NASA CR-159529

SIMULATION OF FLUIDIZED BED COAL COMBUSTORS

by Renga Rajan , R. Krishnan, and C. Y. Wen

West Virginia University Morgantown, West Virginia 26506

(NASA-CR-159529) SIMULATION OF FLUIDIZED N79-20487 BED COAL COMBUSTORS Final Report (West Virginia Univ.) 215 p HC A10/MF A01 CSCL 10B Unclas G3/44 17029

NATIONAL TECHNICAL	1
U.S DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161	ł

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, Ohio 44135

February 1979

۰.

Grant NSG-3134

1.	Report No NASA CR-159529	2 Government Access	sion No	'3 Recipient's Catalog	No
4	Title and Subtitle			5 Report Date	
	SIMULATION OF FLUIDIZED I		PTISTOPS	February 197	9
	SIMOLATION OF FLODINGS		6 Performing Organiza	ation Code	
	and the second s	······		8 Performing Organiza	ation Report No
К	enga Rajan , R. Krishnan, s	and C. Y. Wen			
9	Performing Organization Name and Address		· · · · · · · · · · · · · · · · · · ·	10, Work Unit No.	
,	West Virginia University				
	Morgantown, West Virginia 26	506		11. Contract or Grant	No
	Morganown, west virginia 20			NSG-3134	
12	Sponsoring Agency Name and Address		·	13 Type of Report an	
1,82		A ductus atus ti au		Contractor R	eport
	National Aeronautics and Space Washington, D.C. 20546	Administration		14. Sponsoring Agency	Code
16.	NASA Lewis Research Center,				
	A comprehensive model for the			·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	
	taking into account (i) devolatil (ii) kinetics of char combustion of NO_x by char; (v) attrition and (vii) freeboard reactions; (viii) able of simulating combustion of particle size distribution in the centration profiles along the conserved data is good.	; SO ₂ absorption d entrainment of heat transfer be efficiency, char bed, bed tempe	n by limestone; (iv) f particles; (vi) hyd etween bed and cool and limestone elutr rature profile, O ₂ ,	release of NO_x rodynamics of gr ing tubes. The r iation and the co CO, CO ₂ , SO ₂ ,	and reduction as and solids; model is cap- prresponding and NO _x con-
17	(ii) kinetics of char combustion of NO_X by char; (v) attrition at (vii) freeboard reactions; (viii) able of simulating combustion of particle size distribution in the centration profiles along the co	; SO ₂ absorption d entrainment of heat transfer be efficiency, char bed, bed tempe	n by limestone; (iv) f particles; (vi) hyd etween bed and cool and limestone elutr rature profile, O ₂ ,	release of NO _x rodynamics of gr ing tubes. The r iation and the co CO, CO ₂ , SO ₂ , computed results	and reduction as and solids; model is cap- prresponding and NO _x con-
17	(ii) kinetics of char combustion of NO _X by char; (v) attrition and (vii) freeboard reactions; (viii) able of simulating combustion of particle size distribution in the centration profiles along the co served data is good.	; SO ₂ absorption d entrainment of heat transfer be efficiency, char bed, bed tempe	 h by limestone; (iv) f particles; (vi) hyd etween bed and cool and limestone effect rature profile, O₂, ement between the constraint between the constraint of the second seco	release of NO _x rodynamics of gr ing tubes. The r iation and the co CO, CO ₂ , SO ₂ , computed results	and reduction as and solids; model is cap- prresponding and NO _x con-
	 (ii) kinetics of char combustion of NO_X by char; (v) attrition and (vii) freeboard reactions; (viii) able of simulating combustion of particle size distribution in the centration profiles along the conserved data is good. 	; SO ₂ absorption d entrainment of heat transfer be efficiency, char bed, bed tempe	 h by limestone; (iv) f particles; (vi) hyd etween bed and cool and limestone effect rature profile, O₂, ement between the constraint between the constraint of the second seco	release of NO _x rodynamics of gr ing tubes. The r iation and the co CO, CO ₂ , SO ₂ , computed results	and reduction as and solids; model is cap- prresponding and NO _x con- s and the ob-
	(ii) kinetics of char combustion of NO _X by char; (v) attrition ar (vii) freeboard reactions; (viii) able of simulating combustion of particle size distribution in the centration profiles along the co served data is good. Key Words (Suggested by Author(s))	20 Security Classif (c	n by limestone; (iv) f particles; (vi) hyd etween bed and cool and limestone effet rature profile, O ₂ , ement between the o structure of the structure unclassified - u STAR Category	release of NO _x rodynamics of gr ing tubes. The r iation and the co CO, CO ₂ , SO ₂ , computed results	and reduction as and solids; model is cap- prresponding and NO _x con-

* For sale by the National Technical Information Service, Springfield, Virginia 22161

.

FORTRAN Symbol	Mathematical Symbol	Description
G	g	Acceleration due to gravity, cms/sec ²
REP	R _{e,p}	Particle Reynolds number
RHOGAS	ρ _g	Density of gas, gm/cm ³
RHOS	ρ _s	Density of solids, gm/cm ³
UM	U _{mf}	Minimum fluidization velocity, cm/sec
UΤ	U _t	Terminal velocity of the particle, cms/sec
VISC	μ	Viscosity of gas, gm/cm.sec
	<u>su</u>	BPROGRAM VOLUME
DVBEFF	-	Volume of each compartment excluding the tubes, cm ³
DZAV	-	Average compartment size used in design calculations, cm
VOLUME	- /	Volume of bed (excluding tubes) at any height ZZ, cm ³
ZZ	- /	Height above the distributor, cms

	/	
ſ		
		-

.

•

TABLE OF CONTENTS

	•	Page
LIST OF TAB	LES	ν
LIST OF FIG	URES	vi
NOMENCLATUR	E	viii
I.	INTRODUCTION	1
II.	LITERATURE REVIEW	3
III.	OBJECTIVES OF PRESENT WORK	10
IV.	MODEL ASSUMPTIONS	12
v.	MODEL BACKGROUND	13
	 DEVOLATILIZATION AND COMBUSTION OF CHAR SULFUR DIOXIDE - LIMESTONE REACTION NO_X - CHAR REACTION ATTRITION AND ENTRAINMENT OF CHAR AND LIMESTONE BUBBLE HYDRODYNAMICS SOLIDS MIXING HEAT TRANSFER FREEBOARD REACTIONS 	13 18 19 21 23 25 26 26
VI.	MODEL DESCRIPTION	31
	 ELUTRIATION CALCULATIONS MATERIAL AND ENERGY BALANCES 	31 33
VII.	RESULTS AND DISCUSSION	51
VIII.	SENSITIVITY OF THE MODEL PARAMETERS	70
IX.	CONCLUSIONS	78
REFERENCES		80
APPENDICES	• • •	
I.	ELUTRIATION PROGRAM	83
II.	INPUT TO ELUTRIATION PROGRAM	97
III.	OUTPUT OF ELUTRIATION PROGRAM	98

iii

		Páge
IV.	COMBUSTION PROGRAM	101
ν.	INPUT TO COMBUSTION PROGRAM	132
VI.	OUTPUT OF COMBUSTION PROGRAM	133
ΫIÍ.	MANUAL FOR THE COMPUTER PROGRAMS	136
VIÌI.	NOMENCLATURE FOR THE COMPUTER PROGRAMS	155

.

. LIST OF TABLES

•

<u>Table No</u> .	, <i>.</i>	Page
1.	Classification of FBC Models	9
2.	Correlations Used in Simulation	45
	Parameters in the Model	46
4.	Dimensions of FBC Examined	52

LIST OF FIGURES

Fig. No.		Page
1.	Schematic Illustration of the FBC	14
2.	Rate Controlling Regimes in FBC	17
3.	Limestone Reactivity Profiles	20
4.	Schematic Illustration of the Gas Phase Model	24
5.	Two Modes of Solids Mixing	27
б.	Schematic Illustration of the Solid Phase Model	28
7.	Logic Diagram for the Computation of Limestone Entrainment	47
8.	Logic Diagram for the Computation of Char Entrainment	48.
9.	Logic Diagram for Combustion Calculations	49 .
10.	Size Distributions of the Particles in the FBC	53
11.	Simulation of Axial Bed Temperature Profile	54
12,	Temperature and Carbon Concentration Profiles in the Bed	56
13.	Oxygen Concentration Profile in the Bed	57
14.	, CO, CO ₂ & Volatiles Concentration Profiles in the Bed	59
15.	Effect of Ca/S Ratio on SO ₂ Retention	61
16.	Effect of Temperature on SO2 Retention	62
17.	Effect of Fluidizing Velocity on SO2 Retention	64
18.	SO ₂ Concentration Profile in the Combustor	65
19.	Effect of Temperature on NO Emission	.67
20.	NO and Carbon Concentration Profiles in the Bed	68
21.	Effect of Solids Mixing on the Bed Temperature Profile	71

LIST OF FIGURES (CONT'D)

<u>Fig. No</u>	<u>-</u> .	Page
22.	Effect of Solids Entrainment on the Temperature Profile	73
23,	Effect of Bed to Tube Heat Transfer Coefficient on the Bed Temperature	74
24.	Effect of Bubble (or Compartment Size) on the Bed Temperature Profile	76
25.	Effect of Location of Cooling Tubes on the Bed Temperature Profile	77 .
26.	Illustration for Regula Falsi Method	143
27.	Arrangement of Cooling Tubes	145

NOMENCLATURE

A- •	Defined by equation $(V, 2)$
A _t -	Cross sectional area of the bed, cm ²
a. B,NO	Defined by equation (VI.51)
^a B,SO ₂	Defined by equation (VI.49)
a _{E,NO}	Defined by equation (VI.47)
^a E,SO ₂	Defined by equation (VI.45)
a _{HE}	Specific heat transfer area of the tubes, cm ² /cm ³ FBC volume
^a HEW	Specific heat transfer area of the walls, cm ² /cm ³ FBC volume
^a NO	Defined by equation (VI.55)
^a so ₂	Defined by equation (VI.53)
a m	Defined by equation (VI.12)
a _x	Proportion of total abrasion fines in the xth size fraction
a ₁	Defined by equation (VI.9)
a ₂	Defined by equation (VI.15)
^a 3	Defined by equation (VI.25)
^a 4	Defined by equation (VI.11)
a ^t ₂	Defined by equation (VI.33)
a'4	Defined by equation (VI.20)
В	Defined by equation (V.3)
^b x	Weight fraction, of bed material in the xth size fraction
C _{cf}	Heat capacity of coal feed, cals/gm.°C
с _{со2}	Concentration of carbon dioxide, gmole/cm ³
	·

C _{NO}	•	Concentration of nitric oxide, gmole/cm ³
с _s Г		Heat capacity of solids, cals/gm. °C
$C_{\texttt{Sf}}$		Heat capacity of feed additives, cals/gm.°C
с ₈₀₂		Concentration of sulfur dioxide, gmole/cm ³
C _{ch}	•	Carbon content in char, gm carbon/gm char
C _{gm} .		Molar heat capacity of gas at constant pressure, cals/gmole °C
CH ₄		Wt. fraction CH ₄ in the volatiles
CO		Wt. fraction CO in the volatiles
C0 [,] 2		Wt. fraction CO ₂ in the volatiles
D		Molecular diffusivity for $0_2 - N_2$, cm ² /sec
D _B ,		Bubble diameter, cm
D _{BO}	•	Bubble diameter at the distributor level, cm
D BM		Fictitious maximum bubble diameter, cm
D _t		Diameter of the FBC as a function of height above the distributor, cm
d _c	•	Diameter of char particle in the bed, cm
d _{ce}		Diameter of char particle entrained in the freeboard, cm
dl		Diameter of limestone particle in the bed, cm
d _{le} .	, , ,	Diameter of limestone particle entrained in the freeboard, cm
d _o ,		Diameter of cooling tubes, cm
d p		Particle diameter, cm
d _x		Mean diameter of the particles of xth size fraction, cm
Ex		Elutriation rate constant, gm/sec
£		Dispersion coefficient in the freeboard, 1/sec
ВМ	-	Molar flow rate of gas in the bubble phase, gmole/sec
₽ _{EM}		Molar flow rate of gas in the emulsion phase, gmole/sec
MI		Total molar flow rate of gas in the combustor, gmole/sec
F _{c)}		Solids entrainment rate at the bed surface, gms/sec
		·

- -

ix

fl	Fractional conversion of limestone
fsw	Fraction of wake solids thrown into the freeboard
ťw	Solids mixing parameter, ratio of wake volume to the bubble volume including the wakes
G	Gas flow rate, gms/sec
g	Acceleration due to gravity, cms/sec ²
g _B	Volatiles burning rate in the bubble phase, gmole/sec
^g co	Carbon monoxide burning rate, gmole/sec
g _E	Volatiles burning rate in the emulsion phase, gmole/sec
н ₂	Wt. fraction hydrogen in the volatiles
н ₂ 0	Wt. fraction H ₂ O in the volatiles
h	Height above the bed surface, cm
К	Attrition rate constant, 1/cm
K _{BE}	Cas exchange coefficient, 1/sec
k	Defined by Equation (VI.24)
^k b, NO	NO reduction rate constant in the bubble phase, cm/sec
^k CO ₂	C-CO ₂ chemical reaction rate constant, cm/sec
k _{E,NO}	NO reduction rate constant in the emulsion phase, cm/sec
k _{NO}	NO reduction rate constant, cm/sec
k _c	Overall rate constant for char combustion, cm/sec
^k c,B ·	Overall rate constant for char combustion in bubble phase, cm/sec
^k c,E	Overall rate constant for char combustion in emulsion phase, cm/sec
k _{cf} ;	Gas film diffusion rate constant, gm/cm ² -sec.atm
^k cR	Chemical reaction rate constant for char combustion, gm/cm ² . sec.atm
k _{v1}	Overall volume reaction rate constant for limestone-SO ₂ reaction, 1/sec
k _x	Abrasion rate constant for the xth size fraction, 1/sec

.

- k Defined by Equation (VI.32)
- k v1 Chemical reaction rate constant for limestone-SO₂ reaction, 1/sec
- M Weight of particles remaining in the bed after the size reduction from the original size to d_x
- M_b Weight of bed material, gms
- M Atomic weight of carbon, gms/gm atom
- M_{x} Weight of bed material in the xth size fraction
- N_A Number of limestone particles in the ith compartment in the freeboard
- N_{Pe} Peclet number, defined by Equation (V.43)
- N_{De} Reynolds number, defined by Equation (V.42)
- N_{Sc} Schmidt number, defined by Equation (V.44)
- N_c Number of char particles in the ith compartment in the freeboard
- N_d Number of orifices in the distributor
- P Average pressure of the FBC, atm
- $P_{_{\rm H}}$ Horizontal pitch distance between the tubes, cms
- P_v Vertical pitch distance between the tubes, cms
- p Defined by Equation (V.16)
- Partial pressure of oxygen, atm
- p₁ Proportion of fines recycled to the bed from the primary cyclone
- Proportion of fines recycled to the bed from the secondary cyclone
- q_{cal} Heat of calcination of limestone, cals/gm
- q_{ch} Heat of combustion of char, cals/gm
- -v Heat of combustion of volatiles (complete burning), cals/gmole

- q_{1x} Collection efficiency of the primary cyclones for the xth size fraction
- Q_{2x} Collection efficiency of the secondary cyclones for the xth size fraction

R Gas constant, 1.987 cals/gmolé °K

- RB,NO,c NO release rate in the bubble phase due to char combustion, gmole/sec
- ^RB,NO,V NO release rate in the bubble phase due to volatiles combustion, gmole/sec.
- ^RB,SO₂,c SO₂ release rate in the bubble phase due to char combustion, gmole/sec
- R_{B,S02},V S02 release rate in the bubble phase due to volatiles combustion, gmole/sec
- R_{CO} CO released during devolatilization, gmole/sec
- R_{CO}, CO₂ released during devolatilization, gmole/sec
- RE,NO,c NO release rate in the emulsion phase due to char combustion, gmole/sec
- RE,NO,V NO release rate in the emulsion phase due to volatiles combustion, gmole/sec
- ^RE,SO₂,c SO₂ release rate in the emulsion phase due to char combustion, gmole/sec
- R_{E,S02},V S02 release rate in the emulsion phase due to volatiles combustion, gmole/sec

R
e,pParticle Reynolds number, defined by equations (A.VII.22-24)R
NONO release rate, gmole/sec

R_{S02} S0₂ release rate, gmole/sec

R_a Attrition rate, gms/sec

R Char produced per unit gm of coal fed, gm/gm

R_v Volatiles released, gmole/sec

R_g Gas constant, 82.06 atm.cm³/gmole °K

 r_{CO} Rate of combustion of CO, gmole/cm³ sec

r Char combustion rate in ith compartment, gms/sec

rc [*]	Char combustion rate, gmole/sec.particle
S g	Effective specific surface area of limestone, ${ m cm}^2/{ m gm}$
Т	Temperature in the bed, °K
т _в	Mean temperature in the boundary layer of the char particle in the bubble phase, °K; also in the freeboard, °K
TDH	Transport Disengaging Height, cms
т _Е	Mean temperature in the boundary layer of the char particle in the emulsion phase, °K
Tar	Wt. fraction tar in the volatiles
т _с	Char particle temperature, °K
T _m	Mean temperature in the boundary layer of the char particle, °K
$^{\mathrm{T}}$ sf	Solids feed temperature, °K
T _w	Cooling water temperature, °K
T wall	Average FBC wall temperature, °K
t	Temperature, °C
t _b	Burning time of a char particle, sec
U	Bed to tube heat transfer coefficient, cals/sec.cm ² °C
U _B	Bubble velocity, cms/sec
U _{mf}	Minimum fluidization velocity, cms/sec
υ _o	Superficial gas velocity or fluidization velocity, cms/sec
υ _o	Average superficial gas velocity in the freeboard, cms/sec
υ _t	Terminal velocity of the particle, cms/sec .
U _w	Bed to wall heat transfer coefficient, cals/sec.cm ² °C
v	Volatiles yield during devolatilization, % of coal daf
VM	Proximate volatile matter in the coal, % of coal daf
v _{co}	CO produced due to volatiles burning, gmole CO/gmole volatile
CU	

v _{co2}	CO, produced due to vo latil es burning, gmole CO ₂ /gmole volatile
v _N	Volatile nitrogen in coal, gm/gm, dry basis (d.b.)
v _s	Volatile sulfur in coal, gm/gm, dry basis (d.b.)
W _D	Solids withdrawal rate, gms/sec
Went	Solids entrainment rate, gms/sec
W _{f,a}	Additives feed rate, gms/sec
W _{f,c}	Coal feed rate, gms/sec
₩ _{f,x}	Solids feed rate of xth size fraction, gms/sec
W mix	Solids mixing rate, gms/sec
Wnet	Net flow rate of solids, gms/sec
W _x	Rate of transfer of particles from size fraction x to fraction x + 1 by size reduction, gms/sec
Х	Weight fraction carbon in the bed
x _{o2}	Oxygen required for partial combustion of volatiles, gmole 0 ₂ /gmole volatile.
^X 0 ₂ ,c	Oxygen required for complete combustion of volatiles, gmole 0_2 /mole volatile
х _{vм}	Proximate volatile matter content of coal, gms/gm coal (daf)
Ч _В	Mole fraction 0_2 in the bubble phase
Y _{B,CO2}	Mole fraction CO_2 in the bubble phase
Y _{B,NO}	Mole fraction NO in the bubble phase
Y _{B,SO2}	Mole fraction SO_2 in the bubble phase
Y _{CO}	Mole fraction CO
Y _{CO2}	Mole fraction CO ₂
Υ _E	Mole fraction 0_2 in the emulsion phase
Υ _{E,CO}	Mole fraction CO in the emulsion phase
^Y E,CO ₂	Mole fraction CO_2 in the emulsion phase

.

•

Υ _E ,NO	Mole fraction NO in the emulsion phase
Υ _E ,SO ₂	Mole fraction SO_2 in the emulsion phase
Y _{E,v}	Mole fraction volatiles in the emulsion phase
^Ү Н ₂ 0	Mole fraction H ₂ 0
Υ ₀	Mole fraction 0 ₂
YNO	Mole fraction NO
Y _{SO2}	Mole fraction SO_2
Y _v	Mole fraction volatiles
Z	Height above the distributor, cms; ΔZ compartment size, cms
Greek Symbo	<u>ls</u>
ε B	Bubble fraction
е с	Cloud fraction including bubble
ຣ m	Emissivity of the char particle
ε mf	Void fraction at minimum fluidization
ε tube	Volume fraction of tubes
Θ	Time, sec
λ	Thermal conductivity of the gas. cals/sec.cm°C

Ŷ	
ຣ m	Emissivity of the char particle
ε mf	Void fraction at minimum fluidization
ε tube	Volume fraction of tubes
Θ	Time, sec
λ	Thermal conductivity of the gas, cals/sec.cm°C
λ_{l}	Reactivity of limestone
μ	Viscosity of gas, gm/cm.sec
Π	3.14159265
р Ъ	Density of the bed materials, gms/cm^3
ρ c,ch	Density of carbon in char, gms/cm ³
ρ ch	Density of char, gms/cm
ρ g	Density of gas, gms/cm ³
ρ s	Density of solids, gms/cm ³
σ	Stefan-Boltzman constant, 1.36 x 10^{-12} , cals/sec.cm ² .°K ⁴
φ	Mechanism factor of char combustion

•

φ_B Mechanism factor in the freeboard

 ϕ_E Mechanism factor in the emilsion phase

Subscript

x	хth	sizę	fracțion
į	ith	compa	arțmenț

.

Abbreviation

.

	d,b,	dry	basis
--	------	-----	--------------

daf dry ash free basis

I. INTRODUCTION

Among the various ways of direct burning of coal, fluidized bed combustion appears to be the most attractive, both from an economic and environmental standpoint. By carrying out combustion in a fluidized bed combustor (FBC) operating at relatively low temperature (750°C-950°C; 1382°F-1742°F), both SO₂ and NO_x emissions can be maintained at environmentally acceptable levels. In addition, the FBC is well suited for burning low grade, high sulfur coal.

Fluidized bed combustion involves the burning of coal particles in a bed containing limestone/dolomite additives and coal ash. Under normal operating conditions the coal particles constitute less than 4 percent of the total solids in the bed. The limestone/dolomite is added to absorb the sulfur dioxide released from coal during combustion. Sulfur dioxide reacts with calcined limestone/dolomite according to the following reaction:

 $Ca0 + SO_2 + 1/2 O_2 \longrightarrow CaSO_4$

 NO_{X} emission is kept low due to low combustion temperature and by the NO_{X} reduction reaction with carbon present in the fluidized bed. The low temperature operation of the fluidized bed offers little, if any, clinker formation of the ash. The heat of combustion is removed by steam coils immersed in the bed. The steam coils also control the temperature of the bed with minimum hinderance to the solids mixing and circulation in the bed. The heat exchange surfaces [250 to 420 W/m² °K (45 to 75 Btu/hr ft²°F)] and the large heat generation rates

[2.0 to 5.0 MW/m³ (0.193 to 0.483 $\times 10^{6}$ Btu/hr ft³)] in FBC result in a smaller boiler volume for a given duty than the conventional pulyerized coal burning boilers.

Pressurized fluidized bed combustion is also being investigated because of its potential for power generation in gas turbines combined with conventional steam turbines. In pressurized FBC, the combustion is carried out at elevated pressures, generally in the range of 600 to 1000 kPa (6 to 10 atm abs.). The hot, high pressure flue gas is cleaned to remove the particulates and expanded through a jas turbine to generate additional electricity.

Although the FBC offers several advantages, it is not free from shortcomings. Problem areas include erosion of immersed heat-transfer coils, continuous feeding of solids into the bed, agglomeration of solids, formation of stagnant zones on the distributor plate, carryover of unburnt char particles in the flue gas, high particulate emissions, and in the case of pressurized fluid bed combustor (PFBC), the difficulty in hot gas clean-up. The extent of these problems has to be evaluated and resolved before any targe-scale commercialization is ventured.

II. LITERATURE REVIEW

A considerable amount of investigation on the performance of fluidized bed combustion system has been under way particularly in the U.S. and U.K. (Argonne National Laboratory (ANL), Combustion Power Company (CPC), Pope, Evans and Robbins (PER), Westinghouse Research Laboratories (WRL), Exxon Research and Engineering Company (ER&E), Morgantown Energy Technology Center (METC), National Coal Board (NCB), British Coal Utilization Research Association (BCURA). Most of the experimental tests have concentrated on feasibility evaluation of FBC. As a result of these studies, a considerable amount of pilot plant data related to FBC performance has become available in recent years.

A systematic, theoretical examination of these data has been initiated. only recently, and attempts are presently being made to develop theoretical models for predicting the performance of FBC under various operating conditions. A review of the modeling efforts in fluidized bed combustion has been presented by Caretto (1977). The fundamental and engineering aspects of fluidized bed coal combustion have been discussed by Beer (1977). Almost all of the FBC models proposed to date are based on the two phase theory of fluidization (Davidson and Harrison (1963)). According to this theory, the fluidized bed is assumed to consist of two phase, viz., a continuous, dense particulate phase (emulsion phase) and a discontinuous, lean gas phase (bubble phase) with exchange of gas between the bubble phase and the emulsion phase. The gas flow rate through the emulsion phase is assumed to be that corresponding to minimum fluidization, and that in excess of the minimum fluidization velocity goes through the bubble phase in the form of bubbles. However, as pointed out by Horio and Wen (1977), Rowe (1978), Catipovic et al. (1978), this assumption may be an

oversimplification for particles smaller than 50 μ m and larger than 2000 μ m. Experiments with fine powders (d_p < 50 μ m) conducted by Rowe (1978) show that the dense phase voidage changes with gas velocity, and that as much as 30 percent of the gas flow may occur interstitially. Catipovic, et al. (1978) have pointed out qualitatively the difference in the fluidization of larger particles.

Avedesian and Davidson (1973) developed a combustion model based on the two phase theory. Their objective was to study the mechanism of combustion of carbon particles in a fluidized bed of ash particles at 1173°K. The combustion was assumed to be controlled by two diffusional resistances, namely:

- (i) Interphase transfer of oxygen from bubbles of air to the surrounding ash particles.
- (ii) Diffusion of oxygen through the ash phase towards each burning carbon particle.

Campbell and Davidson (1975) later modified the Avedesian and Davidson model to include the presence of carbon dioxide in the particulate phase and applied the model to predict the carbon particle size distribution in a continuously operated fluidized bed combustor.

Baron, et al. (1977) proposed a model for the FBC based on the two phase theory for predicting the combustion efficiency and carbon concentration in the bed. In their model, they took into account the carbon loss due to elutriation and attrition of bed particles, employing the correlations developed by Merrick and Highley (1974). Borghi, et al. (1977) have proposed a mathematical model for the combustion of coal particles in fluidized bed which takes into account the evolution and burning of volatiles in addition to the combustion of residual char. Their conclusions indicate that (i) the devolatilization times for coal particles are commensurable with the solids mixing time and (ii) the homogeneous release of volatiles in the bed, as opposed to instantaneous devolatilization is close to reality. Gibbs (1975) derived a mechanistic model for the combustion of coal in a fluidized bed capable of predicting the combustion efficiency, carbon hold-up and spatial distribution of oxygen in the bed. The carbon loss due to elutriation, attrition and splashing of coal from bursting of bubbles on the bed surface was taken into account in the model formulation. The burning rate of coal was assumed to be diffusion controlled. The carbon loss predicted by the model was strongly dependent on the mean bubble diameter which is an adjustable parameter.

Gordon and Amundson (1976) examined the influence of several operating variables on the steady state performance of a FBC. Based on the model calculations, they found that multiple steady state solutions exist in the typical range of operating variables. In particular, it was noted that one of the key factors in determining the state of the bed, as well as the multiplicity of the system was the gas interchange coefficient between the bubble phase and emulsion phase.

Horio and Wen (1978) have proposed a model based on the population balance technique to calculate the char elutriation loss, particle size distribution in the bed and size distribution of the elutriated char.

In the FBC models described so far, they have at least one of the following deficiencies:

5

- (1) The bubble diameter was taken as a constant and an adjustable parameter. In reality, bubbles coalesce as they ascend through the bed. The bubble diameter changes with the height above the distributor. Bubble size is also affected by the immersed cooling coils. (Baron, et al. 1977; Gibbs, 1975).
- (2) Devolatilization of coal is not considered. (Horio and Wen, 1978; Avedesian and Davidson, 1973; Campbell and Davidson, 1975; Baron, et al. 1977; Gibbs, 1975; Gordon and Amundson, 1976).
- (3) The mechanism of carbon combustion was assumed to be diffusion controlled. This is true only for large particles at high temperatures. (Avedesian and Davidson, 1973; Campbell and Davidson, 1975; Borghi, et al. 1977; Baron, et al. 1977).
- (4) Solids mixing in the emulsion phase was assumed to be uniform. Hence the bed was assumed to be under isothermal conditions. This is not true because the experimental data show a non-uniform temperature profile across the bed. (Avedesian and Davidson, 1973; Borghi, et al. 1977; Baron, et al. 1977; Horio and Wen, 1977).

Bethell, et al. (1973) presented a model for sulfur dioxide retention by limestone in a fluidized bed combustor. Horio and Wen (1975) have also formulated a model for the removal of sulfur dioxide by limestone in a FBC. In their model, the hydrodynamics of the fluidizing gas is based on the bubble assemblage model developed by Kato and Wen (1975). Chen and Saxena (1977) used a three phase bubbling bed model (bubble phase, cloud-wake phase and emulsion phase) for predicting the sulfur retention efficiency in a FBC. The model predictions were compared with some experimental data. However, a limitation of the model is that it assumes isothermal conditions in the bed. The models described above for SO₂ absorption do not take into account the char and volatiles combustion in the bed. (Bethell, et al. 1973; Horio and Wen, 1975; Chen and Saxena, 1977).

Recently, Horio, et al. (1977) presented a model for fluidized bed coal combustion that can estimate the performance of a FBC under fuel rich operation and also predict the NO_x emissions from the combustor. This model does not deal with the NO_x release from volatiles and char during the combustion. Char particle temperature is assumed as a constant, 100°C above the bed temperature. Char particle temperature is actually dependent on the oxygen concentration and is different in the bubble and emulsion phases. Also, the char temperature affects the carbon concentration in the bed which in turn affects the NO_x reduction rate. Perira and Beer (1978) have proposed a mechanism for the formation of NO (nitric oxide) from fuel nitrogen and the subsequent reduction of NO by volatiles. However, they have not dealt with the reduction of NO by char subsequent to the completion of devolatilization in the bed which has been established by other workers (Oguma, et al., 1977).

A general methematical model for FBC has been developed (Rengarsjan. et al. 1977, Rajan, et al. 1978) employing the modified version of the bubble assemblage model (Kato and Wer, 1969, Mori and Wen, 1975). The model includes the devolatilization of coal, char combustion and SO_2 absorption. Predictions of the combustion efficiency, axial temperature profile and sulfur retention efficiency in the bed were compared with experimental data. A deficiency of the model is that the elutriation of

7

char and limestone is not considered. Experimental values are used for elutriation losses in the calculation.

All of the models proposed so far do not take into account the char combustion, SO_2 absorption and NO_x reduction in the freeboard, which may be substantial. A classification of the fluidized bed combustion models discussed above is presented in Table I.

TABLE 1. CLASSIFICATION OF FBC MODELS

.

Gas Flow Pattern

Model Description	Investigators	Bubble Phase	Emulsion Phase	Solids mixing in the bed	Remarks
Two phase bubbling bed model	Avedesian and Davidson (1973) Gibbs (1975) Campbell and Davidson (1975) Gordon and Amundson (1976) Baron, et al. (1977)	a)Plug Flow b)Plug Flow c)Complete Mixing	Plug Flow Complete Mixing Complete Mixing	Complete Mixing	 Bubble diameter is assumed to be uniform throughout the bed in most cases and is an adjustable parameter Cloud and wake are combined in the emulsion phase. No reactions in the bubble phase. Char combustion is assumed to be diffusion controlled at all temperatures.
Two phase compartment in series model	Horio,et al. (1977) Rengarajan, et al.(1977) Horio and Wen (1978) Rajan,eț al. (1978)	Complete mixing within each com- partment	Complete mixing within each com- partment	Complete mixing within each compartment with backflow of solids from one compartment to another	 Bubbles grow along the bed height. The backflow solid mixing is considered using an adjustable parameter. Cloud is combined with the bubble phase. Reactions take place in the bubble phase.
Three phase bubbling bed model	Chen and Saxena (1977)	Plug Flow	Plug Flow	Complete mixing	 Cloud-wake is treated as a separate phase and is in plug flow Isothermal condition throughout the bed for solids, char and gas. Bubble growth is considered. Combustion occurs in cloud-wake and emulsion phases only.

III. OBJECTIVES OF PRESENT WORK

Most of the modeling work performed to date has concentrated on a few specific aspects of the fluid bed combustion process. The many deficiencies of the previous work have been pointed out earlier. It is the aim of the present work to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements which were either partially considered or not considered at all in the previous work.

- Devolatilization of coal and the subsequent combustion of volatiles and residual char.
- (2) Sulfur dioxide capture by limestone.
- (3) NO_x release and reduction of NO_x by char.
- (4) Attrition and elutriation of char and limestone.
- (5) Bubble hydrodynamics.
- (6) Solids mixing.
- (7) Heat transfer between gas and solid, and solids and heat exchange surfaces.
- (8) Freeboard reactions.

This model will be able to simulate most of the important performance characteristics, viz.,

- (1) Combustion efficiency of coal.
- (2) Sulfur dioxide retention efficiency.
- (3) SO_2 and NO_x emissions.
- (4) Particulates emission.
- (5) Attrition and elutriation of char and limestone.
- (6) Size distribution of char and limestone in the bed and in the elutriated material.

- (7) Axial bed temperature profile.
- '(8) 0_2 , CO, CO₂, SO₂ and NO_x concentration profiles.
- (9) Pressure drop across the distributor and the bed.

The present work will aid in the understanding of the performance of FBC under a range of operating conditions. For example, SO_2 , NO_x and particulates emissions from the FBC can be estimated for a range of operating conditions. The optimum operating temperature and gas residence time in the bed, which would give maximum combustion efficiency and lower SO_2 and NO_x emissions, can be estimated. The temperature profile simulated based on the model will help identify the proper location of cooling coils in the bed to avoid steep temperature gradients for design of coils configuration and packing density.

The uniqueness of the proposed model is its capability to account for (i) the freeboard reactions which may be substantial; (ii) the solids mixing within the bed; (iii) the devolatilization of coal; (iv) SO₂ and NO_x release during the combustion of char and volatiles and the simultaneous absorption of SO₂ by limestone and reduction of NO_x by char, and (v) the entrainment of char and limestone from the bed.

IV. MODEL ASSUMPTIONS

The following assumptions are made in constructing the FBC model:

1. Single phase backflow cell model is used for solids mixing calculation.

2. Two phase bubble assemblage model is adopted for gas phase material balances.

3. Solids exchange between the bubble phase and emulsion phase is assumed to be rapid.

4. Bubble size is a function of bed diameter and height above the distributor. When cooling tubes are present, bubble size in the tubes region of the bed is based on the horizontal pitch distance between the tubes.

5. Bubbles and clouds are both combined into the bubble phase. The gas interchange coefficient between the bubble and emulsion phases is a function of the bubble size and is distributed axially.

6. The gas flow rate through the emulsion phase corresponds to minimum fluidization velocity.

7. Devolatilization of coal is neither instantaneous nor uniform in the bed. It is assumed that volatiles release rate is proportional to the solids mixing rate.

8. Volatiles are assumed to be released in the emulsion phase.

9. Volatile nitrogen and sulfur in coal increase as a function of bed temperature. (Fine, et al. 1974).

10. Sulfur and nitrogen in the residual char are assumed to be released as SO_2 and NO_x during the combustion of char.

V. MODEL BACKGROUND

The various physico-chemical processes occurring in the FBC are shown in Fig. 1. The basic elements of the overall combustion process are described as follows:

1. Devolatilization and Combustion of Char:

Coal particle fed to the hot combustor is rapidly heated while undergoing devolatilization (or pyrolysis). The volatile matter of coal is evolved into the particulate phase or emulsion phase of the bed. The bed temperature and the proximate volatile matter content of coal determine the yield of volatiles. Volatile yield is estimated by the following empirical correlations (Gregory and Littlejohn, 1965):

$$V = VM - A - B \tag{V.1}$$

$$A = \exp(26.41 - 3.961 \ln t + 0.0115 \text{ VM})$$
 (V.2)

$$B = 0.2(VM - 10.9)$$
 (V.3

where V = yield of volatiles, % of coal, daf

VM = proximate volatile matter in coal, daf %

t = devolatilization temperature, °C

The compositions of the products of devolatilization in weight fractions are estimated from the correlations developed using the data of Loison and Chauvin (1964):

$$CH_4 = 0.201 - 0.469 X_{VM} + 0.241 X_{VM}^2$$
 (V.4)

$$H_2 = 0.157 - 0.868 X_{VM} + 1.388 X_{VM}^2$$
 (V.5)

$$CO_2 = 0.135 - 0.900 X_{VM} + 1.906 X_{VM}^2$$
 (V.6)

$$CO = 0.428 - 2.653 X_{VM} + 4.845 X_{VM}^2$$
 (V.7)

$$H_20 = 0.409 - 2.389 X_{VM} + 4.554 X_{VM}^2$$
 (V.8)

$$Tar = -0.325 + 7.279 X_{VM} - 12.880 X_{VM}^2$$
(V.9)

Fig.1 Schematic Illustration of the FBC

Volatile nitrogen released during devolatilization is expressed as (Fine, et al. 1974):

 $V_{\rm N}$ = 0.001 T -0.6 gm/gm coal, (d.b.) (V.10) and volatile sulfur is expressed as:

 $V_c = 0.001T - 0.6$ gm/gm coal (d.b.) (V.11)

Despite the extensive research in the area of coal devolatilization, accurate rate expressions describing the rate of devolatilization of coal .re unavailable to date. However, it is estimated that the time needed for the devolatilization of a 1 mm coal particle is 0.5-1 sec under the conditions existing in the FBC (Beer, 1977). Solids mixing time for a 2 ft. combustor with a bed height of 4 ft. and a superficial gas velocity of 4 ft/ sec lies in the range of 2 to 10 secs depending on whether solids mixing is good or poor. Hence it is more likely that a major portion of the volatiles will be released near the coal feed point. In the model, f_w , the solid mixing coefficient will represent the amount of volatiles released uniformly and $(1-f_w)$ will represent the proportion of volatiles released near the coal feed point.

At temperatures above 650° C and in an oxidizing atmosphere the rate of burning of volatiles is fast compared to the time required for volatiles evolution. However, the combustion of volatiles released in the emulsion phase is controlled by the availability of oxygen in the emulsion phase. Since the oxygen concentration in the emulsion phase is low, the volatile gases in the emulsion phase first tend to form CO by partial combustion; whereas, the volatiles exchanged to the bubble phase burns completely to CO_2 because of excess oxygen present in the bubble phase.

The rate of burning of CO is expressed as (Hottel, et al 1965)

$$CO + \frac{1}{2}O_2 \longrightarrow CO_2, r_{CO} = 3 \times 10^{10} \left(\frac{2}{R_gT}\right)^{1.8} \exp(-1600C/RT) Y_{H_2O}^{0.5} \times Y_{CO} = \frac{17.5 Y_O}{1+24.7 Y_O} \text{ gmole/} \text{m}^3 \text{sec} \qquad (V.12)$$

Residual char burns according to the reaction:

$$C + \frac{1}{2}O_2 - (2 - \frac{2}{\phi})CO + (\frac{2}{\phi} - 1)CO_2$$
 (V.13)

where ϕ is a mechanism factor, which takes the value 1 when CO₂ is transported away from the char particle and 2 when CO is transported away (Field, et al. 1967) during char combustion. The factor, ϕ , is a function of char particle diameter and temperature. For small particles, CO formed during char combustion diffuses out fast because of rapid mass transfer and burns to form CO₂ outside the particle; whereas, for large particles, because of slower mass transfer, CO burns within the particle and CO₂ is transported out, ϕ is expressed as:

$$\phi = \frac{2 p + 2}{p + 2}$$
 for $d_c \leq 0.005$ cm (V.14)

$$\phi = \frac{(2p + 2) - p(d_c - 0.005)/0.095}{p + 2} \quad \text{for } 0.005 < d_c < 0.1, \text{ cm (V.15)}$$

where p is the ratio of carbon monoxide to carbon dioxide formed during char combustion and is given by (Arthur, 1951).

$$p = CO/CO_2 = 2500 \exp(-12400/RT)$$
 (V.16)

The rate expression for char combustion is estimated by Field et al. (1967)

$$\mathbf{r}_{c}^{*} = \pi \, \mathbf{d}_{c}^{2} \, \mathbf{k}_{c} \, \mathbf{C}_{0} \qquad \text{gmole/sec particle} \qquad (V.17)$$

where k is the overall rate constant, and is given by:

$$k_{c} = \frac{\frac{R_{g} T_{m}/M_{c}}{1}}{\frac{1}{k_{cR}} + \frac{1}{k_{cf}}}$$
 cm/sec (V.18)

$$k_{cR}$$
 = chemical reaction rate constant
= 8710 exp(-35700/RT_c) gm/cm² ·sec·atm (V.19)

$$k_{cf} = \text{diffusion rate constant} = 24 \phi D/d_c R_g T_m, gm/cm^2 \cdot \text{sec-atm}$$
(V.20)

Fig. 2 Rate Controlling Regimes in FBC

For smaller particles, diffusion of oxygen to the surface of the char particle is faster than the chemical reaction rate of combustion while for larger particles, diffusion of oxygen is slower than the chemical rate. Thus, the diffusional term tends to dominate for larger particles at high temperatures, while the chemical term tends to dominate at low temperatures (Fig. 2). CO_2 formed during combustion reacts with char according to the following reaction:

$$C + CO_2 \longrightarrow 2 CO \qquad (V.21)$$

and the rate expression for the above reaction is $r_{CO_2} = \pi d_c^2 k_{CO_2} C_{CC_2}$ gmole/sec · particle, where $k_{CO_2} = 4.1 \times 10^8 \exp(-59200/\text{RT})$ cm/sec (Caram and Amundson, 1977).

2. <u>Sulfur Dioxide - Limestone Reaction</u>:

When limestone is added to a fluidized bed burning coal, the SO_2 released from the combustion of coal reacts with calcined limestone according to the reaction:

$$Ca0 + SO_2 + \frac{1}{2}O_2 \longrightarrow CaSO_4 \qquad (V.22)$$

The reaction rate of a limestone particle can be expressed as (Borgwardt, 1970)

 $r_{\ell} = \frac{\pi}{6} d_{\ell}^{3} k_{\nu \ell} C_{SO_{2}} \quad \text{gmole/sec particle} \qquad (V.23)$ where $k_{\nu \ell}$ is the overall volumetric reaction rate constant and is a rapidly decreasing function of limestone conversion, f_{ℓ} . The overall reaction rate constant, $k_{\nu \ell}$, is calculated by the equation:

$$k_{v\ell} = k_{v\ell} S_g \lambda_{\ell}$$
 (V.24)

where k_{vl} is equal to 490 exp(-17500/RT) gm/cm³ sec. The value of activation energy was obtained by Wen and Ishida (1973). By using Borgwardt's data (1971), the specific surface area, S_g , is correlated

with calcination temperature as:

$$S_g = -38.4 T + 5.6 \times 10^4$$
, cm^2/gm for $T \ge 1253^{\circ}K$ (V.25)
= 35.9 T - 3.67 x 10⁴, cm^2/gm for $T < 1253^{\circ}K$ (V.26)

 λ_{g} , the reactivity of limestone, is a function of conversion temperature and particle size. CaSO₄ formed due to the sulfation of calcined limestone tends to block the pores formed during limestone calcination, building an impervious layer on the particle surface, thus reducing the reactivity of limestone. The reactivity of limestone is calculated using the grain model developed by Ishida and Wen (1971). Typical profiles of limestone reactivity as a function of conversion for various particle sizes are shown in Fig. 3.

3. NO_{x} -Char Reaction:

Nitrogen oxides are generated during the combustion of volatiles and char, and are subsequently reduced to N_2 by reaction with nitrogeneous fragments (containing NH_3) in the volatiles and also by the heterogeneous reaction with char. Fuel nitrogen compounds in the volatiles would be in the form of NH_3 . When the volatiles burn, NH_3 is oxidized to NO. When the residual char burns, nitrogeneous fragments of the char are also oxidized to NO. The released nitrogen oxides are reduced by char according to the reaction

$$C + 2 NO \longrightarrow CO_2 + N_2$$
 (V.27)

The rate expression for NO reduction is

 $r_{NO} = \pi d_c^2 k_{NO} C_{NO}$ gmole NO/sec particle (V.28) where $k_{NO} = 5.24 \times 10^7 \exp(-34000/RT_m)$ cm/sec (Oguma, et al. 1977, Horio, et al. 1977).

Fig.3 Limestone Reactivity Profiles

4. Attrition and Entrainment of Char and Limestone:

Limestone and char particles in the bed are subjected to erosion and attrition due to the rapid mixing of the solids. The attrition rate is proportional to the rate of energy input. The size distribution of the fines produced has been found to be approximately constant for a particular bed material and independent of the bed size distribution or operating conditions (Merrick and Highley, 1974). The rate of energy input to the particles is taken to be proportional to $(U_0 - U_{mf})$ and also to the bed weight. The rate of production of fines is correlated as:

 $R_a = K(U_o - U_{mf})M_b$ gm/sec. (V.29) The value of K is dependent on the friability of the material. The values of K lie in the range 9.11 x 10⁻⁸ for ash and 2.73 x 10⁻⁸ for limestone.

The rate of elutriation of char and limestone for a size fraction x, from a fluidized bed is directly proportional to their concentration in the bed, that is:

 $R_x = E_x b_x$ gms/sec (V.30) where R_x is the elutriation rate of the close size fraction x, for a given operating conditions, b_x is the weight fraction of the close size fraction in the bed. There are many correlations proposed to calculate the elutriation rate constant, E_x . Many of the correlations exhibit an improper qualitative behavior in the smaller particle size ranges. A recent correlation proposed by Merrick and Highley (1974) accounts properly for the boundary conditions of a maximum limiting elutriation rate constant at zero particle size and the rate constant approaching zero with increasing particle size and at $U_0 = U_{mf}$. It is of the form:

$$E_{x} = G \exp[-10.4 \ (\frac{U_{t}}{U_{o}})^{0.5} \ (\frac{U_{mf}}{U_{o} - U_{mf}})^{0.25}] gm/sec \qquad (V.31)$$

The above correlation was obtained by Merrick and Highley with data from NCB combustor in which the freeboard height was around 275 cms. When this correlation is used to simulate the performance of NCB combustor, the results agree well with data (Fig.10). This correlation does not take into account the effect of varying freeboard heights and hence cannot be used to calculate the entrainment rate along the freeboard height. In view of the fact that the entrainment below TDH is dependent on the freeboard height, the following correction is suggested to calculate the entrainment rate as a function of height above the bed surface. The rate of entrainment is given by:

$$R_x = F_{0,x} \exp\left[\frac{h}{275.0} \cdot \ln\left(\frac{E_x b_x}{F_{0,x}}\right)\right] gms/sec$$
 (V.32)

where $F_{0,x}$ is the entrainment rate of particles of x th size fraction at the bed surface, h is the height above the bed surface in cms, and the constant 275.0 represents the freeboard height of the NCB combustor based on which Merrick and Highley's correlation is developed.

When the bubbles burst at the surface of the bed, solids in the wake of the bubbles are thrown into the freeboard. The amount of solids splashed into the freeboard can be calculated from the equation (Yates and Rowe, 1977).

$$F_{O_{i}} = A_{t} \cdot (U_{O} - U_{mf}) f_{W} (1 - \varepsilon_{mf}) \rho_{s} \cdot f_{sW} (gms/sec)$$
(V.33)

where f_w is the wake fraction and f_{sw} is the fraction of solids in the wake thrown into the freeboard. TDH represents the height (above the bed

surface) above which the entrained solids density is independent of the height. There are many correlations available in literature to calculate the TDH (Zenz and Weil, 1958; Amitin, et al. 1968; Nazemi, et al. 1973; Fournol, et al. 1973). The correlation proposed by Amitin, et al. (1968) is used here because of its simplicity and accuracy in the range of fluidizing velocities encountered in the combustor.

TDH = 0.429
$$\overline{U}_0^{1.2}$$
 (11.43 - 1.2 ln \overline{U}_0) cms (V.34)

TDH is compared with the actual height (height between the bed surface and the flue gas exit). If the TDH is smaller than the actual freeboard height, then TDH is used to calculate the solids elutriation rate. Entrainment rate of solids as a function of the height above the bed surface is calculated using Equation (V.32).

5. Bubble Hydrodynamics:

A modified version of the bubble assemblage model (Rengarajan, et al. 1977) is used to describe the bubble hydrodynamics. Fig. 4 is a schematic representation of the gas phase model. Gas flow rate in the emulsion phase is assumed to be that at minimum fluidization velocity. The minimum fluidization velocity is calculated using Wen and Yu's (1966) correlation:

$$U_{\rm mf} = \left(\frac{\mu}{d_p \rho_g}\right) \left\{ \left[33.7^2 + \frac{0.0408 \ d_p^3 \rho_g (\rho_s - \rho_g)}{\mu_2} \right]^{1/2} - 33.7 \right\} (V.35)$$

Estimation of the bubble diameter along the bed height is one of the most critical factors in FBC modeling. For a non-cylindrical bed, the bubble size, D_R , is calculated from (Mori and Wen, 1975):

$$\frac{dD_{B}}{dz} = \frac{0.3}{D_{t}} (D_{BM} - D_{B})$$
(V.36)

I.C. $D_B = D_{BO}$ at z = 0, D_{BO} = initial bubble diameter where D_{BM} is the

Fig. 4 Schematic Illustration of the

Gas Phase Model

fictitious maximum bubble diameter defined by Mori and Wen (1975) as:

$$D_{BM} = 0.652 [A_t (U_o - U_{mf})]^{0.4}$$
 (V.37)

When cooling tubes are present, the ascending bubbles impinge on the tubes. If the tubes are packed closely, depending on the horizontal pitch distance and tube diameter, bubbles may be broken, and coalescence may not occur. For lack of experimental evidence on the bubble sizes in the presence of internals of various designs, it is assumed here that if the impinging bubbles are of smaller size than the horizontal pitch distance, the bubbles coalesce as if tubes were absent. If the approaching bubble is bigger than the horizontal pitch distance, it is assumed that coalescence does not occur and hence the bubble size in the coils section of the bed is set equal to the pitch distance. Bubble velocity is calculated from the following relation (Davidson and Harrison, 1963):

$$U_{\rm B} = U_{\rm o} - U_{\rm mf} + 0.711 \sqrt{gD_{\rm B}}$$
 (V.38)

The gas interchange coefficient between the bubble phase and emulsion phase is estimated from (Kobayashi, et al. 1967)

$$K_{BE} = 11.0/D_{B}$$
(V.39)
6. Solids Mixing:

The mixing of solids is caused by the motion of bubbles and their wakes. Both bulk circulation and turbulent mixing of solids are the effects of bubbling phenomena of the bed. The bulk circulation rate, W_{mix} , caused by the lifting of particles by bubble wakes is expressed as:

$$\underset{\text{mix}}{\text{W}} = (\underset{o}{\text{U}}_{o} - \underset{mf}{\text{U}}) A_{t} f_{w} (1 - \varepsilon_{mf}) \rho_{s}$$
(V.40)

where f_w is the ratio of wake volume to the bubble volume including

the wake. The estimation of f_W for FBC has not been clearly established yet. Therefore, f_W is the parameter in the model which requires further investigations. A schematic representation of the solids mixing pattern and the backflow cell model used to describe the solids circulation in the bed are shown in Fig. 5 and Fig. 6. The bed is divided into compartments of size equal to bubble diameter at that height.

7. Heat Transfer:

In calculating the reaction rate for char combustion, the temperature of char particle, T_c , is calculated separately, using a heat balance around the char particle and the surrounding gas as:

$$\frac{2\lambda}{d_c} (T_c - T) + \varepsilon_m \sigma (T_c^4 - T^4) = \mathbf{r}_c^* M_c q_{char} / (\pi d_c^2 \cdot C_{ch}) \quad (V.41)$$

where $\varepsilon_{\rm m}$ is the emissivity of the char particle (taken as 1.0 Field, et al., 1967), λ is the thermal conductivity of the surrounding gas and σ is the Stefan-Boltzman constant. The heat generated during combustion is removed by immersed cooling coils in the bed. Water is the cooling medium. Bed to cooling tubes heat transfer coefficient used in the model is selected from experimental data and is in the range of 0.0054 to 0.011 cals/sec.cm². ^oC (40 to 80 Btu/hr.ft².^oF). Correlations of bed-wall heat transfer coefficient are also available for the estimation (Wender and Cooper, 1958; Wen and Leva, 1956).

8. Freeboard Reactions:

Char combustion, SO_2 absorption and NO_x reduction reactions take place in the freeboard. Heat generated by combustion and heat carried by the flue gases are removed by the cooling coils present in the freeboard. The hydrodynamics in the freeboard is different from that in the bed. There are no bubbles present in the freeboard. Any

Fig.5 Two Modes of Solids Mixing

Solid Phase Model

unburnt volatiles from the bed would be burnt in the freeboard.

