal parameter values estimated by both methods agreed to within 10 percent of each other in the majority of the cases. Also, the fit to the flight data using the maximum likelihood method was considered good since the mean-squaredfit error (area between measured and computed time histories) for each of the states was less than 1 percent of the full-scale range of the instrument used to measure that state. A typical comparison of measured and predicted flight data time histories is shown in figure 6.

The trends of the estimated parameters with C_L were consistent with those approximated from reference 10 where comparisons could be made. The values determined by both the maximum likelihood and the linear-regression methods generally showed similar trends. The left half of figure 5 shows the parameters estimated from data which were obtained by perturbing the aircraft from trim powered level flight while the right half shows parameters estimated from data taken when the aircraft was perturbed from idle or full powered flight. The curves fared through the points determined using the maximum likelihood estimation method represent the estimates of the derivatives over the C_L range for which flight data were available. Derivatives determined by other methods were shown for comparison, but the values determined using maximum likelihood were considered the most reliable.

 C_x was positive and increased linearly with C_L . This trend seems reasonable since C_x was approximately proportional to C_L (ref. 15). There was a small power effect at the smallest and middle C_L values tested.

C_z

 $C_{z_{\alpha}}$ was approximately constant with C_L , as was expected, since C_L varies linearly with α in the α range covered by the flight tests (fig. 5). The power effect observed, idle power giving the least negative value, was greatest at the largest C_L values. The same trends can be seen in the results for both the maximum likelihood and the regression extracted methods.

Values of $C_{Z_{\alpha}}$ for full power, trim power for level flight, and idle power were calculated by the techniques of reference 13 using the quasi-steady and steady measurements and the values of $C_{Z_{\alpha}}$ are shown on figure 5. The values of $C_{Z_{\alpha}}$ determined from the steady measurements taken at full power and trim power were about the same, and these values of $C_{Z_{\alpha}}$ were more negative than those extracted from the perturbation tests. The $C_{Z_{\alpha}}$ values calculated by the methods of reference 13 from the steady measurements taken at idle power, were approximately the same as the values estimated from the perturbation test data taken at idle power.

The power effect on the estimated values of $C_{Z_{\alpha}}$ from steady measurements was about 20 percent for this parameter. The power effect on the values estimated using maximum likelihood was about 12 percent. As C_{L} was decreased, the difference in the estimated values at $C_{Z_{\alpha}}$ for full and idle power decreased for both the perturbation and steady measurements. However, the values of $C_{Z_{\alpha}}$ determined from the steady measurements indicated a larger power effect for all C_{L} values tested.

Reference 10 describes wind tunnel tests on a high-winged, single-engine airplane. Although the configuration tested in the wind tunnel was not exactly the same as the configuration of the airplane discussed in this report, the two aircraft are somewhat similar. The data in reference 10 indicates that $-C_{z_{\alpha}}$ $(C_{L_{\alpha}} \approx -C_{z_{\alpha}})$ becomes greater as power increases. With the throttle in the idle position in flight, thrust was approximately zero, so this case was considered to be comparable with the $T_c^{t} = 0$ case of reference 10. The thrust coefficient for the full power flight condition was approximately the same as the $T_c^{t} = 0.26$ case of reference 10. The $-C_{z_{\alpha}}$ of reference 10 for a $T_c^{t} = 0.26$ is about 14 percent greater than the $-C_{z_{\alpha}}$ value for $T_c^{t} = 0$. A similar change was noted for the $-C_{z_{\alpha}}$ estimated from flight data using the maximum likelihood technique. No reqson has been found for the differences in power effects for the values of $C_{z_{\alpha}}$ determined from the perturbation and steady measurements. However, the power effects seen in the results from the perturbation tests are of the same magnitude as those seen in the wind tunnel test results, so the effect of power on $C_{z_{\alpha}}$ for the maximum likelihood estimated results were considered reasonable.

Czq

The magnitudes estimated for C_{z_q} and its trend with C_L differed greatly for the maximum likelihood and the regression estimation methods. Since the parameter had a Cramer-Rao bound at least three times greater than the bound for any of the other estimated parameters C_{z_q} was not considered well

determined. Therefore, the estimated value, regardless of its magnitude, did not significantly affect the calculated motions of the aircraft. This can be seen by examining the period and time to damp to half amplitude of the short period mode (table VI).

While the actual values of all the longitudinal parameters estimated by the maximum likelihood and linear regression methods are different, both sets give reasonable fits to the flight data. For representative sets of flight data the periods and times to damp to half amplitude for the short period mode are shown as table VI. The quantities in the table were calculated using the sets of parameters determined by examining a particular set of data with both the maximum likelihood and regression methods. The difference between the periods and times to half were around 10 percent in most cases so that even though the individual derivatives in the mathematical model describing the aircraft were different the resulting motions were similar.

$c_{z_{\delta e}}$

The values estimated for $C_{z_{\delta e}}$ using both the maximum likelihood and the regression techniques were similar even though different mathematical models were used during the estimation procedure. The maximum likelihood mathematical model used a constraint equation which calculated values of $C_{z_{\delta e}}$ from the estimated value of $C_{m_{\delta e}}$ (see refs. 6 and 7). There were no constraints in the regression mathematical model. For the full and idle power cases the magnitudes of the estimated parameters were about the same and there were no obvious differences in the trends with C_L between the two estimation methods. The trend with C_L seemed somewhat different for the two estimation methods when the trim power case was examined, but the magnitudes of the parameters were similar (see fig. 5).

The estimated values of $C_{m_{\alpha}}$ became more negative with increasing C_{L} (fig. 5). The trends for $C_{m_{\alpha}}$ were the same for both extraction methods, but the values determined by the maximum likelihood method were more negative. The results showed a definite power effect on $C_{m_{\alpha}}$ for the higher C_{L} values, increasing the power tended to make the values of $C_{m_{\alpha}}$ less negative.

The estimated values were compared with values calculated from the steady and quasi-steady measurements using the methods of reference 13. As can be seen from figure 5, the values of $C_{m_{\chi}}$ calculated from quasi-steady measurements showed similar trends and magnitudes as the results of the maximum likelihood estimation.

$$C_{m_q} + C_{m_{\alpha'}}$$

The values of $C_{m_q} + C_{m_q}$ for the full power case tended to be more negative as C_L increased (fig. 5). Otherwise there was very little variation with C_L . Both parameter estimation methods showed the similar trends and magnitudes. The values obtained using the regression method tended to be more negative.

A definite power effect was observed, especially at the largest C_{L} . This was expected since the dynamic pressure ratio at the tail was greater at full power for the largest C_{L} than at full power for the lower C_{L} 's.

$c_{m_{\delta}e}$

The values of $C_{m_{\delta}e}$ determined from perturbation data became more negative as C_L increased for both the trim and full power cases and for both extraction methods (fig. 5). This increased elevator effectiveness at higher C_L values is due to a higher dynamic pressure ratio at the tail for trimmed and full power than for the lower C_L values. The results from the idle power tests showed that $C_{m_{\delta}e}$ remained approximately constant with increasing C_L (fig. 5), which would be expected since the propeller slipstream is minimal at idle power. The effect of power is similar to that noted for $C_{m_{cl}} + C_{m_{br}}$, the effect of power being greater at the larger C_L .

The values determined using the quasi-steady measurements and maximum likelihood estimation showed similar trends with C_L . For the trim power case the $C_{m_{\delta e}}$ determined from the quasi-steady measurements showed a much larger variation with increasing C_L than the $C_{m_{\delta e}}$ determined from the maximum likelihood estimates.

Lateral

The lateral derivatives estimated by the maximum likelihood method are shown on figure 7. A linear fit to each set of these derivatives is also shown on figure 7. Values from this linear fit to the derivatives determined by maximum likelihood are the preferred values to be used to mathematically represent the subject aircraft within the flight regimes covered by the tests. Other values are presented for comparison with the values determined using maximum likelihood. The lateral derivatives estimated by the linear regression method are shown on figure 8. The individual parameters for each run as estimated by each method are given as tables VII and VIII. The run numbers are shown on the tables to enable the reader to compare the results of applying each method to the same data. For comparison the linear fit to each of the maximum likelihood derivatives was also shown on the plot of the corresponding derivatives as determined using the linear regression method (see fig. 8). The derivative values determined by both methods in general showed similar trends and in most cases had similar magnitudes. As another comparison of the maximum likelihood and equation error parameter estimates, the characteristics of the dutch roll, roll, and spiral modes were computed based on the two sets of estimates. These computed characteristics are shown in table IX. The characteristics estimated are similar for parameters obtained from both techniques. The most obvious discrepancy is in the description of the spiral mode, but these differences are not considered important since the data runs were not long enough to accurately describe the spiral mode.

Where possible the trends of the parameter values determined using maximum likelihood were also compared with trends obtained from references 10 and 16. Also, the estimated parameter values will be compared with values taken from reference 17. These are given in table X. The derivative values shown are for a high-winged, single-engine, general aviation aircraft, but only the values from reference 17 are for the specific configuration of this report.

The Cramer-Rao bounds of the lateral derivatives estimated were examined and $C_{y_{\beta}}, C_{\ell\beta}, C_{\ell,p}, C_{\ell,\delta a}, C_{n_{\beta}}, C_{n_{r}}, and C_{n_{\delta r}}$ were found to have bounds that were less than 2 percent of the extracted values (table XI). An examination of figures 7 and 8 reveals that the derivatives listed above had the least scatter, as would be expected since the Cramer-Rao bounds were small. In most cases, the derivatives C_{y_r} , $C_{y_{\delta r}}$, C_{ℓ_r} , and C_{n_p} had Cramer-Rao bounds of less than 5 percent of the estimated values, the derivatives $C_{g_{\delta r}}$, and $C_{n_{\delta a}}$ had a Cramer-Rao bounds of less than 10 percent of the estimated values, and $C_{y_{D}}$ had a Cramer-Rao bound which varied considerably from run to run. The derivatives with Cramer-Rao bounds of 5 percent or less of the estimated value were considered well determined. Also, the fit to the flight data was considered good since the mean squared fit error for each state was less than 1 percent of the full scale range of the instrument used to measure that state. A typical fit to the lateral motions is shown in figure 9.

No apparent effect of control input was seen in the values obtained using the maximum likelihood estimation method. However, when the linear regression estimation method was used, several of the parameters showed some effect of input form (see fig. 10). With the exception of $C_{y\beta}$ and $C_{\ell r}$ none of the parameters that were considered well determined showed an effect of input. The values estimated for $C_{y\beta}$ from the data generated when input B was used to perturb the aircraft were consistently less negative than when the data generated by the other inputs were used. Some of the parameters that were not as well determined also had apparent input effects for some C_L 's, but the scatter in the values estimated by the linear regression method made a definite conclusion difficult.

The reasons for input effects occurring when the linear regression method was used and for their absence when using the maximum likelihood method was used is unclear. One clue may be in the fact that the cost functions are defined differently for the two methods. In the linear regression method, the unknown parameters are estimated for each state equation independently of the other state equations. So, when using linear regression, since the individual inputs excite each of the states in a different manner, several parameter values could be estimated to describe the same state. For the maximum likelihood method all the states to be fitted are estimates simultaneously and the unknown parameter values are determined to give a best overall fit to all the states simultaneously.

