SIMULATION OF FLUIDIZED BED COAL COMBUSTORS

by Renga Rajan , R. Krishnan, and C. Y. Wen

West Virginia University Morgantown, West Virginia 26506

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Cleveland, Ohio 44135
February 1979
Grant NSG-3134

[^0]
Page
LIST OF TABLES v
LIST OF FIGURES vi
NOMENCLATURE viii
I. INTRODUCTION 1
II. LITERATURE REVIEW 3
III. OBJECTIVES OF PRESENT WORK 10
IV. MODEL ASSUMPTIONS 12
V. MODEL BACKGROUND 13

1. DEVOLATILIZATION AND COMBUSTION OF CHAR 13
2. SULFUR DIOXIDE - LIMESTONE REACTION 18
3. NO_{x} - CHAR REACTION 19
4. ATTRITION AND ENTRAINMENT OF CHAR AND LIMESTONE 21
5. BUBBLE HYDRODYNAMICS 23
6. SOLIDS MIXING 25
7. HEAT TRANSFER 26
8. FREEBOARD REACTIONS 26
VI. MODEL DESCRIPTION 31
9. ELUTRIATION CALCULATIONS• 31
10. MATERIAL AND ENERGY BALANCES 33
VII. RESULTS AND DISCUSSION 51
VIII. SENSITIVITY OF THE MODEL PARAMETERS 70
IX. CONCLUSIONS 7.8
REFERENCES 80
APPENDICES
I. ELUTRIATION PROGRAM 83
II. INPUT TO ELUTRIATION PROGRAM 97
III. OUTPUT OF ELUTRIATION PROGRAM 98
Páge
IV. COMBUSTION PROGRAM 101
V. INPÜT TO COMBUSTION 'PROGRAM $i 32$
VI : OUTPUT 0F COMBUSTIŌN PRÖGRAM 133
ViII . MANUAL FOR THE COMPUUTER PROOGRAMS 136
VIİ. NOMENCLATURE FOR TUE COMPUTEZR PROGRRAMS 155

. LIST OF TABLES

Table No. Page

1. Classification of FBC Models 9
2. Correlations Used in Simulation 45
3. Parameters in the Model 46
4. Dimensions of FBC Examined 52

LIST OF FIGURES

Fig. No. Page

1. Schematic Illustration of the FBC 14
,
2. Rate Controlling Regimes in FBC 17
3. Limestone Reactivity Profiles 20
4. Schematic Illustration of the Gas Phase Model 24
5. Two Modes of Solids Mixing 27
6. Schematic Illustration of the Solid Phase Model 28
7. Logic Diagram for the Computation of Limestone 47 Entrainment
8. Logic Diagram for the Computation of Char 48. Entrainment
9. Logic Diagram for Combustion Ealculations 49
10. Size Distributions of the particles in the FBC 53
11. Simulation of Axial Beḍ Temperature Profile 54
12. Temperature and Carbon Concertration Profiles 56 in the Bed
13. Oxygen Concentration Profille in the Bed 57
14. $\quad \mathrm{CO}, \mathrm{CO}_{2}$ \& Volatiles Concentration Profiles 59 in the Bed
15. Effect of Ca/S Ratio on SO_{2}. Retention 61
16. Effect of Temperature on SO_{2} Retention 62
17. Effect of Fluidizing Velocịty* on SO_{2} Retention 64
18. SO_{2} Concentration Profile in the Combustor , 65
19. Effect of Temperature on NƠ Emission 67
20. NO and Carbon Concentration Profiles in the Bed 68
21. Effect of Solids Mixing on the Bed Temperature 71 Profile

LIST OF FIGURES (CONT'D)

Fig. No. Page
22. Effect of Solids Entrainment on the Temperature 73 Profile
23. Effect of Bed to Tube Heat Transfer Coefficient 74 on the Bed Temperature
24. Effect of Bubble (or Compartment Sizze) on the 76 Bed Temperature Profile
25. Effect of Location of Cooling Tubes on the Bed 77 Temperature Profile
26. Illustration for Regula Falsi Method 143
27. Arrangement of Cooling Tubes 145

NOMENCLATURE

A-	Defined by equation (V.2)
A_{t}	Cross sectional area of the bed, cm^{2}
$\mathrm{a}_{\mathrm{B}, \mathrm{NO}}$	Defined by equation (VI.51)
$\mathrm{a}_{\mathrm{B}, \mathrm{SO}_{2}}$	Defined by equation (VI.49)
$\mathrm{a}_{\mathrm{E}, \mathrm{NO}}$	Defined by equation (VI.47)
${ }^{\text {a }} \mathrm{E}, \mathrm{SO}_{2}$	Defined by equation (VI.45).
a_{HE}	Specific heat transfer area of the tubes, $\mathrm{cm}^{2} / \mathrm{cm}^{3} \mathrm{FBC}$ volume
$\mathrm{a}_{\text {HEN }}$	Specific heat transfer arex. of the walls, $\mathrm{cm}^{2} / \mathrm{cm}^{3}$ FBC volume
${ }^{\text {N }}$ NO	Defined by equation (VI.55)
${ }^{\mathrm{a}} \mathrm{SO}_{2}$	Defined by equation (VI.53)
a_{m}	Defined by equation (VI.12)
a_{x}	Proportion of total abrasion fines in the xth size fraction
a_{1}	Defined by equation. (VI.9).
a_{2}	Defined by equation (VI.15)
a_{3}	Defined by equation (VI, 25)
a_{4}	Defined by equation (VI.11).
a_{2}^{1}	Defined by equation (VI.33)
a_{4}^{1}	Defined by equation (VI. 20)
B	Defined by equation (V.3)
b_{x}	Weight fraction; of bed material in the xth size fraction是.
$\mathrm{C}_{\text {cf }}$	Heat capacity of coal feed, cals/gm ${ }^{\circ}{ }^{\circ} \mathrm{C}$
${ }^{\mathrm{C}} \mathrm{CO}_{2}$	Concentration of carbon' dioxide, gmole/cm ${ }^{3}$

$\widetilde{S}_{\text {NO }}$. Concentration of nitric oxide, gmole/cm ${ }^{3}$
$\mathrm{C}_{\mathrm{S}} \quad$ Heat capacity of solids, cals/gm. ${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {Sf }} \quad$ Heat capacity of feed additives, cals/gm. ${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{SO}_{2}}$. Concentration of sulfur dioxide, gmole $/ \mathrm{cm}^{3}$
$\mathrm{C}_{\text {ch }} \quad$ Carbon content in char, gm carbon/gm char
C_{gm}. Molar heat capacity of gas at constant pressure, cals/gmole ${ }^{\circ} \mathrm{C}$
CH_{4} Wt. fraction CH_{4} in the volatiles
CO Wt. fraction CO in the volatiles :
CO_{2} Wt. fraction CO_{2} in the volatiles
D
Molecular diffusivity for $\mathrm{O}_{2}{ }^{\prime} \mathrm{N}_{2}, \mathrm{~cm}^{2} / \mathrm{sec}$
D_{B}. Bubble diameter, cm
$D_{B O}$. Bubble diameter at the distributor level, cm
$\mathrm{D}_{\mathrm{BM}} \quad$ Fictitious maximum bubble diameter, cm .
D_{t} : Diameter of the $F B C$ as a function of height above the distributor, cm
d_{c}. Diameter of char particle in the bed, cm
$d_{c e}$. Diameter of char particle entrained in the freeboard, cm
$\mathrm{d}_{\ell} \quad$ Diameter of limestone particle in the bed, cm
${ }^{{ }^{2}}{ }_{l e} \quad \quad$ Diameter of limestone particle entrained in the freeboara, cm
d_{0} Diameter of cooling tubes, cm
$\mathrm{d}_{\mathrm{p}} \quad$ Particle diameter, cm :
$d_{x} \quad$ Mean diameter of the particles of x th size fraction, $c m$
$\mathrm{E}_{\mathrm{x}} \quad$ Elutriation rate constant, gm/sec
E_{z}. Dispersion coefficient in the freeboard, $1 /$ sec
BM Molar flow rate of gàs in the bubble phase, gmole/sec
${ }_{F}$ EM Molar flow rate of gas in the emulsion phase, gmole/sec
${ }^{\text {M }}$ M . Total molar flow rate of gas in the combustor, gmole/sec
$F_{\text {; }}$. Solids entrainment rate: at the bed surface, gnis/sec

f_{ℓ}	Fractional conversion of limes
$\mathrm{f}_{\text {SW }}$	Fraction of wake solids thrown into the freeboard
f_{w}	Solids mixing parameter, ratio of wake volume to the bubble volume including the wakes
G	Gas flow rate, gms/sec
g	Acceleration due to gravity, cms/sec ${ }^{2}$
$g_{\text {B }}$	Volatiles burning rate in the bubble phase, gmole/sec
g_{CO}	Carbon monoxide burming rate, gmole/sec
g_{E}	Volatiles burning, rate in the emulsion phase, gmole/sec
H_{2}	Wt. fraction hydrogen in the volatiles
$\mathrm{H}_{2} \mathrm{O}$	Wt. fraction $\mathrm{H}_{2} \mathrm{O}$ in the volatiles
h	Height above the bed surface, cm
K	Attrition rate constant, $1 / \mathrm{cm}$
K_{BE}	cas exchange coefficient, $1 / \mathrm{sec}$
k	Defined by Equation (VI.249, .
$\mathrm{k}_{\mathrm{B}, \mathrm{NO}}$	NNO reduction rate constant in the bubble phase, $\mathrm{cm} / \mathrm{sec}$
${ }^{\mathrm{k}} \mathrm{CO}_{2}$	$\mathrm{C}-\mathrm{CO}_{2}$ chemical reaction rate constant, $\mathrm{cm} / \mathrm{sec}$
$\mathrm{k}_{\mathrm{E} \text {, NO }}$	NO reduction rate constant int the emulsion phase, $\mathrm{cm} / \mathrm{sec}$ \qquad
k_{NO}	NO reduction rate constant, $\mathrm{cm} / \mathrm{sec}$
k_{c}	Overall rate constant for char combustion, $\mathrm{cm} / \mathrm{sec}$
$k_{c, B}$	Overall rate constant fat char combustion in bubble phase, $\mathrm{cm} / \mathrm{sec} \quad \because \quad \because .{ }^{\circ}$
$\mathrm{k}_{\mathrm{c}, \mathrm{E}}$	Overall xate constant for combustion in emulsion phase, cm/sec
k_{cf}	Gas film diffusion rate constant, $\mathrm{gm} / \mathrm{cm}^{2} \cdot \mathrm{sec}$.atm
$\mathrm{k}_{c R}$	Chemical reaction rate cpartant for char combustion, $\mathrm{gm} / \mathrm{cm}^{2}$ sec.atm
k_{VI}	Overall volume reaction tand constant for limestone- SO_{2} reaction, $1 / \mathrm{sec}$.
k_{x}	Abrasion rate constant for the xth size fraction, $1 / \mathrm{sec}$

k^{\prime}	uefined by Equation (VI.32)
$\mathrm{k}^{\wedge} \mathrm{v} 1$	Chemical reaction rate constant for limestone- SO_{2} reaction, $1 / \mathrm{sec}$
M	Weight of particles remaining in the bed after the size reduction from the original size to d_{x}
M_{b}	Weight of bed material, gms
M_{c}	Atomic weight of carbon, gms/gm atom
M_{x}	Weight of bed material in the xth size fraction
N_{A}	Number of limestone particles in the ith compartment in the freeboard
${ }^{\mathrm{Pe}}$	Peclet number, defined by Equation (V.43)
$\mathrm{N}_{\text {Re }}$	Reynolds number, defined by Equation (V.42)
N_{Sc}	Schmidt number, defined by Equation (V.44)
N_{c}	Number of char particles in the ith compartment in the freeboard
N_{d}	Number of orifices in the distributor
P	Average pressure of the FBC, atm
P_{H}	Horizontal pitch distance between the tubes, cms
P_{v}	Vertical pitch distance between the tubes, cms
p	Defined by Equation (V.16)
$\mathrm{P}_{\mathrm{O}_{2}}$	Partial pressure of oxygen, atm
p_{1}	Proportion of fines recycled to the bed from the primary cyclone
p_{2}	Proportion of fines recycled to the bed from the secondary cyclone
$q_{c a l}$	Heat of calcination of limestone, cals/gm
$q_{\text {ch }}$	Heat of combustion of char, cals/gm
$\because v$	Heat of combustion of volatiles (complete burning), csis/gmole
$q_{v, c o}$	```zea\tau of combustion of volatiles (partial burning), cais/gnole```

${ }^{q} 1 \mathrm{x}$	Collection efficiency of the primary cyclones for the xth size fraction
$9_{2 x}$	Collection efficiency of the secondary cyclones for the xth size fraction
R	Gas constant, 1.987 cals/gmole ${ }^{\circ} \mathrm{K}$
$\mathrm{R}_{\mathrm{B}, \mathrm{NO}, \mathrm{c}}$	NO release rate in the bubble phase due to char combustion, gmole/sec
$\mathrm{R}_{\mathrm{B}, \mathrm{NO}, \mathrm{V}}$	NO release rate in the bubble phase due to volatiles combustion, gmole/sec.
$\mathrm{R}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{c}}$	SO_{2} release rate in the bubble phase due to char combustion, gmole/sec
$\mathrm{R}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{~V}}$	SO_{2} release rate in the bubble phase due to volatiles combustion, gmole/sec
${ }^{\mathrm{R}} \mathrm{CO}$	CO released during devolatilization, gmole/sec
$\mathrm{R}_{\mathrm{CO}_{2}}$	CO_{2} released during devolatilization, gmole/sec
$\mathrm{R}_{\mathrm{E}, \mathrm{NO}, \mathrm{c}}$	NO release rate in the emulsion phase due to char combustion, gmole/sec
$\mathrm{R}_{\mathrm{E}, \mathrm{NO}, \mathrm{V}}$	NO release rate in the emulsion phase due to volatiles combustion, gmole/sec
${ }^{\mathrm{R}} \mathrm{ESO}_{2}, \mathrm{C}$	SO_{2} release rate in the emulsion phase due to char combustion, gmole/sec
$\mathrm{R}_{\mathrm{E}, \mathrm{SO}_{2}, \mathrm{~V}}$	SO_{2} release raṭe in the emulsion phase due to volatiles combustion, gmole/sec.
$\mathrm{R}_{\mathrm{e}, \mathrm{p}}$	Particle Reynolds nưmber, definēd ioy equations (A.VII. 22-24)
$\mathrm{R}_{\text {NO }}$	NO release rate, gmole/sec
$\mathrm{R}_{\mathrm{SO}_{2}}$	SO_{2} release rate, gmole/sec
R_{a}	Attrition rate, gms/sec
R_{ch}	Char produced per unit gm of coal fed, gm/gm
R_{v}	Volatiles released, ginole/sec
R_{g}	Gas constant, 82.06 atme $\mathrm{cm}^{\text {a }}$ /gmole ${ }^{\circ} \mathrm{K}$
r_{CO}	Rate of combustion of ${ }^{\text {c }} 0$; gmos $1 \mathrm{e} / \mathrm{cm}^{3}$ see
r_{i}	Char combustion rate in ith compartment, gms/sec

$\mathrm{r}_{\mathrm{c}}{ }^{*}$	Char combustion rate, gmole/sec-particle
S_{g}	Effective specific surface area of limestone, $\mathrm{cm}^{2} / \mathrm{gm}$
T	Temperature in the bed, ${ }^{\circ} \mathrm{K}$
T_{B}	Mean temperature in the boundary layer of the chax particle in the bubble phase, ${ }^{\circ} \mathrm{K}$; also in the freeboard, ${ }^{\circ} \mathrm{K}$
TDH	Transport Disengaging Height, cms
T_{E}	Mean temperature in the boundary layer of the char particle in the emulsion phase, ${ }^{\circ} \mathrm{K}$
Tar	Wt. fraction tar in the volatiles
T_{c}	Char particle temperature, ${ }^{\circ} \mathrm{K}$
$T_{\text {m }}$	Mean temperature in the boundary layer of the char particle, ${ }^{\circ} \mathrm{K}$
$\mathrm{T}_{\text {Sf }}$	Solids feed temperature, ${ }^{\circ} \mathrm{K}$
T w	Cooling water temperature, ${ }^{\circ} \mathrm{K}$
$T_{\text {wall }}$	Average FBC wall temperature, ${ }^{\circ} \mathrm{K}$
t	Temperature ${ }^{\circ}{ }^{\circ} \mathrm{C}$
t_{b}	Burning time of a char particle, sec
U	Bed to tube heat transfer coefficient, cals/sec. $\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$
U_{B}	Bubble velocity, cms/sec
U_{mf}	Minimum fluidization velocity, $\mathrm{cms} / \mathrm{sec}$
U_{0}	Superficial gas velocity or fluidization velocity, cms/sec
\bar{U}_{0}	Average superficial gas velocity in the freeboard, cms/sec
U_{t}	Terminal velocity of the particle, cms/sec
U_{w}	Bed to wall heat transfer coefficient, cals/sec. $\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$
V	Volatiles yield during devolatilization, \% of coal daf
VM	Proximate volatile matter in the coal, \% of coal daf
V_{CO}	CO produced due to volatiles burning, gmole CO/gmole volatile

$\mathrm{V}_{\mathrm{CO}_{2}}$	CO_{2} produced due to volatiles burning, gmole $\mathrm{CO}_{2} /$ gmole volatile
V_{N}	Volatile nitrogen in coal, $\mathrm{gm} / \mathrm{gm}$, dry basis (d.b.)
$\mathrm{v}_{\text {S }}$	Volatile sulfur in coal, gm/gm, dry basis (d.b.)
W_{D}	Solids withdrawal rate, gms/sec
Went	Solids entrainment rate, gms/sec
$W_{f, a}$	Additives feed rate, gms/sec
$W_{f, c}$	Coal feed rate, gms/sec
$W_{f, x}$	Solids feed rate of x th size fraction, $\mathrm{gms} / \mathrm{sec}$
$W_{\text {mix }}$	Solids mixing rate, gms/sec
$W_{\text {net }}$	Net flow rate of solids, gms/sec
W_{x}	Rate of transfer of particles from size fraction x to fraction $x+1$ by size reduction, gms/sec
X	Weight fraction carbon in the bed
$\mathrm{x}_{\mathrm{o}_{2}}$	Oxygen required for partial combustion of volatiles, gmole 0_{2} /gmole volatsle.
$\mathrm{x}_{\mathrm{O}_{2}, \mathrm{c}}$	Oxygen required for conglete combustion of volatiles, gmole O_{2} /mole volatile ,
X_{VM}	Proximate volatile matter content of coal, gms/gm coal (daf)
Y_{B}	Mole fraction O_{2} in the bubble phase
$Y_{B, C O}$	Mole fraction CO_{2} in the bubble phase
$Y_{B, N O}$	Mole fraction NO in the bubble phase
$\mathrm{Y}_{\mathrm{B}, \mathrm{SO}_{2}}$	Mole fraction SO_{2} in the bubble phase
$Y_{\text {CO }}$	Mole fraction CO
$\mathrm{Y}_{\mathrm{CO}_{2}}$	Mole fraction CO_{2}
Y_{E}	Mole fraction O_{2} in the emulsion phase
$Y_{E, C O}$	Mole fraction $C 0$ in the emulsion phase
$\mathrm{Y}_{\mathrm{E}, \mathrm{CO}_{2}}$	Mole fraction CO_{2} in the enulsion phase

$Y_{E, N O}$	Mole fraction $N O$ in the emulsion phase
$Y_{E, S O}$	Mole fraction SO_{2} in the emulsion phase
$\mathrm{Y}_{\mathrm{E}, \mathrm{V}}$	Mole fraction volatiles in the emulsion phase
$\mathrm{Y}_{\mathrm{H}_{2} \mathrm{O}}$	Mole fraction $\mathrm{H}_{2} \mathrm{O}$
Y_{O}	Mole fraction O_{2}
Y_{NO}	Mole fraction NO
$\mathrm{Y}_{\mathrm{SO}_{2}}$	Mole fraction SO_{2}
Y_{V}	Mole fraction volatiles
Z	Height above the distributor, cms; ΔZ compartment size, cms

Greek Symbols

ε_{B}	Bubble fraction
ε_{c}	Cloud fraction including bubble
ε_{m}	Emissivity of the char particle
$\varepsilon_{\mathrm{mf}}$	Void fraction at minimum fluidization
$\varepsilon_{\text {tube }}$	Volume fraction of tubes
θ	Time, sec
λ	Thermal conductivity of the gas, cals/sec. $\mathrm{cm}^{\circ} \mathrm{C}$
λ_{ℓ}	Reactivity of limestone
μ	Viscosity of gas, gm/cm.sec
II	3.14159265
ρ_{b}	Density of the bed materials, gms $/ \mathrm{cm}^{3}$
$\rho_{c, c h}$	Density of carbon in char, gms/ cm^{3}
$\rho_{\text {ch }}$	Density of char, gms/cm
ρ_{g}	Density of gas, gms/cm ${ }^{3}$
ρ_{s}	Density of solids, $\mathrm{gms} / \mathrm{cm}^{3}$
σ	Stefan-Boltzman constant, 1.36×10^{-12}, cals/sec. $\mathrm{cm}^{2} \cdot{ }^{\circ} \mathrm{K}{ }^{4}$
ϕ	Mechanism factor of char combustion

ϕ_{B}	Mechanism factor in the freeboard
ϕ_{E}	Mechanism factor in the edilision phase

Subscript
$x \quad$ x̣th size fraction
i ith compartment

Abbreviation

d,b, dry basis
daf dry ash free basis

I. INTRODUCTION

Among the various ways of direct burning of coal, fluidized bed combustion appears to be the most attractive, both from an economic and environmental standpoint. By carrying out combustion in a fluidized bed combustor (FBC) operating at relatively low temperature $\left(750^{\circ} \mathrm{C}-950^{\circ} \mathrm{C} ; 1382^{\circ} \mathrm{F}-1742^{\circ} \mathrm{F}\right)$, both SO_{2} and NO_{x} emissions can be maintained at environmentally acceptable levels. In addition, the FBC is well suited for burning low grade, high sulfur coal.

Fluidized bed combustion involves the burning of coal particles in a bed containing limestone/dolomite additives and coal ash. Under normal operating conditions the coal particles constitute less than 4 percent of the total solids in the bed. The limestone/dolomite is added to absorb the sulfur dioxide released from coal during combustion. Sulfur dioxide reacts with calcined limestone/dolomite according to the following reaction:

$$
\mathrm{CaO}+\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{CaSO}_{4}
$$

${ }^{N}{ }_{x}$ emission is kept low due to low combustion temperature and by the NO_{x} reduction reaction with carbon present in the fluidized bed. The low temperature operation of the fluidized bed offers little, if any, clinker formation of the ash. The heat of combustion is removed by steam coils immersed in the bed. The steam coils also control the temperature of the bed with minimum hinderance to the solids mixing and circulation in the bed. The high heat transfer coefficients between the bed material and the heat exchange surfaces [250 to $420 \mathrm{~W} / \mathrm{m}^{2}$ ${ }^{\circ} \mathrm{K}$ (45 to $75 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$)] and the large heat generation rates
[2.0. to $5.0 \mathrm{MW} / \mathrm{m}^{3}\left(0.193\right.$ to $\left.0.483 \ddot{\mathrm{x}} 10^{6} \mathrm{Btu} / \mathrm{hr} \mathrm{ft} \mathrm{T}^{3}\right)$] in FBC result in a smaller boiler volume for a given duty than the conventional pulverized coal burning boilers.

Pressurized fluidized bed combustion is also being investigated because of its potential for power generation in gas turbines combined with conventional steam turbines. In pressurized $F B C$, the combustion is carried out at elevated pressures, generally in the range of 600 to 1000 kPa (6 to 10 atm abs.). The hot, high pressure flue gas is cleaned to remove the particulates and expanded through a sas turbine to generate additional electricity.

Although the FBC offers semeral advantages, it is not free from shortcomings. Problem axeas include erosion of immersed heat-transfer coils, continuous feeding of solids into the bed, agglomexation of solids, formation of stagnant zones on the , distributor plate, carryover of unburnt char particles in the flue gas, high particulate emissions., and in the case of pressurized fluid bed combustor (PEBC), the difficulty in hot gas clean-up. The extent of these problems has to be evaluated and resolved bedore any large-scale commercialization is ventured.

II. LITERATURE REVIEN

A considerable amount of investigation on the performance of fluidized bed combustion system has been under way particularly in the U.S. and U.K. (Argonne National Laboratory (ANL), Combustion Power Company (CPC), Pope, Evans and Robbins (PER), Westinghouse Research Laboratories (WRL), Exxon Research and Engineering Company (ER\&E), Morgantown Energy Technology Center (METC), National Coal Board (NCB), British Coal Utilization Research Association (BCURA). Most of the experimental tests have concentrated on feasibility evaluation of FBC. As a result of these studies, a considerable amount of pilot plant data related to $F B C$ performance has become available in recent years.

A systematic, theoretical examination of these data has been initiated, only recently, and attempts are presently being made to develop theoretical models for predicting the performance of FBC under various operating conditions. A review of the modeling efforts in fluidized bed combustion has been presented by Caretto (1977). The fundamental and engineering aspects of fluidized bed coal combustion have been discussed by Beer (1977). Almost all of the.$F B C$ models proposed to date are based on the two phase theory of fluidization (Davidson and Harrison (1963)). According to this theory, the fluidized bed is assumed to consist of two phase, viz., a continuous, dense particulate phase (emulsion phase) and a discontinuous, lean gas phase (bubble phase) with exchange of gas between the bubble phase and the emulsion phase. The gas flow rate through the emulsion phase is assumed to be that corresponding to minimum fluidization, and that in excess of the minimum fluidization velocity goes through the bubble phase in the form of bubbles. However, as pointed out by Horio and Wen (1977), Rowe (1978), Catipovic et al. (1978), this assumption may be an
oversimplification for particles smaller than $50 . \mu \mathrm{m}$ and larger than 2000. $\mu \mathrm{m}$. Experiments with fine powders (d_{p} < $50 . \mu \mathrm{m}$) conducted by Rowe (1978) show that the dense phase voidage changes with gas velocity, and that as much as 30 percent of the gas flow may occur interstitially. Catipovic, et al. (1978) have pointed out qualitatively the difference in the fluidization of larger particles.

Avedesian and Davidson (1973) developed a combustion model based on the two phase theory. Their objective was to study the mechanism of combustion of carbon particles in a fluidized bed of ash particles at $1173^{\circ} \mathrm{K}$. The combustion was assumed to be controlled by two diffusional resistances, namely:
(i) Interphase transfer of oxygen from bubbles of air to the surrouding ash particles.
(ii) Diffusion of oxygen through the ash phase towards each burning carbon particle.

Campbe11 and Davidson (1975) later modified the Avedesian and Davidson model to include the presence of carbon dioxide in the particulate phase and applied the model to predict the carbon particle size distribution in a continuously operated fluidized bed combustor.

Baron, et al. (1977) proposed a model for the FBC based on the two phase theory for predicting the combustion efficiency and carbon concentration in the bed. In their model, they took into account the carbon loss due to elutriation and attrition of bed particles, employing the correlations developed by Merrick and Highley (1974). Borghi, et al. (1977) have proposed a mathematical model for the combustion of coal particles in fluidized bed which takes into account the evolution and burning of volatiles in addition to the combusion of
residual char. Their conclusions indicate that (i) the devolatilization times for coal particles are commensurable with the solids mixing time and (ii) the homogeneous release of volatiles in the bed, as opposed to instantaneous devolatilization is close to reality. Gibbs (1975) derived a mechanistic model for the combustion of coal in a fluidized bed capable of predicting the combustion efficiency, carbon hold-up and spatial distribution of oxygen in the bed. The carbon loss due to elutriation, attrition and splashing of coal from bursting of bubbles on the bed surface was taken into account in the model formulation. The burning rate of coal was assumed to be diffusion controlled. The carbon loss predicted by the model was strongly dependent on the mean bubble diameter which is an adjustable parameter.

Gordon and Amundson (1976) examined the influence of several operating variables on the steady state performance of a FBC. Based on the model calculations, they found that multiple steady state solutions exist in the typical range of operating variables. In particular, it was noted that one of the key factors in determining the state of the bed, as well as the multiplicity of the system was the gas interchange coefficient between the bubble phase and emulsion phase.

Horio and Wen (1978) have proposed a model based on the population balance technique to calculate the char elutriation loss, particle size distribution in the bed and size distribution of the elutriated char.

In the FBC models described so far, they have at least one of the following deficiencies:
(1) The bubble diameter was taken as a constant and an adjustable parameter. In reality, bubbles coalesce as they ascend through the bed. The bubble diameter changes with the height above the distribuțor. Bubble size is also affected by the imnersed cooling coils. (Baron, et al. 1977; Gibbs, 1975).
(2) Devolatilization of coal is not considered. (Horio and Wen, 1978; Avedesian and Davidson, 1973; Campbell and Davidson, 1975; Baron, et al. 1977; Gibbs, 1975; Gordon and Amundson, 1976).
(3) The mechanism of carbon combustion was assumed to be diffusion controlled. This is true only for large particles at high temperatures. (Avedesian and Davidson, 1973; Campbe11 and Davidson, 1975; Borghi, et a1. 1977; Baron, et al. 1977).
(4) Solids mixing in the emulsion phase was assumed to be uniform. Hence the bed was assumed to be under isothermal conditions. This is not true because the experimental data show a non-uniform temperature profile across the bed. (Avedesian and Davidson, 1973; Borghi, et a1. 1977; Baron, et al. 1977; Horio and Wen, 1977).

Bethell, et al. (1973) presented a model for sulfur dioxide retention by limestone in a fluidized bed combustor. Horio and Wen (1975) have also formulated a model for the removal of sulfur dioxide by limestone in a FBC. In their model, the hydrodynamics of the fluidizing gas is based on the bubble assemblage model developed by Kato and Wen (1975). Chen and Saxena (1977) used a three phase bubbling bed model (bubble phase, cloud-wake phase and emulsion phase) for predicting the sulfur
retention efficiency in a FBC. The model predictions were compared with some experimental data. However, a limitation of the model is that it assumes isothermal conditions in the bed. The models described above for SO_{2} absorption do not take into account the char and volatiles combustion in the bed. (Bethell, et al. 1973; Horio and Wen, 1975; Chen and Saxema, 1977).

Recently, Horio, et al. (1977). presented a model for fluidized bed coal combustion that can estimate the performance of a $F B C$ under fuel rich operation and also predict the NO_{x} emissions from the combustor. This model does not deal with the NO_{x} release from volatiles and char during the combustion. Char particle temperature is assumed as a constant, $100^{\circ} \mathrm{C}$ above the bed temperature: . Char particle temperature is actually dependent on the oxygen concentration and is different in the bubble and emulsion phases. Also, the char temperature affects the carbon concentration in the bed which in turn affects the NO_{x} reduction rate. Pexira and Beer (1978) have proposed a mechanism for the formation of NO (nitric oxide) from fuel nitrogen "and the subsequent reduction of NO by volatiles. However, they have nót dealt with the reduction of No by char subsequent to the completion of devolatilization in the bed which has been established by other workers (0guma, et al., 1977).

A general methematical model for FBC has been developed (Rengaryjan. Et al. 1977, Rajan, et al. 1978) employing the modified version of the bubble assemblage model (Kato and Wer, 1969, Mori and Wen, 1975). The nocel includes the devolatilization of coal, char combustion and SO_{2} absorption. Predictions of the combustion efficiency, axial temperature profile and sulfur retention efficiency in the bed were compared with experimental data. A deficiency of the model is that the elutriation of
char and limestone is not considered. Experimental values areiused for elutriation losses in the calculation.
$\because \quad$ All of the models proposed so far do not take into account the char combustion, SO_{2} absorption and NO_{x} reduction in the freeboard, which may be substantial. A classification of the fluidized bed combustion models discussed above is presented in Table I.

TABLE 1. CLASSIFICATION OF FBC MODELS

Model Description
 Two phase bubbling bed model

Investigators
Avedesian and
Davidson (1973)
Gibbs (1975)
Campbell and
Davidson (1975)
Gordon and

Gas Flow Pattern

| Bubble
 Phase | Emulsion
 Phase | Solids mixing
 in the bed |
| :--- | :--- | :--- |\quad Remarks

a) Plug Flow b) PIug Flow	Plug Flow Complete Mixing
c) Complete	
Mixing	Complete Mixing

Complete	Complete mixing mixing	Complete mixing within each
within	within	compartment
each com-	each com-	with backflow
partment	partment	of solids from one compartment
		to another

Plug Flow Plug Flow Complete mixing

1) Bubble diameter is assumed to be uniform throughout the bed in most cases and is an adjustable parameter
2) Cloud and wake are combined in the emulsion phase.
3) No reactions in the bubble phase.
4) Char combustion is assumed to be diffusion controlled at all temperatures.
5) Bubbles grow along the bed height.
6) The backflow solid mixing is considered using an adjustable parameter.
7) Cloud is combined with the bubble phase.
8) Reactions take place in the bubble phase.
9) Cloud-wake is treated as a separate phase and is in plug flow
10) Isothermal condition throughout the bed for solids, char and gas.
11) Bubble growth is considered.
12) Combustion occurs in cloud-wake and emulsion phases only.
III. OBJECTIVES OF PRESENT WORK

Most of the modeling work performed to date has concentrated on a few specific aspects of the fluid bed combustion process: The many deficiencies of the previous work have been pointed out earlier. It is the aim of the present work to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements which were either partially considered or not considered at all in the previous work.
(I) Devolatilization of coal and the subsequent combustion of volatiles and residual char.
(2) Sulfur dioxide capture by limestone.
(3) NO_{x} release and reduction of NO_{x} by char.
(4) Attrition and elutriation of char and limestone:
(5) Bubble hydrodynamics.
(6) Solids mixing.
(7) Heat transfer between gas and solid, and solids and heat exchange surfaces.
(8) Freeboard reactions.

This model will be able to simulate most of the important performance characteristics, viz.,
(1) Combustion efficiency of゙ coal.
(2) Sulfur dioxide retention efficiency.
(3) SO_{2} and NO_{x} emissions.
(4) Particulates emissioni..
(5) Attrition and eiutriation of char and limestone:
(6) Size distribution of char and limestone in the bed and in the elutriated: materian.
(7) Axial bed temperature profile.
(8) $\mathrm{O}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$ and NO_{x} concentration profiles.
(9) Pressure drop across the distributor and the bed.

The present work will aid in the understanding of the performance of FBC under a range of operating conditions. For example, $\mathrm{SO}_{2}, \mathrm{NO}_{\mathrm{x}}$ and particulates emissions from the FBC can be estimated for a range of operating conditions. The optimum operating temperature and gas residence time in the bed, which would give maximum combustion efficiency and lower SO_{2} and NO_{x} emissions, can be estimated. The tenperature profile simulated based on the model will help identify the proper location of cooling coils in the bed to avoid steep temperature gradients for design of coils configuration and packing density.

The uniqueness of the proposed model is its capability to account for (i) the freeboard reactions which may be substantial; (ii) the solids mixing within the bed; (iii) the devolatilization of coal; (iv) SO_{2} and NO_{x} release during the combustion of char and volatiles and the simultaneous absorption of SO_{2} by limestone and reduction of NO_{x} by char, and (v) the entrainment of char and limestone from the bed.

IV. MODEL ASSUMPTIONS

The foliowing assumptions are made in constructing the FBC model:

1. Single phase backflow cell model is used for solids mixing calculation.
2. Two'phase bubble assemblage model is adopted for gas phase material balinces.
3. Solids exchange between the bubble phase and emulsion phase is assumed to be rapid.
4. Bubble size is a function of bed diameter and height above the distributor. When cooling tubes are present, bubble size in the tubes region of the bed is based on the horizontal pitch distance between the tubes.
5. Bubbles and clouds are both combined into the bubble phase. The gas interchange coefficient between the bubble and emulsion phases is a function of the bubble size and, is distributed axially.
6. The gas flow rate through the emulsion phase corresponds to minimum fluidization velocity.
7. Devolatilization of coal iss neither instantaneous nor uniform in the bed. It is assumed that volatiles release rate is proportional to the solids mixing rate.
8. Volatiles are assumed to be released in the emulsion phase.
9. Volatile nitrogen and sulfur in coal increase as a function of bed remperature. (Fine, et al. 1974).
10. Sulfur and nitrogen in the residual char are assumed to be released as SO_{2} and NO_{x} during the combustion of char.

V. MODEL BACKGROUND

The various physico-chemical processes occurring in the FBC are shown in Fig. l. The basic elements of the overall combustion process are described as follows:

1. Devolatilization and Combustion of Char:

Coal particle fed to the hot combustor is rapidly heated while undergoing devolatilization (or pyrolysis). The volatile matter of coal is evolved into the particulate phase or emulsion phase of the bed. The bed temperature and the proximate volatile matter content of coal determine the yield of volatiles. Volatile yield is estimated by the following empirical correlations (Gregory and Littlejohn, 1965):

$$
\begin{align*}
& V=V M-A-B \tag{V.1}\\
& \dot{A}=\exp (26.41-3.961 \ln t+0.0115 V M) \tag{V.2}\\
& B=0.2(V M-10.9) \tag{V.3}
\end{align*}
$$

where $V=$ yield of volatiles, $\frac{\%}{\%}$ of coal, daf $\mathrm{VM}=$ proximate volatile matter in coal, daf \%
$t=$ devolatilization temperature, ${ }^{\circ} \mathrm{C}$
The compositions of the products of devolatilization in weight fractions axe estimated from the correlations developed using the data of Loison and Chauvin (1964):

$$
\begin{align*}
\mathrm{CH}_{4} & =0.201-0.469 \mathrm{x}_{\mathrm{VM}}^{\prime}+0.241 \mathrm{x}_{\mathrm{VM}}^{2} \tag{V.4}\\
\mathrm{H}_{2} & =0.157-0.868 \mathrm{x}_{\mathrm{VM}}^{\prime}+1.388 \mathrm{x}_{\mathrm{VM}}^{2} . \tag{V.5}\\
\mathrm{CO}_{2} & =0.135-0.900 \mathrm{x}_{\mathrm{VM}}^{\prime}+1.906 \mathrm{x}_{\mathrm{VM}}^{2} \tag{V.6}\\
\mathrm{CO} & =0.428-2.653 \mathrm{x}_{\mathrm{VM}^{\prime}}^{\prime}+4.845 \mathrm{x}_{\mathrm{VM}}^{2} \tag{V.7}\\
\mathrm{H}_{2} \mathrm{O} & =0.409-2.389 \mathrm{x}_{\mathrm{VM}}^{\prime}+4.554 \mathrm{x}_{\mathrm{VM}}^{2} \tag{V.8}\\
\operatorname{Tar} & =-0.325+7.279 \mathrm{x}_{\mathrm{VM}}^{\prime}-12.880 \mathrm{x}_{\mathrm{VM}}^{2} \tag{V.9}
\end{align*}
$$

Fig. I Schematic IIustration of the FBC

Volatile nitrogen released during devolatilization is expressed as (Fine, et al. 1974):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{N}}=0.001 \mathrm{~T}-0.6 \mathrm{gm} / \mathrm{gm} \mathrm{coal}, \text { (d.b.) } \tag{V.10}
\end{equation*}
$$

and volatile sulfur is expressed as:

$$
\begin{equation*}
V_{S}=0.001 \mathrm{~T}-0.6 \mathrm{gm} / \mathrm{gm} \operatorname{coal}(\mathrm{~d} . \mathrm{b} .) \tag{V.11}
\end{equation*}
$$

Despite the extensive research in the area of coal devolatilization, accurate rate expressions describing the rate of devolatilization of coal ure unavailable to date. However, it is estimated that the time needed for the devolatilization of a 1 mm coal particle is $0.5-1 \mathrm{sec}$ under the conditions existing in the FBC (Beer, 1977). Solids mixing time for a 2 ft . combustor with a bed height of 4 ft . and a superficial gas velocity of $4 \mathrm{ft} /$ sec lies in the range of 2 to 10 secs depending on whether solids mixing is good or poor. Hence it is more likely that a major portion of the volatiles will be released near the coal feed point. In the model, f_{w}, the solid mixing coefficient will represent the amount of volatiles released uniformly and ($1-f_{W}$) will represent the proportion of volatiles released near the coal feed point.

At temperatures above $650^{\circ} \mathrm{C}$ and in an oxidizing atmosphere the rate of burning of volatiles is fast compared to the time required for volatiles evolution. However, the combustion of volatiles released in the emulsion phase is controlled by the availability of oxygen in the emulsion phase. Since the oxygen concentration in the emulsion phase is low, the voiatile gases in the emulsion phase first tend to form CO by partial combustion; whereas, the volatiles exchanged to the bubble phase burns completely to CO_{2} because of excess oxygen present in the bubble phase.

The rate of buming of CO is expressed as (Hottel, et al 1965)
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}, \mathrm{r}_{\mathrm{CO}}=3 \times 10^{10}\left(\frac{\partial}{\mathrm{R}_{\mathrm{g}}}\right)^{1.8} \exp (-1600 \mathrm{C} / \mathrm{RT}) \mathrm{Y}_{\mathrm{H}_{2} \mathrm{O}}^{0.5} \quad \chi$
$Y_{C O} \frac{17.5 Y_{0}}{1+24.7 Y_{0}} \quad$ gmole $/ \mathrm{m}^{3} \sec$

Residual char burns according to the reaction:

$$
\begin{equation*}
\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow\left(2-\frac{2}{\phi}\right) \mathrm{CO}+\left(\frac{2}{\phi}-1\right) \mathrm{CO}_{2} \tag{V.13}
\end{equation*}
$$

where ϕ is a mechanism factor, which takes the value 1 when CO_{2} is transported away from the char particle and 2 when C 0 is transported away (Field, et al. 1967) during char combustion. The factor, ϕ, is a function of char particle diameter and temperature. For small particles, CO formed during char combustion diffuses out fast because of rapid mass transfer and burns to form CO_{2} outside the particle; whereas, for large particles, because of slower mass transfer, CO burns within the particle and CO_{2} is transported out. ϕ is expressed as:

$$
\begin{align*}
& \phi=\frac{2 p+2}{p+2} \quad \text { for } d_{c} \leqslant 0.005 \mathrm{~cm} \tag{V.14}\\
& \phi=\frac{(2 p+2)-p\left(d_{c}-0.005\right) / 0.095}{p+2} \quad \text { for } 0.005<d_{c}<0.1, \text { cm } \quad(V .15) \tag{V.15}
\end{align*}
$$

where p is the ratio of carbon monoxide to carbon dioxide formed during char combustion and is given by (Arthur, 1951).

$$
\begin{equation*}
\mathrm{p}=\mathrm{CO} / \mathrm{CO}_{2}=2500 \exp (-12400 / \mathrm{RT}) \tag{V.16}
\end{equation*}
$$

The rate expression for char combustion is estimated by Field et al. (1967)

$$
\begin{equation*}
\mathrm{r}_{\mathrm{c}}^{*}=\pi \mathrm{d}_{\mathrm{c}}^{2} \mathrm{k}_{\mathrm{c}} \mathrm{C}_{\mathrm{O}_{2}} \quad \text { gmole/sec particle } \tag{Y.17}
\end{equation*}
$$

where k_{c} is the overall rate constant, and is given by:

$$
\begin{align*}
\mathrm{k}_{\mathrm{c}} & =\frac{\mathrm{R}_{\mathrm{g}} \mathrm{~T}_{\mathrm{m}} / \mathrm{M}_{\mathrm{c}}}{\frac{1}{\mathrm{k}_{\mathrm{cR}}}+\frac{1}{k_{\mathrm{cf}}}} \quad \mathrm{~cm} / \mathrm{sec} \tag{V.18}\\
\mathrm{k}_{\mathrm{cR}} & =\text { chemical reaction race constant } \\
& =8710 \text { exp }\left(-35700 / \mathrm{RT} \mathrm{c}_{\mathrm{c}}\right) \quad \mathrm{gm} / \mathrm{cm}^{2} \cdot \mathrm{sec} \cdot \mathrm{~atm} \tag{V.19}\\
\mathrm{k}_{\mathrm{cf}} & =\text { diffusion rate constant } \\
& =24 \phi \mathrm{D} / \mathrm{d}_{\mathrm{c}} \mathrm{R}_{\mathrm{g}} \mathrm{~T}_{\mathrm{m}}, \mathrm{gm} / \mathrm{cm}^{2} \cdot \mathrm{sec} \cdot \mathrm{~atm} \tag{V.20}
\end{align*}
$$

TEMP.C

Fig. 2 Rate Controlling Regimes in FBC

For smaller particles, diffusion of oxygen to the surface of the char particle is faster than the chemical reaction rate of combustion while for larger particles, diffusion of oxygen is slower than the chemical rate. Thus, the diffusional term tends to dominate for larger particles at high temperatures, while the chemical term tends to dominate at low temperatures (Fig. 2). CO_{2} formed during combustion reacts with char according to the following reaction:

$$
\begin{equation*}
\mathrm{C}+\mathrm{CO}_{2} \longrightarrow 2 \mathrm{CO} \tag{V.21}
\end{equation*}
$$

and the rate expression for the above reaction is $\mathrm{r}_{\mathrm{CO}_{2}}=\pi \mathrm{d}_{\mathrm{c}}{ }^{2}{ }^{\mathrm{k}} \mathrm{CO}_{2} \mathrm{C}_{\mathrm{CC}}^{2}$ gmole/sec • particle, where $\mathrm{k}_{\mathrm{CO}_{2}}=4.1 \times 10^{8} \exp (-59200 / \mathrm{RT}) \mathrm{cm} / \mathrm{sec}$ (Caram and Amundson, 1977).

2. Sulfur Dioxide - Limestone Reaction:

When limestone is added to a fluidized bed burning coal, the SO_{2} released from the combustion of coal reacts with calcined limestone according to the reaction:

$$
\begin{equation*}
\mathrm{CaO}+\ddot{\mathrm{SO}}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CaSO}_{4} \tag{V.22}
\end{equation*}
$$

The reaction rate of a limestone particle can be expressed as (Borgwardt, 1970)

$$
\begin{equation*}
r_{\ell}=\frac{\pi}{6} d_{\ell}^{3} \mathrm{k}_{\mathrm{v} \mathrm{\ell}} \mathrm{C}_{\mathrm{SO}_{2}} \quad \text { gmole/sec particle } \tag{V.23}
\end{equation*}
$$

where $\mathrm{k}_{\mathrm{v} \mathrm{\ell}}$ is the overall volumetric reaction rate constant and is a: rapidly decreasing function of limestone conversion, f_{ℓ}. The overall reaction rate constant, $k_{V \ell}$, is calculated by the equation:

$$
\begin{equation*}
k_{v \ell}=k_{v \ell}^{-} s_{g} \lambda_{\ell} \tag{V.24}
\end{equation*}
$$

where $k_{v \ell}^{\prime}$ is equal to $490 \exp (-17500 / R T) \mathrm{gm}_{\mathrm{cm}} \mathrm{cm}^{3} \mathrm{sec}$. The value of, activation energy was obtained by Wen and Ishida (1973). By using Borgwardt's data (1971), the specific surface area, S_{g}, is correlated
with calcination temperature as:

$$
\begin{align*}
\mathrm{S}_{\mathrm{g}} & =-38.4 \mathrm{~T}+5.6 \times 10^{4}, \mathrm{~cm}^{2} / \mathrm{gm} \text { for } \mathrm{T} \geqslant 1253^{\circ} \mathrm{K} \tag{V.25}\\
& =35.9 \mathrm{~T}-3.67 \times 10^{4}, \mathrm{~cm}^{2} / \mathrm{gm} \text { for } \mathrm{T}<1253^{\circ} \mathrm{K} \tag{V.26}
\end{align*}
$$

λ_{ℓ}, the reactivity of Iimestone, is a function of conversion, temperature and particle size. CaSO_{4} formed due to the sulfation of calcined limestone tends to block the pores formed during limestone calcination, building an impervious layer on the particle surface, thus reducing the reactivity of limestone. The reactivity of limestone is calculated using the grain model developed by Ishida and Wen (1971). Typical profiles of limestone reactivity as a function of conversion for various particle sizes axe shown in Fig. 3.

3. NO_{x}-Char Reaction:

Nitrogen oxides are generated during the combustion of volatiles and char, and are subsequently reduced to N_{2} by reaction with nitrogeneous fragments (containing NH_{3}) in the volatiles and also by the heterogeneous reaction with char. Fuel nitrogen compounds in the volatiles would be in the form of NH_{3}. When the volatiles burn, NH_{3} is oxidized to NO. When the residual char burns, nitrogeneous fragments of the char are also oxidized to NO. The released nitrogen oxides are reduced by cnar according to the reaction

$$
\begin{equation*}
\mathrm{C}+2 \mathrm{NO} \longrightarrow \mathrm{CO}_{2}+\mathrm{N}_{2} \tag{V.27}
\end{equation*}
$$

The rate expression for NO reduction is

$$
\begin{equation*}
\mathrm{r}_{\mathrm{NO}}=\pi \mathrm{d}_{\mathrm{c}}^{2} \mathrm{k}_{\mathrm{NO}} \mathrm{C}_{\mathrm{NO}} \quad \text { gmole } \mathrm{NO} / \mathrm{sec} \cdot \text { particle } \tag{V.28}
\end{equation*}
$$

where $\mathrm{k}_{\mathrm{NO}}=5.24 \times 10^{7} \exp \left(-34000 / \mathrm{RT}_{\mathrm{m}}\right) \mathrm{cm} / \mathrm{sec}$ (Oguma, et al. 1977, Horio, et al. 1977).

