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SUMMARY

The NASA Lewis Research Center, as part of the NASA high-power

laser technology program-, has been conducting investigations'of different- t
types of las ing systems. The purpose of these investigations has-been the

assessment of system effectiveness for delivery of high'power laser beams

for potential NASA missions such as long range"-power transfms'sion. Nomin'al

requirements to satisfy potential NASA missions include- continuous^ multi- • ;

megawatt power output, high beam quality, closed cycle operation, .light

weight, high over-all system efficiency, and reliable operation for periods

approaching a year. The effort reported here deals with closed cycle CO^_

and CO electric discharge lasers. This effort was an analytical investigation

to assess scale-up parameters and design features for CO?, closed cycle,

continuous wave, unstable resonator, electric discharge lasing systems

operating in space and airborne environments. During the program, the scope

was expanded to include the investigation of a space-based CO system. The

study was conducted insofar as possible in the context of predicted 1990

technology.

The program objectives were the conceptual designs of six CO- sys-

tems and one CO .system. Three airborne CO- designs, with one, five and

ten megawatt outputs, were produced. These designs were based upon five

minute run times. Three space-based CO, designs, with the same output

levels, were also produced, but based upon one year run times. (This

primarily meant that no consumables were allowed.) In addition, a conceptual

design for a one megawatt space-based CO laser system was also produced.

These designs include the flow loop, compressor, and heat exchanger, as well

as the laser cavity itself. Design for the prime power, waste heat disposal
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system, and pointing and tracking were not pursued, although it became

necessary to make certain scaling assumptions about these items.

The airborne systems were designed for maximum efficiency, but as

a consequence of the extended run time for the space-based missions, real

time waste heat disposal is required and the minimum system weight is not

achieved at the optimum laser efficiency. Therefore, the airborne and space-

based laser loop designs are different. It is interesting to note that the

designs resulted in a laser loop weight for the space-based five megawatt

system that is within the space shuttle capacity. For the one megawatt sys-

tmes, the estimated weight of the entire system including laser loop, solar

power generator, and heat radiator is less than the shuttle capacity. While

the CO system resulted in the lightest weight and highest efficiency, the

significance of the weight difference is questionable in view of the state of the

technology development in this area.
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1.0 INTRODUCTION

1.1 PROGRAM SCOPE

The NASA Lewis Research Center, as part of the NASA high power

laser technology program, has been conducting investigations of different

types of lasing systems. The purpose of these investigations has been the

assessment of system effectiveness for delivery of high power laser beams

for potential NASA missions such as long range power transmission.'

Nominal requirements to satisfy potential NASA missions include continuous

multi-megawatt power output, high beam quality, closed cycle operation,

light weight, high over-all system efficiency, and reliable operation for

periods approaching a year. A previous study dealt with a closed cycle'

gas dynamic laser. The effort reported here deals with closed cycle CO
£

and CO electric discharge lasers. This effort was an analytical investiga-

tion to assess scale-up parameters and design features for CO?, closed

cycle, continuous wave, unstable resonator, electric discharge lasing sys-

tems operating in space and airborne environments. During the program,

the scope was expanded to include the investigation of a space-based CO

system. The study was conducted in so far as possible in the context of

predicted 1990 technology.

The program objectives were the conceptual designs of six CO,

systems and one CO system. Three airborne CO- designs, with one, five,

and ten megawatt outputs, were produced. These designs were based upon

five minute run times. Three space-based CO- designs, with the same

output levels, were also produced, but based upon one year run times. (This

primar.ily meant that no consumables were allowed.) In addition, a concep-

tual design for a one megawatt space-based CO laser system was also
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produced. These designs include the flow loop, compressor, and heat

exchanger, as well as the laser cavity itself. Design for the prime power,

waste heat disposal system, and pointing and tracking were not pursued,

although it became necessary to make certain scaling assumptions about

these items.

1. 2 PROGRAM ORGANIZATION
i v

The CO2 EDL study was initially organized into two tasks. The first

was a parametric component and system scaling analysis. This task pro-

vided guidance for the major system trade-offs and resulted in the choice of

a nominal baseline design concept. The effort under this task is discussed in

Section 3 of this report. Then the second task, component and system con-

ceptual design, was pursued, resulting in the conceptual designs presented

in Section 4. Because of the high potentially achievable efficiencies in CO

systems, a third task was added to the program while the CO, study was in

progress. This task was the scaling and conceptual design of a closed cycle

cw CO electric discharge laser. The activity under this task is discussed in

Section 5.
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2.0 OVERVIEW OF THE STUDY

2. 1 PERIPHERAL COMPONENT SCALING

While prime power and waste heat disposal system designs were not

included in the scope of this study, it became apparent very quickly that

these components play an important role in overall system design. For

example, in the space-based system overall system weight is drastically

affected by the, heat radiation temperature since the radiator size is, pro-

portional to the fourth power of the temperature. The radiator weight loss

to be obtained by increased temperature, however, is somewhat offset by

the fact that increased temperature results in reduced laser efficiency

requiring a larger and heavier prime power source. Consequently, the

specification of the laser system design parameters should be a result of

the influence of not only the laser system components, but also the prime

power and waste heat disposal systems. In fact, the laser itself is by far

the lightest part of the system. In order to perform a meaningful study, it

became apparent that the overall system should be optimized and tradeoffs

between the influences of the major subsystems should be made. This

necessitated the choice of types of prime power and waste heat disposal

systems so that scaling laws could be developed. For the airborne systems,

a gas turbine driven super-conducting alternator was chosen as the prime

power source and prechilled aircraft,fuel was chosen as the heat exchanger

fluid. After passage through the laser heat exchangers, this fluid is avail-

able for use as aircraft fuel. For the space-based systems, an erectable

focussing solar collector heating a Brayton cycle generator was selected as

the prime power source and an erectable teflon radiator was chosen for laser
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system waste heat disposal. The collector and radiator are required to be

maintained in positions facing toward and away from the sun, respectively.

2.2 DESIGN CONSTRAINTS

Near the beginning of the study, the issue of study scope was

addressed and a set of guidelines was decided upon. The major concern was

with the one year run time space-based systems. The first limitation was

that the details of space station design, including such things as angular

momentum conservation, would not be addressed. Also, detailed solution

of gas leakage and material lifetime problems would not be attempted in a

conceptual design study. The primary manifestations of the one year run

time then are the requirement for virtually no consumables and steady state

operation. Power must be provided and waste heat must be radiated in real

time. In the airborne systems however, one way temperature changes in

the coolant fluids are acceptable, since they need not be recirculated for

five minute run times.

The method of excitation of the laser medium was chosen to be an

electron ionized sustainer discharge. Vibrational excitation of the gas mole-

cules is produced by the dc sustainer current. Optimization of the excitation

efficiency is accomplished by proper choice of voltage. The input power is

then determined by the current density which is independently controlled by

the electron gun, which injects high energy ionizing electrons into the

excitation region.

The energy and current density of the injected electrons determine

the degree of ionization and consequently the sustainer current density in

the laser medium. Alternative excitation schemes including rf discharges

and ultra-violet pre-ionized sustainer discharges were briefly considered.

However, the current state-of-the-art is further advanced for electron beam

ionized sustainer discharges and this situation is unlikely to change in the

near future. The principal difficulty with the use of electron beams has

been the relative fragility of electron guns. Recently, Hughes has developed

a rugged plasma discharge electron gun which does not use hot filaments and

which should be suitable for reliable long run time operation. This device

will be described in Section 3. 3. 4.
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It was also considered desirable to treat the issue of sustainer

discharge or electron beam induced molecular changes in the laser medium in

this study. However, the current understanding of this problem is inadequate,

and any treatment of the possible impact of this issue on long run time designs

would be highly speculative. Consequently, it was regretfully decided not to

treat this problem in the current study. Recent experiments at Lincoln Lab-

oratories do indicate that the problem may be minor. If the problem turns out

to be significant, it may necessitate the addition of an additional component to

the laser loop. This component would be a compensator to artifically induce a

compensating reaction for the specific process being stimulated in the laser

excitation region. Alternatively, the precise gas mix in the laser loop may be

chosen to minimize this problem. In any case, it is hoped that this issue will

be experimentally addressed in the near future.

A major issue in the design of high efficiency high pressure cw electric

discharge lasers is the proper treatment of mode-medium interaction. In

these devices, the heat deposition in the laser medium within the optical

extraction region is a function of and interacts with the optical intensity as

influenced by the optical resonator mode distribution. This interaction has

many forms and can be weak, strong, or even unstable. Proper excitation

region and optical resonator design has been pursued recently with great vigor

at Hughes and elsewhere, and great progress in the understanding of this prob-

lem has been made. It is clear that the medium will strongly affect the phase

distribution of the laser beam and phase correction will be required on the

resonator mirrors. It is reasonable to assume that by 1990 the prescription

for detailed resonator design, including mode-medium interaction effects, will

be well understood. For the present study, the precise details of the excitation

region and optical resonator designs are not specifically defined; the method of

excitation and size of the excitation region and resonator beam can however be

determined.

For the CO_ systems, only subsonic systems were considered. The

designs were based upon single line operation on the (00°1) —• (02°0) R-branch

transition at approximately 9. 3 microns. This choice enables one to take

advantage of the higher quantum efficiency compared to the 10. 6 micron

(00°1) —• (10°0) P-branch transition. For the CO system, the study included a
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tradeoff between subsonic and supersonic operation. Multi-line operation

over the four to six micron region was allowed, resulting in extremely high

energy conversion efficiencies.

2. 3 SYSTEM OPTIMIZATION CRITERIA

The optimization criteria for the airborne and space-based systems

were different. The primary objective, for the airborne systems, was the

attainment of high system efficiency, where efficiency is defined as the

ratio of optical output power to input power. The input power includes

sustainer discharge power, compressor drive power, electron gun electrical

power, and miscellaneous power for pumps, controls, etc. The secondary

objectives in the system scaling design were minimization of system weight,

volume, and technical risk with their importance in that order.

For the space-based systems, weight was the most important factor

because the system must be raised into orbit. Accordingly, the primary

objective in scaling and designing the space-based systems was taken to be

the minimization of system weight. The secondary factors were minimization

of volume, maximization of efficiency, and minimization of technical risk in

that order.

2. 4 SUMMARY OF RESULTS

The airborne CO, designs consist of single flow loop one and five

Megawatt systems. The ten Megawatt system consists of two five Megawatt

system coupled optically. The overall electrical efficiencies, i.e., laser

output power compared to total input power (discharge, compressor, and

controls), range from 22.9 percent to 26.5 percent. The physical envelope

for the largest system is approximately 41 ft by 15 ft by 13. 5 ft. The total

system weights are approximately 4, 000, 20, 000, and 40, 000 kilograms for

the one, five, and ten Megawatt systems respectively.

The space-based systems are somewhat different because of the one-

year run time requirement, and the fact that weight rather than electrical

efficiency was optimized. The overall efficiencies for these systems range

from 15. 1 percent to 20.4 percent. The laser loops for the one, five, and
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ten Megawatt systems are approximately 2800, 18,000, and 36,000 kilograms

respectively. When the weights of the solar collectors, prime power genera-

tors, and waste heat radiators used in our system scaling and overall weight

minimization trade-off are added to these numbers, then the total system

masses become approximately 20, 400, 83, 700, and 166, 300 kilograms for

the one, five, and ten Megawatt systems respectively. The weight of the total

one Megawatt system is less than the space shuttle payload capacity. For

the one Megawatt system approximately 2r5 percent of the collected solar

radiation is converted to 9. 3jji laser radiation.

