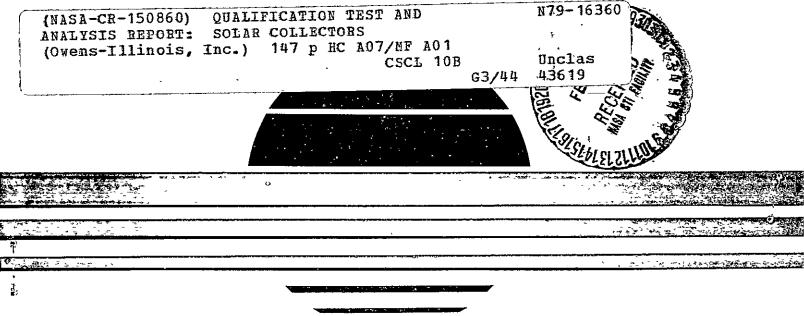
DOE /N/ASA CONTRACTOR REPORT

QUALIFICATION TEST AND ANALYSIS REPORT--SOLAR COLLECTORS


Prepared from documents furnished by

Owens-Illinois, Inc. Solar Energy Products Group Toledo, Ohio 43666

Under Contract NAS8-32259 with

National Aeronautics and Space Administration George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy

U.S. Department of Energy

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, nor any of their contractors, subcontractors or their employees, make any warranty, express or inclied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.

			REPORT STAND	ARD TITLE PAGE
1. REPORT NO. DOE/NASA CR-150860	2. GOVERNMENT ACC		3. RECIPIENT'S CAT	
4. TITLE AND SUBTITLE	<u> </u>		5. REPORT DATE	
Qualification Test and Analysis	Report	ļ.	December : 6. PERFORMING ORG	
Solar Collectors			O. PERFORMING ORG	AMAATON GUDE
7, AUTHOR(S)	<u></u>		8. PERFORMING ORGA	NIZATION REPORT #
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	1	O. WORK UNIT NO.	
Owens-Illinois, Inc.	· ·	1	1. CONTRACT OR GR	ANT NO.
Solar Energy Products Group Toledo, Ohio 43666		Ļ	NAS8-32259	0
	·····		3. TYPE OF REPORT	
12. SPONSORING AGENCY NAME AND ADDRESS		Contractor I	Report	
National Aeronautics and Space	Administration			
Washington, D. C. 20546		14. SPONSORING AG	ENCY CODE	
15. SUPPLEMENTARY NOTES			Talin Ass 1	Comment C
This work was done unde Marshall Space Flight Center,		nanagement of Mr	. John Caudle,	George C.
16. ABSTRACT	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Test results show that t meets the national standards an and Verification Plan of NASA/ architectural and engineering fi in the capacity of the independe The program calls for t air-liquid solar collector for so systems.	nd codes as defin MSFC Contract I irm of Smith, Hi nt certification a he development,	ed in the Subsyster NAS8-32259, dated nchman and Grylls gency. fabrication, quali	n Performance October 28, 19 , Detroit, Mich fication and dela	Specification 976. The higan, acted ivery of an
17. KEY WORDS		18. DISTRIBUTION STAT	EMENT	UC-59c
		Unclassified-U	nlimited	
			<u> </u>	E. as
		WILLIAM A. BR Mgr, Solar Heati	OOKSBANK, JF	Project Office
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLAS		21. NO. OF PAGES	22. PRICE
Unclassified	Unclass	sified	146	NTIS

MSFC - Form 3292 (Rev. December 1972)

For sale by National Technical Information Service, Springfield, Virginia 22151

PRECEDING PAGE BLANK NUT HLARES.

TABLE OF CONTENTS

Certification Test Report	1
Half Hour Data Summaries	6
Collector Efficiency	12
Standardization of Eppley Pyranometer	21
System Design Conditions	34
Hail Impacts Test	73
Fail Safe Controls	84
Thermal Shock Testing	90
Effects of External Environment	106

÷

Certification Test Report

The Owens-Illinois, Inc., SUNPAKTM Model SEC 601 air cooled collector has been certified it meets national standards and codes as defined by the Subsystem Performance Specification and Verification Plan of contract NAS8-32259. The design, fabrication, installation and verification test and analysis of the Model SEC-601 collector were accomplished under contract NAS8-32259, dated October 28, 1976. The Architectural and Engineering firm, Smith, Hinchman and Grylls, Detroit, Michigan, acted in the capacity of the independent certification agency.

The SUNPAKTM Model SEC-601 collector was tested and evaluated to the applicable sections of the Interim Performance Criteria for Solar Heating and Combined Heating and Cooling Systems and Dwellings prepared for the U. S. Départment of Housing and Urban Development by the National Bureau of Standards, dated January 1, 1975. The Model SEC-601 collector successfully completed all requirements and criterion of the Verification Test Program as evidenced by the documentation which follows.

The SUNPAKTM Model SEC-601 air cooled collector is a marketable subsystem for solar heating and combined heating and cooling systems for dwellings and commercial installation.

0.I. Test Engineer

Kenneth L. Moan P.E. (Ohio 5203 O.I. Approval

David C. Miller,Ph.D. SH&G Certification Officer

P.E. (Mi. 11084) SH&G Certification Officer

1.3 Collector Performance.

1.3.1 Collector efficiency.

The thermal performance of the Model SEC-601 air cooled collector was investigated on the basis of its operating performance on an all day basis. That is, the useful energy gain of the collector:

$$q_{ij} = mC (To - Ti)$$
(1)

was evaluated in five (5) minute increments from sunrise to sunset. Test points were obtained for relatively clear day operating conditions for $(\overline{Ti} - \overline{Ta})/\overline{T_{TP}}$ near 0.04, 0.05, 0.3, 0.44, 0.48, 0.60. Additional test points were also obtained under cloudy and intermittent cloudy day conditions. Solar radiation was measured in the plane of the collector using an Eppley PSP with integrator for the total radiation measurement and an Eppley 8-48 with shadow band and integrator for the diffuse solar radiation measurement.

The five minute incremental data were summed over the day from sunrise to sunset. The approximate collector fluid inlet temperature for a given test day was established during the night time hours prior to the test day. The near zero intercept test point data was obtained by ingesting ambient air into the air fan inlet and dumping the effluent from the collector overboard to ambient. The collector inlet temperature thus fluctuated throughout the day with ambient temperature. The higher collector fluid inlet temperatures were obtained by using a liquid energy source and an air liquid heat exchanger to establish

the collector air inlet temperature. Near constant inlet temperatures were obtained by using city water to dilute the liquid energy source and dumping the excess water to the sewer.

Figures 1.3.1(a) through (f) contain the computer output data for the six specific days used to establish the Model SEC 601 air cooled collector characteristic efficiency curve. The curve is presented in Figure 1.3.1(g). The data points are noted by open circles. Added experimental data points are indicated in Figure 1.3.1(g) by the "X" symbol. The computer output data has been summed in half hour increments to reduce the volume of data resulting from 5 minute increment evaluation. Note that the time column is solar time for each day of test.

The test loop schematic is indicated in Figure 1.3.1(h). The Model SEC-601 air cooled collector was mounted on a south facing roof sloped at 45°. The roof was faced with Alcoa Bone White #K2028-30 (flucrocarbon) diffuse radiation material. The as received total reflectance which approximates the value of diffuse reflectance was 78.57%. See Figure 1.3.1(i) for the receiving test report.

The collector temperature rise was measured with a 4 element thermopile constructed from Type T copper constant wire. The thermocouples were calibrated by the Instrument Services Standards Lab of 0.1. The calibration data is attached as Figure 1.3.1(j) [3 sheets]. The thermopiles were constructed using couples 1 through 8.

The experimental data is captured on magnetic tape using a Fluke Data Logger, Model 2240A, John Fluke Company, Mt. Lake Terrace, Washington, 98043. The Fluke is calibrated in approximately 6 month intervals.

See Figure 1.3.1 (k) [3 sheets] for the calibration data.

Radiation data is obtained using EppTey Pyronometers mounted in the tilt plane of the collector. A PSP pyronometer is used to measure total radiation and an 8-48 pyronometer with shadow band is used to measure diffuse radiation. The radiation levels are integrated over the 5 minute interval between data points. The calibration data for the pyronometers are attached as Figure 1.3.1 (1) for total and Figure 1.3.1 (m) for the diffuse measurements.

The air mass flow is measured using a Model Fan-E unit manufactured by the Air Monitor Corporation, Santa Rose, CA. Descriptive literature is attached as Figure 1.3.1(n). The circular - 6 inch diameter model is used. The Special FAN-E unit was purchased. It was mounted in accordance with the manufacturer's instructions as contained in Figure 1.3.1(o).

The analytical model for collector efficiency based on the experimental test data is:

 $\overline{\eta} * \sum [mCp (To - Ti)] / \Sigma I_{TP \times A_c}$

The emperical relationship for the Nodel SEC-601 collector is:

 $\overline{y} = .58 - .14 (Tin - Ta)/I_{TP}$

The thermal performance curve of the Model SEC-601 air cooled collector is indicated as the dashed line in Figure 1.3.1(g). The solid line indicates the thermal performance as required by Appendix H of the contract. The dash-dot line indicates the thermal performance developed for the 144 tube ERDA collector array over a long period of time.

Review of items 1.3 and 1.3.1 successfully completed.

Robert F. Romaker O.I. Test Engineer

Henneld S. Moon

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

Navid C. Milla

David C. Miller, Ph.D. SH&G Certification Officer

Milliam C. Louie, V.P. P.E. (Mi. 11084) SH&G Certification Officer

avelle

.

John M. Caudle Technical Manager NASA Approval

HALF-HOURLY DATA SUMMARY FOR 5-22-78 DAY NO. 142

.

SOLAR TIME	ITP	IDP	RD	ATR FLOH	INLET TEMP	АНВ ТЕМР	OUT TEMP	· QII	EFF	DT/I
	•	• •			· - ,		12.11	, au		
15	ñ.	0.	00	893.	62.	52.	62.	-133.	0.00	00.0
45	0 .	0.	.Õ•Ö.		62.	51 ·	61.	-128.		0.00
r15	ე .	0,	0.0	891.	61.	51.	6ļ.	-134.	0.00	0.00
145	α.	θ.	0.0	A43.	, 61.	50.	60.	~150.	0.00	0.00
215	0.	0.	0 - 0	897*	61.	50.	60.	-152.		0.00
245	Λ.	0.	0.0	845+	60.	50.	60.	-146.		. 0.00
315	0.	0.	0.0	896	60.	49.	59.	~119.		0.00
345	0.	0.	0.0	898.	59.		59.	-143.		0.00
415	0.	0.	0.0	899.	59.			-144.		0.00
445	1.	0.	0.3	900.	58.	48.	58.		-1.45	12.08
515	6.	5.	0.9	899.	58.	47.	59.	74.		1.82
545	13.	11.	0.8	904.	58.	47.		267.		0.85
615	31.	20.	0.6		- 59.	50.	62.	642.		0.31
645	57.	2.7 .	0.5	805.	60.	52.	68.	1755.		0.14
7.15	77.	32.	0.4	890.	61.	53.	77.	3511.		0.09
745	117.	36.	0.3	• 54B	60.	55.	87.	5747.	0.58	0.04
815	150.	42.	0.3	875.	61.	57.	97.	7676.	0.61	0.02
845	189.	51.	0.3	873.	62.	59.	105.	8951.	0.57	0.02
915	198.	48.	0.2	868.	63.	60.	104.	8638.		0.01
945	218.	66.	0.3	867.	64.	61.	107.	8970.		0.01
1015	273.	77.	0.3	860.	65.	63.	116.	10566.		0.01
1045	274.	96.	0.3	852	66.	64.	121.	11307.	0.49	0.01
1115	559.	96.	0.4	859.	66.	64.		9415.	0.49	0.01
1145	264.	83.	0.3	856.	66.	64.		9856.		.0.01
1215	301.	70.	S•0	851.	67.	64.	123.	11499.		0.01
1245	289.	77.	0.3	849.	67.	65.	124.	11537.		0.01
1315 1345	254. 257.	86.	0.3	850.	68.	65.	119.	10549.	0.49	0.01
1415	237.	78.	0.3	850.	. 68.	65.	119.	10475.	0.48	0.01
1445	230.	77. 60.	0.3	852.		65.	119.	10513.	-0-53	0.01
1445	197.			850.	68.	65. (5	118.	10249.	0.53	0.01
1545	148.	48. 41.	5.0	845.	71.	65.	119.	9656.	0.58	0.03
1615	123.	36.	0.3	842.	73.	66.	115.	8516.	0.69	0.05
1645	88.	32.	0.3 0.4	847.	73.	66.		7548.		0.06
1715	56.	29.	0.5	852. 854.	73.	66.	102.	5943.		0.09
1745	_				73. 72		92.	3793.	0.81	0.14
1815	27. 18.	24. 19.	0.9 1.0	856.	72.	65. (A	82.	2024.	0.89	0.28
1845	10. 8.	8.	1+0	862.	72. 71.	64。 64。	77.	1096.	0.72	0.41
1915	1.	1.	1.0	868. 870.	70.	62.	74.	570.	0.85	0.96
1945	0	0.	0.1	872	70.	61.	71. 69.	136.	1.65	8.30
2015	0.	0.	0.1	870.	69 .	60 .	69.	-33.	0.00	0.00
2045	0.	0.	0.0	877.	68.	60.	67.	-66.	0.00	0.00
2115	0.	ŏ.	0.0	876.	68.	59.	67.	-80. -91.	$0.00 \\ 0.00$	0.00
2145	0.	0.	0.0	879	67.	59.	67.	-107.	0.00	0.00
2215	0.	0.	0.0	875	67.	56.	60.	-107.	0.00	$0.00 \\ 0.00$
2245	6.	0.	0.0	8н4.	67.	58.	66.	-107.	0.00	0.00
2315	0.	0.	0.0	877.	66.	58.	66.	-110.	0.00	0.00
2345	0.	0.	0.0	0.	0.	0	0.		UUUUU	0.00
		-			~ .		~ •	υ φ		9899

.

.

•

-

HALF-HOURLY DATA SUMMARY FOR 4-14-78 DAY NO. 104

					-	• -			14	
SOL AR TIME	ITP	1 DP	RD	AIR FLOW	INLET TEMP	амв Темр	О∪Т Т€нР	QU	ĒFF	DT/I
15	0.	0.	0.0	750.	69.	16				
45	Ο.	0.	0.0	752.	69. 69.	38.	57 .	-407.		0.00
115	Δ.	0.	0.0	7-6.	69.	38.	67.	-409.		0.00
145	Λ.	0.	0.0	751		37.	67.	-419.		0.00
215	0.	0.	0.0	, 751.	69. 40	37.	67.	-4]5.		0.00
245	່ ດໍ	0.	0.0	756	69.	37.	67.	-416.		0.00
315	ູ້ກ	0	0.0	757.	69. 69.	37.	67.	-415.		0.00
· 345	· 0	0.	0.0	753.	69.	37.	67.	-412.		0.00
415`	0.	0.	0.0	753.	- •	37.	67.	-410.		0.00
445	n.	0.	0.0	753	64. To	38.	67.	-492.		0.00
. 515	0.	0.	0.0		70.	39.	67.	-388.		0.00
545	4.	3.	0.8	750. 750.	70.	39.	68.		***	112.10
615	16.	11.	0.7	753	70.	38.	68.		-0.77	7.70
645	46	19.		754.	70.	39.	71.	50.	0.02	1.96
715	83.		0•4 10•4	750.	73.	40.	78.	1025.		0.70
` 745	111.	39.		740.	77.	42.	93.	2866+		0.43
815	130.	43.	0.4 0.7	736.	83.	43.	109.	4702.		0.36
845	189.	44, 44,	0.3	728.	88.	44.	124.	.6403.	0.59	0.33
915	119.	67.	0.5	722.	91.		·137。	7932.	0.50	0.24
945,	173.	72.	0.6	728.	92.	46.	132.	7098.		0.38
1015	267.	74.	0.4	724.	88.	46.	124.	63Pl.	0.44	0.24
1045	263.	88.	0.3	724.	93.	48.	149.	9703.		0.17
1115	251.	98.	0.3	714.	97.	49.	156.	10332.	0.47	0.18
1145	264.	90.	0.4	714.	98	51.	157.	10293.	0.49	0.19
1215	320.	73.	0.3	712.	96	51.	152.	9597.	0.43	0.17
1245	309.	69.	0.2	709.	99.	53.	165.	11337.	0.42	0.14
1315	286.	81.	0.2	708.	102.	54.	173.	12067.	0.46	0.16
1345	256.	89.	0.3	706.	103.	55.	170.	11574.	0.48	0.17
1415	236.	74.	0.3	711.	101.	56.	165.	10912.	0.51	0.18
1445	225.	60.	0.3	718.	100.	56.	160.	10431.	0.53	0.19
1515	204.	40.	0.3	710.	99.	57.	158.	9977.	0.53	0.19
1545	164。		0.2	708.	99.	57.	158.	9982.	0.58	0.21
1615	124.	40.	0.2	710.	98.	56.	150.	8976.	0.65	0.25
1645	83.	31.	0.2	707.	96.	56.	145.	8377.	0.79	0.32
1715	~ Jo 44.0	36.	0.4	711.	91.	55.	125.	5774.	0.83	0.43
1745		21.	0.5	712.	87.	54.	110.	3859.	1.04	0.75
1815	25.	19.	0.7	720.	83.	53.	93.	1743.	0.82	1.17
1845	7.	7.	1.0	719。	80.	52.	83.	661.	1.07	3.79
1915	1.	1.	0.5	722.	77.	50.	-77.	1.	0.01	29.67
1945	0. 0.	0.	0.0	729.	76.	49.	75.	-214.	0.00	0.00
2015	0°	0.	0.0	727.	76.	47.	74.	-312.	0.00	0.00
2045	10	0.	0.0	723.	75.	46.	73.	-345.	0.00	0.00
2115	1 e	0. 0.	0.0	728.	75	45.	73.	-366.	0.00	0.00
2145	0.		0.0	726.	75.	44.	73.	-377.	0.00	0.00
2215	0.	0.	0.0	72x.	75.	43.	73.	-3º4.	0.00	0.00
2245	0.	0.	0.0	731.	75.	43.	73.	-395.	0.00	0.00
2315	Ο <u>.</u>	0.	0.0	728.	. 75.	42.	72.	-403.	0.00	0.00
2345	й .	0. 0.	0.0	735.	75.	42.	72.	-412.	0.00	0.00
	•••	U .	0.0	0.	υ.	0.	0.	().	00000	0.00

7 FIGURE 1.3.1 (b)

HALF-HOUPLY DATA SHMMARY FOR 4-15-78 DAY NO. 105

•

SOLAP				AIN	INLET	дм В	OUT			
TIME	ITP	10Å	PD	FLOW	TEMP	тЕмр	TEMP	au	r	
1197	116	195	~ ()	FLUW	16 11	ገር ማዋ	1 C terbe	QU	EFF	DINI
15	ο.	0.	0.0	735.	74.	40.	72.	' -43I .	0.00	0.00
45	ı) .	0.	0.0	734.					0.00	
115	0.	0.	0.0	735.			7-2-			000
145	2.	0.	0.0	733.						0.00
215	• <i>در</i> م	0.	0.0	736.			71.			
245	0.	Õ.	0.0		, 74.					
.315	0	0.	0.0	774.		3,7.				
345	0.	0.	0.0	736.						
415	0.	0.	0.0	7,38.						
445	0.	0.	0.0	736.						-
515		0.	0.0	738.					0.00	
545	ብ <mark>.</mark>	3.	0.7	740.						135.60
	4.								-0.95	
615 645	15.	11. 17.	0.7		74.				-0.03	
715	. 44 •		0.4	735.						
	81.	20.	0.3	730.						
745 815	123.	24.	0.2	725.		42.				
	161.	26.	2+0	721.		43.	137.	7397.		
845	198.	28.	0.1	.719。		45.		8778.		
915	234.	29.	0.1	713.		46.		9691.		
945	263.	31.	0.1	709.		47.	169.	10417.		
1015	282.	37.	0.1	709.		48.	175.	10844.		
1045	319.	43.	0.1	703.	-			11466.		
1115	275.	72.	0.3	699.				11101.	0.48	
1145	185.	87.	0.5	704.			167.	8576.		
1215	510+	95.	ە5	704.		49.		6845.		
1245	185.	94.	0.5	699.			161.			
1315	237.	88.	0.4	698.			165.			
1345	189.	82.	() . 4				167.			0.36
1415	151.	85.	0.6		-					0.44
1445	110.	66.	0.6						0.56	
1515	105.	66.	0.6	698.	115.			4560.	0.52	0.61
1545	115.	61.						4405.	· 0.46	0.55
1615	108.	38.				51.		4689.	0.52	0.60
1645	R5.	25.	0.3	696.		50.	148.	5005.	0.70	0.79
1715	50.	19.	0.4	692.	116.	50.	135.	3272.	0.78	1.31
1745	22 .	14.	0.6	690.	112.	49.	122.	1611.	0.88	2.87
1815	· 6.	8.	1.3	696.	108.	48.	110.	529.	0.55	9.87
1845	1.	1.	1.0	698.	105.	47。	103.		-5.41	98.69
1915	0.	0.	0.0	698.	103.	47.	100.	-538.	0.00	0.00
1945	0.	0.	0.0	701.	102.	46.	. 98.	-632.	0.00	0.00
2015	0.	0.	0.0	701.	101.	45.	97.	-653.	0.00	0.00
2045	ñ.	0.	0.0	706.	100.	45.	97.	-651.	0.00	0.00
2115	Δ.	0.	0.0	701.	100.	44	96.	-655.	0.00	0.00
2145	0.	0.	0.0	704.	99.	44.	95.	-666.	0.00	0.00
2215	σ.	0.	0.0	708.	99.	43.	95.	-672.	0.00	0.00
2245	°0 🖕	0.	0.0	708.	98.	42.	94.	-665.	0.00	0.00
2315	0.	0.	0.0	708.	98.	42.	94.	-666.	0.00	0.00
2345	η.	0.	0.0	ο.	0.	0.	0.		UDUUU	0.00
		-	-	•	~ •			•••		

HALF-HOURLY DATA SUMMARY FOR 4-16-78 DAY NO. 106

SOLAR				AIH	INLEI	AMB	0117			
TIME	ITP	IDP	RD	FLOw	ТЕмР	л~н ТЕМР	OUT TEMP	01)	·	D.T. / 1
				L		1	1000	90	. Ell	DIVI
15	0.	0.	0.0	713.	97.	40.	92.	-694	0.00	0.00
45	0.	0.	0.0	712.	96.	40.	92.	-694.		0.00
115	0.	0.	0.0	708.	96.	39.	92.	-694.		0.00
145	n.	0.	0.0	713.	95.	38.	91.	-700.		0.00
215	θ.	0.	0.0	712.	95	38.	91.	-698.		
245	0.	0.	0.0	.714.	94.	38.	90.	-702.		0.00.
315	0 .	0.	0.0	715.	94.	38.	90.	-703.		0.00
345	0.	Ο.	0 + 0	715.	94.	37.	84.	-705.		0.00
415	0.	0.	0.0	712.	93.	37.	89	-705.		0.00
445	0.	Ο.	0.0	717.	93.	30.	89.	-71.3.		0.00
515	θ.	0.	0.0	701	95.	36.	88.			0.00
545	4.	З.	0.7	719.	92	35.	89.		****	
615	18.	12.	0.7	720.	93	37.	91	-345.	-1.68	13.43
645	43.	17.	0.4	717.	94.	38.			-0.16	3.11
715	80.	21.	0.3	717.	98.	40.	98.	597.		1.30
745	116.	26.	0.2	712.	104	42.	113.	2456.		0.73
815	152.	29.	0.2	707.	110.	43.	132.	4672.		0.54
845	195.	32	0.2	702.	116.	45. 45.	149.	6633.		0.44
915	224.	35.	0.2	698.	120.	46.	165. 174.	8253.		0.36
945	271.	49.	0.2	699	124.	48.	185	9091.		0.33
1015	255.	84.	0.3	644	128	49,	191	10247.	0.45	0.28
1045	205.	75.	0.4	695.	126.	50.	176.	10625.	0.50	- 0.31
1115	337.	92.	0.3	682.	131.	51.	199.	8297.	0.48	0.37
1145	196.	96.	0.5	686.	134.	52.	199.	11129 . 9874.		0.24
1215	96.	80.	0.8	698.	126	52.	154		0.60	0.42
1245	158.	86.	0.5	689	123.	50.	150.	5319.	0.66	0.78
1315	185.	99.	0.5	687.	128.	52.	171.	4504.	0.34	0.46
1345	163.	93.	n.6	684	129.	51.		6977.	0.45	0.42
1415	86.	66.	0.8	684	127.	49.	168.	6433.	0.47	0.48
1445	130.	86	0.7	645.	125.		154.	4448.	0.62	0.91
1515	105.	62.	0.6	685.	127.	49.	151.	4 <u>297</u> .	0.39	0.59
1545	93.	61.	0.7	682	125.	49.	155.	4626+	n.53	0.75
1615	79.	48.	0.6	687.	152.	49.	146.	3423.	0.44	0.82
1645	80.	41.	0.5	688.	125.	49.	1.47.	3550.	0.53	0.97
1715	48.	27.	0.6	688	125.	49. 48.	146.	3473.	0.52	0.96
1745	28.	19	0.7	690.	122.		140.	2608.		1.57
1815	я.	9.	1.1	690	118.	48.	131.	1457.	0.62	2.67
1845	1.	1.	1.5	690	115.	47.	119.	186.	0.29	9.37
1915	0.	ō.	0.0	692	113.	46.	113.	-406.	-6.70	96.29
1945	0.	0.	0.0	640.	112.	45.	109.	-716.	0.00	0.00
2015	0	0.	0.0	693.	111.	44	107.	-793.	0.00	0.00
2045	0	0.	0.0	642	110.	43.	106.	-8 <u>2</u> 6.	0.00	0.00
2115	0.	0.	0.0	642		43.	105.	-838.	0.00	0.00
2145	0	0.	0.0	696.	110.	42.	105.	-840.	0.00	0.00
2215	0.	0.	0.0	695.	109.	42.	104.	-838.	0.00	0.00
2245	0.	0.	0.0	697.	104.	41.	103.	- 935.	0.00	0.00
2315	0	0.	0.0	645.	108.	41.	103.	-831.	0.00	0.00
2345	0.	0.	0.0	0° 042*	107.	40.	102.	-832.	000	0.00
	~ •	4 8	v•∎ U	1.0	0.	0.	0.	0.	บบบบบ	0.00

HALF-HOUPLY DATA SUMMARY FOR 4-17-78 DAY NO. 107

SOLAR				ΔIP	[NL₽T	¢₩Β	OUT		•	
TIME	ITP	ICP	ЬŪ	FLOW	TEMP	TEMP	темр	οU	EFF	DT/I
		0		700	3.6.4	20				•
15	0.	0.	0.0	700.	106.	39.	101.	-828.	0.00	0 • 0 0
45	<u>۹</u> .	0.	0.0	701+	106.	34.	101.	-834.	0.00	0.00
115	0.	0.	0.0.	705.	1.05.	39.	100.	-R35.	0.00	0.00
145.	0.	0.	0.0	704.	105.		.100.	-830.	0.00	0.00
215	<u>,0</u> .	0.	0.0	704.	104.	38.	99.	-824.	0.00	0.00
245	<u>،</u>	0.	0.0	704'. 702	104.	38.	99•,	-823.	0.00	0.00
315	0 .	0.	0.0	703.	103.	37.	98.	-821.	0.00	0.00
345	0.	0.	0.0	702.	103.	37.	98.	-815.	0.00	0.00
415	0.	0.	0.0	707.	102.	37.	97.	-820.	0.00	0.00
445	0.	0.	0.0	712.	102.	36.	97.	-833.	0.00	0.00
515	0.	0.	0.0	710.	101.	36.	96.			224.56
545	5.	4.	0.8	709. 704	101.	35.	97.	-630.		12+62
615	17.	13.	8.0	706. 705.	101.	36.	99.	-357.		3.73
645	40. 76	23.	0.6 0.4	707.	103.	37.	105.	345.	0.10	1.64
715	76.	28.		706.	106.	39.	118.	2010.	0.32	0.88
745 815	115. 155.	29.	0.3	702.	112.	42.	137.	4330+	0.45	0.61
845		32. 33.	0.2		117.	43.	157.	6765.	0.52	0.48
915	191. 225.		0.2	700. 701.	118.	43.	167. 175.	8188.	0.51	0.39
915 945		36.	0.2 0.2	701.	120.	44 45.		9195.	0.49	0.34
	251.	38. 39.			122.		181.	9928.	0.47	0.31
1015	277.	39.	0.1	701.	125.	46.	187。 194。	10484.	0.45	0.23
1045	301.	37°	0.1	696. 490	129.	46. 47.		10984.	0.43	0.27
1115 1145	315. 321.	40.	0.1 0.1	689. 691.	132. 135.	48.	199. 203.	11218.	0.42	0.27
1215	320.	42.	0.1	685.		40.	207.	11397.	0.42	0.27
1245	315.	42.	0.1	681.	137.	49. 50.	207.	11489. 11717.	0.43 0.44	0.28
1315	304.	41.	0.1	690.	134.	50.	204.	11599.	0+45	•0.28 0.28
1345	588°	38.		680.	132.	50.	201.	11301.	0+47	0.28
1415	267。	39.	0+1	683.	131.		199.	11146.	0.50	0.30
1445	232.	48.	0.15	688.	129.	50	193.	10556.	0.50 0.54	0.30
1515		56.	0.4	699.	125.	50.	_	8340		0,55
1545	114.	65.	0.6	692.	118.	49.	153.	5851	0.61	0.60
1615	.1~0	46.	0.5	696.	115.	49	146.	5112.	0.70	0.30
1645	42.	34.	0.8	692.	111.	49	126.	2506.	0+71	1.49
1715	28.	24	0.9	696			115.	1300.		
1745	16.	13	0.8	700.	105.	47.	108.		0.38	3.63
1815	6.	5	0.8	697.	103.	47	103.	-52		
1845	n,	0.	0.0	701	101.	46.	99.			120.13
1915	0.	0.	0.0	703.	100.	45.	97.	-572.	0.00	0.00
1945	0.	0.	0.0	706.	99.	44.	96.	-620.	0.00	0.00
2015	Ο.	0.	0.0	707.	99.	44	95.	-635.	0.00	0.00
2045	0.	0.	0.0	707	98.	44	95.	-637.	0.00	0.00
2115	0.	0.	0.0	703.	98.	44	94.	-627.	0.00	0.00
2145	n.	0.	0.0	717.	98.	44	94.	-641.	0.00	0.00
2215	n.	0.	0.0	708	97.	44	94.	-630.	0.00	0.00
2245	0 .	0.	0.0	709.	97.	44	93.	-625.	0.00	0.00
2315	n.	0.	0.0	709.	97.	44.	93.		0.00	0.00
2345	0.	0.	0.0	0.	υ.	0.	0.		บแบบบ	0.00
			·		. –	-		-		

