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SUMMARY

A modern control theory design package (ORACLS) for constructing control-
lers and optimal filters for systems modeled by linear time-invariant differen-
tial or difference equations is described. The digital FORTRAN-coded ORACLS
system represents an application of some of today's best numerical linear-
algebra procedures to implement the linear-quadratic-Gaussian (LQG) methodology
of modern control theory. Included are algorithms for computing eigensystems
of real matrices, the relative stability of a matrix, factored forms for non-
negative definite matrices, the solutions and least squares approximations to
the solutions of certain linear matrix algebraic equations, the controllability
properties of a linear time-invariant system, and the steady-state covariance
matrix of an open-loop stable system forced by white noise. These subroutines
are applied to implement the various techniques of the LQG methodology. Sub-
routines are provided for solving both the continuous and discrete optimal linear
regulator problems with noise-free measurements and the sampled-data optimal
linear regulator problem. For measurement noise, duality theory and the optimal
regulator algorithms are used to solve the continuous and discrete Kalman-Bucy
filter problems. Subroutines are also included which give control laws causing
the output of a system to track the output of a prescribed model. Finally,
numerical examples are presented to illustrate the capability of the ORACLS
systen.

INTRODUCTION

Optimal linear quadratic regulator theory, currently referred to as the
linear-quadratic-Gaussian (LQG) problem (ref. 1), has become the most widely
accepted method of determining optimal control policy. Within this class of
optimal control problems, the infinite-duration time-invariant version, which
leads to constant-gain feedback control laws and constant Kalman-Bucy filter
gains for reconstruction of the system state, has received the bulk of the
attention because of its tractability and potential ease of implementation.
The theory is particularly attractive to the control system designer because
it provides a rigorous tool for dealing with multi-input and multi-output
dynamical systems in both continuous and discrete form.

During the same period of time that the LQG methodology was being devel-
oped, there also appeared .in the field of numerical linear algebra a variety
of new and more efficient methods for analyzing the types of equations which
oceur in the time-invariant formulation of the LQG problem (ref. 2). The best
of these numerical methods (in the opinion of the author) have been incorpo-
rated into a modern efficient digital computer package which provides solutions
to time-invariant continuous or discrete LQG problems with equal ease. The
package is entitled Optimal Regulator Algorithms for the Control of Linear
Systems (ORACLS).



An overview of the features of the ORACLS system is presented in the next
section. Following sections give a detailed description of the package con-
tents along with numerical examples to illustrate the use of ORACLS to solve
selected LQG problems. Software for the ORACLS system may be obtained from the
centralized facility COSMIC located at the Computer Software Management and
Information Center, Suite 112, Barrow Hall, University of Georgia, Athens,

GA 30602, by requesting program LAR-12313.

OVERVIEW OF ORACLS

The ORACLS programing system is a collection of FORTRAN-coded subroutines
to formulate, manipulate, and solve various LQG design problems. In order to
apply ORACLS, the user is required to provide an executive (driver) program
which inputs the problem coefficients, formulates and selects the system sub-
routines to be used to solve a particular optimal control problem, and outputs
desired information. ORACLS is constructed to allow the user considerable
flexibility at each operational state. This flexibility is accomplished by pro-
viding primary subroutines at four levels: input-output, basic vector-matrix
operations, analysis of linear time-invariant systems, and control synthesis
based on LQG methodology. ORACLS provides a means of controlling program size
by employing dynamic (vector) data storage. Except for certain subroutines
obtained from other sources, data arrays in all ORACLS subroutines are treated
as packed one-dimensional arrays which can easily be passed between subroutines
without a maximum array size parameter appearing as an argument of the calling
sequence. This dynamic storage capability allows program size to be specified
and controlled through the user's driver program. In addition, ORACLS only
loads those programs from the library which are called by the executive pro-
gram, making the total machine requirements very flexible. As a result, ORACLS
can be made to execute efficiently on a wide variety of computing machinery.

The input-output category of ORACLS has subroutines for inputing (subrou-
tine READ) and outputing (PRNT) numerical matrices. Additional subroutines
allow for printing header information (RDTITL) and accumulation of output line-
count information (LNCNT).

The next category has subroutines for the basic vector-matrix operations
of equation (EQUATE), addition (ADD), subtraction (SUBT), and multiplication
(MULT). It also contains routines for scaling (SCALE), juxtaposition (JUXTC
and JUXTR), and construction of matrix norms (MAXEL and NORMS), trace (TRCE),
transpose (TRANP), and null and identity matrices (NULL and UNITY).

The analysis category provides special and general purpose algorithms for
computing (1) eigenvalues and eigenvectors of real matrices (EIGEN) by using
the QR algorithm (ref. 2), (2) the relative stability of a given matrix
(TESTSTA), (3) matrix factorization (FACTOR), (4) the solution of linear
constant-coefficient vector-matrix algebraic equations (SYMPDS, GELIM, and
SNVDEC), (5) the controllability properties of a linear time-invariant system
(CTROL), (6) the steady-state covariance matrix of an open-loop stable system
forced by white noise (VARANCE), and (7) the transient response of continuous
linear time-invariant systems (TRANSIT).
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Algorithms are provided for the solution of real matrix equations. In the
equation,

AX = B (1

with A positive definite, the Cholesky decomposition method (ref. 2) is
applied (SYMPDS). Gaussian elimination (LU factorization from ref. 2) is used
for the general case of nonsingular A (GELIM). For rectangular or singular
matrices A, singular-value decomposition procedures found in subroutine SNVDEC
(ref. 2) can be used to find a solution of equation (1) in the least squares
sense, to compute the pseudoinverse of A, and to find an orthonormal basis for
the range space of A. A maximal rank matrix factorization for a positive
semidefinite matrix can be obtained from FACTOR.

For solution of the matrix equation,
X = AXB + C (2)

the contraction mapping principle (ref. 3) is applied when A and B are
asymptotically stable in the discrete sense (SUM). Equation (2) is used when
solving the discrete steady-state Riccati equation by Newton's method and also
in the computation of the steady-state covariance matrix for a linear asymptoti-
cally stable discrete system forced by white noise (ref. 4).

Two subroutines are included for solving the matrix equation,
AX + XB = C (3)

For A and B admitting a unique solution X, the method of Bartels and
Stewart (ref. 5) is used (BARSTW). For A and B asymptotically stable in
the continuous sense, a subroutine implementing the bilinear transformation
approach (ref. 6) is also included (BILIN). Equation (3) is used in solving
the steady-state continuous matrix Riccati equation by Newton's method, in
finding the covariance statistics for continuous time-invariant systems forced
by white noise, and in gain computation for observer theory (ref. T).

A subroutine (CTROL) is provided which computes the controllability matrix
for a linear time-invariant dynamical system and, if this matrix is found to
be rank deficient, also computes the system's controllability canonical form
(ref. U4) by application of the singular-value decomposition algorithm. Through
this subroutine, the user may examine the stabilizability and detectability
conditions implicit in the infinite-duration LQG methodology and, indirectly,
compute minimal order state space realizations for transfer matrices.

Finally, the analysis category of ORACLS includes subroutines (EXPSER,
EXPADE, and EXPINT) for computing
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These expressions are used in computing the transient response of linear time-
invariant dynamical systems (TRANSIT).

Subroutines are presented in the control law design part of ORACLS to
implement some of the more common techniques of time-invariant LQG methodology.
For the finite~duration optimal linear regulator problem with noise-free mea-
surements, continuous dynamics, and integral performance index, a subroutine
(CNTNREG) is provided to implement the negative exponential method for finding
both the transient and steady-state solutions to the matrix Riccati equation
(ref. 8). For the discrete version of this problem, the method of backward
differencing is applied to find the transient and steady-state solutions to the
discrete Riccati equation (DISCREG). For the infinite-duration optimal linear
regulator problem with noise-~free measurements, a subroutine is also included
to solve the steady-state Ricecati equation by the Newton algorithms described
by Kleinman (ref. 9) for continuous problems and by Hewer (ref. 10) for dis-
crete problems (RICTNWT). The methods described by Armstrong (ref. 11) and
Armstrong and Rublein (ref. 12) are used to compute a stabilizing gain to ini-
tialize the continuous and discrete Newton iterations (CSTAB and DSTAB). A
subroutine (PREFIL) is available for finding the prefilter gain to eliminate
control-state cross-product terms in the quadratic performance index and another
(SAMPL) computes the weighting matrices for the sampled-data optimal linear
regulator problem (ref. 13). For cases with measurement noise, duality theory
(ref. 4) and the foregoing optimal regulator algorithms are used to produce
solutions to the continuous and discrete Kalman-Bucy filter problems (ASYMFIL).
Finally, subroutines are included to implement the continuous (ref. 14) and
discrete (ref. 15) forms of explicit (model in the system) and implicit (model
in the performance index) model-following theory (EXPMDFL and IMPMDFL). These
subroutines generate linear control laws which cause the output of a time-~
invariant dynamical system to track the output of a prescribed model.

In addition to the foregoing 43 primary purpose subroutines, ORACLS con-
tains another 17 supporting subroutines used predominately by the algebraic
equation and eigenvalue algorithms. All subroutines of the ORACLS package are
(1) original codes by the author or (2) direct or author-modified copies of
programs obtained from the VASP program (ref. 16), the software library of the
Analysis and Computation Division at the Langley Research Center (LaRC), or the
numerical analysis literature. The programs coded by the author and those
obtained from the VASP program employ the dynamic storage capability in which
data arrays are treated as packed one-dimensional arrays. Other subroutines
were left in their original format.

A detailed description of each ORACLS subroutine can be found in the
following sections. 1In the last section, numerical examples are presented
to illustrate the capability of ORACLS in both digital and continuous LQG con-
troller design and, additionally, to demonstrate the construction of typiecal
executive programs.



PRIMARY SUBROUTINES FOR INPUT-QUTPUT
Subroutine RDTITL

Description: The purpose of RDTITL is to read a single card of Hollerith input
which is loaded into the array TITLE of COMMON block LINES of RDTITL and auto-
matically printed at the top of each page of output through the subroutine
LNCNT. The Hollerith input is typically used to define, for future reference,
the problem being solved by ORACLS.

Subroutine RDTITL also serves to define certain data blocks important to other
subroutines within ORACLS, such as information for COMMON blocks LINES and
FORM discussed in the description of LNCNT and PRNT, respectively. The sub-
routines BARSTW and SNVDEC require input parameters (EPSA, EPSB, and IAC)
designating the accuracy to which solutions are to be obtained. When these
programs are used internally to other subroutines, the accuracy parameters
are set to values EPSAM, EPSBM, and IACM defined by DATA statements and con-
tained in COMMON block TOL of RDTITL. Also, convergence parameters for ter-
minating the recursive computations in subroutines SUM, EXPSER, EXPINT, SAMPL,
DISCREG, CNTNREG, and RICTNWT are internally set. Parameters SUMCV (for SUM),
RICTCV (for DISCREG, CNTNREG, and RICTNWT), MAXSUM (for SUM), and SERCV (for
EXPSER, EXPINT, and SAMPL) are defined by DATA statements and contained in
the COMMON block CONV. The user should specify the parameters of all COMMON
blocks of RDTITL on the basis of his particular computing installation and
problem to be solved.

Subroutine RDTITL must be a part of every executive program provided by the
user of ORACLS. If not, extraneous data appearing in the array TITLE will

be printed at the top of each page of output and other COMMON block data will
be undefined.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL RDTITL

Input arguments: None

Output arguments: None

COMMON blocks: LINES, FORM, TOL, CONV

Error messages: None

Field length: 32 octal words (26 decimal)

Subroutine employed by RDTITL: LNCNT

Subroutines employing RDTITL: None

Comments: None



Subroutine LNCNT

Description: The purpose of LNCNT is to keep track of the number of lines
printed and automatically paginate the output. Page length is controlled by
the variable NLP set in the COMMON block LINES of subroutine RDTITL to 44,
The variable NLP is an installation-dependent variable and may be changed as
necessary. Subroutine LNCNT provides one line of print at the top of each
page. This line contains 100 characters of which the first 80 are available
for the programer's use and may be loaded by use of the subroutine RDTITL.
The remainder contain "ORACLS PROGRAM."™ The 100 characters are contained in
the array TITLE within RDTITL.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL LNCNT(N)

Input argument:

N Number of lines to be printed

Qutput arguments: None

COMMON block: LINES

Error messages: None

Field length: 27 octal words (23 decimal)

Subroutines employed by LNCNT: None

Subroutines employing LNCNT: RDTITL, PRNT, EQUATE, TRANP, SCALE, UNITY, TRCE,
ADD, SUBT, MULT, JUXTC, JUXTR, FACTOR, SUM, BILIN, BARSTW, TESTSTA, EXPSER,
EXPINT, VARANCE, CTROL, TRANSIT, SAMPL, PREFIL, CSTAB, DSTAB, DISCREG,
CNTNREG, RICTNWT, ASYMREG, ASYMFIL, EXPMDFL, IMPMDFL, READ1

Comments: Subroutine LNCNT is completely internal to the ORACLS subroutines
and the user need not refer to it unless he has a WRITE statement of his own.
In that case, the user should put the statement CALL LNCNT(N) before each

WRITE statement.
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Subroutine READ

Description: The purpose of READ is to read from one to five matrices from

cards along with their names and

dimensions and print the same information.

For each matrix, a header card is first read containing a four-character
title followed by two integers giving the row and column size of the matrix

using format (Y4H,U4X,2T4). Then,

the matrix data are read by rows using sub-

routine READ1 (each row of the matrix starting on a new card) using format
(8F10.2). Each matrix is then automatically printed using subroutine PRNT
called from READ1 and packed by columns into one-dimensional arrays with the

same names.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,

LaRC

Calling sequence: CALL READ(I,A,NA,B,NB,C,NC,D,ND,E,NE)

Input arguments:

I Integer from 1 to 5 indicating the number of matrices to

be read. For

I < 5, the entries past ‘I 1in the argument

list may be omitted.

A, B, C, Input matrices

D, E

NA, NB, NC, Two-dimensional vectors giving the number of rows and columns
ND, NE of the respective matrices and input through the header

card; for example,

NA(1) = Number
NA(2) = Number
If 0 is loaded
matrix storage
the previously

Output arguments: None

COMMON blocks: None

Error message: None directly from

of rows of A

of columns of A

for the row and column size, then the current
is unchanged, no data cards are read, and
stored matrix is printed.

READ

Field length: 155 octal words (109 decimal)

Subroutine employed by READ: READ1

Subroutines employing READ: None

Comments: None



Subroutine PRNT

Description: The purpose of PRNT is to print a single matrix with or without
a descriptive heading either on the same page or on a new page. The descrip~
tive heading, if desired, is printed before each matrix and is of the form
"NAM MATRIX NA(1) ROWS NA(2) COLUMNS." The matrix is next printed by rows
using format (1PTE16.7) for the first line and (3X1P7E16.7) for all subse-
quent lines. Format for the printing is stored in COMMON block FORM of
RDTITL.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC )

Calling sequence: CALL PRNT(A,NA,NAM,IOP)

Input arguments:

A Matrix packed by columns in a one-dimensional array

NA Two-dimensional vector giving the number of rows and columns of
the matrix A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A

NAM Hollerith characters giving matrix name. Generally, NAM should
contain 4 Hollerith characters and be written in the argument
list as UHXXXX. Alternatively, if O is inserted in the argument
list for NAM, a blank name is printed.

I0pP Scalar print control parameter:
1 Print heading and matrix on same page.
2 Print heading and matrix after skipping to next page.
3 Print only matrix with no heading on same page.
4 Print only matrix with no heading after skipping to next

page.

Output arguments: None

COMMON blocks: FORM, LINES

Error message: If NA(1) x NA(2) < 1 or NA(1) < 1, the message "ERROR IN
PRNT MATRIX ___HAS NA = " is printed, and the program
is returned to the calling point.

Field length: 262 octal words (178 digital)




-

Subroutine employed by PRNT: LNCNT

Subroutines employing PRNT: FACTOR, SUM, BILIN, BARSTW, TESTSTA, EXPSER,

EXPINT, VARANCE, CTROL, TRANSIT, SAMPL, PREFIL, CSTAB, DSTAB, DISCREG,
CNTNREG, RICTNWT, ASYMREG, ASYMFIL, EXPMDFL, IMPMDFL, READ1

Comments: None



PRIMARY SUBROUTINES FOR VECTOR-MATRIX OPERATIONS
Subroutine EQUATE

Description: The purpose of EQUATE is to store a matrix in an alternate com-
puter location.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL EQUATE(A,NA,B,NB)

Input arguments:

A Matrix packed by columns in a one-dimensional array; not destroyed
upon return

NA Two-dimensional vector giving the number of rows and columns of A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Qutput arguments:

B Matrix packed by columns in a one-dimensional array. Upon normal
return, B = A.

NB Two~dimensional vector: NB = NA wupon normal return

COMMON blocks: None

Error message: If NA(1) x NA(2) < 1 or NA(1) < 1, the message "DIMENSION
ERROR IN EQUATE NA = " is printed, and the program is returned

to the calling point.

Field length: 46 octal words (38 decimal)

Subroutine employed by EQUATE: LNCNT

Subroutines employing EQUATE: FACTOR, SUM, BILIN, BARSTW, TESTSTA, EXPSER,
EXPINT, VARANCE, CTROL, TRANSIT, SAMPL, PREFIL, CSTAB, DSTAB, DISCREG,
CNTNREG, RICTNWT, ASYMREG, ASYMFIL, EXPMDFL, IMPMDFL

Comments: None

10
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Subroutine TRANP

Description: The purpose of TRANP is to compute the transpose A' of a given
matrix A.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL TRANP(A,NA,B,NB)

Input arguments:

A Matrix packed by columns in a one-dimensional array; not destroyed
upon return

NA Two-dimensional vector giving the number of rows and columns of A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Qutput arguments:

B Matrix packed by columns in a one-dimensional array. Upon normal
return, B = A?',

NB Two-dimensional vector: wupon normal return,
NB(1) = NA(2)
NB(2) = NA(1)

COMMON blocks: None

Error message: If NA(1) x NA(2) < 1 or NA(1) < 1, the message "DIMENSION
ERROR IN TRANP NA = " is printed, and the program is returned
to the calling point.

Field length: 106 octal words (70 decimal)

Subroutine employed by TRANP: LNCNT

Subroutines employing TRANP: FACTOR, SUM, BILIN, BARSTW, VARANCE, CTROL,
TRANSIT, SAMPL, PREFIL, CSTAB, DSTAB, DISCREG, CNTNREG, RICTNWT, ASYMREG,
ASYMFIL, EXPMDFL, IMPMDFL

Comments: None

1



Subroutine SCALE

Description: The purpose of SCALE is to perform scalar multiplication on a
given matrix.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL SCALE(A,NA,B,NB,S)

Input arguments:

A Matrix packed by columns in one-dimensional array; not destroyed
upon return

NA Two-dimensional vector giving the number of rows and columns of A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

S Scalar

Output arguments:

B Matrix packed by columns in a one-dimensional array. Upon normal
return, B = SA.

NB Two-dimensional vector: NB = NA upon normal return

COMMON blocks: None

Error message: If NA(1) x NA(2) < 1 or NA(1) < 1, the message "DIMENSION
ERROR IN SCALE NA = " is printed, and the program is returned
to the calling point.

Field length: U7 octal words (39 decimal)

Subroutine employed by SCALE: LNCNT

Subroutines employing SCALE: FACTOR, BILIN, EXPSER, EXPINT, VARANCE, TRANSIT,
SAMPL, PREFIL, CSTAB, DSTAB, CNTNREG, RICTNWT, ASYMREG, EXPMDFL, IMPMDFL

Comments: None
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Subroutine UNITY
PeScription: The purpose of UNITY is to generate an identity matrix.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL UNITY(A,NA)

Input argument:

NA Two-dimensional vector giving dimension of square identity matrix:
NA(1) = NA(2) = Number of rows of A
Not destroyed upon return

Output argument:

A Matrix packed by columns in a one-dimensional array. Upon normal
return, A = I where I 1is an identity matrix of order NA(1).

COMMON blocks: None

Error message: If NA(1) # NA(2), the message "DIMENSION ERROR IN UNITY
NA o " is printed, and the program is returned to the calling
point.

Field length: 61 octal words (49 decimal)

Subroutine employed by UNITY: LNCNT

Subroutines employing UNITY: BILIN, EXPSER, EXPINT, TRANSIT

Comments: None
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Subroutine NULL
Description: The purpose of NULL is to generate a null matrix.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL NULL(A,NA)

Input argument:

NA Two-dimensional vector giving the number of rows and columns of
the desired null matrix:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Output argument:

A Matrix packed by columns in a one-dimensional array. Upon
normal return, A @ 0 where 0 is a null matrix of order

NA(1) x NA(2).

COMMON blocks: None

Error message: If NA(1) x NA(2) < 1 or NA(1) < 1, the message "DIMENSION
ERROR IN NULL NA = " is printed, and the program is returned

to the calling point.

Field length: 35 octal words (29 decimal)

Subroutine employed by NULL: LNCNT

Subroutines employing NULL: BARSTW, CNTNREG

Comments: None



Subroutine TRCE

Description: The purpose of TRCE is to compute the trace of a square matrix.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,

LaRC

Calling sequence: CALL TRCE(A,NA,TR)

Input arguments:

A Matrix packed by columns in a one-dimensional array; not destroyed
upon return

NA Two-dimensional vector giving number of rows and columns of A:
NA(1) = NA(2) = Order of A
Not destnoyed upon return

Output argument:

TR Scalar. Upon normal return, TR = Trace of A.

COMMON blocks: None

Error message: If NA(1) # NA(2), the message "TRACE REQUIRES SQUARE MATRIX

NA = " is printed, and the program is returned to the calling
point.

Field length: 52 octal words (42 decimal)

Subroutine employed by TRCE: LNCNT

Subroutine employing TRCE: EXPSER

Comments: None
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Subroutine ADD

Description: The purpose of ADD is to perform matrix addition C = A + B for
given matrices A and B.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL ADD(A,NA,B,NB,C,NC)

Input arguments:

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
upon return

NA, NB Two-dimensional vectors giving number of rows and columns of respec-
tive matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Output arguments:

C Matrix packed by columns in a one-dimensional array. Upon normal
return, C = A + B.

NC Two-dimensional vector: upon normal return,
NC(1) = NA(1)
NC(2) = NA(2)

COMMON blocks: None

Error message: If either NA(1) # NB(1), NA(2) # NB(2), NA(1) < 1, or

NA(1) x NA(2) < 1, the message "DIMENSION ERROR IN ADD NA = ,
NB = " is printed, and the program is returned to the calling
point.

Field length: 56 octal words (46 decimal)

Subroutine employed by ADD: LNCNT

Subroutines employing ADD: SUM, EXPSER, EXPINT, TRANSIT, SAMPL, DSTAB, DISCREG,
CNTNREG, RICTNWT, ASYMREG, EXPMDFL, IMPMDFL

Comments: None
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Subroutine SUBT

Description: The purpose of SUBT is to perform matrix subtraction C = A - B
for given matrices A and B.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL SUBT(A,NA,B,NB,C,NC)

Input arguments:

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
upon return

NA, NB Two-dimensional vectors giving the number of rows and columns of
respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Output arguments:

C Matrix packed by columns in a one-dimensional array. Upon normal
return, C = A - B.

NC Two-dimensional vector: upon normal return,
NC(1) = NA(1)
NC(2) = NA(2)

COMMON blocks: None

Error message: If either NA(1) # NB(1), NA(2) ¢ NB(2), NA(1) < 1, or
NA(1) x NA(2) < 1, the message "DIMENSION ERROR IN SUBT NA = ,
NB = " is printed, and the program is returned to the calling
point.

Field length: 56 octal words (46 digital)

Subroutine employed by SUBT: LNCNT

Subroutines employing SUBT: TRANSIT, PREFIL, CSTAB, DSTAB, DISCREG, CNTNREG,
RICTNWT, ASYMREG, EXPMDFL, IMPMDFL

Comments: None
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Subroutine MULT

Description: The purpose of MULT is to perform matrix multiplication C = AB
for given matrices A and B.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL MULT(A,NA,B,NB,C,NC)

Input arguments:

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
upon return

NA, NB Two-dimensional vectors giving the number of rows and columns of
respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Output arguments:

C Matrix packed by columns in a one-dimensional array. Upon normal
return, C = AB.

NC Two-dimensional vector: wupon normal return,
NC(1) = NA(1)
NC(2) = NB(2)

COMMON blocks: None

Error message: If either NA(2) # NB(1), NA(1) < 1, NA(1) x NA(2) < 1, or
NA(1) x NB(2) < 1, the message "DIMENSION ERROR IN MULT NA = ,
NB = " is printed, and the program is returned to the calling

point.

Field length: 154 octal words (108 decimal)

Subroutine employed by MULT: LNCNT

Subroutines employing MULT: FACTOR, SUM, BILIN, EXPSER, EXPINT, VARANCE, CTROL,
TRANSIT, SAMPL, PREFIL, CSTAB, DSTAB, DISCREG, CNTNREG, RICTNWT, ASYMREG,
EXPMDFL, IMPMDFL

Comments: None
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Subroutine MAXEL

Description: The purpose of MAXEL is to compute the maximum of the absolute

values of the elements of a real matrix.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL MAXEL(A,NA,ELMAX)

Input arguments:

A Matrix packed by columns in a one-dimensional array; not destroyed
upon return

NA Two-dimensional vector giving the number of rows and columns of A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Output argument:

ELMAX Scalar. Upon normal return, ELMAX is the maximum of the absolute
values of the elements of A.

COMMON blocks: None

Error messages: None

Field length: 27 octal words (23 decimal)

Subroutines employed by MAXEL: None

Subroutines employing MAXEL: SUM, EXPSER, EXPINT, SAMPL, DISCREG, CNTNREG,
- RICTNWT

Comments: None
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Subroutine NORMS

Description: The purpose of NORMS is to compute either the 11, Lo
(Euclidean), or £, matrix norms for a real m x n matrix A stored as a
variable-dimensioned two-dimensional array. The norms %9, &p, and & are
defined, respectively, as

m
Il = max > agd
12kSn ¢
J=1
m n 172
a2 = 2y
j=1 k=1
n
Al = max > fag
I

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL NORMS(MAXROW,M,N,A,IOPT,RLNORM)

Input arguments:

MAXROW Maximum first dimension of array A as given in the DIMENSION
statement of the calling program

M Number of rows of matrix A

N Number of columns of the matrix A

A Matrix whose norm is desired stored in a two-dimensional array
I0PT Scalar norm selector:

1 Compute £1.
2 Compute &5.
3 Compute £_.

Output argument:

RLNORM Scalar. Upon normal return, RLNORM is the appropriate norm.

COMMON blocks: None
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Error messages: None

Field length: 152 octal words (106 decimal)

Subroutines employed by NORMS: None

Subroutines employing NORMS: BILIN, EXPSER, EXPINT, SAMPL, CSTAB

Comments: NORMS can be applied to matrices stored in packed one-dimensional
arrays by placing MAXROW = M in the calling sequence.
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Subroutine JUXTC

Description: The purpose of JUXTC is to construct a matrix [A,B] from given
matrices A and B.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL JUXTC(A,NA,B,NB,C,NC)

Input arguments:

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
upon return

NA, NB Two-dimensional vectors giving the number of rows and columns of
the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Qutput arguments:

C Matrix packed by columns in a one-dimensional array. Upon normal
return, C = [A,B].

NC Two-dimensional vector: upon normal return,
NC(1) = NA(1)
NC(2) = NA(2) + NB(2)

COMMON blocks: None

Error message: If either NA(1) # NB(1), NA(1) < 1, NA(1) x NA(2) < 1, or
NA(2) + NB(2) < 1, the message "DIMENSION ERROR IN JUXTC NA = ,
NB = " is printed, and the program is returned to the calling

point.

Field length: 76 octal words (62 digital)

Subroutine employed by JUXTC: LNCNT

Subroutines employing JUXTC: TESTSTA, CTROL, DSTAB, ASYMREG

Comments: None
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Subroutine JUXTR

A
Description: The purpose of JUXTR is to construct a matrix [B] from given

matrices A and B.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,

LaRC

Calling sequence: CALL JUXTR(A,NA,B,NB,C,NC)

Input arguments:

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
upon return

NA, NB Two-dimensional vectors giving the number of rows and columns of
the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Output arguments:

C Matrix packed by columns in a one~dimensional array. Upon normal
A
return, C = .
B
NC Two-dimensional vector: upon normal return,

NC(1) = NA(1) + NB(1)
NC(2) = NA(2)

COMMON blocks: None

Error message: If either NA(2) # NB(2), NA(1) < 1, NA(1) x NA(2) < 1, or

NA(2) < 1, the message "DIMENSION ERROR IN JUXTR NA = _ s
NB = " is printed, and the program is returned to the calling
point.

Field length: 144 octal words (100 digital)

Subroutine employed by JUXTR: LNCNT

Subroutines employing JUXTR: BARSTW, CNTNREG

Comments: None
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PRIMARY SUBROUTINES FOR ANALYSIS OF CONSTANT LINEAR SYSTEMS
Subroutine FACTOR
Description: The purpose of FACTOR is to compute a real m x n (m £ n)

matrix D of rank m such that a real n x n nonnegative definite
matrix Q can be factored as

Q=D'D

The method is first to perform a singular-value (eigenvalue since Q = Q' 2 0)
decomposition of Q as

Q = PJP!
where J 1is a diagonal matrix of eigenvalues of Q, and then define D as

Va pe

after eliminating those rows of JS. with all zero elements. Eigenvalues
of Q are considered negligible (zero) if they are less than [ Q] x 10-(IAC)
using the matrix Euclidean norm.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL FACTOR(Q,NQ,D,ND,IOP,IAC,DUMMY)

Input arguments:

Q Nonnegative definite matrix packed by columns in a one-dimensional
array; not destroyed upon return

NQ Two-dimensional vector giving the number of rows and columns of Q:
NQ(1) = NQ(2) = Number of rows of Q
Not destroyed upon return

I0P Scalar print- parameter:
0 Return within printing results.
Otherwise Print Q, D, and D'D.

TAC Scalar parameter to be used for zero test of eigenvalues of Q
DUMMY Vecgor of working space for computations with dimension at least
n + n
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OQutput arguments:

D Matrix packed by columns in a one-dimensional array with dimension
at least nZ2. Upon normal return, D'D = Q within numerical
accuracy.

ND Two-dimensional vector giving number of rows and columns of D:
upon normal return,

ND(1) = m
ND(2) = n

COMMON blocks: None

Error messages:

(1) If the singular-value decomposition subroutine SNVDEC fails to converge
to a singular value after 30 iterations, the message "IN FACTOR, SNVDEC
HAS FATLED TO CONVERGE TO THE SINGULAR VALUE AFTER 30 ITERATIONS"
is printed, and the program is returned to the calling point.

(2) If an eigenvalue of Q is greater than but close to the value
ZTEST = [IQl x 10-(IAC) (less than 16 x ZTEST), the message "IN FACTOR,
THE MATRIX Q SUBMITTED TO SNVDEC IS CLOSE TO A MATRIX OF LOWER RANK
USING ZTEST = / IF THE ACCURACY IS REDUCED THE RANK MAY ALSO BE
REDUCED / CURRENT RANK = " is printed along with the computed
singular values, and the computation continues.