The freeboard region is divided into a number of compartments of equal size. To estimate the compartment size in the freeboard region, Peclet number is calculated using the Reynolds number in the freeboard region by the following correlation (Wen and Fan, 1974)

$$N_{\rm Re} = D_t \overline{U}_0 \rho_g / \mu_g \tag{V.42}$$

$$N_{\text{Pe}} = \overline{U}_{0} D_{t} / E_{Z}$$
 (V.43)

$$N_{gSc} = \mu_{g}/D \rho_{g}$$
(V.44)

$$\frac{1}{N_{Pe}} = \frac{1}{N_{Re}} + \frac{N_{Re} - N_{Sc}}{192} \text{ for } N_{Re} < 2000 \quad (V.45)$$

$$\frac{1}{N_{\text{Pe}}} = \frac{3 \times 10^7}{N_{\text{Re}}^2 \cdot 1} + \frac{1.35}{N_{\text{Re}}^2 \cdot 1} \text{ for } N_{\text{Re}} \ge 2000 \qquad (V.46)$$

Knowing the axial dispersion coefficient, E_z , the average compartment size in the freeboard is calculated as:

$$\Delta \overline{Z} = 2 E_{\overline{Z}} / \overline{U}_{0}$$
 (V.47)

The concentrations of gaseous species vary with each compartment although the concentrations are uniform (completely mixed) within each compartment. Knowing the average height of each compartment above the bed surface, the solids entrainment rate at that height is calculated. Residence time of solids in each compartment is given by $\Delta Z/(U_0 - U_T)$ where ΔZ is the compartment size. Solids hold-up in each compartment is then obtained from

Depending on the residence time of particles in the freeboard, and the char particles burning time, char particles will either be partially or completely burnt, and the partially burnt char particles are elutriated. The burning time of a char particle is estimated from the equation (Field, et al. 1967):

$$t_{b} = \text{burning time of a char particle}$$
(V. 49)
= $\rho_{c,ch} R_{g} T_{m} d_{c}^{2} / (96 \phi D P_{O_{2}})$ (V. 50)

VI. MODEL DESCRIPTION

1. Elutriation Calculations:

A mathematical model has been developed for elutriation in a fluid bed system with size reduction and recycle to the bed of some or all of the fines from the primary and/or secondary cyclones. The model takes into account the variation in the rates of elutriation and size reduction with particle size. If the size reduction is due to more than one process, then there will be a separate value of size reduction constant for each process. In general, the rates of size reduction by the separate processes in each size fraction are additive. A mass balance is performed for each size fraction, x, as follows:

 $W_{f,x}$ + W_{x-1} + $a_x k_x M_x$ (feed rate) (gain of particles (gain of fines produced from next largest by abrasion) size due to size reduction) + $R_x q_{1x}(1-p_1)$ + $R_x q_{2x}(1-q_{1x})$ $= M_x W_D / M_b$ (1-p₂) (withdrawal rate (particles captured (particles captured by primary cyclone by secondary cyclone from the bed) but not recycled) but not recycled) + $R_x (1-q_{1x})(1-q_{2x})$ + $k_x M_x$ (particulate emission) (loss of weight due to production of fines by abrasion or to chemical . reaction) + W_x (loss of particles to next smallest

size due to size reduction) (VI.1)

The rate of loss of particles to the next smallest size, W_x , is determined by considering a mass of particles M_x , at size, d_x , and calculating the mass remaining M_{x+1} after the size has been reduced to d_{x+1} . The rate of reduction is written as:

$$\frac{dM}{d\theta} = -k_{x} M(U_{o} - U_{mf})$$
(VI.2)

The rate of size reduction between d_x and d_{x+1} is:

$$\frac{\mathrm{dd}_{\mathrm{x}}}{\mathrm{d}\Theta} = \frac{k_{\mathrm{x}}}{3} \mathrm{d}_{\mathrm{x}} (\mathrm{U}_{\mathrm{o}} - \mathrm{U}_{\mathrm{mf}})$$
(VI.3)

Dividing equation (VI.2) by equation (VI.3) gives:

$$\frac{\mathrm{dM}}{\mathrm{dd}_{\mathbf{x}}} = \frac{\mathrm{3M}}{\mathrm{d}_{\mathbf{x}}} \tag{VI.4}$$

and integrating between d_x and d_{x+1} gives:

$$\frac{M_{x+1}}{M_x} = \left(\frac{d_{x+1}}{d_x}\right)^3$$
(VI.5)

This fraction is the proportion of the total feed to the xth size fraction which is reduced in diameter to (x+1)th size fraction.

Therefore, $W_x = [W_{f,x} + a_x K(U_o - U_{mf})M_b + W_{x-1}] (\frac{d_{x+1}}{d_x})^3$. (VI.6) For the coarsest size fraction, W_{x-1} is zero.

The entire calculation is iterative, starting from initial guesses of the withdrawal rate of solids from the bed and the size distribution of particles in the bed. Mass balance is performed on each successive close size fraction, starting from the coarsest. The bed weight in each size fraction and hence the total bed weight and bed size distribution is calculated. The procedure is repeated till the calculated bed weight equals the given bed weight. The elutriation rate, fines collection/recycle rates, particle emission and size distribution of elutriated particles are then calculated.

2. Material and Energy Balances:

Material balances are made for volatile gases, CO, CO₂, oxygen, SO₂ and NO in the bubble and emulsion phases within the bed and in the freeboard. Depending on the concentration of oxygen in the emulsion phase, different material balances are used as shown below. <u>Case A</u>: Volatiles concentration in the emulsion phase is not zero because of insufficient oxygen in emulsion phase for complete combustion of volatiles. Char and CO combustion do not proceed in the emulsion phase.

EMULSION PHASE EQUATIONS

Oxygen:

$$Y_{E,i} = 0.0$$
 (VI.7)

Volatiles:

$$F_{EM,i}Y_{E,v,i} = F_{EM,i-1}Y_{E,v,i-1} - a_1Y_{E,v,i-1}$$

(Volatiles out) (Volatiles in) (Volatiles Exchanged to Bubble Phase)

$$-\frac{(F_{EM,i-1}Y_{E,i-1} + a_1Y_{B,i})}{X_{0_2}} + R_{v,i}$$
(VI.8)

(Volatiles Burnt)

(Volatiles Released during Devolatilization)

where $a_1 = K_{BE,i} A_{t,i} \Delta Z_i \epsilon_{B,i} \frac{P}{R_g T_i}$, gmole/sec . (VI.9)

Carbon monoxide:

$$F_{EM,i} Y_{E,CO,i} = F_{EM,i-1} Y_{E,CO,i-1} - a_1 Y_{E,CO,i}$$
(CO out) (CO in) (CO Exchanged to Bubble Phase)

$$-\frac{(F_{EM,i-1} Y_{E,i-1} + a_1 Y_{E,i})}{Y_{Q_2}} + V_{CO} + R_{CO,i}$$

$$(CO Produced by Volatiles (CO Released during Devolatilization) + 2 a_4 Y_{E,CO_2,i} (VI.10)$$

$$(CO Produced by C-CO_2 Reaction)$$
where
$$a_4 = a_m A_{t,i} \Delta Z_i (1-\varepsilon_{c,i} - \varepsilon_{tube,i}) (K_{CO_2,i} \frac{P}{R_g^T E,i} X_i), \text{ gmole/sec} (VI.11)$$

$$a_m = \frac{6}{d_c} \frac{\rho_b (1-\varepsilon_m r)}{\rho_{ch} C_{ch}} (VI.12)$$

$$(CO_2 \text{ total distide:})$$

$$F_{EM,i} Y_{E,CO_2,i} = F_{EM,i-1} Y_{E,CO_2,i-1} - a_1 (Y_{E,CO_2,i} - Y_{E,CO_2,i}) + R_{CO_2,i}$$

$$(CO_2 \text{ cut}) (CO_2 \text{ in}) (CO_2 \text{ Exchanged total disting})$$

$$(CO_2 \text{ Released during} (CO_2 \text{ Consumed by Devolatilization}) C-CO_2 \text{ Reaction})$$

$$EUBBLE PHASE EQUATIONS$$

$$Oxygen:$$

$$F_{BM,i} Y_{B,i} = F_{EM,i-1} Y_{B,i-1} - a_1 Y_{B,i}$$

$$(Oxygen \text{ out}) (Oxygen \text{ in}) (Oxygen Exhcanged total tot$$

-

`34

$$-a_2 Y_{B,i} - \frac{a_1 Y_{E,CO,i}}{2} - a_1 Y_{E,v,i} X_{O_2,c}$$
 (VI.14)

(Oxygen Consumed	(Oxygen Consumed by	(Oxygen Consumed by		
by Char)	CO Exchanged to	Volatiles Exchanged		
•	Bubble Phase)	to Bubble Phase)		

where

$$a_{2} = a_{m} A_{t,i} \Delta Z_{i} (\varepsilon_{c,i} - \varepsilon_{B,i}) k_{cB,i} \frac{P}{R_{g} T_{B,i}} X_{i}$$
(VI.15)

Carbon dioxide:

FREEBOARD EQUATIONS

Oxygen:

$$Y_{0,i} = 0.0$$
 (VI.17)

Volatiles:

$$F_{MT} Y_{v,i} = F_{MT} Y_{v,i-1} - F_{MT} Y_{0,i-1} X_{0_2}$$
 (VI.18)

(Volatiles out) (Volatiles in) (Volatiles Burnt) Carbon monoxide:

$$F_{MT} Y_{CO,i} = F_{MT} Y_{CO,i-1} + 2 a_4' Y_{CO_2,i}$$
(CC out) (CO in) (CO Produced by C-CO₂ Reaction)

+
$$F_{MT}(Y_{v,i-1} - Y_{v,i})V_{CO}$$
 (VI.19)

(CO Produced by Volatiles Burning)

where
$$a'_4 = \frac{P}{R_g T_{B,i}} N_{c,i} \frac{\pi d^2}{ce,i} k_{CO_2,i}$$
, gmole/sec (VI.20)

Carbon dioxide:

$$F_{MT} Y_{CO_{2,i}} = F_{MT} Y_{CO_{2,i-1}} - a_4' Y_{CO_{2,i}}$$
 (VI.21)

(CO₂ out) (CO₂ in) (CO₂ Consumed by
$$C-CO_2$$
 Reaction)

• <u>Case B</u>: Sufficient oxygen is present in the emulsion phase for the combustion of volatiles.

EMULSION PHASE EQUATIONS

Volatiles:

:

$$Y_{E,v,i} = 0.0$$
 (VI.22)

Oxygen:

$$F_{EM,i} Y_{E,i} = F_{EM,i-1} Y_{E,i-1} - a_1 (Y_{E,i} - Y_{B,i})$$
(Oxygen out) (Oxygen in) (Oxygen Exchanged to Bubble Phase)

$$-a_{3}Y_{E,i}/\phi_{E,i} - (F_{EM,i-1}Y_{E,v,i-1} + R_{v,i})X_{0_{2}}$$

(Oxygen consumed (Oxygen Consumed by Volatiles by Char) Burning)

- k Y_{E,C0,i}
$$(\frac{17.5 Y_{E,i}}{1 + 24.7 Y_{E,i}})/2.0$$
 (VI.23)

(Oxygen Consumed by CO)

where

$$k = 3 \times 10^{10} \exp(-16000/RT_{i}) \left(\frac{P}{R_{g}T_{i}}\right)^{1.8} Y_{H_{2}0}^{0.5} \times A_{t,i} \Delta Z_{i} (i-\varepsilon_{c,i}-\varepsilon_{tube,i}) \varepsilon_{mf}$$
gmole/sec (VI.24)

.

.

$$a_3 = a_m A_{t,i} \Delta Z_i (1-\varepsilon_{c,i} \varepsilon_{tube,i}) k_{cE,i} \frac{P}{R_g T_{E,i}} X_i$$
 (VI.25)

Carbon monoxide:

$$\begin{array}{rcl} \hline & \underline{Carbon\ monoxide:} & & \underline{I7.5\ Y_{E,i}} \\ F_{EM,i\ Y_{E,CO,i}} = & F_{EM,i-1\ Y_{E,CO,i-1}} - & Y_{E,CO,i\ (\frac{17.5\ Y_{E,i}}{1+24\cdot7\ Y_{E,i}})} \\ \hline & (CO\ out) & (CO\ in) & (CO\ Burnt) \\ & + & (F_{EM,i-1\ Y_{V,i-1}} + & R_{V,i})V_{CO} & + & R_{CO,i} \\ \hline & (CO\ Produced\ by\ Volatiles\ Burning) & (CO\ Released\ during\ Devolatilization) \\ & + & 2\ a_4\ Y_{E,CO_2,i} & + & a_3(2 - \frac{2}{\phi_{E,i}})Y_{E,i} & (VI.26) \\ \hline & (CO\ Produced\ by\ C-CO_2\ Reaction) & Char\ Combustion) \\ \hline & \underline{Carbon\ dioxide:} \\ \hline & F_{EM,i\ Y_{E,CO_2,i}} = & F_{EM,i-1\ Y_{E,CO_2,i-1}} & a_1(Y_{E,CO_2,i} - & Y_{B,CO_2,i}) \\ \hline & (CO_2\ out) & (CO_2\ in) & (CO_2\ Exchanged\ to \\ \hline & (CO_2\ Exchanged\ to \\ \hline & (CO_2\ Exchanged\ to \\ \hline & (CO_2\ CO_2\ Exchanged\ to \\ \hline & (CO_2\ Exchanged\ to \\ \hline$$

Bubble Phase)

٠ .

.

+ k
$$Y_{E,C0,i}\left(\frac{17.5 Y_{E,i}}{1+24.7 Y_{E,i}}\right)$$
 + $R_{CO_2,i}$
(CO₂ Produced by (CO₂ Released during Devolatilization)
- $c_4 Y_{E,CO_2,i}$ + $a_3\left(\frac{2}{\phi_{E,i}}-1\right)Y_{E,i}$ (VI.27)
(CO₂ Consumed by (CO₂ Produced by Char Combustion)
BUBBLE PHASE EQUATIONS
Oxygen:
F_{BM,i} $Y_{B,i}$ = $F_{BM,i-1} Y_{B,i-1}$ - $a_1(Y_{B,i} - Y_{E,i})$
(Oxygen out) (Oxygen in) (Oxygen Exchanged to Emulsion Phase)
- $a_2 Y_{3,i}$ - $a_1 Y_{E,C0,i}/2$ (VI.28)
(Oxygen Consumed (Oxygen Consumed by CO
by Char) Exchanged to Bubble Phase)
Carbon dioxide:
F_{BM,i} $Y_{B,cO_2,i}$ = $\sqrt{F_{BM,i-1}} Y_{B,CO_2,i-1}$ - $a_1(Y_{B,CO_2,i}, Y_{E,CO_2,i})$
(CO₂ out) (CO₂ in) (CO₂ Exchanged to Emulsion Phase)
+ $a_2 Y_{B,i}$ + $a_1 Y_{E,C0,i}$ (VI.29)

(CO₂ Produced by (CO₂ Produced by Char Combustion) CO² Combustion)

FREEBOARD EQUATIONS

Volatiles:

 $\frac{Y_{v,i} = 0.0}{\underbrace{Oxygen}:}$ $\frac{Y_{v,i} = 0.0}{F_{MT}Y_{0,i}} = F_{MT}Y_{0,i-1} - F_{MT}Y_{v,i-1}X_{0}$ (Oxygen out) (Oxygen in) (Oxygen Consumed by Volatiles)

$$\frac{17.5 \ Y_{C0,1} (\frac{17.5 \ Y_{0,1}}{1+24.7 \ Y_{0,1}})/2 - a_2^2 \ Y_{0,1}/\phi_{B,1} (VI.31)}{(0xy gen Consumed by (0xy gen Consumed by Char Combustion)} (0xy gen Consumed by Char Combustion)}$$
where
$$k' = 3 \times 10^{10} \exp(-16000/RT_{1}) (\frac{P}{R_{2}^{T}})^{1.8} \ Y_{H_{2}}^{0.5} \Lambda_{t,1} \Delta Z_{1} (1-\varepsilon_{tube,1}), gmole/sec (VI.32)$$

$$a_{2}' = (\frac{P}{R_{3}^{T}}) N_{e_{1}} \pi^{d_{2}} a_{e_{1}}^{k} c_{1,1}, gmole/sec (VI.33)$$
Carbon monoxide:
$$F_{MT} \ Y_{C0,1} = F_{MT} \ Y_{C0,1-1} + 2 \ a_{1}' \ Y_{C0,1}$$
(C0 produced by C-C02 Reaction)
$$+ F_{MT} \ Y_{v,1-1} \ V_{C0} + a_{2}' \ Y_{0,1} (2 - \frac{2}{\theta_{B,1}})$$
(C0 Produced by Char Combustion)
$$- k' \ Y_{C0,1} (\frac{17.5 \ Y_{0,1}}{1.24.7 \ Y_{0,2}}) (VI.34)$$
(C0 Burnt)
Carbon dioxide:
$$F_{MT} \ Y_{C0,2} i = F_{MT} \ Y_{C0,2} i - 1 - a_{1}' \ Y_{C0,2} i - 1$$
(C0 produced by Char Combustion)
$$+ 3'_{2} \ Y_{0,1} (\frac{2}{\theta_{B,1}} - 1) + k'' \ Y_{C0,1} (\frac{17.5 \ Y_{0,1}}{1+24.7 \ Y_{0,1}}) (VI.35)$$
(C0, produced by Char Combustion)
$$+ 3'_{2} \ Y_{0,1} (\frac{2}{\phi_{B,1}} - 1) + k'' \ Y_{C0,1} (\frac{17.5 \ Y_{0,1}}{1+24.7 \ Y_{0,1}}) (VI.35)$$
(C0, produced by Char Combustion)

The boundary conditions are:

$$Y_{B,1} = 0.21 F_{MF} / F_{MT}$$
 (VI.36)

$$Y_{E,1} = Y_{B,1}$$

$$Y_{E,v,1} = 0.0$$
 (VI.38)

$$Y_{E,CO,1} = 0.0$$
 (VI.39)

$$Y_{E,CO_2,1} = 0.0$$
 (VI.40)

$$Y_{B,CO_2,I} = 0.0$$
 (VI.41)

SULFUR DIOXIDE AND NITRIC OXIDE BALANCES

Nitrogen and sulfur content in the volatile products released during devolatilization is a function of bed temperature. Volatile nitrogen increases from 20 to 70% as temperature rises from 800 to 1300° K (Fine, et al. 1974) and is expressed as:

$$V_{\rm N} = 0.001T - 0.6$$
 (VI.42)

Similarly the sulfur content in the volatiles is expressed as:

$$V_{\rm c} = 0.001T - 0.6$$
 (VI.43)

Sulfur and nitrogen left in the residual char are released as SO_2 and NC when char burns. The following material balances are made for sulfur dioxide and NO in the bed and in the freeboard.

EMULSION PHASE EQUATIONS

$$F_{EM,i} Y_{E,SO_2,i} = F_{EM,i-1} Y_{E,SO_2,i-1} - a_1 (Y_{E,SO_2,i} Y_{B,SO_2,i})$$
(SO₂ out) (SO₂ in) (SO₂ Exchanged to Bubble Phase)

where

$$a_{E,SO_{2},i} = A_{t,i} \Delta Z_{i} (1-\varepsilon_{c,i} - \varepsilon_{tube,i}) (1-\varepsilon_{mf}) k_{v1} (\frac{P}{R_{g}T_{i}}), \text{ gmole/sec (VI.45)}$$

$$F_{EM,i} Y_{E,NO,i} = F_{EM,i-1} Y_{E,NO,i-1} - a_{1} (Y_{E,NO,i} - Y_{B,NO,i})$$
(NO out)
(NO in)
(NO Exchanged to Bubble Phase)
$$- a_{E,NO,i} Y_{E,NO,i} + R_{E,NO,c,i} + R_{E,NO,V,i}$$
(NO Reduced by
(NO Released during Char Combustion)
(NO Released during Char Combustion)

$$a_{E,NO,i} = a_m A_{T,i} \Delta Z_i (1-\varepsilon_{c,i} - \varepsilon_{tube,i}) k_{E,NO,i} \frac{P}{R_g T_{E,i}} X_i$$
, gmole/sec (VI.47)

,

BUBBLE PHASE EQUATIONS

$$F_{BM,i} Y_{B,SO_{2},i} = F_{BM,i-1} Y_{B,SO_{2},i-1} - a_{1} (Y_{B,SO_{2},i} Y_{E,SO_{2},i})$$

$$(SO_{2} \text{ out}) \qquad (SO_{2} \text{ in}) \qquad (SO_{2} \text{ Exchanged to} \text{ Emulsion Phase})$$

$$^{-a}_{B,SO_{2},i} Y_{B,SO_{2},i} + R_{B,SO_{2},c,i} + R_{B,SO_{2},V,i} \qquad (VI.48)$$

$$(SO_{2} \text{ Absorbed by} \qquad (SO_{2} \text{ Released} \text{ during Char} \text{ Combustion}) \qquad (SO_{2} \text{ Released during} \text{ Volatiles Combustion})$$

where

$${}^{a}B,SO_{2},\bar{i} {}^{A}t,i\Delta Z_{i}(\varepsilon_{c,i} - \varepsilon_{B,i})(1-\varepsilon_{mf})k_{v1}(\frac{P}{R_{g}T_{i}}),gmole/sec$$
(VI.49)

where

^aB,NO,i = ^a_m A_{t,i}
$$\Delta Z_i (\varepsilon_{c,i} - \varepsilon_{tube,i})^k$$
B,NO,i $\frac{P}{R_g T_{B,i}} X_i$, gmole/sec (VI.51)

FREEBOARD EQUATIONS

$$F_{MT} Y_{SO_2,i} = F_{MT} Y_{SO_2,i-1} + R_{SO_2,i} - a_{SO_2,i} Y_{SO_2,i}$$
 (VI.52)

(SO₂ out) (SO₂ in) (SO₂ Released) (SO₂ Absorbed
by Limestone)
$$\pi d_{Qe}^3$$
 is a set of the set of the

where
$$a_{SO_2,i} = \left(\frac{P}{R_gT_i}\right) N_{A,i,6} \frac{Qe}{i_6} k_{vl}$$
, gmole/sec (VI.53)

$$F_{MT} Y_{NO,i} = F_{MT} Y_{NO,i-1} + R_{NO,i} - a_{NO,i} Y_{NO,i} (VI.54)$$

(NO out) (NO in) (NO Paleased) (NO Reduced

where
$$a_{NO,i} = \left(\frac{P}{R_g T_{B,i}}\right) N_{c,i} d_{ce,iNO,i}^2$$
, gmole/sec (VI.55)

The boundary conditions are:

$$Y_{E,SO_2,1} = Y_{B,SO_2,1} = Y_{E,NO_3,1} = Y_{B,SO_1,1} = 0.0$$
 (VI.56)

SOLID PHASE MATERIAL BALANCE

The overall material balance for the solids in ith compartment in terms of net solids flow, $W_{net,i}$ is given by:

$$W_{net,i} = W_{net,i-1} + W_{fc,i}R_{ch} + W_{fa,i}$$
(solids out) (solids in) (Char feed) (Additives Feed)
$$-W_{D,i} - r_{i}$$
(Solids Withdrawal (Char Burnt) (VI.57)
The boundary condition is $W_{net,1} = 0.0$

The material balance for the carbon in ith compartment is given as follows by introducing the backmix flow, W_{mix} .

$$(W_{\text{mix,i}} - W_{\text{net,i}})_{i+1} - [W_{\text{mix,i-1}} - W_{\text{net,i-1}} + W_{\text{mix,i}} - W_{D,i}]_{i}$$

+ $W_{\text{mix,i-1}} = r_i - W_{\text{fc,i}} C_{\text{ch}} M_{\text{c}}$ (VI.58)

where X_{i} is the weight fraction of carbon in the ith compartment. The boundary conditions are:

$$W_{mix,1} = W_{mix,M1} = 0.0$$
(VI.59)
The energy balance for the ith compartment is given as follows:

$$C_{S}(W_{mix,i} - W_{net,i})T_{i+1}$$
(heat in from (i+1)th cell)

$$-C_{S}\{(W_{mix,i-1} - W_{net,i-1} + W_{mix,i} - W_{D,i}) + C_{gm} F_{MT}\}T_{i}$$
(heat out from ith cell)
+ [C_{S} W_{mix,i-1} + C_{gm} F_{MT}]T_{i-1} + r_{i} q_{ch}
(heat in from (i-1)th cell) (heat generated by
char combustion)
+ $g_{E,i} q_{V,CO}$ + $g_{B,i} q_{V}$ + $g_{CO,i} q_{CO}$
(heat generated by (heat generated
volatiles combus-
tion in emulsion combustion in
phase) bubble phase)

ENERGY BALANCE IN THE FREEBOARD

The following equations are obtained for energy balance in the freeboard in ith compartment.

 $(W_{ent,i} C_S + C_{gm} F_{MT}) T_{i-1} + r_i q_{ch}$ (heat generated (heat in from (i-1)th by char combustion) compartment) + ^gCO,i ^qCO + ^g_{E,i} ^q_{V,CO} (heat generated by (heat generated by CO combustion) volatiles combustion) - $(W_{ent,i} C_S + C_{gm} F_{MT})T_i = A_{t,i} \Delta Z_i a_{HE,i} U_i (T_i - T_{w,i})$ (heat removed by cooling tubes) (heat out from ith cell) + $A_{t,i} \Delta Z_i a_{HEW,i} U_{w,i} (T_i - T_{wall,i})$ (VI.61) (heat losses through the walls)

Some of the correlations used in simulation are listed in Table 2. Table 3 indicates the assumed values for the parameters involved in the model. If, in future, proper and accurate correlations become available, these parameters can be substituted with those correlations. The logic diagrams for the computer programs are shown in Figures 7, 8 and 9. Symbols are explained in Appendix VIII. Algebraic equations obtained are solved using IBM 360 computer available at WVU.

TABLE 2. CORRELATIONS USED IN SIMULATION

Heat capacity of solids, $C_s = 0.215 \text{ cals/gm} \cdot ^{\circ}C$ Heat capacity of gas, $C_{gm} = 6.8 + 0.5 \times 10^{-3} t(^{\circ}C)$ Density of limestone = 2.4 gms/cm³ Density of coal = 1.4 gms/cm³

Minimum fluidization velocity,

$$U_{mf} = \left(\frac{\mu}{d_{pg}}\right) \left\{ [33.7^2 + \frac{0.0408 \ d_{pg}^3 \ \rho_g \ (\rho_s - \rho_g)g \ 1/2}{\mu^2} - 33.7 \right\},$$

mf = (\frac{\mu}{d_{pg}}\) (m/sec

Bubble diameter, $D_B = D_{BM} - (D_{BM} - D_{BQ})exp(-0.3 Z/D_t)$, cm where

$$D_{BM} = 0.652 \{A_t (U_o - U_{mf})\}^{0.4}$$

$$D_{BO} = 0.347 \{A_t (U_o - U_{mf})/n_d\}^{0.4}$$
Bubble velocity, $U_B = U_o - U_{mf} + 0.711 \sqrt{gD_B}$
Bubble fraction, $\varepsilon_B = (U_o - U_{mf})/U_B$
Cloud fraction, $\varepsilon_c = \varepsilon_B \alpha_b/(\alpha_b - 1)$
where $\alpha_b = \varepsilon_{mf} U_B/U_{mf}$
Void fraction at minimum fluidization, $\varepsilon_{mf} = 0.5$

TABLE 3. PARAMETERS IN THE MODEL

Bed to tube heat transfer coefficient, U = 0.00765, cals/sec·cm²°K Freeboard heat transfer coefficient = (1/3)U, cals/sec·cm²°K Bed to wall heat transfer coefficient = 0.0021, cals/sec·cm²°K Solids mixing parameter, $f_W = 0.075 \sim 0.3$ Fraction of wake solids thrown into the freeboard, $f_{SW} = 0.1 \sim 0.5$ Cocling water temperature = 300°K

Wall heat transfer coefficient in the freeboard = 0.00025 cals/sec

Fig.7 Logic Diagram for the Computation of Limestone Entrainment

Fig.8 Logic Diagram for the Computation of

Char Entrainment

Fig.9 Logic Diagram for Combustion Calculations

Fig.9 (Continued).

VII. RESULTS AND DISCUSSION

The validity of the proposed fluidized bed combustor model is tested under a set of operating conditions based on the experimental data reported by the National Coal Board, England (1971), Gibbs and his associates in Sheffield (1975), the Exxon Research and Engineering Company, U.S.A. (1976) and NASA Lewis Research Center, Cleveland, Ohio (1978). Table 4 gives the dimensions of the various beds simulated and the configuration of heat-exchange coils used.

Fig. 10 shows the size distributions of the particles in the bed and in the elutriated material for a given feed size distribution of particles under the set of operating conditions specified in the figure. The solid lines in Fig.10 representing the results of the model simulation indicate close agreement with experimental data. The fine particles in the feed are entrained by the gas stream leaving the bed, and hence the bed particle size is larger than that of the feed particles. The fine particles are splashed into the freeboard by the bursting bubbles at the bed surface. Bigger particles return to the bed while the smaller ones are completely elutriated.

Fig.11 shows the results of the simulation on axial bed temperature profiles for two different configurations of cooling tubes in the bed. The difference in the profiles is due to the solids mixing pattern in the bed. When horizontal tubes having closer horizontal pitch distance between the tubes are used, solids mixing is considerably hindered, resulting in steeper temperature profile in the bed. The solids mixing is promoted significantly by the action of bubbles lifting the solids in the wake while ascending. If internals are closely packed in the

TABLE 4. DIMENSIONS OF FBC HXAMINED							
уре	Bed Cross-section (sizes in cms)	Specific surface area cm ² /cm ³ bed	Tube Outside Dïameter cms	Vertical Pitch cms	Horizontal Pitch cms	Tube configuration	
CB	.90	0.15	.5.4 . ·	9.9	11.4	llorizontal - staggered	
ibbs,et al. (1975)	30		125	- -	· ·	· _	
xxon Mini Plant		0.205 0.149	1.9 · · ·	- ·	5.5	Horizontal serpentine Vertical coils	
IASA	A7	0.1744	1.25	8.0	2.86	Horizontal In line	
i t	$\begin{array}{c} B \\ F \\ B \\ F \\$						

Fig.10 Size Distributions of the Particles in the FBC

53

Fig.11 Simulation of Axial Bed Temperature Profile

bed, the free moving, coalescing bubbles are constrained and may be broken as they impinge on the walls of the tubes. Hence the solids movement is retarded which in turn affects the temperature profile. In the model the solids mixing in the bed is represented by the mixing coefficient, f_w . For poor solids mixing f_w takes on low values (0.05-0.2) and for vigorous mixing it takes high values (0.2-0.4). A simulation of the operation of NASA fluid bed combustor is presented in Fig. 12. Again in this combustor, closely packed horizontal tubes are employed for heat removal. As indicated earlier, the solids mixing is poor which is clearly shown by the non-uniform temperature profile and the non-uniform carbon concentration profile in the bed. Carbon concentration peaks at the coal feed point and decreases rapidly within the bed as combustion proceeds. Because of the higher concentration of carbon and cxygon near the coal feed point near the distributor, the combustion rate and the heat release rate are higher than the remaining part of the bed. This results in a high temperature zone near the coal feed point. On the other hand, in the freeboard region, though combustion takes place, due to the heat losses through the wall, the temperature drops.

The concentration profiles of oxygen in the bubble and emulsion phases together with the volatiles concentration in the bed are shown in Fig. 13. Experimental observations reported by Gibbs, et al. (1975) on the time averaged oxygen concentrations along the bed height are also shown. Time averaged concentration is neither the bubble phase nor the emulsion phase concentrations since they are obtained from gas analyzer probes. The peaks and valleys of the analyzer response which

Fig.12 Temperature and Carbon Concentration Profiles in the Bed

١

correspond to that of bubble and emulsion phase oxygen concentrations respectively are averaged to obtain the concentration profile.

Near the coal feed point, a large portion of the volatiles is released in the emulsion phase due to the rapid devolatilization of coal. These volatiles immediately burn consuming the available oxygen in the emulsion phase. The oxygen concentration in the emulsion phase is quickly reduced to zero. The volatiles in the emulsion phase are exchanged with the gas in the bubble phase where they are burnt completely. The excess volatiles move up to top compartments while they are burnt on the way. Thus, the oxygen concentration decreases gradually in the bubble phase along the bed height.

Fig. 14 shows the concentration profiles of CO_2 , CO and volatiles in the bubble and emulsion phases. The concentrations of CO and volatile products in the bubble phase are zero since complete combustion of these gases is assumed in this phase. The experimental data shown are the time averaged concentrations of $\rm CO_2$ and CO in the bed. Near the coal feed point, the volatiles released in the emulsion phase burn to form carbon monoxide, the concentration of which increases along the combustor height. As long as volatiles are present in the emulsion phase the combustion of char and CO does not take place. whereas the C-CO $_2$ reaction takes place. Hence the $\rm CO_2$ concentration in the emulsion phase along the bed height decreases until all the volatiles are burnt. Once CO and char combustion start, $\rm CO_2$ concentration increases in the emulsion phase. On the other hand, CO₂ concentration in the bubble phase increases gradually as a function of the bed height indicative of the progressive combustion of char and volatiles in the bubble phase.

Fig.14 CO.CO₂ & Volatiles Concentration Profiles in the Bed

In regard to the absorption of SO, by the limestone present in fluidized bed combustors, the percentage absorption increases with an increase in the Ca/S ratio. Ca/S ratio is the most significant operating variable determing the reduction of SO_2 in the flue gas. Stoichiometrically, one mole of calcium is needed to capture one mole of sulfur. But experimental evidences indicate that even with a Ca/S ratio of 3, sulfur capture is not complete. This is due to the fact that as SO2 reacts with fresh calcined limestone, an impervious lager of CaSO₄ is formed surrounding the particle and thereby rendering the particle ineffective in capturing SO2 further. At Ca/S ratio of 1.2, SO₂ capture efficiency is about 60 percent (Fig. 15). SO₂ retention efficiency improves to 93 percent when Ca/S ratio is increased to 3.3. The experimental data and the calculated result from the proposed model are shown in the figure demonstrating good agreement between the two. The current EPA regulation on SO2 emission (1.2 lbs. SO_2 per million Btu burnt) corresponds to a SO_2 retention efficiency of around 72 percent for 2.75 percent sulfur coal (Pittsburgh coal). From Fig. 15, a minimum Ca/S ratio of around 1.8 is needed based on the model calculation to meet the EPA requirements for the set of operating conditions specified in the figure.

The effect of operating temperature on SO_2 retention is shown in Fig. 16. An optimum temperature range of 800 to 850°C can be observed in which the SO_2 retention efficiency is maximum. At lower temperatures the rate of SO_2 capture is low, resulting in a lower sulfur retention efficiency. At higher temperatures, plugging of the pores occurs due to rapid formation of $CaSO_4$ around the outer shell

Fig.15 Effect of Ca/S Ratio on SO2 Retention

n

Fig.16 Effect of Temperature on SO_2 Retention

Fig.17 Effect of Fluidizing Velocity on SO₂ Retention

and reduces the effective specific surface area of the limestone particles resulting in a lower SO_2 retention efficiency. The agreement between the model predictions and the experimental data is satisfactory.

Fig. 17 shows the effect of fluidizing velocity on sulfur retention efficiency. At low velocities, elutriation is small and hence the average bed particle size is small. This implies a greater reactivity of the limestone particles. Also, the gas and solids residence times are increased. Hence a higher SO2 retention efficiency is obtained. But, at higher fluidizing velocities, entrainment is large, and the particles entrained are also larger. Bed particle sizes are consequently larger resulting in lower reactivities. At higher superficial velocities; residence time is also short. A combination of these effects results in a lower sulfur dioxide retention efficiency. Fig. 18 shows the SO2 concentration profiles obtained from simulation of the NASA combustor. Near the coal feed point, because of the combustion of volatiles, a large proportion of SO, is released into the emulsion phase. A high concentration of SO₂ is seen at this location. SO₂ is then absorbed by the calcined limestone particles in the bed and its concentration in the emulsion phase decreases as a function of height above the distributor. The gases leaving the bed surface come in contact with the fine limestone particles entrained into the freeboard, and sulfur capture is appreciable in the freeboard region. Also, in the case of NASA combustor, since the cross sectional area of the freeboard region increases as a function of bed height, the gas and solids residence time in the freeboard increases; hence the SO2 retention is high and its concentration in the freeboard is low.

The effect of bed temperature on NO emission is shown in Fig. 19. The average carbon concentration in the bed which is closely related • to NO reduction is also shown in the figure. NO concentration at the exit in the flue gas increases with the bed temperature while the average carbon concentration in the bed decreases. At low temperatures, NO formed is reduced by the large amount of char in the bed. At higher temperatures, the NO emission increases since the char content is low affecting the NO-char reaction rate. At temperatures above 825°C, the NO emission plateaus off. This is due to the fact that while the NO reduction rate by char above this temperature becomes fast, the char content of the bed is significantly lowered. EPA regulation limits the NO emission to 0.7 lbs per million Btu of heat released. This limit corresponds to a NO concentration of about 970 ppm in the exit gas under the conditions specified in the figure. Hence it is clearly demonstrated that fluidized bed coal combustors can meet the current EPA NO, emission standard.

Fig. 20 is an example of the NO concentration profiles in the bubble and emulsion phases. Data points are the time averaged NO concentrations obtained experimentally (Gibbs, et al, 1975) near the wall and at the center of the bed. The NO concentration near the wall is higher than that at the center of the bed. The probability of a probe sampling the bubble is higher at the center and the emulsion near the wall since the proportion of the bubbles is small near the walls. These results indicate that NO is preferentially formed in the emulsion phase due to the release and subsequent combustion of volatiles in the emulsion phase.

Fig.19 Effect of Temperature on NO Emission

Fig. 20 NO and Carbon Concentration Profiles in the Bed

Higher concentrations of NO in the emulsion phase near the coal feed point are the results of rapid evolution and combustion of volatiles from coal in this region. The NO concentration in the bubble phase increases because of char and volatiles combustion. Fig. 20 also indicates the NO concentrations in the freeboard. In the freeboard both char combustion and NO reduction take place. When the char burns NO is released from the nitrogen contained in the char. These two competing reactions determine the total NO emission at the outlet of the combustor.

VIII. SENSITIVITY OF THE MODEL PARAMETERS

The most important parameters in the model are the solids mixing parameter f_w , the fraction of wake solids thrown into the freeboard f_{sw} , and the bed to tube heat transfer coefficient U. The effects of these parameters on the temperature profile in the bed are shown in Fig. 21, 22 and 23. For this parametric study, the bed dimensions and cooling location coils are similar to the NASA fluid bed combustor (Table 4). In future when more accurate correlations are developed these new correlations should be used for estimation of these parameters in the model. Fig. 21 shows the effect of f_w on the temperature profile in the bed. Low values of f_w represent poor solids mixing. When solids mixing is poor, most of the volatiles are released near the coal feed point. Combustion of these volatiles causes a rise in the temperature of the bed in the neighborhood of the solids feed point. As f_w increases, solids mixing becomes more vigorous, and heat liberated by the combustion of volatiles near the feed point is immediately dissipated by the rapidly mixing solids. Because of improved mixing, the bed temperature profile becomes uniform.

The extent of freeboard reactions depends on the solids hold up in the freeboard. Solids hold-up in turn depends on the amount of solids thrown up into the freeboard by the bursting bubbles at the bed surface. The rate of entrainment of solids from the bed surface, F_0 , may be given by (Yates and Rowe, 1977).

$$F_{O} = A_{t}(U_{O} - U_{mf})f_{w}(1 - \varepsilon_{mf})\rho_{s} f_{sw} gm/sec \qquad (VIII.1)$$

Fig. 21 Effect of Solids Mixing on the Bed Temperature Profile

For a set of operating conditions, increasing the value of f_{sw} increases the solids splashing rate at the bed surface. If a large portion of char leaves the bed, char elutriation from the combustorwill also be large. This will result in lower combustion efficiency, and hence a lower temperature in the bed. The temperature drop in the rreeboard decreases as f_{ew} increases because of increased combustion in the freeboard. This is clearly illustrated in the Fig. 22. It should be borne in mind that the NASA fluidized bed combustor is a small unit and heat losses from the wall in the freeboard are considerable. If the bed is bigger in size than that is used here for simulation, the heat losses through the walls will be minimal. Also, with good insulation, heat losses can be reduced. In large commercial combustors, if the entrainment is increased, combustion of char in the freeboard will also increase resulting in higher temperatures in the freeboard. Hence it is seen that the parameter $\mathbf{f}_{_{SW}}$ is very critical and has to be carefully evaluated in order to properly account for the freeboard reactions.

Fig. 23 is a parametric study of the effect of bed to tube heat transfer coefficient on the temperature profile in the bed. Changes in the value of the heat transfer coefficient do not significantly affect the shape of the temperature profile but affect the level of bed temperature. As can be seen from Fig. 23, if the actual heat transfer coefficient were 0.00765 cals/sec.cm², °C (56 Btu/hr.ft².°F), assuming a lower heat transfer coefficient of 0.0063 cals/sec.cm², °C (46 Btu/hr.ft², °F) would result in a temperature difference of about 40°C above the actual temperature. So it is apparent that an accurate

Fig. 23 Effect of Bed to Tube Heat Transfer Coefficient on the Bed Temperature \gtrsim

estimation of the heat transfer coefficient for a wide range of design is critical to make accurate predictions of bed temperatures.

Fig. 24 brings out the effect of bubble size (or the compartment size, since bubble size is same as compartment size) on the bed temperature profile. When a single bubble diameter is used as an adjustable parameter, a small value for the bubble diameter overestimates the combustion rate in the bed. This is because of increased mass transfer of oxygen to the emulsion phase from the bubble phase. This results in steep temperature profiles. As the bubble diameter is increased, the profile becomes less steep and also the average temperature decreases because of less combustion in the bed. Fig. 24 also indicates the predictions from the present work compared with experimental data. Clearly it is seen that bubble size cannot be assumed as an arbitrary parameter, and the coalescence of bubbles has to be incorporated in any realistic FBC model. The effect of the location of cooling tubes on the bed temperature profile is shown in Fig. 25 by moving the heat exchange zone. In this calculation, the other variables are kept constant. It appears that by properly adjusting the location of the cooling coils, the bed temperature can be maintained uniform.

Fig. 24 Effect of Bubble Size (a: Compartment Size) on the Bed Temperature Profile

Fig. 25 Effect of Location of Cooling Tubes on the Bed Temperature Profile

IX. CONCLUSIONS

The following conclusions can be drawn from this study:

1. The agreement between the simulated results and the experimental data attest to the validity of the proposed model for the fluid bed coal combustion and of the assumptions made.

2. The elutriation phenomenon is taken into consideration in the model. The results of simulation on elutriation agree well with the experimental data.

3. The model confirms the importance of the role of solids mixing in maintaining a uniform bed temperature. Poor solids mixing results in nonuniform temperature profile and carbon concentration profile in the bed. The poor mixing is accounted for by f_w , the solids mixing parameter in the model. This important parameter in the model also accounts for the devolatilization of coal. The assumption of a major portion of the volatiles being released near the feed point is justified by the concentrations of NO, 0_2 and CO observed experimentally near the coal feed point.

4. Although a simple approach is taken to calculate the bubble size through internals (and the results seem reasonable), a proper bubble size correlation in the presence of cooling tubes with different configurations needs to be developed. Bubble size cannot be assumed as an adjustable parameter, and bubble coalescence has to be considered.

5. Attention has to be focused on the evaluation of the solids mixing parameter f_w , the fraction of wake solids thrown into the freeboard f_{sw} , and the bed to tube heat transfer coefficients. A parametric study of these variables indicates the necessity of accurate estimation for properly accounting for solids mixing,

freeboard reactions and bed temperature profile.

6. Although the validity of the two phase theory has been questioned for very large particles (> 2000 μ m) and very small particles (< 50 μ m), the predicted results indicate that the proposed two phase model can effectively simulate the performance of the FBC.

7. The concentration profiles of 0_2 , CO, CO_2 and volatiles computed based on the model are in accordance with the experimental observations.

8. NO (nitrogen oxide) emission is shown to be dependent on the operating temperature. NO emission can be maintained below the EPA limits by maintaining a higher concentration of carbon in the bed and in the freeboard. NO concentrations in the bed indicate that most of the NO is formed in the vicinity of the coal feed point.

9. In operation of a FBC a balance has to be made between the combustion efficiency, the carbon loss, higher SO₂ retention and lower NO emission. Based on the analysis, the approximate optima are found to be (i) for the temperature range between 800 to 850°C, (ii) for the velocity between 90 to 100 cms/sec, (iii) for the particle sizes below 3000 µm, and for the excess air between 10 to 25%.

REFERENCES

- 1. Amitin, A. V., Martyushin, I. G. and Gurevich, D. A., Chemistry and Technology of Fuels and Oils, 3-4, 181 (1968).
- 2. Anthony, D. B. and Howard, J. B., AIChE J., 22, 625, (1976).
- 3. Arthur, J. R., Trans, Faraday Soc., 47, 164 (1951).
- 4. Avedesian, M. M. and Davidson, J. F., Trans. Inst. Chem. Engrs., <u>51</u>, 121 (1973).
- 5. Baron, R. E., Hodges, J. L. and Sarofim, A. F., AIChE 70th Annual Meeting, New York, NY (1977).
- 6. Beer, J. M., Paper presented at 16th International Symposium on Combustion, The Combustion Institute, 439-460, (1977).
- 7. Bethell, F. V., Gill, D. N. and Morgan, B. B., Fuel, 52, 121 (1973).
- 8. Borghi, G., Sarofim, A. F. and Beer, J. M., AIChE 70th Annual Meeting, New Yori, Nov. (1977).
- 9. Borgwardt, R. H., Environ., Sci. Technol., 4, 59 (1970).
- Borgwardt, R. H., Drehmel, D. C., Kittleman, T. A., Mayfield, D. R., and Owen, J. S., Selected Studies on Alkaline Additives for Sulfur Dioxide Control, EPA - RTP, December (1971).
- Caram, H. S. and Amundson, N. R., Ind. Eng. Chem. Fundamentals, <u>16</u>, 171 (1977).
- 12. Campbell, E. K. and Davidson, J. F., Paper A-2, Institute of Fuel Symposium Series No. 1, (1975).
- Caretto, L. S., Paper presented at the 1977 Fall Meeting, Western States Section - The Combustion Institute, Stanford University, October (1977).
- 14. Catipovic, N. M., Jovanovic, G. N. and Fitzgeralć, T. J., AIChE J., 24, 3, 543 (1978).
- 15. Chen, T. P. and Saxena, S., Fuel, 56, 401 (1977).
- 16. Davidson, J. F. and Harrison, D., Fluidized Particles, Cambridge University Press, (1963).
- Exxon Research and Engineering Company, Studies of the Pressurized Fluidized-Bed Coal Combustion Process, EPA-600/7-76-011, Linden, N. J. (1976).

- Field, M. A., Gill, D. W., Morgan, B. B. and Hawksley, P. G. W., Combustion of Pulverized Coal, BCURA (1967).
- Fine, D. H., Slater, F. M., Sarofim, A. F. and Williams, G. C., Fuel, <u>53</u>, 120 (1974).
- Fournol, A. B., Bergougnou, M. A. and Baker, C. G. J., Can. J. Chem. Eng., 51, 401 (1973).
- Gibbs, B. M., Pereira, F. J. and Beer, J. M., Ins. Fuel Symp. Series, paper D6 (1975).
- 22. Gibbs, B. M., Paper A-5, Institute of Fuel Symposium Series (1975).
- 23. Gordon, A. L. and Amundson, N. R., Chem. Eng. Sci., 31, 1163 (1976).
- Gregory, D. R. and Littlejohn, R. F., The BCURA Monthly Bulletin, 29, (6), 173 (1965).
- 25. Horio, M. and Wen, C. Y., Proc. of International Fluidization Conference, Pacific Grove, California (1975).
- 26. Horio, M., Mori, S. and Muchi, I., Proc. of 5th FBC Conference, Washington, DC (1977).
- 27. Horio, M. and Wen, C. Y., AIChE Symp. Series, 73, (161), 9 (1977).
- 28. Horio, M. and Wen, C. Y., To be published in AIChE Symposium Series on Fluidization (1978).
- Hottel, H. C., Williams, G. C., Nerheim, N. M. and Schneider, G. R., 10th International Symposium on Combustion, 111, (1965).
- Ishida, M. and Wen, C. Y., AIChE Symposium Series, <u>69</u>, No. 128, (1973).
- 31. Kato, T. and Wen, C. Y., Chem. Eng. Sci., 24, 1351 (1969).
- Kobayashi, H., Arai, F. and Sunagawa, T., Chem. Engrs. (Japan), <u>31</u>, 239 (1967).
- Kunii, D. and Levenspiel, O., Fluidization Engineering, Wiley, N. Y. (1969).
- 34. Loison, R. and Chauvin, Chim. Ind., 91, 269 (1964).
- 35. Merrick, D. and Highley, J., AIChE Symp. Series, 70, (137), 366(1974).
- 36. Mori, S. and Wen, C. Y., AIChE J., 21, 109 (1975).
- 37. NASA Lewis Research Center, Cleveland, Ohio, Private Communication, (1978).

- National Coal Board, Reduction of Atmospheric Pollution, EPA-PB-210 673, London, England (1971).
- 39. Nazemi, A., Bergougnou, M. A. and Baker, C. G. J., Fluidization and Fluid-Particle Systems, AIChE Symp. Series, 141, <u>70</u>, 98 (1974).
- 40. Oguma, A., Yamada, N., Furusawa, T., and Kunii, D., Preprint for 11th Fall Meeting of Soc. of Chem. Eng. Japan, 121 (1977).
- 41. Pereira, F. J. and Beer, J. M., Fluidization, Proc. of Second
 Engineering Foundation Conference, Trinity College, Cambridge, England (1978).
- 42. Rajan, R., Krishnan, R. and Wen, C. Y., To be published in AIChE Symposium Series on Fluidization (1978).
- 43. Rengarajan, P., Krishnan, R. and Wen, C. Y., AIChE 70th Annual Meeting, New York, Nov. (1977).
- 44. Rowe, P. N., Chemical Reaction Engineering-Houston, Am. Chem. Soc. Symp. Ser., 65, 436 (1978).
- 45. Wen, C. Y. and Leva, M., AIChE J., 2, 482 (1956).
- 46. Wen, C. Y. and Yu, Y. H., AIChE J., 12, 610 (1966).
- 47. Wen, C. Y. and Ishida, M., Environ. Sci. Technol., 1, 103 (1973).
- 48. Wen, C. Y. and Fan, L. T. Model for Flow Systems; and Chemical Reactors, Marcel Dekker, Inc. New York, (1975).
- 49. Wender, L. and Cooper, G. T., AIChE J., 4, 15 (1958).
- 50. Yates, J. G. and Rowe, P. N., Trans. Inst. Chem. Engrs., <u>55</u>, 137 (1977).
- 51. Zenz, F. A. and Weil, N. A., AIChE J., 4, 472 (1958).

ORIGINAL PAGE IS OF POOR QUALITY

.