The parameters $C_{y_{\delta r}}$, $C_{\ell\beta}$, $C_{\ell\rho}$, $C_{\ell\delta a}$, $C_{n\beta}$, and $C_{n\rho}$ showed good agreement between the estimation methods (figs. 7 and 8). These parameters had trends with C_L similar to those seen in references 16 and 17 where comparisons could be made. With the exception of $C_{\ell\beta}$ and $C_{n\beta}$, the estimated values agreed with the values shown in table XI from other references. The lateral parameters which had differences between the values determined by maximum likelihood and the values determined by the other methods will now be discussed individually.

с_{ув}

 $C_{y\beta}$ was negative and became less negative as C_L increased. The maximum likelihood results showed no effect of control input and the scatter was small. The results using linear regression were less negative than the maximum likelihood results and the scatter was greater. The general trend for the $C_{y\beta}$

values extracted by the linear regression method was the same as for the maximum likelihood method, but the linear regression showed some effect of input for input B.

 C_{y_p} was not determined well by either estimation method as was indicated by the scatter of the estimated values. When using the linear regression program, particularly large run to run variations were noted for the runs with input B.

C_{fr}

The values estimated for C_{ℓ_T} were positive and increased with increasing C_L . This trend was similar to the trends shown in reference 17, but the magnitudes were lower than expected. The values determined by the linear regression showed the same trend as the maximum likelihood but the values estimated for the parameters were larger. For both estimation methods the values determined using the data for input A were generally lower at the larger C_L 's than those determined using the data from the other inputs.

$$C_{\ell_{\delta}r}$$

The values estimated for $C_{\ell_{\delta r}}$ were positive and increased with increasing C_{L} . Both the maximum likelihood and linear regression estimation methods generally resulted in similar trends and magnitudes for the estimated parameter. The exception was the values estimated from the data obtained from input A using the regression method. These values tended to show a decrease in $C_{\ell_{\delta r}}$ with increasing C_{L} .

The general trends seen in the estimated values of $C_{f,\delta r}$ are opposite those indicated in reference 16 for a straight-winged aircraft. Also, the values estimated were smaller than the value determined from reference 17 and shown in table X. However, since $C_{f,\delta r}$ is not a strong parameter and is not well determined, the apparent discrepancy did not significantly affect the fit to the data or the other parameter values estimated.

C_nr

The C_{n_r} values which were estimated by both methods were negative and in general the trend of the derivative values was more negative as C_L increased. While both extraction methods gave similar overall trends and scatter for the estimated derivatives some effect of input was seen in the regression results for input D which showed a reverse trend with C_L and for input A which tended to have values less negative than for the other inputs. The scatter in the data hid any possible input effect in the maximum likelihood results. When compared to the values given in table X, the magnitudes of C_{n_r} estimated seemed reasonable and reference 16 implies that the trend with C_L is reasonable.

The values determined for $C_{n_{\delta a}}$ were generally negative, indicating an apparent proverse yaw with aileron deflection for the sign convention used in this report. Experience with the subject aircraft has demonstrated that this aircraft actually has adverse yaw with ailerons. This apparent contradiction can be explained in part when it is realized that the inputs required to determine $C_{n_{\delta a}}$ also produce considerable rolling motion. This rolling motion induces a yawing moment described by the parameter C_{n_p} . Thus, the same aileron inputs which cause a yawing moment through $C_{n_{\delta a}}$, also produce a rolling motion which causes a yawing moment through C_{n_p} . Therefore, the effects described by these two parameters is difficult to separate, as is indicated by the high correlation (.95) between this pair of parameters. This implies that both parameters are required to properly describe the adverse yawing motion observed for the subject aircraft, and not $C_{n_{\delta a}}$ or C_{n_p} alone.

CONCLUDING REMARKS

The maximum likelihood and a linear regression parameter extraction program were used to determine the longitudinal stability and control parameters from data taken using a high-winged, general aviation aircraft. The parameter values obtained using the maximum likelihood method were considered the most reliable representation of the subject aircraft, while the values determined by other methods are presented for comparison.

The longitudinal parameters estimated using maximum likelihood showed the trends expected with variations of power and C_L and were considered to give a reasonable mathematical representation of the aircraft. For a majority of the parameters the same trends were apparent using the linear regression method. A definite effect of power setting was observed in the derivatives $C_{z_{\delta e}}$, $C_{m_{\alpha}}$, $C_{m_q} + C_{m_{\alpha}^{\circ}}$, and $C_{m_{\delta e}}$; with some power effects observed in $C_{z_{\alpha}}$ at the largest C_L . The values estimated for $C_{z_{\alpha}}$, C_{z_q} , $C_{z_{\delta e}}$, $C_{m_{\alpha}}$, and $C_{m_q} + C_{m_{\alpha}^{\circ}}$ were noticeably different when different parameter estimation methods were used. The parameter $C_{m_{\delta e}}$ showed a lesser variation with estimation method. Also, the derivatives $C_{x_{\alpha}}$, $C_{z_{\delta e}}$, $C_{m_{\alpha}}$, $C_{m_q} + C_{m_{\alpha}^{\circ}}$, and $C_{m_{\delta e}}$ varied with C_L .

The parameters $C_{Z_{\alpha}}$, $C_{m_{\alpha}}$, and $C_{m_{\delta}e}$ were compared with values determined using steady and quasi-steady test data. The trends with C_{L} were the same for these derivatives regardless of the method of determination, but the magnitudes were different. The greatest differences were observed in $C_{Z_{\alpha}}$ where the power effects predicted by the steady and quasi-steady tests were different from those predicted by perturbation tests.

The lateral parameters estimated by both the maximum likelihood and equation error methods generally showed the same trends with C_L . For $C_{\ell\beta}$, $C_{\ell_{\delta a}}$, $C_{n_{\beta}}$, $C_{n_{p}}$, $C_{n_{r}}$, C_{n_{r

The estimated parameter values obtained using the maximum likelihood extraction method resulted in fit errors less than the uncertainty in the measurements for both the longitudinal and lateral data. The estimated longitudinal parameters all had Cramer-Rao lower bounds that were less than 2 percent of their value, as did the lateral parameters $C_{y\beta}$, $C_{\ell\beta}$, $C_{\ell\rho}$, $C_{\ell,\delta a}$, $C_{n_{\beta}}$, $C_{n_{\gamma}}$, and $C_{n_{\delta r}}$. The lateral parameters C_{yr} , $C_{y_{\delta r}}$, $C_{\ell,r}$, and $C_{n_{p}}$ had Cramer-Rao lower bounds that were less than 5 percent of the estimated parameter value, while $C_{\ell,\delta a}$ and $C_{n_{\delta a}}$ had bounds less than 10 percent of the value. $C_{y_{p}}$ had a bound of approximately 25 percent of the extracted value.

The agreement of the two estimation methods, the reasonable trends and values of the extracted derivatives, the good fit to the data, and the low values of the Cramer-Rao lower bounds gave confidence that for the flight data examined, the mathematical model estimated using the maximum likelihood method was a reasonable representation of the subject aircraft.

REFERENCES

- 1. Wolowicz, Chester H.: Considerations in the Determination of Stability and Control Derivatives and Dynamic Characteristics From Flight Data. AGARD Rep. 549-Part 1, 1966.
- Rampy, John M.; and Berry, Donald T.: Determination of Stability Derivatives From Flight Test Data by Means of High Speed Repetitive Operation Analog Matching. FTC-TDR-64-8, Air Force Flight Test Center, May 1964.
- 3. Howard, J.: The Determination of Lateral Stability and Control Derivatives From Flight Data. Canadian Aeronautics and Space Journal, vol. 13, March 1967, pp. 127-134.
- 4. Shinbrot, Marvin: On the Analysis of Linear and Nonlinear Dynamical Systems From Transient-Response Data. NACA TN 3288, 1954.
- 5. Grove, Randall D.; Bowles, Roland L.; and Mayhew, Stanley C.: A Procedure for Estimating Stability and Control Parameters From Flight Test Data by Using Maximum Likelihood Methods Employing a Real-Time Digital System. NASA TN D-6735, 1972.
- 6. Suit, William T.: Aerodynamic Parameters of the Navion Airplane Extracted From Flight Data. •NASA TN D-6643, March 1972.
- 7. Cannaday, Robert L.; and Suit, William T.: Effects of Control Inputs on the Estimation of Stability and Control Parameters of a Light Airplane. NASA Technical Paper 1043, December 1977.
- Klein, Vladislav: Determination of Stability and Control Parameters of a Light Airplane From Flight Data Using Two Estimation Methods. NASA TP 1306, 1979.
- 9. Fink, Marvin P.; Freeman, Delma C., Jr.; Greer, H. Douglas: Full-Scale Wind-Tunnel Investigation of the Static Longitudinal and Lateral Characteristics of a Light Single-Engine Airplane. NASA TN D-5700, 1970.
- 10. Greer, H. Douglas; Shivers, James P.; and Fink, Marvin P.: Wind-Tunnel Investigation of Static Longitudinal and Lateral Characteristics of a Full-Scale Mockup of a Light Single-Engine High-Wing Airplane. NASA TN D-7149, 1973.
- Gerlach, O. H.: Determination of Performance, Stability and Control Characteristics From Measurement in Non-Steady Maneuvers. AGARD Specialists Meeting on Stability and Control, September 20-23, 1966, pp. 499-523.
- Langdon, S. D.: Fixed-Wing Stability and Control Theory and Flight Test Techniques. USNTPS-FTM-No. 103, AD703681, August 1, 1969.

- Klein, V.: Determination of Longitudinal Aerodynamic Derivatives From Steady-State Measurement of an Aircraft. Proceedings of the AIAA 4th Atmospheric Flight Mechanics Conference, Hollywood, Florida, August 8-10, 1977.
- 14. Iliff, Kenneth W.; and Maine, Richard E.: Practical Aspects of Using a Maximum Likelihood Estimation Method to Extract Stability and Control Derivatives From Flight Data. NASA TN D-8209, 1976.
- 15. Etkin, Bernard: Dynamics of Flight. John Wiley & Sons, Inc., c. 1959.
- 16. Roskam, Jan: Flight Dynamics of Rigid and Elastic Airplane. Roskam Aviator and Engineering Corp., c. 1972.
- Smetana, Frederick O.; Summey, Delbert C.; and Johnson, W. Donald: Riding and Handling Qualities of Light Aircraft--A Review and Analysis. NASA CR-1975, 1972.

APPENDIX

EQUATIONS OF MOTION

The equations used in this program are perturbation equations from trimmed level flight and are written relative to the set of body axes shown in figure 1.

The equations used to describe the longitudinal motions were

$$\dot{\mathbf{u}} = -q\mathbf{w} + r\mathbf{v} - g \sin \theta + \frac{1}{2} \rho \frac{\nabla^2 S}{m} \left[C_{X,0} + C_{X_{\alpha}}^{\dagger} (\alpha - \alpha_t) \right]$$

$$\dot{\mathbf{w}} = -p\mathbf{v} + q\mathbf{u} + g \cos \theta \cos \varphi + \frac{1}{2} \rho \frac{\nabla^2 S}{m} \left[C_{Z,0} + C_{Z_{\alpha}}^{\dagger} (\alpha - \alpha_t) + C_{Z_{q}} \frac{q\bar{c}}{2V} + C_{Z_{q}} \frac{q\bar{c}}{2V} + C_{Z_{q}} (\delta_e - \delta_{e,t}) \right]$$
(A1)
$$(A1)$$

$$\dot{q} = pr \frac{(I_Z - I_X)}{I_Y} + \frac{I_{XZ}}{I_Y} (r^2 - p^2) + \rho \frac{v^2 s \bar{c}}{2 I_Y} \left[C_{m,o} + C_{m_{\alpha}} (\alpha - \alpha_t) + C_{m_{\alpha}} \frac{\dot{\alpha} \bar{c}}{2 V} + C_{m_{\alpha}} \frac{q \bar{c}}{2 V} + C_{m_{\delta e}} (\delta_e - \delta_{e,t}) \right]$$
(A3)

$$\dot{\theta} = q \cos \varphi - r \sin \varphi \tag{A4}$$

$$a_{X} = \frac{1}{g}(\mathbf{u} + q\mathbf{w} - r\mathbf{v} + g\sin \theta)$$
 (A5)

$$a_{Z} = \frac{1}{g}(\mathbf{\dot{w}} + pv - qu - g \cos \theta \cos \varphi)$$
(A6)

$$V = \sqrt{u^2 + v^2 + w^2}$$
 (A7)

$$\alpha = \tan^{-1} \frac{w}{u} \tag{A8}$$

$$\dot{\alpha} \approx \frac{\dot{w}}{u}$$
 (A9)

$$C_{Z_{\delta e}} = \frac{\bar{c}}{c_{+}} C_{m_{\delta e}}$$
 (used in maximum likelihood extraction) (A10)

The values of the lateral states v, p, r, and ϕ used in the longitudinal equations were the flight-measured quantities.