Field length: 422 octal words (274 decimal)

Subroutines employed by FACTOR: EQUATE, SNVDEC, LNCNT, TRANP, PRNT, MULT

Subroutines employing FACTOR: None

Comments: None

25



Subroutine EIGEN

Description: The purpose of EIGEN is to compute all the eigenvalues and
selected eigenvectors of a real n x n matrix A stored as a variable-
dimensioned two~dimensional array. The input matrix is first balanced by
exact similarity transformations such that the norms of corresponding rows
and columns are nearly equal (ref. 17). The balanced matrix is reduced to
upper Hessenberg form by stabilized elementary similarity transformations
(ref. 18). All of the eigenvalues of the Hessenberg matrix are found by the
double shift QR algorithm (ref. 19). The desired eigenvectors of the
Hessenberg matrix are then found by the inverse iteration method (ref. 2).

Source of software: LaRC Analysis and Computation Division subprogram library
with modifications by Ernest S. Armstrong, LaRC

Calling sequence: CALL EIGEN(MAX,N,A,ER,EI,ISV,ILV,V,WK,IERR)

Input arguments:

MAX Maximum first dimension of the array A as given in the DIMENSION
statement of the calling program

N Actual order of matrix (n)

A Matrix whose eigenvalues and selected eigenvectors are desired

stored in a real two-dimensional array. The contents of this
array are destroyed upon return.

ISV The number of eigenvalues, smallest in absolute value, for which
eigenvectors are desired counting complex conjugates

ILV The number of eigenvalues, largest in absolute value, for which
eigenvectors are desired counting complex conjugates

WK Vector of working space for computations of dimension:
3N if ISV + ILV =0
N(N+7) otherwise

Output arguments:

ER One-dimensional real array containing the real parts of the eigen-~
values, dimensioned at least N in the calling program

EI One-dimensional real array containing the imaginary parts of the
eigenvalues, dimensioned at least N in the calling program

Isv On output, ISV is the number of eigenvalues, smallest in absolute
value, for which eigenvectors were computed counting complex
con jugates
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ILV On output, ILV is the number of eigenvalues, largest in absolute
value, for which eigenvectors were computed counting complex
con jugates

\'f Two-dimensional array containing the eigenvectors, normalized to
unit length on a normal return. It suffices to have V dimen-
sioned MAX as first dimension and N as second.

IERR Integer error code:
IERR = O Normal return
IERR = -J Vectors for the Jth eigenvalue did not converge to

an eigenvector. Appropriate column (columns if
Jth eigenvalue is complex) of V is set to zero.
If failure occurs more than once, the index for
the last such occurrence is in IERR.

J The Jth eigenvalue has not been determined after
30 iterations of the QR algorithm.

IERR

COMMON blocks: None

Error messages: None. User should test IERR after return.

Field length: 1131 octal words (601 decimal)

Subroutines employed by EIGEN: BALANC, ELMHES, HQR, INVIT, ELMBAK, BALBAK

Subroutines employing EIGEN: BILIN, TESTSTA, CSTAB, DSTAB, CNTNREG, ASYMREG

Comments: Upon normal return, eigenvalues are stored in ascending magnitude

with complex conjugates stored with positive imaginary parts first. The
eigenvectors are packed and stored in V in the same order as their eigen-
values appear in ER and EI. Only one eigenvector is computed for complex
conjugates (for conjugate with positive imaginary part). Upon error exit -J,
eigenvalues are correct and eigenvectors are correct for all nonzero vectors.
Upon error exit J, eigenvalues are correct but unordered for indices
IERR+1,IERR+2,...,N, and no eigenvectors are computed.

EIGEN may be used for matrices packed as a one-dimensional array by setting

MAX = N in the calling sequence. If all eigenvectors are desired, set
ISV =N and ILV = 0.
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Subroutine SYMPDS
Deseription: The purpose of SYMPDS is to solve the matrix equation,
AX = B

where A 1is a symmetric positive definite matrix and B is a matrix of
constant vectors. The determinant of A may also be evaluated. Solution
is by Cholesky decomposition (ref. 2): A is factored as A o LDL', where

L is a unit lower triangular matrix and D is a positive definite diagonal
matrix. An option is provided for computing only the Cholesky factorization
of A without solving a complete matrix equation. Both A and B are
stored as variable-dimensioned two-dimensional arrays.

Source of software: LaRC Analysis and Computation Division subprogram library
with modifications by Ernest S. Armstrong, LaRC

Calling sequence: CALL SYMPDS(MAXN,N,A,NRHS,B,IOPT,IFAC,DETERM,ISCALE,P,IERR)

Input arguments:

MAXN The maximum first dimension of A as given in the DIMENSION
statement of the calling program

N The number of rows of A

A Coefficient matrix stored as a variable-dimensioned two-dimensional

array. Two types of input are possible: the first is the unde-
composed coefficient matrix, and the second is the Cholesky
decomposition A = LDL'. For A in unfactored form, the con-
tents are destroyed upon return. If the factored form of A is
input, A contains the upper triangular elements of the coeffi-
cient matrix and the elements of the unit lower triangular matrix
L. except the diagonal elements of L which are understood to be
all unity. The reciprocals of the elements of D are input in
the array P.

NRHS The number of column vectors of the matrix B. No data are required
if only factorization of A is desired, but NRHS still must
appear as an argument of the calling sequence.

B Two-dimensional array that must have first dimension MAXN and
second dimension at least NRHS in the calling program. On
input, B contains the elements of the constant vectors, and B
is destroyed upon return. If only a factorization of A is
required, no data are necessary, but B still must appear as an
argument of the calling sequence.

JOPT Integer for determinant evaluation:
0 Determinant is not evaluated.
1 Determinant is evaluated.

28



IFAC Integer specifying whether or not the Cholesky decomposition of the
coefficient matrix is to be computed:

0 Cholesky decomposition for the matrix A 1is to be computed :
and equation solved.
1 Cholesky decomposition form of A is input so no decomposi-
tion is required.
2 Only Cholesky decomposition of A is required.
P One-dimensional array dimensioned at least N in the calling pro-

gram. If the unfactored form of A is input, nothing need be
input for P. If the factored form of A is input, P contains
the reciprocals of the diagonal elements of D.

Output arguments:

A Upon normal return, the array A contains the original elements
of the matrix A and the elements of the unit lower triangular
matrix L except the diagonal elements of L which are under-:
stood to be all unity.

B Upon normal return, if a system of equations is to be solved, each
solution vector of X 1is stored over the corresponding constant
vector of the input array B.

DETERM, Determinant evaluation parameters:
ISCALE det (A) = DETERM x 10(100xISCALE)
P Upon normal return, P contains the reciprocals of the diagonal

elements of D.

IERR Error code:
0 Normal return
1 A is not symmetric positive definite.

COMMON blocks: None

Error messages: None. The parameter IERR should be tested after return.

Field length: 373 octal words (251 decimal)

Subroutines employed by SYMPDS: None

Subroutines employing SYMPDS: PREFIL, CNTNREG, RICTNWT, EXPMDFL

Comments: SYMPDS may be used for matrices packed as a one-dimensional array
by setting MAXN = N in the calling sequence.
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Subroutine GELIM

Description: The purpose of GELIM is to solve the real matrix equation,
AX = B

where A is required to be square and nonsingular and B is a matrix of
constant vectors. Solution is by Gaussian elimination or LU factorization
(ref. 2) in which A is factored as

PA = LU

where L is a unit lower triangular matrix, U is an upper triangular
matrix, and P 1is a permutation matrix representing the row pivotal strategy
associated with the LU factorization. Both A and B are stored as
variable-dimensioned two-dimensional arrays.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL GELIM(NMAX,N,A,NRHS,B,IPIVOT,IFAC,WK,IERR)

Input arguments:

NMAX The maximum first dimension of the array A as given in the
DIMENSION statement of the calling program

N The number of rows of A

A Coefficient matrix stored as a variable-dimensioned two-dimensional
array. Two types of input are possible: the first is the unfac-
tored coefficient matrix, and the second is the triangular fac-
torization A = LU. For A input in factored form, A = (L\U)
should be used neglecting the unity elements of L, and the
pivotal strategy employed should be input through the array
IPIVOT. For A input in unfactored form, input data are

destroyed.
NRHS Number of column vectors of the matrix B
B Two-dimensional array that must have first dimension NMAX and

second dimension at least NRHS in the calling program. On input,
B contains the elements of the constant vectors and is destroyed
upon return.
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IPIVOT An integer array dimensioned at least N 1in the calling program.
If the factored form of A is input, IPIVOT contains the pivotal
strategy by the rule,

IPIVOT(I) = J

which states that row J of matrix A was used to pivot for the
Ith unknown.

IFAC Factorization parameter:
0 Compute L, U, and pivotal strategy.
1 Do not compute L, U, and pivotal strategy; the factoriza-

tion and strategy are input.

WK A one-dimensional array dimensioned at least N in the calling
program and used as a work storage array

OQutput arguments:

A Upon normal return, the unit lower and upper matrices are over-
stored in A as A = (L\U) neglecting the unity elements L.

B Upon normal return, each solution vector of X is stored over
the corresponding constant vector of the input array B.

IPIVOT Upon normal return, IPIVOT contains the pivotal strategy as
previously explained.

IERR Singularity test parameter:
0] A 1is nonsingular.
1 A is singular.

COMMON blocks: None

Error messages: None. Upon return the parameter IERR should be tested.

Field length: 261 octal words (177 digital)

Subroutine employed by GELIM: DETFAC

Subroutines employing GELIM: BILIN, TRANSIT, DSTAB, CNTNREG

Comments: If an LU factorization of A is desired without a complete equa-
tion snlution, the subroutine DETFAC may be employed.

GELIM may be used for matrices packed as a one-dimensional array by setting
NMAX = N in the calling sequence.
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Subroutine SNVDEC

Description: The purpose of SNVDEC is to compute the singular-value decomposi-

tion (ref. 2) of areal mx n (m 2 n) matrix A by performing the factori-
zation,

A = UQV!

where U is an m x n matrix whose columns are n orthonormalized eigen-
vectors associated with the n largest eigenvalues of AA', V is an

n x n matrix whose columns are the orthonormalized eigenvectors associated
with the n eigenvalues of A'A, and

Q = diag (01,02,...,0p)

where o3 (i ® 1,2,...,n) are the nonnegative square roots of the eigen-
values of A'A, called the singular values of A. Options are provided for
the computation of rank A, singular values of A, an orthonormal basis for
the null space of A, the pseudoinverse of A, and the least squares solution
to

AX = B

Both A and B are stored as variable-dimensioned two-dimensional arrays.
The computational procedure is described in reference 2 on pages 135-151.
Basically, Householder transformations are applied to reduce A to bidiagonal
form after which a QR algorithm is used to find the singular values of the
reduced matrix. Combining results gives the required construction.

Source of software: LaRC Analysis and Computation Division subprogram library

with modifications by Ernest S. Armstrong, LaRC

Calling sequence: CALL SNVDEC(IOP,MD,ND,M,N,A,NOS,B,IAC,ZTEST,Q,V,IRANK,

APLUS, IERR)

Input arguments:

32

IOP Option code:
1 The rank and singular values of A will be returned.
2 The matrices U and V will be returned in addition to the

information for IOP = 1.
3 In addition to the information for IOP = 2, the least
squares solution to AX = B will be returned.

y The pseudoinverse of A will be returned in addition to the
information for IOP = 2,
5 The least squares solution will be returned in addition to

the information for IOP = 4.



ND

NOS

IAC

The maximum first dimension of the array A as given in the
DIMENSION statement of the calling program

Maximum first dimension of the array V
The number of rows of A
The number of columns of A

Matrix stored as a variable-dimensioned two-dimensional array.
Input A is destroyed.

The number of column vectors of the matrix B

Two-dimensional array that must have row dimension at least NOS
in the calling program. B contains the right sides of the
equation to be solved for IOP = 3 or IOP = 5. B need not
be input for other options but must appear in the calling
sequence.

The number of decimal digits of accuracy in the elements of the
matrix A. This parameter is used in the test to determine zero
singular values and thereby the rank of A.

Output arguments:

A

ZTEST

IRANK

On normal return, A contains the orthogonal matrix U except
when IOP = 1.

On normal return, B contains the least squares solution for
IOP = 3 or IOP = 5.

The zero test computed as [|Af x 10-(IAC) using the matrix
Euclidean norm except when N = 1, When N = 1,

ZTEST = 10-(IAC)

A one-dimensional array of dimension at least N which upon return
contains the singular values in descending order

A two-dimensional array that must have first dimension ND and
second dimension at least N. Upon normal return, this array
contains the orthogonal matrix V except when IOP m 1. The
last N - IRANK columns of V form a basis for the null space
of A.

Rank of the matrix A determined as the number of nonzero singular
values using ZTEST
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APLUS A two-dimensional array of first dimension ND and second dimension
at least M. Upon normal return, this array contains the pseudo-
inverse of the matrix A, If IOP does not equal U4 or 5, this
array need not be dimensioned, but a dummy parameter must appear
in the calling sequence.

IERR Error indicator:
IERR = 0 A normal return
IERR =K >0 The Kth singular value has not been found after
30 iterations of the QR algorithm procedure.
-1 Using the given IAC, A is close to a matrix
which is of lower rank and if the accuracy is
reduced, the rank of the matrix may also be
reduced.

IERR

COMMON blocks: None

Error messages: None. The user should examine IERR after return.

Field length: 2072 octal words (1082 decimal)

Subroutines employed by SNVDEC: None

Subroutines employing SNVDEC: FACTOR, CTROL, CSTAB, DSTAB, DISCREG

Comments: SNVDEC may be applied to matrices stored as one-dimensional arrays
by setting MD = M and ND = N in the calling sequence.

The subroutine is internally restricted to N S 150.




Subroutine SUM

Description: The purpose of SUM is to evaluate until convergence the matrix
series

(- ]

X = Z aAipci

i=0

where A and C are nxn and m xm real constant matrices, respec-
tively. The matrix B is real constant and n x m. The series is numeri-
cally summed by successively evaluating the partial sum sequence

W

S(j+1) = S(3) + U(3) S(3) v(J)

U(3+1) = U2(3) } (3 =0,1,...)

V(3+1) = V2(3) J

with

S(0)

1]
o

u(0)

1}
=

V(o)

n
(@]

The symbol S(j) represents the sum of the first 2J terms of the power
series. Evaluation of the sequence continues until the number of terms evalu-
ated exceeds MAXSUM, which is specified in the COMMON block CONV of subroutine
RDTITL, or until convergence is reached. Numerically, convergence of the

S(j) sequence is determined by testing the improvement in the element of

S(j) of largest magnitude (measured relatively if the magnitude is less than
unity, and absolutely otherwise). The sequence is assumed to have converged
when this improvement is less than the parameter SUMCV also found in the
COMMON block CONV of subroutine RDTITL. A condition sufficient for the con-
vergence of the power series, independent of B, is that each eigenvalue

of A and C have complex modulus less than unity. When the series con-
verges, it represents a solution X ¢to

X = AXC + B

Source of software: Ernest S. Armstrong, LaRC
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Calling sequence: CALL SUM(A,NA,B,NB,C,NC,IOP,SYM,DUMMY)

Input arguments:

A, B, C Compatible matrices packed by columns in one-dimensional
arrays. A, B, and C are destroyed upon return.

NA, NB, NC Two-dimensional vectors giving the number of rows and columns
of the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

I0P Print parameter:
0 Do not print results.
Otherwise Print input A, B, C, and the sum denoted
as X.
SYM Logical variable:
TRUE Indicates A = C!

FALSE Otherwise

DUMMY Vector of working space for computations with dimension at
least maximum of (n2,m2,2nm)

Qutput argument:

B Upon normal return, the sum X is stored in B.

COMMON block: CONV

Error message: If the number of terms in the partial sum sequence S(j)
exceeds MAXSUM, the message "IN SUM, THE SEQUENCE OF PARTIAL SUMS HAS
EXCEEDED STAGE WITHOUT CONVERGENCE" is printed.

Field length: 367 octal words (247 decimal)

Subroutines employed by SUM: PRNT, MULT, MAXEL, ADD, EQUATE, TRANP, LNCNT

Subroutines employing SUM: BILIN, VARANCE, RICTNWT, EXPMDFL

Comments: A method for.scaling the A and C matrices in order to possibly
improve convergence is found in reference 15. Also found in reference 15 is
a bilinear transformation method for converting the equation,

X = AXC + B

into one solvable (assuming a unique solution exists) by the subroutine
BARSTW of ORACLS.
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Subroutine BILIN

Description: The purpose of BILIN is to solve the matrix equation,
AX « XB = C

where A and B are real constant matrices of dimension n x n and m x m,
respectively. The matrix C 1is real constant and of dimension n x m. It
is assumed that all eigenvalues of A and B have strictly negative real
parts. The method of solution employs the bilinear transformation technique
described by Smith (ref. 6), wherein it is established that the foregoing

X equation is equivalent to

X =UXV + W
with
U= (BI, - A)~W(BI, + A)
V= (BIp + B)(BI, - B)-1
W= -2B(BI, - A)~Tc(BI, - B)-T

where B is a scalar greater than zero and I, and I, are n x n and
m x m identity matrices. The eigenvalues of U and V 1lie within the
unit circle in the complex plane; therefore, the series

(2]

}5 Uiwvi

i=0

converges and represents X. The subroutine SUM is used to evaluate the
infinite series.

The user has the option of inputing £ externally or having the program com-

pute B internally based on the eigenvalues of A and B as follows. Let

Xj = aj + ibj (j = 1,2,...,n)
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be eigenvalues of A ordered so that

A

2] = 2] .« 5 |Ag]

Choosing B from the equation,

(Bg + a1)2 + b12  (Bg + ap)?2 + by?

(Bg - a7)2 + bq2 i (Bp - ap)? + by?

gives

a1(an2 + bn2) - an(a12 + b12)

(ap - aq)

When a, - a1 = 0 or B2 £ 0, instead set

If the eigenvalue computation fails, set
. Bo = 2[All

using the %7 matrix norm (see subroutine NORMS). Similarly, compute B4
based on B and put

1
B = E(BO + B‘])

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL BILIN(A,NA,B,NB,C,NC,IOP,BETA,SYM,DUMMY)
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Input arguments:

A, B, C

NA, NB, NC

IO0P

BETA

SYM

DUMMY

Output argument:

COMMON blocks:

Error messages:

(1) Ifr B is

Compatible matrices packed by columns in one-dimensional arrays.
C is destroyed upon return, but A and B are not. 1If
A = B', no data need be entered for B and NB, but their
symbols must still appear in the argument list.

Two-dimensional vectors giving the number of rows and columns
of the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return .

Two-dimensional parameter vector:
IOP(1) = O Do not print results.
Otherwise Print A, B, C, BETA, and X.

I0P(2) = O Use input value BETA for B.
Otherwise Compute B as previously described.

Scalar value $ for numerical conditioning. No input is
required if IOP(2) is nonzero.

Logical variable:

TRUE Indicates A = B!
FALSE Otherwise

Vector of working space for computations with dimension at
least (4p2 + 2p) with p = max(n,m)

Upon normal return, the solution X 1is stored in C.

None

computed internally and the eigenvalue computation for A

fails, the message "IN BILIN, THE EIGENVALUE OF A HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS" is printed. A similar message is

printed

if the eigenvalue computation for B fails.

(2) If the (BRI, - A)~'! computation fails because of singularity, the

message

"IN BILIN, THE MATRIX (BETA)I - A IS SINGULAR, INCREASE BETA"

is printed. A similar message is printed if the (BIp - B)=1 compu-
tation fails.
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Field length: 1512 octal words (842 decimal)

Subroutines employed by BILIN: LNCNT, PRNT, TRANP, EQUATE, EIGEN, SCALE, MULT,
SUM, GELIM, NORMS

Subroutines employing BILIN: VARANCE, CSTAB, RICTNWT

Comments: For A and B not satisfying the requirement of eigenvalues with
strictly negative real parts, but still admitting a unique solution to

AX + XB = C

the subroutine BARSTW may be applied.
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Subroutine BARSTW

% Description: The purpose of BARSTW is to solve the matrix equation
AX + XB = C

where A and B are real constant matrices of dimension nxn and  m x m,
respectively. The matrix C is real constant and of dimension n x m. It
is assumed that

Af+a3 o0 (1= 1,2,000m; §=1,2,...,m)

where A? and A? are eigenvalues of A and B, respectively. The matrix
equation then has a unique solution X. The method of solution is based on
transforming A and B to real Schur form as described by Bartels and
Stewart (ref. 5).

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL BARSTW(A,NA,B,NB,C,NC,IOP,SYM,EPSA,EPSB,DUMMY)

Input arguments:

A, B, C Compatible matrices packed by columns in one-dimensional arrays.
C 1is destroyed upon return, but A and B are not. If
A @ B' and C = C', no data need be entered for B and NB,
but their symbols should appear in the argument list.

NA, NB, NC Two-dimensional vectors giving the number of rows and columns
of the respective matrices; for example,
NA(1) @ Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

IOP Print option parameter:

0 Do not print.

Otherwise Print A, B, C, and X.
SYM Logical variable:

TRUE Indicates A = B' and C = C!

FALSE Otherwise

EPSA, EPSB Convergence criteria for the reduction of A and B to Schur
form. EPSA should be set slightly smaller than 10(-N),
where N is the number of significant digits in the elements
of A. EPSB is similarly defined from B.

LA



DUMMY Vector of working space for computations with dimensions at
least
2(n + 1)2 for SYM = TRUE
2(n + D2 + 2(m + 1)2 for SYM = FALSE

Output argument:

C Upon normal return, the solution X 1is stored in C.

COMMON blocks: None

Error message: If the reduction to Schur form fails, the message "IN BARSTW,
EITHER THE SUBROUTINE AXPXB OR ATXPXA WAS UNABLE TO REDUCE A OR B TO
SCHUR FORM" is printed, and the program is returned to the calling point.

Field length: 521 octal words (337 decimal)

Subroutines employed by BARSTW: PRNT, TRANP, EQUATE, NULL, JUXTR, AXPXB,
ATXPXA, LNCNT

Subroutines employing BARSTW: VARANCE, CSTAB, DSTAB, RICTNWT, EXPMDFL

Comments: If a set of equations is to be solved for a collection of
C matrices with the same A and B or the Schur forms are desired along
with X, the subroutines AXPXB and ATXPXA should be applied directly.
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Subroutine TESTSTA

Description: The purpose of TESTSTA is to compute and test the eigenvalues

of a constant real matrix A for stability relative to a parameter o in
either the continuous or digital sense. In the continuous case, the
matrix A is classified as stable if the real part of each eigenvalue is
strictly less than a. Otherwise, A 1is classified as unstable relative
to a. In the discrete case, the matrix A is classified as stable if the
complex modulus of each eigenvalue is less than q. Otherwise, A is
declared unstable relative to «a.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL TESTSTA(A,NA,ALPHA,DISC,STABLE,IOP,DUMMY)

Input arguments:

A Square real matrix packed by columns in a one-dimensional array;
not destroyed upon return

NA Two-dimensional vector giving the number of rows and columns of A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

ALPHA Scalar o wused for testing relative stability
DISC Logical variable:
TRUE Test for stability in the discrete sense.
FALSE Test for stability in the continuous sense.
I0P Print parameter:
0 Do not print results.
Otherwise Print A, the eigenvalues of A, and stability
results.
DUMMY Vector of working space for computations with dimension at least

(n2 + 5n) where n is the order of A

Output arguments:

STABLE Logical variable: wupon normal return, STABLE = TRUE if the
stability tests are satisfied; otherwise, STABLE = FALSE.

DUMMY Upon a normal return, the eigenvalues of A are stored in the
first 2n elements of DUMMY and packed by columns as a
n x 2 matrix. For DISC = TRUE, the moduli of the eigenvalues
of A appear in the next n elements.

COMMON blocks: None
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Error message: If the computation of the eigenvalues of A fails, the mes-
sage "IN TESTSTA, THE EIGENVALUE OF A HAS NOT BEEN FOUND AFTER
30 ITERATIONS" is printed, and the program is returned to the calling
point.

Field length: 366 octal words (246 decimal)

Subroutines employed by TESTSTA: EQUATE, EIGEN, JUXTC, PRNT

Subroutine employing TESTSTA: ASYMREG

Comments: None
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Subroutine EXPSER

Description: The purpose of EXPSER is to evaluate the matrix exponential

AT

for a real square matrix A and scalar T. Computation is based on the
finite-series algorithm described by Kdllstrém (ref. 20). The matrix AT

is ‘scaled by 172K where k is a positive integer chosen so that the scaled
matrix has eigenvalues within the unit circle in the complex plane. The
series algorithm is applied to the scaled matrix until the series converges.
Numerically, convergence is assumed to have occurred when the improvement

in the element of the finite series of largest magnitude (measured relatively
if the magnitude is less than unity, and absolutely otherwise) is less than
the parameter SERCV found in the COMMON block CONV of subroutine RDTITL.
Finally, the desired matrix exponential is reconstructed from the exponential

of the scaled matrix.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL EXPSER(A,NA,EXPA,NEXPA,T,IOP,DUMMY)

Input arguments:

A Square matrix packed by columns in a one-dimensional array; not
destroyed upon return

NA Two-dimensional vector giving the number of rows and columns of A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

T Scalar parameter
I0p Print parameter:
0 Do not print results.
Otherwise Print A, T, and eAT,
DUMMY Vector of working space for computations with dimension at

least 2n2 where n 1is the order of A

Output arguments:

EXPA Upon a normal return, a square matrix packed by columns in a
one-dimensional array containing the matrix exponential eAT

NEXPA Two—dimggsional column vector giving the number of rows and columns
of eft:
NEXPA(1) = NA(1)
NEXPA(2) = NA(2)
45
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COMMON block: CONV

Error messages:

(1) The integer k is tested, and if found to be negative, the message
"ERROR IN EXPSER, K IS NEGATIVE" is printed, and the program returned
to the calling point.

(2) If k increases to 1000, the message "ERROR IN EXPINT, K = 1000" is
printed, and the program is returned to the calling point.

Field length: 673 octal words (U443 decimal)

Subroutines employed by EXPSER: MAXEL, UNITY, TRCE, EQUATE, NORMS, SCALE,
ADD, MULT, PRNT

Subroutines employing EXPSER: TRANSIT, SAMPL, CNTNREG

Comments: None
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Subroutine EXPADE

Description: The purpose of EXPADE is to compute the matrix exponential el
where A 1is a real square matrix stored as a variable-dimensioned two-
dimensional array. Computation is by the method of Padé approximation
(ref. 21). The matrix is first scaled by a power of 2 chosen so that the
eigenvalues of the scaled matrix are within the unit circle in the complex
plane. The exponential is computed for this scaled matrix using the approxi-
mation given by the ninth diagonal term in the Padé table for exponential
approximations. The exponential for the original matrix is then recon-
structed from the exponential of the scaled matrix.

Source of software: LaRC Analysis and Computation Division subprogram library
with modifications by Ernest S. Armstrong, LaRC

Calling sequence: CALL EXPADE(MAX,N,A,EA,IDIG,WK,IERR)

Input arguments:

MAX Maximum first dimension of A as given in the DIMENSION statement
of the calling program

N Order of matrix A

A Matrix stored in a two-dimensional array with first dimension MAX

and second at least N; not destroyed upon return

IDIG An estimate of the number of accurate digits in the largest ele-
ments of absolute value of e

WK Vector of working space for computations, dimensioned at least
n® + 8n where n 1is the order of A

Qutput arguments:

EA Matrix stored in a two-dimensional array with first dimension MAX
and second at least N. Upon normal return, EA contains the
matrix exponential eh,

IERR Error parameter:
0 Normal return
1 The sum of the absolute values of the elements of A is
too large for any accuracy.
2 The Padé denominator matrix is singular. Singularly should

not occur with exact arithmetic.

COMMON blocks: None

Error messages: None. The user should examine the parameter IERR upon
return.
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Field length:

525 octal words (341 decimal)

Subroutine employed by EXPADE: GAUSEL

Subroutines emp

loying EXPADE: None

Comments: None
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Subroutine EXPINT

Description: The purpose of EXPINT is to compute both the matrix exponential

and the integral

T
5 efs gs
0

for a square real matrix A and scalar T. Computation is based on the
finite~-series algorithm described by Kallstrém (ref. 20). The matrix AT

is scaled by 172K where k is a positive integer chosen so that the
scaled matrix has eigenvalues within the unit circle in the complex plane.
The series algorithms are applied to the scaled matrix until convergence
occurs. Numerically, convergence is assumed to have occurred in each series
when the improvement in the element of the finite series of largest magnitude
(measured relatively if the magnitude is less than unity, and absolutely
otherwise) is less than the parameter SERCV found in the COMMON block CONV
of subroutine RDTITL. Finally, the desired matrix exponential and the
integral are reconstructed from the results using the scaled matrix.

Source of software: Ernest S. Armstrong, LaRC; based on a similar routine in

VASP (ref. 16)

Calling sequence: CALL EXPINT(A,NA,B,NB,C,NC,T,I0P,DUMMY)

Input arguments:

A Square matrix packed by columns in a one-dimensional array; not
destroyed upon return

NA Two-dimensional vector giving the number of rows and columns of A:
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

T Scalar parameter
I0P Print parameter:
0 Do not print results.

Otherwise Print A, T, eAT, and

T
LY eAs 4s
0

DUMMY Vector of working space for computations, dimensioned at least 2n2
where n 1is the order of A
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Qutput arguments:

B Upon normal return, square matrix packed by columns in a one-
dimensional array containing the matrix exponential
AT
NB Two-dimensional column vector containing the row and column size
of eAT:
NB(1) = NA(1)
NB(2) = NA(2)
C Upon normal return, square matrix packed by columns in a one-~

dimensional array containing the matrix

T
f eAs ds
0

NC Two-dimensional column vector giving the number of rows and columns

of
T
‘jﬁ eAs ds
0

That is,
NC(1) = NA(1)
NC(2) = NA(2)

COMMON block: CONV

Error messages:

(1) If k is found to be negative, the message "ERROR IN EXPINT, K IS
NEGATIVE" is printed, and the program is returned to the calling point.

(2) If k increases to 1000, the message "ERROR IN EXPINT, K = 1000" is
- printed, and the program is returned to the calling point.

Field length: T4l octal words (484 decimal)

Subroutines employed by EXPINT: NORMS, SCALE, UNITY, ADD, EQUATE, MULT, LNCNT,
PRNT, MAXEL

Subroutines employing EXPINT: TRANSIT, SAMPL

Comments: None
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Subroutine VARANCE

Description: The purpose of VARANCE is to compute the steady-state variance
matrix of the state of the continuous or discrete linear time-invariant
system:

Continuous
x(t) = A x(t) + G n(t)
Discrete

x(i + 1) A x(i) + G n(i)

where A is an n x n asymptotically stable matrix, G is an n xm (m £ n)
matrix, and n is a zero-mean white-noise process with continuous intensity
or discrete variance Q. Following reference U4, the intensity of a continuous
white-noise process is defined as the coefficient matrix of the §-function

in the covariance formula. The steady-state variance matrices, each denoted
by W, satisfy the Liapunov equations:

Continuous

AW + WA' = -GQG'
Discrete

W = AWA' + GQG!