The one Megawatt CO system study produced a supersonic flow system

design with an overall electrical efficiency of 22. 7 percent, a laser loop weight

of approximately 2800 kilograms (but slightly less than that of the CO- sys-

tem), and an overall system weight of approximately 17, 000 kilograms. The

solar-to-laser power conversion efficiency is 3.8 percent. The approximate

weight saving of 3400 kilograms must however be viewed in light of the fact

that CO laser development is not as far along as is CO. development, and the

weight estimate for the CO system is therefore somewhat less certain.
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3. 0 COMPONENT AND SYSTEM SCALING ANALYSIS (CO2 SYSTEMS)

3. 1 AIRBORNE PERIPHERALS

This study as nominally concerned with characterization of the

power conditioning and laser loop for airborne and space laser systems.

Since the components with which we are to be mainly concerned constitute

a small fraction of the total system mass and volume, some assumptions

about prime power and waste heat disposal systems must be made. In scal-

ing power generation equipment for an airborne system, one is presented

with alternatives of various degrees of feasibility for a 1990 system. A

conventional system might consist of either a gas turbine or a stored-

oxidizer combustion turbine turning an alternator. The relative merits of

these depend upon altitude and mission time because the former determines

the oxygen available to an air-breathing turbine while the latter determines

the mass of stored oxidizer required.

For an operating time of 300 seconds, the stored oxidizer turbine

provides the least massive system for missions above 6000 meters , so

this type of prime mover was assumed in the system scaling. Supercon-

ducting windings will be included in the proposed airborne system, because

replacement of conventional generator windings with them provides a mass

saving of about 100 kg per megawatt of electrical power generated.

For prime mover and alternator, a magnetohydrodynamic (MHD)

generator system could have been chosen. The MHD generator appears to

be more advantageous for high power systems. This less developed

approach appears to offer no mass advantage for a 1 MW laser, but perhaps

a 30 percent or 500 kg advantage for a 5 MW system . This somewhat

more speculative power system was not chosen for our study but should be

considered for the larger systems if development proceeds rapidly in the
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next 5-8 years. The alternative of stored chemical energy was also

considered. However for a 5 minute mission, stored energy devices, e.g.,

rechargeable AgO-Zn batteries, do not appear to be competitive.

Of the four turbine fuels considered, one, hydrazine, is a mono-

propellant and the other three are bipropellants, namely, liquid oxygen

(LOX)/Hquid hydrogen, LOX/ammonia, and LOX/JP4. For a 300 second

run time and a 1 MW laser system with an efficiency of 25 percent, scaling

projections for 1990 provide the comparison shown in Table 3-1.

The favorable mass and volume of hydrazine is deemed insufficient

compensation for its toxicity and corrosiveness. The 0.4m volume

advantage over JP4/O-, is more apparent than real since, with minor modi-

fication, the J,P4 can be withdrawn from the aircraft fuel tanks directly.

Either a substantial redesign of a portion of the fuel tank must be done or

the ,N_H tank would have to be placed in the cargo space being utilized by

the laser1 system. The large tankage volume requirement for H_/O, arising
Le Cf

from its low density and low storage temperature argues against it for air-

borne application. The 600 kg mass penalty attendant upon selecting JP4/O-

instead of H_/O_ seems palatable, especially since no special provisions for£ £•
handling or storing the JP4 are required. Ammonia offers no advantage over

JP4 and is not available as aircraft fuel. Thus JP4/O2 is used in our system

study.

TABLE 3-1. TURBINE FUEL PARAMETERS

Fuel
(Mass Ratio)

N2H4

H2/O2 (1:1)

NH3/02 (4:1)

JP4/02 (2:1)

Fuel
Mass (kg)

910

270

1090 ,

1090

Tankage
Mass (kg)*

30

300

80

80

Tankage
Volume (m )*

1.15

2.60

1.45 '

1.55

Total Mass

940

570

1170

1170

*For cryogens, 1-2 week, storage assumed
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Laser waste heat will be disposed of by transfer in a heat exchanger

from the laser gas to another fluid which can be jettisoned. Several-fluids ,

were evaluated as potential coolants for a 1 MW laser system whose operating

parameters were similar to those finally selected. Table 3-2 presents the

masses and volumes associated with the various choices, including the trade-

off between coolant flow and heat exchanger mass for one candidate, H, gas,

as an example. Since JP4 could be stored chilled, heated in the heat exchanger,

and then made available to the aircraft fuel supply it was so far-ahead of the

other contenders that it was selected as the coolant without further considera-

tion. For this small a fraction of the total system mass and volume, pack-

aging considerations discussed in Section 4 can dictate exact dimensions and

flow rate. The tankage volume for JP4 is that associated with a vessel to

maintain the chilled JP4 thermally isolated from the rest of the fuel. It is

assumed that this volume will come in part from the aircraft's fuel storage.

3.2 SPACE PERIPHERALS

For a space laser system, it is not possible to treat heat disposal and

prime power as ignorable elements during laser cavity optimization and then

simply estimate mass and volume for them to obtain system size. In the

short run time airborne case, this is nearly possible because high cavity

efficiency results in low waste heat and low input power requirement. For

a one-year run time in space, heat must be radiated as it is produced. The

amount of heat radiated by a surface increases as the fourth power of the

temperature of the radiator. Increased radiation capability decreases

radiator size and weight. This provides a reason to desire high tempera-

tures in the system, while low temperature produces the more efficient laser

cavity. Briefly stated, as temperature increases:

1. Cavity efficiency decreases (for example, see Figure 3-1).

2., Power production equipment size increases approximately
linearly with increasing electrical power requirement.

4
3. Radiator size decreases as T .

If system mass is the major optimization criterion, then high cavity efficiency

must be sacrificed.
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Figure 3-1. Extraction versus temperature
(constant inlet pressure).

The power source options considered are closed thermodynamic

and magnetohydrodynamic cycles driven by either a solar concentrator or a

nuclear reactor, and a photocell array. For a power cycle efficiency of

30 percent, the specific mass of a 1990 reactor with a shield sufficient to

produce a 10 degree shadow zone with a dose rate of 10 rem/hr at the shield
(4)*is likely to be near 0. 75 kg/kwe* ', while if in addition, a full peripheral

shield capable of reducing the maximum dose rate to a 1 rem/hr is required,

this estimate is increased to 2. 15 kg/kwe* '. An array of individually steer-

able reflecting facets which would concentrate 80 percent of the incident

solar flux upon the heat addition stage of the same cycle would weigh about

0. 29 kg/M2* , resulting in a specific mass of 0. 83 kg/kwe for the collector.

The choice between the concentrator and the reactor hinges upon the quantity

of shielding specified. It is assumed that, if a large reactor is permitted

to be launched into orbit at all, concern for the result of a possible

unscheduled return to earth will cause the heavier shielding to be required.

"kg/kwe = kilogram/electric kilowatt
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Thus the solar concentrator will have a large mass advantage over the

nuclear reactor.

A.photocell array, which does not require a power cycle at all,

might well weigh as little as 1. 36 kg/kwe by 1990 '. Any reasonable

estimate of the mass of the electricity generating cycle results in photo-

cells providing the least massive system but proposed solutions to the

problem of placing them into orbit intact have raised the volume require-

ment to very high levels. For example, one might separate layers with

empty space by attaching them to the walls of the shuttle and putting them

in tension. Interlaye'r separation would need to be enough to avoid them

striking, one another during periods of high induced vibration. This method,

while avoiding mas's increase, from buffer material, still fills up shuttle

volume rapidly. The relative fragility of photocells led us to choose a

therm'odynamic power cycle in our scaling estimates.

The system conceptual design will include a reflector, composed on

individually steerable facets, which concentrates incident solar radiation onto

the, heat addition stage of either a thermodynamic or magnetohydrodynamic

cycle. Recently, a space-based solar Brayton cycle composed of modules

designed to generate a minimum of 1000 megawatts of "electricity over 30 years

of service has been described* '. System specific mass, exclusive of trans-
* r

mission equipment, is 4 kg/kwe, of which the radiator system accounts for

about-one-half. Radiator mass can.be expected to scale from this larger module

to systems discussed in this study and it is assumed that the rest of the equip-

ment does also. For the purposes of this study, the implication of each of

two specific mass figures will be examined. In the conceptual* designs for

this -study, two improvements on the above figure will be assumed. Specifically,

it will be assumed that the radiator mass can be reduced by one-half through

the use of a high temperature version of an aluminum tube and teflon composite
(8)panel described by Cox, et. al. ; as a replacement for stainless steel, and

that the re'st of the system mass can be halved through use of high technology

materials and through designing for one year of activity rather than thirty.

In addition to this, the consequences of failure to reduce the 4 kg/kwe figure

will be discussed. In summary, a specific mass of 2 kg/kwe for production
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of electricity will be assumed and the changes from the baseline case that

occur if only 4 kg/kwe is realizable by 1990 will be discussed.

For the rather modest temperature of the laser waste heat (<575 K),

there is little question that lightweight radiator panels of the type mentioned

above will be available within 10-15 years. In fact, two designs which are
(8)nearly suitable have already been reported in the literature . In both of

these, the panels are made of a sandwich-like composite material. The outer

layer is Teflon which provides strength and resistance to radiation damage.

A highly conducting wire mesh, which provides the lateral heat conductance is

bonded to the teflon. The third layer is a film of silver deposited on the

teflon-wire mesh combination which reflects the incident solar radiation which

passes through the teflon. In the reference cited, a two-sided radiator is

described in which the tubes through which the heat exchanging fluid flows are

exclosed between two such three-layer compositions. The spacing of the

tubes and the thickness of the materials in the composite are described as

being selected to obtain minimum weight per unit of heat radiated. Precise

dimensions are not now available in the literature. The composite material

is stored rolled up like a window shade and deployed by fluid pressure. In the

second design a hard flexible tube compased of spring-deployed aluminum

which is stored in a helical pattern provides the support for the composite

material. The latter, which has a wet specific mass of 1. 67 Kg'per square

meter of panel area and an effective temperature range of 180-420"K, has
/ g \

already been tested in concept by a small "test article" . For the scaling

analysis, a slight mass reduction to 1. 6 kg/m and an increase in tempera-

ture range to include 550 K are projected for 1990. Only one-sided radiation

is assessed so that, panel area and radiator area are the same. The excess

mass estimate inherent in this s.caling figure covers the stiffening required

for a single side of the sandwich.

3. 3 LASER COMPONENTS

3. 3. 1 Power Conditioning

The power conditioning equipment is required to convert the primary

high voltage ac electrical power to dc sustainer power, dc electron gun power,

and low voltage ac control power. This will necessitate the. use of
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transformers, rectifiers, and filters. The discussion of the design concepts

chosen for these components will be deferred to Section 4. It is clear, however,

that the use of advanced concepts can result in small weights and volumes for

these components. For the scaling analysis, it was anticipated that the weight

of the power conditioning would be less than ten percent of the total laser

weight. Therefore this was ignored in the baseline system scaling. This was

indeed justified during the system conceptual design, as discussed in Section 4.

3. 3. 2 Compressors

The compressor, which restores the stagnation pressure lost by the

laser gas in the loop, is also a small part of the system. Scaling techniques

described by Young & Kelctr will be used to obtain approximate masses and

volumes for the units required for our loops. In that work, axial compressors

were found to be superior to centrifugal in adiabatic efficiency and smaller in

diameter for corrected mass flows of 16-68 kg/sec and pressure ratios of

2. 0-3. 5. The systems considered here are within or near enough to those

ranges to indicate that the axial compressor is better for our purpose. Linear

extrapolation of Figure 24 from Young & Kelch, (A nearly linear curve of

adiabatic efficiency versus compressor work per unit mass of gas) yields

values of compressor efficiency for systems considered here between 0.850

(1 MW space laser) and 0.863 (1 MW airborne laser). For convenience, a

constant value of 0. 86 was adopted for all compressors in this study.

