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ABSTRACT

We want to estimate the vector of multinomial cell probabilities p

from incomplete data, incomplete in that it contains partially classified

observations. Each such partially classified observation is observed to

fall in one of two or more selected categories but is not classified fur-

ther into a single category. The data is assumed to be incomplete at

random. The estimation criterion is minimization of risk for quadratic

loss. The estimators are the classical maximum likelihood estimate, the

Bayesian posterior mode, and the posterior mean. An approximation we

develop is used for the posterior mean. The Dirichlet, the conjugate

prior for the multinomial distribution, is assumed for the prior distri-

bution.

We show these three estimators to be approximately equal in large

samples. We then study risk in small- and medium-size samples through

Monte-Carlo simulation studies for the trinomial distribution. Samples

are of size 25 and 50, percentage of incomplete data varies around 15

and 40, and probabilities range from the center of the probability sim-

plex Pp to one of its corners. Probabilities equal the means of the

prior distributions for varying prior parameters or are randomly gen-

erated from these distributions. Priors used in the Bayesian estimators

are the correct prior, a uniform prior, and a perturbed prior. The EM

iterative algorithm of Dempster, Laird, and Rubin (1977) is used to eval-

uate all three estimators.

Results indicated that the relationship between the probability p

being estimated and the prior parameters B used in the Bayesian estima-

tors was one of the most important factors in determining which estima-



tor was preferable. If the mean p of the Dirichlet distribution given

the prior parameters B was within a fairly wide range of p, then the pos-

terior mean was the best estimator of p. If the mean was far from p,

then the maximum likelihood estimate was best. Between these extremes

was a region in which the posterior mode was often best when p was toward

a corner of P?. The maximum likelihood estimate and posterior mode were

equally best at a corner. When the best estimator was used, risk was

usually reduced by one-fourth to one-third over that of the next best

estimator and by one-third to one-half over that of the worst estimator.

However, the reduction in risk was sometimes substantial. The largest

reduction occurred at the corner p=(0,0,l); the risk of the posterior

mean was as much as 33,000 times larger than the risk of the posterior

mode or maximum likelihood estimate.

As the percentage of incomplete data increased, the risk of the

three estimators did not greatly increase and the relationship among

the estimators changed little. As sample size increased, risk and the

difference in risk between estimators usually decreased.

Because numerical evaluation of the exact posterior central moments

is generally unfeasible, we also develop approximations for elements of

the posterior mean and covariance matrices. The best of three approxi-

mations considered for the posterior mean is based on a first-order

Taylor-series expansion of the exact posterior mean that has accuracy of

order 0(n~ ). Because terms in the expansion are then approximated, the

final approximation, called the Taylor-series approximate posterior mean,

is not necessarily accurate to order 0(n" ). However, we show that this



approximation asymptotically equals the exact posterior mean. Further,

we give two conditions which guarantee that the error between the exact

posterior mean and an iterative solution of the Taylor-series approxi-

mate posterior mean is of magnitude 0(n~ ).

Approximations used for elements of the posterior covariance matrix
-3/2are based on Taylor-series expansions accurate to order 0(n ). When

the iterative solution for the Taylor-series approximate posterior mean

has accuracy of magnitude 0(n" ), then the Taylor-series approximate pos-

terior variance and covariance can be evaluated noniteratively to have
-3/2accuracy of magnitude 0(n ). These approximations can also be eval-

-3/2uated iteratively. However, insurance of accuracy of magnitude 0(n ' )

then depends on satisfaction of the two conditions discussed for itera-

tive solution of the Taylor-series approximate posterior mean.

An important.property of the Taylor-series approximations is that,

as the percentage of incomplete data goes to zero, they go to the exact

posterior moments. In addition, the relationship between the Taylor-

series approximate posterior mean and the posterior mode parallels their

complete-data relationship.

In the same Monte-Carlo simulation study used for the risk study,

the Taylor-series approximation for the posterior mean was usually accu-

rate to at least four significant figures; that for the posterior vari-

ance, to at least three significant figures; and that for the posterior

covariance, to at least two significant figures. In practice, the Tay-

lor-series approximations will generally be more accurate than numerical

evaluation of the corresponding exact posterior moments.
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CHAPTER 1

INTRODUCTION

1.1 Overview:

This thesis is concerned with simultaneous estimation of the vector

p of cell probabilities from incomplete multinomial data where the criterion

of goodness is minimization of risk for quadratic loss. As is well known,

the posterior mean will minimize expected risk. However, complete-data

results indicate that for at least boundary probabilities, the maximum

likelihood estimate might be a better estimator. Hence, we study both

estimators for specified values of p. In addition, we investigate a third

estimator, the posterior mode, which has some advantages of each of the

other two estimators.

Because numerical evaluation is generally unfeasible, we also develop

approximations for the posterior mean and covariance matrices. Therefore,

part of this thesis concerns derivation of the approximations and proof of

their accuracy.

In the next section, we define the risk problem and detail reasons for

choosing the posterior mean, maximum likelihood estimator, and posterior

mode. We begin by defining special notation for the incomplete-data pro-

blem. We also outline a robustness study concerning use of the correct

prior in the Bayesian estimators. In the third section, we review the

literature of estimation from incomplete multinomial data.

Chapter 2 describes the estimators. First we derive the exact posterior

mean and central moments and illustrate the problems in their numerical

computation. Then we give derivations for the mode estimators, the maximum

likelihood estimate and posterior mode. In Chapter 3, we develop truncated
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Taylor-series approximations for the exact posterior mean and covariance

matrices. In Chapter 4 we prove the asymptotic, large-sample, accuracy

of these approximations. For these large samples, the posterior mean,

maximum likelihood estimate, and posterior mode are all approximately

equal; hence, there will be little difference in their risks.

We then turn to small-sample behavior of the estimators. For small-

and medium-size samples, we investigate (1) the accuracy of the Taylor-

series approximations for the posterior mean and covariance matrices, (2)

which of the Taylor-series approximation, maximum likelihood estimate, and

posterior mode best approximates the posterior mean, (3) which estimator

best minimizes risk for quadratic loss at specified values of p, and (4)

how robust results in (3) are to use of the correct prior in the Bayesian

estimators. Because we could not answer these questions analytically, we

performed Monte-Carlo simulation studies for the trinomial distribution.

In Chapter 5 we discuss the design and relevant computational procedures

for two such studies. Chapters 6 and 7 give results of these two studies

and guidelines for practical implementation of the results.

In Chapter 8 we summarize the main research of the thesis, draw con-

clusions, and recommend areas for future study.
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1.2 Problem Statement:

Assume that we have a k-dimensional Dirichlet prior

k+1 k+1 k+1 v.-l
g(p|v) = [r( z v )/ n r(v )] n p. 1 , (i.i)1=1 1 1=1 7 1=1 1

where v.>0 and p takes values in the k-dimensional probability simplex1 - k+1
P. ={(p.,.. .,p. ..):p.-0, E p.=l>. The Dirichlet density is the conjugate
K 1 K+i 1 •_i 1

prior for the multinomial distribution. Assume also that we have complete
k+1

data x=(x,,...,x. ,), n= Z x., denoting nonnegative integer sample valuesi k+i i=1 i
of the random vector X=(X.,...,X.+.) having the k-dimensional multinomial

distribution M(n;p) with density

k+1 k+1 x.
h(x|p) = [n!/ n x.!] n p \ (1.2)

1=1 1 i=l 1

Thus, the k+1 components of x respectively denote the number of the n

observations that fall in k+1 mutually exclusive categories Cj,...,C.+..

Suppose, however, that n observations are made on k+1 mutually exclusive

categories but that some of these observations are only partially observed

in that each of these observations falls in one of two or more of the k+1

categories but cannot further be classified into a single category. That is,

for some of the n observations one knows only that the observation falls in

one of 1 particular categories for l£l=k+l but not which one of these 1

categories. This.set of categories among which an observation is shared is

called a pattern of incomplete data.

We denote such a set of categories as C suffixed by the indices of the

sharing categories. For example, if an observation is known to fall in one



-4-

of categories C., C., or C,, for l^i,j,l^k+l, but cannot be specified

further, we write that the observation falls in C..,. More commonly, we
I J '

write the total of all such observations falling in C..-, as z.., or z . .

where, following a few more comments, we elaborate on these two z subscript

notations. Corresponding to the use of x=(x,,X2 xk+i^» we write

?=(zltZ2'""Z12'z13'""z12...kJ [or (Z{1}'Z{2}""'Z{1,2}'Z{1,3}"-"
z{. 9 .,)] to denote the vector of incomplete data. Thus, z=(z1,z ,z_,
t l ) < - 5 « « « j K j •%* A t o

z,?,z._,z -) represents the vector of incomplete trinomial data having, for

example, z~ completely specified observations falling in C_ and z.. incompletely

specified observations such that each observation is known to fall in one of

C, or C (C-io) DUt is not specified further.

However, we need some way to abbreviate notation for summing and multi-

plying over all collections containing a particular integer in forthcoming

equations. The least cumbersome approach is to adopt set notation and then,

for convenience and to parallel complete-data notation (i.e., complete-data

notation is x,, not x^i). drop braces and commas where possible. Therefore,

in the next few paragraphs, we formally define the set notation used.

We first note that we want the notation to allow for dividing the data

into separate multinomial groups in the Hocking and Oxspring manner to be

described in the next section. Although we observe data in the general,

unrestricted, form z,, z ,. ...ẑ ,.. .,z12 k> where the completely specified

data z., z?,...,z need not be subdivided, we use the Hocking and Oxspring

restrictive form in writing the likelihood for the exact posterior central

moments in Chapter 2 and for some of the asymptotic proofs in Chapter 4. Thus,

for each incomplete-data pattern, we create notation to allow for enough

artificial completely specified observations to complete a multinomial group.
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For example, if we observe z,, z«» z3, z«2, and Zio» we can treat the

data in the Hocking and Oxspring manner as coming from three independent

distributions, one trinomial and two binomials as, follows: v̂ z., v2,

V3» y12=z12'y3* and W13=Z13* W2' wnere V2+W2=Z2 and v3+y3=z3* Here,

v,, v2, and v3 have a trinomial distribution with probabilities p,, p2,

and p3; y.2 and y3 have a binomial distribution with probabilities

(Pi+Pp) and P3l and w,3 and w2 have a binomial distribution with

probabilities (p,+p3) and p«.

Therefore, for k the dimension of a multinomial distribution, let %

be a nonempty subset of {1,2,...,k+l} and let P be the set of mutually

exclusive and exhaustive subsets %. For example, for the trinomial dis-

tribution we could have the following P and %:

?1 = {{1>,{2},{3}} containing 3lfl={l). 22,1
={2}' and *3fl

s{3};

P2 = {{1.2},{3}> containing ̂ {̂1,2} and 22j2={3>;

P3 = ({1,3} {2}} containing $1 3={1,3} and $2 3={2}; and

P4 = {{1},{2,3}} containing 31>4={1} and $2>4={2,3}.

Define ?,P to be the set element % in the set P. Suppose that there

are 3ff D elements in %,P. Let z9 v be the number of observations such
ft> ft'

that each observation falls in one of the Bg p categories C^ for ie8, but

is not further classified into a particular one of these B- p categories

if B2 p>l. Incomplete multinomial data is data of the form z« p for %

containing more than one element; i.e., Bg p>l.

Thus, for the example given in the third preceding paragraph, we have

tnat Z2,P1
=(Z{1},{{1},{2},{3}}'Z{2},{{1},{2},{3}}'Z{3},{{1},{2},{3}})

=(v1,v2,v3), Z 3 , P = ( 2 { 1 , 2 } , { { 1 , 2 } , '
Z ) = ̂ **' and
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We note that while we are deriving the posterior distribution of

p in Chapter 2 or calculating its limit in Chapter 4, we will use the P

subscript. For all other purposes, however, we discard the P subscript

and work with only the sufficient statistics of the Hocking and Oxspring

observed data, defined by

z« = I z« p. (1.3)

Thus, in our trinomial example the sufficient statistics are

' and

We let z denote the vector of all z«. Therefore, as in our earlier
~ . P

discussion, z is our vector of observed data. Similarly, n=E zff denotes
3 %

the sum of all the observed data. Finally, we define p« as the sum of

probabilities p.. for i in %. Thus, P/3\=P3
 a"d P/3 5 6}

=P3+P5+P6*

In summary, we use set notation because it is the least cumbersome

mechanism for writing sums and products over all sets (or collections)

containing a particular integer. The use of set notation also aids

derivations of exact posterior central moments in Chapter 2 and calcu-

lation of limits in Chapter 4. On the other-hand, where possible we

delete the braces and commas to simplify equations and to parallel

complete-data notation (i.e., complete-data notation is x^ , not x,- -,).

For example, we usually write p,g instead of p,-, 2}- We also mix the

simplified and full notations. For example, we usually write
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z.+ £ znp./pn rather than z,.-,+ I znp,..,/pn where I means the sum
1 D9i u n u 11J> D?i lu u D9i

over all those multiple-integer sets that contain i. Thus, in the

trinomial example, Z means the sum over all sets {1,2} and {1,3} that
Dal

contain the integer 1. Note that we define D as a set containing more

than one integer unless otherwise specified. That is, D can not denote

the set {i} for any i.

Finally, we assume that the incompleteness of the data is random.

That is [see Rubin (1976)], incomplete data is not a function of the

values that would have been observed.

In this thesis we are interested in minimizing risk. Risk is def-

ined as expected loss with respect to, in this work, the distribution of

z given p; that is, for some estimator p of p,

r(p,p) = E[L(p,p)] = Z L(p,p) h(z|p), (1.4)
"" Zk ~~ """

where r(p,p) is the risk of p, L(p,p) is the loss function for p,

Z.={(z, Zk+l'z12'z13'""z12 k^: eac'1 z comP°nent ls a nonnegative

integer and the z components sum to n}, and h(z|p) is the density of z

given p.

In (1.4), the risk function depends on the value of the generally

unknown probability p. As Zellner (1971,p25) points out, it is

impossible to find an estimator p that minimizes risk r(p,p) for all

possible values of p. He gives as an example that the vector p=b of

constants will have minimum risk when p=b; hence, as p varies over P. ,
•\» •%» **» l\

the minimizing estimator varies.

Therefore, a common practice is to choose as an estimator that one

that minimizes the average risk E[r(p,p)], where
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E[r(p,p)] = / r(p,p) g(p) dp
Pk ~ ~ ~ ~

= / [Z L(p,p) h(z|p)] g(p) dp (1.5)
Pk Zk ......

= Z [/ L(p,p) f(p|z) dp] q(z)
Zk Pk ......

for g(p) the prior density of p, f(p|z) the posterior density of p given

z, and q(z) the marginal density of z.

Now, the estimator minimizing the term in brackets in the last line

of (1.5) also minimizes expected risk. For quadratic loss

this Bayes estimator is the posterior mean. We use quadratic loss (also

called mean squared error) for the loss function because of its mathematical

tractability, frequent past usage, accuracy in approximating other loss

functions [see Mood and Graybill (1963, p!65) and DeGroot (1970, p227)], and

physical interpretation. The emphasis in quadratic loss is on minimization

of the overall scatter of the estimates from the true value rather than

concentration on a few extreme departures. In particular, the quadratic-

loss criterion allows bias in an estimator if the variance is compensatingly

small .

As noted just before (1.5), however, the posterior mean will not

minimize risk in (1.4) for all values of p. Hence, there might be ranges
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of p for which other conmonly used, and easily calculated, estimators

improve on the posterior mean. Further, as Zellner (1971,p26) notes,

many sampling theorists object to use of the prior density g(p) (because

it is never known in practice). Thus, they do not consider the minimal

average risk property of the posterior mean to be important.

Therefore, besides the posterior mean p, we also investigate two

other estimators to minimize risk for at least some values of p. The

first estimator is the maximum likelihood estimate p. We include it

because it is a classical estimator that is often used. In particular,

it is frequently used when one has no prior knowledge. For complete

data, the maximum likelihood estimator p=x/n is the unique, minimum

variance unbiased estimate of p. Hence, any estimator having smaller

risk than p must be biased. However, Johnson (1971) has shown that p

is admissible. That is, there does not exist any other estimator p

having at least as small a risk for all values of p and strictly smaller

risk for at least one value of p.

The maximum likelihood estimate p is admissible because no other
A*

estimators have smaller risk when all but one of the p components are
k+1 2

near zero. Since the risk of p equals 1- Z p. , the risk is close to
1=1 1

zero when p is near a corner of the P^ simplex. Hence, if the

incomplete-data case parallels the complete-data case, we would expect

the maximum likelihood estimate p to have smallest risk when all but one

of the p components are near zero and the posterior mean to have smallest

risk furthest from the boundary; i.e., at the center of Pk.
s*

We also include the posterior mode p. It is an in-between estimator

in that, like the maximum likelihood estimate, it is a mode and, like the
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posterior mean, it is a Bayesian estimate and utilizes prior knowledge.

Unlike the posterior mean, however, the posterior mode can have zero

components for a nonzero prior. Hence, it is a strong competitor for

the maximum likelihood estimate for extreme values of p, those values

near a boundary of the P. simplex.

Finally, we note that the posterior mean minimizing expected risk

depends on knowledge of the prior g(p). In practice, we would not know

the true prior g(p). At best we would have some estimate of g(p) that

has, in general, undeterminable error. To investigate how robust our

results are to use of the correct prior, we compare the three estimators

by using two wrong priors, as well as the correct prior, in their calcu-

lations in the small-sample trinomial simulations. Note that the

maximum likelihood estimate, not being a Bayesian estimate, is the same

for all three studies.

For the first wrong prior, we choose the uniform prior with vector

of parameters (1,1,1) because of its common use when one is uncertain of

prior knowledge. The uniform prior gives equal weight to all components

of p. For this prior, the posterior mode equals the maximum likelihood

estimate. For the second wrong prior, we choose the vector of parameters

10x[v/10+(.09,.05,-.14)], where v is the correct prior. This prior

perturbs the three components of p by .09, .05, and -.14, respectively.

Hence, we call it the perturbed prior.
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1.3 Literature Review:

To date, most of the published work on estimation from incomplete

multinomial data has concerned maximum likelihood estimation. In 1958

Hartley presented an iterative method for calculating maximum likelihood

estimates from those sets of discrete data for which a maximum-likelihood

procedure is available for the corresponding complete-data sample. Because

his method was later generalized and clarified by Dempster, Laird, and

Rubin (1977) in a paper described at the end of this section, we do not

further discuss Hartley's method now. Hartley gave examples for the

Poisson, negative binomial, and binomial distributions. Hartley also pro-

posed calculating the large-sample covariance matrix of the maximum

likelihood estimates by using the calculus of finite differences. He used

the iterates from the maximum-likelihood-estimate algorithm to estimate

the second derivative of the log likelihood function via the standard

finite difference formula.

Blumenthal (1968) considered maximum-likelihood estimation from

incomplete multinomial data for the special case in which a category does

not share data with more than one group of categories. That is, for the

k-dimensional multinomial population, if category C. shares data with

category C. for j in some subset 0 of the k+1 indices of p, then C. does
J — . I

not share data with any category C. for which h is not an element of 0.

For the binomial case, Blumenthal also investigated the problem of non-

random missingness.

Hocking and Oxspring (1971) considered the case in which data comes

from populations all related to the same "parent" population. In a related
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population, at least one parameter is the sum of two or more probabilities

from the parent population. Those parameters for the related population

that are not such sums, exhaust those probabilities of the parent popula-

tion that are not elements of these sums. Hocking and Oxspring derived

the maximum likelihood estimates and their large-sample covariance matrix

in the usual manner (e.g., the large-sample inverse covariance matrix is

the Fisher Information for p). They developed an iterative algorithm for

solution of the resulting nonlinear equations.

A simple case of the Hocking and Oxspring situation is that of a

parent population having probabilities p., p«, and p. and a related pop-

ulation having probabilities Pi+Po and Po- In general, however, we do

not have sample information given twice on category (L. That is, we
O

have sample data given for p., p^, p., and P-.+PO and do not have data on

C- broken into two groups to help, estimation.

Sundberg (1974) developed maximum-likelihood theory for the general

problem of incomplete data from an exponential family, of which the multi-

nomial distribution is a member. He proved that the derivatives of the

log likelihood with respect to the natural (exponential) parameters can

be written as the difference of an unconditional and conditional expecta-

tion of the complete-data sufficient statistics. He noted that this form

for the first and second partial derivatives was first discovered in un-

published work by Martin-Lb'f. [However, Efron (1977) noted that this

form was implicit in Fisher's 1925 paper.]

Dempster, Laird, and Rubin (1977) extended Sundberg's work to the

general case where the problem need not involve an exponential family.

They called their algorithm the EM algorithm because it consists of an
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expectation step followed by a maximization step. Although this is the

same algorithm proposed by Hartley (1958), Dempster, Laird, and Rubin

generalized the algorithm, clarified the techniques, improved the mathe-

matics, and extended the history and usage of the algorithm. They proved

that the EM algorithm converges to a local maximum or a saddle point when

the likelihood is bounded and the matrix of second partial derivatives of
•

the complete-data likelihood is negative definite with nonzero bounded

eigenvalues. They also gave a formula for the rate of convergence close

to a stationary point. Finally, they showed how the EM algorithm can be

used to calculate a posterior mode.

We describe the EM algorithm in the next chapter where we use. it to

calculate the mode estimators, the maximum likelihood estimate and the

posterior mode. We also use the EM algorithm for solution of the approx-

imation we develop in Chapter 3 for the exact posterior mean. •



CHAPTER 2

THE ESTIMATORS

2.1 Introduction:

In this chapter we give formulas for the estimators. In the next

section we derive the posterior central moments. We begin with known

formulas for the complete-data case and then, utilizing notation defined

at the beginning of Section 1.2, derive elements of the posterior mean

and covariance matrices for the incomplete-data case. We then illustrate

these derivations with an example and discuss difficulties in the numer-

ical computation of these exact moments.

In the last section, we give derivations for the mode estimators

based on theory from Sundberg (1974). We then show how values of these

estimators are calculated with the EM algorithm of Dempster, Laird, and

Rubin (1977). The first part of the section discusses the maximum

likelihood estimate. The second part details results for the posterior

mode.
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2.2 Posterior Central Moments:

2.2.1 Damp Jet. e_D_a ta:

For the k-dimensional Dirichlet prior g(p) in (1.1) and complete-data

sample x=(xp...,x. .) from the multinomial.distribution with density (1.2),

the posterior distribution of p given x has the k-dimensional density

k+1 k+1 k+1 v.-l k+1 k+1 x.
[r( i v.)/ n r(v.)] n p

 n [n!/ n XJ] n P.
 1

f(P|x) =
 i=1 i=1 i=1 i=1 1 i=1 (2.1)

v.-l
/•••/[r(zv.)/nr(v.)]np. n [n!/nx.!]np.1 I "I I 1

k+1 k+1 k+1 x.+v.-l
i i= [r(n+ z v )/ n r(x.+v )] n p

1=1 n 1=1 n 1 i=i n

Thus, the posterior distribution is again k-dimensional Dirichlet, this

time with parameters x.+v. for 1-i-k+l.

As is well known, the posterior mean of p. given x is

k+1
E(p.|x) = (x.+v.)/(n+ Z v ). (2.2)

Similarly, the posterior covariance matrix has elements

k+1 ,
var(p.|x) = (n+ E v.+D E(p.|x) [l-E(p.|x)] (2.3)i ~ n i ~ i ~

and
k+1 ,

cov(p.,p..|x) = -(n+ Z v +1)"1 E(p-|x) E(p.|x). (2.4)
i j ~ h=1 h i ~ J ~

The vector of posterior means (2.2) is the Bayes estimator for quadratic

loss defined in (1.6).
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In general, for 1 a positive integer,

1, 1-1 1-1 k+1
E(p/ |x) = n (x.+v.+q)/ n (n+ Z v +q)

q=0 1 1 q=0, h=l
(2.5)

so that, from multinomial expansion and substitution of (2.2) and (2.5),

the 1 moment of p^x about E(p..|x) is

EUp,-E(p«

1
= Z
j=o

1

j=0

-j-l x./n+(v +q)/n

l+(zvh+q)/n

-1
where we use the convention that n f(q)=l for any function of q.

q=0

(2.6)

2.2.2 J_n cpmpjej; e_Dat_a:

Recall the notation defined at the beginning of Section 1.2. Let p

again have the Dirichlet prior density g(p) of (1.1). Further, assume that

given p, and thus all p3, each z_ has the multinomial distribution
^- f> ~p ^ i

zi P
hp(z, Jp) = [( Z z p)!/n z, p!] n p, *• . (2.7)

Then, the likelihood of the total incomplete data z given p is

. h(z|p) = n'hpfz,. p|p).~~ p r ~£,r „

The posterior density of p given z is therefore

(2.8)

f (p | z ) = g(p) h(z|p)//p g(p) h(z |p) dp.
~~ . ~ k "

(2 .9 )



-17-

To evaluate f(p|z), recall that p7 is p« and that p- is a sum~ ~ p ft P
zxof probabilities; i.e., p<.= z p.. Thus, we can rewrite p« as a multi

2 J 2

nomial expansion. For example, if P«=Pi+P3+P5» tnen we can write p- p

as

Z5? Z* J /Z«V^ i i i 7 -i
(WP5)

?^01f0(/)U Pl P3 P5
$ . (2-10)

Rewriting the posterior density (2.9) in this manner, multiplying

resulting terms times each other and the prior, and collecting terms

yields the numerator as a sum of w terms of the form

1 ,? in(2.11)

where l^l^w, aj=n(zn+l) for D containing more than one integer, c, is a
D u '

function of the incomplete data only (hence, not a function of p), and
k+1 k+1 k+1 ~
I Y-i=n+ Z v.=m. That is, Z Y-i=m is the sum of the prior parameters
j=l Jl i=l n j=l Jl
v^ plus the total number of observations and thus is independent of 1.

[See following Section 2.2.3 for an example.]

Hence, each term (2.11) of the numerator can be written as a Di rich-

let density times a coefficient that is not a function of p Therefore,

integrating the numerator with respect to p to evaluate the denominator

yields that the posterior density of p given z is

CD k+1 y.,-1 u k+1
f(p|z) = z c, n p. Jl /{ z [c, n r(Yll)/r(m)]}. (2.12)

1=1 ' j=i J 1=1 ' j=i Jl

w k+1
Let B= Z c, n r(Y.,). Then the posterior mean of p. given z is

1=1 'j=l Jl 1
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-1 z c1r(Y,1+i) n r(Y,1)/B. (2.13)
1=1 ' 1! #1 Jl

Similarly,
2 i a) k+1

E(p. Iz) = [m(m+l)]~ Z c,r(Y,-1+2) n r(Y-1)/B (2.14)
1 - 1=1 ] 1] j^1 J1

and
k+1

1 Z c1r(Yil+l)r(Yhl+l) n r(Y,1)/B,(2.15)
1=1 i 11 ni j?6i)h ji

for variance and covariance calculations

var(p.|z) = E(p.2|z) - [E(p.|z)]2 (2.16)
I •** I "•* I *̂

and

cov(p.,ph|z) = E(p.ph|z) - E(Pi|z) E(ph|z), (2.17)

respectively.

2.2.3 Exam£le_:

We now give an example for a small artificial data set to illus-

trate derivations given in Section 2.2.2. We also want to indicate

difficulties that would be encountered in numerically evaluating these

elements of the exact posterior mean and covariance matrices for

larger or more complex data sets unless one has unusual computing

equipment.

We created the data in the more restrictive form of Hocking and

Oxspring to show how their form relates to ours. Suppose that we'have

observed the following data on three categories C.., l-i-3,
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Cl C2 C3 ni

(2.18)

where the arrows denote the two categories between which the incompletely

specified observations fall. The amount of incomplete data is 32% of

the total sample size. In the notation of Section 1.2, we have that,

P2 = {{1,2} {3}}, 3U2={1,2}, 22 > 2

P3 = {{1,3} {2}}, 21>3={1,3}, *2,3

Z{1}=2> *{2}=3+2=5' z{3}=3+3=6> Z{1,2}=4' Z{1,3}=2> Z{2,3}=0'

Z"(2 .5,6,4,2,0), and n= Z zff = 2+5+6+4+2=19.
% *

From (2.7) and (2.8), the likelihood of z given p is

. /, ,N _ (2+3+3); , 2 3 3 (4+3)! , 4 n 2 (2+2); n 2n2
L ( B > ? ) - 2TH3: P! P2 P3 4H: P{1,2} P3 TT2T-p{1.3} P2

2 5 6

Suppose that we have a uniform prior g(p.,p2)=2; that is, v^l for

l-i-3 in the Dirichlet prior (1.1). Then, the posterior density of p

given the incomplete data z is
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f(P|z) = \ — 7Hp - - • (2-20)

A 2 Pl2p2
5p36(pl+p2)^pl+p3)2 dpl dp2

Through expansion, multiplication, and collection of terms, the numerator

of the posterior density (2.20) can be written as

P2
6p3

8+p1
6p2

5
P3
8+ 2(p1

3p2
9p3

7+4p1
4p2

8p3
7+
(2.21)

+6p1
5p2

7p3
7+4p1

6p2
6p3

7+p1
7p2

5p3
7) +Pl

4p2
9p

Adding v. -1=1-1=0 to each exoonent in (2.21), we have that the

numerator is a sum of w=n(zn+l)=5x3=l5 terms of the form
D u

Yii-1 Yoi-1 Y31-l
cl pl P2 P3

3 3
with I Y-I = n+ Z v. = 19+3 = 22 for all 1-1-15. Integrating the

1=1 1! i=l 1
numerator (2.21) with resPect to P to evaluate the denominator yields

the posterior density (2.12) of P given z.

The smaller the variance of a distribution, the better a ooint

estimate, such as the mean, is as a descriptor of the distribution.

Therefore, as a rough indication of how large the variance is, we define

a samPle coefficient of variation

C.V.(Pi|z) =.[var(p.|z)̂ /E(p.|z). (2.22)

[Note that the coefficient of variation is usually defined as a standard
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deviation of an estimator (not a distribution) divided by the

estimator.]

Calculating the mean (2.13), variance (2.16), covariance (2.17),

and sample coefficient of variation (2.22) yields results shown in the

following Table 2.1.

TABLE 2.1

EXAMPLE 2.2.3 RESULTS

moment ---Ĵ ^

E(Pi|z)

var(pi |z)

C.V.(Pi|z)

1

0.241202

.011921

.4527

2

0.384927

.012725

.2931

3

0.373871

.011203

.2831

cov(p1,p2|z)=-0.006721, cov(p1,p3 z)=-0. 005199

cov(p2,p3|z)=-0. 006004

As expected, the sample coefficient of variation is highest for p^

because category 1 has the highest proportion of shared data. [Compare

(Z12+z13)/(z1+z12+z13)=.75 with Z12/(z2+z12)=.44 and Z13/(z3+z13)=.25.]

The posterior variance of p, is larger, in proportion to the posterior

mean of p^t than is that of p2 or p3 to their respective posterior means.

2.2.4 Eyalua_tion_Prpblenis_:

In general, we have the following problems in evaluating the exact

posterior central moments:
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(1) large number of terms - hence, pocket calculators and many desk

calculators cannot be used;

(2) rounding errors (in the large number of terms to sum, the products

of gamma functions and factorial -like constants c,, approximations

for the gamma functions, and final divisions, sums, and subtrac-

tions) - hence, computers must carry many figures of precision;

and

(3) large magnitude of terms (each term is a product of generally large

gamma functions and factorial -like constants c,) - hence, computers

must have an unusually large range of values unless much extra

computer programing and execution cost, time, and storage are used.

In the next few paragraphs, we discuss these problems and give several

illustrative examples. An example of an unusual electronic computer

that can be straightforwardly used to calculate these moments in small

enough samples is discussed in Sections 5.4 and 5.10.

The example given in the last section is among the smallest data

sets one could have. Yet, even for it there are 15 terms in each of the

numerators forE(p1|z), E(p2|z) , ' E(p1
2|z) , E(p2

2|z), E(p3
2|z),

), and Efp^Polz). The denominator, the same for all calculations,

also had 15 terms. Hence, there were 135 terms plus all the multiplica-

tions within terms, additions, divisions, and subtractions to evaluate

the final moments. For a trinomial sample having incompletely specified
x

observations Zi2=zi3=!z23=^> the number °f terms in each numerator (and

the one denominator) is 1000. Hence, there are a total of 9,000 terms

to evaluate, not including any multiplication within terms, addition of
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the 1000 terms, and subtractions and divisions for the final moments.

Finally, for a trinomial sample having incompletely specified obser-

vations 2,2=16, z,3=17, and z?"*'̂  (corresponding to 50% incomplete data

in a sample size of 100 and 15% incomplete data in a sample size of 330),

there would be 5,202 terms in each numerator (and the one denominator)

for evaluating the posterior mean and covariance matrix. Thus, the total

number of terms, excluding the multiplications within terms, addition of

the 5,202 terms, etc. would be 46,818.

To evaluate these moments even on a large electronic computer can be

difficult. Because of the gamma function in the terms, we need a

computer having an unusually large range. In the second example, a term

of r(35) r(40) r(32) = 10134 would exceed the range of most

electronic computers. Most have ranges smaller than 10 - 10 . Yet,

depending on the prior, this is a term for a sample size of only 100, and

this is only one of 1,000 terms. We can circumvent the range problem by

dividing each term of the numerator and denominator by a large value;

hence, scaling down the terms. However, doing so takes more computer

programing and execution time, cost, and storage. Further, it also

creates problems with roundoff error. We might also have to scale down

more than once, depending on the values involved. Each successive such

scaling involves increasing cost and roundoff error.

The cost and time involved in evaluating these moments is important.

The loss in precision, however, is critical. For the third example, a

computer carrying even eight significant-figure accuracy will yield an

answer for the exact solution that can be counted on for only one or two

significant figures. [The large loss in precision owes to rounding errors
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in approximations for the gamma functions, in the several multiplica-

tions within each term, in the additions of the 5,202 terms (roundoff

error is approximately /5202 or 2 to 3 significant figures), in the

final divisions, additions, and subtractions, along with roundoff error

from any divisions necessary to scale down the magnitude of terms to fit

within the range of the computer.]

If a computer carries six significant-figure accuracy, which is

common, one might not get any accurate evaluation. Hence, any canned

computer program would be particularly susceptible to wrong usage and

interpretation. Someone not understanding the numerical problems or

heeding any package warnings might use it on a six significant-figure

single-precision accurate computer and think his answers were correct.

On many large electronic computers, one can use double-precision

significant-figure calculations. However, doing so would usually at

least quadruple the cost. Further, on those large electronic computers,

as well as those numerous kinds of desk and pocket calculators, not

allowing double-precision calculations, or enough single-precisioa

accuracy, there is no way to obtain an accurate evaluation of the exact

posterior mean and covariance elements.

One driving factor in these problems is the large magnitude of the

terms. The other driving factor is the number w=n(zD+l) of these terms

in each numerator of E(p1.
J|z). As either sample size or percentage of

incomplete data increases, w increases. For a sample size of 200 and

percentage of incomplete data of 50% with Zi2=z13=33 and Z23=3^' the

number of terms in each numerator for the moments is 40,460. Hence, the
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total number of terms for just the numerators (excluding multiplica-

tions and gamma approximations involved in each term) is 364,140.

However, if we consider the same sample size and percentage of incomplete

data for a 5-nomial having, say z,2=15, 223=34, Zp^lG, z^c=^> Zi23=^»

and Zi234=17» the number of terms in each numerator is 645,120 and the

total number of terms for just the numerators (with same preceding

exclusions) is 5,806,080. Hence, the problems illustrated for the tri-

nomial data samples, as well as the cost, increase in somewhat factorial

manner as the number of multinomial dimensions increase.

Finally, it would be nice to have a short, easily remembered and

easily evaluated, formula for at least the posterior mean. As Hoaglin

(1977) notes, such a formula is valuable. It can be evaluated by pocket

calculators anywhere. The maximum likelihood estimate and posterior

mode, to be given in the next section, both have short, easily remembered

formulas. Although these formulas can often be evaluated by pocket calcu-

lator, they are not simple to evaluate in general. However, they are

very easy and inexpensive to program for computer evaluation. In parti-

cular, they do not have the three computational problems just outlined

for the exact posterior mean. We find in Chapter 3 that we can derive a

similar, although approximate, formula for the posterior mean.
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2.3 Mode Estimators:

2.3.1 B> ac kgr oun d_r^

In this section we show how the maximum likelihood estimate and pos-

terior mode are derived. First consider the complete-data equivalent x

of z. Let Zp/ ' denote the (unknown) number of the zn observations that~ u u

fall in category C.. Then, for 1-i-k+l,

*, • 2i + D0'- <2'23>

For the theory of this section, we want to express the complete-data

density
k+1 k+1 x.

h(x|p) = (n!/ Z x !) n p 1 (2.24)
i=l T i=i i

in terms of exponential-family parameters. Therefore, for 1-i-k, define

. (2.25)

k+1
Definition (2.25) and Z p.=l yield

i=l 1
that

.. k 4, •
p. . = !/(!+ Z e n) (2.26)
k+i 1=1

and <J) . k <j>.
p. = e V(l+ Z e J). (2.27)
1

For 1-i-k, define the sufficient statistics for p as

t.(x) = x.. (2.28)

Then h(x|p) can be written in exponential -family form as

= b(x) exp[ t(x)']/a() (2.29)

k+1 k 4,. k+1
for b(x)=n!/ n x.! and a(<J>)=(l+ T. e ) since Z x =n.

1=1 ' ~ 1=1 1=1 n
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2.3.2 flaxi mum

For the multinomial distribution, the likelihood is the density.

Thus, we seek to maximize h(z|<|>), the incomplete-data density (2.8)

rewritten in terms of the exponential parameters <J>. From Sundberg (1974),

the first and second partial derivatives of the log likelihood are

3log[h(z |4>) ] /9< j> = - E [ t ( x ) | 4 > ] + E[ t (x ) |z ,< |» ] (2.30)

and

32 log[h(z|<j>)] /(9<W) = -cov [ t (x ) |<J>] + cov[ t (x ) |z ,< |> ] . (2.31)

At the maximum of the likelihood, the vector (2. 30) of first partial deriv-

atives is zero, so that

E[t(x)|$] = E[t(x)|z,$]. (2-32)

Since

E[t.(x)|4>] = np., (2.33)

and, from (2.23),

and

i|z,$) = z. (2.34)

1)|z,4) = zDp./PD (2.35)

where, again, p = Z p., evaluation of (2.32) yields that the maximum
J'6D,J

likelihood estimate p^ of p^ is

PH = [z.+ Z z 6./P ]/n. (2.36)
i i u
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To solve the nonlinear system of equations arising from (2.36), we

use the EM algorithm of Dempster, Laird, and Rubin (1977). The algorithm

is divided into two steps. In the expectation step (their E-step), the

complete-data sufficient statistics t(x) are estimated by finding a solu-

tion to

)|z,$]. (2.37)

In the maximization step (their M-step), <)> ' is determined as the solu-

tion of the equations

E[t(*)|f] = [t(x)](1). (2.38)

Thus, translating back from 4> to p, we estimate an initial value p. '

of p. for l^i^k. We then substitute jr , together with z, into the right-

hand side z.+ Z P\(0)/Pn(0) of (2.37) and evaluate for [t(x)](0). Given
I r\—^ • 1 *-' -s. -«

(0) °31[t(x)]v , we then solve (2.38); i.e., we solve

np = [t(x)](0) (2.39)

for p^1'; hence, r' = [t(x)r0'/n. We then successively repeat the E

and M steps until convergence; that is, until successive values of p

agree to the desired number of significant figures.

Since we are concerned only with finite values of z, the likelihood

h(z|<j>) is bounded. Hence, the first condition of Dempster, Laird, and

Rubin (1977) for guaranteeing convergence of the EM algorithm to a local

maximum or saddle point is satisfied. Further, the complete-data multi-

nomial distribution is a member of the regular exponential family. Hence,

the last convergence condition is simply that the eigenvalues of cov[t(x)|<}>]

be bounded above zero on some path joining all <J> . From Graybill (1969,
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p!87), the eigenvalues X are the solution to the characteristic equation

k ? k
[1- Z p. /(p.-X)] n (p.-X) = 0. (2.40)

i=l n n 1=1 1

In general, we want (2.31) to be negative semi definite.

Dempster, Laird, and Rubin (1977) give the rate of convergence of the

EM algorithm. For the multinomial distribution the rate of convergence is

the largest eigenvalue of

c o v [ t ( x ) | z , ( t ) ] { c o v t t M U ] } " , (2.41)

for <j> the converged estimate of <C , provided that this eigenvalue is

less than 1. As expected, when the percentage of incomplete data is small,

the algorithm converges rapidly. As the percentage of incomplete data

increases, the number of iterations increases. Dempster, Laird, and Rubin

also note that, since the allocation of incompletely specified observations

often varies across different components of p, certain components of p may

converge rapidly while others may converge slowly.

2.3.3 .Poster j_or_ M>dej_

The derivation for the posterior mode of p given z is similar to that

for the maximum likelihood estimate. For the posterior mode, however, the

prior must be included in the maximization.

Recall from (2.9) that the posterior density of p given z is

f(p|z) = g(p) h(z|p)//p g(p) h(z|p) dp. (2.42)
. . . . . K k ~ ~ ~ ~

From definition (1.1) of the prior g(p), that piece of log[f(p|z)] from

(2.42) that depends on p is the same as that piece of log[h(z|p)] that
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depends on p except that, for l^i^k+1, z. is replaced by (z.+v.-l) and,
k+1 1 n n

hence, n is replaced by n+ Z v.-(k+l) .
j=l J

posterior mode p of p given z is given by

. „
p = (z +V.-1+ Z z p /p )/[n+ I v.-(k+l)] (2.43)
i 11 D31 u i u j=1 j

hence, n is replaced by n+ Z v.-(k+l) . Therefore, from (2.36), the
= J

k+1

for 1-i-k+l. As for the maximum likelihood estimate, we evaluate the non-

linear system of equations arising from (2.43) by the EM algorithm. The

comments in Section 2.3.2 concerning convergence also hold for the poster-

ior mode. In general, the prior should reduce the effect of incomplete

data so that convergence should be somewhat faster for the posterior mode

than for the maximum likelihood estimate. The numerator for the conver-

gence matrix in (2.41) is given in Appendix 40. 2 for the maximum likeli-

hood estimate. Derivation for the posterior mode is similar. Calculating

second partial derivatives of the two log likelihoods for the complete-

data case yields for elements of {cov[t(x)|(J> ']}' in the denominator of

(2.41):

for the maximum likelihood estimate -

and (2.44)
( t )^

and for the posterior mode -

d11 = [n+ E v..-(k

and J" (2.45)
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In most cases, the prior parameters v.. are greater than 1; hence, the

denominator in (2,41) is usually larger for the posterior mode than for

the maximum likelihood estimate. Which of the posterior mode and the

maximum likelihood estimate actually has the faster rate of convergence,

of course, depends also on the relative sizes of the numerators in (2.41)

Note from the."-l" term that it is possible for (2.43) to be nega-

tive. If so, the mode occurs at a boundary point; i.e., the posterior

mode is zero. Also observe that if v.=l, for 1-i-k+l, then the poster-

ior mode and the maximum likelihood estimate are identical.



CHAPTER 3

APPROXIMATIONS FOR POSTERIOR MEAN AND COVARIANCE MATRICES

3.1 Introduction:

As discussed in Section 2.2.4, numerical evaluation of elements of

the mean and covariance matrices of the posterior distribution of p

given incomplete data z is unfeasible for all but those cases having

only a small number of incompletely specified observations. Therefore,

we seek approximations for these posterior moments.

In the next chapter, we prove that the limiting central moments of

p given z are corresponding moments of the limiting distribution. In

particular, the limit of the posterior mean is the mean of the limiting

posterior distribution. We also prove that the mean of the limiting

posterior distribution is the maximum likelihood estimate (2.36).

Finally, from equations (2.36) and (2.43), the posterior mode equals the

maximum likelihood estimate in the limit and, hence, equals the limiting

posterior mean. Therefore, two natural candidates to approximate the

exact posterior mean are the maximum likelihood estimate and the pos-

terior mode. However, there are also problems in using these estimates

as approximations.

The maximum likelihood estimate is best known for being good in

large samples; it is not necessarily good in small samples. In

particular, if a value of z. has been observed that has very small

probability for given p., then the maximum likelihood estimate will be

poor if the sample size is small. For example, if p^ = .20 and we

observe z- = 10 in a sample of size 25, then the maximum likelihood
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estimate p^ = .40 is a poor estimate of p.. Further, the maximum

likelihood estimate is the correct estimate for an estimation criterion

of choosing that value of p that maximizes the likelihood (2.8) and not

for an estimation criterion of minimizing expected risk (1.5). Finally,

the maximum likelihood estimate has no place for a prior, which is

important in all but those cases in which the current data is of large

enough sample size, or significantly greater relevance, to drown out

past information.

The posterior mode (2.43) does incorporate the prior. However, the

posterior mode is the correct estimate for an estimation criterion of

choosing that value of p that maximizes the posterior density given the

prior density g(p) and observed data z and not for an estimation cri-

terion of minimizing expected risk. Finally, from equation (2.43) we

observe that, for small enough prior v., a component of the posterior
s*>

mode p. can be approximately zero even though an observation (z.=l) has

been observed.

A different approach for approximating the exact posterior mean p

is to note that the posterior mean of the complete-data Dirichlet

density with prior parameters (v, vk'vk+l^ eclua^s tne posterior mode

of the complete-data Dirichlet density with prior parameters (vj+1,...,

vk+l;vk+1+l); that is, from (2.2)

k+1 k+1
(x.+v.)/(n+ X vj = [x.+(v.+l)-l]/[n+ I (v_.+l)-(k+l) ]. (3.1)

11 j=l J n 1 j=l J

Therefore, paralleling the incomplete-data posterior mode (2.46), we

could estimate the incomplete-data exact posterior mean (2.13) by
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k+1

A very important property of approximation (3.2) is that as the propor-

tion Z zn/(n+£v.) of incomplete data goes to zero, approximation (3.2)
D3i u J

equals the exact posterior mean (3.1).

However, there are problems with this approach to obtain (3.2). We

find in this chapter that the relationship between the posterior mean

and posterior mode for complete data does not hold for incomplete data.

Thus, (3.2) is an approximation and this approach does not enable us to

assess its accuracy. Finally, from consideration of the definition and

from small-sample examples (one given at the end of this chapter), we

do not expect the large-sample covariance matrix of the posterior mode

or maximum likelihood estimate to be a good approximation for the exact

posterior covariance matrix. Therefore, we seek another type of approach

for estimating the exact posterior central moments.

As noted, both the posterior mode and maximum likelihood estimate

are derived from consideration of an estimation criterion other than

minimization of expected risk (1.5). Therefore, one way to seek another

approximation is to start with the desired estimation criterion; that is

begin with the exact solutions for the posterior mean and covariance

matrices. However, approximating exact solutions (2.13) - (2.17) for

the posterior moments given incomplete data is difficult because of the

number and structure of terms. An alternative method starts with exact

solutions (2.2) - (2.6) for the posterior moments given complete data

and then transforms these solutions via conditional probability to the
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incomplete-data case, making any necessary approximations along the

way.

In this chapter, we follow the above approach to derive approxima-

tions for the posterior central moments by making extended use of

conditional probability and first-order Taylor-series approximations.