The program provides the option of solving the continuous Liapunov equation
by either subroutine BILIN or subroutine BARSTW. The discrete Liapunov equa-
tion is solved by using subroutine SUM. The computational parameter EPSA
used by BARSTW is specified internally as EPSAM found in the COMMON block TOL
of subroutine RDTITL.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL VARANCE(A,NA,G,NG,Q,NQ,W,NW,IDENT,DISC,IOP,DUMMY)

"Input arguments:

A, G, Q Matrices packed by columns in one-dimensional arrays; not
destroyed upon normal return except for Q which is replaced
by GQG'. Storage for Q should be prescribed accordingly in

the calling program.
i
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NA, NG, NQ

IDENT

DISC

IopP

DUMMY

Two-dimensional vectors giving number of rows and eolumns of
the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

Logical variable:
TRUE If G is an 1dent1ty matrlx
FALSE Otherwise ‘
If IDENT = TRUE, no data are required in G and NG, but
the variables must still appear as arguments of the calling
sequence.

Logical variable:
TRUE If the discrete case is solved
FALSE For the continuous case

Three-dimensional option vector:

IOP(1) = O Do not print results.

Otherwise Print A, G, GQG', Q, and W.

IOP(2) = 0 Do not print from Liapunov equation sub-

routines employed.

Otherwise Print from these subroutines.

I0P(3) = 0 and Solve the Liapunov equation by subroutine
DISC = FALSE BARSTW.

I0P(3) # 0 and Solve the Liapunov equation by subroutine
DISC = FALSE BILIN.

IOP(3) is not required if DISC = TRUE.

Vector of working spaces for computations dimensioned at least:
2(n + 1)2 for DISC = FALSE and IOP(3) =
Un2 + 2n for DISC = FALSE and IOP(3) # O
4n2 for DISC = TRUE

Output arguments:

W

NwW

COMMON block:
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Upon normal return, matrix packed by columns in a one-
dimensional array holding the steady-state variance matrix

Two-dimensional vector giving number of rows and columns of W:
upon normal return,
NW(1) = NA(1)
NW(2) = NA(2)

TOL



Error messages: None

Field length: 513 octal words (331 decimal)

Subroutines employed by VARANCE: PRNT, LNCNT, MULT, TRANP, BILIN, BARSTW, SUM

Subroutines employing VARANCE: None

Comments: In determining the storage allocation requirements for VARANCE, it

was assumed that m S n. For m > n, the matrix GQG' should be computed
externally and input as Q with IDENT = TRUE.

53



Subroutine CTROL

Description: The purpose of CTROL is to evaluate the controllability matrix

c=[B, 8B, . . ., an-18]

for a real constant (A,B) pair. The matrix A is n xn and B is
nxr with r $ n. Options are provided to compute both the rank and singu-
lar values of C along with the controllability canonical form (ref. 4) for
the (A,B) pair. For the optional computations, the singular-value decom-
position algorithm found in subroutine SNVDEC is applied to factor

c' = [B, 4B, . . ., AD-TB]
as

¢' = uqu
or

C = vQu!

The number of nonzero elements on the diagonal of the n x n matrix Q
determines the rank of C. Assuming C has rank £ £ n, the first % col-
umns of V form an orthonormal basis for the range space of C and the next
(2 + 1) ton columns form an orthonormal basis for the orthogonal complement
to the range space of C. Hence, the pair (V'AV,V'B) represents the con-
trollability canonical form for the original (A,B) pair.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL CTROL(A,NA,B,NB,C,NC,IOP,IAC,IRANK,DUMMY)

Input arguments:

54

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
upon return

NA, NB Two-dimensional vectors giving the number of rows and columns of
respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return



I0P

IAC

DUMMY

Five-dimensional option vector:
IOP(1) = O Do not print A, B, and C.
Otherwise Print A, B, and C.

I0P(2) = O Return after computing C.
Otherwise Compute rank of C.

IOP(3) = O Do not print rank of C, zero test employed to
determine rank, and singular values of C.
Otherwise Print these data.

IOP(4) = O Return after rank computation.
Otherwise Compute the controllability canonical form.

I0P(5) = O Return without printing controllability form.
Otherwise Print V'AV, V'B, and V' before returning.

Parameter used to specify zero test for rank computation.
Singular values are considered zero if they do not exceed

ZTEST = ”6" X 10"(IAC) using the matrix Euclidean norm.

Vector of working space for computations dimensioned at least:

nr{n+1) = K To compute C only
max [K,n2+n+nr(n—r+1)] o L To compute rank of C
max(L,3n2) To compute controllability

canonical form

Output arguments:

c

NC

IRANK

DUMMY

Matrix packed by columns in a one-dimensional array dimensioned
at least nZr. Upon normal return, C contains the controlla-
bility matrix for the (A,B) pair.

Two~-dimensional vector giving the number of rows and columns of C:
upon normal return,
NC(1) = NA(1) = n
NC(2) = NA(1) x NB(1) = nr

Upon normal return, scalar giving the rank of C

Upon normal return for rank computation only, the first nr(n-r+1)
elements contain the matrix U, the next n elements contain the
singular values of C', and the next n? elements contain the
matrix V. Upon normal return for the canonical form computation,
the first n2 elements contain the matrix V', the next nr ele-
ments contain the matrix V'B, and, after the first 2n2 elements
of DUMMY, the next n? elements contain the matrix V'AV. All
matrices are packed by columns into the corresponding sections
of the one-dimensional array DUMMY.
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COMMON blocks: None

Error messages:

(1) If SNVDEC fails to compute the singular values of E, the message "IN

CTROL, SNDVEC HAS FAILED TO CONVERGE TO THE SINGULAR VALUE AFTER
30 ITERATIONS" is printed, and the program is returned to the calling
point.

(2) If an eigenvalue of Q is greater than but close to ZTEST (see sub-
routine SNVDEC), the message "IN CTROL, THE MATRIX SUBMITTED TO SNVDEC

USING ZTEST = IS CLOSE TO A MATRIX WHICH IS OF LOWER RANK / IF
THE ACCURACY IS REDUCED THE RANK MAY ALSO BE REDUCED/CURRENT
RANK = " is printed, and the computation continues.

Field length: 656 octal words (430 decimal)

Subroutines employed by CTROL: EQUATE, MULT, JUXTC, PRNT, LNCNT, TRANP, SNVDEC

Subroutines employing CTROL: None

Comments: Employing duality theory, CTROL may also be used to compute the
reconstructibility canonical form (ref. 4). By combining controllability
and reconstructibility results from CTROL, the full canonical structure
theorem (ref. 22) can be implemented.
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Subroutine TRANSIT

Description: The purpose of TRANSIT is to compute and print the transient
response of the time-invariant continuous or discrete system.

Continuous

X(t) = AX(t) + B U(t)
Discrete

X(i + 1) = AX(i) + B U(1)

together with Y and U where

Y = HX + GU

U=-FX+V
for given

X(0) = Xg

from the initial time or stage zero to an input final time or stage.

The matrices A, B, X, and H are dimensioned nxn, nx r (r £ n),

nx p(psn), and mx n (m £ n), respectively, with the other matrices com-
patible. If the matrix (A - BF) is asymptotically stable in the appropriate
continuous or discrete sense, the steady-state value of X given by

Continuous

-(A - BF)- 1BV

3
"

Discrete

[T - (a-38F)] '8y

>
]

where I is an identity matrix, is computed and printed except when V is
a null matrix.
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Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL TRANSIT(A,NA,B,NB,H,NH,G,NG,F,NF,V,NV,T,X,NX,DISC,
STABLE, TOP,, DUMMY )

Input arguments:

A, B, H, Compatible matrices packed by columns in one-dimensional

G, F, V arrays; not destroyed upon normal return

NA, NB, NH, Two-dimensional vectors giving the number of rows and columns
NG, NF, NV of respective matrices; for example,

NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon return

T Two-dimensional vector:

T(1) is the final time in the continuous case given as an
integer multiple of T(2).

T(2) is a time point within [0,T(1)]; printing is at
multiples of T(2).

The input T 1is not required if the response to a discrete
system is to be computed, but the argument must still
appear in the calling sequence; not destroyed upon normal
return.

X Matrix packed by columns in a one-dimensional array contain-
ing the initial value X3 at time or stage zero. X is
destroyed upon normal return.

NX Two-dimensional vector giving the number of rows and columns
of X:
NX(1) NA(1)

NX(2) = NU(2)
Not destroyed upon normal return

DISC Logical variable:
TRUE If the response to the discrete system is required
FALSE For the response to the continuous system

STABLE Logical variable:
TRUE If (A - BF) is asymptotically stable in

the appropriate sense
STABLE = FALSE Otherwise
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IOP Four-dimensional option vector:

I0P(1) = O If H is a null matrix
I0P(1) = 1 If H is an identity matrix
IOP(1) # 0 or 1 For other H matrices
I0P(2) = 0 If G is a null matrix
I0P(2) = 1 If G is an identity matrix
I0P(2) # 0 or 1 For other G matrices
I0P(3) = O If V is a null matrix
I0P(3) = 1 If V is an identity matrix
IOP(3) # 0 or 1 For other V matrices

IOP(4) is the terminal stage for the response to a discrete
system; not .required if the continuous system response is
computed (DISC = FALSE).

DUMMY Vector of working space for computations, dimensioned at
least Tn? where n is the order of A.

Output arguments:

X Upon normal return, the value of X at time T(1) or
state IOP(4)

DUMMY Upon normal return, the first np elements of DUMMY contain
the steady-state value of X, packed by columns in a one-
dimensional array, when STABLE = TRUE and IOP(3) # O.

COMMON blocks: None

Error message: When computation of the continuous steady-state X values is

attempted and (A - BF) is found to be singular, the message "IN TRANSIT,
THE MATRIX A-BF SUBMITTED TO GELIM IS SINGULAR" is printed, and the program

is returned to the calling point. For the discrete case, a similar message
concerning the matrix [I - (A - BF)] is also printed.

Field length: 1530 octal words (856 decimal)

Subroutines employed by TRANSIT: PRNT, EXPSER, EXPINT, MULT, EQUATE, LNCNT,

SCALE, ADD, TRANP, GELIM, UNITY, SUBT

Subroutines employing TRANSIT: None

Comments: When the matrices H, G, or V take on their special null or

" identity matrix values, no data need be input, but they must still appear as

arguments of the calling sequence.
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PRIMARY SUBROUTINES FOR IMPLEMENTING LQG CONTROL LAW DESIGN
Subroutine SAMPL

Description: The purpose of SAMPL is to compute the matrix functions,

- T
Q(T) =‘S‘ eA'TQeAT dt
0
T
W(T) = 25 eA'Q H(T,0) dt
0
~ T i
R(T) =j‘ [R + H'(T,0) Q H(T,0)] dt
0
where
t
H(t,0) = j eAT B gt
0
for constant real matrices A, B, Q=Q'2 0, R' =R >0, and scalar

T > 0. The dimensions of A and B are nxn and n x r (r £ n),
respectively. Other matrices have compatible dimensions. The program has
the option of computing Q(T) without evaluating W(T) and R(T).

The matrix 5 is the reconstructibility Gramian (ref. 4) for the system

x(t) = & x(t) )
y(t) = D x(t) 5 (0t T
Q =D'D J

The set of matrices a, W, and ﬁ occur naturally in the optimal sampled-
data linear regulator problem (refs. 23 and 24). Given the time-invariant
linear system,

x(t) = A x(t) + B u(t)
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the optimal sampled-data regulator problem (OSR) occurs when u(t)
(0 t £ tp< ™) is required to minimize

tr
Jd = x'(te) S x(te) + bf [?'(T) Q x(t) + u'(T) R u(T)] dr
0

subject to the restrictions that u(t) be constant over subintervals
[tirtisq] (1 =0,1,...,N=1), 0< tg< ty<tp...<tyste within
the interval [0,tg], and S = S' 2 0. The OSR problem transforms
directly into an optimal discrete regulator problem in which u(t;)

(i =0,1,...,N-1) is chosen to minimize
N-1
J=x(tp) S x(ep) + y [x'(65) QBL;) x(tg)
i=0

+ x'(5) W(Aty) ulty) + u'(by) R(Aty) ulty)]
with

Aty = ti,7 - t4
and

x(tio1) = ™ x(ts) + H(ALL,0) ulty)

The subroutine SAMPL computes the weighting matrices for the OSR problem for
the case At; = T.

Computation is based on the finite-series algorithm described by Armstrong
and Caglayan (ref. 13). The matrix AT is scaled by 172K where k is a
positive integer chosen so that the scaled matrix has eigenvalues within the
unit eircle in the complex plane. The algorithm (ref. 13) is applied to the
scaled matrix until convergence occurs. Numerically, convergence is assumed
to have occurred in each series when the improvement in the element of largest
magnitude (measured relatively if the magnitude is less than unity, and abso-
lutely otherwise) is less than the parameter SERCV found in the COMMON block
CONV of subroutine RDTITL. Afterward, the desired OSR weighting matrices are
reconstructed from the results with the scaled AT matrix, as described in
reference 13.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL SAMPL(A,NA,B,NB,Q,NQ,R,NR,W,NW,T,IOP,DUMMY)
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Input arguments:

A, B, Q, R

NA, NB, NQ, NR

IoP

DUMMY

OQutput arguments:

Q

NW
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Matrices packed by columns in one-dimensional arrays. A
and B are not_destroyed upon return, but Q and R
are. If only Q is to be computed, data for B and R
need not be input, but the related arguments should still
appear in the calling sequence.

Two-dimensional vectors giving the number of rows and
columns of respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon normal return

Positive scalar parameter

Two-dimensional option vector:
IOP(1) = O Do not print results of computation.
Otherwise Print input and computed results.

I0P(2) = 0 Solve for the reconstructibility Gramian
only.

Otherwise Solve for the complete set of OSR weighting
matrices.

Vector of working space for computations with dimension
at least:
4n2 for I0P(2)
Tn2 for IOP(2)

=0
$# 0

Upon normal return, the matrix Q(T) is stored in Q and
packed by columns in the one-dimensional array.

Matrix packed by columns in a one-dimensional array with
dimension at least nr. Upon normal return, W contains
the matrix W(T) if computation is required. If the
computation of W(T) is not required, W is not needed,
but the argument should still appear in the calling
sequence.

Two-dimensional vector giving, upon normal return, the
number of rows and columns of W(T):
NW(1) = NA(1)
NW(2) NB(2)

Upon normal return, the matrix %(T) is stored in R and
packed by columns in the one-dimensional array.



COMMON block: CONV

Error message: If k reaches 1000 in the scaling of AT, the message "ERROR
IN SAMPL, K = 1000" is printed, and the program is returned to the calling
point.

Field length: 2521 octal words (1361 decimal)

Subroutines employed by SAMPL: PRNT, LNCNT, NORMS, SCALE, EQUATE, MULT, TRANP,

ADD, MAXEL, EXPSER, EXPINT

Subroutines employing SAMPL: None

Comments: The variance matrix for the state of the time-invariant linear

system

x(t) = A x(t) + B n(t)

driven by white noise TN with intensity V is given at time T by

T
G(T) = eAT Gg(o) A'T +f eATBYB'eA'T g1
0

and can be computed through the matrix exponential and SAMPL subroutines of
ORACLS. For the second term in G(T), use SAMPL and compute the reconstructi-
bility Gramian with A replaced by A' and Q = BVB'.
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Subroutine PREFIL

Description: The purpose of PREFIL is to compute an r x n (r £ n) matrix F
which, when used in the vector equation,
u=-Fx+v
eliminates the cross-product term in the quadratic scalar fuﬁction,

Xx'Qx + X'Wu + u'Ru

where Q = Q'2 0, W, and R = R' > 0 are constant matrices. Specifically,

and, after substitution, the gquadratic function becomes

X'Qx + V'Rv
where

W
Qe Q-~F
2

If the transformation is also applied to a continuous or discrete linear
time-invariant system,

Continuous

x = Ax + Bu
Discrete
x(i+1) = A x(i) + B u(i)
the closed-loop response matrix is
A=4A-FF

Options are provided within PREFIL to compute both 6 and A in addition
to F.
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Source of software:

Calling sequence:

Input arguments:

A, B, Q,
W, R

NA, NB, NQ,
NW, NR

I0pP

DUMMY

Output arguments:

A

Ernest S. Armstrong, LaRC

CALL PREFIL(A,NA,B,NB,Q,NQ,W,NW,R,NR,F,NF,I0OP,DUMMY)

Matrices packed by columns in one-dimensional arrays.

Inputs B and R are not destroyed upon normal return.

If only the matrix F 1is required, input A, B, and Q
are not required but must still appear in the calling
sequence. Similarly, if only F and Q are required,
input B is not required, but B must still appear in the
calling sequence. :

Two-dimensional vectors giving the number of rows and columns

in the respective matrices; for example,
NA(1) = Number of rows of A

NA(2) = Number of columns of A

Not destroyed upon return

Three-dimensional option vector:

IOP(1) = O Do not print results. - -

Otherwise Print input data, F, and (Q, A) when
computed.

IOP(2) = O Do not compute 5;

Otherwise Compute F and Q and return.

I0P(3) m O Do not compute K;

Otherwise Compute F and A and return.

Vector of working space
least n2 + r where
respectively

If A is computed, the
the matrix A packed

Ir 6 is compgted, the
the matrix Q packed

for computations, dimensioned at
n and r are the order of A and R,

A array contains, upon normal return,
by columns.

Q array contains, upon normal return,
by columns.

Upon normal return, the matrix F packed by columns in a one-

dimensional array of dimension at least

nr

Upon normal return, a two-dimensional vector giving the number
of rows and columns of F:

NF(1) = NR(1)
NF(2) = NA(1)
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COMMON blocks: None

Error message: If the matrix R is found not to be symmetric positive definite
by the subroutine SYMPDS, the message "IN PREFIL, THE MATRIX R IS NOT
SYMMETRIC POSITIVE DEFINITE" is printed, and the program is returned to the
calling point.

Field length: U457 octal words (303 decimal)

Subroutines employed by PREFIL: PRNT, LNCNT, TRANP, SCALE, EQUATE, SYMPDS,
MULT, SUBT

Subroutine employing PREFIL: IMPMDFL

Comments: Subroutines which follow provide solution algorithms for LQG problems
having a quadratic performance index without cross-product terms. Problems
with such terms may be transformed into equivalent problems without cross
products by performing a control variable transformation (ref. 4):

u=-Fx +v

where u 1is the original control, x 1is the state vector, and v 1is the
new control with F computed from PREFIL.
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Description:

Subroutine CSTAB

used in the control law

u = -Fx

and applied to the stabilizable linear time-invariant continuous system,

X = Ax + Bu !

produces a closed-loop response matrix (A - BF) whose eigenvalues lie in

The purpose of CSTAB is to compute a gain matrix F which, when

the complex left half-plane. The primary use for CSTAB in ORACLS is to gen-

erate a stabilizing gain matrix for initializing the quasilinearization
method for solving the continuous steady-state Riccati equation (ref. 9).
The matrix (A - BF) computed here has some interesting root-locus proper-
ties (ref. 25) which may make the control law applicable in other areas.

Computation follows the method described by Armstrong (ref. 11). The
matrices A and B are of dimension nxn and n xr (r & n), respec-
tively. A scalar parameter B > 0 is first selected so that the matrix

A= -(A + BI)

has eigenvalues in the complex left half-plane, where I is the identity
matrix. The matrix is used to form a Liapunov equation

AZ + ZA' = -2BB'
whose solution Z is used to compute F through
F = B'Z*
where + denotes matrix pseudoinverse. It can be shown (ref. 25) that

Re(XA'BF) = =B

where AA-BF i35 any controllable eigenvalue of the (A,B) system. The
option is provided to input B8 directly or to have B computed internally
as
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A
B = s[%ax Re(ki) + 0.00{] (i =1,2,...,n)
i .

) A
where s is an input scale factor and A; are the eigenvalues of A. If
the eigenvalue computation in CSTAB fails, B is set to

B = 2|la|

using the &4 matrix norm (see subroutine NORMS). The Liapunov equation
for Z can be solved using either subroutine BILIN or subroutine BARSTW.
The pseudoinverse of Z is computed through subroutine SNVDEC. Computa-
tional parameters for BILIN, BARSTW, and SNVDEC are provided internally
through the COMMON block TOL found in subroutine RDTITL.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL CSTAB(A,NA,B,NB,F,NF,IOP,SCLE,DUMMY)

Input arguments:

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
! upon normal return

NA, NB Two-dimensional vectors giving the number of rows and columns of
the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon normal return

Iop Three~-dimensional option vector:
IOP(1) = O Do not print results.
Otherwise Print input, B, F, and eigenvalues of (A-BF).

IOP(2) = O Do not compute parameter B but use B = SCLE.

Otherwise Compute B wusing s = SCLE,
IOP(3) = O Use the BARSTW algorithm to solve the Z equation.
Otherwise Use BILIN.
SCLE Parameter used to define B
DUMMY Vector of working space for computations of dimension at least:
2n2 + 2(n + 1) if IO0P(3) = 0
6n° + 2n if IOP(3) # 0
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Output arguments:

F Matrix packed by columns into a one-dimensional array of dimension
at least nr. Upon normal return, F contains B'Z*+,

NF Two-dimensional vector holding, upon normal return, the number of
rows and columns of F:
NF(1) = NB(2)
NF(2) = NA(1)

COMMON block: TOL

Error messagés:

(1) In the B computation section, if the eigenvalue computation for A
fails, the message "IN CSTAB, THE SUBROUTINE EIGEN FAILED TO DETERMINE
THE EIGENVALUE FOR THE MATRIX A AFTER 30 ITERATIONS" is
printed, and the computation continues with B = 2J/A).

(2) If SNVDEC fails to compute the singular values of Z, the message "IN
CSTAB, SNVDEC HAS FAILED TO CONVERGE TO THE SINGULAR VALUE

AFTER 30 ITERATIONS" is printed, and the program is returned to the
calling point.

(3) If a singular value of Z is greater than but close to the ZTEST value
used (see SNVDEC and TOL), the message "IN CSTAB, THE MATRIX SUBMITTED
TO SNVDEC USING ZTEST = IS CLOSE TO A MATRIX OF LOWER RANK/IF
THE ACCURACY IAC IS REDUCED THE RANK MAY ALSO BE REDUCED/CURRENT
RANK = " is printed along with the singular values of Z after
which computation continues.

Field length: 1076 octal words (574 decimal)

Subroutines employed by CSTAB: EQUATE, EIGEN, LNCNT, TRANP, MULT, SCALE,

BARSTW, BILIN, SNVDEC, PRNT, SUBT, NORMS

Subroutines employing CSTAB: DSTAB, ASYMREG

Comments: None
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Subroutine DSTAB

scription: The purpose of DSTAB is to compute a gain matrix F which, when

used in the control law,

70

u = =Fx
and applied to the stablilizable linear time-invariant discrete system,
x(i+1) = A x(i) + B u(i)

produces a closed-loop response matrix (A - BF) whose eigenvalues lie inside
the unit circle of the complex plane. The primary use for DSTAB in ORACLS

is to generate a stabilizing gain matrix for initializing the quasilineariza-
tion method for solving the discrete steady-state Riccati equation (ref. 10).
The matrix (A ~ BF) computed here has some interesting root-locus properties
(ref. 25) which may make the control law applicable in other areas.

Computation follows the method described by Armstrong and Rublein (ref. 12).
The matrices A and B are of dimension nxn and n xr (r £ n),
respectively. A scalar O 1is first selected so that

A
0 <ac< min(h min Ikil) (ia1,2,...,n)
i i
A
where ki denotes the nonzero complex moduli of eigenvalues of A. Next,
solve the matrix equation,

AZA' = 027 + 2BB'

for Z = Z' 2 0, and by assuming the controllable eigenvalues of A are
nonzero, the stabilizing gain is given by

F = B'(Z + BB")*A

where + denotes matrix pseudoinverse. If any controllable eigenvalue

of A is zero or unknown, it can be made nonzero by applying to the system
a prefilter with gain G so that the controllable eigenvalues of (A - BG)
are strictly in the complex left half-~plane. Such a gain can be computed
from CSTAB. Afterward, DSTAB is applied to the (A - BG,B) pair to compute



a digital stabilizing gain F with the net stabilizing gain F for the
original system given by

The matrix equation in Z is transformed into

AZ + ZA' = BB'
with

(oI + A)-1(a - aI)

=
"

2(al + A)-1B

[ve]
11

and solved by subroutine BARSTW. The symbol I denotes an identity matrix.

The option is provided to input o directly or to have o computed
internally as

A-BG
a = s min {1, min |A; (i =1,2,...,n)
i

A-BG
where A4 are nonzero complex moduli of eigenvalues of (A -~ BG),
0 < s <1 1is input scale factor, and G is a gain computed, if requested,
internally from CSTAB to cause the controllable eigenvalues of (A - BG) to
be nonsingular. The pseudoinverse is computed through SNVDEC. Computational
parameters for SNVDEC and BARSTW are provided internally through the COMMON
block TOL found in subroutine RDTITL.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL DSTAB(A,NA,B,NB,F,NF,SING,IOP,SCLE,DUMMY)

Input arguments:

A, B Matrices packed by columns in one-dimensional arrays; not destroyed
upon normal return

NA, NB Two-dimensional vectors giving the number of rows and columns in
the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon normal return

71



SING Logical variable:
FALSE If the controllable eigenvalues of A are Xnown to
be nonzero ’

TRUE Otherwise, and a gain G will automatically be computed
(using CSTAB) before proceeding to the digital
algorithm .
Iop Two-dimensional option-vector: :
IOP(1) = O Do not 'print results.
Otherwise Print input, ‘F, a, eigenvalues of A - BF, and

their magnitudes.

I0P(2) = 0O Do not compute parameter o but use o = SCLE.

Otherwise Compute o by using s = SCLE.
SCLE Parameter used to define o«
DUMMY Vector of working space for computations, dimensioned at least

Un2 4+ 2(n + 1)

Qutput arguments:

F Matrix packed by columns into a one-dimensional array of dimension
at least nr. Upon normal return, F contains B'(Z + BB')*A.

NF Two-dimensional vector holding, upon normal return, the number of
rows and columns in F:
NF(1) = NB(2)
NF(2) = NA(1)

COMMON block: TOL

Error messages:

(1) In the o computation, if the eigenvalue computation for (A - BG)
fails, the message "IN DSTAB, THE PROGRAM EIGEN FAILED TO DETERMINE
THE EIGENVALUE FOR THE MATRIX A& - BG AFTER 30 ITERATIONS" is
printed followed by the matrices (A - BG) and G, if SING = TRUE,
and the program is returned to the calling point.

(2) If the matrix A + aI (or (A - BG) + al) is found to be singular,
the message "IN DSTAB, GELIM HAS FOUND THE MATRIX A + (ALPHA)I
(or (A-BG) + (ALPHA)I) SINGULAR" is printed followed by 4, G,
and «, and the program is returned to the calling point.

(3) If SNVDEC fails to compute the singular values of (Z + BB'), the
message "IN DSTAB, SNVDEC HAS FAILED TO CONVERGE TO THE SINGULAR
VALUE AFTER 30 ITERATIONS" is printed, and the program is returned to
the calling point.
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(4) If a singular value of (Z + BB') is greater than, but close to the
ZTEST value used (see SNVDEC and TOL), the message "IN DSTAB, THE
MATRIX SUBMITTED TQ SNVDEC, USING ZTEST = , IS CLOSE TO A
MATRIX OF LOWER RANK/IF THE ACCURACY IAC IS REDUCED THE RANK MAY ALSO
BE REDUCED/CURRENT RANK = " is printed along with the singular
values of (Z + BB') after which computation continues.

(5) If the eigenvalue computation for (A - BF) fails, the message "IN DSTAB,
THE PROGRAM EIGEN FAILED TO DETERMINE THE EIGENVALUE FOR THE
A-BF MATRIX AFTER 30 ITERATIONS" is printed along with the computed
eigenvalues, and the program is returned to the calling point.

Field length: 1605 octal words (901 decimal)

Subroutines employed by DSTAB: CSTAB, MULT, SUBT, EQUATE, EIGEN, GELIM, LNCNT,
PRNT, TRANP, MULT, SCALE, BARSTW, ADD, SNVDEC, JUXTC

Subroutine employing DSTAB: ASYMREG

Comments: None
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Subroutine DISCREG

Description: The purpose of DISCREG is to solve the time-invariant discrete-
time linear optimal output regulator problem with noise-free measurements.
Given the digital linear system

x(i+1) = A x(i) + B u(i) + w(i)

where x(0) = xg is given, A and B are constant matrices of dimension
nxn and n xr (r £ n), respectively, and w(i) (i = 0,1,...,N-1) is a
sequence of uncorrelated zero-mean stochastic variables with variance
matrices V(i). Outputs, or controlled variables, are of the form

y(i) = H x(i)

where H is a constant m x n (m £ n) matrix. The considered optimal regu-
lator problem is to find the control sequence u(i) which minimizes

N-1
J=E 25 [&'(i+1) Q y(i+1) + u'(i) R u(iﬂ + x'(N) Py x(N)
i=0

with Q=Q'2 0, Py=Py'20, and R = R' > 0. The symbol E denotes
expected value. The solution is given by (ref. 26)

|
u(i) = -F(i) x(i)
F(i) = [R + B' P(i+1) B]-1 B' P(i+1) A

? (1 = 0,1,...,N=1)
P(i) = ¢'(1) P(i+1) ¢(i) + F'(i) R F(i) + H'WH
$(i) = A - BF(i) )
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where P(N) = Py. The minimal value of the criterion function is

N-1
Jd = x'(0) P(0) x(0) + z tr [V(J) P(J+1)]
j=0

where tr denotes the trace of a matrix.

The program DISCREG repetitively evaluates the solution equations from an
input value N to stage zero or until P(i) converges to a steady-state
value, whichever occurs first. Numerically, convergence is assumed to have
occurred when the improvement in the element of largest magnitude (measured
relatively if the magnitude is less than unity, and absolutely otherwise) is
less than the parameter RICTCV found in COMMON block CONV of subroutine
RDTITL. The program DISCREG does not evaluate the optimal value of the
criterion function or print a response trajectory. The subroutine SNVDEC

is used to evaluate the matrix inverse in the F(i) equation to allow the
option of using nonnegative definite (instead of strictly positive definite)
matrices R. Parameters for SNVDEC are set internally by use of the COMMON
block TOL of RDTITL.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL DISCREG(A,NA,B,NB,H,NH,Q,NQ,R,NR,F,NF,P,NP,IOP,

IDENT, DUMMY )

Input arguments:

A, B, H, Matrices packed by columns in one-dimensional arrays. Upon
Q, R normal return, all except Q are not destroyed.

NA, NB, NH, Two~dimensional vectors giving the number of rows and columns
NQ, NR of the respective matrices; for example,

NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon normal return except for NQ = NA

P Symmetric nonnegative definite matrix packed by columns in
a one-dimensional array. On input, P contains the
matrix Py. Afterward, intermediate values of P(i) are
stored in the array P.

NP Two-dimensional vector giving the number of rows and columns
of P:
NP(1) = Number of rows in P
NP(2) = Number of columns in P
Not destroyed upon normal return
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I0P Three~dimensional option vector:
IOP(1) = O Do not print results.
Otherwise Print input, and F(i) and P(i) at stage

zero or steady state, whichever occurs first.

I10P(2) = 0O Do not print at intermediate states between
initial and final states.

Otherwise Print stage count and values of F(i) and
P(i), regardless of printing specified by
I0P(1).

IOP(3) is terminal stage N for the optimal regulator

problem.