Fig. 3 Limestone Reactivity Profiles

4. Attrition and Entrainment of Clax and Limestone:

Limestone and char partigies in the bed are subjected to erosion and attrition due to the rapid mixing of the solids. The attrition rate is proportional to the rate of energy input. The size distribution of the fines produced has been found to be approximately constant for a particular bed material and independent of the bed size distribution or operating conditions (Merrick and Highley, 1974). The rate of energy input to the particles is taken to be preportional to ($U_{0}-U_{m f}$) and also to the bed weight. The rate of production of fines is correlated as:

$$
\mathrm{R}_{\mathrm{a}}=\mathrm{K}\left(\mathrm{U}_{\mathrm{o}}-\mathrm{U}_{\mathrm{mf}}\right) \mathrm{M}_{\mathrm{b}} \quad \operatorname{gn} / \sec \vdots \quad \because \quad \vdots \quad \because \because(\mathrm{V} .29)
$$

The value of K is dependent on the friability of the material. The values of K lie in the range 9.11×10^{-8} for ash and 2.73×10^{-8} for limestone.

The rate of elutriation of char and limestone for a size fraction x, from a fluidized bed is directly proportional to their concentration in the bed, that is:

$$
\begin{equation*}
R_{x}=E_{x} b_{x} \quad \text { gms } / \mathrm{sec} \tag{V.30}
\end{equation*}
$$

where R_{x} is the elutriation rate of the close size fraction x, for a given operating conditions, b_{x} is the weight fraction of the close size fraction in the bed. There are many correlations proposed to calculate the elutriation rate constant, E_{x}. Many of the correlations exhibit an improper qualitative behavior in the smaller particle size ranges. A recent correlation proposed by Merrick and Highley (1974) accounts properly for the boundary conditions of a maximum limiting elutriation rate constant at zero particle size and the rate constant
approaching zero with increasing particle size and at $U_{o}=U_{m f}$. It is of the form:

$$
\begin{equation*}
E_{x}=G \exp \left[-10.4\left(\frac{U_{t}}{U_{0}}\right)^{0.5}\left(\frac{U_{m f}}{U_{0}-\vec{U}_{m f}}\right), 0.25\right] \mathrm{gm} / \mathrm{sec} \tag{V.3I}
\end{equation*}
$$

The above correlation was obtained by Merrick and Highley with data from NCB combustor in which the freeboard height was around 275 cms. When this correlation is used to simulate the performance of NCB combustor, the results agree well with data (Fig.10). This correlation does not take into account the effect of varying freeboard heights and hence cannot be used to calculate the entraimment rate along the freeboard height. In view of the fact that the entrainment below TDH is dependent on the freeboard height, the following correction is suggested to calculate the entrainment rate as a function of height above the bed surface. The rate of entrainment is given by:

$$
\begin{equation*}
R_{x}=F_{0, x} \exp \left[\frac{h}{275.0} \cdot \operatorname{In}\left(\frac{E_{x} b_{x}}{F_{0, x}}\right) \quad \text { gms } / \mathrm{sec}\right. \tag{V.32}
\end{equation*}
$$

where $F_{0, x}$ is the entrainment rate of particles of x th size fraction at the bed surface, h is the height above the bed surface in cms, and the constant 275.0 represents the freeboard height of the NCB combustor based: on which Merrick and Highley's correlation is developed.

When the bubbles burst at the surface of the bed, solids in the wake of the bubbles are thrown into the freeboard. The amount of solids splashed into the freeboard can be calculated from the equation (Yates and Rowe, 1977).

$$
\begin{equation*}
F_{0}=A_{t} \cdot\left(U_{o}-U_{m f}\right) f_{W}\left(I-\varepsilon_{m f}\right) ; \rho_{s} \cdot f_{s w} \quad(\mathrm{gms} / \mathrm{sec}) \tag{V.33}
\end{equation*}
$$

where f_{w} is the wake fraction and $f_{\text {sw }}$ is the fraction of solids in the wake thrown into the freeboard. TDH represents the height (above the bed
surface) above which the entrained solids density is independent of the height. There are many correlations available in literature to calculate the TDH (Zenz and Weil, 1958; Amitin, et al. 1968; Nazemi, et al. 1973; FournoI, et al. 1973). The correlation proposed by Amitin, et al. (1968) is used here because of its simplicity and accuracy in the range of fluidizing velocities encountered in the combustor.

$$
\begin{equation*}
\mathrm{TDH}=0.429 \overline{\mathrm{U}}_{\mathrm{o}}^{1.2}\left(11.43-1.2 \ln \overline{\mathrm{U}}_{\mathrm{o}}\right) \mathrm{cms} \tag{V.34}
\end{equation*}
$$

TDH is compared with the actual height (height between the bed surface and the flue gas exit). If the TDH is smaller than the actual freeboard height, then TDH is used to calculate the solids elutriation rate. Entrainment rate of solids as a function of the height above the bed surface is calculated using Equation (V.32). .
5. Bubble Hydrodynamics:

A modified version of the bubble assemblage model (Rengarajan, et al. 1977) is used to describe the bubble hydrodynamics. Fig. 4 is a schematic representation of the gas phase model. Gas flow rate in the emulsion phase is assumed to be that at minimum fluidization velocity. The minimum fluidization velocity is calculated using Wen and Yu's (1966) correlation:

$$
\mathrm{U}_{\mathrm{mf}}=\left(\frac{\mu}{\mathrm{d}_{\mathrm{p}} \rho_{\mathrm{g}}}\right)\left\{\left[33.7^{2}+\frac{0.0408 \mathrm{~d}_{\mathrm{p}}^{3} \rho_{\mathrm{g}}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{g}}\right)}{\mu_{2}}\right]^{1 / 2}-33.7\right\}(\mathrm{V} .35)
$$

Estimation of the bubble diameter along the bed height is one of the most critical factors in FBC modeling. For a non-cylindrical bed, the bubble size, D_{B}, is calculated from (Mori and Wen, 1975):

$$
\begin{equation*}
\frac{\mathrm{dD}_{\mathrm{B}}}{\mathrm{dz}}=\frac{0.3}{\mathrm{D}_{\mathrm{t}}}\left(\mathrm{D}_{\mathrm{BM}}-\dot{D}_{\mathrm{B}}\right) \tag{V.36}
\end{equation*}
$$

I.C. $D_{B}=D_{B O}$ at $z=0, D_{B O}=$ initial bubble diameter where $D_{B M}$ is the

Fig. 4 Sehematic lilustration of the Gas Phase model
fictitious maximum bubble diameter defined by Mori and Wen (1975) as:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{BM}}=0.652\left[\mathrm{~A}_{\mathrm{t}}\left(\mathrm{U}_{\mathrm{o}}-\mathrm{U}_{\mathrm{mf}}\right)\right]^{0.4} \tag{V.37}
\end{equation*}
$$

When cooling tubes are present, the ascending bubbles impinge on the tubes. If the tubes are packed closely, depending on the horizontal pitch distance and tube diameter, bubbles may be broken, and coalescence may not occur. For lack of experimental evidence on the bubble sizes in the presence of internals of various designs, it is assumed here that if the impinging bubbles are of smaller size than the horizontal pitch distance, the bubbles coalesce as if tubes were absent. If the approaching bubble is bigger than the horizontal pitch distance, it is assumed that coalescence does not occur and hence the bubble size in the coils section of the bed is set equal to the pitch distance. Bubble velocity is calculated from the following relation (Davidson and Harrison, 1963):

$$
\begin{equation*}
\mathrm{U}_{\mathrm{B}}=\mathrm{U}_{\mathrm{o}}-\mathrm{U}_{\mathrm{mf}}+0.711 \sqrt{\mathrm{gD}_{\mathrm{B}}} \tag{V.38}
\end{equation*}
$$

The gas interchange coefficient between the bubble phase and emulsion phase is estimated from (Kobayashi, et a1. 1967)

$$
\begin{equation*}
K_{B E}=11.0 / D_{B} \tag{V.39}
\end{equation*}
$$

6. Solids Mixing:

The mixing of solids is caused by the motion of bubbles and their wakes. Both bulk circulation and turbulent mixing of solids are the effects of bubbling phenomena of the bed. The bulk circulation rate, $W_{\text {mix }}$, caused by the lifting of particles by bubble wakes is expressed as:

$$
\begin{equation*}
W_{\operatorname{mix}}=\left(U_{o}-U_{m f}\right) A_{t} f_{W}\left(1-\varepsilon_{m f}\right) \rho_{s} \tag{V.40}
\end{equation*}
$$

where f_{w} is the ratio of wake voiume to the bubble volume including
the wake. The estimation of f_{w} for FBC has not been clearly established yet. Therefore, f_{w} is the parameter in the model which requires further investigations. A schematic representation of the solids mixing pattern and the backflow cell model used to describe the solids circulation in the bed are shown in Fig. 5 and Fig. 6. The bed is divided into compartments of size equal to bubble diameter at that height.
7. Heat Transfer:

In calculating the reaction rate for char combustion, the temperature of char particle, T_{c}, is calculated separately, using a heat balance around the char particle and the surrounding gas as:

$$
\begin{equation*}
\frac{2 \lambda}{d_{c}}\left(T_{c}-T\right)+\varepsilon_{m} \sigma\left(T_{c}^{4}-T^{4}\right)=r_{c}^{*} M_{c} q_{c h a r} /\left(\pi d_{c}^{2} \cdot C_{c h}\right) \tag{V.41}
\end{equation*}
$$

where ε_{m} is the emissivity of the char particle (taken as 1.0 Field, et al., 1967), λ is the thermal conductivity of the surrounding gas and σ is the Stefan-Boltzman constant. The heat generated during combustion is removed by immersed cooling coils in the bed. Water is the cooling medium. Bed to cooling tubes heat transfer coefficient used in the model is selected from experimental data and is in the range of 0.0054 to 0.011 cals $/ \mathrm{sec} . \mathrm{cm}^{2}$. ${ }^{\circ} \mathrm{C}\left(40\right.$ to $80 \mathrm{Btu} / \mathrm{hr} . \mathrm{ft}^{2} .{ }^{\circ} \mathrm{F}$). Correlations of bed-wall heat transfer coefficient are also available for the estimation (Wender and Cooper, 1958; Wen and Lieva, 1956).
8. Freeboard Reactions:

Char combustion, SO_{2} absorption and NO_{x} reduction reactions take place in the freeboard. Heat generated by combustion and heat carried by the flue gases are removed by the cooling coils present in the freeboard. The hydrodynamics in the freeboard is different from that in the bed. There are no bubbles present in the freeboard. Any

Fig. 5 Two Modes of Solids Mixing

X : wt.fraction carbon
T. : temperature
$W_{\text {mix }}$: solids mixing rate
$W_{\text {net }}:$ net flow rate of solids

Fig. 6 Schematic lllustration of the
Solid Phase Model
unburnt volatiles from the bed would be burnt in the freeboard.
The freeboard region is divided into a number of compartments of equal size. To estimate the compartment size in the freeboard region, Peclet'number is calculated using the Reynolds number in the freeboard region by the following correlation (Wen and Fan, 1974)

$$
\begin{align*}
& N_{R e}=D_{t} \bar{U}_{o} \rho_{g} / \mu_{g} \tag{V.42}\\
& N_{P e}=\bar{U}_{o} D_{t} / E_{Z} \tag{V.43}\\
& { }_{.} N_{S c}=\mu_{g} / D \rho_{g} \tag{V.44}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{\mathrm{~N}_{\mathrm{Pe}}}=\frac{1}{\mathrm{~N}_{\mathrm{Re}} \mathrm{~N}_{\mathrm{Sc}}}+\frac{\mathrm{N}_{\mathrm{Re}} \cdot \mathrm{~N}_{\mathrm{Sc}}}{192} \text { for } \mathrm{N}_{\mathrm{Re}}<2000 \tag{V.45}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{N_{\mathrm{Pe}}}=\frac{3 \times 10^{7}}{\mathrm{~N}_{\mathrm{Re}}^{2.1}}+\frac{1.35}{\mathrm{~N}_{\mathrm{Re}}{ }^{1.8}} \text { for } \mathrm{N}_{\mathrm{Re}} \geqslant 2000 \tag{V.46}
\end{equation*}
$$

Knowing the axial dispersion coefficient, E_{z}, the average compartment size in the freeboard is calculated as:

$$
\begin{equation*}
\Delta Z=2 E_{Z} / \bar{U}_{0} \tag{V.47}
\end{equation*}
$$

The concentrations of gaseous species vary with each compartment although the concentrations are uniform (completely mixed) within each compartment. Knowing the average height of each compartment above the bed surface, the solids entrainment rate at that height is calculated. Residence time of solids in each compartment is given by $\Delta Z /\left(U_{0}-U_{T}\right)$ where ΔZ is the compartment size. Solids hold-up in each compartment is then obtained from

$$
\begin{align*}
\text { Solids hold-up in }= & \text { (upward+downward) flow rate of } \\
\text { each compartment } & \text { solids } x \text { residence time of solids } \tag{V.48}\\
& \text { in that compartment }
\end{align*}
$$

Depending on the residence time of particles in the freeboard, and the char particles burning time, char particles will either be partially
or completely burnt, and the partially burnt char particles are elutriated. The burning time of a char particle is estimated from the equation (Field, et al. 1967):

$$
\begin{aligned}
t_{b} & =\text { burning time of a char particle } \\
& =\rho_{c, c h} R_{g} T_{m} d_{c}^{2} /\left(96 \phi D \dot{P}_{O_{2}}\right)
\end{aligned}
$$

VI. MODEL DESCRIPTION

1. Elutriation Calculations:

A mathematical model has been developed for elutriation in a fluid bed system with size reduction and recycle to the bed of some or all of the fines from the primary and/or secondary cyclones. The model takes into account the variation in the rates of elutriation and size reduction with particle size. If the size reduction is due to more than one process, then there will be a separate value of size reduction constant for each process. In general, the rates of size reduction by the separate processes in each size fraction are additive. A mass balance is performed for each size fraction, x, as follows:

$$
W_{f, x} \quad+\quad W_{x-1} \quad+\quad a_{x} k_{x} M_{x}
$$

(feed rate) (gain of particles (gain of fines produced from next largest by abrasion) size due to size reduction)

$$
=M_{x} W_{D} / M_{b}+R_{x} q_{1 x}\left(1-p_{1}\right)+R_{x} q_{2 x}\left(1-q_{1 x}\right)
$$

(withdrawal rate from the bed)
(particles captured by primary cyclone but not recycled)
(particles captured by secondary cyclone but not recycled)
$+R_{x}\left(1-q_{1 x}\right)\left(1-q_{2 x}\right)$
(particulate emission)

$$
+k_{x} M_{x}
$$

(loss of weight due to production of fines by abrasion or to chemical reaction)

$$
+W_{x}
$$

(loss of particles to next smallest size due to size reduction)

The rate of loss of particles to the next smallest size, w_{x}, is determined by considering a mass of particles M_{x}, at size, d_{x}, and calculating the mass remaining M_{x+1} after the size has been reduced to d_{x+1}. The rate of reduction is written as:

$$
\begin{equation*}
\frac{\mathrm{dM}}{\mathrm{~d} \theta}=-\mathrm{k}_{\cdot x} \mathrm{M}\left(\mathrm{U}_{0}-\mathrm{U}_{\mathrm{mf}}^{\prime}\right) \tag{VI.2}
\end{equation*}
$$

The rate of size reduction between d_{x} and d_{x+1} is:

$$
\begin{equation*}
\frac{\mathrm{dd}_{x}}{\mathrm{~d} \theta}=\frac{-\mathrm{k}_{\mathrm{x}}}{3} \mathrm{~d}_{\mathrm{x}}\left(\mathrm{U}_{\mathrm{o}}-\mathrm{U}_{\mathrm{mf}}\right) \tag{VI.3}
\end{equation*}
$$

Dividing equation (VI.2) by equation (VI.3) gives:

$$
\begin{equation*}
\frac{d M}{d^{2}}=\frac{3 M}{d_{x}} \tag{VI.4}
\end{equation*}
$$

and integrating between d_{x} and d_{x+1} gives:

$$
\begin{equation*}
\frac{M_{x+1}}{M_{x}}=\left(\frac{d_{x+1}}{d_{x}}\right)^{3} \tag{VI.5.}
\end{equation*}
$$

This fraction is the proportion of the total feed to the x th size fraction which is reduced in diameter to $(x+1)$ th size fraction.

Therefore, $W_{x}=\left[W_{f, x}+a_{x} K\left(U_{o}-U_{m f}\right) M_{b}+W_{x-I}\right]\left(\frac{d_{x+1}}{d_{x}}\right)^{3}$.
For the coarsest size fraction, W_{x-1} is zero.
The entire calculation is iterative, starting from ingitial guesses of the withdrawal rate of solids from the bed and the size distribution of particles in the bed. Mass balance is performed on each successive close size fraction, starting from, the coarsest.. The bed weight in each. size fraction and hence the total bed weight and bed size distribution is calculatedi. The procedure is repeated tili the calculated bed, weight equals the given bed weight. . The elutriation rate, fines collection/recycle rates, particle emission and size distribution of elutriated particles: are then calculated.

2. Material and Energy Balances:

Material balances are made for volatile gases, $\mathrm{CO}, \mathrm{CO}_{2}$, oxygen, SO_{2} and NO in the bubble and emulsion phases within the bed and in the freeboard. Depending on the concentration of oxygen in the emulsion phase, different material balances are used as shown below. Case A: Volatiles concentration in the emulsion phase is not zero because of insufficient oxygen in emulsion phase for complete combustion of volatiles. Char and CO combustion do not proceed in the emulsion phase.

EMULSION PHASE EQUATIONS
Oxygen:

$$
\begin{equation*}
Y_{E, i}=0.0 \tag{VI.7}
\end{equation*}
$$

Volatiles:

$$
\begin{array}{cc}
F_{E M, i} Y_{E, v, i}=F_{E M, i-1} Y_{E, v, i-1} & -a_{1} Y_{E, v, i-1} \\
\vdots & \text { a } \\
\text { (Volatiles out) (Volatiles in) } & \text { (Volatiles Exchanged to } \\
& \text { Bubble Phase) }
\end{array}
$$

$$
\begin{equation*}
-\frac{\left(F_{E M, i-1} Y_{E, i-1}+a_{1} Y_{B, i}\right)}{X_{O_{2}}}+R_{v, i} \tag{VI.8}
\end{equation*}
$$

$$
\begin{array}{cl}
\text { (Volatiles Burnt) } & \begin{array}{c}
\text { (Volatiles Released during } \\
\text { Devolatilization) }
\end{array}
\end{array}
$$

where $\quad a_{1}=K_{B E, i} A_{t, i} \Delta Z_{i} \varepsilon_{B, i} \frac{P}{R_{g} T_{i}}$, gmole/sec

Carbon monoxide:

$$
\begin{aligned}
& F_{E M, i} Y_{E, C O, i}=F_{E M, i-1} Y_{E, C O, i-1}-a_{1} Y_{E, C O, i} \\
& (C O \text { out }) \quad(C O \text { in }) \quad \begin{array}{l}
(C O \text { Exchanged to } \\
\\
\end{array} \quad \begin{array}{ll}
\text { Bubble Phase })
\end{array}
\end{aligned}
$$

$-\frac{\left(F_{E M, i-1} Y_{E, i-1}+a_{1} Y_{B, i}\right)}{X_{Q_{2}}} \cdot V_{C O}+R_{C O, i}$

$+2 a_{4} Y_{E, C O}, i$
(CO Produced by $\mathrm{C}-\mathrm{CO}_{2}$ Reaction)
where

$$
\begin{align*}
& \hat{a}_{4}=a_{m} A_{t_{j} i} \Delta z_{i}\left(l-\varepsilon_{c, i}-\varepsilon_{t u b e, i}\right)\left(k_{C O_{2, i}} \frac{P}{R_{g} T_{E, i}} X_{i}\right), \text { gmole/sec } \tag{VI.11}\\
& a_{m}=\frac{6 \rho_{b}\left(1-\varepsilon_{m f}\right)}{d_{c} \rho_{c h} C_{c h}}
\end{align*}
$$

Carbọn dioxide:

$$
\begin{align*}
& \dot{F}_{E M, i} Y_{E, C O_{2}, i}=F_{E M, i-1} Y_{E, C O_{2, i-1}}-a_{1}\left(Y_{E, C O}^{2, i}-Y_{B, C O}^{2, i}\right) . \\
& \left(\mathrm{CO}_{2} \text { out }\right) \quad\left(\mathrm{CO}_{2} \mathrm{in}\right) \quad \begin{array}{c}
\mathrm{CO}_{2} \text { Exchanged } \tau 0 . \\
\text { Bubble Phase })
\end{array} \\
& +\mathrm{R}_{\mathrm{CO}}^{2}, \mathrm{i}=\quad{ }^{\mathrm{i}} \mathrm{a}_{4} \mathrm{Y}_{\mathrm{E}, \mathrm{CO}}^{2}, \mathrm{i} . \tag{VI.13}\\
& \begin{array}{ll}
\left(\mathrm{CO}_{2}\right. \text { Released during } \\
\text { Devolatilization) } & \left(\mathrm{CO}_{2}\right. \text { Consumed by } \\
\left.\mathrm{C}-\mathrm{CO}_{2} \text { Reaction }\right)
\end{array} \\
& \text { Devolatilization) } \quad \mathrm{C}-\mathrm{CO}_{2} \text { Reaction) }
\end{align*}
$$

BUBBLE PHASE EQUATIONS

Oxygen:

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{BM}, \mathrm{i}} \dot{Y}_{\mathrm{B}, \mathrm{i}}= & \mathrm{F}_{\mathrm{BM}, \mathrm{i}-\mathrm{I}} Y_{\dot{B}, \mathrm{i}-1} & -{ }_{\mathrm{a}}^{1} Y_{\mathrm{B}, \mathrm{i}} \\
\text { (Oxygen out) } & \text { (Oxygen in) } & \begin{array}{c}
\text { (Oxygen Exhcanged to } \\
\text { Emulsion Phase) }
\end{array}
\end{array}
$$

$$
\begin{equation*}
-a_{2} Y_{B, i}-\frac{a_{1} Y_{E, C O, i}}{2}-\quad a_{1} Y_{E, V, i} X_{O_{2}, c} \tag{VI.14}
\end{equation*}
$$

(Oxygen Consumed	(Oxygen Consumed by	(Oxygen Consumed by
by Char)	CO Exchanged to	Volatiles Exchanged
	Bubble Phase)	to Bubble Phase)

where

$$
\begin{equation*}
a_{2}=a_{m} A_{t, i} \Delta Z_{i}\left(\varepsilon_{c, i}-\varepsilon_{B, i}\right) k_{c B, i} \frac{P}{R_{g} T_{B, i}} X_{i} \tag{VI.15}
\end{equation*}
$$

Carbon dioxide:

$$
\begin{align*}
& \ldots \mathrm{F}_{\mathrm{BM}, \mathrm{i}} Y_{\mathrm{B}, \mathrm{CO}_{2}, i}=\mathrm{F}_{\mathrm{BM}, \mathrm{i}-1} Y_{\mathrm{B}, \mathrm{CO}_{2}, \mathrm{i}-\mathrm{l}^{-} \mathrm{a}_{1}\left(\mathrm{Y}_{\mathrm{B}, \mathrm{CO}_{2}, i}-Y_{\mathrm{E}, \mathrm{CO}_{2}, \mathrm{i}}\right)} \\
& \left(\mathrm{CO}_{2} \text { out }\right) \\
& \left(\mathrm{CO}_{2} \mathrm{in}\right) \\
& \left(\mathrm{CO}_{2}\right. \text { Exchanged to } \\
& \text { Emulsion Phase) } \\
& \therefore+a_{2} Y_{B, i}+a_{1} Y_{E, C O, i}+a_{1} Y_{E, V, i} V_{C O} \tag{VI.16}\\
& \begin{array}{lll}
\left(\mathrm{CO}_{2}\right. \text { Produced by } & \left(\mathrm{CO}_{2}\right. \text { Produced } & \mathrm{CO}_{2} \text { Produced by } \\
\text { Char Combustion }) & \text { by } \mathrm{Co} \text { Combustion }) & \text { Volatiles Burning })
\end{array}
\end{align*}
$$

FREEBOARD EQUATIONS

Oxygen:

$$
\begin{equation*}
Y_{0, i}=0.0 \tag{VI..7}
\end{equation*}
$$

Volatiles: ':

$$
\begin{gather*}
\mathrm{F}_{\mathrm{MT}} Y_{\mathrm{V}, \mathrm{i}}=\mathrm{F}_{\mathrm{MT}} Y_{V, i-1}-\mathrm{F}_{\mathrm{MT}} Y_{0, i-1} / X_{0_{2}} \tag{VI,18}\\
\text { (Volatiles out) (Volatiles in) (Volatiles Burnt) }
\end{gather*}
$$

Carbon monoxide:

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{MT}} Y_{\mathrm{CO}, \mathrm{i}}= & \mathrm{F}_{\mathrm{MT}} Y_{\mathrm{CO}, \mathrm{i}-1}+2 \mathrm{a}_{4}^{\prime} \mathrm{Y}_{\mathrm{CO}_{2}, \mathrm{i}} \\
\text { (CO out) } & (\mathrm{CO} \text { in) }
\end{array} \quad \begin{aligned}
& (\mathrm{CO} \text { Produced by } \\
& \mathrm{C}-\mathrm{CO}_{2} \text { Reaction) }
\end{aligned}
$$

$$
\begin{equation*}
+F_{M T}\left(Y_{v, i-1}-Y_{v, i}\right) V_{C O} \tag{VI.19}
\end{equation*}
$$

(CO Produced by Volatiles Burning)
where $a_{4}^{\prime}=\frac{\mathrm{P}}{\mathrm{R}_{\mathrm{g}} \mathrm{T}_{\mathrm{B}, i}} \mathrm{~N}_{\mathrm{c}, \mathrm{i}} \mathrm{d}_{\mathrm{ce},{ }_{2}^{2} \mathrm{k}_{2} \mathrm{CO}_{2}, i}$, gmole/sec
Carbon dioxide:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{MT}} \mathrm{Y}_{\mathrm{CO}_{2, i}}=\mathrm{F}_{\mathrm{MT}} \mathrm{Y}_{\mathrm{CO}_{2}, \mathrm{i}-\mathrm{I}}-{ }^{a}{ }_{4}^{\prime} \mathrm{Y}_{\mathrm{CO}_{2}, \mathrm{i}} \tag{VI.21}
\end{equation*}
$$

- Case B: Sufficient oxygen is present in the emulsion phase for the combustion of volatiles.

EMULSION PHASE EQUATIONS

Volatiles:

$$
\begin{equation*}
Y_{E, v, i}=0.0 \tag{VI.22}
\end{equation*}
$$

Oxygen:

$$
\begin{aligned}
F_{E M, i} Y_{E, i}= & F_{E M, i-1} Y_{E, i-1}-a_{1}\left(Y_{E, i}-Y_{B, i}\right) \\
\text { (Oxygen out) } & \text { (Oxygen in) }
\end{aligned}
$$

$-a_{3} Y_{E, i} / \phi_{E, i}-\left(F_{E M, i-1} Y_{E, v, i-1}+R_{v, i}\right) X_{0_{2}}$
(Oxygen consumed (Oxygen Consumed by Volatiles by Char) Burning)
(Oxygen Consumed by CO)
where

$$
\begin{equation*}
a_{3}=a_{m} A_{t, i} \Delta Z_{i}\left(1-\varepsilon_{c, i}-\varepsilon_{\text {tube, } i}\right) k_{c E, i} \frac{P}{\mathbb{R}_{g} T_{E, i}} x_{i} \tag{VI.25}
\end{equation*}
$$

Carbon monoxide:

$$
\begin{align*}
& F_{E M, i} Y_{E, C O, i}=F_{E M, i-1} Y_{E, C O, i-1}-k Y_{E, C O, i}\left(\frac{17.5 Y_{E, i}}{1+24 \cdot 7 Y_{E, i}}\right) \\
& \text { (CO out) } \\
& \text { (C0 in) } \\
& \text { (CO Burnt) } \\
& +\left(F_{E M, i-1} Y_{V, i-1}+R_{V, i}\right) V_{C O} \quad+\quad R_{C O, i} \\
& \text { (CO Produced by Volatiles Burning) (CO Released during } \\
& \text { Devolatilization). } \\
& +2 a_{4} Y_{E, C O_{2}, i}+\cdots a_{3}\left(2-\frac{2}{\phi_{E, i}}\right) Y_{E, i} \tag{VI.26}
\end{align*}
$$

(CO Produced by
$\mathrm{C}-\mathrm{CO}$ Reaction) $\mathrm{C}-\mathrm{CO}_{2}$ Reaction)

Carbon dioxide:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{EM}, \mathrm{i}}{ }^{Y}{ }_{\mathrm{E}, \mathrm{CO}_{2}, \mathrm{i}}=\mathrm{F}_{\mathrm{EM}, \mathrm{i}-1} Y_{\mathrm{E}, \mathrm{CO}_{2}, \mathrm{i}-1}-\mathrm{a}_{1}\left(\mathrm{Y}_{\mathrm{E}, \mathrm{CO}_{2}, \mathrm{i}}-Y_{\mathrm{B}, \mathrm{CO}_{2}, \mathrm{i}}\right) \\
& \left(\mathrm{CO}_{2} \text { out }\right) \quad\left(\mathrm{CO}_{2} \mathrm{in}\right) \quad \begin{array}{l}
\left(\mathrm{CO}_{2}\right. \text { Exchanged to } \\
\text { Bubb?e Phase })
\end{array}
\end{aligned}
$$

$+k Y_{E, C O, i}\left(\frac{17.5 Y_{E, i}}{1+24.7 Y_{E, i}}\right)+R_{C O_{2}, i}$
$\left(\mathrm{CO}_{2}\right.$ Produced by $\quad\left(\mathrm{CO}_{2}\right.$ Released during
CO^{2} Combustion) Devolatilization)
$-a_{4} Y_{E, C O}, i+a_{3}\left(\frac{2}{\phi_{E, i}}-1\right) Y_{E, i}$
$\left(\mathrm{CO}_{2}\right.$ Consumed by $\quad\left(\mathrm{CO}_{2}\right.$ Produced by
$\mathrm{C}-\mathrm{CO}_{2}$ Reaction) Char Combustion)
BUBBLE PHASE EQUATIONS
Oxygen:
$F_{B M, i} Y_{B, i}=F_{B M, \underline{i}-1} Y_{B, \underline{i}-1}=a_{1}\left(Y_{B, i}-Y_{E, i}\right)$
(Oxygen out) (Oxygen in) (Oxygen Exchanged to Emulsion Phase)
$-a_{2} Y_{3, i} \quad-\quad a_{1} Y_{E, C O, i} / 2$
(Oxygen Consumed (Oxygen Consumed by CO b: Chax) Exchanged to Bubble Phase)

Carbon dioxide:

$$
\begin{align*}
& \mathrm{F}_{\mathrm{BM}, \mathrm{i}} Y_{\mathrm{B}, \mathrm{CO}_{2}, i}=\mathrm{F}_{\mathrm{BM}, \mathrm{i}-1} \mathrm{Y}_{\mathrm{B}, \mathrm{CO}_{2}, \mathrm{i}-1}-\mathrm{a}_{1}\left(\mathrm{Y}_{\mathrm{B}, \mathrm{CO}}^{2}, \mathrm{i}-\mathrm{Y}_{\mathrm{E}, \mathrm{CO}}^{2}, \mathrm{i}\right) \\
& \left(\mathrm { CO } _ { 2 } \text { out } \quad (\mathrm { CO } _ { 2 } \text { in }) \quad \left(\mathrm{CO}_{2}\right.\right. \text { Exchanged to } \\
& \text { Emulsion Phase) } \\
& +a_{2} Y_{B, i} \quad+\quad a_{1} Y_{E, C O, i} \tag{VI.29}
\end{align*}
$$

$\left(\mathrm{CO}_{2}\right.$ Produced by $\quad \mathrm{CO}_{2}$ Produced by Char Combustion) C0 Combustion)

FREEBOARD EQUATIONS
Volatiles:

$$
\begin{equation*}
Y_{v, i}=0.0 \tag{VI.30}
\end{equation*}
$$

Oxygen:
$\bar{F}_{M T} Y_{0, i}=F_{M T} Y_{0, i-1}-F_{M T} Y_{V, i-1} X_{O_{2}}$
(Oxygen out) (Oxyger in) (Oxygen Consumed by Volațịles)
$-k^{\prime} Y_{C O, i}\left(\frac{17.5 Y_{0, i}}{1+24 \cdot 7 Y_{0, i}}\right) / 2-a_{2}^{\prime} Y_{0, i} / \phi_{B, i}$.
(Oxygen Consumed by
(Oxygen Consumed by CO Combustion) Char Combustion)
where

$$
k^{\prime}=3 \times 10^{10} \exp \left(-16000 / R_{i}\right)\left(\frac{\mathrm{P}_{\mathrm{R}} \mathrm{~T}_{i}}{\mathrm{R}^{\prime}}\right)^{1.8} \mathrm{Y}_{\mathrm{H}_{2} \mathrm{O}}^{0.5} \mathrm{~A}_{\mathrm{t}, \mathrm{i}} \Delta \mathrm{Z}_{\mathrm{i}}\left(1-\varepsilon_{\text {tube }, i}\right), \operatorname{gmole} / \mathrm{sec}(\mathrm{VI} .32)
$$

$$
\begin{equation*}
a_{2}^{\prime}=\left(\frac{\mathrm{P}}{\mathrm{R}_{\mathrm{g}}^{\mathrm{T}} \mathrm{B,i}}\right) \mathrm{N}_{\mathrm{c}, i} \pi \mathrm{~d}_{\mathrm{ce}, \mathrm{i}}^{2} \mathrm{k}, i, \operatorname{gmole} / \mathrm{sec} \tag{VI.33}
\end{equation*}
$$

Carbon monoxide:

$$
\begin{align*}
& F_{M T} Y_{C O, i}=F_{M T} Y_{C O, i-1}+2 a_{4}^{\prime} Y_{C O, i} \\
& \text { (CO out) (} \mathrm{CO} \text { in) } \quad: \text { (CO Produced by } \\
& \text {. } \quad \mathrm{C}-\mathrm{CO}_{2} \text { Reaction) } \\
& +\mathrm{F}_{\mathrm{MT}} Y_{V, i-1} V_{\mathrm{CO}} \quad+\quad a_{2}^{\prime} Y_{0, i}\left(2-\frac{2}{\phi_{\mathrm{B}, \mathrm{i}}}\right) \\
& \text { (CO Produced by ' (CO Produced by } \\
& \text { Volatiles Burning) Char Combustion) } \\
& -k^{\prime} Y_{C O, i}\left(\frac{17.5 Y_{0, i}}{1.24 \cdot 7 Y_{0, i}}\right) \tag{VI.34}
\end{align*}
$$

(CO Burnt)
Carbon dioxide:

$$
\begin{align*}
& \mathrm{F}_{\mathrm{MT}} \mathrm{Y}_{\mathrm{CO}_{2}, i}=\mathrm{F}_{\mathrm{MT}} \mathrm{Y}_{\mathrm{CO}_{2}, i-1}-\mathrm{a}_{4}^{\prime} \mathrm{Y}_{\mathrm{CO}_{2}, i} \\
& \left(\mathrm{CO}_{2} \text { out }\right) \quad\left(\mathrm{CO}_{2} \text { in }\right) \quad: \quad \cdot \quad \begin{array}{r}
\left(\mathrm{CO}_{2}\right. \text { Consumed by } \\
\left.\mathrm{C}-\mathrm{CO}_{2} \text { Reaction }\right)
\end{array} \\
& \left.+j_{2}^{\prime} Y_{C, i} \frac{2}{\varphi_{B, i}}-1\right) \quad-\quad k^{\prime} Y_{C O, i}\left(\frac{17.5 Y_{0, i}}{1+24 \cdot 7 Y_{0, i}} ;\right. \tag{VI.35}\\
& \begin{array}{cc}
\left(\mathrm{CO}_{2}\right. \text { Produced by } & \left(\mathrm{CO}_{2}\right. \text { Produced by } \\
\text { Char Combustion }) & \left.\mathrm{CO}^{2} \text { Combustion }\right)
\end{array}
\end{align*}
$$

The boundary conditions are:

$$
\begin{align*}
& Y_{B, I}=0.21 \mathrm{~F}_{\mathrm{MF}} / \mathrm{F}_{\mathrm{MT}} \tag{VI.36}\\
& \mathrm{Y}_{\mathrm{E}, 1}=\mathrm{Y}_{\mathrm{B}, 1} \tag{VI.37}\\
& \mathrm{Y}_{\mathrm{E}, \mathrm{~V}, \mathrm{I}} \stackrel{-}{-} 0.0 \tag{VI.38}\\
& \mathrm{Y}_{\mathrm{E}, \mathrm{CO}, \mathrm{I}}=0.0 \tag{VI.39}\\
& Y_{\mathrm{E}, \mathrm{CO}_{2}, 1}=0.0 \tag{VI.40}\\
& Y_{B, C O_{2}, I}=0.0 \tag{VI.4I}
\end{align*}
$$

SULFUR DIOXIDE AND NITRIC OXIDE BALANCES
Nitrogen and sulfur content in the volatile products released during devolatilizzation is a function of bed temperature. Volatile nitrogen increases from 20 to 70% as temperature rises from 800 to $1300^{\circ} \mathrm{K}$ (Fine, ei al. 1974) and is expressed as:

$$
\begin{equation*}
V_{\mathrm{V}}=0.001 \mathrm{~T}-0.6 \tag{VI.42}
\end{equation*}
$$

Similarly the sulfur content in the volatiles is expressed as:

$$
\begin{equation*}
V_{S}=0.001 \mathrm{~T}-0.6 \tag{VI.43}
\end{equation*}
$$

Sulfur and nitrogen left. in the residual char are released as SO_{2} and NC when char burns. The following material balances are made for sulfur dioxide and NO in the bed and in the freeboard.

EMULSION PHASE EQUATIONS

$$
\begin{aligned}
& F_{E M, i} Y_{E, S O_{2}, i}=F_{E M, i-1} Y_{E, S O_{2}, i-1}-a_{1}\left(Y_{E, S O_{2}, i}-Y_{B, S O_{2}, i}\right) \\
& \left(\mathrm { SO } _ { 2 } \text { out } \quad (\mathrm { SO } _ { 2 } \mathrm { in }) \quad \left(\mathrm{SO}_{2}\right.\right. \text { Exchanged to } \\
& \text { Bubble Phase) }
\end{aligned}
$$

$$
\begin{equation*}
{ }^{-a_{E, S O}^{2}, i}{ }^{Y_{E, S O_{2}}, i}+R_{E, S O_{2}, c, i}+R_{E, S O_{2}, V, i} \tag{VI.44}
\end{equation*}
$$

$\left(\mathrm{SO}_{2}\right.$ Absorbed by Limestone)
(SO_{2} Released during Char Combustion)
(SO_{2} Released during Volatiles Combustion)
where

$$
\begin{align*}
& a_{E, S O_{2}, i}=A_{t, i} \Delta Z_{i}\left(1-\varepsilon_{c, i}-\varepsilon_{\text {tube, } i}\right)\left(1-\varepsilon_{m f}\right) k_{v 1}\left(\frac{P}{R_{g} T_{i}}\right) \text {, gmole/sec (VI. 45) } \\
& F_{E M, i} Y_{E, N O, i}=F_{E M, i-1} Y_{E, N O, i-1}-a_{1}\left(Y_{E, N O, i}-Y_{B, N O, i}\right) \\
& \text { (NO out) (NO in) (NO Exchanged to } \\
& \text { Bubble Phase) } \\
& -a_{E, N O, i} Y_{E, N O, i}+R_{E, N O, C, i}+R_{E, N O, V, i} \tag{VI.46}\\
& \text { (NO Reduced by } \\
& \text { Char) } \\
& \text { (NO Released (NO Released during } \\
& \text { during Char Volatiles Combustion) }
\end{align*}
$$

where

$$
\begin{equation*}
a_{E, N O, i}=a_{m} A_{T, i} \Delta Z_{i}\left(1-\varepsilon_{c, i}-\varepsilon_{\text {tube,i }}\right) k_{E, N O, i} \frac{P}{R_{g} T_{E, i}} X_{i}, \text { gmole/sec } \tag{VI.47}
\end{equation*}
$$

BUBBEE PHASE EQUATIONS

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{BM}, \mathrm{i}} \mathrm{Y}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{i}}=\mathrm{F}_{\mathrm{BM}, \mathrm{i}-1} \mathrm{Y}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{i}-1}-\mathrm{a}_{1}\left(\mathrm{Y}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{i}}-\mathrm{Y}_{\mathrm{E}, \mathrm{SO}_{2}, \mathrm{i}}\right) \\
\left(\mathrm{SO}_{2} \text { out }\right) & \begin{array}{c}
\left(\mathrm{SO}_{2} \mathrm{in}\right) \\
\text { Emulsion Phase })
\end{array} \\
-\mathrm{a}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{i}} \mathrm{Y}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{i}}+\mathrm{R}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{c}, \mathrm{i}}+ & \mathrm{R}_{\mathrm{B}, \mathrm{SO}_{2}, \mathrm{~V}, \mathrm{i}}
\end{array}
$$

(SO_{2} Absorbed by Limestone)
(SO_{2} Released during Char Combustion)
$\left(\mathrm{SO}_{2}\right.$ Released during Volatiles Combustion)
where

$$
\begin{equation*}
{ }^{a_{B}, S O_{2}, \bar{i}} A_{t, i} \Delta Z_{i}\left(\varepsilon_{c, i}-\varepsilon_{B, i}\right)\left(1-\varepsilon_{m f}\right) k_{v 1}\left(\frac{\mathrm{P}}{R_{g} \mathrm{~T}_{i}}\right), g m o l e / s e c \tag{VI.49}
\end{equation*}
$$

$$
\begin{align*}
& F_{B M, i} Y_{B, N O, i}=F_{B M, i-1} Y_{B ; N O, i-1}-a_{1}\left(Y_{B, N O, i}-Y_{E, N O, i}\right) \\
& \text { (NO out) (NO in) (NO Exchanged to } \\
& \text { Emulsion Phase) } \\
& -a_{B, N O, i} Y_{B, N O, i}+R_{B g} N O, C, i+R_{B, N O, V, i} \tag{VI.'50}\\
& \text { (NO Reduced by Char) (NO Released (NO Released during } \\
& \text { during Char Volatiles Combustion) } \\
& \text { Combustion) }
\end{align*}
$$

$$
\begin{equation*}
a_{B, N O, i}=a_{m} A_{t, i} \Delta Z_{i}\left(\varepsilon_{c, i}-\varepsilon_{\text {tube, } i}\right) k_{B, N O, i} \frac{P}{R_{g}^{T} B, i} x_{i}, \text { gmole/sec } \tag{VI.51}
\end{equation*}
$$

FREEBOARD EQUATIONS

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{MT}} \mathrm{Y}_{\mathrm{SO}_{2}, \mathrm{i}}=\mathrm{F}_{\mathrm{MT}} \mathrm{Y}_{\mathrm{SO}_{2}, \dot{\mathrm{i}-\mathrm{i}}} & +\mathrm{R}_{\mathrm{SO}_{2}, \mathrm{i}}-{ }^{\mathrm{a}_{\mathrm{SO}_{2}, i}{ }^{\mathrm{Y}} \mathrm{SO}_{2}, \mathrm{i}} \\
\left(\mathrm{SO}_{2} \text { out }\right) & \left(\mathrm{SO}_{2} \text { in }\right) & \left(\mathrm{SO}_{2} \text { Released }\right)
\end{array} \begin{gathered}
\left(\mathrm{SO}_{2}\right. \text { Absorbed } \\
\text { by Limestone }) \tag{VI.53}
\end{gathered}
$$

where $a_{\mathrm{SO}_{2}, i}=\left(\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{g} \mathrm{T}_{i}}}\right) N_{\mathrm{A},} \frac{\pi \mathrm{d}_{\mathrm{i}}^{3}}{3}, i_{k_{\dot{v} 1}} ;$ gmole $/ \mathrm{sec}$

$$
\begin{array}{llll}
\mathrm{F}_{\mathrm{MT}} Y_{N O, i}= & \mathrm{F}_{\mathrm{MT}} Y_{\text {NOO,i-1 }}+\mathrm{R}_{\mathrm{NO}, \mathrm{i}}-{ }^{a_{N O, i} Y_{\text {NO, }}} \\
\text { (NO Out) } & \text { (NO in) } & \text { (NO Released) } & \text { (NO Reduced } \\
\text { by Char) } \tag{VI.55}
\end{array}
$$

The boundary conditions are:

$$
\begin{equation*}
Y_{E, S O_{2}, 1}=Y_{B, S O_{2}, 1}=Y_{E, N O ; 1}=Y_{B ; N O, 1}=0.0 \tag{VI.56}
\end{equation*}
$$

SOLID PHASE MATERIAL BALANCE
The overall material balance for the solids in ith compartment in tcris of net solids flow, $W_{n e t ; ~}$ is given by:

$$
\begin{align*}
& W_{\text {net,i}}=W_{\text {net,i-1 }}+W_{f c, i} R_{c h}+W_{f a, i} \\
& \text { (solids out) (solids in) } \quad \text { (Char feed) } \\
& \text { (Additives Feed) } \\
& -W_{D, i} \tag{VI.57}\\
& \text { (Solids Withdrawal (Char Burnt) }
\end{align*}
$$

The boundary condition is $W_{\text {net, }} 1=0.0$
The material balance for the carbon in ith compartment is given as follows by introducing the backmix flow, $W_{\text {mix }}$.

$$
\begin{align*}
& \left(W_{\text {mix }, i}-W_{\text {net }, i}\right) X_{i+1}-\left[W_{\operatorname{mix}, i-1}-W_{n e t, i-1}+W_{\operatorname{mix}, i}-W_{D, i}\right] X_{i} \\
& +W_{\operatorname{mix}, i-1}=r_{i}-W_{f c, i} C_{c h} M_{c} \tag{VI.58}
\end{align*}
$$

where X_{i} is the weight fraction of carbon in the i th compartment.
The boundary conditions are:

$$
\begin{equation*}
W_{\operatorname{mix}, 1}=W_{\operatorname{mix}, \mathrm{MI}}=0.0 \tag{VI.59}
\end{equation*}
$$

The energy balance for the i th compartment is given as follows:
$\mathrm{C}_{\mathrm{S}}\left(\mathrm{W}_{\text {mix }, i}-W_{\text {net }, i}\right) \mathrm{T}_{i+1}$
(heat in from (i+1)th cell)
$-C_{S}\left\{\left(W_{\operatorname{mix}, i-1}-\dot{W}_{n e t, i-1}+W_{\operatorname{mix}, i}-W_{D, i}\right)+C_{g m} F_{M T}\right\} T_{i}$
(heat out from ith cell)
$+\left[C_{S} W_{\operatorname{mix}, i-1}+C_{g m} F_{M T}\right] T_{i-1} \quad+\quad r_{i} q_{c h}$
(heat in from (i-1) th cell) (heat generated by char combustion)
$\rightarrow g_{E, i} q_{V, C O} \quad+\quad g_{B, i} q_{V} \quad+\quad g_{C O, i}{ }^{q_{C O}}$
(heat generated iy (heat generated (heat generated by volatiles combus- by volatiles CO combustion) tion in emulsion combustion in phase) bubble phase)

$$
{ }^{-q_{c a l}} W_{f a, i}+\quad\left(W_{f a, i} C_{s f f}+w_{f c, i} C_{c f}\right) T_{s f, i}
$$

(heat of calcination) (sensible heat of solids feed)

$$
\begin{align*}
= & A_{t, i} \Delta Z_{i} a_{H E, i} U_{i}\left(T_{i}-T_{w, i}\right)+A_{t, i} \Delta Z_{i} a_{H E W, i} U_{w, i} \\
& \text { (heat removed by cooling tubes) }\left(T_{i}-T_{w a l l, i}\right) \tag{VI.60}
\end{align*}
$$

(heat losses through the walls)

ENERGY BALANCE IN THE FREEBOARD

The following equations are obtained for energy balance in the freeboard in ith compartment.
$\left.{ }^{\left(W_{e n t}, i\right.} C_{S}+C_{g m} F_{M T}\right) T_{i-I}+r_{i} q_{c h}$
(heat in from (i-1)th (heat generated compartment) by char combustion)
$+g_{E, i} q_{V, C O} \quad+\quad g_{C O, i}{ }^{q_{C O}}$
(heat generated by (heat generated by volatiles combus- CO combustion) tion)
$-\left(W_{e n t, i} C_{S}+C_{g m} F_{M T}\right) T_{i}=A_{t, i} \Delta Z_{i} a_{H E, i} U_{i}\left(T_{i}-T_{w, i}\right)$
(heat out from ith cell) (heat removed by cooling tubes)
$\div A_{t, i} \Delta Z_{i} a_{H E N, i} U_{w, i}\left(T_{i}-T_{w a l l, i}\right)$
(heat losses through the walls)
Some of the correlations used in simulation are listed in Tiable 2. Table 3 indicates the assumed values for the parameters involved in the model. If, in future, proper and accurate correlations become available, these parameters can be substituted with those correlations. The logic diagrams for the computer programs are shown in Figures 7, 8 and 9. Symbols are explained in Appendix VIII. Algebraic equations obtained are solved using IBM 360 computer available at WVU.