Section 2.2 gives the posterior moments given complete data. Therefore,

for incomplete data z we substitute fictitious complete data consistent

with z and write the results of Section 2.2.1. Then, twice applying

known lemmas on conditioning, we average results from the complete-rdata

step over the posterior distribution of the unknown, substituted, com-

plete data. At this point we still have unknown terms in the

expressions. For these, we use Taylor-series approximations. The

resulting approximation for the posterior mean is equation (3.2); hence,

as the percentage of incomplete data goes to zero, the approximation

goes to the exact posterior mean. From (2.36) and (2.43), neither the

maximum likelihood estimate nor the posterior mode has this important

property. Also, since asymptotically (3.2) equals the maximum likelihood

estimate (2.36), it equals the limiting exact posterior mean. Further,

since Taylor-series expansions are used, we can assess the accuracy of

the approximations. Finally, we can use the same approach to approxi-

mate elements of the posterior covariance matrix. Doing so, we find the

same important property in the resulting approximations that they go to

the exact posterior variances and covariances as the percentage of

incomplete data goes to zero. Note that, since the Taylor-series

approximation (3.2) for the posterior mean is also a posterior mode
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[for the prior v.+l], it can be evaluated by the EM algorithm discussed

in Section 2.3.2.

In the next section, we derive the Taylor-series approximations for

elements of the posterior mean and covariance matrices. Intermediate

calculations are given in Appendices 3A, 3B, and 3C. Section 3.3 alge-

braically illustrates the resulting approximations for the trinomial

distribution. Section 3.4 concludes the chapter with a comparison of

the Taylor-series approximations, maximum likelihood estimate, and the

posterior mode on the small-sample data set given in Section 2.2.3.



-37-

3.2 Derivation of Taylor-Series Approximations:

3.2.1 PsteH or

Again let D denote the set. % from Section 1.2 containing more than

one element and, for itD, define ZD ' as the number of the ZD observations

that fall in category i.= If *n were known for all i and all D, then the

data would be complete and the posterior central moments would directly

follow from Section 2.2.1. Therefore, assume that we know all zn and

denote the vector of this unknown information by u. Thus, u is the vector

of all Zp ' for all D and all l^i-k. For example, in Section 2.2.3 we

would have that u=(zj2 ,z13 ) and z=(zi'Z2»z3'zi2'zi3'Z23^ ' Given

z and u, then, for 1-i-k, we have complete data

x, = Z z (i) = z.+ Z z (i). (3.3)
D

k+1
Thus, from Section 2.2.1, recalling that m= Z v.+n, we have from (2.2) the

j=l °
posterior mean

E(p |z,u) = (x +v )/m = (z + E z (i)+v.)/m. (3.4)1 ~ ~ ' ' '

To obtain moments of p given only the observed data z, then, we average

result (3.4) over the distribution of u|z. To do so, write the posterior

density f(p|z) as

f(p|z) = / £(p,u|z) du
fv •+* - ^ - M - * . ^ * / n r \(3.5)

= / 9(Plz,u) fe(ulz) du

for £(p,u|z) the joint posterior density of p and u given z and g(p|z,u)

and h(u|z), conditional densities.
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From (3.5) we obtain the following standard lemma [see Parzen (1962,

p55) or Rao (1968, p79)] on conditioning, which we write in terms of gen-

eral random variables V and W because we apply the lemma to one other den-

sity besides f(p|z):

Lemma 3.1: For random variables V and W, and where the variable under the

expected-value sign E is the variable with respect to which the expecta-

tion is to be taken: E(V)=E[E(V|W)], var(V)=E[var(V|W)]+var[E(V|W)],
W W W

and cov(V1,Vj=E[cov(V1,VJW)]+cov[E(VJW),E(VJW)].1 • W L * W x ^

By using Lemma 3.1 and (3.4) we have, defining r. =p./pQ, that

E(p |z) = E [E(p |z,u)]
"

E {[ I z(i)+v.]/m}
u z

E(z (i)|z)+v ]/m (3.6)

E

p|z

The first line of (3.6) follows from applying Lemma 3.1 to E(p.|z); the

second line, from complete-data posterior mean (2.2); and the third line,

from separating out that part of I za that is already known. The
*31' (i)fourth line of (3.6) follows from applying Lemma 3.1 to E(ZD |z); and

the last line, from the complete-data multinomial specification.
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In Appendix 3B we show through Taylor-series expansions that

E (r |z) = E(p.|z)/E(pJz) + 0(n"1), (3.7)

Pit ~

where the symbol 0 giving the order of magnitude of the error is defined

in Appendix 3B. Details are given in Appendix 3B. Therefore, substitu-

ting (3.7) into (3.6) and collecting terms yields, for p.=E(p.|z) and
I 1 •**

the error e. to be determined in Chapter 4, that

p. = (z.+v.t Z znp./pn)/m + e.. (3.8)
Dai

Dropping the error term in (3.8) yields, for 1-i-k, the Taylor-series
•

approximate posterior mean vector p; i.e.,

p, = (Z.+V.+ Z znj5./L)/m. (3.9)
1 1 1 u 1 u

Observe that (3.9) is the same approximation (3.2) obtained by

paralleling the complete-data relationship between the exact posterior

mean and the posterior mode.

Calculations for Taylor-Series Approximate Posterior Mean: For

those categories i that have only complete data, the Taylor-series

approximation is the exact posterior mean (2.2). For those categories i

that have incomplete data, we use the EM iterative algorithm of Dempster,

Laird, and Rubin (1977) described in Section 2.3.2 since (3.9) is a

posterior mode for the prior &.=v.+l. Thus, for those categories i

that have incomplete data, s denoting the number of iteration, and



-40-

we approximate the exact posterior mean from (3.9) by the iterative

algorithm

(3.11)

To begin (3.11), we use the data z, prior parameters v., and any
. tr\\

other available information to choose an initial estimate p. v ', 1-i-k,

and thus an initial estimate of r.^ '. Substituting r.^ ' into the

right-hand side of (3.11), we evaluate (3.11) to obtain p^. ' ' and r^ '
1 1 )

for all i referring to categories having incomplete data. Using r.^ J ,
' (2}we then reevaluate (3.11) to calculate p^ ' . We continue in this

cyclic fashion until results from successive iterations agree to the

desired number of significant figures.

Note that the system of k equations arising from (3.9) for the

Taylor-series approximate posterior mean is nonlinear. Thus, as for

the maximum likelihood estimate (2.36) and the posterior mode (2.43),

the number of solutions to this, system can range from zero to infinity.

[See Ortega and Rheinboldt (1970,p2).] If there are solutions, none

need be in P. . If a solution is in P. , it need not be close to the

exact posterior mean. However, since (3.9) is a posterior mode for the

prior 3=v+l, Dempster, Laird, and Rubin (1977) give conditions (dis-

cussed in Sections 2.3, 4.3.2, and 5.8.3 and Appendix 4E) under which

an iterative solution for (3.9) converges to a local maximum in P. .

Hence, when these conditions are met, there is at least one solution in

Pk- In Chapter 4 we give conditions under which an iterative solution

converges to within a small error of the exact posterior mean. We also

speculate that this solution, when it exists, is given by the global
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maximum in P. , which is found by choosing that one of the local

maximum in P. that maximizes the likelihood.

When there are only a few patterns of incomplete data, the non-

linear system of equations arising from (3.9) for the posterior mean

vector can sometimes be solved analytically. Several solutions will be

obtained but usually all but one will fail to satisfy the constraints
k+1.

O-p.-l and E p. = l. Examples of analytic solutions for the asymptotic
1 1 = 1 1

posterior mean and covariance matrices are given in Appendix 4D.5.

3.2.2 Ppste_rj_or_ Co van ance_Mat ri xj

For approximating elements of the posterior covariance matrix, we

follow the same procedure given in the last section. For the complete-

data step that lead to (3.4), we obtain

^z.u) = {E(Pi|z,u) [l-E(pi|z,u)]}/(m+l) (3.12)

and

cov(p.,p.|z,u) = - [E(p.|z,u) E(p. |z,u)]/(m+l). (3.13)
I II ****** | •** «w I I ******

For the conditioning step that lead to (3.6), we obtain

p
var(p. |z) = £ [zn var(r.Jz)+ £ znzn cov(r.n,r.Jz)]/[m(m+l)]

1 ~ Dai U p|z 1U " Q3i U g pjz 1U ig ~
(3.14)

+{ E (zD/m) E [r ( l -r .D) |z]+E(p.|z)[ l -E(P i |z)]} /(m+l),
U p|z 1U 1U ~ 1 ~

and, for h?h' ,
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cov(p. ,p, |z) = Z Z znzn/[m(m+l)] cov(r.n,rhn|z)
1 n ~ D3i Q3h u g p|z 1U hg ~

(3.15)
-[ Z (zD/m) E (r.nr |z)+E(p.|z)E(ph |z)] /(m+l).

h p|z

Derivations for (3.14) and (3.15) are given in Appendix 3A.

Finally, for the ratio-approximation step that lead to (3.8), we

have, with ratio moments given in Appendix 3B and substitution details

for (3.14) given in Appendix 3C, that

a.. = Z (zD/m)[(zD-l)/(m+l)]/pn
4{[pH

2a.,+p. Z [p.a. .-2pRa,,+2p. Z a,,]}
11 v JJ ^J J

+ Z Z (zD/m)[z0/(m+l)]/(pnpx)
2{p0[pfla,rp. Z 3., ]+p, Z [p. Z au g u g. |fl « n in i J

+[ Z (Zn/mJB.p./Pn + P-(l-p,)]/(m+l) + 5.., (3.16)
D 3 i u i j y u 1 1 1 1

and, for h>i and 0) denoting D minus the integer h,

+l) + 6ih, (3.17)

where a-i=var(pi |z) , 5ih=cov(pi ,ph|z) , 0 and 0 denote D and Q, respec-

tively, minus the integer over which they are summed (so that 0 is D

minus i and 0 is Q minus h or Q minus i depending on the definition of Q

given under the summation sign), and, again, p.=E(p1- |z) so that

p..=p.+p.. The terms 6.. and 6ih represent the error made by
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approximating posterior moments of the ratios r<D in equations (3.14)

and (3.15), respectively.

Dropping the error terms in (3.16) and (3.17) and then solving the

resulting nonlinear system of equations for 1-i-k and i<h-k yields the

Taylor-series approximate posterior covariance matrix with elements a..
•

and a.. . Note that, as for the Taylor-series approximation for the

posterior mean, the Taylor-series approximate posterior covariance matrix

goes to the exact posterior covariance matrix as the percentage of

incomplete data goes to zero.

Calculations for Taylor-Series Approximate Covariances: Thus, to

solve the nonlinear system of equations for the Taylor-series approxi-

mate posterior covariance matrix, first note that for those categories

that have only complete data,

5.. = p.(l-p.)/(m+l) (3.18)

and, for category h also having only complete data,

(3.19)

in agreement with (2.3) and (2.4), respectively. Recall that P,-=P,- and
•

ph=p. in this case of complete data.

For those categories i that have incomplete data, results are a

noniterative estimate of 5- for category h having only complete data and

a choice of iterative and noniterative estimates for elements a., for
O

category j, as well as i, having incomplete data.

For category h having only complete data and category i having

incomplete data, we approximate cov(pi,ph|z) by



a.ih

-44-

= -J5.(t) ph/(m+l) (3.20)

for p^v ' denoting the converged estimate p. v ' from (3.11). Approxi-
•

nation (3.20) is noniterative in a., .

For i and h referring to categories that have incomplete data and

for s again denoting the number of iterations, we can write (3.16) and

(3.17) as iterative algorithms. To do so, we drop the error terms 6..

and write 5., on the left-hand side of (3.16) and (3.17) as 5-u
• (t)and p. and 5., on the right-hand side of these equations as p. ' and

(s) •5-h , respectively, for p. ' denoting the converged estimate from

(3.11). These equations are given for the trinomial distribution in

the next section.

To obtain initial estimates a..x ' and 5., v , we assume, for the
• • •

first iteration only, that the ratio r.Dsp /p is nonrandom. With

this assumption, we have from (3.11), (3.14), and (3.15) that

i (3.21)
D 31

and

s.h(o) . [p.<t>Ph<t>

The second procedure for estimating elements of the posterior

covariance matrix for those q categories that have incomplete data is

noniterative in a... For both i and j referring to categories having
• J 4

incomplete data, a,, coefficients of a,. , and b.. a term that is not a

function

(3.17) as

function of a-,, for any 1 or h, we can write equations (3.16) and
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3 = I Z [ Z Z alh 3 ] + b + 6 (3.23)
leD h€Q m m 1J 1J

where we note that 6.- also contains terms in a., [for example, second-
1 J I J

order terms in the approximation for E(r.rJz) are terms in a..].

Thus, we can write (3.23) as a linear system of q(q+l)/2 equations

in the q(q+l)/2 unknowns a-- and a..:

[A + 6A] a = B [I + 6g] 1 (3.24)

where a is the q(q+l)/2xl vector of a. . for both i and j referring to
"** * J

categories having incomplete data, A is the q(q+l)/2xq(q+l)/2 matrix of

the a,., B is the q(q+l)/2xq(q+l)/2 matrix with b. . on the diagonal and
l i i * * * I j

O's elsewhere, I is the q(q+l)/2xq(q+l)/2 identity matrix, 6fl is the-w —M

q(q+l)/2xq(q+l)/2 matrix containing those terms in 6.. that are terms
' J

in a, 6n is the q(q+l)/2xq(q+l)/2 matrix containing zeros on the off-

diagonal and the remaining terms of 6.. divided by b.. on the diagonal,
* w ' J

and 1 is the q(q+l)/2xl vector containing all 1's.
•

The Taylor-series approximation a., for these terms a., of the
* J * J

covariance matrix is then given from (3.24) by dropping the error terms
. (4-}

6fl and 6R; substituting the converged approximation p.
 ; from (3.11)

~H *« D 1
~ ^ x, x.

for p. in A and B, yielding the matrices A and B, respectively; and
•

computing a as

• *-i *
o = A L B 1. (3.25)

The tradeoff between the two procedures to approximate elements of

the posterior covariance matrix for those categories that have

incomplete data is the cost of the one-time expense of the larger-
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dimensional operation (3.25) in the noniterative procedure versus the

cost of iteratively evaluating the smaller-dimensional [q(q+l)/2]xi

covariance vector written directly from (3.16) and (3.17). In the next

section we illustrate these Taylor-series approximations by writing them

for the general case for the trinomial distribution. We conclude the

chapter by giving a numerical example.
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3.3 Algebraic Trinomial Illustration:

Suppose that, having taken minimization of expected risk as the cri-

terion for choosing a point estimate of the posterior distribution of

p=(p1»P2>P3) given incomplete trinomial data
 z=(zi>Z2»Z3'zi2'zi3'Z23^' we

want to calculate elements p,, p?, and p3=l-p.-p of the posterior mean

vector. Suppose also that, for the same estimation criterion, we have past

estimates p. calculated from a recent data sample of size n and prior

parameters v., whence we calculate new prior parameters
k+1

v.=(n+ £ v )p (3.26)
1 J=l J '

If we had no information other than z, we could set v.=l to obtain a

uniform prior.

Recall that J (s)sj (s)+* (s) and that * (s)=* (s),* (s) _
' J ' J ' J • ' J

from (3.11) iterative estimates of elements of p are given by

and (3.27)

To choose an initial estimate p. ' to calculate r.. ' for (3.27), we
' ' J

use the previous estimate p., theoretical results (such as from genetic or

engineering laws), and/or current data. Then, calculating r.. for
' \J

l*H,j-3 and substituting results into the right-hand side of (3.27), we

iterate on (3.27) until results converge.

To estimate the posterior covariance matrix, we have from (3.16) and

(3.17) that
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O A

2
) (3.28)

2 4"

To estimate the posterior covar'iance matrix by the iterative procedure,

we iterate on (3.27) until the convergence condition is met on, say, the t

iteration. Then, Tor f.=j5.̂ , f..?p .^, and g.-r̂ ,-,- , we rewrite (3.28)
i 1 ' J »J I J ' J

as
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512
(S+1) - z1//W*H)]{-fX

(SW.,sJs)-f.2a.>>m]2'>

(3.29)

23
4

where we calculate initial estimates 3,/0' and S..̂  from (3.21) and (3.22)

as
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on
(0) = [f1(l-f1)+(z12/m)g12(l-g12H(z13/m)g13(l-g13)]/(m+l),

(3.30)

After evaluating (3.30) we iterate on (3.29) until results converge.

To estimate the posterior covariance matrix by the noniterative pro-

cedure, we substitute in equations (3. 28) for 5-3, a23> and 533 in terms of

a-, ->t a,,,, and 5,,,,, collect terms, and rewrite equations (3.28) as

+2512[(z13g13/f13-Z12g12/f12)(z12921/f12+Z13/f13)+Z12912921/f122

-Z13g13/f13
2]/[m(m+l)]

/[m(mfl)].

(3.31)
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and

+2512[(-Z12g12/f12-Z23/f23)(z12921/f12-Z23923/f23)+Z12g12g21/f122

for T..=6.. plus the error made from approximating p. by f.=J5. .
* \ j • \ J I I I

Dropping the error terms T.., we have that equations (3.31) are three

equations linear in the approximations o-,-,. 51?, and d?? of the posterior

covariances 6,.,, 5,p, and 522, respectively. That is, we approximate

elements of the posterior covariance matrix by

o = A"1 B (3.32)

where o=(a,,»§19»a09), A is the 3x3 coefficient matrix of a from the
~ 11 it. L.C. ~ ~

right-hand side of (3.31), and B is the 3x1 column vector of constants

given on the left-hand side of (3.31).
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3.4 Numerical Example:
T

We now compare the Taylor-series approximations for elements of the

posterior mean and covariance matrices with approximations given by the

maximum likelihood estimate and by the posterior mode on a small sample.

We use the example given in Section 2.2.3. Initial estimates for the

iterative algorithms were p^ '=1/4 and p~ £3 =3/8. The condition

for convergence was that the absolute relative difference |p. -P- |

/p. be less than 0.001 where p. denotes the s iteration of approx-

imation p.. Because a uniform prior was used, the posterior mode equals

the maximum likelihood estimate.

Results from these approximations are given in the following Table

3.1. The Taylor-series approximations are by far the better approxima-

tions for elements of the posterior mean and covariance matrices. Fur-

ther, they are excellent approximations for such a small sample. For

example, values of the Taylor-series approximate posterior mean differ

from the three corresponding elements of the exact posterior mean by only

0.3%, 0.1%, and 0.1% in percentage absolute relative difference 100*

|p.-p.|/p,. Corresponding percentage absolute relative differences for

the maximum likelihood esimate (= posterior mode) are 9.7%, 3.8%, and

2.4%, respectively.
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3.5 Summary:

In this chapter we considered three different approximations for

elements of the posterior mean vector and one approximation for elements

of the posterior covariance matrix. The maximum likelihood estimate (2.36)

and posterior mode (2.43) were considered because they asymptotically equal

the limiting posterior mean. However, as discussed in the first section,

there are problems with using these two estimates to approximate the

posterior mean. We then derived an approximation by conditioning twice

from the complete-data posterior mean and using Taylor-series expansions

for the unknown terms. An important property of the resulting Taylor-

series approximation is that as the percentage of incomplete data goes to

zero, the approximation goes to the exact posterior mean. Neither the

maximum likelihood estimate nor the posterior mode has this property. The

Taylor-series approximation also relates to the posterior mode (2.43) in

the same manner that the complete-data posterior mean relates to the

complete-data posterior mode. Because the Taylor-series approximation is

thus a posterior mode (for $.=v.+l), we were able to solve its nonlinear

system of equations by th.e EM alpp^hm. di§gysse^ in Sectign 2:3.2,

Approximations for the posterior- mean §nd thejp §§mglete=data counterparts

are given in the following fablg 3.|.

The same approach of egnditigninj gncj using fay]eraseries expansions

was also used to derive ajgr.§x.im.§tio/Ris f§p elemefits @f the posterior co-

variance matrix. The Fesultinf aggp§ximj|i§fjs als@ h§ye tftg important

property that as the pergentage §f in§@nf]§te d.ata Ejges to zero, the approx-

imations go to the exact elements §f th§ gg§t§r-:j§r- g@yar-ian§§ matrix. We

showed how to solve the system of eguatigns ffem |h§ ajDpfgximations either
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iteratively or noniteratively, once the posterior mean has been approximated.

We illustrated the Taylor-series approximations algebraically for the

trinomial distribution and then compared them numerically with the maximum

likelihood estimate and the posterior mode for a uniform prior on a small

sample.
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APPENDIX 3A

CONDITIONAL DERIVATIONS FOR TAYLOR-SERIES APPROXIMATIONS

FOR POSTERIOR COVARIANCE MATRIX

3A. 1 Posterior Variance:

For 1-i-k and Q, like D, denoting % containing more than one

element,

var(p.|z) = E [var(p, |z,u) ] + var[E(p. |z,u
u|z 1 ~ ~ u|z 1 ~ ~

= E { [mm+ l ) ] - ^ . } * Z

+ Z z Jn+mvartz,, ,* Z
Dai D 1 uz {1} D3i

x l E(zD
( 1 ) |z)-E[( Z zD

( i ) |z)2 ]DM ~ D3i ~

+(m+l)var[ Z zn
(1) |

Z z E (r.D |z)} - Z {ZD E [r1D(l-r1D)|z]
up|z 1U ~ D3i up|z 1U 1U ~

Z znzn cov(r.n,r.n|z)})/[
M pjz M ~

o

m
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because

E(zD
(1 ) |z) = E [E(zD

(1 ) |p,z)] - ZD E (r.D|z) (3A.2)
pjz ~ " p|z

and

E[( E zD
( i ) |z)2 ] = E {E[(zD

( i ) [z)2 ]+ E E(zD
( i )zQ

(1 ) |z)}

= E (var(zD
(1 ) |z)+ [E(zD

( i ) |z)]2

+ E {cov(zD
( 1 ) ,zQ

( i ) |z)+[E(zD
( i ) |z)] [E(zQ

( 1 ) |z)]})

E E [var(zD
( i ) |z,p)]+var[E(zD

( i ) |z,p)]

E [E(zD
( i ) |z ,p) ]> 2

E fE [cov(zD
(i ),zQ

(i)|z,p)]
H \ p z u y

+cov[E(zD
( i ) |z,p),E(z0

(1 ) |z,p)] (3A.3)
p|z " - ~ ^

E
p|z
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and

var( E z ( i )|z) = E [var(Z[)
(1) |z) + E cov(zD

(1) ,
u - u "" u

Z ( E [var(zD
(1) |z,p)] + var[E(zD

( i ) |z,p)]
031 El* ~ ~ Pi?

+ X { E [cov(zD
(i),z0

(1)|z,p)] (3A.4)
Q5i p|z *

cov[E(zD
( i ) |z,P),E(z0

(1 ) |z,p)]})
u ~ ~ v ~ ~ /

since COV(Z D ^^ ,Z Q
( I ) )=O for Q?<D.

Therefore, combining terms in (3A.1) and recalling (3.6),

var(p. |z) = r{zD
2/[m(m+l)] var(r.Jz)+ E znzn/[m(.m+l)] cov(r,n,r.n|z}}

IU ~ w w ~p|z lu- Q^i u " p|z

(3A.5)

(zD/m) E [r1D(l-r1D)|:
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3A.2 Posterior Covariance

Finally, for l-i,h-k,i^h, and Q defined as in 4A.1, we have that

cov(p i,ph|z) = E [cov(p1 ,ph|z,u)] + cov[E(p i |z,u),E(ph |z,u)]
~ I ~ ~ I ~

= - [m^m-H)]'1 E {[zm+ E
u|z {1} Dai

+ m ~ 2 c o v [ z + Z z ( l ) +v, ,z , ,+ Z z + v . ] (3A.6)
u z

u z

Z ZD f (riDrihlz)+ Z Z ZDZ0 [c?v(riD>rho'z)

.h up|z 1U in ~ D3i Q3h u g p|z 1U hg ~

because

E [ ( S z J j C l z ( h ) ) ] = I Z E ( z ( 1 > z ( h ) | 2 )

Z E { E [cov(zD
(1),z0

(h)|z,p)]
i Qsh p|z W

+cov[E(zD
(i)|z,p),E(z0

(h)|z,p)]
p|z ~ ~ w

(3A.7)

+ E [E(zD
(1)|z,p)] E [E(z0

(h)|z,p)]
p|z u ~ ~ p|z w

E zn E (r.nrhn|z)+ I I znzn
Dai.h Dp|z l D h D ~ D3i D Q
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and

cov( Z z (i), z z (h)) - z Z { E [cov(zb
(1),z0

(h)|z,p)]
u|z Dai u Q3h 4 Dsi Qsh p|z u w

+cov[E(zD
(i)|z,p),E(zn

(h)|z,p)]} (3A.8)
pjz U ~ ~ q ~ ~

Therefore, combining terms in (3A.6) and recalling (3.6),

cov(p.,p. |z) = Z Z (zn/m)[zn/(m+l)]cov(r.n,r. n|z)i h ~ „_.. rt.h D Q p[z iD hQ ~

(3A.9)
Z (zD/m) E (r1DrhD|z)+E(p.|z)E(ph|z)]/(m+l).
" ,h p|z
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APPENDIX 3B

APPROXIMATIONS OF RATIOS AND THEIR MOMENTS

3B.1 Introduction

For ieD, consider the ratio r1-n
:sPi/Pn for Pn= s P-- Define

e.=[p.-E(p.|z)]|z and let en be the vector of e. for jeD. Let
J J J *** *" "**J J

E(p|z) = (Efpjz), ... ,E(pk|z)). Define 0 to be D minus the integer i.

Let dn(w., II w.,) be a vector function of dimension equal to the number
j€0 ̂

of integers in D and be defined by

dD(wi, n w.,) = w^ E w. (3B.1)

[Thus, for D={1,2,3} and i=l, 0={2,3} and dn(w, , H w.,) = dn(w, ,w,,w,)u 1 J u 1 *
= W1/(w1+w2+w3)]. Then, for £eD,

w./( z w.)2 for A=i
3dn(w., Hw.,)/9Wj, = (3B.2)u ' J y

E w.T for ̂ 1

To characterize errors in the ratio approximations, we define the

Landau symbols 0 and o and their stochastic parallels 0 and o . [See

Bishop, Fienberg, and Holland (1975,chpt.l4) , Cox and Hinkley (1974,

chpt.9), Cramer (1951,chpt.l2) , and Schmetterer (1974, p!7).] Let ||y||
k+1 2 j,

denote the length ( E y . ) 2 of the k-dimensional vector y.
1*1 n

Definition 3B.1: For {a } a sequence of real numbers or vectors and

{b } a sequence of positive real numbers
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a. a =0(b ) if there exists a number K and an integer n(K) such that

if n exceeds n(K) then ||an|| < Kbp;

b. a =o(b ) if for every e>0, there exists an integer n(e) such that

if n exceeds n(e) then ||a || < eb .

Definition 3B.2: For a(x) and b(x) continuous functions of the real

number or vector x.

a. a(x)=0(b(x)) as x— »-y if, for any sequence {x } such that x — *y

a(xn)=0(b(xn));

b. a(x)=o(b(x)) as x-*-y if, for any sequence {xn> such that x̂ *-y,

a(xn)-o(b(xn)).

Definition 3B.3; For random variable, or vector of random variables,

V and sequence {an> of positive real numbers

a. v
n
=0n(an) if for every 1>0 there exists a constant K(n) and an

integer n(n) such that if n*n(n), then P{||Vn||/an*K(n)}-l-n;

b. Vn=o (a ) if for every e>0, lim P{||Vn||/an*e> = 1.
-°°

Lemma 3B.1: For 0, o, 0 , and o as just defined:

a. For the nonzero constant c, 0(cxn)=0(xn) and o(cxn)=o(xn).

b. 0(o(xn))=o(xn); o(0(xn))=o(xn)j 0(0(xn))=0(xn); and o(o(xn))=o(xn);

c. o(xn)+0(yn).0(||xn|| + ||yn||); o(xn)0(yn)=o(xn.yn); and 0(xn)0(yn)=0(xn.yn);

d. xn=0(an"
j) implies that xn=o(an"

;i+^) but xn=o(an"
j+is) does not imply

i 3/4that xn=0(an
 J). [For example, let xn=c/n ' for c a constant.];

and

e. a. through d. hold if 0 is replaced by 0 and/or o by o with the

exception that if a subscript p appears anywhere on the left-hand
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side of an equality in a. through d., then a subscript p must

also appear on the right-hand side.

To justify results from calculating the expected value of the error

terms, we have that

Lemma 3B.2: for j an even integer,

|E{Jn (p. -ph )|z}| * |E{ n (p, -p. )|z}| = o(n-
J/<)

9=1 hg hg ~ 9=1 hg hg ~

where again p. =E(p, |z).
9 9 ~

A proof of Lemma 3B.2 is given in Chapter 4. Thus, Lemma 3B.2 gives the

magnitude of elements of the posterior covariance matrix and proves that

posterior central cross-product moments significantly decrease as their

order increases. Therefore, Taylor-series approximations in this

appendix are valid.

From definition 3B.2, we can write the first-order Taylor-series

expansion of dn(p. |z, n p.-|z,) = r.Jz about the valueu i ~ J ~ 1U ~

dD(E(p.|z), n E(p.|z),) = E(p.|z)/E(PJz) = E(p.|z)/ I E(pJz)~ - u ~ ~ J ~

as

riD|z = E(p.|z)/ l E(PJ|Z) + eD [3dD/3E(p|z)] + o(||eD||) (3B.3)

as p|z—*-E(p|z), for [3dD/8E(p|z)] denoting the transposed vector of

8dn(w., n w..)/3w-,, for SL^D, evaluated at w=E(p|z). That is, for £«D,u i J I . . .
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z E(Pj |z)/[ Z E(Pj|z)]2 for A=i

3dD/3E(p£|z) =/J 6 D ~ J€D ~ (3B.4)

- E(p i |z)/[ Z E(p. |z) 2 ] for Jtfi.
J ~

By Tchebychev's inequality and the definition of 0 ,

p.|z - E(p.|z) = 0 f[var(p.|z)]1/2) . (3B.5)
I ~ I ~ r \ I ~ /

From Lemma 3B.2 we have that var(p. |z) = 0(n ). Therefore, by Lemma

3B.1, the error term in the first-order Taylor-series approximation

(3B.3) of r.D|z is

o(||eD | |) = o ( [ Ze . 2 ] 1 / 2 )
jeD J

= o[0p(n"1/2)] (3B.6)

Because we know the magnitude of eD, we can also write (3B.6) as

o(||ep||) = OpCn'
1). (3B.7)

Recalling from Lemma 3B.2 that the expected value of the error term

with respect to the posterior distribution of p given z is small rela-

tive to the first-order terms, we approximate moments of each ratio

r.Jz by calculating expected values of the left- and right-hand sides

of each r.Jz Taylor-series approximation.
1 U •**

Recall that Z = (a-.) is the posterior covariance matrix of p~ i j ~
given z. Let ZD denote that portion of Z that pertains to jeD. That
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3B.2 Posterior Mean;

Then, since E(eD)=0 and E[eD e^l = ID, we have from (3B.3)

(3B.6), and (3B.7) that

, „ -xri l-, en [3dn/3E(p|z)]
jeD J ~

and

,-1/2E(r.Jz) = E(p. |z) / z E(p. |z) + o(n"l/£)iu - i - J6D j -

= E(p.|z)/ S E(p.|z) +

J6D (3B.9)

Note that we can write 0(n~ ) in the last line of (3B.9) because
-1/2 -1o(n ' ) in the first line comes from an n term. [Recall (3B.5) -

(3B.7).]
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3B . 3 Posterior Variance;

Similarly,

r i D z = .|z}/ Z E(Pj|z)]
2 + [3dD/3E(p|z)]eD'eD[3dD/3E(p|z)]'

(3B.10)

2{ [E(p. |z) / I E(p. |z) + o (rf1")] eQ [3dD /3E(p|z)]
~ jeD J ~ H ""

+ [E(pJz)/ Z E(p |z ) ] oD(n"1/2)} + o (n"1),
l ~ j - n ~ ~ P M

so that

E(r1D
2|z) = [E(P.|z)/ Z E(Pj|z)]2 + [3dD/3E(p|z)]ZD[3dD/3E(P|z)] '

+2 [E (p . | z ) / I E ( p | z ) ] o ( n - ) + o(n
~ jeD ~ ~

or

E(r. 2|z) = [E(Pi|z)/ Z E(p.|z)]2 + I [3dD/3E(p.|z) }2o.
ID ~ i ~ J ~ u J ~ J

+ 2 Z Z [3dn /3E(p.|z) j [3dn/3E(pJz)]d. f (3B.12)
feD A€D U J - U * ~ . J*

For use in Chapter 4, substitution from (3B.4) into (3B.12) yields

that

E(r. 2|z) = (2[E(pJz) Z a.. + E(PI |Z) Z Z a. ] - [E(p. |z) ]2 I g
10 ~ v ~ ^ ~ JA 1 JJ

(3B.13)

[E(pp |z)]2a i .}/ [E(pD |z)]4 + [E(P i |z)/E(pD |z)]2 + 0(n'1).
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From (3B.9) we have that

[E(r.Jz)]2 = [E(p. |z) / Z E(p. |z) ]2 + 2 [E(pJz)/ I E(p, |z) ] o(n'1/2)
ien «* "" i^n J ~J6D J€D (3B.14)

or

[E(r.Jz)]2 = [E(p.|z)/ E E(p.|z)]2 + Qtn"1). (3B.15)
.u ~ ~ J>eD j ~

Therefore, from equations (3B.11) and (3B.14) we have that

var(r.D|z) = [9dD /3E(p|z)] ED [3dD /3E(p|z)] ' + o(n'1)

= [3dD /3E(p|z)] L [3dD /3E(p|z)] ' + 0(n"3/2)
U » „ ~U U ~ ~ (3B.16)

= Z [8dn/3E(p.|z)]2a.. + 2 Z Z [adn/8E(p,|z) ]
U J ~ OJ U J ~

x [3dD/3E(pjl|z)]a.).Jl + 0(n"3/2).

Substituting from (3B.4) into (3B.16) yields that

var(r.Jz) = {2E(p.|z) [-E(pJz) z a.. + E(pJz) Z Z a. ]
1U ~ n ~ p ~ J1 1 ~ J&

I 7^ 1 ^R 17^i i ~ / j *- - * j ^ ^ f L — x r n l ' J \ JD « x / y
1 ~ j€0 JJ D ~

+0(n- 3 / 2 ) .
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3B . 4 Posterior Covariance:

Similarly, for all cases except those for which i=h at the same

time that D=Q,

riDrho'z = [E(Pilz)/ E E<Pi l z ) ] [E(ph|z)/ Z E(p |z)iu nq ~ 1 ~ jeD J ~ n ~ * ~

eD { [E(p. |z ) / l E(p |z) ] [3dD /3E(p|z) ] ' }
~ * ~

+ eQ { [E(p. |z) / Z E(P j |z) ] [3dQ /3E(p|z)] }

(3B.18)

+ [3dD/3E(p|z)] eD' eQ [3dQ /3E(p|z)] '

+ o (n"1/2) (E(p.|z)/ Z E(p. |z) + E(p. |z) / Z E(p |z)
p ~ jeD J £€Q

+ eD [3dD /3E(p|z)] ' + eQ [3dQ /3E(p|z)] ' } + o^n"1),

Therefore,

E(r.DrhQ|z) = [E(Pi|z)/ Z E(p.j |z)] [E(ph |z)/ Z E(pjz)]

+ [3dD /3E(p|z)] Zm [3d0 /3E(p|z)] '
u ~ ~ ~ug g ~ ~ (3B.19)

,|z)/ Z E(p.|z) + E(pjz)/ Z E(p |z)>
" -J^n J ~ ii ~ oen ~ ~

for Znn being the matrix whose elements are 5.0 for all jeD and all~ug jx,

That is, o.p€ZDQ if and only if jeD and JleQ. If kD is the number

of integers in D and kg is the number of integers in Q, then the

dimension of ZDO is
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Recall that 0 denotes D minus the integer i and let 0 denote Q

minus the integer h. Then, substitution from (3B.4) into (3B.19) yields

that

(3B.20)

+E(p.|z) Z [E(ph|z) Z 5J.rE(pJ5|z)5.jh]}/[E(pD|z)E(pQ|z)]
2

+E(Pi|z)E(ph|z)/[E(pD|z)E(pQ|z)] + CKn"
1).

From (3B.9) and (3B.19) we have that

E<riDl5)E(rhql5) = E(riDrhql5) ' WuW(v\*H 5DQ [3V3E(p|z)]'

+ oCn"1). (3B.21)

Therefore, from (3B.19) and (3B.21),

cov(r.D,rhQ|z) = [3dD/3E(p|z)] ZDQ [3dQ/3E(p|z)]' + o(n"
1)

v? (38.22)
= [3dD/3E(p|z)] ZDQ [3dQ/3E(p|z)] + 0(n'

J/ )̂

[3dD/3E(p.|z)] [9dQ/3E(p |z)] a.£ + 0(n"
3/2).

u J - * * ~ JJ6

Substituting from (3B.4) yields that

+ E(p.|z) I [E(pjz) Z a., - E(P0|z)a..]} (3B.23)
1 ~ jfep &e(5 J^ » ~ Jn

/[E(pD|z)E(pQ|z)]
2 +0(n'3/2).
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APPENDIX 3C

INTERMEDIATE CALCULATION FOR VARIANCE

From (3.14)

var(p.jz) = E [zD
2var(r.D|z)+ s ZDZQ cov(r iD,r iQ|z)]/[m(m+l)]

~ ~ ~

+{ I (zD/m) E [r.D(l-r1D|z)]+E(p.|z)[l-E(p i|z)]}/(m+l)
p I z

Substituting from (3B.17), (3B.13), and (3B.23), we have, for 0

denoting D minus the integer i and 0 denoting Q minus the integer i,

that

var(pJz) = Z (zD /m)[zD /(m+l)]/[E(pD |z)]4{2E(p.|z)[E(Pi |z) Z Z a.£
1 ~ U D D ~ ^ " ^ ~ J

- E(pJz) I a.iME(p0|z)]
2a..+[E(P.|z)]

2 I a..}
10 ~ j€0 Ji JO - 11 i ~ j6p JJ

(3C.2)

I I (zn/m)[zn/(m+l)]/[E(pn|z)E(pn|z)]
2

w v ~

+

lD3i

x{E(pJz)[E(p0 |z)a.. - E(p.|z) Z a. ]
V ~ K ~ n i ~ ££Q i*

+E(p.|z) Z [E(p.|z) Za. - E(P0 |z)a..]}
~ i£D "" {.&0 ""

i(zD/m)(E(p.|z)E(P0|z)/[E(PD|z)]2

-{2E(pJz)E(pB|z) Z a.. + 2[E(p, |z) ]2 Z Z a
1 ~ " ~ i^PI 'J ~ -icDI 0*K

+[E(pB|z)]2S1i - [E(p.|z)J2 Z a..}/[E(pD |z)]4)
V - n i - jfe0 JJ u ~ /



-73-

°11

for 6.., denoting the error in (3C.2) made by aPProximating posterior

moments of the ratios r.D in (3C.1).

Therefore,

+E(p.|z) I [E(p.|z)5 -2E(PJz)5..+2E(Pl|z) Z 5. ]}
~ JJ P ~ J J

Z z (zD/m)[zQ/(m+l)]/[E(pD|z)E(pQ|z)]
2{E(pp|z)[E(pJ5|z)ai1

(3C.3)

Z (zD/m)E(Pi|z)E(P0|z)/[E(pD|z)]
2

6...



CHAPTER 4

ASYMPTOTICS FOR TAYLOR-SERIES APPROXIMATIONS

4.1 Introduction:

In Chapter 3, we used low-order Taylor-series expansions for un-

known terms in deriving Taylor-series approximations for the posterior

mean and covariance matrices. For these Taylor-series expansions to

allow accurate approximations, higher-order central cross-product

posterior moments of p must be substantially smaller than lower-order

central cross-product moments. In this chapter we prove this condi-

tion. We then assess the accuracy of the Taylor-series approximations.

Because results are in terms of orders of magnitude or otherwise involve

limiting distributions, we call this chapter the asymptotics for Taylor-

series approximations. For the asymptotics we use the sampling-theory

approach. We fix the probability p and then study the limiting distri-
•s*

bution of the data as the sample size n goes to infinity.

In the next section we determine the magnitude of the central

cross-product moments and show that this magnitude substantially de-

creases as the order of the moment increases. The first part of the

section gives results for complete data; the last part, results for

incomplete data. In the third section we assess the accuracy of the

Taylor-series approximations for the posterior mean and covariance

matrices. We begin by giving the accuracy for the ratio approximations

of Appendix 3B. A summary concludes the chapter.

Five appendices give derivations used in the chapter. The first

appendix calculates the posterior central moments given complete
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multinomial data. The second appendix derives the limiting posterior

distribution given complete data. The third appendix calculates cen-

tral moments of the k-dimensional multivariate normal distribution,

giving results more general than found in the literature. The fourth

appendix derives the limiting posterior distribution given incomplete

multinomial data. Finally, the fifth appendix gives the error in

evaluating a function by an iterative solution of an approximation to

the function. Note that techniques developed in the appendices are

applicable to distributions other than the Dirichlet or multinomial.
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4.2 Central Cross-Product Moments:

4.2.1 Compjete_Da ta:

In this section we obtain the order of magnitude of central cross-

product moments given complete multinomial data x. We begin by obtaining

the order of magnitude of the 1 posterior central moment (2.6). To do

so, in Appendix 4A we write (2.6) in a Taylor series in (n+Zv.)" about 0

for enough values of 1 to detect a pattern for the low-order term in n" .

We then extend moment results from Kendall and Stuart (1969,vl,pl48) for

Pearson distributions to prove by induction that for

1!! = l(l-2)(l-4)(l-6)---l for 1 odd*,

and ^E(PiL*>« (4.1)and k+1
a = var(p.|x) = y (l-y.)/(n+ I v ),
11 ~ n n j=l J

we have that

(l-l)!!o..1/2 for 1 even

E[(p.-y.)1|x] = < (4.2)i I ~ i
(1-1)1! !o-..(U1)/2(l-2y.)/[3y.(l-y.)] for 1 odd,

where the approximation in (4.2) means that we have given the lowest-order

term in n . [Recall from (2.6) that E[(p.-y.) |x] is a function of n.]
1 1 —

Hence, noting the n in the denominator of o.. in (4.1), we have that

for 1 even

lim n1/2 E[(p.-y.)1x] = (1-1)! ![ (1-y

> (4.3)
and for 1 odd

l i m . .

Standard mathematical notation; for example, see Gradshtevy and Ryzhik
(1967,pxliii); 1!! is not defined for 1 even.
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Therefore,

E[(p rv1)1 |x] =
I I —

for 1 even

f(jr

(4.4)

In Appendix 4A we also found that

E[(pryi)
1(pj-Pj)

h|x] =

0(n"(1+h)/2) for 1+h even

0(n-(Hh+l)/2

for 2*1,h^8.

However, the methods of Appendix 4A were unfeasible for evaluating

the general 1 posterior central cross-product moment E[ n (p. -y. )|x]
g=i g hg -

for 1-h -k and h ^h. for at least one g. Therefore, to obtain general

results similar to those given in (4.4), we use the Helly-Bray Theorem

[Rao (1968,p97)]:

Theorem 4.1 (Helly-Bray Theorem): If the distribution function F con-

verges to the distribution function F, then

/ g / g dF

for every bounded continuous function g.

1
Since n (p -u ' ) is bounded and is continuous in p, by Theorem 4.1

g=l hg hg
limits of posterior central cross-product moments equal corresponding
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moments of the limiting distribution. The latter moments are usually

referred to as the asymptotic moments. [See Bishop, Fienberg, and

Holland (1975,p485).] Hence, we calculate the limiting distribution of

the posterior distribution of p given complete data x and then calculate

the central cross-product moments of this limiting distribution.

By using Stirling's approximation [Cramer (1951,p!30)] for the log-

arithm of the gamma function, theorems from Graybill (1969,p8,170,184)

to calculate the determinant and inverse of the covariance matrix, series

approximations [CRC Tables (1962,p373)] for log(l+e) for |e|<l, and

Tchebychev's inequality [Bishop, Fienberg, and Holland (1975,p476)] to

determine the magnitude of error in approximations, we prove in Appendix

4B that the k-dimensional Dirichlet density with mean y and covariance

matrix I differs from a k-dimensional multivariate normal density with
-1/2mean y and covariance matrix Z by order of magnitude 0_(n~ ' ). [Recallp

definition 3B.3 of 0 .] Rao (1968,p!04) gives the following convergence

theorem involving densities:

Theorem 4.2: If the density f(x) converges to the density f(x) as

then the distribution function F (x) converges to the distribution func-n -v

tion F(x) as

Therefore, from Theorem 4.2 the limiting posterior distribution of p

given complete data x is Nk(u,£).

To obtain central cross-product moments of this limiting distribution,

in Appendix 4C we multiply the multivariate-normal moment-generating func-

tion [Wilks (1963,pl68)l by exp(-tu'), continuously differentiate the
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results with respect to t, and then set t to 0 in the differentiated

results. Doing so yields that the central cross-product moment for the

multivariate normal distribution is zero for 1 odd and, for 1 even, is

a sum of 1-1 terms, each of which is a product of 1/2 elements of the
-1/2covariance matrix and thus, from (2.3) and (2.4), is of magnitude 0(n ),

Therefore, application of these results with the Helly-Bray Theorem

yields for the 1 posterior central cross-product moment that

for 1 even, E[ n (p. -y. )|x] = 0(n"1/2) (4.5)
9=1 % 9 -

for l^h -k. For 1 odd, however, these results yield only that

1
for 1 odd, lim E[ n (p -y )|x] = 0. (4.6)

n-*» g=l g g ~

Therefore, to calculate the order of magnitude for odd posterior central

cross-product moments, we have the following lemma:

Lemma 4.1: for 1 a positive integer,

1 1-1
|E[ n (p -y )|x]| * |E[ n (p. -y ).|x]|. ' (4.7)

g=i hg hg ~ 9=1 hg hg ~
Proof:

First note that, since h can equal h. for any l-a,b^l one of the 1
o. D

values of g, the density function f, for the 1 central cross-product

moment will be of dimension 1-ô k.

In going from the (1-1)S to the 1 central cross-product moment,

the density function will remain the same if the additional variable ph

for p. -y. is a variable of f, ,. In such case, the proof follows fromrh, h-, i-i
the fact that, for all g,
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-wh *i. (4.8)
g g

Hence, the integrand for the 1 posterior central cross-product moment

is a fraction of that for the (1-1)S central cross-product moment and

(4.7) therefore follows.

If the additional variable p. in going from the (l-l)s to the 1
nl

central cross-product moment is not a variable of f, ,, then for P the

a-dimensional simplex of the vector of those distinct probabilities p.
1 - a

in II p. and P - the (a-l)-dimensional subspace of P obtained by
g=l

 n
g a-1 <*

deleting variable p. , we have that
- hl

1 1
H (ph -y. )|x]| = l/p n (ph -y )f dp|
=l a g=lg=i g g

1-1

1-1 1-1
fi l/p n (p -y. )f dp| = |E[ n (p -y )|x]

Vl q=l % hq 1'1 " q=l hq hq ~

since (4.8) yields that /(ph -yh )
f|dPh is bounded by ±/^1

dPh
 =±f|_i'

From bound (4.7), magnitude (4.5), low-order terms for cross-product

moments |E[(p.-y.) (p.-y.) |x]| for 2-a,b-8 from Appendix 4A, and results
I * J J * * *

(4.4) for E[(p.-y.) |x] for 1 odd, we would expect that, in general,
T I *"

E[ n (p. -y. )|x] = 0(n"(1+1)/2) for 1 odd.
g-i g g •"

Note that for incomplete data, we can duplicate all complete-data

results but one. We can not parallel proof from Appendix 4A that for odd

1 of 3, 5, and 7 the cross-product moment is 0(n ). Although we

expect this result based on all complete-data results and on incomplete-
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density as a product of complete-data Dirichlet densities, each having,

from Appendix 4B, a limiting multivariate normal distribution. Because

these densities are of differing dimensions and on differing combinations

of variables, we do not immediately have that the resultant product of

these multivariate normal densities is a k-dimensional multivariate normal

density on the k components of p. However, by equating coefficients and

solving for unknowns, we then prove that, owing to the special relation-

ship between the first and each remaining product, the sum of exponents

from each Dirichlet in the product does form the exponent of such a density.