APPENDIX I

ELUTRIATION PROGRAM

1.	C
2.	C A GENERAL MODEL FOR FBC ELUTRIATION CALCULATIONS
з .	C
4.	C PROGRAMMED BY X
5.	C *
6.	C RENGA RAJAN *
7+	C *
8.	C . AT . 🗸
9.	.C * *
10.	C WEST VIRGINIA UNIVERSITY *
11.	C *
12.	C*************************************
13.	REAL MC;MH2;MS;MO2;MN2;MN0;MH20;MS02;MH25;MC0;MC02;MCA0;MGA5;MVGA5
14.	1, MAIR, NCHAR, MCASO4
i5.	COMMON /A/ ZHE(30),AHE(30),DTUBE(30),FV(30),FH(30),ZB(30),
16.	1ATB(30),UMF(30),DVB(30),DVBEFF(30),UTA(30),UTC(30),
17,	2EMF;RG;G;PI;HLMF;HLF;PAV;TAV;FMO;RHOCH;RHOBED;DZAV;VMF;XAV;ETCC;
18.	3DPSVB, NPWMB, DCSVB, DCWMB, UO, MGAS, MTB
17.	COMMON /C/ DIA(30);FRACTA(30);FRACTC(30);DP(30);FRC(30);FRA(30);
20.	1WF(30);Q1(30);Q2(30);BB(30);RN1(30);W(30);E(30);ENTA(30);ELUA(30);
21.	2ENTC(30,30),FRAEN(30),FRAEL(30),CU(30),
22.	3PFA(30),GFLOW,WCDAL,WAD,WB,WBC,WELUA,CELU,EFF,XC,XCF,
23.	4XA·XW,RCHAR,CCHAR,WDIS,RHOAD,TUHC,HFB,NDP
24.	NAMELIST /OPCF/ HLMF,VMF,HLF,WB,WBC,RHOBED,RHOCH,RCHAR,
25.	1 CCHAR, HCHAR, OCHAR, NCHAR, SCHAR,
26.	2U0;GFLOW;MGAS;FMO;FMF;EXAIR;TAV;FAV;CAS;WAD;WCDAL;TDHC;HFB
27.	I/RES/ WDIS,WELUA,CELU,EFF,DPSVB,DPWMB,DCSVB,DCWMB,
28.	2DASVF, DAWMF, DCSVF, DCWMF
29.	DATA MC;MH2;M6;M02;MN2;MN0;MH20;MS02;MH25;MC0+MCJ2;MCA0;MCAS04
30.	1/12++2++32++32++28++30++18++64++34++28++44++56+08+136+14/
31.	DATA RHOC,RHOASH/1.4,1.4/
32.	$RHOAB = 2 \cdot 4$
33.	EMF = 0.5
34.	RG = 92.05
35.	G = 980.1
36.	PI = 3.141593
37.	C
38.	C FBC DESIGN DATA AND FEED PARTICLE SIZE DISTRIBUTION
39.	С
40.	CALL BESIGN
41.	READ(5,1000) NDP,(DIA(I),I=1.NDP)
42.	READ(5,1001)(FRACTA(I),I=1,NDP)
43.	READ(5,1001) (FRACTC(I),I≈1,NDF)
44.	DP(1) = DIA(1)
45.	SUMA = 0.0
46.	SUMB = 0.0
47.	SUMC = 0.0
48.	SUMD = 0.0
49.	$DO 10 I = 25 NDP^{-1}$
50.	$DP(I) = (LT_4(I-1)+DIA(I)) * 0.5$
51.	SUMA = SUMA + FRACTA(I)/UP(I)
52.	SUMB = SUMB + FRACTA(I)*DP(I)
53.	SUMC = SUMC + FRACTC(I)/DP(I)
54.	SUMD = SUMD + FRACTC(I)*DP(I)
55.	10 CONTINUE
56.	ÚASVF = 1./SUMA
57.	DAWMF = SUMP
58.	BCSVF = 1./SUMC
57.	DCWMF = SUMD

. 1		
აე. ას.	С С	LIMESTONE COMPOSITION
al. 52/	υ υ	CTHESPORE COMPOSITION
، دَت		REAR(511010)NAMEL11NAMEL2,XCAD,XMG0,XSI02,XCO2
64,	C	
65.	C	COMPOSITION AND NET HEATING VALUE OF COAL
6 <u>6</u> .	C C	
57. 58.	C	XCF : FIXED CARBON
69.	ĉ	XCV : VOLATILE CARBON
70	C C	XH : HYDROGEN
71.	Ŭ	XH ; HYDROGERY XS ; SULPHUR
72.	C	XO : OXYGEN
73. 74.	С С	XŃ : NITBOGEN XW : MOISTURE
75.	C	DRY BASIS
76,	ç	
77,		£ĘĄD(5,1010)NAMECI,NAMEC2,XC,XH,XN,XS,XO,XW,XA,VM
78,	C	
79, 30.	C C	OFERATING CONDITIONS 1 (BED CONDITION)
81 .		READ(5,1001)HLMF;HLF;PAV;JAV
82, 83.	C C	OPERATING CONDITION 2 (SOLIDS AND GAS FEEDS)
8 <u>4</u> ,	č	
85,		READ(5,1001)WCDAL,WAD,CAS,UQ,FMF,EXAIR
84.	C	
97. 88.	C Ç	CALCULATION OF YOLATILES YIELD AND THE COMPOSITION OF VOLATILES
89	Ý	WW = 0.2*(100.*VM-10.9)
90,		R = EXP(26.41-3.961*ALOG((TAV-273.))+0.0115*100.*VM)
91.		V = (100, 2VM + R - WW) 20.01
92. 93,		$V = V \times (1 - X W - X A)$ RN = 1.6-0.001*TAV
94,		IF (RN , GT, 1.) RN = 1.0
95.		ĨF (RN LJ, Ô,) RN ≓ Ô.0
9Ģ,		$\mathbf{R}\mathbf{S} = \mathbf{R}\mathbf{N}$
97.		$R\bar{0} = 0.0$
98, 99,		RH = 0.0 CH4 = 0.201-0.467*VM+0.241*VM**2
100.		H2 = 0,157-0,868*VM+1.338*VM**2
101.		CO2 = 0.135-0.900*VM+1.905*VM**2
102.		.CO = 0.423-2.653*V#44.845*VM**2
103.		$H20 = 0.409 - 2.389 \times VM + 4.554 \times VM \times 2$
194. 105.		TAR = -,325+7,279*VM-12,88*VM**2 HTAR = XH*(1,-RH)*(1,-XW) - V*(CH4/16,*2,0+H2/2,+H20/18,)×2,0
106.		QTAR = X0*(1RQ) - V*(C02/44.+C0/28.*0.5+H20/18.0*0.5)*32.0
107.		MTAR = 120.0
108.		CH4 = V*CH4/16.0
109.		$H_2 = V \times H_2 / 2.0$
110. 111.		CD2 = V*CD2/44.0 CD = V*CD/28.0
112.		$H_{20} = V + H_{20} / 18.0$
113.		CTAR = V*TAR - HTAR - OTAR
114.		TAR = (CTAR + HTAR + OTAR) / HTAR
115.		RVGAS = CH4+H2+TAR
110. 117.		COV = CO/RVGAS CO2V = CO2/RVGAS
118.		COVB = (CH4+CTAR/12.0)/RVGAS
- 119,		CO2VB = COVB

MOLE/SEC SULFUR CAPTURE EFFICIENCY ASSUMED TO BE AROUND BS PERCENT TO CALCULATE THE DENSITY OF THE PARTICLES IN THE BED A1 = 0.0IF (CAS .GT. 0.0) A1 = 0.85/CAS IF (A1 .GT. 0.4) A1 = 0.4 RHOBED = (1.-XCO2+XCAO/MCAO*A1*MCASO4)*RHOAD IF (CAS .EQ. 0.0) RHOBED = RHOAD WRITE (6,2000) NAMEL1, NAMEL2, XCAO, XMGO, XSIO2, XCO2, *(DIA(I),FRACTA(I),I = 1,NDP) WRITE(6,2010) DASVF, DAWMF WRITE(6,2020) NAMEC1, NAMEC2, XCF, XCV, XH, XN, XS, XD, XW, XA, VM-V WRITE (6,2030) (DIA(I),FRACTC(I), I = 1 , NDP) WRITE (6,2040) DCSVF,DCWMF IF (HLF .EQ. 0.0) VMF = VOLUME(HLMF) IF (HLMF .GT. 0.0) WB = VMF*(1.-EMF)*RHOBED CALL ELUT WRITE (6, OFCF)

> ORIGINAL PAGE IS OF POOR QUALITY

С

С

163.

165.

166.

167.

168. 169.

170.

171.

172+

173. 174.

175.

176. 177. 178.

179.

1.20. XCV = CTAR + (CH4+C02+CO)*12.0 XCF = XC - XCVRC = XCF / XC 121. 122. COALC = XC / 12.0 123. 124. COALH = XH 125. COALO = XO / 16.0 126. COALN = XN / 14.0127. COALS = XS / 32.0128. CHARC = RC * COALC129. CHARH = RH * COALH 130. CHARO = RO * COALO 131. CHARN = RN * COALN 132. CHARS = RS * COALS 133. RCHAR = 1.0 - V - XWCCHAR = CHARC#12.0/RCHAR 134. 135. HCHAR = CHARH*1.0/RCHAR 136. OCHAR = CHARO*16.0/RCHAR 137. NCHAR = CHARN*14.0/RCHAR 138. SCHAR = CHARS*32.0/RCHAR MAIR = 0.21*M02+(1.-0.21)*MN2 139. 140. A2 = XC/MC+XH/MH2*0.5+XS/MS+XN/MN2-X0/M02 141. FMTH = WCOAL*(1, -XW)*A2/0.21142. IF (EXAIR .GT. 0.) FMF=FMTH*(1.+EXAIR) 143. IF (EXAIR .EQ. 0. .AND .FMF .EQ. 0.) FMF = ATB(1)*UO*PAV/RG/TAV IF (EXAIR .EQ. 0.) EXAIR = FMF/FMTH - 1. 144. 145. UO = FMF*RG*TAV/PAV/ATB(1) FM0 = FMF*(1.-0.21)+((XC/MC+XH/MH2+XS/MS*0.2+XN/MN2*2.0)*(1.-Xu)-146. 147. 1XW/MH20)*WCOAL+FMTH*0.21*EXAIR 148. GFLOW = FMF*(1.-0.21)*MN2+((XC/MC*MC02+XH/MH2*MH20+XS/MS*MS02*0.2+ 149. 1XN/MN2#2.0#MN0)#(1.-XW)+XW)#WCOAL+FNTH#0.21#EXAIR#MO2 150. MGAS = GFLOW/FMO 151. С 152. С FMD : AVERAGE FLOW RATE OF GAS IN THE BED С 153. 154. Ľ, RHOCH : DENSITY OF CHAR 155. C 156. RHOCH = RCHAR*RHOC 157. IF(CAS.EQ.O..AND.WAD.GT.O.) 158. 1CAS=WAD*XCA0/MCAO/(WCOAL*(1.-XW)*XS/MS) 159. IF(CAS.GT.O..AND.WAD.EG.O.) 160. 1WAD=CAS*(WCOAL*(1,-XW)*XS/MS)/(XCAO/MCAO) C 161. 162. С

180.	WRITE (6FRES)
181.	1000 FORMAT(12,//(8F10.0))
182.	1001 FORMAT(8F10.0)
183.	1010 FORMAT(2A4/(8F10.0))
184.	2000 FORMAT ('0',1X,2A4,10X,'XCAO = ',F6.3,10X,'XMGO = ',F6.3,10X,
185.	*/XSI02 = ',F6,3,10X;'XC02 = ',F6,3,/;'0',
186.	<pre>*T41, 'DIAMETER , CM', T81, 'WT, FRACTION', /, '0', (T41, F3, 4, T81, F8, 4))</pre>
197.	2010 FORMAT('0',5X;'SURFACE VOL MEAN DIA OF ADDITIVES FEED = DASVF =
188.	*F10.4,3X,'CM',5X,'WEIGHT MEAN DIA. ⇒ DAWMF = ',F10.4,3X,'CM',/)
189.	2020 FORMAT ('0',1X,2A4,3X,'XCF = ',F5,3,3X,'XCV = ',F5,3,3X,'XH = ',
190.	*F5.3/3X/*XN = '/F5.3/3X/*XS = '/F5.3/3X/*XO = '/F5.3/3X/*XW = '/
191.	\$F5.3/3X/*XA = '/F5.3////0//12X//VM = '/F5.3/4X*/V = '/F5.3)
192.	2030 FORMAT ('0', T41, 'DIAMETER , CM', T81, 'WT, FRACTION'/'0', (T41, F5.4)
193.	*T81-F8.4))
194.	2040 FORMAT('0', 5X, SURFACE VOL MEAN DIA OF COAL FEED = DESVF =',
195	*F10.4,3X,'CM',5X,'WT.MEAN DIAMETER = DCWMF = ',F10.4,/)
196.	10000 STOP
197.	END GURDOUTING ADDA (73 DTI)TI)
199.	SUBROUTINE AREA (ZI, DTI, ATI)
199.	COMMON /A/ ZHE(30),AHE(30),DTUBE(30),PV(30),PH(30),ZB(30),
200.	1ATB(30),UMF(30),DVB(30),DVBEFF(30),UTA(30),UTE(30),
201.	2EMF,RG;G;PI;HLMF;HLF;PAV;TAV;FMO;RHOCH;RHOBBD;DZAV;VMF;XAV;ETCC;
202.	3 JPSVB, DPWMB, DCSVB, DCWMB, UO, MGAS, MTB
203.	COMMON /C/ DIA(30);FRACTA(30);FRACTC(30);DP(30);FRC(30);FRA(30);
204,	1WF (30), Q1 (30), Q2 (30), BB (30), RNI (30), W (30), E (30), ENTA (30), ELUA (30).
205.	2ENTC(30,30)/FRAEN(30)/FRAEL(30)/CU(30)/
205.	3PFA(30),GFLQW,WCOAL,WAD,WB,WBC,WELUA,CELU,EFF,XC,XCF,
207.	4XA,XW,RCHAR,CCHAK,WDIS,RHOAD,TDHC,HFB,NDP
208.	C
	C GALCULATION OF THE CROSS SECTIONAL AREA GIVEN THE HEIGHT ABOVE
209.	
210.	C THE DISTRIBUTOR
211.	C
212.	$I(0 \ 10 \ J = 1 \ , MTB$
213.	IF (ZI .GT. ZB(J)) GO TO 10
214	\bar{R} JM1 = SQRT (\bar{R} TB(J-1) / PI)
215.	$A1 = \langle ZI - ZB(J-1) \rangle / \langle ZB(J) - ZB(J-1) \rangle$
216+	B1 = SQRT (ATB(J) / ATB(J-1)) - 1.0
217.	RI = (1.0 + A1 * B1) * RJM1
218	$FII = 2.0 \times RI$
219	ATI = PI * RI ** 2
220	GO TO 20
221	
222.	20 CONTINUE
223+	RETURN
224.	END
225+	SUBROUTINE ATTR(RHOCCH,T,DC,P,YO2,RG,TB,RKI)
226+	ŔĒAL MC
227	C
228.	C THIS SUBROUTINE COMPUTES BURNING TIME OF A CHAR PARTICLE
229.	C
230.	EM=1.0
231	SIGM=1.36E~12
232.	INDX=0
233.	DTS= 100.0
234 -	TP=T
235.	MC = 12.0
236.	BO 100 I=1,20
237.	ETSMAX=0.001*TP
238.	AKS=8710.0*EXF(-35700.0/1.986/TP)
239+	TAV = (T+TP)*.5
	1.01 4 — 7.62.11.7 4 4 0

•

240.		D=4.26*(TAV/1800,)**1.75/F
241.		COND=0.632E-5*SQRT(TAV)/(1.+245./TAV*10.**(~12./TAV))
242.		Z = 2500. * EXP(-12400./1.986/TAV)
243.		IF (DC ,LE, 0.005) PHI = (2.*Z+1.)/(Z+1.)
244.		IF (DC .GT. 0.005 .AND. DC .LE. 0.10) PHI = 1./(Z+1.)*((2.*Z+1.)
245.		$k = Z * (\Omega C - 0.005) / 0.095)$
246.		IF (BC .GT, 0.10) PHI = 1.0
247.		Q = 7900.0*(2./PHI-1)+2340.0*(22./PHI)
248.		
249.		ANR=(RG*TAV/NC)/(1./AKS+1./AKF)
250.		RHS = AKR*P*Y02*MC*Q/(RG*TAV) - EM*SIGM*(TP**4-T**4)
251.		ETS = TP - T - RHS*BC/(2.0*COND)
252.		CALL CRRECT(I,INDX,DTS,TP1,TP2,TP,E1,E2,ETS,ETSMAX)
253.		IF (INDX.EQ.2) GO TO 110
254.	100	CONTINUE
255.		WRITE (6, 4000)
256.	4000	FORMAT ('0',10X,'TP CALCULATION HAS NOT CONVERGED. S.NO.=4000',/)
257.	110	CONTINUE
258.		TB = RHOCCH*RG*TAV*DC**2 / (96.*PHI*D*P*YO2)
259.		RKI = 1./TB
260.	,	RETURN
261.		END
262.		SUBROUTINE CRRECT(I,INDX,DX,X1,X2,XNEW,E1,E2,E,EMAX)
263.	C	I: NUMBER OF THIS TRIAL, 1 FOR FIRST TRIAL
264.	ĉ	INDX: INDEX OF THE TRIAL LEVEL
265.	ē	INDX=0: JUST PROCEEDING
266.	č	INDX=1: THE ROOT HAS BEEN CAUGHT BETWEEN X1 AND X2
267.	č	INDX=2: THE ITERATION HAS CONVERGED
268.	Ċ,	IF (ABS(E).GT.EMAX) GO TO 5
269.		
270.		INDX=2
	-	RETURN
271.	3	CONTINUE
272.		IF(INDX.EQ.1) GO TO 100
273.		X2=XNEW
274.		E2=E
275.		IF(I.EQ.1) GO TO 10
273.		IF(E1*E2.LE.O.)INDX=1
277.		IF(INDX.EQ.1)60 TO 150
278.	10	X1=X2
279.		E1=E2
280.		XNEW=XNEW+DX
281,		RETURN
282.	100	CONTINUE
283.		IF(E1*E.LT.0.) GO TO 110
284.		
285.		VI-VIEL
286.		
287.	110	E2=E
298.	+ + V	X2=XNEW
289.	150	
290.	190	XNEW=(X1-X2)*E2/(E2-E1)+X2
291.		RETURN
292.		
		END CUERCULTING DESIGN
293.		SUBROUTINE DESIGN.
294.	-	COMMON /A/ ZHE(30),AHE(30),DTUBE(30),PV(30),PH(30),ZB(30),
295.		LATB(30),UMF(30),DVB(30),DVBEFF(30),UTA(30),UTC(30),
296.		2EMF,RG,G,PI,HLMF,HLF,PAV,TAV,FMG,RHOCH,RHOBED,DZAV,VMF,XAV,ETCC,
297.		IDFSVB,DPWMB;DCSVB,DCWMB,UO,MGAS.MTB
298.		COMMON /C/ DIA(30),FRACTA(30),FRACTC(30),DP(30),FRC(30),FRA(30),
299.	1	LWF(30),Q1(30),Q2(30),BB(30),RKI(30),W(30),E(30),ENTA(30),ELUA(30),

-

.

.

ORIGINAL PAGE IS OF POOR QUALITY

304. C 305. C AXIAL VARIATION OF RED CROSS SECTION 306. C 307. READ (5,1000) AL,A2,A3,A4 308. READ (5,1001) MTB,(2B(J),ATB(J), J = 1, MTB) 309. C 310. C FARRNG 1 2 3 311. C 1 VERTICAL INLINE ARRANGEMENT 312. C 2 VERTICAL STAGGERED ARRANGEMENT 313. C 3, HORIZONTAL INLINE ARRANGEMENT 314. C 4 HORIZONTAL INLINE ARRANGEMENT 315. C 3; HORIZONTAL INLINE ARRANGEMENT 316. C 317. C HEAT EXCHANGE TUBES. 318. READ (5,1002) MTHE (2HE(J+1),AHE(J),DTUBE(J),PV(J),PH(J), 319. 1FAR(J), J = 1,MTHE) 320. D0 f00 J = 1, MTHE 321. IF (AHE(J) ,GT, 0,0) G0 TO 100 322. IF (DTUBE(J) .EQ. 0.0) G0 TO 100 323. AHE(J) = PT * DTUBE(J) / (PH(J),MPV(J)), 324. 100 CONTINUE 325. WRITE (6,2000) A1,A2,A3,A4A 326. WRITE (6,2001) (2B(J),ATB;(J)), J = 1,MTB) 327. WRITE (6,2004) (2HE(J+1),AHE(J),FV(J),PH(J),FIARR(J) 337. J = 1, THE) 337. J = 1, THE) 337. ABED1 = ATB(1) 337. ABED1 = SQRT(4.0 * ABED1 / PI) 334. DQED1 = SQRT(4.0 * ABED1 / PI) 335. DVBEFF(1) = 0.0	
308. REAL (5,100.1). MTB;(2B(J);ATB(J); J = 1, MTB). 309. C 310. C FARRNG 1 2 3 311. C 1 VERTICAL INLINE ARRANGEMENT 312. C 2 VERTICAL STAGGERED ARRANGEMENT 313. C 3 VERTICAL STAGGERED ARRANGEMENT 314. C 2 HORIZONTAL INLINE ARRANGEMENT 314. C 3 HORIZONTAL INLINE ARRANGEMENT 314. C 4 HORIZONTAL INLINE ARRANGEMENT 315. C HORIZONTAL INLINE ARRANGEMENT 314. C 4 315. C 316. C 317. C HEAT EXCHANGE TUBES. 318. READ (5,1002) MTHE (ZHE(J+1),AHE(J),DTUBE(J),PV(J),PH(J),PH(J), 320. IF (AHE(J), GT, 0.0) GD TO 100 321. IF (AHE(J), GT, 0.0) GD TO 100 322. IF (BTUBE(J), EQ , 0.0) GD TO 100 323. WRITE (6,2002) (ZB(J),ATB(J)	
310. C IARRNG 1 2 3 311. C 1 VERTICAL INLINE ARRANGEMENT 312. C 2 VERTICAL STAGGERED ARRANGEMENT 313. C 3 VERTICAL STAGGERED ARRANGEMENT 314. C 4 HORIZONFAL INLINE ARRANGEMENT 314. C 4 HORIZONFAL INLINE ARRANGEMENT 315. C HORIZONFAL STAGGERED ARRANGEMENT 315. C HORIZONFAL STAGGERED ARRANGEMENT 315. C HORIZONFAL STAGGERED ARRANGEMENT 317. C HEAT EXCHANGE TUBES. BO 100.1 319. READ (5,1002) MEHE (ZHE(J+1), AHE(J), DTUBE(J), PV(J), PH(J), PH(J), 1 320. IF (AHE(J), GT, 0.0) GO TO 100 BO 100.1 321. IF (AHE(J), GT, 0.0) A1, A2, A3; A4; EONTINUE	
311.C111312.C2VERTICAL STAGGERED ARRANGEMENT313.C3314.C4315.C316.C317.CHEAT EXCHANGE TUBES.318.READ (5,1002) MEHE (ZHE(J+1);AHE(J);DTUBE(J);PH(J);319.C319.IFARR(J);320.DQ FOO. J = 1; MTHE321.IF (AHE(J);GT, 0.0) GD TD 100322.IF (DTUBE(J);EQ, 0.0) GD TD 100323.AHE(J) = PT * DTUBE(J); (PH(J);J);DTUBE(J);324.IO0325.WRITE (6:2000) A1:A2:A3:A4:326.WRITE (6:2002) (ZB(J);AFB(J); J) = 1;MTB)327.WRITE (6:2003)328.WRITE (6:2004) (ZHE(J+1);AHE(J);DTUBE(J);PH(J);FH(J);FH(J);331.Z1 = 1; 4THE)332.ABED1 = ATB(1)333.DBED1 = SQRT(4.0 * ABED1 / PI)334.DYBEFF(1) = 0.0	
312. C 2 VERTICAL STAGGERED ARRANGEMENT 313. C 3: HORIZONTAL INLINE ARRANGEMENT 314. C 4 HORIZONTAL INLINE ARRANGEMENT 314. C 4 HORIZONTAL INLINE ARRANGEMENT 314. C 4 HORIZONTAL INLINE ARRANGEMENT 315. C 317. C HEAT EXCHANGE TUBES. 318. READ (5,1002) MTHE (ZHE(J+1),AHE(J)*DTUBE(J)*PV(J)*PH(J)* 320. D0 f00. J = 1; MTHE 321. IF (AHE(J)*,GT, 0.0) G0 TO; 100 322. IF (DTUBE(J) .EQ. 0.0) G0 TO; 100 323. AHE(J) = PT * DTUBE(J) / (PH(J)*PV(J)). 324. 100 EONTINUE 325. WRITE (6*2000) A1*A2*A3*A4* 326. WRITE (6*2002) (ZE(J)*ATB(J)*, J) = 1*MTB) 327. WRITE (6*2003) 328. WRITE (6*2004) (ZHE(J+1)*, AHE(J)*, DTUBE(J)*PV(J)*PH(J)**IARR(J) 330. IJ = 1* ATB(1) 331. Z1 = ZB(1) 332. ABED1 = ATB(1) 333. DYBEF(1) = 0.0	
314. C 4 HORIZON FAL STAGGERED ARRANGEMENT 315. C 316. C 317. C HEAT EXCHANGE TUBES. 318. READ (5,1002) MTHE (ZHE(J+1),AHE(J),DTUBE(J),PV(J),PH(J), 319. IFARR(J),J = 1,MTHE) 320. D0 100. J = 1, MTHE 321. IF (AHE(J),GT, 0.0) G0 T0; 100 322. IF (DTUBE(J), EQ. 0.0) G0 T0; 100 323. AHE(J) = PT * DTUBE(J) / (PH(J),NPV(J)). 324. 100 EONTINUE 325. WRITE (6,2000) A1,A2,A3,A4; 326. WRITE (6,2001) 327. WRITE (6,2002) (ZB(J),ATB(J), J) = 1,MTB) 328. WRITE (6,2002) (ZB(J),ATB(J), J) = 1,MTB) 329. WRITE (6,2002) (ZB(J),ATB(J), J) = 1,MTB) 321. Zt = ZB(1) 331. Zt = ZB(1) 332. ABED1 = ATB(1) 333. DED1 = SQRT(4.0 * ABED1 / PI) 334. UV9EFF(1) = 0.0	
315. C $316.$ C $317.$ C HEAT EXCHANGE TUBES. $318.$ READ (5,1002) MTHE (2HE(J+1),AHE(J),DTUBE(J),PV(J),PH(J), $319.$ IFARR(J), J = 1,MTHE $320.$ D0 f00. J = 1, MTHE $321.$ IF (AHE(J), GT, 0.0) G0, T0; 100 $322.$ IF (BTUBE(J), EQ, 0.0) G0, T0; 100 $323.$ AHE(J) = PT * DTUBE(J) / (PH(J),PV(J)). $324.$ 100 $325.$ MRITE (6,2000) A1rA2rA3; A4; $326.$ WRITE (6,2001) $327.$ WRITE (6,2002) (2E(J), AFB;(J), J) = 1,MTB) $328.$ WRITE (6,2003) $329.$ WRITE (6,2004) (2HE(J+1), AHE(J), BTUBE(J), PV(J), PH(J), NIARR(J) $330.$ IJ = 1, 4THE) $331.$ Zt = ZE(1) $332.$ ABED1 = ATB.(1) $333.$ DBED1 = SQRT(4.0 * ABED1 / PI) $334.$ DVBEFF(1) = 0.0	
3H6. C 347. C HEAT EXCHANGE TUBES. 348. READ: $(5,1002)$ MTHE $(ZHE(J+1),AHE(J),*DTUBE(J),*PV(J),*PH(J),* 319. 1FARR(J),*, J = 1,*MTHE). 320. B0 ±00. J = 1, MTHE 321. IF (AHE(J)), GT, 0.0). GO, TO, 100. 322. IF (DTUBE(J)), EQ. 0.0). GO, TO, 100. 323. AHE(J) = PT * DTUBE(J) / (PH(J))*PV(J)). 324. IOO 325. WRITE (6,2000). A1*A2*A3*A4; 326. WRITE (6,2001) 327. WRITE (6,2002). (ZE(J))*ATE;(J); J) = 1; MTE;) 328. WRITE (6,2003) 329. WRITE (6,2004). (ZHE(J+1)*,AHE(J)*DTUBE(J)*PV(J)*PH(J)**IARR(J) 330. IJ = 1; TTHE) 331. Z1 = ZE(1) 332. ABED1 = ATE.(1) 333. DRED1 = SQRT(4.0 * ABED1 / PI) 334. DVBEFF(1) = 0.0 $	
317. C HEAT EXCHANGE TUBES. 318. READ (5,1002) MTHE (ZHE(J+1),AHE(J),DTUBE(J),PW(J),PH(J), 319. 1IARR(J),J,J = 1,MTHE). 320. B0 100. J = 1, MTHE 321. IF (AHE(J), GT, 0.0) G0 T0; 100. 322. IF (DTUBE(J), EQ, 0.0) G0 T0; 100. 323. AHE(J) = PT * DTUBE(J) / (PH(J),*PV(J)). 324. 100. 325. WRITE (6,2000) A1,A2,A3;A4; 326. WRITE (6,2002) (ZB(J),ATE;(J); J) = 1,MTE;) 327. WRITE (6,2003) 327. WRITE (6,2003) 328. WRITE (6,2003) 329. WRITE (6,2004) (ZHE(J+1),ATE;(J); J) = 1,MTE;) 328. WRITE (6,2004) (ZHE(J+1),AHE(J),BTUBE(J),PV(J),PH(J),FIARR(J); 330. IJ = 1, 4THE) 331. Z1 = ZB(1) 332. ABED1 = ATE(1) 333. DRED1 = SQRT(4.0 * ABED1 / PI) 334. DVBEFF(1) = 0.0	
318. READ (5,1002) MTHE (ZHE(J+1); AHE(J); DTUBE(J); PW(J); PH(J); 319. 1FARR(J); J = 1; MTHE) 320. BQ FOO. J = 1; MTHE 321. IF (AHE(J); GT, 0.0) GO, TQ; 100 322. IF (DTUBE(J); EQ. 0.0) GO TQ; 100 323. AHE(J) = PT * DTUBE(J) / (PH(J); APP(J)). 324. 100 325. WRITE (6; 2000) A1; A2; A3; A4; 326. WRITE (6; 2001) 327. WRITE (6; 2002) (ZB(J); ATE; (J); V J) = 1; MTE) 328. WRITE (6; 2003) 329. WRITE (6; 2004) (ZHE(J+1); AHE(J); DTUBE(J); PV(J); PH(J); IARR(J) 330. IJ = 1; (THE) 331. Z1 = ZB(1) 332. ABED1 = ATE(1) 333. DRED1 = SQRT(4:0 * ABED1 / PI) 334. DVBEFF(1) = 0:0	
319. 1 $IARR(J_{*}) J = 1 MTHE$) 320. B0 100. $J = 1$, MTHE 321. IF (AHE(J)) ,GT, 0.0) G0, T0; 100 322. IF (BTUBE(J)) .EQ, 0.0) G0' T0; 100 323. AHE(J) = PT * DTUBE(J) / (PH:(J))*PV(J).) 324. 100 325. WRITE (6,2000) A1*A2*A3*A4; 326. WRITE (6*2001) 327. WRITE (6*2002) (2B((J))*ATE;(J))* J) = 1*MTE) 328. WRITE (6*2003) 329. WRITE (6*2003) 329. WRITE (6*2003) 321. IJ = 1*ATHE) 331. Z1 = ZB(1) 332. ABED1 = ATB(1) 332. ABED1 = SQRT(4.0 * ABED1 / PI) 334. DVBEFF(1) = 0.0	11.
320. B0 100. J = 1, MTHE 321. IF (AHE(J), GT, 0.0) G0, T0; 100 322. IF (BTUBE(J), EQ, 0.0) G0 T0; 100 323. AHE(J) = PT * DTUBE(J) / (PH:(J)*PV:(J)*). 324. 100 325. WRITE (4,2000) A1*A2*A3*A4: 326. WRITE (4*2001) 327. WRITE (4*2002) (2B:(J)*ATE:(J)*, ATE:(J)*, J) = 1*MTE:) 328. WRITE (6*2003) 329. WRITE (6*2003) 330. IJ = 1, 4THE 331. Zt = ZE:(I) 332. ABED1 = ATE:(1) 333. DRED1 = SQRT(4.0 * ABED1 / PI) 334. UVB(F(1) = 0.0	
321. IF (AHE(J)), GT, 0.0) GO, TO; 100 322. IF (DTUBE(J)), EQ, 0.0) GO, TO; 100 323. AHE(J) = PT * DTUBE(J) / (PH:(J)*PV(J)*). 324. 100 325. WRITE (4,2000) A1*A2*A3*A4* 326. WRITE (4*2001) 327. WRITE (4*2002) (2E(J)*ATE(J)*, J) = 1*MTE) 328. WRITE (6*2003) 329. WRITE (6*2003) 330. IJ = 1, 4THE) 331. ZY = ZE(1) 332. ABED1 = ATE(1) 333. DRED1 = SQRT(4*0 * ABED1 /* PI) 334. UVB(F(1) = 0*0	
322. IF (BTUBE(J) .EQ. 0.0) GO TO: 100 323. AHE(J) = PE * DTUBE(J) / (PH:(J)*PV(J)*). 324. 100 325. WRITE (6,2000) A1*A2*A3*A4* 326. WRITE (6*2001) 327. WRITE (6*2002) (2B(J)*ATE(J)* J) = 1*MTB) 328. WRITE (6*2003) 329. WRITE (6*2003) 330. IJ = 1*ATHE) 331. Z1 = ZB(1) 332. ABED1 = ATB(1) 333. DRED1 = SQRT(4*0 * ABED1 / PI) 334. UVB(F(1) = 0*0	
323. $AHE(J) = PE * DTUBE(J) / (PH:(J):*PV(J):).$ 324. 100 325. $WRITE (6:2000) AI:A2:A3:A4:$ 326. $WRITE (6:2001)$ 327. $WRITE (6:2002) (2E(J):ATE(J):A) = 1:ATE)$ 328. $WRITE (6:2003)$ 329. $WRITE (6:2003)$ 330. $IJ = 1; ATHE$ 331. $ZI = 2E(1)$ 332. $ABEDI = ATE(1)$ 333. $DREDI = SQRT(4:0 * ABED1 / PI)$ 334. $UVBEFF(1) = 0:0$	
324. 100 EDNTINUE 325. WRITE ($6_{1}2000$) Al*A2*A3*A4* 326. WRITE ($6_{1}2000$) (2B(J_{1})*ATB(J_{1})* $J_{1} = 1*MTB$) 327. WRITE ($6_{1}2002$) (2B(J_{1})*ATB(J_{1})* $J_{1} = 1*MTB$) 328. WRITE ($6_{1}2003$) 329. WRITE ($6_{1}2004$) (2HE($J_{1}+1$)*AHE(J)*BTUBE(J)*PV(J)*PH(J)*FH(
326. $WRITE (6,2001)$ 327. $WRITE (6,2002) (2B(J_i), ATB(J_i), J) = 1, MTB)$ 328. $WRITE (6,2003)$ 329. $WRITE (6,2004) (2HE(J+1), AHE(J), BTUBE(J), PV(J), PH(J), MIARR(J)$ 330. $IJ = 1, 1THE$ 331. $ZI = 2B(1)$ 332. $ABED1 = ATB(1)$ 333. $BED1 = SQRT(4.0 * ABED1 / PI)$ 334. $DVB(I) = 0.0$	
327. $WRITE (6 \times 2002) (ZE(J_i), ATB_i(J_i), J) = 1 \times MTB_i)$ 328. $WRITE (6 \times 2003)$ 329. $WRITE (6 \times 2003)$ 330. $IJ = 1 \times 4TE$ 331. $ZI = ZE(1)$ 332. $ABED1 = ATB(1)$ 333. $BED1 = SQRT(4 \cdot 0 * ABED1 / PI)$ 334. $BVBEFF(1) = 0 \cdot 0$	
328. $WRITE (6.2003)$ 329. $WRITE (6.2004) (ZHE(J+1), AHE(J), BTUBE(J), PV(J), PH(J), MIARR(J)$ 330. $IJ = 1, 4THE$ 331. $ZI = ZB(1)$ 332. $ABED1 = ATB(1)$ 333. $BED1 = SQRT(4.0 * ABED1 / PI)$ 334. $BVB(1) = 0.0$ 335. $BVBEFF(1) = 0.0$	
329. WRITE ($6,2004$) ($ZHE(J+1),AHE(J),BTUBE(J),PV(J),PH(J),PIARR(J)$ 330. $1J = 1, 4THE$) 331. $ZI = ZB(1)$ 332. ABED1 = ATB(1) 333. BRED1 = SQRT(4.0 * ABED1 / PI) 334. BVBEFF(1) = 0.0 335. BVBEFF(1) = 0.0	
330. 1J = 1, 1THE) 331. Z1 = ZB(1) 332. ABED1 = ATB(1) 333. DRED1 = SQRT(4.0 * ABED1 / PI) 334. DVB(1) = 0.0 335. DVBEFF(1) = 0.0	
331. ޽ = ZB(1) 332. ABED1 = ATB(1) 333. DBED1 = SQRT(4.0 * ABED1 / PI) 334. DVB(1) = 0.0 335. DVBEFF(1) = 0.0	AKK(J)+
332. ABED1 = ATB.(1) 333. DBED1 = SQRT(4.0 * ABED1 / PI) 334. DVB(1) = 0.0 335. DVBEFF(1) = 0.0	
333. DŘED1 = SQRT(4.0 * АВЕД1 / РІ) 334. DVB(1) = 0.0 335. DVBEFF(1) = 0.0	
334. $UVB(1) = 0.0$ 335. $DVBEFF(1) = 0.0$	
335. DVBEFF(1) = 0.0	
336. $ZHE(1) = 0.0$	
$337.$ $DZAV_{2} = 30.0$	
$338. \qquad N_2 = IFIX(ZB(MTB)/DZAV)$	
339. DO, 10 I = 1 N	
340. $Z_{2}^{2} = Z_{1}^{2} + DZAV_{2}^{2}$	
$\begin{array}{rcl} 341. & BO & 20 & J = 1 \text{ MTHE} \\ 342. & IF (ZHE(J) , LE, Z1 , AND, ZHE(J+1) , GE, Z2) & GO & TO & 30 \end{array}$	
343. IF (ZHE(J) .LE, Z2 .AND, ZHE(J+1) .LT, Z2) GO TO 20	
344. $E_1 = \langle Z_2 - ZHE(J) \rangle / DZAV$	
345. EŽ = (ZHE(J) - Z1) / DZAV	
346. $AH = F1 * AHE(J) + F2 * AHE(J-1)$	
347. DFAT = F1 * DTUBE(J) + F2 * DTUBE(J-1)	
348. GO TO 40	
349. 30 $AH = AHE(J)$	
350. DIAT = DTUBE(J)	
351, 40 [,] CONTINUE 352, GO TO 50	
353. 20 CONTINUE	
354. 50 CONTINUE	
355. CALL AREA (Z2,DBED,ABED)	
354. $DVB(I+1) = 0.5 * (ARED+ARED1) * DZAV$	
357. $DVBEFF(I+1) = DVB(D+1) + (1.0 - 0.25 + AH + DIAT)$	
$358. \qquad Z_1 = Z_2$	
359. · ABEDI ≈ ABED	

360.	10	CONTINUE	
361.		FORMAT (4A4)	
362.	1001		
343.	1002		
364.		FORMAT (11/,20X,4A4,//)	
365.	2000	FORMAT ('0',T41,'HT.ABOVE DISTRIBUTO	0. PM/. TO1. / PRACE SEPTIANAL
366.	2001	1'AREA OF BED,SQ.CM.(*/)	RYCH FIBIY CROSS SECTIONAL
367	2002	FORMAT (T49,F8,4,T96,F10,3)	
368.			
	2003	<pre>FORMAT ('0',T6,'HEIGHT,CM',T20,'SP.H 1T58,'DIA.OF TURES(CM',T78,'VER.PITCH</pre>	LAI IKANS AKEAISU UN/LUIUN 7
369.			17CU. 11223. HOK+511CU1CU. 3
370.		2T113, TUBES ARRNGT (,/)	
371.	2004	FORMAT (T8,F6,2,T33,F8,4,T62,F6,3,T8	2,F6.3,T99,F6.3,T118,I2)
372.		RETURN	• •
373.		END	
374.		SUBROUTINE ELUT	
375.	C		
376.	C	THIS SUBROUTINE PERFORMS THE ENTRAIN	MENT AND ELUTRIATION CALCULATION
377.	Ċ	USING THE MASS BALANCE FOR EACH SIZE	FRACTION OF THE PARTICLES
378.	С		
379.		REAL MGAS	
380.		COMMON /A/ ZHE(30),AHE(30),DTUBE(30)	<pre>PV(30) + FH(30) + ZB(30) +</pre>
. 381.		1ATB(30), UMF(30), DVB(30), DVBEFF(30), U	FA(30),UTC(30),
382,		2EMF, RG, G, PI, HLMF, HLF, PAV, TAV, FMO, RHQ	
383.		3DPSVB, DPWMB, DCSVB, DCWMB, UO, MGAS, MTB	
384.		COMMON /C/ DIA(30), FRACTA(30), FRACTO	(30),DP(30),FRC(30),FRA(30),
385.		1WF(30),Q1(30),Q2(30),BB(30),RKI(30),	
386.		2ENTC(30,30), FRAEN(30), FRAEL(30), CU(3	
387.		3PFA(30),GFLOW,WCDAL,WAD,WB,WBC,WELUA	
388.		4XA,XW,RCHAR,CCHAR,WDIS,RHOAD,TDHC,HF	
389.		DIMENSION FFI(30),R(30),FO(30),HB(30	
390.			
		1DCWE(30) • DCE(30,30) • FCE(30,30) • WEA(3	00/7WEG(30/
391.		IF (HLMF .GT, 0.0) GO TO 1	
392.		HLMF = 0.5*HLF	
393.		VMF = VOLUME(HLMF)	
394,		WB = VMF*(1EMF)*RHOBED	
395.	1	CONTINUE	
396.		WTF = WCOAL*XA + WAD*RHOBED/RHOAD	
397.		BB(1) = 0.0	
398.		BB(NDP) = 0.0	
399.		DO 25 I = 2, NDF	
400.		FFI(I) = 0.0	
401.		IF (DP(I) .LT. 0.0125 .AND. DP(I) .6	
402.		IF (DP(I) .LT. 0.0063 .AND. DP(I) .G	SE. 0.0031) FFI(I) = 0.2
403.		IF (DP(I) LT , 0.0031) FFI(I) = 0.6	
404.	25	CONTINUE	
405.		FW = 0.075	
406.		FSW = 0.1	
407.		P1 = 0.0	
408.		$P_{2}^{2} = 0.0$	
409.		IF (HLF .EQ. 0.0) HLF = 2.0*HLMF	
410.		HT = HLF	
411.		CALL AREA(HT,DT,CSAREA)	
412.		RHOGAS = PAV*MGAS/RG/TAV	
413.		VISC = 3.72E-6*TAV**0.676	
414.		UO = GFLOW/CSAREA/RHOGAS	
415.		TDH = 0.429*U0**1.2*(11.43-1.2*ALOG(00)
416.		TDHC = TDH	
417.		HFB = ZB(MTB)-HLF	
418.		IF (TDH .GT. HFB) TDH = HFB	ORIGINAL PAGE IS
419		DO 10 I = 1 , NDP	UNIGHTER PERSON OT AT THEY
			OF POOR QUALITY
			¥

•

420.		CALL VEL(VISC;RHOGAS;G;RHOBED;DP(1);UmF(1);UTA(1))
421.		WF(I) = FRACTA(I)*WAD*RHOBED/RHOAD + FRACTC(I)*WCDAL*XA
422.		FRA(1)= WF(1)/WTF
423.		$Q_1(1) = 0.0$
424'.		$Q_2(I) = 0.0$
425.+	10	CONTINUE
426.	С	WRITE(6,11) (I,UTA(I),UMF(I),I≕1,NDP)
427.	C 11	FORMAT ('0',5X,'I,UTA,UMF = ',I5,1P2E12,3)
428.		WDIS \Rightarrow 0.01 ·
429 🗸	С	
430.	C	RK REPRESENTS THE ATTRITION RATE CONSTANT AND IS ASSUMED TO BE THE
431.	č	FOR LIMESTONE, ASH, AND CHAR PARTICLES
432.	č	, on end bond many mar of min that ideed
433.	4	RK = 0.003/3600./30.48
434.		$E W B_{\rm c} = 0.02 \times W B$
435.		DWDIS = 0.3*WTF
436.		INDEX = 0
437.		W(1) = 0.0
438.		DO 30 L = $1,100$
439.	12	CONTINUE
440%		SUMA = 0.0
441.		DO S I = 20 NDP
442.		IF ((UTA(I)-UQ) .LT. 0.2*UQ) FRA(I) = 0.0
443.		SUMA = SUMA + FRA(I)
444.	5	CONTINUE
445.	-	$DO 15 I = 1 \cdot NDP $
446		FRA(I) = FRA(I)/SUMA
447.	15	CONTINUE
448.	1 V	
		WBC = 0.0
449.		D0 40 I = 2 NDP
450.		BB(I) = FRA(I) * WB
451.		R(I) = 0.0
452.		DIFF = UO-UMF(I)
453.		PFA(I) = FFI(I)*RK*DIFF*WB
454.		IF (FRA(I) +EQ+ 0+0) GD TD 55
455.		CU(1) = 1.0
456.		PO, 45 K = 2,NDP
457.		CU(K) = CU(K-1) - FRA(K)
458	45	CONTINUE
459.		IF $(UMF(I))$, GE. UO) BIFF = 0.0
460.		W(I) = (WF(I)+FFA(I)+W(I-1))*(BP(I+1)/DP(I))**3
461.		DR = Q1(I)*(1,-P1)+Q2(I)*(1,-Q1(I))*(1,-P2)+(1,-Q1(I))*(1,-Q2(I))
462.		IF (UMF(I) $, GE. U0) = GO = TO = 56$
463.		ARG = -10.488QRT(UTA(I)/U0)*(UMF(I)/DIFF)**0.25
464.		E(I) = (18,0*EXP(ARG))*GFLOW
465.		FO(I) = DIFF*CSAREA*FW*FSW*(1,-EMF)*RHOBED*FRA(1)
466.		R(I) = FO(I)*EXP(TDHC/275.0*ALOG(E(I)*FRA(I)/FO(I)))
467.	56	CONTINUE
468.		ANR = WF(I) + PFA(I) + W(I-1)
469.		1-W(I)-RK*BIFF*W8*FRA(I)*CU(I-1)-R(I)*DR
470.		IF (ANR .GT. 0.0) GO TO 57
471.		FRA(I) = FRA(I) * 0.5.
472.		GO [,] TO 12
473.	57	CONTINUE
474.		BB(I) = WB*ANR/WDIS
475.	55	CONTINUE
476-		WBC = WBC + BB(I)
477.	С	WRITE(6,110)I,FRA(I),ANR,E(I),BB(I),WF(I),W(I),CU(I)
478.	C110	FORMAT $(2X_r/I_rFRA_rANR_rE_rBB_rWF_W_rCU = (12) IP7E11.3)$
479.	40	CONTINUE

		•	
480.	C	WRITE (6,111) L,WB,WEC,WDIS	
481.	Č111	FORMAT ('0', $5X$,'L,WB,WBC,WBIS = ',I2,1P3E12.3)	
482.		ERR = WBC-WB	
483.		CALL CRRECT (L, INDEX, DWDIS, X1, X2, WDIS, E1, E2, ERR, EWB)	
484.		IF (WRIS .LT. 0.0) WDIS = 0.0	
485.		IF (INDEX .EQ. 2) GO TO 70	
486.		DO 60 I = 1, NDP	
487.		FRA(I)= BB(I)/WBC	
488.	60	CONTINUE	
489.	30	CONTINUE	
490.	70	CONTINUE *	
491.	C	USING THE GAS REYNOLDS NUMBER, PECLET NUMBER IS CALCULATED	
492.	С	AND HENCE THE GAS DISPERSION COEFFICIENT AND THE NO, OF	
493.	С	COMPARTMENTS IN THE FREEBOARD AND THE AVERAGE COMPARTMENT SIZ	ZΕ
494.	Ċ		
495	Ŷ	REY = DT*U0*RHOGAS/VISC	
496.		IF (REY .LT. 2000.0) GO TO 300	
497		PECI = 3.E7/REY**2.1 + 1.35/REY**0.125	
478.		GO TO 310	
499.	300	B = 4.26*(TAV/1800.0)**1.75/PAV	
500.		SC = VISC/RHOGAS/D	
501.		PECI = $1./REY/SC + REY*SC/192.$	
502.	310	EZ = U0*DT*PECI	
503.		$DZ = 2.0 \times EZ/U0$	
504.	С		
505.	č	SOLIDS ENTRAINMENT RATE ALONG THE FREEBOARD IS CALCULATED	
506.	č	Sourd anthrithent while heads the incertains to checkenies	
507.	C	HB(1) = 0.0	
-			
508.		BO 320 K = 1,30	
509.		IF (N,GT,1) HB(K) = HB(K-1) + DZ	
510.		IF (HB(K) \cdot GE. TDH) HB(K) = TDH	
511.		DO $340 I = 2$, NDP	
512.		$R(\mathbf{I}) = 0 \cdot 0$	
513.		DIFF = UO - UMF(I)	
514.		IF (FRA(I) .EQ. 0.0) GO TO 340	
515.		IF $(UMF(I), GE, UO)$ GO TO 340	
516.		ARG = -10.4*SQRT(UTA(I)/U0)*(UMF(I)/DIFF)**0.25	
517.		$E(I) = 18.0 \times EXP(ARG) \times GFLOW$	
518.		<pre>FO(I) = DIFF*CSAREA*FW*FSW*(1EMF)*RHOBED*FRA(I)</pre>	
519.		R(I) = FO(I)*EXP(HB(K)/275.0*ALOG(E(I)*FRA(I)/FO(I)))	
520.	340	CONTINUE	
521.		WENTA = 0.0	
522.		DO 350 I = $2,NDP$	
523.		ENTA(I) = R(I)	
524.		IF (FRA(I) .ER. 0.0 .AND. U0 .GT. 0.833*UTA(I))	
525.		1 ENTA(I) = WF(I) + PFA(I)	
526.		WENTA = WENTA + ENTA(I)	
	750		
527. 528.	350		
		WEA(K) = WENTA	
529+		DO 360 I = 2, NDP	
530.		FRAEN(I) = ENTA(I)/WENTA	
531.		IF (FRAEN(I) ,LT, $1 \cdot E - 3$) FRAEN(I) = $0 \cdot 0$	
532.	360	CONTINUE	
533.		SUMA = 0.0	
534+	•	SUMB = 0.0	
535.		DO 370 I = 2,NDF	
536.		SUMA = SUMA + FRAEN(I)/DP(I)	
537.		SUMB = SUMB + FRAEN(T) * $$	
538.	370	CONTINUE ORIGINAL PAGE	
539.	-, v		
- · u		OF POOR QUALITY	

•

540,		DPWE(N) = SUMP
541,		IF (HB(N) ,EQ, TDH) GO TO 380
542.	320	
	_ .	CONTINUE
543.	380	hT = h
544.		WELUA = 0.0
545.		$DO_{90} I = 2 NDF$
546.		ELUA(I) = (1Q1(I))*(1Q2(I))*ENTA(I)
547.		WELUA = WELUA + ELUA(I)
548.	80	CONTINUE
	80	
549.		10 90 I = 2 NDP
550.		FRAEL(I) = ELUA(I)/WEEUA
551.		IF (FRAEL(I) \cdot LT. 1 \cdot E-3) FRAEL(I) = 0 \cdot 0
552,	90	CONTINUE
553.		SUMA = 0.0
554.		SUMB = 0.0
-		
555.		SUMC = 0.0
556.		SUMB = 0.0
557.		DO 100 I = 2 , NDP
558.		SUMA = DP(I)*FRA(I)+SUMA
559.		SUMB = FRA(I)/DP(I)+SUMB
540.		SUMC = DP(I)*FRAEN(I)+SUMC
561.		SUMD = FRAEN(I)/DP(I)+SUMD
562.	100	CONTINUE
563.		DPSVB = 1/SUMB
564.		DPWMB = SUMA
565.		BPSVE = 1,/SUMD
566.		DPWME = SUMC
567.		WRITE (6,101) WDIS,WTF,WELUA,DPSVB,DPWMB,
568.		1(DP(I),FRA(I),FRAEL(I),I=2,NDP)
569.	101	FORMAT ('0',T10,'WDIS,WTF,WELUA,DPSVB,DPWMB = ',
570.		1SF9.57/, '0', T10, 'PAR. DIA., CM', T30, 'BED SIZE FRACTION', T60, ' ELUT.
571.		2SIZE FRACTION',/,'0',(T10,1PE10.3,T33,1PE10.3,T63,1PE10.3,/))
572.	С	
573.	C	, , , , , , , , , , , , , , , , , , ,
574.	č	SIMILAR ENTRAINMENT CALCULATIONS ARE PERFORMED FOR CHAR
575.	č	CALCOLAN TORS ARE PERFORMED FOR CHAR
576.		
	C,	
	Ļ	DO 210 I = 1, NDP
577.	Ļ	DO 210 I = 1;NDP WF(I) = FRACTC(I)*WCOAL
	с ,	WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I)
577.		WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I)
577. 578. 579.		WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I))
577. 578. 579. 580.		WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE
577. 578. 579. 580. 581.		WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995
577. 578. 579. 580. 581. 582.		WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0
577. 578. 579. 580. 581. 582. 583.		WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001
577. 578. 579. 580. 581. 582. 583. 584.		<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001</pre>
577. 578. 579. 580. 581. 582. 583.		<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0</pre>
577. 578. 579. 580. 581. 582. 583. 584.		<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1;30</pre>
577. 578. 579. 580. 581. 582. 582. 583. 584. 585. 586. 587.		<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1;30 CONTINUE</pre>
577. 578. 579. 580. 581. 582. 582. 584. 585. 586. 586. 588.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1;30 CONTINUE SUMA = 0.0</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 585. 586. 587. 588. 589.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1;30 CONTINUE SUMA = 0.0 D0 150 I = 2;NDF</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 585. 588. 588. 589. 589. 590.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC; RHOGAS; G, RHOCH, DP(I), UMF(I), UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 DD 200 L = 1,30 CONTINUE SUMA = 0.0 DD 150 I = 2; NDP IF ((UTC(I)-U0); LT, 0.2*U0) FRC(I) = 0.0</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 586. 588. 588. 589. 590. 591.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 INU = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1;30 CONTINUE SUMA = 0.0 D0 150 I = 2;NDF IF ((UTC(I)-U0);LT. 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I)</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 587. 588. 589. 590. 591. 592.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC; RHOGAS; G, RHOCH, DP(I), UMF(I), UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 DD 200 L = 1,30 CONTINUE SUMA = 0.0 DD 150 I = 2; NDP IF ((UTC(I)-U0); LT, 0.2*U0) FRC(I) = 0.0</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 586. 588. 588. 589. 590. 591.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC; RHOGAS; G; RHOCH; DP(I); UMF(I); UTC(I)) CONTINUE ETCA = 0.9995 INU = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1; 30 CONTINUE SUMA = 0.0 D0 150 I = 2; NDF IF ((UTC(I)=0); LT. 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I)</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 587. 588. 589. 590. 591. 592.	210	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC; RHOGAS; G, RHOCH; DP(I); UMF(I); UTC(I)) CONTINUE ETCA = 0.9995 INU = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1; 30 CONTINUE SUMA = 0.0 D0 150 I = 2; NDF IF ((UTC(I)=0); LT: 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I) CONTINUE</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 584. 585. 587. 587. 589. 590. 591. 592. 593. 594.	210 211 150	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC; RHOGAS; G; RHOCH; DP(I); UMF(I); UTC(I)) CONTINUE ETCA = 0.99995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1; 30 CONTINUE SUMA = 0.0 D0 150 I = 2; NDF IF ((UTC(I)=U0); LT: 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I) CONTINUE D0 160 I = 1; NDP FRC(I) = FRC(I)/SUMA</pre>
577. 578. 579. 580. 581. 582. 583. 584. 585. 584. 585. 588. 588. 588. 588	210 211 150 160	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC; RHOGAS; G; RHOCH; DP(I); UMF(I); UTC(I)) CONTINUE ETCA = 0.99995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1;30 CONTINUE SUMA = 0.0 D0 150 I = 2; NDF IF ((UTC(I)=0); LT, 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I) CONTINUE D0 160 I = 1; NDF FRC(I) = FRC(I)/SUMA CONTINUE</pre>
577. 578. 579. 580. 581. 582. 582. 583. 584. 585. 584. 588. 588. 588. 588. 589. 590. 590. 592. 592. 593. 595. 595.	210 211 150	<pre>WF(I) = FRACTC(I)*WCOAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.99995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 D0 200 L = 1;30 CONTINUE SUMA = 0.0 D0 150 I = 2;NDF IF ((UTC(I)=U0);LT, 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I) CONTINUE D0 160 I = 1;NDF FRC(I) = FRC(I)/SUMA CONTINUE XAV = ((WCOAL*RCHAR-CENT)*CCHAR*(1ETCA))/WDIS</pre>
577. 578. 579. 580. 581. 582. 582. 582. 582. 582. 582. 582. 582	210 211 150 160	<pre>WF(I) = FRACTC(I)*WCDAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 DD 200 L = 1;30 CONTINUE SUMA = 0.0 DD 150 I = 2;NDP IF ((UTC(I)=0);LT: 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I) CONTINUE DD 160 I = 1;NDP FRC(I) = FRC(I)/SUMA CONTINUE XAV = ((WCOAL*RCHAR=CENT)*CCHAR*(1.=ETCA))/WDIS CBED = XAV*WBC/CCHAR</pre>
577. 578. 579. 581. 582. 582. 582. 582. 582. 588. 588. 588	210 211 150 160	<pre>WF(I) = FRACTC(I)*WCDAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 DD 200 L = 1;30 CONTINUE SUMA = 0.0 DD 150 I = 2;NDP IF ((UTC(I)=U0);LT: 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I) CONTINUE B0 160 I = 1;NDP FRC(I) = FRC(I)/SUMA CONTINUE XAV = ((WCOAL*RCHAR-CENT)*CCHAR*(1ETCA))/WDIS CBED = XAV*WBC/CCHAR CELU = 0.0</pre>
577. 578. 579. 580. 581. 582. 582. 582. 582. 582. 582. 582. 582	210 211 150 160	<pre>WF(I) = FRACTC(I)*WCDAL FRC(I) = FRACTC(I) CALL VEL(VISC;RHOGAS;G;RHOCH;DP(I);UMF(I);UTC(I)) CONTINUE ETCA = 0.9995 IND = 0 DETC = -0.001 EETC = 0.001 CENT = 0.0 DD 200 L = 1;30 CONTINUE SUMA = 0.0 DD 150 I = 2;NDP IF ((UTC(I)=0);LT: 0.2*U0) FRC(I) = 0.0 SUMA = SUMA + FRC(I) CONTINUE DD 160 I = 1;NDP FRC(I) = FRC(I)/SUMA CONTINUE XAV = ((WCOAL*RCHAR=CENT)*CCHAR*(1.=ETCA))/WDIS CBED = XAV*WBC/CCHAR</pre>

.