Heat capacity of solids, $\mathrm{C}_{\mathrm{S}}=0.215 \mathrm{cals} / \mathrm{gm} \cdot{ }^{\circ} \mathrm{C}$
Heat capacity of gas, $\mathrm{C}_{\mathrm{gm}}=6.8+0.5 \times 10^{-3} \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$
Density of limestone $=2.4 \mathrm{gms} / \mathrm{cm}^{3}$
Density of coal $=1.4 \mathrm{gms} / \mathrm{cm}^{3}$
Minimum fluidization velocity,

$$
U_{m f}=\left(\frac{\mu}{d_{p}}\right)\left\{\left[33.7^{2}+\frac{0.0408 d_{p}^{3} \rho_{g}\left(\rho_{S}-\rho_{g}\right) g 1 / 2}{\cdot \mu^{2}}-33.7\right\}\right.
$$

Bubble diameter, $D_{B}=D_{B M}-\left(D_{B M}-D_{B O}\right) \exp \left(-0.3 \mathrm{Z} / D_{t}\right)$, cm where

$$
\begin{aligned}
& D_{B M}=0.652\left\{A_{t}\left(U_{o}-U_{m f}\right)\right\}^{0.4} \\
& D_{B O}=0.347\left\{A_{t}\left(U_{o}-U_{m f}\right) / n_{d}\right\}^{0.4}
\end{aligned}
$$

Bubble velocity, $\mathrm{U}_{\mathrm{B}}=\mathrm{U}_{\mathrm{O}}-\mathrm{U}_{\mathrm{mf}}+0.711 \sqrt{\mathrm{gD}_{\mathrm{B}}}$.
Bubble fraction, $\varepsilon_{B}=\left(U_{o}-U_{m f}\right) / U_{B}$
Cloud fraction, $\varepsilon_{c}=\varepsilon_{B} \quad \alpha_{b} /\left(\alpha_{b}-1\right)$
where $\alpha_{b}=\varepsilon_{m f} U_{B} / U_{m f}$
Void fraction at minimum fluidization, $\varepsilon_{m f}=0.5$

TABLE 3. PARAMETERS IN THE MODEL

Bed to tube heat transfer coefficient, $U=0.00765$, cals $/ \mathrm{sec} \cdot \mathrm{cm}^{2}{ }^{\circ} \mathrm{K}$ Freeboard hest transfer coefficient $=(1 / 3) U$, cals $/ \mathrm{sec} \cdot \mathrm{cm}^{2}{ }^{\circ} \mathrm{K}$ Bed to wall heat transfer coefficient $=0.0021$, cals $/ \mathrm{sec} \cdot \mathrm{cm}^{2}{ }^{\circ} \mathrm{K}$

Soliás mixing parameter, $f_{w}=0.075^{\sim} 0.3$
Fraction of wake solids thrown into the freeboard, $f_{\text {SW }}=0.1 \sim 0.5$ Cociing water temperature $=300^{\circ} \mathrm{K}$

Wall heat transfer coefficient in the freeboard $=0.00025 \mathrm{cals} / \mathrm{sec}$

Fig. 7 Logic Diagram for the Computation of
Limestone Entrainment

Fig. 8 Logic Diagram Eor the Computation of Char Entrainmment

Fig. 9 Logic Diagram for Combustion Calculations

Fig. 9 (Continned).

VII. RESULTS AND DISCUSSION

The validity of the proposed fluidized bed combustor model is tested under a set of operating conditions based on the experimental data reported by the National Coal Board, England (1971), Gibbs and his associates in Sheffield (1975), the Exxon Research and Engineering Company, U.S.A. (1976) and NASA Lewis Research Center, Cleveland, Ohio (1978). Table 4 gives the dimensions of the various beds simulated and the configuration of heat-exchange coils used.

Fig. 10 shows the size distributions of the particles in the bed and in the elutriated material for a given feed size distribution of particles under the set of operating conditions specified in the figure. The solid lines in Fig. 10 representing the results of the model simulation indicate close agreement with experimental data. The fine particles in the feed are entrained by the gas stream leaving the bed, and hence the bed particle size is larger than that of the feed particles. The fine particles are splashed into the freeboaxd by the bursting bubbles at the bed surface. Bigger particles return to the bed while the smaller ones are completely elutriated.

Fig. II shows the results of the simulation on axial bed temperature profiles for two different configurations of cooling tubes in the bed. The difference in the profiles is due to the solids mixing pattern in the bed. When horizontal tubes having closer horizontal pitch distance between the tubes are used, solids mixing is considerably hindered, resulting in steeper temperature profile in the bed. The solids mixing is promoted significantly by the action of bubbles lifting the solids in the wake while ascending. If internals are closely packed in the

TABLE 4. DINENSTONS OF FBC EXAMINED

Type \quadBed Cross-section (sizes in cms)	Specifịc surface area $\mathrm{cm}^{2} \% \mathrm{~cm}^{3}$ bed	Tube Outside Diameter cms	Vertical 'Pi'tch cms	Horizontal Pitch cms	Tube configuration
	0.15	. 5.4	9.9	11.4	Ilorizontal staggered
Gibbs,et al. '(19.7.5)		$\text { I. } 25$:-	-
$\begin{aligned} & \text { Exxon Mini } \\ & \text { Plant } \end{aligned}$	$0 . .205$ $0.14 .9$	1.9 1.9		5.5	```Horizontal sexpentine 'Vertical coils```
	0.1744	1.25	8.0	2.86	Horizontal In line

Fig. 11 Simulation of Axial Bed Temperature Profile
bed, the free moving, coalescing bubbles are constrained and may be broken as they impinge on the walls of the tubes. Hence the solids movement is retarded which in turn affects the temperature profile. In the model the solids mixing in the bed is represented by the mixing coefficient, f_{W}. For poor solids mixing f_{W} takes on'low values (0.05-0.2) and for vigorous mixing it takes high values (0.2-0.4). A simulation of the operation of NASA fluid bed combustor is presented in Fig. 12. Again in this combustor, closely packed horizontal tubes are employed for heat removal. As indicated earliex, the solids mixing is poor which is clearly shown by the non-uniform temperature profile and the non-uniform carbon concentration profile in the bed. Carbon concentration peaks at the coal feed point and decreases rapidly within the bed as combustion proceeds. Because of the higher concentration of carbon and caygon near the coal feed point near the distributor, the combustion rate and the heat release rate are higher than the remaining part of the bed. This results in a high temperature zone near the coal feed point. On the other hand; in the freeboard region, though combustion takes place, due to the heat losses through the wall, the temperature drops.

The concentration profiles of oxygen in the bubble and emulsion phases together with the volatiles concentration in the bed are shown in Fig. 13. Experimental observations reported by Gibbs, et al. (1975) on the time averaged oxygen concentrations along the bed height are also shown. Time averaged concentration is neither the bubble phase nor the emulsion phase concentrations since they are obtained from gas analyzer probes. The peaks and valleys of the analyzer response which

Fig. 12 Temperature and Carbon Concentration Profiles in the Bed

Fig. 13 Oxygen Concentration Profile in the Bed
correspond to that of bubble and emulsion phase oxygen concentrations respectively are averaged to obtain the concentration profile.

Near the coal feed point, a large portion of the volatiles is released in the emulsion phase due to the rapid devolatilization of coal. These volatiles immediately burn consuming the available oxygen in the emulsion phase. The oxygen concentration in the emulsion phase is quickly reduced to zero. The volatiles in the emulsion phase are exchanged with the gas in the bubble phase where they are burnt completely. The excess volatiles move up to top compartments while they are burnt on the way. Thus, the oxygen concentiation decreases gradually in the bubble phase along the bed height.

Fig. 14 shows the concentration profiles of $\mathrm{CO}_{2}, \mathrm{CO}$ and volatiles in the bubble and emulsion phases. The concentrations of $C O$ and volatile products in the bubble phase are zero since complete combustion of these gases is assumed in this phase. The experimental data shown are the time averaged concentrations of CO_{2} and CO in the bed. Near the coal feed point, the volatiles released in the emulsion phase burn to form carbon monoxide, the concentration of which increases along the combustor height. As long as volatiles are present in the emulsion phase the combustion of char and CO does not take place. whereas the $\mathrm{C}-\mathrm{CO}_{2}$ reaction takes place. Hence the CO_{2} concentration in the emulsion phase along the bed height decreases until all the volatiles are burnt. Once CO and char combustion start, CO_{2} concentration increases in the emulsion phase. On the other hand, CO_{2} concentration in the bubble phase increases gradually as a function of the bed height indicative of the progressive combustion of char and volatiles in the bubble phase.

Fig. $14 \mathrm{CO}, \mathrm{CO}_{2} \&$ Volatiles Concentration Profiles in the Bed

In regard to the absorption of SO_{2} by the limestone present in fiudized bed combustors, the percentage absorption increases with an inctione in the Ca / S ratio. Ca / S ratio is the most significant operating variable determing the reduction of SO_{2} in the flue gas. Stoichiometricaliy, one mole of calcium is needed to capture one mole of sulfur. But experimental evidences indicate that even with a Ca / S ratio of 3, sulfur capture is not complete. This is due to the fact that as SO_{2} reacts with fresh calcined limestone, an impervious 1a:er of CaSO_{4} is formed surrounding the particle and thereby rendering the particle ineffective in capturing SO_{2} further. At Ca / S ratio of $1.2, \mathrm{SO}_{2}$ capture efficiency is about 60 percent (Fig. 15). SO_{2} retention efficiency improves to 93 percent when Ca / S ratio is increased to 3.3. The experimental data and the calculated result from the proposed model are shown in the figure demonstrating good agreement between the two. The current EPA regulation on SO_{2} emission (1.2 1bs. SO_{2} per million $\underset{\sim}{\mathrm{Btu}}$ burnt) corresponds to a SO_{2} retention efficiency of around 72 percent for 2.75 percent sulfur coal (Pittsburgh coal). From Fig. 15, a minimum Ca / S ratio of around 1.8 is needed based on the model calculation to meet the EPA requirements for the set of operating conditions specified in the figure.

The effect of operating temperature on SO_{2} retention is shown in Fig. 16. An optimum temperature range of 800 to $850^{\circ} \mathrm{C}$ can be observed in which the SO_{2} retention efficiency is maximum. At lower temperatures the rate of SO_{2} capture is low, resulting in a lower sulfur retertion efficiency. At higher temperatures, plugging of the pores occurs due to rapid formation of CaSO_{4} around the outer shell

Fig.is Effect of Ca/S Ratio on $\mathbf{S O}_{\mathbf{Z}}$ Retention

Fig. IG Effect of Temperature on SO_{2} Retention

and reduces the effective specific surface area of the limestone particles resulting in a lower SO_{2} retention efficiency. The agreement between the model predictions and the experimental data is satisfactory:

Fig. 17 shows the effect of fluidizing velocity on sulfur retention efficiency. At low velocities, elutriation is small and hence the average bed particle size is small. This implies a greater reactivity of the limestone particles. Also, the gas and solids residence times are increased. Hence a higher SO_{2} retention efficiency is obtained. But, at higher fluidizing velocities, entrainment is large, and the particles entrained are also larger. Bed particle sizes are consequentiy largex resulting in lower reactivities. At higher superficial velocities; residence time is also short. A combination of these effects results in a lower sulfur dioxide retention efficiency. Fig. 18 shows the SO_{2} concentration profiles obtained from sïmulation of the NASA combustor. Near the coal feed point, because of the combustion of volatiles, a large proportion of SO_{2} is released into the emulsion phase. A high concentration of SO_{2} is seen at this location. SO_{2} is then absorbed by the calcined limestone particles in the bed and its concentration in the emulsion phase decreases as a function of height above the distributor. The gases leaving the bed surface come in contact with the fine limestone particles entrained into the freeboard, and sulfur capture is appreciable in the freeboard region. Also, in the case of NASA combustor, since the cross sectional area of the freeboard region increases as a function of bed height, the gas and solids residence time in the freeboard increases; hence the SO_{2} retention is high and its concentration in the freeboard is low.

Fig. $18 \mathbf{S O}_{2}$ Concentration Profile in the Combustor

The effect of bed temperature on NO emission is shown in Fig. 19. The average carbon concentration in the bed-which is closely related to NO reduction is also shown in the figure. NO concentration at the exit in the flue gas increases with the bed temperature while the average carbon concentration in the bed decreases. At low temperatures, NO formed is reduced by the large amount of char in the bed. At higher temperatures, the NO emission increases since the char content is low affecting the NO-char reaction rate. At temperatures above $825^{\circ} \mathrm{C}$, the NO emission plateaus off. This is due to the fact that while the NO reduction rate by char above this temperature becomes fast, the char content of the bed is significantly lowered. EPA regulation limits the $N O$ emission to 0.7 lbs per million Btu of heat released. This limit corresponds to a NO concentration of about 970 ppm in the exit gas under the conditions specified in the figure. Hence it is clearly demonstrated that fluidized bed coal combustors can meet the current, EPA NO ${ }_{x}$ emission sṭandard.

Fig. 20 is an example of the $N O$ concentration profiles in the bubble and emulsion phases. Data points are the time averaged No concentrations obtained experimentally (Gibbs, et al, 1975) near the wall and at the center of the bed. The NO concentration near the wall. is higher than that at the center of the bed. The probability of a probe sampling the bubble is higher at the center and the emulsion near the wall since the proportion of the bubbles is small near the walls. These results indicate that NO is preferentially formed in the emulsion phase due to the release and subsequent combustion of volatiles in the emulsion phase.

Fig. 19 Effect of Temperature on NO Emission

Fig. 20 NO and Carbon Concentration Profiles in the Bed

Higher concentrations of $N O$ in the emulsion phase near the coal feed point are the results of rapid evolution and combustion of volatiles from coal in this region. The NO concentration in the bubble phase increases because of char and volatiles combustion. Fig. 20 also indicates the NO concentrations in the freeboard. In the freeboard both char combustion and NO reduction take place. When the char burns NO is released from the nitrogen contained in the char. These two competing reactions determine the total NO emission at the outlet of the combustor.

VIII. SENSITIVITY OF THE MODEL PARAMETERS

The most important parameters in the model are the solids mixing parameter f_{w}, the fraction of wake solids thrown into the freeboard $\cong_{s w}$, and the bed to tube heat transfer coefficient U. The effects of these parameters on the temperature profile in the bed are shown in Fig. $\because=22$ and 23. For this parametric study, the bed dimensions and cooling location coils are similar to the NASA fluid bed combustor (Table 4). In future when more accurate correlations are developed these new correlations should be used for estimation of these parameters in the model. Fig. 21 shows the effect of f_{W} on the temperature profile in the bed. Low values of f_{w} represent poor solids mixing, When solids mixing is poor, most of the volatiles are released near the coal feed point. Combustion of these volatiles causes a rise in the temperature of the bed in the neighborhood of the solids feed point. As f_{w} increases, solids mixing becomes more vigorous, and heat liberated by the combustion of volatiles near the feed point is immediately dissipated by the rapidly mixing solids. Because of improved mixing, the bed temperature profile becomes uniform.

The extent of freeboard reactions depends on the solids hold up in the freeboard. Solids hold-up in turn depends on the amount of solids thrown up into the freeboard by the bursting bubbles at the bed surface. The rate of entrainment of solids from the bed surface, F_{0}, may be given by (Yates and Rowe, 1977).

$$
\begin{equation*}
F_{o}=A_{t}\left(U_{o}-U_{m f}\right) f_{w}\left(1-\varepsilon_{m f}\right) \rho_{s} f_{s w} \quad \mathrm{gm} / \mathrm{sec} \tag{VIII.l}
\end{equation*}
$$

Fig. 21 Effect of Solids Mixing on the Bed Temperature Profile

For a set of operating conditions, increasing the value of $f_{\text {sw }}$. increases the solids splashing rate at the bed surface. If a large portion of char leaves the bed, char elutriation from the combustorwill also be large. This will result in lower combustion efficiency, and hence a lower temperature in the bed. The temperature drop in the ireeboard decreases as $f_{S W}$ increases because of increased combustion in the freeboard. This is clearly illustrated in the Fig. 22. It should be borne in mind that the NASA fluidized bed combustor is a small unit and heat losses from the wall in the freeboard are considerable. If the bed is bigger in size than that is used here for simulation, the heat losses through the walls will be minimal. Also, wit.i good insulation, heat losses can be reduced. In large commercial combustors, if the entrainment is increased, combustion of char in the freeboard will also increase resulting in higher temperatures in the freeboard. Hence it is seen that the parameter $\mathrm{f}_{\text {SW }}$ is very critical and has to be carefully evaluated in order to properly account for the freeboard reactions.

Fig. 23 is a parametric study of the effect of bed to tube heat transfer coefficient on the temperature profile in the bed. Changes in the value of the heat transfer coefficient do not significantly affect the shape of the temperature profile but affect the level of bed temperature. As can be seen from Fig. 23, if the actual heat transfer coefficient were $0.00765 \mathrm{cals} / \mathrm{sec} . \mathrm{cm}^{2}$, ${ }^{\circ} \mathrm{C}$ ($56 \mathrm{Btu} / \mathrm{hr} . \mathrm{ft}^{2} .{ }^{\circ} \mathrm{F}$), assuming a lower heat transfer coefficient of $0.0063 \mathrm{cals} / \mathrm{sec} . \mathrm{cm}^{2},{ }^{\circ} \mathrm{C}$ (46 Btu/hr. $\mathrm{ft}^{2},{ }^{\circ} \mathrm{F}$) would result in a temperature difference o \tilde{E} about $40^{\circ} \mathrm{C}$ above the actual temperature. So it is apparent that an accurate

Fig, en Effect of Solids Entrainment on the Temperature Profile

Fig. 23 Effect of Bed to Tube Heat Transfer Coefficient on the Bed Temperature
estimation of the heat transfer coefficient for a wide range of design is critical to make accurate predictions of bed temperatures.

Fig. 24 brings out the effect of bubble size (or the compartment size, since bubble size is same as compartment size) on the bed temperature profile. When a single bubble diameter is used as an adjustable parameter, a small value for the bubble diameter overestimates the combustion rate in the bed. This is because of increased mass transfer of oxygen to the emulsion phase from the bubble phase. This results in steep temperature profiles. As the bubble diameter is increased, the profile becomes less steep and also the average temperature decreases because of less combustion in the bed. Fig. 24 also indicates the predictions from the present work compared with experimental data. Clearly it is seen that bubble size cannot be assumed as an arbitraxy parameter, and the coalescence of bubbles has to be incorporated in any realistic FBC model. The effect of the location of cooling tubes on the bed temperature profile is shown in Fig. 25 by moving the heat exchange zone. In this calculation, the other variables are kept constant. It appears that by properly adjusting the location of the cooling coils, the bed temperature can be maintained uniform.

Fig. 24 Effect of Bubble Size (a:Compartment Size) on the Bed Temperature Profile

Fig. 2t ffiect of cecation of Cooling Tubes on the Bed Temperature Profite

IX. CONCLUSIONS

The following conclusions can be drawn from this study:

1. The agreement between the simulated results and the experimental data attest to the validity of the proposed model for the fluid bed coal combustion and of the assumptions made.
2. The elutriation phenomenon is taken into consideration in the model. The results of simulation on elutriation agree well with the experimental data.
3. The model confirms the importance of the role of solids mixing - n mainteining a uniform bed temperature. Poor solids mixing results in nonumiform temperature profile and carbon concentration profile in the bed. The poor mixing is accounted for by f_{W}, the solids mixing parameter in the model. This important parameter in the model alss accounts for the devolatilization of coal. The assumption of a major portion of the volatiles being released near the feed point is justified by the concentrations of $\mathrm{NO}, \mathrm{O}_{2}$ and CO observed experimentally : near the coal feed point.
4. Although a simple approach is taken to calculate the bubble size through internals (and the results seem reasonable), a proper bubble size correlation in the presence of cooling tubes with different configurations needs to be developed. Bubble size cannot be assumed as an adjustable parameter, and bubble coalescence has to be considered.
5. Attention has to be focused on the evaluation of the soiids mixing parameter f_{w}, the fraction of wake solids thrown into the freeloard $f_{s w}$, and the bed to tube heat transfer coefficients. A parametric study of these variables indicates the necessity of accurate estimation for properly accounting for solids mixing,
freeboard reactions and bed temperature profile.
6. Although the validity of the two phase theory has been questioned for very large particles (> $2000 \mu \mathrm{~m}$) and very small particles $(<50 \mu \mathrm{~m})$, the predicted results indicate that the proposed two phase model can effectively simulate the performance of the FBC.
7. The concentration profiles of $\mathrm{O}_{2}, \mathrm{CO}, \mathrm{CO}_{2}$ and. volatiles computed based on the model are in accordance with the experimental observations.
8. NO (nitrogen oxide) emission is shown to be dependent on the operating temperature. NO emission can be maintained below the EPA limits by maintaining a higher concentration of carbon in the bed and in the freeboard. NO concentrations in the bed indicate that most of the N is formed in the vicinity of the coal feed point.
9. In operation of a FBC a balance has to be made between the combustion efficiency, the carbon loss, higher SO_{2} retention and lower NO emission. Based on the analysis, the approximate optima are found to be (i) for the temperature range between 800 to $850^{\circ} \mathrm{C}$, (ii) for the velocity between 90 to $100 \mathrm{cms} / \mathrm{sec}$, (iii) for the particle sizes below $3000 \mu \mathrm{~m}$, and for the excess air between 10 to 25%.

REFERENCES

1. Amitin, A. V., Martyushin, I. G. and Gurevich, E. A.', Chemistry and Technoiogy of Fuels and Oils, 3-4, 181 (1968).
2. Anthony, D. B. and Howard, J. B., AIChE J., 22, 625, (1976).
3. Arthur, J. R., Trans, Faraday Soc., 47, 164 (1951).
4. Avedesian, M. M. and Davidson, J. F., Trans. Inst. Chem. Engrs., 51, 121 (1973).
5. Baron, R. E., Hodges, J. L. and Sarofim, A. F., AIChE 70th Annual Vieeting, New York, NY (1977).
6. Beer, J. M., Paper presented at 16th International Symposium on Combustion, The Combustion Institute, 439-460, (1977).
7. Bethell, F. V., Gill, D. N. and Morgan, B. B., Fuel, 52, i2l (1973).
8. Borghi, G., Sarofim, A. F. and Beer, J. M., AIChE 70th Annual Meeting, New Yori, Nov. (1977).
9. Borgwardt, R. H., Environ., Sci. Technol., 4, 59 (1970).
10. Borgwardt, R. H., Drehmel, D. C., Kittleman, T. A., Mayfield, D. R., and Owen, J. S., Selected Studies on Alkaline Additives for Sulfur Dioxide Control, EPA - RTP, December (1971):
11. Caram, H. S. aṇd Amundson, N. R., Ind. Eng. Chem. Fundamentals, 16, 171 (1977).
12. Campbe11, E. K. and Davidson, J. F., Paper A-2, Institute of Fuel Symposium Series No. 1, (1975).
13. Caretto, L. S., Paper presented at the 1977 Fall Meeting, Westexn States Section - The Combustion Institute, Stanford University, October (1977).
14. Catipovic, N. M., Jovanovic, G. N. and Fitzgeralé, T. J., AIChE J., 24, 3, 543 (1978).
15. Ghen, T. P. and Saxena, S., Fuel, 56, 401 (1977).
16. Davidson, J. F. and Harrison, D., Fluidized Particles, Cambridge University Press, (1963).
17. Exxon Research and Engineering Company, Studies of the Pressurized Fluidized-Bed Coal Combustion Process, EPA-600/7-76-011, Linden, N. J. (1976).
18. Field, M. A., Gill, D. W., Morgan, B. B. and Hawksley, P. G. W., Combustion of Pulverized Coal, BCURA (1967).
19. Fine, D. H., Slater, F. M., Sarofim, A. F. and Williams, G. C., Fuei, 53, 120 (1974).
20. Fourno1, A. B., Bergougnou, M. A. and Baker, C. G. J., Can. J. Chem. Eng., 51, 401 (1973).
21. Gibbs, B. M., Pereira, F. J. amd Beer, J. M., Ins. Fuel Symp. Series, paper D6 (1975).
22. Gibbs, B. M., Paper A-5, Institute of Fuel Symposium Series (1975).
23. Gordon, A. L. and Amundson, N. R., Chem. Eng. Sci., 31, 1163 (1976).
24. Gregory, D. R. and Litttlejohn, R. F., The BCURA Monthly Bulletin, 29, (6), 173 (1965).
25. Horio, M. and Wen, C. Y., Proc. of International Fluidization Conference, Pacific Grove, California (1975).
26. Horio, M., Mori, S. and Muchi, I., Proc. of 5th FBC Conference, Washington, DC (1977).
27. Horio, M. and Wen, C. Y., AIChE Symp. Series, 73, (161), 9 (1977).
28. Horio, M. and Wen, C. Y., To be published in AIChE Symposium Series on Fluidization (1978).
29. Hottel, H. C., Williams, G. C., Nerheim, N. M. and Schneider, G. R., 10th International Symposium on Combustion, 111, (1965).
30. Ishida, M. and Wen, C. Y., AIChE Symposium Series, 69, No. 128, (1973).
31. Kato, T. and Wen, C. Y., Chem, Eng. Sci., 24, 1351 (1969).
32. Kobayashi, H., Arai, F. and Sunagawa, T., Chem. Engrs. (Japan), 31, 239 (1967).
33. Kunii, D. and Levenspiel, 0., Fluidization Engineering, Wiley, N. Y. (1969) .
34. Loison, R. and Chauvin, Chiṃ. Ind., 91, 269 (1964).
35. Merrick, D. and Highley, J., AIChE Symp. Series, 70, (137), 366(1974).
36. Mori, S. and Wen, C. Y., AIChE J., 21, 109 (1975).
37. NASA Lewis Research Center, Cleveland, Ohio, Private Communication, (1978) .
38. National Coal Board, Reduction of Atmospheric Poilution, EPA-PB= 210 673, London, England (1971).
39. Nazemi, A., Bergougnou, M. A. and Baker, C. G. J., Fluidizatıon $\therefore \quad$ and Fluid-Particle Systems, AIChE Symp. Series, 141, 70, 98 (1974).
40. Oguma, A., Yamada, N., Furusawa, T., and Kunii, Di, Prepřint for 11th Fall Meeting of Soc. of Chem. Eng. Japan, 121 (1977).
41. Perėra, F. J. and Beer, J. M., Fluidization, Proc: of Second
: Engineering Foundation Conference, Trinity College, Cambridge, England (1978).
42. Rajan, R., Krishnan, R. and Weri, C. Y., To be published jì AIChE Symposium Series on Fluidization (1978).
43. Rengarajan, P., Krishnan, R. and Wen, C. Y.; AIChE 70th Annual Meeting, New York; Nov. (1977).
44. Rowe, P. N., Chemícal Reaction Engineering-Houston, Ani. Chem. Soc. Symp. Ser., 65, 436 (1978).
45. Wen, C. Y. and Leva, M., AIChE J., 2, 482 (1956).
46. Wen, C. Y. and Yu, Y. H., AIChE J., 12, 610 (1966).
47. Wen, C. Y. and Ishida, M., Environ. Sci. Techno1., 1, 103 (1973).
48. Wen, C. Y. and Fan, L. T. Model for Flow Systems; and Chemical Reactors, Marcel Dekker, Inc. New York, (1975).
49. Wender, L. and Cooper, G. T., AIChE J., 4; 15 (1958).
50. Yates, J. G. and Rowe, P. N., Trans. Inst. Chem. Engrs., 55, 137 . (1977).
51. Zenz, F. A. and Weil, N. A., AIChE J., 4, 472 (1958).

ELUTRIATION PROGRAM

2,	C	
61.	c	LFMESTONE COMPOSITION,
3コ.	c	
0.5.		
64 :	c	
6s.	C	CQMPOSFTION ANG NET HEATING UALILE OF COAL
如.	C	
97.	c	
68.	c	XCF : FIXET CARBON
69:	c	XCU : VOLATTLE GABSON
70:	$\stackrel{C}{C}$	XH: HYLROGEN
71.	0	XST S SHLPutur
7\%	C	XO : OXYGEN
73:	E	XN : NTMROGEN
74.	c	XW : Mot
75.	C	
76:	c	
77.		
78,	c	
79.	c	OEERATING CONDITIONS 7 (FEEL CONGITION)
30. 81.	c	READ (S \% 1001) HLMF, HLF PAU:TAY
32,	c	
93.	c	DPEFATING CONDITION 2 (SOLIDS AND GAS FEEDS)
84,	c	
85:		
86	${ }_{C}^{C}$	
37.	C	ÇALCULAFION OF YOJAATILES YIELII ANI THE COMFOSITION OF UOLAYELES
88.	C	
89.		Why $=0.3 *(100 . * U M-10.9)$
90.		
91.		
92,		$y=U *(1,-X W-X A)$
93.		RN = 1,6-0.001*TAU
94.		IF (KN :GT, 1:) KN $=1.0$
95.		IFP (RN , LT, O\%) RN: $=0$
		$\mathrm{FS}=\mathrm{RN}$
77.		$\mathrm{RO}=0.0$
98.		$\dot{\mathrm{R}} \mathrm{H}=0.0$
99.		CH4 $=0.20 .1-0.469 *$ W +0.241 *UM**2
100.		$\mathrm{H}^{3}=0,157-0.808 * \cup M+1,338 *$ UM**
10.1	-	
102.		CO $0=0.423-3,653 * 41+4.845 * \cup$ m**2
103.		
104.		TAR $=-.325+7.279 *$ M-12.88*UM**2
105.		
106.		OTAR $=X 0 *(1 .-\mathrm{FO})-V *(C 02 / 44 .+\mathrm{CO} / 28 . * 0.5+\mathrm{H} 20 / 18.0 * 0.5) * 32.0$
107.		MTAR $=120.0$,
108.		CH4 $=$ U*CH4/1.6.0
10.9 .		H2 $=$ UKH2/2.0
110.		$\mathrm{CO2}=\mathrm{U*C02/44.0}$
1:11.		$\mathrm{CO}=.4 * \mathrm{CO} / 28.0$
112.		H20 $=$ U* $\mathrm{H} 2 \mathrm{O} / 18.0$
113.		CTAR = U*TAR - HTAR - OTAF
114.		TAR = (CTAR +HTAR+DTAF) /MTAR
± 15.		RUGAS $=\mathrm{CH} 4+\mathrm{H} 2+\mathrm{TAR}$
± 10.		COU = COARUGAS
117.		cgoy $=$ cos/rugas
118.		COUE $=($ CHA CTAR $/ 12.0) /$ RUGAS
$11 \overline{\%}$		conue = CQuB

120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.

170 .
171.
172.
173.
174.
175.
176.
177.
179.
179.

```
    XCV = CTAFE + (CH4+CO2+CO)*12.v
    XCF = XC - XCU
    KC= XCF / XC
    COALC = XC/ / 12.0
    LOALH = XH
    COALO = XO/1G.0
    COALN = XN /14.0
    COALS = X5 / 32.0'
    CHARC = RC * COALC
    CHARH}=\textrm{RH}* COAL
    CHARO \doteq RO * COALO
    CHARN = RN * COALN
    CHARS = RS * COALS
    KCHAR = 1.0-U OW
    CCHAR = CHARC*12.0/ECHAR
    HCHAR = CHARH*1.0/RCHAR
    OCHAR = CHARQ*16.0/RCHAR
    NCHAR = CHARN*14,0/RCHAR
    SCHAR = CHARS*32.0/RCHAR
    MAIE = 0.21*MO2+(1,-0.21)*MN2
    A2 = XC/MC+XH/MH2*0,5+XG/MS+XN/MN2-XO/MOL
    FMTH = WCOAL*(1,-XW)*A2/0.21
    IF (EXAIR ,GT, 0.) FMF=FMTH*(1.+EXAIR)
    IF (EXAIR , EQ, O. ,AND .FMF .EQ, O.) FMF = ATB(I)*UO*FAU,FG/TAU
    IF (EXAIR , EG, O.) EXAIF = FMF/FMTH - I.
    UO = FMF*RG*TAU/FAU/ATE(1)
        FMOL FFMF*(1, -0, 21) +( (XC/MC+XH/MH2+XS/MS*O +2+XN/MN2*2,0)K(1,-X'山m
    1XW/MH2O)*WCOAL+FMTH*0.21*EXAIR
        GFLOL = FMF*(1,-0.21)*MN2+( (XC/MC*MCQ2+XH/MH2*MH2O+XS/MS*MSO2*O.2%
    1XN/MN2*2.0*HNO)*(1,-XW)+XW)*WCOAL+FMTH*O.S1*EXAIF*KMO2
        MGAS = GFLDW/FMO
            FMO : AUERAGE FLOW RATE OF GAS IN THE bEd MOLE/SEC
        RHOCH : DENSITY OF CHAR
        RHOCH = RCHAR*RHOC
        IF(CAS.EG.O., ANI, WAD.GT.O.)
    1CAS=WAD*XCAO/MCAO/(WCOAL.*(1.-XW)*XS/MS)
        IF(CAS ,GT, O. . ANII WAD.EQ.O.)
    1WAD=CAS*(WCOAL*(1,-XW)*XS/MS)/(XCAO/MCAO)
        SULFUR CAPTURE EFFICIENCY ASSUMED TO EE AFOUND BS PERCENT TO
        Calculate the density of the fafticles in the bed
        AI = 0.0
        IF (CAS .GT. 0.0) A1 = 0.85/CAS
        IF (A1 .GT. 0,4) A1 = 0,4
        RHOEEI = (1.-XCO2+XGAO/MCAO*A1*MCASO4)*RHOAD
        IF (CAS ,EQ. 0.0) RHOEEI = FHOAII
        WFITE (6,2O00) NAMEL,NAMEL2, XCAO,XMGO,XSIO2,XCO2,
    *(DIA(I),FFACTA(I),I = 1,NDF)
    WRITE(6,2010) DASUF,DAWMF
    WKITE(6,2020) NAMECI,NAMEC2,XCF:XCU,XH:XN,XS,XO,XW,XA,VM,U
    WRITE (6,2030) ( IIA(I),FFACTC(I), I = 1 , NIF )
    WRITE (6,2040) ICSUF,ICWMF
        IF (HLF ,EQ, O.0) VMF = VOLUME (HLMF)
        IF (HLMF ,GT, 0.0) WNB= UMF*(1,-EMF)*RHOEED
        CALL EIUT
        WFITE (6,OFCF)
```

 \(\stackrel{C}{c}\)
 C
 | 180. | | WRITE (STEES) |
| :---: | :---: | :---: |
| 13t. | 1000 | FOFMAT (12, / (8F10.0)) |
| 182. | 1001 | FOFMAT (8F10.0) |
| 183. | 1010 | FORMAT (2A4/(8F10.0)) |
| 184. | 3000 | |
| 125. | | |
| 186. | | |
| 197. | 2010 | FORMAT('0':5X,'SURFACE YOL MEAN LIA OF ALIISTIUES SEELI = DASUF = |
| 188. | | |
| 189. | 2020 | |
| 190. | | |
| 191. | | |
| 192. | 2030 | |
| 593. | | *T81,F8.4) |
| 194. | 2040 | FORMAT ('O', $5 \times$,'SURFACE UOL MEAN IIIA OF COAL FEEI $=$ IICSUF $=$ ', |
| 195. | | *F10.4,3X, 'CM',5X, WT. MEAN IIIAMETER $=$ IICIMF $=$ ',F10.4.1) |
| =96. | 10000 | STOP |
| :97. | | END |
| 193. | | SUEROUTINE AREA (ZI, DTI. ATI) |
| 199. | | |
| 200. | | 1ATE (30), UMF (30), DUR (30), IUUBEFF (30), UTA (30), UTE (30), |
| 201. | | |
| 202. | - | 3LFSUE, [FWME, DCSUB, DCWME; LO, MGAS, MTE |
| 203. | | COMMON /C/ DIA 30$)$, FRACTA (30), FRACTC(30), IPP(30), FFFC (30), FRA (30): |
| 204. | | |
| 205. | | 2ENTC (30,30) FFFAEN (30$)$, FFAEL (30), CU (30) : |
| 205. | | 3FFA (30), GFLOW, WCOAL, WAD, WB, WBC, WELUA, CELU, EFF, XC, XCF, |
| 207. | | AXA > X , RECAR, CCHAR, WDIS, RHOAD, TOHC \%HFB, NDF |
| 208. | C | |
| 209 . | C | Galculation of the cross sectional area given the height above |
| 210. | c | FHE IISTRIBUTOR |
| 21.1 | C | |
| 212. | | Iio $10 \mathrm{~J}=1$, MTB |
| 213. | | IF (ZI .GT. ZR(J)) GQ To 10 |
| 214 . | | FJMI = SQRT (ATH (J-I) / FII) |
| 215. | | |
| 216: | | |
| 217. | | $\mathrm{RI}=$ (1.0 + AI * E1) * RJM1 |
| 219. | | $\mathrm{ITI} \mathrm{I}=2.0$ *RI |
| 219. | | ATI $=\mathrm{FI} *$ RI ** 2 |
| 230. | | GO TO 20 |
| 221; | 10 | CONTINLE |
| 222. | $\underline{20}$ | CONTINUE |
| 233. | | RETURN |
| 234. | | END |
| 225. | | SUBROUTINE ATTR (RHOCCH,T,IIC,F,YO2, FG, TB, RKI) |
| 226. | | REAL MC' |
| 227. | C | |
| 228. | c THI | IS SUBROUTINE COMPUTESS BURNING TIME OF A CHAR PARTICLE |
| 229. | C | |
| 230. | | $E M=1.0$ |
| 231. | | SIEM=1.36E-12 |
| 235. | | INDX $=0$ |
| 233. | | $\underline{\mathrm{T}} \mathrm{TS}=100.0$ |
| 234. | | $T P=T$ |
| 235. | | $\mathrm{MC}= \pm 2.0$ |
| 236. | | DO $100 \mathrm{I}=1,20$ |
| 237 . | | ETSMAX $=0.001 * T \mathrm{P}$ |
| 238. | | AKS $=8710.0$ WEXF $(-35700.0 / 1.986 / T P)$ |
| 239. | | TAU $=(\mathrm{T}+\mathrm{TF}) * .5$ |

240 .		! $=$ - 26* ($\mathrm{TAU} / 1800$) **
241.		CONL=0.632E-5*SQRT(TAU), (1.+245./TAU*10.**(-12.,TAU))
242.		$Z=2500 . * \operatorname{EXP}(-12400.11 .986 / \mathrm{TAU})$
243.		IF (LEC , LE, 0.005). $\mathrm{FHI}=(2.3 \mathrm{Z}+1) /.(\mathrm{Z}+1+$)
244.		
245.		* - Z* (LIC-0.005) 10.095$)$
246.		IF (IUC . GT 0.0 .10$) \mathrm{FHI}=1.0$
247.		$\mathrm{Q}=7900.0 *(2 . / \mathrm{PHI}-1)+2340.0 *(2 .-3 . / \mathrm{FHI})$
248.		AKF=24**PHI*D/(IC*RG*TAU)
249.		A $\mathrm{F}=$ (RG*TAU/MC) $/(1, / A K S+1 . / A K F)$
350.		RHS $=$ AKR*P*Yロ2**MC*Q/(RG*TAV) - EM*SIGM* (TP**4-T**4)
251.		$E T S=T F-T-R H S * D C /(2,0 * C O N D)$
252.		CALL CRRECT (I,INDX, GTS,TPI,TP2,TF,E1, ET, ETS,ETSMAX)
253.		IF (INIX.EQ.2) GO TO 110
254.	100	CONTIMUE
255.		WRITE (6, 4000)
256.	4000	FORMAT ('O',10X,'JP CALCULATION HAS NUT CONUERGEE. S.NO.=4000', \%)
257.	110	CONTINUE
258.		TE $=$ RHOCCH*RG*TAU*DC**2 / (96.*PHI *ロ*F*YO2)
259.		$\mathrm{RK} \mathrm{I}=1 . / \mathrm{TB}$
260.		RETURN
261.		END
262.		SUBROUTINE CRRECT(I,INDX, DX , X1, X2, XNEW,E1,E2,E,EMAX)
263.	C	I: NUMBER OF THIS TRIAL, 1 FOF FIRST TRIAL
264.	c	INDX: INDEX OF THE TRIAL LEVEL
265.	C	INDX=0: JUST PR@CEEDING
266.	C	INDX $=1$: THE ROOT HAS BEEN CAUGHT RETWEEN $X_{1} 1$ ANI X_{2}
267.	C	INDX $=2$: THE ITERATION HAS CONVERGEI
268.		IF (ABS (E). GT, EMAX) GO TO 5
269.		INDX $=2$
270.		RETURN
271.	5	CONTINUE
272.		IF (INDX.EQ.1) GO TO 100
273.		X2=XNEW
274.		E2=E
275.		IF (I.EQ.I) GO TO 10
276.		IF (E1*ES2, LE, O,) INDX=1
277.		IF(INIX.EQ.1) 60 TO 150
278.	10	$\mathrm{X} 1=\mathrm{X} 2$
279.		$E 1=E 2$
380.		XNEW $=$ XNEW + DX
281.		FETUFN
282.	100	CONTINUE
283.		IF (E1*E.LT.0.) GO TO 110
284.		$E I=E$
285.		X1=XNEW
286.		GO TO 150
297.	110	E2=E
288.		X2=XNEW
289.	150	continue
290.		XNEW $=(X 1-X 2) * E 2 /(E 2-E 1)+X 2$
291.		RETURN
292.		ENI
293.		SUEROUTINE MESIGN.
294.		COMMON/A/ ZHE (30), $\mathrm{AHE}(30), \mathrm{DTUEE}(30), \mathrm{FU}(30), \mathrm{FH}(30), \mathrm{ZB}(30)$,
295.		
296.		
297.		3DFSUB, DPWME'ILCSUE. DCWME, UO, MGAS.MTE
298.		
299.	+ 1	

```
30v.
301.
302.
303.
304.
305.
306.
307.
303.
309.
3:10:
311.
312.
313%*
314,
315.
310.
317.
319.
319.
320:
321.
322.
323.
324
325.
326.
327.
328.
329.
330.
331.
332.
3゙3%.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
    2ENTC(30,30),FFAEN(30),FFRAEL(30),CU(30),
    3FFA(SO),GFLOW, WCOAL, WAD,WE,WBC, WELUA,CELU,EFF, XC,XCFF,
    4XA,XW,FCHHR,CCHAR,WDIS,FHOAD,TLHC,HFE,NLP
    DHMENSION IARR(30)
C
C
    AXIAL VARIATION OF REIF CROSS SECTION
    FEAD, (5,1000)\ A1,A2,A3,A4
    AEAR (5,100:1) MTB,(ZB(J),ATB(J), J=1, MTE),
    IARRNG 1 ?
    I ----- VERTICAL INLINE ARRANGEMENT.
    2 ---- VEFTICAL ST,AGGEREI ARFANGEMENT
    3: ----- HORIZONTAL INLINE ARFANGEMENT
    4 --..- HORIZONFAL STAGGERED ARRANGEMENT
    HEATT EXCHANGE TUEES.
```



```
                                    DO &OD J = 1, MTHE
    IF (AHESJ),GT. 0.0), 60, T0, 100
    IF (LTTURE(J.),EQ. O.0). GO. TO: 100.
    AHE(J) = PI * DTUEE(J) / (FH:(J)*FU(Ji).).
                                    EONTINUE
    WRITE (6,2000): A1,A2r.AB:,A4:
    WF要砥 (6,2001)
```



```
    WFITE (G:2003.)
    WRITE (6,2004.) (ZHE(J+I):AHE(J),GTUEEE(J),FV(J),FHH(J),mIARR(J),
    1J = 1., 价HE)
    Z1F = ZB(1)
    AEED1 = ATB(1)
    WHED1 = SRRT(4.0 * AREDA / FIT)
    LUB(1) = 0.0.
    DYEEFF(1) = 0.0
    ZHE(1) = 0.0
    DZAU = 30%O.
    N: =, IFIX(ZB(MTB)/DZAU.)
    Z2 = Z1 + nZAU
        IO. 10 I = 1,N
                    DO 20 J = 1,MTHE
    IF ( ZHE(J),LE. ZN .ANN. ZHE(J+1) .GE, Z2 ) GO TO 30
    IF ( ZHE (J) .LE. ZZ .AND. ZHE'(J+1) .LT. Z2 ) GO TO 20
    Fi = ( Z2 - ZHE(\) ) / DZAU
    F2.= (ZHE(J) - ZH ) / DZAU
    AH}=F1 * AHE(J)- + F2 * AHE(J-1
    DIAT = F1 * DTUEE(J) + F? * * DTURE(J-1)
    GO TO. }4
    30 AH = AHE{J)
    DFAT = IITUBE(J)
    40- CONTINUE
    GO TO 50
                                    CONTINUE
        2 0
    50
    continue
    CALL AREA ( Z2,nHEI,ABEN )
    G\cupB(I+1)=0.5 * (AREDt,AREII) * IIZAV
    IUEEFF(I+.1) = ח\@("I**) * (1.0 - 0.t25 * AH * EIAT)
    Z1 = Z2
    ABEIH = ABED
```

360.	10	Cuntinue
361.	1000	FORMAT (AA4)
352.	1001	FORMAT (I1)(BF10.0).)
353.	1002	FORMAT (I1/(5F10.0,110))
364.	2000	FORMAT ('1',20X,4A4,/1)
365.	2001	FORMAT ('0', T41,'HT.AEOUE IISTRIEUTOR,CM',T81,'CROSS SECTIONAL
366.		1'AREA OF BED, SQ, CM, ', ${ }^{\text {a }}$
367.	2002	FORMAT (T49,F8, 4, T9', F10,3)
368.	2003	
369.		1T58, 'IILA, OF TUAES KCM', T78, 'VER,FITCH,CM', T95, 'HOK, PITCH,CM',
370.		2T113,'TUEES ARRNGT', 1)
371.	2004	FORMAT (T8,F6.2,T33,F6.4,T62,F6.3,T92,F6.3,T99,F6.3,T118,I2)
372.		RETURN :
373.		END
374.		SURROUTIAE ELUT
375.	c	
376.	c	THIS SUBROUTINE PERFORMS THE ENTRAINMENT ANI ELUTRIATION CALCULATIGA
377.	C	USING THE MASS balance for each size fraction of the particles
378.	c	
379.		REAL MGAS
380.		
381.		1ATR (30), UMF (30), $\operatorname{IUE}(30)$, DUEEFF 30$)$, UTA (30), UTC (30),
382 ,		2EMF, RG, G,FI, HLMF, HLF,FAU, TAU,FMO, RHOCH, RHOEED, IZZAU, UMF, XAV,ETCC,
383.		SDFSUE, IFWMB, DCSUE, ELCWME, UO, MGAS, MTE
384.		COMMON /C/ DIA 30$)$, FRRACTA (30), FRACTC (30), DF (30), FRC(30),FRA(30),
385.		
386.		$2 E N T C(30,30)$, FRAEN (30), FRAEL (30), $\mathrm{CU}(30)$,
387.		3FFA (30), GFL OW, WCDAL, WAIF, WR, WBC, WELUA - CELU, EFF - XC, XCF,
388.		4XA, XW, FCCHAR, CCHAR, WDIS, RHOAD, TDHC,HFB,NIP
389.		DIMENSION FFI (30), R(30), FO (30), $\mathrm{HE}(30), \operatorname{IIPSE}(30) \cdot \operatorname{IFWE}(30) \cdot \operatorname{ILCSE}(30)$,
390.		1DCWE (30) , DCE (30,30), FCE (30,30), WEA (30), WEC (30)
391.		IF (HLMF .GT, 0.0) GO TO 1
392.		HLMF $=0.5 *$ HLF
393.		UMF $=$ VOLUME (HLMF)
394.		WE $=$ UMF* (1, -EMF) *RHORED
395.	1	CONTINUE
396.		IJTF $=$ WCDAL*XA + WAII*RHOBEI//RHOALI
397.		$\mathrm{EB}(1)=0.0$
398.		EB(NIP) $=0.0$
399.		$0125 \mathrm{I}=2, \mathrm{NHF}$
400.		$\mathrm{FFI}(\mathrm{I})=0.0$
401.		IF (LIF (I) +LT + 0.0125 *ANI, IFF (I) +GE* 0.0003) FFI (I) $=0.2$
402.		IF (IIP (I) .LT . 0.0063 . AND. LIF (I) .GE. 0.0031) $\mathrm{FFI}(\mathrm{I})=0.2$
403.		IF (IFP (I) .LT, 0.0031) FFI (I) $=0.6$
404.	25	CONTINUE
405.		$F W=0.075$
406.		$F S W=0.1$
407.		$\mathrm{P} 1=0.0$
408.		$P 2=0.0$
409.		IF (HLF , EQ . 0.0) HLF $=2.0 * H L M F$
410.		$H T=H L F$
411.		CALL AREA (HT, IIT, CSAREA)
412.		FHOGAS = PAU*MGAS/RG/TAV
413.		VISC $=3.72 \mathrm{E}-6 * T A V * * 0.676$
414.	-	UO = GFLOW/CSAREA/RHOGAS
1 ± 5.		TIH $=0.42$ O*UO**1.2*(11.43-1.2*ALGG(U0) $)$
416.		TIHC $=$ TILH
417.		HFE $=$ ZB(MTE)-HLF
418.		IF (TIH , GT . HFB) TUH = HFE ORIGTNAL PAGE IS
419.		no $10 \mathrm{I}=1$, NIF OF POOR QUAJIKI

```
420.
4 2 1 .
423.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
435.
437.
4,58.
439.
440.
441.0
442.
443.
444.
445.
446.*
447.
448.
449.
450.
451.
452.
453.
454.
455.
45'.
457.
458.0
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
4.74.
475.
47%.
477.
478.
479.
C 11
\(c\)
C
C
C
    RK}=0.003/3600./30.48
    EWB: = 0.02*WE
    |WIIS = 0.43*UTF
    INDEX = 0
    W(1)=0.0
    10 30 L = 1.9100
    12 CONTINUE
    SUMA = 0.0.
    00.5.I=2,NOF
    IF (`UTA(I)-UO) .LT. O.2*UO) FFA(IF) = O.O'
    SUMA = SUMA + FRA(I)
    5 CONTINUE
    no 15 I = 1,NDF
    FRA(I). = FRA(II)/SUMA
    15 CONTINUE
    WECC = 0.0
    DO 40 I = 2,NDF
    BB(I) = FRA(I)*WB
    R(I) =0.0
    IIFF= UO-UMF(I)
    FFA(I)= FFI(T)*RK*DIFF*WR
    IF (FRA(I) +EQ. 0.0) GO. TO 55
    Cu(1) = 1.0
    HO,45 K = 2,NDP
    CU(K) = CU(K゙-1) - FRA(K)
    CONTINUE
    IF (UMF :I), GE, UO% [ITFF =00.0
    W(I)=(WF(I)+FFA(I)+W(I-I).)*(NF(I+I)/DF(I))***
        IR = Q1(I)**(1.-FI)+Q2(II)*(1,-Q1(I))*(1,-F2)+(1,-Q1(I))*(1,-\mathbb{N(I)})
        IF (UMF (I) GE,, UO.) GO TO. 5.
        ARG = -10.4*SGRT(UTA (I)/U0)*(UMF(I)/DIFF)**0.35
        E(I) = (18.0*EXF (ARG).)*GFLOW
        FQ(I) = DIFF*CSAREA*FW*FSW*(1,-EMF)*RHOEEI*FFA(I)
        R(I)=FO(I)*EXF(TDHC/27S.0*ALOG(E(I)*FRA(I)/FO(I)))
        CONTINUE
            ANR = WF(I)+FFA(I)+W(I-1)
            1-W(I)-FK*DIFF*WE*FFRA(I)*CU(I-1)-Fi(I)*DK
            IF (ANF ,GT, 0,0) GO TON 57
            FRA(I) = FRA(I)**0.5.
            GO. TO 12
    5T CONTINUE GHANR/WDIS
    5T CONTINUE WEMANR/WIIS
            SE CONTINUE
    WEC = WEC + BE(II)
        C WRITE(O,I\perpO)I,FRA(I),ANR,E(I),EE(I),WF(I),W(I),CU(I)
    CI10 FORMAT (2X,'I,FRA,ANF',E,GB,WF,W,CU = ',I2,1F7TEI1.3).
    40 CONTINUE
    CALL VEL(UISC,RHOGAS,G,RHOBEI,DF(I)-UMF(I)NUTA(I))
    WF(I) = FRACTA(I)*WAIN*RHOEED/EHOAD + FRACTC(I)*WCOAL*XA
    FRA(I)=WF(I)/WTF
    aI(I) = 0.0
    a2(I) = 0.0
    CONTINUE
    WFITE(\delta,11) (I,UTA(I),UMF (I),I=1,NIP)
    FOFMAT ('O',5X,'T,UTAISUMF = ',IS,1FMEE12,3)
    WDIS =0.01.
    RK REPRESENTS. THE ATTRITTGN RATE CONSTANT ANM IS ASSUMED TO BE THE
    FOK LIMESTONE,ASH, AND CHAR FARTICLES
```