Following derivations in Appendix 4D, we have as final results for elements

u. » S , and S , respectively, of the asymptotic mean and inverse covar-

iance matrices

ui = (zi+ E.zDui/uD)/n

= n(Vuk+1)/(ulVl) - ̂ (ZD/U

D̂ k+1 (4.11)

|4 (
ZD/UD)(VUT)/(U1UD) • Dl- (ŷ VVl̂ Vk+l)'

D3k+l

and

S1j = n/uLxl+ I <2n/uD)/Vn!L,
 (zD/uD)/uD-^k+1

(zD/uD)/uk+l' <4-12>

for D a set % containing more than one element, "D3i,j" meaning the set

D containing both i and j, and all conditions given under a summation sign

to be met simultaneously [for example, the first summation sign in (4.12)

means the sum over all sets D such that D^k+1 at the same time that Dai.j].



-83-

Note that expressions (4.11) and (4.12) for elements of the asymptotic

inverse covariance matrix are simple [especially relative to expressions

(4D.12) and (4D.13) given by the traditional derivation]. Furthermore,

they parallel complete-data results given by the first term in each of

expressions (4.11) and (4.12). [Note that once" we have expressions (4.11)

and (4.12) and thus know what to work toward, we show in lengthy reexpressions

in Appendix 4D that results given by the traditional approach can be

simplified to (4.11) and (4.12). Thus, the second approach might be use-

ful in other kinds of problems to clarify and simplify any unwieldy results

given by the traditional approach.]

From (4.11) and (4.12) we have that elements of the asymptotic covar-

iance matrix are 0(n" ). Thus, paralleling (4.5) we have that

for 1 even, E[ n (p. -p. )|z] = 0(n"1/2). (4.13)
9=1 hg hg ~

Further, Lemma 4.1 holds for the case of incomplete data z as well as for

that of complete data x. Therefore, again paralleling the case for complete

data, since Lemma 4.1 gives that the odd 1 posterior central cross-product

moment is bounded in magnitude by the even (l-l)s moment, from (4.13) the

odd 1 moment is of magnitude.no greater than 0(n~ ). Therefore, con-

ditions for using Taylor-series expansions in Chapter 3 are satisfied.

Note, from comparing (3.9) with (4.10), that asymptotically-the Taylor-

series approximate posterior mean equals the exact posterior mean.
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4.3 Accuracy of the Taylor-Series Approximations:

4.3.1 _In tr od ucti on:_

To determine the accuracy of the Taylor-series approximations of

Chapter 3, we note that the only terms we approximated in the deriva-

tions were moments of the ratios. Therefore, we calculate the error

made in these approximations and then calculate the overall error made

by substituting these approximations into equations (3.6), (3.14), and

(3.15) for the posterior mean, variance, and covariance, respectively.

We also apply results from Isaacson and Keller (1966) to determine the

error made by iteratively solving the resulting equations and then

using the solution to approximate the exact posterior central moments.

4.3.2 Acc_uracy_of_ the_ Jay_lorJJerijes. Ap£rp_xjma_ti_oii for Poster i_or_

The approximation for the exact posterior mean

p = (z.+v.+ I znp./pn)/m + e. ' (4.14)
Dai

obtained by dropping the error term e- is

p- = (Z.+V.+ I zDp,/pD)/m. (4.15)
Dai

Rewriting (4.15) as a nonlinear system of equations yields the Taylor-

series approximate posterior mean

P1 = (Ẑ .+̂ ZÛ /PQ)/!!! (4.16)

given in (3.9).
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We now give the asymptotic error in using (4.16) to approximate

(4.14). We do so by first determining the error in approximating

(4.14) by (4.15) and then determining the error in solving (4.15) by

the EM iterative algorithm of Dempster, Laird, and Rubin (1977). We

look for conditions under which an iterative solution to (4.15) agrees

with (4.14) within some error bound. In the formulation of the itera-

tive process, we rewrite (4.15) as (4.16).

To determine the error in approximating (4.14) by (4.15), we must

determine the accuracy of the approximation of each ratio r-D and its

first two moments. These accuracies are given in Appendix 3B in terms

of the 0 and o notations. Then, from (3.6) and (3.7), the exact

posterior mean p. can be written as

Pi =

Z Zpt^/p^n")]}^ (4.17)

znp./pn]/mu i u

Hence, the error e. in approximating (4.14) by (4.15) is 0(n~ ).

We next investigate how this error is affected by solving (4.15)

by the EM iterative algorithm. To do so, we find two conditions in

Appendix 4E whose satisfaction guarantees that

|F>.(s)-py| 66/U-A) + As[p0-6/(l-X)]. (4.18)

In (4.18), 6 is a bound on the error made by approximating (4.14) by

(4.15) and, hence, from (4.17) is of magnitude 0(n ). The term X is a
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positive proportion less than 1; X differs from a constant by 0(n ).

Therefore, 6/(l-X)=0(n~ ). The term pQ is a constant. Since s can be

made as large as desired, the right-hand term can be considered to be 0;

in particular, it can be made at least as small as 0(n ). Thus, from

(4.18), when the two conditions given in Appendix 4E are satisfied, the

error in approximating (4.14) by (4.16) is 0(n~ ); i.e.,

P = P + 0(n'1). (4.19)

The two conditions in Appendix 4E concern the region in which the

initial iterative estimate is chosen and a bound on the partial deriva-
•

tives of the right-hand side of (4.16) with respect to p.. If there
J

•

exists a neighborhood Hp-pU^p, for p>0, of p such that for all

probabilities in this neighborhood

k . .
max Z |ag,(p)/3p.| - X < 1,
l^k j=l ! ~ J

for

k+1
g,-(p)=(z,+v,+ Z znp./pn)/(n+ Z vj,i ~ i i u i u h=1 n

and if an initial iterative estimate p. 'is chosen within the inner
• '

neighborhood ||p-p|| <pn-p-6/(l-X) , where 6 is a bound on the error in
' * * * * * * * (J

approximating the exact posterior mean by a first-order Taylor-series

expansion, then the iterative solution to the defining equation of the

Taylor-series approximate posterior mean p will converge to within 6/(l-X)

=0(n ) of the exact posterior mean.

If a neighborhood of the exact posterior mean can be found in which

the second condition is satisfied, then, for large enough sample sizes,
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the first condition can be satisfied by choosing an initial iterative

estimate in a neighborhood within the first neighborhood. For moderate

percentages of incomplete data, the inner neighborhood is almost as

large as the outer neighborhood. In Appendix 4E, we show how to deter-

mine, in practice, whether the second condition can be expected to

hold; hence, we show how to approximate the size of the outer neighbor-

hood. Further, for incomplete trinomial data, Appendix 4E shows that

a root of the defining equations of the Taylor-series approximate

posterior mean that differs from the exact posterior mean by magnitude

0(n" ) exists in P2-

However, this root need not be unique in P?. Moreover, as Ortega

and Rheinbolt (1970,p2) illustrate with a simple case, a nonlinear

system of k equations in k unknowns may have no solution or may have

arbitrarily many solutions. Therefore, we now consider when the

Taylor-series approximate posterior mean for incomplete data from the

general k-dimensional multinomial distribution not only has a solution

but also has a solution that is in P. and that differs from the exact

posterior mean by magnitude 0(n~ ).

Because the Taylor-series approximate posterior mean can be written

as a posterior mode, it will always have at least one solution in Pi^ when

certain conditions, soon to be discussed, are met. However, none of

these solutions may be in the epm convergence region, which we define as

the region in which an initial iterative estimate can be picked so that

successive iterates are guaranteed to converge to within a small error

of the exact posterior mean. In particular, for k>2, there may not exist

an epm convergence region. That is, there may not exist a neighborhood
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of p such that for all probabilities p in the neighborhood

k 9
max l |3g.(p)/9p.| = max Z z /m{l/p +[g(D)-2]p./pn } < 1. (4.20)
i j=l 1 ~ J i Dai u D ^ u

As the number k of dimensions, the percentage 100*IIz /n of incomplete
D u

data, or the number B(D) of variables sharing incomplete data increases,

inequality (4.20) shows that this possibility increases.

The most likely values of p not to have an epm convergence region

are those in higher dimensions that have one or more components near

zero and/or a component near 1 when the percentage of incomplete data is

high. For example, consider incomplete multinomial data z,, i^, •••,

z,n, z.,, and z, .,~ where the percentage of incomplete data is

100x(z1>0>10/n)=50. Suppose that P10=-89 and p..= .01 otherwise. Further,

suppose that the sample size n is large enough, or the sum Zv. of prior
\J

parameters is small enough, that zi...iQ/n - 2i...ir/m ~ •$• Then, for

probabilities p. near p. and D={1,*",10), one term in (4.20) is

= 0.5{l/.99+8x.89/(.99)2} = 4.14 > 1.

However, for probabilities having such small values for some components,

results of Chapters 6 and 7 indicate that the posterior mean is a

relatively poor estimator to minimize risk for quadratic loss; the

posterior mode is much better. Hence, for this particular case, we

do not have to be concerned with not being able to find an epm conver-

gence region. This example illustrates, however, that the Taylor-

series approximate posterior mean needs more study in higher dimensions,
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since the largest factor, 8, in the last inequality is a function of

the dimension of the Pk simplex.

When there does exist an epm convergence region, there can be a

problem finding it because there may be multiple roots in P. of the

Taylor-series approximation. In particular, there may be multiple roots

in P. for which inequality (4.20) is satisfied. The problem then is

choosing among these roots. Since the Taylor-series approximation can

be written as

. . k+1
P, = [Z.+3.-1+ I znp./pn]/[n+ z Br(k+l)], (4.21)

1 q 1 Dai u n u j = l J

where B.=v.+l, the Taylor-series approximation is a posterior mode; i.e.,

(4.21) is in form (2.43). Thus, the Taylor-series approximate posterior

mean enjoys the convergence properties of the EM algorithm. That is,

define t .(x)=z.+v.+ £ Zn/ ' , <J>..-=ln(p./p. ,,) , and t as the number ofi ~ i i u i i K+i
iterations required to meet convergence conditions. Then, since the

multinomial distribution is a member of the regular exponential family,
• ( s)pv ' converges in P. to at least a local maximum if the eigenvalues of

cov[t(x) |<i> '] , 1-s-t, are bounded above zero. [See Section 2.3.] To

find a global maximum, choose that root that maximizes the likelihood

function

P2 '••Pk+l PD

From the complete-data relationship between the posterior mode and

posterior mean, we intuitively expect the global maximum to be in the

epm convergence region, or at least be the closest root to p. However,
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this hypothesis has not been proved and needs study. As for the two-

dimensional case, however, Appendix 4E proves that if a root is in the

epm convergence region, then the error in using it to approximate the

exact posterior mean is of magnitude 0(n ). Note again that the 0(n )

error mainly comes from using a first-order Taylor-series expansion to

approximate the exact posterior mean.

Observe, as we illustrate with examples in Appendix 4E, that the

two guaranteed-convergence conditions are sufficient, not necessary.

That is, an initial iterative estimate can fall far outside the epm

convergence region and convergence to the exact posterior mean still

occur to within the same small error incurred when an initial iterative

estimate is chosen inside the epm convergence region. Moreover, as also

exampled, the error bound given by Theorem 4E.1 when these two conditions

are satisfied is extremely conservative.

Finally, one should not pick as an initial iterative estimate a
•

probability containing zero components because p. corresponding to those

components will be the same for all iterations. Further, any initial

iterative estimate that has components near zero may cause the conver-

gence process to be extremely slow for those components; see Section

5.8.4 for an example.

4.3.3 Accuracy of Taylor-Series Approximations for Posterior Covariances:

For those categories i and h that have only complete data, there
• •

is no error in writing a., of (3.18) and a., of (3.19) for a... and o.^,

respectively. For those categories h having only complete data and

those categories i having incomplete data, we have from equation (3.15),
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•

Section 4.3.2, and Lemma 3B.1 that the error in writing a., of (3.20)
_2

for aih is 0(n ). For both categories i and h having incomplete data,

we have a choice of approximating the variance and covariance by pro-

cedures that are iterative or noniterative in a...

For the iterative procedure, we first evaluate initial estimates

5̂ °) of (3.21) and 3ih^ of (3.22). Equations (3.14), (3.15),

(3B.9), and Lemma 3B.1 yield that the error in these approximations
* (0) * (0) -2a.. ' and a.. v ' is 0(n ), provided that parallel conditions from

Appendix 4E for a., and a., can be satisfied.

To calculate the error in making (3.16) and (3.17) iterative

algorithms, we note from the form of (3.14) and (3.15) and from approx-

imations (3B.9), (3B.12), (3B.15), (3B.16), (3B.19), (3B.21), and
(s)(3B.22) that the largest error for a.. v ' will come from approximating

var(r.Jz) and cov(r.p,r. Q|z). [That is, the error in approximating

terms multiplied by l/(m+l) in (3.14) and (3.15) is l/(m+l) times the

error for those terms and in total is less than the error made in

approximating var(r.Jz) and cov(r.D,r, Jz). ] At the same time, note

from (3B.16) and (3B.22) that these errors are 0(n"3/2). Thus, if
• •

parallel conditions from Appendix 4E are satisfied for a^. and a.^,

then, recalling Lemma 3B.1, we have that the errors in approximating a.,

and a., by a..^5' and 5.. ̂s , respectively, are 0(n ' ).

The second procedure to approximate the variance and covariance

for those q variables referring to categories that have incomplete data

is a method that is noniterative in a.. . Recall from (3.23) that,

for both i and j referring to categories having incomplete data, a-,.
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coefficients of a-,. , and b.. a term that is not a function of 5-,. for

any 1 or h, in this procedure we write each a. • as
' J

E [ E E a 5] + b + 6 . . . (4.22)
i€D heQ

lh lh ..
In m 1J 1J

In (4.22) 6.. is an infinite series containing terms in E(e. |z)i j i ~
and E(e. e. |z) for 1 ,h-2 and e.=p.-p. . Thus, some of these terms are

in 5,. [for example, second-order terms in the approximation for

E(r.rJz) are terms in a..]. Therefore, we can divide 6.. into a

component 6« containing terms in a,, and a component 6n containing the

remaining terms.

Doing so, we can write (4.22) as a linear system of q(q+l)/2

equations in the q(q+l)/2 unknowns a., and a..:

[A + 5.] a = B [I + 6R] 1 (4.23)
•v -»*M -w *** •** *«D ""

where a is the q(q+l)/2*l vector of a. . for i and j both referring to
~ i J

categories having incomplete data, A is the q(q+l)/2xq(q+l)/2 matrix

of the a-,h, B is the q(q+l)/2xq(q+l)/2 matrix with B. . on the diagonal

and O's elsewhere, I is the q(q+l)/2xq(q+l)/2 identity matrix, 6^ is

the q(q+l)/2xq(q+l)/2 matrix containing those terms in 6.. that are
' J

terms in a, 5p is the q(q+l)/2xq(q+l)/2 matrix containing zeros on the

off-diagonal and the remaining terms of 6.. divided by b.. on the
i J I J

diagonal, and 1 is the q(q+l)/2xl vector containing all 1's.

Now, from. (3B. 16) and (3B.22), the terms var(riD|z) and

cov(riD,rh0|z) in (3.14) and (3.15) contain no terms in a.... and a..

that are not already included in A. The terms E( îD|z) and
 E(ri0»rhol£
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do, however; in particular, the first terms dropped from their Taylor-

series expansions. Since these terms have coefficients that are con-

stant with respect to the sample size n and since E(r.Jz) and

E(riD,rh(Jz) in (3.14) and (3.15) are multiplied by (m+l)"
1=0(n"1),

by Lemma 3B.1 the component of 6.. that goes on the left-hand side of
* J

(4.23) is 0(n )xg... Thus, all terms in 6. are 0(n"1).
IJ «*M

To determine 6p we first note from (3.14) and (3.15) that we can

write (4.23) as

[A + 6.] a = (m+1)"1 F [I + 6R] 1 (4.24)

for F=(m+l)B, because all terms in B come from those terms in (3.14)

and (3.15) that are multiplied by I/(m+1). As discussed for the itera-

tive estimate, the largest error in approximating terms in (3.14) and
-3/2(3.15) comes from the 0(n" ' ) error in approximating var(r.n|z) andl.U -«

cov(r.D,r, Jz). As discussed following (4.23), this error contains no

terms in a., and thus is in that part of 6.. that belongs to 6R. Since
IJ I J "wD

the diagonal terms of 6R are terms from 6.. divided by corresponding~t> i j
4 -I

diagonal terms of B=(m+l) F=0(n ) F, we have that 6R ..

= 0(n"3/2) [0(n) F^"1] = 0(n"1/2) F̂ ."1 = 0(n"1/2). Recall that off-

diagonal elements of 6R are 0.

Therefore, we can write (4.24) as

a = (m+1)"1 F 1. (4.25)
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At this point, recalling from equations (3.16) and (3.17) the
• /4-\v 'form of A and F, we substitute p. v ' for pi in A and F, where p.

* fs}again denotes the converged estimate p^ v ' from (3.11). We denote the
X. *

resulting matrices as A and F, respectively. If the two conditions of
* (t) -1Appendix 4E are satisfied, so that p..v ;=pi+0(n ) for 1-i-k, then,

"* -w * *

from Lemma 3B.1, the error in approximating A and F by A and F,

respectively, is 0(n~ ).

In this case, (4.25) can be rewritten as

a = (m+1)-1

(4.26)

To solve for a, we must invert the coefficient matrix of a in

(4.26), which matrix we assume to be nonsingular.. To determine the
£ 1

error made by approximating the result by A , we use the following

lemma:

Lemma 4.2: If A and A are h-dimensional square matrices such that

A=A+0(q) and A"1 and A"1 exist, then A'W'

jjropjF:

Define A., and A., to be the cofactor of A,, and A.., respectively.
I J I xJ ' J ' v

Then, A. .-A. .=0(q) for all i and j implies that -̂jj'Aij~°(c')- Thus,

from Lemma 3.2, A^X .^ .A. .=0(q) so that det(A)-det(A)= Z $IJ^IJ"AIJAIJ)
j = l

=0(q). Therefore, since a matrix inverse is the transposed matrix of
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cofactors divided by the determinant, we have that, for q-q,

A"1 = [det(A)]"1 (X..)1 = [det(A)+0(q)]"1 (A..+0(q)) '

= det(A) (A,.)1 + 0(q)~ I j

= A'1 + 0(q).

Thus, assuming that A and A exist (i.e., their determinants are

not zero), solving for a in (4.26) and applying Lemmas 3B.1 and 4.2,

we have that

a = (m+1)-1 F l+0(n )
"

= (m+1)-1

• (m+1)•i r*-i *1 A L F

0

(4.27)

Therefore, for both i and j referring to categories having incomplete

data, the errors in approximating the vector of o.. by the procedure
J

that is noniterative in o.. are, like those of the iterative procedure,
• \J

of order 0(n~3/2).
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4.4 Summary :

In the first part of this chapter, we proved that the posterior

central cross-product moments satisfy the conditions for a first-order

Taylor-series expansion to be an accurate approximation of the exact

posterior mean. We also proved that asymptotically the Taylor-series

approximate posterior mean equals the exact posterior mean.

In the second part of the chapter, we studied how fast the

Taylor-series approximate posterior mean approaches the limit, the

exact posterior mean, and then investigated the accuracy of the

Taylor-series approximate posterior variance and covariance. We began

by showing that the Taylor-series expansions for elements of the exact

posterior mean and covariance matrices are accurate to order 0(n" ) and
-3/20(n ' ), respectively. However, because the exact posterior moments in

these expansions are then approximated, the errors in the final approxi-

mations, which we called the Taylor-series approximations, are not
-1 -3/2necessarily of magnitude 0(n ) and 0(n ' ), respectively.

Nearly always, the Taylor-series approximate posterior mean will

be evaluated iteratively. For this type of evaluation, we gave two

sufficient conditions guaranteeing accuracy of the Taylor-series

approximate posterior mean to the exact posterior mean within order of
_ i •

magnitude 0(n ). If there exists a neighborhood Hp-pH^p, for p>0,
•

of p such that for all probabilities p in this neighborhood

k . .
max z l a g p j / a p j * A < 1,

for
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. . k+1

' (Q)and if an initial iterative estimate p^ ' is chosen within the inner
•

neighborhood Hp-pH^pQ-p-S/fl-A) where 6 is a bound on the error in

approximating the exact posterior mean by a first-order Taylor-series

expansion, then the iterative solution to the defining equation of the
•

Taylor-series approximate posterior mean p will converge to within

0(n ) of the exact posterior mean. We also showed how to determine,

in practice, whether these conditions can be expected to hold.

Further, for incomplete trinomial data, we showed that there does

exist a root in P2 of the defining equations for the Taylor-series

approximate posterior mean that differs from the exact posterior mean

by magnitude 0(n" ). We then investigated when the Taylor-series

approximation for incomplete data from the general k-dimensional multi-

nomial distribution has a solution that differs from the exact posterior

mean by magnitude 0(n ). Because the Taylor-series approximate

posterior mean can be written as a posterior mode, it always has at

least one solution in P. if the eigenvalues of the covariance matrix

of the complete-data sufficient statistics are bounded above zero.

However, none of these solutions may be in the convergence region for

the exact posterior mean ("epm convergence region"). In particular,

for k>2, there may not exist an epm convergence region and we gave an

example of such a case. In this example * many components of p were
*\»

very small. Since results of Chapters 6 and 7 indicate that the

posterior mean is a poor estimator to use to minimize risk for quad-

ratic loss when components of p are very small, the posterior mode being
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much better, absence of an epm convergence region was considered un-

important for this particular cause (because the posterior mean would

not be calculated).

When there does exist an epm convergence region, there can be

trouble finding it, because there may be multiple roots in P. of the

defining equations for the Taylor-series approximate posterior mean.

The problem then is choosing among these roots. We showed how to

find one choice, the global maximum. Although it was not proved, from

the complete-data relationship between the posterior mode and posterior

mean, we intuitively expect the global maximum to be in the epm conver-

gence region, or at least be the closest root to p.

We also noted that the two guaranteed-convergence conditions,

conditions given by Lemma 4E.1 on the initial iterative estimate and on

the partial derivatives of the posterior mean, are sufficient but not

necessary. We gave two illustrations in Appendix 4E where these condi-

tions were not met but the iterates correctly converged. Further, as

also illustrated, the error bound given by Lemma 4E.1 is extremely

conservative.

Finally, for those categories having only complete data, there is

no error in using the Taylor-series approximation for the exact

posterior mean.

Recall that elements of the Taylor-series approximate posterior .

covariance matrix can be evaluated by procedures that are noniterative

or iterative in elements of the posterior covariance matrix. The

Taylor-series approximate posterior mean is used in both procedures.

When the error in the Taylor-series approximate posterior mean is 0(n" ),
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then the noniterative procedure yields approximations for elements of
-3/2the posterior covariance matrix that are accurate to order 0(n ' ).

If, in addition to the 0(n ) accuracy in the Taylor-series approximate

posterior mean, parallel conditions given in Appendix 4E are met for

the Taylor-series approximate covariances, then the iterative procedure

also gives approximations for elements of the posterior covariance

-3/2matrix that are accurate to order 0(n ' ). Under these same condi-

tions, when one of categories i and j has no incomplete data, then the
_2

error in the Taylor-series approximate variance and covariance is 0(n ),

For both i and j having only complete data, there is no error in

approximating the exact posterior variance and covariance by the

Taylor-series approximate posterior variance and covariance,

respectively.
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APPENDIX 4A

POSTERIOR CENTRAL MOMENTS GIVEN COMPLETE DATA

4A.1 Introduction:

In this appendix, we determine orders of magnitude for the pos-

terior central moments. To do so, we prove by induction an expression
_. t,

for the lowest-order term in (n+ I v.) of the 1 posterior central
1 h=1

moment E[(p.-y. ) |x]. We first determine, in Section 4A.3, the

expression for the first twenty-one central moments, enough moments to

determine an algebraic pattern. Then, in Section 4A.4, we extend

moment results from Kendall and Stuart ( 1969, vl,p!48- 150) for Pearson

distributions, proving that if the expression is true for any two

successive values of 1, it must also be true for the next higher value

of 1.

We conclude Appendix 4A in Section 4A.5 by generalizing this method

to cross-product moments. Order-of-magnitude results are given for

forty-nine cases. Because of the variety and complexity of possible

results for the lowest-order term in (n+Iv, )~ , we do not further use

this method. Instead, we describe a different approach in Section

4.2.1 of the main text. Although the different approach gives orders

of magnitude for even cross-product moments, it gives only bounds for

odd cross-product moments. Hence, results of Section 4A.5 are especially

important for odd cross-product moments.

In Section 4A.2 we describe a symbolic computer system used to

facilitate algebraic operations in the last three sections.

Remark: The usual procedure to calculate moments is through the
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characteristic (moment-generating) function, cumulants, or factorial

moments. However, in this case, calculation of the posterior central

moments (2.6) was easiest done directly. As might be unsurprising in

such case, none of the three usual procedures aided in obtaining the

limit of these moments. The moment-generating function led directly to

expression (2.6) for the 1th posterior central moments; that is, differ-

entiating exp(-t'y)<|>(t) with respect to t, for 4>(t) the moment-generating

function, and setting results to 0 gives (2.6). Thus, use of the

moment-generating function was not helpful in reexpressing (2.6) to

obtain its limit. Calculation of the logarithm of the moment-generating

function to obtain the cumulants (for purpose of translation back to the

central moments) also did not aid in obtaining the limit of the 1th

central moment (2.6). Consideration of factorial moments, often useful

for discrete distributions, was unfruitful for this continuous

distribution.
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4A.2 Symbolic Computer System:

In this section we describe a computer system used to facilitate

algebraic operations in the remaining three sections. In Section 4A.3

we use this system to expand the first twenty-one central moments,

^(Pi'V-j) I*-' for i-1-21* in a Taylor series in (n+£vh)~ about the

point (n+Zvh) =0. In Section 4A.4 we use the computer system to alge-

braically solve in terms of (n+£v )~ and-u.=E(p.|x) a system of fourn i i i ~
equations in four unknowns to enable, for all 1, the (1+1) central

4. U -, J.

moment to be written in terms of the two preceding, 1 and (1-1) ,

moments. In Section 4A.5, the computer system facilitates evaluation of

cross-product moments E[(p.-u.) (p.-y.) |x] for 2̂ 1,h*8.
' ' J J

The computer system used is MACSYMA* (Project MAC's SYmbolic MAnip-

ulation System), developed by the Mathlab Group, Project MAC at M.I.T.

(Massachusetts Institute of Technology). MACSYMA is a versatile inter-

active computer system for manipulating algebraic or symbolic expressions

as well as for performing high-precision numerical calculations. MACSYMA

is written in LISP (a list procession programing language used for non-

numerical applications) for a Digital Equipment Corporation PDP-10 computer

with a KL10 processor and 500k 36-bit words of memory. The PDP-10 computer

is located at the Laboratory for Computer Science at M.I.T. and is known

as the MC (MACSYMA CONSORTIUM) computer. A large variety of computer

terminals at NASA, Langley Research Center, allow access to MACSYMA.

*
This work is supported by the Defense Advanced Research Projects Agency
work order 2095, under Office of Naval Research Contract #N00014-75-C-0661.
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MACSYMA can algebraically differentiate and integrate analytic

expressions, take limits, solve systems of linear or polynomial equations,

expand functions in Taylor series, manipulate matrices and tensors, factor

complicated polynomials in many variables, plot functions, and calculate

Laplace transforms. The system has "built-in knowledge" of many commonly

used mathematical functions. Operations are done in rational, not floating-

point, arithmetic. Thus, round-off error does not exist. Additional

information can be found in MACSYMA manuals (1975a,1975b,1976) by the

Mathlab Group at M.I.T.
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4A.3 Derivation of General Expression:

In this section we determine an expression for the lowest-order
k+1 ,-1term in (n+ Z v. ) of the first twenty-one posterior central moments.
h=l n ..

We do so by wri t ing the 1 central moment [recall ( 2 . 6 ) ]

E[(pru1) l|x] = z
j=0 1 j

x.+v. I' ° j-l x.+v.+q
I I I T T I I

n+Zvh q=0
(4A.1)

k+1 ' k+1 .
in a Taylor series in (n+ Z v, ) about the point (n+ Z v, ) =0.

h=l
Recall from (2 .2 ) that

h=l

k+1
(4A.2)

and let

1!! = l(l-2)(l-4)(l-6)...l for 1 odd*,

1
r = (n+ Z v.)"1,

h=l h

k+1
s, =[n+ Z v , - ( x . + v . . .i h = 1 n i i 11

(4A.3)

(4A.4J

(4A.5)

and

= Pry (4A.6)

Then

*Standard mathematical notation. For example, see Gradshteyn and Ryzhik
(1967,pxliii). Note that 1!! is not defined for 1 even.
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s.-.l = (l-2y.)Ai.f

s./(s.+l)2 = vijU-^),

and the variance is given by

a.. = rsi/[(l+r)(si+l)] = rp.(l-y.)

since

Rewrite the 1 central moment (4A.1) as

i i ] i i (i\J-1

^ lx) - ^ 'E (-D] Ml) n1 ~ n j=0 \J /q=00 l+q/(n+Zvh)

since

_

l+q/(n+Zvh) l+q/(n+Zvh)

q
= 1 +

n+Ev. xi+vi

Define

f(r) = r/(l+qr)

(4A.7)

(4A.8)

(4A.9)

(4A.10)

(4A.12)

(4A.13)

(4A.14)
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Expanding f(r) in a Taylor series in r about the point r=0 yields that

oo

r/(l+qr) = Z (-l)j~ V~V. (4A.15)
j=l

Substituting (4A.15) into (4A.12) and, by using MACSYMA, expanding

y- E(y,- |x) in a Taylor series in r about the point r=0 yields for low-

order terms for the first twenty-one central moments results given in

Table 4A.1. Note that all results must be multiplied by y. . To get the

lowest-order term in r, we discard all those terms in the inner-most set

of parenthesis, except for cases 1=2 and 1=3. The following pattern is

detected for 1*1*21:

for 1 even
(4A.16)

(l-l)l!!(s i-l)s i(
1-1)/2r(1+1)/2y i

1/3 for 1 odd,

where the approximation "=" in (4A.16) means that only the lowest-order

term in r is given. As a check on these formulas, note that for 1=20

and 1=21, (4A. 16) yields 19! Is.10^.1^.20 and (20x21! !/3)(s i-l)s i
10

1 1 2 1xr. y. , respectively, both of which agree with results in Table 4A.1.

To simplify results we multiply numerator and denominator of

(4A.16) by (l+r)1/2 for 1 even and by (l+r)^1+1^/2 for 1 odd. Then,

substituting into (4A.16) from (4A.2) - (4A.10) and again giving, only

the lowest-order term in r=l/(n+Zv, ) yields that, for 1-1=21,

(l-l)!!a..j1/2 for 1 even
n (4A.17)

(l-l)l!!(l-2yi)ai.
(1+1)/2/[3yi(l-yi)] for 1 odd.
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TABLE 4A.1

LOW-ORDER TERMS* FOR FIRST 21 CENTRAL MOMENTS E[(p.-y.)A|xl
II •+•

low-order term

2

4

6

8

10

12

14

16

18

20

3

5

7

9

11

13

15

17

19

21

J. _ T 1

3

5

35

315

3465

45045

675675

34459425

654729075

- 2

4

42

56

770

60060

210210

4084080

87297210

6110804700

r

r2

r3

r4

r5

r6

r

r8

9r
in
r10

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

i

si

si
si

si

si
si

si

si
si

si

(s

(s

(s

(s

(s

(s

(s

(s

(s

(s

-- -I

2

3

4

5

6

7

8

Qy

i

i~

i"

r
i~

r
i~

(r - 1)

(r( 2

(r( 26

(rCes
(r(140

(r(250

(r(406

(r(616

(r(296

(r(410

l)s,

1) sf

1

1) s.3

1) s.4
c

1) s.
1

1) sf
6

,-1) s/

,-D s,8

,-i) s,9

J- • .

*i2-
'I2'
2

si -

'i2-

s.2-

8 Sj

79 si
184 s.

355 si

608 s.

959 s.

s.2 - 1424 s.

s.2-
Q

si '

( 3 r

(r( 6

(r( 22

(r( 472

(r( 916

(r( 314

(r(2474

(r(3668

(r(5192

(r(2362

i

673 s.

920 s.

- 1)

Si2-

si2 -

*i2-

si2 -

si2 '

si2 -

'i2-

si2'

si2 '

+ 2)

+ 26)

+ 68)

+ 140)

+ 250)

+ 406)

+ 616)

+ 296) •

+ 410) •

50 s.

115 s.

1970 s1

3335 s.

1042 s1

7675 s.

10810 si

14695 si

6470 s.

+ S1>

+ 3Si)

+ 3Si)

+ 3sn.)

+ 3Si)

* 3s.)

+ 3s.)

+ s.)

f s.)

+ 6)

+ 22)

+ 472)

+ 916)

+ 314)

+2474)

+3668)

+5192)

+2362)

+ 5 s.)

+ 5 s.)

+ 45 s.)

+ 45 s.)

+ 9 s.)

+ 45 ŝ .

+ 45 s^

+ 45 s.)

+ 15 s.)

* all results must be multiplied by y.
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4A.4 Validity of General Expression:

In the last section we derived expression (A.17) for the 1 pos-

terior moment for 1-1-21, hence proving the expression true for these

values of 1. In this section, we prove that if the expression is true

for any two successive values of 1, it must also be true for the next

higher value of 1. Having done so, we will have proved that expression

(A.17) holds for all positive integer values of 1.

In (4A.1) we are calculating the 1 posterior central moment of

p.. Since the posterior distribution of p given x is the k-dimensional

Dirichlet D(x,+v,,...,x.+v, ;x.+,+v.+1), then the marginal posterior

distribution of p. for 1-i-k is the one-dimensional Dirichlet
k+1 n k+1

D(x.+v.; I (x.+v.)) or beta Be(x.+v., Z (x.+v.)). [See Wilks (1963,
i i j^ 3 J i i j^ 3 J

p!73-179).] That is, the posterior density of p. given x is

k+1
k+1 k+1 xi+vi-l E (Xj+Vj)-!

f(P |x)=r[ E (x.+v.)]/{r(x.+v.)r[ z (x.+v.)]}P, (I-P,)J?SI
1 ~ j = l J J n j7i J J (4A.18)

Now, the beta distribution is known as one of the Pearson distri-

butions [Kendall and Stuart (1969,vl,pl48)]. A Pearson distribution is

defined as any frequency function f(w) for which

df(w)/dw = (w-a)f(w)/(b0+blW+b2w
2) (4A.19)

for some a, bQ, b., and b,,. Kendall and Stuart derive the general

moment for a Pearson distribution in terms of lower-order moments. We

now generalize their method to the case of central moments. Note that

we treat the most common case, f(0)=f(l)=0. However, results also hold
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when one or both of f(0) and f(l) are not zero. Thus, results also

hold for J-shaped, U-shaped, and flat beta distributions. [See also

Kendall and Stuart (1969,vl,pl51).]

Therefore, cross multiplying (4A.19), adding and subtracting

powers of n=E(w), and multiplying both resulting sides by (w-n) yields

that

(w-n)1 [(b0+nb1+n
2b2)+(b1+2nb2)(w-n)+b2(w-n)

2] df(w)/dw dw

= (w-n)1 [(w-n)+(n-a)] f(w) dw.
(4A.20)

Integrating the left-hand side of (4A.20) by parts over the range of the

distribution, we find, assuming that the integrals exist, that

(w-n)1 {[(b0+nb1+n2b2)+(b1+2nb2)(w-n)+b2(w-n)2] f (w) } - / f(w) {1
—OO —OO

X(b0+nb1+n2b2)(w-n)1"1+(l+l)(b1-2nb2)(w-n)1+(l+2)b2(w-n)1+1} dx (4A.21)

00 00

= / (w-n) f(w) dw + (n-a) / (w-n) f(w) dw.
—00 -OO

For the beta density (4A.18), f(p.|x) is positive for 0-p^-l. Thus,

in equation (4A.21) we replace endpoints -°° and +°° by 0 and 1, respec-

tively, and w, n. and f(w) by p.|x, y., and f(p.|x), respectively. We

then note that, since f(l|x)=f(0|x)=0 and, for any positive integer j,

lim p.J=l and lim Pi
J=0,

i i
lim p.J f(p.|x) = 0. (4A.22)

r i 1 1 ~

Therefore, the first term in equation (4A.21) is 0.
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Hence, recalling from Section 4A.3 the definition y.=p.-y., we

can write (4A.21) as

[(l+l)(br2b2y.)+yra] E(y^\x

(4A..23)
[0+2)b2+l] E( y i|x) = 0.

Thus, if we knew b0, b- , bp, and a we could use (4A.23) to calcu-

late any (1+1) central moment in terms of the 1 and (l-l)s central

moments. To calculate bQ, b,, b^, and a, we successively let 1=0, 1,

2, and 3 in (4A.23), substitute results from Section 4A.3 for E(y..J|x)

for 2̂ 4, and set E(yi"
1|x)=0, E(yi°|x) = l, and E(yi

1|x)=0 to obtain

four equations in four unknowns bQ, b^, bp, and a. Solving these four

equations with MACSYMA yields

and

(4A.24)

a = (rsi+r-l)/[(2r-l)(s.+l)]

Substituting results (4A.24) into equation (4A.23) and collecting

terms in E(yi
1"1|x)» Efy^lx), and E(yi

1+1|x) yields that

|x) = Ir [(Si
2-l) E(yi

1|x) + siE(yi
1-1|x

(4A.25)

Therefore, we can use (4A.25) to show that if expression (4A.17)

holds for the 1th and (1-1) central moments, it must also hold for
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the (l+l)s moment. Because we have different expressions for 1 even

and 1 odd we have two cases. By using (4A.17), (4A.25), and (4A.2) -

(4A.10), we have that, to the lowest-order term in r:

for +

..

(4A.26)

..

for

..

(4A.27)

Therefore, from results of Sections 4A.3 and 4A.4, expression

(4A.17) is true for all positive integer values of 1.

These expressions are actually divided by a finite constant c(l) where
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1 if l<n+Zv.n
c(l) =< 2 if l=n+Zvh

>2 if l>n+Zv. .n

The constants c(l) arise from evaluation of the term 5=(l+rr1+1"2/(l+lr),

Since r=l/(n+Ev^), then r<l. Hence, the numerator of £ can be accurate-

ly approximated by the first two terms of the series expansion

(1+r)(HD/2 ._ *
j=0

When lr<l (i.e., l<n+Zv. ), then the term l/(l+lr) in £ can also be accu-

rately approximated by the first two terms 1-1 r of a series expansion
p o

l-lr+(lr) -(lr) +•••. In this case, £ can be accurately approximated

by l+[(l+l)/2-l]r, the low-order term in r resulting from the multipli-

cation of the two series. Therefore, in this case of lr<l, expressions

(4A.26) and (4A.27) are correct as given. When lr=l (i.e., l=n+Evh),

however, then £=(l+r)(1+1)/2={l+[(l+l)/2]r}/2 and expressions (4A.26)

and (4A.27) must be divided by 2. When lr>l (i.e., l>n+Zvh), then

£>(l+r)(1+1)/2/2 so that expressions (4A.26) and (4A.27) must be divided

by some constant larger than. 2.

However, the interest in Chapter 4 is in very large n; in

particular, the limiting case n-*». For these cases, l<n<n+Zv. and

c(l)=l. Therefore, to avoid carrying around a term that is 1 in the

cases in which we are interested, we do not include it. Further, the

limit taken in (4.3) in the main text is not affected by c(l).
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4A.5 Cross-product Moments

The method of the preceding sections readily extends to cross-
1

product central moments E( n y. |x). We can write these cross-product
9=1 'g '

moments as a nest of expressions where each expression is similar in

form to the 1 central moment (4A.12) with the exception that each term

of the sum is multiplied by results of inner nests.

For example, for l-i,j-k; j^i, 1, h positive integers; and, again

U-j=(x.j+v..)/(n+Zvh) and y.. =[p..-y..] ; we have that

1.. hE(y1'y1"|x) - E.J *"
(-1)

a=0

1"'

Z (-l)
b=0

h hh'b

i E (
a=0 b=0

h-b

(4A.28)

since

-a x,+v,\-b
n+Zv.

a-1 b-1
n (x.+v.+q.) n (x.+v.+q.)

q.=0 q.=0 J J J

"

V°

. r(x.+v.+a)r(x.+v.+b)r(n+Zv.)
Ix) = , 3 A _ ^vj '-' r(x -+v. )F(x .+v . )r(n+Zv.+a+b) '

* * J J "

-1

29).&)

In (4A.28) we again use the convention that n f(q)=l for any function
q=0

f of q. Now, we can write the last two lines of (4A.28) as
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a-l f q. 1 b-1 r q. I
11 1+ xT+vT 5 1+ T^T

a-l r q.j "I a + b - l r % ~ ~\

a-l
n

q.=0

a-l r
n 1+s.q,

n (4A.30)

b-l
n
q.=0

r = (n+Zvh)
-1

where, again,

and

The first term of the last line of (4A.30) was derived in (4A.13) and

the second term has a similar derivation.

Therefore, we can write (4A.28) as

(4A.31)

Using MACSYMA, we can evaluate the (4A.31) factor in braces for

enough values of h to establish a pattern for the low-order term in r

for h even and odd. We can then use the method of Section 4A.4 to show

that this pattern is valid for all values of h. The procedure can then
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be repeated for the remaining factor of (4A.31).

Because we will have cross multiplication between the two factors

of (4A.31), however, we must know not only the lowest-order term in r

but also the next lowest-order term in r. In general, for each addi-

tional variable y in (4A.31) we must know an additional low-order term

in r.

Further, the two lowest-order terms in r for the (4A.31) factor in

braces will be a function of "a" from the first factor, so the final

result for (4A.31) in terms of the low-order term in r will be more

complex than that of (4A.17).

Therefore, the variety of possible results and greater complexity

of intermediate evaluations, especially those of pattern recognition

and algebraic manipulations, make this method generally unfeasible for

cross-product moments. Hence, we adopt another approach, to be dis-

cussed in the main text, to evaluate the magnitude of cross-product

moments.

We conclude this section by noting that evaluation of (4A.31) for

2*1, h^8 yields that

ro,-(l+h)/2v for 1+h even

E{[pry,]1[pry i]
h|x} '{ (4A.32)

J J ~ |o(n-(1+h+1>/2) for Hh odd.
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APPENDIX 4B

LIMITING POSTERIOR DISTRIBUTION GIVEN COMPLETE DATA

Cox and Hinkley (1974,p399) prove in general that when the data has

an exponential-family distribution and the conjugate prior is used, the

limiting posterior distribution is multivariate normal with the vector of

maximum likelihood estimates for the mean. The inverse covariance matrix

of this limiting distribution is the negative matrix of second partial

derivatives of the log likelihood evaluated at the maximum likelihood

estimates. In this appendix we prove this theorem in detail for our complete-

data case where the data has a multinomial distribution and the conjugate

prior, the Dirichlet, is used.

From (2.1) the posterior distribution of p given complete data is

k-dimensional Dirichlet. Therefore, we prove that the limiting Dirichlet

is k-dimensional multivariate normal with mean and covariance matrices those

of the Dirichlet. We proceed by proving that the log Dirichlet converges

to the log multivariate normal as the sample size indefinitely increases.

Important aids will be Stirling's approximation for the logarithm of the

gamma function and theorems from Graybill (1969) on patterned matrices.

From (2.1) the posterior density f(p|xj of the k-dimensional variable

p given complete data x is, in the notation of Wilks (1963,p!78), that for

t h e Dirichlet distribution D(X+V, . . - . x ; x + v ) > 1 - e - »

k+1 k+1 k+1 x +v.-1
f(p|x) = m z (x.+v.)]/n r(x.+v.)} n p. h , (4B.1)

h=l h h h=l h h h=l h

where x. is the number of observations falling in category C. , v, is then n n ^
real, positive parameter for the prior density (1.1) of p, and Pk+i

=l- ^ Ph-
h=l
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k+1
As the sample size n= Z x. increases, x./n approaches a constant and

h=l h 1

v./n approaches zero.

For the Dirichlet D(XI+VI, .. •>
x|<+v|<;

xk+l+vk+l)' recall (2.2) - (2.4)

that the mean vector y of p|x has elements, for l^i^k,

y, = (x.+v.)/(n+ Z v.} (4B'2>
1 i n

 h=l
 h

and that the covariance matrix Z=(o..) of p|x has elements, for l^i^k,ij ~ ~
k+1

a.. = y.(l-y.)/(n+ Z vh+l) (4B.3)
h=l

and, for i<j-k,
k+1

a-. = y.y./(n+ Z v +1). (4B.4)
J 1 J h=l h

Now, (n+Zv +1) Z is of a matrix pattern treated by Graybill (1969),n ~
who gives its determinant and inverse. Applying Theorems 1.5.4 and 8.4.3

of Graybill (1969,p8,184) to (n+Zvh+l) Z yields that

k+1 .
det(E) = n y./(n+Zv +1)* (4B.5)

i = 1 i h

for "det" denoting determinant. Applying Theorem 8.3.3 of Graybill (1969,

p!70) yields that the inverse z" = (a1J) of Z has, for l̂ k, elements

a11 = (n+Zvh+l)(y.+yk+1)/(y.yk+1) (4B.6)

and, for i<j-k,

aij = (n+Zvh+l)/yk+r (4B.7)

By dropping the term 0(q" ) in Stirling's formula [Cramer (1951,p!30)]

log[r(q)] = (q-Js)log(q) - q + %log(27r) + 0(q"1) (4B.8)
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for the logarithm of the gamma function for q positive and real, we can

approximate the logarithm of the Dirichlet density (4B.1) as

k+l
logtf(plx)] = (n+Zv -%)log(n+Zv )+mog(2TT)- Z [(x.+v.-^)log(x.+v.)n n . = 1 i i 11

k+l _1

1=1 n' i 1

(4B.9)
k+l k+l

= - Z (x.+v.)log{(x.+v.)/[(n+Zvh)p.]Hslog{ n (x.+v ). = 1 i i 1 1 h i 1 = 1 i i

k+l _L
/[(n+Zv.)(27r)N]}-log( n p.) +0(n"1).

h 1=1 n

Now, for l^i^k+1, let

z. = (p.-y.)//o.. (4B.10)

where we define yk+1 and ak+1 k+1 by (4B.2) and (4B.3), respectively.

Then, for l^i^k+1,

E(z.) = 0, (4B.11)

var(2i) = 1, (4B.12)

and, for l^i^k, i-j-k,

cov(z.,z.) = o../(a..a..f2. (4B.13)
i J ij n JJ

Thus, from (4B.10),

pi =

(4B.14)

= y. (l+Z.{(l-y.)/[y.(n+Zvh+l)]}
i'2).
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From Tchebychev's inequality [Bishop, Fienberg, and Holland

(1975, p476)] and (4B.3),

Pi -
(4B.15)

Thus, the term

(4B.16)

_ ,
in the second line of (4B.14) is 0 (n~2). Therefore, for large enough

n, (4B.16) is bounded in absolute value by 1, so that [CRC Tables (1962,

P373)],

log [1+e.] = e,-e, /2+o (n"1). (4B.17)
1 1 1 P

Hence, from (4B.2), (4B.14), and (4B.17), we have that, for l̂ î

log y.'/p,- = -log [1+e.]
(4B.18)

Therefore, substituting (4B.18) into (4B.9), we have that,

k+1 ? k+1
log f(p|x) = Z (xi+vi)[ei-ei /2] +% log{ n (x̂ v..)

1=1
 k+1

 1=1 (4B.19)
/[(n+Zvh)(27r)

k]} - log ( n p.) + ô n'1).
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For the first of the four terms in (4B.19) we have, using (4B.3) and

(4B.10), that

k+1 k+1
Z (x-+v.)e.- = (n+Zv.) Z (p,-y,)•i—i i i i i i . _. i i

1-1 1"1 (4B.20)

= 0.