Since thrust changes are not explicitly modeled in the equations of motion, $C_{X_{\alpha}}^{i}$ and $C_{Z_{\alpha}}^{i}$ are not necessarily pure $C_{X_{\alpha}}^{i}$ and $C_{Z_{\alpha}}^{i}$ but may contain small contributions due to changes in thrust. Therefore, $C_{X_{\alpha}}^{i}$ and $C_{Z_{\alpha}}^{i}$, as determined in this study, are given by

$$C_{X_{\alpha}}^{\dagger} = \frac{\partial C_{X}}{\partial \alpha} + C_{T_{\alpha}} \cos \epsilon$$
$$C_{Z_{\alpha}}^{\dagger} = \frac{\partial C_{Z}}{\partial \alpha} + C_{T_{\alpha}} \sin \epsilon$$

Since, in this study, thrust was held constant and the angle-of-attack changes were no more than 7° peak to peak, the contributions of thrust to C_X^{\prime} and C_Z^{\prime} were considered minimal. α

The equations used to compute the lateral motions were

$$\dot{\mathbf{v}} = -\mathbf{r}\mathbf{u} + \mathbf{p}\mathbf{w} + \mathbf{g} \cos \theta \sin \varphi + \frac{1}{2} \rho \frac{\mathbf{v}^2 \mathbf{s}}{\mathbf{m}} \left[\mathbf{C}_{\mathbf{Y},\mathbf{o}} + \mathbf{C}_{\mathbf{Y}_{\beta}} \beta + \mathbf{C}_{\mathbf{Y}_{\beta}\mathbf{r}} \left(\delta_{\mathbf{r}} - \delta_{\mathbf{r},\mathbf{t}} \right) \right]$$
(A11)

$$\dot{\mathbf{p}} = \frac{\mathbf{I}_{XZ}}{\mathbf{I}_{X}} \dot{\mathbf{r}} + \left(\frac{\mathbf{I}_{Y} - \mathbf{I}_{Z}}{\mathbf{I}_{X}}\right) q\mathbf{r} + \left(\frac{\mathbf{I}_{XZ}}{\mathbf{I}_{X}}\right) pq + \frac{1}{2} \rho \frac{\mathbf{v}^{2} sb}{\mathbf{I}_{X}} \left[\mathbf{C}_{z,o} + \mathbf{C}_{z_{\beta}} \beta\right]$$

+
$$C_{z_p} \frac{pb}{2V} + C_{z_r} \frac{rb}{2V} + C_{z_{\delta r}} (\delta_r - \delta_{r,t}) + C_{z_{\delta a}} (\delta_a - \delta_{a,t})$$
 (A12)

$$\dot{\mathbf{r}} = \frac{\mathbf{I}_{XZ}}{\mathbf{I}_{Z}} \dot{\mathbf{p}} + \left(\frac{\mathbf{I}_{X} - \mathbf{I}_{Y}}{\mathbf{I}_{Z}}\right) \mathbf{pq} - \left(\frac{\mathbf{I}_{XZ}}{\mathbf{I}_{Z}}\right) \mathbf{qr} + \frac{1}{2} \rho \frac{\mathbf{v}^{2} \mathbf{Sb}}{\mathbf{I}_{Z}} \left[\mathbf{C}_{n,o} + \mathbf{C}_{n_{\beta}} \beta + \mathbf{C}_{n_{p}} \frac{\mathbf{pb}}{2\mathbf{v}} + \mathbf{C}_{n_{r}} \frac{\mathbf{rb}}{2\mathbf{v}} + \mathbf{C}_{n_{\delta r}} (\delta_{r} - \delta_{r,t}) + \mathbf{C}_{n_{\delta a}} (\delta_{a} - \delta_{a,t})\right]$$
(A13)

 $\dot{\phi} = p + (q \sin \phi + r \cos \phi) \tan \theta$ (A14)

$$a_{Y} = \frac{1}{g}(\dot{v} + ru - pw - g \cos \theta \sin \phi)$$
 (A15)

$$V = \sqrt{u^2 + v^2 + w^2}$$
$$\beta = \sin^{-1} \frac{v}{v}$$

The values of longitudinal states u, w, q, and θ used in the lateral equations were the flight-measured quantities. The equations were used to compute the airplane state responses. The computed responses were then compared with the recorded responses from the flight tests and the differences were used to update the parameters (stability and control derivatives) to improve the fit.

The longitudinal measured and computed responses, or states, used in the algorithm for this study were u, w, q, θ , a_X , and a_Z . The lateral states used were v, p, r, φ , and a_Y . Discussion of the identification algorithm is given in reference 7.

TABLE I.- GEOMETRIC CHARACTERISTICS

.

Mass, kg	837.93
Inertia:	
$I_X, kg-m_2^2$	1395. 1480. 2563. 123.
Fuselage length, m	8.2
Wing:	
Area, m ²	16.2 7.47 11.0 1.49
Vertical tail:	
Area, m^2 Aspect ratio Span, m Rudder area, m^2	1.04 3.96 2.03 .68
Horizontal ₂ Tail:	•
Area, m ² Aspect ratio Span, m Tail length, m	3.35 3.44 3.45 4.36
α , β , V Boom location relative to c.g.:	
x, m	1.47 -5.43 77

TABLE II.- INSTRUMENT RANGES

Instrument	Range
Airspeed, m/sec	0 to 63.0
Angle of attack, deg	-8.0 to 39.0
Angle of sideslip, deg	<u>+</u> 23.0
Altitude, m	0 to
Normal acceleration, g units	5 to 4.0
Longitudinal acceleration, g units	<u>+</u> 1.0
Lateral acceleration, g units	<u>+</u> 1.0
Elevator position, deg	+25.0 to -29.0
Aileron position, deg	+16.0 to -20.0
Rudder position, deg.	+19.0
Throttle position	Total Throttle travel
Pitch rate, deg/sec	<u>+</u> 30.0
Roll rate, deg/sec	<u>+</u> 30.0
Yaw rate, deg/sec	<u>+</u> 30.0
Pitch attitude, deg	<u>+</u> 30.0
Roll attitude, deg	<u>+</u> 60.0

TABLE III.- FLIGHT TEST CONDITIONS

LONGITUDINAL							
Trimmed Airspeed Power Setting	31.6 m/sec	40.7 m/sec	54.2 m/sec				
IDLE	l run	2 runs	l run				
LEVEL FLIGHT	2 runs	2 runs	2 runs				
FULL	2 runs	2 runs	same runs as Level Flight				

LATERAL

Trimmed Airspeed Power Setting	31.6 m/sec	31.6 m/sec	31.6 m/sec	31.6 m/sec
LEVEL FLIGHT	Input A 3 Runs	Input B 2 Runs	Input C 3 Runs	Input D l Run
Trimmed Airspeed Power Setting	40.7 m/sec	40.7 m/sec	40.7 m/sec	40.7 m/sec
LEVEL FLIGHT	Input A l Run	Input B 3 Runs	Input C 2 Runs	Input D 1 Run
Trimmed Airspeed Power Setting	54.2 m/sec	54.2 m/sec	54.2 m/sec	54.2 m/sec
LEVEL FLIGHT	Input A 2 Runs	Input B 3 Runs	Input C 3 Runs	Input D 1 Run

TABLE IV .- LONGITUDINAL PARAMETER VALUE

	AIRSPEED 31.6 m/sec					
Power Setting		IDLE	TRIM	TRIM	FULL	FULL
Parameter				,		
C _{xα}		1.68 (.0620)	1.40 (.0293)	1.41 (.0183)	1.44 (.0223)	1.81 (.0247)
C _{zo}		-1.076 (.0024)	951 (.0017)		-1.00 (.0026)	
Cza Czq			- 4.74 (.0622) -9.78 (.754)	(.0577) -10.29	-4.76 (.0841) -13.09 (1.103)	-12.62
		355	425	466	512	496
C _z δe C _{mα}		-1.22 (.0206)	-1.13 (.0110)		862 (.0132)	947 (.0105)
C _m .		-4.0*	-4.0*	-4.0*	-4.0*	-4.0*
C ^α C ^α C ^m q C ^m δe		(.298) -1.04	-14.55 (.188) -1.25 (.0071)	(.214) -1.37	-19.67 (.272) -1.50) (.0102)	-18.41 (.218) -1.45 (.0083)

MAXIMUM LIKELIHOOD ESTIMATION METHOD (CRAMER-RAO BOUNDS IN PARENTHESIS)

*Parameter Fixed

LINEAR REGRESSION ESTIMATION METHOD

ſ	AIRSPI	EED 31.6	m/sec			>
Power Setting		IDLE	TRIM	TRIM	FULL	FULL
Parameter						
		1.58 954	1.46 866	1.50 888	1.60 89	1.56 87
C _z C _z C _z q		-4.23 -16.0	-4.74 -13.71	477 -12.50	-4.88 -18.98	-4.85 -16.49
°q C _z qe		43	39	34	56	44
C C m a		963	927	916	744	815
$C_{m_q} + C_{m_{\alpha}}$	•	-17.36	-19.32	-19.20	-22.73	-21.50
α α C m _{δe}		-1.02	-1.21	121	-1.39	-1.34

TABLE IV CONTINUED

MAXIMUM LIKELIHOOD ESTIMATION METHOD (CRAMER-RAO BOUNDS IN PARENTHESIS)

	AIRSPEED 40.7 m/sec						
Power Setting	IDLE	IDLE	TRIM	TRIM	FULL	FULL	
Parameter							
C x _a	1.22 (.0442)	1.01 (.0306)	.836 (:0169)	.867 (.0208)	.937 (.0174)	.884 (.0189)	
°zo		665 (.0039)		612 (.0022)	639 (.0025)	614 (.0029)	
Cza Czq	(.0838) -10.17	-4.56 (.0947) -10.76 (1.149)	(.0472) -8.95	-9.09	-4.92 (.0636) -11.28 (.855)	-10.51	
C c ^{zδe}	364	369	422	413	440	440	
C ^{້ δe} ش	877 (.0114)	879 (.0155)	853 (.0086)		855 (.0098)	825 (.0118)	
C _m å	-4.0*	-4.0*	-4.0*	-4.0*	-4.0*	-4.0*	
C _m q	-13.00 (.248)	-13.51 (.319)		-14.75 (.171)	-15.92 (.228)		
C _m δe		-1.08 (.0117)		-1.21 (.0062)	-1.29 (.0087)	-1.29 (.0121)	