•

HALE-HOUNLY NATA SUPPARY FOR 5-10-78 DAY NO. 140

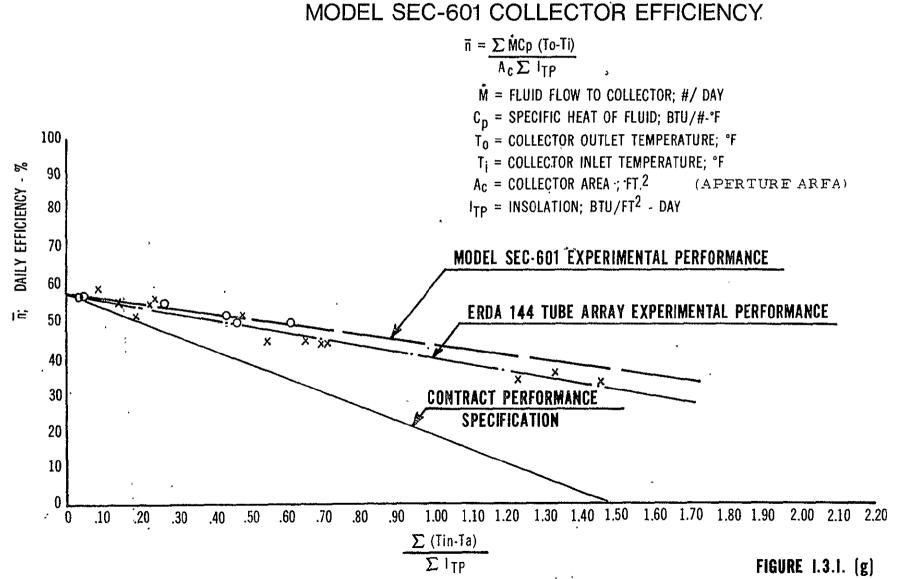

SOLAP				AIL	INLET	Ard	001			
TIME	IID	τCΡ	ម្នា	FLOW	ተተ ተግ	TENO	ቸቸ <mark>ኮ</mark> ዎ	чU	EFF	UT/I
14	θ.	0.	0.0	0.	61.	5 2.	6U .	Ω.	0+09	0.00
46	Λ.	0.	υ_ θ	ο.	nl.	51.	59 .	f) 🖡	0.00	0+00
115	0.	0.	0.0	0.	61.	51.	54.	ΰ.	0.00	0.00
145	·) .	0.	0.0	0.	51.	<u>-1.</u>	54.	6.	0.00	0.00
215	ñ.	0.	0.0	0.	61.	50.	ኅ ጸ•	· 0.	0.00	0.00
245	9.	0.	0.0	0.	60.	50.	<u>ጉ</u> ደ•	Э.	0.00	0.00
315	n.	0.	0.0	Ο.	60.	50.	58 .	٩.	0.00	0.00
345	ρ.	Ο.	0.0	0.	60.	50.	58.	0.	0.00	0.00
415	0.	Ο.	0.0	Ο.	59.	51.	57.	0.	n+00	0.00
445	0.	0.	0.0	0.	59.	50.	58.	0.	0.00	31.06
515	3.	1.	0.5	0.	59.	50.	57.	Ω.	0.00	3+21
545	ч.	6.	n.7	0.	54.	50.	57.	0.	0.00	0.92
615	23.	19.	0 . B	0.	59.	51.	59.	0.	0.00	0.36
645	34.	28	0.8	0	59.	51.	59.	0.	0.00	0.24
715	81.	40.	0.5	541.	61.	52.	яз.	4913.	0.72	0.11
745	117.	41.	0.4	893.	60.	53.	4 0.	6538.	P.65	N • 0 6
H15	129.	50.	0.4	893.	60.	54.	94.	7191.	0.66	0.05
845	100.	59.	0.6	PHU.	61.	. כל	88.	5649.	0.67	0.06
915	113.	66.	0.6	80].	53.	55.	82.	4190.	0.44	0.07
945	63.	54.	6.9	892.	63.	55.	80.	3495.	0.67	0.12
1015	118.	٤4.	0.7	826.	64.	56.	거4。	4231.	0.43	0.07
1045	199.	106.	0.5	879.	65.	54	44.	7203.	0.43	0.04 .
1115	215.	103.	0.5	873.	66.	59.	104.	785×.	0.43	0.04
1145	262.	96.	6.4	<u>ዳ</u> ሎና。	67.	60.	115.	4877.	1.45	0.03
1215	230.	101.	0.4	867.	64.	61.	114.	9484.	0.49	0.03
1Ź45	184.	101.	0.5	857	69.	150	109.	8251.	8.53	0.04
1315	255.	8H.	0.3	860.	70+	63.	117.	4655.	0.45	0.03
1345	251.	۶6.	0.3	856.	71.	60.	119.	10025.	0.48	0.05
1415	175.	77.	0.4	855.	72.	66.	113.	8602.	0.59	0.03
1445	147.	66.	0,5	859	72.	66	104•	6811.	0.55	0.04
1515	193.	64.	0.3	857.	72.	66,	111.	7984.	9.49	0.03
1545	123.	50.	() • 4	855.	73.	67.	108.	7228.	0.70	0.05
1615	86.	42.	0.5	860.	73.	67.	99.	5443.	0.76	0.07
1645	85.	36.	0.4	863.	73.	ь7.	97.	5023.	0.70	0.07
1715	52.	25.	0.5	864.	73.	ь7.	91.	3663.	0.84	0.12
1745	25.	20.	0.8	875.	72.	66.	81.	1906.	0.95	0.25
1815	12.	13.	1.1	873	72.	66.	76.	894.	0.95	9.54
1845	5.	7.	1.4	8×0.	71.	65.	73.	445.	0.99	1.20
1915	() "	Ο.	0.8	882.	70.	64.	71.	ચં1 •	2.24	15.29
1945	Ο.	0.	Ω.4	я <u>я</u> 4 •	70.	63.	69.	-45.	0.00	0.00
2015	n .	0.	{) <u>+</u> 4	∺서[•		· 62 •	64.	-74 -	0.00	0.04
2045	Δ.	0.	1) • 4	нч7.		61.	6н.	-×4.	0.00	0.00
2115	6.	0.	0 . 3	Had.		60.	67.	-45.	0.00	0.00
2145	9. .	0.	0.3	R40.		۳.,	67.	-105.	0.00	0.00
2215	0 .	0.	0.2	843.		54.	66.	-106.	0.00	0.00
5542	G 🖡	0.	0.2	896.		57.	66.	-105.	0.00	0.0
2315	ካ 🖕	0.	9*5	427.	•	57.	65.	-112.	0.00	0.00
2345	P.,	0.	0.0	(I .	0.	θ.	υ.	9 •	064003	0.00

FIGURE 1.3.1 (F)

.

.

•

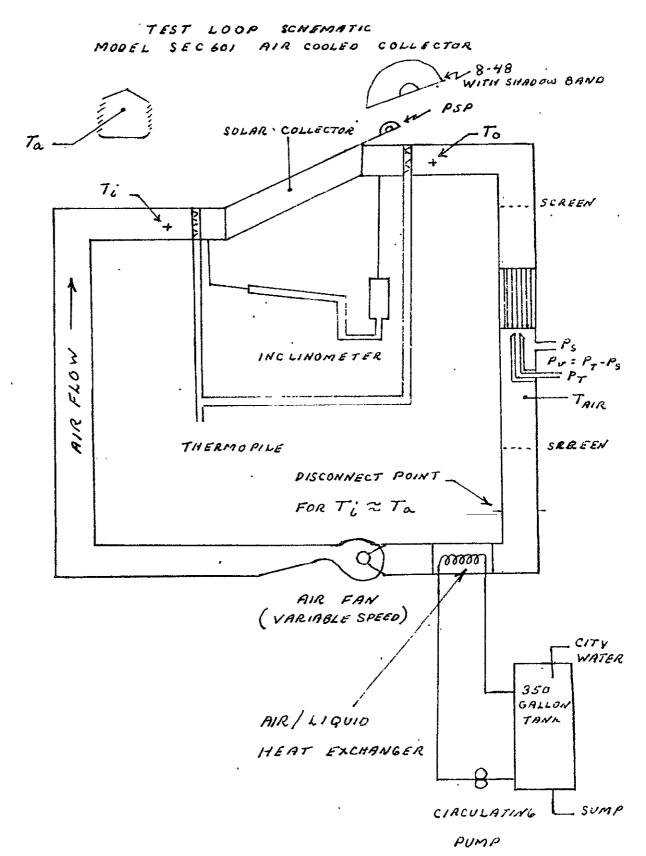


FIGURE 1.3.1 (h)

OWENS-ILLINDIS Loss Obo Losse Obo

Intra-Company

February 28, 1978

G. R. Mather - Dev. Ctr. to Cc: K. L. Moan - Dev. Ctr. subject Y. K. Pei - Dev. Ctr. L. Spanoudis - Dev. Ctr. W. J. Zitkus - NTC SPECTRAL PROPERTIES OF A WHITE BACKGROUND MATERIAL

A white corrugated aluminum background was installed at the Development Center in February 1978. The material was Alcoa Bone White [K-2028, Desoto Paint].

Reflectance measurements were made on the sample as received. The reflectance was calculated using ASTM Designation E-424-71 (with a barium sulfate standard instead of magnesium oxide). The spectral curves are in our file.

Alcoa Bone White, Total Reflectance 78.57.

F.R. B. R. Emch

BRE:gs

FIGURE 1.3.1 (i)

OWENS-ILLENOIS

Corporate Technology

Toledo, Ohio

September 14, 1976

Intra-Company

^{to} A. Lewis

subject Report of Calibration Type "T" Thermocouples Designation: ROB-4-976

> Calibration was performed on 35 Type "T" copper-constantan thermocouples at $32^{\circ}F$, $175^{\circ}F$, and $350^{\circ}\Gamma$. The $32^{\circ}F$ point was determined by immersing the thermocouples in melting ice. The $175^{\circ}F$ and $350^{\circ}F$ points were determined using a Rosemount oil bath, Mueller bridge, and a platinum resistance thermometer reference standard, S/N 1739336. The thermocouples were referenced to $32^{\circ}F$ with a Kaye Ice Point Reference System and their emf was measured on a L&N 7556 potentiometer. The calibration is referenced to the IPTS G8, and is traceable to the National Bureau of Standards.

The temperature deviation of all 35 thermocouples is approximately the same for each point, .1° high at $32^{\circ}F$, .2° low at $175^{\circ}F$, .7° low at $350^{\circ}F$. The uncertainties of these values are estimated not to exceed .1°F at $32^{\circ}F$ and $175^{\circ}F$ and .2°F at $350^{\circ}F$.

Calibration Test Performed by Mathias P. Welker

Instrument Services Standards Lab

		•	-
- La	D.	٩ł	
ιu		10	1

R0B-4-976

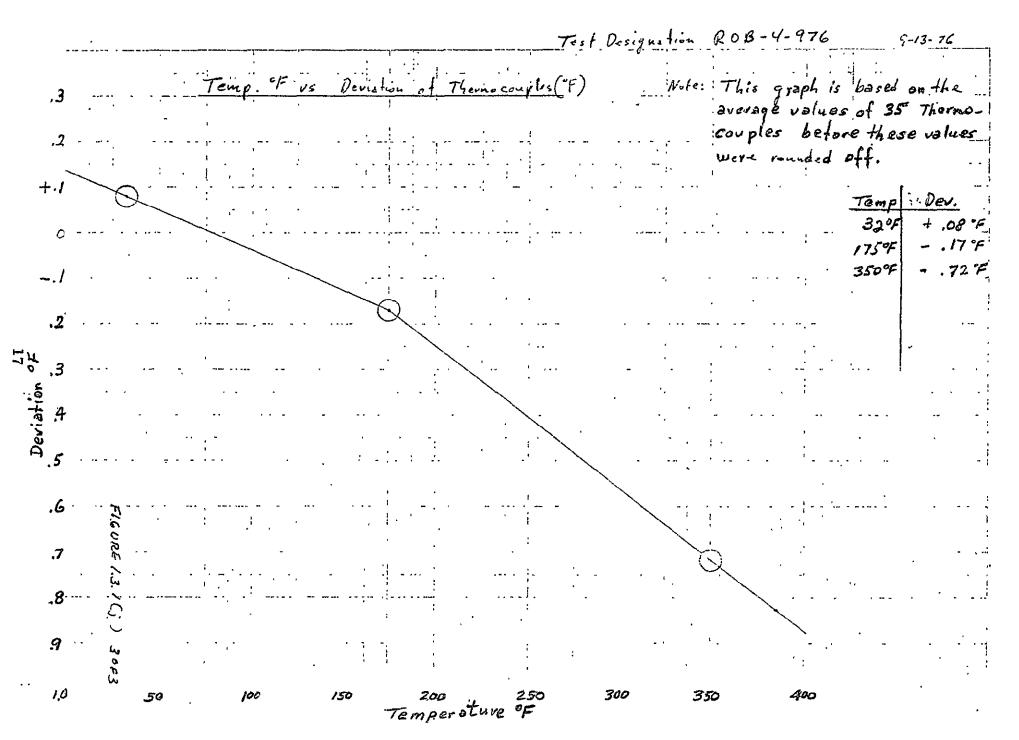

Temperature	32 °F	175°F	350°F
<u> </u>	T.C. Reading °F	T.C. Reading °F	T.C. Reading °F
1 2 3 4 5 6 7 8	32.1 32.1 32.1 32.1 32.1 32.1	174.8 174.8 174.8 174.8 174.8 174.8	349.3 349.3 349.3 349.3 349.3 349.3
9	32.1 32.1 32.1 32.1 32.1 32.1	174.8 174.8 174.8 174.8 174.8 174.8	,349.3 349.3 349.3 349.3 349.3 349.3
10 11 12 13 14	32.1 32.1 32.1 32.1 32.1 32.1	174.8 174.8 174.8 174.8	349.3 349.3 349.3 349.3 349.3
15 16 17 18	32.1 32.1 32.1 32.1	174.8 174.8 174.8 174.8	349.3 549.3 349.3 349.3
19 20 21 , 22 23	32.1 32.1 32.1 32.1 32.1 32.1	174.8 174.8 174.8 174.8 174.8	349.3 349.3 349.3 349.3 349.3 349.3
24 25 26 27	32.1 32.1 32.1 32.1	174.8 174.3 174.8 174.8	349.3 349.3 349.3 349.3
28 29 30 31 32 33 34 35	32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1	174.8 174.8 174.8 174.8 174.8 174.8 174.8 174.8 174.8	349.3 349.3 349.3 349.3 349.3 349.3 349.3 349.3 349.3

FIGURE 1.3.1 (j) 2 of 3

.

-

WE FEF REDEDICACE, VAN 1415

OWENS-ILLINOIS

Corporate Technology

Toledo, Ohio

June 29, 1977

Intra-Company,

to K. Moan - Dev Ctr cc: D. Stahl - NTC

subject

FLUKE CALIBRATION

On May 12, 1977 the six month internal calibration check was completed for the Fluke data acquisition system. The test was performed using a Leeds & Northrup millivolt potentiometer balanced to a standard reference cell. The following results were obtained and are within the instrument specifications.

STANDARD MV

FLUKE

1.000	MV	1.001	MV
10.000	MV	10.005	ΜV
30.000	MV	30.011	MV

a funition

U. A. Jacobs Instrument Services

FIGURE13.1(K) 10#3

OWENS-ILLINOIS

Corporate Technology Toledo, Ohio

October 24, 1977

Intra-Company

to K. Moan - Dev. Ctr. 🗸 cc: D. Beekley - Dev. Ctr. subject D. Stahl - NTC

FLUKE CALIBRATION CHECK

On October 21, 1977 a calibration check was completed on the Fluke data system used for solar monitoring. The test was performed using a Leeds and Northrup millivolt potentiometer referenced to a standard cell. The following results were obtained and are within the instrument specifications.

Standard MV

Fluke Reading

1.00	MV	•999 MV
5.00	MV	5.000 MV
10.00	MV	10.001 MV
20.00	MV	20:004 MV
30.00	MV	30.007 MV

C ands

J. A. Jacobs /Instrument Services

FIGURE 1.3.1 (K) 2 OF3

.

OWENS-ILLINOIS

Corporate Technology

Toledo, Ohio

May 4, 1978

_Intra-Company-

to	к. М	oan	- Dev. Ctr.
	cc:	D.	Beekley - Dev. Ctr.
subject		D.	Stahl - NTC

FLUKE CALIBRATION CHECK

On May 4, 1978 a calibration check was completed on the Fluke data system used for SUNPAK monitoring at the Development Center. The test was performed using a Leeds and Northrup millivolt potentiometer referenced to a Standard Cell. The following results are within the Instrument specifications.

Standard NV	Fluke Reading
I MV	1.000 HV
5 HV	4.999 NV
10 MV	10.003 MV
20.MV	20.007 NV
30 MV	. 30.016 MV

J. A. Jacobs Instrument Services

FIGURE 1.3.1(H) 3 . 3

(401) 847-1020

233:43:

THE EPPLEY LABORATORY, INC. SCIENTIFIC INSTRUMENTS NEWPORT, R I. 02840 U S A.

STANDARDIZATION

OF

EPPLEY PRECISION PYRANOMETER

(horizontal surface receiver-180°, twin hemisphere)

Model PSP · Serial Number 15947F3 Resistance 615 ohm at 26 °C

Temperature Compensation

Range -20 to + 40 °C

This radiometer has been compared with the Eppley group of reference standards under radiation intensities of about 700 watts meter-2 (roughly one-half a solar constant), the adopted calibration temperature is 27 °C.

As a result of a series of comparisons, it has been found to develop an emf of.

 $MV \times 3c.7159 = BTL/f^{*}HP$ 10.32 x10.6 volts/watt meter.² 7.20 millivolts/cal cm.² min.¹

The calculation of this constant is based on the fact that the relationship between radiation intensity and emf is rectilinear to intensities of 1400 watts meter². This pyranometer is linear to within ± 0.5 percent up to this intensity.

The calibration was made with both hemispheres of Schott WG295 (clear) glass. This value should be *increased* for other Schott hemispheres as follows: GG400 = 0.0%, OG530 = 0.5%, RG610 = 1.5% and RG695 = 2.0%.

The calibration of this instrument is traceable to standard self-calibrating cavity pyrheliometers in terms of the Systems Internationale des Unites (SI units), which participated in the Fourth International Pyrheliometric Comparisons (IPCIV) at Davos, Switzerland in October 1975.*

Useful conversion facts:

 $1 \text{ cal-cm-}^{2} \text{ min-}^{1} = 697.3 \text{ watts/meter}^{2}$ $1 \text{ BTU/ft}^{2}\text{-hr-}^{1} = 3.153 \text{ watts/meter}^{2}$

Date of Test: July 6, 1977

The Eppley Laboratory, Inc.

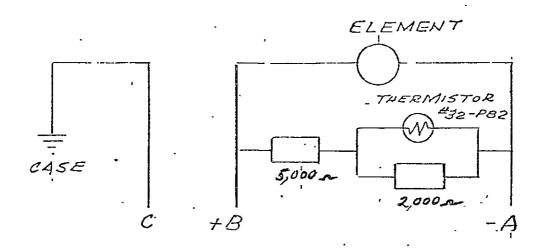
By: Kendy IS Silver

Toledo, Ohio

Newport, R. I.

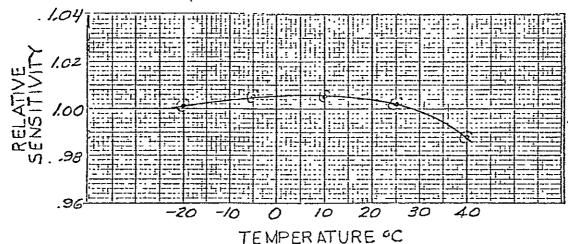
S. O. 35000 Date July 15, 1977

IN CHARGE OF TEST Prehard H. Hatch


Shipped to:

Ovens Illinois Development Center

Explanation of change in calibration traccability


As of April 1, 1977, the calibration traceability of Eppley solar radiation measuring instruments has been changed from the International Pyrheliometric Scale of 1956 (IPS 1956) to the Absolute Scale (SI). This change based on the results of IPC IV is such that instruments calibrated in SI units yield irradiance values which are 2.1% higher than values which would be obtained using Eppley instruments calibrated previously and referenced to IPS.

EPPLEY PRECISION SPECTRAL . PYRANOMETER-MODEL PSP-

INTERNAL WIRING

TEMPERATURE DEPENDENCE

TESTED BY B 25 DATE JULY 1, 1997

FILORE 1.3.1(2) 30F3.

DESERT SUNSHINE EXPOSURE TESTS, INC.

We Test Anything Under the Sun

BOX 185 • BLACK CANYON STAGE -PHOENIX, ARIZONA 85020 (602)465-7525

CERTIFICATE

OF

PYRANOMETER CALIBRATION

TAWA. THE SUN KACHINA

DSET Order No. 18011C

Pyranometer: Eppley Model 8-48, SN 15765

Client: Owens-Illinois Date of Calibration: July 5-6, 1977 Tilt: 45° from horizontal at 180° azimuth Latitude: 33° 50' Time: 10:00 to 15:00 hrs apparent solar Scale: Absolute Ambient Temperature: 36.7°C - 42.2°C

> INSTRUMENT CONSTANT: 8.405 x 10⁻⁶ ±0.01 V/wm⁻² (10:00-15:00 hrs) 8.357 x 10⁻⁶ ±0.01 V/wm⁻² (10:30-13:30 hrs)

Traceability: Calibrated in 60 instantaneous increments to DSET's Eppley PSP working standard (SN 14391F3) itself maintained in calibration against DSET's Eppley Model H-F Absolute Cavity, Self-Calibrating Pyrheliometer, which is traceable to IPC IV, October 1975, Davos, Switzerland through NOAA's Kendall PACRAD SN 67502.

DESERT SUNSHINE EXPOSURE TESTS, INC.

Technical Director rlant July 8, 1977 Date

DSET, Inc. uses reasonable diligence in the manner of performing the services required but no warranties are given and none may be implied directly or indirectly relating to DSET services or facilities or to the tests or calibrations by DSET upon Buyer's equipment. In no event shall DSET be liable for collateral, special or consequential damage.

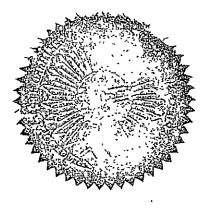
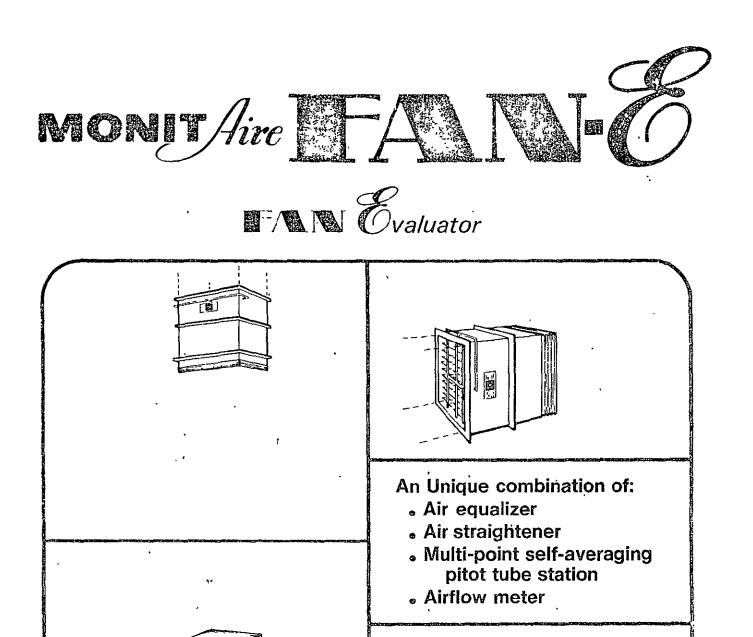
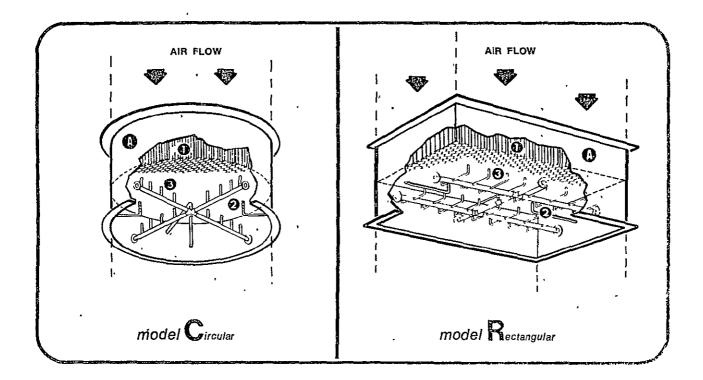



FIGURE 1.3.1 (m)



For accurate *Measurement* and *Control* of Fan Air Handling Capacity

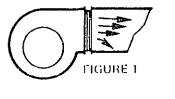
FIGURE 1.3.1(n)

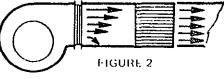
Three Specialized Sections - One Integrated Unit

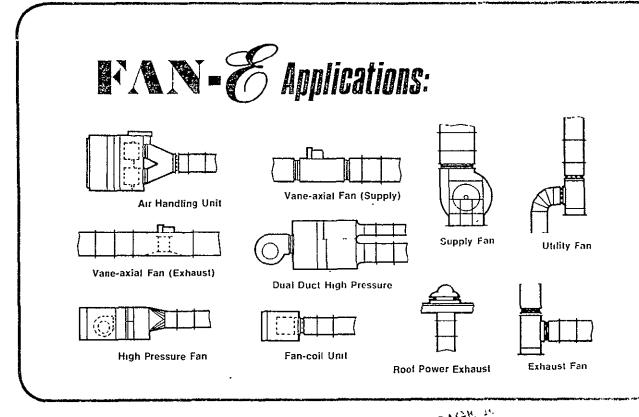
The model C FAN-E offers a circular configuration for mounting in round high (and low) velocity spiral and round duct while the model R FAN-E provides a rectangular (or square) configuration for installation in normal rectangular high (and low) velocity main duct or fan discharge ductwork.

Fabricated as a single integral unit, each FAN-E unit incorporates three distinct and highly specialized sections to assure measuring reliability and accuracy.

- A. CASING Rugged heavy gauge galvanized steel casing with connecting flanges on entering and leaving air sides for easy mounting in ductwork.
- AIR EQUALIZER AND STRAIGHTENER Expanded aluminum honeycomb with close parallel cell orientation and extended depth configuration has the capacity to equalize the velocity profile of the entering air while eliminating turbulent rotational air flow by directionalizing the air into laminar flow.
- STATIC PRESSURE SENSORS Static pressure sensors are placed along the perimeter of the FAN-E casing and interconnected by an external tube header to produce a single accurate averaged static pressure measurement.
- TOTAL PRESSURE SENSORS The total pressure sensing section is comprised of a network of interconnected tube headers, each with a series of multiple total pressure sensors with sensor openings directed into the straightened air flow. Total pressure sensors are positioned so that each sensing point represents an equal measuring area.



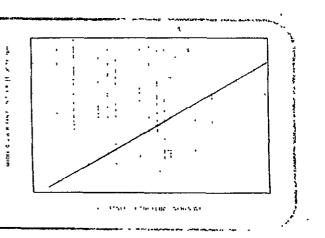

The FAN-E, utilizing old established air flow principles in a new application concept combines in a single unit devices to condition or treat" the air prior to its actual measurement. How it works is briefly outlined below


Fans (blowers, etc.) move air by centrilugal force resulting in the air near the fan discharge being "piled-up" or stratified (Figure 1). It is the function of the combination air equalizing and straightening section of the FAN-E unit to simultaneously reduce the sharp variance in air velocity projections present in the stratified air flow while eliminating all turbulent or rotating air flow. The individual wall surfaces of each of the long parallel tubes comprising this unique honeycomb section produces a separate wall friction or drag effect on the stream of air passing through that tube the amount of this resistance to flow varying with the square of the air velocity. The result is a sharp reduction in the variances in the

velocity profile of the air flow leaving the section. Simultaneously with the passage through the long honeycomb tubes all air rotation (turbulence) is eliminated and uniform laminar air flow is delivered to the sensor sections (Figure 2) The air flow has now been fully processed for accurate measurement

The sensor sections function on the principle of a pitot tube (with separated static and total manifolds) With assured laminar air flow into the sensor sections the multi-point total and static sensors (up to 100 individual sensors for the largest FAN-E unit) can accurately measure the total and static pressures in the unit and average each by means of interconnecting manifolds to a single representative value (an application of Bernoulli's Equation and Tchebycheff's calculus for averaging of measurement). By transmission of these values (total and static pressure) by tubing to an air flow meter (differential gauge), the velocity pressure through the FAN-E unit can be accurately read or recorded By application of controls and relays the FAN-E can control fan capacity at constant volume or programmed volume changes

27 DE POOR QUALIT

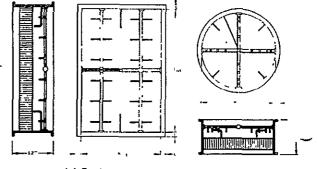

FIGURE 1.31(n)

RESISTANCE TO AIR FLOW

A physical structure placed across the flow of air in a duct will impede the flow; the magnitude of which, normally referred to as resistance to air flow, is a function of the size and shape of the structure and the quantity of air passing through it.

The MONIT-Aire FAN-E unit was designed to function while producing a minimum of resistance to air flow. The unique honeycomb air equalizing and straightening section has a free area of 96.6% while the total and static pressure sensors usually represent an area equivalent of less than 1 2% of the unit's total area

The unique non-restrictive characteristics of the FAN-E units are seen in the Resistance to Air flow versus Unit Velocity graph on the right.



DIMENSIONAL DATA

The model C, FAN-E units are furnished in casings with a constant depth of 12 inches and are available in 2 inch increments of size (diameter) from 6 inches to 30 inches, in 6 inch increments of diameter from 30 inches to 60 inches; and in 12 inch increments of diameter from 60 inches to 96 inches.

The model R, FAN-E units are furnished in 1089 casing sizes, with a constant depth of 12 inches, and are available in 2 inch increments of width (J) and height (K) from 4 inches to 36 inches, in 4 inch increments from 36 inches to 60 inches; and in 6 inch increments from 60 inches to 120 inches.

FAN-E units are only available with 90 degree connecting flanges on the air entering and leaving sides, varying from 1" to 2", depending upon unit size.

model Rectangular

model Circular

J

AIR FLOW METERING SYSTEMS

Dealing in directly measurable values of total pressure, static pressure and unit area . . while being devoid of any special laboratory developed correction factors, conversion tables, or calibration curves the air flow metering arrangements that can be applied to FAN-E units and D.A.M.D. stations are essentially unlimited. Shown below are several of the more commonly applied systems

STATIONARY (DRY) METER

A diaphragm actuated differential pressure gauge mounted on a metal panel with calibrated scale to permit direct reading of unit velocity in feet per minute, or where specified, in unit or station air flow volume in cubic feet per minute For continuous monitoring of fan or duct capacity with effective range of 800 to 4000 fpm

CENTRAL READOUT OR CONTROL PARFL

The pressure transmitting tubes from multiple FAN E or D A M D installations are brought to a central panel capable of individual FAN E unit or D A M D station readout with a single air flow meter the panel consists of a diaphragm actuated differential pressure gauge flush mounted on a metal control panel with a series of push button valves, all with station designalions. To read the velocity at any remotely located FAN E unit or DAMD. station, the indicated unit or station buttons are pressed and the velocity is regislered on the meter. There are no technical limitations to the number of readout stations on a single panel

CONTROL CORCUPT AT IDATING INFOLD

A draphragm actuated differential pressure gauge with dual photo-cell electronic amplifier and slave relay circuit Meter scale calibrated to permit direct reading of FAN-E or DAM D, velocity in feet per minute or where specified, in unit or station air flow volume in cubic feet per minute For use where high and/or low limit controls on air flow are required for actuating alarms, warning lights, damper motors, etc.