For the second term in (4B.19) we have that

- Z (Xj+v̂ ê /2 = [-h Z zi
2(l-yi)][(n+Zvh)/(n+Zvh+l)]

1=1 1=1 (48.21)
? .

= -^Z^.^l-y.) +0p(n-1)

2
since, from (4B.15) (or meaning of standardized variable), z. =0(1) so

that .OdT1) Zz^d-y) = 0 (n"1).
2 2

In (4B.21) we can write z^+, (I-PL+I) i'n terms of z. and u. for

as

k 9
= (n+Zvh+l)[ Z (y,-p,)] /ym (4B.22)n ._j i i K-I-J.

k k-1 k
= (n+Zvh+l)[ Z (y.-p.)̂  Z .Mvpi)(yj~pj^/yk+l

k k-1 k
= z z

1-
2d-P1)vii/yk+i+2 z z z . z .

\,

i i J J k+1

since »

rn+r\).+lHn.-n.^ = fii.-n.^^n+7\). +1 Whi. M-ii.} 1 }y. (1-y.)
1 1(4B.23)
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and, s imilar ly , for j?h'

(n+zvh+l)(y rp i)(u j-p j) = z.Zjty.d-y^U.jd-y.j)^. (4B.24)

Therefore, substituting (4B.22) into (4B.21) and recalling (4B.6)

and (4B.7), we have that

k+1 9 k 9
- E (x.+v.)e.V2 = -h(L z/d-u.Jd+y/y^j)

k-1 k , .
+2 l l z.z.fy.d-yOy.d-yJ]2^,,-] + 0 (n"1)

i=l j>i J ' ' *» J K 1 P
k 9

= -Js(n+Svh+l)[ ^ (p.-y.) (u^u^J/lyiU^) (4B.25)

k-1 k .
+2 z z (pr^-)(Pr^i)/vik+1] + o (rf1)1=1 j>i i i J J k+i p

= -h (p-y) E"1 (p-y)' + Ojn"1).
"• ~ ~ "" "~ r

Now, from (4B.15) we have that

k+1 k+1 ,
n p, = n y.+O (n"a). (4B.2.6)
1=1 n 1=1 1 p

Therefore, by using (4B.2) , (4B.5), and (4B.26) , we can write the

last two terms of the log Dirichlet (4B.19) as

k+1 j, j, k/? k+1

log{[ n (x .+v . ) ] 2 / [ (n+Ev . ) 2 (2TT) K / ' f n p.]}
i=l 1 1 n 1=1 n

= log{(27r)k /2[(n+Evh+l)/(n+Evh)]k /2[( n u i)
J '2+Op(n^)]/(n+Evh+l)k/2r1

1=1 (4B.27)
= log ((2ir)k /2[l+0(n'k /2)]{[det(Z)] l»H) (n'111*

= log {(27r)k/2[det(E)]Js[l+Op(n^)]r1.
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Therefore, substituting (4B.20), (4B.25), and (4B.27) into (4B.19),

taking the anti logarithm of the result, and noting that

C n ' ) , (4B.28)

we have that

f(p|x) = {(21T)k/2[det(z)]J5[l+On(n-J'2)]r1{exp[-%(p-y)z"1(p-y) l]}[H-0 (n"1)]
~ ~ - v ~ ~ ~ ~ ~ p

(4B.29)
= {(2Tr)k/2[det(z)]V1exp[-J'2(p-y)z"1(p-y)] [UOJn"^)].

~ - ~ ~ ~ - p

Rao [1968,(xv)pl04] proves that if the density of a random variable

converges to some density, then the distribution of the random variable

converges to the distribution for the limiting density. Therefore,

lim D(x1+v1,...,xk+vk;xk+1+vk+1) = Nk(y,Z); (4B.30)

that is, the limiting k-dimensional posterior distribution of p given

complete data x is k-dimensional multivariate normal with mean and

covariance matrices those of the Dirichlet.
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APPENDIX 4C

CENTRAL MOMENTS OF k-DIMENSIONAL MULTIVARIATE NORMAL DISTRIBUTION

4C.1 Introduction:

Let Xj xk have the k-dimensional multivariate normal distribu-

tion N,,(y,Z) with the Ixk mean vector y and kxk covariance matrix
l\ •**•*• «-

Z=(a. .)• Anderson (1958,p39) gives the second and fourth central moments

of this distribution. Lindley (1965,vl,p95) and Schmetterer (1974,p76)

give the 1th central moment for the one-dimensional distribution. In

this appendix we derive the general central moment of the k-dimensional

distribution. We conclude the appendix by illustrating the formula for

the first six central cross-product moments and by showing it equals

formulas from Anderson, Lindley, and Schmetterer for their specialized

cases.

Because the moment-generating function of the multivariate normal

distribution exists, we work with it rather than the characteristic

function to avoid using the extra, complex, variable /-I. To obtain

central moments, we multiply the moment-generating function <j>(t^ t^)

by exp(-ty'), continuously differentiate the results with respect to t,

and then set t to 0 in the differentiated results. [See Lindley (1965,vl,

p92) or Jeffreys (1939,p74).]

An alternative approach is to calculate cumulants <• . and then,ir..ik
from the cumulants, central moments. Straightforward calculation yields

results of Anderson (1958,p39) that KQ Qi Q Q=y. for l
£j-k,

J

k
Ko oi o 01 o o=aii for i-J'1-''' and Ki i =0 for z V2-U.. .UI>U.. .UI^U. . .U Jl I i » • • • t I b i—1 J
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From Kendall and Stuart (1969,vl,p70) we can therefore write the first

ten central moments E[(p..-y..) |x] for 1-1-10. The method to extend

these results to the general central (cross-product) moment, however, is

no briefer than the method using moment-generating functions that is

given in the next section.
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4C.2 Theory

From the characteristic function given by Anderson (1958, p36) and

W i l k s (1963,pl68), we can write the moment-generating function < j > ( t . , . . . ,

tk) of the k-dimensional multivariate normal distribution as

t y' + h t Z t'
*(\ ..... tk) = e ..... . (4C.1)

Defining
-t y'

..... tk) = e ~ ~ (frUj ..... tk), (4C.2)

we have that
h t z t1

f ( t t . . . . t ) = e

k ? k-1 k
Z t- a,, + 2 I E t. t. a . . )

1=1 i 11 i=1 j>i i J U

Hence,

Define

"

(4C.3)

k
..... tk)/9t. = (t. CK.+ Z t.. a...) f ( t j ..... tk). (4C.4)

Jr 1

Ci =

and rewrite (4C.4) as

3f(t l,...,tk)/3t1 = C^ f ( t j ..... tk). (4C.6)

Now, for all l*i,j-k,

= ^ .. (4C.7)
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Then,

..... tk)/(3t.3t..) = Oij f(tlt...,tk) + c. 3f(t1,...,tk)/3tj,

(4C.8)

..... tk)/Ot.3t.j3tk) = a... 3f(tj ..... tk)/3tk+a.k3f(t1,...,tk)/8t.j

(4C.9)

+ C. 32f(tj ..... tk)/(3t..3tk),

and

34f(t1,...,tk)/(3t.3t.j3tk3tjl) = a.j

y (4C.10)

+ au9 f(ti ..... V/(9W
+ C.33f(t1,...,tk)/(3t..3tk3tJl).

Continuing in this fashion, we have in general that, for 1-h -k

and m a positive integer,

m
i n 3t. ) =i **• h ~™ """ h "" i "" • \ ' ™ ' ~ | » - ~ w » — ^ ^ » \ ~~ ~~h '

g=l ng i=2 nl n L K m=2 nm

m a H
^f(t, tJ/( n 3th ) = Z ah h, 3&"2f(t1 tJ/( n 3th )

(4C.11)

c. ~f(t, ..... t.)/( n 3t. )hl l K m=2 hm
We use the double subscript h rather than a single subscript h

because t^ is meaningless for k<h-fc and we want a convenient way of

allowing all possible permutations of the k integers and their

powers j for 1-j-fc.

Now, odd central moments are 0 because the multivariate normal
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distribution is symmetric about the mean.1 For a even and

v = x - u (4C 12}ju ^u Mu > \^w.ity

.LL X

we therefore have from (4C.11) that the i central moment E( n y. )
9=1 9

is

i
E( n y. ) = Z a. . a^fft, tJ/( n 3th ),_i n_ • 0 run-

(4C.13)
t=0g=l "g i=2 nl"i A * ,111=2

Therefore, each of the Jl-1 terms in the i central moment is

a variance or covariance times an (n-2) central moment. Evaluating

the second central moment (4C.8) at t=0 yields that

2
E( n y. ) = ah h . (4C.14) .

g=l ng nln2

• i X/

Hence, by induction the Si central moment E( n y. ) is a sum of £-1
9=1 ng

terms, each of which is a product of those 1/2 elements of the

covariance matrix that are indexed by the subscripts h . That is, for

(i) 1j = 1, (4C.15)

and

(ii) i9. , = min (2x n 6. 9,3x n 5. ,,... ,(2j-2)x n 6. ?. 9,2j-l)J,
Ĵ'1 \ h=? ^'^ h=? 'h'J b=2 V J 'b=2 'b'J b=2

(4C.16)

where 2& î/2 and

because C0 (0) = 0; f'(0) = 0, and by induction all odd moments£i
are zero.
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0 if ib=q

1 if Vq

is defined to be the one complement of the Kronecker Delta symbol

6. „ [see Feller (1968,vl.p428), Korn and Korn (1968,p544), or CRCib.q
Standard Math Tables (1962,p501)], we have that

V'3 \\

for j<4 . for j

x Z a. .
i >i i i
i ^i •
for j<A-l

1 H Q(3) £ Q(5) i
Z Z Z Z Z Z (4C.18)

for j<3 for j<4 for j<5 for j<6

Q(2s-l) l
Lt it • • •

for j<2s-l for j<2s

QU-1) *
i >i h.h. h. h. *'* h. h. *"" h. h.

for j<£-l for j

where
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2s-2 2s-2 2s-2
Q(2s-l) = s + Z 6. + Z Z 6. 6. .

j=2 1j» s a=2 b=2 Vs Vs+1

b?«a (4C.19)
2s-2 2s-2 2s-2 2s-2

+...+ z z ... z n 6. L,
= j = 2 b = 3 J

for a<2s-2

for 6. _ the Kronecker Delta symbol. For example,
Vs

Q(3) = 2 + 6 . 2
\ n t f -

and
4 4 4

Q(5) = 3 + Z 6. - + Z Z 6. , 6<
J-2 'j^ J3=2 J4=2 ^3^ ^j

J4«3
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AC. 3 Illustrations

From (4C.18) the first six central moments of the k-dimensional

multivariate normal distribution N k (y ,£=(o . . ) ) are, for l-a,b,c,d,e,f-k,

5
E(ya) = E(yaybyJ = E( n y. ) = 0, (4C.20)

g=l g

= 0abacd + aac°bd + aadabc' (4C'22)

and

E(v v. v YjY y.r) = a L[C jO ̂ +a a .-+a ̂ GJ ]a b c d e f ab cd ef ce df CT de

+ aac[abdaef+abeadf+abfade] + aad[abcaef+abeacf+abface] (4C'23)

+ 0ae[abcadf+abdacf+abfacd] + craf[abcade+abdace+CTbeacd] •

Thus, for N3(y,Z),

and

E(yi
6) = 15au

3. (4C.25)

We note that the second and fourth moments agree with Anderson

(1958,p39) and that the Uh central moment for 4 even is

H/.2
Efy^) - [ n (2J-1)] a.//2 = ai.

A/2A!/[2jl/2(V2)!], (4C.26)

paralleling results for the one-dimensional normal distribution from

Lindley (1965,vl,p95) and Schmetterer (1974,p76).
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APPENDIX 4D

LIMITING POSTERIOR DISTRIBUTION GIVEN INCOMPLETE DATA

4D.1 Introduction:

In this appendix we calculate the limiting k-dimensional posterior

distribution of p given incomplete data z. We calculate this limiting

distribution in two ways. In the traditional approach, given in Section

4D.2, we note that the prior density is continuous in p and the likelihood

is regular. Therefore, the limiting distribution for the posterior density

f(p|z) is multivariate normal with the vector of maximum likelihood esti-

mates for the mean. The negative matrix of second partial derivatives of

the log likelihood, evaluated at the maximum likelihood estimate, is the

large-sample inverse covariance matrix. Therefore, rewriting the log

likelihood in terms of exponential parameters, using theory from Sundberg

(1974) to calculate the first and second partial derivatives of the log

likelihood with respect to these exponential parameters, and transforming

results back to p gives elements of the asymptotic posterior mean and

covariance matrices. However, results for the asymptotic inverse covariance

matrix are very long and complicated expressions that do not easily simplify.

Therefore, to obtain simpler expressions and, moreover, equations

paralleling those for complete data, in Section 4D.3.we also derive the

limiting posterior distribution another way. We rewrite the posterior

density as a product of complete-data Dirichlet densities, each having,

from Appendix 3B, a limiting multivariate normal distribution. Because

these densities are of differing dimensions and on differing combinations

of variables, we do not immediately have that the resultant product of

these multivariate normal densities is a k-dimensional multivariate normal
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density on the k components of p. However, by equating coefficients and

solving for unknowns, we then prove that, owing to the special relation-

ship between the first and each remaining product, the sum of exponents

from each Dirichlet in the product does form the exponent of such a density.

As part of this proof, we check that the k-dimensional inverse matrix

in the exponent is positive definite and symmetric; hence, a covariance

matrix. We also obtain the nonexponential term for the limiting multi-

variate normal distribution and prove that the limit of the denominator of

the posterior density (the marginal distribution) is 1. The essential step

for the latter is that the limit of the integral that is this denominator

can be taken inside the integral.

We begin this nontraditional approach by first considering, in Section

4D.3.1 the case having at least one category, say Ck+1, for which all data

is complete. For this case we.derive elements of the asymptotic mean and

inverse covariance matrices as functions of a number of unknown ratios and

as a large nonlinear system of equations. In Subsection 4D.3.2 we rewrite

the moments to eliminate these ratios and reduce the nonlinear system of

equations. As results, we get the maximum likelihood estimate for the

asymptotic mean and very simple expressions for the asymptotic covariance

matrix that parallel expressions from the complete-data case. In Subsection

4D.3.3 we extend proofs from the preceding two subsections to the general

case allowing incomplete data on all categories. The expression for elements

of the asymptotic mean vector is identical to that of Subsection 4D.3.2.

Expressions for elements of the asymptotic inverse covariance matrix are

those of 4D.3.2 plus terms for those patterns of incomplete data that index

the dependent variable. -
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In Section 40.4 we simplify results given by the traditional approach

in Section 40.2 for the inverse covariance matrix. Note that it is only

by knowing results of Section 4D.3 and by using much algebraic manipulation

that we can simplify these equations to those given by the nontraditional

approach. The algebraic manipulation is so extensive that numerous human

errors occur. Hence, knowing the final result at which to aim is critical.

It allows continual checking and correcting of various parts of the

equations.

Therefore, the nontraditional approach will be useful in other kinds

of problems when the traditional approach gives unwieldy results. Because

we are piecing together densities of different dimensions and on different

combinations of variables, the notation for the nontraditional method in

Section 40.3 is necessarily complicated. However, for most types of pro-

blems, notational difficulties would not exist.

Section 40.5 concludes the appendix with three examples allowing,

with the help of the MACSYMA symbolic computer system, exact solution of

the nonlinear system of equations for the asymptotic mean. We also give

numerical illustrations for the asymptotic mean, inverse covariance, and

covariance matrices. Note that the exact solutions can be used for the

Taylor-series approximate posterior mean and the posterior mode, as well

as the asymptotic mean, which is the maximum likelihood estimate. Because

an exact solution exists only in very special cases and is expensive,

however, it cannot generally be used. A general method to solve the non-

linear system of equations is the £M iterative algorithm of Dempster, Laird,

and Rubin (1977) discussed in Section 2.3.2.
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AD. 2 Traditional Approach:

x

The prior density g(p) in (1.1) is continuous in p and the likelihood

h(z|p) in (2.8) is regular. Therefore [Cox and Hinkley (1974, p401)], the

limiting distribution for the posterior density f(p|z) is multivariate

normal with the vector p for

p. = (z.+ Z zDp\/pD)/n (4D.1)

from (2.36) of maximum likelihood estimates for the mean u and the matrix

{- 32log[h(z|p)]/0p3p')} ~ (4D.2)
~ ~ ~ ~ p-p

•N* •«

for the inverse covariance matrix.

Recall that the multinomial density is a member of the exponential

family, where we define the exponential -family parameters

<f>. = log(p./pk+1). (4D.3)

As in Section 2.3.1, let

t.(x) = z.+ Z z_(i) (4D.4)
1 ~ 1 Dsi

for ZQ the (unknown) number of the ZQ observations that fall in category

C.. Then, as noted in Section 2.3.2, Sundberg (1974) proves that

) =.-cov[t(x)|]+cov[t(x)|z,$], (4D.5)

where h(z|<|>) is the likelihood h(z|p) written in terms of <J> instead of p.

Since the first partial derivatives are zero at the maximum likelihpod

estimate, application of the chain rule to the negative of (4D.5) with

evaluation at p=p=u yields
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'loq h

9p 3p.
' J

k 3*

p=u

£

a=l

k 34>a f k

a=J

"k <
Z -

b=l fr 34. 3p.
a D J p=u

(4D.6)

p=u

Now,

cov( t_
I

'*' =
J P-

L-u ) for b=aa

-nu u. fora b

(4D.7)

and

Z z u (u -u )/u
D3a u a u a

cov(ta,l
p=u

for b=a

for

(4D.8)

From (4D.3)

' J p=u
1/uk+1

for j=

for

(4D.9)

Applying Theorem 8.3.3 of Graybill (1969,pl70) to (4D.7) yields that

a . ij -
(D "

Vl/n

for j=i

for j7i

(4D.10)

"for a / j x the i,j element of {[cov(t|<j))] }" . Hence, we note from
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(40.9) that, for all l*i,j*k,

= n o 1 J "

Substituting from (4D.7) - (4D.9) and (4D.10) - (4D.11) into (4D.6)

and writing 9 2 log[h(z l< f>) ] / (8u8u ' ) to mean {32 log[h(z|<J>)] / (8p8p' ) } ," ~ ~ ~ ~ ~ ~ ~ p u

yields that

. a u . ) = (u .+u k + 1 ) 2 [ n ( l -u . ) - Z (z D /u D
2 ) (u D -u . ) ] / (u .u^ 2

(4D.12)

E ( Z
ay i u^i , a

n( l -u -u )2+ Z u [ Z ( I
a
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Similarly, for the i, j element of the asymptotic inverse covar-

iance matrix, we have that

-u.)- E

k
+(u .+u )[-n+ E z /u 2J+ E u [-n-f S

D31.J D D bjflj b D3i,b

(40.13)

+ I u.{u.[-n+ Z zn/un
2]+(u.+u. +1)[-n+ Z z /u 2]

a n a ° D J k+1 D3a,j D D

E u [-n+ Z
j b D3a,b
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4D.3 Nontraditional Approach:

4D.3.1

From (2.9) the k-dimensional posterior density of p given incomplete

data z is
"U

f(pjz) = g(p)h(z|p)//p g(p)h(z|p)dp (40.14)

for the Dirichlet prior (1.1)

k+1 k+1 k+1 v.-l
g(p) = [r( x v.)/ n r(v.)] n p. n

1=1 1 1=1 n 1=1 n

and the likelihood (2.8)

z« Ph(z|p) = n{[( E ẑ p)!/ n z2>p!] n p^ *'
r}.

Here p takes values in the k-dimensional probability simplex P.=
k+1 k

{(p1,...,Pk+1):p1-0, E p^l}; Vj>0; % is a nonempty subset of {1,2, .. .,k+l};

P is a set of mutually exclusive and exhaustive subsets %', 2,P is the set

element % in the set P; 30 „ is the number of elements in 2,P; z- „ is
fit " f>*r

the number of , observations such that each observation falls in one of the

3_ categories C. for i&J5, but is not .further classified into a particular
f>,r 1 -

one of these 3ff D categories if 8- ->1; and z is the vector of z7= I z p.f>,r fit" ~ f> » f> , r

• Since Zz7 =z_ and we can cancel from the numerator and denominator of
p *>>" f>

the posterior density (40.14) any terms that are not a function of p, we can

write the posterior density (40.14) as

k+1 v.-l z k+1 v.-l z
f(p)z) = n p ' np *// [ n p "* np *]dp. (40.15)

i=1 i % % Pk i=1 i %f>
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In (4D.15) the second product is over all distinct %. Thus, the product

is over k+1 sets 2.j={i}, 1-i-k+l, containing one element and K sets

^k+l+i5 1~i~K' containing more than one element. Each of the K latter sets

correspond to a different pattern of incomplete data. From these k+l+K

sets, we will make K+1 Dirichlet distributions D(l) for l^l^

To do so, reorder the terms in (4D.15) so that the first k+1 multi-
1

plicands are those terms , 1-i-k+l, for which 2={i} contains only

one element. Denote the remaining K sets %, those sets containing more

than one element and indexing a unique pattern of incomplete data as

Q(l,l) for 2=-l=K+l. For 2=1=K+1, multiply PQ(lsl) Q(ljl)
V* 7

by

for al l i£Q(l,l), where the ratio 0<r.-,<l, £ r. <1, is to be determined.
1 1=2 l!

Define Q(l,2) ..... Q(l,k-q(l)+2) as the k-q(l)+l sets indexing the ^--j2/^

where q(l) is the number of categories among which zn/-, -,\ is shared.

Define Q(l) as the set of these k+2-q(l) mutually exclusive and exhaustive

subsets Q(l,j) for l=j*k+2-q(l).

For example, for ẑ ẑ ẑ .ẑ ẑ .ẑ ) we have that k=2, <=2, q(2)

=q(3)=2, Q(2, !)={!, 2), Q(2,2)={3), Q(3,1)={1,3}, Q(3,2)={2>, Q(2)=Ul,2},

{3}}, and Q(3)={{1,3},{2}}.

Now, for 2=1=K+1, we have multiplied pnn
r.,z qu'

p. "" 11}for iyQ(l,l). Accordingly, for each i
-r.,Zr.,

^

in (4D.15) by

multiply p,
'

in the product of the first k+1 terms by p. n ^ . This process yields

the posterior density (4D.15) as
K+1

k+1
f(p|z) = '

(1- i r )z, +v -1'
1_2 M 1'/ i K+1

n
1=2

Q(1,D nu

(4D.16)

//_ (numerator) dp.
pk
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Multiplying and dividing (4D.16) by

k+1 K+1 k+1 K+1
F{ Z [(1- Z r.,)zrn+v.]}/{ n T[(l- Z r..)z,.,+v.]} (4D.17)

1=1 1=2 1! il} n 1=1 1=2 l!

for the first set of multiplicands in (4D.16) and, for 2-l^c+l, by

r [z + z r z + p ( 1 ) + 1 ] / [ r ( z n r ( r z + 1 ) ] (4D-18)

for each of the remaining < sets of multiplicands yields the numerator and

integrand of the denominator of (4D.16) as a product of <+l Dirichlet

densities, where the 1th density has dimension

P(l) = k-q(l)+l (4D.19)

for q(l) again the number of elements in Q(l,l); that is, for num denoting

numerator, j eQ(l,l) for lis-k-q(l), and, paralleling notation from Wilks

(1963, p!78), d(x,,...,x, ;x. +.) denoting the k-dimensional density of the

Dirichlet distribution D(x^,. ..,x. ;x. +̂ ),

K+1 K+1 K+1

K+1

n d[z +l,r. ,z,. ,+!,... ,r z, ,+1;-

(4D'20)

In (4D.20) we assume that there is at least one category, say Ck+1» on

which all data is complete. The completely generalized case of at least

some data being incomplete on all k+1 categories is more complicated.

Therefore, the general case is deferred until Section 4D.3.3 where we out-
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line the basic conversion of that case to the one of this section and give

results for the mean and covariance matrices. For shorthand, we refer to

the K+l densities on the right-hand side of (4D.20) as simply d(l), d(2),

...,d(K+l), respectively. Note that r^ in (4D.20) is often zero for most

WP(l) and 2*1=K+1.

Since the limit of a product is the product of the limits of the mul-

tiplicands and (Appendix 4B) the limiting Dirichlet distribution is multi-

variate normal, the limit of the numerator (4D.20) of the posterior distri-

bution is a product of multivariate normal distributions. That is,

lim[(4D.20)] = II Nom(p
(1),Z(1)), (4D.21)

1=1 '

where y =(y- ) and £ ^=(a.. ') are the P(l)xl-dimensional mean and

P(l)xfl(l)-dimensional covariance matrices of p given data

m (1) = zQ(l jp+ Z [r41z,,vH] (4D.22)

if 2-1-K+l and

rn k+1

m ( [ > = Z [(1- Z r..)z,.,+v.] (4D.23)
1=1. 1=2 1! n> n

if 1=1. Thus Wilks(1963,pl79) , for l^i^k+1,

K+l
(4D.24)

i i=? '' ^' •* '

for 2=1=K+1,

yl(1) = (ZQ(1 i)+1)/m(1); (40.25)

for 2=1=K+1, 2^i=P(l)+l, and j.̂ QO,!) for l-j^j-k+l,

u.(1) = (r. ,zf. ,+l)/m
(1); (4D.26)

" 1 . » T l J l h '
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and, for l^i^P(l), i<j-P(l), and 1̂ 1̂

°ii = V* U-V )/(m +1) (4D.27)I I I I

and

c^-• = - y/ V /(nr '+!). (4D.28)

In most of this appendix we find it more convenient to refer to

elements of the 1th mean, covariance, and, particularly, inverse covar-

iance matrices for 2*1*K+1 in terms of sets % and T, for % and T each one

of the P(l)+l sets Q(l,l), Q(l,2)={j._j_},..,Q(l,P(l)+l)s{jp...}; 1̂ 3.

Accordingly, for 2^1^<+1, define

' , (40.29)

y,' ^ for 2=Q 1,1
(1) ) l

V = < m (40.30)
% {̂i}

(1) for ?={D,

+l), (4D.31)<

and, for T̂ 2,

o/1) . - u/V'/l̂ l). (4D.32)

Because the multivariate densities in (4D.21) are of differing dimen-

sions and on differing combinations of the same random variable p, we do

not immediately, have that product (4D.21) is a k-dimensional multivariate

normal density on the k components of p. However, we now show that, owing

to the special relationship between d(l) and d(l) for 1>1, product (40.21)

is also multivariate normal in the limit.
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To begin, sum the K+1 exponents in product (4D.21). For (4D.21) to

be normal, we must be able to write this sum as the exponent of a normal

density; that is, we must be able to write

KZ (P
{1)-y(1))Zn)"

1(p(1)-y{1))' = (p-ujS'Vu)' (4D.33)
1=1 ~ ~ ~ v ; ~ ~ ~ ~ ~ .v „

for 0-u-l and S positive definite and symmetric, where p is the k-

dimensional vector (p,,...,p. ) if 1=1 and the t?(l)-dimensional vector of

PQ(1 1)' P0(l 2)'*"' and P0(l P(D) for the lth Diricnlet density in

(4D.20) if 1>1.

Expanding the right-hand side of (4D.33) yields, for S the i,jth

element of S"1 for l*i,j*k,

k 7 ,. k-1 k . . . k 9 .. k-1 k .
Z (p.-u r s + 2 Z Z (p.-u )(p -u )S1J= Z p/S11+2 Z Z p.p.S1J

i=l n 1 i=l j>i T T J J i=l -1 i=l j>i ! J

(4D.34)
k .. k-1 k .. k ? .. k-1 k ..

-2[ Z p.u.S11* Z Z (u.p.+u.p.)S1J]+[ z u. S +2 Z Z u.u S1J1.
i=l 1 1 i=l j>i n J J n i=l n i=l j>i 1 J

Expanding the left-hand side of (4D.33) yields, for-aQ%1 J the i,jth ele-
-1 % -1ment of Z/,x for l-i,j-k and a/-,\ that element of Z/i\ referenced

by the sets % and T in Q(l) [recall (4D.30) - (4D.32)],

k /I• \ p •. k-1 k
Z (p.-y/̂ )2 ,̂,11^

1=1 n 1

(4D.35)

/Z [ Z (ps-y j
(1))%n

W+2 Z S
1=2?€Q(1) 2 2 (1) 2eQ(l) .T€Q(l)

In (40.35) 2(1) means the first element of the set %. Thus, if 2={4}, then
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3(1)=4. If 2=Q(1,1), the 2(1) is the first of the q(l) linearly ordered

elements of Q(l.l). Hence, if Q(l,1)={2,3,9}, then ?(1)=2.
i i XTRecalling that p«= Z p.-, we expand coefficients of a/,v J and o/

* 1 ' '
for all i, j, 2, and T to write (4D.35) as

k 2 k-1 k k
Z C11p1 + Z .£.cijpipj+.E Coipi+C00 (4D.36)

where, for

'%
1 if A and B both true

6. = ( ' (4D.37)
) otherwise,

the coefficients c. . in (40.36) are, for 1-i-k

i K+1 ««
+ Z [ E «,,,. o * * ] j (4D.38)

1=2

for

•i K+1

1=2

cn. = -2 { y i 0 m "+ Z y i a n [ Z
Oi i (1) j^ J (1) 1=2 ?«Q(1)

and

M Z [ ( ) a ( l ) Z
1=2?6Q(1) ? U) T€Q(1)

(4D.39)

.40)

1-1 -1-1 J>1 (4D.41)
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where a = a .

Then, equating coefficients of p,. in (4D.34) and (4D.36) yields

that,from the coefficients of p^2 for, 1*1*k:

,11 « K+1
S = a*

1=2

and, from the coefficients of P.jP,-» for 1-i-k, i<j-k:

11 ii 97s &a + z [ z (<ss?3i s»i°M/ + z 6«3i1=2 2«Q(l) 231»?3J (*> TeQ(l) ?31

(4D.43)

Hence, elements of the inverse covariance matrix S are finite

linear combinations of variances and covariances and thus are of the

same order of magnitude as the comprising variances and covariances.

Therefore, from (4D.27) - (4D.28) and (4D.31) - (4D.32), elements of S,
**

if S exists, are 0(n ).

Continuing to equate coefficients of p^ , we have that, from the

coefficients of -2p^, for l^i-k,

I u S1j = Z y.(1)afn
1j+KZ [ Z (6- , P ( 1 )o W (40.44)

j=1 J j=1 J (1) 1=2

•TcQ(i)

Substituting from (4D.42) and (4D.43) into the left-hand side of

(4D.44) yields the left-hand side as

z (««»i fo^mW+ l 6foi T»iarn?T^^1»w ( ' J T * ) ^'''J I ' J
(4D.45)
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i-i K+1 S*
+ u,[am

n+ S ( Z 6- . 89iam
w)]1 (1) 1=2 SeQ(l) 3'1**91 I1'

k .. K+1 k
= Z u.am

lj+ z { E [ E U.6
j=l J (1) 1=2

+ z ^ z U

) J=l

i i 22 XTEquating coefficients of a / , \ J, l£i,j£k, ^n\ » and O / - I N on thej / j \ , i-i,J-K, o / ^ \ , emu u/ i \

left-hand side (4D.45) of (4D.44) with those on the right-hand side of

(4D.44) yields that

from the coefficient of 0(i)1J

u1 = y^1^; (4D.46)

22
from the coefficient of cr/- i \

f\\ k

6 • « -V9 ~ z Ut<S2 ' 2 •' (4D.47)

therefore,

y«(1) = E u., (4D.48)
r Irl J

so that, from (4D.48),

yj(1) = E y. {1); (4D.49)

and

2Tfrom the coefficient of "
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so that, echoing (4D.49),

yT
(1) = Z y. (1). (4D.50)

T

The last step in equating coefficients of p. is checking that for

values (4D.46) for u.. , (4D.42) for S11, and (4D.43) for Sij, the constant
k ? .. k-1 k ,.

term z u. S^+2 Z Z u.u,SIJ from the right-hand side (4D.34) of
i=l n i=l j>i n J

desired identity (4D.33) equals the constant term (4D.41) from the

left-hand side (4D.36) of (4D.33).

Substituting for u., S11, and S1J in the constant term of

(4D.34) yields that

k l/ 1 U ]f î 4-1
O 4 * 1% I ^ •• IN i 1 \ O 44

II Q ^o T* T1 it ii ^ ^™ v iii » / i rr+ ^ v i v

1=2

k-1 k
+2 Z Z ,

1=2

(4D.51)

k l+ 7 u+^i L L y
1=1 1 = 1 j>i n 1=2

[( z y i ) 2 a m
? 2 +2 z ( z y. (1 ))( z y1 (1) T€Q(1) ies 1 jcT

Thus, since (4D.49) gives that Z y = y 7 the constant term (4D.51)
J«* J ?

from the right-hand side of (4D.33) equals the constant term (4D.41) from

the left-hand side of (4D.33).

Remaining in our proof is to show that 0-u-l and that S" is

positive definite and symmetric. From equation (4D.46) for u. ,
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definition (4D.24) of y..̂  ', and bounds on ratios r.,, l=i-k,

2-1-k+1, we have that 0-u-l. Before proceeding to the remaining proof,

we note that S being positive definite and symmetric implies that

jHS"1)"1 exists [Graybill (1969,p318)] and is positive definite and

symmetric [Anderson (1958,p337)]; hence [Dempster (1969,p41)]» S is a

covariance matrix.

The matrix S is symmetric because, from (4D.42) and (4D.43), each

element S1J of S is a finite sum of elements from inverse covariance

matrices Z/-j\~ , each of which is symmetric by definition of covariance.

From Dempster (1969,p41), the matrix S is positive definite if and

only if yS y'>0 for all k-dimensional y^O. Thus, let y be any k-

dimensional vector such that y^O. Then,

. k k
yS'V = z z y,y,S1J
~~ ~ 1=1 j=l 1 J

k k ij K+1 , **
= Z z y.y.[am

l j+ Z Z (6,,.
i=l j=l n J (i) 1=2

(4D'52)T€Q(1)

k k • K+l k
Z Z y,-yn-a, ,x1 J+ Z [ Z Z y.y.

1=1 j=l 1 J (L) 1=2 i=l j=l n J

+ Z 6
TcQ(l)

Since y^O and the inverse covariance matrix Z/,%~ is positive
i i

definite, the first term Z Z y^a/-,^ i'n tne last equality in
i=l j=l J u;

(4D.52) is positive. It therefore remains to show that the remaining



-149-

term is nonnegative. We can write this term as

k k
z z z[ z y*y^te< 23ion \w+ z

1=2 1=1 j=l $£Q(1) n J ^'^J I'' TcQ(l)

K+l

= z [ z ( z y , 2 ) o * 2 + z ( z z y , y * ) o * T i (4D.53)
1=2 ?€Q(1) ie$ ' T€Q(1) i£$5 jeT

= Z [ Z Z w-.wrâ
T] = 0,

1=2 *£Q(1) T-eQ(l) * '

for w,. = Z y. and wr = Z y., since every matrix Z/-.X , 2-1-K+l,
f 4e<l ' -i/cT J ~\ ' /

'*-? J*1

is positive definite so that the term within brackets is nonnegative

[positive unless w« = 0 for all ?eQ(l)] and since the sum of < non-

negative numbers is again nonnegative. Therefore, the matrix S is

positive definite.

Thus, for values (4D.46) for u1, (4D.42) for S
11, and (4D.43) for

S1J, equality (4D.33) holds; that is, we can write the sum of exponents

in the limiting numerator (4D.21) of the posterior density as the

exponential term of a k-dimensional multivariate normal density.

Now, the limit of the posterior density (4D.16) is the limit (4D.21)

of the numerator divided by the limit of the denominator. To calculate

the limit of the denominator, first note that a Dirichlet density is

continuous in p. Further, from (4B.29), Appendix 4B, a multi-

dimensional Dirichlet density uniformly converges to a multivariate

normal density. Therefore, the product (4D.20) of Dirichlet densities,

the numerator of .the posterior density, is continuous in p and

uniformly converges to a product of multivariate normal densities on the

closed and bounded k-dimensional set P^. Thus [Buck (1965,p!86),
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Bartle (1966,p67)], we have for the denominator of the posterior density

(D.5) that

lim ;p num [f(p|z)] dp = fp lim {num [f(p|z)]> dp. (4D.54)
n-x» k k n-*»

Therefore, canceling coefficients n ̂'̂ [̂detÛ )]'̂ 2

1=1
in the limiting numerator and denominator of the posterior density and

multiplying both by (2Tr)~k/2[det(S) ]~1/2 yields the limiting denomina-

tor as 1 and the limiting numerator, and thus the limiting posterior

density, as the density of the k-dimensional NK(U,S) multivariate

normal distribution with elements of the mean and covariance matrices

given by (4D.46), (4D.42), and (4D.43), respectively.

Rao [1968,(xv)pl04] proves that if the density of a random variable

converges to some density, then the distribution of the random variable

converges to the distribution for the limiting density. Therefore, we

have proved for all cases but that in which all K+! categories have some

incomplete data, which case will be considered in 4D.3.3, that the limit

of the k-dimensional posterior distribution of p given incomplete data z

is k-dimensional multivariate normal.

4D. 3.2 Specjal_ Casej_

In Section 4D.3.1, elements (4D.46), (4D.42), and (4D.43) of the

asymptotic mean vector u and inverse covariance matrix S"1, respectively

were expressed in terms of unknown ratios r^, 1-i^k+l, 2^1^+1, and

incomplete data z. In this subsection we eliminate these ratios and

derive expressions for elements of the asymptotic mean and covariance
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matrices in terms of the asymptotic means and the data z. Again we assume

that there exists at least one category, say C.+,, on which all data is

complete. The next subsection treats the general case allowing all

categories to have some incomplete data.

Recall from Section 4D.3.1 that for K different patterns of in-

complete data, we separated the numerator of the posterior density into

tc+1 Dirichlet densities d(l), 1-1-K+l. For the first density we had

complete data on all k+1 categories C^, 1-i-k+l, and for each of the K

remaining Dirichlet densities d(l), 2-k-K+l, we had exactly one of the

K sets of incomplete data. Recalling from (4D.19) that t?(l) is the

dimension of the 1th Dirichlet density for 2*1*K+1, note in (4D.20) that

for each of the last K Dirichlet densities, there are P(l)-l unknown

ratios r. •,, l-i-fl(l)-!. Thus, there are a total of K[P(1)-1] unknown
V

ratios r. ,, 1*1*0(1 )-l, 2*l*ic*l.
Ji

From (4D.24) - (4D.26), (4D.29), (4D.30), (4D.46), (4D.48), and

(4D.49), elements u. of the asymptotic mean vector u are expressed in

terms of these <[t?(l)-l] unknown ratios. Letting 1 range from 2 to <+l,

we could derive a system of K[P(1)-1] nonlinear equations in the <[P(1)-1]

unknown ratios, from which solution the asymptotic means could be

evaluated.

However, an easier approach to evaluate these means is to reexpress

them in a way that eliminates the ratios altogether and leads to a sys-

tem of just k nonlinear equations in k unknowns, the unknowns then

being the means. In such an approach, we will have evaluated the means

in a one-step, rather than two-step, process and the nonlinear system to

do so will be much simpler.
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Recall that r.,=0 for any Dirichlet density d(l) for which

category i has incomplete data. From (4D.49), for 2-1-K+l,

,
1

= Z p. . (4D.55)
hcQ(l.l) h

For nr1' and m"> defined in (4D.22) and (4D.23), respectively, substi-

tution from (4D.24) and (4D.25) into (4D.55) yields that

(zs/k+n+l)/m(1) = Z [(1 -KZ r. )z,. ,+vJ/m(1). (4D.56)
*(k+1) h€Q(l,l) g=2 hg {h} h

Similarly, use of (4D.49), (4D.24), (4D.26), and p̂ 3!- Z pa,

for all 1, yields that, for 2*h'̂

K+1
- I
9=

Hence, ignoring terms 1 and Vu that go to zero as the sample size

n increases, we have from (4D.56) and (4D.57) that, for 2-i-P(l)+l,

2*1*K+1, and l^j.^k+l,

(r. 1z,. ,+l)/m(1) = [(1 -KE r. )z,. ,+v. ]/m(1). (4D.57)
"i '•v'j j n=2 i ' - w ^ j >j s

m(1)/m(1) = z / Z ( 1 - Z r . ) z
h€Q(l.l) g=2 hg

(4D'58)

= r. ,/(! - Z r. ),
Ji' g=2 Jig

whence, defining u7 = Z u. for all sets $, we have from (4D.46) that
55 J

m0) =ZQ(1,]
"" (4D.59)

s 7 / 11

Therefore, from (4D.24), (40.46), (4D.48), and (4D.58), for 1*1*
k+1 K+1

and n= Z Zr.j-t+ Z ZQ,^ -^ the sample size,
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K+l

<1-1^ii>l
l

K+l

[ z r . , / n ] [n ( l - I. r . , ) ] / m
\is •] _p i '

m K+1 11} K+1

[zm/n][(m
u;+ Z mUj)(l- Z r.

m 1=2 1=2 n

[zm/n][(l-
KZ r.,)(H- Z m(1)/m(1)+ \

{1> 1=2 1] 1=2 1=2

K+1 K+1 K+1

[z (. }/n](l- Z r ){1 Z z , ../ Z [(1- Z r. )z ,.,]
ti> 1=2 I" 1=2 Qtl .D h€Q(l,l). g=2 hg

K+1 K+1 (4D.60)
+ Z r /(I- Z r.,)>

1=2 1] 1=2 1]

K+1 ,.,

{z + Z [(1- Z r.Jz /mu)]
1=2

' £ [(1-Zr.
heQ(U) g=2 h

= [z{.}+ Z (u./ Z u.)zD]/n

Note that (4D.60) is the maximum likelihood estimate (4D.1).

Successively setting i=l,...,k.in equation (4D.60) yields a system

of k nonlinear equations to solve for the k unknowns u., 1-i-k, where
?

we also have the constraints O-u.-l and Z u.=l. Some of the numerous
1 1=1 1

approaches for finding a numerical solution are outlined in Scheid

(1968,chpt.25). As discussed in Section 2.3.2, Dempster, Laird, and
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Rubin describe an algorithm for an iterative solution. Examples allowing

exact solution are given in Section 4D.5.

Noting from Graybill (1969,pl70) the form of elements of the inverse

covariance matrix S"1 and recalling (4D.27), (4D.28), (4D.31), (4D.32),

and (4D.42), we have for large n that

Z m(

(4D.61)
/<uQ(i.i)ukn)

u.u|<+1)- E (Z[)/uD)(uD-u i)/(u iuD)
U31

since

/ • i \ K+1 /,x
vi; = n- Z m v ' ; = n-( Z zn/un+ Z zn/un). (4D.62)

1=2 Dai u u D^i u u

Similarly, from (4D.43) and for "Q(l ,l)s»i ,j" beneath a summation

sign meaning Q(l,l) containing both i and j,

=(n- Z. .zD/uD)/uk+lV- .(V̂ fWl̂ Vk+l) (4D'63)

= n/uk+1+ Z (ZD/UD)/UD.
,J

Note how simple final results in (4D.62) and (4D.63) are, especially

compared with corresponding equations (4D.12) and (4D.13) from the tra-

ditional approach in 4D.2. Furthermore, final results in (4D.62) and

(40.63) parallel results (given by their first term) for complete data

[See Graybill (1969,pl71). ]
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4D. 3.3 Geneiraj^ £asej_

As long as there is at least one category having no incompletely

specified data, we can apply the methods of the preceding sections. That

is, if category C.+, has some incomplete data, we can change the dependent

variable from p.+, to any variable p. for which category C. has only

complete data. However, there are cases in which no category has only

complete data; i.e., all k+1 categories have some incomplete data, so

that such a variable does not exist. In this section, we extend theory

from the preceding sections to this remaining case.

The only time there are problems using the theory of the preceding

subsections is when Q(l,l) contains that element, say k+1, that indexes

the dependent variable for d(l). To handle these instances, we have two

approaches. In the first approach, we write pn/i ,\ as 1- Z p. and
Q(1'1J jtQ(U) J

then proceed with the methods of 4D.3.1 of equating coefficients of

powers of p. on the left- and right-hand sides of (4D.33). A simpler

approach is making pn/, ,x the dependent variable and then proceeding as

in 4D.3.1 and 4D.3.2.

The first approach requires more types of cases than the second

approach and, unlike the second approach, requires transformation of

formula for the inverse covariance matrix before allowing proof that this

matrix is positive definite. Hence, we pursue the second approach.

Therefore, if Q(l,l) contains k+1, then we make p0/-, ,%, instead of

POM k+ +1)' t^ie dePendent variable.

Following this approach and the procedures of 4D.3.1 and 40.3.2

yields for elements u.., S11, and S1J, respectively, of the mean and

covariance matrices
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1=2

" ' D3f
D3k+l

and

cij 1j K+1
i> = a,,, J+ £

00 1)
" )

fl
m ; (4D.65)

00,1)5*1f
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/(unn nVi)]+ E m(1)/unn n (4D.66)Q(l,l) k+l g(lfl)3k+1 QU.l)

-l/u.+1)-m(1)( E 1+ E 1+ Z l)/u ]
k X Q(l,l)3l,j Q(U)31 Q(l,l)*1

= n/u, .,+ E (z /u )/u - E (zn/un)/u .+ E (zn/un)/un,
K A n-<i.i1 U U L/ n-vi,i1 " u KT1 r>-.i, i 1 U U U

where "Dsi.j" means D containing both i and j, "D£i,j" means D not

containing i and j together (ie, D can contain one or neither of i and j

but not both), and all conditions under a summation sign are to be

met simultaneously, since, as in Section 4D.3.2, the procedure yields

that, for 2̂ K+1,

and

= ZQ(U)/UQ(U) . (4D'67)

m(1) = n- E m(1) (4D.68)
1=2

for

u = E u.. (4D.69)
Q(l,l) J£Q(1,1) J

Proof of positive definiteness of S" will parallel that given in

(4D.52) and (4D.53) of the last section with the following modification.

Note from the first equality pf (4D.65) and (4D.66) for S11 and S1J,
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respectively, that no direct contribution is made to S11 and S1J from

those sets Q(l,l) simultaneously containing both i and k+1. Thus, we

must modify (4D.53) by adding !&£k+l under both $eQ(1) and T€.Q(!) every-

where in (4D.53). Therefore, the sums within brackets in (4D.53) for

these particular sets Q(l) will involve only that submatrix of £/,%

referring to those variables not indexed in Q(l,1)3*1,k+1. But since this

submatrix is also a covariance matrix, it is positive definite; thus, the

remaining proof will follow like that of (4D.53).

Remaining proofs for the limiting posterior distribution are identical

to those of Sections 4D.3.1 and 4D.3.2. Therefore, for all cases the

limiting posterior distribution of p given incomplete multinomial data z

is multivariate normal with expressions for elements of the mean and

inverse covariance matrix given by (4D.64) - (4D.66). Note that, as in

Section 4D.3.2, expressions (4D.65) and (4D.66) for elements of the inverse

covariance matrix are simple and parallel those for complete data.
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4D.4 Equivalence of Results:

In this section, we show how results (4D.12) and (4D.13) for the

asymptotic inverse covariance matrix given in 40. 2 by the traditional

approach can be simplified to those, (4D.65) and (4D.66), respectively,

given by the nontraditional approach in Section 4D.3. Because of the

large amount of algebraic manipulation (and, thus, possible error)

involved, knowing results (4D.65) and (4D.66) to work toward is very

important.

To show that (4D.12) equals (4D.65) for S11, divide (4D.12) into

the four groupings - complete-data term, sum of all terms for which

D£i,D3k+l, sum of all terms for which D3i,D£k+l, and sum of all terms

for which D3i,D3k+l - given in (4D.65). Note in making this division

that there are no terms for which D£i,D$<+l; the one combination for

which there is no contribution in (4D.65).