*Parameter Fixed

LINEAR REGRESSION ESTIMATION METHOD

	AIRSPEED 40.7 m/sec					
Power Setting	IDLE	TRIM	TRIM	FULL	FULL	
Parameter						
^C _{xα}	.98	.85	•99	•94	.90	
C _z o	586	573	56	 55	57	
C _z a	-4.72	-4.77	-4.72	-4.74	485	
C _z q	-16.8	-14.18	-16.27	-17.11	-15.39	
α C _z δe	36	37	42	46	33	
oe C c ^m a + c	. –.66	64	67	63	64	
$C_{\mathbf{q}}^{\mathbf{n}\alpha} + C_{\mathbf{m}}$	-17.76	-19.0	-19.5	-19.76	-20.14	
Cδe	-1.04	-1.16	-1.17	-1.21	-1.23	

TABLE IV CONCLUDED

MAXIMUM LIKELIHOOD ESTIMATION METHOD (CRAMER-RAO BOUNDS IN PARENTHESIS)

[AIRSPEE	D 54.2 m/	sec	
Power Setting	IDLE	FULL = TRIM	FULL = TRIM	
Parameter C _x α	.652 (.0244)	.52 (.0151)	.56 (.0221)	
C _{zo}	339 (.0024)	37 (.0027)	35 (.0025)	
C _{zα}	-5.02 (.0612)	-5.18 (.0672)	-5.27 (.0553)	
C _z q	-8.81 (.705)	-8.65 (.968)	-8.48 (.755)	
C _z δe	335	405	398	
C _m a	722 (.0130)	68 (.0101)	676 (.0101)	
C _m .	-4.0*	-4.0*	-4.0*	
C m q	-12.30 (.301)	-15.34 (.337)	-15.35 (.318)	
C _m õe	98 (.0112)	-1.19 (.0134)	-1.17 (.0127)	

*Parameter Fixed

LINEAR REGRESSION ESTIMATION METHOD

	AIRSPEE	5 = 54.2 m	n/sec	->
Power Setting	IDLE	FULL= TRIM	FULL= TRIM	
Parameter				
C _{x_a}	.62	•54	.54	
C _z o	357	339	336	
ο C _z α	4.49	-4.64	-4.62	
α C z q	-19.54	-18.87	-19.56	
C Czδe	38	45	46	
c c mα	50	482	485	
$C_{\mathbf{m}_{\mathbf{q}}}^{\alpha} + C_{\mathbf{m}_{\mathbf{a}}}^{\alpha}$	17.89	-19.86	-19.44	
C _m δe	985	1.13	-1.11	

Power Setting	Airspeed	^C x _α	C _z o	c _{zα}	C _{zq}	C _m α	C _m q	C _m se
TRIM	31.6 m/sec	3.690	0.223	2.360	9.918	1.689	2.521	1.087
TRIM	31.6 m/sec	2.093	0.179	1.312	7.710	0.932	1.292	0.568
TRIM	40.7 m/sec	1.298	0.306	1.173	6.939	0.896	1.281	0.628
TRIM	40.7 m/sec	1.549	0.260	1.767	8.426	1.531	1.383	0.680
TRIM	54.2 m/sec	1.365	0.267	1.354	7.171	1.109	1.184	0.641
TRIM	54.2 m/sec	3.623	0.406	1.806	10.728	1.300	1.908	0.841
FULL	31.6 m/sec	3.030	0.586	2.077	10.678	1.763	2.347	1.083
FULL	31.6 m/sec	2.022	0.388	0.897	6.536	1.008	1.640	0.831
IDLE	31.6 m/sec	2.399	0.359	1.026	7.063	0.880	1.159	0.512
FULL	40.7 m/sec	1.857	0.391	1.293	7.580	1.146	1.432	0.674
FULL	40.7 m/sec	2.138	0.472	1.450	8.839	1.430	1.865	0.938
IDLE	40.7 m/sec	3.742	0.708	1.219	8.002	1.801	2.447	1.143
IDLE	40.7 m/sec	2.903	0.730	1.297	11.191	1.485	2.197	1.126
IDLE	54.2 m/sec	3.946	0.714	1.049	8.903	1.494	2.072	1.085

.

TABLE V.- THE PERCENT THE CRAMER-RAO BOUND IS OF THE ESTIMATED LONGITUDINAL PARAMETER

29

.

Flight condition	31.6 m/sec Trim power	31.6 m/sec Trim power	40.7 m/sec Trim power	40.7 m/sec Trim power	54.2 m/sec Full power	54.2 m/sec Full power	31.6 m/sec Full power
Extraction method	M.L.	Regression	M.L.	Regression	M.L.	Regression	M.L.
Period	1.80 sec	1.82 sec	1.58 sec	1.64 sec	1.26 sec	1.33 sec	1.94 sec
Time to damp to 1/2 amplitude	.295 sec	.268 sec	.235 sec	.217 sec	.174 sec	.160 sec	.262 sec
Flight condition	31.6 m/sec Full power	31.6 m/sec Idle power	31.6 m/sec Idle power	54.2 m/sec Idle power	54.2 m/sec Idle power		
Extraction method	Regression	M.L.	Regression	M.L.	Regression	-	
Period	1.90 sec	1.94 sec	1.91 sec	1.29 sec	1.36 sec	·	
Time to damp to 1/2 amplitude	.241 sec	.372 sec	.271 sec	.197 sec	.173 sec		

TABLE VI.- PERIODS AND TIMES TO DAMP TO 1/2 AMPLITUDE

20 A 1.09 546 (.0036)	21 A .975 550	22 A 1.102	23 A	24 A	25 A	26	27	28	29	30	31
1.09 546	•975			А	Δ						
546		1.102	(В	В	В	В	В	В
	550		.633	•388	.363	1.03	1.10	.67	.576	•562	•342
	(.0045)	542 (.0030)	589	595 (.0049)	563 (. <u>0042</u>)	563 (.0056)	536 (.0060)	580 (.0034)	58 (.0052)	57 (.0086)	59 (. 0037)
.058 (.0152)	.060 (.0208)	.027 (.0155)	089	041 (.0119)	-:081 (.0105)	.107 (.0172)	.140 (.0148)	.070 (.0108)	.053 (. 0143)	.042 (. 0288)	.054 (.0107)
.150 (.0046)	.148 (.0071)	.160 (.0039)	.147	.130 (.0076)	.096 (.0052)	.152 (.0046)	.185 (.0045)	.166 (.0054)	.127 (.0047)	.145 (.0062)	.133 (.0042)
057 (.00055)	059 (.00054)	058 (.00064)	070		073 (.00090)	061 (.00067)	062 (00071)	074 (.00047)	067 (.00067)	061 (.00089)	078 (.00055)
405 (.0041)	400 (.0036)	438 (.0052)	430			44 (.0041)	439 (.0039)	484 (.0033)	440 (.0040)	391 (.0049)	477 (.0041)
.0787 (.0021)	.100 (.0023)	.128 (.0023)	.090	.047 (.0045)	.079 (.0029)	.132 (.0022)	.137 (.0025)	.108 (.0020)	.101 (.0022)	.125 (.0027)	.078 (.0019)
.00176 (.00041)	.0051 (.00045)	.0082 (.00045)	.0101	.0030 (.0013)	.0055 (.00060)	.0078 (.00041)	.012 (. 0039)	.0077 (.00049)	.0058 (.00041)	.0110 (.000 44)	.0079 (.00043)
0742 (.00067)	081 (.00065)	089 (.00095)	096	(.0013)		101 (.00084)	100 (.00077)			087 (.00085)	114 (.00088)
.038 (.00042)	.038 (.00039)	.035 (.00045)	.039		.042 (.00035)	.033 (.00033)	.038 (.00037)			.031 (.00052)	.051 (.00022)
139 (.0029)	104 (.0030)	124 (.0040)	104	062 (.0015)	071 (.0016)	108 (.0021)	117 (.0020)	058 (.0016)	078 (.0020)	144 (.0028)	031 (.0018)
121 (.0014) 063 (.00034) 011	0082	109 (.0016) 062 (.00032) 012	101 056 012	054 (.00037) 0061	051 (.00032) 0068	066 (.00035) 0015	124 (.0013) 061 (.00036) 0084	057 (.00028) 0011	059 (.000 30) 0029	060 (.000 43) 0134	.0019
•	.150 (.0046) 057 (.00055) 405 (.0041) .0787 (.0021) .00176 (.00041) 0742 (.00041) 0742 (.00067) .038 (.00042) 139 (.0029) 121 (.0014) 063 (.00034) 011	$\begin{array}{c} .150 \\ (.0046) \\ (.0071) \\ .0071 \\ .0071 \\ .0071 \\ .00055 \\ (.00055) \\ (.00054) \\ .00055 \\ .00055 \\ .00051 \\ (.00031) \\ (.0023) \\ .00176 \\ (.00041) \\ (.0023) \\ .0051 \\ (.00045) \\ .0051 \\ (.00045) \\ .0051 \\ (.00051) \\ (.00051) \\ (.00051) \\ (.00051) \\ (.00051) \\ (.00051) \\ .00051 \\ (.00051) \\ (.00051) \\ (.00051) \\ (.00052) \\ .038 \\ (.00039) \\ .121 \\ (.0014) \\ (.0015) \\ .061 \\ (.00037) \\ \end{array}$.150 $.148$ $.160$ $(.0046)$ $(.0071)$ $(.0039)$ 057 059 058 $(.00055)$ $(.00054)$ $(.00064)$ 405 400 438 $(.0041)$ $(.0036)$ $(.0052)$ $.0787$ 100 $.128$ $(.0021)$ $(.0023)$ $(.0023)$ $.00176$ $.0051$ $.0082$ $(.00041)$ $.0051$ $.0082$ $(.00041)$ $.0051$ $.0082$ $(.00045)$ $.0081$ $.0089$ $(.00045)$ $.0081$ $.0089$ $(.00042)$ $(.00039)$ $(.00045)$ $.038$ $.038$ $.035$ $(.0029)$ $(.0030)$ $(.0040)$ $.121$ 117 124 $(.0014)$ $(.0015)$ $(.0016)$ $.063$ $(.0037)$ $(.00032)$ $.011$ 0082 012	.150 $.148$ $.160$ $.147$ $(.0046)$ $(.0071)$ $(.0039)$ $.147$ 057 059 058 070 $(.00055)$ $(.00054)$ $(.00064)$ 430 405 400 438 430 $(.0041)$ $(.0036)$ $(.0052)$ 430 $(.0021)$ $(.0023)$ $(.0023)$ $.090$ $(.0021)$ $(.0051)$ $(.0023)$ $.090$ $(.00176)$ $(.0051)$ $.0082$ $.0101$ $(.00045)$ $(.00045)$ $.0082$ $.0101$ $(.00041)$ $(.0051)$ $.0082$ $.0101$ $(.00042)$ 081 089 096 $(.00042)$ $(.00039)$ $(.00045)$ $.039$ $(.00042)$ $(.0030)$ $(.0045)$ 104 $(.0029)$ $(.0015)$ $(.0016)$ 056 $(.0034)$ $(.0037)$ $(.0032)$ 012 011 0082 012 012	.150 $.148$ $.160$ $.147$ $.130$ $(.0046)$ $(.0071)$ $(.0039)$ $.147$ $.130$ 057 059 058 070 071 $(.00055)$ $(.00054)$ $(.00064)$ 430 404 $(.0041)$ $(.0036)$ 438 430 404 $(.0041)$ $(.0036)$ $.128$ $.090$ $.047$ $(.0021)$ $(.0023)$ $(.0023)$ $.0082$ $.0101$ $.0030$ $.00176$ $.0051$ $.0082$ $.0101$ $.0030$ $(.00041)$ $.0051$ $.0082$ $.0101$ $.0030$ $.00176$ $.0051$ $.0082$ $.0101$ $.0030$ $(.00041)$ $(.0005)$ $.0082$ $.0101$ $.0030$ $.00176$ $.0051$ $.0082$ $.0101$ $.0030$ $(.00042)$ $.0031$ 089 096 095 $(.00042)$ $(.00039)$ $(.00045)$ 104 062 $(.0029)$ $(.0030)$ $(.0040)$ 101 098 $(.0014)$ $(.0015)$ 062 056 054 $(.0034)$ 061 062 054 $(.0037)$ 012 012 012 0061	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.150.148.160.147.130.096.152 $(.0046)$ $(.0071)$ $(.0039)$ $.147$ $.130$ $.0076$ $(.0052)$ $(.0046)$ $(.00055)$ $(.00054)$ $(.0039)$ $(.00064)$ 071 $.073$ 061 $(.00055)$ $(.00054)$ $(.00064)$ 430 404 44 44 $(.0041)$ $(.0036)$ $(.0052)$ 430 404 44 44 $(.0021)$ $(.0023)$ $(.0023)$ $(.0023)$ $(.0023)$ $(.0029)$ $(.0029)$ $.00176$ $.0051$ $.0082$ $.0101$ $.0030$ $.0055$ $.0078$ $(.00041)$ $(.00045)$ $(.00045)$ $(.0013)$ $(.00099)$ $(.00041)$ $.00176$ $.0051$ $.0082$ $.0101$ $.0030$ $.0055$ $.0078$ $(.00041)$ $(.00045)$ $(.00095)$ $(.0013)$ $(.00099)$ $(.00041)$ $.00176$ $.0051$ $.0082$ $.0101$ $.0030$ $.0055$ $.0078$ $(.00041)$ $(.00035)$ $(.00095)$ $(.0013)$ $(.00099)$ $(.00084)$ $.038$ $.038$ $.035$ $.039$ $.044$ $.042$ $.033$ $(.0029)$ $(.0030)$ $(.0040)$ $(.0015)$ $(.0016)$ $(.0021)$ $.139$ 104 124 104 062 $.071$ 108 $(.0014)$ $(.0015)$ $(.0016)$ $(.0013)$ $(.0010)$ $(.0021)$ 061 062 056 054 $-$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE VII.- LATERAL PARAMETER VALUES DETERMINED USING MAXIMUM LIKELIHOOD ESTIMATION (CRAMER-RAO BOUNDS IN PARENTHESIS)