480.	じ	WRITE (6,111) L,WB,WEC, WUIS
481.	C111	FORMAT ('0', EX, L, WE, WRC, WLIS = . IS, 1F3E12.3)
482.		$E R E=W A C-W B$
483.		CALL CFFECT (L,INDEXPIWMIS,X1, X2,WIIS,E1, E2, EFF, EWE)
484.		IF (WIIS .LT, 0.0) WDIS $=0.0$
485.		IF (INDEX .EG. 2) GO TG 70
486.		IOO 60 I $=1$ NSUP
487.		$\operatorname{FRA}(I)=\mathrm{BE}(\mathrm{I}) / \mathrm{WEC}$
488.	60	CONTINUE
489.	30	CONTINUE
490.	70	CONTINUE
491.	c	USING THE GAS REYNOLDS NUMBER,PECLET NUMEER IS CALCULATEII
492.	C	AND HENCE THE GAS IISPERSION COEFFICIENT AND THE NO. OF
493.	c	COMPARTMENTS IN THE FREEGOARD-ANU THE AVERAGE COMFARTMENT SIZE
494.	c	
495.		REY = ITT*UO*RHDGAS/UISC
496.		IF , (REY .LT, 2000.0) G0 TO 300.
497.		PECI $=3 . E 7 /$ REY**2.1 $1+1.35 / \mathrm{REY} * * 0.125$
498.		G0 T0 310
499.	300	$\square 194.26 *(T A V / 1800.0) * * 1.75 / \mathrm{FAU}$
500.		SC = UISC/RHOGAS/II
501.		FECI $=1 . / \mathrm{REY} / \mathrm{SC}+\mathrm{REY*SC/192}$.
502.	310	$E Z=$ UO*DT*PECI
503.		$\mathrm{ML}=2.0 * E Z / \mathrm{HO}$
504.	c	
505.	C	SOLIUS ENTRAINMENT RATE ALONG THE FREEBDARD IS CALCULATED
506.	C	
507.		$H B(1)=0.0$
508.		10 320 $\mathrm{K}=1,30$
509.		IF (C , GT, 1) $\mathrm{HB}(\mathrm{K})=\mathrm{HB}(\mathrm{N}-1)+\mathrm{DZ}$
510.		IF (HE(K) .GE. TDH) $\mathrm{HE}(\mathrm{K})=$ TIIH
511.		10 $340 \mathrm{I}=2, \mathrm{NDP}$
512.		$\mathrm{F}(\mathrm{I})=0.0$.
'513.		DIFF $=10-\operatorname{UMF}(I)$
514.		IF (FRA (I) . EQ. O.O) GO TO 340
515.		IF (LHFF (I) , GE. U0) GO TO 340
516.		AFG $=-10.4 * \operatorname{SGRT}$ (UTA (I)/U0)*(UMF (I)/IIFF.)**0.25
517.		$E(I)=18.0 * \operatorname{EXP}(\mathrm{ARE}) * \mathrm{GFLOW}$
518.		FO(I) $=$ DIFF*CSAREA*FU*FSW* (1.-EMF)*RHOEEI**FRA(I)
519.		$F(I)=F Q(I) * E X F(H B(N) / 275.0 * A L Q G(E(I) * F R A(I) / F O(I))$)
520.	340	CONTINUE
521.		WENTA $=0.0$
523.		IIO $350 \mathrm{I}=2$, NDF
523.		$\operatorname{ENTA}(\mathrm{I})=\mathrm{R}(\mathrm{I})$
524.		IF (FRA(I) EQ, 0.0.ANL, U0 .GT, 0.833*UTAII)
525.		1 ENTA $(I)=W F(I)+$ PFA (I)
526.		WENTA = WENTA + ENTA(I)
527.	350	CONTINUE
528.		WEA (K) = WENTA
539.		ILO $360 \mathrm{I}=2, \mathrm{NLF}$
530.		FRAEN(I) $=$ ENTA $(I) /$ WENTA
531.		IF (FRAEN(I) .LT, 1.E-3) FRAEN(I) $=0.0$
532.	360	CONTINUE
533.		SUMA $=0.0$
534.		SUME $=0.0$
535.		DO 370 I $=2, \mathrm{NLF}$
536.		SUMA $=$ SUMA + FRAEN(I)/IIP(I)
537.		SUMB $=$ SUMB + FFAEN (I)*UF(I) OPTGTNATM
538.	370	CONTINUE ORLGINATEAGE TS
539.		IIPSE $(\mathrm{A})=1 . /$ UUMA \quad OR POOR QUALIS

```
\begin{tabular}{|c|c|c|}
\hline 540, & & DFWE(N) = SUME \\
\hline 541. & & IF ( HB (h) , EQ. TIMH) GO TO 380 \\
\hline 542. & 320 & continue \\
\hline 543. & 380 & 的 \(=\mathrm{k}\) \\
\hline 544. & & WELUA \(=0.0\) \\
\hline 545. & & IO \(901=2, N W F\) \\
\hline 546. & & \(\operatorname{ELUA}(\mathrm{I})=(1,-\mathrm{QI}(\mathrm{I})\) )*(1.0-R2(I))*ENTA(I) \\
\hline 547. & & WELUA \(=\) WELUA + ELUA (I) \\
\hline 5is. & 80 & CONTINUE \\
\hline 549. & & MO \(901=2 . N W P\) \\
\hline 550. & & FRAEL (I) \(=\) ELUA (I)-/WELUA \\
\hline 551. & & IF (FRAEL (I) . LT. 1, E-3) FFiAEL (I) \(=0.0\) \\
\hline 552. & 90 & CONTINUE \\
\hline 553. & & SUMA \(=0.0\) \\
\hline 554. & & SUMB \(=0.0\) \\
\hline 555. & & SUMC \(=0.0\) \\
\hline 556. & & SUME \(=0.0\) \\
\hline 557. & & DO \(100 \mathrm{I}=2 \mathrm{NaP}\) \\
\hline 558. & & SUMA \(=\) IPP(I)*FRA \((I)+\) SUMA \\
\hline 559. & & SUMB = FRA (I)/DF(I) +SUME \\
\hline 550. & & SUMC \(=\) UP(I) *FRAEN(I) +SUMC \\
\hline 561. & & SUMD \(=\) FRAEN(I)/DF(I) +SUML \\
\hline 562. & 100 & CONTINUE \\
\hline 563. & & EIPSUB \(=1 /\) SUME \\
\hline 564. & & IPWME \(=\) SUMA \\
\hline 565. & & IFSVE \(=1\). SSLMI \\
\hline 566. & & DPWME \(=\) SUMC \\
\hline 567. & & WFITE ( 6,101 ) WDIS,WTF, WELUA, DFSUE, DFWMB, \\
\hline 568. & & I (IIP (I), FRA (I), FRAEL (I), I=2,NDP) \\
\hline 569. & 101 & FORMAT ('0' TTIO,'WLIS, WTF, WELUA, IFPGE, DPWME = ', \\
\hline 570. & &  \\
\hline 571. & & 2SIZE FRACTION', ', \({ }^{\prime}\) ', (T10,1PE10.3,T33,1FE10.3,T63,1FE10.3,1)) \\
\hline 572. & C & , , , \\
\hline 573. & C & \\
\hline 574. & C & SIMILAR ENTRAINMENT CALCULATIUNS ARE FERFOFMED FOR CHAR \\
\hline 575. & C & - \\
\hline 576. & & H0 \(210 \mathrm{I}=18 \mathrm{NDF}\) \\
\hline 577. & & WF (I) = FRACTC (I)*WCDAL \\
\hline 578. & . & FFiC (I) \(=\) FRACTC(I) \\
\hline 579. & & CALL UEL (USSC, FHOGAS,G,RHOCH, IP (I), UMF (I), UTC(I) ) \\
\hline 580. & 210 & CONTINUE - \\
\hline 581. & & ETCA \(=0.9995\) \\
\hline 582. & & INI \(=0\) \\
\hline 583. & & EETC \(=-0.001\) \\
\hline 584. & & EETC \(=0.001\) \\
\hline 585. & & CENT \(=0.0\) \\
\hline 586. & & 10 \(200 \mathrm{~L}=1,30\) \\
\hline 587. & 211 & Continue \\
\hline 588. & & SUMA \(=0.0\) \\
\hline 589. & & DO \(150 \mathrm{I}=2, \mathrm{NDF}\) \\
\hline 590. & & IF ( (UTC (I)-U0) LLT, 0.2*U0) \(\mathrm{FRCC}(\mathrm{I})=0.0\) \\
\hline 591. & & SUMA \(=\) SUMA + FRC(I) \\
\hline 592. & 150 & CONTINUE \\
\hline 593. & & [010 160 I \(=1\), NEF \\
\hline 594. & & \(\operatorname{FRC}(I)=\operatorname{FRC}(\mathrm{I}) /\) SUMA \\
\hline 595. & 160 & CONTINUE \\
\hline 596. & & XAV \(=(\) WCOAL *RCHAR-CENT \() * C C H A R *(1 .-E T C A)) / W D I S ~\) \\
\hline 597. & & CBED \(=\) XAU*WEC/CCHAR \\
\hline 593. & & CELU \(=0.0\) \\
\hline シ99. & & CENT \(=0.0\) \\
\hline
\end{tabular}
```

```
*00.
601.
s02.
603.
6 0 4 .
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
517.
619.
$19.
d20.
621.
622.
623.
624.
625.
626.
627.
628.
629.
6 3 0 .
631.
632.
633.
534.
635.
636.
637.
638:
639.
640.
64.1.
64%.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
```

600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612. 614.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

64.1.
643.
644.
645.
646.
648.
649.
651.
652.
653.
654.
655.
656.
657.

659 .

```
    CAELIC = 0.0
    00 220 I = 2,NMP
    EE(I) = FRC(I)*CBEII
    R(F) = 0.0
    IITFF= UO-UMF(I)
    FFA(I) = FFI(I)*RN*IIFF*CEEH/CCHAR
    FSC = 0.01
    IF (FRC(I) .EQ. O.0) GO T0 256
    MO 252 K = 2,NDF
    252. CU(K)= CU(K-1)mFRC(k)
    IF (UMF(I) .GE. UO) IIIFF = 0.0
    W(I) = (WF(I)+PFA(I)+W(I-1))*(DF(I+1)/DP(I))***
    QR=Q1(I)*(1,-F'1)+Q2(I)*(1,-Q1(I))*(1,-F2)+61,-Q1(I))*(1,-Q2(I))
    250
    IF (UMF{I),GE, UO) GO TO 255
    ARG = -10.4*SQFT(UTC(I)/U0)*(UMF(I)/UIFF)**0. 25
    E(I) = (18,0*EXF(ARG))*GGFLOW
    FD(I) = \IFF*CSAREA*FW*FSW*(1, -EMF)*RHOREI**XAU*FRC(I)
    R(I) = FO(I)*EXF(TDHC/27S.O*ALOG(E(I)*FRC(I)/FO(I)))
    CONTINUE
    YO2 = 0.15
    RHOCCH = RHOCH*CCHAR
    CALLL ATTR(RHOCEH;TAU,DIP(I),FAU,YO2,RG,TB,RKI(I))
    ANR =WF(I)+PFA(I)+W(I-I)-W(I)
    1-FK*DIFF*CREI*FRRC(I)*CU(I-1)-RKI(I)*CEEI*FRC(I)*FSC-R(I)*口R
    IF (ANR .GT. 0.0) GO TO 175
    FRC(I)=FRC(I)*0.5
    GO TO 211
    CQNTINUE
    BB(I) = WB*ANR/WHIS
256 CONTINUE
    CBEDC = CBEDC + EB(I)
    WRITE(G,170)I,FRC(I),ANR,E(I),EE(I),W(I),WF(I),FKI(I)
    FORMAT (2X,'I,FRA,ANR,E,BE,W,WF,NKI = ',I2,1FTEI1.3)
    CONTINUE
    10 400 I = 2,NuF
    IIFF = UO - UMF(I)
    IF (FRC(I) .EQ, O.0) ED TO 410
    IF (UMF(I) .GE, UO) GO TD 410
    ARG = -10.4*SERT(UTC(I)/U0)*(UMF (I)/IIFF)**0.25
    E(I) = 18.0*EXP(ARG)*GFLOW
    FO(I) = CSAFEA*IIFF*FW*FSW*(1,-EMF)*RHOEEI*XAU*FRC(I)
    GO TO 415
    410 FO(I) =0.0
    ENTC('1,IT) = FFO\I)
    IF (FRC(I) ,EQ, 0.0 ,ANI. UO .GT, O.833*UTC(I)) ENTC(I,I) = WF(I)*
    1RCHAR + FFA(I)
    CENT = CENT + ENTC(1,I)
    CONTINUE
    CHAR ENTRAINMENT RATE AS A FUNCTION OF THE FREEGOARI HEIGHT IS
    CALCULATEI TAKING INTO ACCOUNT THE DECREASING FARTICLE SIZE IUE TO
    CHAR COMEUSTION
    WEC(1) = CENT
    DO 430 I = 2,NIP
    DCE(I,I)= DF(I)
    FCE(1,I) = ENTC(1,I)/CENT
    ORIGINAL PAGR IG
    430 CONTINUE
    HO 420 J=2,NT
    CENT = 0.0,
```

```
So0. Lu 440 I = 2,NGF
641
062.
5s3.
644.
óóS.
6.66.
6E7.
368.
06%.
570.
672.
672
6 7 3 .
074,
675.
67%.
677.
678.
679
680.
681.
6 8 2 .
683.
684.
683.
636.
687.
688.
689.
590.
6 9 1 .
8.72.
6.93.
6.94.
$05.
6.96.
697.
6 9 8 .
099.
700. 431
701. 438
7C2.
703.
704.
705.
706.
707.
708.
70.9.
710.
711.
712.
713.
7 1 4 .
7:15.
716.
717.
718.
719.
435
    IF (ICE (J-1,I) ,GT. 0.0) GOT TC 43E
    FT =1.EO
    TB=0.0
    GO T0 436.
    CONTINJE
    CALL UEL(UISC,RHOGAS,G,RHOCH*DICE(Jन1,I),UMF(I),UTC(I))
    HT = HLF + HB(J)
    CALL AREA (HT,DT,CSAREA)
    UAU. = GFLON/CSAREA/RHOGAS
    RT = (HB(J)-HE(J-1).)/AES(UAU-UTC(I))
    YOZ = 0.09
    CALL ATTK (FHOCCH,TAU,DICE (J-:, I),FAU,YOL,FG,TB,RKI(t))
    IF (TE.GT.RT) DCE(J,I) = (1.-FT/TTE)**O.S*ICE(J-1,I)
    CONTINUE
    IF (TG, LE, RT) DCE(J,I) = 0,0
    IF (DCE(J,I) ,GT. 0.0) GO. TO 4J7
    ENTC (J,I) = 0.0
    G0, TO 438
    CONTINUE
    CALL UEL(UISC,FHOGAS,GrFHOCH.DICE(N,I),MMF(I),UTCS ')
    IF (FRC(I) .GT, O.O.AND. UTCO(I) .GT. JO) GO TO 43E
    CONU = 1.
    IF (TE +GT , RT) CONV = 1.- (1,-FTT/TE)**1.5
    ENTC(J,I) = ENTE(J-I,I)*(1,-CONV).
    60 TO 438
    4 3 9 ~ C O N T I N U E ~
    CALL VEL(UISC,RHOGAS,GFFHOCH:IP(I).UMF\I\,UTC(I))
    RT = HB(J)/AES(UO-UTC(I))
    IIFF = UO-UMF(I)
    IF (UMF(I) .GE, UO) GO TR. }43
    ARG = -10.4*SRRT(UTC(I)/UO,)*(UMF (I)/DIFF).**0.. 25
    E(I')= = 日.0尔XP(ARG)*GFLOW
    IF (FO(I) .GT. 0.0.) R(I) = FO(I)*EXP(HE(J)/ミ75.0*ALOG(E(I)*
    1FFC(I)/FO(I)))
    conv = 1.0
    IF (TB .GT. RT) CONU = 1,-(1,-RT/TB)**1.S
    R(I)=R(I)*(1,-CONU)
    GO TO 43?
    R(I)=0,0
    ENTC(J,I) = R(I)
    CONTINUE
    CEMT = CENT + ENTC(J,I)
    44: CONTINUE
    WEC(J) = CENT
        IO: 450 T = 2 NNDP
        IF (CENT ,GT, 0.0) FCE(N,I) = ENTC(S,[)/CENT
        IF (CENT .EG. 0.0) FCE(J,I) = 0.0
    45O. CONTINUE
    C WRITE(G,190)CELU,CENT,DCSUE,DCWME,(DP(I),FRC(I), DCE(U,I),FCES{,I).
    C 1I=2,NDF)
    42O CONTINUE
    00 460 K=1,KT
        SLMA = 0.0
        SUME = 0.0
        IO 470 I = 2,NDF
        IF {IICE (N,I) ,G.T. O.O.) SUMA = SUMA * FCE(A,I;/IGE (N,I)
        SUME = SUME + FCE (N,I)*DCE (K,I)
        47O CONTINUE
    DCSE(K) = 0.0
```

720.		IF (SUMA .GT. 0.0) [ICSE (K) = 1./SUMA
721.		ICWE $(\mathrm{n})=$ SUME
7 22.	400	CONTINUE
723.		CELU $=$ WEC(KT)
724.		ETCE = 1** WIUIS*XAU/((WCDAL*RCHAR-CENT)*CCHAR)
725.		XAV $=($ (WCOAL*RCHAR-CENT)*CCHAR* (1. -ETCC) $) /$ WLIS
726.	c	WRITE (6,180) L, CBED, CAEDC, XAU, ETCA ETCC, CELU,CENT
727.	C180	FORMAT ('0', 2 X ,'L,CEEL,CBEDC, XAV,ETCA, ETCC,CELU,CENT $=$, I\%,
728.	C	11F7E12.3)
729.		ERR = ETCA - ETCC
730.	-	CALL CRRECT(L, IND, DETC, X1, X2,ETCA,E1,E2,ERR,EETC)
731.		IF (IND.EQ, こ) GO TO 230
732.		10 $240 \mathrm{I}=2, \mathrm{NDP}$
733.		$\mathrm{FFC}(\mathrm{I})=\mathrm{BB}(\mathrm{I}) /$ CREDIC
734.	240	CONTINUE
735.	200	CONTINUE
736.	230	CONTINUE
737.		SUMA $=0.0$
738.		SLSMB $=0.0$
739.		IO 270 I $=2, \mathrm{NAP}$
740.		SUMA $=\mathrm{JP}(I) * F R C(I)+$ SUMA
741.		SUME $=$ FRC(I)/DF(I) + SUME
742.	270	CONTINUE
743.		DCSUB $=1 . /$ SUMB
744.		DCWME $=$ SUMA
745.		EFF $=1 .-(W D I S * X A U+C E L U * C C H A R) /(W C O A L *(1,-X W) * X C)$
746.		
747.		1FCE (KT,I), I=2,NDF)
748.		
749.		WRITE (6,490) (K,HE(K), LICSE (K), DCWE $(K), W E C(K) \cdot K=1, N T$)
750.	490	
751.		
752.	390	FORMAT ('0', 9 X, 'K',9X,'FREEROARD HT, '9X,'EIPSE',12X,'LPWE', 12 X , - EN
753.		1T.RATE',//,(9X,12,日X,1PE11.3,8X,1PE11.3,6X,1PE11.3,6X,1FE11.3))
754.	190	
755.		1'0',9X,'BED FAR, DIA , CH', SX, 'EEI SIZE FRACTION', SX, 'ENT,FAFI, ILA.
756.		
757.		31FE11.3,T74,1FE11.3,1)
758.		RETURN
759.		END
760.		SUBROUTINE VEL (VISC,RHOGAS,G.RHOS,DFAR,UM, UT)
761.	C	
762.	C	THIS SUBROUTINE CALCULATES THE MINIMUM FLUINIZATION VELOCITY ANE
763.	C	THE TEFirinal velocify of the particle
764.	C	
765.		A1 $=33.7 * * 2+0.0408 *$ IFAR**3*G*(FHOS-RHOGAS) *RHOGAS/UISC**2
766.		UM = VISC/(DPAR*RHOGAS)*(SQRT (A1)-33.7)
767.		UT $=(4.0 *(R H O S-R H Q G A S) * * 2 * G * * 2 / 235.0 / R H O G A S / V I S C) * *(1, / 3+) * D F A F A$
768.		REP $=$ IFAR*RHOGAS*UT/VISC
769.		IF (REP . GT, 0.4 .ANI, REF . LE, 500.0) GO TO 210
770.		UT $=$ G*(RHOS-RHOGAS)*DPAR**2/18./UISC
771.		REF $=$ IFPAR*RHOGAS*UT/UISC
772.		IF (REF* LE 0.4) 60 TO 210
773.		UT $=$ SQRT(3.1*G*(RHOS-RHOGAS)*DFAR/RHOGAS)
774.	210	RETURN
775.		END
776.		FUNCTION VOLUME (ZZ)
777.		COMMON /A/ ZHE(30), AHE (30), ITTUEE(30).FV(30), PH(30),ZE(30..
778.		1ATG(30), UMF (30), IUE (30), DUBEFF (30), UTA (30), UTC (30),
779.		

ORIGINAL PAGR IS
OF POOR QUALITY

```
780. 3DFSUB,HIFWMB,DLSSUB, HEWME,UO,MGAS,MTS
```

781.
782.
783.
784.
785.
786.
787.
788.
789.
790.
791.
792.
793.
794.
795.
796.
797.
798.
799.
800.
801.
```
3DFSUB, IIFWMB, DLSSUB, HEWME, UO, MGAS,MTE
COMMON /C/ \(\operatorname{LIA}(30), \operatorname{FRACTA}(30), F F A C T C(30), \operatorname{DF}(30), F F C(30), F F A(30\), 1WF (30) rQ1 (30), Q2 (30), BE (30), RNI (30);W(30), E(30), ENTA (30), E:UA (30: 2ENTC (30,30),FRAEN(30);FRAEL (30), CLJ(30),
3FFA (30), GFLOW, WCOAL, WAD, WE, WBC, WELUA, CELU, EFF, XC, XCF, 4XA Y XW, RCHAR, CCHAR, WIIS, FHOAL, TIHC, HFE, NIF
C
C
C
CALCULATON OF THE EFFECTIUE vOLUME OF THE GEI GIVEN THE HEIGHT
\(N=I F I X(Z Z / D Z A())+1\)
IF (N.EA.1) \(N=2\)
SUM \(=0.0\)
\(\bar{Z} N=F L O A T(N-1) * \bar{D} Z \hat{A} U\)
SUM \(=\) SUM + DUBEFF \((I)\)
IF ( I . LT + N ) GO TO 100
\(A 1 \doteq\) ( ZZ \(-Z N) /\) IZAU
SUA \(=\) SUM + DUBEFF (I) * AI
VOLUME \(=\) SUM
RETUFN
END
```

12345679901234567890123456789012345678901234567.890123456789012343678901234567890

3 A4							
NASA LEWIS 1A							
MTB							
4							
ZB(1)	ATE(1)	2B(2)	ATB(2)	ZB(す)	ATB (3)	Z\#(4)	ATE(4)
0.0	405.0	62.7	405.0	81.3	370.0	$280+0$	2193.0
MTHE							
5							
ZHE (2)	AHE (1)	ITUBE(1)	PU(1)	PH(1)	IARR (1)		
24.0	0.0	0.0	0.0	0.0	0		
ZHE(3)	AHE (2)	DTUEE (3)	FU(2)	FH(2)	IARR(2)		
40.0	0.1744	1.27	8.0	2.86	3		
ZHE (4)	AHE (3)	ITUAE (3)	. P V(3)	PH(3)	IARR (3)		
48.0	0.0	0.0	0.0	0.0	0		
ZHE (5) ${ }^{1}$	AHE (4)	ITURE (4)	PU(4)	FH(4)	IARR (4)		
5́s. 0	0.1744	1.27	8.0	2.86	3		
ZHE (6)	AHE (5)	LTURE (5)	$P V(5)$	PH(5)	IARR(S)		
290.0	0.0	0.0	0.0	0.0	0	,	
NLP							
$3 \pm$							
IIA(1)	HIA (2)	DIA (3)	DIA(4)	DIA (5)	\#IA(6)	DIA (7)	IIA(8)
0.293	0.238	0.2	0.168	0.14 .1	0.119	0.1	0.0841
IIA(9)	IIA (10)	DIA(11)	IIA(12)	IIA (13)	IIIA(14)	MIA (15)	EIA(16)
0.0707	0.059	0.05	0.042	0.035	0.0297	0.0212	0.0177
DIA(17)	HIA (18)	IIA (19)	DIA (30)	IIA (21)			
0.015	0.010	0.0074	0.0045	0.001			
FRACTA (1)	FRACTA(2)	FRACTA (3)	FRACTA(4)	FRACTA (5)	FRACTA (6)	FF*ACTA(7)	FFACTA (B)
0.0	0.0038	0.0954	0.1433	0.1856	0.1406	0.1259	0.1434
FRACTA (9)	FRACTA(10)	FRACTA (11)	FRACTA(12)	FRACTA(13)	FFRACTA (14)	FAACTA(15)	FFiACTA (16)
0.0622	0.0255	0.0123	0.0114	0.0091	0.0053	0.0088	0.0032
FRACTA (17)FFACTA(18)FFACTA (19)FRACTA (20)FRACTA(21)							
0.0026	0.0135	0.0068	0.0133.	0.001			
FRACTC(1)	FRACTC(2)	FRACTC(3)	FRACTE (4)	FRACTC (5)	FRACTC(6)	FRACTC(7)	FFACTC (8)
0.0	0.0138	0.0194	0.0747	0.15	0.096	0.0963	$0.1: 72$
FRACTC (9) FKACTC(10)FRACTC (11)FRACTC(12)FRACTC(13)FRACTC (14)FF*ACTC (15)FRAC.C (IS)							
0.0766	0.0825	0.0594	0.0553	0.053 B	0.04 25	0.0356	0.0153
FRACTC (17)FFACTC (18)FRACTC (19)FFACTC(30)FRACTC (21)							
0.0025	0.0069	0.0009	0.0003	0.0			
NAMEL 1 NAMEL?							
LIFEST13							
XCAD	XMGG	XSI02	$\times \mathrm{COS}$				
0.557	0.003	0.006	0.434				
NAMEC1 NAMEC?							
FTGHCDAL							
XC	XH	XN	$\times 5$	$\times 0$	XW	XA	VM
0.754	0.051	0.015	0.02	0.076	0.032	0.084	0.312
HLMF	HLF	F'AV	TAU				
0.0	141.9	5.15	1151.0				
WCOAL	WAD	CAS	10	Fif	EXAIR		
4.51	0.4638	0.0	0.0	0.0	0.639		

NAsA l.EwIS 1A

1.03be-0?		disoor-0t	0.000r: $-d_{1}$	0.000 cos
1. arar-a?		. $0000 \mathrm{~F}-\mathrm{OL}$	$0.10005-61$	$0.000 f-1) 1$
ก.700F-3)		0.000E-0.1	0.000t-02	$0.0006-01$
-.9505- ロi		$0.000 \mathrm{E}-\mathrm{Ot}$	0.0008:-0t	0.000r-0i
?*7tiot-n3		0.0005 OL	0.000c-01	0.000F-01
K	futemitido mi.	- Derse	Cr'mr	ENT.tAIE
1	0.000E-31	9.090E-0;	6.139E-02	1.933 E 02
\because	5.643E 01	$2.9505-02$	$3.4096-02$	9.527E OO
$\frac{3}{4}$			2.6511 $2.370-02$	1.446E-00 7.261E-01
r	FIFFEEDARD Ht.	- OCSC	DCWE	ENS-RATE
1	$0.000 E-O 1$	9.670E-0?	$\text { خे }+72 \mathrm{GE}-02$	
$?$	5.643E 01	$4.498 E-02$ $4.065 E-02$	$5.2375-02$ $4.6731-42$	1.387E-01 $5.128 E-02$
3	t. JAIE OR	$4.76 ¢ E-02$	5.004E-02	2.tibsE-02

OPWF

DCWE
$j+726 E-02$
$5.237 E-02$
$4.673 E-02$

NTfRAIE
$1.933 E 02$
$5.527 E$
1.4460
$7.261 E-01$
ENT-RATE

startimrnts exertiteg= cozze

APPENDIX IV

COMBUSTION PROGRAM

1.	L***
2.	C A GENERAL MODEL OF FLUIMIZEI EEI COAL COMEUSTOR *
3.	C
4.	C P PROGRAMMEI EY
5.	c
6.	C RENGA RAJAN
7.	C
8.	C AT
9.	c
10.	C WEST UIRGINIA UNIVERSITY
11.	ᄃ *
12.	ᄃ***
13.	
14.	1, MMGCOS, MMGQ, MAIF, MGAS, MUGAS, MN, NC, MA, MNO, NCHAR, MTAR
15.	COMMON /A/ ZHE(10), $\mathrm{AHE}(10), \mathrm{FV}(10), \mathrm{FH}(10), \mathrm{ZF}(10), F \mathrm{FFC}(10), \mathrm{DTUFE}(10)$,
16.	
17.	
18.	$3 \mathrm{YE}(60), \mathrm{YCOE}(60), \mathrm{EPE}(60), \mathrm{EFC}(60), \mathrm{ELURE}(60), \mathrm{DVEEEF}(60), \mathrm{DEAV}(60)$,
19.	
20.	COMMDN /B/ YEO(60), YED(60), EER (60), DFSUB. LPWMB, DCSSUE, DCWMB, RHOCH,
21.	
22.	2EMF, PAU.HCR, EEIUUL, EFFUOL, SOLUOL, TETUEE,HLMF, FI, AND, ENZL,
23.	3FW, FSW, IZAU, MFEEL, MLIS , MTHE, MTE, MT, M1, M, ICR, IFEC, NTC
24.	COMMON /C/ DPSE (30), DFWE (30), DCSE 30$)$, DCWE (30), WEA (30), WEC(30),
25.	1HE(30), WCHOLD(30), WAHOLD(30),KT
26.	[IIMENSION ALFA(60), BETA (60), GAMA (60), [IELT (60), UHE (S0),GE(60),
27.	1GE(60), $\mathrm{COB}(60), \mathrm{WMIX}(60)$, WNET (60), WFC (60$)$, WFAD (60), WD (60$), Y \mathrm{COL}(60)$,
28.	2TW(60), YGO(5), YO(60$), Y C O(60), Y \mathrm{C}(60), Y S 02(60), Y \mathrm{NOX}(60)$,
29.	3UFRQD (60), RELE (60), RELE (30), TFB (60), TPE (60), CAFCON (60),
30.	
31.	5YCO2B (60), YCO2E (60), UHEN(60), AHEW (60), TWALL (60).
32.	NAMELIST /OFCF/ HLMF, HLF, PAU, TAU, TSTA, TWIN, TWOUT, TWALLA, UHEAU1,
33.	*UHEAV2, UWALL , UWALL , TF, TSF, WCOAL, WAI, CAS, EXAIF,MGAS, FMTH,FMF,FMO,
34.	\$H2SU, ANH3U, $\mathrm{FHOCH,RHOEEI}, \mathrm{RUGAS}, \mathrm{RCHAF}, \mathrm{QUGAS}, \mathrm{QUCO}$,
35.	*/OPCF1/ IER,IFBCYNTC,HCR,HLF,HLMF,VMF.EEDUOL, EFFVOL, SOLVOL, TETJEE,
36.	*HAREA, QTRANS, QUQL, QAREA, HFE, BEDCOM,FECOM, TCRATE, XOS, XQ2C
37.	NAMELIST /OC/ WDIS, WELUA,CELU, EFF, IFPSUB, DFWME, IICSUR, IICWME, GFLUW,
38.	IUO, CLOSS, CCHAR, HCHAF, OCHAR, NCHAR, SCHAR, TARC
39.	HATA MC, MH2,MS,MO2,MN2,MH2O,MSO2,MH2S,MCO, MCO2, MCACOS.MCAO, MCASO4
40.	1, MMGCOS, MmGo, MNG,MN
41.	1/12, 2, 32, 32, 28, ,18, 64, , 34, 28, 44, 100.1,56.08,136.14,84,32
42.	2,40,31,30,0,14.01
43.	
44.	
45.	*CADF, CCF, CGMF $10.198,0.193,6.791$
46.	$\mathrm{Mi}=100$
47.	M1OL[$=$ M1
48.	EMF $=0.5$
49.	$\mathrm{RG}=82.05$
50.	$\mathrm{G}=980.1$
51.	$\mathrm{PI}=3.141593$
52.	$\operatorname{ETUBE}(1)=0$.
53.	$\mathrm{EFH}(1)=0$.
54.	$E F C(1)=0$.
55.	IBAU (1) $=0$.
56.	UE (1) $=0$.
57.	IUQRE(1)=0.
58.	$\operatorname{AHEAU}(1)=0$. ORIGINAL PAGL
59.	C OF POOR QUALIT

-0.	c	FRC IEESIGN DATA
51.	c	
62,	C	INFUT IAA TA FROM ENTRAINMENT CALCULATIONS
63.	c	
64.		REALI (5,1000) KT
55.		
66.		$1\left(\operatorname{DCSE}\left(\mathrm{~K}^{\prime}\right), \operatorname{LCWE}(K), \operatorname{WEC}(K), k=1, \mathrm{NT}\right)$
67.		READ (5,1001) WDIS, WELUA, CELU, EFF, DFSUE, DFWME, ILCSUE, DCWME,
68.		ILIASUF, LIAWMF, DCSUF, DICWMF
69.		CALL DESIGN
70.	c	\cdots
71.	c	COMPOSITION OF LIMESTONE : *.
72.	C	
73.		FEAD (5,1010)NAMEL1, NAMEL2, XCAO, XMGO,XSIO2, XCO2
74.	C	
75.	c	COMPOSITION ANI NET HEATING VALUE OF COAL
76.	C	
77.		READ (5,1010)NAMECI, NAMECS, $\mathrm{XC}, \mathrm{XH}, \mathrm{XN}, \mathrm{XS}, \mathrm{XO}, \mathrm{XW,XA,UM,HCOAL,XACAO}$
78.	C	
79.	C	OFERATING CONDITIONS
80.	C	
81.		
82.		1UWALL 1 , UWALL 2 , TF, TSF,FF
83.		READ (5,1001) WCOAL, WAD, CAS, JO,FMF, EXAIF
84.		READ (5,1000) IGNITE, IS02, INOX, ITEMP, IFRES
85.	C	
86.	c	CALCULATIUN OF UOLATILES YIELII AND THE COMFOSITION OF VOLATILES
87.	C	
88.		WH $=0.2 *(100 . *$ UM-10.9)
89.		$R=\operatorname{EXP}(26.41-3.961 * A L Q G((T A U-273).) \pm 0.0115 * 100 . * U M)$
90.		$V=(100 . * V M-R-W W) * 0.01$
91.		$U=U *(1,-X W-X A)$.
92.		RN $=1.6-0.001 * T A U$
93.		IF (RN .GT, 1,) KN = 1.0
94.		IF (RN .LT, 0.) RN $=0.0$
95.		RS $=$ RN
96.		VGASS $=$ XS* $(1,-X W) *(1,-R S) / 32.0$
97.		UGASN $=$ XN* (1,-XW)*(1.-RN)/14.0
98.		$\mathrm{RO}=0.0$
99.		$\mathrm{RH}=0.0$
100.		QCHAR $=7000.0$
101.	:	$\mathrm{QCO}=26350.0$
102.		CH4 $=0.201-0.469 * V M+0.241 * * M * * 2$
103.		H2* $=0.157-0.868 * \cup M+1.339 *$ M ***
104.		COE $=0.135-0.900 * V M+1.906 *$ UM**2
105.		$\mathrm{CO}=0.423-2.653 * \cup M+4.845 * \cup M * * 2$
106.		H2O $=0.409-2.389 * U M+4.554 * U M * * 2$.
107.		TAR $=-.325+7.27 .9 * \cup M-12.88 * \cup M * * 2$
108.		HTAR $=$ XH* (1, -RH)*(1,-XW) - U* (CH4/46.*2.0+H2/2.+H20/18.) *2.0
109.		
1 ± 0.		ITAF $=130.0$
± 1.		$\mathrm{CH} 4=U * \mathrm{CH} 4 / 16.0$
112.		H2 $=$ U*H2/2.0
113:*,		$\mathrm{CO2}=\mathrm{U}$ C02/44.0
114.		C0. $=$ V*C0/38.0
115.		H2O $=U * H 2 \mathrm{C} / 18.0$
:16.0		CTAR = U*TAR - HTAR - OTAR.
1 17.		TAR $=$ (CTAR+HTAR +0 TAR)/MTAF
113.		RUGAS $=\mathrm{CH} 4+\mathrm{H} 2+$ TAR
119%.		COU $=$ CO/RUGAS:

120.
121. 123. 123. 124. 125.
1.
2.
3. 129.

130 +
1す1.
132.
133.
134.
135.
136.
137.
$138:$
139.
140.
141.
142.
143.

144 .
145.
146.
147.

148 .
149.
150.

151,
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
$\div 78$.
179.

```
        cozv = cO2/RVGAS
        COVE = (CH4+CTAR/12.0)/RUGAS
        CONUB = COUS
        XO2 = \CTAR/12.0*0.5+HTAR/2.0*0.5-0TAR/32.0+UGASS+UGASN*0.5.
        1CH4*1 +5+H2*0.5)/RUGAS
        XO2C = (CTAR/12.0+HTAR/2.0*0.5-OTAR/32+0+UGASS+YGASN*O.5+
        1CH4*2.0+H2*O.5)/RUGAS
            XCV = CTAR + (CH4+CO2+CO)*1.2.0
            XCF = XC - XCV
            RC = XCF / XC
            H2SV = UGASS/RUGAS
            ANH3V = VGASN/RVGAS
            COALC = XC / 12.0
            COALH = XH
            COALO = XO / 16.0
            COALN = XN /14.0
            COALS = XS / 32.0
            CHARC = RC * COALC
            CHARH = RH * COALH
            CHARO = KO * COALO
            CHARN = RN * COALN
            CHARS = RS * COALS
            RCHAR = 1.0 - v - XW
            CEHAR = CHARC*13.0/RCHAR
            HCHAR = CHARH*1.0/RCHAR
            OCHAR = CHAROD $16.0/RCHAR
            NCHAR = CHARN*14.0/RCHAR
            SCHAR = CHARS*32.0/RCHAR
                TARC = (CHARC+CHARH*O.5+CHARS+CHARN*O.5-CHARO*O.5)/(RCHAR*O.21)
            QUGAS = ( HCOAL - RCHAR * QCHAR - CO*QCO) / FUGAS
            QUCO = QUGAS - QCO*COVB
            T(1) = TF
            IF(WCUAL.EQ.O..)IGNITE=0
        C-----------------------------
            C No COMBUSTION COMEUSTION
            MAIR = 0.21*MO2+(1,-0.21)*MN2
            A2 = XC/MC+XH/MH2*O,5+XS/MS+XN/MNS-XO/MOS
            FMTH = WCOAL*(1,-XW)*A2/O.21
            IF (EXAIR ,GT, O.) FMF=FMTH*(1,+EXAIR)
            IF (EXAIR ,EQ. O. .ANI .FMF .EQ. O.) FMF = ATB(1)*UO*FAU/RG/TAU
            IF (EXAIR .EQ. O.) EXAIF' = FMF/FMTH - 1.
            UO = FMF*RG*TAU/PAU/ATE(1)
            FMO = FMF*(1,-0,21)+((XC/MC+XH/MH2+XS/MS*O,2tXN/MN2*2,0)*(1,-XW) +
            1XW/MH2O)*WCOAL*EFF+FMTH*O , 21*EXAIF
                GFLOW = FMF*(1,-0.21)*MN2+(<XC/MC*MCO2+XH/MH2*MH2O+XS/MS*MSO2*O.2-
                    1XN/YN2*2.0*MNO)*(1,-XW)+XW)*WCOAL+FMTH*O.21*EXAIR*MO2
            MGAS = GFLOW/FMO
C
C FMO : AVERAGE FLOW RATE OF GAS IN THE HEN
                                    MOLE/SEL
C AVERAGE HZO CONEENTRATION IN FEC
            YH2O =(WCOAL*(XW/MH2O+XH*(1,-XW)/MH2))/FMO
C
            RHOCH = RCHAF**RHOC
            IF (IGNITE.EQ.O)RHOCH=FHOC
            IF(IGNITE,EQ.O)RHOBED=RHOAD
            IF(CAS.EQ.O. AND.WAL.GT.O.)
        1CAS=WAL*XCAO/MCAO/(WCOAL*(1,-XW)*XS/MS)
            IF (CAS.GT.O..ANII.WAD.EQ.O.)
```

```
:30.
131.
182.
183.
184.
135.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
$98.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
2コล.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
```

： 30.
181．
182．
183.
184.
185.

186．
187.
188.
189.
190.
191.

192．
193.
194.
195.
197.

598．
199.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.

215．
213.

214 ．
215.
216.
217.
218.
219.

221．
ココロ・
223．
224.

225．
227.
228.
299.
230.

231．
ござ。
233 ．
23．4．
235.
236.
237.
239.

```
        IWAL=CAS*(WCOAL**(1.-XW)*XS/MS)/(XCAO/MCAO)
        AL = 0.0
        IF(CAS ,GT, 0.0) AI =0.85/CAS
        IF(CAS ,GT. 0.0) A1 =0.85
        RHOBEH=(1.-XCO2+XCAO/MCAO*A1*MCASO4)*RHOAD
        IF (CAS .ER,0.0) RHOEEN = FHOAI
        RHOGAS=FAU*MGAS/(RG*TAU)
        UISC=3.72E-6*(TAU**O*676)
C
C QCLCN : HEAT OF CALCINATION PER GRAM AIIDITIVE
C
    QCLCN={42500.0*XCAO/MCAO + 23810.0*XMGO/MMGO)
    CS=0.215
```



```
    C
    c MAIN QUTPUT 2
C = = ============
        WRITE (6,2000) NAMEL1,NAMEL2, XCAD, XMGO,XSIO2,XCO2
        WRITE(G,2010) DASUF,DAWMF
        WRITE(G,2O10) NASUF,INAWMF
        1,XACAO
        WRITE (6,2040) IICSUF,DCWMF
        WRITE (G,2030) (K,HE(K),DFSE(K),DPWE(N),WEA(N),NCSE(N),DICWE(K),
    1WEC(K),N゙=1,KT)
        WRITE (G,OPCF)
        ZAVG(1) = 0.0
        X(1)}=0.
        IF {ITEMP .GT. 0) TAU = TSTA
                        DO 20 I=2,60
    T(I)=TAU
        2 0
        CONTINUE
        **********************************************
    INITIAL BUBBLE HYDRODYNAMIL CALCULATION
    IF (HLF .EQ. O.0) UMF = VOLUME(HLMF)
    IF (HLMF .GT. O.0) WE = UMF*(1,-EMF)*RHOEED
    c *******************************************
    IF(IGNITE.EQ.1)GO TO 41
    CALL HYDRO
                                    DO 35 I=2,M1
    ZAVG(I) = (H(I) + H(I-1) )*.5
                                    CONTINUE
    ETC=0.
    YAV=0.21
    XAV=WCOAL*XC/(WCOAL+WAD)*(1,-XW)
    FMD=FMF
    IF (WAL,EQ,O.O ,AND, IGNITE .EQ. O) GO TO 900
C **************************************************************************
    C FOR CONIITIONS OF NO COAL COMBUSTION. IGNITION IS ZERO AND
    C MATERIAL AND ENERGY BALANCES CALEULATIONS ARE SKIPPEED
    C
    *********************************************************************
    YE(1) = YAU
    YE(1) = YB(1)
    FEM(1) = UMF(1) * AT(1) * PAU / <RG*T(2):
    FBM(1) = FMO - FEM(1)
                                    00 115 I = 2.00
    RRE(I) =0.0
    RRE(I) =0,0
    YE(I)=YAU
    YE(I)=YAU
    X(I)=XAU
    IF (I .GT. M1) GO TO 115
```

```
    FEM(I) = UMFiI)*AT(I)*(1.0-ETUEE(I))*FAU / 〈KG*T(I),
    \(\operatorname{FBM}(I)=F M O-F E M(I)\)
    \(I F(U O(I) \cdot L E, \operatorname{UMF}(I)) \operatorname{FEM}(I)=0.0\)
115
4.1 CONTINUE
        GOUDARY CONDITIONS FOR GAS CONCENTRATIONS
    \(Y 0(1)=0.31\)
    \(Y \cup(1)=0.0\)
    \(Y C O(1)=0.0\)
    YsO2(1) \(=0.0\)
    YNOX(1) \(=0.0\)
    \(Y B(1)=F M F * 0.21 / F M O\)
    \(Y E(1)=Y B(1)\)
    YVE(1) \(=0.0\)
    \(Y \operatorname{COE}(1)=0.0\)
    \(Y \operatorname{Co2} B(1)=0.0\)
    \(Y \operatorname{Coze}(1)=0.0\)
    \(y \cos (1)=0.0\)
C
C
C
C
C
C
A1 = TWOLT - TWIN
    \(A_{2}=A L O G(\langle T A U-T W I N) /(T A V-T W O L T))\)
    TWAU = TAU - A1/A2
    CALL HYDRO
    DO \(25 \mathrm{I}=1, \mathrm{MT}\)
    \(T W(I)=T W A U\)
    IF (I .LE. M1) UHE (I) = UHEAVI
    IF (I .GT. M1) UHE (I) = UHEAV2
    IF (I ALE. M1) UHEW (I) \(=\) UWALLL
    IF (I .GT. M1) UHEW (I) \(=\) UWALLS
    AHEW(I) \(=4.0 /\) DT(I)
        TWALL \((I)=\) TWALLA
        CONTINUE
        \(M F_{1} 1=M 1+1\)
        IF(ITRIAL , GT, 1 , ANI. M1,ER.M1DLD)GO TO 170
        \(\mathrm{J} 1=1\)
                            10 \(56 \mathrm{I}=2, \mathrm{M1}\)
        \(\mathrm{WFC}(\mathrm{I})=0\).
        WFAD \((I)=0\).
        」2= J1
        IF(JI,GT. MFEED)GO TO S6
        InO \(55 \mathrm{~J}=\mathrm{J} 1\), MFEEI
        IF (ZF(J).GT.H(I)) GO TO 55
        WFC(I)=WCOAL*FFC(J)
        WFAD(I)=WFAI (I) +WAII*FFAI (J)
        \(\mathrm{J} 2=\mathrm{J}+1\)
        55
            \(\mathrm{J} 1=\mathrm{J} 2\)
        56
            IF(J1.GT.MFEER)GO TO 58
                    continue
                    n10 \(57 \mathrm{~J}=\mathrm{J} 1\), MFEET
            WFC(M1)=WCOAL*FFC(J)
            WFAII (M1) =WFAD (M1) +WAI*FFALI (J)
```

300.	57	continue
301.	58	Continue
302.	170	CONTINUE
303.		FEM(1) $=$ UMF (1)*AT (1)*(1.0-ETUBE (1))*FAU/(RG*T(2))
304.		FEM(1) = FMF - FEM(1)
305.		DO 133 I=2, M1
300.		TOLİ(I) $=$ T(I)
307.	C	
308.	C	HIStizieution of the volatilles evolven
309.	C	
310.		
311:		UPROM (I) $=\operatorname{UPROD}(I)+$ WFCL $(I) * R V G A S *(1,-F W)$
312.		FEM(I) = FEM(I-1)+UFROLI (I)
313.		IF (UOX I) LE, UMF(I)) FEM (I) = FMO
314.		FEM (I) =FMO-FEM (I)
315.	133	CONTINUE
316.	c	
317.	C	FROM THE STATEMENT NO. 200 TO 300 : ITEFATIDN OF MATEFIAL BALANCE
318.	E	BASED ON THE GIVEN TEMFERATURE FROFILE. GAUSS SEIDEL METHOU
319:	c	
320.	200	EONTINUE
321.		INDEX $=0$
322.		DETC $=-0.0001$
323.		IF (TAU . GE + 1100.0 . ANII. TAU . LT, 1150.0) IETC $=-0.0002$
324.		IF (TAU -GE. 1050.0 : AND. TAU.LTT.1100.0) LEETC $=-0.002$
325.		IF (TAU -LT. 1050.0 . AND. TAV .GE. 1000.0) DETC $=-0.005$
326.		IF (TAV ,LTF 1000.0) DETC $=-0.01$
327.		EETCM $=0.01$
328.		Ef'A $=0.99999$
329.		IF (ITRIAL .GT: 1) GO T0 175
330.		
$331:$	C	
332.	C	Preparatory statemente for the whole iteration.
333.	C	
334.		D0 130 $I=2,60$
335.		$Y A V=0.16$
336.		IF (I .GT, M1) YAU $=0.09$
337.		
З38.		YE(I) $=$ YȦU
339.		YÓ(I) = YAV
340.	130	CONTINUE
341.	175	CONTINUE
342.	C	
343.	C	ASSUMING THE CARBON COMEUSTION EFFICIENCY, CARBON CONC. IN THE
344.	C	
345.	C	PHASE MATERIAL BALANCE IS PERFORMED AND THE COMBUSTION EFFICIENCY
346.	C	IS CALCULATED. ITERATIUN IS CONTINUED TILL THE ASSUMED COMBUSTİO
347.	¢	EFFCIENCY EQUAL'S THE CALCULATEI EFFICIENCY FROM OXYGEN BALANCE.
348.	C	
349.		do $201 \mathrm{NT}=1.30$
350.		XAU $=$ ((WEOAL*RCHAR-CELIJ)*CCHAF* (1,-ETCA))/WLIIS
351.		DO 1 I $=1$ M1
352.	1	$X(I)=X A V$
353.		FTCRATE $=0.0$
354.	c	
355.	C	gas fhase máterial galance in the gey
356.	C	
357 .		D0 $233 \mathrm{I}=2 . \mathrm{M1}$
358.		CALL Ahh (AKE,T(I), FAU, DCSUE,TFE(I),YR(I), RGG,MC, AhCO2,FHIE)
359.		TAUE $=(T(I)+T F E(I)) / 2$

365.
366.
367.