IDENT Logical variable:
TRUE If H is an identity matrix

FALSE Otherwise
For IDENT = TRUE, no data need be input for H, but the
related arguments should still appear in the calling

sequence.
DUMMY Vector of working space for computations of dimension at
least 4n?
OQutput arguments:
Q Upon normal return, Q is replaced by H'QH. The array Q

must be dimensioned at least n2.

F Matrix packed by columns in a one-dimensional array of dimen-
sion at least nr. Upon normal return, F contains the
value of F(i) at stage zero or the stage at which numeri-
cal steady-state convergence occurs.

NF Two-dimensional matrix giving, upon normal return, the number
of rows and columns of F:
NF(1) = NB(2)
NF(2) = NA(1)

P Upon normal return, P contains the value of P(i) at stage
zero or the stage at which steady-state convergence occurs.

COMMON blocks: TOL, CONV

Error messages:

(1) If SNVDEC fails to compute the singular values of any [F + B' P(i) é],
the message "IN DISCREG, SNVDEC HAS FAILED TO CONVERGE TO THE
SINGULAR VALUE AFTER 30 ITERATIONS" is printed, and the program is
returned to the calling point.

76



(2) If a singular value of [R + B' P(i) B] is greater than but close to the
ZTEST value used (see SNVDEC and TOL), the message "IN DISCREG, THE
MATRIX SUBMITTED TO SNVDEC USING ZTEST = IS CLOSE TO A MATRIX
OF LOWER RANK/IF THE ACCURACY IAC IS REDUCED THE RANK MAY ALSO BE
REDUCED/CURRENT RANK = " is printed along with the singular
values of [R + B'P(i)B] after which computation continues.

Field length: 1355 octal words (749 decimal)

Subroutines employed by DISCREG: LNCNT, PRNT, MULT, TRANP, EQUATE, SNVDEC,

ADD, SUBT, MAXEL

Subroutine employing DISCREG: ASYMREG

Comments: Of course, if w(i) = 0 (i = 0,1,...), the algorithm in DISCREG

generates the solution to the discrete deterministic optimal linear output
regulator problem.
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Subroutine CNTNREG

Description: The purpose of CNTNREG is to solve the time-invariant continuous-

time linear optimal output regulator problem with noise-free measurements.
Given the continuous linear system,

x(t) = A x(t) + B u(t) + w(t)

where x(0) = xg 1is given, A and B are constant matrices of dimension
nxn and nx r (r £ n), respectively, and w(t) is zero-mean Gaussian
white noise with intensity V(t). Outputs, or controlled variables, are
modeled as

y(t) = H x(t)

where H is a constant m x m (m £ n) matrix. The considered optimal regu-
lator problem is to find the control function u(t) which minimizes

1
J = E{y [y () @ y(t) + u'(t) R u(t)] dt + x'(tq) Py x(t1)}
0

where Q =Q'2 0, Pq=Pq' 20, and R = R' > 0. The symbol E denotes
expected value. The solution is given by reference 4 as

u(t) = -F(t) x(t)
F(t) = R~1B' P(t)
-dP(t)

— = H'QH + A' P(t) + P(t) A - P(t) BR-1B' P(t)

where P(tq) = Pq. The minimal value of the criterion function is
t
x'(0) P(0) x(0) +‘j‘ tr [?(t) V(t)] dat
0

where tr denotes the trace of a matrix.



The computational algorithm used in CNTNREG to solve the Riccati equation is
that due to Vaughan (ref. 8) as described by Kwakernaak and Sivan (ref. 4).
From

A ~BR-1B!
~H'QH -A"

The Z matrix has the property that if A 1is an eigenvalue, then -\ is
also an eigenvalue. By assuming that Z has linearly independent eigen-
vectors, there exists a matrix W such that

Z =W w-1
0 -A

where A 1is a diagonal matrix constructed as follows. If an eigenvalue A
of Z has Re()) > 0, it is a diagonal element of A, and -\ is automati-
cally placed in -A. If Re()) o 0, one of the pair (A,-A) is arbitrarily
assigned to A and the other to -A. The matrix W is composed of eigen-
vectors of Z; the ith column vector of W 1is the eigenvector of Z corre-
sponding to the eigenvalue in the ith diagonal position of diag(A,-A). In
practice, it is noted that if A 1is a complex eigenvalue of Z with eigen-
vector v, then their complex conjugates A and VvV are also an eigenpair
and [Re(v),Im(vﬂ is placed in W instead of (v,V) 1in order to avoid
complex arithmetic. This has the effect of making A block diagonal where
every (\,\) pair go together to form a 2 x 2 real matrix placed at the
former (A,A) entry in A. Next partition the 2n x 2n matrix W into
four n x n Dblocks as

The solution P(t) of the Ricecati equation can be written as

P(t)

-1
[W22 + Woq1 G(tq - t)] [W12 + Wqq G(t1 - tﬂ
with
e—AtSe"At

G(t)
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and

S = -(Wpq - P1W11)'1(W22 - PqW12)

If A is composed of eigenvalues with strictly positive real parts, then the
steady-state solution to the Riccati equation is given directly as

lim P(t) = Woo W12"1
t e

The program CNTNREG evaluates the solution equations from an input value ¢t
to time zero or until P(t) converges to a steady-state value, whichever
occurs first. Numerically, convergence is assumed to have occurred when the
improvement in the element of largest magnitude (measured relatively if the
magnitude is less than unity, and absolutely otherwise) is less than the
parameter RICTCV found in the COMMON block CONV of subroutine RDTITL. CNTNREG
does not evaluate the optimal value of the criterion function or print a
response trajectory. Options are provided to compute directly the steady-
state solution and to compute Z, W, S, A, and e-At only without comput-
ing any of the P(t) values.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL CNTNREG(A,NA,B,NB,H,NH,Q,NQ,R,NR,Z,W,LAMBDA,S,F,NF,
P,NP,T,10P, IDENT,DUMMY)

Input arguments:

A, B, H, Matrices packed by columns in one-dimensional arrays.

Q, R Uponn normal return, all except Q are not destroyed.
NA, NB, NH, Two-dimensional vectors giving the number of rows and col-
NQ, NR umns in the respective matrices; for example,

NA(1) = Number of rows of A

NA(2) = Number of columns of A

Not destroyed upon normal return except for NQ replaced
by NA

P Symmetric nonnegative definite matrix packed in a one-
dimensional array. On input, P contains the matrix Pjq.
Afterward, intermediate values of P(t) are stored in the

array P.
NP Two-dimensional vector giving the number of rows and columns
in P:

NP(1) = Number of rows of P
NP(2) = Number of columns of P
Not destroyed upon normal return
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T Two-dimensional vector:
T(1) = Final time tq
T(2) = Increment of time for transient solution

‘computation

The final time t41 must be expressed as an integer mul-
‘tiple of T(2). The vector T is not required if only
the steady-state solution of P(t) is required but must
still appear as an argument of the calling sequence; not
destroyed upon normal return. Set T(1) negative if
only Z, W, S, A, and e-AT(2 are required without
any P(t) computation.

I0P Three-dimensional option vector:
IOP(1) = 0 Do not print results, nor compute w-1zw.
Otherwise Print input, 2z, AZ, W, A, w-lzw, Wqq,

Wiz, Woq, Woo, R-1B', e-AT(2) "and
values of F and P at time zero or
steady state, whichever comes first.

I0OP(2) = O Do not print at intermediate times (multi-
ples of T(2)) between T(1) and zero or
steady state.

Otherwise Regardless of the printing specified by
IOP(1), print values of P and F at
intermediate times.

The parameter IOP(2) is not required if only a steady-

state solution is required.

IOP(3) = O Compute transient solutions P(t) and

F(t).
Otherwise Compute only steady-state values of P
and F.
IDENT Logical variable:
TRUE Jf H is an identity matrix

FALSE Otherwise

For 1IDENT = TRUE, no data need be input in H but the
related arguments should still appear in the calling
sequence.,

DUMMY Vector of working space for computations dimensioned at
least:
8n2 + 18n + nr  for IOP(3) # O
9n2 + 17n + nr for IOP(3) =0

Output arguments:

Q Upon normal return, Q is replaced by H'QH. The array Q
must be dimensioned at least n2.
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Z, W, LAMBDA, S Matrices packed by columns in one-dimensional arrays dimen-
sioned at least U4n2, U4n2, n2, and n2, respectively.
Upon normal return, these arrays contain their theoretical
counterparts. The array LAMBDA (A) is declared real.

F Matrix packed by columns in a one-dimensional array of
dimension at least nr. Upon normal return, F contains
the value of F(t) at time zero or the time at which
steady-state convergence numerically occurs.

NF Two-dimensional matrix giving, upon normal return, the
number of rows and columns of F:
NF(1) = NB(2)
NF(2) = NA(1)

P Upon normal return, P contains the value of P(t) at

time zero or the time at which steady-state convergence
numerically occurs.

DUMMY Upon normal return, the first nr elements contain the
matrix R’1B', the next Un2 contain the submatrices
W11, Wpq, Wqi2, and Wop stored in block column form
and, if a transient solution is computed, the next n?
contain the matrix e~

COMMON block: CONV

Error messages:

(1) If the computation of R-1B! fails, the message "IN CNTNREG, THE
SUBROUTINE SYMPDS HAS FOUND THE MATRIX R NOT SYMMETRIC POSITIVE
DEFINITE" is printed, and the program is returned to the calling
point.

(2) If the eigenvalue/eigenvector computation for Z fails, either the
message "IN CNTNREG, THE EIGENVALUE OF Z HAS NOT BEEN FOUND
AFTER 30 ITERATIONS" or "IN CNTNREG, EIGEN FAILED TO COMPUTE THE
EIGENVECTOR OF Z" is printed, and the program is returned to the
calling point.

(3) If the computation for W-1ZW fails, the message "IN CNTNREG, GELIM HAS
FOUND THE REORDERED MATRIX W TO BE SINGULAR" is printed, and compu-
tation continues.

(4) If the computation of S for the transient sclution fails, the message
"IN CNTNREG, GELIM HAS FOUND THE MATRIX W21 - P1X W11 TO BE
SINGULAR" is printed, and the program is returned to the calling
point.

(5) If the computation of W12‘1 fails in the steady-state case, the message
"IN CNTNREG, GELIM HAS FOUND THE MATRIX W12 TO BE SINGULAR" is
printed, and the program is returned to the calling point.
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(6) If at any time, computation of the matrix inverse in the P(t) computa-
tion fails, the message "IN CNTNREG AT TIME P CANNOT BE COMPUTED
DUE TO MATRIX SINGULARITY IN GELIM" is printed, and the program is
returned to the calling point.

Field length: 3046 octal words (1574 decimal)

Subroutines employed by CNTNREG: EQUATE, TRANP, SYMPDS, SCALE, MULT, JUXTR,
EIGEN, GELIM, PRNT, SUBT, EXPSER, MAXEL, LNCNT, NULL

Subroutine employing CNTNREG: ASYMREG

Comments: Of course, if w(t) = 0 for all t, then the algorithm of CNTNREG
produces the solution to the deterministic optimal linear output regulator

problem. In this case, the system response x(t) to the steady-state
optimal control law

u(t)

—R'1B'W22W12'1 x(t)
is given by

x(t)

Wype~Atw o= Txg
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Subroutine RICTNWT

Description: The purpose of RICTNWT is to solve either the continuous or dis-

84

crete steady-state Riccati equation by the Newton algorithms described by
Kleinman (ref. 9) and Hewer (ref. 10).

For the continuous case, the algebraic Riccati equation is
PA + A'P + H'QH -~ PBR-'B'P = 0

where the constant matrices A, B, H, Q=Q'2 0, and R = R'2 0 are of
dimension nxn, nxr (r&n), mxn (m<n), mxm and r X r, respec-
tively. Applying Newton's equation-solving-algorithm (ref. 3) to solve the
continuous P equation leads to the sequence

N
0 = dp'Py + Ppdy + H'QH + Fy'RFy

bk

A - BF ? (k = 1,2,...)

Fk R-1B'Pk_1 J

Kleinman (ref. 9) and Sandell (ref. 27) established that if the (A,B) pair
is stabilizable and the (A,D) pair (with D such that D'D = H'QH) is
detectable (ref. 4), the sequence Pp = Pp'2 0 (k = 0,1,...) converges to
the correct P = P' 2 0 when Fq is chosen so that (A - BF¢) is asymp-
totically stable in the continuous sense. In RICTNWT, the option is provided
to solve the continuous Liapunov equation for Py by either of the BILIN or
BARSTW subroutines.

For the discrete case, the steady-state Riccati equation can be written as

e
]

= ¢'P$ + F'RF + H'QH
with

A - BF

<
1

Fem (R + B'PB)-1B'PA

and A, B, H, Q, and R as previously defined. Applying Newton's
algorithm gives the sequence



Py = Oy 'Pydy + Fi'RF) + H'QH
Fx = (R + B'Py_¢B)=1B'P,_1A ) (km= 1,2,...)
¢ = A - BFy J

It can be established that if the (A,B) pair is stabilizable and the

(A,D) pair (with D such that D'D = H'QH) is detectable, the sequence

Py = Py' 20 (k = 0,1,...) converges to the correct P = P' 2 0 when F4q

is chosen so that (A - BFq) is asymptotically stable in the discrete sense.

In RICTNWT, the discrete Liapunov equation in Py 1is solved by subroutine
SUM.

In both the continuous and discrete cases, RICTNWT assumes that an input Fq
is provided such that (A - F¢) 1is asymptotically stable in the appropriate
sense. If A is already stable, Fq = 0 suffices. Otherwise, the subrou-
tines CSTAB and DSTAB are available for computing initializing Fq matrices.
RICTINWT repetitively evaluates the solution sequence equations for up to

100 iterations or until Pp converges to P. Numerically, convergence is
assumed to have occurred when the improvement in the element of largest magni-
tude (measured relatively if the magnitude is less than unity, and absolutely
otherwise) is less than the parameter RICTCV found in COMMON block CONV of
subroutine RDTITL. Parameters for use in subroutine BARSTW are set internally
through the COMMON block TOL of RDTITL.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL RICTNWT(A,NA,B,NB,H,NH,Q,NQ,R,NR,F,NF,P,NP,IOP,IDENT,
DISC,FNULL, DUMMY)

Input arguments:

A, B, H, Matrices packed by columns into one-dimensional arrays. Upon
Q, R normal return, all except Q are not destroyed.

NA, NB, NH, Two-dimensional vectors giving the number of rows and columns
NQ, NR of the respective matrices; for example,

NA(1) = Number of rows of A

NA(2) = Number of columns of A

Not destroyed upon normal return except for NQ replaced
by NA

F Matrix packed by columns into a one-dimensional array of size
at least nr. If the matrix A is not asymptotically
stable, the input F causes (A - BF) to be asymptotically
stable. For A asymptotically stable, no data for F are
required.
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NF Two-dimensional vector giving the number of rows and columns

of F:
NF(1) = r
NF(2) = n
Not required as input if data for F are not input
I0P Three-dimensional option vector:
IOP(1) = O Do not print results.
Otherwise Print input data, H'QH, and final values

of F and P.

I0P(2) = 0 Do not print at each iteration.
Otherwise Regardless of printing specified by IOP(1),
print iteration count and value of P.

IOP(3) = O Use subroutine BARSTW to solve the continuous
Liapunov equation.

Otherwise Use subroutine BILIN.

IOP(3) is not required if the discrete Ricecati equation is

to be solved.

IDENT Logical variable:
TRUE If H is an identity matrix

FALSE Otherwise
If H is an identity matrix, no data need be input for H,

but H and NH must still appear as arguments of the
calling sequence.

DISC Logical variable:
TRUE If the digital version is solved
FALSE For the continuous version
FNULL Logical variable:
TRUE If F =20
FALSE Otherwise
DUMMY Vector of working space for computations dimensioned at least:
5n if DISC = TRUE
5n2 + n(r + 4) + 2 if DISC = FALSE and IOP(3) = 0
™2 + n(r + 2) if DISC = FALSE and IOP(3) ¢ O
Qutput arguments:
Q Upon normal return, Q 1is replaced by H'QH. Q must be

dimensioned at least nZ2.

F The value of Fy, at the stage k of return. If convergence
occurs, F contains the steady-state gain matrix.
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P Matrix packed by columns in a one-dimensional array of
dimension at least n2; the value of Py at the stage Kk
of return. If convergence occurs, P contains the steady-
state Riccati equation solution.

NP, NF Two-dimensional vectors giving the number of rows and columns
in P and F: upon normal return,
NP = NA
NF(1) = r
NF(2) = n

COMMON blocks: TOL, CONV

Error messages:

(1) If the computation of either R-1 or (R + B'PyB)-1 (k = 0,1,...)
fails, the message "IN RICTNWT, A MATRIX WHICH IS NOT SYMMETRIC
POSITIVE DEFINITE HAS BEEN SUBMITTED TO SYMPDS" is printed, and the
program is returned to the calling point.

(2) If the iteration count exceeds 100, the message "THE SUBROUTINE RICTNWT
HAS EXCEEDED 100 ITERATIONS WITHOUT CONVERGENCE" is printed, IOP(1) is
set to 1, P and F are printed, and the program is returned to the

calling point.

Field length: 2415 octal words (1293 decimal)

Subroutines employed by RICINWT: LNCNT, PRNT, MULT, TRANP, EQUATE, SYMPDS,

SCALE, SUBT, ADD, BARSTW, BILIN, MAXEL, SUM

Subroutine employing RICTNWT: ASYMREG

Comments: None
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Subroutine ASYMREG

Description: The purpose of ASYMREG is to solve either the continuous or dis-
crete time-~invariant asymptotic linear optimal output regulator problem with
noise-free measurements. For the continuous-time deterministic case, the
control function u(t) is chosen to minimize the criterion function,

tq
J = 1lim ‘j‘ [y'(t) Q y(t) + u'(t) R u(t):] dt
0

Lo
subject to
x(t) = A x(t) + B u(t)
y(t) = H x(t)

where x(0) = xg is given and A, B, H, Q=Q'2 0, and R =R'> 0 are

constant matrices of dimension nxn, nxr (r$n), mxn (ms n),

mXxm, and r x r, respectively. If the (A,B) pair is stabilizable and the
(A,D) pair (with D'D = H'QH) is detectable, a solution to the optimal con-

trol problem exists and is given by

u(t) = <F x(t)
where

‘ F = R-1B'P
PA + A'P + H'QH - PBR™1B'P = 0
with the criterion function taking the value
x'(0) P x(0)

The same control law satisfies the stochastic continuous version of the
problem (ref. 4) in which the criterion function is

J = lim E[y"(t) Q y(t) + u'(t) R u(t)]

Lroe
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where E 1is expected value, and the state equation is
x(t) = & x(t) + B u(t) + w(t)

where w(t) is a zero-mean Gaussian white noise with intensity V. The
optimal value of the stochastic criterion function is

trace (PV)

For the deterministic discrete-time case, the control function wu(i)
(i = 0,1,...) is chosen to minimize the criterion function

N-1
J = lim jg [y'(i+1) @ y(i+1) + u'(1) R u(i)]
Moo i=0

subject to

x(i+1) = A x(i) + B u(i)

y(i) = H x(i)

where x(0) = xp is given and A, B, H, Q, and R are as previously
defined. If the (A,B) pair is stabilizable and the (A,D) pair (with

D'D = H'QH) is detectable, a solution to the optimal control exists and is

given by
u(i) = -F x(1i)
where
F = (R + B'PB)~1B'PA
P =¢'Pd + F'RF + H'QH
$ = A - BF
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with the criterion function taking the value

x'(0) P x(0)

The same control law satisfies the stochastic discrete-~time version of the
problem (ref. 4) in which the criterion function is

N-1
1
J = 1lim - E :S [y'(i+1) Q y(i+1) + u'(i) R u(iﬂ
Mo N =
1=

and the state equation is

x(i+1) = A x(i) + B u(i) + w(i)

where w(i) (i = 0,1,...) 1is a sequence of zero-mean stochastic variables
with variance matrix V. The optimal value of the stochastic criterion func-
tion is

trace (PV)

ASYMREG does not evaluate the optimal values of the performance criteria.
Therefore, no V data are input. The option of solving the appropriate
steady-state Riccati equation using either of the subroutines DISCREG,
CNTNREG, or RICTNWI is provided. In addition, the residual error in the
Ricecati ‘equation, the eigenvalues of P, the closed-loop response matrix

(A - BF), and the eigenvalues of (A - BF) can be computed. If RICTNWT is
selected and if the matrix A is not asymptotically stable or it is unknown
whether A 1is asymptotically stable, the option is provided to test the
relative stability of A and compute, if necessary, a stabilizing gain to
initialize the Newton process.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL ASYMREG(A,NA,B,NB,H,NH,Q,NQ,R,NR,F,NF,P,NP,IDENT,DISC,
NEWT , STABLE , FNULL , ALPHA , TOP , DUMMY)

Input arguments:

A, B, H, Matrices packed by columns into one-dimensional arrays. Upon
Q, R normal return, all except Q are not destroyed.
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IDENT

DISC

NEWT

STABLE

FNULL

Two~dimensional vectors giving the number of rows and columns
of the respective matrices; for example,
NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon normal return except for NQ replaced
by NA

F and P are matrices packed by columns into one-dimensional
arrays of dimension at least nr and n2, respectively.

NF and NP are the corresponding two-dimensional vectors
giving the number of rows and columns of P and F

Any input requirements depend on and are specified by whether
DISCREG, CNTNREG, or RICTNWT is employed.

Logical variable:
TRUE If H is an identity matrix
FALSE Otherwise
If H is an identity matrix, no data need be input for H,
but H and NH must still appear as arguments of the
calling sequence.

Logical variables:
TRUE If the digital version is solved
FALSE For the continuous version

Logical variable:
TRUE Newton's method (RICTNWT) is used to solve the
appropriate Riccati equation.
FALSE Either CNTNREG or DISCREG is used depending upon
the value of DISC.

Logical variable. Data for STABLE are not required if

NEWT = FALSE, but STABLE must still appear as an argument

of the calling sequence. When NEWT = TRUE:

STABLE = TRUE If it is known that the matrix (A - BF)
computed from input data is stable
relative to an input parameter ALPHA.

STABLE = FALSE The matrix (A - BF) is evaluated and
tested for stability relative to ALPHA
using subroutine TESTSTA. If a stabi-
lizing gain is required, it is computed
from subroutine DSTAB or CSTAB.

Logical variable; data for FNULL are not required if
NEWT = FALSE, but FNULL must still appear as an argument of
the calling sequence. When NEWT = TRUE:
FNULL = TRUE If the input F is a null matrix
FNULL = FALSE Otherwise
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ALPHA

I0P

DUMMY

Qutput arguments:

Q

NF

NP

STABLE

92

Scalar variable. ALPHA is not required if NEWT = FALSE or
STABLE = TRUE. Otherwise, ALPHA is used in the asymptotic
stability test of (A - BF) from input data using subrou-
tine TESTSTA.

Five-dimensional option vector:
I0P(1), IOP(2), and IOP(3) are the first three elements of
the IOP vector in DISCREG, CNTNREG, or RICTNWT. If CNTNREG
is selected, IOP(3) is set internally to a nonzero value.

I0P(4) = O Do not compute the Riccati equation residual.
Otherwise Compute the residual and print.

IOP(5) = 0O Compute but do not print the eigenvalues
of P, the matrix (A - BF), and the eigen-
values of (A - BF).

Otherwise Print these data after computation.

Vector of working space for computations dimensioned at least:
DISC NEWT

TRUE TRUE 6n2 + Un + 2 (STABLE = FALSE)
5ne (STABLE = TRUE)

TRUE FALSE 4n2

FALSE FALSE 17n2 + n(r + 18)

FALSE TRUE 8n + n(r + 1) (BILIN)

5n2 + n(r + 4) + 2 (BARSTW)

Upon normal return, Q is replaced by H'QH. The dimension
of Q must be at least n2.

Upon normal return, F contains the steady-state gain matrix
for either the continuous or discrete problem.

Two-dimensional vector giving, upon normal return, the number
of rows and columns of F:
NF(1) =r
NF(2) = n

Upon normal return, P contains the steady-state solution for
either the continuous or discrete Riccati equation.

Two-dimensional vector giving the number of rows and columns
of P. Upon normal return, NP = NA.

Upon normal return, STABLE = TRUE.



SN

A,

DUMMY Upon normal return, the first n elements of DUMMY contain

the eigenvalues of P, the next n? contain the matrix

(A - BF) for steady-state F, and the next 2n contain
the eigenvalues of (A - BF) stored as an n x 2 matrix
with the real parts as first column and imaginary parts as
the second. All matrices are packed by columns into one-
dimensional arrays.

COMMON blocks: None

Error

messages:

(1)

(2)

(3)

(4)

Field

If the stabilizing gain computation for the continuous system fails, the
message "IN ASYMREG, CSTAB HAS FAILED TO FIND A STABILIZING GAIN
MATRIX (F) RELATIVE TO / ALPHA = " is printed, and the program
is returned to the calling point.

If the stabilizing gain computation for the discrete system fails, the
message "IN ASYMREG, DSTAB HAS FAILED TO FIND A STABILIZING GAIN
MATRIX (F) RELATIVE TO / ALPHA = " is printed, and the program
is returned to the calling point.

If the eigenvalue computation for P fails, the message "IN ASYMREG,
THE EIGENVALUE OF P HAS NOT BEEN COMPUTED AFTER 30 ITERATIONS"
is printed, and the program continues with the computation of (A - BF)
and its eigenvalues.

If the eigenvalue computation for (A - BF) fails, the message "IN
ASYMREG, THE EIGENVALUE OF A-BF HAS NOT BEEN COMPUTED AFTER
30 ITERATIONS" is printed, and a return is made to the calling point
if no printing is required. Otherwise, the available information is
printed before return.

length: 1756 octal words (1006 decimal)

Subroutines employed by ASYMREG: MULT, SUBT, TESTSTA, CSTAB, SCALE, DISCREG,

RICTNWT, TRANP, ADD, EQUATE, EIGEN, JUXTC, LNCNT, PRNT, CNTNREG, DSTAB

Subroutines employing ASYMREG: ASYMFIL, EXPMDFL, IMPMDFL

Comments: When using DISCREG to solve the steady-state discrete Riccati equa-
tion, the entry I0P(3) = N must be set sufficiently large for steady-state
convergence to occur.
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Subroutine ASYMFIL

Description: The purpose of ASYMFIL is to solve either the continuous or dis-

94

crete time-invariant asymptotic optimal Kalman-Bucy filter problem (ref. U4).

For the continuous case, the state equation is given by

x(t) = A x(t) + G n(t)

with output

y(t) = H x(t) + m(t)

where A, G, and H are constant matrices of dimension n xn, n xm

(ms n), and r x n (r £ n), respectively. The process noise n(t) is a
zero-mean Gaussian white-noise process with intensity for the covariance
given by Q = Q' 2 0. The measurement noise m(t) is also a zero-mean
Gaussian white-noise process with intensity matrix R = R' > 0. The pro-
cesses n(t) and mn(t) along with the Gaussian x(tg) are mutually uncor-
related. The optimal filter problem is to construct an estimate X(t) of
x(t) operating over [to,t] such that the quantity,

J = lim E[e'(t) W oe(t)]
tgr-=

is minimized where E denotes expected value and
e(t) = x(t) - x(t)

and the constant n x n matrix satisfies

When the pair (A',H') is stabilizable and the (A',D') pair (where
DD' = GQG') is detec}able, the solution to the asymptotic optimal observer
problem exists and x(t) is given by

X(t) = & x(t) + Flyt) - B x(¢)]




where
x(tg) = E[x(to)]
with filter gain
F = PH'R-]
and P satisfying
0 = AP + PA' + GQG' - PH'R-THP

The matrix P = P' 2 0 represents the (constant) steady-state variance
matrix of the reconstruction error e(t); that is,

lim Efe(t) e'(t)] = P
to+_co

Also,

J = lim Efe'(t) W e(t)] = trace (PW)
to+_oo

For the discrete case,

x(i+1) = A x(i) + G n(i)
with output

y(i) = H x(1) + m(i)

where A, G, and H are as previously defined. The process noise n(i)

(1 = ig,ig+1,...) 1is a sequence of zero-mean Gaussian white-noise stochastic
variables with variance matrix Q = Q' 2 0. The measurement noise m(i)

(i = ig,ig+1,...) is also a zero-mean Gaussian white-noise (ref. U4) sequence
with variance R = R' > 0. The processes n(i) and m(i) along with the
Gaussian x(ig) are mutually uncorrelated. The optimal estimator problem
considered here (technically a prediction problem) is to construct an esti-
mate %X(i) of x(i) from knowledge of y(ig),y(ig+1),...,y(i-1) such that
the quantity,
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J= lim E[e'(i) W e(i)]

io"-m
is minimized, where
e(i) = x(i) - x(i)

with W as previously defined. When the (A',H') pair is stabilizable and
the (A',D') pair (with DD' = GQG') is detectable, the solution to the
asymptotic optimal observer problem exists and Xx(i) is given by

%(i+1) = A %(i) + Fly(1) - H x(1)]
where

x(ig) = E[x(ig)]
with filter gain

F = APH'(R + HPH')-!

and P satisfying

2~}
!

¢Pd' + FRF' + GQG'

for

A - FH

©
"

The matrix P = P' 2 0 represents the (constant) steady-state variance
matrix of the reconstruction error e(i); that is,

lim E[e(i) e'(i)] = P

io-)_QD

Also,

J = 1lim E[e'(i) W e(i)] = trace (PW)

io-*_&



e,

Computation for both the discrete and continuous versions of the foregoing

optimal filter problems is performed using duality theory (ref. U4) and the

regulator subroutine ASYMREG. Thus, the user has the option of solving the
appropriate steady-state covariance equations in P by either of the sub-

routines DISCREG, CNTNREG, or RICTNWT. No computations are performed which
involve the matrix W; hence, no data for W are required.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL ASYMFIL(A,NA,G,NG,H,NH,Q,NQ,R,NR,F,NF,P,NP,IDENT,DISC,

NEWT, STABLE, FNULL , ALPHA , IOP , DUMMY )

Input arguments:

A, G, H, Matrices packed by columns in one-dimensional arrays. Upon
Q, R normal return, all except Q are not destroyed.

NA, NG, NH, Two-dimensional vectors giving the number of rows and columns
NQ, NR of respective matrices; for example,

NA(1) = Number of rows of A
NA(2) = Number of columns of A
Not destroyed upon normal return except for NQ replaced

by NA
F, NF, F and P are matrices packed by columns into one-dimensional
P, NP arrays of dimension at least rn and n2, respectively.

NF and NP are the corresponding two-dimensional vectors
giving the number of rows and columns in F and P.

Any input requirements depend on and are specified by whether
DISCREG, CNTNREG, or RICTNWT is employed by ASYMREG.
When F data are input, it should be kept in mind that,
because of the use of duality theory, ASYMREG will treat A'
as A and H' as B. An initial stabilizing gain F -for
use in RICTNWT must cause (A' - H'F) to be asymptotically
stable and be appropriately dimensioned.

IDENT Logical variable:
TRUE If G is an identity matrix
FALSE Otherwise
If G is an identity matrix, no data need be input for G,
but G and NG must still appear as arguments of the call-
ing sequence.