TBREAST (DO A PLADIDE NETTE

A diaphragm actuated differential gauge mounted in a metal carrying case with detachable leveling tripod stand. Meter scale calibrated to permit the direct read ing of the velocities in feet per minute of multiple fAN-L unit or DAMD station installations. Meter complete with on off air meter switch and guick connect fittings

Automatic Air Flow Control

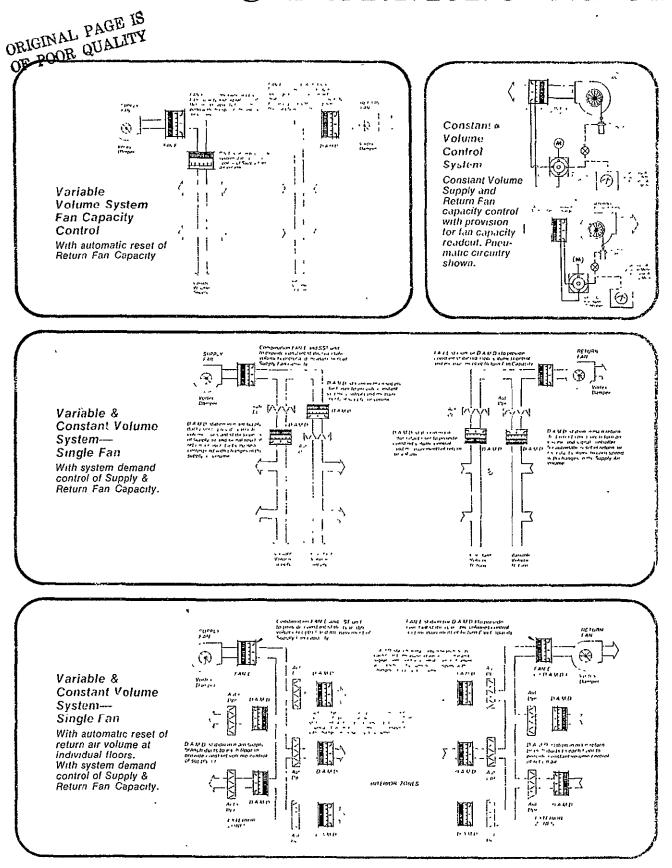


FIGURE 1.3./(n)

Preface: FAN-E units can accurately measure air flow at any velocity. Pressure differential meters (inclined manometers, magnehelic gauges, etc.) are however limited as to their range of readability. For this reason we recommend FAN-E units be sized for operation within 800 to 4,000 feet per minute.

Unit area (sq. ft.) x desired operating velocity (tom) = Unit Capacity (CFM,

To determine the CFM Capacity of a specific size FAN-E unit, multiply the Unit Area listed in the charts below by the desired operating velocity.

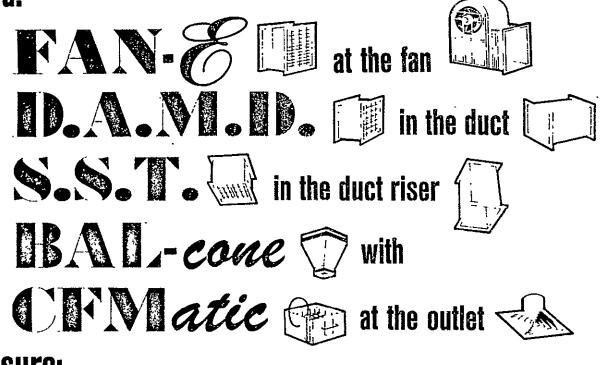
HEIGHT	UNIT AREAS, in square feet																			
4	.111	166	222	277	333	388	.444	500	.555	611	666	.722	777	833	888	944	1.0	1 11	1.22	1 33
6	166	250	333	.416	50	.583	666	.75	833	.916	10	1 08	1.16	1 25	1 33	141	15	1.66	1 83	2 00
8	222	,333	.444	.555	666	777	888	999	1 11	1 22	1.33	1.44	1 55	1 66	1.77	1 88	20	2 22	2 44	2 66
10	277	416	555	694	833	972	1.11	1 25	1 38	1 52	1.66	1.80	1 94	- 2 08	2 22	236	1 25	2.77	3 05	3 33
12	333	500	666	833	1.0	1 16	1.33	1.5	1 67	1 83	20	2 16	2.33	2.5	2 66	2 83	30	3 33	367	40
14	388	583	777	972	1 16	1 36	1.55	1 75	1.94	2 14	2 33	2 52	2.72	291	311	3.30	3.5	389	4.28	4 66
16	444	666	888	1.11	1 33	1.55	1 77	2 00	2 22	2 44	2.67	2.89	3 11	3 33	3 56	3 78	40	4.44	4 89	5 34
18	500	.750	.999	1.25	15	1.75	20	2 25	2 50	2 75	30	3 25	3 50	3.75	4 00	4 25	45	5 00	5.5	60
20	555	.833	1.11	1 38	, 1 66	194	2 22	2.50	2 78	3 05	3 33	361	3.89	4 16	444	4 72	50	; 555	6.11	6 77
22	611	916	1 22	1 52	1 83	2 14	2.44	2.75	3 05	3.36	3 66	3 97	4 27	4 58	4.88	5 19	55	6.11	6 72	7.33
24	666	1.0	1 33	1 66	2.0	2 33	2.67	30	3 33	3 66	40	4 33	4 67	50	5 34	5 66	6.0	6.66	7.34	80
26	722	1 08	1.44	1 80	2 16	2 52	2.89	3 25	3 61	3 97	4.33	4.67	5 05	5.42	5 77	6 14	65	7.22	7.94	8 66
28	777	1.16	1 55	194	2.33	2.72	3 1 1	3 50	3 89	4 27	4 67	5.05	5 45	5 83	6 23	6 6 1	70	7.77	8 55	9 33
30	833	1.25	1.66	2 08	25	2.91	3 33	3 75	4 16	4 58	50	5 42	5.83	6 25	6 66	7 08	75	8 33	9.17	10.0
32	888	1 33	1.77	2.22	2 66	3 11	3 56	40	4 44	4 88	5 34	5 77	6.23	6.66	7 12	7 55	8.0	8.88	9.78	10 68
34	944	1.41	1 88	2 36	2 83	3 30	3 77	4 25	4 72	5 19	5 66	6 14	661	7 08	755	8 03	85	944	104	11.3
36	10	15	20	2.5	30	35	40	45	50	55	60	65	70	7 50	80	85	90	10.0	11.0	12.0
, 40 -	1 11	1 66	2 22	2.77	3.33	3 89	4.44	50	5 55	6 11	6 66	7.22	7 77	8 33	8 88	9.44	10.0	111	12.2	13 3
44	1 22	1 83	2 44	3 05	367	4 28	4.89	5.5	6.11	6 72	7.34	7 94	8 55	9.17	9.78	10.4	110	12 2	13.4	147
48	1 33	20	2.66	3 33	4.0	4 66	534.	6.0	6.77	7 33	80	8 66	9 33	100	10 68	113	120	13 3	14.7	160
52	1.44	2.16	2 88	3 60	4 34 	5 05	5 78	65	7.22	7.94	8 67	9 39	10.1	108	11 57	123	130	14 4	15 9	173
56,	1 5 5	2 33	3.11	3 88 2	4 67	5 44	6 22	70	7 67	8 55	9 34	10.1	10 89	117	12 46	13 2	14 0	15.5	17 1	187
60 -	• 1 66	25	3.33	4 16	50	5 83	6 67	75	8 34	9.16	10.0 	108	1166	12 5	13 35	14 2	150	16.6	18 3	20 0
66	1 83	2 75	3 66	4.58	5.5	6 41	7 33	8 25	9 16	10 1	110	119	128	13 75 	147	156	16 5	18.3	20.2	22 0
72	20	30	40	5.0	6.0 	70	80	9.0	10 0 -	110	12 0	13.0	14 0	15 0	160	17 0	180	20 0	22.0	24 0
78	2.16	3 25	4 33	5.41	65	7 58	·+		10.8	119	13 0	14.1	15 1	16.25	17.3	184		216	23 8	26 0
84	2 33	35	4 66	583	7.0	8 16	9.33		116	128	14 0		16.3		187	;	210		25 7	
90		3 75					10 00'				15 0							25 0	1	
96	2.66		• -	-			10 6				16 0					-	24 0	•	1	32 0
102	2 83			7 08			1	12 75			170					ł	25 5			34 ()
108	3 00	45	60	7.5	· f		1	13 5		16.5		• • •	-		24 0			:		36 0
114	3 16	4.75		791	95	11 1	+	14 25		17.4	19.0				25 3			316		
120	3 33	50	6 66	8 33	10.0	116	13 3	15 0	16 7	18 3	20.0	21.7	23 3	25 0	26 7	28 3	30.0	33 3.		
WIDTH	4	6	8	10	12	14	16 	18	20	22	24	26	28	30	32	34	36	40	44	48

FIGURE 1.3.1(n) 6058

Areas and Capacity Formulations

Known Unit Capacity (CFM) + desired operating velocity (FPM) = Gint Area celectron (Sq. 23)

If the CFM Capacity of the fan is known, divide this value by the desired operating velocity to determine the unit area. Entering in the charts below, list (for final selection) those FAN-E unit sizes approximating the unit area figure obtained above.


Known Unit Capacity (CFM) + Unit Area (Sq. Ft) = Unit operating relocity (pm)

If the CFM Capacity of the fan and the required FAN-E unit size is known, the operating velocity can be determined by dividing the CFM by the unit area listed in the charts below.

HEIGHT		s∕s		1.2			REAS							ļ	SIZE	FAN-E
Inches	1 44	1 55	1 66	1.83		2 16	······			2 83		3 16	3 33		dia. Inches	UNIT AREA Square Feet
6	2.16	2 33	25	´2.75	3.0	3 25	3.5	3.75	4.0	4.25	45	4 75	50		· 6	0.196
8	2 88	3 11	3 33	3 66	40	4 33	4.66	5 00	5 33	5 66	6 00	6 33	6 66		,	0.349
10	3 66	3 88	4.16	4 58	50	5 4 1	5 83	6.25	6 66	7.08	7 50	7 91	8 33		10 ,	0.545
12	4 34	4 67	5.0	55	6.0	65	7.0	7.5	80	85	9.0	95	10 0		12	0.785
14	5 05	5 4 4	5 83	6 41	70	7 58	8.16	8 75	9 33	991	105	111	116		14	1 068
16	5 78	6 22	667	7 33	80	8 66	9 33	10 0	10 6	11 3	12.0	127	13 3		'16	• 1 395
18	6.5	70	7.5	8 25	90	9.75	10.5	11 25	. 120	12 75	135	14.25	15 0		18	1.766
20	7 22	7 67	8 34	9 16	10 0	10 8	116	12 5	13.3	14.2	15 1	158	167	10.1	20	2.180
22	7 94	8 55	9 16	10 1	110	119	12 8	13.7	14.7	15 6	16 5	17 4	18.3		22 '	2.640
24	8 67	9 34	10 0	110	12.0	13 0	14 0	15 0	16 0	17 0	18 0	19 0	20 0		24	3.139
26	9 39	10 10	10 8	11.9	130	14.1	15 2	16.2	173	18 4	195	20.6	21.7		26	3.683
28	10 1	10 89	1166	12.8	14.0	15.1	16 3	175	18.7	19 8	21.0	22'2	23.3		28	4 275
30	10 8	11.7	12 5	13.75	15 0	16 25	17 5	18 75	20 0	21 25	22 5	23 75	25 0		30	4 905
32	11.57	12 46	13 35	14.7	16 0	173	18 7	20 0	21 3	22 6	24 0	25 3	26.7		36 ·	7.063
34	123	13 2	14 2	156	17 0	18.4	19.8	21 2	22 7	24.1	25 5	27 0	28 3		42	9.614
36	13 0	14 0	. 15 0	165	18 0	19 5	21.0	22 5	24 0	25 5	27 0	28 5	30 Ó		48	12 47
40	14.4	15 5	16 6	183	20 0	216	23 3	25 0	26 G	28 3	30.00	316	33 3		54 [·] ·	15.89
44	159	171	18.3	20 2	22 0	238	25 7	27 5	29 3	31.2	33 Ø	34.8	36.7		60	19.62
48	17 3	18 7	20 0	22.0	24 0	26 0	28 0	30 0	32 0	34.0	36 0	38.0	40.0		72	28 25
52	18.8	20.2	21 <i>.</i> 7	238	26 0	28.2	30.3	32 5	34.7	36.8	39 0	412	433		84	38.46
56	20.2	218	23 3	257	28 0	30 3	32.1	35 0	37 3	39 7	42 0	44 3	46.7		96	50.23
60	217	23 3	25 0	27.5	30 0	32 5	35 0	37 5	40 0	42 5	45 0	475	50.0			L
66	238	25 7	27 5	30 25	33.0	35,75	38.5	41 25	44 0	46 75	49 5	52.75	55 0			
72	26 0	28 0	30 0	330	36 0	39 0	42 0	45 0	48 0	51 0	54 0	570	60 0			
78	28 2	30 3	32 5	35 75	39 0	42 3	45 5	48 7	52 0	55 2	58 5	617	65 0	-		
84	30 3	32.7	L	38 5			49 0			1	63 0	F	70 0			
90		35 0	۲	_	45 0	48 7	52 5	56 3	Ġ0 0	63 8	67 5	713	75 0			
96	34.7	37 3	40.0	44 0	48 0	52.0		1	64 0			1				
102	36 8	39 7		•	510	55.2			68 0				{ }			
108		42 0	· · · ·	49.5	ļ	58.5			72 0				•			
114	412	44 3	1		570	1		1	76 0	1		1	,			
120	43 3	46 7	50 0	55.0	60.0	65.0	70.0	75 0	80.0	85.0	90 0	95 0	100 0			
WIDTH Inches	52	56	60	66	72	78	. 84	90	96	102	108	114	120			

FIGURE 1.3.1(m) .

use a:

measure:

AIR VELOCITY ... AIR VOLUME ... SYSTEM STATIC PRESSURE

- Instantaneously—Direct readings in FPM (feet per minute) and/or CFM (cubic feet per minute) obtained in 10 seconds or less.
- Accurately—within 1% for FAN-E, D.A.M.D., and S.S.T.; within 3% for BAL-cone with CFMatic.
- Reliably operates on basic principles of air measurement, without use of correction factors, calibration curves, etc.
- Verifiably—Readings are completely reproducible, void of instrument technique or human error.

control:

- fan capacity at constant volume regardless of system static changes or variations.
- programmed or manual reset of fan capacity.
- actuation of Audio or Visual safety alarms in critical air flow systems.
- maximum air filter replacement cycle based on actual air volume, decrease, rather than arbitrary filter resistance increase.
- supply and return fan capacities under variable and constant volume systems based on actual system demand
- rescheduling and reset of return (an capacities, to match supply fan capacity changes)

in variable volume system operation

- return air duct or space quantity changes to match supply air quantity changes (in variable volume system).
- continuous or periodic monitoring of fan (duct, or outlet) capacities at a central control panel.
- control of fan, duct or system static pressures under variable or constant volume operation.
- predetermined positive, negative or neutral space pressurization regardless of system static or volume changes.

Air Monitor Corporation

P.O. Box 6358 Coddingtown Station Santa Rosa, California 95406 (707) 544-2706

FLOURF LS. 1(N) BOFF

Air Monitor Corporation

P. O. BOX 6358 CODDINGTOWN STATION SANTA ROSA, CALIFORNIA 95406 AREA CODE (707) 544-2706

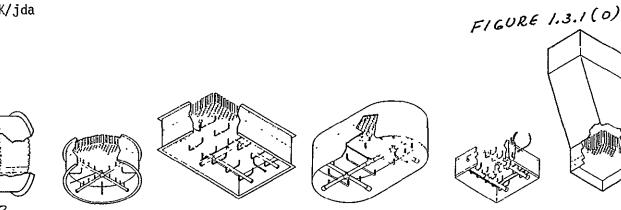
June 28, 1977

Mr. Ken Mohn Owens-Illinois 200 North Westwood Toledo, OH 43666

Subject: Special FAN-E supplied on wo#1552

Dear Mr. Mohn:

The FAN-E delivered to you has an accuracy of + 1% in the range of 300 to 600 SCFM providing that the FAN-E is installed correctly. This special FAN-E requires twice the standard installation distance. Enclosed is a sheet of installation distances for standard units.


We recommend that your arrangement should be fan, 2 diameters of duct; screen unit, 4 diameters of duct; FAN-E, 4 diameters of duct; and screen mounted on the entrance to the plenium. For best results, we recommend that lab work should be done on the possibility of eliminating the plenium, since it may effect accuracy.

Very Truly Yours, A R MONITOR CORPROATION

tt Kenvon Customer Service

Enclosures: FAN-E brochure Installation Guide

SK/jda

Duct Air Monitor Device

S B BEatic

BBBB CON

2.1 System Design Conditions.

The Model SEC-601 air collector was roof mounted south facing at a 45° tilt. Ducting, instrumentation, heat exchanger and air fan were installed. The duct between the flow meter and the heat exchanger was detached in order to provide access for smoke ingestion into the system. The ducting loading from the collector was blocked. The variable speed air fan was adjusted to provide 1.5 inches, w.g., above ambient in the collector manifold. A smoke bomb was activated at the inlet to the air fan. No evidence of collector or system leakage could be detected.

The system hook up was completed and all ducting and components insulated. A series of air mass flow versus collector pressure drop tests was completed. The test system schematic and the test data is contained in Figure 2.1(a). A plot of the data and the equation relating air mass flow to pressure drop is contained in Figure 2.1(b). The tests conducted under Section 5.2, temperature and pressure resistance are also applicable to the subject Section 2.1. Data from the thermal cycling test phase is contained in Figure 2.1(c).

2.1.1 Equipment Capabilities.

The design flow rate of the Model SEC-601 collector is approximately 8 Lbs./Hr.Ft.² higher system flow rates may be used with an attendent gain in collector thermal performance. The fan theoretical pumping power is related to flow and pressure drop by the expression:

 $HP = 157.5 \times 10^{-6} \text{ pg} (1)$

p = Pressure drop, inches, w.g. Q = Total air flow; Ft.³/min.

Using the data of Figure 2.1(a)

ΔP_c .03 0.5 .10 .15 .20
Q 142 184 261 320 369 CFM
P .29 .48 .95 1.35 1.75 in. w.g.
HP_a .0065 .0139 .0391 .068 .1017 HP

However, system pressure drop, leakage and fan efficiency will affect the sizing of the fan. Most common electric motors will not survive the high temperatures within the air system ducting; an externally mounted motor with an extension shaft coupling to the air fan is recommended. The temperature rise due to fan inefficiency is generally recoverable if a suitable heat barrier is employed in the extension shaft and motor mount. Relatively low fan pumping power is required to move the air through the collector.

2.1.2 Noise or Erosion-Corrosion.

During the air mass flow-pressure drop experiments, no sound emanating from the collector tube elements or the manifold could be detected at a system air flow rate up to 369 CFM. The 144 tube ERDA collector manifolds and tube elements were inspected after 17 months of test operation. No evidence of erosion-corrosion could be detected in

⁽¹⁾Page 14-67?, Marks' Mechanical Engineers Handbook, Sixth Edition, McGraw Hill.

any of the working components. Some evidence of deterioration of the polyurethane foam insulation was noticed where the insulation was directly exposed to high temperature air flow. Where the insulation material was protected, no visible sign of deterioration of the insulation was detected. The Model SEC-601 collector design protects the polyurethane foam insulation from contact with high temperature air. Following completion of the 100 cycles of thermal cycling at exit air temperature of 325°F, the manifold was visually inspected. No sign of deterioration of materials or components could be detected.

2.1.3 Operating Conditions.

The components of the Model SEC-601 collector have been tested in excess of the pressure and temperature ranges expected in actual service without damage or loss in pressure that could impair their intended functions. Over pressure and high temperature thermal cycling test data of Figure 2.1(c) is provided as primary evidence along with other test data as contained principally in Section 5.2.

2.1.4 Fluid Flow in Collectors.

The 144 tube ERDA collector was highly instrumented with thermocouples to measure the temperature rise in a large number of tube pairs in many areas of the array. Each tube pair of the east half of . the lower manifold was instrumented with thermocouples. A typical set of data is as follows:

 36
 31
 31
 31
 36
 37
 35
 37
 40
 40
 45
 40
 41
 41
 40
 41
 45°F

 .96
 100
 98
 101
 105
 95
 112
 108
 108
 115
 103
 113
 102
 94
 105
 102
 93°F

 Center-Air Inlet-Outlet
 End

The good correlation of temperature rise is evidence of excellent flow distribution in each of the collector tube elements at the design air flow rate. At about twice the design flow rate, the temperature rise data was:

33 30 30 30 30 34 35 32 35 37 38 41 38 38 38 37 38 40°F

89 91 91 92 92 94 95 104 102 100 107 102 110 96 100 99 99 91°F Flow distribution remains excellent at the higher flow rates.

Comparative analysis of the ERDA air manifold and the Model SEC-601 air manifold indicate similarity of flow cross section and flow rates. The experimentally derived flow-pressure drop relationships for the two collectors are:

ERDA
$$\Delta P = \frac{CFM}{27}$$
 in. w.g.
CFM = Volume Flow Per Tube Pair, Ft.³/min.
 $\Delta P = \text{Collector Pressure Drop, inches, w.g.}$
Model SEC-601
 $\Delta P = \frac{1.92}{10.5}$
CFM - Volume Flow per Tube, Ft.³/min.
 $\Delta P = \text{Collector Pressure Drop, inches, w.g.}$

The essentially identical exponent for flow rate suggests that the collector pressure drop is controlled by the flow in the tube elements. The difference in the constant is due to the difference in path length of the two tubes in series versus all tubes in parallel. Leakage flow

in the ERDA collector also contributes to the larger value of the constant. Since flow distribution is controlled by the pressure drop in the tube elements rather than in the manifold, it can be implied that satisfactory flow distribution obtains in the Model SEC-601 collector by similarity. The flow distribution between modules of a large array is a systems design parameter. A variation in flow rate module to module of $\pm 25\%$ will have little impact on overall system performance because of the very low loss coefficient characteristic of the collector.

2.1.7 Pressure Drops.

The air flow-pressure drop relationship of the Model SEC-601 collector is contained in the data of Figure 2.1(a) and the curve and equation of Figure 2.1(b).

Review of items 2.1, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.7 successfully completed.

O.I. Test Engineer

<u>*H.S.Moan*</u> Kenneth L. Moan P.E. (Ohio 5203)

0.I. Approval

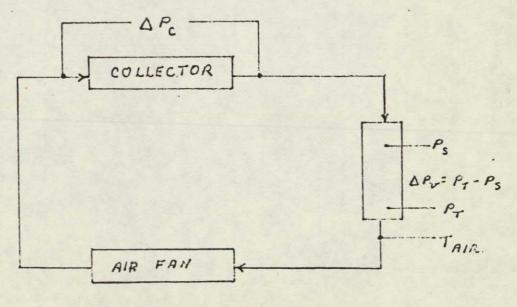
David C. Miller, Ph.D. SH&G Certification Officer

William C. Louie, V.F. F.E. (Mi. 11084) SH&G Certification Officer

andle John.

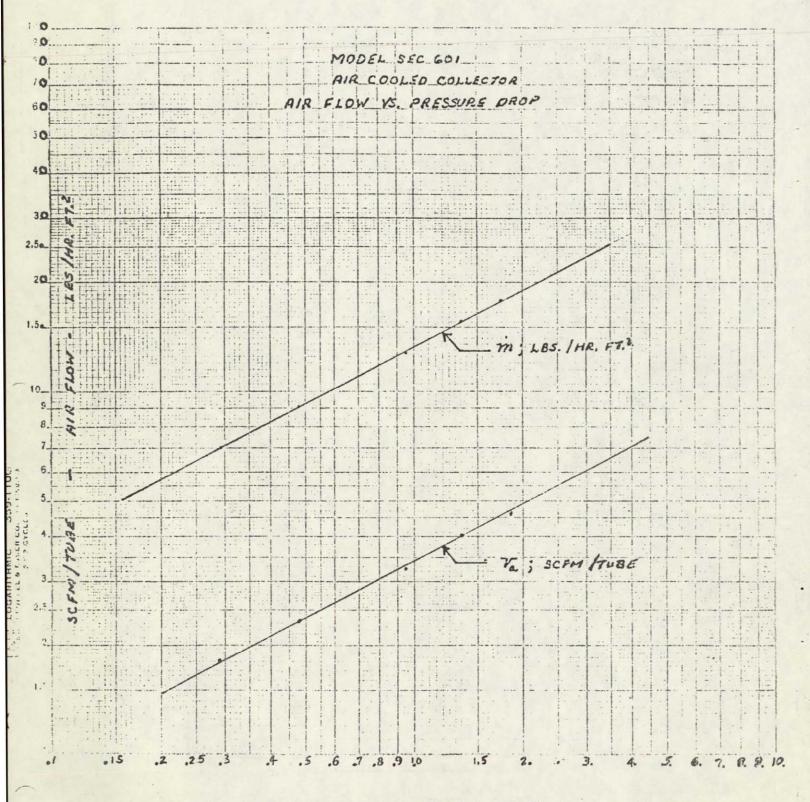
Technical Manager NASA Approval

MODEL SEC 601 COLLECTOR PRESSURE DROP VS AIR FLOW RATE NUMBER 3 MANIFOLD


INDICATED FLOW PRESSURE DROP, DP, IN. W.g.	.03	.05	.10	.15	.20	
COLLECTOR PRESSURE DROP, DP, IN. W.g.	.29	.48	.95	1.35	1.75	
AIR TEMPERATURE , °F	115	120	126	128	132	
AIR MASS FLOW, ma, LBS. /HR. FT.2	7.01	9.01	12.67	15.49	17.83	
AIR VOLUME FLOW, Ma, SCFM/TUBE	1.80	2.32	3.26	4.02	4.59	

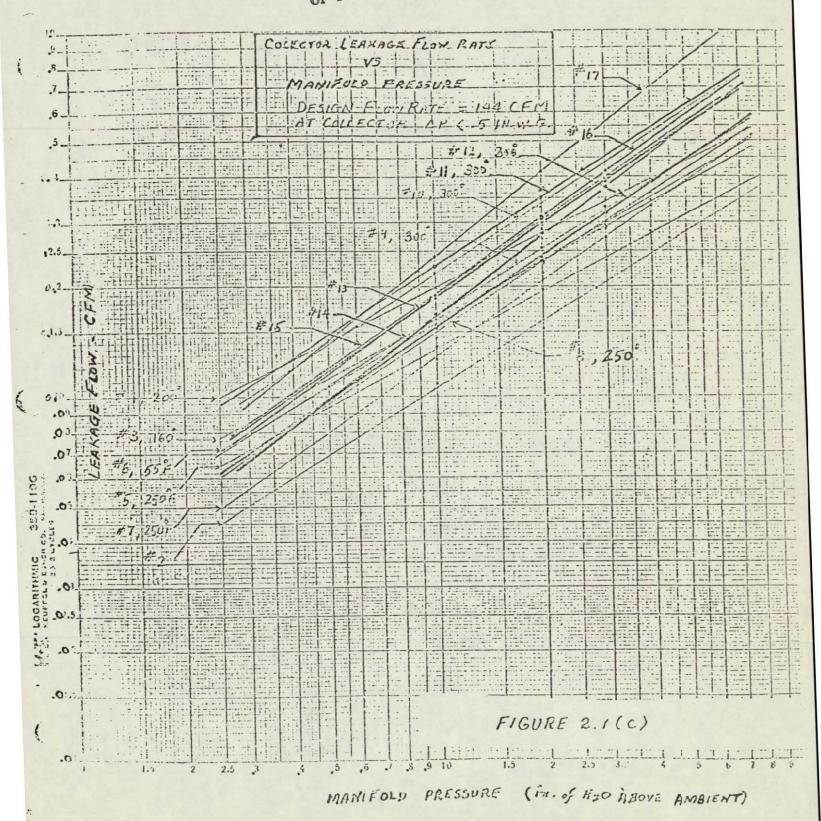
$$\dot{m}_{a} = 4005 \, A \sqrt{\Delta P_{v}} \times \sqrt{\frac{530}{T_{AIR} + 460}} \times .075 \, LBS. / MIN.$$

$$A = \frac{36 \pi}{4 \times 144} = .196 FT^{2},$$


 $A_{COLLECTOR} = 84FT.^{R}$ $\dot{m}_{a} = 48.19 \sqrt{\frac{\Delta P_{u} \times 530}{T_{AIR} + 460}} \quad LBS./HR.FT.^{2}$

 $\dot{m}_{a} = 10.85 \left| \int_{T_{AIR}}^{\Delta P_{U} \times 530} sCFM / TUBE (72. TUBES / MODULE) \right|$

TEST SYSTEM SCHEMATIC


FIGURE 2.1(a)

COLLECTOR PRESSURE DROP; INCHES, W.9.