600.		CBEDC = 0.0
601.		00 220 I = 2,NDP
602.		BB(I) = FRC(I)*CBED
603.		$R(\mathbf{F}) = 0 \cdot 0$
604.		DIFF = UO-UMF(I)
605.		FFA(I) = FFI(I)*RN*DIFF*CBED/CCHAR
696.		FSC = 0.01
607.		IF (FRC(1), EQ. 0.0) GO TO 256
608.		BO 252 K = 2_{1} NDP
609.	252	CU(k) = CU(k-1) - FRC(k)
610.		IF (UMF(I), GE, UO) DIFF = 0.0
611.		$W(I) \Rightarrow (WF(I)+PFA(I)+W(I-1))*(DP(I+1)/DP(I))**3$
612.		BR = Q1(I)*(1,-P1)+Q2(I)*(1,-Q1(I))*(1,-P2)+(1,-Q1(I))*(1,-Q2(I))
613.	250	IF (UMF(I),GE, U0) GQ TO 255
614.		ARG = -10.4*SQRT(UTC(I)/U0)*(UMF(I)/UIFF)**0,25
615.		$E(1) = (18.0 \times EXF(ARG)) \times GFLOW$
616.		FO(I) = DIFF*CSAREA*FW*FSW*(1EMF)*RHOBED*XAV*FRC(I)
517.		R(I) = FO(I) * EXP(TDHC/275.0*ALOG(E(I) * FRC(I)/FO(I)))
619.	255	CONTINUE
619.	1,00	Y02 = 0.15
620.		RHOCCH = RHOCH*CCHAR
621.		CALL ATTR(RHOCCH;TAV,DP(I);PAV;YQ2;RG;TB;RK1(I))
622.		
623.		ANR ≑/WF(I)+PFA(I)+W(I→1)-W(I) 1.88*0155*050718*0500(I)*00011 \> 001(I)*0555*0500(I)*0500 B(I)*055
624.		1-RK*DIFF*CBED*FRC(I)*CU(I-1)-RKI(I)*CBED*FRC(I)*FSC-R(I)*DR
625.		IF (ANR .GT. 0.0) GO TO 175
626.		FRC(I) = FRC(I)*0.5 G0 TO 211
627.	175	CONTINUE
628.	175	
	6 6 7	BB(I) = WB*ANR/WDIS
629.	256	CONTINUE
630.	~ `	CBEDC = CBEBC + BB(I)
631.	C	WRITE(6,170)I,FRC(I),ANR,E(I),BB(I),W(I),WF(I),RKI(I)
632.		FORMAT (2X, 'I, FRA, ANR, E, BB, W, WF, RKI = ', 12, 1P7E11.3)
633.	220	CONTINUE
<u> </u>	-	DO 400 I = 2.NDP
635.		DIFF = UO - UMF(I)
636+		IF (FRC(I) .ER. 0.0) GD TO 410
637.		IF (UMF(I),GE, UO) GO TO 410
638.		ARG = -10.4*SQRT(UTC(I)/U0)*(UMF(I)/DIFF)**0.25
639.		$E(I) = 18.0 \times EXP(ARG) \times GFLOW$
640.		FO(I) = CSAREA*DIFF*FW*FSW*(1EMF)*RHOBED*XAV*FRC(I)
641.		GO TO 415
	410	
643.	415	ENTC(1,1) = FO(1)
644+		IF (FRC(I) .EQ. 0.0 .AND. UO .GT. 0.833*UTC(I)) ENTC(1,I) = WF(I)*
645.		1RCHAR + PFA(I)
<u> 446</u> .		$CENT \doteq CENT + ENTC(1,1)$
647.	400	CONTINUE
648.	Ç	
649.	С	CHAR ENTRAINMENT RATE AS A FUNCTION OF THE FREEBOARD HEIGHT IS
650.	Ċ	CALCULATED TAKING INTO ACCOUNT THE DECREASING PARTICLE SIZE DUE TO
651.	С	CHAR COMBUSTION
652.	С	•
653.		WEC(1) = CENT
654.		D0 430 I = 2, NDP (OD-
655.		DCE(1,I) = DP(I) $OR[GINAr >$
656.		DC 430 I = 2,NDP DCE(1,I) = DP(I) FCE(1,I) = ENTC(1,I)/CENT CONTINUE ORIGINAL PAGE IS OF POOR OUT
657,	430	$\begin{array}{llllllllllllllllllllllllllllllllllll$
638.		$TA_{12} = 2 L = 2 L = 2$
659.		CENT = 0.0

550.		$\mu 0$ 440 I = 2.NBP
651.		IF (DCE(J-1+1) .GT. 0.0) GO TC 435
óó2.		RT =, 1,E6
56 3 .		TB = 0.0
664.		GQ TQ 436
665.	435	CONTINUE
666.	100	
		CALL VEL(VISC;RHOGAS;G;RHOCH:DCE(J-1;I);UMF(I);UTC(I))
667.		HT = HLF + HB(J)
568.		CALL AREA (HT,DT,CSAREA)
56%.		UAV = GFLOW/CSAREA/RHOGAS
370.		$RT = \langle HB(J) - HB(J-1) \rangle / ABS(JAV - UTC(I) \rangle$
671.		$Y_{02} = 0.09$
672.		CALL ATTR (RHOCCH,TAY,DCE(J-1,I),PAY,YO2.RG,TB,RKI(())
673.		IF (TB.GI.RT) DCE(J,I) = (1RT/TB)**0.5*DCE(J-1,I)
074,.	436	CONTINUE
675.		IF (TB ,LE, RT) $DCE(J,I) = 0,0$
676.		IF (DCE(J/I) +GT+ 0+0) G0 T0 437
677.		ENTC(J,I) = 0.0
678.		GO, TO 438
679.	437	CONTINUE
680.		CALL VEL(VISC,RHOGAS,G,RHOCH,DCE(J,I),UMF(I),UTC(`)
681.		IF (FRC(I) .GT, 0.0 .AND. UTC(I) .GT. JO) GO TO 439
682.		CONV = 1,
		•
583.		IF (TB .GT. RT) CONV = 1 (1RT/TB)**1.5
684 .		ENTC(J,I) = ENTC(J-1,I)*(1,-CONV)
68 3 ,.		GO TO 439
686.	439	CONTINUE
687,		CALL VEL(VISC,RHOGAS,G,RHOCH,DP(1),UMF(1),UTC(1))
688.		RT = HB(J)/ABS(UO-UTC(I))
687.		DIFF = UO - UMF(I)
590.		IF (UMF(I),GE, UO) GO [,] TO,431
691.		ARG = -10,4*SQRT(UTC(I)/UO)*(UMF(I)/DIFF)**0.25
592.		$E(I) = 18.0 \times EXP(ARG) \times GFLOW$
693.		
		IF (FO(I) .GT. 0.0) R(I) = FO(I)*EXP(HB(J)/275.0*ALOG(E(I)*
674.		1FRC(I)/FO(I)))
395.		CONV = 1.0
696.		IF (TB .GT. RT) CONV = $1 - (1 - RT/TB) * * 1.5$
697.		R(I)=R(I)*(1,-CONV)
698.		GQ TQ 432
479.	431	
		R(I) = 0.0
700.	432	$ENTC(J_{I}) = R(I)$
701.	438	CONTINUE
702.		CENT = CENT' + ENTC(J,I)
703.	44C	CONTINUE
704.	1.1.2	WEC(J) = CENT
705.		DO: 450 I = 27NDP
706.		IF (CENT .GT. 0.0) FCE(J_{1} I) = ENTC(J_{1} I)/CENT
707.		IF (CENT .EQ. 0.0) $FCE(J,I) = 0.0$
708.	450	CONTINUE
709.	C	WRITE(6,190)CELU,CENT,DCSVB,DCWMB,(DP(I),FRC(I),DCE(3,1),FCE(3,1)
	-	
710.	C	11=2,NDP)
711.	420	CONTINUE
712.		DO 460 h = 1 kT
713.		SUMA = 0.0
714.		SUMB = 0.0
715.		DO 470 I = 2, NDP
716.	*	IF (DCE(N,I) .GT. 0.0) SUMA = SUMA ↔ FCE(N,I)/DCE(N,I)
717,		SUMB = SUMB + FCE(N,I)*DCE(N,I)
718.	470	CONTINUE
719.		DCSE(K) = 0.0

ç

720.		IF (SUMA .GT. 0.0) $DCSE(K) = 1.7SUMA$
721.		DCWE(N) = SUMB
722.	460	CONTINUE
723.		CELU = WEC(NT)
724.		ETCC = 1.~ WRIS*XAV/((WCDAL*RCHAR-CENT)*CCHAR)
725.		
	0	XAV = ((WCOAL*RCHAR-CENT)*CCHAR*(1.~ETCC))/WDIS
726.	C	WRITE (6,180) L, CBED, CBEDC, XAV, ETCA, ETCC, CELU, CENT
727.	C180	
728.	С	11P7E12.3)
729,		ERR = ETCA - ETCC
730.	-	CALL CRRECT(L,IND,DETC)X1,X2,ETCA,E1,E2,ERR,EETC)
731.		IF (IND .EQ. 2) GO TO 230
732.		BO 240 I = 2, NDP
733.		FRC(I) = BB(I)/CBEDC
734,	240	
735.		
	200	CONTINUE
736.	230	CONTINUE
737.		SUMA = 0.0
738.		SUMB = 0.0
739.		BO 270 I = 2, NDP
740.		SUMA = DP(I)*FRC(I) + SUMA
741.		SUMB = FRC(I)/DP(I) + SUMB
742,	270	CONTINUE
743.		DCSVB = 1./SUMB
744.		DCWMB = SUMA
745.		EFF = 1(WDIS*XAV+CELU*CCHAR)/(WCDAL*(1XW)*XC)
746.		WRITE (6,190) CELU; CENT; DCSVB; DCWMB; (DP(I); FRC(I); DCE(NT; I);
747.		$1FCE(KT_{i}I)_{i}I=2NDP)$
748.		
		WRITE (6,390) (Λ ,HB(K),DPSE(K),DPWE(Λ),WEA(K),K=1, Λ T)
749.		WRITE (6,490) (K,HB(K),DCSE(K),DCWE(K),WEC(K),K=1,KT)
750.	490	FORMAT ('0',9X,'K',9X, FREEBGARD HT.',9X, DCSE',12X, DCWE',12X, EN
751.		1T.RATE',//,(9X,12,8X,1PE11.3,8X,1PE11.3,6X,1PE11.3,6X,1PE11.3))
752.	390	FORMAT ('0',9X,'K',9X,'FREEBOARD HT.',9X,'DPSE',12X,'DPWE',12X,'EN
753.		1T.RATE',//,(9X,12,8X,1PE11.3,8X,1PE11.3,6X,1PE11.3,6X,1PE11.3))
754.	190	FORMAT ('0',9X,'CELU,CENT,DCSVB,DCWMB = ',1P4E12.3,/,
755.		1'0',9X,'BEB FAR.DIA.,CM',5X,'BED SIZE FRACTION',5X,'ENT.FAR.DIA.,
756.		2CM1,5X, 'ENT.SIZE FRACTION',/,'0',(T10,1FE11.3,T31,1FE11.3,T54,
757.		31PE11.3,T74,1PE11.3,/))
758.		RETURN
759.		END
760.		SUBROUTINE VEL(VISC;RHOGAS;G;RHOS;DPAR;UM;UT)
761. 762.	C	THE DEPENDENTING ON OUR ATER THE MENTARM ELUTRIZATION OF COTTY AND
	C	THIS SUBROUTINE CALCULATES THE MINIMUM FLUIDIZATION VELOCITY AND
763.	C	THE TERMINAL VELOCITY OF THE PARTICLE
764.	С	
765.		A1 = 33.7**2+0.0408*DPAR**3*G*(RHOS-RHOGAS)*RHOGAS/VISC**2
766.		UM = VISC/(DPAR*RHOGAS)*(SQRT(A1)-33.7)
767.		UT = (4.0*(RH0S-RH0GAS)**2*G**2/225.0/RH0GAS/VISC)**(1./3.)*DPAR
768.		REP = DPAR*RHOGAS*UT/VISC
769.		IF (REP .GT. 0.4 .AND. REF .LE. 500.0) GO TO 210
770.		UT = G*(RHOS-RHOGAS)*DPAR**2/18,/VISC
771.		REP = DPAR*RHDGAS*UT/VISC
772.		IF(REP.LE.0.4) GO TO 210
773.		UT = SQRT(3.1*0*(RHQS-RHQGAS)*DPAR/RHQGAS)
774.	210	RETURN
775.	210	
776.		FUNCTION VOLUME (ZZ)
777.		COMMON /A/ ZHE(30), AHE(30), DTUBE(30), PV(30), PH(30), ZB(30,
778.		1AT8(30),UMF(30),DVB(30),DVBEFF(30),UTA(30),UTC(30),
779.		2EMF,RG,G,PI,HLMF,HLF,PAV,TAV,FMO,RHOCH,RHOBED,DZAV,VMF,XAV.ETCC)

780. 781. 782. 783. 784. 785. 786.	с	3DFSVB, DFWMB, DCSVB, BCWMB, UO, MGAS, MTB COMMON /C/ BIA(30), FRACTA(30), FRACTC(30), DP(30), FRC(30), FRA(30, 1WF(30), Q1(30), Q2(30), BB(30), RNI(30), W(30), E(30), ENTA(30), ELUA(30), 2ENTC(30, 30), FRAEN(30), FRAEL(30), CU(30), 3FFA(30), GFLOW, WCOAL, WAD, WB, WBC, WELUA, CELU, EFF, XC, XCF, 4XA, XW, RCHAR, CCHAR, WDIS, RHOAD, TDHC, HFB, NDP
787.	č	CALCULATON OF THE EFFECTIVE VOLUME OF THE BED GIVEN THE HEIGHT
788.	č	
789.		N = IFIX (ZZ/DZAQ)+1
790.		IF $(N,EQ,1)$ N = 2
791.		SUM = 0.0
792.		$\overline{Z}N = FLOAT(\overline{N}-1)*\overline{D}ZAV$
793.		DO 100 I = 2 , N
794.		SUM = SUM + DVBEFF(I)
795.		IF (I .LT. N) GD TO 100
796.		A1 \doteq ($ZZ - ZN$) / DZAV
797.		SUM = SUM + BYBEFF(I) * A1
798.	100	CONTINUE
799.		VOLUME = SUM
800.		RETURN
801.		END

APPENDIX II

INPUT TO ELUTRIATION PROGRAM

1234567890	12345678901234567890123456789012345678901234567890123456789012345678901234567890						
A1 A2 A3	A4						
NASA LEWIS	1A		*				
MTB							
4							<i>.</i> .
ZB(1)	ATR(1)	ZB(2)	ATB(2)	ZB(3)	ATB(3)	ZB(4)	ATB(4)
0.0 MTHE	405.0	62.7	405.0	81.3	370.0	280+0	2193.0
5							
ZHE(2)	AHE(1)	DTUBE(1)	PV(1)	PH(1)	IARR(1)		
24.0	0.0	0.0	0.0	0.0	Ō	ł	
ZHE(3)	AHE(2)	DIARE(3)	PV(2)	PH(2)	IARR(2)		
40.0	0.1744	1.27	8+0	2.86	3		
ZHE(4)	AHE (3)	DTUBE(3)	·6A(3)	PH(3)	IARR(3)		
48.0 ZHE(5) ¹	0.0	0.0	0.0 PV(4)	0.0	C		
56.0	AHE(4) 0.1744	DTUBE(4) 1.27	8.0	PH(4) 2.86	IARR(4)		
ZHE(6)	AHE (5)	DTURE(5)	PV(5)	2+80 PH(5)	IARR(5)		
290.0	0.0	0.0	0.0	0+0	10002		
NUP							
21							
DIA(1)	DIA(2)	DIA(3)	DIA(4) '	DIA(5)	DIA(6)	DIA(7)	DIA(8)
0.283	0.238	0.2	0+168	0.141	0.119	0.1	0.0841
DIA(9)	DIA(10)	DIA(11)	BIA(12)	DIA(13)	DIA(14)	DIA(15)	BIA(16)
0.0707	0.059	0.05	0.042	0.035	0.0297	0.0212	0.0177
DIA(17) 0.015	BIA(18) 0.010	DIA(19)	DIA(20)	DIA(21)			
	FRACTA(2)	0.0074	0.0045	0,001	FRACTA(6)	EBACTA(7)	CPACTA(0)
0.0	0.0038	0.0854	0,1433	0.1856	0.1406	0.1259	0.1424
				• •	FRACTA(14)		
0.0622	0.0255	0.0123	0.0114	0.0091	0.0053	0.0088	0.0032
FRACTA(17)	FRACTA(18)	FRACTA(19)	FRACTA(20)	FRACTA(21)	,		
0.0026	0.0135	0.0068	0.0123	0.001			
FRACTC(1)	FRACTC(2)	FRACTC(3)	FRACTC(4)	FRACTC(S)	FRACTC(6)	FRACTC(7)	FRACTC(9)
0.0	0.0138	0+0194	0.0747	0.15	0.096	0.0963	0,1172
					FRACTC(14)		
0.0766 FRACTC(17)	0.0825	0.0594	0.0553 FRACTC(20)	0,0538	0.0425	0.0356	0.0163
0.0025	0,0069	0,0009	0.0003	0.0	,		
	MEL2		010000	0.0			
LIMEST13							
XCAO	XMGO	XSI02	XC02				
0.557	0.003	0.004	0.434			•	
NAMEC1 NA PTGHCOAL	MEC2						,
XC	×н	XN	XS	xo	×ω	XA	Vh
0.754	0.051	0.015	0.02	0.076	0.022	0.084	0.412
HLMF	HLF	PAV ·	TAV				
0.0	141.9	5.15	1151.0				
WCDAL	WAD	CAS	UO A A	FMF	EXAIR		
4.51	0.4638	0.0	0.0	0.0	0.639		
1234567890	1234567890	1234567890	01234567890	1234567890)1234567890	1234567890	1234507890

ORIGINAL PAGE IS OF POOR QUALITY

NASA LEWIS TA

		HT ARETYE	DISTRIBUTOR.CH	CROSS SECT	TENNAL ANEA OF BED+50+	C M.
		;	0+9000 52+7000 81+3000 980+0000		405.000 405.000 570.000 2143.000	•
FRET VILAT + (CH SP.HEAT	TRANS.AREA.SO.CH/CU.C	a biA.br tibe	S.CM VER.PTTCH.CM	HOR.PITCH.CM	TURES ARPNGT
24.0 40.0 48.0 56.0 280.0	9 0 0	0.0000 0.1744 0.0000 0.1744 0.144 0.1000	0+000 1+270 0+000 1+270 0+000	0+000 8+000 0+000 8+000 0+000	Q = 000 2 = 8€ 0 0 = 000 2 = 860 9 = 860 9 = 860	0 3 3 0
11/1/5 5813	אראם =	0.557 XMGC	sk É00.0 -	it2 = 0.006	XCU2 = 0+434	
	•	D I AME TER	+ СИ	#T.FPACT10	n n	
		0.2380 0.7000 0.1600 0.1600 0.1190 0.1190 0.1190 0.0197 0.0831 0.0707 0.0250 0.0250 0.0250 0.0250 0.0252 0.0272 0.0272 0.0177 0.0212 0.0170 0.0075 0.0075 0.0075 0.0075		0 • 0038 0 • 0654 0 • 1433 0 • 1656 0 • 1406 0 • 1259 0 • 1424 0 • 0622 0 • 0255 9 • 0123 0 • 0114 0 • 0051 0 • 0053 0 • 0014 0 • 0026 0 • 0026 0 • 0123 0 • 00123 0 • 00123		بر بر
	•	di ADDITIVES FEED = 0		CN WETGHT MEAN DT		
PTGECOAL	xcr = 0.575	XCV = 0.179 XH = 0.	osi xn ≈ 0.015 x	'S = 0+020 X0 = .0+070	6 XW = 0+022 XA =	0.084
	VM = 0.412	V = 01305 DIAMLTER	+ сн	WT.FRACTS	0N	
		9.2830 9.2100 9.2000 9.1630 9.1630 9.1020 9.1020 9.0241 9.0241 9.0257 9.0257 9.0257 9.0257 9.0257 9.0217		0.0000 0.0138 0.01747 0.1500 0.0760 0.0963 0.172 0.0766 0.0765 0.0765 0.0765 0.07553 0.0553 0.0553 0.0553 0.0553 0.0556 0.0553 0.0556 0.0556 0.0163 0.0163 0.0163 0.0163 0.0163 0.0164		

-

APPENDIX III

OUTPUT OF ELUTRIATION PROGRAM

NUTSINTEINELUAIN	stirs.0 - nwedibyee	11.85PP) 0.72604 0.07458 0.10011
PÁP-DIÁ-FCA	bed stre fractick	ELUT. SIZE FRACTION
2.005E-01	3-501F-03	Ø+Ö00E-01
esi90r-oi	2.711E-02	0.000F-01
i:d+de-dt	6.6966-42	₽ ™000€~01
fagðst -el	1.126F-01	0.0h0F-01
1+3001-01	1.1925-01	0-000E-01
1.095E-ñt	1-2021-01	0.0005-01°
9.205E-02	1,2754-01	0.000E-01
7.710E-02	· 1.0670-01	び・ロロリキーの1
0.485E-02	月→341日→02	0.000E-01
4.450t-02	\$••233E+02	3.5026-03
••r 905-07	5.2186-02	. 1,6046-02
31850Ě-02	4.2265-02	Š+142E→02
7.2396-02	4.2746-02	· firlet-of
2.545F-02	さょうじ 身后一ひさ	A.tale-of
1.9496-02	2.4396-03	t.058E-01
1+635E-02	1.417E-03	\$+757E-02
1.2506-02	**308E~04	ちょ7 ナジビーウス
8.700E-03	0.000E-01	1:0198-02
5.950E-6.	argoge-af	2:161è-82
2: 750E-01	0.000E-01	3.9686-02

CELU.CENT.DCSV8.0	CWHH = 2.605E-02	2.685E-02 7.871E-02	1+049E-01
HED MARINEALLEN	VED STZE FRACTIEN	ENT_PARGOTASS CH	ENT.STZE FRACTION
2:0055-01	1.4586-02	2.604E-01	0.000E-01
2.190E-01	50-3050E-05	z.lbat-di	t.5376-t3
1.0406-01	7.897E-02	1.ddee_of	2.341E-08
t.948e-01	i ↓5856-01	1:6422-01	8,009E-06
1.3008-01	1.01AE-01	1.2966-01	1.631E-04
1.1956501	t+otee-dt	★↓ダダロセーダ↓	Ì.882F-03
4.205t-02	1+2366-01	9.1195-02	1.6295-02
t. 14 dE-dź	8-0948-02	7 15 976 - 02	4.968F-U2
A.4858-02	8-717E-02	6.250E-02	t.023E-01
5.4508-02	ð.2766-02	5.08¥F-02	3+163E-01
4.6008-02	5+8436-02	J.956Ê-02	4.334E-01
3+850E-02	5+6826-05	2.015E-02	0.000E-01
3.235F-de	4・4918-02	0.000E-01	0.0006-01
2.3458-02	ウォルロウモーガヨ	りょうりのモーク !	0.000E-01
1.,9458-02	o.dovr-bi	Ó.ÖÖDE-DÍ	0.000E-01

1.63	0E-02 0%	0000-01	0+000E-01	0.0001-01
1.250	0.	000F-01	0.0000-01	0.00UF-01
B+700	0F-03 0.	000E-01	0+0000-01	0.000F-01
5.95	96-0 <u>3</u> 0.	000E-ot	0.0001:-01	0.0006-01
2 75	08-03 0+	000E~01	0.0002-01	0.U00F-01
к	FRTEROARD HT+	DPSE	DITWE	ENT+RATE
1 2 3 4	0-000E-31 5.643E 01 1.129E 02 1.381F 02	9.090E-02 2.950E-02 2.06.7E-02 1.675E-02	6 • 1 39 E + 02 3 • 4 09 E + 02 2 • 6 51 E - 02 2 • 3 86 E - 02	1.933E 02 5.527E 00 1.446E 00 7.261E-01
۲	FRFEEDÁRD HÍ.	DCSC	DCWE	ENT-RATE
1273	0.000E-01 5.643E 01 1.129E 02 1.381E 02	4.610E-02 4.491E-02 4.065E-02 4.765E-02	74726E-02 5+237F-02 4+673L-02 5+004E-02	5.870E-01 1.3876-01 5.128E-02 2.685E-02

11903 ULMT= 0.7095000E 02(VMF= 0.2801805E 05.FLF= 0.1419000E 0J.WN= 0.3721474E 05.WBC= 0.3708662E 05.FHDBED≈ 0.2656481E 01. HIUCH= 0.0123825E 00+FCHAK= 0.6731305E 00.CCHAR= 0.6539222E 00.HCHAR= 0.0000000F 00.UCHAR= 0.0000000E 00.NCHAR= 0.1000551F-01.SCHAR= 0.1334068E-01.UD= 0.4635152E 02.GFLCW= 0.7783318E 02.MGAS= 0.2956806E 02.FMD= 0.2632535E 01.FMF= 0.2060154E 01.5CHAR= 0.6330000E 00.TAV= 0.151000E 03.FMV= 0.5150000E 01.CAS= 0.1671022E 01.WAD= 0.4638000E 00.WCDAL= 0.4510000E 01.TBHC= 0.2923691E 03.HFP= 0.1381000E 03.6END ルヤビウ

WD17= 0.8517234E 00,WELUA= 0.7250781E 00,CELU= 0.2684845E-01.EFF= 0.9927166E 00.DPSVR= 0.7457513E-01.DPWHR= 0.1001132E 00.0CSVB= 0.7870710E-01.DCWP8= 0.1049331E 00.DASVF= 0.7578474E-01.DAWNF= 0.1287234E 00.DCSVF= 0.6770360E-01. DCWPF= 0.1004419F 00.5END

.

STATEMENTS EXECUTED= CO272

TRACE IN THE CASE								
COFF USAGE	orjećt cobe=	397då Hytes	ARRAY AREA=	lediz Bytes,t	OTAL AREA	AVATLABLE=	126976	BYTES
DIAGNOSTICS	NUMBER OF EI	KNAS=	O, NUMBER OF	VÅRNÍNGS≜	0+ NUMBER	OF EXTENSI	ONS=	0

D TA GNOS FIC S	NUMBER OF ERRORS=	O, NUMBER OF WARNINGS⇔	O+ NUMBER OF EXTENSIONS≓	

CONDILE TINES 2.02 SECRECUTION TIMES 4.76 SEC. 17.03.53 WEDNESDAY 1 NOV 78 WATELY - JUN 1977 VILG

\$185YS

٠

826.

APPENDIX IV

COMBUSTION PROGRAM

-		<u>ት</u> ተ ሳ
2.	C A GENERAL MODEL OF FLUIDIZED BED COAL COMBUSTOR	
3.	C	
4.	C PROGRAMMED BY	
5.	C .	
6.	C RENGA RAJAN	
7.	C	
8.	C AT	
9.	C	
10.	C WEST VIRGINIA UNIVERSITY	
11.	C	
12.	C*************************************	**1
13.	REAL MC;MH2;MS;MO2;MN2;MH20;MS02;MH25;MC0;MC02;MCAC03;MCA0;MC	ASE
14,	1, MMGCO3, MMGO, MAIR, MGAS, MYGAS, MN, NC, NA, MNO, NCHAR, MTAR	
15.	COMMON /A/ ZHE(10),AHE(10),FV(10),FH(10),ZF(10),FFC(10),DTUBE	
16.	1DVB(60),DVBEFF(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(6	
17.	2UO(60);UMF(60);H(60);AT(60);DT(60);T(60);X(60);ANBE(60);YB(60),
18.	3YE(60), YCOE(60), EPB(60), EPC(60), DVBB(60), DVBBEF(60), BBAV(60),	
19.	4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),IARR(1	
20+	COMMON /B/ YBO(60), YEO(60), DB(60), DPSVB, DPWMB, DCSVB, DCWMB, RHO	с п 3
21.	1HLF,VMF,FMO,FMF,UF,FF,FF,FF,G,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED,	
22.	2EMF,PAV,HCR,BEDVOL,EFFVOL,SOLVOL,TETUBE,HLMF,PI,AND,BNZL,	
23.	3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC	
24.	COMMON /C/ DPSE(30), DFWE(30), DCSE(30), DCWE(30), WEA(30), WEC(30) •
		,,
25.	1HB(30),WCHOLD(30),WAHOLD(30),KT	
26.	DIMENSION ALFA(60),BETA(60),GAMA(60),BELT(60),UHE(60),GB(60),	
27.	1GE(40),CDB(40),WMIX(40),WNET(40),WFC(40),WFAD(40),WD(40),YCC2	(6(
28.	2TW(60),YGB(5),YG(60),YCB(60),YV(60),YSB2(60),YNOX(60),	
29,		
	3VFR0D(60),RELB(60),RELE(60),TFB(60),TPE(60),CARCON(60),	
30.	4RR(60),RRB(60),RRE(60),TOLD(60),AAA(3600),BBB(60),FEM(60),FBM	(30
31.	5YCO28(60),YCO2E(60),UHEW(60),AHEW(60),TWALL(60)	
32.	NAMELIST /OPCF/ HLMF,HLF,PAV,TAV,TSTA,TWIN,TWOUT,TWALLA,UHEAV	1,
33.	*UHEAV2,UWALL1,UWALL2,TF,TSF,WCOAL,WAD,CAS,EXAIR,MGAS,FMTH,FMF	
34.		
	\$H2SV, ANH3V, RHOCH, RHOBED, RVGAS, RCHAR, RVGAS, RVCO, RCLCN	
35.	*/OPCF1/ ICR,IFBC;NTC,HCR,HLF,HLMF,VMF,BEDVQL,EFFVOL,SOLVOL,TE	FUE
36.	*HAREA;QTRANS;QVOL;QAREA;HFB;BEDCOM;FBCOM;TCRATE;XO2;XO2C	
37.	NAMELIST /OC/ WDIS,WELUA,CELU,EFF,DPSVB,DPWMB,DCSVB,DCWMB,GFL	ر المان
38.	100, CLOSS, CCHAR, HCHAR, OCHAR, NCHAR, SCHAR, TARC	
		~ ~ ~
39,	DATA MC, MH2, MS, MO2, MN2, MH20, MSO2, MH2S, MCO, MCO2, MCACO3, MCAO, MC	нэс
40.	1, MMGCO3, MMGO, MNO, MN	
41.	1/12.,2.,32.,32.,28.,18.,64.,34.,28.,44.,100.1,56.08,136.14,84	-31
42.	2,40.31,30.0,14.0/	_
43.	DATA AAA, BBB/3660*0./,RHOC, RHOASH, RHOAD/1.4,1.4,2.4/,HAREA, QT	e>
		1.21
44.	*QVOL,QAREA,RR(1),RRB(1),RRE(1)/7*0.0/,	
45,	*CADF,CCF,CGMF/0,198,0,193,6.79/	
46.	M1 = 100	
47.	M10LD = M1	
48.	EMF = 0.5	
49.	RG = 82.05	
50.	G = 980,1	
51.	PI = 3.141593	
52.	ETUBE(1)=0.	
53.	EPB(1)=0.	
54.	EPC(1)=0.	
55.	DBAV(1)=0.	
56.	UB(1)=0,	
57.		
	ANEAU(1)-0 ODICINIAT, PAGE 10	
50		
58.	URIGINITY OF CONTRACT OF CONTRACT.	
58. 59.	C OF POOR QUALITY	

-

60.	С	FBC DESIGN DATA
61.	C	
42,	ç	INFUT DATA FROM ENTRAINMENT CALCULATIONS
63. 64.	C	BEADLE-1000 KT
5. 5.		READ(5,1000) KT READ (5,1001) (HB(K),DPSE(K),DPWE(K),WEA(K),K=1,KT),
64.		1(DCSE(N), BCWE(K), WEC(K), K=1, KT)
67.		READ(5,1001) WDIS,WELUA,CELU,EFF,DPSVB,DPWMB,DCSVB,DCWMB,
68.		1DASVF, DAWMF, DCSVF, DCWMF
67.		CALL DESIGN
70.	ç	
71.	C	COMPOSITION OF LIMESTONE
7 2. 73.	C	READ(5,1010)NAMEL1,NAMEL2,XCAO,XMG0,XSIO2,XCO2
74.	с	KEHD(3)IVIVNANCEI(NANCEI)/CHU/XN00/X5102/X602
75.	č	COMPOSITION AND NET HEATING VALUE OF COAL
76.	С	
77.		READ(5;1010)NAMEC1;NAMEC2;XC;XH;XN;XS;XD;XW;XA;VM;HCDAL;XACAO
78.	C	
79.	C	OPERATING CONDITIONS
	'Ç	
81,		READ(5,1001)HLMF,HLF,PAV,TAV,TSTA,TWIN,TWOUT,TWALLA,UHEAV1,UHEAV2,
82. 83.		1UWALL1;UWALL2;TF;TSF;PF BEAD (5-1001) USDAL WAD CAS NO FYE FYATO
84.		READ (5,1001) WCOAL,WAD,CAS,UO,FMF,EXAIR READ(5,1000)IGNITE,ISO2,INOX,ITEMP,IPRES
85.	С	READ (D/1000/1001/E)150E/100X/11Ent/11/RES
86+	č	CALCULATION OF VOLATILES YIELD AND THE COMPOSITION OF VOLATILES
87,	C	
88.		WW = 0.2*(100.*VM-10.9)
89.		R = EXP(26.41-3.961*ALOG((TAV-273.))+0.0115*100.*VM)
90.		V = (100.*VM - R - WW)*0.01
91.		V = V * (1 - X U - X A)
92.		RN = 1.6 - 0.001 mm
93. 94.		IF (RN .GT. 1.) $RN = 1.0$ IF (RN .LT. 0.) $RN = 0.0$
95.		RS = RN
96.		VGASS = XS*(1, -XW)*(1, -RS)/32.0
97.		VGASN = XN*(1, -XW)*(1, -RN)/14.0
9 8'+		R0 = 0.0
99.		RH = 0.0
100+		QCHAR = 7000.0
101.	:	QCO = 26350.0
102.		CH4- = 0.201-0.469*VM+0.241*VM**2
103. 104.		H2* = 0,157-0,868*VM+1,339*VM**2 CD2* = 0,135-0,900*VM+1,906*VM**2
104.		$C0 = 0.423-2.653 \times VM + 4.845 \times VM \times *2$
106.		H20' = 0.409-2.389*VM+4.554*VM**2'
107.		TAR =325+7.279*VM-12.88*VM**2
108.		HTAR = XH*(1RH)*(1XW) - V*(CH4/16.*2.0+H2/2.+H20/18.)*2.0
109'.		OTAR = XO*(1RO) - V*(CO2/44.+CO/28.*0.5+H2O/18.0*0.5)*32.0
110.		MTAR = 120.0
111.	•	CH4 = V*CH4/16.0
1,12 .		$H_2 = V * H_2 / 2.0$
113,.,		CO2 = V*CO2/44.0 CO = U*CO/39.0
114. 115.		CO. = V*CO/28.0 H2O = V*H2O/18.0
116.		CTAR = V TAR - HTAR - OTAR
117.		TAR = (CTAR+HTAR+OTAR)/MTAR
118.		RVGAS = CH4+H2+TAR
119.,.		COV = CO/RVGAS
•		

ORIGINAL PAGE IS OF POOR QUALITY 120. CO2V = CO2/RVGAS121. COVB = (CH4+CTAR/12.0)/RVGAS 122. CO2VB = COVB123. X02 = (CTAR/12.0*0.5+HTAR/2.0*0.5-0TAR/32.0+VGASS+VGASN*0.5+ 124. 1CH4#1.5+H2#0.5)/RVGAS 125. X02C = (CTAR/12.0+HTAR/2.0*0.5-0TAR/32.0+VGASS+VGASN*0.5+ 126. 1CH4*2.0+H2*0.5)/RVGAS 127. XCV = CTAR + (CH4+C02+CO)*12.0 128. XCF = XC - XCV129. RC = XCF / XC130+ H2SV = VGASS/RVGAS 131. ANH3V = VGASN/RVGAS 132. COALC = XC / 12.0133. COALH = XH134. COALO = XO / 16.0 135. COALN = XN /14.0 136. COALS = XS / 32.0 137. CHARC = RC * COALCCHARH = RH * COALH 138. 139. CHARO = kO * COALO 140. CHARN = RN * COALN 141. CHARS = RS * COALS 142. RCHAR = 1.0 - V - XW 143. CCHAR = CHARC*12.0/RCHAR 144. HCHAR = CHARH*1.0/RCHAR145. OCHAR = CHARO*16.0/RCHAR 146. NCHAR = CHARN*14.0/RCHAR SCHAR = CHARS*32.0/RCHAR 147. 148. TARC = '(CHARC+CHARH*0.5+CHARS+CHARN*0.5-CHARD*0.5)/(RCHAR*0.21) 149. QVGAS = (HCOAL - RCHAR * QCHAR - CO*QCO) / RVGAS 150. QVCO = QVGAS - QCO*COVB T(1) = TF151, 152. IF (WCOAL.EQ.0.) IGNITE=0 153, C-_____ 154. C 0 TGNITE 1 155. С NO COMBUSTION COMBUSTION 156. C-_____ 157. MAIR = 0.21*M02+(1.-0.21)*MN2 158. A2 = XC/MC+XH/MH2*0.5+XS/MS+XN/MN2-XO/MO2 159. FMTH = WCOAL*(1, -XW)*A2/0.21IF (EXAIR .GT. 0.) FMF=FMTH*(1.+EXAIR) 160. IF (EXAIR .EQ. 0. .AND .FMF .EQ. 0.) FMF = ATB(1)*U0*PAV/RG/TAV 161. IF (EXAIR .EQ. 0.) EXAIR = FMF/FMTH - 1. 162. 163. UO = FMF*RG*TAV/PAV/ATB(1) 164. FMD = FMF*(1.-0.21)+((XC/MC+XH/MH2+XS/MS*0.2+XN/MN2*2.0)*(1.-XW)+ 165. 1XW/MH20)*WCOAL*EFF+FMTH*0.21*EXAIR 166. GFLOW = FMF*(1.-0.21)*MN2+((XC/MC*MC02+XH/MH2*MH20+XS/MS*MS02*0.2+ 167. 1XN/MN2*2.0*MNO)*(1,-XW)+XW)*WCOAL+FMTH*0.21*EXAIR*M02 168. MGAS = GFLOW/FMO169. С 170. С FMO : AVERAGE FLOW RATE OF GAS IN THE BED hOLE/SEC 171. С AVERAGE H20 CONCENTRATION IN FEC 172. YH20 =(WCOAL*(XW/MH20+XH*(1,-XW)/MH2))/FM0 С 173. 174. RHOCH = RCHAR*RHOC 175. IF(IGNITE.EQ.O)RHOCH=RHOC 176. IF(IGNITE.EQ.O)RHOBED=RHOAD 177. IF(CAS, EQ, 0., AND, WAD, GT, 0.) 178. 1CAS=WAD*XCAO/MCAO/(WCOAL*(1,-XW)*XS/MS) 179. IF(CAS.GT.0..AND.WAD.EQ.0.)

:30.		IWAD=CAS*(WCOAL*(1XW)*XS/MS)/(XCAO/MCAO)
131.		AI = 0.0
182.		IF(CAS .GT. 0.0) A1 = 0.85/CAS
193.		IF (A1 .GT. 0.4) A1 = 0.4
184.		RHOBED=(1,-XCO2+XCAO/MCAO#A1*MCASO4)*RHOAD
195.		IF (CAS .EQ.0.0) RHOBED = RHOAD
196.		RHOGAS=PAV*MGAS/(RG*TAV)
187.		VISC=3,72E-6*(TAV**0,676)
188.	С	
187.	č	RCLCN : HEAT OF CALCINATION PER GRAM ADDITIVE
190.	C	
191.	-	QCLCN=(42500.0*XCA0/MCA0 + 23810.0*XMG0/MMG0)
192.		CS=0.215
193.	C	
194.	С	MAIN OUTPUT 2
195.	C	
196.		WRITE (6,2000) NAMEL1,NAMEL2,XCA0,XMG0,XSI02,XCO2
197.		WRITE(6,2010) DASVF,DAWMF
198.		WRITE(6;2020) NAMEC1;NAMEC2;XCF;XCV;XH;XN;XS;X0;XW;XA;VM;V;HCOAL
199.		1,XACA0
200.		WRITE (6,2040) DCSVF,DCWMF
201.		WRITE (6,2030) (K,HB(K),DPSE(K),DPWE(K),NEA(K),DCSE(K),DCWE(K),
202.		1WEC(K),K=1,KT)
203.		WRITE (6,0PCF)
204.		ZAVG(1) = 0.0
205.		X(1) = 0.0
206.		IF (ITEMP .GT. 0) TAV ⇒ TSTA
207.		DO 20 I=2,60
208.		T(I)=TAV
209.	2	20 CONTINUE
210.	C	*********************
<u></u> 211.	С	INITIAL BUBBLE HYDRODYNAMIC CALCULATION
212.		IF (HLF .EQ. 0.0) VMF = VOLUME(HLMF)
213.		IF (HLMF .GT. 0.0) WB = VMF*(1EMF)*RHOBED
214.	С	***************************************
215.		IF(IGNITE.EQ.1)60 TO 41
216.		CALL HYDRO
217.		DO 35 I=2,M1
218.		ZAVG(I) = (H(I) + H(I-1)) * .5
217.	35	CONTINUE
220.		ETC=0.
221.		YAV=0,21
222.		XAV=WCOAL*XC/(WCOAL+WAD)*(1XW)
223.		
224.	•	IF (WAD.ER.O.O .AND. IGNITE .ER. O) GO TO 900
225.	C	
226.	C	FOR CONDITIONS OF NO COAL COMBUSTION, IGNITION IS ZERO AND
227. 228.	C C	MATERIAL AND ENERGY BALANCES CALCULATIONS ARE SKIPPED ***********************************
228.	L,	ውስት እንዲሆን የአስት የአስት የሚያስት የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ
230.		YE(1) = YB(1)
231.		FEM(1) = UMF(1) * AT(1) * PAV / (RG*T(2))
232.		FBM(1) = FMO + FEM(1)
233.		10115 I = 2*60
234.		RRB(1) =0.0
235.		RRE(1) = 0.0
236.		YB(I)=YAU
237.		YE(I)=YAV
238.		X(I)=XAV
239.		IF (I .GT. M1) GO TO 115

•

ORIGINAL PAGE IS

ORIGINAL PAGE IS OF POOR QUALITY

240.		
		FEM(1) = UMF(1)*AT(1)*(1.0-ETUBE(1))*PAV / (RG*T(1))
241.		FBM(I) = FMO - FEM(I)
242.		IF (UO(I) \cdot LE, UMF(I)) FEM(I) = 0.0
243.	115	CONTINUE
244.		IF (IGNITE ;EQ. 0) GO TO 630
245.	41	CONTINUE
246	C	BOUDARY CONDITIONS FOR GAS CONCENTRATIONS
247.	č	
248	-	YO(1) = 0.21
249.		YV(1) = 0.0
250		YCO(1) = 0.0
251,		YSO2(1) = 0.0
252.		YNOX(1) = 0.0
253.		YB(1)=FMF*0.21/FM0
254.		YE(1)=YB(1)
255.		YVE(1) = 0.0
256.		YCOE(1) = 0.0
257.		YCD2B(1) = 0.0
258.		YCD2E(1) = 0.0
259.		YCD2(1) = 0.0
260.	C	
261.	č	FROM HERE TO THE STATEMENT NO.600 : TEMPERATURE ITERATION LOOP
262.	č	
263.	•	DO 600 ITRIAL = 1,30
264.	С	10 000 TIKIHE - 1930
265.	Ċ	CALCULATION OF LOG MEAN TEMPERATURE OF THE COOLING WATER
	c	CALCOLATION OF COG MERN TEMPERATORE OF THE COOLING WHIER
266.	L	
267.		A1 = TWOUT - TWIN
268.		A2 = ALDG((TAV-TWIN)/(TAV-TWOUT))
269.		TWAY = TAY - A1/A2
270.		CALL HYDRO
271.		DO 25 I = 1, MT
272.		TW(I) = TWAV
273.		IF (I .LE. M1) UHE(I) = UHEAV1
274.		IF (I .GT. M1) UHE(I) = UHEAV2
275.		IF (I .LE, M1) UHEW(I) = UWALL1
276.		IF (I .GT. M1) UHEW(I) = UWALL2
		AHFW(I) = 4.0/hT(I)
277.		AHEW(I) = 4.0/DT(I) $TWA(I,(T) = TWA(I,A)$
277. 278.	25	TWALL(I) = TWALLA
277. 278. 279.	25	TWALL(I) = TWALLA CONTINUE
277. 278. 279. 280.	25	TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1
277. 278. 279. 280. 281.	25	TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT, 1 .AND. M1.EQ.M10LD)G0 TO 170
277. 278. 279. 280. 281. 282.	25	TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT, 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1
277. 278. 279. 280. 281. 282. 283.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT, 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,M1
277. 278. 279. 280. 281. 282. 283. 284.	25	TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT, 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,M1 WFC(I)=0.
277. 278. 279. 280. 281. 282. 283. 284. 294.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT, 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,m1 WFC(I)=0. WFAD(I)=0.
277. 278. 279. 280. 281. 282. 283. 284. 294. 295. 286.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,m1 WFC(I)=0. WFAD(I)=0. J2=J1
277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 286.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,m1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56
277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 286. 287. 288.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,m1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1,MFEED
277. 278. 279. 280. 281. 282. 283. 284. 285. 284. 285. 286. 286. 287. 288. 289.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,m1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56
277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 285. 286. 287. 288. 289. 290.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,m1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 54 DO 55 J=J1,MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WC0AL*FFC(J)
277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 285. 286. 287. 288. 289. 289. 290. 291.		TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,m1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1,MFEED IF(ZF(J).GT.H(I))GO TO 55
277. 278. 279. 280. 281. 282. 283. 284. 285. 285. 285. 285. 285. 287. 288. 287. 289. 290. 291. 292.		<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2.M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1.MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1</pre>
277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 285. 286. 287. 288. 289. 289. 290. 291.		<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2.M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1.MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1 CONTINUE</pre>
277. 278. 279. 280. 281. 282. 283. 284. 285. 285. 285. 285. 285. 287. 288. 287. 289. 290. 291. 292.		<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2.M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1.MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1</pre>
277. 278. 279. 280. 281. 282. 283. 284. 285. 285. 285. 285. 285. 287. 288. 287. 289. 290. 291. 292. 293.		<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2.M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1.MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1 CONTINUE J1=J2</pre>
277. 278. 279. 280. 281. 282. 283. 284. 285. 285. 285. 285. 285. 285. 285. 285	55	<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2;M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1,MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1 CONTINUE J1=J2</pre>
277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 285. 2889. 290. 2991. 2992. 2993. 294. 295.	55	<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2;M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1,MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1 CONTINUE J1=J2 CONTINUE</pre>
277. 278. 279. 280. 281. 282. 283. 284. 285. 285. 285. 285. 288. 289. 290. 291. 292. 293. 294. 295. 296.	55	<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2;M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 56 DO 55 J=J1,MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1 CONTINUE J1=J2 CONTINUE IF(J1.GT.MFEED)GO TO 58</pre>
277. 278. 279. 280. 281. 282. 283. 284. 285. 284. 285. 286. 290. 290. 290. 291. 292. 293. 294. 295. 295. 296. 297.	55	<pre>TWALL(I) = TWALLA CONTINUE MP1 = M1 + 1 IF(ITRIAL .GT. 1 .AND. M1.EQ.M10LD)GO TO 170 J1=1 DO 56 I=2,M1 WFC(I)=0. WFAD(I)=0. J2=J1 IF(J1.GT.MFEED)GO TO 54 DO 55 J=J1,MFEED IF(ZF(J).GT.H(I))GO TO 55 WFC(I)=WCOAL*FFC(J) WFAD(I)=WFAD(I)+WAD*FFAD(J) J2=J+1 CONTINUE J1=J2 CONTINUE IF(J1.GT.MFEED)GO TO 58 DO 57 J=J1,MFEED</pre>

705		CONTINUE
300.	57	
301.		CONTINUE
302.	170	CONTINUE FEM(1) = UMF(1)%AT(1)%(1.0-ETUBE(1))%PAV/(RG%T(2))
303.		FEM(1) = FMF - FEM(1)
304.		FBm(1) = FmF - FEM(1) DO 133 I=2,M1
305.		_
306+	_	TOLD(I)=T(I)
307.	C	A PRIME TO A PRICE CHOILED
308.	C	BISTRIBUTION OF THE VOLATILES EVOLVED
309.	С	
310.		VPROD(1) = WCOAL * RVGAS * (H(I)-H(I-1))/H(M1)*FW
311:		VPRDh(I) = VPRDh(I) + WFC(I) * RVGAS*(1, -FW)
312.		FEM(I) = FEM(I=1) + VPROD(I)
313.		IF(UO(I), LE, UMF(I)) $FEM(I) = FMO$
314.		FBM(I)=FMO-FEM(I)
315.	133	CONTINUE
316.	C	FROM THE STATEMENT NO. 200 TO 300 : ITERATION OF MATERIAL BALANCE
317.	C	BASED ON THE GIVEN TEMPERATURE PROFILE, GAUSS SEIDEL METHOD
318.	Ċ	BASED ON THE GIVEN TEMPERATORE PROFILE. CHOSE SETTLE METHOD
319:	0	
320.	200	SONTINUE
321.		INDEX = 0
322.		DETC = -0.0001 IF (TAV .5E.1100.0 .AND. TAV .LT. 1150.0) DETC = -0.0002
323.		IF (TAV .GE. 1050.0 .AND. TAV.LT.1100.0) DETC = -0.002
324.		IF (TAV .LT. 1050.0 .AND. TAV .GE. 1000.0) DETC = -0.005
325.		IF (TAV .LT: 1000.0) $DETC = -0.01$
326.		EETCM = 0.01
327.		ETGA = 0.09999
328.		
329.		IF (ITRIAL .GT: 1) GO TO 175 AMODE = 6.0*RHOBED*(1EMF)/(DCSVB*RHOCH*CCHAR)
330. 331:	<u> </u>	HIULF - GIVERIUDELEKII ("ENF/) (LGSVD#HIUCHECCHEN)
332.	C C	PRÉPARATORY STATÉMENTS FOR THE WHOLE ITERATION.
333.	C C	FREPARATORY STATEMENTS FOR THE WHOLE TREATION
334 -	с.	DO 130 I = $2,60$
3354		YAV = 0.16
336.		IF (I .GT. M1) YAU = 0:09
337.		$\dot{YB}(I) = YAV$
338.		YE(I) = YAÚ
339.		$Y\dot{D}(I) = YAV$
340.	130	CONTINUE
341.	175	CONTINUE
342.	Ĉ	Gentation
343.	ĉ	ASSUMING THE CARBON COMBUSTION EFFICIENCY, CARBON CONC. IN THE
344	Č	BED IS CALCULATED. NNOWING THE CARBON CONCENTRATION IN THE BED, GAS
345	č	PHASE MATERIAL BALANCE IS PERFORMED AND THE COMBUSTION EFFICIENCY
346.	ĉ	IS CALCULATED. ITERATION IS CONTINUED TILL THE ASSUMED COMBUSTION
347	ē	EFFCIENCY EQUALS THE CALCULATED EFFICIENCY FROM OXYGEN BALANCE.
348	ē	
349.		DO 201 NT = 1,30
350.		XAV = ((WEDAL*RCHAR-CELU)*CCHAR*(1ETCA))/WDIS
351.		DO 1 I = 1.M1
352.	1	X(I) = XAV
353.		ŤCŘATE = 0.0
354.	C	
355.	C	GAS PHASE MATERIAL BALANCE IN THE BED
356.	С	
357.		DO 233 I=2,M1
358.		CALL AKK(AKB,T(I),PAV,ÓCSVB,TPB(I),YB(I),RG,MC,AKCO2,PHIB)
359.		TAVB=(T(I)+TPB(I))/2.