Well-designed axial compressors provide 1.2-1. 3 pressure ratio

(PR) per stage. Thus, if a PR of 1.95 is required, 3 stages are assumed

since (1.95) ' a l . 25. Mass and length per stage are scaled by Young &

Kelch as follows:

Mass ~(M I1 '3s

Length ~(M s)° '5

in which M is the corrected mass flow, defined by

w 1/2

Ms =.
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where

M = actual mass flow

T, P, W = temperature, pressure, mean molecular mass .of
laser gas

T , P , W = temperature, pressure, mean molecular mass
standards

The usual standard conditions are T = 288°K, P = 1 atm. , W = 28.8.s s s
The compressor scaling for the 1 MW airborne system is a typical

example of the proce.dure outlined above.

S

PR

Reference Case (after Ref. 1)

(kg/sec) 17.9

3.42

6

1 MW Airborne EDL

20.5

1.64

No. of Stages

Rotor Diameter (cm) 40

2 (1.641/2 = L.

43 I = 40 x

28)

Length of 2 stages (rotors
+ stators) (cm) 27 29 I = 27 x

Mass (kg)

3.3.3 Heat Exchangers

Preliminary evaluation indicated that plate-fin, gas-to-liquid,

counter-flow heat exchangers made of aluminum are capable of providing

the required temperature control with low mass and pressure drop.

Table 3-3 shows the performance parameters of such a design for a trial

case similar to the 1 MW airborne design. Heat exchanger mass will

clearly be a minor part of any of the systems considered. Higher' laser gas

temperatures are required in the space-based cases by considerations
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TABLE 3-3. HEAT EXCHANGER PERFORMANCE
FOR A 1 MW SYSTEM

Coolant

Heat load (megawatts)

Coolant flow rate (m /sec)

Gas pressure drop (torr)

Heat exchanger mass (Kg)

Heat exchanger volume (m )

JP4

2.22

0.020

51

210

0.40

discussed in Section 3.4. Therminol 55, a heat exchanger liquid that does

not vaporize at such temperatures has been chosen for those systems.

3.3.4 Electron Guns

An electron gun (E-gun) provides external control of the discharge

in the laser cavity. The injected high energy electrons maintain the laser

medium conductivity at the level needed to input the electrical power by

partially ionizing the gas. This control of the conductivity permits separate

selection of the sustainer electric field and the input electrical power

(since there is now no fixed relation between current and field). As will

be discussed in Section 3.4, the efficiency of coupling of the discharge

power into the gas depends strongly upon the electric field.

A number of E-gun types have been described in the literature. In

the thermionic emitter, the cathode is heated to high temperature ( 2000 K)

and emits electrons which are then extracted and accelerated by electric

fields. A directly heated device of this kind is a wire made of, e.g.

tungsten, with a current flowing through it. The need to be its own heater

dictates that the cathode not be overly large in cross section. More flexi-

bility in choice of cathode shape and material is provided if the functions of

electron emission and heating are separated, that is, if the cathode is

indirectly heated. Whether the cathode is directly or indirectly heated,

thermionic emitters are vulnerable to poisoning, i.e., deterioration in
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emission performance due to chemical reaction, since the temperature is

necessarily very high. Thus, a high vacuum (10~ torr) is needed. In

addition, the elevated temperature makes for irreversible damage should

the cathode be accidently exposed to the atmosphere. A cold cathode would

not be vulnerable to poisoning and vacuum failure damage. A simple field

emission device is not useful for cw systems sincevthe electrons are being

^extracted by a field high enough to simulate a short circuit between the

electrodes. This type of electron generation is suitable only for an output

of short bursts of electrons. The plasma cathode gun is a cold cathode

device which does not suffer from this difficulty. In this type of E-gun,

as Figure 3-2 suggests, a hollow cathode discharge is maintained and elec-

trons are extracted therefrom. This device does not require a high vacuum

(pressure ~20n) and is not susceptible to poisoning. Another difficulty

common to all the above guns 1's illustrated in Figure 3-2. The emitter has

to be at high negative voltage with respect to the laser cavity. Typically the

cavity is at ground and the emitter is at high negative potential.

The Ion Plasma E-gun developed recently at Hughes reduces the

ubiquity of high voltage. Ions, rather than electrons, are extracted from a

plasma and accelerated into a cold cathode. The electrons emitted as a

result of the collisions are then accelerated through an exit window into the

laser cavity as shown in Figure 3-3. Although the cathode must still be

maintained at, high negative \ oltage, the plasma discharge need not be and so

modulation is done with respect,to ground. Devices of this type have been

built and successfully operated at Hughes and are light and quite rugged.

The Ion Plasma gun is included in all laser systems in this study.

The exit window, which separates the laser cavity from the electron

gun, is vitally important since the high voltage electrons must pass through

it and therefore interact with it. Because scattering depends upon the thick-

ness of the foil material and upon the square of its atomic number, it is

important to use a low Z material that is as thin as possible and still be able

to withstand the pressure difference across it (1/2-1 atmosphere). One mil

beryllium is chosen as the best answer to these requirements.
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3.3.5 Nozzles

The usual method for designing two-dimensional nozzles at Hughes
/Q\

uses the hodograph transformation equations of Libby and Reiss v . Flow

separation is prevented by requiring that the velocity increase monotonically

through the nozzle. This design has had wide and successful application, but

one may wish for a more compact contraction section than it dictates. For

the contraction ratio of 4. 86 in our 1 MW airborne system, a nozzle length

of about 135 cm results from use of the hodograph method.

Morel has described a new method of designing two-dimensional

nozzles using two intersecting cubic arcs to determine the shape of the wall.

Although it is not clear that cubic arcs are optimal for two-dimensional

design (Morel found it so for axisymmetric nozzles), for the same 1 MW

airborne case, Morel's method produces a nozzle about 74 cm long. It

seems reasonable to assume that this or some similar design procedure will,

by 1990, enable one to build reliable nozzles of about the length which the

cubic design indicates. Therefore, such a nozzle design will be assumed

for the system scaling.

3.3.6 Diffusers

In order to provide sufficient pressure recovery for efficient heat

exchanger and compressor operation, a diffuser must be used to decelerate

the flow emerging from the laser cavity. The use of vanes permits a much

wider-angled and therefore shorter diffuser. Figure 3-4 shows a typical

design of this sort. There is little doubt that efficient pressure recovery is

possible with a 29 = 40°, as Figure 3-5 indicates. Although data on the

5-vaned d iff users is not available, it is anticipated that a value similar to

the 4-vaned value shown can be realized, producing a pressure recovery

coefficient of about 0.7. The scaling study will use this number and 5-vaned

diffusers will be assumed.
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3.3.7 Optical Extraction

A confocal unstable resonator is the most likely choice for these

systems. However, in a large system, alignment sensitivity and beam quality

can be adversely affected by use of a single large resonator, with many limit-

ing aperatures and a long gain path inside the resonator. The use of a Master

Oscillator-Power Amplifier (MOPA) configuration may offer the opportunity

to have a well-defined higher quality resonator mode subject to lower distortion

levels. In a MOPA configuration, a small master oscillator (most likely an

unstable resonator) covering part of the excited laser medium provides a high

quality laser beam which is then amplified in the remaining medium to achieve

the desired power. In the amplifier portion, power is extracted from the

laser medium with a simple optical pass. Threshold gain, per unit length in

the oscillation, however, is larger and extraction efficiency here suffers

slightly. In a very high power system where the oscillator output flux is very

high, sufficient saturation may be present in the single pass amplifier to pro-

vide good extraction efficiency there. The effect was analyzed, in the 10 mega-

watt system, of dividing the optical train at various points into an oscillator

and an amplifier. The results are shown in Figure 3-6. (It is assumed that

the remainder of the active medium is in the amplifier pass.) For example,

dividing the gain medium equally into a master oscillator and a power amplifier

results in a 2. 7 percent loss in cavity extraction efficiency. During the

detailed design effort this loss will be weighed against the engineering advan-

tages of such a configuration. This will involve the actual package geometry.

For example, a large number of folds in the optical train will impact the beam

quality degradation in the resonator and tend to favor a MOPA configuration.

For the scaling analysis, a simple unstable resonator geometry was utilized.

The selection of geometric output coupling can be done without much

reference to the inlet pressure, temperature, etc. so long as the system

remains highly saturated. Figure 3-7 shows that low output coupling results

in the highest efficiency, which is to be expected for constant input power

since threshold gain is then lowest. (Effective reflectivity is defined as one

minus the output coupling.) Low outcoupling does not produce a beam which

iw well confined in the far field, as Figure 3-8 shows. In the unstable
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resonator, this result is easy to anticipate since low output coupling

corresponds to a thin annular output beam. Figure 3-9, the product of the

previous two figures, indicates that 96 percent output coupling produces the

highest power on target. To profit from this high an outcoupling, one would

require a beam control system with no more than 4 percent obscuration. The

conceptual designs will utilize 90 percent output coupling, which permit them

to match up well with more easily implemented 10 percent obscured beam

control subsystems. This figure results in 4 percent less far field power

than that obtained with a 96 percent outcoupled laser with a 4 percent obscured

beam control package. Selection of other system parameters will be seen to

be unaffected by the choice made for output coupling.

Another issue to be considered in any optical design is the mirror

loading limit to prevent distortion and ultimately burn-out. This, of course,

depends upon the mirror design and the reflectivity of the coating. At

10.6 microns, the currently achievable reflectivity on a reliable basis is

99.8 percent. A reasonable projection for 1990 is 99.95 percent. Using
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this number, and current mirror designs, to keep the phase distortion under

one optical wavelength, the incident flux should be kept below 500 kW/cm2.

(For 99. 8 percent reflectivity, the flux limit would be 125 kw/cm .) If P is
o

the output power, and D is the side of a square mirror (a square output beam

is assumed), then the flux density for a ten percent obscured beam is equal to

PQ/0.9 D . To keep this number below 500 kW/cm2, the beam sizes for the

one, five, and ten megawatt devices must be bigger than 1.5, 3. 3, 4. 7 cm

respectively.

3.3.8 Discharge Cavity

The Hughes computer program, LASER 7, which models the kinetics

and gas dynamics of a longitudinal discharge laser cavity, was used to select

operating parameters. Small signal gain values calculated by this code agree

well with experimental measurements. Power loss mechanisms which are

not modelled include diffraction, mirror absorption, aerowindow effects, and

boundary layer growth, all of which affect the efficiency of all cases con-

sidered to approximately the same extent. These losses therefore do not
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affect basic parameter selection. In the final conceptual design, corrections

are made for these effects.

The efficiency with which power from the electrical discharge can be

pumped into the upper laser level depends upon the gas mixture and the value

of the sustainer electric field divided by the number density of gas molecules

(E/N) in the discharge region. If E/N is too low, the secondary electrons do

not acquire enough kinetic energy between collisions to excite vibrational

levels which will feed the upper laser level, while if it is too high, collisional

excitation of electronic states and even ionization will occur. Figure 3-10

shows pumping efficiency versus E/N for 6 candidate gas mixtures as com-

puted by numerical solution of the Boltzmann equation using the Hughes

Boltzmann code. The longitudinal discharge geometry demonstrated at

Hughes* ' provides a nearly constant E/N (variation <5 percent). A condi-

tional selection is made here of the mixture in which helium, nitrogen and

carbon dioxide are in the molar ratio 8:7:1 because it has the highest peak

pumping efficiency. The maintaining of nearly constant E/N is a powerful

advantage because electrical arcs tend to appear in the cavity at about 2. 4

x 10" volt-cm , and because the onset of attachment as a significant

electron loss mechanism at about 2.1 x 10" volts/cm can produce a local

I
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Figure 3-10. Calculated pumping efficiencies
as a function of E/N.
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E/N instability which drives the system quickly to the arcing regime. For-a

discharge arrangement in which E/N varied significantly through the laser

cavity, unfavorably low E/N (and consequently lowered excitation efficiency)

would have to be tolerated in parts of the cavity to avoid arcing.