β

TABLE VII.- CONTINUED

.

Case	32	33	34	35	36	37	38	39	40	41	42	43	44
Input		B	c	c	c	C	C	C	C	С	С	C	С
C ^L	.320	•325	.326	.322	.326	.385	.376	.568	.662	.949	1.00	.988	.926
C _{y_β}	58 (.0037)	58 (.0036)	582 (.0037)	583 (.0035)	581 (.0036)	577 (.0033)	577 (.0030)	602 (.0040)	596 (.0032)	592 (.0054)	59 (.0032)	574 (.0026)	53 (.0044)
c _{yp}	.0057 (.0148)	.041 (.0154)	122 (.0102)	092 (.0098)	116 (.0100)	025 (.0110)	011 (.0113)	181 (.0139)	122 (.0119)	070 (.0195)	079 (.0132)	032 (.0104)	.210 (.0141)
Cy _{or}	.104 (.0057)	.121 (.0067)	.091 (.0054)	.111 (.0054)	.095 (.0054)	.114 (.0051)	.121 (.0044)	.134 (.0055)	.125 (.0050)	.178 (.0064)	.155 (.0042)	.139 (.0039)	.240 (.0075)
C _ℓ β	087 (.00088)	081 (.00088)	074 (.00066)	074 (.00072)	072 (.00055)	081 (.00074)	082 (.00091)	069 (.00065)	0705 (.00069)	053 (.00066)	059 (.00042)		064 (.00059)
°°	557 (.0072)	505 (.0072)	461 (.0041)	457 (.0044)	456 (.0034)	49 (.0048)	485 (.0059)	448 (.0045)	442 (.0048)	377 (.0048)	416 (.0048)	445 (.0036)	45 (.0032)
°¢ _r	.047 (.0029)	.059 (.0037)	.076 (.0021)	.080 (.0026)	.071 (.0018)	.062 (.0022)	.078 (.0025)	.111 (.0020)	.093 (.0026)	.161 (.0028)	.124 (.0016)	.113 (.0016)	.128 (.0026)
C _l or	0005 (.00068)	.0045 (.00090)	.0035 (.00049)	.0060 (.00058)	.0023 (.00042)	.0036 (.00055)	.0094 (.00057)	.0083 (.00049)	.0087 (.00062)	.013 (.00065)	.0094 (.00045)	.0071 (.00042)	.0125 (.00057)
C _l sa		117 (.0015)	103 (.00084)	105 (.00092)	102 (.00069)	114 (.0010)	115 (.0013)	102 (.00091)	103 (.0010)	094 (.0010)	099 (.00077)	103 (.00065)	114 (.00079)
^C n _β	.051 (.00030)	.051 (.00027)	.044 (.00022)	.044 (.00023)	.045 (.00019)	.049 (.00023)	.046 (.00027)	.040 (.00030)	.0404 (.00029)	.034 (.00041)	.038 (.00022)	.029 (.00024)	.034 (.00026)
C _n p	028 (.0026)	030 (.0025)	063 (.0014)	053 (.0014)	061 (.0012)	037 (.0016)	055 (.0019)	090 (.0023)	086 (.0023)	095 (.0034)	067 (.0019)	130 (.0020)	
Cnr	101 (.0010)	111` (.0012)	096 (.00069)	093 (.00075)	096 (.00063)	100 (.00064)	101 (.00064)	099 (.00089)	104 (.0010)	125 (.0016)	137 (.00083)		094 (.0011)
C _n or	055 (.00028)	057 (.00032)	052 (.00029)	051 (.00029)	054 (.00026)	054 (.00023)	053 (.00021)	056 (.00032)	056 (.00031)	062 (.00045)	064 (.00026))	05 6 (.00027)
C _n da		.0029 (.00057)	0054 (.00030)	0037 (.00031)			0035 (.00043)	0081 (.00053)	0075 (.00051)	00036 (.00077)	.0069 (.00045)	0064 (.00044)	.0015 (.00045)

TABLE VII.- CONCLUDED

Case	45	56
Input	D	D
C_{L}	•559	.320
c _{y_β}	56 (.0046)	59 (.0032)
с _{ур}	.055 (.0143)	041 (.0084)
C. Υ _{δr}	.134 (.0074)	.131 (.0041)
C _ℓ β	076 (.00095)	078 (.00073)
C _l p	47 (.0058)	47 (.0042)
°¢ r	.080 (.0038)	.071 (.0025)
C _l or	.0114 (.00062)	.0097 (.00048)
C _l Sa	113 (.0012)	108 (.00090)
C _n β	.043 (.00033)	.047 (.00021)
C _n p	072 (.0024)	049 (.0013)
^C n _r	124 (.0015)	118 (.00079)
^C n _{or}	065 (.00038)	058 (.00021)
^C nδa	.00036 (.00052)	0015 (.00028)

Case	20	21	22	23	24	25	26	27	28	29	30	31	32	33
Input	A	A	А	A	А	A	В	В	В	В	В	В	В	В
CL	1.07	.975	1.102	.663	.388	.363	1.03	1.10	.67	.576	.562	.342	•32	.325
с _у в	454	449	453	476	533	534	388	322	352	373	303	437	432	42
σ _β C _y p	.0857	.046	.026	012	.033	.0202	.214.	•349	.0864	.377	.666	.100	.034	.023
C _{y_{δr}}	.153	.110	.132	.119	.125	.127	.138	.137	.109	.0908	.102	.035	.011	.030
C _ℓ β	0506	0518	0513	0608	0645	066	0476	047	0603	0637	054	075	077	075
C _ℓ p	352 .	360	374	378	370	388	365	357	383	408	370	44	45	45
°p C _l r	.0834	.087	.102	.076	.0509	.045	.133	.129	.082	.115	.149	.077	.067	.076
ς C _l δa	0697	0747	080	0873	088	091	0902	087	091	10	094	108	1,06	106
C _l δr	.00062	.00166	.0038	.0049	.0031	.00466	.0093	.0087	.0043	.010	.015	.0095	.0074	.0087
[°] δr C _n β	.0334	.0318	.0336	.036	.0401	.0426	.026	.035	.036	.040	.047	.048	.048	.048
Cnp	0912	087	0916	0708	0485	038	104	0745	0674	080	050	052	051	057
Cnr	103 .	104	 112	098	092	092	125	102	0985	127	110	117	119	123
Γr C _n δa	0081	0077	0072	0062	00309	00068	005	0013	0046	0044	0015	0034	0036	0036
^π δa C _n δr	055	053	057	0512	0488	0477	057	053	050	061	058	058	058	059

1

.

.

.

TABLE VIII.- LATERAL PARAMETER VALUES DETERMINED USING LINEAR REGRESSION ESTIMATION

.

Case	34	35	36	37	38	39	40	41	42	43	44	45	46
Input	C	С	С	С	С	С	С	С	С	С	D	D	D
с _г	.326	.322	.326	.385	.376	.568	.662	•949	1.00	•988	.926	•559	.320
с _{у.}	508	516	509	502	515	500	49	447	452	.464	537	56	552
с С С	056	068	073	028	013	065	061	.085	.012	.081	.047	037	057
c _{y_{δr}}	.066	.073	.069	.082	.087	.124	.118	.155	.159	.144	.14	.082	.060
C _l β	076	075	076	076	077	071	071	057	058	064	060	073	083
C ^β p	 44 [`]	 45	45	45	45	 453	451	412	421	438	44	475	48
°p C _l r	.069	.072	.070	.071	.073	.096	.092	.145	.134	.117	.134	.094	.074
°r C _l δa	106	106	106	108	109	108	108	102	104	105	111	115	114
C _l δr	.0078	.0073	.0075	.0071	.0087	.0064	.0068	.0102	.0085	.0047	.012 [.]	.0075	.0103
^{~δr} C _n β	.046	.046	.047	.046	.045	.042	.042	.034	•035	.029	.0302	.042	.047
C _n p	054	049	0503	'059	062	069	0709	094	086	126	101	078	056
°p C n r	114	116	115	12	118	118	119	138	14	143	111	122	127
"r C _{nδa}	0031	0021	0025	0033	0045	0034	0041	0021	'000046	0068	0045	0028	0029
^{"δa} C _n δr	055	056	056	057	056	058	058	066	067	063	060	065	061

TABLE VIII.- LATERAL PARAMETER VALUES DETERMINED USING LINEAR REGRESSION ESTIMATION (CONCLUDED)

35

ŧ.

.