FIGURE 2.1(b)

ORIGINAL PAGE IS OF POOR QUALITY

 *7 **8 REPEAT CYCLES AT 250°F MAX AIR TEMP. *9 ONE CYCLE TO 325°F MAX. AIR TEMP. *10 ONE CYCLE TO 325°F MAX. AIR TEMP. *11 TOTAL II CYCLES *12 TOTAL II CYCLES *13 TOTAL 16 CYCLES *13 TOTAL & 27 CYCLES *14 TOTAL 43 CYCLES *15 TOTAL 51 CYCLES 	PErm	ITION OF TEST NUMBERS
 4 ONE CYCLE TO 200°F MAX. AIR TEMP. 5 ONE CYCLE TO 250°F MAX. AIR TEMP. 6 REPEAT AMBIENT AIR TEMP. LEARAGE TEST 7 + * 8 REPEAT CYCLES AT 250°F MAX AIR TEMP. 49 ONE CYCLE TO 325°F. MAX. BIR TEMP. *10 ONE CYCLE TO 325°F. MAX. BIR TEMP. *11 TOTAL II CYCLES *12 TOTAL II CYCLES *13 TOTAL IG CYCLES *13 TOTAL 43 CYCLES *15 TOTAL 51 CYCLES 	# 2.	FIRST CALIBRATED LEARAGE FLOW TEST
*5 ONE CYCLE TO 250°F MAX. AIR TEMP. *6 REPEAT AMBIENT AIR TEMP. LEARAGE TEST *7 **8 REPEAT CYCLES AT 250°F MAX AIR TEMP. *9 ONE CYCLE TO 325°F. MAX. AIR TEMP. *10 ONE CYCLE TO 325°F. MAX. AIR TEMP. *10 ONE CYCLE TO 325°F MAX. RIR TEMP. *11 TOTAL II CYCLES *12 TOTAL II CYCLES *13 TOTAL 16 CYCLES *13 TOTAL 27 CYCLES *14 TOTAL 43 CYCLES *15 TOTAL 51 CYCLES	# 3	ONE CYCLE TO 160°F MAX. AIR TEMP.
 ⁴6 REPEAT AMBIENT AIR TEMP. LEARAGE TEST ⁴7 + ⁴8 REPEAT CYCLES AT 250°F MAX AIR TEMP. ⁴9 ONE CYCLE TO 325°F. MAX. AIR TEMP. ⁴10 ONE CYCLE TO 325°F. MAX. AIR TEMP. ⁴10 ONE CYCLE TO 325°F MAX. RIR TEMP. ⁴11 TOTAL II CYCLES ⁴12 TOTAL IG CYCLES ⁴13 TOTAL 27 CYCLES ⁴14 TOTAL 43 CYCLES ⁴15 TOTAL 51 CYCLES 	* 4	ONE CYCLE TO 200°F MAX. AIR TEMP.
 *7 +*8 REPEAT CYCLES AT 250°F MAX AIR TEMP. *9 ONE CYCLE TO 325°F. MAX. AIR TEMP. *10 ONE CYCLE TO 325°F MAX. AIR TEMP. *10 ONE CYCLE TO 325°F MAX. RIR TEMP. *11 TOTAL II CYCLES *12 TOTAL II CYCLES *13 TOTAL 16 CYCLES *13 TOTAL RT CYCLES *14 TOTAL 43 CYCLES *15 TOTAL 51 CYCLES 	#5	ONE CYCLE TO 250 F MAX. AIR TEMP.
H9 ONE CYCLE TO 325°F. MAX. AIR TEMP. * 10 ONE CYCLE TO 325°F. MAX. AIR TEMP. * 11 TOTAL II CYCLES * 12 TOTAL II CYCLES * 13 TOTAL IG CYCLES * 14 TOTAL 43 CYCLES * 15 TOTAL 51 CYCLES	"6	REPEAT AMBIENT AIR TEMP. LEANAGE TEST
 *10 ONE CYCLE TO 325°S MAX. RIRTEMP. *11 TOTAL II CYCLES *12 TOTAL IG CYCLES *13 TOTAL 27 CYCLES *14 TOTAL 43 CYCLES *15 TOTAL 51 CYCLES 	#7 + #8	REPEAT CYCLES AT 250°F MAX AIR TEMP.
#11 TOTAL II CYCLES #12 TOTAL IG CYCLES #13 TOTAL 27 CYCLES #14 TOTAL 43 CYCLES #15 TOTAL 51 CYCLES	#9	ONE CYCLE TO 325°F. MAX. AIR TEMP.
#12 TOTAL 16 CYCLES H TOTAL 27 CYCLES H TOTAL 43 CYCLES H TOTAL 51 CYCLES	# 10	ONE CYCLE TO 325 F MAX. AIR TEMP.
#13 TOTAL 27 CYCLES #14 TOTAL 43 CYCLES #15 TOTAL 51 CYCLES	- 11	TOTAL 11 CYCLES
HIH TOTAL H3 CYCLES HIS TOTAL SI CYCLES	*/2	TOTAL 16 CYCLES
#15 TOTAL SI CYCLES	#13	TOTAL 27 CYCLES
	# 14	TOTAL 43 CYCLES
	#15	TOTAL 51 CYCLES
"16 TOFAL TO CYCLES	*16	TOTAL TO CYCLES
#17 TOTAL 101 CYCLES	#17	TOTAL 101 CYCLES

2.2 Mechanical Stresses.

2.2.1 Vibration Stress Levels.

During the testing described in detail in Section 5.2.4, Leakage, the collector module was critically inspected for any audible evidence of vibration induced in any collector component due coupling with air ducts or fan. No audible sound could be detected. No evidence of vibration of any component of the collector could be detected by thorough inspection of the ERDA 144 tubular air collector. The potential problem of reinforced resonance vibration of the absorber tube was investigated. A collector tube element was instrumented with strain gages as shown in Figure 2.2.(a). No selective coating was applied and the evacuation process eliminated since the bonding agent used for applying the strain gages could not tolerate the bake out temperature.

The collector tube element was mounted on a vibration shake table and excited in the range of 0 to 300 Hz. Two resonant peaks were observed, one at 139 Hz. and one at 214 Hz. Prolonged exposure at these frequencies gave no evidence of damage. A frequency response plot of the tube assembly is shown in Figure 2.2(b). The modulus of elasticity of KG-33 is 9.5×10^6 lbs./in². The maximum detected strain was 27 micro inch/inch. The resulting maximum stress level is 227 psi, well below the modulus of rupture stress level of an abraded rod of 10,000 psi.

2.2.2 Vibration from Moving Parts.

There are no moving parts within the Model SEC-601 collector except air flow. No evidence of flow induced vibration could be

detected up to air flow rates of 16 lbs./Hr.ft.², twice the design air flow rate. No evidence of coupling of the vibration due to moving parts such as the air fan could be detected.

2.2.4 Vacuum Relief Protection.

The installation and maintenance manuals specify that the air fan be located in the inlet ducting to the manifold. This will insure that the manifold will always be at a positive pressure. The manifold was exposed to a positive pressure of 5 inches w.g. repeatedly during the leakage tests of Section 5.2.4 with no evidence of structural stress or induced air leakage of greater than 1% of design flow rate.

2.2.5 Thermal Changes.

The collector was subjected to 100 cycles of thermal stress from ambient temperature to 325°F. No evidence of degredation of any component or sub-assembly could be detected as demonstrated by no change in the rate of leakage air flow from the collector. See Section 5.2 for substantiating experimental data.

2.2.6 Flexible Joints.

Connecting ducting was in place during the thermal cycling tests of Section 5.2. The flexing of the connecting ducting due to air flow and thermal cycling was accommodated by the interface and mounting provisions of the Model SEC-601 collector.

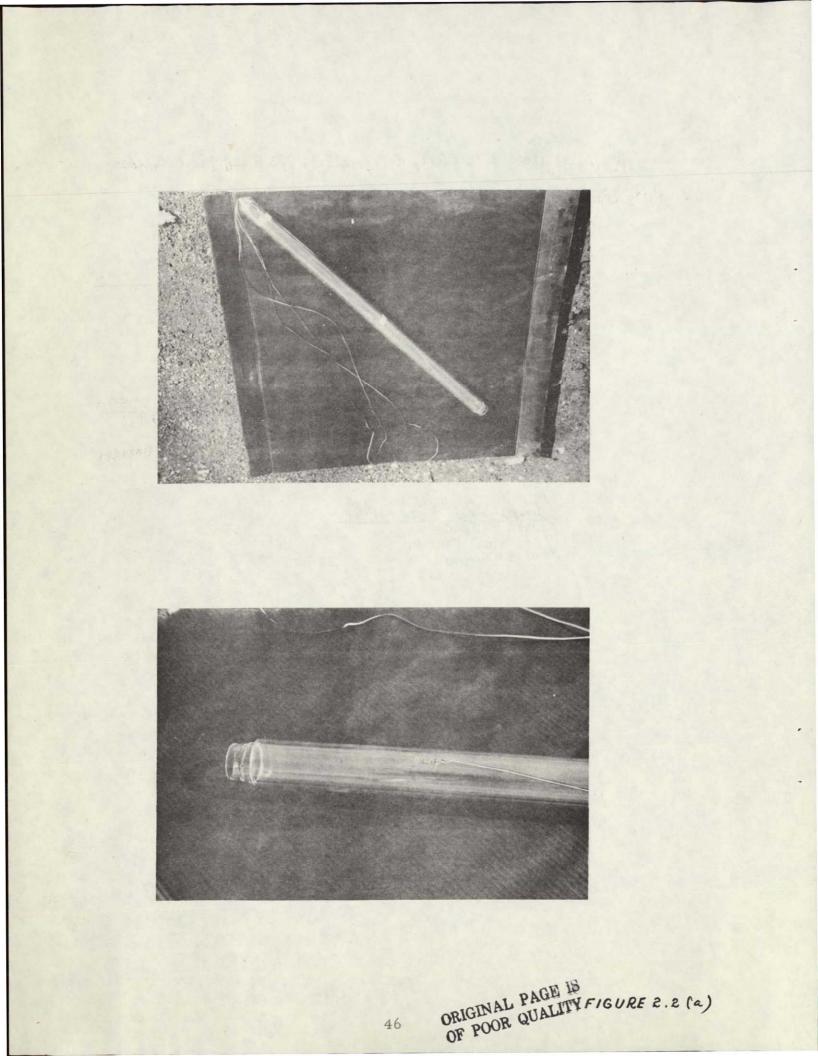
Review of items 2.2, 2.2.1, 2.2.2, 2.2.4, 2.2.5 and 2.2.6 successfully completed.

maker Robert Romaker

0.1. Test Engineer

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

David C. Miller


William C. June

David C. Miller, Ph.D. SH&G Certification Officer

Milliam C. Louie, V.P. P.E. (Mi. 11084) SH&G Certification Officer

augell John M. Caudle

Technical Manager NASA Approval

2.3 Leakage Prevention.

The design leakage flow rate of the Model SEC-601 collector is 1% target. The measured leakage flow rate did not change substantially from the initial test to the test after 100 thermal cycles between room ambient and 325°F. The measured leakage flow rate was less than 0.2% design flow rate.

2.3.1 Pressure Test: Non-potable Fluids.

The criterion of 2.3.1 specifically excludes air as the heat transfer fluid from the requirements of the section. A small but controlled rate of air leakage is desired in an air cooled collector to minimize system pressure fluxuation as a function of air temperature.

2.3.2 Pressure Test: Potable Water.

The installation and operation manuals specify that the collector be operated at a positive pressure of 5 inches w.g. or less. The maximum pressure is specified to limit system air pumping power not for structural reasons. Any potable water leakage would occur at the air-liquid heat exchange interface not within the collector.

2.3.3 Air Transport Systems.

The transition ducting between the collector manifold and the system ducting is 0.21 Ft². At the design air flow rate of 144 CFM per module, the average air velocity in the transition section is 700 Ft./min. and within the limits of air flow velocity as contained within Section 615-4.3 of HUD MPS (3).

Review of items 2.3 through 2.3.3 successfully completed.

Robert F. Romaker

0.I. Test Engineer

avid C. Meller

David C. Miller, Ph.D. SH&G Certification Officer

/. . · . Kenneth L. Moan P.E. (Ohio 5203) 0.I. Approval

1 11 Repair

William C. Louie, V.P. P.E. (Mi. 11084) SH&G Certification Office

awelle dohn M. Caudle

Technical Manager NASA Approval

2.4 Collector Adjustments.

2.4.1 Orientation and Tilt.

The drawings, specifications and installation of the Model SEC-601 collector were reviewed. The collector may be mounted in any fixed orientation or tilt required by the application. There are no structural or flow path imposed restrictions. A south facing orientation with the tube axis north-south optimizes the thermal performance on a daily basis.

2.4.2 Mutual Shadowing.

The problem of mutual shadowing between multiple collectors is negated so long as the collectors are installed in a single plane relative to the axis of the tube elements.

Kenneth Moan

0.I. Test Engineer

P.E. (Ohio 5203) 0.I. Approval

V.P.

DaWid C. Miller, Ph.D. SH&G Certification Officer

William C. Louie, V.P. P.E. (Mi. 11084) SHAG Certification Officer

John M.

Technical Manager NASA Approval

2.6 <u>Heat Transfer Fluid Quality</u>.

2.6.2. The 144 ERDA collector array, under test for in excess of one year, was inspected and no significant accumulation of dust was detected. Review of thermal performance data for November, 1977, indicates no deterioration in thermal performance due to the accumulation of deposits of dust or dirt after eight months of operation. The critical absorber surface is protected in a vacuum environment; the cover tube surfaces appear to be self cleaning based on a review of the performance data taken over a period of approximately eight months. Air filtration to the collector should have a minimum ASHRAE arrestance of 60 percent. Pressure drop through the filtration unit should be minimized (0.1 inches watergage at 150 SCFM is recommended) in order to restrict air pumping power requirements.

Review of items 2.6 through 2.6.2 successfully completed.

Robert F. Romaker O.I. Test Technician

David C. Miller, Ph.D. SH&G, Certification Officer

Moan, (Ohio 5203) 0.I. Approval

John M. Caudle NASA Approval

William C. Louie, P.E. (Michigan 11084) SH&G, Certification Officer

3.1 Structural Design Basis.

The capability of the Model SEC-601 collector to meet the provisions of MSP [1] and/or ANSIA119.1[4] has been demonstrated by the physical testing of a complete seventy two (72) tube module to the requirements of the applicable criterion of the sub-sections of Chapter 3 -- Structural, of the Interim Performance Criteria. A complete module was mounted in a load test fixture as shown in the sequence of photographs Figure 3.1(a) through 3.1(j). A steel reinforced concrete floor was used as the test fixture base. Two X ten inch boards were used as risers to elevate the collector module above the plane of the floor to provide clearance for the inlet and outlet transition ducts. Sections of the recommended diffuse backing screen (Alcoa 4-inch ribbed Bone White #K2028-30, flourocarbon) were attached to the top surface of the stringers. The twenty mounting pads of the Model SEC-601 collector module were attached to the stringers using blind hole (one per pad)Molly mounting bolts. A two section air bag was layed on top of the collector tube elements. A reaction element, isolated from the collector, was installed. This allowed an air pressure within the air bag to impose a uniform load on the collector elements with the magnitude of the load a direct function of the air pressure within the air bags. The air pressure in the air bag was controlled with a two stage pressure regulator operating off of shop line pressure. An air bleed to ambient, downstream of the pressure regulator, was added to improve the stability of the system. Dial indicators were mounted to determine the deflection under load at four representative locations of the collector module. These The leakage flow rate are indicated in Figures 3.1(h) and (i).

at a manifold pressure of 1 inch w.g. was monitored constantly and was used as the primary evaluation of the effect of physical loading on collector operation.

3.1.1 Applicable Standards and 3.1.2 Service Loads were reviewed and the definitions and requirements found to be acceptable without exception.

- Dead load. The dead load of the SEC-601 module, fully assembled is 300 pounds as determined by weighing a completed module.
- 2. Live loads. Since air is used as the heat transfer fluid, the cooling fluid does not contribute to any appreciable live load. Snow does not add a significant live load to the collector. Any snow build up first penetrates between the spaced tubular elements and acts upon the basic roof structure. Increased snow depths build up snow behind (roof side) of the tubular elements, surround the tubular elements and subsequently cover the tubular elements. Except for a minor degree of loading of the manifold, the live load due to snow on the collector is negligible. This condition was observed during the heavy snow conditions of the 1977-1978 winter season in Toledo, Ohio. For test purposes, a snow load equal to the dead load will be assumed.
- 3. Wind loads. A wind load equivalent to 40 pounds per square foot (the worst condition found in applicable specifications) will be used. The exposed cross section of the cover tube

per element is 2.13" X 42"/144 = .62 Ft². The wind loading per tube, assuming a drag coefficient of 1.3 is .62 X 1.3 X 40 = 32.31 lb. The maximum frontal area of the manifold is 13" X 12' = .13 Ft² and the wind loading is 520#. The total load is 72 X 32 .21 + 520 = 2846 pounds = .20 pounds/in².

- 4. Earthquake Toads. "A common rule (for earthquake loads) is to provide in the associated structure for resistance to horizontal forces equal to one-tenth of the dead and live load supported." Page 12-21, Marks' Mechanical Engineers' Handbook, sixth edition, McGraw Hill. The earthquake load will be specified as 300 pounds dead load plus 300 pounds live load times 0.1 or 60 pounds.
- 5. Constraint Loads. Constraint loads caused by the environment and normal functioning of the system are accommodated by system design. The loads would be the result of differences in temperatures and coefficients of expansion of the materials of construction. The collector tube glass elements are attached in a single plane; the opposite (closed end) of the tubular elements are free to float axially and radially. The manifold design represents the only critical subassembly relative to strain induced by differential expansion. Evaluation of this parameter will be by test and similarity to the 144 tubes ERDA collector array.
- Constraint loads, foundation settlement. The effect of foundation settlement equivalent to 2 inches per 50 feet in any

horizontal distance will be evaluated by test.

- 7. Hail loads. Hail loads are specified as resistance to 3/4" diameter hail without impairment to the functional capability of the collector.
- 3.2 Failure Loads and Load Capacity.
 - 3.2.1 <u>Ultimate load combinations</u>.
 - (1) 1.4D + 1.7L = 300 (1.4 + 1.7) = 930 pounds = .067 psi.
 - (2) $0.9D + 1.7W = .9 \times 300 + 1.7 \times 2846 = 5108$ pounds = .37 psi.
 - (3) 0.9D + 1.45E = .9 X 300 + 1.45 X 60 = 357 pounds = .03 psi.
 - (4) 1.1D + 1.3L + 1.7W = 1.1 X 300 + 1.3 X 300 + 1.7 X 2846 = 5558 pounds = .40 psi.
 - (5) 1.1D + 1.3L + 1.45E = 1.1 X 300 + 1.3 X 300 + 1.45 X 60 = 807 pounds = .06 psi.

3.2.2 Ice Loads.

The ice load acting on a tubular element for a one inch glazing thickness is:

Load =
$$\frac{56\#}{Ft.3}$$
 $\left[\frac{\pi}{4} \frac{(4^2 - 2^2) \times 42}{1728}\right] = 12.83\#/tube$

And on the manifold surfaces,

Load =
$$\frac{56\#}{Ft.3}$$
 $\frac{[13" \times 12' + 2 \times 9" \times 12']}{12} \times \frac{1}{12}$ = 145#

Total ice load = 12.83 X 72 + 145 = 1068 pounds = .08 psi.

- (a) (1) 1.4 X 300 + T.7 X 1068 = 2236# = .16 psi.
 - (4). 1.1 X 300 + 1.3 X 1068 + 1.7 X 2846 = 6557 = .45 psi.
- (b) (1) 300 + 1068 = 1368# = .10 psi
 - (4) 300 + 1068 + 2846 = 4214# = .30 psi.

See Section 3.2.4 for test procedure and results.

3.2.4 Load capacity.

The air bag was inflated to a maximum pressure of 0.50 psi (6984 lbs. total load) in increments of 0.10 psi. The deflections at the four representative locations were monitored as was air leakage flow rate.

Air Bag Pressure psig	' Total Load Pounds	(1)	(2) I N C	(3) H E S	(4)	Leakage Flow c.c./Min.
0.	0	0	0	0	0	8800
.10	1397	.061	.061	.088	.073	8800
.20	2794	.104	.108	.148	.110	8800
.30	4190	.135	.143	.211	.146	8800
. 40	5587	.160	.170	.255	.170	8800
.50	6984	.183	.190	.335	.202	8800

A plot of the maximum deflection versus applied load (location 3) is contained in Figure 3.2.4(a). Neglecting the initial system slack which takes place near the origin, there is a linear relationship of deflection versus load within the limits of experimental error. A review of the experimental data of section 3.2.4 and 3.3.1 indicates an error band of deflection versus load of the order of .003"/0.1 psi. Thus, to a load factor of 1.7 times design, the load versus deflection curve indicates that all elements of the collector structure are well within their elastic region.

3.3 Damage control.

3.3.1 Resistance to Damage.

The collector was subjected to the loading conditions of Criterion 3.2.1, combination (4) with the load factors specified rather than the load factor of 1.0 as allowed by the criterion. The results of the load tests were:

Air Bag Pressure	Total Load	1	Dial Rea 2	adings 3	4	Leakage Flow
psig	Pounds		INCI	HES		c.c./Min.
0 .05 .10 .15 .20 .25 .30 .35 0	0 698 1397 2095 2794 3492 4190 4889 Residual Deflectio	0 .037 .060 .083 .104 .121 .137 .152 .010 n	0 .030 .067 .092 .116 .135 .155 .174 .019	0 .046 .080 .113 .139 .165 .196 .228 .011	0 .031 .055 .075 .090 .105 .123 .141 .010	8700 8700 8700 8700 8700 8700 8700 8700

No significant change in leakage flow rate could be detected as a function of loading conditions. The residual deflection upon release of the load is considered to be within acceptable limits. No subassembly or component suffered damage of any kind which would require replacement or repair or which would impair the intended function during the service life.

3.3.2 Glazing design.

Steel ball drop tests were conducted on six collector tube elements mounted in a manifold section and in an end support bracket. Failure of the cover tube was experienced in each test case when a combination of ball size and drop height reached critical conditions. In no

case was a failure of the absorber tube experienced. The fractured glass remained in close proximity to the failure point and in all cases within the installed area of the collector. No sign of flying glass representing a safety hazard was experienced.

3.4 Cyclic loads.

3.4.1 Deflection limitations.

Loading conditions

(1) 1.0D to 1.0D + 0.5L = 300 pounds to 450 pounds.

(2) 1.0D to 1.0D + 0.5W = 300 pounds to 1723 pounds.

A preload cycle from (1D) to (1D + 1W) = 300 + 2846 or 3146 pounds distributed load was applied to the collector module to reduce system slack. The gages were zeroed and the cyclic testing initiated. The air bags were pressurized to 0.115 psig. (3.19" w.g.) and pressure removed to less than 0.05" w.g. The cycle was approximately 6 minutes 40 seconds. The leakage air flow with the manifold pressurized to 1 inch, w.g. was 3700 c.c./min. A total of 1072 cycles was accumulated over approximately five days of testing. The deflections measured after 1072 cycles were:

,		Leakage/			
Applied Load	1	2	3	4	Flow
3.19" w.g. 1606# 24 hours after load removal	.080" .020"	.076" .008"	.086" 004"	.062" 0.0"	8700 cc/min 8800 cc/min.

The residual deflections were within 25% of the deflections with load applied and the leakage air flow test demonstrated that structural integrity was preserved during and after 1000 cycles of load testing.

3.6 Creep and residual deflection.

3.6.1 Deflection limitations.

The maximum allowable deflection per the subject criterion is:

$$d = \frac{1.25S}{180} \times \frac{0.2D + 1.5L}{L}$$

There are 20 mounting attachments between the collector rail support assembly and the structure to which the collector is attached. The deflection of the span of the rail assembly between the manifold and outboard support structure is represented by gage No. 2. The deflection of the span of the rail assembly between mounting pads of the outboard support structure is represented by gage No. 3. The span lengths are 44 inches and 36 inches respectively.

Since L = D, the equation for allowable deflection reduces to:

$$d = \frac{1.255 \times 1.7}{180}$$

A total distributed load of 700 pounds was applied to the collector for 24 hours. The measured deflections of $d_2 = .041$ " and $d_3 = .049$ " were recorded. These values are well below the allowable limits. The residual deflections measured three hours after removal of the load were $d_2 = .005$ " and $d_3 = -001$ ". These values are well within the allowable limits for residual deflection of $d_2 = .061$ " and $d_3 = .050$ "

3.7 Hail resistance.

3.7.1 <u>Hail size and loading</u>.

The criterion for resistance to hail contained in the approved Verification Test Plan was that hail size up to 0.75" in diameter would not cause excessive damage to or impair the performance of the tubular collector elements, manifold or end support brackets. A representative section of the Model SEC-601 collector was subjected to testing under simulated hail conditions at the Center for Disaster Research, Texas State University. A copy of the test report issued by the center is contained in attachment 3.7.1(a). No excessive damage to any collector elements was experienced with hail sizes up to 1.25" in diameter.

3.8 Constraint loads.

3.8.1 Foundation settlement; contraction and expansion.

1. The effect of a differential foundation settlement of 2 inches in any horizontal distance of 50 feet was investigated. One corner of the collector was rigidly attached to a simulated support structure. All other attachments were removed and the remaining three corners shimmed above the plane of rigid attachment as indicated in Figure 3.8.1(a). The numerical values at each of the three unrestrained corners represents the effect of foundation settlement of 2 inches per 50 feet. The measured leakage flow rate was 8700 cc/min at a manifold pressure of 1 inch w.g. Shims were then added to each of the unrestrained through corners of the module and leakage air flow recorded. The shim

59a

height in inches and the value in relation to the criterion of 2 inches per 50 feet were:

Sh	imed Hei	ght	Relative Deflection			Air Leakage Flow Rate		
Α	В	C	A	В	<u>C</u>	cc/Min.		
.323" .573" .823" 1.073" 1.323" 1.573"	.580" .830" 1.080" 1.330" 1.580" 1.830"	.480" .730" .980" 1.230" 1.480" 1.730"	2" 3.55" 5.10" 6.64" 8.19" 9.74"	2" 2.86" 3.73" 4.59" 5.45" 6.31"	2" 2.52" 3.38" 4.24" 5.10" 5.97"	8700 8700 • 8700 8700 8700 8700 8700		

The data demonstrates that the collector can withstand 3 to 5 times the criterion for foundation settlement without damage or impairment of performance of the collector.

2. The effect of constraint loads arising from thermal expansion or contraction is reported and evaluated in Section 5.2.

3.9 Ponding conditions.

3.9.1 Design provisions.

Physical inspection of the Model SEC-601 collector roof installed for the thermal performance testing of Section 1.3 demonstrates that no potential exists for the accumulation of water. Visual observation during and after severe rain conditions also confirms that no ponding conditions exist.

Review of items 3.1, 3.1.1, 3.2, 3.2.1, 3.2.2, 3.2.4, 3.3, 3.3.1, 3.3.2, 3.4, 3.4.1, 3.6, 3.7, 3.7.1, 3.8, 3.8.1, 3.9, 3.9.1 are successfully completed.

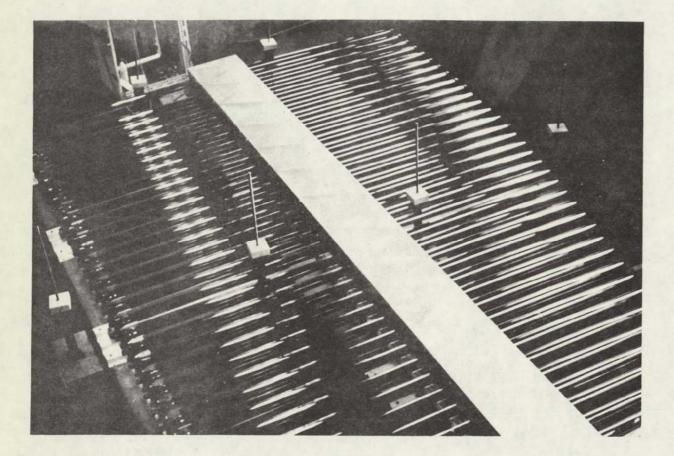
emaker Robert Romaker

0.I. Test Engineer

91. 3. Moan

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

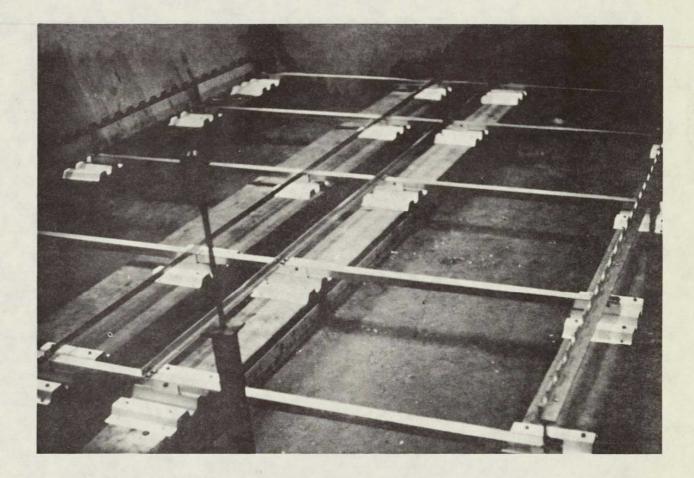
David C. Ulle


David C. Miller, Ph.D. SH&G Certification Officer

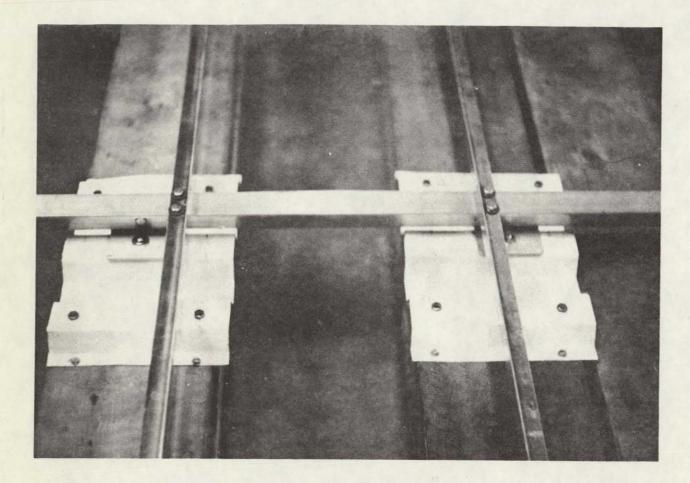
#illiam C. Louie, V.P.
P.E. (Mi. 11084)
SH&G Certification Officer

cuille John M.

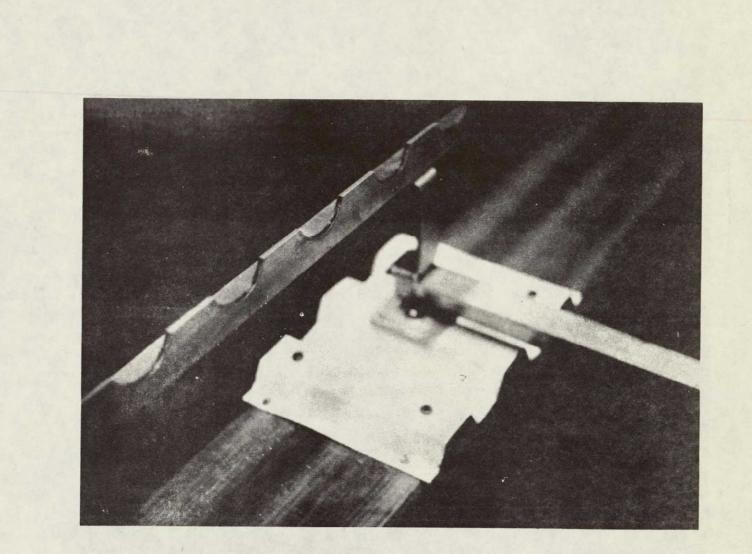
/Technical Manager NASA Approval


ORIGINAL PAGE IS OF POOR QUALITY

OVERVIEW: MODEL SEC 601 COLLECTOR MOUNTED ON STRUCTURAL TEST RIG

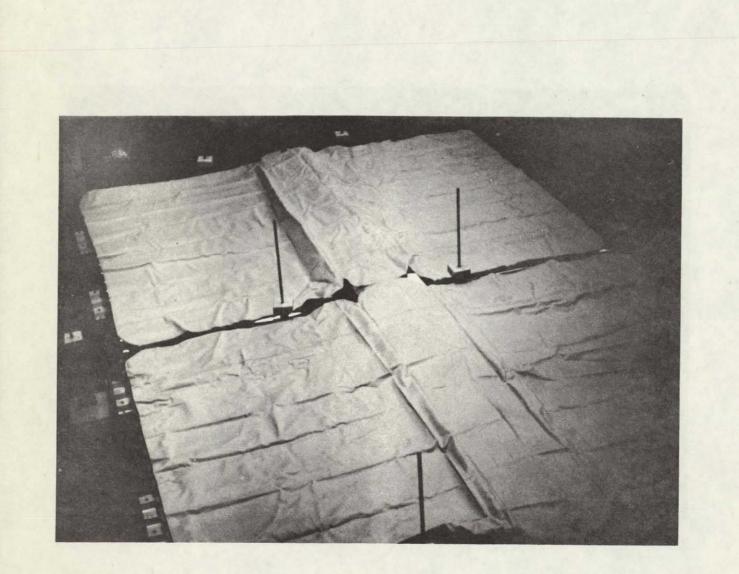

Figure 3.1 (a)

LOAD TEST FIXTURE BASE; 2" x 10" STRINGERS, MODULE SUPPORT STRUCTURE.