360.		CALL ANK(ANE,T(I),PAV,DCSVB,TPE(I),YE(I),RG,MC,AKCO2,PHIE)
361.		TAVE=(T(I)+TPE(I))/2.
362+		
363+		CALL GPB (YH20,AKB,AKE,AKBE(I),AMODF,DVBB(I),EMF,EFB(I),EPC(I),
364.		1ETUBE(I),FBM(I1),FBM(I),FEM(I1),FEM(I),GB(I),COB(I),GE(I),FAV,
365.		
		2PHIE,RG,RVGAS,T(1),TAVB,TAVE,VPROD(1),X(1),X02,X02C,YB(11),YB(1),
366.		3YCOE(11),YCOE(1),YE(11),YE(1),YVE(11),YVE(1),AKCO2,COV,CO2V,COVB,
367.		4C02VB,YC02B(I1),YC02B(I),YC02E(I1),YC02E(I))
368.		AM = DVBR(I)*AMODF*X(I)*MC
369.		RRB(I) = AM*(FAV/RG)*(EPC(I) - EFB(I))*YB(I)*AKB/TAVB/CCHAR
370.		RRE(I) = AM*(PAV/RG/TAVE)*(1EPC(I)-ETUBE(T))/CCHAR*(YE(I)*AKE+
371.		1YC02E(1)*ANC02)
372,		RR([) = (RRB(I) + RRE(I)) / X(I)
373.		$TCRATE \approx TCRATE + RR(I) * X(I)$
374.		YO(I) = (FEM(I)*YE(I)+FBM(I)*YE(I))/FMO
375.		YCO2(I) = (FEM(I)*YCO2E(I)+FBM(I)*YCO2B(I))/FMO
376.		YV(I) = FEM(I)*YVE(I)/FMO
377.		YCD(I) = FEM(I) * YCDE(I) / FMQ
•·· •	0	••••••
378.	233	CONTINUE
379.	С	
380.	C	GAS PHASE MATERIAL BALANCE IN THE FREEBOARD
381.	č	
	6	
382.		BO 234 I $=$ MP1,MT
383.		J = I - M1
384.		κ = J+1
385.		HAV = (H(I-1)+H(I))/2.0
386,		CALL AREA(HAV, DTAV, ATAV)
387,		RHOGAS = PAV*MGAS/RG/T(I)
388.		VISC = 3.72E - 6*F(I)**0.676
389.		DCSVE = 0.5*(DCSE(J)+DCSE(L))
390.		DCWME = 0.5*(DCWE(J)+DCWE(K))
391.		CALL VEL(VISC;RHOGAS;G;RHOCH;DCSVE;UMFAV;UTAV)
392.		UO(I) = FMO*MGAS/RHOGAS/ATAV/(1.~ETUBE(I))
393.		$RT = \langle HB(K) - HB(J) \rangle / ABS(UO(I) - UTAV)$
394.		WCHOLD(I) = (2.0*WEC(J)-WEC(N))*RT
395.		VCHOLD = WCHOLD(I)/RHOCH
396.		NC = VCHOLD*6.0/(PI*DCSVE**3)
397.		CALL AKK(AKC,T(I),PAY,DCSVE,TFB(I),YO(I),RG,MC,AKCO2,PHIB)
398.		TPE(I) = TPB(I)
399.		TAVB = (T(I)+TPB(I))/2.0
400.		I1 = I - 1
401.		CALL FBC(YH20,ANC,DCSVE,BVBB(I),ETUBE(I),FMO,GB(I),COB(I),
402.		1GE(1), NC, PAU, PHIB, PI, RG, RUGAS, T(I), TAVB, X02, YCO(I1), YCO(I), YO(I1),
403.		2YO(I),YV(I1),YV(I),AKCO2,COV8,CO2V8,YCO2(I1),YCO2(I))
404.		RRB(I) ≕ MC*NC*PI*DCSVE**2*FAV/RG/TAVB/CCHAR*(YO(I)*A\C+
405.		1AKC02*YC02(I))
406.		RRE(I) = 0.0
407.		TCRATE = TCRATE + RRB(I)
408.	234	CONTINUE
409.	С	WRITE(6,205) (I,YB(I),YE(I),YCOE(I),YVE(I),H(I),YCO2E(I),YCO2B()
410.	č	1UO(I),UMF(I),I=1,M1) ·
411.		
	C205	
412.	C	1'H',T70,'YCO2E',T82,YCO2B',T94,'UO',T106,'UMF',///(I5,1P9E12.3);
413.		A1 = FMF*0.21+WCOAL*(1XW)*XO/MO2-FMO*YO(MT)
414.		ETCG = A1/(FMTH*0.21 - CELU*TARC*0.21)
415.	С	WRITE(6,209) NT/ETCA/ETCG/XAV
416.	C209	
417.		ER=ETCG-ETCA
413.		CALL CRRECT(NT,INDEX,DETC;ETC1;ETC2;ETCA;E1;E2;ER;EETCA)
419.		IF (INDEX .EQ. 2) GO TO 236

420. 201 CONTINUE 421. 236 CONTINUE 422. C 423. С FROM THE GAS PHASE MATERIAL BALANCE, CHAR COMBUSTION RATE HAS BEEN 424. С ESTIMATED. KNOWING THIS AND THE SOLIDS MIXING RATE, CARBON BALANCE 425. С IS PERFORMED. THE EQUATIONS ARE SOLVED BY THE SSP SUBROUTINE SIMO 426. С (SIMULTANEOUS SOLUTION OF ALGEBRAIC EQUATIONS). THE SOLUTION GIVES С THE CARBON CONCENTRATION PROFILE IN THE BED. 427. 428. С WMIX(1)=0. 4294 430. WNET(1)=0, 431. J1=1 DO 61 I=2,M1 432. 433. WD(1)=0. 434. 42=11 IF(J1.GT.HDIS)GO TO 61 435. 436. DO 60 J=J1,MDIS IF(ZDIS(J).GT.H(I))GO TO 60 437. 438. WD(I)=WD(I)+WDIS*FD(J) 439. J2=J+1 440. 60 CONTINUE 441. J1=J2 442. 61 CONTINUE 443. IF(J1.GT.MDIS)GO TO 63 444. DO 62 J=J1,MDIS 445. WD(M1)=WD(M1)+WDIS#FD(J) 62 446. CONTINUE 447. **63 CONTINUE** 448. С 449. С WMIX : UP- AND DOWN-WARD SOLID MIXING FLOW WHICH IS SUPERPOSED ON 450+ C FLOW OF SOLIDS. G/SEC 451 ; C WNET(I) : NET FLOW RATE OF SOLID FROM THE TOP OF 1-TH COMPARTMENT. 452. С POSITIVE VALUE MEANS THE UPWARD FLOW. 453. TFC = WCOAL*RCHAR - CELU 454. DO 255 I=2,M1 455. RR(I) = RR(I) * TFC/TCRATE456. WNET(I)=WNET(I-1)+WFC(I)*RCHAR+WFAD(I)-WD(I)-RR(I)*X(I) 457. WMIX(I)=AT(I)*(1,-ETUBE(I))*(UO(I)-UMF(I))*FW*(1,-EMF)*RHOBED 458. IF(WMIX(I).LT.0.)WMIX(I)=0. 459. 255 CONTINUE 460. WMIX(M1)=0; 461. C 462. С CARBON CONCENTRATION CALCULATION. 463 -C 464. <u>n</u>µ=µ*µ 465. DO 411 I=1,MM 466 -411 AAA(I)=0. 467. DO 412 I=1,M 412 BBB(I)=0. 468. AAA(1) = -WMIX(2)-WD(2)-RR(2)469. 470. AAA(M1)=WMIX(2)-WNET(2) 471. AAA(MM) = -WMIX(M) + WNET(M) - WD(M1) - RR(M1)472, AAA(MM-H)=WMIX(M) 473. DO 413 I=1,M 474. 11 = 1 + 1475. BBB(I) = - MC%CHARC*WFC(I1) 476. 413 CONTINUE 477. M0=M-1 478. DO 270 I=2,MO II=(I-1)*州+I 479;

> 480. I1 = I + 1AAA(II) = -WMIX(I1)-WMIX(I)+WNET(I) 481. 482. 1-WD(11)-RR(11) 483. AAA(II-M)=WMIX(I) 484. AAA(II+M)=-WNET(I1)+WMIX(I1) 485. 270 CONTINUE 486. CALL SIMQ(AAA, BBB, M, MM, KS) 487. SUM≈0. DO 280 I=1/M 488. 489. X(I+1) = BBB(I)490, SUM = SUM + X(I+1)491. 280 CONTINUE 492. XAV~SUM/FLOAT(M) WRITE (6,286) XAV; (I,X(I),H(I),I=1,M1) 493. С 494. $I_7X_7H = (,15,1P2E12,3))$ C286 FORMAT (101,1 XAV = '+1PE12.3+/+(' 495. SUM≈0. 496. DO 285 I=2,M1 497. SUM≈WB(I)*X(I)+SUM CARCON(I)=X(I)*RHOBED*(1.-EMF)*(1.-ETUBE(I)-EPB(I))/(1.-ETUBE(I)) 498. 499. 285 CONTINUE 500. CLOSS = SUM + CELU*CCHAR ETCC = 1.0 - SUM / ((WCDAL * RCHAR - CELU)*CCHAR) 501. 502, ETC = 1. - CLOSS / (WCDAL * XC * (1.-XW)) 503. С 504. C HAVING OBTAINED THE CORRECT CARBON CONCENTRATIONS IN THE BED, GAS PHASE MATERIAL BALANCE IS REPERFORMED TO ARRIVE AT THE CORRECT CONCENTRATION PROFILES FOR THE VARIOUS GASEDUS SPECIES 505. С C 506. 507, С С GAS PHASE MATERIAL BALANCE IN BED 508. 509. С TCRATE = 0+0510. 511. DO 235 I=2,M1 CALL AKK(ANB,T(I),PAV,DCSVB,TPB(I),YB(I),RG,MC,AKCO2,PHIB) 512. TAVB=(T([)+TPB(]))/2. 513. CALL AKK(AKE,T(I),PAV,BCSVB,TPE(I),YE(I),RG,MC,AKC02,PHIE) 514. 515. TAVE=(T(I)+TPE(I))/2. 516. I1=I-1 CALL GPB (YH20,AKB,AKE,AKBE(I),AMODF,DVBB(I),EMF,EPB(I),EPC(I), 517. 518. 1ETUBE(I),FBM(I1),FBM(I),FEM(I1),FEM(I),GB(I),COB(I),GE(I),FAV, 2PHIE,RG,RVGAS,T(I),TAVB,TAVE,VPROD(I),X(I),X02,X02C,YB(I1),YB(I), 517. 520. 3YCGE(11),YCGE(1),YE(11),YE(1),YVE(11),YVE(1),ANCG2+COV,CO20,COVB, 521. 4C02VB+YC02B(I1)+YC02B(I)+YC02E(I1)+YC02E(I)) 522. AM = BVBB(I) * AMODF * X(I) * MC523. RRB(I) = AM*(PAV/RG)*(EPC(I)~EPB(I))*YB(I)*ANB/TAVB/CCHAR 524. RRE(I) = AM*(PAV/RG/TAVE)*(1.-EPC(I)-ETUBE(I))/CCHAR*(YE(I)*ANE+ 525. 1YC02E(I)*AKC02) RR(I) = (RRB(I)+RRE(I))/X(I) 526. TCRATE = TCRATE + RR(I)*X(I) 527. YO(I) = (FEM(I)*YE(I)+FBM(I)*YB(I))/FMO 528. YCO2(I) = (FEM(I)*YCO2E(I)+FBM(I)*YCO2B(I))/FMO 529. YV(I) = FEM(I)*YVE(I)/FMO 530. YCO(I) = FEM(I)*YCOE(I)/FMO 531. 235 CONTINUE 532+ 533. BEDCOM = TCRATE 534. С GAS PHASE MATERIAL BALANCE IN THE FREEBOARD 535. С 536. С DO 237 I = MP1,MT 537. 538. J = I - Mi539. N = J+1

DCSVE = 0.5*(DCSE(J)+DCSE(N))540. 541. VCHOLD =WCHOLD(I)/RHOCH NC = VCHOLD*6+0/(PI*BCSVE**3) 542. 543+ CALL ANN(ANC/T(I)/FAV/DCSVE/TFB(I)/YO(I)/RG/MC/ANCO2/FHIB) TPE(I) = TPB(I)544. 545. TAVB = (T(I) + TPB(I))/2.0546. I1 = I-1547. CALL FBC(YHOD,AKC,DCSVE,DVBB(I),ETUBE(I),FMO,GB(I),COB(C), 548. 1GE(I),NC,PAV,PHIB,PI,RG,RVGAS,T(I),TAVB,XO2,YCO(I1),YCO(I),YO(I1), 549. 2Y0(I),YV(I1),YV(I),AKC02,COVB,C02VB,YC02(I1),YC02(I)) 550. RRB(I) = MC*NC*PI*DCSVE**2*PAV/RG/TAVB/CCHAR*(YO(I)*ALC+ 551. 1ANCO2*YCO2(1)) RRE(I) = 0.0552. 553. TCRATE = TCRATE + RRB(I)554. 237 CONTINUE 555. FBCOM = TCRATE - BEDCOM 556. С THE DEFINITION OF RR(I) IS CHANGED FOR TEMPERATURE CALCULATIONS. 557. C 558, Ċ RR(1)=(HEAT GENERATION RATE- HEAT CONSUMPTION RATE) IN THE 359. С ITH COMPARTMENT. 560. C 561. DO 295 I=2,M1 562. RR(I)=RR(I)*X(I)/TCRATE*QCHAR*(WCOAL*RCHAR~CELU)*ETCC+ 563. 1GE(I)*QVCO+GB(I)*QVGAS+COB(I)*QCO-QCLCN*WFAD(I)*RHOAD 295 CONTINUE 564, 565. DO 300 I = MP1,MT 566. RR(I) = RRB(I)/TCRATE*QCHAR*(WCOAL*RCHAR-CELU)*ETCC+ 1GE(I)*QVCO+GB(I)*QVGAS+COB(I)*QCO 567. 568. 300 CONTINUE 569. IF (ITEMP +EQ, 0) GO TO 610 С 570. 571. C, CALCULATION OF TEMPERATURE C, 572+ 573, A1= CADF 574. A2= CCF 575. CGM = 6,8+0,5E-3*(TAV-273)576, A3=CGM*FMD 577. ALFA(2)=(WMIX(2)+WD(2))*CS+A3+UHE(2)*AHEAV(2)*DVBB(2) 578. 1+UHEW(2)*AHEW(2)*DVBB(2) BETA(2)=(-WNET(2)+WMIX(2))*CS 579. 580. GAMA(2)=0. 581, DELT(2)=RR(2)+CGMF*FMF*(T(2)-273,)+(A1*WFAD(2)+A2*WFC(2))*(TSF-273 1.)+UHE(2)*AHEAV(2)*DVBB(2)*(TW(2)-273.)+UHEW(2)*AHEW(2)*DVBB(2)* 582. 583. 2(TWALL(2)-273.) 584. С С HEAT BALANCE IN THE BED 585, С 586. 587. DO 310 I=3,M 588. F1=I-1 ALFA(I)=(-WNET(I1)+WMIX(I)+WMIX(I1)+WD(I)) 589. 590. 1*CS+A3+UHE(I)*AHEAV(I)*DVBB(I)+UHEW(I)*AHEW(I)*DVBB(I) 591. BETA(I)=(-UNET(I)+WHIX(I))*CS 592. GAMA(I)=(WMIX(I1))*CS+A3 DELT(I)=RR(I)+(A1*WFAD(I)+A2*WFC(I))*(TSF-273.)+UHE(I)*AHEAV(I)* 593. 1BV8B(I)*(TW(I)-273.)+UHEW(I)*AHEW(I)*DV8B(I)*(TWALL(I)-273.) 594. 310 595. CONTINUE ALFA(M1)=(-WNET(M)+WMIX(M)+WD(M1))*CS+A3 596. 597. 1+UHE(M1)*AHEAV(M1)*DVBB(M1)+UHEW(M1)*AHEW(M1)*DVBB(M1) 598. BETA(M1)=0. 599. GAMA(M1)=(WMIX(M))*CS+A3

<u>ن</u> 00 و			ŪĒLT(M1)=RR(M1)+(A1*WFAD(M1)+A2*WFC(M1))*(TSF-273.)
301.		1	L+UHE(M1)*AHEAV(M1)*DVBB(M1)*(TW(M1)-273.)
602.			2+UHEW(M1)*AHEW(M1)*BVBB(M1)*(TWALL(M1)-273.)
603.	С	_	
404.	č	TEX	PERATURE SOLUTION BY SIMO
	č	141	THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
405.	6		
606.			DO 501 I=1,MM
307.		501	AAA(I)=0.
608.			BO 502 I=1,M
607.		502	<pre>BBB(I)=DELT(1+1)</pre>
610.			AAA(1)=ALFA(2)
611.			AAA(M1) = -BETA(2)
612.			AAA(MM) = ALFA(M1)
613.			
			AAA(MM-M)=-GAMA(M1)
614.			DO 503 I=2,MO
615.			II=(I-1)*M+I
616.			AAA(II)=ALFA(I+1)
617.			AAA(II-M)=-GAMA(I+1)
618,			AAA(II+M)=-BETA(I+1)
619,		503	CONTINUE
320.			CALL SINQ(AAA, BBB, M, MM, KS)
621.			TNORM≈0.
622.			TAV=0.
623.			BO 504 I=2,M1
624.			•
			T(I)=BBB(I-1)+273.
625.			TAV=TAV+T(I)
626.			TNORM=TNORM+ABS(T(I)-TOLD(I))
627.		504	CONTINUE
628.			TAV=TAV/FLOAT(N)
629.			TNORM=TNORM/FLOAT(M)
630.	C		WRITE (6,208) TNORM,TAY,BEDCOM,FBCOM
631.	С	208	FORMAT ('0', $10X_{1}$ 'TNORM, TAU, BEDCOM, FBCOM = (,1P4E12.3)
632.	¢		
633	¢		HEAT BALANCE IN THE FREEBOARD
634,	ē		
635.	-		D0 320 I = MP1, MT
636.			J = I-M1
637.			
			WENTI = WEA(J) +WEC(J)
638.			ANR = (WENTI*CS+A3)*(T(I-1)-273.)+RR(I)+DVBB(I)*UHE(I)*AHEAV(I)*
639,		1	L(TW(I)-273.)+DVBB(I)*UHEW(I)*AHEW(I)*(TWALL(I)-273.)
640.			DR = WENTI*CS+A3+DVBB(I)*UHE(I)*AHEAV(I)+DVBB(I)*UHEW(I)*AHEW(I)
641.			T(I) = ANR/DR + 273.0
642.	32	0	CONTINUE
643.	С		· · ·
644.	С		CONVERGENCY CRITERION FOR TEMPERATURE CALCULATION
645.	Ċ		
546.	-		IF(TNORM.LT.0.01*TAV) GO TO 610
647.			M10LD = M1
648.		600	CONTINUE
649.		000	WRITE (6, 3003)
650.	-	~~~	
	د		FORMAT('0',10X,'GAUSS SEIDEL TEMPERATURE TRIAL HAS NOT CONVERGED.
651.	, .		L S.ND. = 3003',/)
652.	61	0	CONTINUE
653.			DO 620 I = $2 \cdot MT$
654.			A1 = AHEAV(I) * DVBB(I)
655.			HAREA = HAREA + A1
656.			QTRANS = UHE(I) * A1 * (T(I) - TW(I)) + QTRANS
657.			RR(I) = RR(I) / DVBBEF(I)
658.			ZAVG(I) = (H(I-1) + H(I)) * 0.5
657.	620	0	CONTINUE

660.	QVOL = QTRANS/BEBVOL
361.	HFB = H(MT) - H(M1)
662.	IF (HAREA .NÉ. 0:0) QAREA = QTRANS/HAREA
363.	TPB(1)=T(1)
56 4 .	TPE(1)=T(1)
665.	TAV=TAV-273.
566.	DG 612 I=1,MT
567.	f(I) = f(I) - 273
568.	TPB(I) = TPB(I) = 273.
669.	TPE(I)=TPE(I)-273.
570.	612 CONTINUE
671.	
672.	C MAIN OUTPUT 3
373.	
674.	WRITE (6,2001) ETC,XAV,TAV,ITRIAL,(I,H(Ĭ),YB(I),YE(I),YVE(I),
675.	1YCOE(I),YCO2E(I),YCO2B(I),X(I),ZAVG(I),I=2,M1)
676.	WRITE (6,2002) (1;H(1),YO(1),YV(1),YCO(1);YCO2(1),T(1),TPB(1);
677.	1TPÉ(I),ZAVG(I),Í≈2,MT)
678.	DO 613 I = 1 MT
679.	TPB(1) = TPB(1) + 273.0
480.	TPE(I) = TPE(I) + 273.0
<u> 581.</u>	T(I) = T(I) + 273.0
682.	613 CONTINUE
683.	YGO(1)=YO(MT)
684.	C
685.	C
686;	C CALCULATION OF SO2 REDUCTION
<u> 387.</u>	
683.	IF (IGNITE, $EQ.0$) TCRATE = 0.0
687.	• • • • •
590.	BO 710 I≂1/MT
370. 391.	IF (I .GT. M1) GO TO 709
692,	YEO(1) = YE(1)
673.	YBO(1) = YB(1) 709 YB(Ì)=0,
673. 694.	Y07 (B(1)=0.
695.	
595.	710 IF (ISO2 .EQ. 0) GO TO 911
373. 697.	430 CONTINUE
698.	FRS = WCOAL*XS/MS*FLOAT(IGNITE)*(1XW)
679.	$IF (FRS \rightarrow LE, 1, E-3) GD TO 810$
700.	C
701. 702.	C CASE : EFFECTIVE RATIO OF CA TO S(ACTIVE) IN THE FEEDS C
702. 703.	L CASE=(WAD*XCÁO+WCOAL*XA*XACAG)/MCAO/FRS
704. 705.	IF(CASE.EQ.O.) GO TO 911 SULFUR = WCOAL*(1.~XW)*XS*RS/MS - CLOSS*SCHAR/CCHAR/MS
706. 707.	RELB(1)=0.
	RELE(1)=0. YB(1)=0.0
708. 709.	YE(1)=YB(1)
	ÉTS=0.0
710. 711.	ETS=0.0 BETS=0.1
	EETSM=0.005
712:	INDX=0.
713.	DO 711 I=27MT
714. 715.	RELB(I)=0.
	RELE(I)=0; RELE(I)=0.
716.	
フィフ	
717.	IF (TCRATE .LE, 0.) GO TO 711 GENR - GR(I) MUGAGE (PUGAS
717. 719. 719.	GENB = GB(I)*VGASS/RVGAS GENE = GE(I)*VGASS/RVGAS

ORIGINAL PAGE IS OF POOR QUALITY

720.	RELB(1) = RRB(1)/TCRATE*SULFUR,+GENB
721.	RELE(I) = RRE(I)/TCRATE*SULFUR+GENE
722.	711 CONTINUE
723.	DO 800 ITRY=1,20
724.	FS=ETS/CASE
725.	
726.	C FS : FRACTIONAL CONVERSION OF ADDITIVE
727.	-C ASSUMING THE SULFUR CAPTURE EFFICIENCY, FS IS CALCULATED AND HENCE
728.	C THE LIMESTONE REACTIVITY, THEN, 502 MATERIAL BALANCE IS PERFORMED.
729.	C FROM THE EXIT SO2 CONC. IN THE FLUE, SO2 CAPTURE EFFICIENCY IS
730.	C CALCULATED, ITERATION IS CONTINUED TILL THE ASSUMED AND THE
731.	C CALCULATED SULFUR DIOXIDE RETENTION EFFICIENCIES AGREE.
732.	
733.	AK = AKAD(FS, DPSVB, T(I))
734.	C
735.	C SO2 BALANCE IN THE BED
736.	C
737.	DO 740 I=2,M1
738.	I1=I-1
739.	AM=(1EMF)
740.	CALL GPHASE(AK;AN;AM;PAV;RG;ETUBE(I);EPB(I);EPC(I);
741.	1ANBE(I),DVBB(I),FBM(I1),FEM(I1),FBM(I),FEM(I),T(I),T(I),T(I),
742.	2YB(I1),YE(I1),YB(I),YE(I),RELB(I),RELE(I))
743.	YSO2(I) = (FEH(I)*YE(I)+FBH(I)*YB(I))/FHO
744.	740 CONTINUE
745.	C
746.	C SO2 BALANCE IN THE FREEBOARD
747.	C
.748.	$BO 741 I = MP1_{7}MT$
749.	J = I HI
750.	h = J + 1
751.	RHOGAS = PAV*MGAS/RG/T(I)
752.	VISC = 3.72E - 6*T(I) **0.676
753.	DPSVE = 0.5*(DPSE(J)+DPSE(N))
754.	DPWME = 0.5*(DPWE(J)+DPWE(K))
755.	CALL VEL(VISC, RHOGAS, G, RHOBED, DFSVE, UMFAV, UTAV)
756.	RT = (HB(K) - HB(J)) / ABS(UO(I) - UTAV)
757.	$\forall AHOLB(I) \Rightarrow (2.0*WEA(J)-WEA(K))*RT$
758.	VAHOLD = WAHOLD(I)/RHOBED
759.	NA = VAHOLD*6.0/(PI*DPSVE**3)
750.	AK = AKAD(FS, DPSVE, T(I))
761, 752,	ANR = FMO*YSO2(I-1)+RELB(I)+RELE(I)
732.	DR = FMO + NA*PI*DPSVE**3/3.0 *AN*PAV/RG/T(1) YSO2(I) = ANR/DR
764.	
765,	741 CONTINUE ETSC=1FMO*YSO2(MT)/FRS
755.	EE=ETS-ETSC
767.	CALL CRRECT(ITRY,INDX,DETS,ETS1/ETS2/ETS/E1/E2/EE/EETSM)
758.	IF(INDX.EQ.2)GO TO 910
769.	800 CONTINUE
770.	WRITE(6,3600)
771.	3600 FORMAT('0',10X;' ETS HAS NOT CONVERGED, S.NO. = 3600';/)
772.	810 CONTINUE
773.	YGD(3)=YSD2(MT)
774.	WRITE(6,2005)ETS,FS,CAS,CASE
775.	1,(H(I),YB(I),YE(I),ZAVG(I),YSO2(I),RELB(I),RELE(I),I=2,MT)
776.	C
777.	C NOX CALCULATIONS
778.	
779.	911 IF (INOX .ER. 0) GO TO 914

780. 791. 792. 793. 794. 785. 785. 785. 786. 788. 788. 789. 790. 791.	750	<pre>FRN = WCDAL * (1XW) * XN/MN * FLOAT(IGNITE) ANITRO = WCDAL * (1XW) * XN * RN / MN - CLOSS*NCHAR/CCHAR/MN DO 750 I = 2.MT GENB = GB(I)*VGASN/RVGAS GENE = GE(I)*VGASN/RVGAS RELB(I) = RRB(I)/TCRATE * ANITRO +GENB RELE(I) = RRE(I)/TCRATE * ANITRO + GENE CONTINUE YB(1) = 0.0 FR = 5.24E7 AE = 34000.0</pre>
792. 793.	с с	NOX BALANCE IN THE BED
794.	č	
795. 796.		DO 760 I = 27M1 I1 = I-1
797. 797. 798. 799.		TAVB = (T(I)+TPB(I))/2,0 TAVE = (T(I)+TPE(I))/2,0 AKB = FR * EXP(-AE/1,986/TAVB)
900.		AKE = FR * EXP(-AE/1, 986/TAVE)
801.		AMODE = 6.0*RHOBED*(1ENF)/(DCSVB*RHOCH*CCHAR)
802. 803.		AM = AMOBF*X(I) CALL GPHASE (AKB;AKE;AM;PAV;RG;ETUBE(I);EPB(I);EPC(I);AKBE(I);
804.		1DVBB(1),FBM(11),FEM(11),FBM(1),FEM(1),T(1),TAVB,TAVE,YB(11),
805.		2YE(11),YB(1),YE(1),RELB(1),RELE(1))
906. 907.	760	YNOX(I) = (FBM(I)*YB(I)+FEM(I)*YE(I))/FMO CONTINUE
808.	c	
909. 910.	C C	NOX BALANCE IN THE FREEBOARD
811.	-	DO 770 I = MF1,MT
912.		TAVB = (T(I)+TPB(I))/2.0
913. 814.		J = I-M1 K = J+1
S15.		DCSVE = 0.5*(DCSE(J)+DCSE(K))
916.		X(I) = WCHOLD(I)*CCHAR/(WCHOLB(I)+WAHOLB(I))
817.		CARCON(1) = WCHOLD(1)*CCHAR/DVBBEF(1)
919. 819.		VCHOLD = WCHOLD(I)/RHOCH NC = VCHOLD*6.0/(PI*DCSVE**3)
820.		$AKNO = FR \neq EXP(-AE/1.986/TAVB)$
921.		ANR = FMO*YNOX(I-1) + RELB(I) + RELE(I)
822. 823.		DR = FMD { NC*PI*DCSVE**2 *ANNO*PAV/RG/TAVB YNOX(I) = ANR/DR
924.	770	CONTINUE
825.		ENOX = FMO*YNOX(MT)
826, 827,		EINDEX = ENOX/WCOAL ETN = 1.0 - ENOX /FRN
928.		ENOX = ENOX/FMO
827+		WRITE (6,2007)EXAIR, TAV, ETN, ENOX; EINDEX; (H(I); YB(I); YE(I); X(I);
830. 831.	751	1CARÇON(I);ZAVG(I);YNOX(I);RELB(I);RELE(I);I=2;MT) CONTINUE
832.	¢ v 3ř	
933.	C	MAIN OUTPUT 4
834. 835.	C 814	CONTINUE
836.	914	YG8(2)=YC02(MT)
837,		YGO(4)=YH20
938.		YGO(5)=YCO(MT) URITE(4-2004) (YCO(1)-1-1-E)
837.		URITE(3,2005) (YBQ(I),I=1,5)

940.	•	IF (HLMF.50.0.0) VMF - SOLVOL
841.		IF (HLMF .EQ. 0.0) HLMF - HEIGHT(VMF)
942.		IF (HLF .EQ, 0.0) HLF = H(M1)
843.		IF (IFRES , EQ, 0) GO TO 750
844.	900	CONTINUE
845.	C	
846.	C	PRESSURE DROP CALCULATION
947.	č	
848.	č	***
849.	č	ALL THE PRESSURE DROP GIVEN IN CM OF WATER
850.	C	
951.		***************************************
852.	C C	BECCUER PROP AN AU ATTANA ACCORD THE PIATATATA
		PRESSURE DROP CALCULATIONS ACROSS THE DISTRIBUTOR
853.	Ç	
854.		$TEMP \approx T(2)$
855.		RHOFG = PF * MGAS / (RG*TEMP)
854.		UOR = FMF * RG * TEMP/ PF /(AND*0.25*PI*DNZL**2)
857.		DPDIS = (UOR/0.6) **2 * RHOFG / (2.0*G)
S58.		WRITE (6,2050) DPDIS
859.	C	
840,	Ċ	PRESSURE DROP CALCULATIONS IN THE FLUDIZIED SED SECTION
961.	C	
862,		WRITE (6,2051)
963.		N1 = M1
864.		IF (IFBC .GT. 0) $N1 = M1 - 1$
965.		DO 920 I = 27N1
366.		DPFLU = (1.0-EMF)*(1.0-EPB(I))*(H(I)-H(I-1)) * RHOBED
967.		WRITE (6,2052) 1, DPFLU
368.	920	CONTINUE
869.		IF (IFBC .EQ.0) GO TO 930
870.	С	
871.	Č	PRESSURE DROP CALCULATIONS IN THE FIXED BED SECTION
872.	č	
873.	-	E1 = (H(M1) - H(M1-1)) / G
874.		E2 = (1.0 - EMF) / EMF ** 3
875.		DPFIX = E1 * (150.0 * (1.0 - EMF) * E2 * VISC * UG(M1)
876.		1 / DPSVB ** 2 + 1.75 * E2 * RHOGAS * UC(M1)**2/DPSVB)
877.	930	CONTINUE
878.	730	IF (IFBC .EQ. 0) DPFIX = 0.0
879.		WRITE $\langle 6_{1}2053 \rangle$ DPFIX ,
880.	050	
	950	CONTINUE
991.		WRITE (6,0C)
<u>982</u> .		WRITE (6,0PCF1)
883.		WRITE(6,2060)
984.		BO 910 I = 2.4M1
395.		WRITE(6,2070) 1,H(I),ZAVG(I),BPAV(I),UB(I),EPB(I),EPC(I),UG(I),
884.		1UMF(I)
887.	910	CONTINUE
888.		WRITE (4,2075)
887.		DO 940 I = 1,MT
890.		WRITE (6,2080) I,H(I),DT(I),AT(I)
891.	940	CONTINUE
892.		FORMAT(511)
893.	1001	FORMAT(9F10,0)
894.		FORMAT(2A4/(8F10.0))
875.	2000	FORMAT ('0';1X;2A4;10X;'XCAO = ';F6.3;10X;'XMGO = '-F6.3;10X;
994.		*/XSID2 = /;F4.3;10X;/XCD2 = /;F4.3;/)
997.	2001	FORMAT(//10X, RESULTS ALL TEMPERATURES IN CENTIGRADE'//
979.		*' ETC,XAV,TAV,ITRIAL,=',3E12.4,14//
899.		12X; 11', 6X; 1HT', 10X; 1B', 10X; 1YE', 10X; 1YUE', 8X; 1YCOE', 7X; 1YCO2E';
		•

900 -	27X; 'YCO2B'; 9X; 'X'; 9X; 'ZAVG'; /(13; 1P9E12; 4))
901.	2002 FORMAT (//2X;/1/38;/HT/;10X;/Y0/;10X;/YV/;10X;/YC0/;9X;/YC02/+
902-	*9X;/T/;/10X;/TPB/;/7X;/TPE/;/9X;/ZAVG/;//(I3;1P9E12;3))
903.	2005 FORMAT('0';/ (ETS;FS;CAS;CASE)=//10X;4E12,4;/;'0';7X;'HT,';8X;
904	1'YS02B',8X,'YS02E',7X,'ZAVG',10X,'YS02',10X,'RELB',7X,'RELE',/'
905	2(177613.4))
906	2006 FORMAT(// OUTLET GAS CONCENTRATION: 7//5X7/02/710X7/002/79X7/S02/7
907.	19X; 'H2O'; 9X; 'CO'; /5E12', 4//)
908.	2007 FORMAT('0',7X) 'EXAIR, TAV, ETN, ENOX, EINDEX = 1, 1, 10X, 5E12.47/7'0'7
909.	17X; HT'; 8X; YNOXB'; 8X; YNOXE'; 9X; X'; 11X; CARCON'; 8X; ZAVG'; 8X;
910.	2'YNOX'y10X;/RELB';9X;/RELE';//;(1P9E13.4))
91L.	2010 FORMAT ('0'/5X/'SURFACE VOL MEAN BIA.OF ADDITIVES FEED = DASVF =
912.	*JF10.4,3X,'CM',5X,'WEIGHT MEAN DIA. = DAWMF = ',F10.4,3X,'CH',/)
913 <i>-</i>	2020 FORMAT ('0';1x;2A4;3X;'XCF = ';F5,3;3X;'XCV = ';F5,3;3X;'XH = ';
91.4.	★F5.3/3X/*XN = //F5.3/3X/XS = /+F5.3/3X//XO = //F5.3/3X//XO = //
ダゴミン	\$F5.3,3X,7XW = /;F5.3,7/;/0/;12X;/VM = /;F5.3,4X;/V - /;F5.3;3X;
916.	\$'HCOAL = '1F8.2,3X; 'GALS/GM',3X; 'XACAO = '1F5.3,')
917.	2030 FORMAT ('0',T5,'K',T10,'FREEBOARD HT.',T29,'DPSE',T43,'DPWE',
918.	1155; WEA', T70, DCSE', T85, DCWE', T100, WEC', /, 0', (T4, I2, T10,
919.	21PE11.3/T26/1PE11.3/T37/1PE11.3/T52/1PE11.3/T67/1PE11.3/T81/
920+	31PE11.3,T96,TPE11.3)
<u> 21</u> .	2040 FORMAT(101,T21,1SURFACE VOL MEAN DIA OF COAL FEED = DCSVF = 1,
922.	<pre>%F10.4,3X,'CM',SX,'WT.MEAN DIA. = DCWMF = ',F10.4,3X,'CM',/)</pre>
<u>923</u> .	2050 FORMAT ('0',40X, PRESSURE DROP ACROSS THE DISTRIBUTOR = ',19E11.)
924.	2051 FORMAT ('0',20X,'COMP,NO',13X,'PRESSURE DROP IN THE BED',/)
925.	2052 FORMAT (20X,15,20X,1PE11,4)
923.	2053 FORMAT ('0',40X,'PRESSURE DROP IN THE FIXED BED SECTION = ',1PE11.
927.	жа́у
928.	2060 FORMAT ('0', 3X; 1', 3X; HEIGHT', 6X; ZAVG', 3X; AV, BUBBLE DIA ', 5X;
929.	1'BUBBLE VEL, ', 4X, 'BUBBLE FRAC, ', 5X, 'CLOUD FRAC, ', 4X, 'SUP, VELOCITY'
930	2,5X, MIN.FLU.VEL. ())
931.	2070 FORMAT (ISFF0.3*2X/F0.3*6(3X/IPE12.4/2X))
932.	2075 FORMAT ('0',T10,'COMPT.NO.',T25,'HEIGHT',T42,'BED BIA.'.T55,
-	
733 ·	1'BED C/S AREA';/)
934 -	2080 FORMAT (T12,I3,T25,F6.2,T40,1PE10.3,T55,1PE10.3)
935.	10000 STOP
936 _. .	END
937.	FUNCTION AKAD(FS;DP;T)
938.	С
939.	C THIS SUBROUTINE CALCULATES LIMESTONE-SO2 REACTION RATE CONSTANT
940,	C
941.	DIMÉNSION F8(15), RR(15), RB(15), RC(15)
942	DATA FB/0.010.0510.110.210.2510.310.3510.410.42510.4510.47510.51
943	*0,525,0,55,0,6 /
944.	DATA RR/1.070.23170.1670.03870.00170.000470.000370.0002270.00027
945.	10.00018/0.00016/0.00015/0.00014/0.00013/0.00011 /
	DATA RB/1.070.58470.51570.33770.21370.09570.02270.0071-0.0067
946.	1 0.005/0.004/0.0036/0.003/0.00275/0.00225 /
947.	
948.	DATA RC/1.0;0.938;0.894;0.802;0.749;0.687;0.609;0.51;0.445;0.367; 1 0.272;0.18;0.121;0.076;0.022 /
949.	
950.	DF1=0.2
951.	DF2=0.1
952+	DP3=0.01
953.	IF(RP .ĠE. BP2) XXX=ALOG(BP/DP2)/ALOG(BP1/DP2)
954:	IF(DP .LT, DP2) XXX=ALÓG(DP/DP3)/ALOG(DP2/DP3)
955 -	ALIME=0.0
956.	AKAD = 0.0
957.	IF(FS .GE. 1.0) RETURN
958.	DO 10 I=2,13
750. 757.	N=1
7074	

•

	•
960.	IF(FS .LE. FB(I)) GO TO 11
951.	10 CONTINUE
942.	11 CONTINUE
963.	. N1=N-1
964.	A = (FS - FP(N1))/(FB(N) - FB(N1))
965.	IF(DP .LT, DP2) 60 TO 12
964.	R1 = (RR(N) / RR(N1)) * * A * RR(N1)
967.	R2 = (RB(N) / RB(N1)) * * A * RB(N1)
968.	GO TO 13
969.	12 CONTINUE
970.	R1 = (RB(N)/RB(N1)) * *A*RB(N1)
971.	R2 = (RC(N)/RC(N1)) * * A * RC(N1)
972	13 CONTINUE
973.	ALIME = (R1/R2) * * XX * R2
974.	IF(ALIME .GT. 1.0) ALIME=1.0
975.	IF $(T - LT - 1253 \cdot 0)$ SG = 35.9%T - 3.57204
976.	IF (T .GE, 1253.0) SG = $-38.43 \times T + 5.64 \times E04$
977.	IF (SG $+LT$, 100.0) SG = 100.0
979.	AKAB = 490.0*EXP(-17500.0/1.987/T)* SG * ALIME
979.	RETURN
990 .	END
791.	SUBROUTINE AKK(AKR,T,P,DC,TP,YO2,RG,MC,AKCO2,FH1)
982.	REAL MC
983.	C
784.	C THIS COMPUTES REACTION RATE CONSTANT FOR CHAR COMBUSTION AKR
985.	C RATE CONSTANT FOR C-CO2 REACTION AND THE CHAR PARTICLE TEMPERATURE
984.	
987.	EM≈1+0
788.	SIGM=1.34E-12
987.	INDX=0
990.	DTS= 200.0
991.	TF≈300.0
992.	DO 100 I=1r20
993.	ETSMAX=0.005*TP
994.	AKS=8710.0*EXP(-35700.0/1.996/TP)
995.	TAV = (T+TP)*.5
996.	D=4.25*(TAV/1800.)**1.75/P
997.	COND=0.632E-5*SQRT(TAV)/(1.+245./TAV*10.**(-12./TAV))
998.	Z = 2500. * EXP(-12400./1.986/TAV)
999.	IF (DC .LE. 0.005) PHI = $(2.*Z+2.)/(Z+2.)$
1000.	IF (DC .GT. 0.005 .AND. DC .LE. 0.10) PHI = $1./(2+2.)*((2.*2+2.))$
1001.	* - Z*(BC-0.005)/0.095)
1002.	IF (DC .GT. 0.10) $PHI = 1.0$
1003.	Q = 7900.0*(2./PHI-1)+2340.0*(22./PHI)
1004.	AKF=24.*PHI*B/(DC*RG*TAV)
1005.	AKR=(RG*TAV/MC)/(1./AKS+1./AKF)
1006.	RHS = AKR*P*Y02*MC*Q/(RG*TAV) - EM*SIGM*(TP***-T**4)
1007.	ETS = TP - T - RHS*BC/(2.0*COND)
1008.	CALL CRRECT(I, INDX, DTS, TP1, TP2, TP, E1, E2, ETS, ETSMAX)
1007.	IF (INDX.EQ.2) GO TO 110
1010,	100 CONTINUE
1011.	WRITE (6, 4000) TP,ETS
1012.	4000 FORMAT ('0',10X, TP CALCULATION HAS NOT CONVERGED',//:10X, TP,ETS -
1013.	1 (1182E12.3)
1014.	110 CONTINUE
1015.	Λ KRC02 = 4.1E08*EXP(-59200./1.987/TAV)
1016.	$\hat{D} = 3.26*(TAV/1800.)**1.75/P$
1017.	ANFC02 = 2.*PHI*D/DC
1019.	$ANCO2 = 1 \cdot / (1 \cdot / AKRCO2 + 1 \cdot / AKFCO2)$
70101	UNDOR
1013.	RETURN

1020. 1021. 1022. 1023.		END SUBROUTINE AREA (ZI, DTI, ATI) COMMON /A/ ZHE(10),AHE(10),FV(10),PH(10),ZF(10),FFC(10).DTUBE(10). 1DVB(60),DVBEFF(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),UNE(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),DV6(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),DV6(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),DV6(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),DV6(60),FD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60), 2DV6(60),DV6(60),FD(10),FD(10),FD(10),AHEAV(60),FD(10),FD(
1024.		2U0(60)+UMF(60))+H(60)+AT(60)+DT(60)+T(60)+X(60)+AKBE(60)+(B(60)+
1025.		3YE(60)++YCOE(60)++EPB(60)+EPC(60)+DVBB(60)+DVBBEF(60)+DBAV(69)+
1026.		4UB(40),UTC(40),UTA(40),ZB(10),ATB(10),YVE(40),ZAVG(40),IARR(10)
1027.		COMMON /B/ YBO(GO), YEO(GO), DB(GO), DPSVB, DPWMB, DCSVB, DCWMB, RHOCH,
1028.		1HLF, VMF, FMO, FMF, UF, PF, TF, RG, G, MGAS, DFFIX, DPFLU, DPDIS, RHOBED,
1029.		2EMF, PAV, HCR, BEBVOL, EFFVOL, SOLVOL, TETUBE, HLMF, PI, AND, DNZL,
1030.		3FWyfSW,DŹAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC
1031.	C	
1032.	C'	CALCULATION OF THE CROSS SECTIONAL AREA GIVEN THE HEIGHT ABOVE
1033.	С,	THE DISTRIBUTOR
1034.	6	
1035.		DO IO J = 1 , MTP
1035.		IF (ZI .GT. ZB(J)) GO TO 10 .
1037.		RJM1 = SQRT (ATB(J-1) / PI)
1038.		$A_{2} = (Z_{1} - Z_{B}(J-1)) / (Z_{B}(J) - Z_{B}(J-1))$
1039.		$B\Psi = SQRT (ATB(J)) / ATB(J-1) - 1.0$
1040		RI = (1.0 + A1 + B1) + RJM1
1041.		BTF = 2.0 * RI
1042.		ATI = PI * RI ** 2
1043-		60 TO 20
1044.	10	CONTINUE
1045.	20	CONTINUE
1046.		RETURN
1047.		END
1048.	-	SUBROUTINE GRRECT(1,INDX.DX,X1,X2,XNEU,E1,E2,E,EMAX)
1049.	C	IN NUMBER OF THIS TRIAL, 1 FOR FIRST TRIAL
1050. 1051.	ç	INDX: INDEX OF THE TRIAL LEVEL
1052.	C	INDX=0: JUSF PROCEEDING INDX=1: THE PROCEEDING
1053.	С С	INDX=1: THE ROOT HAS BEEN CAUGHT BETWEEN X1 AND X2 INDX=2: THE ITERATION HAS CONVERGED
1054.	L	IF (ABS(E).GT.EMAX) GO TO 5
1055.		INDX=2
1056.		RETURN
1057,	5	CONTINUE
1058.	5	IF(INBX.ER.1) GO TO 100
1059.		X2~XNEW
1060.		
1061.		IF(I.EQ.1) GO TO 10
1062.		IF(E1*E2.LE.0.)INDX=1
1063		IF(INDX,EQ,1)G0 TO 150
1064.	10	X1=X2
1065.		E1≈E2
1066.		XNEW=XNEW+DX
1067.		RETURN
1068.	100	CONTINUE
1069.		IF(E1*E.LT.0.) GO TO 110
1070°+		É1≈€
1071.		X1=XNEW
1072.		GO TO 150'
1073.	110	E2=E
1074.		X2=XNEW
1075.	150	CONTINUE
1076.		XNEW=(X1-X2)*E2/(E2-E1)+X2
1077. 1078.		RETURN END
1079.		SUBROUTINE DESIGN
2012+		WWARDOTINE BEDIDA

1000		COMMON (A.C. TURCHAN, AURICAN, DUCHAN, DUCHAN, TRAINE, RECALAN, ATURCALAN,
1080.		CJMMON /A/ ZHE(10), AHE(10), PV(10), PH(10), ZF(10), FFC(10), ATUBE(10),
1081.		1DVB(30), DVBEFF(30), FFAD(10), ZDIS(10), FD(10), AHEAV(30), ETUPE(30),
1082.		2U0(40),UMF(40),H(40),AT(40),DT(40),T(40),X(40),ANBE(40),Y(40),
1083.		3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),DPAV(60),
1084.		4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(50),ZAVG(50),IARR(10)
1085.		COMMON /8/ YBO(40), YEO(40), DB(40), DPSVB, DPWMB, DCSVB, DCWMB, RHOCH.
1086.		1HLF;VMF;FMO;FMF;UF;PF;TF;RG;G;MGAS;DPFIX;DPFLU;DPDIS;RHOBED;
1087.		2EMF, PAV, HCR, BEBVOL, EFFVOL, SOLVOL, TETUBE, HLMF+PI, AND, BNZL,
1088.	_	3FW;FSW;DZAV;MFEED;MDIS;MTHE;MTB;MT;M1;M;ICR;IFBC;NTC
1087.	ç	······································
1090.	ç	AXIAL VARIATION OF BED CROSS SECTION
1091.	С	
1092.		READ (5,1000) A1,A2,A3,A4
1093,	-	READ (5,1001) MTB,($ZB(J)$,ATB(J), $J = 1$, MTB)
1094.	C	
1095.	C	IARRNG 1 2 3
1096.	С	1 VERTICAL INLINE ARRANGEMENT
1097.	C	2 VERTICAL STAGGERED ARRANGEMENT
1093.	ç	3 HORIZONTAL INLINE AKRANGEMENT
1099.	C	4 HORIZONTAL STAGGERED ARRANGEMENT
1100.	C	
1101.	ç	
1102.	С	HEAT EXCHANGE TUBES
1103.		READ (5,1002) MTHE;(ZHE(J+1);AHE(J);DTUBE(J);PV(J);PH(J);
1104.	~	1IARR(J), $J = 1$, MTHE)
1105.	Ç	
1103.	С	LOCATION OF FEED AND DISCHARGE
1107.		READ. $(5,1001)$ MFEED, $(ZF(J),FFC(J),FFAD(J), J = 1,MFEED)$
1108.	C	
1109.	~	READ $(5,1001)$ MDIS; $(ZDIS(J),FD(J), J = 1;MDIS)$
1110.	C	
1111.	C	DISTRIBUTOR
1112.	С	
1113.		READ (5,1003) AND , DNZL , FW , FSW
1114.		DO 100 J = 1. MTHE
1115.		IF (AHE(J) .GT., 0.0) GO TO 100
1115.		IF $(DTUBE(J), EQ. 0.0)$ GO TO 100
1117.	100	AHE(J) = PI * DTUBE(J) / (PH(J)*PV(J))
1118.	100	CONTINUE
1119. 1120.	C C	CONDITION FOR CONDUCTING AUCTORES OF A STAT
1120.	ĉ	CONDITION FOR COMPUTING AVERAGE CELL SIZE
1122.	L ,	WRITE (6,2000) A1,A2,A3,A4
1123.		WRITE (6,2001)
1124.		WRITE $(6,2002)$ (ZB(J),ATB(J), J = 1,MTB)
1125.		WRITE (6,2003)
1126.		WRITE (6,2004) (ZHE(J+1);AHE(J);DTUBE(J);PV(J);PH(J);TARR(J);
1127.		1J = 1, MTHE)
1128.		WRITE (6,2005)
1129.		WRITE (6,2006) ($ZF(J)$, FFC(J), FFAB(J), J = 1, MFEED)
1130.		WRITE (6,2007)
1131.		WRITE $(3/2007)$ WRITE $(3/2008)$ $(ZDIS(J),FD(J), J = 1,MDIS)$
1132.		WRITE (5,2009) AND, DNZL, FW, FSW
1133.		Z1 = ZB(1)
1134.		ABED1 = ATB(1)
1135.		DBED1 = SQRT(4.0 * ABED1 / PI)
1136.		PVR(1) = 0.0
1137.		RVBEFF(1) = 0.0
1138.		ZHE(1) = 0.0
1139.		DZAV = 30.0