In (4D.12) we can rewrite the complete-data term as

(4D.70)

since the term inside braces is one.

For the sum of those terms in,(4D.12) over those sets D£i, we have

K O O

I u [- £ z (u -u )/u + £ £ znuh/un ' l zn(un"ua)uDa D D a D i,a Dsa.b D b D D D a D

D^k+1

k / 2 x n / 2 (4D.71)
+ E ( E z u /u )]/uk+1

ita D3a,b u D u K 1

k
= - E u [ E (Z/U )l/U

a

D3k+l
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Dak+1 a?k+l

since, inside the brackets in the first line in (4D.71), the first term

is the negative of the second because, for the restrictions D^i,k+l on

D for these two terms,

uD"ua = Z V (4D.72)

b̂ i ,a

From the last two terms inside these brackets, we pick up

jn
2 (4D.73)

since, for the restrictions Cj^i.Dsk+l on D for these two terms,

k
UD-U = I Vuk+r (4D.74)u a b€D D K+I

,a
For the sum of those terms in (4D.12) over those sets D3i , we have

{

D3k+1 (4D.75)
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+2(uD-u.)(ui+uk+1)-u.(uD-u.)]}/uk+1
2

D>k+l DXk+1

since, inside the braces in the first line of (4D.75) we can divide the

first term into a sum over sets D^k+1 and a sum over sets D/k+1, we can

write the second term as

Z zD/uD
2( Z u )+ E z D / u 2 ( Z u ) ]

U D a U D a

D?k+l a?«i,k+l D>k+l a?«i (4D.76)

=2(u.+uk+1)[ zD(uD-u.-uk+1)/uD
2
+ zD(uD-u.)/uD

2],

D3k+l

and we can write the last two terms as

u [- Z ZD(UD-U )/u
2+ £ Z zDu./uD

2
a D D a D 1 ,a Daa.b.i D b D

D^k+1

- Z Z ( U - U )/u 2+ Z Z
a D i.a D»a.b,1

Dak+1 (4D.77)

D^k+l

=-[ui DJ1 ̂ D̂̂ l̂ ^̂ l
D^k+1

since the first two terms inside brackets in the first line of (4D.77)

combine through
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k
uD-ua = z ub (4D.78)

b/a

and the last two terms combine through

k
(4D'79>bcu

Therefore, from (4D.70), (4D.71), and (40.75), we have for S11 that

(4D.12) from the traditional approach does simplify to (4D.65) from the

nontraditional approach.

Similarly breaking up terms given in (4D.13) for S1J from the tra-

ditional approach, we have that, since

k k k
E u (-n z u.) = -n Z uA(l-ua-Ur

urua b a a ' J

k (4D.80)

= n[ Z "a
2-(l-Ui-uruaj'i.j a i J

the complete-data term in (4D.13) is

^(uj+uk+1)(l-uj)/uJJ+(l-uruj-uk+1)[-ur(uj+uk+1)-(l-uru.-uk+1)+l]}/uk+1
2

(4D.81)
= n/uk+r

Noting that we will find no contribution for the case D^k+l,i,j,

we divide each of the ten sums over sets D in (4D.13) into the five

cases: D^k+1, D̂ i.j; D?k+l, D^i.j; Dak+l.i, D̂ j; D?k+l,j, D^i ;

D»k+l. Di.j.
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Doing so and then combining results for the ninth and tenth sums,

we have for the five cases that

+Ui(uD-uruj)-(uj+uk+l)(uD-u.j)+uj(uD-uruj)+u1uj

= Z (ZD/UD)/UD, (4D.82)
u u u

*«1(uD-u1-u.,-uk+l)-(u.j+uk+l)(uD-Uj)+uj(uD.u1-uj-uk+l)+u1uj

Z (zD/uD)/uk+1, (4D.83)
D3k+l U U k+1

Dsk+l.i " "

+(u1+uk+1)(uD-uruk+1)-(uD-u1)(u1+uk+1)]

= - Z (Zn/un)/ubi1. (4D.84)
H.1
fe



for

,

approach-
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40.5 Examples Allowing Exact Solution:

When the nonlinear system (40.64) of equations for the asymptotic mean

involves a polynomial in the mean components of degree less than 5, then an

exact algebraic solution exists for the asymptotic mean and, hence, for the

asymptotic posterior covariance matrix. In this section, we give three

examples. For the first two examples, we give exact algebraic solutions as

well as numerical evaluation for a data set. The second example requires

use of the MACSYMA symbolic computer system. We conclude the section with

a numerical example for the most general case for the trinomial distribution.

This general case requires solution of a 5-degree polynomial. For one data

set, we use MACSYMA to evaluate the five roots. The usual probability
3

constraints O^p.-l and £ p.=l, along with the nature of the data, preclude
1 . 1 = 1 n

all solutions but one.

Note that the analysis in this section holds for the posterior mode

and the Taylor-series approximate posterior mean as well as for the asymptotic

posterior mean, which is the maximum likelihood estimate. In general, we

do not use the exact solutions because they are too expensive and, as just

discussed, hold only for special cases. Instead, we use the EM iterative

algorithm of Dempster, Laird, and Rubin (1977) discussed in Section 2.3.2

to evaluate elements of the maximum likelihood estimate (hence, the asymptotic

posterior mean), posterior mode, and Taylor-series approximate posterior

mean.

For this section we drop the braces in the set notations (i>. Hence,

we write zi rather than z^--.-

For the first example, we calculate the asymptotic mean and covariance

matrix of p given incomplete trinomial data z=(zpZ2,z3,z12). Expression
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(4D.64) gives two equations

ul =

U2 =
(4D.87)

to solve for the two unknowns u, and u,,. Note that u,+u2=l-z-/n and that '

u,=l-u,-u =z./n. Solving (4D.87) for u. and u~ yields that

and (4D.88)

From (4D.65) and (4D.66), elements of the asymptotic inverse posterior

covariance matrix are

11 2S = n(u1+u3)/(u1u3)-z12u2/[u1(u1+u2) ],

S12 = n / U + z / d i + U ) 2 , (4D.89)

and

S22 = n(u2+u3)/(u2u3)-z12u1/[u2(u1+u2)2].

For data having values z1=105, z2=98, z3=200, and z12=200, evaluation

of (4D.88) and (4D.89) yields

Uj = .35, u2 = .32, u3 = .33,

and (4D.90)

S11 = 3,142.9, S12 = 2,272.8, and S22 = 3,224.3.

Hence, elements S.. of the asymptotic posterior covariance matrix S have
i j ~

values
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Sn = 6.4900"4, S12 = 4.574S"
4, and S22 = 6.3261"

4. (4D.91)

From (4D.91) the standard deviations /Ŝ .025 and v522=.025 are 7.1%

and 7.6% of u, and u,,, respectively.

For the next example, consider incomplete trinomial data z=(z,,z,,,

Z3'Z12'Z13^' From (4D-64) tne asymptotic mean is the solution of the

following nonlinear system of equations

Ul = (zl+z12Ul/U12+Z13Ul/U13)/n

and (4D.92)

U2 = (z2+z12u2/u!2^/n

where u3=l-u.-u2 [=(z-+z,3u3/û 3)/n]. Substituting for u3 in (4D.92)

and solving with MACSYMA yields in the following Table 4D.1 the three

algebraic solutions for u, and u_.

Substitution of data z^lOO, z2=200, z3=200, z12=200, z13=200, and

n=900 into the three solution sets yields the three solutions u^=u2=0;

u,=u2=l/3; and u.=-l/3, u2=2/3. Consideration of the constraint u.-O

eliminates the third solution. Consideration of the data eliminates the

first solution. Therefore, there is only one satisfactory solution;

Note that results given in Table 4D.1 were expensive to obtain and

utilized the maximum amount of computer memory available. Yet, these

results were for only two patterns of incomplete data. Further, each of

these patterns ({1,2} and {1,3}) involved only two categories (C1,C2 and

Cj.C., respectively). A total of only three variables (p^ p2, and p3)

was involved. Hence, an algebraic solution can be obtained only in very

special cases.
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For the last example, consider incomplete trinomial data z=(z,,z.,z-,
~ 1 C O

z,2> z io ' z po)- For elements of the asymptotic mean and inverse covariance

matrices, equations (4D.64) - (4D.66) yield

ul = (zl+Z12Ul/U12+Z13Ul/U13)/n'
(4D.93)

u2 = (yz12y VZ23U2/U23)/n' and

511 = nu13/(u1u3)-z23u2/(u3u23
2)-z12u2/(u1u12

2)-z13/(u1u3),

512 = n/u3+z12/u12
2-z13/(u3u13)-z23/(u3u23), (40.94)

S22 = nu23/(u2u3)-z13Ul/(u3u13
2)-z12u1/(u2u12

2)-z23/(u2u3),

respectively. Note that (4D.93) is a nonlinear system of equations

involving fifth powers of the means. Therefore, we do not obtain the

exact algebraic solution. However, suppose that ẑ =3,000, z2=4,400,

z3=10,000, z,2=5,000, z,3=3,400, and z23=4,000. Then, substituting

these values into (4D.93) and setting u3=l-u,-u2 yields, with the aid of

MACSYMA, the five sets of solutions:

Ul=u2=0; u^O.8151925, u2=0.852957431; û -0.52547874, u2=0.75930824;

u,=0.20089479, u0=0.29789739; and u^O.73063732, u0=-0.51744858.1 ^ l 3 d .
Consideration of the constraints u.-O and E u.=l eliminates all solutions

1 1=1 1
except the first and fourth. Consideration of the data eliminates the first

solution. Therefore, the only satisfactory solution to (4D.93) is

ux=.2008948, u2=.2978974, u3=.5012078. (4D.95)

Substituting solution (4D.95) into (4D.94) yields for the asymptotic

inverse covariance matrix S the elements
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SU = 1.40505, S12 = 5.99044, and S22 = 1.16385, (4D.96)

whence elements of the asymptotic covariance matrix S are

Sn = 9.1184'6, S12 =-4.6934"6, and $22 = 1.1008"5. (4D.97)
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APPENDIX 4E

ERROR PROPAGATION

In this appendix, we study the error incurred when the iterative so-

lution to an approximation

P = 6(p) (4E.1)

is considered as a solution to the function

P = 9(P) (4E.2)

being approximated. In particular, we consider the approximation (4E.1)

where

G^p) = (z.+v.+ Z Zppypy/m, l̂ k, (4E.3)

for the function (4E.2) where

g (p) = (z +v.)/m+ £ z /m{p./p_+E[82(r )/Op9p')U+h.o.t.}
u 1 u ~ Ig ~ "

(4E.4)

In (4E.4), "h.o.t." denotes Jiigher £rder jterms in the Taylor-series ex-

pansion of p about the exact posterior mean p [see Appendix 38], where,

however, evaluation of the partial derivatives is now made at p, not p.

The term (I"-|Q) denotes the matrix of ratios ri0
=P-|/P0'

Note that no element of the matrices of partial derivatives is a
2function of the sample size n. For example, elements of [9 (rln)/(3p8p')]*' w ~ ~ p

are given by, where 1 and j are elements of the set Q,

3
l = -2(pQ-Pl)/pQ,



-172-

82r1Q/(9Pl9Pj) = (2prpQ)/pQ
3,

and

2
For ĵ Q, 9 r1Q/(9p 9p.)=0 for any q.

From (4.13), elements of the posterior covariance matrix £ are of

magnitude 0(n ) and from Lemma 3B.2, elements of the higher order terms

are of successively decreasing order of magnitude. Therefore, the error

ei in (4E.4) is of order 0(n" ) for all i; i.e.,

e = (Hn'), l*i£k. (4E.5)

We use the following lemma and proof derived from Theorem 3, page

92, and Theorem 2, page 111, of Isaacson and Keller (1966):

Lemma 4E.1: Suppose, for l^i^k, that we have approximated p.=g.(j3) by

a function G.(p) in such a way that the error e. (p) in G.- (p) is bounded

by some value 6>0. Suppose, further, that we use the iterative scheme

given by

P(S+1) =G(£(S)) (4E.6)

to calculate a root of G(p). Note that (4E.6) can also be written as

+ f(s) (4E.7)

where | e . | ̂  6 for all i.

From Appendix 3B, one root of g.(p) in (4E.4) is the exact posterior

mean p, which we now study. Suppose that in all intervals Hp-pl^p*

where || p-p|L= max |p.-p.| and p>0, g(p) satisfies
~ - to i-i-k 1 n

k
max E |9g.(p)/9p.| * X < 1. (4E.8)

= ' ~ J
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Let the initial iterative estimate p^ ' be any point in the pn
~ (J

sphere Hp-plL~po for 0<pQ-p-6/(l-A). Then the iterates prs' of (4E.7)

lie in the interval Hp-pl^-P and

||p-p|L - 6/U-M + AS[pQ-6/(l-A)] (4E.9)

where A ->0 as s-*».

By assumption, ||p-p(0)|L̂ p Therefore, ||p-p(0) |Np +
~ ~ " ° U - W ~ ™ U

Assume that p^ 1^ for l*l*s-l are in ||p-p|̂ p. Then,

(4E.10)

* l | [g(p)-g(p ( s"1 )) ] |L+ «-

Now, for any two points p and p^s" ' in ||p-p|| -P, Taylor's theorem

yields that

g,(p)-9,(p) = S 3g.(C ( i ) ) /3p 1 - (P-PJ, for l^i^k, (4E.11)
i ^ i ~ i — 1 J J

where C is a point on the open line segment joining p and p. Thus,'

^' is in llp-pIL and

k ('

j=l 9i

k
. (4E'12)

- X ||p-p|L-

Since the inequality holds for each i,
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l |g(p)-g(p)IL- * II

Therefore, from (4E.10) and (4E.13),

* x 3Hp ( s"3 )-piL+

XS H p - p I + X" + ..- + A6 + 6 (4E.14)

XSpQ

XSpQ + <5/(l-X) - XS6/(1-X)

PQ

- p.

*(!} M*Therefore, all the iterates p ' lie in Mp-pl^-P and the iteration

process is defined. Finally, from the last inequality involving s,

IIP"P(S)'L ' S/U-M + AS[P0-<5/(l-X)]; (4E.15)

i.e., i ^
|p.-p. '\ * 6/(l-X) + X1'[p--6/(l-X)] (4E.16)1 1 u

for all 1-i-k.

This lemma shows that the exact posterior mean p satisfying (4E.4)
*w

can be approximated by the Taylor-series approximate posterior mean p

from (4E.3) to an accuracy determined essentially by the accuracy of the
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errors 6>e. (p )=g. ( (5 ) -G. (p ) in (4E.4). Thus, e.(p) small for all i
1 *v I «w I ^* l - x *

implies that p. -p. is small.

From (4E.5), e.(p)=0(n"1) for. all i. Thus, 6=0(n"1). From (4E.4),

k k ,
ax E |3g.(p)/3p.| = max{ E z /m[ E |3(p,/Pn)/3p.| + 0(n )]}
i j=l n ~ J i D3i U j=l n D J

max

= max E z /m[ | (p -p )/p 2|+ E |-6./P 2|1 + (Xr
i D3i u u i u T u

= max E z /m[(p -fi.)/L2+ E P./p
U U n U

(4E.17)

= max E zD/m{l/pD+[a(D)-2]p./PD
2} + Ofn"1)

for 3(0) the number of elements in D.

In general, there is no guarantee that there exists a neighborhood

of p in which (4E.8) is satisfied everywhere within the neighborhood.

If there is, we call the largest such neighborhood the epm (^xact-£oster-

ior-mean) convergence region. [See the following Figure 4E.1 for an

illustration of an epm convergence region.]

Note, however, that for the trinomial distribution 8(D)=2. Hence,
r\

the second term [B(D)-2]p./pD in (4E.17) is zero and

k , . 1
max E ISg^pJ/Sp-l = max E (zD/m)/pD + 0(O-

Further, recall from Sections 1.2, 2.2.3, and 4D.3 that z can be consid-

ered as coming from related multinomial populations. For example, z=

(z-, ,z?,Zo,z1?) can be considered as coming from a trinomial distribution

with v,=z,, V?=Z9> V3 and a binomial distribution with yi=Zip and y3'
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P0=p-6/(l-A)

Figure 4E.1 GUARANTEED-CONVERGENCE REGION FOR THE EXACT POSTERIOR MEAN
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where v3+y3=z3. For ni2=zl2+y3' then' 212/'n = (2i2/ni2^n1
-1/2xp = (n1?/n)p,?+0 (n ), where p,? is the maximum likelihood estimate

Therefore, for any incompletely specified data zn
"

zD/m = (nD/n)pD + Op(rf
±/<:), (4E..18)

so that, for the trinomial distribution, we can write (4E.17) as
k

max Z |3g.(p)/3p | = max E (n_/n)pn/p + 0 (n"). (4E.19)
D D D p

Because £ nn<n> 2 n_/n<l. Therefore, for large enough sample size n,

k A .
the bound X i max £ |3g.(p)/3p.| is less than 1 if pD is close enough to

p . Since for all values of p (which never has zero components because
U -«

the prior parameter v never has zero components) there does exist a neigh-

borhood such that Pn/PD will be close to 1 for all values of jL in this

neighborhood, for the trinomial distribution there exists an epm conver-

gence region. For higher dimensions, however, there need not exist an

epm convergence region and we give an example of such a case in the main

text, Section 4.3.2.

Observe that, anytime (4E.19) is satisfied, the term 6/(l-X) in

(4E.15) is 0(n"1). Since PQ is a constant, 6/(l-X)=0(n"
1), X<1, and, in

particular, s can be assumed as large as desired, the term X [pQ-6/(l-X)]

in (4E.15) can be assumed to be zero. In particular, s can be assumed

large enough that Xs is small enough that this term is of magnitude no

greater than 0(n" ).

Therefore, if there exists a neighborhood IJp-pl^p around p such

that X in (4E.8) is satisfied and, further, the initial iterative esti-
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mate jr ' is chosen in the neighborhood Hp-pl^P-P-iS/U-M-P, then the

error in the Taylor-series approximate posterior mean p is 0(n~ ), i.e.,

P = P. + Otn'1). (4E.20)
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Comments: Since 6=0(n ), for large enough sample sizes, the Pn neighbor-

hood can be closely approximated by the p neighborhood. In turn, we can

determine whether the iterates can be expected to be within the epm con-

vergence region bounded by p, where condition (4E.8) must hold, by check-

ing, first, whether the following inequality

k
max £ |3g.(p)/3p.| = max £ zh/m{l/pn

(s)+[B(D)-2]̂ .(s)/[?n
(s)]2} < 1 (4E.21)

i j=l n ~ J i Dsi U U 1 D

. (s)
holds for every iterate p. , q-s-t, for t+1 the number of iterations

required for the convergence condition to be met and q the number of the

first iteration that begins an unbroken succession of iterations satisfy-

ing (4E.21). If (4E.21) does not successively hold after some number of

iterations, then different initial estimates can be tried and inequality

(4E.21) reevaluated.

Second, if (4E.21) holds for sets of iterates converging to different

values [i.e., to different roots of (4E.4)], more than one of which is in

P. , we must determine which root, if any, is in the epm convergence region.

[See Section 4D.5 for two examples of multiple roots, one having three

roots and the other having five roots, for the asymptotic posterior mean

for incomplete trinomial data.] As discussed in the main text, Section

4.3.2, the global maximum within P. is conjectured to be the root that is

in the epm convergence region or at least closest to p. Hence, of those

iteration sequences satisfying (4E.21) and converging to different roots

in P. , we choose that one for which the likelihood function
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is a maximum.

Note that the conditions on the partial derivatives and initial

iterative estimate are sufficient but not necessary. Finally, we give

three examples that show that Lemma 4E.1 gives very conservative bounds

on the error ||p -PlL anc' on ^ne Quaranteed-convergence neighborhood of

p. For these examples we use the data z=(2,5,6,4,2,0) given in Section

2.2.3 where we calculated the exact posterior mean as p=(.2412,.3849,.3739).

For the first example, consider the neighborhood ||p-p|[)o<p=.ll of p.

For all probabilities p in this p neighborhood, max Z |9g.(p)/ap.|=(4/22)
i D3i ~ J

/p,2+(2/22)/p13 < .56 < 1 and.a bound on the error made by approximating

the exact posterior mean by a Taylor-series expansion is 6=0.035. Thus,

6/(l-X)=0.080. Suppose that we choose an initial iterative estimate p '

in the region bounded by p0-p-6/(l-X)=.ll-.08=.05. Then the iteration pro-

cess is guaranteed to converge to within 6/(l-A)=.08 of the exact posterior

mean. However, for any initial iterative probability (including that one

whose three components each differ from the three corresponding components

of p by .11) chosen within this PQ neighborhood, the maximum difference

between the converged iterative estimate and the exact posterior mean was

0.003, more than 25 times smaller than the 6/(l-X)=.080 error bound given

by Theorem 4E.1.

Now consider as an initial iterative estimate for p=(.2412,.3849,.3739)

the value p^ '=(.05,.10,.85). For this value,

2
Z |3g.(P)/3p.| = (4/22)/.15 + (2/22)7.90 = 1.21 +.10 + 1.31 > 1.
j=l 1 ~ J

Hence, conditions of Lemma 4E.1 are not satisfied. However, use of this
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initial iterative estimate gives successive iterates, as shown in the

following Table 4E.1, that do converge .to within a small error of p.

The initial iterative estimate jr ' failed condition (4E.8) because

p,?=.15 was smaller than Z1p/m=(n1?/m)(p.,,/p1?). Note from this example

that small values of jL will be particularly troublesome in keeping the

term (zD/m)/pD=(nD/m)pD/PD less than 1.

In this example ||p^°'-pUjo=max(.19,.28,.48) = .48. Thus, the largest

value of p for a guaranteed-convergence neighborhood of p must be smaller

than .48. In the next example we choose as an initial iterative estimate

pr ' a probability jr '=(.90,.07,.03) that is even further away from p.

For this estimate, ||jr°'-p|lx)=max(.66,.31>.34) = .66. [See also Figure 4E.2.]

Since .66>.48 of the last example, this initial iterative estimate cannot

be in a guaranteed-convergence neighborhood of p. Yet, for this estimate,

max £ |3g.(P)/3p.| = (4/22)/.97+(2/22).93 = .29 < 1.
i j=l n ~ J

Futher, as shown in Table 4E.1, the sequence of iterates arising from this

initial iterative estimate also converges to within a small error of the

exact posterior mean.
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TABLE 4E.1

CONVERGENCE EXAMPLES FOR OUTSIDE1 INITIAL ESTIMATES

SECOND EXAMPLE THIRD EXAMPLE

e2

0

i
2

3

4

5

6

7

<*!>(,

.0500

.2020

.2283

.2374

.2391

.2413

.2421

.2420

(~P2)3

.1000

.3939

.3929

.3877

.3870

.3851

.3845

.3846

<Me
.9000

.3930

.2917

.2598

.2488

.2448

.2433

.2428

•

.0700

.2858

.3493

.3718

.3798

.3826

.3836

.3839

1
Initial iterative estimates chosen outside the
guaranteed-convergence sphere of Lemma 4E.1
for the exact posterior mean p=(.2412,.3849,.3739)

2
Iteration number



CHAPTER 5

SMALL-SAMPLE STUDIES OF APPROXIMATIONS FOR POSTERIOR MOMENTS

AND OF ESTIMATORS FOR MINIMIZING QUADRATIC LOSS

5.1 Introduction:

In the last chapter, we showed that for large sample sizes the

Taylor-series approximations should be very close to corresponding exact

posterior moments. We now consider how well these asymptotic properties

hold in small- and medium-size samples. We also compare the Taylor-

series approximations with the posterior mode and maximum-likelihood

estimate to determine which best approximates the exact posterior mean

for these smaller sample sizes. Although all three approximations will

be very close for very large sample sizes, we expect differences in the

most commonly encountered sample sizes.

We then turn to our main interest and report which of these three

estimators best minimizes expected quadratic loss (risk) for specified
T.1

values of the Dirichlet probabilities. Note that we do not include the

exact posterior mean in the risk study. Results from the approximation

part of this small-sample study showed that there was no difference be-

tween the Taylor-series approximation and the exact posterior mean that

would alter conclusions from using the Taylor-series approximation for

the exact posterior mean. Since the exact posterior mean becomes in-

creasingly expensive as the sample size and/or percentage of incomplete

data increases, we used the Taylor-series approximation for the exact

posterior mean. Therefore, in our mnemonics, we refer to the Taylor-

series approximation as APM (approximate j>psterior mean).
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In Figure 5.0 we give expressions for the three approximations for

the exact posterior mean and estimators for minimizing quadratic loss.

These equations were presented in Chapter 1 or derived in Chapter 3.

The mnemonics ARM, PMD (posterior mode), and MLE (maximum Vikelihood

estimate) in parenthesis are used throughout these next three chapters.

They are especially useful in presenting results in the next two chapters.

For the risk study, we attach suffixes RO, Rl, and R2 to these mnemonics

to denote the three robustness studies for use of the original, uniform,

and perturbed priors, respectively, in the Bayesian estimators.

In summary, we are interested in four main questions: (1) how

well the Taylor-series expansions approximate the exact posterior mean

and covariance matrices; (2) which of three estimators (Taylor-series,

posterior mode, and maximum likelihood estimate) best approximates the

exact posterior mean; (3) which of these three estimators best minimi-

zes risk; and (4) how robust results from (3) are to use of the wrong

prior in the Bayesian estimators. Because we were unable to solve these

problems theoretically, we used Monte-Carlo simulation studies. Hence,

results will be only indicative, not conclusive.

In this chapter, we discuss designs and computational procedures

for two Monte-Carlo studies. In the next two chapters, we discuss

results from these studies.
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FIGURE 5.0

APPROXIMATIONS FOR EXACT POSTERIOR MEAN

AND ESTIMATORS FOR QUADRATIC LOSS

Taylor-Series (APM)

k+1
P, = [z +v.+ I (S./PJ z ]/[n+ I v.]

n U U = J

Posterior Mode (PMD)

k+1
p = [ z + v . - l + I (p /pj zj/[n+ Z v.-(k-H)]

n D D = J

Maximum Likelihood (MLE)

ZD ] /n

Note that k=2 for trinomial simulation study. Also note that

braces in z,., are henceforth dropped.
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5.2 Special Notation and Mnemonics:

Notation:

t" h
p. i element of Dirichlet generator probability vector

P.J i element of exact posterior mean

P.J i element of Taylor-series (T.S.) approximate posterior mean (APM)

f>. i element of maximum likelihood estimate (MLE)
/S. J.L

p. i element of posterior mode (PMD)

P.J i element of complete-data maximum likelihood estimate (used
mainly for variance reduction in estimating mean squared error)

• th •p. i element of dummy estimator p, which is used when describing
properties or formula that pertain to more than one of the above
estimators

/s.

e. P--P- for p. any of above estimators p., p\, p., and p.
/N

e. p.-p. for p. any of above estimators p., p\, and p.

Note that we are using p to denote both any value of the simplex

P2 = {(P1SP2>P3)
: °-Pi»P2»P3~

1; P]+P2+P3=1} and a particular value of P,,.

The context in which p is used should make clear the particular meaning.

Further, note that both p and p are Dirichlet probabilities. The p

either is set to the expected value of the Dirichlet distribution of p

given v (note Design 1 in following Section 5.4) or is generated from
*s»

this distribution (Design 2). In either case, we shall refer to p as

the generator. The p refers to the posterior mean of the Dirichlet
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distribution of p given the incomplete data z. Thus, for Design 1,
*w *v

p is the prior Dirichlet mean and p, the posterior Dirichlet mean.

Mnemonics_: Note that the following mnemonics might appear in lower-case,

as well as capital, letters:

ARC Taylor-series approximate posterior cpvariance

ARM Taylor-series approximate posterior mean

EPC .exact posterior cpvariance

EPM exact £osterior mean

NILE maximum Vikelihood estimate

MSE mean squared error

RID £ercentage of incomplete data

PMD pjosterior mode

SS s_ample size
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5.3 Criteria of Goodness:

To determine how good an estimator was either for estimating an

exact posterior moment or for minimizing quadratic loss, we used several

criteria. The main criterion for judging the accuracy of approximations

for the exact posterior moments was percent relative difference. To

judge among the estimators for estimating the exact posterior mean, we

also used mean squared error E[(p-p)'(p-p) ]. Of course, for judging

which estimator best minimized quadratic loss, the criterion was the

mean squared error E[(p-p)'(p-p)]. Estimates of mean squared error

(mse) are discussed in Section 5.9.

Additional measures of goodness were also considered in Chapter 6

where we studied the estimators in detail. For example, among addi-

tional calculations were the frequency distributions of the number of

iterations, deviations, and percentage relative difference. Criterion

of goodness are included in the listing of tables in Chapters 6 and 7.
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5.4 Computer:

Computers used for the simulation were a CDC (Control Data Corpora-

tion) 6600 and Cyber 175 with 60-bit words. Single-precision calcula-

tions were accurate to about 14.5 significant figures; double-precision

calculations, to 29. The programing language was Fortran Extended,

Version 4.6. To minimize execution cost, recommendations from the NASA,

Langley Research Center "Computer Programing Manual", (1975,vl,sect.8}

were incorporated.

Main incorporations were the passing of parameters among programs

through COMMON rather than calling sequences and a reduction in a num-

ber of otherwise large DO-LOOP indices. Owing to the latter, program

statements and number of variables increased. Number of dimensions on

a variable decreased. Among other inclusions were use of "IF (A-B)

10,20,20" instead of "IF (A.GE.B) 20,10", collapsed dimensioning for

array initializations, and special procedures for arithmetic operations.

Unless otherwise noted, all programs were written by the author.

A listing of most of these programs is given in Credeur (1978). An

index precedes the listing.
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5.5 Factors In Experiments:

In investigating the four issues outlined in the Introduction, we

were interested in the effects of variation in prior parameter v, the

Dirichlet probabilities arising from the distribution of p given v,

sample size (SS), and percentage of incomplete data (PID).

Owing to cost constraints, we limited the number of these varia-

tions. For percentage of incomplete data (PID) we chose 15 and 40. We

already knew from Chapter 3 that for 0% incomplete data, the Taylor-

series approximations (APM and APC) exactly equaled the posterior mean

and posterior covariance, respectively, whereas the posterior-mode

(PMD) and maximum-likelihood-estimate (MLE) approximations did not.

Thus, for investigating the first two introductory questions concerning

estimators for the exact posterior mean and covariance (EPM and EPC)

matrices, we essentially had PID for values 0, 15, and 40.

For sample size (SS) we chose 25 and 50. For these values and

ranges of PID we were able to calculate the exact posterior mean and

covariance matrices. As noted in Chapter 2, for sample sizes much

larger than 50, calculations for the exact values would be expensive,

especially for those cases in which PID=40.

To set values of the prior parameter v, we first considered values

we wanted for the Dirichlet probabilities arising from the distribution

of p given the prior. We wanted roughly to cover the range of probabili-

ties from (0,0,1) to (1/3,1/3,1/3). We picked four values (.01,.01,.98),

(.10,.10,.80), (.20,.30,.50), and (1/3,1/3,1/3) as focal points to be
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investigated. Now, usually one has a prior because one has a prior

sample. If the size of the prior sample is small relative to the size

of the current sample, then the prior has little effect on the estimators,

If the prior-sample size is relatively large, the current data has

little effect. Therefore, because we chose current sample sizes of 25

and 50, we set the size of the prior data at 10, two-fifths and one-

fifth the current information, respectively. Thus, values of the prior

parameter v were chosen as 10 times the prior mean we wanted.
3 3

That is, since E(p.|v)=v-/ £ v- and z v-=10, then
1 ~ n j=l J j=l J

v. = 10 x E(p.|v). (5.1)

Setting E(p|v) to the four focal points gave values of v as (.!,.!,9.8),

(1,1,8), (2,3,5), and (10/3,10/3,10/3).

The simulation study was done in two stages, as follows. In the

first stage, which we called Design 1, we fixed the value of the

Dirichlet probability at the expected value of the distribution of p

given each one of the four prior parameters v. In the second, Design 2,

we generated 10 values of the Dirichlet probability from each of the

fixed values of v. Designs 1 and 2 are illustrated in Figures 5.1 and

5.2, respectively. A summary design is given as Figure 5.3.

Results from Design 1 allowed at least some of the four Introductory

questions, especially those concerning the exact-posterior-moments com-

parisons to be satisfactorily answered. Because cost was less, more

details were studied. The second design, Design 2, allowed us to

determine how Design 1 results were affected by our choosing a special

probability, the expected value of p given v. As we moved away from the
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FIGURE 5.1

DESIGN 1

LEVEL 8
Dirichlet
p variation*

LEVEL C
% incomplete
data variation

LEVEL D
sample size
variation

t of
levels

[\>=(0.1,0.1,9.8)] [v=(1.0,1.0,8.0)l [v=(2.0,3.0.5.0)] [v=(10/3,10/3,10/3)1

gl= (.01,.01,.98) p2=(.10..10,.80) p3*(.20,.30,.50) p4=(l/3,l/3,l/3)

LEVEL E
trinomial-data
generation
x = complete data

z = incomplete data

55=50

PID=15 PID=40

(x,z)---(x,z) (x.z)---(x.z)
2 replic.;
200 trials
per replic.

level A is not present in this design (see Design 2 and Summary Design)

p is expected value of Dirichlet probability distribution given v

This design yields 6400 [=4x2x2x200*2repl] data sets and requires generation of 240,000 [=4*2x(25+50)*200*2repl]
uniform random numbers.

This design constitutes sets of full factorials:

a. for epm comparisons: 4x2 x3 with 2 replications per cell (last factor level 3 refers to estimators apm, pmd, and mle)
b. for quadratic-loss comparisons: 4x2 x3 with two replications per cell (last factor level 3 refers to estimators apm,

pmd, and mle)
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FIGURE 5.2

DESIGN 2

I of
levels

LEVEL A v*(0.1.0.1.9.8)
prior-parameter
var ia t ion

v=(2.0,3.0,5.0)

LEVEL B
Dirichlet
p generation

, LEVEL C
X incomplete-
data variation

LEVEL D
sample size
variation

LEVEL E
trinomial-data
oen^ration
x = complete data

z = incomplete data

v=(10/3,10/3,10/3)

10

2 replic.;
200 trials
per replic.

This design yields 64,000 l=4'10»2'2'200'2repl) data sets and requires generation of 2,400,120 random numbers Me.; 120=4«3*>i
variables for 40 3-dimensional Dirichlet random variables + 2,400,000 = 4xlO*2'(25*50)*200x2repl. uniform random numbers).

120=4«3*x!0 gamma random

each Dirichlet p requires generation of 3 gamma random variables

This design constitutes sets of nested factorials:

a. for epm comparisons: 4-10x2 x3 with two replications per cell

b. for quadratic loss: 4-10'2 <3 with two replications per cell
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FIGURE 5.3

SUMMARY DESIGN

LEVEL A v=(0.1,0.1,9.8)
prior-parameter
variation

LEVEL B
Oirichlet
p generation

LEVEL C
X incomplete-
data variation

LEVEL D
sample size
variation

P.! ••• 810 P.exp

LEVEL E
trinomial-data
generation
x = complete data

z = incomplete data

v=(l.0,1.0,8.0) =̂(2.0,3.0,5.0) v=(10/3,10/3,10/3)

MX A

SS=25 SS=50

PID=15 PI 0=40

(x,z) ••• (x,z)(x,z (x.z)

# of
levels

10+1

2 replic.;
200 trials
per replic.

Total designs yield 70,400 [=4xllx2x2x200x2replic] data sets and require generation of 2,640,120 random numbers
[ie.; 120=4x3*xlO gamma random variables for 40 3-dimensional Dirichlets +2,640,000 = 4xllx2x(25+50)x200x2repli(
uniform ranrinm mjmbpr«;l.

each Dirichlet p requires generation of 3 gamma random variables
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expected value in Design 2, using probabilities randomly generated

from fixed v, how did Design 1 results change?

To measure the variation in the probabilities p associated with a

prior v, define a centrality norm

2 3
C(p) = Z Z (p,-pj. (5.2)

Values of C(p) for Design 1 are given in the following Table 5.1. Note

from Table 5.1 that as p moves from a corner of Pg toward its center,

C(p) decreases from 2.00 to 0. Centrality measures for generated

Dirichlet probabilities in Design 2 are given in Table 7.1 in Chapter 7.

TABLE 5.1

CENTRALITY MEASURES FOR DESIGN 1

(0.1,

(1.0,

(2.0,

(10/3

v

0.1

1.0

3.0

,9

,8

,5

,10/3

.8)

.0)

.0)

,10/3)

(

(

(

E

.01

.10

.20

(1/3
*

(Plv

,.01

,.10

,.30

,1/3

)

,.98)

,.80)

,.50)

,1/3)

C(p)

1.88

.98

.14

.00

Factors SS and PID were quantitative; we considered v and p to be

qualitative. In Design 1 all factors were fixed. In Design 2, p was

random and remaining factors were fixed.

Once we fixed the factor levels, we generated the trinomial data.

In the next section, we discuss how we chose the number of trinomial

simulations and, in Section 5.7, how we generated the data. To allow a
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control van'ate and thus a better mean-squared-error (mse) estimate

for the risk study, we generated complete as well as incomplete data.

For the exploratory robustness study, the two priors used besides

the original v prior were the uniform prior and a perturbed prior.

Values of both are given in the following Table 5.2. The uniform prior

is frequently used when one is uncertain of previous information. It

gives equal weight to all three trinomial categories. The perturbed

prior not only differs in magnitude from the correct prior v but does

so in a skewed manner. The change to the first component is

Robustness Set

RO

Rl

R2

TABLE 5.2

PRIORS FOR ROBUSTNESS

Type

original

uniform

perturbed

STUDY

Value

v

(1.1.1)

10x[v/10+(.09,.05,-.14)]

approximately twice that to the second component and two-thirds that

to the third component. The first two components increase; the third

decreases.
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5.6 Determination of Number of Simulation Trials and Replications;

Because mean squared error was the major overall "goodness" measure,

the main criterion for choosing the number of trinomial simulation trials

was that the standard errors of the average estimated mean squared errors

be small relative to the difference between the mean squared errors. For

this purpose, 200 trials was enough; for just comparisons among approx-

imations for the exact posterior mean, fewer trials would have been

needed.

As noted in Section 5.3, we were also interested in the deviations

of the estimators from the exact posterior mean (the "EPM deviations").

One deviation, or error, measure was the average. However, the number

of simulation trials needed to make the standard errors of the average

deviations small relative to the difference between the average devia-

tions was prohibitively expensive. Results of Design 1 gave that the

average APM deviation was a couple orders of magnitude smaller than the

average PMD and MLE deviations. Hence, the difference between it and

either of the average PMD or MLE errors approximately equaled the PMD

or MLE deviation, respectively. However, even for a number of trials

as large as 200, the standard error of the average deviation roughly

equaled the respective average deviation. (All EPM deviations averaged

zero to varying number of decimal places.) Therefore, the APM-PMD=PMD

and APM-MLE-MLE differences were not always larger than the standard

errors of the PMD and MLE average deviations. (They were, however,

much larger than the standard errors for the average APM deviation.)
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To estimate the experimental error in estimating averages,

including the mean squared errors, we repeated each set of 200 trinomial

simulation trials once. [Recall Figures 5.1 - 5.3.] Cost considera-

tions precluded more than two replications. Although each of the 200

trinomial simulations can be called a replication, for differentiation,

we reserve this term for these two repetitions. The two replications

also provided another check that 200 trinomial simulations were enough.

There was little difference between results for each of the two

replications.

To determine the number of simulation trials to use in generating

Dirichlet probabilities in Design 2, we were guided mainly by cost

constraints. We took only 10 trials. Results of Chapter 7 show how

surprisingly good 10 trials were in terms of theoretical expectations.
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5.7 Data Generation;

For Design 1 we must generate complete and incomplete trinomial

data. For Design 2 we must also generate Dirichlet probabilities.

5.7.1 Uniform Rand£m^Number_ Generatpir:

As do most other generator algorithms* algorithms to generate

trinomial and Dirichlet data depend on a uniform random-number generator.

For this generator, we used the multiplicative congruential generator

x. = 43490275647445 x^ mod(248) (5.3)

from Ahrens and Dieter (1974,p223). Uniformly distributed variables u.

were then calculated by

u1 = x./2
48. (5.4)

The multiplier 43490275647445 is congruent 5 mod(8); therefore,

from Knuth (1969,pl8,93), the generator (5.3) has maximum period of 2

and we can apply the Spectral test of Coveyou and Macpherson (1967).

The Spectral test is currently the most powerful test of the randomness

of a random-number generator. By using a computer program written by

Golder (1976,p!73) with corrections by Hoaglin and King (1978), we

calculated the Spectral Numbers c^, 2*i*5, as

C2=2.839, C3=2.095, C4=1.819, C5=0.987. (5.5)

Since C2, C3> and C4 all exceed 1 and C5 is almost 1, the generator is

very good in terms of the Spectral test, a theoretical test. Therefore,

it is most likely good in terms of any empirical tests.
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As an empirical check on the generator, however, we ran a number

of 95% Confidence-Interval tests on the sample means and standard

deviations, chi-square tests, serial -correlation tests, Kolmogorov-

Smirnov tests on the cumulative frequency, and did plots on the density

and the cumulative distribution. The generator did well on all.

5.7.2 D1 ri chjiet Random^Numbeir Generator :

To generate a Dirichlet random vector, we used the following

theorem from Wilks (1963,pl79):

"If x, ..... xk+. are independent random variables having gamma distri-

butions G(VI) .....
 G(vk+i)» then

y. = x./(x1+...+xk+1), l̂ k, (5.6)

(y,t...»yk) has the k-variate Dirichlet distribution D(v. .....
 vk;

Therefore, to obtain one random vector p, from a Dirichlet distribution

with k=2, we must generate three independent gamma random variables. To

do so, we used algorithm GT from Ahrens and Dieter (1974,p229).

We checked the Ahrens-Dieter GT algorithm by doing 95% confidence

limits on the sample means and standard deviations, plots on the density

and cumulative frequency, and Kolmogorov-Smirnov tests on the cumulative

distribution. We then performed these same tests on the Dirichlet

probabilities p calculated from these gammas.

Other than the standard deviations, the generators performed well.

As shown in the following Table 5.3, for the gamma random variables, the
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TABLE 5.3

PERCENT REJECTIONS IN 95% NORMAL1 CONFIDENCE INTERVALS FOR GAMMA AND MARGINAL DIRICHLET
RANDOM VARIABLES

(300 TRIALS, 200 OBSERVATIONS PER TRIAL, EXPECTED PERCENTAGE IS 5)

PRIOR PARAMETER SEED GENERATOR Ml M2 M3 SD1 SD2 SD3

(0.1,3.5,6.

(0.1,0.1,9.

(0.1,0.1,9.

(0.5,0.5,9.

(1.0,1.0,8.

(10/3,10/3,

(2.5,3.0,4.

4)

8)

8)

0)

0)

10/3)

5)

21153

21197

21153

21143

31153

21153

22213

21113

21111

21313

21153

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

Gamma
Dirichlet

5%2
53

5
5

4
3

4
5

2
3

5
2

3
4

6
5

5
5

3
3

2
5

3%
4

4
5

6
5

4
5

5
4

5
5

4
7

6
4

6
5

6
2

4
3

4%
4

4
5

5
5

4
5

4
4

4
3

3
6

2
3

4
5

3
2

4
5

77%
69

71
68

73
68

44
34

26
19

14
3

20
3

17
6

18
6

14
3

15
4

11%*
3

70
69

72
68

44
31

35
20

16
4

17
3

19
6

21
5

16
4

13
2

9%
3

9
45

9
56

10
17

13
9

17
5

15
3

13
5

10
2

13
1

11
3

Normal approximation is used for the confidence intervals.

In 300 trials (sets of generations), 200 observations per trial, from gamma(O.l),
the sample mean Ml (calculated over 200 observations) fell outside the 95% normal
confidence interval 5% of the time (approximately 15 of the 300 trials).

'in 300 trials, 200 observations per trial, from beta(0.1,3.5+6.4)=beta(0.1,9.9),
the sample mean Ml fell outside the 95% normal confidence intervals 5% of the
time.

i>
In 300 trials, 200 observations per trial, from gamma(3.5), the sample standard
deviation (calculated over 200 observations) fell outside the 95% normal confidence
intervals 11% of the time.
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standard deviations routinely exceeded the 95% confidence limits more

than 5% of the time and became increasingly worse as we moved from 10/3

in the center of the 2-dimensional simplex P~ to 0.1 or 9.8 at a corner.

The same trend was observed for standard deviations of the marginal

Dirichlets except that the percentage of rejections was much smaller and

the standard deviations were good for points away from the boundary.

This behavior may be due either to (1) a poor fit of the generated data

to the theoretical curve or (2) to the normal approximation, which we

used, for the confidence intervals for the standard deviations being

poor for the sample sizes we used.

For three reasons, we accepted the latter explanation. The first

reason is that, as noted, for probabilities away from the boundary,

marginals from those Dirichlet random vectors generated from these gammas

did have standard deviations falling in the 95% confidence intervals all

but 5% of the time. [See results in Table 5.3 for non-boundary probab-

ilities corresponding to prior parameters 3.5, 6.4, 10/3, 2.5, 3.0, and

4.5.] The second reason is that the gamma and the Dirichlet marginals

performed well on the other tests (and the gamma generator had been

studied by Ahrens and Dieter). The third reason is that the sample

kurtosis for those random variables near a boundary was very high.

Therefore, from Snedecor and Cochran (1968,p.89), the variance of the

sample variance was much larger than it would have been had the popula-

tion been normal. One calculation gave that the variance of the sample

variance over 300 trials, 200 observations per trial, for a gamma

generation of 0.1, was about 16.5 times as large as it would be in a

normal population. Hence, we could not expect the normal approximation
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for the 95% confidence l imits for the standard deviations to be good

in these cases.

Therefore, we accept reason (2) [that the normal approximation for

the 95% confidence intervals for the standard deviations was poor] for so

many standard deviations fa l l ing outside the 95% confidence intervals,

especially for boundary probabilit ies corresponding to prior parameters

0.1 and 9.8. We did not calculate the exact standard deviations (and

then test them). However, since the remaining tests (and Ahrens and

Dieter's work for the gamma) showed that the gamma and, more important,

the resulting Dirichlet variables were well generated, we considered

the Dirichlet random-number generator to be good.

5.7.3 lrinp_mial_ Random^Number. Generator:

Given some value of p and some percentage PID of incomplete data,

we next generated the trinomial complete data x=(x,,x2,x3) and incomplete

data 2=(z1,z2,z3,212,213,z23).

We first recalled that PID/100 is simply the probability that an

observation was incompletely classified. Second, given that an observa-

tion was incomplete, the probability that it was unclassified between C.

and C2 (i.e., the observation fell in C12) was (P1
+P2)/[(P1+P2)+(P1+P3)

+(p2+P3)]=(p,+p2)/2. Therefore, the probability that an observation was

incomplete and simultaneously fell in C,2 was (PID/100)(p1+p2)/2.

Similarly, probabilities for C13 and C23 were (PID/100)(p1+p2)/2 and

(PID/100)(p2+p3)/2, respectively, and the probability that an observation

was completely specified and fell in Cj, C2, or C3 was (l-PID/lOOjp.,
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(l-PID/100)p2, or (l-PID/100)p3, respectively.

Therefore, to generate incomplete data z according to the likelihood

equation (2.8) for n observations, we could draw n uniform random numbers

ui, 1-i-n. We would then use these six probabilities to establish inter-

vals that determined where an observation fell. For example, if

O^u^d-PID/lOOjpj, we would increment z1 by one and, if (l-PID/100)^ui<;

(!-PID/100)+(p1+p2)/2
xPID/100, we would increment z!2 by one.