Figure 3.1 (b)

CLOSE UP: T BAR SUPPORTS; MOUNTING PADS SECTIONS OF ALCOA 4-INCH RIB BONE WHITE #K2028-30, FLOUROCARBON DIFFUSE REFLECTANCE BACKING SCREEN.

Figure 3.1 (c)


ORIGINAL PAGE INY OF POOR QUALITY

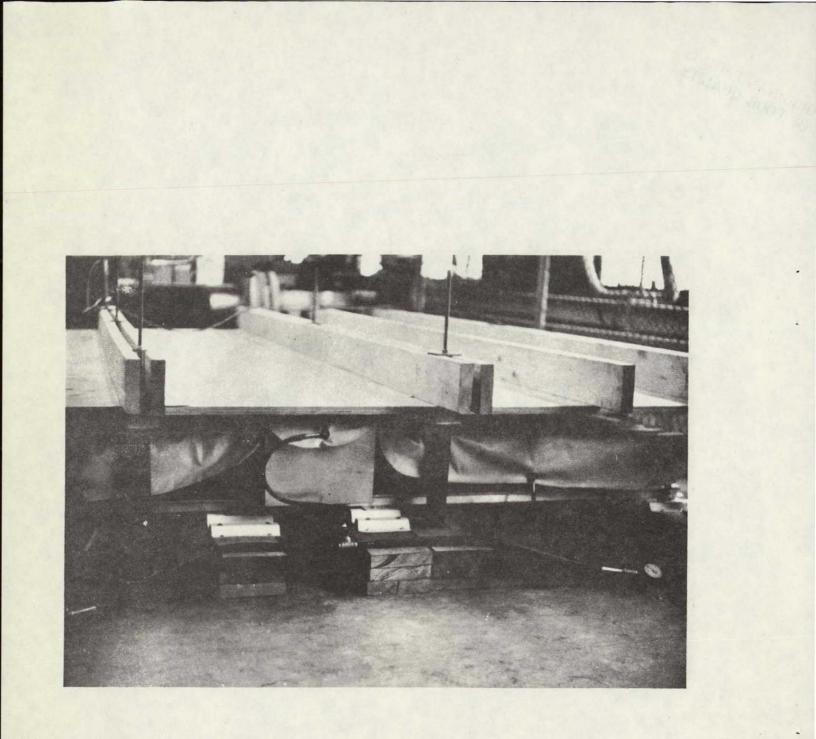
ORIGINAL PAGE 13 OF POOR QUALITY

CLOSE UP: OUTBOARD SUPPORT STRUCTURE, STAND OFF, T BAR, ROOF MOUNTING PAD, SECTION OF ALCOA BONE WHITE BACKING SCREEN.

Figure 3.1 (d)

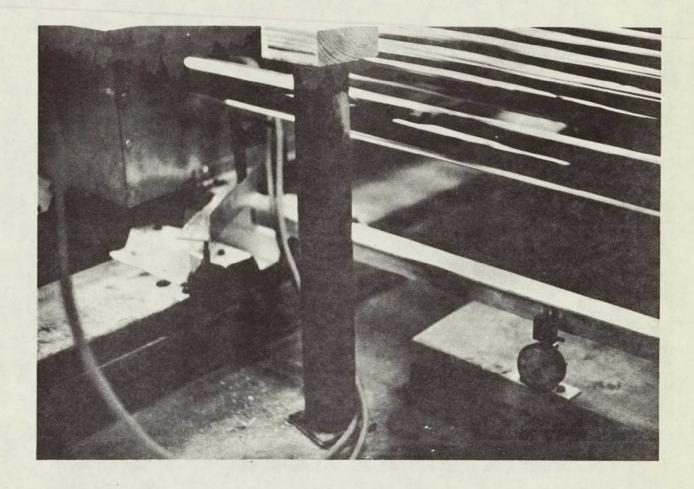
TWO SECTION AIR BAG; REACTION ELEMENT STAND OFF SUPPORTS.

ORIGINAL PAGE IS OF POOR QUALITY

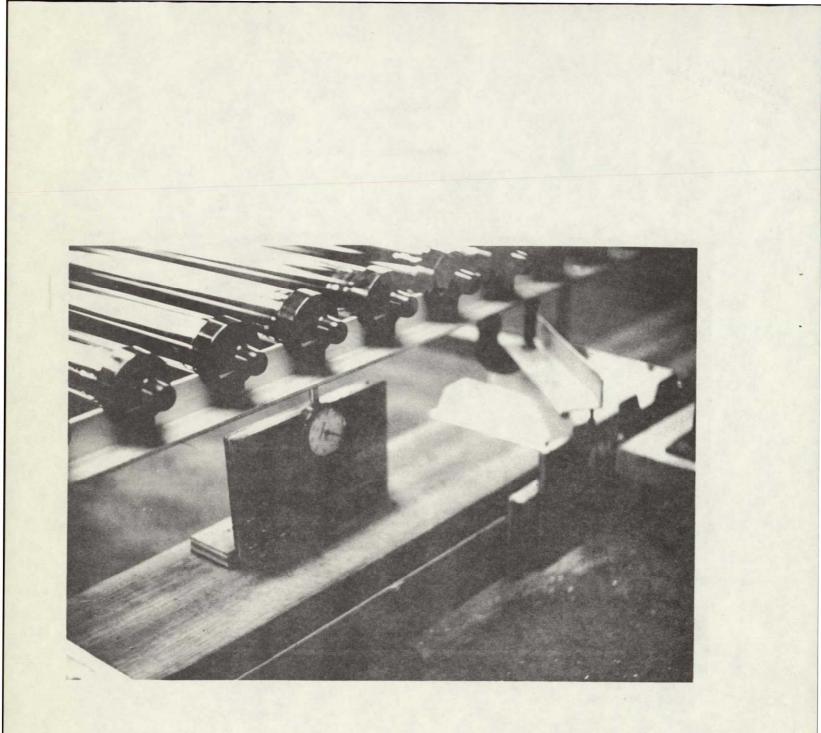

Figure 3.1 (e)

ORIGINAL PAGE IS OF POOR QUALITY

REACTION MEMBER MOUNTED IN PLACE


Figure 3.1 (f)

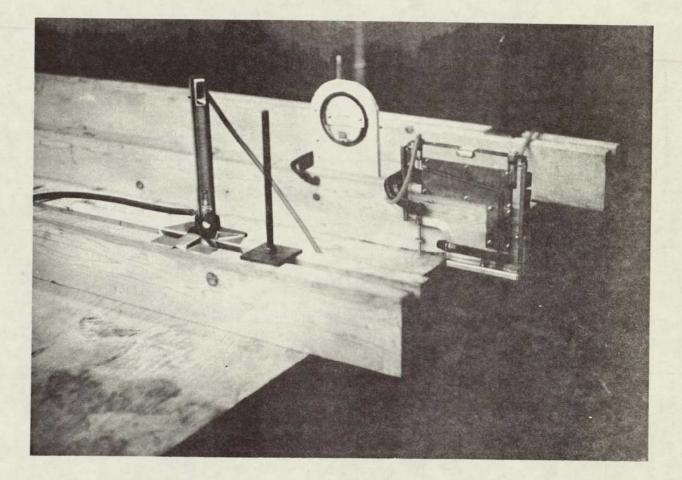
CLOSE UP: REINFORCED CONCRETE FLOOR; 2" × 10" STRINGERS; MODEL SEC 601 COLLECTOR; AIR BAG; REACTION ELEMENT.


Figure 3.1 (g) ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

DIAL INDICATORS: DEFLECTION POSITIONS NO. 1 & NO. 2.

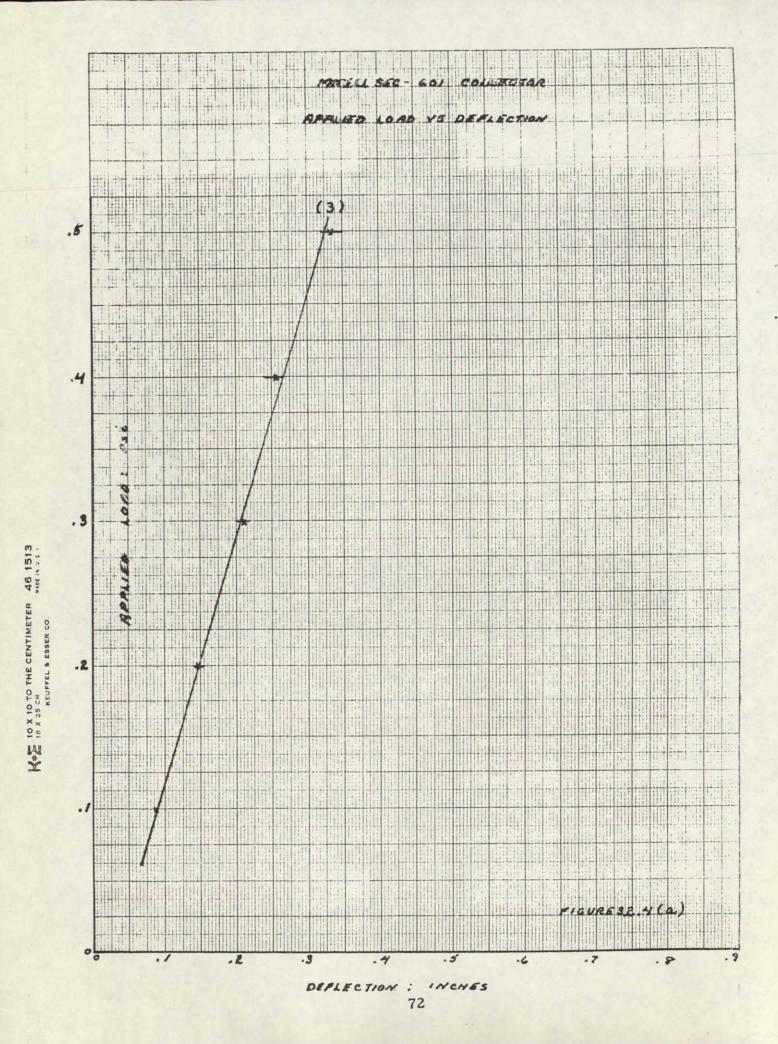
Figure 3.1 (h)



DIAL INDICATORS: DEFLECTION POSITIONS NO. 3 & NO. 4.

DE POOR QUALITY

Figure 3.1 (i)


ORIGINAL PAGE IS OF POOR QUALITY

LOAD TEST FIXTURE; MEASUREMENT EQUIPMENT:

- LEFT: MATHESON, BALL FLOAT FLOW METER LEAKAGE FLOW
- CENTER: PRESSURE GAGE, 0 to 30 INCHES, WATER COLUMN. AIR/BAG PRESSURE / MANIFOLD PRESSURE
- RIGHT: INCLINOMETER, 0 to 5 INCHES, WATER COLUMN. MANIFOLD PRESSURE / AIR BAG PRESSURE.

Figure 3.1 (j)

Report on Hail Impact Tests on Owens-Illinois Solar Energy Collectors

Impact tests were conducted on a 12 tube liquid collector and a 12 tube air collector for Owens-Illinois on March 23 and March 24, 1978 at Texas Tech University. The missiles used in the tests were spherical iceballs that simulate hailstones. Missile diameters of 1.0 inch, 1.2 inch and 1.5 inch were used.

A compressed air cannon and photocell timing device were used to fire the missile at a collector tube. In each trial a tube was selected and missiles were fired at increasing velocities until breakage occurred. The velocity resulting in breakage was recorded and photographs were made when the breakage was such that it would be apparent in a photograph.

All impacts were made approximately 9 inches from the top of the collector tube. Except where noted, the impacts were normal and were centered on the tube. This location of impact is thought to present one of the more severe cases for this type of collector.

Velocities of hailstones are affected by hailstone diameter and by wind giving the hailstone a horizontal velocity in addition to the vertical velocity. Vertical velocity is given by

$$V_{T} = 53.5 D^{2}$$

where D is diameter in inches. and V_T is in miles/hour Resultant velocity V_R is $V_R = (V_T^2 + W^2)^{\frac{1}{2}}$

where W is wind speed in miles/hour

Another way to compute $\boldsymbol{V}_{\boldsymbol{R}}$ is

 $V_{R} = \frac{V_{T}}{COS} \Theta$

where Θ is the angle from vertical of the hailstones trajectory. Figure 1 gives velocity curves for several cases.

Liquid Collector Tests

Table I presents test results on the liquid collector. The following conclusions can be made:

1. The 1.0 inch iceballs caused no damage even at velocities much higher than those normally encountered for this size hailstones. A horizontal wind of 86 miles per hour will be required to give a 1 inch hailstone a V_R of 101.2 miles per hour. It appears that the collector can survive 1.0 inch hailstones.

2. The 1.25 inch iceballs gave an average breaking velocity of 73.6 miles per hour; standard deviation was 9.1. V_T for this size hailstone is 60 miles per hour. Tubes 3 and 11 (Tests D and I) were broken at slightly above V_T . It is probable that 1.25 inch hailstones will break some tubes but will not break others due to the tube variation in strength.

3. The tubes appear vulnerable to hailstones with diameters of 1.50 inches and larger.

Air Collector Tests

Table II presents test results for the air collector. Conclusions from these results are:

1. The tubes should survive most 1.25 hailstones without damage. Average breaking velocity was 92.4 miles per hour with

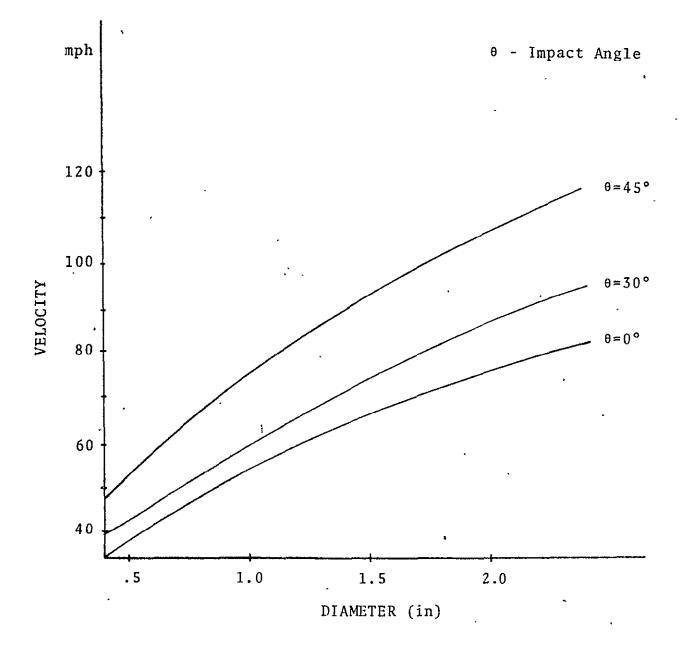


Figure 1 Theoretical Terminal Velocities of Hailstones

Test	Tube Number	Missile Diameter (in)	Velocity (mph)	Comments
A.	. 1	1.00	88.8	No breakage
В	2	1.00	101.2	No breakage
Ċ	2	1.25	72.4	Internal breakag e
D	3	1.25	63.5	Internal breakage
E	4	1.25	73.0	
F	5	1.25	73.3	
G	6	1.25	71.8	
Н	8	1.25	92:6	
I	11	1.25	68.3	Internal breakag e
J	8	1.25	83.7	Glancing impact = side of tube; no breakage
К	1	1.50	59.9	Breakage on first impact; actual velocity for break- age may be lower

Table	I	Liquid	Collector	Test	Results	

Test	<u>Tube Number</u>	Missile Diameter (in)	Velocity (mph)	Comments
А	1	1.00	94.0	No breakage
В	` 6	1.25	86.5	
С	7	1.25	103.3	No breakage
D	8	1.25	99.1	
۰E	9	1.25	79.7	
F	10	1.25	86.5	
G	11	1.25	99.1	
Н	12	1.25	71.3	Impact with collector tilte d back 450
I	1	1.50	93.4	
J	2	1.50	75.6	
K	3	1.50	58.2	
L	4	1.50	73.5	
M	5	1.50	111.1	

Table II Air Collector Tests Results

a standard deviation of 9.4. The minimum breaking velocity was 79.7 miles per hour; a 1.25 inch hallstone will have a velocity V_R equal to 79.7 miles per hour when wind is blowing at 53.7 miles per hour. The second lowest breaking velocity was 86.5 miles per hour; a 62.5 mile per hour wind will result in 86.5 miles per hour from a 1.25 inch hailstone. These wind velocities are possible in thunderstorms; however they are the exception rather than the rule.

2. Average breaking velocity for 1.50 inch iceballs was 82.4 miles per hour; standard deviation was 20.3. Terminal velocity V_T for 1.50 inch hailstones is 65.5 miles per hour. It is expected that some tubes will be broken by 1.50 inch hailstones and that some will survive.

3. The test with the collector at a 45° angle produced breakage at 71.3 miles per hour. Although it was thought that an impact at an angle other than normal would require a higher velocity for breakage, this one test did not support that supposition.

Comments on the Tests

The Owens-Illinois evaucated tube collectors have some unusual characteristics concerning hail survivability due to the collector design. Most hailstones impacts will occur with glancing impacts on sides of the tubes rather than at a 90° angle. All tests except those noted were made at 90° impact angle. By chance some hailstones will miss the tubes and strike between adjacent tubes; others will strike at a severe angle as shown in Figure 2 and will cause no damage. Test J

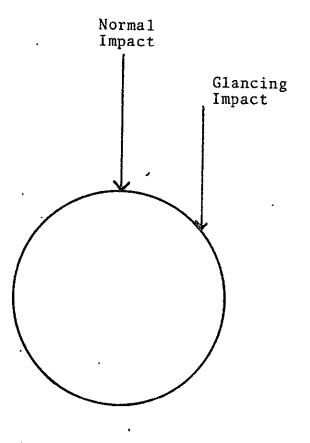
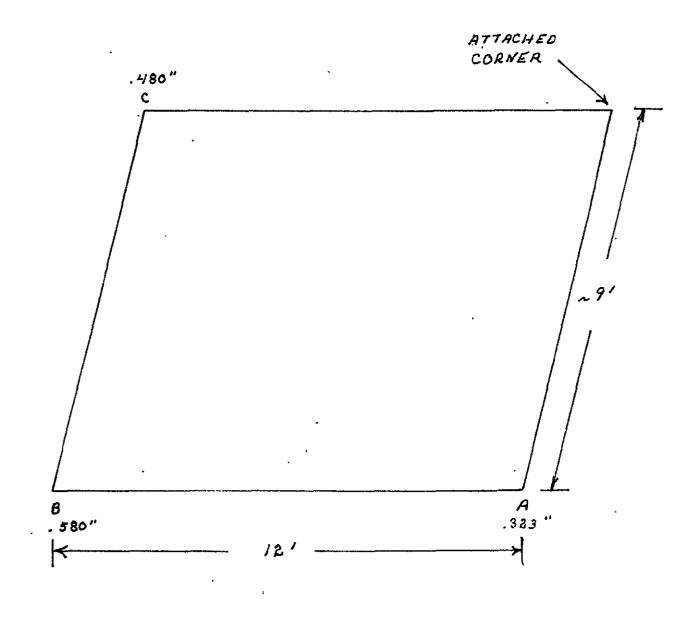


Figure 2. Tube Impacts

in Table I was made at such an angle, and no damage was observed.

A second unusual characteristic of the Owens-Illinois collectors is the ease of replacement of individual tubes. If one tube in a bank is broken, only that tube must be replaced. Also if breakage is internal and not on the exterior of the tube, operation can continue until the damaged tube can be replaced. In several cases breakage was internal with the outer tube surface remaining intact; there will be no loss of fluid, but there will be some decrease in performance due to the tubes having lost the vacuum.

The iceball impact tests likely produce a more severe test than that from a hailstone at the same velocity. Iceballs are cast uniformly and are at a density that is at the upper limit of the range of hailstone densities. Also the location of impact and impact angle were selected to present a worst case.


Results obtained from these tests should be used with caution in warranting survivability in a hailstorm. Hailstones in a given storm are of various sizes; there is no official measurement of sizes and no highly accurate method available for measurement. Also hailstomes rapidly decrease in size due to melting. This results in a situation where it is very difficult to establish the size of a hailstone that caused breakage to a collector tube. It is suggested that some type of a hailpad be installed at each location of SunPac collectors to provide a record of hailstone sizes should this record be needed.

Photographs

The following photographs were made after breakage occurred.

<u>Collector Type</u>	Test	Tube Number	Figure Number
Liquid	А	1 .	3
Liquid	F	5	4
Liquid	I .	11	5
Air	В	6	6
Air	В	6	7
Air	E	9	. 8
Air	F	10	9
Air	F	. 10	10
Air	G	. 11	11
Air .	G	. 11	12
Air	Н	12	13
Air	Н	12	14
Air	J	2	15
Air	К	3	16
Air	L	4	. 17
	•		

Figure 18 shows the collector positioned for Test H.

SIMULATED SUPPORT ATTACHMENT

.

.

.

FIGURE 3.8.1(a)

4.2 Fail Safe Controls.

4.2.1 System Failure Prevention.

Accelerated life tests are conducted on collector tube ele-. ments as a continuing in house program. The DSET outdoor exposure test program, originally planned for use as documentation for this section, has been reduced in duration. The results of the 0.1. ongoing accelerated life tests are now considered to be more appropriate as documentation. The test consists of heating the internal volume of the absorber tube by a calrod unit. Figure 4.2.1(a) contains a chart of the experimental test results for a standard production tubular element exposed for 2035 hours to 500°F and an additional 9242 hours at 600°F. The tubular element was tested periodically for the stagnation temperature it would reach when subjected to radiation from an indoor solar simulator. The change in the comparative stagnation temperature was from 320°F initially, a maximum of 342°F and down to a minimum of 300°F.

The collector tube element life is the most critical component in determining the long term thermal performance of the collector. The accelerated life test data of Figure 4.2.1(a) documents the capability of the collector tube elements to withstand long-term periods safely and reliably under no flow conditions.

Attached as Figure 4.2.1(b) is a chart of temperature data derived from the highly instrumented ERDA air collector. The manifold thermocouples were located in the annulus air flow paths as indicated schematičally at the bottom of Figure 4.2.1(b). The tube on the inlet side of the manifold was upward facing. The highest temperature recorded

for convection air reaching the manifold was 210°F when the recorded annulus temperature (not for the same tube pair) was 508°F. Under stagnation conditions the manifold temperature is limited and represents no safety hazard.

Figure 4.2.1(c) contains a plot of the exit air temperature of the air as it leaves the tube annulus and enters the manifold. The ERDA collector array was allowed to soak under no flow conditions until the air temperature in the tube annulus as measured at the axial midpoint of the tube element reached steady state. At solar noon, air flow at 8 lbs./min. Ft.² was introduced. The decay in temperature of the air in the tube annulus and the transient air temperature at the tube annulus exit plane are recorded as a function of time. The temperature overshoot prior to reaching steady state will be noted. A thermocouple located in the tube annulus is provided with each Model SEC-601 collector. The Operations Manual specifies that the control system shall include the necessary logic and a suitable control element shall be provided to preclude the initiation of air flow when the air temperature in the annulus reaches or exceeds 400°F. In the event of a control failure, air flow could be initiated after a long period of exposure to high levels of radiation and the manifold could be subjected to a short term high temperature excursion as indicated in Figure 4.2.1(c). No failure mode of the collector will result from such short term exposure. However, repeated exposure to such overtemperature conditions could degrade the insulation properties of the manifold and/or induce an air leakage path. These changes could result in some loss in thermal performance of the collector.

Several collector tube elements were subjected to thermal shock. The tube elements were heated and cold air introduced as a worse case condition. A chart of the test conditions is contained in Figure 4.2.1(d).

The criterion of Section 4.2.1 are met by similarity of design, material selection, and construction of the ERDA air manifold and the collector tube elements with the Model SEC-601 collector.

Review of items 4.2 and 4.2.1 successfully completed.

obert F. Romaker

0.1. Test Engincer

- アイチ シー・シー・シー

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

1 ille

David C. Miller, Ph.D. SH&G Certification Officer

Beech William C. Louie, V.P

P.E. (Mi. 1-1084) SH&G Certification

analle

John M. Caudle Technical Manager NASA Approval

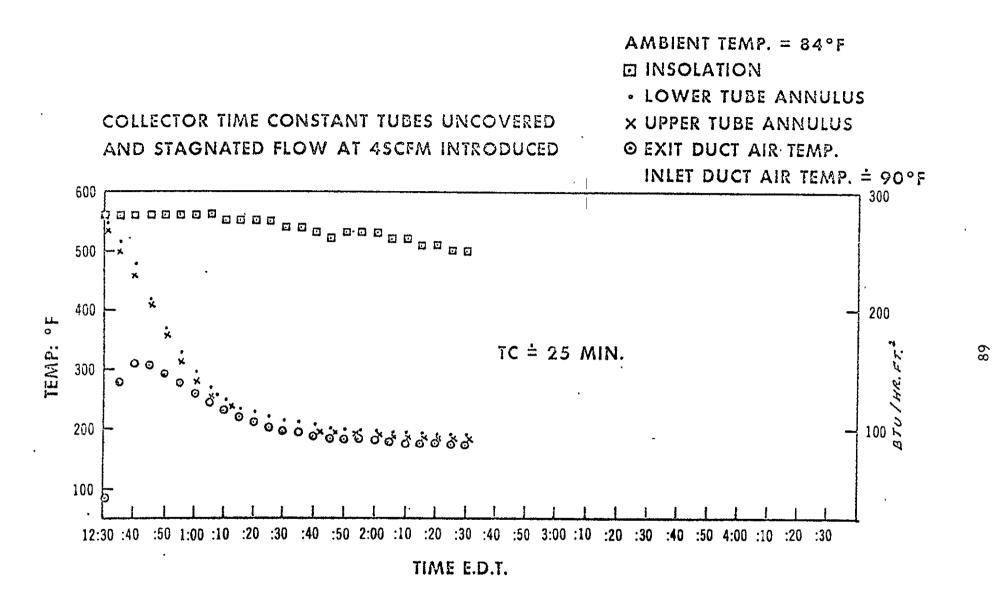
-	بو د ویو او مودهمره	<u>A</u>	CCELER	ATED	LIFE	TEST		`			
		STAG. [*] TEMP. °F.	TEST TEMP. OF	ACC.TEST HOURS				1 1			
	3/22/76	320	INITIA	L TEST					2		-
	3/30/76	328	500	24	•			•			:
	419176	336	4	254				•			1
	4/19/76	340	41	490			•	•			1
	. 5/10/76	342	<i>)</i> •	985	•	:		•	,		
	_ 5/20/76	335	14	1225				•	:		1
	6/28/76	332	**	2035		t		:	·		
	CA	ANGED	TEST	TEMP	TO 600%	1 6		i I			i 1
	7/2/76	337	600	95		1 1		i	۱		
	7/23/76	324	"	595		E 1 1			•		
	8/6/76	326	47	930		! •			•		1
ι.	9/17/76	322	11	1935			,		-	•	•
	10/18/76	302	<i>a</i> •	2675		! ·		1	ı •		
	1/7/77	308	£1	4587		: .		 ,	1		
	4/18/77	300	44	6465				1	:		
	6/6/77	325	48	7615		· !		t	I T	•	ł
	8/16/77	305	*	9242		•		1	:		1
	•					r 1				• •	
				l		 		1	1		
		1		•				1			
				ı							
			•			1	J.	•			
	· ,						·		-		1 1
									·		
							-	•			

٢

FIGURE 4.2.1 (a)

ł

÷


Project 2420,005 Description CRDA CONTRACT (11-1)2919 AIR SYSTEM

STAGATATION TEMPERATURES,

			2		• •
	TOP M	NIFELD	Batten	MANHALD	MSOLATION .
TIME	INLET	OUTLET	INLET	OUTLET	· · ·
11:15	131°F		130	E	0.40 BTU /; "
	13.7	2.3 28	120	127 · 126	
	131	13 .	115	12.4	
	175	128	103 .	121	
Annexa	114	134	121 13.3	157 127	;
			136	133	-
		۴	ANX2115 -	>1/13	
#:3C	204	210	311	188	2600711
	213	193 207	185 189	195	
	210	210	204	192.	
	204	202 202	198	201 200	
	100	20-	199	200	
		-02	: 203	198	
AMNUL	415	508	ANNULUS	32.3	
		11			

R BALLET DUTLET T/C

FIGURE 4.2.1(b)

.

FIGURE 4.2.1(c)

Intra-Company

to

cc: G. R. Mather - Dev. ctr. K. Moan - Dev. Ctr. F. H. Brown - Dev. Ctr. B. R. Emch - Dev. Ctr. Thermal Shock Testing of SunpakTM Sunair Collector Tubes. subject

1. Introduction

SunpakTM Sunair collector tubes can reach stagnation temperatures of 600 -625°F under no-flow conditions. If air circulation is started in a stagnating system the inside surface of the absorber tube would be thermal shocked. The stresses generated in this type of thermal shock would be less than if water caused the thermal shock, due to the lower thermal mass of the air and the lower heat transfer film coefficient at the air/glass interface.

The purpose of this investigation was to develop an air thermal shock test for SunpakTM Sunair collector tubes, and to assess the thermal shock strength under conditions of maximum expected shock and abuse.

2. Conclusions

2.1 SunpakTM Sunair tubes can withstand the maximum possible thermal shock attainable (stagnation to room temperature air) even when severe defects are present in the glass.

3. Test Procedure

3.1 Thermal Shock

The collector tubes were heated with a calrod heating element enclosed in a one inch diameter aluminum tube. The calrod unit was placed inside the collector tube and the end sealed off with insulation. The tube temperature was measured and controlled by separate thermocouples placed at midpoint.

After the control temperature had been reached (about 45 minutes), the collector tube was removed from the heating fixture and placed in a verticle rack.

FIGURE 4.2.1(d).

Immediately an aluminum tube, identical to the feeder tube of a SunpakTM Sunair air distribution system, was inserted into the tube. Nitrogen from a compressed tank was flowed through the feeder tube for five minutes. The temperature of the nitrogen was measured before the test and after the five minutes.

Test glass temperatures were varied from $625^{\circ}F$ to $700^{\circ}F$. Nitrogen temperature was $70^{\circ}F \pm 2^{\circ}F$. Nitrogen flow rates of 120 CFH (Standard) and 360 CFH (3 times standard-more shock) were used.

3.2 Tube Scratching

In order to create a condition where the collector tubes are more likely to break under thermal shock, severe chatter checks were intoduced on the inside surface as follows:

A No. 14 hardened sheet metal screw was fastened through a flat steel strip so that the end of the screw extended through the strip. After sharpening the screw with a file, the tubes were scratched by running the tube over the screw at approximately 80% of the mid portion length of the tube. Six pairs of scratches were produced axially, approximately equidistant.