Ľ140.		NTC = IFIX(ZR(MTB),/QZAV)+1
1141.		00 10 I = 17 NTC
1142.		$Z^{2} = Z^{1} + DZAV$
-1143 -		IF (I,EQ,NTC) $Z_{2}^{\prime} = ZB_{1}^{\prime}(MTB)$
1144.	-	BQ 20 J = 17 MTHE
1145.	-	IF (ZHE(J), LE, Z1 ,AND, ZHE(J+1), GE, Z2) GD TO 30
11,46.		IF (ZHE(J) .LE. Z2 .AND. ZHE(J+1) .LT. Z2) GO TO 20
1147.		$F1 = \langle Z2 - ZHE(J) \rangle \wedge BZAV$
1149.	•	$FZ = \langle ZHE(J) - ZI \rangle / DZAV$
1149.		AH = F1 + AHE(J) + F2 + AHE(J-1)
1150.		DIAT = F1 * DTUBE(J) + F2 * DTUBE(J-1) $($
1151.		GB TO 40
1152.	30	AH = AHA(J)
1153.		BIAT = BTUBE(J)
1154.	40	CONTINUE
1155.		GO TO 50
1156.	20	CONTINUE
1157.	50	CONTINUE
1159.		CALL AREA (Z2;DBED;ABED)
1159.		DVB(I+1) = 0.5 * (ABED+ABED1) * DZAV
1160.		DVBEFF(I+1) = DVB(I+1) * (1.0 - 0.25 * AH * DIAT)
1131.	•	$Z_1 = Z_2$
1132.		ABED1 = ABED
1133.	10	CONTINUE
1164.	1000	
1145.	1001	
1155.	1002	
1167.		FORMAT (3F10.0)
1168.		• FORMAT <(1/200/)4642//)
1169.	2001	FORMAT ('0')T41; HT, ABOVE DISTRIBUTOR; CM', T91; CROSS SECTIONAL ';
1170.		1'AREA OF BED, SQ.CM. (1/)
1171.		: FORMAT (T49;F8:4;T96;F10:3)
1172.	2003	FORMAT ('0',T3, 'HEIGHT, CM', T20, 'SP, HEAT TRANS, AREA, SQ, CM/CU, CM',
1173.		1T58,'BIA.OF TUBES,CM',T78,'YER.FITCH,CM',T95,'HOR.FITCH,CM',
1174.		2T113, TUBES ARRNGT(,/)
1175.	2004	FORMAT (T8,F6.2,T33,F8.4,T62,F6.3,T92,F6.3,T99,F6.3,T118,12)
1176.	. 2005	FORMAT ('0',T21, 'SOLIDS FEED LEVEL', 151, FRACTION COAL FED', .'
1177.		1T81, FRACTION LIMESTONE FED(,/)
1178.		FORMAT (T27,F6.2,T58,F6.4,T28,F6.4)
1179.	2007	FORMAT ('0',T21, 'SOLIDS DISCHARGE LEVEL', T51, 'FRACTION DISCHARGED'
1180.		1,/)
1181.		FORMAT (129,F6.2,T58,F6.4)
1182.	2009	FORMAT (10', T12, 'NO.OF DISTRIBUTOR HOLES (, 140, /=/, 145, FE.1//,
1193.		1'0',T12, NOZZLE DIAMETER ',T40,'=',T45,F7.4,3X,'CM'/'0',T12,
1194.		4'FW',T40,'=',T45,F6.3,/,'0',T12,'FSW',T40,'=',T45,F6.3)
1195.		RETURN
1186.		END
1197.		SUBROUTINE FBC(YH20,ANC,DCSVE,DVBB,ETUBE,FM0,GB,COB,GE,NC,
1189.		1PAV,PHIB,PI,RG,RVGAS,T,TAVB,X02,YC00,YC0,Y00,Y0,YV0,YV,^* `02,
1189.		2COVB, CO2VB, YCO20, YCO2)
1190.	~	REAL NC
1191.	C	TUTO CHORDOGDAN DEDEDDNO THE CAS SHARE NATEDTAL DALANSE COS
1192.	С С	THIS SUBPROGRAM PERFORMS THE GAS PHASE MATERIAL PALANCE FOR
1193.	Ċ	02/CO/CO2 IN THE FREEBOARD
1194.	L.	
1195.		
1196. 1197.		A4 = PAV/RG/TAVB*NC*PI*DCSVE**2*ANCO2 'YV = YVO-YDO/XO2
1177.		IF (YV + LT + 0 + 0) GO TO 100
1198.		YO = 0.0
<u>+</u> +77+		

		ODICALLA DACID IO
1200.	С	ORIGINAL PAGE 18
1201.	ē	OXYGEN SORVEDGENQUONITY
1202.	č	SULAR OF A CARDING CARDING &
1203.	Ç	YCO2 = FMO*YCO20/(FMO+64)
1204.	•	
		YCO = YCO0+2.0*A4*YCO2/FMO+(YU0-YV)*COVB
1205.		-GR = 0.0
1206.		GE = FMD#(YVO-YV)
1207.		CQB = 0.0
1208.		RETURN
1209.	100	CONTINUE
1210.	С	
1211.	С	OXYGEN RICH CONDITION
1212.	C	
1213.		YV = 0.0
1214.		ANP = 3.E10*EXP(-15000./1.987/T)*(PAV/RG/T)**1.8*YH20**0.5*DVB8*
1215.		1(1,-ETUBE)
1213.		INDEX = 0
1217.		YO = 0.0
1219.		$\hat{\mathbf{D}}\mathbf{Y}\mathbf{O} = 9.01$
1219.		EYO = 0.001
1220.		DO 110 I = 1,20
1221.		ANR = FM0*YC00+2.0*A4/(FM0+A4)*(FM0*YC020+A2*YC+(2./FHIB-1.))+
1222.		1FMG*YV0*COVB+A2*YG*(22./PHIB)
1223.		DR = FMQ+AKF*(17.5*YQ/(1.+24.7*YQ))
1224.		1-2.0*A4*AKP*(17.5*Y0/(1.+24.7*Y0))/(FM0+A4)
1225.		YCO = ANR/DR
1226.		IF (YCD .LT, 1.E-6) GD TO 130
1227.		YC02 = (FN0*YC020+A2*Y0*(2,/PHIB-1,)
1228.		1+6KP*YC0*(17.5*Y0/(1.+24.7*Y0)))/(FM0+64)
1227.		YOC = YOO - YVO * XO2 - AKP * YCO * (17.5 * YO / (1.+24.7 * YO)) / 2.0 / FMO
1230.		1-A2*Y0/PHIB/FMD
1231.		G0 T0 140
1232.	130	CONTINUE
1233.	100	YCO = 0.0
1234.		YCD2 = (FMO*YCD20+A2*YO+FMO*YCD0)/(FMO)
1235.	1 40	YOC = YOO-YVO*XO2-YCOO/2.0-A2*YO/FHO
1236.	140	CONTINUE
1237.	C	WRITE(6,190) I,YCO,YCO2,YO,YOC
1239.	C190	FORMAT(5X, 1, YCO, YCO2, YO, YOC - 1, 14, 1P4E12.3)
1239.		IF (YOC, LT, 0.0) $YCC = 0.0$
1240.		IF (YCO2 .LT. 0.0) YCO2 = 0.0
1241.		ER = YO - YOC
1242.		CALL_CRRECT_(I,INDEX,DY0,X1,X2,Y0,E1,E2,ER,EY0)
1243.		IF (INDEX .EQ. 2) GO TO 120
1244.	110	
1245.		WRITE (6,1000) Y0,Y0C,Y00
1246.	1000	FORMAT ('0',10X,'YO HAS NOT CONVERGED, SUBROUTINE FBC',/.10X,'YO,
1247.		1YQC,YOO = (,1P3E12.3)
1248.		YE = YEO
1249.	120	GB = 0.0
1250.		GE = FMOXYVO
1251.		COB = AKP*YCO*(17.5*YO/(1.+24.7*YO))
1252.		IF (YCO .EQ. 0.0) COB = FMO*YCOO
1253.		IF (YO .GT. YGC) YO = YOC
1254.		RETURN
1255.		END
1254.		SUBROUTINE GPB (YH20;AKB;AKE;AKBE;AMODF;DVBB;EMF;EP3;EPC;ETUBE;
1257.		IFBMO, FBM, FEMO, FEM, GB, COB, GE, PAV, PHIE, RG, RVGAS, T, TAVB, TAVE,
1259.		2VPR0B;X;X02;X02C;YB0;YB;YC0E0;YC0E;YE0;YE;YVE0;7VE;ANC02;C0V-C02V-
1259.		3C0VB+C02VB,YC02B0,YC02B,YC02E0,YC02E)
-		

1230.		DIMENSION A(25),8(5),AA(16),88(4)
1251.	С	
1262.	č	THIS SUBPROGRAM FORMS THE HEART OF THE CALCULATIONS FOR THE
1263.	C	GAS PHASE BALANCES IN THE BED
1254.	С	· · · · · · · · · · · · · · · · · · ·
1265.		A1 = AKBE¥İVBB¥EPB*PAV/(KG*T)
1266.		A2 = AMODE*SUBB*(EPC-EPB)*ANB*PAV / (RG*TAVB) * X
1267.		A3 = AMODF*DUBB*(1,-EPC-ETUBE)*AKE*PAV/(RG*TAVE)*X
1259.		A4 = AMODF*DVBB*(1EPC-ETUBE)*ANCO2*PAV/(RG*TAVE)*X
1269.		B0 150 $I = 1,25$
- · ·	~	
1270.	c	
1271.	С	OXYGEN CONCENTRATION IN EMULSION PHASE IS ZERO.
ŕ272.	C	
1273.	150	A(I) = 0.0
1274		A(1) = FEM + A1
1275.		A(4)' = -A1 * CO2VB'
1276		$A_{1}(5) = A_{1} \times X_{0} 2C$
1277.		$A^{\dagger}(7) = A(1)$
1278.		A(9) = -A1
1279.		A(10) = A1/2:0
1280.		A'(12) = -2.0 * A 4'
1291		A(13) = FEM + A1 + A4
1292.		A(1+4) = -A1.
1293.		A ³ (18) = −A1
1294.		A'(19) = FBM + A1
1285.		A(21) = A1/XO2
1296.		A(22) = -A1*COVB/XO2
1287		R(24) = -A2
1299.		$A^{\prime}(25) = FBM^{\prime} + A1 + A2$
1297.		B(1) = FEMO*YVEO-FEMO*YEO/XO2+VPROD
1290		B(2) = FEMO*YCOEO+FEMO*YEO*COUB/XO2+VPROD*COV
1271.		B(3) = FEMOXYCO2EOfUPROD%CO2U
1292.		B(4) = FBMO*YCD2BO
1293.		$\hat{\mathbf{g}}(\mathbf{S}) = \mathbf{FBMO} * \mathbf{YBO}$
1294.		CALL SIMQ(A,B,5/25/KS)
1295.		YVE = B(1)
1276.		ÎF (YVE ,LE, 0.0) GD ÎD 10
1297.		$YE = 0^{3} \cdot 0^{3}$
1278.		YCOE = B(2)
1299.		YCO2E = B(3)
1300.		YCO2B = B(4)
1301.		YB = B(5)
1302.		GE = (FEMO*YE0+A1*YB)/X02
1303		$GB \approx A1*YVE$
1304.		CDB = A1*YCOE
1305.		GO TO 60
1306.	1.0,	CONTINUE
1307.	C	
1308'+	С	OXYGEN CONCENTRATION IN EMULSION PHASE IS LARGE ENOUGH TO BURN
1309:	Ç	THE VOLATILES RELEASED IN THAT COMPARTMENT
1310.	č	
1311	-	YVE = 0.0
1312.		AKP = 3.E10*EXP(-16000./1.987/T)*(PAV/RG/T)**1.8*YH20**0.5YDVBB*
1313.		Ŷ(1,-EPC-ETUBE)*EMF
1314		INDX = 0
1315.		YE = 0.0
1316.		dYS = 0.01
1317.		IF (YEO .LÊ, 0.03) DYE = 0.002
1318.		IF (YEO ,LE. 0.025) $DYE = 0.001$
1319.		EMAX = 0.01
* * *		

1320.		10150 I = 1.16
1321.	130	$AA(I) \neq 0.0$
-	100	
1322.		00 50 I = 1,50
1323.		AA(1) = FEM + A1 + AKP*(17.5*YE/(1.+24.7*YE))
1324.		AA(2) = -AKP*(17.5*YE/(1.+24.7*YE))
1325,		AA(3) = -A1
1324+		AA(4) = A1/2.0
1327.		AA(5) = -2.0*A4
1329.		AA(6) = FEM+A1+A4
1329.		AA(7) = -A1
1330.		AA(10) = -A1
1331.		AA(11) = FBM+A1
1332.		AA(15) = -A2
1333.		AA(16) ≠ FBM + A1 + A2
1334.		BB(1) = FEMOXYCOEO+(FEMOXYVE0+VPROD)*COVB+VPROD*CBV+A3*
		· · · · · · · · · · · · · · · · · · ·
1330.		1(2,-2,/PHIE)*YE -
1334+		BB(2) = FEMOKYCD2E0+VPROD*CO2V+A3*(2./PHIE-1.)*YE
1337.		BB(3) = FBM0xYCO2B0
1338.		BB(4) = FBHO*YBO+A1*YE
1339.		CALL SIMR(AA, BB, 4, 16, NS)
1340.		$YCOE \Rightarrow BB(1)$
1341,		YCO2E = BB(2)
1342,		YCO2B = BB(3)
1343.		YB = BB(4)
1344.		ANR = FEMO*YEO-A1*(YE-YB)-A3*YE/PHIE-(FEMO*YVEO+VPROD)*XO2-
1345.		1ANP*YCOE*(17.5*YE/(1.+24.7*YE))/2.0
1346.		YEC = ANR/FEM
1347.		IF (YEC ,LT, 0.0) YEC = 0.0
1348.		IF (YEC .EQ. 0.0 .AND. YEO .LT. 0.005) YE = 0.0
1349,		ER = YE-YEC
1350.		CALL CRRECT(I;INDX;DYE;X1;X2;YE;E1;E2;ER;EMAX)
1351.		IF (INDX .EQ. 2) GO TO 60
1352.	50	CONTINUE
1353.	00	WRITE (6,1000) YE,YEC,YB,YBO,YEO
1354.	1000	FORMAT ('0',10X, 'YE HAS NOT CONVERGED, SUBROUTINE GPB',/,10X, 'YE,
1355,		1YEC; YB; YB0; YE0 = '; 1P5E12.3)
1356.		YE ⇒ YEO
1357,	50	CONTINUE
•	20	
1359.		IF (YE .LT. 0.0) $YE = 0.0$
1359.		IF (YE .GT. YEC) YE = YEC
1360.		IF (YB $.LT. 0.0$) YB = 0.0
1351.		IF (YC02B .LT. 0.0) YC02B = 0.0
1362.		IF (YCD2E $+LT$, 0.0) YCD2E = 0.0
1363.		GE ⇒ FEMO*YVEO + VPROD
1364.		GB = 0.0
1365.		COB = AKP*YCOE*(17.5*YE/(1.+24.7*YE))+A1*YCOE
1366.		RETURN
	•	
1337.		
1368.		SUBROUTINE GPHASE(ANB;ANE;AM;PAV;RG;ETUBE;EPE;EPE;ANBE;TVBP;FBMO;
1369.		*FEMO,FPM,FEH,T;TB,TE,YBO,YEO,YB1,YE1,GENB,GENE)
1370.	C	
1371.	č	THIS SUBPROGRAM IS USED TO CALCULATE THE SO2 AND NOX
1372.	č	CONCENTRATIONS IN THE BED
		CONCENTRALING IN THE BED
1373.	С	
1374.		D1= ((1ETUBE-EPC)*AK*AKE/TE+AKBE*EPB/T)*FAV/RG*DVPP+FEN
1375.		ALF≈ANPE*EPB*DV8P*PAV/(D1*RG*T)
1374.		$B2 \approx FBM+ALF*FEM+((EPC-EPB)*ANB/TB+)$
1377.		1ALF*(1.0-EPC-ETUBE)*AKE/TE)*DVBB*AMYPAV/RG
1378.		IF $(D2 . EQ. 0.0)$ YB1 = 0.0
1379.		IF (D2 .NE. 0.0) YB1=(FPM0*YB0+GENB+ALF*FEM0*YE0)/D2

1380.		YE1=(YE0*FEMO+GENE)/D1+ALF*YP1
1381.		RETURN
1392.		END
1393.		SUBROUTINE HAREA (ATI, DTI, ZI)
1384.		COMMON /A/ ZHE(10);AHE(10);PV(10);PH(10);ZF(10);FFC(10);DFUBE(10);
1385.		1DVB(30),DVBEFF(30),FFAD(10),ZDIS(10),FD(10),AHEAV(30),ETUPE(30),
1386.		2UD(30),UMF(30),H(30),AT(30),DT(30),T(30),X(30),AKBE(30),YB(30),
1397.		3YE(40),YCOE(50),EPB(40),EPC(40),DVBB(40),DVBBEF(30),DBAV(40),
1388.		4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),TARR(10)
1389.		COMMON /B/ YBO(30); YEO(60); DB(60); DFSVB; DFWMB; DCSVB; DCWMB; THOCH.
1390.		1HLF,VMF,FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBE),
1391.		25MF, PAV, HCR, BEDYOL, EFFVOL, SOLVOL, TETUPE, HLMF, PI, AND, DNZL,
1392		3FW;FSW;DZAV;MFEED;MDIS;MTHE;MTB;MT;M1;M;ICR;IFBC;NTC
1393.	C	· · ·
1394.	č	CALCULATION OF THE HEIGHT GIVEN THE CROSS SECTIONAL AREA
1325.	č	
		DI - CODI / ATI / DI)
1396		RI = SQRF (ATI / PI)
1397.		DTI = 2.0 # RI
1398.		DO 10 $J = I$, MTB
1399.		IF (ATI .GT. ATB(J)) GO TO 10
1400.		A1 = SRRT (ATI / ATI (J-1)) - 1.9
1401.		B1 = SQRT (ATB(J) / ATB(J-1)) - 1.0
1402.		C' = ZB(J) - ZB(J-1)
1403.		ZI = ZB(J-1) + A1 + C / B1
1404.		GÐ TO 20
1405.	10	CONTINUE
1406.	20	CONTINUE
1407.		RETURN
1409.		END'
		FUNCTION HEIGHT (VV)
1409.		COMMON /A/ ZHE(10);AHE(10);PV(10);PH(10);ZF(10);FFC(10);DTUBE(10);
1410.		
1411.		1BVB(30), BVBEFF(30), FFAD(10), ZDIS(10), FD(10), AHEAV(30), ETUBE(30),
1412.		2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YE(60),
1412. 1413.		2U0(60);UMF(60);H(60);AT(60);DT(60);T(60);X(60);ANPE(60);YP(60); 3YE(60);YC0E(60);EPB(60);EPC(60);DVBB(60);DVBBEF(60);UBAV(60);
1412. 1413. 1414.		2UO(60);UMF(60);H(60);AT(60);DT(60);T(60);X(60);ANPE(60);YP(60); 3YE(60);YCOE(60);EPB(60);EPC(60);DVBB(60);DVBBEF(60);UBAV(60); 4UB(60);UTC(60);UTA(60);ZR(10);ATB(10);YVE(60);ZAVG(60);LARR(10)
1412. 1413. 1414. 1415.		2UO(60);UMF(60);H(60);AT(60);DT(60);T(60);X(60);ANPE(60);YP(60); 3YE(60);YCOE(60);EPB(60);EPC(60);DVBB(60);DVBBEF(60);UBAU(60); 4UB(60);UTC(60);UTA(60);ZR(10);ATB(10);YVE(60);ZAVG(60);UARR(10) COMMON /B/ YBO(60);YEO(60);DB(60);DFSVB;BFWMB;DCSVP;DCWMB;RHOCH;
1412. 1413. 1414. 1415. 1415.		2UO(60);UMF(60);H(60);AT(60);DT(60);T(60);X(60);ANPE(60);YP(60); 3YE(60);YCOE(60);EPB(60);EPC(60);DVBB(60);DVBBEF(60);UBAU(60); 4UB(60);UTC(60);UTA(60);ZR(10);ATB(10);YVE(60);ZAVG(60);UARR(10) COMMON /B/ YBO(60);YEO(60);DB(60);DFSVB;BFWMB;DCSVP;DCWMB;RHOCH; 1HLF;VMF;FMD;FMF;UF;FF;TF;RG;G;MGAS;DPFIX;DPFLU;DPDIS;RHOBED;
1412. 1413. 1414. 1415. 1415. 1416. 1417.		2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DFSVB,BFWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF+FMD,FMF,UF,FF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEBVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL,
1412. 1413. 1414. 1415. 1415. 1416. 1427. 1418.		2UO(60);UMF(60);H(60);AT(60);DT(60);T(60);X(60);ANPE(60);YP(60); 3YE(60);YCOE(60);EPB(60);EPC(60);DVBB(60);DVBBEF(60);UBAU(60); 4UB(60);UTC(60);UTA(60);ZR(10);ATB(10);YVE(60);ZAVG(60);UARR(10) COMMON /B/ YBO(60);YEO(60);DB(60);DFSVB;BFWMB;DCSVP;DCWMB;RHOCH; 1HLF;VMF;FMD;FMF;UF;FF;TF;RG;G;MGAS;DPFIX;DPFLU;DPDIS;RHOBED;
1412. 1413. 1414. 1415. 1415. 1416. 1417.	C	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(50),DPSVB,DFWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF+FMO,FMF,UF,PF,TF,RG,G,MGAS,DPF1X,DPFLU,DPD1S,RHOBED, 2EMF,PAV,HCR,BEBV0L,EFFV0L,SOLV0L,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MD1S,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC
1412. 1413. 1414. 1415. 1415. 1416. 1427. 1418.	C	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DFSVB,BFWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF+FMD,FMF,UF,FF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEBVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL,
1412. 1413. 1414. 1415. 1415. 1416. 1447. 1418. 1419.		2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(50),DPSVB,DFWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF+FMO,FMF,UF,PF,TF,RG,G,MGAS,DPF1X,DPFLU,DPD1S,RHOBED, 2EMF,PAV,HCR,BEBV0L,EFFV0L,SOLV0L,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MD1S,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421.	C	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(50),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF+FM0,FMF,UF,PF,TF,RG,G,MGAS,DPF1X,DPFLU,DPD1S,RHOBED, 2EMF,PAV,HCR,BEBV0L,EFFV0L,SOLV0L,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MD1S,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422.	с с	2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(50),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF+FMD,FMF,UF,PF,TF,RG,G,MGAS,DPFLX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES)
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1423.	с с	<pre>2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(50),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF+FMD,FMF,UF,PF,TF,RG,G,MGAS,DPFLX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0</pre>
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1423. 1424.	с с	<pre>2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DFWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF.FMO,FMF,UF,FF,TF,RG,G,MGAS,DPFUX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0</pre>
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1423. 1424. 1425.	с с	<pre>2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF.FMO,FMF,UF,FF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR;BEBVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC</pre>
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1423. 1424. 1425. 1426.	с с	<pre>2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF.FMO,FMF,UF,FF,TF,RG,G,MGAS,DPFTX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEBVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I)</pre>
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1424. 1425. 1425. 1426. 1427.	с с	2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(50),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF.FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM' = SUM + DVBEFF(I) HT = HT + DZAV
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1423. 1424. 1425. 1426.	с с	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWHB,RHOCH, 1HLF,VMF.FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100
1412. 1413. 1414. 1415. 1416. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1424. 1425. 1425. 1426. 1427.	с с	2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(50),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF.FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM' = SUM + DVBEFF(I) HT = HT + DZAV
1412. 1413. 1414. 1415. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1422. 1425. 1425. 1425. 1427. 1428. 1429.	с с	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWHB,RHOCH, 1HLF,VMF.FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100
1412. 1413. 1414. 1415. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1423. 1424. 1425. 1425. 1425. 1428. 1429. 1430.	000	<pre>2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWHB,RHOCH. 1HLF,VMF.FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100 HT = (VV - SUM.) * DZAV / DVBEFF(I) + HT GO TO 110</pre>
1412. 1413. 1414. 1415. 1416. 1415. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1423. 1425. 1425. 1425. 1425. 1428. 1429. 1430. 1431.	C C C 100	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAU(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH. 1HLF,VMF.FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFUX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM' = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100 HT = (VV - SUM.) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE
1412. 1413. 1414. 1415. 1415. 1415. 1416. 1417. 1419. 1420. 1421. 1422. 1422. 1423. 1424. 1425. 1425. 1425. 1428. 1429. 1429. 1430. 1431. 1432.	000	<pre>2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),DBAV(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH. 1HLF,VMF.FMD,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FFFVOL,SOLVOL,TETUBE,HLMF,PI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100 HT = (VV - SUM.) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE CONTINUE</pre>
1412. 1413. 1414. 1415. 1416. 1415. 1416. 1417. 1419. 1420. 1420. 1421. 1422. 1422. 1424. 1425. 1425. 1425. 1428. 1429. 1429. 1430. 1431. 1432. 1433.	C C C 100	2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAV(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DFWBB,DCSVP,DCWMB,RHOCH, 1HLF,VMF,FMD,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEBVOL,EFFVOL,SOLVOL,TETUBE,HLMF,PI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100 HT = (VV - SUM.) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE HEIGHT = HT
1412. 1413. 1414. 1415. 1416. 1415. 1416. 1427. 1420. 1420. 1420. 1422. 1422. 1423. 1424. 1425. 1425. 1425. 1428. 1427. 1428. 1429. 1430. 1431. 1432. 1434.	C C C 100	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),UBAV(60), 4UB(60),UTC(60),UTA(60),ZB(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWB,DCSVP,DCWMB,RHOCH, 1HLF,VMF,FMD,FMF,UF,PF,TF,RG,G,MGAS,DPFLX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,EFFVOL,SOLVOL,TETUBE,HLMF,PI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100 HT = (VV - SUM.) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE HEIGHT = HT RETURN
1412. 1413. 1414. 1415. 1416. 1447. 1418. 1419. 1420. 1421. 1422. 1422. 1422. 1425. 1425. 1425. 1428. 1429. 1430. 1431. 1432. 1434. 1435.	C C C 100	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),DRAV(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YBO(60),YEO(60),DBS(50),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH, 1HLF,VMF.FM0,FMF,UF,FF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEBVOL,EFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM +LT.VV) GO TO 100 HT = (VV - SUM.) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE CONTINUE HEIGHT = HT RETURN END
1412. 1413. 1414. 1415. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1422. 1423. 1424. 1425. 1425. 1428. 1429. 1430. 1431. 1432. 1434. 1435. 1436.	C C C 100	2UO(60),UMF(60),H(60),AT(60),DT(60),T(60),X(60),ANPE(60),YP(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),DRAV(60), 4UB(60),UTE(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),LARR(10) COMMON /B/ YB0(60),YEO(60),DB(50),DPSVB,DFUMB,DCSVP,DCUMB,RHOCH. 1HLF,VMF.FM0,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FEFVOL,SOLVOL,TETUBE,HLMF,PI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. VV) GO TO 100 HT = (VV - SUM.) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE HEIGHT = HT RETURN END SUBROUTINE HYDRO'
1412. 1413. 1414. 1415. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1422. 1422. 1425. 1425. 1428. 1427. 1428. 1429. 1430. 1431. 1432. 1434. 1435. 1435.	C C C 100	2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YE(60), 3YE(60),YCDE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),DBAV(60), 4UB(60),UTC(60),UTA(60),ZE(10),ATB(10),YVE(60),ZAVG(60),LARC(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH. HLF,VMF,FMO,FMF,UF,FF,FRG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. UV) GO TG 100 HT = (UV - SUM) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE HEIGHT = HT RETURN END SUBROUTINE HYDRO' REAL MGAS
1412. 1413. 1414. 1415. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1422. 1423. 1424. 1425. 1425. 1428. 1429. 1430. 1431. 1432. 1434. 1435. 1436.	C C C 100	<pre>2UO(60);UMF(60);H(50);AT(60);DT(60);T(60);X(60);ANPE(60);YE(60); 3YE(60);YCDE(60);EPB(60);EPC(60);DVBB(60);DVBEF(60);DR(40); 4UB(60);UTC(60);UTA(60);ZB(10);ATB(10);YVE(60);ZAVG(60);LARR(10) COMMON /B/ YBG(60);YEG(60);BC(60);DPSVB;BPWMB;DCSVP;DCWMB;RHOCH; 1HLF;VMF;FMD;FMF;UF;PF;TF;RG;G;MGAS;DFFLX;DPFLU;DPDIS;RHOBED; 2EMF;PAV;HCR;BEBVQL;EFFVQL;SQLVQL;TETUBE;HLMF;FI;AND;DNZL; 3FW;FSW;DZAV;MFEED;MDIS;MTHE;MTB;MT;M1;M;ICR;IFBC;NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2;NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM :LT; VV) GO TO 100 HT = (VV - SUM;) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE CONTINUE CONTINUE CONTINUE HEIGHT = HT RETURN END SUBROUTINE HYDRO' REAL MGAS COMMON /A/ ZHE(10);AHE(10);FH(10);ZF(10);FFC(10);DTUBE(10;)</pre>
1412. 1413. 1414. 1415. 1416. 1417. 1418. 1419. 1420. 1421. 1422. 1422. 1422. 1422. 1425. 1425. 1428. 1427. 1428. 1429. 1430. 1431. 1432. 1434. 1435. 1435.	C C C 100	2UO(60),UMF(60),H(50),AT(60),DT(60),T(60),X(60),ANPE(60),YE(60), 3YE(60),YCDE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),DBAV(60), 4UB(60),UTC(60),UTA(60),ZE(10),ATB(10),YVE(60),ZAVG(60),LARC(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVP,DCWMB,RHOCH. HLF,VMF,FMO,FMF,UF,FF,FRG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED, 2EMF,PAV,HCR,BEDVOL,FFFVOL,SOLVOL,TETUBE,HLMF,FI,AND,DNZL, 3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC CALCULATION OF THE HEIGHT GIVEN THE EFFECTIVE VOLUME OF THE BED (EXCLUDING THE VOLUME OCCUPIED BY THE TUBES) HT = 0.0 SUM = 0.0 DO 100 I = 2 , NTC SUM = SUM + DVBEFF(I) HT = HT + DZAV IF (SUM .LT. UV) GO TG 100 HT = (UV - SUM) * DZAV / DVBEFF(I) + HT GO TO 110 CONTINUE HEIGHT = HT RETURN END SUBROUTINE HYDRO' REAL MGAS

-

1440.		2U0(60);UMF(60);H(60);AT(60);DT(60);T(60);X(60);AKPE(60);*B(60);
1441.		3YE(40),YCDE(40),EPB(40),EPC(40),DVBB(40),DVBPEF(40),0BAV(40)-
1442.		4UB(40), UTC(40), UTA(60), ZB(10), ATB(10), YYE(40), ZAVG(40), IARR(10)
1443.		COMMON /B/ YBO(60); YED(60); DB(60); DPSVB; DPWMF; DCSVB; DCUMB; KHOCH;
1444.		1HLF,VMF,FMO,FMF,UF,PF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHOBED,
1445.		2EMF, PAV, HCR, BEDVOL, EFFVOL, SOLVOL, TETUBE, HLMF, PI, AND, UNZL,
1446.		3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC
1447.		COMMON /C/ DPSE(30);DPWE(30);DCSE(30);DCWE(30);WEA(30);WEC(30);
1448.		1HB(30), WCHOLD(30), WAHOLD(30), KT
1449.		DIMENSION DTUBEI(60), PHI(60), PVI(60), IARRNG(60)
	~	
1450.	C	
1451.	C	CALCULATION OF BUBBLE HYDRODYNAMICS
1452.	C	
1453.		LAST = 0
1454.		SUM=0.0
1455.		SUMEFF=0.0
1456.		BEBVOL = 0.0
1457.		SUMV = 0.0
1458.		ICR = 0
1459.		HCR = 0.0
1460.		IFBC = 0
1461.		BTUBEI(1) = 0.0
1462		DBAV(1) = 0.0
1463.		
		H(1) = 0.0
1464+	-	AT(1) = ATB(1)
1465.		DT(1) = SQRT(4.0*AT(1)/PI)
1466.		DVBB(1)= 0.0
1467.		BVBBEF(1) = 0.0
1468.		IARRNG(1) = 0.0
1469.		ETUBE(1) = 0.0
A . A		
1470.	•	ETUBE(2) = 0.0
1471.		RHOGAS = PAV*MGAS/(RG*T(2))
1472.		VISC = 3.72E-6*T(2)**0.676
1473.		A1 = 33.7**2+0.0408*DPSVB**3*G*(RHOBED-RHOGAS)*RHOGAS/VISC**2
1474.		UMF(2) = VISC/(DPSVB*RH0GAS) * (SQRT(A1)-33.7)
1475.		UMF(1) = UMF(2)
1476.		UO(2) = FMF*MGAS/RHOGAS/(AT(1)*(1,-ETUBE(2)))
1477.		DB0 = 0.347*(AT(1)*(1ETUBE(2))*(UO(2)-UMF(2))/AND)**0.4
1478.		DBA = DBO
1479.		H(2) = DBO
1480.	С	
1481.	č	ASSUMING THE COMPARTMENT SIZE, BUBBLE SIZE IS COMPUTED IN THAT
1482.	č	COMPARTMENT. ITERATION IS CONTINUED TILL THE ASSUMED COMPARTMENT
1483.		
	С	SIZE AND THE CALCULATED BUBBLE SIZE IN THAT COMPARTMENT AGREE
1484.	C	
1485.		$10\ 200\ I = 27100$
1486.		IF (I .EQ. 2) GO TO 16
1487.		DDR = 5.0
1488.		INDEX = 0
1487.		EMAX = 0.1
1490.		BA = H(I-1)-H(I-2)
	16	$p_{0} = \frac{1}{1} \frac{1}$
1491.	10	
1492.		IF (I .LE. M1) GO TO 5
1493.		T(I) = T(H1)
1494.		X(I) = X(M1)
1495.		YB(I) = YB(M1)
1496.		YE(I) = YE(MI)
1497.	5	CONTINUE
1498.	4	
- • •	~	H(I) = H(I-1) + DBA
1499.	С	

1500.	С	IDENTIFICATION OF COULING TUDES IN THE COMPARTMENT
Í501.	C	
1502.		DO 210 J = $1/MTHE$
1503. 1504.		IF (ZHE(J) .LE, H([) .AND, ZHE(J+1) .LT, H(I)) GO (O 210 IF (ZHE(J) .LE, H(I-1) .AND, ZHE(J+1) .GE, H(I)) GO TO 220
1505.		$F_1 = \langle H(I) - ZHE(J) \rangle / DBA$
1504.		F2 = (ZHE(J)-H(I-1))/DBA
1 <u>\$</u> 07.		AHEAV(I) = F1*AHE(J)+F2*AHE(J−1)
1508.		DTUBEI(I) = F1*DTUBE(J)+F2*DTUBE(J-1)
1509. 1510.	200	
1511.	220	AHEAV(I) = AHE(J) DTUBEI(I) = DTUBE(J)
1512.	230	P(I(I) = P(J)
15İĴ,		$PHI(I) \neq PH(J)$
1514.		IARRNG(I) = IARR(J)
1515.		60 TO 240
1516.	210	CONTINUE
1517. Í518.	240	CALL AREA(H(I);ŪT(I);AT(I)) HAV = 0,5*(H(I-1)+H(I))
1519.		CALL AREA (HAV, DTAV, ATAV)
1520.		DVBB(I) = 0.5*(AT(I-1)+AT(I))*DBA
1521,		DVBBEF(1) = DVBB(1)*(1,-0.25*AHEAV(1)*DTUBEI(1))
1522.		ETUBE(I) = 1.0 - DVBBEF(I)/DVBB(I)
1523. 1524.		IF (I .EQ. 2) GO TO 240 RHOGAS = PAY*MGAS/(RG*T(I))
1525,		VISC = 3.72E-6*T(1)**0.676
1524.		A1 = 33.7**2+0.0408*DPSVB**3*6*(RHOBED-RHOGAS)*RHOGAS/VISC**2
1527.	•	UMF(I) = VISC/(DPSVB*RHOGAS)*(SORT(A1)-33.7)
1528.		UO(I) = FMO*MGAS/RHOGAS/(AFAV*(1,-ETUBE(I)))
1529.		IF (IFBC .GT. 0) GO TO 125
1530. 1531.		IF (ABS(UO(I)-UMF(I)) .LE. 0.01#UMF(I)) GO TO 19 IF (UO(I) .LT. UMF(I)) GO TO 10
1532.		GO TO 17
1533.	13	ICR = 1
1534.	17	<pre>DBMAX = 0.652*(ATAV*(1ETUBE(I))*ABS(UO(I)-UMF(I)))**0.4</pre>
1535.		IF (DBMAX .GT. DTAV) DBMAX = DTAV
1536.		DBC = DBMAX - (DBMAX-DBO)*EXP(-0.3*HAV/DTAV)
1537. 1538.		IF (IARRNG(I).GT.2 ,AND. PHI(I).GE.DBAV(I-1) .AND. DBC.GE.
1539.		18HI(I)) DBG = 8HI(I) IF (LAST .GT. 0) GO TO 260
1540,		ER = DBC - DBA
1541.	-	IF(h .EQ. 1.AND, DBC .LT. DBA) DDP = -DDB/2.0
1542,		CALL CRRECT (N, INDEX, DDB, X1, X2, DBA, E1, E2, ER, EMAX)
1543.	050	IF (INDEX .EQ. 2) GO TO 260
1544. 1545.	250 260	CONTINUE
1546.	200	DBAV(I) = DBA
1547.		ÅNBE(I) = 11.0/DBAV(I)
1549.	C	
1549.	, <u>c</u>	GALCULATIONS FOR UBR BUBBLE RISING VEL.AT MIN.FLUDIZATION,
1550. 1551.	C	UBS BUBBLE VEL. AT SLUGGING CONDITIONS, UB ABS.BUBBLE RISING VELOCITY,
1552.	C	EPB BUBBLE FRATION,
1553.	č	EPC CLOUD FRACTION
1554.	С	
1555.		UBR = $0.711 \times \text{SQRT}$ (G * DBAV(I))
1553. 1557.		ÚBS = 0.355 % SQRT (G % DTAV) IF (UBR .GT. UBS) UBR = UBS
1558.		UB(I) = UO(I) - UMF(I) + UBR
1559		$EPB(I) \approx (UO(I) - UMF(I)) / UB(I) * (1.0 - ETUBE(I))$

•

1540. 1541. 1562. 1563. 1564. 1565. 1565. 1566. 1567. 1568. 1569. 1570.		ALFB = EMF * UBR / UMF(1) EPC(I) = EPB(I) * ALFB / (ALFB - 1.0) IF (EFB(I) .GT, 0.7) EPB(I) = 0.7 IF (EPC (I) .GT. (0.99 - ETURE(I))) EPC(I) = 0.99 - ETUBE(I) IF ((EPC(I)-EPB(I)) .GT. 0.01) EPC(I) = EPB(I) + 0.01 BEDVOL = BEDVOL + DVBB(I) SUMV = SUMV + DVBBEF(I) SOLVOL = DVBBEF(I) - DVBB(I) * EPB(I) SUMEFF = SUMEFF + SOLVOL SUM = SUM + SOLVOL / (0.5 * (AT(I)+AT(I-1))) IF (ICR .GT. 0) GO TO 35
1571. 1572.		IF (LAST .GT. 0) GO TO 125 IF (HLF .NE. 0.0) GO TO 20
1573.	С	
1574.	ç	TEST FOR CONVERGENCY
1575. 1576.	С	IF (ABS(SUMEFF-WMF) .LT. 0.01#VMF) GD TO 125
1577.		IF (SUMEFF .LT, VMF) GO TO 200
1578.		VOL = SUMV-(SUMEFF-VMF) * (1.0 - ETUBE(I)) / (1.0-EPB(I)-ETUBE(I))
1579.		H(I) = HEIGHT(VOL)
1580.		CALL AREA (H(I),DT(I),AT(I))
1581. 1582.		BEBVOL = BEBVOL - DVBB(I) SUMV = SUMV - DVBBEF(I)
15837		SUMEFF = SUMEFF - SOLVOL
1584.		SUM = SUM - SOLVOL / (0.5*(AT(I)+AT(I-1)))
1585.		LAST = 1
1586.		DBA = H(I) - H(I - 1)
1587. 1589.	20	GO TO 16. Continue
1589.	ĉ	
1590.	ē	TEST FOR CONVERGENCY
1591.		IF (ABS(H(I)-HLF) .LE. 1.0E-3*HLF) GO TO 125
1592.		IF (ABS(H(I)-HLF) .LE, 0.5 * (H(I)-H(I-1))) GO TO 50
1593. 1594.	50	IF (H(I) .LT. HLF) GO TO 200 H(I) = HLF
1595.	20	BEDVOL = BEDVOL - DVBB(I)
1576.		SUMV = SUMV - DVBREF(1)
1597.		SUMEFF = SUMEFF - SOLVOL
1598.		SUM = SUM - SOLVOL / $(0.5*(AT(I) + AT(I-I)))$
1599. 1600.		CALL AREA (H(I),DT(I),AT(I)) LAST = 1
1601.		DBA = H(I) - H(I - 1)
1502.		GO TO 16
1603.	10	UO(I) = UMF(I)
1304.		ATAV = FMO * RG * T(I) / (PAV * UO (I) * (1.0-ETUBE(I)))
1605. 1606.		CALL HAREA (ATAV,DTAV,HAV)
1507.		H(I) = 2.0 * HAV - H(I-1) ICR = 1
1608.		LAST = 1
1509.		$DBA \approx H(I) - H(I-1)$
1510.	~ ~ ~	GO TO 16
1611. 1612.	200	CONTINUE IF (IFBC .EQ. 0) GO TO 125
1612.	35	CONTINUE
1614.		HCR = H(I)
1615.		IF (ABS(H(I)-HLF) .LE. 1.0E-3*HLF) GO TO 125
1616.		IF (ABS(VMF-SUMEFF) .LE. 0.01 * VMF) GO TO 125
1617. 1618.		I = I + 1 DBAV(I) = 0.0
1619.		UB(I) = 0.0

1620.		AbE(1) = 1000.0
1621.		EPB(I) = 0.0
1622.		EPC(1) = 0.0
		IF (VMF .EQ. 0.0) GD TO 45
1623.	-	1F (VMF +28+ 0+0) BU 18 43
1624.	C	
1625.	C	FIXED BED CONDITIONS
1626+	С	
1627.		VOL = SUMV + (VMF - SUMEFF)
1628.		H(I) = HEIGHT(VOL)
1329.	45	CONTINUE
íó30.		IF $\langle VMF \cdot EQ \cdot O \cdot O \rangle$ H(I) = HLF
1631.		IF (I.LE, M1) GO TO 6
1632.		T(I) = T(MI)
1633.		X(I) = X(MI)
1634.		YB(I) = YB(M1)
1635.		YE(I) = YE(MI)
1336.	6	CONTINUE
	0	
1637.		BO 310 $J = 1$ /MTHE
1338.		IF (ZHE(J) .LE. H(I) .AND. ZHE(J+1) .LT. H(I)) GO TO 310
: 539.		IF (ZHE(J) .LE. H(I-1) .AND. ZHE(J+1) .GE. H(I)) GO TO 320
1340.		$F1 = \langle H(I) - ZHE(J) \rangle / \langle H(I) - H(I-1) \rangle$
1641.		F2 = (ZHE(J)-H(I-1))/(H(I)-H(I-1))
1342.		$AHEAV(I) \approx F1*AHE(J)+F2*AHE(J-1)$
1643.		DTUBEI(I) = F1*DTUBE(J)+F2*DTUBE(J-1)
1644		PVI(I) = F1*PV(J)+F2*PV(J-1)
1645.		PHI(I) = F1*PH(J)+F2*PH(J-1)
1646		GO TO 330
1647	320	AHEAV(I) = AHE(U)
1648.		DTUBEI(I) = DTUBE(J)
1649.		PVI(I) = PV(J)
1650.		PHI(I) = PH(J)
	777	• ·
1351.	330	IARRNG(I) = IARR(J)
1652.		GO TO 340
1653.	310	CONTINUE
1354.	340	CALL AREA(H(I),DT(I),AT(I))
1455.		BVBB(I) = 0.5*(AT(I-1)+AT(I))*(H(I)-H(I-1))
1656.		DVBBEF(I) = DVBB(I)*(10.25*AHEAV(I)*DTUBEI(I))
1457,		ETUBE(I) = 1.0 - DVBBEF(I) / DVBB(I)
1458.		RHOGAS = PAV#MGAS/(RG#T(I))
1357.		$VISC = 3.72E - 6 \star T(1) \star * 0.676$
1660,		A1 = 33.7**2+0.0408*DPSVB**3*G*(RHOBED-RHOGAS)*RHOGAS/VISC**2
1661.		UMF(I) = VISC/(DPSVB*RHOGAS)*(SQRT(A1)-33.7)
1662.		HAV = 0.5*(H(I-1)+H(I))
1663.		CALL AREA (HAV, DTAV, ATAV)
1564.		UO(I) = FMO*MGAS/RHOGAS/(ATAV*(1ETUBE(I)))
1665.		BEDVOL = BEDVOL + DVBB(I)
1336.		SUMV = SUMV + DVBBEF(I)
1667.		SOLVOL = DVBBEF(I) - DVBB(I) * EPB(I)
		SUMEFF = SUMEFF + SOLVOL
1998*		
1667.		SUM = SUM + $SOLVOL / (0.5 * (AT(I)+AT(I-1)))$
1370.		IFBC = 1
1671.	125	M1 = I
1672.		TETUBE = 1.0 - SUMV/BEDVOL
1673.		EFFVOL = SUXV
1574.		SOLVOL = SUMEFF
1675.		M = M1 - 1
1373.		DO 460 K = 21KT
1677.		I = I + 1
1378,		H(I) = H(M1) + HB(K)
1679.		DO 410 J $=$ 1, MTHE

ORIGINAL PAGE IS OF POOR QUALITY

1380.		
		IF (ZHE(J).LE.H(I).AND.ZHE(J+1).LT.H(I)) GO TO 410
1681.		IF (ZHE(J).LE.H([-1).AND.ZHE(J+1).GE.H(I)) GO TO 420
1382.		F1 = (H(I) - ZHE(J))/(H(I) - H(I - 1))
1683.		F2 = (ZHE(J) - H(I-1)) / (H(I) - H(I-1))
1684.		AHEAV(I) = FI*AHE(J)+F2*AHE(J-L)
1485.		DTUBEI(I) = F1*DTUBE(J) + F2*DTUBE(J-1)
1686.		PVI(I) = F1*PV(J)+F2*PV(J-1)
1687.		PHI(I) = F1PH(J) + F2PH(J-1)
1688.		GO TO 430
1689.	420	AHEAU (I) = AHE(J)
1690.		DTUBEI(I) = DTUBE(J)
1691.		•
		PVI(I) = PV(J)
1392+		PHI(I) = PH(J)
1693.	430	IARRNG(I) = IARR(J)
1694.		GD TO 440
1695.	410	CONTINUE
1696.	440	CALL AREA (H(I),DT(I),AT(I))
1697.	v	DVBB(I) = 0.5*(AT(I-1)+AT(I))*(H(I)-H(I-1))
1698.		DVBBEF(I) = DVBB(I) * (1, -0.25*AHEAV(I)*DTUBEI(I))
1699.		ETUBE(I) = 1, - DVBBEF(I)/DVBB(I)
1700.	460	CONTINUE
1701.		MT = I
1702.		HFB = H(MT) - H(M1)
1703.		RETURN
1704.		END
1705.		SUBROUTINE SIMO(A, B, N, NN, KS)
1706.		DIMENSION A(NN), B(N)
1707.	С	
1709.	С	FORWARD SOLUTION
1709.	С	
1710.	•	TOL=0.0
1711.		KS=0
1712.		J, J⇒∽N
1713.		DO 65 J=1,N
1714.		1+L=YL
1715.		
1716.		BIGA=0,
1717.		
1710		IT=JJ-J ₽0.70.1-L.N
1718.	<u> </u>	IT=JJ~J N 80 00 00 I=J•N
1719.	С	DO 30 I=J,N
1719. 1720.	С	
1719.		DO 30 I=J,N
1719. 1720.	С	DO 30 I=J,N
1719. 1720. 1721. 1722.	С	DO 30 I=J,N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I
1719. 1720. 1721. 1722. 1723.	C C	DO 30 I=J,N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 PIGA=0(I)
1719. 1720. 1721. 1722. 1723. 1723.	C C	DG 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20;30;30 BIGA=A(IJ)
1719. 1720. 1721. 1722. 1723. 1723. 1724. 1725.	C C 20	DG 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20;30;30 BIGA=A(IJ) IMAX=I
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726.	C C 20 30	DG 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20;30;30 BIGA=A(IJ)
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727.	C C 20 30 C	DG 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726.	C C 20 30 C C	DG 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20;30;30 BIGA=A(IJ) IMAX=I
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727.	C C 20 30 C	DG 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728.	C C 20 30 C C	DG 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1730.	C 20 30 C C C	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1726. 1728. 1729. 1729. 1730. 1731.	C 20 30 C C C	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1726. 1728. 1729. 1729. 1730. 1731. 1732.	C 20 30 C C 35	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 RIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1729. 1730. 1731. 1732. 1733.	C 20 30 C C 35	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+1 IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS FORMAT(/' NO SOLUTION',' KS=',12)
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1730. 1731. 1732. 1733. 1734.	C 20 30 C C 35 100	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+I IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 RIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1730. 1731. 1732. 1733. 1734. 1735.	C 20 30 C C 35 100 C	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+1 IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS FORMAT(/' NO SOLUTION',' KS=',12) STOP
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1730. 1731. 1732. 1733. 1734. 1735. 1736.	C 20 30 C C 35 100	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+1 IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS FORMAT(/' NO SOLUTION',' KS=',12)
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1730. 1731. 1732. 1733. 1734. 1735.	C 20 30 C C 35 100 C	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+1 IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS FORMAT(/' NO SOLUTION',' KS=',12) STOP
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1730. 1731. 1732. 1733. 1734. 1735. 1736.	C 20 30 C C 35 100 C C C	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+1 IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS FORMAT(/' NO SOLUTION',' KS=',12) STOP
1719. 1720. 1721. 1722. 1723. 1724. 1725. 1726. 1727. 1728. 1729. 1730. 1731. 1732. 1733. 1734. 1735. 1736. 1737.	C 20 30 C C 35 100 C C C	DO 30 I=J;N SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN IJ=IT+1 IF(ABS(BIGA) - ABS(A(IJ)))20,30,30 BIGA=A(IJ) IMAX=I CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) IF(ABS(BIGA) - TOL) 35,35,40 KS=1 WRITE(6,100) KS FORMAT(/' NO SOLUTION',' KS=',12) STOP INTERCHANGE ROWS IF NECESSARY

£740. 00 50 K=J#N 1741. 11⊐11+N 1742. I2=I1+IT 1743. SAVE=A(I1) 1744. A(I1)=A(I2) 1745. A(12)=SAVE į745. C 1747. DIVIDE EQUATION BY LEADING COEFFICIENT С 1748. С 50 A(I1)=A(I1)/BIGA 1749. 1750. SAVÈ≃B(IMAX) 1751, B(IMAX)=B(J)1752. B(J)=SAVE/BIGA 1753. Ũ ELIMINATE NEXT VARIABLE 1754. С 1755. С 1756. IF(J - N) 55,70,55 1757, 55 IQS=N*(J+1) 1758. 00 65 IX=JY+N 1759. IXJ=IQS+IX 1750. XI-L=TI N+YL=XL 05 DQ 1731. 1762, XI+(I~XL)*N* 1763. 11+XPX1≂Xfr 1764. ((XLL)A*(LXI)A)-(XLXI)A=(XLXI)A 00 1765, 65 B(IX)=B(IX)=B(J)*A(IXJ) 1766, C 1767, C BACK SOLUTION Ç 1768. 1739, 70 NY=N-1 1770. 1T=N*N DO 80 J=1,NY 1771. IA=IT-J 1772. 1773. IB=N-J 1774+ IC≓N 1775. DO 80 K=1,J B(IB)=B(IB)-A(IA)*B(IC) 1776. 1777. IA∃IA−N 1778. 80 IC=IC=1 1779. RETURN 1790, END 1781. SUBROUTINE VEL(VISC, RHOGAS, G, RHOS, UPAR, UM, UT) С 1782. С THIS SUBROUTINE CALCULATES THE MINIMUM FLUIDIZATION VELOCITY AND 1783. С THE TERMINAL VELOCITY OF THE PARTICLE 1784. 1785. С 1786, A1 = 33,7**2+0,0408*0PAR*#3*G*(RH05-RH06AS)*RH06AS/VISC**2 UM = VISC/(DPAR*RHOGAS)*(SQRT(A1)-33.7) 1787. 1798. UT = (4.0*(RHOS-RHOGAS)**2*6**2/225.0/RHOGAS/VISC)**(1./3.)*0PAR REP = DFAR*RHOGAS*UT/VISC 1789. IF (REP .GT, 0.4 .AND. REF .LE. 500.0) GO TO 210 1790. 1791, UT = G*(RHOS-RHOGAS)*DPAR**2/18./VISC 1792. REP = DPAR*RHOGAS*UT/VISC 1793. IF(REP.LE.0.4) GO TO 210 UT = SQRT(3,1*G*(RHOS-RHOGAS)*DPAR/RHOGAS) 1794, 1795. 210 RETURN 1796. END FUNCTION VOLUME (ZZ) 1797. COMMON /A/ ZHE(10), AHE(10), PV(10), PH(10), ZF(10), FFC(10), 0TUBE(10), 1798. 1DVB(6Q),DVBEFF(60),FFAD(10),ZDIS(10),FD(10),AHEAV(60),ETUBE(60). 1799.