While selection of an operating point requires variation of the inlet

temperature, pressure, and Mach number in combination, single parameter

variation about a system which meets the output power goal is a valuable guide

to the influences of each. Figure 3-11 initiates thelmpress.ion that low pres-

sure and temperature are promoters of cavity efficiency. Qualitatively this

could be anticipated since the collisional deactivation time of the upper laser

level increases with both decreasing temperature and decreasing pressure.

Decreasing, temperature also decreases thermal population of the lower level.

Inlet Mach number influences output power somewhat less over the range of

0.370
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CAVITY INLET TEMPERATURE (°K) .

350

Figure 3-11. Sustainer efficiency versus
temperature.
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interest then do temperature and pressure, as Figure 3-12 indicates. For a

given temperature and pressure, Mach number determines mass flow and a

major effect in this figure is the reduced temperature in the latter part of the

cavity at higher mass flow.

Figure 3-13 shows the vibrational levels of the CO- molecule which

are involved in laser transitions. The (00° 1)— (10°0) P-branch transition

produces the usual 10. 6ji radiation, and the (00°1) — (0280) R-branch transi-

tion yields 9.3ji radiation. The choice between them involves a weighting of

the advantage of the former, lower threshold gain, against that of the latter,

higher quantum efficiency. For a large high gain system, threshold is easily

achieved so the lower threshold gain of the 10.6(4 line is relatively unimpor-

tant. In such systems the higher quantum efficiency at an output wavelength

of 9. 3n results in higher extraction efficiency so it will be used in this study.

Figure 3-14, when compared to Figure 3-15, provides an idea of the advant-

age available from this selection.

1.30 r

1.20

1 10

100

P|M "500TORR
R =01
P|N = 40MW
TIN -2BOK

020 0.25 030 035 040

INLET MACH NUMBER

045 0.50

Figure 3-12. Extraction versus Mach
number.
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Figure 3-14. Extraction versus
pressure (9. 28|ji).
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Figure 3-15. Extraction versus pressure
(10. 6(x).

Sufficient gain length must be used without putting absurd require-

ments upon packaging or requiring so many folds in the resonator that the

optics losses become excessive. For a system with parameters similar to

the 1 MW airborne system, Figure 3-16 indicates the effect of gain length
4

upon extraction efficiency maintaining a constant input power. The effect is

not great since the system is far from being marginal. Gain length above

300 cm, does not enhance cavity efficiency greatly, and so this figure is

selected for the 1 MW systems. Beyond this value, both cavity flow-width

(i.e., optical length) and mass flow increase with reduced compensation in

cavity efficiency. The 4x4 cm cavity cross-section chosen allows: high

specific power loading without unduly high sustainer current densities which

could place severe stresses on electrode designs and/or electron beam

current density requirements.
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Figure 3-16. Cavity efficiency versus gain length.

3.4 PARAMETER SELECTION

3.4.1 Airborne Systems
i

As already stated, the task here is almost equivalent to finding

which parameters result in the lowest input sustainer power. "Almost"

because the use of chilled JP4 as the coolant places a lower bound upon the

cavity inlet temperature. This multiconstituent fuel becomes somewhat

slushy before actually freezing so it was assumed that 220 K, the lowest

temperature at which military jet aircraft must be certified, is the JP4

minimum. This turned out to limit cavity inlet temperature to i 250 K.

The 8:7:1 gas mix provides the most efficient system because of

its higher pumping efficiency. With low pressure already seen to be

very advantageous, the idea is to select a Mach number and pressure com-

bination that provides enough mass flow so that the flow does not choke in the

diffuser. The combination of M = 0. 4 and pressure equal to 350 torr gives the

best cavity performance for the 1 MW system among those sets of parameters

which avoid flow-choking downstream. For example, Figure 3-17 shows the

manner in which cavity efficiency varies with pressure in the vicinity of the

selected parameters. As expected, it decreases monotonically with increasing

pressure. The pressure below which choking occurs at the efficiencies calcu-

lated is indicated.
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Figure 3-17. Cavity efficiency versus pressure.

i
Because the design considerations are the same for the larger systems

as for the 1 MW system the same set of parameters is optimal for them.

Cavity optimization is equivalent to system optimization for the airborne

cases, so these parameter sets form the bases for the more detailed con-

ceptual designs. Table 3-4 summarizes the airborne laser system

parameters.

3.4.2 Space Systems

The goal of mass minimization requires the consideration of means

to raise the temperature at which waste heat is radiated above the levels

which are compatible with an efficient cavity in an ordinary closed cycle

system.- Two means to this end are available - namely 1) raising cavity

inlet temperature and 2) use of refrigeration. The former is self-explanatory

and the latter involves compressing the laser gas to a higher pressure than

that required to produce correct cavity inlet pressure. It 'exchanges waste
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TABLE 3-4. AIRBORNE SYSTEM PARAMETERS

Output power (MW)

Output wavelength (|i)

Inlet Mach no.

Inlet temperature (K)

Inlet pressure (Torr)

Gas Mix He:N2:CO2

Mass flow (kg sec )

Cavity width (cm)

Output coupling

No. optical passes (cm)

Cavity length (cm)

Cavity height (cm)

Sustains r power (MW)

Compressor power (MW)

Electron beam power (MW)

Allowance for pumps (MW)

Total electrical power (MW)

Efficiency

1

9.3

0.4

250

350

8:7:1

7.79

75

0.90

4

4

16

3.644

0.619

0.085

0.025

4.373

22.9%

5

9.3

0.4

250

350

8:7:1

38.97

200

0.90

6

5

30

15.859

2.204

0.381

0.125

18.569

26. 5%

1 0 - 2 cavities of
5 MW output dimen-
sions chosen for
packaging reasons

heat at the resulting higher temperature with the heat exchanger fluid and is

then expanded through a turbine to reduce pressure and recover some of the

excess compressor work done upon the gas. Figure 3-18 shows in simplified

form the difference between a laser loop that uses refrigeration and one that

does not. Both temperature raising schemes involve considerably more

input energy.

In the figures and tables which follow in this section, a scaling of the

comparatively small system elements - compressors, turbines, laser loop

ducting, electron beamguns, and power conditioning equipment according to

Davis and Wilcox is assumed. Since these elements are subject to more

thorough design in this study, the more detailed engineering analysis else-

where in this report results in different final numbers for these than used in
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Figure 3-18. (a) Laser loop of the type
used in airborne systems.
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TURBINE COMPRESSOR

HEAT EXCHANGER

NOZZLE DIFFUSER

CAVITY

Figure 3-18. (b) Refrigerator laser loop for
space systems.

the scaling. They are not major fractions of the mass and are not terribly

sensitive to electrical power requirement so the system parameters selected

in this section are not altered by a more detailing sizing of the minor con-

stituents of the laser loop.

The combination of inlet conditions and effective'radiation temperature

providing the least massive system must be selected, 'where it is understood

that raising the radiating temperature is done at an appreciable energy cost.

Figure 3-19 presents the curve containing the operating conditions providing

3-29



26

24

13

"o22

VI

1

Hzo
>

18

INLET M = 0.4
CAVITY LENGTH = 4 0 CM
CAVITY HEIGHT =16.0 CM
CAVITY WIDTH = 75.0 CM
4 PASS OPTICS
POWER OUT = 1.0 MW
(A,B) A = INLET T HO

" INLET P(TORR)

;350,450)

MINIMUM MASS SYSTEM

250 300 350 400 450 500

EFFECTIVE RADIATION TEMPERATURE (°K)

550 600

Figure 3-19. System mass versus effective radiation
temperature for 2 kg/kwe electric power production
system (1 MW laser output power).

the lightest system as well as some representative curves whose minima are

higher than that for the curve on which inlet pressure is 450 torr and inlet

temperature is 350°K. The figure illustrates the method of selection and

covering it with all of the pressure-temperature combinations considered

would render it unreadable. In the same spirit, Figure 3-20 points out that

different inlet conditions are desirable if one adopts 4 kg/kwe as the mass of

the electrical power supply system. In that case, the growth of the power

production system overcomes the decrease in radiator size with increasing

radiation temperature at a lower cavity temperature because it is a much

larger part of the total mass. Figure 3-21 presents the 2 kg/kwe results for

the 5 MW system while Figure 3-22 shows the cavity parameters providing

the least total mass if the 4 kg/kwe power supply figure is assumed. Pack-

aging considerations (as discussed later) lead to the design for a 10 MW sys-

tem consisting of two parallel 5 MW systems. Therefore the same param-

eters apply for both the 5 MW and the 10 MW power levels.
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Figure 3-20. System mass versus effective radiation temperature for
4 kg/kwe electric power production system (1 MW laser output power).
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Figure 3-21. System mas.s versus effective radiation temperature for
2 kg/kwe electric power production system (5 MW laser output power).
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Figure 3-22. System mass versus effective radiation temperature for
4 kg/kwe electric power production system (5 MW laser output power).

It is of interest to note that, for space based operation, minimization

of the mass of the various laser systems has driven the operating points away

from the low temperature and pressure regime most conducive to high cavity

efficiency. The advantage of 9. 3|i over 10. 6|A output wavelength is now not

so obvious. A comparison between the two wavelengths at the cavity operating

conditions selected for the space based system is presented in Figure 3-23.

Cavity efficiency provides an accurate comparison because, for fixed inlet

conditions, higher efficiency means that both input electrical power and waste

heat are lower. It is seen that the intersection point of the two curves is near

1 MW output power. Table 3-5 is a summary of parameters for the space-

based cases, including a 1 MW, 10.6|x system. Table 3-6 summarizes the

parameters if one uses the assumption that the solar-to-electric power con-

version system will weigh 4 kg/kwe rather than 2 kg/kwe, the baseline

assumption.
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TABLE 3-5. SPACE SYSTEM CONCEPTUAL DESIGN
PARAMETERS (2 kg/kwe)

System

Gas Mix He:N_:CO2

Inlet Pressure (Torr)

Inlet Temperature (°K)

Inlet Mach Number

Mass Flow (kg/sec)

Cavity Width (cm)

No. Optical Passes

Output Coupling

. Cavity Length (cm)

Cavity Height (cm)

Sustained Power (MW)

Net Turbo Power (MW)

Electron Beam Power (MW)

1 MW,
9.3>i

8:7:,1

450

350

6.4

8.47

75

4

90%
4

16

4.720
1.675
0.203

1 MW,
10. 6n

8:7:1

450

350

0.4

8.47

75

4

90%

4

16

4.783
1.699
0.204

5 MW, 10 MW, 9.3n
9. 3n - a double

8:7:1 5 M,Wsystem
.400

400

0.4

35.21

200

6

90%

5

30

18.750

4.761

0.874

(Continued next page)
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(Table 3-5, concluded)

Allowance for Pumps (MW)
Total Power

(MW)

Efficiency
Preliminary Mass Estimate

(103 Kg)

0.025

6.623

15.1%

17.32

0.025

6.711

14.9%

17.55

0.125

24.510

20.4%

58.74

TABLE 3-6. SPACE SYSTEM PARAMETERS FOR 4 KG/KWE

System
Gas Mix He:N2:CO2

Inlet Pressure (Torr)
Inlet temperature (°K)

Inlet Mach number
Cavity width (cm)
Cavity height (cm)
Cavity length (cm)

No. of optical passes
Output coupling
Sustainer power (MW)
Net turbo power (MW)

Electron beam power (MW)
Allowance for pumps (MW)
Total electrical power (MW)
Efficiency

Preliminary mass estimate
(103Kg)

1 MW, 9.3j*

8:7:1
400

300

0.4

75

16

4

4

90%
4.037

1.294
0. 140
0.025

5.496
18.2%

29.9

5 MW, 9.3n 10 MW,' 9.3»i
o 7 i A double
° ' f ' L 5 MW system
375

350

0.4

200

30

4

6

90%
17.310

3.513
0.700
0.125

21.648
23.1%

111.4
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4. 0 CONCEPTUAL DESIGNS (CC»2 SYSTEMS)

The objective of the, conceptual design effort was the translation of

component material and performance specifications into realistic weight and

volume allocations and overall synthesis into a packaged system configura-

tion. The system packages for the five and ten megawatt airborne CCL EDL

systems were configured to fit within the cargo envelope of the C5A aircraft.