3.3 Pressure Testing

Hydrostatic destructive pressure testing was performed on the tubes of 3.2 after thermal shock tests had been completed. A hand operated piston pump was used at a load rate of about 100 psi per second.

4. Results

Table 1 summarizes the thermal shock test results. No breakage was encountered.

Pressure test of the five intentionally defected tubes, Nos. 4-8 gave an average failure pressure of 270 psi with a range of 250 - 300 psi.

Tube(1).	Glass	Nitrog	en	Thermal	Nitrogen
쁖 -	Temp.	Temp. (OF)	Shock AT	Flow
	(°F)	Initial	Fina	l (^o f)	(CFH)
1	700	68	208	632	120 .
2	700	68	256	632	120 ·
3	700	71	230	619	120
1	700	68	116	632	360
2	700	71	117	629	360
3	700	71	115	629	_360
• 4	700	71	243	629	120
5	660	71	258	589	120
6	700	69	247	631	120
7	625	70	245	555	120
. 8	620	69	263	551	120
4	700	68	142	632	360
5	660	70	151	590	360
б	700	69	143	63,1	360
7	625	69	155	556	360
8	620	68	152	552	360

;

.

.

' Table 1. Thermal Shock Summary

Notes

•

.

.

Tubes 1-3 standard tubes, no abuse
 Tubes 4-8 defected tubes, see 3.2

.

4.3 Fire Safety.

4.3.1 Applicable Fire Standards.

Applicable sections of NFPA 89M, NFPA 90A and 90B, NFPA 30, NFPA 31, NFGC 54-1, NFPA 25b, NFPA 211 and ANSI/ASTM E-84 were reviewed for applicability to the Model SEC-601 collector. In addition, "HUD Intermediate Minimum Property Standards Supplement -- Solar Heating and Domestic Hot Water Systems, 1977 Edition" 4930.2 was reviewed for applicability. A review of the drawings and specifications of the Model SEC-601 collector was also completed. Experimental tests and evaluations were performed to evaluate qualitatively such factors as potential heat, rate of heat release, ease of ignition and smoke generation. The outside surfaces of the collector subsystem consist almost entirely of a metallic or glass material. All elements of the collector subsystem are mounted external to the roof (fire wall) of the building enclosure. The collector subsystem does not reduce the fire resistance rating of the roof assembly. A major or catastrophic fire condition would have to be reached before the collector components would reach ignition conditions. The heat transfer fluid is air and therefore does not contribute to a fire hazard condition.

4.6 Protection of Potable Nater and Circulated Air.

4.6.4 Growth of Fungi,

Silicone base and zytel nylon materials, K633 glass and aluminum are the materials in contact with the air circulating in the Model SEC-601 collector. Attached Figure 4.6.4(a) and Figure 4.6.4(b)

4.6.4 (cont.d)

are design handback data on silicone and zytel nylon materials. The data indicates the resistance of the material to the growth of bacteria, fungi and termites.

Review of items 4.3, 4.3.1, 4.6, 4.6.4 successfully completed.

maker

Robert F. Romaker O.I. Test Engineer

C. Willer

David C. Miller, Ph.D. SH&G Certification Officer

<u>*H.S.Moan*</u> Kenneth L. Moan

P.E. (Ohio 5203) 0.I. Approval

William C. Louie,

P.E. (Mi. 11084) SH&G Certification Officer

1 Canolle John M.

Technical Manager NASA Approval

ر بی

DUPONT - ZYTEL' DESIGN Handbook - 1972 Er. shown in this Table and for many conditions not listed. Consult your Du Pont Engineering Plastics Sales office 4/10/78

At temperatures in excess of 150° F., however, certain

specific lubricant additives may effect performance. Test data on the behavior of "Zytel" exposed to these automotive fluids at elevated temperatures is essential to the success of the intended use. This matter is discussed in detail in an SAE Paper*.

Another approach designed to measure the suit-ability of "Zytel" in various environments involving exposure to automotive materials is discussed in a second portion of that same paper**. This describes how automotive parts were obtained and evaluated after extended in-use service. Copies of the SAE Paper can be obtained from your Engineering Plastics Sales office.

- Gasolines. "Zytel" nylons are outstanding in their resistance to conventional automotive fuels. "Zytel" shows an average weight increase of 0.57 percent and an average dimensional change of +0.009 percent after 270 days exposure at 73° F. (23°C.) to the following gasolines: Esso Regular, Esso Extra, Esso Golden Extra, Amoco High Test, Sunoco, Gulf Crest, Texaco, Mobile Premium,
- Acids, Bases and Oxidizing Agents, "Zytel" nylons are very resistant to alkalies even at high concentrations up to 40 percent. They are, however, rapidly attacked by strong mineral acids and/or oxidizing agents especially at high operating temperatures. Use in dilute solutions of acids or oxidizing agents under ambient conditions is often possible, but actual or simulated service tests should be conducted to ascertain the suitability of "Zytel" for the particular application.
- Soaps and Detergents. Tests conducted at 180°F. (82°C.) show that "Zytel" nylons have excellent resistance to standard detergent formulations such as "Tide", "Dreft", "Dash", "Oxydol", "Oakite", Calgon and Fels Naphtha soap.

CHEMICAL RESISTANCE OF GLASS-**REINFORCED "ZYTEL"**

The chemical resistance of glass-reinforced "Zytel" nylons is frequently superior to that of unmodified nylons. For a detailed discussion, see Section 11.

TABLE OF CHEMICAL RESISTANCE

Information on the resistance of "Zytel" to specific reagents is shown in Table 31. Ratings of excellent, satisfactory or unsatisfactory are based upon property retention for test bars exposed to the specified concentrations of the materials for the indicated time periods and temperatures. Chemical resistance information in Table 31 is based on appearance and on retention of physical properties normally after drying to remove residual moisture and reagents.

Du Pont also has accumulated a large bank of information on chemical resistance of "Zytel" to materials not (see back cover) if additional chemical resistance information is needed.

Bacteria And Fungi: Soil And Underground Conditions

"Zytel" nylons have been found remarkably resistant to attack from bacteria, fungi and termites both in laboratory-type controlled tests and in burial tests.

Test specimens of "Zytel" 42 were buried at Landenberg, Pennsylvania for 3-1/2 years in termite-infested soil. Examination after burnal showed no attack by termites nor any apparent deterioration from fungi, insects or other biological agencies. It was concluded that "Zytel" was neither attractive to termites nor readily utilized by fungi. Control specimens of pine

wood showed heavy infestation with termites. Two types of "Zytel" ("Zytel" 101 NC-10 and 211 NC-10) were tested microbiologically for their ability to support Salmonella typhosa growth, (food poisoning). The test proved that these samples would not support the growth of this bacteria.

Molded specimens of "Zytel" 101, 103, 105 and 63 were tested for resistance to fungi representatives of the following groups: (1) chaetomium globosum, (2) rhizopus nigricans, (3) aspergillis flavus, (4) penicillium luteum, and (5) momononiells echinata.

Test bars exposed for 28 days to active environments with respect to fungi showed no visual evidence of attack after cleaning and no loss in physical properties. Also, no changes occurred in molecular weight.

Irradiation

Among plastic materials, "Zytel" 101 is intermediate in its resistance to the heterogeneous radiation flux of an atomic pilet. Thus, "Zytel" 101 is more resistant than such materials as cellulose acetate and methyl methacrylate polymer, but less resistant that polyvinyl chloride acetate. During radiation, test bars of "Zvtel" 101 initially show increased tensile strength with some loss in toughness. With progressive radiation, brittleness develops.

Furthermore, "Zytel" 101 is relatively resistant to the effects of gamma radiation^{††}. Tests on nylon film (66 nylon) made after exposure to 6 megarads of gamma radiation indicate essentially no harm to the material. On the basis of the study, it was concluded that 66 nyton could be considered as packaging of food subject to perservation by high energy radiation.

^{*&}quot;The Suitability of 66 Nylon Resins for Molded Parts Involving Long-Term Resistance to Heat, Gasoline and Salt", Society of Automotive Engineers, Mid-Year Meeting, Detroit, Michigan, May 18-22, 1970, Paper =700485.

^{**&}quot;Evaluating the Effect of Extended Service in Automobiles on Parts Made of 66 Nylon and Acetal Homopolymer", Society of Automotive Engineers, Mid-Year Meeting, Detroit, Michi-gan, May 18-22, 1970, Paper #700485.

^{*}The United States Atomic Energy Commission ORNL-928, Sisman, O. and Bopp, C. D., June 29, 1951.

^{††}Krasnansky, V. J., Ashhammer, B. G., and Parker, M. S., SPE Transactions, July 1961 - Effect of Gamma Radiation on Chemical Structure of Plastics.

The sector of th

Resistance

For the subset of silicons rubber will not support the subset of silicons rubber will not support the rescaled support of silicone rubber have been acceptuly tested against the two major military specilitations for fungus resistance: MIL-F-8261, Fungus, Resistance Tests, Aeronautical and Associated Maternals, Ciencial Specification For; and MIE-E-5272A, Propagate and Testing, Aeronautical and Associated Specification For The fungi internal, General Specification For The fungi inted in these tests were: Aspergillus Niger, Asper 1938; Flavas, Frichodsona T-1, Chartomium Globotan, Penicillium Luteum, Memonicila Echinat...

lighton Resistance

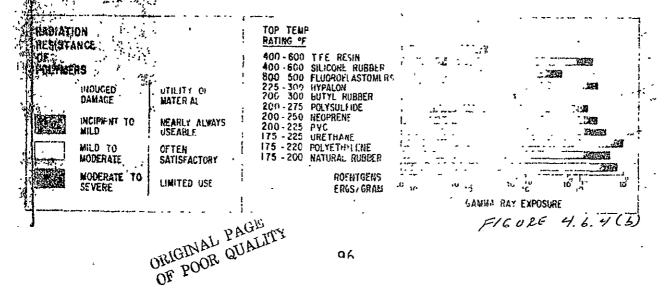
The ability of silicone rubber to resist radiation damis at normal to portaines is comparable to manor resynthetic polymers. However, at comperature extraines, silicone subber offers a combination of thermal, or patition, and radiatione resistance not available in any other polymer.

aris tidiation resistance is normally defined by the provide silicone tibber to retain usable physical reparted after exposure to high radiation dosage tides, silicone rubber reflects satisfactory resistance interpreted to 101 recations. This radiation resisttion size steeds that of TFE resin and is comparable of provident to furnicalisationers at room temperature. Available data, thus far, indicates a distinct radiation reparative advant go of silicone rubber over both TFE and furnessioners at relevated temperatures.

Release Characteristics

PART # 5015

Silicone rubber prostick better release from sticking than any oth radber. One cample of an application utilizing these release properties is the ose of silicone rubber for the rollers used in processing sticky materials such as hot polyethylene and adhesives.


Because silicone rubber rollers provide excellent rolease, they are used to handle sticky emborials.

Bonding Properties

When properly applied, silicone rubber compounds, will hond and have great isefulness as adhesives or scalants. Such bonds are tough and remain flexible at competatures up to 5001 and cari be made to almost all metals, glass, ccramics, most rigid plastics, and, of course, subcone tubber itself.

The bond of silicone self-bonding subbers exceeds the high tensile strength of the subber liself. Notice the subber yielding before the bonds.

(117) Chief when the second restor baseded to start pro-

Albration Damping

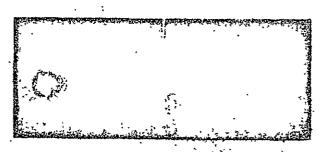
Silicone rubber has the ability to absorb energy over series range of frequencies and over a wide temperainte sange. Its each at elastic and dampening propertest make in ideally sinted for use in vibration control devices. The compositively simple construction of the brack control moverings designed with silicone rubters bleether with the proven durability of the rubber, instant the maximum in long term reliability.

The transmissibility and resonant trequency of topsainings incorporating silicone rubber will remain risually constant from 45 to 300F. The maximum intensification factor at resonance is generally 3.0 or factor for fower remperatures, and 3.5 at 300F. In points also have linear load-deflection characterter constantly provided accelerations up to 5G in thy direction. In addition normal variations in input incollede will have lattle effect on isolation efficiency and there is no marked resonant frequency shift.

Spring rates are approximately equal in all directions well the highly damped characteristics yield a transresulting curve that is smooth in the high frequency respect. It is unbitoken by spring surges or high freterior harmonics which might damage the mounted appiprient.

Tamping characteristics increase at an exponential refer and provide gentle bottoming under shock con altions, These monotings cushion a load gradually and are capable of large deflections with a non-linear spiring rate. Repeated test shocks of 15G do not reduce isolation efficiency, and the mounts will withstand 30G shock pulses without failure

The series of impressions in this silicone rubber pad help essure unitorm, predictoble vibration collection charactertuting at temperatures from -65 to 300F.


Ozone and Corona Resistance

The ozone resistance of silicone rubber approaches that of mica. Unlike fluoro-carbon materials, such as Polytetrafluoroethylene resins, which have good ozoneresistance but degrade rapidly when subjected to corona, succene rubber also has excellent corona resistance.

PART \$5065

To determine the resistance of silicone rubber to high voltage gradients, samples of #20 AWG wire with a 3/64 inch wall of insulation have been subjected to a 10,000 volt potential for 100 hours at a remperature of 500F. There were no signs of stress cracking or corona erosion at the conclusion of this test Under the same conditions organic rubber insulations fail within a few minutes, even when the test is conducted at room temperature.

Tests also show that organic rubber is badly damaged after being subjected to a stress of 200 volts/mil for 30 minutes. Even after 12,000 hours silicone rubber insulated wire is unaffected by a stress of 200 volts/mil.

Silicone rubber is virtually unaffected by careso.

Resistance to Weathering -

Silicone rubber resists the deteriorating effects of sunlight, ozone, and gases which cause weathering. Inherently water repellent, silicone rubber is not affected by morst operating conditions. Very dry conditions and low humidity will not leach, dry out, or affect silicone rubber in any way, at any temperature extreme found in nature.

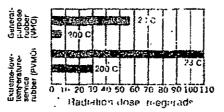
Silicone rubber also has good resistance to deteriorating agents found in som water chloride, sulfate, initiate and hydrogen ions. Surface water which may have leeched minerals, acids, bases, and salts from the soil normally has no detrimental effect on silicone rubber. Silicone rubber will effectively resist the concentrations of such materials found in surface water.

chomical	Resistance
Ac di.	
Hydrochlor, 3%	Good
Photphoric 10%	boco j
Sulfar & 19%	Guot
Base.	
Judium Hydraxidu 1 M	Good
"stassium Hydroxide +%	Good
ialts	
Caterum Carbonata	Good
Calcium Chloride	Good
Calcium Hydroxide	Good
Sodium 'Carbonate 2 !!	Good
rdum Chloride 10	Good

OZOME RESISTANCE

Silastic silicone rubber, when tested for resistance to ozone, Shows excellent stability. After - both slatic and dynamic testing for periods of 2, 4, 6, and 8-hours, samples had no significant change rstrength, or elongation. Under a istagnification of 10, no cracking or cheoling wearship. testa Vollowed procedures of

CASTIN D 518 and ASTM D 1149 with -coste modifications to match the outstanding properties of Silestic elastomers. As specified in ASTM D S18, spacimens were Etretched 20 nercent: However, in godition to fina static condition. e dynamic test elongated Specimens 25 percent in a cycle of 62 stationes per minute. This Sevening If the rubber were affected by ozonie, would result in the rapid eropeuption of any cracking As ated, no clacking or checking decurred: 2 Other last modifications concern test method ASTMD 1149 Part C under procedure, specifies a Concestration of 25 parts of ozern "par 100 million parts of air And for Bildelic slicone rubber, this was Increased to a concentration of 18:1:000 parts of ozone: Part D stinues that a temperature of 32 C low resistance to ozone cracking Sand that 49 C is setistactory for fatients with good resistance Sijastic rubber tested successfully 174 C.


RADIATION RESISTANCE

Radiation curses change to the proper ses of blashs robber similar to above caused by rec. laging. As the lotal radiation desc is increased, hardness of the rubber increases, tensite strength, may increase at first, but later decreases sharply; elongation decreases

These direct effects of radiation are proportional to the total amount of radiation level-tas long as the radiation level is low or moderate However, with high radiation levels, the heating-effects cause additional changes

Figure 15 shows the radiation dove that is required to reduce the elongation of two himples of •• Silastic rubber to an absolute level of 50 percent. Data is given for radiation exposure to a cobalt-30 source at room temperature and at 200 C. The level of 50 percent elongation is arbitrarily used as the test empoint because, for many applications, this is the minimum amount of rubberiness that an elastomer can have and still be useful. Of course, static seals/and similar products might remain serviceable at much lower levels of elongation

FIGURE 15. Rediation required to reduce slongation of two samples of Silastic silicone rubber to an absolute value of 50 percent

FUNGUS RESISTANCE

Whish rightonnis used in any warm. care; in incomment, its properties must rosist attack by mold-or tundus. Although Silastic rubber is nut aniHungicidal it is not a nutrient for fungi nor is it adversely" affected by fungue or mold.

With test procedures described in 005272B (USAF), several classes of Multary Specification MIL-E-silicone rubber were exposed to chaetomium, globum, aspergillus higer, aspergillus terreus, periodilium lutern, and fusarium moniliforne. None of these micro-prognisms deteriorated the specimens

In another test, Silastic rubber samples were buried in 5 inches of warm (28 C) moist soil for 6 weeks with no evidence of microbial attack

In a third lest, samples were sprayed with a mixed spore suspension of fungi and then placed in a tropical test chamber. at 97 C 90/100 percent relative liamidity, None was affacked webten ya

PART # 506

NAL PAGL OOR QUALITY	ASTM Designation for Type of SILAST (* Kiti-001	•	ni mension Ccadiuons	55. 19. 19. 19. 1	Tensile Strongth Stangs Ders (St	fiamiatice Guargai per out	Volu Chan perce
	MQ		14 mays/20 psi	··· ··	4.	201 (Chr) 20	
Contractor in the second se	VMC		in mysize par	,	45	4.1	
	PVMQ				<u> </u>	-15	;;
	VMQ		1 day/50 psi 3 days/50 psi	····· 2 5	- 25 - 30	10 [,] - 5	+
			5 days/50 psi	5	-40	25	*
			7 days/50 psi	- 5	65	-30	+
	VMO	;	1 day/65 psi	10	- 30	-30	+
	•	$\sum_{i=1}^{n}$	3 days/65 psi		-50	-25.	+
	;	·*	7. days/65 psi 1 day/80 psi	- 10 10	-65 -40	- 50	+
			3 days/80 psi	-10	-60	-40	.+1
		. •	.7 days/80 psi	- 10	- 75	-45	+
	MQ	د سنب	16 hr/100 psi	- 10	30	+25	r
	MQ		1 day/100 psi	· 10	40	- 10 15	+
	VMQ PVMQ			~5. ~5	40 25	15 +5	រា ព
	FVMQ			5	- 20	+ 15	r
	MQ VMQ		3 days/100 psi	10 10	-60 75	20 - 55	+ + 1 1
	PVMQ	•		- 10	35	- 5	5
	MQ	1	7 days/100 psi	- 20	30	-25	i
	VMQ PVMQ	•		10 - 20	-85 75	85 7 5	t F
					-	, , , ; ,	
615 % 4.5 # 44	VMQ		. 7 days/24C (75F)	- 5		• •	-
	117.04		7 days/24C (75F)	5		• • •	r
	VMQ PVMO			5 -5	••••	••	े न -
	FYMQ		2 days/24C (75F)		· · · · ·		+4
Acid (5%)	VMQ	,	1 day/100C (212F)	30	•		+1(
Acid (51)	F∀MQ	<i>.</i>		- 15			+
Acid (10%)	MQ VMQ		7 days/24C (75F)	ail - 5			נ ז ל
	PVMO			nil.			ş
	FVMQ			5	25	15	t
The stiller Add (18%)	FVMQ		3 days/24C (75F)	<u></u>	20	<u> </u>	·! +
S-Shig Rolling Acids		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 days/65C (150F) 7 days/24C (75F)	••••••••••••••••••••••••••••••••••••••		pcor	
an and a concentration where the	VMQ		· · · · · · · · · · · · · · · · · · ·	5			ł
	, PVMQ FVMQ			• 5	- 15	onttle 30	+ 1
e And Standic Acid (40%)	PVMQ PMQ ·		9 days '27C (80F)	`···		-ov suprated	
C 198/1070065410951 .2	MQ		7 days/24C (75F)	nti			1- 1-
	VMQ.		·	ni _t	*	•	1
HNO.	PVMQ FVMQ		· #*	તેની લોક	10	-5	1

A A MARY AND	ASTM					
	Designation * for Type of	ł	- بمغانية الم	Tensie	6 In	14. 1
	SILASTIC	Immension	Hardeers Change	Strengto Criango	Elongation Change	Vo'ume Char ge,
Ensurshin Meellum	Rubber	Concitions	points	Det ve II'	percont	persent
Saline Acid (50%)	. ≂vmo	3 days/24C (7°F)	. 5	15	-10	F
		' days/65C (150F)	10	···· ·	30	<u>15</u> 5-
Cilluic Acid	MQ	- days/24C-(75F)				0-
(Wasconcentrated)	T VMQ	 makarman frati 	:5	ſ	soor ,	· - 10
	PVMQ				rittie ,	
	- FVMQ		nıl	40	- 30	+5
The second s	MQ	- 7 days/24C (75F)		una	ffected	
	PMQ				itected	
	MO PMQ_::	7 days/100C (212F)			fected	-
Acid		7 June 10100			ifected	
(jui) (dencentrated)	MQ PMQ	7 days/24C (75F)		una	ffected	• •
	MQ	7 days/100C (212F)			Ifected	
	PMQ:	· vajar 1000 (212F)			solved solved	
and Acid will a start	MQ **	7 days/100C (212F)			ifected	-
	PMQ				fected	=
4 Aoid (20%)	MQ	1 day/83C (180F)	nil	-10	-5	-,5
Sol		7 days/83C (180F)	nił	· 25	-15	-10
(Acidn(3274))	PVMQ	2 hr/93C (200F)	• nil	20	: -5	lin
Acid (5050)	FVMQ	3 days/24C (75F)	nıl	5	-5	nit
		3 days/65C (150F)		35		<u>inn</u> lín
State Soid of the second second	MQ	7 days/24C (75F				- ini
(and mean lenes)	VMQ.				mposed mposed	
	FVMQ			d-sco	mposed	-
A MAN AND AND AND	PVMQ	-		deco	mposed	**************************************
	1					• • •
the market method	MQ	7 days/24C (75F)	- 5			nil
	VMQ		nıl -	٠.		nit
	PMQ FVMQ		nd	มกลf	fected	. # -
	EVMO		nil - 5	- 45	5	+5 +5
Called Oxide's - 2	VMQ	1 day/149C (300F)	÷5	15	-10	+5
Noth Sourced						- 17-9 - 1-
Signation (24)	VMQ; *	1 day/149C (300F)	ก่ไ	-25	-10	-5
Cital Mydroxida (5%)	VMO	1 day/149C (300F)	- 10	70	nil ·	-35
	·VMQ	1 day/149C (300F)			orated	-00
Nar Laurenning		·		UBIEN		
and the training (1996)	VMQ	.1 day/149C (300F)	4.5 ·	- 20	-15	-5
orazej im Hydronide (26%)	MQ	7 days/83C (180F)		<u></u>		
	PMQ .	1 adjorado (1001)	-5	•	· · · ·	+5 nil
with the Hydroxide	VMQ -	1 day/149C (300F)	20	-4.3	-10	- 10
				~		••
offami Hydroxide (10%)	MQ	7 days/24C (75F)	5	·		nil
	VMQ		- 5		· • •	nit
875-52-5 Xr. 84-52- 12-12	PMQ PVMQ		 5	• •	•	+5
	EVMQ	۰.	5	45	10	ករ៉េ រារុ
inin Hydroxida (25%)	MQ	7 days/83C (180F)	-5			nil
	PMQ		. 5	• •		-10
and the second s						

PART	\$5065
•	

NAL PAGILIT POOR OTALIT POOR AGAIN					PART	e Be
NA CHANNE	ASTM			Tonstie		
200 × 100 ×	, Designation for Type of		н инлетs	Sten file	Elonastion	Vento
	SILASTIC	immersion	Charge,	Chinge.	• Charge,	Charig
. The sea in the second s	Rubber	Conditions	provids .	Deigent	pe:cant	perce
and the second s	PMQ	7 days, 24C (75F)		•	••	5
(17976) (77976) (m. X. 1997)	MQ	7 days/100C (212F)	- 30			+ 5
15576)	MO	7 days/24C (75F)	10	• • • • • • • • • • • • • • • • • • •		+10
The second s	MQ	7 days/149C (300F)	+5		لېمىتكىيو. مى د د د	ni
	MQ.	1 day/200C (392F)	nit		and the second s	n)
	VMO 7 8	1 day/200C (392F)	nit	· · · · ·	· /	ni
	FVMQ	1 day/200C (392F)	nil			DL
14	MQ	'5 days/200C (392F)	2			n
•	VMQ ···	5 days/200C (392F)	nil		• •	ni
-	FVMQ.	5 days/200C (392F)	-2			+7
	NQ	7 days/200C (392F)	2	· ·	· · · · · ·	+2
A STATE AND A STATE AND A STATE	YMQ "	بد ب	níl			nt
	FVMQ		-2			+7
	PVMQ	'7 days/24C (75F)	-5 *5	•• •		+
	MQ	-7 days/121C-(250F)	5			÷
	VMQ	· · · · · · · · · · · · · · · · · · ·	-10		÷	+:
	W. YMO	 7 days/24C (75F) 	nit	+5	- 10.	ni
	MQ A	-7 days/24C (75F)	-20	•	· •	+150
	WMQ	7 days/24C (75F)	5		_ + - 4v	·+1(
	FVMO 7	. مەرىپىلىرىغۇرىت بىرىيىتىلىرىدۇ بىيە ئىر مارىيىتىرىچىنىلىرى	5	s gannan an an an an		÷4
	РМО	7 days/24C (75F)	• • •	· ·		' ` +£
	1440	70 1. (1100 .0005)			د. مربع بالمناطقة ما مربع	
	VMO PVMO	70 hr/150C (302F)			rioreed	
	EVMO	** •			niorated	
	PVMQ	1 hr/24C (75F),	-10 <		Section Section	· - 48
		~	-20			+116
	PINO R.				hanged	•••••••
		4 days/199C (390F)	- 22 n	and the state of the second	or toer realitie	nes ::
	and the second	7 days/24C (75F)	nil			محجم عنينا ذاله
	VMO PVMO	- ·	5	• • • • •		्रमो
	State of the second		nilii.			n.
		and the second s	nil	<u>.</u>		
	VMQ 3	1 day/149C (300F)	. กเรื			ni ni
	VMQ	2 nays/1990 (390F)	nil nil			
	FVMQ		-r 5	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	n!
这一个问题, 这个问题,	N VMO	3 days/199C (390F)	n'I	• · · ·		л
	HIL FVMQ	4	+5	•••		nl
	FILL OF PMQ (Filt		<u>nit</u>			+1(
Ten cardroluran	VMQ	1 day/25C (77F)	••	•••	* • • • *	+260
sterre voronaran Sez inserver in orrest	FYMQ	·····				+170
ing Brench ane	FVMQ	1 day/24C (75F)	- 10			+2
	40 - 410 - 410	7 days/24C (75F)	15			+3
	FVMQ.	5 days/49C (120F)	10	<u> </u>		<u>+2(</u>
The second second state of the second s	MO	. 7 days/~58C (~65F)	- 20	•••••••		+10
	and the second					

4.7. Excessive Surface Temperature.

4.7.1. Protection from heated components.

The Model SEC-601 collector was set up for thermal cycling tests. The air flow set up is shown schematically in Figure 4.7.1.(a). The collector was instrumented with temperature sensors as indicated in Figure 4.7.1.(b). The collector air flow path was into the exit air duct, through the manifold and tube elements and out through the inlet duct. The reverse air flow path simulates actual operating conditions where a positive temperature gain would be experienced from inlet to outlet.

A portion of a strip chart recorder indicating the sensed temperatures is contained in Figure 4.7.1.(c). A dual element electric heater was used to minimize the rate of change of the heated air flowing into the collector. Element 1 was activated at cycle time, t_0 , the second after one hour into the cycle. Both elements were shut off after two hours into the cycle allowing ambient air to cool down the collector. The total cycle time was three hours. It will be noted in Figure 4.7.1.(c) that all temperatures were approaching steady state conditions and, in fact, extending the cycle time did not result in an appreciable change in the sensed temperatures.

It will be noted in Figure 4.7.1(c) that no exposed surface temperature exceeded 100°F at an inlet air flow temperature of 325°F. Couple No. 9 senses the temperature at the interface between the glass cover tube and the silicone rubber seal. This surface is not exposed during normal operating conditions. In addition, several of the personnel explored the collector surfaces by touch; no surface could be detected which was uncomfortable to the touch.

Review of Items 4.7. and 4.7.1. successfully completed.

11. 5 11. Cam

Robert F. Romaker 0.1. Test Engineer

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

oid C. Millin

Albertone C. . Hall William C. Louie, V.P.

David C. Miller, Ph.D. William C. Louie SH&G Certification Officer P.E. (Mi. 11084)

P.E. (Mi. 11084) SH&G Certification Officer

1 Carriello John M. Caudle

Technical Manager NASA Approval

THERMAL CYCLE TEST SCHEMATIC FOR SURFACE TEMPERATURE MEASUREMENTS

.

.