MODE	с _г	ESTIMATION METHOD	PERIOD(SEC)	TIME TO HALF OR DOUBLE AMPLITUDE(SEC)
Dutch Roll Roll Spiral	1.0 1.0 .6 .35 .35 1.0 1.0 1.0 .6 .35 .35 1.0 1.0 1.0 .6 .6	Maximum Likelihood Linear Regression Maximum Likelihood Linear Regression Maximum Likelihood Linear Regression Maximum Likelihood Linear Regression Maximum Likelihood Linear Regression Maximum Likelihood Linear Regression Maximum Likelihood Linear Regression	4.263 4.370 3.402 3.416 2.598 2.611	1.495 1.600 1.497 1.522 1.337 1.382 .162 .174 .122 .126 .092 .092 .092 43.95* 57.98* 81.27 254.85
	•35 •35	Maximum Likelihood Linear Regression		41.70 46.00

TABLE IX.- CHARACTERISTICS CALCULATED FROM ESTIMATED LATERAL PARAMETERS

*Time to double amplitude

.

· •

36

.

•

. .

.

	Reference 10	Reference 17	Reference 16	fit to the	om least squa e M.L. estima r three C_ va L	ted para-
f	C _L = 1.1	C _L = .25	$C_{L} = .9$	C _L = .3	C _L = .6	C _L = 1.0
.c _y	54	22	303	59	57	55
C _{yp}		047	213	045	005	.04
Cy _{or}	.143	.15		.11	.14	.17
C _l	· 0785	082	122	078	070	058
C _l		47	494	47	45	41
C _l		.07		.07	.095	.13
C _l or		.013		.0058	.007	.0095
С _{<i>l</i>_{ба}}	102	198		11	102	094
C _n β	.057	.035	.0701 .	.048	.042	.033
C _n	•	077	096	05	078	115
C nr		062	115	10	11	125
^C nδr	057	046		053	- 0.58	063
C _n _{δa}		.014		003	004	005

.

TABLE X COMPARISON	OF DERIVATIVE VALUES DETERMINED BY THE MAXIMUM LI	KELTHOOD
METHO	WITH THOSE FROM SELECTED REFERENCES	

• •

:

37

	CASE NUMBER								
PARAMETER	20	21	22	24	25	26	27	28	29
с _у	0.659	0.818	0.554	0.824	0.746	0.995	1.12	0.586	0.897
C y _p	26.21	34.67	57.41	29.02	12.96	16.07	10.57	15.43	26.98
yp Cyr	3.220	4.692	2.507	5.800	3.937	4.305	3,963	3.00	3.890
Cy Sr	3.067	4.798	2.438	5.846	5.417	3.026	2.432	3.25	3.701
^J δr C _l β	0.965	0.915	1.103	1.831	1.233	1.098	1.145	0.635	1.00
[~] β C _ℓ p	1.012	0.900	1.187	1.436	1.045	0.932	0.888	0.682	0.909
°p C _l r	2.668	2.300	1.797	9.574	3.671	1.667	1.825	1.852	2.178
°r C _l or	23.30	8.824	5.488	43.33	10.91	5.256	3.25	6.364	7.069
čδr C _l δa	0.903	0.802	1.067	1.368	1.010	0.832	0.770	0,605	0.827
~δa C _n β	1.105	1.026	1.286	0.773	0.833	1.000	0.974	0.435	0.810
^Π β C_	2.086	2.885	3.226	2.419	2.254	1,944	1.709	2.759	2.564
Cnp C	.1.157	1.282	1.468	1.327	1.053	0.833	1.048	0.780	0.885
	0.540	0.607	0.516	0.685	0.627	0.530	0.590	0.491	0.508
C _n δr C _{nδa}	5.364	7.073	6.500	5.410	5.441	32.000	5.238	34.55	14.48

4

TABLE XI .- THE PERCENT THE CRAMER-RAO BOUND IS OF AN ESTIMATED LATERAL PARAMETER

and the second second

Ľ

TABLE XI.- CONTINUED

.

[<u> </u>		<u> </u>	CASE NUMBE	R	·····	·····	
PARAMETER	30	31	32	33	34	35	36	37	38
C _y	1.590	0.508	0.638	0.621	0.636	0.600	0.620	0.572	0.520
с р р	68.57	19.81	259.65	37.56	8.36	10.65	8.621	44.00	102.7
C yr	5.599	2.808	4.838	4.452	3.69	3.50	3.589	3.573	2.911
C y _{or}	4.276	3.158	5.481	5.537	5.93	4.775	5.579	4.474	3.636
Cl	1.459	0.705	1.011	1.086	0.892	0.973	0.764	0.914	1.110
C p p	1.253	0.860	1.293	1.426	0.889	0.963	0.746	0.980	1.196
C _l r	2.160	2.436	6.170	6.271	2.763	3.250	2.535	3.548	3.205
C _{lor}	4.000	5.443	136	20.0	14.00	9.667	18.261	15.28	6.064
С _{гба}	0.977	0.772	1.181	1.282	0.816	0.876	0.676	0.877	1.130
C _{n_β}	1.677	0.431	0.588	0.529	0.500	0.523	0.422	0.469	0.587
C n p	1.944	5.806	9.286	8.333	2.222	2.642	1.967	4.324	3.455
C _n r	1.439	0.781	0.990	1.081	0.719	0 [.] 806	0.656	0.640	0.634
C _n _{or}	.0.717	0.421	0.509	0.561	0.538	0.549	0.481	0.426	0.396
Cn ða	3.134	21.58	42.14	19.66	5.556	8.378	5.200	27.69	12.29

TABLE XI - CONCLUDED

ł.

\$

	CASE NUMBER								
PARAMETER	39	40	41	42	43	կկ	45	46	
с _у	0.664	0.536	0.912	0.542	0.453	0.830	0.821	0.542	
C _y _p	7.680	9.754	27.86	16.71	32.5	6.714	26.00	20.49	
°p Cyr	3.584	3.972	4.337	3.673	3.164	5.41	9.609	3.733	
C _y or	4.104	4.000	3.596	2.710	2.806	3.125	5.522	3.130	
C _l β	0.942	0.979	1.245	0.712	0.641	0.922	1.250	0.936	
	1.004	1.086	1.273	0.865	0.719	0.800	1.234	0.894	
C _l r	1.802	2.796	1.739	1.290	1.416	2.031	4.750	3.521	
Cl _{or}	5.904	7.126	5.000	4.787	5.915	4.560	5.439	4.949	
C _l Sa	0.892	0.971	1.064	7.778	0.631	0.693	1.062	0.833	
C C n _β	0.750	0.718	1.206	0.579	0.828	0.765	0.767	0:447	
^{-β} C _n p	2.556	2.674	3.579	2.836	1.538	2.603	3.333	2.653	
°p C n r	0.899	0.962	1.280	0.606	0.647	1.170	1.210	0.670	
°r C _{nor}	·0.571	0.554	0.726	0.406	0.403	0.482	0.585	0.362	
C _{n_{oa}}	6.543	6.800	213.89	6.522	6.875	30.000	144.4	18.67	

• •

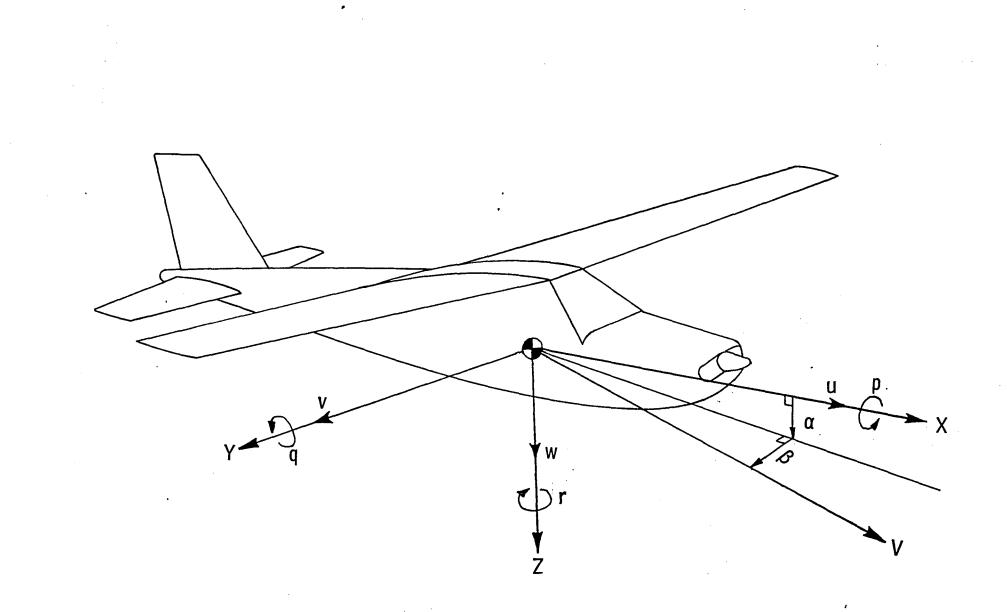


Figure 1.- System of body axes and positive sense of angles, forces, and moments.

2.5

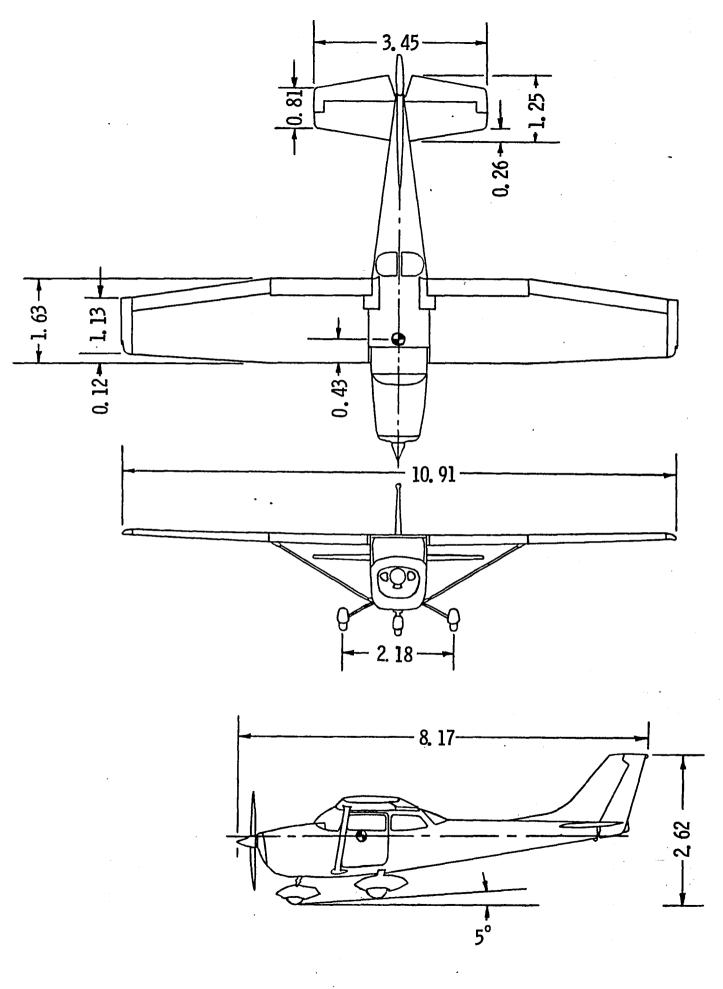
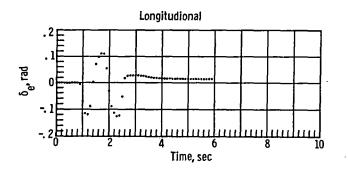
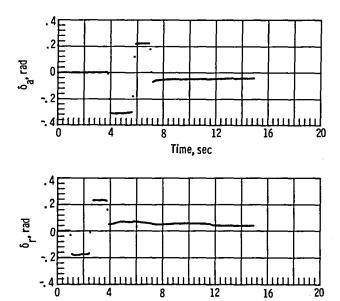
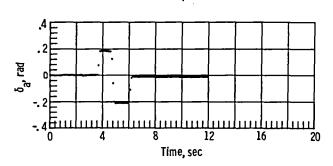
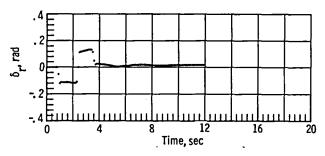
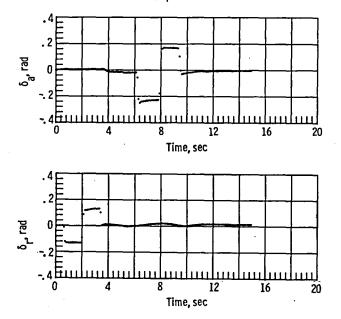



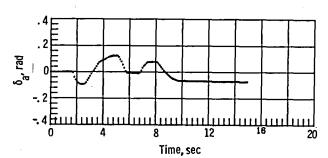
Figure 2.- Three-view drawing of the subject aircraft. All linear dimensions in meters.