The 1 MW airborne package is sufficiently small that other aircraft can be

used as the host. The space-based systems have been configured for trans-

portation in the space shuttle. The weights and volumes of the one and five

megawatt laser systems allow transportation within the space shuttle of the

laser systems; the ten megawatt system is approximately 30 percent heavier

than the shuttle capacity. In the case of the one megawatt system, the laser

system, solar collecting power generator, and waste heat disposal system

together, are within the w.eight capability of the space shuttle. The following

sections will discuss the various laser system components,. The overall sys-

tem packages will be discussed at the conclusion of this section.

4. 1 POWER SUPPLY SYSTEMS

The laser power supply s"ystem consists of two basic parts — the prime

power generation and the power conditioning. The distinction is indicated in

Figure 4-1. Prime electrical power is' generated at a voltage slightly higher

than the sustainer voltage. This is then conditioned to meet the system

requirements.

In the airborne systems, gas generators and superconducting alter-

nators have been selected for prime power. The system electrical require-

ments and the resultant weights and volumes are shown in Table 4-1. A
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PRIME POWER SYSTEM POWER CONDITIONING SYSTEM

Figure 4-1. Power supply system.

TABLE 4-1. PRIME ELECTRICAL POWER SOURCE -
AIRBORNE SYSTEMS

Gas generator with superconducting alternator
Fuel: JP4 /liquid O2, 2/1

1 MW

5 MW

10 MW

Prime Power
(MW)

4.35

19.1

38.0

APU Mass
(kG)

500

1850

3460

Specific Mass
(kG/MW)

115

97

91

Volume
(M3)

0.34

1.14

2.01

A separate turbo-compressor is used to circulate the gas. (The "turbine"
shown schematically in Figure 4-1 is really two turbines, each integrated
into either a compressor or alternator. ) For the space-based systems,
solar energy operates a Brayton cycle generator to provide prime power.
The turbine shaft power is used to circulate the gas and to drive an electric
generator. The system requirements are summarized in Table 4-2. In
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TABLE 4-2. POWER REQUIREMENTS -
SPACE SYSTEMS

Power Conditioning

• Sustainer (5 - 20 - 40 Mwatts, 7.4 kV)

• Rectifier

• Filter

• Interrupter switch

• Electron gun (200 - 875 - 1750 kwatts, 150 kV)

• Transformer

• Rectifier

• FilteT

• Interrupter switch

Prime Power

• Mechanical (Compressor Drive)

• 2. 6 MW, 7 . 6 M W , 15 .2MW

• Electrical (7.7 kV)

• 4. 1 MW, 15. 9 MW, 31. 8 MW

Total

• 6.7 MW, 23. 5 MW, 47. 0 MW

these systems, part of the mechanical power, as explained in Section 3, is

recovered and converted to electricity. For example, the electric power

requirement for the one Megawatt system from table 3-5 is approximately

5. 0 Megawatts. Of the 2. 6 Megawatts of prime mechanical power, 900 kilo-

watts is recovered. Thus, the prime electrical power requirement is only

4. 1 Megawatts. The estimated prime power system weights for the space-

based system are shown in Table 4-3.

The powe'r conditioning for all systems is basically the same. A

typical sustainer power conditioning circuit (rectifier and filter) is shown in

Figure 4-2. The rectifiers and filters convert the ac voltage to the dc voltage

and the ripple level required for the excitation region. The switch S1 inserts

resistance at turn-on to prevent LC ringing and overshoot. The'components
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TABLE 4-3. PRIME POWER SOURCE - SPACE SYSTEMS

Collector composed of individually steerable facets concentrates solar
flux into heat addition stage of Brayton cycle

1 MW

5MW

10 MW

Collector
Mass (103 kG)

8.6

31.6

63.3

Brayton Cycle
Mass (103 kG)

4.2

21

42

Alternator
Mass (103 kG)

0.268

0.762

1.327

FROM
PRIME
POWER
GENERATOR

r
"^:

u

C1 ±

SUSTAINER
0.2ft "" INTERHUPTOR

T*

Figure 4-2. Sustainer rectifier/filter design.
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R_ and CRj damp out the stored LC energy during an arc to prevent high

voltage damage and allow rapid turn-on.

In addition, there is a sustainer interrupter circuit to prevent damage

during an arc. The sustainer/interrupter delays sustainer current at turn-on

and also interrupts the flow of sustainer current during an arc. The sustainer/

interrupter is a Hughes-developed dc current interrupter which during an arc

causes a pulsed interruption in the sustaine_r current for enough time to allow

an SCR stack to recover the forward blocking capability — the interruption

being generated by releasing the energy stored in the interrupter choke. A

simplified schematic is shown in Figure 4-3.

The electron gun power conditioning will not be completely independent

but will take the rectified voltage from the sustainer rectifier and convert this

to the required 150 kilovolts for the electron guns. The output of the sustainer

rectifier goes to an inductor input filter. The inductor will limit surge cur-

rents and will reduce conducted electromagnetic interference. The output

of the filter then goes to the 150 kV resonant charging power supply which

consists of multiple resonant charging SCR switching circuits and a flyback

transformer. A simplified schematic of the proposed design is shown in

r ~l1
1
1

TRIGGER
SECTION

5 i r "
FROM 1 ; 1 -j

1

1

SUSTAINER SUSTAINER TURN ON f
RECTIFIER/FILTER AND TURN OFF /

TRK3GER

DC CURRENT
INTERRUPTER
SECTION

x^

1

1

1

1

.J

^f- 1 SUSTAINER
, , CAVITY

T
Figure 4-3. Sustainer interrupter

design.
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Figure 4-4. Electron gun power conditioning design.

Figure 4-4. The actual final filter component values and switching repeti-

tion rate will be determined by the value of the leakage inductance in the fly-

back transformer. Since the proposed resonant charging scheme transfers

energy through a flyback transformer, the output voltage is regulated by

sensing the output voltage and feeding that signal back to the drive circuits,

controlling their switching rate (number of resonant charging cycles per-

formed per second). The advantage of this design is that it may have its

output shorted indefinitely without damage to any of its components.

Power conditioning volume and weight estimates including packaging

and cooling (but no pumps or external heat exchangers) are shown in

Table 4-4.

4. 2 EXCITATION REGIONS

The excitation region consists of the inlet nozzle, laser cavity, and

diffuser, as illustrated schematically in Figure 4-5. The estimated dimen-

sions are also shown. Typical laser nozzle designs in current use at Hughes

are based on a hodographic design technique. The cubic nozzle design dis-

cussed in Section 3 has been chosen for this future application and results in

a shorter nozzle design. Nozzle inlet-to-outlet area ratios are shown on

Table 4-5, along with estimated lengths.
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TABLE 4-4. POWER CONDITIONING VOLUME AND
WEIGHT ESTIMATES

Sus tamer
Rectifier/
Filter1

Sustainer
Interrupter

Electron Gun
Power
Conditioning

1 MW

Vol (ft3)

4

1

4.5

Wt (Ibs)

250

39

107

5 MW

Vol (ft3)

6

2

4.5

Wt (Ibs)

350

46

119

10 MW

Vol (ft3)

10

3

4.5

Wt (Ibs)

500

70

130

DIFFUSER

LASER CAVITY

NOZZLE

I
o
n
N

s
p
A
c
E

POWER

1

S

10*

1

s

10*

I (CM)

777

203

203

79.5

1615

161 S

T(CM)

16

30

30

16

30

30

0(CM)

104

171

'171

993

1676

1676

VY(CM)

777

203

203

777

203

203

N(CM)

737

128.2

1282

737

1283

1283

E(CM)

20

375

375

20

376

376

D(CM)

104

1937

1937

1143

1895

1895

TWO CAVITIES OF THESE DIMENSIONS ARE EMPLOYED

Figure 4-5. Excitation region.
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TABLE 4-5. NOZZLES

1 MW-airborne

5 MW-airborne

10 MW-airborne

1 MW- space

5 MW- space

10 MW- space

Area Ratio

4.86

4.40

4.40

5. 10

4.73

4.73

Length (cm)

73.7

128.3

128.3

77.3

137.9

137.9

The diffuser design is based upon one-dimensional expansion using

multi-vane diffusers, as illustrated in Figure 4-6. The diffuser parameters

are shown in Table 4-6; the number of vanes has been chosen so that the

expansion per "wall" is in the optimal 7 - 1 0 range.

The laser cavity is scaled on the basis of a longitudinal (parallel to

the gas flow) sustainer discharge enabling the maintenance of high E/N and

consequently high excitation efficiency. In addition, nearly perfect discharge

confinement is achieved. Porous screen electrodes are used with the anode

upstream of the cathode. Since recent experimental work at Hughes* '

indicates that high power loadings can be achieved and the discharge model

Figure 4-6. Typical diffuser design.
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TABLE 4-6. DIFFUSERS

' M •
Vaned, diffusion in one dimension: Expansion per "wall" in - '
optimal 7°-10° range

1 MW-air

5 MW-air

10 MW-air

1 MW- space

5 MW- space

10 MW- space

29 (°)

40

40

40

40

40

40

No. Vanes

5~

5

,5

5

5

5

Length
(cm)

46.8

75.0

75.0

44. 3

71.8

71.8

Area
Ratio

6.5

5.7

5.7

6.2

5. 5

5.5

, Pres.
Recovery

(CP)

0.7

0.7

0.7

0.7

0.7

0.7

used accurately predicts small signal gain and gas density, the cavity scaling

can be made with confidence. Referring to Figure 4-5, the dimension labelled

T is sufficiently large that at the gas pressures of interest it is desirable to

have two electron guns, one on either side of the flow channel, to insure

good medium coverage. Accordingly the designs have allowed for two guns

in the weight, volume, and electrical power budgets.
t

4.3 ELECTRON GUNS

Each laser excitation section will have two ion plasma electron guns

mounted to it. The principals of operation of this gun have been previously

discussed in Section 3. 3.4. In addition the electrical and mechanical design

concepts have been indicated. The required electron beam current density

into the medium has been computed as part of the sustainer cavity scaling.

The electron beam requirements are tabulated in Table 4-7. Using these

requirements and the cavity sizes specified in Section 4.2, the electron gun

power requirements 'shown in the last column have been estimated. (The

powers in the one and five megawatt systems" are for two guns per system;
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for the ten megawatt system, four guns are required.) The estimated gun

sizes and weights are shown in Table 4-8. The weights are for a single gun

of the size indicated. The diameter refers to the cylindrical outer shell

diameter.