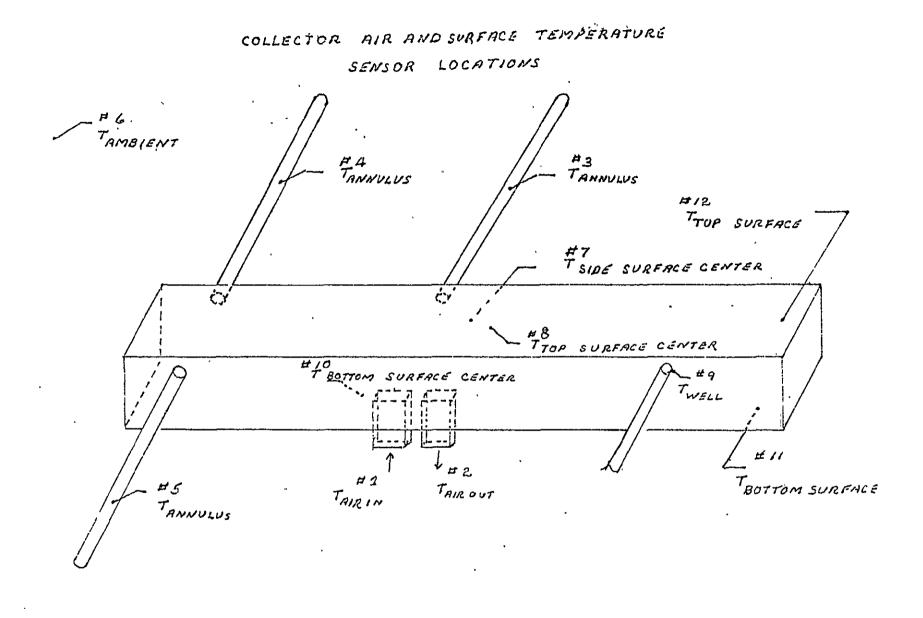
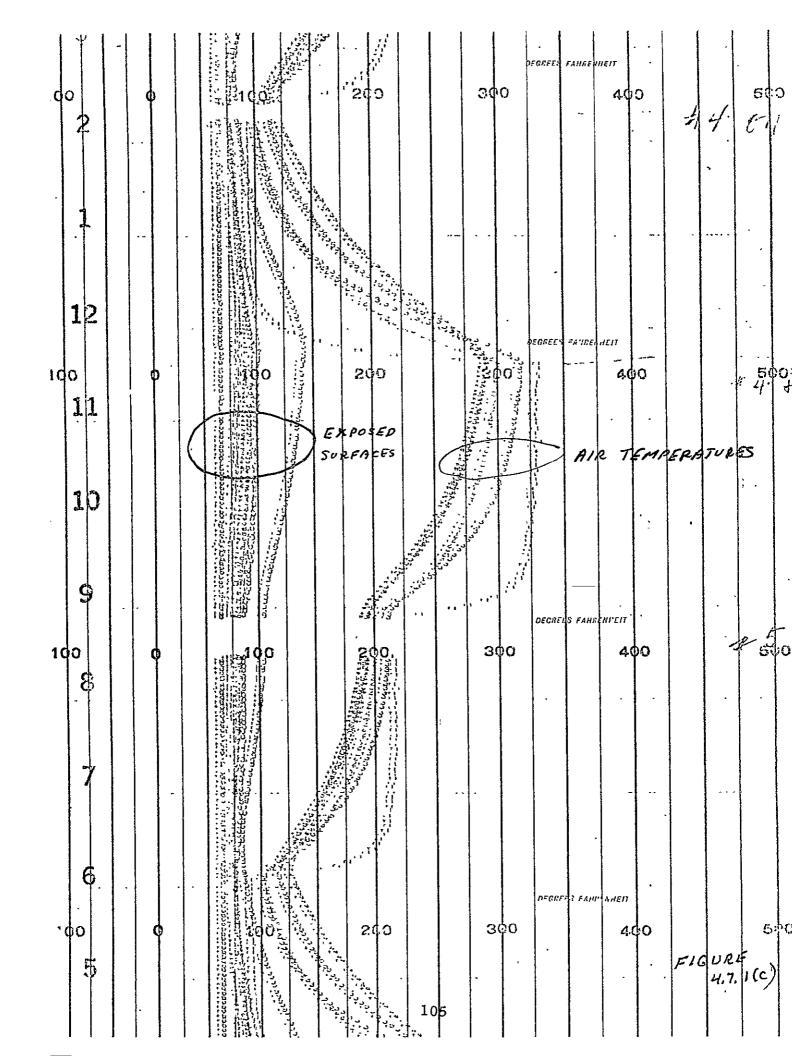



FIGURE 4.7.1 (6)

5.1 Effects of External Environment.

5.1.1 The capability of the Model SEC-601 collector cover material and wavelength selective coating to meet the solar degradation criterion have been evaluated by a combination of indoor accelerated life testing and long term outdoor exposure tests. The indoor accelerated life testing emphasized the evaluation of the long term stability of the wavelength selective coating and the vacuum. The tests and data have been reported under Section 4.2.1, previously submitted. The results of seventeen (17) months of outdoor exposure of the ERDA collector array are presented in Section 5.3. A review of this section verifies the capability of the collector components to withstand extended outdoor exposure without degradation which would adversely affect the capability of any component of the collector to perform its intended function.

As further evidence of the long term capability of the collector components to withstand outdoor exposure under stagnation conditions, collector components were subjected to outdoor exposure at the Desert Sunshine Exposure Tests, Inc. facility starting in August, 1976. Figure 5.1.1(a), sheet 1, contains a record of the stagnation temperature reached by a standard production liquid collector tube element in August, 1976. Figure 5.1.1(a), sheet 2, indicates the stagnation temperature reached as a function of solar time on June 24, 1978. An indication of the level of solar radiation is also given for each test day. Because of instrumentation difficulties, the solar radiation listed is not that existing in the tilt plane of the test rack. The test rack tilt angle was changed monthly to correspond roughly to the plane in which the solar radiation

5.1.1 (cont.d)

would be normal to the test rack during the month. A review of the data indicates no significant change in the stagnation temperature reached and therefore that no degradation to the wavelength selective coating or vacuum has occurred after essentially two years of continuous outdoor exposure to the maximum solar radiation condition with no cooling fluid flow through the collector element. The test requirements of Section 03 were exceeded by a factor of four with no evidence of deterioration in performance or change in characteristics of the wavelength selective coating. The production process for applying the wavelength selective coating, evacuation, tip off and getter material and flashing are identical for the liquid and air SUNPAKTM collector tube elements. Therefore, the Nodel SEC-601 collector tube elements meet the criterion of this section by similarity. An extended outdoor exposure test has been initiated for the Model SEC-601 components. The first record of the stagnation temperature of each of the tubes is contained in Figure 5.1.1(b).

5.1.3 Airborne pollutants.

The capability of the components of the Model SEC-601 components to withstand exposure to airborne pollutants has been evaluated by similarity to the liquid SUNPAKTM collector materials and moderate exposure testing of the Model SEC-601 components at Desert Sunshine Exposure Tests, Inc. Figure 5.3.1(a) contains a listing of the liquid SUNPAKTM components with outdoor exposure test results from August 10, 1976 to June 27, 1978. Figure 5.1.3(b) contains a definition of the ranking

107.

applied to the physical inspection of the components. The rack on which the components are mounted is south facing. Its tilt angle is adjusted once a month in order to cause the solar radiation to be essentially normal to the rack during the month's test period.

Figure 5.1.3(c) contains the physical inspection ranking for the liquid SUNPAKTM components for June 27, 1978. Figure 5.1.3(d) contains the initial report for the Model SEC-601 collector components. The tube retainer component (panel item No. 3) of the Model SEC-601 collector uses the same material as the liquid SUNPAKTM component panel item No. 6 except that the polycarbonate source was changed from G.E. to Mobay. All other components of the liquid SUNPAKTM collector module demonstrate long term resistance to the attack of airborne pollutants under conditions of adverse severity to an extent that no significant impairment to the intended performance of the components during their design life would be expected.

The components of the Model SEC-601 collector are considered to \cdot meet the criterion of Section 5.1.3 by similarity. Further, a design

review of the Model SEC-601 collector indicates that the only nonmetallic parts subject to direct exposure to solar radiation are PN-SK-5103 (MS-1022) and PN-SK-5067 (MS-1021).

Review of items 5.1, 5.1.1, 5.1.3 successfully completed.

maker Robert F. Romaker

0.I. Test Engineer

H.S. Moan Kenneth L. Moan

P.E. (Ohio 5203) O.I. Approval

wid E. Miller

David C. Miller, Ph.D. SH&G Certification Officer

William C. Louie, V.P. P.E. (Mi. 11084)

SH&G Certification Officer

1 Q John M. Caudle

// Technical Manager NASA Approval

TABLE VII

DSET No. 166055

August 10, 1976

*

-

OWENS-ILLINOIS

Stagnation Temperatures - 45° South

		T	ube Tempe	ratures (°C)		°C	1	NSOLA TAN
Solar						Ambien	t (s	Tulet.2hr)
Time	<u>#9</u>	(°F)	<u>#10</u>	<u>#11</u>	<u>#12</u>	• Temperat	ure	
1040	211.8	412	216.3	220.9	213.0	35.6	96 96	265
1100	251.8	485	261.2	258.3	257.1	36.1	97	281
1130	280.1		296.5	283.1	295.7	36.7	98	290
1200	289.7	536	305.3	290.0	312.1	36.9	98	292
1230	293.5	553 560	305.0	291.6	317.5	37.1	99	289
1300	296.7	566	303.6	292.0	318.4	36.9	98	231
1330	297.8	568	299.0	288.8	317.5	37.5	100	270
1400	297.8	568	295.2	286.0	312.3	37.3	99	248
1430	296.7	566	292.3	282.1	305.0	37.7	100	226
1500	293.7	561	288.1	276.5	296.6	39.4	103	199
1530	286.8	548	283.5	272.2	286.0	39.1	102	166
1600	277.8	532	276.1	266.4	271.1	38.5	101	131
1630	265.0	509	255.6	246.1	261.8	37.7	100	
1700	249.9	482	219.3	213.4	235.5	37.3	99	
1730	222.5	435	178.9	173.5	194.6	37.2	99	
1800	175.2	3:47	143.6	138.8	153.1	36.5	98	
1830	140.6	285	118.7	113.8	125.4	35.4	96	
1900	114.0	267	99.3	93.6	102.6	34.5	94	
1930	94.7	202	84.8	79.2	86.6	33.7	93	
2000	81.2	178	74:2	68.7	75.3	33.1	92	
2030	71.1	160 .	66.3	61.2	67.0	32.4	90	
21.00	63.6		60.2	55.6	60.6	31.8	89	
2130	57.8	136	55.3	51.0	56.1	30.4	87,	
2200	52.9	127	51.0	47.2	52.3	29.4	85	
2230	48.9	120	47.3	43.9	48.8	28.5	8 3	-
2300	45.6	114	44.4	41.3	45.8	28.4	83	
2330	42.8	109	41.9	39.0	43.3 /		83	
0000	40.4	105	39.8	37.1	41.2	27.7	82	
August 11	, 1976	, - w						•
0030	38.4	101	38.1	35.5	39.5	27.8	8Z	
0100	36.7	98	36.5	34.1	38.0	27.9	82	
0130	35.2	95	35.1	32.9	36.7	27.1	87	
0200	33.8	93	33.8	31.7	35.4	26.5		
0230	32.6	91	32.6	30.7	34.2	25.9	79	
0300	31,5	89	31.6	29.8	33.1	25.4	28	
0330	30,4	81	30.5	28.9	32.1	25.3	78	
0400	29.4	85	29.6	27.9	31.1	25.1	77	
0430	28.7		28.8	27.4	30.4	25.2	27	
0 500	27.9	84 82	28.0	26.6	29.5	24.8	77	
Q 530	28.5	85	28.6	27.4	30.1	25∡5	78	
0600	33.8	5.6	33.7	33.2	35.8	26.1	79	
		A				FIGURE	5.1.14	s.)
-		1		110		SHEET 1.		
	STAND	OARD PK	LODUCTION	¢		377 - 47 - F.		

LESERT SUNSHINE EXPOSURE TESTS, INC.

WATER TUBE STAGNATION

* 0⁰ Horizontal

True Solar Time	Ch.#32 ^O F Tube 9	Ch. #33 ^o F Tube 10	Ch. #34 ° _F Tube 11	Ch.#35 0 _F Tube 12	Ambient ^O F	Insolation * (BUT/ft ² .hr)
JUNE 24, 1	.978				·	
0800	460.0	387.7	306.5	525.8	97.7	161.5
0830	494.0	409.1	322.5	569.7	99.8	190.2
0900	514.5	426.3	334.7	598.3	102.5	. 214.6
0930	529.6	439.6	341.7	616.6	104.3	238.9
1000	541.1	447.9	347.1	627.0	106.3	263.2
1030	549.1	454.5	353.3	637.4	106.0	280.9
1100	556.3	460.9	35 7.4	643.0	106.0	294.2
1130	561.7	465.1	358.6	645.4	107.6	303.1
1200	564.6	466.4	358.0	645.6	109.3	307.5
1230	566.9	467.5	358.9	645.5	107.7	305.3
1300	568.8	467.8	357.6	644.9	109.7	296.4
L330	569.4	465.3	354.0	642.6	108.9	287.6
L400	568.1	460.1	347.9	637.7	109.7	272.1
L430.	564.9	455.1	343.0	629.2	108.8	250.0
L500	559.9	488.3	334.2	618.8	108.8	225.6
L530	552.5	439.3	324.1	606.1	110.1	199.1
L600	543.1	429.5	315.9	589.3	108.7	170.3
1630	507.6	402.4	294.4	559.2	108.0	139.4
.700	404.8	292.1	199.5	470.7	107.0	108:4
.730	391.1	273.2	201.1	450.8	106.2	75.2
L800	402,6	269.6	205.9	444.2	103.7	46.5
.830	380.5	237.2	176.6	406.8	103.0	22.1
900	322.7	196.6	143.6	351.9	101.1	-0-
.930	270.6	164.2	120.8	301.8	99.3	-0-
2000	232.5	141.7	108.3	262.2	99.4	-0-
.030	204.1	126.9	102.0	231.5	97.2	-0-
2100	182.2	116.7	97.9	207.1	96.9	-0-
130	164.5	108.8	94.9	187.1	95.3	-0-
200	151.3	103.8	93.l	171.5	93.2	-0-
230	139.5	98.8	90.1	158.3	90.1	-0-
300	129.7	94.2	86.8	146.9	88.7	-0-
:330	121.8	91.0	85.0	137.2	88.4	. 0-

OWENS-ILLINOIS

↑

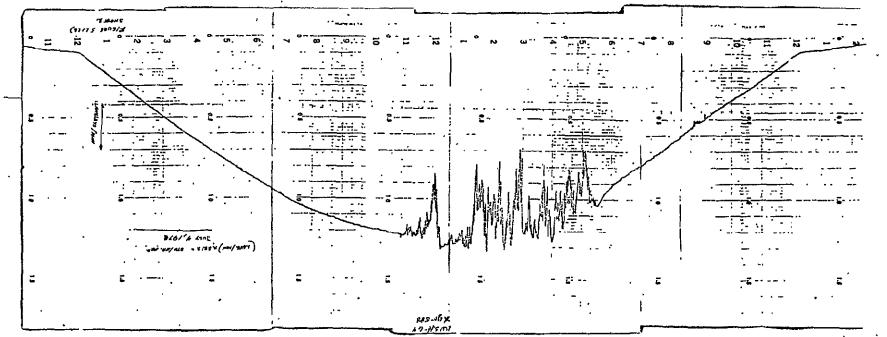
111

STANDARD PRODUCTION

FIGURE 5.1.1 (A) SHEET 2

DESE1 JUNSHINE EXPOSURE TESTS, INC.

• •


AIR TUBE STAGNATION

OWENS-	ILL	INO	IS
--------	-----	-----	----

True Solar Time	Ch. 24 0 ⁰ F Tube #1	ch. 25 0°F Tube #3	Ch. 21 Ambient Air O [°] F.
July 4, 1978	a. — — a		
8:29:01	469.8	460.3	88.8
9:00:07	504.5	495.2	91.1
9:28:37	524.3	515.7	93.3
0:00:00	538.2	530.9	94.0
.0:30:00	544.5	538.8	94.2
.0:59:52	548.6	545.7	94.8
1:30:00	555.6	553.8	98.0
2:00:00	557.9	555.8	97.6
.2:30:00	558.8	558.7	98.8
.3:03:54	556.1	556.2	96.9
.3:28:57	557.1	556.8	98.9
4:00:34	559.7	559.4	98.7
.4:35:33	550.4	548.5	99.4
4:59:15	547.2	546.4	100.4
5:30:34	540.4	539.9	100.0
6:02:42	526.9	526.8	98.4
6:28:00	508.8	517.6	, 100.4
7:00:00	411.2	458.3	98.3
7:30:00	372.2	408.9	98.9
8:00:00	379.5	403.2	97.1
8:30:00	376.4	383.4	94.9
9:00:00	340.4	330.9	92.2
9:30:00	286.9	277.9	90.3
0:00:00	246.5	238.3	88.1
0:30:00	215.6	208.0	85.9
1:00:00	191.4	184.3	82.9
1:30:00	171.7	165.1	81.2
2:00:00	155.6	149.6	78.8
2:30:00	142.1	136.6	77.7
3:00:00	131.0	125.8	77.3
3:30:00	121.6	117.0	75.3

FIGURE S.J.I(b) SHEET I

.

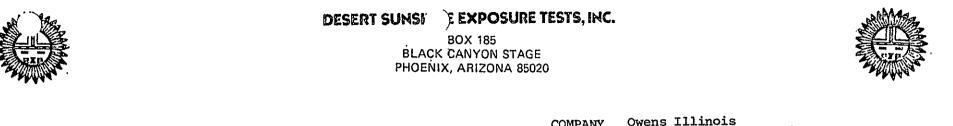
Υ.

113

They													C	OMPANY		OWENS-ILLINOIS						
Land .													M98-4442 dtd 7/19/76 PO 99-15423									
			INSPECTION REPORT								-		0	UR ORD	ER	166055						
									na ki	SPURI		•										
				7	7	JERT RET	101	7	7	7	7	7	7	7.1	7							
				V. W.			ENT	HECKICE	ALE			EIBER	.10 ¹	ATTON	/.							
	PANEL		540	×		RE)	Ϊ.		/.	SUISTER E		1	Y si	<u>></u> /								
	NUMBER			QLOR G	UP55 1	58	HALLY	HECK /	PACK C	53/	AKE	1 BUI	E P			REMARKS						
		<u> </u>	<u>ڳ</u> ر	<u>X</u>	<u> </u>		<u> </u>	$\frac{1}{2}$	\sum	<u>~~</u>	<u>/</u>	<u>Y_</u>	Y	<u> </u>		· · · · · · · · · · · · · · · · · · ·						
1	1	ļ.,	10	l		10	10	10	10	10						Manifold with mounting bracket						
2	2		10			10	10	10	10	10			l			Foam end cap						
3	3		10		i	10	10	10	10	10						Joint covers						
4	4		10			10	10	10	10	10						End bracket sections						
5	5		10			10	10	10	10	10		<u> </u>	[Support straps						
6	6		10		•	10	10	10	10	10						Original tube support cup, insert,						
7		}													Ì	soft ring						
8	7		10			10	10	10	10	10			1		· [Heavier support cup, insert, positive						
9						-		<u> </u>							(restraint bolt						
10	8		10			10	10	10	10	10						Heavy support cup, insert, stiff spr						
11	9		10			NA	10	10	10	10						Tube, standard prod/flashed getter						
12	10		10			NA	10	10	10	10						Tube, std. prod/old bake-out						
13	11 00		10			NA	10	10	10	10						Túbe, std. prod/new bake-out						
14	12	<u>}</u>	10			NA	_10	10	10	10	<u> </u>		<u> </u>			Tube, Airco costing/flashed getter						
1.5		2	<u> </u>								ļ	<u> </u>	 	ļ								
16		Ę	ļ			ļ		ļ	L					[
7						ļ					<u> </u>	<u></u>	ļ	<u> </u>		and a second						
8	<u> </u>	2						 			ļ	ļ	Į	<u> </u>								
.9	Ę	<u> </u> =										<u> </u>		ļ								
0	······																					
1		ļ	·								<u>`</u>	<u></u>		ļ	Į_							
22			 										ļ	ļ		۲۰۰۰ - ۲۰۰۰						
23					·							<u></u>		 								
4			,								L	<u> ·</u>		<u> </u>								
	GENERAL RI	MARK	.s										, .	TYPE F	EXPOSU							
				·	•			,			•		•			TE: From: 8/10/76 To: 8/31/76						
													,	INSPEC	TED B	BY: Bill Dokos Date: 8/31/76						
												•				· · · · · · · · · · · · · · · · · · ·						
•																· FIGURE 5.1.3 (@)						
												• • • • • •			•	و من و سري منه و و و من و و و و و و و و و و و و و و و						
				****		****	· ····································		dis sti.				1.56	1. 1. 1.		···· ·· ·						

THELE Y

NUMBER AND DESCRIPTIVE RATINGS FOR WEATHERING TESTS


		THELE	ORIGINAL OF POOR	
	NUI	BER AND DESCRIPTIVE RATI	NGS FOR WEATHERING TES	TS POOR QUALLES
	FSPT			Other Ato
Number	Арреагансе	Failure (check, chalk, etc.)	Appearance	Failure (check, chalk, etc.)
10 9	as received	absent	as received excellent	none very slight
8 7 5	good	slight failure	good good to fair fair	slight slight to considerable considerable (marked)
5 4 3	intermediate	intermediate	fair to poor poor poor to very poor	considerable to severe (marked to very marked) severe (very marked) severe to very severe
2 1	poor	bad failure	very poor extremely poor	almost complete complete
0	poorest degree conceivable	complete failure		-

Numerical readings of gloss will be made with the Gardner "Multiangle" Glossmeter. Please specify:

- Angle
 Area of penel to be cleaned
 Manner in which panel is to be cleaned

DESERT SUNSHINE EXPOSURE TESTS, INC. - Phoenix, Arizona

FIGURUR 5.1.3(b)

				-	INSPEC	TION	i	REPO	ORT						COMPANY Owens Illinois YOUR REF. Ref. M98-4442 PO 99-15423 DSET ORDER NO. 16605S Page 1 of 1	[
	PANEL NUMBER	GENERAL APPERAL	COLOR	GLOSS	DITAT RETENTION	CHECK	CRACE CRACE	BLISTER	FLAKE	FIBER of	DELAMTN	NOLLIN			REMARKS	
1	1		LO	†	6	10	10	10								
2	2	1	.0		. 8	10	10	10								
3	3	1	LO	l	' 8	10	10	10							Adhesive retaining dirt	
1	4	1			i 8	10	10	10							Rust developing along edges	
5	5]	LO		10	10	10	10							Rust developing at ends	
6	6	1			10	10	10	10								
7	78	1		1	8	17	9	6				Į	ł		Top cap has portion that has melted and left a hole.	
8		1 1	LO		10	10	10	10					۱ ۲			
91	9		LO		NA	10	10	10		l		İ	l			
.0	10		LO	<u> </u>		10	10			l	 		 .		P K	
1	11		L0		NA	<u>i 10</u>		10	<u>.</u>	 	 		; ;		E BE	
12			10		NA	110	10	1 TO		 	 	 *	<u>.</u>	L		
13				¦-		ļ		<u> </u>		1	 	ļ	<u> </u>		13 4 4	
14	· · · · · · · · · · · · · · · · · · ·			<u> </u>] 4		! 		i 		ļ	!	 		
15			<u> </u>	<u></u>		ļ		• 		; ;] 			
16				į		ļ					; r	ļ			0 12-	
17			·			ļ		_		•	i 					
				••••		<u> </u>		;		 		÷	 .			
19 20		╺-┼╴╶╌╸┼╶				╄	<u> </u>	!				<u> </u>	<u> </u>	 		
		┈┝╍╍╴┞╌			N R -1	Ļ	 	ļ	ļ	<u> </u>		۔ ۔۔۔ ا	<u></u>			• /
21			<u></u>					ļ		<u>-</u>		· ·····	<u>.</u>	-		
23	····				<u>-</u>	<u>+</u>	<u> </u>				-	+	<u> </u>		······································	
24					· · ·	1	<u> </u>		 		 		<u>i</u>	<u> </u>	······································	
25						┼───	i	<u> </u>					i			
 0	GENERAL REM the collect	ARKS	<u>·Sta</u> norm	ignat Nal :	tion rac incidence	k is ce to	rea the	idjus e sun	ted	once	an	ionth	i	È	14° South direct - stagnationXPE EXFOSUREXFOSURE DATE: From8/10/76To6/27/78NSPECTED BY Herb AlbertDate6/27/78	

FIGURE S.1.3(C)

PANEL S <th></th> <th></th> <th>DESERT SUNSHINF POSURE TESTS, INC. BOX 185 BLACK CANYON STAGE PHOENIX, ARIZONA 85020 COMPANY Owens Illinois COMPANY Owens Illinois YOUR REF. Ref. M99-2952 FO 98-1101</th> <th></th>			DESERT SUNSHINF POSURE TESTS, INC. BOX 185 BLACK CANYON STAGE PHOENIX, ARIZONA 85020 COMPANY Owens Illinois COMPANY Owens Illinois YOUR REF. Ref. M99-2952 FO 98-1101	
1 1 1 10 <td></td> <td></td> <td></td> <td>of 1</td>				of 1
1 10				
3 3 10 1		1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
4 4 10 1	harmon and ha			
5 5 10 1	france in the second se			······
6 6 10 1				
7 7 10 1			10 10 10 10 10 10 10 10 10 10 10 10 10 1	
6 8 10 10 10 10 10 10 10 10 10 10 10 3/32" Alum. "Pop" Rivet 10 10 10 10 10 10 10 10 3/32" Alum. "Pop" Rivet 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 12 12 12 14				<u> </u>
10 10 10 10 10 10 10 10 Red Silicone adhesive 11 12 12 12 12 12 12 12 12 13 14 14 14 14 14 14 14 15 16 16 16 16 16 16 17 16 16 17 16 17 18 19 14 14 14 14 12 16 16 16 16 12 16 16 16 16 12 16 16 16 16 12 16 16 16 16 12 16 16 16 16 12 16 16 16 16 13 16 16 16 16 13 17 16 16 16 14 17 16 16 16 13 16 16 16 16 14 17 16 16 16 13 16 16 16 16 14 16 16 16	6	8		2
11 12 13 14 15 16 17 16 17 <	the second s	9		
12 13 14 15 16 17 16 17 <		10	10 10 10 Red Silicone adhesive	
13 14 15 15 16 16 17 17 16 18 17 19 17 20 17 21 17 22 17 23 17		<u></u>		
14 15 16 17 16 17 18 17 18 19 110 110 20 110 110 21 110 110 22 110 110 23 110 110			╺╁╍╍┟┑╍╉╌╍┟╍╴┟╍╶┟╌╸┝┑╌┦╌╸┟╴╴┥╴╴┪╴╴╴╸	
15 16 17 17 18 18 19 20 19 21 19 22 19 23 19			┥┉┉┠╼╼┠┉╍╞╍╍╟╼╍┠┉╌┠╍╍┨╶╍╢┙╼┨┉╌┽╾╍╞╼╍╁╸╾╎╾╸┠╼╸╁╸╸┉╸╸╸╸╸╸╸╸	
16 17 17 18 18 19 20 110 21 110 22 110 23 110 24 110		•	╶┟╌┈╴┟┈┈╎──╎──╎──╎──╎──╎──╎──╎──╎──╎──╎──╎──╎	
17 18 19 110 20 110 21 110 22 110 23 110 24 110		······································	╘┼╾╾┥┈┅╋╾╌┟╌╌┼╾┉┟──┟──╎──╎──╎──┤╴─┤──┤╴──╢──┤╴────	
18			╺╢╌╾╢╌╾╢╌╌╢╌╌╢╌╴╢╌╴╢╌╴╢╌╴╢╌╴╢╌╴╢╌╴╢╌╴╢╌╌╢╴╌╢╴╖╢╴╢	
20 21 22 22 23 24 24	18	······		
21				
22 23 24 24 24 24	And the second s			_
23 24<				<u></u>
24			┼╍╌┼╾┼╾┽╍┼╾┼╌┼╌┼╶┼╴┼╶┼	
			┕┠╍╾╌┨┑╌╌┨╍┈┥┥┉┉┥┥┑┉┥┑┉┊┠╾╍╢╴┑╌╢┉╌╢╶╌╌╢╍╌╢╍╌╢╍╌╴╢╍╌╴╢╍╌╴	,
	25		┶┝╾╍╢╾╍┨╾╌┨╾╌┨╾╌┨╌╌┨╌╌┨╌╌┨╴╌┨╴╌┨╴╴┨	;
GENERAL REMARKS		ENERAL REM so the col	lector is normal incidence to the sun. EXPOSURE DATE: From 5/19/78 To 5/19 INSPECTED BY Herb Albert Date 5/19	/78 19 7 78

5.1.4 Dirt Retention on Cover Plate Surface.

All tubes used in the ERDA air collector were rated by sun testing on November 1, 1976. The procedure used was the placement of sets of twenty two (22) tubes in a rack tilted at 45° from the horizontal. A white backing screen was provided consisting of outdoor marine plywood painted with flat white Dutch Boy paint. The rack was periodically relocated to face the sun. The test period was determined by the indicated temperatures reaching steady state. The tubes were retested on July 14, 1977 and again on March 28, 1978. A sample of the test data is in Figure 5.1.4(a). The tubes were washed only by the natural conditions of rain or melting snow over the seventeen (17) month test period. There is no significant deterioration in thermal performance due to dirt retention on the cover tube surface.

5.1.5 Abrasive Wear.

KG-33 borosilicate glass has the highest rating for the lasting quality of its surface of the commonly available glass compositions as indicated by the data of Figure 5.1.5(a).

5.1.6 Fluttering By Wind.

The only component of the Model SEC-601 collector subject to flutter induced vibration due to wind action is the collector tube element. Such vibrations are caused by vortices leaving the down stream side of the tube; this phenomena is known as Von Karman vortex sheets. Figure 5.1.6(a) contains a discussion and a graph bearing on the subject. The information is taken from "Boundry Layer Theory," by Herman Schlichtrig, translated by Dr. J. Keston, Fourth Edition, McGraw Hill.

Figure 5.1.6(b) is derived by using the graph of Figure 5.1.6(a) and calculating Reynolds' Numbers for wind velocities from 0 to 120 MPH, with D = 53mm (.1739 Ft.) and V = .180 X 10^{-3} Ft.²/Sec. The cross hatch area near the origin in Figure 5.1.6(b) shows the wind speed range in which regular vortex sheets are formed. Above this small wind speed region the wake is turbulent and regular vortex sheets are not formed; that is, no real flutter frequency is established. Also shown in Figure 5.1.6(b) is the location of the two resonant frequencies of the absorber tube measured by a scan of 0 to 300 Hz. on a vibration shake table. These are both far removed from the frequency range where the vortex sheets occur. The conclusion from this data is that wind induced flutter frequencies will not excite the resonant frequencies of the collector tube elements.

Review of items 5.1.4, 5.1.5 and 5.1.6 successfully completed.

0.I. Test Engineer

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

David C. Miller, Ph.D. SH&G Certification Officer

Milliam C. Louie, V.P. P.E. (Mi. 11084) SH&G Certification Officer

· all John M.

Technical Manager NASA Approval

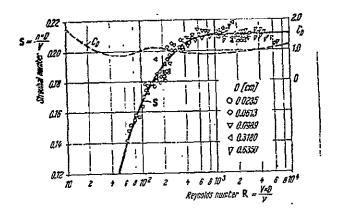
OUTDOOR STAGNATION TESTS

U8E		DATE	1		TUBE		DATE	·· ·
No	11/1/76	7/14/27	3/20/78		No.	11/1/76	3/14/77	3/20/78
ITP)	275	270	280	BTUI FT	*HR,	275	270	, 2,80
•	TURE L	ATA .=	STAGNA	TION TO	Er#PERA	TURE °F	· ·	· ·
	513	.508	50R	:	128	507	570	502
112	490	526	520		129	537	560	, 53 6
//3	523	530	515		132	558	575	550
114	530	525	525	·	136	558	565	540
117	515	518	510	!	137	554	560	542
118	556	570	545		139	575	560	560
119	508	516	505	,	140	553	560	્ ઉઉઉ
120	515	578	505	r r	143	570	535	້ 5 "66
122	515	518	502		147	. 548	560	i 530
123	550	556	545	-	1		•	•
124	556	568	535	;			* *	•
126	536	545	535		 		.	•
127	554	565 .	532	1 - -			-	• • •
			DUGO	AGE VAL		537	546	. 529
		-	PIVER.					
				İ		•		

120 FIGURE 5. 1.4 (a)

Chemical Durability is the lasting quality of a glass surface. It is frequently evaluated, after prolonged weathering or storing, in terms of chemical and physical changes in the glass surface or in terms of changes in the contents of a glass vessel. The glass which is best suited chemically in one situation is often inferior in another. This information book covers glassware intended for many different uses. For many of these, special tests or prolonged observation in service are required to establish excellence. Great differences exist in the chemical properties of glasses customarily used for these different purposes. The result obtained in an arbitrary test should therefore be interpreted with caution.