DISC Logical variable:
TRUE If the digital version is solved
FALSE For the continuous versioq
NEWT Logical variable:
TRUE RICTNWT is used to solve the appropriate steady-

state covariance equation
FALSE Either CNTNREG or DISCREG is used depending upon
the value of DISC.
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STABLE

FNULL

ALPHA

Iop

DUMMY

Qutput arguments:

Q

98

Logical variable. Data for STABLE are not required if

NEWT = FALSE, but STABLE must still appear as an argument

of the calling sequence. When NEWT = TRUE:

STABLE = TRUE If it is known that the matrix (A' - H'F)
computed from input data is stable
relative to an input parameter ALPHA.

STABLE = FALSE (A' - H'F) -is computed and tested
(within ASYMREG) for stability relative
to ALPHA.

Logical variable. Data for FNULL are not required if
NEWT = FALSE, but FNULL must still appear as an argument
of the calling sequence. When NEWT = TRUE:

FNULL = TRUE If the input F is a null matrix
FNULL = FALSE Otherwise

SCALAR VARIABLE. ALPHA is not required if NEWT = FALSE or
STABLE = TRUE. Otherwise, ALPHA is used in the asymptotic
stability test of (A' - H'F) from input data.

Five-dimensional option vector:
IOP(1) = 0 Do not print results.
Otherwise Print input, GQG', F, P, the eigenvalues
of P, the matrix (A - FH), and the eigen-
values of (A - FH).

IOP(2), IOP(3), IOP(4), and IOP(5) are the first four
elements of the IOP vector of ASYMREG.

Vector of working space for computations, dimensioned at
least:

DISC NEWT

TRUE TRUE 6n2 + 4n + 2 (STABLE = FALSE)
5n? (STABLE = TRUE)

TRUE FALSE 4n?

FALSE FALSE 1702 + n(r + 18)

FALSE TRUE 8n2 + n(r + 1) (BILIN)
5n2 + n(r + 4) + 2 (BARSTW)

Upon normal return, Q is replaced by GQG'. The dimension

of Q must be at least n2,

Upon normal return, F contains the filter gain for either
the continuous or the discrete problem.

Two-dimensional vector giving, upon normal return, the
number of rows and columns of F:
NF(1) =N
NF(2) = r



)

P Upon normal return, P contains the steady-state covariance
matrix.
NP Two-dimensional vector giving the number of rows and columns

of P. Upon normal return, NP = NA.

DUMMY Upon normal return, the first n elements of DUMMY contain
the eigenvalues of P, the next n? contain the matrix
(A - FH) for filter gain F, and the next 2n contain
the eigenvalues of (A - FH) stored as an n x 2 matrix
with the real parts as first column and imaginary parts as
the second. All matrices are packed by columns into one-
dimensional arrays.

COMMON blocks: None

Error messages: None directly from ASYMFIL

Field length: 713 octal words (U459 decimal)

Subroutines employed by ASYMFIL: LNCNT, PRNT, TRANP, EQUATE, ASYMREG

Subroutines employing ASYMFIL: None

Comments: Cases in which G, with dimension n x m, has m 2 n can be treated

as follows. Compute GQG' externally and, using subroutine FACTOR, find a
g xn matrix D (q € n) such that

GQG' = D'D

Then apply ASYMFIL with G replaced by D' and Q = I,.

Extensions of the basic optimal filter problem considered in ASYMFIL (such
as colored noise, singular R matrices, and correlated process and measure-
ment noise) can be found in the literature (e.g., ref. 4). Generally, each
extension can be solved by an appropriate combination of ASYMFIL with other
subroutines of the ORACLS program. The transient Kalman-Bucy filter problem
in which tp and ip are finite can be solved by using duality theory and
the transient regulator solution capability of subroutines CNTNREG and
DISCREG.
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Subroutine EXPMDFL

Description: The purpose of EXPMDFL is to solve either the continuous or dis-
crete time-invariant asymptotic explicit (model-in-the-system) model-following

problem (ref. 28).

For the continuous case, the state and output equations are given as

x(t) = A x(t) + B u(t)

H x(t)

y(t)

where x(0) = Xg 1is given and the constant matrices A, B, and H are of
dimension nxn, nxr (r £n), and m xn (m £ n), respectively. The
control function u(t) is required to minimize

1
J = lim {f ‘:e'(t) Q e(t) + u(t') R u(t)] dt}
0

t 1+oo
where

e(t) = y(t) - yg(t)

Ym(t) Hm Xm(t)
and

Xp(t) = Ap xp(t)
where xp(0) = xg is given. The constant matrices Hy and Ay have
dimension mx & (m £ &) and & x &, respectively. Also, Q= Q' 20
and R = R' > 0. The optimization of the performance index causes the
output y(t) of the state to track the output yp(t) of a prescribed model.

After substituting e(t) into the performance index, the model-following
problem can be transformed into choosing u(t) to minimize

3 .~

J = lim Lf [%'(t) @ X(t) + u'(t) R ult)] dt
tqre 0

with

i(t) = A x(t) + B ult)
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where

A 0
A=
0 Al!l l‘
B
B =
0
H'QH -H'QHp
Q =
-Hp "QH Hpy ' QHp
and
X
X =
Xp

This transformed problem can be solved directly using optimal
lator theory._ If the (A,B

(with D'D = Q) is detectable,

pair is stabilizable and the

u(t) = -F X(t) = -Fqq x(t) - Fqo xp(t)

Computationally, it is inefficient to work with the composite
directly.

If the steady-state Riccati equation is formed and
Q are substituted, it readily follows (ref. 28) that

F11 = R-1B'Pqq

with Pqq = Pqq' 2 0 satisfying

Py1A + A'Pqq - P11BR'1B'P11 + H'QH = O

linear regu-

)
the solution exists and is given by

pair

~

A,

Li,ﬁ) system
B,

and
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and

Fi» = R™1B'Pqp
with Pqp satisfying
PioAp + (A - BFy9)'Pqp = H'QHp
The computation of (Fq19,Fq2) thus separates into two parts:

(1) Evaluate the feedback gain Fq1 on the state x by solving a reduced-
order optimal regulator problem of the form

x(t) = A x(t) + B v(t)

y(t) = H x(t)

1
min ¢ lim jﬂ [y'(t) Q y(t) + v'(t) R v'(t)] dt
v(t) |ty 70

leading to
v(t) = -Fqq1 x(t)

(2) Using Fqq from step (1), compute the feedforward gain Fqp on the
model xp from the linear equations

PyoAp + (A - BFqq)'Pyp = H'QHy
RFqo = B'Pqo

For the discrete case, the state and output equations are given as
x(i+1) = A x(i) + B u(i)

y(i) = H x(i)
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with A, B, and H as previously defined. The control sequence u(i)
(i =0,1,...,N~1) is required to minimize

N-1
J = lim ZS [e'(i+1) Q e(i+1) + u'(i) R u(ii]
N> i=0

where

e(i) = y(i) - yp(i)
Xp(i+1) = Ap xp(i)

with Q, R, Hp, and A, as previously defined. As in the continuous_ case,
the discrete model-following problem can be solved in terms of a (A,B,a,R)
optimal regulator formulation, but a simplified computational algorithm also
exists (ref. 15):

(1) Compute a feedback gain Fqq on the state x by solving the reduced-
order optimal regulator problem

x(i+1) = A x(i) + B v(i)

y(i) = H x(1)

N-1
min { lim 25 [y'(i+1) Q y(i+1) + v'(i) R v(iﬂ
v(i) | N> ¢
i=0
leading to

v(i) = =-Fqq1 x(1)

(2) Using (P4q1,Fq1) from step (1), compute a feedforward gain Fqo on the
model state x5 from the linear equations,

P1p = (A - BFq1) 'P1oAy - H'QHp

(B'Pq1B + R)F42 = B'P1p4p
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The complete optimal model-following control law is then given by
u(i) = -F1q x(i) - F1p xp(i)

EXPMDFL solves both the continuous and discrete versions of the explicit
model-following problem through the simplified computational approach of
solving a reduced-order regulator program for Fq1 and a set of linear equa-
tions for Fqp. Subroutine ASYMREG is used to solve the reduced-order regu-
lator problem, thus giving the user the choice of solving the appropriate
steady-state Riccati equation for Pqq by either of the subroutines DISCREG,
CNTNREG, or RICTNWT. The subroutine BARSTW is used to solve the Pqp equa-
tion in the continuous case and subroutine SUM in the discrete case. Final
Fqo computation in both cases employs subroutine SYMPDS. Computational
parameters for BARSIW are set internally through the COMMON block TOL of
subroutine RDTITL. An option is provided to bypass the (Pq9,Fqq) computa-
tion and, using input (Pq1,F1q) data, proceed directly to the computation

of (Pq5,Fq2).

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL EXPMDFL(A,NA,B,NB,H,NH,AM,NAM, HM,NHM,Q,NQ,R,NR,F,NF,
P, NP, HIDENT, HMIDENT, DISC,NEWT, STABLE, FNULL, ALPHA, IOP , DUMMY )

Input arguments:

A, B, H, AM, Matrices packed by columns in one-dimensional arrays; not
WM, Q, R destroyed upon normal return

NA, NB, NH, Two-dimensional vectors giving the number of rows and
NAM, NHM, columns of the respective matrices; for example,

NQ, NR NA(1) = Number of rows of A

NA(2) = Number of columns of A
Not destroyed upon normal return

F Matrix packed by columns into an array dimensioned at
least r(n + %£). The first rn elements of F are
treated as an input matrix F to ASYMREG for solving
the reduced-order Riccati equation in Pqq. If no input
F data are required by ASYMREG, no data need be input
for F in EXPMDFL unless the reduced-order Ricecati
computation for (Pq41,Fqq) 1is to be bypassed. In this
case, the first rn elements of F should contain a
matrix Fqq1 to be used in the computation of (A - BFqq).

NF Two-dimensional vector giving, if required, the number of
rows and columns of F wused by ASYMREG or Fqi1:
NF(1) = r
NF(2) e n
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NP

HIDENT

HMIDENT

DISC

NEWT, STABLE,
FNULL, ALPHA

I0P

Matrix packed by columns into an array dimensioned at
least n(n + 2). The first n2 elements of P are
treated as an input matrix P to ASYMREG when used to
solve the reduced-order Riccati equation for Pqq. If
no input P data are required by ASYMREG, no data need
be input for P in EXPMDFL unless the reduced-order
Riccati computation for (Pq1,F11) is to be bypassed in
the discrete case. In the discrete case, the first n2
elements must contain a matrix to be used for Pqq1 in
the computation pf the discrete F1q2.

Two-dimensional vector giving, if required, the number of
rows and columns of P used by ASYMREG or Pq1q:
NP(1) = n
NP(2) = n

Logical variable:
TRUE If H is an identity matrix
FALSE Otherwise
If H is an identity matrix, no data need be input
for H, but H and NH must still appear as arguments
of the calling sequence.

Logical variable:
TRUE If Hyp (HM) is an identity matrix
FALSE Otherwise
If Hp 1s an identity matrix, no data need be input
for HM, but HM and NHM must still appear as argu-
ments of the calling sequence.

Logical variable:
TRUE If the discrete version is solved
FALSE For the continuous version

Variables whose input values are determined by the choice
of method to solve the steady-state Riccati equation for
(P11,F11) called for in ASYMREG; not required if the

(P11,F11) computation is bypassed but still must appear
as arguments of the calling sequence

Five-dimensional option vector:
I0P(1) = O Do not print results.
Otherwise Print input and computed results.

I0rP(2) = 0 Do not compute (P1q,F11) but use
input P and F as these variables.
Otherwise Compute P31 and Fq1 through ASYMREG.

IOP(3), IOP(4), and IOP(5) are first three elements of
the IOP vector in ASYMREG; not required if IOP(2) = 0.
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DUMMY Vector of working space for computations, dimensioned at

least:
I0P(2) DISC
0 TRUE 3n2 + 22 + max(n2,%n)
0 FALSE 3n2 + 4n + 2 + max(n2,%n)
Nonzero TRUE or Either n2 plus the DUMMY require-
FALSE ment of ASYMREG or the preceding
requirements for 1IOP(2) = O,
whichever is larger
Qutput arguments:
F Upon normal return, F = [?11,F12] packed by columns in
a one-dimensional array
NF Upon normal return,
NF(1) = r

NF(2) = n + %

P For 1I0P(2) # 0, P = [911,P1é] upon normal return.
If IOP(2) = 0, the first n? elements contain the
matrix Pq1p. In both cases, P is packed by columns
into a one-dimensional array.

NP Upon normal return,
NP(1) =n
NP(2) = n + ¢ (I0P(2) # Q)
or
NP(2) = £ (I0P(2) = 0)

COMMON block: TOL

Error message: If either R or (B'Pq1B+R) fails to be positive definite,
the message "IN EXPMDFL, THE COEFFICIENT MATRIX FOR SYMPDS IS NOT SYMMETRIC
POSITIVE DEFINITE" is printed, and the program is returned to the calling
point.

Field length: 1516 octal words (846 decimal)

Subroutines employed by EXPMDFL: LNCNT, PRNT, EQUATE, ASYMREG, MULT, SUBT,
TRANP, BARSTW, SUM, ADD, SYMPDS, SCALE

Subroutines employing EXPMDFL: None
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Comments: If the model dynamics in both the continuous and discrete cases

contain a direct link to the control, then

o
1}

Bp (Bp # 0)

and the computation will not generally decouple into a simglified algorithm.
In this case, ASYMREG can be applied to the composite (A,B,Q,R) system
directly. For the transient case where N and tq1 are finite, the time-
varying explicit model-following solution can be obtained using the composite
(K,B,3,R) system and subroutine DISCREG or CNTNREG.
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Subroutine IMPMDFL

Description: The purpose of IMPMDFL is to solve either the continuous or dis-
crete time-invariant asymptotic implicit (model-in-the-performance-index)
model-following problem,

For the continuous case, the state and output equations are given as

x(t) = A x(t) + B u(t)

y(%) = H x(t)

where x(0) = xg is given and the constant matrices A, B, and H are of
dimension nxn, nxr (r £n), and mx n (m £ n), respectively. The con-
trol function u(t) is required to minimize

tq
J = lim {;J‘ [é'(t) Q e(t) + ur(t) R u(t)] dt
L 0

where
e(t) = y(t) - Ay y(t) - By ult)

The constant matrices Ap and Bp have dimension m xm and m x r, respec-
tively. Also, Q=Q'2 0 and R = R' > 0. The philosophy of implicit model
following is to cause the output y(t) of the system state to behave similar
to a model state with dynamics

xp(t) = Ay xp(t) + By u(t)

where xm(O) = x; is given. This is done by forcing, in a weighted least
squares sense, y(t) to satisfy the model dynamic equation. Substituting
for e(t) in the performance index reduces the problem to choosing u(t)
to minimize

£ ~ ~ ~
J = lim {;g, [x1(t) Q x(£) + x'(£) W u(t) + u'(t) R u(t)] dt
tqre 0
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where

O
n

(HA - ApH)'Q(HA - ApH)

Wa 2(HA - ApH)'Q(HB - Bp)

and

=]
i

(HB - By)'Q(HB - Bp) + R
Applying the control transformation
u(t) a -Fg x(t) + v(t)
with
Fo:ﬁ

-1 W'
2

further reduces the problem to choosing v(t) to minimize

tq ~ -
J = lim {;g' [x'(t) Q x(t) + v'(t) R v(ti] dt
t1'*°° 0
where
Q=20 ¥ F
= - > 0
A = A - BF
and

x(t) = & x(t) + B v(t)
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If the (A,B) pair is stabilizable and the (R,D) pair (with D'D = Q) is
detectable, a solution to the asymptotic implicit model-following problem
exists and is given by

v(t) = -F1 x(t)

Fq = §—1

B'P
Pk + A'P + @ - PBR"'B'P = 0
and

u(t) = -F x(t)

with

F = Fg + Fq

For the discrete case, the state and output equations are given as

x(i+1) = A x(i) + B u(i)

y(i) = H x(i)

where x(0) = xg is given and A, B, and H are as previously defined.

The control function u(i) (i = 0,1,...,N~1) is required to minimize
N-1
J = lim Zz [e'(1) Q e(d) + u'(4) R u(1)]
N+ .
i=0
where

e(i) = y(i+1) - Ap y(i) - Bp u(i)
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The matrices Ay, By, Q, and R are as previously defined. Substituting
for e(i) in the performance index reduces the problem to choosing u(i)
to minimize

N-1
J = lim Z [x1(1) Q x(1) + x'(1) & u(4) + u' (i) & u(i)]
Nreo
i=0

Applying the control transformation,

u(i) = -Fg x(i) + v(i)

further reduces the problem to choosing v(i) to minimize

N-1
J = x'(0) Q x(0) + lim z [x'G+1) @ x(i+1) + v' (i) R v(4i)]
N>
i=0

with
x(i+1) = A x(i) + B v(i)

If the aforementioned stabilizability and detectability conditions are
satisfied

v(i) = -Fq x(1i)

Fi1 = (R + B'PB)-1B'P A

o
|

= ¢'PY + Fq' RFq + Q

A - BF4

<
1]

and

u(i) m -F x(1)
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with

F = Fg + Fq

The program IMPMDFL solves the steady-state Riccati equation to generate the
appropriate P and Fq through use of the subroutine ASYMREG, thus giving
the user the choice of either subroutine DISCREG, CNTNREG, and RICTNWT to
solve the final Riccati equation. An option is provided to bypass the -
(P,Fq) computation and return after computing Qq, W, R, Fg, Q, and A.

Source of software: Ernest S. Armstrong, LaRC

Calling sequence: CALL IMPMDFL(A,NA,B,NB,H,NH,AM,NAM,BM,NBM,Q,NQ,R,NR,F,NF,
P,NP,IDENT,DISC,NEWT,STABLE,FNULL,ALPHA,IOP,DUMMY)

Input arguments:

A, B, H, AM, Matrices packed by columns in one-dimensional arrays;
BM, Q, R not destroyed upon normal return

NA, NB, NH, Two-dimensional vectors giving the number of rows and
NAM, NBM, columns of respective matrices; for example,

NQ, NR NA(1) = Number of rows of A

NA(2) = Number of columns of A
Not destroyed upon normal return

F, NF, P, NP F and P are matrices packed by columns into one-
dimensional arrays of dimension at least rn and n2,
respectively.

NF and NP are the corresponding two-dimensional vectors
giving the number of rows and columns of F and P.

Any input requirements depend on and are specified by
whether DISCREG, CNTNREG, or RICTNWT is employed by
ASYMREG. When F data are input for RICTNWT, it should
be such that the input (A,B) system is stabilized.

IDENT Logical variable:
TRUE If H is an identity matrix
FALSE Otherwise
If H is an identity matrix, no data need be input
for H, but H and NH must still appear as arguments
of the calling sequence.

DISC Logical variable:

TRUE If the discrete version is solved

FALSE For the continuous version
NEWT, STABLE, Variables whose input values are determined by the choice
FNULL, ALPHA of method called for from ASYMREG to solve the steady-

state Riccati equation for P and F
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I0pP

DUMMY

Output arguments:

F

NP

DUMMY

Four-dimensional option vector:
IOP(1) = O Do not print results.
Otherwise Print input and computed results.

I0P(2), IOP(3), and IOP(4) are the first three elements
of the IOP vector in ASYMREG. If IOP(2) = -1000, the
IMPMDFL program returns just prior to employing ASYMREG,
in which case data for F, NF, P, NP, DISC, NEWT, STABLE,
FNULL, ALPHA, IOP(3), and IOP(4) need not be entered,
but these arguments must still appear in the calling
sequence.

Vector of working space for computations, dimensioned at
least Un2 plus the dimension requirements for DUMMY in
ASYMREG when (P,Fq) is to be computed. If the (P,Fq)
computation is bypassed, DUMMY should be dimensioned at
least 6n2 &+ p.

Ir (P,F1) is computed, F = Fg + Fq upon normal return.
For (P,F1) not computed, the input F is returned.
All matrices are packed by columns into a one-dimensional
array.

Upon normal return,
NF(1) = r
NF(Z) =n

If (P,Fq) 1is computed, P contains, upon normal return,
the solution to the steady-state Riccati equation defin-
ing F4. For (P,Fq) not computed, the input P is
returned. All matrices are packed by columns into one-
dimensional arrays.

Upon normal return,
NP(1) = n
NP(2) = n
when (P,Fq) 1is computed. Otherwise, the input NP
is returned.

Upon normal return, if IOP(2) = -1000, the first n2 ele-
ments contain the matrix Q and the next nr contain
the matrix Fg. After 2n2 elements, the next ré con-
tain the matrix R. After 3n2, the next n? contain
the matrix A. Additionally, for (P,Fqq) computed,
after 4n2, the elements of DUMMY in IMPMDFL contain the
elements of DUMMY returned by ASYMREG. All matrices are
packed by columns as one-dimensional arrays.
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COMMON blocks: None

Error messages: None directly from IMPMDFL

Field length: 1556 octal words (878 digital)

Subroutines employed by IMPMDFL: LNCNT, PRNT, SUBT, EQUATE, PREFIL, ASYMREG,
ADD, MULT, TRANP, SCALE

Subroutines employing IMPMDFL: None

Comments: For the case in which tq or N is finite, set IOP(2) = _-10Q0_
and return with Q, Fg, R, and A in DUMMY. Then, using the (4,B,Q,R)
system, solve for the transient P( ) and Fq( ) from subroutine DISCREG
or CNTNREG. The model-following control law is then

F( ) =Fg + Fq()
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SUPPORTING SUBROUTINES
Subroutine READ1

Description: The purpose of READ1 is to input from cards and print or print
without card input a single matrix A without employing a header card as
in subroutine READ. When card input is employed, each row of the matrix
starts on a new card using format (8F10.2). Printing is performed using
subroutine PRNT.

Source of software: VASP (ref. 16) with modifications by Ernest S. Armstrong,
LaRC

Calling sequence: CALL READ1(A,NA,NZ,NAM)

Input arguments:

A Matrix packed by columns in a one-dimensional array; required as
input only if NZ(1) = 0

NA, NZ Two-dimensional arrays generally giving the number of rows and
columns of A:
NA(1) = NZ(1) = Number of rows of A
NA(2) = NZ(2) = Number of columns of A
Alternatively, if NZ(1) = O, the data for (A,NA) are assumed
to have been previously stored in locations A and NA. Other-
wise, data for NA are not required as input.

NAM Hollerith data: a four-character symbol used by PRNT

Output arguments:

A, NA For NZ(1) # 0, the matrix A which was read from cards and packed
by columns into a one-dimensional array; upon normal return,
NA(1) = NZ(1)

NA(2) - NZ(2)

COMMON blocks: None

Error message: If either NZ(1) or NZ(1) x NZ(2) is less than unity, the
message "ERROR IN READ1 MATRIX HAS NA = ’ " is printed,
and the program is returned to the calling point.

Field length: 133 octal words (91 decimal)

Subroutines employed by READ1: LNCNT, PRNT

Subroutine employing READ1: READ

Comments: None
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Subroutine BALANC

Description: The purpose of BALANC is to balance a real square matrix for the
calculation of eigenvalues and eigenvectors and isolate the eigenvalues when-
ever possible. The computational method follows that of Parlett and Reinsch
found in reference 17. The subroutine BALANC is a translation of the ALGOL
procedure BALANCE found on pages 315 to 326 of reference 2.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL BALANC(NM,N,A,LOW,IGH,SCALE)

Input arguments:

NM First dimension of array A as given in the calling program
N Number of rows of matrix A
A Matrix which is to be balanced stored in a real two-dimensional

array. The contents of this array are destroyed upon return.

Qutput arguments:

A Upon normal return, A contains the balanced matrix.

LOwW, IGH Two integers such that A(I,J) =0 if I > J and
J=1,2,...,L0W-1 or I = IGH+1,IGH+2,...,N.

SCALE A one-dimensional array of dimension at least N. SCALE contains
information determining the permutations and scaling factors
used: suppose that the principal submatrix in rows LOW through
IGH has been balanced, that P(J) denotes the index inter-
changed with J during the permutation step, and that the ele-
ments of the diagonal matrix used are denoted by D(I,J); then,

SCALE(J) = P(J) (J = 1,2,...,L0W=1)
= D(J,J) (J = LOW,LOW+1,...,IGH)
= P(J) (J = IGH+1,IGH+2,...,N)

The order in which the interchanges are made is N to
IGH + 1, then 1 to LOW-1.

COMMON blocks: None

Error messages: None directly from BALANC

Field length: 327 octal words (215 decimal)

Subroutines employed by BALANC: None

Subroutine employing BALANC: EIGEN

Comments: None
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Subroutine ELMHES

Description: Given a real square matrix A, the purpose of ELMHES is to
reduce a submatrix situated in rows and columns LOW through IGH to upper
Hessenberg form by stabilized elementary similarity transformations. The
computational method follows that of Martin and Wilkinson in reference 18.
ELMHES is a translation of the ALGOL procedure ELMHES found on pages 339
to 358 of reference 2.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL ELMHES(NM,N,LOW,IGH,A,INT)

Input arguments:

NM First dimension of the array A as given in the calling program

N Number of rows of matrix A

LOW, IGH Integers typically determined by the balancing subroutine BALANC
for eigenvalue and eigenvector computation. If BALANC is not
used, set LOW =1 and IGH = N.

A Matrix which is to be used in the reduction to upper Hessenberg
form stored in a real two-dimensional array. The contents

of A are destroyed upon return.

Qutput arguments:

A Upon normal return, A contains the upper Hessenberg matrix.
The multipliers which were used in the reduction are stored in
the remaining triangle under the Hessenberg matrix.

INT One-dimensional integer array of dimension at least IGH in the
calling program. INT contains information on the rows and
columns interchanged in the reduction. Only elements LOW to
IGH are used.

COMMON blocks: None

Error messages: None directly from ELMHES

Field length: 206 octal words (134 decimal)

Subroutines employed by ELMHES: None

Subroutine employing ELMHES: EIGEN

Comments: None
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Subroutine HQR

Description: The purpose of HQR is to find the eigenvalues of a real square
upper Hessenberg matrix H by the QR algorithm. The computational method
follows that of Martin, Peters, and Wilkinson found in reference 19. The
subroutine HQR is a translation of the ALGOL procedure HQR found on pages 359

to 371 of reference 2.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL HQR(NM,N,LOW,IGH,H,WR,WI,IERR)

Input arguments:

NM First dimension of array H as given in the calling program
N Number of rows in matrix H

LOW, IGH Integers typically determined by the balancing subroutine BALANC.
If BALANC is not used, set LOW = 1 and IGH = N.

H Matrix in upper Hessenberg form stored in a real two-dimensional
array. Information about the transformations used in the reduc-
tion to Hessenberg form by subroutine ELMHES, if performed, is
stored in the remaining triangle under the Hessenberg matrix.
Upon normal return, H 1is destroyed.

Output arguments:

WR, WI One~-dimensional arrays, dimensioned at least N 1in the calling
program, containing, upon normal return, the real and imaginary
parts of the eigenvalues, respectively. The eigenvalues are
unordered except that the complex conjugate pairs of values
appear consecutively with the eigenvalue having positive
imaginary part first.

IERR Integer error code:
IERR = O Normal return
IERR = J The Jth eigenvalue has not been determined after
30 iterations of the QR algorithm. If an error
exit is made, the eigenvalues should be correct
for indices IERR+1,IERR+2,...,N.
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COMMON blocks:

Error messages:

Field length:

Subroutines emp

None
None directly from HQR; IERR should be examined upon return.
556 octal words (366 decimal)

loyed by HQR: None

Subroutine empl

oying HQR: EIGEN

Comments: None
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Subroutine INVIT

Description: The purpose of INVIT is to find those eigenvectors of a real
square upper Hessenberg matrix corresponding to specified eigenvalues using
inverse iteration. The subroutine INVIT is a translation of the ALGOL pro-
cedure INVIT found on pages 418 to 439 of reference 2.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL INVIT(NM,N,A,WR,WI,SELECT,MM,M,Z,IERR,RM1,RV1,RV2)

Input arguments:

NM First dimension of the array A as given in the calling
program

N Number of rows in A

A Matrix in upper Hessenberg form stored in real two-

dimensional array. Upon return, A is unaltered.

WR, WI One-dimensional arrays dimensioned at least N by the
calling program. WR and WI contain the real and
imaginary parts, respectively, of the eigenvalues of
the matrix. The eigenvalues must be stored in a manner
identical to that of subroutine HQR. WI is unaltered
upon return. WR may be altered since close eigenvalues
are perturbed slightly in searching for independent
eigenvectors.

SELECT One-dimensional array of logical variables, dimensioned
at least N by the calling program. SELECT specifies
the eigenvectors to be found. The eigenvector corre-
sponding to the Jth eigenvalue is specified by setting
SELECT(J) to TRUE. Upon return, SELECT may be altered.
If the elements corresponding to a pair of conjugate com-
plex eigenvalues were each initially set TRUE, the program
resets the second of the two elements to FALSE.

MM MM should be set to an upper bound for the number of columns
required to store the eigenvectors to be found. Note that
two columns are required to store the eigenvector corre-
sponding to a complex eigenvalue.

RM1, RV1, RV2 Temporary storage arrays dimensioned at least N x N, N,
and N, respectively, by the calling program

Qutput arguments:

M The actual number of columns used to store the eigenvectors
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Z Matrix dimensioned at least NM x MM by the calling program.
Z contains the real and imaginary parts of the eigen-
vectors. If the next selected eigenvalue is real, the
next column of Z contains its eigenvector. If the eigen-
value is complex, the next two columns of Z contain the
real and imaginary parts of its eigenvector. The eigen-
vectors are normalized so that the component of largest
magnitude is unity. Any vector which fails the acceptance
test is set to zero.

IERR Integer error code:

IERR = 0 Normal return

IERR = =(2N + 1) More than MM columns of Z are
necessary to store the eigenvectors
corresponding to the specified
eigenvalues.

IERR = =K The iteration corresponding to the
Kth value fails.

IERR = -(N + K) Both of the above error situations
oceur.

COMMON blocks: None

Error messages: None directly from INVIT; IERR should be examined upon return.

Field length: 1310 octal words (712 decimal)

Subroutines employed by INVIT: None

Subroutine employing INVIT: EIGEN

Comments: None

121



Description:

Subroutine ELMBAK

The purpose of ELMBAK is to form the eigenvectors of a real

square matrix A by back transforming those of the corresponding upper '
Hessenberg matrix determined by subroutine ELMHES. ELMBAK is a translation
of the ALGOL procedure ELMBAK found on pages 339 to 358 of reference 2.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL ELMBAK(NM,LOW,IGH,A,INT,M,Z)

Input arguments:

NM

LOW, IGH

INT

First dimension of the array A as given in the calling program

Integers available from the balancing subroutine BALANC. If
BALANC is not used, set LOW = 1 and IGH = The order of the
matrix.

Two~dimensional array dimensioned at least NM x IGH in the
calling program. A contains the multipliers which were used
in the reduction by ELMHES in its lower triangle below the
subdiagonal.

One-dimensional array dimensioned at least IGH by the calling
program. INT contains information on the rows and columns
interchanged in the reduction by ELMHES. Only elements LOW
through IGH are used.

The number of columns of Z to be back transformed

Two-dimensional array dimensioned at least NM x M by the
calling program. Z contains the real and imaginary parts
of the eigenvectors to be back transformed in its first
M columns. The contents of Z are destroyed upon return.

Qutput argument:

Z

COMMON blocks:

The real and imaginary parts of the transformed eigenvectors are
returned in the first M columns.