TABLE 4-7. ELECTRON GUN ELECTRICAL PARAMETERS

Low power -air

Medium power-air

High power-air

Low power -space

Medium power- space

High power-space

Voltage (kV)

150

150

150

150

150

150

Current Density
(ma cm~2)

0.47

0.42

0.42

1.13

0.97

0.97

Power (MW)

0.085

0.381

0.762

0.203

0.874

1.750

TABLE 4-8. ELECTRON GUN MECHANICAL PARAMETERS

System Power

Number
Diameter (cm)
Length (window) (cm)

Length (cm)
Weight (kg. )

Airborne

1 MW

I

25.4

77.7
103

59

5 MW

2

25.4
203

228

104

10 MW

4

25.4

203

228

104

Space

1 MW

2

25.4

77.7
103

59

5 MW

2

25.4
203

228

104

10 MW

4

25.4

203

228

104
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4.4 RESONATORS.

Because the details of the excitation section are not defined/ the

precise resonator optics cannot be defined either. It is known that because

of the strong coupling between the electrical power loading, the optical

power extraction, and the gas density, an inhomogeneous refractive index

variation will be present. This will most assuredly require compensation

on'each pass through the medium by a figured folding mirror. The- precise

nature of this optical figure depends upon the resonator output coupling and

Fresnel number as well as the parameters mentioned above. The specifi-

cation of the optical figure will probably contain terms through fourth order,

and fabrication by a computer controlled polishing machine will be required.

In any case, all the one and five megawatt systems will be folded unstable

resonators. The ten megawatt systems will be master oscillator /power

amplifier (MOPA) configurations with half-of each system serving, as an

unstable resonator master oscillator. In all cases, square beams will be

used for maximum medium coverage. This will also provide more uniform

extraction transvers to the flow direction than would circular beams.

Line selection to obtain the 9. 3 micron (001) -» (020) R-branch transi-

tion can be achieved by either of two methods. The first method is the use

of a diffraction grating in the resonator. This grating would be mounted in

Littrow for the appropriate wavelength and would be designed to have suf-

ficient dispersion to prevent other lines from oscillating simultaneously.

Current technology is adequate for fabricating such gratings on cooled sub-

strates for use at low powers. However, the substrate absorption is five to

ten times greater than with ordinary mirrors; this presents serious problems

at high power. Grating fabrication is being improved and it is possible that

this absorption will be reduced substantially in the near future. The alterna-

tive wavelength selection method involves the use of selective reflectivity

coatings in the resonator mirrors. Special coatings would be required on

several of the resonator folding mirrors in .order to prevent oscillation on

the higher gain (001) — (100) P-and R-branch and (001) — (020) P-branch

transitions. This method is feasible with current technology, although
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coating durability is a question. Development over the next several years

should solve this problem. Thus, in the 1990 time frame it is likely that

two line selection methods will be available. If coating technology is appro-

priately developed, it is the more convenient choice.

4.5 EXIT WINDOWS

Either an aerodynamic or a material window can be considered. The

material window has the advantages of lesser system weight, volume and

complexity. It has the capability of supporting high pressure ratio and

accommodating rapid variation in ambient environment. On the other hand,

the window absorbs a small portion of the incident beam flux, mostly through

surface absorption. The absorbed energy sets up a temperature gradient in

the solid and causes beam degradation. Excessive surface absorption may

even cause the structural failure of the window material.

The rotating solid window provides a means to distribute the incident

beam over a larger window area and hence to reduce the beam flux through

•ATIONARY
COOLING
PLATES

ROTATING
WINDOW

BEAM PATH

Figure 4-7. Rotating window concept.
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the window. Recent analysis indicated that a rotating ZnSe window as

shown schematically in Figure 4-7 is capable of accommodating the incident

beam flux of 50, 000 watts/cm without risk of structural damage. However,

the beam degradation caused by the thermal gradient in the solid may be the.

limiting factor of the solid window in high energy laser applications. To

reduce the surface heating, a cooling gas may be introduced between the

cooling plate and window surface as shown in Figure 4-7 to remove heat from

"the window surface. "Figure 4-8 shows the calculated Strehl ratio versus the

incident beam flux for various gap widths, where helium is used for the

cooling gas and the cooling plate is maintained at room temperature. (The

Strehl ratio is the ratio of peak intensity in the far field to that for a perfect

beam.)

For the space mission, the aerodynamic window is inherently not

applicable. Hence, the rotating material window should be considered as the

IT

GAP = 0 01 INCH1'

10 20 30

BEAM FLUX (KW/CM2)

40 SO

Figure 4-8. Beam degradation through the
rotating ZnSe material window for various
cooling methods.
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10
OUTPUT POWER (MW)

Figure 4-9. Required beam aperture
for rotating ZnSe material window.

only candidate. To design the solid window for a given laser output power,
one must expand the beam aperture to lower the beam flux through the window.
Figure 4-9 shows the calculated beam diameter in cm versus the laser output
power to give the Strehl ratio of 97 percent for gaps of 0. 005 inch and
0. 01 inch. It is believed that the curve for a 0. 005 inch gap is representative

of current technology and the curve for a graded cooling is certainly possible
by 1990. Therefore, the graded cooling design has been chosen; this con-

ceptual design results in the sizing shown in Table 4-9.

TABLE 4-9. ROTATING ZnSe WINDOW FOR SPACE SYSTEMS

Laser Power

1 MW

5 MW
10 MW

Aperture Size

4. 5 cm square
10 cm square
14. 5 cm square

Window Weight

42 kG

140 kG
236 kG

Window Volume

0.028 M3

0.093 M3

0. 157 M3
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The aerodynamic window is an alternative to the material window for

the shorter run time high energy laser applications. Although it has no

material limitation, it is limited by the pressure ratio across the window and

it is vulnerable to ambient pressure fluctuations. Furthermore, a separate

flow system is required to run the aerodynamic window. Subsonic aero-

dynamic windows, such as the transverse window, axial window, and impact-

ing jet window, have the advantage of low optical degradation, but they only

support low pressure ratios, typically less than two. For the airborne

closed-cycle CO-, EDL, system, which operates at the nominal cavity pressure

of 350 torr, a supersonic aerodynamic window should be selected.

Various supersonic aerodynamic windows have been reported in the

literature, including TRW's axial windows, UARL's MEGA, MSNW's mini-

mum mass flow window and Northrop's multiple shock window^ These may

be cataloged into compression window, expansion window and shock-

expansion window' '' * ', and may be evaluated accordingly. Figure 4-10

shows the mass flow required to operate an open cycle aerodynamic window

as a function of the beam cross-sectional area for the pressure ra,tio of two

across the window. H and D are the nozzle exit height and beam diameter,

respectively. It is shown that the shock-expansion window requires much less

mass flow than both expansion and compression windows and hence should be

selected as the prime candidate for the airborne applications. The D/H ratio

of 4 has been demonstrated, and it is felt that the D/H ratio of 8 should be

feasible by the year 1990.

The anticipated far field optical degradation of the shock-expansion

windows is found to be moderately low as shown in Figure 4-11. In Fig-

ure 4-12 the calculated weight of the gas supply and the associated tankage is

plotted versus the mass flow rate for the 300 second system. For a given

beam aperture, one may easily obtain the mass flow rate and gas supply

system weight from Figures 4-10 and 4-12, respectively. These are

tabulated in Table 4-10. The conceptual design is shown in Figure 4-13. The

projected w'eight is ,s_ixty pounds and the volume is 0.44 cubic feet.
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BEAM AREA (CM')

Figure 4-ljO. Mass flow requirement
of various aerodynamic windows for
300 second run time.
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BEAM AREA (CM2)
100

Figure 4-11. Optical degradation
versus beam area.
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1,000

500

RUN TIME = 300 SEC

1

M (Kg/SEQ

Figure 4-T2. Gas supply weight versus
mass flow rate.

TABLE 4-10. GAS REQUIREMENTS FOR AERODYNAMIC
WINDOW FOR AIRBORNE SYSTEMS (300 SEC)

-

Present technology . -

1990 technology

N2 Flow

0.4 kG/sec

0. 2 kG/sec

Weight*

230 kG

120 kG

, Nitrogen and tankage
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OPTICAL PATH

DIFFUSER

16"-
PLENUM *- NOZZLE
CHAMBER

Figure 4-13. Supersonic aerowindow.

4. 6 HEAT EXCHANGERS

Typically, tube bundle designs are used in high-pressure fluid

applications whereas the lower cost, more compact, plate-fin designs are

used for low pressure applications. Until recently plate-fin designs

because of their many internal joints throughout the core have not been suit-

able for zero internal leakage applications, typically giving way to a welded

tube bundle design. However, with recent advancements in vacuum brazing

and fabrication technology the plate-fin design can be manufactured to provide

essentially zero internal leakage. With this technology advancement, a

plate-fin design becomes much more attractive, particularly on the basis of

cost. A shell and tube design-utilizing small-diameter, thin-walled tubes

numbering in the thousands requires considerably more labor hours for setup

and braze than that for a plate-fin core. An additional advantage of a plate-

fin core is its high ratio of j, the Colburn heat transfer factor, to f, the

Fanrid friction factor. The plate fin j/f is typically up to two times higher

than that of a tube bundle design. This results in a 30 percent reduction in

frontal area for the same AP but a somewhat longer >flow length. Based on

these considerations, a pla'te-fin design was selected as the baseline concept

for both the open-cycle airborne systems and the closed-cycle space .systems.

Highly compact surfaces with high j/f ratios and large core surface areaja

were selected. Core geometry and j/f data was based on configuration and

experimental data reported by Kays and London(16)
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A counterflow configuration was chosen with JP4 as the coolant for the

airborne systems and Therminol 55 as the coolant for the space systems.

The final design parameters are given in Table 4-11.

4.7 COMPRESSORS
i

The axial flow compressors have been sized as indicated in

Section 3. 3. 2. The dimensions are summarized in Figure 4-14. The design

parameters are presented in Table 4-12. For the ten megawatt systems, the

parameters are based upon the use of two five megawatt systems.

4. 8 SYSTEM CONCEPTUAL DESIGNS

The system packages for the 5 and 10 MW airborne EDLs have been

configured to fit within the cargo envelope of the C5A aircraft. This instal-

lation provides access along both sides of the equipment. The size of the

1 MW airborne EDL package is sufficiently small to allow the use of other

aircraft to be used as the host aircraft. To facilitate system logistics,

ancillary equipment such as power generation and conditioning units, control

units, consumables, etc., may be integrated into a module separate from

the laser device. The space EDL systems have been configured for trans-

portation in the space shuttle.

TABLE 4-11. HEAT EXCHANGERS

1 MW airborne

5 MW airborne

10 MW airborne

1 MW space

5 MW space

10 MW space

Coolant
Flow

(GPM)

320

1,280

2,560

500

2,570

5, 140

Weight
(kG)

200

880

1,760

240

1,850

3,700

Volume
(M3)

0.5

2.2

4.4

0.6

4.6

9.2
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L-A

M-A

H-A«

L-S

M-S

H-S«

D(CM)

58

1247

1247

49

110

110

L(CM)

69

1474

1474

116

195

195

•TWO REQUIRED

Figure 4-14. Axial flow compressor
dimensions.