368 .
369.
370 .
371 .
372.
373.
374.
375.
376.
377.
378.
379 .
380.
391.
382.
383.
384.
385.
386.
387 .
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
413.
419.

```
    CALL ANK(ANE,T.(I),PAU.IICSUE,TPE(I),YE(I),RG,MC,AKCO2,PHIE)
        TAUE=(T(I)+TPE(I))/2,
        I1=I-1
        CALL GFE (YHZO,AKB,ANE,AKBE(I),AMODF,RUSE(I),EMF,EFB(I),EFC(I),
        1ETUBE(I),FBM(II),FEM(I),FEM(II),FEM(I),GB(I),COE(I),GE(I),FAV,
        2FHIE,RG,RUGAS,T(I),TAUE,TAUE,VPROD(I),X(I),XO2,XO2C,YB(II),YB(I),
        3YCOE(II),YCOE(I),YE(II),YE(I),YVE(II),YVE(I),AKCOS,COV,EO2V,COUE,
        4CO2UB,YCO2B(I1),YCO2B(I),YCO2E(II),YCO2E(I))`
        AMF = GUBR(I)*AMOLF*X(I)*MC
        RFER(I) = AM*(FAU/RG)*(EPC(I)-EFE(I))*YB(I)*ANE/TAUE/CCHAR
        RRE(I) = AM*(FAV/RG/TAUE)*(I,-EFC(I)-ETURE(I'))/CCHAR*(YE(I)*AKE+
    1YCOLE(I)*AKCO2)
        FR([) = ( RRE(I)+RRE(I))/X(I)
        TCRATE = TCRATE + FR(I)*X(I)
        YO(I) = (FEM(I)*YE(I)+FBM(I)*YE(I))/FMO
        YCO2(I) = (FEM(I)*YCONE(I)+FBM(I)*YCO2B(I))/FMO
        YV(I) = FEM(I)*YVE(I)/FMO
        YCO(I) = FEM(I)*YCOE(I)/FMO
        CONTINUE
    C GAS PHASE MATERIAL EALANCE IN THE FREEEOAFII
                                    00 234 I = MF1,MT
        J=I-M1
        K = J+1
        HAU = (H(I-1)+H(I))/2.0
        CALL AREA(HAV,DTAU,ATAU)
        FHOGAS = FAU*MGAS/RG/T(I)
        UISC = 3.72E-6*r(T)**0.676
        IICSUE = 0.5*(DCSE(J)+DCSE(h))
        DCWME = 0.5*(nCLSE(J)+IICWE (K))
        CALL VEL(UISC,RHOGAS,G,RHOCH,DCSUE,UMFAV.UTAU)
        UO(I) = FMD*MGAS/FHOGAS/ATAU/(1. -ETUEE(I))
        FTT = \langleHB(K)-HB(J))/ABS(UO(I)-UTAV)
        WCHOLD(I) = (2.0*WEC(J)-WEC(N))*RT
        VCHOLD = WCHOLD(I)/RHOCH
        NC = VCHOLI*G.O/(PI*DCSUE**3)
        CALL AKh(AKC,T(I),FAU,DCSUE,TFE(I),YO(I),RG,MC,AMCO2,FHIE)
        TFE(I) = TPG(I)
        TAUB = (T(I)+TPE(I))/2.0
        II = I-1
        CALL FBC(YH2O,ANC,DCSVE,DUBE(I),ETURE(I),FMO,GE(I),COE(I),
        1GE(I),NC,FAU,PHIE,PI,RG,FUGAS,T(I),TAUE,XO2:YCO(II),YCO(I),YO(II),
        2YO(I),YV(I1),YU(I),AnCO2,COUE,CO2UE,YCO2(I1),YCO2(I))
            FFB(I) = MC*NC*FI*ICSUE**2*FAV/RG/TAUE/CCHAR*(YO(I)*ANC+
        1AKCO2*YCO2(I))
            RRE(I) = 0.0
            TCRATE = TCRATE + RRB(I)
                CONTINUE
            234 TCRATE = TCRAYE + RRB(I)
        WFITE(G,205) (I,YB(I),YE(I),YCOE(I),YUE(I),H(I),YCO2E(I),YCO2E(I)
    1U0(I),UMF(I),I=1,M1)
    C205 FORMAT ('0',T5,'I',T12,'YG',T24,'YE',T35,'YCOE',T46,'YUE',TSE,
    C 1'H',T7O,'YCO2E',T82,'YCO2B',T94,'UO',T106,'UMF',//,(IS,1F'9E12.3):
        A1 = FMF*O. 21+WCOAL*(1.-XW)*XO/MO2-FMO*YO(MT)
        ETCG = A1/(FMTH*0.21 - CELU*TARC*O.21)
        WFITE(6,209) NT,ETCA,ETCE:XAV
        FORMAT('O',10X,'NT,ETCA,ETCG:XAU = ',I4,1F3EI2.3/)
        ER=ETCG-ETCA
        CALL CRRECT(NT,INLEX,DETC,ETCI,ETCI,ETCA,E1,E2,ER,EETCM)
        IF (INEIEX .EQ. 2) GO TO 236
```

 233
 C
 c
 c
 | 420. | 201 | DONTINUE |
| :---: | :---: | :---: |
| 421. | 236 | CONTINUE |
| 422. | C | |
| 423. | C | FFid the gas fhase matefital balance，Chak comblistion fate has been |
| 424. | C | ESTIMATEI．KNOWING THIS ANI THE SOLIDS MIXING RATE，CAREON BALANEE |
| 425. | C | IS PERFORMED，THE ERUATIONS ARE SOLUEI BY THE SSF SUBROUTINE SIMQ |
| 420． | C | （SIMULTANEQUS SOLUTION OF ALGEBRAIC ERUATIONS）．THE SOLUTION GIVES |
| 427. | C | THE CARBON CONCENTFATION PROFILE IN THE BED． |
| 428. | c | |
| 429. | | WMIX ${ }^{\text {（1）}}=0$ ， |
| 430. | | WNET $(1)=0$ ， |
| 431． | | $\mathrm{J} 1=1$ |
| 432. | | $00.61 \mathrm{I}=2, \mathrm{MI}$ |
| 433. | | $\mathrm{UD}(1)=0$ ． |
| 43年． | | $42=\sqrt{1}$ |
| 435. | | IF（J1．GT．MAIS）GO TO 61 |
| 436. | | D0 $60 \mathrm{~J}=\mathrm{J}$ ，MIDIS |
| 437. | | IF（ZDIS（J）．ET．H（I））GO TO 60 |
| 438. | | WD（I）$=\mathrm{WD}(\mathrm{I})+\mathrm{WDIS*FD}(J)$ |
| 439. | | $\mathrm{j} 2=\mathrm{J}+1$ |
| 440. | 60 | CONTINUE |
| 441. | | $11=\sqrt{ } 2$ |
| 442. | 61 | CONTINUE |
| 443. | | IF（JI：GT．mDIS）GO TO 63 |
| 444. | | － $0062 \mathrm{~J}=11, \mathrm{MDIS}$ |
| 445. | | WD（M1）$=W D(M 1)+W D I S * F D(J)$ |
| 446. | 62 | CONTINUE |
| 447. | 63 | CONTINUE |
| 448. | C | |
| 449. | c | WMIX ：UF－AND DOWN－WARI SOLID MIXING FL－OW WHICH IS SUFERFOSED ON |
| 450. | C | FLOW OF SOLIDS．G／SEC． |
| 451 ： | C | WNET（I）：NET FLOW RATE OF SOLIN FROM THE TOF OF I－TH COMFARTMENT． |
| 452. | c | POSITIUE UALUE MEANS THE UPWARII FLOW． |
| 453. | | TFCC＝WCDAL＊RCHAF－CELU |
| 454. | | D0 $255 \mathrm{I}=2, \mathrm{M} 1$ |
| 455. | | $\mathrm{RR}(\mathrm{I})=\mathrm{RR}(\mathrm{I}) *$ TFC／TCRATE |
| 456. | | WNET（I）＝WNET（I－I）＋WFC（I）＊RCHAR＋WFAMI（I）－WD（I）－KR（I）＊X |
| 457. | | WMIX（I）＝AT（I）＊（1，－ETUBE（I））＊（UU（I）－UMF（I））＊FW＊（1，－EMF）＊RHOBEE |
| 458. | | $I F(W M I X(I), L T, 0) W M I X,(I)=0$. |
| 459. | 255 | CONTINLE |
| 460. | | WMIX（MI）$=0$ ： |
| 461. | c | |
| 462. | C | CAREON CONCENTRATION CALCULATION， |
| 463： | C | |
| 464. | | $\cdots \mathrm{m}=\mathrm{M} * \mathrm{M}_{\mathrm{M}}$ |
| 465. | | no 411 I＝1，MM |
| 466： | 411 | AAA（I）$=0$. |
| 467. | | In $412 \mathrm{I}=1$ ， M |
| 468. | 412 | REB（ 5 ）$=0$ ． |
| 469. | | AAA $(1)=-\operatorname{WMIX}(2)-W D(2)-R R(2)$ |
| 470. | | AAA（M1）＝WMIX（2）－WNET（2） |
| 471. | | $A A A(M M)=-W M I X(M)+$ WNET $(M)-W D(M 1)-\mathrm{RR}$（M1） |
| 472. | | AAA（MM－M）$=$ WMIX（M） |
| 473. | － | Do $413 \mathrm{I}=1$ ，M |
| 474. | | I $1=1+1$ |
| 475. | | BAB $(1)=-$ MC＊CHARC＊WFC（II） |
| 476. | 413 | Continue |
| 477. | | $\mathrm{HO}=\mathrm{M}-1$ |
| 478. | | IO $270 \mathrm{I}=$ 2，M0 |
| 4フ9 | | $I \mathrm{I}=(\mathrm{I}-1) *$ 代 I |

```
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494
495.
496.
497.
4 9 8 .
499
5 0 0
s01.
502
503
504.
505
506
507
508.
509.
5 1 0 .
511.
5 1 2 .
5 1 3 .
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
5n9.
5 3 0 .
531.
532.
2 3 5
    n0 235 I=2,m1
    CALL AKK(ANB,T(I),PAU,DCSUB,TPB(I)rYB(I),FGrMC,AKCO2,PHIB)
    TAUE=(T(I)+TPB(I))/2.
    CALL AKK(AKE,T(I),PAV,DCSUB,TFE(I),YE(I),RG9MC,AKCCO2,PHIE)
    TAVE=(T(I)+TPE(I))/2.
    I1=I-1
    CALL GPB (YH2O,AKB,AAE,AKBE(I),AMOLF,DUBE(I),EMF,EPB(I),EFC(T),
    IETUBE(I),FEM(II),FBM(I),FEM(I1),FEM(I),GE(I),COB(I),GE(I),FAV,
    2PHIE,RG,RVGAS,T(I),TAUE,TAUE,UFROI(I),X(I),XO2,XO2C,YE(II),YB(I),
    SYCOE(II),YCOE(I),YE(II),YE(I),YUE(II),YUE(I),ANCO2,COU,COIU,COUE,
    4CO2UB,YCO2B(II),YCO2B(I),YCO2E(I1),YCO2E(I))
    AM = DUBE(I)*AMODF*X(I)*MC
    RRE(I) = AM*(PAV/RG)*{EPC(I)-EPB(I))*YE(I)*ANB/TAUB/CCHAR
    RFE(I) = AM*(PAV/FG/TAVE)*(1.-EPC(I)-ETUFE(I))/CCHAR*(YE(I)*ANE!
    1YCO2E(I)*AKCO2)
    RR(I) = ( FRE(I)+FRE(I))/X(I)
    TCRATE = TCRATE + FR(I)*X(I)
    YO(I)=(FEM(I)*YE(I)+FBM(I)*YE(I))/FMO
    YCO2(I) = (FEM(I)*YCONE(I)+FBM(I)*YCO2B(I))/FMO
    YU(I) = FEM(I)*YUE(I)/FMO
    YCO(I)=FEM(I)*YCOE(I)/FHO
    BEDCOM = TCRATE
534.
535
C
C
537.
538.
539.
```


540.	IICSVE $=0.5 *(\operatorname{LICSE}(1)+\operatorname{LCSE}(h))$
541.	UCHOLE $=$ WCHOLD(I)/FHOCH
542.	NC $=$ VCHOLI* $6.0 /(F$ F*LCSVE**3)
543.	CALL ANA (ANC,T(I),FAV,DCSUE,TFG(I), 10(I), FG, MC, ANCO2,FHLE)
544.	$\mathrm{TPE}(I)=\mathrm{TPB}(I)$
545.	TAUB $=$ (T(I)+TPB(I))/2.0
546.	II $=I-1$
547.	
548.	
549.	
550.	FFFI (I) = MC*NC*PI*ロCSUE**2*PAU/FG/TAUB/CCHAR* (YO(I)*AhC+
551.	1 Anconeycan (I))
552.	$\operatorname{RRE}(\underline{1})=0.0$
553.	TCRATE $=$ TCRATE + RRE(I)
554.	237 CONTINUE
555.	FECOM = TCRATE - EELICOM
556.	C
557.	C. THE DEFINITION OF RR(I) IS CHANGEI FOR TEMFERATURE CALCULATIONS.
558,	C RR $(1)=$ (HEAT GENERATION RATE- HEAT CONSUMPTION FATE) IN THE
559.	C ITH COMFAREMENT.
560.	C
561.	DG $2951=2, \mathrm{M} 1$
562.	RR(I)=RR(I)*X(I)/TCRATE*QCHAR* (WCOAL*RCHAR-CELU)*ETCC+
563.	
564,	295 CONTINUE
565.	DO $300 \mathrm{I}=\mathrm{MPIyMT}$
566.	
567.	1GE (I) *QUCO+GE (I) *QVGAS+COS (I)*RCD
568.	300 CONTINUE
569.	IF (ITEMP , EQ: O) GO TO 610
570.	6
571.	C CALCULATİON OF TEMPERATURE
572.	C
573.	A1 $=$ CADF
574.	A $2=$ CCF
575.	EGM $=6.8+0.5 E-3 *($ TAU-273 $)$
576.	A3\%CGM*FMO
577.	
578.	$1+\mathrm{UHEW}$ (3) *AHEW (2 2*DUBB(2)
579.	EETA (2) $=(-W N E T(2)+W M I X(3)) * C S$
580.	GAMA $(2)=0$.
581.	DELT(2) $=$ RR(2)+CGMF*FMF* $(T(2)-273)+.(A 1 * W F A L I(2)+A 2 * W F C(2)) *(T S F-273$
582.	1, + +UHE (2)*AHEAV(2)*DUBE(2)*(TW(2)-273, + + 2 HEW(2)*AHEW(2)*DVEB(2)*
583.	3(TWALL (2)-273.)
584.	C
585.	C HEAT EALANGE IN THE RED
586.	C
587.	D0 310 I $=3$, M
588.	$\underline{1}=1-1$
589.	ALFA (I) $=$ (- WNET (II) +WMIX (I) +WMIX (I1)+WII (I))
590.	1*CS+A3+UHE (I)*AHEAUS (I) *
591.	EETA (I) $=(-W \mathrm{NET}$ (I) + WmIX (I)) *CS
593.	GAMA (I) $=$ (WMIX (II)) *CS+A3
593.	$\operatorname{DELT}(\mathrm{I})=\mathrm{FR}(\mathrm{I})+(\mathrm{A} 1 * W F A D(I)+A 2 * W F C(I)) *(T S F-273)+$.UHE (I) *AHEAU (I)*
594.	
595.	310 CONTINUE
596.	
597.	$1+U H E$ (M1) *AHEAU (M1) *DUBE(M1) + UHEW (M1) *AHEW (M1)*DUEB (M1)
598.	$\operatorname{BETA}\left(\mathrm{M}_{1}\right)=0$.
599.	GTAMA(M1) $=($ WMIX $(M)) * C S+A, 5$

```
601.
602.
603.
604.
605.
600.
607.
608.
609.
610,
611.
612.
613.
614.
615.
616.
617.
618.
617.
s20.
621.
622.
623.
624.
625.
626.
627.
628.
628.
630.
631.
632.
633. . C
634.
635.
636.
637.
638.
639.
640.
641.
642. 320
643.
644.
645.
646.
$47.
648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
6 2 0
    L+UHE(M1)*AHEAU(M1)*DUBE(M1)*(TW(M1)-273.)
            2+UHEW(M1)*AHEW(M1)*DUBE(M1)*(TWALL(M1)-273.)
                GELTT(M1)=FR(M1)+\langleA1*WWFAL(M1
642. }32
C C CONUERGENCY CRITERION FOR TEMPERATURE CALCULATION
C WRITE (6,308) TNORM,TAU, EELICOM,FBCOM
            AAA}(II+M)=-BETA(I+1
    SO3 CONTINUE
    CALL SIMQ(AAA, EBE,M,MM.K゙S)
    TNORM=0.
    TAV=0.
                LO 504 I=2,M1
            T(I)=ABB(I-1)+273.
            TAV=TAU+T(I)
            TNORM=TNORM+ABS(T(I)-TOLD(I))
        504 CONTINUE
            TAV=TAV/FLQAT(M)
            TNORM=TNORM/FLOAT(M)
C WRITE (6,208) TNORM,TAU,GELICOM,FBCOM 
            501 AAA(I)=0. }\begin{array}{ll}{\mathrm{ DO 501 I=1,MM}}\\{\mathrm{ IO 502 I=1,M}}
            501 AAA(I)=0. 
            501 AAA(I)=0. }\begin{array}{ll}{\mathrm{ DO 501 I=1,MM}}\\{\mathrm{ IO 502 I=1,M}}
    502 GBE(I)=DELT(I+1)
                                    .
        AAA(1)=ALFA(2)
            AAA(MM)=ALFFA(M1)
            AAA(MM)=ALFA(M1)
            II=(I-I)**+I
            ABA(II)=ALFA(I+1)
            AAA(II M-M)=-GAMA (I+1)
                GELTT(M1)=FR(M1)+\langleA1*WWFAL(M1
500.
601.
    UELT(M1)=FR(M1)+\langleA1*WFAL(M1)+A2*WHFC(M1))*(TSF-273.)
                GELTT(M1)=FR(M1)+\langleA1*WWFAL(M1
                                10 503 I=2,M0
            heat balance in the freeboaril
            C
        504
    . DO 320 I = MF'1,MT
        J=I-M1 
        WENTI = WEA(J)+WEC(J)
```



```
            1(TW(I)-273.)+IUBE(I)*UHEW(I)*AHEW(I)*(TWALL(I)-273,)
            DR = WENTI*CS+A3+LUBR(I)*UHE (I)*AHEAU (I) +IUEB (I)*UHEW(I)*AHEW(I)
            T(I) = ANR/DR + 273.0
                                    CONTINUE
CONTINUE
                                    C CONUERGENCY CRITERION FOR TEMPERATURE CALEULATION
    IF(TNORM.LT.O.O1*TAU) GO TO 610
            M1OLEN=M1
        6 0 0
                                    CONTINUE
            WRITE (6, 3003)
    3003 FORMAT('0',10X,'GAUSS SEIDEL TEMFERATURE TRIAL HAS NOT CONUERGEDI.
        & S.NO. = 3003',/)
610 CONTINUE
            CONTINUE DO 62O I = 2.MT
            A1 = AHEAU(I) * RUBE(I)
            HAREA = HAREA + A1
            QTRANS = UHE(I) * A1 * (T(I)-TW(I) ) + QTFANS.
            RR(I)= RR(I)/ IUBEEF(I)
            ZAUG(I)=(H(I-I)+H(I))*0.5
                                    CONTINUE
```

560.		QVOL $=$ QTFANS/REIVOL HFB $=H(M T)-H(M 1)$
361.		$\mathrm{HFB}=\mathrm{H}(\mathrm{MT})-\mathrm{H}(\mathrm{M1})$
66^{2}.		IF (HAREA .NE 0.0) QAREA $=$ QTRANS/HAREA
563.		$\operatorname{TPR}(1)=T(1)$
S64.		TPE(1) $=T(1)$
665.		TAV=TAV-273.
666.		DO $612 \mathrm{I}=1 \mathrm{mT}$
667.		$T(I)=T(5)-273$.
668.		$T \mathrm{PG}(\mathrm{I})=\mathrm{TPB}(\mathrm{I})-273$,
669.		$\operatorname{TPE}(I)=\operatorname{TPE}(I)-273$.
370.		CONTINUE
671.	c	= $=$ =ニ= = = = ===
672.	c	MAIN OUTPUT 3
373.	c	
374.		WRITE (6,2001) ETC, XAU,TAU,ITRIAL, (I,H(I):YE(I) YYE (I), YVE(T),
575.		IYCOE (I), YCO2E (I),YCO2E(I), X (I),ZAUG(I), I=2,M1)
676.		
377.		ITPE(I), ZAUG(I), I=2,1俍)
678.		00 613 I = 1, MT
679.		$\mathrm{TPB}(\mathrm{I})=\mathrm{TFB}(\mathrm{I})+573.0$
480.		$\operatorname{TPE}(I)=\operatorname{TPE}(I)+273.0$
381.		$T(I)=T(I)+273.0$
68 ¢.	613	continue
683.		YGQ(1) $=\mathrm{YO}(\mathrm{MT})$
684.	C	
685.	C	
685:	C	CALCULATIQN OF SO2 FEDUCTION
587.	G	
689.		IF (IGNITE, E®Q 0) TCRATE $=0.0$
689.		do $710 \mathrm{I}=1$, MT
590.		IF (I .GT, Mi) GO TO 709
691.		$Y E O(I)=Y E(I)$
692.		$Y B D(I)=Y B(I)$
693.	709	$Y \mathrm{YE}(\dot{I})=0$,
594.		$Y E(I)=0$.
695.	710	CONTINUE
595.		IF (ISO2 .EQ. O) GO TO Sil
697.	630	EONTINUE
699.		FRS $=$ WCOAL*XS/MS*FLOAT (IGNITE)* (1.-XW)
699.		IF (FRS + LE, 1, E-b) G0 T0 810
700.	C	
701.	C	Case : EfFECTIUE RATJO OF CA to s (active) in the feens
702.	C	
703.		CASE = WAD*XCAD W WCOAL *XAXXACAO)/MCAD,FRS
704.		IF (CASE.EQ.O.) G0 TO 911
705.		SULFUR $=$ WCOAL* (1, -XW)*XS*RS/MS - ELOSS*SCHAR/CCHAR/MS
706.		FELE (1) $=0$.
707.		$\operatorname{RELE}(1)=0$.
708.		$Y B(1)=0.0$
709.		$Y E(1)=Y \mathrm{P}(1)$
710.		ETS $=0.0$
71.		DETS $=0.1$
712:		EETSM $=0.005$
713.		INDX $=0$.
714.		no $711 \mathrm{I}=2, \mathrm{mT}$
715.		KELB (I) $=0$.
716.		RELE (I) $=0$.
717.		IF (TCFATE, LE; O.) G0 TO 711
719.		GENE $=$ GE(I)*UGASS/RUGAS
719.		GENE $=$ GE(I) WUGASS/RUGAS

$$
\text { FELG }(I)=\text { FRB (I) ,TCNATEKSULFUF , +GENE }
$$

RELE（I）$=$ RRRE（I）／TCRATE＊SULFUR＋GENE
720.
721.

722．
723.

724．
725.

726．
7 727．
728．
729.
730.
731.
732.
733.
734.

73 产．
736.

7 73．
738.
739.
740.
741.
742.
743.
744.
745.
746.
747.
748.
749.
750.
751.
752.
753.

754．
755.
756.
757.
758.
759.
750.

761，
752.
753.
754.
765.
766.
767.
758.
769.
770.
771.
772.
773.
774.

フフモ．
776.
777.
778.
779.
FS=ETS/CASE
C
C
C
C
C
C
C
C

FS＝ETS／CASE
FS ：FRACTIONAL CONUERSION QF ALIIITIVE
ASSUMING THE SULFUR CAPTURE EFFICIENCY，FS IS CALCULATETI ANA HENCE THE LIMESTONE REACTIUITY．THEN，SOL MATERIAL BALANCE IS PEFFGEMEI．
FFOM THE EXIT SOZ CONC，IN THE FLUE；SOL CAP TURE EFFICIENCY IS CALCULATEI．ITERATION IS CONTINUED TILL THE ASSUMED NND THE CALCULATED SULFUR DIOXIDE RETENTION EFFICIENCIES AEREE．
$A K=A K A D(F S, D P G U E, T(I))$
C SO2 EALANCE IN THE EEL
C

```
                                    [0 740 I=2.M1
```

I $1=1-1$
तM＝（1，－EMF）
CALL GPHASE：AK，AN，AM，EAU，FG，ETURE（T），EFB（I），EPC（I），
1AKBE（I）， $\operatorname{ANBE}(I), F B M(I I), F E M(I 1), F B M(I), F E M(I) \rightarrow T(I), T(I), T(I)$ ， 2YE（II），YE（II），YB（I），YE（I），RELS（I），RELE（I））
YSOI（I）$=(F E M(I) * Y E(I)+F B M(I) * Y E(I)) / F M B$
CONTINUE
74
SOI BALANCE IN THE FREEBOAFD
［10 $741 \mathrm{I}=\mathrm{MPMっMT}$
$J=1-21$
$h=J+1$
RHOGAS $=$ PAU＊MGAS／RG／T（I）
VISC $=$ 3．7nE－ $6 * T(I) * * 0.675$
DPSUE $=0.5 *(\operatorname{DPSE}(1)+\operatorname{DPSE}(\hbar))$
DPWME $=0.5 *($ DFWE $(J)+\mathrm{DPWE}(K))$
CALL UEL（VISC，RHOGAS，G，FHOEEI，DFSUE，UMFAU，UTAU）
$R T=(H B(K)-H B(J)) / A B S(U O(I)-U T A V)$
WAHOLI（I）$=$（2．OWUEA（J）－WEA（K））＊FT
VAHOLI $=$ WAHOLD（I）／RHOEEI
$N A=$ VAHOLD＊G．O／（FI＊DFSUEW＊3）
$A K=A K A L(F S, D P S U E, T(I))$
ANR＝FMOKYSQ2（I－1）＋RELB（I）＋RELE（I）

YSOZ（I）＝ANR／DR
741
ETSC＝1．－FMOXYSO2（MT）／FRS
EE＝ETS－ETSC
CALL CRRECT（ITRY，INIX，UETS，ETSI，ETSI，ETG，EI，E2，EE，EETSM）
IF（INDX．EQ．2）EO TO 910
800
WRITE（6，3600）
3600 FORMAT ${ }^{\prime} 0^{\prime}, 10 X$, ETS HAS NOT COMUERGEE．S．NO．$\left.=3300^{\prime}, 1\right)$
810 CONTINUE
$Y E O(3)=Y S 02(M T)$
WRITE（6，20OS）ETS，FS，CAS，CASE
1，（H（I），YE（I），YE（I），ZAUG（I），YSO2（I），FELS（I），RELE（I）PIT2，MT）
$\begin{array}{ll}c & 1,(H(I), Y E(I), Y E(I) \\ C & \text { MOX CALCULATIONS }\end{array}$
${ }^{c}$
IF（INOX ．ER．0）GO TO 314

790.		FRN $=$ WCOAL * ($1 .-$ XW) * XN/MN * FLOAT (TGNITE)
781.		ANITRO = WCOAL * (1,-XW) * XN * EN / MN - ELOSE\#NCHAR,CCHARSMN
792.		DO $750 \mathrm{I}=2 . \mathrm{MT}$
793.		GENB $=$ GB (I) WUGASN/RUGAS
794.		GENE = GE (I) *UGASN/RUGAS
785.		RELE (I) = RRE(I),TCRAAE * ANITRO +GENE
790.		RELE $(I)=$ RRE (I)/TCRATE * ANITRO + GENE
737.	750	cantinue
739.		$Y B(1)=0.0$
789.		$Y E(1)=0.0$
790.		$F R=5.24 E 7$
791.		$A E=34000.0$
792.	c	
793.	E	NOX BALANEE IN THE BED
794.	c	
795.		$100760 \mathrm{I}=2, \mathrm{Mt}$
796.		If = I-1
797.		TAUB $=$ (T(I)+TPB(I))/3,0
798.		TAVE $=(T(I)+T P E(I)) / 2.0$
799.		AKE = FRXEXF (-AE/1+996/TAUB)
800.		AKE = FR * EXP ${ }^{\text {(}}$-AE/1,996/TAUE)
901.		AMODF $=6.0$ FFHOBED* (1.-EMF)/(ICSYE*RHOCH*CCHAF)
802.		AM $=$ AMDIFF*XSI)
303.		CALL GPHASE (AKB, AKE, AM, PAV,RG, ETUEE(I), EPB(I), EPC (I), AKBE(I),
804.		$1 \underline{1}$
305.		2YE(II),YB(I),YE(I) ,RELS(I),RELE(I))
806.		YNOX(I) $=$ (FBM(I)*YB(I)+FEM(I)*YE(I))/FMO
807.	760	CONTINUE
808.	C	
909.	C	NOX BALANCE IN THE FREEBQARD
810.	C	
911.		D0 $770 \mathrm{I}=\mathrm{MFI}, \mathrm{MT}$
812.		TAUB $=(T(F)+T P B(I)) / 2.0$
813.		$J=I-M 1$
814.		$K=1+1$
315.		DCSUE $=0.5 *(\operatorname{DCSE}(J)+\operatorname{DCSE}(\mathrm{K}))$
916.		$X(I)=$ WCHOLD (I) *CCHAR/ (WCHOLI (I) + WAHOLD(I))
817.		CARCON(I) $=$ WCHOLD(I) KCCHAR/DUREEF (I)
313.		UCHOLI $=$ WCHOLD($) /$ RHOCH
819.		NC $=$ VCHOLI* $6.0 /($ FI*ITCSUE**3)
820.		AKNO $=$ FR*EXP (-AE/1.996/TAUS)
921.		ARLR $=$ FMO*YNOX(I-1) + RELE (I) + RELE (I)
829.		DR = FMD + NE*FI*ICSUE**S *AhNO*F'AV/RG/TAUE
923.		YNOX (I) = ANR/DR
924.	770	CONTINUE
825.		ENLOX = FMO* YNOX (MT.)
826.		EINDEX = ENOX/WCOAL
327.		ETN $=1,0-$ ENOX /FRN
328.		ENOX = ENOX/FMO
829*		
930.		ICARCON(I), ZAUG(I); YNOX(I), RELE(I), RELE(I), I=3;MT)
931 :	751	CONTINUE
832.	C	====
933.	C	MAIN OUTFUT 4
834.	C	$==== \pm======$
835.	814	CONTINUE
836.		YGE(2) = YCO2 (MT)
837.		YGO(4) $=$ YH20
938.		YGO(5) = YCO(MT)
939.		URITE(6,2006) (YEO(I), $\mathrm{I}=1,5)$

940.		IF : HLMF.EQ.0.0, MMF = SOLVOL
341.		IF (HLAF . EQ. O.0) HLMF - HESGHT (UMF)
342.		IF (HLF . EQ, 0.0) HLF $=$ H(M1)
843.		IF (IFRES .EQ. 0) G0 TG 950
344.	900	Contilnue
945.	c	
946.	C	Fressure nrof calculation
947.	C	
848.	C	*******************************./*************
949.	C	OLL THE FRESSURE DFOP GIVEN IN CM OF WATER
850.	c	***4****
951.	c	
853.	c	FRESEUFE DRIOP CALCULOTIONS ACROSS THE EISTRIEUTOR
953.	C	
854.		TEMF $=$ T(2)
855.		RHOFG = PF * MEAS (${ }^{\text {(FEG*TEMP) }}$
856.		
357.		DPDIS $=$ (UQR 0.0) **2 * RHOFG (2.0 KE)
358.		WEITE (5,2050) DF[IIS
359.	C	
350.	c	PRESSURE DKOP CALCULATIONS IN THE FLULISIEL SEE SECTION
9¢1.	C	
862.		WRITE (6.2051)
363.		$\cdots 1=M 1$
354.		IF (IFRC .GT, 0) $\mathrm{N} 1=\mathrm{Mi}-1$
965.		n0 $920 \mathrm{I}=$ 2,N1
366.		LPFLU $=(1,0-E M F) *(1.0-E P B(I)) *(H(I)-H(I-1)) *$ RHORED
967.		WFITE (6, 2052) I\% DPFLU
868.	920	CONTINUE
969.		IF (IFEC . EQ. 0) GO TO 930
870.	C	
371.	C	FRESSURE DROP CALCULATIONS IN THE FIXEL SELI SECTION
972.	C	
373.		$E 1=(H(M 1)-H(M 1-1)) / G$
874.		E2 $=(\pm .0-$ EMF $)$ (EMF ** 3
975.		
375.		
977.	930	CONTINUE.
878.		IF (IFBC . EQ. 0) DPFIX $=0.0$
979.		WFITE (6,2053) DPFIS
880.	950	CONTINUE
891.		WRITE ($6, O C$)
832.		WFITE (6, OPCF1)
233.		WRITE(6,2060)
384.		D0 910 I = 2,M1
こ35.		
384.		$1 \mathrm{UMF}(I)$ (${ }^{\text {l }}$
897.	910	continue
888.		WRITE (6,2075)
889.		no $940 \mathrm{I}=1 \mathrm{mmT}$
890.		WRITE (6,2080) I,H(I),ITT(I), AT(I)
991.	940	CONT INUE
892.	1000	FORMAT(SII)
893.	1001	FORMAT (SF10,0)
894.	1010	FORMAT (2A4/(9F10.0))
395.	2000	
gis.		W'XSIO2 $=$ ',FS.3,10X, $\mathrm{XCOS}=$ ',FS.3.1)
397.	2001	FORMAT $/ / / 10 \mathrm{X}, \mathrm{RESULTS}$, ALL TEMFEFATUSES INL CEAITIGRADE' $/ \prime$
899.		
30\%.		

900 ．
901.
－022．
903.

904．
$905:$
905：
907.
903.
909.
910.
911.
912.
913.

91．4．
415：
915．
917：
918 ．
919：
920.

○1．
922.

923．

924.

925.
926.
927.
928.

920．
9 ำ．
931 ．
932.
－33．
934：
935.
936.

937.

938.
939.
940.
941.

.942.

943.

944.
945.
946.
947.
948.
949.
950.
951.

95゙2，
953.

954：
755：
956.
957.
958.
959.

 2（1F7EI3．4）

```
        200G FORMMTG/', OUTLET GAS CONCENTRATION' ,//EX,'0N',10X,'COQ',OX,'SO2',
```

 10X,'H2O',9X:'CO',/5E12',4/1)

2010° FORMAT ('0'; SX', SURFACE VOL MEAN DIA. OF ALINTTIUES FEED = UASUF =

2020

2040 FOFMATG'O',T21,'SURFACE VOL MEAN DIA OF COAL FEES $=$ MCSUF $=$ ',

2050 FORMAT ('O' $40 X$,'PRESSURE DROP ACROSS THE IISSTRIBUTOR $=$ ', 1 PEII. 1)
2051 FORMAT ('O', OOX'COMP.NO',13X,'PRESSURE GROP IN THE BED', ノ)
2052 FQRHAT (20X,15,20X:1FE11.4)
2053 FORMAT ($0^{\prime}, 40 \mathrm{X}$, FRESSURE AROP IN THE FIXED BEI SECTION $=$, ,IPEII.
* 4)

2:5X,'MIN.FLU.VEL.',/\%

ZO75 FORMAT ('O',T10,'COMFT.MO.',T25:'HEIGHT'\&T42:'EED DIA.'.TS5,
1-GED E/S AREA'j/)
2090 FORMAT (T12,I3,T25,F6.2,TA0I1PE10.3,TE5,1PE10.3)
10000 STOP
END
FUNCTION AKAD(FG,DP;T)
c
\dot{C} THIS SUBROUTINE CALCLLATES LIMESTONE-SO2 REACTICN EATE CONSTAATT
UIM位NSION $F B(15), R R(15)+R E(15), R C(15)$
DATA FB/ $0.0,0.05,0.1,0.2,0.25,0.3,0.35,0.4,0.425,0.45,0.475,0.5$,
*0.525,0.55,0.5
DATA KR/1,0,0,231,0.15,0,038,0,001:0.0004,0.0003,0.00022,0,0002,
$10.00013,0.00016,0.00015 \times 0.00014,0.00013,0.00011$,
LATA RE/1.0,0.584,0.515,0.337,0.213,0.005,0.022.0.0071-0.005,
i $0.005 ; 0.004,0.0036,0.003,0.00275,0.00225$,
IATA RC/1.0,0.938,0.894,0.802,0.749,0.687,0.509,0.51,0.445,0.357,
$10.272,0.19,0.121,0.076,0.022$,
$\mathrm{DF} 1=0.2$
$0 \cdot z=0.1$
11P $3=0.01$

ALIME $=0.0$
AKAII $=0.0$
IF (FS ,GE, 1,0) RETURN
(10) $10 \mathrm{I}=2,13$
$N=I$

```
950.
9.51.
O52.
0.3.
964.
955.
966.
957.
958.
969.
970.
971.
972.
973.
974.
975.
975.
977.
973.
97%.
990.
981.
982.
983.
984.
995.
986.
987.
988.
989.
990.
991.
992.
993.
994.
995.
994.
997.
909.
909.
1000.
1001.
1002.
1003.
1004.
1005.
1006.
1007.
1008.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017.
1018.
1019.
5F: FS LEE. FB(I) ) GO TO 11
        10 continue
        if CONTINUE
            N1=N-1
            A=(FS-FE(N1))/(FB(N)-FB(N1))
            IF( DP .LT. DPR) GO TO 12
            RI=(RR(N)/RR(N1))**A*RR(N1)
            R2=(RE(N)/FE(NI))**A*RFE(NI)
            G0 TO 13
        12 CONTINUE
            R1=(RB(N)/RB(N1))**A*RB(N1)
            RZ=(RC(N)/RC(N1))**A*RC(NI)
            13 continue
            ALIME={R士/R2)**XXX*R2
            IF( ALIMME ,GT. 1.0) ALIME=1.0
            IF (T .LT.1253.0) 5G = 35.9*T - 3.47504
            IF (T ,GE, 1253.0) SG = -38.43*T + 5.64EO4
            IF ( SG +LT. 100.0) SG = 100.0
            AKAD = 490.0NEXP(-17500.0/1.987/T)* SG * ALIME
            RETURN
            ENM
            SUBROUTINE AKK(AKR,T,P,NG,TF,YOR,FG.MC,AKCON,FHF:
            REAL MC
C
C THIS COMPUTES FEACTION RATE CONSTANT FOR CHAR COMEUSTION AKF,
C RATE CONSTANT FDR CGCON REACTION AND THE CHAR PARTICLE TEMPERNTURE
C
                                    BO 100 I=1r20
    EM=1+0
    SIGM=1.36E-12.
    INDX=0
    IITS=200.0
    TF=300.0
    ETSMAX=0.005*TP
    AKS=8710.0%EXF (-35700,0/1.906/TF)
    TAV = (T+TP)*+5
    n=4.25*(TAU/1800.)**1.75/P
    COND=0.632E-5*SQRT(TAU)/(1.+245./TAJ*10.**(-12./TAV))
    Z = 2500.* EXP(-12400,/1.986/TAW)
    IF (IIC .LEE. 0.005) FHI = (2.* (Z+2.)/(Z Z+2.)
    IF (ILC .GT, 0.005 ,AND. IC .LE. 0.10) FHI = 1./(Z+2.)*((2.kZ+2.)
    * - Z.*(NC-0.005)/0.095)
    IF (IC ,GT, 0,10) PHI = 1.0
    Q = 7900.0*(2.,FHHI-1)+2340.0*(2.-2,/PHI)
    AKF=24.*FHI*N/(DC*RG*TAU)
    AKR=(RG*TAV/MC)/(1,/AKS+1,/AKF)
    RHS = NKK*P*YO2*MC*Q/(RG*TNU) - EN*SIGM*(TF**A-T***G)
    ETS = TP - T - RHS*NC, (2.O*COND)
    CALL CRRECT(I,INDX,DTS,TP1,TP2,TF,E1,E2,ETS,ETSMAX)
    IF (INDX,EQ.2) GO TO 110
    100 CONTINLE
    WF:ITE (6, 4000) TP,ETS
4000 FORMAT ('0',10X,'TF CALCULATION HAS NIOT CONUERGEI',',10X,'TE,%ETS -
    1,,1F2E12.3)
    110 CONTINUE
    nKRCO2 = 4.1E09*EXF(-59200./1,987/TAU)
    H=3.26*(TAV/1800.)**1.75/P
    ANFCOS = 2.*FHI*NI/HC
    AKCO2 = 1./(1./AKRCO2+1./ANFCO2)
    RETUE:N
```

1020 ．		ENHI
1021.		SUEROUTINE AREA（ II，DTI，ATI ）
1022゙．		
1023.		
1024．		
1025.		
1026.		
1027.		
1029．		
1029．		2EMFF，PAU，HCR，BELVOL，EFFVOL，SOLVOL，TETUEE， H ，
1030.		
1031.	C	
1035：	c	CALCLLATTOA OF＇the cross sectional area given the heighr abuve
2033 ．	C	THE DISTRIBUTER
1034.	E．	
1035.		NOC $10 \mathrm{~J}=1$ ，MTE
10335．		IF（ZI．GT．ZEid），GO T0 10 ．
1037 ．		RJM1＝SQRT（ ATB（ J－i）／FI ）
1.038.		
1．039＇．		B． $1=\operatorname{SQRT}$（ ATE（J）$/$ ATE $(J-1)$ ）－ 1.0
1040%		
1041．		ETE $=3.0$＊ R （
1042 ．		ATI $=$ PI＊RI＊＊2
1043＇．		80 T0 20
1044.	10°	CONTINUE
1045.	20	CONTINUE
1046．		REFURN＇
Y047．		END
1048.		SUEROUTIME CRRECT（I，INDX－DX，X1，X2，XNEU，E1，E2，E，EMAX）
1049．	C	IT：NUMEER OF THIS TRIAL， 1 FOR FIRST TRINL
1050.	C	INDX：INDEX OF THE TRIAL LEVEL
1054．	C	ENDX＝0：JUST FROCEEDING
1052.	C	INDX＝1：THE ROQT HAS REEN CAUGHT EETHEEN X1 ANII X2
1053.	C	INIXX＝2：THE ITTERATİN HAS CONVERGED
1054.		IF（ABSIC）．GF．EMAX）GO TOS
1055.		IMDX $=2$
1056.		RETEUNN
1057.	5	CONTINUE
1058.		IF（INDX．ER．1） 60 TO 100
1059.		X2－XNEW
1050.		E こ＝
1061.		IF（I，ER，I）GO TO 10
1062.		IF（EI＊E2＋EE＊ 0 ，）INDX $=1$
1063.		IF（INDX＊E－1）G0 TO 150
1064.	10	$\mathrm{X} 1=\times 2$
1065.		$E 1=E 2$
1066．		XMEW＝XNEW＋DX
1036．		RETURN
1068.	100	CONTINUE
1069．		IF（EI＊E．LT．O＇）GO TO 110
1070．		E $1=5$
1071.		X $11=$ XNEW
1072，		GO TO 150
1073.	110	E2 $=$ E
1074．		$\mathrm{X}=\mathrm{XNEW}$
1075.	150	continue
1076．		XNEW $=\left(\mathrm{X}_{1}-\mathrm{X} 2\right)$＊E2ノ（E2－E1）+ X2
1077.		FETURN
1079.		ENI
1079.		SUEROUTIME DESIGN

ORIGINAL PAGE T OF POOR QUALITY

```
1080. CJMMON /A/ ZHE(10), NHE(10),FU(10),PH(10), ZF:10),FFC(10),OTUEE(10:,
1081.
1082.
1083.
1084.
1085.
1086.
1087.
1088.
105%.
1090.
1091.
1092.
1093.
1094.
1095.
1096.
1097.
10:3.
1090.
1100.
1101.
1102.
1103.
1104.
1105.
1105.
1107.
1108.
1109.
1110.
1111.
1112.
1113.
1114.
1115.
1115.
1117.
1118.
1119.
1120.
1121.
1122.
1123.
1124.
1125.
1126.
1127.
1128.
112%.
1130.
1131.
1132.
1133.
1134.
1135.
1135.
1137.
1138.
1130.
\begin{tabular}{|c|c|c|}
\hline 1030. & &  \\
\hline 1081. & &  \\
\hline 1082. & &  \\
\hline 1083. & &  \\
\hline 1094. & &  \\
\hline 1085. & &  \\
\hline 1086. & & 1HLF, UAF,FMO,FMF, UF, PF \% TF, RE, G, MGAS, DFFIX, IPFLU, DFATS, RHOEED, \\
\hline 1087. & &  \\
\hline 1088. & & 3FW,FSW, DZAU,MFEES,MDIS,MTHE,MTE,MT, 1 , M, ICF, IFEC, NTC \\
\hline 105\%. & C & \(\because\) \\
\hline 1090. & C & AXIAL UARIATION OF RED CROSS SECTION \\
\hline 1091. & C & \\
\hline 1092. & & FEAD (5,1000) A1, \(\mathrm{A}^{2}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A}\) \\
\hline 1093. & & RENL (5,1001) MTB, (2B(J), ATR(J), \(\downarrow=1, \mathrm{MTE})\) \\
\hline 1094. & C & \\
\hline 1095. & C & IARRNG \(1{ }^{\text {a }}\) 2 \\
\hline 1096. & C & 1 - UERTICAL INLINE AREANIGEMENT \\
\hline 1097. & C & 2 --m- UERTICAL STAGGERED ARRANGEMENT \\
\hline 1093. & C & З --m- HOFIZONTAL INLINE AKSANGEMENT \\
\hline 1099. & C & 4 ----- HORIZONTAL STAGGERED ARRANGEMENT \\
\hline 1100. & C & \\
\hline 1101. & C & \\
\hline 1102. & C & HEAT EXCHANGE TURES \\
\hline 1103. & &  \\
\hline 1104. & & IIARR(J), J = 1,MTHE) \\
\hline 1105. & C & \\
\hline 1105. & C & LOCATION OF FEED AND DISCHAREE \\
\hline 1107. & & REALi. (5,1001) MFEEI, (ZF(J),FFCC(J),FFAD(J), J = 1, MFEED) \\
\hline 1108. & C & \\
\hline 1109. & &  \\
\hline 1110. & C & \\
\hline 1111. & C & IISTRIRUTOR \\
\hline 1112. & C & \\
\hline 1113. & & FEND (5,1003) AND , DNZL , FW , FSW \\
\hline 1114. & & DO \(100 \mathrm{~J}=1 . \mathrm{MTHE}\) \\
\hline 1115. & & IF (AHE (J) .GT., 0.0) GQ TO 100 \\
\hline 1115. & & IF (EITUEE (J) . EQ. 0.0\()\) GO TO 100 \\
\hline 1117. & & AHE(J) = PI * DTUEE(J) / (PH(J)*PV(J)) \\
\hline 1118. & 100 & CONTINUE \\
\hline 1119. & C & \\
\hline 1120. & C & CONDITION FOR COMFUTING AVERAGE CELL SIZE \\
\hline 1121. & C & \\
\hline 1122. & & WRITE (6,2000) A1, A2, \(\mathrm{A}^{(3, A 4}\) \\
\hline 1123. & & WRITE (6,2001) \\
\hline 1124. & & WRITE ( 6,2002 ) (ZS(J),ATE(J), J = 1,MTE) \\
\hline 1125. & & WRITE (6,2003) \\
\hline 1126. & & WFITE (6,2004) (ZHE (J+1),AHE (J), ITTUEE(J), PV(J),FH(J), TARR(J), \\
\hline 1127. & & 1J = 1, MTHE) \\
\hline 1128. & & WRITE (6,2005) \\
\hline 1120. & & WFITE (6,200S) (ZF(J),FFFC(J),FFFAD(J), \(\rfloor=1\) (mFEEIS) \\
\hline 1130. & & WFITE (6,2007) \\
\hline 1131. & &  \\
\hline 1132. & & WRITE (S,2009) AND, DNZL,FW,FSW \\
\hline 1133. & & \(\mathrm{Z1}=\mathrm{ZE}(1)\) \\
\hline 1134. & & AREDI \(=\) ATE(1) \\
\hline 1135. & & DBEDI \(=\operatorname{SQRT}(4.0 \times\) AEEEI \(/ \mathrm{FI})\) \\
\hline 1135. & & IUP(1) \(=0.0\) \\
\hline 1137. & & IVGEFF (1) \(=0.0\) \\
\hline 1138. & & ZHE(1) \(=0.0\) \\
\hline 1139. & & [IZAl \(=30.0\) \\
\hline
\end{tabular}
```