In this information book, typical values are given for several crushed-sample tests in order to indicate chemical durability broadly. A glass is handled in a specified manner to yield 10 g. of crushed grains that pass a No. 40 sieve and are retained by a No. 50. In ASTM Test P-W (ASTM Designation C225), this glass is exposed to the action of specially purified water at 121°C. for 30 minutes after which the alkaline material extracted is determined by titration. The result is expressed as "ml. 0.02 N H_2SO_4 " (ml. N/50 H_2SO_4) used in the titration. This procedure is designated as the Powdered Glass Test by the United States Pharmacopeia (USP XVII, pp. 900-901) where it is the basis of the following container specifications.


Туре	General Description	Limits
I	Highly resistant, borosilicate glass	1.0
III	Soda-lime glass	8.5
NP	General-purpose soda-lime glass	15.0

The frequency with which vortices are shed in a Kármán vortex street behind a circular cylinder was first extensively measured by H. Blenk, D. Fuchs and L. Liebers [2]. A regular Kármán street is observed only in the range of Reynolds numbers V D/r from about 60 to 5000. At lower Reynolds numbers the wake is laminar and has the form visible in the first two photographs of Fig. 1.6; at higher Reynolds numbers there is complete turbulent mixing. Measurements show that in the regular range given above, the dimensionless frequency,

$$\frac{nD}{V} = S$$
, (Strouhal number)

.

also known as the Strouhal number [20], depends uniquely on the Reynolds number. This relationship is shown plotted in Fig. 2.9 which is based on the more recent measurements performed by A. Roshko [16]. The experimental points which were obtained with cylinders of different diameters D and at different velocities Varrange themselves well on a single curve. At the higher Reynolds numbers the Strouhal number remains approximately constant at S = 0.21. When the diameters of the cylinders are small and the velocities are moderate, the resulting frequencies lie in the acoustic range. For example, the familiar "aeolian tone-" emitted by telegraph wires are the result of these phenomena. At a velocity of V = 10 m/sec (30-48 ft/sec) and a wire of 2 mm (0.079 in) in diameter, the frequency becomes $n = 0.21 (10/0.002) = 1050 \sec^{-1}$, and the corresponding Reynolds number $R \approx 1200$.

ORIGINAL PAGE IN OF POOR QUALITY

FIGURE 5.1.6 (a)

		Print Kaeminn Voeron Streen Freedoming Ve. Wilso Votocity 53 min C 0 Sun for Concerne Frise
		SS or O. Star Contract FUSE
	89	
$\frac{\partial \sigma}{\partial t} = \frac{\partial \sigma}{\partial t} = $	4 0	
Wind Verberry (MPM)		

.

5.2 Temperature and Pressure Resistance.

5.2.4 Leakage. A thermal cycle test loop was built containing the elements indicated schematically in Figure 5.2.4(a). Ambient air is increased in pressure by the air fan. An electric heating element increases the air temperature to a preselected level. The high temperature air is introduced into the normally exit air duct. The air flows through the ducting internal to the manifold and the tube elements and out the normally inlet air duct. The reverse air flow path is used to simulate the temperature gain of the air as would exist under normal operating conditions. The air flow rate is monitored by the inclinometer which measures the pressure drop of that expected under normal operating conditions; viz. a flow rate which causes approximately 0.3 inches w.g. pressure drop.

Temperatures were monitored on a strip chart recorder with the sensors located as indicated in Figure 5.2.4(b). The three hour cycle to temperature and return to essentially ambient conditions as shown in Figure 5.2.4(c) was selected to allow a reasonable total elapsed time for the cycle testing and still allow all temperatures to reach essentially steady state conditions. After the accumulation of a selected number of cycles, the air supply was disconnected and the inlet and exit ducts taped closed. One tube was removed allowing the direct connection of a pressurized air supply to the air manifold. A rubber stopper, with two access holes was inserted into the manifold well in place of the tube and silicone seal. The second access hole was connected to an inclingmeter of 5 inches w.g. total range for an accurate measurement

of pressure. A precision air flow meter was used to measure the volume of leakage air flow.

The regulated air supply provided a precise control of manifold pressure from 0 to 5 inches w.g. The manifold pressure was set and allowed to stabilize. The volume of air flow required to maintain the selected manifold pressure is a measure of the leakage flow rate of the collector. Since time was required to make the change over, leakage air flow at the maximum temperature condition could not be accomplished. Therefore, a qualitative indication of leakage flow at maximum temperature was obtained by simply taping shut the exit flow duct. A smoke bomb was fired and the smoke ingested into the inlet to the fan. At no time could any evidence of leakage as indicated by a smoke pattern be detected.

The measured leakage flow rate after the accumulation of various numbers of thermal cycles is indicated in Figure 5.2.4(d). It will be noted that the high temperature condition was approached in steps as a precautionary measure. The principal features of the data are first the very low leakage flow rate measured at the order of 0.1% of operating flow and second the lack of any trend towards an increase in leakage flow rate. The scatter in the data indicates that the tightness with which the flow ducts were enclosed and with which the pressure source and inclinometer were attached to the manifold caused variations in the measured value of leakage flow rate as large as the leakage volume flow itself. Note that leakage flow was measured up to 5 inches w.g. which is a factor of 10 or more higher than the collector pressure drop itself.

Upon physical examination there was no sign of creep or embrittlement of the silicone seals.

5.2.5 Deterioration of Gaskets and Sealants.

The tests conducted and described in Section 5.2.4 are evidence of the capability of the gaskets and sealants to withstand operating service conditions. It is felt that the very low leakage evidenced at high temperature (smoke bomb tests) and near ambient conditions (direct leakage flow measurement) represent more demanding requirements than those of the approved Acceptance Test Procedure. The capability of the materials to operate satisfactorily after exposure to extreme cold conditions was evidenced during the extreme weather conditions of the Toledo winters of 1977 and 1978. Examination of the gaskets and sealants used in the ERDA collector array upon disassembly of a manifold after removal in March 1978 show no signs of creep, embrittlement, cracking or other deterioration. Testing of the assembled array just prior to removal from the roof showed no signs of loss of ability to perform the intended functions.

5.2.6 Transmission Losses Due to Outgasing.

This section is not applicable to the Model SEC-601 collector tube elements since the transmission path is a hard vacuum totally enclosed in hermetically sealed glass. However, this section is applicable in intent since a loss of vacuum due to outgasing of the glass and/or selective surface or a deterioration of the selective surface due to long term exposure to the high temperatures which can obtain under no flow conditions can cause a deterioration in performance.

To accumulate evidence that the collector tube elements have the requisite long term stability under exposure to normal operating conditions, all of the tube elements of the ERDA air collector were ranked by a standard outdoor sunshine test. The tube elements were tested first on 10/30 to 11/1, 1976. They were retested on 7/13/77 and a sample lot retested 3/20/78. The cover tubes were not cleaned at any time during the entire test period except by the natural processes of rain and melting snow. The level of insolation in the tilt plane of the outdoor test rack was noted for each day of test at the time the stagnation temperatures were measured. A suitable day for the stagnation tests was determined qualitatively as relatively "cloud clear" by the test operator.

The test data is shown in Figure 5.2.6(a). The change in the average value of stagnation temperature was of the order of 1.5%, well within the possible experimental error. The tubes were subjected to no flow stagnation conditions almost every weekend and over the holiday periods from 11/15/76 to 3/17/88, a period of 17 months.

Three major installations, GSA Building, Saginaw, Michigan; Terraset School, Reston, Virginia, and the Troy Library, Troy, Ohio represent a total of 12,672 tube elements installed and operating under field service conditions. Tube elements have been replaced for apparent loss of thermal performance under the O-I warranty agreement. The reason for failure has been investigated and in all cases was attributed to loss of vacuum due to a micro crack developing in one of the glass seal areas. No failure was attributed to outgassing or coating deterioration under field operating conditions.

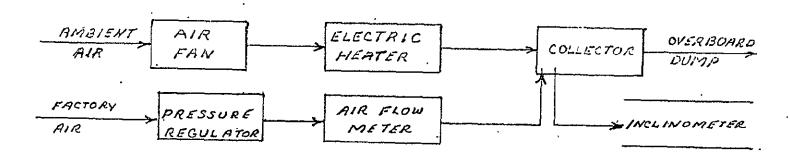
Review of items 5.2.4, 5.2.5 and 5.2.6 successfully completed.

makel

0.1. Test Engineer

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

David C. Miller, Ph.D. SH&G Certification Officer


Aprilia Catheres

William C. Louie, V.P. P.E. (Hi. 11084) SH&G Certification

and le John M. Caudle Technical Manager

NASA Approval

THERMAL CYCLE AND LEAKAGE TEST SCHEMATIC

FICURE 5.2.4(a)

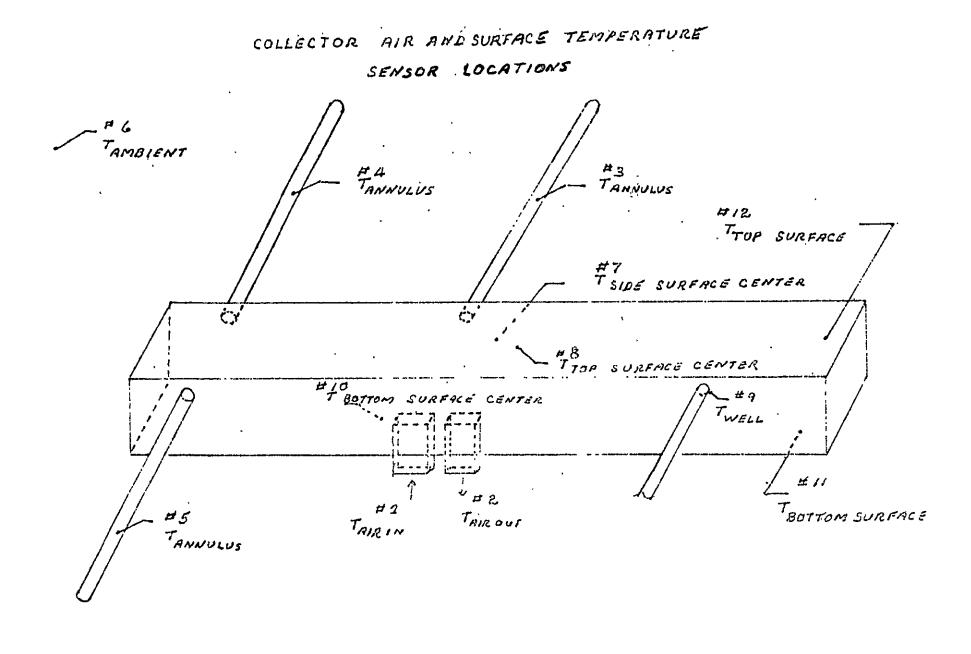
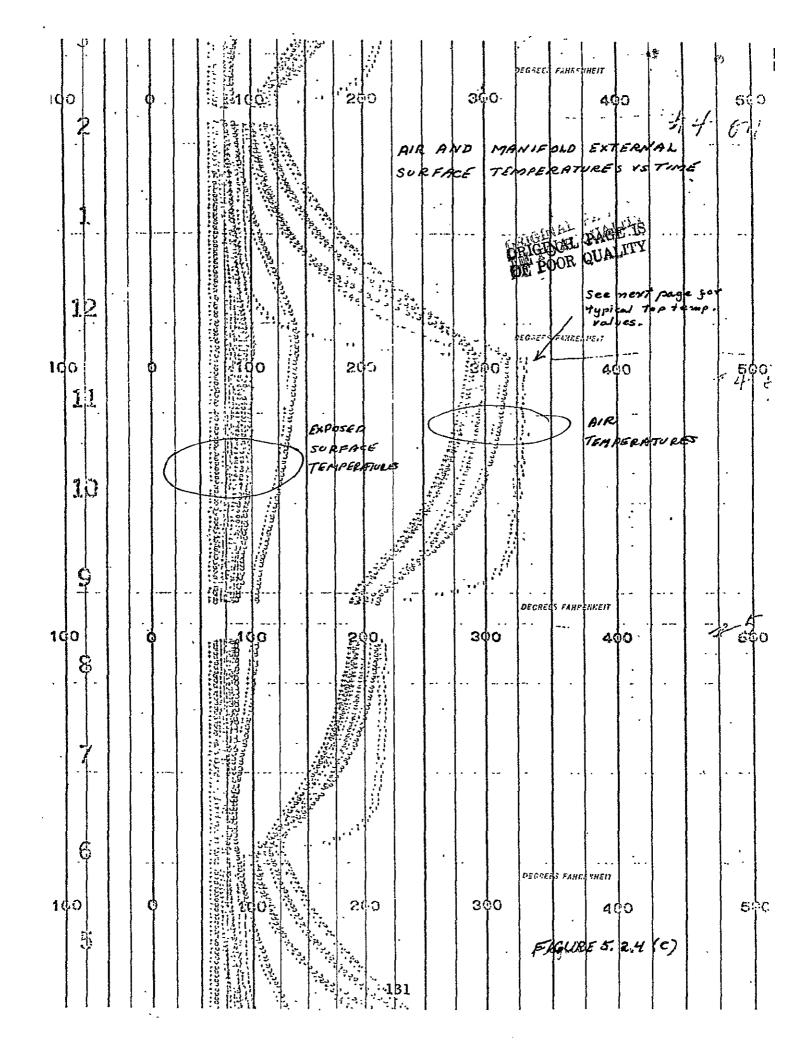



FIGURE 5,2.41(6)

Project 8721,003 -19⁷⁵⁻ 129 Date MARCH 2 Description NASA 31259 AIR LIGHID SYSTEM CYCLE TO 300 F MANIFOLD 4 TUBE TEMP. LOCATION TEMP. TC petain intet 118°F 1 234547890 " outlet 305 tube annulus tor center, 312 ind 302 302 i i 11 annkillet min runder 70 man. surface, side mear butter 95 91 tube well between slage & silicone gerbet 135 man, surface, bottom near conter 97 82 end \boldsymbol{J} 85 12 11 4 11 11 3-3-78 LEAKAGE TEST I CYCLE TO 300 F FTIMN CC/MIN MANIFOLD PRESS. SCALE AIR FLOW 11,5 1,0" WC 4700 0.164 2.0 7300 0.258 11 16.5 9300 0.328 4 20.5 3.0 23,3 10900 0.385 11 4.P. 3-6-78 CYCLES TO 300 F 2 3-7-78 2 CYCLES TO 300 F LEAKAGE TEST USING SMOKE CANDLES ANABLE TO DETECT ANY SMOKE LEAKAGE BY VISBAL OBSERVATION Signed Robert Romaker have been Pages_ . to. read and understood and Witnessed by... Date 132

((,	1.		• • •	1	Γſ	Co	i e i		A	1	ах	A 12	 	ر در مند ار م			······		7	[•	[]		, (* 			T	[]	[
.8				1			1	1	Į.	Ī		ş			:	:	77 G.					. :.	•	:		7	1.	1		Ē
						- '	M	90	سکر مو	U	.p		A F	55	118	E				•	[#] .[7				7	1			•	Γ
		·			1			. -		1	۔۔۔ 1												2		Ē	Í,		1	:	Ì
0	······································		·			1		τ	Cui	14 1	E. EC	\mathcal{I}_{-1}	2.6	ر ار لر	<u> </u>		1.51	4 CEI	, ,					/		ļ		1/	<u> - </u>	┢
, 5		<u> </u>	• •				<u></u>	<u> </u>	<u> </u>	=								·····			16_	$\frac{1}{2}$				1	200		;	Ę
. 1							<u></u>			- +		· 			#	<u> </u>		2,16	. .	<u>/</u>				<u>/</u>		P		×	<u> </u>	Ľ
· · ·		<u>' :*:'` '</u>		<u>.</u>		•		÷			<u> </u>			_#	211	;_3	50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		>		2	<u> </u>				·		ļ	-
						<u>. </u>	;			1	<u>.</u>		21	<u>, n</u>	30	÷ <u>··</u> ·	<u>.</u>					>>			<u>/</u>		12	ر سرر ب	_	Ľ
• • • • •				<u>.</u>	:)1 ".1				-	::			·	• -		7	55.	مُندَ ا						1	-1-		 	-::	
					1	; ; ;		ľ		-	- 7	4,.	3.	Ċ,	•••		1.		1	المرز	میں میں میں میں میں میں میں میں میں میں	7	1. j.	17	1	1	:		-	Γ
2.5			1.1.1.		- <u> </u>	+				-				ا فر	3	/_					بریمه	ļ., -								ţ.
				,				1			÷.			/ .					Ĩ.,					<u>:</u> :	Ì	1	:		1.	ŀ
0,2	<u> <u> </u></u>	1 11	1	<u> </u>	<u> </u>	1.1	1		1	┱┤	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\leq		2	1	in the second		میں بر مراجع مرکب ما	1					<u> </u>	+		-	:[ł
:	111 - Hit							1). HJ	Į	Ľ	/			أتعنو	مبر مرکز کا	م مبنی م	•				-	·:: .	• :				<u>ا</u> رد ا	:	[ļ
· 1 • 1 •			76,	<u> </u>	<u> </u>	15		÷	2	2	\geq		منر. منهز ا			<u> </u>	- ¹				•	<u> </u>	, 	r. 		 	<u>-</u>	·	<u> </u>	ļ
								/		\geq		میں میں				<u>.</u>				坊	· · ·	2.50		· .				<u> </u>	-	l
	Ô							1		77			1	مسم		بر	, .			- č	3	290 		:		· [.				Ì
• •,						1.		, j		بسب			1.							· .	⁻ .]:.	⁻ .		
 _ا'و،	· W.	2011	·····		1	Ĭ		بر ک	ريجم	- j		Î							1			† 		†		-		15	ļ.	1
03	9. 9. #3	1	. : :	ز ز ز ا			<u>i</u>	.		-		[]			ŀ					-		1		<u>. </u>	1	•				ĺ
.07	12-63	1160 - 1111 -	, , ,		ر. مرا		1.	·]~	17	/	-	1.1	·.	• •	. :		•		ļ.		. [:] <u>:</u>		<u>.</u>			. [Į
.0	- 41 #c	55		1	/	7		1-	Į.		-	· .		· .		-	•	[·	^	-12-			• • [· =]		<u> </u>	Ţ
,0).		17-17 x-1			1	47	<u>ک</u> ر	Ť	+]		<u> </u>				¦		<u>-</u>		+		<u> </u>	-			<u> </u>		1:		<u>†</u> .	ł
.0 ⁵ .	5,	250	ļ,	Z			-	Ŀ							[1	1.			<u>.</u> :		Ē					Ē	Ì
<u>د</u>			::-; ڊـــــز				·			-î-				,	ļ	<u>.</u>		<u> </u>					<u> </u>	<u> </u>		÷Ļ	<u> </u>	4	틷	+
		201			1	-	:			· -	<u>.</u>	<u> </u>		· ·		<u> </u>	· · ·	<u>:</u>	· .	:	<u> </u>	<u>[]</u>	<u> </u>	<u>::</u>	E	<u> </u>	<u></u>	<u>- -:</u>	Ľ.	4
4		#.5.1			1		<u>i</u>	<u> </u>	-			<u> </u>	=			<u></u>	<u>.</u>	<u> </u>	<u> </u>			=		<u> :.:</u>	· ¦	•	-	· ·	<u> .</u>	ļ
., .03.		TE:U	· · · · · · · · · · · · · · · · · · ·	₿₽	4 <u>1</u>	<u>.</u> + <u>-</u>	4:5:	1	([†]		<u> </u>	: <u>-</u> -	- '	 -			· ·		:] :				<u> </u>	<u> </u>					- '	Ì
e y/-		fer he	=	The second				1.		-			•	ľ		·	-		1	÷ ::		1			<u>[:]</u>	-	1.7			1
.07. 5.			1,51,41		-			1		-	- <u>-</u> -	<u></u> :		<u>-</u> -	<u> </u>		: 		-			1	<u> </u>]		<u> </u>	
					-	-12		- · · ·	 	•••				: .	1.		• • • •		-	: <u>.</u>									-	
.0.	1						- - -					Fr		<u> -</u>			<u>.</u>			<u> </u>	<u> </u>		<u> </u>	+	<u></u>		-		÷	:
		Fran		;;'·	-	. . ;	, Ę	- - - - - - - - - - - - - - - - - - -	· ·	-	•	ľ	.				1		: -				Γ.	-	•				1	-
.0 1.5				, , , ,		<u> </u>	<u>, i</u>	<u> .:</u>	_		•	l	۱. 	[<u> ;</u> ,		· • •		l.	<u> </u>	<u></u>	·	<u> </u>	<u> .</u>		· · · ·	1.		<u>[.</u> ;	-
•			: uit		<u>,</u> 1]	1-1-1-				••	. •	1 1	L L }	ľ.,			• • •	· · · · ·	.		· · · · ·	i		:			-:	1		Ì
			·[:]]. ·[,										1.				1 <u>.</u>		- -:	-		F/	GU	1p	7	5.	2.2	16	()	,
.									•	• •							:		·	-		-	÷1	1.	1 4	[<u>а. </u>		1.)
-0:	1 .	1.3	2 .	2.5		<u></u>	- ' •		5	 (5	¦	2.	<u> </u> 9				1.5	2	2	.5	3.	<u>.</u>	1 4	i'.	i	і., в	- <u></u>	8	3

MANIFOLD PRESSURE (in. of H20 ABOVE AMBIENT)

DEFINITION OF TEST NUMBERS

# 2.	FIRST CALIBRATED LEARAGE FLOW TEST
<mark>н</mark> 3	ONE CYCLE TO 160°F MAX. AIR TEMP.
١.	ONE CYCLE TO 200°F MAX. AIR TEMP.
# 5	ONE CYCLE TO 250°F MAX. AIR TEMP.
.**6	REPEAT AMBIENT AIR TEMP. LEANAGE TEST
¥7 + * 8	REPEAT CYCLES AT 250°F MAX AIR TEMP.
#9	ONE CYCLE TO 325°F. MAN. AIR TEMP.
* 10	ONE CYCLE TO 325°S. MAX. AIR TEMP.
. ad 11	TOTAL 11 CYCLES
*/2	TOTAL 16 CYCLES.
[#] 13	TOTAL 27 CYCLES
Ħ 14	TOTAL 43 CYCLES
#15	TOTAL SI CYCLES
#16	TOTAL TO CYCLES
. #17	TOTAL 101 CYCLES
	,

OUTDOOR STAGNATION TESTS

-	DATE			TUBE		DATE		
TUBE No.	11/1/76			No.	-	11/1/76	7/14/77	3/20/78
(I _{TP})	275	270	280	BTU/ FT. HR.		275	270	280
	TUBE D	ATA =	STAGNA	TION TEMPE	RAT	URE °F		
111	513	508	. 502	126	3	507	570	502
112	490	526	. 520	129	7	537	560	530
113	523	. 530	515	13:	2	. 558	. 575	550
114	530	525	525	/30	6	558	565	540
117	515	51B	510	/3	7	554	560	542
118	556	570	545	. 13	9	575	560	560
119	508	516	505	14	10	553	560	555
120	515	578	505	11	73	570	535	560
122	515	518	502	14	47	548	. 560	530
123	550	556	545	r				
124	556	568	535					
126	536	545	535					
127	. 554	. 565	532					

AVERAGE VALUE 537 546 529

FIGURE 5.2.6 (a)

OWENS-ILLINOIS Inschr Ohn

Solar Frierg, Products Group

December 12, 1977

Intra-Company

o G. R. Mather - Dev. Ctr.

subject

.

VACUUM LOSS IN SUNPAK(TM) TUBES AT GSA BUILDING, SAGINAW, MICHIGAN, 11/30/77

Seven tubes returned from the subject installation by Mr. E. G. J. LaBonte were examined to determine the cause of suspected vacuum degrad-. ation. The tubes had been selected out because they were warm to the touch.

A summary of the analysis is given in Table 1. Five of the seven tubes had a capillary channel in the tip-off. One tube had a pinhole in the tipoff tubulation seal to the cover tube. One tube had a crack in the cover tube due to external damage.

The above described tubes represent seven out of 1200 tubes in the first row or 0.58%.

in Sparoudis

Louis Spanoudis

LS/gs

Table 1.

Analysis of Sunpak(TM) Tubes With Suspected Poor

Vacuum; Saginaw GSA Building; 11/30/77

Batch Number	Analysis
A-197 A-206 A-282 A-134 A-132 A-206	Tip Off Capillary Tip Off Capillary Tip Off Capillary Tip Off Capillary Tip Off Capillary Pinhole in Tubulation
A-730	Cover Tube Seal Crack Due to External Cover Tube Damage.

5.3 Chemical Compatibility of Components.

The design and material specifications for the ERDA and the Model SEC-601 collectors were reviewed and it was judged that similarity could be used for compliance to the criteria of Section 5.3. Since seventeen months of service experience has been accumulated, only data from the ERDA array will be used. One of the two ERDA manifolds was disassembled to allow complete inspection of all critical components by a representative of the certifying agency.

5.3.1 Materials/Transfer Fluid Compatibility.

No evidence of corrosion of the aluminum divider strip, the aluminum distributor tube or glass surfaces could be detected. In the Model SEC-601 collector, air flow is contained entirely within glass or aluminum materials.

5.3.2 Corrosion of Dissimilar Materials.

A review of the drawings and material specifications of the ERDA and Model SEC 601 collectors demonstrates that no non-dialectric materials are in contact one with the other within active collector flow path. The only dissimilar metals in contact with each other are 6061 Type aluminum with Type 340 stainless steel in the support structure. These are compatible materials for the application.

· 5.3.3 Corrosion by Leachable Substances.

Upon close inspection of the ERDA manifold, no evidence of corrosion by leachable substances occurred.

5.3.4 Effects of Decomposition Products.

A close inspection of the ERDA manifold and a review of performance data over the seventeen (17) month test period demonstrates no impairment in the ability of any of the components to perform their intended function.

Review of items 5.3, 5.3.1, 5.3.2, 5.3.3 and 5.3.4 successfully completed.

mak Robert F. Romáker

0.1. Test Engineer

7. 3. main

Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

David C. Miller, Ph.D. SH&G Certification Officer

all.C-

William C. Louie, V.P. P.E. (Mi. 11084) SH&G Certification Officer

Canall dôhn M. Caudle

Technical Manager NASA Approval

6.1 Accessibility for Maintenance and Servicing.

6.1.1 Access for system maintenance.

The Model SEC-601 collector subsystem has been designed for zero maintenance during its service life. However, the collector tube element could encounter service use failure due to natural causes such as unusual hail conditions or due to human factors such as vandalism or impact failure in handling. The need for replacement will be realized through visual observation of obvious glass breakage or by the detection of sub-par insulation properties of a collector tube element. The latter condition may be ascertained by physical hand contact with the glass cover tube and a sense of its being above ambient temperature; a lack of frost covering on the glass surface where most other tube covers are frosted; or by sophisticated techniques such as the use of infra red radiation detectors.

All of the collector elements required for the removal and replacement of a collector tube are easily accessible from above the plane of the collector. The system's designer/installer must ensure that suitable space is available for the mounting of a temporary support which can accommodate a workman for the removal and replacement activity. It is recommended that any collector tube replacement be accomplished in the early morning or late afternoon hours. If only a minor replacement effort (perhaps 10% of the tubes in a module or less) is required, no problem is introduced by collector tube change at any time of the day. Two precautions should be observed. First, the center air distributor tube could be very hot and could burn the skin if touched

shortly after removal of the collector tube. Second, if the control thermocouples are in the annulus of the collector tube element being removed, an overtemperature condition could develop after the collector tube is replaced and prior to the time system activation is attempted. Proper control system functioning would prevent system start-up.

.6,1.2 Access for system monitoring.

Thermocouples (two-copper-constanton, Type T) are provided to indicate the temperature of the air in the annulus of a collector tube element. These couples are intended for use in the control of the solar energy system. The collector inlet and exit air temperatures and air mass flow measurements are required to monitor the collector thermal performance. It is recommended that six element thermopiles be mounted in the transition ducting leading to and from the collector manifold if individual collector module monitoring is desired. If monitoring of the performance of a collector array is desired, suitable temperature and air flow sensing elements will have to be located in appropriate cross sections of the system main air ducting.

cross

6.2 Installation, Operation and Maintenance Manual.

6.2.1 Installation instructions.

A section of the manual deals with the installation of a Model SEC-601 air collector subsystem. No special provisions are provided for interconnections between modules. The interconnection between collector modules is to be provided as a part of the dwelling/site installation

6.2.2 Maintenance and operation instructions.

Sections of the manual deal with the operating and the maintenance instructions for the collector subsystem.

6.2.3 Maintenance plan.

No routine maintenance plan has been developed for the Model SEC-601 collector. No component or subassembly has been designed or selected on the basis of limited life short of the design life (target, 20 years) of the collector subsystem.

6.2.4 Replacement parts.

No special tools or test equipment are required for service, repair or replacement of parts or components of the Model SEC-601 collector. Service, repair or replacement parts required by unforeseen in service conditions may be ordered from the collector manufacturer: attention, Field Service Engineering, Solar Energy Products Group, 1020 N. Westwood, Toledo, Ohio, 43666, (telephone (419) 247-9705).

6.3 <u>Repair and Service Personnel.</u>

6.3.1 and 6.3.2 Servicing of H, HC and HM Systems.

A review of the drawings, specifications, maintenance instructions and a typical installation demonstrates that an installed Model SEC-601 collector can be conveniently and simply serviced by a trained HVAC service technician using the Installation, Operation and Maintenance Manual.

11.2 Durability and Reliability of Dwelling and Site.

11.2.1 Chemical corrosion. Satisfactory completion of Criteria 5.3.3 and 5.3.4 (Chapter Five) satisfies the criterion of this section - 11.2.1.

11.2.2 Heat and moisture.

Physical and visual inspection of a Model SEC-601 collector subsystem installed and operating demonstrates that no heat or moisture build up can or will occur by a collector installation.

11.3 Durability and reliability of connections.

11.3.1 Satisfactory completion of Criterion 5.3.2 of Chapter Five constitutes satisfactory compliance with this criterion - 11.3.1.

Review of items 11.2, 11.2.1, 11.2.2, 11.3 and 11.3.1 successfully completed.

Robert F. Romaker 0.1. Test Engineer

mell I M Kenneth L. Moan

P.E. (Ohio 5203) O.I. Approval

David C. Miller, Ph.D. SH&G Certification Officer

William C. Louie, V.P. P.E. (Mi. 11084) SH&G Certification Officer

sunder Caudle m`M.

Technical Manager NASA Approval

Review of items 6.1, 6.1.1, 6.1.2, 6.2, 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.3, 6.3.1 and 6.3.2

maker

Robert F. Romaker 0.1. Test Engineer

<u>Henneth</u> J. Moan Kenneth L. Moan P.E. (Ohio 5203) O.I. Approval

David C. Miller, Ph.D. SH&G Certification Officer

William C. Louie, V.P.

.

P.E. (Mi. 11084) SH&G Certification Officer

and

John M. Caudle Technical Manager NASA Approval