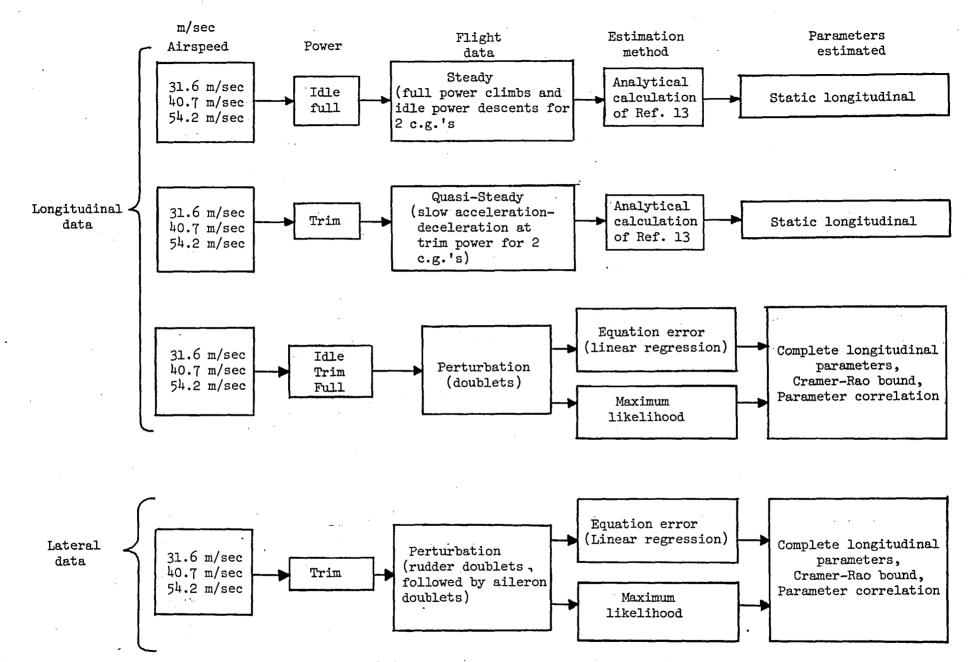

Input A

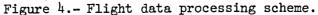

.





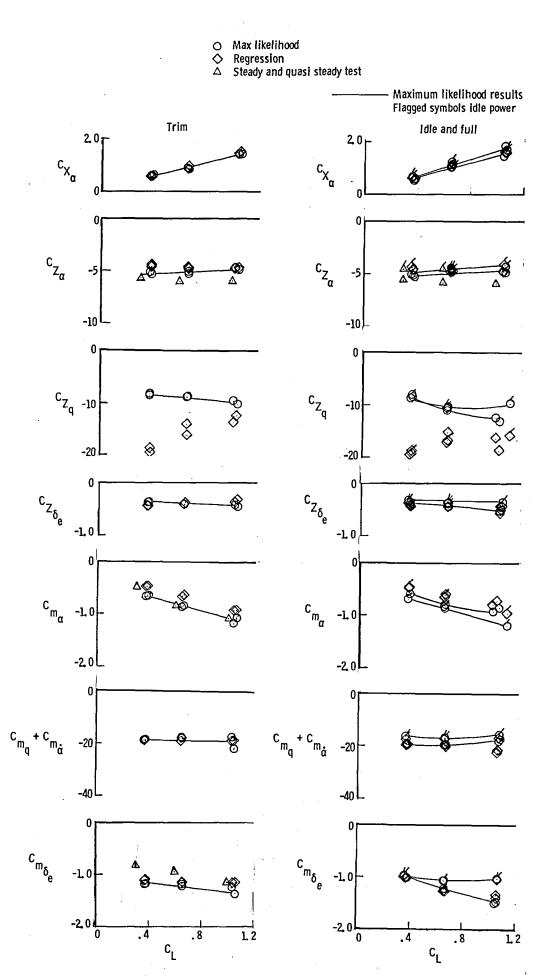
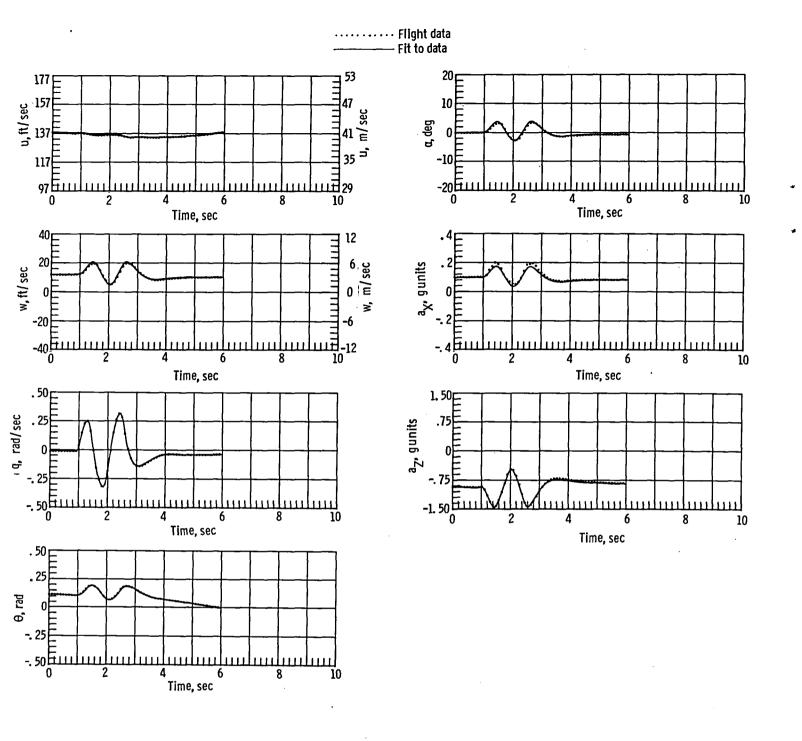
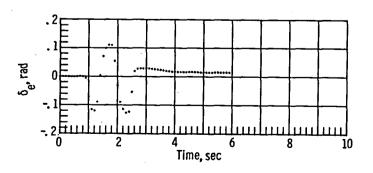
Time, sec

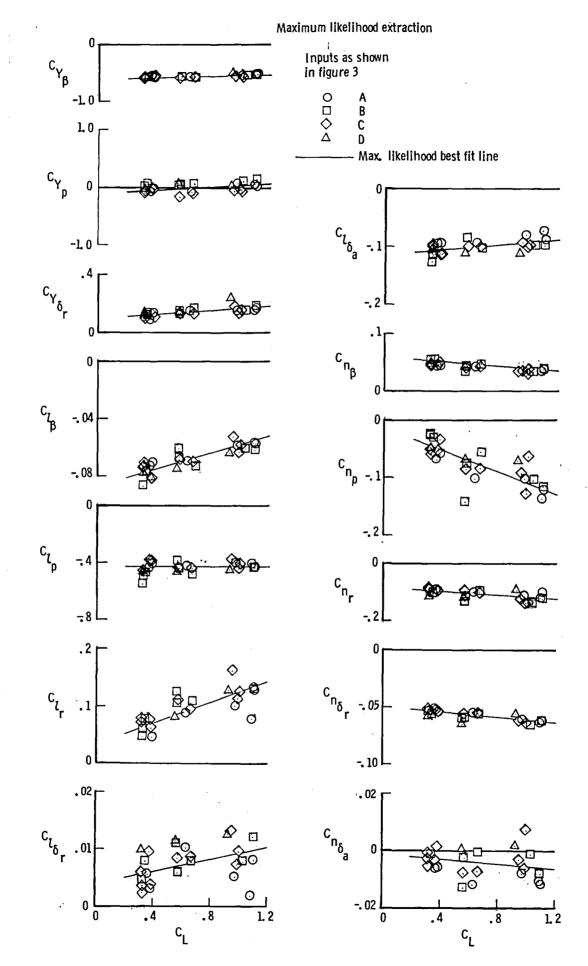




į

Figure 3. - Longitudinal and lateral control inputs.


Figure 5. – Estimated longitudinal parameters versus C_L for three estimation methods.

•

Figure 6. - Typical fits to responses to an elevator input.

)

Figure 7. - Estimated lateral parameters determined using maximum likelihood versus CL.

911.V. 1/14 1.74

i.

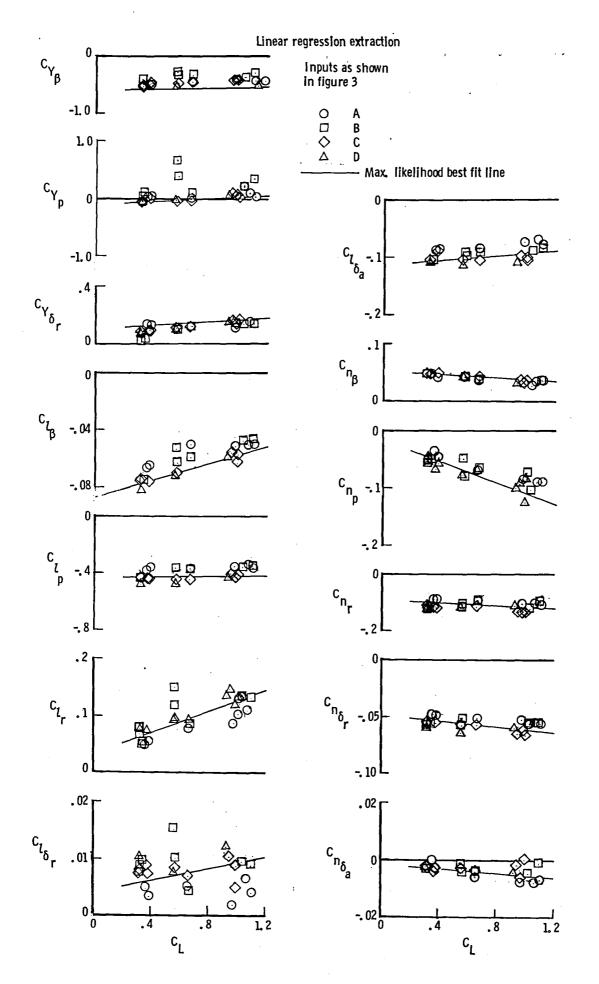


Figure & - Estimated lateral parameters determined using linear regression versus CL.