However, we also wanted to generate complete trinomial data x for

use in Section 5.9. Therefore, we had to divide z!2, z!3, and z23 into

proportions that fell into completely specified categories C,, Cp, and

C3. To do so, we noted that if an observation fell in C,2, then with

probability p,/(p..+p2) it belonged in C^; similarly, for C13 and Cpo-

Therefore, we divided the z!2, z!3, and z23 intervals, exampled in the

last paragraph, into two by the ratios Pj/Cpj+Po). Pj/Cpi+P^K and

P2/(p2+P3), respectively.

Finally, we set to 0 each element of the complete data x and the

incomplete data z. We then created dummy variables y,, y2, w,, w3, v2,

and v3 and initialized them also to 0. From the uniform-random-number

generator described at the beginning of this section, we drew n uniform

random numbers u., 1-i-n. Then, letting h=PID/100 and p. .=p.+p.,
1 I J 1 J
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if add 1 to

Pl(l-h)*u.<p12d-h) z2
P12(l-h)*u.<l-h z3

l-h(l-Pl2/2)^.<l-h(l-Pl-p2/2)

l-h/2(l-p12)*u.<l v3.

At the end of this process we calculated the complete data x as

xi =
X2 = 22+y2+v2 • (5.7)

X3 = Z3+W3+V3«

and the incomplete data z as

Zl = Zl Z12

Z3 = Z3 Z23 = V2+V3 •

(5.8)

This trinomial random-number generator performed well on the same

kind of empirical tests used for the uniform, gamma, and Dirichlet

random-number generators. Note that to perform empirical tests on these

four generators, we used routines from the NASA, Langley Research Center,

and the IMSL (international Mathematical and Statistical Libraries, Inc.)

computer- pro gram libraries.
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5.8 Iteration Considerations:

In this section we discuss the following considerations concerning

the iterative algorithms: initial estimate, convergence criterion,

problems, and conditions for convergence.
*

Note here that we used the method that is noniterative in a for

approximating elements of the exact posterior covariance matrix.

5.8.1 Initial Estimate:

To use iterative algorithms for the maximum likelihood estimate,

posterior mode, and Taylor-series approximated posterior mean, we needed

initial estimates. Because a major concern of this work was approximating

the exact posterior mean, we used the exact posterior mean for the ini-

tial estimate. Thus, the number of iterations for convergence was

another measure of which estimator best approximated the exact posterior

mean.

5.8.2 Donve_rg_en_ce_ Crrteri_on_:

In general, the convergence criterion was

abs(p.U+1)-Pi
U))/Pi

U) ^ 0.0001 for 1-1.2 (5.9)

for p. denoting one of APM, PMD, and MLE and A denoting the number of

iterations.

This criterion gave stability in the pi estimate to at least three

significant figures for all cases and to at least four significant

figures for nearly all cases. The expected p for Design 1 were ordered



-208-

so that the first two of the three components were less than 0.50.

Hence, for most cases the absolute difference between successive itera-

tions for the first two components of an estimate was less than

0.0001x0.50 = 0.00005 and thus the estimate was stable to the fourth

significant figure. The exceptions, which were accurate to the third

significant figure, involved those relatively rare cases resulting from

generated trinomial data yielding estimators having one of their first

two components greater than 0.50.

An artificial example of these exceptions would be trinomial data

generated from p9=(.20,.30,.50) that yielded an estimator p'J^=(.10,.60,
*w£ -w

.30). The largest absolute difference (acceptable for convergence)

between p« and jL ', the second component of p^ ', would be

.00006 - .0001; ie, the fourth significant figure would be off by at

most 1.

To avoid division by 0 (infinite result) and other small numbers
• (l)(possibly long iterations), whenever p. ' was less than or equal to

0.10, we used the convergence criterion

. - . * 0.00001 for 1=1,2. (5.10)

This criterion was equivalent to the first one (5.9) for p^ ' = 0.10.

5.8.3 Cpnd j.t ipns_f orjCon yergen ce^

Recall from Sections 2.3 and 4.3.2 that the EM algorithm converges

in P2 to a solution of the likelihood equation if the eigenvalues of the

covariance matrix of the complete-data sufficient statistics are bounded
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above zero. Hence, under these conditions the posterior mode and

maximum likelihood estimate converge to at least a local maximum. Since

the Taylor-series approximate posterior mean can be written as a pos-

terior mode (for the prior 3=v+l), it also converges to at least a local

maximum. The question, however, for the Taylor-series approximate

posterior mean is whether it converges to the exact posterior mean.

This question also applies to the maximum likelihood estimate and to the

posterior mode when they are used as approximations of the exact pos-

terior mean.

In Appendix 4E we addressed this question and determined conditions

under which an iterative solution to the Taylor-series approximate pos-
JJ, **

terior mean p agrees with the exact posterior mean p within a small

bounded error. We proved that if there exists a neighborhood
• ̂  •

||p-p|| E max |P.--PJ|<P, for p>0, of the exact posterior mean such that
- ~ °° l*i*k I 1

for all values p in this neighborhood

k . .
max i |ag*(p)/3pJ - A < i,
i j=l n ~ J

where

. . k+1
g^p) = (z.+v̂  E zDpi/PD)/(n+ E Vj),

• (r\\
and an initial iterative estimate PJ is chosen within the inner sphere
•

IIP~PlL~Po» for 0<p0-p-6/(l-A),
 of tnis neighborhood, then the Taylor-

series approximation will converge to within 6/(l-X) of the exact

posterior mean, where 6 is a bound on the error in approximating the

exact posterior mean by a first-order Taylor-series expansion. We also
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showed how to determine, in practice, whether these conditions can be

expected to hold. Note that the same conditions apply to the posterior

mode and maximum likelihood estimate except that g.(p) is replaced by

the appropriate function.

5.8.4 Pr£bjemsj_

Number_of_ Jj;eratuins - For some cases having components near zero,

convergence took a large number of iterations for the maximum likelihood

estimate and the posterior mode. A few cases took over 200 iterations.

As noted in Section 6.3, the largest number of iterations was 293 for

the maximum likelihood estimate.

J!luJtjipJ_e_sj)l£tj_ojis - As discussed in Chapters 3 and 4, equations

for the maximum likelihood estimate, posterior mode, and approximate

posterior mean are generally expected to have multiple roots. However,

as noted in Section 5.8.3, whenever the eigenvalues of the covariance

matrix of the complete-data sufficient statistics are bounded above

zero, an iterative solution for any of these three estimates converges

to a local maximum. Therefore, to insure that the local maximum is a

global maximum, we should choose that root that maximizes the likeli-

hood. For the approximate posterior mean, we should choose that root

that maximizes the posterior density given the prior B=v+l; i.e., that

root p f or which the likelihood function

+ 1 • Z D

is a maximum. Although it has not been proved, from the complete-data
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relationship between the posterior mode and posterior mean, we intu-

itively expect the global maximum to be in the convergence region of

the exact posterior mean p, or at least be the closest root to p.

As illustrated by examples in Section 4D.5 and discussed in Sec-

tion 4.3.2, however, for trinomial data we usually expect only one
3

root to satisfy the constraints O^p.-l, for all l^i^3, and z p.=l for
1 1=1 '

p. any one of the three estimators. Further, exploratory calculations

showed that the iterative algorithm for the approximate posterior mean

converged to the same solution for a wide range of initial estimates.

Finally, all three iterative estimates were close enough to the exact

posterior mean and the generator Dirichlet probability that we did not

expect a different root as the global maximum. Thus, we did not seek

more than one solution.
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5.9 Estimates of Mean Squared Error:

Recall that we defined the error e.=p.-p. for l-i-3, p. referring

to one of estimators ARM, PMD, and MLE and p.. referring to the generator

Dirichlet probability vector. We want to estimate the mean squared

error

mse(') = Efej +e2 +e3 ] (5.11)

of estimator p.

For N denoting the number of simulation trials, the most common

estimate of the mean squared error (5.11) is

N 3 9
mse(') = Z Z e.j/N, (5.12)

where e.. is e. on the jth simulation trial. We called (5.12) the "regu-

lar" or "usual" mean-squared-error estimate.

For estimating mean squared errors of estimators for minimizing

expected quadratic loss, we used two Monte-Carlo techniques to reduce

the estimate's variance. In both, we took advantage of any covariance

of the quadratic-loss estimators ARM, PMD, and MLE with the complete-

data maximum-likelihood estimate p^=x./n, for xn- denoting the number of

the n (25 or 50) observations falling in category i. We called the two

resulting estimates the control-variate mean-squared-error estimate and

the regression mean-squared-error estimate. Both are discussed by

Kleijnen (1975,Part I.Chpt.III).

Let e.. denote e'.=p.-p. on the jth simulation trial and,
1J n ] ] N 3

paralleling (5.12), define mse(-)= Z Z e\.. Then all three mean-
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squared-error estimates can be represented in the form:

mse_est(') = mse(-) + b{E[mse(")] - mse(-)} (5.13)

where
3 3 3

E[mse(")l = E( Z e.2) = Z [p,(l-p,)]/n = [1- Z p,2]/n. (5.14)
x x i=l 1 i=l 1 n i=l 1

For the regular mean-squared-error estimate, b=0. For the control-

variate mean-squared-error estimate, b=l. For the regression mean-

squared-error estimate, b is the regression coefficient b,,. in the linearo ., re
• 2 -2regression of z e. on Z e. . Kleijnen (1975) discusses the gen-

i=l n 1=1 1
eral case for a constant b not necessarily equal to 1.

Note that, in terminology of Kleijnen (1975), the regression mean-

squared-error estimate is also a control-variate estimate. However, the

latter term is often used to denote our b=l case and, to differentiate

between the b=l and b=b case, we follow this practice.

If the regular estimate of the mean squared error and the regular

estimate of the complete-data maximum-likelihood-estimate mean squared

error are positively correlated such that

var[mse(-)] < 2 cov[mse(-),mse(«)] < var[mse(-)J + var[mse(')]» (5.15)

then the control-variate estimate mse(') of the mean squared error

will have smaller variance than the regular estimate because

var[mse(-)] = var[mse(-)] + var[mse(-)] - 2 cov[mse(«),mse(-)]. (5.16)

Note that both the regular and the control-vanate mean-squared-error

estimates are unbiased.
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Th e value of b that minimizes the variance of (5.13) is the regres-

sion coefficient

bre = cov[mse(')iinse(")]/var[mse(")] (5.17)

used in the regression estimate mse. For p the correlation coefficient

_ __ _ p __
var[mse[»J] = var[mse(«)] U-P [mse('))mse(-)]}. (5.18)

Hence, the variance of the regression estimate is less than the variance

of the usual estimate (5.12) by a factor depending on the correlation
3 . ? 3 •• 2between Z e. and Z e. . We estimate b by the least squares

1=1 n 1=1 n re

estimate

N 3 9 _ 3 o N 3 9 _ 9
brp = Z {[ E e./-mleTT]x[ I e. ."-msiFJ"]}/ * t £ e.^-msIF!] .(5.19)re j=l 1=1 1J 1=1 1J j=l 1=1 1J

Although the regression estimate of the mean squared error has

minimum variance, it is biased, because

3
Etmsef-J] = EUiieTT] + E(bpe) E( Z e.) - E[bre isTTTl, (5.20)

and, since b is a function of mse(»)» the last term in (5.20) does not

equal the second term.

As Cochran (1967) notes, the amount of bias in the regression

estimate is difficult to determine. Kleijnen (1975) reviews ways to

decrease or remove the bias. However, implementation of these methods

can be expensive. More important, 200 simulation trials was enough to

remove most of the bias. Results showed that in most cases the regres-

sion estimate of the mean squared error lay between the unbiased control-

variate mse estimate and the unbiased regular mse estimate. Hence, in
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all situations but one, we used the regression-estimate rose since it

had the smallest variance.

The one situation in which we did not use the regression estimate

was in Design 2 for cases in which the denominator in (5.19) was zero.

This sometimes happened when two components of the generated Dirichlet

probability were zero to at least three decimal places. In these cases

the complete-data maximum likelihood estimate was the same for all 200

trinomial simulations.
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5.10 Evaluation of Exact Posterior Mean and Covariance Matrices:

Recall from Section 2.2.4, the dimension, range, precision, and cost

problems that generally make numerical evaluation of the exact posterior

moments unfeasible.

In our simulation work, however, we

(1) had the smallest-dimension case, the trinomial,

(2) designed the simulation study to have sample sizes small enough for

the percentage of incomplete data, and

(3) were able to use a computer with good enough range and significant-

figure accuracy

to allow numerical evaluation of these exact moments.

For the trinomial case, the number of terms in each numerator and

denominator of the exact posterior moments is

number of terms = (z12+l)
x(z13+l)x(z23+l). (5.21)

For sample sizes of 25 and 50, percentages of incomplete data of 15 and

40, and probabilities roughly ranging from (0,0,1) to (1/3,1/3,1/3), the

number of terms (5.21) ranged from a low near 1 to a high of

approximately 512.

For the CDC 6600 and Cyber 175 computers described in Section 5.4,
294 322the magnitude range is 10 to 10 . This range is unusually large

for a computer, many of which have ranges more like 10" to 10 .

Therefore, with these special-purpose CDC scientific and engineering

computers, we could directly evaluate exact solutions for SS/PID

combinations as large as 402/50 or 335/60. The maximum SS/PID
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combinations that most other computers can handle is considerably

smaller. By "directly" we mean without much extra programing, execution

and storage cost, and additional rounding error for scaling down the

magnitude of the terms. As noted in Section 5.4, these CDC computers

have single-precision accuracy of about 14.5 significant figures. For

this machine accuracy, use of 11 significant figures for the gamma r( )

functions, and the SS and PID used in this study, our evaluations of the

exact posterior moments were accurate to at least 6 significant figures.

Because they could be evaluated directly, equations for the exact

posterior moments were programed in a straightforward manner. We used

Z12 /z12\
 Z13 /z \ Z23 /22,\

E I a { E b ) r(Wa+b> [ z r r(z2+v2+z12-a+c)
a = 0 \ a / b = 0 \ D / l * c = 0 \ c / * * u

as a base for all moment calculations, increasing various of the inner

and outer sums to obtain numerators for the different desired moments.

For each set of data we called a function GAM once to evaluate

r(z,+v1), rUp+Vp+Zjp). and r(z3+v3+z,3+z23). GAM returned the

gamma value from (1) exact values, (2) Abramowitz and Stegun (1970)

tables (accurate to 11 significant figures), or (3) from Stirling's

Formula for those cases in which the formula gave an approximation

accurate to 11 significant figures. [Since Stirling's Formula is an

asymptotic formula, there exists some number of terms beyond which the

accuracy decreases. For example, r(3) can not be accurately approxi-

mated by Stirling's formula to more than six significant figures; the

accuracy decreases beginning with the seventh term.]
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From then on, gamma terms in formula (5.22) and its variations were

evaluated by the relationship

r(y+D = y r(y)

for both integer and non-integer values of y. Note that for approxi-

mately half the cases, the argument to the gamma function was non-integer.

The coefficient in (5.22) was calculated as

a-1

where was set to 1.



CHAPTER 6

RESULTS OF DESIGN 1

6.1 Introduction:

In this chapter, we present results from Design 1. In the following

second section, we list special mnemonics common to these next two chap-

ters. In the third section, we discuss characteristics of the estimators

arising from the trinomial simulations. In the fourth section, we review

results from approximations for elements of the posterior mean and covar-

iance matrices. As part of this review, we discuss which of the Taylor-

series approximation, posterior mode, and maximum likelihood estimate

best approximates the posterior mean. Finally, we investigate results

from which estimator best minimizes quadratic loss. A summary section

concludes the chapter.
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6.2 Special Mnemonics:

In addition to the mnemonics defined in Section 5.2, we will also

use the following .in these next two chapters:

ARM . APMRO (used in discussions concerning approximations for EPM,
for which there was no robustness study)

APMRO approximate posterior mean APM for robustness set 0_ (original
prior used in Bayesian estimators)

APMR1 approximate posterior mean APM for robustness set !_ (uniform
prior used in Bayesian estimators)

APMR2 approximate pjosterior mean APM for robustness set 2_ (perturbed
prior used in Bayesian estimators)

EST estimator

MLECD maximum Vikelihood estimate for complete data (used as control
variate in risk study)

NU prior parameter v

OP ID observed p_ercentage of incomplete data

P p . • '

PMD PMDRO (used in discussions concerning approximations for EPM,
for which there was no robustness study)

PMDRO posterior mode PMD for robustness set 0_ (original prior used
in Bayesian estimators)

PMDR2 posterior mode PMD for robustness set 2_ (perturbed prior used
in Bayesian estimators)
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6.3 Estimators:

In this section, we discuss a few properties of estimators from

the simulated trinomial data. Recall that for each combination of p,

SS, and PID we simulated 200 sets of complete and incomplete trinomial

data. From each set of incomplete data, we calculated the estimators

EPM, APMRO, PMDRO, MLE, APMR1 [recall that PMDR1=MLE], APMR2, and

PMDR2. The RO, Rl, and R2 suffixes refer to robustness sets RO, Rl,

and R2, respectively. From each set of complete trinomial data, we

calculated the complete-data maximum likelihood estimate MLECD.

To examine the sampling distribution of the estimators, we calcu-

lated data summaries (extremes, hinges, and median), central values

(mean, median, and trimean), and spreads (midspread and range) over the

200 trinomial simulations. Prominent features were that the exact

posterior mean and Taylor-series approximate posterior mean had almost

identical distributions. So also did the complete-data and incomplete-

data maximum likelihood estimates. Since the priors were nonzero, EPM

and APM always had nonzero values. However, PMDRO, MLE, and MLECD had

a large number of zero values when p=(.01,.01,.98).

The number of iterations for convergence is given in Table 6.1. As

expected, the number of iterations increased as the percentage of

incomplete data PID increased. The largest change was for P2; for the

original prior, the number of iterations approximately doubled. Direc-

tion of sample-size effect was consistent only for APMR1. For this

estimator, the average number of iterations decreased from 2% to 15%

as SS increased.
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One factor affecting the average number of iterations for estima-

tors at p, was that 169 of the 9,600 (48x200) sets of six iterative

estimators for p, required more than 15 iterations. The maximum likeli-

hood estimate constituted most of this 2%. The largest number of itera-

tions was 293 for the maximum likelihood estimate. The large number of

iterations occurred when one or more components of the simulated in-

complete data z was zero.
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6.4 Approximating Posterior Moments:

6.4.1 Piasterjpjr Meanj_

Our most important measure of the goodness of an approximation was

the percentage absolute realtive difference. In Table 6.2 we give the

proportion of 200 trinomial simulations for which the percent absolute

relative difference for each of the three components of an approximation

was less than specified amounts.

With a few exceptions at p, and p2, for all cases the percentage

absolute relative difference between the Taylor-series approximate pos-

terior mean (ARM) and the exact posterior mean (EPM) was less than 1%.

That is,

I^-Pi I/Pi x 100 < 1 for l*i*3,

so that

|prp.| < o.oi x p.

•

for all three components p., l-i-3. Hence, the approximation was
• -"-"••" |

accurate to at least two significant figures. The few exceptions are

studied later in this section.

Moreover, when PID=15, the APM approximation was accurate to at

least three significant figures for nearly all cases and to at least

four significant figures for the majority of cases. When PID=40, the

approximation was accurate to at least three significant figures for

most cases.

As sample size increased from 25 to 50, the APM approximation

generally improved for p2, p.,, and p^. For p, it slightly worsened.
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The reason is that there were a number of cases for p, and p2 where APM

was identical to EPM for SS=25. As the amount of sample data increased,

the possibility of a perfect approximation lessened. As already indi-

cated, as PID increased from 15 to 40, the APM approximation worsened,

least for p, and most for p. in terms of three- and four-significant

figure accuracy.

In general, the posterior-mode (PMD) and maximum-likelihood-estimate

(MLE) approximations were not accurate to even two significant figures.

The main exception was at p4 when SS was 50. There the posterior mode

agreed to two significant figures for approximately one-third of the 200

trinomial simulations.

Analyses later in this section showed that even in the few problem

cases for p, and p^, APM was a much better EPM approximation than either

PMD or MLE. Also, analyses found no bias, mean-squared-error, iteration,

or other problems favoring PMD or MLE over APM. Finally, Table 6.2

showed that, except possibly for the APM problem cases, APM was far

superior to PMD and MLE in approximating the exact posterior mean in

terms of percentage relative difference. Therefore, following a few

comments in the next paragraph, we henceforth concentrate only on APM

as an approximation for EPM.

Because the exact posterior mean (EPM) was never zero and PMD and

MLE were, PMD and MLE were poorest approximations for p,s(.01,.01,.98).

The better of PMD and MLE was MLE for p, and p~ and PMD for p3 and p^.

However, note that even for p., when PMD improves in its approximation,
-wtf

it is far inferior to APM. Plots given later in this section

illustrate these comparisons.
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In Table 6.3 we present the bias for the first component of the

three approximations to the exact posterior mean. For PID=15 and PID=40,
200 .

the bias was estimated over the 200 trinomial simulations by I (p, .-p, .)
j=l 1J lj

/200=E(p1)-E(p1) for p, the first component of one of the three approxi-

mations ARM, PMD, and MLE. The complete-data (PID=0) bias is given for

all estimators except for the posterior mode at p,=(.01,.01,.98).

Recall that the prior used in the Bayesian estimators for p, in Design 1
-M 1

was v,s(0.1,0.1,9.8). For the pair p-,v. having such small values for
~ 1 I 1

i=l,2, a solution to the likelihood equations usually does not exist in P?.

[Note that E[(xi+vi-l)/(n+Zv,-3)] < 0 for v^O.l, p^.Ol, and n=25 or 50,

since E(x.)=np..] In this case, the posterior mode occurs on a boundary.
•

Hence, p.=0 for i=l,2. Thus, the likelihood equations are not used to

define the posterior mode; therefore, the bias can not be analytically

calculated from the i solution (2.43) to the likelihood equations.

Although the bias was small for all approximations, it was one to

three orders of magnitude smaller for APM. For APM, the bias was smallest

in absolute value for p.. For PID=15, it was largest in absolute value

for p, or p2; for PID=40, it was largest in absolute value for p, or p3-

As sample size increased, the bias generally decreased. The bias was

positive for p9 and p., and of both signs for p, and p.. Note that, for
•%,£ «- O **•• J. -vT1

p.., p2, and p-, results for the second component of the bias were the

same as those for the first component of the bias. Results for the

second component, .30, of p, were similar to those for the first and
*« J

second components, both .33, of p..
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Although the estimated biases were small, the individual errors

constituting the estimated biases could be large. To investigate this

possibility, we calculated data summaries, central values, and spreads

over 200 trinomial simulations for the errors of ARM, PMD, and MLE in

approximating EPM. In general, as sample size increased, error decreased;

as PID increased error increased; and as p moved from the corner p,=

(.01,.01,.98) to the center p4=(l/3,l/3,l/3) of the P2 simplex, the error

decreased.

The central values, especially the mean, often differed because the

distribution of the errors was not symmetric. To examine this asymmetry,

we studied the proportion of the 200 simulations in which the first com-

ponent of the error was of a given sign. Results showed, for SS=25,

that for pp, p^, and p. approximately one half of the APM errors were

negative. The remaining half were zero or positive. For p,, however,

almost three fourths of the errors were negative. As sample size in-

creased to 50, the errors remained roughly split as half negative and

half positive for p~ and p,. For p^, however, the error was approximate-

ly two-thirds negative and one-third positive. For pj, it was close

to 92% negative, 4% positive, and 4% zero. As expected, the distribution

of the APM error was much tighter than those for the PMD and MLE errors.

Finally, the smallness of the midspread relative to the range for

all but the {SS=50,PID=40} case (as well as values of the hinges rela-

tive to those of the extremes), indicated that most of the APM errors

clustered close to zero and that the extreme values were few and unusual.

We next studied these extreme values. In particular, we investi-

gated those cases in Table 6.2 that showed a percentage absolute relative



-227-

difference greater than 15. All these cases occurred at p,=(.01,.01,.98),
•** 1

First, all these cases had empty (0) cells for z, and z^. Second,

all these cases occurred for PID=40. However, the observed PID is not

necessarily 40. We called this observed £ercentage of incomplete data

OPID. Those cases having high percentage relative difference usually

had very high OPID (often in the 50%). Finally, for these cases, the

incomplete data was "inconsistent" with the completely specified data

and, perhaps less important, with the sampling model. That is, under

the sampling model with z,=z2=0 and z3 large, we would expect z,p small

and z,3=z23- Examples are shown in Figure 6.1, where the estimators

are given in successive order as the exact posterior mean, Taylor-series

approximate posterior mean, maximum likelihood estimate, and posterior

mode and where, again, z=(z-, jẐ .ẑ .z z -7 )•

In all three examples, the percentage of incomplete data is very

high, 60%, 56%, and 50%, respectively. Further, the data are inconsis-

tent. To see the inconsistency, compare the generated data z with the

expected value of the data given the sampling model. Recall, from

Chapter 5, especially Section 5.7.3, that the sampling model is a

function of p, PID, and SS. Expected values of z are given in each

example. The most noticeable discrepancy between the expected and

generated data is in the relationship between z,3 and z23. The expected

values are identical. The observed values, however, differ greatly.

In example 1, z,3 is approximately one-half z23; in example 2, z^3 is

more than three times z23; and in example 3, z,3 is almost twice z23-

Thus, the probability of observing any data set in these examples,

given the sampling model, is small.
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FIGURE 6.1

WORST ARM APPROXIMATIONS FOR EXACT POSTERIOR MEAN

1. OPID=60*, SS=25, z=(0,0,10,1,5,9), E(z) = (.15,.15,14.7,.1,4.95,4.95);

Estimators Error % abs rel diff

p=(.0188,.0246,.9566)

p"=(-0138,.0304,.9558) (-.0050, .0058,-.0008) ( 26.6, 23.6,0.1)

p=(.0001,.0625,.9374) (-.0187, .0379,-.0192) ( 99.5,154.1,2.0)

J5=(0, 0, 1 ) (-.0188,-.0246, .0434) (100.0,100.0,4.5)

2. OPID=56*, SS=25, z=(0,0,ll,l,10,3), E(z) = (.15,.15,14.7,.1,4.95,4.95);

Estimators Error % abs rel diff

p=(.0266,.0168,.9566)

p=(.0351,.0102,.9547) ( .0085,-.0066, .0019). ( 32.0, 39.3,0.2)

p=(.0666,0, .9334) ( .0400,-.0168,-.0232) (150.4,100.0,2.4)

p=(0, 0, 1 ) (-.0266,-.0168, .0434) (100.0,100.0,4.5)

3. OPID=50*, SS=50, z=(0,0,25,2,15,8), E(z)=(.3,.3,29.4,.2,9.9,9.9);

Estimators Error % abs rel diff

p=(.0275, .0186,.9539)

H.0369,.0105,.9526) ( .0094,-.0081,-.0013) ( 34.2, 43.6,0.1)

p=(.0571,.0001,.9428) ( .0296,-.0185,-.0111) (107.6, 99.5,1.2)

p=(.0262,0, .9738) (-.0013,-.0186, .0199) ( 4.7,100.0,2.1)

PID=40 for all three examples
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In practice, one does not know the population model and thus can not

check for consistency in the same manner. However, if one calculates the

expected value of the data using the estimator p and OPID (the observed

percentage of incomplete data), rather than p and PID, one finds the same

discrepancy between z,~ and z^- (even though p is a function of z).

These expected values for the three examples are:

1. E(z|p,OPID)=(.28,.37,14.35,.22,4.88,4.91)

E(z|J5,OPID) = (.21,.46,14.34,.22,4.85,4.93)

E(z|p,OPID)=(1.00,0.,14.00,.33,5.00,4.67)

E(z|J5,OPID) = (0.00,0. ,15.00,0.0,5.00,5.00)

2. E(z|p,OPID)=(.29,.18,10.52,.30,6.88,6.81)

E(z|J5,OPIDH.17,.17,10.78,.31,6.93,6.75)
f*r *v

E(z|p,OPID)=(.73,0.0,10.27,.47,7.00,6.53)

E(z|p,OPID)=(0.0,0.0,11.00,0.0,7.00,7.00)

3. E(z|p,OPID)=(0.69,.47,23.85,.58,12.27,12.16)

E(z|p,OPID)=(0.92,.26,23.82,.59,12.37,12.04)

E(z|p,OPID)=(1.43,.00,23.57,.72,12.50,11.79)

E(z|p,OPID)=(0.66,0.0,24.35,.33,12.50,12.17),

respectively. Therefore, to indicate whether data are inconsistent, an

approach that can be used in practice is to compare the data with the

expected value of the data given OPID and any of these four estimators.

For the Taylor-series approximate posterior mean (APM), the second

and third examples had the highest percentage absolute relative difference

of all cases. The second example is the one case keeping the proportion
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from being 1.00 in column 7 of Table 6.2 for "% abs rel diff < 25".

Note that, as also found in the remaining cases, the posterior mode and

maximum likelihood estimate were even worse approximations than was the

Taylor-series approximate posterior mean.

As an extra check that the Taylor-series approximate posterior mean

was the best approximation for the exact posterior mean, even in the

rare cases just illustrated when the percentage relative difference was

high, we calculated the proportion of 200 trinomial simulations when

an estimator was best. Because it is possible, especially with three

estimator components p., l-j-3, for an approximation to be minimum with
J

respect to one criteria but not with respect to another, we used two

different criteria to determine when an estimator was best. For a

squared-error criterion, for each of the l-i-200 tr inomial s imu la t ions ,

we chose the approximation that had the smallest squared error,
3 • 2Z ( p . - - p . - ) . For a relative-difference criterion, for each of these

j=l 1J 1J

200 simulations, we chose the approximation having the smallest absolute
3

relative difference Z |p. .-p. .|/p. .. Note that the divisor in the
j=l 1J 1J 1J

latter criterion was never zero. By both criteria, for all sets of p,

PID, and SS variations, and for both replications, ARM was always a

better approximation for EPM than were PMD and MLE.

Relating to the squared-error criterion, we next investigated in

Table 6.4 the mean squared errors of the approximations. Since APM

always had the smallest squared error for each of the 200 trinomial

simulations, it also had to have the smallest mean squared error [often

called the ayerage^ mean squared error]. However, we were also

interested in order-of-magnitude comparisons among estimators and how
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mean squared error varied with p, SS, and PID. Mean squared error (mse)

is often used for comparison among estimators because it measures estima-

tor variance as well as bias.

As for the bias, we also calculated the mean squared errors for

the complete-data (PID=0) estimators. Note that, as discussed for

Table 6.3, we could not analytically calculate the mean squared error

for the posterior mode at p,. For PID=15 and PID=40, mean squared error
-1 200 .

was estimated by the "usual" estimate E (p.-p.) /200. We did not use
j=l 1

any variance-reduction techniques, such as discussed in Section 5.9, in

estimating these mean squared errors because the control variate p for

the risk study was not expected to be helpful for the exact-posterior-

mean study. Further, the mean squared error was not as important in

the exact-posterior-mean study as it was in the risk study. Hence, the

greater care in its estimation was not necessary. Finally, the differ-

ence between the regular APM mean-squared-error estimate and either of

the regular PMD or NILE mean-squared-error estimates was so large that

use of a variate-reduction technique was not expected to alter results

concerning differences.

Results of Table 6.4 show that the APM mean-squared-error estimate

was IJj to 6 orders of magnitude smaller than those for PMD and MLE.

Mean squared error increased 1 to 2 orders of magnitude as PID increased

from 15 to 40. It usually decreased as SS doubled. For easier

comparison of APM with PMD and MLE, average bias and mean-squared-error

ratios are given in Table 6.5. Note from Table 6.2 that the bias ratios

are only for the first component of an estimator.
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Finally, recall Table 6.1 showing the number of iterations re-

quired for convergence of the iterative approximations. Since the ini-

tial iterative estimate was the exact posterior mean, the number of

iterations was some measure of which approximation was best. By this

measure also, the Taylor-series approximate posterior mean was the

superior approximation.

We next performed an analysis of variance (ANOVA) on the bias and

on the mean-squared-error data. From theory in Steel and Torrie (1960,

p!57) and Snedecor and Cochran (1968,p324-5,329) and from examples of

Dempster, Schatzoff, and Wermuth (1977,p77) and Gunst and Mason (1977,

p616), we expected errors from an ANOVA on the original mean-squared-

error data to exhibit enough nonnormality and inequality of variances

to yield too many false significant F tests. Therefore, for protection

against this occurrence, along with improved additivity of the model,

we transformed the mean squared errors to natural logarithms. Doing so,

however, meant that all mean-squared-error results are interpreted in

terms of the log(mse) rather than more naturally in terms of the

original data. However, for the risk study we do give an approximate

translation of results from logarithms back to the original data.

Note that, although an ANOVA is concerned with all factors affect-

ing bias and log(mse), we are interested only in those significant

effects involving the estimators. Note also that usually one studies

residuals from the ANOVA model to detect failure to meet assumptions

and to learn whether any transformation might correct the failure.

However, Scheffe* (1967,p363) generally recommends against transforming

data to reduce nonnormality in analyzing means. He does so because
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interpretation of results concerning transformed data is often difficult.

We have already transformed to logs. Thus, further transformation, even

if warranted, would lose more in ease of interpretation than would be

gained in improving assumptions, especially since the F-test is already

fairly robust against assumptions. Therefore, we do not analyze the

residuals.

Results from the bias ANOVA, along with significant values, are

given in Table 6.6A. The presence of high-order significant interactions

affects conclusions about lower-order interactions and the main effects.

For the EPM bias ANOVA in Table 6.6A, the main effects for P (p) and

estimator EST and the two-factor interaction PxEST are so highly signi-

ficant relative to the remaining effects that, together with previous

bias results, we expect the remaining significant two-factor and three-

factor interactions to mean only that effects of EST, P, and PxEST vary

with SS and PID.

Plots in 6.6B confirm this hypothesis. As sample size SS increases

or PID decreases, the average bias (summed over those factors not

appearing in the plot) slightly decreases. Approximation APM has zero

average bias. So also, approximately, does MLE. The most striking

effect of these two plots is the poorness of the posterior mode as an

approximation for the exact posterior mean for all but p», and especial-

ly for p2, in terms of average bias.

In Table 6.7A we present F values in the ANOVA for natural

logarithms of the estimated mean squared errors given in Table 6.4.

Since estimator EST has such huge significance relative to other fac-

tors, it will be at least partly responsible for the significant
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higher-order interactions. The significant estimator two-factor

interactions are plotted in Table 6.7B. The larger the negative value

of loge(mse), the better the approximation. Thus, plots in 6.7B show

that mean squared error decreases slightly as SS increases or PID

decreases and that ARM is the superior approximation. Approximation

ARM is poorer at p, than at the remaining values of p.

The three-factor interaction RxRlDxEST was significant at the 10%

level. The effect of PID on the RxEST plot given in 6.7B was that, as

PID increased from 15 to 40, differences between ARM and either of MLE

and PMD decreased and all approximations slightly worsened.

6.4.2 Posteriory Co van ajKe_Matri x^:

In this subsection, we discuss results from Design 1 concerning how

well the truncated Taylor-series expansion approximated elements of the

posterior covariance matrix.

Note first that elements of the Taylor-series approximate posterior

covariance matrix were calculated by the method that is noniterative in

elements of the posterior covariance matrix. This method was described

in Section 3.2.8. After convergence of components of the approximate

posterior mean vector, we solved a linear system of equations for the

approximate variances and covariances. These approximations are functions

of the approximate posterior means. Thus, the accuracy of the posterior

variance and covariance approximations is a function of the accuracy of

the posterior mean approximations.

Data summaries, central values, and spreads over 200 trinomial

simulations were calculated for the covariance approximations for the
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first replication. In general, results indicated very good agreement

between sampling distributions of the Taylor-series approximations and

the exact posterior covariances. Agreements improved as p moved from

the corner p, to the center p* of the P~ simplex. Central values agreed

well for all values of p except p,, where, as noted in the last section,

the distribution of values was heavily skewed because we were at a lower

bound for the first two components.

As for the posterior mean, the most important measure of the accu-

racy of an approximation for an element of the posterior covariance ma-

trix was the percentage of absolute relative difference. In Table 6.8,

we give the proportion of 200 trinomial simulations in which the percent-

age absolute relative difference of the Taylor-series approximation is

less than specified amounts. The column headings Cll, C12, and C22

denote var(p,|z), cov(p,,p2|z), and var(p2|z), respectively.

Results show that the variance approximation was correct to at

least two significant figures for nearly all 200 trinomial simulations

when PID=15. When PID=40, the proportion of 200 variance approximations

accurate to at least two significant figures ranged from .83 to 1.00. '

Further, for the majority of cases, the variance approximation was

accurate to at least three significant figures.

Excluding p., we find that the approximation remained excellent or

improved as p moved toward the center of the P2 simplex. Except for p^,

the approximation worsened as PID increased. Sample size SS had little

effect when PID=15 because the approximation was already excellent when

SS=25. When PID=40, the approximation remained excellent for p^,

slightly improved for p, and p2, and slightly worsened for p, as SS
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i increased.

We next investigated the accuracy of the Taylor-series approximation

for the posterior covariance. Results in columns headed by "C12" show

that it was not as good an approximation as that for the variance. Even

so, for nearly all trinomial simulations, the covariance approximation

was correct to at least two significant figures. As for the variance

approximation, the covariance approximation remained excellent or improved

for p~ and p. and became poorer for p1 as the sample size increased. As
•w *J —T- •»* J.

the percentage of incomplete data increased, the approximation worsened.

To examine relatively poorer results for p, and p^, we investigated

averages (over 200 trinomial simulations), percentage average relative

difference, average percentage relative difference, and ratio of square

root of the estimated mean squared error to the average exact value.

For p, and p , the covariance averages were approximately an order

of magnitude smaller than the variance averages. In particular, for p,,
•N, X

-5the exact posterior covariances ranged in value from -0.4x10 to

-4-.2x10 . It could be that values so close to zero were more difficult

to approximate. To support this hypothesis, we noticed that when covar-

iances roughly equaled variances, then the average percentage relative

differences were also roughly equal. For example, average percentage

relative differences for the approximate posterior covariance of p, and

p,, given z at p~ and the approximate posterior variance of p1 given z at
£ -s, -s*O J- **"•

p., both at PID=15, were of the same magnitude and their average percen-

tage relative differences were also of the same magnitude.

For all but one case, the square-root ratio was less than 1.

Finally, the standard errors of the average variance and covariance
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approximations were large relative to the averages. Therefore,

statistically, we could not differentiate between the approximations

and the corresponding exact values.

We also investigated biases of the Taylor-series approximations by

examining data summaries, central values, and spreads over 200 trinomial

simulations. These results showed that the sampling distributions were

tight. Not only were the means, median, trimeans, and midspreads zero,

but also the ranges were zero to at least three, and usually four,

decimal places.

In general, as sample size increased, the bias decreased. As per-

centage of incomplete data increased, bias increased. As p moved toward

the center of the P2 simplex, bias decreased. Exceptions again occurred

at p, and p2 because of the larger number of perfect approximations at

those values of p.
*\*

To determine whether the Taylor-series approximations generally

over approximated, we next investigated the proportion of biases having

a positive sign. A positive bias is preferable for a variance approxi-

mation because we have defined bias as "approximation - exact". Thus,

if most of the biases.are positive, then the approximation generally

provides an upper bound on the exact posterior variance.

Results showed that the proportion of positive biases was, as has

been for other measures, a function of the position of p in the P~

simplex. When p was near the center of the simplex, most of the biases

were positive. As p moved toward a corner of the simplex, the propor-

tion of negative biases increased. At a corner, negative biases

dominated.
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Although the large proportion of negative variance biases at p is

not preferred, it is not of concern as long as the percentage relative

difference of the approximation is small. At the end of this section,

we investigate cases where the percentage relative difference is greater

than 15.

For the covariance approximation, a negative bias was preferred.

Since the covariances were negative, a negative bias meant that the approx-

imate covariance was larger in absolute value than the exact covariance.

The controlling factor for the proportion of negative biases roughly

correlated with the sum of the two covariance elements. When the sum of

the two generator p components was less than 0.75, the proportion of

negative biases was larger than that of positive biases. When the sum

was higher than .75, between .75 and 1.00, the opposite occurred. For

example, the proportion of negative biases for cov(p,,p»|z) for p =

(.01,.01,.98) was near 1; that for covtp^pjz) was near 0. As SS or

PID increased, the proportion of negative biases generally increased.

We now investigate those variance and covariance approximations

differing in percentage absolute relative value from the exact values

by more than 15%. In approximately one-third of these cases, the

Taylor-series approximation and the exact posterior mean also differed

in percentage absolute relative value by more than 15%. We expected

this correlation since elements of the posterior covariance matrix were

functions of the approximate posterior means. In these situations,

approximations for the posterior variances were usually equal to or 1 -

10% points better than the posterior mean approximation; approximations
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for the posterior covariance, usually equal to or 1 - 10% points worse.

Part of the reason the covariance approximation was worse than the

variance approximation seems, again, to be that the closer the exact

value was to zero, the harder it was to estimate.

Recall from Section 6.4.1 that, in these cases of poorer approxi-

mations for the posterior mean as well as for the posterior covariance

matrix, the incomplete data z had zero observations for z, and z^, the

true percentage of incomplete data TPID was usually very high, and the

incompletely specified observations z,?, z,3, and z?., were inconsistent

with the completely specified observations z,, z2, and z., and with the

sampling model.

Of the remaining two-thirds cases, three-fifths also had zero ob-

servations for z, and z~ and had inconsistent data. Most also had high

percentage of incomplete data. Of the last two-fifths of the cases, all

but two had percentage absolute relative difference less than 24. These

percentages were

(32,20,15),20,19,21,21,22,17,23,19,(41,24,18),15,17,19,16,23,22,16.

Two values of 15 are present because they were greater than 15.000.

Numbers in parenthese apply to the same set of data. All percentages,

except the 20,15 and 24,18 in parenthesis, are for cov(p1,p2(z),

the covariance of two very small values, each varying around 0.01. The

20,15 and 24,18 were values for var(p2|z),cov(p2>P3|z). Nearly all

of these cases occurred for data sets having one of z^ and z^ equal to

0 and the remaining value equal to 1.
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The values 32 and 41 enclosed in parenthesis were of concern. The

data for these values was z=(l,0,12,l,3,8) and z=(l,0,26,l,6,16), respec-

tively. Observed percentages of incomplete data (OPID) were high, 48%

and 46%, respectively. Further, the data was inconsistent for these two

cases for a sampling model yielding E(z)=(0,0,15,0,5,5) and E(z)=(0,0,30,

0,10,10), respectively. As for the three "problem" examples given in the

last section, under this sampling model, with E(z,)=E(z2)=0 and E(z3)

large, we would expect Zi^z23' ^et) ^oth cases na^ z^o approximately

three times as large as z,.,.

In essence, when the posterior means of p, and p?, respectively,

were very small, we expected the posterior covariances of p-, and p2 to

be very small. Trying to approximate very small covariances, or covar-

iances of very small values, was relatively difficult, especially when

at least one of the two corresponding completely specified observations

z, and Zp was zero.

6.4.3 Co nc Ui si on s_:

The Taylor-series approximation for the exact posterior mean was

excellent. In most cases it was accurate to at least three significant

figures; in many cases, to at least four. In the few exceptions, where

the percentage absolute relative difference ranged between 15% and 40%,

the data had zero values for two of the three completely specified cells,

the percentage of incomplete data was usually very high (40% - 60%),

and the incompletely specified data was inconsistent with the completely

specified data and with the sampling model. Even in these cases,

however, the Taylor-series approximate posterior mean was a better
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approximation than the posterior mode or maximum likelihood estimate.

The posterior mode and maximum likelihood estimates were nearly always

very poor approximations for the exact posterior mean.

The posterior variance and covariance Taylor-series approximations

were functions of the Taylor-series approximate posterior.mean. There-

fore, they were not quite as excellent as approximations in terms of

percentage relative difference; the error of the Taylor-series

approximate posterior mean was built into their errors. Nonetheless,

they were very good. In nearly all cases, they were accurate to at

least two significant figures; in most cases, to at least three. As for

the posterior mean, exceptions occurred for inconsistent incomplete

data having zero values for any two of the three completely specified

cells, especially when the percentage of incomplete data was high.

Exceptions also occurred for the posterior covariance approximation of

two components both having values near zero when the incomplete data

had zero observations for either one of the corresponding completely

specified cells.

In general, the Taylor-series approximate posterior variance was

a slightly better approximation than the Taylor-series approximate

posterior covariance, which was usually of values closer to zero.

Results indicated that the closer a value was to absolute zero, the

harder it was to approximate.

As expected, all approximations generally improved as sample size

increased or percentage of incomplete data decreased. An exception were

values near a boundary of the P simplex, where, for a sample size of 25,
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a number of approximations were perfect. As the sample size increased,

the possibility of a perfect fit lessened.

As p moved from a corner toward the center of the P~ simplex,

approximations generally improved in terms of all the measures that were

considered, except for those cases near the P2 boundaries already

having a perfect or near-perfect fit.
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6.5 Minimizing Risk for Quadratic Loss:

6.5.1 Jji troducti on j_

In this section, we report results from determining which of three

estimators best minimized risk, expected quadratic loss, for specified

values of p. Two of the estimators were the maximum likelihood estimate

MLE and the posterior mode PMD. The remaining estimator was the Taylor-

series approximate posterior mean ARM. Except at the end of this intro-

ductory section, we do not report results from using the exact posterior

mean EPM because these results were the same as those from using the

approximate posterior mean. We report ARM results instead of EPM results

because we expect the Taylor-series approximation to be more often used

in practice. •

As discussed in the introductory chapter, Chapter 1, we were parti-

cularly interested in whether the maximum likelihood estimate was best

for probabilities at the boundaries of the P2 simplex; the posterior

mean, otherwise. Therefore, the generators were chosen to represent one

extreme probability p,=(.01,.01,.98), a probability near a corner of

the simplex, and one probability p.=(l/3,l/3,l/3) at the center. The

remaining two probabilities P2=(.10,.10,.80) and p3=(.20,.30,.50) lay

between the boundary and the center. Hence, if the maximum likelihood

estimate is best for p. and the posterior mean, for p,, we will be

particularly interested in whether v^ or P3 or some probability between

them is a crossover point for which estimator best minimizes risk.

As discussed in Chapter 1, we compare the three estimators by using

two wrong priors, as well as the correct, original, prior in their
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caldilations. Note that the maximum likelihood estimate, not being a

Bayesian estimate, was the same for all three studies. We labeled

these three studies as RO (robustness study 0), Rl (robustness study 1),

and R2 (robustness study 2).

For the first wrong prior, in robustness study Rl, we chose the

uniform prior (1,1,1) because of its common use when one is uncertain

of prior knowledge. The uniform prior gives equal weight to all compo-

nents of p. For this prior, the posterior mode equals the maximum

likelihood estimate. For the second wrong prior, in robustness study

R2, we chose 10x[v/10+(.09,.05,-.14)], where v is the original prior.

This prior perturbs the three components of p by .09, .05, and -.14,

respectively. Hence, we called it the perturbed prior. Values of the

original-prior mean p versus the wrong-prior means are given in Figure

6.2.

FIGURE 6.2

PRIOR MEANS FOR THREE ROBUSTNESS STUDIES

Rl . RO R2
prior mean for prior mean for prior mean for
uniform prior original prior perturbed prior

(1/3,1/3,1/3) (.01,.01,.98) (.100,.060,.840)
(1/3,1/3,1/3) (.10,.10,.80) (.190,.150,.660)
(1/3,1/3,1/3) (.20,.30,.50) (.290,.350,.360)
(1/3,1/3,1/3) (1/3,1/3,1/3) (.423,.383,.193)

The situation of having previous data but data that yields the wrong

prior is more realistically addressed by the perturbed prior in the R2

study. In this study, we picked a wrong prior that was extreme relative
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to the correct prior. For example, if the original prior mean in

Figure 6.2 is Pj=(.01,.01,.98), then prior data giving a mean of

(.10,.06,.84) is unlikely [but not impossible].