1800. 1801. 1802. 1803. 1804. 1805.		2U0(60),UMF(60),H(60),AT(60),DT(60),T(50),X(60),AKHE(60),(8(60), 3YE(60),YCOE(60),EPB(60),EPC(60),DVBB(60),DVBBEF(60),DSAV(60), 4UB(60),UTC(60),UTA(60),ZR(10),ATB(10),YVE(60),ZAVG(60),IARR(10) COMMON /B/ YBO(60),YEO(60),DB(60),DPSVB,DPWMB,DCSVB,DCWMB,RHOCH, 1HLF,VMF,FMO,FMF,UF,FF,TF,RG,G,MGAS,DPFIX,DPFLU,DPDIS,RHORED, 2EMF,PAV,HCR,BEBVOL,EFFVOL,SOLVOL,TETUBE,HLMF,PI,AND,DNZL,
1806.		3FW,FSW,DZAV,MFEED,MDIS,MTHE,MTB,MT,M1,M,ICR,IFBC,NTC
1907.	Ċ	
1808.	C	CALCULATON OF THE EFFECTIVE VOLUME OF THE BED GIVEN THE HEIGHT
1809. 1810.	С	N = IFIX (ZZ/DZAV) + 1
1810.		IF (N.EQ.1) N = 2
1912.		SUM = 0.0
1913.		ZN = FLBAT(N-1)*BZAV
1814.		10100 I = 2 + N
1815.		SUM = SUM + DUBEFF(I)
1816.		IF (I .LT. N) 60 TO 100
1817.		A1 = (ZZ - ZN) / DZAV
1919.		SUM \Rightarrow SUM $+$ DVBEFF(I) $*$ A1
1819.	100	CONTINUE
1920.		VOLUME = SUM
1821.		RETURN
1822.		END

INPUT TO COMBUSTION PROGRAM

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

кт							
4 HB(1)	DPSE(1)	DFWE(1)	WEA(1)	HB(2)	DPSE(2)	DPWE(2)	WEA(2)
0.0	0.0509	0.06139	193.3	56.43	0.0295	0.03409	9.527
HB(3)	DPSE(3)	DPWE(3)	WEA(3)	HB(4)	DPSE(4)	DPWE(4)	WEA(4)
112.9	0.02067	0.02651	1.446	138.1	0.01679	0.02386	0.7261
BCSE(1)	DCWE(1)	WEC(1)	DCSE(2)	DCWE(2)	WEC(2)	DCSE(3)	DCWE(3) 0.04673
0.0464	0.07726 DCSE(4)	0.597 DCWE(4)	0.04491 WEC(4)	0.05237	0.1387	0.04069	0.046/5
₩EC(3) 0.05128	0.04769	0.05	0.02685				
WDIS	WELUA	CELU	EFF	DPSVB	DPWMB	DCSVB	DCWMB
0.852	0.726	0.02685	0,9927	0.0746	0.1001	0.0797	0,1049
DASVF	DAWMF	DCSVF	DCWMF				
0.0758	0.1287	0.0677	0.1004				
A1 A2 A3							
NASA LEWIS							
мт,в 4							
ZB(1)	ATB(1)	ZB(2)	ATB(2)	ZB(3)	ATB(3)	ZB(4)	AT9(4)
0.0	405.0	62.7	405.0	81,3	670.0	280.0	2193.0
MTHE							
5		1	NU (1)	611 /4 N	TADD(1)		
ZHE(2)	AHE(1)	DTUBE(1)	PV(1) 0.0	PH(1) 0.0	IARR(1) 0		
24.0 ZHE(3)	0.0 AHE(2)	0.0 DTUBE(2)	PV(2)	PH(2)	IARR(2)		
40.0	0.1744	1.27	8.0	2.86	3		
ZHE(4)	AHE(3)	DTUBE(3)	PV(3)	PH(3)	IARR(3)		
48.0	0.0	0.0	0.0	0.0	0		
ZHE(5)	AHE(4)	DTUBE(4)	PV(4)	PH(4)	IARR(4)		
56.0	0.1744	1.27	8.0	2,86	3		
ZHE(3)	AHE(S)	DTUBE(5)	PV(5)	PH(5)	IARR(5)		
280.0	0.0	0.0	0+0	0.0	0		
MFEED 1							
	FFC(1)	FFAD(1)					
5+91	1.0	1.0		•			
MDIS							
1							
ZDIS(1) 142.0	FB(1) 1.0						
AND	DNZL	FW	FSW				
84.0	0.198	0.075	0.1				
	MEL2						
LIMEST13							
XCAO	XMGO	XS102	XC02				
0.557	0.003	0.006	0.434				
NAMEC1 NA PTGHCOAL	MEC2						
XC	хн	XN	XS	xo	XW	XA	VM
0.754	0.051	0.015	0.02	0.076	0.022	0.084	0.412
HCOAL	XACAO						
7300.0	0.08						
HLMF	HLF	PAV	TAV	TSTA	тын	тырот	TWALLA
0.0	141.9	5.15	1151.0	1250.0	278.0 TSF	310.0 PF	298.0
UHEAV1 0.00765	UHEAV2 0.0025	UWALL1 0.0021	UWALL2 0.00025	TF 298.0	298.0	Fr 5.4	
WCOAL		CAS	0000023	FMF	EXAIR		
4.51	0.0	1.67	0.0	0.0	0.639		
IGNITE, ISO							
11111							

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

FESTETS ALL TEMPERATURES IN CENTICRADE

AL NI

110 .XAV .TAV . ITRIALI= 0.09288 00 0.23248-02 0.07058 03 2

127356789012	H1 4.12036 00 1.70275 03 2.57176 01 3.50655 01 4.91125 01 6.10275 01 4.70375 01 4.70375 01 1.12037 02 1.41907 02	YII 1.9433E-01 1.0316E-01 1.7237E-01 1.6373E-01 1.5493E-01 1.4716E-01 1.4716E-01 1.3217E-01 1.2372E-01 1.1398E-01 1.0660E-01	YE 1.5000E-01 0.0 2.6000E-02 4.7000E-02 4.7000E-02 4.6000E-02 4.4000E-02 4.4000E-02 2.6000E-02 2.6000E-02 2.0000E-02	YVE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	YCUE 4.43295-04 7.46652-03 2.73382-04 1.31155-04 1.27088-04 1.09185-04 9.33656-05 7.01085-05 3.35445-05 3.35445-05 2.75085-05	YCO2E 4.5H13F-02 1.3U40E-01 1.2135E-01 1.1334E-01 1.1134E-01 1.1151F-01 1.1151F-01 1.1151F-01 1.2730E-01 1.3470E-01 1.4040E-01	YC028 3.6070F-03 1.3707E-02 2.1555E-02 2.6321E-02 3.4297E-02 4.0057E-02 4.5365E-02 5.61363E-02 5.6134E-02 6.5194F-02 7.2053E-02	X 3.653E~03 3.3083E~03 2.4532E~03 2.4532E~03 2.4532E~03 1.8168E~03 1.8168E~03 1.5781E~03 1.4296E~03 1.4296E~03 1.3141E~03 1.2573E~03	ZAVG 2.0602E 00 7:0005E 01 2.1372E 01 3.0801E 01 4.2086E 01 5.4963E 01 5.4963E 01 5.9638E 01 5.9638E 01 1.0804E 02 1.0804E 02
ł	11 Y	Υŋ	۲V	YCD	ACQ5	т	TPB	TPE	ZAVG

APPENDIX VI

2	4-1206-00	1.0776-01	0.0	~./(3E-05	4:9516-03	9.052E 02	1.3948 03	1.J43E 03	2.06VE 00
1	9.9N1E 00	1.5406-01	0.0	1.1966-03	3.3676-02	9.031E 0%	1,3716 03	\$**07%C 02	7+001E 00
	1.703E 01	1.4926-01	0.0	1.3008-05	3.7116-02	1.9278 02	1.3047 03	9.748E 02	1+J45E 01
*	2 4 727 01	1.4366-01	0.0	2.1028-05	4.1956-02	6.017E 02	1.3181.03	1.0106 07	2+137E 01
Ģ	3.636F 01	1.3786-01	0.0	2.03HE-05	1.690E-02	0.707E 02	1.2551 03	1.019E 03	3.089E 01
1	4.6116 01	1.1136-01	0.0	1.7512-05	5.148E-02	11.743E 02	1.2746 03	1.0000 03	4.209E 01
3	6.1838 01	1.2526-01	0.0	1.4586-05	5.598E-02	U+574E 02	1.2540 03	9 852E 02	5+497E 01
4	7.7858 01	1.1008-01	0.0	1.1266-05	6.1948-02	8.544F 02	1.2326 03	9,571E 02	6.984E 01
10	4.744E 01	1.0938-01	0.0	7.2928-94	6.9258-02	8.5161 02	1.2070 03	9.0986 02	8.744E 01
11	1 1 20 202	1.0076-01	0.0	5.2948-00	7.638E-02	8.4826 02	1.1796 03	0 813E 02	1.080E 02
ĪŻ	1.4196 02	9.2578-02	0.0	4.4276-36	8.305E-02	8.459E V2	1.1526 03	H. 750F 02	1.305E 02
13	1.4036 02	8.661E-02	0.0	1.0400-06	8.711E-02	8.495E 02	1.1398 03	1+1386 03	1.703E 02
14	2.540E 92	8.775E-02	0+0	0.0	8.7976-02	7.931F 02	1.0816 03	1 OB15 03	2.266E 02
15	2.000F 02	A 767 P-02	ñ.ō	0.0	8.80(E-U2	7.5740 02	F.027E 03	1.027F 03	2.674E 02

{FT5,F5,CA5,CÅ5E}= 0.6269E 00 0.3300E 00 0.1470F 01 0.1866E 01

нг.	Y SU2 0	rsoat	ZAVG	Y SD2	KELO	RLLT
4.12035 00	3.5220E-06	3.34276-04	2.06028 00	5.32376-05	8.58492-00	1.42246-04
9.6807E 00	2.29745-05	2.55146-03	7.000SE 00	4.27996-04	1.12326-05	1.4098E-03
1.7026E 01	1.45728-04	1.00606-03	1.34536 01	4.21350-04	1.1290E~05	4.74558-05
2.5717F 01	2.29196-04	1 14846-03	2.13728 01	4.2460E-04	1.10708-05	7.9037E-05
3.70450 01	2.07368-04	1.19068-03	3.08718 01	4.32196-04	1.062 E-05	8.6146E-05
4.81128 01	3.30415-04	1.00985-03	4.2088E 04	4.39396-04	9°31E-06	9.3890E-05
6.18278 01	3.6200E-04	8.8014F-04	5.1969E 01	4.45156-04	9-2195E-06	0.7107E~05
7.78496 01	3 8464E 04	7-04885-04	6.9838E 01	4.4570E-04	1.0999E-05	1-15498-04
9.70375 01	3. 1542E-04	6.1272E-04	8.74435 0.1	4.30335-04	1.4029F-05	1.4011E-04
1.19037 02	3-9593E-04	4.5828E-04	1.08046 02	A.0596E-04	1.7120E-05	1.35786-04
1.41905 02	3-89116-04	3.3650E-04	1.30471 02	3.8066E-04	1.8138E-05	1-26128-04
1.971338 02	0.0	0.0	1.7011E 02	3.8501E-04	8-0197E-05	0.0
2. 400E 02	0.0	0.0	2.26568 02	3.9036E-04	1.70528-05	0.0
2.8000F 02	0.0	ŏ.o	2.67400 02	3.910SE-04	1 .8595E-06	0.0

FXAIR+TAV+ETN-ENOX+ETNDEX = 0+6390E 00 0+8705E 03 0+9165E 00 0+1501E-03 0+8753F-04

	FAV+ETN+ENOX+1 5390E 00 0+0		se oo 0.150)	E-03 0.87536			,	
117 4.1203E 00 9.01026F 01 3.5717E 01 3.5017E 01 4.5013E 01 6.1827E 01 7.7837E 01 9.7037E 01 1.1903F 02 1.4907F 02 1.9337F 02 1.9357F 02 1.9557F 02	Y N 0 x 0 5.6924E-06 1.5340E-05 0.2931E-05 8.7904E-05 9.122E-05 9.3541E-05 9.3541E-05 9.5633E-05 9.6050E-05 1.0046E+04 1.0260E-04 0.0 0.0	Y100 X E 1.05452-04 2.20522-03 3.26092-04 3.26092-04 2.12742E-04 1.92762E-04 1.92762E-04 1.9296E-04 1.76122E-04 1.76122E-04 1.47152E-04 1.4704E-04 0.0 0.0 0.0	x 3. r 553E-03 3. 72073E-03 2. 8563E-03 2. 8572E-03 2. 8572E-03 1. 8168E-03 1. 8168E-03 1. 3141E-03 1. 3141E-03 1. 3141E-03 1. 3149E-02 2. 3577E-02	CARCDN 1.5030E-03 1.7010E-03 1.2996E-03 1.2996E-03 1.2996E-03 9.7140E-04 0.29140E-04 0.29140E-03 1.0549E-03 1.0549E-03 1.0531E-03 1.0531E-03 1.2350E-05 1.2350E-05	ZAVG 2.0602E 00 1.3453E 01 2.1372E 01 3.02888E 01 5.9838E 01 5.9838E 01 5.9838E 01 5.9838E 01 5.9838E 01 5.9838E 01 5.9838E 02 2.7611E 02 2.6740E 02	YNDX 2.0686E-05 3.7895E-04 1.8416E-04 1.2190L-04 1.054E-04 1.0546E-04 1.159E-04 1.159E-04 1.159E-04 1.0592E-04 1.4028E-04 1.4028E-04 1.4999E-04	RELU 1.4202E-05 1.9255E-05 1.9254E-05 1.8977E-05 1.8977E-05 1.50055F-05 2.5422E-05 2.5422E-05 2.9350E-05 1.3748E-04 2.9282E-05 1.3748E-04 3.1877E-06	RELE 3. 2955E - 04 2. 4 16 7 F. 03 8. 1 35 2 E - 05 1. 3 54 9 E - 04 1. 4 93 3 E - 04 1. 4 93 3 E - 04 1. 4 93 3 E - 04 2. 4 01 8 E - 04 2. 3 276 E - 04 2. 3 276 E - 04 0. 0 0. 0

HUTERT GAS CONCENTRATION

112	CO2	502	H20	0+0
0+8766#-01	0+8806F-01	0+3911E-03	0.0487E-01	CD,

PRESSURE DROP ACROSS THE DISTRIBUTOR = 7:3568E 02

COM6+NQ	PRESSURE DROP IN THE BED
2367 267 297 297 297 297 297 297 297 297 297 29	1.6942E 00 2.5061E 00 3.2317E 00 3.9700F 00 5.0537E 00 6.4784E 00 8.9680E 00 1.4159E 01 1.8129E 01 2.0025E 01
	PRESSURE DRUP IN THE FIXED HED SECTION # 0.0
АСС ND15= 1.87200000 "WELUAM 0.72599995 DC3VB= 0.78699946E-01.0CWAD= 0.10489994 ЧСНАК= 0.0 .0CHAA= 0.0 FEND	.(ELU+ 0.268n9996F-01.EFF≠ 0.99269998 .DPSVB≈ 0.745999816-01.DPWHD≠ 0.10009998 . .GELUW= 77.83317.0 .UD≖ 115.91977 .CLOSS¤ 0.23999073E+01.CCHAR≖ 0.85392314 .NCHAR≈ 0.10008482E+01.55587.01.13340615E+01.TARC≈ 0.34254937
689661 168=0+16867,0+N66#	10+HCR= 0+0 +HLF= 141+899999 +HLMF= 96+116150' +VMF= 459951+746

	161,640L= 06316+66 1+10431673 - 048 2+4793720 - X1121	EA= 6.3900700	495899.780 .3870879 Alfen= 138.09976	0.39401054F-02. .8E0C0M= 2.10	HANEA= 1417.1982 936196 ,F8C0A=	•DTRANS* 0•18477947 •TCRATE=
TELGHT 7AVG	- AV+DUDIN_E DIA	NUNOLE VEL	. RINNE FRAC.	CLOUD FRAC.	SUP . VELOCITY	MIN.FLU.VEL.
2 4.120 2.060 3 9.871 7.005 4 17.076 13.433 5 .5.717 21.372 7 16.055 30.891 7 48.112 92.008 9 77.847 59.899 9 77.847 69.899 10 97.037 87.443 11 119.633 108.467 130.467	1.120JE 00 9.7603E 00 1.1454E 00 1.454E 00 1.0347E 01 1.2047E 01 1.3719E 01 1.3719E 01 1.9199E 01 2.1996E 01 2.2667E 01 Hefght	1.4595E 02 1.50692 02 1.50692 02 1.51616 02 1.60108 02 1.5257L 02 1.5257L 02 1.5257L 02 1.3240E 02 1.0546E 02 1.0546E 02 1.0546E 02 1.0546E 02 1.0546E 02	6 - 7043E-01 6 - 7043E-01 6 - 5603E-01 6 - 5603E-01 6 - 5603E-01 6 - 543E-01 6 - 543FE-01 5 - 744FE-01 3 - 744FE-01 3 - 1435E-01 D C/S ADEA	7.0043L-01 7.7199E-01 6.6750E-01 6.6403E-01 6.4230E-01 6.5438E-01 5.8858E-01 5.8958E-01 3.69946E-01 3.2435E-01	1.1417C 02 1.2214E 02 1.2100E 02 1.2589E 02 1.2589E 02 1.1833E 02 1.1995E 02 9.5393E 01 5.7511E 01 5.7511E 01 4.9017E 01	• 81952 01 • 8416E 01 • 8501E 01 • 8507E 01 • 8723E 01 • 8734E 01 • 8811E 01 • 8834E 01 • 8848E 01
1 2 3 4 5 6 7 7 10 11 12 13 14	0:0 3.12 9.08 17.03 25.72 36.06 48.11 61.83 77.85 97:04 19:03 141.90 141.90 141.93	2.271E 01 2.271E 01 2.271E 01 2.271E 01 2.271E 01 2.271E 01 2.271E 01 2.271E 01 2.271E 01 3.271E 01 3.170E 01 3.170E 01 3.370E 01 3.4312E 01 3.4312E 01 4.312E 01	.0502 02 .0502 02 .0502 02 .0502 02 .0502 02 .0502 02 .0502 02 .0502 02 .0502 02 .0502 02 .1502 02 .15			OF I

.

.

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX VII

MANUAL FOR THE COMPUTER PROGRAMS

In this appendix, explanation for the main programs for elutriation and combustion calculations are given followed by the alphabetical list of subprograms used in both the programs. Except for the subroutine SIMQ which is the duplication of one of the subroutines in SSP supplied by IBM, explanation is given for each subprogram.

1. Elutriation Main Program

In the first part of the program, FBC design data and operating conditions are specified as input. From CN 89 (Card Number 89), the composition and the amount of volatiles and char produced are calculated. At CN 178, ELUT subprogram is called in to perform the elutriation calculations. Calculated results of particle size distributions of limestone and char in the bed and in the entrained solids, solids withdrawal rate, char elutriation rate and combustion efficiency are printed out.

2. Combustion Main Program

Computed results from the elutriation program are used as input in combustion calculations. From CN 64 to CN 84, all the input variables are specified. Then, the devolatilization of coal is considered. Knowing the average temperature of FBC, the yield of volatiles and char and their respective compositions are calculated. The input variables and calculated results so far are printed out.

The combustion of coal is specified by the indicator IGNITE. If IGNITE equals to zero, there is no combustion, and bubble hydrodynamics alone is calculated. Otherwise, the combustion calculations are started from CN 248. First the boundary conditions are specified. Hydrodynamic calculations are then performed using the assumed temperature profile. The log mean temperature of the cooling medium is calculated knowing the inlet and outlet temperatures. Then, the axial distribution of solids feed is calculated in CN 281/302. Based on the solids mixing parameter f_w , the amount of volatiles released near the coal feed point and throughout the bed are calculated in CN 310/311. The flow rate of gas through the bubble and emulsion phases are computed.

Before proceeding with the combustion calculations, the combustion efficiency is assumed. From the combustion efficiency, the average carbon weight fraction is calculated in CN 350 using the overall carbon material balance. The gas phase material balance is performed and the axial distribution of concentrations of various gaseous species are calculated. Then, based on oxygen material balance, combustion efficiency is calculated.

Combustion efficiency = $\frac{0_2 \text{ in } - 0_2 \text{ in the exit gas}}{\text{Stoichiometric } 0_2 \text{ required}}$ (A.VII.1)

The criterion for the convergency of the gas phase balance is that the assumed combustion efficiency based on carbon balance should agree with the calculated combustion efficiency based on oxygen balance. Then, the axial distribution of the solids withdrawal rate, the solids mixing rate and the net flow rate of solids are computed in CN 429/460. Carbon material balance calculations for each compartment are then performed, and the equations are solved by the subroutine SIMQ in CN 486. The solution of the equations gives the carbon concentration in each compartment. Knowing the solids withdrawal rate, the carbon concentration in the bed and the char elutriation rate the overall combustion efficiency is calculated in CN 502. Using the computed carbon concentration profile, the gas phase material balance is performed again from CN 510/555 to accurately estimate the concentrations of the gaseous species along the combustor. Then, the equations obtained for energy balance are solved using SIMQ subroutine. The temperature calculations converge when the assumed $(T_{i,OLD})$ and calculated (T_i) temperatures agree with each other within the specified tolerance limit. The results are printed out in CN 674/677.

 SO_2 retention calculations are done in CN 696/775 if the indicator ISO2 is greater than zero. Total feed rate of sulfur is estimated in CN 698. SO_2 generated from the burning volatiles and char is estimated in CN 718/721. SO_2 retention calculations are iterative. First, SO_2 retention efficiency is assumed, and hence the reactivity of the limestone particle is calculated. SO_2 material balance is performed and from the exit SO_2 concentration, SO_2 capture efficiency is calculated as SO_2 capture efficiency = 1 - $\frac{Sulfur \text{ in flue gas}}{Total sulfur fed}$. (A.VII.2) If the assumed and calculated efficiencies agree, iteration is stopped, and the results are printed out.

If the INOX indicator is greater than zero NO_x material balance calculations are performed. NO_x release due to volatiles and char combustion is calculated in CN 783/786. NO_x balances in the bed and in the freeboard are done in CN 795/824 and the calculated results are printed out.

If IPRES is greater than zero, pressure drop calculations are performed from CN 854/876. Pressure drop across the distributor, across the fluidized bed and if there is a fixed bed section above the fluidized bed, then, pressure drop across the fixed bed section are calculated using the equations provided by Kunii and Levenspiel (1969). The final results are printed out in CN 881/891.

3. Subprogram AKAD

This function subprogram calculates the overall rate constant for limestone-SO₂ reaction. This subprogram is designed based on the data of Borgwardt (1970) for Type 4 limestone. The overall reaction rate constant for limestone-SO₂ reaction is calculated by the equation

$$k_{v\ell} = k_{v\ell} S_g \lambda_{\ell}$$
 1/sec (A.VII.3)

where k_{yl} is defined as:

$$k_{vl} = 490 \exp(-17500/RT) gm/cm^3.sec$$
 (A.VII.4)

S_g is the specific surface area of limestone, and is equal to S_g = 35.9 T -3.67 x $10^4 \frac{\text{cm}^2}{\text{gm}}$, T < 1253 °K (A.VII.5)

=
$$-38.43 \text{ T} + 5.64 \text{ x} 10^4 \frac{\text{cm}^2}{\text{gm}}$$
, T > 1253 °K (A.VII.6)

and λ_{ℓ} is the reactivity of limestone as a function of CaO utilization, particle temperature and size. The reactivity of limestone is calculated using the grain model developed by Ishida and Wen (1971). The results are stored in the subprogram. The effect of temperature on the limestone reactivity is minimal for the range of temperatures encountered in the FBC. The reactivity of limestone for any intermediate particle size and conversion is calculated by linear interpolation on semilogarithmic scale as follows:

$$\lambda_{la} = \left(\frac{\lambda_{la2}}{\lambda_{la1}}\right) \begin{array}{c} \frac{f_{l}-f_{1}}{f_{2}-f_{1}} \\ \chi & \lambda_{la1} \end{array}$$

$$\lambda_{lb} = \left(\frac{\lambda_{lb2}}{\lambda_{lb1}}\right) \qquad \begin{array}{c} \frac{f_{l} - f_{1}}{f_{2} - f_{1}} \\ \chi \quad \lambda_{lb1} \end{array} \qquad (A, VII.8)$$

$$\lambda_{\ell} = \left(\frac{\lambda_{\ell a}}{\lambda_{\ell b}}\right) \times \lambda_{\ell b} \qquad (A.VII.9)$$

where λ_{g} is the reactivity of limestone, f_{g} is the fractional conversion of limestone and d_{g} is the limestone particle diameter. Subscripts a and b refer to the successive particle sizes for which the reactivity profiles are specified (for the same conversion). Subscripts 1 and 2 refer to the successive particle conversions for which the reactivity profiles are specified (for the same particle size).

4. Subprogram AKK

Overall rate constants for char combustion and C-CO₂ reaction are calculated in this subroutine subprogram. Char particle temperature is calculated using the equation (V.38) by a trial and error procedure using Regula-Falsi method. The values of parameters used in this subprogram are given below:

Emissivity of the char particle, $\varepsilon_m = 1.0$ Thermal conductivity of the surrounding gas, λ

= 6.32 x 10⁻⁶
$$T_m^{0.5} / \{1 + \frac{245 \times 10^{(-12/T_m)}}{T_m}\}, \frac{cals}{sec.cm, °C}$$
 (A.VII.10)

Stefan-Boltzman constant, $\sigma = 1.36 \times 10^{-12} \frac{\text{cals}}{\text{sec.cm}^2.^{\circ}\text{K}^4}$ Diffusivity of $0_2 - N_2 = 4.26 \left(\frac{T_m}{1800}\right)^{1.75} / P$ (A.VII.11) Diffusivity of $C0_2 - N_2 = 3.26 \left(\frac{T_m}{1800}\right)^{1.75} / P$ (A.VII.12)

5. Subprogram AREA

By using this subroutine subprogram, cross sectional area of the combustor at any height above the distributor can be calculated. A set of data Z_j and $A_{t,j}$, j = 1-MTB is fed into subroutine DESIGN and stored in the common address before subroutine AREA is called. The given height Z is searched between Z_{j-1} and Z_j so that

$$z_{j-1} \leq z < z_j$$

Then, cross sectional area A_t corresponding to height Z is obtained as follows:

$$A_t = \pi r^2$$
 (A.VII.13)
Z - Z, A. 1/2 - 17

where
$$r = [1 + (\frac{Z - Z_{j-1}}{Z_{j} - Z_{j-1}}) \{ (\frac{A_{t,i}}{A_{t,j-1}})^{1/2} - 1 \}]r_{j-1}$$
 (A.VII.14)

$$r_{j-1} = (A_{t,j-1}/\pi)^{1/2}$$
 (A.VII.15)

r = radius of the combustor at height Z above the

distributor, çm

6. Subprogram ATTR

This subroutine subprogram calculates the burning time of a char particle of given size, and hence the size reduction constant due to combustion. Char particle temperature is first calculated using the Equation (V.38) by a trial and error procedure using Regula-Falsi method. The burning time, t_b , of a char particle is calculated using the Equation (V.51). The values of parameters used in this subprogram are:

Emissivity of the char particle, $\varepsilon_{\rm m} = 1.0$ Stefan-Boltzman constant, $\sigma = 1.36 \times 10^{-12}$, cals/sec.cm².°K⁴ Thermal conductivity of the surrounding gas, and the diffusivity of 0_2 -N₂ are calculated by Equations (A.VII.10) and (A.VII.11) respectively. Char size reduction rate constant is equal to $(1/t_b)$.

7. Subprogram CRRECT

This subroutine subprogram provides the initial value for the unknown variable to be used in the next iteration of Regula Falsi method, and also judges if the iteration has converged. The Regula Falsi iteration has two periods.

Period 1: the root is not found in the interval (INDX = 0)

Period 2: the root is found in the interval (INDX = 1)

as shown in Fig. 26.

The parameter INDX is an indicator for the two periods, and if INDX = 2, it means the iteration has converged. During the period 1, the search for the root is continued by proceeding in one direction indicated by the sign of increment for the variable. Once the root is found in the interval, Newton-Raphson method is applied to arrive at the exact value.

To use this subroutine, the following statements must be prepared in the program from where CRRECT is called.

- 1) Initial assumption for the unknown variable, X
- 2) Value of increment, DX
- 3) Tolerance limit for error, EMAX
- Difference between the assumed and calculated values for the variable, E
- 5) Initial value for 1NDX, INDX = 0
- 6) DO loop for iteration
- 7) A statement to get off the DO loop when INDX = 2

Fig. 26 Illustration for Regula Falsi Method

The initial value of X and the sign of DX are very important factors to get a successful result from the iteration. If there are multiple roots, special consideration for choosing these values is needed. In the ordinary case it is recommended to start from either the maximum or minimum possible value of the unknown variable, X.

8. Subprogram DESIGN

Values of the design variables are fed into the main program by calling this subroutine. The axial variation of the bed cross section as a function of height above the distributor $(A_t V_s Z)$, the locations of heat transfer tubes, the specifications of the tubes (specific heat transfer area based on outside diameter of the tube, tube diameter (o.d.), vertical pitch, horizontal pitch, tubes arrangement), solids feed locations and the fraction of total feed through each nozzle, solids discharge locations and the fraction of materials discharged through each nozzle, number of orifices in the distributor, orifice diameter, the solids mixing parameter, f_W and the fraction of wake solids thrown into the freeboard, f_{SW} are the input variables in this subprogram.

Specific heat transfer area of the coils in a section of the bed refers to the outside surface area of the coils available for heat transfer per unit volume of the bed in that section. If the specific heat transfer area is not given, but the tube diameter is given, the former can be calculated.

For the triangular arrangement of the tubes (Fig. 27),

$$a_{\text{HE}} = \frac{\text{Heat transfer area}}{\text{Volume of bed}}$$
$$= \frac{\left(\frac{1}{2}\right) \pi d_0 \Delta Z}{\left(\frac{1}{2}\right) \left(P_{\text{H}} P_{\text{V}} \Delta Z\right)} = \frac{\pi d_0}{P_{\text{H}} P_{\text{V}}} \qquad (A.VII.16)$$

(b) RECTANGULAR ARRANGEMENT

Fig.27 Arrangement of Cooling Tubes

For the rectangular arrangement (Fig. 27),

$$a_{HE} = \frac{\pi d_0 \Delta Z}{P_H P_V \Delta Z} = \frac{\pi d_0}{P_H P_V}$$
(A.VII.17)

For design purposes, the height of an elemental volume of the combustor corresponding to each compartment is chosen. The height should be so chosen that the total number of compartments in the combustor is always less than the maximum dimensions allowed by the program. Then, heat transfer tubes specifications for each compartment is calculated along with the diameter and cross sectional area. The differential volume of each compartment, and the effective volume (excluding the volume occupied by the tubes) are computed.

Volume occupied by the tubes per unit volume of bed is given as follows: $1 \pi - 2$

(for triangular arrangement):
$$\frac{\frac{1}{2}(\frac{d}{4} d_0)\Delta Z}{\frac{1}{2} p_H p_V \Delta Z} = \frac{d_0}{4} a_{HE} \quad (A.VII.18)$$

(for rectangular arrangement): $(\frac{\frac{\pi}{4}}{P} \frac{d_0^2}{\Delta Z}) \Delta Z = \frac{d_0}{4} a_{HE}$ (A.VII.19) Volume fraction of tubes is then equal to

 $\varepsilon_{\text{tube}} = 1 - \text{effective volume/total volume}$ (A.VII.20)

For each compartment, tube diameter, specific heat transfer area, tube fraction, volume and effective volume are calculated.

9. Subprogram ELUT

This subroutine subprogram is the basis for the entrainment calculations. Entrainment calculations for limestone are performed first followed by char entrainment calculations.

From the bed operating conditions, total bed weight is known.

ORIGINAL PAGE IS OF POOR QUALITY

Initially, the size distribution of the bed is assumed knowing the feed particles size distribution. Based on the assumed bed size distribution, mass balance calculations for each close size fraction are performed, and the bed weight and the new bed size distribution are calculated. If the calculated bed weight equals the known bed weight, the iteration is stopped; otherwise, procedure is repeated using the calculated bed size distribution for the next iteration.

The axial gas dispersion coefficient in the freeboard is then calculated from Reynolds number and Peclet number. From the dispersion coefficient, number of compartments and hence the compartment size in the freeboard are calculated. At each freeboard height, the solids entrainment rate and the average particle sizes are computed.

A similar procedure with slight modification is adopted for char entrainment calculations. To start with, carbon combustion efficiency is assumed and the average carbon concentration (weight fraction) in the bed is calculated based on carbon balance. Knowing the bed weight and carbon concentration in the bed, the weight of char in the bed is calculated. From the coal particle feed size distribution, the bed char size distribution is assumed. Mass balance for each close size fraction of char is performed. Based on the bed char size distribution, entrainment rate along the freeboard height is calculated. The effect of diminishing char particle size due to combustion is taken into account in the char entrainment calculations. The char leaving the combustor unburnt is calculated. The combustion efficiency is calculated again. If the assumed and calculated efficiencies equal, the iteration is stopped; otherwise, procedure is repeated by assuming a new initial value for combustion efficiency. The calculated results will give the size distribution of limestone and char in the bed, the average particle sizes of limestone and char, and their entrainment rates along the freeboard height, bed solids withdrawal rate, char elutriation rate, solids elutriation rate and the combustion efficiency.

10. Subprogram FBC

This subroutine subprogram considers the freeboard char combustion and solves the material balance equations for oxygen in the freeboard. There will be two cases in the calculations (i) oxygen rich or excess air conditions and (ii) oxygen starved conditions. For the oxygen rich case, Regula Falsi method is applied to calculate the oxygen concentration since the calculations involve a trial and error procedure.

11. Subprogram GPB

The material balance equations for oxygen in the emulsion phase and in the bubble phase are solved in this subroutine using the subroutine SIMQ. Two different cases are encountered in the solution: (i) the oxygen concentration in the emulsion phase is zero and (ii) the volatiles concentration in the emulsion phase is zero. The equations are solved by trial and error procedure.

12. Subprogram GPHASE

This subroutine is designed for solving the material balance equations in the emulsion phase and in the bubble phase for SO₂ and NO (nitric oxide).

13. Subprogram HAREA

This subprogram calculates the height of the specific compartment above the distributor for the given cross sectional area of that

compartment. The idea is basically the same as that of subprogram AREA. The height Z, corresponding to the area, A_t , is calculated by the equation

$$Z = Z_{j-1} + \frac{(A_t/A_{j-1})^{1/2} - 1}{(A_j/A_{j-1})^{1/2} - 1} (Z_j - Z_{j-1})$$
(A.VII.21)

This subroutine is called from subroutine HYDRO to determine the height of the bed where $U_0 = U_{mf}$. This situation does not occur at the cylindrical section, but occurs only at the tapered section. Therefore, $A_j > A_{j-1}$, and the error of dividing by zero is automatically avoided. 14. Subprogram HEIGHT

This function subprogram calculates the height of the bed for the given effective volume of the bed. Effective volume is the total volume of the bed minus the volume occupied by the tubes.

15. Subprogram HYDRO

This subroutine subprogram essentially calculates the bubble hydrodynamics of the bed. In the first part of the calculations, the compartment size is assumed and hence the bubble size. Then, from the correlation, bubble size in that compartment is calculated. If the assumed and calculated bubble sizes are equal to each other, then the iteration is stopped; otherwise, a new compartment size is assumed and the procedure repeated. For each compartment, cooling tubes specifications, effective volume, total volume, height above the distributor and the cross sectional area at that height are calculated. After the bubble size calculation, the hydrodynamic calculations are done using the equations listed in Table 2. The program is also designed to take into consideration the formation of a fixed bed section over the fluidized bed section. First, the volume of bed at minimum fluidization is evaluated in the case when the expanded bed height is not given. (Either the minimum fluidization height or the expanded bed height has to be specified in the input). Subroutine HYDRO is called inside the temperature iteration loop. Depending upon the temperature of the bed, the hydrodynamic parameters and the bed height are determined. If more number of compartments are needed than that of the earlier iteration, then for the excess number of compartments the temperature, carbon concentration, bubble and emulsion phase oxygen concentrations are taken as those corresponding to the last compartment in the earlier iteration.

Knowing the temperature, density and viscosity of the gas, minimum fluidizing velocity and superficial velocity are calculated for each compartment. U_0 is compared with U_{mf} . If the cross-sectional area of the bed increases as the height increases (for tapered geometry), the superficial velocity decreases. If at any instance, U_0 is less than or equal to U_{mf} , it represents the end of fluidized section and the beginning of a fixed bed section. Then different calculations are to be performed for the fixed bed section. Four different cases are analyzed:

(i) Expanded bed height given, no fixed bed section:

For each compartment, the bubble hydrodynamics is calculated. The iteration is performed till the height of the last compartment reaches the expanded bed height.

150,

ORIGINAL PAGE IS

(ii) Expanded bed height given, fixed bed section present:

The bubble hydrodynamics is calculated for each compartment. As the height increases, U_0 is decreasing, and when it is smaller than U_{mf} , critical height has been reached. The critical height corresponds to the height of the bed above the distributor at which the fixed bed section starts. At this location U_0 is equal to U_{mf} . Above this height, there is no fluidization, and the bubble fraction is zero. The presence of critical height and fixed bed are tagged by the symbols ICR and IFBC. If they are greater than zero, critical height and fixed bed section are present.

For each compartment the volume of solids (including the voids) and the effective height of the solids are calculated. Sum of these heights would be the height of the bed at minimum fluidization.

(iii) Height at minimum fluidization given, no fixed bed section:

Instead of basing the convergency criterion directly on the minimum fluidization height, the volume of the bed at minimum fluidization is used. This would help avoid any inacurracy involved in the calculation of the effective solids height in each compartment. Also, it would be easy to determine the total bed height when the effective volume of solids in the bed equals the volume at the minimum fluidization. The sum of each compartment volume, effective volume of solids (excluding the bubbles and tubes) and the effective height of solids are computed. The iteration continues till the effective solids volume at minimum fluidization. If it exceeds volume at minimum fluidization, the excess solid volume, corrected for the expansion and tube fraction, is subtracted from the effective volume of the bed to give the correct volume of the bed. From this effective volume of the bed, the expanded bed height is calculated.

(iv) Height at minimum fluidization given, fixed bed section present:

As before, computations are performed till U_o becomes smaller than U_{mf}. In the fixed bed section, the bubble fraction is zero. Fixed bed is equivalent to the condition of minimum fluidization. Total volume of the bed is the sum of the effective volume of solids in the fluidized bed section and the difference in the minimum fluidization volume and the volume of solids in the fluidized section. Total height of the bed is computed from the total volume of the bed.

16. Subprogram SIMQ

A copy of this SSP (Scientific Subrouting Package) subroutine supplied by IBM is attached.

17. Subprogram VEL

This subprogram calculates the minimum fluidization velocity and the terminal velocity of the particle. The terminal velocity is calculated from (Kumii and Levenspiel, 1969):

$$U_{t} = \frac{g(\rho_{s} - \rho_{g})d_{p}^{2}}{18\mu} \quad \text{for } R_{e,p} \leq 0.4 \qquad (A.VII.22)$$

$$U_{t} = \left[\frac{4}{225} - \frac{(\rho_{s} - \rho_{g})^{2}g^{2}}{\rho_{g}\mu}\right]^{1/3} d_{p} \text{ for } 0.4 < R_{e,p} < 500 \quad (A.VII.23)$$

$$U_{t} = \left[\frac{3.1 \text{ g } (\rho_{s} - \rho_{g}) d_{p}}{\rho_{g}}\right] \cdot \text{ for } 500 < R_{e,p}$$
(A.VII.24)

$$R_{e,p} = d_p \rho_g U_t / \mu$$
 (A.VII.25)

Subroutine SIMQ

ORIGINAL PAGE IS OF POOR QUALITY

.

.

c c		SING	
c		21 40	30
c c	sister subjects	SING	
ć	PURPOSE Jetuin Solution of a set of Sinultaneous Linear Equations,	SIN9	
C.		21140	60
Ċ	USAJE	SENG	100
с с с	CALL SINJIA. 8.H.KSI.	SENG	110
c	DESCREPTEUN OF PARAMETERS	SING	130
5	A - HATATX OF COEFFICIENTS STURED COLUMNWISC. THESE ARE Destruted in the computation. The size of matrix a is	SING	150
c c	N BT H. 5 — Veltur of Urigival Cumstants (Length H). These are	5140	140
	REPLACED BY FINAL SULUTION VALUES, VECTUR X. 1 - Number of Equations and Variables. N must be .gt. one.	ST MQ	180
د د د	x5 - SUTPUT DIGLT	SING	200
с с с	O FOR A HORMAL SOLUTION I for a singular set of equations	SING	210
ç	2EMARKS	SING	230
C C C	MAIRIX & MUST BE GEVERAL.	5129	250
Č	IF MATRIX IS SINGULAR , SOLUTION VALUES ARE REANINGLESS. An alternative solution may be ubtained by using matrix	SI HU SI HU	270
	INVERSION (MENV) AND MATRIX PADDUCT (GRPRD).	\$180 \$180	280
Ę	SUDROUTINES AND FUNCTION SUBPRUGRAMS REQUIRED	SING	300
c	, HU15	SING	320
C C	NETHOD OF SOLUTION IS BY ELEMENATION USING LARGEST PEVDIAL	SEMO	340
с с с	SIVESUA. EACH STALE OF ELIMINATION CONSISTS OF INTERCHANGIN	04120 0412	350
	ELEMENTS_	SINC	370
č	THE FORMARD SULUTION TO OBTAIN VARIABLE N IS VONE IN N STAGES. THE BACK SULUTION FOR THE OTHER VARIABLES IS	SING	390
с с с	CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION Values are developed in vector B, with variable L in Bill.	SINC	
č	VARIABLE 2 IN BIZITTOTATA VARIABLE N IN BING.	SINC	420
с с с	LE NU PINOT CAN BE FOUND EXCEEDING A TOLERANCE OF 9.0. The matrix is considered singular and KS is set to 1. This	5140	440
ĉ	TULERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT.	STRO	
č	······	5140	470
·	SUBRUUTINE SINGLADD N.XSI	SINC	490
ç	GENENSIGN ACLIDICES	SINC	500
ć	FORMARD SOLUTION	SINC	520
•	10(=3.0	SING	\$40
	K5=0 13=-H	SINC	550
	JT=J+L JT=J+L		510
	\$+++€↓==LL	SIAC	590
	81GA=2 [T=JJ-J		2 600 2 610
¢	H-1+1 CC DC	SENC	a e 20
č	SEARCH FOR WAXINUM COEFFICIENT IN COLUMN	SIN	840
	}_=(F+]	SER	650 650
	IF(ABS(BIGA)-ABS(A(1J))) 20,30,30 ZC diga-ailj)	SING	1 670 3 680
	IMAX={ 16 Continue	2140	690 700
ç		SING	1 719
Č	TEST FJR PIVOT LESS THAN TOLERANJE ISINGULAR MATRIXA		120 739
	1F4A85(8[64]-10L1 35,35,40 35 xS+L	SING	740
	RETURN	SING	760
ŝ	INTERLHANJE ROWS IF NECESSARY		2 770 2 780
c	40 []=1+N+(J-2)	SING	2 790
	IT= maxJ DQ 5.5 K=J.M	STR	a 419
	[3 = { L+N		8 630
	12=11+1F SAYE=A([1]		3 840 3 850
	AL123=AL123 AL123=SAVE	SER	860
Ę		SEM	0.66
č	UTATOE ECONTIJH PA LEVDINT CJELENI		0 690 0 900
	SC Aff13-Aff13/Bigk SAVE-d(IMAX)		910
	6[[MAK]=6[]] 86]]=5AVE/81GA	SER	930
ç		SIM	940 950
ç	ELIMINATE NEXT VARIABLE		9 980 9 970
	1F(J-N) 53,70,55 55 105-N+(J-1)	SEN	992
	DJ 65 1XeJYeN	SEX	11030
	1X=1J=F1X 1X=1J=F1X		01010
		SER	1330
	TiskLA1=xLL ((xLL)A=(LX))A]-(xLL)A=(LX))A	SIN	1050
		5180	91.060 91.070
ć	SACK SWUTTON		01010
¢	72 84-4-1	SIM	01110
	[3=6=4	SIK	11120
	UU du Jalahy Last-J	SIN.	91130 31140
	[3=H-J 1C=H	51M	01150
	L.1=A 58 00 (33):+*(A])((A)):-*(6))	SIN	21170
	Las La-v	SIN	0+11C
	\$5 {C=1C-1 Refuen		11300
	CHQ		1220

.

18. Subprogram VOLUME

This function subprogram calculates the effective volume of the bed (excluding the tubes, including the voids) for a given height above the distributor.

APPENDIX VIII

NOMENCLATURE FOR THE COMPUTER PROGRAMS

MAIN PROGRAM COMBUSTION

FORTRAN Symbol	Mathematical Symbol	Description
AAA	-	Matrix coefficients
AE	-	Activation energy of char-NO reduction reaction, cals/gmole
AHE	(SEE DESIGN)	
		-
AHEAV	^a he	Specific heat transfer area of the tubes, cm ² /cm ³ FBC volume
AHEW	a _{HEW}	Specific heat transfer area of the walls, cm ² /cm ³ FBC volume
AK	k _{v1}	Overall volume reaction rate constant for limestone - SO ₂ reaction, 1/sec
АКВ	^k c,B	Overall rate constant for char combustion in bubble phase, cm/sec
AKBE	к _{ве}	Gas exchange coefficient, l/sec
AKC	^k c	Overall rate constant for char combustion, 1/sec
AKCO2	-	Overall rate constant for C-CO ₂ reaction, cm/sec
AKE	^k c,E	Overall rate constant for char combustion in emulsion phase, cm/sec
AKNO	^k NO	NO reduction rate constant, cm/sec
ALFA	-	Temperature matrix coefficients
AMODF	a _m	Defined by Equation (VI.12)
AND	nd	Number of orifices in the distributor
ANH 3V	-	NH ₃ content in the volatiles, gmole NH ₃ / gmole volatiles
ANITRO	-	Nitrogen released during char combustion, gatom/sec
AT	A _t	Cross sectional area of the bed, cm^2

•

.

•

FORTRAN Symbol	Mathematical Symbol	Deścription
АТВ	(SEE DESIGN)	
BBB	<u>'</u>	Matrix coefficients
BEDCOM	*	Chảr combustion rate in the bed, gm/sec
BĖDVOL	-	Total bed volume, cm ³
BETA	÷.	Temperature matrix coefficients
CADF ·	ĆŜŦ	Heat capacity of feed additives, cals/gm.°C
CAREON	- 	Carbon concentration; gm carbon/cm ³ bed volume (including tubes)
CAS		Ca/S molar ratio in feed solids
CASE	-	Efféctive Ca/S molar ratio (including Ca in ash)
ĊĆĔ	C _{cf}	Heat căpâcity of coal feed, cals/gm.°C
CCHAR	^Ĉ iĉĥ	Garbon content in char, gm carbon/gm char
CELU _	<u>-</u>	Char élutriated from the combustor, gms/sec
CGM	e gm	Molar heat capacity of gas, cals/gmole °C
CGMF	- <u>-</u>	Molar heat capacity of feed gas, cals/gmole °C
CHARC		Carbon content in char, gmole carbon/gm coal
CHA'RH	<u> </u>	Hydrogen content in char, gatom hydrogen/gm coal
CHARN	-	Nitrogéň content in char, gatom nitrogen/gm coal
CHARO	<i>2</i>	Oxygen content in char, gatom oxygen/gm coal
CHARS		Sulfur content in char, gatom sulfur/gm coal
CH4	ĆH ⁱ 4'	Wt: fraction CH ₄ in the volatiles; CH ₄ released during devolatilization, gmole CH ₄ /gm coal
Closs	ź	Total carbon loss (elutriated + withdrawn), gm/sec
CO [,]	CÒ ⁷	Wt. fraction CO in the volatiles; CO released during devolatilization, gmole CO/gm coal
COALC	-	Carbon' content in coal, gatom carbon/gm coal (d.b.)

FORTRAN Symbol	Mathematical	Description
COALH	-	Hydrogen content in coal, gatom hydrogen/gm coal (d.b.)
COALN	- ,	Nitrogen content in coal, gatom nitrogen/gm coal (d.b.)
COALO	-	Oxygen content in coal, gatom oxygen/gm coal (d.b.)
COALS		Sulfur content in coal, gatom sulfur/gm coal (d.b.)
COB	-	Carbon monoxide burnt in each compartment, gmole/sec
COV	-	CO released during devolatilization per mole of volatiles released, gmole CO/gmole volatiles
COVB		CO produced during volatiles combustion, gmole CO/gmole volatiles
CO2	-	Wt. fraction CO ₂ in the volatiles; CO ₂ released during devolatilization, gmole CO ₂ / gm coal
CO2V	-	CO ₂ released during devolatilization per mole of volatiles released, gmole CO ₂ /gmole volatiles
CO2VB	-	CO ₂ produced during volatiles combustion, gmole CO ₂ /gmole volatiles
CS	с _s	Heat capacity of solids, cals/gm °C
CTAR	-	Carbon content in char, gm carbon/gm coal fed
DASVF	-	Surface volume mean particle diameter of additives in the feed, cm
DAWMF	-	Weight mean particle diameter of additives in the feed, cm
DBAV	D _B	Bubble diameter in each compartment, cm
DCSE	^d ce	Surface volume mean diameter of char particles in the freeboard, cm
DCSVB	^d c	Surface volume mean diameter of char particles in the bed, cm

158

.

-

FORTRAN Symbo1	Mathematical Symbol	Description
DCSVF	-	Surface volume mean diameter of coal particles in the feed, cm
DCWE	-	Weight mean diameter of char particles in the freeboard, cm
DCWMB	-	Weight mean diameter of char particles in the bed, cm
DCWMF	-	Wéight mean diameter of coal particles in the feed, cm
DELT	-	Temperature matrix coefficients
DETC		İncrement in combustion efficiency
DETS	-	Increment in sulfur dioxide retention efficiency
DNZL	-	Diaméter of òrifice holes in the distributor, cm
DPDIS	-	Préssure drop across the distributor, cmˈH ₂ O
DPFIX	-	Pressure drop across the fixed bed section, cm $\rm H_2O$
DPFLU [,]	-	Pressure drop across the fluid bed section; cm [.] H ₂ O
DPSE	d` _{ke}	Surface volume mean particle diameter of additives entrained in the free- board, cm
DPSVB	d' _l	Surface volume mean particle diameter of additives in the bed, cm
DPWE	-	Weight mean particle diameter of additives entrained in the free- board, cm
DPWMB	-	Weight mean particle diameter of additives in the bed, cm
DTUBE	(SEE DESIĠN)	
DVBB	- ·	. Volume of each compartment, cm^3

FORTRAŃ Symbol	Mathematical Symbol	Description
DT	D _t	Diameter of the combustor, cm
ЕЕТСМ	-	Tolerance limit for combustion efficiency convergency
EETSM	-	Tolerance limit for sulfur dioxide retention efficiency convergency
EFF	-	Combustion efficiency calculated from elutriation calculations
EFFVOL	~	Volume of bed (excluding tubes), cm ³
EINDEX	-	Nitric oxide emission index, gmole NO/gm coal burnt
EMF	$\epsilon_{\mathtt{mf}}$	Void fraction at minimum fluidization
ENOX	-	Nitric oxide emission, mole fraction
EPB	ε _B	Bubble fraction
EPC	ε _c .	Cloud fraction including bubble
ETC	-	Carbon combustion efficiency
ETCA	-	Assumed carbon combustion efficiency
ETCC	-	Carbon combustion efficiency based carbon balance
ETCG		Carbon combustion efficiency based on oxygen balance
ETN	-	NO _x emission efficiency
ETC	-	Sulfur dioxide retention efficiency
ETSC .	-	Calculated sulfur dioxide retention efficiency
ETUBE	^e tube	Volume fraction of tubes in each compartment
EXAIR	-	Excess air, fraction

FORTRAN Symbol	Mathematical Symbol	Description
FBCOM	-	Char combustion rate in the freeboard, gm/sec
FBM	· F BM	Molar flow rate of gas in the bubble phase, gmole/sec
ED	-	Fraction of solids withdrawn from the bed at each location
FEM	F _{EM}	Molar flow rate of gas in the emulsion phase, gmole/sec
FFAD	-	Fraction of total additives fed at each location
FFC	<u>د</u>	Fraction of total coal fed at each location
FMF	-	Molar feed rate of fluidizing air, gmole/sec
FMTH	-	Stoichiometric air feed rate, gmole/sec
FMO	^F мт 、	Total molar flow rate of gas in the combustor, gmole/sec
FR	<u> </u>	Frequency factor for char-NO reaction, cm/sec
FRN	-	Feed rate of fuel nitrogen, gatom/sec
FRS	-	Feed rate of fuel sulfur, 'gatom/sec
FS	f _l .	Fractional conversion of limestone
FSW	(SEE DESIGN)	· · · · ·
FW	f w	Solids mixing parameter, ratio of wake volume to the bubble volume including the wakes
G ·	g	Acceleration due to gravity, cm/sec ²
GAMA	-	Temperature matrix coefficients
GB	g _B	Volatiles burning rate in the bubble phase, gmole/sec
GE	g _Ĕ	Volatiles burning rate in the emulsion phase, gmole/sec
GENB	-	SO ₂ or NO _x release rate in the bubble phase or in the freeboard due to volatiles combustion, gmole/sec

.