TABLE 4-12.- COMPRESSORS CO2 SYSTEMS

1 IvIW-air

5 MW-air

10 MW-air

1 MW-space

5 MW-space

10 MW-space

Power
(MW)

0.62

2.66

5. 32

2.65

7.64

15.28

Mass
(kG)

130

1050

2100

260

1580

3150

Volume
(M^)

0. 18 '

1.80

3.60

0.22

1.85

3.70

No. Stages

2

2

2

4

3

3

Pres .
Ratio

1.64

1.54

1.54

2.85

2.05

2.05
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The airborne EDL system layouts are depicted in Figures 4-15

through 4-17. The airborne EDL is envisioned as being a pallet mounted,

functionally modular system. The modular concept, in addition to facilitat-

ing its manufacture and subsequent maintenance, will permit greater latitude

in the selection of the host aircraft. The laser device, consisting of the

excitation and extraction components and the closed loop laser gas subsystem

constitutes (from a size point of view) the major system module. Other EDL

subsystems are: the power conditioning units, the thermal control unit, the

controller, and the consumables. These ancillary subsystems will most

likely be mounted to a common pallet.

The laser coolant accounts for a significant portion of the total system

weight and volume. Since the coolant is not consumed by the laser, an

attractive consideration is to contain the coolant, thermally conditioned JP

aircraft fuel, in a modified aircraft fuel tank and, after performing its

cooling function during laser operation, the coolant would be returned to the

aircraft fuel storage system for aircraft consumption.

E-GUNS UPSTREAM HT EX

AEROWINDOW/ . nv M JPiv GAS y LOX

CONTROLS

SUST INTR

COMPRESSOR

Figure 4-15. 1 MW COz laser
airborne.
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CONTROL
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AEROWINOOW

13.3'

115'

Figure 4-16. 5 MW CO, laser - airborne.

UPSTREAM HT EX

173"

13.5'

SUSTPWRCOND

E-BEAM PS

INTERRUPTER

AEROWINDOW
GAS

CONTROLS

COOLANT
FLOW
UNIT

Figure 4-17. 10 MW CO., laser - airborne.
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Figure 4-18 is a typical sectional view taken through the excitation

section along the flow axis. The Inlet/Cavity/Diffuser consists of a pressure

tight outer structure surrounding an aerodynamically shaped inner liner.

The outer structure is fabricated totally from a graphite reinforced com-

posite. The commercial designation for this material is GY-70/X-30

composite. The inner liner of the nozzle is fabricated from this material

also. Factors favoring the selection of this material are its high stiffness

to weight ratio, its dimensional insensitivity to temperature changes and

gradients, and the availability of fabrication techniques to produce the

desired items. Graphite composite fabrication techniques are in general

common to those used in other composites, i. e. , fiberglass. Conventional

lay-up techniques are particularly useful for fabricating complex shapes such

as are found in this device.

The inner walls of the cavity section are fabricated from Alumina,

MACOR (a machineable glass ceramic), and aluminum. The choice of these

materials was based on their survivability when exposed to high voltage,

high x-ray and E-beam flux loadings, and high temperatures. The diffuser

OPTICAL BENCH

Figure 4-18. Typical section through
the excitation assembly.
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liner is a stainless steel weldment. The walls and vanes are permitted to

thermally expand and contract independent of the graphite composite outer

structure.

The E-Guns mount to the outer structure of the excitation section.

The nose of the E-Gun protrudes through the outer structure and the E-Gun

foil becomes part of the aerodynamic wall of the extraction region. To pre-

serve the vacuum integrity of the system, a seal is provided around the flange

which attaches the E-Gun to the structure.

As with the excitation section, the ductwork portions of the closed

loop fluid supply subsystem will be fabricated of the GY-70 reinforced com-

posite. Its selection for this application is based on its superior stiffness

and strength to weight ratios. Because it has a near zero coefficient of

thermal expansion some care has to be exercised where high thermally

expansive components interface with this material.

The resonator optical assembly would consist of an optical bench, the

resonator mirrors and their mounts, and the autoalignment subsystem. The

resonator optics are situated at either end of the cavity. The optical com-

ponents would be attached to auxiliary optical benches which are attached to

the main optical bench as an assembly. The optical bench would be fabricated

from a quasi-isotropic laminate of GY-70 graphite fibers in a high temper-

ature epoxy matrix. The quasi-isotropic properties are achieved by selective

orientation of the fibers as typically shown in Figure 4-19. The choice'of this

material was based primarily on its extremely low thermal growth.

As shown in Figur-e 4-18, the optical bench is located in the region

between the excitation section outer structure and the inner aerodynamic

walls of the cavity. The resonator mirrors are situated, such that their

optical surfaces form the cavity end walls.

The three space-based systems are shown in Figures 4-20 through

4-25. The excitation-extraction components are identical to their airborne

CO? counterparts. The closed loop laser gas subsystem is similar in con-

cept but the methods of heat disposal available dictate the use of a larger

capacity compressor and heat exchangers, and the addition of a gas turbine

to mechanically extract energy from the laser gas.
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Figure 4-19, Graphite fiber orientation
(optical bench corner).

6.V

Figure 4-20. 1 Mw CO laser - space.
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Figure 4-22. 10 Mw CO2 laser - space.

4-28



SCREENS

HEAT
EXCHANGER MIRROR

COOLING
UNIT

TURBINE

Figure 4-23. 1 Mwatt CO? laser - space.
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Figure 4-24. 5 Mwatt CO2 laser - space.
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UPSTREAM
HEAT EXCHANGERS
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SCREENS

DOWNSTREAM
HEAT EXCHANGER MIRROR

COOLING UNIT

Figure 4-Z5. 10 Mwatt CO2 laser - space.

Primary power for the space EDL system is obtained from solar

radiation. A Brayton cycle is used to convert the absorbed thermal energy

to the mechanical energy 'required for system operation. The Brayton cycle

turbine is shown connected to the EDL gear box. It will power the fluid sup-

ply compressor, the electrical generator, the pumps in the thermal control

unit and will in general provide the power requirements for EDL. operation.

Waste thermal energy generated during EDL operation is convected

away from the EDL by a third closed loop and ultimately radiated into space.

Power to circulate the heat transfer medium in this loop is also provided by

the Brayton cycle.

The system weights for this conceptual design are shown in

Tables 4-13 and 4-14.
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TABLE 4-13. AIRBORNE CO2 SYSTEMS

„

Prime power

Power conditioning

Inlet- cavity- diff user

Electron guns

Optical assembly

Ductwork /structure

Heat exchangers

Turbo -compressor

Aerodynamic window

Tankage

Mirrow cooling unit

Aero-window gas

Consumable JP4/lox

Misc. (pumps, controls, etc. )

Totals

Weight (kG)

1 Mwatt

500

205

690

120

41

684

200

130

27

392

225

27

340

360

3941

5 Mwatt

1,850

265

7,300

210

110

3,630

880 -

1,050

27

928

540

27

1,700

1,854

20,371

10 Mwatt

3,460 '

365

14,60'0

420

320

7, 110

1,760

2, 100

54

1,650

810

54

3,500

3,619

39,822
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TABLE 4-14. SPAqp CO2 SYSTEMS

.

f~ • -
Power conditioning

Inlet- cavity- diffus e r

Electron guns

Optical assembly

Duct work/ structure

Heat exchangers

Compressor /gearbox

Turbine/generator"

Exit window

Mirror cooling unit

Misc., (pumps, controls, etc.)

Laser system <

Solar -collector

Prime power

Radiator

Total

Weight (kG)

1 Mwatt

205

690

120

41

529

240

275

200

42

240

258

2,840

8,600

4,500

'-'. 4,500

20,440

5 Mwatt

265

7,300

210

110

3,340

1,850

1,620

1,200

140

565 '

1,660

18,260

31^600

21,800

12,050

83,710

10 Mwatt

365

14,600

420

320

6,530

3,700

- 3,275

2, 100

236

850

3,240

35,636

63, 300

43, 300

24, 100

166,336
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5.0 CO SYSTEM

5. 1 TASK DEFINITION

Electric discharge laser development in recent years has expanded to

include CO as well as CO_ systems. In the CO molecule, laser action is

produced on several vibrational transitions. The efficient vibrational excita-

tion that can be achieved coupled with the utilization of a single molecule on

several successive cascade transitions gives rise to higher theoretical

electrical efficiencies in the laser cavity than in the CO2 system. The

achievement of these efficiencies however requires low (60-90 K) temperature

operation. The result of an overall comparison of such a system with a CO2

system is not obvious a priori, because of the cost of the achievement of low

temperature in a closed cycle flow system. Consequently, the conceptual

design of a one megawatt space-based cw CO electric discharge laser system,

subject to the same guidelines and constraints as the CO? designs, was

undertaken.

Two alternative methods for achieving low temperature were con-

sidered. A subsonic flow loop with low temperature heat exchangers is one

obvious method. The alternative method consists of using supersonic

expansion to decrease the gas temperature. This method results in a high

pressure ratio, high energy consumption compressor. However, high gas

temperature (and therefore thermal radiation temperature) are automatically

achieved. Consequently this task included a comparison between these

approaches. Alternative systems were scaled and the lighter one was chosen

for the conceptual design.
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5. 2 SUBSONIC SYSTEMS

A rough preliminary analysis was performed to investigate the weight

comparison between a subsonic CO electric laser and the CO., laser systems

already described. Cavity performance for 20 kw output lasers' ' was

scaled to 1 Mw by a scaling law, which states that two CO laser cavities are

similar in performance if they have the same power loading per CO molecule

and if the laser gas in each case has the same residence time in the cavity.

Table 5-1 summarizes the parameters which characterize the basic laser. The

additional elements of a closed cycle gas flow loop were then combined with

the cavity, the total flow loop mass was estimated, and added to the estimated

mass of the radiator and the solar-to-electric power conversion module. The

parameters associated with such items as the compressor, the heat exchangers,

etc. , are shown in Table 5-2 as are the specific mass figures adopted for the

radiator and the electrical power supply. These figures are similar to those

used in preliminary sizing of the CO., 1 Mw space system. Results for this

basic system summarized in Table 5-3 suggest that this low temperature sub-

sonic system is impractical for space because radiation of even the relatively

small quantity of waste heat produced requires 25 shuttle loads of radiator

due to the low temperature at which it must be radiated.

TABLE 5-1. BASIC SUBSONIC CO LASER PARAMETERS

Gas mix CO:He

Inlet M

Inlet pressure

Inlet temp.

Specific heat (Cp)

Y(=Cp/Cv)

Mass flow

= 1:9

= 0.2

= 250 torr

= 80°K

= 3.42 J kg-1

Average molecular mass = 6 . 4

Cavity dimensions (cm): 8 x 100 x 10

Power loading = 0.52 eV/CO molecule

Sustainer power input = 1.82 Mw

Average output \ = 5.

= 1.625

= 2. 12 kg sec

Cavity electrical effi-
.1 ciency(POUT

= 55%
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TABLE 5-2. SUBSONIC CO SYSTEM PARAMETERS

12 -3
1. Electron density = 10 cm

2. Compressor efficiency = 0.86

3. Nozzle isentropic

4. Diffuser pressure recovery coefficient = 0. 7

5. 5% pressure drop in each heat exchanger

6. 2-1/2% pressure drop in each duct section

7. Radiator areal mass density = 1 . 6 Kg M~

8. Solar to electric power conversion system
mass = 2 Kg/KWe

TABLE 5-3. SUBSONIC CO SYSTEM SCALING RESULTS

Overall electrical efficiency (Output Power/ = 52. 1%
Total Input Power)

Solar-to-electric power system mass = 3840 Kg

Radiator Mass = 6. 5 x 10 Kg

The radiation temperature must be raised to reduce the total mass,

and the two approaches used in the CO, study, raising cavity inlet tempera-

ture and employing a refrigeration step in the gas flow loop will now be

investigated separately. Should they appear promising, a best combination of

cavity temperature and refrigeration will be sought. In the refrigerator

system the same cavity is used as in the basic system, but the gas flow loop,

includes a much larger compressor which raises the gas temperature to

reduce radiator size. Heat is then removed. This approach has already

been described for the space CO, systems. With a turbine efficiency of

0. 85, and an effective radiating temperature of 300 K, the figures shown in

Table 5-4 are obtained.