Results of robustness study RO (original prior used in Bayesian

estimators) are given in the next section, Section 6.5.2. Those for

robustness study Rl (uniform prior used in Bayesian estimators) are

given in Section 6.5.3. Results for robustness study R2 (perturbed

prior used in Bayesian estimators) are given in Section 6.5.4. Section

6.5.5 summarizes these results for minimizing risk for quadratic loss.

Before leaving this section, we briefly discuss the mean-squared-

error (mse) estimates. Risk for quadratic loss is also called mean

squared error. As described in Section 5.9, we had three estimates of

mean squared error. These were the regular, control-variate, and

regression estimates. We found in Section 5.9 that the regression mse

estimate had the smallest variance. Nonetheless, for 200 trinomial

simulations, the regression-estimate sample variance usually did not

differ greatly from that of the regular or control-variate estimates.

The differences were nearly always within one order of magnitude. The

main exception was a two orders-of-magnitude difference between the

control-variate and regression estimates for PMDRO at p, when SS=25.

Recall that the regression estimate is biased; the other two are

not. However, in almost all cases the biased regression estimate lay

between the unbiased regular and control-variate estimates. In the few

exceptions, it was close to one of the two unbiased estimates. Hence,

its bias was negligible. Therefore, since the regression estimate had
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the smallest variance, we used it as the estimate of mean squared error,

the estimator's risk.

6.5.2 Ori_gi_naJ_Pri p_r_m

In this subsection, we discuss results from robustness study RO

where we used the original, correct, prior v in the Bayesian estimators.

In Table 6.9 we give values for the regression-estimate mean

squared error (risk) over 200 trinomial simulations for both replications.

For all PID and SS variations, the posterior mean has the smallest mean

squared error for p9, p~, and p.; the posterior mode, for p,. Therefore,
~t ~O "-H ~ i

results indicate that when the correct prior is used in the Bayesian

estimators, the posterior mean is the best estimator for all probabilities

except those on a boundary of the P~ simplex. For these boundary proba-

bilities, the posterior mode is the best estimator, although the differ-

ence between the posterior mode and the posterior mean decreases as

sample size increases. The maximum likelihood estimate is always the

worst estimator.

To determine significant effects in Table 6.9, we next present re-

sults from analysis of variance on the natural logarithms of these mean

squared errors. Table 6.10A shows a huge F value (22,461) for the main

effect of p, very large F values (2172 and 1654, respectively) for main
fv

effects of sample size and estimator, and a high F value (92, 6df) for

the PxEST interaction. Hence, as Snedecor and Cochran (1968,p344) and

Steel and Torrie (1960, p207) imply, the significant three-factor inter-

action PxSSxEST might mean only that there is a minor change in PxEST as
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SS varies. Similarly, the large F value for EST relative to that for

the two-factor interaction PIDxEST might mean only that there is a minor

change in EST as PID varies.

Plots of PIDxEST and PxESTxSS in Part.B of Table 6.10 generally

show this premise to be true. Values for the plots were calculated by

summing over nonpresent factors (including replication) in Table 6.9

after natural logarithms had been taken. The PIDxEST plot shows that,

summed over all factors but PID, APM is the best estimator and MLE, the

worst. As PID increases, all three estimators become worse. The

PxESTxSS plots show that the posterior mean is best for p2, PO» and p,

when SS=25. The posterior mode is best for p,. However, it does not
-** J.

differ greatly from the posterior mean. When sample size increases to

50, the posterior mode and posterior mean become approximately equal

at p,, p7, and p.. The maximum likelihood estimate is everywhere the
~ J. ~ 3 —T1

worst estimator.

To determine how much risk in Table 6.10B is reduced by using the

best estimator, we made a rough translation from log (mse) back to mse

in the following way. Let vl and v2 denote the risk of an estimator

for replications 1 and 2 (rl and r2), respectively. Then,

loge(vl) + Ioge(v2) = loge(vlxV2).

Let wl and w2 denote the corresponding risk of a second estimator.

Then the difference between the summed natural logarithms in the plots

of these two estimators is

Ioge(vlxv2) - Ioge(wlxw2) = Ioge[(vlxv2)/(wlxw2)]

= 1oge[(vl/wl)(v2/w2)]
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and

exp[loge(vlxv2)-loge(wlxw2)] = (vl/wl)(v2/w2).

Table 6.9 shows that risk differs little between replications rl and r2;

i.e., vl=v2 and wl=w2. Therefore, we can approximate the ratio of the

risk of one estimator to that of another estimator by the square root

of the last equation; i.e., by

/{exp[loge(vlxv2)-loge(wlxW2)]}.

Again note that Ioge(vlxv2) is the value plotted in Table 6.10B for an

estimator.

Using this basis, then, to roughly translate results from log (risk)

to risk, we find that plots in Table 6.10B show that use of the correct

estimator reduced risk by about one-fourth (almost one-half at p~) over

use of the next best estimator and by slightly more than one-half over

use of the worst estimator when the sample size (SS) was 25. Corres-

ponding reduction in risk when the sample size was 50 was 10% - 15%

(25% - 32% at p2) and 35% - 40%, respectively.

To study further the mean squared errors at p,, we broke the mean

squared error into its 200 components corresponding to the individual

trinomial simulations. We then calculated which estimator had the

smallest squared error for each of these simulations. From results of

the last plot, we would expect the proportion at p, to be highest for

the posterior mode. However, the proportion of simulations in which the

posterior mean had the smallest squared error was two to four times

higher than that for the posterior mode! This discrepancy indicates

that when the posterior mode is best, it is best by a much greater
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amount than when the posterior mean is best.

Finally, we investigated bias for the first two components for

those estimators having approximately equal risk, where bias was
200 .

estimated by Z (p..-p.)/200 for i=l,2. Results showed that, except
j = l 1J

for the trimean for p^, all central values (mean, median, and trimean)

for the errors p.--p. were smallest for the posterior mean, even at p,.• J i ~ i
For each of the first two components, all estimators at p. had

approximately one-half negative and one-half positive errors. Except at

p., proportions of negative errors were noticeably higher for the poster-

ior mode than for the posterior mean or maximum likelihood estimate.

Proportions for the latter two were always close and were often identical.

As p moved from the center toward the corner of the P~ simplex or as PID

increased, the proportion of negative errors for each component usually

increased. As sample size increased, proportions moved toward a 50/50

ratio.

6.5.3 Unvform PHpr_ i_n_Bayesi_aii jEstimatprs^

In this subsection, we discuss results from robustness study Rl

where we used the uniform prior (1,1,1), instead of the correct prior

v, in the Bayesian estimators. For this uniform prior, the posterior

mode equals the maximum likelihood estimate. Hence, we have only two

estimators for this robustness study.

In Table 6.9 we give values for the regression-estimate mean

squared error (risk) over 200 trinomial simulations for both replica-

tions. For p., and p. for both levels of sample size and both levels of
-» O — T"

percentage of incomplete data, the posterior mean has the smaller mean
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squared error, although differences tend to be small. For p,, the

posterior mode (maximum likelihood estimate) has the smaller mean

squared error. For p-. the posterior mode (mle) has the smaller mean

squared error for PID=15 and the posterior mean, for PID=40. However,

the difference at p? between the two estimators is very small.

Therefore, results indicate that when a uniform prior is used in

the Bayesian estimators, the posterior mode (mle) is the better

estimator for probabilities at or near a boundary of the P? simplex.

The posterior mean is the better estimator for all other probabilities.

To determine significant effects in Table 6.9, we next present in

Table 6.11 results from an analysis of variance on the natural logarithms

of these mean squared errors. As for the original prior, F values for

P*EST and SS were so large relative to those for PxSS*EST that we

expected the significance for the latter to reflect mainly a variation

in PxEST for the two levels of sample size. The plot in Part B of

Table 6.11 shows this to be true. Estimators have larger negative

log (mse) at SS=50, but curves at the two sample sizes are similar.

The plot also shows that the difference between the two estimators at

p, is large relative to the difference at the other three values of p.

Finally, as expected, differences between estimators decrease as sample

size increases.

Using the rough translation given in Section 6.5.3 for log (mse),

we find that plots in Table 6.11 show that the largest reduction in risk

occurred at the corner probability p,. At p, the risk of the posterior

mean was almost six times larger than that of the posterior mode (mle)

when the sample size was 25; almost four times larger, when the sample
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size was 50. At p^, however, the risks of the estimators were almost

equal. For p, and p,, the risk of the posterior mean was about 25%

smaller than that of the posterior mode (mle) when the sample size was

25 and 15% smaller, when the sample size was 50.

As noted in Section 6.4.2, it is possible for an estimator to have

smaller mse but not have smaller squared error for most of the 200 tri-

nomial simulations. Hence, we next studied several estimator character-

istics for each of the 200 trials. Since p2 seemed to be a crossover

probability for which estimator was better, results for p2 were of spe-

cial interest. They showed that each estimator was better approximately

50% of the time in terms of squared error. However, in terms of per-

centage relative difference, the posterior mean was the better estimator

for two-thirds of the trials.

An investigation of the estimated bias found that central values for

the individual errors were smaller for the posterior mode (mle) than for

the posterior mean at p2. Further, in all cases, the posterior mode was

slightly closer to a 50/50 ratio of positive errors to negative errors

than was the posterior mean. The posterior mean had a higher proportion

of positive errors.

6.5.4 Perturfaed_ Pri_o_r i.n_Bayesi_an_ Estjmatprs_^

In this subsection, we discuss results from robustness study R2

where we used the perturbed prior 10x[v/10+(.09,.05,-.14)], instead of
*

the correct prior v, in the Bayesian estimators.

Table 6.9 gives values for the regression-estimate mean squared

error ( r i s k ) over 200 t r inomia l s imula t ions for both replications.
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Results are similar to those for the uniform prior. The posterior

mean is best for p3 and p^. The posterior mode is best for p, and

usually best for p~- The maximum likelihood estimate is the worst

estimator at p~, p^, and p.; the posterior mean, at p,.
—* £ -%-O — f — J.

Therefore, results indicate that when a very wrong prior is used,

the posterior mode is the best estimator for probabilities at or near a

boundary. However, the posterior mean will still be the best estimator

for probabilities away from the boundary.

To determine significant effects among variables in Table 6.9, we

next performed an analysis of variance on the natural logarithms of the

mean squared errors. Significant F values are given in Table 6.12.

Plots of the significant PID*EST and RxESTxSS interactions are given in

Part B of Table 6.12. The PIDxEST plot shows that, when summed over p,

SS, and replication, the posterior mode PMD is the best estimator,

followed by APM and MLE. [However, when this analysis was done on the

original mean squared errors rather than on log (mse), the posterior

mean, not the posterior mode, was best.] As expected, all estimators

worsen as the percentage of incomplete data increases. However, the
<*

difference between estimators is almost constant as PID changes.

The plot of PxESTxSS shows that, when summed over PID and replica-

tion, the posterior mode is best for p-, and p~, the posterior mean is

best for p., and the posterior mode and posterior mean are equally best

for p3- Except, at p,, the maximum likelihood estimate is the worst

estimator. Estimators improve and differences between estimators

decrease as sample size increases.
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By using the log (rose) translation given in Section 6.5.3, we find
C

that plots in Table 6.12 show that, as for the uniform prior, the largest

reduction in risk occurred at the corner probability p... At p, the risk
-« 1 — 1

of the posterior mean was over four times larger than that of the pos-

terior mode when the sample size was 25 and almost three times larger,

when the sample size was 50. The risk of the maximum likelihood estimate

was twice larger than that of the posterior mode when the sample size

was 25 and about 64% larger, when the sample size was 50. At p2, the

risk of the posterior mode and posterior mean were almost equal. The

risk of the maximum likelihood estimate was close to one-half that of

the posterior mode when the sample size was 25 and about 72% that of

the posterior mode when the sample size was 50. At p.,, the risk of the
~ O

posterior mean was only slightly smaller than that of the posterior mode

but was about one-half that of the maximum likelihood estimate when the

sample size was 25 and about 70% that of the maximum likelihood estimate

when the sample size was 50. At p., the risk was reduced about 20% by

using the posterior mean instead of the posterior mode when the sample

size was 25; about 12%, when the sample size was 50. The relationship

between the risk for the posterior mean and maximum likelihood estimate

was the same as it was for p.,.

As for the original and uniform priors, we next examined several

additional properties of the estimators. The most important result was

that, when MLE or PMD had smallest risk, it was generally because, when

it had smallest squared error for one of the 200 trinomial simulations,

the difference between it and APM's squared error was much larger than

the difference when ARM was best. This larger difference usually owed

to ARM, having nonzero prior, never being zero.
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6.5.5 _ _ _ _

We now conclude results from the three studies for minimizing risk,

and we recommend an operating rule. In this section, we are interested

in choosing which of the three estimators is best for minimizing risk

(expected quadratic loss). As anticipated from the introductory discus-

sion in Section 6.5.1, this minimizing estimator was a function of the

probability (or probability mean in the Bayesian framework) that was

being estimated.

Summary results from these three studies are given in Tables 6.13

and 6.14. In Table 6.13 we give the ratio of the estimated mean squared

errors for the posterior mean to those of the posterior mode and to those

of the maximum likelihood estimate. A ratio of less than 1 means that

the posterior mean is best. In Table 6.14, we condense results from

Table 6.13 and give the estimator having the smallest mean squared error

(risk).

If we use the correct prior, results indicate that the posterior

mean is best for all values of p except those very near a boundary of

the P? simplex. Even very near a boundary, results for the posterior

mean differed little from those for the best estimator, the posterior

mode, especially for a sample size of 50. [See Plot 6.10B and Table

6.13.] When the sample size was 25, risk was usually reduced by one-

fourth if the best estimator was used instead of the next best estimator

and by one-half if the best estimator was used instead of the worst

estimator, the maximum likelihood estimate. These reductions decreased

to about 12% and 38%, respectively, when the sample size doubled.
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If we do not have, or want to use, past knowledge for estimating a

prior and instead use a uniform prior, in which case the posterior mode

equals the maximum likelihood estimate, then results indicate that the

posterior mode (mle) is best for points very near a boundary and, for

PID=15, those near a boundary. The posterior mean is best everywhere

else. The crossover point is approximately p?, where estimated mean

squared errors for the posterior mean and posterior mode are almost equal

[See Plot 6.11B and summary tables, Tables 6.13 and 6.14.] In this ro-

bustness study, the largest reduction in risk occurred at the corner

probability p, where risk was reduced by five-sixths if-the posterior

mode (mle) was used instead of the posterior mean when the sample size

was 25. When the sample size was 50, the reduction was three-fourths.

For p., and p , risk was reduced about one-fourth by using the posterior

mean instead of the posterior mode (mle) when the sample size was 25;

by one-seventh, when the sample.size was 50.,-

For an estimate of the prior that is very poor, conclusions are

similar to those for the uniform prior. The posterior mode is best at

or near a boundary; the posterior mean, elsewhere. The main difference

.is that the crossover point is a little closer toward the center of P?.

[See Plot 6.12B and summary tables, Tables 6.13 and 6.14. In particular,

observe how similar curves in Plot 6.12B are to those in Plot 6.10B.]

In this robustness study also, the largest reduction in risk occurred

at the corner probability p.,. At p., risk was reduced by three-fourths

when the posterior mode was used instead of the posterior mean when the

sample size was 25. When the sample size was 50, the reduction was
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two-thirds. At the center p. of P,,, risk was reduced by about .20% when
-w *T £

the posterior mean was used instead of the posterior mode when the sample

size was 25; about 12% when the sample size was 50. Otherwise, at p? and

p , the risk of the posterior mean and posterior mode differed little.

Use of the best estimator instead of the maximum likelihood estimate

usually reduced risk by one-half when the sample size was 25 and one-

third when the sample size was 50.

Recall the centrality measure C(p) that we defined in equation (5.2).

This norm is a measure of the distance a probability is from the center

of the P9 simplex. For the four values, p=(.01,.01,.98), p =(.10,.10,
c. ~1 ~ <L

.80), p3=(.20,.30,.50), and p4E(l/3,l/3,l/3) of p in the simulation study,

centrality measures were 1.88, .98, .14, and 0, respectively. In general,

probabilities nearest a boundary have a centrality measure larger than 1.

When we used the uniform prior or the badly estimated prior in the

robustness studies, the crossover point for which estimator was best lay

between p? and p_. Between p_ and the crossover point, however, there

was little difference between results for the posterior mode, the best

estimator, and those for the posterior mean. Further, for priors that

are not as badly estimated as were those in the second robustness study,

we expect the crossover point to be closer to P2 or, based on Plot 6.10B

for the correct prior, possibly between p, and p^.

Since p? has a centrality measure of .98, we recommend, as an operat-

ing rule, use of the posterior mean if the centrality measure of p is less

than 1 and the posterior mode, otherwise. This operating rule is a func-

tion of p and in practice, of course, we do not know p. Hence, we can
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not calculate the exact centrality measure. However, for any estimate

v of the prior, we can approximate the centrality measure by C(p) =
~ k+1
C(v/ I v.). In those cases having no estimate of the prior, we could
- j=i J

use a uniform prior and, thus, approximate C(p) by 0.

Note that the maximum likelihood estimate was everywhere the worst

estimator when the correct prior was used in the Bayesian estimates.

Even when a very poor estimate of the correct prior was used [robustness

study R2], the maximum likelihood estimate was the worst estimator every-

where except very near a boundary where it was second best.

As sample size increased, the difference between the estimators de-

creased. A sample size of 50 was large enough for some of the estimators

in some cases to be approximately equal. As the percentage of incomplete

data increased, all estimators worsened. However, the difference between

estimators did not significantly change.
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6.6 Summary:

In this chapter we gave results of Design 1 in the simulation study.

In the first half we discussed Taylor-series approximations for elements

of the posterior mean and covariance matrices. These approximations were

needed for the second half of the study. In the second half, we reported

which of the posterior mean, posterior mode, and maximum likelihood esti-

mate best minimized risk for quadratic loss at specified values of the

population.probability (or probability mean in the Bayesian framework).

Conclusions and recommendations were given at the end of each of these

discussions.

Briefly, the Taylor-series approximations were excellent except for

some of those cases simultaneously having inconsistent data, zero obser-

vations for two of the three completely specified cells, and high percen-

tage (40% - 60%) of incomplete data. Even in these rare cases, the

approximations are probably satisfactory considering the inherent uncer-

tainty associated with estimating nonzero probabilities from zero data.

In nearly all cases, the approximations were accurate to at least two

significant figures. The approximation for elements of the posterior

mean vector was even better. In most cases, it was accurate to at least

four significant figures.

The risk study indicated that the posterior mean is the best esti-

mator for all values of the probability p except those very near a bound-

ary of the P2 simplex if we use the correct prior in the Bayesian esti-

mates. The posterior mode is best at a boundary. However, it does not
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differ much from the posterior mean. If, however, we use a uniform prior

or a bad estimate of the correct prior, then the posterior mode is the

best estimator for values at or near a boundary of the P,, simplex; the

posterior mean, elsewhere. By using the best estimator, risk was usually

reduced by one-fourth over that of the next best estimator and by one-

half over that of the worst estimator (nearly always the maximum likeli-

hood estimate) when the sample size was 25. Corresponding reductions

when the sample size was 50 were one-eighth and three-eighths, respec-

tively. At a corner p =(.01,.01,.98), however, the reduction was much

larger when an incorrect prior was used in the Bayesian estimators; the

risk was reduced by as much as five-sixths when the posterior mode was

used instead of the posterior mean.

In the last section we gave the following operating rule for deter-

mining which estimator to use in practice: use the posterior mean if the

centrality measure calculated from your estimate of the prior is less

than 1; otherwise, use the posterior mode.
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TABLE 6.5

BIAS AND MSE RATIOS FOR EPM COMPARISONS. DESIGN 1.

Sample

% Inc.

Replic

P_ Ag

Size

Data

. No.

prox.

SS=25 .

PID=15

rl r2

PID=40

rl

A. RATIO OF BIAS(APM) TO

El

P.2

P.3

?4

El

?2

?3

E4

PMD

MLE

PMD

MLE

PMD

MLE

PMD

MLE

PMD
MLE

PMD

MLE

PMD

MLE

PMD

MLE

-.13 -2
-.69 -1

-.33 -3
-.41 -2

-.54 -3
.35 -2

-.48 -2
-.11 -2

B.

.28 -3

.13 -2

.78 -6

.18 -5

.64 -5

.15 -5

.36 -4

.18 -5

-.21. -2

.45 -1 •

-.25 -3

.19 -1

-.10 -2

-.22 -1

.70 -2

.17 -2

-.87 -2

-.52 -1

-.25 -2

.14 -1

-.35 -2

-.24 -1

-.12 -1

-.30 -2

RATIO OF MSE(APM) TO

.45 -4

.23-3

.24 -5

.59 -5

.12 -4

.27 -5

.31 -4

.16 -5

.20 -2

.68 -2

.64 -4

.10 -3

.22 -3

.40 -4

.67 -3

.29 -4

r2

BIAS(PMD) AND

.44 -2

.89 -1

-.18-2

-.14 0 .

-.48 -2

.32 -1

.89 -1

.19 -1

MSE (PMD) AND

.31 -2

.71 -2

.58 -4

.92 -4

.'20 -3

.37 -4

.69 -3

.31 -4

SS=50

PID=15

rl

BIAS(MLE)

-.24 -2

.81 -1

-.26 -3

.12 0

-.57 -3

-.58 -2

.17 -2

.44 -3

r2

FOR EPM

.43 -3

-.10 -1

-.18 -3

-.60 -2

-.53 -3

.92 -2

.41 -2

.11 -2

PID=40

rl

COMPARISONS

-.11 -1

.14. 0

-.37 -2

-.12 0

-.81 -2

.16 1

.47 -1

.13 -1

r2

-.42 -2

.55 -1

-.30 -2

-.38 -1

-.83 -2

.45 -1

-.18 -1

-.45 -2

MSE(MLE) FOR EPM COMPARISONS

.93 -4

.17 -2

.15 -5

.71 -5

.87 -5

.32 -5

.37 -4

.25 -5

.15 -3

.24 -2

.12 -5

.48 -5

.53 -5

.22 -5

.32 -4

.21 -5

.34 -2

.23 -1

.50 -4

.13 -3

.27 -3

.84 -4

.11 -2

.68 -4

.12 -2

.76 -2

.84 -4

.24 -3

.27 -3

.87 -4

.92 -3

.57 -4

Dirichlet probability (expected value of the Dirichlet distribution of p given prior parameters
v., v0, v,, and v., - - - • - * «



-265-

TABLE 6.6A

ANALYSIS OF VARIANCE FOR ESTIMATED EPM BIAS

SOURCE D.F. SUM OF SQ. MEAN SQ.

p
ss
PID

EST

PxSS '

PXPID

PxEST

SSxPID

SSxEST

PIDxEST

PxSSxPID

PxSSxEST

PxpIDxEST

SSxpIDxEST

PxSSxPIDxEST

ERROR

3

1

1

2

3

3

6

1

2

2

3

6

6

2

6

48

.658393 -3

.539909 -4

.794404 -5

.211893 -2

.686198 -4

.634564 -5

.104191 -2

.219305 -5

.879171 -4

.642627 -5

.452496 -6

.114745 -3

.125370 -4

.135775 -5

.621923 -6

.521696 -4

.219464 -3

.539909 -4

.794404 -5

.105946 -2

.228733 -4

.211521 -5

.173652 -3

.219305 -5

.439586 -4

.321314 -5

.150832 -6

.191242 -4

.208950 -5

.678876 -6

.103654 -6

.108687 -5

201.924 ***

49.676 ***

7.309 ***

974.787 ***

21.045 ***

1.946

159.773 ***

2.018

40.445 ***

2.956 *

.139

17.596 ***

1.922 *

.625

.095

TOTAL 95 .423455 -2

* Significant at 10% level.
*** Significant at 1% level.

Note that exponential notation is used for the third and fourth
columns; for example, .00423455 is written as .423455 -2.
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6.6B PLOTS OF PxESTxSS AND PxESTxPID INTERACTIONS .

P'ESTxSS PxESTxPID

.02 -

.00 -

-.02 •

bias -.04 •

-.06 •

-.08 -

-.10 -

.02 •

,00 -

-.02 -

bias -.04 -

-.06 -

-.08 -

-.10 -

SS=25

.02 -
. . . Afr--^__i__— — *- --^y .00-

/
\ / - .04-

\ /

\ / -°8-

^ -.10 -

1 1 1 11 1 1 1

El ?2 E3 ?4

SS=50

.02 •

t^-—*" ^" - - - . i ift m- m -^ ^ QQ _

- .02-

^^ -.04 •

'^ -.06 .

-.08 .

-.10 •
t i l l1 1 1 1

t APM
• PHD
4 MLE

PIO=15

*~~~ 1^^ "* /
/

/

\ /

^^
N^

I I I 1— 1 1 1 T

Ei E2. ?3 E4

PID=40

\ /
\ /

vx

1 1 t 1I 1 j [

P, P,

"values are sums over nonpresent factors, including replication.
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TABLE 6.7A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED EPM

MEAN SQUARED ERROR

SOURCE D.F. SUM OF SQ. MEAN SQ.

p
ss
PID

EST

PxSS

PxpID

PxEST

SSxpID

SSxEST

PIDxEST

PxSSxPID

Px SSxEST

PxpIDxEST

SSxpIDxEST

PxSSxPIDxEST

ERROR

3

1

1

2

3

3

6

1

2

2

3

6

6

2

6

48

.127603

.354935

.569041

.199362

.191251

.886197

.121670

.162900

.219450

.540537

.242087

.317632

.984097

.287500

.228965

.386696

2

2

2

4

1

0

3

0

1

2

0

0

0

-1

0

1

.425343

.354935

.569041

.996812

.637503

.259399

.202784

.162900

.109725

.270269

.806956

.529387

.164016

.143750

.381608

.805617

1

2

2

3

0

0

2

0

1

2

-1

-1

0

-1

-1

-1

52

440

706

12,373

7

3

251

2

13

335

1

2

.797 ***

.575 ***

.342 ***

.269 ***

.913 ***

.667 **

.713 ***

.022

.620 ***

.480 ***

.002

.657

.036 *

.178

.474

TOTAL 95 .228533 4

* Significant at 10% level.
** Significant at 5% level.

*** Significant at 1% level.
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TABLE 6.10A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED RISK

FOR ROBUSTNESS SET 0 ;

SOURCE D.F. SUM OF SQ. MEAN SQ.

p
ss
PID

EST

PxSS

PxpID

pxEST

SS*PID

SSxEST

PIDxEST

PxSSxPID

PxSSxEST

pxpIDxEST

SSxpIDxEST

PxSSxPIDxEST

ERROR

3

1

1

2

3

3

6

1

2

2

3

6

6

2

6

48

.147185 3

.474330 1

.645378 0

.722603 1

.697938 -1

.717094 -1

.120826 1

.535130 -1

.628491 0

.768419 -1

.883219 -2

.155608 0

.824202 -2

.433219 -2

.127261 -2

.104847 0

.490617 2

.474330 1

.645678 0

.361302 1

.232646 -1

.239031 -1

.201377 0

.535130 -1

.314245 0

.384210-1

.294406 -2

.259346 -1

.137367 -2

.216610 -2

.212102 -3

.218432 -2

22,460.893 ***

2,171.526 ***

295.460 ***

1,654.071 ***

10.651 ***

10.943 ***

92.192 ***

24.499 ***

143.864 ***

17.589 ***

1.348

11.873 ***

.629

.992

.097

TOTAL 95 .162192 3

*** Significant at 1% level.
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TABLE 6.11A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED RISK

FOR ROBUSTNESS SET 1

SOURCE D.F, SUM OF SQ. MEAN SQ.

p
ss
PID

EST

PxSS

PxPID

PxEST

SSxPID

SSxEST

PIDxEST

PxSSxRID

PxSSxEST

PxPIDxEST

SSxPlDxEST

PxSSxpIDxEST

ERROR

3

1

1

1

3

3

3

1

1

1

3

3

3

1

3

32

.427955

.779571

.766894

.129177

.196884

.115092

.866720

.107157

.122873

.570937

.802564

.244437

.131641

.326823

.523357

.919024

2

1

0

1

0

-1

1

-1

-1

-2

-2

0

-1

-3

-2

-1

.142652

.779571

.766894

.129177

.656280

.383639

.288907

.107157

.122873

.570937

.267521

.814791

.438803

.326823

.174452

.287195

2

1

0

1

-1

-2

1

-1

-1

-2

-2

-1

-2

-3

-2

-2

4967.

2714.

267.

449.

22.

1.

1005.

3.

4.

1.

.

28.

1.

•

.

065

429

029

789

851

336

959

731

278

988

931

371

528

114

607

***

***

***

***

***

***

*

**

***

TOTAL 63 .619173 2

* Significant at 10% level.
** Significant at 5% level.
*** Significant at 1% level.
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6.11B PLOT OF PxESTxSS INTERACTION

.2 3 -4

SS=25

SS=50

t ARM
A PMD=MLE

P3

Values are sums over PID and replication
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TABLE 6.12A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED RISK

FOR ROBUSTNESS SET 2

SOURCE D.F. SUM OF SQ. MEAN SQ.

p
ss
PID

EST

PxSS

PxPID

PxEST

SSxPID

SSxEST

PIDxEST

PxSSxPID

PxSSxEST

PxPIDxEST

SSxpIDxEST

PxSSxpIDxEST

ERROR

3

1

1

2

3

3

6

1

2

2

3

6

6

2

6

48

.106983

.697137

.755904

.320158

.577776

.266412

.613926

.422372

.249801

.449282

.118694

.198784

.121991

.569427

.943908

.122429

3

1

0

1

-1

-1

1

-1

0

-1

-1

0

-1

-2

-2

0

.356610

.697137

.755904

.160079

.192592

.888039

.102321

.422372

.124901

.224641

.395645

.331307

.203318

.284714

.157318

.255061

2

1

0

1

-1

-2

1

-1

0

-1

-2

-1

-2

-2

-2

-2

13981.

2733.

296.

627.

7.

3.

401.

16.

48.

8.

1.

12.

•

1.

.

332

214

361

610

551

482

162

560

969

807

551

989

797

116

617

***

*•**

***

***

***

**

***

***

***

***

***

TOTAL 95 .124833 3

** Significant at 5% level
*** Significant at 1% level
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TABLE 6.13

RATIO OF MSE(APM) TO MSE(PMD) AND HSE(MLE) FOR QUADRATIC-LOSS COMPARISONS.

Sample Size

% Inc. Data

Replic. Ho.

P Estimator

p, PMD
-1 MLE

p, PMD
-^ MLE

p PMD
-J MLE

p PMD
-* MLE

p PMD*

P.2 PMD

P3 PMD

P4
 PMD

SS=25

PID=15

rl r2

SS=50

PID=40

rl

PID=15

r2 rl r2 rl

PID=40

r2

A. ROBUSTNESS SET 0 (ORIGINAL PRIOR USED IN BAYESIAN ESTIMATORS)

.14

.47

.58

.48

.80

.47

.82

.47

B.

.55

.10

.79

.77

1
0

0
0

0
0

0
0

.14

.48

.60

.48

.80

.47

.82

.47

ROBUSTNESS

1

1

0

0

.56

.11

.80

.77

C. ROBUSTNESS

. p PMD
-1 MLE

p PMD
~2 MLE

p PMD
~J MLE

p PMD
~4 MLE

.41

.20

.11

.64

.92

.56

.82

.58

1
1

1
0

0
0

0
0

.41

.21

.12

.69

.92

.59

.82

.58

1
0

0
0

0
0

0
0

SET 1

1

1

0

0

SET 2

1
1

1
0

0
0

0
0

.14 1

.43 0

.52 0

.39 0

.75 0

.39 0

.79 0

.40 0

.13 1

.41 0

.48 0

.39 0

.77 0

.40 0

.79 0

.40 0

(UNIFORM PRIOR USED

.64 1

.98 0

.73 0

.72- 0

(PERTURBED

.50 1

.21 1

.11 1

.55 0

.90 0

.49 0

.79 0

.52 0

.63 1

.95 0

.76 0

.72 0

PRIOR USED

.44 1

.21 1

.11 1

.55 0

.92 0

.52 0

.79 0

.53 0

.10 1

.67 0

.78 0

.67 0

.89 0

.66 0

.89 0

.67 0

.12 1

.66 0

.73 0

.67 0

.87 0

.66 0

.89 0

.67 0

.11

.60

.73

.61

.84

.60

.87

.59

1
0

0
0

0
0

0
0

.11 1

.60 0

.65 0

.60 0

.85 0

.60 0

.87 0

.60' 0

IN BAYESIAN ESTIMATORS)

.37 1

.11 1

.90 0

.88 0

.38 1

.10 1

.88 0

.88 0

.36

.10

.85

.84

1

1

0

0

.38 1

.92 0

.86 0

.85 0

IN BAYESIAN ESTIMATORS)

.28 1

.18 1

.11 1

.82 0

.95 0

.76 0

.89 0

.76 0

.31 1

.19 1

.10 1

.78 0

.94 0

.71 0

.89 0

.72 0

.25

.17

.10

.72

.92

.65

.87

.68

1
1

1
0

0
0

0
0

.28 1

.18 1

.96 1

.66 0

.94 0

.68 0

.87 0

.70 0

*For uniform prior, PMD=MLE

fDirichlet probability
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TABLE 6.14

ESTIMATOR HAVING SMALLEST AVERAGE ESTIMATED MEAN SQUARED ERROR

FOR QUADRATIC-LOSS COMPARISON.

Sample Size

% Inc. Data

Replic. No.

SS=25
PID=15 PID=40

rl r2 rl r2

SS=50

PID=15 PID=40

rl r2 rl r2

Dir. Prob.

A. ROBUSTNESS SET 0 (ORIGINAL PRIOR IN ESTIMATORS)

B

C

pmd pmd
apm apm

apm apm

apm apm

. ROBUSTNESS
i

pmd pmd
pmd pmd

apm apm
apm apm

. ROBUSTNESS

pmd
apm

apm

apm

SET

pmd
apm

apm
apm

SET

pmd

apm

apm

apm

1 (UNIFORM

pmd
apm

apm

apm

PRIOR

pmd

apm

apm

apm

.IN

pmd pmd

apm apm
apm apm

apm apm

ESTIMATORS)

pmd pmd pmd pmd pmd
apm pmd pmd apm apm

apm apm apm apm apm

apm apm apm apm apm

2 (PERTURBED PRIOR IN ESTIMATORS)

Hi
B2

B4

Ei
B22

PS
B4

P- pmd pmd pmd pmd pmd pmd pmd pmd-«j.
p 2 pmd pmd pmd pmd pmd pmd pmd apm
~~d.
p apm apm apm apm apm apm apm apm~ o
p apm apm apm apm apm apm apm apm
^

1
pmd = mle for uniform prior
2
pmd and apm are nearly equal for all conditions for p? for
Robustness sets 1 and 2. Recall Table 6.13.



CHAPTER 7

RESULTS OF DESIGN 2

7.1 Introduction:

In this chapter, we report results from Design 2. We want to know

whether risk results from Design 1 depend on the very special choice

used there for the trinomial generator probabilities. Recall that each

of the four trinomial generators was the mean of a prior Dirich'let

distribution. This chapter reports what happens when, instead, we

choose probabilities randomly generated from the Dirichlet distribution

for these trinomial generators. [See Figures 5.1 - 5.3 for a comparison

of Design 2 with Design 1.]

Note that, except for a brief discussion in the next section, we do

not report work on the Taylor-series approximations. Results of Design

1 show that risk conclusions depend on the value of the generator p.
-\*

However, the accuracy of the Taylor-series approximations, although

depending slightly on the value of the generator p, was good for all

values of p. Rare exceptions occurred at some of those boundary values

that gave empty cells for the completely specified data when the percen-

tage of incomplete data was high. Although some of the calculations

discussed in Section 6.4 for Design 1 were repeated for Design 2,

results were identical to those already reported.

Other than the generator probabilities p, factors in Design 2 were

the same as those in Design 1. There were four values of the prior

parameter v: v^. 1,. 1,9.8), v2=(l,l,8), v3=(2,3,5), and v4s(10/3,10/3,

10/3). Sample sizes were SS=25 and SS=50. The percentage of
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incomplete data PID varied around PID=15 and PID=40. The three estimators

were the posterior mean (approximated by the Taylor-series expansion),

the posterior mode, and the maximum likelihood estimate.

As in Design 1, we had three robustness studies, one each for use in

the Bayesian estimates of the original prior v, the uniform prior (1,1,1),

and the perturbed prior 10x[v/10+(.09,.05,-.14)]. Note, again, that the

maximum likelihood estimate was the same for all three studies.

Recall from Section 5.6 that cost constraints limited to 10 the
• • »

number of Dirichlet generations of p given each of the four values of v.

Values of these probabilities, generated by the procedures described in

Section 5.7.2, are given in Table 7.1. As expected, the generated values

varied around the means (.01,.01,.98), (.10,.10,.80), (.20,.30,.50), and

(.33,.33,.33) of the prior distribution of p given v,, v~, v,, and VA,
•ŝ  -v J. •** £ -v .J ' -wH"

respectively. Table 7.1 also gives the centrality measure C(p) for each

generated value of p. In Design 1, this centrality measure became the
•s*

basis for deciding which estimator to use for minimizing risk. Recall

from Table 5.1 that centrality measures for the prior means of the dis-

tribution of p given the four values of v are 1.88, .98, .14, and 0,

respectively. Note, then, in Table 7.1 that centrality measures for v,

ranged from 1.39 to 2.00 (the highest possible value). Those for v2

ranged from .06 to 1.94; for v,, from .05 to 1.05; and, for v^, from 0

to .38. Centrality measures for the prior mean of the distribution of p

given the four values of the perturbed prior 10x[v/10+(.09,.05,-.14)]

are 1.16, .48, .01, and .09. [Recall Figure 6.2 for perturbed-prior

means. ]
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Results from the three robustness studies are reported in the next

section and concluded in the last section. Appendix 7A gives the

complete-data (PID=0) risks and estimated risks (with associated standard

errors) for PID=15 and PID=40 for the three estimators, three robustness

studies, four values of v, and ten Dirichlet probabilities p. Tukey

data summaries, central values, and spreads were calculated for the risk

estimates over the ten Dirichlet generations. The averages, with stan-

dard errors, are given in Table 7A.7. We note here that the posterior

mean had the smallest average, even at v,, when the original prior was

used in the Bayesian estimators. This result is important because it

means that the sampling distribution, even though based on only ten

probabilities, agreed with the theoretical distribution at least in terms

of which estimator minimized average risk. [Recall Section 1.2.]

Appendix 7A also gives the analyses-of-variance results for the three

robustness studies and plots of two of their interactions.

In the remainder of this section, we briefly discuss computational

aspects peculiar to Design 2. Since we were investigating which estima-

tor best minimized risk for quadratic loss, the criterion for choosing

among estimators was the estimated mean squared error (risk). After we

discussed estimated mean squared error in Design 1, we studied the

estimators in detail, especially at those values of p for which two or

more estimators had approximately equal risk. In Design 2, we studied

only estimated mean squared error and results from the analysis of

variance on its natural logarithms.

In Design 1, we used the regression estimate for the mean squared

error. Where we could, we also used the regression estimate in Design 2.
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However, we could not calculate the regression estimate for some cases

when the prior was v1s(.l,.i,9.8). In these cases, the complete-data

maximum likelihood estimate was the same for all 200 trinomial simula-

tions. Hence, its sample variance was zero. Therefore, the denominator

for the regression mean-squared-error estimate in (5.19) was undefined.

The problem cases were those in which C(p) was 1.9993, 1.9999, and

2.0000. These three cases were those in which the generated Dirichlet

probabilities were approximately(0,0,1). The probabilities were

(.00000 004,.00011,.99989), (.00000 9,.00000 00000 0003,.99999 1), and

(.00000 3,.00000 00000 001,.99999 7), respectively. Note that there were

no problems in calculating regression estimates of the mean squared

error for the generated Dirichlet probability p=(.01,0,.99), for which

C(p)=1.9182. Further, for the case in which C(p)=1.9993, the regression

estimate was undefined for only half the cases. Hence, it was only when

the population probability was almost identically (0,0,1) that the

regression estimate did not exist.

In these cases of undefined regression mse estimate, we used the

control-variate estimate. However, the control-variate estimate was

negative several times for the posterior mode when the generated Dirich-

let probability was approximately (0,0,1). Although this happened only

in cases where the regression estimate was defined, it happened for a

Dirichlet probability which had an undefined regression estimate for

most of the SS, PID, and replication variations. Hence, the control-

variate estimate was used for most variations and, for consistency,

would have been a better choice than the regression estimate for the
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remaining cases. [See the fourth generation for PMDRO in Table 7A.3

for inconsistent mean squared errors resulting from use of the two

different estimates.] The control-variate estimate was negative because

the posterior mode had a regular mse estimate a couple orders of magni-

tude smaller than either the true or regular-estimate complete-data mean

squared error and the regular estimate was larger than the true value.

[See equation (5.13). ]

The inconsistent mse estimates for PMDRO at p=(0,0,l) affected

results in the ANOVA. Variations among PID and SS levels were as large

as 100. This large variation gave rise to unnaturally large effects of

SS and, particularly, PID relative to those for estimator. Further, the

ANOVA model had an additional factor v, ten levels (instead of one) for

p within v, and p as a random factor instead of a fixed factor. There

fore, the ANOVA model was more complicated than that for Design 1.

Hence, its results were more subject to error.

Therefore, as a precaution against reaching wrong conclusions, we

studied certain interactions, especially the PwNU interaction (PwNU)*SS

xPIDxEST, independent of their significant effects in an ANOVA. An ad-

ditional reason for investigating this particular interaction was that

we wanted to insure that any lack of significant effect for PID was

accurate. Even more important, we wanted to know how any lack of

significant effect related to absence of any change in loge(mse) for the

two levels of PID. That is, PID could show no significant effect in the

ANOVA model strictly because the other factors had huge effects relative

to PID. In this case, there could still be a large change in loge(mse)

for the two levels of PID.
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Recall that in the last chapter we found that the Taylor-series

approximation ARM for the posterior mean was usually accurate to at

least four significant figures. In these cases, the APM mean-squared-

error estimate was a good approximation for the EPM mean-squared-error

estimate. It was usually accurate to at least three significant figures.

The rare cases in which the Taylor-series approximation was not as good,

however, were cause of concern for how well the APM mse estimate approx-

imated the EPM mse estimate. These cases occurred several times in

Design 2 at v. when the generated Dirichlet probability was approximately

(0,0,1). However, even though a few of the 200 trinomial simulations

yielded poor approximations for the posterior mean, the APM mse estimate

was an unusually good approximation for the EPM mse estimate. It was

nearly always accurate to at least five significant figures. The reason

is that in those cases (the majority of the 200 trinomial simulations)

in which the approximation was not poor, the approximated posterior mean

agreed extremely well with the exact posterior mean. Therefore, the APM

mse estimate, an average over the 200 trinomial simulations, was a very

good approximation.
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7.2 Results:

In this section we briefly give results from Design 2. We begin by

giving, in Table 7.2, the risks averaged over the ten Dirichlet genera-

tions of p. For estimated risks, those for PID=15 and PID=40, we also

averaged over the two replications. Note that averaged risks for PID=0

are not given for the posterior mode (PMD) at v... As in Design 1, we

could not analytically calculate the complete-data risk for values of p

containing one or more very small components when v=(0.1,0.1,9.8). In

these cases, a solution to the likelihood equations may not exist in P?.

[Note that (x.+v.-l)/(n+Iv.-3) is negative when x.=0 if v.=0.1.] If not,
/\

the posterior mode occurs on the boundary. Hence, p. may equal 0 or 1

but the i solution (2.43) to the likelihood equation can not be used

to calculate the risk.

We are interested in how much risk increases as the data becomes

incomplete. Table 7.2 shows that in 34 out of 44 cases, the averaged

risk increased between 5% and 12% as the percentage of incomplete data

(PID) increased from 0 to 15. The highest increase, 20%, was at a sample

size of 50 for v for the posterior mean (APM) when the perturbed prior

was used in the Bayesian estimators. As the percentage of incomplete

data increased from 0 to 40, the averaged risk increased between 17% and

50%. Individual values showed greater variation than the averages given

in Table 7.2. Occasionally, the complete-data risk was even greater than

the risk when approximately 15% of the data was incomplete. In these

cases, however, the complete-data exact value was nearly always within a

standard error of the PID=15 estimated value. These cases probably occurred
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when the observed percentage of incomplete data was on the low side of

15%. [Recall that, for a sample size of 25, when PID=15 the observed

percentage of incomplete data could be 0%, 4%, 8%, 16%, 20%, or 24%,...]

Finally, note that, as sample size decreased, the averaged risk decreased

by roughly one-half.

To compare the difference between estimators, we divided the averaged

risk for the posterior mean by that for the posterior mode and that for

the maximum likelihood estimate. Results given in Table 7.3 show that,

with small exception, the averaged risk was smallest for the posterior

mean for all variations in prior parameter, percentage of incomplete

data, and sample sizes when the correct prior was used in the Bayesian

estimators. The exception is that the posterior mode had, to two signif-

icant figures, the same risk for v, and almost equal risk for v.. [Re-

call Table 7.2.] As p moved from the center of the P2 simplex toward

a corner (from v4 to v,), the advantage in using the posterior mean over

the posterior mode increased. The advantage in using the posterior mean

over the maximum likelihood estimate was greatest at the center or a

corner of P?. At v,, the risk of the posterior mean was almost one half
£- ** J-

that for the posterior mode or maximum likelihood estimate for a sample

size of 25. For other values of the prior parameter v, percentage of

incomplete, data PID, and sample size SS, the averaged risk of the pos-

terior mean lay between 70% and 100% of that for the posterior mode and

maximum likelihood estimate.

When a uniform prior was used in the Bayesian estimators, the pos-

terior mode equaled the maximum likelitiood estimate. For this case,

results of Table 7.3 show that, in terms of averaged risk, the posterior
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mean was the best estimator at v, and v., in the middle and near the
~o ~f

center of P?. The maximum likelihood estimate (Eposterior mode) was

the best estimator near a boundary of P?; i.e., at v-, and v?. ,The
£. -«X -« £

maximum difference near the center of P? was only 70% (relative to the

smallest value). At a boundary, however, the averaged risk was between

two and three times smaller for the maximum likelihood estimate (Eposter-

ior mode) than for the posterior mean.

When the perturbed prior 10x[v/10+(.09,.05,-.14)] was used in the

Bayesian estimators, the posterior mode had the smallest averaged risk,

except at the center of the P^ simplex, where the posterior mean was

slightly better. The largest difference between estimators was at v,

where the risk of the posterior mean was 40% larger than that for the

posterior mode.

Note that for all three priors (correct, uniform, and perturbed),

there was very little difference between estimators as the percentage

of incomplete data changed. As sample size increased, the ratios moved

toward 1; i.e., the difference between estimators decreased.

As discussed in Chapter 1, however, we were most interested in

difference in risk as a function of the individual values of p. To

investigate this relationship, we first performed an analysis of variance

on the natural logarithms of the estimated mean squared errors (risks).

The F values from these analyses are given in Tables 7.8A, 7.9A, and

7.10A for use of the correct, uniform, and perturbed prior (robustness

study RO, Rl, and R2), respectively, in the Bayesian estimators. By far

the most significant effect in all three ANOVAs was that of p within v
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(Pw.NU), usually followed by (Pw.NU)xEST. Further, in all three robust-

ness studies, (Pw.NU)xESTxSS was significant at the 1% level and there

was a three-way (xpID) or four-way (xPIDxSS) significant interaction of

(Pw.NU)xEST with PID in each analysis.

Following the ANOVA tables in Appendix 7A are plots of significant

or otherwise important (recall Introduction) interactions. These plots

indicated that there was little change in the difference between estima-

tors as the percentage of incomplete data (PID) increased from 15 to 40.