1140.	MTC＝IFTX（ZR（MTE），EZAU）+1.	
1114.	$z_{2}=Z_{1}+$ UZAU $\quad 00105=1, N T C$	
1142.		
$11.43{ }^{\circ}$	IF（I．EQ A NTC） $22=2 \mathrm{SB}$（MTE）	
1144．	－ $90204=18 \mathrm{MTHE}$	
1145．		IF（ ZHE（J）．LEE，Z1 ．AND．ZHE（J＋1），GE．Z？）EO．「O 30
11.46.		IF（ ZHE（J），LEE．Z2 ，ANII．ZHE（J＋1）．LT．Z2 ）EO TO 20
1147.		$\mathrm{FI}_{1}=$（ Z 2 －ZHE（J））A DZAU
1149°		F I $=$（ ZHE （J）－Z1 ）／DZAU
1149．		$A H=F 1$＊ $\mathrm{AHE}(J)+\mathrm{F2}$＊ $\mathrm{AHE}(\mathrm{J}-1)$
1150.	DIAT $=\mathrm{F}_{1}$＊DTURE（」）＋F2＊DTUEE（ 1 －1）	
1151.		GO 7040
1152.	30	$A H=A H E(J)$
1153．		GIAT＝ITUEE（ل）
1154.	40	CONTINUE
1155.		G0 TO 50
1156.	20	CONTINUE
1157．	50	continue
1159.		
1159.		
1160.		DUBEFF（I＋1）＝DUB（I＋1）＊（1．0－0．15＊AH＊DIAT）
1151.		Z1 $=72$
1152.		ABED1 $=$ ABED
1153.	10	CONTINUE
1154.	1000	FORMAT（4AA）
1155.	1001	FORMAT（II／P8F10．0））
1155.	1002	FORMAT（I1／（5F10．0，I10））
1167.	1003	FQRMAT（ 3 F 10.0 ）
1158.	2000	FORMAT（＇1＇，20X，4A4，／／）
1169.	2001	1＇AREA DF bed．Sa．CM．＇，＇）
1170		
1171.	2002	FORMAT（T49，F8．4．T96．F10．3）
1172.	2003	FORMAT（＇O＇，TS，＇HEIGHT，CM＇，T2O，＇SP．HEAT TRANS，AREA，SQ．CM，CU．CM＇， 1TE8，＇ロIA，OF TUBES，CM＇，T78，＇VER．FITCH，CM＇，TG5，＇HOR，FITCH，CM＇，
1173.		
1174.		$2 T 113, '$ TURES ARRNGT＇， 1 ）
1175.	2004	
1176.	2005	FORMAT［＇O＇，TII，SOLILIS FEEI LEVEL＇，TSI，＇FRACTIOM COAL FED＇，
1177.		1TSI：＇FRACTION LIMESTONE FED＇， 1 （
1179.	2006	FORMAT（T27，F6．2，T58，F6，1．TO8，F6．4）
1179.	2007	
1190．		1，\％）
1181.	2008	FORMAT（T29，F6．2，T59，FS．4）
1182.	2009	
1193.		
1194.		
1195.		FEETURN
1186.		END
1197.		SUEROUTINE FBCCYHZO，AKC，DCSUE，DUEE，ETUSE，FMO，GE，COE，GE，NL，
1189.		
1189.		2COUS，CO2UE，YCO20，YC02）
1190.		REAL NC
1191.	C	
1192.	c	THIS SUBFROGRAM PERFDRMS THE GAS FHASE MATERIAL FALANCE FOR
1193.	C	On，CO，CO2 IN THE FREESOARD
1194.	C	
1105.		A2＝PAU／RG／TAUB＊NC＊FT＊DCSUE＊＊2＊AhC
1196.		A4＝FAU／RG／TAUB＊NC＊FI＊ICSUE＊＊2＊AMCO2
1197.		$Y \mathrm{Y}=\mathrm{YUO} \mathrm{YOO/XOS}$
1193.		IF（YY ．LT，0．0）GO TO 100
1199.		$Y O=0.0$

ORIGINAI PAGE IS
 OF POOR QUALITY

1200.	c	ORIGINAL PAGE
1201.	c	
1202．	C	
1203.		
1204.		YCO $=$ YCDO L ．OKA4＊YCO2／FMOt（YJO－YU）＊LQUE
1205.		$\mathrm{GE}=0.0$
1206.		$G E=F M O *(Y \cup O-Y(\%)$
1207．		$\mathrm{COB}=0.0$
1208.		RETURN
1209.	100	CONTINUE
1210.	c	
1211.	c	OXYGEN RICH CONDITION
1212．	c	
1213.		$Y \mathrm{~V}=0.0$
1214.		
1215.		1（1，－ETUBE）
1215．		INDEX $=0$
1217.		$Y 0=0.0$
1219.		OYO $=0.01$
1219.		$E Y O=0.001$
1230.		RO 110 I＝1，20
1231.		
1222.		1FMO＊YVO＊COUE＋A2＊YO＊（2．－2．／PHIR）
1223.		［R＝FMOTAKFK（17．5＊YO，（1．＋24．7＊Y0））
1224 ．		1－2．0＊A4＊AKP世（17．5＊YO／（1．＋24．7＊YO））／（FMO＋A4）
1225.		YCO＝ANR．DR
1226．		IF（YCO ．LT，1．E゙－6）G0 10130
1227.		YCQ2 $=$（FMO＊YCO20＋A2＊YO＊（2．／PHIE－1．）
1228.		
1229．		YOC $=$ YOO－YVO＊XO2－AKP＊YCO＊（17．5＊YO／（1，＋24．7＊YO））／2．0／FMO
1230.		1－Aこ＊YO／PHIE／FMO
1231．		GO TO 140
1232.	130	CONTINUE
1233.		$Y C O=0.0$
1234.		YCOE $=$（FMOXYCO2O＋A2XYO＋FMOXYCOO）／（FMO）
1235.		YOC＝YOO－YVOKXO2－YCOO／2．0－A2＊YO／FKO
1236.	140	CONTINUE
1237 ．	C	WRITE（3，190）I，YCO，YCO2．YD，YOC
1239.	C190	FORMAT（SX，＇I，YCO，YCQI，YO，YOC－＇，I4，IPIE12．3）
1239.		IF（YOC．LT，0．0）YCC $=0.0$
1240.		IF（YCO2 ．LT，0．0）YCO2 $=0.0$
1241．		EF＝YO－YOC
1242.		
1243．		IF（INDEX ，EQ ，2）GO TO 120
1244.	110	CONTINUE
1245.		WFITE（6，1000）YO，YOC，YOO
1246.	1000	
1247.		1YOC，YOO＝＇，1P3E12．3．
1248.		$Y E=Y E 0$
1249 ．	120	$\mathrm{GE}=0.0$
1250.		GE＝FMO＊Y
1251.		COB $=$ AKP＊YCO＊（17．5＊YO／（1．＋24．7＊Y0））
1252.		IF（YCO ．ER．O，0）COB＝FMO＊YCOO
1253.		IF（YO ，GT，YOC）YO＝YOC
1254.		FETUFN
1255.		ENI
1255.		SUEROUTINE GFE（YH2O，ARE，ARE，AhBE，AMOLF，DUEE，EMF，EFG，EFC，ETUEE；
1257.		1FEMO，FEM，FEMO，FEM，GE，COR，GE，FAU，FHTE，FG，RUGAS，T，TAUE，TAUE．
1259.		
1259.		

1250.		［IMENSION A（25）P（5），AA（16），SE（A）
1251.	c	
1262．	c	THIS SUBFRQGRAM FORMS THE HEAPT OF THE CALCULATIONS FOR THE
15263.	C	GAS FHASE GALANCES IN THE BEI
1254.	C	
1265.		$A I=A K B E * T U B E * E P B * P A U /(F G * T)$
1266.		
12¢プ．		
120		
1269.		D0 $150 \mathrm{I}=1.25$
± 370.	c	
1271.	C	OXYGEN：CONCENTRATION IN EMULSION FHASE T IS ZERO．
1272 ．	c	
1273.	150	$A^{\prime}(I)=0.0$
1274.		$A^{*}(1)=$ FEM：＋A1
1275.		$A(4)=-A 1 * C O 2 N E$
1276		$\mathrm{A}^{(5)}=\mathrm{Al}^{(5)} \mathrm{XOEC}$
127゙ブ．		$A^{\prime}(7)=A(1)$
1279．		$\mathrm{A}^{\prime}(9)=-\mathrm{Al}$
1279．		$A^{\prime}(\pm 0)=A 1 / 200$
1280.		$A^{\prime}(1,2)=-2.0 * A A^{\prime}$
1291.		$A(13)=F E M+A 1+A 4$
1292.		$A(1 \sim 4)=-A 1$.
1293 ：		$A^{\prime}(18)=-A^{1}$
1294.		$A^{\prime}\left(19^{\prime}\right)=F B M+A^{1}$
12055．		$A^{\prime}(21)=A 1 / X 02$
1296．		$\mathrm{A}^{2}($ 2n）$=-\mathrm{A}$（＊COUB／X02
1297.		$A\left(24^{2}\right)=-A 2$
1299，		$A^{\prime}(25)=F B M+A 1+A 2$
1298.		$\mathrm{B}(1)=$ FEMO＊YUEO－FEMO＊YEO／XOZ＋UPROU
1290 ．		
12912．		
1295.		$\mathrm{B}(4)=\mathrm{FBMOXYCO2BO}$
1293.		E（5）＝FBMO＊YFOO
1394.		
15955．		Y VE $=\mathrm{B}(1)$
1296．		IF（YUE LLE，0．0）GQ́ Tiol 10
1297.		$Y \mathrm{Y}=\mathrm{O}^{\circ} \mathrm{O} 0^{\prime}$
1298．		YCOE $=\mathrm{B}(2)$
1299.		YCORE $=\mathrm{E}(3)$
1300.		YCO2S $=\mathrm{B}(4)$
1301．		$Y \mathrm{E}=\mathrm{B}(5)$
1302．		$\mathrm{GE}=$（FEMO＊YEO＋A1＊YB）$/ X 02$
1303゙：		$\mathrm{GE}=\mathrm{A}$＊YUE
1.304.		COB $=\mathrm{Al*YCOE}$
1305.		G0 TO 60
1306.	10^{*}	CONTINUE
1307.	C	
1308．	C	OXYGEN CONCENTRATION IN EMElLSION FHASE IS LARGE ENOUGH TO SURN
1309．	C	THE VOLATILES RELEASED IN THOT COMPARTMENT
1310.	C	
1.311 ＊		Y YE $=0.0$
1312.		
± 313.		1（1．－EFC－ETUEE）＊EMF
1314.		INITX $=0$
1315.		$Y \mathrm{E}=0.0$
1315.		IYY $=0.01$
1317．		IF（YEO LEE， 0.0 S M ME $=0.002$
1315．		IF（YEO LLE 0.0 IS $)$ IYE $=0.001$
1310．		EMAX $=0.01$

```
1320.
1321,
13コ2.
1323.
1324.
1345.
1326.
1327.
13}9
1329.
1330.
1331.
1332
13,33.
士己移.
1335.
1336.
1337
43%8.
$339.
1340.
1341.
1342.
1343.
1344.
1345.
1346.
1347.
1399.
134%.
1350.
1351.
1352
1353.
1354.
1355.
1356
1357.
1359.
1359.
13S0.
1351.
1363
1353.
1354.
1365.
13.56.
1357.
1348.
1369.
1370
1371.
1372.
1373
1374.
1375.
!375.
さこフ7.
13尔.
1シ79.
\begin{tabular}{|c|c|c|}
\hline 1320. & & 10 150 I \(=1,16\) ： \\
\hline 1321. & 130 & \(A A(I)=0.0\) \\
\hline 1322． & & co 50 I＝1，50 \\
\hline 1323 ． & & AA \((1)=\) FEM \(+A 1+A K F *(17.5 * Y E((1,+24.7 * Y E))\) \\
\hline 1329. & &  \\
\hline 1325． & & \(A A(3)=-A 1\) \\
\hline 1325． & & \(A B(4)=A 1 / 2,0\) \\
\hline 1327. & & AA（S）\(=-2.0 * A 4\) \\
\hline 1329. & & \(A A(E)=F E M+A 1+A 4\) \\
\hline 1329. & & \(A A(?)=-A 1\) \\
\hline 1330. & & \(A A(10)=-A 1\) \\
\hline 1331. & & NA（11）\(=\) FBM＋AI \\
\hline 1332. & & \(A A(15)=-n 2\) \\
\hline 1333. & & \(A A(16)=F B M+A I+A 2\) \\
\hline 1334． & &  \\
\hline 1335． & & 1（2．－2＋／FHIE）＊Y \\
\hline 1336. & &  \\
\hline 1337. & & \(\mathrm{BB}(3)=\mathrm{FBH} 0 * Y \mathrm{CO} 2 \mathrm{CO}\) \\
\hline 1338. & & \(\mathrm{BE}(4)=\) FBH0＊YBO＋A1＊YE \\
\hline 1339. & &  \\
\hline 1340. & & YCDE \(=\) SB（1） \\
\hline 1341. & & YCO2E \(=\) GE（2） \\
\hline 1342. & & YCO2B \(=\mathrm{BB}(3)\) \\
\hline 1343. & & \(Y \mathrm{~B}=\mathrm{BB}(4)\) \\
\hline 1344. & & ANR＝FEMO＊YEO－AI＊（YE－YE）－A3＊YE／PHIE－（FEMOXYUEO＋UFROW）＊KO2－ \\
\hline 1345. & & 1ARP＊YCOE＊（17．5＊YE／（1．＋24．7＊YE））／2．0 \\
\hline 1346. & & YEC＝ANR／FEM \\
\hline 1347 ． & & IF（YEC ．LT 0 （ 0 ）YEC \(=0.0\) \\
\hline 1318. & & IF（YEC ，EQ ． 0.0 ，AND．YEO ．LT．0．005）YE＝ 0.0 \\
\hline 134．9． & & \(E R=Y E-Y E C\) \\
\hline 1350. & &  \\
\hline 1351. & & IF（INIIX EEQ．2）G0 TO 60 \\
\hline 1352. & 50 & CONTINUE \\
\hline 1353． & & WRITE（S，1000）YE，YEC，YB，YEO，YEO \\
\hline 1354. & 1000 &  \\
\hline 1355. & & 1YEC：YB，YEO，YEO \(=\)＇，1PSE12．3） \\
\hline 1356． & & YE＝YEO \\
\hline 1357． & 50 & CONTINLJE \\
\hline 1358， & & IF（YE ．LT ．0．0）YE \(=0.0\) \\
\hline 1359. & & IF（YE ．GT．YEC）YE＝YEC \\
\hline 1350. & & IF（YE，LT，O．O）YE \(=0.0\) \\
\hline 1351. & & IF（YCO2S ．LT，0．0）YCO2B \(=0.0\) \\
\hline 1362． & & IF（YCOSE L．T． 0.0 ）YCO2E \(=0.0\) \\
\hline 1353. & & \(\mathrm{GE}=\mathrm{FEMO}\) YYUEO＋UFPROD \\
\hline 1354. & & \(\mathrm{GE}=0.0\) \\
\hline 1365. & & COE＝AKF＊YCOE＊（17．5＊YE／（1，＋24．7＊YE））＋A1＊YCDEE \\
\hline 1356． & & RETURN \\
\hline 1357 ． & & END \\
\hline 1368. & &  \\
\hline 1369. & & ＊FEMO，FEM，FEM，T，TB，TE，YRO，YEO，YB1，YE1，GEAE，QENE） \\
\hline 1370. & c & \\
\hline 1371. & C & THIS SUBPROGRAM IS USED TO CALCULATE THE SO2 ANE NOX \\
\hline 1372. & C & CONCENTRATIONS IM THE BEI \\
\hline 1373. & c & \\
\hline 1374. & &  \\
\hline 1375. & &  \\
\hline 1375． & &  \\
\hline 1377． & & 1ALF＊（1，0－EPE－ETUEE）WAKE／TE）WDUEE＊AMFFNU．＇FG \\
\hline \(13 \rightarrow 0\). & & IF（DS ．EQ． 0.0 ）YE1 \(=0.0\) \\
\hline 1379. & &  \\
\hline
\end{tabular}
```

1380.
1381.
1382.
1383.
1384.
1385.
1386.
1387.
1388.
1389.
1390.
1391.
1392.

1「93'.
1394.
1305.
1396.
11397°.
1398.
139%.
1400.
1401.
1402.
1403.
1404.
1405.
1406.
1407.
1409.
140%.
1410.
1411.
1412.
1413.
1414.
1415.
1415.
1417.
1413.
1719.
1420.
1421.
1422.
1423.
1424.
1425.
1426.
1427.
1428.
1.429.
1430.
1431.
1432.
1433.

1434 +
1'435.
1436.
1437.
1438.
1439.

YE1=(YEOKFEMO + GENE) /D1+ALFKYEI
FETUFN
END
SUBRDUTINE HAREA (ATI, DTI, ZI)
COMMON /A/ ZHE(10), AHE(10),FU(10), PH(10), 2F(10),FFC(10), पГUEE(10):

ZUO (50$), \operatorname{UMF}(60), H(60), A T(50), D T(60), F(60), K(50), A K E E(60), Y 9(50)$,

IHLF, UMF,FMO,FMF, UF, PF, TF, RG, GgMGAS, DPFIX, DFFLU, IFDIS, FHHEBE:
2EMF, PAU, HCR, BEDUOL, EFFVOL, SOLYOL, TETUEE,HLMF,FI, AND, DNZL,

c
$\stackrel{c}{c}$
continue
HEIGHT = HT
RETURK
END
SUEROUTINE HYMRO
F:EAL MGAS

ORIGINAL PAGE IS OF POOR QUALITY

```
1440.
1441.
1442.
1443.
1444.
1445.
1446.
1447.
1448.
1449.
1450. C
145:* C
1453.
1454.
1455.
1456.
1457.
1458.
145%.
1460.
1461.
1462.
1463.
1464.
1465.
1466.
1467.
1468.
1459.
1470.
1471.
1472.
1473.
1474.
1475.
1476.
1477.
1478.
1479.
1430.
1481.
1482.
1483.
1484.
1485.
1486.
1487.
1488.
148%.
14%0.
1491.
1992.
1493.
1494.
1495.
1496.
129?.
1493.
149%.
```

1440. 1441. 1447. 1443. 1444. 1445. 1446. 1447. 1448. 1449. 1450. $145 \pm$. 1452. 1453. 1454. 1455. $145{ }^{4}$. 1457. 1459. 1460.
1. 1462. 1463. 1464. 1465. 1466. 1467. 1468. 1459. 1470 . 1471. 1472. 1473. 1474. 1475. 1476. 1477. 1479. 1490. 1481.

C
C
$S U M=0.0$
SUMEFF $=0.0$
EEDUOL $=0.0$
SUMU $=0.0$
ICF $=0$
$H C R=0.0$
IFEC $=0$
ITTUBEI (1) $=0.0$
aBAU(1) $=0.0$
$H(1)=0.0$
$A T(1)=A T B(1)$
$\operatorname{IIT}(1)=\operatorname{SQRT}(4.0 * A T(1) / P I)$
DUBE (1) $=0.0$
IUBEEF (1) $=0.0$
$\operatorname{IARRNG}(1)=0.0$
ETUEE (1) $=0.0$
ETUEE (2) $=0.0$
PHOGGAS = FAU*HGAS/(RG*T(2))
VISC = 3.72E-6*T(2)**0.576
A1 $=33.7 * * 2+0.0408 *$ FFSUB**3*G* (FHOEEI-FHOGAS) *FHOGAS/UISE**2
UMF (2) $=$ UISC/(BPSUB*RHQGAS) * (SQRT (A1)-33.7)
UMF (1) $=$ UMF (2)
UQ(2) = FMF*MGAS/RHOGAS/(AT(1)*(1,-ETUBE(コ)))

$\mathrm{IHA}=\mathrm{HEO}$
$H(\Omega)=\amalg 30$
ASSUMING THE COMFARTMENT SIZE, BUEELE SIZE IS COMFUTED IN THAT COMPARTMENT. ITEFATION IS CONTINUED TILL THE ASSUMED COMFAFTMENT SIZE AMI THE CALCULATEI EUEGLE SIZE IN THAT COMEARTMENT AGREE
$10200 I=2,100$
IF (I .EQ. 2) GO TO 16
DHE $=5.0$
INEEX $=0$
EMAX $=0.1$
$I(B A=H(I-1)-H(I-2)$
IF (I .LE. MA) GOTO 5
$T(I)=T(M 1)$
$X(I)=X(M I)$
$Y E(I)=Y E(M 1)$
$Y E(I)=Y E(M 1)$
CONTIAIUE
$H(I)=H(I-1)+$ nEA

 1HLF: UMF, FMO,FMF, UF, FF, TF, RGy G, MGAS, IPFIX, LIFCU, EFDIS, RHOBED, 2EMF, PNU, HCR, BEDUOL, EFFVOL, SOLUOL, TETURE, HLMF, FOT, ANI, LAAZL, ЗFW, FSW, DZAV, MFEED, MEIS, MTHE, MTE, MT , MI , M, ICR , IFEC , NTC
 1HE (30), WCHOLD (30), WAHOLI (30), KT
IIIMENSION DTUBEI (60), PPHI (SO),FUI(SO), IARFNG(SO)
CALCULATION OF BUBELE HYDROIIYNAMTCS

$:$

| 1500. | C | [MENTIFICATION OF COULING TUEES IN THE COMPARTMENT |
| :---: | :---: | :---: |
| 1501: | C | |
| 1502. | | 10 210 J = 1, MTHE |
| 1503. | | |
| 1504. | | |
| 1505. | | |
| 1506. | | $F 2=(2 M E(J)-H(I-1)) / D B A$ |
| 1507. | | |
| 1508. | | aTUBEI (I) $=$ Fi*ITUEE(J)+F2*DTUSE(J-1) |
| 1509. | | GO TO 330 |
| 1510. | 220 | AHEAU (I) $=\operatorname{AHE}(J)$ |
| 1511. | | DTUBEI(I) $=$ DTUBE(J) |
| 1512. | 330 | FUIC(I) = FU(J) |
| 1513: | | $\mathrm{PHI}(\mathrm{I})=\mathrm{PH}(\mathrm{J})$ |
| 1514. | | IARFNG(I) = IARR(J) |
| 1515. | | GO TO 240 |
| 1516. | 210 | CONTINUE |
| 1517 . | 240 | CALL AREA (H(J), [IT (I), AT(I)) |
| 1518. | | HAV $=0.5 *(H(I-1)+H(I))$ |
| 151%. | | |
| 1520. | | |
| 1521, | | |
| 1532. | | |
| 1523. | | IF (I , ER, 2) GO TO 230 |
| 1524. | | FHOGAS = FAV*MGAS/(RG*T(I)) |
| 1595: | | UISC $=$ 3.72E-6*T(I)**0.676 |
| 152. | | A1 $=33.7 * * 2+0,0408 *$ LIPSUB**3*G*(RHOBED-RHOGAS)*FHOGAS/UISC**2 |
| 1527. | | UMF (I) = UISC/(MPSUB*RHOGAS)* (SGRT (A.1)-33.7) |
| 1529. | | UQ(I) = EMG*MGAS/FHOGAS/(ATAU*(1,-ETUSE(I)) |
| 1529. | | IF (IFBC .GT, 0) G0 TO 125 |
| 1530. | | |
| 1531. | | IF (UO(I) .LT. UMF(I)) GQ TO 10 |
| 153? | | G0 ro 17 |
| 1533. | 13 | TCR $=1$ |
| 1534. | 17 | ¢BMAX = 0,652*(ATAU*(1.-ETURE(I))*AES(UQ(I)-UMF(I)))**0.4 |
| 1535. | | IF (DBMAX , GT. DTAU) İRMAX = DTAU |
| 1536. | | |
| 1537. | | IF (IARFNE (I), GT. 2 , AND. FHIS I). GE. DEAU (I-1) , ANB, DEC.GE. |
| 1538: | | 1EHI(I)) DBC $=\mathrm{PHI}(\mathrm{I})$ |
| 1539. | | IF (LAST , GT. 0) GQ TO 260 |
| 1540; | | $E R=$ DEC - DEA |
| 1541. | - | |
| 1542: | | |
| 1543. | | IF (INDEX , EQ, 2) GO TO 260 |
| 1544. | 250 | CONTINUE |
| 1545. | 260 | CONTINUE |
| 1546. | | MgAv(I) $=$ DRA |
| 1547. | | AhEE(I) $=11.0 / \mathrm{IEABL}(I)$ |
| 1549. | C | |
| 1549: | C | GALCULATIONS FOR UBR --- puprle rising vel.at min.flugizaition, |
| 1550. | C | UBS --- BUBBLE UEL. AT SLUGGING COMhitions, |
| 1551. | c | UE --m ASS. BUERLE RISING VELOCTTY, |
| 1553. | c | EFPE --- EUBRLE FRATION, |
| 1553. | C | EPC - - CLOUL FFiACTION |
| 1554. | C | |
| 1555. | | URR $=0.711$ * SQRT (E * ERAU(T) |
| 1553. | | UES $=0.355 *$ SQRT (G * LITAU) |
| 1557. | | IF (UER . GT, UES) UEF: $=$ UES |
| 1558. | | UE(I) $=$ UO(I)-UMF (I) +UER |
| 155\%. | | $E F S(I)=(\operatorname{UO}(I)-\operatorname{LMF}(I))$ (UR(I)*(1.0-ETUESC(I)) |

ORIGINAL PAGE IS
 OF POOR QUALEITY

| 1560. 1561. | | |
| :---: | :---: | :---: |
| 1562 , | | IF (EFS(I) , GT, 0.7) EPB(I) $=0.7$ |
| 1563. | | IF (EFC (I) .GT. (0.99-ETUHE (I)) $\mathrm{EPC}(\mathrm{I})=0.90-\mathrm{ETUBE}(\mathrm{I})$ |
| 1504. | | IF ((EFC(I)-EPR(I)) , GT, 0.O1) EFC(I) = EPG(I) $+0.0 \pm$ |
| 1565. | | EEDVOL $=$ BEIVOL + LUBE (I) |
| 1566. | | SUMV $=$ SUMV + DUBREF (I) |
| 1567. | | SOLVOL = DUEBEF (I) - DUBE (I) * CFFB(I) |
| 1568. | | SUMEFF $=$ SUMEFF + SOLVUL |
| 1569. | | SUA $=$ SUAF + SOLVOL $/$ (0.5 * (AT(I) +AT(I-I)) |
| 1570. | | IF (ICR .ET, 0) G0 T0 35 |
| 1571. | | IF (LAST ,GT. 0) GO TG 125 |
| 1572. | | IF (HLF .NE. O.0) GQ TO 20 |
| 1573. | c | |
| 1574. | C | TEST FOR CONUERGENCY |
| 1575. | C | |
| 1576. | | IF (ABS (SUMEFF-UMF) . LT. 0.01 (UMF) GO TO 125 |
| 1577. | | IF (SUMEFF゙ .LT, UMF) GO TO 200 |
| 1578. | | VOL = SUMU-(SUMEFF-UMF) * (1.0 - ETURE(I)) / (1.0-EPR(I)-ETUBE (I)) |
| 1579. | | H(I) $=$ HEIGHT(VOL) |
| 1580. | | CALL AREA (H(I), IIT(I)PAT(I)) |
| 1581. | | EEIVOL = BEDVOL - UUBB(I) |
| 1582. | | SUMV = SUMU - DUBEEF(I) |
| 1583. | | SUMEFF = SUMEFF - SOLVOL |
| 1584. | | SUM $=$ SUM - SOLVOL / (0.5*(AT(I)+AT($1-1$))) |
| 1585. | | LAST $=1$ |
| 1586. | | IRA $=\mathrm{H}(\mathrm{I})-\mathrm{H}(\mathrm{I}-1)$ |
| 1587. | | GO T0 16. |
| 1589. | 20 | CONTINUE |
| 1589. | c | |
| 1590. | c | TEST FOR CONUERGENCY |
| 1591. | | IF (ABS (H(I)-HLF) .LE, 1.OE-3*HLF) GO TO 125 |
| 1592. | | IF ($\mathrm{ABS}(\mathrm{H}(\mathrm{I})-\mathrm{HLF})$. .LE $0.5 *(H(I)-H(I-1))$ GO TO 50 |
| 1593. | | IF (H(I) .LT. HLF) GO TO 200 |
| ± 594. | 50 | $H(I)=$ HLF |
| 1595. | | EEIUOL $=$ EEIVOL - IIURB(I) |
| 1596. | | SUMV = SUMU - DUBEEF (5) |
| 1597. | | SUMEFF $=$ SUMEFF - SOLVOL |
| 1593. | | SUM $=$ SUM - SOLUOL / (0.5*(AT (I) + AT(I-1)) |
| 1599. | | CALI AREA (H(I), IIT (I), AT(I)) |
| 1500. | | LAST $=1$ |
| 1601. | | UBA $=H(I)-H(I-1)$ |
| 1502. | | GO TO 16 |
| 1603. | 10 | UO(I) $=\operatorname{UMF}(\mathrm{I})$ |
| 1504, | | ATAU = FMO * RG * T(I) / (FAU * UQ (I) * (1,O-ETUBE (I)) |
| 1505. | | CALL HAFEA (atav, itavihav) |
| 1606. | | $\mathrm{H}(\mathrm{I})=2.0 * \mathrm{HAU}-\mathrm{H}(\mathrm{I}-1)$ |
| 1507. | | ICR $=1$ |
| 1608. | | LAST $=1$ |
| 1509. | | DEA $=H(I)-H(I-1)$ |
| 1610. | | GO TO 16 |
| 1611. | 200 | CONTINUE |
| 1612. | | IF (IFBC.EQ. O) GO TO 125 |
| 1513. | 35 | CONTINUE |
| 1814. | | HCR $=\mathrm{H}(\mathrm{I})$ |
| 1515. | | IF (AES (H(I)-HLF) .LEE. 1.0E-3*HLF) G0 TO 125 |
| 1616. | | IF (ABS (UMF-SUMEFF) .LEE. 0.01 * UMF) GO TO 125 |
| 1617. | | $I=I+1$ |
| 1518. | | abaver $=0.0$ |
| 1619. | | $\mathrm{UB}(\mathrm{I})=0.0$ |

| 1620. | | AhGE（I）$=1000.0$ |
| :---: | :---: | :---: |
| 1621. | | $E P G(I)=0.0$ |
| 士632． | | $\mathrm{EFC}(\ddot{L})=0.0$ |
| 1523. | | IF（YMF ．EQ．O．0）GD TO 45 |
| 1624. | c | |
| 1625. | C | FIXED EEL CONHITIONS |
| 1625. | C | |
| 1527. | | VQL $=$ SUMU $+($ VMF - SLIMEFF $)$ |
| 1628. | | H（I）$=$ HEIGHT（YOL） |
| 1こ29． | 45 | continue |
| －ś30． | | IF（UMF EQG．O．0）H（I）＝HLF |
| －631： | | IF（I ．LE，H1）GO TO 6 |
| 1632： | | $T(I)=T(i f t)$ |
| 1633. | | $X(I)=X(M 1)$ |
| 1634. | | $Y E(I)=Y E(M 1)$ |
| 1535. | | $Y E(I)=Y E(M 1)$ |
| 1536. | 6 | CONTINUE |
| 1.637. | | H0 310 J＝ 1 ，MTHE |
| 1538． | | IF（ZHE（J）．LE，H（I）．AND．ZHE（J＋1）．LT．H（I））G0 TO 310 |
| ： 539. | | IF（ZHE（J）＋LE，H（I－1）．AND＋ZHE（ $1+1$ ）．GE ．H（I））GO TO 220 |
| 1540. | | $F 1=(H(I)-Z H E(J)) /(H(I)-H(I-1))$ |
| 1541. | | $\mathrm{F}_{2}=(\operatorname{ZHE}(J)-H(I-1)) /(\mathrm{H}(\mathrm{I})=\mathrm{H}(\mathrm{I}-1)$ ） |
| 1542. | | AHESU（I）＝F1＊AHE（J）＋F2＊AHE（J～1） |
| 1643. | | DTUEEI（I）＝F1＊DTUEE（ $)$＋F2＊ITURE（J－1） |
| 1644． | | FVI（I）$=$ Fi＊PV（J）＋F2KFV（ل－1） |
| 1645. | | FHI（I）＝F1＊PH（J）＋FI＊PH（J－1） |
| 1646. | | GO TO 330 |
| 1647. | 320 | AHEAU（I）＝AHES． |
| 1648. | | DTUBEI（I）ב DTUBE（J） |
| 1649. | | $P U I(I)=P U(3)$ |
| 1650. | | $\mathrm{FHI}(\mathrm{I})=\mathrm{FH}(\mathrm{J})$ |
| 1.551. | 330 | IARRNG（I）$=$ IARR（J） |
| 1652. | | GO TO 340 |
| 1553. | 310 | CONTINUE |
| 1.554. | 340 | CALL AREA（H（I），ITT（I）， $\operatorname{AT}(\mathrm{I})$ ） |
| 1655. | | ［UEB（I）$=0.5 *(\operatorname{AT}(1-1)+A T(I))$ 准（ $4(I)-H(I-1)$ ） |
| 1656. | | DUBEEF（I）$=$ DUBE（I）＊（1，$-0,25 * A H E A V(I) * D T U E E I(I))$ |
| 1657． | | ETUBE（I）$=1.0-\operatorname{LVABEF}(I) /$ IVGR（I） |
| 1658. | | RHOGAS $=$ PAU＊MGAS／（FGGT（I）） |
| 1359． | | VISC $=3.72 \mathrm{E}-6.4 \mathrm{~T}$（I）＊＊0．676 |
| 1660. | | A1 $=33.7 * * 2+0.0408 *$ DFSUB＊＊3＊G＊（RHOEEII－FHOGAS）＊FHOGASNUTSC＊＊2 |
| 1661. | | UMF（I）$=$ UISC／（DPSUB＊RHOGAS）＊（SQRT（A1）－33．7） |
| 1662. | | HAU $=0.5 *(H(I-1)+H(I))$ |
| 1663. | | |
| 1364. | | $\mathrm{U} O(I)=$ FMO＊MGAS／RHOGAS／（ATAU＊（1，－ETURE（I））） |
| 1665. | | GEDVOL $=$ BEDVOL + DUEB（I） |
| 1366. | | SUMU $=$ SUMU＋DUAREF（I） |
| 1667. | | SOLVOL $=$ IUBEEF（I）－DUBE（I）＊EFE（I） |
| 1668： | | SUMEFF $=$ SUMEFF + SOLVOL |
| 1669. | | |
| 1370. | | IFEC $=1$ |
| 1671. | 125 | $\underline{M 1}=1$ |
| 1672． | | TETUSE $=1.0-$ SUMU／BEDVOL |
| 1673． | | EFFVOL $=$ SUMV |
| 1574. | | SOLYOL＝SUMEFF |
| 1575． | | $M=M 1-1$ |
| 1576. | | I0 $460 \mathrm{~K}=2, \mathrm{KT}$ |
| 1677. | | $I=I+1$ |
| 1678． | | $H(I)=H(M 1)+H E(K)$ |
| 167\％． | | DO 410 J＝1，MTHE |

| 1690. | | IF (ZHE (J),LE.H(E) + AND. $\mathrm{ZHE}(\mathrm{J}+1) \cdot L T \cdot H(I)$) G0 TO 410 |
| :---: | :---: | :---: |
| 1681. | | |
| 1682. | | $F 1=(H(I)-Z H E(J))(H(I)-H(I \sim 1)$ |
| 1683. | | F F $=(2 H E(J)-H(I-1)) /(H i()-H([-1))$ |
| 1684. | | $\operatorname{AHEAU}(\mathrm{I})=\mathrm{F} 1 *$ AHE $(J)+F 2$ *AHE (J-L) |
| 1385. | | |
| 1686. | | FUI(I) $=$ F1*FU(J)+F2*PU(J-1) |
| 1687. | | $\mathrm{FHI}(\mathrm{I})=\mathrm{F} 1 * \mathrm{FH}(\mathrm{J})+\mathrm{F} 2 * \mathrm{PH}(\mathrm{J}-1)$ |
| 1688. | | G0 T0 430 |
| 1689. | 420 | AHEAV (I) = AHE(J) |
| 1690. | | ITUBEI(I) = DTUEE(J) |
| 1691. | | PUI (I) $=$ PU(J) |
| 1592. | | $\mathrm{PHI}(\mathrm{I})=\mathrm{PH}(\mathrm{J})$ |
| 1693. | 430 | IARRNG(I) $=$ IARR(${ }^{\text {(}}$) |
| 1694. | | GO TO 440 |
| 1695. | 410 | Continue |
| 1696. | 440 | CALL AREA (H(I),DT(I),AT(I)) |
| 1697. | | $\operatorname{LUBB}(I)=0.5 *(A T(I-1)+$ AT $(I)) *(H(I)-H(I-I))$ |
| 1698. | | $\operatorname{JUBBEF}(I)=\operatorname{DUBB}(I) *$ (1,-0.25*AHEAU (I)*DTUBEI (I)) |
| 1690. | | $\operatorname{ETURE}(I)=1,-\operatorname{LaBEF}(I) /$ DUBE (I) |
| 1700. | 460 | CONTINUE |
| 1701. | | $\mathrm{M} T$ = I |
| 1702. | | $\mathrm{HFB}=\mathrm{H}(\mathrm{MT})-\mathrm{H}(\mathrm{HI} 1)$ |
| 1703. | | RETURN |
| 1704. | | END |
| 1705. | | SUBROLITINE SIMCA(ArR,N,NN,KS) |
| 1705. | | DIMENSION A(NN), B (N) |
| 1707. | C | |
| 1709. | C | FORWARİ SOLUTION |
| 170\%. | C | |
| 1710. | | TOL $=0.0$ |
| 1711. | | KS $=0$ |
| 1712. | | $\checkmark\rfloor=-N$ |
| 1713. | | D0 $65 \mathrm{~J}=1, \mathrm{~N}$ |
| 1714. | | $J Y=J+1$ |
| 1715. | | $\checkmark J=\ J+N+1$ |
| 1716. | | BIGA $=0$. |
| 1717. | | $I T=\downarrow \mathrm{J}-\mathrm{J}$ |
| 1718. | | no $30 \mathrm{I}=\mathrm{J} \mathrm{N}$ |
| 1719. | C | |
| 1720. | c | SEARCH FOR MAXIMUM COEFFICIENT IN COLUM |
| 1721. | c | |
| 1722. | | $I J=I T+I$ |
| 1723. | | IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 |
| 1724. | 20 | RIGA=A(IJ) |
| 1725. | | $\operatorname{IMAX}=1$ |
| 1726. | 30 | CONTIMUE |
| 1727. | c | |
| 1728. | C | TEST FOR FIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) |
| 1729. | C | |
| 1730. | | IF (ABS (EIGA) - TOL) $35,35,40$ |
| 1731. | 35 | KS $=1$ |
| 1732. | | WRITE(6,100) hs |
| 1733. | 100 | FORMAT(/' NO SOLUTION',' \quad (S=',I2) |
| 1734. | | STOF |
| 1735. | c | |
| 1736. | C | INTERCHANGE ROUS IF NECESSAFY |
| 1737. | c | |
| 1738. | 40 | $I 1=\rfloor+N *(J-2)$ |
| 173%. | | IT $=$ IMAX $-J$ |


```
1800.
1801.
1802.
1803.
1804.
1805.
1806.
1807.
1808.
1809.
1810.
1811.
1812.
1813.
1814.
1815.
1816.
1817.
1818.
1819.
1920.
1821.
1822.
```

1800. 1801. 1802 . 1803. 1804. 1805. 1806. 1807. 1808. 1809. 1810. 1811.


``` 2EMF, PAU, HCF r BEIUOL, EFFVOL, SQLUOL, TETUBE, HLMF,FI, ANI, DNZL, 3FW, FSW, DZAU, MFEED, MDIS, MTHE, ATB, MT, MI yMy ICR , EFEC , NTC
N=IFIX (ZZ/DZAV)+1
IF (N.EQ+1) N = 2
SUMF = 0.0
ZN = FLOAT(N-1)*EZAU
            LO 100 1 = 2 , N
SUM = SUM + DUNEFF(I)
IF ( I .LT. N ) GO TO 100
A1 = (ZZ - ZN )/ ILZAV
SUNF = SUM + DUEEFF(I) * A1
                                    CONTINUE
100
VOLUME = SUM
    FETURN
    ENT
```


INPUT TO COMBUSTION PROGRAM

1234 ت゙o 78901234567890123455789012345678901234567890123456789012345678901234507890

| $K T$ | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H5.1) | DFSE(1) | IFINE (1) | WEA (1) | HE(2) | LFSE(2) | DFWE(2) | UEA(こ) |
| 0.0 | 0.0509 | 0.06139 | 193.3 | 56.43 | 0.0295 | 0.03409 | 9.527 |
| HB(3) | DPSE (3) | DFWE (3) | WEA(3). | HE (4) | IFSE(4) | IFIJE (4) | WEA(4) |
| 112.9 | 0.02067 | 0.02651 | 1.446 | 138.1 | 0.01679 | 0.02386 | 0.7261 |
| ucse (1) | DCWE (1) | WEC(1) | HCSE (2) | ncwe (2) | WEC(2) | DCSE (3) | UCLNE (3) |
| 0.0464 | 0.07795 | 0.597 | 0.04491 | 0.05237 | 0.1387 | 0.04069 | 0.04673 |
| WEC(3) | LICSE (4) | DCWE (4) | WEC (4) | | | | |
| 0.05128 | 0.04769 | 0.05 | 0.02685 | | | | |
| W0IS | WELUA | CELU | EFF | IPSUS | [1FWME | IICSUB | nCWm |
| 0.85 ? | 0.736 | 0.02685 | 0.9927 | 0.0746 | 0.1001 | 0.0787 | 0.1049 |
| Dasuf | DAWMF | desuF | DCWMF | | | | |
| 0.0758 | 0.1287 | 0.0677 | 0.100 .4 | | | | |
| A1 A2 AJ | A4 | | | | | | |
| NASA LEWISMT, | | | | | | | |
| | | | | | | | |
| 4 (1) 4 (4) | | | | | | | |
| 2B(1) | ATE(1) | ZE(2) | ATB(2) | 2E(3) | ATE(3) | 2B(4) | ATS (4) |
| 0.0 | 405.0 | 62.7 | 405.0 | 81.3 | 670.0 | 280.0 | 2193.0 |
| MTHE | | | | | | | |
| 5 | | ' | | | | | |
| 2HE(2) | AHE (1) | DTUEE(1) | $P \cup(1)$ | PH(1) | IARR(1) | | |
| 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| ZHE (3) | AHE(2) | DTUBE(2) | PU(2) | PH(2) | IARR (2) | | |
| 40.0 | 0.1744 | 1.27 | 8.0 | 2.86 | | | |
| ZHE (4) | AHE(3) | ITURE(3) | Pu(3) | $\mathrm{PH}(3)$ | IARR (3) | | |
| 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| ZHE(5) | AHE (4) | DTURE(4) | FU(4) | $\mathrm{PH}(4)$ | IARR(4) | | |
| 56.0 | 0.1744 | 1.27 | 8.0 | 2.86 | | | |
| ZHE (6) | AHE (S) | DTUEE(5) | FU(5) | PH(5) | IARR (5) | | |
| 280.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | |
| MFEEI | | | | | | | |
| - | | | | | | | |
| 2F(1) | FFC(1) | FFAD(1) | | | | | |
| 3.91 | 1.0 | 1.0 | | \cdot | | | |
| MIIS | | | | | | | |
| 1 | | | | | | | |
| zuIs(1) | FIC(1) | | | | | | |
| 142.0 | 1.0 | | | | | | |
| ANII | INTZL | FW | FSW | | | | |
| 84.0 | 0.198 | 0.075 | 0.1 | | | | |
| NAMELI NAMEL2 | | | | | | | |
| | | | | | | | |
| xCAO | XMGO | $\times 5102$ | xcos | | | | |
| v. 557 | 0.003 | 0.006 | 0.434 | | | | |
| $\begin{aligned} & \text { NAMECI NAMEC? } \\ & \text { PTEHCOAL } \end{aligned}$ | | | | | | | |
| | | | | | | | |
| XC | XH | XN | XS | X0 | XW | XA | |
| 0.754 | 0.051 | 0.015 | 0.02 | 0.076 | 0.022 | 0.084 | 0.412 |
| hCSAL | xacao | | | | | | |
| 7300.0 | 0.08 | | | | | | |
| HLMF | HLF | FAV | TAS | TSTA | TWIN | TwIOUT | THALLA |
| 0.0 | 141.9 | 5.15 | 1151.0 | 1250.0 | 298.0 | 310.0 | 298.0 |
| UHEAY1 | UHEAVZ | WWALLI 1 | UWALL 3 | TF | TSF | FPF | |
| 0.00765 | 0.0025 | 0.0031 | 0.00025 | 298.0 | 298.0 | 5.4 | |
| wicoal | WAD | cas | U0 | Fif | EXAIF | | |
| 4.51 | 0.0 | 1.67 | 0.0 | 0.0 | 0.639 | | |
| EGNITE,ISO2,INOX, ITEMF,IFRES | | | | | | | |
| 11111 | | | | | | | |

12345678901234567890123456739012345678901234567990123456799012345678901234557890

| ？ | 4.12 OE | 10 | 1．077E－O1 | 0.0 | －．＇（3F－0S | 4．961E－n） | $9.85 \cdot 8 \mathrm{c}$ | or | 1．394t | 03 | 1．34．7E | 03 | 2.0608 | 00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | O．bnif | 00 | 1－540\％－01 | 0.0 | 1．17t．t－03 | 3． 3 MTE－3i | 9.031 E | $0 \cdot$ | 1．371F | 0.1 | 400776 | 02 | 7：001E | 00 |
| 2 | 1．70：se | 131 | 1．792E－01 | 0.0 | | 3．71晨－62 | 1.927 F | 08 | 1． 1045 | 03 | 4.74 BE | 02 | 1．14EE | 01 |
| － | a，ener | d1 | 1．436E－01 | 0.0 | 2．103t－us | $4.195 \mathrm{E}-0$ ？ | 6.017 E | 0% | 1.31 131． | 03 | 1．010E | 07 | E．137E | 03 |
| 0 | 3． 5.26 .5 | 01 | 1．378E－01 | 0.0 | | 1．656E－02 | O．rote | 02 | 1． 2 crel | 03 | 1.019 E | 03 | 3.089 E | 01 |
| 7 | a．cilr | 131 | 1．11JE－01 | 0.0 | 1．751E－45 | S．148E－02 | 3． $\mathrm{l}_{4}^{43 \mathrm{E}}$ | 02 | 1.274 E | 03 | 1.0065 | 03 | 1.209 E | 01 |
| 3 | 6.18% | 01 | 1．252E－u1 | 0.0 | 1．750x－05 | 5．598E－02 | U． 674 E | 0 | 1．2545 | 03 | $9.852 E$ | 02 | 5.497 E | 01 |
| \because | 7．744， | 91 | 1．1AOEROI | 0.0 | 1．126E－05 | 6119 AE－02 | 0.5445 | 02 | 1．232E | 03 | 9．57E | 02 | | |
| | $\%$ \％ 7144 E | 01 | 1．093E－01 | 0.0 | | 6．925E－0？ | H． 516. | 02 | 1．2075 | 03 | 9.07 HE | 02 | O．744E | 01 |
| 11 | 1．inot | 02 | 1．007E－01 | 0.0 | S． 2 ¢4E－06 | 7．638E－07 | $0.442{ }^{\circ}$ | 02 | 1． 1791 | 03 | 6． 18735 | 02 | 1．0not | 02 |
| 12 | 1．atas | 02 | －． $2575-02$ | $0 \cdot 0$ | 9．927E－36 | B． $305 \mathrm{E}-02$ | 3．459E | 42 | 1．152E | 03 | 6． 750% | 02 | 1－305E | 02 |
| 13 | 1．4ñE | 02 | 8． $86.1 E-02$ | 0.0 | $1 \cdot 1400-06$ | | | | | | | | | |
| 14 | ？．540E | v）${ }^{2}$ | | 0.0 0.0 | 0.0 | 8．797E－0？ | 7.9315 7.5745 | ${ }_{02}^{02}$ | 1．081E | 03 03 | －．0887： | 03 | 2．266E | 02 |

| 11% | | 0×8 | E | x | CARCDN | zavg | | ynox | RFEL | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9.1203 E$ | jo | S．6924E－05 | 1．${ }^{\text {d } 5455-04}$ | 3．6．55JE－0J | 1．5030L－0．3 | 2．0602E | O0 | 2－0606E－05 | 1．4202E－05 | $3.2955 E-04$ |
| 9.86075 | 09 | 1．5340E－05 | 2．2052E－03 | 3．7e日7E－03 | 1．7010E－0．3 | 7.00058 | 00 | $3.7895 E-04$ | 1．9255E－05 | 2.416 TE－03 |
| t． 70285 | O！ | $0.7791 \mathrm{E}-05$ | 7．9408E－04 | 3． $3093 \mathrm{E}-03$ | $1.4983 E-0.3$ | 1.3453 E | 01 | 1．8416E－0A | 1．9354E－05 | O． $1353 \mathrm{E}-05$ |
| ？．5717E | 41 | $0.2931 E-05$ | 3．2609E－04 | 2． $2563 \mathrm{E}-03$ | 1．299GE－03 | 2． 372 E | 01 | 1．2190t－04 | 1．8977E－05 | $1.3549 E \sim 04$ |
| S，mux＇3F | ot | 8．9404E－05 | 2．1274E－0．4 | 2． $75.32 \mathrm{E}-03$ | 1．0771E－OT | 3．0891E | 01 | 1．0934E－04 | 1．8213E－05 | 1．476EE－94 |
| a．7．l12e | 01 | 9．1122E－05 | 1：3763E－04 | 2．1070E－0 | $9.714 \mathrm{BE}-04$ | $4.2088 E$ | 01 | 1． $0660 \mathrm{E}-04$ | $\text { I. } 7114 E-05$ | ． $6095 \mathrm{E}-\mathrm{d4}$ |
| 6．1827E | 01 | 9．354．1E－05 | 1．0276E－04 | $1 . .21 E Q E-03$ | 3．2914E－04 | 5：96E9E | 01 | $1.0946 E-04$ | 1．5005E－05 | $1.4933 E-04$ |
| 7．782フE | 01 | 9．563JE－05 | 1．9499E－04． | 1.57 AIE－03 | 8．8332E－64 | \％：9838E | 01 | 1－1159E－04 | 1．0855F－05 | 1．9790E－04 |
| 9.7037 f | 01 | $9.8050 \mathrm{E}-05$ | 1．76：2E－04 | 1．4296E－03 | 1．0549E－0才 | O．7443E | 01 | （105哭－04 | $2.5422 E-05$ $2.9350 E-05$ | 2．4018E－04 |
| 1．1903F | 02 | 1．0046E－04 | $1+4715 \mathrm{E}-04$ | $1.3143 \mathrm{E}-03$ | $1.0831 \mathrm{E}-03$ | 1．0607E | 02 | 1．0797E－04 | $2.9350 E-05$ $3.1093 E-05$ | 2．3276E－01 |
| 1.4190% | 02 | $1.0260 E-04$ | 1．4904E－04 | | | | | $\begin{aligned} & 1.0525 \bar{E}=04 \\ & 1.4028 E-04 \end{aligned}$ | | |
| 1．9313F | 02 | 0.0 | $0 \cdot 0$ | 4．Esoderos | 7＋9956E－05 | 1．7011E | 02 | $1.4020 \mathrm{E}-04$ | | |
| ？． 3 B130：
 $2 \cdot+600 \mathrm{~F}$ | 02 02 | 0.0 | 0.0 | $\begin{aligned} & 1.3149 E-02 \\ & 2.3577 E-02 \end{aligned}$ | $\begin{aligned} & 1.2380 E-d 6 \\ & 3.109 \text { EOE } \end{aligned}$ | $\begin{aligned} & 2.2696 E \\ & 2.6740 E \end{aligned}$ | $\begin{aligned} & 02 \\ & 02 \end{aligned}$ | $\begin{aligned} & 1.4909 E-04 \\ & 1.5012 E-04 \end{aligned}$ | $\begin{aligned} & 2.9232 E-05 \\ & 3.1077 E-06 \end{aligned}$ | |

COMP．NO PAESSUHE DROP IN THLE 日EO
2
3
3
5
6
7
8
8
9
10
1
1
12

PIFTSSUBF DHUP IN THE FIXES HED SECTION $* 0.0$

 | Cent |
| :--- |

10．1trina 0.0
．trt．F：141．80409
． 9 HL MF $=96.116850^{\circ}$
4535.746

APPENDIX VII

MANUAL FOR THE COMPUTER PROGRAMS

In this appendix, explanation for the main programs for elutriation and combustion calculations are given followed by the alphabetical list of subprograms used in both the programs. Except for the subroutine SIMQ which is the duplication of one of the subroutines in SSP supplied by IBM, explanation is given for each subprogram.