FORTRAN Symbol	Mathematical Symbol	Description
GENE	-	SO ₂ or NO _x release rate in the emulsion phase or in the freeboard due to volatiles combustion, gmole/sec
GFLOW	G	Gas flow rate, gms/sec
Н	-	Height above the distributor, cms
HB	h	Height above the bed surface, cms
HAREA	-	Total heat transfer area of cooling tubes (based on outside diameter of tube), cm ²
HCHAR	-	Hydrogen content in char, gm hydrogen/gm char
HCOAL	-	Lower heating value of coal, cals/gm
HCR .	-	Critical bed height above which there is a fixed bed section, cm
HFB	-	Freeboard height, cm
HLF	-	Expanded bed height, cm
HLMF	-	Bed height at minimum fluidization, cm
HTAR	-	Hydrogen content in tar, gm hydrogen/gm coal fed
H2	H ₂	Wt. fraction H ₂ in the volatiles; H ₂ released during devolatilization, gmole H ₂ /gm coal
H20	н ₂ 0	Wt, fraction H ₂ O in the volatiles; H ₂ O released during devolatilization, gmole H ₂ O/gm coal
H2SV ·	-	H_2S content in the volatiles, gmole $H_2S/gmole$ volatiles
IARR	(SEE DESIGN)	
F CR	-	Indicator for cirtical bed height
IFBC	-	Indicator for fixed bed section
IGNITE	-	Indicator for combustion calculations
INOX		Indicator for NO_x calculations
IPRES	-	Indicator for pressure drop calculations

FORTRAN Symbol	Mathematical Symbol	Description
IS02 .	2	Indicator for SO ₂ calculations
ITEMP	-	Indicator for temperature calculations
ITRIAL	÷-	Number of trials made in the combustion calculations
КТ	-	Number of compartments in freeboard
MAIR	~ _	Molecular weight of air, gms/gmole
MC	-	Atomic weight of carbon, gms/gatom
MCAO	~	Molecular weight of calcium oxide, gms/gmole
MCACO 3	-	Molecular weight of calcium carbonate, gms/gmole
MCASO4	-	Molecular weight of calcium sulfate, gms/gmole
МСО	-	Molecular weight of carbon monoxide, gms/gmole
MCO2	-	Molecular weight of carbon dioxide, gms/gmole
MDIS	-	No. of solids withdrawal locations
MFEED	-	No. of solids feed locations
MGAS	-	Molecular weight of combustion gases, gms/gmole
MH2	-	Molecular weight of hydrogen, gms/gmole
MH20	-	Molecular weight of water, gms/gmole
MH2S		Molecular weight of hydrogen sulfide, gms/gmole
MMGCO 3	-	Molecular weight of magnesium carbonate, gms/gmole
MMGO	<u>.</u>	Molecular weight of magnesium oxide, gms/gmole
MN	-	Atomic weight of nitrogen, gms/gatom

•

ı

FORTRAN Symbol	Mathematical Symbol	Description
MNO	-	Molecular weight of nitric oxide, gms/gmole
MN 2	_ ,* _ **	Molecular weight of nitrogen, gms/gmole
MO2	~	Molecular weight of oxygen, gms/gmole
MS	-	Atomic weight of sulfur, gms/gatom
MSO2	-	Molecular weight of sulfur dioxide, gms/gmole
•MTAR	-	Average molecular weight of tar in the volatiles, gms/gmole
МТВ	(SEE DESIGN)	
MTHE ·	(SEE DESIGN)	
Ml	. ~	No. of compartments in the bed + 1
NA	-	No. of additive particles in the freeboard
NAMEC1 NAMEC2	,	Name of coal
NAMEL1 NAMEL2	- ,	Name of limestone
NC	•	No. of char particles in the freeboard
NCHAR	-	Nitrogen content in char, gm nitrogen/ gm char
NTC	-	Total number of compartments in the combustor using DZAV + 1
OCHAR		Oxygen content in char, gm oxygen/gm char
OTAR	-	Oxygen content in tar, gm oxygen/gm coal fed
PAV	р	Average pressure in the combustor, atm
PF		Pressure of fluidizing air at the inlet to the distributor, atm
PH	(SEE DESIGN)	
PHIB	^ф в	Mechanism factor in the freeboard
PHIE	Φ_{E}	Mechanism factor in the emulsion phase
PI	π -	3.14159265
PV	(SEE DESIGN)	

FORTRAN Symbol	Mathematical Symbol	Description
QAREA	-	Heat transfer rate to the tubes per umit heat transfer area of tubes, cals/cm ² .sec
QÇHAR	-	Heat of combustion of char, cals/gm
QCLCN		Heat of calcination of limestone, cals/gm
QCO	-	Heat of combustion of carbon monoxide, cals/gmole
QTRANS	-	Total heat transferred to the cooling medium, cals/sec
QVCO	-	Heat of partial combustion of volatiles, cals/gmole
QVGAS	-	Heat of combustion of volatiles, cals/gmole
QVOL	-	Heat transfer rate per unit volume of bed, cals/cm ³
R	A	Defined by Equation (V.2)
RC	- `	Fraction of carbon remaining in char after devolatilization, gm carbon/gm carbon in coal
RCHAR	R _{ch}	Char produced per unit gm of coal fed, gm/gm
RELB	-	Total release rate of SO or NO in the bubble phase, gmole/sec
RELE	-	Total release rate of SO $_2$ or NO $_x$ in the emulsion phase, gmole/sec
RG	Rg	Gas constant, 82.06 atm.cm ³ /gmole.°K
RH	-	Fraction of hydrogen remaining in char after devolatilization, gm hydrogen/ gm hydrogén in coal
RHOAD	-	Density of additives, gms/cm ³
RHOASH	- 、 '	Density of ash, gms/cm ³
RHOBED	ρ _b	Density of the bed materials, gms/cm^3
RHOC	-	Density of coal, gms/cm ³

FORTRAN Symbol	Mathematical Symbol	Description
RHOCH	ρ_{ch}	Density of char, gms/cm ³
RHOGAS	ρ _g	Density of gas, gms/cm ³
RHOFG	-	Density of the fluidizing air at the inlet to the distributor, gms/cm ³
RN .	-	Fraction of nitrogen remaining in char after devolatilization, gm nitrogen/gm nitrogen in coal
RO	-	Fraction of oxygen remaining in char after devolatilization, gm oxygen/gm oxygen in coal
RR	-	Rate of combustion of char in each compartment per unit weight fraction of carbon in the bed, gms/sec; heat generation rate minus heat of calcination in each compartment, gms/sec
RRB	-	Rate of combustion of char in the bubble phase, gms/sec
RRE	-	Rate of combustion of char in the emulsion phase, gms/sec
RS	-	Fraction of sulfur remaining in char after devolatilization, gm sulfur/gm sulfur in coal
RVGAS	<u>-</u>	Volatiles released during devolatilization per unit gm of coal, gmole volatiles/gm coal
SCHAR	-	Sulfur content in char, gm sulfur/gm char
SOLVOL	-	Volume of solids in the bed (including voids) which is equal to volume of bed at minimum fluidization (excluding the internals), cm ³
SULFUR	-	Sulfur released during char combustion, gatom/sec
T	Т	Temperature, °K
TAR	Tar	Wt. fraction tar in the volatiles; tar released during devolatilization per unit gm of coal, gmole tar/gm coal
TARC	-	Stoichiometric air required per unit gm of char, gmole/gm char

FORTRAN Sýmbol	Mathematical Symbol	Description
TAV	-	Mean bed temperature, °K
TAVB	T B	Mean temperature in the boundary layer of the char particles in the bubble phase, °K; also in the freeboard, °K
TAVE	т _е	Mean temperature in the boundary layer of the char particles in the emulsion phase, °K
TCRATE	-	Total char combustion rate, gm/sec
TETUBE		Total volume fraction of tubes in the bed
TF	-	Temperature of fluidizing air at the inlet to the distributor, °K
TFC .	-	Total char feed rate, gms/sec
TNO RM	-	Temperature criterion for convergency
TOLD	-	Bed temperature in the previous iteration, $^{\circ}K$
ТРВ	-	Char particle temperature in the bubble phase, °K; also in the freeboard, °K
TPE	-	Char particle temperature in the emulsion phase, °K
TSF		Temperature of feed solids, °K
TSTA	-	Starting temperature (assumed) for iteration, [°] K
TW	-	Cooling water temperature, °K
TWALL	-	Wall temperature, °K
TWALLA	-	Average wall temperature used for heat losses, °K
TWAV	-	Log mean temperature of the cooling water
TWIN	-	Inlet water temperature, °K
TWOUT	-	Outlet water temperatuře, °K

FORTRAN Symbol	Mathematical Symbol	Description
UB	U _B	Bubble velocity, cm/sec
UHE	U	Bed to tube heat transfer coefficient, cals/sec.cm ² .°C
UHEAV1	-	Bed to tube heat transfer coefficient (average) within the bed, cals/sec.cm ² °C
UHEAV2	-	Bed to tube heat transfer coefficient (average) in the freeboard, cals/sec·cm ² °C
UHEW	U w	Bed to wall heat transfer coefficient, cals/sec.cm ^{2°} C
UMF	U _{mf}	Minimum fluidization velocity, cm/sec
UO	υ _o	Superficial gas velocity as a function of bed height, cm/sec
UOR	-	Orifice velocity, cm/sec
UT	U _t	Terminal velocity of the particle, cm/sec
UWALL1	-	Bed to wall heat transfer coefficient (average) within the bed, cals/sec cm ^{2°} C
UWALL2		Bed to wall heat transfer coefficient (average) in the freeboard, cals/sec cm ² °C
UO	-	Superficial gas velocity at the distributor, cm/sec
V	-	Volatiles yield during devolatilization, gms volatiles/gm coal (daf); also gms volatiles/gm coal
VAHOLD	-	Volumetric additives holdup in the freeboard; cm ³ solid volume
VCHOLD	-	Volumetric char hold-up in the freeboard, cm ³ solid volume
VGASN	-	Volatile nitrogen in coal, gatom/gm coal (d.b.)
VGASS	-	Volatile sulfur in coal, gatom/gm coal (d.b.)
VISC	μ	Viscosity of gas, gm/cm·sec

FORTRAN Symbol	Mathematical Symbol	Description
VM	-	Proximate volatile matter in coal, gm/gm coal (daf)
VMF	-	Bed volume at minimum fluidization (excluding the internals), cm ³
VPROD	-	Volatiles released in each compartment, gmole/sec
WAD	[₩] f,a	Additives feed rate, gms/sec
WAHOLD	-	Additives hold-up in the freeboard, gms
WB	Mb	Weight of bed materials, gms
WCHOLD	-	Char hold-up in the freeboard, gms
WCOAL	-	Coal feed rate as received basis, gms/sec
WD		Solids withdrawal rate at each location, gms/sec
WDIS	W _D	Solids withdrawal rate, gms/sec
WEA	-	Additives entrainment rate in the freeboard, gms/sec
WEC	~	Char entrainment rate in the freeboard, gms/sec
WELUA	-	Solids (excluding char) elutriation rate from the combustor, gms/sec
WFAD	^W f,a	Additives feed rate in each compartment, gms/sec
WFC	^W f,c	Coal feed rate in each compartment, gms/sec
WMI X	W _{mix}	Solids mixing rate, gms/sec
WNET	Wnet	Net flow rate of solids, gms/sec
WW	В	Defined by Equation (V.3)
Х	х	Weight fraction carbon in the bed
XA	-	Ash content in coal as received basis, gm ash/gm . coal
XACAO		Calcium oxide content in ash, gm CaO/gm ash

FORTRAN Symbol	Mathematical Symbol	Description
XAV	-	Average weight fraction of carbon in the bed
XC		Carbon content in coal, gm carbon/ gm coal (d.b.)
XCAO	-	Calcium oxide content in limestone, gm CaO/gm limestone
XCF	-	Fixed carbon content in coal, gm carbon/gm coal (d.b.)
XCO2	-	Carbon dioxide content in limestone, gm CO ₂ /gm limestone
XCV		Volatile carbon content in coal, gm carbon/gm coal (d.b.)
XH	-	Hydrogen content in coal, gm hydrogen/gm coal (d.b.)
XMGO	-	Magnesium oxide content in limestone, gm MgO/gm limestone
XN	-	Nitrogen content in coal, gm nitrogen/ gm coal (d.b.)
хо	-	Oxygen content in coal, gm oxygen/gm coal (d.b.)
X02	x _{o2}	Oxygen required for partial combustion of volatiles, gmole 0 ₂ /gmole volatile
XO2C	x ₀₂ , c	Oxygen required for complete combustion of volatiles, gmole 0 ₂ /gmole volatile
XS	-	Sulfur content in coal, gm sulfur/gm coal (d.b.)
XS102	-	Silicon dioxide content in limestone, gm SiO ₂ /gm limestone
XW	-	Moisture content in coal as received basis, gm H ₂ 0/gm coal
YAV	-	Average O ₂ concentration (assumed) for iteration, mole fraction
YB	-	Mole fraction O ₂ or SO ₂ or NO in the bubble phase

-

FORTRAN Symbol	Mathematical Symbol	Description
YBO	Ч _В	Mole fraction 0_2 in the bubble phase
YCO	Y _{CO}	Mole fraction CO
YCOE	Υ _{E,CO}	Mole fraction CO in the emulsion phase
YCO2	Y _{CO2}	Mole fraction CO_2
YCO2B	Y _B ,CO ₂	Mole fraction CO_2 in the bubble phase
YCO2E	Y _{E,CO2}	Mole fraction CO_2 in the emulsion phase
YE ·	-	Mole fraction 0_2 or SO_2 or NO in the emulsion phase
YEO	Y _E .	Mole fraction 0_2 in the emulsion phase
YGO	-	Gaseous species concentrations at the exit, mole fraction
YH20	^Ү Н ₂ 0 .	Mole fraction H ₂ 0
YNOX	Y _{NO}	Mole fraction NO
YO	Y ₀	Mole fraction 0_2
YSO2	Y _{SO2}	Mole fraction SO_{2}
YV	Y _v	Mole fraction volatiles
YVE	Y _{E,v}	Mole fraction volatiles in the emulsion phase
ZAVG	-	Average height of each compartment above the distributor, cm
ZB	(SEE DESIGN)	
ZF	-	Locations of solids feed ports, cms
ZHE	(SEE DESIGN)	
ZDIS	(SEĘ DESIGN)	

MAIN PROGRAM ELUTRIATION

	FORTRAN Symbol	Mathematical Symbol	Description
	AHE	(SEE DESIGN)	
	АТВ	A _t	Cross sectional area of the bed, cm^2
	CAS	-	Ca/S molar ratio in feed solids
	CCHAR	C _{ch}	Carbon content in char, gm carbon/ _gm char
	CELU	-	Char elutriated from the combustor, gms/sec
	CHARC	-	Carbon content in char, gmole carbon/ gm coal
	CHARH	-	Hydrogen content in char, gatom hydrogen/gm coal
	CHARN		Nitrogen content in char, gatom nitrogen/gm coal
	CHARO	-	Oxygen content in char, gatom oxygen/gm coal
	CHARS	-	Sulfur content in char, gatom sulfur/gm coal
	CH4	CH ₄	Wt. fraction CH ₄ in the volatiles; CH ₄ released during devolatilization, gmole CH ₄ /gm coal
	C0 ·	СО	Wt. fraction CO in the volatiles; CO released during devolatilization, gmole CO/gm coal
	COALC	-	Carbon content in coal, gatom carbon/ gm coal (d.b.)
	COALH		Hydrogen content in coal, gatom hydrogen/gm coal (d.b.)
•	COALN	-	Nitrogen content in coal, gatom nitrogen/gm coal (d.b.)
	COALO	-	Oxygen content in coal, gatom oxygen/gm coal (d.b.)
	COALS	-	Sulfur content in coal, gatom sulfur/gm coal (d.b.)

FORTRAN Symbol	Mathematical Symbol	Description
COV	-	CO released during devolatilization per mole of volatiles released, gmole CO/ gmole volatiles
COVB	-	CO produced during volatiles combustion, gmole CO/gmole volatiles
co ₂	_	Wt. fraction CO ₂ in the volatiles; CO ₂ released during devolatilization, gmole CO ₂ /gm coal
CO2V	-	CO ₂ released during devolatilization per mole of volatiles released, gmole CO ₂ / gmole volatiles
CO2VB		CO ₂ produced during volatiles combustion, gmole CO ₂ /gmole volatiles
CTAR	-	Carbon content in tar, gm carbon/gm coal fed
DASVF	`_	Surface volume mean particle diameter of additives in the feed, cm
DAWMF		Weight mean particle diameter of additives in the feed, cm
DCSE	^d ce	Surface volume mean diameter of char particles in the freeboard, cm
DCSVB	^d c	Surface volume mean diameter of char particles in the bed, cm
DCSVF	-	Surface volume mean diameter of coal particles in the feed, cm
DCWE	.	Weight mean diameter of char particles in the freeboard, cm
DCWMB	-	Weight mean diameter of char particles in the bed, cm
DCWMF	-	Weight mean diameter of coal particles in the feed, cm
DIA(I)	-	Feed particle diameter of ith fraction based on seiving screen size

FORTRAN Symbol	Mathematical Symbol	Description
DP	^d x	Mean diameter of the particles of x th size fraction, cm
DPSE	d _{le}	Surface volume mean particle diameter of additives entrained in the freeboard, cm
DPSVB	d _l	Surface volume mean particle diameter of additives in the bed, cm
DPWE	-	Weight mean particle diameter of additives entrained in the freeboard, cm
DPWMB	- .	Weight mean particle diameter of additives in the bed, cm
DTUBE	(SEE DESIGN)	
EMF	ϵ_{mf}	Void fraction at minimum fluidization
EXAIR	-	Excess air, fraction
FMF .	-	Molar feed rate of fluidizing air, gmole/sec
FMO	^F MГ	Total molar flow rate of gas in the combustor, gmole/sec
FMTH		Stoichiometric air feed rate, gmole/sec
FRACTA	-	Weight fraction of additives feed of x th size fraction
FRACTC	-	Weight fraction of coal feed of x th size fraction
G	g	Acceleration due to gravity, cm/sec ²
GFLOW	G	Gas flow rate, gms/sec
HCHAR	-	Hydrogen content in char, gm hydrogen/gm char
·HFB	-	Freeboard height, cm
HLF	-	Expanded bed height, cm

FORTRAN Symbol	Mathematical Symbol	Description
HLMF	- ,	Bed height at minimum fluidization, cm
HTAR	-	Hydrogen content in tar, gm hydrogen/ gm coal fed
H2	^H 2 .	Wt. fraction H_2 in the volatiles; H_2 released during devolatilization gmole H_2/gm coal
H2O	н ₂ 0	Wt. fraction H ₂ O in the volatiles; H ₂ O released during devolatilization, gmole H ₂ O/gm coal
IARR	(SEE DESIGN)	
MAIR	-	Molecular weight of air, gms/gmole
МС	-	Atomic weight of carbon, gms/gatom
MCAO	-	Molecular weight of calcium oxide, gms/gmole
MCASO4	-	Molecular weight of calcium sulfate, gms/gmole
MCO	~ •, •	Molecular weight of carbon monoxide, gms/gmole
MCO2	-	Molecular weight of carbon dioxide, gms/gmole
MGAS	-	Molecular weight of combustion gases, gms/gmole
MH2	-	Molecular weight of hydrogen, gms/gmole
MH20	-	Molecular weight of water, gms/gmole
MH2S	-	Molecular weight of hydrogen sulfide, gms/gmole
MNO	-	Molecular weight of nitric oxide, gms/gmole
MN 2	<u> </u>	Molecular weight of nitrogen, gms/gmole
MO2	-	Molecular weight of oxygen, gms/gmole
MS		Atomic weight of sulfur, gms/gatom

FORTRAN Symbol	Mathematical Symbol	Description
MSO2	-	Molecular weight of sulfur dioxide, gms/gmole
MTAR	-	Average molecular weight of tar in the volatiles, gms/gmole
MTB MTHE	(SEE DESIGN)	
NCHAR	-	Nitrogen content in char, gm nitrogen/gm char
NDP	-	Number of size fractions
OCHAR	-	Oxygen content in char, gm oxygen/gm char
OTAR	_	Oxygen content in tar, gm oxygen/gm coal fed
PAV	p	Average pressure in the combustor, atm
РН	(SEE DESIGN)	
PI	π	3.14159265
PV	(SEE DESIGN)	
R	A	Defined by Equation (V.2)
RC	-	Fraction of carbon remaining in char after devolatilization, gm carbon/gm carbon in coal
RCHAR	Rch	Char produced per unit gm of coal fed, gm/gm
RG	Rg	Gas constant, 82.06 atm·cm ³ /gmole·°K
RH	-	Fraction of hydrogen remaining in char after devolatilization, gm hydrogen/gm hydrogen in coal
RHOAD	-	Density of additives, gms/cm ³
RHOASH	-	Density of ash, gms/cm ³
RHOBED	^р ь	Density of the bed materials, gms/cm^3
RHOC	_	Density of coal, gms/cm ³
RHOCH	^p ch	Density of char, gms/cm ³
RN	-	Fraction of nitrogen remaining in char after devolatilization, gm nitrogen/gm nitrogen in coal

FORTRAN Symbol	Mathematical Symbol	Description
RO		Fraction of oxygen remaining in char after devolatilization, gm oxygen/gm • oxygen in coal
RS	-	Fraction of sulfur remaining in char after devolatilization, gm sulfur/gm sulfur in coal
RVGAS	-	Volatiles released during devolatilization per unit gm of coal gmole volatiles/gm coal
SCHAR	~ .	Sulfur content in char, gm sulfur/gm char
TAR	Tar	Wt. fraction tar in the volatiles; tar released during devolatilization per unit gm of coal, gmole tar/gm coal
TAV		Mean bed temperature, °K
TDHC	TDH	Transport disengaging height, cms
UO	U _o .	Superficial gas velocity as a function of bed height, cms/sec
V	- *	Volatiles yield during devolatilization, gms volatiles/gm coal (daf); also, gms volatiles/gm coal
VM	-	Proximate volatile matter in coal, gm/gm coal (daf)
VMF	0.	Bed volume at minimum fluidization (excluding the internals), cm ³
WAD	^W f,a	Additives feed rate, gms/sec
WB	м _b	Weight of bed materials, gms
WBC	-	Weight of bed materials calculated, gms
WCOAL	W _{f,c}	Coal feed rate as received basis, gms/sec
WDIS	W _D	Solids withdrawal rate, gms/sec

FORTRAN Symbol	Mathematical Symbol	Description
WELUA	-	Solids (excluding char) elutriation rate, gms/sec
ww .	В	Defined by Equation (V.3)
ХА	-	Ash content in coal, gm ash/gm coal
XC	-	Carbon content in coal, gm carbon/ gm coal (d.b.)
XCA0	-	Calcium oxide content in limestone, gm CaO/gm limestone
XCF	-	Fixed carbon content in coal, gm carbon/gm coal (d.b.)
XCO2	-	Carbon dioxide content in limestone, gm CO ₂ /gm limestone
XCV	-	Volatile carbon content in coal, gm carbon/gm coal (d.b.)
ХН	-	Hydrogen content in coal, gm hydrogen/gm coal(d.b.)
XMGO	-	Magnesium oxide content in limestone, gm MgO/gm limestone
XN	-	Nitrogen content in coal, gm nitrogen/ gm coal (d.b.)
ХО	-	Oxygen content in coal, gm oxygen/ gm coal (d.b.)
XS	-	Sulfur content in coal, gm sulfur/ gm coal (d.b.)
XS102	-	Silicon dioxide content in limestone, gm SiO ₂ /gm limestone
XW .	-	Moisture content in coal as received basis, gm $H_2^{O/gm}$ coal
ZB	(SEE DESIGN)	
ZHE	(SEE DESIGN)	

SUBPROGRAM AKAD

FORTRAN Symbol	Mathematical Symbol	Description
ALIME	λl	Reactivity of lime
AKAD	^k vl	Overall volume reaction rate constant for limestone SO ₂ reaction, l/sec
DP	d P	Particle diameter, cm
DP1 DP2 DP3	-	Specified particle diameter for which the limestone reactivity is given, cm
FS	fl	Fractional conversion of limestone
FB	-	Limestone reactivity (given)
RR	-	Mean reactivity of limestone particles of size, DP1
RB	-	Mean reactivity of limestone particles of size, DP2
RC	-	Mean reactivity of limestone particles of size, DP3
SG	Sg	Effective specific surface area of limestone, cm ² /gm
Т	Т	Temperature in the bed, °K
	2	SUBPROGRAM_AKK
AKCO2	-	Overall rate constant for C-CO ₂ reaction, cm/sec
AKF	k _{cf}	Gas film diffusion rate constant for O ₂ , gm/cm ² .sec.atm
AKFCO2	-	Gas film diffusion rate constant for CO ₂ , gm/cm ² .sec.atm

	FORTRAN Symbol	Mathematical Symbol	Description
	AKRCO2	^k co ₂	C-CO ₂ chemical reaction rate constant, cm/sec
	AKR	^k c	Overall rate constant for char combustion, cm/sec
	AKS	k cR	Chemical reaction rate constant for char combustion, cm/sec
	COND	λ	Thermal conductivity of the gas, cals/ sec.cm.°C
	D	D	Molecular diffusivity for O_2 -N ₂ , cm ² / sec; for CO_2 -N ₂ , cm ² /sec
	DC	-	Diameter of char particle, cm
	DTS	-	Increment in temperature, °K
	EM	ε _m	Emissivity of the char particle
	ETS	-	Difference between assumed and calculated temperatures, °K
	ETSMAX	-	Tolerance limit for temperature convergency, °K
	MC	-	Atomic weight of carbon, gms/gatom
	Р	-	Pressure in the combustor, atm
-	PHI	ф	Mechanism factor for char combustion
	Q		Heat of combustion of char, cals/gm char
	RG	Rg	Gas constant, 82.06 atm. cm ³ /gmole.°K
	SIGM	σ	Stefan-Boltzman constant, cal/s.cm ² .°K ⁴
	Ţ	Т	Temperature in the bed, °K
	TAV	T _m	Mean temperature in the boundary layer of the particle, °K
	TP	т _с	Char particle temperature, °K
	Y02	~	Mole fraction oxygen
	Z	p	Defined by Equation (V.16)

SUBPROGRAM AREA

FORTRAN Symbol	Mathematical Symbol	Description
ATB	-	Bed cross sectional area at height ZB above the distributor, cm ²
ATI		Bed cross sectional area at height ZI above the distributor, cm ²
DTI	D _t	Diameter of the combustor at height ZI above the distributor, cms
МТВ	-	Number of locations along the combustor where the cross sectional areas are specified.
PI	π	3.14159265
RI		Radius of the combustor at height ZI above the distributor, cms
ZB		Height above the distributor at which the cross sectional area is specified, cms
ZI _	- ,	Height above the distributor, cms
	•	SUBPROGRAM ATTR
AKF	^k cf	Gas film diffusion rate constant, gm/cm ² ·sec.atm
AKR	^k c	Overall rate constant for char combustion, cm/sec
AKS	^k cR .	Chemical reaction rate constant for char combustion, gm/cm ² .sec.atm
COND .	λ	Thermal conductivity of the gas, cals/ sec.cm.°C
D	D	Molecular diffusivity for 0_2 -N ₂ cm ² /sec
DC	-	Diameter of the char particle, cm
DTS	-	Increment in temperature, °K
EM	em	Emissivity of the char particle

FORTRAN Symbol	Mathematical Symbol	Description
ETS	-	Difference between assumed and calculated temperatures, °K
ETSMAX	-	Tolerance limit for temperature convergency, °K
MC	. ^M c	Atomic weight of carbon, gms/gatom
Р	-	Pressure in the combustor, atm
PHI	ф	Mechanism factor for char combustion
Q	-	Heat of combustion of char, cals/gm char
RG	Rg	Gas constant, 82.06 atm.cm ³ /gmole.°K
RHOCCH	^p c, ch	Density of carbon in char, gms/cm ³
RKI	_	Size reduction constant for char (due to combustion), 1/sec
SIGM	σ	Stefan-Boltzman constant, cal/s.cm 2 .K 4
Т	Т	Temperature in the bed, °K
TAV	T _m	Mean temperature in the boundary layer layer of the char particle, °K
ТВ	t _b	Burning time of a char particle, sec
TP	т _с	Char particle temperature, °K
Y02	-	Mole fraction oxygen
Z	р	Defined by Equation (V.16)
		SUBROUTINE CRRECT
DX	-	Increment in the variable, x
Е		Difference between the assumed and calculated values of the variable, x
EMAX	-	Tolerance limit for convergency
E1	-	Value of E in the iteration, I
E2		Value of E in the iteration, I+1

FORTRAN Symbol	Mathematical Symbol	Description
Ĩ	-	Iteration or step number
INDX	-	Indicator for convergency interval
X :	-	Variable for which the assumed and calculated values should be equal
XI		Value of x in the iteration, I
X2	-	Value of x in the iteration, I+1
		SUBPROGRAM DESIGN
A1,A2,A3,A4	-	Alphanumeric characters
ABED	At	Cross sectional area of the combustor, cm^2
AHE	a _{HE}	Specific heat transfer area of the tubes, cm ² /cm ³ FBC volume
AND	n _d	Number of orifices in the distributor
АТВ	-	Bed cross sectional area at height ZB above the distributor, cm ²
DBED	D _t	Diameter of the combustor, cm
DNZL	-	Diameter of orifice holes in the distributor, cm
DTUBE	đ	Diameter of cooling tubes, cm
DVB	-	Volume of each compartment based on DZAV, cm ³
DVBEFF	-	Volume of each compartment excluding the tubes, cm ³
DZAV	-	Average compartment size used in design calculations, cm
FD	-	Fraction of solids withdrawn from the bed at each location
FFAD	- -	Fraction of total additives fed at each location

FORTRAN Symbol	Mathematical Symbol	Description
FFC	-	Fraction of total coal fed at each location
FSW	f _{sw}	Fraction of wake solids thrown into the freeboard
FW	f _w	Ratio of wake volume to the bubble volume including the wakes
IARR		Tubes arrangement code
MDIS	-	No. of solids withdrawal locations
MFEED	-	No. of solids feed locations
MTB	-	No. of locations along the combustor where the cross sectional areas are specified
MTHE	-	No. of locations of cooling tubes
NTC		Total number of compartments in the combustor using DZAV + 1
PI	π	3.14159265
РН	Р _Н	Horizontal pitch distance between the tubes, cm
PV	P _v	Vertical pitch distance between the tubes, cm
ZB	-	Height above the distributor at which the cross sectional area is specified, cms
ZDIS	-	Locations of solids withdrawal ports, cms
ZF	-	Locations of solids feed ports, cms
ZHE	-	Locations of cooling tubes, cms
		SUBPROGRAM ELUT
BB	-	Weight of bed material of x th size fraction, gms

FORTRAN Symbol	Mathematical Symbol	Description
CBED.	-	Weight of char in the bed, gms
CBEDÇ	-	Weight of char in the bed (calculated), gms
ĊÇHAR	C _{ch}	Carbon content in char, gm carbon/gm char
ÇELU	-	Char elutriated from the combustor, gms/sec
CENT	-	Char entrained in the freeboard, gms/sec
CU	-	Fraction finer than size, d_{χ}
DCŞE	^d ce	Surface volume mean diameter of char particles in the freeboard, cm
DCSVB	^d c.	Surface volume mean diameter of char particles in the bed, cm
DCWE	-	Weight mean diameter of char particles in the freeboard, cm
DCWMB	-	Weight mean diameter of char particles in the bed, cm
DETC	-	Increment in combustion efficiency
DP	d _x	Mean diameter of the particles of x th size fraction, cm
DPSE	d _{le}	Surface volume mean particle diameter of additives entrained in the freeboard, cm
DPSVB	dl	Surface volume mean particle diameter of additives in the bed, cm
DPWE	-	Weight mean particle diameter of additives entrained in the freeboard, cm
DPWMB	-	Weight mean particle diameter of additives in the bed, cm
DWDIS	-	Increment in the solids withdrawal rate, gms/sec

FORTRAN Symbol	Mathematical Symbol	Description
E	E _x	Elutriation rate constant, gm/sec
BETC	<u>.</u>	Tolerance limit for combustion efficiency convergency
EMF	ϵ_{mf}	Void fraction at minimum fluidization
ENTA	-	Entrainment rate of additives of xth size fraction in the freeboard, gm/sec
ENTC	-	Entrainment rate of char of x th size fraction in the freeboard, gm/sec
ERR	-	Difference between assumed and calculated combustion efficiencies
ETCA	-	Assumed combustion efficiency
ETCC	-	Calculated combustion efficiency
EWB	-	Tolerance limit for bed height convergency
FCE	-	Weight fraction of char particles of x th size fraction entrained
FFI .	^a x	Proportion of total abrasion fines in the x th size fraction
FO	-	Solids entrainment rate at the bed surface of x th size fraction, gms/sec
FRA	₿ _x	Weight fraction of bed materials in the x th size fraction
FRACTA	-	Weight fraction of additives feed of x th size fraction
FRACTC	-	Weight fraction of coal feed of x th size fraction
FRAEL	-	Weight fraction of additives of x th size fraction elutriated from the combustor
FRAEN	-	Weight fraction of additives of x th size fraction entrained in the freeboard

FORTRAN Symbol	Mathematiçal Symbol	Description
FRÇ	_ ···	Weight fraction of char particles of x th size fraction in the bed
• <u>F</u> SÇ	- · ·	Fraction of solids in the cloud region
FSW	f _{sų}	Fraction of wake solids thrown into the freeboard
FW	f _{sw} .	Volume fraction of wake to bubble (including wakes)
ĢFĻOW	G.	Gas flow rate, gms/sec
HB	h	Height above the bed surface, cms
HFB	-	Freeboard height, cm
ĦĿĔ	-	Expanded bed height, cm
HLMF	-	Bed height at minimum fluidization, cm
MGAS	-	Molecular weight of gas, gms/gmole
МГВ	-	No. of locations along the combustor where the cross sectional areas are specified
· NDP		Number of size fractions
P <u>1</u>	P1 .	Proportion of fines recycled to the bed from the primary cyclone
P2	P ₂	Proportion of fines recycled to the bed from the secondary cyclone
PAV	Р	Average pressure of the FBC, atm
PFA		Gain of fines in the x th size fraction due to abrasion, gms/sec
Q1	q _{ļx}	Collection efficiency of the primary cyclones for the x th size fraction
Q2	q _{2x}	Collection efficiency of the secondary cyclones for the x th size fraction
R		Entrainment rate of particles of size d_X , gms/sec
RCHAR	R _{ch}	Char produced per unit gm of coal fed, gm/gm

FORTRAN Symbol	Mathematical Symbol	Description
RG	Rg	Gas constant, 82.06 atm.cm ³ /gmole.°K
RHOAD	-	Density of additives, gms/cm ³
RHOBĘD	^р ь	Density of bed materials, gms/cm ³
RHOCCH	^ρ c,ch	Density of carbon in char, gms/cm ³
RHÖCH	ρ_{ch}	Density of char, gms/cm ³
RHOGAS	ρ _g	Density of gas, gms/cm ³
RK	K.	Attrition rate constant, 1/cm
RKI		Size reduction constant for char (due to combustion), l/sec
RT	-	Residence time of solids in the free- board, sec
TAV		Mean bed temperature, °K
TB	t _b	Burning time of a char particle, sec
TDH .	TDH	Transport Disengaging Height, cm; if TDH > HFB, TDH = HFB
TDHC	TDH	Transport Disengaging Height, cm
UMF	U _{mf}	Minimum fluidization velocity, cm/sec
UO	U _o	Superficial gas velocity at the bed surface, cm/sec
UTA	-	Terminal velocity of additive particles of size d _x , cm/sec
UTC	-	Terminal velocity of char particles of size d _X , cm/sec
VISC	μ	Viscosity of gas, gm/cm.sec
VMF	- ·	Bed volume at minimum fluidization (excluding the internals), cm ³
W	W _x	Rate of transfer of particles from size fraction x to fraction x+1 by size reduction, gms/sec

FORTRAN Symbol	Mathematical Symbol	Description
WAD	W _{f,a}	Additives feed rate, gms/sec
WB;	Mb	Weight of bed materials, gms
WBC.	-	Weight of bed materials calculated, gms.
WCOAL.	W _{f;,c}	Coal feed rate, gms/sec
ŴDĿS	W _D	Solids withdrawal rate, gms/sec
WÈA	-	Additives entrainment rate in the freeboard, gms/sec
ŴEC	-	Char entrainment rate in the freeboard, gms/sec
WELUA	-	Solids (excluding char) elutriation rate, gms/sec
WF	W _{f,x}	Solids feed rate of x th size fraction, gms/sec
WTF	-	Feed rate of (limestone + ash in coal)
XA	<u> </u>	Ash content in coal, gm ash/gm coal
Χ́ΑV	-	Weight fraction carbon in the bed (average), gm carbon/gm bed material
Y02	-	Mole fraction oxygen
ZB	-	Height above the distributor at which the cross sectional area is specified, cms
		SUBPROGRAM FBC
AKC	k _c	Overall rate constant for char combustic cm/sec
AKC02	-	Overall rate constant for C-CO ₂ reaction cm/sec
АКР	k '	Defined by Equation (VI.32)

FORTRAN Symbol	Mathematical Symbol	Description
COB	-	Carbon monoxide burnt in each compart- ment, gmole/sec
COVB	-	CO produced during volatiles combustion, gmole CO/gmole volatiles
CO2VB	-	CO ₂ produced during volatiles combustion, gmole CO ₂ /gmole volatiles
DCSVE	d _{ce}	Surface volume mean diameter of char particles in the freeboard, cm
DVBB	-	Volume of each compartment, cm ³
DYO	•••	Increment in 0_2 mole fraction
ER	- :	Difference between assumed and calculated O ₂ concentrations, mole fraction
ETUBE	ε _{tube}	Volume fraction of tube in each compart- ment
EYO	-	Tolerance limit for O ₂ concentration convergency
FMO	F _{MT}	Total molar flow rate of gas in the combustor, gmole/sec
G	g	Acceleration due to gravity, cm/sec ²
GB	g _B	Volatiles burning rate in the bubble phase, gmole/sec
GE	g _E	Volatiles burning rate in the free- board, gmole/sec
NC	-	No. of char particles in the freeboard
PAV	Р	Average pressure in the combustor, atm
PHIB	$\phi_{\rm B}$	Mechanism factor in the freeboard
PI	π	3.14159265
RG	Rg	Gas constant, 82.06 atm.cm ³ /gmole.°K
RVGAS	-	Volatiles released during devolatilization per unit gm of coal, gmole volatiles/ gm coal

FORTRAN Symbol	Mathematical Symbol	Description
Ţ	Т	Temperature, °K
TAVB	т _в	Mean temperature in the boundary layer of the char particles in the free- board, °K
X02	^{×X} 0 ₂ Y _{ÇO}	Oxygen required for partial combustion of volatiles, gmole O ₂ /gmole volatile
YCO	Ү _Ç O	Mole fraction CO
Y.CO <u>0</u>	-	Mole fraction CO in the bottom compartment
YCO2	-	Mole fraction CO ₂ in the bottom compartment
¥H2O	Ч _{Н2} 0	Mole fraction H_2^0
ŶQ	Y ₀	Mole fraction oxygen
YOC	-	Mole fraction oxygen calculated
Y00	-	Mole fraction oxygen in the bottom compartment
YV	Υ _v	Mole fraction volatiles
YVO	-	Mole fraction volatiles in the bottom compartment
		SUBPROGRAM GPB
А	-	Matrix coefficients
AA	-	Matrix coefficients
АКВ	^k с,В	Overall rate constant for char combustion in bubble phase, cm/sec
AKBE	К _{ВЕ}	Gas exchange coefficient, l/sec
AKCO2	-	Overall rate constant for C-CO ₂ reaction, cm/sec
AKĘ	^k c,E	Overall rate constant for char combustion in emulsion phase, cm/sec

FORTRAN Symbol	Mathematical Symbol	Description
АКР	k	Defined by Equation (VI.24)
AMODF	a _m	Defined by Equation (VI.12)
В	-	Matrix coefficients
BB	-	Mtrix coefficients
СОВ	-	Carbon monoxide burnt in each compartment, gmole/sec
COV	-	CO released during devolatilization per mole of volatiles released, gmole CO/gmole volatiles
COVB	-	CO produced during volatiles combustion,gmole CO/ gmole/volatiles
C02V	-	CO ₂ released during devolatilization per mole of volatiles released, gmole CO ₂ /gmole volatiles
CO2VB	-	CO ₂ produced during volatiles combustion, gmole CO ₂ /gmole volatiles
DVBB	-	Volume of each compartment, cm ³
DYE	-	Increment in oxygen concentration in emulsion phase, mole fraction
EMAX	-	Tolerance limit for oxygen concentration convergency
EMF	[€] mf	Void fraction at minimum fluidization
EPB	ε _B	Bubble fraction
EPC	ε _c	Cloud fraction including bubble
FBM	^F вм	Molar flow rate of gas in the bubble phase, gmole/sec
FBMO	-	Molar flow rate of gas in the bubble phase in the bottom compartment, gmole/sec
FEM	^F ем	Molar flow rate of gas in the emulsion phase, gmole/sec
FEMO	-	Molar flow rate of gas in the emulsion phase in the bottom compartment, gmole/sec

FORTRAN Symbol	Mathematical Symbol	Description
GB →≫÷	g _B	Volatiles burning rate in the bubble phase, gmole/sec
GE :	g _E	Volatiles burning rate in the emulsion phase, gmole/sec
PĄV,	Р	Average pressure in the combustor, atm.
PHIE	ϕ_{E}	Mechanism factor in the emulsion phase
RG	Rg	Gas constant, 82.06 atm.cm ³ /gmole.°K
RVGĄS	-	Volatiles released during devolatilization per unit gm of coal, gmole volatiles/gm coal
Т	T	Temperature in the bed, °K
TAVB	T _B	Mean temperature in the boundary layer of the char particles in the bubble phase,°K
TAVE	T _E	Mean temperature in the boundary layer of the char particles in the emulsion phase, °K
VPROD	-	Volatiles released in each compartment, gmole/sec
Х	X	Weight fraction carbon in the bed
X02	x _{o2}	Oxygen required for partial combustion of volatiles, gmole O ₂ /gmole volatiles
XO2C	^x 0 ₂ ,c	Oxygen required for complete combustion of volatiles, gmole O ₂ /gmole volatiles
YB	Υ _B	Mole fraction oxygen in the bubble phase
YBO	-	Mole fraction oxygen in the bubble phase in the bottom compartment
YCOE	Y _{E,CO}	Mole fraction CO in the emulsion phase
YCOE0	-	Mole fraction CO in the emulsion phase in the bottom compartment
YCO2B	Y _{B,CO2}	Mole fraction CO_2 in the bubble phase
YCO2B0	-	Mole fraction CO ₂ in the bubble phase in the bottom compartment

•

r

YC02E	Y _{E,CO2}	Mole fraction CO_2 in the emulsion phase
YCOE0		Mole fraction CO ₂ in the emulsion phase in the bottom compartment
YE	Υ _E	Mole fraction oxygen in the emulsion phase
YEC	-	Mole fraction oxygen calculated
YE0	-	Mole fraction oxygen in the bottom compartment
YH20	^Ү н ₂ 0	Mole fraction H ₂ 0
YVE	Y _{E,v}	Mole fraction volatiles in the emulsion phase
YVEO	-	Mole fraction volatiles in the emulsion phase in the bottom compartment
	SU	BPROGRAM GPHASE
АКВ	-	Reaction rate constant in bubble phase
АКВЕ	к _{ве}	Gas exchange coefficient, l/sec
AKE	-	Reaction rate constant in emulsion phase
АМ	a _m	Defined by Equation (VI.12) for NO_x reduction reaction; = $(1-\varepsilon_{mf})$ for SO ₂ absorption reaction
DVBB	-	Volume of each compartment, cm ³
EPB	ε _B	Bubble fraction
EPC	ε _c	Cloud fraction including bubble
ETUBE	ε tube	Volume fraction of tubes in each compartment
FBM	^F BM	Molar flow rate of gas in the bubble phase, gmole/sec
FBMO	-	Molar flow rate of gas in the bubble phase in the bottom compartment, gmole/sec
FEM	F _{EM}	Molar flow rate of gas in the emulsion phase, gmole/sec
FEMO	-	Molar flow rate of gas in the emulsion phase in the bottom compartment, gmole/sec

Symbol	Mathematical Symbol	Description
GEŅB	-	SO ₂ or NO release rate in the bubble phase, gmole/sec
ĢENE	-	SO ₂ or NO _x release rate in the emulsion phase, gmole/sec
₽ Ă ¥	р	Average pressure in the combustor, atm
ŖĢ	Rg	Gaș constant, 82.06 atm.cm ³ /gmole.ºK
Ţ	Т	Temperature in the bed, °K
ŢŖ	Т _В	Mean temperature in the boundary layer of the particles, °K
TE	т _е	Mean temperature in the boundary layer of the particles, °K
¥B0	-	Gas concentration in the bubble phase in the bottom compartment, mole fraction
¥В1 ,	-	Gas concentration in the bubble phase, mole fraction
¥E0	-	Gas concentration in the emulsion phase in the bottom compartment, mole fraction
YE1	-	Gas concentration in the emulsion phase, mole fraction
		SUBPROGRAM HAREA
ĄTĐ	-	Bed cross sectional area at height ZB above the distributor, cm ²
ATI	-	Bed croșs sectional area at height ZI above the distributor, cm ²
DTI	D _t	Diameter of the combustor at height ZI above the distributor, cm
Ӎ҈тВ	-	Number of locations along the combustor where the cross sectional areas are specified
βI	π	3.14159265
RI	-	Radius of the combustor at height ZI above the distributor, cms

FORTRAN Symbol	Mathematical Symbol	Description
ZI	-	Height above the distributor, cms
		SUBPROGRAM HEIGHT
DBVEFF	-	Volume of each compartment excluding the tubes, cm ³
DZAV	-	Average compartment size used in design calculations, cm
HEIGHT	-	Height above the distributor, cm
HT	-	Height above the distributor, cm
NTC		Total number of compartments in the combustor using DZAV + 1
VV	-	Volume of bed (excluding tubes) at any height, cm ³
	•	SUBPROGRAM HYDRO
AHE	a _{HE}	Specific heat transfer area of the tubes, cm ² /cm ³ (DESIGN input) FBC volume
AHEAV	a _{HE}	Specific heat transfer area of the tubes in each compartment, cm ² /cm ³ , FBC volume
AKBE	K _{BE}	Gas exchange coefficient, l/sec
ALFB	α _b	$=\varepsilon_{mf} U_B / U_{mf}$
AND	ⁿ d	Number of orifices in the distributor
АТ	A _t	Cross sectional area of the bed, cm ²
ATAV	-	Average cross sectional area used in calculations for each compartment
BEDVOL .	-	Total bed volume, cm ³
DBA	-	Bubble diameter in each compartment assumed, cm
DBAV	DB	Bubble diameter in each compartment, cm

FORTRAN Symbol	Mathematical Symbol	Description
DBC	-	Bubbld diameter (calculated), cm
DBMAX	D BM	Fictitious maximum bubble diameter, cm
ĎB0	D _{BO}	Bubble diameter at the distributor level, cm
DDB	- ·	Increment in bubble size, cm
`,DPSVB		Surface volume mean particle diameter of additives in the bed, cm
DT	D _t · ·	Diameter of the combustor, cm
DŢĂŬ	,	Average diameter used in calculations for each compartment
DTUBE	d _o	Diameter of cooling tubes (DESIGN input), cm
DTUBEI	-	Diameter of cooling tubes in each compartment, cm
DVBB	-	Volume of each compartment, cm ³
DVBBFF	-	Volume of each compartment (excluding the tubes), cm^3
ÉFFVŐL	-	Volume of the bed (excluding the tubes), cm ³
EMAX	~	Tolerance limit for bubble diameter convergency
EMF	ϵ_{mf}	Void fraction at minimum fluidization
ÉPB	ε _B	Bubble fraction
EPC	ε _c	Cloud fraction including bubble
ETUBE	^E tube	Volume fraction of tubes in each compartment
FMO	F _{MT}	Total molar flow rate of gas in the combustor, gmole/sec
, Ĝ	g	Accelaration due to gravity, cm/sec ²

-

	FORTRAN Symbol	Mathematical Symbol	Description
	Н		Height above the distributor, cms
	HAV		Average height of the compartment, cms
	HB	h	Height above the bed surface, cm
•	HCR	-	Critical bed height above which there is a fixed bed section, cm
	HFB	-	Freeboard height, cm
	HLF	-	Expanded bed height, cm
	IARR	-	Tubes arrangement code (DESIGN input)
	IARRNG	-	Tubes arrangement code in each compartment
	ICR	-	Indicator for critical bed height
	IFBC	-	Indicator for fixed bed section
	LAST	-	Indicator for the last compartment in the bed
	М	-	Number of compartments in the bed
	MGAS	-	Molecular weight of gas, gms/gmole
	MT	-	Total number of compartments in FBC + 1
	MTHE	-	No. of locations of cooling tubes
	M1 •	-	M + 1
	PAV	Р	Average pressure in the combustor, atms
	РН	P _H	Horizontal pitch distance between the tubes (DESIGN input), cm
	PHI	P _H	Horizontal pitch distance between the tubes in each compartment, cm
	PV	P _V	Vertical pitch distance between the tubes (DESIGN input), cm
	PVI	PV	Vertical pitch distance between the tubes in each compartment, cm

FORTRAN Symbol	Mathematical Symbol	Description
RG	Rg	Gas constant, 82.06 atm.cm ³ /gmole.°K
Ì RHOBED	ρ _b	Density of bed materials, gm/cm ³
•RHOGAS	ρ _g	Density of gas, gm/cm ³
SUM.	-	Height that would be occupied by solids alone in each compartment, cm
SUMEFF	-	Effective volume of bed (solids volume alone), cm ³
SUMV		Volume of bed, cm ³
SOLVOL	-	Volume of solids in each compartment (including voids), cm ³
Ţ	Т	Temperature in the bed, °K
.TETUBE	-	Total volume fraction of tubes in the bed
UB	U _B	Bubble velocity, cm/sec
UBR	-	Bubble rising velocity, cm/sec
UBS	-	Bubble rising velocity under slugging conditions, cm/sec
UMF	U _{mf}	Minimum fluidization velocity, cm/sec
UO	U _O	Superficial gas velocity, cm/sec
VISC	μ	Viscosity of gas, gm/cm.sec
Ѷ М Ӻ`	-	Bed volume at minimum fluidization (excluding internals), cm ^{3.}
X	х	Weight fraction carbon in the bed
·YB	ЧB	Mole fraction oxygen in the emulsion phase
ZHE		Locations of cooling tubes, cm
	, <u>s</u>	SUBPROGRAM VEL
- DPAR	d _p	Particle diameter, cm

FORTRAN Symbol	Mathematical Symbol	Description
G	g	Acceleration due to gravity, cms/sec ²
REP	R _{e,p}	Particle Reynolds number
RHOGAS	ρ _g	Density of gas, gm/cm ³
RHOS	ρ _s	Density of solids, gm/cm ³
UM .	U _{mf}	Minimum fluidization velocity, cm/sec
UT `	U _t	Terminal velocity of the particle, cms/sec
VISC	'n	Viscosity of gas, gm/cm.sec
	S	UBPROGRAM VOLUME
DVBEFF	-	Volume of each compartment excluding the tubes, cm ³
DZAV	-	. Average compartment size used in design calculations, cm
VOLUME	-	Volume of bed (excluding tubes) at any height ZZ, cm ³
ZZ	-	Height above the distributor, cms