None

Error messages: None directly from ELMBAK

Field length:

133 octal words (91 decimal)

Subroutines employed by ELMBAK: None

Subroutine employing ELMBAK: EIGEN

Comments: None
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Subroutine BALBAK

Description: The purpose of BALBAK is to form the eigenvectors of a real
square matrix by back transforming those of the corresponding balanced matrix
determined by subroutine BALANC. BALBAK is a translation of the ALGOL pro-
cedure BALBAK found on pages 315 to 326 of reference 2.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL BALBAK(NM,N,LOW,IGH,SCALE,M,Z)

Input arguments:

NM First dimension of the matrix array as given in the caliing
program
N Number of rows of the matrix

LOW, IGH Integers determined by BALANC

SCALE One-dimensional array dimensioned at least N by the calling
program. SCALE contains information determining the permuta-
tions and scaling factors used by BALANC.

M The number of columns of 7Z to be back transformed

Z Two-dimensional array dimensioned at least NM x M in the call-
ing program. Z contains the real and imaginary parts of the

eigenvectors to be back transformed in its first M columns.

Output argument:

Z The real and imaginary parts of the transformed eigenvectors are
returned in the first M columns.

COMMON blocks: None

Error messages: None directly from BALBAK

Field length: 124 octal words (84 decimal)

Subroutines employed by BALBAK: None

Subroutine employing BALBAK: EIGEN

Comments: None
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Subroutine DETFAC
Description: The purpose of DETFAC is to factor a real square matrix A as
PA o LU
where P 1is a permutation matrix representing row pivotal strategy, L is
a unit lower triangular matrix, and U is an upper triangular matrix.
Options are provided to compute the determinant of A with and without

A input in factored form.

Source of software: LaRC Analysis and Computation Division subprogram library
with modifications by Ernest S. Armstrong, LaRC

Calling sequence: CALL DETFAC(NMAX,N,A,IPIVOT,IDET,DETERM,ISCALE,WK,IERR)

Input arguments:

NMAX First dimension of the array A as given in the calling
program

N Number of rows of matrix A

A Two-dimensional array dimensioned at least NMAX x N in

the calling program. A 1is the matrix to be factored.
If the factored form of A is input,

A = (L\U)

should be used neglecting the unity elements of L and
the pivotal strategy input through the array IPIVOT.
For A in unfactored form, input data are destroyed.

IPIVOT One-dimensional array dimensioned at least N by the call-
ing program. Not required as input if the unfactored
form of A is used. Otherwise, IPIVOT(I) = J indicates
that row J of matrix A was used to pivot for the
Ith column.

IDET Determinant evaluation code:
0 Compute L and U matrices only.
1 Given L and U matrices as input, compute param-
eters defining the determinant.
2 Compute L, U, and determinant parameters.
WK One-dimensional array dimensioned at least N by the

calling program and used as a work storage array.
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Output arguments:

A

IPIVOT

DETERM, ISCALE

IERR

Upon normal return, the L and U matrices are over
stored in A as

A = (L\U)
neglecting the unity elements in L.

Upon normal return, IPIVOT contains the pivotal strategy
as previously explained.

Determinant evaluation parameters; upon return, for
IDET ¢ O,
det(A) = DETERM x 10100xISCALE

Singularity test parameter:
0 Matrix A is singular.
1 Matrix A is nonsingular.

COMMON blocks: None

Error messages:

None directly from DETFAC; IERR should be examined upon return.

Field length: 332 octal words (218 decimal)

Subroutines employed by DETFAC: None

Subroutine employing DETFAC: GELIM

Comments: None
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Subroutine AXPXB
Description: The purpose of AXPXB is to solve the real matrix equation
AX + XB = C
where A, B, and C are constant matrices of order m xm, n x n, and
m x n, respectively. The matrices A and B are transformed into real
lower and upper Schur form (ref. 5), and the transformed system is solved by
back substitution. The option is provided to input the Schur forms directly

and bypass the Schur decomposition.

Source of software: Coded directly from reference 5

Calling sequence: CALL AXPXB(A,U,M,NA,NU,B,V,N,NB,NV,C,NC,EPSA,EPSB,FAIL)

Input arguments:

A Two-dimensional array dimensioned at least (m + 1) x (m + 1)
in the calling program. The upper m X m part contains the
matrix A. If the Schur form of A 1is input directly the lower
triangle and superdiagonal of the upper m x m part of the
array A contain a lower Schur form of A.

U Two-dimensional array dimensioned at least m X m in the calling
program. Not required as input if the Schur form of A 1is not
input directly. Otherwise, U contains the orthogonal matrix
that reduces A to Schur form A via

A = U'AU
M Number of rows of the matrix A
NA First dimension of the array A; at least m + 1
NU First dimension of the array U; at least m
B Two-dimensional array dimensioned at least (n + 1) x (n + 1) in

the calling program. The upper n X n part contains the
matrix B. If the Schur form of B is input directly, the
upper triangle and subdiagonal of the upper n x n part of the
array B contain an upper real Schur form of B.

\'f Two-dimensional array dimensioned at least n X n in the calling
program. Not required as input if the Schur form of A is not
input directly. Otherwise, V contains the orthogonal matrix
that reduces B to Schur form B via

B = V'BY

N Number of rows of the matrix B

126



NB

NV

NC

EPSA

EPSB

First dimension of the array B; at least n + 1
First dimension of the array V; at least n

Two-dimensional array dimensioned at least m x n by the calling
program; destroyed upon return

First dimension of the array C; at least m

Convergence criterion for the reduction of A _ﬁo Schur form.
EPSA should be set slightly smaller than 10 "2 ywhere ky 1is
the number of significant digits in the elements of A. Set EPSA
negative if a Schur form for A and transformation matrix U
are directly input.

Convergence criterion for the reduction of, B to Schur form. EPSB
should be set slightly smaller than 10~ b where kp 1is the
number of significant digits in the elements of B. Set EPSB
negative if a Schur form for B and transformation matrix V
are directly input.

Output arguments:

A

FAIL

Upon normal return, the array A contains the lower Schur form of
the matrix A.

Upon normal return, the array U contains the orthogonal matrix U
which transforms A to Schur form.

Upon normal return, the array B contains the upper Schur form for
the matrix B.

Upon normal return, the array V contains the orthogonal matrix V
which transforms B to upper Schur form.

Upon normal return, the solution X is stored in C.

Integer variable containing an error signal. If FAIL is positive
(negative) then the program was unable to reduce A(B) to real
Schur form. If FAIL = 0, the reductions proceeded without
mishap.

COMMON blocks: None

Error messages: None directly from AXPXB; FAIL should be tested upon return.

Field length: 667 octal words (439 decimal)
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Subroutines employed by AXPXB: HSHLDR, BCKMLT, SCHUR, SHRSLV

Subroutine employing AXPXB: BARSTW

Comments: Subroutine AXPXB should be used when AX + XB = C needs to be
solved for a number of C matrices. For the first C, set EPSA and EPSB
based on k, and kp. Afterward, assuming FAIL = O, set EPSA and EPSB to
negative values and compute X for the remaining C matrices. For the

special case in which
A=B' and C = C!

the subroutine ATXPXA should be employed.
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Subroutine SHRSLV
Description: The purpose of SHRSLV is to solve the real matrix equation
AX + XB = C

where A is an m X m matrix in lower real Schur form and B is an
n X n matrix in upper real Schur form.

Source of software: Coded directly from reference 5

Calling sequence: CALL SHRSLV(A,B,C,M,N,NA,NB,NC)

Input arguments:

A Two-dimensional array dimensioned at least m x m in the calling
program. A contains the lower Schur form of the matrix A.
Not destroyed upon return.

B Two-dimensional array dimensioned at least n x n 1in the calling
program. B contains the matrix B in upper Schur form. Not
destroyed upon return.

C Two~dimensional array dimensioned at least m x n by the calling
program. C contains the C matrix of the algebraic equation
which is destroyed upon return.

M Number of rows of the matrix A
N Number of rows of the matrix B
NA First dimension of the array A; at least m
NB First dimension of the array B; at least n
NC First dimension of the array C; at least m

Output argument:

c Upon normal return, the solution X 1is in C.

COMMON block: SLVBLK

Error messages: None directly from SHRSLV

Field length: U444 octal words (292 decimal)

Subroutine employed by SHRSLV: SYSSLV

Subroutine employing SHRSLV: AXPXB

Comments: None
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Subroutine ATXPXA
Description: The purpose of ATXPXA is to solve the real matrix equation
A'X + XA = C
where A and C are constant matrices of dimension n xn with
c=2cC
The matrix A is transformed into upper Schur form (ref. 5) and the trans-
formed system is solved by back substitution. The option is provided to

input the Schur form directly and bypass the Schur decomposition.

Source of software: Coded directly from reference 5

Calling sequence: CALL ATXPXA(A,U,C,N,NA,NU,NC,EPS,FAIL)

Input arguments:

A Two-dimensional array dimensioned at least (n + 1) x (n + 1)
in the calling program. The upper n X n part contains the
matrix A. If the Schur form of A is input directly the upper
triangle and the first subdiagonal of the upper n x n part of
the array A contain an upper real Schur form of A.

U Two-dimensional array dimensioned at least n x n in the calling
program. Not required as input if the Schur form of A is not
input directly. Otherwise, U contains the orthogonal matrix
that reduces A to Schur form A via

A = U'AU

C Two-dimensional array dimensioned at least n x n by the calling
program; destroyed upon return

N Number of rows of the matrix A

NA First dimension of the array A; at least n + 1

NU First dimension of the array U; at least n

NC First dimension of the array C; at least n

EPS Convergence criterion for the reduction of A  to Schur form.

EPS should be set slightly smaller than 107%a  where ky, is
the number of significant digits in the elements of A. Set EPS
negative if a Schur form for A and transformation matrix U
are directly input.
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Output arguments:

A Upon normal return, the array A contains the upper Schur form of
the matrix A. Same as input if EPS < 0.

U Upon normal return, the array U contains the orthogonal matrix U
which transforms A to Schur form. Same as input if EPS < 0.

C Upon normal return, the solution X 1is stored in .C.
FAIL Integer variable containing an error signal. If FAIL is nonzero,
the program was unable to reduce A to real Schur form.

If FAIL = 0, the reduction proceeded without mishap.

COMMON blocks: None

Error messages: None directly from ATXPXA. FAIL should be tested upon return.

Field length: 562 octal words (370 decimal)

Subroutines employed by ATXPXA: HSHLDR, BCKMLT, SCHUR, SYMSLV

Subroutine employing ATXPXA: BARSTW

Comments: Subroutine ATXPXA should be used when
A'X + XA = C
needs to be solved for a number of symmetric C matrices. For the first C,

set EPS based on k. Afterward, assuming FAIL = O, set EPS negative and
compute X for the remaining C matrices.
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Subroutine SYMSLV
Description: The purpose of SYMSLV is tovsolve the real matrix equation
A'X + XA = C | | '
where C = C' and A is n x n and in upper real Schur form.

Source of software: Coded directly from reference 5

Calling sequence: CALL SYMSLV(A,C,N,NA,NC)

Input arguments:

A Two-dimensional array dimensioned at least n x n in the calling
program. A contains the upper Schur form for the matrix A.
Not destroyed upon return.

c Two-dimensional array dimensioned at least n x n in the calling
program. C contains the C matrix of the algebraic equation
which is destroyed upon return.,

N Number of rows of the matrix A
NA First dimension of the array A; at least n
NC First dimension of the array C; at least n

Output argument:

C Upon normal return, the solution X 1is stored in C.

COMMON block: SLVBLK

Error messages: None directly from SYMSLV

Field length: 535 octal words (349 decimal)

Subroutine employed by SYMSLV: SYSSLV

Subroutine employing SYMSLV: ATXPXA

Comments: None
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Subroutine HSHLDR

Description: The purpose of HSHLDR is to reduce a real n x n matrix A ¢to

upper Hessenberg form by Householder's method of elementary Hermitian trans-
formations described in reference 29.

Source of software: Coded directly from reference 5

Calling sequence: CALL HSHLDR(A,N,NA)

Input arguments:

A Two-dimensional array dimensioned at least (n + 1) x (n + 1) in
the calling program. The upper n x n part of the array A
contains the matrix A which is destroyed upon return.

N Number of rows of matrix A

NA First dimension of the array A; at least n + 1

OQutput argument:

A Upon normal return, the upper triangle of the array A to
column n contains the upper triangle of the Hessenberg form
of the matrix A. Column n + 1 contains the subdiagonal ele-
ments of the Hessenberg form. The lower triangle and the
(n + 1)th row of the array contain a history of the Householder
transformations.

COMMON blocks: None

Error messages: None directly from HSHLDR

Field length: 265 octal words (181 decimal)

Subroutines employed by HSHLDR: None

Subroutines employing HSHLDR: AXPXB, ATXPXA

Comments: None
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Subroutine BCKMLT
Description: Given the output A from subroutine HSHLDR, the purpose of
BCKMLT is to compute the orthogonal matrix that reduces A to upper
Hessenberg form. ‘

Source of software: Coded directly from reference 5

Calling sequence: CALL BCKMLT(A,U,N,NA,NU)

Input arguments:

A Two-dimensional array containing the output from HSHLDR
N Number of rows in matrix A in HSHLDR

NA First dimension of the array A; at least N + 1

NU First dimension of the array U; at least N

Qutput argument:

U Two~dimensional array dimensioned at least n X n where n is
the order of the A matrix in HSHLDR. If the matrix A is
used for U in the calling sequence, the elements of the
orthogonal matrix will overwrite the output of HSHLDR.

COMMON blocks: None

Error messages: None directly from BCKMLT

Field length: 201 octal words (129 decimal)

Subroutines employed by BCKMLT: None

Subroutines employing BCKMLT: AXPXB, ATXPXA

Comments: None
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Subroutine SCHUR

Description: The purpose of SCHUR is to reduce an n x n upper Hessenberg
matrix H to real Schur form. Computation is by the QR algorithm with
implicit origin shifts. The program SCHUR is an adaptation of the ALGOL
program HQR found in reference 19. The product of the transformations used
in the reduction is accumulated.

Source of software: Coded directly from reference 5

Calling sequence: CALL SCHUR(H,U,NN,NH,NU,EPS,FAIL)

Input arguments:

H Two-dimensional array dimensioned at least n x n in the calling
program. The array H contains the matrix H in upper
Hessenberg form. The elements below the third subdiagonal are
undisturbed upon return.

U Two-dimensional array dimensioned at least n x n by the calling
program. On input, U contains any square matrix desired.

NN The number of rows in the matrices H and U

NH First dimension of the array H; at least n

NU First dimension of the array U; at least n

EPS Number used in determining when an element of H is negligible.

The element H(i,j) is negligible if |H(i,Jj)| < EPS x |H]
where |[[H|| denotes the £_ norm of H.

Output arguments:

H Upon normal return, H contains an upper Schur form of H.

U Upon normal return, U contains the product of the input U
right multiplied by the accumulated orthogonal transformations
used to reduce H to Schur form. If the identity matrix is
input for U, then the Schur form is

U'HU
FAIL Integer variable containing an error signal. If FAIL is positive,
then the program failed to make the (FAIL-1) or (FAIL-2)

subdiagonal element negligible after 30 iterations of the
QR algorithm.
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COMMON blocks: None

Error messages: None directly from SCHUR

Field length: 520 octal words (336 decimal)

Subroutines employed by SCHUR: None

Subroutines employing SCHUR: AXPXB, ATXPXA

Comments: None
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i Subroutine SYSSLV

Description: The purpose of SYSSLV is to solve the linear system

Ax = b

where A is an n xn (n £5) matrix and. b is n-dimensional vector.

Solution is by Crout reduction. The matrix A, the vector b, and order n

are contained in the arrays A, B,: and the variable

SLVBLK. The solution is returned in the array B.

Source of software: Coded directly from reference 5

Calling sequence: CALL SYSSLV

Input arguments: None

Output arguments: None

COMMON block: SLVBLK

Error messages: None directly from SYSSLV

Field length: 227 octal words (151 decimal)

Subroutines employed by SYSSLV: None

Subroutines employing SYSSLV: SHRSLV, SYMSLV

Comments: None

N of the COMMON block
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Subroutine GAUSEL

Description: The purpose of GAUSEL is to solve a set of linear equations,

Wi e

AX = B
by the method of Gaussian elimination. The constant matrices A and B are
of dimension nx n and n x r, respectively. No information is returned
on the pivotal strategy or the value of the determinant of A.

Source of software: LaRC Analysis and Computation Division subprogram library

Calling sequence: CALL GAUSEL(MAX,N,A,NR,B,IERR)

Input arguments:

MAX First dimension of the array B given in the calling program
N Number of rows of the matrix A
A Two-dimensional array dimensioned at least n x n in the calling

program; destroyed upon return
NR Number of columns in the matrix B

B Two-dimensional array dimensioned at least MAX x NR in the
calling program; destroyed upon return

Output arguments:

B Upon normal return, B contains the solution X.
IERR Integer error code:

0 Normal return

2 Input matrix A is singular.

COMMON blocks: None

Error messages: None directly from GAUSEL. IERR should be checked upon
return.

Field length: 317 octal words (207 decimal)

Subroutines employed by GAUSEL: None

Subroutine employing GAUSEL: EXPADE

Comments: None
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EXAMPLE COMPUTATIONS

This section contains selected examples illustrating the use of the ORACLS
program subroutines. Sample executive programs and output data are presented
which develop state variable feedback control laws using the optimal transient
regulator, optimal sampled-data regulator, and model-following design
approaches. Additionally, the construction of an asymptotic Kalman-Bucy
estimator is illustrated.

Data employed for the plant equations are from a linearized mathematical
model of the lateral dynamics of an F-8 aircraft, presented in reference 30.
The problem and machine-dependent accuracy and convergence parameters required
for COMMON blocks TOL and CONV of subroutine RDTITL used in the example compu-
tations are:

EPSAM = EPSBM = 1.E-10
IACM = 12

SUMCV = 1.E-8

MAXSUM = 50

RICTCV 1.E-8

SERCV = 1.E-8

The construction of RDTITL for the example computations is shown in figure 1.
All computations were performed using the Control Data Cyber digital computer
system under Network Operating System (NOS) 1.2.

SUBROUTINE ROTITL

COMMON/LINES/NLP,LIN,TITLE(8),TIL(2)
COMMON/FORM/NEPR,FMT1(6) ,FMT2(6)
COMMON/TOL/EPSAM,EPSBM, TACM
COMMON/CONV/SUMCV ,MAXSUM,RICTCV ,SERCY
C NPL = NO. LINES/PAGE VARIES WITH THE INSTALLATION
DATA LIN,NLP/1,44/
DATA NEPR,FMT1/7,10H(1P7E16.7)/
DATA TIL/10H  ORACL,TOHS  PROGRAM/
DATA FMT2/10H(3X,1P7E16,10H.7) /-
DATA EPSAM/1.E-10/
DATA EPSBM/1.E-10/
DATA IACM/12/
DATA SUMCV/1.E-8/
DATA RICTCV/1.E-8/
DATA SERCV/1.E-8/
DATA MAXSUM/50/
READ(5,100) TITLE
IF(EOF(5))90,91
90 CONTINUE
STOP 1
91 CONTINUE
100 FORMAT(BA10)
CALL LNCNT(100)
RETURN
END

Figure 1.- Subroutine RDTITL for the example computations.
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Example 1 - Optimal Transient Regulator
This problem illustrates the construction of storage arrays for ORACLS ' -

and demonstrates the solution of a simple transient optimal linear regulator
problem. :Given the system - : C

x(t) = A x(t) + B u(t)

with
2.6 0.25 -38. 0.0 |
-0.075  ~0.27 4.4 0.0
A =
0.078  =0.99 -0.23  0.052
1.0 0.078 0.0 0.0 |
and
[17. 7.0
0.82  -3.2
B =
0.0 0.046
| 0.0 0.0 |

-F(t) x(t) which minimizes

find the control law u(t)

1 20
J = = x'(20) x(20) + Jﬂ [x'(t) x(t) + 100 u'(t) u(t)] dt
0

The solution can be found by directly employing the subroutine CNTNREG. Output
data are to be printed at 2.0-second intervals between 0 and 20.

Referring to the description of CNTNREG, the dimensions of the subroutine
argument arrays must be specified. The matrices A, B, Q, and R are 4 x 4,
4 x 2, 4§ x4, and 2 x 2, respectively. As packed one-dimensional arrays, they
must be dimensioned at least A(16), B(8), Q(16), and R(4). However, for this
example, input data to CNINREG are defined within the source program and, for
convenience of construction, two-dimensional arrays A(4,4), B(4,2), Q(4,4),
and R(2,2) are used. Since H = Iy, no data for H are required if the
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logical variable IDENT is set to TRUE. The array P initially contains the

1
weighting matrix 5 Iy -on the final states and hence, is dimensioned P(16)
The array F will contain the feedback gain matrlx and must be dlmensioned at
least F(8). Similarly, Z, W, LAMBDA, and S are dimensioned 64, 64, 16

and 16, respectively. Dimensions for NA, NB, NQ, NR, NF, and NP are set
to 2. The vector T contains the final problem time and print interval and

is also dimensioned 2. The vector IOP controls the printing from CNTNREG and
must be dimensioned at least 3. The dimension of DUMMY is computed from the
formula (since IOP(3) = 0 for a transient solution to the Riccati equation),.

9n2 + 17n + nr : vl

with n=4 and r = 2.

The following executive program shows how the specific data .for CNTNREG
may be constructed. Note that subroutines NULL and UNITY may be employed to
generate zero and unity elements in the coefficient and weighting matrices.
For the NOS 1.2 system at LaRC tape 5 is designated input and tape 6 output
as indicated by the source program card. Output from ORACLS follows the
executive program.

P



chil

PROGRAM REGLAT T4/74 0°Ts=1 FTN 4.6+439 77707727, 08437.23

10

20

30

35

40

SO0

o

PROGRAM REGLATUINPUT,CUTPUT,TAPESSINPUT, TAPE6=NUTPUT)

DIMENSTON Al4s4)sBLas2)5Q0454),R(2,2)52(64)sW(64)5LAMRDALL6),S(16)
1,F(254)5F(16)s DUMMY (220)sNAL2),NB(2)sNQ(2),NR(2),T0P(3),T(2),NF(2)
29NP(2)

LCGICAL IDENT

REAL LAMEDA

INTTTALIZE NAyNEy qaesNP
NA(L)=
NE(2)s
NP (1)=
NR(2)=
NQ(1})s
NO(2)=
NP(1)=
NE(2)=
NP(1)s
NF{2)=

S ENNNS NS SR

SFT FINAL TIYE AND PRINT INTERVAL
T(1)=20,
T(2) = 2,

DFFINS PRINT AND TRANSIENT SOLUTION OPTIONS
Ine(L 1

Iree2)
InrP{3)

1
0
DEFINS COEFFICIFNT AND WEIGHTING MATRICES
CALL NULL (AyNA)

CALL NULLIR,NB)

CALL UNITY(P,NP)

CALL SCALE(P,NP,P,NP,0e5)

CALL UNITY(OQ,NQ}

CALL UNITY(R,NR)

CALL SCALE(R,)NRSR,NRy100.)

All,1)= =2,6
All,2) = o25
A(l1,3)=-38,



Enl

S5u

55

60

65

PROGRAM REGLAT

Al251)
A(2,2)
A{2,3)
A(3,1)
A{3,2)
Al(3,3)
Al3)y4)
Al4, 1)
A(4,y2)
B(l1,1)
B{ls2)
Bl{2s1)
B(2,2)
B(3,2)
IDENT

INPULT

T4/74 OPT=]

HOLLERITH DATA FOR TITLE OF CUTPUT

~+075
'027
444
« 078
~e 96
-e23
«052
lLeU
«078
17
7ed
«82
=342
o046

« TRUE,

CALL RDTITL

FTIN &4.6+439

NOW USE CNTNREG TC SOLVE THE TRANSIENT REGULATOR PROBLEM
CALL CNTNREG(AsSNA»BsNBsHsNHs CoNOsRsNR,ZyWy LAMRDASS,FyNFsPsNP,T,»10P
1o IDENT, DUMMY)

sTO0P
END

T7/10/264 18459.15



EXAMPLE 1 =~ OPTIMAL TRANSIENT REGULATGR

ORACLS

PROGRAM TO SDiVE THE TIHE;INVARIANT FINIfE-DURATiDN CONTINUOUS NPTIMAL
REGULATOR PROBLEM WITH NDISE~FREE MEASUREMENTS

. A MATRIX
=2+.60000L0E+V0
=7+500C000E-02

. 7+8000000&-02

4 ROWS
2¢50CJCICE=-UL
~2+70Q000CE~VL
=6+300v00CE~OL

1.0000000E+00 7483009000E~-02
. B MATRIX 4 KGWS
1. 70CCGUCUE+UL Te0G0ICOVE+QU
842000000E-0U1 =3.200J000E+UC
Ce 4e6LCU00QUE=~Q2
('Y e
G MATRIX 4 KCws
14 0000000E+09 Ve
O LedLUIGODE+IV
Ce Oe
00 Ce
H IS AN IDENTITY MATRIX
R MATRIX 2 kOWS
1.0000000E+02 Oe
O 14000000CE+V2

4 COLUMNS
-3.8000000E+01
4440000u0UE +00
~2+30C000CE~C]
Je

2 COLUMNS

4 COLUMNS
Je
Je
LeQ00COIULE+DT
"D

2 COLUMNS

WEIGHTING ON TcRMINAL VALUE OF STATE VECTOP

P MATRI X 4 ROWS
540000000E-01 Oe
Ce 54006000C0E-C1
e Ge
Ge Ce

z MATRIX 8§ ROWS

4 COLUMNS
Je
Qe
5.0000000£=-01
~be

6 COLUMNS

0.
Qe
5.2G00G00E=-02
Ce

1.0GC00C0E+00

Co
Ge
Qe
£.00GICCOE-DL

PROGRA

vy

LRSS TP

-I-d




7 {3

- DPTIMAL TRANSIENT REGULATOR

EXAMPLE 1
=2¢6000000E+00 2¢500000CE-01
Oe
=7500CV00€E-02 <«2.7v0000VLE~CL
Ce
7¢8000000E~U2 =9.9G0J00LVE=-V]
Oe
1.0000000E+90 7+8000C0QCE~Q2
'
=14 00000C0E+0D Qe
=1+00G0000E+0U
0. =1400GIC0O0E+00
~7.8000000E=02
0' 0.
Ge
Q. Ce
Oe
EIGENVALUES OFf Z
=6¢4605654E-01 Qe
60 4605654E-01 0.
T78466995E=01 246501143E+00
Te8466995E~C1 ~2,6501143E+00
=7¢B8466995E~y1 2e6501143E+0Q0
=7e8466995E=01 =2.6501143E+Q0
=248451457E+00 Ue
24845145T7E+00 Qe

CORRESPOUNDING EIGENVECTOKS

=244733G21E~01

=6¢2618216E~-

4e3326566E-03

~1.7233138E-01
02
=343791761€E-02

" «609930617E-03

T+5286043E-03

3.3935252€~

3.8230750E-C1

7+7409397E~-03
04
=2.7082403E-01

~242200507E-02

~3.80C0000E+01
4+400000GE+00
=2+¢30Q0000CE~O1
Oe
Oe
Qe
=1.0000000£+00

Qe

50025 7395E-02
“1+6344167E=02
1.751613GE-06

le45114496E-C2

Oe
0.
52000000E-02
Qe
Co
Q.
Qe

~1+0C0000Q0E+NT

2.6582832E~02
9¢5183892E-013
-8.0834088E-03

~1.41286503E~02

=343800000E+00
3.4600000E~02

=342200000E-03
0.
2.6000000E+00

~2.5000000€E~G1
3.8000000£+401

U

-8,5528327E~02

3.5983643E-02
=4.,9824656E-03
~4+8131275E-02

ORACLS PROGRAM
8.46000006-02 ~3+2200000E~03
-140912400E-01  1.4720000£-03
1,4720000E-02" =241160000E~05

0. O
7.5000000E-02 =7.8000000E~02
2.7000000E-01  9.9000000E=01
~444000000E+400  243000000E-01
0e ~52000000E-02
~106423055E-01 64 2134586E-01
1.2843065E-02  300404804E~02
1. TT45854E=02 .=246988189E~03
=241922162E~01

4¢5465490E~02
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EXAMPL: 1 = OUPTIMAL TRANSIENT REGULATOR

7.2558584E-02

Ge550G717CE-02

1le0441627E-24

503890433E-vi

7e9262267E-01

344982534E-91

~443207089E-01

3.2205187E=01

928953245801

5¢5697883E~01

3.93274164E-0C1

~9¢167608UE-03

REORDERED EIGENVECTORS

-1e7233188E~U1l
6¢2134566E-01
-3.3791761E~u2
3404048U4E-02
Te7409397E~0L3
~2+6988189E-93
~2+7082403E-01
-2.1922162€-01
9¢5507170E~02
844269310E-Q2
7¢9262267E-01
2¢3749420E~01

53257395L~02
-le534%167E-02
1e¢7515130E~C6
le451ll44et=02
=242377640E~02

343965417c~01

302205187£-01

-7.0239213¢E~

3.9327414E-01

-8.9888548E~

147433213€-01
01

-1.4120636E~02
G2

LAMBDA MATRIX OF EIGENVALUES OF

6e4605654E-01 Ce
Oe 7.8466995E-01
O =2e650LL43E+LY
C. Ge

WIZW MATRIX 8 ROWS

~24237764CE=C2
3.439€54176=01
1.7435213E-01

~le4120636E=C2

246562832E-C2
9.5183892¢-C3
-8343834088E~03
-1e4186533E-02
2+448383LE~02
-748633601E-03
9¢2129547€-01

4¢7159165E-03

Z wlTH POSITIVE

Oe
2¢6501143€E+00
7.8466995E-01
e

8 COLUMNS

204483836E~-02
~7+6633601€E~13
942129547E~01

447159165E-03

-602618218E-02
~6¢9930617€~03
3.3635252E-04
-242200507E-02
1.0441627€-01
3.4982534€-01
942653245E-01

~9.1676080E-n3

REAL PARTS

O,
0.
G
28451457E+00

-1.5780566E-02
3,2328G81E-01
~2+9506394€E~01

~3.8062689E-02

-2.4733021E-01
443326566E-03
7.5286043E-03
3.8230750E~01
7.2558584E-02
5.3890433E-01

-443207089E~01

5¢5697883E-01

ORACLS PROGRAM
~4.4315091E~02  8.4269310E-02
~7.4606776E-03  2.3749420E-01

BeT411594E-01 =7.0239213E=01
~1.2681699E-02 <-8.98B854BE-02
~1,64230556-01 =8,5528327E-02

1.2843065E-02 3.45983643E~-02
167745854E-02 ~4.9824656E~03
445465498E-02 <~4¢8131275€=02
-444315091E-02 -1.5780566E=02
~7.4606776E-03  3,2328081E-01

807411594601 =249506394E=01

“1.2681699E~02 =3.6062689E-02
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EXAMPLE 1 -~ OPTIMAL TRANSIENT REGULATOR

604605654E-01

1.7480680€E-

9.9622886E-14

1.1224239€~

145597072E-13

-1.9369661E~

=6e5446563E~14

~1.2551633¢E-

640327566E-14

=1¢4901340E~

1.3255405€6-13

=304247h65E~

~242830483E~113

443539094E-13
13
Te86465995E-01
13
=2¢650L143E+00Q
12
=941129449E-13
12
=1le2656352E~12
12
-3.0147102E€-12
12
le3227C21E-12

9¢5261412E-13
1.6940885E~13 -147690865E~12

=24B451457E+00
Wil MATRIX 4 ROWS

~1.7233188E-01
=343791761£-02

7.7409397€-u3
=2470824U3E~01

Wzl
9¢5507170E~02
T709262267€-01
3.2205187E-v1
349327414E-01

wlz
=244733021F-01
403326566E~03
7.5286043E-03
348230750E-01

MATRIX

MATRIX

5.0257395E-02
~1e6364167E-02
1.7516130&-06
ls4511446E~u2

4 ROWS
=24237764CE~02
3¢3665417€-01
le7435213E-01
~1le412J€36E-u2

4 ROwS
~1le6423055E-01
1e2843065E~02
1e7745654E-02
4e5465496E-02

w22 MATRIX 4 ROWS
T42558584E=02 =~449315(91t=-02
503890433E~0L -~7.4606776E~03

«443207089E~0C1
5.5697883£-01

S MATRIX

627611594€-01
~1le2¢81699E~02

4 KGuWS

=1.6913328E-13
2.6501143E+00
Te8466995E-C1
~T7e4776612E-13
=3.2722815E~13
=144740753E-13
3.07¢634668-12

=54J533503E-13

4 COLUMNS
2.65628326-G2
9.5183892E-03

-8.0834038E-03
-1ls4166533E-C2

4 COLUMNS
244463836E-02
~78633691E-03
9.21295476-01
447159165t-G3

4 COLUMNS
-8.5528327E-02
3¢59€3643E-(2
-4,9824606t-03
~4.8131275€E-02

4 COLUMNS
~Le57B05066E-02
3.2328031E-01
=2.9506394L~Cl
-3.806268%t-02

4 COLUMNS

-2.0390208E-13
~448159991E-13
2+6422617E-12
2.8451457€E+00
1.4561670€-12
244210317€=-12
~147386355E-12

245116453E-12

~642618216E~02
~6.,9930617E-03

3.3935252E-04
~2.2200507E-N2

1.0441627e-01
3464982534€-01
9.2853245E-01
~9.167608GE~-"3

6.2134586E~01
3.0404804E-02
~2.6G88169E-03
~2.1922162E-01

8.4269310E~02
243749420€E~01
-7.0239213€e-01
-8.9888548E-92

=T7¢3247951E~14
~842746769E~13
-1.7036632E~13
-1.3339999E~13
~644605654E-01
=344414850€~-13

1.0132695€~12

-2.5555875E~13

CRACLS PROGRAM

-3,4396140E~13
4.7260138E~-13
1.1402066E-12
4.7238794E-14
8.1668150E-13

~748466995E-01
246501143E+00

7.2909408E~-13

846150507E~14
1.5520196E~-12
~1+4882895E~12
641187571€~13
-443938717€~13
~246501143E+400
~T748466995E~01
=1.8733266E~12
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EXAMPLE 1 - GPTIMAL TRANSIENT REGULATOR

=6¢9197483E-01
503014743E~C1l
1.0292420E+00
~441882228E-01

MATRIX (R INVERSE)IX(B TRANSPOSE)

147000000E-01
7+0000000€E-02

EXP(-LAMBDA X

2+7468973E~01
O
G
Ge

B848040174E-02
141451662E=-01
-648625132E-01
*249967598E-01

6+200000CE=-03
=3+2000000E=02

«20000000E+01)

Qo
1¢1545067E-01

~147323718E~01
Ge

TINE = «20C00000E+02

P MATRIX
5.0000000E~01
Ge
Oe
Q.