1. Elutriation Main Program

In the first part of the program, $F B C$ design data and operating conditions are specified as input. From CN 89 (Card Number 89), the composition and the amount of volatiles and char produced are calculated. At CN 178, ELUT subprogram is called in to perform the elutriation calculations. Calculated results of particle size distributions of limestone and char in the bed and in the entrained solids, solids withdrawal rate, char elutriation rate and combustion efficiency are printed out.

2. Combustion Main Program

Computed results from the elutriation program are used as input in combustion calculations. From CN 64 to CN 84 , all the input variables are specified. Then, the devolatilization of coal is considered. Knowing the average temperature of FBC , the yield of volatiles and char and their respective compositions are calculated. The input variables and calculated results so far are printed out.

The combustion of coal is specified by the indicator IGNITE. If IGNITE equals to zero, there is no combustion, and bubble hydrodynamics alone is calculated. Otherwise, the combustion calculations are started from CN 248. First the boundary conditions are specified.

Hydrodynamic calculations are then performed using the assumed temperature profile. The log mean temperature of the cooling medium is calculated knowing the inlet and outlet temperatures. Then, the axial distribution of solids feed is calculated in $\mathrm{CN} 281 / 302$. Based on the solids mixing parameter f_{w}, the amount of volatiles released near the coal feed point and throughout the bed are calculated in CN 310/311. The flow rate of gas through the bubble and emulsion phases are computed.

Before proceeding with the combustion calculations, the combustion efficiency is assumed. From the combustion efficiency, the average carbon weight fraction is calculated in $C N 350$ using the overall carbon material balance. The gas phase material balance is performed and the axial distribution of concentrations of various gaseous species are calculated. Then, based on oxygen material balance, combustion efficiency is calculated.

Combustion efficiency $=\frac{\mathrm{O}_{2} \text { in }-\mathrm{O}_{2} \text { in the exit gas }}{\text { Stoichiometric } \mathrm{O}_{2} \text { required }}$ (A.VII.I) The criterion for the convergency of the gas phase balance is that the assumed combustion efficiency based on carbon, balance should agree with the calculated combustion'efficiency based on oxygen balance. Then, the axial distribution of the solids withdrawal rate, the solids mixing rate and the net flow rate of solids are computed in CN 429/460. Carbon material balance calculations for each compartment are then performed, and the equations are solved by the subroutine $S I M Q$ in $C N$ 486. The solution of the equations gives the carbon concentration in. eacin compartment. Knowing the solids withdrawal rate, the carbon concentration in the bed and the char elutriation rate the overall
combustion efficiency is calculated in CN 502 . Using the computed carbon concentration profile, the gas phase material balance is performed again from CN 510/555 to accurately estimate the concentrations of the gaseous species along the combustor. Then, the equations obtained for energy balance are solved using SIMQ subroutine. The temperature calculations converge when the assumed ($\mathrm{T}_{\mathrm{i}, \mathrm{OLD}}$) and calculated (T_{i}) temperatures agree with each other within the specified tolerance limit. The results are printed out in CN 674/677.
SO_{2} retention calculations are done in CN 696/775 if the indicator ISO2 is greater than zero. Total feed rate of sulfur is estimated in CN 698. SO_{2} generated from the burning volatiles and char is estimated in $\mathrm{CN} 718 / 721 . \quad \mathrm{SO}_{2}$ retention calculations are iterative. First, SO_{2} retention efficiency is assumed, and hence the reactivity of the limestone particle is calculated. SO_{2} material balance is performed and from the exit SO_{2} concentration, SO_{2} capture efficiency is calculated as SO_{2} capture efficiency $=1-\frac{\text { Sulfur influe gas }}{\text { Total sulfur fed }}$. (A.VII.2) If the assumed and calculated efficiencies agree, iteration is stopped, and the results are printed out.

If the INOX indicator is greater than zero NO_{x} material balance calculations are performed. NO_{x} release due to volatiles and char combustion is calculated in $\mathrm{CN} 783 / 786 . \mathrm{NO}_{x}$ balances in the bed and in the freeboard are done in $\mathrm{CN} .795 / 824$ and the calculated results are printed out.

If IPRES is greater than zero, pressure drop calculations are performed from CN 854/876. Pressure drop across the distributor, across the fluidized bed and if there is a fixed bed section above
the fluidized bed, then, pressure drop across the fixed bed section are calculated using the equations provided by Kunii and Levenspiel (1969). The final results are printed out in $\mathrm{CN} 881 / 891$.

3. Subprogram AKAD

This function subprogram calculates the overall rate constant for limestone- SO_{2} reaction. This subprogram is designed based on the data of Borgwardt (1970) for Type 4 limestone. The overall reaction rate constant for limestone- SO_{2} reaction is calculated by the equation

$$
\begin{equation*}
\mathrm{k}_{\mathrm{v} \mathrm{\ell} \ell}=\mathrm{k}_{\mathrm{v} \ell} \mathrm{~S}_{\mathrm{g}} \lambda_{\ell} \quad 1 / \mathrm{sec} \tag{A.VII.3}
\end{equation*}
$$

where $k_{v \ell}^{-}$is defined as:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{v} \mathrm{\ell}}^{\prime}=490 \exp (-17500 / \mathrm{RT}) \quad \mathrm{gm} / \mathrm{cm}^{3} \cdot \mathrm{sec} \tag{A.VII.4}
\end{equation*}
$$

S_{g} is the specific surface area of limestone, and is equal to

$$
\begin{align*}
\mathrm{S}_{\mathrm{g}} & =35.9 \mathrm{~T}-3.67 \times 10^{4} \frac{\mathrm{~cm}^{2}}{\mathrm{gm}}, \mathrm{~T}<1253{ }^{\circ} \mathrm{K} \tag{A.VII.5}\\
& =-38.43 \mathrm{~T}+5.64 \times 10^{4} \frac{\mathrm{~cm}^{2}}{\mathrm{gm}}, \mathrm{~T} \geqslant 1253{ }^{\circ} \mathrm{K} \tag{A.VII.6}
\end{align*}
$$

and λ_{ℓ} is the reactivity of limestone as a function of CaO utilization, particle temperature and size. The reactivity of limestone is calculated using the grain model developed by Ishida and Wen (1971). The results are stored in the subprogram. The effect of temperature on the limestone reactivity is minimal for the range of temperatures encountered in the FBC. The reactivity of limestone for any intermediate particle size and conversion is calculated by linear interpolation on semilogarithmic scale as follows:

$$
\begin{equation*}
\lambda_{\ell \mathrm{a}}=\left(\frac{\lambda_{\ell \mathrm{a} 2}}{\lambda_{\ell \mathrm{al}}}\right)^{\frac{\mathrm{f}_{\ell}-f_{1}}{f_{2}-f_{1}}} \quad \chi \quad \lambda_{\ell \mathrm{al}} \tag{A.VII.7}
\end{equation*}
$$

$$
\begin{align*}
& \left.\lambda_{l b}=\frac{\lambda_{l b 2}}{\lambda_{l b 1}}\right)^{\frac{f_{l}-f}{f_{2}-f_{1}}} \tag{A,VII.8}\\
& \frac{\ln \left(d_{l} / d_{l b}\right)}{\ln \left(d_{l a} / d_{l b}\right)} \\
& \lambda_{l}=\left(\frac{\lambda_{l a}}{\lambda_{l b}}\right) \tag{A.VII.9}
\end{align*}
$$

where λ_{l} is the reactivity of limestone, f_{ℓ} is the fractional conversion of limestone and d_{ℓ} is the limestone particle diameter. Subscripts a and b refer to the successive particle sizes for which the reactivity profiles are specified (for the same conversion). Subscripts 1 and 2 refer to the successive particle conversions for which the reactivity profiles are specified (for the same particle size).
4. Subprogram AKK

Overall rate constants for char combustion and $\mathrm{C}-\mathrm{CO}_{2}$ reaction are calculated in this subroutine subprogram. Char particle temperature is calculated using the equation (V.38) by a trial and error procedure using Regula-Falsi method. The values of parameters used in this subprogram are given below:

Emissivity of the char particle, $\varepsilon_{m}=1.0$
Thermal conductivity of the surrounding gas, λ
$=6.32 \times 10^{-6} \mathrm{~T}_{\mathrm{m}}^{0.5} /\left\{1+\frac{245 \times 10^{\left(-12 / \mathrm{T}_{\mathrm{m}}\right)}}{\mathrm{T}_{\mathrm{m}}}\right\}, \frac{\mathrm{cals}}{\sec . \mathrm{cm}^{-6} \mathrm{C}}$
Stefan-Boltzman constant, $\sigma=1.36 \times 10^{-12} \frac{\mathrm{ca1s}}{\text { sec. } \mathrm{cm}^{2} \cdot{ }^{\circ} \mathrm{K}^{4}}$
Diffusivity of $\mathrm{O}_{2}-\mathrm{N}_{2}=4.26\left(\frac{\mathrm{~T}}{1800}\right)^{1.75} / \mathrm{P}$
Díffusivity of $\mathrm{CO}_{2}-\mathrm{N}_{2}=3.26\left(\frac{\mathrm{~T}}{1800}\right)^{1.75} / \mathrm{P}$
5. Subprogram AREA

By using this subroutine subprogram, cross sectional area of the combustor at any height above the distributor can be calculated. A set of data Z_{j} and $A_{t, j}, j=1 \sim M T B$ is fed into subroutine DESIGN and stored in the common address before subroutine AREA is called. The given height Z is searched between Z_{j-1} and Z_{j} so that

$$
z_{j-1} \leqslant z<z_{j}
$$

Then, cross sectional area A_{t} corresponding to height Z is obtained as follows:

$$
\begin{equation*}
A_{t}=\pi r^{2} \tag{A.VII.13}
\end{equation*}
$$

where $r=\left[1+\left(\frac{Z-Z_{j-1}}{Z_{j}-Z_{j-1}}\right)\left\{\left(\frac{A_{t, i}}{A_{t, j-1}}\right)^{1 / 2}-1\right\}\right] r_{j-1}$

$$
r_{j-1}=\left(A_{t, j-1} / \pi\right)^{1 / 2}
$$

$r=$ radius of the combustor at height Z above the distributor, cm.

6. Subprogram ATTR

This subroutine subprogram calculates the burning time of a char particle of given size, and hence the size reduction constant due to combustion. Char particle temperature is first calculated using the Equation (V.38) by a trial and error procedure using Regula-Falsi method. The burning time, t_{b}, of a char particle is calculated using the Equation (V.51). The values of parameters used in this subprogram are:

Emissivity of the char particle, $\varepsilon_{m}=1.0$
Stefan-Boltzman constant, $\sigma=1.36 \times 10^{-12}$, cals/sec.cm ${ }^{2} .{ }^{\circ} K^{4}$
Thermal conductivity of the surrounding gas, and the diffusivity
of $\mathrm{O}_{2}-\mathrm{N}_{2}$ are calculated by Equations (A.VIT.10) and (A.VII.11) respectively. Char size reduction rate constant is equal to $\left(1 / t_{b}\right)$. 7. Subprogram CRRECT

This subroutine subprogram provides the initial value for the unknown variable to be used in the next iteration of Regula Falsi method, and also judges if the iteration has converged. The Regula Falsi iteration has two periods.

Period 1: the root is not found in the interval (INDX $=0$)
Period 2: the root is found in the interval (INDX = 1) as shown in Fig. 26.

The parameter INDX is an indicator for the two periods, and if INDX = 2, it means the iteration has converged. During the period 1 , the search for the root is continued by proceeding in one direction indicated by the sign of increment for the variable. Once the root is found in the interval, Newton-Raphson method is applied to arrive at the exact value.

To use this subroutine, the following statements must be prepared in the program from where CRRECT is called.

1) Initial assumption for the unknown variable, X
2) Value of increment, $D X$
3) Tolerance limit for error, EMAX
4) Difference between the assumed and calculated values for the variable, E
5) Initial value for $1 N D X, \operatorname{INDX}=0$
6) DO loop for iteration
7) A statement to get off the DO loop when INDX $=2$

Fig. 26 Illustration for Regula Falsi Method

The initial value of X and the sign of $D X$ are very important factors to get a successful result from the iteration. If there are multiple roots, special consideration for choosing these values is needed. In the ordinary case it is recommended to start from either the maximum or minimum possible value of the unknown variable, X .

8. Subprogram DESIGN

Values of the design variables are fed into the main program by calling this subroutine. The axial variation of the bed cross section as a function of height above the distributor $\left(A_{t} V_{s} Z\right)$, the locations of heat transfer tubes, the specifications of the tubes (specific heat transfer. area based on outside diameter of the tube, tube diameter (o.d.), vertical pitch, horizontal pitch; tubes arrangement), solids feed locations and the fraction of total feed through each nozzle, solids discharge locations and the fraction of materials discharged through each nozzle, number of orifices in the distributor, orifice diameter, the solids mixing parameter, f_{W} and the fráction of wake solids thrown into the freeboard, $f_{s w}$ are the input variables in this subprogram.

Specific heat transfer area of the coils in a section of the bed refers to the outside surface area of the coils available for heat transfer per unit volume of the bed in that section. If the specific heat transfer area is not given, but the tübe diameter is given, the former can be calculated.

For the triangular arrangement of the tubes (Fig. 27),

$$
\begin{align*}
a_{H E} & =\frac{\text { Heat transfer area }}{\text { Volume of bed }} \\
& =\frac{\left(\frac{1}{2}\right) \pi d_{o} \Delta Z}{\left(\frac{1}{2}\right)\left(P_{H} p_{V} \Delta Z\right)}=\frac{\pi d_{o}}{P_{H} P_{V}} \tag{A.VII.16}
\end{align*}
$$

(a) Tbiahgular arrangeramt

(b) hectangular arrahgement

Fig. 27 Arrangement of Cooling Tubes

For the rectangular arrangement (Fig, 27),

$$
\begin{equation*}
\mathrm{a}_{\mathrm{HE}}=\frac{\pi d_{\mathrm{o}} \Delta \mathrm{Z}}{\mathrm{P}_{\mathrm{H}} \mathrm{P}_{V} \Delta Z}=\frac{\pi d_{0}}{\mathrm{P}_{H^{P}} \mathrm{P}_{V}} \tag{A.VII.17}
\end{equation*}
$$

For design purposes, the height of an elemental volume of the combustor corresponding to each compartment is chosen. The height should be so chosen that the toṭal number of compartments in the combustor is always less than the maximum dimensions allowed by the program. Then, heat transfer tubes specifications for each comparṭment is calculated along with the diameter and cross sectional area. The differential volume of each compartment, and the effective volume (excluding the volume occupied by the tubes) are computed.

Volume occupied by the tubes per unit volume of bed is given as follows:
(for triangular arrangement): $\frac{\frac{1}{2}\left(\frac{\pi}{4} d_{o}^{2}\right) \Delta Z}{\frac{1}{2} \ddot{P}_{H} P_{Y} \Delta Z}=\frac{d_{o}}{4} a_{H E}$
(for rectangular arrangement): $\frac{\left(\frac{\pi}{4} d_{0}^{2}\right) \Delta Z}{p_{H} p_{V}^{\prime} \Delta Z}=\frac{d_{0}}{4} a_{H E}$
Volume fraction of tubes is then equal to

$$
\begin{equation*}
\varepsilon_{\text {tube }}=1-\text { effective volume/total volume } \tag{A.VII.20}
\end{equation*}
$$

For each compartment, tube diameter, speçific heat transfer area, tube fraction, volume and effective volume are calculated.

9. Subprogram ELUT

This subroutine subprogram ị the basis for the entrainment calculations. Entŗainment calculations for limestone are performed first followed by char entrainment calculations:

From the bed operating conditions, total bed weight is known.

Initially, the size distribution of the bed is assumed knowing the feed particles size distribution. Based on the assumed bed size distribution, mass balance calculations for each close size fraction are performed, and the bed weight and the new bed size distribution are calculated. If the calculated bed weight equals the known bed weight, the iteration is stopped; otherwise, procedure is repeated using the.calculated bed size distribution for the next iteration.

The axial gas dispersion coefficient in the freeboard is then calculated from Reynolds number and Peclet number. From the dispersion coefficient, number of compartments and hence the compartment size in the freeboard are calculated. At each freeboard height, the solids entrainment rate and the average particle sizes are computed.

A similar procedure with slight modification is adopted for char entrainment calculations. To start with, carbon combustion efficiency is assumed and the average carbon concentration (weight fraction) in the bed is calculated based on carbon balance. Knowing the bed weight and carbon concentration in the bed, the weight of char in the bed is calculated. From the coal particle feed size distribution, the bed char size distribution is assumed. Mass balance for each close size fraction of char is performed. Based on the bed char size distribution, entrainment rate along the freeboard height is calculated. The effect. of diminishing char particle size due to combustion is taken into account in the char entrainment calculations. The char leaving the combustor unburnt is calculated. The combustion efficiency is calculated again. If the assumed and calculated efficiencies equal, the iteration is stopped; otherwise, procedure is repeated by assuming
a new initial value for combustion efficiency. The calculated results will give the size distribution of limestone and char in the bed, the average particle sizes of limestone and char, and their entrainment xates along the freeboard height, bedi solìds, withdrawal rate, char elutriation rate, solids elutriation rate and the combustion efficiency.
10. Subprogram FBC

This subroutine subprogram considers the freeboard char combustion and solves the material balance equations for oxygen in the freeboard. There will be two cases in the calculations. (i) oxygen rich or excess air conditions and (iii) oxygen starved conditions. For the oxygen rich case, Regula Falsi method is applied to calculate the oxygen concentration since the calculations involve a trial and error procedure. 11. Subprogram GPB

The material balance equations for oxygen in the emulsion phase and in the bubble phase are solved in this subroutine using the subroutine SIMQ. Two different cases are encountered in the solution:
(i) the oxygen concentration in the emulsion phase is zero and
(ii) the volatiles concentration in the emulsion phase is zero. The equations are solved by trial and error procedure.
12. Subprogram GPHASE

This subroutine is designed for solving the material balance equations in the emulsion phase and in the bubble phase for SO_{2} and NO (nitric oxide).
13. Subprogram HAREA

This subprogram calculates the height of the specific compartment above the distributor for the given cross sectional area of that
compartment. The idea is basically the same as that of subprogram AREA. The height Z, corresponding to the area, A_{t}, is calculated by the equation

$$
\begin{equation*}
z=z_{j-1}+\frac{\left(A_{t} / A_{j-1}\right)^{1 / 2}-1}{\left(A_{j} / A_{j-1}\right)^{1 / 2}-1}\left(z_{j}-z_{j-1}\right) \tag{A.VII.21}
\end{equation*}
$$

This subroutine is called from subroutine HYDRO to determine the height of the bed where $U_{0}=U_{m f}$. This situation does not occur at the cylindrical section, but occurs only at the tapered section. Therefore, $A_{j}>A_{j-1}$, and the error of dividing by zero is automatically avoided. 14. Subprogram HEIGFT

This function subprogram calculates the height of the bed for the given effective volume of the bed. Effective volume is the total volume of the bed minus the volume occupied by the tubes.
15. Subprogram HYDRO

This subroutine subprogram essentially calculates the bubble hydrodynamics of the bed. In the first part of the calculations, the compartment size is assumed and hence the bubble size. Then, from the correlation, bubble size in that compartment is calculated. If the assumed and calculated bubble sizes are equal to each other, then the iteration is stopped; otherwise, a new compartment size is assumed and the procedure repeated. For each compartment, cooling tubes specifications, effective volume, total volume, height above the distributor and the cross sectional area at that height are calculated. After the bubble size calculation, the hydrodynamic calculations are done using the equations listed in Table 2.

The program is also designed to take into consideration the formation of a fixed bed section over the fluidized bed section. First, the volume of bed at minimum fluidization is evaluated in the case when the expanded bed height is not given. (Either the minimum fluidization height or the expanded bed height has to be specified in the input). Subroutine HYDRO is called inside the temperature iteration loop. Depending upon the temperature of the bed, the hydrodynamic parameters and the bed height are determined. If more number of compartments are needed than that of the earlier iteration, then for the excess number of compartments the temperature, carbon concentration, bubble and emulsion phase oxygen concentrations are taken as those corresponding to the last compartment in the earlier iteration.

Knowing the temperature, density and viscosity of the gas, minimum fluidizing velocity and superficial velocity are calculated for each compartment. U_{o} is compared with U_{mf}. If the cross-sectional area of the bed increases as the height increases (for tapered geometry), the superficial velocity decreases. If at any instance, U_{0} is less than or equal to $U_{m f}$, it represents the end of fluidized section and the beginning of a fixed bed section. Then different calculations are to be performed for the fixed bed section. Four different cases are analyzed:
(i) Expanded bed height given, no fixed bed section:

For each compartment, the bubble hydrodynamics is calculated. The iteration is performed till the height of the last compartment reaches the expanded bed height.
(ii) Expanded bed height given, fixed bed section present:

The bubble hydrodynamics is calculated for each compartment. As the height increases, U_{O} is decreasing, and when it is smaller than $U_{m f}$, critical height has been reached. The critical height corresponds to the height of the bed above the distributor at which the fixed bed section starts. At this location U_{0} is equal to $U_{m f}$. Above this height, there is no fluidization, and the bubble fraction is zero. The presence of critical height and fixed bed are tagged by the symbols ICR and IFBC. If they are greater than zero, critical height and fixed bed section are present.

For each compartment the volume of solids (including the voids) and the effective height of the solids are calculated. Sum of these heights would be the height' of the bed at minimum fluidization.
(iii) Height at minimum fluidization given, no fixed bed section: Instead of basing the convergency criterion directly on the minimum fluidization height, the volume of the bed at minimum fluidization is used. This would help avoid any inacurracy involved in the calculation of the effective solids height in each compartment. Also, it would be easy to determine the total bed height when the effective volume of solids in the bed equals the volume at the minimum fluidization. The sum of each compartment volume, effective volume of solids (excluding the bubbles and tubes) and the effective height of solids are computed. The iteration continues till the effective solids volume equals the volume at minimum fluidization. If it exceeds volume at minimum fluidization, the exeèess solid volume, corrected for the expansion and tube fraction, is subtracted from the effective
volume of the bed to give the correct volume of the bed. From this effective volume of the bed, the expanded bed height is calculated.
(iv) Heịght at miznimum fluidization given, fixed bed section present:

As before, computations are performed till. U_{0} becomes smaller than U_{mf}. In the fixed bed section, the bubble fraction is zero. Fixed bed is equy̆ valent to the condition of minimum fluidization. Total volume of the bed:'s the sum of the effective volume of solids in the fluidized bed section and the difference in the minimum fluidization volume and the volume of solids in the fluidized section. Total height of the bed is computed from the total volume of the bed.
16. Subprogram SIMQ

A copy of this SSP (Scientific Subrouting Package) subroutyine supplied by IBM is attached.
17. Subprogram VEL

This subprogran calculates the minimum fluidization velocity and the terminal velocity of the particle. . The terminal velocity is calculated from (Kumii and Levenspiel, 1969):

$$
\begin{align*}
& U_{t}=\frac{g\left(\rho_{s}-\rho_{g}\right) d_{p}^{2}}{18 \mu} \text { for } R_{e, p} \leqslant 0.4 \tag{A.VII.22}\\
& U_{t}=\left[\frac{4}{225} \frac{\left(\rho_{s}-\rho_{g}\right)^{2} g^{2}}{\rho_{g} \mu}\right]^{1 / 3} d_{p} \text { for } 0.4<R_{e, p}<500 \tag{A.VI.I.23}\\
& U_{t}=\left[\frac{3.1 g\left(\rho_{s}-\rho_{g}\right) d_{p}}{\rho_{g}}\right] / 2 \text { for } 500<R_{e, p} \tag{A.VII.24}\\
& R_{e, p}=d_{p} \rho_{g} \underline{U}_{t} / \mu \tag{A.VII.25}
\end{align*}
$$

Subroutine SIMQ

18. Subprogram VOEUME

This's function subprogram calculates the effective volune of the bed (exaluding the tubes, inclưding the voids) for a given height above the distributor.

APPENDIX VIII
NOMENCLATURE FOR THE COMPUTER PROGRAMS
MAIN PROGRAM COMBUSTION

| FORTRAN
 Symbol | Mathematical Symbo 1 | Description |
| :---: | :---: | :---: |
| AAA | - | Matrix coefficients |
| AE | - | Activation energy of char-NO reduction reaction, cals/gmole |
| AHE | (SEE DESIGN) | |
| | | - |
| AHEAV | ${ }^{2} \mathrm{HE}$ | Specific heat transfer area of the tubes, $\mathrm{cm}^{2} / \mathrm{cm}^{3} \mathrm{FBC}$ volume |
| AHEW | $\mathrm{a}_{\text {HEW }}$ | Specific heat transfer area of the walls, $\mathrm{cm}^{2} / \mathrm{cm}^{3} \mathrm{FBC}$ volume |
| AK | $\mathrm{k}_{\mathrm{v} 1}$ | Overall volume reaction rate constant for limestone - SO_{2} reaction, $1 / \mathrm{sec}$ |
| AKB | $\mathrm{k}_{\mathrm{c}, \mathrm{B}}$ | Overall rate constant for char combustion in bubble phase, cm/sec |
| AKBE | K_{BE} | Gas exchange coefficient, $1 / \mathrm{sec}$ |
| AKC | ${ }^{\text {c }}$ c | Overall rate constant for char combustion, $1 / \mathrm{sec}$ |
| AKCO2 | - | Overall rate constant for $\mathrm{C}-\mathrm{CO}_{2}$ reaction, $\mathrm{cm} / \mathrm{sec}$ |
| AKE | $\mathrm{k}_{\mathrm{C}, \mathrm{E}}$ | Overall rate constant for char combustion in emulsion phase, cm/sec |
| AKNO | k_{NO} | NO reduction rate constant, $\mathrm{cm} / \mathrm{sec}$ |
| ALFA | - | Temperature matrix coefficients |
| AMODF | a_{m} | Defined by Equation (VI.12) |
| AND | n_{d} | Number of orifices in the distributor |
| ANH3V | - | NH_{3} content in the volatiles, gmole $\mathrm{NH}_{3} /$ gmole volatiles |
| ANITRO | - | Nitrogen released during char combustion, gatom/sec |
| AT | A_{t} | Cross sectional area of the bed, cm^{2} |

| EORTRAN
 Symiból | Mathematicat Symbol. | Des'cription |
| :---: | :---: | :---: |
| А'тB | (SEE DESTGN) | |
| BBB | - | Matrix coefficitents |
| BE'DCOM | \pm | 'Chà combustion rate in the bed, gm/sec |
| BẸDVOL | - | Total bed volume, cm^{3} |
| BETA | \because | Temperature mátrìix coefficients |
| CADF | $\dot{E}_{\underline{S}}{ }_{\text {f }}$ | Heảt câpàcity of feed additives, cals $/ \mathrm{gm} \cdot{ }^{\circ} \mathrm{C}$ |
| CARCON | $\stackrel{-}{-}$ | Cáróbon concéritrátíońn, gm carbón/ cm^{3} bed volume (incituding tubes) |
| CAS | - | - Cals moiar raxtio din feed solids |
| CASE | - | Effective Ca/S molar ratio (including Ca in ashi) |
| CCCF | ${ }^{\text {c }}$ | |
| CCHAR | Ech | Garboñ coñtent in char , gm carbon/gm char |
| CELU | $=$ | Char élutriated from the combustor, gms/sec |
| CGM | ${ }_{\text {gim }}$ | Mólar heat capacity off gas, cais/gmole ${ }^{\circ} \mathrm{C}$ |
| CGMF | $\stackrel{\text { - }}{ }$ | Molar heat capacity of feed gas, cals/gmole ${ }^{\circ} \mathrm{C}$ |
| CHARC | \cdots | Carbôn coontent in counar ; gmolè carbon/gm coal |
| CHARH' | $=$ | Hydrogen content in char, gatom hydrogen/gm coal |
| CHARN | - | Niṫtrogent content inn cihaŕ; gatom nitrogen/gm coal |
| CHARO | $=$ | Oxygen content in ${ }^{\text {n char }}$ char, gatom oxygen/gm coal |
| CHARS | \therefore | Sulyur content in' ehar, gatom sulfur/gm coal |
| CH4 | $\mathrm{Cf}_{4} \mathrm{C}_{4}$ | Wt: fraction CH^{2}, fint the volatiles; CH_{4} released during devolatilization, gmole $\mathrm{CH}_{4} / \mathrm{gm}$ coal |
| CLOSṠ | \because | Tơtal carbon lōs (erutriated + withdrawn), $\mathrm{gm} / \mathrm{sec}$ |
| CO- | $\mathrm{CO}^{\text {² }}$ | Wt. fráction co in the volatiles; CO released during devolatilization, gmole CO/gm coal |
| COALC | - | Ćarbioni content in coai; gatom carbon/gm coal (d.bi.): |

| FORTRAN
 Symbol | Mathematical
 Symbol | Hydrogen content in coal, gatom hydrogen/gm
 Coal (d.b.) |
| :--- | :--- | :--- |
| COALN | | |

| FORTRAN
 Symbo1 | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| DCSVF | - | Surface volume mean diameter of coal particles in the feed, cm |
| DCWE | - | Weight mean diameter of char particles in the freeboard, cm |
| DCWMB | - | Weight mean diameter of char particles in the bed, cm |
| DCWMF | - | Wèight mean diameter of coal particles in the feed, cm |
| DELT | - | Temperature matrix coefficients |
| DETC | - | İricrement in combustion efficiency |
| DETS | - | Increment in sulfur dioxide retention efficiciency |
| DNZL | \because | Dizaméter óf orifice holes in the distributor, cm |
| DPDIS | - | Préssure drop across the distributor, $\mathrm{cm}_{2} \mathrm{H}_{2}$ |
| DPFIX | - | Pressure drop across the fixed bed section, $\mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ |
| DPFLU | - | Pressure drop across the fluid bed sections $\mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ |
| DPSE | $\mathrm{d}_{l \mathrm{e},}$ | Surface volume mean particle diameter of additives entrained in the freeboard', cm |
| DPSVB | d_{ℓ} | Surface volume mean particle diameter of additives in the bed, cm |
| DPWE | $=$ | Wéight mean particle diametex of additives entrained in the freeboard, cm |
| DPWMB | - | Weight méan particle diameter of additives in the bed, cm |
| DTUBE | (SEE DESIǴN). | |
| DVBB | - - | Volume of each compartment, cm^{3} |

| FORTRAṄ Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| DT | D_{t} | Diameter of the combustor, cm |
| EETCM | - | Tolerance limit for combustion efficiency convergency |
| EETSM | - | Tolerance limit for sulfur dioxide retention efficiency convergency |
| EFF | - | Combustion efficiency calculated from elutriation calculations |
| EFFVOL | - | Volume of bed (excluding tubes), cm^{3} |
| EINDEX | - | Nitric oxide emission index, gmole
 - NO/gm coal burnt |
| EMF | $\varepsilon_{\mathrm{mf}}$ | Void fraction at minimum fluidization |
| ENOX | - | Nitric oxide emission, mole fraction |
| EPB | ε_{B} | Bubble fraction |
| EPC | ε_{c} | Cloud fraction including bubble |
| ETC | - | Carbon combustion efficiency |
| ETCA | - | Assumed carbon combustion efficiency |
| ETCC | - | Carbon combustion efficiency based carbon balance |
| ETCG | $\stackrel{-}{-}$ | Carbon combustion efficiency based on oxygen balance |
| ETN | - | NO_{X} emission efficiency |
| ETC | - | Sulfur dioxide retention efficiency |
| ETSC | - | Calculated sulfur dioxide retention efficiency |
| ETUBE | $\varepsilon_{\text {tube }}$ | Volume fraction of tubes in each compartment |
| EXAIR | - | Excess air, fraction |

| FORTRAN:
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| FBCOM | - | Char combustion rate in the freeboard, gm/sec |
| \because | | |
| FBM | F_{BM} | Molar flow rate of gas in the bubble phase, gmole/sec |
| ED | - | Fraction of solids withdrawn from the bed at each location |
| FEM | $\mathrm{F}_{\text {EM }}$ | Molar flow rate of gas in the emulsion phase, gmole/sec |
| FFAD | - | Fraction of total additives fed at each location |
| FFC | $=$ | Fraction of total coal fed at each location |
| FMF | - | Molar feed rate of fluidizing aix, gmole/sect |
| FMTH | - | Stoichiometric air feed rate, gmole/sec |
| FMO | $\mathrm{F}_{\text {MT }}$ | Total molar flow rate of gas in the combustor, gmole/sec |
| FR | - \times | Frequency factor for char-NO reaction, $\mathrm{cm} / \mathrm{sec}$ |
| FRN | - | Feed rate of fuel nitrogen, gatom/sec |
| FRS | - | Feed rate of fuel sulfur', 'gatom/sec |
| FS | f_{ℓ} | Fractional conversion of dimestone |
| FSW | (SEE DESIGN) | |
| FW | ${ }_{\text {f }}$ | Šolids mixing parameter, ratio of wake volumie to the bubble volume inciüding the wakes |
| G | g | Acceleration due to gravity, cm/ sec^{2}. |
| GAMA | - | Temperature matrix coefficients |
| GB | g_{B} | Volatiles burning rate in the bubble phase, gmole/sec |
| GE | g_{E} | Volatiles burning rate in the emulsion phase, gmole/sec |
| GENB | - | SO_{2} or NO_{x} release rate in the bubble phase or in the freeboard due to volatiles conibustion, gmole/sec |

| FORTRAN
 Symbol | Mathematical
 Symbol | Description |
| :---: | :---: | :---: |
| GENE | - | SO_{2} or NO_{x} release rate in the emulsion phase or in the freeboard due to volatiles combustion, gmole/sec |
| GFLOW | G | Gas flow rate, gms/sec |
| H | - | Height above the distributor, cms |
| HB | h | Height above the bed surface, cms |
| HAREA | - | Total heat transfer area of cooling tubes (based on outside diameter of tube), cm^{2} |
| HCHAR | - | Hydrogen content in char, gm hydrogen/gm char |
| HCOAL | - | Lower heating value of coal, cals/gm |
| HCR | - | Critical bed height above which there is a fixed bed section, cm |
| HFB | - | Freeboard height, cm |
| HLF | - | Expanded bed height, cm |
| HLMF | - | Bed height at minimum fluidization, cm |
| HTAR | - | Hydrogen content in tar, gm hydrogen/gm coal fed |
| H2 | H_{2} | Wt. fraction H_{2} in the volatiles; H_{2} released during devolatilization, gmole $\mathrm{H}_{2} / \mathrm{gm}$ coal |
| H2O | $\mathrm{H}_{2} \mathrm{O}$ | ```Wt. fraction }\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mathrm{ in the volatiles; }\mp@subsup{\textrm{H}}{2}{}\textrm{O released during devolatilization, gmole H2O/gm coal``` |
| H2SV | - | $\mathrm{H}_{2} \mathrm{~S}$ content in the volatiles, gmole $\mathrm{H}_{2} \mathrm{~S} /$ gmole volatiles |
| IARR | (SEE DESIGN) | |
| ITR | - | Indicator for cirtical bed height |
| IFBC | - | Indicator for fixed bed section |
| IGNITE | - | Indicator for combustion calculations |
| INOX | - | Indicator for NO_{x} calculations |
| IPRES | - | Indicator for pressure drop calculations |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| ISO2 | \because | Indicator for SO_{2} calculations |
| ITEMP | - | Indicator for temperature calculations |
| ITRIAL | - | Number of trials made in the combustion cailculations |
| KT | - " | Number of compartments in freeboard |
| MAIR | - | Molecular weight of air, gms/gmole |
| MC | - | Atomic weight of carbon, gms/gatom |
| MCAO | - | Molecular weight of cal.cium oxide, gms/gmole |
| MCACO3 | - | Molecular weight of calcium carbonate, gins/gmole |
| MCASO4 | - | Molecular weight of calcium sulfate, gms/gmole |
| MCO | - | Molecular weight of carbon monoxide, gms/gmole |
| MCO2 | - | Molecular weight of carbon dioxide, gms/gmole |
| MDIS | - | No. of solids withdrawal locations |
| MFEED | - | No. of solids feed locations |
| MGAS | - | Molecular weight of combustion gases, gms/gmole |
| MH2 | - | Molecular weight of hydrogen, gms/gmole |
| MH2O | - | Molecular weight of water, gms/gmole |
| MH2S | - | Molecular weight of hydrogen sulfide, gms/gmole |
| MMGCO3 | - | Molecular weight of magnesium carbonate, gms/gmole |
| MMGO | $\stackrel{+}{-}$ | Molecular weight of magnesium oxide, gms/gmole |
| MN | - | Atomic weight of nitrogen, gms/gatom |

| FORTRAN Symbol | Mathematical Symbot | Description |
| :---: | :---: | :---: |
| MNO | - | Molecular weight of nitric oxide, gms/gmole |
| MN2 | - • | Molecular weight of nitrogen, gms/gmole |
| MO2 | - | Molecular weight of oxygen, gms/gmole |
| MS | - | Atomic weight of sulfur, gms/-gatom |
| MSO2 | - | Molecular weight of sulfur dioxide, gms/gmole |
| - MTAR | - | Average molecular weight of tar in the volatiles, gms/gnole |
| MTB | (SEE DESIGN) | |
| MTHE | (SEE DESIGN) | |
| M1 | - | No. of compartments in the bed +1 |
| NA | - | No. of additive particles in the freeboard |
| . NAMECl | - | Name of coal |
| NAMEC2 | | Name of coal |
| NAMEL1 | | - ${ }^{\text {b }}$ |
| NAMEL2 | - | Name of limestone |
| NC | - | No. of char particles in the freeboard |
| NCHAR | - | Nitrogen content in char, gm nitrogen/ gm char |
| NTC | - . | Total number of compartments in the combustor using DZAV + 1 |
| OCHAR | - | Oxygen content in char, gm oxygen/gm char |
| OTAR | - | Oxygen content in tar, gm oxygen/gm coal fed |
| PAV | P | Average pressure in the combustor, atm |
| PF | - | Pressure of fluidizing air at the inlet to the distributor, atm |
| PH | (SEE DESIGN) | |
| PHIB | ϕ_{B} | Mechanism factor in the freeboard |
| PHIE | ϕ_{E} | Mechanism factor in the emulsion phase |
| PI | π | 3.14159265 |
| PV | (SEE DESIGN) | |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| QAREA | - | Heat transfer rate to the tubes per unit heat transfer area of tubes, $\mathrm{cals} / \mathrm{cm}^{2} . \mathrm{sec}$ |
| QĊHAR | - | Heat of combustion of char, cals/gm |
| QCLCN | - | Heat of calcination of limestone, cals/gin |
| QCO | - | Heat of combustion of carbon monoxide, cals/gnole |
| QTRANS | - | Total heat transferred to the cooling medium, cals/sec |
| QVCO | - | ```Heat of partial combustion of volatiles, cals/gmole``` |
| QVGAS | - | Heat of combustion of volatiles, cals/gmole |
| QVOL | - | Heat transfer ${ }_{3}$ rate per unit volume of bed, cals/ cm^{3} |
| R | A | Defined by Equation (V.2) |
| RC | - - | Fraction of carbon remaining in char after devolatilization, gm carbon/gm carbon in coal |
| RCHAR | $\mathrm{R}_{\text {ch }}$ | Char produced per unit gm of coal fed, $\mathrm{gm} / \mathrm{gm}$ |
| RELB | - | Total release rate of SO_{2} or NO_{x} in the bubble phase, gmole/sec |
| RELE | - | Total release rate of SO_{2} or NO_{x} in the emulsion phase, gmole/sec |
| RG | R_{g}. | Gas constant, 82.06 atm.cm ${ }^{3} / \mathrm{gmole} .{ }^{\circ} \mathrm{K}$ |
| RH | - | Fraction of hydxogen remaining in char after devolatilization, gm hydrogen/ gm hydrogen in coal |
| RHOAD | - | Density of additives, gms/cm 3 |
| RHOASH | - | Density of ash, gms $/ \mathrm{cm}^{3}$ |
| RHOBED | ρ_{b} | Density of the bed materials, $\mathrm{gms} / \mathrm{cm}^{3}$ |
| RHOC | - | Density of coal, gms/cm ${ }^{3}$ |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| RHOCH | $\rho_{\text {ch }}$ | |
| RHOGAS | ρ_{g} | Density of gas, gms $/ \mathrm{cm}^{3}$ |
| RHOFG | - | Density of the fluidizing air at the inlet to the distributor, gms $/ \mathrm{cm}^{3}$ |
| RN | - | Fraction of nitrogen remaining in char after devolatilization, gm nitrogen/gm nitrogen in coal |
| RO | - | Fraction of oxygen remaining in char after devolatilization, gm oxygen/gm oxygen in coal |
| RR | - | Rate of combustion of char in each compartment per unit weight fraction of carbon in the bed, gms/sec; heat generation rate minus heat of calcination in each compartment, gms/sec |
| RRB | - | Rate of combustion of char in the bubble phase, gms/sec |
| RRE | - | Rate of combustion of char in the emulsion phase, gms/sec |
| RS | - | Fraction of sulfur remaining in char after devolatilization, gm sulfur/gm sulfur in coal |
| RVGAS | $=$ | Volatiles released during devolatilization per unit gm of coal, gmole volatiles/gm coal |
| SCHAR | - | Sulfur content in char, gm sulfur/gm char |
| SOLVOL | - | Volume of solids in the bed (including voids) which is equal to volume of bed at minimum fluidization (excluding the internals), cm^{3} |
| SULFUR | - | Sulfur released during char combustion, gatom/sec |
| T | T | Temperature, ${ }^{\circ} \mathrm{K}$ |
| TAR | Tar | Wt. fraction tar in the volatiles; tar released during devolatilization per unit gm of coal, gmole tar/gm coal |
| TARC | - | Stoichiometric air required per unit gm of char, gmole/gm char |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| TAV | - | Mean bed temperature, ${ }^{\circ} \mathrm{K}$ |
| TAVB | T_{B} | Mean temperature in the boundary layer of the char particles in the bubble phase, ${ }^{\circ} \mathrm{K}$; also in the freeboard, ${ }^{\circ} \mathrm{K}$ |
| TAVE | T_{E} | Mean temperature in the boundary layer of the char particles in the emulsion phase, ${ }^{\circ} \mathrm{K}$ |
| TCRATE | - | Total char combustion rate, $\mathrm{gm} / \mathrm{sec}$ |
| TETUBE | - | Total volume fraction of tubes in the bed |
| TF | - | Temperature of fluidizing air at the inlet to the distributor, ${ }^{\circ} \mathrm{K}$ |
| TFC | - | Total char feed rate, gms/sec |
| TNORM | - | Temperature criterion for convergency |
| TOLD | - | Bed tempexature in the previous iteration, ${ }^{\circ} \mathrm{K}$ |
| TPB | - | Char particle temperature in the bubble phase, ${ }^{\circ} \mathrm{K}$; also in the freeboard, ${ }^{\circ} \mathrm{K}$ |
| TPE | - | Char particle temperature in the emulsion phase, ${ }^{\circ} \mathrm{K}$ |
| TSF | - | . Temperature of feed solids, ${ }^{\circ} \mathrm{K}$ |
| TSTA | - | Starting temperature (assumed) for iteration, ${ }^{\circ} \mathrm{K}$ |
| TW | - | Cooling water temperature, ${ }^{\circ} \mathrm{K}$ |
| TWALL | - | Wall temperature, ${ }^{\circ} \mathrm{K}$ |
| TWALLA | - | Average wall temperature used for heat losses, ${ }^{\circ} \mathrm{K}$ |
| TWAV | - | Log mean temperature of the cooling water |
| TWIN | - | Inlet water temperature, ${ }^{\circ} \mathrm{K}$ |
| TWOUT | - | Outlet water temperature, ${ }^{\circ} \mathrm{K}$ |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| UB | U_{B} | Bubble velocity, cm/sec |
| UHE | U | $\begin{aligned} & \text { Bed to tube heat transfer coefficient, } \\ & \text { cals } / \mathrm{sec} \cdot \mathrm{~cm}^{2} \cdot{ }^{\circ} \mathrm{C} \end{aligned}$ |
| UHEAV1 | - | Bed to tube heat transfer coefficient (average) within the bed, cals/sec. $\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$ |
| UHEAV2 | - | Bed to tube heat transfer coefficient (average) in the freeboard, cals/sec $\cdot \mathrm{cm}^{2}$ ${ }^{\circ} \mathrm{C}$. |
| UHEW | U_{w} | Bed to wall heat transfer coefficient, cals/sec. $\mathrm{cm}^{2{ }^{\circ}} \mathrm{C}$ |
| UMF | U_{mf} | Minimum fluidization velocity, $\mathrm{cm} / \mathrm{sec}$ |
| U0 | U_{0} | Superficial gas velocity.as a function of bed height, $\mathrm{cm} / \mathrm{sec}$ |
| UOR | - | Orifice velocity, $\mathrm{cm} / \mathrm{sec}$ |
| UT | U_{t} | Terminal velocity of the particle, $\mathrm{cm} / \mathrm{sec}$ |
| UWALLI | - | Bed to wall heat transfer coefficient (average) within the bed, cals/sec $\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$ |
| UWALL2 | | ```Bed to wall heat transfer coefficient (average) in the freeboard, cals/sec cm}\mp@subsup{}{}{\circ}\mp@subsup{}{}{\circ}\textrm{C``` |
| U0 | - | Superficial gas velocity at the distributor, $\mathrm{cm} / \mathrm{sec}$ |
| V | - | Volatiles yield during devolatilization, gms volatiles/gm coal (daf); also gms volatiles/gm coal |
| VAHOLD | - . | Volumetric additives holdup in the freeboard; cm^{3} solid volume |
| VCHOLD | - | Volumetric char hold-up in the freeboard, cm^{3} solid volume |
| VGASN | - | Volatile nitrogen in coal, gatom/gm coal (d.b.) |
| VGASS | - | Volatile sulfur in coal, gatom/gm coal (d.b.) |
| VISC | μ | Viscosity of gas, gm/cm.sec |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| VM | - | ```Proximate volatile matter in coal, gm/gm coal (daf)``` |
| VMF | - | Bed volume at minimum fluidization (excluding the internals), cm^{3} |
| VPROD | - | Volatiles released in each compartment, gmole/sec |
| WAD | $W_{f, a}$ | Additives feed rate, gms/sec |
| WAHOLD | - | Additives hold-up in the freeboard, gms |
| WB | M_{b} | Weight of bed materials, gms |
| WCHOLD | - | Char hold-up in the freeboard, gms |
| WCOAL | - | Coal feed rate as received basis, gms/sec |
| WD | - | Solids withdrawal rate at each location, gms/sec |
| WDIS | W_{D} | Solids withdrawal rate, gms/sec |
| WEA | - | Additives entrainment rate in the freeboard, gms/sec |
| WEC | - | Char entrainment rate in the freeboard, gms/sec |
| WELUA | - | Solids (excluding char) elutriation rate from the combustor, gms/sec |
| WFAD | $W_{f, a}$ | Additives feed rate in each compartment, gms/sec |
| WFC | $W_{f, c}$ | Coal feed rate in each compartment, gms/sec |
| WMI X | $W_{\text {mix }}$ | Solids mixing rate, gms/sec |
| WNET | $W_{\text {net }}$ | Net flow rate of solids, gms/sec |
| WW | B | Defined by Equation (V.3) |
| X | X | Weight fraction carbon in the bed |
| XA | - | Ash content in coal as received basis, gm ash/gm - coal |
| XACAO | | Calcium oxide content in ash, gm CaO/gm ash |

| FORTRAN
 Symbo1 | Mathematica1
 Symbol | Description |
| :---: | :---: | :---: |
| XAV | - | Average weight fraction of carbon in the bed |
| XC | - | Carbon content in coal, gm carbon/ gm coal (d.b.) |
| צCAO | - | Calcium oxide content in limestone, gm CaO/gm limestone |
| XCF | - | Fixed carbon content in coal, gm carbon/gm coal (d.b.) |
| XCO2 | - | Carbon dioxide content in limestone, $\mathrm{gm} \mathrm{CO}_{2} / \mathrm{gm}$ limestone |
| XCV | - | Volatile carbon content in coal, gm carbon/gm coal (d.b.) |
| XH | - | Hydrogen content in coal, gm hydrogen/gm coal (d.b.) |
| XMGO | - | Magnesium oxide content in»1imestone, gm Mgo/gm limestone |
| XN | - | Nitrogen content in coal, gm nitrogen/ gm coal (d.b.) |
| xo | - | Oxygen content in coal, gm oxygen/gm coal (d.b.) |
| X02 | $\mathrm{x}_{\mathrm{o}_{2}}$ | Oxygen required for partial combustion of volatiles, gmole 0_{2} /gmole volatile |
| X02C | $\mathrm{X}_{\mathrm{O}_{2}, \mathrm{c}}$ | Oxygen required for complete combustion of volatiles, gmole O_{2} /gmole volatile |
| XS | - | Sulfur content in coal, gm sulfur/gm coal (d.b.) |
| XS102 | - | Silicon dioxide content in limestone, gm SiO ${ }_{2}$ /gm limestone |
| XW | - | Moisture content in coal as received basis, $\mathrm{gm} \mathrm{H}_{2} \mathrm{O} / \mathrm{gm}$ coal |
| YAV | - | Average O_{2} concentration (assumed) for iteration, mole fraction |
| YB | - | Mole fraction O_{2} or SO_{2} or NO in the bubble phase |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| YBO | Y_{B} | Mole fraction O_{2} in the bubble phase |
| YCO | $Y_{\text {CO }}$ | Mole fraction CO |
| YCOE | $Y_{E, C O}$ | Mole fraction CO in the emulsion phase |
| YCO2 | $\mathrm{Y}_{2}{ }_{2}$ | Mole fraction CO_{2} |
| YCO2B | $\mathrm{Y}_{\mathrm{B}, \mathrm{CO}_{2}}$ | Mole fraction CO_{2} in the bubble phase |
| YCO2E | $\mathrm{Y}_{\mathrm{E}, \mathrm{CO}_{2}}$ | Mole fraction CO_{2} in the emulsion phase |
| YE | - | Mole fraction O_{2} or SO_{2} or NO in the emulsion phase |
| YEO | Y_{E} | Mole fraction O_{2} in the emulsion phase |
| YGO | - | Gaseous species concentrations at the exit, mole fraction |
| YH2O | $\mathrm{Y}_{\mathrm{H}_{2} \mathrm{O}}$ | Mole fraction $\mathrm{H}_{2} \mathrm{O}$ |
| YNOX | Y_{NO} | Mole fraction NO |
| YO | Y_{0} | Mole fraction O_{2} |
| YSO2 | $\mathrm{Y}_{\mathrm{SO}_{2}}$ | Mole fraction SO_{2} |
| YV | Y | Mole fraction volatiles |
| YVE | $Y_{E, v}$ | Mole fraction volatiles in the emulsion phase |
| ZAVG | - | Average height of each compartment above the distributor, cm |
| ZB | (SEE DESIGN) | |
| ZF | - | Locations of solids feed ports, cms |
| ZHE | (SEE DESIGN) | |
| ZDIS | (SEE DESIGN) | |

MAIN PROGRAM ELUTRIATION.