4

11122/29

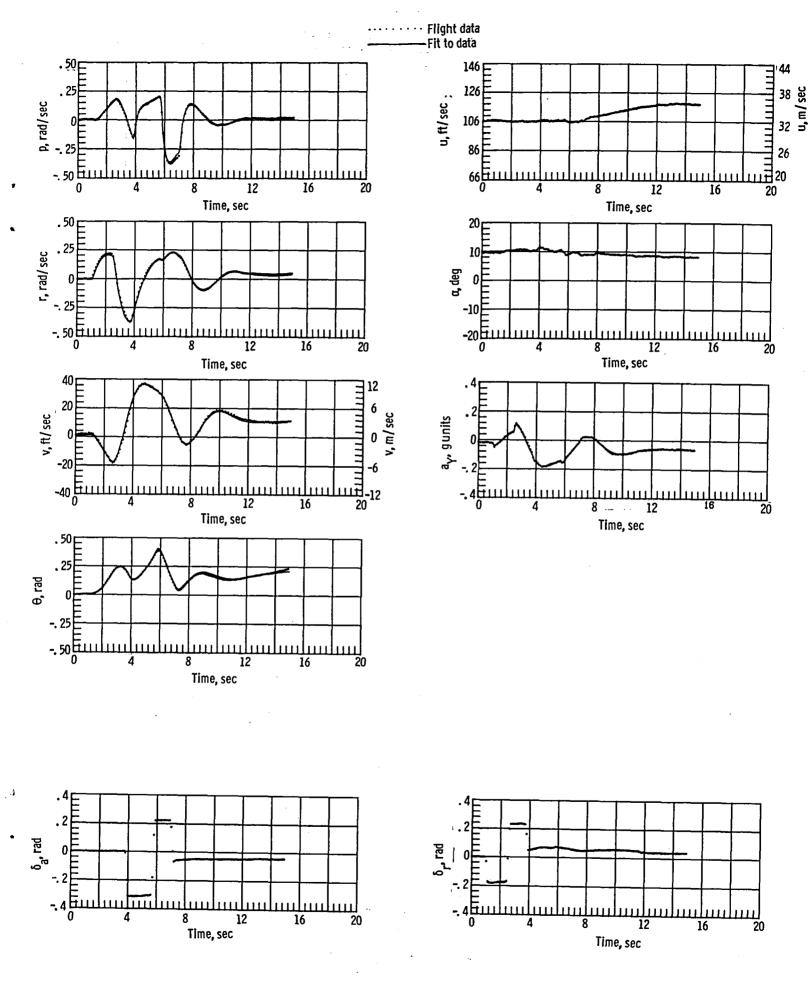


Figure 9. - Typical fits to responses to a rudder-aileron input.

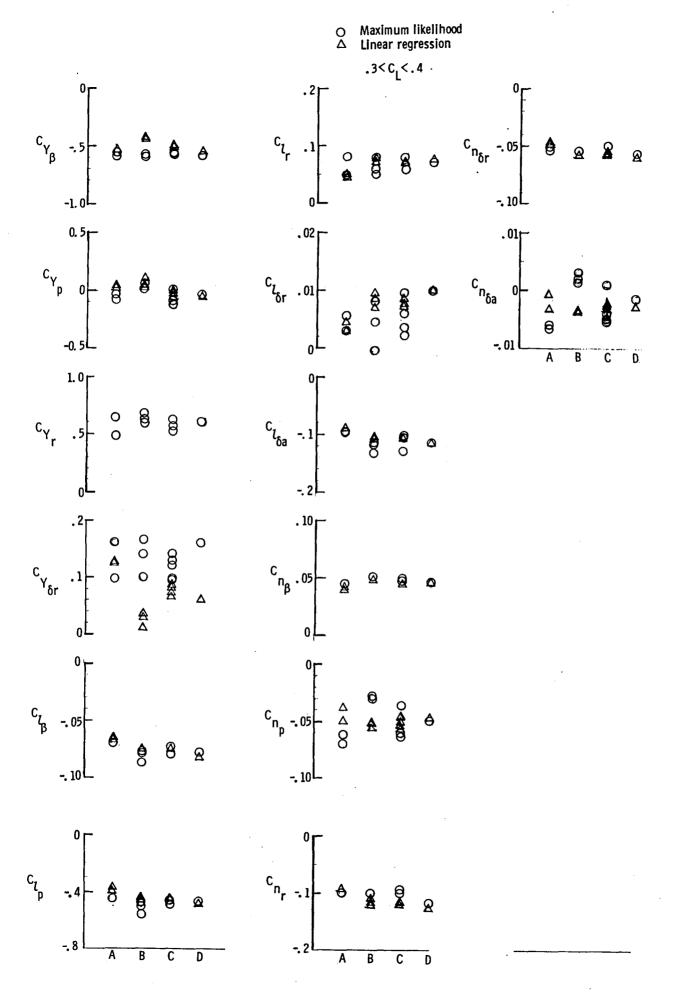


Figure 10. - Effect of control input form on estimated parameter values for the lateral inputs shown in figure 3.

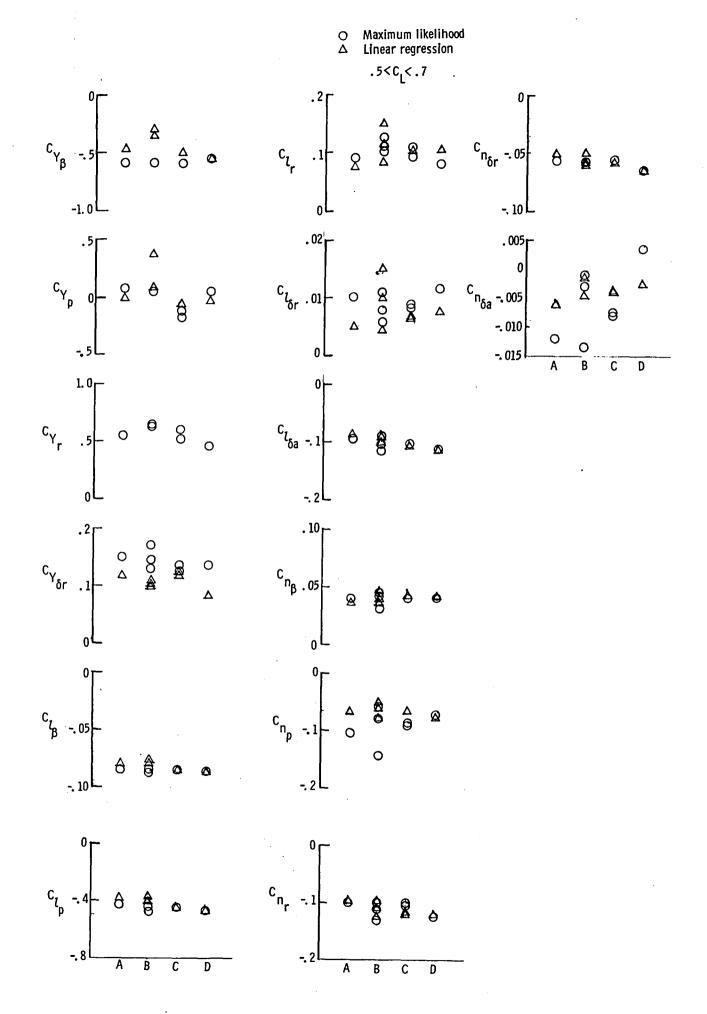


Figure 10. - Continued,

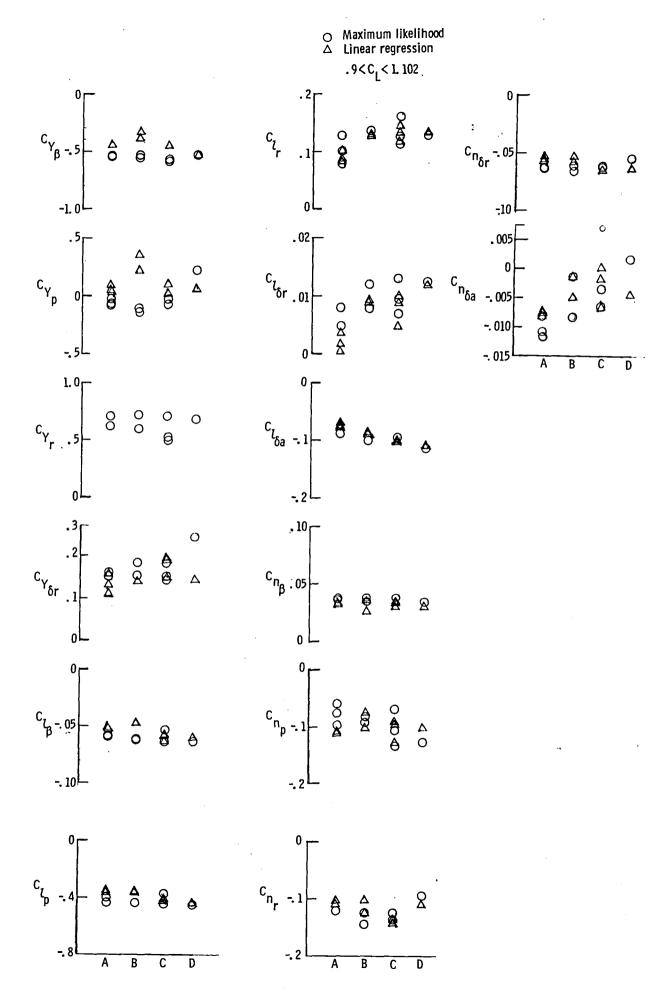


Figure 10. - Concluded.

1. Report No. NASA TM-80163	2. Government Accession	sion No. 3. Recipient's Catalog No.				
4. Title and Subtitle			5. Repor	t Date		
COMPARISON OF STABILITY	AND CONTROL PARAM	TERS FOR		cember 1979		
LIGHT, SINGLE-ENGINE, HI		•		ming Organization Code		
DIFFERENT FLIGHT TEST AN						
7. Author(s)			8. Perfor	ming Organization Report No.		
William T. Suit and Robe	ert L. Cannaday					
	·	```````	10. Work	Unit No.		
9. Performing Organization Name and Addre			505-	-06-63-02		
NASA Langley Research Ce	enter		11. Contra	act or Grant No.		
Hampton, VA 23665						
			10 T			
				of Report and Period Covered		
12, Sponsoring Agency Name and Address			Tech	nnical Memorandum		
National Aeronautics and	Space Administra	cion	14. Army	Project No.		
Washington, DC 20546						
· · · · · · · · · · · · · · · · · · ·						
15. Supplementary Notes						
16. Abstract						
parameters were estimate equation error technique also estimated from clin the lateral excitations rudder and ailerons. Th were used to compute the various aircraft modes of variations in the parame	e (linear regression bing, descending, four input forms ne resulting longi e periods and time of motion to determ	on). Lon and quas were use tudinal a -to-damp	gitudinal sta i-steady-state d involving so nd lateral par to one-half an	tic parameters were e flight data. For ome combination of rameter estimates mplitude of the		
				· · · · •		
			·			
		·	•			
				•		
		40.01.11.1				
17. Key Words (Suggested by Author(s)) Parameter estimation	-	18. Distribut	ion Statement	: · · ·		
Stability and control p	ramotors	Unclas	ssified - Unli	mitad		
Maximum likelihood	arameters	Unclas	ssilled - Unit	litted		
raximum likelinood			Subtoo	t Category 08		
			Subjec	L JALCEULY UU		
	•					
19. Security Classif. (of this report)		·	01 116 0	an Price*		
Unclassified	20. Security Classif. (of this Unclassified	page)	21. No. of Pages 52	22. Price* \$5 • 25		

* For sale by the National Technical Information Service, Springfield, Virginia 22161

• •

L

ł

.

ړ

* .