TIME = «180000

P MATRIX
242480611E-01
346054050E-01

=1e4217206E+00
3.2023881E=01

4 ROWS
Ge
5+0000000£-01
0.
Co

OLE+G2

4 ROWS
3.60540506E-01
1.0744607E+401

~E48655022E+00
1e54C9135E+00

=7.0617792E~03
-442235758E~01

840290849E-~01
~440340142E~01

'DS
44 6000030E~04

e
1.7323718E-01
10154506701
Oe

4 CGLUMNS
Ve
0.
5.0000000E-C1
Qe

4 COLUMNS
~1le4217296E+UC
~848655022E+00

445683890t+01
~2¢6235118E+C0

=1.0579571E-01
=1.6582063E+09
=1,3835163E-01

1.42407188E+400

0.
0.

0.
0.
0.
3.37686086E~03

Oe
0.

L]
5.0000000€-01

3.2023881E-01
1.56409135E+00
~2+6235118E+00
165641109E+00

ORACLS PROGRAM



EXAMPLE

F MATRIX 2 ROWS
4e1173471E-02 1.4939767E-01
3.5451406E-03 ~3,2266773L=01

TIME = «16000000E+02

P MATRIX 4 ROWS
243819322E-01  4.0985673E-01
440985673E=-01  1,0991594E+01

=1.5275098E+00 =9.,0079421E+00
346636522E-01 1.7136851E+90

F MATRIX 2 ROWS
4¢3853673E~02 1.5980672t~01
248554559E=03 =3,2718471E~01

TIME = +1400000GE+G2

P MATRIX 4 ROWS
243924330E-01 4+1302539E-01
4¢1302539E~01 1.1028965E+01

=145297598E+400 =9.0076508E+00
3.6980853E~01 1.7278448E+00

F MATRIX 2 ROWS
404058169E=02 1.6C65183E~01

208265289E~03 ~3,2815862E-01

TIME » «12000000E+02

P MATRIX
2¢3930520E~-01

4 ROWS
401337855€-01

6l

1 = OPTIMAL TRANSIENT REGULATOR

4 COLUMNS
=3e01438962E~01
200519022E-01

4 COLUMNS
~145275096E+00
-9.0079421E+00

4¢9256328E+01
-2.9811826E+(Q

4 COLUMNS
~34335418CE-01
240368637E-01

4 COLUMNS
~145297598£+00
=9.0076508E+00

409271952E+01
=249877059E+00

4 COLUMNS
=3¢3392190CE=-01
2¢0362674E-01L

4 COLUMNS
=145297546E+00

647076089E-02
~248099331E~02

3.6636522€E-01
1.7136851E+00
~2+9811826E+00
1.7228142E+400

Te6334306E-02
=3.0563703E-02

346960853E~01
1.7278448E+00
=2+987T7059E+00
1e47346173E+00

T747035778E-02
=3.0778783E=~02

3.7003289E-01

ORACLS PROGRAM
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EXAMPLE 1 - CPTIMAL TRANSIENT REGULATUR

4¢1337855E-vl 1.1032206E+U1
=1e5297546E+00 =9.0096823E+Y0
347003289E-01 1e7293204E+00
F MATRIX ¢ ROWS
444071588E-02 1e6UT3844E~CL
2¢8195631E~03 <+~3,2623855E~-01
TIME = «1000000CE+C2
P MATRIX 4 ROWS
243930917€E-01 4¢1341C5€¢E-C1
4el1341056€-01 141032469E+01
=1e5297727E400 =~9.,0098261E400
347004881E-0L 1672G4493E+0V
F MATRIX 2 ROWS
4e4072525E~02 Le6074604E-01
208188087E=03 ~3,2824478E~01

TIME = «8000V0VOLE+OL

P MATRIX

203930948E-U1
4el1341291£-01
=145297749E+00
3.7005V05E~01

F MATRIX

444072598E-02
248187540£-03

4 ROWS
©e1341291€-01
11032489401

~940698419E+00
1e72G459CE+VO

2 ROWS
1.60T74661E~01
-3.2824528E-01

TIME = «60LVU00GE+UL

-9+00G6823E+00
4.9275911E+C1
-2.9880218E+00

4 COLUMNS
=~343393766E-0C1
2403E89393E~-01

4 COLUMNS
-15297727€+0C
~940098261E+00

4eG276275E+01
-249880973E+00

4 COLUMNS
-343394193E-01
2403897438-01

4 COLUMNS
-145297749E400
-3.0098419E+00

4¢G276293E+01
-2+98810561E+400

4 COLUMNS
-3¢3394244E~01
240389779E-04

1.7293204E+00
=249860218E+00
1.7354617€E+00

7.7G86018E~02
~3,0810439E-02

3.7004881E-01
1.7294493E+00
~2+9880973E+00
1,7355256E+00

7.7089781E-02
~3.0813485E-02

3.7005005€6-01
1.7294590€+00
~2.9881061E+00
1.7355306€E+00

7.7090072E-02
~3+0813714E~02

ORACLS

PROGRAM
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EXAMPLE 1 = OPTIMAL TRANSIENT REGULATOR

P MATRIX
2¢3930951E~01
4¢1361309E~01

=145297751E+00
3.7005015€~01

F MATRIX
4¢4072604E~02
2.8187502E~03

TIMNE = «40C000

P MATRIX
203930951€-01
441341310€-0C1

=145297751E400
3.70050152-C1

F MATRIX
4¢4072604E-02
248187499€-03

STEADY=STATE SOLUTION HAS BEEN RCACHED IN CNTNREG

4 ROWS
441341309E-01
1410326918 +01

~%.0098433E+00
1e7294597E400

2 RDWS
1e6074665E-01
=342824531E=01

00£+01

4 ROWS
441341310F-01
141032491E+0Q1

=9.0098434E+00
1472945978400

2 ROWS
146074665E=01
~3.2824531€E-01

4 COLUMNS
=1.5297751E+00
~9.,0098433E+00

4e9276294E+01
=2e¢9881068E+00

4 COLUNNS
~343394248E-01
2.0389783€~-01

4 COLUMNS
=1e5297751E+00
=9.0098434E+00

4¢9276294E+01
-249881068E+00

& COLUMNS
~343394248E-01
2.0389783E-01

3,7005015E-01
147294597E+00
-2,9881068E+00
147355310E+00

7+7090094E-02
~340813729€-02

3,7005015€E=01
1.7294597E+00
~2.9881068E+00
17355310€E+400

7.7090096E=02
-3.,0813730E=02



Example 2 - Optimal Sampled-Data Regulator
This problem demonstrates a situation in which several ORACLS subroutines
are required to obtain a solution and input data are entered through use of the
READ subroutine.

Given the linear time-invariant system
x(t) = A x(t) + B u(t)

with x(0) @ xg given and A and B as defined in example 1, find the con-
trol law

u(t) = -F x(t)

which minimizes

t
J = lim {j‘ [x'(t) Q@ x(t) + u'(t) R u(t)] dt
tyr K0

where Q and R are 4 x 4 and 2 x 2 identity matrices, respectively, and °
u(t) is restricted to be piecewise constant over uniform time intervals of
measure A = 0.5 second. Under these restrictions, the dynamical equations

and performance index J become ’

p's Bi+4)4] = A x(iA) + B u(iA)

and
N
J = lim 25 [x'(18) @ x(18) + x'(i8) W u(id) + u'(iA) & u(ia)]
Nroo | £ ‘
i=0
where
A = ehA
. A
B-‘f eAT B dr
0
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. A
0
- s
w=2j eA'T Q H(1,0) dt
0
- A
R =5 [R + H'(1,0) Q H(T,0)] dt
0

and

t
H(t,0) = f eAT B 4t
0

Performing the control variable transformation,

u(id) = -F x(iA) + v(iA)

with
- W
F=R1—
2
leads to
x[(1+1)4] = & x(14) + B v(ia)
N .
J = lim z [x'(18) @ x(18) + v*(i8) R v(1a)]
N |
i=0
where

>
"
>
1
3
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0>

1]

N

i
k=

=
u
=1

Ignoring the initial value x(0) in J gives the problem of minimizing

N
lim z {x'I:(i+1)A:| Q x[(i+14] + v'(18) R v(iA)}
Nroo | ¢
i=0
sub ject to

x[(i+1)A] = A x(iA) + B v(iA)
whose solution, if it exists, is given by
v(id) = -F x(iA)

The gain matrix for the original problem is then

The complete problem can be solved by appropriately combining the sgbrog-
tines_EXPINT (for A and B), SAMPL (for Q, W, and R), PREFIL (for A4, Q,
and F), and ASYMREG (for F). An executive program for constructing the solu-
tion follows. Data are input by using subroutine READ rather than being defined
internally to the source program, as in example 1. The dimension of DUMMY
is chosen to be the maximum of the requirements of each operation employing
this storage vector. At the stage where matrices F and F are printed, the
statement "“CALL LNCNT (100)" is used to shift the printing to the top of the
next page. Output data are presented after the executive program.
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PROGRAM SAMDAT 74174 0PTsl FTN 4464439 771071727,

PROGRAM SAMDAT(INPUT,OUTPUTsTAPES=INPUT, TAPE6=OUTPUT)

DIMENSION A(16)5B(8)sQ(16)sR(4)ATIL(16),BTIL(8),QTIL(16),WTIL(S),
IRTIL(4)s FTIL(B),AHAT(16),QHAT(16)sFHAT(8),DUMMY(116),P(16),F(8)
DIMENSION NA(2)sNB(2)sNQ(2)sNR{2)»NATIL(2)»NBTIL(2)sNQTIL(2)sNWTIL
1(2)sNRTIL(2)sNFTIL(2)sNAHAT(2), NQHAT(2)sNFHAT(2),I0P(5),NP(2)sNF(2
2)sNDUML2)

LCGICAL IDENT,DISC,NEWT»STABLEs FNULL

INPUT HOLLERITH DATA FOR TITLE OF QUTPUT
CALL RDTITL

INPUT COEFFICIENT AND WEIGHTING MATRICES FOR CONTINUOUS SYSTEM
CALL READ(4,AyNA; ByNBsQyNQsRyNR)

GENERATE EXP (A*DELT) AND (INTEGRAL EXP(A*TAU))*8
DELT=.05

I10P(1)=0

N1 = (NA(1l)*%2)+]

CALL EXPINT(ASNAsATILSNATIL»DUMMY,NDUMsDELT, IOP,DUMMY(N1))
CALL MULT(DUMMY,NDUM»B,NB,BTIL,NBTIL)

CALL PRNT(ATILsNATIL»4HATIL»1)

CALL PRNT(BTILsNBTIL,4HBTIL,1)

GENERATE DIGITAL PERFORMANCE INDEX WEIGHTING MATRICES

10P(2)=1

CALL EQUATE(QsNQ» OTIL,NQTIL)

CALL EQUATE(RsNR,RTILsNRTIL)

CALL SAMPL(ASNA,;BoNoQTILSNQTILsRTIL)NRTIL)WTILoNWTILSDELT,10P,DUN
1MY)

CALL PPNTH(QTIL,NQTILs4HQTIL,1)

CALL PRNT(WTIL NWTIL»4HWTIL,1)

CALL PRNT(RTILINRTILs4HRTIL,1)

FIND PREFILTER GAIN WHICH ELEMINATES CROSS=PRODUCT TERM
IN DIGITAL PERFORMANCE INDEX

08436431



961

45

50

55

60

65

70

75

PROGRAM

SO0

OO0

SAMDAT T4/76 0PT =] FTN 4464439 /077127,

10P(3)=1

CALL EQUATE(ATILsNATIL, AHAT,NAHAT)

CALL EQUATE(QTIL,NQTIL,QHAT,NQHAT)

CALL PREFIL(AHAT)NAHAT,BTILsNBTIL»QHATSNQHAT,,WTTLSNWTIL,RTIL,NRTIL
Ls FTILsNFTIL, IOP,DUNMY)

CALL PPNT(AHAT,NAHAT; 4HAHAT,1)

CALL PRNT(QHAT,NGHAT, 4HQHAT, 1)

CALL PRNT(FTIL,NFTILs4HFTIL,1)

SOLVE FOP F HAT

IDENT= TRUE.

DISC = <TRUE.

NEWT = »TRUE.

STABLE = .FALSE.

FNULL = oTRUE,

ALPHA = o9

10P(1) =}

10P(2) = 0

I0P(3) = 0

TI0P(4) = 1

10P(5) = 1

CALL ASYMREG(AHATsNAHAT,BTILsNBTIL,>HsNHs QHAT)NQHAT,RTILSNRTIL s FHAT
1sNFHAT»PsNP» IDENT»DISCoNEWT S STABLES FNULLs ALPHAs TOP»DUMMY)

CALL ADD(FTIL,NFTIL, FHAT,NFHATsFyoNF)

QUTPUT F AND F HAT GAINS

CALL LNCNT(100)

PRINT 100

100 FORMAT(* FOR THE ORIGINAL SAMPLED-DATA PROBLEM®)
CALL PRNT(FHAT,NFHAT» 4HFHAT,1)
CALL PRNT{FsNF,OHF 1)

sTop
END
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EXAMPLE 2 = OPTIMAL SAMPLED=-DATA REGULATOR

[ MATRIX ¢ ROWS
=246000000E+00 2.5000000€-01
=745000000€=02 =247000000F~01

7.8000000E-02 ~9.9000000GE=-01
1.0000000E+00 7.2000000F=02

. 8 MATRIX v & RDMS
147000000t4+01 740000000E+00
8,2000000€=-01 =3.2000000E+00

0. 445000000E=02
0. 0. -
Q  MATRIX 4 ROWS
1.0000000€+00 O
0. 100006000+ 00
0. 0o
0. 0.
R MATRIX *. . 2 ROWS
1.00000006409 0« .
0o 1000000 00E +00
ATIL MATRIX - - & ROWS

8e7460216E-01 5.6206553€~02
=340698872E-03 9.811469GE-01
3¢7743137E-03 =-448707923E-02
406820759E=02 4e9177112£=03

BTIL MATRIX .. & ROWS
709692392E-01 342234606E-01
3.9250218E=-02 =1.5895733E=01

: 641800654E-04 6.8676137E-03

240435169E-C2 7.9852845£-03

QTIL MATRIX . 4 ROMS .
4¢3959404E-02 Re7398740E=04.
Be7398740E-C4 4¢9227561£-02

=401390797E-02 203619327€~03: .
1.1608794E-03 1 1:266907E-04

WTIL MATRIX 4 ROWS

" s
2. - . - '

4 COLUMNS
~3.8000000€+01
444000000E+00
~243000000E-01
0.

« 2 COLUMNS

4 COLUMNS
Oe
0. . T
1,0000000€+00Q
Qe LT

2 COLUMNS

4 COLUMNS
=1e7644035E+00
241998505€E=-01
9.7656437€~01
=444809768E~02

2 COLUNNS

" .4 COLUMNS

~44139079-7E~02 -

. 248619327E-03
1.038672:3E=-01
~6e3835G81E~0Q4

2 COLUMNS

Oe
0.
542000000E-02
Oe

Qe
O
ge - oo
'140000000E+00 .

~243524288E-03
2.8616468E=04
245772852E~03
9¢9996068E=01

1e1608794E=-03 ...
1.1266907E=0¢
=643835981E~04
4¢9999178E-02

ORACLS

PROGRAM
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EXAMPLE

3¢7319029E-02
3.1985357E-03
~4e8263666E-02
6e4086387E=04

RTIL MATRIX

640964766E-02
4¢3451993€E-03

AHAT MATRIX

5¢9854577E=01
4e4954715E-03
247592406€-03
3.9775917€E-02

QHAT MATRIX

3.7487559E-G2
B844516580E=-04
=342962128E~02
1.0504445E-03

FTIL MATRIX

209744352E=01
142103929E~C1

- NPTIRAL SAMPLED-DATA REGULATOR

1.5229661€-02
-T7«3838B7¢E-03
-2e0667855E=02
2e04991144E=04

2 ROWS
4.3451993E-03

542234106E-02

4 ROWS
5e¢4764994E=02
9.5826103E~01

-4,8223984E-02
4¢8601865E-03

4 POWS
844516580¢-04
4«8906642E-02
248635932E-03
11174R23E~04

2 ROWS
3,1456861E-02
=7e3297516E=02

COMPUTATION NF F SUCH THAT A-AF

A MATRIX

6¢6505086(-01
449949683E-03

3.0658229£~03.

444195464E-02

8 MATPTX

8.8547102£~C1
4e¢3611353e=02
6¢8667393E-04
2e¢2705743F~02

4 ROWS
6¢0849993£-02
10758456L400

-543582205€-02
Se4002072E-03

4 ROWS
3.5816229E-01
-le7661925E=01
T7.6306819E-03
8.37253R3F=03

2 COLUMNS

4 COLUMNS
~1e4049026E+00
2.0868737€-01
9.8096098E-01
=345637777€E-02

4 COLUMNS
~3e29621268E=02
248635932E-03
9.2386064E=~02
-449458179E-04

4 COLUMNS
=348400852E=01
~1e6589418E-01

=740633127E-03
349798041E-04
245606174E=-03
949984043E-01

1e0504445E=03
141174823E-04
~44+9458179E-04
4¢9997293E-02

S5¢1158474E=03
1.9666527E-03

IS ASYMPTOTICALLY STABLE IN THE

4 COLUMNS
~145610029E+00
2¢3187486E-01
1.0899566E5+00
-3.9597530E-02

2 COLUMNS

~TeB481252E~03
4e4220046E-04
248451304€E=03
141109338E+00

DISCRETE SENSE

ORACLS

PROGRAM



64l

EXAMPLE 2 =~ OPTIMAL SAMPLED-DOATA REGULATOR

ALPHA = «33873839E+400

F MATRIX 2 ROWS
841498121€-01 242921930€+00
1.0955671E-01 =5.7422787E+00

A=BF MATRIX 4 ROWS
~945830473E-02 3.7847250E-02
=1e1197641E-02 <=3,8317030¢=02

1.6702042E-03 =~1.1338692E-02
244718B663E-02 4¢3028501E~03

EIGENVALUES OF A=-RF

EIGN MATRIX 4 POWS
2¢3419229E~01 3,3528007€-01
243419229&-01 =3.,35280C7t-01
3.4908617£-01 3.1664598E~01
3.4908617E-C1 =3,1664598E-01

MODULI OF EIGENVALUES NF A-BF

MQo MATPIX 4 FOWS
4,0897291¢t-01
4.0897281E-01
447130228c-01
44713022R¢-01

PROGRAM TN SOLVE DISCRETE STEADY-STATE RICCATI FQUATION 8Y THE NEWTON ALGORITHM

A MATRTX 4 POWS
5+49854577E-01 5.4764994E-02
4e4954715E-03 9.6826103E-01
207592406E-03 -—4.8223984E-02

4 COLUMNS
~3.0628590E+01
8.0373720E+01

4 COLUMNS
=3.2271096E+00
145763176FE401
449766221E-01
~547271536E-02

2 COLUMNS

1 COLUMNS

4 COLUMNS
~1¢4049026E+00
200868737E=01
9.8096098E-01

1.,4899924E+01
=3.4265557€+00

=1.1974036E+01
=1.2545593E+00
1.8760698€~02
8.0302221E-01

=7.0633127E-03
349798041E=04
2¢5606174E-03
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EXAMPLE 2 = OPTIMAL SAMPLED-DATA REGULATOR

3.9775917E-02 4484601665E-03

B MATRIX 4 RAWS
749692392E-01 342234606E-01
349250218E-02 ~145895733E=01
6.1800654E-04 648676137E~03
240435169£~C2 Te9852045€-03

Q MATRIX 4 ROWS
347487559E-02 Be4516580E~04
844516580€E~-04 4e8906642E-02

=342962128E=02 248635932E-03
1.0504445E-03 141174323€~04

H IS AN IDENTITY MATRIX

R MATRIX 2 ROWS
640964766c-02 4¢3451993€~03
4¢3451993E-03 502234106E«02

INITIAL: F° MATRIX

F MATRIX 2 POWS
B841498121£-01 242921930E+00
160955671E=01 ~547422787E+00

FINAL VALUES OF P AND F AFTER

P MATRIX 4 ROWS
5¢1520273E=~02 1.0590966E~02
140590966E=02 346895816E=01

~945089721E-02 =344132485E=01
50¢6173730E-02 4+2819065€-02

F MATRIX 2 ROWS
2¢7657460E-01 4¢4589747E-01
8e24146T4E=02 =944596876E-01

-3.5637777%-02 9.9984043E-01

2 COLUMNS

4 COLUMNS
=342962128E=02 1e0504445E=-03
2.8635932€E-03 1e1174823E=0¢
9.2886064E~02 <4.9458179E-04
~4,9458179€~04 449997293E-02

2 COLUMNS

4 COLUMNS
~3.,0628590E+01 1.4899924E+01
8.0373720E+01 =3.4265557€+00

10 ITERATIONS TO CONVERGE

4 COLUMNS
~9,5089721E=02 5¢6173730E=02
=344132485E-01 442819085€-02
209211059E+00 ~143498471E-01
~143498471€-01 1.0635575E+00

4 COLUMNS
~1.5678530E+00 6e7515437E=01
4e6313338E=01 1436877541E=-01

ORACLS PROGRAM
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EXAMPLF 2 = OPTIMAL SAMPLED=-DATA REGULATOR,

RESTOUAL ERROR IN RICCATI EQUATION

EROR  MATRIX 4 ROWS 4 COLUMNS
=301086245E-15 ~=4.2188475E-15 141990409E~14
=4¢2743586F=15 =741054274E-15 1l47763568E~14

14199040914 147763568E-14 =442632564E-14
~4¢68516128=-14 =7,5051076t-14 1.9895197&-13

EIGENVALUES OF P

EVLP MATRIX ¢ KOWS 1 COLUMNS
4¢5717003E=02
342330141€E-01
1.0566117E+00
2¢9795117E+00

CLOSED~LODP RESPONSE MATRIX A-BF

A=BF  MATRIX 4 ROWS 4 COLUMNS
345157081€-01 403479404E-03 =3,0473224E=-01
607402744E-03 8.0039079E-01 3.43846439E~01
200223236E-03 ~4,2003004£~02 947874931E-01

303465964E-02 343020260£=03 ~7.2966874E-03

EIGENVALUES DOF A-BF

308573552E-01 0.
848933093E-01 74997618502
"8¢8933093E=01 =7479761%5E=02
9.5124891E-01 0. -

~446185278E~14
=T7.5495166E-14

1.9895197E-13
-8+3133500E-13

=5.8984369E-01
=440426071E~03
1+1903116E=03
948493537E=01
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EXAMPLE 2 - OPTIMAL SAMPLED-DATA REGULATOR
FOR THE ORIGINAL SAMPLED-DATA PROBLEM

FHAT MATRIX 2 ROWS 4 COLUMNS
247657460E-01 4e458974647E~01 =-1.5678530E+00
842614674F=02 =9,4596876E=01 446313338E-01

F MATRIX 2 ROWS 4 COLUMNS
5.7401812£-01 4,7735433E-01 <-1.9516615E+00
200345396E=01 ~140192663E+400 209723921€=-01

6¢7515437€-01
1.3877541€E-01

648027022E-01
164074207E=01
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Example 3 - Model Following

This problem demonstrates the model-following capability of ORACLS and
illustrates the output format of the transient response subroutine TRANSIT.

Given the linear system

x(t) = A x(t) + B u(t)

with x(0) = xg given and A and B as stated in example 1, use the expliecit
model-following procedure to find a control law which causes the state x(t)
to track the state Xp(t) of the system,

Xn(t) = Ay Xg(t) + By up(t)

where Qm(O) = ig is given and the step input is

3 2
up(t) =
0
with

[-0.981 0.177  -10.0 0.0 |
3 0.030  -0.092 5.23 0.0
m:

0.0 -1.0 -0.732  0.052

| 1.0 0.0 0.0 0.0

[6.34 4.58 ]
_ lo.90  -2.65
By =

0.0 0.0

0.0 0.0 |

Generally, the state and model dynamics represent two sets of linearized equa-
tions and u(t) is to cause the system represented by x(&) to perform like
the model Xp(t) when the model is subjected to a particular step input. Data
for the model dynamics are from handling-quality model 3 of reference 31.
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The solution to the posed problem can be found by using the subroutine
EXPMDFL of ORACLS. The foregoing problem can be placed in the format of
EXPMDFL by redefining the model dynamics as

with
~0
Xm
xp(0) = 5
0
and
ym(t) = By xp(t)
where
Xp(t)
Xm(t) =
upy(t)
Ay | By
Ap = | —==~-- e
Opxy | O2x2
and
Hm = [Iu E 0)4)(2]

where Iy is the 4 x 4 identity matrix. Weighting matrices in EXPMDFL are
chosen to be

Q = diag (10.,10.,10.,10.,)
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and R is the 2 x 2 identity matrix. A transient response is evaluated
using TRANSIT with ' '

x(0) = xp = 0

The executive program and output data follow.
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PROGRAM MODFOL 74/74 0PTs=l FTN 4464439 77707727,

PROGRAM MODFOL(INPUT,OQUTPUT,TAPES=INPUT,TAPEL=DUTPUT)

DIMENSION A(16),B(B)sAM(36)sHM(24),Q(16)sR(4),F(20),P(40),DUMRY(T70
10)5AC(100158C(20) %10}

DIMENSTON NA(2)sNB(2)oNAM(2),NHM{2),NQ(2)sNR(2)sNF(2),NP(2),NAC(2)
1sNBC(2),10P(5)sNDUM(2),T(2),NX{2)

LOGICAL DISCsNEWT»STABLE,HIDENT,HMIDENT

INPUT HNLLERITH DATA FOR TITLE OF OUTPUT
CALL RDTITL

INPUT COEFFICIENT MATRICES FOR PLANT AND MOOEL
CALL READ(5sAsNAyByNBs AMsNAM, HM, NHM, X NX)

DEFINE WEIGHTING MATRICES

NQ(1)= NA(1)

NO(2)=s NO(1)

NR(1)= NB(2)

NR(2)= NP(1)

CALL UNITY(Q,NQ)

CALL SCALE(O,NQyQyNQ»104) - R - - . T
CALL UNJTY(R,NR)

COMPUTE MODEL-FOLLOWING GAINS
ioe(1) = 1

10P(2) = 1
I0P(3)=D

I0P(4) = O

IGP(5) = 1

DISC = LFALSE.
NEWT = JFALSE.
STABLE = ,FALSE,
HIDENT=,TRUE,
HMTDENT = LFALSE,

CALL EXPMDFLCA,NA,ByNByrds NHs AMpNAMyHMyNHM, Qs NQsR)NRs FoNFy Py NP HIDE
INTIHMICFENTS OISCONEWTs STABLES FNULLSALPHA,TOPs DUNNY)

GENERATE COEFFICIENT MATRICES FOR INPUT TO TRANSIENT

08436441
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45

50

55

60

65

70

75

PROGRAM MDDFOL 74/74 0PT=1 FTN 4.64439 77107127,

(e X gl

RESPONSE SUBROUTINE

NDUM(1) = NAM(1)

NDUM(2) = NA(1l)

CALL NULL(DUMMYsNDUM}

CALL JUXTR(ASNA,DUMMYsNDUM, AC,NAC)

NDUM(1) = NA(1l)

NCUR(2) = NAM{1)

CALL NULL(DUMMY,NDUM)

N1 = NDUM(1)*NDUM(2) + 1

CALL JUXTR(DUMMYs NDUMs AMyNAM, DUMMY {N1)sNHM)
NZ2asNHM(1)*NHM{2)+N1

CALL JUXTC(AC,NACsDUMMY(N1),NHM, DUMMY(N2),NDUM)
CALL SQUATE{DUMMY (N2),NDUM, AC,NAC)

NOUM(1) = NAM(1)

NDUM(2) = NB(2)

CALL NULL(DUMMY,NOUH)

CALL JUXTR(BsNB,DUMMY,NDUM,BC,NBC)

COMPUTE TRANSIENT RESPONSE TO OBSZRVE MODEL-FOLLOWING ACCURACY
I0P(1) = O
I0P(2) = 0
I1CP(3) = O
T(1) = 50,
T(2) = 2,

CALL LNCNT(100)
PRINT 100sNA(1)sNAM(1)

100 FORMAT(* IN THE TRAJECTORY OUTPUT TO FOLLOW THE FIRST#I4* CO

LLUMNS CORRESPDND TO X TRANSPOSE#/* AND THE NEXT*I4% COLUMNS TO X
2M TRANSPOSE®*)

CALL TRANSIT(AC,NAC,BCyNBC,H)NHsGsNG,FsNFs V)NV, ToXsNXsDISC»STABLES
1I0P, DUMMNY)

sTOP
END

08636441
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EXAMPLE

A MATRIX
=2+6000000€+00
=7+5000000€=-02

7.8000000E-02
1.0000000E+00

B MATRIX
1+7000000€+01
8,2000000€~01
O
O

AM  MATRIX
=-9.8100000£-01
3,0000000E=-02
0. '
1.0000000E+00
0. .-

0.