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| AHE | (SEE DESIGN) | |
| ATB | A_{t} | Cross sectional area of the bed, cm^{2} |
| CAS | - | Ca / S molar ratio in feed solids |
| CCHAR | C_{ch} | Carbon content in char, gm carbon/ gm char |
| CELU | - | Char elutriated from the combustor, gms/sec |
| CHARC | - | Carbon content in char, gmole. carbon/ gm coal |
| CHARH | - | Hydrogen content in char, gatom hydrogen/gm coal |
| CHARN | - | Nitrogen content in char', gatom nitrogen/gm coal |
| CHARO | - | Oxygen content in char, gatom oxygen/gm coal |
| CHARS | - | Sulfur content in char, gatom sulfur/gm coal |
| CH4 | CH_{4} | Wt. fraction CH_{4} in the volatiles; CH_{4} released during devolatilization, gmole $\mathrm{CH}_{4} / \mathrm{gm}$ coal |
| C0 | CO | Wt. fraction CO in the volatiles; C0 released during devolatilization, gmole CO/gm coal |
| COALC | - | Carbon content in coal, gatom carbon/ gm coal (d.b.) |
| COALH | - . | Hydrogen content in coal, gatom hydrogen/gm coal (d.b.) |
| COALN | - | Nitrogen content in coal, gatom nitrogen/gm coal (d.b.) |
| COALO | - | Oxygen content in coal, gatom oxygen/gm coal (d.b.) |
| COALS | - | Sulfur content in coal, gatom sulfur/gm coal (d.b.) |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| COV | - | CO released during devolatilization per mole of volatiles released, gmole CO/ gmole volatiles |
| COVB | - | CO produced during volatiles combustion, gnole CO/gmole volatiles |
| CO_{2} | - | Wt. fraction CO_{2} in the volatiles; CO_{2} released during devolatilization, gmole $\mathrm{CO}_{2} / \mathrm{gm}$ coal |
| CO2V | - | CO_{2} released during devolatilization per mole of volatiles released, gmole CO_{2} / gmole volatiles |
| CO2VB | - | CO_{2} produced during volatiles combustion, gmole $\mathrm{CO}_{2} /$ gmole volatiles |
| CTAR | - | Carbon content in tar, gm carbon/gm coal fed |
| DASVF | - | Surface volume mean paxticle diameter of additives in the feed, cm |
| DAWMF | - . | Weight mean particle diameter of additives in the feed, cm |
| DCSE | $\mathrm{d}_{\text {ce }}$ | Surface volume mean diameter of char particles in the freeboard, cm |
| DCSVB | ${ }_{\text {d }}$ | Surface volume mean diameter of char particles in the bed, cm |
| DCSVF | - | Surface volume mean diameter of coal particles in the feed, cm |
| DCWE | - | Weight mean diameter of char particles in the freeboard, cm |
| DCWMB | - | Weight mean diameter of char particles in the bed, cm |
| DCWMF | - | Weight mean diameter of coal particles in the feed, cm |
| DIA (I) | - | Feed particle diameter of ith fraction base seiving screen size |

| FORTRAN
 Symbol | Mathematical Symbo 1 | Description |
| :---: | :---: | :---: |
| DP | d_{x} | Mean diameter of the particles of x th size fraction, cm |
| DPSE | $d_{l e}$ | Surface volume mean particle diameter of additives entrained in the freeboard, cm |
| DPSVB | d_{ℓ} | Surface volume mean particle diameter of additives in the bed, ${ }^{\circ} \mathrm{cm}$ |
| DPWE | - | Weight mean particle diameter of additives entrained in the freeboard, cm |
| DPWMB | - | Weight mean particle diameter of additives in the bed, cm |
| DTUBE | (SEE DESIGN) | |
| EMF | $\varepsilon_{m f}$ | Void fraction at minimum fluidization |
| EXAIR | - | Excess aix, fraction |
| FMF | - | Molar feed rate of fluidizing air, gmole/sec |
| FMO | $\mathrm{F}_{\text {MT }}$ | Total molar flow rate of gas in the combustor, gmole/sec |
| FMTH | - | Stoichiometric air feed rate, gmole/sec |
| FRACTA | - | Weight fraction of additives feed of x th size fraction |
| FRACTC | - | Weight fraction of coal feed of x th size fraction |
| G | g | Acceleration due to gravity, $\mathrm{cm} / \mathrm{sec}^{2}$ |
| GFLOW | G | Gas flow rate, gms/sec |
| HCHAR | - | Hydrogen content in char, gm hydrogen/gm char |
| - HFB | - | Freeboard height, cm |
| HLF | - | Expanded bed height, cm |

| FORTRAN
 Symbo 1 | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| HLMF | - | Bed height, at minimum fluidization, cm |
| HTAR | - | Hydrogen content in tar, gm hydrogen/ gm coal fed |
| H2 | H_{2} | Wt. fraction H_{2} in the volatiles; H_{2} released during devolatilization gmole $\mathrm{H}_{2} / \mathrm{gm}$ coal |
| H2O | $\mathrm{H}_{2} \mathrm{O}$ | Wt. fraction $\mathrm{H}_{2} \mathrm{O}$ in the volatiles; $\mathrm{H}_{2} \mathrm{O}$ released during devolatilization, gmole $\mathrm{H}_{2} \mathrm{O} / \mathrm{gm}$ coal |
| IARR | (SEE DESIGN) | |
| MAIR | - | Molecular weight of air, gms/gmole |
| MC | - | Atomic weight of carbon, gms/gatom |
| MCAO | - | Molecular weight of calcium oxide, gms/gmole |
| MCASO4 | - | Molecular weight of calcium sulfate, gms/gmole |
| MCO | - . . | Molecular weight of carbon monoxide, gms/gmole |
| MCO2 | - | Molecular weight of carbon dioxide, gms/gmole |
| MGAS | - | Molecular weight of combustion gases, gms/gmole |
| MH2 | - | Molecular weight of hydrogen, gms/gmole |
| MH2O | - | Molecular weight of water, gms/gmole |
| MH2S | - | Molecular weight of hydrogen sulfide, gms/gmole |
| MNO | - | Molecular weight of nitric oxide, gms/gmole |
| MN2 | - - | Molecular weight of nitrogen, gms/gmole |
| MO2 | - | Molecular weight of oxygen, gms/gmole |
| MS | - | Atomic weight of sulfur, gms/gatom |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| MSO2 | - | Molecular weight of sulfur dioxide, gms/gmole |
| MTAR | - | Average molecular weight of tar in the volatiles, gms/gmole |
| MTB MTHE | (SEE DESIGN) | |
| NCHAR | - | Nitrogen content in char, gm nitrogen/gm char |
| NDP | - | Number of size fractions |
| OCHAR | - | Oxygen content in char, gm oxygen/gm char |
| OTAR | - | Oxygen content in tar, gm oxygen/gm coal fed |
| PAV | P | Average pressure in the combustor, atm |
| PH | (SEE DESIGN) | |
| PI | π | 3.14159265 |
| PV | (SEE DESIGN) | |
| R | A | Defined by Equation (V.2) |
| RC | - | Fraction of carbon remaining in char after devolatilization, gm carbon/gm carbon in coal |
| RCHAR | R_{ch} | Char produced per unit gm of coal fed, gm/gm |
| RG | R_{g} | Gas constant, $82.06 \mathrm{~atm} \cdot \mathrm{~cm}^{3} / \mathrm{gmole} \cdot{ }^{\circ} \mathrm{K}$ |
| RH | - | Fraction of hydrogen remaining in char after devolatilization, gm hydrogen/gm hydrogen in coal |
| RHOAD | - | Density of additives, gms $/ \mathrm{cm}^{3}$ |
| RHOASH | - | Density of ash, gms/cm ${ }^{3}$ |
| RHOBED | ρ_{b} | Density of the bed materials, $\mathrm{gms} / \mathrm{cm}^{3}$ |
| RHOC | - | Density of coal, gms/cm ${ }^{3}$ |
| RHOCH | $\rho_{\text {ch }}$ | Density of chax, gms/cm ${ }^{3}$ |
| RN | - | Fraction of nitrogen remaining in char after devolatilization, gm nitrogen/gm nitrogen in coal |

| FORTRAN
 Symbo1 | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| RO | - | Fraction of oxygen remaining in char after devolatilization, gm oxygen/gm oxygen in coal |
| RS | - | Fraction of sulfur remaining in char after devolatilization, gm sulfur/gm sulfur in coal |
| RVGAS | - . | Volatiles released during devolatilization per unit gm of coal gmole volatiles/gm coal |
| SCHAR | - | Sulfur content in chax, gm su1fur/gm char |
| TAR | Tar | Wt. fraction tar in the volatiles; tar released during devolatilization per unit gm of coal, gmole tar/gm coal |
| TAV | - | Mean bed temperature, ${ }^{\circ} \mathrm{K}$ |
| TDHC | TDH | Transport disengaging height, cms |
| U0 | U_{o} | Superficial. gas velocity as a function of bed height, cms/sec |
| V | - | Volatiles yield during devolatilization, gms volatiles/gm coal (daf); al.so, gms volattịles/gm-coal |
| VM | - | Proximate volatile matter in coal, gm/gm coal (daf) |
| VMF | 0 | Bed volume at minimum fluidization (excluding the internals), cm^{3} |
| WAD | $W_{f, a}$ | Additives feed rate, gms/sec |
| WB | Mb | Weight of bed materials, gms |
| WBC | - | Weight of bed materials calculated, gms |
| WCOAL | $W_{f, c}$ | Coal feed rate as received basis, gms/sec |
| WDIS | W_{D} | Solids withdrawal rate, gms/sec |

| FORTRAN
 Symbol | Mathematical
 Symbol | Description |
| :---: | :---: | :---: |
| WELUA | - | Solids (excluding char) elutriation rate, gms/sec |
| WW | B | Defined by Equation (V.3) |
| XA | - | Ash content in coal, gm ash/gm coal |
| XC | - | Carbon content in coal, gm carbon/ gm coal (d.b.) |
| XCAO | - | Calcium oxide content in limestone, gm CaO/gm limestone |
| XCF | - | Fixed carbon content in coal, gm carbon/gm coal (d.b.) |
| XCO2 | - | Carbon dioxide content in limestone, $\mathrm{gm} \mathrm{CO}_{2} / \mathrm{gm}$ Iimestone |
| XCV | - | Volatile carbon content in coal, gm carbon/gm coal (d.b.) |
| XH | - | Hydrogen content in coal, gm hydrogen/gm coal (d.b.) |
| XMGO | - | Magnesium oxide content in limestone, gm MgO/gm limestone |
| XN | - | Nitrogen content in coal, gm nitrogen/ gm coal (d.b.) |
| X0 | - | Oxygen content in coal, gm oxygen/ gm coal (d.b.) |
| XS | - | Sulfur content in coal, gm sulfur/ gm coal (d.b.) |
| XSI02 | - | Silicon dioxide content in limestone, $\mathrm{gm} \mathrm{SiO}_{2} / \mathrm{gm}$ limestone |
| XW | - | Moisture content in coal as received basis, $\mathrm{gm} \mathrm{H}_{2} \mathrm{O} / \mathrm{gm}$ coal |
| ZB | (SEE DESIGN) | |
| ZHE | (SEE DESIGN) | |

SUBPROGRAM AKAD

| FORTRAN
 Śymbol | Mathematical
 Symbol | Description |
| :---: | :---: | :---: |
| ALIME | λ_{2} | Reactivity of lime |
| AKAD | $\mathrm{k}_{\mathrm{v} \ell}$ | Overall volume reaction rate constant for limestone SO_{2} reaction, $1 / \mathrm{sec}$ |
| DP | ${ }_{\text {d }}$ | Particle diameter, cm |
| $\begin{aligned} & \text { DP1 } \\ & \text { DP2 } \\ & \text { DP3 } \end{aligned}$ | - | Specified particle diameter for which the limestone reactivity is given, cm |
| FS | f_{ℓ} | Fractional conversion of limestone |
| FB | - | Limestone reactivity (given) |
| RR | - | Mean reactivity of limestone particles of size, DPi |
| RB | - | Mean reactivity of limestone particles of size, DP2 |
| RC | - | Mean reactivity of limestone particles ơf size, DP3 |
| SG | S_{g} | Effective specific surface area of limestone, $\mathrm{cm}^{2} / \mathrm{gm}$ |
| T | T | Temperature in the bed, ${ }^{\circ} \mathrm{K}$ |
| | | SUBPROGRAM AKK |
| AKCO2 | - | Overall rate constant for $\mathrm{C}-\mathrm{CO}_{2}$ reaction, cm/sec |
| AKF | $k_{c f}$ | Gas film diffusion rate constant for $0_{2} ; \mathrm{gm} / \mathrm{cm}^{2} \cdot \mathrm{sec} \cdot \mathrm{atm}$ |
| AKFCO2 | - | Gas film diffusion rate constant for ${ }^{2} \mathrm{CO}_{2}{ }^{3} \mathrm{gm} / \mathrm{cm}^{2} \cdot \mathrm{sec} \cdot \mathrm{atm}$ |

| FORTRAN
 Symbol | Mathematical
 Symbol | Description |
| :---: | :---: | :---: |
| AKRCO2 | ${ }^{\mathrm{k}} \mathrm{CO}_{2}$ | $\mathrm{C}-\mathrm{CO}_{2}$ chemical reaction rate constant, $\mathrm{cm} / \mathrm{sec}$ |
| AKR | k_{c} | Overall rate constant for char combustion, $\mathrm{cm} / \mathrm{sec}$ |
| AKS | ${ }_{\mathrm{k}}^{\mathrm{CR}}$ | Chemicà l reaction rate constant for char combustion, cm/sec |
| COND | λ | Thermal conductivity of the gas, cals/ sec.cm. ${ }^{\circ} \mathrm{C}$ |
| D | D | Molecular diffusivity for $\mathrm{O}_{2}-\mathrm{N}_{2}, \mathrm{~cm}^{2} /$ sec ; for $\mathrm{CO}_{2}-\mathrm{N}_{2}, \mathrm{~cm}^{2} / \mathrm{sec}$ |
| $D C$ | - | Diameter of char particle, cm |
| DTS | - | Increment in temperature, ${ }^{\circ} \mathrm{K}$ |
| EM | $\varepsilon_{\text {m }}$ | Emissivity of the char particle |
| ETS | - | Difference between assumed and calculated temperatures, ${ }^{\circ} \mathrm{K}$ |
| ETSMAX | - | Tolerance limit for temperature convergency, ${ }^{\circ} \mathrm{K}$ |
| MC | - | Atomic weight of carbon, gms/gatom |
| P | - | Pressure in the combustor, atm |
| PHI | ϕ | Mechanism factor for char combustion |
| Q | - | Heat of combustion of char, cals/gm char |
| RG | R_{g} | Gas constant, $82.06 \mathrm{~atm} . \mathrm{cm}^{3} / \mathrm{gmole} .^{\circ} \mathrm{K}$ |
| SIGM | σ | Stefan-Boltzman constant, cal/s.cm ${ }^{2} \cdot{ }^{\circ} K^{4}$ |
| T | T | Temperature in the bed, ${ }^{\circ} \mathrm{K}$ |
| TAV | T_{m} | Mean temperature in the boundary layer of the particle, ${ }^{\circ} \mathrm{K}$ |
| TP | T_{c} | Char particle temperature, ${ }^{\circ} \mathrm{K}$ |
| YO2 | - | Mole fraction oxygen |
| Z | p | Defined by Equation (V.16) |

| FORTRAN
 Symbol | Mathematical
 Symbol | Description |
| :---: | :---: | :---: |
| ETS | - | Difference between assumed and calculated temperatures, ${ }^{\circ} \mathrm{K}$ |
| ETSMAX | - | Tolerance limit for temperature convergency, ${ }^{\circ} \mathrm{K}$ |
| MC | M_{c} | Atomic weight of carbon, gms/gatom |
| P | - | Pressure in the combustor, "atm |
| PHI | ϕ | Mechanism factor for char combustion |
| Q | - | Heat of combustion of char, cals/gm char |
| RG | R_{g} | Gas constant, $82.06 \mathrm{~atm} . \mathrm{cm}^{3} / \mathrm{gmole} \cdot{ }^{\circ} \mathrm{K}$ |
| RHOCCH | $\rho_{c, c h}$. | Density of carbon in char, gms/cm ${ }^{3}$ |
| RKI | - | Size reduction constant for char (due to combustion), $1 / \mathrm{sec}$ |
| SIGM | σ | Stefan-Boltzman constant, cal/s.cm ${ }^{2} \cdot \mathrm{~K}^{4}$ |
| T | T | Temperature in the bed, ${ }^{\circ} \mathrm{K}$ |
| TAV | T_{m} | Mean temperature in the boundary layer layer of the char particle, ${ }^{\circ} \mathrm{K}$ |
| TB | t_{b} | Burning time of a char particle, sec |
| TP | T_{c} | Char particle temperature, ${ }^{\circ} \mathrm{K}$ |
| YO2 | - | MoIe fraction oxygen |
| Z | p | Defined by Equation (V.16) |
| | | BROUTINE CRRECT |
| DX | - | Increment in the variable, x |
| E | - | Difference between the assumed and calculated values of the variable, x |
| Emax | - | Tolexance limit for convergency |
| E1 | - | Value of E in the iteration, I |
| E2 | - | Value of E in the iteration, $\mathrm{I}+1$ |

| FORTRAN
 Symbo1 | Mathematical
 Symbol | Description |
| :---: | :---: | :---: |
| I | - | Iteration or step number |
| INDX | - | Indicator for convergency interval |
| X | - | Variable for which the assumed and calculated values should be equal |
| XI | - | Value of x in the iteration, I |
| X2 | - | Value of x in the iteration, $\mathrm{I}+1$ |
| | | SUBPROGRAM DESIGN |
| $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4$ | - | Alphanumeric characters |
| ABED | A_{t} | Cross sectional area of the combustor, cm^{2} |
| AHE ${ }^{\text { }}$ | ${ }^{\text {a }} \mathrm{HE}$ | Specific heat transfer area of the tubes, $\mathrm{cm}^{2} / \mathrm{cm}^{3}$ FBC volume |
| AND | n_{d} | Number of orifices in the distributor |
| ATB | - | Bed cross sectional area at height ZB above the distributor, cm^{2} |
| DBED | D_{t} | Diameter of the combustor, cm |
| DNZL | - | Diameter of orifice holes in the distributor, cm |
| DTUBE | ${ }^{\text {d }}$ o | Diameter of cooling tubes, cm |
| DVB | - | Volume of each compartment based on DZAV, cm^{3} |
| DVBEFF | - | Volume of each compartment excluding the tubes, cm^{3} |
| DZAV | - | Average compartment size used in design calculations, cm |
| FD | - | Fraction of solids withdrawn from the bed at each location |
| FFAD | - | Fraction of total additives fed at each location |

| FORTRAN
 Symbol | Mathematical Symbo 1 | Description |
| :---: | :---: | :---: |
| FFC | - | Fraction of total coal fed at each location |
| FSW | $\mathrm{f}_{\text {SW }}$ | Fraction of wake solids thrown into the freeboard |
| FW | f_{w} | Ratio of wake volume to the bubble volume including the wakes |
| IARR | - | Tubes arrangement code |
| MDIS | - | No. of solids withdrawal locations |
| MFEED | - | No. of solids feed locations |
| MTB | - | No. of locations along the combustor where the cross sectional areas are specified |
| MTHE | - | No. of locations of cooling tubes |
| NTC | - | Total number of compartments in the combustor using DZAV + 1 |
| PI | π | 3.14159265 |
| PH | P_{H} | Horizontal pitch distance between the tubes, cm |
| PV | P_{v} | Vertical pitch distance between the tubes, cm |
| ZB | - | Height above the distributor at which the cross sectional area is specified, cms |
| ZDIS | - | Locations of solids withdrawal ports, cms |
| ZF | - | Locations of solids feed ports, cms |
| ZHE | - | Locations of cooling tubes, cms |
| | | SUBPROGRAM ELUT |
| BB | - | Weight of bed material of x th size fraction, gms |

| FORTRAN
 Symbol | Mathematical
 CBED | Weight of char in the bed, gms |
| :--- | :--- | :--- |
| CBEDG | | |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| E | E_{x} | Elutriation rate constant, $\mathrm{gm} / \mathrm{sec}$ |
| EETC | \therefore | Tolerance limit for combustion efficiency convergency |
| EMF | $\varepsilon_{\mathrm{mf}}$ | Void fraction at minimum fluidization |
| ENTA | - | Entrainment rate of additives of x th size fraction in the freeboard, gm/sec |
| ENTC | - | Entrainment rate of char of x th size fraction in the freeboard, $\mathrm{gm} / \mathrm{sec}$ |
| ERR | - | Difference between assumed and calculated combustion efficiencies |
| ETCA | - | Assumed combustion efficiency |
| ETCC | - | Calculated combustion efficiency |
| EWB | - | Tolerance limit for bed height convergency |
| FCE | - | Weight fraction of char particles of x th size fraction entrained |
| FFI | a_{x} | Proportion of total abrasion fines in the x th size fraction |
| F0 | - | Solids entrainment rate at the bed surface of x th size fraction, gms/sec |
| FRA | b_{x} | Weight fraction of bed materials in the x th size fraction |
| FRACTA | - | Weight fraction of additives feed of x th size fraction |
| FRACTC | - | Weight fraction of coal feed of x th size fraction |
| FRAEL | - | Weight fraction of additives of x th size fraction elutriated from the combustor |
| FRAEN | - | Wei.ght fraction of additives of x th size fraction entrained in the freeboard |

| FORTRAN
 Symbol | Mathematiçal Symbol | Description |
| :---: | :---: | :---: |
| ERC | \therefore | Weight fraction of char particles of x th size fraction in the bed |
| ESC | - | Fraction of solids in the cloud region |
| FSW | $\mathrm{f}_{\text {SW }}$ | Fraction of wake solids thrown into the freeboard |
| FW | $\mathrm{f}_{\text {SW }}$ | Volume fraction of wake to bubble (including wakes). |
| GFLTOW | G | Gas flow rate, gms/sec |
| HB | h | Height above the bed surface, cms |
| HFB | - | Freeboard height, cm |
| HLF | - | Expanded bed height, cm |
| HLMF | - | Bed height at minimum fluidization, cm |
| MGAS | - | Molecular weight of gas, gms/gmole |
| MTB | - | No. of locations along the combustor where the cross sectional areas are specified |
| NDP | - | Number of size fractions |
| P1 | p_{1} | Proportion 'of' fines recycled to the bed from the primary cyclone |
| P2 | p_{2} | Proportion of fines recycled to the bed from the secondary cyclone |
| PAV | P | Average pressure of the FBC , atm |
| PFA | - | Gain of fines in the x th size fraction due to abrasion, gms/sec |
| Q1 | ${ }^{9} 1 \times$ | Collection efficiency of the primary cyclones for the x th size fraction |
| Q2 | $q_{2 x}$ | Collection efficiency of the secondary cyclones for the x th size fraction |
| R | - . | Entrainment rate of particles of size d_{X}, gms/séc |
| RÇHAR | ${ }^{\mathrm{R}} \mathrm{ch}$ | Char produced per unit gm of coal fed, $\mathrm{gm} / \mathrm{gm}$ |

| FORTRAN
 Symbo1 | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| RG | R_{g} | Gas constant, 82.06 atm. $\mathrm{cm}^{3} / \mathrm{gmole} \cdot{ }^{\circ} \mathrm{K}$ |
| RHOAD | - | Density of additives, $\mathrm{gms} / \mathrm{cm}^{3}$ |
| RHOBED | ρ_{b} | Density of bed materials, gms/cm ${ }^{3}$ |
| RHOCCH | $\rho_{c, \mathrm{ch}}$ | Density of carbon in char, gms $/ \mathrm{cm}^{3}$ |
| RHOCH | $\rho_{\text {ch }}$ | Density of char, gms $/ \mathrm{cm}^{3}$ |
| RHOGAS | ρ_{g} | Density of gas, gms/cm ${ }^{3}$ |
| RK | K | Attrition rate constant, $1 / \mathrm{cm}$ |
| RKI | - | Size reduction constant for char (due to combustion), $1 / \mathrm{sec}$ |
| RT | - | Residence time of solids in the freeboaxd, sec |
| TAV | - | Mean bed temperature, ${ }^{\circ} \mathrm{K}$ |
| TB | t_{b} | Burning time 'of a char particle, sec |
| TDH | TDH | Transport Disengaging Height, cm; if $\mathrm{TDH}>\mathrm{HFB}, \mathrm{TDH}=\mathrm{HFB}$ |
| TDHC | TDH | Transport Disengaging Height, cm |
| UMF | U_{mf} | Minimum fluidization velocity, $\mathrm{cm} / \mathrm{sec}$ |
| U0 | U_{0} | Superficial gas velocity at the bed surface, cm/sec |
| UTA | - | Terminal velocity of additive particles of size $\mathrm{d}_{\mathrm{x}}, \mathrm{cm} / \mathrm{sec}$ |
| UTC | - | Terminal velocity of char particles of size $d_{x}, \mathrm{~cm} / \mathrm{sec}$ |
| VISC | μ | Viscosity of gas, gm/cm.sec |
| VMF | - | Bed volume at minimum fluidization (excluding the internals), cm^{3} |
| W | W_{x} | Rate of transfer of particles from size fraction x to fraction $x+1$ by size reduction, gms/sec |

| FORTTR'AN
 Sïmboil. | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| WAD' | $W_{f, a}$ | Additives: feed rate, gms/sec |
| WB; | M_{b} | Weight of bed materials, gms |
| WBC. | - | Weight of bed materials calculated, gms. |
| WCOAL. | $W_{\text {fi, }}$ | Coasl ${ }^{\text {feeed }}$ rate, gms/sec |
| WidIS | W_{D} | Solids. withdrawal rate, gms/sec |
| WEA | - | Additives entrainment rate in the freeboard, gms/sec. |
| WEC | - | Char entrainment rate in the freeboard, gms/sec |
| WELUÅ | - | Solids (excluding char) elutriation rate, gms/sec |
| WF | $W_{f, x}$ | Solids feed rate of x th size fraction, gms/sec |
| WTF | - | Feed rate of (limestone + ash in coal) |
| XA | - | Ash content in coal, gm ash/gm coal |
| ẊAV | - | Weight fraction carbon in the bed (average), gm carbon/gm bed material. |
| YO2 | - | Mole fraction oxygen |
| ZB | - | Height above the distributor at which the cross sectional area is specified, cms |
| | | SUBPROGRAM FBC |
| AKC | k_{c} | Overall rate constant for char combustion, $\mathrm{cm} / \mathrm{sec}$ |
| AKCO2 | - | Overall rate constant for $\mathrm{C}-\mathrm{CO}_{2}$ reaction, $\mathrm{cm} / \mathrm{sec}$ |
| AKP | k^{3} | Defined by Equation (VI.32) |

| FORTRAN
 Symbol | Mathematical
 Symbol | Carbon monoxide burnt in each compart-
 ment, gmole/sec |
| :--- | :--- | :--- |
| COB | COVB | |

| FORTRAN
 Symbol | Mathematical SymboI | Description |
| :---: | :---: | :---: |
| T | T | Temperature, ${ }^{\circ} \mathrm{K}$ |
| TAYB | TB | Mean temperature in the boundary layex of the char particles in the freeboard, ${ }^{\circ} \mathrm{K}$ |
| X02 | $\cdot \mathrm{X}_{0_{2}}$ | Oxygen required for partial combustion of volatiles, gmole O_{2} gmole volatile |
| YCO | $\mathrm{Y}_{\text {C00 }}$ | Mole fraction CO |
| Y.COO | - | Mole fraction CO in the bottom compartment |
| YCO2 | \sim | Mole fraction CO_{2} in the bottom compartment |
| YH20 | $\mathrm{Y}_{\mathrm{H}_{2} \mathrm{O}}$ | Mole fraction $\mathrm{H}_{2} \mathrm{O}$ |
| Y Y | Y_{0} | Mole fraction oxygen |
| YOC | - | Mole fraction oxygen calculated |
| YOO | - | Mole fraction oxygen in the bottom compartment |
| YV | Y_{v} | Mole fraction volatiles |
| YV0 | - | Mole fraction volatiles in the bottom compartment |
| | | SUBPROGRAM GPB |
| A | - | Matrix coefficients |
| AA | - | Matrix coefficients |
| AKB | $\mathrm{k}_{\mathrm{c}, \mathrm{B}}$ | Overall rate constant for char combustion in bubble phase, $\mathrm{cm} / \mathrm{sec}$ |
| AKBE | K_{BE} | Gas exchange coefficient, $1 / \mathrm{sec}$ |
| AKCO? | - | Overall rate constant for $\mathrm{C}-\mathrm{CO}_{2}$ reaction, $\mathrm{cm} / \mathrm{sec}$ |
| AKE | $\mathrm{k}_{\mathrm{c}, \mathrm{E}}$ | Overall rate constant for char combustion in emulsion phase, $\mathrm{cm} / \mathrm{sec}$ |

| FORTRAN
 Symbol | Mathematical Symbo1 | Description |
| :---: | :---: | :---: |
| AKP | k | Defined by Equation (VI.24) |
| AMODF | a_{m} | Defined by Equation (VI.12) |
| B | - | Matrix coefficients |
| BB | - | Mtrix coefficients |
| COB | - | Carbon monoxide burnt in each compartment, gmole/sec |
| COV | - | CO released during devolatilization per mole of volatiles released, gmole CO/gmole volatiles |
| COVB | - | CO produced during volatiles combustion, gmole CO/ gmole/volatiles |
| C02V | - | CO_{2} released during devolatilization per mole of volatiles released, gmole CO_{2} /gmole volatiles |
| C02VB | - | CO_{2} produced during volatiles combustion, gmole CO_{2} /gmole volatiles |
| DVBB | - | Volume of each compartment, cm^{3} |
| DYE \vdots | - | Increment in oxygen concentration in emulsion phase, mole fraction |
| EMAX | - | Tolerance limit for oxygen concentration convergency |
| EMF | $\varepsilon_{m f}$ | Void fraction at minimum fluidization |
| EPB | ε_{B} | Bubble fraction |
| EPC | ε_{c} | Cloud fraction including bubble |
| FBM | $\mathrm{F}_{\text {BM }}$ | Molar flow rate of gas in the bubble phase, gmole/sec |
| FBM0 | - | Molar flow rate of gas in the bubble phase in the bottom compartment, gmole/sec |
| FEM | F_{EM} | Molar flow rate of gas in the emulsion phase, gmole/sec |
| FEM0 | - | Molar flow rate of gas in the emulsion phase in the bottom compartment, gmole/sec |

| FORTRAN Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| | | |
| GB | g_{B} | Volatiles burning rate in the bubble phase, gmole/sec |
| GE | g_{E} | Volatiles burning rate in the emulsion phase, gmole/sec |
| PAV. | P | Average pressure in the combustor, atm. |
| PHIE | ϕ_{E} | Mechanism factor in the emulsion phase |
| RG | R_{g} | Gas constant, $82.06 \mathrm{~atm} . \mathrm{cm}^{3} / \mathrm{gmole} .{ }^{\circ} \mathrm{K}$ |
| RVGAS | - | Volatiles released during devolatilization per unit gm of coal, gmole volatiles/gm coal |
| T | T | Temperature in the bed, ${ }^{\circ} \mathrm{K}$ |
| TAVB | T_{B} | Mean temperature in the boundary layer of the char particles in the bubble phase, ${ }^{\circ} \mathrm{K}$ |
| TAVE | T_{E} | Mean temperature in the boundary layer of the char particles in the emulsion phase, ${ }^{\circ} \mathrm{K}$ |
| VPROD | - | Volatiles released in each compartment, gmole/sec |
| X | X | Weight fraction carbon in the bed |
| X02 | $\mathrm{x}_{\mathrm{O}_{2}}$ | Oxygen required for partial combustion of volatiles, gmole O_{2} /gmole volatiles |
| X02C | $x_{0_{2}, c}$ | Oxygen required for complete combustion of volatiles, gmole $\mathrm{O}_{2} /$ gmole volatiles |
| YB | Y_{B} | Mole fraction oxygen in the bubble phase |
| YBO | - | Mole fraction oxygen in the bubble phase in the bottom compartment |
| YCOE | $Y_{E, C O}$ | Mole fraction CO in the emulsion phase |
| YCOEO | - | Mole fraction CO in the emulsion phase in the bottom compartment |
| YC02B | $\mathrm{Y}_{\mathrm{B}, \mathrm{CO}_{2}}$ | Mole fraction CO_{2} in the bubble phase |
| YCO2B0 | - | Mole fraction CO_{2} in the bubble phase in the bottom compartment |

| YCO2E | $Y_{E, C O}$ |
| :--- | :--- |
| YCOE0 | - |
| $Y E$ | Y_{E} |
| $Y E C$ | - |
| $Y E 0$ | - |
| $Y H 20$ | $Y_{H_{2} O}$ |
| $Y V E$ | $Y_{E, v}$ |
| $Y V E 0$ | - |

SUBPROGRAM GPHASE

| AKB | - | Reaction rate constant in bubble phase |
| :---: | :---: | :---: |
| AKBE | K_{BE} | Gas exchange coefficient, $1 / \mathrm{sec}$ |
| AKE | - | Reaction rate constant in emulsion phase |
| AM | a_{m} | Defined by Equation (VI.12) for NO_{x} reduction reaction; $=\left(1-\varepsilon_{m f}\right)$ for SO_{2} absorption reaction |
| DVBB | - | Volume of each compartment, cm^{3} |
| EPB | ε_{B} | Bubble fraction |
| EPC | ε_{c} | Cloud fraction including bubble |
| ETUBE | $\varepsilon_{\text {tube }}$ | Volume fraction of tubes in each compartment |
| FBM | F_{BM} | Molar flow rate of gas in the bubble phase, gmole/sec |
| FBMO | - | Molar flow rate of gas in the bubble phase in the bottom compartment, gmole/sec |
| FEM | F_{EM} | Molar flow rate of gas in the emulsion phase, gmole/sec |
| FEMO | - | Molar flow rate of gas in the emulsion phase in the bottom compartment, gmole/sec |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| GENB | - | SO_{2} or $\mathrm{NO}_{\text {r }}$ release rate in the bubble phase, gmole/sec |
| GENE | - | SO_{2} or NO release rate in the emulsion phase, gmole/sec |
| PAV | P | Average pressure in the combustor, atm |
| 黔 | R_{g} | Gaṣ constant, $82.06 \mathrm{~atm} . \mathrm{cm}^{3} / \mathrm{gmole} .{ }^{\circ} \mathrm{K}$ |
| T | T | Temperature in the bed, ${ }^{\circ} \mathrm{K}$ |
| TB | TB | Mean temperature in the boundary layer of the particles, ${ }^{\circ} \mathrm{K}$ |
| TE | T_{E} | Mean temperature in the boundary layer of the particles, ${ }^{\circ} \mathrm{K}$ |
| $Y \mathrm{YBC}$ | - | Gas concentration in the bubble phase in the bottom compartment, mole fraction |
| $\underset{Y}{Y 1}$ | - | Gas concentration in the bubble phase, mole fraction |
| YE0 | - | Gas concentration in the emulsion phase in the bottom compartment, mole fraction |
| YEI | - | Gas concentration in the emulsion phase, mole fṛaction |
| | | SUBPROGRAM HAREA |
| ATB | - | Bed cross sectional area at height ZB above the distributor, cm^{2} |
| ATI | - | Bed cross sectional area at height ZI above the distributor, cm^{2} |
| DTI | D_{t} | Diameter of the combustor at height ZI above the distributor, cm |
| MTB | - | Number of Iocations along the combustor where the cross sectional areas are specified |
| PI | π | 3.14159265 |
| RI | - | Radius of the combustor at height ZI above the distributor, cms |

| FORTRAN
 Symbol | Mathematical
 Symbol |
| :--- | :--- | :--- |
| ZI | |
| DBVEFF | |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| ${ }^{\text {B }} \times$ | - | Bubbld diameter (calculated), cm |
| DBMAX | $\ddot{\mathrm{D}}_{\overline{\mathrm{B} M}}$ | Fictitious maximum bubble diameter, cm |
| DB0 | D_{BO} | Bubble diameter at the distributor level, cm |
| | - | Increment in bubble size, "cm |
| \because DPSTVB | - | Surface volume mean particle diameter of additives in the bed, cm |
| DT ${ }^{\text {²}}$ | D_{t} | Diameter of the combustor, cm |
| - DTِAV̇ | - | Average diameter used in calculations for each compartment |
| \because PTUBE | d_{0} | $\begin{aligned} & \text { Diameter of cooling tubes (DESIGN input), } \\ & \mathrm{cm} \end{aligned}$ |
| DTUBEF | - | Diameter of cooling tubes in each compartment, em |
| DVBB | - | Volume of each compartment, cm^{3} |
| DVBBFF | - | ```Volume of each compartment (excluding the tubes), cm}\mp@subsup{}{}{3``` |
| EFFVVOL | - | VoIume of the bed (excluding the tubes), |
| EMAX | \cdots | Tolerance limit for bubble diameter convergency |
| EMF | $\varepsilon_{m f}$ | Void fraction at minimum fluidization |
| - ${ }^{\text {EPPP}}$ | ε_{B} | Bubble fraction |
| EPC | ε_{c} | Cloud fraction including bubble |
| - ETUBE | $\varepsilon_{\text {tube }}$ | Volume fraction of tubes in each compartment |
| FMO | $\mathrm{F}_{\text {MT }}$ | Total molar flow rate of gas in the combustor, gmole/sec |
| \because | g | Accelaration due to gravity, $\mathrm{cm} / \mathrm{sec}^{2}$ |

| FORTRAN
 Symbol | Mathematical Symbol | Description |
| :---: | :---: | :---: |
| H | - | Height above the distributor, cms |
| HAV | - | 'Average height of the compartment, cms |
| HB | h | Height above the bed surface, cm |
| HCR | - | Critical bed height above which there is a fixed bed section, cm |
| HFB | - | Freeboard height, cm |
| HLF | - | Expanded bed height, cm |
| IARR | - | Tubes arrangement code (DESIGN input) |
| IARRNG | - | Tubes arrangement code in each compartment |
| ICR | - | Indicator for critical bed height |
| IFBC | - | Indicator for fixed bed section |
| LAST | - | Indicator for the last compartment in the bed |
| M | - | Number of compartments in the bed |
| MGAS | - | Molecular weight of gas, gms/gmole |
| MT | - | Total number of compartments in FBC + 1 |
| MTHE | - | No. of locations of cooling tubes |
| M1 | - | $\mathrm{M}+1$ |
| PAV | P | Average pressure in the combustor, atms |
| PH | P_{H} | Horizontal pitch distance between the tubes (DESIGN input), cm |
| PHI | P_{H} | Horizontal pitch distance between the tubes in each compartment, cm |
| PV | P_{V} | Vertical pitch distance between the tubes (DESIGN input), cm |
| PVI | P_{V} | Vertical pitch distance between the tubes in each compartment, cm |

| 'FORTRAN
 Symbol | Mathematical Symbo 1 | Description |
| :---: | :---: | :---: |
| $\stackrel{R G *}{ }$ | R_{g} | Gas constant, $82.06 \mathrm{~atm} . \mathrm{cm}^{3} / \mathrm{gmole},{ }^{\circ} \mathrm{K}$ |
| 裕HOBED
 ": | ρ_{b} | Density of bed materials, $\mathrm{gm} / \mathrm{cm}^{3}$ |
| ${ }^{\circ} \mathrm{RHOGAS}$ | ρ_{g} | Density of gas, $\mathrm{gm} / \mathrm{cm}^{3}$ |
| SUM. | - | Height that would be occupied by solids alone in each compartment, cm |
| SUMEFF | - | Effective volume of bed (solids volume alone), cm^{3} |
| SuMv | - | Volume of bed, cm^{3} |
| :SOLVOL | - | Volume of solids in each compartment (including voids), cm^{3} |
| T | T | Temperature in the bed, ${ }^{\circ} \mathrm{K}$ |
| ,TETUBE | - | Total volume fraction of tubes in the bed |
| UB | U_{B} | Bubble velocity, $\mathrm{cm} / \mathrm{sec}$ |
| UBR | - | Bubble rising velocity; $\mathrm{cm} / \mathrm{sec}$ |
| . UBS | - | Bubble rising velocity under slugging conditions, $\mathrm{cm} / \mathrm{sec}$ |
| UMF | $\mathrm{Umf}^{\text {mf }}$ | Minimum fluidization velocity, $\mathrm{cm} / \mathrm{sec}$ |
| U0 | U_{0} | Superficial gas velocity, $\mathrm{cm} / \mathrm{sec}$ |
| VISC | μ | Viscosity of gas, gm/cm.sec |
| VMF' | - | Bed volume at minimum fluidization (excluding internals), cm^{3}. |
| X | X | Weight fraction carbon in the bed |
| YB | Y_{B} | Mole fraction oxygen in the emulsion phase |
| ZHE | - | Locations of cooling tubes, cm |
| | , | BPROGRAM VEL |
| - DPAR | d_{p} | Particle diameter, cm |

| FORTRAN
 Symbol | Mathematical
 Symbol | Description |
| :---: | :---: | :---: |
| G | g | Acceleration due to gravity, cms $/ \mathrm{sec}^{2}$ |
| REP | $\mathrm{R}_{\mathrm{e}, \mathrm{p}}$ | Particle Reynolds number |
| RHOGAS | ρ_{g} | Density of gas, $\mathrm{gm} / \mathrm{cm}^{3}$ |
| RHOS | ρ_{s} | Density of solids, $\mathrm{gm} / \mathrm{cm}^{3}$ |
| UM | U_{mf} | Minimum fluidization velocity, $\mathrm{cm} / \mathrm{sec}$ |
| UT ${ }^{\text {- }}$ | U_{t} | Terminal velocity of the particle, cms/sec |
| VISC | μ | Viscosity of gas, gm/cm.sec |
| | | SUBPROGRAM VOLUME |
| DVBEFF | - | Volume of each compartment excluding the tubes, cm^{3} |
| DZAV | - | Average compartment size used in design calculations, cm |
| VOLUME | - | Volume of bed (excluding tubes) at any height $\mathrm{ZZ}, \mathrm{cm}^{3}$ |
| ZZ | - | Height above the distributor, cms |

[^0]: *For sale by the Natıonal Technical Information Service. Springiteld. Virginia 22161