Further, although the difference between estimators decreased as sample

size increased, the shape of the estimator curves for the two sample

sizes was nearly the same. Therefore, we summarize results from these

analyses by giving in Tables 7.4, 7.5, and 7.6 plots of the (Pw.NU)xSS

xpIDxEST interactions for only SS=25 and PID=15. Note that the horizon-

tal axis is the centrality measure of the generated p. The vertical

axis is log (risk) [=log (mse)]. Recall from Chapter 6 that, because

we used two replications, the square root of the exponential of a diff-

erence between logarithms approximately equals the ratio of the risk of

the two estimators. Thus, any difference of 6 between two estimators in

the log scale in Plots 7.4, 7.5, and 7.6 means that one of the two

estimators had a risk about twenty times larger than that of the other

estimator.

There are three important factors to consider in these three plots:

the distribution from which the generated p comes, the value of the gen-

erated p, and the value of the prior parameters used in the Bayesian

estimators. In all three plots, the distribution from which p comes is

the Dirichlet distribution given the prior v. The centrality measure of

the mean of this distribution is marked on the three plots by the arrow
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for the four values of v. We call this prior mean the v-p'u.oi mzan

or the correct-prior mean. We call the mean of the prior distribution

given the prior parameters used in the Bayesian estimators the utimatoi-

ptLiofi mean. The centrality measure of the estimator-prior mean is marked

on the plots by an "x" when, in Plots 7.5 and 7.6, it differs from the

v-prior mean. [Recall Figure 6.2 for estimator-prior means.]

Notice that the closer the v-prior mean is to a corner or to the

center of the P? simplex, the tighter the distribution of the generated

values of p. Away from these points, the distribution is fairly wide;

for example, the distribution of p given v~ covers almost the entire

C(p) axis.

Denote the estimator-prior mean by p. Plots 7.4 - 7.6 show that,

except for v,, there is a neighborhood of C(p) in which the posterior

mean is the best estimator for minimizing risk, often followed by an.

outer one-sided neighborhood toward 2.00 in which the posterior mode is

best. Finally, in the tails of the distribution of p given the prior

parameters used in the Bayesian estimators, the maximum likelihood esti-

mate is best.

Thus, the posterior mean was the best estimator most of the time.

In these cases, the posterior mode was usually next best. Other than

cross-over probabilities, the smallest difference between the posterior

mode and mean was at the center of the P? simplex. There, the risk of

the posterior mean was reduced only 14% to 23% from that of the posterior

mode, whereas it was reduced 22% to 42% from that of the maximum likeli-

hood estimate.
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Except near the tails of the estimator-prior distribution or near

the p=(0,0,l) corner of P?, the difference in log (mse) for the estima-
«- £. C

tors was usually between -1.4 and 0.8; difference in risk ranged from 0

to a 50% decrease. Use of the correct estimator most often reduced the

risk by about one-third. At the tails, the maximum difference between

log (mse) for the three estimators ranged from 0.8 (1/3 increase in risk)

in Table 7.4 at C(p)=0.06 for v? to 1.9 (risk almost tripled) at C(p)

=1.05 for V, in Table 7.6 to 5.6 (risk increased more than 16 times) at

C(p)=1.94 for \>2 in Table 7.6. However, the largest difference between

estimators occurred for v.. at the corner p=(0,0,l) where C(p)=2.00. At

this probability p, values of log (mse) for the maximum likelihood esti-

mate and posterior mode were equal. The large difference in log (mse)

between this value and that for the posterior mean was 10.6, 20.8, and

18.9 for use in the Bayesian estimators of the correct, uniform, and

perturbed prior, respectively. These differences correspond to an in-

crease in risk of 200 times, 33,000 times, and 13,000 times the risk for

the maximum likelihood estimate or posterior mode. Note, however, that

this enormous difference occurred only exactly at the (0,0,1) corner.
-7 -3For example, the probability p=(.4 ,.1 ,.99989) also had, rounded off,

C(p)=2.00 but the multiplicative increase in risk in using the posterior

mean instead of the posterior mode was by a factor of 77.5, 992, and

854, respectively, for the three robustness studies. Thus, the increase

was huge but not of the order found when the first two components had

more zeros. As p moved further from the (0,0,1) corner, the difference

in risks continued to drop sharply.
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In Figure 7.1 we give the ranges for each value of the estimator-

prior in which the posterior mean, posterior mode, and maximum likelihood

estimate was best. Note that the limits sometimes differ slightly from

the plots. In these cases, the difference between the limit and the

correct value was small. We used the wrong value to give limits in .05

increments and to give agreement between slightly different values for

the limits for those estimator-prior means having centrality measures

of 0 and .01. [Recall that the estimator-prior mean for all four plots

in Table 7.5 (use of the uniform prior) has centrality measure C(p) of

0 as well as one estimator-prior mean in Table 7.4.] Note in Figure 7.1

that, for the uniform prior, the region in which the posterior mean is

best is O^C(p)<.70. Also note that the posterior-mode range for C(p)

=0.09 was unusually short; that for the maximum likelihood estimate began

sooner than results from neighboring values of C(p) would indicate.

Results from Design 2 indicate that if one is even reasonably con-

fident in the prior, then the best estimator to use is the posterior

mean unless the prior mean is at the corner of the Po simplex, in which

case the posterior mode is better. Hence, we recommend, for an initial

try, use of the posterior mean if C(p)^1.5; the posterior mode, other- .

wise.

In practice, one can replace p in Figure 7.1 by the estimator p

and interpolate in the intervals in Figure 7.1 to refine the estimation

process. That is, if one uses the prior 3 with prior mean p.=B./£B. in~ ' I j

an estimator p, then one can compare C(p) with the regions given for

C(p) to determine if the best estimator was used. If not, then p can
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FIGURE 7.1

INTERPOLATION TABLE

if C(p) was

Oa and .Olb

and C(p) was

otherwise

then best estimator was

posterior mean
posterior mode
maximum likelihood estimate

.09U

otherwise

posterior mean
posterior mode
maximum likelihood estimate

.14° .45

.45*C(p)<1.05

otherwise

posterior mean

posterior mode

maximum likelihood estimate

.48U .85

.85*C(p)<1.60

otherwise

posterior mean

posterior mode

maximum likelihood estimate

.98° .10

[[1.94*C(p)«2.00

maximum likelihood estimate

posterior mean

posterior mode

posterior mode]]

1.16U .30

[[.30«C(p)<1.25

1.25*C(p)<1.55

1.55*C(p>2.00

maximum likelihood estimate]]
g

posterior mean]]

posterior mean

posterior mode

1.! [[ O^C(p)< .90

[[.90*C(p)<1.25

1.25*C(p)<1.55

maximum likelihood estimate]]
p

posterior mean]]
posterior mean
posterior mode

See plots in Table 7.4
See plots in' Table 7.6
Risk of posterior mode differs
little from that of posterior
mean or max. likelihood est.

When uniform prior was used in Bayesian esti-
mators, best estimator was the posterior mean
instead of the posterior mode; see Table 7.5

Q

extrapolated
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be discarded and the recommended estimator used. For example, if one

has a prior £=(12,1,2), then the estimator-prior mean p is (.80,.07,.13)

which has centrality measure C(p)=(.80-.07)2+(.80-.13)2+(.07-.13)2=.99.

Results of Figure 7.1 indicate that if use of the posterior mean gives
• •

an estimator p with C(p) between .10 and 1.45, then the posterior mean

is the best estimator to use. If, however, C(p) is greater than 1.45,

then we should discard the posterior mean and use the posterior mode.
•

Similarly, if C(p) is less than .10, we should replace the posterior

mean by the maximum likelihood estimate.

Note that results of Designs 1 and 2 indicate that the maximum

likelihood estimate, posterior mode, and posterior mean will usually be

close enough that their centrality measures will differ little. That

is, C(p) should not differ greatly for the three estimators. Finally,

we emphasize that the regions in Figure 7.1 are not exact. Further,

replacing p by the estimator p in Figure 7.1 makes the regions even

less exact. Hence, regions in Figure 7.1 should be considered only as

rough guidelines. Even so, their use can.still be expected to reduce

risk by 1/4 to 1/2 in most cases and by substantially more in many cases.
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7.3 Conclusions:

Based on results from Design 2 summarized in the last section, we

revised the operating guideline from Design 1 as shown in the following

Figure 7.2:

FIGURE 7.2

OPERATING GUIDELINES

Given data z and prior parameter v

Calculate prior mean p with component p.=v./Zv.
k k+1 ?

Calculate C(p)= E I (p. -p.)
~ i=l j>i 1 J

^ r

if for estimator p to minimize risk,

0-C(p)<1.50 posterior

1.50̂ C(p)̂ 2.00 posterior

>

use

mean (Taylor-series approx.)

mode

r

calculate C(p)

compare C(p) with C(p) intervals in Figure 7.1 for prior p

if C(p) is not in recommended interval, recalculate
estimator as recommended in Figure 7.1

i

i
1

t
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The gain in using the estimator recommended by these procedures is

usually a 1/4 to 1/2 reduction in risk. In many cases, however, the

reduction can be very large. The largest reduction in risk in this study

occurred when p=(0,0,l). For this corner probability, the risk of the

posterior mean was as much as 33,000 times larger than the risk for the

posterior mode or maximum likelihood estimate.
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TABLE 7.4

PLOT OF (Pvi.NU)><EST*SS*PID INTERACTION1. SS=25, PID=15. ORIGINAL PRIOR USED IN BAYESIAN ESTIMATORS.

t APM
• PHD
A MLE

-7

-8 •

-9 -

-10

-11

-12
Io9e -13 .
rose

-14

-15 -

• -16

-19

-25 •

-31

< v3=(2,3,5) > < Vj=(0.1,0.1,9.

t

H hfH 1 1 1 1 1 1 1 1 1 H
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0"

C(p)

109e
mse

<-v4=(3.3.3.3,3.3)->

0 .1 .2 .3 .4 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Values are sums over replication. Arrow (t) denotes centraHty measure of expected value of p given v [See Table 5.11.
i
Horizontal axis for the three sets of values plotted at 2.0 for v. 1s rescaled to have values 1.9993, 1.9999,2.0000. Note that vertical
axis 1s also rescaled.
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TABLE 7.5

PLOT OF (Pw.NU)xEST*SSxPID INTERACTION*. SS-25, PID-15. UNIFORM PRIOR USED IN BAYESIAN ESTIMATORS.

t APM
A PMDEMLE

logo

=̂(0.1.0.1,9.8)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0.1 .2 .3

-7

-8 •

-9

-10 -

-11

-12

-13 •

-14

<-v4=(3.3,3.3,3.3)-> <-

d 1 1 1 \ -\ 1 H 1 1 H 1 1 1 1 h H h
.1 .2 .3 .4 .1 .2 .3 .4 .5 .6 .7 .8 .9

C(p)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

'Values are sums over replication. Arrow (t) denotes the centrallty measure of the expected value of p given u [see Table 5.1]. Cross (x)
denotes the centrallty measure of the expected value of p given the uniform prior (1,1,1) [see Table~5.2 and'FInure 6.2],
'Horizontal axis for the three sets of values plotted at 2.0 for u. 1s rescaled to have values 1.9993, 1.9999, 2.0000. Note that vertical
axis 1s also rescaled.
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TABLE 7.6

PLOT OF (Pw.NU)xESTxSSxPIO INTERACTION. SS-25, PID-15. PERTURBED PRIOR USED IN BAVESIAN ESTIMATORS.

t APM
. PHD
A MLE

-7 •

-8 •

-9 •

-10

-11

-12 -

-13 •

-14 -

-15

-16

-22 -

-26

-30

< v3=(2,3,5) > < —VjMO.1.0.1,9.8) »

•ft"''

t

-+T+
.1 .2 .3 .4 .5 .6 .7 .8 .9

i—i—i- H 1 1 1 1 1 f
U« '

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

C(p)

109.

-7 •

-8 •

-9 •

-10 •

-11 •

-12 •

-13 •

-14 -

«-v4=(3.3,3.3,3.3)->

r̂ a^d#3'

i x
1 1 t 1 1•' J ' ' H

-V2=(l,1.8)-

.1 .2 .3 .4 .1 .2 .3 ..4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.

CM

1.8 1.9 2.0

Values are suns over replication. Arrow (t) denotes the centrallty measure of the expected value of p given y [see Table 5.1];
(x) denotes the centrallty measure of the expected value of p given the perturbed prior 10«[v/10+(.097.05,-.14)] [see Table 5.2, F1g. 6.21.

Horizontal axis for the three sets of values plotted at 2.0 for v, Is rescaled to have values 1.9993, 1.9999, 2.0000. Note that vertical
axis Is also rescaled.
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APPENDIX 7A

DATA FOR DESIGN 2
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TABLE 7A.8A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED QUADRATIC-LOSS

MEAN SQUARED ERRORS FOR ROBUSTNESS SET 0 (ORIGINAL PRIOR IN ESTIMATORS)

SOURCE

NU

SS

PID

EST • ,

NUxSS
NUxPID

NUxEST

SSxPID

SSxEST

PIDxEST

NUxSSxPID

NUxSSxEST

NUxPIDxEST

SSxPIDxEST

NUxSSxPIDxEST

Pw.NU

(Pw.NU)xSS

(Pw.NU)xPID

(Pw.NU)xEST

(Pw.NU)xSSxPID

(Pw.NU)xSSxEST :

(Pw.NU)xPIDxEST

(Pw.NU)xSSxPIDxEST

ERROR

D.F.

3

1

1

2

3

3

6

1

2
2

3
6

6
2

6

36
36

36

72

36 .

72

72

72

480

SUM OF SQ.

.251377 4

.896719 2

.644600 1

.156130 2

.366810 0

.255790 0

.527583 2

.124512 -1

.109549 1

.156421 0

.306224 0

.348970 0

.921781 -1

.181913 0

.654974 0

.287310 4

.690718 1

.382294 0

.299159 3

.380123 1

.838485 1

.386013 0

.727218 1

.229073 2

MEAN SQ.

.837924 3

.896719 2

.644600 1

.780652 1

.122270 0

.852634 -1

.879306 1

.124512 -1

.547744 0

.782106 -1

.102075 0

.581616 -1

.153630 -1

.909564 -1

.109162 0

.798085 2

.191866 0

.106193 -1

.415499 1

.105590 0

.116456 0

.536129 -2

.101002 0

.477236 -1

10.499 ***

467.367 ***

607.009 ***

1.879

.637

8.029 ***

2.116 *
.118

4.703 **
14.588 ***

.967

.499

2.866 **
.901

1.081

1672.306 ***

4.020 ***

.223

87.064 ***
2.213 ***

2.440 ***
.112

2.116 ***

TOTAL 959 .590404 4

* Significant at.10% level.
** Significant at 5% level.

*** Significant at 1% level.

Note that the usual exponential notation is used for the third and fourth columns;
for example, 5904.04 is written as .590404 4.
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7A.8B PLOT OF NUxESTxPID INTERACTION

mse

log£
mse

-190 •

-230

-270

-310

-350

-390

-155

-195

-235

-275

-315

-355

NU1

PIO=15

t ARM
• PMD
A MLE

NU2 NU3 MU4

PID=40

NU1 NU2 NU3 NU4

Values are sums over P, SS, and replication.
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7A.8C PLOT OF (P».NU)»ESTxSSxPJD INTERACTION.* NU»(0.1,0.1,9.8).

t APM
• PMO
4 HLE

log
-30

SS-25

•'--•..«—-6
*----+\

t "'
H 1 1 1 1 1 1 1 1 1—
Pi PS P? Pa P« 52 PS P* Pa Pio

-5 •

-10

-15 •

-20 .

-25

-30 •

-35

?rs? -̂..

SS-25

H 1 1 1—H 1 1 1 h
Pi Es B? Be 9 4 3 w

SS-50

El 5 B3 Bio

»Values are ̂ ums over replication. Hole that p's are ranked 1n terms of Increasing C(p); recall Table 7.1,
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7A.8C PLOT OF (Pw.NUKSTxSSxPID INTERACTION. NU-(1.0.1.0,8.0).

t APM
• PMD
4 HLE

PID=15 PID=40

SS-25 SS=25

89 B5 Bio ?4 Be ?2 Es Ei

Bs B? Be Bi Bs Bio B4 Be B2 ?3 5? Ba Bi

Values are sums over replication. Note that p's are ranked 1n terms of Increasing C(p); recall Table 7.1.
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7A.8C PLOT OF (Pn.NU)«EST«SS*PIO INTERACTION. NU-(2.0.3.0.5.0).

PIO-15

SS-25

I 1 1

Be 59 E2 Es E4 Es Bio Bi Es. E?

-6.6

-7.0 .

-7.4

-7.8 -

-8.2 •

-8.6 •

-9.0 -

-9.4 •

-9.8 -

PID-40

.*•--+.

t APM
• PW)
4KLE

SS-25

Be E9 62 Ss 84 Es Bio Ei Ea B;

!09e -9.3 -
nse _g5

-9.7

-9.9 -

-10.1

SS-50 SS-50

H 1 \ 1 1 1 1 1 1 H

Ee 69 E2 Es E4 Es Eio Ei Es E? Be 89 B2 Bs B4 Es Eio Ei Ba B?

Values ire sum over replication. Note that p's are ranked In term of Increasing C(p); recall Table 7.1.
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7A.8C PLOT OF (Pw.NU)x£STxSS*PID INTERACTION.* NIM10/3.10/3,10/3).

t APM
• PHO
A MLE

PID-15 PID-40

-7.0 -

-7.2 -

-7.4 .

-7.6 -

loge -7.8 -

mse -8.0 -

-8.2 -

-8.6 -

A — A i ft-- .4..— A. SS-25

\— &

\A — $

X''

'̂̂ ~~~

— ^-'̂ '̂~~~ ' ~ <r''

..Jf 1 T t
+ -'

1 _ 1 L. J 1 1 1 1 1 1

57 E3 84 li 56 Bio Es 5s Si IB

-6.8

-7.2

SS-25

H h

?7 ?3 P2 ?e io g Es Ei

109- -8.8 -

m$e -9.0 -

-9.2 -

-9.4 -

-9.6 -

SS-50

.̂'

-7.8

-8.0

-8.6

-8.8

-9.0

-9.2

-9.4

SS-50

57 E3 52 56 Bio 59 55 5i Be

+

57 Es E4 52 56 Bio 59 Es Bi Be

Values are sums over replication. Note that p's are ranked in terms of increasing C(p); recall Table 7.1.
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TABLE 7A..9A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED QUADRATIC-LOSS

MEAN SQUARED ERRORS FOR ROBUSTNESS SET 1 (UNIFORM PRIOR IN ESTIMATORS)

SOURCE D.F. SUM OF SQ MEAN SQ. F.

NU

SS

PID

EST

NUxSS

NUxPID

NUxEST

SSxPID

SSxEST

PlDxEST

NUxSSxPID

NUxSSxEST

NUxPIDxEST

SSxPIDxEST

NUxSSxPIDxEST

Pw.NU

(Pw.NU)xSS

(Pw.NU)xPID

(Pw.NU)xEST

(Pw.NU)xSSxPID

(Pw.NU)xSSxEST

(Pw.NU)xPIDxEST

(Pw.NU)xSSxPIDxEST

ERROR

3

1

1

1

3

3

3

1

1

1

3

3

3
1

3

36

36

36

36

36

36

36

36

320

.723959 3

.865921 2

.678313 1

.103706 3

.129282 1

.205667 -1

.317635 3

.105919 -2

.185452 0

.818075 -2

.222064 -2

.160116 1

.172753 0

.169200 -3

.480949 -2

.751737 3

.841929 0

.219711 0

.575080 3

.110764 0

.722642 0

.166521 0

.217426 -1

.100891 1

.241320 3

.865921 2

.678313 1

.103706 3

.430939 0

.685557 -2

.105878 3

.105919 -2

. 185452 0

.818075 -2

.740214 -3

.533721 0

.575842 -1

.169200 -3

.160316 -2

.208816 2

.233869 -1

.610310 -2

.159744 2

.307677 -2

.200734 -1

.462560 -2

.603960 -3

.315283 -2

11.557 ***

3702.584 ***

1111.425 ***

6.492 **

18.426 ***

1.123

6.628 ***

.344

9.239 ***

1.769

.241

26.588 ***

12.449 ***

.280

2.654 *

6623.127 ***

7.418 ***

1.936 **

5066.700 ***

.976

6.367 ***

1.467 *

.192

TOTAL 639 .257187 4

* Significant at 10% level,
** Significant at 5% level,

*** Significant at 1% level,
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7A.98 PLOT OF NUxEST«SS«PID INTERACTION

PICWS

SS-25

-65 •

-80

-95 •

-110

-125

-140 •

-155

t APH
A PMD-MIE

SS-25

H h
NU2 . NU3 NU4 NU1 NU2 NU3 NU4

-95

-110

-125

-140

-155

-170

NU2 NU3 HIM
-I 1 1 1-

NU1 NU2 NU3 NU4

Values are suns over P and replication.
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7A.9C PLOT OF (Pw.NU)xESTxSSxPID INTERACTION. NIMO.1.0.1.9.8).

loge

Bi 5s

PID-15

SS-25

1 1 1 1 1 1 1 h

-5 •

-10 •

-15 •

-20

-25 -

-30

-35 •

t APH
A PMD"HLE

PIOMO

-t—"t r.~.t~--t

SS-25

Eio
H 1 1 1 1 H—I 1 1 h
Bi B5 B7 P.8 Pe ?2 Bg B4 63 Bi

-5 •

-10

-15 •

-20 •

-25 •

-30 •

-35 •

-t---t—-t—--t—t

-5 •

-10 •

-15

-20

-25 •

-30

-35

SS-50

H 1 1 1 h- H 1 1 h
Bl ?5

Values are sums over replication. Note that p's are ranked 1n terms of Increasing C(p); recall Table 7.1.
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7A.9C PLOT OF (Pw.NU)»ESTxSS«PID INTERACTION* NIHl.0.1.0.8.0).

* APM
A PMD-MtE

PID=15 PIO=40

89 Bs Bw B4 Be. Bz 5s B; Be Bi

-7 •

-8

-9

-10

-11

-12

-13

-14

SS-25

H 1 1 1 1 1 1 1 h
89 Bs Bio B4 Be Bz Bs B? Be Bi

-8 •

-9 -

-10 •

109e -11 •

mse -12 •

-13 •

-14 •

-15 •

ss»so _8

ft — -fr~T-— - T--=»- .9 .
>,

^^""fr-'-^fc.-^ "l° '

^^~"4 "••̂ IÎ -- -» '

V>

\

\
\

1 1 1 1 1 1 1 1 1 1 -f

SS=50

t--1*.

\
1 — "*̂ ^ " """!•--.

^^4-— I'--..t

\

\

\

1 1 1 1 1 1 1 1 1 1

B9 Bs Bio B4 Bs B2 B3 B? Be Bi B9 Bs Bio B4 Be B2 B3 B? Bs Bi

Values are sums over replication. Note that p's are ranked In terms of Increasing C{p); recall Table 7.1.
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7A.9C PLOT OF (P».mi)xESTxSS»PlD INTERACTION.* NU-12.0,3.0,5.0).

PIO-15

SS-25

H 1 1 1 1 1 1 1 1 I—
Ee 69 Ez BS ft 6s Eio Ei Ba B7

t APM
A PHD-HLE

P10-40

55-25

Ee Eg Ez Ea 64 Es Bio El Es E?

ss-so SS-SO

E4 Es Eio Ei Ea B7 Ee Es Ez Ea E4 Es Eio Bi Ea E?

Values are suns over replication. Note that p's are ranked 1n terms of Increasing C(p); recall Table 7.1.
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7A.9C PLOT OF (Pn.NU)«EST»SSxPIO INTERACTION. NU-( 10/3,10/3,10/3).

PIO-15

+ APM
A PKO=MU

-7.0 •

-7.1 -

-7.2 -

-7.3 -

109, -7.4

me -7.5

-7.6 •

-7.7 •

-7.8 -

SS-25 SS-ZS

H 1 1 1 1 1 h
E? Ss 64 Ez Be Ew B9 E5 El B? E3 54 Ez Be Ew 59 Es Ei Ee

SS-50 -7.9

-8.0

-8.1 -

-8.2

-8.3 •

-8.4

-8.5

-8.6

-8.7 •

SS-50

E? E3 B4 Ez Be Eio 69 B5 Ei Es

H 1 1 1 1—h—I 1 1 h-

E7 E3 E4 Ez Be Eio BS E5 Bi Es

Values are suns over replication. Note that p's are ranked 1n terms of Increasing C(p); recall Table 7.1.
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TABLE 7A.10A

ANALYSIS OF VARIANCE FOR NATURAL LOGARITHMS OF ESTIMATED QUADRATIC-LOSS

MEAN SQUARED ERRORS FOR ROBUSTNESS SET 2 (PERTURBED PRIOR IN ESTIMATORS)

SOURCE

NU

ss
PID

EST

NUxSS

NUxPID

NUxEST

SSxPID

SSxEST

PIDxEST

NUxSSxPID

NUxSSxEST

NUxPIDxEST

SSxPIDxEST

NUxSSxPIDxEST

Pw.NU

(Pw.NU)xSS

(Pw.NU)xPID

(Pw.NU)xEST

(Pw.NU)xSSxplD

(Pw.NU)xSSxEST

(Pw.NU)xPIDxEST

(Pw.NU)xSSxPIDxEST

ERROR

D.F.

3

1

1

2

3

3

6

1

2

2

3

6

6

2

6

36

36

36

72

36

72

72

72

480

SUM OF SQ.

.195478 4

.980437 2

. 797488 1

.964996 2

.102821 0

.184583 0

.251424 3

.143585 -1

.540025 0

.453269 -1

.153708 -1

.353239 0

.725311 -1

.127573-1

.333265 -1

.178257 4

.282303 1

.370475 0

.781618 3

.282862 0

.219563 1

.474228 0

.304022 0

.332960 1

MEAN SQ.

.651592 3

.980437 2

.797488 1

.482498 2

.342735 -1

.615277 -1

.419040 2

.143585 -1

.270013 0

.226634 -1

.512360 -2

.588731 -1

.120885 -1

.637866 -2

.555442 -2

.495159 2

.784174 -1

.102910 -1

. 108558 2

.785727 -2

.304948 -1

.658649 -2

.422252 -2

.693667 -2

F

13.159 ***

1250.280 ***

774.940 ***

4.445 **

.437

5.979 ***

3.860 ***

1.827

8.854 ***

3.441 **

.652

1.931 *

1.835

1.511

1.315

7138.288 ***

11.305 ***

1.484 **

1564.988 ***

1.133

4.396 ***

,950

,609

TOTAL 959 .498407 4

* Significant at 10% level
** Significant at 5% level

*** Significant at 1% level
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7A.IOC PLOT OF (P».NU)<EST«SS»PIO INTERACTION. NU-IO.1.0.1.9.8).

t APM
• PHD
4 MLE

PID-15 PID-W

log.

rase

-5 •

-10

-15

-20

-25 •

-30 •

-35

SS-25

Pi ?5 ?6 ?2 ?9 ?4 ?3

-5

-10

-15 •

-20

-25

-30

-35

SS'25

H 1 h H 1 1 H
?5 ?7 ?8 ?6 ?2 ?9 ?4 ?3 PlO

loge

fflse

-5

-10

-IS •

-20

-25

-30

-35

SS-50

t 1 1

-I 1 1 1 1 1 1 h

-5

-10 -

-15

-20

-25

-30 -

•35 -

SS-50

fl .?5 h .Pa .?6 J>2 ft -"4 P3 JlO

1 1 h-H 1 h-
Pl ?5 ?7 ?8 ?6 ?2

H 1 I—
P« ?3 PlO

'values >r> sun over repltcttlon. Note that P'l are ranked In tern of Increaitng C(p); recall Table 7.1.
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7A.10C PLOT OF (P».NU)»EST«SSxPID INTERACTION. NU-(1.0.1.0.8.0).

t APM
• PHD
4 HE

PIO-15 P10-40

1oge

SS-25 SS-25

Es Bio B4 Be (2 Ea B? Be Ei 59 Es Eio B* Be Ez Bs B; Ee El

55-50 -8

-9

-10

-11

-12 •

-13

-14

-15

-16

55-50

H - 1 H 1 1 h
E9 Es Eio B4 63 B? Bs Bi 85 Eio 84 B« Ez 5s 57 Es 5i

\alues are suras over replication. Note that p's are ranked 1n terms of Increasing C(p); recall Table 7.1.
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7A.10C PLOT OF <P».NU)»EST»SSxPlD IKTERACTIOH.* ' NU-(2.0,3.0,S.O).

-S.8 -

-6.2 .

-6.6

-7.0

-7.4

lojt -7.8

"• -8.2

-8.6

-9.0

PIO-15

SS-25

H—I—I—I—I—I—I—H

E« ES 62 es E4 ES e>o

PID-40

t APN
• PMD
4HLE

-S.6

-6.0

-6.4

-6.8

-7.2

-7.6

-8.0

-8,4

-8.8

SS-J!

1 — I — I - 1

Es h Es

ss*so SS-60

Be 69 E4 Es Bio Bl Bj B; Eg Bz Ea E4 Bs Eio Bl b Br

Values are tun over replication. Note that p'l are ranked In term of increasing C(g); recall Table 7.1.



-327-

7A.10C PLOT OF (rV.NU)xESTxSSxPIO INTERACTION. NlM10/3.10/3,10/3).

t APM
• PHD
4 HU

P10-15 PID-40

-6.2 •

-6.6 -

-7.0 -

-7.4 -

1°9e -7.8 -

use -8.2 -

-8.6 -

-9.0 •

-9.4 •

SS-25 -5.8 •

* -6.2 •

t^^, 6-. ,4 — 4... ^ /~~*^ // -6.6 -

__ /f" "i"<;£--4 -7.0 •

^.--f-^T''^~--^^J// -7-4 •
""'••*•--..,..•••'* -'•» •

-8.2 •

-8.6 •

-9.0 -
i 1 1 1 1 1 1 1 1 1 1

SS-25

//

^ * * * " ÎS .̂ //

x^ / ^£— *

' +. ̂ ^~ *j!
r' "i'-..^ _.+'

^

— I 1 1 1 1 1 1 1 1 1

87 Es B4 EZ E6 Eio ?9 B5 Bi Es E? £3 ?4 Ez Eio E9 Es Ei Es

-7.8 •

-8.2 -

-8.6 -

-9.0 •

-9.4 -

-9.8 -

10.2 -

10.6 -

11.0 -

SS-50

,t

4_ ..̂ . ...i 4^_^ A>4i^fc^X'

*-•"•* -^Hp-^r- '̂

T^ ~T 1 I 1 1 1 1 1 |

-6.2

-6.6

-7.0

-7.4

-7.8

-8.2

-8.6

-9.0

-9.4

SS-50

-t- H—I—-I h H h

87 63 54 B2 ' Be Bio B9 Bs Bi E? £3 E4 Ez Be Bio Eg Bs Bt Ba

Values are sums over replications. Note that p's are ranked In terms of Increasing C(p); recall Table 7.1.



CHAPTER 8

SUMMARY AND CONCLUSIONS

In this thesis we considered simultaneous estimation of the vector of

multinomial cell probabilities p from incomplete data, incomplete in that

it contains partially classified observations. Each such partially classi-

fied observation is observed to fall in one of two or more selected cate-

gories but is not classified further. The estimation criterion was mini-

mization of risk E[L(p,p)] for quadratic loss L(p,p)=(p-p)'(p-p) for the

estimator p of p.

The estimators considered were the classical maximum likelihood esti-
s\

mate p and the Bayesian posterior mean p and posterior mode p. We chose

the maximum likelihood estimate because it is frequently used in practice.

In particular, the maximum likelihood estimate is often used when one has

no prior^information. Further, Johnson (1971) proved that the complete-

data maximum likelihood estimate is admissible; that is, no other estima-

tor can have smaller risk everywhere. The complete-data maximum likelihood

estimate is admissible because it has very small risk at the corners of

the P. simplex. We chose the posterior mean because it minimizes expected

risk; hence, it must be best for at least some values of p. We chose the

posterior mode because it is an in-between estimator. Like the maximum

likelihood estimate, it is a mode and can have zero components for a non-

zero prior. Like the posterior mean, it can incorporate prior information.

A final reason for choosing these three estimators was that the max-
/*!.

imum likelihood estimate p, posterior mode p, and a Taylor-series approx-

imation p of the posterior mean (discussed below) can all be evaluated

by the EM algorithm of Dempster, Laird, and Rubin (1977). This was im-
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portant because these three estimators each constitute a nonlinear system

of k equations in k unknowns, for which the number of solutions may range

from zero to infinity. Further, as illustrated in Section 4D.5, any roots

that do exist need not be in P. . Finally, when roots do exist in P. there

can be difficulty in finding that one for which the likelihood is a maxi-

mum. However, Dempster, Laird, and Rubin (1977) proved that if the eigen-

values of the covariance matrix of the complete-data sufficient statistics

are bounded above zero, then the EM iterative algorithm converges in P. to

a local maximum. A global maximum is then found by choosing that root in

P that maximizes the likelihood function

k+1 z.+a. z
H P , 1 1 n PD "
i=l ' D u

. ~ .
where p. denotes one of the three estimators p, p, and p and where a.=0

for the maximum likelihood estimate and a.=v.-l for the posterior mode

and Taylor-series approximate posterior mean.

We showed these three estimators to be approximately equal in large

samples. To compare these estimators in small- and medium-size samples,

we used two Monte-Carlo simulation studies restricted, because of cost

constraints, to samples from the trinomial distribution. In the studies,

samples were of size 25 and 50, percentages of incomplete data varied

around 15 and 40, and probabilities ranged from the center of the P? sim-

plex to one of its corners. In the first simulation study, we chose the

mean of the prior distribution, given one of four prior parameters, as

the probability to be estimated. In the second study we randomly generat-

ed ten probabilities from the Dirichlet distribution given each of the
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four prior parameters. For each probability, in both studies, we then

generated 200 sets of complete and incomplete trinomial data from which

an estimate of risk was calculated. Because the prior is not known in

practice, we also explored how robust results were to use of the correct

prior in calculating the Bayesian estimators. Besides the correct prior,

we also used the uniform prior and a perturbed prior in the calculations.

Results indicated that an important factor in determining which es-

timator was best was the position of p in the P? simplex; in particular,

whether p was at a corner or in the center of P?. Another important fac-

tor was the relationship between the probability p being estimated and

the prior parameters 3 used in the Bayesian estimators. We studied this

relationship in terms of the difference between p and the mean p of the

prior distribution given 8. The most satisfactory measure of this dif-

ference was the difference in the linear centrality measures C(p) and
2 3 2

C(p) of p and p, respectively, where C(p)= E Z (p. -p.) . Results in-
J

dicated that, except at a corner p=(0,0,l), when the centrality measure

C(p) was within a fairly wide range of C(p), then the posterior mean was

best. If the difference between the two centrality measures was very

large, then the maximum likelihood estimate was best. If the difference

was between moderate and very large, the posterior mode was often best

when the probability being estimated was toward a corner of P,,. At the

p=(0,0,l) corner, the posterior mode or maximum likelihood estimate was

always far better than the posterior mean.
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Based on these results, in Section 7.3 we recommended rough operat-

ing procedures to guide a practioner in choosing which estimator to use

for his data and estimated prior parameters.

Risk was usually reduced by one-third to one-fourth when the best

estimator was used instead of the next best estimator and by one-half to

one-third when the best estimator was used instead of the worst estimator.

However, the reduction was sometimes substantial. Further, the reduction

in risk at the corner probability p=(0,0,l) was huge; the risk of the pos-

terior mean was as much as 33,000 times larger than the risk for the pos-

terior mode or maximum likelihood estimate. [The risk of the maximum like-

lihood estimate and posterior mode were equal at p=(0,0,l).l As soon as

one moved even slightly away from the corner, however, the risk difference

dropped sharply.

As noted, the posterior mean was the best estimator most of the time.

In these cases, the posterior mode was usually next best. Other than

cross-over probabilities, the smallest difference between the posterior

mode and mean was at the center of the P? simplex. There, the risk of the

posterior mean was reduced only 14% to 23% from that of the posterior mode;

whereas the reduction in risk from that of the maximum likelihood estimate

ranged from 22% to 42%.

As the percentage of incomplete data increased from 0 to near 40, the

risk of the three estimators did not greatly increase and the relationship

among the estimators changed little. As sample size increased, risk and

the difference between estimators usually decreased.

Because numerical evaluation of the exact posterior central moments
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is generally unfeasible, we also developed approximations for elements

of the posterior mean and covariance matrices. The best of three approx-

imations considered for the posterior mean was based on a first-order

Taylor-series expansion of the exact posterior mean, which we accordingly

called the Taylor-series approximate posterior mean p. Approximations

used for elements of the posterior covariance matrix were also based on

first-order Taylor-series expansions. An important property of the Tay-

lor-series approximations is that, as the percentage of incomplete data

goes to zero, they go to the exact posterior moments. In addition, the

relationship between the Taylor-series approximate posterior mean and

the posterior mode parallels their complete-data relationship. That is,

the Taylor-series approximate posterior mean for a Dirichlet density with

prior parameters (v,,•••>vk»
v
k+i) equals the posterior mode for a Dirich-

let density with prior parameters (v.,+1," *,v +l;v,+1+1).

To determine the accuracy of the Taylor-series approximate posterior

mean, we first found that the Taylor-series expansion of the exact poster-

ior mean had accuracy of magnitude 0(n ). Because terms in the expansion

were then approximated, the final approximation was not necessarily

accurate to order 0(n~ ). However, we showed that this approximation

asymptotically equals the exact posterior mean. Further, we gave two

conditions which guarantee that the error between the exact posterior

mean and an iterative solution of the Taylor-series approximate posterior

mean is of magnitude 0(n~ ). The two conditions, given by Lemma 4E.1,

concern the region in which the initial iterative estimate is chosen and

a bound on the partial derivatives of the Taylor-series approximation.
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If a neighborhood [jp-pj^p, for p>0, of the exact posterior mean p can

be found such that for all probabilities p in this neighborhood

k

max Z |8g.(p)/3p | ̂  A < 1,

for
k+1

g,(pHz.+v.+ Z z p /p )/(n+ Z v. ),1 ~ i i D3i u T u h=1 n

and if an initial iterative estimate p. ' is chosen within the inner

neighborhood ||p-p|[o<pQ-p-6/(l-X) where 6 is a bound on the error in

approximating the exact posterior mean by a first-order Taylor series,

then the iterative solution to the defining equations of the Taylor-series

approximate posterior mean p will converge to within 0(n~ ) of the exact

posterior mean.

If a neighborhood of the exact posterior mean can be found in which

the X bound is satisfied, then for large enough sample sizes, the second

condition can be satisfied by choosing an initial iterative estimate with-

in the first neighborhood. Even for medium-size samples, the inner neigh-

borhood is almost as large as the outer neighborhood if the percentage of

incomplete data is moderate. In Appendix 4E, we showed how to determine,

in practice, whether the second condition can be expected to hold.

As for the condition for the EM algorithm, the conditions of Lemma

4E.1 need not be met. In fact, there may not even exist any neighborhood

of the exact posterior mean in which the A bound holds, as we illustrated

for an 11-dimensional multinomial problem. However, Appendix 4E showed

that this was not the case for incomplete trinomial data; there does exist

a root in P? of the Taylor-series approximate posterior mean that differs
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from the exact posterior mean by magnitude 0(n~ ). However, this root

need not be unique in P?; hence, finding it can be difficult. In these

cases in P2 and in higher dimensions, because the complete-data relation-

ship between the posterior mode and posterior mean was paralleled by the

relationship between the posterior mode and the Taylor-series approximate

posterior mean for incomplete data (i.e., the Taylor-series approximate

posterior mean can be written as a posterior mode), we intuitively expect

that that root that is in the guaranteed-convergence region of the exact

posterior mean, or at least the closest root to p, is given by whichever
k+17 z.+v -1 . z

root in P, maximizes the likelihood function IT p. npn .
k i=l 1 D U

Finally, we gave examples showing that Lemma 4E.1 gives extremely

conservative bounds on the error between the exact posterior mean and the

converged iterative estimate and on the region in which an initial itera-

tive estimate can be chosen so that successive iterates converge to with-

in a small error of p.

Approximations used for elements of the posterior covariance matrix

-3/2were based on Taylor-series expansions that were accurate to order 0(n ),

When the iterative solution for the Taylor-series approximate posterior

mean has accuracy of magnitude 0(n~ ), then the Taylor-series approximate

posterior variance and covariance can be evaluated noniteratively to have
-3/2accuracy of magnitude 0(n ). These approximations can also be evalu-

-3/2ated iteratively. However, insurance of accuracy of magnitude 0(n )

then depends on satisfaction of the two conditions of Lemma 4E.1, where

g(p) is replaced by the proper function.

In the same Monte-Carlo simulation used for the risk study, the
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Taylor-series approximation for the posterior mean was usually accurate

to at least four significant figures; that for the posterior variance,

to at least three significant figures; and that for the posterior covar-

iance, to at least two significant figures. In practice, the Taylor-

series approximations will generally be more accurate than numerical

evaluation of the corresponding exact posterior moments.

Note that, although the maximum likelihood estimate and posterior

mode asymptotically equal the exact posterior mean (and, hence, the Tay-

lor-series approximate posterior mean), neither was a good approximation

of the exact posterior mean in the small- and medium-size samples studied

in the simulation. Further, as the percentage of incomplete data goes to

zero, neither go to the exact posterior mean. Finally, neither relate to

the posterior mode in the same manner that the complete-data posterior

mean relates' to the complete-data posterior mode.

Among areas for future work are extensions of the simulation study

to (1) more priors for the distribution of the data and for use in the

Bayesian estimators, (2) investigation of the use of the linear central-

ity measure C(p), and (3) higher dimensions on P..

Between Design 1 and Design 2, nearly all types (corner, noncorner

boundary, center, and in-between) probabilities were covered in the sim-

ulation studies. We do not expect different results for different values

of the same type of probability. For example, we expect results for the

probability (1,0,0) to be similar to those for the corner probability

(0,0,1). One type of probability not covered was the middle of a side;

e.g., (.00,.51,.49). However, this probability is further from a corner
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than were the side probabilities (.00,.15,.85), (.04,.00,.96), (.00,.07,

.93), and (.18,.00,.82) that were included in Design 2. Therefore, we

expect the posterior mean to be the best estimator for a middle-of-a-

side probability for even more values of the prior parameter 6 used in

the Bayesian estimators than were for these four. The effect of the size

of the "prior-sample size" Zv. relative to the size n of the current data
J

sample was also thought to be adequately addressed. If the ratio £v./n
J

is much smaller, then the prior will have little effect on results. If

the ratio is much larger, then the data will have little effect. It

might, however, be valuable to look at more types of priors. For example,

why were the results for the posterior mode when C(p)=.09 in Design 2

[see Figure 7.1 and v* plot in Table 7.6] inconsistent with results for

the posterior mode for neighboring values of C(p)? Was this inconsistency

because probabilities near the center of P? were more sensitive to use

of wrong priors than probabilities elsewhere in P^t [Recall the tightness

of the prior distribution of p given v4=(10/3,10/3,10/3).]

To examine risk as a function of individual values of p, we used the

linear centrality measure C(p). This measure reduces a probability in

essentially two-dimensional space to one dimension. Thus, there are many

probabilities p that map into one value of C(p). It could be that the

values of risk for these many probabilities differ greatly. If so, then

C(p) would not be useful for measuring risk as a function of p; in partic-

ular, for describing the relationship between risk, the value of the

probability being estimated, and the prior used in the Bayesian estima-

tors. For those probabilities that were studied in P2» however, C(p) was
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a very good measure, as evidenced by plots in Tables 7.4 - 7.6. Risk was

a smooth function of C(p) and for nearly all values of p that had the

same C(p), the risk, for a given estimator and prior, was approximately

the same. A slight exception did occur, however, for the posterior mode

and posterior mean at v_ for the probabilities p=(.23,.42,.35) and p=(.08,

.61,.31), both having C(p)=.44, when the correct prior was used in the

Bayesian estimators. [See v plots in Table 7.4 and p^ and pin in the
-v ,j -x, D ~ X U

v plot in Table 7A.9; however, note that the risk was the same for these
*** «J

two probabilities when the perturbed and uniform priors were used. Hence,

the unequal results when the correct prior was used could be due to a poor

estimate of risk for one of these probabilties.] Thus, there might be

other problems in using C(p) in Po that were not encountered in this study.

Would there be any problems in using C(p) in higher dimensions? A good

linear measure of p is even more important in higher dimensions, where

risk could otherwise be much more difficult to relate to p in a simple

manner. Note that, in P?, C(p) was a much better measure of p for use

in analyzing risk than was the maximum, minimum, component differences,

absolute component differences, or component-squared sums. Either the

relationship between risk and these other measures was less smooth than

that with C(p) [recall plots in Tables 7.4 - 7.6] or, unlike with C(p),

usually more than one value of risk corresponded to one value of these

measures.

We are especially interested in how results from the simulation

study carry over to higher dimensions. However, note that several numer-

ical problems found in this study are likely to be even worse in higher
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dimensions. There will almost surely be more multiple roots of the defin-

ing equations for the estimators. If there are more in P. , then there

will be greater difficulty locating the global maximum. More initial

iterative estimates will have to be tried to insure that all local maxi-

mum are found and then each of these local maximum will have to be check-

ed to see if it is the root that maximizes the likelihood. Since P. be-

comes increasingly large as k increases, the search for all local maximum

could be long. Hence, study is needed to examine the roots found by the

EM algorithm. Are there many in P. or are all but one outside of P. ?

For incomplete trinomial data in Appendix 4D, there was one and only one

root in P~ out of three to five roots for the maximum likelihood estimate

(asymptotic posterior mean), excluding the root (0,0,1) which was elimi-

nated upon consideration of the data.

Since there are more components to a probability in P.. convergence

problems may increase. Finding an initial iterative estimate that. has

each component close to the corresponding component of p is more diffi-

cult in higher dimensions; e.g., trying to approximate 11 components

entails more error than trying to approximate only two components. Under
k+1

what conditions is v./ £ v. from the estimated prior or, in many cases,
1 j=l J

z.+ £ zn(2-/ £ zh) a 9OOC' initial iterative estimate? Thus, how sensi-
D n j€D D

tive to the initial iterative estimate is convergence of the EM algorithm

in higher dimensions? How does the number of iterations increase with an

increase in the number k of dimensions? Are there more problems in higher

dimensions satisfying the conditions guaranteeing that the EM algorithm

will converge to a local maximum in P.?
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Similarly, there may be more problems in approximating the exact

posterior mean in higher dimensions. We showed by example in Chapter 4

that in higher dimensions it will be increasingly difficult to find a re-

gion of the exact posterior mean in which an initial iterative estimate

picked guarantees convergence of the EM algorithm to within a small error

of the exact posterior mean. However, we also showed by examples in Ap-

pendix 4E that this lemma gives extremely conservative bounds on the

guaranteed-convergence region. Initial iterative estimates were picked

far outside the guaranteed-convergence sphere and the EM algorithm still

converged to the exact posterior mean within the same small error. How

much does the conservatism of the guaranteed-convergence region carry

over to higher dimensions? In particular, when there does not exist a

guaranteed-convergence region, are there any initial iterative estimates

for which the EM algorithm will converge to the exact posterior mean with-

in a small error? If the Taylor-series approximate posterior mean is a

poor approximation in higher dimensions, can a good approximation be found?

As illustrated in Section 2.2.4, as the number of dimensions increases, the

exact posterior moments become increasingly expensive to evaluate. Thus,

good approximations become increasingly important. Finally, when multiple

roots of the defining equation of the Taylor-series approximate posterior

mean exist in P. , is, as speculated, the root that is closest to the exact

posterior mean that root that maximizes the likelihood function?

Finally, we assumed in this work (recall Section 1.2) that all incom-

plete data was incomplete at random. Another area of study, therefore,

concerns incomplete data where the incompleteness of an observation is not

random but instead depends on the value that would have been observed.
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