HM MATRIX
1.0000000€+00
Oe )

0.
Oe

X HATRIX
0e .

Oe :
2+0000000E+00
fe

4 ROWS
245000000€~01
-2.7000000E=01
~9.9000000E-01
7.8000000E-02

4 ROWS
70000000E+00
~3,2000000E+00
446000000E-02
0. .

6 ROWS
1.770000CE-01
-9,2000000E~02
-1.,0000000E+00
0O
O
0.

4 ROWS
O,
1.0000000€E+00
0. -
O, .

10 ROWS

3 - MODEL-FCLLOWING

4 COLUMNS
-3.8000000€+01
4+4000000E+00

-2.3000000E-01.

0.

2 COLUMNS

6 COLUMNS ~

-1¢0000000E+01
5¢2300000E+00
~7+3200000€E~01
Oe
Qe
Qe

6 COLUMNS
O
Qe
1.0000000E+00
Oe

1 COLUMNS

te

Qe
Q...

5.2000000E=02 "

0. ,

Oe
Oe
5420000Q0E-Q2
(/1Y
Oe
0.

0.
0.
0.
1.0000000€+00

643400000E400

~6¢9000000€-01 ~

Qe
0.
Qo
Oe

O
0.
O
[+ )

ORACLS

kS

445800D00E+00. .

=2.6500000E+00
Qe
0.
Oe
Os

O
0.
[+ 1Y
Qe

PROGRAM
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EXAMPLE

3 - MDDEL~-FOLLOWING

PROGRAM TO SOLVE ASYMPTOTTIC CONTIMIOUS EXPLICIT MODEL-FOLLOWING PROBLEM

PLANT DYNAMICS

A MATRIX

=2.6000000E+00
=7+5000000E~02
. 748000000E~02
. 140000000E+00

B MATRIX

1.7000000E+01
8,2000000E-01
O

. Qe

4 FOWS
2+5000000E~-01
=2.7000000E-01
=9+9000000&=01
7.8000000€-02

4 ROWS
7.0000000E+400
~3.200000CE+00
4+5000000E-02
Qe

H IS AN IDENTITY MATRIX

NODEL DYNAMICS

P

_AM MATRIX
=948100000£~01
3,0000000E-02
Oe
1+0000000€E+00
Qe
0
L L] MATRIX
1.0000000£+00
0.
Qs
Oe

6 ROWS
17700000E=01
=9+2000000F=~02
-1.0000000E+00
O
Oe
Oe
4 ROWS
0
140000000E+00
Qe
[+ 19

4 COLUMNS
~348000000E+01
494000000€+00
=243000000E=01
Q.

2 COLUMNS

6 COLUMNS
«1e0000000E+Q1
542300000E+00
~7+3200000€E-01
0.
Qe
Qe

6 COLUMNS
0.

0.
1.0000000E+00
Oe

0.
0.
5¢2000000E=02
Ce

[' 1Y
0.
542000000E~02
O
0.
Oe

Q.
Q.

0.
1.0000000E+00

643400000€+00
“6¢9000000E=01
[*}
[+ 19
O
Qe

Oe
Oe
0.
Oe

ORACLS PROGRAM

€.5800000E+00
=2,6500000€+00
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EXAMPLE 3 = MODEL-FOLLOWING

WEIGHTING MATRICES

Q MATRIX & ROWS
140000000E401 Oe :
O 1,0000000€+01
0. 0.
Oe Do

R MATRIX 2 ROWS
140000000E+00 Oe
' 1.0000000E+00

CONTROL LAW U = =F( £0Lo(XsXM)
PART DF F MULTIPLYING X

F11 MATRIX 2 ROWS
24B715216E+CO 1.186778RE+00
140990931£400 =3,0362141E+00

P11 MATRIX 4 ROWS
1.6784659E-01 2+2109123E~02
242109123E-02 948803140F-01

=141051966E-01 =~5,7385910E-01
17350075€E=01 849254034E-02

EIGENVALUES 0OF P11

1e6346846E-C1
94¢5710942E-01
1.0167942E+01
141543144€+01

4 COLUMNS
0.
Oe
1.0000000€+01
0.

2 COLUMNS

F = (F11,F12)

4 COLUMNS
~243493987€+00
1.5921904E+00

4 COLUMNS
=14105196565=01
=5e7385910€-01

1,1510412€E+01
3,0884697€-02

PLANT CLOSED-LOOP RESPONSE MATRIX A = BF11

O
Oe
O
1.0000000E+01

3.0218811E+00
9.3351305E-01

147350075E~-01
8e8254034E=02
3.0884697€E=02
1.0164474E+01

DRACLS PROGRAM
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EXAMPLE

«509109518E+01
1,0874501E+00
20 T6441719E-02
1.0000000E+00

143282587E+00
=1.09590644€+01
-845033415E~01
7+8000000E-02

3 = MODEL-FOLLOWING

=942055556E+00
1.1421516€+401

=3.0324076E-01
0.

EIGENVALUES OF CLNSED-LOOP RESPONSE MATRIX

=140076624E+00
=142943964E+00
=949317854E+00
=548137959E+01

O,
0.
Oe
Qe

PART OF F MULTIPLYING XM

F12 MATRIX

=2¢9990036E+00
=945061040€~01

P12 MATRIX

=1¢7290904E-01
=7¢2621845E-02

5¢9484706E-01
=1.5393360E-01

2 ROWS
=1.0535303E+00
249377885E400

4 ROWS
=1+6058975€=02
-9.5186308E~-01

9.2161895€-02
1.4943541€-01

6 COLUMNS
9¢7142903E-01
“145695172E+00

6 COLUMNS
346971673E=02
441818364E=01

-1.,0655026E+01
4,0497750E-01

=547906570€+01
54092992701
9.0583996E-023
0.

=3.0178671E+00
~942056907€E~01

=147312936E~01
=9,1058595€E=02
-1.1101935€~-03
=1.0136463E+01

=545004933E-01
841556250€E~-01

=240297024E-02
=244999989E~01
344270003E+00
603234900E=-02

ORACLS

~443236218E=01
4e4887921E-01

=169460473E=02
=1e2382211E-01

4.1059083E+00
=3,7895492E~01

PROGRAM
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H IS A NULL MATRIX

EXAMPLE 3 = MODEL~FOLLOWING DRACLS PROGRAN
IN THE TRAJECTORY OUTPUT TO FOLLOW THE FIRST 4 COLUMNS CORRESPOND TO X TRANSPOSE
AND THE NEXT 6 COLUMNS TO XM TRANSPOSE
COMPUTATION 0OF TRANSIENT RESPONSE FOR THE CONTINUOUS SYSTEM
A MATRIX 10 ROWS 10 COLUMNS
-=26000000E+00 2¢5000000E-01 -3.,8000000E+01 [+29 Oe (/1 O
Oe Qe Oe
=T75000000E-02 =2,7000000E-01 4,4000000E+00 +1% Oe O, Oe
0. Oe O
78000000E-02 =-9,9000000E~01 =2.,3C00000€E-01 5+2000000E-02 O Oe Oe
Oe Oe O
1.0000000E+00 7.8000000E-02 0. Q. Oe O O
o. 0. o.
Q. O 0. 0. ~9,8100000€E=-01 1¢7700000E~01 ~1.0000000E+01
0. 6¢3400000E+400 445B800000E+00
Q. [ Oe Oe 3+0000000E~02 =9,2000000E=02 5¢2300000E+00
Oe =6¢9000000E=01 <*=2+6500000E+00
0. Oe O Oe O =140000000E+00 =7,3200000E~-01
542000000E~02 O O ’
Oe O Oe Oe 1.,0000000€E+00 [/ ]9 O
00 OQ 0.
O 0. Oe 0. O 0. O
O Qe Oe
Oe Oe Oe Oe Oe 0, Os
O Oe O
8 MATRIX 10 ROWS 2 COLUMNS
1.7000000£+01 7.0000000E+00
8,2000000E-01 =3,2000000E+00
Oe 4,6000000E-02
Oe Oe
O Oe
Oe Oe
Oe O
0. 0.
O O
Qe 0.
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EXAMPLE 3 - MODEL-FOLLOWING

G IS A NULL MATRIX

F MATRIX 2 KDWS 10 COLUMNS

248715216E+00 14186778EE+Q0 =2.3493987E+00
=3¢0178671E+00 =5.5004933E-01 =4.3236218E=01

1609909316400 =3.0362141E+00 1.5921904€+00
~%+2056907E-01 8.1556250E-01 444887921E=01

3.0218811E400 «249990036E400

9¢3351305€6=01 -9.5061040E~-01

V IS A NULL MATRIX

COMPUTATION OF THE MATRIX FXPONENTIAL EXP(A T) BY THE SERIES METHOD

A MATRIX 10 ROWS 10 COLUMNS
=5+9109518E+C1 132825876400 =942055556E400 <=5,7906570€+01 57637333E¢01
507747725E401 3464160105400 442080025E+00
1.0874501E400 =~1.0959044E+01 1.1421516E+01 5e0929927E=01 ~=5,8277036E~01
=447116998E=-01 3.0608404E400 1.7909505E+00

2¢7441719E-02 =845033415E-01 +-3,0324076E-01 9+0583996E-03 4.3728078€E=-02
©e2346L7T7E-02 =3,7515875E~02 ~2.0648444E=-02

1.0000000E+00 7.8000000E-02 Oe Oe Oe
Oe Oe Qe

Oe O O 0. =9,8100000E-01
Qs 6¢3400000£+00 4+5800000£E+00

Oe O Qe Qe 3.0000000E-02
Os =649000000E-01 =-2.,6500000E+00

O Oe O Oe Oe
5¢2000000E=02 Oe O

0. [+ O O 1.0000000E+00
O O O

Oe Oe O Qe O
O Oe O

O O Oe O Oe
Os Oe Oe

Ts »20000G00E+0L

ORACLS PROGRAM

=1,0535303E+00
249377885E+00

~2465645044E¢00
140264818E+01
=143513827E-01
Oe
147700000E=01
f9c20000005-02
-1000000005090
0.
Oe
Qe

947142903E-01
=1.5695172E+00

=5¢5276735E+400
=5+8190267E+00
Te2197709E=02
Oe
=1+0000000E+01
5+2300000E+00
=743200000E-01
0.
Oe
Oe

4
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~243891131£-03

=143074054E~04

EXAMPLE 3 = MODEL-FDLLOWING

EXPA  MATRIX
162605585E=~01

5032647219E-02

10 ROWS

~143251850£-03 -1,

349547601E400

-8.5670545E-03 9

7¢2397266E-01

1e4763163E-05 =7.2188507E~03 Be

=1le6411698E=02
2¢3921962€£~03
T¢6035997E-01
0. O.
=T7+8748841E-03
O Ce
5e4105406E-02
O O
-9,3881938E-03
Oe O
849663838E~-01
Oe Oe
O
Oe Oe
O

TIME OR STAGE

B8e2364845E-02

242911988E-03 -1,

58562550E+00
Oe
440115443E+00C
Oe
3,0701214E-01
[*N
1¢7719426E~01
O
548926293E+400
Oe
1.0000000E+400
O«
Oe

STRUCTURE OF PRINTING TN FOLLOW

10 COLUMNS

1385082E-04 =143738924E-01

=144409641E400

7002193E-02 <-8.5196158E-04

3.8807667€=01
2534175E-02
448831924E~01
0898440E=-02
243683158€£-01
0.
=144422067E+400
Oe
1.1717037€-01
Oe
5¢7703078€E~-01
Oe
246304712E-01
Oe
Oe
O
1.0000000€+00

STATE = X TRANSPOSE - FROM DX = AX 4 BU

OUTPUT = Y TRANSP(SE = FROM Y = HX + GU

CONTROL = U TRANSPOSE = FROM U = =FX + V

0.

0. Oe

O
240000000€+00

0.
Qo

645207081E-03

143680976E-01

IF DIFFERENT FROM X

1.1955605E-01
602644T729€=02
962176534E-03
8+4821386E=~01
1.2107298E-01
448006911E~-02
1.2870845E-03
8,5227516E-01
0.

0.

Oe

ORACLS PROGRAM

1,0625337E=01
14453478 7E=02
242259046E=01
2,0037391E+00
1.1670875€-01

~3,5454142E-02
2,0066917€-01
2,0172177E+00
0.

0.

0.

201427525E+00
=1.0599349E+00
=1e5515221E-01
~142295579E-01

241381511€+00
~140445038E+00
=141693378E-02
«1¢5144008E~0]

0.

0.

0.
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EXAMPLE 3 ~ HMODEL-FOLLOWING

1.1000987E+4C0 +1.6311250E+00

«2000000E+01

T7+9095202E+00 144479453E+400 1e6472969E~01
141785259E+01 240000000E+400 Oe

1,5927996E+00 140410762E-01

¢4000000E+01

9.5489317€+400 242039396E+00 2+0659338€E-01
300375205€+401 2+400000002+00 0.

148227148E+00 1.0305996E-01

+6000000E+01

946466669E+400 342716314E+00 147391236E=01
4e9769107E+01 2.0000000£+00 0.

1.7942873E+00 640926728E~02

141712510€+01

3,0288443E+01

4e9680598E+01

840230886E+00

9¢7310584E+00

9.90518508E+00

‘ORACLS PROGRANM

6e1402428E~01

162449044E+00

242907575€+00

3+5438851E-01

347314436E-01

3.2719551E-01
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EXAMPLE 3 = MODEL=-FOLLOWING

+«8000000E+01

944589500E+00 49350263TE+0Q0 241320376E-01
609423499€+01 200000000E+00 0.

168504096E+00 3.1082298E-02

«1000000E+02

9¢3974701€400 53531655E+00 2¢4666911€E=01
8.9105733E+01 2.0000000E+00 0.

149097142E+400 =-9.,6113310€-03

«1200000E+02

943439028E+00 6¢3634006E+00 246358106E=-01
1.0876250E+02 240000000E+00 Qe

109444176E400 =5,5910245E=-02

¢1400000E+02

6,9331980€+01

849012688E+01

1.0866891E+02

9+ 7973579€+00

948153021E+00

9.8410301E+00

ORACLS PROGRAN

3¢3593457E+00

4¢3498632E+00

543497710E400

3¢5575370E-01

348519443E-01

3.9885096E-01
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EXAMPLE 3 =

9.2585870E+00
1,2842441E402

MODEL=-FOLLNAWING

743979771E400
240300000£+00

149814221E400 =9.985750€E~02

+1600000k+02

9.1761171E+00
164809427E402

200230646E+00 -

«1800000E+02

9,0997321E+400
1.6776481€E+402

8440882389¢8+00
2400000002400

1s4313242E-01

Ge4274267E+00
2.0000000€+00

200634769E+00 ~-1.8702727€-01

+«2000000E+C2

940217633E+00
1le8743654E402

1.0447312E+01
2+0000000E+00

242394186E-01
Qe

3,0715116£-01
Oe

3,2918291E-01
0.

3.5081025E~01
'}

1.2832999E+02

144799891E+02

1e6766858E402

1.8733946E+02

9.8352651€E+00

948323699E+00

908355191E+00

9.8370988E+00

B ==

ORACLS PROGRAM

643648203E+00

Te3756775E400

8+3841989E+00

9.3941185E+00

4e1484140E-01

403374640E~01

445170504E-01

446920740E-01
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EXAMPLE 3 = MIDEL~-FOLLOWING
201031212€E+400 =2,43097232E=01

¢2200000E+02

8.9427645E+00 161467616E+01 3.7275076E-01 2+0701295€E+02
2.0711089E+02 2.,0000000E+00 Oe

201431502E400 =247477692¢-01

«2400000E+402

848642480E400 1424877378401 3.9472902E-01 202668872E+02
242678753E402 240000000E400 Oe

201832840E+400 -3.1861843E-01

¢2600000£+02

8.,78585782+00 1.3507953£401 4e1663924E-01 2e4636654E402
2046466217402 2400000005400 O

202233270€400 =3,6248104E-01

«2800000£+02

9.8376666E+00

9.8387229E+00

948399126E400

ORACLS PROGRANM

1.0404454E+01

1e1414584E+01

1¢2424811E+01

4486908248E-01

5.0481197E-01

502257858E=01
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EXAMPLE 3 - MDDEL~-FOLLOWING

8470733516400 1045283456401  443855571E=01
266147056402  2.0000000E+400 0.
2026336856400 =-440634175E-01
«3000000E+02
8462879536400  1.5548843E+01  4.6048866E-01
2.8583006F402  2.0C00000E+00 O
2030343526400 =445020286E=01
«3200000E402
Bu5502742E400  14656944CE+01  4.8242098E-01
3,0551524E402  2.0000000E400  O.
243435043E400 =4e94070€9E=01
+3400000E+02
Be4717641BE+00  1.7590152E+401  5,0435325€-01
3,25202576402  2.0000000540C 0.

246604650E+02

2.8572865E+02

3,0541296E402

342509942E+402

9¢8409794E+00

9.8420381E+00

9.8431238E+00

9.8442071E400

DRACLS PROGRAM

1.3435217€E+01 5.4034652€-01
104445726E+01 55813003€-01
1.5456333E+01 5.7591345E-01
146467054E+01 59369631E~01
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EXAMPLE 3 = MODEL-FOLLOWING
2¢3835737E+400 =~5.3794431¢-01
«3600000E+02
843931956E+00 1.8610979E+01 5e2628895E=01

344485206F+02 240000000E+0C 0.

244236486E+00 =5.8182202E=-01
+3800000E+02
B843146421E400 1.9631916E+01 5¢4822741E=01
3.6458371E402 2+0000000E+00 O
24637285E400 =6,2570450E~-01
¢4000000E+02
842360809E+00 240652965€+01 5.7016800€~01
34B427752E+02 2¢0000000E+00 Oe
205038125E400 =646959191€~01

+4200000E+02

3.4478805E+02

346447883E402

3.8417177E+402

9,8452853E+00

9.8463650E+00

9.847445TE+00

ORACLS PROGRAM
1o7477889E+01 6-11481955-?1
1.8488833E40) 642926992E-01
1.9499888E+01 664705962E-01
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EXAMPLE 3 - MODEL-FOLLOWING

841575106E+00 2616741278401 5¢9211098E~01
4%e0397349E+02 2+0000000€E+00 0.
- 2¢5439009E+00 -7.1348413E-01
2 4400000E+02
840789316E400 242695400E+01 6e¢1405642E-01
442367162E402 240000000E+00 Oe
245839937E+00 -745738114E~01
¢ 4600000E+02
840003441E+00 243716786E+01 643600426E=-01
4¢4337192F+02 20000000E+00 0.
246240909E+00 =8,0128297E~01
«4B00000E+02
769217480E+00 2447382R3E+01 645795450E-01
446307437E+02 2+.0000000E+00 Ce

4e0386688E+02

442356414E+02

4¢4326357E+02

446296516E+02

948485261E+00

9.8496065E+00

9.8506871E+00

9.8517678E+00

ORACLS PROGRAN
200511054E+01 646485122E-01
2415223316401 6.8264483E=01
242533719€E+01 740044040E~01
2435645218£+01 7.1823790E-01
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EXAMPLE 3 = MIDEL-FOLLOAING

2066419255400 =8,4518962&-01

+5G00000E+02

Te8631432c+00 245759893E+01 6¢7990715E~-01 4eB8266891E+02
4082778995402 240000000€400 Oe

247042985E+400 =8,3910109€~01

948528486E400

ORACLS PROGRAM

204556828E¢01

7¢3603736E-01
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Example 4 - Kalman-Bucy Filter

This problem illustrates the asymptotic optimal estimator design capability
of ORACLS. Consider the linear system

x(t) = A x(t) + B u(t) + &E(t)

with A and B from example 1 and &(t) a zero-mean Gaussian white-noise
process with constant intensity Q = Q' 2 0. If the system is digitally con-
trolled using a zero-order hold with sampling times equal to integral multiples
A = 0.05 second, the state equation becomes

x[(i+1)4] = & x(1A) + B u(id) + £(in) (i = 0,1,...)
where
A= ehA
. A
B = jﬁ eATB dt
0

and £(iA) is a zero-mean Guassian discrete white-noise process with variance
matrix

A
Q = j eATQeA' 4at
0

Observations are made at the sampling instants and are modeled by

y(iA) = H x(id) + D u(ild) + n(id)
where
1.0 0.0 0.0 0.0
H = 0.0 1.0 0.0 0.0
-0.0852 -0.0421 -2.24 -0.0021
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0.0 0.0
D=| 0.0 0.0
0.713 -0.403
and n(id) is a zero~-mean Gaussian discrete white-noise process with variance
R = R' > 0. Assuming §&(iA) and n(iA) are mutually uncorrelated, find a
Kalman-Bucy predictor to asymptotically estimate the state x(iA) from knowl-
edge of the measurements y(iA) and control inputs u(iA) wup to time (i-1)A.
If the estimate of x 1is denoted by §, the predictor has the structure
(ref. U4)
x[(1+1)4] = & x(i8) + B u(ia) + F[y(iA) - H X(iA) ~ D u(ia)]

The filter gain F can be computed directly from ASYMFIL after ignoring the B
and D matrices_in the digital plant and observation equations. As in exam-
ple 2, A and B follow from EXPINT. The matrix Q@ can be found from SAMPL
using A' in place of A. Finally, we take Q and R to be 4 x4 and

3 x 3 identity matrices, respectively.

The executive program and output data follow.
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PRNGRAM KBFIL 74/74 OPT=1 FTN 4.6+439 ‘ T7/707/27% 08437418

PROGRAM KBFIL(INPUT,BUTPUT,TAPES=INPUT, TAPE6=0UTPUT)

DIMENSION A(16),B(8)sH(12)5Q(16}sR{9),ATIL(16)sBTIL(B),QTIL(16)5F(
112)sP{16)sDUMMY(114)

DIMENSTION NA(2)sNB(2)sNH(2)sNQ(2)sNR{2)sNATIL(2)s NBTIL(2),NQTIL (2}
1,10P(5),NF{2),NP(2),NDUN(2)

LOGICAL IDENT,DISCsNEWT,STABLE,FNULL

INPUT HOLLFRITH DATA FOR TITLE OF OUTRUT
CALL RDTITL

INPUT CDEFFICIENT MATRICES AND NOISE INTENSITIES
FNOR CONTINUNUS SYSTEM
CALL READ(55AsNA,B,NBsHsNH» Qs NQsRsNR)

GENERATE COEFFICIENT MATRICES FOR DIGITAL SYSTEM
IuP{1)=0

DELT= .05

N1=(NA(1)#*%x2) + 1

CALL SXPINT(A,NApATILoNATILsDUMMYsNASOELT>I0P>0UMMY(NL))
CALL MULT(DUMMYsNA,BsNB,BTIL,NBTIL)

CALL PRNT(ATIL,NATILs4HATIL,1)

CALL PPNT(BTIL,NBTILs4HBTIL,1)

COMPUTE VARIANCE MATRIX FOR PROCESS NOISE OF DIGITAL SYSTEM

CALL EOQUATE(QsNQy QTILsNITIL)

CALL TRANP(ASNA,DUMMYsNDUM)

I0P{2)= G

CALL SAMPL(DUMMY, NDUMsBsNB,QTILsNQTILsRsNRyWsNWsDELTsI0P,DUMMY(N1)
1)

CALL PRNT(QTIL,NOQTIL,4HQATILy1)

SPLVE FOF DIGITAL FILTER GAIN
IDENT = (TRUE.

DISC = oTRUF,

STABLZ = JFALSE.

FNULL = s TRUE .

NEWT = 4TRUEs

ALPHA=,5

I0P(1)=1

IneP(2)=0
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PR{IGRAM KRCETL 74774 GPT=1 FTN 4.6+439 77/07/27. 08437418

1P (3)=0
I0P(4)=0

45 I0P(5)=0
CALL ASYMFIL(ATILSNATILsGsNGsHsNHyQTIL JNQTILsRy)NRsFNF,P,NP,IDENT)

1DISCHNFWTsSTABLE, FNULLy ALPHA, IDP, DUMMY)

50 STOP
END
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EXAMPLE &

A MATRIX
=246000000E+00
=7+5000000E=02

7.8000000E-02
1.0000000£+00

[} MATRIX
147000000c+01
842000000£-01
Oe
Q.

H MATRIX
1.,0000000E+00
Qe

=845200000E=-02

Q MATRTX
1.0000000£+00
0.

Oe
O

R MATRIX
1.0000000E+00
Oe
Oe

ATIL  MATRIX
8e7460216€-01
=340698872E-03
3.7743137€-03
446820759E-02

BTIL MATRIX
7+9692392E-C1
3.9250218€-02
6.1800654E-04
200435169€~C2

OTIL MATRIX

KALMAN=RUCY FILTER

4 POWS
245000000€-01
~247000000E-01
~3,9000000€=-01
7.8000000F=02

4 ROWS
7.0000000E+00
=342000000€+00
4+6000000€-02
0.

3 ROWS
Oe
1.0000000E+00
=442100000€E=02
4 ROWS
O
1.0000000E+00
0.
OI
3 ROWS
0.
1.0000000E+00
Oe
4 ROWS

5.6206553E-02
948114690E-01
-448707923E-02
4e9177112E=03

4 ROWS
3.2234606E-01
=1.5895733E~01
6.8676137E£-03
7498520845€=-03

4 ROWS

4 COLUMNS
-3.8000000E+01
4.4000000€E+00
=2¢3000000E-01
0.

2 COLUMNS

4 COLUMNS
Oe
Oe
=242400000£+00

4 COLUMNS
0.
Oe
1.0000000E+00
Q.

3 COLUMNS
0.
Qs
140000000E+00

4 COLUMNS
=1e7644035E+00
241998505€~01
9.7958437€=01
=444B809768E=02

2 COLUMNS

4 COLUMNS

0.
0.
5.2000000E-02
Co

O
Oe
-2.1000000E-03

Oe
Qe
Oe
1,0000000E+00

~203524288E-03
248616468E-04
25772852E~03
9¢9996068€E~01

ORACLS

PROGRAM
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EXAMPLE &

9¢7864533E~02
~546349895£-03
—444643769E-02

2.0737669E-03

KALMAN=-BUCY FTLTER

=546349695E~-03
409959106t-02
422554961=03
-1.216658EE=05

—444643769E-02
442255496€-03
4e¢91721%4E=-02

~6e81735778=04

PROGRAM TO SOLVE THE DISCRETE INFINITE~DURATION

A MATRIX

B847460216E=01
=340698372E-03
347743137E-03
4.6820759€~02

4 PDWS
5¢6206553E=02
9.5114690£-01

-448707923E-02
449177112E=u3

G IS AN IDENTITY MATRIX

H MATRIX

1.0000000€+00
Oe
~845200000£-C2

INTENSITY MATRIX

R MATRIX
1.0000000€+00
Oe
O

3 ROWS

O
1.0000000E+02
-442100000E-02

FIR COVARIANCE

3 RAWS
Oe
1.,0000000E+00
Oe

INTENSITY MATRIX FOR COVARIANCE

Q MATRIX

9.7864533E~02
-5.6349895E-03
=404643769€-02
240737669€E-03

FILTER GAIN

4 PRDOWS
~546349895F-~03
449959106E-~02
442255496E-~03
-14216G9588E=~05

4 COLUMANS
=147644035%400
2¢1998505E=-01
9.7958437€-01
=4,48097685-02

4 COLUMNS
Oe
0.
~242400000E+00

240737669E-03
~142169588E-05
-64£173577E-04
540057551€=02

OPTIMAL FILTER PROBLEM

=2+3524288E-03
2.8616468E-04
245772852E-03
9.9996068E-01

Ge
O
-241000000€£-03

NF MEASUREMENT NOISE

3 COLUMNS
Oe
0.
1.00000005+00

OF PROCESS NIOISE

4 COLUMNS
~444643769E-02
4.2255496E-03
4.9172184E-02
~648173577€~04

240737667E-03
=142169588E=05
-648173577E=04
540057551E=-02

CRACLS

PROGRAM
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EXAMPLE 4

F MATRIX

53454233€~01
~463653081E=-02
~8+4771306E-02
~7.0927842E-03

KALMAN-RUCY FILTER

4 KOWS
=1.0000879£-02
148601816:-01
-9,02564664t=03
3.81565991F=-02

STEADY=STATE VARIANCE “ATRIY CF

P MATRIX

8e0649680E~01
~5¢7194386£-02
~242094025E~C1
«142626090E-01

EIGENVALUES OF P

EVLP  MATRIX

4eT257495E£-02
243111030€-01
9+4813881E-01
1.9946666c+C1

A=FH MATRIX

347099327E-01
3.7658749E-02
708205998E-02
44188R621E-02

& POWS
=547194386£-02
243557573¢=01
?,3030258£-03
£42B0BE1Q0E-02

4 ROWS

4 ROWS
841495086E-02
7+9368365E~01

~444791609€-02
~349190172E-02

EIGENVALUES OF A=FH MATRIX

504024239€~01
50402423901
Te9425006E-01
9+9735592E-01

2.2217840E-01
~242217640€=01

0.

Oe

3 COLUMNS
3.6312717E-01
~3443244568E-02
~142135706E=01
=144113759E-01

RECONSTRUCTION ERRDR

4 COLUMNS
=242094025c-01
84303025%E=03
1.0585196£-01
941725C42E5-02

1 COLUMNS

4 COLUMNS
~3.5099854E-01
1.43096824E-01
7.0774455E-01
~3.6095797E-01

=142626090E-01
£.26808R10E-02
9¢1725042E-02
149945243E+01

=1,5898617€=-03
241408330E-04
243224354E-03
9¢9966429€-01



CONCLUDING REMARKS

This report has presented some 60 subroutines (43 primary purpose and
17 supporting) which can be used for the analysis and design of state-variable
feedback control laws for time-invariant linear systems. The basic synthesis
approach is through the well-founded linear-quadratic-Gaussian (LQG) method-
ology. The ORACLS system represents an attempt on the author's part to employ
some of today's best numerical linear algebra techniques to the LQG design
problem. A modular structure has been incorporated so that new methods can be
incorporated, as they are developed.

The examples presented indicate only some of the capability of the ORACLS
package. The program has been applied at the Langley Research Center to prob-
lems in aireraft design using state-variable equations of order up to 16. The
Liapunov equations (subroutines BARSTW and BILIN) have been used successfully
to solve equations of 79th order.

Each subroutine was compiled on a FORTRAN Extended compiler and executed
on a Control Data Cyber digital computer system. The full ORACLS package
(60 subroutines) requires 22 345 decimal (53 511 octal) words of storage.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

November 1, 1977
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