A warm CO cavity was sealed to investigate what gain in system mass

minimization might be expected from higher cavity inlet temperature. Its

difference.from the basic system is summarized in Table 5-5. This warm

cavity temperature system also gives a large reduction in weight over the

basic subsonic system as Table 5-6 shows but not enough to make it a
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TABLE 5-4. REFRIGERATOR SUBSONIC CO SYSTEM
SCALING RESULTS

Overall electrical efficiency = 18.7%

Solar-to-electric power system mass = 10, 700 Kg

Radiator mass = 16, 000 Kg

TABLE 5-5. WARM SUBSONIC CO
SYSTEM PARAMETERS

Same as basic subsonic system except for;

Inlet temp = 300°K

Cavity efficiency =19. 2%

Sustainer power input = 5. 21 Mw

Mass flo.w = 6 .,6 kg sec"

Average output X. = 5.

Cavity dimensions (cm): 12 x 400 x 10

TABLE 5-6. WARM SUBSONIC CO SYSTEM
SCALING RESULTS

Overall electrical efficiency = 16. 6%

Collector mass = 5200 Kg

Radiator mass = 18,500 Kg

competitor to the subsonic CO space laser system. It does not appear that

the subsonic CO laser is a logical choice to replace the CO, laser for a spa'ce-

based 1 Mw system. Surely an optimization would yield mass figures superior

to those of either the warm or the refrigerator systems, but since the radiator

and power supply system totals are already 50 percent above the CO2 total sys-

tem figures, with no allowance made for the mass of the laser loop itself, and

no allowance made for losses such as those due to boundary layer growth,

diffraction and the aerowindow, .there is not much reason to pursue
\, j t

investigation of the subsonic system further.
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5. 3 SUPERSONIC SYSTEM

Supersonic expansion of the laser gas in the nozzle and diffusion to

subsonic speed after the laser cavity offer the advantages of low temperature

within the resonator and higher temperature in the rest of the flow system at

the cost of considerable pressure drop in the system which has to be restored

by the compressor. Both the laser cavity and the diffuser entail much larger

drop in gas stagnation pressure than is the case for an all subsonic-flow sys-

tem. A set of assumptions for the flow loop designed to make the super-

sonic CO closed cycle system results comparable to systems already

described was adopted and is presented in Table 5-7. The rather high pressure

drop assumed for the heat exchanger situated upstream of the nozzle compared

to that after the diffuser follows from the high heat of compression requiring

greater heat removal upstream of the nozzle (downstream of the compressor).

Another difference between assumptions in this case and those used for CO?

lies in the allowance made for losses not modeled in the kinetics code.

Mirror and diffraction losses are similar in the two cases, but boundary

layer growth appears likely to consume about twice as much of the cavity in

TABLE 5-7. SUPERSONIC CO SYSTEM ASSUMPTIONS

1. Compressor efficiency = 0.86

2. Nozzle isentropic

3. Normal shock pressure recovery in supersonic to subsonic
diffusion

4. Subsonic diffuser pressure recovery coefficient = 0 . 7

5. 12% pressure drop in pre-nozzle heat exchanger

6. 4% pressure drop in post-diffuser heat exchanger

7. 2-1/2% pressure drop in each duct section

8. Radiator areal mass density = 1.6 kg M~

9. Collector areal mass density = 0. 29 kg M~

10. 35% 'pad1 needed to account for unrnodelled losses, mainly:

a. Boundary layers

b. Mirrors

c. Diffraction
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supersonic flow as it does in subsonic flow. Therefore the 25 percent pad

(i. e. , 1. 25 Mw code output = 1. 00 Mw usable laser power output) of the CO-

scaling has been increased to 35 percent for the supersonic CO EDL.

Peak pumping efficiency is again a, useful guide in selection of a gas

mix. As the gas traverses the laser cavity, both static temperature and

static pressure rise and as a result, density variation is only of the order of

2 percent. For a constant electric field, E/N is nearly constant in the dis-

charge region. Extensive computer code examination of various gas mixes

has shown that for a molecular ratio of 1 part CO to 9 parts argon, about

99.5 percent of sustainer power is pumped into the CO vibrational levels for

E/N = 0.2 - 0.4 x N"16 Vcm2 . For the system finally selected, replace-

ment of this mix with CO:Ar:He = 1:6:3 increases system mass by 16 percent.

The CO:Ar =1:9 mixture has therefore been chosen. There is some recent

evidence that more complex gas mixtures providing lower pumping efficiency
(19)

may be needed to optimize beam quality but it is assumed that by 1990,

* better flow control will provide good beam quality with the selected mixture.

The system was optimized by finding the set of values of inlet static

pressure, static temperature, and stagnation temperature which yielded the

lowest overall system mass. Scaling laws for laser loop components from

Reference 3 together with the same figures used in other sections of this

report for radiator area mass density (1.6 Kg/m ) and solar-to-electric

conversion specific mass (2 Kg/kwe) were used. It was assumed that,

through the use of very thin beryllium foil for the e-gun exit window, an

electron beam current density of 5 Ma/cm will be possible by 1990. Fig-

ure 5-1 shows the effect upon total mass of varying static temperature about

the optimal value, while Figures 5-2 and 5-3 present similar information

about pressure and stagnation temperature. In Figure 5-2, pressure is

limited on the low side since at about 60 torr, flow chokes in the diffuser.

The selected CO IMw space system is summarized in Table 5-8. The

total mass figure is preliminary and a figure based upon detailed component

sizing will be presented in the next section. It is appropriate to compare

this to the minimum of Figure 3-20 since CO system masses were obtained

in a similar manner to that used to obtain preliminary CO, mass totals.
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TABLE 5-8. SUPERSONIC CO SYSTEM PARAMETERS

Gas mix CQ:Ar = 1:9

Inlet mach no. = 3. 58

Inlet pressure = 65 torr

Inlet temperature -= 80 K

Cavity dimensions 5 x 1Q x 60 cm

Sustainer voltage =1569 volts

E-beam current density = 5 . 0 ma/cm

Sustainer power = 1.835 Mw

Compressor power = 2. 084>Mw

Electron beam power = 0. 455 Mw

Estimated pump power = 0. 025 Mw

Total electrical power = 4. 399 Mw

System efficiency = 22. 7%

System mass (preliminary) - 15. 34 x 10 kg
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Although an accurate comparison requires a. more detailed sizing of

individual components, which appears in a later section, for a 1 Mw space

based closed cycle EDL, the supersonic CO system appears at this point to

be lighter by about 2000 Kg than the subsonic CC> system.

5.4 CONCEPTUAL DESIGN

The CO electric discharge laser system is similar in concept to the

CO2 systems, but the cavity flow is supersonic, requiring a compressor with

a higher compression ratio driven by more energy. There are, of course,

other differences as a consequence of-the supersonic flow. The supersonic

nozzle is of course different from a subsonic one. A number of options

including a de Laval nozzle are available. For this conceptual design we

have chosen an "array nozzle" of a type successfully demonstrated at Hughes.

The nozzle is an array of two-dimensional square output expansion nozzles

as indicated in Figure 5-4. The other differences are also illustrated in the

sketch of the laser shown in Figure 5-4. A transverse discharge is used,

and a single pass unstable resonator is envisioned. To achieve a confined

discharge, Busemann biplane confinement shields are inserted in the super-

sonic flow downstream.of the laser cavity. A straight duct supersonic dif-

fuser with vanes perpendicular to the optical axis is followed by a vaned sub-

sonic diffuser of the same type used for the CO2 systems. Other aspects of

the CO system are similar to the CO_ systems, although of course the per-

formance parameters are different as shown earlier in Table 5-8. This, in

turn, leads to different weights as shown in Table 5-9. Schematic layouts of

the system are shown in Figures 5-5 and 5-6.
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TABLE 5-9. CO SYSTEM

Power conditioning

Inlet - cavity - diffuser

Electron gun

Optical assembly

Ductwork/ structure

Heajt exchangers

Compressor /gearbox

Exit window

Mirror cooling unit

Misc (pumps, controls, etc. )

Laser system

Solar collector

' Prime power

Radiator

Total

Weight (Kg)

260

490

120

32

690

445

250

42

200

250

2, 780

5,670

4,350

4,163

16,962
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6. 0 CONCLUSIONS

It is interesting to compare the different types of laser systems

which have been studied. Table 6-1 shows some of the major parameters for

the 1 megawatt space-based electric discharge laser systems investigated in

this study along with some data from a previous study in which a CO., gas

dynamic laser (GDL) was investigated. The prime power source for the GDL

was an unshielded nuclear reactor, wh'ile solar energy was investigated in

the present study. The electric discharge laser systems are approximately

an order of magnitude lighter than the gas dynamic laser system. An entire

EDL system is within the weight capability of the space, shuttle (approxi-

mately 27,000 Kg). In looking at the table one should also remember that

the EDL systems are not designed for maximum efficiency, but rather are

designed for minimum weight. In fact, a factor of 1. 5 improvement in

efficiency can probably be realized.

TABLE 6-1. 1 M WATT SPACE SYSTEMS

System weight (Kg)

Laser loop (Kg)

Laser loop power
conversion (%)

Solar-laser conversion (%)

Collector area (M )

Radiator area (M )

Supersonic
CO2 GDL

316,154

38,669

—

;

Subsonic
CO2 EDL

20,440

2,840"

15. 1

2.5

29,500

2,800

Supersonic
CO EDL

16,963

2,780

22.7

3.8

19,500

2,600
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While this study appears to lead to the conclusion that the CO system

will be superior to the CO2 system in terms of efficiency and weight, one

must not leap to this conclusion. While every attempt was made to evaluate

the two systems on an equal footing, the CO technology development is in a

much earlier stage and the projected future performance entails a much

greater degree of uncertainty. The CO2 kinetics, for example, are much

better understood than are those of the multi-line vibrational cascade lasing

of the CO molecule. The multi-line nature of CO and the single line oscil-

lation of CQ2 must be considered in making the choice for any particular

application. The problem of chemical stability in closed cycle laser sys-

tems has not been addressed as yet and such research is essential if either

system is to become a reality. While not much is known about this question,

the risk of molecule changes is much greater with CO than CO_. The CO2

system requires further work on the problem of mode-medium interaction,

although significant progress has been made recently. The CO system

requires engineering development of a high current density electron window.

In view of the differences in the ages of the two technologies, and the uncer-

tainties in the two system designs, it is reasonable to view the two systems

as comparable. The CO system probably should not enjoy the degree of

superiority indicated by the weight figures in Table 6-1. Attainment of those

parameters is more risky for the CO system.

In order to bring the systems to fruition technology development

programs in a number of areas will be required. It is of interest to enumer-

ate the most important areas indicated by our design investigation. First and

foremost is the area of prime power generation. Unless a major effort is

undertaken, solar power generators of this size will not be available for many

years to come. Other areas where reasonable technological advancement

has been postulated include high order mirror figuring (for the CO2 system),

mirror coating durability, high current electron beam window development

(for the CO system), and high power laser window performance (both aero-

dynamic and material). In addition, the area of discharge induced chemistry

which is just beginning to be investigated, should be pursued.
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